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Summary 

Similarly to yeast Sucrose nonfermenting 1 (Snf1) and animal AMP-activated protein kinases (AMPKs), 

plant Snf1-related (SnRK1) kinases play a central role in the regulation of cellular energy homeostasis 

and responses to carbon source availability. Members of the Snf1/SnRK1/AMPK family are 

differentially activated by carbon source depletion and increasing AMP/ATP ratio to confer down-

regulation of energy consuming anabolic pathways and parallel activation of energy producing processes 

by phosphorylation of key metabolic enzymes and transcription factors. Inhibition of photosynthetic 

CO2 fixation and ATP production stimulates plant SnRK1 activation in leaves, which provide sucrose 

as main transported sugar for developing sink organs. Sensing of sucrose availability by conversion of 

its metabolic products to trehalose-6-phosphate (T6P) is reported to inhibit SnRK1 through a yet 

unknown protein factor. As Snf1 and AMPKs, Arabidopsis SnRK1 enzymes form trimeric complexes 

with activating γ/SNF4 and substrate targeting β1/2/3-subunits. SnRK1 activity is stimulated by T-loop 

phosphorylation of catalytic α-subunits AKIN10/11 by upstream activating kinases and inhibited 

through dephosphorylation by PP2C protein phosphatases acting in ABA/sugar signaling. Our current 

knowledge on plant SnRK1 kinases is largely based on protein-protein interaction assays in heterologous 

systems, and transcriptomics and phosphoproteomics studies using antisense inhibition and 

overexpression of SnRK1 catalytic subunits in leaf protoplasts and seedlings carrying various mutations 

in metabolic and hormonal pathways. 

A major goal of this Ph.D. work was to use precisely modified native gene constructs for 

expression of SnRK1 subunits in fusion with suitable tags, such as green and red fluorescent proteins 

(GFP and mCherry) in plants, and exploit this technology for purification of SnRK1 complexes and 

identification of their interacting partners. By enlarging the ATP-binding pocket of SnRK1α1 subunit 

AKIN10, an analog-sensitive AS-kinase carrying a combined affinity tag (GFPPIPL) was constructed 

by recombineering-based site-directed mutagenesis and expressed in plants. Unlike other kinases in 

Arabidopsis, the AS-AKIN10 kinase can catalyze phosphorylation of substrates with bulky N6-

substituted thioATP derivatives, which can be specifically detected, enriched and identified by mass 

spectrometry. 

Our study demonstrates that exchange of the phosphorylated T-loop Thr175 residue of AKIN10 

to A and D/E residues results only in partial inactivation and limited stimulation of substrate 

phosphorylation activity of SnRK1 in vitro and, upon ectopic expression of cDNA constructs by a 

CaMV35S promoter in vivo, respectively. Ectopic expression of wild type and T-loop mutant versions 

of AKIN10 resulted only in minor developmental changes, including earlier flowering on short day, and 

enhanced root and hypocotyl elongation in the case of T175D T-loop AKIN10 derivative. Expression 

of AKIN10-GFP/PIPL and SNF4-YFP constructs by native genes provided suitable materials for affinity 

purification of SnRK1 complexes and identification of their interacting partners by mass spectrometry. 

In addition to previously described two-hybrid interacting partners, such as the HSPRO2 and DUF581 
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domain proteins, these studies confirmed reciprocal co-immunoprecipitation and association of class II 

trehalose synthase/ phosphatase (TPS) enzymes with SnRK1. Dimerization of trimeric SnRK1 enzymes 

was detected in cytoplasmic complexes. Association of SnRK1 with TPS partners, such as TPS8, was 

found to confer UDP-glucose and T6P mediated inhibition of SnRK1. This indicated that class II TPS 

enzymes might serve as metabolic sensors, which negatively regulate SnRK1 in response to the 

availability of sucrose-derived metabolic signals. However, using a nuclear protein purification 

approach optimized for the isolation of NTC spliceosome-activating complex and associated 

spliceosome components, we failed to identify novel interacting partners of SnRK1. Optimization of in 

situ kinase reactions in isolated nuclei and nuclear extracts, as well as enrichment of thiophosphorylated 

substrates of the analog-sensitive AS-AKIN10 kinase, nevertheless resulted in the identification of 

several novel candidate SnRK1 substrates. One of these, the nuclear NAP57/CBF5/DYSKERIN 

pseudouridine synthase involved in the regulation of telomere length and ribosome biogenesis was found 

to be phosphorylated in its catalytic domain by SnRK1. Further analysis of AS-kinase substrates and 

components of nuclear kinase complexes is expected to provide deeper insight into transcription targets 

and regulatory roles of plant SnRK1. 
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                                               Zusammenfassung 

Pflanzliche Snf1-verwandte (SnRK1)-Kinasen, wie Sucrose Non-fermenting 1 (Snf1) in Hefe und AMP-

aktivierten Proteinkinasen (AMPKs) in Säugetieren, spielen eine zentrale Rolle bei der Regulation der 

zellulären Energiehomöostase und steuern die Reaktionen auf die Verfügbarkeit von 

Kohlenstoffquellen. Mitglieder der Snf1/SnRK1/AMPK-Familie werden sowohl durch die Abnahme 

von Kohlenstoffquellen als auch durch die Erhöhung des AMP/ATP-Verhältnisses differentiell aktiviert, 

um die Herabregulierung energieverbrauchender anabolischer Stoffwechselwege und die parallele 

Aktivierung energieerzeugender Prozesse durch Phosphorylierung von wichtigen metabolischen 

Enzymen und Transkriptionsfaktoren zu ermöglichen. Inhibierung der photosynthetischen CO2-

Fixierung und der ATP-Produktion stimulieren die Aktivierung der pflanzlichen SnRK1 in Blättern, 

welche Saccharose als Haupttransportzucker für die Entwicklung von Sinkorganen bereitstellen. Studien 

zufolge führt die Erfassung der Saccharoseverfügbarkeit durch Umwandlung seiner 

Stoffwechselprodukte in Trehalose-6-phosphat (T6P) zu Inhibierung von SnRK1 durch einen noch 

unbekannten Proteinfaktor. Ebenso wie Snf1 und AMPKs bilden Arabidopsis-SnRK1-Enzyme trimere 

Komplexe mit aktivierenden γ / SNF4- und Substrat-Targeting-β1 / 2/3-Untereinheiten. Die SnRK1-

Aktivität wird durch T-Loop-Phosphorylierung der katalytischen α-Untereinheiten AKIN10 / 11 durch 

Upstream-Aktivierungskinasen stimuliert und durch Dephosphorylierung durch PP2C-

Proteinphosphatasen, die in ABA und Zuckersignalisierung agieren, inhibiert. Unser aktueller 

Wissenstand bezüglich pflanzlicher SnRK1-Kinasen basiert weitgehend auf Protein-Protein-

Interaktionstests in heterologen Systemen und Transkriptom- und Phosphoproteomik-Analysen unter 

Verwendung von Antisense-Inhibierung und Überexpression von SnRK1-katalytischen Untereinheiten 

in Blattprotoplasten und Keimlingen, die verschiedene Mutationen in Stoffwechsel- und Hormonpfaden 

tragen. Das Hauptziel dieser Doktorarbeit bestand in der Applikation von genau modifizierten nativen 

Genkonstrukten zur Expression von SnRK1-Untereinheiten in Fusion mit geeigneten Markierungen wie 

grünen und roten Fluoreszenzproteinen (GFP und mCherry) in Pflanzen und folglich in der 

Identifikation ihrer interagierenden Partner. Durch Vergrößerung der ATP-Bindungstasche der 

SnRK1α1-Untereinheit AKIN10 wurde eine analog-sensitive AS-Kinase, die einen kombinierten 

Affinitätsmarker (GFPPIPL) trug, mit zielgerichteter Mutagenese durch Recombineering entwickelt und 

in Pflanzen exprimiert. Im Gegensatz zu anderen Kinasen in Arabidopsis kann die AS-AKIN10-Kinase 

die Phosphorylierung von Substraten mit sperrigen N6-substituierten ThioATP-Derivaten katalysieren, 

die durch Massenspektrometrie spezifisch nachgewiesen, angereichert und identifiziert werden können. 

Unsere Studie zeigt, dass der Austausch des phosphorylierten T-Loop-Thr175-Rests von AKIN10 gegen 

A- und D/E-Reste nur zu einer partiellen Inaktivierung und begrenzten Stimulation der 

Substratphosphorylierungsaktivität von SnRK1 in vitro führt, selbst bei ektopischer Expression von 

cDNA-Konstrukten durch einen CaMV35S-Promotor in vivo. Die ektopische Expression von Wildtyp- 

und T-Loop-Mutantenversionen von AKIN10 führte nur zu geringfügigen Entwicklungsänderungen, 
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einschließlich früherer Blüte unter Kurztagsbedingungen, und verstärkte Wurzel- und Hypocotyl-

Verlängerung im Fall des T175D-T-Loop-AKIN10-Derivats. Die Expression von AKIN10-GFP / PIPL- 

und SNF4-YFP-Konstrukten durch native Gene lieferte geeignete Materialien für die 

Affinitätsreinigung von SnRK1-Komplexen und die Identifizierung ihrer interagierenden Partner durch 

Massenspektrometrie. Zusätzlich zu den zuvor beschriebenen Zwei-Hybrid-Interaktionspartnern, wie 

den HSPRO2- und DUF581-Domänenproteinen, bestätigten diese Studien die gegenseitige Co-

Immunopräzipitation und die Assoziation von Klasse-II-Trehalosesynthase / Phosphatase (TPS) -

Enzymen mit SnRK1. Dimerisierung von trimeren SnRK1-Enzymen wurde in zytoplasmatischen 

Komplexen nachgewiesen. Zudem wurde aufgedeckt, dass die Assoziation von SnRK1 mit TPS-

Partnern wie TPS8 UDP-Glucose und T6P-vermittelte die Hemmung von SnRK1 zur Folge hat. Dies 

deutet darauf hin, dass TPS-Enzyme der Klasse II als metabolische Sensoren dienen könnten, die SnRK1 

als Reaktion auf die Verfügbarkeit von Sucrose und denen daraus abgeleiteten metabolischen Signalen 

negativ regulieren. Bei der Verwendung eines nuklearen Proteinreinigungsansatzes, der für die 

Isolierung des NTC-Spliceosomen-Aktivierungskomplexes und der zugehörigen 

Spliceosomenkomponenten optimiert wurde, konnten jedoch keine neuen interagierenden Partner von 

SnRK1 identifiziert werden. Die Optimierung von In-situ-Kinase-Reaktionen in isolierten Kernen und 

Kernextrakten sowie die Anreicherung thiophosphorylierter Substrate der analogempfindlichen AS-

AKIN10-Kinase führten dennoch zur Identifizierung mehrerer neuartiger Kandidaten für SnRK1-

Substrate. Eines davon, die nukleare NAP57 / CBF5 / DYSKERIN-Pseudouridinsynthase, die an der 

Regulation der Telomerlänge und der Ribosomenbiogenese beteiligt ist, wurde in ihrer katalytischen 

Domäne durch SnRK1 phosphoryliert. Es ist annehmbar, dass die weitere Analysen von AS-Kinase-

Substraten und -Komponenten von Kernkinase-Komplexen tiefere Einblicke in die Transkriptionsziele 

und die regulatorischen Rollen von SnRK1 in Pflanzen ermöglichen. 
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1. Introduction 

In all living organisms, adenosine triphosphate (ATP) is the major carrier and storage form of 

cellular energy, which is utilized in growth promoting anabolic reactions, intracellular transport, cell 

motility, division and many other pathways supporting cell viability. Maintenance of energy 

homeostasis is thus tightly linked to monitoring ATP consumption resulting in ultimate accumulation of 

AMP. In cells of non-photosynthetic organisms, the major source of energy is glucose. All carbohydrates 

are converted to glucose and catabolic intermediates, which are generated during its degradation 

producing ATP under either anaerobic or aerobic condition. By acquiring mitochondria of prokaryotic 

origin during evolution, glucose degradation was linked to ATP producing oxidative phosphorylation in 

eukaryotes. Cellular catabolism of alternative carbon sources (e.g., polysaccharides, lipids, proteins etc.) 

coupled to the citrate/Krebs cycle of mitochondria offered an alternative mode for higher rate of ATP 

production and gluconeogenesis under aerobic conditions. Under anaerobic condition however glucose 

remained a preferred substrate which, when present, acts as signaling molecule conferring transcriptional 

repression of genes and post-translational inactivation of enzymes involved in the utilization of 

alternative carbon sources and respiration.  

Through evolutionary incorporation of chloroplasts via likely symbiosis with primitive 

cyanobacteria, plant cells acquired the capability to utilize light energy for CO2 fixation to triose-

phosphates (i.e., dihydroxyacetone phosphate [DHAP] and glyceraldehyde-3-phosphate [GAP]) by the 

Calvin cycle. Triose-phosphates are converted through the chloroplast fructose-1,6-bisphosphate 

aldolase (FBA), fructose 1,6-bisphosphatase (FBPase), phosphoglucose isomerase (PGI), 

phosphoglucomutase (PGM) and ADP-glucose pyrophosphorylase (AGPase) to ADP-glucose, which is 

then used for starch synthesis in chloroplasts of light-exposed leaves during the day. In addition to 

AGPase, the export of triose-phosphates into the cytoplasm by triose-phosphate/Pi translocators secures 

the inorganic phosphate supply for maintenance of photosynthetic ATP production and Calvin cycle. 

Triose-phosphates in the cytoplasm are analogously converted by cytoplasmic FBA, FBPase, PGI and 

PGM enzymes to fructose-6-P (F6P) and glucose-1-P (G1P). Upon conversion of G1P to UDP-glucose 

by UDP-glucose pyrophosphorylase (UGPase), sucrose-phosphate synthases (SPS) condense it with F6P 

to sucrose-6-P, which is then dephosphorylated by sucrose phosphatase. The resulting sucrose is 

compartmentalized and stored in vacuoles of photosynthesizing leaves. Thus, both starch synthesis in 

the chloroplasts and removal of sucrose from the cytoplasm secures photosynthetic activity. Sucrose is 

a major form of carbohydrate, which is transported in higher plants from leaves to developing young 

sink organs through the night, where it is either split by sucrose synthase (SUSY) to UDP-glucose and 

fructose, or by cell wall invertases to glucose and fructose. The latter are converted to G1P and F6P by 

hexokinases, providing substrates for the reversal of above pathway in glycolysis. In addition, UDP-

glucose and G1P is utilized for the synthesis of trehalose-6-P, which is an important molecule signalling 

the availability of sucrose e.g., for starch synthesis in sink tissues. It has been noted long ago that 
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inhibition of phloem transport of sucrose to sink tissues or accumulation of free sucrose or its hexose-

phosphate cleavage products in leaves inhibits photosynthesis and leads to the repression of many light-

induced genes (Paul and Foyer, 2001; Lemoine et al., 2013; Figueroa and Lunn, 2016). In contrast to 

other eukaryotes, it is thus important to distinguish between the opposing regulatory effects of sugars 

(i.e., chiefly, sucrose and derived hexoses) between photosynthetic leaves and other non-photosynthetic 

organs, such as roots, in which the availability of carbohydrates is a major source of energy as in all 

other nonphotosynthetic organism. As nonparasitic plants in their natural environment do not meet with 

significant carbohydrate resources, their viability and growth is entirely dependent on photosynthetic 

carbon fixation, a process which is negatively regulated by sugar signalling (Granot et al., 2014). With 

other words, while starvation for carbon source correlating with lower energy balance promotes 

utilization of alternative nutrient supplies in other organisms, low free sugar status in the cytoplasm of 

photosynthetic cells of plants is a prerequisite for efficient photosynthetic ATP production and carbon 

fixation to sugars. 

1.1 Carbon catabolic  

The recognition that glucose is a preferred carbon source in comparison to other sugars dates 

back to the early observation that glucose is preferentially catabolised by bacteria and inhibits the uptake 

and metabolism of other sugars (e.g., lactose) by a mechanism known as Carbon Catabolite Repression 

(CCR) or glucose effect. In Enterobacteria, a phosphoenolpyruvate (PEP):carbohydrate 

phosphotransferase system (PTS), that transports and phosphorylates carbohydrates controls CCR. A 

central regulator of glucose specific PTS system is Enzyme II A (EIIA), which is unphosphorylated in 

the presence of glucose and inhibits the transporters of alternative sugars. When glucose is fully 

consumed, EIIA becomes phosphorylated, which relieves the inhibition of alternative sugar transporters. 

At the same time, phosphorylated EIIA activates the adenylate cyclase (CyaA) producing cAMP, which 

then allows transcriptional activation of genes involved in alternative sugar catabolism, e.g., the lactose 

(Lac) operon, by the catabolite activator protein (CAP/Crp), and by inactivation of LacR repressor 

through stimulation of lactose uptake (Deutscher, 2008; Görke and Stülke, 2008). 

 Cyclic AMP signaling is also essential for glucose sensing and CCR/glucose repression in the 

budding yeast Saccharomyces cerevisiae. In the central growth promoting cAMP/PKA signaling 

pathway, extracellular glucose and sucrose are sensed by the seven-transmembrane G protein–coupled 

receptor (GPCR) Gpr1, which activates the small GTPase Gpa2, a homolog of animal Gα subunit of 

trimeric GTPases. In turn, Gpa2 stimulates the activation of adenylate cyclase Cyr1 resulting in cAMP-

mediated stimulation of protein kinase A (PKA), a central activator of glycolysis, fermentative growth, 

ribosome biogenesis, cell expansion and division etc., and a repressor of genes involved in respiratory 

metabolism, gluconeogenesis and stress responses. Activation of Cyr1 is also controlled independently 

of Gpr1/Gpa2 by the small GTPases Ras1 and Ras2, their guanine exchange factors (GEFs) Cdc25 and 

Sdc25, and GTPase Activating Proteins (GAPs) Ira1 and Ira2. Ras1/2 respond to intracellular glucose 



  Introduction 

3 

as their activation, similarly to GPCR, is dependent on sugar phosphorylation, which leads to 

downregulation of their Ira1/2 inhibitors (for review see: Busti et al., 2010). GPRC stimulates Ras1/2 

expression, whereas binding of Ras1/2 to Cyr1 is essential for cAMP synthesis and PKA activation. 

Glucose signaling stimulates transcription of ribosomal protein and biogenesis genes by PKA-mediated 

activation of their key transcription factors Rap1 and Sfp1, respectively. At the same time, PKA inhibits 

the functions of Msn2/4 zinc-finger transcription activators of stress responses that recognize conserved 

STRE (stress responsive elements) in the promoters of their target genes. 

 As activation of the cAMP/PKA signalling pathway is strictly dependent on intracellular sugar 

phosphorylation, it is also tightly linked to the regulation of sugar uptake by sugar transporters. The 

uptake of glucose as preferred sugar is controlled by low and high affinity hexose transporters (HXTs), 

the expression of which is regulated by two glucose sensors, Snf3 and Rgt2. In the absence of glucose, 

expression of the HXT genes is repressed by the Rgt1 transcriptional repressor and its co-repressors 

Mth1 and Std1, which recruit the general transcription repressors Ssn6 and Tup1 to HXT promoters. 

Mth1 (acting in the presence of other carbon sources than glucose) and Std1 (activated by exhaustion of 

glucose) also block the function of Snf3 (high affinity sensor of low glucose concentration) and Rgt2 

(low affinity sensor of higher glucose levels) by binding to their C-termini. Activation of Snf3 and/or 

Rgt2 by glucose stimulates ubiquitination of Mth1 and Std1 by the SCFGrr1 E3 ligase and their 

subsequent proteasomal degradation. This allows phosphorylation and inactivation of the Rgt1 repressor 

by glucose/cAMP-activated PKA, stimulating the expression of HXT genes of glucose transporters. 

 Glucose sensing, uptake and subsequent phosphorylation confer transcriptional repression of 

genes (i.e., glucose repression) involved in the utilization of alternative carbon sources and respiration, 

stimulating at the same time the activation genes in the glycolytic and fermentative pathways. Yeast has 

three glucokinases: hexokinase 1 and 2 (HXK1 and Hxk2) and glucokinase (Glc1). Inactivation of all 

three of these genes is required for complete abolishment of glucose repression. Glucose repression is 

also induced by 2-deoxyglucose, which is phosphorylated but cannot enter into glycolysis. This indicates 

that phosphorylated sugars or their immediate derivatives could play a role as signalling molecules in 

glucose repression. Initial studies of transcriptional regulation of SUC2 gene encoding an extracellular 

invertase revealed a special requirement for Hxk2 in conferring glucose repression of Suc2. These 

studies uncovered that Hxk2, including its catalytically inactive form, is imported in a glucose-inducible 

fashion into nuclei in complex with the Mig1 transcription repressor that together with the Ssn6/Tup1 

general repressors inhibits transcription of SUC2 and other glucose repressed genes. Hxk2 and Mig1 

thus represent central regulators of catabolite/glucose repression in yeast (for reviews see Gancedo, 

1998; Carlson, 1999; Moreno et al., 2005; Conrad et al., 2014; Kayikci and Nielsen, 2015). 

Screening for yeast mutations that prevent Suc2 activation by abolishing sucrose utilization and 

causing a sucrose nonfermenting phenotype identified the Snf1 kinase as a key regulator required for 

alleviation of glucose repression (Celenza and Carlson, 1984). Snf1 is activated by exhaustion of cellular 
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glucose causing carbon starvation and during yeast growth on ethanol and alternative carbon sources. 

Activation of Snf1 is essential for stimulation of respiratory metabolism, glyoxylate cycle, peroxisome 

biogenesis, gluconeogenesis, lipid degradation, autophagy and other catabolic pathways and inhibition 

of amino acid, protein and lipid biosynthesis and other energy consuming anabolic processes in cross-

talk with other signalling pathways (for reviews see Hedbacker and Carlson, 2006; Usaite et al., 2009, 

Conrad et al., 2014). Snf1 phosphorylates Hxk2 preventing its nuclear localization and interaction with 

Mig1, as well as Mig1 at the Ser311 residue of its Hxk2-binding domain abolishing its nuclear 

localization and thus relieving glucose-induced transcriptional repression (Ahuatzi et al., 2007).  

1.2 Control of energy homeostasis by conserved AMP-activated protein kinases in 

eukaryotes 

Biochemical studies of the regulation of human sterol/isoprenoid synthesis by its rate-limiting 

HMG-CoA reductase enzyme uncovered the role of a specific protein kinase, which inactivated this 

enzyme in an AMP-inducible fashion. Following its first identification in 1973, the same AMP-activated 

kinase was found to regulate the activity of acetyl-CoA carboxylases (ACC1 and 2) in the first step of 

fatty acid biosynthesis. Protein kinases with similar activities were also detected in Drosophila and 

Arabidopsis (Hardie and MacKintosh, 1992). It has been hypothesized early on that the HMG-CoAR 

and ACC kinases are linked to monitoring cellular ATP consumption, which through the adenylate 

kinase reaction (2ADP ->ATP and AMP) leads to the production of the kinase allosteric activator AMP. 

Heat shock, hypoxia, muscle exercise and other stresses were found to stimulate the AMP-activated 

kinase (AMPK), which also required a second kinase for enhancing its activity to inhibit key enzymes 

of lipid and sterol biosynthesis. Cloning of the cDNA of human AMPK by Carling et al. (1994) 

demonstrated a close relationship between the human enzyme and yeast Snf1, though the human AMPK 

cDNA failed to complement the yeast Δsnf1 mutation. By contrast, several plant Snf1-related kinases 

(SnRKs) were identified earlier in rye, barley and Arabidopsis, which complemented the Δsnf1 mutation 

and showed close relationship with human AMPK (Alderson et al., 1991; Halford et al., 1992; Le Guen 

et al., 1992). At the same time, yeast mutant screens identified Snf4, an essential activator γ subunit of 

Snf1, whereas two-hybrid protein interaction studies uncovered association of Snf1 and Snf4 with one 

of the three substrate targeting scaffold β-subunits, SIP1, SIP2 and Gal83 in a trimeric enzyme 

holocomplex. Subsequent identification of mammalian and plant homologs of yeast Snf1 kinase 

subunits, genetic dissection of their functional and interacting domains, in vitro assembly and 

crystallization of their components, and identification of their upstream and downstream signalling 

partners contributed to our current understanding of regulation and signalling functions of conserved 

eukaryotic Snf1/AMPK/SnRK kinase family (Hardie et al., 1998; Carlson, 1999; Hardie and Carling, 

1999; Kemp et al., 1999; Carlin, 2004; Hardie, 2004; Hardie, 2007; Scott et al., 2009; Hardie et al., 

2011; Carling et al., 2011; Crozet et al., 2014; Broeckx et al., 2016; Hardie et al., 2016; Margalha et al., 

2016; Ross et al., 2016; Garcia and Shaw, 2017; Craig et al., 2018).  
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1.3 The structure and activation of Snf1/SnRK1/AMPK protein kinases 

Figure 1. Conservation of functional domains of Snf1/SnRK1/AMPK subunits (according to Crozet et al., 

2014).  

The α-subunits carry highly conserved N-terminal catalytic kinase domains including the ATP-binding site and 

activation T-loop (blue circles). A conserved T-loop threonine (T210 in Snf1, T175/176 in AKIN10/AKIN11, 

T172 in AMPKα1) is phosphorylated by upstream activating kinases. The C-terminal segments of α-subunits carry 

an autoinhibitory domain (AIS/αAID), which overlaps in Snf1 and SnRK1s with a UBA (ubiquitin associated) 

domain that probably plays a role in degradation of the kinase and/or in binding to polyubiquitinated partners or 

substrates. A so-called α-linker region separates the UBA from the kinase associated (KA1, αCTD) domain, which 

interacts with the C-terminal domains of β and N-termini of γ subunits. The KA1 domain is followed by a 

serine/threonine-rich loop in the AMPKα-subunits, which is phosphorylated by inhibitory upstream kinases, and 

adjacent to C-terminal nuclear localization sequences (NLS). The activating γ subunits carry an N-terminal beta-

interacting sequences (βIS) followed by four adenylate-binding CBS (cystathionine-β-synthase) repeats forming 

two so-called Bateman domains. Human AMPKγ2 and 3 carry longer N-terminal extensions, whereas the N-

terminus of plant SNF4 (called also AKINβγ) harbours a carbohydrate binding module (CBM), which is found 

only in the β-subunits of yeast Snf1 and animals AMPKs. N-termini of the β-subunits vary in length and except 

for Arabidopsis β3 and yeast SIP1 carry conserved CBM sequences that located in the vicinity of catalytic domain 

(α-KD) and T-loop of α-subunits, and thus were designated earlier as kinase-interacting sequences (KIS). C-termini 

(β-CTD) of the β subunits carry the ASC (association to the complex) domains, which interact with α and γ 

subunits. Brown letters mark yeast Snf1 subunits, purple letters the subunits of human AMPK, and green letters 

the Arabidopsis SnRK1 subunits. In contrast to the review Crozet et al. (2104), Arabidopsis has only one 

SNF4/AKINβγ gene, the γ form marked in the adapted figure corresponds to an incomplete cDNA, which was first 

isolated and shown to complement the yeast Δsnf4 mutation by Kleinow et al. (2000). The full-length gene product 

corresponds to βγ with the N-terminal CBM also complements the yeast Δsnf4 mutation as was shown by 

Lumbreras et al. (2001). 

Members of the Snf1/SnRK1/AMPK kinase family were isolated as heterotrimeric enzymes 

composed of catalytic α, targeting β and activating γ subunits (Figure 1; Crozet et al., 2014; Craig et al., 

2018). In yeast, the Snf1 kinase catalytic α and Snf4 activating γ subunits occur in different complexes 

with three β-subunits Gal83p, Sip1p and Sip2p that carry N-terminal myristoylation signal sequences 

promoting their membrane localization. In comparison, human AMPK may form 12 different complexes 

by the combination of two catalytic subunits α1 and α2, two substrate-targeting β-subunits (β1 and β2) 

and three activating γ-subunits (γ1, γ2 and γ3). The Arabidopsis genome codes for three SnRK1 catalytic 

by a single gene, which is also designated as AKINβγ because it carries an N-terminal CBM 
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(carbohydrate-binding module) that is only present in the β-subunits of yeast and mammalian 

Snf1/AMPK homologs. From the three AKINβ1, AKINβ2 and AKINβ3 Arabidopsis SnRK1 subunits, 

AKINβ3 is atypical because it lacks the N-terminal CBM domain but can still interact with α and γ 

subunits, and was reported to complement the triple yeast gal83 sip1 sip2 mutation, as the AKINβ1 and 

AKINβ2 subunits (Gissot et al., 2004). Arabidopsis SNF4 with and without its N-terminal CBM domain 

can also functionally replace yeast Snf4 in genetic complementation experiments (Kleinow et al., 2000; 

Lubreras et al., 2001). Catalytic subunits of rye, tobacco, potato and Arabidopsis SnRK1 kinases 

complement the yeast Δsnf1 mutation stimulating the utilization of alternative carbon sources, such as 

glycerol and ethanol (Alderson et al., 1991; Muranaka et al.,1994; Bhalerao et al.,1999; Lovas et al., 

2003).  

Despite close sequence, structural and functional similarities, studies of yeast, plant and 

mammalian kinases revealed significant differences in their regulation. Purified catalytic subunits of 

AMPK do not show autophosphorylation in vitro and are not activated by AMP unless their T-loops 

were previously phosphorylated by upstream activating kinases (for review see Lin and Hardie, 2018). 

Activation of yeast Snf1 is also dependent on T-loop phosphorylation, however, it is insensitive to AMP. 

Nonetheless, ADP prevents inactivation of Snf1 by the protein phosphatase Glc7 (Mayer et al., 2011). 

In comparison, purified spinach SnRK1 is not activated by either AMP or ADP, but AMP was reported 

to inhibit its dephosphorylation by recombinant mammalian PP2C (Sugden et al. 1999a).  

 These differences in the regulation of yeast Snf1, plant SnRK1 and mammalian AMPK are likely 

related to characteristic differences of carbon metabolic pathways controlled by their functions, and also 

reflect evolutionary changes in the regulatory domains of their subunits. Thus, yeast Snf1 is required to 

promote gluconeogenesis from ethanol, when glucose is exhausted by fermentation, as well as for 

synthesis of storage carbohydrates glycogen and trehalose to promote cell survival under starvation (i.e., 

when carbon source is completely exhausted). By contrast, human AMPK inhibits glycogen synthesis 

and itself is inhibited by glycogen-binding. In higher plants, except for some desiccation tolerant species, 

no trehalose accumulation is detected, while starch is synthesized in the chloroplasts and etio-

/amyloplasts. Plant SnRK1 is required for starch mobilization in the dark in source leaves, but promotes 

starch accumulation in sink organs, such as potato tubers (see for review Wurzinger et al., 2018). 

Furthermore, SnRK1 is activated by photosynthesis inhibitors (Baena-González et al., 2007) in leaves, 

and suggested to be inhibited by trehalose-6-phophate (T6P) in sink tissues, down-regulating 

photosynthesis-related gene expression (Zhang et al., 2009; Wingler et al., 2012). 

 Comparison of partial crystal structures of Snf1 and AMPK indicates largely similar interaction 

between the three subunits, although the role of carbohydrate-binding CBD domain is still enigmatic 

(Amodeo et al., 2007; Sanz et al., 2016; Li et al., 2017). Yeast Snf1 requires T-loop phosphorylation 

and Snf4-binding for its activation. In its inactive form, the Snf1 catalytic domain (KD) interacts with 

the autoinhibitory AID domain. The activation of T-loop is located in a cleft of the KD, which might be 
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available for phosphorylation. However, ultimate activation of Snf1 requires binding of the activating 

Snf4/γ subunit, which results in a conformational change of the KD. Similarly to the γ-subunits of 

AMPKs, Snf4 carries four CBS (cystathionine-β-synthase) repeats, which show less than 40% sequence 

homology to the AMPK γ-subunits. From the two Bateman domains formed by the CBS repeats, domain 

2 (CBS3 and 4) promotes dimerization (i.e., formation of dimeric 2x αβγ complex) by forming a pocket 

proposed to function in AMP or ADP binding (Rudolph et al., 2007). The CBS4 site was fund to show 

higher affinity for binding of NADH, which might play a role in redox regulation of the kinase, while 

the CBS2 site is suggested to bind ADP triggering a further conformational change of KD that closes 

the cleft protecting the T-loop from dephosphorylation (Mayer et al., 2011).  

In comparison, the activation of human AMPK requires three events: T-loop phosphorylation, 

interaction with the activating γ-subunit and AMP/ADP-binding to the CBS repeats for further allosteric 

activation. In the γ-subunit of crystallised human AMPK, an Asn residue required form AMP/ADP-

binding in the CBS2 site is mutated. From the other three CBS repeats, 3 and 4 are required for the 

conformational change protecting dephosphorylation of the T-loop. Site 4 is stably bound by AMP. 

Thus, site 3 is critical for allosteric regulation (Xiao et al., 2011, Li et al., 2017). In addition to chemicals 

inhibiting ATP production by mitochondrial oxidative phosphorylation and AMP analogues binding to 

the CBS-repeats, several small molecule drugs, such as salicylic acid (SA), can remarkably activate 

AMPK independently of T-loop phosphorylation. These molecules bind either to the CBM module or 

the allostreric drug and metabolite-binding site (ADaM), which is found in a small lobe formed by the 

kinase active site and the closely located CBM domain. Activation of AMPK by SA and other drugs at 

this site also requires the phosphorylation of Ser108 residue of β1 subunit, which is thought to happen 

by autophosphorylation. Intriguingly, association of the β-subunits with Snf1-Snf4 is reported to play a 

negative regulatory role because mutations in and close to the Snf4 CBS2 domain, which relieve Snf4 

interaction with the CBM domain of Gal83, largely abolish glucose inhibition of Snf1 (Momcilovic et 

al., 2008). Finally, AMPK (and likely Snf1 also) is inactivated by several signalling kinases (e.g., PKA, 

and AKT/S6K), which phosphorylate a conserved C-terminal Ser residue (Ser 485 in AMPKα1) in the 

catalytic α-subunits (i.e., probably abolishing interaction with the activating γ-subunits; for review see 

Guigas and Viollet, 2016; Garcia and Shaw, 2017).  

In comparison, much less is known about the structure and activation of plant SnRK1 enzymes, 

which were not yet crystallized. Recent study of in vitro assembled Arabidopsis SnRK1 complexes 

indicates that they are resistant to T-loop dephosphorylation, cannot be activated by AMP and ADP, and 

the CBM domains of their β-subunits cannot bind starch or glycogen (Emanuelle et al., 2015). 

Furthermore, CBS repeats of Arabidopsis SNF4 are divergent for the conserved residues required for 

AMP/ADP/ATP binding (Emanuelle et al., 2016). Finally, in the catalytic AKIN10/11 subunits of 

Arabidopsis SnRK1, the autoinhibitory (AID) domain appears to be replaced by an UBA domain, which 

is reported to enhance their phosphorylation by the upstream kinase GIRK2, but does not seem to 
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influence the kinase activity despite enhancing degradation of α-subunits (Farrás et al., 2001; Emanuelle 

et al., 2018). Zhang et al. (2009) and Emanuelle et al. (2015) reported that unknown protein factors 

might inhibit the kinase in photosynthetic leaves and sink tissues in connection with T6P, but the 

molecular mechanisms underlying these observations are unknown. How SnRK1 activation (i.e., T-loop 

phosphorylation) is affected by AMP analogs, inhibitors of mitochondrial oxidative phosphorylation, 

SA and other small molecule activators is also unclear. 

1.4 Yeast Snf1 signaling: alleviation of glucose repression 

Snf1 plays roles in nutrient responses, cellular development, including meiosis and sporulation, 

aging, haploid invasive growth, diploid pseudohyphal growth, cell cycle and transcription (Honigberg 

and Lee, 1998; Carlson, 1999; Cullen and Sprague, 2000; Hedbacker and Carlson, 2008). 

Phosphorylated T-loop of Snf1 is recognized by the Reg1 regulatory subunit of the PP1 protein 

phosphatase Glc7 and its paralog Reg2. The activity of Glc7 is increased by the glucose sensing 

cAMP/PKA pathway within minutes resulting in T-loop dephosphorylation and inactivation of Snf1 

(Castermans et al., 2012). Reg1-Glc7 also dephosphorylates the Ser14 residue of hexokinase Hxk2 

stimulating its nuclear import and complex formation with Mig1, preventing its Snf1-mediated 

phosphorylation and stimulating glucose repression (Fernández-García et al., 2012). Reg1-Glc7 controls 

dephosphorylation of Mig1 promoting its nuclear localization. Due regulatory interplay between Reg1-

Glc7 and regulatory subunits of PP2A phosphatases, activation of the latter is also thought to contribute 

to inactivation of Snf1 (Castermans et al., 2012). The Δreg1 mutation alleviates glucose repression of 

Snf1 resulting in enhanced glycogen accumulation similarly to the sit4 mutation of PP2A catalytic 

subunit (Ruiz et al., 2011). In addition, the lethality of Δreg1Δsit4 mutations conferred by constitutive 

activation of Snf1 is suppressed by overexpression of the PP2C phosphatase Ptc1, which can 

dephosphorylate the T-loop of trimeric Snf1, although it acts as MAP-kinase phosphatase in the high 

osmolarity and cell wall integrity pathway (Ruiz et al., 2013). In contrast to Ptc1, Reg1-Glc7 and Sit4 

dephosphorylate the T-loop of monomeric Snf1. Thus, Snf4 or the β-subunits are not required for T-

loop phosphorylation or dephosphorylation of Snf1. Salt stress leads to Snf1 T-loop phosphorylation 

without affecting glucose signalling (McCartney and Schmidt, 2001), whereas Snf1 carrying deletion of 

its β/γ-binding C-terminal domain still undergoes T-loop phosphorylation in response to glucose 

limitation (Ruiz et al., 2011; García-Salcedo et al., 2014). However, similarly to the Δreg1 mutant, C-

terminally truncated Snf1 does not respond to glucose repression. Glucose inhibition of interaction 

between Snf1 and Snf4 demonstrates that formation of trimeric kinase complex (i.e., in addition to T-

loop phosphorylation) is necessary for Snf1 activation and signalling (Carlson, 1999; Hedbacker and 

Carlson, 2008). Deletion of the carbohydrate-binding CBM domain of Gal83 β-subunit decreases 

glucose inhibition of Snf1 indicating a role for this domain in conveying glucose repression (Momcilovic 

et al., 2008). Similarly, the SIP2 β-subunit acts as an inhibitor of Snf1 in aging yeast cells. SIP2 

acetylation by the NuA4 acetyl transferase complex enhances its interaction with Snf1 by reducing its 
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activity to phosphorylate Sch9/S6K, which is a downstream effector of both TORC1 and cAMP/PKA 

pathways promoting protein synthesis and DNA replication. Thus, SIP2 inhibition of Snf1 prolongs 

replication time slowering aging (Lu et al., 2011). 

 When glucose is limiting and the cAMP/PKA pathway is downregulated leading to decreased 

Reg1-Glc7 activity (but also in response to envinmental stresses, such as alkaline pH, high sodium 

chloride, oxidative agents or inhibition of TORC1 by nitrogen starvation). Snf1 is then activated through 

phosphorylation of its T-loop by three partially redundant upstream kinases Sak1, Elm and Tos1 (Hong 

et al., 2003a). Of these, Sak1 plays a dominant role and represents the sole kinase, which mediates the 

activation of Gal83-containing Snf1 in response to glucose limitation (Hedbacker et al., 2004a; 

McCartney et al., 2005). Whereas Reg1-Glc7 dephosphorylates and activates Gpa1, the G-protein 

activator of cAMP/PKA signaling, phosphorylation by Sak1, Elm1 and Tos1 is reported to inactivate 

Gpa1 (Clement et al., 2013). By contrast, activation of PKA in the ire1/2 (Ras inhibitor) and bcy1 (PKA 

inhibitor) mutants hampers Snf1 activation suggesting potential regulation of Snf1-activating kinases by 

PKA-mediated phosphorylation (Castermans et al., 2012). Upon T-loop phosphorylation, Gal83-Snf1 

relocalizes to the nucleus and Sip1-Snf1 to the vacuolar membrane, while Sip2-Snf1 remains 

cytoplasmic. N-terminal myristoylation of Sip1 is required for its relocalization, similarly to that of Sip2, 

which is located in the plasma-membrane but relocated to the cytoplasm in glucose-deprived aging cells. 

Sequestration of Snf1 and Snf4 to cell membrane by the N-terminally myristoylated β-subunits may thus 

also play a role in the regulation of Snf1-activity, in addition to targeting the kinase to various cellular 

substrates (Vincent et al., 2001; Hedbacker et al., 2004b). 

 Snf1 regulates hundreds of genes involved in alternative carbon source utilization by controlling 

the activity of key transcription factors, and promotes repression of TORC1-regulated genes in amino 

acid metabolims by repressing GCN4 (see for reviews Broach, 2012; Conrad et al., 2014; Rødkaer and 

Faergeman, 2014). Genes acting in the metabolism of alternative sugars (e.g., sucrose, galactose, maltose 

etc.) are activated through inactivation of Mig1/2 repressors by Snf1 as described above. Genes involved 

in gluconeogenesis, TCA cycle and glyoxylate shunt are induced by the Snf1-regulated transcription 

factors Cat8, Sip4 and Rds2. Snf1 phorphorylates Cat8, which then activates SIP4 that binds through 

Gal83 to Snf1. Both transcription activators recognize carbon source response elements (CSRE) in the 

promoters of their traget genes and peform partially overlapping functions. Cat8 is repressed by Mig1, 

but activated by the Hap2/3/4 transcription activator complex of mitochondrial respiratory genes, from 

which the Hap4 activator of other Hap genes is stimulated by the Rds2 substrate of Snf1. In addition, 

Snf1 phosphorylates the heat-shock transcription factor Hsf1, which binds to HSE elements of target 

genes conferring heat tolerance. Consequently, Δsnf1/snf4 mutants are heat sensitive. Another Snf1 

substrate is Msn2, which together with its partner Msn4 is a key regulator of genes that carry conserved 

stress response elements (STREs). Msn2 and 4 are activated through Rim15-mediated phosphorylation, 

which is inhibited by PKA and TORC1 under glucose repression. Rim15 controls cell wall 
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integrity/synthesis and entry into the G0 phase of the cell cycle and probably requires Snf1 as upstream 

kinase for its activity. Snf1 also phosphorylates Rgt1 conferring repression of some HXT genes under 

glucose starvation. In addition to phosphorylating numerous transcription factors, Snf1 plays a more 

general role in the regulation of RNA polymerase II (RNAPII) transcription. Through interaction with 

the SRB/Mediator complex, SNF1 regulates the activity of RNA polymerase II (Vincent et al., 2001). 

By phosphorylation of Ser10 residue of histone H3, Snf1 recruits the SAGA complex and 

phosphorylates its GCN5 histone H3K14 acetyltransferase subunit stimulating transcription initiation 

on many genes including e.g. INO1, and the hexose transporter genes HXT2 and 4 (Lo et al., 2001, 

2005). 

Regulatory interactions between Snf1 and the rapamycin-sensitive TORC1 kinase complex 

involved in sensing cellular nitrogen/amino acid availability control coordinate responses to glucose and 

nitrate availability. Under amino acid limitation in the presence of glucose, Snf1 activates the Gcn2 

protein kinase of translation initiation factor eIF2α, which slows down translation but selectively allows 

the synthesis of Gcn4 transcription activator of genes involved in amino acid biosynthesis and nitrogen 

utilization (Cherkasova et al., 2010). Under glucose deprivation, Snf1 downregulates both transcription 

and translation of Gcn4 (Kayikci and Nielsen, 2015). The vacuole/lysosomal membrane-associated 

TORC1 complex regulates phosphorylation of Gln3 and Gat1 transcription activators of genes 

controlled by nitrogen catabolite repression (NCR). Phosphorylated Gln3 and Gat1 are sequestered in 

the cytoplasm by the scaffold protein Ure2 are released by Snf1-mediated phosphorylation stimulating 

their nuclear import under glucose starvation. Thus, Snf1 and TORC1 coordinately control responses to 

carbon and nitrate starvation (for review see Shimobayashi and Hall, 2014). 

1.5 The roles of trehalose-6-phosphate synthase and Snf1 in regulation of cell death 

and aging in yeast 

Similarly to animal AMPKs, Snf1 phosphorylates and inhibits acetyl CoA carboxylase (ACC1) 

in the first committed step of fatty acid biosynthesis by decreasing the concentration of malonyl CoA, 

which stimulates fatty acid oxidation and ATP production in mitochondria. As ACC1 activation results 

in downregulation of INO1 (inositol 1-phosphate synthase), snf1 mutants cannot synthesize inositol-1-

phosphate supporting phosphoinositol signalling. Another important signalling molecular in yeast is 

trehalose-6-phosphate (T6P), synthesis of which requires the function of Snf1. Originally, T6P was 

reported to inhibit Hxk2, the central activator of glucose repression, and accumulation of trehalose was 

demonstrated to confer heat stress tolerance, which is abolished in snf1 mutants (Blazquez et al., 1993; 

François and Parrou, 2001; Walther et al., 2013). Yeast tps1 (trehalose-6-P synthase) mutants cannot 

grown on glucose; show reduced growth on nonfermentative carbon sources, cannot synthesize ethanol, 

accumulate glycolytic sugar phosphate intermediates and inosine, and display rapid depletion of adenine 

nucleotides. However, inactivation of Tpp1 (Trehalose-6-P phosphatase), expected to result in T6P 

accumulation, does not enhance the inhibition of Hxk2. Furthermore, the tpp1 mutation does not 
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completely abolish trehalose accumulation, indicating that other sugar phosphatases can also convert 

T6P to trehalose. In addition, Hxk2 mutations alleviating T6P inhibition in vitro do not abolish glucose 

repression, although deletion of the Hxk2 gene suppresses the defects caused by the tps1 mutation 

(Bonini et al., 2003). In addition to the Δhxk2 mutation, inactivation of Snf1 also restores the defects 

of the tsp1 mutant growing on glucose. The Δtps1 mutation does not alter T-loop phosphorylation of 

Snf1, indicating that T6P is not an inhibitor of the Snf1 kinase. Tps1/T6P is suggested to repress 

gluconeogenesis in the presence of glucose, independently of inhibiting Snf1 (which promotes 

gluconeogenesis from alternative carbon sources), downstream of the Snf1-stimulated Cat8 and SIP4 

activators of this pathway (Deroover et al., 2016). Intriguingly, the TPS1 protein itself and not trehalose 

is reported to be essential for activation of thermotolarance in the absence of Snf1-mediated 

phosphorylation of Hsf1 activator of heat shock response (Petitjean et al., 2015). In addition, the 

glycolysis intermediate fructose-1,6-bisphosphate (Fru-1,6bisP) accumulating in the Δtps1 mutant is 

demonstrated to bind the Cdc25 activator of Ras1/2 resulting in its hyperactivation stimulating cell death 

(Peeters et al., 2017). Recently, Petitjean et al. (2017) provided evidence for that a catalytically inactive 

Tps1 is sufficient to inhibit the induction of cell death when growing yeast on glucose or other 

fermentable carbon sources. Similarly, Snf1 also inhibits Ras-dependent induction of programmed cell 

death by either acetate or deregulation of mitochondrial respiration resulting in ROS overproduction 

(Laera et al., 2016; Knupp et al., 2017). Snf1 is required to maintain mitochondrial respiration during 

glucose starvation and prevents cell death by regulating controlled respiratory autophagy (Yi et al., 

2018). Similarly, Tps1 is reported to confer hypoxia tolerance in Drosophila, and to be required for 

maintenance of mitochondrial respiratory functions in yeast (Chen et al., 2003; Noubhani et al., 2009). 

Extension of chronological life span (ECL) of yeast by trehalose production (i.e., activation of Tps1) is 

controlled by the Yak1, Rim15 and Mck1 kinases, which are stimulated by Snf1 but negatively regulated 

by the TORC1 and cAMP/PKA pathways controlling the activation of oxidative stress defense in yeast 

(Cao et al., 2016). This indicates that Snf1 and downstream acting TPS1 act analogously as cell death 

repressors in the same cell survival pathways but their regulatory interaction, if any, is so far largely 

unclear. 

1.6 Mammalian AMP-activated protein kinases 

In mammals, the major form of transported sugar in the blood is glucose. In humans, glucose 

homeostasis is controlled by glucose sensing and readjusted by glycogen and fatty acid synthesis 

promoted by insulin and inhibited by glucagon signalling in the liver. One of the major function of 

AMPK is to stimulate glucose uptake/glycolysis e.g., in muscles (i.e., upon exercise-induced AMPK 

activation), and to promote of glucose production and secretion in the liver by inhibiting of insulin 

secretion from pancreatic β cells (see for review Rourke et al., 2018). In general, at the cell level AMPK 

promotes glucose uptake, glycolysis, fatty acid oxidation, mitochondrial biogenesis (mitofission and 

mitophagy) and autophagy but inhibits gluconeogenesis, synthesis of fatty acids, sterols, glycogen, 
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proteins and rRNA, and thereby the increase of cell size and division. In humans, defective regulation 

of AMPK is associated with metabolic disorders, obesity, type 2 diabetes and cancer (for reviews see 

Hardie, 2007; Cordero and Violett, 2016; Garcia and Shaw, 2017).  

 As discussed in section 1.3, T-loop phosphorylation is obligatory for activation of AMPK (Hong 

et al., 2003a). In humans, the major AMPK-activating kinase is LKB1, a tumour suppressor mutated in 

patients of Peutz–Jeghers syndrome, which was identified based on its similarity to the Snf1-activating 

kinases (Hawley et al., 2003). Whereas monomeric LKB1 is nuclear, cytoplasmic LKB1 is found in a 

complex with the pseudokinase (STE20-related adaptor) and armadillo repeat adaptor protein MO25 

(mouse protein 25), and targeted to membranes by its C-terminal CaaX prenylation motive. LKB1 

activates 14 AMPK-related kinases, and functions as a tumour suppressor by inhibiting cell proliferation 

and controlling cell polarity (Alessi et al., 2006; Williams and Brenman, 2008). Similarly to the Snf1-

activating kinase Sak1, LKB1 is inhibited by cAMP-dependent PKA and TOR1-activated S6 protein 

kinase (RSK) phosphorylation, whereas LKB1 phosphorylation inhibits TOR1. Phosphorylation by the 

DNA damage sensing ATM kinase activates LKB1, which interacts with the p53 tumour suppressor 

promoting apoptosis (Zeng and Berger, 2006). Activation of LKB1 is unaffected by the ATP/AMP ratio 

and is thought to be maintained by autophosphorylation. 

Remarkably, Oakhill et al. (2010) found that mutation of the myristoylation site of β1 subunit 

preventing membrane localization of AMPK, compromised LKB1-mediated phosphorylation of Thr172 

residue of AMPKα1 subunit. Subsequent studies of cellular co-localization of LKB1-AMPK complex 

led to the recognition that AMPK interacts in an AMP-stimulated fashion with AXIN1, a component of 

the Wnt signalling pathway, which targets AMPK to LKB1, as well as potentially to some other partners, 

such as catenin β1, the tumour suppressor APC (adenomatosis polyposis coli, involved in the induction 

of apoptosis) and protein phosphatase PP2A (Zhang et al., 2013; Zhang et al., 2016). Subsequent studies 

revealed that the AXIN1-AMPK-LKB1 complex contains LAMTOR1, a component of the pentameric 

RAGULATOR (Rag) GTPase complex, which triggers relocalization of activated human mTORC1 

complex to lysosomal membranes through interaction with its RAPTOR subunit. The AXIN-AMPK-

Rag-mTORC1 supercomplex is targeted to the vacuolar v-ATPase that plays a key role of mTORC1 

sensing of amino acid and glucose availability. Glucose starvation was found to promote lysosomal 

assembly of the AXIN-AMPK-LKB supercomplex, which is abolished by inactivation of AXIN1 and 

LKB1. In contrast with the widely accepted canonical AMP-mediated activation mechanism, Zhang et 

al. (2017) found that in several human cell types subjected to glucose deprivation the AMP/ATP ratio 

remains unchanged, yet AMPK is activated by T-loop phosphorylation. The glucose sensing mechanism, 

which activates the lysosomal AXIN-AMPK complex independently of a change in the ATP/AMP ratio 

employs a v-ATPase-binding fructose-1,6-bisphophate (Fru-1,6bisP) aldolase. Binding of Fru-1,6bisP, 

as glycolysis intermediate indicating glucose availability, to catalytically active or inactive forms of the 

aldolase is reported to promote dissociation of AXIN-LKB1 from the supercomplex preventing AMPK 
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activation by T-loop phosphorylation. Under glucose starvation, aldolase is uncharged with substrate 

and mTORC1 is released, while the AXIN-LKB1-AMPK complex is stabilized leading to AMPK 

activation (see for review Carroll and Dunlop, 2017; Lin and Hardie, 2017). 

Inhibition of AMPK activation by Fru-1,6bisP is particularly interesting because AMPK inhibits 

fructose-1,6-bisphosphatase, the rate limiting enzyme of gluconeogenesis (producing Fru-6P). At the 

same time, AMPK activation stimulates the kinase activity of 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase (PFK2/3/FBPase-2/3) resulting in the accumulation of Fru-2,6-P, an activator of 

phosphofructokinase 1 (PFK-1) promoting glycolysis. Remarkably, inactive form of the PFK2 enzyme 

itself is sufficient to perform this function (Arden et al., 2008). By contrast, glucagon activation of 

cAMP/PKA signalling stimulates though phosphorylation the function of FBPase, which leads to 

inhibition of glycolysis and stimulation of gluconeogenesis (in parallel with stimulation of glycogen 

degradation in the liver). In addition to insulin and glucagon, the regulation of AMPK activity is linked 

to signalling pathways of several other hormones and cytokines, such as ghrelin, leptin resistin, 

adiponectin, inflammatory mediators, glucocorticoids and thyroid hormoneT3 and T4 (Lim et al., 2010; 

Hardie, 2010). 

 The second activating kinase, which phosphorylates the T-loop of AMPK independently of the 

AMP/ATP ratio and complements the yeast sak1 elm tos1 mutation is the calcium/calmodulin-dependent 

kinase kinase 2 CAMKK2 that acts in specific tissues and is activated by Ca2+-signalling in various 

hormonal pathways (Hawley et al., 2005; Hurley et al., 2005; Woods et al., 2005). In contrast to LKB1, 

CAMKK2 can also phosphorylate the T-loop of monomeric AMPKα. As mentioned above, AMPKα is 

inhibited through phosphorylation of its C-terminal S/T-rich loop by the cAMP-activated PKA (Hurley 

et al., 2006), mTORC1/insulin-activated AKT/S6K (Horman et al., 2008), GSK3 (glycogen synthesis 

kinase 3; Suzuki et al., 2013), PKD1 (protein kinase D; Coughlan et al., 2016), and PKC (protein kinase 

C; Heathcote et al., 2016) kinases. Phosphorylation of S/T-loop is proposed to target AMPKα to 

phosphatases dephosphorylating the activation T-loop (Hawley et al., 2016), as well as for ubiquitination 

by e.g. the TRIM28 ubiquitin ligase (Pineda et al., 2015) and UBE20 (ubiquitin-conjugating enzyme 

E20; Vila et al., 2017) in various tumours, and by the WWP1 ubiquitin ligase under high glucose 

condition in muscle cells (Lee et al., 2013). 

 AMPK plays a key role in safe-guarding the functionality of mitochondria, and is activated by 

ROS signalling, as well as by oxidation and S-glutathionylation of cysteines 299 and 304 in the α-subunit 

(Hawley et al., 2010; Zmijewski et al., 2010). On the other hand, oxidation of the highly conserved 

cysteine residues 130 and 174 in the catalytic domain leads to AMPKα inactivation in heart muscles 

during ischemia, which is reversed by thioredoxin 1 (Shao et al., 2014). 

 During metabolic stress, AMPK restores ATP levels by inhibiting ATP-consuming biosynthetic 

pathways though phosphorylation of key rate-limiting enzymes and numerous transcription factors 
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acting in different signalling pathways (Mouchiroud et al., 2014). As mentioned above, AMPK 

stimulates glucose uptake by phosphorylating TBC1D1 (TBC domain family 1) and TXNIP 

(thioredoxin-interacting protein), which promote plasma-membrane localization of GLUT4 and GLUT1 

glucose transporters (Wu et al., 2013). In addition to stimulating glycolysis by activation of the 

PFKFB2/3 enzymes, AMPK phosphorylates and inhibits the liver glycogen synthases GYS1 and GYS2 

by decreasing their affinity for both UDP-glucose and glucose-6-P (Bultot et al., 2012). Similarly, 

AMPK phosphorylation inhibits the activities of ACC1/2 (acetyl-CoA carboxylase 1) and HMGCR (3-

hydroxy-3-methyl-glutaryl-coA reductase) co-ordinately downregulating fatty acid and sterol 

biosynthesis, respectively (Hardie, 2014). AMPK also phosphorylates GFAT1 (fructose-6-phosphate 

amidotransferase 1) inhibiting hexosamine synthesis and O-linked protein glycosylation by β-N-

acetylglucosamine (O-GlcNAc; Eguchi et al., 2009; Zibrova et al., 2017). In the nucleus, AMPK 

phosphorylation inhibits the functions of SREBP1 (sterol regulatory element binding protein 1; Li et al., 

2011), HNF4a (hepatocyte nuclear factor-4a; Hong et al., 2003b) and ChREBP (carbohydrate-

responsive element binding protein; Kawaguchi et al., 2002) representing key activators of genes 

involved in gluconeogenesis, and sterol and fatty acid biosynthesis. Furthermore, AMPK promotes 

nuclear exclusion of CRTC2 (cyclic-AMP-regulated transcriptional co-activator 2) and class II HDACs 

(histone deacetylases), which act as co-activators of genes in gluconeogenesis (Koo et al., 2005; 

Mihaylova et al., 2011). 

 As yeast Sn1f (Zhang and Cao, 2017), AMPK interaction with the mTORC1 complex inhibits 

TOR1-signaling (Garcia and Shaw, 2017). By phosphorylation of TSC2, AMPK activates the GTPase-

activating TSC1:TSC2 complex inhibiting the mTORC1-activating Rheb G-protein, (Inoki et al., 2003). 

AMPK also phosphorylates and inhibits the function of RAPTOR, which targets the mTORC1 complex 

to the RAGULATOR at the lysosomal membrane (Gwinn et al., 2008; Sancak et al., 2010). Intriguingly, 

Rheb was found to directly interact with the glycolytic enzyme glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), which inhibits mTORC1 activation unless GAPDH is bound by its substrate 

glyceraldehyde-3-phosphate (Lee et al., 2009). Thus, in addition to aldolase probably a second glycolytic 

enzyme controls as metabolic sensor the regulatory interaction between mTORC1 and AMPK. As seen 

in yeast, through activation of ribosomal S6 protein kinase AKT/S6K, mTORC1 stimulates protein 

synthesis, which is inhibited by Snf1/AMPK downregulation of mTORC1. AMPK also inhibits 

ribosomal RNA synthesis by phosphorylation of RNA polymerase I transcription initiation factor IA 

(TIF-IA; Hoppe et al., 2009), as well as ribosomal translation by phosphorylation of eukaryotic 

elongation factor 2 kinase (eEF2K, yeast Gcn2), an inhibitor of translation, which is downregulated by 

mTORC1 and AKT/S6K (Leprivier et al., 2013; Faller et al., 2015). In addition to inhibition of protein 

synthesis, AMPK promotes autophagy (i.e., lysosomal degradation of proteins, cell organelles etc.), 

which is inhibited by mTORC1. By phosphorylation, AMPK activates ULK1 (unc-51-like autophagy-

activating kinase 1) stimulating the autophagy cascade, as well as Atg9 and Beclin 1 to promote the 

formation of autophagosomes and recruitment of VPS34 (vacuolar protein sorting 34)-containing 
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complexes (Kim et al., 2011; 2013; Mack et al., 2012). AMPK inhibition of mTORC1 prevents 

inactivation of Tfeb (transcription factor EB), a key transcription activator of genes in lysosomal 

autophagy. In addition, AMPK activates FOXO3a (Forkhead boxO3) to increase transcription of Tfeb-

interacting CARM1 (co-activator-associated arginine methyltransferase 1) stimulating the expression of 

autophagy genes (Greer et al., 2007; Shin et al., 2016; Young et al., 2016). By promoting autophagy, 

AMPK also aids the removal of damaged mitochondria. More importantly, AMPK activates PGC1α 

(peroxisome proliferator activated receptor gamma, coactivator 1α), a key regulator of mitochondrial 

biogenesis, by phosphorylation and also promotes NAD+-dependent activation of PGC1α by Sirtuin 1 

(Sirt1; Jäger et al., 2007; Cantó et al., 2009). Furthermore, AMPK phosphorylates and activates MFF 

(mitochondrial fission factor), a receptor of DRP1 (dynamin-related protein 1) promoting mitochondrial 

fission (Toyama et al., 2016). By these means, AMPK secures the maintenance of oxidative 

phosphorylation and effective ATP generation through the TCA cycle. 

 Inactivation of LKB1 and AMPK impairs mitochondrial respiration, which is compensated by 

so called anaplerotic utilization of glutamate that by reductive carboxylation converts α-ketoglutarate to 

isocitrate available for lipid synthesis. This anaplerotic shift is frequently observed in pancreatic cancer 

cells, in which mutations of LBK1 result in enhanced glucose-induced insulin secretion, fatty acid 

synthesis (i.e., due to ACC1 activation) and deregulated growth (Swisa et al., 2015). Finally, AMPK 

also counteracts mitochondrial ROS production and oxidative stress signalling as it phosphorylates and 

promotes nuclear localization of activated Nrf2 (nuclear factor erythroid 2-related factor 2), which is a 

key regulator of genes acting in anti-oxidative defence (Joo et al., 2016). 

 These and many other observations support the conclusion that AMPK negatively controls cell 

growth and division. Few direct AMPK substrates in the mitogenic pathways were identified. AMPK is 

reported promote cell-cycle arrest at the G1 phase via phosphorylation of tumour suppressors p53 

(Imamura et al., 2001; Jones et al., 2005), Rb (Retinoblastoma, Dasgupta and Milbrandt, 2009), and 

p27Kip1 (CDK-inhibitor, Liang et al., 2007). AMPK phosphorylation also inhibits MDMX (mouse 

double minute X), a negative regulator of p53 tumour suppressor leading to p53-mediated cell-cycle 

arrest (He et al., 2014). Similarly, AMPK-mediated phosphorylation targets for destruction GLI1 

(Glioma-associated oncogene 1) in the Hedgehog signalling pathway (Li et al., 2015b), inhibits the 

Hippo-YAP pathway by stabilization of AMOTL1 (angiomotin-like 1; DeRan et al., 2014), a negative 

regulator of YAP (Yes-associated protein), and directly inhibits the YAP oncoprotein (Mo et al., 2015; 

Wang et al., 2015).  

As yeast Snf1, human AMPK appears to participate in general regulation of RNAP II 

transcription. AMPK is reported to phosphorylate and inhibit interaction of p300 histone 

acetyltransferase with nuclear receptors (Yang et al., 2001). AMPK also regulates histone H3K27 

trimethylation by phosphorylation of the T311 residue of histone methyltransferase EZH2 (Enhancer of 

zeste homolog 2), which inhibits its interaction SUZ12 in the core of Polycomb Repressor Complex 2 
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(PRC2; Wan et al., 2018). AMPK phosphorylation abolishes the interaction of Cry1/2 cryptochrome 

blue-light receptors as repressors with several nuclear hormone receptors. Cry1 and Cry2 also function 

as repressors of CLOCK and BMAL1 transcription activators of the circadian clock, which are 

negatively regulated by the PERIOD (PER1/2/3) proteins. AMPK-mediated phosphorylation targets the 

Cry1/2 and PER proteins for degradation (Um et al., 2007; Lamia et al., 2009; 2011). 

1.7 Identification of AMPK substrates using engineered analogue-sensitive (AS) 

kinases in chemical genetic screens 

Due to central regulatory significance of AMPKs in controlling type 2 diabetes, obesity and 

cancer, specific identification of their substrates and regulatory partners became of central importance. 

To facilitate the identification of AMPK phosphorylated substrates in various signalling pathways and 

nuclear transcription regulatory complexes, Banko et al. (2011) exploited a novel mass spectrometry-

based chemical genetic approach (Alaimo et al., 2001). This approach is based on the identification of 

so-called‘‘gatekeeper’’ amino acid residues in the ATP-binding pockets of protein kinases which are 

located close to the N6 position of the adenine ring of ATP. By exchanging these gatekeeper amino acid 

residues for smaller amino acids, the engineered “analogue specific (AS)” protein kinases are enabled 

to use ATP analogs that carry bulky N6-substitutions, such as benzyl, phenethyl, cyclopentenyl etc. 

groups (Allen et al., 2007, Figure 2A). Due to the steric hindrance of the gatekeeper residue, these bulky 

ATP analogs are poor substrates for wild-type kinases. To specifically label the substrates 

phosphorylated by AS-kinases, bulky N6-modified ATPγS nucleotides are used, which transfer 

thiophosphate residues to the kinase phosphorylation sites. These thiophosphate residues can then be 

alkylated with para-nitrobenzyl mesylate (PNBM) and detected using a specific monoclonal antibody 

recognizing the P-S-PNMB hapten structure (Allen et al., 2005). Using the same approach, the PNBM-

alkylated thiophosphorylated kinase substrates can be purified by binding to the immobilized 

monoclonal antibody and then identified upon trypsin digestion by MS/MS or LC/MS mass 

spectrometry. Alternatively, tryptic peptides of thiophosphate labelled kinase substrates can be 

covalently captured and more efficiently enriched by binding to iodoacetyl-agarose resin, and selectively 

released by strong oxidative agents, such as oxone for large scale analysis of AS-kinase substrates 

compared to samples containing the wild type kinase versions (Blethrow et al., 2008; Hertz et al., 2010; 

Carlson and White, 2012; Figure 2).  

Using this technology, Banko et al. (2011) transiently expressed AS-AMPKα2 in human cells, 

and following AMPK stimulation with 2-deoxyglucose performed in situ thiophosphorylation followed 

by capture of PNBM-alkylated thiophophorylated substrates with immobilized monoclonal antibody 

(Figure 2B). Compared to wild type AMPKα2 control, 32 AS-AMPK α2 candidate substrates were 

identified, including known AMPK targets, such as ACC1 and CARM1. The majority of newly 

identified AMPK substrates represented proteins involved in the control of mitosis, including CDC27,  
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Figure 2. Identification of AS-kinase substrates by PNBM detection and enrichment of thiophosphorylated 

substrates. 

A) Exchange of the “gatekeeper” amino acid for smaller amino acid residues (e.g. Gly) in the conserved ATP-

binding pockets of protein kinases is used for engineering of analogue sensitive AS-kinases, which can utilize 

ATP-analogues carrying bulky N6-substitutions, such as benzyl, phely or phenethyl groups. For detection of 

phosphorylation, ATP is replaced by thioγP-ATP (thioATP or ATPγS), which transfer thiophosphate (P-SH) 

groups to the kinase substrates. B) Wild type kinases present in protein extracts cannot use bulky N6-substituted 

thioAPT analogues which in contrast are utilized by the AS-kinases. Thus, AS-kinase substrates 

thiophosphorylated by these bulky thioATP analogues can be specifically detected by alkylation of proteins with 

p-nitrobenzyl mesylate at pH 4.0 following the kinase reaction (Lee et al., 2011). The PNBM-alkylated proteins 

can be detected by a monoclonal antibody (ABCAM ab92570) developed by Allen et al. (2005). C) For large-scale 

enrichment of AS-kinase substrates, total cell or nuclear protein extracts are thiophopshorylated with either 

endogeneously produced or externally added AS-kinases in the presence of bulky thioATP, and upon desalting 

and trypsin digestion the thiophosphorylated peptides are bound through alkylation to iodoacetyl-agarose beads. 

Peptides carrying alkylated cysteine residues (i.e., thiol groups) stay stably bound, while peptides with alkylated 

thiophosphate residues can be selectively oxidized to sulfoxide by oxone and released from the beads for 

subsequent mass spectrometry identification (Blethrow et al., 2008; Hertz et al., 2010). 
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APC1 subunit of anaphase promoting complex, regulatory subunit 12A of protein phosphatase 

1 and others. Schaffer et al. (2017) stably expressed the AS-AMPKα1 and α2 kinase subunits in the 

human cancer cell line U2OS and performed in situ thiophosphorylation reactions in AMPK-stimulated 

DMSO permeabilized cells followed by application of the iodoacetyl-agarose enrichment method 

(Figure 2C; Blethrow et al., 2008; Hertz et al., 2010). This approach resulted in the identification of 50 

candidate AMPK substrates including 29 previously characterized ones, such as ACC1, RAPTOR, 

TBC1D1 etc., and 14 AMPK substrates involved in cellular motility, adhesion, or invasion. These and 

other applications illustrate that the use of AS-kinases and enrichment of their specific 

thiophosphorylated substrates is a powerful tool in further analysis of Snf1/SnRK1/AMPK regulated 

signalling pathways. 

1.8 Plant SnRK1 kinases 

In comparison to yeast Snf1 and animal AMPKs, so far less is known about the regulatory 

functions of plant SnRK1 enzymes and molecular mechanisms linking them to various signalling 

pathways (Crozet et al., 2014; Margalha et al., 2016; Broeckx et al., 2016; Wurzinger et al., 2018). The 

Snf1-related class of plant protein kinases belong to three clads, which include the SnRK1, SnRK2 and 

SnRK3 families that show sequence relationships between their catalytic domains but considerable 

divergence in their regulatory domains, subunits and interacting partners (Hrabak et al., 2003). Only 

subunits of the SnRK1 family can genetically complement the corresponding yeast mutations. The 

SnRK2 subfamily contains 10 divergent plant-specific kinases, which are regulated by the ABA 

receptor-PP2C complexes and control the activities of transcription factors in osmotic stress and abscisic 

acid (ABA) signalling (Cutler et al., 2010; Umezawa et al., 2010). The SnRK3 subfamily contains 25 

members, which interact with calcineurin B-like (CBL) calcium-binding proteins involved in salt (e.g., 

SOS, salt overly sensitive) and osmotic stress signalling (Steinhorst and Kudla, 2013).  

In contrast to members of the SnRK2 and SnRK3 families, studies of the functions of plant 

SnRK1 enzymes is hampered by the lack of null mutations in the SnRK1α1/2 subunit genes AKIN10/11. 

In the moss Physcomitrella patens, double knockout of Snf1a/b genes prevents growth, starch 

accumulation and viability unless the mutant is maintained in the presence of externally provided sugars 

under continuous illumination (Thelander et al., 2004). Inducible artificial microRNA silencing of 

SnRK1α1/2 in Arabidopsis was reported to cause ultimate lethality, which cannot be compensated by 

sugar feeding or continuous illumination. Partial SnRK1α silencing apparently prevents starch 

mobilization through the night and promotes activation of stress responses and anthocyanin 

accumulation (Baena-González et al., 2007; Margalha et al., 2016). Silencing of barley SnRK1α results 

in binucleated pollens suggesting a meiotic defect resulting in male sterility (Zhang et al., 2001). 

Recently, Gao et al. (2016) reported that inactivation of the sole of Arabidopsis SNF4/SnRK1γ subunit 

gene in the SALK_074210 and GABI 346E09 T-DNA insertion mutants did not prevent in vitro pollen 

germination but inhibited pollen growth on the stigma surface due to reduced ROS generation and 
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defective mitochondrion and peroxisome biogenesis (Gao et al., 2016). Genetic analysis of the same 

mutants in our laboratory shows that the snf4 mutant alleles segregate at 1:1 ratio due to a defect in male 

meiosis II. Similarly to AKIN10/11, no T-DNA null mutations exist in the atypical AKINβ3 gene, and so 

far there is no report on the effects of existing insertion mutations in the AKINβ1/2 genes. 

 Based on Affymetrix transcript profiling, Baena González et al. (2007) found that numerous 

dark-induced transcripts controlled by the S1-group of bZIP transcription factors are upregulated 

following transient overexpression of SnRK1α1/2 in leaf protoplasts cultured in 0.4M mannitol-

containing carbon and nitrogen source free medium. Because the transcript profiling data showed an 

overlap with a number of genes that are oppositely regulated by glucose and sucrose feeding in 

Arabidopsis seedlings, but indicated similar regulation with genes induced by extended dark-treatments, 

it was concluded that SnRK1 is activated similarly to yeast Snf1 and mammalian AMPKs by sugar 

starvation. In contrast, Bhalerao et al., (1999) and Jossier et al. (2009) found that in Arabidopsis 

seedlings grown in vitro with proper N-supply in the presence of high concentration of glucose or 

sucrose (i.e., inhibiting source to sink phloem transport), SnRK1 phosphorylation activity is increased. 

In addition, glucose-1-phosphate (G-1P) and G-6P were reported to inhibit in vitro the activity of 

partially purified SnRK1 enzymes (Toroser et al., 2000; Zhang et al., 2009; Nunes et al., 2013). 

However, none of the studies demonstrated that sugar treatments alter the activating T-loop 

phosphorylation of SnRK1.  

Zhang et al., (2009) found that overexpression of the E. coli otsA trehalose-6-phosphate (T6P) 

synthase (TPS1) in Arabidopsis confers largely opposing transcriptomics changes compared to the 

protoplast data of Baena-González et al. (2007). The same authors reported that T6P inhibits the activity 

of SnRK1 in protein extracts of developing seedlings, but T6P inhibition was not detected in mature leaf 

extracts. The SnRK1 inhibitory activity could be separated by anion-exchange chromatography from the 

kinase and reconstituted by a size separated protein fraction suggesting the existence of a protein factor, 

which associates with SnRK1 and mediates its inhibition by T6P-sensing. According to Nunes et al. 

(2013), the same protein fraction is possibly responsible for SnRK1 inhibition by G-1P and G-6P. Given 

these data, it is now generally thought that SnRK1 is negatively regulated by T6P, although yeast Snf1 

and animal AMPKs are unaffected by this compound. This model became attractive, since the levels of 

T6P appear to faithfully correlate with cellular availability of sucrose (Paul et al., 2008; Lunn et al., 

2014; Figueroa and Lunn, 2016). Therefore, T6P was proposed to mediate sugar-induced repression of 

SnRK1. This model is certainly applicable to sucrose, which is split by sucrose synthase (SuSy) to 

fructose and UDP-glucose, where the latter compound is a direct substrate for T6P synthesis from G-6P 

and UDP-glucose. However, T6P was found not to inhibit plant HXK1 (GIN2, GLUCOSE 

INSENSITIVE 2), which is similarly to its yeast counterpart is a key activator of glucose repression 

(Moore et al., 2003). Thus, it is still unclear how sugar phosphorylation through HXK1 regulates in vivo 

the activity of SnRK1.  
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2-deoxyglucose (2-DG, phosphorylation of which is thought to decrease ATP levels) was 

demonstrated to activate SnRK1 similarly to mammalian AMPK (Harthill et al., 2006). 2-DG-mediated 

activation of SnRK1 was reported to induce phosphorylation of TPS5, which is a bifunctional class II 

trehalose-6-phosphate synthase/phosphatase enzyme carrying a fusion of TPS and TPP catalytic 

domains. In Arabidopsis, TPS5 to 11 belong to this class II family, while TPS1 to 4 represent monomeric 

trehalose-6-phosphate synthase, and TPPA to J monomeric T6P-phosphatase enzymes (Vandesteene et 

al., 2012). All Arabidopsis TPPs can complement the yeast tpp mutation, and TPS1, 2 and 4 are also 

active enzymes complementing the yeast Δtps1Δtpp mutation (Delorge et al., 2015). Despite a 

contradictory report (Chary et al., 2008), it appears that none of the class II TPS-TPP enzymes 

complement the yeast Δtps1Δtpp mutant, although they appear to carry functional catalytic domains 

(Ramon et al., 2009). Similarly to the yeast tps1 mutation, inactivation of Arabidopsis TPS1 results in 

severe growth arrest, embryo arrest, accumulation of soluble sugars and starch, and elevated expression 

of genes related to ABA signalling. Partial loss of function tps1 mutants show enhanced ABA sensitivity 

and delayed flowering (Gómez et al., 2010). Given these observations, Wahl et al. (2013) reported that 

T6P production by TPS1 plays a central role in induction of flowering suggesting a correlation with 

T6P-mediated inhibition of SnRK1. 

Overexpression of yeast Tps1 in Arabidopsis leads to pleiotropic developmental defects (Miranda et al., 

2007), similarly to overexpression of Arabidopsis TPS1 homolog, which confers ABA insensitive seed 

germination and reduced inhibition of photosynthesis by glucose. However, Avonce et al. (2004) found 

that TPS1 overexpression results in late flowering, sterility and downregulation of ABI4 in ABA 

signalling. Furthermore, they reported that TPS1 is repressed by glucose and derepressed by antisense 

inhibition of HXK1, which would suggest that TPS1 transcription is inhibited by HXK1-dependent 

glucose repression. Remarkably, Miranda et al. (2007) showed that overexpression a translational fusion 

of yeast TPS1 to TPP does not result in any of these defects but confers drought, freezing and heat stress 

tolerance. In contrast to TPS1, Arabidopsis class II TPS5 is reported to be upregulated by sugar (Baena-

González et al., 2007), while TPS8-11 are induced by sugar starvation (Usadel et al., 2008). However, 

all class II TPS transcripts are suggested to be destabilized upon sucrose feeding (Yadav et al., 2014). 

So, if class II TPS-TPP enzymes would act as potential T6P sensors as hypothesised (Broeckx et al., 

2016), it is predicted that their functions would be differentially regulated by sugar availability at the 

level of transcription and/or mRNA stability. Recent studies of transcriptomics changes in response to 

extended night (defined in plants as sugar starvation condition, but influenced by activation of numerous 

stress response pathways) followed by recurrent sugar supply also indicate that only part of observed 

effects are related to SnRK1. Thus, in analogy to yeast Tps1 and Snf1 (Deroover et al., 2016), Cookson 

et al. (2016) raised the possibility that TPS1/T6P and SnRK1 might regulate sucrose-dependent and 

sugar starvation responses independently, such that T6P accumulation inhibits SnRK1 solely when 

sucrose is available. 



  Introduction 

21 

Similarly to yeast Snf1 and animal AMPKs, plant SnRK1 enzymes are regulated by T-loop 

phosphorylation of their catalytic α-subunits. Based on complementation of yeast sak1 elm1 tos1 triple 

mutant, two putative Arabidopsis SnRK1 activating kinases SnAK1/GIRK2 and SnAK2/GIRK1 

(GEMINIVIRUS REP INTERACTING KINASE 1) were identified (Hey et al. 2007), which were 

previously reported to interact with and phosphorylate the geminivirus replicator protein AL2 (Kong 

and Hanley-Bowdoin, 2002; Shen and Hanley-Bowdoin, 2006). SnAK1/2 undergo autoactivation by 

autophosphorylation of their T-loop Thr residues (SnAK Thr153; SnAK2 Thr154) and phosphorylate 

the T-loops of SnRK1α subunits by increasing their kinase activities in vitro (Shen et al., 2009; Crozet 

et al., 2010; Robertlee et al., 2010). At the same time, SnRK1 can phosphorylate the T-loop Ser residues 

of SnAK kinases (SnAK1 S260 and SnAK2 S261) by inhibiting their activity in vitro. This might 

indicate a negative feedback loop by which SnRK1 inhibits virus replication through inactivating the 

geminivirus-induced SnAK kinases to phosphorylate the viral replicator protein AL1 (Crozet et al., 

2010). Double T-DNA knockout of SnAK1/2 results in arrested seedling development unless seeds are 

germinated on glucose-containing medium, on which the double mutant grows as miniature infertile 

plant. In the snak1snak2 mutant, the T-loop phosphorylation of SnRKα1 is highly reduced (Glab et al., 

2017) suggesting that despite in vitro autoactivation of SnRK1α kinases, SnAK1/2 is required for their 

in vivo activation. N-terminal deletion retaining the active kinase domain of SnAK2 in another 

combination of T-DNA insertion alleles was used to construct a partial loss of function double 

snak1snak2, mutant, which shows normal development but enhanced sensitivity to glucose and salt. In 

correlation with this phenotype, SnAK2/GIRK1 was found to phosphorylate the T-loop of the SOS2 

(Salt overly sensitive 2) SNRK3.11 kinase, which plays a key role in the regulation of salt tolerance (Liu 

et al., 2000; Barajas-Lopez et al., 2018). SnAK1/2 levels are low in most plant organs except for the 

apical meristem of developing seedlings. It was therefore concluded earlier that SnAKs are likely not 

essential suggesting the existence of alternative upstream kinases (Crozet et al., 2014, Margalha et al., 

2016). The recent genetic data now challenge this conclusion. Finally, it is worth to note that the closest 

yeast homologs of Arabidopsis SnAKs are not Elm, Pak1 or Tos1 but the fission yeast Ssp1 kinase 

involved in the regulation of cell polarity (Lee et al., 2018).  

 Similarly to SnAK1/2, SnRK1α2/AKIN11 was also found to interact in yeast 2H assays with 

the geminivirus AL2 and L2 proteins and their homologs, AL2 of tomato golden mosaic virus (TGMV) 

and L2 of beet curly top virus (BCTV), and these interactions were reported to inhibit AKIN11 (Hao et 

al., 2003). The same viral proteins were observed to interact with and inactivate adenosine kinase 

(ADK), which recycles ADP to ATP and AMP maintaining energy homeostasis (Wang et al., 2003). 

AL2/L2 expression results in enhanced viral susceptibility and was found to inhibit ADK and T-loop 

phosphorylation of AKIN11 (Wang et al., 2003; Mohannath et al., 2014). Remarkably, AKIN11 also 

interacts with and phosphorylates ADK by stimulating its activity, while AKIN11 overexpression 

confers tolerance to viral infection (Hao et al., 2003; Mohannath et al., 2014). SNRK1 is also reported 

to phosphorylate the cabbage leaf curlvirus (CalCuV) and tomato mottle virus (ToMoV) AL2/L2 
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proteins thereby delaying viral infection (Shen et al., 2014). The stress-induced plasma-membrane-

bound remorin proteins, which enhance geniminivirus infection also interact with and are 

phosphorylated by SnRK1 (Son et al., 2014). In pepper, SnRK1 interacts with and phosphorylates the 

AvrBST resistance protein, which recognizes the AvrBS1 elicitor of Xanthomonas campestris pv. 

vesicatoria (Xcv) that induces SnRK1-dependent hypersensitive defence response (HR; Szczesny et al., 

2010). Finally, interaction of Arabidopsis SNF4/AKINβγ with the HSPRO1/2 LRR proteins implicated 

in resistance responses to Pseudomonas syringae corroborate the observations that SnRK1 plays an 

important role in the regulation of pathogen defence responses (Gissot et al., 2006; Murray et al., 2007; 

Schuck et al., 2013). 

It was found early on that the T-loop of purified spinach SnRK1 kinase can be dephosphorylated 

with human PP2C phosphatase in vitro, which is prevented by low concentration of AMP (Sugden et 

al., 1999a). In fact, SnRK1 is dephosphorylated and inactivated by the ABI1 and PP2C protein 

phosphatases (Rodrigues et al., 2018), as well as by the myristolyted putative membrane-bound PP2C74 

enzyme (Tsugama et al., 2012). Notably, the SnAK-activated membrane-bound SOS2/SnRK3.11 kinase 

similarly interacts with the PP2C phosphatase ABI2, which together with ABI1 represent central 

inhibitors of ABA signalling that are responsible also for inactivation of members of the SnRK2 family 

in the absence of ABA signal. These PP2Cs form a complex with ABA receptors and are inactivated 

upon ABA-binding to the PYL/PYR receptors (Cutler et al., 2010; Umezawa et al., 2010). Inactivation 

of SnRK1 and SnRK2 enzymes confer ABA insensitivity (Radchuk et al., 2006; Fujii et al., 2011), 

whereas their overexpression results in enhanced ABA sensitivity (e.g., Jossier et al., 1999; promoting 

sucrose accumulation in case of SnRK2.6; Zheng et al., 2010). 

 Thus far, it is unknown how myristoylation of SnRK1 β-subunits affect the kinase activity, 

localization and substrate specificity. Mutation of the canonical MG glycine residue and inactivation of 

NMT1 myristyltransferase were reported to enhance nuclear localization of AKINβ1 and to increase 

SnRK1 activity (Pierre et al., 2017). Several sites of human AMPKβs are phosphorylated in vivo, out of 

which Ser108 phosphorylation is required for AMPK activation by salicylic acid that prevents its T-loop 

dephosphorylation (Warden et al., 2001). Tomato Adi3, a nuclear suppressor of programmed cell death 

interacts with SnRK1α and SnRK1β1, and phosphorylates the S26 residue of the β1 subunit, which 

might contribute to inhibition of the kinase activity (Avila et al., 2012).  

Various environmental queues, such as low nutrient conditions and phosphate starvation were 

reported to promote SnRK1 ubiquitination and proteasomal degradation. SnRK1 interacts with the Skp1 

subunit of SCF E3 ubiquitin ligases and the proteasome α4 subunit suggesting its possible involvement 

in the control of ubiquitination in association with the proteasome (Farrás et al., 2001). SnRK1α1/2 

(AKIN10/11) also interacts in yeast two-hybrid (2H) assays with the PRL1 WD40 protein which, in 

addition to its role in the NTC spliceosome activating complex (Koncz et al., 2012), functions as 

substrate targeting subunit of Cul4-DDB1 ubiquitin E3 ligase mediating degradation of SnRK1α1 
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subunit (Németh et al., 1998; Bhalerao et al., 1999; Lee et al., 2008). SnRK1α1/AKIN10 interacts also 

with the SUMO-conjugating (E2) enzyme SCE1 (Elrouby and Coupland, 2010) and polySUMOylation 

of its lysine residues K34, K63 and K390 by SIZ1 (a key regulator of phosphate starvation, SA-

dependent pathogen response and ABI5-dependent ABA responses; Datta et al., 2018), targets the active 

kinase for ubiquitination-dependent degradation (Crozet et al., 2016). 

 The SnRK1α subunits interact with a range of potential partners in yeast 2H screens. One of the 

2H partners includes the family of ABA-induced SKIN (SnRK1 inhibitor) proteins that prevent SnRK1-

mediated activation of starch degrading α-amylase by the MYBS1 transcription factor in rice (Lu et al., 

2007). Homologs of rice SKINs have been recently identified in Arabidopsis, but their functions 

remained so far uncharacterized (Nietzsche et al., 2016). Another WD-40 protein, which interacts with 

the C-terminal regulatory domain of Arabidopsis SnRK1α1/AKIN10 is the myo-inositol polyphosphate 

5-phosphatase (5PTase13, inactivates the second messenger inositol 1,4,5-triphosphate, InsP3), which 

is suggested to modulate SnRK1 stability in response to phsosphoinositol signaling and sugar 

availability (Ananieva et al., 2008). SnRK1 also interacts in 2H screens with members of a DUF581 

domain protein family of unknown function. The DUF581 factors are suggested to act as SnRK1 

targeting subunits based on their 2H interactions with TCP transcription factors and DELLA repressors 

of gibberellin signaling (Nietzsche et al., 2014; 2016). 

 Similarly to their yeast and animal counterparts, plant SnRK1 kinases modulate the activity of 

key enzymes of anabolic and catabolic pathways in cell metabolism, as well as several hormonal and 

stress pathways controlling plant growth, development, abiotic/biotic stress tolerance, autophagy and 

cell death (for reviews see Hey et al., 2010; Broeckx et al., 2016; Hulsmans et al., 2016). As mentioned 

above, SnRK1 kinases purified from various plant species were shown to phosphorylate and confer dark-

induced inactivation of sucrose- phosphate synthase (SPS; Winter and Huber, 2000) and nitrate 

reductase (NR, Lillo et al., 2004). Phosphorylated SPS (i.e., at Ser 158) and NR undergo proteolytic 

degradation under low sugar conditions, but might be stabilized by phosphoserine-binding 14-3-3 

adaptor proteins in response to sugar availability. In turn, the stability of 14-3-3 proteins appears to be 

oppositely regulated by the ATL31 ubiquitin E3 ligase in response to C/N availability (Yasuda et al., 

2014). In addition, overexpression of membrane-associated SnRK1β1 subunit was reported to decrease 

the activity of NR (Li et al., 2009). Sugden et al (1999b) found early on that in addition to SPS and NR, 

SnRK1 purified from spinach leaves can phosphorylate the Ser577 residue of HMGR (3-hydroxy-3-

methylglutaryl-coenzyme a reductase) and inactivate this first rate-limiting enzyme in the mevalonate 

pathway. Downregulation of HMGR by Arabidopsis SnRK1α1 phosphorylation was confirmed by 

Robertlee et al. (2017). Flores-Pérez et al. (2010) observed that increased sugar accumulation in the prl1 

mutant stimulates the accumulation mevalonate pathway derived isoprenoid products (i.e., which 

suggests that SnRK1 is likely more stable in the prl1 mutant and thus shows somewhat higher activity 

in leaf extracts where it is not inhibited by T6P). In maize leaves, SnRK1 stimulates the phosphorylation 
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of S15 residue of sucrose synthase promoting its ubiquitination and proteasomal degradation (Hardin et 

al., 2003). Similarly to human AMPK, Arabidopsis SnRK1 also phosphorylates 6-phosphofructo-2- 

kinase/fructose-2,6-bisphosphatase stimulating its PFK2 kinase activity (McCormick and Kruger, 

2015). On this way, SnRK1 probably enhances glycolysis in sink tissues (Kulma et al., 2014). In leaves 

during photosynthesis, sucrose accumulates and stored in vacuoles, and PFK2 activity and F-2,6-bisP 

levels are low during the day. Kulma et al. (2014) showed that PF2K/F2KP is phosphorylated by SnRK1 

in the light and bound to 14-3-3 proteins, which probably inhibit its activity. Cho and Yoo (2011) 

provided evidence for that fructose-1,6-bisphosphatase acts independently of its catalytic function as 

fructose (i.e., fructose-6-P) sensor conferring glucose repression downstream of hexokinase 1 (HXK1) 

and the ABA receptor-PP2C-SnRK2 pathway. Hypoxia and extended night/darkness (i.e., often defined 

as starvation condition) were reported to stimulate SnRK1-mediated phosphorylation of SPS, NR, 

PFK2/F2KP and also TPS7/8 to stimulate glycolysis and mitochondrial respiration or gluconeogenesis 

under hypoxia (Cho et al., 2016; Nukarinen et al., 2016). Nonphosphorylating glyceraldehyde-3-

phosphate dehydrogenase (np-Ga3PDHase) acting in an alternative route of glycolysis in heterotrophic 

sink tissues is also a substrate of wheat SnRK1, which is reported to be allosterically inhibited by ribose-

5-phosphate, fructose-1,6-bisphosphate and 3-phosphoglycerate but not by glucose-6-P and T6P 

(Piattoni et al., 2011).  

 

Figure 3. Schematic model for SnRK1 regulation of sucrose metabolism and signalling pathways. 

Regulation of key enzymes in the pathways and SnRK1-mediated control of dimerization and activation of C/S1-

group of bZIP TFs are described is the text. 

Finally, pyruvate kinase (PK), another rate-limiting enzyme of glycolysis (producing pyruvate 

and ATP from phosphoenolpyruvate (PEP) and ADP), is found to interact with potato StubSnRK1 in 
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yeast 2H assays. Antisense inhibition of StubSnRK1 decreases the activity of cytosolic PK activity 

(Beczner et al., 2010), while in C/N-limited Arabidopsis protoplasts overexpression of AKIN10 up-

regulates mRNA levels of cytosolic PK (Baena-González et al., 2007). In summary, these data indicate 

that plant SnRK1 regulates the glycolysis at several steps by phosphorylating various enzymes, and that 

this regulation differs in photosynthetic source leaves and developing sink organs (Figure 3). 

 Transcript profiling studies performed with SnRK1α1/AKIN10 overexpressing Arabidopsis 

protoplasts identified over 1000 SnRK1 regulated genes (Baena-González et al., 2007). This study 

indicates that SnRK1 overexpression enhances the expression of genes acting in cell wall, starch, 

sucrose, amino acid, lipid, and protein degradation, and autophagy but downregulates genes involved in 

ribosome biogenesis and other anabolic processes. Recently, Cookson et al., (2016) compared the dataset 

of Baena-González et al. (2007) to transcript profiling studies performed with continuous light-grown 

plants shifted for various times into darkness and re-exposed to light or sugar feeding excluding the 

effect of circadian clock regulation (Usadel et al., 2008). This study identified two clusters of SnRK1 

regulated genes based on their altered expression during early phase of light to dark shift and upon 

exhaustion of leaf starch reserves. The latter cluster is enriched for genes, which are also modulated by 

redox changes, ABA and ethylene. 

 Baena-González et al. (2007) identified several dark-induced DIN genes, such as DIN6/ASN1 

(ASPARAGINE SYNTHASE 1), which are upregulated by SnRK1 overexpression in protoplasts. 

Activation of DIN6/ASN1 is controlled by the S1-class of bZIP transcription factors (bZIP1, 

bZIP2/GBF5, bZIP11/GBF6/ATB2, bZIP44 and bZIP53). Co-expression of S1-bZIPs with 

SnRK1α1/AKIN10 stimulated the transcription of DIN6/ASN1 similarly to the C-group bZIP63 

transcription factor (TF), a heterodimerization partner of S1-bZIPs. While translation of S1-bZIPs is 

stalled by upstream short open reading frames (i.e., uORFs) when sugar is available, overexpression 

several S-bZIPs is reported to cause growth defects resulting in accumulation of sucrose and hexose-

phosphates (see for review Lastdrager et al., 2014). At the same time, transcription of S1-bZIP1 and C-

bZIP9/63 are repressed, while S1-bZIP11 is induced by sugar availability. S1-bZIP11 overexpression is 

reported to induce TPP-F/G and trehalase expression lowering the level of T6P, and suggested to confer 

thus activation of SnRK1 (Ma et al., 2011). While the S1-group bZIP44 and bZIP53 TFs influence 

ABA/sugar modulated seed development and germination (Alonso et al., 2009; Iglesias-Fernández et 

al., 2013), bZIP1 appears to mediate sugar repression (Kang et al., 2010). bZIP11 interacts with the 

ADA2b adaptor protein to recruit the SAGA/GCN5 histone acetylase complex to auxin-regulated 

promoters (Weiste and Droge-Laser, 2014). SnRK1 phosphorylates in vitro and likely in vivo the C-

group bZIP63 TF in contrast to members of the S1-group, and is thus suggested to control their functions 

by SnRK1-stimulated heterodimerization (Mair et al., 2015). 

Recently, silencing of bZIP2/11/44 in a bzip1bzip53 mutant and silencing of SnRK1α2/AKIN11 

in the weak GABI_579E09 akin10 mutant was reported to inhibit transcription of several genes involved 
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in the catabolism of branched chain amino acids (BCAAs: Leu, iLeu, and Val), which are induced by 

darkness and hypoxia. SnRK1 silencing also downregulates transcription ETF/ETFQ electron acceptor 

of mitochondrial electron transport chain, which receives electrons from the BCAA degrading 

mitochondrial enzymes (Pedrotti et al., 2018). Based on direct binding of bZIP2 to the ETF/ETFQ 

promoter and dimerization of bZIP2 with bZIP63, it was concluded that SnRK1 activation of S1/C-

bZIP1 plays a key role in activation of amino acid, especially BCAA degradation pathways in response 

to starvation. In addition, SnRK1α1 was found to be recruited to the ETF/ETFQ promoter at which 

histone acetylation is reduced in the SnRK1α silenced plants suggesting the SnRK1 stimulates histone 

H3-acetylation and thereby transcription initiation (Pedrotti et al., 2018; Dröge-Laser and Weiste, 2018). 

These results support the view that C/S1-bZIPs are important downstream transcription regulators in 

plant SnRK1 signaling pathways (Dröge-Laser et al., 2018). 

 Dephosphorylation of SnRK1 by PP2C phosphatases, enhanced ABA sensitivity of SnRK1α 

overexpressing lines and ABA insensitivity conferred by SnRK1α silencing indicate that SnRK1 acts 

downstream of the PYL/PYR ABA receptor-PP2C complex in ABA hormone signalling. Whether there 

is any regulatory interaction between SnRK1 and SnRK2 kinases in ABA signalling is still unclear. The 

ABI5 and DPBF/EIL/bZIP12 transcription factors representing downstream activators of ABA 

signalling in seed maturation and germination are equally phosphorylated by the SnRK2.6/Ost1 and 

SnRK1α1/AKIN10 kinases in vitro (Shukla, 2005; Bitrián et al., 2011). SnRK2 kinases phosphorylate 

and inactivate the RAV1 transcription repressor of ABI3, ABI4 and ABI5 genes acting as positive 

effectors of ABA signalling (Feng et al., 2014). ABI3 (SIS10; SUGAR INSENSITIVE 10) is a 

transcription activator, which binds to RY motives [CATGCA(TG)] of seed specific genes involved in 

embryo maturation and early seedling development (Mönke et al., 2012). ABI3 is activated by the 

homologous AP2/B3 domain transcription factor FUS3 and its partner LEC1, which are key regulators 

of late embryogenesis specific gene expression and vegetative phase transitions, and also control the 

stability of ABI3, while repressing ethylene signalling (Lumba et al., 2012). SnRK1α1/AKIN10 is 

reported to interact with and phosphorylate FUS3 conferring its stabilization and thereby inhibiting the 

embryonic-to-vegetative phase transition (Tsai and Gazzarrini, 2012). In comparison, ABI4 (SIS5; 

SUCROSE UNCOUPLED 6; SUGAR-INSENSITIVE 5; SUN6) belonging to the DREB subfamily A-

3 of ERF/AP2 transcription factors, is an important downstream activator of HXK1-dependent glucose 

repression and sugar-induced ABA biosynthesis. In addition, ABI4 is a transcription repressor of COP1, 

which mediates ubiquitination and degradation of HY5 (H-group bZIP56), a key regulator of 

photomorphogenesis and anthocyanin biosynthesis (Xu et al., 2016). In addition, ABI4 is a repressor of 

ACS4/8 genes involved in ethylene synthesis, and thus like FUS3 inhibits ethylene signalling (Dong et 

al., 2016). 

 In the ethylene signalling pathway EIN2 and EIN3 act as positive regulators of SnRK1 

antagonized leaf senescence, which stimulate the expression of NAC2 transcription factor, a target of 
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microRNA 164 (Li et al., 2013). Inactivation of EIN2 and the ethylene receptor ETR1 results in 

hypersensitivity to glucose (Zhou et al., 1998; Cheng et al., 2002), whereas inactivation of CTR1 (GIN4, 

GLUCOSE INSENSITIVE 4; SIS1; SUGAR-INSENSITIVE 1) repressor of ethylene signalling results 

in sugar insensitivity. Cheng et al. (2002) showed that ethylene signalling represses HXK1-dependent 

glucose-induced transcription of ABSCISIC ACID DEFICIENT2 (ABA2) resulting in downregulation 

of ABA production. Yanagisawa et al. (2003) found that glucose signalling through HXK1 enhances the 

degradation of EIN3 transcription factor, a canonical transcription activator of ethylene responsive genes 

(e.g., ERF1). Recently, Kim et al. (2017) reported that SnRK1α1 interacts with, phosphorylates and 

enhances glucose-induced degradation of EIN3. These data suggests that induction of leaf senescence 

and starch degradation by ethylene could lead to hexose accumulation and activation of HXK1 signalling 

(i.e., glucose repression), which in turn would inhibit photosynthesis and stimulate ABA production. 

Subsequent activation of ABA signalling then might trigger activation of SnRK1 (and SnRK2s) and 

inhibition of ethylene signalling by destabilization of EIN3. It is currently unknown how ethylene-

induced proteolysis of EIN2 and activation of ethylene-induced gene expression through histone 

acetylation by nuclear import of EIN2-C-terminus (Ju et al., 2012; Qiao et al., 2012; Zhang et al., 2017) 

is affected by SnRK1. This model also implies that the CTR1 repressor of ethylene signalling could play 

a positivity regulatory role in ABA signalling, and possibly in the stimulation of SnRK1 and/or SnRK2 

kinases. According to Yasumura et al., (2015), indeed this is the case in the moss Physcomitrella patens, 

but probably in higher plants this function is replaced by another CTR1-related kinase. 

 As mentioned above, ethylene signalling activates transcription of NAC2 TF (also called 

ANAC092 or ORE1) stimulating leaf senescence (Balazadeh et al., 2010). In our laboratory, Kleinow 

et al. (2009) showed that SnRK1α1/2 (AKIN10/11) interact with and phosphorylate another NAC (NO 

APICAL MERISITEM) TF, ATAF1. Silencing of ATAF1 confers dramatic growth reduction and 

developmental defects, while ATAF1 overexpression stimulates starch metabolism, authopagy, amino 

acid catabolism and directly activates TRE1 (TREHALASE 1), which reduces the levels of trehalose 

and T6P (i.e., likely enhancing SnRK1 activity; Garapati et al., 2015). SnRK1α1/AKIN10 was also 

found to phosphorylate two Ser residues of IDD8/NUC (INDETERMINATE DOMAIN/ 

NUTCRACKER) transcription activator of sucrose synthase genes SUS1 and SUS4 (Seo et al., 2011), 

which modulate photoperiodic flowering in response to sugar availability. Inactivation of IDD8 results 

in delayed flowering under long day. Jeong et al. (2015) reported that AKIN10-mediated 

phosphorylation reduces the activity of IDD8 resulting in a similar effect. AKIN10 was found to interact 

with the PTL (PETALOSS) trihelix TF and suggested to control thereby cell division and growth in the 

boundaries between developing flower petals (O’Brien et al., 2015). Furthermore, SnRK1 is reported to 

phosphorylate and promote degradation of WRINKLED1, a member of AP2 TF family, which 

stimulates glycolysis and lipid biosynthesis (Zhai et al., 2017). In barley, SnRK1 interacts with and 

phosphorylates a class I heat-shock protein suggesting its possible involvement in the regulation of 

protein folding and/or heat tolerance (Slocombe et al., 2004). Another putative SnRK1 interacting 
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partner and likely substrate is MYC2, which is apparently destabilized by SnRK1 phosphorylation 

inhibiting its central function in the integration of light and hormonal signalling pathways to control 

stress (e.g. salt) tolerance (Kazan and Manners, 2013; Im et al., 2014). 

 Transcript profiling data of Baena-González et al. (2007) suggests the SnRK1 overexpression 

confers transcriptional downregulation of numerous ribosomal protein genes. Similarly to the roles of 

yeast Snf1 and animal AMPK in inhibition of translation, the translation initiation factor eIFiso4G1 was 

reported to be phosphorylated by SnRK1 in response to hypoxia and dark-treatment (Cho et al., 2016). 

In analogy to Snf1 and AMPK, SnRK1 appears to repress translation by negative regulation of mTORC1 

signalling (Xiong and Sheen, 2014; Dobrenel et al., 2016). As mentioned above, mammalian mTORC1 

controls protein synthesis by inhibition of eIF4E-binding proteins and activation of S6 kinases that 

stimulate translation initiation, elongation, and ribosome biogenesis (Ma and Blenis, 2009). Arabidopsis 

TORC1 is also associated with the RAPTOR and LST8 subunits, and interacts with and activates the S6 

kinases S6K1/2 (Mahfouz et al., 2006; Xiong and Sheen, 2012; 2014). Similarly to human mTORC1, 

Arabidopsis TORC1 appears to inhibit autophagy probably through downregulating the activity of 

ATG1-ATG13 kinase complex (Liu and Bassham, 2010; Suttangkakul et al., 2011). By contrast, SnRK1 

overexpression inhibits autophagy by inhibition of TORC1 (Soto-Burgos and Bassham, 2017). 

Accordingly to Xiong et al. (2013), activation of TORC1 by leaf-derived sugars stimulates meristem 

growth via TORC1-mediated phosphorylation and stimulation of E2F transcription activators of genes 

involved in DNA replication and entry into the G1/S phase of cell cycle. In comparison, S6K1 was found 

to phosphorylate the E2F-binding pocket of RBR tumour suppressor, which binds and thus inactivates 

the E2F TFs (Henriques et al., 2010). In addition, sugar/auxin-mediated activation of TORC1 and 

subsequent phosphorylation of S6K on Thr499 was found to stimulate phosphorylation of translation 

initiation factor eIF3h, which is required for reinititation of translation on mRNAs carrying inhibitory 

upstream open reading frame (uORF, Schepetilnikov et al., 2013). How TORC1 and S6K control the 

translation of uORF-containing S1-group bZIP mRNAs is unclear but this observation apparently 

contradicts the previous reports on sucrose repressed translation of S1 bZIP mRNAs. Like mammalian 

AMPKs, SnRK1 is reported to phosphorylate the RAPTOR regulatory subunit of Arabidopsis TORC1 

(Nukarinen et al., 2016). Glucose–TORC1 signalling stimulates transition of young germinating 

seedlings to photoautropic growth, including the activation stem cell inducer WUSCHEL (Pfeiffer et 

al., 2016), and many other genes involved in ribosome biogenesis, DNA replication, cell cycle control, 

transcription and RNA processing (Xiong et al., 2013). Although several key regulators of mTORC1 

signalling, such as TSC2 (tuberous sclerosis complex 2) and AXIN are not present in plants and so far 

no information is available about possible existence of membrane-bound fructose aldolase sensor in 

TORC1 complexes, these studies indicate that antagonistic regulation of cellular pathways by regulatory 

interactions between TORC1 and Snf1/AMPK/SnRK1 complexes are largely conserved in plants. 

Further studies of these regulatory interactions are expected to provide a deeper insight into mechanisms 

underlying the control of plant growth and stress responses by nutrient availability. 
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Finally, it is important note that so far all results on the regulation of metabolic enzymes and 

transcription factors (see below) by SnRK1-mediated phosphorylation are based on in vitro kinase 

assays and phosphopeptide analyses using total protein extracts or partially purified enzymes from wild 

type, SnRK1 overexpressing or SnRK1 silenced plants, tissues and protoplasts. Thus, even by using 

known AMPK/SnRK1 substrates, such as the SAMS or AMARA peptides (Davies et al., 1989), it cannot 

be always safely concluded that the observed changes are directly due to SnRK1 and not to some other 

SnRK1-regulated protein kinases and/or phosphatases, or SnRK2/3 kinases potentially recognizing the 

same substrates. Unlike for human AMPK (section 1.7), no AS-version of SnRK1α kinase subunits are 

available so far for in vivo confirmation and identification of SnRK1 substrates. 

1.9 Aims of the present work 

Major goals of the present work were  

- The construction of an analogue-sensitive SnRK1α1/AKIN10 kinase and confirmation of its 

activity in vitro and in vivo using kinase reactions with ATPγS and optimization of detection of 

thiophosphorylated substrates by PNBM, 

- Comparison of activities of T-loop mutant (nonphosphorylatable and phosphomimetic 

constitutively active) versions of AKIN10 kinases, and assessment of their effects on plant 

development, 

- Expression of GFP-tagged wild type and analogue-sensitive AKIN10 in transgenic plants for 

purification and comparative analysis of their interacting protein partners by mass spectrometry, 

- Optimization of thiophosphorylation reactions in isolated nuclei and nuclear extracts of AS-

AKIN10 expressing plants for enrichment and identification of thiophosphorylated SnRK1 

substrates. 
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2. Materials and methods 

2.1 Materials 

2.1.1. Chemicals, enzymes and laboratory supplies 

Chemicals and laboratory supplies 

Company Product 

Amersham Biosciences GmbH, Germany ECL blotting detection reagents 

Baker chemicals, Netherland Ethanol 

Biomol GmbH, Germany Caesium chloride 

Bio-rad, Germany Bradford reagent 

Biozym, Germany LE Agarose 

Boehringer Mannheim, Germany Hygromycin B 

Calbiochem Corporation, Germany Ethidium bromide 

Difco Laboratories, USA Bacto agar 
 

Bacto-peptone 
 

Bacto-tryptone 

Duchefa, Netherland Carbenicillin disodium salt 
 

Cefotaxime sodium salt 
 

Phytoagar 
 

Ticarcillin 

Eastman Kodak Company, USA Kodak X-Omat AR-5 Film 

Gibco BRL, Germany 1kb DNA molecular marker 

Heirler Cenovis GmbH, Germany Milk powder 

Invitrogen GmbH, Germany Oligonucleotides 
 

Trizol 

Merck, Germany  2-propanol 
 

Chloroform 
 

D-glucose 

Millipore, USA  Sterivex 0.22μM filter units 

Promega, USA  pGemT vector kit 

Qiagen GmbH, Germany QIAEX II Gel Extraction Kit 

Roth GmbH, Germany Acrylamide 
 

dNTPs 

Serva GmbH, Germany  SDS 
 

Ponceau S solution 

Sigma-Aldrich Co., USA Ampicillin 
 

Kanamycin 
 

Rifampicin 
 

Bromophenol blue 
 

Coomassie-Blue R250 
 

DEPC (diethylpyrocarbonate) 
 

DTT (dithiothreitol) 
 

IPTG (Isopropyl β-D-galactoside) 
 

β-mercaptoethanol 
 

TEMED 
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TritonX-100 

 
Sucrose 

 
Tween-20 

 
Ca-hypochlorit 

 
Protease Inhibitor Cocktail 

 
PMSF (Phenylmethylsulphonyl fluoride) 

 Oxone  

Whatman, USA  3MM paper 

Enzymes  

New England Biolabs, Germany DNase and RNase 
 

Restriction endonucleases 
 

T4 DNA ligase 

 Q5 High Fidelity DNA Polymerase 

 Antarctic phosphatase 

Invitrogen GmbH, Germany Accuprime Taq HIFI 

 SuperscriptII reverse transcriptase  

 Taq DNA polymerase 

Chromatography resins  

GE Healthcare Glutathion Sepharose 4B 

Qiagen Ni-NTA resin 

Thermo Fisher Scientific UltraLink Iodoacetyl Resin  

Chromo Tek GFP Trap 

Sigma-Aldrich HA affinity matrix 

Radiochemicals  

GE Healthcare γ(32P)ATP 

Pipette tips and tubes  

Eppendorf, Germany Pipette tips  
 

PCR, 1.5 mL and 2 mL reaction tubes  

Beckman Instruments Inc., USA Centrifuge tubes 

Corning Inc., USA Falcon tubes 

2.1.2. Bacterial strains 

Escherichia coli strains 

DH5α F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 

Δ(lacZYA-argF)U169, hsdR17(rK–mK+), λ– 

BL21(DE3) pLysS E. coli B F– ompT gal dcm lon hsdSB(rB–mB–) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 

nin5]) [malB+]K-12(λS) pLysS[T7p20 orip15A](CmR) 

JKE201 MFDpir ΔT IV lacIq (JKE201) MG1655 RP4-2-Tc::[ΔMu1:: Δaac(3)IV::lacIq-ΔaphA-

Δnic35-ΔMu2::zeo] ΔdapA::(erm-pir) ΔrecA ΔmcrA Δ(mrr-hsdRMS-mcrBC) Zeocin, 

Erythromycin resistant 

DH10B F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZΔM15 ΔlacX74 endA1 recA1 deoR 

Δ(ara,leu)7697 araD139 galU galK nupG rpsL λ- 

SW102  F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZ M15 ΔlacX74 deoR recA1 endA1 araD139 

Δ(ara, leu) 7649 galU galK rspL nupG [ λcI857 (cro-bioA) <> tet] 

Agrobacterium tumefaciens 

GV3101(pMP90RK) C58C1 RifR, pMP90RK (pTiC58 ΔT-DNA) GmR, KmR (Koncz and Schell,1986) 

http://www.neb-online.fr/en/neb-en/pcr-and-dna-amplification/high-fidelity-pcr/q5-high-fidelity-dna-polymerase/
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2.1.3. Plant materials 

Plant materials 

Arabidopsis thaliana, ecotype Columbia (Col-0), wildtype Koncz and Rédei, 1994 

PIN1-GFP Benková et al., 2003 

PIN2-GFP Xu and Scheres, 2005 

DR5-GFP Liao et al., 2015 

akin10 GABI mutant  GABI_579E09 

2.1.4. BAC clones 

Gene   AGI Gene number BAC clone name 

AKIN10  At3g01090 T4P13 

(Data from TAIR [www.arabidopsis.org]) 

2.1.5. Plasmid vectors and construct 

2.1.5.1. Plasmid vectors 

Plasmid vectors Reference 

pET201  Bhalerao et al. (1999) 

pPCV702 Koncz et al. (1994) 

pGemT Promega 

pGemT-Km-araC-ccdB kindly provided by Mihály Horváth 

pGAP-Hyg Bitrián et al. (2011) 

pGAP-Km Bitrián et al. (2011) 

pBSKII-GFPPIPL kindly provided by Sabine Schaefer 

2.1.5.2. Plasmid constructs 

Plasmid constructs Bacterial resistance Plant resistance 

pET201-AKIN10-His AmpR 
 

pET201-M119G-His AmpR 
 

pET201-T175A-His AmpR 
 

pET201-T175D-His AmpR 
 

pET201-M119G-His NO AID AmpR 
 

pET201-T175A-His NO AID AmpR 
 

pET201-T175D-His NO AID AmpR 
 

pET201-T175E-His NO AID AmpR 
 

pPCV702-AKIN10-HA AmpR KmR 

pPCV702-M119G-HA AmpR KmR 

pPCV702-T175A-HA AmpR KmR 

pPCV702-T175D-HA AmpR KmR 

pPCV702-AKIN10-HA NO AID AmpR KmR 

pPCV702-T175A-HA NO AID AmpR KmR 

pPCV702-T175D-HA NO AID AmpR KmR 

pPCV702-T175E-HA NO AID AmpR KmR 

pGAP-AKIN10-GFPPIPL AmpR KmR/HygR 

pGAP-AKIN10M119G-GFPPIPL AmpR KmR/HygR 

https://www.arabidopsis.org/servlets/TairObject?id=503213846&type=polyallele
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pGAP-AKIN10T175A-GFPPIPL AmpR KmR/HygR 

pGAP-AKIN10T175D-GFPPIPL AmpR KmR/HygR 

pGAP-AKIN10-mCherry AmpR KmR/HygR 

pGAP-AKIN10M119G-mCherry AmpR KmR/HygR 

pET201-NAP57-His AmpR 
 

pET201-DEAD-box-His AmpR 
 

pET201-TRH1-His AmpR 
 

pET201-Thioesterase-His AmpR 
 

pET201-Ribosomal protein S5-His AmpR 
 

2.1.5.3. Oligonucleotides 

2.1.5.3.1. Oligonucleotides for site-directed mutagenesis 

AKIN10-5Short ggtacaaggatccgATGGATGGATCAGGCACAGGCAG 

AKIN10M119G-3 CTCACCAGAGTTCACATACTCtccGACAAGATAAATATCTGTGGG 

AKIN10T175A-3 GGACTTCCACAACTagcCTTCAAAAAATGACCATCTC 

AKIN10T175D-3 GGACTTCCACAACTatcCTTCAAAAAATGACCATCTC 

AKIN10T175E-3 GGACTTCCACAACTctcCTTCAAAAAATGACCATCTC 

AKIN10-3 long gtggtggtgatcaaagcttgtcgacTCAGTGATGGTGATGGTGATGGAGGAC 

AKIN10-3 short No AID gtggtggtgatcaagcttgtcgacTCATTTTGCCTGTTGCACAGTATCTGGAG 

2.1.5.3.2. Oligonucleotides for recombineering 

Replacement of Stop codon with Km-ccdB  

AKIN10KmccdB-STOP FW TCTTGTTCTTGGATCTGTGTGCTGCTTTTCTTGCTCAGCTCCGAGT

CCTCgccgccatgaccgtcccgtc  

AKIN10KmccdB-STOP RW AAAAAAAAGGAATAAGTGGGGATTATTCTTGAAGAGGTCCGGTT

TAGTATgagctcttatattccccagaacatcagg 

Replacement of M119 with Km-ccdB  

AKIN10KmccdBM119Fw TCATCCGTCTCTATGAGGTTATAGAGACTCCCACAGATATTTATC

TTGTCgccgccatgaccgtcccgtc 

AKIN10KmccdBM119Rw CTACCCTTCTCAACAATATAGTCAAATAGCTCACCAGAGTTCACA

TACTCgagctcttatattccccagaacatcagg 

Replacement of T175 with Km-ccdB  

AKIN10KmccdBT175Fw TTGCTGATTTTGGCCTGAGCAACATAATGCGAGATGGTCATTTTT

TGAAGgccgccatgaccgtcccgtc 

AKIN10KmccdBT175Rw agggctgaagcacttacCTCTGGAGCGGCATAATTTGGACTTCCACAACTga

gctcttatattccccagaacatcagg 

PCR amplification of GFPPIPL 

AKIN10GFPPIPL5 TCTTGTTCTTGGATCTGTGTGCTGCTTTTCTTGCTCAGCTCCGAGT

CCTCatggtgagcaagggcgaggag  

AKIN10GFPPIPL3 TCTTGTTCTTGGATCTGTGTGCTGCTTTTCTTGCTCAGCTCCGAGT

CCTCatgggtcatgatgatcatcaccatg 

PCR amplification of mCherry 

AKIN10mCherKm5 TCTTGTTCTTGGATCTGTGTGCTGCTTTTCTTGCTCAGCTCCGAGT

CCTCatggtgagcaagggcgaggag 

AKIN10mCherKm3 AAAAAAAAGGAATAAGTGGGGATTATTCTTGAAGAGGTCCGGTT

TAGTATTACGCTAGGGATAACAGGGTAATATAGggtaa 

Mutating M119 to G by replacing Km-ccdB 

AKIN10M119GFw TCATCCGTCTCTATGAGGTTATAGAGACTCCCACAGATATTTATC

TTGTCGGAGAGTATGTGAACTCTGGTGAGCTATTTGAC 
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AKIN10M119GRw CTACCCTTCTCAACAATATAGTCAAATAGCTCACCAGAGTTCACA

TACTCTCCGACAAGATAAATATCTGTGGGAGTCTC 

Mutating T175 to A by replacing Km-ccdB 

AKIN10T175AFw TTGCTGATTTTGGCCTGAGCAACATAATGCGAGATGGTCATTTTT

TGAAGgctAGTTGTGGAAGTCCAAATTATGCCG 

AKIN10T175ARw agggctgaagcacttacCTCTGGAGCGGCATAATTTGGACTTCCACAACTag

cCTTCAAAAAATGACCATCTCGCATT 

Mutating T175 to D by replacing Km-ccdB 

AKIN10T175DFw TTGCTGATTTTGGCCTGAGCAACATAATGCGAGATGGTCATTTTT

TGAAGgatAGTTGTGGAAGTCCAAATTATGCCG 

AKIN10T175DRw agggctgaagcacttacCTCTGGAGCGGCATAATTTGGACTTCCACAACTat

cCTTCAAAAAATGACCATCTCGCATT 

Gap repair primers  

AKIN10FLANK1 EcoRI 5’ ggggtgttgGAATTCCTTTTGCCTACTGCTGGTTGGGTC 

AKIN10FLANK1 SalI 3’ gggttgtggGTCGACGCTATTGCAGCACCATGTCTTGTCC 

AKIN10FLANK2 SalI 5’ ggaacaccgGTCGACCACGCCAGAGAACAACAACACATCAG 

AKIN10FLANK2 BamHI 3’ ccgttgtggGGATCCGTTGTGTCTTCGCCGAGATTCTTACC 

PCR for sequencing the M119G,T175A/D replacement 

AKIN10-5A AAGGTTGCTATCAAGATCCTCAATCGTC 

AKIN10-3A CACAGCTCCAGACATCTACTTCAGGG 

PCR for sequencing the stop codon replacement 

AKIN10seq5 GAAGCAGCTGTTAAGTCGCCCAA 

AKIN10seq3 TTGGTGGCATGATGCACTACAAGTTATG 

PCR for sequencing the GFP junctions 

GFP5seqR : CCGGACACGCTGAACTTGTGG  

GFP3seqF : TGCTGCCCGACAACCACTACCT 

2.1.5.3.3. Oligonucleotides for CaMV 35S promoter driven expression of modified AKIN10 cDNA 
constructs in plants  

AKIN10-5F ggtacaaggatccgATGGATGGATCAGGCACAGGCAG 

AKIN10HA-long-3 gtggtggtgatcaaagcttgtcgacTCAagcataatctggaacatcgtatggataGTGATGGTGATGGTGATGGAGGAC 

AKIN10HA-short-3 gtggtggtgatcaTCAagcataatctggaacatcgtatggataGTGGTGGTGGTGGTGGTGCTC 

Primers for Sequencing 

AKIN10seq1F ATGGATGGATCAGGCACAGGCAG 

AKIN10seq2F TGCAGGAGGATGAGGCGAGGAAC 

AKIN10seq3R GTTTCGATGGCAGTATTCCACTCCTG 

AKIN10seq4F GTTGCACAGTATCTGGAGGAGGAACAG 

AKIN10seq5F ATGACGGAAGTCCTGAAAGCCCTG 

AKIN10seq6R AGCATAATCTGGAACATCGTATGGATAGTG 

2.1.5.3.4. Oligonucleotides for putative SnRK1 substrates  

NAP57-5  taacgtggatccATGGCGGAGGTCGACATCTC 

NAP57-3 tgaactctcgagTCATTCCTCATCATCCTCACTGTC 

DEADBamHI-5  taacgtggatccATGGAATCCATCATGGAAGA 

DEADSalI -3 tgaactgtcgacTTATATTTCTCCTCTGTAGCCACCCG 

TRH1BamHI-5  taacgtggatccATGGCTGATAGGAGAAACAG  

TRH1SalI -3 tgaactgtcgacCAAGTAATAGTTCATGCCCACTT 

http://nc2.neb.com/NEBcutter2/enz.php?name=b530b795-&enzname=BamHI
http://nc2.neb.com/NEBcutter2/enz.php?name=b530b795-&enzname=BamHI
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Thioesterase BamHI-5  taacgtggatccATGTTTCTTCAGGTTACCGG 

Thioesterase Xho1-3 tgaactctcgagAACGGCGTCGTCTTGGCGTA 

RibosoSalI S5-5  taacgtgtcgacATGGATGAATCTGAAGGTAG   

RibosoNotI S5-3  tgaactgcggccgcAACTTTACGAGCCAAGGTTCT 

2.1.5.3.5. Oligonucleotides for qRT-PCR 

Primer Sequence 

10F1 GCTCAGTAACTCGATGCACGATAACAAC 

10R1 TGCAAATCCAGTAGATACTTGTCGTCCC 

10F2 GGACTGATGGAATATCAAGGAGTTGGCT 

10R2 ATTCAAATCTTGCAGGGCTTTCAGG 

10-1F1 TTTTTGAGAATGGATGGATCAGGCACA 

10-2F1 AAAAGTAGAATGGATGGATCAGGCACA 

10-3F1 ATCGGAGAATGGATGGATCAGGCACA 

10R3 CAATGCATGCTCAGCTATCTTCACCCTA 

11F1 CAGAGATGAATCCAGCATCATTGAGG 

11R1 AGAAACTGCGGACCGTTAACTCTCTGTAT 

11-1F CCCATCAATCTGATTCTCCTTGTTTCTGTA 

11-2F CAGATTACATCGAAATGGATCATTCATCAA 

11-13F GCTTTTCAGGAAATGGATCATTCATCAA 

11R2 TGATAGCAACCTTATGCCCTGTGACAA 

11-3F2 CCGAGTTTCAGGAGACAACATGGTTC 

11-3R2 GAGACTGAAGTCCAAGAGCCCATTTTC 

12F1 CCATCATCTTACCGACCGTCATCAAA 

12R1 GACACCTAGCTCTCTGAGAAACGCAAC 

B1F1 CTCGATGTTCATAACTTTGTGCCAGAA 

B1R1 GGAGTCCATCCTTGCTCTATGAACACAT 

B1-1F CTCCTCAGGTTCCCGTGGCTC 

B1-2F CTCCTCAGCCCACATTGTTATTCCAC 

B1-3F CGAGTAAATTTCTGAGTCTACTGTTGCTATATTCAT 

B1R2 CACCGCCACATCATTACCTCCTTG 

B2F1 TGGGATAATTGGAAGACAAGAAGTCGG 

B2R1 GTTGAAAGTGTTCCCAGCATCATCTCTA 

B3Fx GCAGTACCGCCACACCTTCAACAC 

B3Rnew CACCACAGTGACAAACTTAGTCCTGAACC 

B3-1F CAATCATTGAGCTAATCATATTCTAGGTTTTTG 

B3-2F GCGACTGATTCCTCAATTTTGATTTTCC 

B3-3F ACGAAATTTGCATTGATATCGAAGTTTTTG 

B3-4F CATTGAGCTAATCATATTCTAGGTTAAGTAAAAACAGAGTT 

B3R2 TGGATAAGATTGCCACCTAGTGCCTTT 

SNF4F GACAGTTCACCAGGCGCTACAGTTG 

SNF4R ATTCGCCAACCGCTCCATCACTT 

 

http://nc2.neb.com/NEBcutter2/enz.php?name=b530b795-&enzname=BamHI
http://nc2.neb.com/NEBcutter2/enz.php?name=47acdcad-&enzname=NotI
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2.1.6. Culture media 

2.1.6.1. LB medium 

Bacto-tryptone  10g/L 

Bacto-yeast extract 5g/L 

NaCl 10g/L 

Bacto-Agar (for solid medium) 20g/L 

Adjust pH to 7.5 with NaOH Autoclave for 20min at 120ºC 

2.1.6.2. YEB medium: 

Beef extract 5g/L 

Bacto yeast extract 1g/L 

Bacto-peptone 1g/L 

Sucrose  5g/L 

Bacto-agar (for solid medium) 15g/L 

Adjust pH to 7.4 with NaOH 2mL of 1M MgSO4 is added after sterilization 

2.1.6.3. MSAR Arabidopsis medium (Koncz et al., 1994) 

MSAR medium  
 

Macro-elements 25mL/L 

Micro-element  1mL/L 

Fe-Na2-EDTA 5mL/L 

CaCl2.2H2O 5.8mL/L 

KI 2mL/L 

Sucrose 5g/L 

Vitamins 2.2mL/L  

phytoagar 7 g/L  

Adjust pH to 5.8 with KOH. Autoclave for 20 min at 120ºC 

2.1.6.4. MSAR stock solutions 

2.1.6.4.1. Macro-elements stocks 

Macro-elements:  1L Stock Solution 

NH4NO3 20g 

KNO3 40g 

KH2PO4 7.4g  

MgSO4 5g 

(NH3)2SO4 3g 

2.1.6.4.2. Micro-elements stocks 

Micro-elements: 1L Stock Solution 

H3BO3 6.2g 

MnSO4.4H2O 16.9g 

ZnSO4.7H2O 8.6g 
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Na2MoO4 250mg 

CuSO4.5H2O 50mg 

CoCl2.6H2O 250mg 

2.1.6.4.3. Fe-Na2-EDTA 

Fe-Na2-EDTA:  1L Stock Solution 

FeSO4.7H2O 5.56 g  

Na2-EDTA 7.45g  

Dissolve chemicals independently, mix the two solutions. Heat for 10-15min at 70-80°C  

2.1.6.4.4. Vitamins 

Vitamins: 1L Stock Solution 

myo-inositol 50g/L 

L thiamine-HCl 2.5g/L 

nicotinic acid 0.5g/L 

pyridoxine.HCl 0.2g/L 

2.1.7. Antibiotics 

Antibiotics Stock solution Working concentration (mg/L) 
  

E. coli  Agrobacterium Arabidopsis 

Ampicillin 50mg/mL in water 100 - - 

Carbenicillin 50mg/mL in water 100 100 - 

Claforan 200mg/mL in water - - 300 

Cloramphenicol  25mg/mL in ethanol 25 50 - 

Hygromycin 15mg/mL in water - - 15 

Kanamycin 100mg/mL in water 25 25 100 

Rifampicin 25mg/mL in methanol 100 100 - 

Ticarcillin 150mg/mL in water - - 150 

All antibiotics were filtered sterilized and stored at -20ºC 

2.1.8. Plant hormones 

Plant hormones Stock solution Working 

concentration 

Abscisic acid (ABA) 10mM in methanol  0.1 to 2µM 

ACC (1-aminocyclopropane-1-carboxylic acid) 1mM in H2O from 10 up to 50µM 

Indole 3-acetic acid (IAA) 2mg/ml dissolved in 0.5N KOH 2mg/l 

2.1.9. General solutions and buffers 

2.1.9.1. DNA electrophoresis solutions 

2.1.9.1.1. 10 x TBE buffer 

Tris-base  107.78 g/L (0.89 M) 

EDTA-Na2-salt  7.44 g/L (0.02 M) 

Boric acid 55.0 g/L (0.89 M) 
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2.1.9.1.2. 10 x TAE buffer 

Tris.HCl (pH 8.0) 1M 

EDTA-Na2-salt   10mM  

Sodium acetate 1M 

2.1.9.1.3. 10 x DNA Loading dye 

Glycerol 50% 

Tris.HCl (pH 8.0) 200mM  

EDTA 500mM 

Bromophenol blue 0.25% 

2.1.9.1.4. DNA extraction & visualization 

Phenol:chloroform:i-amylalcohol: Mix at ratio 25:24:1  

EtBr 10mg/ml in water 500μg/l 

2.1.9.1.5. Protease & phosphatase inhibitors, IPTG and β-estradiol stocks 

General solutions and buffers Stock solution Working concentration 

β-estradiol  10mM in DMSO 5-20 μM 

MG-132 50mM in DMSO 5-20 μM 

IPTG 1M in water 1mM 

Na3VO4 phosphatase inhibitor 100 mM 1.0 mM 

NaF phosphatase inhibitor 0.5 M 20 mM 

Protease inhibitor cocktail (Sigma)  1 tablet in 1ml H2O 100x dilution 

2.1.10. Antibodies  

Antibodies Manufacturer Host species Working Dilution 

Primary Anti-GFP Chromotek Rat 1:2000 

Anti-His Roche Mouse 1:2000 

Anti-HA Roche Mouse 1:2000 

Anti-thio-estar Abcam Rabbit 1:5000 

Anti-AKIN10 Agrisera Rabbit 1:1000 

Anti-AKIN11 Agrisera Rabbit 1:1000 

Anti-AKINβ1 Agrisera Rabbit 1:1000 

Anti-AKINβ2 Agrisera Rabbit 1:1000 

Anti-SNF4 Agrisera Rabbit 1:1000 

Anti-Thr172  Merck Millipore Rabbit 1:1000 

Anti-actin Abcam Rabbit 1:500 

Secondary  Anti-Rabbit IgG(H+L) Sigma-Aldrich Goat 1:10000 

Anti-mouse IgG(H+L) Agrisera Goat 1:10000 

Anti-Rat IgG(H+L) Thermo Goat 1:5000 
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2.2. Methods 

2.2.1. General molecular biology methods  

2.2.1.1. Mini-preparation of plasmid DNA from E.coli by alkaline lysis with SDS (Birnboim and 

Doly, 1979) 

A single bacterial colony is inoculated into in 4 ml LB-medium with antibiotics and grown 

overnight (O/N) at 37°C with shaking (250 rpm). Cells from 1.5 ml culture are pelleted in Eppendorf 

tubes by centrifugation at 13 krpm for 3 min in an Eppendorf centrifuge followed by removal of the 

supernatant. The cells are resuspended in 150 µl Solution I and incubated at room temperature for 15 

min, and then lysed with 150 μl Solution II by inverting the tubes several times until obtaining a water 

clear lysate within 5 min. The lysate is then neutralized with 300 l Solution III and incubated for 30 

min on ice to precipitate proteins and cell debris, which are removed by centrifugation at13 krpm for 10 

min at 4°C. Circular plasmid (or BAC) DNA is precipitated by addition of 0.7 or 1 volume of ice cold 

i-propanol and incubation of the samples for at least 30 min on ice. The precipitated DNA is collected 

by centrifugation at 13 krpm at 4°C for 10 min. After removal of the supernatant, the DNA pellet is 

washed with 100 to 200 µl 70% ethanol (-20°C) and dried in a vacuum desiccator for 1 to 5 min. The 

DNA pellet is dissolved in 50 μl low TE (20 mM Tris.HCl (pH 8.0), 1 mM EDTA) containing 400 µg/ml 

RNase I (from 4 mg/l heat-treated bovine pancreatic RNase I stock) and subjected to fingerprinting by 

restriction endonuclease digestions. Alternatively, the DNA is dissolved in 100 μl low TE containing 

RNase I, incubated for 2h at 37°C and then subjected to digestion at 37°C with 500 μg/ml proteinase K 

(Merck, freshly made 5mg/ml stock predigested for 10 min at 37°C) for 2h or O/N. Subsequently, the 

DNA is extracted by equal volume of high TE (50mM Tris.HCl (pH 7.5), 20mM EDTA) saturated 

phenol. After centrifugation the supernatant (i.e., upper water phase) is reextracted similarly twice with 

equal volume of phenol:chloroform-i-amylalcohol (25:24:1), and then with equal volume of ice cold 

chloroform.i-amylalcohol. The supernatant is supplemented with 0.1 vol 3M Na-acetate (pH 5.6) and 

0.7 vol. i-propanol, mixed, incubated on ice for at least 30 min to precipitate the DNA. Finally, the DNA 

is pelleted by centrifugation, washed with 70% ethanol and dried as described above, then dissolved in 

20 to 50 µl sterile ddH20 and subjected to Sanger sequencing or used as template in PCR reactions. 

Solution I  50mM glucose, 50 mM Tris.HCl [pH7.5], 10mM EDTA, 2mg/ml lysozyme 

Solution II 1% SDS, 0.2N NaOH (freshly made from 20%SDS and 0.4M NaOH) 

Solution III 3M sodium acetate pH 4.8 (pH was adjusted with glacial acetic acid) 

2.2.1.2. DNA digestion with restriction endonucleases 

Digestions of DNA samples were performed with restriction endonucleases according to the 

manufacturers’ instructions (New England Biolabs). Reactions were carried out in 1.5 ml Eppendorf 

tubes in a final volume of 20 to 50 µl using 1-5 U enzyme/µg DNA. 
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2.2.1.3. Agarose gel electrophoresis 

DNA fragments are size separated by agarose gel electrophoresis. The concentration of agarose 

gel depends on the size of DNA fragments to be separated.  

DNA fragments ≥ 10Kb 0.5% agarose 

DNA fragments 0.5-10Kb 1.0% agarose 

DNA fragments ≤ 500bp 2.0% agarose 

The agarose powder is mixed with necessary volume of 1xTBE or 1xTEA buffer in an 

Erlenmeyer bottle and boiled in a microwave oven until a water clear solution is obtained. After cooling 

down to about 40-45°C, ethidium bromide is added to a final concentration of 0.5μg/ml, and the gel is 

casted in an electrophoresis tray with a slot former comb. DNA samples are mixed with 0.1 vol. of 10 x 

DNA loading dye and pipetted into the gel wells along a size marker, such as 1kb DNA ladder or HindIII 

digested λ-phage DNA. The samples are separated in TBE gels by 120-150V and in TEA gels by max. 

80V current, and then the DNA bands are visualized under UV light (254nm) and photographed (e.g., 

using a Kodak DC-120 digital camera and a Kodak Digital Science 1D V 3.0.2. software). 

2.2.1.4. Isolation of DNA fragments from agarose gel 

For isolation of DNA fragments, the gel is illuminated by an UV source of 365nm, the DNA 

bands are excised by a scalpel and transferred into dialysis tubes (Serva Wisking MWCO 12 000 -14 

000, boiled in 10mM EDTA) and filled up bubble free with 100-150μl electrophoresis buffer before 

closing the tubes with clamps (Sigma-Aldrich). The dialysis tubes are placed in electrophoresis 

chambers with just enough buffer to cover them, and then the DNA is eluted to the wall of dialysis tubes 

by applying current (as for electrophoresis). By reversing the current polarity for 1min, the DNA is 

released from the wall of dialysis tube, and then pipetted over into an Eppendorf tube and purified by 

phenol-chloroform extraction as described in 2.2.1.2. Alternatively, the DNA fragments can also be 

purified using the QIAEX II Gel Extraction Kit according to the recommended protocol, but the yield is 

gradually decreased by increasing the fragment size above 5kb in this case. 

2.2.1.5. Measurement of nucleic acid concentration 

DNA and RNA concentrations were measured at OD260 using Nanodrop 1000 

spectrophotometer. OD260 1.0 equals with 50 μg/mL of dsDNA, 33 μg/mL of ssDNA, 20-30 μg/mL of 

oligonucleotide, and 40 μg/mL RNA solution. The purity of nucleic acids is sufficient when the 

OD260/OD280 is ~1.8 for DNA and ~2.0 for RNA.  

2.2.1.6. Dephosphorylation of DNA 5’ ends by Antarctic calf-intestine alkaline phosphatase (CIAP)  

CIAP catalyzes the removal of 5’-phosphate groups from DNA and RNA, which is essential for 

preventing self-ligation of linearized plasmid DNAs used for cloning of DNA fragments. 2 units of CIAP 
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is added to dephosphorylate 1 µg linear DNA by incubation for 30 min at 37°C in 50 mM Tris.HCl (pH 

8.0), 10 mM MgCl2, 100 mM NaCl, 1 mM dithiothreitol, or 100 mM Tris-HCl (pH 8.0). 

2.2.1.7. DNA ligation and filling out the DNA ends with Klenow fragment of DNA polymerase I or 

T4 DNA polymerase 

Ligation of linearized plasmid vectors and DNA fragments carrying compatible restriction 

endonuclease cleaved or blunt ends is performed in 10µl final volume with 1µl of T4 DNA ligase (5U; 

New England Biolabs, NEB) in ligase buffer (50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 1 mM ATP 

and 10 mM DTT) using an approximate vector to insert concentration ratio of 1:5 at 16°C overnight. In 

case of blunt-end ligations, the ligation is performed at room temperature O/N and the ligation mix is 

supplemented with 2 to 5U of T4 RNA ligase. Incompatible sticky ends of DNA fragments are filled-in 

with 1-2U of Klenow fragment of DNA polymerase I in fill-in buffer (500mM Tris-HCl (pH 7.2), 100 

mM MgSO4, 1 mM DTT, 0.5 mM dNTPs) or with 1 to 5U of T4 DNA polymerase in buffer (33 mM 

Tris-acetate (pH 7.5), 66 mM potassium acetate, 10 mM magnesium acetate, 5 mM DTT and 0.5mM 

dNTPs) at room temperature for 30 min. T4 DNA polymerase is similarly used for removal of single 

stranded 3’ overhangs. 

2.2.1.8. PCR (Polymerase Chain Reaction 

2.2.1.8.1. PCR with recombinant Taq DNA polymerase  

20 µl final volume 

10X PCR buffer  2 µl 

10 mM dNTP mixture 1 µl 

primer 1 (10 µM) 2 µl 

primer 2 (10 µM) 2 µl 

Template DNA 10-20 ng 

Taq DNA polymerase (5 U/µl) 0.2 µl 

Autoclaved distilled water X to 20 µl 

2.2.1.8.2. PCR with Q5 high fidelity DNA polymerase (NEB) 

100 µl final volume 

Q5 PCR buffer 5X 20 μl 

Q5 PCR Enhancer 5X 20 µl 

10 mM dNTP mixture 4 µl 

primer 1 (10 µM) 5 µl 

primer 2 (10 µM) 5 µl 

Template DNA 10-20 ng 

Q5 DNA polymerase (5 U/µl) 1 μl 

Autoclaved distilled water  X to 100 µl 

2.2.1.8.3. The PCR program 

The PCR program in a Bio Rad Multi-cycler PTC 240 Tetrad TM 2 machine: 

http://www.neb-online.fr/en/neb-en/pcr-and-dna-amplification/high-fidelity-pcr/q5-high-fidelity-dna-polymerase/


Materials and methods 

42 

1. initial denaturation  95oC 5 min 

2. denaturation  95oC    30sec 

3. primer annealing Tm       30 sec 

4.chain extension 68 or 72oC   1min/kb DNA fragment length 

5.final extension 72oC    10min 

6. storage  4oC   forever 

The cycles of PCR (usually 35) are performed from step 2 to step 4. The Tm value of primers 

are calculated by the manufacturer and also estimated by using the following calculation: Tm = 4x (G+C) 

+2x (A+T) or using the DNA Star Laser Gene Primer Select software. 

2.2.1.9. Transformation of bacteria 

2.2.1.9.1. Preparation of E.coli and Agrobacterium GV3101 (pMP90RK) electro-competent cells 

Electrocompetent E. coli and Agrobacterium tumefaciens cells were prepared according to 

Dower et al. (1988). E. coli strains were streaked out onto LB medium containing appropriate antibiotics 

(if necessary) and grown for 12h at 37oC. Agrobacterium GV3101 (pMP90RK) was grown on YEB 

plates containing either rifampicin (100mg/L) and kanamycin (25mg/L), or rifampicin and gentamycin 

(25mg/L) at 28°C. Single E. coli colony was inoculated into 5ml LB medium and grown for 12h at 37°C 

with shaking (200 rpm), while Agrobacterium starter culture was prepared similarly in YEB medium 

and grown for 2 days at 28°C. The E. coli starter culture was used for inoculation of 1L LB culture and 

grown at 37°C until reaching a density OD600 0.4-0.6. The Agrobacterium starter was similarly used for 

inoculation  of 1L YEB culture and grown at 28°C to OD600 0.4-0.6. Subsequently, the E. coli and 

Agrobacterium cultures were treated similarly. The cells were pelleted by centrifugation (6,000 g) for 

10-15 min at 4°C, and washed three times with at least 150 ml of ice cold sterile ddH20. Next, the pelleted 

cells were resuspended in 2 ml 10% glycerol and 100 µl aliquots were frozen in liquid nitrogen and 

stored at -80°C, or used for immediately for electroporation. 

 For transformation of E. coli strain SW102, the electro-competent cells were always prepared 

freshly. From a 5 mL starter culture grown O/N at 32°C with the appropriate antibiotics, 100 µl were 

used to inoculate a 10 mL secondary culture. The secondary culture was grown until OD600 0.4-0.6, 

distributed into five 2 mL Eppendorf tubes, and pelleted in a tabletop centrifuge at 8,000 rpm for 1 

minute. The cell pellets from the five tubes were resuspended in 1 mL final volume of LB and incubated 

at 42°C by shaking in a thermoblock for 15 minutes in order to activate the heat inducible genes of Red 

proteins for BAC recombineering. Subsequently, the cells were transferred onto ice and washed three 

times with 1 mL ice-cold sterile ddH2O. The pellet was ultimately resuspended in 50 µL H2O and DNA 

was added. 
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2.2.1.9.2. Electroporation of bacterial cells 

100l aliquots of electrocompetent cells were thawed on ice and mixed with 2.5l ligation mix 

or 100-200 ng plasmid DNA. If ligation mixes were transformed, they were first dialyzed against water 

on a Millipore membrane filter (MFTM 0.025µm VSWP) to remove salts. The mixture of E. coli electro-

competent cells and added DNA was transferred into a pre-chilled electroporation cuvette (BioBudget, 

2mm) and subjected to an electropulse (at 2.5 kV (i.e., 12.5 kV/cm cuvette with), 25 µF, and 200 Ω) for 

4-5 milliseconds in a Bio-Rad Gene Pulser. Agrobacterium cells were similarly transformed using 

electroporation at 400Ω with a primary capacitance of 25µF for 8.0-9.0 msec. Thereafter, E. coli cells 

were resuspended in 1 mL LB and transferred into a centrifuge tube for incubation at 32°C (SW102) or 

37°C (DH5α) for 1-1.5 hours while shaking at 500 rpm. Agrobacterium cells were diluted with 1ml YEB 

medium and incubated for 3h at 28°C. Then, cells were streaked onto LB-agar or YEB-agar plates 

containing the necessary antibiotics and grown O/N at 37°C for E.coli or for two days at 28°C for 

Agrobacterium. 

2.2.1.10. Conjugation of binary vectors from E. coli to Agrobacterium and backwards 

The binary vectors used in our laboratory (pPCV= plant cloning vectors and pGAP= GAP repair 

vectors) carry the oriT (conjugational transfer origin) and oriV (vegetative replication origin) of the 

broad-host range plasmid RK2/RP4. These plasmids can be transferred to other bacteria from E. coli 

strains, which carry defective (non-replicating) RK2 derivatives integrated into their chromosome. The 

Agrobacterium host GV3101 (C58C1 RifR) (pMP90RK) carries an RK2-segment of 48kb from 

pRK2014 integrated into the T-DNA-less helper Ti-plasmid pMP90 (Koncz and Schell, 1984). This 

RK2 segment provides the trfA (trans replicator function A) gene for replication of pPCV and pGAP 

plasmids by the RK2 oriV, as well as Tra operons producing all components of the RK2 plasmid 

conjugation system. Therefore, the pPCV and pGAP vectors can also be back-conjugated into any E. 

coli strain, to test whether their plant DNA inserts are stably maintained in Agrobacterium. 

 For conjugation, the pPCV and pGAP vectors are transformed by electroporation into the E. coli 

donor strain MFDpir ΔTIV lacIq (JKE201, kindly provided by C. Dehio, Biozentrum, University of 

Basel), which is auxotrophic for the production of 2,6-diaminopimelic acid (DAP). 10 ml culture of E. 

coli JKE201 carrying the pPCV or pGPA binary vectors is grown O/N in LB containing 0.3 mM DAP 

at 37°C, while the recipient Agrobacterium GV3101 (pMP90RK) strain is grown for 1 day in 10ml LB 

on 28°C. Next morning, the cultures are diluted back to OD600 0.2-0.3 (E. coli in LB_DAP, Agro in LB) 

and grown up to OD600 0.5 at 28°C. This takes about 60 to 90 min. Then, 2 ml of E. coli and 2 ml of 

Agrobacterium is mixed in a sterile test tube, and 20-30 µl drops from the conjugation mix are placed 

onto a LB-DAP agar plate, dried and incubated at 28°C for 1-2 days. Subsequently, a loop from the 

conjugation mixes is streaked out on YEB-agar containing 100 mg/L rifampicin (Rif100) and 100 mg/l 

carbenicillin (Cb100) to isolate GV3101 (pMP90RK) transconjugants carrying the binary vector from 

E. coli. 
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 The binary vectors can be back-conjugated from GV3101 (pMP90RK) into any E. coli recipient, 

such as DH5α. The binary vector containing Agrobacterium GV3101 (pPM90RK) donor is grown in 

10ml LB-Cb100 liquid, whereas the E. coli DH5α recipient in 10 ml LB O/N at 28°C. The cultures are 

diluted back to OD600 0.2-0.3, and then grown until OD600 0.5. After mixing equal volumes of 

Agrobacterium donor and E. coli recipient, 20-30 µl drops from the conjugation mix are dried onto LB 

agar plate and incubated at 28°C for 1-2 days. Then a loop from the conjugation spots is streaked out 

onto LB-Cb100 plates to grow up single E. coli colonies at 37°C, where Agrobacterium growth is 

inhibited. 

2.2.1.11. Construction of bacterial and plant expression vectors 

The AKIN10 cDNA isoform AT3G01090.1 was cloned by Bhalerao et al. (1999) into the 

BamHI-SalI sites of polylinker of pET201 bacterial expression vector between coding sequences of N-

terminal thioredoxin (Trx) and a C-terminal His6 tags. This pET201-AKIN10 clone was used as 

template for introducing the M119G (ATP-binding pocket modification for AS kinase), and T-loop 

Thr175A, Thr175D and Thr175E amino acid exchanges by PCR-based site-directed mutagenesis into 

the coding sequence of AKIN10. The 3’ mutagenesis primers (AKIN10M119G-3 and 

AKINT175A/D/E-3) were used in combination with the AKIN10-5’ primer to PCR amplify 

mutagenized fragments of the 5’ cDNA coding region. After gel purification, these fragments were used 

as primers in combination with the AKIN10-3’ primer to PCR amplify the mutagenized versions of full 

length AKIN10 cDNA, which were then digested by BamHI (at the 5’-end) and SalI (at the 3’-end), gel 

isolated and cloned into BamHI and SalI sites of pET201. The same mutagenized 5’-fragments were 

used in combination with the AKIN10-3 short No AID primer (2.1.4.3.1) to PCR amplify mutagenized 

versions of a short form of AKIN10 cDNA, which carried a deletion of coding sequences for the C-

terminal regulatory domain starting from the nucleotide position of 873 in the cDNA isoform 

AT3G01090.1. The resulting pET201-AKIN10 expression constructs were used for purification of wt 

and mutagenized forms of AKIN10 kinase from E. coli. 

 To overexpress both full-length and C-terminally truncated forms of AKIN10 carrying 

Thr175A/D/E amino acid exchanges in plants, the modified cDNAs were PCR amplified from the 

pET201 plasmid templates with the AKIN10-5 and AKIN10HA-long-3 or AKIN10HA-short-3 primers 

(2.1.4.3.3), which added coding sequences of a HA-epitope tag and a stop codon in frame to the 3’ end 

of mutagenized AKIN10 cDNA sequences. The PCR products were isolated as BamHI and SalI 

fragments and upon filling in their ends were cloned into filled-in BamHI site located between a 

CaMV35S promoter and nopaline synthase polyadenylation sequences in the plant expression vector 

pPCV702 (Koncz et al., 1994). All AKIN10 constructs were confirmed by full-length Sanger sequencing 

using the primers listed in 2.1.4.3.3. 
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2.2.1.12. BAC Recombineering 

BAC recombineering utilizes bacterial artificial chromosomes (BACs) carrying chromosomal 

segments with 20 to 100 intact genes for targeted gene modifications. Precise modification of genes 

without endonuclease or Gateway aided cloning is achieved by homologous recombination between 

BACs and PCR-amplified DNA fragments that are flanked by 50 nucleotide segments homologous to 

flanks of targeted BAC positions (e.g., start or stop codon of a gene). The BAC recombineering uses the 

λ-Red Exo, Gam, and Beta recombinase proteins for promotion of recombination between short 

homologous sequences. The 5’-3’ exonuclease Exo encoded by Redα generates short single-stranded 

overhangs at the ends of linear double-stranded DNA fragments. Together with Redβ (Beta), which 

promotes annealing of these single-stranded overhangs to complementary sequences, this system allows 

to insert, delete or modify any desired sequence – thus generating simple SNPs or complex gene fusions. 

Additionally, the Gam (γ) protein inhibits the RecBCD nuclease and prevents the degradation of the 

linear dsDNA substrates. 

 The E. coli host SW102 used in our experiments for BAC recombineering carries a defective 

prophage with the Redαβγ genes under the control of the λ phage pL promoter, which is regulated by 

the temperature sensitive cI857 (cIts) repressor. Conditional expression of the recombination proteins is 

initiated by inactivation of the heat-labile repressor at 42°C (Warming et al., 2005). Plant genes modified 

in BACs are transferred by gap-repair into to binary vectors, which are suitable for high-frequency 

Agrobacterium-mediated plant transformation (Bitrián et al., 2011). This latter technology developed in 

our lab originally employed the E. coli galK positive/negative selectable marker gene described by 

Warming et al. (2005). However, the selection for galactose utilization and insensitivity to 2-

deoxygalactose on minimal medium requires couple of weeks lowering the efficiency and speed of BAC 

recombineering. Therefore, the galK positive-negative selectable marker was replaced with an antibiotic 

resistance gene linked to a conditional negative selection marker in our laboratory. M. Horváth inserted 

a PCR amplified fragment of a CmR gene linked to an I-SceI recognition site from the pEL04 vector 

(Lee et al., 2001) into the NaeI site of pGEM-T Easy (Promega Co.) as NgoMIV fragment. 

Subsequently, this was linked to an araC-pAra-ccdB gene cassette, which was inserted into the adjacent 

SpeI-SacI sites of pGEM-T as XbaI-SacI fragment from the plasmid pSW8197 (Le Roux et al., 2007). 

In this construct, the araC repressor controls an arabinose-inducible promoter-diven ccdB DNA gyrase 

inhibitor “killer” gene. Subsequently, the NaeI/NgoMIV CmR fragment was deleted to yield pGEM-T-

araC-ccdB, and a kanamycin resistance (KmR) gene from pACYC177 (Chang and Cohen, 1978) was 

cloned as BspHI fragment into the NcoI site of this intermediate vector, such that an I-SceI cleavage site 

was incorporated between the KmR and araC-ccdB gene cassettes. 

 The BAC recombineering technology based on the use of KmR-araC-ccdB positive/negative 

selection marker includes three steps (Figure 4). First, the KmR-araC-ccdB cassette is PCR amplified 

by two primers, which carry 50 nucleotide homology to sequences flanking the target site, such as the 
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stop codon of AKIN10 gene carried by BAC T4P13 (CmR). The amplified KmR-araC-ccdB cassette is 

electroporated into the BAC containing E. coli strain SW102 upon brief heat-shock induction of the λ-

Red recombinase proteins. Cells, in which the KmR-araC-ccdB cassette is recombined by double cross-

over into the BAC by replacing the AKIN10 codon are selected in the presence of kanamycin and 0.2% 

glucose to suppress the expression of arabinose-inducible promoter driven lethal ccdb gene.  

 

Figure 4. Schematic work flow of cassette insertion and exchange steps in recombineering experiments with 

the AKIN10 gene containing BAC T4P13. 

Because the copy number of BACs is 2 to 5 in E. coli and the selectable cassette is usually 

incorporated only in one of the BACs, the transformed colonies are grown in the presence of kanamycin 

and absence of chloramphenicol to select for the modified BACs. Because BACs do not carry a plasmid 

partitioning function, they are lost from the cells in the absence of selection for their antibiotic (CmR) 

resistance marker. Using primers flanking the stop codon, which is replaced by the KmR-araC-ccdB 

cassette, the loss of unmodified original BACs is screened for, using colony PCR. On this way, we 

obtained E. coli SW102 clones, which carried only BACs with the KmR-araC-ccdB cassette replacing 

the AKIN10 stop codon. 

In the second step, the KmR-araC-ccdB cassette insertion is replaced with the DNA sequence 

of a suitable tag, such as green fluorescent protein (GFP) or mCherry version of the red fluorescent 

protein (RFP). In our case, we used a modified GFP tag, which was fused to the PIPL tag consisting of 
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coding sequences of 38 histidine residues from Arabidopsis CobW homolog PIP-L protein, 2 copies of 

Strep-II tag and a C-terminal HA-tag (PIPL tag). The PIPL tag provides the advantage that the tagged 

proteins can be purified by multiple methods, such as by GFT-Trap, Ni-agarose, streptactin-agarose and 

HA immunoaffity pull-down. Coding sequences of the GFP-PIPL tag were PRC amplified with primers, 

which carried 50 nucleotide homology arms for recombining with sequences flanking the KmR-araC-

ccdB cassette in the AKIN10 gene. This purified PCR fragment was transformed into SW102 carrying 

the modified AKIN10 BAC. To select for replacement of the KmR-araC-ccdB cassette by GFP-PIPL 

sequences, the transformed E. coli SW102 strain was grown in the presence of 0.2% arabinose, which 

induces the expression of ccdB gene causing cell lethality. On this way, colonies carrying the 

replacement of KmR-araC-ccdB cassette with the GFP-PIPL tag in the AKIN10 BAC were obtained 

and verified by colony PCR using primers, which flank the position of the stop codon. 

 Finally, the GFP-PIPL tagged AKIN10 gene was moved by gap-repair into Agrobacterium 

pGAP-Km and pGAP-Hyg plant transformation vectors (Bitrián et al., 2011, Figure 5). For this, two 

DNA segments of about 1kb in length (Flank 1 and Flank 2), located in neighbouring genes upstream 

and downstream of AKIN10 in the BAC, were PCR amplified and cloned as EcoRI-SalI and SalI-BamHI 

fragments into the EcoRI and BamHI sites of pGAP vectors. Subsequently, the resulting pGAP plasmids 

were linearized by SalI, treated by Antarctic phosphatase (CIAP, to prevent self-ligation) and 

transformed into E. coli SW102 carrying the BAC with the AKIN10-GFP-PIPL gene fusion. 

Recombination between Flank1 and Flank2 sequences of pGAP and BAC was selected for by growing 

the transformants on LB-medium with ampicillin (100mg/l) or carbenicillin (100mg/L). Finally, the 

recombinant pGAP clones harbouring the AKIN10-GFP-PIPL construct were isolated, retransformed 

into E. coli DH5α, and followed plasmid DNA isolation were verified by restriction endonuclease 

fingerprinting and Sanger DNA sequencing. 

For expression of an analogue-sensitive version of AKIN10 in Arabidopsis, the gatekeeper 

Met119 codon in the ATP-binding pocket of AKIN10-GFP-PIPL was exchanged for glycine by 

reiterating the above described recombineering procedure. First, the Met119 codon was replaced by the 

KmR-araC-ccdB cassette. 
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Figure 5. Work flow of gap repair step of recombineering. 

For replacement of the KmR-araC-ccdB cassette inserted into the place of Met119 codon, we 

used two synthetic oligonucleotides that carried a Met119G codon exchange, about 25 bp overlap with 

each other and 50 nucleotide homology to the left and right of Met119 codon. These oligonucleotides 

were denatured at 100°C for 10 min, and allowed to anneal by cooling down onto room temperature. 

Then, the single-stranded ends of annealed oligonucleotide pair were filled out by T4 DNA polymerase 

mediated DNA synthesis. Finally, the oligonucleotides were transformed into E. coli SW102 carrying 

the AKIN10-GFP-PIPL BAC with the KmR-araC-ccdB at the position of the Met119 codon. Following 

selection for the loss of KmR-araC-ccdB cassette, the AS-AKIN10-GFP-PIPL gene was rescued by gap 

repair in the pGAP vectors and the codon exchange was confirmed by sequencing. Finally, we have used 

the latter approach for replacing the T-loop Thr175 codon in AKIN10-GFP-PIPL by alanine (A), 

aspartate (D) and glutamate (E) codons. Some necessary details of laboratory protocols of individual 

steps are described below. 

2.2.1.12.1. Cassette insertion 

The BAC T4P13-containing E. coli strain SW102 was grown overnight in LB medium with 50 

µg/mL kanamycin at 32°C to avoid the induction of cIts repressor controlled λ-phage Red recombinase. 

Preparation of electrocompetent SW102 cells for transformation is described in section 2.2.1.9.2. The 

Km-araC-ccdB cassette (2.6 kb) was PCR amplified (section 2.2.1.8.2 and 3) with primers listed in 
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section 2.1.5.3.2 and gel purified before electroporation (with 1 to 5 µg PCR fragment). The transformed 

cells were plated on LB-agar medium containing 25 µg/mL kanamycin and 0.2% glucose and grown at 

32°C for subsequent screening with colony PCR with Taq DNA polymerase (sections 2.2.1.8.1 and 3) 

using specific sequencing primers flanking the targeted AKIN10 gene positions (section 2.1.5.3.2). For 

PCR, single bacterial colonies are picked with a flat toothpick, swirled in 10-15 µl water and replicated 

on LB plates. 1-2 µl of bacterial suspension is used in the PCR reactions. 

2.2.1.12.2. Cassette replacement 

The GFP-PIPL cassette (1.05 kb) was PCR amplified with the primers AKIN10GFPPIPL5 and 

AKIN10GFPPIPL3 (section 2.1.5.3.2) using pBSKII-GFP-PIPL plasmid DNA as template and proof-

reading Q5 High-Fidelity DNA polymerase (NEB, section 2.2.1.8.2). After gel purification, the GFP-

PIPL PCR fragment (1 to 5 µg) was electroporated into E. coli SW102 carrying the BAC with the Km-

araC-ccdB cassette replacement of AKIN10 stop codon. The transformants were plated onto LB medium 

containing 25 µg/mL chloramphenicol and 0.1% arabinose, and grown overnight at 32°C. In the 

presence of arabinose, the growth of cells containing the Km-araC-ccdB cassette is inhibited, in contrast 

to transformants in which the Km-araC-ccdB cassette was replaced with the GFP-PIPL cassette. The 

exchange of Km-araC-ccdB (2.6kb) for the GFL-PIPL (1.05 kb) cassette was monitored by the expected 

change in the size of DNA fragments monitored by colony PCR. 

2.2.1.12.3. Gap repair 

Amplification of flanking fragments was performed with oligonucleotide primers that contained 

added EcoRI and SalI sites for Flank1, and SalI and BamHI sites for Flank2. The PCR fragments of 

Flanks1/2 were digested with the corresponding restriction endonucleases, gel purified and ligated into 

Antarctic phosphatase-treated EcoRI and BamHI sites within the T-DNA of binary vectors pGAP-Hyg 

or pGAP-Km. These gap repair vectors carry a bacterial ampicillin resistance marker, and in their T-

DNAs a kanamycin (Km) or hygromycin (Hyg) selectable marker for plant transformation (Bitrián et 

al., 2011). Triple ligation of vector and flanks was electroporated into E. coli DH10B. The cells were 

plated on LB medium containing ampicillin (100mg/L). Plasmid DNA prepared from the transformants 

was subjected to control EcoRI-SalI, SalI-BamHI and EcoRI-BamHI digestions. To perform gap repair, 

the pGAP-Flank1/2 plasmid DNAs were linearized with SalI between the Flank1 and Flank2 segments, 

and treated with Antarctic phosphatase. A portion of plasmids was then self-ligated and tested for lack 

of transformation by electroporation of E. coli DH10α. Subsequently, the SalI linearized pGAP-Flank1/2 

plasmids (500 ng/2.5 µL) were transformed into electrocompetent SW102 cells carrying the modified 

AKIN10-GFP-PIPL genes in the BAC. Upon electroporation, the transformed culture was incubated in 

1 mL LB for 1h at 32ºC in a shaking thermoblock and then 150µL aliquots were plated on LB medium 

containing ampicillin and incubated at 30ºC for approx. 20h. The appearing transformed colonies were 

screened for the predicted gap repair recombination event by diagnostic EcoRI and BamHI restriction 

endonuclease digestions. All pGAP constructs were then sequenced to verify in frame fusion of the GFP-
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PIPL tag and introduced mutations using primers flanking the positions of performed sequence 

modifications. Finally, the recombinant pGAP-AKIN10-GFP-PIPL constructs were conjugated into 

Agrobacterium GV3101 (pMP90RK) and then back-conjugated into E. coli DH5α for verifying the 

stability of vectors in Agrobacterium by diagnostic restriction endonuclease digestion of plasmid DNAs 

isolated from several back-conjugants. The verified Agrobacterium stocks were subsequently used for 

Agrobacterium-mediated transformation of Arabidopsis plants.  

2.2.1.13. Gene expression analysis by quantitative RT-PCR 

2.2.1.13.1. Large-scale tissue grinding using MixerMill 

Plant tissue was collected in 2 mL Eppendorf tubes and immediately frozen in liquid nitrogen. 

A metal bead was added to each tube. MixerMill was used to grind the tissues in groups of 48 samples 

at 30 Hz for 45 seconds. Mixing was repeated until the samples were completely ground. 

2.2.1.13.2. RNA isolation and DNase-treatment  

RNA extractions were performed using Trizol reagent (Invitrogen), except when an RNeasy 

plant RNA miniprep kit (Qiagen) was used. 800 μL Trizol was added to each homogenized sample and 

vortexed. The samples were kept at RT for 5 min and 200 μL chloroform was added. After centrifugation 

for 15 min with 12,000 rpm at 4 ºC, the supernatant (containing RNA) was transferred to a new tube. 

One volume of i-propanol was added and the samples were incubated for 10 min at RT. After 

centrifugation for 10 min using the same conditions, the supernatant was discarded and the RNA pellet 

was washed with 75% ethanol (made with DEPC (diethylpyrocarbonate)-treated water). After another 

centrifugation of 5 min, the pellet was dried at RT and resuspended in 30 μL of DEPC-treated water. 

The samples were denatured at 55ºC for 3 min. After RNA quantification using Nanodrop and quality 

checking by performing gel electrophoresis, 1 or 2 μg RNA was treated with DNase I (NEB BioLabs). 

1 μL buffer (NEB BioLabs), 1 μL enzyme and water was added to the samples to a final volume of 10 

μL, and the DNase treatment was performed at 65ºC for 5 min. 

2.2.1.13.3. Reverse transcription 

To each reaction tube, 0.5 μL oligo-dT and 0.5 μL random hexamers were added, and the 

samples were incubated at 65°C for 5 min. Subsequently, the tubes were chilled on ice and 4 μL 5xRT 

buffer, 1 μL dNTPs and 2 μL 0.1M DTT were added. The samples were incubated for 2 min at 25°C 

and then 1 μL Superscript II or IV (Invitrogen) reverse transcriptase was added, and the samples were 

sequentially incubated for 10 min at 25°C, 50 min at 42°C and 15 min at 70°C. The obtained cDNA 

samples were stored at -80°C and, before using them as templates in qRT-PCR, were diluted 1:20. 
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2.2.1.13.4. Design and testing the efficiency of qRT-PCR primers 

Oligonucleotide primers were designed using the DNASTAR Primer Select software and tested 

for their specificity by performing Blast searches against the Arabidopsis genome sequence at TAIR, as 

well as for the absence of primer dimer formation using the PerlPrimer open-source software. The 

concentration of cDNA samples was measured using PCR primers designed for the UBQ5 

(AT3G62250) transcript and adjusted close to the same as the concentration of control wt cDNA used 

for generation of internal standard of serial dilutions (1:1, 1:2, 1:4, 1:8, 1:16, 1:32 and 1:64) in each 

measurement. Subsequently, using the control wt cDNA and standard dilution series, the efficiency of 

each primer was tested by recurrent PCR combined with melting curve analysis using a Biorad IQ5 real-

time PCR equipment and IQ5 Optical System Software. For quantification of cDNA levels, the standard 

curve method was followed according to the Biorad PCR Application Guide Bulletin 5279 and User 

Bulletin #2. For quantification of lower cDNA concentrations, alternative primers for the control 

reference genes PDF2 (At1g13320) and TIP41 (At4g34270) were used (Czechowski et al., 2005). The 

dilution standards were always run in the same reaction plates. The expression value from each sample 

was thus normalized to the internal reference. The standard condition for the qRT-PCR reactions was: 

95°C 2 min, followed by 40 cycles (95°C, 15 sec; 60°C, 30 s; and 68°C, 20 sec). The qRT-PCR 

measurements were performed with triplicates and repeated three times with different biological 

replicates. 

2.2.2. Protein methods 

2.2.2.1. Protein purification from E.coli using Ni-affinity chromatography 

cDNAs encoding the proteins destined for purification from E. coli were cloned into the pET201 

expression vector (Bhalerao et al., 1999) in frame with coding sequences of an N-terminal thioredoxin 

and a C-terminal His6 tag. To purify the full length and C-terminally truncated AKIN10 versions 

carrying the M119G and T175A/D/E amino acid exchanges, the pET201 vectors carrying the 

corresponding kinase cDNA sequences were introduced into the E. coli strain BL21 Rosetta by 

electroporation and selection for ampicillin (Amp) resistant transformants. After confirmatory plasmid 

isolation, the transformed strains were gown in LB-broth containing Amp (100 mg/l) at 37°C to an 

optical density OD600: 1.0, and then protein expression was induced by addition of 1 mM isopropyl-

thio-galactose (1 mM IPTG) for 3h. Cells collected by centrifugation (4,000g, 4°C, 20 min) were 

resuspended (5 ml/l culture) in lysis buffer and sonicated (time: Branson Sonifier, 2 minutes; Duty cycle 

50; Output control 5; repeat 3-4 times) to prepare clear extracts by centrifugation (20 min; 12,000 g; 

4°C; Beckmann centrifuge; rotor JA-20). The cleared lysates were loaded onto a NTA (0.2 to 1.0 ml 

Ni2+-nitrilotriacetic acid agarose matrix, Qiagen) column, which was equilibrated with NTA-buffer 

(lysis buffer without DNase and lysozyme). After washing with 100 column volume of NTA-buffer 

containing 50 mM imidazole, the bound proteins were eluted with NTA-buffer (2 x column volume) 

containing 100, 150, 200, 250 and 300 mM imidazol. Aliquots from each eluted fraction were separated 
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on an SDS-polyacrylamide gel (10%) to identify the peak fractions, which were then dialysed against 

kinase buffer (25 mM Tris·HCl (pH 7.8), 15 mM MgCl2, 10% glycerol) or subjected to buffer exchange 

using PD-10 desalting columns (GE Healthcare). The PD-10 column was equilibrated with 20 mL of 

exchange buffer prior loading the sample. Then, the protein was eluted by 9 x 500 µL buffer. Following 

determination of protein concentration, fractions containing the peak of eluted protein were collected, 

supplemented with 10% glycerol and stored at -80°C or at -20°C. 

Lysis buffer: 50 mM HEPES (pH 7.4); 300 mM KCl; 10% glycerol; 40 mM imidazole; 1% Triton X-

100; 1mM EDTA; 1mM PMSF; Sigma Bacterial Protease Inhibitor Cocktail 20 µL/mL; 5mM MgCl2; 

5mM 2-mercaptoethanol; DNase 3U/mL (Worthington, electrophoretically homogeneous); and 

lysozyme 0.5mg/mL. 

Washing buffer: 50 mM HEPES (pH 7.4); 300 mM KCl; 10% glycerol; 50 mM imidazole; 1% Triton 

X-100; 1 mM EDTA; 1 mM PMSF; Sigma Bacterial Protease Inhibitor Cocktail 20 µL/mL; 5 mM 

MgCl2; 5 mM 2-mercaptoethanol. 

Elution buffer: 50 mM HEPES (pH 7.4); 100 mM KCl; 250 mM imidazole; 10% glycerol, 1 mM 

PMSF; 20 µL/mL Sigma Protease Inhibitor Cocktail; 5 mM MgCl2; 5mM β-mercaptoethanol.  

Exchange buffer: 50mM Tris.HCl (pH 7.5); 5mM MgCl2; 50 mM KCl. 

2.2.2.2. Measurement of protein concentration by Bradford assay 

Protein concentration was measured using the Bradford assay (Bradford, 1976). Aliquots (1 to 

10 µl) of protein samples were mixed with 1 ml BioRad Protein Assay Concentrated Dye Reagent, which 

was previously diluted 5 times in water. After 5 min incubation at RT, OD595 value was measured with 

a spectrophotometer. The protein amount was determined by the help of a standard curve obtained 

previously using a series of dilutions of bovine serum albumin (BSA). 

2.2.2.3. Protein kinase assays 

His6-affinity purified wild type and mutant proteins were used in in vitro protein kinase assays. 

The kinase reactions contained 1-2 µg substrate and 0.25-0.5 µg kinase protein in kinase-buffer (50 mM 

Tris-HCl [pH 7.8], 15 mM MgCl2, 1mM DTT, and 5 to 20 µCi [γ-32P] ATP (Perkin-Elmer, 10 mCi/ml; 

6000Ci/mmol), or 1µM ATP). The kinase reactions were incubated for 2 hours at room temperature or 

at 37°C. The reactions were separated by SDS-PAGE (when using TRX-SPS-KD substrate on 14% 

SDS-PAGE). When performing the kinase reactions with [γ-32P] ATP, the SDS-PAGE gel was fixed for 

30 min in 45% methanol, 10% acetic acid, and then dried and placed into an autoradiography cassette 

with an X-ray film and exposed for 15 min up to 4 h. 
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 Thiophosphorylation kinase reactions were performed with 0.5 μg purified wild type AKIN10 

and AS-AKIN10 kinases and 2 μg Trx- KD or SAMS peptide as standard substrates (Bhalerao et al., 

1999; carrying a consensus SnRK1 phosphorylation site from spinach sucrose phosphate synthase) or 

other purified candidate substrate proteins in a total volume of 20 μl of kinase buffer (25mM Tris.HCl 

(pH 7.8), 15mM MgCl2) containing either 0.5 mM ATPγS or N6-phenyl- ATPγS or N6benzyl-ATPγS at 

room temperature for 2h. Subsequently, the pH was adjusted to 4.0 by addition of 3µl 3M K-acetate (pH 

4.0), and 2 µl PNBM (25 mM p-nitrobenzyl mesylate stock dissolved in 5% DMSO) was added to 

selectively alkylate the phosphothiol groups for 30 min at room temperature (Lee et al., 2011). Proteins 

from the kinase assays were resolved by 10% or 14% SDS-PAGE (for TRX-SPS-KD substrate) and 

subjected to western blotting. The thiophosphorylated kinase and substrate proteins were reacted with 

rabbit anti-PNBM-thioester antibody (Epitomics, 1:5000 dilution) and visualized with peroxidase 

conjugated goat anti-rabbit secondary antibody (Vector Co., 1:10,000 dilution) and Enhanced 

Chemoluminescence detection as described in sections (2.2.2.4 and 5). 

2.2.2.4. Size separation of proteins by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein samples are size separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

according to their molecular weight. Between pre-casted Biorad Mini Protean Gel glass plates 4.5 ml of 

12% separating gel solution was pipetted and overlayed with H2O. After polymerization, the H2O was 

carefully removed, a stacking gel layer poured on the top of the separating gel and casted with a 10 or 

15-well comb. The gel was placed into an electrophoresis chamber and protein samples were loaded 

using a pipette and separated in SDS-PAGE by applying 30 mA current. The size of separated proteins 

was estimated using a parallel slot with pre-stained protein markers (Bio-Rad). Before loading, the 

proteins samples were supplemented wint 1/5 volume of 5 x Laemmli sample buffer (2% SDS, 10% 

glycerol, 50 mM Tris.HCl (pH 6.8), 5% β-mercaptoethanol, 0.1% bromophenol blue) and denatured at 

95°C for 5 min. 

Components for two 12% SDS-PAGE gels 

Separation gel (12%) Stacking gel (4 %) SDS-running buffer 

5.4 ml ddH2O 2.4 ml ddH2O 25 mM Tris 

2.5 ml 1.5 M Tris.HCl (pH 8.8) 1 ml 1 M Tris.HCl (pH 6.8) 192 mM glycine 

3.0 ml 29:1 acrylamide to 

bisacrylamide (40%) 

0.5 ml 29:1 acrylamide to bisacrylamide 

(40%) 

0.1% SDS 

0.1 ml 10% SDS 40 µl 10% SDS 
 

50 µl 10% APS 30 µl 10% APS 
 

5 µl TEMED 5 µl TEMED 
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2.2.2.5. Western blotting 

2.2.2.5.1. Transfer of proteins from SDS-PAGE gels onto membranes 

In order to detect proteins with specific antibodies, proteins are transferred from SDS-PAGE 

onto nitrocellulose or Immobilon-P PVDF (Polyvinylidene fluoride) membranes. The stacking gel is 

removed and the separating gel is equilibrated in 1 x Transfer buffer for 5 min. Then, a transfer 

“sandwich” is assembled from the following components: sponge layer, 3xWhatman gel blot paper, 

SDS-PAGE gel, nitrocellulose/PVDF membrane, 3xWhatman gel blot paper, and sponge layer. This 

sandwich placed in a wet blotting transfer apparatus such that the membrane faces the anode and the gel 

sandwich is fully submerged in Transfer buffer. Protein transfer is performed either for 1-2 h at 24 V or 

overnight at 10V. 

1x Transfer buffer (stock is 5x concentrated): Do not adjust pH 

50mM  boric acid 

50mM  Tris base 

2.2.2.5.2. Antibody probing 

After protein transfer, the nitrocellulose/PDVF membrane is incubated in blocking solution for 

1 h at room temperature or at 4°C overnight. Then, the membrane in blocking solution is incubated with 

diluted primary antibody for 2h followed by washing the membrane 3 times for 10 min with washing 

buffer. Subsequently, the filter is incubated for 1.5 h with a horseradish peroxidase conjugated secondary 

antibody diluted in blocking solution. The membrane is then washed 3 times for 10 min with washing 

buffer.  

TBS 137 mM NaCl, 2.7 mM KCl, 20 mM Tris.HCl(pH7.4) 

Blocking solution: 5% milk powder in 1X TBS with 0.2% Tween-20 

Washing buffer: 1X TBS with 0.2% Tween-20 

2.2.2.5.3. Detection of chemiluminescent signal 

To visualize the position of proteins using horseradish peroxidase conjugated second antibodies, 

an enhanced chemiluminescence (ECL) detection kit is used. An 1:1 mixture of the two ECL reagents 

is freshly prepared and applied onto the nitrocellulose/PVDF membrane. Light emission is captured on 

HyperfilmTM by autoradiography and the films are developed in Optimax X-ray Film Processor. 

2.2.2.6. Protein silver staining  

The silver staining kits were purchased from Carl Roth. The procedure of protein silver staining 

were followed the procedures in the manual.  
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2.2.3. Plant Methods 

2.2.3.1. Agrobacterium-mediated plant transformation by vacuum infiltration (Bechtold et al., 

1993; Clough and Bent, 1998) 

Arabidopsis Col-0 plants are cultivated in short day photoperiod in 10 cm pots (10-12 

plants/pot). Prior transformation, the siliques are removed to increase the transformation efficiency. 

Agrobacterium strains with pPCV/pGAP binary vectors are grown in 500 ml YEB Cb100 medium at 

28°C to OD600 of 0.8 to 1.0, harvested by centrifugation (4°C, 10,000g) and resuspended in infiltration 

medium containing 4.3g/l MS basal salt mixture, 1X B5 vitamin, 3% sucrose, 5 mM MES (pH 5.7), 

0.05μM BAP, and 0.005%(v/v) Silwet L-77. Arabidopsis plants are submerged in the Agrobacterium 

suspension followed by application of vacuum for 5 minutes two times. Subsequently, the plants are 

covered with plastic bags for 2 days to secure slow adaptation to lower humidity. After 12 weeks seeds 

are collected in paper bags, dried and subjected to selection for the Agrobacterium T-DNA encoded 

antibiotics resistance markers by germination on MSAR agar medium (Koncz et al., 1994). 

2.2.3.2. Seed sterilization  

About 100 μl Arabidopsis seed in Eppendorf tube is treated with 1ml of ethanol by turning in a 

roller for 5 min. After removal of ethanol, 1 mL 5% Ca(ClO)2 containing 0.1% Triton X-100 is added 

and the tubes are rolled for 15 min. Subsequently, the seeds are pelleted by centrifugation at 6,000 rpm 

for 1 min in an Eppendorf tabletop centrifuge. The hypochlorite solution is removed and the seed sample 

is washed three times with 1ml sterile distilled water. Subsequently, the seeds are suspended in 1ml 

sterile water, and directly plated onto selective MSAR medium. Alternatively, the sterilized seeds are 

dried after the final washing step leaving open the Eppendorf tubes for overnight in a sterile hood, stored 

at 4°C and sawn any time within 2-3 weeks. To stimulate germination, the sawn seeds on MSAR plates 

are subjected to stratification for 24 to 48h at 4°C. 

2.2.3.3. Selection of primary transformants 

The seeds are sawn on 0.5 MSAR medium containing 0.5% sucrose and appropriate antibiotics 

to select for the T-DNA encoded resistance marker. The plates are supplemented with 

ticarcillin/clavulanic acid to kill surviving Agrobacterium that may be protected within the seed coat 

after sterilization. Resistant seedlings (primary transformants) are transferred to soil and further 

cultivated in the greenhouse. 

2.2.3.4. Segregation analysis of T2 generation seeds  

The T2 generation seeds are germinated in 0.5 MSAR medium containing antibiotics to select 

for the T-DNA encoded resistance marker, and the segregation is counted by screening for lines showing 

a 3:1 ratio of resistance to sensitivity, in order to identify lines carrying single locus T-DNA insertions.  
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2.2.3.5. Crossing of Arabidopsis plants 

On each floral axis flower buds are accessible for crossing Arabidopsis until they are still closed. 

Upon removal all open flowers and young siliques from the inflorescence axis selected for crossing, 3 

to 5 closed flower buds are emasculated with pointed pairs of forceps taking off the sepals and petals 

using a magnifying glass headset. An open mature flower is taken from the crossing partner plant and 

its stamens are used to fertilize the prepared carpel by touching it several times. 

2.2.4. Plant protein isolation and purification  

2.2.4.1. Plant total protein extraction and pull down of GFP and HA tagged AKIN10 kinases with 

GFP-Trap and anti-HA antibody matrices 

In order to identify target protein complexes in vivo, the bait proteins are fused GFP, GFP-PIPL 

or HA tags and expressed by native gene constructs in transgenic plants. For monitoring the expression 

of target proteins, and for their subsequent purification and identification of interacting partners, protein 

extracts are prepared from whole sterile seedlings or shoots of soil grown plants prior onset of flowering. 

For analytical purposes, 1g plant material is grinded in liquid nitrogen with 1.5 ml extraction buffer. The 

extract is let to thaw on ice for about 30 min and then subjected to centrifugation for 15 min at a 

maximum speed (15,000 rpm) for 15 min in an Eppendorf centrifuge at 4°C. The supernatant is 

transferred into a new tube and protein concentration is measured. At the same time, 25ul GFP-Trap 

(ChromoTek) bead is equilibrated with 3 x 200 µl Equilibration buffer and then washed with 1ml 

extraction buffer. Subsequently, the equilibrated GFP-Trap resin is incubated with the protein extract 

for 2h at 4°C. After removing the supernatant (which is stored as control, along with an aliquot of input 

extract), the GFP-Trap resin is washed with 3 x 1 ml washing buffer three times. The bound proteins are 

then eluted from the GFP-Trap resin with 2 x 20 µl 0.1% TFA (each time 2 min incubation time) and 

the eluted protein fractions are neutralized by addition of 4 µl 1M Tris base. The eluted fractions are 

resolved by SDS-PAGE and analyzed for the presence of the isolated GFP-tagged protein and its 

partners by western blotting. 

 Modified AKIN10 kinase derivatives carrying an HA-tag (i.e., expressed from cDNA constructs 

or genomic constructs fused to coding sequences of PIP-L tag) were isolated using the above protocol 

in combination with pull-down using an immobilized anti-HA antibody matrix (Biotool). Total protein 

extract prepared from 1g starting plant material was incubated for 2h at 4°C with a 30μl aliquot of anti-

HA-agarose resin, which was previously equilibrated as described above. For subsequent western 

blotting and mass spectrometry analysis, the resin was washed as in case of the GFP-Trap, and then 

bound proteins were eluted with 2 x 30 µl 100 mM glycine-HCl (pH 3.0; each time with 2 min incubation 

time) and neutralized by immediate addition of 4 µl 1M Tris base. Alternatively, after washing the anti-

HA-agarose matrix with bound proteins was suspended in 30 μl kinase buffer containing 2 µg Trx-SPS-

KD substrate and 20 μCi (γ-32P)ATP and kinase reactions were performed as described in section 2.2.2.3. 
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Followed addition of 5 x Laemmli sample buffer, the samples were denatured for 5 min at 95°C, 

centriguged (13 krpm, Eppendorf centrifuge) and the supernatants were resolved by SDS-PAGE.  

 For LC/MS mass spectrometry analysis of GFP-Trap isolated protein complexes the protocol is 

scaled up. 15g of leaf and stem material of about 3 week’s old greenhouse grown seedlings or 2 weeks 

old sterile seedlings is harvested and ground to fine power in liquid nitrogen using 30 ml of extraction 

buffer with freshly added DTT, PIC and PMSF. After about 1h thawing on ice, the crude extract is 

subjected to centrifugation in Beckmann JA20 rotor at 12.000 rpm (about 17.000g) for 20 min at 4°C. 

The supernatant is then divided into 3 equal 10 ml aliquots into Falcon tubes to set up three technical 

parallels. For each aliquot, 50 µl GFP-Trap (ChromoTek) resin is washed 3 times with extraction buffer 

in 1.5 mL Eppendorf tubes. Then, the GFP-Trap suspension in 100 μl extraction buffer is added to the 

10 ml aliquots of protein extract in Falcon tubes and incubated for 2 hrs at 4°C in the cold room. Next, 

the GFP-trap resin is pelleted by centrifugation at (500 rpm, Heraeus centrifuge) at 4°C and washed 1 

times with 10 ml wash-buffer, 2 times with wash-buffer containing 300 mM NaCl followed each time 

by centrifugation. Finally, the GFP-trap resin is suspended in 1ml washing buffer and transferred into 

1.5ml Eppendorf tube. The bound proteins were eluted by 50 µl 0.1% TFA and the solution is neutralized 

by addition of 8 μl 1M Tris-base. The eluted protein samples are subsequently submitted for analysis by 

the Protein Mass Spectrometry Service at the MPIPZ. 

Extraction buffer Freshly added supplement during extraction: 

50 mM Tris-HCl (pH7.8)  2mM DTT  

10% glycerol  0.5mM PMSF  

1 mM EDTA  1mM MG132 proteasome inhibitor  

1 mM EGTA  20µL/mL Proteinase Inhibitor (Sigma, 100X dilution) 

1% Triton-X100 
 

Equilibration and Wash buffer: 
 

20 mM Tris-HCl (pH 7.8) 
 

5 mM MgCl2 
 

150 mM NaCl  
 

2.2.4.2. Isolation of nuclei and GFP-Trap purification of SnRK1 complexes from nuclear extracts 

For initial optimization of thiophosphorylation with bulky N6-substituted thio-ATP derivatives, 

nuclei from 4-weeks-old Arabidopsis seedlings were isolated as described by Németh et al. (1998). 

Briefly, 220g plant material was harvested, washed twice with cold water and dried between paper 

towels before homogenizing with an Ultraturax rolling knife homogenizator (3x5 sec. high speed bursts) 

in the cold room in 440 ml nuclear isolation buffer (NIB; 10 mM HEPES(pH 5.5), 10 mM MgCl2, 25 

mM NaCl, 10 mM KCl, 2.5 mM EDTA, 0.15 mM spermine, 0.5 mM spermidine, 0.25% Triton X-100, 

0.2 M sucrose, 2.5 mM DTT (freshly added), 1mM PMSF and 2 tablet/l Rosche plant protease inhibitor). 

The homogenate was filtered through Miracloth and 4 layer of nylon mesh (100, 70, 50 and 20µm), and 

then nuclei were pelleted by centrifugation in 50ml Flacon tubes at 4°C for 10 min at 5,000g in a Heraus 
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centrifuge. The pelleted nuclear fraction was resuspended three times in nuclear wash buffer (NWB 10 

mM HEPES (pH 5.5), 10 mM MgCl2, 25 mM NaCl, 10 mM KCl, 2.5 mM EDTA, 0.15 mM spermine, 

0.5 mM spermidine, 1 mM PMSF, 0.2 M sucrose, 10% glycerol, 0.25% Triton-X, 20 µl/ml Sigma plant 

protease inhibitor cocktail) and pelleted as above. Finally, the nuclear pellet was resuspended in nuclear 

storage buffer (NSB, 50 mM HEPES (pH 7.2), 10 mM MgCl2 ;5 mM KCl; 2 mM DTT, 0.2 mM PMSF 

and 50% glycerol) and stored in aliquots at -80°C or used freshly in in situ phosphorylation assays. 

For enrichment of thiophosphorylated AKIN10 substrates and purification of SnRK1 complexes 

using GFP-Trap pull down of AKIN10-GFP-PIPL and Snf4-FP proteins, nuclei were isolated from shoot 

tissues of 3 weeks old seedlings grown under short day conditions in soil. Prior harvesting, the plants 

are covered for 12 h to reduce the starch content of leaves, which might interfere with the isolation of 

intact nuclei. 150 g of fresh plant material is grinded on ice in the cold room in 300 ml NI-buffer, and 

then filtrated through 2 layers of miracloth and 20 and 50 µm nylon mesh into a sterile beaker. The 

nuclei are collected by centrifugation for 10min at 3000 rpm in 50 ml Falcon tubes in a Heraeus 

centrifuge at 4°C. The crude nuclear pellet is resuspended in 20 ml NWB buffer and pelleted again by 

centrifugation with 3,000 rpm for 5 min at 4°C. The nuclei are similarly washed 3 times with 20 ml 1 x 

NWB buffer. Finally, the nuclear pellet is resuspended in 2 ml NLB, sonicated 4 times for 10 sec on ice 

(Branson Sonifier, 50% output, in a 15mm diameter Corex tube with a rod-shape sonicator head of 12 

mm diameter) and cleared by centrifugation in an Eppendorf centrifuge (15 krpm) for 15 min at 4°C. 

The supernatant was dialysed against binding-buffer (20 mM Tris-HCl (pH 7.8), 5 mM MgCl2, 150 mM 

NaCl, 2mM DTT). After dialysis, the protein concentration is measured with Bio-Bradford reagent, and 

the nuclear extract is subjected to affinity purification on GFP-Trap as described in section 2.2.4.1. 

Nuclear Isolation Buffer 
 

10 mM Hepes (NaOH) pH 7.4 Freshly added supplement  

10 mM MgCl2 20 μl/ml Sigma plant protease inhibitor  

25 mM NaCl 5 mM DTT 

10 mM KCl PMSF 6 μl/ml 400μM PMFS 

0.4 M Sucrose phosphatase inhibitors 

0.25% Triton X-100 
 

Nuclear Wash Buffer 3x  
 

50 mM Hepes (NaOH) pH 7.4 Freshly added supplement  

20 mM MgCl2 20 µl/ml Sigma plant protease inhibitor  

100 mM NaCl 5 mM DTT 

40% Sucrose PMSF 6μl/ml 400μM PMFS 

40% Glycerol phosphatase inhibitors 

0.75% Triton X-100 
 

Nuclear Lysis Buffer 1x 
 

20 mM Hepes(NaOH) pH 7.4 Freshly added supplement  

15 mM MgCl2 20 μl/ml Sigma plant protease inhibitor  

25 mM NaCl 5 mM DTT 
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0.4 M (NH4)2SO4 PMSF 6 μl/ml 400μM PMFS 

10% Glycerol phosphatase inhibitors (1.0 mM Na3VO4, 20mM NaF) 

1% Triton X-100 50 μM MG132 (DMSO stock) 

2.2.4.3. LC-MS/MS analysis and data acquisition  

The proteins eluted from GFP-trap by 0.1% TFA were reduced with dithiothreitol, alkylated 

with chloroacetamide, and digested with trypsin. The digested samples were desalted using StageTips 

with C18 Empore disk membranes (3 M), dried in a vacuum evaporator, and dissolved in 2% ACN 

(acetonitrile), 0.1% TFA. Samples were analyzed using an EASY-nLC 1200 (Thermo Fisher) coupled 

to a Q Exactive Plus mass spectrometer (Thermo Fisher). Peptides were separated on 16 cm frit-less 

silica emitters (New Objective, 0.75 µm inner diameter), packed in-house with reversed-phase ReproSil-

Pur C18 AQ 1.9 µm resin (Dr. Maisch). Dried peptides were re-dissolved in 2% ACN, 0.1% TFA for 

analysis and adjusted to a final concentration of 0.1 µg/µl. 

The samples were analysed using an EASY-nLC 1200 (Thermo Fisher) coupled to a Q Exactive 

Plus mass spectrometer (Thermo Fisher). Peptides were separated on 16 cm frit-less silica emitters (New 

Objective, 0.75 µm inner diameter), packed in-house with reversed-phase ReproSil-Pur C18 AQ 1.9 µm 

resin (Dr. Maisch). Peptides (0.5 µg) were loaded on the column and eluted for 115 min using a 

segmented linear gradient of 5% to 95% solvent B (0 min : 5%B; 0-5 min -> 5%B; 5-65 min -> 20%B; 

65-90 min ->35%B; 90-100 min -> 55%; 100-105 min ->95%, 105-115 min ->95%) (solvent A 0% 

ACN, 0.1% FA; solvent B 80% ACN, 0.1% FA) at a flow rate of 300 nL/min. Mass spectra were 

acquired in data-dependent acquisition mode with a TOP15 method. MS spectra were acquired in the 

Orbitrap analyzer with a mass range of 300–1750 m/z at a resolution of 70,000 FWHM and a target 

value of 3×106 ions. Precursors were selected with an isolation window of 1.3 m/z. HCD fragmentation 

was performed at normalized collision energy of 25. MS/MS spectra were acquired with a target value 

of 105 ions at a resolution of 17,500 FWHM, a maximum injection time (max.) of 55 ms and a fixed 

first mass of m/z 100. Peptides with a charge of +1, greater than 6, or with unassigned charge state were 

excluded from fragmentation for MS2, dynamic exclusion for 30s prevented repeated selection of 

precursors. 

Raw data were processed using MaxQuant software (version 1.5.7.4, 

http://www.maxquant.org/) with label-free quantification (LFQ) and iBAQ enabled. MS/MS spectra 

were searched by the Andromeda search engine against a combined database containing the sequences 

from Arabidopsis (TAIR10_pep_20101214; ftp://ftp.arabidopsis.org/home/tair/Proteins/TAIR10_ 

protein_lists/) and sequences of 248 common contaminant proteins and decoy sequences. Trypsin 

specificity was required and a maximum of two missed cleavages allowed. Minimal peptide length was 

set to seven amino acids. Carbamidomethylation of cysteine residues was set as fixed, oxidation of 

methionine and protein N-terminal acetylation as variable modifications. Peptide-spectrum-matches and 

proteins were retained if they were below a false discovery rate of 1%. 
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2.2.5. Kinase assays with nuclear extracts and enrichment of thiophosphorylated peptides 

2.2.5.1. Thiophosphorylation with wild type and AS-AKIN10 

Followed sonication (section 2.2.4.2), the nuclear protein extract is loaded into a dialysis bag 

without centrifugation and dialyzed against in kinase exchange buffer for two times 20 min with buffer 

change. Subsequently, the dialysed protein extract (1 to 2 mg protein) is centrifuged for 10min at 12, 

000 rpm in 2ml Eppendorf tubes in a centrifuge at 4°C. Subsequently, the combined supernatant is 

supplemented with N6-phenyl-ATPγS (10mM stock) at a final concentration of 0.25 mM, and 10µg 

SAMS added as internal spike to monitor the kinase reaction and enrichment of thiophosphorylated 

peptides. The kinase reactions are performed at room temperature for 2h. Subsequently, 1/100 or 1/200 

aliquots of samples are subjected to PNBM alkylation (section 2.2.2.3) and detection of 

thiophosphorylated proteins by western blotting.  

 
Kinase exchange buffer  

20 mM Tris.HCl (pH 7.4) 

5 mM MgCl2 

60 mM KCl 

2.2.5.1.1. Enrichment of thiophosphorylated peptides 

Three volumes of 1 x denaturation buffer (100 mM NH4HCO3, 2 mM EDTA, 10 mM TCEP 

(Tris(2-carboxyethyl)phosphine hydrochloride, Sigma), and 8 M urea) is added to the samples that the 

final concentration of urea is 6 M. The samples are incubated at 55°C for 1h and then cooled down to 

room temperature for 10 min. Subsequently, the samples are diluted with 50 mM NH4HCO3 to reduce 

the urea concentration to 2M and 1M TCEP is added to a final concentration of 10 mM. After addition 

of trypsin (Promega, cat. no. V5113) at a ratio of 1:50 by weight (1:100 would be 10µg trypsin for 1mg 

of protein), the protein samples are digested at 37°C overnight, and then the samples are acidified by 

addition of 0.1% final concentration of TFA (trifluoroacetic acid, 2.5% stock). 

 A C-18 SepPak column is washed with 2 mL of 0.1% TFA and 80% ANC (acetonitrile), 

followed by 2 mL of 0.5% TFA. The acidified sample is loaded onto the column and recycled five times 

through the column. Next, the C18 column is washed with 2 mL 0.5% TFA. Finally, the peptides are 

eluted with 2 x 400 µl 0.5% TFA and 80% ACN, and concentrated near to dryness using a SpeedVac 

vacuum evaporator. 

 In the next step, the desalted peptides are bound to iodoacetyl-agarose (Pierce) beads. 300 μl of 

50% slurry is pipetted into a 0.5 mL tube and pelleted in a tabletop centrifuge for 30 seconds at 10,000g 

to remove the supernatant. The resin is washed with 800µl 200 mM HEPES (pH 7.0), and centrifuged 

to remove the supernatant. Subsequently, 800μl of 20 mM HEPES (pH 7.0) in 80% acetonitrile and 5 μl 
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10mg/mL BSA are added followed by short vortexing, and the resin is blocked by incubation for 10 min 

in the dark. 

 The nearly dried peptide mixture is adjusted to 60μl with H2O followed by addition of 75 µl 

acetonitrile, and 15μl 200 mM HEPES (pH 7.0). After removing the supernatant, the blocked iodoacetyl-

agarose resin is incubated with this peptide mixture at room temperature in the dark with gentle rocking 

for 16 hours. After incubation, the supernatant is removed (and stored as LC/MS control) and the resin 

is washed with 100µL 20 mM HEPES (pH 7.0) in 50% acetonitrile. Subsequently, the resin is washed 

sequentially with 1 ml of each: i) H2O, ii) 5M NaCl, iii) 50% acetonitrile and iv) 5% formic acid, each 

time followed by centrifugation and removal of the supernatant. Next, the resin is treated with 10 mM 

DTT for 10 min to block the still available free iodoacetyl groups. Finally, the bound thiophosphorylated 

peptides are eluted by incubating the beads two times for 10 min with 100 µl freshly prepared 1mg/mL 

Oxone (pH 3.5; DuPont). 

 The eluted phosphopeptides are immediately desalted using Stage Tips with C18 Empore disk 

membranes (3 M) , which are previously equilibrated with 60 µl 100% methanol, and then with 60 µl 

80% acetonitrile containing 0.5% TFA, and finally with 60 µl 0.5% TFA. The 200 μl peptide solution 

eluted by oxone from the iodoacetyl-agarose resin is filtered through 4 to 10 times the Stage Tip, which 

is then washed with 2 x 40 μl 0.5% TFA. Finally, the peptides are eluted with 2 x 30µl 0.5% TFA in 

80% acetonitrile and concentrated to about 10 µl for LC/MS mass spectrometry analysis. 

2.2.5.2. Identification of phosphopeptides 

After performing in vitro protein kinase reactions with purified proteins (section 2.2.2.3) and 

ATP, the samples were reduced with dithiothreitol, alkylated with chloroacetamide, and digested with 

trypsin. The digested samples were desalted using StageTips with C18 Empore disk membranes (3 M) 

(Rappsilber et al, 2003), dried in a vacuum evaporator, and dissolved in 2% ACN, 0.1% TFA. After 

enrichment of thiophosphorylated peptides on idoacetyl-agarose, selective cleavage of the phosphothiol 

bond by oxone and release of phosphopeptides from the originally thiophosphorylates peptides, the 

samples were similarly concentrated on StageTips as described in 2.2.5.1.  

The phosphopeptide samples were analysed using an EASY-nLC 1200 (Thermo Fisher) coupled 

to a Q Exactive Plus mass spectrometer (Thermo Fisher). Peptides were separated on 16 cm frit-less 

silica emitters (New Objective, 0.75 µm inner diameter), packed in-house with reversed-phase ReproSil-

Pur C18 AQ 1.9 µm resin (Dr. Maisch). Peptides were loaded on the column and eluted for 50 min using 

a segmented linear gradient of 5% to 95% solvent B (0 min : 5% B; 0-5 min -> 5% B; 5-25 min -> 20% 

B; 25-35 min ->35% B; 35-40 min -> 95% B; 40-50 min ->95% B) (solvent A 0% ACN, 0.1% FA; 

solvent B 80% ACN, 0.1% FA) at a flow rate of 300 nL/min. Mass spectra were acquired in data-

dependent acquisition mode with a TOP15 method. MS spectra were acquired in the Orbitrap analyzer 

with a mass range of 300–1500 m/z at a resolution of 70,000 FWHM and a target value of 3×106 ions. 
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Precursors were selected with an isolation window of 1.3 m/z. HCD fragmentation was performed at a 

normalized collision energy of 25. MS/MS spectra were acquired with a target value of 5x105 ions at a 

resolution of 17,500 FWHM, a maximum injection time of 120 ms and a fixed first mass of m/z 100. 

Peptides with a charge of 1, greater than 6, or with unassigned charge state were excluded from 

fragmentation for MS2; dynamic exclusion for 20s prevented repeated selection of precursors.  

Raw data from DDA acquisition were processed using MaxQuant software (version 1.5.7.4, 

http://www.maxquant.org/) (Cox and Mann, 2008). MS/MS spectra were searched by the Andromeda 

search engine against a database containing the respective proteins used in the in vitro kinase reactions. 

Trypsin specificity was required and a maximum of two missed cleavages allowed. Minimal peptide 

length was set to seven amino acids. Carbamidomethylation of cysteine residues was set as fixed, 

phosphorylation of serine, threonine and tyrosine, oxidation of methionine and protein N-terminal 

acetylation as variable modifications. The match between runs option was disabled. Peptide-spectrum-

matches and proteins were retained if they were below a false discovery rate of 1% in both cases. Raw 

data were analysed on MS1 level using Skyline (Version 4.1.0.18169, https://skyline.ms) (Tyanova et 

al., 2016) and a database containing the respective proteins used in the in vitro kinase reactions. Trypsin 

specificity was required and a maximum of two missed cleavages allowed. Minimal peptide length was 

set to seven maximum length to 25 amino acids. Carbamidomethylation of cysteine, phosphorylation of 

serine, threonine and tyrosine, oxidation of methionine and protein N-terminal acetylation were set as 

modifications. Results were filtered for precursor charges of 2, 3 and 4. 

2.2.6. Confocal-laser-scanning microscopy 

The localization of GFP and mCherry tagged proteins in fresh tissue samples was captured by a 

Leica TCS SP8 confocal microscope (Leica, Bensheim, Germany). GFP was excited with the Argon 

laser at 488 nm and the emitted fluorescence was detected between 493 and 550 nm. mCherry was 

excited with the Argon laser at 561 nm and the emitted fluorescence was detected between 576 and 632 

nm. The autofluorescence of chlorophyll was detected at 640-720 nm. Simultaneous bright field images 

were documented by a transmission detector. Merging of images was performed using the Leica LAS X 

software. Merging of images and calculations of 3D projections are performed with the Leica LCS 

software. Counterstaining of specimens was performed with 50 μl of 10 x diluted propidium iodine (PI, 

1mg/ml stock solution stored in the dark at -20°C) for 10 seconds followed by mounting the tissues in 

water on microscope glass with cover glass. For PI, the excitation maximum is 535 nm and fluorescence 

emission maximum 617 nm. 

  

http://www.maxquant.org/
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3. Results 

3.1. Construction of analog-sensitive and T-loop mutant versions of 

SnRK1α1/AKIN10 

3.1.1. Site-directed mutagenesis of AKIN10 (At3g01090.1) cDNA 

Yeast Snf1, human AMPKα1 and 2, and Arabidopsis SnRK1s AKIN10 and AKIN11 show high 

amino sequence homology in their kinase catalytic domains, but their C-terminal sequences, including 

the β and γ subunit binding sites, are more divergent (Figure 6).  

 

Figure 6. Amino acid sequence alignment of human AMPKα1 and α2, Arabidopsis SnRK1α1/AKIN10 and 

SnRKα2/AKIN11, and yeast Snf1 kinases.  

The positions of conserved gatekeeper M119 residue in the ATP-binding domain and T175 residue in the activation 

T-loop of AKIN10 kinase are indicated. Red latter label the positions of created M119G and T175A/D/E amino 

acid exchanges, deleted C-terminus carrying the autoinhibitory domain (AID), whereas arrows show the location 

of primers used in the PCR-based mutagenesis approach (Figure 7). 

The ATP-binding pockets of Arabidopsis SnRK1α1/2 kinases AKIN10/11 carry a conserved 

“gatekeeper” methionine (M119) residue, which is also present in the human AMPKα1/2 kinases. The 

exchange of this methionine residue to glycine was used for construction of an analog-sensitive human 

AMPKα2, which is capable to bind bulky N6-substituted benzyl or phenyl-ATPγS and catalyze specific 

thiophosphorylation of substrate proteins. Mass spectrometry analysis of thiophosphorylated peptides 

enriched by either alkylation with PNBM (p-nitrobenzyl mesylate) and pull-down with anti-PNBM 

thioester antibody (Banko et al., 2011), or covalent binding to iodoacetyl-agarose (Hertz et al., 2010) 
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represent currently the only approaches that allow specific identification of in vivo kinase substrates. By 

contrast, routine analysis of phosphopeptide changes evoked by overexpression or antisense inhibition 

of kinases, or comparison of phosphoproteomes in wild type and kinase mutants cannot exclude that the 

observed differential regulation is indeed due to the examined kinase and not to other kinases or 

phosphatases, which represent its regulatory targets. An alternative common approach for assessment of 

a kinase function is to modify the activation T-loop in order to overexpress an inactivated 

(nonphosphorylatable T to A exchange) or constitutively active (phosphomimetic T to D/E exchanges) 

kinase using cDNA constructs. The activation T-loop is very conserved in the Snf1/SnRK1/AMPK 

family (Figure 6). In AKIN10.1, encoded by the mRNA isoform At3g01090.1, the activation T-loop 

Thr175 residue is autophosphotylated in vitro, and phosphorylated by the upstream activating kinases 

SnAK1/GIRK2 and SnAK2/GIRK1 in vivo (Shen et al., 2009; Crozet et al., 2010; Robertlee et al., 2010). 

To construct analogue-sensitive and activation T-loop mutant versions of Arabidopsis 

SnRK1α1/AKIN10, codon exchanges M119G, Thr175A, Thr175D and Thr175E were first separately 

introduced into the AKIN10.1 cDNA isoform, which was originally cloned by Bhalerao et al. (1999) in 

the E. coli protein expression vector pET201. To test inhibitory effect of C-terminal regulatory domain 

on the kinase activity, the same amino acid codon exchanges were parallel incorporated into a short 

version of AKIN10 cDNA, from which 3’ coding sequence of the C-terminal domain was deleted 

starting from nucleotide position 873 (corresponding to amino acid position 291 upstream of the 

Autoinhibitory/UBA (294-331) domain). 

 

Figure 7. Scheme of PCR-based site-directed mutagenesis approach used for generation of amino acid codon 

exchanges in the coding regions of ATP binding pocket and T-loop of AKIN10 cDNA.  
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The resulting cDNA constructs were cloned in pET201 to express in and purify from the E. coli BL21 Rosetta 

strain the modified AKIN10 kinase versions in fusion with N-terminal thioredoxin and C-terminal-His6 tags. The 

coding regions of same AKIN10 constructs were modified by addition of coding sequences of a HA 

(hemagglutinin) tag followed by a stop codon and cloned between CaMV35S promoter and NOS (Nopaline 

synthase) termination & polyadenylation sequences in the plant binary vector pPCV702 (Koncz et al., 1994) for 

overexpression of corresponding proteins in Arabidopsis plants.  

First, cDNA sequences extending from the ATG codon to either the ATP-binding pocket or T-

loop were PCR amplified using a 5’-primer and mutagenesis primers Mut1 and Mut2 that carried the 

M119G, and T175A, T175D and T175E amino acid codon exchanges, respectively (Figure 7). After gel 

purification, these PCR fragments were used as primers in combination with either the 3’ or 3’S primers 

(section 2.1.5.3.1., primers AKIN10-3-long and AKIN10-3 short No AID) to PCR amplify either the 

full-length cDNA or its 3’-truncated version lacking the coding region for the C-terminal β and γ subunit-

binding domains. The 5’ and 3’ PCR primers were designed such that they carried suitable enzyme 

cleavage sites to insert the modified cDNA coding sequences in frame into BamHI and SalI sites of the 

E.coli expression vector pET201. After DNA sequencing with the 5’ and 3’S primers, the modified 

AKIN10 kinases were expressed in E. coli BL21 Rosetta cells in fusion with N-terminal thioredoxin and 

C-terminal His6 tags. In parallel, all modified versions of AKIN10 cDNAs were PCR amplified from the 

pET201 plasmid templates with the 5’ primer and modified 3’ primers (section 2.1.5.3.1., primers 

AKIN10-5, AKIN10HA-long-3 or AKIN10HA-short-3 primers), which added coding sequences of a 

HA-epitope tag and a stop codon in frame to the 3’ end of mutagenized cDNA sequences. These cDNA 

versions were cloned into the plant expression vector pPCV702 (Koncz et al., 1994), to ectopically 

express different versions of modified AKIN10-HA kinase proteins in Arabidopsis plants. 

3.1.2. Purification and characterization of AS-AKIN10 and T-loop mutant AKIN10 kinase 

derivatives 

Both long and short versions of modified AKIN10 kinase derivatives were purified by Ni2+-

agarose (NTA) affinity chromatography from E. coli BL21 as described in section 2.2.2.1, similarly to 

the standard SnRK1 kinase substrate Trx-SPS-KD described by Bhalerao et al. (1999). The quality of 

purified proteins was assessed by SDS-PAGE (Figure 8). 
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Figure 8. Purification of full length (L) and C-terminally truncated (S) AKIN10 derivatives carrying the 

M119G, T175A, T175D and T175E amino acid exchanges.  

A) Full-length AKIN10 derivatives (4μg of each) separated in a Coomassie-stained 10% SDS-PAGE. B) C-

terminally truncated AKIN10 derivatives (1 μg of each) separated in a Coomassie-stained 14% SDS-PAGE. The 

expected molecular masses of full-length and C-terminally truncated forms of Trx-AKIN10-His6 were 72.53 and 

48.06 kDa, respectively. C) Purification of a thioredoxin-fused spinach sucrose phosphate synthase (SPS) peptide 

(Trx-SPS-KD). The expected molecular mass was 18kDa. 

The activities of modified AKIN10 derivatives was compared by performing in vitro kinase 

assays with [γ-32P]ATP using the Trx-SPS-KD substrate. As illustrated in Figure 9, the M119G amino 

acid exchange in the ATP-binding pocket greatly reduced substrate phosphorylation activity of both full 

length and C-terminally truncated forms (L and S) of AKIN10 using unmodified ATP, whereas 

exchange of the T-loop T175 residue to A, E and D resulted in a marginal decrease of activity only in 

the case of T175A version of full-length AKIN10. Deletion of the C-terminal autoregulatory domain 

resulted in an increase of kinase activity in case of all mutated T-loop derivatives. Compared to wild 

type AKIN10, autophoshorylation of all kinase derivatives appeared to be weaker in this assay.  

 

Figure 9. Comparison of substrate and authophosphorylation activities of modified AKIN10 derivatives.  

The effects of amino acid exchanges introduced into long (L) and short (S) forms of AKIN10 were tested by 

comparing the kinase substrate and autophosphorylation activities in radioactive kinase assays with [γ-32P]ATP 

and Trx-SPS-KD as substrate as described in the text. 

Lower, but detectable level of autophosphorylation of AKIN10 derivatives (bands around 75 

kDa in Figure 9), which carried A/D/E replacements of T-loop Thr175 residue indicated AKIN10 also 

undergoes autophosphorylation on other residues in addition to the T-loop threonine. Following 

autophosphorylation with “cold” ATP, tryptic phosphopeptides in AKIN10 were mapped by LC-

MS/MS mass spectrometry (section 2.2.5.2). In fact, two additional positions located at Ser338/339 and 

Ser364 were identified as autophosphorylation sites in the C-terminal regulatory domain of AKIN10, in 

addition to the T-loop Thr175 residue (Figure 10). In short forms of AKIN10 (1 to 291aa), two other 

minor in vitro autophosphorylation sites (Ser29 and Ser238) were identified. Functional significance of 

these autophosphorylation sites in the regulation of activity and assembly of SnRK1 remains to be 

determined by further studies. 

To monitor autophosphorylation of the T-loop, in vitro kinase assays were performed with the 

wild type, M119G, T175A and T175D derivatives of full length AKIN10. After SDS-PAGE separation 
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and western blotting, the samples were probed with an antibody raised against the phosphorylated T172 

T-loop residue of human AMPKα2 (Figure 11). 

 

Figure 10. In vitro autophosphorylation sites identified in AKIN10. 

Amino acids labelled by green color represent major autophosphorylation sites in full-length AKIN10, while sites 

marked by blue color indicate additional candidate phospho-sites detected in short forms of AKIN10, which carried 

a C-terminal truncation starting at amino acid position 291. 

 

Figure 11. Detection of T-loop phosphorylation with an antibody recognizing the phosphorylated T-loop 

Thr172P peptide of human AMPKα2.  

The phospho-Thr172 antibody (Millipore 15-115; 1:5000 dilution) detects autophosphorylation of the T-loop in 

wild type AKIN10 and AS-AKIN10 carrying the M119G amino acid exchange in the ATP-binding pocket, but 

fails to react with the T-loop mutated T175A and T175D versions of AKIN10. This indicates that the antibody is 

potentially useful to detect T-loop phosphorylation of Arabidopsis SnRK1. Yet, the appearance of several 

nonspecific cross-reacting bands indicates that the use of proper controls, such as T-loop mutants is necessary in 

such analyses. 

Despite the fact that the human AMPKα2 peptide epitope (MSDGEFLRTSCGSPNYAAP) 

differs in two amino acid residues (MRDGHFLKTSCGSPNYAAP) from the corresponding 

Arabidopsis AKIN10 peptide, the antibody recognized the phosphorylated T-loop wild type AKIN10 

(Figure 11). Lower signal obtained with the M119G version indicated that modification of the ATP-

binding pocket also reduced in vitro autophosphorylation of the kinase T-loop with non-substituted ATP. 

As control, the antibody failed to detect the T175A and T175D T-loop mutant versions of AKIN10, 

which lacked the Thr175 residue. 

 To optimize nonradioactive detection of SnRK1 phosphorylated substrates, kinase assays were 

performed with thio-ATP, and long and short versions of modified AKIN10 derivatives (section 2.2.2.3). 

As recommended by Banko et al. (2011), thiophosphorylation of AKIN10 T-loop and TRX-SPS-KD 
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substrate was detected by addition of 2.5 mM PNBM after termination of kinase reactions. The PNBM-

alkylated proteins were then detected by western blotting with a commercial monoclonal anti-thioester 

antibody (Epitomics 51-8, Abcam ab92570). The results shown in Figures 12 and 13 indicated that 

thiophosphorylation of AKIN10 and Trx-SPS-KD could be well detected. However, alkylation with 

PNBM also highlighted several minor contaminating proteins present in our purified kinases, as PNBM 

alkylated Cys-residues of these contaminants. As observed in the kinase assays with [γ-32P]ATP (Figure 

9), the M119G and to less extent the T175A amino acid exchanges in full-length L-AKIN10 decreased 

both autophosphorylation and substrate phosphorylation activity the kinase with thio-ATP.  

 

Figure 12. Thiophosphorylation assays with full-length derivatives of AKIN10. 

Alkylation with 2.5mM PNBM at pH 7.8 for 30 min at room temperature results in a cross-reaction with Cys-

containing contaminating proteins. The M119G and to less extent the T175A amino acid exchanges decrease both 

autophosphorylation and substrate phosphorylation activities of the kinase. The kinase reactions were performed 

with 2µg of each AKIN10 kinase derivative, Trx-SPS-KD substrate (2µg) and 1mM thio-ATP for 2h at 37°C.  

 

 

Figure 13. Thiophosphorylation assays with C-terminally truncated versions of AKIN10.  

The M119G mutation dramatically decreases the kinase activity with non-substituted thioATP, whereas kinase 

versions carrying the T-loop amino acid exchanges are equally active. Addition of Trx-SPS-KD substrate appears 

to increase the autophosphorylation activity of latter kinase derivatives. 

In comparison, the M119G mutation dramatically reduced the activity of C-terminally truncated 

AKIN10, whereas kinase derivatives with the T-loop amino acid exchanges T175A/D/E showed 

comparable high substrate phosphorylation activity with non-substituted thio-ATP. Labelling of T-loop 

mutant versions of AKIN10 in the kinase assays confirmed our notion that AKIN10 is 
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autophosphorylated not only on its T-loop (i.e., which is mutated in the T175A/D/E kinase versions) but 

also at other positions. 

To determine whether M119G modification of the ATP-binding pocket indeed allows selective 

thiophosphorylation with bulky-ATP derivatives, kinase assays were performed with N6-phenyl-ATP 

and N6-benzyl-thio-ATP followed by PNBM-alkylation for 30 min. Compared to wild type and T-loop 

mutant versions, the ATP-binding pocket mutant AKIN10-M119G and its C-terminally truncated 

version showed remarkably high substrate thiophosphorylation activity with both bulky thio-ATP 

derivatives in contrast to wild type and T-loop mutant versions of AKIN10 (Figure 14). 

 

Figure 14. In vitro kinase assays with modified AKIN10 kinase derivatives using N6-phenyl-ATP and N6-

benzyl-thioATP.  

Compared to wild type and T-loop mutated versions, the ATP-binding pocket modified AKIN10-M119G kinase 

shows high substrate thiophosphorylation activity with N6-phenyl-ATP and N6-benzyl-thioATP. 

In order to decrease or eliminate the background of unspecific PNBM alkylation, the alkylation 

conditions were optimized using different concentrations of PNBM and lowering the pH to 4.0 according 

to Lee et al. (2011). Optimal detection of thiophosphorylated TRX-SPS-KD substrate was achieved 

using 1mM PNBM alkylation for 20 min at pH 4.0 (Figure 15A). Using this condition, the kinase assays 

with non-substituted thioATP detected no substrate phosphorylation with the ATP-binding pocket 

M119G mutant AS-AKIN10 kinase and revealed significantly lower activity of T175A 

nonphosphorylatable version of AKIN10 compared to the phospho-mimicking (constitutively activated) 

T175D and T175E T-loop derivatives (Figure 15B). 
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Figure 15. Optimization of PNBM alkylation. 

A) Optimization of detection of thiophosphorylated AKIN10 substrate TRX-SPS-KD using different 

concentrations of PNBM for alkylation at pH 4.0, to decrease the cross-reaction with Cys-containing contaminating 

proteins. B) Detection of thiophosphorylated TRX-SPS-KD in kinase assays with C-terminally truncated short 

versions of AKIN10 followed by alkylation with 1mM PNBM at pH 4. 

For application of the M119G ATP-pocket mutant AS-AKIN10 kinase to specifically detect its 

thiophosphorylated substrates in plant protein extracts, it was important to demonstrate that wild type 

protein kinases in Arabidopsis plants cannot utilize bulky N6-substituted versions of thio-ATP. For this 

purpose, nuclei were purified from shoot material of 4-weeks-old soil-grown Arabidopsis plants. Equal 

aliquots of isolated nuclei were pelleted and resuspended in kinase buffer (section 2.2.2.3, containing 

5µM MG132 proteasome inhibitor but no DTT) and subjected to in situ phosphorylation by incubation 

for 2h at room temperature with either 1mM ATP, or thio-ATP, or N6-benzyl-thioATP or N6-phenyl-

thio-ATP using a control sample without ATP. After digestion for 1h with DNase and RNase (both 100 

μg/ml), the samples were disrupted by sonication (in a Diagenode water bath at 4°C for 3 x 5 min), 

cleared by centrifugation and subjected to alkylation with 1mM PNBM with or without acidifying the 

pH to 4.0 [ i.e., using 1/10 volume of 3M potassium acetate (pH4.0)]. Finally, the alkylated nuclear 

proteins were resolved by SDS-PAGE and detected by western blotting with the anti-thioester antibody. 

As illustrated in Figure 15, alkylation at pH 7.8 resulted in a considerable background due to cross-

reaction of PNBM with Cys-rich proteins in the nuclear protein extracts. By contrast, PNBM alkylation 

at pH 4.0 reduced this background and revealed specific thiophosphorylation of nuclear proteins only 

with non-substituted thioATP. This demonstrated that wild type protein kinases in Arabidopsis nuclei 
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can only utilize non-substituted thio-ATP but cannot phosphorylate their substrates using bulky N6-

substituted ATP derivatives, such as N6-benzyl-thio-ATP and N6-benzyl-thio-ATP. 

 

Figure 16. Detection of in situ thiophosphorylation in wild type nuclei using thio-ATP and N6-substituted 

thio-ATP derivatives by alkylation at neutral and acidic pH. 

A) Schematic presentation of PNBM alkylation reaction of protein Cys residues and thiophosphate (-PO3SH) 

groups transferred by protein kinases on Ser/Thr residues of their substrates. Cross-reaction of PNBM with Cys 

residues is largely reduced at pH 4.0. B) Detection of in situ thiophosphorylated kinase substrates in nuclear protein 

extracts by PNBM alkylation at pH 4.0 versus pH 7.8  

3.2. Expression of wild type and T-loop mutant versions of AKIN10 in transgenic 

plants using CaMV 35S promoter-driven cDNA constructs 

cDNAs encoding the modified AKIN10 kinase derivatives were introduced in CaMV 35S 

promoter expression cassettes of the binary vector pPCV702 (Koncz et al., 1994) into Arabidopsis (Col-

0) plants by Agrobacterium-mediated transformation. For each construct, at least 20 T1 transformed 

lines were isolated and their T2 progeny was tested for 3:1 segregation of the kanamycin resistance 

marker of pPCV702 T-DNA. At least 3 independent T3 families homozygous for the transgene T-DNA 

insertions were further characterized by comparison of in planta expression levels and activities of wild 

type, M119G, T175A and T175D AKIN10 derivatives, as well as phenotypes of transgenic plants. The 

expression of modified AKIN10 kinases was first monitored by western blotting with anti-AKIN10 

antibody (Agrisera) followed by specific detection of HA-tagged kinases using affinity binding to anti-

HA antibody matrix.  

Due to alternative splicing of the first intron and use of two alternative transcript initiation sites, 

three transcript isoforms are transcribed from the AKIN10 gene in Arabidopsis. Isoforms AKIN10.1 and 

3 encode a shorter kinase (58 kDa) that lacks 23 N-terminal amino acids compared to the longer kinase 

isoform (61 kDa) encoded by the transcript isoform AKIN10.2. As the molecular mass of HA-tagged 

forms of modified AKIN10 derivatives is 60.28 kDa, it was expected that they co-migrate on SDS-

PAGE with the longer form of AKIN10.2 isoform, if this form was similarly expressed in plants as the 

short isoform. In fact, western blotting detected two 61 and 58 kDa bands in all transgenic plants carrying 
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the HA-tagged wild type, M119G, T175A and T175D modified AKIN10 kinase versions (Figure 16A). 

Although the ratio between the amounts of two bands varied in transgenic lines expressing different 

versions of modified AKIN10, due to similar molecular mass of HA-tagged AKIN10 versions and the 

longer AKIN10 isoform, no clear conclusion could be drawn, as we had no information about the 

expression levels of short and long AKIN10 isoforms. 

 

Figure 17. Characterization of expression and activities of modified AKIN10 derivatives expressed by 

CaMV 35S promoter driven cDNA constructs in transgenic plants. 

A) Detection of AKIN10 protein isoforms by western blotting with anti-AKIN10 antibody (Agrisera, 1:5000 

dilution) in transgenic plants carrying cDNA expression constructs of wild type, M199G, T175A and T175D 

AKIN10 derivatives. B) Equal loading of protein samples in A) was controlled by western blotting with anti-α-

ACTIN antibody (Agrisera, 1:3000 dilution). C) Western blotting of protein samples purified by anti-HA-agarose 

affinity with anti-phospho-Thr172 antibody. D) On bead protein kinase assays performed with anti-HA-agarose 

purified wild type, T175A and T175 derivatives of AKIN10 using (γ-32P)ATP and TXR-SPS-KD substrate. To the 

left: Coomassie stained gel of kinase assays shows three visible protein bands: the heavy (50 kDa) and light (25 

kDa) chains of eluted anti-HA IgG and Trx-SPS-KD (18 kDa). The autoradiographs at the middle and to the right 

show two different exposures of Trx-SPS-KD phosphorylation by comparable amounts (tested in B) of anti-HA 

affinity purified wild type, T175A and T175D derivatives of AKIN10. 

To examine the transcript levels of different AKIN10 isoforms, specific primers for the first two 

alternatively spliced exons were designed, and the levels of different isoforms were compared to the 

total level of all isoforms using the common exon 10 and 11, and exon 9 and 10 specific primers. In the 

qRT-PCR measurements, we also determined the AKIN10 mRNA isoform levels in the GABI_579E09 

T-DNA insertion mutant. In the GABI mutant, a T-DNA insertion in the 3’ intron10-exon 11 region 

resulted in the deletion of 37 C-terminal amino acid codons of AKIN10, which were replaced by 23 T-

DNA encoded codons. The GABI akin10 insertion was defined as null mutation in several recent 

publications (Mair et al., 2015; Nukarinen et al., 2016; Pedrotti et al., 2018). The qRT-PCR 

measurements (Figure 18) indicated that the isoform-specific primers detected comparable expression 

of mRNAs of long AKIN10.2 and short AKIN10.1 and AKIN10.3 isoforms. As the T-DNA insertion in 
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the GABI mutant was located between the primer sites in exons 10 and 11, no transcript was detected 

with these primers in the GABI mutant. However, the upstream exon 9 and 10 specific primers, as well 

as the exon 9 primer combined with a T-DNA specific primer (GABI_T-DNA fused in Figure 18) 

detected normal transcription of the akin10 mutant allele in the GABI mutant. Compared to wild type, 

the total level of AKIN10 mRNA level, as well as the amount of individual AKIN10 mRNA isoforms 

was slightly higher in the GABI mutant indicating that this T-DNA insertion line is not a null mutant. 

Subsequent expression of reconstituted GABI mutant AKIN10 coding sequence in E. coli by Ajit Gosh 

in our laboratory revealed that the Agrisera antibody cannot recognize the C-terminally truncated 

AKIN10 protein made in the GABI mutant because the T-DNA insertion deleted the coding sequence 

of the peptide epitope, which was used for generation of Agrisera anti-AKIN10 antibody. In addition to 

wild type, we used this weak GABI akin10 mutant as control to compare growth-related phenotypes of 

plants expressing the modified AKIN10 derivatives. 

 

Figure 18. qRT-PCR measurement of total transcript and isoform specific AKIN10 mRNA levels in wild 

type and GABI_579E09 akin10 T-DNA insertion mutant plants. 

The HA-tagged AKIN10 derivatives were purified from plant protein extracts with anti-HA 

immunoaffinity pull-down. After controlling that the beads carried comparable amounts of kinase 

proteins by western blotting with anti-HA antibody, the eluted fractions were subjected to western 

blotting with anti-Thr172P antibody to monitor phosphorylation of the T-loop of AKIN10 derivatives 

(Figure 17C). As expected, the AKIN10 Thr175A and Thr175D derivatives lacking the phosphorylated 

T-loop threonine 175 were not detected by the antibody. By contrast, comparable amounts of T-loop 

Thr175 phosphorylation were detected in the ATP pocket mutant M119G and wild type AKIN10 

kinases. This indicated that the T-loop of the AS-AKIN10 M119G kinase derivative was equally well 

phosphorylated in vivo as the wild type kinase, in contrast with the T-loop autophosphorylation data 
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obtained in vitro. Finally, comparison of the activity of anti-HA-agarose bound wild type, T175A and 

T175D AKIN10 derivatives using the Trx-SPS-KD substrate in phosphorylation assays in vitro 

indicated that Ala exchange of phosphorylated Thr175 in the AKIN10 T-loop somewhat reduced but did 

not completely abolish the kinase activity. By contrast, the phosphomimicking Thr175 to aspartate 

exchange conferred only slightly higher activity compared to wild type suggesting that the expression 

of phosphatase resistant T-loop derivatives of AKIN10 might not increase dramatically the kinase 

activity in plants. 

 Examination of growth related phenotypes of transgenic plants expressing the modified AKIN10 

derivatives also failed to reveal dramatic differences. When germinated under 12h light/12h dark 

conditions in MSAR seed medium with 0.5% sucrose for 6 days, seedlings expressing the wild type, 

T175A and T175D AKIN10 derivatives showed comparable size, including hypocotyl and root lengths 

(Figure 19A and B). Upon 12 days of germination seedlings expressing the T175D phosphomimicking 

T-loop mutant version of AKIN10 displayed however about 15 to 20% longer hypocotyls and roots, 

compared to wt, GABI mutant and T175A AKIN10 expressing plants (Figure 19C). 

Figure 19. Expression of phosphomimicking T175D T-loop mutant version of AKIN10 confers enhanced 

root and hypocotyl growth of seedlings. 

A) Upon germination for 6 days on 0.5 MASR medium with 0.5% sucrose under 12h light/12 h dark conditions 

seedlings expressing the AKIN10 derivatives developed similarly to wild type. B) Compared to wt control and 

35S-wt and T175A AKIN10 expressing plants, the hypocotyls of Thr175D AKIN10 expressing plants were about 

5-10% longer 6 days after germination (DAG). C) At 12 DAG, the difference between root lengths of T175D 

AKIN10 expressing plants exceeded by about 15 to 20% those of control wt, GABI mutant and T175A AKIN 

expressing seedlings. Bars: 1cm. 
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In addition to metabolic factors, such as sucrose export to roots, auxin plays a key role in 

regulating root growth and elongation in a concentration dependent fashion, where increasing 

concentrations are inhibitory (see for review Tanimoto, 2005). Therefore, plants carrying the AKIN10 

cDNA expression constructs in homozygous form were crossed with lines expressing GFP-tagged forms 

of PIN1 and PIN2 auxin import carriers (Benková et al., 2003; Xu and Scheres, 2005) and the DR5-GFP 

auxin-inducible reporter gene (Liao et al., 2015), to monitor potential changes in auxin transport and 

auxin-induced transcription in the roots of resulting F1 hybrids. Compared to wild type and T175A 

AKIN10 expressing seedlings, the T175D AKIN10 lines had slightly higher levels of DR5-GFP in the 

columella cells of root meristem and DR5-GFP expression was also detectable in the central stele 

upstream of the meristem. The expression pattern of PIN2-GFP in their roots extended into the 

endodermis cell layers suggesting possibly higher rate of acropetal auxin transport (i.e., from root to 

shoot direction) towards the upstream root elongation zone (Figure 20).  

Figure 20. Confocal microscopy analysis of PIN1-GFP, PIN2-GFP and DR5-GFP expression patterns in 

roots of modified AKIN10 expressing seedlings. 
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A) PIN1-GFP expression patters in roots of wild type, T175A and T175D AKIN10 expressing 7-days-old 

seedlings. B) PIN2-GFP localization in roots of seedlings of same age. C) Expression patters of auxin inducible 

DR5-GFP reporter. Each panel shows GFP images to the left, counterstaining of cell walls with propidium iodine 

(PI) at the middle, and overlay of GFP and PI images to the right. 

Whether the observed changes in PIN2-GFP and DR5-GFP expression patterns correlate with 

enhancement of root elongation and are due to expression of phosphomimicking T175D version of 

AKIN10 should be confirmed by further studies using inducible root specific expression of AKIN10 

derivatives. 

 It is generally accepted that enhanced activity of AKIN10 results in a late flowering phenotype, 

especially in the tps1 (TREHALOSE-6-PHOSPHATE SYNTHASE 1) mutant, in which proposed 

inhibition of SnRK1 by T6P is abolished (Gómez et al., 2010, Wahl et al., 2013). By growing 20 

individual plants in separate pots under inducing long day (16h light/8h dark) condition, plants 

expressing wild type, T175A and T175D AKIN10 derivatives harbored 2 to 4 more normal and cauline 

leaves compared to wild type plants. However, plants expressing the phosphomimicking T175D 

AKIN10 version started to flower at least 3 to 4 days earlier, and the onset of flowering occurred 1 and 

2 days earlier in case of plants ectopically expressing wild type and T175A AKIN10 respectively, 

compared to the control Arabidopsis Col-0 line. In recurrent flowering time assays, 50 and 100 wild 

type control and 35S-AKIN10 transgenic plants were assayed respectively under short (8h light/16h 

dark) and long day condition by growing plants at somewhat higher density (i.e., 3 plants per pot). This 

repeated flowering time test failed to reveal a significant difference in leaf number between wt and 35S-

AKIN10 plants under inductive long day condition. However, under short day, 35S-AKIN10 plants 

flowered significantly earlier, at least with 10 leaves fewer compared to wild type (Figure 21). 

 

Figure 21. Comparison of flowering time of 35S-AKIN10 transgenic and wild type plants under short and 

long day conditions. 

Although similar flowering time data are still missing for the CaMV35S promoter expressed 

T175A and T175D AKIN10 constructs, the results shown in Figure 20 indicate that the effect of ectopic 

expression of AKIN10 on flowering time is clearly day-length dependent. This suggests that ectopic 

AKIN10 expression could alter circadian clock-dependent regulation of the photoperiod-dependent 

flowering time pathway. Recently, Shin et al. (2017) reported that CaMV35S promoter driven ectopic 

expression of AKIN10 lengthened the clock light period and delayed the peak of GIGANTEA (GI) 
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expression in the dark period. GI is a direct activator of FT (Mizoguchi et al., 2005), the key transcription 

activator of transition to flowering. GI also stimulates stabilization of CO (CONSTANS) and CO-

mediated activation of FT (Mishra and Panigrahi, 2015). Accordingly to Frank et al. (2018), ectopic 

expression of AKIN10 enhances the activation of bZIP83, which in turn stimulates the expression of 

PPR7 (PSEUDO RESPONSE REGULATOR7), a repressor of morning clock genes (CCA1/LHY; 

Nakamichi et al., 2010). PRR7 also interacts with and stabilizes CO (Hayama et al., 2017). Whereas 

these reports provide an evidence for that ectopic expression of AKIN10 influences the regulation of 

circadian clock, it is so far unknown how changes in the length of light and dark periods (short versus 

long day) affect the transcription of AKIN10 and other SnRK1 subunit genes. To examine this question, 

we monitored changes in the transcript levels of SnRK1 subunit genes in leaves of short day grown 

plants for 1 day at every 4 hours and then, after exposing the plants for 2 days to inductive long day 

condition, at 4 hours intervals for 48 hours (Figure 22). 
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Figure 22. qRT-PCR measurement of transcript levels of SnRK1 subunit genes under short and long day 

conditions. 

RNA samples were prepared at 4h intervals starting in the light period (Zeitgeber time 12h) under short (8h 

light/12h dark) day from leaves of 3-weeks-old plants. The plants were then exposed for 2 days to inductive long 

(16g light/8h dark) day condition, and then from the start of the light period (ZT 12h) samples were collected at 

every 4h for 2 days. Yellow and dark bars above the graphs mark the light and dark periods. UBQ5 mRNA was 

used as internal control for standardization. Standard deviation between measurements is indicated by error bars. 

The trend line in purple indicates moving average of consecutive samples. 

The qRT-PCR measurements revealed that transcript levels of SnRK1 AKINβ1 and β3 subunits 

are increasing in darkness during the night and decline in the light period under short day. However, 

circadian peaking of the AKIN10β1 transcription is abolished under long day condition, while is still 

present but dampened in its amplitude in case of the AKINβ3 transcript. The amplitude of changes in 

the dark and light transcript levels is much less in case of all other SnRK1 subunit genes, which show 
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minimal (e.g., SNF4), if any (e.g., AKIN10/11/β2), cycling during the day. In case of ectopic expression, 

the overexpressed AKIN10 subunit will increase SnRK1 activity only if it was incorporated into trimeric 

complexes with the β and γ subunits. So far, no data is available about cell type specific regulation of 

SnRK1 subunits except for AKIN10 and SNF4 (Bitrán et al., 2011) and about the stability and 

incorporation of ectopically overexpressed AKIN10 into complexes with various β-subunits. 

Furthermore, it is suggested that only AKIN10 affects the regulation of circadian clock and flowering 

time but not its paralog AKIN11 (Shin et al., 2017). Therefore, for further analysis of regulatory 

interactions, signaling partners and substrates of SnRK1 kinases, it is more desirable to use precisely 

tagged native gene constructs to avoid artificial change of transcription regulation of SnRK1 subunits. 

3.3. Purification of SnRK1 complexes using precisely modified native AKIN10 gene 

constructs 

3.3.1. Site-directed modifications of the AKIN10 gene by BAC recombineering and expression 

of tagged wild type and AS-kinase versions in plants 

As described in section 2.2.1.12, recombineering (i.e., λ-phage Red recombinase-mediated 

recombination between short homologous sequences) is a facile tool for precise site-directed 

modification of large eukaryotic genes, which are cloned in BACs (bacterial artificial chromosomes) in 

E. coli. The AKIN10 and SNF4 SnRK1 subunit genes were previously tagged in our laboratory by Bitrián 

et al. (2011), who used a galK positive/negative selectable marker for replacing their stop codons by 

recombineering with coding sequences of the green and yellow fluorescent (GFP and YFP) proteins, 

respectively. Because the application of galK+ (galactokinase) marker is based on the complementation 

of chromosomal galK- mutation by selecting for galactose auxotrophy on minimal medium at 32°C, the 

time requirement of such recombineering experiments is several weeks. We replaced therefore the galK+ 

marker with a new selectable/counter-selectable marker, which is composed of a kanamycin resistance 

gene (KmR) fused to a conditionally inducible ccdB gyrase inhibitor killer gene that is controlled by an 

arabinose-inducible promoter through the AraC repressor. The KmR-AraC-ccdB cassette was PCR 

amplified by primers, which carried 50 nucleotides homology to DNA sequences flanking the stop codon 

of the AKIN10 gene. Following recombination induced by short heat-activation of the λ-phage Red 

genes, the cassette was incorporated into the AKIN10 gene by replacing its stop codon. To facilitate the 

purification of AKIN10-containing SnRK1 kinase complexes, the KmR-AraC-ccdB cassette was 

replaced in the next step with coding sequences of the PIPL affinity tag without or in fusion with the 

GFP coding region. The PIPL tag developed in our laboratory is composed of a fusion of 38 His residues 

from the high affinity Co2+/Ni2+ binding domain of Arabidopsis Cobw/PIP-L protein, two streptactin-

binding StrepII motives, and a HA epitope. DNA fragments encoding the PIPL, GFP and GFP-PIL tags 

with C-terminal stop codons were similarly PCR amplified with primers providing 50 nucleotide flanks 

for replacement of the KmR-AraC-ccdB killer gene, which was induced by arabinose to select for its 

loss. On this way, without any nucleotide change or deletion, the tags were integrated in frame into the 

AKIN10 gene. 
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 The same work-flow was used for exchanging the codon M119 gate-keeper amino acid in the 

ATP-binding pocket of AKIN10 for a Gly codon, in order to construct an analog-sensitive AS-AKIN10 

kinase gene. The KmR-AraC-ccdB cassette inserted into the place of M119 codon was replaced in this 

case with a synthetic double stranded oligonucleotide, which carried the M119G codon exchange and 

suitable homology arms flanking the exchanged codon position. The modified genes were finally 

transferred by gap-repair into the Agrobacterium binary vectors pGAP-Km and pGAP-Hyg and 

transformed into wild type Arabidopsis plants. At least 20 T1 transformants were screened in the T2 

generation for 3:1 segregation of pGAP vector T-DNA insertions followed by isolation of homozygous 

T3 progeny. The expression of AKIN10_GFPPIPL and AS(M119G)-AKIN10-GFPPIPL (as well as 

GFP-tagged versions) was monitored in the T2 and T3 lines by confocal microscopy in the roots of 

seedlings (Figure 23A). 

 

Figure 23. Expression of GFPPIPL-tagged of wild type and AS-kinase versions of AKIN10 in plants and 

detection of their association with AKIN11, AKINβ1/2 and SNF4 SnRK1 subunits.  

A) Expression patterns of GFPPIPL-tagged wild type AKIN10 and AS-AKIN10 in roots of 3-weks old seedlings 

grown under short day condition in 0.5 MSAR medium with 0.5% sucrose. The bulk of GFPPIPL tagged kinase 

proteins is located in the cytoplasm and around the plasma membranes, and nuclei in the upper root elongation 

zone. B) The presence of intact AKIN10-GFPPIPL and AS-AKIN10-GFPPIPL proteins in total protein extracts 

from seedlings (expected molecular mass for the GFPPIPL-tagged AKIN10.1 isoform is 94 kDa) was confirmed 

by western blotting with anti-GFP antibody using control wild type (WT) and YFP-HA expressing seedlings grown 

under the same conditions as in A). AKIN10-GFPPIPL and AS-AKIN10-GFPPIL were purified by GFP-Tap 

affinity pull-down and subjected to western blotting with anti-AKIN11, anti-AKINβ1, anti-AKINβ2 and anti-

SNF4 antibodies from Agrisera. AK: AKIN10-GFPPIPL, AS-AK: analog-sensitive AS-AKIN10-GFPPIPL. D) 

Silver stained SDS-PAGE of GFP-TRAP purified AKIN10-GFPPIPL and AS-AKIN10-GFPPIPL samples derived 

total protein extracts of 1g whole seedling material grown for 3 weeks under short day condition in 0.5 MSAR 

medium with 0.5% sucrose. 
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GFPPIPL-tagged versions of AKIN10 and its analog-sensitive AS-AKIN10 derivative showed 

identical localization patterns in roots. Both proteins were mainly detected in the cytoplasm and along 

the plasma membranes of cells in the root tip, while their localization around nuclei was only observed 

in cells of the root elongation zone. Both proteins were detected by anti-GFP western blotting in total 

protein extracts of seedlings confirming the expected molecular mass of 94 kDa (Figure 23B). The GFP-

PIPL tagged AKIN10 and AS-AKIN10 proteins were purified on analytical scale from 1g aliquots of 3-

weeks-old seedlings by GFP-Trap to examine their association with other SnRK1 subunits by western 

blotting with Agrisera anti-AKIN11, AKINβ1, AKINβ2 and SNF4 antibodies (Figure 23 C and D). As 

expected, both AKIN10 and AS-AKIN10 were detected in association of both AKINβ1 and AKINβ2, 

as well as with the activating subunits SNF4. However, surprisingly the second SnRK1α2 catalytic 

subunit AKIN11 was also identified by immunoblotting in the purified AKIN10 and AS-AKIN10 

complexes suggesting that the AKIN10 and AKIN11 catalytic subunits might form dimeric kinase 

complexes. To determine whether this is indeed the case or the Agrisera anti-AKIN11 antibody is not 

specific (i.e., as it also cross-react with other proteins, Figure 23C), we GFP-Trap purified AKIN10-

GFP complexes from total seedling protein extracts and analyzed their subunits by LC-MS/MS mass 

spectrometry. 

3.3.2. Purification of AKIN10-containing SnRK1 complexes from total cell extracts and 

identification of associated interacting proteins by LC-MS/MS mass spectrometry 

AKIN10-GFP, AKIN10-GFPPIL and AS-AKIN10-GFPPIPL were purified using 3 independent 

replicates for each sample in 5 experiments (Table 1). In experiment 1, we used the exclusively nuclear 

localized PRL1-GFP protein, which is a core subunit of the spliceosome activation NTC (Nineteen) 

complex (Koncz et al., 2012) as control for pull-down of nuclear proteins. In all other experiments, the 

SnRK1 activating subunit SNF4-YFP was used as a control. SNF4-YFP was reported by Bitrián et al. 

(2011) to show predominant nuclear localization. On this way, we monitored the pull down of common 

partners by the SnRK1α1 subunit AKIN10 and its activating SNF4 subunit. In experiment 5, we 

compared the interacting partners of wild type AKIN10 and AS-AKIN10 derivatives. In all experiments, 

protein extracts from wild type and 35S-YFP-HA expressing plants were used as positive and negative 

controls. Table 2 shows a short data output of Experiments 4 and 5, including the log2 values of 

enrichment factors and their standard errors based on comparison to wild type and YFP-HA controls. 

Table 3 provides a list of proteins identified to interact with AKIN10 and AS-AKIN10 compared to 

SNF4 in the analyzed samples. 

Table 1 GFP-Trap purification of AKIN10 baits. 

Protein extracts in experiments 1 and 2 were prepared from rosettes of 4-weeks-old plants grown under 12 h/12 h 

dark condition in soil. In experiment 3, protein extract was prepared from roots of 5-weks old plant grown in 

Erlenmeyer bottles in liquid MSAR medium with 3% sucrose. In experiments 4 and 5, 3-weeks-old seedlings 

grown under heterotrophic conditions in short day (8hlight/16h dark) in 0.5 MASR medium with 0.5% sucrose in 

Petri dishes were used for total protein extraction.  

Experiment 1 2 3 4 5 

Plant tissue seedling seedling roots seedling seedling 
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Bait AKIN10-GFP AKIN10-GFP AKIN10-GFP AKIN10-GFPPIPL AS-AKIN10-GFPPIPL 

Control 1 PRL1-GFP SNF4-YFP SNF4-YFP - - 

Control 2 YFP-HA YFP-HA YFP-HA YFP-HA YFP-HA 

Control 3 wild type wild type wild type wild type wild type 

Table  2. LC/MS analysis of AKIN10-GFPPIPL and AS-AKIN10-GFPPIPL associated proteins 

after GFP-Trap pull-down. 

LFQ, integral of peptide peak areas proportional with the amount of peptides detected in 3 biological replicates; 

Log2 ratio: 2log2 enrichment of a given protein in the sample; p-value of log2. NaN: no detection. 

 

In all purification experiments using either AKIN10 or AS-AKIN10 as baits, the SnRK1α1 

subunit pulled down the activating SNF4 and all three AKINβ subunits. Similarly, the SNF4-YFP bait 

co-purified with the catalytic SnRK1α subunits AKIN10 and AKIN11, and with the AKINβ1, 2 and 3 

subunits, from which AKINβ3 was detected at the lowest amount. Except for AKIN10-GFP complexes 

purified from roots, AKIN11 was detected in all other AKIN10 and SNF4 pull-down samples, indicating 

that indeed the two catalytic SnRK1α subunits occurred in dimeric kinase complexes. The fact that the 

nuclear PRL1 protein was not detected in the total protein extract indicated that the identified protein 

complexes likely represent cytotosolic SnRK1 kinases and their associated partners. Among the latter, 

several DUF581 domain proteins were identified, which were previously shown to interact in yeast two-

hybrid assays with AKIN10 or AKIN11. Jamsheer and Laxmi (2014) found that the DUF581 domain is 

a conserved plant-specific FCS-like zinc finger involved in protein-protein interactions. Nietzsche et al. 

(2016) suggested that the DUF581 proteins might target SnRK1 kinases to important signaling factors, 

as they interact in yeast 2H assays with TCP transcription factors and DELLA repressors of gibberellin 

signaling (Nietzsche et al., 2014; 2016). However, none of the previously reported two-hybrid 

interacting partners of DUF581 proteins was identified in the pull-down samples by mass spectrometry.  

At relatively low representation, Arabidopsis homolog HSPRO2 of the sugar beet HS1 PRO-1 

leucine-rich-repeat protein was detected in both AKIN10 and SNF4 pull-downs. HSPRO2 was identified 

to interact with the CBM-domain of SNF4 in yeast 2H assays (Gissot et al., 2004) and is involved in 

resistance response to Pseudomonas (Murray et al., 2007; Schuck et al., 2013). Our mass spectrometry 

data thus provided evidence for in vivo association of these factors with SnRK1 complexes in 

Arabidopsis seedlings, although they were not detected in roots. 

TAIR IDs Gene
Peptide

No

MS/MS 

count
LFQ 1 LFQ 2 LFQ 3 LFQ 1 LFQ 2 LFQ 3 LFQ 1 LFQ 2 LFQ 3 LFQ 1 LFQ 2 LFQ 3 

log2 

ratio

p-

value

log2 

ratio

 p-

value

log 2 

ratio

 p-

valu

e

log2 

ratio

p-

valu

e 

AT3G01090 AKIN10 43 1108 34.38 33.09 33.53 34.064 33.96 33.91 25.6 26.05 25.18 21.231 20.61 21.11 8.057 4.231 12.682 5.139 8.371 5.29 13 6.5

AT1G09020 SNF4 29 634 34.18 32.69 33.31 33.791 33.64 33.6 24.37 24.74 24.44 24.808 24.34 24.34 8.881 4.418 8.8993 4.374 9.163 6.64 9.181 6.2

AT5G21170 AKINβ1 8 218 31.12 30.12 30.59 30.886 31.2 30.81 20.26 20.65 21.15 20.938 19.88 21.04 9.924 4.862 9.9896 4.54 10.28 5.47 10.35 4.9

AT4G16360 AKINβ2 8 142 31.38 29.92 30.49 30.694 30.62 30.72 NaN NaN NaN NaN NaN NaN 30.6 0 30.596 0 30.68 0 30.68 0

AT3G29160 AKIN11 14 64 29.97 28.78 29.29 30.328 30.04 29.46 NaN 18.87 NaN NaN NaN NaN 10.48 0 29.349 0 11.07 0 29.94 0

AT1G06410 TPS7 class II trehalose phosphate synthase 35 146 28.4 27.67 28.18 27.863 27.94 27.94 21.92 NaN 22.38 21.221 23.82 22.81 5.929 3.434 5.4627 2.644 5.763 4.21 5.297 2.7

AT2G18700 TPS11 class II trehalose phosphate synthase 27 75 27.89 27.13 27.33 26.914 26.36 27.01 22.61 21.82 NaN 25.424 24.22 20.93 5.235 2.962 3.9274 1.346 4.544 2.85 3.236 1.1

AT2G28060 AKINβ3 3 22 26.39 25.93 26.23 25.531 25.52 25.31 NaN NaN NaN NaN NaN NaN 26.18 0 26.183 0 25.45 0 25.45 0

AT1G70290 TPS8 class II trehalose phosphate synthase 20 55 26.11 26.2 26.23 26.772 26.74 26.61 21.41 21.53 22.76 21.024 22 22.28 4.278 3.233 4.4085 3.488 4.808 3.42 4.938 3.7

AT2G44670 DUF581 domain protein 5 17 27.08 24.49 25.72 25.252 25.32 25.5 NaN NaN NaN 23.016 NaN NaN 25.76 0 2.7446 0 25.36 0 2.34 0

AT1G60140 TPS10 class II trehalose phosphate synthase 32 144 27.25 24.62 25.39 31.075 30.31 30.57 17.32 18.47 17.76 18.821 18.01 18.06 7.901 3.131 7.4559 3.087 12.8 5.22 12.35 5.4

AT1G23870 TPS9class II trehalose phosphate synthase 13 27 24.64 24.28 25.03 25.916 25.79 25.35 NaN NaN NaN NaN 19.94 NaN 24.65 0 4.7139 0 25.68 0 5.746 0

AT2G40000 HSPRO2 | ortholog of sugar beet HS1 PRO-1 2 14 40 26.77 23.9 24.41 26.549 26.24 25.88 NaN NaN NaN 19.238 NaN 21.47 25.03 0 4.6704 1.343 26.22 0 5.866 2.2

AT4G17770 TPS5 class II trehalose phosphate synthase 5 14 23.78 22.46 22.83 23.725 24.08 23.8 NaN NaN NaN NaN NaN NaN 23.02 0 23.024 0 23.87 0 23.87 0

AT1G22160 DUF581 domain protein 3 12 23.48 21.6 22.67 24.223 23.92 24.47 NaN NaN NaN NaN NaN NaN 22.58 0 22.585 0 24.2 0 24.2 0

AT1G78020 DUF581 domain protein 2 2 21.21 21.14 22.6 22.257 21.99 21.99 NaN NaN NaN NaN NaN NaN 21.65 0 21.65 0 22.08 0 22.08 0

AT5G47060 DUF581 domain protein 1 5 21.55 21.1 22.3 22.03 21.85 22.14 NaN NaN NaN NaN NaN NaN 21.65 0 21.646 0 22 0 22.01 0

AKIN10 vs wt AS-AKIN10 AKIN10 AS-AKIN10 YFP wt AKIN10 vs AS-AKIN10 
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Table  3.The lists of AKIN10, AS-AKIN10 and SNF4 associated factors identified in five independent 

experiments using three biological replicates for each GFP-Trap purified sample from total protein extracts 

prepared from whole seedlings and roots (in experiment 3). 

Proteins identified in at least 4 x 3 pull-down samples are marked by grey color. Others, which represent 

statistically weaker candidates, found only in two experiments, are printed in yellow background. Factors 

represented by 1 or 2 peptides at very low abundance are marked by letters in italics. 

 

Surprisingly, our results demonstrated that in at least 4 out of 5 experiments the AKIN10 and 

SNF4 containing, likely dimeric SnRK1 complexes occurred in association with members of the class 

II trehalose 6-phosphate synthase/phosphatase (TPS) family. TPS5, 8, 9 and 10, which were more 

abundant in the samples were consistently detected in all 5 experiments using AKIN10 and AS-AKIN10 

as baits, as well as in 2 experiments with the SNF4-YFP bait (Table 3). TPS11 was not present in root 

samples, and TPS6 appeared to have the lowest abundance in the samples. Although the LC-MS/MS 

data are not quantitative, the differences in the LFQ peptide peak intensity values suggested that only 

about 1/26 (1/64) to 0.1% proportion of SnRK1 complexes were associated with individual class II TPS 

proteins in the purified samples, although these ratios varied between the different purification 

experiments. 

 The Arabidopsis class II TPS proteins are considered as inactive enzymes because they cannot 

complement the yeast Δtps1Δtpp mutations (Ramon et al., 2009). Nonetheless, class II TPS proteins 

carry conserved catalytic domains of TPS (trehalose-6-phosphatase synthase) and TPP (T6P 

phosphatase) enzymes. Therefore, they could theoretically function of T6P receptors or T6P-dependent 

effectors as speculated by Broeckx et al. (2016), or alternatively as sensors of T6P precursors including 

glucose-6-phosphate (G6P) and UDP-glucose. NADPH was reported to bind to and activate TPS1, 

which was therefore proposed to act as redox sensor controlling the activation of virulence gene 

repressors in the rice blast disease fungus Magnaporthe oryzae (Wilson et al., 2010). Therefore, we 

Experiment 4 5

TAIR IDs Gene AKIN10 PRL1 AKIN10 SNF4 AKIN10 SNF4 AKIN10 AS-AKIN10

AT3G01090 AKIN10 + - + + + + + +

AT1G09020 SNF4 + - + + + + + +

AT4G16360 AKINβ2 + - + + + + + +

AT5G21170 AKINβ1 + - + + + + + +

AT3G29160 AKIN11 + - + + - + + +

AT2G28060 AKINβ3 + - + + + + + +

AT1G60140 TPS10 classII trehalose phosphate synthase + - + + + + + +

AT4G17770 TPS5 classII trehalose phosphate synthase + - + + + + + +

AT1G68020 TPS6 classII trehalose phosphate synthase + - + + - - - -

AT1G06410 TPS7 classII trehalose phosphate synthase - - + + + + + +

AT1G70290 TPS8 classII trehalose phosphate synthase + - + + + + + +

AT1G60140 TPS10 classII trehalose phosphate synthase + - + + + + + +

AT1G23870 TPS9 classII trehalose phosphate synthase + - + + + + + +

AT2G18700 TPS11 classII trehalose phosphate synthase + - + + - - + +

AT5G47060 DUF581 domain protein + - + - - - + +

AT2G44670 DUF581 domain protein + - + + - - + +

AT1G78020 DUF581 domain senescence-associated family protein - - + + - - + +

AT2G40000 HSPRO2 ortholog of sugar beet HS1 PRO-1 2 - - + + - - + +

AT3G23570 yeast AIM2-like alpha/beta-Hydrolases superfamily protein - - + + - - + +

AT1G68580 agenet / bromo-adjacent homology (BAH) domain protein + - + + - - - -

AT1G01610 GPAT4 glycerol-3-phosphate acyltransferase 4 + - + + - - - -

AT1G08050 Zinc finger (C3HC4-type RING finger) family protein + - + + - - - -

AT3G52750  FTSZ2-2 | Tubulin/FtsZ family protein + - + + - - - -

AT1G13320 PP2AA3 | protein phosphatase 2A  subunit A3 + - + + - - - -

AT4G19710 AK-HSDH II, aspartate kinase-homoserine dehydrogenase II + - + + - - - -

AT1G60780  HAP13 Clathrin adaptor complexes medium subunit + - + + - - - -

AT1G70510 KNAT2, ATK1 | KNOTTED-like homeobox TF + - + + - - - -

AT5G65840 Thioredoxin superfamily protein | + - + + - - - -

AT3G12050 Aha1 domain-containing protein + - + + - - - -

AT3G42170 DAYSLEEPER BED zinc finger;hAT dimerisation domain + - + + - - - -

AT4G15110 CYP97B3 | cytochrome P450, family 97, subfamily B, + - - + - - - -

1 2 3
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performed an assay to determine whether association of class II TPS proteins with SnRK1 enzymes 

would influence the kinase activity in response to the availability of TPS substrates and NADPH. 

AKIN10-GFPPIPL was purified from seedlings by standardizing the protein input to prepare parallel 

samples of GFP-Trap bound SnRK1 kinase complexes. The beads were extensively washed as in case 

of LC-MS sample preparations, and then were subjected to on-bead kinase reactions using (γ32P)ATP 

and Trx-SPS-KD kinase substrate in the presence of glucose-6-phosphate (G6P, 100µM), UDP-glucose 

(UDPG, 100µM) and NADPH (1mM) applied alone or in combinations.  

 

Figure 24. On bead protein kinase assays with GFP-Trap bound purified AKIN10-GFPPIPL complexes in 

the presence of TPS substrates and NADPH. 

The upper panel shows phosphorylation of SnRK1 substrate Trx-SPS-DK in the presence of TSP substrates and 

NADPH alone or in combinations detected by autoradiography. The first column shows a control pull down assay 

with wild type protein extract, indicating the background of aspecifically bound protein kinases. The lower panels 

show Coomassie staining of SDS-PAGE gels on which the kinase reactions were size separated. 

The results of kinase assays shown in Figure 24 indicated that phosphorylation of the SnRK1 

substrate Trx-SPS-KD protein was reduced by about 30-40% whenever the kinase reactions were 

performed in the presence of UDP-glucose. This suggested that binding of the TPS substrate UDP-

glucose to AKIN10-GFPPIPL-associated class II TPS proteins resulted in an inhibition of SnRK1 

substrate phosphorylation. 

 In collaboration, Dr. Ajit Ghosh in our laboratory expressed the class II TPS protein TPS8 in 

fusion with a C-terminal mCherry tag in AKIN10-GFP expressing plants. Followed purification of 
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AKIN10-GFP on GFP-Trap, TPS8-mCherry was detected in association with AKIN10-GFP by western 

blotting with anti-RFP antibody. At the same time, association of TPS8 with AKIN10-GFP was detected 

by reciprocal pull-down of TPS8-mCherry with RFP-trap followed by western blotting with anti-GFP 

antibody (Figure 25A). 

 

Figure 25. UDP-glucose and trehalose-6-P inhibit phosphorylation of the SnRK1 kinase substrate Trx-SPS-

KD by the TPS8-associated kinase. 

A) Protein extract was prepared from AKIN10-GFP and TPS8-mCherry expressing 3-weeks-old seedlings grown 

in short day on 0.5MSAR medium with 0.5% sucrose. Half of the extract was bound to GFP-Trap and followed 

elution subjected to western blotting with anti-RFP antibody to detect AKIN10-association with TPS8-mCherry. 

Equivalent aliquot of protein extract was bound to RFP-Trap and after elution subjected to western blotting with 

ant-GFP antibody to reciprocally confirm association of AKIN10-GFP with the TPS8-mCherry bait. B) Protein 

kinase assays with the RFP-bound TPS8-mCherry protein complex using (γ 32P)ATP and SnRK1 substrate Trx-

SPS-KD in the presence of 1mM NADPH, 5 mM glutathione (GSH), 50mM glucose (Gluc), 0.5mM glucose-6-

phosphate (Gluc6P), 0.5 mM UDP-glucose (UDP-Glu), 50mM trehalose and 0.5mM trehalose-6-phosphate (Tre-

6P). C) Comparative protein kinase assays using RFP-Trap bound purified TPS8-mCherry protein complex, 

(γ32P)ATP, SnRK1 substrate Trx-SPS-KD and increasing concentrations of UDP-glucose and T6P. Control kinase 

assays were parallel performed with purified AKIN10 in vitro. 

These reciprocal pull-down experiments confirmed that part of AKIN10 was associated with 

TPS8 and vice versa part of TPS8 pulled down AKIN10. In collaboration with Dr. Zsuzsa Koncz, next 

a repeated kinase assays was performed using a reciprocal TPS8 pull-down. The TPS8-mCherry protein 

complex was purified from total protein extract on RFP-Trap and used in phosphorylation assays with 
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the SnRK1 substrate Trx-SPS-KD in the presence of NAPDH, glutathione, glucose, glucose-6-

phosphate, UDP-glucose, trehalose and trehalose-6-phosphate (T6P). In addition to UDP-glucose, these 

assays indicated that trehalose-6-P can similarly inhibit the activity of TPS8-associated kinase to 

phosphorylate the SnRK1 substrate Trx-SPS-KD (Figure 25B). Finally, kinase assays were performed 

with the RFP-Trap bound TPS8-mCherry protein complex using increasing concentrations of UDP-

glucose and T6P (1 to 4 mM) by performing parallel control assays with the SnRK1α1 kinase subunit 

AKIN10 purified from E. coli. While both increasing concentrations of UDP-glucose and T6P resulted 

in a gradual (though not linear) decrease of kinase activity associated with TPS8-mCherry, the activity 

of purified SnRK1α1 kinase subunit AKIN10 was not inhibited by these compounds (Figure 25C), in 

contrast to a recent report by Zhai et al. (2018). These results suggest that class II TPS proteins in 

SnRK1-associated cytoplasmic protein complexes might function as UDP-glucose and T6P sensors to 

negatively modulate the activity of SnRK1. Nonetheless, these results should be further corroborated by 

double affinity purification of TPS-SnRK1 complexes. 

3.3.3. Purification of SnRK1 complexes from isolated nuclei 

For isolation of SnRK1 protein complexes, cell nuclei were partially purified from leaves of 4-

weeks-old soil grown seedlings as described in section 2.2.4.2. For initial optimization of nuclear protein 

extraction protocol, we compared two extraction buffers, one containing 0.1% SDS (A: used for IP in 

ChIP-Seq experiments) and another with 1% Triton X100 (B). Nuclei were isolated from 200g leaf 

material of AS-AKIN10-GFPPIPL expressing 4-weeks-old plants grown in soil under short day 

condition, lysed in nuclear extraction buffers A and B followed by centrifugation and the extracted 

proteins were comparatively analysed by SDS-PAGE separation and Coomassie staining, as well as by 

western blot detection of extracted AS-AKIN10-GFPPIPL protein with anti-GFP antibody. Surprisingly, 

the results indicated that in the absence of subsequent sonication step, the efficiency of nuclear protein 

extraction using 0.1% SDS as detergent is very low compared to nuclear lysis with 1% Triton X100-

containing extraction buffer (Figure 26). 

For chromatin-IP of DNA cross-linked protein complexes (see e.g., Reimer and Turck, 2010), 

Arabidopsis nuclei are usually sonicated in NLBA or similar buffer containing no (NH4)2SO4, until the 

DNA is fragmented to mono-nucleosome size (about 145 bp). 



  Results 

87 

 

Figure 26. Comparison of efficiency of nuclear protein isolation using nuclear extraction buffers with 

different detergents. 

Nuclear lysis buffer A (NLBA) containing 0.1% SDS results in a much lower yield of extracted proteins compared 

to NLB containing 1% Triton X-100. The amount of extracted nuclear protein was monitored by SDS-PAGE 

followed by Coomassie staining. Specific recovery of AS-AKIN10-GFPPIPL protein in the nuclear extract was 

monitored by western blotting using anti-GFP antibody. 

 

Figure 27. Optimization of sonication conditions for extraction of nuclear proteins. 

A) Titration of chromatin DNA fragmentation by increasing the number of sonication pulses (each pulse 10 sec). 

B) Upon 10 x 10sec sonication, the DNA fragment size corresponds to 1-2 nucleosome size. Under these conditions 

three nuclear proteins, the SNF4 activating subunit of SnRK1, the CDKF;1 activating kinase of RNA polymerase 

II general transcription factor TFIIH-associated CDKD kinases, and the PRL1 subunit of spliceosome activating 

NTC complex are efficiently extracted as confirmed by western blotting of their GFP and YFP tagged versions. 
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C) After 4 x 10 sec sonication the chromatin DNA is fragmented to 6-8 nucleosome size, which might better 

preserve larger protein complexes. PRL1, AKIN10, AS-AKIN10 and SNF4 are similarly extracted as monitored 

by western blotting of their GFP, GFPPIPL and YFP tagged forms. 

Alternatively, the nuclei are lysed using the chaotropic salt (NH4)2SO4, which was introduced 

originally for preparation of nuclear protein lysates used in DNA-binding gel retardation assays to study 

various transcription factors (see e.g., Foster et al., 1992). To titrate the nucleosome fragmentation by 

sonication, the nuclei isolation was standardized using NLBB (Figure 26) and the decrease of DNA size 

during increasing the number of sonication pulses was monitored by gel electrophoresis (Figure 27A). 

In the next step, nuclei prepared from plants expressing three nuclear proteins (PRL1, CDKF;1 and 

SNF4; Figure 27B) were subjected to DNA fragmentation to about 2-3 nucleosome size and the recovery 

of GFP/YFP tagged forms of these nuclear proteins were monitored by western blotting. Each of the 

three nuclear proteins was equally well extracted using this protocol. Similarly, 4 sonication cycles were 

used to prepare protein extracts, in which the DNA was fragmented to 6-8 nucleosome size to facilitate 

the recovery of larger protein complexes. This was tested by extraction of AKIN10-GFP, AS-AKIN10-

GFPPIPL, PRL1-GFP and SNF4-YFP from nuclei. Somewhat lower yield of all four proteins was 

confirmed by western blotting using anti-GFP antibody (Figure 27C). 

 An alternative approach to degrade nucleic acids in nuclear protein samples is offered by treating 

the nuclear extracts with DNase and RNase. As nuclear lysis was enhanced by using 0.4M (NH4)2SO4 

in the NLBB extraction buffer, prior application of nucleases the samples had to be desalted by dialysis 

or gel filtration. The disadvantage of this step is that during dialysis a continuous protease protection 

must be maintained (i.e., by addition of protease inhibitors and proteasome inhibitor of MG132), which 

is not practical (i.e., due to the high cost). Another problem is that the applied DNase and RNase enzymes 

must be of high quality (such as homogeneous Worthington DNase and similar quality of RNase, or 

recombinant benzonase from Merck). Even using high quality enzymes, DNase and RNase have their 

temperature optima at 37°C, where proteolysis in plant nuclear extracts is extremely fast. By contrast, 

treating the extract with DNase and RNase at 4°C, providing parallel inhibition of proteasome and 

protease activities, might not be sufficient for efficient fragmentation of nucleosome and nuclear RNAs. 

This could result in the isolation of large nucleic acid bound protein complexes preventing the 

identification of specific interacting partners of bait proteins. A final problem in LS-MS/MS analysis of 

nuclear protein complexes is the choice of internal nuclear protein control, which should be a protein 

that cannot form common complexes with the purified bait. 

Table 4.  Comparative LC-MS/MS mass spectrometry analysis of GFP-Trap purified AKIN10-GFP, SNF4-

YFP and PRL1-GFP nuclear protein complexes purified by four different nuclear extraction protocols. 
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Experiment

Protein IDs Gene AKIN10 SNF4 PRL1 AKIN10 SNF4 PRL1 AKIN10 SNF4 PRL1 AKIN10 SNF4 PRL1

AT1G09020 SNF4 27 31 NaN 30 29 16 29 32 14 32 33 20

AT3G01090 AKIN10 29 31 NaN 32 29 19 31 30 NaN 33 30 18

AT3G29160 AKIN11 NaN 29 NaN 25 30 NaN 22 30 NaN 28 29 20

AT5G21170 AKINbeta1 23 27 NaN 26 27 NaN 28 29 NaN 30 30 NaN

AT4G16360 AKINbeta2 24 25 NaN 27 25 NaN 26 26 NaN 27 27 NaN

AT2G28060 AKINbeta3 20 22 NaN 21 19 NaN 23 25 NaN 25 25 NaN

AT1G07840  Sas10/Utp3/C1D family neuroguidin, EIF4E binding protein 27 27 NaN - 20 NaN - - - - - -

AT3G50590 Transducin/WD40 repeat-like superfamily protein 26 23 NaN - - - 22 22 20 - - -

AT5G38640 NagB/RpiA/CoA transferase-like superfamily protein 27 24 21 - - - 20 20 20 - - -

AT2G35940 BLH1 | BEL1-like homeodomain 1 22 23 20 - - - - - - 20 22 24

AT2G24590 SR protein RSZ22a RNA recognition motif CCHC-type zinc finger domain 23 24 21 - - - 22 21 22 23 NaN NaN

AT5G05230  RING/U-box superfamily protein 23 24 22 NaN 18 NaN - - - 20 21 NaN

AT3G06610  DNA-binding enhancer protein-related - - - NaN 19 NaN - - - 23 23 NaN

AT1G53720 CYP59 | cyclophilin 59 - - - NaN 18 NaN NaN NaN 21 NaN NaN NaN

AT5G48160 OBE2 | Protein of unknown function (DUF1423) - - - NaN 18 NaN - - - NaN 23 NaN

AT1G60140 TPS10  classII  trehalose phosphate synthase 10 - - - 22 22 NaN - - - 21 21 NaN

AT4G17770 TPS5  class II trehalose phosphatase/synthase 5 - - - 19 19 NaN - - - 21 NaN NaN

AT2G25560  DNAJ heat shock N-terminal domain-containing protein - - - - - - NaN NaN 23 NaN NaN NaN

AT2G37340 RSZ33 arginine/serine-rich zinc knuckle-containing protein 33 - - - - - - 21 21 21 22 NaN NaN

AT5G15210 HB30, ZHD8 homeobox protein 30 - - - - - - NaN 20 21 22 NaN NaN

AT1G70770 Protein of unknown function DUF2359, transmembrane - - - - - - 20 20 19 NaN 21 NaN

AT4G15900 NTC PRL1 | pleiotropic regulatory locus 1 PRL1 30 29 34 20 24 33 26 25 33 26 25 36

AT1G09770 NTC CDC5 (MOS4 PRL1 interactor) Cef1  cell division cycle 5 32 30 34 21 25 28 26 25 33 26 24 36

AT1G04510 NTC PRP19A MOS4-associated complex 3A (MAC3A), PRP19A 30 28 34 19 22 27 25 25 32 26 25 35

AT1G77180 NTC subunit SKIP 32 29 34 21 25 26 26 26 32 27 26 35

AT3G18165 NTC MOS4, atSPF27 , SPF27, BCAS2, NTC25 modifier of snc1,4 29 27 32 20 22 26 24 24 31 24 23 34

AT2G33340 NTC PRP19b MOS4-associated complex 3A (MAC3B) 31 29 34 - - - 26 26 33 27 27 36

AT5G28740 NTC subunit SYF1  pre-mRNA-splicing factor 29 27 33 - - - 24 23 32 26 25 35

AT5G41770 NTC subunit atCRN1c putative crooked neck protein 28 27 33 - - - 23 24 32 26 24 35

AT3G18790 NTC atlsy1 pre-mRNA-splicing factor ISY1 , fSap33, NTC30 29 27 32 - - - 24 22 31 23 19 34

AT2G36130 NTR NTC-associated CyPL1a, CPR3a, PPIL1a, peptidyl-prolyl cis-trans isomerase-like 1 | Cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein30 29 32 NaN 21 25 24 25 31 24 24 34

AT3G16650 NTC PRL1 subunit paralog PRL2 Transducin/WD40 repeat-like superfamily protein26 23 30 NaN NaN 27 NaN NaN 28 NaN NaN 25

AT2G38770 NTR NTC-associated atAquarius EMB2765 fSAP164, KIAA0560 29 27 34 - - - 25 25 33 27 27 36

AT1G10580 NTR  NTC-associated PRP17a pre-mRNA-processing factor 17 30 27 33 - - - 25 25 32 25 24 35

AT3G13200 NTR NTC-associated atAD-002 AD-002, CCAP2, CWC15 EMB2769 32 31 33 - - - 25 25 32 25 25 34

AT1G07360 NTR NTC-associated atECM2-1a pre-mRNA-splicing factor fSAP47, ECM2 30 28 33 - - - 24 24 32 24 23 34

AT3G05070 NTR NTC-associated cwf18 coiled-coil domain-containing protein 12 30 30 32 - - - 24 22 30 24 24 33

AT4G21110 NTR NTC-associated AtBud31 bud site selection protein 31, fSAP17, G10, Bud3129 26 31 - - - 23 23 30 23 22 33

AT1G80930 NTR NTC-associated pre-mRNA-splicing factor CWC22, nucampholin, KIAA1606 27 26 31 - - - 23 23 30 26 25 32

AT2G29580 NTR NTC-associated atECM2-1b zinc finger CCCH domain-protein 25, fSAP47, ECM2 25 21 28 - - - NaN 17 28 16 15 30

AT1G25682 NTR NTC-associated Yju2, CCDC130, Cwc16, coiled-coil domain-containing protein 22 22 27 - - - NaN NaN 26 NaN NaN 29

AT1G32490 NTR atPrp2-1a ESP3 ENHANCED SILENCING PHENOTYPE 3 DHX16 ESP3 | RNA helicase family protei- - - 17 17 24 18 NaN 24

AT4G16680 NTR tPrp2-2 putative RNA helicase P-loop containing nucleoside triphosphate hydrolase- - - - - - NaN NaN 22 NaN NaN 26

AT1G80070 U5 snRNP U5-220 kDa Prp8a, SUS2; ABNORMAL SUSPENSOR 2 30 28 35 19 23 20 26 26 34 29 29 38

AT1G06220 U5 snRNP U5-116 kDa  MEE5, CLOTHO/GAMETOPHYTIC FACTOR 33 28 34 - - - 28 27 33 28 28 36

AT2G43770 U5 snRNP U5-40 kDa Prp8 binding WD40 protein 31 29 33 - - - 25 25 32 25 24 35

AT1G20960 U5 snRNP U5-200 kDa atU5-200-2a EMB1507 29 26 34 - - - 27 26 32 29 29 34

AT5G25230 U5 snRNP U5-116 kDa atU5-116-1b elongation factor EF-2 27 25 30 - - - 23 22 29 24 23 31

AT3G49601 U5 snRNP SUS2 interacting pre-mRNA-splicing factor - - - - - - 18 18 29 20 20 30

AT1G13690 Novel RRM RNA-binding domain coiled coil ATE1 | ATPase E1 31 30 32 - - - 25 25 31 26 25 33

AT1G20580 Sm core atSmD3-b Small nuclear ribonucleoprotein - - - - - - 24 24 30 25 25 33

AT4G20440 Sm core atSmB-b Small nuclear ribonucleoprotein - - - - - - 23 23 30 26 24 33

AT3G62840 Sm core atSmD2-b Small nuclear ribonucleoprotein - - - - - - 23 24 30 25 25 32

AT4G02840 Sm core atSmD1-b  Small nuclear ribonucleoprotein - - - - - - 25 24 29 25 26 32

AT4G30220 Sm core subunit atSmF; small nuclear ribonucleoprotein F RUXF 26 25 29 - - - 22 23 29 21 21 31

AT4G30330 Sm core AtSmE-a Small nuclear ribonucleoprotein - - - - - - 23 24 29 NaN NaN 29

AT3G11500 Sm core subunit atSmG-b Small nuclear ribonucleoprotein 29 27 30 - - - 23 23 28 26 25 32

AT2G23930 Sm core subunit atSmG-a, SNRNP-G 23 23 23 - - - 20 19 28 19 19 30

AT1G76300 Sm core subunit atSmD3-a Small nuclear ribonucleoprotein SmD3 28 28 28 - - - 18 19 27 20 23 30

AT3G07590 Sm core atSmD1-a Small nuclear ribonucleoprotein - - - - - - NaN NaN 25 NaN NaN 28

AT2G18740 Sm core atSmE-b Small nuclear ribonucleoprotein - - - - - - - - - 25 24 32

AT3G07790 C-complex associated protein DGCR14| 27 25 29 - - - 15 12 29 18 NaN 31

AT4G18465 C-complex associated ATP-dependent RNA helicase DDX35 26 25 31 - - - 18 18 29 18 18 30

AT5G23080 C-complex associated TOUGH (TGH) G patch protein 1 TGH, SWAP 26 25 29 - - - NaN 13 29 20 18 30

AT5G64270 U2 snRNP SF3b155, SAP155 atSAP155 putative splicing factor | 27 28 29 - - - 20 22 29 24 24 30

AT3G55220 U2 snRNP atSAP130b Cleavage and polyadenylationfactor (CPSF) A - - - - - - 25 25 29 23 23 30

AT4G21660 U2 snRNP atSF3b150 splicing factor 3B subunit 2  proline-rich spliceosome-associated (PSP) family- - - - - - 21 22 27 24 22 29

AT5G12190 U2 snRNP atP14-1 pre-mRNA branch site protein p14 (RRM/RBD/RNP motifs) protein- - - - - - 22 21 26 23 22 28

AT1G27650 Splice site selection atU2AF35a/AUSa splicing factor U2af small subunit A - - - - - - - - - 22 22 28

AT5G06160 U2 snRNP atSAP61 splicing factor 3A subunit 3; ATROPOS (ATO) ATO | splicing factor-related- - - - - - 19 NaN 24 NaN NaN 27

AT1G14650 U2 snRNP atSAP114-1a splicing factor 3A subunit 1 SWAP (Suppressor-of-White-APricot)/surp domain- - - - - - 19 17 26 20 NaN 27

AT2G18510 U2 snRNP atSAP49a splicing factor 3B subunit 4, emb2444 emb2444 - - - NaN 18 NaN - - - 19 19 28

AT4G14342 U2 snRNP SF3b10a splicing factor 3B subunit 5 - - - - - - NaN 19 26 22 20 26

AT2G32600 U2 snRNP atSAP62 splicing factor 3A subunit 2 - - - - - - 16 19 25 21 19 27

AT5G42820 Splice site selection U2 snRNP  atU2AF35a/AUSa splicing factor U2af small subunit A 24 24 21 NaN 20 NaN 22 22 22 NaN NaN 23

AT5G64730 C-complex MORG1 WDR83| transducin/WD40 domain-containing protein 23 20 26 - - - NaN 17 27 20 NaN 27

AT3G63400 C-complex PPIG cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein- - - - - - NaN 18 25 23 24 28

AT4G02720 C-complex human NKAP homolog 25 24 25 NaN NaN 22 NaN NaN 24

AT4G02720 C-complex human NKAP homolog 25 24 25 NaN NaN 22 NaN NaN 24

AT3G20550 RES complex DAWDLE; DDL SMAD/FHA domain-containing protein - - - - - - 14 14 27 20 NaN 27

AT1G31870 RES complex pre-mRNA-splicing factor CWC26 - - - - - - 18 18 26 21 20 28

AT3G47120 RES complex interacting protein GDS1, GROWTH, DEVELOPMENT AND SPLICING 1 23 21 24 - - - NaN 17 26 NaN NaN 26

AT3G62310 Disassembly factor atPrp43-2a ATP-dependent RNA helicase DHX15 - - - - - - - - - 17 20 28

AT1G24706 TREX complex subunot THO2, AtTHO2 24 25 25 - - - NaN NaN 19 20 19 27

AT5G42920 THO/TREX complex THO5, AtTHO5 | THO complex,  subunit 5 - - - NaN NaN 24

AT1G04080 U1 snRNP atPrp39a late flowering PRP39 | Tetratricopeptide repeat (TPR)-like superfamily protein- - - - - - - - - NaN 16 28

AT4G32420 U1 snRNP Cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein - - - - - - 18 17 24 21 22 27

AT4G36980 CLK4-associating serine/arginine-rich protein - - - NaN NaN 27 NaN NaN NaN NaN NaN 31

AT3G49430 SRp34a| SER/ARG-richSR- protein 34A - - - - - - 23 23 27 26 25 29

AT2G29210 SRm160 serine/arginine repetitive matrix protein 1 splicing factor - - - 17 NaN 24 NaN NaN 24

AT3G26560 2nd step factot Prp22-1 ATP-dependent RNA helicase DHX8 - - - NaN NaN 23 NaN NaN 25

AT2G06990 Exosome HEN2 DExH-box RNA helicase 21 21 NaN - - - NaN 20 21 20 22 28

AT1G15200 EJC complex atPinin protein-protein interaction regulator family protein - - - - - - 21 22 26 25 23 28

AT5G11200 EJC complex atUAP56a DEAD-box ATP-dependent RNA helicase 56 - - - - - - - - - 25 25 28

AT1G80670 RNA export factor 1  RAE1 Transducin/WD40 repeat protein 28 28 24 - - - NaN NaN NaN 22 23 27

AT1G73720 Bact complex Smu-1/fSAP57 SMU1 | transducin family protein / WD-40 repeat family protein- - - - - - NaN 19 NaN NaN 20 27

AT2G41500 U4/U6 snRNP atSAP60 LACHESIS (LIS); EMB2776 LIS, EMB2776  WD-40 repeat family protein- - - - - - NaN NaN 26

AT1G60170 U4/U6 snRNP U4/U6-61 kDa (Prp31p) emb1220  pre-mRNA processing ribonucleoprotein 23 23 NaN NaN NaN 25

AT2G13540 CAP binding complex  ENS, ABH1, CBP80, ATCBP80 | ARM repeat superfamily protein- - - - - - NaN NaN 26

AT3G09100 mRNA capping enzyme family protein CAP1A, RNGTT RNA guanylyltransferase and 5'-phosphatase- - - NaN NaN 24

AT3G06400 Spliceosome-asscociated CHR11, chromatin-remodeling protein 11 CHR11 26 28 29 - - - 25 25 26 26 27 30

AT5G13480 Polyadenylation cleavage complex Flowering time control protein FY | Transducin/WD40 repeat- - - - - - - - - 17 17 27

AT1G65440 GTB1 | global transcription factor group B1 23 25 25 - - - - - - 20 20 29

AT2G17930 Human TRRAP jomolog of SAGA  histone acetyltransferase (HAT) complex subunit - - - NaN 20 NaN NaN NaN 18 20 22 28

AT5G14170 CHC1  SWI/SNF chromatin remodeling complex BAF60A subunit 28 27 27 - - - - - - 25 26 28

AT1G18450 SWI/SNF chromatin remodeling complex ARP4 actin-related protein 4 - - - - - - - - - 25 23 28

AT3G57300 SWI/SNF chromatin remodeling DNA helicase INO80 - - - - - - - - - 19 23 27

AT3G60830 SWI/SNF chromatin remodeling ATARP7, ARP7 | actin-related protein 7 - - - - - - 21 19 26

AT5G44800 CHR4, PKR1  (PICKLE RELATED 1) SNF2 ATPase of SWI/SNF chromatiin remodelling complex- - - NaN 19 NaN NaN 21 21 22 23 26

AT2G46020 SWI/SNF chromatin remodelling complex CHR2, ATBRM, BRM, CHA2 SNF2 ATPase 25 26 26 - - - NaN 20 23 23 24 26

1: 4°C DNase & RNase 2: 37°C DNase & RNase 3: 10 x sonication 4: 4 x sonication
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To test these conditions, we prepared four experiments. In the first and second experiments, the nuclear 

extracts were DNase/RNase treated for 2h at 4°C and at 37°C, respectively, followed by purification of 

AKIN10-GFP and SNF4-YFP baits using PRL1-GFP as nuclear control, in addition to the regular 

control extracts from wild type and YFP-HA expressing plants. In the third and fourth experiments, the 

nuclei were sonicated 10 and 4 times to reduce the size of nucleic acids and then treated with DNase and 

RNase during incubation of the samples with GFP-Trap for 2h at 4°C. Three biological repeats from all 

samples were analyzed by LC-MS/MS mass spectrometry (Table 4). As illustrated by arbitrary intensity 

values of detected peptide peaks in Table 4, in the first experiments no great difference was identified 

between the representations of bait-associated nuclear proteins compared to the internal nuclear protein 

control PRL1. This indicated that nuclease digestion at 4°C was not sufficient to disrupt large DNA/RNA 

associated complexes. The results suggest that AKIN10 and SNF4 are likely part of protein complexes 

that during transcription are associated through the undigested pre-mRNAs with the spliceosome and its 

activating NTC complex including PRL1. Therefore, the difference in the representation of 

AKIN10/SNF4 versus PRL1 associated proteins is maximum 8 to 16-fold, which excludes safe 

identification of their specific interacting partners. 

 Although recommended in several plant protocols, DNase/RNase digestion of nuclear extracts 

at 37°C in the second experiment efficiently disrupted the protein interactions. As in the first experiment, 

AKIN10 and SNF4 were only identified in core trimeric complexes with AKINβ1 and β2, and at much 

lower representation with AKINβ3. Compared to SNF4, AKIN11 was detected at much lower 

representation in the AKIN10-GFP pull-downs, indicating that the amount of dimeric (i.e., 2 x 3 

hexameric) kinase complexes is lower in the nuclear samples compared to kinase forms detected in the 

total protein extracts. Nuclease digestion at 37°C also largely disrupted the activated spliceosome 

associated NTC complex. In the second experiment, therefore only the basic core of five closely 

associated PRL1-binding NTC proteins were identified. 

 Chromatin fragmentation to 2-3 nucleosome size by 10 x sonication did not improve the 

detection of AKIN10 and SNF4 interacting partners. By contrast, this protocol resulted in the 

identification of most components of so-called activated spliceosome C-complex, which contains the 

U5-snRNP-bound NTC, NTC-associated NTR (NTC-related), and Sm-core protein complexes 

identified in the crystal structure of spliceosome C-complex (Liu et al., 2017; Shi, 2017; Yan et al., 

2017). Through the U5 snRNP, this megacomplex of over 50 proteins is bound to the U2 snRNP and 

other C-complex specific proteins, few of which are represented in the sample at lower peptide peak 

intensities.  

 Finally, reducing the number of sonication cycles to 4 further enhanced the detection of proteins, 

which are peripherally associated with the NTC-NTR-U5-snRNA complex, including more components 

of U2-snRNP, the TREX/THO mRNA export and RES (retention) complex. However, even under this 

gentle extraction condition, which proved to be ideal for identification of over 150 components of NTC-
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associated large protein complex(es), no novel partners were detected with the AKIN10 and SNF4 baits. 

The reason to this failure is probably the implication of (NH4)2SO4 in the extraction buffer, which likely 

interrupts those RNA polymerase II associated protein complexes, which are not kept tightly together 

by RNA-binding and U-snRNP interactions. This conclusion is supported by the fact that parallel 

purification of TFIIH kinases CDKF;1 and CDKD;2 also failed to result in pull-down of known TFIIH 

components, which were however detected by GFP-Trap affinity binding from (NH4)2SO4-free total cell 

extracts. Consequently, the optimization of extraction of nuclear SnRK1 complexes has to be continued 

by returning to the use of alternative salt fractionation protocols. 

3.4. Exploitation of analogue sensitive AS-AKIN10 for enrichment of SnRK1 

substrates 

The final goal of the present Ph.D. work was the use of analogue sensitive AS-AKIN10 kinase 

characterized in section 3.1, for enrichment of SnRK1 substrate proteins, which are specifically 

thiophosphorylated by the modified kinase using bulky N6-substituted thioATP derivatives. When 

constructing and expressing the AS-AKIN10 kinase, which carries an M119G amino acid replacement 

in its ATP-binding pocket, we demonstrated that AS-AKIN10 can accept N6-benzyl and phenyl thioATP 

analogues and catalyze efficient thiophosphorylation of SnRK1 substrate protein Trx-SPS-KD in vitro. 

To determine that AS-AKIN10 is also active with these bulky thioATP analogues in vivo, first total cell 

extracts were prepared from AKIN10-GFPPIPL and AS-AKIN10-GFPPIPL expressing homozygous T3 

seedlings and used in phosphorylation assays (Figure 28A). Upon incubation with N6-phenyl-thioATP 

and alkylation with PNBM, only few, likely Cys-rich proteins were detected in total protein extract from 

AKIN10-GFPPIPL expressing plants compared to AS-AKIN10-GFPPIPL containing extracts. One of 

the prominent proteins labelled in the latter extracts corresponded in molecular mass to the AS-AKIN10 

kinase.  

The same protein extracts were subjected to purification on GFP-Trap affinity resin, and then 

thiophosphorylation assays were performed with the bead-bound proteins followed by PNBM alkylation 

and western blotting with the anti-thioester antibody (Figure 28B). The background of PNBM-alkylated 

Cys-rich proteins detected in the total protein extract was largely reduced resulting in barely any 

detectable thiophosphorylation with GFP-Trap purified AKIN10. By contrast, several prominent 

thiophosphorylated proteins, including one with the same molecular mass as the GFPPIPL-tagged 

kinase, were detected in the GFP-Trap purified AS-AKIN10 complex. This suggested that in addition 

to autophosphorylation, the AS-AKIN10 kinase mediated thiophosphorylation of several proteins with 

N6-phenyl-thioATP, which were bound to the GFP-Trap beads in association with the kinase. Western 

blotting of proteins eluted from the GFP-Trap with anti-GFP antibody indeed confirmed that the 

prominent thiophosphorylated protein of about 98 kDa indeed corresponded to the purified kinase 

(Figure 28C).  
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To demonstrate that the wild type AKIN10-GFPPIPL kinase detected by western blotting was 

also active when bound to GFP-Trap, kinase reactions were performed with both thioATP and bulky 

N6-phenyl-thioATP (Figure 28D). These kinase assays demonstrated that the GFP-Trap bound purified 

AKIN10-GFPPIPL kinase thiophosphorylated the same associated proteins with unmodified thioATP 

as the analog-sensitive AS-AKIN10 kinase version with N6-phenyl-thioATP, but the wild type kinase 

had greatly reduced activity with the latter bulky ATP derivative. Finally, the GFP-Trap purified kinases 

were demonstrated to thiophosphorylate the SnRK1 kinase substrate Trx-SPS-KD indicating that the 

bead-bound kinases can also be used for testing specific phosphorylation of candidate substrates (Figure 

28 E). 

 

Figure 28. Thiophoshorylation of substrates in total cell extracts and upon GFP-Trap purification of kinase 

associated proteins with wild type and analog-sensitive AKIN10 kinases. 

A) Total protein extracts prepared from 3-weeks-old seedlings expressing AKIN10-GFPPIPL and AS-AKIN10-

GFPPIPL were supplemented with 0.5mM N6-phenyl-γthioATP, incubated for 2h at room temperature, alkylated 

with PNBM, separated with SDS-PAGE, and subjected to wester blotting with anti-thioester antibody to detect 

thiophosphorylated substrate proteins. B) GFPPIPL tagged AKIN10 and AS-AKIN10 were purified on GFP-Trap 

and subjected to self-thiophosphorylation as described above. C) Western blotting of samples shown in B with 

anti-GFP antibody. D) Comparison of patterns of proteins, which are thiophosphorylated in GFP-Trap purified 

AKIN10 complexes using unmodified thioATP and by AS-AKIN10 using 6-phenyl-thioATP. E) Kinase assays 

demonstrate thiophosphorylation of SnRK1 substrate Trx-SPS-KD by AKIN10 and AS-AKIN10 using thioATP 

and 6-phenyl-thioATP, respectively. 
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As we had no information on nuclear uptake of bulky thioATP-derivatives and could not 

determine this in the absence of available 32P-labelled compounds, two different strategies were tested 

for performing in situ thiophosphorylation reactions with cell nuclei isolated from AS-AKIN10-

GFPPIPL expressing plants. In the first approach (Figure 29, protocol A), purified nuclei were 

resuspended in nuclear lysis buffer NLBB, sonicated and then dialysed against kinase buffer prior 

performing kinase reactions. In the second approach, isolated nuclei were directly resuspended in kinase 

buffer and supplemented with thioATP or N6-phenyl-thioATP for AS-AKIN10, to perform in situ kinase 

reactions with intact but swelling nuclei. After the kinase reactions, the nuclei were sonicated and lysed, 

and the thiophosphorylated kinase substrates were alkylated with PNBM as in protocol A. As illustrated 

by Figure 29, kinase reactions with nuclear lysates containing AKIN10-GFPPIPL and unmodified 

thioATP, as well as AS-AKIN10-GFPPIPL and N6-phenyl-thioATP, provided a higher yield of PNBM 

alkylated substrates in protocol A, compared to in situ phosphorylation reactions with intact nuclei in 

protocol B. In addition, background thiophosphorylation by the wild type AKIN10 kinase with N6-

phenyl-thioATP appeared to be lower in protocol A compared to B. 

 

Figure 29. Comparison of efficiencies of thiophosphorylation reactions using nuclear lysates and intact 

nuclei. 

A) In protocol A, isolated nuclei were first sonicated and lysed in nuclear lysis buffer NLB, and then the lysate 

was dialyzed against kinase buffer before performing thiophosphorylation with AKIN10 using ATPγS and N6-

phenyl-thioATP, and with AS-AKIN10 using N6-phenyl-thioATP. The samples were then alkylated by PNBM, 
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separated by SDS-PAGE, and thiophosphorylated proteins were detected by western blotting with anti-thioester 

antibody. B) In protocol B, intact nuclei prepared from AKIN10 and AS-AKIN10 expressing plants were incubated 

with ATPγS and N6-phenyl-thioATP as described in A) and after this in situ thiophoshorylation step the nuclear 

samples were sonicated and lysed, alkylated and subjected to western blot detection of kinase substrate proteins. 

3.4.1. Iodoacetyl-agarose enrichment and mass spectrometry analysis of peptides 

thiophosphorylated by AS-AKIN10 using N6-phenyl-thioATP 

To identify substrates specifically thiophosphorylated by AS-AKIN10, proteins from the kinase 

assays were digested by trypsin, desalted and covalently bound to iodoacetyl-agarose (SulfoLink™ 

Coupling Resin) as described by Hertz et al. (2010). The matrix-bound peptides were released by 

specific cleavage of the PO3-S bond by oxone, desalted and analysed by LS-MS/MS mass spectrometry. 

As control, nuclear extracts from wild type and AKIN10 expressing plants were similarly subjected to 

thiophosphorylation with N6-phenyl-thioATP and processed. As control for Sulfolink-binding of 

thiophosphorylated peptides and subsequent recovery of phosphopeptides, to each sample 5 to 10 µg of 

AKIN10 thiophosphorylated SAMS peptide was added as spike after performing the kinase reactions 

and prior trypsin digestion. Detection of the SAMS peptide by mass spectrometry thus provided an 

internal control for the enrichment procedure. So far, 3 independent small scale peptide enrichment 

experiments were performed. The identified AS-AKIN10 phosphorylated peptides, which were absent 

from the control samples, are listed in Table 5. 

Table 5. The list of candidate AS-AKIN10 substrates based on enrichment of peptides thiophosphorylated 

with N6-phenyl-thioATP in nuclear extracts. 

Proteins with confirmed nuclear localization are highlighted in bold letters. 

 

The short list of candidate AS-AKIN10 substrates in the first experiment included three proteins 

with known nuclear localization. NAP57, named also CBF5 or DYSKERIN is a pseudouridine synthase, 

which interacts in Cajal bodies and nucleoli with the H/ACA snoRNP assembly factor NAF1 regulating 

ribosome biogenesis (Lermontova et al., 2007). Dyskerin also binds the H/ACA box of Arabidopsis 

telomerase RNA and interacts with AtPOT1a component of telomerase controlling telomere elongation. 

Therefore, null mutation of NAP57 is lethal (Kannan et al., 2008). Histone H2B.5 is an Arabidopsis 

homolog of yeast histone H2B, which is involved in Sir4-mediated regulation of telomeric silencing in 

Experient 1

TAIR ID Gene Phospho (STY) Probabilities

AT3G57150 NAP57, CBF5, DYSKERIN pseudouridine synthase RPPLISAVKRQLRIR

AT3G57150 NAP57, CBF5, DYSKERIN pseudouridine synthase RALESLTGAVFQR

AT3G09480 Histone H2B.5 REIQTAVRLVLP

AT5G51280 DEAD-box ATP-dependent RNA helicase 35, ABSTRAKT, Dbp2p, DDX41, Spliceosome complex C EPLLTGWKPPLHIR

AT4G23640 ATKT3, KUP4, TINY ROOT HAIR 1, TRH1 Potassium transporter PM LSRSISEANIAGS

AT1G68260 ACYL-LIPID THIOESTERASE 3, ALT3 chloroplast WRRPLSIPLRSVKTFKP

AT4G36440 unknown transmembrane protein ER/PM RVFKGFTVGLHPR

Experiment 2

AT1G03110 TRM82 WD40 repeat-like superfamily protein, tRNA MODIFICATION 82 LFVS(1)AGDDKLVK

AT1G61730 DNA-binding storekeeper protein-related transcriptional regulator IKS(0.982)PS(0.014)AT(0.002)T(0.002)AAAPPAK

AT1G70770 Unknown DUF2359 domain transmembrane protein MTAIDS(1)DDDGVVR

AT1G80930 NTC-associated NTR protein KIAA1606 (fSAPb) pre-mRNA-splicing factor CWC22 VIADKPS(1)DEEDDRQR

AT3G28920 Homeobox protein 34 AtHB34; ZHD9; ZINC FINGER HOMEODOMAIN 9 SMDMT(0.047)PKS(0.949)PEPES(0.003)ET(0.001)PT(0.001)R

AT4G20520 RNA-directed DNA polymerase RS(1)ALDKMAELVQK

AT5G08130 BIM1 basic helix-loop-helix (bHLH) DNA-binding superfamily BHLH46 FQMLRQLIPNS(1)DQKR

AT5G08180 NHP2 ribonucleoprotein DKCB2; NHP2P; NOLA2 GS(0.981)DT(0.019)EAEKSIQKEK

AT5G24740 SHORT-ROOT interacting VSP13 vacuolar protein sorting-associated protein SHRUBBY Protein (DUF1162) IMS(0.021)IDVGILS(0.979)DK

AT5G39570 Phosphatidic acid-binding PLD REGULATED PROTEIN1, PLDRP1 SES(0.003)EY(0.004)ERKPS(0.968)Y(0.025)GR

AT5G45210 Disease resistance protein (TIR-NBS-LRR class) LMDVS(1)KK

AT5G52040 HYL1-binding spliceosome RS41 protein arginine/serine-rich splicing factor 41; At-RS41 involved in miRNA biogenesis VAS(1)PENGAVRNRS(1)PR

Experiment 3

AT4G19500 WRKY19 interacting nucleoside-triphosphatase/transmembrane receptor/nucleotide binding/ATP binding protein VLDLGAVEQS(1)LMHKK

AT2G28780 P-hydroxybenzoic acid efflux pump subunit, miR395 target IGKET(1)REIEEMVK

AT5G40360 MYB115 myb domain protein 115 TF regulator of vegetative to embryonic transition and benzoyloxy glucosinolate synthesis S(0.001)ENIVKNHWNAT(0.999)K

AT2G13370 CHR5 chromatin remodeling 5, Arabidopsis homolog of human CHD2 SNF2 ATPase of SWI/SNF chromatin remodeling complex GFQFQRLDGS(0.5)T(0.5)K

Control

SAMS_peptide Known substrate peptide of AMPK RSAMSGLHLVKRR
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response to DNA damage (Kyriss et al., 2010). Finally, Abstract is an activated spliceosome C-complex 

DDX41 helicase, which is involved also in the recognition of invading viral RNAs in human viral 

leukemia diseases. The majority of phosphorylation sites appeared to confirm the Rxxx(x)S/R consensus 

site suggested for mammalian AMPKs (Schaffer et al., 2015; Lin and Hardie, 2017) in the first 

experiment. For initial confirmation of phosphorylation of candidate substrates by AKIN10, NAP57 and 

the ACYL-LIPID THIOESTERASE 3, ALT3 proteins, which carried the RPPLIS and RRPLS AS-

AKIN10 phosphorylated motives respectively were expressed in E. coli upon cloning their full-length 

coding sequences in the pET201 vector. ALT3 is annotated as potential chloroplast targeted protein, but 

it is likely located in the cytosole in Arabidopsis cells. The proteins fused to N-terminal thioredoxin and 

C-terminal His6-tags were purified by Ni2+-agarose chromatography and subjected to western blotting 

using an anti-His6 antibody (Figure 30A). Although both proteins showed relative instability in E. coli, 

the production of full-length products with an expected molecular mass was achieved. NAP57 and ATR3 

were then used as substrates with purified AKIN10 in kinase assays with (γ32P) ATP (Figure 30B and 

C). Both proteins were effectively phosphorylated by AKIN10 in vitro indicating that they are indeed 

SnRK1 kinase substrates. 

 

Figure 30. Confirmation of phosphorylation of identified candidate AS-AKIN10 substrates by wild type 

AKIN10 in kinase assays using (γ32P)ATP. 

A) NAP57 and ALT3 were expressed in E. coli by insertion of their coding sequences into pET201, purified by 

Ni2+-agarose chromatography and subjected to western blotting with anti-His6 antibody. B) Phosphorylation of 

NAP57 by AKIN10 in kinase assays with (γ32P)ATP. Proteins in the kinase assays were separated by SDS-PAGE 

(Coomassie-stained gel is shown to the left), and then phosphorylated NAP57 was detected by autoradiography 

(to the right). C) Phosphorylation of ALT3 by AKIN10 in kinase assays with (γ32P)ATP. Left: Coomassie-stained 

gel, right: autoradiography. 

Further analysis of identified candidate AS-AKIN10 substrates could not be carried out in the 

time frame of this PhD study. The so far available list of candidate substrates contains several other 

proteins, which play essential functions in the regulation of chromatin remodeling (e.g. CHR5), 

developmental phase specific transcription (e.g. MYB115, Wang et al., 2009), brassinosteroid/UV-B 

signaling (e.g. BIM1, Liang et al., 2018), telomere length (TRM82) etc., which provide a good basis for 

follow up studies. Together with scaled-up enrichment of AS-AKIN10 substrates, future studies are 

expected to open a new avenue to uncovering yet unknown regulatory functions of SnRK1 in plants. 
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4. Discussion 

Since the reference publication of Baena-González et al. (2007) describing transcription changes 

resulting from overexpression of the SnRK1α AKIN10/11 subunits in leaf protoplasts and stimulatory 

effects of co-expression of SnRK1α and S1-group of bZIP transcription factors on the expression of 

some dark-induced DIN genes it is accepted as general model that SnRK1 in plants is activated by 

darkness causing sugar starvation. However, the same report showed that inhibition of photosynthesis 

by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) results in a fast increase of SnRK1 activity, which 

suggests that declining ATP production or redox signals might also contribute to SnRK1 activation, or 

that SnRK1 is required for safe-guarding the chloroplast function in leaves. The roles of AMP and ADP 

in the regulation of SnRK1 is still questionable as the activity of in vitro assembled trimeric SnRK1 

complexes does not appear to be modulated by these compounds (Emanuelle et al., 2015), although 

AMP is reported to inhibit T-loop dephosphorylation of purified SnRK1 by a human PP2C phosphatase 

in vitro (Sugden et al., 1999a). Similarly to yeast Snf1 and human AMPKs, Arabidopsis SnRK1 was 

found to be phosphorylated on its activation T-loop by the SnAK1/GIRK2 and SnRK2/GIRK1 kinases 

that complement mutations of the yeast Snf1-activating kinases Pak1, Elm1 and Tos1 (Hey et al., 2007; 

Shen et al., 2009; Crozet et al., 2010; Robertlee et al., 2010). However, expression of SnAK1/2 kinases 

appears to be confined to the apical meristem (Shen et al., 2009) and it was thus questioned whether 

they are essential and sole activating kinases of SnRK1 in Arabidopsis (Crozet et al., 2014, Margalha et 

al., 2016). Recent reports indicate that the snak1snak2 double mutant is only viable in glucose-

supplemented medium similarly to the snf1ab double mutant of Physcomitrella (Thelander et al., 2004) 

and shows largely reduced activating T-loop phosphorylation of SnRK1α1 subunit AKIN10 (Glab et al., 

2017). However, it is still unknown whether expression of phosphomimicking version of SnRK1α 

subunits would rescue the growth defect of snak1snak2 double mutant or its lethality is independent of 

the failure of SnRK1 activation. In contrast to these results, Baena-González et al. (2007) found that 

viral siRNA silencing of the SnRK1α subunits results in seedling lethality, which cannot be compensated 

by glucose or sucrose feeding. Whereas the AMPK-activating kinase LKB is found in common 

complexes with AMPK (e.g., Zhang et al., 2017), in vivo interaction of SnAK1/2 with SnRK1 is not yet 

confirmed convincingly. SnAK1/2 were not detected either in any of our AKIN10 and SNF4 pull-down 

experiments by mass spectrometry. In all studies so far, SnAK1/2 were shown to mediate T-loop 

phosphorylation of monomeric SnRKα subunits in vitro. In comparison, association of mammalian 

AMPKα subunits with activating γ-subunits is essential for their T-loop phosphorylation by LKB, while 

the CAMKK2 kinase is found to phosphorylate monomeric AMPKα subunits (Woods et al., 2005). 

4.1. Comparison of in vitro and in vivo activities of wild type, T-loop and ATP-

binding pocket mutant versions of Arabidopsis SnRKα1/AKIN10 

There are considerable contradictions in the literature concerning in vitro activities of SnRK1α 

subunits AKIN10/11 purified from E. coli. AKIN10 fused to an N-terminal His6-tag is reported to be 
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inactive in vitro unless its T-loop is phosphorylated by SnAK2/GIRK1 (Zhai et al., 2018). The same 

authors found that sugar feeding and T6P in vitro inhibits interaction of AKIN10 with GIRK1, and that 

T6P directly binds to AKIN10 and inhibits its activity. In our experiments, we purified the shorter 

isoform of AKIN10 encoded by the transcript isoform At3g01090.1 in fusion with N-terminal 

thioredoxin and C-terminal His6 tags. When tested in kinase assays with both (γ32P)ATP and ATPγS, 

purified AKIN10 was found to undergo autophosphorylation of its T-loop and phosphorylated the 

GRMRRISSVEMMDNW peptide of spinach sucrose-phosphate synthase (SPS) used by Bhalerao et al. 

(1999) as specific SnRK1 substrate. The SnRK1 phosphorylation motive of spinach SPS peptide is 

conserved in Arabidopsis SPS2F/A2 (GRMRRISSVEMMDNW), which is a candidate SnRK1 

substrate. Large majority of eukaryotic protein kinases show similar autoactivation as through their 

catalytic domains are capable for dimerization, and in the dimeric stucture phosphorylate the T-loop of 

their partner (Beenstock et al., 2016). Probably this is the case for AKIN10 following purification from 

E. coli, although we did not test dimeric combinations of in vitro assembled wild type, T-loop and 

catalytically inactive mutant versions of AKIN10. Phosphorylation of the T-loop of purified SnRK1α 

subunits and SnRK1 complexes is detectable by a monoclonal anti-Thr172P AMPKα2 antibody 

developed for monitoring activating T-loop phosphorylation of human AMPKs (Sugden et al., 1999a). 

However, the backgound of phospho-T-loop antibodies is considerable when using total cell extracts, so 

application of proper controls, such as T-loop mutant kinase versions are necessary. Our data show that 

AKIN10 is autophosphorylated in vitro at three major positions, on its T-loop Thr175 and C-terminal 

Ser338/339 and Ser364 residues. Exchange of the T-loop Thr175 residue to Ala prevented T-loop 

phosphorylation but not autophosphorylation of C-terminal Ser residues suggesting that phosphorylation 

of the T-loop is not absolutely necessary for in vitro activity of purified AKIN10. 

 During initial characterization of SnRK1α subunits and their interacting partners, Farrás et al. 

(2001) reported that the α-subunits of Arabidopsis SnRK1 carry ubiquitin-associated UBA-domains 

between their catalytic and C-terminal regulatory domains. Similar UBA domains were subsequently 

identified in the α-subunits of mammalian AMPKs. By contrast, sequences of autoinhibitory domains 

(AIDs) are less conserved between plant SnRK1 and animal AMPK kinases. Recently, Emanuelle et al. 

(2018) reported that deletion of the UBA domain decreases SnAK/GIRK-mediated activation (i.e., T-

loop phosphorylation) of SnRK1α subunits AKIN10/11, and also accelerates in vivo inactivation of 

phosphomimetic T-loop Thr175E version of AKIN10. Our data show that C-terminally truncated 

versions of AKIN10, lacking the UBA domain and carrying Thr175A, Thr175D and Thr175E amino 

acid exchanges show comparably higher activity compared to full-length versions of AKIN10 in vitro 

using the Trx-SPS-KD substrate. In support of the conclusion that in vitro autoactivation is due cross-

phosphorylation of dimerized kinase subunits, we found that the M119G amino acid exchange in the 

ATP-binding pocket of AKIN10, which enables the kinase to use bulky N6-substituted thioATP 

derivatives, largely abolishes auto- and substrate phosphorylation activities of AKIN10 with unmodified 

ATP. 



Discussion 

98 

 The T-loop and M119G mutant versions of AKIN10 tagged by a C-terminal HA-epitope were 

ectopically expressed from cDNA constructs by the CaMV35S promoter in transgenic plants. Following 

the purification of SnRK1 complexes using their HA-tagged AKIN10 subunits on anti-HA-agarose 

matrix, we found that T-loop phosphorylation of the M119G pocket mutant version of AKIN10 was 

similar to wild type AKIN10 in the isolated SnRK1 kinase complexes. This indicated that in contrast to 

the in vitro situation, in complex with other SnRK1 subunits the M119G analog-sensitive AS-AKIN10 

kinase is similarly activated by T-loop phosphorylation as its unmodified version. HA-pulled-down 

SnRK1 complexes carrying the nonphosphorylatable Thr175A T-loop mutant version of AKIN10 

showed about 30-40% lower substrate phosphorylation activity, whereas purified SnRK1 carrying the 

phosphomimetic Thr175D T-loop mutant version of AKIN10 displayed about 30-40% higher activity 

compared to wild type. The analysis of AKIN10 protein levels in these transgenic plants did not reveal 

remarkable overexpression of wild type and modified AKIN10 subunits. This indicated that AKIN10 

overexpressed ectopically in transgenic plants might not increase considerably the total level of SnRK1 

activity, possibly due to degradation of overexpressed kinase subunit in the absence of complex 

formation with other subunits. In the light of recent data from Emanuelle et al. (2018), it will be 

interesting to determine the in vivo effect of UBA domain deletion using wild type and T-loop mutant 

versions of C-terminally truncated AKIN10. 

 In all analyzed AKIN10-HA transgenic plants, we identified two isoforms of AKIN10 kinase, a 

full length and a shorter form carrying a deletion of 28 N-terminal amino acids, due to alternative 

splicing of AKIN10 pre-mRNA in the transcripts isoforms At3g01090.1 and 3. As the molecular mass 

of full-length AKIN10 was close to the same of ectopically expressed HA-tagged versions, we could not 

directly determine the ratio of resident wild type and HA-tagged modified AKIN10 kinases. Our data 

show that all three splicing isoforms of AKIN10 mRNA are expressed at similar level, so if translated 

similarly, the expected ratio of full-length and shorter protein isoforms should be about 1:2. Despite 

observing minor variations in the amounts of these two protein isoforms, our western blotting data failed 

to reveal overproduction of HA-AKIN10 having the same molecular mass as the full length isoforms. 

These results indicate that when using overexpression lines, it is absolutely necessary to confirm that 

overexpression of a kinase construct verified by transcript measurements indeed leads to an increase (or 

decrease, in case of inactive kinase versions) of in vivo SnRK1 activity. 

 Characterization of AKIN10-HA expressing transgenic plants has also led to two intriguing side 

observations. As several recent articles reported on the existance of an akin10 null mutation in the 

GABI_346E09 T-DNA insertion line (Mair et al., 2015; Nukarinen et al., 2016; Pedrotti et al., 2018), 

we intended to use this line as control to characterize the effects of ectopic expression of different 

versions of AKIN10-HA kinase in transgenic plants. By analysing the transcription of akin10 mutant 

allele in the GABI_346E09 mutant, however we found that the mutant gene is normally transcribed and 

thus probably results in the synthesis of a protein, in which 37 C-terminal amino acid codons of AKIN10 
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are replaced by 23 T-DNA-encoded codons. In collaboration with Dr. Ajit Ghosh, we have reconstructed 

the cDNA coding region of GABI akin10 mutant allele and expressed the corresponding protein in E. 

coli. Surprisingly, we found that in contrast to AKIN10 kinase derivatives used in our experiments, the 

GABI version of C-terminally truncated AKIN10 was not recognized in western blotting by the anti-

AKIN10 antibody used in the previous reports to support the conclusion that the GABI_346E09 line 

carries an akin10 null mutation. As many important conclusions in the mentioned reports were based on 

differential phosphoproteome and gene expression data observed in the GABI mutant compared to wild 

type, it should be further investigated how the GABI mutation influences the stability and/or cellular 

localization of C-terminally truncated AKIN10 in vivo. In any case, our data indicate that the GABI 

mutation did not cause a gene knockout but could represent a partial loss of function mutation. 

 The second side product of qRT-PCR analysis of SnRK1 subunit mRNAs was the observation 

that transcription of the AKINβ1 and AKINβ3 subunit genes is increased during the dark period under 

short day condition suggesting that their transcription is regulated in a circadian fashion. Intriguingly, 

the amplitude of circadian change in AKINβ1 mRNA levels was largely reduced under long days, while 

cycling of AKINβ3 mRNA levels was less affected. The qRT-PCR measurements also revealed that 

AKINβ3 is expressed at the lowest levels among all SnRK1 subunit genes. In comparison to AKINβ1 

and AKINβ3, circadian changes in the dark and light transcript levels were minimal in the case of SNF4 

and barely detectable in case of AKIN10/11 and AKINβ2 genes. 

Several recent reports implicated AKIN10 in the regulation of circadian clock suggesting that 

AKIN10 overexpression prolongs the clock light period and delays the peak of GI expression in the dark 

(Shin et al., 2017). In addition, activation of bZIP83 by AKIN10 overexpression was reported to 

stimulate expression of PPR7 (Frank et al., 2018) and thereby enhance stabilization of CO (Hayama et 

al., 2017) suggesting enhanced transition to flowering. However, most other reports claim that enhanced 

AKIN10 activity (i.e., due to lack of SnRK1 inhibitions by T6P) in the tsp1 mutant results in late 

flowering (Wahl et al., 2013). By contrast, Avonce et al. (2004) found that TPS1 overexpression causes 

late flowering and down-regulation of ABI4 in ABA signalling. Despite the fact that we failed to 

demonstrate overexpression of the AKIN10-HA constructs in our transgenic lines, we have examined 

their flowering time characteristics. In the initial test experiment, we found that wild type AKIN10-HA 

lines flower with 1 or 2 leaves more compared to wild type on long day, whereas Thr175D T-loop mutant 

AKIN10-HA expressing lines had 3 or 4 more leaves at the onset of flowering. However, lines carrying 

either unmodified or Thr175D T-loop mutant versions of AKIN10-HA flowered several days earlier 

than wild type under long day conditions. As these initial assays were performed only with 20 plants, 

we increased the sample size to 50 and 100 plants and repeated the flowering time measurements under 

both short and long days. The repeated experiments revealed no significant difference in flowering time 

between wild type and AKIN10 transgenic plants under long day, however, surprisingly showed that 

plants ectopically expressing AKIN10 carried about 10 leaves less, thus flowered earlier compared to 
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wild type during short day. These data appear to be consistent with those of Avonce et al. (2004). In 

accordance, ectopic expression of AKIN10 is found to increase ABA sensitivity in contrast to 

overexpression of TPS1 (see for reviews Crozet et al., 2014, Margalha et al., 2016). 

In support of our conclusion that ectopic expression of AKIN10-HA derivatives did not result 

in dramatic alterations of AKIN10 kinase levels, we observed only slight differences in overall 

development of our transgenic plants. Lines expressing the phosphomimetic Thr175D T-loop mutant 

version of AKIN10-HA were found to show somewhat higher rate of root elongation. In the roots of 

these plants, we detected slightly altered pattern of auxin-induced DR5-GFP reporter, which extended 

into the central stele above the root meristem. At the same time, expression of PIN2-GFP auxin influx 

carrier was somewhat higher in the epidermal and cortex cells, and also extended into the endodermis 

layer suggesting enhanced acropetal auxin transport towards the root elongation zone. Whether these 

minor changes were indeed due to altered SnRK1 activity in the roots of Thr175D AKIN10 plants 

requires further confirmatory studies using locally inducible AKIN10 constructs. 

4.2.  Evidence for SnRK1 dimerization and occurrence in common complexes with 

class II trehalose synthase/phosphatase metabolic sensors 

A major goal of our work was to use native gene constructs for expression and cellular 

localization SnRK1 subunits promoting further purification of SnRK1 complexes and analysis of their 

composition. Plants expressing AKIN-GFP and SNF4-YFP constructs were previously generated in our 

laboratory by Bitrián et al. (2011) using a BAC recombineering technology with galK selectable marker. 

We improved this recombineering technology by replacing galK with an antibiotic resistance (KmR) 

selectable marker gene, which was fused to an arabinose-inducible conditionally lethal ccdB gyrase 

inhibitor gene. The use of the KmR-araC-ccdB cassette did not only allow a much faster selection for 

modified BAC clones in E. coli, but also simple introduction of site-directed mutations, such as codon 

exchanges, into any position of target genes carried by BACs. To facilitate the purification of SnRK1 

complexes from plants, we have used a new combined tag, which carried coding sequences of GFP, 38 

His residues from the high affinity Co2+/Ni2+-binding domain of PIPL protein, two Streptactin-binding 

StrepII motives, and a HA-epitope tag. This combined GFPPIPL tag, as well as the GFP and PIPL tags 

alone, were introduced into the AKIN10 gene by replacing in frame of its stop codon. Subsequently, the 

M199G codon exchange was introduced by site-directed mutagenesis into AKIN10 to express a pocket 

mutant analog-sensitive AS-AKIN10 kinase in plants using Agrobacterium transformation after 

transferring the modified gene constructs into pGAP binary vectors Bitrián et al. (2011). 

 SnRK1 complexes were purified from protein extracts prepared from either shoot material of 

AKIN10-GFP, SNF4-YFP, AKIN10-GFPPIPL and AS-AKIN10-GFPPIPL expressing plants, which 

were grown in soil, or from whole seedlings, or roots cultured in in sterile growth media with 0.5% or 

3% (i.e., in case of roots) sucrose by affinity capture on GFP-Trap resin. In 5 experiments, 3 biological 

replicates for each sample were then analyzed by LC-MS/MS mass spectrometry. Compilation of LC-
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MS identified proteins found in association with at least 3 different baits revealed that AKIN10 and AS-

AKIN10 interacted similarly with SNF4 (and vice versa) and all three AKINβ subunits, from which 

AKINβ3 was represented at the lowest abundance. Except the root sample, the second SnRK1α2 subunit 

AKIN11 was also surprisingly identified in all purified complexes of AKIN10 and SNF4 baits indicating 

dimer formation between the AKIN10 and AKIN11 containing SnRK1 complexes. This observation 

suggests that AKIN10 and AKIN11 could form a dimer also in vivo either by direct interaction between 

their catalytic domains or dimerization of the interacting SNF4 γ-activating subunit, as observed in yeast 

(Rudolph et al., 2007). Whether two different AKINβ subunits are found in these dimeric complexes or 

AKIN10/11 and SNF4 could form dimeric (i.e. 2x2) SnRK1 complexes also in their absence of the β-

subunits remains to be determined by studying the composition of kinases isolated from the available 

akinβ1akinβ2 double mutant. In any case, detection of AKIN10 association with AKIN11 suggests that 

in the dimeric complex AKIN10 could activate AKIN11 by T-loop phosphorylation (and vica versa) 

even in the absence of an upstream activating kinase, which might explain the fact why no SnAK1/2 

kinase was detected in any of the purified SnRK1 complexes. The fact that the GFP-Trap bound SnRK1 

complexes were active in kinase assays with both (γ-32P)ATP and ATPγS demonstrates that the dimeric 

forms of SnRK1 complexes contain active kinases. The fact that the nuclear control PRL1 protein bait 

did not pull-down any of its known partners in these experiments suggests that the identified SnRK1 

complexes are probably localized in the cytoplasm. This conclusion is supported at the meanwhile by 

co-localization of AKIN10-GFP and SNF4-YFP baits with mCherry tagged versions of their identified 

interacting partners. 

 As prominent interacting partners, class II trehalose synthase/phosphatases (TPS) were 

identified in the purified SnRK1 complexes. In this work, we provided evidence for that one of them, 

TPS8 tagged with mCherry co-immunoprecipitates with AKIN10-GFP when purified with RFP-Trap, 

and reciprocally AKIN10-GFP co-immunoprecipitates TPS8-mCherry when bound to GFP-Trap. At the 

meanwhile, similar data are available for all other members of class II TPS family from collaboration 

studies with Dr. Ajit Ghosh. Although the available LC-MS data are not quantitative, based on the 

intensities of detected peptide peaks it is estimated that each TPS protein might represent 0.1 to 2% of 

the amount of AKIN10 and SNF4 subunits in the purified SnRK1 complexes. Although class II TPS 

enzymes cannot complement the yeast Δtps1Δtpp mutation (Delorge et al., 2015), they carry conserved 

domains of TPS and TPP enzymes, and thus might interact with and sense TPS/TPP enzyme substrates, 

including UDP-glucose (UDP-Gluc), glucose-6-phosphate (Gluc-6-P) and trehalose-6-phosphate (T6P).  

T6P was proposed to act as specific inhibitor of SnRK1 as metabolic signal of sucrose 

availability (Zhang et al., 2009; Lunn et al., 2014; Figueroa and Lunn, 2016). Therefore, we have tested 

whether the activity of TPS-associated SnRK1 complexes was affected by metabolites derived from 

sucrose. First, SnRK1 complexes were isolated using the AKIN10-GFPPIPL bait on GFP-Trap and 

kinase reactions were performed with resin bound protein complexes in the presence of UDP-Gluc, 
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Gluc-6-P and NAPDH. The reason to include NADPH in these assays was the observation indicating 

that TPS1 in the fungus Magnaporthe oryzae functions as redox sensor directly binding NADPH (Wilson 

et al., 2010). The results showed that UDP-Gluc (i.e., the degradation product of sucrose by sucrose 

synthase and a precursor of T6P) decreased by about 30-40% of purified SnRK1 activity in 

phosphorylation assays with the Trx-SPS-KD substrate. In a reciprocal pull-down experiment, the 

activity RFP-Trap purified TPS8-mCherry-associated kinase was assayed in the presence of T6P, 

including glucose, trehalose and glutathione as additional controls. In addition to UDP-Gluc, in these 

assays T6P was also found to inhibit Trx-SPS-KD phosphorylation by the TPS8mCherry-associated 

kinase. Next, we showed that increasing concentrations of UDP-Gluc and T6P in the range of 1 to 4 mM 

result in proportional, although not completely linear increase in the inhibition of the SnRK1 kinase. 

These results strongly suggest that the protein factors hypothesized by Zhang et al. (2009) and Emanuelle 

et al. (2015) to inhibit SnRK1 activity in T6P-dependent fashion correspond to members of the class II 

TPS family, which appear to confer inhibition of SnRK1 activity as metabolite sensors of UDP-Gluc 

and T6P. This conclusion is supported by parallel experiments of Dr. Ajit Ghosh using RFP-Trap 

purified TPS10-mCherry-associated kinase complexes, which lead to similar results as with TPS8. 

Further double affinity purification of AS-AKIN10-GFPPIPL complexes on anti-HA agarose or Ni2+-

agarose followed by RFP-Trap pull-down of associated TPS-mCherry proteins and kinase assays with 

these complexes should further corroborate these observations. 

 In addition to class II TPS proteins, several other partners were identified in the SnRK1 

complexes purified by the help of AKIN10GFP/PIPL and SNF4-YFP baits. These included several FCS-

like zinc finger DUF581 domain proteins (Jamsheer and Laxmi, 2014) that were previously identified 

in yeast two-hybrid screens as AKIN10 interacting partners. In two-hybrid assays the DUF581 domain 

proteins interact with TCP transcription activators of sucrose-stimulated genes involved in ribosome 

biogenesis and DELLA repressors of gibberellin signaling (Nietzsche et al., 2014; 2016). However, none 

of these DUF581 protein interactors were observed in the purified SnRK1 complexes. At lower 

abundance, a two-hybrid interacting partner of SNF4, the HSPRO2 homolog of the sugar beet HS1 PRO-

1 leucine-rich-repeat protein was however detected in both AKIN10 and SNF4 pull-downs. Thus, our 

mass spectrometry studies confirmed in vivo association of these factors with SnRK1 complexes in 

Arabidopsis. 

 We have performed extensive optimization of nuclear isolation and protein extraction protocols 

using the PRL1-GFP bait, a known subunit of nuclear spliceosome-activating NTC complex. In 

conclusion, it was found that inclusion of 1% Tritox X-100 detergent and 0.4M (NH4)2SO4 as 

chaotropic salt enhancing protein extraction is optimal for the isolation of nuclear PRL1-NTC complex, 

if the DNA was degraded by sonication to 2-3 or 6-8 nucleosome length prior affinity binding of proteins 

to GFP-Trap. DNase and RNase digestion at 4°C without sonication did not yield sufficient disruption 

of large nucleic acid-bound protein complexes, excluding conclusive identification of specific 
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interactors of AKIN10, SNF4 and PRL1. On the other hand, combined DNase and RNase digestion at 

37°C lead to the destruction of otherwise remarkably stable PRL1-NTC complex. By performing 4 

independent purification experiments with nuclear extracts prepared under these conditions, we could 

identify over 50 components of the core NTC and NTR (NTC-related) complexes bound to the U5-

SnRNP particle. When fragmenting the DNA to 6-8 nucleosome followed by GFP-Trap binding and on-

beads nuclease digestion, the size of isolated PRL1-NTC protein complex was considerable increased. 

This resulted in the identification of over 150 proteins, including more loosely associated components 

of co-transcriptionally formed spliceosome-NTC complexes, such as subunits of U2-snRNP, 

THO/TREX RNA exports and RES, transcription elongation PAF1 and SWI/SNF chromatin remodeling 

complexes. By contrast, under the conditions optimized for the isolation of the PRL1-NTC complex, 

only components of trimeric SnRK1 kinases were recovered by purification from nuclear extracts. In 

the nuclear AKIN10-GFP complexes, the proportion of associated AKIN11 subunit was lower compared 

to SnRK1 complexes purified from total cell extracts indicating lower abundance of dimeric SnRK1 

complexes in nuclei. In conclusion, the results suggested that nuclear lysis and protein extraction using 

(NH4)2SO4 likely disrupts the chromatin associated SnRK1 complexes. Thus, successful isolation of 

nuclear SnRK1 complexes requires further optimization of the extraction protocol. 

4.3. Identification of candidate SnRK1 substrates by enrichment of peptides 

thiohosphorylated in nuclei by the analog-sensitive AS-AKIN10 kinase 

Another major goal of this Ph.D. study was the application and optimization of analog-sensitive 

kinase technology for identification of in vivo substrates of SnRK1. Towards this goal, we constructed 

an analog-sensitive version of AKIN10-GFPPIPL by replacing the gatekeeper M119 amino acid by Gly 

in the ATP-binding pocket by introducing a codon exchange into the corresponding gene using site-

directed mutagenesis with BAC recombineering. The AS-AKIN10 kinase was initially expressed in E. 

coli and purified to optimize the thiophosphorylation kinase assays. We showed that the M119G 

mutation largely reduces the kinase activity with unmodified ATP, but allowes the kinase to use bulky 

N6-substituted thioATP derivatives, such as N6-benzyl and phenyl-thioATP. 

Thiophosphorylated kinase substrates are detected by alkylation with PNBM (p-nitrobenzyl 

mesylate) followed by western blotting with a monoclonal antibody recognizing the PNBM alkylated 

thioester (Allen et al., 2005, 2007; Banko et al., 2011). Maximum alkylation with PNBM is achieved at 

pH 8.0. However, under this condition Cys-groups of proteins also react with PNBM. Consequently, 

Cys-rich contaminating proteins disturb the detection of thiophosphorylated kinase substrates by western 

blotting. At pH 4.0, PNBM reactivity with Cys-residues is largely reduced, but it still alkylates the 

phosphothiol groups of kinase substrates, although at considerable lower efficiency. While PNBM 

alkylation at pH 4.0 dramatically improves the specificity of detection of thiophosphorylated kinase 

substrates, under this condition the efficiency of enrichment of thiophosphorylated proteins by 

immunoprecipitation with the anti-thioester antibody is low. To overcome this problem, 
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thiophosphorylated peptides obtained by trypsin digestion of proteins after the kinase reaction are 

captured by covalent binding to iodoacetyl-agarose (Sulfolink) through an alkylation reaction. The 

iodoacetyl group also alkylates Cys-residues of peptides, which are therefore parallel bound to the 

matrix. However, in contrast to the S-S-bond of alkylated Cys residues, strong oxidizing agents, such as 

oxone specifically cleave the PO3-S bond resulting in a release of phosphopeptides (Hertz et al., 2010). 

This technology is widely applied for enrichment of AS-AMPK kinase substrates that are 

thiophosphorylated in cell extracts, permeabilized cells or cell nuclei in mammalian and human cell lines 

(see e.g., Schaffer et al., 2015).  

In our experiments, we compared thiophosphorylation of proteins in nuclei, which were isolated 

from leaves of AS-AKIN10-GFPPIPL plants. The nuclei were purified with a protocol, which is 

compatible with performing subsequent nuclear run-on assays (Logemann et al., 1996; Németh et al., 

1998). Thus, the thiophosporylation reactions were assayed in transcription competent nuclei. Compared 

to nuclear extracts, the efficiency of thiophosphorylation by incubating intact nuclei with N6-phenyl-

thioATP was considerable lower. Therefore, for iodoacetyl-agarose enrichment of AS-AKIN10 

thiophosphorylated nuclear proteins, we used sonicated nuclear extracts in three independent 

experiments followed by LC-MS mass spectrometry detection of phosphopeptides. The yield of these 

experiments was rather low indicating that further optimization of the protocol is necessary. 

Nevertheless, 22 thiophosphorylated peptides were detected, which identified 12 nuclear proteins as 

candidate SnRK1 substrates. In the first enrichment experiment (Table 4), all 6 detected 

thiophosphorylated peptides confirmed the (L)x(x)Rxx(x)S/T consensus suggested for phosphorylation 

site preference of human AMPKs (Hardie at al., 2016). Therefore, we arbitrarily chosen two of these 

candidate SnRK1 substrates and expressed the corresponding NAP57 (DYSKERIN pseudouridine 

synthase) and ATL3 (ACYL-LIPID THIOESTERASE 3) proteins in E. coli. Subsequent kinase assays 

with the purified proteins confirmed that both of them were efficiently phosphorylated by AKIN10 in 

vitro.  

The list of identified candidate SnRK1 substrates includes three nuclear factors with known roles 

in the regulation of ribosome biogenesis and telomere length. NAP57 interacts with the POT1a 

component of telomerase controlling telomere elongation (Kannan et al., 2008). Histone H2B.5 is a 

homolog of yeast histone H2B, which is involved in the control telomeric silencing (Kyriss et al., 2010). 

Similarly to NAP57, NHP2 is also a component of telomerase and H/ACA snoRNP required for 18S 

rRNA production, rRNA pseudouridylation and telomere elongation, mutation of which in humans 

causes the premature ageing syndrome dyskeratosis congenital (Vulliamy et al., 2008). Three other 

candidate SnRK1 substrates represent spliceosome-associated proteins. ABSTRACT functions as 

helicase (Dbp2p, DDX41) in the activated spliceosome complex C, but is also required for ribosome 

assembly and immunity signaling (Jiang et al., 2017). The KIAA1606 (fSAPb) pre-mRNA-splicing 

factor CWC22 is a component of the PRL1-NTC complex (Deng et al., 2016), whereas RS41 
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(ARGININE/SERINE-RICH SPLICING FACTOR 41) interacts with FIERY2 RNA polymerase II CTD 

phosphatase and HYL1 proteins, and is involved in the control of microRNA biogenesis in Arabidopsis 

(Chen et al., 2013; 2015). Finally, the list of candidate nuclear SnRK1 partners includes the CHD5 Snf2-

like chromodomain ATPase of SWI/SNF chromatin remodelling complex and three transcription 

factors. From the latter, AtHB34 (ZHD9; ZINC FINGER HOMEODOMAIN 9) is a homolog of 

Mediator-interacting ZHD1 transcription factor involved in osmotic stress and ABA signaling (Tran et 

al., 2007). The basic helix-loop-helix (bHLH) transcription factor BIM1 interacts with BES1 in 

brassinosteroid signaling to regulate transcription of genes by binding to E-box (CANNTG) promoter 

elements in concert with the UVR8 UV-B photoreceptor. BIM1 functions in the control of embryonic 

pattern formation, photomorphogenesis, root stele development, shade avoidance and other basic 

processes (Yin et al., 2005; Ohashi-Ito and Bergmann, 2007;  Chandler et al., 2009; Cifuentes-Esquivel 

et al., 2013; Liang et al., 2018). Last but not least, Myb115 and its homolog MYB158 act as activators 

of BABY BOOM, LEAFY COTYLEDON1 (LEC1) inducing somatic embryogenesis from root cells 

(Wang et al., 2009). Further study of SnRK1 association of these nuclear factors and replacement of 

their observed thiophosphorylated sites with Ala and phosphomimetic D/E amino acid exchanges is 

required to confirm that they are genuine kinase substrates. This and additional scaled-up enrichment of 

thiophosphorylated AS-AKIN10 substrates and their similar analysis is expected to provide more insight 

into yet unknown regulatory functions of SnRK1.
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