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Abstract

This thesis is concerned with two special cases of the singular Brascamp-Lieb inequality, namely,
the trilinear forms corresponding to the one- and two-dimensional bilinear Hilbert transform. In
this work we study the uniform estimates in the parameter space of these two objects. The ques-
tions of the uniform bounds in one dimension arose from investigating Calderón’s commutator,
implying an alternative proof of its boundedness. Another reason for studying this problem is
that, as the parameters degenerate, one can recover the bounds for the classical Hilbert transform,
which is a well understood operator. Analogously, it is natural to investigate the two dimensional
form, whose parameter space turns out to be considerably more involved and offering many more
questions concerning the uniform bounds.

The thesis consists of four chapters.

In Chapter 1 we investigate the parameter space of the bilinear Hilbert transform. We
complete the classification of the two dimensional form that was first given by Demeter and
Thiele. We also describe the parameter space, reducing its dimensionality, and discuss the related
geometry, which raises many open questions concerning the uniform bounds in two dimensions.

In Chapter 2 we prove the uniform bounds for the bilinear Hilbert transform in the local L1

range, which extends the previously known range of exponents for this problem. This a joint
work with Gennady Uraltsev.

In Chapter 3, which is an elaboration on Chapter 2, we prove the uniform bounds for the
Walsh model of the bilinear Hilbert transform in the local L1 range in the framework of the
iterated outer Lp spaces. This theorem was already proven by Oberlin and Thiele, however, in
their work they did not use the outer measure structure.

Finally, Chapter 4 is dedicated to proving the uniform bounds for the Walsh model of the two
dimensional bilinear Hilbert transform, in a two parameter setting in the vicinity of the triple
that corresponds to the two dimensional singular integral.
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Introduction

In this thesis we are concerned with a singular variant of the Brascamp-Lieb inequality, whose
classical version is defined as

ˆ
Rm

n∏
j=1

Fj(Πjx) dx ≤ C
n∏
j=1

‖Fj‖Lpj (Rkj ), (0.1)

where Fj ∈ Rm → C are measurable functions and Πj : Rm → Rkj and Π: Rm → Rk are surjective
linear maps. Bennett, Carbery, Christ and Tao in [Ben+08] gave a complete description of (0.1),
proving that the above inequality holds if and only if for every subspace V of Rm it holds that
dim(V ) ≤

∑n
j=1

1
pj

dim(ΠjV ) together with the equality for V = Rm. When one integrates

the product against a Calderón-Zygmund kernel in (0.1), then it becomes a so-called singular
Brascamp-Lieb inequality. It is generally of the form

ˆ
Rm

n∏
j=1

Fj(Πjx)K(Πx) dx ≤ C
n∏
j=1

‖Fj‖Lpj (Rkj ), (0.2)

where Π: Rm → Rk is a surjective linear map and K is a Calderón-Zygmund kernel on Rk. Multi-
linear inequalities of the form (0.2) form a very vast family of problems and cover a large portion
of questions considered in harmonic analysis including, among others, the classical Hilbert trans-
form, paraproducts, the bilinear Hilbert transform and the simplex Hilbert transform. Various
examples of singular Brascamp-Lieb integrals were thoroughly discussed in the work of Durcik
[Dur17], where she proved multilinear Lp estimates for a so-called entangled form, which falls
into this general class.

In this dissertation we are interested in two special cases of the multilinear form appearing
in (0.2):

• The trilinear form associated with the bilinear Hilbert transform

BHF~β(f1, f2, f3) :=

ˆ
R2

3∏
j=1

fj(x− βjt) dx
dt

t
, (0.3)

where f1, f2, f3 are Schwartz functions on R and ~β = (β1, β2, β3) ∈ R3 with
∑3
j=1 βj =

0. Note that the above trilinear form is obtained from (0.2), assuming m = 2, n = 3,
Πj(x, t) = x− βjt for j = 1, 2, 3 and K(t) = 1/t, Π(x, t) = t.

• the trilinear form associated with the two dimensional bilinear Hilbert transform

BHFK~B (g1, g2, g3) :=

ˆ
R4

3∏
j=1

gj((x, y) +Bj(s, t))K(s, t) dx dy ds dt, (0.4)
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where g1, g2, g3 are Schwartz functions on R2, ~B = (B1, B2, B3) ∈ (R2×2)3 is a triple

of 2 × 2 real matrices with
∑3
j=1Bj = 0 and K : R2 \ {0, 0} → R is a two dimensional

Calderón-Zygmund kernel, i.e. satisfying

|∂αK̂(ξ, η)| ≤ |(ξ, η)|−|α|,

for all α ∈ Z2
+ up to a high order and (ξ, η) 6= (0, 0). Note that the above trilinear form is

obtained from (0.2), assuming m = 4, n = 3, Πj(x, y, s, t) = (x, y)−Bj(s, t) for j = 1, 2, 3
and Π(x, y, s, t) = (s, t).

One is interested in proving the singular Brascamp-Lieb inequalities in those two special cases

|BHF~β(f1, f2, f3)| ≤ Cp1,p2,p3,~β

3∏
j=1

‖fj‖Lpj (R), (0.5)

|BHFK~B (g1, g2, g3)| ≤ Cp1,p2,p3, ~B

3∏
j=1

‖gj‖Lpj (R2). (0.6)

By scaling, the exponents in (0.5), (0.6) should satisfy 1/p1 + 1/p2 + 1/p3 = 1.

In Chapter 1 we study the geometry of the parameter space of the bilinear Hilbert transform.
While it is well understood in one dimension, it is a more involved object in two dimensions.
One attempt to classify various cases in two dimensions was given in [DT10] by Demeter and
Thiele, however they did not how the parameters degenerate. The main purpose of this chapter
is classification of ~B up to symmetries that do not affect the defining constants of the kernel K,
hence giving a good description of the related geometry. This makes it a good starting point for
proving (0.6) with a constant independent of ~B, which is a completely open problem. Below we
discuss some background in one and two dimensions, and the content of this chapter.

Observe that up to a symmetry, there are essentially 3 different cases of (0.3). If one assumes
that all βj are equal, then using the translation symmetry BHF~β equals zero and the inequality

(0.5) is clearly satisfied. If two of the components of ~β are the same, then BHF~β up to a symmetry
it equals

ˆ
R
Hf1(x) f2(x) f3(x) dx,

which implies (0.5) for 1 < p1, p2, p3 <∞ using the boundedness of the Hilbert transform. The
third possibility is when βj ’s are pairwise distinct. The first proof in this case was given by Lacey
and Thiele in [LT97], where they proved (0.5) in the range 2 < p1, p2, p3 <∞.

The dependence of the constant in (0.5) is not explicitly stated in terms of ~β in [LT97],
however, one can show it that it behaves linearly in mini 6=j |βi − βj |−1. The authors of [LT99]

asked, whether there exists a constant Cp1,p2,p3
<∞ independent of ~β, such that

|BHF~β(f1, f2, f3)| ≤ Cp1,p2,p3

3∏
j=1

‖fj‖Lpj (R) (0.7)

holds for triples of Schwartz functions and, moreover, what is the range of exponents in which the
above inequality holds. This question has already been extensively studied by Thiele [Thi02a],
Grafakos and Li [GL04] and Li [Li06]. Since the following chapter is concerned with extending
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the range of exponents for (0.7) we discuss the background of this problem in detail later on.
Concerning the geometry, applying the translation and the dilation symmetry of the form it is not
difficult to show that the parameter space in one dimension can be identified with S1∪{0}, where
{0} corresponds to the aforementioned trivial 0 form, a finite set of points on S1 is identified
with the Hilbert transform and the rest of the circle corresponds to the nondegenerate case.

As opposed to the one dimensional form, (0.4) has in total 10 different cases. First, if one
assumes that that all B1, B2, B3 are singular, then (0.4) degenerates to a one dimensional
operator or a strongly singular two dimensional operator. In the first case its boundedness
follows from the one dimensional time-frequency analysis and paraproduct theory. Otherwise, as
shown in Chapter 1, it is an operator whose boundedness is strongly related to the boundedness
of the triangular Hilbert transform. The latter is known to be a difficult open problem and
in fact this is the only case in which (0.6) is not known. If one assumes that ~B is such that
at least one of B1, B2, B3 is nonsingular, then there are several possibilities: it is a fully two
dimensional form, a so-called one and half dimensional form or a so-called twisted paraproduct.
In [DT10] Demeter and Thiele gave the first proof in the first two cases, for exponents satisfying
2 < p1, p2, p3 < ∞. Their methods consisted of using two dimensional as well as one and half
dimensional time-frequency analysis. The latter case was later resolved by Vjekoslav Kovač in
[Kov12], which initiated the so-called twisted technology. The authors of [DT10] provided also
a classification of the cases, assuming that one of the matrices is nonsingular. In the first main
result of Chapter 1, Theorem 1.8, we complete the classification given in [DT10], including the
aforementioned cases when all B1, B2, B3 are singular.

Similarly as in one dimension, it is natural to ask whether Lp bounds hold with a constant
independent of ~B, which is not provided by the methods in [DT10]. This brings us to the
conjecture.

Conjecture 1. Let K be a Calderón-Zygmund kernel satisfying (1.2) and assume that 2 <

p1, p2, p3 <∞ with
∑3
j=1 1/pj = 1. There exists a constant 0 < Cp1,p2,p3

<∞, such that for all

g1, g2, g3 ∈ S(R2)

|BHFK~B (g1, g2, g3)| ≤ Cp1,p2,p3

3∏
j=1

‖gj‖Lpj (R2) (0.8)

holds uniformly in ~B ∈ (R2×2)3.

As described above, the parameter space of (0.4) is much richer than of its one dimensional

counterpart and there is a number possibilities in which ~B can approach various degenerate cases.
The conjecture is completely open, except for the cases which correspond to the one dimensional
bilinear Hilbert transform and the bounds follows from the one dimensional theory of the uniform
estimates. Since (0.8) implies the boundedness of the triangular Hilbert transform, which is a
difficult open problem, the full version of Conjecture 1 seems to be out of reach for the current
state of the art. However, there are several different degenerations for which the Lp bounds are
known to hold. The main goal of Chapter 1 is to study the geometry of triples ~B, which possibly
makes it a good starting point for studying Conjecture 1 further. The authors of [DT10] were
not concerned with the uniform estimates and did not consider how applying the symmetries of
(1.1) affects the kernel K. In the main theorem of Chapter 1, Theorem 1.13 we describe the
manifold of parameters in two dimensions, up to only these symmetries that do not change the
defining constants of K, essentially identifying it with (S1)3 ∪ (S1)2 ∪ {0}. This is motivated by
the aforementioned parametrization in one dimension by S1 ∪ {0}. The parametrization in one
dimension is significantly easier, because all matrices in one dimension commute. Since this is
not the case in two dimensions, it requires more care to carry out a similar process.
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Chapter 2 is concerned with extending the range of exponents for the one dimensional in-
equality (0.5). The content of Chapter 2 is a joint work with Gennady Uraltsev. Below we
discuss the background and its content.

First estimates of the type (0.5) were given by Lacey and Thiele in [LT97], in the range
2 < p1, p2, p3 <∞, corresponding to the open triangle c in Figure 1. They subsequently extended
the range of exponents for the inequality in [LT99] the open triangles a1, a2, a3 in Figure 1. The
works [LT97], [LT99], inspired by the works of Carleson [Car66] and Fefferman [Fef73], initiated
the modern time-frequency analysis.

In [LT97] Lacey and Thiele proved that (0.5) holds in the range of exponents 2 < p1, p2, p3 <

∞, with a constant dependent only on p1, p2, p3 and ~β, which corresponds to the open triangle
c in Figure 1. The range was extended in [LT99] to the one corresponding to the convex hull
of the open triangles a1, a2, a3 in Figure 1. The works [LT97], [LT99], inspired by the works of
Carleson [Car66] and Fefferman [Fef73], initiated the modern time-frequency analysis.

Since the form (1.4) is symmetric under permutations of the coordinates of ~β, let us assume

from now on that ~β is in the neighbourhood of the degenerate case β2 = β3. In this case the
trilinear form becomes (2.3) and the Hilbert transform is not bounded in L∞, thus one cannot
expect the uniform bounds to hold for α1 ≤ 0. This region corresponds in Figure 1 to the one
below the line spanned by (0, 0, 1), (0, 1, 0). Moreover, the region spanned by a1, a2, a3 in the
picture is the maximal range for which parameter dependent bounds for the bilinear Hilbert
transform are known. Taking the intersection of these two regions we obtain the convex hull of
the open triangles b3, b2, a3 and a2.

The uniform estimate (0.7) was investigated in several papers. The first time inequality (0.7)

was proven with a constant independent of ~β by Thiele in [Thi02a], where he showed a weak
type inequality at the two upper corners of the triangle c in Figure 1. Next (0.7) was proven
by Grafakos and Li in [GL04] in the open triangle c and Li [Li06] extended the bounds to the
range corresponding to the open triangles a1, a2. Interpolating these results, one obtains (0.7)
for the exponents corresponding the convex hull of the open triangles a2, a3 and c, see Figure 1.
However, up to date, it was not known whether the uniform bounds hold in the neighbourhood
of points (1/p1, 1/p2, 1/p3) = (0, 0, 1), (0, 1, 0). The following main result of Chapter 2 resolves
this issue.

Theorem 0.1. Let 1/p1 + 1/p2 + 1/p3 = 1 with 1 < p1, p2, p3 < ∞. There exists a constant

Cp1,p2,p3
< ∞ such that for all ~β and all triples of Schwartz functions f1, f2, f3 the inequality

(0.7) holds.

The range of exponents in the above theorem corresponds to the convex hull of the open
triangles b1, b2, b3. This extends the uniform inequality (0.7) to the exponents corresponding to
the convex hull of the open triangles a2, a3, b2 and b3 in Figure 1, after interpolating with the
theorem of Li [Li06].

In order to prove Theorem 0.1, we refine the outer measure approach progressively developed
in the papers [DT15], [DPO15], [Ura16]. This approach was initiated in the paper [DT15], where
Do and Thiele reformulated the problem of boundedness of the bilinear Hilbert transform into
proving an outer Hölder inequality on the upper half space R3

+ := R × R × R+, which can be
identified with the symmetries of (0.3), and an embedding theorem for exponents in the range
2 < p < ∞. In [DPO15] Di Plinio and Ou extended it to the range 1 < p < ∞, which
was afterwards reformulated by Uraltsev in [Ura16] as an iterated embedding theorem. The
approach of [DT15] using the refinements of [DPO15] and [Ura16] can be very roughly outlined
as follows. One embeds any Schwartz function on R, f via

Fϕ(f)(y, η, t) := f ∗ ϕη,t(y)
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a2 b1 a3

b3 b2

a1

c

(0, 0, 1) (0, 1, 0)

(1, 0, 0)

Figure 1: Range of exponents (α1, α2, α3) = (1/p1, 1/p2, 1/p3) with
∑3
j=1 αj = 1. The uniform

bounds were previously known to hold in the convex hull of the open triangles a2, a3 and c. The
result of Chapter 2 implies the uniform bounds in the convex of the open triangles a2, a3, b2 and
b3.

where ϕ is a Schwartz function with sufficiently small support. Performing the wave packet
decomposition one essentially rewrites

BHF~β(f1, f2, f3) ≈
ˆ

R3
+

3∏
j=1

Fϕ(fj)(y, αjη + δβjt
−1, |αj |−1t) dt dη dy,

where ~α ∈ R3 is the unit vector perpendicular to both (1, 1, 1) and ~β, and δ := min(|α1|, |α2|, |α3|).
Applying the outer Hölder inequality [DT15] and using the embedding theorem from [DPO15]
for each fj separately in the framework of [Ura16], the right hand side of the previous display is
bounded by

3∏
j=1

‖F (fj)‖Lpj -Lqj (S) .
3∏
j=1

‖fj‖Lpj (R). (0.9)

On the left hand side are the outer Lp norms that we precisely introduce in Chapter 2. We
follow the above approach and the main difficulty in our case is to prove a trilinear inequality
for the wave packet decomposition of BHF~β , with a constant uniform in the parameter ~β. We

then complete the proof combining that trilinear inequality with (0.9).

Chapter 3 and Chapter 4 are dedicated to proving Walsh analogues of (0.7) and (0.8) re-
spectively. The so-called Walsh models of multilinear forms are often studied by time-frequency
analysts along with their continuous analogues, as many technical issues disappear due to perfect
time-frequency localization of the Walsh wave packets. On the other hand, they are still similar
enough to the original problem, so that they are a well established way for understanding and
presenting the gist of the problem. Walsh models appeared in the context of the bilinear Hilbert
transform in a number of articles, for example, [Thi95], [Thi02b], [OT11], [DDP13]. Below, we
first discuss the content Chapter 3 and then we discuss the content of Chapter 4.

Oberlin and Thiele in [OT11] proved the uniform inequality (0.7) for a Walsh model of the
bilinear Hilbert transform in the range that corresponds to the convex hull of the open triangles
a2, a3, b2 and b3 in Figure 1. In Chapter 3, we reprove the result of [OT11] in the local L1

range in the framework of the outer Lp spaces. This can be thought as a demonstration of the
techniques that are used in Chapter 2 in the context of the continuous form.

In order to define the Walsh model we introduce the set of tiles, where the wave packets are
time-frequency localized. We call a tile the Cartesian product I×ω, where I, ω ⊂ R+ are dyadic
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intervals and denote the set of tiles with X. The L2 normalized wave packets associated with
tiles are defined recursively via the following identities

ϕI×[0,|I|−1) = |I|−1/2
1I(x), ϕJ−×ω + ϕJ+×ω = ϕJ×ω− + ϕJ×ω+ ,

for any dyadic intervals I, J, ω ⊂ R+ with |J ||ω| = 2, where J− and J+ are dyadic children of J .
Similarly as in the continuous case, given a function f ∈ S(R) we associate it with the embedded
function via

F (f)(P ) =

ˆ
f(x)ϕP (x) dx,

where ϕP is the Walsh wave packet associated with a tile P . Set Fj = F (fj) for j = 1, 2, 3. We
indicate the dyadic sibling of a dyadic interval I as I	 and by P	 the tile IP ×ω	

p . The trilinear
form on the embedded functions associated to the Walsh bilinear Hilbert transform is given for
L ∈ N by

ΛL(F1, F2, F3) :=
∑
P∈X

|IP |−1/2F1(P	)
∑
Q∈PL

F2(Q)F3(Q)hIP (c(IQ)),

where PL = {Q ∈ X : IQ ⊂ IP , |IQ| = 2−L|IP |, ωQ = 2LωP }. In the above expression we used
the Haar function hIp and the center of the interval IQ, c(IQ).

The main result of Chapter 3 is the following theorem.

Theorem 0.2. Let 1/p1 + 1/p2 + 1/p3 = 1 with 1 < p1, p2, p3 <∞ and 1/q1 + 1/q2 + 1/q3 > 1
with 2 < q1, q2, q3 < ∞. There exists a constant Cp1,p2,p3

< ∞ such that for all L ≥ 2 and all
triples of Schwartz functions f1, f2, f3

|ΛL(F (f1), F (f2), F (f3)| ≤ Cp1,p2,p3

3∏
j=1

‖F (fj)‖Lpj -Lqj (S). (0.10)

On the right hand side of (0.10) are iterated outer Lp norms developed in [Ura16] that we
define precisely in Section 3. Each of them separately can be controlled using the Walsh iterated
embedding theorem, proved by Uraltsev in [Ura17], so that the right hand side of (0.10) is

bounded by
∏3
j=1 ‖fj‖Lpj (R). The results of Chapter 3 and Chapter 2 are a continuation of

studies in [War15], where the uniform bounds on ΛL were proven in the local L2 range.

In Chapter 4 we study a Walsh model of (0.8) for diagonal triples ~B that approach the
trilinear form associated with the dimensional singular integral. This can be seen as the simplest
setting for two parameter uniform bounds and thus, it is a natural question to investigate first.
Below we discuss the content of this chapter.

We call a multitile the Cartesian product R×Ω, where R := I1 × I2,Ω := ω1 × ω2 ⊂ R+ are
dyadic rectangles and |Ij ||ωj | = 1 for j = 1, 2. Here we denote the set of multitiles with X. The
L2 normalized wave packet associated with a multitile P is defined as

ϕP (x, y) := ϕP1
(x)ϕP2

(y),

where for j = 1, 2, Pj = Ij × ωj and ϕPj is the one dimensional Walsh wave packet.
Given a Schwartz function f on R2 we associate it to the embedded function via

F (f)(P ) = 〈f, ϕP 〉.
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Let f1, f2, f3 be a triple of Schwartz functions on R2. Set Fj = F (fj) for j = 1, 2, 3. For a
multitile P = R× Ω, where Ω = ω1 × ω2 we denote

Ω	 = ω	
1 × ω2, P	 = R× Ω	,

where ω	 is the dyadic sibling of a dyadic interval ω. For a K ∈ Z we denote with RK the
set of all dyadic rectangles I × J with |I| = 2K |J | and denote with XK the set of all multitiles
P = R × Ω with R ∈ RK . Given K,L ∈ N, we define the trilinear form on the embedded
functions associated with the two dimensional Walsh bilinear Hilbert transform by

ΛK,L(F1, F2, F3) :=
∑
P∈X

|RP |−1/2F1(P	)
∑

Q∈PK,L
F2(Q)F3(Q)hRP (c(RQ)),

where for P ∈ X, PK,L = {Q ∈ XK : RQ ⊂ RP , ΩQ = ΩK,LP }, c(RQ) is the center of RQ and

ΩK,LP := 2Lω1 × 2L+Kω2 for ΩP = ω1 × ω2. Moreover, hRP (x, y) = ϕP (x, y)ϕP	(x, y).
The goal of Chapter 4 is to prove the uniform bounds for the Walsh model of the two

dimensional bilinear Hilbert transform modularizing it as an iterated outer Lp estimate for ΛK,L
uniform in K, L and the Walsh iterated embedding theorem. Here is the main theorem of this
chapter.

Theorem 0.3. Let 1/p1 + 1/p2 + 1/p3 = 1 with 1 < p1, p2, p3 <∞ and 1/q1 + 1/q2 + 1/q3 > 1
with 2 < q1, q2, q3 < ∞. There exists a constant Cp1,p2,p3 < ∞ such that for all K,L ≥ 2, all
triples of Schwartz functions f1, f2, f3

|ΛK,L(F (f1), F (f2), F (f3))| ≤ Cp1,p2,p3

3∏
j=1

‖F (fj)‖Lpj -Lqj (S). (0.11)

On the right hand side of (0.11) are the two dimensional counterparts of the iterated outer Lp

norms developed in [Ura16] that we define precisely in Chapter 4. The two dimensional Walsh
iterated embedding theorem, which we prove in Section 5 of Chapter 4, implies that for j = 1, 2, 3

‖F (fj)‖Lpj -Lqj (S) ≤ Cpj‖fj‖Lpj (R2).

We record that the uniform bounds for a Walsh model of the two dimensional bilinear Hilbert
transform were already studied in [War15], where they were proven in the one-parameter case
K ≥ 2, L =∞.

Notation

We write A . B, if there exists a positive and finite constant such that A ≤ CB and its value
in the argument is either absolute or irrelevant. We also write A ' B if A . B and B . A. We
write A .p B if C = Cp depends on a parameter p. We also usually discard factors involving π,
coming from the Fourier transform or its inverse.





Chapter 1

Parameter space of the bilinear
Hilbert transform

1.1 Introduction

It is well known that the trilinear form associated with the one dimensional bilinear Hilbert
transform can be parametrized by S1 ∪ {0}, where the trilinear forms corresponding to the
Hilbert transform are associated with a finite subset on the circle and the origin corresponds
to the trivial 0 form. In this chapter we are mostly concerned with the parameter space of the
trilinear form associated with the two dimensional Hilbert transform, defined as

BHFK~B (f1, f2, f3) :=

ˆ
R4

3∏
j=1

fj((x, y) +Bj(s, t))K(s, t) dx dy ds dt, (1.1)

where fj are Schwartz functions on R2, ~B = (B1, B2, B3) ∈ (R2×2)3 is a triple of 2 × 2 real
matrices and K : R2 \ {0, 0} → R is a two dimensional Calderón-Zygmund kernel, i.e. satisfying

|∂αK̂(ξ, η)| ≤ |(ξ, η)|−|α|, (1.2)

for all α ∈ Z2
+ up to a high order and (ξ, η) 6= (0, 0). One is interested in proving the inequality

for all triples of Schwartz functions on R2

|BHFK~B (f1, f2, f3)| ≤ Cp1,p2,p3, ~B

3∏
j=1

‖fj‖Lpj (R2), (1.3)

for exponents satisfying
∑3
j=1

1
pj

= 1, which is dictated by scaling.

The goal of this chapter is to describe the parameter space ~B ∈ (R2×2)3 by exploiting its
symmetries. Such parametrization is more challenging than in the one dimensional case, since
the 2× 2 matrices do not commute in general. In Theorem 1.8 we complete the classification of
cases for the two dimensional bilinear Hilbert transform that appeared already in the paper by
Demeter and Thiele [DT10], where we include some more degenerate forms. In Theorem 1.14
describe the parameter manifold in two dimensions, essentially as (S1)3 ∪ (S1)2 ∪{0}. The point
of this parametrization is that we use only these symmetries that do not affect the constant in
(1.3). Therefore, it is a good starting point for studying the inequality (1.3) uniformly in ~B.
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In Section 1.2 we recall the parametrization of the one dimensional bilinear Hilbert transform.
After that we introduce and state the main results of this chapter in Section 1.3, and make
connections with known results and open problems in two dimensional time-frequency analysis.
Section 1.4 contains the proofs of our main results. Finally, in the last section we make some
further remarks about the uniform bounds in two dimensions.

1.2 Prelude - parametrization in one dimension

In the following we quickly recall the degenerate cases and the parametrization of the one di-
mensional bilinear Hilbert transform. For convenience of the reader, we recall that it is given for
a triple of Schwartz functions on R by

BHF1D
~β

(f1, f2, f3) =

ˆ
R2

3∏
j=1

fj(x− βjt) dx
dt

t
. (1.4)

One is interested in the estimate for triples of Schwartz functions

BHF1D
~β

(f1, f2, f3) ≤ Cp1,p2,p3,~β

3∏
j=1

‖fj‖Lpj (R). (1.5)

with
∑3
j=1 1/pj = 1 dictated by scaling. Next, we define a function that differentiates between

degenerate and nondegenerate cases for (1.4).

Definition 1.1. Let ~β = (β1, β2, β3) ∈ R3. Define

h1D(~β) = (r(β2 − β3), r(β3 − β1), r(β1 − β2)),

where r(A) denotes the rank rank of a matrix (in this case, either 0 or 1). We call ~β degenerate

if h1D(~β) 6= (1, 1, 1) and nondegenerate otherwise.

The one dimensional bilinear Hilbert transform is called degenerate if one of the ranks above
equals zero. More precisely, here are all the possibilities.

Proposition 1.2. Let ~β ∈ R3. Up to a permutation of β1, β2, β3 it satisfies one and only of the
following conditions

h1D(~β) = (1, 1, 1), (1.6)

h1D(~β) = (1, 1, 0), (1.7)

h1D(~β) = (0, 0, 0). (1.8)

Remark 1.3. Note that h1D(~β) = (1, 0, 0) is not possible.

In order to reduce dimensionality of the parameter space one exploits the symmetries of the
trilinear form. By simple change of variables we have the following.

Proposition 1.4. Let f1, f2, f3 be three Schwartz functions on R. Assume that ~β = (β1, β2, β3) ∈
R3. Moreover, let a ∈ R. Then
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• Translation invariance: we have

BHF1D
~β

(f1, f2, f3) = BHF1D
~β−(a,a,a)

(f1, f2, f3).

• Multiplication invariance: if a 6= 0, then we have

BHF1D
~β

(f1, f2, f3) = BHF1D
a~β

(f1, f2, f3).

Remark 1.5. Observe that the above invariances do not change the constant in (1.5).

For all ~β satisfying (1.6) the proof of (1.5) is essentially the same and requires time-frequency

analysis [LT97], [LT99]. Assuming that ~β satisfies (1.7), boundedness of BHF1D
~β

is equivalent

to boundedness of the Hilbert transform. If ~β satisfies (1.8), then by the translation symmetry
of the form it is easy to verify that BHF1D

~β
equals zero. However, when one is trying to prove

bounds with C = C~β independent of ~β, it is useful to reduce the dimensionality of the parameter
space. Using the translation symmetry we may assume that

β1 + β2 + β3 = 0. (1.9)

Let ~βγ = (γ1, γ2,−γ1−γ2), where γ = (γ1, γ2). By invariance of the measure dt/t under rescaling
λt 7→ t, one may assume that γ2

1 + γ2
2 ∈ {1, 0}, which gives the following.

Proposition 1.6. Let ~β ∈ R3 satisfy (1.9). There exists a nonzero a ∈ R such that up to a

permutation ~β satisfies

• a~β = ~βγ , with γ ∈ S1 such that no two coordinates of ~βγ are equal, if and only if ~β
corresponds to (1.6),

• a~β = ~βγ , with γ ∈ S1 such that exactly two coordinates of ~βγ are equal, if and only if ~β
corresponds to (1.7),

• a~β = ~β(0,0), if and only if ~β corresponds to (1.8).

Hence, the space of parameters can be identified with S1 ∪ {0}. This way the degenerate ~β’s
become a finite set on the circle, which corresponds to the Hilbert transform, and the origin,
which corresponds to the trivial 0 form, while all the other points on the circle correspond to
the nondegenerate case. Note that all transformations that we performed on ~β do not affect the
constant C~β in (1.5) and hence it is a correct way of case classification for the uniform bounds.

1.3 Main results

In this section we introduce and state the main results of this chapter. We start off along the lines
of the previous section with a classification in terms of ranks of ~B and its linear combinations,
as well as study the symmetries of the trilinear form. Subsequently, we present the two main
theorems, concerning classification and geometry of ~B ∈ (R2×2)3.
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1.3.1 Classification in terms of ranks

First, we shall define what we call a degenerate case in two dimensions.

Definition 1.7. Let ~B = (B1, B2, B3) ∈ (R2×2)3. Set ~BT = (BT1 , B
T
2 , B

T
3 ). Define the function

h( ~B) = (r( ~B), r( ~BT ), r(B2 −B3), r(B3 −B1), r(B1 −B2)),

where we treat ~B, ~BT as 6× 2 matrices and r(A) denotes the rank of a matrix A.

We call ~B ∈ (R2×2)3 a degenerate triple if h( ~B) 6= (2, 2, 2, 2, 2) and nondegenerate otherwise.

In the following theorem we classify ~B according to the value of h( ~B).

Theorem 1.8. Let ~B ∈ (R2×2)3. Up to a permutation of B1, B2, B3 it satisfies one and only
one of the following conditions

(I) h( ~B) = (2, 2, 2, 2, 2),

(II) h( ~B) = (2, 2, 2, 2, 1),

(III) h( ~B) = (2, 2, 2, 2, 0),

(IV) h( ~B) = (2, 2, 2, 1, 1),

(V) h( ~B) = (2, 1, 1, 1, 1),

(VI) h( ~B) = (1, 2, 1, 1, 1),

(VII) h( ~B) = (1, 1, 1, 1, 1)

(VIII) h( ~B) = (1, 1, 1, 1, 0),

(IX) h( ~B) = (0, 0, 0, 0, 0).

The estimate (1.3) is known to hold for ~B ∈ (R2×2)3 in all of the cases above, except for
Case (V). In Proposition 1.15 below we show that this case is very closely related to the well
known and difficult open problem of boundedness of the triangular Hilbert transform. For Cases
(VI) - (VIII), (1.5) follows from one dimensional paraproduct theory, see [CM75], [Mus+] and
time-frequency analysis, see [LT97], [LT99], while for Case (III) it follows from the standard
two dimensional singular integral theory. In Case (IX), it is easy to verify that BHFK~B equals
zero. Concerning the remaining cases, in [DT10] Demeter and Thiele proved that (1.3) holds

for ~B corresponding to Case (I) and Case (II). The boundedness for Case (IV) was proven by
Vjekoslav Kovač in [Kov12].

1.3.2 Symmetries of the form

Theorem 1.8 gives an overview of triples ~B, however, in what follows we wish to reduce the
dimensionality of this (12 parameter) space as much as possible, similarly as in one dimension

one reduces the initially 3 dimensional parameter space of vectors ~β to a one dimensional space.
In Proposition 1.10 we study translation and multiplication invariance of the form, which are
crucial for further classification. For a function f : R2 → C and a 2× 2 matrix A set

fA(x, y) := f(A(x, y)).
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We define for ~B = (B1, B2, B2) ∈ (R2×2)3 matrix A the left and the right multiplication opera-
tions as follows

A~B = (AB1, AB2, AB3), ~BA = (B1A,B2A,B3A).

Remark 1.9. If we treat ~B as a 2× 6 matrix, then the left multiplication is simply the matrix
multiplication of ~B from the left by A and the right multiplication is the multiplication of ~B from
the right by 6 × 6 matrix Id3 ⊗ A, where Id3 is the identity 3 × 3 matrix and ⊗ is the tensor
product.

Proposition 1.10. Let f1, f2, f3 be three Schwartz functions on R2 and 0 < p1, p2, p3 <∞ with∑3
j=1 1/pj = 1. Assume that Bj is a 2× 2 real matrix for j = 1, 2, 3. Moreover, let A be a 2× 2

real matrix. Then

• Translation invariance: we have

BHFK~B (f1, f2, f3) = BHFK~B−(A,A,A)
(f1, f2, f3). (1.10)

• Left multiplication invariance: if A is nonsingular, then we have

BHFK~B (f1, f2, f3) = |detA−1|BHFK
A~B

(fA
−1

1 , fA
−1

2 , fA
−1

3 ).

• Right multiplication invariance: if A is nonsingular, then we have

BHFK~B (f1, f2, f3) = |detA|BHFK◦A~BA
(f1, f2, f3). (1.11)

Remark 1.11. By a change of variables and Proposition 1.10, the translation and the left
multiplication of a triple ~B do not change the constant with which (1.3) holds. Observe that the
right multiplication, when applied with a non-orthogonal matrix, changes both the kernel and its
constants in (1.3), hence there is no straightforward invariance of (1.3) this case.

We also have the following invariance of the function h under left and right multiplication.

Proposition 1.12. Let ~B ∈ (R2×2)3 and let C,D ∈ R2×2 be nonsingular. Then

h( ~B) = h(C ~BD).

1.3.3 Classification of the parameter space modulo the symmetries

In the next theorem we give every case in Theorem 1.8 a canonical form. This completes the
classification given in [DT10] as well as will simplify the discussion later on. In view of the

translation symmetry (1.10), from now on we consider triples of matrices ~B = (B1, B2, B3)
satisfying

B1 +B2 +B3 = 0. (1.12)

Theorem 1.13. Let ~B ∈ (R2×2)3 satisfy (1.12). There exist two nonsingular C,D ∈ R2×2 such

that up to a permutation, ~B satisfies exactly one of the following with some λ, µ ∈ R

(1) (a)

C ~BD = (

(
1 0
0 1

)
,

(
λ 0
0 µ

)
,

(
−1− λ 0

0 −1− µ

)
),

with λ, µ 6= −2,−1/2, 1,
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(b)

C ~BD = (

(
1 0
0 1

)
,

(
λ µ
−µ λ

)
,

(
−1− λ −µ
µ −1− λ

)
),

with µ 6= 0,

(c)

C ~BD = (

(
1 0
0 1

)
,

(
λ 1
0 λ

)
,

(
−1− λ −1

0 −1− λ

)
),

with λ 6= −2,−1/2, 1,

(2) (a)

C ~BD = (

(
1 0
0 1

)
,

(
1 0
0 λ

)
,

(
−2 0
0 −1− λ

)
),

with λ 6= −2,−1/2, 1,

(b)

C ~BD = (

(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
−2 −1
0 −2

)
),

(3)

C ~BD = (

(
1 0
0 1

)
,

(
1 0
0 1

)
,

(
−2 0
0 −2

)
),

(4)

C ~BD = (

(
1 0
0 1

)
,

(
1 0
0 −2

)
,

(
−2 0
0 1

)
),

(5)

C ~BD = (

(
1 0
0 0

)
,

(
0 0
1 0

)
,

(
−1 0
−1 0

)
)

(6)

C ~BD = (

(
1 0
0 0

)
,

(
1 0
0 0

)
,

(
−2 0
0 0

)
),

(7)

C ~BD = (

(
1 0
0 0

)
,

(
λ 0
0 0

)
,

(
−1− λ 0

0 0

)
),

with λ 6= −2,−1/2, 1,
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(8)

C ~BD = (

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
−1 −1
0 0

)
),

(9)

C ~BD = (

(
0 0
0 0

)
,

(
0 0
0 0

)
,

(
0 0
0 0

)
).

We call a triple ~B canonical for Case(n) if it satisfies the condition for Case(n) with C = D = Id.

Moreover, if ~B corresponds to Case(n), then h( ~B) corresponds to Case(R(n)) in Theorem 1.8,
where R(n) is the Roman representation of n.

Note that Theorem 1.13 together with Proposition 1.12 implies Theorem 1.8. Case (1) and
(2) above have several subcases, all corresponding to Case (I) and Case (II), respectively. In what
follows we are not going to differentiate between (1a), (1b), (1c), since the proofs of boundedness
of BHF ~B in these cases [DT10] are identical, i.e. for our problem they are essentially the same.
We also remark that the proofs of (2a) and (2b) in [DT10] are similar. It is thus arguable that
they could be considered as a single case, but for historical reasons [DT10] we decided to treat
them as two subcases.

1.3.4 Geometry of the parameter space

The classification given in Theorem 1.13 effectively distinguishes different cases, however it does
not describe how the parameters degenerate. Namely, it requires multiplying the matrices from
the right by all nonsingular matrices and, in view of (1.11), it affects the defining constants of
the Calderón-Zygmund kernel K. In Theorem 1.14 below we put emphasis on uniformity and
classify ~B up to multiplication from the right by orthogonal matrices, which does not affect
the constant in (1.2). As we are going to see below, the parameter space has essentially three
connected components. The first one corresponds to the forms that act in both coordinates and
is homeomorphic to the three dimensional manifold S1 × S1 × S1. The forms acting in one
variable only form the two dimensional manifold homeomorphic to S1 × S1 with a submanifold
homeomorphic to S1 corresponding to the bilinear Hilbert transform in one dimension. The
trivial 0 form corresponds to {0}.

From now on we denote by Dα,β the diagonal matrix with eigenvalues α, β and by Rθ the
rotation by θ. We define the parameter space as follows. Let

Ω := S1 × S1 × [0, 2π) ⊂ R5,

where we identify the endpoints of the interval, hence treat it as S1; however, in the following
it will be handy to keep the explicitly parametrization in terms of angle. For a (β, γ, θ) ∈ Ω we
represent the triple that corresponds to a point (β, γ, θ) ∈ Ω

~Bβ,γ,θ = (Dβ1,γ1
, Dβ2,γ2

Rθ,−Dβ1,γ1
−Dβ2,γ2

Rθ).

Let U ⊂ Ω be defined as

U = {(β, γ, θ) ∈ Ω: β, γ 6= (0,±1)}
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Note that the closure of U equals Ω. Define the mapping F : U → R2 given by

F (β, γ, θ) := (
β2γ2

β1γ1
, (
β2

β1
+
γ2

γ1
) cos θ).

The role of function F is to encode the eigenvalues of the matrices of the triples ~B, which lets
us distinguish between different cases appearing in Theorem 1.13. Having defined the set of
parameters we can finally state the main theorem of this chapter.

Theorem 1.14. Let ~B ∈ (R2×2)3 satisfy (1.12). There exist a nonsingular C ∈ R2×2 and an

orthogonal Q ∈ R2×2 such that up to a permutation ~B satisfies

(A)

C ~BQ = ~Bβ,γ,θ,

with (β, γ, θ) ∈ Ω such that none of the conditions below is satisfied, if and only if ~B
corresponds to Case (1).

(B) (a)

C ~BQ = ~Bβ,γ,θ,

with (β, γ, θ) ∈ U , F (β, γ, θ) = (λ, λ+ 1), λ 6= −2,−1/2, 1, if and only if ~B corresponds
to Case (2a).

(b)

C ~BQ = ~Bβ,γ,θ,

with (β, γ, θ) ∈ U , F (β, γ, θ) = (1, 2) and θ 6= 0, π, if and only if ~B corresponds to Case
(2b).

(C)

C ~BQ = ~Bβ,γ,θ,

with (β, γ, θ) ∈ U , F (β, γ, θ) = (1, 2) and θ = 0, π, if and only if ~B corresponds to Case (3).

(D)

C ~BQ = ~Bβ,γ,θ,

with (β, γ, θ) ∈ U , F (β, γ, θ) = (−2,−1), if and only if ~B corresponds to Case (4),

(E)

C ~BQ = ~Bβ,γ,θ,

with (β, γ, θ) ∈ Ω, β = (1, 0) and γ = (0, 1) and θ = π/2, 3π/2, if and only if ~B corresponds
to Case (5),
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(F)

C ~BQ = ~Bβ,(0,0),0,

with β ∈ S1, β1 = β2, if and only if ~B corresponds to Case (6).

(G)

C ~BQ = ~Bβ,(0,0),0,

with β ∈ S1, β3 = 0 and β1 6= −2β2,−1/2β2, β2, if and only if ~B corresponds to Case (7).

(H)

C ~BQ = ~Bβ,(0,0),θ,

with β ∈ S1 and θ 6= 0, π, if and only if ~B corresponds to Case (8).

(I)

C ~BQ = ~B(0,0),(0,0),0,

if and only if ~B corresponds to Case (9).

1.3.5 Uniform bounds conjecture

In view of the classification given in Theorem 1.14 we state a conjecture that implies the uniform
bounds in all ~B ∈ (R2×2)3.

Conjecture. Let K be a family of Calderón-Zygmund kernels K, such that (1.2) holds. There
exists a constant Cp1,p2,p3 < ∞, such that for all f1, f2, f3 ∈ S(R2) and 2 < p1, p2, p3 < ∞ with∑3
j=1 1/pj = 1

BHFK~Bβ,γ,θ
(f1, f2, f3) ≤ Cp1,p2,p3

3∏
i=1

‖fi‖Lpi (R2),

uniformly in (β, γ, θ) ∈ Ω and K ∈ K.

In view of Proposition 1.19 below, in order to obtain uniform bounds for all (β, γ, θ) ∈ Ω, it
suffices to prove the uniform bounds for any dense subset of Ω. Correspondingly, in order prove
(1.3) for some Bβ,γ,θ, it is enough to prove the uniform bounds for {Bβn,γn,θn} for a sequence
(βn, γn, θn)→ (β, γ, θ). We discuss a number of uniform questions related to Conjecture 1.3.5 in
the last section of this chapter.

1.3.6 Connection to the triangular Hilbert transform

In this subsection we shall see how Case (5) relates to the triangular Hilbert transform. Let

f1, f2, f3 be three Schwartz function on R2. Let ~B be the canonical triple in Case (5). The
triangular Hilbert transform is defined as

Λ4(f1, f2, f3) :=

ˆ
R3

3∏
j=1

fj((x, y) +Bj(s, 0))
ds

s
dx dy
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In [KTZK15] it was shown that, if one assumes that Λ4 is Lp bounded, then (1.3) holds for

odd and homogeneous kernels K of degree 2 uniformly in ~B. Moreover, in the same paper, the
inequality (1.3) was proven for a dyadic model of Λ4, under an additional assumption that one
of the three functions is of a special form.

In the following we show that Case (5) above corresponds to the triangular Hilbert transform,
in the sense that the triangular Hilbert transform can be recovered choosing an appropriate
kernel. Specifically, we have the following proposition.

Proposition 1.15. Let ~B the canonical triple for Case (5). There exists a Calderón-Zygmund
kernel K such that for all triples f1, f2, f3 of Schwartz functions on R2 we have

BHFK~B (f1, f2, f3) = Λ4(f1, f2.f3).

1.4 Proofs

Note that Theorem 1.8 follows directly from Proposition 1.12 and Theorem 1.13, which we prove
later on in this section.

Proof of Proposition 1.10. Translation invariance:

BHFK~B−(A,A,A)
= BHFK~B

follows from a simple change of variables in (x, y). Thus the inequality does not change.
Left multiplication invariance: rewrite BHFK~B (f1, f2, f3) as follows

ˆ
R4

3∏
j=1

fA
−1

j (A(x, y) +ABj(s, t))K(s, t) dx dy ds dt.

Changing variables A(x, y) 7→ (x, y) this is equal to

|detA−1|
ˆ

R4

3∏
j=1

fA
−1

j ((x, y) +ABj(s, t))K(s, t) dx dy ds dt

= |detA−1|BHFK
A~B

(fA
−1

1 , fA
−1

2 , fA
−1

3 ).

Right multiplication invariance: this follows by the change of variables (s, t) 7→ A(s, t). Note
that K(A(s, t)) remains a Calderón-Zygmund kernel (possibly with different constants).

Proof of Proposition 1.12. Clearly multiplying any of B2 − B3, B3 − B1, B1 − B2 from the left
and from the right by a nonsingular matrix does not change their ranks. Thus, we only have to
prove r(C ~BD) = r( ~B) and r(DT ~BTCT ) = r( ~BT ), for nonsingular C,D ∈ R2×2. By symmetry,

it suffices to show that r(C ~B) = r( ~B) and r( ~BD) = r( ~B). Using Remark 1.9, the first identity
follows, because C is a 2× 2 matrix of rank 2 and the second identity follows, because Id3 ⊗D
is a 6× 6 matrix of rank 6.

Proof of Theorem 1.13.
1. First we show that for any triple ~B there exist nonsingular C, D such that C ~BD corre-

sponds to one of the cases.
Assume that one of B1, B2, B3 is nonsingular. Without loss of generality we may assume

that B1 is nonsingular. Multiplying from the left by B−1
1 we may assume that ~B = (Id,B2, B3).



1.4. Proofs 11

Moreover, we may multiply from the left by A and right by A−1, for an appropriate, so that
AB2A

−1 is of canonical Jordan form. Hence there exist two nonsingular matrices C, D such that
up to a permutation C ~BD belongs to at least one of Cases (1) - (4).

Now, assume that all B1, B2, B3 are singular. If they are all zero, then ~B corresponds to Case
(9). Otherwise, without loss of generality B1 and B2 have rank 1 (by (1.12) it is not possible

that only one of the coordinates of ~B is nonzero). Let (v, w) denote the 2×2 matrix with vectors
v, w as columns. It must hold that B1 = (λ1v1, µ1v1), B2 = (λ2v2, µ2v2), where λj , µj ∈ R for
j = 1, 2 and at least one number of the pair λ1, λ2 and of the pair µ1, µ2 is nonzero. Now, there
are two possibilities, either v1, v2 are linearly independent or not. If they are, then multiplying
from the left we may assume that B1 = (λ1e1, µ1e1), B2 = (λ2e2, µ2e2), where e1, e2 are the
standard basis vectors. Moreover, multiplying from the right by an appropriate matrix we may
assume that the first row of B1 is (1, 0), second row is zero and the first row of B2 is zero and
the second row is (1, 0) (it cannot be (0, 1) because r(B3) ≤ 1). This correspond to Case (5). If

v1, v2 are linearly dependent, then using similar arguments one can show that ~B corresponds to
one of Case (6)-(8).

2. Now we prove that there is exactly one case that ~B corresponds to. First, note that it
follows from Proposition 1.12 that h( ~B) is invariant under multiplying ~B from the left and right
by a nonsingular matrix. Thus h differentiates between all of the cases except maybe (1a), (1b)
(1c) and the pair (2a), (2b), whose values of h coincide. In order prove the statement for these

assume that we have two triples ~A, ~B, each of which contains at least one nonsingular matrix
and there exist two nonsingular matrices C, D such that

{CA1D,CA2D,CA3D} = {B1, B2, B3}.

Without loss of generality, we may assume that ~A, ~B are both canonical triples and A1 = B1 =
Id. If C = D−1, then {A2, A3} and {B2, B3} must have the same Jordan form, which implies
that {Id,A2, A3} must correspond to the same Case as {Id,B2, B3}. If C 6= D−1, then, without
loss of generality assume that CD = B2 and CA2D = Id. This implies that D−1A2D = B−1

2 .
In other words the Jordan canonical form of A2 is B−1

2 . It is easy to verify that that is not

possible if ~A, ~B belong to different subcases of Case (1), or similarly, if ~A belongs Case (2a) and
~B belongs to Case (2b).

It follows from the previous theorem that the “more degenerate” cases (5) - (8) have some
structural properties that can be easily explained in terms of column vectors. The following
corollary will be helpful in the proof of 1.14.

Corollary 1.16. Let (v, w) denote the 2× 2 matrix with vectors v, w as columns.

• B1 = (λv1, µv1), B2 = (λv2, µv2) for two linearly independent vectors v1, v2 and a nonzero

vector (λ, µ) if and only if ~B corresponds to Case (5).

• B1 = (v, v), B2 = λ(v, v) for a nonzero vector v and λ = −2,−1/2, 1 if and only if ~B
corresponds to Case (6).

• B1 = (v, v), B2 = λ(v, v) for a nonzero vector v and λ 6= −2,−1/2, 1 if and only if ~B
corresponds to Case (7).

• B1 = (λ1v, µ1v), B2 = (λ2v, µ2v) for a nonzero vector v and two linearly independent

vectors (λ1, µ1), (λ2, µ2) if and only if ~B corresponds to Case (8).

Proof. Follows from the classification given in Theorem 1.13.
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Proof of Theorem 1.14.
(⇐= ):

1. First assume that ~B belongs to one of Cases (1) - (4) in Theorem 1.13, i.e. without loss
of generality we may assume that B1 is nonsingular.

First step: replace B1, B2 by B−1
1 B1, B−1

1 B2. This way we may reduce to ~B = (Id,B,−Id−
B).

Second step: recall that there exists the polar decomposition of any real matrix B, meaning
that

B = PQ̃

where Q̃ is a real orthogonal matrix and P is symmetric, positive semi-definite. We can diago-
nalize P conjugating by an orthogonal real matrix V

D = V PV T .

Thus, conjugating B = PQ̃ by V

V BV T = V PV TV Q̃V T = DQ,

where Q = V Q̃V T is an orthogonal matrix. Hence conjugating by orthogonal real matrices we
may reduce ~B to the form (Id,DQ,−Id−DQ).

Third step: let λ and µ be the (real) eigenvalues of D. Multiplying from the left by(
1√

1+λ2
0

0 1√
1+µ2

)

we reduce to (Dβ1,γ1
, Dβ2,γ2

Q,−Dβ1,γ1
− Dβ2,γ2

Q), with β, γ ∈ S1. By the characterization of
2×2 orthogonal matrices Q is either a rotation or a reflection. Note that D−1,1 times a reflection
is a rotation. Hence, we may always replace a reflection with a rotation and obtain the desired
form of the triple ~B.

2. Assume that ~B belongs to Case (5) in Theorem 1.13. By Corollary 1.16 a triple that
belongs to this case is of the form

B1 = (λv1, µv1), B2 = (λv2, µv2), B3 = (−λ(v1 + v2),−µ(v1 + v2)),

for two linearly independent vectors v1, v2 and a nonzero vector (λ, µ). Multiplying from the left
by the matrix that maps v1 7→ (1, 0) and v2 7→ (0, 1) we reduce this triple to(

λ µ
0 0

)
,

(
0 0
λ µ

)
,

(
−λ −µ
−λ −µ

)
Multiplying once more from the left we may normalize ‖(λ, µ)‖ = 1 and multiplying from the
left by the transpose of the rotation that maps (λ, µ) 7→ (1, 0) we further transform the triple to(

1 0
0 0

)
,

(
0 0
1 0

)
,

(
−1 0
−1 0

)
.

3. Assume that ~B belongs to one of Cases (6)-(8) in Theorem 1.13. First, suppose that ~B
corresponds to Case (8). Then by Lemma 1.16 B1 = (λ1v, µ1v) and B2 = (λ2v, µ2v) for a
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nonzero vector v and two linearly independent vectors (λ1, µ1), (λ2, µ2). Multiplying from the
left by the matrix that maps v 7→ (1, 0) we may assume that

B1 =

(
λ1 µ1

0 0

)
, B2 =

(
λ2 µ2

0 0

)
,

Multiplying ~B from the right by the transpose of the rotation that maps (λ1, µ1) 7→ (α, 0) (for

some α ≥ 0 depending on the length of (λ1, µ1)) we may reduce ~B to (Dα,0, Dβ,0Q,−Dα,0 −
Dβ,0Q), for some α, β ≥ 0. Finally, multiplying from the left we can normalize so that the

triple has the desired form. Using similar arguments one can prove the desired form of triples ~B
corresponding to Cases (6), (7).

( =⇒ ):

1. Consider ~Bβ,γ,θ that satisfies one of the conditions (A) - (D). Without loss of generality we

may assume that B1 is nonsingular, i.e. β1, γ1 6= 0. Multiplying ~Bβ,γ,θ from the left by Dβ−1
1 ,γ−1

1

it becomes (Id,B,−Id−B), where

B =

(
β2

β1
cos θ −β2

β1
sin θ

γ2

γ1
sin θ γ2

γ1
cos θ

)
.

Observe that the eigenvalues λ1, λ2 of B satisfy

F (β, γ, θ) = (λ1λ2, λ1 + λ2).

We shall need the following lemma.

Lemma 1.17. Assume that ~B = (Id,B,−Id−B). ~B corresponds to

• Case (2a) if and only if B has two eigenvalues and exactly one of them in {−2,− 1
2 , 1}

• Case (2b) if and only if B is similar to a Jordan block with an eigenvalue in {−2,− 1
2 , 1}

• Case (3) if and only if B is diagonalizable with two equal eigenvalues in {−2,− 1
2 , 1}

• Case (4) if and only if B has two different eigenvalues in {−2,− 1
2 , 1}

Otherwise, ~B corresponds to Case (1).

Proof. Follows from changing the basis so that B has the Jordan canonical form and Theorem
1.13.

Then, the proof follows from analysis of the product and the sum of possible pairs of eigen-
values for B2 given the value of F (β, γ, θ) and using Lemma 1.17, assuming that B1 = Id.

2. Assume that ~Bβ,γ,θ corresponds to Case (E). Note that in view of Corollary 1.16 this
triple must correspond to Case (5).

3. Assume that ~Bβ,γ,θ corresponds to Case (H), i.e. β ∈ S1, γ = (0, 0) and θ 6= 0, π, then by

Corollary 1.16 it corresponds to (8). Similarly, the desired implication follows for triples ~Bβ,γ,θ
corresponding to Case (F), (G).

This finishes the proof of the theorem.
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Proof of Proposition 1.15. Let ϕ, ψ be smooth, compactly support functions on R. Additionally
assume that ϕ has mean zero, ψ has mean one. Define for k ∈ Z, ϕk(u) := 1

2k
ϕ( u

2k
), ψk(u) :=

1
2k
ψ( u

2k
) and assume that for s 6= 0

1

s
=
∑
k∈Z

ϕk(s).

Define K as follows

K(s, t) =
∑
k∈Z

ϕk(s)ψk(t).

One can easily check that K is a valid Calderón-Zygmund kernel. Moreover, we have

BHF ~B(f1, f2, f3)

=
∑
k∈Z

ˆ
R3

ˆ
R

3∏
j=1

fj((x, y) +Bj(s, 0))ϕk(s)ψk(t) dt ds dx dy

=
∑
k∈Z

ˆ
R3

ˆ
R

3∏
j=1

fj((x, y) +Bj(s, 0))ϕk(s) ds dx dy

=
∑
k∈Z

ˆ
R3

ˆ
R

3∏
j=1

fj((x, y) +Bj(s, 0))
ds

s
dx dy = Λ4(f1, f2, f3).

1.5 Closing remarks

In Theorem 1.14, we described the parameter space of (1.1) as having three connected compo-
nents, homeomorphic to (S1)3, (S1)2 (with a submanifold homemorphic to S1, which is corre-
sponding to the one dimensional bilinear Hilbert transform) and a single point. Moreover, we
distinguished several subsets of (S1)3, given by preimages of certain values of the function F ,
corresponding to different operators in harmonic analysis. In this section, we give a summary of
the uniform questions on the manifold (S1)3. If there exists a sequence of points corresponding
to Case (X), convergent to a point corresponding to Case (Y ), we say that Case (Y ) can be
approached by Case (X).

Proposition 1.18. We have that:

• Case (Ba) can be approached by Case (A)

• Case (Bb) can be approached by Case (Ba) and Case (A),

• Case (C) can be approached by Case (Bb), Case (Ba) and Case (A).

• Case (D) can be approached by Case (Ba) and Case (A),

• Case (E) can be approached by Case (D), Case (Ba), Case (Bb) and Case (A),

Proof. Case (A): it can approach all other cases simply by density: the triples corresponding
(A) are dense in S1 × S1 × [0, 2π).
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Case (Ba): it can approach all cases except for (A), which it cannot approach because of
the value of function F . For the other cases, except for Case (E), it can be seen choosing a
convergent sequence of parameters (βn, γn, θn) ∈ U such that

lim
n→∞

F (βn, γn, θn) = (λn, λn + 1),

where λn 6∈ {−2,−1/2, 1} with the limit in {−2,−1/2, 1}. Note, however, that since the function
F is not defined for Case (E), it requires a different argument. In this situation it is enough to
notice that there exists a sequence of parameters (βn, γn, θn) ∈ U with

(βn, γn, θn)→ ((1, 0), (0, 1), π/2),

F (βn, γn, θn) = (λ, λ+ 1), λ 6∈ {−2,−1/2, 1}.

Case (Bb): it can be seen that it can approach Case (C) by choosing a convergent sequence
(βn, γn, θn) ∈ U with F (βn, γn, θn) = (1, 2) and θn → 0. Moreover, it can approach Case (E)
arguing like in the previous paragraph.

Cases (C) and (E) correspond to a finite set in S1×S1 ∈ [0, 2π) and hence it cannot approach
any other case on the manifold.

Case (D): it can approach (E) using similar argument as before. One can see that it cannot
approach any other case on S1 × S1 × [0, 2π) by investigating the values of the function F it
corresponds to.

At the end of this chapter we prove a continuity result for the form BHF with respect to
triples ~B. Precisely, we have the following.

Proposition 1.19. Let 0 < p1, p2, p3 <∞ with
∑3
j=1 1/pj = 1. Let BHFε denote the truncation

of the integral defining BHF to ε ≤ |(t, s)| ≤ 1/ε. Suppose that ~Bn → ~B and there exists a
constant C > 0 such that for any ε > 0, n ∈ N and any triple of Schwartz functions f1, f2, f3

on R2

BHFε~Bn
(f1, f2, f3) ≤ C

3∏
j=1

‖fj‖Lpj (R2).

Then for any triple of Schwartz function f1, f2, f3 and any ε > 0

BHFε~B(f1, f2, f3) ≤ C
3∏
j=1

‖fj‖Lpj (R2).

Note that in view of Proposition 1.19, for Conjecture 1.3.5 it suffices to prove boundedness
in a dense set of parameters.

Proof of Proposition 1.19. Let us fix a triple of Schwartz functions f1, f2, f3. Since ε > 0, for
any δ > 0 and n ≥ Nδ large enough we have

|BHFε~B(f1, f2, f3)|
≤ |BHFε~B(f1, f2, f3)− BHFε~Bn

(f1, f2, f3)|+ |BHFε~Bn
(f1, f2, f3)|

≤ δ + |BHFε~Bn
(f1, f2, f3)|

≤ δ + C

3∏
j=1

‖fj‖Lpj (R2).

This finishes the proof.
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Chapter 2

Uniform bounds for the bilinear
Hilbert transform in local L1

2.1 Introduction

In this chapter we present a joint work with Gennady Uraltsev which will be a part of a publi-
cation. Thus, we start with giving a self-contained introduction to the problem, which may be
somewhat repetitive when compared with the introduction of this thesis.

The trilinear form associated through duality to the bilinear Hilbert transform is given by

BHF~β(f1, f2, f3) :=

ˆ
R

ˆ
R

3∏
j=1

fj(x− βjt) dx
dt

t
, (2.1)

where f1, f2, f3 are Schwartz functions on the real line and ~β = (β1, β2, β3) ∈ R3 is a unit vector
with pairwise distinct coordinates perpendicular to ~1 := (1, 1, 1). One is interested in proving
the a priori Lp bounds for this form

|BHF~β(f1, f2, f3)| ≤ Cp1,p2,p3,β‖f1‖Lp1 (R)‖f2‖Lp2 (R)‖f3‖Lp3 (R). (2.2)

By scaling, the exponents in (2.2) should satisfy 1/p1 + 1/p2 + 1/p3 = 1, which we will assume
throughout.

In [LT97] Lacey and Thiele proved first estimates of the type (2.2). They showed that
(2.2) holds in the range 2 < p1, p2, p3 < ∞, with a constant dependent only on p1, p2, p3

and ~β. This corresponds to the open triangle c in Figure 2.1. The range of exponents for the
inequality (2.2) was extended in [LT99] to the range that coincides with the convex hull of the
open triangles a1, a2, a3 in Figure 2.1. The bounds outside of the range 1 < p1, p2, p3 < ∞
are in the sense of restricted weak type, we refer to [Thi06] for details of restricted weak type
interpolation. Inspired by the works of Carleson [Car66] and Fefferman [Fef73], the main tool
that was used by the authors of [LT97], [LT99] was time-frequency analysis, i.e. techniques
based on localizing functions f1, f2, f3 both in space and frequency. As noted in [Dem+08], the
time-frequency approach shares some similarities with Bourgain’s argument in [Bou88] in the
context of convergence of bilinear ergodic averages.

When two of the components of ~β are equal, the trilinear form BHF~β becomes a composition
of the Hilbert transform and the pointwise product. More precisely, up to a symmetry it equalsˆ

R
Hf1(x) f2(x) f3(x) dx, (2.3)
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which immediately implies boundedness for 1 < p1, p2, p3 <∞ by Hölder’s inequality and bound-
edness of the Hilbert transform. While in [LT97], [LT99] the dependence of the constant in (2.2)

is not explicitly stated in terms of ~β, one can show it grows linearly in mini 6=j |βi − βj |−1. This
raised the question asked in [LT99]: can one prove that

|BHF~β(f1, f2, f3)| ≤ Cp1,p2,p3
‖f1‖Lp1 (R)‖f2‖Lp2 (R)‖f3‖Lp3 (R) (2.4)

holds with a constant Cp1,p2,p3
independent of ~β and if so, in what range of exponents? The form

is symmetric under permutations of (β1, β2, β3), hence from now on let us assume that ~β is in
the vicinity of the degenerate case β2 = β3. Since in the degenerate case the trilinear form equals
(2.3) and the classical Hilbert transform is not L∞ bounded, uniform bounds cannot hold for
α1 ≤ 0. This corresponds in Figure 2.1 to the region below the line spanned by (0, 0, 1), (0, 1, 0).
Moreover, the maximal range for which the parameter dependent bounds (2.2) are known, is the
convex hull of the open triangles a1, a2, a3. The intersection of the two regions is the convex
hull of the open triangles b3, b2, a3 and a2.

A lot of progress has been made in the direction of the uniform bounds. The inequality
(2.4) was proven with a constant independent of ~β in several papers: Thiele [Thi02a] proved a
weak type inequality at the two upper corners of the triangle c in Figure 2.1, Grafakos and Li
[GL04] showed the inequality in the open triangle c, and Li [Li06] proved the bounds in the open
triangles a1, a2. By interpolation one obtains (2.4) in the range corresponding the convex hull
of the open triangles a2, a3 and c, see Figure 2.1. What however was not known up to date, is
whether the uniform bounds hold in the vicinity of (1/p1, 1/p2, 1/p3) = (0, 0, 1), (0, 1, 0). The
purpose of this article is to resolve precisely this issue. Here is our main result.

a2 b1 a3

b3 b2

a1

c

(0, 0, 1) (0, 1, 0)

(1, 0, 0)

Figure 2.1: Range of exponents (α1, α2, α3) = (1/p1, 1/p2, 1/p3) with
∑3
j=1 αj = 1. The uniform

bounds were previously known to hold in the convex hull of the open triangles a2, a3 and c.
Theorem 2.1 implies the uniform bounds in the convex of the open triangles a2, a3, b2 and b3.

Theorem 2.1. Let 1/p1 + 1/p2 + 1/p3 = 1 with 1 < p1, p2, p3 < ∞. There exists a constant

Cp1,p2,p3
< ∞ such that for all ~β and all triples of Schwartz functions f1, f2, f3 the inequality

(2.4) holds.

Interpolated with the result of Li [Li06] this extends the uniform inequality (2.4) to the
exponents corresponding to the convex hull of the open triangles a2, a3, b2 and b3, see Figure
2.1. We remark that Oberlin and Thiele [OT11] proved a counterpart of the uniform inequality
(2.4) for a Walsh model of the bilinear Hilbert transform in the same range.
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It is stated in [LT97], [Thi02a] that Calderón considered the bilinear Hilbert transform in the
1960’s in the context of the Calderón first commutator. This operator is given by

C1(f)(x) =

ˆ
A(x)−A(y)

(x− y)2
f(y) dy,

where A is a Lipschitz function. It is a well known result of Calderón [Cal65] that C1 is Lp

bounded for 1 < p <∞. As said in [Thi02a], one of the initially unsuccessful approaches, which
motivated the study of the bilinear Hilbert transform, was to rewrite it formally using the mean
value theorem as

C1(f)(x) =

ˆ 1

0

ˆ
f(y)A′(y + α(x− y))

1

x− y
dy dα.

By duality, in order to prove Lp boundedness of C1, it suffices to show that the form BHF~β(f1, f2, A
′)

is bounded for p3 = ∞ and 1 < p1, p2 < ∞ with 1/p1 + 1/p2 = 1, and a constant independent

of ~β. Therefore Theorem 2.1 together with [Li06] gives an alternative proof of Calderón’s result.
We record that that yet another proof of this theorem was given by Muscalu [Mus14]. Let us
also remark that recently in [Gre+16], the uniform bounds found an application in the context
of a trilinear form acting on functions on R2, which possesses the full GL2(R) dilation symmetry.
The boundedness of this form is reduced to a fiber-wise application of the result from [GL04],
see [Gre+16] for details.

On the technical side, we refine the outer measure approach gradually developed in the
sequence of papers [DT15], [DPO15], [Ura16]. In the paper [DT15], Do and Thiele reformulated
the problem of boundedness of the bilinear Hilbert transform into proving an outer Hölder
inequality on the upper half space R3

+ := R×R×R+ and an embedding theorem. Their methods
work in the range 2 < p < ∞. The embedding was later extended to the range 1 < p < ∞ by
Di Plinio and Ou in [DPO15] and reformulated in [Ura16] as an iterated embedding theorem.
We shall follow the latter approach. In key Theorem 2.2 below we prove an inequality that can
be viewed as a trilinear outer Lp estimate for the wave packet decomposition of BHF~β uniform

in the parameter ~β. We record that while in [DT15], [DPO15], [Ura16] the main difficulty are
embedding theorems, in this chapter we are concerned with the multilinear inequality. Having
it proven, we can apply off the shelf, though difficult, embedding theorem shown in [DPO15].

It is well known that the trilinear form BHF~β is symmetric under translations, modulations

and dilations. Following [DT15], we parametrize these actions by (y, η, t) in the upper half space
R3

+. Let Φ be the class of Schwartz functions whose Fourier transform is supported in (−1, 1)
and such that for a fixed large natural number N and a constant A > 0 satisfy

sup
n,m≤N

sup
x∈R

(1 + |x|)n|ϕ(m)(x)| ≤ A <∞

Moreover, let Φ∗ ⊂ Φ be the class of Schwartz functions whose Fourier transform is supported
in (−2−8b, 2−8b) for some 0 < b < 2−8, which is fixed throughout this chapter. For ϕ ∈ Φ set
ϕη,t(x) := 1

t e
iηxϕ(xt ) and

Fϕ(f)(y, η, t) := f ∗ ϕη,t(y), (2.5)

F (f)(y, η, t) := sup
ϕ∈Φ
|Fϕ(f)(y, η, t)|, (2.6)

F ∗(f)(y, η, t) := sup
ϕ∈Φ∗

|Fϕ(f)(y, η, t)|,

F (f)(y, η, t) := (F (f)(y, η, t), F ∗(f)(y, η, t)) (2.7)
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where (y, η, t) ∈ R3
+. In the vein of [DT15] we rewrite the problem of boundedness of the bilinear

Hilbert transform as a problem for a trilinear integral over R3
+

Λ~β(Fϕ(f1), Fϕ(f2), Fϕ(f3)) :=

ˆ
R3

+

3∏
j=1

Fϕ(fj)(y, αjη + δβjt
−1, |αj |−1t) dt dη dy, (2.8)

where ~α := (α1, α2, α3) ∈ R3 is the unit vector perpendicular to ~β and~1, and δ := min(|α1|, |α2|, |α3|).
It was shown in [Ura16] that the results of [DT15] imply that for ϕ ∈ Φ∗ the following inequality
holds

|Λ~β(Fϕ(f1), Fϕ(f2), Fϕ(f3))| ≤ Cp1,p2,p3,~β

3∏
j=1

‖Fϕ(fj)‖Lpj -Lqj (S) (2.9)

for
∑3
j=1 1/pj = 1 with 1 < pj < ∞ and

∑3
j=1 1/qj = 1 with 2 < qj < ∞. On the right hand

side of (2.9) are iterated outer Lp norms developed in [Ura16] that we define precisely in Section
2.3. Following [Ura16] we write the embedding theorem of [DPO15] as

‖Fϕ(f)‖Lp-Lq(S) ≤ Cp‖f‖Lp(R) for p > 1 and q > max(p′, 2) (2.10)

Coupled with (2.9) it in particular implies Lp boundedness of the bilinear Hilbert transform (2.1)
in the local L1. In this chapter we prove a counterpart of (2.9) with a constant uniform in the

parameter ~β. Here is our result.

Theorem 2.2. Let 1/p1 + 1/p2 + 1/p3 = 1 with 1 < p1, p2, p3 <∞ and 1/q1 + 1/q2 + 1/q3 > 1

with 2 < q1, q2, q3 <∞. There exists a constant Cp1,p2,p3 <∞ such that for all ~β and all triples
of Schwartz functions f1, f2, f3

sup
ϕ∈Φ∗

|Λ~β(Fϕ(f1), Fϕ(f2), Fϕ(f3))| ≤ Cp1,p2,p3

3∏
j=1

‖F (fj)‖Lpj -Lqj (S∞,S). (2.11)

Again, we postpone the precise definitions of iterated Lp norms to Section 2.3. There are
several differences between our result (2.11) and (2.9). First of all, given the nature of the

problem, we have to prove the estimate with a constant independent of ~β. Moreover, as opposed
to [DT15] we do not prove a Hölder inequality, but prove the inequality using the Marcinkiewicz
multilinear interpolation for outer Lp spaces. This is caused by the fact that we keep the absolute
values outside of the form, since one needs to decompose the functions in question further, using
so-called telescoping. Another difference is the appearance of the supremum embedding (2.7)
instead of (2.5) on the right hand side. The supremum is required by our methods. Observe
that we get the supremum on the left hand side “for free”, simply because the inequality holds
for any ϕ in the given class. We shall need a counterpart of the embedding theorem (2.10) for
(2.6). Let p > 1 and q > max(p′, 2). Then

‖F (fj)‖Lp-Lq(S∞,S) ≤ Cp,q‖fj‖Lp(R) for j = 1, 2, 3 (2.12)

The proof of (2.12) is an simple modification of the arguments in [DPO15]. We record that
the supremum embedding (2.6) was already considered by Muscalu, Tao and Thiele in [MTT02],
where they proved the uniform bounds for a n-linear counterpart of the bilinear Hilbert transform
in the local L2 range. One of the ingredients in their proof is essentially equivalent to the above
embedding theorem for 2 < p <∞ in a discretized setting.
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Coupled with the embedding theorem (2.12), Theorem 2.2 implies boundedness of the bilinear

Hilbert transform uniformly in ~β in the local L1 Banach triangle, Theorem 2.1. This chapter is a
continuation of studies in [War15], where the uniform estimate (2.4) was reproved in the local L2

range using the outer measure approach. In that case no iterated outer Lp theory was needed.
Instead, it was shown that noniterated counterparts of the trilinear outer Lp inequality and the
embedding theorem hold with a constant independent of the parameter ~β for pj > 2.

2.1.1 Structure of the chapter

The rest of this chapter is organised as follows.
In Section 2.2 we obtain a wave packet decomposition for the bilinear Hilbert transform

Proposition 2.3. Having the decomposition in hand, we give a proof of Theorem 2.1 assuming
Theorem 2.2.

In Section 2.3 we recall the abstract outer Lp spaces. We prove multilinear interpolation
for outer Lp spaces with a general trilinear form Λ, Proposition 2.10. Then, we review the
outer measure structure on R3

+ and adapt it for our purpose. In particular we define sizes (i.e.
seminorms) of functions on R3

+ and the generated outer Lp norms. Due to the nature of our

problem we need sizes that dependent on the parameter ~β.
In Section 2.4 we prove several auxiliary inequalities for outer Lp spaces on R3

+, including the

fact that ~β dependent outer Lp norms are dominated by the Lp norms which are independent
of the degeneration, Proposition 2.31. The main advantage of this fact is that we can use the
iterated embedding (2.12), which is independent of ~β.

In Section 2.5 we prove the trilinear inequality for the iterated Lp spaces, Theorem 2.2. The
proof requires two localized estimates for Λ~β uniform in ~β, corresponding to the two iterations
of the outer measure structure. The first one is a time-scale localized estimate Proposition 2.52
and the second one is a frequency-scale localized estimate, Proposition 2.53.

2.2 Wave packet decomposition

From now on we fix ~β and all constants in our statements are going to be independent of ~β. In
this section we obtain a wave packet decomposition (2.8) for (2.1), and give a proof of Theorem
2.1 assuming Theorem 2.2. At the end we introduce a slightly less symmetric equivalent trilinear
form, which is, however, easier to deal with.

2.2.1 Wave packet decomposition in R3
+ and proof of Theorem 2.1

We follow the wave packet decomposition in [DT15], however since here we are concerned with the

uniform bounds, it is important to keep explicit dependence on ~β as it degenerates. A similar, but
discretized, wave packet decomposition for the uniform bounds appears for example in [Thi02a],
[MTT02]. Roughly, the difference is that in [Thi02a], [MTT02] the phase plane projections on
the enlarged time-frequency rectangles of area δ−1 are considered, while our decomposition in
the discrete setting splits the enlarged rectangle into δ−1 rectangles of area 1 with a common
frequency interval, see also Chapter 3 for such discretized decomposition.

From now on, assume that |β2 − β3| � 1, hence |α1| � 1, |α2|, |α3| ' 1, α2 ≈ −α3.

Proposition 2.3. There exist ϕ ∈ Φ∗ and constants c1, c2 6= 0 independent of the parameter ~β
such that

BHF~β(f1, f2, f3) = c1Λ~β(Fϕ1 , F
ϕ
2 , F

ϕ
3 ) + c2

ˆ
R
f1(x)f2(x)f3(x) dx,
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where Fϕj := Fϕ(fj) for j = 1, 2, 3.

Using the wave packet decomposition and assuming the iterated Hölder inequality Theorem
2.2 we can now give a proof of Theorem 2.1.

Proof of Theorem 2.1. We have that there exists ϕ ∈ Φ and constants c1, c2 independent of ~β
such that

BHF~β(f1, f2, f3) = c1Λ~β(Fϕ1 , F
ϕ
2 , F

ϕ
3 ) + c2

ˆ
R
f1(x)f2(x)f3(x)dx.

holds. The second integral on the right hand side is clearly bounded in the local L1 by the Hölder
inequality. Applying Theorem 2.2 we obtain that

|Λ~β(Fϕ1 , F
ϕ
2 , F

ϕ
3 )| ≤ Cp1,p2,p3

‖F1‖Lp1-Lq1 (S)‖F2‖Lp2-Lq2 (S)‖F3‖Lp3-Lq3 (S)

for 1 < p1, p2, p3 < ∞ with 1/p1 + 1/p2 + 1/p3 = 1 and any 2 < q1, q2, q3 < ∞ with 1/q1 +
1/q2 + 1/q3 > 1. Choosing such qj ’s with qj > max(p′j , 2) and applying (2.12) (for more details,
see Proposition 2.25 below) the last display is bounded by

Cp1,p2,p3
‖f1‖p1

‖f2‖p2
‖f3‖p3

.

This finishes the proof of Theorem 2.1.

Now we give the proof of Proposition 2.3.

Proof of Proposition 2.3. Choose ~α ∈ R3, so that together ~1 := (1, 1, 1), ~β they form an or-
thonormal basis of R3. Moreover, since we assumed that |β2 − β3| is small, we have |α1| =
min(|α1|, |α2|, |α3|). The wave packet decomposition shall be obtained in terms of the embed-

ding (2.6). Let ~f be the tensor product of f1, f2 and f3. Let us rewrite

BHFβ(f1, f2, f3)

=

ˆ
R

ˆ
R
f1(x− β1t)f2(x− β2t)f3(x− β3t)dx

dt

t

=

ˆ
R3

~f(x ·~1 + ρ · ~α− t · ~β) dx δ0(ρ) dρ
dσ

σ

The right hand side is equal to

−i
ˆ

R3

~̂f(x̂ ·~1 + ρ̂ · ~α− σ̂ · ~β) δ0(x̂)dx̂ dρ̂ sgn(σ̂) dσ̂

Adding and subtracting a multiple of
´

R f1(x)f2(x)f3(x)dx we may concentrate on the half-line
σ̂ ∈ (0,∞). Thus in the following we shall perform a wave packet decomposition of

ˆ
R3

~̂f(x̂ ·~1 + ρ̂ · ~α− σ̂ · ~β) δ0(x̂)dx̂ dρ̂1(0,∞)(σ̂) dσ̂. (2.13)

The time-frequency decomposition depends on the fact, how do we decompose 1(0,∞)(t̂) inside

the integral. Let ~̂ϕ be the tensor product of ϕ̂1, ϕ̂2, ϕ̂3. We set 1

ϕ̂j := D∞|αj |ϕ̂, for j = 1, 2, 3, (2.14)

1Note that here we could also dilate ϕ with any |α̃j | comparable with |αj |. We make use of this observation
in the next subsection.
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where ϕ ∈ Φ∗. Moreover, let ~τ = |α1|~β. In order to perform a time-frequency decomposition for
the uniform problem we shall prove that

ˆ ∞
0

ˆ
R
~̂ϕ(tσ̂~β + tx̂~1 + tρ̂~α− η~α− ~τ) dη

dt

t
= c1(0,∞)(σ̂), (2.15)

holds for a constant c uniform in ~β for x̂ = 0 and for any ρ̂ ∈ R. Changing the variables and
inserting x̂ = 0, we shall prove that

ˆ ∞
0

ˆ
R
~̂ϕ(tσ̂~β − η~α− ~τ) dη

dt

t
= c1(0,∞)(σ̂).

First of all, note that by the change of variables tσ̂ → t, the left hand side is constant for σ̂ > 0
and equal zero for σ̂ < 0. Assume that σ̂ > 0. Observe that the left hand side of the previous
display is comparable with

ˆ ∞
0

~̂ϕ(t~β − ~τ)
dt

t

with the constant equal to the measure of |proj〈~α〉(supp( ~̂ϕ)∩ 〈~1〉⊥)| ' 1, where proj〈v〉(A) is the
projection of a set A onto the line spanned by a vector v. The last display is further comparable
with

‖ ~̂ϕ‖L∞ · |proj〈~β〉(supp( ~̂ϕ) ∩ 〈~1〉⊥)| · |~τ |−1 ' 1 · |α1| · |α1|−1 = 1,

where |proj〈~β〉(supp( ~̂ϕ)∩〈~1〉⊥)| ' |α1|, because since we assumed that |β2−β3| is small, we have

~β ≈ ± 1√
3
~1±

√
2+1√

3
(−1, 0, 0) and clearly |proj〈(1,0,0)〉(supp( ~̂ϕ) ∩ 〈~1〉⊥)| ' |α1|.

This proves (2.15) and implies that the absolute value of (2.13) is comparable with the
absolute value ofˆ

R3

~̂f(x̂ ·~1 + ρ̂ · ~α− σ̂ · ~β)

×
ˆ ∞

0

ˆ
R
~̂ϕ(tσ̂~β + tx̂~1 + tρ̂~α− η~α− ~τ) dη

dt

t
δ0(x̂)dx̂ dρ̂ dσ̂

By the choice of ϕ̂i’s, after an application of the inverse Fourier transform this is equal to

ˆ ∞
0

ˆ
R

ˆ
R

3∏
j=1

fj ∗Mαjηt−1+τjt−1D1
|αj |−1tϕ(x) dx dη

dt

t

Changing variables η 7→ tη this equals

ˆ ∞
0

ˆ
R

ˆ
R

3∏
j=1

Fϕ(fj)(x, αjη + τjt
−1, |αj |−1t) dx dη dt.

Since ~τ = |α1|~β = δ~β,

ˆ
R3

+

3∏
j=1

Fϕ(fj)(x, αjη + δβjt
−1, |αj |−1t) dx dη dt.
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2.2.2 Simplifying assumptions on Λ~β

For notational convenience later on, we replace the symmetric trilinear form from Proposition
2.3 by a less symmetric trilinear form, which is comparable.

Note that if |α1| � 1, then in (2.14) we may take ϕj ’s, such that ϕ̂1 := D∞|α1|ϕ̂ as earlier,
and ϕ̂2 = ϕ̂3 = D∞|α2|ϕ̂. We obtain that the trilinear form in the previous display is comparable,
with a uniform constant, with the following form

ˆ ∞
0

ˆ
R

ˆ
R
Fϕ(f1)(x,α1η + |α1|β1t

−1, |α1|−1t)

×
3∏
j=2

Fϕ(fj)(x, αjη + |α1|βjt−1, |α2|−1t) dx dη dt.

From now on we set

δ := |α1|/|α2| (2.16)

Note that δ � 1. Changing variables t 7→ |α1|t, η 7→ α−1
1 η the above is equal to ±1 times

ˆ
R3

+

Fϕ(f1)(x, η + β1t
−1, t)

3∏
j=2

Fϕ(fj)(x, α
−1
1 αjη + δβj(δt)

−1, δt) dt dη dx. (2.17)

In the rest of the chapter we are going to work with the above form and denote it with Λ~β(·, ·, ·).

2.3 Outer Lp spaces

In this section we describe the outer Lp space setting on R3
+ = R×R×R+ that we will be using

in this chapter. The outer measure Lp space framework follows the one introduced in [DT15]
and further developed in [Ura16].

2.3.1 Generalities

We recollect the theory of outer Lp spaces introduced in [DT15]. Let X be a locally compact
metric space; denote by P(X) the collection of all its subsets, by B(X) the set of Borel functions
on X and by C(X) the set of continuous functions on X. Let us fix a collection of generating sets
T ⊂ P(X) that are locally compact Borel measurable subsets.

Definition 2.4 (Outer measure). An outer measure on X is a set functional µ : P(X)→ [0,∞]
that is σ-subadditive

µ
( ⋃
n∈N

En
)
≤
∑
n∈N

µ(En), for En ⊂ X,

monotone

µ(E) ≤ µ(E′), for E ⊂ E′ ⊂ X

and µ(∅) = 0.
We refer to a function µ : T→ [0,∞] as a premeasure that generates the outer measure µ via

µ(E) := inf
{∑
n∈N

µ(Tn) : E ⊂
⋃
n∈N

Tn, where Tn ∈ T
}
. (2.18)
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Let T∪ be the set of countable unions of sets in T i.e.

E ∈ T∪ if E =
⋃
n∈N

Tn, where Tn ∈ T.

Definition 2.5 (Size). A size on X is a functional ‖ · ‖S : B(X)→ [0,∞]T that satisfies

1. if F,G ∈ B(X) with |F | ≤ |G| and T ∈ T, then ‖F‖S(T ) . ‖G‖S(T ),

2. there exists C > 0 such that for every T ∈ T ‖F +G‖S(T ) ≤ C(‖F‖S(T ) + ‖G‖S(T )) for all
F,G ∈ B(X),

3. for every T ∈ T, λ ∈ C and for every F ∈ B(X), ‖λF‖S(T ) = |λ|‖F‖S(T ).

Definition 2.6 (Outer Lp norms). Given an outer measure µ, a size ‖ · ‖S , and a generating
collection T ⊂ P(X), the outer Lp quasi-norm of a function F ∈ B(X) with p ∈ (0,∞) is given
by

‖F‖Lpµ(S) :=
(
p

ˆ ∞
0

λpµ(‖F‖S > λ)
dλ

λ

)1/p

,

where

µ(‖F‖S > λ) := inf{µ(Eλ) : Eλ ∈ T∪, ‖1X\EλF‖L∞(S) ≤ λ}

where the outer L∞ quasi-norm is given by

‖F‖L∞(S) := sup
T∈T
‖F‖S(T ).

The outer weak Lp norms are given by

‖F‖Lp,∞µ (S) :=
(

sup
λ>0

pλpµ(‖F‖S > λ)
)1/p

.

For example, the standard Lebesgue Lp(Rn) space can be constructed as an outer Lp space.
Taking the generating collection T to be set of dyadic cubes in Rn and µ the standard measure
of a cube, µ becomes the Lebesgue measure. Setting ‖ · ‖S(T ) to be the average of |F | over a
cube T , ‖ · ‖L∞(S) is comparable with ‖ · ‖L∞(Rn) and consequently ‖ · ‖Lpµ(S) is comparable with

‖ · ‖Lp(Rn). Let us also remark that defining L0 appropriately, it is possible to view the outer Lp

spaces as interpolation spaces between L0 and L∞. See [War15] for details of such approach to
the outer Lp spaces.

Given a size family ‖ · ‖S(T ) and c > 0 set

‖F‖cS(T ) := c‖F‖S(T ).

Given two size families ‖ · ‖S1(T ) and ‖ · ‖S2(T ) we define the size family

‖F‖(S1+S2)(T ) := ‖F‖S1(T ) + ‖F‖S2(T ).

We also define the size family on F = (F 1, F 2) ∈ B(X)× B(X) via

‖F ‖(S1,S2)(T ) := ‖F 1‖S1(T ) + ‖F 2‖S2(T ).
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Convex set decomposition

We introduce convex sets, which are counterparts of the convex trees of tiles in the general
setting. They come in handy when one wants to represent the outer Lp norm as an `p sum over
pairwise disjoint sets.

Definition 2.7 (Convex sets).

• We call a subset ∆T ⊂ X a convex tree if ∆T = T \K for some T ∈ T and K ∈ T∪.

• We call a set E ⊂ X convex if it is of the form E = K1 \K2, with K1,K2 ∈ T∪.

In the next lemma we control an `p sum coming from appropriately selected pairwise disjoint
convex sets. We shall need this result, when proving outer Lp comparison inequalities in Section
2.4. The proof is a standard decomposition of the space into level sets and then making them
pairwise disjoint.

Lemma 2.8 (Decomposition into convex trees). Suppose we are given an outer measure space
(X, µ, ‖ · ‖S). Fix F : X → R and let 0 < p < ∞. There exists a decomposition into pairwise
disjoint convex trees X =

⋃
k∈Z

⋃
∆T∈Φk

∆T such that(∑
k∈Z

∑
∆T∈Tk

µ(∆T )‖F1∆T ‖pL∞(S)

)1/p

. ‖F‖Lpµ(S),

with a constant independent of F .

Proof. First of all note that using standard argument we can replace the integral in the definition
of the outer Lp norm so that ∑

k∈Z

2kpµ(‖F‖S > 2k) . ‖F‖p
Lpµ(S)

.

Now for each k ∈ Z, by definition, choose a collection of Ψk ⊂ T such that∑
T∈T̃k

µ(T ) . µ(‖F‖S > 2k), ‖F1X\
⋃
T̃k‖L∞(S) ≤ 2k.

We just need to make all the selected sets pairwise disjoint what will lead to convex trees. Fix
k and let T ∈ T̃k. Define

∆T := T \
⋃

T̃k3T ′ 6=T

T ′ \
⋃
n>k

⋃
T̃n

Note that each ∆T is a convex tree. Let Tk denote the collection of such ∆T for each k ∈ Z.
Moreover, X =

⋃
k∈Z

⋃
∆T∈Tk ∆T , ∆T ’s are pairwise disjoint and

‖F1∆T ‖L∞(S) ≤ ‖F1X\T̃k+1
‖ . 2k,∑

∆T∈Tk

µ(∆T ) ≤
∑
T∈T̃k

µ(T ) . µ(‖F‖S > 2k).

This gives ∑
k∈Z

∑
∆T∈Tk

µ(∆T )‖F1∆T ‖pL∞(S) ≤
∑
k∈Z

2kp
∑
T∈T̃k

µ(T )

≤
∑
k∈Z

2kpµ(‖F‖S > 2k) . ‖F‖p
Lpµ(S)

.
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Marcinkiewicz interpolation

We state the Marcinkiewicz interpolation for outer Lp spaces, Proposition 1.7 in [Ura17]. It is
analogous to the classical interpolation theorem, the only difference is that replace Lp norms
with their outer counterparts.

Proposition 2.9 (Marcinkiewicz interpolation). Let (X1, µ1, ‖ · ‖S1
), (X2, µ2, ‖ · ‖S2

) be two
outer measure spaces with sizes. Assume that p1, p2, q1, q2 ∈ (0,∞] and let T be an operator that
satisfies

• |T (λF )| = |λT (F )| for all F ∈ Lp1(X1) + Lq1(X1) and λ ∈ C,

• |T (F +G)| ≤ C(|T (F )|+ |T (G)|) for all F,G ∈ Lp1(X1) + Lq1(X1),

• for all F ∈ Lp1(S1)

‖T (F )‖Lp2,∞
µ2

(S2) ≤ C0‖F‖Lp1
µ1

(S1)

• for all F ∈ Lq1(S1)

‖T (F )‖Lq2,∞µ2
(S2) ≤ C1‖F‖Lq1µ1

(S1).

Then for any θ ∈ (0, 1), 1
r1,θ

= 1−θ
p1

+ θ
q1

and 1
r2,θ

= 1−θ
p2

+ θ
q2

it holds that

‖T (F )‖
L
r2,θ
µ2

(S2)
.θ,p1,p2,q1,q2 C

1−θ
0 Cθ1‖F‖Lr1,θµ1

(S1)
.

Multilinear Marcinkiewicz interpolation

We prove multilinear Marcinkiewicz interpolation for outer Lp spaces, Proposition 2.10. We
record that it is quite reminiscent of the restricted type interpolation that appears for example
in [Thi06]. In this chapter we shall need the next proposition only in the case n = 3.

Proposition 2.10 (Multilinear Marcinkiewicz interpolation). Suppose we are given a collection
of outer measure spaces with sizes (X, µj , ‖ · ‖Sj ) for j = 1, 2, .., n. Let Λ be an n-linear form
defined for n-tuples of functions ∈ B(X). Suppose that F 0

j , Fj ∈ B(X) for j = 1, 2, .., n, 1/~p :=
(1/p1, 1/p2, ..., 1/pn) with

∑
i 1/pj = 1 and 1 < pj < ∞ are such that for all Vj ,Wj ∈ T∪,

j = 1, 2, .., n

Λ(1V1\W1
F 0

1 ,1V2\W3
F 0

2 , ..,1Vn\Wn
F 0
n) .

n∏
j=1

µj(Vj)
αj‖1Vj\Wj

Fj‖L∞(Sj)

holds for
∑
i αi = 1, with ~α := (α1, α2, .., αn) in the neighbourhood of 1/~p. Then

|Λ(F 0
1 , F

0
2 , .., F

0
n)| .

n∏
j=1

‖Fj‖Lpjµ (Sj). (2.19)

We could not use the outer Hölder inequality of [DT15] for our purpose, since it requires a
stronger assumption than we were able to obtain, for details see the later part of this chapter,
in particular (2.41).
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Proof. In the proof we set ‖ · ‖Lpj (Sj) := ‖ · ‖
L
pj
µj

(Sj). Assume by scaling that ‖Fj‖Lpj (Sj) = 1 for

j = 1, 2, .., n.

First we split each Fj according the level sets of ‖ · ‖Sj at level 2kj/pj

Λ(F 0
1 , F

0
2 , .., F

0
n)

=
∑

k1,k2,..,kn

Λ(F 0
1 1Wk1

\Wk1−1
, F 0

2 1Wk2
\Wk2−1

, .., F 0
n1Wkn\Wkn−1

)

so that we have the properties

• µj(Wkj ) . Aj,kj := µj(‖Fj‖Sj > 2−kj/pj ) . 2kj‖Fj‖
pj
Lpj (Sj)

• ‖Fj1W c
kj−1
‖L∞(Sj) . 2kj/pj

for j = 1, 2, 3. Using the restricted type and the properties listed above one obtains that this is
bounded by

∑
k1,k2,..,kn∈Z

n∏
j=1

µj(Wkj )
αj−1/pjµj(Wkj )

1/pj‖Fj1W c
kj−1
‖L∞(Sj)

.
∑

k1,k2,..,kn∈Z

2
∑n
j=1(αj−1/pj)kj

n∏
j=1

‖Fj‖
(αj−1/pj)pj
Lpj (Sj)

2kj/pjA
1/pj
j,kj

.
∑

k1,k2,..,kn∈Z

2
∑n
j=1(αj−1/pj)kj

n∏
j=1

2kj/pjA
1/pj
j,kj

,

Let k be the average of k1, k2, k3. Choosing ~α in the neighbourhood of 1/~p appropriately we
can assume that

2
∑3
j=1(αj−1/pj)kj = 2

∑3
j=1(αj−1/pj)(kj−k) . 2−εmaxj=1,2,..,n |kj−k|.

We can then bound the previous display as follows changing the summation parameters to k,
kj := kj − k ∈ 1

nZ for j = 1, 2, .., n− 1

∑
ki,k∈ 1

nZ

2−εmax0<i<n |ki|
n−1∏
j=1

2(k+kj)/pjA
1/pj

j,k+kj
2(k−

∑n−1
i=1 ki)/pnA

1/pn

n,k−
∑n−1
i=1 ki

Applying Hölder’s inequality in the sum over k with the exponents p1, p2, p3 we obtain that it
is bounded by (since kj are fixed translations now)

∏n
j=1 ‖Fj‖Lpj (Sj) = 1. This means that we

are just left with the series ∑
k1,k2,..,kn−1∈ 1

nZ

2−εmax0<j<n |kj |

which is summable.

The following short lemma lets us dominate a vector valued outer Lp norms by a sum of outer
Lp norms taken coordinatewise.
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Lemma 2.11. Suppose we are given an outer measure space (X, µ) together with two families of
sizes ‖ · ‖S1

, ‖ · ‖S2
indexed by T ∈ T. For any 0 < p ≤ ∞ and F = (F 1, F 2) ∈ B(X) × B(X) it

holds that

‖F 1‖Lpµ(S1) + ‖F 2‖Lpµ(S2) . ‖F ‖Lpµ((S1,S2)) . ‖F 1‖Lpµ(S1) + ‖F 2‖Lpµ(S2).

Proof. For 0 < p <∞ the lemma follows directly from the following standard fact and integrating
over λ ∈ R+

1

2

2∑
j=1

µ(‖F j‖Sj > λ) ≤ µ(‖F ‖S > λ) ≤
2∑
j=1

µ(‖F j‖Sj > λ/2).

For p =∞ it follows from definition.

2.3.2 Outer measures and sizes on R3
+

Trees and outer measures in time-frequency-scale space

We consider R3
+ = R × R × R+ endowed with the euclidean metric. Let ΘΘΘ = (Θ,Θ(in)) where

Θ ⊃ Θ(in) 3 0 be two open intervals and let δ ∈ (0, 1]. The outer Lp structure we introduce on
R3

+ depends on these parameters.

Definition 2.12 (Trees). For (x, ξ, s) ∈ R3
+ we define

TΘΘΘ,δ(x, ξ, s) :=
{

(y, η, t) ∈ R3
+ : t < min(s− |y − x|, δs), t(η − ξ) ∈ Θ

}
=T

(in)
ΘΘΘ,δ (x, ξ, s) ∪ T (out)

ΘΘΘ,δ (x, ξ, s),

T
(in)
ΘΘΘ,δ (x, ξ, s) :=

{
(y, η, s) ∈ TΘΘΘ,δ(x, ξ, s) : t(η − ξ) ∈ Θ(in)

}
,

T
(out)
ΘΘΘ,δ (x, ξ, s) :=

{
(y, η, t) ∈ TΘΘΘ,δ(x, ξ, t) : t(η − ξ) ∈ Θ(out)

}
Θ(out) := Θ \Θ(in).

The set of all trees with parameters (ΘΘΘ, δ) is denoted by TΘΘΘ,δ.

For each TΘΘΘ,δ(x, ξ, s) ∈ TΘΘΘ,δ we define the pre-measure

µΘΘΘ,δ(TΘΘΘ,δ(x, ξ, s)) = s.

that generates an outer measure µΘΘΘ,δ as in (2.18).

t

y

(x, s)

x+ sx− s

t

η

(ξ, s)
ξ+θ2s

−1ξ+θ1s
−1

T (in)

T (out)

T (out)

Figure 2.2: The tree T (x, ξ, s) ∈ TΘΘΘ,1, where Θ = (θ1, θ2).
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t

y

(x, δs)

x+ sx− s

t

η

(ξ, δs)
ξ+θ2(δs)

−1ξ+θ1(δs)
−1

T (in)
T (out)T (out)

Figure 2.3: The tree T (x, ξ, s) ∈ TΘΘΘ,δ, where Θ = (θ1, θ2).

Generalized trees

The following is the definition of generalized trees. We use such sets for their nice geometric
properties, as they are closed under finite intersections, however note that we do not define
sizes for them. Moreover, one can recover trees and strips (Definition 2.24) as special cases of
generalized trees.

Definition 2.13 (Generalized trees). For x ∈ R, ξ1 ∈ [−∞,∞), ξ2 ∈ (−∞,∞], s ∈ R+ and
0 < δ ≤ 1 we define the generalized tree TΘΘΘ(x, ξ1, ξ2, s, δ) as

{(y, η, t) ∈ R3
+ : 0 < t < min(δs, s− |y − x|), ξ1 + θ1t

−1 ≤ η ≤ ξ2 + θ2t
−1},

where Θ = (θ1, θ2). We denote the set of all generalized trees TΘΘΘ with TΘΘΘ.

We recover trees and strips from generalized trees, since

TΘΘΘ(x, ξ, ξ, s, δ) = TΘΘΘ,δ(x, ξ, s) ∈ TΘΘΘ,δ.

and

TΘΘΘ(x,−∞,∞, s, 1) = D(x, s) ∈ D,

where D is the set of strips, Definition 2.24.

Boundaries

We shall define boundaries of A ∩ T for sets A having nice geometric properties. Such objects
come up naturally later on, when we differentiate functions of the form F1A and a derivative
falls on 1A, where F is an embedding. They are controlled via the boundary sizes, defined below.

Definition 2.14. Let A ⊂ R+
3 be measurable. For every tree T = TΘΘΘ,δ(x, ξ, s) ∈ TΘΘΘ,δ, y ∈ Bs(x)

and θ ∈ Θ we define

AθT (y) := {t ∈ R+ : (y, ξ + θt−1, t) ∈ A ∩ T}.

Definition 2.15. We call a measurable A ⊂ R3
+ boundary admissible if for every T (x, ξ, s) ∈

TΘΘΘ,δ, A
θ
T (y) = (tθ,−A,T (y), tθ,+A,T (y)) is such that tθ,±A,T : Bs(x) → R+ is a Lipschitz function. More-

over, for such A, a tree T = T (x, ξ, s) ∈ TΘΘΘ,δ and θ ∈ Θ we set

∂θA,T = {(y, ξ + θ(t±,θA,T (y))−1, t±,θA,T (y)) : y ∈ Bs(1−δ)(x)}.

We also set ∂θT = {(y, θ(δs)−1, δs) : y ∈ Bs(1−δ)(x)}.
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Remark 2.16. The reason for introducing boundary admissible sets is that we want the quantities
in following Definition 2.19 to make sense. In practice, the only boundary admissible sets that
we will be dealing with are of the form K \ L, where K,L ∈ T ∪ΘΘΘ , i.e. they are both countable
unions of generalized trees.

Sizes in time-frequency-scale space

The sizes we introduce depend on the parameters (ΘΘΘ, δ). ‖ · ‖S2 and ‖ · ‖S∞ , which are very
similar to the standard sizes introduced in [DT15], additionally parametrized by δ.

Definition 2.17 (The size S2). For F ∈ B(R3
+) we introduce the size family ‖ · ‖S2

ΘΘΘ,δ
(T ) indexed

by T = TΘΘΘ,δ(x, ξ, u) ∈ TΘΘΘ,δ as

‖F‖S2
ΘΘΘ,δ

(T ) := (

ˆ
T (out)∩{(y,η,t)∈R3

+ : y∈Bs(1−δ)(x)}
|F (y, η, t)|2 dy dη dt)1/2

i.e.

‖F‖S2
ΘΘΘ,δ

(T ) = (

ˆ
Θ(out)

ˆ
Bs(1−δ)(x)

ˆ min(δs,s−|y−x|)

0

|F (y, ξ + θt−1, δt)|2 dt
t
dy dθ)1/2.

Definition 2.18 (The size S∞). For F ∈ B(R3
+) we introduce the size family ‖ · ‖S2

ΘΘΘ,δ
(T ) indexed

by T = TΘΘΘ,δ(x, ξ, u) ∈ TΘΘΘ,δ as

‖F‖S∞
ΘΘΘ,δ

(T ) := sup
(y,η,t)∈T

|F (y, η, t)|

We introduce the boundary size RA which is the supremum over L2 averages over the bound-
aries ∂θA,T . They are used to control contribution from boundaries appearing as byproduct of
integrating functions of the form F1A by parts.

Definition 2.19 (The size RA). Given a tree T = TΘΘΘ,δ(x, ξ, s) ∈ TΘΘΘ,δ, a boundary admissible
set A ⊂ R3

+ we introduce the size family for F ∈ C(R3
+) (continuous functions)

‖F‖R̃ΘΘΘ,δ,A(T ) = sup
θ∈Θ(in)

‖F‖Rθ
ΘΘΘ,δ,A

(T ),

where

‖F‖Rθ
ΘΘΘ,δ,A

(T ) = ‖F‖Rθ,−
ΘΘΘ,δ,A

(T ) + ‖F‖Rθ,+
ΘΘΘ,δ,A

(T ),

with

‖F‖Rθ,±
ΘΘΘ,δ,A

(T ) := lim
ε→0

(
1

s

ˆ
∂θ,±,εA,T

|F1A|2)1/2

:= lim
ε→0

(
1

s

ˆ
Bs(1−δ)(x)

|F1A(y, ξ + θtθ,±A,T (y)−1, tθ,±A,T (y)∓ ε)|2 dy)1/2.

indexed by T = TΘΘΘ,δ(x, ξ, s) ∈ TΘΘΘ,δ. Since t±A,T are Lipschitz functions, the above integral makes
sense. Finally, given a tree T = TΘΘΘ,δ(x, ξ, s) ∈ TΘΘΘ,δ we define

‖F‖RΘΘΘ,δ,A(T ) := sup
δ/4<δ̃≤δ

‖F‖R̃
ΘΘΘ,δ̃,A

(T
ΘΘΘ,δ̃

(x,ξ,s)), (2.20)

where each TΘΘΘ,δ̃(x, ξ, s) ∈ TΘΘΘ,δ̃.
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Remark 2.20. The reason for introducing the boundary size as a limit as ε → 0 is only a
technicality, caused by the fact that we do not necessarily have ∂θA,T ⊂ A. However, for F ∈
C(R3

+) we actually have the equality (note that we do not restrict to 1A)

‖F‖Rθ,±
ΘΘΘ,δ,A

(T ) = (
1

s

ˆ
∂θ,±A,T

|F |2)1/2

= (
1

s

ˆ
Bs(1−δ)(x)

|F (y, ξ + θtθ,±A,T (y)−1, tθ,±A,T (y))|2 dy)1/2.

Remark 2.21. The functions F that we will be dealing with in this chapter come from em-
beddings, i.e. it holds that F = F (f). It is not difficult to see that {Fϕ(f) : ϕ ∈ Φ} satisfies
the following: for any x ∈ R3

+ and ε > 0 there exists an open neighbourhood Ux, such that for
any ϕ ∈ Φ, x1, x2 ∈ Ux it holds that |Fϕ(f)(x1) − Fϕ(f)(x2)| < ε. Hence F (f), which is the
supremum over ϕ ∈ Φ, belongs to C(R3

+).

Remark 2.22. We shall be using only a discretized collection of trees and the supremum in
(2.20) is needed, so that that there are no “gaps” between scales. This is particularly important
in the proof of Lemma 2.46, however all other estimates in this chapter, where we use RΘΘΘ,δ,A,

hold with R̃ΘΘΘ,δ,A as well.

We additionally set for a Lebesgue measurable A ⊂ R3
+

‖F‖S2
ΘΘΘ,δ,A

:= ‖F1A‖S2
ΘΘΘ,δ
, ‖F‖S∞

ΘΘΘ,δ,A
:= ‖F1A‖S∞

ΘΘΘ,δ
.

Let F = (F 1, F 2) where F 1, F 2 ∈ B(R3
+). Using the above we introduce the size families for

0 < δ ≤ 1

‖F ‖SΘΘΘ,δ,A(T ) := ‖F 1‖RΘΘΘ,δ,A(T ) + ‖F 1
1T ‖L∞(δ1/2S∞

ΘΘΘ,1,A
) + ‖F 2

1T ‖L∞(δ1/2S2
ΘΘΘ,1,A

) + ‖F 2‖S2
ΘΘΘ,δ,A

(T ),

‖F ‖Sγ
ΘΘΘ,δ,A

(T ) := ‖F ‖1−γSΘΘΘ,δ,A(T )‖F ‖
γ
L∞(SΘΘΘ,δ,A).

Remark 2.23. Observe that for δ = 1, ‖F ‖SΘΘΘ,1,A(T ) is comparable with ‖F 1
1T ‖L∞(S∞

ΘΘΘ,1,A
) +

‖F 2
1T ‖L∞(S2

ΘΘΘ,1,A
).

Strips, outer measures and iterated sizes in time-scale space

We briefly recollect the iterated Lp spaces from [Ura16], which was introduced as a framework
to deal with outer Lp embeddings below local L2. Roughly, one may think of the idea of
restricting functions F (f) to strips below, as being related to Calderón-Zygmund decomposition
of the underlying function f . In fact, the iterated embedding (see [DPO15] and [Ura16] for its
iterated version) consists of applying a refined version of it, which is known as the multi-frequency
Calderón-Zygmund decomposition [NOT09].

Definition 2.24 (Strips). A strip at a point (x, s) ∈ R2
+ = R× R+ is given by

D(x, s) := {(y, η, s) ∈ R3
+ : |y − x| < s− t}.

We denote the family of all strips by D.
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t

y

(x, s)

x+ sx− s

t

η

D

Figure 2.4: The strip D(x, s) ∈ D.

The outer measure ν is generated by strips via the pre-measure

ν
(
D(x, s)

)
:= s.

Let ‖ · ‖S(T ) be a size family indexed by T ∈ TΘΘΘ,δ and µ an outer measure generated by TΘΘΘ,δ.
The iterated -Lq size family indexed by D ∈ D is given for F ∈ B(R3

+) by

‖F‖-Lqµ(S)(D) := ν(D)−1/q‖F1D‖Lqµ(S).

Remark on the embedding theorem

(2.12) is implied by the following.

Proposition 2.25. Let f be a Schwartz function on R and ΘΘΘ = (Θ,Θ(in)). For 1 < p ≤ ∞ and
q > max(p′, 2) it holds that

‖F (f)‖Lpν-LqµΘΘΘ,1
(S∞

ΘΘΘ,1
) ≤ Cp,q‖f‖Lp(R),

and moreover

‖F ∗(f)‖Lpν-LqµΘΘΘ,1
(SΘΘΘ,1) ≤ Cp,q‖f‖Lp(R).

The proof of the above proposition follows along the lines of [DPO15] in the framework of
[Ura16], choosing for each (y, η, t) ∈ R3

+ a wave packet ϕ ∈ Φ (ϕ ∈ Φ∗) that almost attains the
supremum in the definition of F (f) (F ∗(f), respectively).

Choice of parameters and notation

Here we introduce most of the notation and fix the parameters that we are going to use throughout
this chapter.

Recall that throughout this chapter we fix 0 < b < 2−8. Moreover, we assume that |α1| � 1,

hence |α2|, |α3| ' 1, |β1| ' 1. In the following we shall fix three pairs of intervals ΘΘΘi = (Θj ,Θ
(in)
j ),

j ∈ {1, 2, 3} to define three collections of (ΘΘΘ, δ)-trees and associated outer measure structures on
R3

+ that are compatible with the trilinear form Λ~β .

Let Θ = B1(0) ⊂ R, δ be as in (2.16) and

aj = δα−1
1 αj . (2.21)
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Note that since we assume |α1| � 1, we have |aj | ' 1 set

Θ1 := Θ + β1, Θ2 = a2Θ + δβ2, Θ3 = a3Θ + δβ3 (2.22)

For j = 1, 2, 3 fix Θ
(in)
j such that Θi ⊃ Θ

(in)
i ⊃ Bb(0) and so that for j = 2, 3

a−1
j (Θ

(in)
j − δβj) + β1 ⊂ Θ

(out)
1 = Θ1 \Θ

(in)
1 .

This can be done uniformly in ~β using the assumption |β1|, |β2|, |β3|, |α2|, |α3| ≈ 1. It is sufficient

to have b < 2−8 � |β1|, and to set Θ
(in)
j = Bb(0) for j = 1, 2, 3.

In this chapter we restrict ourselves to a discretized collection of trees and strips in R3
+ =

R× R× R+ and R2
+ = R× R+. Let

∆R3
+ :=

{
(4kn, ξ, 4k) ∈ R3

+ : n ∈ Z, ξ ∈ R, k ∈ Z
}

and ∆TΘΘΘ,δ be the set of trees TΘΘΘ,δ(x, ξ, s) ∈ TΘΘΘ,δ with (x, ξ, s) ∈ ∆R3. From now on we denote

T = ∆TΘΘΘ,1, Tδ = ∆TΘΘΘ,δ,

Tj =

{
∆TΘΘΘ1,1 j = 1

∆TΘΘΘj ,δ j ∈ {2, 3}.

Moreover let
∆R2

+ := {(4kn, 4k) ∈ R2
+ : k, n ∈ Z}

and let ∆D be the set of strips D(x, s) with (x, s) ∈ ∆R2
+. From now on we overload the notation

and set

D := ∆D.

For ϕ ∈ Φ and j = 1, 2, 3 we set

Fϕj = Fϕ(fj), Fj = F (fj), F ∗j = F ∗(fj), Fj = (Fj , F
∗
j ).

Let us denote the measures and sizes restricted to the discretized collection with the preceding
∆. In order to ease the notation, we set for j = 1, 2, 3

Sj := ∆SΘΘΘj ,1, µj = ∆µΘΘΘj ,1,

and for j = 2, 3 we set

Sj,δ,A := ∆SΘΘΘj ,δ,A, µj,δ := ∆µΘj ,δ.

Moreover, for j = 1, 2, 3 we set

‖Fj‖Lp-Lq(S) := ‖Fj‖Lpν-LqµΘΘΘj ,1
(S∞

ΘΘΘj ,1
) + ‖F ∗j ‖Lpν-LqµΘΘΘj ,1

(S2
ΘΘΘj ,1

).

For technical reasons, in order to work on a compact set in the time-scale direction, we define
ε-dependent sets for ε > 0. We assume throughout that the ε is a very small number such that
ε−1 ∈ N, so that Dε ∈ D and Wε ∈ D∪.

Aε := Dε \Wε, (2.23)

where

Dε = D(0, 4ε
−1

), Wε =

42ε−1⋃
j=−42ε−1

D(j4−ε
−1

, 4−ε
−1

).

We shall restrict the functions on R+
3 to Aε; all estimates in this chapter will be independent of

the ε and thus by standard limiting argument as ε→ 0, we recover the full estimates.
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Geometry of discretized trees

In this part we study pairwise disjoint decompositions of the discretized collection of trees and
strips.

In order to ease the notation in the following proofs, we define the three families of dyadic
intervals

Ij := {[4kn− 4k, 4kn+ 4k) : k, n ∈ Z, n ≡ j (mod 3)}. (2.24)

Next four lemmata are simple observations, which imply that up to a finite overlap, one can
think of trees and strips as coming from the standard dyadic grid.

Lemma 2.26. For any j ∈ {0, 1, 2} and any two I, I ′ ∈ Ij, I and I ′ are either disjoint or one
is contained in another. Moreover, if T (x, ξ, s) ∈ T, then IT ∈ Ij for exactly one j ∈ {0, 1, 2}.

Proof. Follows easily from the definition of Ij in (2.24), using the fact that for k ∈ N , 4k ≡ 1
modulo 3.

Lemma 2.27. There exists a decomposition T = T0
∆ ∪ T1

∆ ∪ T2
∆, such that for j = 0, 1, 2 the

intervals {IT : T ∈ Tj∆} have the following property: for any two of them they are either pairwise
disjoint or one is contained in the other.

Proof. For j = 0, 1, 2, let Tj∆ ⊂ T be the set of trees with IT ∈ Ij . Together with Lemma 2.26
this gives the desired decomposition.

Lemma 2.28. There exists a decomposition D = D0
∆ ∪ D1

∆ ∪ D2
∆, such that for j = 0, 1, 2 the

intervals {ID : D ∈ Dj∆} have the following property: for any two of them they are either pairwise
disjoint or one is contained in the other.

Proof. Exactly the same as the proof of the previous lemma.

Lemma 2.29. Let | · | denote the standard Lebesgue measure and let V ∈ D∪. Then there exist
Dm ∈ D for m = 1, 2, .., such that V =

⋃∞
m=1Dm and for any measurable A ⊂ R

∞∑
m=1

|IDm ∩A| . |IV ∩A|.

Proof. Let V =
⋃
V, where V ⊂ D. Let Vj be the family of maximal strips in V which are

elements of Dj∆ in Lemma 2.28 for j = 0, 1, 2. By maximality we have V =
⋃2
j=0

⋃
Vj . Moreover

D ∈ Vj are pairwise disjoint for j = 0, 1, 2 by Lemma 2.29, hence∑
D∈Vj

|ID ∩A| ≤ |IV ∩A|.

Putting these three collections together we obtain the desired result.

Geometry of the trilinear form

In this part we investigate the interplay of the discretized trees with the trilinear form Λ. We
introduce the maps that capture the geometry of the trilinear form, which is expressed in the
form of the so-called transfer properties below. Let

π1(y, η, t) = (y, η + β1t
−1, t), πj(y, η, t) = (y, ajη + δβjt

−1, t), for j = 2, 3. (2.25)
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Moreover for T (x, ξ, s) ∈ T we define

ρ(T (x, ξ, s)) = Tδ(x, δ
−1ξ, s) ∈ Tδ. (2.26)

With the above two definitions we have for any T (x, ξ, s) ∈ T

π1(T (x, ξ, s)) = T 1(x, ξ, s) ∈ T1, πj(ρ(T (x, ξ, s)) = T j(x, δ−1ajξ, s) ∈ Tj .

We extend π1 canonically to sets of the form K ∩M \L for K,L,M ∈ T∪ and πj canonically
to sets of the form K ∩M \ L for K,L,M ∈ T∪δ and j = 2, 3. By definition of Λ, (2.17) and
(2.25), we easily obtain the following fact, which we call the transfer properties. It lets us move
the characteristic functions of subsets of R3

+ between the functions in the trilinear form, under
appropriate assumptions.

Lemma 2.30 (Transfer properties).

1. Let E = K \ L with K,L ∈ T∪δ and let A = V \W for V,W ∈ D∪. We have

Λ(G1, G21π2(E)1A, G3) = Λ(G1, G2, G31π3(E)1A), (2.27)

2. Let K ∈ T∪, where K =
⋃
i Ti. We have

Λ(G11π1(
⋃
i Ti)

, G2, G3) = Λ(G11π1(
⋃
i Ti)

, G21π2(
⋃
i ρ(Ti))

, G31π3(
⋃
i ρ(Ti))

). (2.28)

3. Let V ∈ D∪. We have

Λ(G11V , G2, G3) = Λ(G11V , G21V , G31V ). (2.29)

4. Moreover if K ∈ T∪δ , then there exists K̃ ∈ T∪ with µ(K̃) . µδ(K), such that

Λ(G1, G21π2(K), G3) = Λ(G11π1(K̃), G21π2(K), G3). (2.30)

Proof. (2.27): follows from the definition (2.25).
Set hj(y, η, t) = (y, δ−1(ajη + δβjt

−1), δt) for j = 2, 3. Note that by the definition (2.17) we
have for any tree T ∈ T

Λ(G11π1(T ), G2, G3) = Λ(G1, G21h2(T ), G3) = Λ(G1, G2, G31h3(T )). (2.31)

Now, let us prove (2.28): Observe that for T ∈ T, we have π2(ρ(T )) ⊃ h(T ). Together with
(2.31) and (2.27) it finishes the proof for K = T . We extend it canonically to unions of trees.

(2.29): Observe that for any V ∈ D∪, there exists a countable collection of trees {Ti}, such
that V = π1(

⋃
i Ti). Then, the property follows from (2.28), since for j = 2, 3, πj(

⋃
i ρ(Ti)) ⊂

πj(
⋃
i Ti) = V .

(2.30): Observe that for any T (x, ξ, s) ∈ T there exists n ∈ Z, such that setting x̃ = 4sn and
xj = x̃ + j4s for j = −2, .., 2 and ξk = ξ + ks−1 for k = −4, .., 4, we have T (xj , ξk, 4s) ∈ T for
j = 1, 2, 3 and moreover it holds that

π2(ρ(T )) ⊂
2⋃

j=−2

4⋃
k=−4

h(T (xj , ξk, 4s)).

Applying (2.31) we have

Λ(G11π1(
⋃2
j=−2

⋃4
k=−4 T (xj ,ξk,4s))

, G21π2(ρ(T )), G3)

= Λ(G1, G21
⋃2
j=−2

⋃4
k=−4 h(T (xj ,ξk,4s))

1π2(ρ(T )), G3)

= Λ(G1, G21π2(ρ(T )), G3).

We extend the result for unions K ∈ T∪ analogously.
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2.4 Inequalities for outer Lp spaces on R+
3

In this section we prove several outer Lp inequalities for F ∈ B(R3
+), which are shown via mostly

geometric arguments. We shall exploit them in Section 2.5. Without loss of generality, let
Θ = (−1, 1), Θ(in) = (−b, b) and ΘΘΘ = (Θ,Θ(in)). The constants in general may depend on ΘΘΘ,
however we shall need the result of this section for a finite set of ΘΘΘ’s, so it does not cause any
problem. Let us fix the parameter 0 < δ ≤ 1. In this subsection we set T := TΘΘΘ,1, µ := µΘΘΘ,1

(recall Section 2.3.2 for notation) and

‖ · ‖S2 := ‖ · ‖S2
ΘΘΘ,1
, ‖ · ‖S∞ := ‖ · ‖S∞

ΘΘΘ,1
, ‖ · ‖S := ‖ · ‖S2 + ‖ · ‖S∞ .

Moreover, we set Tδ := ∆TΘΘΘ,δ, µδ := ∆µΘΘΘ,δ (∆ stands for discretized) and

‖ · ‖S2
δ,A

:= ‖ · ‖S2
ΘΘΘ,δ,A

, ‖ · ‖Rδ,A := ‖ · ‖RΘΘΘ,δ,A
,

‖ · ‖δ1/2S∞1,A
:= ‖ · ‖δ1/2S∞

ΘΘΘ,δ,A
, ‖ · ‖δ1/2S2

1,A
:= ‖ · ‖δ1/2S2

ΘΘΘ,1,A
.

2.4.1 Outer Lp domination on R3
+

The main result of this subsection are the following three propositions that let us control the
contribution of δ dependent sizes ‖F ‖Sδ,A in terms of ‖F ‖SA . The main advantage of this fact is
that we can use the iterated embedding theorem for the δ independent sizes, Proposition 2.25.

A = Aε ∩
m⋂
j=1

Vj \Wj , (2.32)

where Vj ,Wj ∈ D∪ and Aε is as in (2.23). Let B0(R3
+) be the set of functions F , such that for

any t−, t+ ∈ R+

lim
ξ→∞

sup
(y,η,t)∈R×(−ξ,ξ)c×(t−,t+)

|F (y, η, t)| = 0. (2.33)

This technical assumption as well as restricting to Aε are needed only for the definition of the
selection algorithms below. Moreover, observe that (2.33) is satisfied for embedded functions
F = F (f), where f is a Schwartz function, to which we are going to apply the results of this
section.

All the constants in this section will be independent of δ and A, unless explicitly stated.

Proposition 2.31. The following inequality holds for 0 < δ ≤ 1, 2 < p ≤ ∞ and any F =
(F 1, F 2), where F 1, F 2 ∈ C(R3

+) ∩ B0(R3
+)

‖F ‖Lpµδ (Sδ,A) .p ‖F ‖Lpµ(S1,A).

By an application of Lemma 2.11, Proposition 2.32 follows from the following three. The first
proposition dominates the outer Lp norm of the boundary size Rδ,A by the outer Lp generated
by S. Note that in the statement we require F ∈ C(R3

+), which is satisfied for functions we apply
this proposition to, see Remark 2.21.

Proposition 2.32. The following inequality holds for 0 < δ ≤ 1, 2 < p ≤ ∞ and any F ∈ C(R3
+)

‖F‖Lpµδ (R2
δ,A) .p ‖F1A‖Lpµ(S∞),
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together with the weak bound

‖F‖L2,∞
µ (R2

δ,A) . ‖F1A‖L2
µ(S∞),

with constants independent of A and δ.

The second proposition dominates the S2 portion ‖F‖Lpµδ (S2
δ,A) by ‖F‖L2

µ(S).

Proposition 2.33. The following inequality holds for 0 < δ ≤ 1, 2 < p ≤ ∞ and any F ∈ B0(R3
+)

‖F‖Lpµδ (S2
δ,A) .p ‖F1A‖Lpµ(S),

together with the weak bound

‖F‖L2,∞
µ (S2

δ,A) . ‖F1A‖L2
µ(S),

with constants independent of A and δ.

The third proposition dominates the S∞ or S2 portion of the size multiplied by the small
factor δ1/2, which compensates for the measure µδ.

Proposition 2.34. Let U = S2 or U = S∞. For 0 < δ ≤ 1, 2 < p ≤ ∞ and any F ∈ B(R3
+)

‖F‖Lpµδ (δ1/2U) .p ‖F‖Lpµ(U).

Remark 2.35. Applying the above lemma to F1A one immediately obtains

‖F‖Lpµδ,A (δ1/2U1,A) .p ‖F1A‖Lpµ(U).

First we prove Proposition 2.32 and Proposition 2.33, and then we prove Proposition 2.34 at
the end of this subsection. By standard limiting procedure we may also assume that

‖F1A‖L2(S) <∞. (2.34)

The key ingredient of the proof of Proposition 2.32 and Proposition 2.33 is a Bessel type
inequality which can be thought of as ‖F‖L2(E) ≤ C‖F1E‖L2(S) with a constant uniform in the
degeneration parameter δ and A, where E is typically a set selected during a selection algorithm
in the upper half space; below we introduce two such algorithms that will be useful in this
context. We record that such sets E are sometimes called strongly disjoint. Moreover, note that
the left hand side of the inequality is the L2 norm over a possibly singular set E, that has to be
understood properly.

Our arguments depend mostly on the geometry of R3
+ and T. Here are the two key lemmata.

The first one estimates the contribution from the boundary under an appropriate geometric
assumption.

Lemma 2.36. Let {Tj}mj=1 be a collection of trees with Tj ∈ Tδj for δ/4 < δj ≤ δ and E ⊂ R3
+

be such that for any convex tree ∆T , there are at most C indices in {1, ...,m} such that ∂
θj
A,j :=

∂
θj
A,Tj
∩ E intersects ∆T ∩ ({y} × R× R+). Then

M∑
j=1

µδj (Tj)‖F1E‖2Rθjδj,A(Tj)
. ‖F1A‖2L2

µ(S∞).
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Proof. Using Lemma 2.8 we decompose
⋃
k

⋃
∆T∈Tk ∆T for F1A, where each ∆T is a convex

tree. Now, we have

M∑
j=1

µδj (Tj)‖F1E‖2Rθjδj,A(Tj)

≤
∑
k

∑
∆T∈Tk

∑
1≤j≤M :

∂
θj
A,j∩∆T 6=∅

µδj (Tj)‖F1E1∆T ‖2
R
θj
δj,A

(Tj)

≤ C
∑
k

∑
∆T∈Tk

µ(∆T )‖F1∆T1E1A‖2L∞(S∞)

. C‖F1E1A‖2L2
µ(S∞) ≤ C‖F1A‖

2
L2
µ(S∞),

where we used that the integral µδj (Tj)‖F1∆T ‖2Rδj,A(Tj)
is over a subset of R whose measure

does not exceed µ(∆T ).

The next lemma controls the contribution from the S2 portion.

Lemma 2.37. Let {Tj}mj=1 be a collection of trees and E ⊂ R3
+ such that there exists a constant

C > 0 for any y ∈ R and any convex tree ∆T , the area of E∩∆T (in)∩ ({y}×R×R+) is bounded
by C. Then

M∑
j=1

µδ,D(Tj)‖F1E‖2S2
δ,A,D(Tj)

. ‖F1A‖2L2
µ(S).

Proof. Using Lemma 2.8 we decompose
⋃
k

⋃
∆T∈Tk ∆T for F1A and split E = E(out) ∪ E(in),

where

E(out) = E ∩
⋃
k

⋃
∆T∈Tk

∆T (out), E(in) = E ∩
⋃
k

⋃
∆T∈Tk

∆T (in)

First of all, using only pairwise disjointness of ∆T

M∑
j=1

µδ,D(Tj)‖F1E(out)‖2S2
δ,A,D(Tj)

≤
∑
k

∑
∆T∈Tk

M∑
j=1

µδ,D(Tj)‖F1E(out)1∆T ‖2S2
δ,A,D(Tj)

.
∑
k

∑
∆T∈Tk

µ(∆T )‖F1∆T1E1A‖2L∞(S2)

. ‖F1E1A‖2L2
µ(S2) ≤ ‖F1A‖

2
L2
µ(S2).

We are left with estimating the part restricted to E(in). We have

M∑
j=1

µδ,D(Tj)‖F1E(in)‖2S2
δ,A,D(Tj)

.
∑
k

∑
∆T∈Tk

∑
0≤j≤M

T
(out)
j ∩∆T (in) 6=∅

µδ,D(Tj)‖F1E1∆T (in)‖2S2
δ,A,D(Tj)
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.
∑
k

∑
∆T∈Tk

µ(∆T )‖F1A‖2L∞(S∞) sup
y∈R
|E ∩∆T (in) ∩ ({y} × R× R+)|

.
∑
k

∑
∆T∈Tk

µ(∆T )‖F1A‖2L∞(S∞) . ‖F1A‖
2
L2
µ(S∞).

In the proofs of Proposition 2.32 and Proposition 2.33 we introduce auxiliary selection al-
gorithms, one for Rδ,A and one for S2

δ,A, respectively, which we use to carefully decompose the
level sets of the corresponding size. Similar procedures are usually used in the context of proving
embedding theorems, see for example [LT99], [DT15]. The generated collections of forests have
intrinsically very nice geometric properties, so that they can be controlled by the previous two
lemmata.

R-selection algorithm and Proof of Proposition 2.32

First we introduce the selection algorithm for ‖ ·‖Rδ,A and bound the contribution of the selected
set.

Definition 2.38 (R-selection algorithm). Let initially E0 = ∅ and X0 = R3
+. In the n-th step of

the procedure for n ≥ 0 we proceed as follows: if there exists T = T (x, ξ, s) ∈ Tδ with

‖F1Xn‖Rδ,A(T ) > λ, (2.35)

then we choose a T (x, ξ, s) ∈ TD with maximal s. This is possible, since, by Lemma 2.36 applied
with E = R3

+ and a single tree and (2.34), there exists an upper bound for s for trees satisfying
(2.35) dependent on λ; moreover all possible s come from a discrete set and thus we can choose
T (x, ξ, s) with maximal s.

We then set En+1 := En∪∂θnA,n, where ∂θnA,n := ∂θn
A,T̃
∩Xn with T̃ = T̃ (x, ξ, s) ∈ Tδ̃, δ/4 < δ̃ ≤ δ

and θn all chosen such that

‖F1Xn‖Rθnδ,A(T̃ ) > λ

Next, we set Tn := T , T̃n := T̃ , δn := δ̃, Xn+1 := Xn \ Tn and iterate the procedure. It will
terminate, since we have a lower bound for all possible s (because we are restricted to Aε) and
because we have an upper bound for the sum of measures of the selected trees (by Lemma 2.40).
Let M be the number of the last iteration. Then, we clearly have ‖F1XM ‖L∞(Rδ,A) ≤ λ.

Remark 2.39. Analogously, one may define the selection algorithm for ‖ · ‖S∞ , which is es-
sentially equivalent to the above δ = 1. Setting ‖ · ‖R1,A

:= ‖ · ‖S∞ all the related bounds below
continue to hold.

We have the following bound for the L2 norm over the picked boundaries.

Lemma 2.40. Let {Tj , T̃j}Mj=1 be the trees selected during the algorithm given in Definition 2.38

together with selected {θj}Mj=1 and E := EM . We have

M∑
j=1

µδj (T̃j)‖F1E‖2Rθjδj,A(T̃j)
. ‖F1A‖2L2

µ(S∞).

We now give a proof of Proposition 2.32 assuming Lemma 2.40.
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Proof of Proposition 2.32. We prove the strong L∞ bound, weak L2 bound and interpolate. The
L∞ bound follows since for any tree T ∈ Tδ have ‖F‖Rδ,A(T ) ≤ ‖F‖L∞(S∞). In order to prove the
weak L2 bound we choose any λ > 0, run the selection algorithm in Definition 2.38, obtaining a
collection of trees {Tj}Mj=1 and Eλ. Then observe that applying Proposition 2.40 in the second
inequality we obtain

λ2µδ(‖F‖Rδ,A > λ) .
M∑
j=1

µδ(Tj)‖F1Eλ‖2Rθjδ,A(Tj)
. ‖F1A‖2L2

µ(S∞).

Proof of Lemma 2.40. The proof follows from the next lemma together with Lemma 2.36.

Lemma 2.41. For y ∈ R and for a given convex tree ∆T , the selection algorithm from Definition

2.38 yields at most 25 indices 1 ≤ j ≤M , such that ∂
θj
A,j intersects ∆T ∩ ({y} × R× R+) .

Proof. Suppose that ∆T = ∆T (0, 0, 1) and fix y ∈ R. Let us reenumerate the given trees so that

Tj = T (xj , ξj , sj) for j = 1, 2, ..., N (in this order) are such that ∂
θj
A,j ∩∆T 6= ∅. Let tj be the

largest scale in ∂
θj
A,j ∩∆T , i.e. such that

∂
θj ,+
A,j ∩∆T = {(y, ξj + θjt

−1
j , tj)}.

Note that we have tj ≥ tj+1 for 1 ≤ j ≤ N − 1. Let for j = 1, 2, ..., N , ξ±j = ξj ± bt−1
N . Observe

that it holds that

|ξ+
i − ξ

+
j |+ |ξ

−
i − ξ

−
j | ≥

1

2
t−1
N .

for i 6= j, 1 ≤ i, j ≤ N , otherwise due to the way we select trees, it would not be possible
that both points (y, ξi + θit

−1
i , ti), (y, ξj + θjt

−1
j , tj) belong to E. On the other hand, since

∂
θj
A,j ∩ ∆T 6= ∅, we know that for each 1 ≤ j ≤ N , so we have ξj ∈ (−2t−1

j , 2t−1
j ) (because

(y, ξj + θjt
−1
j , tj) ∈ ∆T ) and hence ξ±j ∈ (−3t−1

N , 3t−1
N ). Let us further reenumerate ξj , so that

they are in increasing order. The above properties of ξj ’s imply that

(N − 1)t−1
N

1

2
≤
N−1∑
j=1

|ξ−j − ξ
−
j+1|+ |ξ

+
j − ξ

+
j+1| ≤ 12t−1

N =⇒ N ≤ 25.

Using the above lemma and Lemma 2.36 we obtain the desired bound.

S2-selection algorithm and Proof of Proposition 2.33

Before we introduce the selection algorithm, we shall refine the discretized collection of trees
slightly, which will come in handy. Similarly as in [DT15], we consider

R3
+,D := {(4kn, 4−kbl, 4k) : k, l, n ∈ Z} ⊂ R3

+.

and set Tδ,D = {T (x, ξ, s) ∈ Tδ : (x, ξ, s) ∈ R3
+,D}, moreover let µδ,D be µδ restricted to Tδ,D

and let ‖ · ‖S2
δ,A,D

be the size ‖ · ‖S2
δ,A

restricted to Tδ,D. It is correct to restrict ourselves to the

discretized collection of tree Tδ,D, since we have the following lemma.
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Lemma 2.42. For 0 < q ≤ ∞ and for any F ∈ B(R3
+)

‖F‖Lqµδ (S2
δ,A) .q ‖F‖Lqµδ,D (S2

δ,A,D).

Proof. The proof bases on the following straightforward fact: for any T (x, ξ, s) ∈ Tδ, there exist

Tj(x, ξj , s) ∈ Tδ,D for j = 1, 2, 3, 4, such that T (out) ⊂
⋃4
j=1 T

(out)
j . As a direct consequence, for

any Tδ we have

‖F‖2S2
δ,A(T ) ≤

4∑
j=1

‖F1
T

(out)
j
‖2S2

δ,A(T ) ≤
4∑
j=1

‖F‖2S2
δ,A,D(Tj)

≤ 4‖F‖L∞(S2
δ,A,D),

and it follows that ‖F‖L∞(Sδ,A) ≤ 4‖F‖L∞(Sδ,A,D), which gives the endpoint q = ∞ in the
statement of the lemma. Moreover, any T ∈ Tδ,D is clearly an element of Tδ, which implies,
together with the endpoint that we just proved, the following inequality for the level sets

µδ(‖F‖S2
δ,A

> 4λ) ≤ µδ,D(‖F‖S2
δ,A,D

> λ).

Multiplying the above by λq−1 and integrating over λ ∈ R+ we obtain the statement in the range
0 < q <∞.

Now, we shall discuss the S2 selection algorithm and bound the contribution of the trees
selected within that procedure. For a tree T (x, ξ, s) ∈ TD let

T+(x, ξ, s) = {(y, η, t) ∈ T (x, ξ, s) : η ≥ ξ, y ∈ B(1−δ)s(x)}},

T−(x, ξ, s) = {(y, η, t) ∈ T (x, ξ, s) : η ≤ ξ, y ∈ B(1−δ)s(x)}.

Definition 2.43 (S2-selection algorithm). Initially E0 = ∅ and X0 := R3
+. In the n-th step of

the algorithm for n ≥ 0, we proceed as follows: if there exists a tree T (x, ξ, s) ∈ Tδ,D with

‖F1T+
1X0
‖S2

δ,A,D(T ) > λ, (2.36)

which maximizes s for the maximal possible value of ξ. This is possible because of the following
observations: by (2.33) and restriction to Aε given in (2.32) there exists and upper bound for
admissible ξ’s; moreover ξ’s come from a discrete set, so we may choose maximal ξ; moreover,
by Lemma 2.37 applied with E = R3

+ and a single tree, there exists an upper bound for s of a tree
T (x, ξ, s) which satisfies (2.36); since all s come from a discrete set, we may choose maximal s.

We set En = En−1 ∪ (T
(out)
+ ∩ X0) and set Xn := Xn−1 \ T (x, ξ, s). We iterate the procedure

until there are no more trees satisfying (2.36). It will terminate, since we have a lower bound
for all possible s (because we are restricted to Aε in (2.32)) and because we have an upper bound
for the sum of measures of the selected trees (by Lemma 2.40). Let M be the number of the last
iteration. Then we clearly have ‖F1XM ‖L∞(Sδ,A,D) ≤ λ.

Analogously we define the selection algorithm for T−, with the only difference that at every
step we select a tree T (x, ξ, s) with minimal ξ.

We bound the contribution of the selected trees in the next lemma.

Lemma 2.44. Let {Tj}Mj=1 be the trees selected during the algorithm given in Definition 2.43
with E := EM . We have

M∑
j=1

µδ,D(Tj)‖F1E‖2S2
δ,A,D(Tj)

. ‖F1A‖2L2
µ(S).
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Proof. Without loss of generality we prove the statement for the selection algorithm for T+. The
proof follows from the following lemma together with Lemma 2.37.

Lemma 2.45. Fix y ∈ R and let ∆T be a convex tree. The area of E ∩∆T (in) ∩ ({y}×R×R+)
is bounded uniformly in A, ∆T and y.

Proof. In the proof we abuse the notation and write Tj , Sj instead of T+
j , S+

j .
Without loss of generality assume that ∆T = T (0, 0, s) \K, where K ∈ T∪. Let us set for

any selected tree Tj ∈ Tδ, selected at j-th step

FTj := Xj ∩ T (out)
j ∩∆T (in) ∩ ({y} × R× R+)

Let us reenumerate the trees so that Tj = T (xj , ξj , sj) for j = 0, 1, ...,M are the selected trees
(in this order), such that FTj 6= ∅.

Observe that for any index j ∈ N, we have |FTj | . 1. In order to see this: let t0 be the top
scale such that there exists η ∈ R with (y, η, t0) ∈ FTj . Observe that we have:

FTj ⊂ {(y, η, t) ∈ ∆T (in) : bt−1 − t−1
0 < η < bt−1, t ≤ t0}.

Hence

|FTj | ≤ |F | ≤
ˆ t0

0

ˆ
b−tt−1

0 <θ<b

dθ
dt

t
≤
ˆ t0

0

tt−1
0

dt

t
= 1. (2.37)

Let k be the first index (if it exists, otherwise set k := M), such that there is no point
(y, η, t) ∈ FTk , with t = sk. Note that then all j > k, satisfy FTj = ∅. Moreover, observe that by
Definition 2.43 and since the selected trees are discretized in frequency, the number k is bounded
with a constant dependent only on b. Thus, the observation (2.37) concludes the proof of the
lemma.

The proof that Lemma 2.44 implies Proposition 2.33 is analogous to the proof of Proposition
2.32 after using Lemma 2.42, which reduces the matters to the discrete collection of trees Tδ,D.

Proof of Proposition 2.34

In the proof we use the following two observations: first of all, any tree T ∈ T satisfies µδ(T ) =
δ−1µ(T ). On the other hand, the factor δ1/2 compensates for this fact, because ‖F‖L∞(S) is
independent of δ. Thus, we obtain the inequality with a constant . 1.

Proof of Proposition 2.34. Let U be one of S2, S∞. We prove the statement for q = ∞ and
for the weak endpoint q = 2,∞, and interpolate. Note that the former follows from δ ≤ 1.
Concerning the other endpoint we have to argue differently. Observe that for any T ∈ T there
exists Tδ ∈ Tδ with Tδ ⊃ T and µδ(Tδ) = δ−1µ(T ). Hence, we have for any λ > 0

µδ(‖F‖U > λ) . δ−1µ(‖F‖U > λ)

Applying the above inequality and Chebyshev’s inequality for outer Lp spaces we obtain

µδ(δ
1/2‖F‖U > λ) . λ−2(δ1/2)2δ−1‖F‖L2

µ(U) = λ−2‖F‖L2
µ(U).

We finish the proof by an application of Proposition 2.9.
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2.4.2 Boundary lemma

We will need the following lemma in the next section, when we control the boundary given by
the intersection of unions of trees ∈ TΘΘΘ,δ and unions of strips ∈ D. The contribution from the
trees is estimated by means of Rδ,A and δ1/2S∞δ,A size, where A comes only from strips, which is
acceptable by Proposition 2.32 and Proposition 2.34. In the proof we decompose the boundary
coming from a union of trees into a finitely overlapping collection of boundaries coming from
single trees, where we use that the trees are discretized in space.

Lemma 2.46. Let F ∈ C(R3
+), T = T (0, 0, s) ∈ TΘΘΘ,δ and C = P ∩A, where

P =

n⋂
j=1

Kj \ L, A =

m⋂
j=1

Vj \W

where Kj , L ∈ T∪ΘΘΘ,δ and Vj ,W ∈ D∪. Let θ ∈ Θ(in) and let tθ,±C,T : [−s, s]→ R+ be the parametriza-

tion of CθT . Thenˆ s

−s
|F (y, θtθ,±C,T (y)−1, tθ,±C,T (y))|2 dy .n s(‖F1C‖2L∞(Rδ,A) + ‖F1C‖2L∞(δ1/2S∞δ,A))

Proof. We prove the statement for tθ,−C,T , since the argument for tθ,+C,T is the same, hence from
now on we discard writing ± in the superscripts. Notice that the integral over {|y| ≥ (1 − δ)s}
is bounded by s‖F1C‖2L∞(δ1/2S∞)

. Set

∂θC,T = {(y, θtθC,T (y)−1, θtθC,T (y)) : |y| < (1− δ)s}.

Consider the decomposition of ∂θC,T

∂θC,T = (∂θC,T ∩ ∂θA,T ) ∪ (∂θC,T ∩ ∂θP,T ) = O1 ∪O2

For the first part we haveˆ
O1

|F |2 ≤ s‖F1C‖Rθδ,A(T ) ≤ s‖F1C‖L∞(Rδ,A).

Now we shall bound the integral over O2. Consider the splitting

O2 = (

n⋃
j=1

O2 ∩ ∂θKj ,T ) ∪ (O2 ∩ ∂θL,T ) =

n⋃
j=1

Õj ∪O.

we consider only Õ1, but the proof for different Õj ’s and O is the same. Set K := K1, ∂θK := ∂θK,T
and note that without loss of generality (up to increasing the constant by factor 3) we may assume
that K ⊂ T0

∆ (see Lemma 2.27). Let tθK be the parametrization of ∂θK . Let ∂θK = S1 ∪S2, where
S1 is the set of points (y, η, t) ∈ ∂θK , such that y is a local maximum of the function tθK and let
S2 = ∂θK \S1. Observe that S1 is a union of pairwise disjoint of “horizontal” segments I that are
parallel to {(y, 0, 0) : y ∈ R} and S2 is a union of pairwise disjoint curves C whose projection onto
{(y, 0, t) : y ∈ R, t ∈ R+} are segments which form the angle π/4 or 3π/4 with {(y, 0, 0) : y ∈ R}.
For every segment I ∈ I, we select all minimal (in terms of measure) trees T̃ = Tδ(x, ξ, u) ∈ Tδ
such that there exists δ̃ satisfying: δ/4 < δ̃ ≤ δ and T = Tδ̃(x, ξ, u) ∈ Tδ̃ satisfies I ∩ ∂θ

T
6= ∅.

For a fixed I, we denote the collection of selected T̃ with T̃I and set T̃ :=
⋃
I∈I T̃I . This way we

cover all points that belong to S1 with {∂θ
T

: T̃ ∈ T̃ }. Moreover, observe that this collection of

boundaries also covers all points belonging to S2, and therefore the whole set ∂θK . We have the
following.
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Lemma 2.47. Let I ∈ I. We have ∑
T̃∈T̃I

|IT̃ | . |I|.

Proof. Note that I is of the form I × {η} × {t} for some η ∈ R, t ∈ R+ and an interval I ⊂ R.
Since T is the discretized collection of trees and by the way we defined I ∈ I, we have that

|I| & δ−1t. (2.38)

Using Lemma 2.27, it suffices to prove the statement for T̃I ⊂ T0
∆, i.e. for pairwise disjoint ∂θ

T̃
.

By definition, each T̃ (x, ξ, u) ∈ T̃I satisfies ∂θ
T̃

= Ĩ × {η} × {δu} for some interval Ĩ ⊂ R and
u ∈ R+ such that δu ' t. Thus,

|∂θ
T̃
| ' |IT̃ | = δ−1(δu) ' δ−1t

Moreover, ∂θ
T

(see the definition of T ) are pairwise disjoint intervals of the same length compa-

rable with δ−1t like in the previous display, which have nonempty intersection with I. Together
with (2.38), that implies the desired inequality.

Since I ∈ I are pairwise disjoint intervals, hence applying the above lemma we obtain that∑
T̃∈T̃ |IT̃ | . s. Using this bound, we may further estimate

ˆ
Õ

|F |2 ≤
∑
T̃∈T̃

|IT̃ ||(‖F1C‖
2
Rδ,A(T̃ )

+ ‖F1C‖2δ1/2S∞δ,A(T̃ )
)

. s(‖F1C‖2L∞(Rδ,A) + ‖F1C‖2L∞(δ1/2S∞δ,A)).

2.4.3 Quasi-monotonicity of iterated outer Lp norms on R3
+

In this subsection we shall state and prove several auxiliary lemmata about the iterated Lp

norms, which we will need in the next section. First, we show that ‖ · ‖-Lp sizes are decreasing in
p.

Lemma 2.48 (Monotonicity of iterated sizes). Let and 0 < p ≤ q ≤ ∞. We have for F ∈ B(R3
+)

‖F‖-Lqµ(S) .p,q ‖F‖-Lpµ(S).

Proof. Recall that ‖F‖-L∞(S) = ‖F‖L∞(S). First, assume that for any p <∞

‖F‖L∞(S) .p ‖F‖-Lp(S). (2.39)

Using (2.39) we have for 0 < p < q <∞ and ‖F‖-Lp(S) <∞ (otherwise there is nothing to show),
and for any D ∈ D, by the definition of the outer Lp norm

ν(D)−1/q‖F1D‖Lq(S) .p,q ‖F‖
1−p/q
L∞(S)ν(D)−1/q‖F1D‖p/qLp(S)

. ‖F‖1−p/qL∞(S)‖F1D‖
p/q
-Lp(S) . ‖F1D‖-Lp(S).
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We still have to show (2.39). First assume that ‖F‖L∞(S) < ∞. Let T ∈ T be a tree such that
‖F1T ‖L∞(S) > ‖F‖L∞(S)/2. Let D ∈ D be such that ID = IT . We have

‖F‖-Lp(S) ≥ ν(D)−1/p‖F1D‖Lp(S)

& ν(D)−1/pν(D)1/p‖F‖L∞(S) = ‖F‖L∞(S).

If ‖F‖L∞ =∞, choosing a tree such that ‖F1T ‖L∞ > n we similarly obtain ‖F‖-Lp(S) & n. Since
this holds for any n ∈ N, it implies ‖F‖-Lp(S) =∞.

The following fact lets us relate the outer Lq norm to the averaged -Lq.

Lemma 2.49. Let V ∈ D∪. Then for F ∈ B(R3
+) it holds that

‖F1V ‖Lqµ(S) .q ν(V )1/q‖F1V ‖-Lqµ(S) q ∈ (0,∞]

Proof. Using Lemma 2.29, decompose V =
⋃∞
m=1Dm, where Dm ∈ D for m = 1, 2, ...

For q =∞ there is nothing to show. Assume that 0 < q <∞. Let Tm ⊂ T for m = 1, 2, .. be
such that ∑

T∈Tm

µ(T ) . µ(‖F1Dm‖S > λ), ‖F1Dm1X\
⋃

Tm‖L∞(S) ≤ λ

Set T′ =
⋃
m Tm. Let T ∈ T be any tree. For every m, let Tm be the tree, whose top is the

maximal tile P ∈ Dm ∩ T (it can be empty). Observe that it holds that

‖F1V 1X\
⋃

T′‖2S(T ) =
1

µ(T )

∑
m

µ(Tm)‖F1Dm1X\
⋃

T′‖2S(Tm)

≤ λ2 1

µ(T )

∑
m

µ(Tm) . λ2,

where we used that (applying Lemma 2.29)
∑
m µ(Tm) ≤ µ(T ). Thus we have

µ(‖F1V ‖S > λ) ≤
∑
T∈T′

µ(T ) .
∑
m

µ(‖F1Dm‖ > λ).

In consequence

λqµ(‖F1V ‖S > λ) .
∑
m

λqµ(‖F1Dm‖S > λ)

.
∑
m

ν(Dm)‖F1Dm‖
q
-Lqµ(S)

. ν(V )‖F1V ‖q-Lqµ(S)
,

where we used that (applying Lemma 2.29)
∑
m ν(Dm) ≤ ν(V ) holds. The full result follows

Proposition 2.9.

The next lemma reverts the inequality in Lemma 2.48 if F is appropriately localized, losing
a factor coming from the localization.

Lemma 2.50. Let A ⊂ R3
+ be a Borel set and let V ∈ D∪. Then for any 0 < t ≤ q ≤ ∞ and

F ∈ B(R3
+) one has

‖F1A1V ‖Ltµ(S) .q,t µ(V ∩A)1/t−1/qν(V )1/q‖F1A1V ‖-Lqµ(S). (2.40)
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Proof. Note that we can assume that ‖F‖L∞(S) < ∞, otherwise the right hand side of (2.40)
is infinite and there is nothing to show. Moreover, by scaling invariance we assume that
‖F1A1V ‖L∞(S) ≤ 1. Note that for all λ > 0

µ(‖F1A1V ‖S > λ) ≤ µ(V ∩A).

holds. Note that, if µ(V ∩ A) = 0 or ‖F1A1V ‖Lqµ(S), then there is nothing to show. Let

C = µ(V ∩A)−1/q‖F1A1V ‖Lqµ(S). We have

‖F1A1V ‖Ltµ(S)

. (

ˆ C

0

λtµ(‖F1A1V ‖S > λ)
dλ

λ
)1/t + (

ˆ ∞
C

λtµ(‖F1A1V ‖S > λ)
dλ

λ
)1/t

. Cµ(V ∩A)1/t + C1−q/t‖F‖q/t
Lqµ(S)

. µ(V ∩A)1/t−1/q‖F‖Lqµ(S).

The conclusion follows now from Lemma 2.49.

The following lemma controls the counting function of a forest coming from the selection
algorithm in terms of -Lq norm.

Lemma 2.51 (Counting function estimates). Let V ∈ D∪ and let Tλ be the collection of trees
selected according to Definition 2.38(Definition 2.43) at a certain level λ > 0 for function F1V .
Let NTλ be its counting function. Then for any 1 ≤ p < ∞, 2 ≤ q < ∞ and F ∈ Bc(R3

+) the
following bounds hold

‖NTλ‖Lp .p ν(V )1/pλ−q‖F1V ‖q-Lqµ(S)

together with the BMO endpoint

‖NTλ‖BMO . λ−q‖F1V ‖q-Lqµ(S)
.

Proof. Let Eλ be the strongly disjoint set selected at level λ for function F1V .
We show the result for endpoints p = 1 and BMO; the full statement follows then from the

inequality ‖f‖Lp .p ‖f‖1/pL1 ‖f‖1−1/p
BMO (see, [CZ05]). First of all, applying Lemma 2.40(Lemma

2.44) we have

‖NTλ‖L1 . λ−2‖F1V ‖2L2
µ(S).

Applying Lemma 2.50 to the right hand side we obtain

‖NTλ‖L1 . λ−2‖NTλ‖
1−2/q
L1 ν(V )2/q‖F1V ‖2-Lq ,

which gives

‖NTλ‖L1 . ν(V )λ−q‖F1V ‖q-Lq .

We still need to prove the BMO bound. Fix an interval I and let T Iλ ⊂ Tλ be the subcollection
of selected trees with their top intervals contained in I; moreover let EIλ = Eλ ∩

⋃
T Iλ . Notice

that T Iλ ⊂ D3I ∩ Tλ, where D3I = D(c(I), 3|I|) is the strip generated by 3I. Apply Lemma
2.40(Lemma 2.44) to EIλ. We obtain

‖NT Iλ ‖L1 . λ−2‖F1V 1D3I
‖2L2

µ(S)
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Applying Lemma 2.50, this time using DI (instead of V ) as the time-scale localization, we obtain

‖NT Iλ ‖L1 . |I|λ−q‖F1V ‖q-Lq ,

where we used that ν(D3I) = 3|I|. Dividing by |I| and taking the supremum on the left hand
we get that

‖NTλ‖BMO . λ−q‖F1V ‖q-Lq .

2.5 Trilinear iterated Lp estimate

From now on we fix ~β ∈ R3 and set Λ := Λ~β . The main result of this section is the following
proposition.

Proposition 2.52. Let 1 < p1, p2, p3 < ∞ with
∑3
j=1 1/pj = 1 and 2 < q1, q2, q3 < ∞ with∑3

j=1 1/qj > 1. Let for j = 1, 2, 3, fj be a Schwartz function and let Fϕj := Fϕ(fj), Fj =

supϕ∈Φ F
ϕ
j , F ∗j = supϕ∈Φ∗ F

ϕ
j and Fj = (Fj , F

∗
j ). Moreover, assume that Vj ,Wj ∈ D∪ for

j = 1, 2, 3. Then

|Λ(Fϕ1 1V1\W1
, Fϕ2 1V2\W2

, Fϕ3 1V3\W3
)| .

3∏
j=1

ν(Vj)
1/pj‖Fj1Vj\Wj

‖L∞-Lqj (S). (2.41)

Note that in conjunction with Proposition 2.10 the above inequality implies Theorem 2.2.
We could not use the outer Hölder inequality from [DT15] for our purpose, since it requires a
stronger assumption than we were able to obtain. Namely the outer Hölder inequality would
require minj µ(Vj) instead of

∏
j µ(Vj)

1/pj on the right hand side of (2.41). The other reason

is that our multilinear form is nonpositive and, as opposed to [DT15], we do not view it as L1

norm. Although one could try to deal with the nonpositivity introducing nonpositive sizes to
view the left hand side of (2.19) as an outer L1 norm, it does not seem likely that one can obtain
much better gain than

∏
j µ(Vj)

1/pj in (2.41), since V1 scales differently than V2 and V3.
Before we prove Proposition 2.52 we show a localized estimate at the level of trees.

Proposition 2.53. Let 1 ≤ p1, p2, p3 ≤ ∞ with
∑3
j=1 1/pj = 1. Let for j = 1, 2, 3, fj be a

Schwartz function and let Fϕj := Fϕ(fj). Assume that Kj , Lj ,Mj , Nj ∈ (Tj)∪, Vj ,Wj ∈ D∪ and

µj is for j = 1, 2, 3. Moreover, set A = Aε ∩ V1 ∩
⋂3
j=2(Vj \ Wj), where Aε is as in (2.23),

Gϕj := Fϕj 1Vj\Wj
1Mj\Nj , Gj = supϕ∈ΦG

ϕ
j , G∗j = supϕ∈Φ∗ G

ϕ
j and Gj = (Gj , G

∗
j ). Moreover,

let Sj := Sγj,δ,A, µj = µj,δ for j = 2, 3 (see, Section 2.3.2). Then

|Λ(Gϕ11K1\L1
, Gϕ21K2\L2

, Gϕ31K3\L3
)| .

3∏
j=1

µj(Kj)
1/pj‖Gj1Kj\Lj‖L∞(Sj).

Remark. Observe that optimizing in pj and µj(Kj), we can make
∏3
j=1 µj(Kj)

1/pj to be equal
minj=1,2,3 µj(Kj).

Remark. Observe that Gj are additionally restricted to Mj \ Nj ∈ (Tj)∪. That is because we
shall need such additional localization in the proof of Proposition 2.52.
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Note that applying Proposition 2.10, the previous proposition immediately implies

|Λ(Gϕ1 , G
ϕ
2 , G

ϕ
3 )| .

3∏
j=1

‖Gj‖Lpj (Sj).

In the first subsection we make a couple of remarks concerning boundary integrals, which
we shall be using throughout this section. In the second subsection we prove several technical
facts, which let us streamline the exposition of the proof of Proposition 2.53. In the second
subsection we prove Proposition 2.53. In the third subsection we finally proceed with the proof
of Proposition 2.52.

2.5.1 Remark on boundary integrals

In this section we will be using the fundamental theorem of calculus and Green’s theorem multiple
times, while integrating by parts functions restricted to sets with boundary. In the following two
propositions we state the versions of the these facts that we are going to apply. Note that these
facts require restriction to a compact set with piecewise linear boundary, which is the technical
reason why we restrict functions in R3

+ to the set Aε, which we introduced in (2.23).

Proposition 2.54 (Fundamental theorem of calculus). Let y ∈ R2
+ and a, b, c ∈ R+ with 0 <

a < b. We have for any G ∈ C1(R2
+) and (y, t) ∈ R2

+

G(y, t)1(a,b)(c) =

ˆ c

0

∂u(G(y, u)1[a,b](u)) du

=

ˆ c

0

∂uG(y, u)1(a,b)(u) du+

ˆ c

0

G(y, u)∂u1[a,b](u) du,

with ∂u1[a,b](u) du being the measure δa(u)− δb(u).

Let C ⊂ R2
+ be a compact region of the form

C = {(y, t) ∈ R2
+ : t−(y) ≤ t ≤ t+(y)},

where t± : [a, b]→ R+, where a < b, are piecewise linear functions whose Lipschitz constants are
bounded by 1 and let us set C(y) = (t−(y), t+(y)).

Proposition 2.55 (Green’s theorem). Let D be a region bounded by a positively oriented, piece-
wise linear simple closed curve in R2. For any G,H ∈ C1(R2

+) we have

ˆ
D

∂yG(y, t)H(y, t) dy dt =

˛
∂D

G(y, t)H(y, t) dt−
ˆ
D

G(y, t)∂yH(y, t) dy dt.

In particular

ˆ ˆ
∂yG(y, t)H(y, t)1C(y)(t) dy dt

= −
ˆ ˆ

G(y, t)∂yH(y, t)1C(y)(t) dy dt+

ˆ ˆ
G(y, t)H(y, t)∂y1C(y)(t) dy dt,

with
´
∂y1C(y)(t) dy dt being

¸
∂C

dt as in the statement of classical Green’s theorem.
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Note that we have the following estimates to control the boundary terms coming from differ-
entiating in space and in scale (in the first and in the second variable), we have

|
ˆ b

a

ˆ s

0

G(y, t)∂t1C(y)(t) dt dy| ≤
ˆ b

a

|G(y, t−(y))| dy +

ˆ b

a

|G(y, t+(y))| dy, (2.42)

and

|
ˆ b

a

ˆ s

0

G(y, t)∂y1C(y)(t) dt dy| ≤
ˆ b

a

|G(y, t−(y))| dy +

ˆ b

a

|G(y, t+(y))| dy. (2.43)

2.5.2 Preliminaries: properties of embeddings in R3
+

This part is dedicated to proving several technical facts about sizes which will shorten the
exposition of the proof of the single tree estimate in the subsequent subsection.

Throughout this subsection, for simplicity we fix ΘΘΘ = (Θ,Θ(in)) with Θ = (−1, 1) and
Θ(in) = (−b, b). The proof for different Θ is analogous. The constants may be dependent on ΘΘΘ,
however in the end we apply the results only to a finite set of parameters introduced in (2.22). We
also fix an arbitrary Schwartz function f and a number s > 0. Moreover, we set Fϕ = Fϕ(f) for
ϕ ∈ Φ, F = F (f), F ∗ = F ∗(f) and F = (F, F ∗), see (2.6). All the constants in this subsection
are independent of δ, f , unless explicitly stated.

Definition 2.56. Let G ∈ B(R2
+). Define

‖G‖V := ‖G‖V 2 + ‖G‖V∞ , (2.44)

where

‖G‖V∞ := sup
(y,t)∈R×R+

|G(y, t)|

‖G‖V 2 := sup
T (x,0,w)∈T

(
1

w

ˆ x+w

x−w

ˆ w

0

|G(y, t)|2 dt
t
dy)1/2.

Moreover, define

‖G‖V 2 := (
1

s

ˆ s

−s

ˆ min(δs,s−|y|)

0

|G(y, t)|2 dt
t
dy)1/2. (2.45)

Definition 2.57. Let G ∈ C(R2
+) be a measurable function and

B(y) = (b−(y), b+(y)) ⊂ (0,min(δs, s− |y|)),

where b± : [−s, s]→ R+ are piecewise linear, Lipschitz functions. Define

‖G‖R,VB :=

2∑
j∈{−,+}

(

ˆ s

−s
|G(y, bj(y))|2 dy)1/2 (2.46)

The first lemma of this subsection lets us dominate the S2 portion of the size over a single
θ-dependent hyperbola {θt−1}. Moreover, observe that we convolve f with a function that is
only of mean zero and does not necessarily have the Fourier support away from zero. By virtue
of this fact, we are able to take the supremum over θ in the proof of the key “overlapping tree
estimate”, Lemma 2.77, in the next subsection.
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Lemma 2.58.

1. Let T = T (0, 0, s) ∈ TΘΘΘ,δ and C = (K\L)∩Aε, where K,L ∈ T ∪ΘΘΘ (recall Definition 2.13 and

(2.23)). Moreover set Cθ := CθT with θ ∈ Θ(in). Let Gψ(y, t) := f ∗ ψt(y) := Fψ(y, θt−1, t)

and additionally assume that ψ̂θ,1(ξ) = ξϕ̂θ,1(ξ), where ϕ ∈ Φ∗. We have

‖Gψ1Cθ‖V 2 . ‖F ‖L∞(Sδ,C). (2.47)

‖Gψ1Cθ‖V . ‖F ‖L∞(S1,C). (2.48)

2. Let T = T (0, 0, s) ∈ TΘΘΘ,1 and B = (K \ L) ∩ Aε, where K,L ∈ T ∪ΘΘΘ (recall Definition
2.13 and (2.23)). Moreover set Bθ := BθT with θ ∈ Θ(in). Let Gϕ(y, t) := f ∗ ϕt(y) :=
Fϕ(y, (θ+ β1)t−1, t) and let ϕ ∈ Φ∗, i.e. ϕ̂ is supported on (−a, a), where a ≤ 2−8b, where
b ≤ 2−8. We have

‖Gϕ1Bθ‖V . ‖F ‖L∞(S1,B).

Remark 2.59. The restriction of C to Aε is used to ensure that the considered scales are bounded
from below, so that c± are away from zero, where (c−(y), c+(y)) = CθT .

Proof. (1). First we prove (2.47). We set Cθ(y) = (c−(y), c+(y)). Note that by the assumptions

we have ψ = ψθ,1. Moreover, set ϕ = ϕθ,1 and observe ψ̂ is supported on (−2b, 2b) and ψ̂(ξ) =
ξϕ̂(ξ). Let a < 2−8b be fixed throughout the proof.

Lemma 2.60. For any c > 1 we may decompose ψ as follows

ψ(x) =

ˆ c

1

ψu,−u (x) + ψu,+u (x)
du

u2
+ c−1ϕcc(x) (2.49)

where for each u ∈ [1,+∞] such that

ψu,+u (x) := u−1ψu,+
(x
u

)
ψu,−u (x) := u−1ψu,−

(x
u

)
ϕcc(x) := c−1ϕc

(x
c

)
with

supp(ψ̂u,−(ξ + 3b)), supp(ψ̂u,+(ξ − 3b))) ⊂ (−a/2, a/2) (2.50)

ei3bxψu,−(x) ∈ Φ∗, e−i3bxψu,+(x) ∈ Φ∗, ϕc ∈ Φ.

In particular for any 0 < t < c it holds that

ψt(x) = t

ˆ c

t

ψu/t,−u (x) + ψu/t,+u (x)
du

u2
+ c−1tϕc/tc (x). (2.51)

Proof. Let η ≥ 0 be an even nonzero Schwartz function supported on (−3b− a/2,−3b+ a/2) ∪
(3b− a/2, 3b+ a/2). It follows from the change of variables uξ → u that for ξ ∈ (−2b, 2b) \ {0}

1 =

ˆ ∞
1

η(uξ)
du

u
,

where η(u) = 2(
´∞
−∞ η(t)t−1dt)−1η(u). Note that (we discard 2πi, which is irrelevant here)

ψ(x) =

ˆ ∞
1

ϕ ∗ (η′)u(x)
du

u2
.
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The above holds, since on the Fourier side we have for ξ ∈ R \ {0}

ψ̂(ξ) =

ˆ ∞
1

ψ̂(ξ)η(uξ)
du

u
=

ˆ ∞
1

ϕ̂(ξ)uξη(uξ)
du

u2
,

and both functions in questions are mean zero. F−1(ϕ̂(ξ)uξη(uξ)) = ϕ ∗ (η′)u = ψuu , where
ψu = ψu,− + ψu,+, with some u-dependent ψu,−, ψu,+ satisfying (2.50). Hence, the only thing
left to show is that there exists ϕc ∈ Φ such that

ˆ ∞
c

ψuu(x)
du

u2
= c−1ϕcc(x),

Changing variables on the left hand side we obtain
ˆ ∞
c

ψuu(x)
du

u2
= c−1

ˆ ∞
1

ψucuc(x)
du

u2
= c−1ϕcc(x),

where ϕc(x) :=
´∞

1
ψucu (x) duu2 . Note that for every u > 1, ψuc ∈ Φ∗, meaning that it has

uniformly bounded derivatives up to a high order and its support sufficiently small around zero.
It is not difficult to check that this implies that ϕc ∈ Φ. This finishes the proof of (2.49). (2.51)
follows from applying (2.49) with c̃ = ct−1 and a change of variables. This finishes the proof of
the lemma.

Applying (2.51) with c = c+(y) we bound s‖Gψ1Cθ‖V 2 by the sum of

ˆ s

−s

ˆ c+(y)

c−(y)

c+(y)−2t2|f ∗ ϕc
+(y)/t
c+(y) |

2 dt

t
dy (2.52)

ˆ s

−s

ˆ c+(y)

c−(y)

|
ˆ c+(y)

t

f ∗ ψu/tu (y)
t

u

du

u
|2 dt
t
dy (2.53)

Note that (2.52) is bounded by
ˆ s

−s
sup

t∈(c−(y),c+(y))

|f ∗ ϕc
+(y)/t
c+(y) |

2 dy . s‖F‖2Rθδ,C(T ).

Concerning (2.53), we consider ϕ
u/t,+
u since the argument for ϕ

u/t,−
u is analogous. Also, let

ψy,uu := ψ
u/ty,u,+
u with t0 > 0 be such that |f ∗ ψy,uu (y)| ≥ 1

2 supt<u |f ∗ ψ
u/t,+
u (y)|. Now, observe

that that there exists a wave packet ψ
y,u ∈ Φ∗ supported on (−a/2, a/2), such that for some

θ ∈ Θ(in) + 2b

f ∗ ψy,uu = Fψ
y,u

(y, θu−1, u)

From now on, for simplicity, we write F y,u := Fψ
y,u

. The consideration above imply that (2.53)
is bounded by

ˆ s

−s

ˆ c+(y)

c−(y)

|
ˆ c+(y)

t

|F y,u(y, θu−1, u)| t
u

du

u
|2 dt
t
dy

Let g(t) = t1(0,1)(t). Note that the integral over t is the L2 norm of the convolution

(F y,·(y, θ·−1, ·)1Cθ(y)(·)) ∗ g
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in the multiplicative group (R+,
dt
t ). Using Young’s inequality, it is then estimated by

ˆ s

−s

ˆ δs

0

|F y,u(y, θu−1, u)|21Cθ(y)(u)
du

u
dy.

The previous display is estimated further by

ˆ s

−s

ˆ δs

0

|F y,u(y, θu−1, u)|21Cθ(y)∩Cθ(y)(u)
du

u
dy

+

ˆ s

−s

ˆ δs

0

|F y,u(y, θu−1, u)|21Cθ(y)\Cθ(y)(u)
du

u
dy.

First we bound the second summand above and then the first. In order to bound the second
summand it is enough to show the following.

Lemma 2.61. Let θ ∈ Θ(in) + 2b. Then

Cθ(y) \ Cθ(y) ⊂ (c−(y), 2c−(y)) ∪ (
1

2
c+(y), c+(y)),

Proof. 1. First we show that

t ∈ Cθ(y), t 6∈ Cθ(y) =⇒ there exists s ∈ Cθ(y) with
1

2
≤ s

t
≤ 2. (2.54)

The left hand side of the implication means that there exists a tree separating the points
(y, θt−1, t) and (y, θt−1, t), i.e. there exists a ξ such that

θt−1 ≤ ξ + t−1 ≤ θt−1 (2.55)

or

θt−1 ≤ ξ − t−1 ≤ θt−1. (2.56)

Let us consider only the first case, since the other one is very similar. Since |θ|, |θ| � 1, the
hyperbola θu−1 is “steeper” than ξ + u−1 and there exists s < t such that

θs−1 = ξ + s−1.

Subtracting this equality from the left inequality in (2.55) one obtains

θt−1 − θs−1 ≤ t−1 − s−1 =⇒ (1− θ)s−1 ≤ (1− θ)t−1

=⇒ s

t
≥ 1− θ

1− θ
≥ 1

2
,

where the last inequality follows from |θ|, |θ| � 1. Similarly, one can show that if (2.56) is

satisfied, then there exists s
t ≤ 2 with s ∈ Cθ(y). This ends the proof of (2.54).

2. Note that for any θ̃ ∈ Θ, C θ̃(y) is a connected set, hence if c−(y), c+(y) ∈ Cθ(y), then

Cθ(y) ⊂ Cθ(y) and there is nothing to prove. Also, note that if c−(y), c+(y) are at most factor
2 away from each other, then there is also nothing to prove.

Assume that the above is not the case and c+(y) 6∈ Cθ(y). Note that (2.54) implies that
c+(y)

2 ∈ Cθ(y). Similarly, if c−(y) 6∈ Cθ(y), then 2c−(y) ∈ Cθ(y).
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Using the above lemma we bound

ˆ s

−s

ˆ δs

0

|F y,u(y, θu−1, u)|21Cθ(y)\Cθ(y)(u)
du

u
dy

.
ˆ s

−s
sup

u∈(c−(y),2c−(y))

|F y,u(y, θu−1, u)|2 dy

+

ˆ s

−s
sup

u∈( 1
2 c

+(y),c+(y))

|F y,u(y, θu−1, u)|2 dy.

Note that supu∈(c−(y),2c−(y)) |F y,u(y, θu−1, u)| ≤ |F (y, θc−(y)−1, c−(y)| and similar holds for the

term involving c+(y). Hence, the right hand side of the last display is bounded by 2s‖F‖2L∞(Rδ,C)+

2s‖F1C‖2L∞(δ1/2S∞)
. We still have to deal with the L2 integral restricted to Cθ.

Lemma 2.62. Let θ ∈ Θ(in) + 2b. Then

ˆ s

−s

ˆ δs

0

|F y,u(y, θu−1, u)|21Cθ(y)∩Cθ(y)(u)
du

u
dy . s‖F ‖2L∞(Sδ,C).

Remark 2.63. The point of the lemma is essentially to replace the left hand side by its average
over θ on an interval of size ∼ 1. In order to that we split the integral into a part that is close to
the boundary and the other part, where we have “enough space” to perform integration over θ.

Proof. Observe that

Cθ(y) ∩ Cθ(y) := D(y) ∪ C̃θ(y),

where

D(y) := (c−(y), 2c−(y)) ∪ (
1

2
c+(y), c+(y)), C̃θ(y) := Cθ(y) ∩ Cθ(y) \Dθ(y).

Note that
ˆ s

−s

ˆ
Dθ(y)

|F y,u(y, θu−1, u)|21Cθ(y)(u)
du

u
dy

.
ˆ s

−s
sup

u∈(c−(y),2c−(y))

|F y,u(y, θu−1, u)|2 dy

+

ˆ s

−s
sup

u∈( 1
2 c

+(y),c+(y))

|F y,u(y, θu−1, u)|2 dy

. s(‖F‖2L∞(Rδ,C) + ‖F1C‖2L∞(δ1/2S∞)),

since supu∈(c−(y),2c−(y)) |F y,u(y, θu−1, u)|2 ≤ |F (y, θc−(y)−1, c−(y))|, where θ = θ − 2b ∈ Θ(in)

and similarly for the term involving c+(y).

Now we bound the contribution of C̃θ(y). We have the following observation.

Lemma 2.64. For any θ̃ ∈ Θ(in) + 2b and u ∈ C̃θ(y), we have (y, θ̃u−1, u) ∈ C.

Proof. This follows directly from Lemma 2.61.
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Let c < b. Applying the previous lemma and making c small enough we may ensure that for

any θ̃ ∈ [θ, θ + c) and u ∈ C̃θ(y) we have |F y,u(y, θu−1, u)| ≤ |F ∗(y, θ̃u−1, u)|. This implies

ˆ s

−s

ˆ δs

0

|F y,u(y, θu−1, u)|21C̃θ(y)(u)
du

u
dy

.c

ˆ θ+c

θ

ˆ s

−s

ˆ
δs

|F (y, θ̃u−1, u)|21C(y, θ̃u−1, u)
du

u
dy dθ̃

. s(‖F ∗‖2L∞(S2
δ,C) + ‖F ∗1C‖2L∞(δ1/2S2)),

where the last inequality follows from [θ, θ + c) ⊂ Θ(out) (since θ ∈ Θ(in) + 2b).

(2.48) is proven analogously to (2.47); the only difference is that we do not use the boundary
size Rδ,C , but S∞.

2. Notice that Gϕ(y, t) = Gψ(y, t), where ψ = ϕθ+β1
. Note that the first part of the proof

applies to such ψ and follows similarly.

The following two simple lemmata below will be extensively used when we integrate by parts
the trilinear form.

Lemma 2.65 (Differentiating wave packets in space).

∂yF
ϕ(y, ξ, u) = u−1Fϕ

′
(y, ξ, u). (2.57)

Proof. Straightforward.

Lemma 2.66 (Differentiating wave packets in scale).

∂uF
ϕ(y, ξ, u) = u−1Fϑ(y, ξ, u), (2.58)

where ϑ(x) = (xϕ(x))′.

Proof. It follows from the identity

∂uu
−1ϕ(

x

u
) = −u−2ϕ(

x

u
)− xu−3ϕ′(

x

u
) = u−1u−1ψ′(

x

u
),

where ψ(x) = xϕ(x). Hence, the right hand side equals u−1ϑu, with ϑ = ψ′.

Lemma 2.67. Let ϕ ∈ Φ∗ and 0 < ε < 2−10b. Then there is a decomposition such that ϕ = ϕ+ψ,
where ϕ,ψ ∈ Φ∗, ϕ̂ is constant on (−ε, ε) and there exists ϑ ∈ Φ∗ such that ψ = ϑ′.

Proof. Let η ∈ Φ∗ be such that η̂ is supported on (−2ε, 2ε) and constant 1 on (−ε, ε). Define ψ,
ϕ as follows

ψ̂(ξ) = ϕ̂(ξ)− η̂(ξ)ϕ̂(0), ϕ̂(ξ) = η̂(ξ)ϕ̂(0).

Clearly ϕ = ψ + ϕ and ϕ̂ is constant on (−ε, ε). Let

ϑ(x) :=

ˆ x

−∞
ψ(y) dy =

ˆ x

−∞
ϕ(y)− ϕ̂(0)η(y) dy.

ϑ ∈ Φ, because ϕ, η ∈ Φ∗. Moreover, ϑ′ = ψ. The last identity implies also that ϑ̂ is supported
on (−2−9b, 2−9b), because both ϕ̂ and η̂ are supported on that interval. Hence ϑ ∈ Φ∗.
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Till the end of this subsection, unless otherwise stated we set

B(y) := (b−(y), b+(y)) ⊂ (0, s− |y|),

where b± : Bs(0)→ R+ are piecewise linear, Lipschitz functions and

C(y) := (c−(y), c+(y)) ⊂ (0,min(δs, s− |y|)).

where c± : Bs(0)→ R+ are piecewise linear, Lipschitz functions.
We use the following definition of BMO

‖f‖BMO := sup
I

 
I

|f −
 
I

f |.

In the following lemma we prove boundedness of a version of the Hilbert transform, operator
(2.59), that involves restriction to scales t ∈ B(y), under appropriate Lipschitzity condition.
However, note that the bounds (2.60), (2.61) are in terms V .

Lemma 2.68. Let

LH(y) =

ˆ s

0

H(y, t)1B(y)(t1)
dt

t
1[−s,s](y). (2.59)

Let ϕ′ = ϕ for ϕ ∈ Φ∗. We have

‖LGϕ‖L2 . s1/2 sup
ζ∈{ϕ,ϕ,ϕ′}

‖Gζ1B‖V , (2.60)

‖LGϕ‖BMO . sup
ζ∈{ϕ,ϕ,ϕ′}

‖Gζ1B‖V , (2.61)

and for 2 < p <∞

‖LGϕ‖Lp .p s
1/p sup

ζ∈{ϕ,ϕ,ϕ′}
‖Gζ1B‖V . (2.62)

Proof. In the proof we omit writing the complex conjugate. By assumption, ϕ′ = ϕ, moreover
we set ϕ̃ := ϕ′.
(2.60): Let C := ‖LGϕ‖L2 and D := s1/2 supζ∈{ϕ,ϕ,ϕ′} ‖Gζ1B‖V , we want to prove that C . D.

Note that C2 equals

ˆ s

−s

ˆ s

0

ˆ s

0

Gϕ(y, t1)1B(y)(t1)Gϕ(y, t2)1A(y)(t2)
dt1
t1

dt2
t2

dy

by symmetry we bound only

ˆ s

−s

ˆ s

0

ˆ
0<t1<t2

Gϕ(y, t1)1B(y)(t1)Gϕ(y, t2)1B(y)(t2)
dt1
t1

dt2
t2

dy

We shall now integrate by parts moving derivative from Gϕ(y, t1) to Gϕ(y, t2).
Hence, applying Proposition 2.55 it is enough to estimate the following four integrals

ˆ s

−s

ˆ s

0

ˆ
t1<t2<s

Gϕ̃(y, t2)1B(y)(t2)
t1
t2

dt2
t2

Gϕ(y, t1)1B(y)(t1)
dt1
t1

dy (2.63)
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ˆ s

−s

ˆ s

0

ˆ
0<t1<t2

Gϕ(y, t1)∂y1B(y)(t1)Gϕ(y, t2)1B(y)(t2) dt1
dt2
t2

dy (2.64)

ˆ s

−s

ˆ s

0

ˆ
0<t1<t2

Gϕ(y, t1)1B(y)(t1)Gϕ(y, t2)∂y1B(y)(t2) dt1
dt2
t2

dy (2.65)

Concerning (2.63) we apply Cauchy-Schwarz in t1 with measure dt1
t1

first and then we use Young’s

convolution inequality for the multiplicative group (R+,
dt
t ):

.
ˆ s

−s
‖Gϕ1B(y)(t) ∗ t1(0,1)(t)‖L2( dtt ) ‖G

ϕ̃
1B(y)(t)‖L2( dtt ) dy . D2

(2.64): applying (2.43) and the Cauchy-Schwarz inequality in y, it is bounded by

s1/2‖Gϕ‖V
(ˆ s

−s
|
ˆ s

0

Gϕ(y, t2)1B(y)(t2)
dt2
t2
|2 dy

)1/2

. DC

(2.65): applying (2.43) and using Cauchy-Schwarz twice, in t1 and then in y, it is estimated by

ˆ s

−s

ˆ s

0

ˆ
0<t1<t2

|Gϕ(y, t1)|1B(y)(t1)
t
1/2
1

t
1/2
1

dt1|Gϕ(y, t2)∂y1B(y)(t2)|dt2
t2

dy

.
ˆ s

−s

ˆ s

0

(

ˆ
0<t1<t2

|Gϕ(y, t1)|21B(y)(t1)
dt1
t1

)1/2|Gϕ(y, t2)∂y1B(y)(t2)|dt2 dy

. (

ˆ s

−s

ˆ s

0

|Gϕ(y, t1)|21B(y)(t1)
dt1
t1

dy)1/2‖Gϕ1B‖V . D2.

We have just proven that C2 . D2 + CD. Hence, either C2 . D2 or C2 . CD. This implies
C . D.

(2.61): Fix an interval I. Without loss of generality we may assume that either I ⊂ [−s, s]
or [−s, s] ⊂ I. In the latter case the bound follows from the L2 estimate. Also, without loss of
generality, we may assume that I = [−w,w]. Hence we consider the first case and using Jensen’s
inequality it is enough to bound( w

−w
|
ˆ s

0

Gϕ(y, t)1B(y)(t)
dt

t
−
 w

−w

ˆ s

0

Gϕ(z, t)1B(z)(t)
dt

t
dz|2dy

)1/2

Note that by the already shown L2 estimate
 w

−w
|
ˆ w

0

Gϕ(y, t)1B(y)(t)
dt

t
|2 dy . sup

ζ∈{ϕ,ϕ,ϕ′}
‖Gζ1B‖2V

and by Jensen’s inequality
 w

−w
|
 w

−w

ˆ w

0

Gϕ(z, t)1B(z)(t)
dt

t
dz|2 dy

.
 w

−w

 w

−w
|
ˆ w

0

Gϕ(z, t)1B(z)(t)
dt

t
|2 dz dy . sup

ζ∈{ϕ,ϕ,ϕ′}
‖Gζ1B‖2V

Hence, we are just left with bounding
 w

−w
|
ˆ s

w

Gϕ(y, t)1B(y)(t)
dt

t
−
 w

−w

ˆ s

w

Gϕ(z, t)1B(z)(t)
dt

t
dz|2dy
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Using Lemma 2.69 the difference inside the absolute value is bounded by

|
 w

−w

ˆ s

w

Gϕ(y, t)1B(y)(t)−Gϕ(z, t)1B(z)(t)
dt

t
dz| . sup

ζ∈{ϕ,ϕ′}
‖Gζ1B‖V .

Using L2 −BMO interpolation (see, [CZ05] for example), we conclude the proof.

Lemma 2.69. Let w < s and y ∈ (−w,w). We have

|
 w

−w

ˆ s

w

Gϕ(y, t)1B(y)(t)−Gϕ(z, t)1B(z)(t)
dt

t
dz| . sup

ζ∈{ϕ,ϕ′}
‖Gζ1B‖V

Proof. Using the fundamental theorem of calculus, we have two integrals to bound. The first
one is estimated using (2.43)

 w

−w
|
ˆ y

z

ˆ s

w

Gϕ(ζ, t)∂ζ1B(ζ)(t)
dt

t
dζ| dz

=

 w

−w

1

w

ˆ y

z

2∑
j=1

|Gϕ(ζ, bj(ζ))| dζ dz . ‖Gϕ1B‖V ,

and the second one is estimated by
 w

−w

ˆ y

z

ˆ s

w

|Gϕ
′
(ζ, t)|1B(ζ)(t)

dt

t2
dζ dz

. ‖Gϕ
′
1B‖V

 w

−w

1

w

ˆ y

z

dζ dz . ‖Gϕ
′
1B‖V .

The subsequent lemma is essentially boundedness of the maximal truncation of the Hilbert
transform in terms of the size. Once again we adapt the inequality to the varying scale restriction
t ∈ B(y) and bound the operator in terms of the size S.

Lemma 2.70. Define

LH(y) = sup
w>0
|
ˆ s

w

H(y, t)1B(y)(t)
dt

t
|1[−s,s](y).

Let ϕ′ = ϕ for ϕ ∈ Φ∗. We have for 2 ≤ p <∞

‖LGϕ‖Lp . s1/p sup
ζ∈{ϕ,ϕ,ϕ′}

‖Gζ1B‖V .

Proof. Fix 0 < w < s. We shall obtain a pointwise bound for |
´ s
w
Gϕ(y, t) dtt |. Let Ĩw be the

interval of length w centered at y and let Iw = Ĩw∩[−s, s]; note that |Ĩw| and |Iw| are comparable.
Subtracting an averaged term it is enough to bound the following three expressions

|
ˆ s

w

Gϕ1B(y)(t)−
 
Iw

ˆ s

w

Gϕ(z, t)1B(z)(t)
dt

t
dz|, (2.66)

|
 
Iw

ˆ w

0

Gϕ(z, t)1B(z)(t)
dt

t
dz|, (2.67)
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|
 
Iw

ˆ s

0

Gϕ(z, t)1B(z)(t)
dt

t
dz|. (2.68)

Using Lemma 2.69, (2.66) is bounded by

|
 
Iw

ˆ s

w

Gϕ(y, t)1B(y)(t)−Gϕ(z, t)1B(z)(t)
dt

t
dz| . sup

ζ∈{ϕ,ϕ′}
‖Gζ1B‖V .

By an application of the Cauchy-Schwarz inequality and using (2.60), (2.67) is estimated by
 
Iw

|
ˆ w

0

Gϕ(z, t)1B(z)(t)
dt

t
| dz

.
( 

Iw

|
ˆ w

0

Gϕ(z, t)1B(z)(t)
dt

t
|2 dz

)1/2

. sup
ζ∈{ϕ,ϕ,ϕ′}

‖Gζ1B‖V .

(2.68) is estimated by
 
Iw

|
ˆ s

0

Gϕ(z, t)1B(z)(t)
dt

t
| dz .M(

ˆ s

0

Gϕ(·, t)1B(y)(t)
dt

t
1[−s,s])(y),

where M is the maximal function. Hence

‖LGϕ‖Lp . ‖‖Gϕ1B‖V 1[−s,s]‖Lp + ‖M(

ˆ s

0

Gϕ(·, t) dt
t
1[−s,s])‖Lp

. s1/p sup
ζ∈{ϕ,ϕ,ϕ′}

‖Gζ1B‖V ,

where we used boundedness of the maximal function and (2.62).

Applying Cauchy-Schwarz together with the previous lemma we obtain the following.

Lemma 2.71 (Bilinear estimate). Let G ∈ C(R2
+). We have for p ≥ 1

(

ˆ s

−s
|G1(y, c±(y))G2(y, c±(y))|p dy)1/p . s1/p

2∏
j=1

‖Gj‖1/pR,VC
‖Gj1C‖1−1/p

V . (2.69)

Proof. This follows from Cauchy-Schwarz and pulling out the L∞ norm with the appropriate
power.

We shall need the following time-scale localized square-function estimate.

Lemma 2.72. Let ϕ ∈ Φ∗ and let θ ∈ Θ. Define

LH(y) = (

ˆ δs

0

|H(y, t)|21C(y)(t)
dt

t
)1/2

1[−s,s](y).

We have

‖(LGϕ)2‖L1 . s‖Gϕ1C‖2V 2 , (2.70)

‖(LGϕ)2‖BMO . sup
ζ∈{ϕ,ϕ′}

‖Gζ1C‖2V , (2.71)

and for 2 < p <∞

‖LGϕ‖Lp .p s
1/p‖Gϕ1C‖2/pV 2 ( sup

ζ∈{ϕ,ϕ′}
‖Gζ1C‖V )1−2/p. (2.72)
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Proof. (2.70): Follows by definition.
(2.71): It is enough to consider I ⊂ [−s, s] and [−s, s] ⊂ I. The latter case follows from

(2.70). Let us consider the first, without loss of generality I = [−w,w]. We shall bound

 w

−w
|
ˆ δs

0

|Gϕ(y, t)|21C(y)(t)
dt

t
−
 w

−w

ˆ δs

0

|Gϕ(z, t)|21C(z)(t)
dt

t
dz| dy

Notice that
 w

−w

ˆ w

0

|Gϕ(y, t)|21C(y)(t)
dt

t
dy . ‖Gϕ1C‖2V ,

and
 w

−w

 w

−w

ˆ w

0

|Gϕ(z, t)|21C(y)(t)
dt

t
dz dy . ‖Gϕ1C‖2V .

Hence we are just left with estimating

 w

−w
|
ˆ δs

w

|Gϕ(y, t)|21C(y)(t)
dt

t
−
 w

−w

ˆ δs

w

|Gϕ(z, t)|21C(z)(t)
dt

t
dz| dy

We can rewrite the difference inside the absolute value of the previous display as

 w

−w

ˆ δs

w

|Gϕ(y, t)|21C(y)(t)− |Gϕ(z, t)|21C(y)(t)
dt

t
dz

Applying the fundamental theorem of calculus to the above innermost difference, similarly
Lemma 2.69, it is enough to control the following two integrals

 w

−w

ˆ δs

w

ˆ y

z

|Gϕ
′
(ζ, t)||Gϕ(ζ, t)|1C(ζ)(t) dζ

dt

t2
dz

. w

 w

−w

ˆ ∞
w

1

t2
dt dz sup

ζ∈{ϕ,ϕ′}
‖Gζ1C‖2V . sup

ζ∈{ϕ,ϕ′}
‖Gζ1C‖2V ,

and when the derivative falls on 1C we apply (2.43)

 w

−w

ˆ y

z

ˆ δs

w

|Gϕ(ζ, t)|2∂ζ1C(ζ)(t)
dt

t
dζ dz

.
 w

−w

1

w

ˆ y

z

2∑
j=1

|Gϕ(ζ, bj(ζ))|2 dζ dz . ‖Gϕ1C‖2V .

(2.72) follows from the L1 −BMO interpolation ([CZ05]).

Corollary 2.73. Let ϕ1, ϕ2 ∈ Φ∗. Let 1 < p <∞. Then

(

ˆ s

−s
|
ˆ δs

0

|Gϕ1

1 (y, t)Gϕ2

2 (y, t)|1C(y)(t)
dt

t
|p dy)1/p

. s1/p
3∏
j=1

‖Gϕjj 1C‖1/pV 2 ‖Gϕjj 1C‖1−1/p
V
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Proof. Applying the Cauchy-Schwarz inequality in u and y the left hand side is bounded by

(

ˆ s

−s

2∏
j=1

|
ˆ δs

0

|Gϕj (y, t)|21C(y)(t)
dt

t
|p/2 dy)1/p

.
2∏
j=1

(

ˆ s

−s
|
ˆ δs

0

|Gϕj (y, t)|21C(y)(t)
dt

t
|p dy)1/2p

The statement follows from (2.72) applied with the exponent 2p.

2.5.3 Proof of Proposition 2.53

In this subsection we prove Proposition 2.53. Let Vj ,Wj ∈ D∪, for j = 1, 2, 3 and let

Aj := Aε ∩ Vj \Wj , for j = 1, 2, 3,

where Aε is as in (2.23), be fixed throughout this section. Moreover, set

A := V1 ∩A2 ∩A3,

All the implicit constants will be independent of δ, A. The main ingredient of the proof of
Proposition 2.53 is the following lemma. The point of it is that we reduce the full estimate from
Proposition 2.53 to the single tree estimate.

Lemma 2.74. Let T ∈ T and let

P1 =

m⋂
j=1

Mj \ L1, where Mj , L1 ∈ T∪ for j = 1, 2, ..,m,

P =

n⋂
j=1

Nj \ L, where Nj , L ∈ T∪δ for j = 1, 2, .., n.

Then for ϕ ∈ Φ∗ and 0 < γ < 1 it holds that

Λ(Fϕ1 1π1(T )1A11π1(P1), F
ϕ
2 1A1π2(P ), F31A1π3(P ))

.m,n µ(T )‖F11A1
1π1(P1)‖L∞(S1)

3∏
j=2

‖Fj1A1πj(P )‖L∞(Sγj,δ,A).

Proof of Proposition 2.53 assuming Lemma 2.74. We gradually reduce the estimate in three steps.
Step 1: First of all note that by (2.25), it is enough to prove that for all K1, L1,M1 ∈ T∪ and

Kj , Lj ,Mj ∈ T∪δ for j = 2, 3 it holds that

Λ(Fϕ1 1A1
1π1(K1∩M1\L1), F

ϕ
2 1A2

1π2(K2∩M2\L2), F31A3
1π3(K3∩M3\L3))

. ( min
j=1,2,3

µj(πj(Kj))‖F11A11π1(K1∩M1\L1)‖L∞(S1)

3∏
j=2

‖Fj1Aj1πj(Kj∩Mj\Lj)‖L∞(Sγj,δ,A).

Step 2: Let

P1 = K1 ∩M1 \ L1, P = K2 ∩M2 ∩K3 ∩M3 \ (L2 ∪ L3).
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It follows from (2.27) and (2.29), that in order to prove the estimate from the previous step it is
enough to show the following for all K1, L1,M2 ∈ T∪, Kj , Lj ,Mj ∈ T∪δ , j = 2, 3

Λ(Fϕ1 1A11π1(P1), F
ϕ
2 1A1π2(P ), F31A1π3(P ))

. min(µ(Mj),min
j
µδ(Nj))‖F11A1

1π1(P1)‖L∞(S1)

3∏
j=2

‖Fj1A1πj(P )‖L∞(Sγj,δ,A).

Step 3: in this step we show that in order prove the estimate from the previous step it is
enough to show the following for all T ∈ T, P1 = M1 ∩M2 \ L1, P =

⋂4
j=1Nj \ L:

Λ(Fϕ1 1π1(T )1A1
1π1(P1), F

ϕ
2 1A3

1π2(P ), F
ϕ
3 1A2

1π3(P ))

. µ(T )‖F11A11π1(P1)‖L∞(S1)

3∏
j=2

‖Fj1Aj1πj(P )‖L∞(Sγj,δ,A).

Let

P :=

2⋂
j=1

Mj ∩
4⋂
j=1

Ñj ,

where Ñj are like in (2.30). Let
⋃J
i=1 Ti ⊃ P be such that

J∑
i=1

µ(Ti) . min(min
j
µ(Mj),min

j
µ(Ñj)).

The above condition is possible to satisfy, by covering one of the sets Mj , Ñj , which has smallest

measure. We can make Tj ’s pairwise disjoint obtaining convex trees
⋃J
i=1 Ti \ T i. Using (2.30)

and assuming the estimate in the previous display we obtain

Λ(Fϕ1 1A1
1π1(P1), F

ϕ
2 1A2

1π2(P ), F
ϕ
3 1A3

1π3(P ))

= Λ(Fϕ1 1π1(
⋃J
i=1 Ti\T i)

1A1
1π1(P1), F

ϕ
2 1A2

1π2(P ), F
ϕ
3 1A3

1π3(P ))

=

J∑
i=1

Λ(Fϕ1 1π1(Ti)1A1
1π1(P1\T i), F

ϕ
2 1A2

1π2(P ), F
ϕ
3 1A3

1π3(P ))

.
J∑
i=1

µ(Ti)‖F11A1
1π1(P1)‖L∞(S1)

3∏
j=2

‖Fj1Aj1πj(P )‖L∞(Sγj,δA)

. min(min
j
µ(Mj),min

j
µ(Ñj))‖F11A1

1π1(P1)‖L∞(S1)

3∏
j=2

‖Fj1Aj1πj(P )‖L∞(Sγj,δ,A).

It finishes the proof of this reduction since minj µ(Ñj) . minj µδ(Nj).

Since the estimate in Lemma 2.74 is translation and modulation invariant, it is implied by
the following.

Lemma 2.75. Let

P1 =

m⋂
j=1

Mj \ L1, P =

n⋂
j=1

Nj \ L,



2.5. Trilinear iterated Lp estimate 63

where Mj , L1 ∈ T∪, Nj , L ∈ T∪δ ,

B = A1 ∩ π1(P1), C = A ∩ π2(P ).

Let aj be like in (2.21), T = T (0, 0, s) ∈ T and set

Bθ(y) := Bθ+β1

π1(T )(y), Cθ(y) := Ca2θ+δβ2

π2(ρ(T ))(y).

Then
ˆ

Θ

ˆ
|y|<s

ˆ s−|y|

0

Fϕ1 (y,
θ + β1

t
, t)1Bθ(y)(t)

3∏
j=2

Fϕj (y,
ajθ + δβj

δt
, δt)1Cθ(y)(δt)

dt

t
dy dθ

. s‖F11B‖L∞(S1)

3∏
j=2

‖Fj1C‖L∞(Sγj,δ,A).

Remark 2.76. Note that if C̃ = A ∩ π3(P \ L), then Cθ = C̃a3θ+δβ3

π3(ρ(T )).

Proof. First, restrict the outermost integral to θ ∈ Θ(out). Applying Hölder’s inequality with
exponents ∞, 2, 2 in (y, θ, t) and interpolating to obtain the γ factor in ‖ · ‖S2,γ

j,δ,C
for j = 2, 3, the

left hand side is bounded by the desired quantity.
In order to complete the proof of the lemma and in view of Lemma 2.46 it is enough to show

that for every θ ∈ Θ(in) the double integral in (y, t) is bounded by

s‖F11B‖L∞(S1)

3∏
j=2

‖Fj‖L∞(Sγj,δ,C),

This estimate follows from Lemma 2.77 combined with Lemma 2.58.

For ζ ∈ Φ∗ and j = 1, 2, 3 we set Gζj (y, t) := fj ∗ ζt(y). Let ϑ, ϕ̃ be such that

Gϑ1 (y, t) = Fϕ1 (y, (θ + β1)t−1, t),

Gϕ̃j (y, t) = Fϕj (y, (αjθ + δβj)t
−1, t) for j = 2, 3.

Let ‖ · ‖V , ‖ · ‖V∞‖ · ‖V 2 and ‖ · ‖RVB be defined as in (2.44), (2.45) and (2.46). Let ϕ̃ = ϕ+ ψ
be the decomposition given by Lemma 2.67. Set

G1(y, t) := sup
ζ∈{ϑ,ϑ′}

|Gζ1(y, t)|,

Gj(y, t) := sup
ζ∈{·ϕ(·),ϕ′,ψ,ψ′}

|Gζj (y, t)|, for j = 2, 3.

The next lemma is the crucial “overlapping tree estimate”. A priori we do not have enough
cancellation to apply Hölder’s inequality as we did in case θ ∈ Θ(out), so we first telescope
restricted functions F21C , F31C and then integrate by parts, which yields the boundary terms,
that are ultimately controlled by the boundary sizes ‖ · ‖Rj,δ,A . We have the following.

Lemma 2.77. Assume that θ ∈ Θ(in). It holds thatˆ
|y|<s

ˆ s−|y|

0

Gϑ1 (y, t)1Bθ(y)(t)G
ϕ̃
2 (y, δt)Gϕ̃3 (y, δt)1Cθ(y)(δt)

dt

t
dy

. s‖G11B‖V
3∏
j=2

(‖Gj‖1−γRV
Cθ
‖Gj1Cθ‖

γ
V + δ1/2‖Gj1Cθ‖V∞ + ‖Gj1Cθ‖

1−γ
V 2 ‖Gj1Cθ‖

γ
V ).
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Proof of Lemma 2.77. To ease the notation we set B(y) := Bθ(y), C(y) := Cθ(y). Using Lemma
2.67 we decompose ϕ̃ = ϕ+ ψ, which implies that for j = 2, 3

Gϕ̃j = Gϕj +Gψj .

This way we obtain four integrals to bounds.

ˆ
|y|<s

ˆ s−|y|

0

Gϑ1 (y, t)1B(y)(t)G
ψ
2 (y, δt)Gψ3 (y, δt)1C(y)(δt)

dt

t
dy (2.73)

ˆ
|y|<s

ˆ s−|y|

0

Gϑ1 (y, t)1B(y)(t)G
ϕ
2 (y, δt)Gϕ3 (y, δt)1C(y)(δt)

dt

t
dy (2.74)

ˆ
|y|<s

ˆ s−|y|

0

Gϑ1 (y, t)1B(y)(t)G
ϕ
2 (y, δt)Gψ3 (y, δt)1C(y)(δt)

dt

t
dy (2.75)

ˆ
|y|<s

ˆ s−|y|

0

Gϑ1 (y, t)1B(y)(t)G
ψ
2 (y, δt)Gϕ3 (y, δt)1C(y)(δt)

dt

t
dy (2.76)

Note that the bound for (2.73) follows simply by applying Cauchy-Schwarz with exponents∞, 2, 2
and interpolating to obtain the desired right hand side. We still have the other three terms to
estimate.

We start with (2.74). In order to ease the notation, let us set H1 := Gϑ1 , H̃1 := Gϕ
′

1 ; H2 := Gϕj ,

H2 := Gζ
′

2 , where ζ(x) = xϕ(x) and H̃2 := Gζ2; H3 := Gϕ3 and H̃3 := Gϕ
′

3 . Using Proposition
2.54 we rewrite H2H31C as

H2(y, δt)H3(y, δt)1C(y)(δt) =

ˆ δt

0

∂u(H2(y, u)H3(y, u)1C(y)(u)) du,

so that using (2.58) up to a symmetry we have to control the two integrals

ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)1B(y)(t)

ˆ δt

0

H2(y, u)H3(y, u)∂u1C(y)(u) du
dt

t
dy (2.77)

ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)1B(y)(t)

ˆ δt

0

H2(y, u)H3(y, u)1C(y)(u)
du

u

dt

t
dy (2.78)

Concerning (2.77), applying (2.42) and changing the order of integration we have

ˆ
|y|<s

ˆ δ(s−|y|)

0

3∏
j=2

Hj(y, u)∂u1C(y)(u)

ˆ s−|y|

δ−1u

H1(y, t)1B(y)(t)
dt

t
du dy

≤
ˆ
|y|<s

sup
M
|
ˆ s

M

H1(y, t)1B(y)(t)
dt

t
|
ˆ δs

0

|
3∏
j=2

Hj(y, c
±(y))| dy

Applying Hölder’s inequality with exponents 1/γ, 1/(1 − γ) in y, applying Lemma 2.70 to H1

and (2.69) to the product H2H3 we obtain the desired inequality for (2.77). Now we proceed
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with (2.78). Using Proposition 2.55 and (2.57) we move the derivative from H2 to one of the
other four factors obtaining another four integrals to bound

ˆ
|y|<s

ˆ s−|y|

0

H̃1(y, t)1B(y)(t)

ˆ δt

0

H̃2(y, u)H3(y, u)1C(y)(u)
u

t

du

u

dt

t
dy (2.79)

ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)∂y1B(y)(t)

ˆ δt

0

H̃2(y, u)H3(y, u)1C(y)(u) du
dt

t
dy (2.80)

ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)1B(y)(t)

ˆ δt

0

H̃2(y, u)H̃3(y, u)1C(y)(u)
du

u

dt

t
dy (2.81)

ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)1B(y)(t)

ˆ δt

0

H̃2(y, u)H3(y, u)∂y1C(y)(u) du
dt

t
dy (2.82)

We shall now bound each of the above four integrals.
(2.79): we have for u < δt

H3(y, u)1C(y)(u)
u1/2

t1/2
. δ1/2‖G31C‖V∞

Moreover
ˆ δt

0

|H̃2(y, u)|1C(y)(u)
u1/2

t1/2
du

u

is dominated the convolution of |H̃2(y, ·)|1(0,δs) with 1(0,1)t
1/2 in the multiplicative group R+

endowed with measure dt
t . Applying Cauchy-Schwarz and Young’s convolution inequality for

(R+,
dt
t ) we therefore obtain that (2.79) is bounded by δ1/2‖G31C‖V∞ times

ˆ
|y|<s

ˆ s−|y|

0

H̃1(y, t)1B(y)(t)

ˆ δt

0

H̃2(y, u)1C(y)(u)
u1/2

t1/2
du

u

dt

t
dy

.
ˆ
|y|<s

(

ˆ s−|y|

0

|H̃1(y, t)1B(y)(t)|2
dt

t
)1/2(

ˆ δs

0

|H̃2(y, t)1C(y)(t)|2
dt

t
)1/2 dy

Applying Cauchy-Schwarz in y and interpolating we obtain the desired inequality.
(2.80): it is dominated by

ˆ s

0

ˆ
|y|<s−t

|H1(y, t)∂y1B(y)(t)| sup
u∈(0,δt)

δ|H̃2(y, u)H3(y, u)1C(y)(u)| dy dt

We have

δ1/2|H̃2(y, u)1C(y)(u)| . δ1/2‖G31C‖V∞

and similarly for H3. The last thing to notice is that by (2.43)

ˆ s

0

ˆ
|y|<s−t

|H1(y, t)∂y1B(y)(t)|dy dt . s‖G11A1
‖V .
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(2.81): changing the order of integration, it is bounded by

ˆ
|y|<s

sup
M
|
ˆ s−|y|

M

H1(y, t)1B(y)(t)
dt

t
|

×
ˆ δs

0

|H̃2(y, u)H̃3(y, u)|1C(y)(u)
du

u
dy.

Applying Hölder’s inequality in y with exponents 1/γ, 1/(1− γ) and Lemma 2.70 to H1, Lemma
2.73 to the product H2H3 it is bounded by the desired quantity.

(2.82): applying (2.43) and changing the order of integration it is bounded by

ˆ
|y|<s

sup
M
|
ˆ s−|y|

M

H1(y, t)1B(y)(t)
dt

t
||H̃2(y, c±(y))H3(y, c±(y))| dy

Applying Hölder’s inequality with exponents 1/γ, 1/(1−γ) in y and applying Lemma 2.70 to H1

and (2.69) to the product H2H̃3 we obtain the desired inequality.

Now we bound (2.76). Notice that (2.75) can be treated exactly the same way. Let H2 := Gψ2 ,

H̃2 := Gψ
′

2 H3 := Gϕ3 , H3 := Hϑ′

3 , where ϑ(x) = xϕ(x) and H̃3 := Hϑ
3 . In this case we telescope

only H3, we apply to it Proposition 2.54 in the following way

H3(y, δt)1C(y)(δt) =

ˆ δt

0

∂u(H3(y, u)1C(y)(u)) du.

Additionally using (2.58) we have to control the two integrals

ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)1B(y)(t)H2(y, δt)1C(y)(δt)

ˆ δt

0

H3(y, u)∂u1C(y)(u) du
dt

t
dy (2.83)

ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)1B(y)(t)H2(y, δt)1C(y)(δt)

ˆ δt

0

H3(y, u)1C(y)(u)
du

u

dt

t
dy (2.84)

Concerning (2.83), we first bound it applying (2.42) and Cauchy-Schwarz in t by

ˆ
|y|<s

(

ˆ s

0

|H1(y, t)|21B(y)(t)
dt

t
)1/2(

ˆ s

0

|H2(y, δt)|21C(y)(δt)
dt

t
)1/2|H3(y, c±(y))| dy

Applying Hölder’s inequality in with exponents (1/γ, 2/(1 − γ), 2/(1 − γ)) in y and applying
(2.72) to G1 and H2, and using simple interpolation to control the term involving H3 we bound
(2.83) by the desired quantity. Now we proceed with (2.84). Applying Proposition 2.55 and
using (2.57) we move derivative from H3 to one of the other five factors obtaining another five
integrals to bound

ˆ
|y|<s

ˆ s−|y|

0

H̃1(y, t)1B(y)(t)H2(y, δt)1C(y)(δt)

ˆ δt

0

H̃3(y, u)1C(y)(u)
u

t

du

u

dt

t
dy (2.85)

ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)∂y1B(y)(t)H2(y, δt)1C(y)(δt)

ˆ δt

0

H̃3(y, u)1C(y)(u) du
dt

t
dy (2.86)
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ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)1B(y)(t)H̃2(y, δt)1C(y)(δt)

ˆ δt

0

H̃3(y, u)1C(y)(u)
u

δt

du

u

dt

t
dy (2.87)

ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)1B(y)(t)H2(y, δt)∂y1C(y)(δt)

ˆ δt

0

H̃3(y, u)1C(y)(u) du
dt

t
dy (2.88)

ˆ
|y|<s

ˆ s−|y|

0

H1(y, t)1B(y)(t)H2(y, δt)1C(y)(δt)

ˆ δt

0

H̃3(y, u)∂y1C(y)(u) du
dt

t
dy (2.89)

We shall now bound each of the above five integrals.
(2.85): We have for u < δt

H2(y, δt)1C(y)(δt)
u1/2

t1/2
. δ1/2‖G21C‖V∞

Note that

ˆ δt

0

|H̃3(y, u)|1C(y)(u)
u1/2

t1/2
du

u

is dominated the convolution of |H̃3(y, ·)|1(0,δ(s−|y|)) with 1(0,1)t
1/2 in the multiplicative group

R+ endowed with measure dt
t . Applying Cauchy-Schwarz and Young’s convolution inequality for

(R+,
dt
t ) we therefore obtain that (2.85) is bounded by δ1/2‖G21C‖V∞ times

ˆ
|y|<s

ˆ s

0

|H̃1(y, t)|1B(y)(t)

ˆ δt

0

|H̃3(y, u)|1C(y)(u)
u1/2

t1/2
du

u

dt

t
dy

.
ˆ
|y|<s

(

ˆ s

0

|H̃1(y, t)1B(y)(t)|2
dt

t
)1/2(

ˆ δs

0

|H̃3(y, t)1C(y)(t)|2
dt

t
)1/2 dy

Applying Cauchy-Schwarz in y and interpolating we obtain the desired inequality.
(2.86): using (2.43) it is dominated by

ˆ
|y|<s

|H1(y, b±(y))| sup
u∈(0,δt)

δ1/2|H2(y, u)1C(y)(u)| sup
u∈(0,δt)

δ1/2|H̃3(y, u)1C(y)(u)| dy

We have

δ1/2|H̃2(y, u)1C(y)(u)| . δ1/2‖G21C(y)‖V∞ ,

and similarly for H3. The last thing to notice is that

ˆ
|y|<s

|H1(y, b±(y))|dy . s‖G11B‖V .

(2.87) changing variables δt 7→ t is bounded by

‖G11B‖V
ˆ
|y|<s

ˆ δs

0

|H̃2(y, t)1C(y)(t)|
ˆ t

0

|H̃3(y, u)|1C(y)(u)
u

t

du

u

dt

t
dy.
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Applying Cauchy-Schwarz in t, observing that the integral involving H̃3 is bounded by the
convolution of H3(y, t)1(0,δs)(t) with t1(0,1) in the multiplicative group (R+,

dt
t ) and applying

Young’s convolution inequality, and finally Cauchy-Schwarz in y, we bound the above by the
desired quantity using interpolation.

(2.88): since 1C(y)(δt) = 1δ−1C(y)(t), it is bounded by ‖G11B‖V times

δ−1

ˆ
|y|<s

|H2(y, c±(y))|
ˆ c±(y)

0

|H̃3(y, u)|1C(y)(u) du
δ

c±(y)
dy

Applying Cauchy-Schwarz in u and then dividing and multiplying du by c±(y), it is bounded by

ˆ
|y|<s

|H2(y, c±(y))|c±(y)(

ˆ c±(y)

0

|H̃3(y, u)|21C(y)(u)
du

c±(y)
)1/2 1

c±(y)
dy

Applying Cauchy-Schwarz in y, the above integral is further estimated by

(

ˆ
|y|<s

|H2(y, c±(y))|2 dy)1/2(

ˆ
|y|<s

ˆ δs

0

|H̃3(y, u)|21C(y)(u)
du

u
dy)1/2,

which together with interpolation, gives the desired bound.
(2.89): it is bounded exactly the same way as (2.83). This finishes the proof.

2.5.4 Proof of Proposition 2.52

In this subsection we put all the previous results of this chapter together and prove Proposition
2.52. The main difficulty is to show it in the case when (1/p1, 1/p2, 1/p3) is in the neighbourhood
of (0, 1, 0), or symmetrically, in the neighbourhood of (0, 0, 1). We remark that the proof can
be considerably simplified if (1/p1, 1/p2, 1/p3) is in the neighbourhood of (1, 0, 0), however here
we present the argument that works for all cases. We record that similarly to [OT11], in the
proof we decompose Λ according to the level sets of F1 and then prove that the summands decay
exponentially, what yields the desired inequality.

Proof of Lemma 2.52. In the proof we use the notation introduced in Section 2.3.2. By homo-
geneity we may assume that for j ∈ {1, 2, 3}

ν(Vj)
1/pj‖Fj1Vj\Wj

‖L∞-Lqj (S) ≤ 1. (2.90)

Let Aε be as in (2.23). We set Aj = Aε ∩ Vj \Wj for j = 1, 2, 3, and A = V1 ∩A2 ∩A3. All the
implicit constants will be independent of δ, A and may depend on γ. Let V ∈ D∪ be a covering
of V1 ∩ V2 ∩ V3 such that ν(V ) ≤ min(ν(V1), ν(V2), ν(V3)). This requirement can be satisfied,
since each of V1 V2, V3 is a covering of V1 ∩ V2 ∩ V3. Finally, we set A = V \W2 \W3.

Hence, using (2.90) and by standard limiting argument as ε→ 0, it suffices to show

|Λ(Fϕ1 1A1 , F
ϕ
2 1A2 , F

ϕ
3 1A3)| . 1.

Note that (2.90) and Lemma 2.48 imply that ‖F11A1
‖L∞µ1

(S1) ≤ ν(V1)−1/p1 . Let us run the

selection algorithm from Definition 2.43 and Remark 2.39 for F11A1 , over k ∈ N, such that
Ek :=

⋃
Tk corresponds to the level 2−kν(V1)−1/p1 . Additionally defining E−1 = ∅ we have

‖F11A1
1π1(Ek\Ek−1)‖L∞µ1

(S1) . 2−kν(V1)−1/p1 .
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and Ek \ Ek−1 are pairwise disjoint. Set NTk =
∑

∆T∈Tk 1IT to be the counting function of the
forest Tk. Using (2.90) and Lemma 2.51 we obtain (since µ(Ek) ≤ ‖NTk‖L1)

µ(Ek) . 2q1kν(V1)ν(V1)q1/p1‖F11A1
‖q1-Lq1 (S) . 2q1kν(V1). (2.91)

Denote ρ(Ek) =
⋃
T∈Tk ρ(T ) (see the definition, (2.25), (2.26)). Note that Ek \Ek−1 are pairwise

disjoint so we may split the trilinear form using (2.28) into

|Λ(Fϕ1 1A1 , F
ϕ
2 1A2 , F

ϕ
3 1A3)|

≤
∑
k≥0

|Λ(Fϕ1 1π1(Ek\Ek−1)1A1
, Fϕ2 1π2(ρ(Ek))1A2

, Fϕ3 1π3(ρ(Ek))1A3
)|

Fix k ∈ Z+. Applying Proposition 2.53 together with Proposition 2.10 and changing variables
in the definition of the outer Lp norm we obtain

|Λ(Fϕ1 1π1(Ek\Ek−1)1A1
, Fϕ2 1π2(ρ(Ek))1A2

, Fϕ3 1π3(ρ(Ek))1A3
)| (2.92)

. ‖F11π1(Ek\Ek−1)1A1
‖
L
t1
µ1

(S1)

3∏
j=2

‖Fj1πj(ρ(Ek))1A‖
1−γ
L
tj(1−γ)
µj,δ,A

(Sj,δ,A)
‖Fj1A‖

γ
L∞µj

(Sj)

for any ti ∈ [1,∞] such that
∑3
i=1 t

−1
i = 1. Using Lemma 2.50 and (2.91), it follows that

‖F11π1(Ek\Ek−1)1A1
‖
L
t1
µ1

(S1)
. 2q1k(1/t1−1/q1)ν(V1)1/t1−1/p1 . (2.93)

For the terms involving F2, as long as t2 ∈ (2, q2] we use Proposition 2.31, Lemma 2.50 and
Lemma 2.48 to obtain that

‖F21π2(ρ(Ek))1A‖
1−γ
L
t2(1−γ)
µ2

(S2,δ,A)
‖F21A‖

γ
L∞µ2

(S2)

. ‖F21π2(ρ(Ek))1A‖
1−γ
L
t2(1−γ)
µ2

(S2)
‖F21A‖

γ
L∞µ2

(S2)

. µ(V ∩ π2(ρ(Ek)))1/t2−(1−γ)/q2ν(V )(1−γ)/q2‖F21π2(ρ(Ek))1A‖
1−γ
-Lq2µ2

(S)
‖F21A‖

γ
L∞µ2

(S2)

. µ(V ∩ π2(ρ(Ek)))1/t2−(1−γ)/q2ν(V )(1−γ)/q2‖F21A‖-Lq2µ2
(S2)

. µ(V ∩ π2(ρ(Ek)))1/t2−(1−γ)/q2ν(V )(1−γ)/q2−1/p2 .

Let V =
⋃∞
m=1Dm, where Dm’s are given by Lemma 2.29. Then, using Lemma 2.29

µ(V ∩ π2(ρ(Ek))) .
∑
T∈Φk

µ(V ∩ π2(ρ(T ))) ≤
∑
T∈Φk

∞∑
m=1

µ(Dm ∩ π2(ρ(T )))

.
∑
T∈Φk

∞∑
m=1

|IDm ∩ Iπ2(ρ(T ))| .
∑
T∈Φk

|IV ∩ Iπ2(ρ(T ))| = ‖Nπ2(ρ(Φk))1IV ‖L1 ,

where IV =
⋃∞
m=1 IDm . Using NΦk = Nπ2(ρ(Φk)) and applying Hölder’s inequality for 1 ≤ p ≤ ∞

we obtain that the last display is bounded by

ν(V )1−1/p‖NΦk‖p = ν(V )
‖NΦk‖p
ν(V )1/p

.

By Lemma 2.51 and (2.90) we have for 1 ≤ p <∞

‖NΦk‖p .p ν(V1)1/p2q1kν(V1)q1/p1‖F11A1
‖q1-Lq1µ1

(S1)
≤ 2q1kν(V1)1/p.
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Thus, for any p ∈ [1,∞), we have

‖F21Ek1A‖
1−γ
L
t2(1−γ)
µ2

(S2,δ,A)
‖F21A‖

γ
L∞µ2

(S2) (2.94)

. 2q1k(1/t2−(1−γ)/q2)

(
ν(V )

ν(V1)

)−(1/t2−(1−γ)/q2

)
/p

ν(V )1/t2−1/p2 .

The same result holds for the term with F3. Putting the bounds (2.94) and (2.93) into (2.92) we

obtain using
∑3
j=1 1/tj =

∑3
j=1 1/pj = 1

|Λ(Fϕ1 1A1
1π1(Ek\Ek−1), F

ϕ
2 1A2

1π2(ρ(Ek)), F
ϕ
3 1A3

1π3(ρ(Ek)))|

. 2
q1k

(
1−1/q1−1/q2−1/q3+γ(1/q2+1/q3)

))

×

(
ν(V )

ν(V1)

)(1/p1−1/t1)(
ν(V )

ν(V1)

)−(1/t2+1/t3−(1−γ)
(

1/q2+1/q3

))
/p

.

As long as γ � 1 and since
∑
j 1/qj > 1, we have that q1(1−1/q1−1/q2−1/q3+γ(1/q2+1/q3)) < 0

that makes the above expression summable over k ∈ N. If t1 > p1 and p ∈ (1,∞] is chosen large

enough then the exponent of ν(V )
ν(V1) is positive. Since ν(V ) ≤ ν(V1), this concludes the proof.



Chapter 3

Uniform bounds for Walsh
bilinear Hilbert transform in local
L1

3.1 Introduction

The goal of this chapter is to prove the uniform bounds for a Walsh model of the bilinear Hilbert
transform modularizing it as a multilinear iterated outer Lp estimate uniform in the degeneration
parameter and the Walsh iterated embedding. This is elaboration on Chapter 2. We record that
considering Walsh models is a well established way of studying multilinear forms as well as
explaining the key ideas of technically more involved statements in time-frequency analysis.

Uniform bounds for the Walsh model were already proven by Oberlin and Thiele in [OT11].
Our argument, although motivated by their approach, involves a number of refinements. For
convenience of the reader, below we introduce the Walsh model that we will be dealing with and
state the main result, which we already did in the introduction of the thesis.

We call a tile the Cartesian product I × ω, where I, ω ⊂ R+ are dyadic intervals. The Walsh
phase plane is R2

+ together with the set of tiles X. The L2 normalized wave packets associated
with tiles are defined recursively via the following identities

ϕI×[0,|I|−1) = |I|−1/2
1I(x), ϕJ−×ω + ϕJ+×ω = ϕJ×ω− + ϕJ×ω+ ,

for any dyadic intervals I, J, ω ⊂ R+ with |J ||ω| = 2, where J− and J+ are dyadic children of J .

Given a function f ∈ Lp(R) we associate it with the embedded function via

F (f)(P ) := 〈f, ϕP 〉 :=

ˆ
R
f(x)ϕP (x) dx.

Let Fj : X → R, j = 1, 2, 3. We indicate the dyadic sibling of a dyadic interval I by I	 and by
P	 the tile IP × ω	

p . The trilinear form on the embedded functions associated to the Walsh
bilinear Hilbert transform is formally given for L ∈ Z+ by

ΛL(F1, F2, F3) :=
∑
P∈X

F1(P	)
∑
Q∈PL

F2(Q)F3(Q)hIP (c(IQ)),
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where hIP is the L2 normalized Haar function, c(IQ) is the center of of the interval IQ and

PL = {Q ∈ X : IQ ⊂ IP , |IQ| = 2−L|IP |, ωQ = 2LωP },

where 2Lω = [2La, 2Lb) for an interval ω = [a, b). Here is the main result of the chapter.

Theorem 3.1. Let 1/p1 + 1/p2 + 1/p3 = 1 with 1 < p1, p2, p3 <∞ and 1/q1 + 1/q2 + 1/q3 > 1
with 2 < q1, q2, q3 < ∞. There exists a constant Cp1,p2,p3 < ∞ such that for all L ∈ Z+ and all
triples of Schwartz functions on R, f1, f2, f3

|ΛL(F (f1), F (f2), F (f3)| ≤ Cp1,p2,p3

3∏
j=1

‖F (fj)‖Lpj -Lqj (S). (3.1)

On the right hand side of (3.1) are iterated outer Lp norms developed in [Ura16] that we
define precisely in Section 3. For embedded functions, they can be controlled using the following
Walsh iterated embedding theorem, proved by Uraltsev in [Ura17].

Theorem 3.2. Let 1 < p ≤ ∞, max(p′, 2) < q ≤ ∞. Then

‖F (f)‖Lp-Lq(S) ≤ Cp,q‖f‖Lp(R).

We prove Theorem 3.1 in the framework of outer Lp spaces using a counterpart of multilinear
Marcinkiewicz interpolation for outer Lp spaces, Proposition 2.10, as we were not able to verify
the assumption of the outer Hölder inequality developed in [DT15].

The trilinear form ΛL is strongly related with the Walsh bilinear Hilbert transform considered
by Oberlin and Thiele in [OT11]. In the following we introduce a model very similar to the one
that they investigated. For a P ∈ X we define the phase plane projections

ΠP f(x) := 〈f, ϕP 〉ϕP (x), ΠPLf(x) :=
∑
Q∈PL

ΠQ(x).

The Walsh model of the bilinear Hilbert transform is defined as

BHFL(f1, f2, f3) :=

ˆ ∑
P∈X

ϕ̃P (x)ΠP	f1(x)ΠPLf2(x)ΠPLf3(x)dx.

In [OT11], Oberlin and Thiele proved the following.

Theorem 3.3. Let 1/p1 + 1/p2 + 1/p3 = 1 with 1 < p1, p2, p3 < ∞. There exists a constant
Cp1,p2,p3

<∞ such that for all L ∈ Z+ and all triples of Schwartz functions on R, f1, f2, f3 the
inequality

|BHFL(f1, f2, f3)| ≤ Cp1,p2,p3

3∏
j=1

‖fj‖Lpj (R)

holds.

Their theorem works in a wider range of exponents, however, as it was highlighted in their
work, the most difficult case is when the exponents are in the neighbourhood of (1/p1, 1/p2, 1/p3) =
(0, 1, 0) or (1/p1, 1/p2, 1/p3) = (0, 0, 1). Theorem 3.1 coupled with Theorem 3.2 implies Theorem
3.3, since

BHFL(f1, f2, f3) = ΛL(F (f1), F (f2), F (f3)).

In Section 3.2 we introduce the outer Lp spaces on X. In Section 3.3 we prove auxiliary
inequalities, including domination of L-dependent outer Lp norms that L-independent norms as
well as quasi-monotonicity of the iterated Lp norms. In Section 3.4 we prove Theorem 3.1. In
the appendix we recall the properties of the Walsh wave packets.
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3.2 Outer Lp spaces in time-frequency-scale space

In Chapter 3, Section 2.3 we introduced abstract outer measures and sizes, while in this section
we introduce our particular choice of these objects that we will be working with till the end
of this chapter. From now on, we assume that X is the set of tiles, B(X) is the set of (Borel)
functions on X.

3.2.1 Outer measures in time-frequency-scale space

First, we define the generating collection on X, which we call trees. They can be seen as time-
frequency localized subsets of the time-frequency-scale space X. We shall need their variants
parametrized by the parameter L, similarly as in [OT11]. They can be seen as Walsh analogues
of the trees introduced in Chapter 2.

Definition 3.4 (Trees and measures). For I ×ω ∈ X and L ∈ N we define an L-tree as follows:

T (I, ω) := {P ∈ X : IP ⊂ I, ωP ∪ ω	
P ⊃ ω} ∩ {P ∈ X : |IP | ≤ 2−L|I|}.

Moreover we set

T (ov) := {P ∈ T : ωP ⊃ ω}, T (lac) = T \ T (ov).

We set IT = I and ωT = ω if T = T (I, ω) and we denote the family of L-trees with TL and with
T∪L the family of countable unions of T ∈ TL. The generating pre-measure is given by

µL(T ) := |IT |

and it generates µL. Additionally, we set T := T0 and µ := µ0.

Analogously as in Chapter 2 we introduce the generating collection of strips that we shall use
as the generating collection for the iterated outer Lp spaces, which were developed in [Ura16].

Definition 3.5 (Strips and measures). We define time-scale strips as subsets of X and the
associated pre-measure by setting

D(I) = {P ∈ X : IP ⊂ I} ν
(
D(I)

)
:= |I|.

We denote ID = I if D = D(I), with D the set of strips and with D∪ the family of countable
unions of D ∈ D.

Remark 3.6. Note that for any D ∈ D, D ∈ T∪.

Note that strips can be identified with time localized subsets of the time-scale space, as for a
tile P = I×ω and a strip D, the condition P ∈ D is independent of the frequency component ω.

3.2.2 Sizes in time-frequency-scale space

In this subsection we introduce sizes, which we shall be working with. Before we do that, we
define the top of a tree, which is essentially the boundary of a tree intersected with a set of the
form V \W , where V,W ∈ T∪.

Definition 3.7 (Order on X). We write P ≤ Q for P,Q ∈ X with IP ⊂ IQ and ωP ⊃ ωQ.
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Definition 3.8 (Tops). Let L ∈ N, T ∈ TL, A = K \M , where K,M ∈ T∪. Let P1
A,T be the

set of maximal tiles contained in A ∩ T (ov) and P2
A,T be the set of minimal tiles contained in

A ∩ T (ov). We define the top of T with respect to A as

TopA(T ) := P1
A,T ∪ P2

A,T .

We think of tops coming from D∪ as being “rough”, as they behave essentially like 0-trees
(they are unions of 0-trees), as opposed to L-trees for L > 0, which are “smooth”.

We introduce the sizes for functions F ∈ B(X). Except for more standard S∞ and S2 sizes,
which are additionally parametrized by the parameter L, the key difference comparing to previous
works on the Walsh uniform bounds [OT11], [War15] is that we use what we call top sizes, which
control the contribution from the rough boundary introduced by strips.

Definition 3.9 (L-sizes in time-frequency-scale space). Let F ∈ B(X) and T ∈ TL. Define

‖F‖S2,L(T ) :=

 1

|IT |
∑

P∈T (lac)

|F (P )|2
1/2

,

‖F‖S∞,L(T ) := |IPT |−1/2 |F (PT )|.

For L = 0, we set S2 := S2,0, S∞ := S∞,0 and

‖F‖S(T ) := ‖F‖S2(T ) + ‖F‖S∞(T ),

For L ∈ Z+ and A = K \ L, K,L ∈ T∪ we define

‖F‖STop,L
A (T ) :=

 1

|IT |
∑

P∈TopA(T )

|F (P )|2
1/2

,

‖F‖SLA(T ) := ‖F‖STop,L
A (T ) + ‖F1A‖S2,L(T ).

Next, we recall the definition of the Walsh iterated sizes, which were originally introduced in
[Ura16]. For a given function on X, they are essentially the supremum of its outer Lq averages
over strips.

Definition 3.10 (Iterated sizes in time-scale space). Given a function F : X → R, 0 < q < ∞
and outer measure µ on X and size ‖ · ‖S we define the iterated size as

‖F‖-Lqµ(S) := sup
D∈D

ν(D)−1/q‖F1D‖Lqµ(S).

Remark 3.11. If V ∈ D∪, we may assume without loss of generality that V =
⋃∞
m=1Dm,

where Dm’s are pairwise disjoint and ∈ D. This is because D ∈ D are based on dyadic intervals,
meaning that for any two D,D′ ∈ D we either have D ∩D′ = ∅ or one is contained in the other.

3.2.3 Notation

From now on we fix L ∈ Z+ and set SA := SLA and µ := µL. In order to ease the notation we
also set

‖F1‖Lp(S) := ‖F1‖Lpµ(S), ‖F1‖Lp(-Lq(S)) := ‖F1‖Lpν(-Lqµ(S))

and for j = 2, 3

‖Fj‖Lp(SA) := ‖Fj‖Lp
µL

(SA), ‖Fj‖Lp(-Lq(S)) := ‖Fj‖Lpν(-Lqµ(S)).
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3.3 Inequalities for outer Lp spaces on X

3.3.1 Outer Lp comparison

Throughout this subsection we assume that

‖F‖L2
µ(S), ‖F‖L∞µ (S) <∞ (3.5)

and assume that X is the set of tiles with

ωP ⊂ [0, N) (3.6)

for a large N ∈ Z+. Since all bounds in this section are be independent of N , we may pass to
the limit to obtain the result of this section for the whole set of tiles.

Let A = V \ W for V,W ∈ D∪ be fixed throughout this subsection. Our main result of
this section is the following lemma that lets us dominate ‖F‖Lp(SA) . ‖F‖Lp(S). Later it lets us
apply the iterated embedding theorem for S from [Ura17]. The proof is essentially a combination
of the Bessel inequality for the outer L2 space together with dominating the measure of the level
set by an `2 sum of coefficients coming from pairwise disjoint tiles.

Lemma 3.12 (Comparison of outer Lp spaces). The following inequalities hold for all functions
F ∈ B(X):

‖F‖Lq(SA) .q ‖F1A‖Lq(S) ∀q ∈ (2,∞]

‖F‖L2,∞(SA) . ‖F1A‖L2(S)

with a constant that is dependent on q but independent of L ∈ Z+, F .

Remark 3.13. It is easy to check that µ ≥ µ while ‖ · ‖L∞(S) ≤ ‖ · ‖L∞(S). From these two
conditions no non-trivial relation between ‖ · ‖Lq(SA) := ‖ · ‖Lqµ(SA) and ‖ · ‖Lq(S) := ‖ · ‖Lqµ(S)

can be deduced.

The main advantage of Lemma 3.12 is that we do not have to prove any uniform iterated
embedding and can apply Theorem 3.2 as a black box.

Definition 3.14 (Strongly disjoint). We call a subset P of X strongly disjoint if for any two
distinct P, P ′ ∈ P, P ∩ P ′ = ∅.

The following lemma will be crucial for us in this subsection. It can be thought of as the
Bessel inequality for the outer L2 space.

Lemma 3.15 (Outer L2 sizes of strongly disjoint sets). Let P ⊂ X be a strongly disjoint set of
tiles. Then

‖1PF‖l2(X) . ‖1PF‖L2(S)

Proof. Using Lemma 2.8 decompose P into
⋃
k

⋃
∆T∈Φk

∆T for F1P , where ∆T are pairwise

disjoint convex trees of the collection T and Φk corresponds to the 2k-level set of F1P . Define

P(lac) := P ∩
⋃
k

⋃
∆T∈Φk

∆T (lac), P(ov) := P ∩
⋃
k

⋃
∆T∈Φk

∆T (ov)

First of all, using only pairwise disjointness of ∆T

‖1P(lac)F‖2l2(X) ≤
∑
k

∑
∆T∈Ψk

|IT |‖1∆T1PF‖2S(T )
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while for the latter we have that

‖1P(ov)F‖2l2(X) .
∑
k

∑
∆T∈Ψk

∑
P∈P(ov)

P∈∆T (ov)

|IP |
|F (P )|2

|IP |

≤
∑
k

∑
∆T∈Ψk

|IT |‖1∆T1PF‖2S(T ) . ‖1PF‖
2
L2(S).

This concludes the proof.

We introduce two auxiliary selection algorithms, one for STop
A and the other one for S2

A.
Similar procedures are usually used in the context of proving embedding theorems, see for ex-
ample [LT97], [DT15]. The generated collection of forests has intrinsically very nice disjointness
properties that we shall exploit in what follows.

Definition 3.16 (Top-selection algorithm). Initially P = ∅ and X0 ⊂ X. In the n-th step of the
procedure we choose a tree Tn ∈ TL such that

‖F1Xn‖STop
A (Tn) > λ (3.7)

and s is maximal. This is possible due to Lemma 3.15, since the tiles in TopA(T ) can be split
into two pairwise disjoint collection of tiles. As a result we obtain an upper bound for µ(T )

µ(T ) ≤ λ−2‖F1TopA(T )∩Xn‖
2
`2(X) . λ−2‖F‖2L2(S) <∞.

We then add Sn = TopA(Tn)∩Xn to the set P and set Xn+1 := Xn \Tn and iterate the procedure.
It will terminate, since by the assumption (3.6), there is a lower bound on µ(T ); together with
(3.9) and (3.5) there can be only finitely many T ∈ TL satisfying (3.7).

In the following definition we denote we with ω−, ω+, the left and the right sibling of a dyadic
interval ω ⊂ R+, respectively. If such sibling does not exists, we set ω± = ∅.

Definition 3.17 (2-selection algorithm). Initially P = ∅ and X0 ⊂ X. For a tree T (I, ω) ∈ TL
let

T+(I, ω) = {P ∈ T : ωT ⊂ ω−P }.

In the n-th step of the procedure we proceed as follows: if there exists a tree T ∈ TL with

‖F1T+1Xn‖S2
A(T ) > λ (3.8)

We select a tree Tn(I, ω) which maximizes µ(T ) for the maximal possible value of ξ, where ξ is
the middle of ω. This requirement can be satisfied, since there exists an upper bound for µ(T ):
the tiles in T (lac) are pairwise disjoint, thanks to Lemma 3.15 we obtain

µ(T ) ≤ λ−2‖F1T (lac)∩Xn‖
2
`2(X) . λ−2‖F‖2L2(S) <∞.

This in turn implies that |ω|’s in question are bounded from below, hence all possible ξ’s are in
a discrete set. Together with the assumption (3.6) there must exist ω for which ξ attains its
maximum. We add Sn = T+

n ∩ Xn to P and set Xn+1 := Xn \ Tn. We iterate the procedure until
there are no more trees satisfying (3.8). It will terminate, since by the assumption (3.6), there
is a lower bound on µ(T ); together with (3.9) and (3.5) there can be only finitely many T ∈ TL
satisfying (3.8).
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Analogously we define the selection algorithm for

T−(I, ξ) = {(P ∈ T : ωT ⊂ ω+
P },

with the only difference that we select trees T (I, ω) that maximize µ(T ) for the minimal possible
value of ξ.

Since the selection algorithms for T+ and T− are entirely symmetric in the proof we will be
working with only one of them.

Definition 3.18 (Selection algorithm). The selection algorithm at level λ consists of running
the Top-selection algorithm at level λ and then 2-selection algorithm at level λ starting with
X0 = XM , where is M is the the number of the last iteration of the Top-selection algorithm.

The described algorithm yields a collection of trees Φλ = Φ∞λ ∪ Φ2
λ, where Φ∞λ , Φ2

λ are trees
selected while running Top-selection and 2-selection algorithm respectively. It also yields a col-
lection of selected tiles Pλ.

Lemma 3.19. If P ⊂ X comes from the selection algorithm given in Definition 3.18 at level
λ > 0, then P is strongly disjoint.

Remark 3.20. In particular an application of Lemma 3.15 implies that, if Tn are the selected
trees, n = 0, 1, 2, .., then they satisfy for any M ∈ N

M∑
n=0

µ(Tn) . λ−2‖F1A‖2L2(S). (3.9)

Proof. We prove this lemma by contradiction.
First assume that P comes from the Top-selection algorithm Definition 3.16. Suppose that

there exist P, P ′ ∈ P, such that P ∈ TopA(T ), P ′ ∈ TopA(T ′) and P ∩ P ′ 6= ∅, where T, T ′ are
two distinct selected trees. Without loss of generality suppose that T was selected earlier than T ′.
Then it is not possible IP ′ ⊂ IP , because this would mean that P ′ ∈ T , which is a contradiction.
If this is not the case, then we necessarily have |IP | < |IP ′ |. But since IP , IP ′ are members of the
partition of IT , I

′
T generated by V , respectively, this would imply that |IT | < |IT ′ |. This would

imply that T ′ was selected earlier. Contradiction.
Now assume that P comes from the 2-selection algorithm. Without loss of generality assume

that P ∈ T , P ′ ∈ T ′, P ∩ P ′ 6= ∅ and T was selected earlier than T ′. It is not possible that
IP ′ ⊂ IP , since this would mean P ′ ∈ T was being selected, which is a contradiction. Otherwise
ωP ′ ⊂ ωP and the inclusion is strict. However, this would imply that ξT ′ > ξT , where ξT is the
midpoint of ω for T = T (I, ω), analogously ξT ′ . Then, T ′ should have been selected before T
was selected. Contradiction.

Proof of Lemma 3.12. By interpolation it suffices to show the statement for q = ∞ and at the
weak endpoint q = 2. The case q =∞ is trivial since we have that

‖F‖L∞(SA) . ‖F1A‖L∞(S)

and the measure does not play a role.
For the endpoint q = 2 it is enough to show that

λ2µ(‖F‖SA > λ) . ‖F1A‖L2(S)
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Let Ψ be the collection of trees and P the selected set of tiles during the selection algorithm.
Using Lemma 3.19 we know that P is strongly disjoint. (3.9) implies

λ2µ(‖F‖SA > ρ) .
∑
T∈Ψ

λ2µ(T ) . ‖F1A‖L2(S).

The full statement follows now Proposition 2.9.

3.3.2 Quasi monotonicity of outer Lp spaces on X

In this subsection we show several inequalities concerning monotonicity and reverse quasi-monotonicity
of the iterated Lp norms, which we will use in the proof of Proposition 3.25. Most of the proofs
follow along the lines of Section 2.4, mostly with only minor changes, which we point out. First
lemmas states that -Lp sizes are decreasing in p.

Lemma 3.21 (Monotonicity of iterated sizes). Let 0 < p ≤ q ≤ ∞ and let F ∈ B(X). Then

‖F‖-Lqµ(S) .p,q ‖F‖-Lpµ(S).

Proof. Identical with the proof of Lemma 2.48.

The following fact lets us relate the outer Lq norm restricted to V ∈ D∪, with the averaged
-Lq.

Lemma 3.22. Let V ∈ D∪ and let F ∈ B(X). Then for 0 < q ≤ ∞

‖F1V ‖Lq(S) .q ν(V )1/q‖F1V ‖-Lq(S).

Proof. By Remark 3.11 we may write V =
⋃∞
m=1Dm, where Dm ∈ D for m = 1, 2, ... and Dm’s

are pairwise disjoint. Then the argument follows along the lines the proof of Lemma 2.49.

The next lemma reverts the inequality in Lemma 3.21 if F appropriately localized, losing a
factor coming from the localization.

Lemma 3.23. Let A ⊂ X, V ∈ D∪ and let F ∈ B(X). Then for any 0 < t ≤ q ≤ ∞

‖F1A1V ‖Lt(S) .q,t µ(V ∩A)1/t−1/qν(V )1/q‖F1A1V ‖-Lq(S).

Proof. Along the lines of the proof of Lemma 2.50.

The following lemma controls the counting function of a forest coming from the selection
algorithm in terms of -Lq norm. We will use it in the proof of Proposition 3.25 together with a
careful decomposition of the trilinear form according to the level sets.

Lemma 3.24 (Counting function estimates). Let V ∈ D∪ and let F ∈ B(X). Assume that
Φλ ⊂ T is the forest selected according to Definition 3.18 at a certain level λ > 0 for function
F1V . Let NΦλ =

∑
T∈Φλ

1IT be its counting function. Then for any 1 ≤ p <∞ and 2 ≤ q <∞
the following bounds hold

‖NΦλ‖Lp .p ν(V )1/pλ−q‖F1V ‖q-Lq(S)

together with the BMO endpoint

‖NΦλ‖BMO . λ−q‖F1V ‖q-Lq(S).

Proof. Identical with the proof of Lemma 2.51, after setting Eλ := Pλ, Tλ := Φλ in that argu-
ment.
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3.4 Iterated Lp bounds

From now on we fix L ∈ Z+ and set Λ := ΛL. For notation, refer to Subsection 3.2.3. The main
result of this section is the following proposition.

Proposition 3.25. Let 1 < p1, p2, p3 < ∞ with
∑3
j=1 1/pj = 1 and 2 < q1, q2, q3 < ∞ with∑3

j=1 1/qj > 1. Let for j = 1, 2, 3, fj be a Schwartz function on R and let Fj := F (fj). Assume
that Vj ,Wj ∈ D∪ for j = 1, 2, 3. Then

|Λ(F11V1\W1
, F21V2\W2

, F31V3\W3
)| .

3∏
j=1

ν(Vj)
1/pj‖Fj1Vj\Wj

‖L∞-Lqj (S). (3.10)

Note that in conjunction with Proposition 2.10 the above inequality implies Theorem 3.1.
Similarly as we noted in Chapter 2, we could not use the outer Hölder inequality from [DT15],
which would require minj µ(Vj) instead of

∏
j µ(Vj)

1/pj on the right hand side of (3.10) and
moreover, our trilinear form is nonpositive. Just like in Chapter 2, it does not seem feasible that
one can obtain much better gain than

∏
j µ(Vj)

1/pj in (3.10), since V1 scales differently than V2

and V3.
Before we prove Proposition 3.25 we show the localized estimate at the level of trees.

Proposition 3.26. Let 1 ≤ p1, p2, p3 ≤ ∞ with
∑3
j=1 1/pj = 1. Let for j = 1, 2, 3, fj be

a Schwartz function on R and let Fj := F (fj). Assume that K1,M1 ∈ T∪, Kj ,Mj ∈ T∪L for

j = 2, 3 and Vj ,Wj ∈ D∪ for j = 1, 2, 3. Moreover, set A =
⋂3
j=2(Vj \Wj), Gj := Fj1Vj\Wj

,
S1 := S, µ1 := µ and Sj := SA, µj := µ for j = 2, 3. Then

|Λ(G11K1\M1
, G21K2\M2

, G31K3\M3
)| .

3∏
j=1

µj(Kj)
1/pj‖Gj1Kj\Mj

‖L∞(Sj).

Remark. Observe that optimizing in pj and µj(Kj), we can make
∏3
j=1 µj(Kj)

1/pj to be equal
minj=1,2,3 µj(Kj).

Note that applying Proposition 2.10, the previous Proposition immediately implies |Λ(G1, G2, G3)| .∏3
j=1 ‖Gj‖Lpj (Sj). However, we shall need an improvement of this inequality with additional lo-

calization.

Corollary 3.27. Let 1 < p1, p2, p3 <∞ with 1/p1 + 1/p2 + 1/p3 = 1. Let for j = 1, 2, 3, fj be a
Schwartz function on R and let Fj := F (fj). Assume that K1,M1 ∈ T∪, Kj ,Mj ∈ T∪L for j = 2, 3

and Vj ,Wj ∈ D∪ for j = 1, 2, 3. Moreover, set A =
⋂3
j=2(Vj \Wj), Hj := Fj1Vj\Wj

1Kj\Mj
,

S1 := S, µ1 := µ and Sj := SA, µj := µ for j = 2, 3. Then

|Λ(H1, H2, H3)| .
3∏
j=1

‖Hj‖Lpj (Sj).

Proof. Let K̃j , M̃j ∈ T∪ for j = 1, 2, 3. Note that the intersection of two trees is a union of trees.
Thus the intersection of two unions of trees is a union of trees and we may apply Proposition
3.26 with Kj = Kj ∩ K̃j , M j = Mj ∪ M̃j and with Gj = Fj1Vj\Wj

for j = 1, 2, 3. We obtain

|Λ(H11K̃1\M̃1
, H21K̃2\M̃2

, H31K̃3\M̃3
)|

= |Λ(G11K1\M1
, G21K2\M2

, G31K3\M3
)|
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.
3∏
j=1

µj(Kj)
1/pj‖Gj1Kj\Mj

‖L∞(Sj) .
3∏
j=1

µj(K̃j)
1/pj‖Hj1K̃j\M̃j

‖L∞(Sj)

We conclude the proof applying Proposition 2.10.

In the first subsection we prove Proposition 3.26 and in the second subsection we show
Proposition 3.25.

3.4.1 Proof of Proposition 3.26

In this subsection we prove Proposition 3.26. Before we start the actual argument we discuss
the geometry of the trilinear form and make some convenient reductions.

We set a bit of notation for this subsection. Let Aj = Vj \ Wj , where Vj ,Wj ∈ D∪ for
j = 1, 2, 3 be fixed throughout this subsection. Define for T = T (I, ω) ∈ T, T := T (I, 2Lω) ∈ TL
and for K =

⋃
k Tk ∈ T∪, define K :=

⋃
k Tk. By the definition of the trilinear form, we have

the following fact.

Lemma 3.28 (Transfer property). Let F1, F2, F3 ∈ B(X) and let K,M ∈ T∪, V,W ∈ D∪. Then

Λ(F11K\M , F2, F3) = Λ(F1, F21K\M , F3) = Λ(F1, F2, F31K\M ), (3.11)

Λ(F1, F21V \W , F3) = Λ(F1, F2, F31V \W ).

Using the previous lemma, we shall make an appropriate reduction, in order to streamline
the exposition of the proof. Proposition 3.26 follows from the next lemma.

Lemma 3.29. Let T ∈ T and K ∈ T∪ and let A = V \W where V,W ∈ D∪. Let for j = 1, 2, 3,
fj be a Schwartz function on R and let Fj := F (fj). Then

|Λ(F11T\K , F21A, F31A)| . µ(T )‖F11T\K‖L∞(S)

3∏
j=2

‖Fj1A1T \K‖L∞(SA).

Proof of Proposition 3.26 assuming Lemma 3.29. We prove that the above inequality suffices in
order to show Proposition 3.26 in two steps.

Step 1: in this step we prove that the desired inequality from Proposition 3.26 follows, if we
assume that for any T ∈ T, K ∈ T∪, A = V \W with V,W ∈ D∪ it holds that

Λ(F11T\K1A2
, F21A2

, F31A3
) . µ(T )‖F11A1

1T\K‖L∞(S)

3∏
j=2

‖Fj1Aj1T \K‖L∞(SA)

Let K = K1 ∩ K2 ∩ K3 and M = M1 ∪ M2 ∪ M3, and let K =
⋃n
i=1 Ti be such that∑n

i=1 µ(Ti) . µ(K). We can make Ti’s pairwise disjoint obtaining convex trees
⋃n
i=1 Ti\Ni = K.

Using Lemma 3.28 in the first inequality and the assumed inequality

Λ(F11A11K1\M1
, F21A21K2\M2

, F31A31K3\M3
)

=

n∑
i=1

Λ(F11Ti\Ni\M1A1 , F21A2 , F31A3)

.
n∑
i=1

µ(Ti)‖F11A1
1Ti\Ni\M‖L∞(S)

3∏
j=2

‖Fj1Aj1Ti\Ni\M‖L∞(SA)
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. µ(K)‖F11A1
1K1\M1

‖L∞(S)

3∏
j=2

‖Fj1Aj1Kj\Mj
‖L∞(SA).

Step 2: in this step we prove that the inequality assumed in the previous step follows from
the inequality in the statement of Lemma 2.74. Note that using Remark 3.11, for all T ∈ T,
K ∈ T∪ and V,W ∈ D∪ we have

(T \K) ∩ (V \W ) =

n⋃
k=1

(Tk \ K̃),

where Tk ∈ T are pairwise disjoint in space and
∑n
k=1 µ(Tk) ≤ µ(T ), and K̃ = K ∪W ∈ T∪.

Moreover inside Λ we can freely transfer the characteristic functions between F2 and F3, using
Lemma 3.28. Let A = A2 ∩A3, note that A ∈ D∪. Using the assumed inequality we have

Λ(F11T\K1A1
, F21A2

, F31A3
)

=

n∑
k=1

Λ(F11Tk\K̃ , F21A, F31A)

.
n∑
k=1

µ(Tk)‖F11Tk\K̃‖L∞(S)‖F21A1Tk\K̃‖L∞(SA)‖F31A1Tk\K̃‖L∞(SA)

. µ(T )‖F11A11T\K‖L∞(S)‖F21A21T \K‖L∞(SA)‖F31A31T \K‖L∞(SA).

Finally we give a proof of Lemma 3.29. We bound the trilinear form over the lacunary and
the overlapping tree. The former is significantly easier and follows from a single application
of classical Hölder’s inequality. The latter is more involved and requires discrete integration
parts combined with a geometric argument and Hölder’s inequality. We record that such partial
integration is often called telescoping in the context of paraproducts. It is the Walsh counterpart
of the argument from Chapter 2, where we used integration by parts and Green’s theorem. Some
parts of the argument are motivated by [OT11], however here the setting is somewhat different,
since we are restricted to sets of the type V ∈ D∪ and have to take care of the boundary terms.

Proof of Lemma 3.29. Let A = V \W , where V,W ∈ D∪. Note that

|Λ(F11T (lac)\K , F21V \W , F31V \W )|
. µ(T )‖F11T\K‖S(T )‖F21A1T \K‖S2(T )‖F31A1T \K)‖S2(T ),

just by an application of (∞, 2, 2)-Hölder’s inequality, since both F2 and F3 are restricted to the
lacunary tree. We still have to show

|Λ(F11T (ov)\K , F21V \W , F31V \W )|
. µ(T )‖F11T\K‖L∞(S)‖F21T \K1A‖L∞(SA)‖F31T \K1A‖L∞(SA).

Note that we have

Λ(F11T (ov)\K , F21A, F31A) = Λ(F11T (ov)1B , F21C , F31C),

where

B = T \K, C = A ∩ (T \K).
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The right hand side can be rewritten as
ˆ ∑

P∈T (ov)

F1(P	)1B(Q)hIp(x)
∑
Q∈PL

F2(Q)F3(Q)1C(Q)
1IQ(x)

|IQ|
dx, (3.12)

where hIp is the L2 normalized Haar function. Fix Q ∈ T . Let P1 be the set of maximal tiles in

C ∩ T (ov), P2 be the set of minimal tiles in C ∩ T (ov); note that TopC(T ) = P1 ∪ P2. Define

Q̃ = C ∩ {Q̃ ∈ T (lac) : Q̃	 ≤ Q, Q̃	 6∈ P2}.

and Q = (C∩{Q})∪Q̃. Note that (P1∩{Q̃ < Q})∪Q and P2∩{Q̃ ≤ Q} are two decompositions
of the same subset of R2

+ into pairwise disjoint tiles. Using Corollary 3.34 that gives

F (Q)1C(Q)ϕQ = −
∑
Q̃∈Q̃

F (Q̃)1C(Q̃)ϕQ̃ −
∑
Q̃∈P1

Q̃<Q

F (Q̃)ϕQ̃ +
∑
Q̃∈P2

Q̃≤Q

F (Q̃)ϕQ̃ (3.13)

Observe that the above identity can be seen as a discrete integration by parts. Note that it
follows from Lemma 3.32, that the following cancellation identities hold for any two different
Q̃1, Q̃2 ∈ Q̃ and any Q̃ ∈ Q̃, Q ∈ TopC(T ) ∩ {Q̃ ≤ Q}

ˆ
hIP (x)ϕQ̃1

(x)ϕQ̃2
(x) dx = 0,

ˆ
hIP (x)ϕQ̃(x)ϕQ(x) dx = 0. (3.14)

From now on let for a tile P , kP ∈ Z be such that 2kP = |IP |. Using |IQ|−1
1IQ = ϕ2

Q, applying
(3.13) to F2 and F3 in (3.12), and using (3.14), we are left with estimating

ˆ ∑
P∈T (ov)

F1(P	)1B(P )hIP (x)
∑

Q∈T (lac)

kQ≤kP−L

F2(Q)F3(Q)1C(Q)
1IQ(x)

|IQ|
dx, (3.15)

ˆ ∑
P∈T (ov)

F1(P	)1B(P )hIP (x)
∑

Q∈TopC(T )
kQ≤kP−L

F2(Q)F3(Q)
1IQ(x)

|IQ|
dx, (3.16)

ˆ ∑
P∈T (ov)

F1(P	)1B(P )hIP (x)

3∏
j=2

∑
Q∈Pj−1

kQ≤kP−L

Fj(Q)ϕQ(x) dx. (3.17)

and an integral symmetric to the last one. We first bound (3.15). Changing the order of
summation (3.15) equals

ˆ ∑
Q∈T (lac)

(
∑

P∈T (ov)

kQ+L≤kP

F1(P	)1B(P )hIP (x))F2(Q)F3(Q)1C(Q)
1IQ(x)

|IQ|
dx

Applying (∞, 2, 2)-Hölder’s inequality in Q and x this is bounded by

µ(T )‖ sup
l
|
∑

P∈T (ov)

l≤kP

F1(P	)1B(P )hIP (x)|‖L∞
3∏
j=2

‖Fj1C‖S2(T )
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The above display is bounded by the desired quantity by an application of Lemma 3.31. We
shall now estimate (3.16). Changing the order of summation we rewrite (3.16) as

ˆ ∑
Q∈TopC(T )

(
∑

P∈T (ov)

kQ+L≤kP

F1(P	)1B(P )hIP (x))F2(Q)F3(Q)
1IQ(x)

|IQ|
dx.

Applying (∞, 2, 2)-Hölder’s inequality in Q and x, we estimate the above display by

µ(T )‖ sup
l
|
∑

P∈T (ov)

l≤kP

F1(P	)1B(P )hIP (x)|‖L∞
3∏
j=2

‖Fj‖STop
C (T )

The second factor is bounded similarly as before by Lemma 3.31. Concerning the last two, we
can decompose TopC(T ) as follows.

Lemma 3.30. Let C = A ∩ (T \K) be as above. There exists K ′ ∈ T∪ with

TopC(T ) ⊂ (
⋃

T ′∈K′
TopA(T ′) ∪ TopA(T )) ∩ C, (3.18)∑

T ′∈K′
µ(T ′) . µ(T ). (3.19)

Proof. Let T = T (I, ω), T = TL(I, 2Lω) and K =
⋃
T , K =

⋃
T . Let P be the set of

maximal tiles P ∈ T (ov) such that P ∈ K. Define the set of trees having the tiles of P as tops
K̃ = {T (IP , ωP ) : P ∈ P}. Note that T ∩ K = T ∩ K̃ and

∑
T̃∈K̃ µ(T̃ ) ≤ µ(T ). That implies

T ∩K = T ∩ K̃ and
∑

T̃∈K̃ µ(T̃ ) ≤ µ(T ). Moreover, let P ′ be the set of dyadic parents of the
tiles P which belong to T and let K ′ = {T (IP , ωP ) : P ∈ P ′}. Note that (3.19) is satisfied for
such choice of K ′. We shall now validate the condition (3.18).

Let P ∈ TopC(T ), i.e. P is either a maximal or minimal tile in T (ov) ∩A \ K̃. First, suppose
it is a maximal tile. If P does not have a dyadic parent in T , then automatically P ∈ TopA(T ).

Otherwise, let P̃ be the dyadic parent of P in T (ov). Then P̃ ∈ T \A or T ∩K̃. In the first case,
by definition, we have P ∈ TopA(T ). Note that the second case is in fact not possible, since

P̃ ∈ K̃ implies P ∈ K̃. Now, suppose that P ∈ TopC(T ) is a minimal tile in T (ov) ∩A \K. Let

P̃ be one of the dyadic children of P . Again, we have P̃ ∈ T \ A or P̃ ∈ T ∩ K̃. In the first

case, P ∈ TopA(T ). In the second case, there exists T̃ ∈ K̃ such that P̃ ∈ T̃ . Let T ′ be the

tree whose top tile belongs to T (ov) and is a dyadic parent of the top tile of T̃ . Then, we have
P ∈ TopA(T ′).

Using Lemma 3.30 applied for j = 2, 3

‖Fj‖STop
C (T )

. ‖Fj1C‖STop
A (T ) + µ(T )−1/2(

∑
T ′∈K′

µ(T ′)‖Fj1C‖2STop
A (T ′)

)1/2

. ‖Fj1C‖L∞(SA).

We are left with estimating (3.17). Note that we can rewrite

3∏
j=2

∑
Q∈Pj−1

kQ≤kP−L

Fj(Q)ϕQ(x) =
∑

Q1∈P1
kQ1
≤kP−L

∑
Q2∈P2

kQ2
≤kP−L

F2(Q1)ϕQ1(x)F3(Q2)ϕQ2(x),
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Changing the order of summation, (3.17) becomes

ˆ ∑
Q1∈P1

∑
Q2∈P2

∑
P∈T (ov)

kQ1
+L≤kP

kQ2
+L≤kP

F1(P	)1B(P )hRP (x)F2(Q1)ϕQ1(x)F3(Q2)ϕQ2(x) dx.

The above is bounded by

ˆ
sup
l
|
∑

P∈T (ov)
l≤kP

F1(P	)1B(P )hIP (x)|
3∏
j=2

∑
Q∈Pj−1

|Fj(Q)||ϕQ(x)| dx

Applying (∞, 2, 2)-Hölder’s inequality in x, using Lemma 3.31, spatial disjointness of tiles P1

and spatial disjointness of tiles in P2 we bound the last display by

µ(T )‖F11B‖L∞(S)‖F2‖STop
C (T )‖F3‖STop

C (T ).

Another application of Lemma 3.30 finishes the proof of the proposition.

At the end of this subsection we prove that the Walsh counterpart of the maximal truncation
of the Hilbert transform is bounded in terms of the size S. This estimate was already proven
and used in [OT11]. We include the proof for convenience of the reader.

Lemma 3.31. Let T ∈ T and F := F (f), where f is a Schwartz function on R. Then

‖ sup
l
|
∑

P∈T (ov)

l≤kP

F (P	)1B(P )hIP (x)|‖L∞(R) . ‖F1B‖L∞(S).

Proof. First of all, observe that the supremum over l can be dominated by the maximal function,
hence it can be discarded. Hence, it is enough to bound

‖
∑

P∈T (lac)

F (P )1B(P )hIP (x)‖L∞(R).

Since B ∩ T is a convex set, the above display is bounded by ‖F1B‖L∞(S) using Corollary
3.35.

3.4.2 Proof of Proposition 3.25

In this subsection we prove Proposition 3.25. The main difficulty is to prove Lemma 3.25 in the
case when (1/p1, 1/p2, 1/p3) is in the neighbourhood of (0, 0, 1) or (0, 1, 0). We remark that the
proof can be simplified if (1/p1, 1/p2, 1/p3) is in the neighbourhood of (1, 0, 0), however here we
present the version of the argument that works for all cases. Similarly as in [OT11] we split the
trilinear form according to the level sets of F1. We then apply Hölder inequality on the level of
trees and use the inequalities from Section 3.3 to bound the resulting outer Lp norms in terms
of the iterated norms. Note that that this argument is very similar to the one at the end of
Chapter 2, however here we do not have to deal with with extra factors with a small exponent
γ, see Chapter 2 for details.
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Proof of Lemma 3.25. Since we can freely move characteristic functions between F2 and F3 we
may assume that V2 = V3. Moreover, since V1 ∈ T∪, after an application of (3.11) we may
assume that V2 ⊂ V1. By homogeneity we may assume that for j ∈ {1, 2, 3}

ν(Vj)
1/pj‖Fj1Vj\Wj

‖-Lqj (S) ≤ 1. (3.20)

Hence it suffices to show

|Λ(F11V1\W1
, F21V2\W2

, F31V3\W3
)| . 1.

In order to shorten displays, throughout the proof we set Aj := Vj \Wj for j = 1, 2, 3.
Note that (3.20) and Lemma 3.21 imply that ‖F11A1‖L∞(S) ≤ ν(V1)−1/p1 . Let us run the

selection algorithm Definition 3.18 for k ∈ N, such that Ek :=
⋃

Φk corresponds to the level
2−kν(V1)−1/p1 . Additionally defining E−1 = ∅ we have

‖F11A1
1Ek\Ek−1

‖L∞(S) . 2−kν(V1)−1/p1 .

and Ek \ Ek−1 are pairwise disjoint. Using (3.20) and Lemma 3.24 we obtain

µ(Ek) . 2q1kν(V1)ν(V1)q1/p1‖F1‖q1-Lq1 (S) . 2q1kν(V1). (3.21)

Set NΦk =
∑

∆T∈Φk
1IT to be the counting function of the forest Φk. Note that Ek for k ∈ Z

are pairwise disjoint so we may split the the trilinear form using Lemma 3.28 into

|Λ(1A1F1,1A2F2,1A3F3)|

≤
∑
k≥0

|Λ(F11Ek\Ek−1
1A1

, F21Ek1A2
, F31Ek1A3

)|

Fix k ∈ Z+. Applying Lemma 3.29 together with Proposition 2.10 we have

|Λ(F11Ek\Ek−1
1A1

, F21Ek1A2
, F31Ek1A3

)| (3.22)

. ‖F11Ek\Ek−1
1A1‖Lt1 (S)

3∏
j=2

‖Fj1Ek1Aj‖Ltj (SAj )

for any ti ∈ [1,∞] such that
∑3
i=1 t

−1
i = 1. Using (3.21) and Lemma 3.23, it follows that

‖F11Ek1A1‖Lt1 (S) . 2q1k(1/t1−1/q1)ν(V1)1/t1−1/p1 . (3.23)

In the case of terms involving F2, as long as t2 ∈ (2, q2] we use Lemma 3.12, Lemma 3.23 and
Lemma 3.21 to obtain that

‖F21Ek1A2‖Lt2 (SA2
)

. ‖F21Ek1A2
‖Lt2 (S)

. µ(V2 ∩Ek)1/t2−1/q2ν(V2)1/q2‖F21Ek1A2‖-Lq2 (S)

. µ(V2 ∩Ek)1/t2−1/q2ν(V2)1/q2‖F21A2
‖-Lq2 (S)

. µ(V2 ∩Ek)1/t2−1/q2ν(V2)1/q2−1/p2 .

Using Remark 3.11, let V2 =
⋃∞
m=1Dm, where Dm’s are pairwise disjoint strips. Then

µ(V2 ∩Ek) .
∑

T∈Φk

µ(V2 ∩ T ) ≤
∑

T∈Φk

∞∑
m=1

µ(Dm ∩ T )
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.
∑

T∈Φk

∞∑
m=1

|IDm ∩ IT | .
∑

T∈Φk

|IV2 ∩ IT | = ‖NΦk1IV2
‖L1

Notice that NΦk = NΦk and by Hölder’s inequality with 1 ≤ p ≤ ∞ the previous display is
bounded by

ν(V2)1−1/p‖NΦk‖p = ν(V2)
‖NΦk‖p
ν(V2)1/p

.

By Lemma 3.24 and (3.20) we have for 1 ≤ p <∞

‖NΦk‖p .p ν(V1)1/p2q1kν(V1)q1/p1‖F11A1
‖q1-Lq1 (S) ≤ 2q1kν(V1)1/p.

Thus, for any p ∈ [1,∞), we have

‖F21Ek1A2‖Lt2 (SA2
) (3.24)

. 2q1k(1/t2−1/q2)

(
ν(V2)

ν(V1)

)−(1/t2−1/q2

)
/p

ν(V2)1/t2−1/p2 .

The same result holds for the term with F3. Let V2,3 = V2 = V3. Putting the bounds (3.24) and

(3.23) into (3.22), we obtain using
∑3
j=1 1/tj =

∑3
j=1 1/pj = 1

|Λ(F11A1
1Ek , F21A2

1Ek , F31A3
1Ek)|

. 2q1k(1−1/q1−1/q2−1/q3)

×

(
ν(V2,3)

ν(V1)

)(1/p1−1/t1)(
ν(V2,3)

ν(V1)

)−(1/t2+1/t3−(1/q2+1/q3))/p

.

By assumption we have that 1 − 1/q1 − 1/q2 − 1/q3 < 0, which makes the above expression

summable in k ∈ N. If t1 > p1 and p ∈ (1,∞] is chosen large enough then the exponent of
ν(V2,3)
ν(V1)

is positive. Since ν(V2,3) ≤ ν(V1), this concludes the proof.

3.5 Appendix - Walsh wave packets

In this chapter we used the following facts about the Walsh wave packets.

Lemma 3.32. If two tiles P , Q are disjoint, then ϕP and ϕQ are orthogonal, i.e. 〈ϕP , ϕQ〉 = 0.

The above lemma was proven in [Thi06].

Lemma 3.33. Let P be a finite collection of tiles and assume that a tile Q is covered by the tiles
in P. Then ϕQ is in the linear span of {ϕP : P ∈ P}.

The above lemma was also proven in [Thi06]. As a corollary we obtain the following.

Corollary 3.34. If P, P ′ are two different collection of multitiles, each of which is pairwise
disjoint and

⋃
P =

⋃
P ′, then for any Schwartz function f on R∑

P∈P
F (f)(P )ϕP (x) =

∑
P ′∈P′

F (f)(P ′)ϕP ′(x).
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Note that if E ⊂ X is a convex set of multitiles, then
⋃
E is the union of areas covered by the

maximal multitiles that do not belong to E. Moreover, observe that these multitiles are spatially
pairwise disjoint. Hence, we obtain

Corollary 3.35. Let f be a Schwartz function on R, E ⊂ X be a convex set and let
⋃
P =

⋃
E,

where P is a set of pairwise disjoint multitiles. Then

‖
∑
P∈P

F (f)(P )1E(P )ϕP (x)‖L∞(R) . sup
P∈X
|F (P )1E(P )||IP |−1/2.
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Chapter 4

Uniform bounds for a Walsh
model of the two dimensional
bilinear Hilbert transform in local
L1

4.1 Introduction

In the first chapter we viewed the parameter space of the fully two dimensional bilinear Hilbert
transform as a three dimensional manifold with subsets corresponding to different well known
operators in harmonic analysis. We analysed the interaction of the submanifolds, which gives
a wide spectrum of questions concerning the uniform bounds. In this chapter we discuss the
uniform estimates for a set of parameters that admit the full two dimensional time-frequency
decomposition and degenerate to a singular integral in two dimensions. Namely, we consider
~B = (B1, B2, B3) with

B1 =

(
−β1 − β2 0

0 −γ1 − γ2

)
, B2 =

(
β1 0
0 γ1

)
, B3 =

(
β2 0
0 γ2

)
with |(β1, β2)|, |(γ1, γ2)| = 1, such that β1 6= β2, γ1 6= γ2 and prove the uniform bounds for a
Walsh model with that triple of matrices as |β1−β2|, |γ1−γ2| → 0. We remark that if one assumes
β1 = γ1, β2 = γ2, then the proof follows along the lines of the argument in one dimension, which
was presented in Chapter 3. Different speed of convergence of |β1 − β2|, |γ1 − γ2| is the main
difference compared to the one dimensional case. For convenience of the reader, in the following
we introduce the Walsh model of BHF ~B and then state the main result, which we already did in
the introduction of the thesis.

We define a multitile to be the Cartesian product P1 × P2, where P1 and P2 are tiles. For a
multitile P = P1 × P2 we denote

RP := IP1
× IP2

, ΩP := ωP1
× ωP2

,

where for j = 1, 2, IPj is the spatial interval and ωPj is the frequency interval of Pj . We overload
the notation and represent multitiles either as a product of two tiles P = P1×P2 or as a product
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of the spatial and the frequency component P = RP × ΩP . The L2 normalized wave packet
associated with a multitile P = P1 × P2 is defined as

ϕP (x, y) := ϕP1(x)ϕP2(y),

where ϕP is the one dimensional Walsh wave packet, defined in Chapter 3.
Given a Schwartz function f on R2 we associate it to the embedded function via

F (f)(P ) = 〈f, ϕP 〉.

Let f1, f2, f3 be a triple of Schwartz functions on R2. Set Fj = F (fj) for j = 1, 2, 3. For a
multitile P = R× Ω, where Ω = ω1 × ω2 we denote

Ω	 = ω	
1 × ω2

P	 = R× Ω	,

where ω	 is the dyadic sibling of a dyadic interval ω.
For a K ∈ Z we denote with RK the set of all dyadic rectangles I × J with |I| = 2K |J | and

denote with XK the set of all multitiles P = R×Ω with R ∈ RK . From now on we fix K ∈ Z+.
Moreover, we set R := R0, X := X0.

The trilinear form associated to the two dimensional Walsh bilinear Hilbert transform is given
formally for K,L ∈ Z+ and triples of functions F1 : X→ R and Fj : XK → R, for j = 2, 3, by

ΛK,L(F1, F2, F3) :=
∑
P∈X

F1(P	)
∑
Q∈PL

F2(Q)F3(Q)hRP (c(RQ)),

where for P ∈ X

PL := {Q ∈ XK : RQ ⊂ RP , ΩQ = ΩK,LP },

where for ΩP = ω1 × ω2, we set ΩK,LP := 2Lω1 × 2L+Kω2, with 2Lω = [2La, 2Lb) for an interval
ω = [a, b), c(RQ) is the center of RQ and

hRP (x, y) = |RP |1/2ϕP (x, y)ϕP	(x, y)

is the L2 normalized Haar function.
The goal of this chapter is to prove the uniform bounds for the Walsh model of the two

dimensional bilinear Hilbert transform modularizing it as an iterated outer Lp estimate for ΛK,L
uniform in the parameters K, L, Theorem 4.1, and the Walsh iterated embedding (4.1).

Theorem 4.1. Let 1/p1 + 1/p2 + 1/p3 = 1 with 1 < p1, p2, p3 <∞ and 1/q1 + 1/q2 + 1/q3 > 1
with 2 < q1, q2, q3 < ∞. There exists a constant Cp1,p2,p3 < ∞ such that for all K,L ∈ Z+, all
triples of Schwartz functions f1, f2, f3 on R2

|ΛK,L(F (f1), F (f2), F (f3))| ≤ Cp1,p2,p3

3∏
j=1

‖F (fj)‖Lpj -Lqj (S).

On the right hand side of (2.11) are iterated outer Lp norms developed in [Ura16] that we
define precisely in Section 4.2. The Walsh iterated embedding theorem, which we prove in Section
4.5, implies that for j = 1, 2, 3

‖F (fj)‖Lpj -Lqj (S) ≤ Cpj ,qj‖fj‖Lpj (R2). (4.1)
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We prove Theorem 4.1 in the framework of outer Lp spaces using a counterpart of the multilinear
Marcinkiewicz interpolation for outer Lp spaces, Proposition 2.10.

Let us introduce the Walsh model for the bilinear Hilbert transform. For a P ∈ X we define
the phase plane projections

ΠP f(x, y) := 〈f, ϕP 〉ϕP (x, y), ΠPLf(x, y) :=
∑
Q∈PL

ΠQ(x, y).

We define the Walsh model of the two dimensional bilinear Hilbert transform as

BHFK,L(f1, f2, f3) :=

ˆ ∑
P∈X

ϕ̃P (x, y)ΠP	f1(x, y)

3∏
j=2

ΠPLfj(x, y) dx dy,

where ϕ̃P is the L∞ normalized wave packet. We have the following.

Theorem 4.2. Let 1/p1 + 1/p2 + 1/p3 = 1 with 1 < p1, p2, p3 < ∞. There exists a constant
Cp1,p2,p3

<∞ such that for all K,L ∈ Z+ and all triples of Schwartz functions f1, f2, f3 on R2

the inequality

|BHFK,L(f1, f2, f3)| ≤ Cp1,p2,p3

3∏
j=1

‖fj‖Lpj (R2)

holds.

Theorem 4.1 coupled with (4.1) implies Theorem 4.2, since

BHFK,L(f1, f2, f3) = ΛK,L(F1, F2, F3).

Note that the trilinear form BHFK,L has cancellation in the first frequency component and no
cancellation in the second one. Thus, one could analogously define a trilinear form having can-
cellation in the second component. The uniform estimates for the latter follow using essentially
the same arguments as in this chapter and thus we decided not to present them here.

In Section 4.2 we introduce the outer measures in (R+ × R+)2. For precise definitions and
notions concerning the abstract outer Lp spaces, see Section 2.3 in Chapter 2. In Section 4.3
we present an auxiliary result which lets us dominate L-dependent outer Lp norms with L-
independent ones, Proposition 4.12 so that we can apply (4.1), similarly to what we did in
Chapter 3. In Section 4.4 we prove Theorem 4.1. In the last section we give a proof of the Walsh
iterated embedding Theorem 4.29, which implies (4.1).

We record that the material presented in this chapter is somewhat similar to Chapter 3,
hence we skip a couple of proofs that follow exactly the same way. Also, for a more elaborate
introduction to the outer Lp spaces, see Chapter 2 and Chapter 3.

4.2 Outer Lp spaces in time-frequency space

In this section we introduce the outer Lp structure on X and XK that we will be working with
till the end of the chapter. By B(X), B(XK) we denote the set of (Borel) functions on X, XK ,
respectively. For a fixed K ∈ Z+, which corresponds to the ratio between the sides of RP , the
parameter L ∈ Z+ is treated similarly to the degeneration parameter in Chapter 3.
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4.2.1 Outer measures in time-frequency-scale space

First we introduce K-trees which are the counterpart of the trees in one dimension for the set of
multitiles XK . For a natural number K, let Ω̃ ∈ R−K be the dyadic parent of a dyadic rectangle
Ω ∈ R−K .

Definition 4.3 (K-trees and measures). For K ∈ N, multitile R×Ω ∈ XK , we define the K-tree
as follows:

T (R,Ω) := {P ∈ XK : RP ⊂ R, Ω̃P ⊃ Ω}

Moreover we set

T (ov) := {P ∈ T : ΩP ⊃ Ω}, T (lac) = T \ T (ov).

We set RT = R and ΩT = Ω if T = T (R,Ω) and we denote the family of K-trees with TK and
the family of their countable unions with (TK)∪. The pre-measure is given by

µK(T ) := |RT |

and it generates µK . We also set T := T0 and µ := µ0.

We introduce the (K,L)-trees which are the counterpart of the L-trees for the set of multitiles
XK . They can be thought of as dilated K-trees, where the K-dependent ratio defining the set XK

is fixed and the L-dependent scaling is applied to the multitiles simultaneously in both directions,
so that the (K,L)-trees are still subsets of XK .

Definition 4.4 ((K,L)-trees and measures). For natural numbers K, L, rectangle R × Ω with
R ∈ R, Ω ∈ R−K , we define the (K,L)-tree as follows:

T (R,Ω) := {P ∈ XK : RP ⊂ R, Ω̃P ⊃ Ω} ∩ {P ∈ X : |RP | ≤ 2−2L−K |R|}

Moreover we set

T (ov) := {P ∈ T : ΩP ⊃ Ω}, T (lac) = T \ T (ov).

We set RT = R and ΩT = Ω if T = T (R,Ω) and we denote the family of (K,L)-trees with TK,L.
The pre-measure is given by

µK,L(T ) := |RT |

and it generates µK,L.

4.2.2 Outer measures in time-scale space

To account for space localization we introduce time-scale K-strips as subsets of XK and the
associated pre-measure.

Definition 4.5 (Strips and measures). Let for R ∈ RK . Define

D(R) = {P ∈ XK : RP ⊂ R} ν
(
D(R)

)
:= |R|.

We denote RD = R if D = D(R) and the sets of K-strips with DK . Moreover for K = 0 we set
D := D0. We denote with (DK)∪ the family of countable unions of D ∈ DK .

Remark 4.6. If V ∈ (DK)∪, we may assume without loss of generality that V =
⋃∞
m=1Dm,

where Dm’s are pairwise disjoint and ∈ DK . This is because D ∈ DK are based on dyadic
rectangles with the same ratios between their sides, meaning that for any two D,D′ ∈ D we
either have D ∩D′ = ∅ or one is contained in the other.
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4.2.3 Sizes in time-frequency-scale space

We define the K-sizes for a fixed K ∈ N. They are defined analogously to the sizes S, S2 in
Chapter 2.

Definition 4.7 (K-sizes in time-frequency-scale space). Let F ∈ B(XK) and T ∈ TK . Define

‖F‖S2,K(T ) :=

 1

|RT |
∑

P∈T (lac)

|F (P )|2
1/2

,

‖F‖S∞,K(T ) := |RPT |−1/2 |F (PT )|,
‖F‖SK(T ) := ‖F‖S2,K(T ) + ‖F‖S∞,K(T ).

We also set for K = 0, ‖ · ‖S2 := ‖ · ‖S2,0 , ‖ · ‖S∞ := ‖ · ‖S∞,0 and

‖F‖S(T ) := ‖F‖S2(T ) + ‖F‖S∞(T ).

We define the top of a (K,L)-tree analogously as in Chapter 3. Before we do that, we shall
introduce the order on the set of multitiles XK .

Definition 4.8 (Order on X). We write P ≤ Q for P,Q ∈ XK with RP ⊂ RQ and ΩP ⊃ ΩQ.

Definition 4.9 (Tops). Let K,L ∈ Z+, T ∈ TK,L, A = K \M , where K,M ∈ (TK)∪. Let P1
A,T

be the set of maximal multitiles contained in A∩ T (ov) and P2
A,T be the set of minimal multitiles

contained in A ∩ T (ov). We define the top of T with respect to A as

TopA(T ) := P1
A,T ∪ P2

A,T .

Having defined the tops, we can finally introduce the sizes for the (K,L)-trees.

Definition 4.10 ((K,L)-sizes in time-frequency-scale space). Let F ∈ B(XK) and T ∈ TK,L.
Define

‖F‖S2,K,L(T ) :=

 1

|RT |
∑

P∈T (lac)

|F (P )|2
1/2

,

‖F‖S∞,K,L(T ) := |RPT |−1/2 |F (PT )|,

‖F‖STop
A (T ) :=

 1

|RT |
∑

P∈TopA(T )

|F (P )|2
1/2

,

‖F‖SK,LA (T ) = ‖F‖STop,K,L
A (T ) + ‖F1A‖S2,K,L(T ).

We also define the interpolated size with a parameter 0 < γ < 1

‖F‖SK,LA,γ (T ) := ‖F‖1−γ
SK,LA (T )

‖F1A‖γL∞(S∞,K,L)
.

Definition 4.11 (Iterated sizes in time-scale space). Given an outer measures space with size
(X, µ, ‖ · ‖S) and a function F ∈ B(X) we define the iterated size as

‖F‖-Lqµ(S) := sup
D∈D
|RD|−1/q‖F1D‖Lqµ(S).
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4.2.4 Choice of parameters and notation

From now on we fix natural numbers K,L ∈ Z+ and set µ := µK,L, ‖ · ‖SA := ‖ · ‖SK,LA
,

‖ · ‖SA,γ := ‖ · ‖SK,LA,γ
. We also use the following notation

‖F1‖Lp(S) := ‖F1‖Lpµ(S), ‖F1‖Lp(-Lq(S)) := ‖F1‖Lpν(-Lqµ(S)),

and for j = 2, 3

‖Fj‖Lp(SA,γ) := ‖Fj‖Lpµ(SA,γ), ‖Fj‖Lp(-Lq(S)) := ‖Fj‖Lp
νK

(-Lq
µK

(SK)).

When we omit the subscript A, we mean A = X.

4.3 Outer Lp comparison

In this section we prove that (K,L)-dependent outer Lp norms can be bounded by the K-
dependent outer Lp norms for 2 < p ≤ ∞. By virtue of this fact, later on in the proof of
Theorem 4.4 we may directly apply the iterated embedding theorem for the L-independent sizes,
Theorem 4.29.

Throughout this section we assume that

‖F‖L2
µK

(SK), ‖F‖L∞
µK

(SK) <∞ (4.7)

are finite and consider XK the set of multitiles with

ΩP ⊂ [0, N)2 (4.8)

for a large integer N . All bounds in this section will be independent of N , hence, by standard
limiting procedure, we may extend them to the whole collection of multitiles. Let A = V \W ,
V,W ∈ D∪ be fixed throughout this section. The following result holds.

Lemma 4.12 (Comparison of uniform outer measure spaces). The following inequality hold for
all functions F ∈ B(XK):

‖F‖Lqµ(SA) .q ‖F‖Lq
µK

(SK) ∀q ∈ (2,∞],

‖F‖L2,∞
µ (SA) . ‖F‖L2

µK
(SK),

with a constant that is dependent on q but independent of K,L.

The proof of Lemma 4.12 follows along the lines of Lemma 3.12 in Chapter 3, given Lemma
4.14 and Lemma 4.19 below. The only modification is that, because the frequency components
of multitiles are rectangles, in the counterpart of the 2-selection algorithm below one has to
consider four types of trees T−,−, T+,−, T−,+, T+,+ instead of T−, T+ as it was done in the
one dimensional case. For convenience of the reader we provide the details below.

Definition 4.13 (Strongly disjoint). We call a set P ⊂ XK strongly disjoint if for any two
distinct P, P ′ ∈ P, P ∩ P ′ = ∅.

Lemma 4.14 (Outer L2 sizes of strongly disjoint sets). Let P ⊂ XK be a strongly disjoint set
of multitiles. Then

‖1PF‖l2(XK) . ‖1PF‖L2
µK

(SK)



4.3. Outer Lp comparison 95

Proof. Exactly the same as the proof of Lemma 3.15.

We introduce two auxiliary selection algorithms, one for STop
A and the other one for S2

A.

Definition 4.15 (Top-selection algorithm). Initially P = ∅ and X0 ⊂ XK . In the n-th step of
the procedure we choose a tree Tn ∈ TK,L such that

‖F1Xn‖STop
A (Tn) > λ (4.9)

and µ(Tn) is maximal. This possible, because the multitiles in TopA(T ) can be split into two
pairwise disjoint collections of multitiles and as a result, using Lemma 4.14 and (4.7), we obtain
an upper bound for µ(T )

µ(T ) ≤ λ−2‖F1TopA(T )∩Xn‖
2
`2(XK) . λ−2‖F‖2L2

µK
(SK) <∞.

We then add TopA(Tn) ∩ Xn to the set P, set Xn+1 := Xn \ Tn and iterate the procedure. It will
terminate because, by (4.8) there is a lower bound for µ(T ), so by (4.7) and (4.11), there can be
only finitely many T ∈ TK,L satisfying (4.9).

Remark 4.16. In the special case L = 0 and A = XK the above selection algorithm is the
selection algorithm for S∞ = STop.

Let Ω be a dyadic rectangle and Ω̃ = ω̃1×ω̃2 be the dyadic parent of Ω. We set Ωa,b := ω̃a1×ω̃b2
for a, b ∈ {−,+}, where ω− is the left and ω+ the right half of the dyadic interval ω.

Definition 4.17 (2-selection algorithm). Initially P = ∅ and X0 ⊂ XK . For a tree T (R,Ω) ∈
TK,L let

T+,+(R,Ω) := {P ∈ T : ΩT ⊂ (Ω̃P )+,+ and ΩT 6⊂ ΩP },

Analogously we define T+,−, T−,+, T−,−. We first describe the selection procedure for T+,+. In
the n-th step of the procedure we proceed as follows: if there exists a tree T ∈ TK,L with

‖F1T+,+1Xn‖S2
A(T ) > λ (4.10)

we select a tree Tn(R,Ω) which maximizes µ(T ) among ξ = (ξ1, ξ2) with the maximal value of
−ξ1−ξ2, where ξ = (ξ1, ξ2) is the middle of Ω. This requirement can be satisfied since such µ(T )
are bounded from above: since the multitiles in T+,+ are pairwise disjoint, thanks to Lemma 4.14
and (4.7) we obtain

µ(T ) ≤ λ−2‖F1T+,+∩Xn‖
2
`2(XK) . λ−2‖F‖2L2

µK
(SK) <∞.

This in turn implies that |Ω|’s are bounded from below, hence all possible ξ’s are all in a discrete
set. Together with (4.8) we obtain that −ξ1 − ξ2 attains its maximum for some ξ for some
Tn := T (R,Ω). We add Sn = T+,+

n ∩Xn to P and set Xn+1 := Xn \Tn. We iterate the procedure
until there are no more trees satisfying (4.10). It will terminate since by (4.8) there is a lower
bound for µ(T ), so (4.7) and (4.11) imply that there can be only finitely many T ∈ TK,L satisfying
(4.10). Analogously we define the selection algorithm for T+,−, T−,+, T−,− at each step selecting
a tree with size larger than λ and maximizing µ(T ) for the maximal value of −ξ1 + ξ2, ξ1 − ξ2,
ξ1 + ξ2, respectively.

Since the selection algorithms for T+,+, T+,−, T−,+, T−,− are entirely symmetric and in the
proof we will be working only with T+,+.
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Definition 4.18 (Selection algorithm). The selection algorithm at level λ consists of running
the selection algorithm according to Definition 4.15 at level λ and then the selection algorithm
according to Definition 4.17 at level λ, starting with X0 = XM , where is M is the the number of
the last iteration of the algorithm in Definition 4.15. The described algorithm yields a collections
of trees Φλ = Φ∞λ ∪ Φ2

λ, where Φ∞λ , Φ2
λ are trees selected while running Top-selection and 2-

selection algorithm respectively. It also yields a collection of selected tiles Pλ.

Lemma 4.19. If P ⊂ XK comes from the selection algorithm given in Definition 4.18, then P
is strongly disjoint.

Remark 4.20. In particular an application of Lemma 4.14 implies that, if Tn are the selected
trees, n = 0, 1, 2, .., then they satisfy for any M ∈ N

M∑
n=0

µ(Tn) . λ−2‖F1A‖2L2(S). (4.11)

Proof. We prove this lemma by contradiction.
First assume that P comes from the algorithm in Definition 4.15. Suppose that there exist

P, P ′ ∈ P, such that P ∈ TopA(T ), P ′ ∈ TopA(T ′) and P ∩ P ′ 6= ∅, where T, T ′ are two distinct
selected trees. Without loss of generality suppose that T was selected earlier than T ′. Then it
is not possible RP ′ ⊂ RP , because this would mean that P ′ ∈ T , which is a contradiction. If
this is not the case, then we necessarily have |RP | < |RP ′ |. But since RP , RP ′ are members of
the partition of RT , R

′
T generated by V , respectively, this would imply that |RT | < |RT ′ |. This

would imply that T ′ was selected earlier. Contradiction.
Now assume that P comes from the 2-selection algorithm (for T+,+). Without loss of gen-

erality assume that P ∈ T , P ′ ∈ T ′, P ∩ P ′ 6= ∅ and T was selected earlier than T ′. It is
not possible that RP ′ ⊂ RP , since this would mean that P ′ could have been selected while T
was being selected, which is a contradiction. Otherwise ΩP ′ ⊂ ΩP and the inclusion is strict.
However, this would imply that −ξT ′,1 − ξT ′,2 > −ξT,1 − ξT,2 and T ′ should have been selected
before T was selected. Contradiction.

4.4 Iterated Lp bounds

We fix K,L ∈ Z+ and set Λ := ΛK,L. The main result of this section is the following proposition,
which combined with Proposition 2.10 implies Theorem 4.1.

Proposition 4.21. Let 1 < p1, p2, p3 < ∞ with
∑3
j=1 1/pj = 1 and 2 < q1, q2, q3 < ∞ with∑3

j=1 1/qj > 1. Let for j = 1, 2, 3, fj be a Schwartz function and let Fj := F (fj). Assume that
Vj ,Wj ∈ D∪ for j = 1, 2, 3. Then

|Λ(F11V1\W1
, F21V2\W2

, F31V3\W3
)| .

3∏
j=1

ν(Vj)
1/pj‖Fj1Vj\Wj

‖L∞-Lqj (S). (4.12)

Given the next proposition, the proof of (4.12) follows along the lines of the proof of Proposi-
tion 3.25 in Chapter 3, with the only difference being the factor γ, one can deal with it similarly
as we did in Chapter 2, in the proof of Proposition 2.52.

Proposition 4.22. Let 1 ≤ p1, p2, p3 ≤ ∞ with
∑3
j=1 1/pj = 1. Let for j = 1, 2, 3, fj be a

Schwartz function on R2 and let Fj := F (fj). Assume that M1, N1 ∈ T∪, Mj , Nj ∈ (TL)∪ for
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j = 2, 3 and Vj ,Wj ∈ D∪ for j = 1, 2, 3. Moreover, set A =
⋂3
j=2(Vj \Wj), Gj := Fj1Vj\Wj

,
S1 := S and Sj := SA,γ for j = 2, 3. Then

|Λ(G11M1\N1
, G21M2\N2

, G31M3\N3
)| .

3∏
j=1

µ(Mj)
1/pj‖Gj1Mj\Nj‖L∞(Sj).

4.4.1 Proof of Proposition 4.22

In this section we prove Proposition 4.22. The proof is similar the proof of its one dimensional
counterpart, Proposition 2.53, but we provide here the details. Let Aj = Vj \Wj , where Vj ,Wj ∈
D∪ for j = 1, 2, 3 be fixed throughout this subsection. For T = T (I, ω) ∈ T, define T (Ik, ωk) :=
TK,L(I,ΩK,L) ∈ TK,L and for K =

⋃
k T (Ik, ωk) ∈ T∪, define K :=

⋃
k T (Ik, ωk).

Exactly the same way as in Chapter 3, Section 5, one can reduce Proposition 4.22 to the
following.

Lemma 4.23. Let T ∈ T and M ∈ T∪ and let A = V \W where V,W ∈ D∪. Let for j = 1, 2, 3,
fj be a Schwartz function on R2 and let Fj := F (fj). Then

|Λ(F11T\M , F21A, F31A)| . µ(T )‖F11T\M‖L∞(S)

3∏
j=2

‖Fj1A1T \M‖L∞(SA,γ).

Proof of Lemma 4.23. First, observe that

|Λ(F11(T\M)(lac) , F21A, F31A)|
. µ(T )‖F11T\M‖S(T )‖F21A1T \M‖S2(T )‖F31A1T \M‖S2(T ),

just by an application of (∞, 2, 2)-Hölder’s inequality, since F2 and F3 are restricted to the
lacunary tree. Using Lemma 4.25 we bound the right hand side of the previous display by the
desired quantity. We still have to show

|Λ(F11(T\K)(ov) , F21A, F31A)|
. µ(T )‖F11T\K‖L∞(S)‖F21T \K1A‖L∞(SA)‖F31T \K1A‖L∞(SA).

Note that we have

Λ(F11(T\M)(ov) , F21A, F31A) = Λ(F11T (ov)1B , F21C , F31C),

where

B = T \M, C = A ∩ (T \M). (4.13)

The right hand side of the penultimate display can be rewritten as

ˆ ∑
P∈T (ov)

F1(P	)1B(P )hRP (x, y)
∑

Q∈PK,L
F2(Q)F3(Q)1C(Q)

1RQ(x, y)

|RQ|
dx dy, (4.14)

where hRP is the L2 normalized Haar function. Fix Q ∈ T . Let P1 be the set of maximal
multitiles in C ∩ T (ov), P2 be the set of minimal multitiles in C ∩ T (ov); note that TopC(T ) =
P1 ∪ P2. Define

Q := C ∩ {Q ∈ T (lac) : Q
	 ≤ Q, Q	 6∈ P2}.
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and Q = (C ∩ {Q}) ∪ Q. Note that (P1 ∩ {Q : Q < Q}) ∪ Q and P2 ∩ {Q : Q ≤ Q} are two
decompositions of the same subset of R4

+ into pairwise disjoint multitiles. This gives

F (Q)1C(Q)ϕQ = −
∑
Q∈Q

F (Q)1C(Q)ϕQ −
∑
Q∈P1

Q<Q

F (Q)ϕQ +
∑
Q∈P2

Q≤Q

F (Q)ϕQ̃ (4.15)

Observe that the above identity can be seen as a discrete integration by parts. Note that by
Lemma 4.35 the following cancellation identities hold for any two different Q1, Q2 ∈ Q and any

Q ∈ Q, Q ∈ TopC(T ) ∩ {Q̃ : Q̃ ≤ Q}.
ˆ
hRP (x, y)ϕQ1

(x, y)ϕQ2
(x, y) dx dy = 0, (4.16)

ˆ
hRP (x, y)ϕQ(x, y)ϕ

Q
(x, y) dx dy = 0.

From now on let for a multitile P , kP ∈ Z be such that 22kP = |RP |. Using |RQ|−1
1RQ = ϕ2

Q

and applying (4.15) and (4.16) to F2 and F3 in (4.14), there are no cross terms coming from
T (lac) and TopC(T ), as well as no terms involving Q1, Q2 ∈ T (lac) with Q1 6= Q2. Moreover,
multitiles in P1 are spatially pairwise disjoint and the same holds for P2. Thus, (4.14) equals to
a linear combination ofˆ ∑

P∈T (ov)

F1(P	)1B(P )hRP (x, y)
∑

Q∈T (lac)

kQ≤kP−L

F2(Q)F3(Q)1C(Q)
1RQ(x, y)

|RQ|
dx dy, (4.17)

ˆ ∑
P∈T (ov)

F1(P	)1B(P )hRP (x, y)
∑

Q∈TopC(T )
kQ≤kP−L

F2(Q)F3(Q)
1RQ(x, y)

|RQ|
dx dy, (4.18)

ˆ ∑
P∈T (ov)

F1(P	)1B(P )hRP (x, y)

3∏
j=2

∑
Q∈Pj−1

kQ≤kP−L

Fj(Q)ϕQ(x, y) dx dy. (4.19)

and an integral symmetric to the last one. We first bound (4.17). Changing the order of
summation (4.17) equals

ˆ ∑
Q∈T (lac)

(
∑

P∈T (ov)

kQ+L≤kP

F1(P	)1B(P )hRP (x, y))F2(Q)F3(Q)1C(Q)
1RQ(x, y)

|RQ|
dx dy.

Applying ( 1
γ ,

2
1−γ ,

2
1−γ )-Hölder’s inequality in Q and (x, y) this is bounded by

‖TF1‖L1/γ

3∏
j=2

‖GFj‖L2/(1−γ) , (4.20)

where

TF (x) := sup
l
|
∑

P∈T (ov)

l≤kP

F (P	)1B(P )hRP (x, y)| (4.21)



4.4. Iterated Lp bounds 99

and

GF (x) :=

 ∑
P∈T (lac)

|F (P )|21C(P )|ϕP (x, y)|2
1/2

. (4.22)

Applying Lemma 4.26 and Lemma 4.27 we bound (4.20) by the desired quantity. We shall now
estimate (4.18). Changing the order of summation we rewrite (4.18) as

ˆ ∑
Q∈TopC(T )

(
∑

P∈T (ov)

kQ+L≤kP

F1(P	)1B(P )hRP (x, y))F2(Q)F3(Q)
1RQ(x, y)

|RQ|
dx dy.

Using Lemma 4.24 we bound it, after an application of (∞, 2, 2)-Hölder’s inequality in Q and
( 1
γ ,

2
1−γ ,

2
1−γ )-Hölder’s inequality in (x, y), by

‖TF1‖L1/γ

3∏
j=2

‖HFj‖L2/(1−γ) , (4.23)

where

HF (x) :=

 ∑
P∈TopC(T )

|F (P )|1C(P )|ϕP (x, y)|2
1/2

(4.24)

The first factor is bounded similarly as before by Lemma 4.26. Concerning the last two, we have
the following decomposition of the top.

Lemma 4.24. Let C be as above. There exists Φ′ ∈ T∪ with

TopC(T ) ⊂ (
⋃

T ′∈Φ′
TopA(T ′) ∪ TopA(T )) ∩ C,∑

T ′∈Φ′
µ(T ′) . µ(T ).

Proof. Analogous to the proof of Lemma 3.30.

Using Lemma 4.24 for Fj with j = 2, 3 we obtain

‖Fj‖STop
C (T )

. ‖Fj1C‖STop
A (T ) + µ(T )−1/2(

∑
T ′∈Φ′

µ(T ′)‖Fj1C‖2STop
A (T ′)

)1/2

. ‖Fj1C‖L∞(SA).

The above, together with Lemma 4.28, bounds (4.23).
We are left with estimating (4.19). Note that we can rewrite

3∏
j=2

∑
Q∈Pj−1

kQ≤kP−L

Fj(Q)ϕQ(x, y) =
∑

Q1∈P1
kQ1
≤kP−L

∑
Q2∈P2

kQ2
≤kP−L

F2(Q1)ϕQ1(x, y)F3(Q2)ϕQ2(x, y),
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Changing the order of summation, (4.19) becomes

ˆ ∑
Q1∈P1

∑
Q2∈P2

∑
P∈T (ov)

kQ1
+L≤kP

kQ2
+L≤kP

F1(P	)1B(P )hRP (x, y)F2(Q1)ϕQ1
(x, y)F3(Q2)ϕQ2

(x, y) dx dy.

The above is bounded by

ˆ
|TF1(x, y)|

3∏
j=2

∑
Q∈Pj−1

|Fj(Q)||ϕQ(x, y)| dx dy

Applying ( 1
γ ,

2
1−γ ,

2
1−γ )-Hölder’s inequality in (x, y), using spatial disjointness of multitiles P1

and spatial disjointness of multitiles in P2 we bound the last display by

‖TF1‖L1/γ(S)

3∏
j=2

‖HFj‖L2/(1−γ) .

Another application of Lemma 4.26, Lemma 4.28 and Lemma 4.24 finishes the proof of the
proposition.

At the end of this section we prove the following sequence of lemmata, which we used in the
above proof.

Lemma 4.25. Let C be as in (4.13). For F ∈ B(XK) and 2 < p ≤ ∞

‖F1C‖S2(T ) . ‖F1C‖
2/p
S2(T )‖F1C‖

1−2/p
L∞(S∞).

Proof. Note that rewriting the left hand side of the inequality as an averaged L2 norm it is
enough to show

µ(T )−1/2‖
∑

Q∈T (lac)

F (Q)1C(Q)ϕQ(x, y)‖L2(x,y) . ‖F1C‖L∞(S∞),

µ(T )−1/2‖
∑

Q∈T (lac)

F (Q)1C(Q)ϕQ(x, y)‖L2(x,y) . ‖F1C‖S2(T ),

and interpolate. While the first inequality, follows from Corollary 4.39 since C is a convex
collection of multitiles, the second inequality follows by definition.

Lemma 4.26. Let T be defined as in (4.21). For F ∈ B(X) and 2 < p ≤ ∞

‖TF‖Lp . µ(T )1/p‖F1B‖L∞(S).

Proof. First of all, observe that the supremum over l can be dominated by the maximal function
and can be discarded. Hence, it is enough prove BMO and L2 bounds: for any dyadic rectangle
R ∈ R

‖
∑

P∈T (lac)

RP⊂R

F (P )1B(P )hRP (x, y)‖L∞(x,y) . ‖F1B‖L∞(S), (4.25)
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and

‖
∑

P∈T (lac)

F (P )1B(P )hRP (x, y)‖L2(x,y) . µ(T )1/2‖F1B‖L∞(S). (4.26)

The boundedness of (4.25) follows from Corollary 4.39, since we can restrict the sum to the
convex collection of multitiles B ∩ {P : RP ⊂ R}. Similarly one proves (4.26).

Using the log-convexity of Lp norms we obtained the desired inequality.

Lemma 4.27. Let G be defined as in (4.22). For F ∈ B(XK) and 2 < p <∞

‖GF‖Lp . µ(T )1/p‖F1C‖2/pS2(T )‖F1C‖
1−2/p
L∞(S∞).

Proof. Using interpolation, it is enough to prove the BMO and L1 bounds

‖(GF )2‖BMO . ‖F1C‖2L∞(S∞), (4.27)

‖(GF )2‖L1 . µ(T )‖F1C‖2S2(T ). (4.28)

In order to show (4.27) it is enough to prove that for any dyadic rectangle R ∈ RK

|R|−1‖
∑

Q∈T (lac)

RQ⊂R

F (Q)1C(Q)ϕP (x, y)‖2L2 . ‖F1C‖2L∞(S∞)

This inequality follows from Corollary 4.39, since C is a convex set of multitiles. The bound
(4.28) follows from definition.

Lemma 4.28. Let H be defined as in (4.24). For F ∈ B(XK) and 2 < p <∞

‖HF‖Lp . µ(T )1/p‖F1C‖2/pSTop
C (T )

‖F1C‖1−2/p
L∞(S∞)

Proof. Note that we have

‖HF‖L∞ . ‖F1C‖L∞(S∞),

since TopC(T ) is a union of two sets of spatially pairwise disjoint multitiles. Moreover

‖HF‖L2 . µ(T )1/2‖F1C‖STop
C (T ),

by definition. Using the log-convexity of Lp norms we obtain the desired estimate.

4.5 Embedding theorem

The goal of this section is to prove the inequality (4.1). We set X := XK , T := TK , µ := µK ,
ν := νK and S2 := S2,K , S∞ := S∞,K , S := SK . (4.1) is implied by the following embedding
theorem.

Theorem 4.29. Let 1 < p ≤ ∞, max(p′, 2) < q ≤ ∞, K ∈ N and F := F (f). Then for any
Schwartz function f on R2

‖F‖Lp-Lq(S) ≤ Cp,q‖f‖Lp(R2),

where Cp is independent of K.
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This is a two dimensional counterpart of the Walsh embedding theorem that was proven in
[Ura17]. It follows similarly like the proof in [Ura17], however, in order to prove uniform bounds
in parameter K we use the Lp bounds for the strong maximal function [SM93] and Bessel’s
inequality independent of K, Corollary 4.36.

Before we prove Theorem 4.29 we show a couple of lemmata. From now on all the implied
constants are independent of K.

The first lemma dominates the ‖ · ‖Lp(S) norm with ‖ · ‖Lp(S∞). It considerably simplifies the
selection algorithm in the proof of Theorem 4.29.

Lemma 4.30. Let 0 < p ≤ ∞, f be a Schwartz function on R2 and F := F (f). Then

‖F‖Lp(S) . ‖F‖Lp(S∞).

Proof. Let 0 < p <∞. It is enough to show that for any λ > 0

µ(‖F‖L∞(S) > Cλ) . µ(‖F‖L∞(S∞) > λ).

Let Ψ ⊂ T∪ be such that∑
T∈Ψ

µ(T ) . µ(‖F‖L∞(S∞) > λ), ‖F1Ec‖L∞(S∞) ≤ λ,

where E =
⋃

Ψ. It is enough to show that ‖F1Ec‖L∞(S2) . λ. Let T ∈ T. Since T \ E is a
convex set, using Corollary 4.39

‖F1Ec‖S2(T ) . ‖F1Ec1T ‖L∞(S∞) ≤ λ.

This finishes the proof of 0 < p < ∞. Taking λ = 2‖F‖L∞(S∞) in the above argument we also
cover the case p =∞.

The following lemma appeared already in [War15] and it is a two dimensional Walsh coun-
terpart of Carleson embedding theorem proven in [DT15]. Below, we present a simplified version
of the argument in [War15]. We will not need the statement explicitly, however, we shall need
the selection algorithm and Lemma 4.33, which are the core of its proof.

Lemma 4.31 (Local L2 Walsh embedding theorem). Let 2 < p ≤ ∞. Then

‖F‖Lp(S) .p ‖f‖Lp(R2),

together with the weak type estimate

‖F‖L2,∞(S) . ‖f‖L2(R2).

Remark 4.32. Note that applying the argument below with F1D, D = D(RD) ∈ D, one similarly
obtains that for 2 < p ≤ ∞

‖F1D‖Lp(S) .p ‖f1RD‖Lp(R2). (4.29)

Proof. We prove the theorem for p = ∞, for the weak endpoint p = 2 and interpolate applying
Proposition 2.9. Using Lemma 4.30, it is enough to show the statement for S∞.

p =∞: notice that for any P ∈ X

|F (P )| . ‖Mf‖L∞(R2) . ‖f‖L∞(R2),



4.5. Embedding theorem 103

where M is the strong maximal function in R2.
p = 2: Let us fix λ > 0. We run the selection algorithm as in Remark 4.16 obtaining a

collection of multitiles P = {Pn : n ∈ N} and a family of trees Φ = {Tn : n ∈ N} ⊂ X whose tops
are multitiles in P. Then, it is enough to prove that∑

n∈N

µ(Tn) =
∑
n∈N

|RPn | . λ−2‖f‖L2(R2).

By Lemma 4.19, P forms a strongly disjoint subset of X in the sense of Definition 4.13. We have
the following lemma.

Lemma 4.33. Let P be a strongly disjoint set of multitiles and let g be a function such that
|F (g)(P )||RP |−1/2 > λ for every P ∈ P. Then∑

P∈P
|RP | . λ−2‖g‖2L2(R2).

Proof. We have ∑
P∈P
|RP | ≤

∑
P∈P

λ−2|F (g)(P )|2 . λ−2‖g‖L2(R2),

where we applied Corollary 4.36 in the second inequality.

Applying Lemma 4.33, we finish the proof.

Now we are ready to prove Theorem 4.29.

Proof of Theorem 4.29. First of all, observe that (4.29) implies that for any D ∈ D

ν(D)−1/q‖F1D‖Lq(S) . ‖f‖L∞(R2),

which implies the statement for p =∞. From now on, let us fix 1 < p <∞. Using Lemma 4.30,
it is enough to show the statement for S = S∞. Moreover, without loss of generality, assume
that ‖f‖Lp(R2) = 1. By interpolation, it is enough to show

‖F‖Lp,∞-Lq,∞(S∞) . ‖f‖Lp(R2),

for any 1 < r < p and q = max(2, r′), together with the endpoint with q =∞. Throughout the
proof fix λ > 0 and set

Iλ := { maximal dyadic rectangle R ∈ RK : Mrf(x) > λ on R},

where Mr is the Lr strong maximal function([SM93]) and let Kλ = {D(R) : R ∈ Iλ} ⊂ D and
Kλ =

⋃
Kλ.

1. Endpoint q =∞. We have

ν(Kλ) . λ−p, ‖F1Kc
λ
‖L∞(S∞) . λ

Note that the first inequality follows from Lp boundedness of the Mr strong maximal function
for r < p. The second inequality follows simply by the definition of Kλ. Together they imply
‖F‖Lp,∞-L∞(S∞) . 1 = ‖f‖Lp .

2. Endpoint q = max(2, r′). It is enough to show that

ν(Kλ) . λ−p, ‖F1Kc
λ
‖-Lq,∞(S∞) . λ.
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Note that the first condition is satisfied just like in the previous step. The condition on the right
hand side can be rephrased as: for all D ∈ D and all τ > 0 there exists Eτ such that

µ(Eτ ) ≤ λqτ−qν(D), ‖F1Kc
λ
1Ecτ

1D‖L∞(S∞) ≤ τ.

Similarly as in Section 4.3, we may assume that (4.7) and (4.8). For any D ∈ D let ΦDτ be the
collection of trees given by the selection algorithm in Remark 4.16 at level τ for F1Kc

λ
1D. Let

NBMO := sup
D∈D

1

ν(D)

∑
T∈ΦDτ

µ(T )

Using the aforementioned assumptions, we may consider only D ∈ D with ν(D) uniformly
bounded from below and we may assume that there are only finitely may selected trees. Hence,
from now on we may assume that NBMO < ∞. Note that it is enough to show that NBMO .
λqτ−q. In order to see that this suffices, take any D ∈ D, set EDτ =

⋃
ΦDτ and observe that

‖F1Kc
λ
1D1(EDτ )c‖L∞(S∞) ≤ λ

and

µ(EDτ ) ≤
∑
T∈ΦDτ

µ(T ) ≤ ν(D)NBMO . λqτ−qν(D).

Note that since ‖F1Kc
λ
‖L∞(S∞) ≤ λ, it is enough to assume τ < λ. In consequence we may

also assume that NBMO > 1, since otherwise there is nothing to prove. We have the following
lemma.

Lemma 4.34. Let J ∈ D. There exists a function gJ such that

‖gJ‖2L2 . λ2N
1−2/q
BMO ν(J)

and for all selected trees T ∈ ΦJτ we have |F (gJ)(PT )|µ(T )−1/2 > τ .

In the proof we perform the Walsh multi-frequency Calderón-Zygmund decomposition, simi-
larly to what is done in [OT11]. This technology was originally developed by Nazarov, Oberlin
and Thiele in [NOT09].

Proof. For any selected tree T ∈ ΦJτ we have RT ⊂ RJ . On the other hand for any T ∈ ΦJτ and
D ∈ Kλ we either have RD ⊂ RT or RD ∩ RT = ∅. Let PD be the set of maximal multitiles
P = RP × ΩP ∈ D, such that there exists a tree T ∈ ΦJτ with RD ⊂ RT and ΩT ⊂ ΩP . In this
manner we define

gD(x) =
∑
P∈PD

F (P )ϕP (x).

and split f as follows

f(x) =
∑

D∈Kλ : D⊂J
gD(x) + f1RJ\

⋃
Iλ(x)︸ ︷︷ ︸

gJ

+b(x).

Observe that by definition of Iλ and, since we assumed NBMO > 1 and q ≥ 2

‖f1RJ\⋃ Iλ‖
2
L2 ≤ λ2ν(J) ≤ λ2N

1−2/q
BMO ν(J).
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On the other hand, observe that counting function NJ =
∑
T∈ΦJτ

1RT is constant on RD for each

D ∈ Kλ; let NJ
D be its constant value on RD. In consequence, for every D ∈ Kλ

‖gD‖2L2 =
∑
P∈PD

|F (P )|2 =⇒ ‖gD‖2L2 ≤ NJ
D|RD|(

 
RD

|f |)2

and by Corollary 4.36 we also have ‖gD‖2L2 ≤ |RD|
ffl
RD
|f |2. Using the Riesz-Thorin interpolation

theorem we obtain

‖gD‖2L2 . (

 
|f |r)2/r(NJ

D)1−2/q|RD|.

Summing the above inequality over D ∈ Kλ and applying Hölder’s inequality we obtain∑
D∈Kλ : D⊂J

‖gD‖2L2 ≤
∑

D∈KλD : D⊂J
(

 
RD

|f |r)2/r(NJ
D)1−2/q|RD|

. λ2

ˆ
RJ

(NJ)1−2/q . λ2(

ˆ
RJ

NJ)1−2/qν(J)2/q . λ2N
1−2/q
BMO ν(J).

Finally, note that for any T ∈ ΦJτ we have F (b)(PT ) = 0, hence |F (gJ)(PT )|µ(T )−1/2 > τ . This
finishes the proof of the lemma.

Let J ∈ D be a such that NBMO is almost attained and let gJ be like in the previous lemma.
Applying Lemma 4.34 and Lemma 4.33 we obtain

NBMOν(J) .
∑
T∈ΦJτ

µ(T ) . τ−2‖gJ‖2L2 . λ2τ−2N
1−2/q
BMO ν(J).

This gives

NBMO . λqτ−q,

which concludes the proof.

4.6 Appendix - Walsh wave packets in two dimensions

In this chapter we used the following facts about the Walsh wave packets in two dimensions.

Lemma 4.35. If two multitiles P , Q are disjoint, then ϕP and ϕQ are orthogonal, i.e. 〈ϕP , ϕQ〉 =
0.

The above lemma was proven in [War15]. As a corollary we obtain Bessel’s inequality for the
wave packets in two dimensions.

Corollary 4.36. If P is a set of pairwise disjoint multitiles and let f be a Schwartz function on
R2, then ∑

P∈P
|F (f)(P )|2 ≤ ‖f‖L2(R2).

We shall also need the following.
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Lemma 4.37. Let P be a finite collection of multitiles and assume that a multitile Q is covered
by the multitiles in P. Then ϕQ is in the linear span of {ϕP : P ∈ P}.

The lemma was proven in [War15]. As a corollary we obtain the following.

Corollary 4.38. If P, P ′ are two different collection of multitiles, each of which is pairwise
disjoint and

⋃
P =

⋃
P ′, then for any Schwartz function f on R2∑

P∈P
F (f)(P )ϕP (x) =

∑
P ′∈P′

F (f)(P ′)ϕP ′(x).

Note that if E ⊂ XK is a convex set of multitiles, then
⋃
E can be represented as a union of

maximal multitiles that do not belong to E. Moreover, observe that these multitiles are spatially
pairwise disjoint. Hence, we obtain

Corollary 4.39. Let f be a Schwartz function on R2, E ⊂ XK be a convex set of multitiles and
let
⋃
P =

⋃
E, where P is a set of pairwise disjoint multitiles. Then

‖
∑
P∈P

F (f)(P )1E(P )ϕP (x, y)‖L∞(R2) . sup
P∈XK

|F (P )1E(P )||RP |−1/2.
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Iberoamericana 18.1 (2002), pp. 115–134.

[Thi06] Christoph Thiele. Wave packet analysis. 105. American Mathematical Soc., 2006.

[Thi95] Christoph Martin Thiele.
”
Time-frequency analysis in the discrete phase plane“.

PhD thesis. Yale University, 1995.

[Ura16] Gennady Uraltsev.
”
Variational Carleson embeddings into the upper 3-space“. In:

arXiv preprint arXiv:1610.07657 (2016).

[Ura17] Gennady Uraltsev.
”
Time-Frequency Analysis of the Variational Carleson Operator

using outer-measure Lp spaces“. PhD thesis. Universität Bonn, 2017.

[War15] Micha l Warchalski.
”
Uniform estimates in time-frequency analysis“. MA thesis. Uni-

versität Bonn, 2015.


	Abstract
	Acknowledgements
	Introduction
	Parameter space of the bilinear Hilbert transform
	Introduction
	Prelude - parametrization in one dimension
	Main results
	Proofs
	Closing remarks

	Uniform bounds for the bilinear Hilbert transform in local L1
	Introduction
	Wave packet decomposition
	Outer Lp spaces
	Inequalities for outer Lp spaces on R3+
	Trilinear iterated Lp estimate

	Uniform bounds for Walsh bilinear Hilbert transform in local L1
	Introduction
	Outer Lp spaces in time-frequency-scale space
	Inequalities for outer Lp spaces on X
	Iterated Lp bounds
	Appendix - Walsh wave packets

	Uniform bounds for a Walsh model of 2D bilinear Hilbert transform in local L1
	Introduction
	Outer Lp spaces in time-frequency space
	Outer Lp comparison
	Iterated Lp bounds
	Embedding theorem
	Appendix - Walsh wave packets in two dimensions

	Curriculum vitae
	Bibliography

