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Abstract

This thesis is concerned with two special cases of the singular Brascamp-Lieb inequality, namely,
the trilinear forms corresponding to the one- and two-dimensional bilinear Hilbert transform. In
this work we study the uniform estimates in the parameter space of these two objects. The ques-
tions of the uniform bounds in one dimension arose from investigating Calderén’s commutator,
implying an alternative proof of its boundedness. Another reason for studying this problem is
that, as the parameters degenerate, one can recover the bounds for the classical Hilbert transform,
which is a well understood operator. Analogously, it is natural to investigate the two dimensional
form, whose parameter space turns out to be considerably more involved and offering many more
questions concerning the uniform bounds.

The thesis consists of four chapters.

In Chapter [I] we investigate the parameter space of the bilinear Hilbert transform. We
complete the classification of the two dimensional form that was first given by Demeter and
Thiele. We also describe the parameter space, reducing its dimensionality, and discuss the related
geometry, which raises many open questions concerning the uniform bounds in two dimensions.

In Chapter [2| we prove the uniform bounds for the bilinear Hilbert transform in the local L*
range, which extends the previously known range of exponents for this problem. This a joint
work with Gennady Uraltsev.

In Chapter [3] which is an elaboration on Chapter [2, we prove the uniform bounds for the
Walsh model of the bilinear Hilbert transform in the local L! range in the framework of the
iterated outer LP spaces. This theorem was already proven by Oberlin and Thiele, however, in
their work they did not use the outer measure structure.

Finally, Chapter [d]is dedicated to proving the uniform bounds for the Walsh model of the two
dimensional bilinear Hilbert transform, in a two parameter setting in the vicinity of the triple
that corresponds to the two dimensional singular integral.
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Introduction

In this thesis we are concerned with a singular variant of the Brascamp-Lieb inequality, whose
classical version is defined as

[ 5o de < TR g, (0.1)
™ i=1 j=1

where I; € R™ — C are measurable functions and II;: R™ — R¥ and IT: R™ — R* are surjective
linear maps. Bennett, Carbery, Christ and Tao in [Ben+08] gave a complete description of ,
proving that the above inequality holds if and only if for every subspace V' of R™ it holds that
dim(V) < 22‘;1 p% dim(IT;V') together with the equality for V' = R™. When one integrates
the product against a Calderén-Zygmund kernel in 7 then it becomes a so-called singular
Brascamp-Lieb inequality. It is generally of the form

| I BaK ) de < CTLIE N o (0.2
™ =1 j=1

where IT: R™ — RF¥ is a surjective linear map and K is a Calderén-Zygmund kernel on R¥. Multi-
linear inequalities of the form form a very vast family of problems and cover a large portion
of questions considered in harmonic analysis including, among others, the classical Hilbert trans-
form, paraproducts, the bilinear Hilbert transform and the simplex Hilbert transform. Various
examples of singular Brascamp-Lieb integrals were thoroughly discussed in the work of Durcik
[Durl7], where she proved multilinear L? estimates for a so-called entangled form, which falls
into this general class.

In this dissertation we are interested in two special cases of the multilinear form appearing
in (0.2)):
e The trilinear form associated with the bilinear Hilbert transform
> dt
B (1o fo) 1= | T[ e =gt de S (0.3)
j=1

where f1, fa, f3 are Schwartz functions on R and 5 = (81, B2, 83) € R® with Z?:1 B; =
0. Note that the above trilinear form is obtained from (0.2), assuming m = 2, n = 3,
II(z,t) = — Bt for j =1,2,3 and K(¢t) = 1/t, II(z,t) =t.

e the trilinear form associated with the two dimensional bilinear Hilbert transform

3
BHFX (g1, 92, 93) == / 11 9i((@,v) + Bj(s, ) K (s, ) du dy ds dt, (0.4)
RS
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where g1, ga, g3 are Schwartz functions on R, B = (By, By, B3) € (R2X2)3 is a triple
of 2 x 2 real matrices with 23:1 B; =0 and K: R?\ {0,0} — R is a two dimensional
Calderon-Zygmund kernel, i.e. satisfying

07K (& m)| < |(&m)| 1,

for all & € ZZ up to a high order and (§,7) # (0,0). Note that the above trilinear form is
obtained from (0.2, assuming m =4, n = 3, II;(z,y, s,t) = (z,y) — B;(s,t) for j =1,2,3
and I(x,y, s, t) = (s,1).

One is interested in proving the singular Brascamp-Lieb inequalities in those two special cases

3
|BHF 5(f1, fo )| < C, o s ]Il s (0.5)
j=1
3
|BHFg(91,g2»93)| < Cpl,pw&g H ||ngLPJ'(R2)- (0.6)
j=1

By scaling, the exponents in (0.5)), should satisfy 1/p1 + 1/ps + 1/p3 = 1.

In Chapter 1| we study the geometry of the parameter space of the bilinear Hilbert transform.
While it is well understood in one dimension, it is a more involved object in two dimensions.
One attempt to classify various cases in two dimensions was given in [DT10] by Demeter and
Thiele, however they did not how the parameters degenerate. The main purpose of this chapter
is classification of B up to symmetries that do not affect the defining constants of the kernel K,
hence giving a good description of the related geometry. This makes it a good starting point for
proving with a constant independent of B , which is a completely open problem. Below we
discuss some background in one and two dimensions, and the content of this chapter.

Observe that up to a symmetry, there are essentially 3 different cases of . If one assumes
that all 3; are equal, then using the translation symmetry BHF 7 equals zero and the inequality

(0.5)) is clearly satisfied. If two of the components of f are the same, then BHF 5 up to a symmetry
it equals

/R Hf\(2) fol(a) f(e) d,

which implies for 1 < p1,p2,ps < oo using the boundedness of the Hilbert transform. The
third possibility is when §;’s are pairwise distinct. The first proof in this case was given by Lacey
and Thiele in [LT97], where they proved in the range 2 < p1,p2, p3 < 0.

The dependence of the constant in is not explicitly stated in terms of E in [LT97],
however, one can show it that it behaves linearly in min;.; |3; — 3;|~'. The authors of [LT99)
asked, whether there exists a constant Cp, p,,p, < o0 independent of 3, such that

3
|BHF§(f1a f27f3)‘ < Cpl,pz’ps H ||fj||ij(R) (07)

j=1

holds for triples of Schwartz functions and, moreover, what is the range of exponents in which the
above inequality holds. This question has already been extensively studied by Thiele [Thi02a],
Grafakos and Li |[GL04] and Li |[Li06]. Since the following chapter is concerned with extending
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the range of exponents for we discuss the background of this problem in detail later on.
Concerning the geometry, applying the translation and the dilation symmetry of the form it is not
difficult to show that the parameter space in one dimension can be identified with S*U{0}, where
{0} corresponds to the aforementioned trivial 0 form, a finite set of points on S! is identified
with the Hilbert transform and the rest of the circle corresponds to the nondegenerate case.

As opposed to the one dimensional form, has in total 10 different cases. First, if one
assumes that that all By, Bs, B3 are singular, then degenerates to a one dimensional
operator or a strongly singular two dimensional operator. In the first case its boundedness
follows from the one dimensional time-frequency analysis and paraproduct theory. Otherwise, as
shown in Chapter [I] it is an operator whose boundedness is strongly related to the boundedness
of the triangular Hilbert transform. The latter is known to be a difficult open problem and
in fact this is the only case in which is not known. If one assumes that B is such that
at least one of By, By, Bs is nonsingular, then there are several possibilities: it is a fully two
dimensional form, a so-called one and half dimensional form or a so-called twisted paraproduct.
In [DT10] Demeter and Thiele gave the first proof in the first two cases, for exponents satisfying
2 < p1,p2,p3 < co. Their methods consisted of using two dimensional as well as one and half
dimensional time-frequency analysis. The latter case was later resolved by Vjekoslav Kovac in
[Kov12|, which initiated the so-called twisted technology. The authors of [DT10| provided also
a classification of the cases, assuming that one of the matrices is nonsingular. In the first main
result of Chapter (I} Theorem we complete the classification given in [DT10], including the
aforementioned cases when all By, By, B3 are singular.

Similarly as in one dimension, it is natural to ask whether LP bounds hold with a constant
independent of E, which is not provided by the methods in [DT10]. This brings us to the
conjecture.

Conjecture 1. Let K be a Calderdn-Zygmund kernel satisfying (1.2) and assume that 2 <
P1, P2, P3 < 00 with Z§:1 1/p; = 1. There ezists a constant 0 < Cp, p,.p, < 00, such that for all

91,92, 93 € S(R?)

3
|BHFg(g1,92,g3)| < CP17P27P3 H ngHij (R?) (0.8)

j=1
holds uniformly in B € (R2*2)3,

As described above, the parameter space of is much richer than of its one dimensional
counterpart and there is a number possibilities in which B can approach various degenerate cases.
The conjecture is completely open, except for the cases which correspond to the one dimensional
bilinear Hilbert transform and the bounds follows from the one dimensional theory of the uniform
estimates. Since implies the boundedness of the triangular Hilbert transform, which is a
difficult open problem, the full version of Conjecture [I] seems to be out of reach for the current
state of the art. However, there are several different degenerations for which the LP bounds are
known to hold. The main goal of Chapter|l|is to study the geometry of triples B , which possibly
makes it a good starting point for studying Conjecture [1| further. The authors of [DT10] were
not concerned with the uniform estimates and did not consider how applying the symmetries of
affects the kernel K. In the main theorem of Chapter [1J Theorem we describe the
manifold of parameters in two dimensions, up to only these symmetries that do not change the
defining constants of K, essentially identifying it with (S1)% U (S1)?2 U {0}. This is motivated by
the aforementioned parametrization in one dimension by S* U {0}. The parametrization in one
dimension is significantly easier, because all matrices in one dimension commute. Since this is
not the case in two dimensions, it requires more care to carry out a similar process.
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Chapter [2] is concerned with extending the range of exponents for the one dimensional in-
equality . The content of Chapter [2| is a joint work with Gennady Uraltsev. Below we
discuss the background and its content.

First estimates of the type were given by Lacey and Thiele in |[LT97], in the range
2 < p1,p2, p3 < 00, corresponding to the open triangle c in Figure[I] They subsequently extended
the range of exponents for the inequality in [LT99|] the open triangles a1, as, as in Figure|l] The
works [LT97], [LT99], inspired by the works of Carleson |[Car66]| and Fefferman [Fef73|, initiated
the modern time-frequency analysis.

In |[LT97] Lacey and Thiele proved that holds in the range of exponents 2 < p1,p2, p3 <
oo, with a constant dependent only on pi, p2, ps and E, which corresponds to the open triangle
¢ in Figure [I] The range was extended in [LT99] to the one corresponding to the convex hull
of the open triangles aj, as, ag in Figure|l] The works [LT97], [LT99|, inspired by the works of
Carleson [Car66] and Fefferman |Fef73|, initiated the modern time-frequency analysis.

Since the form is symmetric under permutations of the coordinates of /3, let us assume
from now on that 5 is in the neighbourhood of the degenerate case B3 = (3. In this case the
trilinear form becomes and the Hilbert transform is not bounded in L, thus one cannot
expect the uniform bounds to hold for av; < 0. This region corresponds in Figure [1| to the one
below the line spanned by (0,0,1), (0,1,0). Moreover, the region spanned by a1, as, as in the
picture is the maximal range for which parameter dependent bounds for the bilinear Hilbert
transform are known. Taking the intersection of these two regions we obtain the convex hull of
the open triangles b3, by, as and as.

The uniform estimate was investigated in several papers. The first time inequality
was proven with a constant independent of 3 by Thiele in [Thi0O2a], where he showed a weak
type inequality at the two upper corners of the triangle ¢ in Figure Next was proven
by Grafakos and Li in |[GL04] in the open triangle ¢ and Li |Li06] extended the bounds to the
range corresponding to the open triangles a1, as. Interpolating these results, one obtains
for the exponents corresponding the convex hull of the open triangles as, as and ¢, see Figure
However, up to date, it was not known whether the uniform bounds hold in the neighbourhood
of points (1/p1,1/p2,1/p3) = (0,0,1), (0,1,0). The following main result of Chapter [2| resolves
this issue.

Theorem 0.1. Let 1/py + 1/ps + 1/ps = 1 with 1 < p1,pa,ps < 0o. There exists a constant
Cpy pa,ps < 00 such that for all B and all triples of Schwartz functions fi, fa, f3 the inequality

(0.7) holds.

The range of exponents in the above theorem corresponds to the convex hull of the open
triangles by, by, bsz. This extends the uniform inequality to the exponents corresponding to
the convex hull of the open triangles as, ag, by and b3 in Figure |1} after interpolating with the
theorem of Li |Li06].

In order to prove Theorem we refine the outer measure approach progressively developed
in the papers [DT15], [DPO15], [Ural6|. This approach was initiated in the paper [DT15], where
Do and Thiele reformulated the problem of boundedness of the bilinear Hilbert transform into
proving an outer Holder inequality on the upper half space R:i := R X R x Ry, which can be
identified with the symmetries of , and an embedding theorem for exponents in the range
2 < p < oo. In [DPOI15| Di Plinio and Ou extended it to the range 1 < p < oo, which
was afterwards reformulated by Uraltsev in [Ural6] as an iterated embedding theorem. The
approach of [DT15] using the refinements of [DPO15| and [Ural6] can be very roughly outlined
as follows. One embeds any Schwartz function on R, f via

Fe(f)(y,n,t) == f*on(y)
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Figure 1: Range of exponents (ay, a2, a3) = (1/p1,1/p2,1/ps) with Z?’:l a; = 1. The uniform
bounds were previously known to hold in the convex hull of the open triangles as, ag and ¢. The
result of Chapter [2]implies the uniform bounds in the convex of the open triangles as, as, b2 and
bs.

where ¢ is a Schwartz function with sufficiently small support. Performing the wave packet
decomposition one essentially rewrites

3
BHFB(fhqufS) z/s HFW(fj>(y7ajn+6ﬁjt_l7|aj|_1t)dtdndyv

RY j=1

where @ € R? is the unit vector perpendicular to both (1,1,1) and 5, and & := min(|ay |, |, |as|).
Applying the outer Holder inequality [DT15] and using the embedding theorem from [DPO15|
for each f; separately in the framework of [Ural6|, the right hand side of the previous display is
bounded by

3 3
TTIEED pmizass) < T e w)- (0.9)

Jj=1 Jj=1

On the left hand side are the outer LP norms that we precisely introduce in Chapter We
follow the above approach and the main difficulty in our case is to prove a trilinear inequality
for the wave packet decomposition of BHF 5 with a constant uniform in the parameter 5. We

then complete the proof combining that trilinear inequality with .

Chapter |3| and Chapter 4| are dedicated to proving Walsh analogues of and re-
spectively. The so-called Walsh models of multilinear forms are often studied by time-frequency
analysts along with their continuous analogues, as many technical issues disappear due to perfect
time-frequency localization of the Walsh wave packets. On the other hand, they are still similar
enough to the original problem, so that they are a well established way for understanding and
presenting the gist of the problem. Walsh models appeared in the context of the bilinear Hilbert
transform in a number of articles, for example, [Thi95], |[Thi02b], [OT11], [DDP13|. Below, we
first discuss the content Chapter [3]and then we discuss the content of Chapter [4]

Oberlin and Thiele in [OT11] proved the uniform inequality for a Walsh model of the
bilinear Hilbert transform in the range that corresponds to the convex hull of the open triangles
as, as, be and b3 in Figure In Chapter [3, we reprove the result of [OT11] in the local L!
range in the framework of the outer LP spaces. This can be thought as a demonstration of the
techniques that are used in Chapter [2|in the context of the continuous form.

In order to define the Walsh model we introduce the set of tiles, where the wave packets are
time-frequency localized. We call a tile the Cartesian product I X w, where I,w C R4 are dyadic
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intervals and denote the set of tiles with X. The L? normalized wave packets associated with
tiles are defined recursively via the following identities

Crxpogr-1 = 117?15 (x), Pr-xw + PItxw = Prxw— + PIxwts

for any dyadic intervals I, J,w C Ry with |J||w| = 2, where J~ and J* are dyadic children of J.
Similarly as in the continuous case, given a function f € S(R) we associate it with the embedded
function via

F(f)(P) = / F(@)or(c) dr,

where ¢p is the Walsh wave packet associated with a tile P. Set F; = F(f;) for j =1,2,3. We
indicate the dyadic sibling of a dyadic interval I as I© and by P© the tile Ip x wg. The trilinear

form on the embedded functions associated to the Walsh bilinear Hilbert transform is given for
L €N by

AL(Fy Fo, Fy) o= Y Ip| T PRU(PO) Y Fa(Q)F3(Q)hin(cq)),

PeX QepPL

where PL' = {Q € X: Iy C Ip, |Ig| = 27L|Ip|, wg = 2Fwp}. In the above expression we used
the Haar function hy, and the center of the interval I, c(Ig).
The main result of Chapter [3]is the following theorem.

Theorem 0.2. Let 1/p; + 1/pa +1/ps =1 with 1 < p1,p2,p3 < 00 and 1/g1 +1/qa +1/q3 > 1
with 2 < q1,q2,q3 < 00. There exists a constant Cp, p, p, < 00 such that for all L > 2 and all
triples of Schwartz functions f1, fa, fs

3
|AL(F(fl)7F(f2>7F(f3)| < CPl,pz,Ps H HF(fj>||LpJ'EqJ'(S)~ (010)

j=1

On the right hand side of (0.10]) are iterated outer LP norms developed in [Ural6| that we
define precisely in Section 3. Each of them separately can be controlled using the Walsh iterated
embedding theorem, proved by Uraltsev in [Ural7], so that the right hand side of (0.10]) is
bounded by H?’:l | fillz#i r)- The results of Chapter [3| and Chapter [2| are a continuation of
studies in [Warl5|, where the uniform bounds on A; were proven in the local L? range.

In Chapter 4| we study a Walsh model of for diagonal triples B that approach the
trilinear form associated with the dimensional singular integral. This can be seen as the simplest
setting for two parameter uniform bounds and thus, it is a natural question to investigate first.
Below we discuss the content of this chapter.

We call a multitile the Cartesian product R x 2, where R :=I; X I3, := w1 X we C R4 are
dyadic rectangles and |I;||w;| = 1 for j = 1,2. Here we denote the set of multitiles with X. The
L2 normalized wave packet associated with a multitile P is defined as

ep(z,y) == ¢p, ()PP, (Y),

where for j = 1,2, P; = I; X w; and ¢p, is the one dimensional Walsh wave packet.
Given a Schwartz function f on R? we associate it to the embedded function via

F(f)(P) = (f,¢p).
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Let fi, fo, f3 be a triple of Schwartz functions on R?. Set F; = F(f;) for j = 1,2,3. For a
multitile P = R x 2, where Q0 = w; X wy we denote

QOZW?XLUQ, PO:RXQO,

where w© is the dyadic sibling of a dyadic interval w. For a K € Z we denote with RX the
set of all dyadic rectangles I x J with |I| = 2%|J| and denote with XX the set of all multitiles
P = R x Q with R € RX. Given K,L € N, we define the trilinear form on the embedded
functions associated with the two dimensional Walsh bilinear Hilbert transform by

Ag . (F1, By, F3) = Z |Rp|™Y/2Fy(P°) Z F(Q)F3(Q)hr, (c(Rq)),
PeX QePK.L

where for P € X, Pl = {Q € XX: Ry C Rp, Qg = Qg"L}, ¢(Rq) is the center of Rg and
Qg’L = 2bwy x 2B K, for Qp = wy X wy. Moreover, hg, (z,y) = op(z,y)¢po(2,y).

The goal of Chapter [ is to prove the uniform bounds for the Walsh model of the two
dimensional bilinear Hilbert transform modularizing it as an iterated outer L? estimate for Ag 1,
uniform in K, L and the Walsh iterated embedding theorem. Here is the main theorem of this
chapter.

Theorem 0.3. Let 1/p1 4+ 1/pa +1/p3 =1 with 1 < p1,pa,p3 < 00 and 1/q1 +1/g2 +1/g3 > 1
with 2 < q1,q2,q93 < 00. There exists a constant Cp, p, ps < 00 such that for all K,L > 2, all
triples of Schwartz functions f1, fa, f3

3
|AK,L(F(f1)?F(f2)7F(f?)))' < CPl,Pz,Ps H “F(fj>||ijEqJ(S)~ (0'11)

Jj=1

On the right hand side of (0.11)) are the two dimensional counterparts of the iterated outer L?
norms developed in [Ural6| that we define precisely in Chapter 4| The two dimensional Walsh
iterated embedding theorem, which we prove in Section 5 of Chapter [4] implies that for j = 1,2,3

I E(fillzrizas sy < Cp, 1l i r2)-

We record that the uniform bounds for a Walsh model of the two dimensional bilinear Hilbert
transform were already studied in |Warl5|, where they were proven in the one-parameter case
K>2,L=oc.

Notation

We write A < B, if there exists a positive and finite constant such that A < C'B and its value
in the argument is either absolute or irrelevant. We also write A ~ B if A < B and B < A. We
write A S, B if C = C), depends on a parameter p. We also usually discard factors involving ,
coming from the Fourier transform or its inverse.






Chapter 1

Parameter space of the bilinear
Hilbert transform

1.1 Introduction

It is well known that the trilinear form associated with the one dimensional bilinear Hilbert
transform can be parametrized by S! U {0}, where the trilinear forms corresponding to the
Hilbert transform are associated with a finite subset on the circle and the origin corresponds
to the trivial 0 form. In this chapter we are mostly concerned with the parameter space of the
trilinear form associated with the two dimensional Hilbert transform, defined as

3
BHFE (fy, fo. f5) = /R T1 /(G 9) + By(s,£) K (s, 1) do dy ds t, (1.1)
j=1

where f; are Schwartz functions on R2, B = (By, By, Bs) € (R2*?)? is a triple of 2 x 2 real
matrices and K : R?\ {0,0} — R is a two dimensional Calderén-Zygmund kernel, i.e. satisfying

07K (&m)| < |(&m)| 1, (1.2)

for all @ € ZZ up to a high order and (&,7) # (0,0). One is interested in proving the inequality
for all triples of Schwartz functions on R?

3
|BHFS (f1, fo f5)| < Cy o s [T 1l mey,s (1.3)
j=1

for exponents satisfying 2?21 % = 1, which is dictated by scaling.
J

The goal of this chapter is to describe the parameter space B e (R?%2)3 by exploiting its
symmetries. Such parametrization is more challenging than in the one dimensional case, since
the 2 x 2 matrices do not commute in general. In Theorem we complete the classification of
cases for the two dimensional bilinear Hilbert transform that appeared already in the paper by
Demeter and Thiele [DT10], where we include some more degenerate forms. In Theorem [1.14]
describe the parameter manifold in two dimensions, essentially as (S')3U(S1)2U{0}. The point
of this parametrization is that we use only these symmetries that do not affect the constant in
. Therefore, it is a good starting point for studying the inequality uniformly in B.



2 1. Parameter space of the bilinear Hilbert transform

In Section [T-2] we recall the parametrization of the one dimensional bilinear Hilbert transform.
After that we introduce and state the main results of this chapter in Section [1.3] and make
connections with known results and open problems in two dimensional time-frequency analysis.
Section contains the proofs of our main results. Finally, in the last section we make some
further remarks about the uniform bounds in two dimensions.

1.2 Prelude - parametrization in one dimension

In the following we quickly recall the degenerate cases and the parametrization of the one di-
mensional bilinear Hilbert transform. For convenience of the reader, we recall that it is given for
a triple of Schwartz functions on R by

3
dt
BHFY (1o ) = [ T[ e =500 T (1.4
j=1
One is interested in the estimate for triples of Schwartz functions
3
BHF L (f1, fo, £3) < C, oo s [ Il - (1.5)
j=1

with Z?Zl 1/p; = 1 dictated by scaling. Next, we define a function that differentiates between

degenerate and nondegenerate cases for (1.4)).

Definition 1.1. Let 5: (B1, B2, B3) € R3. Define
WP (B) = (r(B2 — Bs),m(Bs — B1),r(Br — B2)),

where 1(A) denotes the rank rank of a matriz (in this case, either 0 or 1). We call § degenerate

.

if h*P(B) # (1,1,1) and nondegenerate otherwise.

The one dimensional bilinear Hilbert transform is called degenerate if one of the ranks above
equals zero. More precisely, here are all the possibilities.

Proposition 1.2. Let 5 € R3. Up to a permutation of 1, B2, B3 it satisfies one and only of the
following conditions

RP(B) = (1,1,1), (1.6)
th(g) = (17130)7 (17)
1P (B) = (0,0,0). (1.8)

Remark 1.3. Note that h*P () = (1,0,0) is not possible.

In order to reduce dimensionality of the parameter space one exploits the symmetries of the
trilinear form. By simple change of variables we have the following.

Proposition 1.4. Let f1, fo, f3 be three Schwartz functions on R. Assume that E = (1, 52,03) €
R3. Moreover, let a € R. Then
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o Translation invariance: we have

BHFL” (f1, f2, f3) = BHFZ | (f1, fa, fa).

o Multiplication invariance: if a # 0, then we have

BHF;;D(fl, f2,f3) = BHFig(fh f2. f3).

Remark 1.5. Observe that the above invariances do not change the constant in (L.5)).

For all 3 satisfying (|1.6)) the proof of (1.5)) is essentially the same and requires time-frequency
analysis [LT97|, [LT99]. Assuming that 3 satisfies (1.7]), boundedness of BHF%D is equivalent

to boundedness of the Hilbert transform. If § satisfies (1.8), then by the translation symmetry
of the form it is easy to verify that BHF};D equals zero. However, when one is trying to prove

bounds with C' = C'; independent of E , it is useful to reduce the dimensionality of the parameter
space. Using the translation symmetry we may assume that

p1+ B2+ B3 =0. (1.9)

Let 57 = (v1,72, =71 —"2), where 7y = (v1,72). By invariance of the measure dt/t under rescaling
At +— t, one may assume that v +~2 € {1,0}, which gives the following.

Proposition 1.6. Let E € R3 satisfy (1.9). There exists a nonzero a € R such that up to a
permutation B satisfies

° ag = ﬂ;, with v € S* such that no two coordinates of ﬂﬂfy are equal, if and only if 5

corresponds to (|1.6]),

° ag = B;, with v € S such that exactly two coordinates of /5"V are equal, if and only zfg

corresponds to ,
. ag: 5(070), if and only zfg corresponds to (|1.8]).

Hence, the space of parameters can be identified with S* U {0}. This way the degenerate 5 ’s
become a finite set on the circle, which corresponds to the Hilbert transform, and the origin,
which corresponds to the trivial 0 form, while all the other points on the circle correspond to
the nondegenerate case. Note that all transformations that we performed on E do not affect the
constant C’g in and hence it is a correct way of case classification for the uniform bounds.

1.3 Main results

In this section we introduce and state the main results of this chapter. We start off along the lines
of the previous section with a classification in terms of ranks of B and its linear combinations,
as well as study the symmetries of the trilinear form. Subsequently, we present the two main
theorems, concerning classification and geometry of Be (R2%2)3,
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1.3.1 Classification in terms of ranks
First, we shall define what we call a degenerate case in two dimensions.

Definition 1.7. Let B = (By, By, Bs) € (R2*2)3. Set BT = (BT, BT, BT). Define the function
h(B) = (r(B),r(B"),r(By — Bs),r(Bs — B1),r(Bi — By)),

where we treat B, BT as 6 x 2 matrices and r(A) denotes the rank of a matriz A.
We call B € (R**?)3 a degenerate triple if h(B) # (2,2,2,2,2) and nondegenerate otherwise.

In the following theorem we classify B according to the value of h(é)

Theorem 1.8. Let B € (R2*2)3. Up to a permutation of By, Ba, Bz it satisfies one and only
one of the following conditions

(1) h(B) = (2,2,2,2,2),
(1) h(B) = (2,2,2,2,1),
(I1II) h(B) = (2,2,2,2,0),
(IV) h(B) = (2,2,2,1,1),
(V) h(B) = (2,1,1,1,1),
(VI) h(B) = (1,2,1,1,1),

(VII) h(B) = (1,1,1,1,1)
(VIII) h(B) = (1,1,1,1,0),
(IX) h(B) = (0,0,0,0,0).

The estimate is known to hold for B € (R2%2)3 in all of the cases above, except for
Case (V). In Proposition below we show that this case is very closely related to the well
known and difficult open problem of boundedness of the triangular Hilbert transform. For Cases
- (vI), follows from one dimensional paraproduct theory, see [CM75], [Mus+| and
time-frequency analysis, see |LT97], [LT99|, while for Case it follows from the standard
two dimensional singular integral theory. In Case 7 it is easy to verify that BHF equals
zero. Concerning the remaining cases, in [DT10] Demeter and Thiele proved that holds
for B corresponding to Case and Case (II). The boundedness for Case was proven by
Vjekoslav Kova¢ in |[Kov12].

1.3.2 Symmetries of the form

Theorem gives an overview of triples é, however, in what follows we wish to reduce the
dimensionality of this (12 parameter) space as much as possible, similarly as in one dimension
one reduces the initially 3 dimensional parameter space of vectors E to a one dimensional space.
In Proposition we study translation and multiplication invariance of the form, which are
crucial for further classification. For a function f: R? — C and a 2 x 2 matrix A set

Az, y) = f(A(z,y)).
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We define for B = (By, By, By) € (R?%2)3 matrix A the left and the right multiplication opera-
tions as follows

—

AB = (ABy, ABy, ABs), BA = (B, A, BoA, B3 A).

Remark 1.9. If we treat Basa2x6 matriz, then the left multiplication is simply the matriz
multiplication of B from the left by A and the right multiplication is the multiplication of B from
the right by 6 x 6 matriz Ids ® A, where Ids is the identity 3 X 3 matrixz and Q is the tensor
product.

Proposition 1.10. Let fi, fa, f3 be three Schwartz functions on R? and 0 < py,p2, p3 < 0o with

Z?Zl 1/p; = 1. Assume that B; is a 2 x 2 real matriz for j = 1,2,3. Moreover, let A be a 2 x 2

real matriz. Then

o Translation invariance: we have
BHF (f1, f2, f3) = BHFG_ 4 4 4 (1, f2, f3). (1.10)
o Left multiplication invariance: if A is nonsingular, then we have
BHF (f1. fa. f3) = | det A~ [BHF (1, 5 f51).

o Right multiplication invariance: if A is nonsingular, then we have
BHF % (f1, f2, f3) = | det A|BHF 55 (f1, fa, f3)- (1.11)

Remark 1.11. By a change of variables and Proposition the translation and the left
multiplication of a triple B do not change the constant with which (1.3)) holds. Observe that the
right multiplication, when applied with a non-orthogonal matriz, changes both the kernel and its

constants in (1.3)), hence there is no straightforward invariance of (L.3)) this case.
We also have the following invariance of the function h under left and right multiplication.

Proposition 1.12. Let B € (R**2)3 and let C, D € R**? be nonsingular. Then

h(B) = h(CBD).

1.3.3 Classification of the parameter space modulo the symmetries

In the next theorem we give every case in Theorem a canonical form. This completes the
classification given in |[DT10] as well as will simplify the discussion later on. In view of the
translation symmetry (|1.10), from now on we consider triples of matrices B = (Bj, By, B3)
satisfying

Bi+ By + B3 =0. (1.12)

Theorem 1.13. Let B € (R2*2)3 satisfy (1.12). There exist two nonsingular C, D € R**? such
that up to a permutation, B satisfies exactly one of the following with some A\, € R

(1) (a)
S N NG

with A\, u # —2,-1/2,1,
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m

(b)

cio—() 0)-(% 1) )

with u # 0,
(c)

oo} 9.0 -5 1)

with A # —2,-1/2,1,
) (a)

iy (0 (7 )

with A # —2,-1/2,1,

(b)

ci=(g 1).(o 1) (3 22
(3)

can=(y 1.6 .3 %)
(4)

car=(y 9. )7 )
(5)

cip=((y o)-(7 5)- (51 o)
(6)

csp=((5 0)-(6 o) (3 o)
(7)

i (3 )0 ("5 )

with A # —2,—-1/2,1,
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(8)

cin=((y 0)-(0 o)-(3 o)
cao=(( o)-(5 0)-(6 o)

We call a triple B canonical for Case(n) if it satisfies the condition for Case(n) with C = D = Id.
Moreover, if B corresponds to Case(n), then h(B) corresponds to Case(R(n)) in Theorem
where R(n) is the Roman representation of n.

Note that Theorem together with Proposition implies Theorem Case and
above have several subcases, all corresponding to Case ([I) and Case , respectively. In what

follows we are not going to differentiate between 7 , 7 since the proofs of boundedness
of BHF 5 in these cases [DT10] are identical, i.e. for our problem they are essentially the same.
We also remark that the proofs of and in [DT10] are similar. It is thus arguable that
they could be considered as a single case, but for historical reasons [DT10] we decided to treat
them as two subcases.

(9)

1.3.4 Geometry of the parameter space

The classification given in Theorem effectively distinguishes different cases, however it does
not describe how the parameters degenerate. Namely, it requires multiplying the matrices from
the right by all nonsingular matrices and, in view of , it affects the defining constants of
the Calderén-Zygmund kernel K. In Theorem below we put emphasis on uniformity and
classify B up to multiplication from the right by orthogonal matrices, which does not affect
the constant in . As we are going to see below, the parameter space has essentially three
connected components. The first one corresponds to the forms that act in both coordinates and
is homeomorphic to the three dimensional manifold S x S! x S'. The forms acting in one
variable only form the two dimensional manifold homeomorphic to S* x S! with a submanifold
homeomorphic to S* corresponding to the bilinear Hilbert transform in one dimension. The
trivial 0 form corresponds to {0}.

From now on we denote by D, s the diagonal matrix with eigenvalues a, 8 and by Ry the
rotation by §. We define the parameter space as follows. Let

Q:= 8 x S' x [0,21) C R,

where we identify the endpoints of the interval, hence treat it as S'; however, in the following
it will be handy to keep the explicitly parametrization in terms of angle. For a (8,~,6) € Q we
represent the triple that corresponds to a point (3,,6) € Q

§ﬁ77#0 = (Dﬁl,’haDﬂ'z,’yzR% 7Dﬂ1771 - D/327’Y2R9)'
Let U C Q be defined as

U={(8,7,0) € 2: 8,7 # (0, £1)}
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Note that the closure of U equals Q. Define the mapping F': U — R? given by

_ B2 B2 7,2
F(B,7,0) = (5171’(51 + %)6059).

The role of function F is to encode the eigenvalues of the matrices of the triples é, which lets
us distinguish between different cases appearing in Theorem [I.I3] Having defined the set of
parameters we can finally state the main theorem of this chapter.

Theorem 1.14. Let B € (R2*2)3 satisfy (1.12)). There exist a nonsingular C € R**? and an
orthogonal Q € R?*2 such that up to a permutation B satisfies

(A)
CBQ = Bs .0,
with (8,7,0) € Q such that none of the conditions below is satisfied, if and only if B
corresponds to Case .
(B) (a)
CBQ = Bp .0,
with (8,v,0) € U, F(8,7,0) = (MA+1), A # —2,-1/2,1, if and only zfé corresponds
to Case (2a)).
(b)
CBQ = Bs 0,
with (8,7v,0) e U, F(B,v,0) = (1,2) and 0 # 0, x, if and only if B corresponds to Case
).
(C)
CBQ = Bs.0,
with (8,7,0) € U, F(8,7v,0) = (1,2) and 6§ = 0,7, if and only ng corresponds to Case .
(D)

CBQ = Bg 0,

with (8,v,0) € U, F(B,v,0) = (—=2,—1), if and only zfg corresponds to Case ,
(E)
CBQ = Bs 0,

with (8,7,0) € Q, 8=(1,0) and v = (0,1) and 0 = w/2,37/2, if and only zfé corresponds
to Case ,
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(F)
CBQ = Bj,0,0).0-
with f € S, B1 = Ba, if and only zfé corresponds to Case @
(G)
CBQ = Bg 0.0).0,
with B € S, B3 =0 and By # —2B2, —1/28B2, B2, if and only zfg corresponds to Case .
(H)
CBQ = Bj (0,0).0;
with B € S* and § # 0, m, if and only z'fé corresponds to Case .
1)
CBQ = B(.0).00.0).0

if and only zfé corresponds to Case @

1.3.5 Uniform bounds conjecture

In view of the classification given in Theorem we state a conjecture that implies the uniform
bounds in all B € (R?*2)3.

Conjecture. Let K be a family of Calderdn-Zygmund kernels K, such that (1.2)) holds. There
exists a constant Cp, p, ps < 00, such that for all f1, fa, f3 € S(R?) and 2 < p1,p2,ps < 0o with

3
Zj:l 1/pj=1

3
BHEY  (fi, fo. f3) < Cprpas | | Ifillrs o),

57,0
i=1
uniformly in (8,7,0) € Q and K € K.

In view of Proposition below, in order to obtain uniform bounds for all (8,7, 6) € Q, it
suffices to prove the uniform bounds for any dense subset of 2. Correspondingly, in order prove
for some Bg, g, it is enough to prove the uniform bounds for {Bg, . 4, } for a sequence
(B Yn, 0n) — (B,7,0). We discuss a number of uniform questions related to Conjecture in
the last section of this chapter.

1.3.6 Connection to the triangular Hilbert transform

In this subsection we shall see how Case relates to the triangular Hilbert transform. Let
fi, fa, f3 be three Schwartz function on R?. Let B be the canonical triple in Case (5)). The
triangular Hilbert transform is defined as

3
AA(flanaf3) = /R‘3 Hf]((l',y)‘i’BJ(S,O))%dLEdy
j=1
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In [KTZK15] it was shown that, if one assumes that Aa is LP bounded, then holds for
odd and homogeneous kernels K of degree 2 uniformly in B. Moreover, in the same paper, the
inequality was proven for a dyadic model of A, under an additional assumption that one
of the three functions is of a special form.

In the following we show that Case above corresponds to the triangular Hilbert transform,
in the sense that the triangular Hilbert transform can be recovered choosing an appropriate
kernel. Specifically, we have the following proposition.

Proposition 1.15. Let B the canonical triple for Case (B)). There exists a Calderén-Zygmund
kernel K such that for all triples fi, fa, f3 of Schwartz functions on R? we have

BHF S (f1, f2, f3) = Aa(f1, fa-f3)-

1.4 Proofs

Note that Theorem follows directly from Proposition and Theorem which we prove
later on in this section.

Proof of Proposition[1.10 Translation invariance:

K - K
BHFY_ , , 4 = BHF

follows from a simple change of variables in (z,y). Thus the inequality does not change.
Left multiplication invariance: rewrite BHFIBX (f1, f2, f3) as follows

3
/ [T/ (Alz,y) + AB; (s, 1) K (s,t) du dy ds dt.
R4
j=1
Changing variables A(z,y) — (z,y) this is equal to

3
|det A1 /R4 H f;“_l((x,y) + ABj(s,t))K(s,t)dedydsdt
j=1

— -1 -1 -1
= [det A BHFE (1 15 100,

Right multiplication invariance: this follows by the change of variables (s,t) — A(s,t). Note
that K (A(s,t)) remains a Calderén-Zygmund kernel (possibly with different constants). O

Proof of Proposition[I.13 Clearly multiplying any of By — B3, B3 — By, By — By from the left
and from the right by a nonsingular matrix does not change their ranks. Thus, we only have to
prove r(CBD) = r(B) and (DT BTCT) = r(BT), for nonsingular C, D € R2*2, By symmetry,
it suffices to show that r(CB) = r(B) and r(BD) = r(B). Using Remark the first identity
follows, because C' is a 2 x 2 matrix of rank 2 and the second identity follows, because Ids ® D
is a 6 x 6 matrix of rank 6. O

Proof of Theorem[1.13

1. First we show that for any triple B there exist nonsingular C, D such that CBD corre-
sponds to one of the cases.

Assume that one of By, Bs, Bs is nonsingular. Without loss of generality we may assume
that B; is nonsingular. Multiplying from the left by By we may assume that B = (Id, By, B3).
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Moreover, we may multiply from the left by A and right by A~!, for an appropriate, so that
ABy A~ is of canonical Jordan form. Hence there exist two nonsingular matrices C, D such that
up to a permutation CBD belongs to at least one of Cases - .

Now, assume that all By, By, B3 are singular. If they are all zero, then B corresponds to Case
@D. Otherwise, without loss of generality By and By have rank 1 (by it is not possible
that only one of the coordinates of B is nonzero). Let (v, w) denote the 2 x 2 matrix with vectors
v, w as columns. It must hold that By = (Ajv1, p1v1), Ba = (Agv2, tov2), where Aj, u; € R for
j =1,2 and at least one number of the pair \;, Ay and of the pair p1, o is nonzero. Now, there
are two possibilities, either vy, vy are linearly independent or not. If they are, then multiplying
from the left we may assume that By = (Ajeq,p1e1), Ba = (Aaea, pses), where eq, eq are the
standard basis vectors. Moreover, multiplying from the right by an appropriate matrix we may
assume that the first row of B is (1,0), second row is zero and the first row of By is zero and
the second row is (1,0) (it cannot be (0,1) because r(Bz) < 1). This correspond to Case (f]). If
v1, vy are linearly dependent, then using similar arguments one can show that B corresponds to
one of Case @—.

2. Now we prove that there is exactly one case that B corresponds to. First, note that it
follows from Proposition that h(é ) is invariant under multiplying B from the left and right
by a nonsingular matrix. Thus h differentiates between all of the cases except maybe ,
and the pair , , whose values of h coincide. In order prove the statement for these
assume that we have two triples /_f, g, each of which contains at least one nonsingular matrix
and there exist two nonsingular matrices C, D such that

{CA1D,CAyD,CA3D} = {By, By, B}

Without loss of generality, we may assume that /T, B are both canonical triples and A; = By =
Id. If C = D71, then {43, A3} and {Bs, B3} must have the same Jordan form, which implies
that {Id, Az, A3} must correspond to the same Case as {Id, By, B3}. If C # D~ then, without
loss of generality assume that CD = By and C A D = Id. This implies that D1 A,D = B;l.
In other words the Jordan canonical form of Ay is B, 1. It is easy to verify that that is not
possible if A, B belong to different subcases of Case (1], or similarly, if A belongs Case and
B belongs to Case . O

It follows from the previous theorem that the “more degenerate” cases - have some
structural properties that can be easily explained in terms of column vectors. The following
corollary will be helpful in the proof of

Corollary 1.16. Let (v,w) denote the 2 x 2 matriz with vectors v, w as columns.

e By = (Avy, pvy), Ba = (Ave, pve) for two linearly independent vectors vi, ve and a nonzero
vector (A, u) if and only if B corresponds to Case ([5]).

e By = (v,v), Ba = Av,v) for a nonzero vector v and A\ = —2,—1/2,1 if and only if B
corresponds to Case ().

e By = (v,v), By = A(v,v) for a nonzero vector v and A # —2,—1/2,1 if and only if B
corresponds to Case (7).

e By = (Mv,u1v), By = (Aav, uav) for a nonzero vector v and two linearly independent
vectors (A1, p1), (Mg, 2) if and only if B corresponds to Case .

Proof. Follows from the classification given in Theorem [1.13 O
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Proof of Theorem [1.17)

(=) )

1. First assume that B belongs to one of Cases - in Theorem i.e. without loss
of generality we may assume that B is nonsingular. .

First step: replace By, Ba by Blel, Bleg. This way we may reduce to B = (Id, B, —Id—
B).

Second step: recall that there exists the polar decomposition of any real matrix B, meaning
that

B = PQ

where @ is a real orthogonal matrix and P is symmetric, positive semi-definite. We can diago-
nalize P conjugating by an orthogonal real matrix V'

D=vpvT.
Thus, conjugating B = P@ by V

vBVT =vPvTvQvT = DQ,

where @) = K@VT is an orthogonal matrix. Hence conjugating by orthogonal real matrices we
may reduce B to the form (Id, DQ,—Id — DQ).
Third step: let A and p be the (real) eigenvalues of D. Multiplying from the left by

1 0
V1+A2
O 1
< 1+M2>

we reduce t0 (Dg, v, Dpy 4@, —Dgy vy — Dp, 4, @), with 3,7 € S'. By the characterization of
2 x 2 orthogonal matrices () is either a rotation or a reflection. Note that D_; ; times a reflection
is a rotation. Hence, we may always replace a reflection with a rotation and obtain the desired
form of the triple B.

2. Assume that B belongs to Case in Theorem m By Corollary a triple that
belongs to this case is of the form

By = (Mg, pr), By = (Mg, p3), B3 = (=A(v1 + v2), —p(v1 + v2)),

for two linearly independent vectors vy, vo and a nonzero vector (X, ). Multiplying from the left
by the matrix that maps v; — (1,0) and ve — (0,1) we reduce this triple to

A 0 0 A —pu

0 0)’ A o)’ A —u
Multiplying once more from the left we may normalize ||(A, )| = 1 and multiplying from the
left by the transpose of the rotation that maps (A, u) — (1,0) we further transform the triple to

1 0 0 0 -1 0

0 0)’ 1 0)° -1 0/)°
3. Assume that B belongs to one of Cases | in Theorem m First, suppose that B
corresponds to Case . Then by Lemma 1 B1 = (Av,u1v) and By = (Agv, ugv) for a
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nonzero vector v and two linearly independent vectors (A1, 1), (A2, p2). Multiplying from the
left by the matrix that maps v — (1,0) we may assume that

(M om _ (A2 p2
Bl - (O 0) ) BQ - (0 0 )
Multiplying B from the right by the transpose of the rotation that maps (A, 1) = (a,0) (for
some « > 0 depending on the length of (A, 1)) we may reduce B to (Da0,Dp 0@, —Dao —

D3 @), for some «, > 0. Finally, multiplying from the left we can normalize so that the
triple has the desired form. Using similar arguments one can prove the desired form of triples B
corresponding to Cases @, @

(=) )

1. Consider Bg ¢ that satisfies one of the conditions - @ Without loss of generality we
may assume that Bj is nonsingular, i.e. 1,1 # 0. Multiplying B'Ig)%@ from the left by DB;I,,Y;I
it becomes (Id, B,—Id — B), where

B_ <gf cosf f% sin@)

P2ginf  22cosh

71 Y1

Observe that the eigenvalues A1, Ao of B satisfy
F(B,7,0) = (MA2, A1 + A2).
We shall need the following lemma.
Lemma 1.17. Assume that B = (Id,B,—1Id — B). B corresponds to
e Case if and only if B has two eigenvalues and exactly one of them in {—2, —%, 1}
e Case if and only if B is similar to a Jordan block with an eigenvalue in {—2, —%, 1}
e Case if and only if B is diagonalizable with two equal eigenvalues in {—2, —%, 1}
e Case if and only if B has two different eigenvalues in {—2, —%, 1}

Otherwise, B corresponds to Case .

Proof. Follows from changing the basis so that B has the Jordan canonical form and Theorem

1L.13 O

Then, the proof follows from analysis of the product and the sum of possible pairs of eigen-
values for By given the value of F(f,~,0) and using Lemma assuming that B; = Id.

2. Assume that 335,%9 corresponds to Case (E). Note that in view of Corollary this
triple must correspond to Case ().

3. Assume that Bj ., 4 corresponds to Case (H), ie. B€ S, v=(0,0) and 6 # 0, 7, then by
Corollary it corresponds to . Similarly, the desired implication follows for triples Bg . ¢

corresponding to Case (F)), (G).
This finishes the proof of the theorem. O



14 1. Parameter space of the bilinear Hilbert transform

Proof of Proposition[I.15 Let ¢, ¢ be smooth, compactly support functions on R. Additionally
assume that ¢ has mean zero, ¢ has mean one. Define for k € Z, ¢i(u) := 5r9(2%), ¥r(u) =
7% (3) and assume that for s # 0

D=3 auls)

kez

Define K as follows

K(s,t) = 3 ().

kez

One can easily check that K is a valid Calderén-Zygmund kernel. Moreover, we have

BHF 5(f1, f2, f3)

3
=2 /Rg /R H fi((z,y) + Bj(s,0)) ek (s)r(t) dt ds dx dy

keZ

3
= Z/I?fi/l?jl:‘[fj((w’y)+Bj(s70))@k(s) dsdx dy

kez
3
- Z/RS/RHJCJ'((%Z‘/)+Bj(s7()))%dxdy:AA(fl,f%fg).
kezZ j=1

1.5 Closing remarks

In Theorem we described the parameter space of as having three connected compo-
nents, homeomorphic to (S')3, (§)? (with a submanifold homemorphic to S*, which is corre-
sponding to the one dimensional bilinear Hilbert transform) and a single point. Moreover, we
distinguished several subsets of (S!)?, given by preimages of certain values of the function F,
corresponding to different operators in harmonic analysis. In this section, we give a summary of
the uniform questions on the manifold (S!)3. If there exists a sequence of points corresponding
to Case (X), convergent to a point corresponding to Case (Y'), we say that Case (Y) can be
approached by Case (X).

Proposition 1.18. We have that:

e (Case can be approached by Case

Case can be approached by Case and Case ,

Case (C) can be approached by Case , Case and Case (Al).

Case @ can be approached by Case and Case ,

Case can be approached by Case @, Case , Case and Case ,

Proof. Case : it can approach all other cases simply by density: the triples corresponding
are dense in S x St x [0, 27).
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Case : it can approach all cases except for , which it cannot approach because of
the value of function F. For the other cases, except for Case , it can be seen choosing a
convergent sequence of parameters (8, Vn,0rn) € U such that

lim F(5n7’7n,9n) = ()\na )\n + 1)7
n— oo

where A, & {—2,—1/2,1} with the limit in {—2, —1/2,1}. Note, however, that since the function
F is not defined for Case (EJ), it requires a different argument. In this situation it is enough to
notice that there exists a sequence of parameters (8., Yn,0,) € U with

(Brs Yy 0) — ((1,0),(0,1),7/2),
F(Bna’)’mgn) = (/\7>‘+1)a /\55{—2,_1/2,1}-

Case (Bb): it can be seen that it can approach Case by choosing a convergent sequence
(BrsVn,bn) € U with F(By,vn,0n) = (1,2) and 6,, — 0. Moreover, it can approach Case (E)
arguing like in the previous paragraph.

Cases (C)) and correspond to a finite set in S x S* € [0, 27) and hence it cannot approach
any other case on the manifold.

Case @: it can approach using similar argument as before. One can see that it cannot
approach any other case on S* x S! x [0,27) by investigating the values of the function F it
corresponds to. O

At the end of this chapter we prove a continuity result for the form BHF with respect to
triples B. Precisely, we have the following.
Proposition 1.19. Let 0 < py,p2, p3 < 0o with 2321 1/p; = 1. Let BHF® denote the truncation

of the integral defining BHF to ¢ < |(t,s)| < 1/e. Suppose that B, — B and there exists a
constant C > 0 such that for any € > 0, n € N and any triple of Schwartz functions f1, fa, f3
on R?

3
BHF% (f1, f2, f3) <C H I £illrs (R2)-

n

=1

Then for any triple of Schwartz function f1, fa, f3 and any e >0

3
BHF;(f1, f2, f3) < CH 1 £ill 75 (R2)-

Jj=1

Note that in view of Proposition for Conjecture it suffices to prove boundedness
in a dense set of parameters.

Proof of Proposition[1.19 Let us fix a triple of Schwartz functions fi, f2, f3. Since € > 0, for
any 0 > 0 and n > Nj; large enough we have

|BHF8§(flvf27fd)|

< [BHFS(fi. fo, f2) — BHFY (fi,fo, fo) +| BHFS, (f1. fo, o)

<6+ |BHFS (f1, f2, f3)]
3
<5+ C T I5lem e

Jj=1

This finishes the proof. O
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Chapter 2

Uniform bounds for the bilinear
Hilbert transform in local L!

2.1 Introduction

In this chapter we present a joint work with Gennady Uraltsev which will be a part of a publi-
cation. Thus, we start with giving a self-contained introduction to the problem, which may be
somewhat repetitive when compared with the introduction of this thesis.

The trilinear form associated through duality to the bilinear Hilbert transform is given by

3
BHFB‘(fl, fz, f3) = A/R H f](!E — ﬂ]t) d{E %, (2].)
Jj=1

where f1, fa, f3 are Schwartz functions on the real line and 5 = (B1, B2, 33) € R? is a unit vector
with pairwise distinct coordinates perpendicular to 1 := (1,1,1). One is interested in proving
the a priori LP bounds for this form

| BHF 5(f1, f2, f3)| < Cpy po.ps 8l f11lLer ®) [ f2ll Loz R) 1 f3] s (R).- (2.2)

By scaling, the exponents in should satisfy 1/p; + 1/p2 + 1/p3 = 1, which we will assume
throughout.

In [LT97] Lacey and Thiele proved first estimates of the type . They showed that
. ) holds in the range 2 < pi,p2,p3 < oo, with a constant dependent only on pi1, p2, p3
and B This corresponds to the open triangle ¢ in Figure [2.1, The range of exponents for the
inequality (2.2) was extended in |[LT99| to the range that 001n(31des with the convex hull of the
open triangles ai, asz, ag in Figure The bounds outside of the range 1 < p1,p2,p3 < 00
are in the sense of restricted weak type, we refer to |Thi06] for details of restricted weak type
interpolation. Inspired by the works of Carleson [Car66] and Fefferman [Fef73], the main tool
that was used by the authors of [LT97], [LT99] was time-frequency analysis, i.e. techniques
based on localizing functions fi, fa, f3 both in space and frequency. As noted in [Dem+-08], the
time-frequency approach shares some similarities with Bourgain’s argument in [Bou8§| in the
context of convergence of bilinear ergodic averages.

When two of the components of ﬁ are equal, the trilinear form BHF Ei becomes a composition
of the Hilbert transform and the pointwise product. More precisely, up to a symmetry it equals

/R H 1y (2) folx) f(x) da, (2.3)
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which immediately implies boundedness for 1 < p1, p2, p3 < co by Holder’s inequality and bound-
edness of the Hilbert transform. While in [LT97], [LT99] the dependence of the constant in
is not explicitly stated in terms of 5, one can show it grows linearly in min;.; |3; — 8;|~'. This
raised the question asked in [LT99]: can one prove that

| BHF 3(f1, f2, [3)| < Cpypops 111l Los ®) 1 f2ll o2 m) | f3 ]| 273 () (2.4)

holds with a constant Cp, p, p, independent of f and if so, in what range of exponents? The form
is symmetric under permutations of (81, 82, 83), hence from now on let us assume that E is in
the vicinity of the degenerate case S = (3. Since in the degenerate case the trilinear form equals
and the classical Hilbert transform is not L°° bounded, uniform bounds cannot hold for
a1 < 0. This corresponds in Figure to the region below the line spanned by (0,0, 1), (0,1,0).
Moreover, the maximal range for which the parameter dependent bounds are known, is the
convex hull of the open triangles ai, as, az. The intersection of the two regions is the convex
hull of the open triangles b3, bs, az and as.

A lot of progress has been made in the direction of the uniform bounds. The inequality
was proven with a constant independent of 5 in several papers: Thiele [Thi02a] proved a
weak type inequality at the two upper corners of the triangle ¢ in Figure Grafakos and Li
|GL04] showed the inequality in the open triangle ¢, and Li [Li06] proved the bounds in the open
triangles aq, as. By interpolation one obtains in the range corresponding the convex hull
of the open triangles as, az and ¢, see Figure What however was not known up to date, is
whether the uniform bounds hold in the vicinity of (1/p1,1/p2,1/p3) = (0,0,1), (0,1,0). The
purpose of this article is to resolve precisely this issue. Here is our main result.

Figure 2.1: Range of exponents (aq, ag, az) = (1/p1,1/p2, 1/ps) with 23:1 o = 1. The uniform
bounds were previously known to hold in the convex hull of the open triangles as, as and c.
Theorem implies the uniform bounds in the convex of the open triangles as, ag, bo and bs.

Theorem 2.1. Let 1/py + 1/ps + 1/ps = 1 with 1 < p1,pa,ps < 0o. There exists a constant
Cpy pa,ps < 00 such that for all B and all triples of Schwartz functions fi, fa, f3 the inequality

(2.4) holds.

Interpolated with the result of Li |Li06] this extends the uniform inequality to the
exponents corresponding to the convex hull of the open triangles as, as, by and b3, see Figure
We remark that Oberlin and Thiele |[OT11] proved a counterpart of the uniform inequality
(2.4) for a Walsh model of the bilinear Hilbert transform in the same range.
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It is stated in [LT97], [Thi02a] that Calderdén considered the bilinear Hilbert transform in the
1960’s in the context of the Calderén first commutator. This operator is given by

A(z) — Aly)
e f(y) dy,

G = [
where A is a Lipschitz function. It is a well known result of Calderén [Cal65] that C; is LP
bounded for 1 < p < co. As said in |[Thi02a], one of the initially unsuccessful approaches, which
motivated the study of the bilinear Hilbert transform, was to rewrite it formally using the mean
value theorem as

1
C’1(f)(x):/0 /f(y)A'(waa(o:*y))Tiydyda.

By duality, in order to prove LP boundedness of (', it suffices to show that the form BHF 5( f1, f2, A7)
is bounded for ps = oo and 1 < p1,p2 < oo with 1/p; + 1/p2 = 1, and a constant independent
of 5 . Therefore Theorem together with [Li06] gives an alternative proof of Calderén’s result.
We record that that yet another proof of this theorem was given by Muscalu [Musl4]. Let us
also remark that recently in [Gre+16], the uniform bounds found an application in the context
of a trilinear form acting on functions on R?, which possesses the full GLy(R) dilation symmetry.
The boundedness of this form is reduced to a fiber-wise application of the result from |GLO04],
see |Gre+16] for details.

On the technical side, we refine the outer measure approach gradually developed in the
sequence of papers [DT15], [DPO15], [Ural6]. In the paper [DT15], Do and Thiele reformulated
the problem of boundedness of the bilinear Hilbert transform into proving an outer Holder
inequality on the upper half space Rf_ = RxR xRy and an embedding theorem. Their methods
work in the range 2 < p < co. The embedding was later extended to the range 1 < p < oo by
Di Plinio and Ou in [DPO15] and reformulated in |Ural6] as an iterated embedding theorem.
We shall follow the latter approach. In key Theorem below we prove an inequality that can
be viewed as a trilinear outer LP estimate for the wave packet decomposition of BHF Fi uniform

in the parameter 3. We record that while in [DT15], [DPO15], [Ural6] the main difficulty are
embedding theorems, in this chapter we are concerned with the multilinear inequality. Having
it proven, we can apply off the shelf, though difficult, embedding theorem shown in [DPO15]|.

It is well known that the trilinear form BHF Ei is symmetric under translations, modulations
and dilations. Following [DT15|, we parametrize these actions by (y,,t) in the upper half space
R3. Let ® be the class of Schwartz functions whose Fourier transform is supported in (—1,1)
and such that for a fixed large natural number N and a constant A > 0 satisfy

sup sup (1+[z)"|p!™ ()] < A < o0
n,m<N xz€R

Moreover, let ®* C ¢ be the class of Schwartz functions whose Fourier transform is supported
in (—278b,278b) for some 0 < b < 278, which is fixed throughout this chapter. For ¢ € ® set

1 _inx T

@n,t(l“) = ze @(;) and

F2(f)(y,m,t) = f*oni(y), (2.5)
F(f)(y,n,t) = sup [EY(f)(y,m,t)], (2.6)
F*(f)(y,n,t) = sup [E2(f)(y,m, )],

F(f)(y,n,t) = (F(f)y,nt), F*(f)(y,n,1)) (2.7)
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where (y,n,t) € R3. In the vein of [DT15] we rewrite the problem of boundedness of the bilinear
Hilbert transform as a problem for a trilinear integral over Ri

ASEP () P21, 19 () = [ TTFo()am+ 865t | e)dedndy, — (2:)

RY j=1

where @ := (a1, az, ag) € R3 is the unit vector perpendicular to § and 1, and 6 := min(|ay |, o], |as|).
It was shown in [Ural6| that the results of [DT15] imply that for ¢ € ®* the following inequality
holds

3
AG(F2(f1), F(f2), F(fs) < C, o s TTIFZ (Bl esses sy (2.9)

Jj=1

for Z?Zl 1/p; = 1 with 1 < p; < oo and 2?21 1/q; = 1 with 2 < ¢; < co. On the right hand
side of ([2.9)) are iterated outer L? norms developed in [Ural6| that we define precisely in Section
Following [Ural6| we write the embedding theorem of [DPO15| as

IE2(F)llLegacs) < Cpllfller) for p > 1 and g > max(p', 2) (2.10)

Coupled with (2.9)) it in particular implies LP boundedness of the bilinear Hilbert transform ([2.1))
in the local L'. In this chapter we prove a counterpart of (2.9) with a constant uniform in the
parameter 8. Here is our result.

Theorem 2.2. Let 1/p1 4+ 1/ps +1/p3 =1 with 1 < p1,pa,p3 < 00 and 1/q1 +1/g2 + 1/q3 > 1
with 2 < q1,q2,q3 < 00. There exists a constant Cp, p, p, < 00 such that for all 3 and all triples
of Schwartz functions f1, fo, f3

3

sup [Ag(F?(f1), F#(f2), 2 ()] < Cova o [LIF(DlILrsps (5,5)- (2.11)
%]

j=1

Again, we postpone the precise definitions of iterated LP norms to Section [2.3] There are
several differences between our result and . First of all, given the nature of the
problem, we have to prove the estimate with a constant independent of E . Moreover, as opposed
to [DT15] we do not prove a Holder inequality, but prove the inequality using the Marcinkiewicz
multilinear interpolation for outer LP spaces. This is caused by the fact that we keep the absolute
values outside of the form, since one needs to decompose the functions in question further, using
so-called telescoping. Another difference is the appearance of the supremum embedding
instead of on the right hand side. The supremum is required by our methods. Observe
that we get the supremum on the left hand side “for free”, simply because the inequality holds
for any ¢ in the given class. We shall need a counterpart of the embedding theorem for
. Let p > 1 and ¢ > max(p’,2). Then

| E(fi)llLrza(s=.s) < Cpqllfillery for j=1,2,3 (2.12)

The proof of is an simple modification of the arguments in [DPO15]. We record that
the supremum embedding was already considered by Muscalu, Tao and Thiele in [MTT02],
where they proved the uniform bounds for a n-linear counterpart of the bilinear Hilbert transform
in the local L? range. One of the ingredients in their proof is essentially equivalent to the above
embedding theorem for 2 < p < oo in a discretized setting.
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Coupled with the embedding theorem , T heoremimplies boundedness of the bilinear
Hilbert transform uniformly in 5 in the local L' Banach triangle, Theorem This chapter is a
continuation of studies in [Warl5|, where the uniform estimate was reproved in the local L?
range using the outer measure approach. In that case no iterated outer LP theory was needed.
Instead, it was shown that noniterated counterparts of the trilinear outer L? inequality and the
embedding theorem hold with a constant independent of the parameter 5 for p; > 2.

2.1.1 Structure of the chapter

The rest of this chapter is organised as follows.

In Section we obtain a wave packet decomposition for the bilinear Hilbert transform
Proposition 2.3] Having the decomposition in hand, we give a proof of Theorem [21] assuming
Theorem 2.2

In Section we recall the abstract outer LP spaces. We prove multilinear interpolation
for outer LP spaces with a general trilinear form A, Proposition Then, we review the
outer measure structure on Ri and adapt it for our purpose. In particular we define sizes (i.e.
seminorms) of functions on R and the generated outer L norms. Due to the nature of our

—

problem we need sizes that dependent on the parameter 3.

In Sectionwe prove several auxiliary inequalities for outer LP spaces on Ri, including the
fact that ﬁ dependent outer LP norms are dominated by the LP norms which are independent
of the degeneration, Proposition [2.31] The main advantage of this fact is that we can use the
iterated embedding , which is independent of 5

In Section [2.5| we prove the trilinear inequality for the iterated LP spaces, Theorem The
proof requires two localized estimates for A > uniform in 5, corresponding to the two iterations
of the outer measure structure. The first one is a time-scale localized estimate Proposition [2.52]
and the second one is a frequency-scale localized estimate, Proposition [2.53

2.2 Wave packet decomposition

From now on we fix 5 and all constants in our statements are going to be independent of 5 In
this section we obtain a wave packet decomposition for , and give a proof of Theorem
2.1] assuming Theorem [2.2] At the end we introduce a slightly less symmetric equivalent trilinear
form, which is, however, easier to deal with.

2.2.1 Wave packet decomposition in R? and proof of Theorem 2.1

We follow the wave packet decomposition in [DT15], however since here we are concerned with the
uniform bounds, it is important to keep explicit dependence on E as it degenerates. A similar, but
discretized, wave packet decomposition for the uniform bounds appears for example in [Thi02a],
IMTTO02|. Roughly, the difference is that in [Thi02a], [MTTO02| the phase plane projections on
the enlarged time-frequency rectangles of area §—! are considered, while our decomposition in
the discrete setting splits the enlarged rectangle into ~! rectangles of area 1 with a common
frequency interval, see also Chapter [3| for such discretized decomposition.
From now on, assume that |82 — B3] < 1, hence |an| < 1, |aol, |asz| ~ 1, ag = —as.

Proposition 2.3. There exist p € ®* and constants c1,co # 0 independent of the parameter E
such that

BHE (/1. fa. 1) = lh(FF FF FY) 2 [ fio)fa(o)fole) d,
R
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where Ff = F%(f;) forj=1,2,3.

Using the wave packet decomposition and assuming the iterated Holder inequality Theorem
we can now give a proof of Theorem

Proof of Theorem[2.1, We have that there exists ¢ € ® and constants ¢, ¢ independent of 3
such that

BHF (/1. oo f2) = A (P FE L FD) +ea [ f1(a)la) fow)io

holds. The second integral on the right hand side is clearly bounded in the local L' by the Holder
inequality. Applying Theorem [2.2] we obtain that

[AG(FY FS FE)| < Cpypo s | FilLosgan () | Fall Lozgaz (5) | F5 | Lraas (s)

for 1 < p1,p2,p3 < oo with 1/p1 +1/pa + 1/p3 = 1 and any 2 < q1,q2,93 < oo with 1/¢1 +
1/g2 +1/g3 > 1. Choosing such g;’s with ¢; > max(p/,2) and applying (2.12) (for more details,
see Proposition “ 2.25| below) the last display is bounded by

Cpy.pa,ps | f1llp: [ 2 lp2 | f3 I ps -
This finishes the proof of Theorem O
Now we give the proof of Proposition [2.3]

Proof of Proposition[2.3 Choose @ € R3, so that together 1= (1,1,1), B they form an or-
thonormal basis of R®. Moreover, since we assumed that |8 — B3| is small, we have |a;| =
mln(|a1| |a2\ \a3|) The wave packet decomposition shall be obtained in terms of the embed-

ding (2.6]). Let f be the tensor product of f1, fo and f3. Let us rewrite
BHF,B f17f2af3)

dt
/ / fi(z = But) fa(z — Bat) fa(x — 53t)d93 -
. - do
fla-T4+p-a—t-B)dedo(p )dp—
R3
The right hand side is equal to
f@-T+p-d—5-B)do(&)di dp sgn(5) dé
3
Addlng and subtracting a multiple of fR f1(x) fa(z) fs(x)dx we may concentrate on the half-line
€ (0,00). Thus in the following we shall perform a wave packet decomposition of

) f@-T+p-a—a-B)do(@)didplige () ds. (2.13)

The time-frequency decomposition depends on the fact, how do we decompose ]1(0,00)(5) inside

the integral. Let ;? be the tensor product of @1, @g, P3. We set !
¢; = D515 for j =1,2,3, (2.14)

!Note that here we could also dilate ¢ with any |a;| comparable with |a;|. We make use of this observation
in the next subsection.
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where ¢ € ®*. Moreover, let 7 = |a1]| 5 In order to perform a time-frequency decomposition for
the uniform problem we shall prove that

o - dt
/ / G(tep +tl + tpa —nai — 7) dn 5= cl9,00)(6), (2.15)
o JR

holds for a constant ¢ uniform in 5 for £ = 0 and for any p € R. Changing the variables and
inserting & = 0, we shall prove that

s = L L dt .
/ / G(tof —nd —7)dn v = cl(0,00)(0).
0 R

First of all, note that by the change of variables t6 — ¢, the left hand side is constant for ¢ > 0
and equal zero for & < 0. Assume that 6 > 0. Observe that the left hand side of the previous

display is comparable with
NN
/ Ptp —7)

0 t
with the constant equal to the measure of [proj 4 (supp(@’) N (1)) ~ 1, where Proj,y(A) is the
projection of a set A onto the line spanned by a vector v. The last display is further comparable
with

18z - [proj g (supp(@) N(D)H)| - |77 = 1+ Jau | - | = 1,

~
—

where |pr0j<6~> (supp(Z) N(I)1)| = |az|, because since we assumed that |8, — 85| is small, we have

B~ 4 JoT+ ¥2E1(—1,0,0) and clearly [projy1 .0y (supp(8) N (T)4)] = |en].
This proves (2.15) and implies that the absolute value of (2.13|) is comparable with the

absolute value of

/RS fz-T+p-a—6-p)

® - dt
y / / Blt6 5 + 1T+ tpi — i - 7)dn . 00(@)di dpdo
o JR
By the choice of ¢;’s, after an application of the inverse Fourier transform this is equal to
o0 > ) dt
H fj * MOéjnt’I%*Tjt*l Dlaj‘71t§0(l') dx d'l’] 7
o JRJR;G
Changing variables n +— tn this equals
0o 3
/ / / HF“"(fj)(x,ozjnJrTjt*l,|ozj|71t) dx dn dt.
o JRJRG
Since 7 = | | = 68,

3
/ [T 2@, am+ 6Bt~ lay|~'t) da dn .
R3

tj=1
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2.2.2 Simplifying assumptions on AE

For notational convenience later on, we replace the symmetric trilinear form from Proposition
by a less symmetric trilinear form, which is comparable.

Note that if |a;| < 1, then in we may take @;’s, such that ¢; := D“’O‘jl@ as earlier,
and @9 = Q3 = Di’;’z‘@. We obtain that the trilinear form in the previous display is comparable,
with a uniform constant, with the following form

/ //F*°<f1)<x,oz1n+|a1|61t—1,|a1|—1t)
0 RJR
3

X H FP(f)(z,am + o |Bit ™Y, |ae| ~'t) dow d dt.

=2
From now on we set
§:=|a|/|az] (2.16)

Note that § < 1. Changing variables t — |aq[t, n — afln the above is equal to 1 times

3
/ FP(f) (@ n+ Bt 1) [ FP () (@ oy ayn + 68;(5t) ", 6t) dt dn da. (2.17)
R3 i

+

In the rest of the chapter we are going to work with the above form and denote it with A 5(-, ).

2.3 Outer L? spaces

In this section we describe the outer LP space setting on Ri =R X R x R4 that we will be using
in this chapter. The outer measure L? space framework follows the one introduced in [DT15]
and further developed in [Ural6).

2.3.1 Generalities

We recollect the theory of outer LP spaces introduced in [DT15|. Let X be a locally compact
metric space; denote by P(X) the collection of all its subsets, by B(X) the set of Borel functions
on X and by C(X) the set of continuous functions on X. Let us fix a collection of generating sets
T C P(X) that are locally compact Borel measurable subsets.

Definition 2.4 (Outer measure). An outer measure on X is a set functional p: P(X) — [0, 0]
that is o-subadditive

/1( U En) < Z w(Ey), for B, C X,

neN neN
monotone
w(E) < p(E, for EC E'C X
and p(0) = 0.
We refer to a function fi: T — [0,00] as a premeasure that generates the outer measure p via
w(E) == nf{> [T,): EC | Tn, where T, € T}. (2.18)

neN neN
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Let TY be the set of countable unions of sets in T i.e.

EeTYifE= UTn, where T), € T.
neN

Definition 2.5 (Size). A size on X is a functional || - ||s: B(X) = [0,00]" that satisfies
1. if F,G € B(X) with |F| < |G| and T € T, then ||F||scry S 1Gllscr),

2. there exists C > 0 such that for every T € T |F + G||s¢ry < C(|F|lscry + |Gllscry) for all
F,G € B(X),

3. for every T € T, A € C and for every F € B(X), |AF|s¢ry = M| Fllscr)-

Definition 2.6 (Outer L? norms). Given an outer measure u, a size || - ||s, and a generating
collection T C P(X), the outer LP quasi-norm of a function F € B(X) with p € (0,00) is given

by
e dX\1/p
1Pz = (v [ 2ullFls >0 5) ",
0

where

u(IFlls > A) = inf{u(Er) : Ex € T, [ Lx\g, Flloe(s) < A}
where the outer L™ quasi-norm is given by
| F'[| Lo (s) := sup || F||s(r)-
TeT

The outer weak LP norms are given by
» 1/p
IFllgs) = (sup pAu(|IElls > X))
A>0

For example, the standard Lebesgue LP(R™) space can be constructed as an outer LP space.
Taking the generating collection T to be set of dyadic cubes in R™ and i the standard measure
of a cube, p becomes the Lebesgue measure. Setting || - ||s(r) to be the average of |F| over a
cube T', || - [[ L (s) is comparable with || - || L (rn) and consequently || - [|»(s) is comparable with
| - || Lr(rm)- Let us also remark that defining L° appropriately, it is possible to view the outer L?
spaces as interpolation spaces between L? and L*°. See [Warl5| for details of such approach to
the outer LP spaces.

Given a size family | - || s(7) and ¢ > 0 set

[ Fllesry = cllFllscr)-
Given two size families || - || s, () and || - ||s,(r) we define the size family
[Ell(si+82)1) = 1 Fll sy ) + [1Fllsy(7)-
We also define the size family on F = (F1, F?) € B(X) x B(X) via

1Fll(s1,8)r) = IF vy + 1F (| s5(7)-



26 2. Uniform bounds for the bilinear Hilbert transform in local L*

Convex set decomposition

We introduce convex sets, which are counterparts of the convex trees of tiles in the general
setting. They come in handy when one wants to represent the outer L” norm as an /? sum over
pairwise disjoint sets.
Definition 2.7 (Convex sets).

o We call a subset AT C X a convez tree if AT =T \ K for some T €T and K € T".

o We call a set E C X convez if it is of the form E = Ky \ Ko, with K1, K5 € TY.

In the next lemma we control an ¢ sum coming from appropriately selected pairwise disjoint
convex sets. We shall need this result, when proving outer LP comparison inequalities in Section
The proof is a standard decomposition of the space into level sets and then making them
pairwise disjoint.

Lemma 2.8 (Decomposition into convex trees). Suppose we are given an outer measure space
X, 5] - lls). Fiz F: X — R and let 0 < p < oo. There exists a decomposition into pairwise
disjoint convez trees X = Uz Uares, AT such that

1/p
(Z Z (AT)| F]lAT”Loo(S)) S F Lz sy

keZ ATET;
with a constant independent of F.

Proof. First of all note that using standard argument we can replace the integral in the definition
of the outer LP norm so that

Z 2kpﬂ(||F||S > Qk) S HFHifi(s)
keZ
Now for each k € Z, by definition, choose a collection of ¥} C T such that
S (@) £ ullFlls > 20, IF L7l (s) <2
TeTh

We just need to make all the selected sets pairwise disjoint what will lead to convex trees. Fix

k and let T' € T;.. Define
Aar=1\ |J T\UUUT
;f_kBT/#T n>k

Note that each AT is a convex tree. Let T, denote the collection of such AT for each k € Z.
Moreover, X = ¢z UATeTk AT, AT’s are pairwise disjoint and

||F]1AT||L°°(S) < HF]lx\ﬁH” 5 2k’
D> wAT) < Y w(T) S pIF s > 2%).
ATET; TeT:
This gives
)DIDSITINIITSTTMNED SETD SPTE
kEZ ATET: k€EZ  reT,
< S u(|F]ls > 24) S Py s
kez
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Marcinkiewicz interpolation

We state the Marcinkiewicz interpolation for outer LP spaces, Proposition 1.7 in [Ural7]. It is
analogous to the classical interpolation theorem, the only difference is that replace LP norms
with their outer counterparts.

Proposition 2.9 (Marcinkiewicz interpolation). Let (Xi, 1, - |ls;), (X2, o, || - ||s,) be two
outer measure spaces with sizes. Assume that p1,p2,q1,q2 € (0,00] and let T be an operator that
satisfies

o [T(A\F)| = |AT(F)| for all F € LP*(X1) + L% (X1) and X € C,
o T(F+Q) <C(T(F)|+|T(Q)|) for all F,G € LP*(X1) + L (Xy),
o for all F € LP1(Sy)

ITE) 125y < Coll Fllizn s,y

e for all F € LT (Sy)

IT(F)ll Loz (s,) < CillFllLar (s,)-

Then for any 0 € (0,1), - = 1p_19 + L% and - =10 ¢ q% it holds that

T1,0 72,60 P2

—0 ~6
HT(F)||L;22>9(52) Se,plﬁpz,th,qz C(} Cl ||F||L:11v9(51)'

Multilinear Marcinkiewicz interpolation

We prove multilinear Marcinkiewicz interpolation for outer LP spaces, Proposition [2.10, We
record that it is quite reminiscent of the restricted type interpolation that appears for example
in [Thi06]. In this chapter we shall need the next proposition only in the case n = 3.

Proposition 2.10 (Multilinear Marcinkiewicz interpolation). Suppose we are given a collection
of outer measure spaces with sizes (X, pj, || - ||s;) for j = 1,2,..,n. Let A be an n-linear form
defined for n-tuples of functions € B(X). Suppose that FJQ,Fj € B(X) forj =1,2,..,n, 1/p:=
(1/p1,1/p2, ..., 1/pn) with 3", 1/p; = 1 and 1 < p; < oo are such that for all V;,W; € TY,
j=1,2,..,n

AMypw, FT T\ wa FS o Tyaw, B S H 15 (Vi) | Ty, Fill e (s;)
j=1
holds for Y, c; =1, with & := (a1, a2, .., 0) in the neighbourhood of 1/p. Then

|A(F{)’F207’Fr?)| 5 HHFjlleﬂ'(sj)' (2'19)

j=1

We could not use the outer Holder inequality of [DT15] for our purpose, since it requires a
stronger assumption than we were able to obtain, for details see the later part of this chapter,

in particular (2.41)).
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Proof. In the proof we set || - ||Lri(s,) == [ || .75 5,)" Assume by scaling that || F}|[zr;(s,) = 1 for
Hj J
i=1,2,.,n !
First we split each F} according the level sets of || - ||s, at level 2% /P;

A(FlovF27' FO)

_ E 0 0
- A Fl ]]'Wkl\Wk1717F2 ]]-Wk2\Wk2,1 PEXS) Fn]]‘Wkn\Wknfl)
kl)k27~'7kn

so that we have the properties

o 1;(Wi,) S Ajr, = wi (1Fslls, > 27M/P) S 28 ||yl Ty s,

J ||Fj]1w,gj71|\1;oo(sj) < 2ki/ps

for 7 = 1,2,3. Using the restricted type and the properties listed above one obtains that this is
bounded by

Z H ,LLj(ij )ocj—l/pjuj(ij)l/pj HFJ'lW;f'rl ||Lm(8j)
k1,koy.kn €Z j=1

S Z 22 (Olj l/pj)k H ||F ||LO;JJZS1/p7 pJ2k /pJAl/pJ

k1,k2,...kn€Z
< E 92 G (aj=1/pj)k; H 9ki/pi A 1/PJ
~ J7 i’
k1,k2,...kn€Z Jj=1

Let k be the average of k1, ko, k3. Choosing & in the neighbourhood of 1/p appropriately we
can assume that

221 1(e;=1/pi)k; 227 1(0;=1/p;)(k;—Fk) < Q& max;=1,2, |k7j_k‘.

We can then bound the previous display as follows changing the summation parameters to k,
kj:=k;—ke€ %Z forj=1,2,..,n—-1

n—1

—emaxo<i<n |kl H (k+k;)/pi AV/Pi (k=371 i) /pn g1/Pn B

Z 2 J 2 Ag, +k2 ! Ank Stk
kiketz j=1

Applying Hélder’s inequality in the sum over k with the exponents p1, pa, ps we obtain that it
is bounded by (since k; are fixed translations now) H?:I | Ejllrs s,y = 1. This means that we
are just left with the series

§ Q—€maxo<j<n \E]|

E17E27--7E7171€%Z

which is summable. O

The following short lemma lets us dominate a vector valued outer L? norms by a sum of outer
LP norms taken coordinatewise.
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Lemma 2.11. Suppose we are given an outer measure space (X, ) together with two families of
sizes || - ||y || - |ls, indezed by T € T. For any 0 < p < oo and F = (F1,F?) € B(X) x B(X) it
holds that

IF e (s + 1F? 1 s0) S NFlpz(sns) S IF nzsy + 1F2 Lz (s,)-

Proof. For 0 < p < oo the lemma follows directly from the following standard fact and integrating
over A € Ry

N | =

2 2
p(1E s, > A) < pllIFlls > 2) < Y- p(lF|ls, > A/2).
= Jj=1

Jj=1

For p = oo it follows from definition. O

2.3.2 Outer measures and sizes on Ri
Trees and outer measures in time-frequency-scale space

We consider R% = R x R x Ry endowed with the euclidean metric. Let © = (©,00™)) where
© 2 0™ 3 0 be two open intervals and let § € (0,1]. The outer L? structure we introduce on
Rf_ depends on these parameters.

Definition 2.12 (Trees). For (z,¢,s) € R3 we define
Tes(x,&,s) :={(y,n.t) € RL: t <min(s — |y — z[,s), t(n — £) € O}
=157 (2,6,5) VIS5 (2,6, ),
To5 (2.6,8) == {(y,m,5) € Tos(x.&,5): tln — &) € O™},
Ty (x.6,5) = {(y.m.1) € Tos(x.£,1): t(n — ) € OV} ) =0\ 0™,
The set of all trees with parameters (©,0) is denoted by Te 5.

For each Tg 5(z,&, s) € Te s we define the pre-measure

fe5(Tes(x,§, ) = s.

that generates an outer measure ug s as in (2.18)).

t (z,5)

r— S r+s Y n

Figure 2.2: The tree T'(z,§,s) € Tg,1, where © = (61, 62).
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(& 0s)

4+ 05(5s) "1

&461(5s) 1

r— S r+s Y n

Figure 2.3: The tree T'(x,£,s) € Tg,5, where © = (61, 6s).

Generalized trees

The following is the definition of generalized trees. We use such sets for their nice geometric
properties, as they are closed under finite intersections, however note that we do not define
sizes for them. Moreover, one can recover trees and strips (Definition as special cases of
generalized trees.

Definition 2.13 (Generalized trees). For x € R, & € [—00,00), & € (—00, 0], s € Ry and
0 < § <1 we define the generalized tree To(x,&1,£2,5,0) as

{(y,n,1) € Ri: 0<t<min(s,s —|y—z|), & + 01t << &+ 0t
where © = (61,603). We denote the set of all generalized trees To with .
We recover trees and strips from generalized trees, since
To(2,&,&:5,0) = Te s(x,€, 5) € Tos.
and
To(x,—00,00,8,1) = D(x, s) € D,

where D is the set of strips, Definition [2.24]

Boundaries

We shall define boundaries of A NT for sets A having nice geometric properties. Such objects
come up naturally later on, when we differentiate functions of the form F'1,4 and a derivative
falls on 1 4, where F' is an embedding. They are controlled via the boundary sizes, defined below.

Definition 2.14. Let A C Ry be measurable. For every tree T = Tg 5(2,&,s) € Tes, y € Bs()
and 0 € © we define

Af(y) ={t €Ry: (y, 6+ 0t t) € ANT}.

Definition 2.15. We call a measurable A C Ri boundary admissible if for every T(x,&,s) €
Tes, A%(y) = (ti{}(y),ti’}(y)) is such that ti’i: Bs(z) — Ry is a Lipschitz function. More-
over, for such A, a tree T =T (z,{,s) € To,s and 6 € © we set

Ohr =1, €+ 07 (W) 0T W): ¥ € Byos (@)}

We also set 95 = {(y,0(6s)~1,0s): y € By1_s)(z)}.
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Remark 2.16. The reason for introducing boundary admissible sets is that we want the quantities
in following Definition to make sense. In practice, the only boundary admissible sets that
we will be dealing with are of the form K \ L, where K,L € Jg’, i.e. they are both countable
unions of generalized trees.

Sizes in time-frequency-scale space

The sizes we introduce depend on the parameters (0,6). || - |ls2 and || - ||s~, which are very
similar to the standard sizes introduced in [DT15|, additionally parametrized by 4.

Definition 2.17 (The size S?). For F € B(R3.) we introduce the size family || - ||Sg ,(7) indezed
byT =Tes(x,& u) € Tgs as

I1Fllsg = ( (F(y,m, 0|2 dy dn dt)"/2
’ TN (y,m,H)ERS : y€Ba_s) (2)}

i.e.

min(ds,s—|y—z|) 1 2 dt 1/2
HF”Sé&(T):(/ / / |F(y, &+ 0t~ 0t)| 7dyd9) /2
, ©(out) Bg(1—s)(z) J0O

Definition 2.18 (The size S*°). For F' € B(RY.) we introduce the size family || - sz , () indezed
by T'=Tes(x,&,u) € Te,s as '

| Fllsg ) = sup  [F(y,n,t)]
' (ym,t)ET

We introduce the boundary size R4 which is the supremum over L? averages over the bound-
aries 8Z,T- They are used to control contribution from boundaries appearing as byproduct of
integrating functions of the form F'14 by parts.

Definition 2.19 (The size R4). Given a tree T = Tg s(x,&,s) € Te,s, a boundary admissible
set A C R% we introduce the size family for F € C(RY) (continuous functions)

11 ey =, 502 WF g, o

where
”FHRS,&A(T) = ||F|‘Ré,;,A(T) + HFHR&’:E,A(T)’
with
UF || oe o = Tim (= |Fa[2)L/2
Ré,é,A(T) e—0"8 ag,j%,s
1 + N +
=t [ L) ) o )

€ Bs1-s)(z

indezed by T = Te s(x,&,s) € Te,5. Since tiT are Lipschitz functions, the above integral makes
sense. Finally, given a tree T = Tg s(x,&, s) € Te,s we define

”F”Re,a,A(T) = 6/21<1§N)<6 HFHR@,S,A(Te,S(“”E’S))’ (2:20)

where each Te,g(ﬂh £,8) € Te,g'
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Remark 2.20. The reason for introducing the boundary size as a limit as € — 0 is only a
technicality, caused by the fact that we do not necessarily have 8?4,1“ C A. However, for F €
C(RY) we actually have the equality (note that we do not restrict to 14)

1 2\1/2
Pl = 5 [, 1P
AT

1 _
_ (,/B ( )|F(y,§+9tﬁ(y) Lt () dy)t 2,
s(1=6) (T

Remark 2.21. The functions F that we will be dealing with in this chapter come from em-
beddings, i.e. it holds that F = F(f). It is not difficult to see that {F?(f): ¢ € ®} satisfies
the following: for any T € Ri and € > 0 there exists an open neighbourhood Uz, such that for
any ¢ € ¥, T1,To € Uz it holds that |F?(f)(T1) — F?(f)(T2)| < €. Hence F(f), which is the
supremum over ¢ € ®, belongs to C(R3.).

Remark 2.22. We shall be using only a discretized collection of trees and the supremum in
1s needed, so that that there are no “gaps” between scales. This is particularly important
in the proof of Lemma however all other estimates in this chapter, where we use Reg s 4,
hold with Re,g,A as well.

We additionally set for a Lebesgue measurable A C Ri

1E] s

©,5,A

= |Flallsz . IFllsg

0,5,A

= ||FLallsg,-

Let F' = (F', F?) where F', F? € B(R%). Using the above we introduce the size families for
0<dé<1

1F(|sg s5.a(r) = I1F | Re s,a(r) + IF Ll o125, ) + IF Arllosiesy | o+ I1F s, 1)
1—
1Flsy , acr) = I1Fsg s o) IF e (50 5.0

Remark 2.23. Observe that for & = 1, ||F|lse, (1) is comparable with |[F'Lr|| sz, ) +

IF21r |l oo (sg , )

Strips, outer measures and iterated sizes in time-scale space

We briefly recollect the iterated LP spaces from |Ural6|, which was introduced as a framework
to deal with outer LP embeddings below local L?. Roughly, one may think of the idea of
restricting functions F(f) to strips below, as being related to Calderén-Zygmund decomposition
of the underlying function f. In fact, the iterated embedding (see [DPO15] and |[Ural6] for its
iterated version) consists of applying a refined version of it, which is known as the multi-frequency
Calderén-Zygmund decomposition [NOT09.

Definition 2.24 (Strips). A strip at a point (z,s) € R% =R x Ry is given by
D(z,s) = {(y.m,8) ER%: |y — x| < s —t}.

We denote the family of all strips by D.
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t (z,9) t
D
r—s r+s U n
Figure 2.4: The strip D(z,s) € D.
The outer measure v is generated by strips via the pre-measure
7(D(z,s)) == s.
Let || - [[s(r) be a size family indexed by T' € Tg, and x an outer measure generated by Tes.

The iterated £7 size family indexed by D € D is given for F' € B(R%) by

£

£1(s)(p) = V(D) VI Flp|lpas)-

Remark on the embedding theorem
(2.12)) is implied by the following.
Proposition 2.25. Let f be a Schwartz function on R and © = (0,00™). For 1 < p < oo and
q > max(p’,2) it holds that
IE()lczeg

He,1

(88°1) < C:D,q”fHLP(R)a
and moreover
”F*(f)HLgEZe,l(Seg) < Cpallfllzrwy-

The proof of the above proposition follows along the lines of [DPO15| in the framework of
[Ural6], choosing for each (y,7,t) € R%. a wave packet ¢ € ® (¢ € ®*) that almost attains the
supremum in the definition of F'(f) (F*(f), respectively).

Choice of parameters and notation

Here we introduce most of the notation and fix the parameters that we are going to use throughout
this chapter.

Recall that throughout this chapter we fix 0 < b < 27%. Moreover, we assume that || < 1,
hence |ae|, |ag| ~ 1, |f1] ~ 1. In the following we shall fix three pairs of intervals ©; = (0;, 9;2")),
J € {1,2,3} to define three collections of (O, §)-trees and associated outer measure structures on
Ri that are compatible with the trilinear form A 5

Let © = B1(0) C R, ¢ be as in and

a; = da; s 2.21
J 1 @y
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Note that since we assume |a1| < 1, we have |a;| >~ 1 set
61 = @‘i’ﬂla 62 = a2®+5/62, @3 = 0,3@4’663 (222)
For j =1,2,3 fix @;m) such that ©; D @Ein) D By(0) and so that for j = 2,3

a; 1 (O™ —88) + p1 c 0" =0, \ O],

This can be done uniformly in 3 using the assumption |31], |82|, |Bs|, |ov2|, |as| & 1. Tt is sufficient
to have b < 278 < |31/, and to set @;in) = By(0) for j =1,2,3.

In this chapter we restrict ourselves to a discretized collection of trees and strips in R3 =
R xR xR} and R2 =R x Ry Let

AR? = {(4’%,5,4’“) R :neZ £eR, k;ez}

and ATg 5 be the set of trees Tg 5(z, &, s) € Te s with (z,£,s) € AR?. From now on we denote
T=ATe,, Ts = ATe s,
o [ATe i=1
ATQM; Jje{2,3}.

Moreover let

AR% = {(4"n,4%) e R2 : k,n € Z}
and let AD be the set of strips D(z, s) with (z,s) € AR?. From now on we overload the notation
and set

D := AD.
For ¢ € ® and j =1,2,3 we set
FY = F2(f;), Fy = F(f;), Fy = F*(f;), Fj = (F}, F).

Let us denote the measures and sizes restricted to the discretized collection with the preceding
A. In order to ease the notation, we set for j = 1,2,3

Sj = ASGj,l; W = AUGJ»,I,
and for j = 2,3 we set
Sjs.a = ASe; 54, 1.5 = Ao, 5.
Moreover, for j =1,2,3 we set
||Fj||Lqu(S) = ||Fj||L5£ﬁej,1(S§Cj,1) + ||FJ%||L€LZSJ‘,1(S%J_71).

For technical reasons, in order to work on a compact set in the time-scale direction, we define
e-dependent sets for € > 0. We assume throughout that the ¢ is a very small number such that
e~ 1 €N, so that D, € D and W, € DV.

Ac =D, \ We, (2'23)
where
42571
D.=D(0,4° ), w.= |J D@44,
j=—42571

We shall restrict the functions on R;“ to Ag; all estimates in this chapter will be independent of
the £ and thus by standard limiting argument as € — 0, we recover the full estimates.
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Geometry of discretized trees

In this part we study pairwise disjoint decompositions of the discretized collection of trees and
strips.

In order to ease the notation in the following proofs, we define the three families of dyadic
intervals

l; := {[4"n — 4% 4Fn 4 4%): k,n € Z, n = j (mod 3)}. (2.24)

Next four lemmata are simple observations, which imply that up to a finite overlap, one can
think of trees and strips as coming from the standard dyadic grid.

Lemma 2.26. For any j € {0,1,2} and any two I,1' € 1;, I and I' are either disjoint or one
is contained in another. Moreover, if T(z,§,s) € T, then Iy € 1; for exactly one j € {0,1,2}.

Proof. Follows easily from the definition of I; in (2.24]), using the fact that for k € N, 4k =1
modulo 3. 0

Lemma 2.27. There exists a decomposition T = TQA U Tk U T4, such that for j = 0,1,2 the
intervals {Ip: T € T} have the following property: for any two of them they are either pairwise
disjoint or one is contained in the other.

Proof. For j = 0,1,2, let TjA C T be the set of trees with It € |;. Together with Lemma m
this gives the desired decomposition. O

Lemma 2.28. Them exists a decomposition D = DY U DX U D%, such that for j = 0,1,2 the
intervals {Ip: D € D\ } have the following property: for any two of them they are either pairwise
disjoint or one is contained in the other.

Proof. Exactly the same as the proof of the previous lemma. O

Lemma 2.29. Let |- | denote the standard Lebesgue measure and let V € DY. Then there exist
D,, € D form=1,2,.., such that V.= J,°_, Dy, and for any measurable A C R

> M, NAlS[Iv N Al

m=1

Proof. Let V.= |JV, where V C D. Let V; be the family of maximal strips in V which are
elements of Dy in Lemma for j = 0,1,2. By maximality we have V = U?:o UV;. Moreover
D € V; are pairwise disjoint for j = 0,1,2 by Lemma [2.29] hence

> IpnAl<|IvnAl
Dev;

Putting these three collections together we obtain the desired result. O

Geometry of the trilinear form

In this part we investigate the interplay of the discretized trees with the trilinear form A. We
introduce the maps that capture the geometry of the trilinear form, which is expressed in the
form of the so-called transfer properties below. Let

mi(y.mt) = (y,n+ Bt~ 1,1, mi(y,mt) = (y,a;n+0B;t ", t), for j =2,3. (2.25)
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Moreover for T'(z,€,s) € T we define

p(T({E, 67 S)) = Tg(ib, 6_167 S) €Ts. (226)
With the above two definitions we have for any T'(x,&,s) € T
m(T(x,€,s)) =T (2,€,5) € T, mi(p(T(z,€, ) = T (2,6 a;€,5) € T

We extend m; canonically to sets of the form K N M\ L for K,L, M € T and 7; canonically
to sets of the form K N M \ L for K,L,M € T§ and j = 2,3. By definition of A, and
(2.25)), we easily obtain the following fact, which we call the transfer properties. It lets us move
the characteristic functions of subsets of Ri’r between the functions in the trilinear form, under
appropriate assumptions.

Lemma 2.30 (Transfer properties).
1. Let E= K\ L with K,L € T§ and let A=V \W for V,W € D”. We have
A(G1,Gal,(gyla, G3) = A(G1,G2,G3l gy 1a), (2.27)
2. Let K € TY, where K = J, T;. We have
AGilr,y, 1), G2, Gs) = MGy, 1), G2lmy (U, p(1))» G3lmg(U, p(1i)))- (2.28)
3. Let V € DY. We have
A(G1ly, Gs, G3) = A(G1ly, G2 ly, Gsly). (2:29)

4. Moreover if K € TY, then there exists K € T2 with u(K) < ps(K), such that
MGy, Golry(k), Gs) = AM(G11, | gy, G2lry(k), G3)- (2.30)

Proof. (2.27)): follows from the definition (2.25)).
Set hj(y,m,t) = (y,6 *(a;n + 0Bt~ 1),dt) for j = 2,3. Note that by the definition ([2.17]) we
have for any tree T € T

A(G114, (1), G2, G3) = AMG1,Galy, 1y, G3) = A(G1, Ga, G3lp,(1)). (2.31)

Now, let us prove (2.28): Observe that for T € T, we have m2(p(T")) D h(T'). Together with

(2.31) and (2.27)) it finishes the proof for K = T'. We extend it canonically to unions of trees.
(2.29): Observe that for any V' € DV, there exists a countable collection of trees {T}}, such

that V' = 7 (U, T3). Then, the property follows from ([2.28), since for j = 2,3, m;(U, p(T3)) C
(U, Ti) = V.

(2.30): Observe that for any T'(x, &, s) € T there exists n € Z, such that setting T = 4sn and
x;=a+jdsfor j = —2,..,2 and § = £ + ks™! for k = —4,..,4, we have T(xj,&k,4s) € T for
7 =1,2,3 and moreover it holds that

2 4
mpM)c |J U MT(z;,&,4s)).

j=—2k=—4
Applying (2.31]) we have
A(Gl ]1771 (U?:_2 U4

A T(ay a9)) G2l (p(1)), G3)

=AMGL Gl Ut T gas) Ira (o)), G3)
= MG1, Galry (o1, G3)-
We extend the result for unions K € TY analogously. O
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2.4 Inequalities for outer L” spaces on Rj

In this section we prove several outer LP inequalities for F' € B (Ri), which are shown via mostly
geometric arguments. We shall exploit them in Section [2.5] Without loss of generality, let
0 = (~1,1), " = (=b,b) and © = (0,00™). The constants in general may depend on ©,
however we shall need the result of this section for a finite set of ©’s, so it does not cause any
problem. Let us fix the parameter 0 < § < 1. In this subsection we set T := Tg 1, pt := pe1
(recall Section for notation) and

I llsz =1 llsg - llsee o= 1+ [lsg, » - lls =1+ llsz + 1 s>
Moreover, we set Ts := ATg 5, ts5 = Ape s (A stands for discretized) and

I-lsz, =1 sz, I-lrsa o= 1~ los a0

H . ||51/251°?A = ” : ||51/2S§°‘§1A7 || : Hgl/zsf’A = H : ||61/2Sé,1,A'

2.4.1 Outer L? domination on Ri

The main result of this subsection are the following three propositions that let us control the
contribution of § dependent sizes || F||s; , in terms of | F||s,. The main advantage of this fact is
that we can use the iterated embedding theorem for the § independent sizes, Proposition [2.25

A=A.n(\V;\ W, (2.32)

Jj=1

where V;,W; € DY and A. is as in (2.23). Let By(R%) be the set of functions F', such that for
any t—,tT € Ry

lim sup |F(y,n,t)] =0. (2.33)
£790 (y,m, ) ERX (—€,€)° X (t,t+)

This technical assumption as well as restricting to A. are needed only for the definition of the
selection algorithms below. Moreover, observe that is satisfied for embedded functions
F = F(f), where f is a Schwartz function, to which we are going to apply the results of this
section.

All the constants in this section will be independent of § and A, unless explicitly stated.

Proposition 2.31. The following inequality holds for 0 < 6 <1, 2 < p < oo and any F =
(F',F?), where F*, F? € C(R%) N By(R%)
IF Nz, (s5.0) Sp IF 251 4)-

By an application of Lemma[2.11] Proposition follows from the following three. The first
proposition dominates the outer LP norm of the boundary size Rs 4 by the outer LP generated
by S. Note that in the statement we require F' € C' (Ri), which is satisfied for functions we apply
this proposition to, see Remark

Proposition 2.32. The following inequality holds for0 < § < 1,2 <p < oo and any F' € C’(Ri)

I g, (r2 ) Sp IFLallLgs),
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together with the weak bound
”F”Li’m(R%,A) S ||F]1A||Lﬁ(soc)7

with constants independent of A and §.

The second proposition dominates the S? portion ||FHL£5(S§ ) by [[Fllrz(s)-

Proposition 2.33. The following inequality holds for0 < § < 1,2 <p < oo andany F € BO(Ri)
1FN Lz, (s2 ) Sp IELallzs),

together with the weak bound
1l sz ) S 1FLallzacs)

with constants independent of A and §.

The third proposition dominates the S or $? portion of the size multiplied by the small
factor 6'/2, which compensates for the measure ys.

Proposition 2.34. Let U =52 orU=8%. For0<§<1,2<p<oo and any F € B(Ri)
IE Nz, 5120y Sp I1Fl Lz @)
Remark 2.35. Applying the above lemma to F'1 4 one immediately obtains

IF e

b, A (61/2U1,4) Sp ”F]lAHLﬁ(U)

First we prove Proposition [2.32] and Proposition [2.33] and then we prove Proposition [2:34] at
the end of this subsection. By standard limiting procedure we may also assume that

FLallL2(s) < oo (2.34)

The key ingredient of the proof of Proposition 2:32 and Proposition [2:33] is a Bessel type
inequality which can be thought of as ||F||z2(g) < C||[F1gl/12(s) with a constant uniform in the
degeneration parameter 6 and A, where E is typically a set selected during a selection algorithm
in the upper half space; below we introduce two such algorithms that will be useful in this
context. We record that such sets F are sometimes called strongly disjoint. Moreover, note that
the left hand side of the inequality is the L2 norm over a possibly singular set E, that has to be
understood properly.

Our arguments depend mostly on the geometry of Rﬁ_ and T. Here are the two key lemmata.
The first one estimates the contribution from the boundary under an appropriate geometric
assumption.

Lemma 2.36. Let {T;}7-, be a collection of trees with Tj € Ts, for 6/4 < 6; <& and E C R%.

be such that for any convex tree AT, there are at most C indices in {1,...,m} such that 82’& =
82{7%_ N E intersects AT N ({y} x R x Ry). Then

M
> TIFLEIZs, S IFLal 5.
j=1 50

(T;
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Proof. Using Lemma we decompose U, Unrer, AT for F1,, where each AT is a convex
tree. Now, we have

— Ry’ A (T5)
J=1 :
<> > ps, (THIFLELar|?, )
k ATET, 1<j<M: oA
07 ,NAT#0
<CY Y wAD)[Flarlelalfe s

k ATET:
S C||F]1E]1AH%3(SDO) < C”F]lA”%ﬁ(SOO)v

where we used that the integral ps, (Tj)HF]lATHf% A(1y) 18 over a subset of R whose measure
: »

does not exceed pu(AT). O

The next lemma controls the contribution from the S? portion.

Lemma 2.37. Let {T;}7-, be a collection of trees and E C RY. such that there exists a constant

C > 0 for any y € R and any convex tree AT, the area of ENAT™ N ({y} x Rx Ry) is bounded
by C. Then

ZH&D ||F1EHS2 p(Ty) ~ ||F]1AHL2

Proof. Using Lemma E we decompose U, Uarer, AT for Fla and split £ = E(out) y pin)
where

E(out) - EnN U U AT(OUt), E(zn) - EnN U U AT(zn)
k ATET k ATeTy

First of all, using only pairwise disjointness of AT

ZM(SD ||F]].E(out)||S2AD(TJ,)

<Z Z ZN‘SD |F]1E(out)]lATHSZAD(T)

k ATeT, j=1

S D WA Flarlplalfese
k ATET

SIF1pLalls (s2) < ||F]1A||i2(32)-

We are left with estimating the part restricted to E(™). We have
Z/J(SD HF]IE(W)HS2 Ty)

S Z Z Z ws.p(TH)[[FL1pLaqin H?qg’A,D(Tj)

k ATET,  0<j<M
T AAT ™) 20
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S22 30 MATIFLAlsn)sup | EN AT 0 ({y) xR xR
k ATET:

S Z H(AT)] |F]1A||L°°(S°°) S ||F]1A||L2 (S°°)"
k ATET:

O

In the proofs of Proposition and Proposition we introduce auxiliary selection al-
gorithms, one for R; 4 and one for S’gy 4, respectively, which we use to carefully decompose the
level sets of the corresponding size. Similar procedures are usually used in the context of proving
embedding theorems, see for example [LT99|, [DT15]. The generated collections of forests have
intrinsically very nice geometric properties, so that they can be controlled by the previous two
lemmata.

R-selection algorithm and Proof of Proposition [2.32]

First we introduce the selection algorithm for |- ||z, , and bound the contribution of the selected
set.

Definition 2.38 (R-selection algorithm). Let initially Ey = 0 and Xy = Ri. In the n-th step of
the procedure for n > 0 we proceed as follows: if there exists T = T (x,&,s) € Ts with

[Ex, ([R5 a(r) > A, (2.35)

then we choose a T(x,€,s) € Tp with mazimal s. This is possible, since, by Lemma applied
with B = Ri and a single tree and (2.34), there exists an upper bound for s for trees satisfying
(2.35) dependent on \; moreover all possible s come from a discrete set and thus we can choose
T(x,&,s) with mazimal s.

We then set E,, 11 := Enuﬁifn, where 82";‘” = BZ”TﬂXn with T = T(m, §,8) €T3, 6/4 < 5<6
and 6,, all chosen such that 7

”F]anHRgnA(f) > A

Next, we set T,, == T, ’fn = T, Op = g, Xnt1 := Xy \ T, and iterate the procedure. It will
terminate, since we have a lower bound for all possible s (because we are restricted to A.) and
because we have an upper bound for the sum of measures of the selected trees (by Lemma .
Let M be the number of the last iteration. Then, we clearly have |[Flx,, ||r(rs ) < A

Remark 2.39. Analogously, one may define the selection algorithm for || - ||s=, which is es-
sentially equivalent to the above 6 = 1. Setting || - |r, o := | - ||se all the related bounds below
continue to hold.

We have the following bound for the L? norm over the picked boundaries.

Lemma 2.40. Let {T; T }M be the trees selected during the algorithm given in Deﬁnition
together with selected {9 VL, and E := Eyr. We have

Zm MFLely, o) S IF LAl s

We now give a proof of Proposition [2.32] assuming Lemma [2.40)
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Proof of Proposition[2.33 We prove the strong L> bound, weak L? bound and interpolate. The
L bound follows since for any tree T' € T have || F'[| g, , (1) < [ F||Lo(55). In order to prove the
weak L? bound we choose any A > 0, run the selection algorithm in Definition obtaining a
collection of trees {T; } ”, and E). Then observe that applying Proposition in the second
inequality we obtain

S IFLAllL: (s

M
Nps(1F | rsa >N S us(Ty |F]1EAH2 % 1y
Jj=1 ’

Proof of Lemma[2.40 The proof follows from the next lemma together with Lemma [2.36

Lemma 2.41. Fory € R and for a given convex tree AT, the selection algorithm from Definition
yields at most 25 indices 1 < j < M, such that 62{& intersects AT N ({y} x R x Ry) .

Proof. Suppose that AT = AT(0,0,1) and fix y € R. Let us reenumerate the given trees so that
T; = T(xj,&;,s;) for j =1,2,...,N (in this order) are such that 3194”'4 NAT # 0. Let t; be the
largest scale in 8;04{]. N AT, i.e. such that

O NAT = {(y,& + 05851 45))

Note that we have t; > ¢;4q for 1 <j < N —1. Let for j =1,2,..., N, {f =& :I:btfvl. Observe
that it holds that

_ 1
\§T—€f|+|§i _£j|Z§tN1'

for i # j, 1 < 4,57 < N, otherwise due to the way we select trees, it would not be possible
that both points (y,& + 0it; ', t:), (y,&; + 6;t;',t;) belong to E. On the other hand, since
82{J N AT # (), we know that for each 1 < j < N, so we have §; € (—2t;1,2tj_1) (because
(y, & + 05t '.t;) € AT) and hence fj-t € (=3ty',3ty"). Let us further reenumerate &;, so that
they are in 1ncreasing order. The above properties of §;’s imply that

N—
11 . -
(N=DiR'5 < D1 — gl +1g —ghal <12ty = N <25

Using the above lemma and Lemma we obtain the desired bound. O]

S2-selection algorithm and Proof of Proposition

Before we introduce the selection algorithm, we shall refine the discretized collection of trees
slightly, which will come in handy. Similarly as in [DT15|, we consider

RY b= {(4*n,47%b1,4%): k,I,n € Z} CR3.

and set Tsp = {T(x,&,5) € Ts: (2,€,5) € R} p}, moreover let psp be ps restricted to T p
and let || - || 2, be the size || - || 2, restricted to T p. It is correct to restrict ourselves to the

discretized collectlon of tree Ts p, Slnce we have the following lemma.
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Lemma 2.42. For 0 < ¢ < co and for any F € B(R3)
1L, 520 Sa 1F g, sz 000

Proof. The proof bases on the following straightforward fact: for any T'(z, &, s) € Ts, there exist
Tj(xz,§;,s) € Ts,p for j =1,2,3,4, such that Towt) U?zl Tj(out). As a direct consequence, for
any Ts we have

4 4
1Sz oy < > 1L pous 132 ey < > 1FIS oy < 4IF Lo csz, 0
j=1 j=1

and it follows that ||F[|pe(ss ) < 4l|F|lzoc(s5.4.0), Which gives the endpoint ¢ = oo in the

statement of the lemma. Moreover, any 1" € Ts p is clearly an element of T, which implies,

together with the endpoint that we just proved, the following inequality for the level sets
us(|1Fllsz , > 4A) < ps.p([1F]]s2

§,A,D

> A).

Multiplying the above by A9~! and integrating over A € R, we obtain the statement in the range
0<g<oo. O

Now, we shall discuss the S? selection algorithm and bound the contribution of the trees
selected within that procedure. For a tree T'(x,&,s) € Tp let

T+<x’§73) = {(Z/>777t> € T(sr:,f,s): n > 57 ye B(1,5)5($>}},

T—(x7£a3) = {(y’nvt) € T(x,f,s): n<é§ ye B(lfﬁ)s(‘r)}'

Definition 2.43 (S2-selection algorithm). Initially Eg = ) and Xo := Ri. In the n-th step of
the algorithm for n > 0, we proceed as follows: if there exists a tree T(x,§,s) € Ts.p with

1FLr, Ixollsz , o) > A (2.36)

which mazimizes s for the maximal possible value of . This is possible because of the following
observations: by and restriction to A. given in there exists and upper bound for
admissible £’s; moreover £’s come from a discrete set, so we may choose mazximal &; moreover,
by Lemma applied with £ = Ri and a single tree, there exists an upper bound for s of a tree
T(x,&,s) which satisfies ; since all s come from a discrete set, we may choose mazximal s.

We set B, = E,,_1 U (Tfm) NXp) and set Xy, := Xp—1 \ T(x,&,s). We iterate the procedure
until there are mo more trees satisfying . It will terminate, since we have a lower bound
for all possible s (because we are restricted to Ac in (2.32)) ) and because we have an upper bound
for the sum of measures of the selected trees (by Le. Let M be the number of the last
iteration. Then we clearly have ||Flx,, ||Lo(s;5.4.0) < A-

Analogously we define the selection algorithm for T_, with the only difference that at every
step we select a tree T'(x,&, s) with minimal €.

We bound the contribution of the selected trees in the next lemma.

Lemma 2.44. Let {Tj}j”il be the trees selected during the algorithm given in Deﬁnition
with E := Ey;. We have

M

2 2
> s T)IFLels: | oy S IFLalZzs).
j=1
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Proof. Without loss of generality we prove the statement for the selection algorithm for 7y . The
proof follows from the following lemma together with Lemma [2.3

Lemma 2.45. Fizy € R and let AT be a convex tree. The area of ENAT™ N ({y} x R xRy)
is bounded uniformly in A, AT and y.

Proof. In the proof we abuse the notation and write 7}, S; instead of Tj+, S]‘-".
Without loss of generality assume that AT = T(0,0,s) \ K, where K € T". Let us set for
any selected tree T € Ts, selected at j-th step

Fr, :==X; N T 0 AT 1 ({y} x R x Ry)

Let us reenumerate the trees so that T, = T'(x;,&;,s;) for j = 0,1,..., M are the selected trees
(in this order), such that Fr, # 0.

Observe that for any index j € N, we have |Fr;| < 1. In order to see this: let ¢y be the top
scale such that there exists n € R with (y,7,t0) € Fr,. Observe that we have:

Fr, c {(y,mt) € AT b=t — ¢t << bt ¢ < to).

o dt o dt
Fr| < |F] g/ / a2 g/ w4y, (2.37)
0o Jo—tgl<o<h 1t 0 t

Let k be the first index (if it exists, otherwise set k := M), such that there is no point
(y,m,t) € Fr,, with t = s5,. Note that then all j > k, satisfy Frr; = (). Moreover, observe that by
Definition [2.43] and since the selected trees are discretized in frequency, the number & is bounded
with a constant dependent only on b. Thus, the observation concludes the proof of the
lemma.

Hence

[

[

The proof that Lemma [2.44] implies Proposition [2:33] is analogous to the proof of Proposition

(2.32] after using Lemma [2.42] which reduces the matters to the discrete collection of trees Ts p.
Proof of Proposition [2.34

In the proof we use the following two observations: first of all, any tree T' € T satisfies us(7T") =
6~ 'pu(T). On the other hand, the factor 6'/2 compensates for this fact, because ||F| e (s) is
independent of §. Thus, we obtain the inequality with a constant < 1.

Proof of Proposition[2.3]} Let U be one of S?, S°. We prove the statement for ¢ = co and
for the weak endpoint ¢ = 2,00, and interpolate. Note that the former follows from § < 1.
Concerning the other endpoint we have to argue differently. Observe that for any 7' € T there
exists Ts € Ts with T5 D T and ps(Ts) = 0~ 'u(T). Hence, we have for any A > 0

ps((|Fllo > X) S0 u([[Fllw > )
Applying the above inequality and Chebyshev’s inequality for outer LP spaces we obtain
ps( 2| Flly > X) S A2 6 M Fllezwy = A2 F |z -

We finish the proof by an application of Proposition O
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2.4.2 Boundary lemma

We will need the following lemma in the next section, when we control the boundary given by
the intersection of unions of trees € Tg s and unions of strips € D. The contribution from the
trees is estimated by means of Rs 4 and sY/ 285, size, where A comes only from strips, which is
acceptable by Proposition 2:32] and PI‘OpOSlthH @ In the proof we decompose the boundary
coming from a union of trees into a finitely overlapping collection of boundaries coming from
single trees, where we use that the trees are discretized in space.

Lemma 2.46. Let F € C(RY), T =T(0,0,s) € Te s and C = PN A, where

n m
P=()K;\L, A=(V;\W
j=1 j=1
where Kj, L € Tg s and V;, W € D. Let§ € 00U and let t%”iT: [—s, 5] = Ry be the parametriza-
tion of C.. Then

* 0,4, \—1 ,0,+
/ [F(y, 0t ()t @) dy Sn s(IFLe| 7 (g, ) + 1F Lol (8172552, )

—S

Proof. We prove the statement for tCT, since the argument for tCT is the same, hence from
now on we discard writing £ in the superscripts. Notice that the mtegral over {|y| > (1-46)s}
is bounded by s||Flc||3 (517255 Set

0 =A{(y, 0t (y) " 0tC 2 (y)) : Iyl < (1= 0)s}.

Consider the decomposition of 8%’T
6%,1“ = (82*,T N af\,T) U (800,T N 810;,T) =01U0O,

For the first part we have

[ B < sIFelng o < sIF Lo ca 0

(o1

Now we shall bound the integral over O5. Consider the splitting

= (J 020, 7)U (020 1) :U uo.

Jj=1

we consider only Oy, but the proof for different 6j’s and O is the same. Set K := K1, 0% := 6?(’T
and note that without loss of generality (up to increasing the constant by factor 3) we may assume
that K C TQ (see Lemman Let t% be the parametrization of 9%. Let 89, = S; U Sg, where
S is the set of points (y,n,t) € 8K, such that y is a local maximum of the function t and let
Sy = 09\ S1. Observe that S; is a union of pairwise disjoint of “horizontal” segments I that are
parallel to {(y,0,0): y € R} and S5 is a union of pairwise disjoint curves C whose projection onto
{(y,0,t): y € R,t € R.} are segments which form the angle w/4 or 37 /4 with {(y,0,0): y € R}.
For every segment I € Z, we select all minimal (in terms of measure) trees T = Ts(x, &, u) € Ts
such that there exists 0 satisfying: 0/4 < §<sand T = T 5(z,&,u) € Ty satisfies I N 39 £ 0.
For a fixed I, we denote the collection of selected T with T] and set T := U; T 7} This way we
cover all points that belong to S; with {&T T e T}. Moreover, observe that this collection of

boundaries also covers all points belonging to Sa, and therefore the whole set 9%. We have the
following.
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Lemma 2.47. Let I € Z. We have
> E S .
TeT

Proof. Note that I is of the form I x {n} x {t} for some n € R, t € R, and an interval I C R.
Since T is the discretized collection of trees and by the way we defined I € Z, we have that

I > 5t (2.38)

Using Lemma it suffices to prove the statement for ’7~} C TY, i.e. for pairwise disjoint 8%.

By definition, each T'(z,&,u) € T; satisfies 8% = T x {n} x {0u} for some interval I C R and
u € Ry such that Ju ~¢t. Thus,

0L ~ I~ =6 1 (6u) ~ 61
T T

Moreover, 8% (see the definition of T') are pairwise disjoint intervals of the same length compa-

rable with §~'¢ like in the previous display, which have nonempty intersection with I. Together
with (2.38]), that implies the desired inequality. O

Since I € 7 are pairwise disjoint intervals, hence applying the above lemma we obtain that
> 7e7 7l S s. Using this bound, we may further estimate

LIFE < S UL, gy + 1FL g, )
TeT

S SUIFLe e ry 0 + IFLelE w g1/2850,))-

2.4.3 Quasi-monotonicity of iterated outer L” norms on R?

In this subsection we shall state and prove several auxiliary lemmata about the iterated LP
norms, which we will need in the next section. First, we show that || - ||z» sizes are decreasing in

.
Lemma 2.48 (Monotonicity of iterated sizes). Let and 0 < p < q < co. We have for F € B(R3)
[FMea sy Spoa 1F e (s)-

Proof. Recall that || F|[ge(s) = ||F|[~(g). First, assume that for any p < oo
[N e sy Sp [1F 22 (s)- (2.39)

Using ([2.39)) we have for 0 < p < ¢ < oo and || F||g»(5) < 0o (otherwise there is nothing to show),
and for any D € D, by the definition of the outer LP norm

_ 1— _
V(D)"Y FlpllLecs) Spa IFILLEv(D) Y FLp |0

17
SIFILHESIFIDIEN s S IF1pess).



46 2. Uniform bounds for the bilinear Hilbert transform in local L*

We still have to show (2.39). First assume that || F'||;~s) < co. Let T € T be a tree such that
| F1r| o (s) > |[F||L(sy/2. Let D € D be such that Ip = I7. We have

2 V(D) Pu(D) VP F | (s) = | Fllo=(s)-

[Fller(sy > v(D) P Flp| os)

If | F|| L= = oo, choosing a tree such that || F'lr|[z~ > n we similarly obtain ||F|lg»(gy 2 n. Since
this holds for any n € N, it implies || F||gr(g) = oc.

The following fact lets us relate the outer LY norm to the averaged L9.

Lemma 2.49. Let V € DY. Then for F € B(R3) it holds that
IF1v s sy Sq vV FLy|gss)  q € (0,00]
Proof. Using Lemma decompose V = J.°_, D,,,, where D,,, € D form =1,2, ...
For ¢ = oo there is nothing to show. Assume that 0 < ¢ < co. Let T,,, C T for m =1,2,.. be
such that

> wT) S u(|Fip,, lls > N), [F1p,, LayT,, le(s) <A
TET,,

Set T" = U,, Tm- Let T € T be any tree. For every m, let T,,, be the tree, whose top is the
maximal tile P € D,, NT (it can be empty). Observe that it holds that

1
IFLv Lyl = (1) > T IF LD, oy 3,
1
S )‘27 1 Tm) 5 )‘27
) 2

where we used that (applying Lemma [2.29)) > 1u(T,) < pu(T). Thus we have

p(IFLylls > X)) < Y w(T) Sy ullFlp, | > A).

TeT

In consequence

Mu(|FLylls > X) S ) A Fp,,|ls > A)

S ZV(Dm)”F]le”gg,(s) S V(V)HF]lngg’(s)’

m

where we used that (applying Lemma 2.29)) > v(D,,) < v(V) holds. The full result follows
Proposition 2.9 O

The next lemma reverts the inequality in Lemma if F' is appropriately localized, losing
a factor coming from the localization.

Lemma 2.50. Let A C Ri be a Borel set and let V€ DY. Then for any 0 < t < q < oo and
F € B(RY) one has

IFLATy || Le (5) S (VO AW FLaTy [|gg s)- (2.40)
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Proof. Note that we can assume that ||F|[z(s) < oo, otherwise the right hand side of ([2.40)
is infinite and there is nothing to show. Moreover, by scaling invariance we assume that
|[Flaly|lre~(s)y < 1. Note that for all A >0

W(IFLaLvlls > N) < u(V 1 A).

holds. Note that, if u(V N A) = 0 or |[Flaly|ps(s), then there is nothing to show. Let
C=ulVn A)fl/q||F]lA]lV||Lz(S). We have

[FLaLv||Le, (s)

C oo
dX dX
SO APLAL s > ) 5+ ([ X ulFLavs > 0 T
0
< Ou(V 0 A4 O F Y o) S (V0 A E g s,
The conclusion follows now from Lemma [2.49] O

The following lemma controls the counting function of a forest coming from the selection
algorithm in terms of £¢ norm.

Lemma 2.51 (Counting function estimates). Let V' € DY and let Ty be the collection of trees
selected according to Definition (Deﬁnitz'on at a certain level A > 0 for function F1ly .
Let N, be its counting function. Then for any 1 < p < 00,2 < g < oo and F € Bc(Ri) the
following bounds hold

INTlze Sp v (V)YPATIF Ly Iy o)
together with the BMO endpoint
INT a0 S ALy |y s

Proof. Let E) be the strongly disjoint set selected at level A for function F1y, .
We show the result for endpoints p = 1 and BMO; the full statement follows then from the

inequality || fllr Sp Hf||i/1pr||119_A}/Op (see, [CZ05]). First of all, applying Lemma M(Lemma
2.44)) we have

N7y [l < >\72||F1V||%ﬁ(s)’

Applying Lemma to the right hand side we obtain

— 1-2
INT o S A2 N [ v (V) 2| Py |2,

which gives
INT [ S v(V)A I Fly|g,.

We still need to prove the BMO bound. Fix an interval I and let 7,/ C 7, be the subcollection
of selected trees with their top intervals contained in I; moreover let Ef = E\ N|J 7. Notice
that T/ C Ds; N Ty, where Da; = D(c(I),3|I|) is the strip generated by 3I. Apply Lemma

Lemma to E)I\ We obtain

[Nzl S A2 Flyip,, H%g(S)
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Applying Lemma this time using D (instead of V') as the time-scale localization, we obtain
INpr o S AT FLy |,

where we used that v(Dsr) = 3|I|. Dividing by |I| and taking the supremum on the left hand
we get that

INT B0 S ALy,

2.5 Trilinear iterated [P estimate

From now on we fix 5 € R? and set A := AB‘ The main result of this section is the following
proposition.

Proposition 2.52. Let 1 < p1,p2,p3 < 00 with 23:1 1/p; =1 and 2 < q1,¢2,q3 < oo with
ZB 1/q; > 1. Let for j = 1,2,3, f; be a Schwartz function and let Ff = F%(f;), F} =

j=1
SUpgpeq ), Ff = supyeq- F) and F; = (Fj, F}). Moreover, assume that V;,W; € D" for

j=1,2,3. Then
3
|A(F1<p]lV1\W17F2Lp]lV2\W2a Fép]lVg\Wz)l 5 H V(‘/})l/pj ||FJ]lV]\W] ||L°°bqj (S)- (241)
j=1

Note that in conjunction with Proposition the above inequality implies Theorem 2.2}
We could not use the outer Holder inequality from [DT15| for our purpose, since it requires a
stronger assumption than we were able to obtain. Namely the outer Holder inequality would
require min; (V) instead of J[; (V;)/Pi on the right hand side of (2.41). The other reason
is that our multilinear form is nonpositive and, as opposed to [DT15], we do not view it as L!
norm. Although one could try to deal with the nonpositivity introducing nonpositive sizes to
view the left hand side of as an outer L' norm, it does not seem likely that one can obtain
much better gain than [T, u(V;)"/?/ in (2.41)), since V; scales differently than V5 and V.

Before we prove Proposition we show a localized estimate at the level of trees.

Proposition 2.53. Let 1 < p1,p2,p3 < oo with 23:1 1/p; = 1. Let for j = 1,2,3, f; be a
Schwartz function and let F := F?(f;). Assume that K;, L;, M;, N; € (THY, V;,W; € DY and
wy is for 5 = 1,2,3. Moreover, set A = A. NViN ﬂ?:Z(VJ \ W;), where A, is as in (2.23),
GY = Ff 1y \w,lu\n;, Gj = supueq G, G = Supgeq- GF and G; = (G;,G7). Moreover,

let S; = SZ&,N Wi = s for j =2,3 (see, Section . Then
3
|A<Gf]1K1\L1 ) Gg]lKQ\Lw G§1K3\L3)| 5 H 1221 (Kj)l/pj ||Gj]lK]\L] ||L°°(Sj)-
j=1

Remark. Observe that optimizing in p; and p;(K;), we can make H?=1 ;i (K;)YPi to be equal
minjzl’g’g Hj (K])

Remark. Observe that G; are additionally restricted to M; \ N; € (T7)”. That is because we
shall need such additional localization in the proof of Proposition[2.59
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Note that applying Proposition [2.10} the previous proposition immediately implies
3
IMGT, GG S TG 1w (s

j=1

In the first subsection we make a couple of remarks concerning boundary integrals, which
we shall be using throughout this section. In the second subsection we prove several technical
facts, which let us streamline the exposition of the proof of Proposition 2:53] In the second
subsection we prove Proposition In the third subsection we finally proceed with the proof
of Proposition [2.52

2.5.1 Remark on boundary integrals

In this section we will be using the fundamental theorem of calculus and Green’s theorem multiple
times, while integrating by parts functions restricted to sets with boundary. In the following two
propositions we state the versions of the these facts that we are going to apply. Note that these
facts require restriction to a compact set with piecewise linear boundary, which is the technical
reason why we restrict functions in Ri to the set A., which we introduced in .

Proposition 2.54 (Fundamental theorem of calculus). Let y € Ri and a,b,c € Ry with 0 <
a <b. We have for any G € C*(R%) and (y,t) € R1

wam@@z/kmm%w%ﬂwwu

0

= / 8uG(y> u)]l(a,b) (u) du + / G(ya u)au]l[a,b] (’LL) dU,,
0 0

with 9y 1(qp)(u) du being the measure §q(u) — 0p(u).

Let C C Ri be a compact region of the form

C={(y.t)eRL:t (y) <t <tT(y)},

where t*: [a,b] — R, where a < b, are piecewise linear functions whose Lipschitz constants are
bounded by 1 and let us set C(y) = (¢t (y),t"(y)).

Proposition 2.55 (Green’s theorem). Let D be a region bounded by a positively oriented, piece-
wise linear simple closed curve in R?. For any G, H € Cl(Ri) we have

/ aya(y,t)H(y,t)dydtzgﬁ Gly, ) H (y, 1) dt — / Gly, )0, H (y, £) dy dt.
D oD D
In particular

| 26w 0w 01000 dyd

- [ [ ctwo . c0 @ dydt + [ [ GluH .09, 100) 0

with fﬁy]lc(y) (t) dy dt being 9800 dt as in the statement of classical Green’s theorem.
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Note that we have the following estimates to control the boundary terms coming from differ-
entiating in space and in scale (in the first and in the second variable), we have

b s b b
| / / Gy, s Loy (1) dt dy| < / Gyt ()] dy + / Gyt W) dy,  (2.42)

and
b s b b
| / / Gy, 1)y Loy () didy| < / Gyt~ ()] dy + / Gyt W) dy.  (2.43)

. . . . . . . 3
2.5.2 Preliminaries: properties of embeddings in R

This part is dedicated to proving several technical facts about sizes which will shorten the
exposition of the proof of the single tree estimate in the subsequent subsection.

Throughout this subsection, for simplicity we fix @ = (6,00™) with @ = (—1,1) and
00 = (=b,b). The proof for different © is analogous. The constants may be dependent on ©,
however in the end we apply the results only to a finite set of parameters introduced in . We
also fix an arbitrary Schwartz function f and a number s > 0. Moreover, we set F'¥ = F?(f) for
p€®, F=F(f), F* = F*(f) and F = (F,F*), see (2.6). All the constants in this subsection
are independent of , f, unless explicitly stated.

Definition 2.56. Let G € B(R%). Define

IGllv = Gllv2 + [|Gllve, (2.44)
where
[Gllve :=  sup |G(y,1)|
(y,t)ERXR4
et e dt
IGlly= = sup (f/ /\G(y,t)|2—dy)1/2.
T(z,0,w)eT W Jz—w Jo t
Moreover, define
1 s min(ds,s—|y|) dt
iGlv-=; [ [ Gy, % )2 (2.45)

Definition 2.57. Let G € C(R%) be a measurable function and

B(y) = (b (y),b* (y)) C (0, min(ds, s — [y|)),

where b* : [—s,s] — Ry are piecewise linear, Lipschitz functions. Define
2 s '
Glevei= > (] 16wV @)F (2.46)
je{—4}y °7F

The first lemma of this subsection lets us dominate the S? portion of the size over a single
f-dependent hyperbola {#¢t~1}. Moreover, observe that we convolve f with a function that is
only of mean zero and does not necessarily have the Fourier support away from zero. By virtue
of this fact, we are able to take the supremum over 6 in the proof of the key “overlapping tree
estimate”, Lemma [2.77] in the next subsection.
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Lemma 2.58.

1. LetT =T(0,0,s) € Te,s and C = (K\L)NA., where K, L € Jg§ (recall Deﬁm’tign and
[223) ). Moreover set C? := C%. with § € @), Let G¥(y,t) := f *u(y) := F¥(y, 0t~ 1, t)
and additionally assume that 1y 1 (£) = gée,l(g), where p € ®*. We have

IG¥1collve S IF L (ss.c)- (2.47)

IG¥ 100 llv S NF L1 c)- (2.48)

2. Let T = T(0,0,s) € Tey and B = (K \ L) N A, where K,L € Jg (recall Definition

and ([2:23) ). Moreover set B? := BY with € @™ . Let G¢(y,t) := f * pi(y) =
F?(y, (04 B1)t™1,t) and let p € ®*, i.e. p is supported on (—a,a), where a < 278b, where
b <278 We have

||GLPHB€||V 5 ||F||L°°(51,B)'

Remark 2.59. The restriction of C to A. is used to ensure that the considered scales are bounded
from below, so that ¢t are away from zero, where (¢~ (y),ct(y)) = C4.

Proof. (1). First we prove (2.47). We set C?(y) = (¢~ (y), ¢*(y)). Note that by the assumptions
we have ¢ = 1, ;. Moreover, set ¢ = @y, and observe ¢ is supported on (—2b,2b) and (&) =
£p(€). Let a < 278b be fixed throughout the proof.

Lemma 2.60. For any ¢ > 1 we may decompose ¢ as follows
¢ U, — u,+ du -1 c
P = [ o @)+ @) S e ga) (2.49)
1
where for each u € [1,+00] such that

Uit = a (D) el @) = () i) = e ()
with

supp($:~ (€ + 3b)), supp(* (€ = 3b))) C (—a/2,a/2) (2.50)
6i3bm,¢)u,7(x) c (I)*, 67i3bmwu,+(z) c (I)*, 4,06 c ®.

In particular for any 0 <t < c it holds that
€ d
wi(w) =t [ U (@) @) G + e e ), (251)
t

Proof. Let nn > 0 be an even nonzero Schwartz function supported on (—3b —a/2,—3b+ a/2) U
(3b —a/2,3b + a/2). Tt follows from the change of variables u{ — wu that for £ € (—2b,2b) \ {0}

e du
1 = n _
/1 (ug) —=
where 7(u) = 2( [~ n(t)t=*dt)~'n(u). Note that (we discard 27i, which is irrelevant here)

blz) = / ok (1 )ulz) 2
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The above holds, since on the Fourier side we have for £ € R\ {0}
L du >* _ du
— [ denue = [ st uenue) 3.
1 U 1 U

and both functions in questions are mean zero. F~1(@(&)uén(uf)) = ¢ * (1) = ¥, where
P = Y~ + "t with some u-dependent %~ ™ satisfying (2.50). Hence, the only thing
left to show is that there exists ¢ € ® such that

o d
| 5 = erta,

Changing variables on the left hand side we obtain

/ () = *1/ pe(e) & = (),

where ©¢( fl Yie(x Zg. Note that for every uw > 1, ¥"¢ € ®* meaning that it has
uniformly bounded derlvatlves up to a high order and its support sufficiently small around zero.
It is not difficult to check that this implies that ¢¢ € ®. This finishes the proof of (2.49)). (2.51))

follows from applying (2.49) with ¢ = ct~! and a change of variables. This finishes the proof of

the lemma. O
Applying (2.51) with ¢ = ¢t (y) we bound s||G¥1¢s||y2 by the sum of
+(y dt
/ / 22 gl (02 Ly (2.52)
S <t (y) <t (y) t du . dt
frgily) = 1P —dy 2.53)
/_s/c(y) |/t (>u u| t (

Note that (2.52) is bounded by

/ sup | f * SDZ+8 /t|2 dy < 5||F||R9 o(T)
—s te€(e™(y),c ()

Concerning ([2.53 , we consider gpu/ " since the argument for gpu/ "~ is analogous. Also, let

Py = z/ﬁf/ty “’+ with ¢y > 0 be such that |f = ¢¥"(y)| > 3 sup,.,, | f * z/)ﬁ/t’+(y)|. Now, observe

that that there exists a wave packet ¢”" € ®* supported on (—=a/2,a/2), such that for some
6eelm +2b

frapt =F (y,0u"" )

From now on, for simplicity, we write F¥* := F %" The consideration above imply that (2.53))

is bounded by
cty)  pct(y)
| / [ et o L

Let g(t) = tl(o,1)(t). Note that the integral over ¢ is the L? norm of the convolution

(Fy’.(yag'ila ')]]-Cg(y)(')) *g
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in the multiplicative group (R4, %) Using Young’s inequality, it is then estimated by

d
Y dy.

u

s ds
[ [ s o Pies @)
—s5J0
The previous display is estimated further by

s ds - - ) du
3 0 |F’ (yagu ,U)| Il-cg(y)mcﬂy)(u)zdy

s ds
wr Ao du
+/ /o [F2 y, 0u™ w) Pl o gy (W) = -

First we bound the second summand above and then the first. In order to bound the second
summand it is enough to show the following.

Lemma 2.61. Let 6 € ©0) 4+ 2. Then
')\ CP(y) € (¢ (). 2¢ (1) U (e (). c* (),
Proof. 1. First we show that

< ; <2. (2.54)

N =

teC%y),t¢ Cg(y) = there exists s € Cg(y) with

The left hand side of the implication means that there exists a tree separating the points
(y,0t=1,t) and (y,0t1,t), i.e. there exists a £ such that

ot <e4+t <ot (2.55)
or
ot <e—t <ot (2.56)

Let us consider only the first case, since the other one is very similar. Since |6], 6] < 1, the
hyperbola fu~! is “steeper” than ¢ + u~! and there exists s < ¢ such that

sl =¢4+ 571
Subtracting this equality from the left inequality in ([2.55) one obtains

-

IN

st<t -t = 1-0)st<(1-0)t!
1-0

— C>c >

1-46

)

| ®
DN | =

where the last inequality follows from |f],[f] < 1. Similarly, one can show that if (2.56) is
satisfied, then there exists § < 2 with s € C?(y). This ends the proof of (2.54.
2. Note that for any 6 € ©, C?(y) is a connected set, hence if ¢~ (y), ¢ (y) € C?(y), then

C?(y) € C?(y) and there is nothing to prove. Also, note that if ¢~ (y), ¢™(y) are at most factor
2 away from each other, then there is also nothing to prove.
Assume that the above is not the case and ¢t (y) € C?(y). Note that (2.54)) implies that

ﬁ# € C’g(y). Similarly, if ¢~ (y) & C’g(y), then 2¢~(y) € CY(y). O
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Using the above lemma we bound

S ds _ 1 9 du
/ / E s Ou s ) [T o\ o (W) = Ay
—sJo u
<

~ / sup |Fy7u(yvguil’u)|2 dy
—su€(c(y),2¢= ()

+/ sup |Fy’“(y,§u*1,u)\2dy.

—s u€(gct(y),ct(y))

Note that sup,e(c-(y),2c- (1)) |F¥u(y, 0u=t, u)| < |F(y,0c (y)~', ¢ (y)| and similar holds for the
term involving ¢* (y). Hence, the right hand side of the last display is bounded by 23||F||2L°O(125 ot

2sHF]lc||im(§1/ZSm). We still have to deal with the L? integral restricted to C®.

Lemma 2.62. Let 0 € O™ 4 2. Then

s ds
w A du
| I B 0P L en (0 5 i S SIF s,

Remark 2.63. The point of the lemma is essentially to replace the left hand side by its average
over 6 on an interval of size ~ 1. In order to that we split the integral into a part that is close to
the boundary and the other part, where we have “enough space” to perform integration over 6.

Proof. Observe that

C%(y) N C%(y) := D(y) U C®(y)

where
I 5 7 7
D(y) = (¢~ (1), 2¢” () U (3¢ (0), " ), Coy) == C’(y) N C(y) \ D’ ().
Note that
[ e 0 2 dy
—s Dg(y) u
S s PrEewPdy
—s u€(c™(y),2¢= (v))
4 / sup  |FU(y, But ) dy

—s u€(zct(y),ct(y)

S S(HFH%OC(R&C) + ||F]10||ioe(51/250@))’

Since SUPye (- (y),20- () FV" (4, 0u™" w) [ < [F(y,0c™(y) ™, ¢ (y))], where 6 = 6 — 2b € ©0™)
and similarly for the term involving ¢* (y).
Now we bound the contribution of C%(y). We have the following observation.

Lemma 2.64. For any 6 € O™ + 2b and u € C?(y), we have (y,0u=",u) € C.

Proof. This follows directly from Lemma |2.61 O
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Let ¢ < b. Applying the previous lemma and makmg ¢ small enough we may ensure that for
any 0 € 0,0 + ¢) and u € C?(y) we have |F¥“(y, 0u~", u)| < |F*(y,0u~",u)|. This implies

ds
[ at P 0 5 dy

9+C . du .
/ / |F(y, 0u™, w)[*Le(y, 0u™"  u) — dy do
—sJds u
< s(] |F*||L°° 53 )+HF*]lCHLoc(51/252))

where the last inequality follows from [0, 4 ¢) € (") (since § € O™ + 2b). O

is proven analogously to ; the only difference is that we do not use the boundary
size Rs.c, but S°.

2. Notice that G¥(y,t) = G¥(y,t), where ¢ = g1 5,. Note that the first part of the proof
applies to such 1 and follows similarly. O

The following two simple lemmata below will be extensively used when we integrate by parts
the trilinear form.

Lemma 2.65 (Differentiating wave packets in space).
Fe(y,&,u) = u " F? (y, & u). (2.57)
Proof. Straightforward. O
Lemma 2.66 (Differentiating wave packets in scale).
F(y,6,u) = u™ F¥(y,€, ), (2.58)
where ¥(x) = (xp(x))’.
Proof. 1t follows from the identity
o (%) = —up(S) —au Tt (5) =u T (2),
where v(x) = x¢(z). Hence, the right hand side equals u =149, with ¥ = 1’ O

Lemma 2.67. Let p € ®* and 0 < ¢ < 27100, Then there is a decomposition such that p = G+,
where @, € ®*, B is constant on (—e, ) and there exists 9 € * such that ) =

Proof. Let n € ®* be such that 7 is supported on (—2¢,2¢) and constant 1 on (—¢,¢). Define 9,
@ as follows

¥(&) = &(§) = n(€)¢(0), P(&) = 0(£)(0).

Clearly ¢ = 1) + @ and @ is constant on (—e,e). Let
[ wwdr= [ o)~ sOm)dy.

¥ € ®, because p,n € ®*. Moreover, ¥ = 1. The last identity implies also that J is supported
on (—27%,27%), because both ¢ and 7 are supported on that interval. Hence ¥ € ®*. O
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Till the end of this subsection, unless otherwise stated we set
B(y) = (b~ (y),b"(y)) € (0.5 — [yl),
where b*: B,(0) — R, are piecewise linear, Lipschitz functions and
C(y) := (¢ (y),¢" (y)) C (0,min(ds, s — [y])).

where c*: B,(0) — R, are piecewise linear, Lipschitz functions.
We use the following definition of BMO

£l 5ar0 = sgpfl\f—]{fl-

In the following lemma we prove boundedness of a version of the Hilbert transform, operator
(2.59), that involves restriction to scales t € B(y), under appropriate Lipschitzity condition.
However, note that the bounds (2.60]), (2.61) are in terms V.

Lemma 2.68. Let
s dt
LH(y) = ; H(yat)]lB(y)(tl)7]]-[—s,s](y)- (2.59)

Let @' = ¢ for p € ®*. We have

ILG?| 2 <82 sup  ||GS1g|v, (2.60)
Ce{@, .0’}
ILG? B0 S sup [[GS1p|v, (2.61)
Ce{@,p,0'}
and for 2 < p < oo
ILG?|» Sp ™ sup [|GC1p]v. (2.62)
Ce{@, 0,9}

Proof. In the proof we omit writing the complex conjugate. By assumption, @ = ¢, moreover
we set @ := .
[2:60): Let C := ||[LG¥||z2> and D := s'/2 SUD¢ e {g,0,0'} |G¢1g|v, we want to prove that C' < D.
Note that C? equals
A dty dt
[ [ ] erwnnsm e mtag e T 2
—sJo Jo t1 to
by symmetry we bound only
S dty dt
/ / / G?(y,t1)Lp(y) (t1)G? (Y, t2) Lp(y) (t2) Tl —dy
—sJ0 JO<t<to 1 t2

We shall now integrate by parts moving derivative from G¥(y,t1) to G¥(y,t2).
Hence, applying Proposition [2.55 it is enough to estimate the following four integrals

Y > t1 dty - dt
/ / / G?(y,t2)1p(y) (t2) tfl TQ G¥(y,t1)Lp(y) (t1) Tl dy (2.63)
—sJ0 t1<ta<s 2 2 1
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S S _ dt
/ / / G700, L) (1) (0 12) Ly (12) s 2 dy (2.64)
—s <t;1<ta

S S _ dt
/ / / GP(y, 1)Ly (1) G? (y, t2) Dy Ly (2) dty — dy (2.65)
—s <t1<tz 2

Concerning (|2 we apply Cauchy-Schwarz in ¢; with measure dtl first and then we use Young’s
convolution mequahty for the multiplicative group (R, , % : LY.

S/ IGZ Ly (8) * t1(0,1) (8)| L2 aey G Lrey) (D) p2qary dy S D?
(2.64): applying (2.43]) and the Cauchy-Schwarz inequality in y, it is bounded by
= 8 8 dt 1/2
21671 ([ 1| 6wt Lag ) 2P ay) 5 DC
—s 0

(2.65): applying (2.43]) and using Cauchy-Schwarz twice, in ¢; and then in y, it is estimated by
/2 dty
Py, t1) |1y (t) 75 72 dt1|G*(y,t2)0,1p y)(t2)| d?/
—s <t1<t2
= dt
S / X / |G¢<y,t1>|213<y> (1) T 216 (4, t2)0, Ly (1) dy
—S 0<t;<ta 1

/ / IG®(y, t1)? ]lB(y)(tl) dy)'?||G?1|v < D*.

We have just proven that C? < D? 4+ CD. Hence, either C? < D? or C? < CD. This implies
C<D.

(2.61): Fix an interval I. Without loss of generality we may assume that either I C [—s, s]
or [—s,s] C I. In the latter case the bound follows from the L? estimate. Also, without loss of
generality, we may assume that I = [—w, w]. Hence we consider the first case and using Jensen’s
inequality it is enough to bound

1/2

Note that by the already shown L? estimate
“ v @ dt 2 < ¢ 2
|| Gyl Fdy s  sup [IG°L5]Y
—w J0 Ce{D,0,0'}

and by Jensen’s inequality

F it [ erentsnm G apa
—w —w JO

N | | G (Zat)]]-B(z)(t)?l dedy < sup [|G*1glly

Ce{@,p0}

Hence, we are just left with bounding

F[ w0 F-f [ eonmgn Tty



58 2. Uniform bounds for the bilinear Hilbert transform in local L*

Using Lemma [2.69] the difference inside the absolute value is bounded by
w S dt
1} [ 6P w0180 - 6701 (0 T dil S s [GLalv,
—wJw CE{%@'}
Using L? — BMO interpolation (see, [CZ05| for example), we conclude the proof. O
Lemma 2.69. Let w < s and y € (—w,w). We have
® ® dt < ¢
| G y, ]lB(y)( ) G (Z,t)]lB(z)(t) 76[2‘ S sup ||G ]1B||V
Ce{e,v'}

Proof. Using the fundamental theorem of calculus, we have two integrals to bound. The first

one is estimated using (2.43))

dt
][ ‘/ /G“’gtacle(C()7dC|dZ
:][ %/ ZIG%c,bj(oﬂdCdzsHG%Hw
W z =1

and the second one is estimated by

fz /: /w GZ (G )L (1) % d¢ dz

’ w 1 v ’
SI67 tal f = [ dCds 167 sy,
—w z

O

The subsequent lemma is essentially boundedness of the maximal truncation of the Hilbert
transform in terms of the size. Once again we adapt the inequality to the varying scale restriction
t € B(y) and bound the operator in terms of the size S.

Lemma 2.70. Define

s dt
LH() = sup | [ H )L (0 T 1L 1(0)

Let ' = ¢ for o € ®*. We have for 2 <p < oo

ILG?||Lr S 8P sup  [|GC1gllv.
Ce{Bpsp’}

Proof. Fix 0 < w < s. We shall obtain a pointwise bound for | [ G¥(y, t) 4|, Let I, be the

interval of length w centered at y and let I,, = I,N[—s, s]; note that |I,,| and |I,,| are comparable.
Subtracting an averaged term it is enough to bound the following three expressions

dt
|/ GwlB(y) ]L / GLP Z t ]]-B(z)() n dZ|, (266)

i} [ eentsnn Tl (267
I, J0
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: dt
| ]{ /0 G (2o (1) ). (2.68)

w

Using Lemma (2.66) is bounded by
S dt
|][ / Gy, )i (1) — (e o (1) T do| £ sup Gy
Ly Jw Ce{ﬂoﬁp/}

By an application of the Cauchy-Schwarz inequality and using (2.60), (2.67) is estimated by

v dt
F [ o onan® Tl
1, 0

w dt 1/2
S(f 1] o0 Tra)" 5 s 16Tl

CE{Brpsp’}

(2.68) is estimated by
. dt, dt
f | ; G (Zat)]lB(z)(t)?‘dZNM( | G ('at)]lB(y)(t)71[75,5])(:’4)’

where M is the maximal function. Hence

s dt
ILG|[er S NGBV s s lle + IIM(/0 Go(t) T sl

<s? sup [|GCLg|y,
¢e{@,p90'}

where we used boundedness of the maximal function and (2.62)). O
Applying Cauchy-Schwarz together with the previous lemma we obtain the following.
Lemma 2.71 (Bilinear estimate). Let G € C(R2). We have for p > 1

s 2
( / G (y, E () Galy, =) P dy)V? < sP TTIGS 1KY IGitelly P (2.69)

—s j=1

Proof. This follows from Cauchy-Schwarz and pulling out the L* norm with the appropriate
power. O

We shall need the following time-scale localized square-function estimate.

Lemma 2.72. Let ¢ € ®* and let 8 € ©. Define

ds
LH() = ([ 1P Leo 0 D 1w

We have
I(LG?)?|| 11 S s|GFLe|2, (2.70)
(LG sro < sup [|GS1c|2, (2.71)
Ce{pp'}
and for 2 <p < oo
ILG?||1e Sp sYPIGPLC)3E( sup  [|GSTc|lv) /2. (2.72)

Ce{p'}
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: Follows by definition.
: It is enough to consider I C [—s,s] and [—s,s] C I. The latter case follows from
. Let us consider the first, without loss of generality I = [—w, w]. We shall bound

s s
t
Fo[eworton0 - £ [ 16 enrienn S el

Notice that

7[ / 1G#(y, 1)[* Loy ()*dy<|\G“”ﬂc||v,

F 1 [ et o T aa i,
—wJ—wJ0

Hence we are just left with estimating

ds w ds
dt dt
fo[eworicnn T - f [65E0ren 0 T il

We can rewrite the difference inside the absolute value of the previous display as

and

w ds
dt
F ] 167w 0P 1060 - 167t PLog (0 5 ds

Applying the fundamental theorem of calculus to the above innermost difference, similarly
Lemma [2:69] it is enough to control the following two integrals

][ /65/ GG ONGZ(E Do (¢ )dC—dz

<wf / Litd: swp |GLolp S sup [GCLel?,
CE{p¥'} Ce{pp’}

and when the derivative falls on 1 we apply (2.43))

ds
][ // G2 (PO e ()—dcdz
st/ ;IG‘”(C,%(C))FdCdz <161l

[2.72) follows from the L' — BMO interpolation (|CZ05

)- O

Corollary 2.73. Let p1,p2 € ®*. Let 1 < p < oo. Then
s ds o o dt , "
(f | ; GT (1, )G3* (y, O)ew) (1) P dy)

<sl/pHHG%]lc||1/p||G%]l Hl 1/p
Jj=1
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Proof. Applying the Cauchy-Schwarz inequality in u and y the left hand side is bounded by

s 2 ds
dt
(f TL1] iernfico o Gre s

2 s ds dt
STIU 1 167w 0P 100 0 S
j=1"7-s 0
The statement follows from (2.72)) applied with the exponent 2p. O

2.5.3 Proof of Proposition
In this subsection we prove Proposition Let V;,W; € DY, for j =1,2,3 and let

Aj Z:Aeﬁ‘/j\Wj7 fOI‘jZI,273,
where A. is as in ([2.23)), be fixed throughout this section. Moreover, set
A:=ViNAyN As,

All the implicit constants will be independent of §, A. The main ingredient of the proof of
Proposition is the following lemma. The point of it is that we reduce the full estimate from
Proposition to the single tree estimate.

Lemma 2.74. Let T € T and let

P = mMj\Ll, where M, Ly € TY for j =1,2,..,m,
j=1

P:ﬂNj\L, where N;, L € T§ for j =1,2,..,n.
j=1

Then for ¢ € ®* and 0 <~ < 1 it holds that
AFY Ly (ryLay Ly (py)s FS Lalny(py, F3lale,py)

3
S DIFrLa, Ly (pllzoe(sy) [[IF LAl pyllpe(so

],5,A).
Jj=2

Proof of Proposition[2.53 assuming Lemma[2.7] We gradually reduce the estimate in three steps.
Step 1: First of all note that by ([2.25), it is enough to prove that for all Ky, L1, M; € TY and
K;,L;,M; € T§ for j = 2,3 it holds that

AFYLa, Ly (i o\ 2 )s F5 L4 Ly (koo L2) > F31 Ay Ly (ynMs\ Ls))
3

< (jg%gg 13 (i (B 1Py L, Ly (s, ooy L oe sy [ ] 11 1a, Lo, i sy, 0)-
j=2

Step 2: Let

P =Ky N M\ Ly, P=KyNMyNKsnM;\ (LyULg).
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It follows from (2.27)) and (2.29)), that in order to prove the estimate from the previous step it is
enough to show the following for all Ky, Ly, My € T, K;, L;, M; € T§, j =2,3
A(FY 14, 1n (s FS 1AL, py, F3lale,py)

3

S min(.u(Mj)’Hljin:u'ts(Nj))”Fl]lAl]]-71'1(P1)||L°°(S1) H [F5Lalz,pyllnee(sy, -
j=2

Step 3: in this step we show that in order prove the estimate from the previous step it is
enough to show the following for all T € T, Py = My N My \ L1, P = ﬂ?:l N;\ L:
AFY Ly ()L, Ly (1), FS Ly Ly Py, B Ly Ly ()

3
S uDIF LA, Ly oyl (s [T I1F 14, 1np)llz(s7, L)

3,8, A
j=2

Let

where ]\~fj are like in (2.30]). Let U;’Zl T; O P be such that

J
Z p(Ti) S moin(min p(M;), mjinu(ﬁj))

The above condition is possible to satisfy, by covering one of the sets Mj, Nj, which has smallest

measure. We can make T;’s pairwise disjoint obtaining convex trees szl T; \ T;. Using (2.30)
and assuming the estimate in the previous display we obtain

AFYLa, Lny () FS Lay Ly (pys F Lag Loy (p))
= MY L, o 17 L Lay (o) B Lag Loy Py, B L ag Ly ()

S AF Uy La by oy FS Las Lag(py, F Lag Loy ()

s
Il
_

3

WTIFTLa, Loy o sy [T I LA, Lay o)l oo, )
j=2

S

-

I
—

?

3
S min(mjin (M), mjin PNONFL LA, Ly (ol (syy [ ] 1514, 1n, ) Lo (sy

,5,A)'
Jj=2

It finishes the proof of this reduction since min; u(N;) < minj ps5(Nj). O

Since the estimate in Lemma is translation and modulation invariant, it is implied by
the following.

Lemma 2.75. Let

Py= () M;\ Ly, P=(\N;\L,
Jj=1 j=1
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where M;, Ly € TY, N;, L € T},

B:Alr\lﬂ'l(Pl), C:Aﬂwz(P)
Let a; be like in (2.21)), T =1T(0,0,s) € T and set
0 az20+6
B’(y) == BLI A (), Co(y) == Col 2 ().
Then
s=lyl 0+ 2 a;0 + 03, dt
/ / / F{p(y7 17t)]]-Bs(y)(t) HF;p(y7Q76t)]lC"(y)(5t)7dyd0
t ! ot t
o J|y|l<s JO j=2
3
SslFsli=cs) [ IF Lol e, -
j=2

Remark 2.76. Note that if C = ANws(P\ L), then C? = 6:;(9;%;

Proof. First, restrict the outermost integral to § € ©(©)  Applying Holder’s inequality with

exponents 00, 2,2 in (y, 6, t) and interpolating to obtain the + factor in || - HSZv'}c for j = 2,3, the
750,
left hand side is bounded by the desired quantity.
In order to complete the proof of the lemma and in view of Lemma [2.46]it is enough to show
that for every # € ©™) the double integral in (y,t) is bounded by

3
s||[Filplre(sy) H H'FjHLOO(S;.’,J,C)v
j=2
This estimate follows from Lemma 2.77 combined with Lemma [2.58] O

For ( € ®* and j =1,2,3 we set ng(y,t) = fj % ((y). Let ¥, @ be such that

GY(y,t) = Ff (y, (0 + Bt~ 1),
G%(y,t) = F} (y, (a0 + 6Bt 1 t)  for j=2,3.

Let || v, || [lv< ]l - v+ and || - [l v, be defined as in (244), 245) and (@26). Let § = 5+
be the decomposition given by Lemma Set

G (y7t) ‘= sup |G§(y’t)|’
ce{w,v'}
Giy.t):=  sup  [G5(y,1)], forj=2,3.
Ce{®().@ ¥’}
The next lemma is the crucial “overlapping tree estimate”. A priori we do not have enough
cancellation to apply Hoélder’s inequality as we did in case 8 € ©(ut) so we first telescope
restricted functions Fy1¢, F3lc and then integrate by parts, which yields the boundary terms,
that are ultimately controlled by the boundary sizes || - ||r. We have the following.

3,8,A"

Lemma 2.77. Assume that 6 € ©0") . [t holds that

s—lyl - - dt
Lo G e @G a6 s 1en a1) Ty
y|<s
3

1— 1—
< slGatsllv [TUIG IR, G Lealy + 621G ihcollve + [1GLen 2" 1G Lea |5)-
j=2
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Proof of Lemma[2.77 To ease the notation we set B(y) := B%(y), C(y) := C%(y). Using Lemma
we decompose @ = P + 1, which implies that for j = 2,3

P _ P P
G?=G7+GY.

This way we obtain four integrals to bounds.

s—lyl
[ et oo mem.mic e § (273)
y|<s

s—lyl 9 _ _ dt
L] w065 06w e o0 F (274
y|<s

s—lyl 9 _ » dt
Lo w65 06w 1w o F dy (275)
y|<s

s—|yl 9 " _ dt
L e msw@6iw et ot on F (270
y|<s

Note that the bound for follows simply by applying Cauchy-Schwarz with exponents oo, 2, 2
and interpolating to obtain the desired right hand side. We still have the other three terms to
estimate. _ , B

We start with (2.74). In order to ease the notation, let us set Hy := GV, Hy := G{ ; Hy := GY,

Hy = Gg,, where ((z) = #@(z) and Hy := GS; Hs := G¥ and Hj := Gf. Using Proposition
254 we rewrite HoH31 ¢ as

ot

(y7 5t)H3(y7 5t)]]-C (5t) 0 8u(H2 (y7 U)H3 (y’ u)]lC(y) (u)) du,

so that using (2.58)) up to a symmetry we have to control the two integrals

s—lyl ot dt
/| | [ mw0tsnm [ mwiastepaty @
y|<s 0
5=yl ot __ du dt
Lo meone® [ eeneetcnw S Ty en)
<s 0

Concerning (2.77)), applying (2.42)) and changing the order of integration we have

(s=lyl) 3 s—|yl dt
/l / Hj(y, u)0u ey (u )/ Hl(yyt)lmy)(t)?dudy
y<s

1y

3

s ds
</| sup | Hy(y,t) g, (t |/ |HH (y,c=(y))| dy

yl<s M JM

Applying Holder’s inequality with exponents 1/v,1/(1 — v) in y, applying Lemma to Hy
and (2.69)) to the product HoH3 we obtain the desired inequality for (2.77). Now we proceed
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with (2.78). Using Proposition and (2.57) we move the derivative from Hj to one of the
other four factors obtaining another four integrals to bound

s=lyl o _ u du dt
[ [ Eeotsg® [ Reobeaotego; TS @)
lyl<s Jo 0 tu t
s—|y| 5t dt
/| | / Hy(y, 00,15 (t) | Haly,w)Hy(y,w)log) () du Sy (280)
yl<s JO 0
s=lvl ot ~ du dt
/ / H, (y,t)ILB(y)(t) Hg(y,u)Hg(y,u)]lc(y)(u) — —dy (2.81)
lyl<s JO 0 u t
s—|y| ot dt
/| | [ m 0t [ i ten @ a @
y|l<s JO 0

We shall now bound each of the above four integrals.
(2.79): we have for u < t

ul/Q 1/2
H3(yau)]10(y)(u)m < 82| Gl lvee

Moreover

st 12 g
u u
/O [H2(y, w)|Llew) () s -

is dominated the convolution of |f12(y, )I1(0,55) With ]1(0’1)1?1/2 in the multiplicative group Ry

endowed with measure %. Applying Cauchy-Schwarz and Young’s convolution inequality for

(R4, 4 we therefore obtain that (2.79) is bounded by 6'/2||G5lc||ye times

s—lyl _ 6t _ wl/? du dt
/ / Hy(y,t) 1) (t) H(y, U)HC(y)(U)W w1 dy
ly|<s JO 0 U

< o=l i 1 2@ 1/2 o i 1 2@ 1/2 4
< ( [Hi(y: ) Lo (07 5) (] [Ha(y, ) 1ew (O )" dy
lyl<s JO 0

Applying Cauchy-Schwarz in y and interpolating we obtain the desired inequality.
(2.80): it is dominated by

// |Hi(y, )0y Lpey)(t)] sup 6| Ha(y,w)Hs(y, u) Loy (u)| dy dt
0 Jy|l<s—t u€(0,dt)

We have
SY2 | Hy(y, u) Loy (u)] S 642 Gale||ve

and similarly for H3. The last thing to notice is that by (2.43])

S
/ / H (4,00, L) (1) dy dt < 5]/ GLay v
0 Jly|<s—t
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(2.81): changing the order of integration, it is bounded by

s—lyl dt
[ sl meotg 0T
lyl<s M JM

ds
~ ~ du
< [ty 0 A ) L () 5 dy.

Applying Hélder’s inequality in y with exponents 1/,1/(1 —~) and Lemma to Hy, Lemma
2.73| to the product HyHsj it is bounded by the desired quantity.
2.82)): applying (2.43) and changing the order of integration it is bounded by

s—lyl -
[ sl [ 0Ly () el () Halo ) dy
lyl<s M JM

Applying Holder’s inequality with exponents 1/v,1/(1—+) in y and applying Lemma to Hy
and to the product HQﬁI 3 we obtain the desired inequality.

Now we bound . Notice that can be treated exactly the same way. Let Hy := G;p,
Hy = G;/’/ Hj := GY, Hs := HY', where ¥(z) = 2(x) and Hy = HY. In this case we telescope
only Hs, we apply to it Proposition [2.54] in the following way

ot
Hs(y, 6t) 1oy (6t) = Ou(H3(y, u) ey (u)) du.
0

Additionally using (2.58)) we have to control the two integrals

s—lyl ot dt
/l/’ Hy g, )L () o, 30 L) (31) | Hy(ys )Ly () du S dy - (283)
y|l<s JO 0

- - du dt
/ / Hi(y, ) Lp(y) () H2(y, 66)Low) (3t) | Ha(y,u)log)(u) — S dy  (2.84)
y|<s JO 0

Concerning ([2.83)), we first bound it applying (2.42) and Cauchy-Schwarz in ¢ by
) 2 dt i, [° 2 LNV +
§ (L OF L) (8) )75 1Ha(y, 0 L) (91) )7 Haly, = ()] dy
y|<s

Applying Holder’s inequality in with exponents (1/7,2/(1 — ~),2/(1 — v)) in y and applying
2.72) to G1 and H,, and using simple interpolation to control the term involving Hs we bound
2.83) by the desired quantity. Now we proceed with . Applying Proposition and
using (2.57) we move derivative from H3 to one of the other five factors obtaining another five
integrals to bound

ot _ u du dt
t t

s—ly| _
/l/’ Hi (5, 8) L) (8 Ha (3, 0 Loy (58) | Ha(y, 1) Loy (u) dy (2.85)
yl<s JO 0

u

s—|y| ot dt
/|/ H (9,010, L () Hly, 56) L (51) [ Fls(y )Ly () du & dy - (286)
y|<s JO 0
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ot u du dt

s—|yl _
[ [ Mot 010060 [ Bty T T
ly|<s JO 0 u

ot

s—lyl - dt
/ | | L) (0 Ha(0.000,100)(00) | sy, w) Lo () du G dy
y|l<s JO 0

s—|yl ot dt
/I / Hy(y ) 1) () H2(y, 6t) Lo (0t) | Hs(y,w)yLog) (u) du — dy
y|<s JO 0
We shall now bound each of the above five integrals.
(2.85): We have for v < dt
7_111/2 Lo
Hz(y,f;t)]lC(y)((;t)m < 8Y2|Gale|vee

Note that

St _ 1/2 d
u U
/0 |H3(y,u)|]lc(y)(u)m u

(2.87)

(2.88)

(2.89)

is dominated the convolution of |1iv13(y7 N 0,5(s—yl)) With ]l((,,l)zfl/2 in the multiplicative group

R, endowed with measure %. Applying Cauchy-Schwarz and Young’s convolution inequality for

(R4, 2) we therefore obtain that (2:85) is bounded by 6'/2|[Galc||ye times

ul/? du ﬁ

s 3
|H1(y, )| 1p(y)(t) |H3(y, w)| Lo (W) 175 — — dy
lyl<s Jo 0 2 oy ot

S~ dt o8 dt
S [ Rt O D 0L OF P dy
lyl<s JO 0

Applying Cauchy-Schwarz in y and interpolating we obtain the desired inequality.
(2.86)): using ([2.43) it is dominated by

/ |Hy(y, 05 (y))| sup 62| Ha(y, u)le(u)| sup 62| Hs(y,u)log)(u)| dy
ly|<s u€(0,dt) u€(0,6t)

We have
§Y2| Ha(y, u) Loy ()] < 82| Galogy)llve,

and similarly for Hs. The last thing to notice is that

/ Vb4 w)dy S Sl sl
y|<s

(2.87) changing variables dt — t is bounded by

| &
= |F
&

ds t
IG L v / / (g, )10 (8)] / | Hs(y,u) Legy) (u)
lyl<s JO 0
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Applying Cauchy-Schwarz in t, observing that the integral involving ﬁg is bounded by the
convolution of H3(y,t)1(g,ss)(t) With t1( 1) in the multiplicative group (R, %) and applying
Young’s convolution inequality, and finally Cauchy-Schwarz in y, we bound the above by the
desired quantity using interpolation.

(2.88): since 1¢(y)(6t) = Ts5-1¢(y)(t), it is bounded by ||G11 (v times

o
t(y)

Applying Cauchy-Schwarz in « and then dividing and multiplying du by ¢*(y), it is bounded by

cEly)
5 [ | Ha )] / (g, 0)] Loy () du —— dy
0

lyl<s

du
c*(y)

Applying Cauchy-Schwarz in y, the above integral is further estimated by

1

12 L
T E Y

cEly)
/ |Ha(y, = ()] (o) / s (4, 0) Ly (1)
lyl<s 0

ds - du
ot 2 7 \1/2 w2 w) & g2
(f im0 a2 [t S

which together with interpolation, gives the desired bound.
(2.89): it is bounded exactly the same way as (2.83)). This finishes the proof. O

2.5.4 Proof of Proposition [2.52]

In this subsection we put all the previous results of this chapter together and prove Proposition
The main difficulty is to show it in the case when (1/p1, 1/p2, 1/ps) is in the neighbourhood
of (0,1,0), or symmetrically, in the neighbourhood of (0,0,1). We remark that the proof can
be considerably simplified if (1/p1,1/p2,1/p3) is in the neighbourhood of (1,0, 0), however here
we present the argument that works for all cases. We record that similarly to [OT11], in the
proof we decompose A according to the level sets of F} and then prove that the summands decay
exponentially, what yields the desired inequality.

Proof of Lemma[2.53 In the proof we use the notation introduced in Section 2.3.2] By homo-
geneity we may assume that for j € {1,2,3}

V(Vj)l/pjHFjILVj\WjHLooLQj(S) <1l (2.90)

Let A. be as in . Weset Aj =A.NV; \ W, for j =1,2,3, and A=V, N Ay N Az. All the
implicit constants will be independent of §, A and may depend on «y. Let V' € DY be a covering
of V1 N V5 N V3 such that v(V) < min(v(V4),v(Va),v(V3)). This requirement can be satisfied,
since each of V; Vs, V3 is a covering of V; N Vo N V3. Finally, we set A =V \ Wy \ Ws.

Hence, using and by standard limiting argument as € — 0, it suffices to show

ANFfLa,, Ffla,, F{la,)| S 1.

Note that (2.90) and Lemma imply that [|[Fila,|zee (s) < v(V1)~YP1. Let us run the
selection algorithm from Definition [2.43] and Remark for F114,, over k € N, such that

Ey := |J Ty corresponds to the level Q*kV(Vl)’l/pl. Additionally defining £_; = () we have

1F1 L, Ly (o) lleze (s1) S 27 w(Va) /P
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and Ey \ Ey_q are pairwise disjoint. Set Ny, = ZATG 17, to be the counting function of the
forest Tj. Using ({2 and Lemma [2.51] we obtain (smce w(Ex) < ||N7.llp1)

u(EwsW (Vi) <v1>wm\|F11Al||Ws> < 20ku (V7). (2.91)

Denote p(Ey) = Uger, p(T) (see the definition, (2.25), (2.26)). Note that Ej \ Ex_; are pairwise
disjoint so we may split the trilinear form using l-j into

|A(F1Lp]lA17F2<p]]'A27F§a]]‘A3)|

<Y IAF Ly (0B ) Lass FS Ty (o(80) Loy B Ly (o)) Lt )|
k>0

Fix k € Z,. Applying Proposition together with Proposition and changing variables
in the definition of the outer LP norm we obtain

IACEY Loy (Bi\Bx— ) L FS Ly (p(50)) Lo B Ly (o)) Las)| (2.92)
3

< ||F1 T (Ex\Er— 1)]]'A1||Lt1 (S1) H ”F ]]-‘n'J (p(Ek)) A”Lt (1—7) HF ]]‘AHLOO (S5)
— Hj 5 A (SJV&

for any ¢; € [1, 00] such that Zl 1 t; - = 1. Using Lemma and (2.91)), it follows that
||F1 ]lﬂl(Ek\Ek—1) ]lAl ||L/t}1 (S1) 5 QQIk(l/t1—1/Q1)V(V1)1/t1—1/101. (293)

For the terms involving F», as long as ta € (2,¢z2] we use Proposition Lemma and
Lemma 248 to obtain that

1Fo Lo Lall oo s, 12l g 52
S ||F2]17r2(p(Ek))]12”;2317%52)||F2]lz|\zﬁo2(s2)
S u(V Nma(p(Bp))) = O (V) By Ly o, Yallggs ) 1P Ll (5
S w(V O (p(By))) 2= 000y (V) 0% | Bylgfpan

S u(V N (p(E

Let V =, _; Dy, where D,,’s are given by Lemma Then, using Lemma, m

M)Vt (A=m/azy, () (i=)/az=1/p2

w(V ma(p(Br))) S D w(V Nima(p <y Z (Dm N7a(p(T)))

TePy TeP, m=1

Z Z |[Dm mIﬂ'z ‘ S Z ‘IV mIﬂ'g | - ||N‘ﬂ'2(p q’k))]lIVHLl
TEdD, m—1 Ted,

where Iy = |J>o_, Ip, . Using Ng, = Nry(p(@,)) and applying Holder’s inequality for 1 < p < oo

m=1

we obtain that the last display is bounded by

[No,lp
v(V)Vr'

(V)P Na, ||, = v(V)

By Lemma and (2.90]) we have for 1 < p < oo

INe, llp Sp v (V) V/P20 (V) /P | L, | ) < 29%0(V1)VP.

EQI (S )



70 2. Uniform bounds for the bilinear Hilbert transform in local L*

Thus, for any p € [1,00), we have

= Y
HFzﬂEk ]IAHLLZQ(I—'V) 5,A)||F2]1A||Lﬁc§(s2) (2-94)

><1/t2(1’>’)/q2) /p

(S2,

V(V)l/b*l/PQ.

< gauk(1/t—(1-7)/a) [ YV
~ v(W)

The same result holds for the term with F3. Putting the bounds (2.94) and (2.93) into (2.92)) we
obtain using 2?21 1/t; = Z?:l 1/pj =1

IAFY La, Ly (B\Br 1) B3 Ly Ly (p(B0))s F5 Lag L (p(m1)))|

< 2q1k(1—1/q1—1/q2—1/q3+v(1/qz+1/q3)))

v(Vh) v(Vh)

) < V(V) > (1/p1—1/t1) ( I/(V) > (1/t2+1/t3*(1*7)(1/Q2+1/Q3)>/P

Aslongasy < landsince >, 1/q; > 1, we have that q1(1-1/q1—1/g2—1/g3+7(1/g2+1/g3)) <0

that makes the above expression summable over k € N. If t; > p; and p € (1, 00| is chosen large
v(V)
v(V1)

enough then the exponent of is positive. Since v(V) < v(V7), this concludes the proof. [



Chapter 3

Uniform bounds for Walsh
bilinear Hilbert transform in local
Ll

3.1 Introduction

The goal of this chapter is to prove the uniform bounds for a Walsh model of the bilinear Hilbert
transform modularizing it as a multilinear iterated outer L? estimate uniform in the degeneration
parameter and the Walsh iterated embedding. This is elaboration on Chapter [2| We record that
considering Walsh models is a well established way of studying multilinear forms as well as
explaining the key ideas of technically more involved statements in time-frequency analysis.

Uniform bounds for the Walsh model were already proven by Oberlin and Thiele in |[OT11].
Our argument, although motivated by their approach, involves a number of refinements. For
convenience of the reader, below we introduce the Walsh model that we will be dealing with and
state the main result, which we already did in the introduction of the thesis.

We call a tile the Cartesian product I x w, where I,w C R, are dyadic intervals. The Walsh
phase plane is Ra_ together with the set of tiles X. The L? normalized wave packets associated
with tiles are defined recursively via the following identities

PIx[o,|I|-1) = |I|71/2]]-I(‘r)7 PI-xw T Pitxw = Pixw- T PIxwts

for any dyadic intervals I, J,w C Ry with |J||w| = 2, where J~ and J* are dyadic children of .J.
Given a function f € LP(R) we associate it with the embedded function via

F(f)(P) = (f,p) = / (@) op (@) da.

Let Fj: X — R, j = 1,2,3. We indicate the dyadic sibling of a dyadic interval I by I© and by
PO the tile Ip x w$. The trilinear form on the embedded functions associated to the Walsh
bilinear Hilbert transform is formally given for L € Z, by

AL(FL Fo Fy) = Y Fi(PO) Y Ba(Q)F3(Qhay (e(Io)),

PeX QepPL
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where hy, is the L? normalized Haar function, ¢(Ig) is the center of of the interval I and
PL={QeX: Iy C Ip, |Ig| =27 E|Ip|, wg = 2Lwp},
where 2Lw = [2Fa, 2Lb) for an interval w = [a, b). Here is the main result of the chapter.

Theorem 3.1. Let 1/p1 + 1/pa +1/ps =1 with 1 < p1,p2,p3 < 0o and 1/g1 +1/qa +1/gq3 > 1
with 2 < q1,q2,q3 < 00. There exists a constant Cp, p, p, < 00 such that for all L € Z and all
triples of Schwartz functions on R, f1, fa, f3

3

IAL(F(f1), F(f2), F(f3)] < Corpas [T IF U Nripes s)- (3.1)

j=1

On the right hand side of (3.1]) are iterated outer LP norms developed in |[Ural6] that we
define precisely in Section 3. For embedded functions, they can be controlled using the following
Walsh iterated embedding theorem, proved by Uraltsev in [Ural7|.

Theorem 3.2. Let 1 < p < oo, max(p',2) < ¢ < oo. Then
IE(P)lreacs) < Cpal fllzer)-

We prove Theorem [3.1]in the framework of outer L? spaces using a counterpart of multilinear
Marcinkiewicz interpolation for outer L spaces, Proposition [2.10] as we were not able to verify
the assumption of the outer Holder inequality developed in [DT15].

The trilinear form Ay, is strongly related with the Walsh bilinear Hilbert transform considered
by Oberlin and Thiele in [OT11]. In the following we introduce a model very similar to the one
that they investigated. For a P € X we define the phase plane projections

Hpf(z) = (f.er)epr(z), Upe f(z) == Z o(z).

QePL
The Walsh model of the bilinear Hilbert transform is defined as

BHFL(f1, f2, f3) := / > er@)po fi(@)Tps fo()Lpr f3(2)dz.

Pex
In |OT11], Oberlin and Thiele proved the following.
Theorem 3.3. Let 1/p1 + 1/ps + 1/ps = 1 with 1 < p1,pa,ps < 0o. There exists a constant

Chpi pa.ps < 00 such that for all L € Z and all triples of Schwartz functions on R, f1, fa, f3 the
inequality

3
| BHFL(f1, f2. f3)| < Coypos | [ 15l Ry

j=1
holds.

Their theorem works in a wider range of exponents, however, as it was highlighted in their
work, the most difficult case is when the exponents are in the neighbourhood of (1/p1,1/p2,1/p3) =
(0,1,0) or (1/p1,1/p2,1/p3) = (0,0,1). Theoremcoupled with Theorem implies Theorem

since

BHFL(f1, f2, f3) = AL(F(f1), F(f2), F(f3)).

In Section we introduce the outer LP spaces on X. In Section we prove auxiliary
inequalities, including domination of L-dependent outer LP norms that L-independent norms as
well as quasi-monotonicity of the iterated L norms. In Section [3.4] we prove Theorem [3.1} In
the appendix we recall the properties of the Walsh wave packets.
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3.2 Outer L? spaces in time-frequency-scale space

In Chapter [3] Section we introduced abstract outer measures and sizes, while in this section
we introduce our particular choice of these objects that we will be working with till the end
of this chapter. From now on, we assume that X is the set of tiles, B(X) is the set of (Borel)
functions on X.

3.2.1 Outer measures in time-frequency-scale space

First, we define the generating collection on X, which we call trees. They can be seen as time-
frequency localized subsets of the time-frequency-scale space X. We shall need their variants
parametrized by the parameter L, similarly as in [OT11]. They can be seen as Walsh analogues
of the trees introduced in Chapter

Definition 3.4 (Trees and measures). For I xw € X and L € N we define an L-tree as follows:
T(I,w):={PecX:IpCI, wpUwy dDwtN{PeX:|Ip| <271}
Moreover we set
T .= {PeT: wpDuw}, T(tae) — 7\ 7ov),

We set It =1 and wr =w if T =T(I,w) and we denote the family of L-trees with Ty, and with
TY the family of countable unions of T € Tr. The generating pre-measure is given by

i (T) = |Ir|
and it generates p”. Additionally, we set T := Ty and p := pu°.

Analogously as in Chapter [2] we introduce the generating collection of strips that we shall use
as the generating collection for the iterated outer L? spaces, which were developed in [Ural6|.

Definition 3.5 (Strips and measures). We define time-scale strips as subsets of X and the
associated pre-measure by setting

DI)={PeX:IpcI} wDI):=|I

We denote Ip = I if D = D(I), with D the set of strips and with DV the family of countable
unions of D € D.
Remark 3.6. Note that for any D € D, D € TY.

Note that strips can be identified with time localized subsets of the time-scale space, as for a
tile P = I X w and a strip D, the condition P € D is independent of the frequency component w.

3.2.2 Sizes in time-frequency-scale space

In this subsection we introduce sizes, which we shall be working with. Before we do that, we
define the top of a tree, which is essentially the boundary of a tree intersected with a set of the
form V' \ W, where V,W € TY.

Definition 3.7 (Order on X). We write P < Q for P,Q € X with Ip C I and wp D wq.
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Definition 3.8 (Tops). Let L e N, T € T, A= K\ M, where K,M € T. Let P114,T be the
set of mazimal tiles contained in AN T and 731247T be the set of minimal tiles contained in
ANTEOY) . We define the top of T with respect to A as

Top,(T) = P}X,T U Pi}T.

We think of tops coming from DY as being “rough”, as they behave essentially like 0-trees
(they are unions of 0-trees), as opposed to L-trees for L > 0, which are “smooth”.

We introduce the sizes for functions F' € B(X). Except for more standard S and S? sizes,
which are additionally parametrized by the parameter L, the key difference comparing to previous
works on the Walsh uniform bounds |[OT11], [Warl5| is that we use what we call top sizes, which
control the contribution from the rough boundary introduced by strips.

Definition 3.9 (L-sizes in time-frequency-scale space). Let F € B(X) and T € Tr. Define

1/2
1
IFllszeqry = | = >, [F(P)? ;
[zl
eT(lac)
IF | soe.z.(ry = |Ipp | ~/2 | F(Pr)]
For L =0, we set S? := 8§20, 8% := §%.0 gnd
1Fl[s(ry = |Flls2(ry + [ Fllso (1)
ForLeZ, and A=K\ L, K,L € TY we define
1/2
1
||FHS;1;op,L(T) = m Z ‘F(P)'Q ;

PeTop 4(T)

||F||S§;(T) = HF”szova(T) + | FLalls2.2 (1)

Next, we recall the definition of the Walsh iterated sizes, which were originally introduced in
|[Ural6]. For a given function on X, they are essentially the supremum of its outer L? averages
over strips.

Definition 3.10 (Iterated sizes in time-scale space). Given a function F: X - R, 0 < ¢ < o0

and outer measure p on X and size || - ||g we define the iterated size as
Il sy == sup (D)9 Flp|ps(s)-
DeD

Remark 3.11. If V € DY, we may assume without loss of generality that V = \Jo-_| Dp,
where Dy, ’s are pairwise disjoint and € D. This is because D € D are based on dyadic intervals,

meaning that for any two D, D’ € D we either have DN D' = () or one is contained in the other.

3.2.3 Notation

From now on we fix L € Z, and set S4 := S% and p := pr. In order to ease the notation we
also set

11 e sy = 1Pl Lz sy I vl 2o @asy) = 1 Fil
and for j = 2,3

LY(EL(S))

Il Lr(sq) = HFjHL‘;L(SA)v 1l gacsy) = 1FllLe@as))-
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3.3 Inequalities for outer L spaces on X

3.3.1 Outer L? comparison

Throughout this subsection we assume that
[F |z (s, 1F' | Lo sy < 00 (3.5)
and assume that X is the set of tiles with
wp C [0,N) (3.6)

for a large NV € Z,. Since all bounds in this section are be independent of N, we may pass to
the limit to obtain the result of this section for the whole set of tiles.

Let A=V \W for VW € DY be fixed throughout this subsection. Our main result of
this section is the following lemma that lets us dominate ||F||zr(s,) S [[F]|zr(s). Later it lets us
apply the iterated embedding theorem for S from [Ural7]. The proof is essentially a combination
of the Bessel inequality for the outer L? space together with dominating the measure of the level
set by an ¢2 sum of coefficients coming from pairwise disjoint tiles.

Lemma 3.12 (Comparison of outer L? spaces). The following inequalities hold for all functions
F e B(X):
[F | La(sa) Sq IFLallLeesy  Va € (2,00]
[Fll L2 (s4) S 1FLallz2(s)
with a constant that is dependent on q but independent of L € Z,, F.
Remark 3.13. It is easy to check that p > p while || - ||peo(s)y < || - [|oo(s). From these two

conditions mo non-trivial relation between || - |[La(s,) = Il - |za(s.) and || - [[Lacsy = I - [[La(s)
can be deduced.

The main advantage of Lemma [3.12 is that we do not have to prove any uniform iterated
embedding and can apply Theorem as a black box.

Definition 3.14 (Strongly disjoint). We call a subset P of X strongly disjoint if for any two
distinct P,P' ¢ P, PN P’ = 0.

The following lemma will be crucial for us in this subsection. It can be thought of as the
Bessel inequality for the outer L? space.

Lemma 3.15 (Outer L? sizes of strongly disjoint sets). Let P C X be a strongly disjoint set of
tiles. Then

I11pFlli2xy S [ 1pFllL2(s)

Proof. Using Lemma decompose P into |J, U arcsw, AT for Flp, where AT are pairwise
disjoint convex trees of the collection T and ®;, corresponds to the 2*-level set of F'l1p. Define

pled.=pnlJ |J AT, pev=pPnlJ | AT

k ATED, k ATED,

First of all, using only pairwise disjointness of AT

||]l7)(lac)FHl22(x) < Z Z |IT|H]1AT173F||2S(T)
kE ATevy
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while for the latter we have that

F(P)?

||]]"P<°”>FHZ22(X) 5 Z Z ‘IP| |I |

k ATEW, peplov) P

PeAT()
<> (|| larlp FllEq) S 11pF|7as)-
k ATEW,
This concludes the proof. O]
Top

We introduce two auxiliary selection algorithms, one for §,°* and the other one for S2.
Similar procedures are usually used in the context of proving embedding theorems, see for ex-
ample [LT97|, [DT15]. The generated collection of forests has intrinsically very nice disjointness
properties that we shall exploit in what follows.

Definition 3.16 (Top-selection algorithm). Initially P = 0 and Xg C X. In the n-th step of the
procedure we choose a tree T, € T, such that

[ Flx,

SXOD(TH) > )\ (37)

and s is mazximal. This is possible due to Lemma since the tiles in Top4(T') can be split
into two pairwise disjoint collection of tiles. As a result we obtain an upper bound for p(T)

p(T) < A2 Flyop, (mynx, 1200 S A 2IF 725y < 00

We then add S,, = Top 4(T,,) N X,, to the set P and set X, 11 := X, \T,, and iterate the procedure.
It will terminate, since by the assumption (3.6), there is a lower bound on u(T); together with

(13-9) and (3.5) there can be only finitely many T € Tr satisfying (3.7)).

In the following definition we denote we with w™,w™, the left and the right sibling of a dyadic
interval w C Ry, respectively. If such sibling does not exists, we set w™ = ().

Definition 3.17 (2-selection algorithm). Initially P = ) and Xo C X. For a tree T(I,w) € T,
let

TH(L,w)={PeT: wr Cwp}.
In the n-th step of the procedure we proceed as follows: if there exists a tree T € Ty with
||F]1T+ ]lxn HSZ(T) > A (38)

We select a tree T, (I,w) which mazimizes u(T) for the mazimal possible value of £, where £ is
the middle of w. This requirement can be satisfied, since there exists an upper bound for pu(T):
the tiles in T¢) are pairwise disjoint, thanks to Lemma we obtain

p(T) < A2 Flyaeo nx, 7200 S A2 FI|72(s) < oo

This in turn implies that |w|’s in question are bounded from below, hence all possible £’s are in
a discrete set. Together with the assumption there must exist w for which £ attains its
maximum. We add S,, = T,‘L“ NX, to P and set X1 := Xy, \ Tn. We iterate the procedure until
there are no more trees satisfying . It will terminate, since by the assumption , there
is a lower bound on pu(T); together with and there can be only finitely many T € T,

satisfying (3.8)).
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Analogously we define the selection algorithm for
T (1,&) ={(PeT: wr Cwh},

with the only difference that we select trees T(I,w) that maximize pu(T) for the minimal possible
value of &.

Since the selection algorithms for 7T and T~ are entirely symmetric in the proof we will be
working with only one of them.

Definition 3.18 (Selection algorithm). The selection algorithm at level X consists of running
the Top-selection algorithm at level X and then 2-selection algorithm at level \ starting with
Xo = Xpr, where is M is the the number of the last iteration of the Top-selection algorithm.

The described algorithm yields a collection of trees &) = & U <I>§\, where ®5°, <I>§\ are trees
selected while running Top-selection and 2-selection algorithm respectively. It also yields a col-
lection of selected tiles Py .

Lemma 3.19. If P C X comes from the selection algorithm given in Definition at level
A >0, then P is strongly disjoint.

Remark 3.20. In particular an application of Lemma implies that, if T,, are the selected
trees, n = 0,1,2, .., then they satisfy for any M € N

M
> w(Tn) SN FLal7s)- (3.9)

n=0

Proof. We prove this lemma by contradiction.

First assume that P comes from the Top-selection algorithm Definition Suppose that
there exist P, P’ € P, such that P € Top,(T'), P’ € Top4(T") and PN P’ # (), where T, 1" are
two distinct selected trees. Without loss of generality suppose that T was selected earlier than T".
Then it is not possible Ip, C Ip, because this would mean that P’ € T, which is a contradiction.
If this is not the case, then we necessarily have |Ip| < |Ip/|. But since Ip, Ip are members of the
partition of I, I’ generated by V', respectively, this would imply that |I7| < |I7/|. This would
imply that 7" was selected earlier. Contradiction.

Now assume that P comes from the 2-selection algorithm. Without loss of generality assume
that P € T, P’ € T, PN P’ # () and T was selected earlier than 7. It is not possible that
Ip: C Ip, since this would mean P’ € T was being selected, which is a contradiction. Otherwise
wpr C wp and the inclusion is strict. However, this would imply that &p > &p, where & is the
midpoint of w for T = T'(I,w), analogously &r+. Then, T’ should have been selected before T
was selected. Contradiction. O

Proof of Lemma[3.14 By interpolation it suffices to show the statement for ¢ = co and at the
weak endpoint ¢ = 2. The case ¢ = oo is trivial since we have that

1L (s4) S 1FLallLoe(s)

and the measure does not play a role.
For the endpoint ¢ = 2 it is enough to show that

Np([Fllsa > ) S IFLallzzes)
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Let ¥ be the collection of trees and P the selected set of tiles during the selection algorithm.
Using Lemma we know that P is strongly disjoint. (3.9) implies

NMu(|Fls, > p) S Z Nu(T) S |IF1allp2s)-
Tew

The full statement follows now Proposition [2.9 O

3.3.2 Quasi monotonicity of outer L? spaces on X

In this subsection we show several inequalities concerning monotonicity and reverse quasi-monotonicity
of the iterated LP norms, which we will use in the proof of Proposition Most of the proofs
follow along the lines of Section mostly with only minor changes, which we point out. First
lemmas states that £P sizes are decreasing in p.

Lemma 3.21 (Monotonicity of iterated sizes). Let 0 < p < ¢ < oo and let F € B(X). Then
1Flea(s) Sp.a 1 1lez (s)-
Proof. Identical with the proof of Lemma [2.48] O

The following fact lets us relate the outer L9 norm restricted to V € DY, with the averaged
449,

Lemma 3.22. Let V € DY and let F € B(X). Then for 0 < g < 0o
IFLv]Lacs) Sq v (V)Y F Ly [|gacs)-

Proof. By Remark we may write V = °_; Ds,, where D,,, € D for m = 1,2, ... and D,,’s
are pairwise disjoint. Then the argument follows along the lines the proof of Lemma 249 [

The next lemma reverts the inequality in Lemma if F' appropriately localized, losing a
factor coming from the localization.

Lemma 3.23. Let AC X, V € DY and let F € B(X). Then for any 0 <t < q < oo
IFLaLy || Les) Sae (V0 A V()9 FLoTY [|pags).
Proof. Along the lines of the proof of Lemma [2.50 O

The following lemma controls the counting function of a forest coming from the selection
algorithm in terms of £2 norm. We will use it in the proof of Proposition together with a
careful decomposition of the trilinear form according to the level sets.

Lemma 3.24 (Counting function estimates). Let V € DY and let F € B(X). Assume that
®y C T is the forest selected according to Definition [3.18 at a certain level A > 0 for function
F1ly. Let Ng, = ZTedu 1y, be its counting function. Then for any 1 <p < oo and 2 < g < 0
the following bounds hold

[Noy e Sp V(V)l/p/\*qHFlellgq(s)
together with the BMO endpoint
HN@A”BMO 5 )\_qHF]lV”gq(s)-

Proof. Identical with the proof of Lemma [2.51] after setting Ey := Py, Ty := @, in that argu-
ment. O
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3.4 Iterated L? bounds

From now on we fix L € Z; and set A := Ar. For notation, refer to Subsection [3.2.3] The main
result of this section is the following proposition.

Proposition 3.25. Let 1 < p1,p2,p3 < 0o with Z?zl 1/p; =1 and 2 < qi1,¢2,q3 < oo with

Z?:l 1/q; > 1. Let for j =1,2,3, f; be a Schwartz function on R and let F; := F(f;). Assume
that V;,W; € DY for j =1,2,3. Then

3
A Lvpwy s FaLvp\ws s P Ly )| H Vi)' P3| By Ly, |l poops (s)- (3.10)

Note that in conjunction with Proposition the above inequality implies Theorem
Similarly as we noted in Chapter [2| we could not use the outer Holder inequality from [DT15|
which would require min; (V) instead of [T, #(V;)*// on the right hand side of ( and
moreover, our trilinear form is nonpositive. J ust hke in Chapter [2] it does not seem fea31ble that
one can obtain much better gain than H w(V, )1/ Pi in , since V; scales differently than V3
and Vj.

Before we prove Proposition we show the localized estimate at the level of trees.

Proposition 3.26. Let 1 < p17p27p3 < oo with Z 1 1/}9] = 1. Let fOT’j =1,2,3, fj be
a Schwartz function on R and let F; := F(f;). Assume that Kl,Ml eTY, K;,M; € T{ for
j=2,3 and V;,W; € DY for j = 1,2,3. Moreover, set A = ﬂj:2( i\ WJ), Gj = Fily\w,,
S1:=8, p1:=p and S5 := Sa, pj:=p for j =2,3. Then

3
IAMG11 g\ 0ty Gl g\ ary > Gl g\ )| H K)YP3 |Gy g\, || poe s;)-

Remark. Observe that optimizing in p; and p;(K;), we can make H?:l ;i (K;)YPi to be equal
minj:1 2,3 Hj (K)

Note that applying Proposmonu 0} the previous Proposition immediately implies |A(G1, G2, G3)| <
H =1 Gl P s;)- However, we shall need an improvement of this inequality with additional lo-
calization.

Corollary 3.27. Let 1 < pi,pa2,p3 < 0o with 1/p1+1/pa+1/ps = 1. Let for j =1,2,3, f; be a
Schwartz function on R and let Fj := F(f;). Assume that K1, M, € TY, KJ,M» eTY forj=2,3
and V;,W; € DY for j = 1,2,3. Moreover, set A = ﬂ?:2( \Wj), Hj := Fily\w, g \m;,
S1:=085, p1:==p and Sj :=Sa, pj :=p for j =2,3. Then

w

|A(Hy, Ho, H3)| S H 1 Hjll i (s,)-

Proof. Let K K M € TY for j = 1,2, 3. Note that the intersection of two trees is a union of trees.
Thus the 1ntersect10n of two unions of trees is a union of trees and we may apply Proposition
3.26| with K; = K ﬁK M; = M;U M and with G; = Fjly,\w, for j =1,2,3. We obtain

|A(H1]ll~(1\1\71,H2]lI~(2\M2, Hg]ll?s\Ms”

= ‘A(Gl lfl\ﬂl s G2 lfz\ﬁz’ Ggl].fg\ﬁ?’)‘
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w

3
5H (B )Gl a7, sy H K7 il iy llecs))

We conclude the proof applying Proposition 2:10] O

In the first subsection we prove Proposition |3.26| and in the second subsection we show
Proposition [3.25]

3.4.1 Proof of Proposition |3.26

In this subsection we prove Proposition [3.26] Before we start the actual argument we discuss
the geometry of the trilinear form and make some convenient reductions.

We set a bit of notation for this subsection. Let A; = V; \ W;, where V;,W; € DY for
j =1,2,3 be fixed throughout this subsection. Define for T T( w)eT, T :=T(I,2%w) €Ty
and for K =, Tk € T, define K := |J, T};,. By the definition of the trilinear form, we have
the following fact.

Lemma 3.28 (Transfer property). Let Fy, Fy, F3 € B(X) and let K,M € TY, V,W € D”. Then

AFiLgar, Bo, F) = A(F1, Fol g g, F3) = A(Fy, Fo, F3lge ar), (3.11)

AP, FBolyvw, Fs) = A(Fy, By, Fslyw).

Using the previous lemma, we shall make an appropriate reduction, in order to streamline
the exposition of the proof. Proposition follows from the next lemma.

Lemma 3.29. Let T €T and K € TY and let A=V \ W where V,W € D". Let for j =1,2,3,
fj be a Schwartz function on R and let F; := F(f;). Then

3
A L\, Folla, F31a)| S p(T) | Filp k|| pees) H I1F51alm\ k|l o (s4)-
j=2
Proof of Proposition assuming Lemma[3.29 We prove that the above inequality suffices in
order to show Proposition |3.26|in two steps.

Step 1: in this step we prove that the desired inequality from Proposition follows, if we
assume that forany T € T, K € TY, A=V \ W with V, W € D" it holds that

3
AP\ Ty, Fallay, Fslla,) S (D) Fala, il oo gsy [ I1F1a, Ik llzoe(sa)

=2

Let K = KiNKoNKsgand M = My UM, U Mg, and let K = U?lei be such that
Yo w(T;) S p(K). We can make T’s pairwise disjoint obtaining convex trees |J_, T;\ N; = K.
Using Lemma [3.28] in the first inequality and the assumed inequality

A(Fila, T\ ary s Follap T\ na,, F31a, Tk )
= Z A(Filppnamla,, Folla,, F3l4,)
i=1
n 3
S nT)IF L Ira v llpoecs) [T IFS La, b wonall oo (s.0)
j=2

=

1=
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3

S wE NP L, Liepan Loy [T IF LA, Trc ;| os (5.0 -
j=2

Step 2: in this step we prove that the inequality assumed in the previous step follows from
the inequality in the statement of Lemma Note that using Remark forall T € T,
K e TY and V,WW € DY we have

(T\K)N(V\W)= U (T \ K),
k=1

where T}, € T are pairwise disjoint in space and Y ;_, pu(Tx) < p(T), and K=KUW eT".
Moreover inside A we can freely transfer the characteristic functions between F, and Fj3, using
Lemma Let A = Ay N Az, note that A € DY. Using the assumed inequality we have

A(Fl]]-T\K]]-AUFQ]]-AQ?F?)]]-A:s)

=Y AF Ly, g Fola, F3la)
k=1

SY TN F Ly glooes) 1 F2laly gl s |1 FsTaly glle (s
k=1

S uMIF1La, ekl Lo s) 1 F21a, Loy [l oo (5.4) 1 F3 L ag Loy ke [ Lo (5.4) -
O

Finally we give a proof of Lemma We bound the trilinear form over the lacunary and
the overlapping tree. The former is significantly easier and follows from a single application
of classical Holder’s inequality. The latter is more involved and requires discrete integration
parts combined with a geometric argument and Holder’s inequality. We record that such partial
integration is often called telescoping in the context of paraproducts. It is the Walsh counterpart
of the argument from Chapter [2] where we used integration by parts and Green’s theorem. Some
parts of the argument are motivated by |[OT11], however here the setting is somewhat different,
since we are restricted to sets of the type V € DY and have to take care of the boundary terms.

Proof of Lemma[3.29 Let A=V \ W, where V,WW € D". Note that
|A(F1 Lpaeen i Folyw, Falyyw)|
S (M F ks [ Felale k|l sz 1F31ale k)l s2 (1),

just by an application of (o0, 2,2)-Holder’s inequality, since both Fy and Fj are restricted to the
lacunary tree. We still have to show

|A(F1]].T(ov)\K,FQILV\W7F3]]‘V\W)|
S (MLl Lo (s) [ Faloy i Lall oo (s, 1 F31m g Lal L (s4) -
Note that we have
A(Fl]lT(U’”>\K7 F2]]-A7 F3]]-A) = A(Fl]].T(ov)]]-By F2]lCa F3]]-C)7
where

B=T\K, C=AN(T\K).
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The right hand side can be rewritten as

Y RE)LQ@ Y BQBQLQY i, (3.12)

PeT(ov) QepL |IQ|

where hy, is the L? normalized Haar function. Fix Q € T. Let P; be the set of maximal tiles in
C NT), Py be the set of minimal tiles in C' N T(°Y); note that Top(T') = Py U Py. Define

Q=0n{QeT":Q°<Q, Q° ¢ P.}.

and Q = (CN{Q})UQ. Note that (P,N{Q < Q})UQ and P,N{Q < Q} are two decompositions
of the same subset of R2+ into pairwise disjoint tiles. Using Corollary that gives

F(Q1c(Q - F@1c@¢g— > F@Qes+ > F(Qps  (3.13)
Qeg QePy QEP2
Q<Q QRLQ

Observe that the above identity can be seen as a discrete integration by parts. Note that it
follows from Lemma [3:32] that the following cancellation identities hold for any two different
Q1,02 € Q and any Q € Q, Q@ € Topo(T) N{Q < Q}

[ b (@)g, (a)eg, (@) do =0, [ ir@)og@ieg@rde=0. (g

From now on let for a tile P, kp € Z be such that 2% = |Ip|. Using |IQ|’1]lIQ = goé, applying
(3-13) to Fy and F3 in (3.12)), and using ([3.14)), we are left with estimating

]].[Q (I‘)

| ¥ AEOLEmE Y RQRBQL@TEC L (315)
PeT(ov) QeTtiae) Q
ko<kp—L
[ T rromene Y mep@ e
peTon) QETope (T) el

ko<kp—L

[ ¥ meonen@]] Y B@adn (317)

PeT(ov) Jj=2 Q€EPj_1
kq<kp—L

and an integral symmetric to the last one. We first bound (3.15). Changing the order of

summation equals
/ 2, Fy(PO)L6(P)hy, () Fo(@ P @)Le(@) 4

(lac) (ov) |IQ|
QeT PeT
k‘Q+L<kp

Applying (o0, 2,2)-Holder’s inequality in @ and x this is bounded by

3
W) sup| Y B@P)Ls(P)hr @)= [T IFLellsz

PeT(ov) j:Q
I<kp
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The above display is bounded by the desired quantity by an application of Lemma [3.31] We
shall now estimate (3.16)). Changing the order of summation we rewrite (3.16) as

Il[Q({E)
gl

SN Y R(PO15(P)h, (0) B(Q)F(Q) dz.

QETop(T) peT(v)
k:Q +L<kp

Applying (00,2, 2)-Holder’s inequality in @ and x, we estimate the above display by

3
M(T)Ilsgp\ > Fl(PO)llB(P)th(x)llleHIIFjllsgw<T)
j=2

PpeT(ov)
<kp

The second factor is bounded similarly as before by Lemma Concerning the last two, we
can decompose Top-(T') as follows.

Lemma 3.30. Let C = AN (T \ K) be as above. There ezists K' € T with

Tope(T) € (| J Topa(T') UTop,(T)) NC, (3.18)
T eK’

> (T S (). (3.19)

T eK’

Proof. Let T = T(I,w), T = TY(I,2%w) and K = JT, K = UT. Let P be the set of
maximal tiles P € T(v) such that P € K. Define the set of trees having the tiles of P as tops
K = {T(Ip,wp): P € P}. Note that TN K =TNK and ) 7z u(T) < u(T). That implies
TNK=TnNK and TR w(T) < u(T). Moreover, let P’ be the set of dyadic parents of the
tiles P which belong to 7" and let K’ = {T(Ip,wp): P € P'}. Note that is satisfied for
such choice of K’. We shall now validate the condition .

Let P € Top(T), i.e. P is either a maximal or minimal tile in T) N A\ K. First, suppose
it is a maximal tile. If P does not have a dyadic parent in T', then automatically P € Top 4(T).
Otherwise, let P be the dyadic parent of P in T°?). Then P € T\AorTn K. In the first case,
by definition, we have P € Top 4(T'). Note that the second case is in fact not possible, since
PeK implies P € K. Now, suppose that P € TopC(T) is a minimal tile in T©") N A\ K. Let
P be one of the dyadic children of P. Again, we have PeT \ A or P e TNK. In the first
case, P € Top,(T). In the second case, there exists T € K such that P € T. Let T’ be the

tree whose top tile belongs to 7(°?) and is a dyadic parent of the top tile of T. Then, we have
P € Top,(T'). O

Using Lemma [3.30] applied for j = 2,3
IF} Hsg‘)P(T)

S I EFiLellgron + (M) W) F lchSTop T,))l/2
T eK’
S IFiLelln=(sa)-

We are left with estimating (3.17)). Note that we can rewrite

3
I Y F@ee@)= > > B(Q)eq (#)F5(Q)¢q, (),

J=2 Q€Pj1 Q1€P1 Q2€P2
ko<kp—L kq, <kp—L kq,<kp—L
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Changing the order of summation, (3.17)) becomes

[ X X Y AP @@ 0, (@) Fi(@)pa,x) o

Q1EP1 Q2€P2  perlov)
ka, +L<kp
kay+L<kp

The above is bounded by

/s3p| S R(PO) 1Pk (x |H 3 1E(@Q)lleq(@)| da

PeT(ov) J=2QEP;_1
1<kp

Applying (00, 2,2)-Holder’s inequality in z, using Lemma spatial disjointness of tiles Py
and spatial disjointness of tiles in P> we bound the last display by

p(DIF B o (9) 1 P2l gxer o) | F5 | gmor (7 -

Another application of Lemma [3.30| finishes the proof of the proposition.
O

At the end of this subsection we prove that the Walsh counterpart of the maximal truncation
of the Hilbert transform is bounded in terms of the size S. This estimate was already proven
and used in [OT11]. We include the proof for convenience of the reader.

Lemma 3.31. Let T € T and F := F(f), where f is a Schwartz function on R. Then

IISlllp\ Y F(PO)Lp(P)hip (@)lllry S 1FLpllLe(s).

pertv)
I<kp

Proof. First of all, observe that the supremum over [ can be dominated by the maximal function,
hence it can be discarded. Hence, it is enough to bound

| > F(P)1p(P)hsy(2)llL~r)

PeT(lac)

Since BN T is a convex set, the above display is bounded by |[F'1p|/1~(g) using Corollary
3. 30) O]

3.4.2 Proof of Proposition [3.25|

In this subsection we prove Proposition The main difficulty is to prove Lemma in the
case when (1/p1,1/p2,1/p3) is in the neighbourhood of (0,0, 1) or (0,1,0). We remark that the
proof can be simplified if (1/p1,1/p2,1/p3) is in the neighbourhood of (1,0, 0), however here we
present the version of the argument that works for all cases. Similarly as in |[OT11] we split the
trilinear form according to the level sets of F;. We then apply Holder inequality on the level of
trees and use the inequalities from Section to bound the resulting outer LP norms in terms
of the iterated norms. Note that that this argument is very similar to the one at the end of
Chapter [2| however here we do not have to deal with with extra factors with a small exponent
~, see Chapter [2] for details.
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Proof of Lemma[3.25 Since we can freely move characteristic functions between F, and Fj we
may assume that Vo = V3. Moreover, since V; € TV, after an application of (3.11)) we may
assume that Va2 C V;. By homogeneity we may assume that for j € {1,2,3}

V(Vj)l/pj”Fj]le\Wj lgas sy < 1. (3.20)
Hence it suffices to show
IAF Ly wy, Falvp\wy, Fslvpw,)| S 1.

In order to shorten displays, throughout the proof we set A; :=V; \ W; for j = 1,2, 3.
Note that and Lem imply that ||[F114, ||z~(s) < v(Vi)"'/P1. Let us run the
selection algorithm Definition for k € N, such that Ey := |J @) corresponds to the level
Fy(Vi)~Y/Pi. Additionally defining F_; = () we have

1P 14, Ly [l s) S 27 Fu(Va) M/
and Ej \ E_; are pairwise disjoint. Using (3.20) and Lemma we obtain
W(ER) S 2RV B8, ) S 270 (1), (3.21)

Set No, = ZATG% 17, to be the counting function of the forest ®. Note that Ej for k € Z
are pairwise disjoint so we may split the the trilinear form using Lemma [3.28] into

[A(La, Fr, La, Fo, 14, F3)

< AMFLpaE,_ L4, Folg, 14, Fslg, 1a,)]
k>0

Fix k € Z,. Applying Lemma together with Proposition we have

A Filg B, 1a,, FolE,1a,, F31E,14,)] (3.22)
3
5 HFl]lEk\Ek—llAl HL”l (S) H HF]ILEk ]]'AJ HLtj(SA],)
j=2
for any t; € [1,00] such that 327 #7! = 1. Using (3:21) and Lemma it follows that
|Filg, 1a, ||Lt1(S) < 2QIk(1/t1_1/q1)l/(V1)1/tl_1/p1. (3.23)

In the case of terms involving F, as long as t2 € (2, ¢2] we use Lemma Lemma and
Lemma [3.2T] to obtain that

||F2]1Ek ]]-A2||Lt2(SA2)

S 1F2le La, L (s)

< uw(VoNE 1/t2—1/q2 V- Ve |l 1

S u(Va ) v(V2) | Fol g, 1a, e (s)

S u(Va N BV Ry (Vo) % By a, g s)

5 N(VQ a) Ek)1/t2*1/Q2y(‘/2)1/Q2*1/P2'

Using Remark [3.11} -, let Vo =J,°_, Dy, where D,,’s are pairwise disjoint strips. Then

p(VaNEp) £ Y p(VanT) < ZZ (DmNT)

Ted, Te®), m=1
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00
S Z Z |IDm mIT| IS Z ‘[Vz mIT| - ”N'I’k]lfvz ”L1
Ted, m=1 TP

Notice that Ny, = Ng, and by Hélder’s inequality with 1 < p < oo the previous display is
bounded by

_ Ng,
V)P Ny = (V) L

By Lemma and (3.20)) we have for 1 <p < o0
INayllp Sp v (Vi) /P20 0 (V)12 g, (I, () < 29F0(V2)VP

Thus, for any p € [1,00), we have

[F21E, Lasllrre(say) (3.24)

- (1/t2—1/Q2> /P
) V(Vz)l/tz—l/pz_

< onk(1/t2—1/g2) v(V2)
~ v(V1)

The same result holds for the term with F3. Let V2 3 = Vo = V5. Putting the bounds (3.24)) and
(323) into ([3:22), we obtain using 37, 1/t; =>,_; 1/p; =1

[A(F1la,1g,, Fola,lE,, F31la,1E,)|
< onk(1-1/¢1—1/q2—1/qs)

(1/p1—1/t1) —(1/t2+1/t3—(1/q2+1/gs))/
§ I/(‘/ng) p1 1 l/(V213) 2 3 q2 q3))/ P
v(V1) v(W) '

By assumption we have that 1 —1/¢; — 1/g2 — 1/g3 < 0, which makes the above expression

summable in k € N. If t; > p; and p € (1, o0] is chosen large enough then the exponent of ”V(z/“)

V1)
is positive. Since v(Va3) < v(V1), this concludes the proof. O

3.5 Appendix - Walsh wave packets

In this chapter we used the following facts about the Walsh wave packets.
Lemma 3.32. If two tiles P, Q are disjoint, then op and pg are orthogonal, i.e. {pp,pq) = 0.
The above lemma was proven in [Thi06].

Lemma 3.33. Let P be a finite collection of tiles and assume that a tile Q is covered by the tiles
in P. Then pq is in the linear span of {¢p: P € P}.

The above lemma was also proven in [Thi06]. As a corollary we obtain the following.

Corollary 3.34. If P, P’ are two different collection of multitiles, each of which is pairwise
disjoint and |JP = |JP’, then for any Schwartz function f on R

Y F(NPep(x) = Y FHEP)er (@)

PeP =
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Note that if E C X is a convex set of multitiles, then | J F is the union of areas covered by the
maximal multitiles that do not belong to E. Moreover, observe that these multitiles are spatially
pairwise disjoint. Hence, we obtain

Corollary 3.35. Let f be a Schwartz function on R, E C X be a convez set and let JP = E,
where P is a set of pairwise disjoint multitiles. Then

1> FUNPEP)ep()ll=@r) S sup |F(P)Le(P)|[1p| 712,
PeP PeX
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Chapter 4

Uniform bounds for a Walsh
model of the two dimensional

bilinear Hilbert transform in local
Ll

4.1 Introduction

In the first chapter we viewed the parameter space of the fully two dimensional bilinear Hilbert
transform as a three dimensional manifold with subsets corresponding to different well known
operators in harmonic analysis. We analysed the interaction of the submanifolds, which gives
a wide spectrum of questions concerning the uniform bounds. In this chapter we discuss the
uniform estimates for a set of parameters that admit the full two dimensional time-frequency
decomposition and degenerate to a singular integral in two dimensions. Namely, we consider

—

B = (Bl,BQ,Bg) with

_(=B1— P 0 (B 0 (B2 O
Bl( 0 —71—72>7 32(0 71)’ BS<0 72)

with |(B1, B2)|, [(71,72)| = 1, such that 81 # B2, 71 # 72 and prove the uniform bounds for a
Walsh model with that triple of matrices as |51 —B2[, |71 —72| — 0. We remark that if one assumes
81 = 71, B2 = 72, then the proof follows along the lines of the argument in one dimension, which
was presented in Chapter [3| Different speed of convergence of |31 — Ba|, |71 — 72| is the main
difference compared to the one dimensional case. For convenience of the reader, in the following
we introduce the Walsh model of BHF 5 and then state the main result, which we already did in
the introduction of the thesis.

We define a multitile to be the Cartesian product P; X P, where P; and P, are tiles. For a
multitile P = P; x P, we denote

Rp SZIP1><IP2, QP = wp, X Wp,,

where for j = 1,2, Ip, is the spatial interval and wp, is the frequency interval of P;. We overload
the notation and represent multitiles either as a product of two tiles P = P; x P or as a product
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of the spatial and the frequency component P = Rp x Qp. The L? normalized wave packet
associated with a multitile P = P; x P, is defined as

ep(z,y) == ¢p, (2)pp, (Y),

where @p is the one dimensional Walsh wave packet, defined in Chapter
Given a Schwartz function f on R? we associate it to the embedded function via

F(N)(P) = {f,ep).

Let f1, fo, f3 be a triple of Schwartz functions on R?. Set F; = F(f;) for j = 1,2,3. For a
multitile P = R x €2, where ) = w; X wy we denote

QOZM?XWQ
PO =R xQ°,

where w© is the dyadic sibling of a dyadic interval w.

For a K € Z we denote with RX the set of all dyadic rectangles I x J with |I| = 2¥|.J| and
denote with XX the set of all multitiles P = R x Q with R € R¥. From now on we fix K € Z,..
Moreover, we set R := R?, X := X°.

The trilinear form associated to the two dimensional Walsh bilinear Hilbert transform is given
formally for K, L € Z and triples of functions Fy: X — R and F;: XX — R, for j = 2,3, by

Agp(F1, By, Fs) := > Fi(PO) Y Fa(Q)Fs(Q)hr, (c(Rq)),

PeX QePL
where for P € X
PL:={Q e XX: Ry C Rp, Qo = 05"},

where for Qp = w1 X wo, we set Qg’L = 2bwy x 2B+ K,y with 28w = [2Fa, 20b) for an interval
w = [a,b), ¢(Rg) is the center of Ry and

hie(2,y) = |Rp|"*op(z,y)0po (z,y)

is the L? normalized Haar function.

The goal of this chapter is to prove the uniform bounds for the Walsh model of the two
dimensional bilinear Hilbert transform modularizing it as an iterated outer L? estimate for Ag .
uniform in the parameters K, L, Theorem and the Walsh iterated embedding .

Theorem 4.1. Let 1/p1 +1/pa +1/p3 =1 with 1 < p1,pa2,p3 < 00 and 1/q1 +1/g2 +1/g3 > 1
with 2 < q1,q2,q3 < 00. There exists a constant Cy, p, p, < 00 such that for all K,L € Z,, all
triples of Schwartz functions f1, fa, fz on R?

3
Ak, L(E(f1), F(f2), F(f3))] < Corpapa | [ IFF) I prspes (s)-

Jj=1

On the right hand side of (2.11]) are iterated outer LP norms developed in |[Ural6| that we
define precisely in Section[d.2] The Walsh iterated embedding theorem, which we prove in Section
[45 implies that for j =1,2,3

IE(fi)llrizai sy < Cpyg; 1l s r2)- (4.1)
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We prove Theorem [£:1]in the framework of outer L? spaces using a counterpart of the multilinear
Marcinkiewicz interpolation for outer LP spaces, Proposition [2.10

Let us introduce the Walsh model for the bilinear Hilbert transform. For a P € X we define
the phase plane projections

Ipf(z,y) == (f,or)op(@,y), Mpe f(z,y) ==Y Tg(z,y).
QePL

We define the Walsh model of the two dimensional bilinear Hilbert transform as

BHF k. .(f1, f2, f3) : /Z‘PP (@, y)po fi(z,y) HHPLfJ (z,y) dz dy,

PeX Jj=2
where @p is the L> normalized wave packet. We have the following.

Theorem 4.2. Let 1/p1 + 1/ps + 1/ps = 1 with 1 < p1,pa,ps < 0o. There exists a constant
Chy pops < 00 such that for all K, L € Z, and all triples of Schwartz functions f1, fa, f3 on R?
the inequality

| BHF i 1. (f1, f25 f3)| < Cpy pops H 1 £5llz7s (2

Jj=1
holds.

Theorem coupled with (4.1) implies Theorem since
BHFk 1.(f1, f2, f3) = Ak, (F1, Fa, F3).

Note that the trilinear form BHF g 1, has cancellation in the first frequency component and no
cancellation in the second one. Thus, one could analogously define a trilinear form having can-
cellation in the second component. The uniform estimates for the latter follow using essentially
the same arguments as in this chapter and thus we decided not to present them here.

In Section we introduce the outer measures in (R X R+)2. For precise definitions and
notions concerning the abstract outer LP spaces, see Section [2.3] in Chapter 2} In Section [
we present an auxiliary result which lets us dominate L- dependent outer LP norms with L—
independent ones, Proposition so that we can apply , similarly to what we did in
Chapter[3] In Section [.4] we prove Theorem [£.1] In the last section we give a proof of the Walsh
iterated embedding Theorem which implies .

We record that the material presented in this chapter is somewhat similar to Chapter [3]
hence we skip a couple of proofs that follow exactly the same way. Also, for a more elaborate
introduction to the outer LP spaces, see Chapter [2] and Chapter

4.2 QOuter L spaces in time-frequency space

In this section we introduce the outer LP structure on X and XX that we will be working with
till the end of the chapter. By B(X), B(X¥) we denote the set of (Borel) functions on X, XX,
respectively. For a fixed K € Z,, which corresponds to the ratio between the sides of Rp, the
parameter L € Z, is treated similarly to the degeneration parameter in Chapter
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4.2.1 Outer measures in time-frequency-scale space

First we introduce K-trees which are the counterpart of the trees in one dimension for the set of
multitiles XX For a natural number K, let € R~X be the dyadic parent of a dyadic rectangle
QeR K.

Definition 4.3 (K-trees and measures). For K € N, multitile R x Q € XX we define the K -tree
as follows:

T(R,Q):={PeXX:Rp C R, Qp >}
Moreover we set
T .= {PeT:Qp >N}, Tae) — 7\ 7Y,

We set Ry = R and Qr = Q if T = T(R,) and we denote the family of K -trees with TX and
the family of their countable unions with (TX)Y. The pre-measure is given by

i (T) := |Rr|
and it generates u*. We also set T :=T° and p = pP.

We introduce the (K, L)-trees which are the counterpart of the L-trees for the set of multitiles
XE. They can be thought of as dilated K-trees, where the K-dependent ratio defining the set X*
is fixed and the L-dependent scaling is applied to the multitiles simultaneously in both directions,
so that the (K, L)-trees are still subsets of X.

Definition 4.4 ((K, L)-trees and measures). For natural numbers K, L, rectangle R x Q with
ReR, Qe R K, we define the (K, L)-tree as follows:

T(R,Q):={P eXX:Rp C R, Qp > Q}N{P € X: |Rp| <272"K|R|}
Moreover we set
T .= {PeT:Qp>Q}, Ttac) = 7\ TV,
We set Rr = R and Qr = Q if T = T(R, Q) and we denote the family of (K, L)-trees with T¥:E.

The pre-measure is given by

a*H(T) = |Rr|

and it generates pf-r.

4.2.2 Outer measures in time-scale space

To account for space localization we introduce time-scale K-strips as subsets of XX and the
associated pre-measure.

Definition 4.5 (Strips and measures). Let for R € R¥. Define
DR)={PeX®:RpCcR} ©7(D(R)):=|R|

We denote Rp = R if D = D(R) and the sets of K-strips with DX. Moreover for K = 0 we set
D :=D°. We denote with (D¥)V the family of countable unions of D € DX,

Remark 4.6. If V € (DX)Y, we may assume without loss of generality that V = U —1 D,
where D,,’s are pairwise disjoint and € DX. This is because D € DX are based on dyadic
rectangles with the same ratios between their sides, meaning that for any two D,D’ € D we
either have D N D' = () or one is contained in the other.
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4.2.3 Sizes in time-frequency-scale space

We define the K-sizes for a fixed K € N. They are defined analogously to the sizes S, S? in
Chapter

Definition 4.7 (K-sizes in time-frequency-scale space). Let F' € B(XX) and T € TX. Define

1/2
1
HFHSQvK(T) = @ Z ‘F(P)|2 s
PeT(ac)

|F|| go0s 7y == |Rp, |7/ [F(Pr)],
IElsx 1y = ([ Fll g2 () + |1 Fl[ g0 (1)
We also set for K =0, || - |[s2 :== || - |sz0, || - s :== || - [| 5.0 and
1Escry == 1Flls2(z) + [ F'll 50 (1)-

We define the top of a (K, L)-tree analogously as in Chapter |3| Before we do that, we shall
introduce the order on the set of multitiles X%

Definition 4.8 (Order on X). We write P < Q for P,Q € XK with Rp C Rg and Qp D Qq.
Definition 4.9 (Tops). Let K,L € Z,, T € T"X, A= K\ M, where K, M € (T®)Y. Let P} 1
be the set of mazimal multitiles contained in ANT©Y) and PA . be the set of minimal multitiles
contained in ANT©V) . We define the top of T with respect to A as
TOpA(T) = ,P114,T U ,P124,T'
Having defined the tops, we can finally introduce the sizes for the (K, L)-trees.

Definition 4.10 ((K, L)-sizes in time-frequency-scale space). Let F' € B(XK) and T € THL.
Define

1/2
1
| Flls2rry = | 75 Z |F(P)|? ,
|Rr|
eT(lac)
|F || s ic.2(r) = [Rpp| ™2 |F(Pr)],
1/2
1 2
||FHs}°P(T) = @ Z |F'(P)] )

PeTop 4(T)

||F||sfij(T) = ||FHSA?0PvK=L(T) + ||F1A||S2vK1L(T)-
We also define the interpolated size with a parameter 0 < v < 1
1—y

1Pl ry = W o Tl g

Definition 4.11 (Iterated sizes in time-scale space). Given an outer measures space with size
X, 1, ]l - ls) and a function F € B(X) we define the iterated size as

IFleg sy := sup |Rp| ™ F1p| Ly (s)-
DeD
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4.2.4 Choice of parameters and notation

From now on we fix natural numbers K,L € Z; and set p = pL || - |lg, == | - ||S§,L7
|- lsa, == 1" ||S§,L. We also use the following notation
Y
1 Fillzecsy == [1F1llzecs), 171l e @acsy) = 1F1lle@acsy)
and for j =2,3
1Fillze(say) = 15l (54 1) 1E5l e @acsy) = I1EGllLe o @ 57))-

When we omit the subscript A, we mean A = X.

4.3 QOuter L comparison

In this section we prove that (K, L)-dependent outer LP norms can be bounded by the K-
dependent outer LP norms for 2 < p < oco. By virtue of this fact, later on in the proof of
Theorem [£.4] we may directly apply the iterated embedding theorem for the L-independent sizes,
Theorem [4.291

Throughout this section we assume that

1Fllz2 (509 Il (57 < 0 (47)

are finite and consider X¥ the set of multitiles with
Qp C [0,N)? (4.8)

for a large integer N. All bounds in this section will be independent of N, hence, by standard
limiting procedure, we may extend them to the whole collection of multitiles. Let A =V \ W,
V,W € D" be fixed throughout this section. The following result holds.

Lemma 4.12 (Comparison of uniform outer measure spaces). The following inequality hold for
all functions F € B(XX):

1Pl Lo (s.4) Sq ||F||LiK(SK) Vq € (2, 00],
||F||Lf;°°(sA) S ||F||LiK(sK),

with a constant that is dependent on q but independent of K, L.

The proof of Lemma follows along the lines of Lemma in Chapter [3 given Lemma
and Lemma, below. The only modification is that, because the frequency components
of multitiles are rectangles, in the counterpart of the 2-selection algorithm below one has to
consider four types of trees 77—, TH~, T+ TH+ instead of T—, TT as it was done in the
one dimensional case. For convenience of the reader we provide the details below.

Definition 4.13 (Strongly disjoint). We call a set P C XX strongly disjoint if for any two
distinct P,P' € P, PN P' = {.

Lemma 4.14 (Outer L? sizes of strongly disjoint sets). Let P C XX be a strongly disjoint set
of multitiles. Then

[1p Flli2xx) S H]l’PF“LiK(SK)
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Proof. Exactly the same as the proof of Lemma [3.15] O

We introduce two auxiliary selection algorithms, one for S}Op and the other one for S%.

Definition 4.15 (Top-selection algorithm). Initially P = 0 and Xo C XX. In the n-th step of
the procedure we choose a tree Ty, € TXL such that

|F1x, [l gron 7, > A (4.9)

and p(T,) is mazimal. This possible, because the multitiles in Top 4(T) can be split into two
pairwise disjoint collections of multitiles and as a result, using Lemma and (4.7), we obtain
an upper bound for p(T)

IU’(T) < )‘_ZHF]lTopA(T)ﬁX,L

?2()(1() SJ A_2||F||iQK(SK) < 0.

We then add Top 4(T,,) N X,, to the set P, set X,41 := X, \ Ty, and iterate the procedure. It will

terminate because, by (4.8)) there is a lower bound for u(T), so by (4.7) and (4.11), there can be
only finitely many T € T™L satisfying ([.9)).

Remark 4.16. In the special case L = 0 and A = XX the above selection algorithm is the
selection algorithm for S = SToP,

Let Q be a dyadic rectangle and Q = @1 x@s be the dyadic parent of Q. We set Q% := &% x &}

for a,b € {—,+}, where w™ is the left and w™ the right half of the dyadic interval w.

Definition 4.17 (2-selection algorithm). Initially P = 0 and Xo C XK. For a tree T(R,Q) €
TEL Jet

THH(R,Q) :={P eT: Qr C (Qp)"" and Qr ¢ QUp},

Analogously we define TT—, T—F, T—~. We first describe the selection procedure for T . In
the n-th step of the procedure we proceed as follows: if there exists a tree T € TS with

| Flp+.+1x, ”Si(T) > A (4.10)

we select a tree T, (R, Q) which mazimizes p(T) among & = (&1,&2) with the mazimal value of
—&1 — &, where £ = (£1,&2) is the middle of Q). This requirement can be satisfied since such pu(T)
are bounded from above: since the multitiles in T T are pairwise disjoint, thanks to Lemma

and (4.7) we obtain

p(T) < A2 Flpsox, 72y S )\_2||F||2L2K(SK) < .
n

This in turn implies that |Q]’s are bounded from below, hence all possible £’s are all in a discrete
set. Together with we obtain that —& — & attains its mazimum for some & for some
T, :=T(R,Q). We add S, = T,;" X, to P and set X, 11 := X, \T,,. We iterate the procedure
until there are no more trees satisfying . It will terminate since by there is a lower
bound for u(T), so and imply that there can be only finitely many T € TE:L satisfying
. Analogously we define the selection algorithm for T~ , T— 1T, T~ at each step selecting
a tree with size larger than \ and mazimizing p(T') for the mazimal value of —&; + &2, &1 — o,
&1 + &9, respectively.

Since the selection algorithms for 7+, T~ T T, T~ are entirely symmetric and in the
proof we will be working only with 7.
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Definition 4.18 (Selection algorithm). The selection algorithm at level A consists of running
the selection algorithm according to Definition at level A and then the selection algorithm
according to Definition[[.17 at level A, starting with Xo = Xar, where is M is the the number of
the last iteration of the algorithm in Definition[[.15. The described algorithm yields a collections
of trees ®) = P U P2, where P, B3 are trees selected while running Top-selection and 2-
selection algorithm respectively. It also yields a collection of selected tiles Py .

Lemma 4.19. If P C XX comes from the selection algorithm given in Deﬁnition then P
is strongly disjoint.

Remark 4.20. In particular an application of Lemma implies that, if T,, are the selected
trees, n = 0,1,2, .., then they satisfy for any M € N

M
D ilT) SAPFLa7z(s): (4.11)
n=0

Proof. We prove this lemma by contradiction.

First assume that P comes from the algorithm in Definition Suppose that there exist
P, P’ € P, such that P € Top,(T), P’ € Top4(T") and PN P’ # (), where T,T" are two distinct
selected trees. Without loss of generality suppose that T' was selected earlier than 7”. Then it
is not possible Rpr C Rp, because this would mean that P’ € T, which is a contradiction. If
this is not the case, then we necessarily have |Rp| < |Rp/|. But since Rp, Rp: are members of
the partition of Ry, R/, generated by V, respectively, this would imply that |Rp| < |Ry/|. This
would imply that 7" was selected earlier. Contradiction.

Now assume that P comes from the 2-selection algorithm (for 7+ 1). Without loss of gen-
erality assume that P € T, P/ € T/, PN P’ # () and T was selected earlier than T". Tt is
not possible that Rpr C Rp, since this would mean that P’ could have been selected while T
was being selected, which is a contradiction. Otherwise Qp; C Q2p and the inclusion is strict.
However, this would imply that —&7/1 — &2 > —&r1 — &r,2 and T” should have been selected
before T" was selected. Contradiction. O

4.4 Tterated L? bounds

We fix K, L € Z and set A := Ag 1. The main result of this section is the following proposition,
which combined with Proposition [2.10] implies Theorem

Proposition 4.21. Let 1 < py1,p2,p3 < 00 with Z?zl 1/p; =1 and 2 < q1,¢2,q3 < oo with
Z?:l 1/q; > 1. Let for j =1,2,3, f; be a Schwartz function and let F; := F(f;). Assume that

V;,W; € DY for j =1,2,3. Then
3
AP Lvp\w, s Falvp\ws, Falvaws )| S H v(V) P3| FyLyw, | g (s)- (4.12)
=1

Given the next proposition, the proof of (4.12]) follows along the lines of the proof of Proposi-
tion in Chapter 3] with the only difference being the factor v, one can deal with it similarly
as we did in Chapter [2] in the proof of Proposition [2.52

Proposition 4.22. Let 1 < py,p2,p3 < oo with Zj‘:l 1/p; = 1. Let for j = 1,2,3, f; be a
Schwartz function on R? and let F; := F(f;). Assume that My, Ny € TY, M;, N; € (TL)Y for
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j =23 and V;,W; € DY for j = 1,2,3. Moreover, set A = ﬂf=2(Vj \Wj), Gj == Fily\w;,
S1:=8 and S; := 84, for j =2,3. Then

3
IA(G11 Ny G2l p\ Ny Gala\n, )| S H pu(M;)/Ps 1GiLar\n, llLoe(s5)-
i=1

4.4.1 Proof of Proposition [4.22]

In this section we prove Proposition [£:22] The proof is similar the proof of its one dimensional
counterpart, Proposition but we provide here the details. Let A; = V;\ W}, where V;, W, €
DY for j = 1,2,3 be fixed throughout this subsection. For T'= T(I,w) € T, define T (I}, wy) :=
TEL(1,Q8L) € TEL and for K =, T(Ig,wy) € T, define K = {J, T (I}, wy).

Exactly the same way as in Chapter [3] Section 5, one can reduce Proposition to the
following.

Lemma 4.23. Let T € T and M € T and let A=V \W where V,W € D. Let for j =1,2,3,
f; be a Schwartz function on R? and let Fj := F(f;). Then

3

IANFy L ag, Falla, FsTa)| S (D) Frlpas oo sy [ [ IF5 Laloallze(sa -
=2

Proof of Lemma|4.25 First, observe that
IACFLL (g arytaey s F2la, F314)
S w(MFlpamllsery 1 Falalealls2 ([ F3laloall sz ()

just by an application of (o00,2,2)-Holder’s inequality, since Fy and Fj are restricted to the
lacunary tree. Using Lemma [4.25] we bound the right hand side of the previous display by the
desired quantity. We still have to show

IAF1 L\ gy (om s Fola, F314)
S (M Filp gl zes) [ Felryg Lall Lo (s 1 F3lryk Lal Lo (s4)-
Note that we have
A(F1 L\ aryowr, Fola, F314) = A(Fi1pen 1, Folc, F3lc),
where
B=T\M, C=AnNn(T\ M). (4.13)
The right hand side of the penultimate display can be rewritten as
[ X APy Y R@AE@@-2L5 @
PeT(ov) QePK.L

where hp, is the L? normalized Haar function. Fix Q € T. Let P; be the set of maximal
multitiles in C' N T, P, be the set of minimal multitiles in C' N T"); note that Top.(T) =
P1 UPy. Define

Q:=Cn{QeT®): Q" <Q, Q" ¢Pa).
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and @ = (CN{Q}) U Q. Note that (P, N{Q: Q < Q) UQ and P, N{Q: Q < Q} are two

decompositions of the same subset of Ri into pairwise disjoint multitiles. This gives

F@1c@Qpq=- > F@1c@eg— Y, F@Qeg+ Y, F@Qps  (4.15)
QeQ QePy QEP;
QR<Q QRLQ

Observe that the above identity can be seen as a discrete integration by parts. Note that by
Lemma the following cancellation identities hold for any two different Q,, @, € Q and any

Q€ Q. QeTopa(T)N{Q: Q <Q}
[ e )eg, (0, 0)eg, (o) dady =0, (4.16)
[ b)) ) dady =0,

From now on let for a multitile P, kp € Z be such that 22kP = |Rp|. Using |Rg|™! ]1RQ = 0%
and applying (4 and (4.16) to F» and F3 in (4.14)), there are no cross terms coming from
T (<) and TopC(T)7 as well as no terms mvolvmg Ql,QQ e T with Q, # QQ Moreover,
multitiles in P; are spatially pairwise disjoint and the same holds for Ps. Thus, 4)) equals to
a linear combination of

1ry(2,y
[ ¥ REOPhe ) 3 &(Q)Fﬂ@)%(@)%dmdw (4.17)
PeT(ov) QeT(laC) Q
ko<kp—L
1p,(z,y
[ X AP Y BQAEQPES w419
PeT(ov) QeTopc(T) @
3
/ S R(PO)Lp(P)ha, (s, y>H S F@Qpole,y)dedy. (4.19)
PeT(ov) =2 Q€Pj1
ko<kp—L

and an integral symmetric to the last one. We first bound (4.17). Changing the order of
summation (4.17)) equals

1 z,y
[ T (S A ) RQE@I@ S
QET(LQ") PET(UU) Q
kot L<kp
Applying (2 3 ﬁ? ﬁ) Holder’s inequality in @ and (x,y) this is bounded by
3
ITFill 2+ H IGEllL2ra-, (4.20)
j=2
where
TP() =sw| Y F(PO)La(Phn, (o) (421)
peT(v)

<kp
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and
1/2

GF(z):= | Y [F(P)PLe(P)lep(x,y)f | (4.22)
PpeT(lac)

Applying Lemma and Lemma we bound (4.20) by the desired quantity. We shall now
estimate (4.18]). Changing the order of summation we rewrite (4.18) as

]lRQ (!L‘7 y)

S () R(PO)1(P)hr,(2,y) Fa(Q)F3(Q) ol

QETopy(T) perlew)
kQ-‘rLSkp

dz dy.

Using Lemma we bound it, after an application of (oo, 2,2)-Hoélder’s inequality in @ and

(%7 %, %)—Hélder’s inequality in (z,y), by

3
ITF o [T IHE |20, (4.23)

j=2
where
1/2
HF(z):= [ > [F(P)lc(P)lep(z,y) (4.24)
PeTop(T)

The first factor is bounded similarly as before by Lemma[4.26] Concerning the last two, we have
the following decomposition of the top.

Lemma 4.24. Let C be as above. There exists ® € TV with
Top(T) C ( U Top 4(T") U Top,(T)) N C,
T €d’

S W(T) S uD).

T c®’

Proof. Analogous to the proof of Lemma [3.30]

Using Lemma for F; with j = 2,3 we obtain

||Fj||sg°P(T)

S IF Lol gty + 1) S W)L o)
T/

SIFLelln=(s.)-

The above, together with Lemma bounds (4.23]).
We are left with estimating (4.19). Note that we can rewrite

3
I Y. E@ee@y= > > B(Q)eq. (z,y)Fs(Q2)pq, (z,v),

Jj=2 Q€P;_1 Q1€P1 Q26P2
ko<kp—L kqy <kp—L kqgy <kp—L
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Changing the order of summation, (4.19)) becomes

[ X X T AP Fa@)a, 0 0)F(Qa)pau ) dr dy

Q1EP1 Q2€P2  pep(ov)
ko, +L<kp
k‘Q2+L§]€p

The above is bounded by

/m e[ S IB@lsole)|ds dy

Jj=2Q€P; 1

Applying ('W T T 7) -Holder’s inequality in (z,y), using spatial disjointness of multitiles P,
and spatial disjointness of multitiles in P, we bound the last display by

3
ITF1l L1/ s) H | HEj 20— -
j=2

Another application of Lemma [.26] Lemma [£.2§] and Lemma [£:24] finishes the proof of the
proposition. O

At the end of this section we prove the following sequence of lemmata, which we used in the
above proof.

Lemma 4.25. Let C be as in [4.13)). For F € B(XX) and 2 < p <
1-2
IF1clsoiry S IFLel o 1Flc ] 2 E

Proof. Note that rewriting the left hand side of the inequality as an averaged L? norm it is
enough to show

)2 Z F(Q)1c(@Q)eq(@, y)llr2ey) S 1FLellLe(s=),
QGT(Lar)

)2 F@1e(@e@,v)l2@y S IF1clls 1),
QeT(ln,c)

and interpolate. While the first inequality, follows from Corollary since C' is a convex
collection of multitiles, the second inequality follows by definition. O

Lemma 4.26. Let T be defined as in (4.21)). For F € B(X) and 2 < p < 0o
ITFl2e S u(T)P| Flpllpees)

Proof. First of all, observe that the supremum over [ can be dominated by the maximal function
and can be discarded. Hence, it is enough prove BMO and L? bounds: for any dyadic rectangle
RcR

I Y F(P)1s(P)ha, (@)l =@y S 1F1sllL~(s), (4.25)

perlac)
RpCR
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and

I Y F(PLs(P)hre(@,9)llr2 () S n(T) | Fls|re(s). (4.26)
PeTac)

The boundedness of (4.25) follows from Corollary since we can restrict the sum to the
convex collection of multitiles BN {P: Rp C R}. Similarly one proves (4.26).
Using the log-convexity of LP norms we obtained the desired inequality. O

Lemma 4.27. Let G be defined as in [£.22). For F € B(XX) and 2 < p < oo

2 1-2
|Gl S p( P IF Ll g | Flcl J22E .

Proof. Using interpolation, it is enough to prove the BMO and L' bounds

I(GF)?|lsao S 1F el (s), (4.27)

(GF)? |2 S wDIFLe &) (4.28)
In order to show ([4.27) it is enough to prove that for any dyadic rectangle R € R
B Y. F@Le@er(@ )i S IFLelix s~
QeT (e

RQCR

This inequality follows from Corollary [£:39] since C is a convex set of multitiles. The bound
(4.28) follows from definition. O

Lemma 4.28. Let H be defined as in [#24)). For F € B(XX) and 2 < p < 00

2 1-2
|HF o £ (@) PIFLe N o 1P Ll

Proof. Note that we have
[HF|[Le S FLlc|pee(s=),
since Top(T') is a union of two sets of spatially pairwise disjoint multitiles. Moreover
[HF L2 S N(T)l/QHF]chsgop(Ty

by definition. Using the log-convexity of L? norms we obtain the desired estimate. O

4.5 Embedding theorem

The goal of this section is to prove the inequality (£.1)). We set X := XK, T := TK, p = puX,
v:=vE and §? := §2K §% .= K ¢ .— §K (4.1) is implied by the following embedding
theorem.

Theorem 4.29. Let 1 < p < oo, max(p’,2) < ¢ < oo, K € N and F := F(f). Then for any
Schwartz function f on R?

[ Flreacs)y < Cpgllfllerey,

where Cy, is independent of K.
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This is a two dimensional counterpart of the Walsh embedding theorem that was proven in
|[Ural?]. It follows similarly like the proof in |[Ural7|, however, in order to prove uniform bounds
in parameter K we use the LP bounds for the strong maximal function [SM93] and Bessel’s
inequality independent of K, Corollary

Before we prove Theorem [£.29] we show a couple of lemmata. From now on all the implied
constants are independent of K.

The first lemma dominates the || - || ,r(g) norm with || - |[z»(gee). It considerably simplifies the
selection algorithm in the proof of Theorem

Lemma 4.30. Let 0 < p < oo, f be a Schwartz function on R? and F := F(f). Then
[FllLo(s)y S 1F e (se)-
Proof. Let 0 < p < co. It is enough to show that for any A > 0
1([Fllpoe sy > CA) S Il Fl[ oo (s0) > A).-
Let ¥ C TY be such that

> uT) S u(Flle(s) > N, 1F1pe
Tev

Le(5°) <A,

where E2 = [JW. It is enough to show that ||Flge||pe(s2y S A Let T € T. Since T\ E is a
convex set, using Corollary

1FLgells2 7y S [ FLgeLp|| oo (s0) < A

This finishes the proof of 0 < p < co. Taking A = 2|[F[| o (g) in the above argument we also
cover the case p = oco. O

The following lemma appeared already in [Warl5| and it is a two dimensional Walsh coun-
terpart of Carleson embedding theorem proven in [DT15]. Below, we present a simplified version
of the argument in [Warl5]. We will not need the statement explicitly, however, we shall need
the selection algorithm and Lemma [£:33] which are the core of its proof.

Lemma 4.31 (Local L? Walsh embedding theorem). Let 2 < p < co. Then
IENLrcsy Sp I fllze(r2),

together with the weak type estimate
[ Fll 205y S 11l (r2)-

Remark 4.32. Note that applying the argument below with F1p, D = D(Rp) € D, one similarly
obtains that for 2 < p < oo

I1F'LpllLe(sy Sp IfLrp llLrR2)- (4.29)

Proof. We prove the theorem for p = oo, for the weak endpoint p = 2 and interpolate applying
Proposition Using Lemma it is enough to show the statement for S°.
p = oo: notice that for any P € X

|[F(P) S IM flleer2y S Il (r2),
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where M is the strong maximal function in R2.

p = 2: Let us fix A > 0. We run the selection algorithm as in Remark obtaining a
collection of multitiles P = {P,: n € N} and a family of trees ® = {T},: n € N} C X whose tops
are multitiles in P. Then, it is enough to prove that

Z w(Tn) = Z |Rp,| S A2l L2 re)-
neN neN

By Lemma P forms a strongly disjoint subset of X in the sense of Definition We have
the following lemma.

Lemma 4.33. Let P be a strongly disjoint set of multitiles and let g be a function such that
|F(g)(P)||Rp|~'/% > X for every P € P. Then

> IRpl S A9l 7z re)-
Pep

Proof. We have

Y IRp[ < Y APE@)(P)P S APl e reys

PeP PeP
where we applied Corollary in the second inequality. O
Applying Lemma we finish the proof. O

Now we are ready to prove Theorem [4.29

Proof of Theorem[].29 First of all, observe that (4.29)) implies that for any D € D

V(D)"Y F1p|lpacs) S I1flln=(re)s

which implies the statement for p = co. From now on, let us fix 1 < p < co. Using Lemma
it is enough to show the statement for S = S°°. Moreover, without loss of generality, assume
that || f||»r2) = 1. By interpolation, it is enough to show

1F']| Losoopace sy S |1 fllLr(r2),

for any 1 < r < p and ¢ = max(2,7’), together with the endpoint with ¢ = co. Throughout the
proof fix A > 0 and set

Iy := { maximal dyadic rectangle R € R*: M, f(x) > X on R},

where M, is the L" strong maximal function([SM93]) and let Ky = {D(R): R € I} € D and
Ky = UIC,\
1. Endpoint g = co. We have

V(Kx) SATP, [FLligl[roe(s=) S A

Note that the first inequality follows from LP boundedness of the M, strong maximal function
for r < p. The second inequality follows simply by the definition of K. Together they imply

[ F[|Lriocpoo(sooy S 1= | fllze-
2. Endpoint ¢ = max(2,7’). It is enough to show that

v(Ky) SATP, [F Lk [lgace sy S A
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Note that the first condition is satisfied just like in the previous step. The condition on the right
hand side can be rephrased as: for all D € D and all 7 > 0 there exists E, such that

/L(ET) SAqT_qV(D), ‘|F1K>L\]1E$]1D“Loo(soo) <T.

Similarly as in Section we may assume that (4.7) and ([£.8)). For any D € D let ®2 be the
collection of trees given by the selection algorithm in Remark at level 7 for F'lg¢1p. Let

1
Npmo = sup —— u(T)
DeD V(D) TEZ{)D

Using the aforementioned assumptions, we may consider only D € D with v(D) uniformly
bounded from below and we may assume that there are only finitely may selected trees. Hence,
from now on we may assume that Nppro < co. Note that it is enough to show that Npyo <
Ai7~4, In order to see that this suffices, take any D € D, set EP = J®L and observe that

[FlrslpLlippyelroo(se) < A
and

WEP) < Y w(T) <v(D)Npmo S A7~ w(D).
TedP

Note that since |[F1x¢ | p=(s=) < A, it is enough to assume 7 < A. In consequence we may
also assume that Npaso > 1, since otherwise there is nothing to prove. We have the following
lemma.

Lemma 4.34. Let J € D. There exists a function gy such that

1-2
g2 S A2Nprbiv(J)

~

and for all selected trees T € ®) we have |F(gs)(Pr)|u(T)~"/? > 7.

In the proof we perform the Walsh multi-frequency Calderén-Zygmund decomposition, simi-
larly to what is done in [OT11]. This technology was originally developed by Nazarov, Oberlin
and Thiele in [NOT09).

Proof. For any selected tree T' € ®/ we have Ry C Ry. On the other hand for any 7' € ®/ and
D € K, we either have Rp C Ry or Rp N Ry = 0. Let Pp be the set of maximal multitiles
P =Rp x Qp € D, such that there exists a tree T' € <I>£ with Rp C Rt and Qp C Qp. In this
manner we define

gp(x) = > F(P)pp(x).

PePp

and split f as follows

f@y=" > gp@)+ flr,yi (@) +b(z).

DeKy: DCJ

9J

Observe that by definition of 1, and, since we assumed Ngp0 > 1 and ¢ > 2

1FLraunll2e < X2u(]) < AN Ew ().
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On the other hand, observe that counting function N7 = > recws LRy is constant on Rp for each

D € Ky; let N3, be its constant value on Rp. In consequence, for every D € Ky

lgpllz= = > [F(P) = llgnli SNLJJIRD\(][
PePp R

)

and by Corollary we also have ||gpl|7. < |Rp| f  |fI?. Using the Riesz-Thorin interpolation
theorem we obtain

lgl2: < (f T (NE) 29| R,

Summing the above inequality over D € K, and applying Holder’s inequality we obtain

DS <fR /(D)2 R

DeKy: DCJ DeKk\D: DCJ

SN[V ([N )P S NG,
RJ RJ

Finally, note that for any 7' € ®/ we have F(b)(Pr) = 0, hence |F(g;)(Pr)|u(T)~*/? > 7. This
finishes the proof of the lemma. O

Let J € D be a such that Np,s0 is almost attained and let g be like in the previous lemma.
Applying Lemma [£.34 and Lemma we obtain

Neamov(J) S S w(T) S 772 gsll2e S A2 2N gy b ().
Ted!

This gives
Npmo S AIT79,

which concludes the proof. O

4.6 Appendix - Walsh wave packets in two dimensions

In this chapter we used the following facts about the Walsh wave packets in two dimensions.

Lemma 4.35. If two multitiles P, Q are disjoint, then op and pg are orthogonal, i.e. {¢p,pg) =
0.

The above lemma was proven in [Warlb]. As a corollary we obtain Bessel’s inequality for the
wave packets in two dimensions.

Corollary 4.36. If P is a set of pairwise disjoint multitiles and let f be a Schwartz function on
R2, then

Yo IENDPIP < ez

PcP

We shall also need the following.
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Lemma 4.37. Let P be a finite collection of multitiles and assume that a multitile Q is covered
by the multitiles in P. Then g is in the linear span of {¢p: P € P}.

The lemma was proven in [Warl5|. As a corollary we obtain the following.

Corollary 4.38. If P, P’ are two different collection of multitiles, each of which is pairwise
disjoint and \JP = |JP’, then for any Schwartz function f on R?

Y F(N(Pep(@) = Y F(HIP)pp ().

PeP PP

Note that if £ C X¥ is a convex set of multitiles, then | J E can be represented as a union of
maximal multitiles that do not belong to E. Moreover, observe that these multitiles are spatially
pairwise disjoint. Hence, we obtain

Corollary 4.39. Let f be a Schwartz function on R?, E C XX be a conver set of multitiles and
let P = E, where P is a set of pairwise disjoint multitiles. Then

1Y F(f)(P)1e(P)ep(x,y)|=re S sup [F(P)1g(P)||Rp|~/2.
PeP Pexx
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