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Abstract

Acommonparadigm indistance-based learning is to embed the instance space into some
appropriately chosen feature space equipped with a metric and to define the dissimilar-
ity between instances by the distance of their images in the feature space. If the instances
are graphs, then frequent connected subgraphs are a well-suited pattern language to de-
fine such feature spaces. Identifying the set of frequent connected subgraphs and sub-
sequently computing embeddings for graph instances, however, is computationally in-
tractable. As a result, existing frequent subgraph mining algorithms either restrict the
structural complexity of the instance graphs or require exponential delay between the
output of subsequent patterns. Hence distance-based learners lack an efficientway to op-
erate on arbitrary graph data. To resolve this problem, in this thesis we present amining
system that gives up the demand on the completeness of the pattern set to instead guar-
antee a polynomial delay between subsequent patterns. Complementing this, we devise
efficientmethods to compute the embeddingof arbitrary graphs into theHamming space
spanned by our pattern set. As a result, we present a system that allows to efficiently ap-
ply distance-based learningmethods to arbitrary graph databases.

To overcome the computational intractability of themining step,we consider only fre-
quent subtrees for arbitrary graphdatabases. This restriction alone, however, doesnot suf-
fice tomake the problem tractable. We reduce themining problem fromarbitrary graphs
to forests by replacing each graphby apolynomially sized forest obtained froma random
sample of its spanning trees. This results in an incomplete mining algorithm. However,
we prove that the probability of missing a frequent subtree pattern is low. We show em-
pirically that this is true in practice even for very small sized forests. As a result, our
algorithm is able tomine frequent subtrees in a range of graph databases where state-of-
the-art exact frequent subgraph mining systems fail to produce patterns in reasonable
time or even at all. Furthermore, the predictive performance of our patterns is compara-
ble to that of exact frequent connected subgraphs, where available.

The above method considers polynomially many spanning trees for the forest, while
many graphs have exponentially many spanning trees. The number of patterns found
by ourmining algorithm can be negatively influenced by this exponential gap. We hence
propose amethod that can (implicitly) consider forests of exponential size,while remain-
ing computationally tractable. This results in a higher recall for our incomplete mining
algorithm. Furthermore, themethods extend the knownpositive results on the tractabil-
ity of exact frequent subtree mining to a novel class of transaction graphs. We conjecture
that the next natural extension of our results to a larger transaction graph class is at least
as difficult as proving whether P =NP, or not.

Regarding the graphembedding step,weapply a similar strategy as in themining step.
We represent a novel graph by a forest of its spanning trees and decide whether the fre-
quent trees from themining step are subgraph isomorphic to this forest. As a result, the
embedding computation has one-sided error with respect to the exact subgraph isomor-
phism test but is computationally tractable. Furthermore, we show that we can leverage
a partial order on the pattern set. This structure can be used to reduce the runtime of the
embedding computation dramatically. For the special case of Jaccard-similarity between
graph embeddings, a further substantial reduction of runtime canbe achievedusingmin-
hashing. The Jaccard-distance can be approximated using small sketch vectors that can
be computed fast, again using the partial order on the tree patterns.
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1. Introduction
Since the advent of the first digital computers in the second half of the twentieth century
there has been a gap between the data analysis tasks onewould like to solve and the capa-
bilities of existing systems. The amount of data available to computers always exceeded
theprocessingpowerof even themost advanced computers. Progress in thedevelopment
ofhardware and softwaredid little to solve this issue.1 That is, despite theongoingdigital-
ization of our society today and the resulting simplification of the data collection process,
it is more andmore difficult to analyze the data automatically to derive knowledge from
it. In particular, this data comes in various forms, such as discrete or real valued vectors
(sales transactions, sensor measurements), text, audio, video (communication content),
or relations among entities (communication metadata, access patterns, similarities be-
tween objects). Due to this variability and volume of data it gets increasingly difficult to
derive valuable insights from it.

In the 1990s the field of data mining and knowledge discovery developed. One of its
goals is to devise algorithms to identify interesting patterns in data and to learn from
data, i.e., to automatically synthesize programs (called models) that capture some rela-
tions among data.2 Themodels can then be applied to novel data, for example to predict
whether some access pattern is fraudulent, or not. One quite general class of such meth-
ods works on data viewed as a collection of examples, or transactions (like sales transac-
tions in a store) from a (usually unknown and possibly infinite) set equipped with some
measure of similarity and tries to infer an unknown target variable. These distance-based
learning methods assume that the target variables of similar examples behave similarly
as well (i.e., that we can learn from the behavior of close-by instances).

If the data can be represented as discrete or real valued vectors of fixed length, vari-
ous similarity measures (such as, for example, the Euclidean distance) are available. If,
however, the data is text, video, or of multi-relational nature, defining a suitable simi-
larity measure for a given learning task is a difficult problem on its own. A common ap-
proach is to embed such structured data into a space spanned by some feature set that is
equippedwith an easy-to-compute similarity function. It is of course crucial andnontriv-
ial to choose a suitable feature set andcorresponding similarity function for a given learn-
ing task. Indeed, the quality of this method applied to some particular problem strongly
depends on the semantic relevance of the features considered, implying that one might
be interested in feature languages of high expressive power.

1 This is of course partly due to human nature: If technical advances have solved certain issues, people im-
mediately strive to address even larger problems.

2 Some authors consider both steps to be equivalent (e.g. Shawe-Taylor and Cristianini, 2004) and do not
distinguish between patterns andmodels.
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1. Introduction

In this thesis, we focus on the case that the data at hand consists of relational struc-
tures. More precisely, we consider graphs, i.e., each object in the data represents a set
of entities and there are some binary relations among the entities. Graphs are a power-
ful representation language; communication among people or distributed systems, so-
cial networks, or protein-protein interactions are some examples of using graphs as data
model. In particular, we will pay special attention to chemical molecules, which can also
be representedas graphs. Here the entities are atomsand thebinary relations correspond
to bonds between atoms. Many other applications are possible, e.g., we can view theweb
browsing of a user as a walk in a graph where entities are web pages and relations corre-
spond to links, etc. In fact, even text, pictures, or videos can be represented as graphs.

While graphs easily model many real world applications, working with graphs poses
a unique set of challenges. With the great expressive power of graphs comes great com-
putational complexity: Many questions that are trivial to answer for data which is rep-
resented in a different form are not known to be answerable efficiently for graphs. It is
not even known whether graph isomorphism, i.e., if two graphs are equal except for re-
ordering their vertices, can be decided in polynomial time. As a result, defining a suitable
similaritymeasure for a given set of graphs is a nontrivial task.3 Furthermore, regarding
the embedding idea described above, there is no straightforward fixed set of features for
arbitrary graphs that is semanticallymeaningful. A commonway to define such features
is to choose a set of (semantically relevant) graph patterns to span the feature space and
to checkwhether these features “appear” in the transaction graphs, or not. After this step
we are in theworld of fixed length (binary) vectors and can apply any similarity function
available, such as the Euclidean, Hamming, or Jaccard distances.

Themostnatural andpractically relevantdefinitionofonegraphappearing inanother
is that of subgraph isomorphism. This problem, however, isNP-complete. As a result, we
cannot expect to be able to compute the embedding of a given arbitrary transaction graph
in feasible time. Regarding the choice of the pattern set, a common approach is to find
the set of graph patterns that appear frequently in a given (training) database of graphs.
Since the first application of these so called frequent subgraphs as features tomolecule clas-
sification (Deshpande et al, 2005), many further studies have empirically demonstrated
a remarkable predictive performance of frequent patterns on real-world datasets. In fact,
as shown for instance by Bringmann et al (2006) in the context of correlated patternmin-
ing, even very simple patterns, such as paths or trees often suffice to obtain considerable
predictive accuracy. However, despite the structural simplicity of trees, even frequent
subtrees cannot be generated in output polynomial time for arbitrary transaction graphs
(unless P = NP) (Horváth and Ramon, 2010). Furthermore, the subgraph isomorphism
problem from a tree into a graph and hence the embedding computation remains NP-
complete.

This complexity limitation prohibits frequent pattern mining in practically feasible
timeeven for relatively simple transactiongraphdatabases. In fact, all previousworks re-
garding frequent subgraphmining that we are aware of focus on tree databases (Chi et al,
2003, 2004a) or on the domain of chemical graphs (Borgelt and Berthold, 2002; Borgelt

3 Ametric that respects graph isomorphism is at least as difficult to compute as graph isomorphism itself.
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et al, 2005; Nijssen and Kok, 2005; Rückert and Kramer, 2004; Yan and Han, 2002; Zhao
and Yu, 2008), where the transactions are quite restricted in their structural complexity.
This is not surprising: For tree transactions, frequent subgraphs (trees in this case) can
be generated efficiently (Chi et al, 2005) and the embedding computation can be done
in polynomial time (Matula, 1968). Chemical graphs, on the other hand, have several
structural properties that practically result in good performance of the state-of-the-art
mining algorithms. Once we leave the domain of trees or chemical graphs, however, our
experiments indicate that to the best of our knowledge there exists no system that can
generate frequent subgraphs in practically feasible time and space. We experimented,
e.g., withneighborhoodgraphs extracted fromsocial networksorwith certain artificially
generated graphs. That is, for no apparent4 reason thememory requirements of themin-
ing algorithms blow up exponentially, or the algorithms spendmore than a day without
outputting any patterns on a dataset of 50 small random graphs to identify the frequent
patterns (cf. Section 4.2) while databases of over 30000 similarly sized chemical graphs
can be processed in amatter of minutes (Nijssen and Kok, 2005).

However, robustmining and embedding algorithmswhose runtimesdo not dependon
certain, typically unknown implicit characteristics of thedata, but on someuser specified
parameters, are of high value. That is, in many applications the transaction graphs have
no (known) specific structural properties that could be utilized by the mining algorithm.
In contrast, all frequent subgraphmining toolswe are aware of are explicitly or implicitly
engineered towards certain structural properties of the input graph databases. They are
therefore either not applicable for general graph databases, or cannot guarantee worst-
case runtimes.

In light of these difficulties and requirements, this thesis is dedicated to the identifi-
cation of a set of pattern graphs that is of high practical relevance and can at the same
time be efficiently computed for arbitrary transaction graph databases. We also discuss the
efficient embedding computation for a (novel) transaction graph class given such a set
of patterns. With these two steps, we present a system to define a suitable feature space
given a sample of some graph distribution and then to compute the embeddings for un-
seen graphs. This allows to train and apply distance-basedmodels on graph transactions.
To overcome the computational complexity of the above two problems, we propose to
focus on tree patterns and generate only a random subset of frequent subtrees, called prob-
abilistic frequent subtrees that can be generated with polynomial delay. To compute the
embeddings of transaction graphs in the feature space spanned by these probabilistic fre-
quent subtrees, we employ a similar technique for the subgraph isomorphism problem.
This results in a computationally efficient algorithm that computes a sound but incom-
plete random embedding vector for arbitrary graphs. As a side-effect of our technique,
we extend the positive results on efficient exact frequent subtree mining to a novel graph
class. Before discussing the contributions of this thesis inmore detail in Section 1.2, let us
quickly demonstrate the suitability of our proposed approach on chemical data below.

4 We are aware of the reason, see Section 3.1.1.
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Figure 1.1.: Predictive performance of a SVM trained and evaluated on different feature
sets. The two plots show the AUC values (y-axis) that are achieved for fea-
tures corresponding to frequent (probabilistic) subgraph patterns up to a cer-
tain number of vertices (x-axis). Each line corresponds to a certain type of pat-
terns. The arrows from the top of the plot indicate the best performance of the
frequent subgraph pattern based classificators.

1.1. A Motivating Experiment

As amotivation for our probabilistic frequent subtree techniqueswe investigate a predic-
tive chemistry task for molecular databases. On the one hand, this may seem contradic-
tory to our claim above that traditional frequent subgraphmining systems work well on
such graphs and thatwe develop amethod to go beyond this application scenario. On the
other hand,wewish to compare ourmethod against the “ground-truth” of exact frequent
subgraph and frequent subtree based learning methods. Hence we naturally have to re-
strict our comparison to domains where these two feature sets can be computed within
feasible time andmemory constraints.

Recall thatwewant to representdata that consists ofmultiple graphs ina feature space
that is spanned by some set of graph patterns P . More exactly, we represent each graph
G by a subset of the patterns in P that matchG (i.e., that are subgraph isomorphic toG);
this representation can be stored as a binary vector of fixed length. To do this, we fix a set
of graphs (called database) and compute the sets of

• all frequent subgraphs,

• all frequent subtrees, and

• our probabilistic frequent subtrees
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1.1. AMotivating Experiment

in the database for a fixed frequency threshold of 10%. Wehave observed similar qualita-
tivebehavior forother frequency thresholdsanddonotwant to convolute thismotivation
by showing multiple similar plots. We then consider the feature representations of the
graphs in the database with respect to the three pattern sets above.

Figure 1.1 shows the results on NCI1 and NCI109. Both datasets consist of chemical
molecules and the task is topredictwhether theyare active against certain typesof cancer
cells. See Section 2.4 for amore detailed description of these datasets. We report the pre-
dictive performances of support vectormachines (SVM) (Cortes and Vapnik, 1995) which
wemeasure by the area under the ROC curve (AUC) averaged over a three-fold cross vali-
dation.5 Furthermore, we defer the discussion of the various pattern sets to the technical
part of this thesis. For now, it suffices to know that our method has a parameter l that
influences its error and runtime in both the pattern mining and graph embedding steps.
Figure 1.1 shows plots for our method with parameter l ∈ {1,2,5,10}. It contains a plot
for each dataset and a line in each such plot for each generated pattern set. A point on
such a line corresponds to the AUC value (y-axis) of an SVM classifier trained on feature
representations based on patterns up to and including a certain number of edges (x-axis).

The predictive performance of frequent tree patterns (green) and frequent subgraph
patterns (blue) is almost identical over both datasets and all pattern sizes. This moti-
vates and justifies our initial simplification of the frequent subgraph mining problem
(FCSM) to the frequent subtree mining problem (FTM). Furthermore, the predictive per-
formance of the patterns first increases with the pattern size, reaching its optimum for
maximum pattern sizes between 5 and 9 edges, and then decreases. This behavior is
consistent through both datasets and we observed it consistently on a number of other
datasets and across various frequency thresholds. The predictive performance of our
probabilistic subtree patterns shows a similar behavior as a function of the pattern size.
Increasing the sampling parameter l generally increases the predictive performance. In
fact, for l = 10 the best AUC score of the frequent subgraph pattern based classifier can be
matched by ourmethod.

We draw three main conclusions from this experiment that motivate us6 to pursue
probabilistic frequent subtree patterns:

1. Our probabilistic patterns are well-suited as a basis for predictive tasks in the con-
text of chemical graph databases.

2. Frequent pattern based classifiers do not seem to benefit from patterns that are too
large. On chemical graphs, pattern sizes up to 9 edges per pattern give good pre-
dictive performance and larger patterns tend to decrease speed as well as accuracy.
This seems to be a general (althoughnot systematically investigated) trend in graph
mining, extending beyond frequent pattern mining and classification, e.g. also to
cyclic patterns (Horváth et al, 2004) orWeisfeiler-Lehman features (Shervashidze
et al, 2011) in a regression setting (Ullrich et al, 2016).

5 Weused libSVM (Chang and Lin, 2011) with a linear kernel function. We did not optimize the softmargin
parameter for each feature representation, but kept it in its default setting to speed up the computation
and to avoid overfitting by chance.

6 and hopefully the reader, as well
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1. Introduction

3. Ourmethodworkswell in practical scenarios even for relatively small values of the
parameter l. This indicates that it can be applied in practically reasonable time and
space to distance-based learning problems that were not feasible before.

1.2. Contributions
As already mentioned, to use distance-based learning methods on graphs, a common
paradigmalso followed in this thesis is to embed the instance space (of graphs) into some
appropriately chosen feature space equipped with a metric. In particular, we focus on
embedding (labeled) graphs into the d-dimensionalHamming space (i.e., {0,1}d) spanned
by the elements of a pattern set of cardinality d for some d > 0. This thesis presentsmeth-
ods to use frequent subgraphs as features, without any structural restriction on the transac-
tion graph class defining the instance space.7 This is motivated, among others, by the
observation that frequent subgraph based learners (see, e.g., Deshpande et al, 2005) are
of remarkable predictive performance for example on the ligand-based virtual screening
problem (Geppert et al, 2008).

Our goal involves two steps solving the following computational problems:

(i) Patternmining: Given a (training) database of arbitrary graphs, compute the setF
of all frequent subgraphs with respect to some user specified frequency threshold.

(ii) Graph embedding: Given an unseen graph (usually drawn from the same dis-
tribution as the training data set), compute its embedding into the Hamming space
spanned by the elements ofF .

For the case that the embedding operator is defined by subgraph isomorphism and that
there is no restriction on the transaction and query graphs, both steps are computation-
ally intractable. Nevertheless the patternmining problem (i) has gained lots of attention
(see Chapter 3), resulting in several practical systems for graph databases restricted in
different ways. The graph embedding problem (ii) is, however, often neglected in the
literature, though it is crucial to the ability of applying the pattern set generated in the
mining step (i) to unseen graphs. Wedescribe our technical contributions to address both
computational problems below.

The overall contribution of this thesis is a robust system to map arbitrary graphs to a
(learned)Hamming space of fixed dimension, therefore allowing to easily apply distance-
based learningmethods on graphdatasets. By robustwemean that the runtime of our sys-
tem depends not on certain, typically unknown implicit characteristics of the data, but
that it is polynomial in some user specified parameters, the size of the data, and the size
of the output. Such a system is of high value for practical problems: Often the transaction
graphshaveno (known) specific structural properties that couldbeutilizedby themining
or embedding algorithm. Our algorithm is robust because its delay is bounded by a poly-
nomialwhichdependsonlyon thenumberandsizeof the inputgraphsandonasampling
7 In fact, we restrict our description to connected transaction graphs. This, however, is only done for ease
of explanation. All our techniques can easily be extended to disconnected transaction graphs.
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1.2. Contributions

parameter. The sampling parameter can be used to control the trade-off between recall
and time complexity. In contrast, all frequent subgraph mining tools from other groups
are explicitly or implicitly engineered towards certain structural properties of the trans-
action graphs and have exponential delay in the worst case. Furthermore, they usually
neglect the graph embedding step (ii). As a result, these systems are not applicable in
such a general scenario. Their runtime or memory requirements might explode for cer-
tain datasets and novel graphs cannot be embedded in the feature space spanned by the
frequent patterns in feasible time.

1.2.1. Efficient Frequent Subtree Mining
To arrive at a theoretically efficient and practically fast algorithm for the pattern min-
ing problem (i), we restrict the pattern language to trees. This restriction alone, however,
does not resolve the complexity problems above. Mining frequent subtrees from arbi-
trary graphs is not possible in output polynomial time (unlessP=NP, Horváth et al, 2007).
To overcome this limitation, we give up the demand on the completeness of the mining
algorithm. Instead, we propose to efficiently compute a subset of all frequent subtrees,
which we call probabilistic frequent subtrees.

As a first theoretical contribution, we formalize a relaxed frequent subtree mining
problem and give sufficient conditions for the existence of an efficientmining algorithm.
To this end, we extend the generic algorithm in (Horváth and Ramon, 2010) to the case
that (i) pattern and transaction graphs have different characteristics and (ii) only a well
defined subset of all frequentpatterns shall be enumerated. Inparticular,we consider the
case that the transactions are arbitrary graphs and thepatterns are trees. Subsequentlywe
propose two novel mining algorithms that are based on sampling spanning trees of the
transaction graphs.

Probabilistic Frequent Subtrees

The basic insight leveraged by our techniques is the following: A tree is subgraph isomor-
phic to a graph if and only if it is subtree isomorphic to one of the graph’s spanning trees.
Our first algorithm therefore generates probabilistic frequent subtrees in the following
simple way: It replaces each transaction graph in the input database by a forest formed
by the vertex disjoint union of a random subset of its spanning trees. Using, e.g., the level-
wise search algorithm (Mannila and Toivonen, 1997), our algorithm generates the set of
frequent connected subgraphs (i.e., subtrees) for the forest database obtained. Spanning
trees can uniformly be sampled in polynomial time (Wilson, 1996) and subgraph isomor-
phism from a tree into a forest can be decided in polynomial time (Matula, 1968). Hence
the extended generic algorithmof (Horváth andRamon, 2010) can enumerate probabilis-
tic frequent subtrees with polynomial delay in this way if for each transaction graph, the
number of spanning trees in the sample is bounded by a polynomial of the graph’s size.

The output of ourmethod is sound (that is, all patterns printed are frequent subtrees),
but not necessarily complete (i.e., some frequent subtrees may not be enumerated). Re-
garding the recall of ourmethod (that is, the fractionof frequent subtrees retrievedbyour
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1. Introduction

algorithm), we show that the set of frequent subtrees is well approximated if the number
of sampled spanning trees is chosen appropriately. We prove that the probability for a
frequent patternH to be among the probabilistic frequent subtrees is high if the pattern
is important. That is, ifH is frequent in the spanning trees of sufficientlymany transaction
graphs.

Our extensive empirical evaluation demonstrates that the above idea results in a prac-
tically feasible mining algorithm. We show that probabilistic frequent subtrees can be
enumerated for social andrandomgraphdatabaseswhere state-of-the-art exact frequent
subgraphmining systems are not able to produce results in practically feasible time. Fur-
thermore, we demonstrate that the recall of our probabilistic mining technique is high
even for small numbers of sampled spanning trees and that the retrieved set of patterns
is very stable. (Notice that precision is always 100% for the soundness of the algorithm.)
Furthermore,we show that thepredictiveperformance of probabilistic frequent subtrees
is comparable to that of the full set of frequent subgraphs and frequent subtrees on chem-
ical datasets.

Boosted Probabilistic Frequent Subtrees

As a next step, we go beyond the limitation of processing polynomially many spanning
trees per graph only. We present an algorithm able to generate probabilistic frequent
subtrees from arbitrary graphs with polynomial delay by considering a potentially expo-
nentially large implicit subset of the spanning trees for each graph in the database. Our
boostedmining algorithm is based on a novel patternmatching algorithm. For a tree pat-
ternH anda transactiongraphG, it (i) partitionsG intoacertainsetof inducedsubgraphs,
(ii) considers a (random) subset of local spanning trees for each induced graph, and (iii) de-
cides whetherH is subtree isomorphic to one of the global spanning trees of G obtained
by combining its local spanning trees in an appropriate way.

Our pattern matching algorithm traverses a rooted tree generated for G in a bottom-
upmanner and computes the final solution from partial solutions calculated before. The
nodes of the rooted tree controlling the evaluation are constructed from the articulation
vertices of G. Each node v of such a tree is associated with a set of spanning trees of a
certain induced subgraph containing v. Our technique requires an efficient combination
of these local spanning trees, as well as a careful assembly of certain partial subtree iso-
morphismswhich can be computed efficiently. We prove that our algorithm decides sub-
graph isomorphism from a tree patternH toS correctly, whereS is the set of spanning
trees ofG that can be obtained from combinations of the local spanning trees. Our algo-
rithm runs in time polynomial in the combined size ofH ,G, and the number of local span-
ning trees that it considers. The significance of this result is that the number of global
spanning trees in S can be exponential in the number of local spanning trees. This prop-
erty has immediate consequences to probabilistic frequent subtreemining.

By considering exponentially many (implicit) global spanning trees instead of poly-
nomially many ones, our technique has an improved performance in terms of recall over
the simple algorithm described above. This improvement is only marginal on molecu-
lar graph datasets, due to the relatively simple graph structure of pharmacological com-
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pounds (cf. Horváth and Ramon, 2010; Horváth et al, 2010). On threshold graphs, however,
which have applications among others in spectral clustering (see, e.g., von Luxburg, 2007),
the boosted mining algorithm results in a much higher recall compared to the simple
one. This also results in practical speedups, as it increases the number of patterns that
are found in a given time budget with respect to the simple algorithm.

Exact Frequent Subtree Mining

Theboosting techniquementionedabovehas implications forexact frequent subtreemin-
ing as well. We first note that despite more than two decades of research there are only a
few non-trivial theoretical results concerning the complexity of frequent subgraphmin-
ing. In particular, if the transaction graphs are restricted to forests then frequent con-
nected subgraphs (i.e., trees) can be generated with polynomial delay (see, e.g., Chi et al,
2005). Using the positive result of Matoušek and Thomas (1992), one can show that for
graphs of bounded tree-width (Robertson and Seymour, 1986a) and bounded degree, fre-
quent connected subgraphs can be generated with polynomial delay. In fact, frequent
connected subgraphs canbe listed in incremental polynomial time for graphs of bounded
tree-width without restricting the vertex degree of the patterns (Horváth and Ramon,
2010). As a byproduct of our approach, we extend the known positive complexity results
on frequent subgraphmining by a newone formulated for a graph class that is of theoret-
ical as well as practical interest.

Our probabilistic frequent subtreemining algorithms solve the exact frequent subtree
mining problem correctly (i.e., soundly and completely) if all spanning trees are consid-
ered for each database graph. As a result, frequent trees can be mined with polynomial
delay if the number of spanning trees of the transaction graphs is bounded by a polyno-
mial of their size by using the frequent subtree mining algorithm described above. The
efficiency follows from the fact that all spanning trees of a graph can be listed with poly-
nomial delay (ReadandTarjan, 1975) togetherwith thepositive result on frequent subtree
mining in forest transaction databases.

The second (boosted) mining algorithm presented in this thesis extends this positive
result to databases where transaction graphs may have exponentially many spanning
trees. In particular, our boosted frequent pattern mining algorithm is correct and effi-
cient (i.e., it haspolynomial delay) if the transactiongraphshavepolynomiallymany local
spanning trees. We call such graphs locally easy. The number of global spanning trees of a
graphGmight be exponential in the number of local spanning trees ofG. As a result, the
work in this thesis substantially extends the known positive results on efficient frequent
subtreemining.

The class of locally easy graphs has some interesting properties that are both of theo-
retical andpractical relevance. First, it is orthogonal to all graph classes that are definedby
a constant upper bound on some monotone graph property (e.g., graphs of bounded tree-
width); a graph property is calledmonotone if it is closed under taking subgraphs. By “or-
thogonality”wemean that the class always contains an infinitenumberof graphs that are
not contained in the other graph class. The previously knownpositive results on efficient
frequent subgraphmining, however, require the transaction graph class to bemonotone.

9



1. Introduction

Second, the class of locally easy graphs includes a number of interesting and practi-
cally relevantgraphclasses. Forestsand pseudoforests inwhichevery connectedcomponent
has atmost one cycle constitute two subclasses of locally easy graphs. Further subclasses
canbedefinedbybounding themaximumnumber of biconnected blocks sharing a vertex
by a constant. For example, cactus graphs (i.e., in which all edges belong to at most one
simple cycle) of bounded block degree are locally easy. Note that even for cactus graph
transactions (without bounding the block degree by a constant) frequent subtrees can be
mined in incremental polynomial time (Horváth and Ramon, 2010). However, it is un-
known whether this is possible with polynomial delay. We conjecture that generalizing
our positive result on polynomial delay mining of frequent subtrees to the first natural
graph class beyond locally easy graphs is at least as difficult as solving the P vs. NP prob-
lem. Our positive result on mining locally easy graphs is thus another step towards ex-
ploring the border between tractable and intractable fragments of the frequent pattern
mining problem.

1.2.2. Fast Computation in Probabilistic Subtree Feature Spaces
Wefollowasimilar strategy for thepatternmatchingoperatorused in theembeddingstep
(ii) (see page 6): For anunseen graphG and a setF of tree patterns enumerated in themin-
ing step, we generate a setS(G) of (random) spanning trees ofG and compute the set of
allH ∈ F that are subgraph isomorphic toS(G). The incidence vector of this set defines
the embedding (vector) of G into the Hamming space spanned by F . On the one hand,
in this way we decide subgraph isomorphism from a tree into a graph with one-sided er-
ror, as only a negative answer may be erroneous, i.e., when H is subgraph isomorphic
to G, but not to S(G). On the other hand, this probabilistic pattern matching test can
be performed in polynomial timewhile correct pattern evaluation is computationally in-
tractable (that is, NP-complete). We prove that our probabilistic algorithm decides sub-
graph isomorphism fromH intoG correctly with high probability ifH is frequent inG
and the number of sampled spanning trees is chosen appropriately.

Using our probabilistic technique, we can compute the embedding vector of a graph in
polynomial time by deciding subgraph isomorphism (with one-sided error) for all trees
in the pattern set. This brute-force algorithm can be accelerated by reducing the number
of subgraph isomorphism tests. Utilizing that subgraph isomorphism induces a partial
order on the pattern set and that it is anti-monotone with respect to this order, we can
infer for certainpatternswhether ornot theymatch a graph from the evaluations already
performed for other patterns. We propose two such strategies. One is based on a greedy
depth-first search traversal, the other uses binary search on paths in the partially ordered set
of patterns. We show empirically that both algorithms drastically reduce the number of
embedding operator evaluations compared to the baseline obtained by levelwise search.

In a last step, we improve the speed and space consumption of the above method by
applyingmin-hashing (Broder, 1997). Each graph is represented by a small sketch vector
that can be used to approximate Jaccard-distances. We show that themin-hash sketch of
a given graph with respect to a set of tree patterns can be computed without calculating
the embedding explicitly. We utilize the fact thatwe are interested in the first occurrence
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of a pattern in some permutation of the pattern set; once we have found it, we can stop
the calculation, as all patterns after this first one are irrelevant for min-hashing. Beside
this straightforward speed-up of the algorithm, the computation of themin-hash sketch
can further be accelerated by utilizing oncemore the anti-monotonicity of subgraph iso-
morphism on the pattern set. These facts allow us to define a linear order on the patterns
to be evaluated and to avoid redundant subtree isomorphism tests.

Our experimental results demonstrate that the proposed technique can dramatically
reduce the number of subtree isomorphism tests, compared to an algorithm performing
the embedding explicitly. We also show that even for a few random spanning trees per
chemical compound, remarkable precisions of the active molecules can be obtained in a
highly imbalanced chemical dataset by taking the i nearest neighbors of an active com-
pound. Finally, we show that the predictive power of support vector machines using our
approximate similarities compares favorably to that of state-of-the-art relatedmethods.

The stability of our incomplete probabilistic technique is explained by the fact that a
subtree generated by ourmethod is frequent not onlywith respect to the training set, but,
with high probability, also with respect to the set of spanning trees of a graph. While the
presented embedding techniques are applied to probabilistic frequent subtree patterns
in this thesis, they can be employed in other partially ordered pattern sets andmonotone
embedding operators.

1.3. Outline

The remainder of this thesis is structured as follows:
InChapter2we introduce thenecessarynotionsandnotation. Among them,wedefine

a quite general frequent subgraph mining problem and discuss its computational com-
plexity in Section 2.2. It turns out that this complexity is related to the complexity of the
HamiltonianPath problem. We discuss its complexity for an important special case
in Appendix A. Chapter 3 presents related approaches for frequent subgraphmining and
for the subgraph isomorphism problem.

Themaincontributionsof this thesis arepresented in thenext three chapters. InChap-
ter 4we introduce our relaxation of frequent subtreemining and show that it gives rise to
an efficient algorithm for arbitrary graph transaction databases in theory and practice.
Next, we investigate a more intricate algorithm that is able to decrease the error of our
methodwith respect to the full set of frequent patterns for some types of graphdatabases
in Chapter 5. In Chapter 6, we showhow to efficiently compute the embedding vector for
a graph, given a set of tree patterns. While our methods developed in the previous chap-
ters can be used to do this in polynomial time using a brute-force approach, we propose
several methods that speed up this computation by using a natural partial order on the
pattern set. Finally, Chapter 7 concludes the thesis.
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2. Preliminaries
In this chapter we collect all necessary terminology and notation used in this thesis. We
assume that the reader is aware of standard mathematical concepts like sets, vectors,
functions, et cetera. We also require knowledge of complexity theory, in particular famil-
iarity with the O-notation and the complexity classes P and NP. For the sake of clarity,
however, we introduce our notation and recall some basic notions from graph theory
(see, e.g., Diestel, 2012; Korte and Vygen, 2012) in Section 2.1. Subsequently, we formally
define the pattern mining problem considered in this work in Section 2.2. As this prob-
lem is a listing problem, we define complexity classes for such problems, as they are
less standard. We provide a generic algorithm and efficiency conditions in Section 2.2.1
and discuss the complexity of the pattern mining problem in Section 2.2.2. Finally, we
describe the datasets used throughout this thesis in Section 2.4.

2.1. Notions and Notation
Sets and Lists

Let S = {s1, s2, . . .} be a set. We denote the cardinality of S by ∣S∣ and the empty set by
∅. Given some fixed encoding of the elements of S, the size(S) denotes the sum of the
sizes of its elements in that encoding.1 A subsetX of S is indicated asX ⊆ S. IfX ⊆ S
and X ≠ S, we write X ⊂ S. We denote the set of natural numbers {1,2, . . .} by N and
the set of real numbers by R. The finite set {1, . . . , n} ⊂ N will be denoted by [n] for all
n ∈ N. Given a finite set Σ, called alphabet, a sequence, also called list, or string of elements
of Σ is written as [s1, . . . , sn]. In contrast to a set, the order of elements in a sequence is
important. The length of a listL, i.e., thenumber of elements it contains, is denotedby ∣L∣
and the ith element of L is denoted by L[i]. The set of all finite sequences over Σ is then
denoted by Σ∗. Note that in a sequence a certain element smight occur multiple times.
A permutation of Σ is a sequence that contains each element of Σ exactly once. There are
exactly ∣Σ∣! =∏∣Σ∣i=1 i permutations ofΣ.

Graphs

An undirected (resp. directed) graphG = (V,E) consists of a finite set V of vertices and a set
E ⊆ {X ⊆ V ∶ ∣X ∣ = 2} (resp. E ⊂ V × V ) of edges. When G is clear from the context, n
denotes ∣V ∣ andm denotes ∣E∣. GivenG = (V,E)wewill often use the notation V (G) ∶= V
and E(G) ∶= E to refer to the vertex or edge set of G. We consider only simple graphs,

1 Hence, while in ∣S∣ the sizes of the elements of S do notmatter, in size(S) they domatter.
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i.e., loops and parallel edges are not permitted.2 Unless otherwise stated, by graphs we
mean undirected graphs. An edge {u, v} ∈ E(G) will be denoted by uv. The setN (v) ∶=
{w ∈ V (G) ∶ vw ∈ E(G)} is the set of neighborsof v. The cardinality ofN (v) is called degree
of v and denoted by δ(v). A leaf is a vertex that has exactly one neighbor.

A labeled graph is a graphG together with a function l ∶ E(G)∪V (G)→ Σ that assigns
a label from some finite set Σ to each vertex and each edge. Labeled graphs can model
chemical molecules, protein-protein interactions, social networks, the Web graph and
other phenomena. To keep the notation and description concise, we will state all results
for unlabeled graphs. All our arguments naturally apply to labeled graphs as well.

A subgraph ofG is a graphG′ with V (G′) ⊆ V (G) andE(G′) ⊆ E(G). G′ is a subgraph
ofG induced by a subset V ′ ⊆ V (G) if V (G′) = V ′ and uv ∈ E(G′) if and only if uv ∈ E(G)
for all u, v ∈ V ′. Such an induced subgraph is denoted byG[V ′].

A graph is connected if for any v,w ∈ V (G) v can be reached from w by traveling over
a sequence of edges [vv1, v1v2, v2v3, . . . , viw]. G is k-connected if G is connected and the
removal of any set of k − 1 vertices does not destroy this property. We call a 2-connected
graph biconnected. A cycle is a minimal biconnected graph with at least three vertices, i.e.,
the removalof anyedgeorvertex results inapath. A block is amaximal subgraphofGwith
at least three vertices that is biconnected and a bridge is an edge that does not lie on any
cycle. A biconnected component is a maximal subgraph that is biconnected, i.e., it is either
a block, or a bridge, or an isolated vertex. Finally, a articulation vertex is a vertex whose
removal increases the number of connected components ofG.

A forest is a graph that contains no cycle; a tree is a connected forest. A path is a tree
where at most two vertices are leaves3. Note that several works in the graph mining lit-
erature refer to trees as unrooted unordered trees or free trees. In this work, a tree is always
undirected, unless we explicitly say that it is rooted: A rooted tree T ′ can be obtained from
a tree T by choosing a root r ∈ V (T ) and by directing every edge e ∈ E(T ) towards r. For
each r ∈ V (T ) this definition results in a unique orientation of the edges. A spanning tree
T of a connected graphG is a subgraph ofGwith V (T ) = V (G) that is a tree.

A common generalization of trees are graphs of bounded tree-width (Robertson and
Seymour, 1986b). This property – in some sense – measures how tree-like a graph G is
by defining a tree structure on certain induced subgraphs of G. A tree decomposition of a
graphG is a tree T together with amapping bag ∶ V (T )→ 2V (G) such that

• ⋃
i∈V (T )

bag(i) = V (G),

• e ⊆ bag(i) for some i ∈ V (T ) for all e ∈ E(G), and

• the subgraph T [{i ∈ V (T ) ∶ v ∈ bag(i)}] of T induced by all vertices whose bags
contain v is connected for all v ∈ V (G).

2 A loop is an edge from a vertex to itself. Note that according to our definitions this can not happen in an
undirected graph.

3 The empty graph and a single vertex are paths, as well
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The width of a tree decomposition is the cardinality of its largest bag,maxi∈V (T ) ∣bag(i)∣.
The tree-width ofG is theminimumwidth of all tree decompositions ofG. Note that the
tree-width of any graph containing at least one edge is at least one. In fact, the tree-width
of a graphG is one if and only ifG is a forest.

Another generalization of trees are outerplanar graphs. A graph is outerplanar, if (i) it
can be drawn in the plane in such a way that edges do not cross each other except maybe
in their endpoints and (ii) every vertex lies on the outer face. That is, each vertex can be
reached from outside without crossing any edge. A graph G is outerplanar if and only
if all its biconnected components are outerplanar (Harary, 1994). A biconnected compo-
nentB of an outerplanar graph is either bridge, or it is amaximal induced subgraph ofG
composed of a single Hamiltonian cycle and possibly some non-crossing diagonal edges
(Harary, 1994). Ad-tenuousouterplanar graph is anouterplanar graph inwhicheachblock
has atmost d diagonals. Notice that forests are special outerplanar graphs. Furthermore,
outerplanar graphs have tree-width at most two.

Isomorphism and Subgraph Isomorphism

Let G1 = (V1,E1) and G2 = (V2,E2) be graphs. They are isomorphic, denoted G1 ≅ G2 if
there exists abijectionφ ∶ V1 → V2withuv ∈ E1 if andonly ifφ(u)φ(v) ∈ E2 for allu, v ∈ V1.
In this case φ is called an isomorphism between G1 and G2. G1 is subgraph isomorphic to
G2, denotedG1 ≼ G2, ifG2 has a subgraph that is isomorphic toG1. The corresponding
functionφ ∶ V (G1)→ V (G2) is called subgraph isomorphism. G1 ≺ G2 denotes thatG1 ≼ G2

andG1 is not isomorphic toG2.
As alreadymentioned in the beginning of this section, we will state all our results for

unlabeled graphs. Nonetheless, wewill shortlymention how the subgraph isomorphism
is defined in the labeled case, asmany datasets considered in this work consist of labeled
graphs (cf. Section2.4). LetG1 andG2 be twographswith label functions l1 and l2 over the
same label setΣ. ThenG1 andG2 are isomorphic if there exists a subgraph isomorphism
φ such that

• l2(φ(v)) = l1(v) for all v ∈ V (G1)

• l2(φ(v)φ(w)) = l1(vw) for all vw ∈ E(G1).

Checkingwhether the label of an edge or vertexmatches the label of its image canbedone
in constant time assuming that a suitable encoding is chosen for the elements in the finite
label set Σ. Hence the algorithms considered in this work can be easily extended to the
labeled case.

The SubgraphIsomorphism problem, that is, deciding whether H ≼ G for two
graphsH andG, is one of the classicalNP-complete problems (Garey and Johnson, 1979,
Sec. 3.2.1). This negative result holds even for the case that the patternH is restricted to
trees. We will refer to this latter problem as the SubtreeIsomorphism problem. Its
NP-completeness follows e.g. from the restriction to the problem of deciding whether
there exists aHamiltonian path inG, i.e., a path that contains all vertices ofG (Garey and
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Johnson, 1979, Sec. 4.2.2). In case thatG andH are both trees, the SubtreeIsomorph-
ism problem can be solved in polynomial time (Matula, 1968). Several algorithms were
developed for this problem and are discussed in Section 3.1.

The GraphIsomorphism problem, that is, deciding whether two graphs G and H
are isomorphic, is neither known to be solvable in polynomial time, nor known to be NP-
complete. Recent work by Babai (2015), claims that there is a quasi-polynomial time al-
gorithm for the GraphIsomorphism problem. In case both G and H are trees, the
GraphIsomorphismproblembecomesmuchsimplerandcanbedecided in linear time
(this follows, e.g., from Hopcroft and Wong, 1974).4 One way of solving the GraphI-
somorphism problem is to compute and compare canonical strings, which we will de-
scribe below. First, however, we need additional notation.

Isomorphism is an equivalence relation. That is, for all graphsG1,G2,G3, it holds

Reflexivity G1 ≅ G1,

Symmetry G1 ≅ G2 if and only ifG2 ≅ G1, and

Transitivity ifG1 ≅ G2 andG2 ≅ G3 thenG1 ≅ G3.

A graph classG is a set of graphs. Wewill oftendefine graph classes by some commonprop-
erty of the graphs, e.g. the class of all trees, connected graphs, etc. A representative ofG is a
set that contains exactly onegraph fromeachequivalence class Ḡ ∶= {H ∈ G ∶ H ≅ G} ⊆ G.
That is, the elements in the representative of G are unique up to isomorphism.

Posets

A partially ordered set, or poset (S,<) is a setS togetherwith a binary relation < such that for
all x, y, z ∈ S the following conditions hold:

Reflexivity x < x,

Antisymmetry if x < y and y < x then x = y, and

Transitivity if x < y and y < z then x < z.

For any graph classF the pair (F ,≼) is a poset. IfF is finite, we can represent (F ,≼) by a
directed graph (F ,E)with (T1, T2) ∈ E if and only if T1 ≺ T2 and there is no T ∈ F with
T1 ≺ T ≺ T2 for all T1, T2 ∈ F . In this way, x < y if and only if there exists a directed path
from x to y in the graph (F ,E).

A total order is a poset (S,<)where for all x, y ∈ S either x < y or y < x. A total order on
S can be represented as a sequence of elements of S. In particular, each permutation of S
defines a total order on S. A topological order on (F ,E) (resp. (F ,≼)) is a sequence (i.e., a
total order) F = [T1, T2, . . . , Tn] satisfying i < j for all (Ti, Tj) ∈ E. A directed graph has
a topological order if and only if it is acyclic, i.e., if it corresponds to a partial order (see,
e.g. Korte and Vygen, 2012).
4 This result also holds in case at least one of the graphs is a tree: Whether a graph is a tree can be decided
in linear time and a tree can never be isomorphic to a graph that is not a tree.
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Let (Σ,<) be a total order. The lexicographical order induced by (Σ,<) is a total order
(Σ∗,<′) of strings overΣ defined as follows: Let S and S′ be two strings with ∣S∣ = ∣S′∣. If
S ≠ S′ let ibe thefirstpositionwhere the twostringsdiffer. ThenS <′ S′⇔ S[i] < S′[i]. If
two strings have different length, we obtain their relation (with respect to <′) by padding
the shorter string by a novel element not contained in Σ that is larger than all elements
inΣ (with respect to <). The lexicographical order on canonical strings of trees (described
below) is an important part of efficiently removing isomorphic graphs efficiently from a
graph class, i.e., computing a representative of the graph class.

Canonical Forms and Canonical Strings of Trees

Given a graph class G, a canonical string function is a function f ∶ G → Σ∗ such that

f(G) = f(H) ⇐⇒ G ≅H

for allG,H ∈ G for a suitable finite alphabetΣ. For someG ∈ G, we call f(G) its canonical
string.

Canonical stringsallowtodecide if twographsare isomorphicby just testing theequal-
ity of their canonical strings. This operation can be done in linear time in the length of
the shorter string (assuming that the size ofΣ is a constant and that comparing elements
in Σ can be done in constant time). Canonical strings also enable testing if a graph G
is isomorphic to some graph in a set S of graphs in an efficient way: Using prefix trees
(Fredkin, 1960), this can be done in linear time in ∣f(G)∣; in particular, the runtime does
not depend on ∣S∣. The generic graph mining algorithm described in Section 2.2.1 below
requires a way to filter out redundant patterns, i.e., patterns such that some isomorphic
pattern has been evaluated before. This test can be easily implemented using canonical
strings stored in a prefix tree.

A canonical string function that can be computed in polynomial time for all graphs is
unlikely to exist as this would imply a polynomial time algorithm for the Subgraph-
Isomorphism problem. Polynomial time computable canonical string functions are
known, however, for restricted graph classes. If G is the class of all trees (Asai et al, 2003;
Chi et al, 2003; Nijssen and Kok, 2003), the class of all outerplanar graphs (Horváth et al,
2010), or the class of all planar graphs (Hopcroft andWong, 1974). In fact, there exist sev-
eral canonical string functions for trees that canbe computed in linear time (e.g.Hopcroft
andWong, 1974).

Although our system does not require any specific canonical string function, we now
briefly describe the method we have used. It is based on the ideas presented by Chi et al
(2003). To obtain a canonical string of a treeG, we first transformG to a rooted tree. To
select a root, we repeatedly remove all leaves together with their incident edges fromG
until one or two vertices remain. These vertices are called the center (respectively the bi-
center) ofG and arewell defined. Themethod to obtain the center or bi-center ofG can be
implemented inO (∣V (G)∣) (see, e.g., Harary, 1994, Chapter 4). We define the canonical
string forG to be the canonical string of the tree rooted at the center ofG ifGhas a center.
If G has a bi-center then the canonical string of G is defined to be the lexicographically
smaller of the two canonical strings of the trees rooted at the two bi-centers ofG.
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Figure 2.1.: A small tree (left) with its canonical string (right). The vertex shown in gray is
the center of the tree.

To obtain a canonical string for a rooted tree labeled by elements fromΣ, we startwith
anarbitrarybutfixed total order on the label setΣ∪̇{(, )} andemployabottomupmethod.
The canonical string of a leaf vertex v is simply its label l(v). For some vertex v that is not
a leaf ofGwe first recursively compute the canonical string cw for each child w of v. We
add the “(” symbol and l(vw) at the beginning of cw and the “)” symbol at the end of cw.
Then we sort all modified cws according to the lexicographical order on the modifiedΣ∗.
This results in a canonical string function for trees that can be computed in polynomial
time (Chi et al, 2003). Figure 2.1 shows a small example.

2.2. Frequent Connected Subgraph Mining
Frequent connected subgraph mining has been an area of active research for the last twenty
years. It is anatural generalizationof the frequent itemsetminingproblem (Agrawal et al,
1996) to transaction databases consisting of graphs. Wewill review relatedwork inChap-
ter 3 and will now formally define the exact computational problem considered in this
thesis. In its most general form, it can be formulated as follows:

FrequentConnectedSubgraphMining (FCSM) problem: Given a finite listD ⊆ G
(called graph database) for some graph class G and an integer threshold t ∈ [∣D∣], list
all graphs P ∈ P for some graph class P , called the pattern class, that are subgraph
isomorphic to at least t graphs in D. The patterns in the output must be pairwise
non-isomorphic.

An equivalent definition of this problem uses a relative (instead of an absolute) fre-
quency threshold. For a given databaseD and a threshold t ∈ [∣D∣] the relative frequency
θ is defined as θ ∶= t

∣D∣ . We will use the relative and absolute thresholds interchangeably
when clear from the context. For some pattern H ∈ P , and database D, we say that H
is t-frequent (respectively θ-frequent) ifH is subgraph isomorphic to at least t (respectively
θ⋅∣D∣) graphs inD. Note that for somefixed inputD and t, theoutputof theFCSMproblem
is always a finite set of pairwise non-isomorphic graphs, i.e. a finite representative of a
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2.2. Frequent Connected SubgraphMining

graph classF ⊆ P . Wewill often refer to the output of the FCSMproblem as the frequent
subgraphs ofD, omitting the threshold t (resp. θ) when clear from the context. Note also
that our notation explicitly allowsmultiple instances of the same graph inD.

Other authors considered variants of the FCSMproblem that are parametrized by the
transaction class only (see, e.g.,HorváthandRamon, 2010). In contrast,we regardaprob-
lem that is parameterized by the transaction class and the pattern class. The reason is that
we are interested inmining frequent trees in graph databases that containmore complex
graphs. A formalization that does not distinguish between pattern class and transaction
class would always require to list the frequent patterns that are not trees as well, if there
are any.

In Section 2.2.1 we give an algorithm for the FCSM problem and formulate sufficient
conditions for G and P that guarantee the algorithm to generate frequent patterns effi-
ciently. These conditions may be of some independent interest for the study of other
special cases of the FCSM problem. Furthermore, in Section 2.2.2 we characterize a rela-
tionship between the computational complexity of the FCSM problem and the question
whether P = NP. To this end, we first review efficiency notions for listing problems like
the FCSM problem.

Starting from Chapter 3, we focus on the special case of the FCSM problem where
P is the class of trees. This special case will be referred to as FrequentSubtreeMi-
ning (FTM) problem. In Chapter 4 and Chapter 5 we will use the generic algorithm to
obtain positive complexity results for the FTM problem without restricting the transac-
tion graph class.

Computational Complexity of Enumeration Problems

We will now define notions of efficiency for problems like the FCSM problem. A listing
problem is a pair (X,{O(x) ∶ x ∈X}), whereX is a set of valid input instances andO(x)
is the set of all acceptable solutions for eachx ∈X . An acceptable solution o ∈ O(x) is a finite
set; an algorithm solving a particular listing problem (X,{O(x) ∶ x ∈X}) is an algorithm
that outputs for each x ∈ X all elements in some o ∈ O(x) exactly once in some arbitrary
order. We assume that the listing problems are polynomially balanced. That is: size(G) ≤
p(size(x)) for allx ∈X , for all o ∈ O(x), and for allG ∈ o for somefixed polynomial p (see,
e.g. Boley, 2011, Chap. 2.2).

Consider the FCSMproblem for transaction class G and pattern classP : A valid input
instance x ∈X consists of a graph databaseD ⊆ G and an integer threshold t ∈ [∣D∣]. Note
that the definition above allows for multiple correct solutions o ∈ O(x): An acceptable solu-
tion for x is a maximal set of pairwise nonisomorphic graphs o ⊆ P such that each graph
G ∈ o is t-frequent in D. There are many such sets, as one can freely choose to replace
a pattern with an isomorphic graph that is not identical. However, each acceptable so-
lution is a representative of the same graph class, that is, the elements in o are pairwise
nonisomorphic and represent the class of all graphs that are t-frequent inD. As a subgraph
can have atmost asmany vertices and edges as its supergraph, the size of each t-frequent
subgraph is smaller or equal to the size of the largest graph(s) in the inputdatabase; hence
this listing problem is polynomially balanced.
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In contrast to thewell known decision problems, where the output consists of a single
bit (interpretedas “Yes” or “No”, “Accept” or “Fail”, et cetera) theoutputof a listingproblem
may vary in size. Consider, for example the task of listing all subsets of a set S. There are
2∣S∣ subsets that need to be listed. Hence a correct algorithm can never return the full set
in time polynomial in the size of the input as writing the output alone takes exponential
time. Therefore, it is common practice to take the size of the output into account when
defining efficiencymeasures for listing problems.

For listing problems, the following output sensitive complexitymeasures are distinguished
in the literature (see, e.g., Boley, 2011; Johnson et al, 1988). Suppose an algorithm A for
some listing problem (X,{O(x) ∶ x ∈X}) gets x ∈X as input and outputs some o ∈ O(x)
as a sequence [p1, p2,⋯, pn] of patterns. ThenA generates o

• with polynomial delay, if the time before the output of p1, between the output of any
twoconsecutive elements pi, pi+1, andbetween theoutput of pn and the termination
ofA is bounded by a polynomial of size(x),

• in incremental polynomial time, if the algorithm outputs p1 in time bounded by a poly-
nomial of size(x), the time between outputting pi and pi+1 is bounded by a polyno-
mial of size(x)+∑ij=1 size(pj), and the time between the output of pn and termina-
tion is bounded by a polynomial of size(x) + size(o).

• in output polynomial time, if the algorithm outputs the elements of o in time bounded
by a polynomial of size(x) + size(o).

Clearly, polynomial delay implies incremental polynomial time, which, in turn, im-
plies output polynomial time. It is anopenproblemwhether thefirst two classes are iden-
tical, or not. In frequent itemset mining, for example, the FP-Growth algorithm (Han
et al, 2004) lists frequent itemsets with polynomial delay, while the Apriori algorithm
(Agrawal et al, 1996) does so in incremental polynomial time. We note, however, that the
Apriori algorithmcan easily be transformed into a polynomial delay algorithmby retain-
ing the output of frequent patterns (Horváth and Ramon, 2010).

The FCSMproblemand the FTMproblem can not be solved in output polynomial time.
This follows directly from the negative result in (Horváth et al, 2007) which we will de-
scribe below. One way to obtain positive results is to restrict the transaction graph class
G in the FCSM problem. We will review such approaches in Chapter 3. This thesis, how-
ever, restricts the pattern class to the class of trees while not restricting the transaction
graph class.

2.2.1. A Generic Levelwise Mining Algorithm
We obtain the main results of this thesis by adapting a generic levelwise search mining
algorithm to our problem setting. Levelwise search (Mannila and Toivonen, 1997) is one
of the most common techniques in pattern mining that can be used to efficiently mine
frequent patterns for a broad range of problem settings. Its most popular application is
the Apriori algorithm (Agrawal et al, 1996) for frequent itemset mining. In order to find
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2.2. Frequent Connected SubgraphMining

Algorithm 2.1A generic levelwise graphmining algorithm.
input: D ⊆ G for some graph class G, a pattern classP , and t > 0 integer
output: all frequent subgraphs ofD that are inP

1: let S0 ⊆ P be the set of frequent pattern graphs consisting of a single vertex
2: for (l ∶= 0; Sl ≠ ∅; l ∶= l + 1) do
3: set Sl+1 ∶= ∅ and Cl+1 ∶= ∅
4: for all P ∈ Sl do
5: print P
6: for allH ∈ ρ(P ) ∩P satisfyingH ∉ Cl+1 do
7: addH to Cl+1
8: if SupportCount(H,D) ≥ t then
9: addH to Sl+1

a pattern in level l + 1, it completely explores all levels up to l. On the one hand, this
strategy is disadvantageous if one is interested in mining large frequent patterns, as all
(usually exponentiallymany) subpatternsneed to be evaluatedfirst. On the otherhand, it
allows forveryefficientpruningand it allows foran incrementalpolynomial timepattern
generation in frequent subgraph mining even for some NP-complete pattern matching
operators (Horváth and Ramon, 2010).

Algorithm 2.1 is a generic levelwise search algorithm for the FCSM problem. It is
a slight modification of the related algorithm by Horváth and Ramon (2010); the only
changes are in Lines 1 and 6. It calculates the set of candidate (resp. frequent) patterns of
level l in the set variable Cl (resp. Sl). In Line 6 it computes the set ρ(P ) of refinements
of a pattern P obtained from P by extending it with an edge in all possible ways. Due to
this fact, Algorithm2.1 is often referred to as a generate-and-test algorithmThat is, it either
adds a new vertexw to P and connects it to any vertex in V (P ) by an edge, or it connects
two vertices in V (P ) that have not been connected yet.5 Clearly, ∣ρ(P )∣ is bounded by
O (∣V (P )∣2). Subroutine SupportCount(H,D) in Line 8 returns the number of graphs
G ∈ DwithH ≼ G.

It is shown by Horváth and Ramon (2010) that the original version of Algorithm 2.1
mines frequent patterns with polynomial delay if patterns and transactions satisfy cer-
tain conditions. These conditions have however been formulated for the case that the
pattern and transaction graph classes are the same. In the theorem below we generalize
these conditions to the case thatP and G can be different.

Theorem 2.1. Let G and P be the transaction and pattern graph classes satisfying the following
conditions:

1. All graphs in P are connected. Furthermore, P is closed downwards under taking subgraphs,
i.e. , for allH ∈ P and for all connected graphsH ′ we haveH ′ ∈ P wheneverH ′ ≼H .

5 For the case of tree pattern generation, the second type of extension can be omitted, as it always results in
cycles. Hence, in this case ∣ρ(P )∣ = ∣V (P )∣.
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2. The membership problem forP can be decided efficiently, i.e. , for any graphH it can be decided
in polynomial time ifH ∈ P .

3. Subgraph isomorphism inP can be decided efficiently, i.e. , for allH1,H2 ∈ P , it can be decided
in polynomial time ifH1 ≼H2.

4. Subgraph isomorphism between patterns and transactions can be decided efficiently, i.e. , for all
H ∈ P andG ∈ G, it can be decided in polynomial time ifH ≼ G.

Then Algorithm 2.1 solves the FCSM problemwith polynomial delay in the size ofD forP and G .

The proof of this theorem is very similar to the proof in (Horváth and Ramon, 2010).
We nevertheless give it for completeness.

Proof. Let G and P be two graph classes such that Conditions 1–4 hold and letD ⊆ G. We
first prove that Algorithm 2.1 is correct (i.e., sound and complete) and irredundant. The
soundness is immediate from Lines 6 and 8. To show the completeness, let H ∈ P be
frequent inD. Weprove by induction on ∣E(H)∣ that itwill be generated by the algorithm.
The proof of the base case thatH consists of a single vertex is straightforward by Line 1.
For the inductive step we have thatH has a vertex with degree one or an edge that can be
removedwithout disconnectingH . LetH ′ be the graphobtained fromH bydeleting such
a vertex (and the edge adjacent to it) or such an edge. By construction, H ′ is connected
and hence H ′ ∈ P follows from Condition 1 as H ′ ≼ H . Furthermore, H ′ is frequent in
D as any subgraph of a frequent graphmust be frequent. ThereforeH ′ will be generated
by Algorithm 2.1 by the induction hypothesis. Furthermore, asH ∈ ρ(H ′) ∩ P , we have
H ∈ C∣E(H)∣ byLines 6 and7. Therefore,H is added toS∣E(H)∣ because it is frequent (Line9),
completing the proof of completeness. Finally, the proof of irredundancy is immediate
from the condition tested in Line 6.

Regarding the delay, the time before outputting the first pattern (or termination if
there is no frequent vertex) is linear in the size of the database. We can count the fre-
quency of a singleton pattern by a single scan over the database. We now show that the
time needed for Lines 6–9 is polynomial in the size ofD. Conditions 1–3 imply that there
is a canonical string representation (i.e., a string unique modulo isomorphism) for all
graphs in P that can be computed in polynomial time. We can store Si and Ci as prefix
trees of canonical strings of patterns. In this way, we can add and look up patterns in Si
or Ci in time linear in the size of the canonical string of a pattern. ∣ρ(H)∣ is polynomial in
the size ofH and thus polynomial in the size ofD. Therefore, by Condition 2, ρ(H) ∩ P
can be computed in polynomial time. H ∉ Cl+1 can be checked in time linear in the size
of the canonical string representation ofH . supportCount can be implemented by it-
erating over D, checking for each graph G ∈ D ifH ≼ G, and maintaining a counter; by
Condition 4 it runs in polynomial time in the size ofD. Overall, the time between print-
ing consecutive patterns and the time between printing the last pattern and termination
is polynomial in the size of D. Actually, we have shown that the delay of Algorithm 2.1
depends polynomially on the number of graphs inD and on the runtime of the check for
Condition 4. Wewill use this property in Chapter 5.
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2.2. Frequent Connected SubgraphMining

Note that theconditionsaboveallowformining frequentpatterns thatdonotbelong to
G. Furthermore, they enable the generationof restricted subsets of all frequent subgraphs
of some database D. For example, we can mine frequent paths in transaction databases
consisting of trees. Wewill utilize the latter property when restrictingP to trees.

How to efficiently address Condition 4 is usually left out by other graphmining algo-
rithms. In fact, most graph miners focus on efficient candidate enumeration, instead of
embedding computation. The literature typically justifies this by showing experimental
results on chemical graph databases, where the mining systems are fast. In this thesis,
we go in the opposite direction, focusing on the embedding operator, and prove worst
case complexity bounds. We refer the reader to the related work (e.g. Chi et al, 2005) for
a discussion of efficient candidate generation.

Finally, although it is not required by Theorem 2.1, the complexity of deciding mem-
bership in the transaction class G is a crucial (practical) issue. For some well defined
graph classes, e.g., graphs of tree-width at most k, membership is computationally in-
tractable if k is not a constant (Arnborg et al, 1987). Therefore deciding whether a given
graph mining algorithm can be applied efficiently (i.e., whether D ⊆ G) might already
be intractable. Even worse, the speed of many existing frequent subgraph mining sys-
tems (e.g., Kuramochi and Karypis, 2004; Nijssen andKok, 2005) often depends on some
graphproperties that are not formally stated andhence not testable. We aim to avoid this
question by choosing a problem relaxation that allows efficient algorithms for arbitrary
transaction graph classes. However, we discuss themembership problem for a particular
graph class in Section 5.3, as one of our relaxed algorithms allows for an exact solution to
the FTM problem for this novel graph class.

2.2.2. The Computational Complexity of Frequent Subtree Mining

After giving sufficient conditions for polynomial delay mining of frequent patterns, we
want to investigate the complexity of the FTM problem. We will see that the question
whether frequent tree mining is possible in output polynomial time is equivalent to the
question whether P =NP for a broad range of transaction graph classes. For the remain-
ing transaction graph classes, interestingly, frequent subtree mining is connected to the
complexity of the HamiltonianPath problem. Informally, we can say that proving re-
sults on the efficiency of frequent tree mining will likely be very difficult. This, among
other reasons, leads us to investigate a suitable relaxation of the FTM to obtain a practical
system that fulfills the requirements mentioned in the introduction. An overview of the
results of this section can be found in Figure 2.2.

Horváth et al (2007) have shown that the frequent connected subgraph mining prob-
lem cannot be solved in output polynomial time if P = G is the class of all graphs. Their
proof can be generalized to our more general problem definition that allows the pattern
and the transaction graph class to be different. Using their result, we are able to show
Theorem 2.2 below. This result implies that the FTM problem cannot be solved in out-
put polynomial time for arbitrary transaction graphs, unless P = NP; this is even true if
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Polynomial delay frequent
tree mining is possible

(Theorem 2.1)
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However, efficient mining might
be possible without implying
anything on P versus NP

Polynomial delay frequent tree
mining possible ⇔ P = NP

(Theorem 2.2)

Figure 2.2.: The relationship between the complexities of the HamiltonianPath and
SubtreeIsomorphism problems for transaction graphs from some graph
class G and the complexity of the FTM problem.

we only try to list all frequent paths. The FTM problem stays NP-hard for a broad range
of transaction graph classes, e.g., the class of planar graphs.6 We will investigate some
further implications below.
Theorem2.2. LetG andP be graph classes that contain the class of paths and let theHamilton-
ianPath problem beNP-complete in G . Then the following things are equivalent:

1. P = NP
2. The FTM problem for G andP can be solved with polynomial delay.

3. The FTM problem for G andP can be solved in output polynomial time.
Proof. Let G be a graph class in which the HamiltonianPath problem isNP-complete.

“1⇒2”: If P = NP then the subgraph isomorphism problem can be decided in polyno-
mial time. Hence, by Theorem 2.1 we can find all frequent subtrees in any finite subset of
G with polynomial delay.
6 For an overview of graph classes where the HamiltonianPath problem is NP-complete, we refer the
reader to http://graphclasses.org/classes/problem_Hamiltonian_path.html.
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“2⇒3”: If polynomial delay mining is possible, this immediately implies that mining
in output polynomial time is possible.

“3⇒1”: Suppose the FTM problem can be solved in output polynomial time for trans-
actions from G. Let G ∈ G and P be a path with ∣V (P )∣ = ∣V (G)∣. As {G,P} ⊆ G, all
2-frequent subtrees in this database are listed in output polynomial time (by assumption
of 3). The number of output patterns is bound by ∣V (G)∣ and hence themining algorithm
terminates in time polynomial in the size ofG. The HamiltonianPath problem forG
can be decided by checking whether the path P is 2-frequent. Hence P = NP, as we have
just given a polynomial time algorithm for anNP-complete problem.

TheproofbyHorváthetal (2007) for “3⇒1”uses that theoutput sethasa linearnumber
of elements in the size of the input database; there are exactly n+2 nonisomorphic paths
of length at most n.7 Therefore an output polynomial time algorithm for this particular
instance is in fact a polynomial time algorithm in the input size. Note that this technique
can not necessarily be generalized to differentNP-complete decision problems (e.g., the
Cliqueproblem); a similardatabase consistingof a cliqueandsomeothergraphGwould
have an exponential number of 2-frequent subgraphs.

An important result of this fact is that the proof above holds for all pattern classes that
contain the class of all paths. In particular, Theorem 2.2 holds for the class of paths and
the class of all connected graphs, as well. A “Proof by Restriction” analogously to deci-
sion problems (Garey and Johnson, 1979)8 for listing problems does, however, not work
in general. Without the particular structure of the proof of Theorem2.2we could not con-
clude that thenonexistence of anoutput polynomial time algorithm for the FTMproblem
implies the nonexistence of an output polynomial time algorithm for the FCSMproblem
with some pattern class that contains the class of all trees. For the same input, the output
of the two problemsmight differ; allowing additional elements in the output reduces the
output sensitive complexity for the same overall runtime. In the proof of “3⇒1”, however,
the output is restricted to the polynomially large set of all frequent paths by construction
of the database. Hence the output sensitive efficiencymeasures for the different frequent
graphminingproblemshave the same input (i.e., the input and theoutput of theproblem).

Theorem2.2 implies that formanygraphclasses theexistenceof anoutputpolynomial
time algorithm is equivalent to the existence of a polynomial delay mining algorithm:
This is certainly the case if P = NP. Now suppose P ≠ NP. Then this is equivalent to the
nonexistence of a polynomial delay tree mining algorithm and to the nonexistence of an
output polynomial time tree mining algorithm for graph classes where the Hamilton-
ianPath problem cannot be solved in polynomial time. Putting this together, for trans-
action graph classes, where the HamiltonianPath problem is NP-complete, polyno-
mial delay mining, incremental polynomial time mining, and output polynomial time
mining are either all possible or all impossible, i.e., here the complexity hierarchy col-
lapses. This also answers a question posed byHorváth andRamon (2010) for a large num-

7 Including the empty graph and the singleton graph, containing only one vertex.
8 That is, NP-completeness of the HamiltonianPath problem implies the NP-completeness of the Sub-
graphIsomorphism problem.
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ber of graph classes: Incremental polynomial time subtree or subgraph mining for com-
putationally intractable embedding operators is not possible for this type of transaction
graph classes, unless P =NP.

An Open Problem

After seeing the negative result for frequent tree mining above, it is natural to ask how
far we can go if we are nonetheless interested in mining frequent trees efficiently. That
is, is frequent tree mining possible with polynomial delay or at least in output polyno-
mial time in all graph classeswhere theHamiltonianPathproblem is inP?We do not
know the answer and the question whether efficient frequent subtree mining is possible
remains open even for the transaction graph class of cactus graphs, one of the simplest ex-
tensions of the class of forests. A cactus graph is a graphwhere every biconnected block is
a simple cycle. The HamiltonianPath problem can be decided for cactus graph trans-
actions in polynomial time. This follows from (Matoušek and Thomas, 1992) by noting
that paths have vertex degree atmost two and cactus graphs have tree-width atmost two.
In fact, this problem can be solved in linear time as shown in Appendix A. The Subtree-
Isomorphismproblem, however, is alreadyNP-complete for cactus graph transactions
(Akutsu, 1993). We cannowshow the importance andhighdifficulty of this openproblem
by discussing the potential two answers separately.

(i) Suppose the problem can be solved with polynomial delay. An important immedi-
ate consequence of this resultwould be that polynomial delay frequent pattern enu-
meration is possible even forNP-complete patternmatching operators, solving an
open problem (cf. Horváth and Ramon, 2010).

(ii) Suppose it cannot be solved with polynomial delay. Then, as the class of trees sat-
isfies Conditions 1–3 of Theorem 2.1, by contraposition we have that Condition 4
of Theorem 2.1 does not hold, i.e., the corresponding subgraph isomorphism prob-
lem is not in P. But this would immediately imply that P ≠ NP, indicating the high
difficulty of proving this case, as the subgraph isomorphism problem lies inNP for
all pattern and text graph classes. Note that this consideration applies also to the
particular case of cactus transaction graphs.

As a result, there is a strong connection between the complexity of the Hamiltonian-
Path problem and the SubtreeIsomorphism problem on the one hand and the FTM
problem on the other hand for a given transaction graph class. Figure 2.2 collects the re-
sults from the above considerations, from Theorem 2.1, and from Theorem 2.2.

We conjecture that case (ii) holds, that is, polynomial delay pattern generation is im-
possible for computationally intractable pattern matching operators. This is certainly
true for graph classes for which the HamiltonianPath problem is NP-complete9. If
our conjecture holds, then it implies that in case of intractable pattern matching opera-
tors, the primary question should bewhether the patternmining problem at hand can be
9 We note that the HamiltonianPath problem is polynomial for the case of cactus graphs, making them
an especially interesting candidate graph class. See, also, Appendix A.
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solved in incremental polynomial time, and not to show that polynomial delay pattern
mining is not possible. Furthermore, even for very simple graph classes, polynomial de-
lay exact frequent subtreemining is most likely very difficult to achieve.

In the remainder of the thesis we hence focus on a relaxation of the frequent subtree
mining problem that allows us to easily guarantee polynomial delay by giving up the de-
mand on completeness of the output. As a result of one of our algorithms for this relaxed
problem,however,wewill discussanexact algorithmforanovel graphclass inSection5.3.
The openproblem for cactus graph transactions formulated above shows the significance
of this result. We discuss this connection in Section 5.4.

2.3. Embedding Computation
Once we have found the set of frequent subgraphs or subtrees of a given graph database,
we are usually interested in doing something with them. First, we could use the patterns
directly, for example by manually inspecting them to gain knowledge about the dataset.
Another useful application is to use the patterns as a representation language for graphs
in the input dataset and, more generally, graphs drawn from the same or a similar dis-
tribution. A common way of defining the similarity between two graphs is to compute
somesimilaritymeasureof their images in theHamming-cube{0,1}∣F ∣ spannedby theel-
ements of the set of frequent patternsF . The binary feature vectors can then be regarded
as the incidencevectorsof subsets ofF . GivenafixedsetF of frequentpatterns,wedefine
a feature space as the power set 2F of F and a feature map as fF ∶ G ↦ {H ∈ F ∶ H ≼ G}.
The image ofG under fF is called embedding ofG. For the experimental evaluation of the
frequent subtreeminerswedevelop in this thesis,wewill oftenuse thecorrespondingem-
beddings of graphs, equipped with a suitable metric or kernel function for metric learn-
ing. Formally the task of embedding computation in the context of frequent subtreemin-
ing is defined as follows:

Tree Embedding Computation (TEC) Problem: Given a graphG and a finite setF
of trees, list all trees P ∈ F , that are subgraph isomorphic toG.

Note that the TEC problem is a special case of the FCSM problem for finite P = F ,D =
{G}, and t = 1 if F is closed downwards with respect to subgraph isomorphism. Hence,
we can apply a variant of Algorithm 2.1 to solve the problem, as it is possible to decide
whether a tree H is contained in a finite set of trees in linear time in the size of H (cf.
Section 2.1). However, we discuss more efficient alternatives in Chapter 6.

Jaccard Similarity

One similarity function that we investigate in this thesis on the embedding vectors dis-
cussed above is the Jaccard similarity. Given two binary feature vectors f⃗1 and f⃗2 repre-
senting the sets S1 and S2, respectively, their Jaccard-similarity is defined by

SimJaccard(f⃗1, f⃗2) ∶= SimJaccard(S1, S2) =
∣S1 ∩ S2∣
∣S1 ∪ S2∣
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withSimJaccard(∅,∅) ∶= 0 for thedegenerate case. As longas the featurevectors are lowdi-
mensional (i.e., ∣F ∣ is small), the Jaccard-similarity can quickly be calculated. If, however,
theyarehighdimensional, it canbeapproximatedby the following fastprobabilistic tech-
nique based onmin-hashing (Broder, 1997): For a permutation π ofF and feature vector f⃗ ,
definehπ(f⃗) to be the index of the first entrywith value 1 in the permuted order of f⃗ . One
can show that the following correspondence holds for the feature vectors f⃗1 and f⃗2 above
(see Broder, 1997, for the details):

SimJaccard(S1, S2) = P [hπ(f⃗1) = hπ(f⃗2)] ,

where the probability P is taken by selecting π uniformly at random from the set of all
permutations ofF . This allows for the following approximation of the Jaccard-similarity
between f⃗1 and f⃗2: Generate a set π1, . . . , πK of permutations of the feature set uniformly
at random and returnK ′/K, whereK ′ is the number of permutations πi with hπi(f⃗1) =
hπi(f⃗2). The approximation of the Jaccard-similarity with min-hashing results in a fast
algorithm if the embedding into the feature space can be computed quickly.

2.4. Datasets
Anygeneral frequent subgraphminingalgorithmis expected toprocess abroadspectrum
of graph databases. Most empirical evaluations, however, concentrate on some particu-
lar type of graph data, mostly representing small molecules. These graphs share certain
properties, e.g. sparsity, small vertex degree, near planarity, and, in particular, a natural
set of frequent patterns corresponding to functional groups. While all these properties
(especially the last one)motivate frequent subgraphmining in thefirst place, it is also im-
portant to observe the behavior of a mining technique on data that may or may not have
such properties. We therefore conducted experiments onmolecular, social, and artificial
datasets. Table 2.1 gives an overview of key statistics of these datasets. Below we briefly
describe their semantics and howwe obtained them.

MUTAG (Debnath et al, 1991) is a dataset of 188 connected compounds labeled according
to their mutagenic effect on Salmonella typhimurium. On average, each graph has
20 vertices and 22 edges.

PTC contains 344 connected molecular graphs, labeled according to the carcinogenic-
ity in mice and rats. The graphs have 26 vertices and edges on average. The
dataset was released as part of the Predictive Toxicology Challenge (see https:
//www.predictive-toxicology.org/ptc) held in 2000 and 2001.

NCI1, NCI109 (Wale et al, 2008) consist of 4 110 (resp. 4 127) compounds of which 3 530
(resp. 3 519) are connected. Both are balanced sets of chemical molecules labeled
according to their activity against non-small cell lung cancer (resp. ovarian cancer)
cell lines. The average number of vertices is 30, the average number of edges is 32
in both datasets.
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Dataset # Graphs # Vertices # Edges max. Degree
MUTAG 188 17.93 ± 4.58 19.79 ± 5.68 4

NCI1 4 110 29.87 ± 13.56 32.30 ± 14.93 4
NCI109 4 127 29.68 ± 13.57 32.13 ± 14.96 5

PTC 344 25.56 ± 16.25 25.96 ± 17.06 4
NCI-HIV 42688 45.71 ± 23.68 47.71 ± 24.57 12

ZINC 8946 757 42.39 ± 6.38 43.92 ± 6.55 5
ER-1.0 50 25.70 ± 13.91 24.90 ± 13.77 8
ER-1.4 50 23.52 ± 14.60 31.90 ± 20.08 9
ER-1.8 50 27.06 ± 14.02 48.24 ± 25.39 11
ER-2.0 50 28.32 ± 12.60 56.72 ± 25.93 11

BrownianMotion 200 30.00 ± 0.00 43.47 ± 5.03 9
POKEC neighbors 100 78.72 ± 110.29 182.70 ± 300.40 75

POKEC disks 100 79.72 ± 110.29 261.42 ± 405.43 1 031
HEPPH neighbors 1 000 19.92 ± 47.87 888.31 ± 4 548.81 361

HEPPH disks 1 000 20.92 ± 47.87 908.23 ± 4 593.35 491
ENRON neighbors 1 000 26.61 ± 74.35 199.55 ± 827.49 420

ENRON disks 1 000 27.61 ± 74.35 226.16 ± 898.94 1 244

Table 2.1.: Statistics of our evaluation datasets. We report the number of graph transac-
tions, average number of vertices and edges per graph, and the maximum de-
gree of any vertex in each dataset.

NCI-HIV consists of 42 687 compounds ofwhich 39 337 are connected. The averagenum-
ber of vertices and edges per graph are 41 and 43, respectively. The molecules are
annotated with their activity against the human immunodeficiency virus (HIV). In
particular, they are labeled by “active” (A), “moderately active” (M), or “inactive” (I).
We consider the following three usual binary classification problems: (AMvsI) A
and M together versus I, (AvsMI) A versus M and I, and (AvsI) A versus I where in-
stances labeled byM are removed.

ZINC is a subset of 8 946 757 (8 946 755 connected) so called ’Lead-Like’ molecules from
the zinc database (Irwin et al, 2012) of purchasable chemical compounds. The
molecules in this subset have a molar mass between 250g/mol and 350g/mol and
have an average number of 43 vertices and 44 edges.

POKEC is a popular social network in Slovakia with roughly 1.6 million users andmore
than 30 million directed edges. The crawl by Takac and Zabovsky (2012) includes
various public attributes of the users (e.g. gender, age, eye color, etc.). We consider
an unlabeled version of this graph as well as a labeled one, where each vertex is
labeled by the corresponding user’s gender (or “unknown” if the information was
not available). In both cases the edges are unlabeled.
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HEPPH is a co-authorship network extracted from the arXiv preprint server. Vertices
correspond to authors of papers in the area of high energy physics; an undirected
edge connects two authors if they coauthored a paper. The graph consists of 12 008
unlabeled vertices and 118 521 unlabeled edges. This snapshot was originally re-
leased as a part of 2003 KDDCup (see Gehrke et al, 2003, for an overview).

ENRON is an email communication network (a first description appeared in Klimt and
Yang, 2004). Nodes are email accounts of employees of the Enron company and
their acquaintances and an undirected edge exists if there was at least one email
sent between two accounts. The graph contains 183 831 edges and 36 692 vertices
and is unlabeled.

Erdős-Rényi Datasets All these datasets consist of sparse graphs of varying number of
vertices and edges that were generated in the Erdős-Rényi random graph model
(Erdős and Rényi, 1959). The datasets have different structural complexity, where
the structural complexity is defined as the expected edge factor q = m

n (n is the number
of vertices and m the number of edges). For a given q, each graph G in the corre-
sponding dataset is generated as follows: We first draw the number n of vertices
uniformly at random between 2 and 50. Then we set the Erdős-Rényi edge proba-
bility parameter p = 2q

n−1 , and finally generateG on n vertices in the usual waywith
this p. This implies that the expected number of edges for a graph on n vertices is
q ⋅ n. If the resulting graph is connected, we add it to the dataset. The vertices and
edges may be labeled by choosing a label from fixed sets of vertex and edge labels
uniformly at random.

BrownianMotion Datasets To construct such a graph database, we first draw n points
from the two-dimensional unit cube independently and uniformly at random and
label them with c different labels10 at random for some c > 0 integer. Given a pa-
rameter d ∈ (0,

√
2], we construct a threshold graph by connecting two points if and

only if their two-dimensionalEuclideandistance is atmostd. Subsequent graphs in
the database are obtained by (i)moving each point randomly according to a normal
distribution with standard deviation µ centered at its former position and (ii) con-
structing a threshold graph on the resulting set of points with respect to the same
threshold d as above. If a pointwould leave the unit square due to its randommove,
it is reflected back inside. Hence, a database constructed in thisway depends on the
parameters n, c, d, µ, andN , whereN is the number of time steps (or equivalently,
the number of graphs in the database).

We process each social network above by replacing directed with undirected edges
(removing duplicate edges and singleton vertices). In order to obtain a graph transac-
tion database from such a social network we consider the graphs induced by the neigh-
borhoods of the vertices. Such small graphs arising from social networks are often

10 The number of vertex labels has a nontrivial influence on the number of (non-isomorphic) spanning trees
of graphs and also on the number of frequent patterns in a graph database.
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called ego nets. The first dataset variant, which we call disk, contains also the vertex it-
self, while the second variant, called neighborhood only considers the neighbors with the
central vertex removed. More formally, the disk transaction database of a social net-
work G is the set {G[{v} ∪N (v)] ∶ v ∈ V (G)}, while the neighborhood variant is the
set {G[N (v)] ∶ v ∈ V (G)}. The disk variant results in connected graphs with a central
vertex of high degree, while the neighborhood variant results in mostly disconnected
graphs. Table 2.1 shows the number of such ego nets that we extracted, the average num-
ber of vertices and edges in these ego nets, and themaximum degree of any vertex in the
ego net transaction database.

Data Sources

Weobtained the datasetsMUTAG,NCI1, NCI109, andPTC from http://www.di.ens.fr/
~shervashidze/code.html. The NCI-HIV dataset can be found at http://cactus.nci.
nih.gov/. We use a version that was provided by Tamás Horváth. The ZINC dataset is
available at http://zinc.docking.org/subsets/lead-like. We downloaded a copy in
August 2014. The social datasets POKEC,YOUTUBE,HEPPH, andENRONare available at
http://snap.stanford.edu. For thegenerationof the artificial datasetswehavewritten
a small program.
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3. Related Work
We will now review the state-of-the-art of exact and approximate solutions to the FCSM
and FTM problem. In particular, we are interested in (i) identifying cases where efficient
mining is possible and (ii) reviewing the proposed graphmining algorithmswith respect
to efficiency (in the sense of Section 2.2.2). As we have seen in the preliminary experi-
ments in Section 1, this question is not only of theoretical, but also of practical interest.
Practical algorithms that reliably work on a broad range of transaction graph databases
are scarce.

Thefirst (theoretical) task ismostly concernedwith reviewing algorithms for the Sub-
treeIsomorphism and SubgraphIsomorphism problems. These can be used as
embedding operators in Algorithm 2.1 and thus yield complexity results for both prob-
lems. The second (practical) task is concernedwith reviewing various frequent subgraph
mining algorithms that were proposed over the last two decades. We will see that all of
these algorithmsare (i) restricted to certainpatternor transactiongraphclasses andguar-
antee someworst-case runtime or (ii) work for arbitrary graphpatterns and transactions,
without giving worst-case runtime guarantees. There have been several reviews on the
topic of frequent subgraph mining (Chi et al, 2005; Jiang et al, 2013; Krishna et al, 2011;
Wörlein et al, 2005). However, those surveys only consider papers that propose frequent
subgraphmining algorithms, skipping the theoretical results obtainable and treating the
computational complexity only as aminor issue.

Frequent subgraph mining has been an active area of research over the last twenty
years. Reviewing all related work is hence impossible, forcing us to focus on the most
relevant work. We therefore restrict this review to papers that consider a database of
small tomediumsized graphs as inputwhere a graphpattern is considered to be frequent
if it is subgraph isomorphic to at least a certain number of graphs in the database. That
is, we restrict our review to articles that consider frequent subgraph mining algorithms
in the sense of Definition 2.2 and relevant relaxations of this task. In the literature, this
scenario is often called the transactional settingof frequent subgraphmining. Furthermore,
we do not consider parallelization efforts, as they are orthogonal to the main technical
contributions in this thesis.

Another direction of frequent subgraph mining research that can be clearly distin-
guished considers the single graph setting. Here, the task is to find all graphs that are “fre-
quent” in a single (large) graph, for varying definitions of frequency (see, e.g., Bringmann
andNijssen, 2008, for a few such notions). There are also several articles concernedwith
frequent tree mining that, in fact, solve problems different to the FTM problem. Vari-
ations include (i) the type of graph database, (ii) the type of patterns, (iii) the notion of
frequency, and (iv) the embedding operator. In particular, various types of “tree” trans-
actions and patterns are considered, e.g., rooted trees (Asai et al, 2003; Chi et al, 2004a;
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Nijssen andKok, 2003; Termier et al, 2002) or rooted ordered trees (Asai et al, 2004; Zaki,
2002). The survey article of Chi et al (2005) gives an excellent overview on the state of
the art before 2005 and organizes the work along dimensions (ii) and (iv). The survey ar-
ticle of Jiang et al (2013) extends the temporal scope to the year 2013 and also addresses
frequent subgraphmining algorithms.

The transactional setting, i.e., the FTM or FCSM problem, has lead to a lot of research
on its own. Between circa 2002 and 2008 various research groups worked on this topic
and published articles and software prototypes. It seems, however, that around the year
2008 the general interest in novel algorithms faded andmany peoplemoved on to paral-
lelizing existing algorithms (compare Jiang et al, 2013; Petermann et al, 2017) or solving
different problem formulations using variations of the existing algorithms. Only a few
groupskeptworkingon frequent subgraphmining in the transactional settingafter2008,
focusing e.g. on theoretically efficient algorithms (Horváth and Ramon, 2010) or differ-
ent problem formulations resulting in approximations of the FCSMproblem. We are not
aware of any trulynovel algorithmic approaches for the exact FCSMorFTMproblem that
resulted in practical algorithms for this setting which were released after 2008.

Jiang et al (2013) conclude that this is due to thematurity of the field. We disagree; our
review shows that existing algorithms are either restricted to very simple graph classes
or have exponential delay in the worst case. We havementioned in Chapter 1 that this in
fact restricts such graphmining algorithms exactly to chemical graph databases. Wewill
show in Section 4.2 that the state-of-the-art graphmining algorithms (which all have ex-
ponential delay in the worst case) are inapplicable on several non-chemical datasets. In
fact, there is no clear way to predict whether the graph miners in the literature will be
fast or inapplicable on a given dataset, which heavily restricts their usefulness, e.g. in a
data exploration setting. Only recently, Schulz et al (2018) presented the first algorithm
that can efficiently compute an approximation of the set of frequent trees on arbitrary
transaction databases. Hence we conclude that additional work is required to obtain al-
gorithms that are applicable in broader settings; most likely this task involves focusing
more on efficient embedding operators.

Outline

We organize the literature review as follows: In Section 3.1 we discuss algorithms for the
SubgraphIsomorphism problem that can be applied in Algorithm 2.1 to obtain a fre-
quent subgraphmining algorithm. Section 3.2 reviews existing integrated algorithms. In
particular, frequent treemining algorithms (Section 3.2.1), frequent subgraphmining al-
gorithms (Section 3.2.2), and algorithms that approximate the set of frequent subgraphs
in some sense (Section 3.2.3)
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3.1. Algorithms for the SubgraphIsomorphism Problem
Wehave discussed the complexity of the FTM problem in Section 2.2. Theorem 2.1 states
that polynomial delay mining of frequent trees is possible if the SubtreeIsomorph-
ism problem (resp. SubgraphIsomorphismproblem formore general patterns1) can
be decided in polynomial time for a given transaction graph class G. Various algorithms
have been proposed for restricted versions of the SubgraphIsomorphism problem;
possibly even more special cases have been shown to remain NP-complete. There is no
way to give a complete overview on the work that was done in this area, and in Chap-
ter 5 we will develop yet another algorithm for the SubtreeIsomorphism problem in
a novel class of transaction graphs. To this end we discuss the most relevant results that
relate to ourwork. In particular, we focus on the complexity of the SubtreeIsomorph-
ismproblemand review themost commonlyusedpractical approach for solving the gen-
eral SubgraphIsomorphism problem in the context of frequent connected subgraph
mining.

Perhaps most prominently, the SubtreeIsomorphism problem can be solved in
polynomial time if the pattern graphH is a tree and the transaction graph G is a forest.
Various efficient algorithms have been proposed in the last fifty years (Chung, 1987; Lin-
gas, 1983;Matula, 1968, 1978; Shamir and Tsur, 1999; Verma and Reyner, 1989). However,
the positive result for the SubtreeIsomorphism problem does not hold if the pattern
graph is allowed to be disconnected, i.e., the SubgraphIsomorphism problem is NP-
complete even for forest transactions (Garey and Johnson, 1979, Theorem 4.6).

The currently fastest known algorithm for the SubtreeIsomorphism problem for
a tree patternH and forest transactionG requires

O (∣V (G)∣ ⋅ ∣V (H)∣
1.5

log ∣V (H)∣
)

time (ShamirandTsur, 1999). All thesealgorithmshave incommonthat theyaredynamic
programming algorithms. Generally, the SubtreeIsomorphism problem is solved by
bottom-up evaluation over a rooted version of one of the two trees. This is done by com-
bining partial subgraph isomorphisms of the children of the current vertex by solving
bipartite matching instances. The algorithms mainly differ in the details of the evalua-
tion andhow efficiently they solve thematching instances. Wewill describe a generaliza-
tion of the algorithm presented in (Shamir and Tsur, 1999)2 in Chapter 5 and hence skip
a more detailed discussion here. Any one of the algorithms for tree patterns and forest
transactions can be used for the approach developed in Chapter 4.

Thepositive result on forest transactionshasmotivated thequestionwhether theSub-
treeIsomorphism problem remains feasible for larger transaction graph classes. As
alreadymentioned inChapter 2, a commongeneralizationof trees are graphs of bounded
1 Obviously, a polynomial time algorithm for the SubgraphIsomorphismproblem for some graph class
G that contains the class of trees implies a polynomial time algorithm for the SubtreeIsomorphism
problem for transactions in G.

2 Their algorithmisa simplificationof thealgorithmpresented in (Chung, 1987)withamoreelegant solution
for the bipartite matching problems.
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tree-width. Matoušek and Thomas (1992) have extended the dynamic programming ap-
proach from trees to transaction graphswhere the tree-width is bounded by a constant k.
Their algorithm runs in polynomial time if the pattern graph is connected and has vertex
degree k, or is k-connected, where k is some constant. If such a constraint is not imposed,
the SubgraphIsomorphism problem remains NP-complete for bounded tree-width
transactions. Their algorithm first computes a tree decomposition T of G and employs
a bottom-up evaluation over some rooted version of T . It builds partial subgraph iso-
morphisms for the graph induced by the bags of the current vertex and its descendants.
In fact, many otherwise hard problems can be solved in polynomial time in a similar
way if the tree-width of a graph is bounded by a constant. The work by Matoušek and
Thomas (1992) has been generalized to pattern graphs that have log-bounded fragmentation
by Hajiaghayi and Nishimura (2007). A graph G has log-bounded fragmentation if the
removal of k vertices results in at mostO (k log ∣V (G)∣) connected components. Graphs
with maximum vertex degreeO (log ∣V (G)∣) are log-bounded fragmentation graphs (for
any 0 ≤ k ≤ ∣V (G)∣). It is important to note, however, that these results imply only that
frequent subtrees can bemined efficiently in bounded tree-width transactions if there is
an additional restriction on the vertex degree of the trees.

A different, more restrictive3, generalization of forests are almost k-forests. A graph
G is an almost k-forest if each block B of G has at most ∣V (B)∣ + k edges. Akutsu (1993)
has shown that the SubgraphIsomorphismproblem can be solved for connected pat-
terns and almost k-forests of bounded vertex degree. Again, if we drop the restriction
on the vertex degree, Akutsu has shown that the SubgraphIsomorphism problem is
NP-complete even for tree patterns and almost 0-forest transactions (i.e., cactus graphs).
Such graphs are also called cactus graphs and are outerplanar. This implies that the Sub-
treeIsomorphism problem for outerplanar graphs is NP-complete. As outerplanar
graphs have tree-width at most two, we have a clear distinction of the complexity of the
SubtreeIsomorphismproblembasedon the tree-widthof the transactiongraphclass:
The SubtreeIsomorphism problem is in P for the class of graphs with tree-width at
most one and is NP-complete for the class of all graphs with tree-width k for all k ≥ 2,
unless we restrict the vertex degree of the pattern tree to be a constant.

Marx and Pilipczuk (2014) systematically investigated the complexity of the Sub-
graphIsomorphism problem for several combinations of pattern and transaction
graph classes. They consider the tractability of the problem if one imposes (constant)
bounds any combination of ten parameters, containing, e.g., number of vertices, number
of connected components,maximumvertex degree, and tree-width, for pattern, or trans-
action. Table 1 in their article shows a large number of restrictions of the SubtreeIso-
morphism problem that are NP-complete even if some parameters of the transaction
graphs (and even the pattern trees) are constant. Most of their (maximal) positive results
require either the number of vertices or the maximum vertex degree of the pattern to
be constant. The only exception (at least at first glance) relevant to the SubtreeIso-
morphism problem is that the SubgraphIsomorphism problem between patterns
with a constant number of connected components and transactionswith bounded genus,

3 In the sense that an almost k-forest has bounded tree-width.
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bounded feedback vertex set and bounded vertex degree (sic) can be decided in polyno-
mial time. This, however, restricts the vertex degree of the pattern tree as well: If there
exists a subgraph isomorphism then themaximumvertex degree of the patternmust not
be larger than the maximum vertex degree of the transaction. In this sense, the above
case is no exception from the rule that efficient SubtreeIsomorphism algorithms for
more general graph classes than forests exist only for patterns of bounded vertex degree.
In contrast, the SubtreeIsomorphism algorithm discussed in Chapter 5 is efficient
when both pattern and transaction graph have unbounded vertex degree. The efficiency
of our algorithm depends only on the restriction of a less general branching property of
the transaction graph.

3.1.1. Embedding Lists and Exponential Algorithms
Aspositive complexity results even for restrictions of the SubtreeIsomorphismprob-
lem are scarce, some researchers have investigated algorithms for the SubgraphIso-
morphism problem that do not guarantee bounded worst-case runtimes but are fast in
practice onmany types of graphs that arise in application settings. To this end, Ullmann
(1976)proposed toexplicitly compute the set of all subgraph isomorphisms fromapattern
graphH to a transaction graph.4 His algorithm fixes an order [v1, v2, . . . , v∣V (H)∣] of the
vertices ofH and considers the sequence [H1,H2, . . . ,H∣V (H)∣ =H] of induced subgraphs
Hi =H[⋃ij=1 vj]. It computes the set

EL(Hi+1,G) ∶= {φ ∶ φ ∶ V (Hi+1)→ V (G) is a subgraph isomorphism}

by extending each subgraph isomorphism φ ∈ EL(Hi,G) to subgraph isomorphisms
from Hi+1 to G as follows: The algorithm checks whether the novel vertex vi+1 in Hi+1
is compatible to φ. That is, whether there exists a vertex w ∈ V (G) that is not yet part of
the image ofφ and is connected to all images of the neighbors of vi+1 inHi+1. Hence each
φ ∈ EL(Hi,G) can be extended to up to ∣V (G)∣ − i isomorphisms fromHi+1 toG. The al-
gorithmeither terminates by finding a subgraph isomorphism fromH toG or stops after
finding a subgraph isomorphism from someHi toG, but none fromHi+1 toG.

This method works well for chemical graphs and some other workloads (see, e.g.,
Nijssen and Kok, 2005; Zhao and Yu, 2008). Due to a moderate number of vertex and
edge labels, high sparsity and (almost) planarity of chemical graphs the sizes of the sets
EL(Hi,G) tend to be small. The runtime of Ullmann’s algorithm is strongly influenced
by the total number of subgraph isomorphisms that exist from any Hi in the selected
sequence [H1,H2, . . . ,H∣V (H)∣ =H] toG. This number is bounded by

∣V (H)∣
∑
i=1
∣EL(Hi,G)∣ ≤

∣V (H)∣
∑
i=1
( ∣V (G)∣
∣V (Hi)∣

) ⋅ ∣V (Hi)∣! .

This bound is best possible. Consider the case thatG is an unlabeled complete graph: For
each permutation of each k-sized subset of the vertices ofG there exists a unique isomor-
phism from (any graph) H with ∣V (H)∣ = k. Hence, the number of subgraph isomor-
4 Checking whether this set is empty, or not, obviously solves the SubgraphIsomorphism problem.
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phisms thatneed tobe computedmaybeexponential in the sizeofGand facultative in the
size ofH . There isnoknownway to computeor estimate the exactnumberof suchembed-
dings (an exact solution in polynomial time would solve the SubgraphIsomorphism
problem). Hence it is required to run the algorithm and wait whether it terminates in
feasible time and does not consume all available memory for storing embeddings.

On the other hand, however, this method is easy to implement and particularly well-
suited for the workload of frequent subgraph mining systems. For a breadth-first or
depth-first mining algorithm all (resp. one) subgraphs of any pattern graph H were al-
ready enumerated and the SupportCountmethod has already been evaluated. Hence,
we have (in the notation from above) already computed EL(H∣V (H)∣−1,G) for some suit-
able direct predecessor5 H∣V (H)∣−1 of H = H∣V (H)∣. If we store all embeddings for all
patterns from the previous level, we can hence compute the set of embeddings ofH into
any graphG in the database, by reusing the embeddings of the predecessor pattern.

Inpractice, it seems tobe the case that a lowaveragevertexdegree in combinationwith
a moderately-sized set of possible vertex and edge labels dramatically reduces the num-
ber of possible subgraph isomorphisms. Empirical evaluations of the existing frequent
subgraphmining systems indicate that this approachworkswell on chemical graphs and
some other databases. There is generally no guarantee that it is always the case. In fact,
wewill see in Section 4.2 that there aremany practically relevant graph databaseswhere
the runtime and space requirements of Ullmann’s algorithmexplode for no apparent rea-
son.

An extension of Ullmann’s algorithm is due to Cordella et al (1998, 1999). For a given
patternH and a text graphG, the authors incrementally construct embeddings from sub-
graphsofH intoG similar to thealgorithmofUllmann (1976). Theypropose toaddaprun-
ing step during the extension of an embedding. Their algorithmnot only checkswhether
the embedding canbe grownby a single vertex, but alsowhether the image v′ of the novel
vertex v has enough free neighbors to map v’s not yet mapped neighbors to it. If this is
not the case, no subgraph isomorphism from H to G can exist that maps v tho v′. This
speeds up the algorithm both in theory and in practice. The proposed pruning strategy,
however, cannot be used in the incremental fashion described above: The neighbors of v
are not known at the time of the extension of the embedding. (The novel vertex is always
the last vertex missing to construct a complete embedding of the current pattern graph
H .) Hence all neighbors6 of v inH are alreadymapped to some vertex ofG in the current
embedding.

5 Whenmining graphs that may contain cycles, the notions are slightly modified to allow the extension to
work edge-by-edge, not vertex-by-vertex. In the context of the FTM problem, however, both notions are
equivalent.

6 IfH is a tree, there is of course only one such neighbor
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3.2. Algorithms for the FCSM Problem

Over the last twenty years, a lot of research has focused on practical implementations of
frequent subgraph mining systems. Most of this work has focused on the efficient enu-
meration of candidate patterns and on canonicalization of the patterns to avoid dupli-
cates (Chi et al, 2005; Jiang et al, 2013). Most graph mining papers address the support
counting step in a less detailedmanner, either citing some off the shelf subgraph isomor-
phism algorithm, or roughly sketching ways to keep track of all possible embeddings of
patterns into the transaction database (compare Section 3.1.1). Jiang et al (2013) suggest
that this is due to the fact that the subgraph isomorphism problem is seen as “harder to
address”. Hence more work is spent to reduce the number of calls to the subgraph iso-
morphism subroutine as much as possible. While this is an important issue, the bulk of
the computational effort for medium to large graph databases is still to evaluate the em-
bedding operator for candidate patterns on database transactions (Wörlein et al, 2005).
This is particularly relevant, as it is even the case for chemical graph databases, where
the subgraph isomorphism algorithms described in Section 3.1.1 are very fast.

In this thesis, we go into the opposite direction. Contrary to most of the related work
we focus on the embedding operator. We will hence review the related work with spe-
cial regard to the embedding computation techniques it employs. Furthermore, we will
also take special interest in the kind of graph databases and the related algorithms used
for their evaluation (if any). For literature reviews focusing more on other aspects, we
refer the reader to (Borgelt, 2009; Chi et al, 2005; Jiang et al, 2013). As it turns out, only
(Chi et al, 2003; Horváth and Ramon, 2010) use efficient embedding operators to solve
the FCSM in incremental polynomial time. (Horváth and Ramon, 2010) is mainly a the-
oretical result as it was not implemented. Thus the only existing implementation with
guaranteed worst-case delay (by Chi et al) can onlymine trees in forest transactions.

Unless stated otherwise, all practical systems consider labeled graph databases. That
is, each vertex and edge is assigned a unique element from a finite set of symbols, called
labels. The respective embedding operators are extended to the labeled case, analogously
to the definition of subgraph isomorphism (cf. Section 2.1). Table 3.1 gives an overview of
theexistingexactorapproximateFTMandFCSMalgorithms for the transactional setting.
Wewill describe them inmore detail below.

3.2.1. Frequent Tree Mining Algorithms

Among thepractical implementations of frequent subgraphmining algorithms, frequent
treeminingalgorithmsaremost closely related toourworkhere. Several algorithmshave
beenproposed for computing the set of frequent trees indatabases of trees, forests, or “ar-
bitrary” graphs. As shown inSection 2.2, frequent subtrees canbe enumerated efficiently
(i.e., with polynomial delay) in forest transaction databases. However, most systems do
not use an efficient embedding operator and hence may result in exponential delay and
memory consumption even in this case.

39



3.
Re

lat
ed

W
or
k

Name Reference Transactions SubgraphIsomorphism Comment
FreeTreeMiner Chi et al (2003) Forests Chung (1987)

(polynomial)
HybridTreeMiner Chi et al (2004a) Forests Embedding lists

(exponential)
FreeTreeMiner Rückert and Kramer (2004) Graphs support sets

(exponential)
F3TM Zhao and Yu (2008) Graphs Ullmann (1976)

(exponential)
FSG Kuramochi and Karypis (2004) Graphs Embedding lists

(exponential) Mines all frequent subgraphs

MoSS Borgelt and Berthold (2002)
Borgelt et al (2005)

Chemical
Graphs

Embedding lists
(exponential) Mines all frequent subgraphs

gSpan Yan and Han (2002) Graphs Cordella et al (1998)
(exponential) Mines all frequent subgraphs

FFSM Huan et al (2003) Graphs Embedding lists
(exponential) Mines all frequent subgraphs

Gaston Nijssen and Kok (2004)
Nijssen and Kok (2005) Graphs Embedding lists

(exponential)
Canmine paths, trees,
and cyclic patterns

– Horváth and Ramon (2010) Bounded Tree-Width specialized
incr. pol. time Mines all frequent subgraphs

Summarize-Mine Chen et al (2009) Graphs Embedding lists
(exponential)

Mines a random subset of
all frequent subgraphs

MUSE Zou et al (2010) Uncertain
Graphs

Embedding lists
(exponential)

REAFUM Li andWang (2015) Graphs Embedding lists
(exponential) β subgraph isomorphism

– Schulz et al (2018) Graphs Dalmau et al (2002)
(polynomial)

Partially Injective Homomorphism
results in superset of frequent trees

Table 3.1.: An overview on related frequent subtree and subgraph mining systems for forest and graph transaction databases.
Unless stated otherwise, thesemethods enumerate the full set of frequent subtrees and are our direct competitors.
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FreeTreeMiner by Chi et al (2003) solves the FTM problem for tree databases. This
work introduces treemining as an area of research and develops the first7 algorithm that
uses canonical representations of trees for efficient pattern generation. The authors pro-
pose a canonical string representation for trees and a levelwise algorithm tomine all fre-
quent trees in a treedatabase. Basedon their particular canonical representation, theyar-
gue thatall frequent trees canbegeneratedbyeither joining twofrequent treesH+e,H+e′
with a commonparentH that differ in exactly one edge, or by extending the frequent tree
H by a single edge f such that the resulting tree has a larger height8. Duplicate candidate
generation is reduced9 by identifying nontrivial automorphisms ofH and some support
counting steps are avoided by first checkingwhether all possible parent patterns ofH + e
are frequent. Chi et al use the efficient algorithm of Chung (1987) to compute the support
of a candidate tree pattern in the tree database. They evaluate their algorithm on a chem-
ical dataset, an IP multi-cast dataset that represents one-to-many streaming topologies
on the Internet, and on synthetic datasets.

HybridTreeMiner by Chi et al (2004a) also solves the FTMproblem for tree databases,
and, in addition, the problem of mining rooted trees in databases of rooted trees. Hence
the name of the algorithm. There are two main differences to their FreeTreeMiner algo-
rithm above: First, they use a DFS approach, instead of a BFS approach and second, they
propose a novel way of counting the support. Now, the authors resort to embedding lists
but use them in a smart way that requires only one pass over the database. If a candidate
patternH+e+e′ is generatedby joining two frequentpatternsH+e,H+e′, its support can
be computedby joining the support lists of theparentpatterns: Twoembeddings are com-
patible, if they are identical onH , andmap the endpoints of e and e′ to different vertices.
All embeddings forH +e+e′ can therefore be constructed by combining such compatible
embeddings. The extension operation works in a similar way by combining compatible
embeddings of H and the frequent tree corresponding to the single edge f . In this way,
an explicit access to the graph database is not necessary after initially computing the em-
bedding lists of all frequent tree patterns consisting of single edges. They evaluate their
algorithm on a chemical tree dataset and on a synthetic tree dataset and compare it to
FreeTreeMiner (discussed above). They show that this approach is faster by an order of
magnitude. Interestingly, the IPmulti-cast dataset is not considered in this study. In (Chi
et al, 2004b), theyextended this systemtomineonly closed frequent subtrees ormaximal
frequent subtrees.

FreeTreeMiner by Rückert and Kramer (2004) solves the FTM problem in databases
containing cyclic graphs. The authors propose a canonical string representation that al-
lows their candidate generation process to reduce the number of duplicate evaluations of
candidatepatterns. Theydefine theheight of avertex ina treepatternas thedistance to the
root of the canonical representation and generate patterns by only extending on leaves

7 Zaki (2002) introduced “tree mining” before, but considered rooted ordered trees and a different embed-
ding operator.

8 With respect to its canonical representation which is a rooted tree.
9 The authors claim to avoid duplicate candidate enumeration by identifying pattern automorphisms. They
donot prove, however, that their technique guaranteesnonredundant candidate enumeration. FreeTreeM-
iner additionally compares canonical strings of candidate patterns.
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with largest height. When evaluating the frequency of a candidate pattern by computing
all of its embeddings explicitly, the algorithm at the same time computes the embedding
lists for all extensions by a single edge. All extensions of height(H) + 1 are obtained by
combining such single edge extensions. These candidate patterns are only recursively ex-
tended if they are in canonical form. The authors do not prove the correctness of their
algorithm (neither soundness, completeness, nor irredundancy) and evaluate their algo-
rithm on the AIDS database.

F3TM by Zhao and Yu (2008) similarly solves the FTM problem in databases contain-
ing cyclic graphs using a depth-first search over the pattern space. They focus on the can-
didate generation step and employ an iterative version of (Ullmann, 1976) for the support
counting step that is intertwined with the candidate generation step. In particular, for a
frequent patternH they explicitly store a subset of all subgraph isomorphisms in an em-
bedding list. The authors focus on the candidate generation step and show that the com-
plete set of frequent patterns of a dataset can be obtained by extending the patterns only
onawell defined subset of their vertices, resulting in fewerduplicated candidate patterns.
The number of candidate patterns is further reduced by considering automorphisms of
the patterns andby considering only pattern extensions that are actually present in some
transactiongraph. Theauthorsevaluate theiralgorithmonavariantof theAIDSdatabase
considered also in this thesis (cf. Section 2.4) and on artificial data obtainedwith the gen-
erator of Kuramochi and Karypis (2001). In (Zhao and Yu, 2007) they extend F3TM to
mine closed frequent trees.

3.2.2. Frequent Subgraph Mining Algorithms
FSG was initially proposed 2001 by Kuramochi and Karypis (2004). It implements Al-
gorithm 2.1 (i.e., it is a levelwise algorithm) for mining all frequent subgraphs in graph
transactiondatabases. To compute the support of a candidate pattern, FSG stores the sup-
port set of each frequent pattern and intersects the support sets of parent patterns to re-
duce thenumberof explicit subgraph isomorphismtests tobeevaluated foranycandidate
pattern: The downward closure property ensures that a candidate can only be subgraph
isomorphic to those graphs where all of its subpatterns are present and hence only such
graphsmust be explicitly evaluated using the embedding operator. Thismethod requires
space that is proportional to support set of each frequent pattern in two consecutive lev-
els of the pattern lattice (the current and the previous level). The authors do not disclose
the implementation details or a reference for their embedding operator. They neither
mention additional storage requirements for storing embeddings explicitly,whichmight
indicate that they use an algorithm that does not require such knowledge. The authors
evaluate FSG on chemical and artificial graph datasets. They do not describe the par-
ticular generation of the artificial graphs. Their graph database generator, however, is
used by several other authors to evaluate their approaches (e.g. Yan andHan, 2002; Zhao
and Yu, 2008). There are graph databases where the performance of FSG drastically de-
creases (compare Chapter 4). Notably, the algorithmwas used by Deshpande et al (2005)
to first show the impressive predictive performance of frequent subgraph based learners
on chemical graph datasets.
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Borgelt et al propose MoSS, a frequent subgraph miner specifically suited for chem-
ical graph databases (Borgelt and Berthold, 2002; Borgelt et al, 2005). Their algorithm
implements special domain knowledge (e.g., handling of aromatic bonds) and is a depth-
first search over a pattern space that can be “seeded” with a chemically meaningful core
pattern that will be contained in all frequent patterns to be found. The authors use em-
bedding lists to compute the support count; their approach, however, suffers fromamiss-
ing graph canonicalization scheme. Hence patterns are enumerated multiple times (and
their support is computedmultiple times). Without giving the details, the authors claim
that multiple output of equivalent patterns can be suppressed (which would require de-
ciding the isomorphismproblem for pairs of patterns). The authors show experiments in
which theyqualitatively analyze thepatterns foundusing their approachon theNCI-HIV
dataset.

gSpan by Yan and Han (2002) mines frequent subgraphs using a depth-first traversal
of the pattern space. To avoid multiple enumeration of the same candidate pattern (up
to isomorphism), it applies an inclusion-exclusion principle on frequent edges. That is, a
pattern is extendedwith an ever shrinking set of frequent edges. To compute the support
of a candidate pattern, the algorithm recursively works on the support sets of the pat-
terns being extended, resulting in a reduced number of calls to the embedding operator.
Though the authors do not cite or mention it in the paper, the acknowledgments suggest
that gSpanuses the subgraph isomorphismalgorithmbyCordella et al (1999). They show
experiments on the datasets used by Kuramochi and Karypis (2004) and show that their
algorithm outperforms FSG. In (Yan and Han, 2003) the authors extend their algorithm
tomine closed frequent subgraphs.

Huan et al (2003) propose FFSM, an algorithm that alsomines frequent subgraphs us-
ing a depth-first traversal of the pattern space. They use a novel canonical representa-
tion of arbitrary graphs that has size O (n2) for a graph on n vertices and propose ex-
tension and join operators that generate all frequent patterns. However, these operators
may generate patterns multiple times, not necessarily in canonical form. Without giv-
ing details, the authors claim to be able to decide whether a representation is canonical,
and hence that the algorithm is correct (i.e., each pattern is printed exactly once up to
isomorphism). They use embedding lists to store all possible embeddings of the frequent
patterns in canonical form and show how their extension and join operators can use the
embedding lists to only output frequent patterns. The authors later extend their work to
maximal frequent subtrees, resulting in the SPIN algorithm (Huan et al, 2004).

Gaston (Nijssen and Kok, 2004, 2005) is the fastest frequent subgraphmining system
on chemical graph databases (Wörlein et al, 2005). Their algorithm mines frequent pat-
terns in three stages: First, all frequent paths are generated. In the second stage, tree can-
didates are grown fromthe frequent paths. Finally frequent cyclic graphs are grown from
the frequent trees and frequent paths by adding edges between existing vertices. Hence
Gaston can be seen as both a specialized frequent subtree mining algorithm and as a fre-
quent subgraphminingalgorithm: Withoutoverhead, thegenerationof cyclic graphs can
beavoidedby stoppingafter the tree generation step. Candidate generation is basedonan
efficient canonical representation of graphs that is based on depth-first sequences; only
extensions of patterns that are in canonical form are further expanded. This property
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can be checked in constant time for trees and paths, yielding a very fast enumeration of
candidate patterns; for cyclic graphs, however, this property is more difficult to check.
Gaston traverses the pattern space in a nonstandard postorder: The support of all exten-
sions of a frequent pattern in canonical form is evaluated before calling the search func-
tion recursively for the first (frequent) extension. In this way, the number of allowed ex-
tension operations can be restricted efficiently, yielding a smaller number of candidate
extensions in subsequent steps. There are two variants of Gaston that differ in their sup-
port counting subroutine. The first variant uses embedding lists, the second computes
the subgraph isomorphisms “from scratch” for each candidate pattern. The authors are
not very specific on the details of the latter. They describe it as a backtracking algorithm
that has exponential worst-case running time in the size of the pattern and the transac-
tion graphs involved. They evaluate their algorithm on an artificial tree dataset and on
three largemolecular datasets.

Horváth and Ramon (2010) propose an algorithm that mines all frequent connected
subgraphs in transaction databases consisting of graphs of bounded tree-width. Impres-
sively, their algorithm runs in incremental polynomial time, while the embedding oper-
ator by itself is NP-complete (compare Section 3.1). That is, the SubgraphIsomorph-
ism problem is NP-complete for transaction graphs with tree-width at most some con-
stant k if the vertex degree of the pattern is not bounded by a constant, aswell. This result
is up to our knowledge the only existing result that describes an efficient algorithm for a
problem in the upper left quadrant of Figure 2.2: The HamiltonianPath problem can
be solved in polynomial time due to the result of Matoušek and Thomas (1992), as paths
have vertex degree atmost two. Their algorithm identifies a polynomially sized subset of
non-redundant iso-quadruples that are stored for each frequent subgraph and each transac-
tion. Such iso-quadruples represent partial subgraph isomorphismsbut – in comparison
to explicitly storing all possible embeddings from the patterns to the transaction graphs
– may represent multiple embeddings of the pattern that are in some sense equivalent.
Their embedding operator extends ideas from (Hajiaghayi and Nishimura, 2007) to the
case that the vertex degree of the pattern is unbounded. Interestingly, the approach of
Horváth and Ramon requires a breadth-first traversal of the pattern space to result in an
efficient algorithm. They show that almost all (>99.9%) of the graphs in a large chemi-
cal graph database have tree-width at most 3, and hence that their result is practically
relevant but don’t give any empirical evaluation of their algorithm. Horváth et al (2013)
extend these techniques to mine all frequent induced subgraphs in transaction databases
consisting of bounded tree-width graphs with unbounded vertex degree in incremental
polynomial time.

3.2.3. Algorithms for Relaxed Problems
Aswe are interested in a relaxation of the FTMproblem in this thesis, our work is related
to other relaxations thatwere proposed for the transactional setting. There has also been
some interest in dealingwith graph databases that contain noisy data. While this setting
is different from ours, some of the resulting algorithms can be applied to exact transac-
tional graph databases and yield approximations of the set of frequent subgraphs.
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Chen et al (2009) try to address the drawbacks of the practical frequent subgraphmin-
ing systemsdescribed in Section 3.2.2 on larger graph transactions, i.e., the large number
of embeddings of a pattern that need to be explicitly considered by the embedding oper-
ators described in Section 3.1.1. To this end, they propose to replace each graph in the
database by a summarized graph and tomine frequent patterns in this novel graphdatabase
using the gSpan algorithm (Yan andHan, 2002). A summarized graphG′ is created from
a labeled transaction graphG by choosing a random partition V (G) = V1∪̇V2∪̇ . . . ∪̇Vk of
the vertex set ofG such that for all i ∈ [k], all vertices in Vi have the same label. Now, the
vertices ofG′ are the partitions Vi and there exists an edge (Vi, Vj)with label l if and only
if there exists an edge (vi, vj) ∈ E(G) with vi ∈ Vi, vj ∈ Vj , and label l. Hence, the sum-
marized graph G′ is not simple, i.e., it may contain self-loops and multiple edges (with
different labels) between any two vertices. This construction results in a two-sided error,
i.e. for two graphsH andG and a summarized graphG′ ofG theremay be

false negatives: H ≼ G butH /≼ G′, or

false positives: H /≼ G butH ≼ G′.

These effects obviously translate to the set of frequent patterns found by the algorithm
of Chen et al. To deal with false negatives, the authors propose to lower the frequency
threshold in the mining phase and give a probabilistic guarantee on its effectiveness. To
further increase the recall of frequent patterns their algorithm repeats the summariza-
tion independently several times. To address the false positives, they propose to simply
retest thepatterns found tobe frequent in the summarizedgraphdatabaseon theoriginal
graph database. Together, this yields the Summarize-Mine algorithm that guarantees
to find a subset of all frequent subgraphs in a given database. As this is very close to our
problem formulationpresented inChapter4,we explicitly stress thedifferences: (i) Chen
et al (2009) find frequent subgraphs instead of frequent subtrees and use an exponen-
tial worst-case time embedding algorithm, thus they are not able to guarantee any delay
bounds. (ii) Their algorithmrequires to retest all patterns found in the summarizedgraph
database on the original database to ensure that they are indeed frequent. Hence, (iii) no
real structural simplification of the FCSMor SubgraphIsomorphismproblems takes
place. The methods proposed in this thesis, on the other hand, (i) guarantee polynomial
delay, by using an efficient embedding operator, (ii) do not require to re-evaluate patterns
on the original database to guarantee that each output pattern is indeed a frequent tree,
and (iii) accomplish this by transforming an infeasible FCSMproblem to a FTMproblem
which can be solved efficiently (i.e., with polynomial delay).

Zou et al (2010) propose MUSE to mine patterns in databases of uncertain graphs. An
uncertain graph is a labeled graph G together with a probability function p ∶ E(G) →
[0,1]on its edgesandrepresents theprobabilitydistributionP overall graphs (V (G),E′)
for E′ ⊆ E(G), with P ((V (G),E′)) ∶= ∏e∈E′ p(e). Now, for a pattern graph H and an
uncertain graphG, the probability ofH matchingG is defined as

P≼(H,G) = ∑
E′⊆E(G)

P ((V (G),E′))I(H, (V (G),E′)) ,
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where I(H, (V (G),E′)) = 1 ifH ≼ (V (G),E′), otherwise I(H, (V (G),E′)) = 0. Given
a graph database D and a frequency threshold θ ∈ (0,1], MUSE approximates the set of
all pattern graphsH with 1

∣D∣ ∑G∈D P≼(H,G) ≥ θ, i.e., where the average probability ofH
matching thegraphs is at least θ. Theyshowthat counting thenumberof suchpatterns for
a given database is #P-complete (Valiant, 1979) and their algorithm approximates the set
of such patterns. MUSEworks by generating patterns on the database with probabilities
removed from the edges by explicitly storing and extending the embeddings as described
in Section 3.1.1. Based on these explicit embeddings they propose an exponential time al-
gorithm to compute thematching probabilities and an approximate algorithm that com-
putes an interval of matching probabilities. They show how to obtain an algorithm that
guarantees with high probability for some ϵ ∈ (0,1] and a frequency threshold θ that all
patternswith support at least θ are output, all patternswith support less than (1−ϵ)θwill
not be output, anddecisions for remainingpatterns are arbitrary. However, due to thene-
cessity of evaluating a functionover all embeddings of a pattern, themethoddoesnot run
in output polynomial time. In a way, our work in this thesis can be seen as the opposite
approach: We consider some probability distributions on the set of spanning trees given
by the database graphs and obtain frequent subtrees from certain samples directly, in-
stead ofmining patterns on the underlying graphs. Our goal, however, is to approximate
the set of exact frequent subtrees in the original database, instead of the set of patterns
whose average probability is above some threshold.

Li andWang (2015) are interested in transactional graphdatabases that containgraphs
where some vertices, edges, or labels may be “wrong”. They propose to relax the notion
of isomorphism and subgraph isomorphism. To this end they introduce β (subgraph) iso-
morphism, where a graph H is β subgraph isomorphic to a graph G if there exists a se-
quence of vertex and edge additions or deletions and relabeling operations of length at
most β that transformsH into a graph that is (subgraph) isomorphic to G. If applied in
Algorithm 2.1 such an embedding operator would result in finding a superset of the fre-
quentpatternswith respect to subgraph isomorphism: β subgraph isomorphism is equiv-
alent to subgraph isomorphism for β = 0 and for any β > 0 the existence of a subgraph
isomorphism from H to G implies the existence of a β subgraph isomorphism from H
toG. Their proposed tool REAFUM, however, first selects a small subset of “representa-
tive” graphs for a given graph database and considers only those patterns as candidates
that can be found in the set of representative graphs. Frequency counting takes place on
the full dataset and is based on storing all embeddings of all approximatematches of the
patterns (i.e., an extension of the ideas described in Section 3.1.1). In their experimental
evaluation they show that they are able to findmore patterns than the exact Gaston algo-
rithm on a small molecular dataset. Due to the candidate selection process, the resulting
pattern set is not guaranteed to be a superset of all frequent patterns with respect to nor-
mal subgraph isomorphism.

Recently, Schulz et al (2018) proposed a frequent tree mining algorithm that employs
partially injective embedding operators between graph homomorphism and subgraph iso-
morphism. Subgraph isomorphisms are injective graph homomorphisms; Schulz et al
propose to add some injectivity constraints to graph homomorphisms, while maintain-
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ing computational efficiency of the embedding operators. In particular, graph homo-
morphism can be decided in polynomial time for patterns of bounded tree-width and
arbitrary transaction graphs (Dalmau et al, 2002). Hence, for tree patterns, which have tree-
width one, one can add a number of binary injectivity constraints between vertices (im-
plemented by new edges with a new label) to the pattern as long as the resulting graph
remains of bounded tree-width. Deciding homomorphism between such an extended
pattern and a transaction graph that is extended with all possible edges with that new
label ensures that the injectivity constraints are fulfilled. As a result, tree patterns that
are frequentwith respect to subgraph isomorphismare frequentwith respect to partially
injective homomorphism, as well. Schulz et al propose amining strategy for this embed-
ding operator that finds a superset of all frequent tree patterns (with respect to subgraph
isomorphism). This is done bymining “maximally” constrained tree patterns that are de-
fined by k-trees. A k-tree is a maximal graph that has tree-width k, that is, the addition
of a novel edge between two existing vertices results in a graph with tree-width k + 1. k-
trees have an algorithmic definition that allows to efficiently enumerate these patterns,
using Algorithm 2.1. The output of the algorithm then is a set of k-trees consisting of a
tree “core” and some binary injectivity constraints. Omitting the injectivity constraints,
we obtain a set of trees, some of which may be isomorphic, that contains the set of fre-
quent subtrees (with respect to subgraph isomorphism). Hence this method can be seen
as approximating the set of frequent subtrees “from the other side” than the algorithms
proposed in this thesis.
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We will now investigate how to efficiently obtain frequent subtrees from databases of
arbitrary graphs. The main result for this chapter is a polynomial delay frequent tree min-
ing algorithm for arbitrary transaction graphs that is sound, but incomplete. We empirically
demonstrate that (i) the predictive performance of the incomplete output of our mining
algorithm is competitive to that of all frequent subtrees and that (ii) our algorithm is ca-
pable to mine frequent trees efficiently in a broad range of such graph databases where
even the most popular frequent subgraph mining algorithms are unable to produce any
result in reasonable time.

Our preliminary experiments in Chapter 1 showed that most existing frequent sub-
graph or frequent subtreemining systems are practically restricted to very simple graph
databases; usually chemical graphs. On these datasets, however, frequent subtrees are
powerful features, i.e., the predictive performance of learning algorithms based on fre-
quent subtree features is high (e.g. Deshpande et al, 2005). We therefore expect that fre-
quent treepatternsmightbe goodpredictors inother settings aswell. Furthermore, there
is a general interest in tree-based features for graphs beyond chemical molecules (e.g.
Chi et al, 2004a; Kibriya and Ramon, 2013). However, to empirically evaluate this as-
sumption, e.g. for the social graphs considered in the preliminary experiments, novel
techniques are required to generate such patterns in practically feasible time and space
constraints.

So how canwefind frequent subtrees in (more) general graph databases? Recall from
Chapter 2 that we cannot expect an output polynomial time algorithm for the FTMprob-
lem unless P = NP (see Theorem 2.2). Hence we cannot expect to find an efficient exact
algorithm for the FTM problem without either (i) restricting the problem to some feasi-
ble graph class or (ii) giving up the correctness of our algorithm. The state-of-the-art
frequent subtreemining systems follow approach (i) by either using specialized efficient
matching operators for restricted transaction classes (cf. Section 3.1) or by using heuris-
tics that practically restrict them to certain graph classes (cf. Section 3.1.1). As a result
there exists no mining system that is applicable to arbitrary graph databases in prac-
tice. Thus there is a need to build a system that can find frequent subtrees in the graph
databases not yet covered by any algorithm. We hence follow approach (ii) to close this
gap and abandon the requirement of the correctness of the mining algorithm to keep it
applicable to arbitrarydatabases of small tomediumsized graphs. Inparticular, our algo-
rithmwill find a subset of frequent subtrees that can be computed efficiently on all graph
databases.

We present a frequent subtree mining algorithm with one-sided error that is not re-
stricted to any particular graph class. That is, it always terminates in time polynomial in
the size of the database and the number of frequent patterns generated. The algorithm
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calculates a subsetof the frequent subtreesof agivengraphdatabaseas follows: (i)Werep-
resent each inputgraphbya forest formedbyvertexdisjoint copiesofk randomspanning
trees for some small k and (ii) compute the set of subtrees frequent in the forest database
generated in step (i). See Figure 4.1 for an example. Combining this representation, the
fact that it can be generated in polynomial time, and the positive result that frequent sub-
treemining in forests canbe solvedwithpolynomial delay (cf. Section3.1),wearrive at an
algorithm computing a subset of the frequent tree patterns in time polynomial in the com-
bined size of the input database and the set of generated tree patterns. In particular, it
will output the patterns with polynomial delay. We call ourmethod probabilistic subtree
mining and the resulting pattern set probabilistic frequent subtrees.

Our approach is sound, but incomplete: Each generated probabilistic tree pattern is
guaranteed to be a frequent subtree of the database. Some frequent subtrees, however,
may be missed by the algorithm, as they are not necessarily frequent with respect to the
random forest database generated in step (i). Hence the set of probabilistic frequent sub-
trees is always a subset of the set of frequent subtrees for a fixed database and frequency
threshold. Our somewhat unusual idea ismotivated by the fact that any tree foundbyour
mining algorithm is not only frequent with respect to the database, but with high proba-
bility it has a relatively high frequency also in the set of spanning trees for each transac-
tion graph containing it. Thus, there must be a high chance that such a tree pattern will
be detected with this method in a query graph as well, if it is part of it.1

Weempirically evaluate theproposedmethodon the real-world andartificial datasets
described in Section 2.4. In particular, we investigate the recall of the probabilistic fre-
quent subtrees with respect to all frequent subtrees for various numbers of random
spanning trees per graph.2 Our technique is faster by at least two orders ofmagnitude on
Erdős-Rényi random graphs of low density. On social graphs and Erdős-Rényi random
graphs of moderate density, probabilistic frequent subtrees can be found quickly, while
the exact frequent subgraph (subtree) mining algorithms fail. On chemical graphs, we
observed only a marginal loss in the predictive performance of our probabilistic sub-
trees with respect to the exact frequent subtree. We show that with increasing size of the
dataset we needed decreasing numbers of sampled spanning trees per graph to obtain a
close approximation of the predictive performance of frequent subgraphs. In particular,
for the NCI-HIV dataset consisting of more than 40000 molecular graphs, 5 sampled
spanning trees per graph resulted in almost identical predictive performance.

Outline

The rest of this chapter is organized as follows: Section 4.1 gives a detailed description
of our algorithm and formally defines the relaxation of the FTM problem considered in
this thesis (4.1.1). It also discusses a reason for the practical success of our idea (4.1.2)
and discusses implementation issues (4.1.3). Section 4.2 shows our experimental results

1 We assume that the query graph has been selected from the same (unknown) probability distribution as
the graphs in the input database.

2 Notice that precision is always 100% due to the soundness of the algorithm.
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regarding the runtime (4.2.1), recall (4.2.2), stability (4.2.3), and predictive performance
(4.2.4) of our probabilistic frequent subtrees. Finally, Section 4.3 concludes with results
and open questions that will be discussed in the following chapters.

4.1. Mining Probabilistic Frequent Subtrees
Wenow formally define a relaxation of the FTMproblem and present our first algorithm
to tackle this problem. Themain result of this chapter is similar to Theorem2.1 for the re-
laxedFTMproblem. To arrive at its definition, recall first that the task of finding the set of
all frequent subtrees of a givendatabaseD raises the following two related computational
problems (cf. Sections 2.1 and 2.2):

(P1) The FTM Problem: Given a finite setD of graphs and a frequency threshold t ∈ [∣D∣],
generate the setF of frequent trees, i.e., all treesH with ∣{G ∈ D ∶H ≼ G}∣ ≥ t.

(P2) TheSubtreeIsomorphismProblem: Given a treeH anda graphG, decidewhether
or notH ≼ G.

The second problem appears in the support counting step of all algorithms solving (P1)
with the generate-and-test paradigm. In particular, Algorithm 2.1 calls another algo-
rithm for (P2) as a subroutine. Since we have no restrictions onD andG, both problems
above are computationally intractable. In particular, unlessP =NP, (P1) cannot be solved
in output polynomial time (Horváth et al, 2007) and (P2) isNP-complete.

To overcome these limitations, we give up the demand on the completeness of (P1) and
the demand on the correctness of the subtree isomorphism test for (P2). As wewill show,
this results in practically effective algorithms. The goal of this thesis is to obtain a system
that is applicable to arbitrary graphdatabases. In particular,wewant to give someoutput
in reasonable time on any kind of small to medium sized graph data. We approach this
problem by requiring polynomial delay during the generation of frequent trees and are
willing to trade in the correctness of the algorithm. That is, we will require each pattern
listed by our algorithm to be a frequent tree in the database, but will allow to miss some
of the frequent trees.

4.1.1. The Relaxed Frequent Subtree Mining Problem
Regarding the relaxation of (P1), we consider for each graphG ∈ D a forestSk(G) formed
by the vertex disjoint union of k random spanning trees of G. We then solve (P1) for this
random forest database. More precisely, for a connected3 graphGwe sample k spanning
trees and Sk(G) consists of k connected components. Each component is isomorphic
to at least4 one of the k sampled spanning trees of G. With this problem relaxation we
arrive at a frequent subgraphmining algorithm that is easy to implement and practically

3 For ease of exposition, we restrict our description to connected graphs. The techniques described in this
thesis canbe extended todisconnectedgraphsbyapplying themfor each connected component separately.

4 It might occur that some of the sampled spanning trees are isomorphic. We address this in Section 4.1.3.
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D = {G1,G2} S2(G1) S2(G2) 2-frequent trees

Figure 4.1.: A database D consisting of two graphs G1,G2 (left), the forests S2(G1)
and S2(G2) of two sampled spanning trees of G1 and G2 (middle), and the
set of the five 2-frequent tree patterns found in the forest database D′ =
{S2(G1),S2(G2)} (right). Note that all 2-frequent subtrees are found. Us-
ing only one spanning tree for each graph in this example, however, would
always result in an incomplete output.

effective, as shown in Section 4.2. We call the resulting tree patterns probabilistic frequent
subtrees of D to distinguish them from the set of all frequent trees. Figure 4.1 shows an
example of the idea on a database consisting of two graphs.

Our approach effectively relaxes the problem of mining frequent subtrees in arbitrary
graphs to that of mining trees in a forest database. In contrast to the computational
intractability of (P1), this relaxed problem can be solved with polynomial delay if k is
bounded by a polynomial in the input size. This can be done using Algorithm 2.1 with
a suitable embedding operator (compare Section 3.1). This means in practice that our
algorithm guarantees to find a certain amount of patterns in an acceptable time if k is
chosen appropriately.

Algorithm4.1 shows thehigh level pseudo-code of this approach. In addition toD and
t in problem (P1), the input contains an additional parameter k ∈ N as well. k specifies an
upper bound on the number of spanning trees to be generated for the transaction graphs.
It is easy to see that for any D, t, and k, Algorithm 4.1 is sound, i.e, its output is always a
subset of the set of frequent trees inD. However, it will not necessarily find all frequent
patterns, i.e., it is incomplete in general. Thus, on the one hand we obtain a polynomial
delaymining algorithm that is fast for small values of k, on the other hand, however, we
disregard some frequent patterns.

Another advantage of our technique is that it assumes neither explicitly nor implicitly
any structural restriction on the input graphs. Random spanning trees can be drawn ef-
ficiently from any graph (Wilson, 1996); after this step, we are in a world that consists of
forests and trees.
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Algorithm4.1 Probabilistic Frequent SubtreeMining
input: graph databaseD ⊆ G, frequency threshold t > 0 integer, and k > 0 integer
output: a random subset of the set of frequent subtrees ofD
1: D′ ∶= ∅
2: for allG ∈ D do
3: sample k spanning trees ofG uniformly at random
4: add the forestSk(G) of the vertex disjoint union of those trees toD′
5: list all subtrees that are t-frequent inD′

The above mentioned properties of Algorithm 4.1 can be generalized. We will show
that themining technique described above can be seen as the generic levelwise algorithm
with a special embedding operator that is used in the SupportCount subroutine (com-
pare Algorithm 2.1). This embedding operator solves a relaxed SubtreeIsomorphism
problem. Wewill showthat efficiencyandcompleteness results analogous toTheorem2.1
hold in this case, as well.

LetP be the class of trees and G a graph class. Then a function

f ∶ P × G → {0,1}

is a relaxed subtree isomorphism decision function, if for allH ∈ P andG ∈ G it fulfills

one-sided error f(H,G) = 1 ⇒ H ≼ G

monotonicity f(H,G) = 1 ⇒ f(H ′,G) = 1 for allH ′ ≼H

Given such a function f , the SubtreeIsomorphismRelaxed (f)problem is to decide for
a given treeH and a graphGwhether f(H,G) = 1. The relaxed frequent subtree mining
problem with respect to relaxed subtree isomorphism decision function f is defined as
follows:

Relaxed Frequent SubtreeMining (FTM Relaxed (f)) Problem: Given a finite set
D ⊆ G for some graph class G, and an integer threshold t > 0, list the set of all trees
H with f(H,G) = 1 for at least t graphsG inD.

The FTM and FTM Relaxed (f) problems are connected in the following way:

Lemma 4.1. Given a finite setD ⊆ G for some graph class G, and an integer threshold t > 0, and a
relaxed subtree isomorphism decision function f . Then the output of the FTM Relaxed (f) problem is
always a subset of the output of the FTM problem.

Proof. We have to show that each element in the output of the FTM Relaxed (f) problem
is frequent with respect to subgraph isomorphism inD. LetH be a tree in the output of
FTM Relaxed (f). Then the support count ofH , i.e., the number of graphsG ∈ D such that
f(H,G) = 1 is at least t. Hence, by assumption about the one sided error, the supportwith
respect to subgraph isomorphism is at least t.
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Theorem 4.2 below shows how to efficiently compute a solution for a FTM Relaxed (f)
problem. It practically reduces finding a solution for the FTMRelaxed (f) problem to find-
ing an efficient embedding algorithm A(f) for the SubtreeIsomorphism Relaxed (f)
problem.5

Theorem 4.2. LetA(f) be an algorithm that solves the SubtreeIsomorphism Relaxed (f)
problem in polynomial time. Then Algorithm 2.1 using A(f) in the SupportCount subroutine
solves the FTM Relaxed (f) problemwith polynomial delay.
Proof Sketch. The proof of Theorem4.2 is analogous to the proof of Theorem 2.1. Note that
this proof only requires the pattern matching operator to be efficiently computable and
to bemonotone.

Our probabilistic frequent subtree approach proposed in the beginning of this section
is in fact the solution to a FTM Relaxed problem: Let D be a database of arbitrary graphs
andD′ be a corresponding database of sampled spanning treesSk(G) for allG ∈ D. Then

f(H,G) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 ifH ≼Sk(G)
0 otherwise

for all treesH is a relaxed subtree isomorphism decision function for the (finite) transac-
tion graph class G = D. As a result, each choice of a random database D′ for D results
in a SubtreeIsomorphism Relaxed (f) problem and corresponding FTM Relaxed (f)
problem. Both corresponding problems can be solved efficiently, as this particular Sub-
treeIsomorphism Relaxed (f) can be decided in polynomial time: Spanning trees can
be sampled in polynomial time for arbitrary graphs (see Section 4.1.3) and subgraph iso-
morphism between trees and forests can be decided in polynomial time (see Section 3.1).
Note also that the function f can easily be extended to a novel graph G by sampling a
forestSk(G) forG. To simplify our notation, we omit the decision function f from now
on, when it is clear from the context. The relation H ≼ Sk(G) will be referred to as H
probabilistically matchesG.

As a result of these considerations, probabilistic frequent subtrees are a way to de-
fine a class of FTM Relaxed and SubtreeIsomorphism Relaxed problems. Lemma 4.1
implies that probabilistic frequent subtrees are always a subset of the full set of frequent
subtrees. Theorem4.2 implies that the full set of probabilistic frequent subtrees for a par-
ticular choice of sampled spanning trees can be mined with polynomial delay. Note that
Algorithm4.1 implements exactly this approach. Wewill use the general framework pro-
vided by Lemma 4.1 and Theorem 4.2 in Chapter 5 and the algorithm for the Subtree-
Isomorphism Relaxed problem in Chapter 6.

Note that the relaxation of (P2) could be implemented in two different ways: (i) Each
time we evaluate a probabilistic match of some pattern H , we sample Sk(G) anew for
all G ∈ D or (ii) Sk(G) is sampled once and reused for multiple invocations of the algo-
rithm in the support count step. Our theoretical results above require variant (ii) of the
5 Lemma 4.1 and Theorem 4.2 can also be formulated for a relaxed version of the FCSM problem. Note
further, that formulating theproblemswithoppositeone-sidederror (i.e., a “No” is a “No”, but a “Yes”might
be a “No”, aswell) results in an algorithm thatmines a superset of all frequent patterns. These issuesmight
be of interest for future work; we don’t investigate them in this thesis.
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D = {G}

S1(G)′ H ′

S1(G) H

Figure 4.2.: A database D consisting of a single graphG (left) and two evaluations of the
probabilistic matching operator with independently sampled sets of span-
ning treesS1(G),S1(G)′ for two pattern treesH,H ′ (right). In this case,H ′
is a probabilistic match toG, whileH is not, althoughH ≼H ′.

probabilistic match computation. In this way, we reduced the FTM problem on arbitrary
graphs to that of frequent tree mining in a fixed forest database. If we used variant (i) of
the embedding operator in the generic mining algorithm, we would lose the monotoni-
city of the embedding operator: As a result of the resampling of spanning trees it is not
guaranteed that all subgraphs of a pattern were identified as probabilistic matches. Fig-
ure 4.2 illustrates this situation. Due to this situation and due to the fact that sampling
spanning trees induces a nontrivial cost (see Section 4.1.3), we stick with the variant of
the embedding operator that receives a tree H and a forest Sk(G) as input, which was
computed in a preprocessing step.

The incompleteness of our proposed probabilistic frequent subtree pattern sets with
respect to the set of frequent subtrees raises two important questions:

1. How stable is the output of Algorithm 4.1 and what is its recallwith respect to all fre-
quent subtrees? (Note that precision is always one for the soundness of the algo-
rithm.)

2. How good is the predictive performance of probabilistic frequent subtrees?

Regarding the first question, we show in Section 4.1.2 that certain important tree patterns
are very likely to be among the probabilistic frequent subtrees even for small values of k.
To complement this analysis,we show inSection4.2onartificial and real-world chemical
graph datasets that (i) the output is very stable even for k = 1 and (ii) more than 75% of
the frequent patterns can be recovered by using only k = 10 random spanning trees per
graph.

Regarding the second question above, we experimentally show in Section 4.2 on dif-
ferent real-world benchmark graphdatasets that the predictive performance of our prob-
abilistic approach is comparable to the predictive performance of the full set of frequent
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Figure 4.3.: The function 1 − (1 − µ)k for different values of k.

subtrees. In fact, this holds not only for the set of all frequent trees, but also for the full
set of frequent subgraphs. Before presenting the empirical results in Section 4.2, we first
analyze the recall of our approach theoretically in Section 4.1.2 and discuss some imple-
mentation issues and the time complexity of Algorithm 4.1 in Section 4.1.3.

4.1.2. Probabilistic Bounds and the Importance of Subtrees

The rationale behind our probabilistic technique is as follows. For a connected graphG,
let S(G) be the forest of all spanning trees of G. That is, S(G) is the graph formed by
the vertex disjoint union of all spanning trees ofG. For the remainder of this section, we
will regardSk(G) (resp. S(G)) as a set of k (rep. all) spanning trees ofG. Note that this
is equivalent to considering it as a forest in the following sense: There exists a spanning
tree S ∈ Sk(G) (resp. S(G)) (as a set) such that H ≼ S if and only if H ≼ Sk(G) (resp.
S(G)) (as a forest). Using these notions, a tree T is µ-important inG if

∣{S ∈S(G) ∶ T ≼ S}∣
∣S(G)∣

≥ µ .

Thus, the probability that a µ-important tree in G is subtree isomorphic to a spanning
tree of G generated uniformly at random is at least µ. Notice that µ = 1 for any subtree
of the forest formed by the set of bridges ofG (i.e., by the edges that do not belong to any
cycle inG). LetSk(G) denote a sample of k spanning trees ofG generated independently
and uniformly at random and let T be a µ-important tree inG. Then

P [∃S ∈Sk(G) ∶ T ≼ S] ≥ 1 − (1 − µ)k . (4.1)
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which follows directly from

P [∀S ∈Sk(G) ∶ T /≼ S] ≤ (1 − µ)k .

The bound in (4.1) implies that for any graphG and µ-important tree pattern T inG for
some µ ∈ (0,1], and for δ ∈ (0,1),

P [∃S ∈Sk(G) ∶ T ≼ S] ≥ 1 − δ (4.2)

holds whenever
k ≥ 1

µ
ln

1

δ
. (4.3)

Here (4.3) is obtained from (4.1) and (4.2) by the inequality 1 − x ≤ e−x. (See, also, Fig-
ure 4.3 for the function 1 − (1 − µ)k for different values of k). Thus, if k is appropriately
chosen, we have a probabilistic guarantee in terms of the confidence parameter δ that
all µ-important tree patterns will be considered with high probability. Putting the three
facts above together, we have the following claim:

Proposition 4.3. For any graphG, let T be a µ-important tree inG for some µ ∈ (0,1] and let
δ ∈ (0,1). Then for any k ≥ 1

µ ln
1
δ ,

P [T ≼Sk(G)] ≥ 1 − δ .

Asanexample, 20randomspanning trees suffice tocorrectlyprocessa0.15-important
tree pattern with probability 0.95. Clearly, a smaller value of µ results in a larger feature
set.

Mining µ-Important Patterns

NowletD beagraphdatabase,µ > 0 some importancevalue, and t ∈ Na frequency thresh-
old for a FTM Relaxed problem. LetH be a tree that is µ-important in at least t + x graphs
in D (this implies that H is a frequent tree with respect to the exact FTM problem with
threshold t). Using Proposition 4.3 and a simple application of a standard combinatorics
result (also used by Chen et al, 2009, in a similar context), we have

Theorem4.4. LetDk be a forest database obtained fromD by independently sampling k spanning
trees for eachG ∈ D uniformly at random. LetH be a tree that isµ-important in at least t+ x graphs
inD and let skH be the support ofH inDk , i.e. , the number of forestsG′ ∈ Dk withH ≼ G′. Then

P [skH < t] ≤
t−1
∑
i=0
(t + x

i
)(1 − (1 − µ)k)i(1 − µ)k(t+x−i) .

Proof. LetD(H) ∶= {G ∈ D ∶ H is µ-important inG}, letDk(H) ∶= {G′ ∈ Dk ∶ G ∈ D(H)},
and let σkH be the support of H in Dk(H). The probability that H is t-frequent in Dk is
larger or equal to the probability that H is t-frequent in Dk(H). Adding additional
forests to Dk(H) that are drawn from graphs in D, where H is subgraph isomorphic
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to a µ′ < µ-fraction of the spanning trees can only increase the probability of H being
t-frequent in the larger database (recall that t is an absolute threshold). Hence, we have
P [skH < t] ≤ P [σkH < t]. Furthermore, the probability ofH being t-frequent inDk(H) can
only decrease if we (pessimistically) assume that the probability ofH being subgraph of
any spanning tree of anyG ∈ D(H) is exactlyµ. Thereforewe can boundP [σkH < t] by the
cumulative density function of a binomial distribution evaluated at t with parameters
n = ∣Dk(H)∣ and p = 1 − (1 − µ)k. See Lemma B.1 in the appendix. Hence,

P [skH < t] ≤ P [σkH < t] ≤
t−1
∑
i=0
(
∣Dk(H)∣

i
)(1 − (1 − µ)k)i(1 − µ)k(∣D

k(H)∣−i)

and setting t + x ∶= ∣D(H)∣ = ∣Dk(H)∣ yields the claim.

Using Theorem 4.4, we can bound the probability of missing a pattern that is µ-
important in a large number of graphs in the database. Even for relatively small values
of k, most frequent subtrees can be expected to be found, if they are µ-important in only
marginallymore graphs than required by the threshold. For example, ifwe sample k = 20
spanning trees per graph and set the frequency threshold to t = 500, we find anyH that
is µ = 0.15-important in at least 527 graphs in the original database with probability
greater than 95%. Figure 4.4 shows the probability of missing a tree pattern H that is
µ-important on at least t + x patterns for different k (Figure 4.4 (a)) and different values
of t (Figure4.4 (b)). Note that theboundgivenbyTheorem4.4doesnot dependon the size
of the overall database D; we expect, however, that with increasing size of the database
the actual probability of missing µ-important patterns (in the sense of the theorem) will
decrease as we can expect to draw more spanning trees containingH from graphs in D
whereH was not µ-important.

Aswe are interested in solving the FTM Relaxed problem,we can bound the probability
of missing patterns if we keep the frequency thresholds of the exact FTM problem and
the FTM Relaxed problem we are considering identical as described in Section 4.1.1. We
note that Theorem4.4 can be used to bound the number of false negatives also in the case
that we lower the frequency threshold of the FTM Relaxed problem we are solving. This,
however, would result in false positives with high probability, i.e., patterns found to be
frequent in the forest databaseDk for threshold t′ < t that are not t-frequent inD. We are
not awareof anyefficientway to remove such falsepositivepatterns fromtheoutput. One
obvious waywould be to solve the (intractable) SubgraphIsomorphism problem (P2)
exactly for each pattern tree and transaction graph (in fact, Chen et al, 2009, propose to
do exactly that). But this would immediately destroy the advantageous polynomial delay
guarantee of our approach.

4.1.3. Implementation Issues and Runtime Analysis
So far, we have not discussed the complexity of Algorithm 4.1 and have left out the im-
plementation details. Line 3 of Algorithm4.1 can be implemented using the algorithm of
Wilson (1996), which has an expected runtime of O (∣V (G)∣3) in the worst case. In fact,
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Figure 4.4.: Probability of missing a tree pattern H that is µ-important on t + x graphs
in a graph databasewhen sampling k spanning trees per graph and using fre-
quency threshold t.

it is conjectured to be much smaller for most graphs (Wilson, 1996). Thus, the sampling
step of our algorithm runs in expectedO (k ∣V (G)∣3) time. If we do not require the span-
ning trees to be drawn uniformly, we can improve this time and achieve a deterministic
O (k ∣E(G)∣ log ∣V (G)∣) runtime. This is achieved by choosing a random permutation of
the edge set of a graph and then applying Kruskal’s minimum spanning tree algorithm
(Kruskal, 1956) using this edge order. It is not difficult to see that this technique can gener-
ate random spanning trees with non-uniform probability. Each spanning tree has, how-
ever, a nonzero probability of being selected in this way. As our experimental results on
molecular graphs of pharmacological compounds show, non-uniformity has no signifi-
cant impact on the predictive performance.

For a practical improvement of the runtime of our algorithm, we note that some span-
ning trees inSk(G)might be redundant: Since isomorphic spanning trees yield the same
subtrees, it suffices to keep only one spanning tree from each equivalence class. The set
of all sampled spanning trees in Sk(G) up to isomorphism can be computed from Sk(G)
using some canonical string representation for trees and a prefix tree as data structure as
detailed in Section 2.1. For each tree inSk(G), this can be done inO (∣V (G)∣ log ∣V (G)∣)
time as detailed in Section 2.1. These canonical strings are then stored in and retrieved
from a prefix tree in time linear in their size. We implemented this method as an exten-
sion of Line 4 of Algorithm 4.1.
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Finally we note that for Line 5 of Algorithm 4.1, we can use any one of the existing al-
gorithms generating frequent connected subgraphs (i.e., subtrees) from forest databases
(cf. Section 3.2). However, many of these algorithms do not guarantee polynomial de-
lay even for forest transaction databases. We therefore implemented a polynomial delay
FTMalgorithmbased on the generic algorithm fromSection 2.2 that uses the subtree iso-
morphism algorithm of Shamir and Tsur (1999) as embedding operator.

4.2. Experimental Evaluation
We now empirically evaluate our probabilistic frequent subtree mining algorithm de-
scribed in Section 4.1 on the datasets described in Section 2.4. First we present results
indicating that it is up to an order ofmagnitude faster than any comparable frequent sub-
graph mining algorithm on several graph databases beyond chemical graphs and that it
is able to mine frequent patterns also in situations where state-of-the-art algorithms do
not. Next, we demonstrate that the recall of its output is highwith respect to the set of all
frequent subtrees. Then we give empirical evidence that probabilistic frequent subtrees
are stable under resampling of the random spanning trees. Finally, we show that the
predictive performance of probabilistic frequent subtree based learners is comparable to
that of exact frequent subtree and frequent subgraph based learners.

We compare our probabilistic frequent subtree mining algorithm, which we call PS,
with Gaston and FSG (see Section 3.2). Both programs are used in the versions provided
by the authors.6 FSG is a levelwise algorithm similar to Algorithm 2.1. The FSG imple-
mentation only computes the set of all frequent subgraphs. To obtain the set of frequent
subtrees, one hence needs to compute the set of frequent subgraphs and remove those
graphs that contain cycles; this can be done in linear time. Gaston implements a depth-
first search in the pattern space. It allows to mine the set of frequent subgraphs, as well
as the set of frequent subtrees via a command line argument of the program. Gaston is
available in two variants: One that stores embedding information in memory (Gaston),
and one that re-evaluates its embedding operator (Gaston-re) which has a smaller mem-
ory footprint but is slower. We compare to both variants. We also tried to include gSpan.7
However, the 64-bit version used quite a lot of memory and was repeatedly killed by our
operating system on almost all datasets and parameter settings. We hence refrain from
comparing to any results of gSpan in this study.

Based on the preliminary experiments from Chapter 1, we focus on mining frequent
patterns up to size 10. In this section we use relative frequency thresholds for ease of
comparison among datasets with different numbers of transaction graphs. All our ex-
periments are conducted on a Linux desktopmachinewith Intel i7-4770 CPU at 3.40GHz
and 16GB of RAM. We use only a single core at a time, as all three implementations are
single-threaded.

6 Gaston: http://liacs.leidenuniv.nl/~nijssensgr/gaston/download.html
FSG: http://glaros.dtc.umn.edu/gkhome/pafi/download

7 gSpan: https://www.cs.ucsb.edu/~xyan/software/gSpan.htm
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datasets of varying expected edge factor q. Dots over bars signal that the run
was terminated after 24 hours, a small x indicates that the algorithm termi-
nated with an error.

4.2.1. Runtime
We compare the runtime of PS, FSG, and both Gaston variants on artificial, social, and
chemical graph datasets. For our algorithm we report the combined time for sampling
and frequentpatterngeneration. Our implementationofPSgenerates frequent treeswith
levelwise search. It uses the algorithmof Shamir andTsur (1999) as the subroutine for the
support counting step and the algorithmofWilson (1996) for sampling spanning trees. In
this way, we are able to guarantee pattern enumeration in incremental polynomial time.
Thoughweused several standard optimizations (e.g., evaluating the embedding operator
only on the intersection of the support sets of the parent patterns), our implementation
can further be improved. Our algorithmswere implemented inC and compiled using gcc.

Random Graphs

Figure 4.5 shows the runtime on unlabeled Erdős-Rényi datasets for expected edge fac-
tors q varying between 1.0 and 5.0. (Note the log scale for the y-axis.) That is, by increas-
ing q we decrease the sparsity of the generated graphs, compare Section 2.4. We report
average execution times over three runs for computing the set of frequent patterns and
that of probabilistic frequent subtrees for various numbers of random spanning trees (k).
It turnsout that FSG,Gaston, andGaston-re are very sensible to theparameter q. In order
to be able to get any result in reasonable time, we had to restrict the number of graphs in
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each dataset to 50. Still we had to terminate FSG in several cases where it tookmore than
24 hours (86 400s). This was consistently the case once q exceeded 1.8. Gaston, on the
other hand, terminated withmemory allocation errors for q > 1.4. Gaston-re was able to
compute the frequent patterns up to q = 3.0 in less than a day (roughly ten hours for q = 3)
but failed to terminate in a day for q = 5.0. Up to 50 sampled spanning trees, our prob-
abilistic approach is always faster than all competitors, outperforming them by at least
one order of magnitude. For large q our method still terminates in less than a second for
all k, while FSGwas aborted after a day without finishing and Gaston failed.

To showthe scalabilitywithdatabase size,wegenerated randomgraphdatabaseswith
1 000 graphs (of at most 50 vertices, each) and ran probabilistic frequent subtreemining
on them for varying expected edge factors. Our method was able to mine frequent pat-
terns on all such graph databases, while FSG and theGaston variantswere again not able
to finish in one day. It is worthwhile noting that for the large random databases the run-
time of ourmining technique did not depend on the expected edge factor q of the graphs,
but only on the sampling parameter k. For k = 1, mining took at most 6 seconds and for
k = 10 at most 26 seconds, independently of q. Scaling of the mining time for the param-
eters in between was roughly linear.

Social Graphs

Neighborhood graphs extracted from social networks pose a huge challenge for existing
exact frequent subtree and frequent subgraph miners. In particular, in the disk variant
any neighborhood graph (ego net) has a central vertex of high degree, whereas chemical
graphs usually have a small constant vertex degree (compare Table 2.1). Furthermore, for
chemical graphs the difference between the number of vertices and the number of edges
is a small constant, which is not the case for ego nets. The vertex degree seems to be an
important parameter of the complexity of many SubgraphIsomorphism algorithms
(compare Section 3.1). We will also see below that the number of different embeddings
of tree patterns into ego nets seems to be very high, resulting in exploding runtime and
memory requirements of algorithms that solve the SubgraphIsomorphism problem
by explicitly computing and storing all possible embeddings of a pattern.

We therefore for a start only considered the first 100 ego nets (according to the ver-
tex numbering in the original data) of the unlabeled POKEC social network. Still, neither
FSGnorGastonwereable togenerateany frequentpatterns. In contrast, ourprobabilistic
frequent subtreemining algorithmwas able tomine patterns up to size 10 for both neigh-
borhood and disk variants of POKEC. Table 4.1 shows the average runtimes over three
independent runs of the algorithms for the unlabeled dataset variants. It can be seen that
the mining takes 2-3 times as long on the disk variant, compared to the neighborhood
variant for any fixed k and θ in the labeled as well as the unlabeled case.

Next, we consider ego net databases of 1 000 ego-nets each fromHEPPH and ENRON
(see Table 4.1). Impressively, FSG is able to mine frequent patterns on both variants of
these datasets, but takes quite some time to find the 201 frequent subtree patterns. Both
Gaston variants, however, fail on all these datasets. Our method, on the contrary, works
on all datasets. We notice that the runtime of ourmethod ismore sensitive to the average
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Disks Neighbors
θ Method POKEC HEPPH ENRON POKEC HEPPH ENRON

5%

FSG >1d 10 899.83 50 419.01 >1d 10 845.28 14 936.00
GASTON err err err err err err
GASTON-re >1d >1d >1d >1d >1d >1d
PSF l = 1 1.09 2.76 3.19 0.72 2.42 2.67
PSF l = 2 1.40 3.82 4.33 0.85 3.05 3.29
PSF l = 5 1.65 5.45 5.70 1.05 4.58 4.33
PSF l = 10 1.94 7.56 7.50 1.49 6.28 5.40

10%

FSG >1d 10 886.86 48 479.19 >1d 10 838.66 15 796.61
GASTON err err err err err err
GASTON-re >1d >1d >1d >1d >1d >1d
PSF l = 1 1.20 2.52 3.40 0.70 2.28 2.44
PSF l = 2 1.45 3.60 4.24 0.87 2.98 3.10
PSF l = 5 1.64 5.61 5.88 1.15 4.37 4.79
PSF l = 10 2.04 7.83 7.42 1.46 5.73 5.79

20%

FSG >1d 11 126.28 46 542.58 >1d 10 832.73 15 924.55
GASTON err err err err err err
GASTON-re >1d >1d >1d >1d >1d >1d
PSF l = 1 1.10 2.03 2.56 0.71 1.57 1.97
PSF l = 2 1.32 2.95 3.53 0.87 2.26 2.69
PSF l = 5 1.63 4.99 5.96 1.13 3.62 4.25
PSF l = 10 1.93 6.49 7.42 1.49 4.72 5.56

Table 4.1.: Runtime (in seconds) of PS, FSG, and Gaston on ego nets extracted from so-
cial networks. “err” denotes that the algorithm terminated with an error,
while “>1d” indicates that we terminated the algorithm after running for a day
(86 400s).
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unlabeled labeled
disks neighbors disks neighbors

θ k time # time # time # time #

5%
1 1.09 201 0.72 201 68.76 50 432 54.84 50 339
2 1.40 201 0.85 201 145.10 61 374 119.49 61 683
5 1.65 201 1.05 201 450.42 64 542 318.13 64 405
10 1.94 201 1.49 201 893.91 64 605 564.48 64 573

10%
1 1.20 201 0.70 201 32.51 19 665 28.00 20 963
2 1.45 201 0.87 201 133.45 44 889 102.30 47 274
5 1.64 201 1.15 201 437.27 63 358 327.45 62 338
10 2.04 201 1.46 201 895.19 64 512 655.00 64 098

20%
1 1.10 201 0.71 200 10.81 4 229 4.52 2 677
2 1.32 201 0.87 200 45.95 12 509 30.38 9 982
5 1.63 201 1.13 201 322.86 40 790 258.09 42 261
10 1.93 201 1.49 201 854.72 60 707 623.10 58 766

Table 4.2.: Runtime (in seconds) and number [#] of probabilistic frequent subtrees found
by our method on ego nets extracted from the POKEC social network. The la-
beled variants (right) encode the gender of the users and havemuch larger sets
of probabilistic frequent subtrees. Note that neither FSGnorGastonwere able
to produce any output on these datasets.

number of edges in the transactions, than to the average number of vertices: The run-
times for the disk variants are between factors of 1.5 and 4 larger than for the respective
neighbor variants. The average runtimes (over both parameters of the algorithm) of the
datasets also grow almostmonotonicallywith the average number of edges in the graphs.

For the POKEC dataset, there were also vertex labels available indicating whether the
user representedby the vertex ismale, female, or didnot provide gender information. Ta-
ble 4.2 shows the runtimes and number of probabilistic frequent subtree patterns found
by our algorithm. We note that there are a lotmore frequent patterns that are discovered
by the probabilistic frequent subtree mining algorithm, compared to the unlabeled vari-
ants of the datasets. In fact, in this setting, increasing the sampling parameter k of our
miningalgorithmresults in adrastic increase in thenumberofprobabilistic frequent tree
patterns that are returned by our algorithm.

As the labels do not change the topology of the graphs we suspect that one reason for
the badperformance of FSGandGaston on the unlabeled datasetsmust be the hugenum-
ber of possible embeddings of a given unlabeled tree pattern in the text graphs. FSG and
Gaston essentially store (or recompute) all embeddings, while our probabilistic frequent
subtree mining algorithm only stores v-characteristics, whose number is bounded by a
polynomial in the size of the graphs. This gives our algorithm a practical advantage over
the other algorithms that are unable to return results in reasonable time or even at all.
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Figure 4.6.: Runtime results on ZINC1000 (in seconds) for PS, FSG, and Gaston for differ-
ent frequency thresholds θ ∈ {5%,10%,20%}.

Chemical Graphs

Figure 4.6 reports the runtime results (in seconds) on a subset of 1 000 molecules of the
ZINC dataset for FSG, both Gaston variants, and for PSwith k ∈ {1,5,20,50}. In contrast
to the runtime on artificial and social datasets, our method is faster than FSG only for
k = 1, while being slower than FSG even for the case of k = 5. Gaston’s speed on this
dataset is impressive; it outperforms FSG and PS by at least an order of magnitude. Both
variants process the dataset in less than a second for all frequency thresholds.

We therefore assume that FSG and Gaston are highly optimized for structurally very
simple labeled graphs, where they have a competitive advantage over ourmethod. To this
end,wenote that theaverageedge factor (cf. thedefinitionof q), i.e., 1

∣D∣ ∑
G∈D

∣E(G)∣
∣V (G)∣ of chem-

ical datasets D is very low: It is 1.04 for both NCI-HIV and ZINC. Recall that for Erdős-
Rényi datasets with expected edge factor q = 1.0were able to compute the set of frequent
patterns.

4.2.2. Recall
Asdiscussed in Section 4.1, for any graphdatabaseD the pattern setF found by our prob-
abilisticmining algorithm is a subset of all frequent subtreesFT , which in turn is a subset
of all frequent subgraphs F . We now analyze the recall of ourmethod, i.e. the amount of
frequent subtree patterns that are found when applying Algorithm 4.1 for various val-
ues of k and θ. To this end, let the recall R(k, θ) ∶= ∣F ∣

∣FT ∣ be the fraction of θ-frequent tree
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Figure 4.7.: Recall of our method on Erdős-Rényi graph databases with varying expected
edge factor q, for frequency thresholds 10% and 20%.

patterns found by Algorithm 4.1 for k random spanning trees. Using one of the exact fre-
quent subgraph miners, we compute the set of frequent trees. As mentioned above, this
can be done with either FSG or Gaston, as long as they are able to produce results.

Figure 4.7 shows the recallR(k, θ) of ourmethod for one run on Erdős-Rényi datasets
and for frequency thresholds 10%and20%. It is restricted toexpectededge factors q ≤ 1.8,
as neither FSG nor Gaston are able to compute the full set of frequent patterns within a
day beyond this value for the remaining datasets with q > 1.8. We will discuss this issue
in Section 4.2.1 below. Even for a single spanning tree (i.e., for k = 1), the recall is always
above 20%; in most cases actually above 40%. The recall for k = 5 sampled spanning
trees is drastically higher than for k = 1; in fact the increase in recall between k = 5 and
k = 50 ismuch lower. This suggests thatk = 5mightbeagoodcompromise in the trade-off
between runtime and accuracy of ourmethod.

For the chemical graph datasets NCI-HIV and ZINC, we sample 10 subsets of 100
graphs each and report the average value of R(k, θ) and its standard deviation. The
results on the two datasets can be found in Table 4.3 for different values of k and for
frequency thresholds 5%, 10%, and 20%. We have found that at least 95% of all frequent
subgraphs are trees. One can also observe that the fraction of the retrieved tree patterns
grows rapidly with the number of random spanning trees sampled per graph. Sampling
10 spanning trees per graph already results in around 90% recall for the ZINC dataset
and in a recall of 80% for the NCI-HIV dataset.
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Dataset θ k = 1 k = 2 k = 3 k = 10 k = 20
5% 20.13 ± 1.20 35.53 ± 1.34 46.48 ± 0.51 78.32 ± 0.85 91.11 ± 1.29

NCI-HIV 10% 20.26 ± 2.22 34.45 ± 1.42 45.40 ± 1.59 79.94 ± 1.82 92.44 ± 1.34
20% 24.45 ± 1.38 39.76 ± 1.68 50.41 ± 1.14 83.38 ± 1.40 94.72 ± 1.31
5% 36.80 ± 0.87 56.70 ± 1.65 68.42 ± 0.94 92.50 ± 0.45 97.92 ± 0.55

ZINC 10% 32.77 ± 1.89 51.36 ± 1.84 64.47 ± 1.40 92.49 ± 1.18 86.70 ± 22.83
20% 31.03 ± 2.59 48.99 ± 3.05 61.41 ± 3.41 90.53 ± 1.28 97.89 ± 0.40

Table 4.3.: Recall with standard deviation of the probabilistic tree patterns on the NCI-
HIV and ZINC datasets for frequency thresholds 5%, 10%, and 20%

Wewere not able to compute the exact set of frequent subtrees or frequent subgraphs
on social graphs usingFSGorGaston. Nonethelessweknow that the recall of ourmethod
is above 90% on these graphs for k = 10, in most cases even for k = 1. This is due to the
fact that there are exactly 201 pairwise non-isomorphic spanning trees of size up to 10
vertices if there are no vertex and edge labels (Sloane, 2016). Hence the number of fre-
quent tree patterns cannot be larger than that. For 10 sampled spanning trees per block
ourmethod has above 90% recall (except on the neighbor variant of HEPPH for θ = 20%);
often it finds almost all frequent subtrees (for θ = 5 even for a single sampled spanning
tree per block). The exact numbers of frequent patterns found by PS are presented in Ta-
bles4.1 and4.2. The recall of PSon the labeledPOKECvariants remains anopenquestion.
Up to our knowledge there are no formulas for the number of nonisomorphic trees in the
general labeled case to provide a lower bound on the recall.

4.2.3. Stability of Probabilistic Subtree Patterns

The results of Section 4.2.2 above indicate that a relatively high recall of the frequent tree
patterns can be achieved on molecular, social, and random graph databases, even for a
very small number of random spanning trees. We now report empirical results show-
ing that the output pattern set of Algorithm 4.1 is quite stable (i.e., independent runs of
our probabilistic frequent tree mining algorithm yield similar sets of frequent patterns).
To empirically demonstrate this advantageous property, we run PS several times on the
samevalues of the parameters k and θ andobserve how the union of the probabilistic tree
patterns grows.

To this end, we fix two sets of chemical graphs, each of size approximately 40000, as
follows: We take all connected graphs in NCI-HIV, as well as a random subset ZINC40k of
ZINC that contains 40000 graphs. We run PS five times for the datasets obtained with
parameters k = 1 and θ = 10%. Each execution results in a set Fi of probabilistic subtree
patterns, from which we define Ui = ⋃ij=0Fj with F0 ∶= ∅. Table 4.4 reports ∣Fi ∖Ui−1∣,
i.e., the number of new probabilistic subtree patterns found in iteration i for i ∈ {1, . . . ,5}
on the left. For an initial number of 3 920 (NCI-HIV) and 9 898 (ZINC40k) probabilistic
patterns, the number of newly discovered patterns reduces to atmost 22 in the upcoming
iterations.
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Iteration
Dataset k 1 2 3 4 5 S(G)

NCI-HIV 1 3920 20 5 10 14 169
ZINC40k 1 9 898 18 17 11 10 36
ER-1.0 10 692 2 5 8 3 7
ER-1.2 10 750 2 0 0 11 55
ER-1.4 10 806 18 0 0 0 2267
ER-1.6 10 824 1 0 0 0 3.4⋅105
ER-1.8 10 824 2 0 0 0 8.7⋅107
ER-2.0 10 850 0 0 1 0 1.9⋅109
ER-3.0 10 814 26 1 4 0 9.9⋅1015
ER-5.0 10 822 4 0 0 20 1.1⋅1022

1 18 852 4 606 5 780 5 545 4 275
1.3⋅1026POKEC 5 62772 910 1 578 690 799

disks 10 64 505 60 61 26 60
20 64 599 6 5 4 10
1 19 671 6 442 6 911 8 181 6 017

–POKEC 5 62637 669 1 222 947 1 354
neighbors 10 64 113 211 242 220 186

20 64 499 52 28 51 13

Table 4.4.: Repetitions of the probabilistic frequent subtree mining experiment. The
numbers reportedare thenumberofprobabilistic patterns thatwerenot in the
union of all probabilistic patterns found up to the current iteration. The num-
ber in iteration 1 is the number of probabilistic subtrees found. S(G) denotes
themediannumber of spanning trees per graph in the dataset for comparison.

We observed this behavior consistently on the artificial Erdős-Rényi graphs (over all
observed edge factors, all numbers of sampled spanning trees, and all frequency thresh-
olds). Table 4.4 shows the results for θ = 10%, k = 10, and 5 iterations. Each artifi-
cial dataset consists of 50 graphs. In contrast to the experiments in the previous sec-
tions, however, we label the graphs using ten vertex labels and two edge labels, respec-
tively. The number of newly discovered probabilistic patterns cannot be large for unla-
beled Erdős-Rényi graphs, as the recall in this case is very close to one (cf. Section 4.2.2
above). To put our recall and stability experiments into context, note that the median8

number of spanning trees per graph is depicted in Table 4.4, as well.
Finally, we repeat this experiment for the labeled variants of the POKECdataset. With

the same argument as above, we know that the pattern sets found for the unlabeled vari-
antmust be very stable. The two labeled datasets showa relatively large number of newly
discovered patterns for each of the five iterations and k = 1 sampled spanning trees. Each

8 We use the median, as there are some graphs with excessively many spanning trees that distort the aver-
age.
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newly discovered set of probabilistic frequent tree patterns in the POKEC variants newly
discovers between 4 200 and 8 200 patterns not contained in the union of the patterns
from previous iterations. However, this number drops dramatically once we increase k.
For k = 5 the fraction of newly found patterns (with respect to the union of previously
found patterns) is below 3% in all iterations. For k = 20, this number drops to at most 52
newly discovered patterns.

These results together clearly show that the generated feature set does not depend too
much on the particular spanning trees selected at random. Overall this means that inde-
pendent runs of our algorithm yield similar feature sets on the same data. This observa-
tion, combinedwith the remarkable recall results of thepreviousexperiment, is essential;
high recall and stability together indicate that the predictive performance of any (compu-
tationally intractable) exact frequent subtree based method can closely be approximated
by our (computationally feasible) probabilistic frequent subtree based algorithm, even for
small values of k.

4.2.4. Predictive Performance
In this sectionwe show that the predictive performance of probabilistic subtree patterns
compares favorably with that of the frequent subgraph patterns. We deliberately con-
sider themoreexpressive completeoutputofFSG, includingalso frequent subgraphs con-
taining cycles, because we compare the runtime of our method to that of FSG needed to
compute all frequent subgraphs. Recall from the preliminary experiments in Chapter 1
that the predictive performance of frequent subtrees is very similar.

We choose, as doesmost relatedwork, awrappermethod and report the achieved area
under the ROC-curve (AUC) of a well trained support vector machine (SVM) (Cortes and
Vapnik, 1995). To this end,we consider the sevenbinary classificationproblemsdescribed
in Section 2.4. We compare the predictive performance of (i) the frequent subgraph pat-
terns computed by FSG (Deshpande et al, 2005)with that of (ii) the probabilistic frequent
subtree patterns for different k and for different frequency thresholds. We restrict our
evaluation of the predictive performance to chemical graphs only. These graphdatabases
are the only ones where our competitors could reliably produce results. For (ii), we use
only the results withWilson’s random spanning tree sampling algorithm (Wilson, 1996);
weobtainednearly identical accuracy and runtime resultswith the greedy sampling algo-
rithm based on Kruskal’s method (cf. Section 4.1.3). For our evaluation, we use the SVM
provided by the libSVM package (Chang and Lin, 2011) with a radial basis function ker-
nel. We repeatAlgorithm4.1 four times using different sets of sampled trees, resulting in
different sets of probabilistic subtrees and different embedding vectors of the database
graphs. We report the average and standard deviation of AUC values from a 3-fold cross
validation for each resulting database representation. The same procedure is applied to
the frequent subgraph pattern set, here we use a different splitting for the cross valida-
tion in each run.

Note that this evaluation requires us to compute feature vectors for each graph in
the databases. Here, we compute the feature vectors and sets of (probabilistic) frequent
patterns simultaneously for the full data sets using the frequent subgraph mining al-
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θ k MUTAG PTC NCI1 NCI109
1% 1 81.72 ± 1.22 56.20 ± 1.54 79.73 ± 0.26 78.64 ± 0.20
1% 2 82.98 ± 0.46 57.03 ± 0.88 81.74 ± 0.22 80.89 ± 0.15
1% 5 85.47 ± 0.80 59.18 ± 0.54 83.45 ± 0.12 83.07 ± 0.14
1% 10 88.33 ± 0.30 59.67 ± 0.26 84.09 ± 0.10 83.79 ± 0.15
1% 20 89.32 ± 0.14 60.10 ± 0.09 84.43 ± 0.06 84.23 ± 0.05
1% FSG 91.18 ± 0.46 63.62 ± 1.01 86.87 ± 0.10 86.84 ± 0.09
5% 1 80.79 ± 1.26 54.92 ± 1.69 76.90 ± 0.40 75.67 ± 0.23
5% 2 82.30 ± 0.41 55.05 ± 1.25 78.87 ± 0.17 77.73 ± 0.17
5% 5 84.20 ± 0.90 56.12 ± 0.67 80.75 ± 0.17 80.31 ± 0.16
5% 10 86.35 ± 0.15 56.14 ± 0.29 81.60 ± 0.10 81.12 ± 0.13
5% 20 87.66 ± 0.26 56.34 ± 0.19 82.15 ± 0.05 81.73 ± 0.05
5% FSG 89.01 ± 0.64 58.00 ± 1.86 83.76 ± 0.13 83.86 ± 0.06
10% 1 80.99 ± 1.23 54.05 ± 1.84 75.41 ± 0.43 74.10 ± 0.28
10% 2 82.60 ± 0.44 54.35 ± 1.48 77.28 ± 0.22 76.08 ± 0.17
10% 5 84.22 ± 0.86 54.17 ± 0.87 79.09 ± 0.16 78.05 ± 0.14
10% 10 86.23 ± 0.16 53.94 ± 0.28 79.95 ± 0.09 79.01 ± 0.10
10% 20 86.95 ± 0.11 53.99 ± 0.19 80.44 ± 0.05 79.61 ± 0.07
10% FSG 87.34 ± 0.46 56.76 ± 1.96 81.66 ± 0.10 81.55 ± 0.24
20% 1 81.02 ± 1.43 53.36 ± 2.16 72.78 ± 0.35 70.84 ± 0.32
20% 2 83.12 ± 0.53 53.05 ± 0.79 74.94 ± 0.22 73.77 ± 0.17
20% 5 84.68 ± 0.82 52.34 ± 0.89 77.05 ± 0.15 76.13 ± 0.11
20% 10 86.92 ± 0.16 51.86 ± 0.52 77.79 ± 0.06 76.90 ± 0.10
20% 20 88.10 ± 0.06 51.97 ± 0.22 78.15 ± 0.06 77.33 ± 0.08
20% FSG 88.36 ± 0.00 55.82 ± 2.59 77.41 ± 0.09 77.92 ± 0.02

Table 4.5.: AUC values [%] of an SVM classifier on MUTAG, NCI1, NCI109, and PTC for
frequency thresholds t between 1%and 20%whenusing features generated by
FSG and ourmethod for k ∈ {1,2,5,10,20}.

gorithms. We defer the detailed discussion of this topic to Chapter 6. In particular, we
do not discuss here the case that finding a feature representation should be part of the
learning process.

Table 4.5 shows the results for the classification problems on MUTAG, NCI1, NCI109,
and PTC. We can see that the frequent subgraph patterns outperform our probabilistic
subtree patterns for all frequency thresholds and all choices of k. However, if we select
k = 20 spanning trees, the accuracy is fairly close to that of the exact frequent subtree pat-
terns for all datasets and for all frequency thresholds. Furthermore, the results suggest
thatwe canachieveorperhaps even increase thepredictive accuracyof the exact frequent
subgraph patterns at a certain frequency threshold θ by using the probabilistic frequent
subtree patterns with parameters k = 20 and frequency threshold θ/2. It is also worth
noting that the increase of accuracy slows down as a function of k; the gain of increasing
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θ k AvsI AMvsI AvsMI
5% FSG o.o.m o.o.m o.o.m
5% 1 89.27 ± 0.20 72.35 ± 0.23 88.23 ± 0.24
5% 2 89.94 ± 0.12 74.09 ± 0.69 89.09 ± 0.74
5% 5 91.17 ± 0.13 75.65 ± 0.27 90.63 ± 0.17
10% FSG 91.31 ± 0.38 75.29 ± 0.24 90.82 ± 0.31
10% 1 88.53 ± 0.81 71.32 ± 0.54 87.45 ± 1.18
10% 2 88.28 ± 1.51 71.09 ± 0.21 87.29 ± 0.62
10% 5 91.11 ± 0.23 74.30 ± 0.18 90.27 ± 0.08
20% FSG 91.35 ± 0.39 74.24 ± 0.26 90.57 ± 0.17
20% 1 86.75 ± 0.76 68.55 ± 0.73 86.00 ± 0.74
20% 2 86.40 ± 1.00 68.79 ± 0.61 85.79 ± 0.74
20% 5 90.29 ± 0.28 73.17 ± 0.56 90.27 ± 0.53

Table 4.6.: Average AUC values for the three learning problems on the NCI-HIV bench-
markdataset for the frequent subgraphpatterns and theprobabilistic frequent
subtree patterns for k = 1,2 and for different frequency thresholds.

k from one to five spanning trees is much larger than that of increasing k from five to
ten on all datasets except MUTAG, where the second increase is comparable to the first.
We assume that this behavior onMUTAG is due to the small number of molecules in the
dataset.

The results on NCI-HIV are presented in Table 4.6. On the one hand, one can see that
fromafrequency thresholdof 10%, the resultsusing frequent subgraphpatternsaremore
stable than those with the probabilistic frequent subtree patterns on all three problems.
Though the frequent subgraph patterns outperform the probabilistic frequent subtree
patterns on the same frequency threshold, the difference seems marginal once we com-
pare thebest resultsoneachproblem, especially in lightof the runtimebenefitspresented
above. On the other hand, however, for the frequent subgraph patterns, the SVM could
be trained only for θ = 10%, while for the probabilistic frequent subtree patterns we ob-
tained the result in half of the time for θ = 5%. For this frequency threshold, FSG was
unable to produce any result because it ran out of memory. For larger frequency thresh-
olds, we had difficulties with training the SVM using all frequent patterns because of its
excessive memory usage. These observations clearly show the limitation of the frequent
subgraph patterns over the probabilistic frequent subtree patterns when the predictive
performance required canbeachievedonly for low frequency thresholds. Finallywenote
that there is no improvementwhen sampling two instead of one spanning tree per graph,
but a drastic increase when increasing k to five. This result fits well with the evaluation
of ourmethod on the artificial datasets.
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4.3. Summary
Wehave presented amethod tomine probabilistic subtree patterns, i.e., subtrees in a for-
est database obtained by randomly selecting k spanning trees for each transaction graph
in the input database and for some small value of k. Our empirical results onErdős-Rényi
random graphs, ego nets from social networks, and chemical graphs show that even for
small values of k (k ≤ 20), the output of the probabilistic frequent subtree mining algo-
rithm is of high recall and stability. Runtime comparisons with the FSG and Gaston fre-
quent subgraphmining algorithms clearly demonstrate the superiority of our probabilis-
tic approach on graph datasets beyond chemical graphs: The speed of the probabilistic
frequent subtreemining algorithm is faster by at least one order ofmagnitude in the few
caseswhereFSGandGastonwere able to terminate in reasonable time. Furthermore, our
methodallowed tomineprobabilistic frequent subtreeswhere the traditional exactmeth-
ods failed. Our empirical results on various real-world benchmark graph datasets show
that theprobabilistic feature space considered is expressive enough in termsofpredictive
performance compared to that of ordinary frequent subgraphs.

One of the strengths of our method is that it is not restricted to any particular graph
class. This advantageous property allows us to empirically investigate frequent subtree
sets onmore complicatedgraphclasses beyondmolecular graphs, suchas randomgraphs
of medium to high edge density, ego nets and possibly many other types of graph trans-
action databases, such as knowledge graph databases.

However, so far we did not address two important questions that remain to be an-
swered in the subsequent chapters of this thesis: First, the runtime of Algorithm 4.1 di-
rectly depends on the number k of spanning trees sampled for each graph. Generally, the
number of spanning trees is large for all but the most simple graphs (e.g. cycles). In fact,
Cayley’s formula tells us that there can be up to nn−2 spanning trees in a graph with n
vertices (Cayley, 1889). Thus there is an exponentially large gap between the number of
spanning trees our algorithm considers and the total number of spanning trees. We thus
will investigate in Chapter 5 how to increase the number of spanning trees that can be
efficiently considered. In this way, we try to boost the recall of the probabilistic subtrees
and hence likely their predictive performance.

Another questionyet to be addressed is how to efficiently compute the embedding vec-
tors of graphs, given a set of (probabilistic) frequent subtrees. Although this problem ap-
peared in Section 4.2.4 as a subtask, the techniques described in this chapter are not suf-
ficient to solve it completely. Hence, a crucial step is missing for a complete subtreemin-
ing system that can be used in an inductive setting. Algorithm 2.1 and Algorithm 4.1 can
both bemodified to output the embedding vectors for the graphs in their input database
D. However, novel graphs9 cannot be embedded right away in the feature space spanned
by the (probabilistic) subtrees. We address the efficient computation of such embeddings
in Chapter 6.

9 That is, graphs that were not part of the databaseD used for probabilistic frequent subtreemining.
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Utilizing that a tree is subgraph isomorphic to a graph if and only if it is subtree isomor-
phic to one of the graph’s spanning trees, Algorithm 4.1 from the previous Chapter gen-
erates probabilistic frequent subtrees in the following simple way: It replaces each trans-
action graph in the input database by a forest formed by the vertex disjoint union of a ran-
dom subset of its spanning trees and generates the set of frequent connected subgraphs
(i.e., subtrees) for the forest database obtained. These probabilistic frequent subtrees can
be enumerated with polynomial delay if the number of spanning trees in the sample is
bounded by a polynomial of the graph’s size for each transaction graph in the database.
For all but themost simple graphs, however, thenumber of spanning trees is exponential
in the size ofG. In fact, the number of spanning trees ofG is exponential in the cyclomatic
number ∣E(G)∣ − ∣V (G)∣ + 1 ofG.1

Hence, there is an exponential gap in thenumber of spanning trees thatAlgorithm4.1
can efficiently consider and the total number of spanning trees of the transaction graphs.
This fact may negatively influence the recall of our probabilistic subtree mining algo-
rithm, as it may lead to a large number of subtrees of the database graphs that are µ-
important for very small values of µ only. Such unimportant patterns, however, can only
be reliably found if a large number of spanning trees is considered (cf. Section 4.1.2).

In this chapter we go beyond the limitation of processing polynomially many span-
ning trees only. We present an algorithmwhich can generate probabilistic frequent sub-
trees from arbitrary graphs with polynomial delay by considering a potentially exponen-
tially large subset of the spanning trees for each graph in the database. The core of our
mining algorithm is a pattern matching algorithm that, for a tree pattern H and trans-
action graph G, (i) partitions G into a certain set of induced subgraphs, (ii) considers a
(random) subset of local spanning trees for each induced graph, and (iii) decides whether
H is subtree isomorphic to one of the global spanning trees ofG obtainedby combining its
local spanning trees. It is inspired by the paradigms developed byMatoušek and Thomas
(1992) and by Shamir and Tsur (1999) for solving subgraph isomorphism for other graph
classes.

In a nutshell, our algorithm decides the patternmatching problem by a dynamic pro-
gramming algorithm traversing a rooted tree generated for G in a bottom-up manner
and computing the final solution frompreviously calculated partial ones. In our case, the
nodes of the rooted tree controlling the evaluation are constructed from the articulation
vertices ofG. Each node v of such a tree is associatedwith the set of spanning trees of cer-
1 In general, the cyclmatic number, or circuit rank of a graphG is ∣E(G)∣− ∣V (G)∣+ c, where c is the number
of connected components ofG.
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tain biconnected components of G containing v. For all such local spanning trees τ , we
solve the partial subtree isomorphism problem corresponding to v by carefully extend-
ing the partial subtree isomorphisms already computed for τ . Iterating over all spanning
trees and over all nodes, we can correctly decide subtree isomorphism for the part of G
which is “below” v in the rooted tree associated withG. We prove that our algorithm de-
cides subgraph isomorphism fromH toS correctly, whereS is the set of spanning trees
ofG that canbeobtained fromthecombinationsof the local spanning trees. Furthermore,
our algorithm runs in time polynomial in the combined size ofH ,G, and f , where f is an
upper bound on the number of selected local spanning trees. The significance of this re-
sult is that the number of global spanning trees inS can be exponential in f . This property
has immediate consequences to probabilistic and exact frequent subtreemining.

Regarding probabilistic frequent subtree mining, by (implicitly) considering exponen-
tially many global spanning trees instead of polynomially many ones, our technique has
an improvedperformance in termsof recallover the simple algorithmfromChapter4. On
theonehand, this improvement is onlymarginal on real-worldmolecular graphdatasets,
due to the relatively simple graph structure of pharmacological compounds (cf. Horváth
and Ramon, 2010; Horváth et al, 2010). On the other hand, however, on threshold graphs,
which have applications among others in spectral clustering (see, e.g., von Luxburg, 2007),
the algorithmpresented here results in amuch higher recall compared to the simple one.
It is important to note that all threshold graphs used in our experiments had a structural
complexity beyond that of themolecular graphs of pharmacological compounds. None of
the state-of-the-art frequent subgraphmining algorithms were able to produce any out-
put for threshold graphs in practically feasible time.2

Our pattern matching operator implies a novel result regarding the complexity of
the (exact) FTM problem, as well. We extend the known positive complexity results on
frequent tree mining by a new one formulated for a graph class that is of theoretical as
well as practical interest. Recall from Chapter 3 that despite more than two decades of
research there are only a few non-trivial theoretical results concerning the complexity
of frequent subgraphmining are known. Beyond forests, frequent connected subgraphs
can be listed in incremental polynomial time for graphs of bounded tree-width (Horváth
andRamon, 2010). The subgraph isomorphism algorithmproposed in this chapter, how-
ever, is always correct if all local spanning trees are considered.3 Accordingly, a sufficient
condition for our frequent patternmining algorithm to be correct and efficient (i.e., poly-
nomial delay) is that the input graphs are locally easy: A graphG of size n is locally easy if
for all vertices v ofG, the union of the biconnected components containing v has atmost
poly(n) spanning trees.

The class of locally easy graphs is orthogonal to all graph classes that are defined by a
constant upper bound on some monotone graph property (e.g., graphs of bounded tree-
width); a graph property is called monotone if it is closed under taking subgraphs. By or-
2 Recall that we have observed a similar behavior on Erdős-Rényi graphs and social graphs in the previous
chapter.

3 We recall that the problemof decidingwhether a tree is subgraph isomorphic to a graphG is NP-complete
in general (see, e.g., Garey and Johnson, 1979) and remains computationally intractable even for very sim-
ple graphs, e.g., whenG is a cactus graph (Akutsu, 1993).

74



5.1. An Efficient Embedding Operator for Trees

thogonality we mean that the graph class always contains an infinite number of graphs
that are not contained in the other graph class. It turns out that the class of locally easy
graphs includes a number of interesting and practically relevant graph classes. Themost
natural example is the class of forests. Pseudoforests (i.e., graphs in which every connected
component has at most one cycle) and their generalizations, cactus graphs (i.e., in which
all edges belong to at most one simple cycle) of bounded block degree (i.e., themaximum
number of blocks sharing a vertex is bounded by a constant) are some further straight-
forward subclasses of locally easy graphs. Other examples include the class of d-tenuous
outerplanar graphs (Horváth et al, 2010) of bounded block degree and that of k-easy graphs
of bounded block degree, where a graph is k-easy for some constant k ≥ 0 integer if all bi-
connected components haveO (nk) spanning trees. These and other graph classes show
that our positive result on mining locally easy graphs is an important step towards ex-
ploring the border between tractable and intractable fragments of the frequent pattern
mining problem. We conjecture that generalizing our positive result to the first “natu-
ral” graph class beyond locally easy graphs is at least as difficult as solving the P vs. NP
problem.

Outline

The rest of this chapter is organized as follows. We present our subtree isomorphism al-
gorithm in Section 5.1 and prove its correctness and runtime guarantees. Using this pat-
tern matching algorithm, in Section 5.2 we describe our mining algorithm enumerating
probabilistic frequent subtrees in arbitrary graph databases with polynomial delay and
empirically compare its runtime and recall on threshold graphs to our algorithm from
Chapter 4. We discuss exact frequent subgraph mining for locally easy graphs in Sec-
tion 5.3, together with some important theoretical and practical properties of this graph
class. Finally we conclude in Section 5.4 and mention some interesting open problems
for further research.

5.1. An Efficient Embedding Operator for Trees
This section is devoted to the support counting step of our boosted mining algorithm (cf.
SupportCount(H,D) in Line 8 of Algorithm 2.1). In Theorem 5.1 below we first claim
that SubtreeIsomorphism can be decided in time polynomial in the number of local
spanning trees of certain induced subgraphs of G. In Section 5.2 we show that the algo-
rithmused in the proof of this result can bemodified in anaturalway to decide Subtree-
Isomorphismwithone-sided error inpolynomial time. This is achievedbyconsidering
apotentiallyexponentially largesubsetof thespanning treesofG, foranyarbitrarygraph
G. Thismodified algorithmwill allow for efficient probabilistic frequent subtreemining.
To state Theorem 5.1, ourmain result for this section, we first introduce the following no-
tation: ForagraphGandv ∈ V (G), letfv(G)be thenumberof spanning trees in theunion
of the biconnected components containing v and define fmax(G) =maxv∈V (G) fv(G).
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Theorem 5.1. The SubtreeIsomorphism problem can be solved in time

O (f2max(G) ⋅ ∣E(G)∣ ⋅ ∣V (H)∣
1.5) .

To put Theorem 5.1 into context, we note that SubtreeIsomorphism is a well-
known NP-complete problem (it generalizes e.g. the HamiltonianPath problem). If,
however, the transaction graph is a tree, as well, the restricted problem belongs to P (see,
e.g., Shamir and Tsur, 1999). This positive result, together with that on generating the
spanning trees of a graph with polynomial delay (Read and Tarjan, 1975), implies that
SubtreeIsomorphism is in P if G has only polynomially many spanning trees; just
list all spanning trees τ ofG and check ifH is subgraph isomorphic to τ . Theorem5.1 gen-
eralizes this straightforward positive result to graphs that can have exponentially many
spanning trees. To prove Theorem 5.1, we present Algorithm 5.1 and show that it decides
the SubtreeIsomorphism problem correctly (Lemma 5.6) and in time stated in the
theorem (Lemma 5.7).

Algorithm 5.1 is inspired by the ideas in (Matoušek and Thomas, 1992) and (Shamir
and Tsur, 1999). Analogously to tree decompositions of bounded tree-width graphs (see,
e.g., Diestel, 2012), our dynamic programming algorithm splits G into certain induced
subgraphs and evaluates partial (non-induced) subgraph isomorphisms from subtrees of
H to such subgraphs. The evaluation order of our algorithm is, however, controlled by a
rooted tree skeleton defined on the articulation vertices of G. For all nodes v of the tree
skeleton, the biconnected components that are “below” v in G are replaced by a (local)
spanning tree τ in all possible ways. The subproblem corresponding to v is then solved
by carefully combining τ with the spanning trees of the previous level. Iterating over all
(local) spanning trees of the biconnected components, we can correctly decide Subtree-
Isomorphism for the part ofGwhich is “below” v. Wewill now describe the algorithm
and necessary notation.

In what follows, H and G denote a tree and an arbitrary graph, respectively. We as-
sume w.l.o.g. that G is connected and that 2 ≤ ∣V (H)∣ ≤ ∣V (G)∣, implying that all bicon-
nected components ofG contain at least two vertices. Wefix an arbitrary vertex r ∈ V (G)
and will implicitly also consider r, when talking about G. For a block B of G we define
its root v to be the vertex of B with the smallest distance to r and will refer to B as a v-
rooted block. For any v ∈ V (G), the subgraph formed by the set of v-rooted blocks ofG is
denoted by B(v). Clearly, B(v) can be empty. On the set of roots of the blocks in G we
define a directed graph T as follows (sinceG and r have been fixed, we omit them in the
notation): For any u, v ∈ V (T )with u ≠ v, (u, v) ∈ E(T ) if and only if there exists a block
B with root v such that u ∈ V (B). We call T the tree skeleton ofG (see, also, Figures 5.1 a)
and b)). In the proposition belowwe show that T is indeed a rooted tree. This tree will be
used to direct our dynamic subgraph isomorphism algorithm.

Proposition 5.2. T is a tree rooted at r.

Proof. It suffices to show that for all u ∈ V (T ) with u ≠ r, u has outdegree at most one;
the claim then follows by noting that the outdegree of r is zero and that T is connected,
asG is connected. Suppose for contradiction that there exists u ∈ V (T ), u ≠ r, with two

76



5.1. An Efficient Embedding Operator for Trees

B

r y

v

G

x

a)

T

y

r

vx

b)

y

v

Gy

x

c)

Figure 5.1.:G, tree skeleton T andGy for a small graphG (with respect to r). v is the root
of the block B. Roots are shown in gray, while vertices that are not roots are
shown in white.

different parents v1, v2 ∈ V (T ). LetBi ∈ B(vi) (i = 1,2). ThenB1 ≠ B2 and there is a path
P1 (resp. P2) inG connecting r and v1 (resp. v2) that is edgedisjointwithB1 (resp. B2). The
union of P1 and P2 together with the paths connecting uwith v1 and uwith v2 contains a
cycle intersecting bothB1 andB2. But then u, v1, and v2 all belong to the same block ofG,
contradicting themaximality ofB1 andB2.

We need some further concepts. Let v,w ∈ V (G). Thenw is below v if all paths connect-
ing r and w in G contain v. A rooted subgraph Gv of G for v is the subgraph of G induced
by the set of vertices below v (see Figure 5.1 c) for an example). The same notation will be
used consistently for the pair consisting of the tree patternH and some vertex y ∈ V (H),
i.e., for anyu, y ∈ V (H),Hy

u is the tree obtained from the treeH rooted at y bykeeping the
subtree rooted at u. The definitions and the connectivity ofG imply thatGv is connected,
Gr = G, andGw is a single vertex if and only if w ∉ V (T ). A vertex w′ ∈ V (G) is called a
child of v, if vw′ ∈ E(G) andw′ ∈ V (B(v)).

A guidance tree of G is a pair T = (T ,S) such that T is a tree skeleton of G and S is
a family of sets Sv for all v ∈ V (T ). That is, all nodes v of T are associated with a set
Sv, called the bag of v. Each Sv is a subset of the set of spanning trees of B(v), called local
spanning trees, all rooted at v. IfSv contains all spanning trees ofB(v) for every v ∈ V (T ),
thenT is referred to as a complete guidance tree ofG. For the remainder of this section, by
guidance treeswe alwaysmean complete guidance trees. (Incomplete guidance treeswill
be considered in Section 5.2.)

Let T = (T ,S) be a guidance tree ofG and let v ∈ V (T ). An iso-triple4 ξ ofH relative to
v is a triple (Hy

u , τ,w) such that u ∈ V (H), y ∈ N (u) ∪ {u}, τ ∈ Sv, and w ∈ V (τ). LetG′
be an induced subgraph ofG and τ ′ be a spanning tree ofG′. ThenG{G′/τ} denotes the
graph obtained fromG by removing all edges ofG′ that are not in τ (i.e., by substituting
G′ with τ ). Now we are able to define the partial subgraph isomorphisms we are inter-
4 Though our terminology is similar to that in (Hajiaghayi and Nishimura, 2007), which in turn is based
on the concepts in (Matoušek and Thomas, 1992), the definitions of iso-triples and characteristics in this
thesis are semantically different from their definitions.
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Algorithm 5.1 Subgraph Isomorphism from a Tree into a Connected Graph

Input : treeH with ∣V (H)∣ > 1 and an arbitrary connected graphGwith ∣V (G)∣ ≥ ∣V (H)∣
Output: True ifH ≼ G; o/w False

Main:
1: set C ∶= ∅
2: pick a vertex r ∈ V (G) and compute the complete guidance tree T = (T ,S) of G for

the tree skeleton T rooted at r
3: for all v ∈ V (T ) in a postorder do
4: for all τ ∈ Sv do // Sv ∈ S is the bag of v in T
5: for allw ∈ V (τ) in a postorder do
6: C ∶= C ∪ Characteristics(v, u, τ,w)
7: if (Hu

u , τ,w) ∈ C then return True
8: return False

Function Characteristics(v, u, τ,w):
1: Cτ :=∅
2: for all θ ∈ Θvw(τ) do
3: for all u ∈ V (H) do
4: let τ ′ be the tree satisfying θ = τ ∪ τ ′
5: letCτ (resp. Cτ ′ ) be the set of children ofw in τ (resp. τ ′) and

Cθ ∶= Cτ ∪Cτ ′
6: letB = (Cθ∪̇N (u),E) be the bipartite graphwith

cu′ ∈ E if and only if (c ∈ Cτ ∧ (Hu
u′ , τ, c) ∈ C) ∨ (c ∈ Cτ ′ ∧ (Hu

u′ , τ
′, c) ∈ C)

for all cu′ ∈ Cθ ×N (u)
7: if B has amatching that coversN (u) then
8: add (Hu

u , τ,w) to Cτ
9: for all y ∈ N (u) do

10: if B has amatching coveringN (u) ∖ {y} then
11: add (Hy

u , τ,w) to Cτ
12: return Cτ

ested in. A v-characteristic is an iso-triple ξ = (Hy
u , τ,w) relative to v such that there exists

a subgraph isomorphism φ fromHy
u to (G{B(v)/τ})w with φ(u) = w. In the lemma be-

low we provide a characterization of subgraph isomorphisms from H to G in terms of
v-characteristics. Its proof follows directly from the definitions.

Lemma 5.3. LetH be a tree,G be a graph with root r, andT = (T ,S) be a guidance tree ofG such
that T is rooted at r. ThenH ≼ G if and only if there exists a v-characteristic (Hu

u , τ,w) for some
v ∈ V (T ), u ∈ V (H), τ ∈ Sv , andw ∈ V (τ).
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Figure 5.2.: Thisfigure showsa small graphGwith its subgraphsB(v) andB(w) (depicted
by the rounded triangles). One spanning tree τ of B(v) and τ ′ of B(w) are
shown in solid bold and dashed bold, respectively.

Notice that the number of v-characteristics (Hy
u , τ,w) is bounded by a polynomial in

thenumberof local spanning trees τ . Tobemoreexact, thereareatmost ∣V (H)∣⋅∣V (B(v))∣
v-characteristics for each local spanning tree τ ∈ Sv . Wewill showhow these characteris-
tics can be computed recursively by a post-order traversal of the tree skeleton T . In order
to recover all v-characteristics, the spanning trees of thew-rooted blocks must carefully
be combined with τ when w itself is also a root (i.e., w ∈ V (T )). To formalize these con-
siderations, we introduce the following notation. For any v ∈ V (T ), τ ∈ Sv, andw ∈ V (τ)
we defineΘvw(τ) by

Θvw(τ) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{τ ∪ τ ′ ∶ τ ′ ∈ Sw} ifw ∈ V (T ) ∖ {v}

{τ} o/w (i.e., ifw /∈ V (T ) or v = w),

where τ ∪ τ ′ is the graphwith vertex set V (τ) ∪ V (τ ′) and edge setE(τ) ∪E(τ ′). That is,
for the case thatw ∈ V (T ) ∖ {v},Θvw(τ) is the set of trees obtained by “gluing” the local
spanning tree τ and τ ′ at vertex w, for all local spanning trees τ ′ ∈ Sw. The definition
is correct, as V (τ) ∩ V (τ ′) = {w} for this case. Note that if w is a root vertex different
from v then w always has at least one child in B(w), i.e., τ ′ is always a tree with at least
one edge. As an example, the combination of the dashed and the bold tree in Figure 5.2
denotes an element ofΘvw(τ). In Lemma 5.4 belowwefirst provide a characterization of
v-characteristics for subtreesHy

u with y ∈ N (u).
Lemma 5.4. LetH be a tree,G be a graph, and T = (T ,S) be a guidance tree ofG. An iso-triple
(Hy

u , τ,w) ofH is a v-characteristic for some v ∈ V (T ) and y ∈ N (u) if and only if there exists
a θ ∈ Θvw(τ) and an injective function ψ fromN (u) ∖ {y} to the children of w in θ such that for
all u′ ∈ N (u) ∖ {y} there is a subgraph isomorphism φu′ fromHu

u′ to (G{B(v) ∪ B(w)/θ})ψ(u′)
mapping u′ toψ(u′).
Proof. “⇒” Suppose (Hy

u , τ,w) is a v-characteristic for some v ∈ V (T ) and y ∈ N (u).
Then, by definition, there is a subgraph isomorphism φ from Hy

u to (G{B(v)/τ})w
with φ(u) = w. Let R be an arbitrary spanning tree of (G{B(v)/τ})v containing the
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image φ(Hy
u) as a subtree. Then R[V (B(w))] ∈ Sw and R[V (B(v))] = τ and hence

θ = R[V (B(v))] ∪ R[V (B(w))] ∈ Θvw(τ) implying that for all u′ ∈ N (u) ∖ {y}, φmaps
Hu
u′ to (G{B(v) ∪ B(w)/θ})φ(u′). Asφ is injective we can setψ to be the restriction ofφ to
N (u) ∖ {y}. As φ is a subgraph isomorphism, we can set φu′ to be the restriction of φ to
(G{B(v) ∪ B(w)/θ})φ(u′) for all u′ ∈ N (u) ∖ {y}.

“⇐” Let φ ∶ V (Hy
u) → V (G ({B(v)/τ})w) with φ ∶ u ↦ w and x′ ↦ φu′(x′) for all

u′ ∈ N (u) ∖ {y} and x′ ∈ V (Hu
u′). Since for all u′, φu′ is at the same time a subgraph

isomorphism fromHu
u′ to (G{B(v)/τ})w, it holds that φu′(u′) = ψ(u′). But then, as ψ is

injective, φ is a subgraph isomorphism, implying the claim.

InLemma5.5we formulate ananalogous characterization for the entirepatternH (i.e.,
for y = u). The proof of this lemma is similar to that of Lemma 5.4.

Lemma 5.5. LetH , G, and T = (T ,S) be as in Lemma 5.4. An iso-triple (Hu
u , τ,w) ofH is a

v-characteristic for some v ∈ V (T ) if and only if there exists a θ ∈ Θvw(τ) and an injective function
ψ fromN (u) to the children ofw in θ such that for all u′ ∈ N (u) there is a subgraph isomorphism
φu′ fromHu

u′ to (G{B(v) ∪ B(w)/θ})ψ(u′)mapping u′ toψ(u′).

Lemma 5.6 below is concerned with the correctness of Algorithm 5.1 deciding subtree
isomorphism from a tree into an arbitrary text graphG. We assume without loss of gen-
erality thatG is connected.

Lemma 5.6 (Correctness). Algorithm 5.1 is correct, i.e. , for all treesH and connected graphs G
with 2 ≤ ∣V (H)∣ ≤ ∣V (G)∣, it returns True if and only ifH ≼ G.

Proof. Algorithm 5.1 first fixes a root r ofG (Line 2) and computes the complete guidance
tree T = (T ,S) of G, where T is rooted at r. By traversing the skeleton tree T in a pos-
tordermanner (Line 3), it calculates the setC of v-characteristics for all v ∈ V (T ) (Lines4–
6). Weonlyneed to show thatC is correct (i.e., complete and sound); the correctness of the
algorithm then follows directly from Line 7 using Lemma 5.3.

The completeness of C holds by the fact that all possible iso-triples ξ = (Hy
u , τ,w) rel-

ative to v are tested for being v-characteristics (Lines 3, 4, and 5 of Main together with
Lines 3, 7, and 9 of Characteristics). Thus, it remains to show that it is decided cor-
rectly whether or not ξ = (Hy

u , τ,w) is a v-characteristic. We prove this by double in-
duction on the height hT (v) of v in T and on the height hτ(w) of w in τ . Depending on
whether or not hτ(w) = 0 and hT (v) = 0, four cases can be distinguished. We only show
the base case (i.e., hT (v) = hτ(w) = 0) and the most general case (i.e., hT (v) > 0 and
hτ(w) > 0) by noting that the proofs of the other two cases can be shown by an argumen-
tation similar to the one used for themost general case.

For the base case hT (v) = hτ(w) = 0we haveCθ = ∅ and henceB = (N (u),∅) (Lines 5
and 6 of Characteristics). Applying Lemma 5.4 to this case, ξ is a v-characteristic if
and only ifN (u) = {y}, which, in turn, holds if and only if there is a matching covering
N (u) ∖ {y} inB (Lines 10–11 of Characteristics), as there are no edges inB.

IfhT (v) > 0 andhτ(w) > 0 thenCτ ≠ ∅. Two cases can be distinguished: (i) Ifw ∉ V (T )
then Cτ ′ = ∅ and thus Cθ = Cτ . Applying Lemma 5.4 to this case, ξ is a v-characteristic
if and only if there exists an injective function ψ ∶ N (u) ∖ {y} → Cτ such that for all
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u′ ∈ N (u) ∖ {y}, there exist a child c of w in τ (i.e., c ∈ Cτ ) and a subgraph isomorphism
φu′ fromHu

u′ to (G{B(v)/τ})c with φu′(u′) = ψ(u′) = c (i.e., a v-characteristic (Hu
u′ , τ, c)).

By the induction hypothesis, the bipartite graph B is constructed correctly in Line 6 of
Characteristics, and hence ψ exists if and only if there exists a matching inB cover-
ingN (u)∖ {y}. (ii) Ifw ∈ V (T ) thenCθ = Cτ ∪Cτ ′ withCτ ,Cτ ′ ≠ ∅. Then, by Lemma 5.4,
ξ is a v-characteristic if and only if for all u′ ∈ N (u) ∖ {y} there exist a child c of w in θ
and an injective functionψ ∶ N (u)∖ {y}→ Cτ ∪Cτ ′ such that there is a subgraph isomor-
phism φu′ from Hu

u′ to (G{B(v) ∪ B(w)/τ ∪ τ ′})c with φu′(u′) = ψ(u′) = c. Such a sub-
graph isomorphism either corresponds to a v-characteristic (Hu

u′ , τ, c) for c ∈ Cτ , which
hasalreadybeencomputedby the inductionhypothesis onhτ(w), or toaw-characteristic
(Hu

u′ , τ
′, c) for c ∈ Cτ ′ , which has already been computed by the induction hypothesis on

hT (v). Hence ψ exists if and only if a matching in B (constructed in Line 6 of Charac-
teristics) coveringN (u) ∖ {y} exists (Lines 10–11 of Characteristics). The proof
for the v-characteristics (Hu

u , τ,w) using Lemma 5.5 is analog for the check in Lines 7–8
of Characteristics.

In Lemma 5.7 belowwe show that the runtime of Algorithm 5.1 is polynomial in f(G)
and the combined size ofH and G, where f(G) = maxSv∈S ∣Sv ∣ for some complete guid-
ance tree T. Together with Lemma 5.6 this implies Theorem 5.1 by noting that f(G) is
bounded by fmax(G).

Lemma 5.7 (Runtime). Algorithm 5.1 runs inO (f2(G) ⋅ ∣E(G)∣ ⋅ ∣V (H)∣1.5) time.

Proof. Note that the edge sets of the v-rooted components ofG form a partition ofE(G),
i.e.,

E(G) = ⋃̇
v∈V (T )

E(B(v)) . (5.1)

This partition and the tree skeleton T can be computed in linear time (Tarjan, 1972).
By definition, ∣Sv ∣ ≤ f(G) for all v ∈ V (T ). Thus, as the spanning trees of a graph
can be generated with linear delay (Read and Tarjan, 1975), Sv can be computed in
O (∣E(B(v))∣ ⋅ f(G)) time for each v ∈ V (T ). Hence, by (5.1), Main spends altogether

O (∣E(G)∣ ⋅ f(G)) (5.2)

time for computing the guidance tree T. Furthermore, Main calls subroutine Charac-
teristicsO (∣V (G)∣ ⋅ f(G)) times. This is due to the fact that the number of pairs (v,w)
(cf. Lines 3 and 5) isO (∣V (G)∣), as each vertexw can occur in atmost two sets of v-rooted
components: In B(v) for its unique parent v in T (unlessw = r) and in B(w) ifw is a root
itself. Regarding the complexity of Characteristics, note that ∣Θvw(τ)∣ is bounded
by f(G) (see Line 2 of Characteristics) and that the bipartite graphB constructed in
Line 6 has at most ∣N (u)∣ + ∣N (w)∣ vertices for any θ ∈ Θvw(τ).

The edges ofB can be constructed bymembership queries to C. We can implement the
setC of characteristics foundby the algorithmas amultidimensional array of polynomial
size (in f(G) and ∣V (G)∣) such that each look-up and storage operation can be performed
in constant time. Amaximummatching ofB can be found inO (∣N (u)∣1.5 ⋅ ∣N (w)∣) time
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(HopcroftandKarp, 1973, Thm.3). Applying the sametrickas in (Chung, 1987; Shamirand
Tsur, 1999) for ordinary subtree isomorphism, we can answer thematching queries for u
and all of its neighbors in Line 7 and 10 of Characteristics using a single bipartite
matching computation and an additional operation that is linear in the size ofB. Hence
one iteration of Characteristics runs in timeO (∣N (w)∣ ⋅ ∣V (H)∣1.5 ⋅ f(G)), using the
handshaking lemma for the treeH , i.e. ∑u∈V (H) ∣N (u)∣ = 2 ⋅ ∣E(H)∣ ∈ O (∣V (H)∣) and that
O (∑u∈V (H)N (u)1.5) ⊆ O (∣V (H)∣

1.5).
Thus, applying the handshaking lemmaa second time forG, we obtain an overall time

complexityO (f(G) (∣E(G)∣ + f(G) ⋅ ∣E(G)∣ ⋅ ∣V (H)∣1.5))which, in turn, is equal to

O (f2(G) ⋅ ∣E(G)∣ ⋅ ∣V (H)∣1.5) , (5.3)

as claimed.

Note that in the case thatH andG are both trees, f(G) = 1 andhence (5.3) corresponds
to the time complexity of the ordinary subtree isomorphism algorithms given in (Chung,
1987; Matula, 1968). We will address the implications of this algorithm for probabilistic
and exact frequent treemining in the next two sections.

5.2. Mining Boosted Probabilistic Frequent Subtrees

In Chapter 4 we introduced the FTM Relaxed problem and presented Algorithm 4.1 enu-
merating probabilistic frequent subtrees with polynomial delay. It is based on replacing
each graph in the input with a forest formed by the vertex disjoint union of a random
subset of its spanning trees. On the one hand, themore spanning trees are considered by
the algorithm, the higher the recall of its output is. On the other hand, however, its delay
depends linearly on the number of spanning trees, implying that in order to guarantee
polynomial delay it can consider at most polynomiallymany spanning trees per graph. In
this sectionwe showthat the results fromSection 5.1 allowus to gobeyond this limitation.
In particular we now propose a boosted probabilistic frequent subtree mining algorithm
for the FTM Relaxed problem that, using a variant of Algorithm 5.1, implicitly considers
exponentiallymany spanning trees for the transaction graphs and still guarantees polyno-
mial delay. In Section 5.2.2 we empirically compare its performance to that of the simple
algorithm (Algorithm 4.1) from Chapter 4.

Recall that Algorithm 5.1 decides the SubtreeIsomorphism problem by splitting
the input transaction graphG into certain induced subgraphs and by considering the set
of all local spanning trees for all such induced subgraphs. In case it takes not all, but only
some subsets of the local spanning trees, its output becomes correct only with respect to
the subset of global spanning trees ofG that can be constructed by “gluing” together the
local spanning trees considered in all possible ways. In Theorem 5.8 belowwe formulate
a straightforward extension of Theorem 5.1 to this more general setting of the Subtree-
Isomorphism problem.
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Algorithm 5.2 Subgraph Isomorphism from a Tree with One-Sided Error

Input : treeH with ∣V (H)∣ > 1 and guidance tree T = (T ,S) for some connected graphG
with ∣V (G)∣ ≥ ∣V (H)∣

Output: True ifH ≼S(T); o/w False

Main:
1: set C ∶= ∅
2: for all v ∈ V (T ) in a postorder do
3: for all τ ∈ Sv do // Sv ∈ S is the bag of v inT
4: for allw ∈ V (τ) in a postorder do
5: C ∶= C ∪ Characteristics(v, u, τ,w)
6: if (Hu

u , τ,w) ∈ C then return True
7: return False

To state this result, we need the following notion. Let T = (T ,S) be an arbitrary (i.e,
not necessarily complete) guidance tree ofGwithbagSv ∈ S for all v ∈ V (T ) and consider
the graphT with V (T ) = V (G) andE(T ) = ⋃v∈V (T )E(τv), where τv ∈ Sv for all v ∈ V (T ).
The definitions imply that T is a spanning tree ofG. Hence, the disjoint union of all such
spanning trees ofG, i.e, which can be obtained by taking all possible combinations of the
local spanning trees in the bags, forms a forest. Wedenote this forest byS(T) (recall that
the forest of spanning trees considered by the algorithms in Chapter 4 was denoted by
Sk(G)). We are ready to formulate the following claim:
Theorem 5.8. LetH be a tree,G be a graph, andT = (T ,S) be a guidance tree ofG. Then one can
decide whetherH ≼S(T) in time

O (f ′2(G) ⋅ ∣V (G)∣ ⋅ ∣V (H)∣1.5) ,

where f ′(G) = max
v∈V (T )

∣Sv ∣.

Proof. Consider Algorithm 5.2 for the modified pseudo code of Main given in Algo-
rithm 5.1, using the same subroutine Characteristics. Its input includes T = (T ,S),
instead of G. (Line 2 of Main in Algorithm 5.1 is accordingly removed.) The proofs of
Lemma 5.6 and Lemma 5.7 immediately apply to the partial sets of local spanning trees
as well, implying the correctness with respect toS(T). Regarding the runtime, note that
we can replace ∣E(G)∣ in (5.3) by ∣V (G)∣. Indeed, asT is given as input, Algorithm5.2 does
not have to considerG directly, as it has a direct access to the local spanning trees via T,
each having at most ∣V (G)∣ edges.

Note that Theorem 5.1 in the previous section is the restriction of Theorem 5.8 above
to the special case that T is a complete guidance tree. Furthermore, Theorem 5.8 shows
that Algorithm 5.2 solves the SubtreeIsomorphism Relaxed problem of deciding sub-
graph isomorphism from trees into arbitrary graphs with one-sided error. That is, if Al-
gorithm5.2 returns “Yes”, then theanswer is alwayscorrect; o/w itmayhappen that there
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exists a spanning tree T of G such thatH ≼ T , butH /≼ S(T). This property holds also
for the algorithm in Chapter 4, which guarantees efficiency by explicitly considering a
polynomialnumber of (random) global spanning trees ofG. The importance of the result in
Theorem5.8 above is that it guaranteespolynomial timeeven for the case that thenumber
of local spanning trees in the bags ofT is bounded by a polynomial ofGwhich, in turn,may
however implicitly represent exponentially many global spanning trees in S(T) (cf. Sec-
tion 5.3 for a straightforward example of this case). This result may be of some indepen-
dent interest. Theorem5.8 gives rise to the followingpositive result on efficientmining of
frequent subtrees (without loss of generality, we formulate it for connected transaction
graphs):

Theorem 5.9. LetD be a finite set of connected graphs,TG = (TG,SG) be a guidance tree ofG for
allG ∈ D, and letD′ be the set of forests defined byD′ = {S(TG) ∶ G ∈ D}. Then for any positive
frequency threshold, the set of frequent subtrees of D′ can be generated with delay polynomial in the
combined size of the original datasetD and f ′, where f ′ is themaximum cardinality of the bags inTG
over allG ∈ D.

Proof. The proof follows directly from Theorem 4.2 together with Theorem 5.8.

Clearly, for all positive frequency thresholds, any frequent subtree ofD′ is at the same
time a frequent subtree of D as well. (The reverse direction does not hold for potential
incompleteness.) For the particular case, which is in the focus of this section, that the
bags in TG are some random subsets of the corresponding sets of all local spanning trees,
frequent subtrees ofD′ will be referred to as probabilistic frequent subtrees. We note that
this definition is different fromtheone introduced inChapter4. ApplyingTheorem5.9 to
this casewe have that probabilistic frequent subtrees can be listedwith polynomial delay
in the size ofD, whenever f ′ is bounded by a polynomial in the size ofD. We nowdiscuss
some algorithmic and implementation issues concerning the generation of such random
bags.

The notions of boosted probabilistic frequent subtrees and probabilistic frequent sub-
trees are connected. Consider a guidance treeTwhere each bag contains k local spanning
trees sampled independently and uniformly at random and fix some order on the span-
ning trees ineachbag. Then, by “gluing” togetherall “first” local spanning tree ineachbag,
we obtain a first global spanning tree. Continuing in this way with all “second”, “third”,
etc., we obtain k global spanning trees which are drawn independently and uniformly at
random (from the set of global spanning trees ofG). Let this set be calledSk(G). Recall
fromSection4.1.2 that this set canbe interpretedas a forest and is identical to the concept
with the same name considered in Chapter 4.

In the other direction, given a forestSk(G) of global spanning trees, we can construct
a guidance tree T = (T ,S) by choosing a root and splitting the k global spanning trees
into bags of k local spanning trees for each v ∈ V (T ). Hence, fixing eitherSk(G) orT and
computing the other as above, we have Sk(G) ≼ S(G) and the boosted algorithm con-
siders at least the k global spanning trees in Sk(G) (and possibly more, by considering
other combinations of local spanning trees). As a result, for a given graph database and
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Algorithm 5.3 Boosted Probabilistic Frequent SubtreeMining
input: a graph databaseD ⊆ G, frequency threshold t > 0 integer, and k > 0 integer
output: the set of frequent subtrees ofD′ = {S(TG) ∶ G ∈ D}
1: TD ∶= ∅
2: for allG ∈ D do
3: pick a root r ∈ V (G) and compute a guidance tree TG = (T ,S) s.t.

Sv is a set of k random spanning trees of B(v) for all v ∈ V (T )
4: addTG toTD
5: list all subtrees with frequency at least t inD′ = {S(TG) ∶ TG ∈ TD}

each set F of boosted probabilistic frequent subtrees, there exists a set F ′ ⊆ F of proba-
bilistic frequent subtrees. Furthernote that for this reasonTheorem4.4holds forboosted
probabilistic frequent subtrees as well: Considering a superset of global spanning trees
can only increase the success probability of the embedding operator.

5.2.1. Implementation Issues

Wenowdiscuss some algorithmic and implementation issues concerning the generation
of such random bags. Recall that Algorithm 4.1 simply samples k global spanning trees
for each graph in the database. We apply the same idea locally, that is, we sample k local
spanning trees for each bag of TG. Local spanning trees can be sampled in the same way
as global spanning trees, given the v-rooted components: A spanning tree of such an in-
ducedsubgraphB ofG canbegenerateduniformlyat randomin expected timeO (∣V (B)∣3)
using the algorithm of Wilson (1996). We can again improve on this time and achieve a
deterministic algorithm with O (∣E(B)∣ ⋅ log(∣V (B)∣)) runtime if the spanning trees are
not required to be drawn uniformly at random (cf. Section 4.1.3).

Regarding the practical implementation of this algorithm, we note that sampling the
spanning trees is actually never the dominating term. Following the idea of Theorem 5.9,
insteadof sampling local spanning trees anew for each invocationof the embedding oper-
ator, we select a root for allG ∈ D in a preprocessing step and consider the corresponding
tree skeleton T ofG. Algorithm 5.3 shows the pseudo code of this idea. For each v ∈ V (T )
we sample, with replacement, l spanning trees of the v-rooted components, where l ∈ N
is some user specified parameter. In case of sampling identical local spanning trees for a
block, we keep only one copy to speed up the algorithm. In particular, if all v-rooted com-
ponents are bridges for some v ∈ T , then the graph induced by the v-rooted components
is a tree. In this case, we can safely just use this tree once, instead of sampling l identical
spanning trees without changing the set of computed v-characteristics. We call such a
root trivial.

The global spanning trees in S(T) above, considered implicitly by our algorithm, are
random. They are generatedneither uniformlynor independently from the set of all span-
ning trees ofG, even if we sample the local spanning trees uniformly and independently
at random. This is due to the fact that any random local spanning tree picked for a non-
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trivial root contributes to at least two spanning trees in SG, whenever G (with respect
to the fixed root r) has at least two non-trivial roots. Our experimental results in Sec-
tion 5.2.2 below however show that despite this kind of dependency, the recall increases
by increasing values of l.

5.2.2. Experimental Evaluation
In this section we experimentally demonstrate the advantage of our algorithm mining
probabilistic frequent subtrees by sampling local spanning trees overAlgorithm4.1 sam-
pling global spanning trees. In what follows we will refer to the former technique as
boosted probabilistic subtree (BPS) and to the latter one as probabilistic subtree (PS) mining. In
particular, we show for different values of t that within time t, BPS considers a dramati-
cally larger number of spanning trees per graph on average compared to PS, resulting in
an improvement in terms of recall of frequent subtrees.

Our experiments clearly indicate that the amount of improvement strongly depends
on the structural properties of the transaction graphs at hand. The improvement ob-
tained for molecular graphs of small pharmacological compounds is negligible; we ob-
served this consistently on several such benchmark graph datasets. As already men-
tioned, most exact frequent pattern mining algorithms have an excellent performance
on this kind of graphs, with Gaston (Nijssen and Kok, 2005) being notably the fastest.
However, all these exact methods seem to be limited to this particular graph class, as
they were unable to produce any frequent patterns in feasible time, even for slightly
more complicated structures beyond molecular graphs (cf. Section 4.2). In particular,
for small neighborhood graphs extracted from social networks, none of the existing im-
plementations were able to return any frequent patterns. In contrast, already PS could
consistently produce an output having such a high recall (cf. Section 4.2.2) of frequent
patterns that makes BPS unnecessary for this kind of graphs. This is due to the fact that
suchneighborhoodgraphs typically contain only onebiconnected component andhence,
BPS and PS behave similarly on them.

If, however, the transaction graphs have exponentially many spanning trees and sev-
eral blocks at the same time, then PS is able to consider only a small fraction of all span-
ning trees, implying a negative impact on the recall. Such situations occur, for exam-
ple, in case of threshold graphs, which are defined by local neighborhood relationships be-
tween objects in a metric space. Two vertices representing two objects are connected by
an edge if andonly if the distance of the corresponding objects is smaller than somegiven
threshold (see Figure 5.3 for a threshold graph on 30 two-dimensional points). This kind
of graphs have different practical applications, for example in spectral clustering (von
Luxburg, 2007). While in that application field there are only rules of thumb on how to
choose a suitable threshold for a particular metric and clustering task, one is interested
in threshold graphs having a high edge density within each cluster and a low one among
the clusters. This requirement typically results in threshold graphs having multiple bi-
connected blocks that are connected by a few bridges only and hence, in a large number
of spanning trees. To demonstrate the advantage of BPS over PS, we have therefore con-
sidered threshold graphs in our experiments.
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Figure 5.3.: A threshold graph on 30 points in the 2D Euclidean unit square for d = 0.2.

In particular, we evaluate our methods on artificial graph data sets that simulate the
two-dimensional Brownianmotion over time (see Section 2.4). To obtain the dataset, we
generatedN = 200 graphs with n = 30 vertices with c ∈ {2,5,10,30} random colors. We
set d = 0.2 and µ = 0.02, as the threshold graphs induced by these numbers fulfilled the
desirable structural properties discussed above.

We first compare the average number of spanning trees and non-isomorphic span-
ning trees considered by the PS and BPS methods. As the resulting graphs may be dis-
connected (see, e.g., Figure 5.3), we extend our algorithms to this case as follows: We com-
pute the number of different5 spanning trees considered for each connected component
separately, sum them up, and normalize the result by the number of connected compo-
nents. To obtain the number of non-isomorphic spanning trees for each graph, we com-
pute a canonical string for each tree in the above two sets, count the number of different
strings, and again normalize by the number of connected components of the graph. No-
tice that the averagenumber ofnon-isomorphic spanning trees calculated in thisway can
be smaller than one (e.g. whenG hasmany singleton vertices with the same label).

Table 5.1 shows the average number of sampled spanning trees and that of non-
isomorphic spanning trees for the threshold graph dataset defined above for BPS and
PS. One can see that for all parameters k ∈ {2,5,10,30}, both the average number of sam-
pled spanning trees and the resulting non-isomorphic spanning trees is much larger for
BPS. For example, for 30 labels and k = 10we get on average only 4.51 different spanning
trees and 4.06 non-isomorphic spanning trees for PS. On the other hand, BPS considers
on average 2 606.08 different and 349.90 non-isomorphic spanning trees, when sam-
pling k = 10 local spanning trees for each biconnected block. In order to obtain a similar
number of non-isomorphic spanning trees on averagewithPS, onewouldneed to sample
at least 350 global spanning trees per graph.

An interestingobservation is that the fractionofnon-isomorphic spanning trees todif-
ferent trees considered is ratherdifferent forPSandBPS.While forPSalmost all sampled
trees are non-isomorphic, this fraction drops to below 20% for BPS and larger values of
k. We do not know whether this is because the overall number of non-isomorphic span-
5 Here, two spanning trees T,T ′ are identical if and only ifE(T ) = E(T ′). This is different from our usual
notion that graphs are equal if and only if they are isomorphic.
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2 Labels 5 Labels 10 Labels 30 Labels
k PS BPS PS BPS PS BPS PS BPS
2 1.44 4.89 1.44 4.98 1.43 4.81 1.44 4.74

0.94 2.57 0.98 2.59 0.98 2.65 0.99 2.62
3 1.87 29.91 1.87 32.44 1.86 28.13 1.86 31.66

1.33 7.89 1.40 9.15 1.41 8.63 1.41 9.68
4 2.27 118.78 2.27 102.48 2.27 112.12 2.26 100.03

1.70 21.44 1.78 23.82 1.80 29.69 1.81 24.81
5 2.66 243.88 2.66 243.44 2.66 230.08 2.65 265.21

2.04 38.58 2.16 44.67 2.19 53.97 2.20 53.69
6 3.04 510.26 3.03 465.82 3.04 490.62 3.05 498.13

2.40 63.13 2.53 77.55 2.56 91.49 2.60 99.82
7 3.42 865.82 3.43 880.51 3.42 789.28 3.41 883.88

2.73 99.16 2.91 117.07 2.93 129.55 2.96 141.80
8 3.79 1 364.81 3.77 1 382.15 3.80 1 306.57 3.77 1 231.39

3.06 147.61 3.24 161.30 3.31 183.91 3.32 187.95
9 4.16 1 996.29 4.17 1 979.02 4.14 1 888.02 4.15 1 816.81

3.38 200.06 3.62 251.41 3.65 257.12 3.70 277.92
10 4.51 2 717.93 4.51 2 744.65 4.51 2 868.81 4.51 2 606.08

3.79 260.56 3.97 326.28 4.02 364.06 4.06 349.90

Table 5.1.: Average number of spanning trees considered by PS andBPS. For each number
k of sampled global (resp. local) spanning trees for PS (resp. BPS) we report the
average number of sampled spanning trees per connected component in the
first rowand the resulting averagenumber of non-isomorphic spanning trees per
connected component in the second row.

ning trees is rather small or because of the fact that the combination of local spanning
trees results in many “similar” global spanning trees due to the dependency. We assume
the latter by stressing that the average number of non-isomorphic spanning trees is still
much larger than what can be achieved with a reasonable parameter k for PS.

Finally, we investigate the recall of frequent subtree patterns that can be obtained in a
given time budget. That is, we fix a (low) frequency threshold θ = 2% (corresponding to
the absolute frequency threshold of 4) and mine (probabilistic) frequent subtrees on the
threshold graphdatabase for increasing values of k until the algorithmexceeds a runtime
budget of 200 seconds. For a given value of k and for bothmethods PS andBPS,we repeat
themining algorithm ten times and average runtime and recall tomitigate for the effects
of the random samples. Figure 5.4 shows the number of frequent patterns found (y-axis)
per time (x-axis) for increasing values of the sampling parameter k. BPS obtains a signifi-
cantly larger number of frequent patterns per time than PS for all time budgets up to 200
seconds6. For example, for 10 colors, we obtain on average 73 396 patterns in 195 seconds
6 Note that according to this definition, the plots in Figure 5.4 can end before x = 200.
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Figure 5.4.: Recall curves for2%-frequent subtreeson the thresholdgraphdatabase forPS
and BPS for different numbers of vertex labels ranging from2 to 30. Each dot
corresponds to the average of 10 runs of the respective algorithms for some
given value of k, ranging from 1 to the number indicated in the legends.

for k = 59 using PS and 101 503 patterns for k = 36 for BPS, a 38.3% increase. Comparing
the runtimesnecessary to obtain a givenamount of frequent patterns, this difference gets
evenmore concrete. To obtain at least the same number of frequent patterns returned by
PS in at most 200 seconds, BPS needs only 148.77s, 106.74s, 109.52s, and 124.38s, for 2, 5,
10, and 30 vertex labels, respectively. Thus, on transaction graphs consisting of several
dense biconnected components, such as, for example, threshold graphs, BPS clearly has
a superior performance over PS.
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5.3. Exact Frequent Subtree Mining on Locally Easy Graphs
Recall that frequent subtrees canbemined efficiently in forest databases or if thenumber
of spanning trees in each transaction graphG is polynomial in the size ofG. Such graphs
will be referred to as easy graphs. We will now formally define this graph class and in-
vestigate some of its properties. Recall that frequent subtrees can bemined efficiently in
forest databases, ormore generally, in graphs having polynomiallymany spanning trees;
this follows from the results e.g. in (Chi et al, 2005; Horváth and Ramon, 2010). Such
graphswill be referred to as easy graphs. Except for forests, the class of easy graphs is typ-
ically uninteresting from a practical viewpoint, as even for relatively simple graphs be-
yond forests, thenumberof spanning treesusually grows exponentiallywith thenumberof
vertices. Our positive result extends to this practically and theoreticallymore interesting
situation by requiring easiness not for the entire graph, but only for local surroundings of
the vertices. Formally, a graphG is locally easy if for all v ∈ V (G), the number of spanning
trees of the union formed by the biconnected components ofG containing v is bounded
by a polynomial of ∣V (G)∣, i.e., fmax(G) = O (poly(∣V (G))∣) (cf. Section 5.1). In particu-
lar, for the case that it is bounded by p(∣V (G)∣) for some polynomial p (resp. by ∣V (G)∣)
we will speak of locally p-easy (resp. locally linearly easy) graphs. Clearly, all easy graphs are
locally easy, but a locally easy graphmay contain exponentiallymany spanning trees (see
Figure 5.5 for an example). We have the following result:

Theorem 5.10. The FTM problem can be solved with polynomial delay for locally easy transaction
graphs.

Proof. By Theorem 2.1, Algorithm 2.1 solves the FTM problem for locally easy transac-
tion graphs with polynomial delay whenever all conditions required are fulfilled. Condi-
tions 1 and 2 of Theorem 2.1 are straightforward whenP is restricted to the class of trees
and Condition 3 follows e.g. from (Shamir and Tsur, 1999). Finally, Theorem 5.1 immedi-
ately implies Condition 4 for tree patterns and locally easy transaction graphs.

Below we discuss some important properties of locally easy graphs implying the the-
oretical and practical importance of Theorem 5.10 above.

Property 1

The membership problem for locally easy graphs (i.e., whether a graph is locally easy or
not) can be decided in cubic time, implying that it can be checked in polynomial time for
any graph databaseDwhether or not Theorem 5.10 is applicable toD. More precisely, let
G be a graph and p be somepolynomial. One candecide in cubic timewhetherG is locally
p-easy byperforming the following steps: (i) Computefirst the set of all biconnected com-
ponents ofG, (ii) calculate the number of spanning trees for all blocks ofG, and (iii) check
for all v ∈ V (G)whether theproduct of these values for all biconnected components shar-
ing v is atmost p(∣V (G)∣). The claim above then follows by noting that (i) can be solved in
linear (Tarjan, 1972) and (ii) in cubic time using Kirchhoff’s theorem (see, e.g., Chap. 5.6
in Stanley and Fomin, 1999).
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. . .
⋮

Figure 5.5.: A locally easy graph with exponentially many spanning trees on the left and
a locally linearly easy graph of tree-width 4 on the right.

Property 2

Locally easy graphs may contain exponentiallymany spanning trees. As an example, con-
sider the graphG given in the left-hand side of Figure 5.5. It is locally linearly easy (for all
v ∈ V (G) there are at most 9 spanning trees in the union of the blocks containing v), still
it has altogether 3O(∣V (G)∣) spanning trees. This and other examples show that our result
formulated inTheorem5.10 is non-trivial, as the brute-force patternmatching algorithm
that decides whether a tree is subgraph isomorphic to a locally easy graph G by testing
subtree isomorphism for all spanning trees ofG becomes infeasible for such cases.

Property 3

The class of locally easy graphs contains some interesting graph classes for which the
FTM problem is computationally tractable. As an example, we mention the class of al-
most k-trees of bounded degree; a graph G is an almost k-tree for some k ≥ 0 integer, if
∣E(B)∣ ≤ ∣V (B)∣ + k for all blocks B ofG. One can decide in polynomial time whether a
tree is subgraph isomorphic to an almost k-trees of bounded degree (Akutsu, 1993). Com-
bining this result with Theorem 2.1 we have that the FTM problem can be solved with
polynomial delay for almost k-trees of boundeddegree. We canobtain this result directly
by Theorem 5.10 aswell because the class of locally easy graphs properly contains that of
almost k-trees of bounded degree. The strength of Theorem 5.10 is that it generalizes the
positive mining result above also to almost k-trees of unbounded degree that are locally
easy.

Property 4

The class of locally easy graphs is orthogonal to allmonotone parameterized graph classes.
Moreprecisely, a parameterized graph classG is a family of graph classes {Gi ∶ i ≥ 0} such that
(i) for every graphG there exists a non-negative integer iwithG ∈ Gi and (ii) Gj ⊊ Gj+1 for
all j ≥ 0. The smallest integer i satisfyingG ∈ Gi is denoted by IG(G). A parametrized graph
class G ismonotone if IG(G1) ≤ IG(G2)wheneverG1 ≼ G2, for all graphsG1,G2. The size,
order,maximumvertexdegree, tree-width, numberof spanning treesof agraphare some
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straightforward examples of IG defining monotone parameterized graph classes. An ex-
ample for some IG resulting in a non-monotone graph class would be the number of con-
nected or biconnected components. Using the above concepts, we are ready to formulate
the following claim:

Claim 5.11. For anymonotone parameterized graph classG = {Gi ∶ i ≥ 0} and for any integer k ≥ 0
there are infinitely many locally linearly easy graphs that are not in Gk .

Proof. Let G be amonotone parametrized graph class and letG1,G2,G3, . . . be a sequence
of graphs with IG(Gi) = i. Such a sequence exists by definition. For any i ∈ N, adding
new leafs to Gi does not decrease IG(Gi), as G is monotone. However, it will eventually
decrease the local easiness of the resulting graph: For all i ≥ 0, letm(Gi) be themaximum
number of spanning trees in the union of the biconnected components ofGi containing
v for any v ∈ V (Gi). By addingmax(0,m(Gi) − ∣V (Gi)∣) new leafs (i.e., vertices of degree
1) toGi in an arbitraryway, we obtain a locally linearly easy graphG′iwith IG(G′i) ≥ i and
m(G′i) =m(Gi) for all i ≥ 0. Thus, for any fixed k ∈ N,G′k+j ∉ Gk for all j ≥ 1, implying the
claim.

We illustrate the idea in the proof above on the monotone parametrized graph class
induced by the tree-width (see, e.g., Diestel, 2012). Consider the graph G on the right-
hand side of Figure 5.5. It is obtained from the complete graphKk on k vertices for some
k ≥ 3byaddingkk−2−k leafs to somevertex ofKk. On the onehand, the constructiondoes
not increase the tree-width, i.e., the tree-width ofG is equal to that ofKk. On the other
hand, asKk has exactly kk−2 spanning trees by Cayley’s formula, G is a locally linearly
easy graph. Since the construction in this example holds for any k ≥ 3, local easiness
implies no constant upper bound on the tree-width.

The choice of tree-width in the example above is especially interesting because fre-
quent subtrees of bounded degree can be generated with polynomial delay from graphs of
bounded tree-width. This follows from Theorem 2.1 together with the positive result of
Matoušek and Thomas (1992) on subgraph isomorphism between bounded tree-width
graphs. This and other examples provide evidence that our main result formulated in
Theorem5.10 extends (or complements) several results on the (fixedparameter) tractabil-
ity of the FTM problem for variousmonotone parametrized graph classes for which sub-
graph isomorphism from a tree can be decided in polynomial time. We note, for exam-
ple, that in the systematic overview of the parameterized complexity of subgraph iso-
morphism by Marx and Pilipczuk (2014), 9 out of the 10 parameters considered result
inmonotone graph classes. Hence, our result extends the positive results in theirwork to
the case that the patterns are restricted to trees.

Property 5

Most of the molecular graphs considered in chemoinformatics are actually locally easy.
To confirm this observation, we first provide a sufficient condition for local easiness. Let
G be a graph and let c, k ≥ 0 be integers. Then G is degree-k easy if each block of G has at
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mostO(∣V (G)∣k) spanning trees and it is of block degree-c if each vertex v ofG belongs to
at most c distinct blocks.7 Clearly, if G is degree-k easy and of block degree-c for some
constants k and c, thenG is locally easy.

Many of the chemical graphs of pharmacological compounds are d-tenuous outerpla-
nar graphs for d ≤ 5 (Horváth et al, 2010). Informally, each block of such a graph is a pla-
nar graph composed of a single Hamiltonian cycle and atmost d non-crossing diagonals.
Clearly, d-tenuous outerplanar graphs are degree-(d + 1) easy. Furthermore, chemical
graphshave typically someverysmallblockdegreebecause theyhavesmall vertexdegree.
Thus, most chemical graphs are locally easy. To support this claim experimentally, we in-
vestigated local easiness for the graphs in the Zinc dataset8. Our version of the database
contains 8 946 757 “lead-like” compounds. It turns out that for 8 640 166 (96.57%) graphs,
themaximumnumber of spanning trees in all blocks containing any vertex (i.e.,m(G)) is
smaller than ∣V (G)∣, for 302 541 (3.38%) it is smaller than ∣V (G)∣2, for 1 864 (0.02%) it is
smaller than ∣V (G)∣3, and only for the remaining 2 186 (0.02%) graphs this number was
larger than ∣V (G)∣3. Thus, by our result in Theorem 5.10, all frequent trees can be gener-
ated from such chemical graphs with polynomial delay. This complements the positive
result of Horváth et al (2010) on mining frequent connected subgraphs from d-tenuous
outerplanar graphs with respect to a constrained subgraph isomorphism operator.

5.4. Summary and Open Questions
In this chapter we have extended our probabilistic frequent subtree mining framework
to increase the pattern recall. This was achieved by a novel embedding operator that is
able to implicitly consider an exponential number of spanning trees in polynomial time.
The resulting set of boosted probabilistic frequent subtrees of a graph database is at least
as large as a corresponding set of (normal) probabilistic frequent subtrees while giving
the same guarantees. While the amount of improvement in recall per runtime is impres-
sive for threshold graphs and for other potential graph classes satisfying the structural
properties discussed in Section 5.2, it is marginal e.g. for chemical or small neighbor-
hood graphs extracted from social networks. This raises the practical question whether
we can devise a fast practical method to decide for a given graph database (possibly for
each graph separately), whether probabilistic frequent subtrees should be mined sam-
pling global (Chapter 4), or local (Chapter 5) spanning trees.

As a second achievement we have proposed a polynomial delay FTM algorithm for
graph databases consisting of locally easy graphs. This extends on previously known re-
sults w.r.t. the complexity of the FTM problem, as well as the SubtreeIsomorphism
problem. Finding non-trivial transaction classeswhere the FTMor FCSMproblemshave
efficient solutions is an important challenge for graphmining, not only from theoretical,
but also from practical aspects.

7 Note that the vertex degree is an upper bound on the block degree.
8 Obtained from http://zinc.docking.org

93

http://zinc.docking.org


5. Boosted Probabilistic Frequent Subtrees

It would be interesting to understand how far the positive result of this chapter on
exact frequent subtree mining can be generalized to other pattern classes beyond trees.
Perhaps the first natural question towards this direction would be to ask whether it is
possible to generate frequent locally easy subgraphs (in arbitrary transaction graphs) with
polynomial delay. In order to calculate the v-characteristics for a root vertex v with re-
spect to a vertex u in the pattern, our algorithm combines at most two sets of spanning
trees at any time and assumes that neither u nor the vertices in its local environment
are contained in a cycle. Therefore, in order to apply the algorithm to the more general
patterns of locally easy graphs, we need to work with the spanning trees of certain local
environments of u. However, in contrast to the transaction graphs, it may happen that
such spanning trees are composed of the combination of the spanning trees of the blocks
for a non-constant number of root vertices of the pattern graph. In such a case, an expo-
nential number of spanning trees must be processed. This indicates that, if it is possible
at all, such a generalization would require somemore sophisticated approach.

Finally we give arguments clearly indicating the significance of generalizing the posi-
tive result in Theorem 5.10 to transaction graphs beyond locally easy graphs. We suspect
that obtaining such a generalization is at least as hard as solving the millennium prob-
lem P versusNP. In particular, it is natural ask to whether frequent subtrees can be gen-
erated with polynomial delay also from transaction graphs for which we only require the
number of spanning trees per block to be bounded by a polynomial in the size of thewhole
graph (i.e., we do not assume any constant upper bound on the block degree). In con-
trast to locally easy graphs, subgraph isomorphism from trees into this type ofmore gen-
eral graphs becomes NP-complete, even for the very simple class of cactus graphs (i.e., in
which each block is a simple cycle, Akutsu, 1993). We do not know the answer to the ques-
tion above, not even to the case of cactus transaction graphs, as discussed in Section 2.2.2.
That is, even if the blocks are restricted to cycles, subgraph isomorphism becomes NP-
complete if the number of local spanning trees is not bounded by a polynomial, or, more
generally, the block degree is not constant. This shows, that the exact algorithms dis-
cussed in this chapter is on the border between tractability and intractability of both the
FTM and SubtreeIsomorphism problems.
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In the previous two chapters we have devised efficient methods to find probabilistic fre-
quent subtrees in arbitrary graph databases. While these patterns may be of interest by
themselves in someapplications (Borgelt andBerthold, 2002), frequent subgraphmining
usually tends tobeonly thefirst tool ina chainofprocessing steps fromdata toknowledge.
That is, one common usage of frequent subgraphs is to use them as features to represent
graphs in a feature space, equippedwith somemetric to employ distance-based learning
methods. We have already seen such examples in Sections 1.1 and 4.2, where we have
trained a support vector machine on the feature representations spanned by probabilis-
tic frequent subtrees. We will proposepractically fast and theoretically efficientmethods
to compute such a feature vector f⃗ for any graphG, given a set of (probabilistic frequent)
tree patternsF .

Of course, the generic levelwise algorithm presented in Section 2.2 can be easily ex-
tended to output not only the frequent patterns, but also their support sets, in a given
graph database. This, however, does not suffice in most realistic scenarios: When train-
ingamodel,wewould like toapply it later tomakepredictions fornoveldata. That is, given
anunseen graphG (usually drawn from the samedistribution as the training dataset), we
need to compute its embedding into the Hamming space spanned by frequent (probabilis-
tic) subtrees. In the context of chemoinformatics, for example, onemightwant to predict
whether a newly discovered or previously not synthesizable molecule is expected to be
active against a certain disease based on amodel learned on one of the datasets presented
inSection2.4. Another examplemight be traces of thebrowsingbehavior of users that ar-
rive as a stream and should be targeted by different ads. In these settings some (or most)
graphs are not available at the time ofmining andwe hence need an efficientway to com-
pute feature representations of such graphs in order to apply amodel to them.

However, the embedding step is mostly neglected in the frequent subgraph mining
community. Most papers in the graph mining context ignore this obvious second step
and focus on the enumeration of frequent subgraph patterns only. The lack of interest
might be explained by the existence of two immediate solutions, namely

Brute Force: We can compute the embedding f⃗ by evaluating the embedding operator
for all patterns inF and the novel graphG.
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Restricted FCSM: The embedding computation problem is a special case of the FCSM
problem for a finite class of tree patternsF (namely the frequent trees identified in
the previousmining step) and a graph database consisting of the single graphG.1 f⃗
is the incidence vector of the 1-frequent elements ofF in the database {G}.

Both views might have lead the authors in the graph mining community to believe the
problem to be uninteresting; it is easy to code up both solutions, once themachinery for a
frequent subgraphmining algorithm has been implemented. However, both approaches
suffer from the necessity to evaluate the embedding operator on a large number of pat-
terns. As we will show in this section, impressive practical speedups can be gained by
using some additional structure on the pattern set and the fact that it is explicitly given.

Recall from Section 2.1 that the SubtreeIsomorphism problem is NP-complete.
Hence, both formulations above are computationally intractable. If we give up the de-
mand on the correctness of the pattern matching operator (i.e., subgraph isomorphism),
as in the previous chapter, we can compute the set of allH ∈ F that are found to be sub-
graph isomorphic by one of our embedding operators in polynomial time using both the
restricted FCSM and the brute force approach. However, each call to the embedding op-
erator still induces a nontrivial cost and hence we can drastically improve the speed of
the embedding computation by reducing the number of calls to the embedding opera-
tor. Subgraph isomorphism induces a partial order on the pattern set in which it is anti-
monotone. Thereforewe can infer for certainpatternswhether ornot theymatch a graph
from the evaluations already performed for other patterns. We propose two such strate-
gies. One is based on a greedy depth-first search traversal, the other uses binary search on
paths in the pattern poset. We empirically show that both algorithms drastically reduce
the number of embedding operator evaluations compared to thementioned two immedi-
ate solutions.

The high dimensionality of the resulting feature space often results in practically in-
feasible time and space complexity for distance-based learningmethods. Time and space
requirements can, however, be significantly reduced by usingmin-hashing (Broder, 1997),
an elegant and powerful probabilistic technique for the approximation of the Jaccard-
similarity. Given a binary feature vector f⃗ and a permutation π of f⃗ , themethod is based
on calculating the min-hash value hπ(f⃗), which is the position of the first pattern H
matching G, i.e. the position of the first occurrence of a one in the permuted order of
f⃗ . For the feature set formed by the set of all paths up to a constant length, min-hashing
has already been applied to graph similarity estimation by performing the embedding
explicitly (Teixeira et al, 2012). We show for the more general case of tree patterns of arbi-
trary size that for a feature vector f⃗ and permutation π, hπ(f⃗) can be computed without
calculating f⃗ . We utilize the fact that we are interested in the first occurrence of a one in
the order corresponding to π; once we have found it, we can stop the calculation, as all
patterns after hπ(f⃗) are irrelevant for min-hashing. Beside this straightforward speed-
up of the algorithm, the computation of the min-hash sketch can further be accelerated
1 Using Algorithm 2.1, we can check efficiently whether a generated pattern is contained in the finite set
F using a canonical string function and a trie, as described in Section 2.1. However, more sophisticated
implementations of this check are possible, as discussed later in this chapter.
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by utilizing once more the anti-monotonicity of subgraph isomorphism on the pattern
set. These facts allow us to define a linear order on the patterns to be evaluated and to
avoid redundant subtree isomorphism tests.

The experimental results presented in Section 6.3 clearly demonstrate that our tech-
niques can dramatically reduce the number of subtree isomorphism tests with respect to
the algorithm performing the embedding by first explicitly computing f⃗ and then apply-
ingmin-hashing. It is natural to ask how the predictive performance of the approximate
similarities compares to the exact ones. We show that even for a few random spanning
trees per chemical compound and a smallmemory requirements of themin-hash sketch,
remarkable precisions of the active molecules can be obtained by taking the k nearest
neighborsof anactive compound fork = 1, . . . ,100. Theprecisionvalues are close to those
obtained by the full set of frequent subtrees. In a second experimental setting, we analyze
the predictive power of support vector machines using our approximate similarities and
show that it compares to that of state-of-the-art relatedmethods.

Outline

The rest of this chapter is organized as follows: In Section 6.1 we first discuss how to com-
pute complete embeddings. Next, in Section 6.2, we move on to partial embeddings for
min-hashing in subtree feature spaces. We report experimental results evaluating the
practical efficiency of our algorithms in Section 6.3 and also address the predictive per-
formance of the min-hash based approximate distance function. Finally, in Section 6.4
we conclude andmention some interesting directions for further research.

6.1. Complete Embeddings into Subtree Feature Spaces
In this section we deal with the problem of computing complete embeddings into Ham-
ming feature spaces spanned by a given set of tree patterns. The algorithms presented
can be applied to the special case of probabilistic frequent subtrees as well. More pre-
cisely, we consider the following problem:

Tree Embedding Computation (TEC) Problem: Given a setF of trees and a graph
G, compute the incidence vector f⃗ of the set {T ∈ F ∶ T ≼ G}.

We regardF as the poset (F ,≼) and assumewithout loss of generality that the empty tree
� is an element of F and that F is closed under taking subgraphs modulo isomorphism.
We also assume that the poset (F ,≼) is provided as a directed acyclic graph F = (F ,E)
with (T1, T2) ∈ E if and only if T1, T2 ∈ F , ∣V (T2)∣ = ∣V (T1)∣ + 1, and T1 ≼ T2.

Clearly, the TECproblem isNP-complete. Therefore, we relax it in away similar to the
relaxation of the FTMproblem to the FTM Relaxed problem in Chapter 4 and approximate
the incidence vector f⃗ of {T ∈ F ∶ T ≼ G}by the incidence vector f⃗ ′ of {T ∈ F ∶ T ≼S(G)}.
Here, we allow the forest S(G) to be either Sk(G) for some k ∈ N using the techniques
from Chapter 4 or S(T) for some guidance tree T with bag size k using the techniques
fromChapter 5. While this relaxationmakes the TECproblem computationally tractable,
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each invocation of the probabilistic matching operator adds a non-negligible amount of
work, i.e., O (kn2.5/ logn) time for computing subgraph isomorphism from trees into
forests (Shamir andTsur, 1999), respectivelyO (k2n2.5/ logn)) time, corresponding to the
runtime of Algorithm 5.2. This super-quadratic and in practice notable complexity mo-
tivates us to minimize the number of calls of the probabilistic matching operator while
computing f⃗ ′. Wepresent three algorithms for computing f⃗ ′ that significantly reduce the
number of probabilistic patternmatching evaluations in practice compared to the brute-
forcealgorithmcalling theembeddingoperator ∣F ∣-times. Wenote that all threemethods
can be applied without any change to other embedding operators as well, as long as they
are anti-monotone with respect to the partial order induced onF .

Notice that computing f⃗ ′ for G is equivalent2 to computing all frequent subtrees of
the graph database D = {G} for frequency threshold 1, where the pattern language is
restricted toF . As a baseline approach we generate the set of matching patterns with lev-
elwise search (Mannila and Toivonen, 1997), i.e., with breadth-first search traversal of F
starting at � and pruning by utilizing the anti-monotonicity of the embedding operator
on (F ,≼). This algorithm, referred to as Levelwise from now on, evaluates the proba-
bilistic pattern matching operator exactly for all patterns that probabilistically matchG
and for all patterns in the negative border, i.e., which do not probabilistically match G,
but all their subgraphs inF do.

Levelwise is optimal in the sense that it evaluates only thosenon-matchingpatterns
that are in the negative border (Mannila and Toivonen, 1997). However, one call to the
embedding operator is required for each matching pattern. As F is given explicitly, we
can reduce this number by leveraging the anti-monotonicity of the embedding operator
downwards as well: If a pattern T matches G all of its subgraphs match G as well and
therefore need not be evaluated explicitly. Note that the number of such subgraphs can
be exponential in the size of T . In F , there is a directed path from each such pattern to T .
Hence, a traversal strategy that visits large patterns before the evaluation of all of their
subgraphs can reduce the number of calls to the embedding operator. This idea can be
implemented in several ways; we will present two different such traversal strategies.

We first consider a simple greedy search instead of the levelwise traversal of F , that al-
ready works quite well in practice, as we will see in Section 6.3. It reduces the number of
embedding operator evaluations on matching patterns by traversing the supergraphs of
a matching pattern before the evaluation of their subgraphs. However, it might evaluate
non-matching patterns as well that are beyond the negative border. Our experiments in-
dicate that the number ofmatches that are not explicitly evaluated usually outweighs that
of non-matching patterns beyond the negative border that are evaluated by the greedy
search.

Our implementation of this greedy strategy, called Greedy, is depicted in Algo-
rithm 6.1. The algorithm iterates through every pattern from small to large and starts
a depth-first search (DFS) traversal on each pattern for which the outcome of the em-
bedding operator is yet unknown and backtracks once a non-matching pattern is found.
It encodes the value of the embedding operator on a pattern in a ternary state variable,

2 In the sense that there exist polynomial time reductions between the two problems.
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Algorithm 6.1Greedy
Input: A graphG and a directed graph F = (F ,E) representing the poset (F ,≼)

Output: {T ∈ F ∶ T ≼S(G)}

1: set state[T ] ∶= unknown for all T ∈ F
2: fixS(G)
3: for T ∈ F in a topological order do
4: DFS(S(G), T, state,F )
5: return {T ∈ F ∶ state[T ] =match}

6: procedureDFS(S(G), T, state,F )
7: if state[T ] = unknown then
8: if T ≼S(G) then
9: for T ′ with (T,T ′) ∈ E doDFS(S(G), T ′, state,F )

10: set state[T ′] =match for all T ′ that can reach T in F .
11: else
12: set state[T ′] = noMatch for all T ′ reachable from T in F .

which can take the values match, noMatch, and unknown. While Greedy is running,
it updates the state of patterns according to the anti-monotonicity of subgraph isomor-
phism. Due to the fact that we mark subgraphs of matching patterns as matches, it will
likelyhappen that the stateof someorall direct supergraphsof apattern is alreadyknown
during backtracking. However, the state of some other (larger) supergraphs might still
be unknown. Hence a single invocation of a DFS starting at � would not suffice to guar-
antee that every pattern has been visited. Note that the state of each pattern changes
from unknown to eithermatch (Line 10) or noMatch (Line 12) whenever the embedding
operator is evaluated in Line 8. Due to Line 7 this means that the operator is evaluated at
most once for eachpattern. The remaining runtimeof Greedy is boundedbyO (∣E(F )∣):
The recursion on the edges only happens when the embedding operator is evaluated on
a pattern, which can happen only once as we have seen above. Second, Lines 10 and 12
can be implemented by a BFS or DFS that only traverses patterns in F (respectively the
reverse graph of F ) whose state is unknown.

As a second idea to use anti-monotonicity for pruning non-matching patterns as well
as matching patterns, we propose BinarySearch described in Algorithm 6.2. The al-
gorithm iteratively searches longest paths in the part of the directed graph F for which
the value of the embedding operator is still unknown. Such a directed path P in F corre-
sponds to a chain in the partial order (F ,≼). Due to the anti-monotonicity of the embed-
ding operator for a fixed graphG there are three cases: (1) All patterns in P matchG, (2)
no patterns in P matchG, or (3) there is a unique pattern T in P whose descendants in P
all match andwhose successors in P all do notmatchG. BinarySearch regards such a
path P in F as an array and searches T inO (log ∣V (P )∣) time, all the while maintaining

99



6. Fast Computation in Probabilistic Subtree Feature Spaces

Algorithm 6.2 BinarySearch
Input: A graphG and a directed graph F = (F ,E) representing the poset (F ,≼)

Output: {T ∈ F ∶ T ≼S(G)}

1: set state[T ] ∶= unknown for all T ∈ F
2: fixS(G)
3: for T ∈ F in a topological order do
4: if state[T ] = unknown then
5: let P be a longest path in F starting at T such that

∀T ′ ∈ V (P ) state[T ′] = unknown
6: BinarySearch(S(G), P, state,F )
7: return {T ∈ F ∶ state[T ] =match}

8: procedure BinarySearch(S(G), P, state,F )
9: min ∶= 1

10: max ∶= length(P )
11: whilemin ≤max do
12: let i ∶= ⌊(min +max)/2⌋
13: let T ∶= P [i]
14: if state[T ] = unknown then
15: if T ≼S(G) then
16: set state[T ′] =match for all T ′ that can reach T in F .
17: else
18: set state[T ′] = noMatch for all T ′ reachable from T in F .
19: if state[T ] =match then
20: min ∶= i + 1
21: else
22: max ∶= i − 1

the deducible state of the patterns in F . It is noteworthy that long paths are beneficial
for the runtime of this algorithm, as the difference between logx and x increases with
growing x.

Using similar arguments as in the discussion of Algorithm 6.1 above, one can show
that Algorithm 6.2 is correct and evaluates the matching operator at most once for each
tree pattern. A longest path starting at a given pattern in the part of F where the state of
patterns is unknown can be implemented by a DFS. However, in contrast to the traversal
of F to maintain the state, there is no guarantee that a given edge is traversed at most
once and in total no better bound than O (∣E(F )∣2 + ∣V (F )∣ ⋅ f(G)) can be given for the
runtime of Algorithm 6.2. During our empirical evaluation, however, we saw that the
runtime of BinarySearchwas still dominated by the calls to thematching operator.
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6.2. Min-Hashing in Subtree Feature Spaces
In this section we discuss another application of probabilistic frequent subtrees by con-
sidering the problem of computing the Jaccard-similarity between feature vectors in the
Hamming space spanned by probabilistic frequent subtrees. The Jaccard-similarity (of-
ten also calledTanimoto kernel) is awell-established and commonlyused similaritymea-
sure in subgraph feature spaces (see, e.g., Gärtner et al, 2003; Teixeira et al, 2012). Despite
the redundancies among the subgraph features it has a number of successful practical ap-
plications (see, e.g., Willett, 2006, for its application in computational chemistry). More
precisely, we consider the following problem:

The Jaccard Similarity Problem: Given a set F of probabilistic frequent subtrees
and two graphs G1,G2 with random forests S(G1),S(G2), respectively, compute
the Jaccard similarity

SimJaccard(f⃗1, f⃗2) ,

where f⃗i is the incidence vector of the set of trees inF that are subgraph isomorphic
toS(Gi) (i = 1,2).

Insteadof using thenaive brute-force algorithm, i.e., performingfirst the explicit embed-
dings ofS(G1) andS(G2) into the Hamming space spanned by F and calculating then
the exact value of SimJaccard(f⃗1, f⃗2), we follow Broder’s probabilistic min-hashing tech-
nique (Broder, 1997) sketched in Section 2.3. Though the description below is restricted
to tree shaped patterns, the approach can naturally be adapted to any partially ordered
pattern language and anti-monotone embedding operator.

Min-hashing was originally applied to text documents using q-shingles as features
(i.e., sequences of q contiguous tokens for some q ∈ N), implying that one can calculate
the explicit embedding in linear time by shifting a window of size q through the docu-
ment to be embedded. In contrast, a naive algorithmembedding the forestS(G) into the
Hamming space spanned byF would require ∣F ∣ calls to the embedding operator, each of
which induces superquadratic cost in the worst case. This is practically infeasible when
the cardinality ofF is large, which is typically the case. Another difference between the
two application scenarios is that while the set of q-shingles for text documents forms
an anti-chain (i.e., the q-shingles are pairwise incomparable), subgraph isomorphism in-
duces a natural partial order onF , as we have seen in the previous section. The transitivity
of subgraph isomorphismallowsus to safely ignore features fromF that donot influence
the outcome ofmin-hashing, resulting in amuch faster algorithm.

To adapt themin-hashing technique to the situation that the patterns form a nontriv-
ial partial order and embedding computation is expensive, we proceed as follows: In a
preprocessing step, directly after the generation of F , we generateK random permuta-
tionsπ1, . . . , πK ∶ F → [∣F ∣]ofF andfixthemforcomputing themin-hashvalues thatwill
be used for similarity query evaluations (cf. Section 2.3). We assume that our algorithm
will be applied to a largenumberof transactiongraphsand that the runtimeof computing
the embeddings will dominate the overall time complexity. Hence we can allow prepro-
cessing time and space that is polynomial in the size of the pattern set F . Therefore, we
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explicitly compute and store π1, . . . , πK , and do not apply any implicit representations of
them.3 This is particularly true, aswe computeF explicitly in the preprocessing step and
invest time that is polynomial inF anyway.

For a graphGwith a random forestS(G) and for a permutation π ofF , let
hπ(G) = argmin

T ∈F
{π(T ) ∶ T ≼S(G)} .

The sketch ofGwith respect to π1, . . . , πK is then defined by
Sketchπ1,...,πK(G) = (hπ1(G), . . . , hπK(G)) .4

The rest of this section is devoted to the following problem: Given π1, . . . , πK and a graph
G with forest S(G) as above, compute Sketchπ1,...,πK(G). The first observation that
leads to an improved algorithm computing Sketchπ1,...,πK(G) is that for any i ∈ [K],
the setF may contain trees that can never be the first matching patterns according to πi.
Indeed, suppose we have two patterns T1, T2 ∈ F with T1 ≼ T2 and πi(T1) < πi(T2). Then
forS(G)we have either

1. T1 ≼S(G) and hence T2 is not the first matching pattern in πi or

2. T1 /≼S(G) and hence T2 /≼S(G) by the transitivity of subgraph isomorphism.
For both cases, T2 will never be the first matching pattern according to πi and can there-
fore be omitted from this permutation. Algorithm 6.3 implements this idea for a permu-
tationπ ofF . It filters the permutationπ and returns an evaluation sequenceσ by traversing
π in order and removing all patterns forwhich Case 1 or 2 hold. This evaluation sequence
can be substituted for the permutation to compute the min-hash values, as stated in the
following lemma:
Lemma 6.1. Let σ = ⟨T1, . . . , Tl⟩ be the output of Algorithm 6.3 for a permutation π ofF . Then,
for any graphGwithS(G),

hπ(G) = argmin
Ti∈σ

{i ∶ Ti ≼S(G)} .

Proof. LetH = hπ(G), i.e.,H = argminT ∈F {π(T ) ∶ T ≼S(G)} and letH ′ = argminTi∈σ{i ∶
Ti ≼ S(G)}. The output of Algorithm 6.3 only contains elements of π (Line 7) and main-
tains their order, i.e., if T comes before T ′ in σ, then π(T ) < π(T ′). Hence, π(H) ≤ π(H ′).
It only remains to show thatH is contained in σ. IfH is not appended to σ in Line 7 then
visited(H) = 1must have held in Line 4. Hence, there must have been a T beforeH in π
such that T ≼ H . However,H ≼ S(G) implies T ≼ S(G), contradicting our assumption
H = hπ(G).

Algorithm 6.3 runs in timeO (∣F ∣). The loop starting in Line 5 can be implemented by
a DFS that does not recurse on the visited neighbors of a vertex. In this way, each edge of
F is visited exactly once during the algorithm.
3 See (Broder et al, 2000) for the details of implicitly representing permutations viamin-wise independent
hash functions.

4 In practice, we do not store the patterns in Sketchπ1,...,πK (G) explicitly. Instead, we define some arbi-
trary total order onF and represent each pattern by its position according to this order.
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Algorithm 6.3 PosetPermutationShrink
Input: directed graph F = (F ,E) representing a poset (F ,≼) and permutation π ofF

Output: evaluation sequence σ = ⟨T1, . . . , Tl⟩ ∈ F l for some 0 < l ≤ ∣F ∣with π(Ti) < π(Tj)
for all 1 ≤ i < j ≤ l

1: Initialize σ ∶= empty list
2: Initialize visited(T ) ∶= 0 for all T ∈ F
3: for all T ∈ F in the order of π do
4: if visited(T ) = 0 then
5: for all T ′ ∈ F (including T ) that are reachable from T in F do
6: set visited(T ′) ∶= 1
7: append T to σ
8: return σ

We now turn to the computation of Sketchπ1,...,πK(G) for a graph G with S(G). A
straightforward implementation of calculating Sketchπ1,...,πK(G) for the evaluation se-
quencesσ1, . . . , σK computedbyAlgorithm6.3 forπ1, . . . , πK just loops througheacheval-
uation sequence, stopping each time the first match is encountered. This strategy can
further be improved by utilizing the fact that a pattern T may be evaluated redundantly
more than once for a graph G with forest S(G), if T occurs in more than one permuta-
tion before or as the first match. Lemma 6.2 below formulates necessary conditions for
avoiding redundant subgraph isomorphism tests. To this end, let ∣σ∣ denote the number
of elements in an evaluation sequence σ.

Lemma 6.2. Let G be a graph with S(G) and let σ1, . . . , σK be the evaluation sequences com-
puted by Algorithm 6.3 for the permutations π1, . . . , πK of F . Let A be an algorithm that correctly
computes Sketchπ1,...,πK(G) by evaluating subgraph isomorphism in the pattern sequence Σ =
⟨σ1[1], . . . , σK[1], σ1[2], . . . , σK[2], . . .⟩. ThenA remains correct if for all i ∈ [K] and j ∈ [∣σi∣],
A skips the evaluation of σi[j] ≼S(G)whenever one of the following conditions hold:

1. σi[j′] ≼S(G) for some j′ ∈ [j − 1],

2. there exists a pattern T before σi[j] inΣ such that σi[j] ≼ T and T ≼S(G).

3. there exists a pattern T before σi[j] inΣ such that T ≼ σi[j] and T /≼S(G),

Proof. If Condition 1 holds then themin-hash value for permutation πi has already been
determined. If σi[j] ≼ T and T ≼S(G) then σi[j] ≼S(G) by the transitivity of subgraph
isomorphism. For the same reason, if T ≼ σi[j] and T /≼ S(G) then σi[j] /≼ S(G). Hence,
if Condition 2 or 3 holds then A can infer the answer to σi[j] ≼ Gwithout explicitly per-
forming the subtree isomorphism test.
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Algorithm 6.4Min-Hash Sketch
Input: graphGwith forestS(G), directedgraphF = (F ,E) representing aposet (F ,≼)

andK evaluation sequences σ1, . . . , σK computed by Algorithm 6.3 for the permu-
tations π1, . . . , πK ofF

Output: Sketchπ1,...,πK(G)

1: Initialize sketch ∶= [�, . . . ,�]
2: Initialize state(T ) ∶= unknown for all T ∈ F
3: for i = 1 to ∣F ∣ do
4: for j = 1 toK do
5: if ∣σj ∣ ≥ i ∧ sketch[j] = � then
6: if state[σj[i]] ≠ unknown then
7: if state[σj[i]] =match then sketch[j] = σj[i]
8: else if σj[i] ≼S(G) then
9: sketch[j] = σj[i]

10: Set state[T ′] =match for all T ′ that can reach T in F
11: else
12: Set state[T ′] = noMatch for all T ′ reachable from T in F
13: return sketch

Algorithm 6.4 computes the sketch for a graphGwithS(G) along the conditions for-
mulated inLemma6.2. Similarly to thealgorithms inSection6.1 itmaintainsastate forall
T ∈ F definedas follows: unknown encodes thatT ≼ G is unknown,match thatT ≼S(G),
and noMatch that T /≼S(G).

Theorem6.3. Algorithm6.4 is correct, i.e. , it returnsSketchπ1,...,πK(G). Furthermore, it is non-
redundant, i.e. , for all patterns T ∈ F , it evaluates at most once whether or not T ≼S(G).

Proof. ThecorrectnessofAlgorithm6.4 is immediate fromLemmas6.1and6.2. Regarding
its non-redundancy, suppose T ≼S(G) has already been evaluated for some pattern T =
σi[j]. Then, as T ≼ T , for any σi′[j′] = T after σi[j] inΣ either Condition 2 or 3 holds and
hence T ≼S(G)will never be evaluated again.

Once the sketches are computed for two graphsG1,G2, their Jaccard-similarity with
respect toF can be approximated by the fraction of identical positions in these sketches.
We define the similarity ofG1 andG2 with Sketchπ1,...,πK(G1) = Sketchπ1,...,πK(G2) =
(�, . . . ,�) by 0.

6.3. Experimental Evaluation
Wehave conducted various experiments on different real-world and artificial datasets to
evaluate themethods described in the previous section. We evaluate their speedmeasured
by thenumber of subtree isomorphism tests performed inSection 6.3.1 and show that our
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Dataset k θ ∣F ∣ Levelwise Greedy BinarySearch
MUTAG 5 10% 452 206.38 116.12 131.07
MUTAG 10 10% 543 244.11 148.02 163.04
MUTAG 15 10% 562 254.86 148.98 167.66
MUTAG 20 10% 573 260.18 151.82 173.91
PTC 5 10% 1430 321.04 175.32 193.84
PTC 5 1% 9619 734.79 411.26 472.86
PTC 10 10% 1566 354.20 191.70 209.26
PTC 20 10% 1712 376.65 206.36 228.60
DD 5 10% 8111 3 547.22 3 883.22 3 591.63
DD 10 10% 18137 6 670.93 7 417.47 6 731.36
DD 20 10% 33100 11 005.49 12 091.99 11 091.27
NCI1 5 10% 1819 431.19 284.74 303.03
NCI1 5 1% 21306 900.68 617.95 675.61
NCI1 20 10% 2441 557.70 364.23 392.65
NCI109 5 10% 2182 462.62 306.05 330.39
NCI109 5 1% 19099 886.06 607.39 670.34
NCI109 20 10% 2907 598.36 391.59 422.38

Table 6.1.: Average number of subtree isomorphism tests per graph of the algorithms
from Section 6.1 on different datasets and corresponding pattern sets F for
varying number k of random spanning trees and frequency thresholds θ.

methods drastically reduce this number compared to the brute-force and the levelwise
baseline algorithms discussed in Section 6.1. In Section 6.3.2 we finally evaluate the pre-
dictive and retrievalperformance of probabilistic frequent subtrees applied combinedwith
min-hashing in distance-basedmethods.

6.3.1. Efficiency Gains

We now empirically investigate the speedup of the methods proposed in Section 6.1 for
computing complete and partial embeddings into probabilistic frequent subtree (PFS)
feature spaces. (We recall that the methods in Section 6.1 are not specific to probabilis-
tic frequent tree patterns.) The main goal of the methods considered was to reduce the
number of subgraph isomorphism tests during the computation of the complete feature
vector or the min-hash sketch for a query graph. We assess their effectiveness from this
aspect by investigating the average number of subtree isomorphism evaluations (i.e., de-
ciding whether T ≼S(G)) per graph on various real-world datasets.

We start by investigating our methods computing complete embeddings. To obtain
probabilistic frequent subtree pattern sets, we have applied our frequent subgraph min-
ingmethod fromChapter 4with different values of k and θ to a randomly sampled subset
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of 10% of the graphs in each dataset.5 Using the resulting set of probabilistic trees and
the same k, we computed the binary feature vector for each graph in the datasets and cal-
culated the average number of calls to the pattern matching operator testing T ≼ S(G).
Table 6.1 shows the average number of subtree isomorphism tests per graph for the Lev-
elwise, Greedy, and BinarySearch algorithms (cf. Section 6.1). For comparison, we
report the cardinality of each pattern set as well (column ∣F ∣), which is the number of
patternmatching evaluations performed by the brute-force embedding algorithm. It can
be seen thatGreedyperformsbest in general, evaluating thematching operator on aver-
age only on 19.78%of all patterns. BinarySearchevaluates 20.49%,while Levelwise
27.47%of all patternsper graphonaverage. The rankingof themethods is consistent over
all datasets, except for DD, where the ranking is reversed; here, Levelwise evaluates
less patterns than BinarySearchwhich, in turn, evaluates less patterns than Greedy.
Overall, however,we can conclude thatGreedyandBinarySearch,whichprune both
negative and positive patterns, outperform the methods not pruning at all (brute-force)
or pruning only negative patterns (Levelwise). This is a significant improvement in
light of the super-quadratic complexity of the embedding operator.

We now compare our min-hash sketching technique (Algorithm 6.4) designed for
probabilistic frequent subtree patterns with the best naive complete embedding algo-
rithm from Table 6.1. It is important to note that our algorithm may perform more
subgraph isomorphism tests than the naive algorithm. This is due to the fact that, in con-
trast to the naive algorithm, we do not traverse F systematically, but randomly based on
the selected permutations. Table 6.2 shows the average number of subtree isomorphism
tests per graph together with the cardinality of the pattern set, for the same datasets and
pattern sets as inTable 6.1. Column “best naive” shows the averagenumber of evaluations
performed by the best method from Table 6.1. The last four columns are the results of
our algorithm for sketch sizeK = 32, 64, 128, and 256 respectively. One can see that Al-
gorithm 6.4 (columns MH32–MH256) performs dramatically less subtree isomorphism
tests than the brute-force algorithm (column ∣F ∣) and that it outperforms also the best
algorithm for complete embedding computation in all cases, except for θ = 1%. MH32
evaluates the matching operator on average on 4.74% of all patterns, while MH256 eval-
uates on average 12.92%. For example, on DD for k = 10 and θ = 10%, the best naive
algorithm (Levelwise) evaluates subtree isomorphism for 11 005 patterns per graph on
average, which is roughly one third of the total pattern set (∣F ∣), while our method eval-
uates subtree isomorphism 345 times on average for sketch size 32, ranging up to 2 190
times for sketch size 256. Compared to that, the best naive algorithm performs 6.6 (resp.
1.8) times as many subtree isomorphism tests as our method forK = 32 (resp. K = 256).
Again, this is a significant improvement in light of the high runtime complexity of the
embedding operator.

5 We focus our exposition here on the simpler embedding operator from Chapter 4 and note that the meth-
ods behave similarly using the boosted embedding operator from Chapter 5.
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Dataset k θ ∣F ∣ best naive MH32 MH64 MH128 MH256
MUTAG 5 10% 452 116.12 49.93 68.24 96.12 127.42
MUTAG 10 10% 543 148.02 42.77 63.77 90.57 125.39
MUTAG 15 10% 562 148.98 45.39 65.96 94.87 133.91
MUTAG 20 10% 573 151.82 55.34 76.32 105.15 135.11
PTC 5 10% 1430 175.32 70.07 102.62 121.12 156.12
PTC 5 1% 9619 411.26 236.31 327.27 475.35 611.92
PTC 10 10% 1566 191.70 79.63 108.59 109.44 147.91
PTC 20 10% 1712 206.36 17.60 25.81 31.49 39.62
DD 5 10% 8111 3 547.22 260.47 486.09 846.09 1 374.76
DD 10 10% 18137 6 670.93 317.82 568.23 1 072.58 1 936.42
DD 20 10% 33100 11 005.49 344.59 653.66 1 242.03 2 190.15
NCI1 5 10% 1819 284.74 89.12 137.75 185.22 221.21
NCI1 5 1% 21306 617.95 615.62 920.17 1 227.52 1 378.18
NCI1 20 10% 2441 364.23 115.07 183.54 220.14 255.58
NCI109 5 10% 2182 306.05 115.62 170.43 206.23 254.70
NCI109 5 1% 19099 607.39 532.38 727.15 1 057.18 1 348.27
NCI109 20 10% 2907 391.59 110.42 175.76 226.07 284.92

Table 6.2.: Average number of subtree isomorphism tests per graph needed to compute
min-hash sketches for different datasets and corresponding pattern setsF for
varying number of random spanning trees (k) and frequency thresholds θ. We
report the average number of subtree isomorphism tests evaluated by the best
naive method computing a complete embedding for each graph and by Algo-
rithm 6.4 forK = 32, 64, 128, and 256 (last four columns).

6.3.2. Predictive and Retrieval Performance
Finally we show that min-hashing in PFS feature spaces only slightly decreases the per-
formance of Hamming feature spaces spanned by complete sets of frequent subgraphs. In
fact, the min-hash probabilistic frequent subtree kernels yield results that are compara-
ble to the rbf-kernel over frequent subgraphs. To measure the retrieval performance of
probabilistic frequent subtrees, we use exact and approximate Jaccard-similarities over
PFS feature spaces to retrieve the closest molecules given a positive query molecule. We
show that the fraction of the closest molecules that are positive is much higher than the
baseline. These results again indicate that PFS feature spaces are well-suited to express
semantically relevant concepts in chemical graph datasets.

Graph Classification

We start by an empirical analysis of the predictive performance of PFS feature spaces in
the context of graph classification. We also consider the Jaccard-similarity. It induces
a kernel on sets, which is a special case of the Tanimoto kernel (see, e.g., Ralaivola et al,
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2005). Interestingly, its approximation based onmin-hashing is a kernel as well. Hence,
we can use probabilistic frequent subtrees and min-hash sketches in PFS feature spaces
together with these two kernels in support vector machines to learn a classifier. We use
5-fold cross-validation and report the average area under the ROC curve obtained using
libSVM (Chang and Lin, 2011) for the datasets MUTAG, PTC, DD, NCI1, and NCI109. We
omit the results with NCI-HIV because LibSVM was unable to process the Gram matrix
for this dataset. We note, however, that our algorithm required less than 10 (resp. 26)
minutes for sketch sizeK = 32 (resp. K = 256) for computing the Gram matrix for the
full set of NCI-HIV, while this time was 5.5 hours for the exact Jaccard-similarity. The
runtime of the preprocessing step to compute a set of probabilistic frequent subtrees on
a sample of the database is not counted for both cases, by noting that they were less than
threeminutes each.

To this end, we fixed the number of random spanning trees per graph to k = 5 and
sampled 10% of the graphs in a dataset to obtain the probabilistic frequent subtree pat-
terns of up to 10 vertices. In Table 6.3 we report the results for θ = 10% for our min-
hash method with sketch sizes K varying between 32 and 256 (first four rows), for ex-
act Jaccard-similarity (row “PFS (Jacc)”), and for the rbf-kernel (row “PFS (rbf)”), all using
probabilistic frequent subtrees generated with the parameters above. A lower frequency
threshold is practically unreasonable e.g. forMUTAG, as it contains only 188 compounds.
Wecompare the results obtainedwith frequent subgraphpatterns (FSG) (Deshpande et al,
2005) using the full set of frequent connected subgraphs of up to 10 vertices with respect
to the full datasets (i.e., not only for a sample of 10%) using the Jaccard (row “FSG (Jacc)”)
and rbf (row“FSG (rbf)”) kernels. Wealso report results obtainedby theHash-kernel (row
“HK”) (Shi et al, 2009), whichuses count-min sketching on random induced subgraphs up
to size 9.

One can see that the results of MH256 are close to those obtained by exact Jaccard-
similarities over probabilistic frequent subtrees (PSF (Jacc)), which, in turn, are close
to those obtained by exact Jaccard-similarities over all frequent subgraphs (FSG (Jacc)).
Thus, themin-hash kernel in PFS feature spaces performs only slightly worse than in or-
dinary frequent subgraph feature spaces (cf. MH256 vs. FSG (Jacc)). One can also observe
that themin-hash kernel outperforms the rbf-kernel in PFS feature spaces in all datasets,
except for DD (cf. MH256 vs. PSF (rbf)). It also outperforms the rbf-kernel in frequent
subgraph feature spaces on all datasets, except for NCI1 (cf. MH256 vs. FSG (rbf)). While
the Hash-kernel is the best by a comfortable margin onMUTAG, the contrary is true for
DD (cf. MH256 vs. HK).Most notably, it could not provide any result forNCI1 andNCI109
in practically reasonable time.

We also conducted these experiments for k = 20 random spanning trees. For identical
frequency threshold, the AUC improved by 3% onMUTAG, while only slightly changing
for the other datasets. Similar results to those in Table 6.3 were obtained when reducing
the frequency threshold of the methods to 1%: The AUC improved roughly by 1%, pro-
cessing time andmemory consumption, however, drastically increased.
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θ Method MUTAG PTC DD NCI1 NCI109
10% MH32 87.84 58.97 77.58 77.36 77.48
10% MH64 87.73 58.68 79.91 78.04 79.54
10% MH128 87.59 56.97 82.07 79.94 79.94
10% MH256 87.78 57.18 83.58 80.76 81.72
10% PFS (Jacc) 89.04 57.72 85.38 82.28 82.41
10% FSG (Jacc) 89.84 60.60 84.54 82.97 82.31
10% PFS (rbf) 84.22 54.17 84.67 79.09 78.05
10% FSG (rbf) 87.34 56.76 82.20 81.66 81.55

HK 93.00 62.70 81.00 n/a n/a

Table 6.3.: AUC values for our method (MH) for sketch sizes K = 32,64,128,256, k = 5
spanning trees per graph, and frequency threshold θ = 10% to obtain the fea-
ture set. “n/a” indicates that Shi et al (2009) did not provide results for the re-
spective datasets.

Overall, we can conclude that (1) the predictive performance of PFS feature spaces is
comparable to that of frequent subgraph features spaces for molecular graphmining, (2)
Jaccard-similarities (more precisely, the Jaccard-kernel) is a powerful similaritymeasure
for chemical graphs, and (3) themin-hash kernel in PFS feature spaces is a valid competi-
tor to the rbf-kernel in frequent subgraph feature spaces.

Positive Instance Retrieval

Finally we use a simple setup to evaluate the retrieval performance of min-hashing in
PSF feature spaces by comparing it to exact Jaccard-similarity in PFS feature spaces, as
well as to the path min-hash kernel (Teixeira et al, 2012). For the evaluation we use the
highly skewed NCI-HIV dataset. For each molecule of class A (i.e., “active”) of NCI-HIV,
we retrieve its i nearest neighbors (excluding the molecule itself) from the dataset and
take the fraction of the neighbors of class A. This measure is known in the Information
Retrieval community as precision at i. As a baseline, a random subset of molecules from
NCI-HIV is expected to contain less than 1% active molecules due to the highly skewed
class distribution. All methods show a drastically higher precision for the closest up to
100 neighbors on average than this baseline.

Figure 6.1 shows the average precision at i (taken over all 329 active molecules) for i
ranging from 1 to 100. The number k of sampled spanning trees per graph, as well as the
frequency threshold θ has a strong influence on the quality of ourmethod. To obtain our
results, we have sampled 5 (resp. 20) spanning trees for each graph and used a random
sample of 4 000 graphs to obtain pattern sets for thresholds θ = 10% and θ = 0.5% respec-
tively. We plot the min-hash-based precision for the four feature sets obtained in this
way by our algorithm as a function of i for sketch sizeK = 64. We have compared this to
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Figure 6.1.: Average fraction of “active” molecules among the i nearest neighbors of pos-
itive molecules in NCI-HIV dataset for path min-hash (Teixeira et al, 2012),
exact Jaccard-similarity for frequent probabilistic tree patterns, and for our
method withK = 64.

the precision obtained by the exact Jaccard-similarity for θ = 10% and k = 5, as well as to
the precision obtained by path min-hash (Teixeira et al, 2012), both for the same sketch
sizeK = 64.

The averageprecisionobtained for the exact Jaccard-similarities is slightly better than
that of path min-hash. While our method performs comparably to path min-hash for
θ = 0.5% and k = 5, for θ = 0.5% and k = 20 spanning trees it outperforms all other
methods.

We were not able to compute the precisions for θ = 1% and for k = 20 sampled span-
ning trees for the exact Jaccard-similarity. The Python implementation we used to cal-
culate the similarity computations for exact Jaccard-similarity was inapplicable due to
the high dimensionality of the feature space, independently of the sparsity of the feature
vectors. This indicates that the space required to compute the Jaccard-similarity is crucial
for high-dimensional feature spaces.

6.4. Summary and Open Questions
Many applications require to embed a large number of unseen graphs in a feature space.
Being able to efficiently compute such feature embeddings for arbitrary unseen graphs is
hence an important task. Though the probabilistic patternmatching operators discussed
in the previous two chapters canbe evaluated in polynomial time, each invocationduring
theembeddingofagraph intoprobabilistic frequent subtree feature spaces inducesanon-
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negligible amount of work. To accelerate the embedding, we introduced different strate-
gies to practically reduce the number of such calls by utilizing the anti-monotonicity of
(relaxed) subgraph isomorphism on the tree pattern poset. In particular, if one is inter-
ested in the Jaccard-similarity between two graphs then min-hash sketches can be com-
puted very efficiently in this way. We empirically demonstrated the effectiveness of our
algorithms, resulting in a theoretically efficient and practically effective system to em-
bed arbitrary graph databases or graph streams into probabilistic frequent subtree fea-
ture spaces. This complements the results of the previous two chapters on the efficient
mining of probabilistic frequent subtrees from arbitrary graph databases.

Our algorithms can easily be adapted to any finite pattern set and pattern matching
operator if the pattern matching operator induces a partial order on the pattern set in
which it is monotone or anti-monotone. They work, for example, if the pattern match-
ing operator is defined by exact subgraph isomorphismor graph homomorphism. While
the number of evaluations of the pattern matching operator can drastically be reduced
in this way, the complexity of the algorithm depends on that of the patternmatching op-
erator. The one-sided error of our probabilistic subtree isomorphism test seems to have
no significant effect on the experimental results. This raises the question whether we
can further relax the correctness of subtree isomorphism resulting in an algorithm that
runs in atmost sub-quadratic time, without any significant negative effect on the predic-
tive/retrieval performance.

Furthermore, it would be interesting to investigate whether the evaluation strategies
developed for the embedding computation have a positive effect in the context of ordi-
nary frequent treemining, as well. If we are only interested in frequent patterns and not
in their support sets in a given database, a variant of the Greedy algorithm can be used.
That is, we find maximal frequent patterns by depth first search and then generate all
subgraphs of maximal patterns, without checking their support in the database. Further
work, however, is needed to generate these subgraphs nonredundantly (given that some
of them might have been found already) and to efficiently identify the border and com-
pute the support of extensions of this border. Recall that this is necessary, as we do not
explicitly have the poset of frequent patterns given during themining phase, but wish to
compute it.
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7. Conclusion
We now discuss the significance of our results in a broader context and outline some di-
rections for future work. For amore detailed overview of the technical contributions, we
refer the reader to Section 1.2.

7.1. Discussion
In this thesis we have proposed a system that allows to apply distance-based learning
methods to arbitrary graph databases. This has been achieved by considering frequent
subtrees as patterns and by relaxing the requirement on the completeness of the min-
ing process and the embedding operator. In particular, we have defined probabilistic
frequent subtrees and shown that they can be mined with polynomial delay in arbitrary
graph databases. As a complementary contribution, we have shown how to quickly com-
pute feature vectors for arbitrary graphs, given a set of tree patterns that span the feature
space.

With these two steps, we have provided the required tools to apply probabilistic fre-
quent subtrees in real life learning scenarios. Here first a suitable feature representation
of an unknown graph distribution can be learned from a sample using the results from
Chapter 4 and 5. Second, a model can be learned that is based on a suitable similarity
measure on this feature representation. Finally, the model can be applied to new unseen
graphs, by computing first a feature representation using the results fromChapter 6 and
then feeding it to themodel.

Ourmethods do not assume any structural or other restriction on the graph databases
at hand. That is, the guarantee of polynomial delay holds for arbitrary graph databases
and allows to mine frequent probabilistic subtrees also in such graph databases where
state-of-the-art exact frequent subgraph and frequent subtree mining algorithms fail to
produce any output in practically feasible time. Most of these algorithms were devel-
oped for chemical applications and stop working for even slightly more complex graph
databases. Our method hence allows to compute frequent subtrees for graph databases
where these patterns could not be computed previously. Furthermore, the efficient com-
putation of feature representations for arbitrary graphs presented in this thesis allows
not only to inspect such patterns qualitatively, but to use them in real-world machine
learning applications.

Recall that the FCSM and FTM problems are computationally intractable. Hence any
practical algorithm has to trade-off among speed, correctness, and general applicability.
We have decided to maintain the general applicability and speed (in the sense of com-
putational complexity) by giving up the correctness of the algorithm. Interestingly, as a
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byproduct of ourmethods, we obtain a positive result on the complexity of exact frequent
subtree mining for locally easy graphs. That is, we propose a result that maintains the
correctness and speed properties, but gives up the general applicability.

Locally easy graphs restrict the number of spanning trees in certain subgraphs of a
graph without assuming any global structure. Its definition restricts only the block de-
gree of the transaction graphs, and allows an arbitrary number of bridges to be incident
to any vertex in the pattern and the transaction graph. Hence, we obtain the first positive
result on the SubtreeIsomorphism problem that we are aware of, which allows un-
bounded vertex degree of the pattern tree for transaction graphs beyond forests. The ver-
tex degree of the pattern is an important parameter of the complexity of the Subgraph-
Isomorphism problem (cf. Marx and Pilipczuk, 2014). With this result, we conjecture
to be very close to the border between tractable and intractable restrictions of the FTMas
well as the SubtreeIsomorphism problem.

7.2. Outlook
We have proposed two embedding operators, one which samples global spanning trees
and the boosted algorithmwhich samples local spanning trees. Both can guarantee poly-
nomial delay mining of frequent tree patterns, but differ in their runtimes and recall be-
haviors. It remains anopenproblem todecidewhich of the twoalgorithms should be cho-
sen for a given graph database, or possibly even individually for each graph in a database.
This idea can be extended even further: While we have shown that ourmethods are supe-
rior to exact frequent subgraphminers on complex graph databases, Gaston and the like
are superior on chemical graphs (and probably on some other simple graph databases as
well). It is possible to combine the potentially inefficient embedding computation with
ourmethod to get the best of both worlds: Introducing a new parameter, we allow amin-
ing algorithm to store at most a certain number of embedding lists per graph. If a can-
didate pattern results in too many embeddings for a given graph, we discard them and
switch to our probabilistic embedding operator for this graph. As the number of embed-
dings of a pattern is polynomial in thenumber of patterns of its predecessor for any given
graph, this can be implemented efficiently. This adaptive algorithm could preserve the
speed ofGaston on chemical graphdatabases, respectively that of our algorithmonother
graph databases (with a small overhead). As this is mainly an engineering problem, we
leave it for future work.

Another line of investigation would be to adapt the mining algorithm to the pattern
class at hand. We have opted to consider only tree patterns in this thesis. Other classes
of patterns might, however, allow faster algorithms: Using depth-first search, there is
an immediate O (∣V (H)∣ ⋅ ∣V (G)∣) time algorithm to decide whether a pattern pathH is
subgraph isomorphic to a forest G, improving on the runtime of the algorithm for tree
patterns. This implies that probabilistic frequent subpaths can be found faster than prob-
abilistic frequent subtrees. Regarding an extension of our work in the other direction,
there might be other simpler pattern classes, for which probabilistic frequent pattern
mining can be solved efficiently.
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Other directions for future work of course include novel application areas of frequent
subtree mining in nontrivial graph classes that were previously inaccessible to frequent
subgraph mining. For example, it might be possible to infer new nontrivial connections
between input and output variables of a learning problembyfinding frequent patterns in
several neural networks thatwere trained independently for the same learningproblems.
For example, multiple echo state networks (Jaeger, 2002) can be trained easily using the
same training data. Echo state networks have a fixed set of input and output vertices and
a random hidden layer, only the weights of the edges containing vertices from the out-
put layer are trained. Frequent tree patterns that contain output as well as input vertices
might indicate relevant connections between the input and output variables. To this end,
the algorithmspresented in this thesismost likelyneed tobe adapted tobe able toprocess
continuous edge labels, instead of only discrete edge labels.

Finally, the computational complexity of other restricted FCSM and FTM problems
should be explored. While the complexities of the various pattern mining problems are
closely related to the complexities of the corresponding embedding operators, there re-
mains an interesting gap in our knowledge: For graph classes where the Hamilton-
ianPathproblem can be solved in polynomial time, but the SubgraphIsomorphism
(resp. SubtreeIsomorphism) problem isNP-complete it is not clear whether a partic-
ular correspondingmining problem can be solvedwith polynomial delay, in incremental
polynomial time, or if it cannot be solved in output polynomial time, unless P = NP. It
would be interesting to seewhether there are additional parameters (apart from the com-
plexity of the HamiltonianPath and the complexity of the embedding operator) that
influence the computational complexity of the patternmining. Further results, both neg-
ative and positive would be important for a deeper understanding of the computational
difficulties of frequent patternmining.
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A. The HamiltonianPath Problem for
Cactus Graphs

In Section 2.2.2we have discussed a connection between the complexity of the FTMprob-
lem for a transaction class G and the complexity of the SubtreeIsomorphism and
HamiltonianPath problem. In particular, if the HamiltonianPath problem can
be solved in polynomial time and the SubtreeIsomorphism problem isNP-complete
then the complexity of the FTM problem is unclear. As discussed in Section 5.3, cactus
graphs play an important role in the investigation of the border between polynomial de-
lay frequent subtree mining and incremental polynomial time frequent subtree mining.
The HamiltonianPath problem can be decided for cactus graph transactions in poly-
nomial time. This follows from (Matoušek and Thomas, 1992) by noting that paths have
vertex degree atmost two and cactus graphs have tree-width atmost two. The Subtree-
Isomorphismproblem, however, is alreadyNP-complete for cactus graph transactions
(Akutsu, 1993).

The above result is mainly of theoretical interest: Theorem 5.14 of Matoušek and
Thomas (1992) gives aO (∣V (G)∣4) time algorithm for the HamiltonianPath problem
for a given cactus graph G. It is possible to improve this runtime dramatically and to
provide an easy-to-implement linear time algorithm for this problem. As we will see,
the presented technique yields a fast linear time algorithm that decides the Hamilton-
ianPath problemwith one-sided error for arbitrary graphs.

Recall that a Hamiltonian path is a path in a graph G that contains each vertex of G
exactly once. TheHamiltonianPathproblem (i.e., does there exist aHamiltonianpath
in a given graph G?) is a well studied NP-complete problem with various applications
(Garey and Johnson, 1979). Several algorithms have been proposed to find aHamiltonian
path in a graph, or to decide that none exists. For example, Held and Karp (1962) give a
O(n2 ⋅ 2n) algorithm to compute a Hamiltonian path. Björklund (2014) gives aO(1.657n)
time algorithm to count the number of Hamiltonian paths in a graph, which can also be
used todecide theHamiltonianPathproblem. Due to theexponential timecomplexity
of those and other algorithms, it would be beneficial to derive simple, fast tests that can
be run in advance to decide at least in some cases if there exists a Hamiltonian path, or
not.

Many authors concentrated on sufficient conditions for a graph to be traceable (i.e.,
that it contains a Hamiltonian path). E.g. Dirac (1973) gives a lower bound on the num-
ber of edges in a graph that implies the existence of a Hamiltonian path. Also, there is a
wide range of graph classes, whereweknow that aHamiltonianpath exists, e.g. complete
graphs, cycles, paths, or graphs of the platonic solids.
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We go a different way and consider situations which do not allow for a Hamiltonian
path. That is, we define easily verifiable properties of graphs that prove that a graph is
not traceable. To our knowledge, there is much less work in this direction. As a notable
exception, Chvátal (1973) introduces weakly Hamiltonian graphs and derives necessary
conditions for a graph to contain a Hamiltonian cycle. However, the paper uses quite
involved concepts and the verification of the conditions for a given graph is not straight-
forward. Our conditions, on the other hand, can be checked in linear time and are easy to
understand. They are based on partitioning a graphG into its biconnected components
and defining a graph on those objects. In short, a Hamiltonian path inG can only exist if
this graph is a path.

Westart by considering trees and continuebydefininga tree structureusing thebicon-
nected components of an arbitrary graph to devise conditions in LemmasA.3 andA.4. As
a direct application of our necessary conditions, we devise a linear time algorithm for
cactus graphs in TheoremA.6. Finally, we give statistics of a molecular dataset that were
obtained using our conditions.

A.1. Three Necessary Conditions
From now on, we only consider connected graphs, as otherwise there cannot be a Hamil-
tonian path. We start by considering the HamiltonianPath problem for trees. It is
easy to see, that a tree T has a Hamiltonian path if and only if T is a path.
LemmaA.1. A tree T has aHamiltonian path if and only if T is a path.
Proof. “⇐” is clear. “⇒” Let T be a tree and P a Hamiltonian path in T . P contains all
vertices of T and has thus ∣V (G)∣ − 1 edges. Therefore, E(T ) = E(P ) and thus T is a
path.

Wewill show that a generalized version of this holds for a graph defined on the articu-
lation vertices of any graphG. We need the following definition:
Definition A.2. LetG be a connected graph. A vertex v ∈ V (G) is called articulation vertex if its
removal disconnectsG, i.e. , the graphG − v = (V ′,E′) is disconnected, where V ′ ∶= V ∖ {v} and
E′ ∶= {e ∈ E ∶ v ∉ e}. The criticality of v is the number of connected components ofG − v.

In a tree, every vertex that is not a leaf is an articulation vertex. Wenowprove the first
necessary condition. In the case of trees, it follows directly from LemmaA.1.
LemmaA.3. LetG be a traceable graph. Then all vertices have criticality at most 2.
Proof. Suppose there is a vertex vwith criticality at least 3. ThenG−v has threenonempty
connected componentsC1,C2,C3. Let P be a Hamiltonian path ofG and u1 (resp. u2, u3)
be the first vertex in V (C1) (resp. V (C2), V (C3)) occurring in P (w.l.o.g. in this order).
Any path connecting u1 ∈ V (C1) to u2 ∈ V (C2) inG needs to contain v. Otherwise, u and
w would be contained in the same connected component ofG − v. The same is true for a
path from u2 to u3. Therefore, P contains v at least twice, which is a contradiction to P
being a path.
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v3

v2

v1

B X3

X2

X1

B1

Figure A.1.: A cactus graphGwithout aHamiltonianpath. v2 has criticality 3 (LemmaA.3)
and the biconnected component B contains three articulation vertices
(LemmaA.4).

FigureA.1 shows an illustration of the situation described in LemmaA.3. Vertex v2 has
criticality 3 and therefore does not allow for a Hamiltonian path in the graph. The next
lemma focuses on biconnected components.

Lemma A.4. LetG be a traceable graph. Then each biconnected component ofG contains at most
two articulation vertices.

Proof. Suppose there is a biconnected componentB ofG that contains three articulation
vertices v1, v2, v3. Removing vi ∈ {v1, v2, v3} fromG results in a disconnected graphGi ∶=
G − vi. Now, there exists a connected component Bi in Gi such that V (Bi) ∩ V (B) =
V (B) ∖ {vi} and Bi is connected. Let Xi be the nonempty graph of all other connected
components ofG − vi. Recall thatB is a biconnected component, thus removing a single
vertex does not disconnect B. Furthermore, all vertices in V (B) ∖ {vi} are contained in
the same connected component ofG − vi. However, as vi is an articulation vertex,G − vi
is disconnected and thus V (Xi) ≠ ∅. As an example, Figure A.1 showsBi andXi for the
case vi = v1.

Claim: V (Xi) ∩ V (Xj) = ∅ for all i ≠ j ∈ {1,2,3}.
Using this claim,we canprove the lemma. AHamiltonianpathP ofGneeds to contain

all vertices in V (X1), V (X2), V (X3). But to get from any vertex in V (Xi) to a vertex x ∈
V (Xj), it needs to pass through vi. To get from vi to x, the path must pass through vj , as
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vi ∈ V (Bj). Using the same argument as in the proof of Lemma A.3, we see that P needs
to visit one of the articulation vertices v1, v2, v3 at least twice, which is a contradiction to
P being a path.

Proof of Claim: Suppose there exists x ∈ V (Xi) ∩ V (Xj). As x ∈ V (Xi) there exists a
path inXi connecting x to a neighbor of vi inG. Thus removing xj would not disconnect
x from vi ∈ V (Bj), which contradicts x ∈ V (Xj).

Lemma A.3 and Lemma A.4 together show that on any graph G, the existence of a
Hamiltonian path implies a path-structure on the articulation vertices (respectively the
biconnected components) ofG. More exactly, letA(G) be the set of articulation vertices
of G and B be the set of biconnected components of G. We define a new graph A(G) =
(A(G),E′)whereE′ is the set of all edges {v,w} such that there existsB ∈ B with v,w ∈
V (B). A similar definition yields a graph B(G) on the biconnected components of G,
where an edge exists between two biconnected components if and only if they share an
articulation vertex. IfG is traceable thenA(G) (respectivelyB(G)) must be a path.

TheHamiltonianPathproblemhence reduces to checking if the twoconditions for-
mulated in Lemma A.3 and Lemma A.4 hold and if there is a Hamiltonian path in each
biconnected component1, that

• starts at the first articulation vertex and ends at the second articulation vertex (if
there are two)

• starts at the articulation vertex (if there is one)

• starts and ends at arbitrary vertices (if there is no articulation vertex inG).

Finally, we call biconnected components that contain exactly one articulation vertex
leaf components and finish this section with an easy corollary of the above considerations.

Corollary A.5. LetG be a traceable graph. Then there are either zero or two leaf components.

A.2. A Linear Time Algorithm for Cactus Graphs
The results of Section A.1 imply a polynomial time algorithm for the Hamiltonian-
Path problem for cactus graphs. A cactus graph is a connected graph where every bicon-
nected component is either a single edge or a simple cycle. Figure A.2 shows a cactus
graph and a graph that is no cactus graph.

TheoremA.6. A cactus graph is traceable if and only if all of the following three conditions hold:

• Each vertex has criticality at most two

• Each biconnected component contains at most two articulation vertices

• If a biconnected component contains two articulation vertices, they share an edge.

1 Finding a Hamiltonian path in an arbitrary biconnected graph is of course still anNP-complete problem.
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Figure A.2.: A cactus graph on the left and a graph that is not a cactus on the right.

Proof. Each cycle is traceable, and each Hamiltonian path of a cycle C starts at an arbi-
trary vertex of C and ends at one of its two neighbors. Edges are also traceable. “⇒” If
a cactus graphG is traceable then, by Lemmas A.3 and A.4 the first two conditions hold.
Let B be a biconnected component of G that contains two articulation vertices. If B is
an edge, then the third condition holds trivially. If B is a cycle, then any Hamiltonian
pathmust enterB through one articulation vertex v, leave it through the otherw and can
never enterB again. Therefore, the path from v towmust be aHamiltonianpath ofB and
therefore contains all edges inE(B) except one, whichmust be {v,w}. “⇐”We construct
aHamiltonian path as follows: IfG is biconnected (i.e., it has no articulation vertices), we
construct a Hamiltonian path by removing an arbitrary edge. Otherwise, for each cycle,
we remove the edge between the two articulation vertices or one of the edges incident to
the unique articulation vertex in the cycle. Note that by this, each articulation vertex has
degree two in the resulting graph P . As vertices with criticality zero have degree one or
two inG, every vertex inP has degree less than three. Wehave removed exactly one edge
from each cycle of G, thus P contains no cycles and is still connected. Therefore, P is a
tree and by LemmaA.1 a path.

We can check the conditions of Theorem A.6 in linear time for a graph G as follows:
First, we check ifG is connected by a simple breadth first search in linear time. Next, we
compute thebiconnected components ofG in linear timeusingTarjans algorithm (Tarjan,
1972). Having the biconnected components (given as lists of edges), it is easy to compute
the criticality of each vertex in G by counting the number of biconnected components
each vertex occurs in as an endpoint of at least one edge. Having the criticality of each
vertex, we can compute the number of critical vertices per biconnected components by a
single pass over its edge list. To check if G is a cactus graph, we test if each biconnected
component is either anedgeor a simple cycle,which canalsobedonebya singlepass over
all edges in a biconnected component. If there are exactly two, by another pass we can
check if the component contains an edge that contains both critical vertices. Therefore,
the algorithm can be implemented to run in linear time with a small constant.

A.3. Some Statistics for Real-World Datasets
Wehave implemented some variants of the proposed algorithmand applied them to four
large datasets: NCI-HIV, ZINC, POKEC and ENRON. These datasets are described in Sec-
tion 2.4. For the latter two datasets we report results for all disks and all neighborhoods
extracted from themonolithic graphs.

121



A. TheHamiltonianPath Problem for Cactus Graphs

NCI-HIV ZINC POKEC ENRON
neighbors disks neighbors disks

N 42 687 8 946 757 1 632 803 1 632 803 36 692 36 692
C 18 028 6 517 109 209 585 666 653 19 591 15 682
T 6 0 205 288 296 329 19 528 15 264
X 42 658 8 946 750 1 392 460 1 198 327 4 625 1 292
U 23 7 35 055 138 147 12 539 20 136
tN 0.15s 28.97s 10.12s 15.72s 0.18s 0.22s
tC 0.22s 44.22s 11.15s 22.85s 0.26s 0.36s
tT 0.24s 55.08s 10.76s 20.64s 0.26s 0.36s
tX 0.23s 49.98s 10.31s 20.24s 0.27s 0.38s

Table A.1.: Statistics for graph data sets. For each dataset, the number of graphs N , the
number of cactus graphs C, the number of traceable cactus graphs T , and the
number of untraceable graphsX . U ∶= N −T −X reports the number of graphs
where our algorithm returns the uncertain answer that Gmight be traceable.
Below the runtimes in seconds for computing these numbers are given.

Table A.1 shows the number of graphs N , the number of connected cactus graphs C,
the number of traceable cactus graphs T , as well as the number of (arbitrary) graphsX
that are definitively not traceable. U ∶= N − T −X reports the number of graphs where
our algorithm returns the uncertain answer that Gmight be traceable. Furthermore, it
reports the time ti needed by our implementation to compute value i ∈ {N,C,T,X}. The
numbers were computed by parsing the database from a text file and checking property
i for each graph in the respective database. Times were measured using the GNU time
command summing up sys and user times.

All experiments were done on an Intel Core i7-4470 with 8GB main memory run-
ning Ubuntu 14.04 64bit. The algorithms were implemented in C and compiled using
gcc 4.8.2 with optimization flag -O3 enabled. No multi-threading was used. Further-
more, due to the fact that each graph can be processed separately, themaximummemory
consumption at any time was less than 10MB.

tN reports the time our implementation needs to parse the graph database, create
graph objects in memory, and dump them again. The actual tests only add a small over-
head in time compared to just parsing the data. On the other hand, by checking if a
graph (a) is connected and (b) fulfills our three necessary conditions, we can declare
most of the graphs from NCI-HIV, ZINC, and POKEC as non traceable. For ENRON, on
the other hand, roughly half of the neighborhoods and roughly 40% of the disks are
traceable cactus graphs. Most of the remaining graphs in the two ENRON variants are
possibly traceable (i.e., we are not exactly sure and would need to verify using an exact
algorithm). For NCI-HIV, ZINC, and POKEC, however, our algorithm correctly decides
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whether a graph is traceable or not for over 90% of the graphs. In particular, for the
ZINC dataset we would only need to further investigate 7 out of almost 9 million graphs
to check whether they are traceable, or not.

A.4. Summary
We have proposed three necessary conditions for a graph to be traceable that are easy
and fast to check. Using them, we proposed a linear time algorithm that decides if a cac-
tus graph is traceable. Inmore general practical settings, checking these conditions could
be a first step thatmight, inmany cases,make applying one of the exponential time exact
algorithms obsolete. We evaluated our tests’ effectiveness in that respect on threemolec-
ular data sets of varying size and showed that most molecular graphs can be easily iden-
tified as non-traceable using our conditions.

Our algorithm can be extended to yield an exact polynomial time algorithm for more
general classes of graphs. Using our conditions, we can reduce the HamiltonianPath
problem in a non-biconnected graphG to smaller HamiltonianPath problems in the
biconnected components of G. We would only need to check if there is a Hamiltonian
path in each biconnected component that connects the two articulation vertices or starts
at the unique articulation vertex, respectively. This is possible in polynomial time if, for
example, the number of spanning trees in each biconnected component is bounded by a
polynomial p in the size of G. This is the case, for example, in locally easy graphs (com-
pare Section 5.3). Here, the algorithm presented in this chapter runs inO (p(G) ⋅ ∣E(G)∣)
time. Algorithm 5.1 solves the HamiltonianPath problem for locally easy graphs in
O (f2(G) ⋅ ∣E(G)∣ ⋅ ∣V (G)∣1.5) time, where f(G) ≥ p(G) (compare Lemma 5.7).

123





B. Poissons Binomial Distribution
In the proof of Theorem 4.4 we have used a bound on the cumulative density function
(CDF) of Poissons binomial distribution (see, e.g., Nedelman andWallenius, 1986; Wang,
1993) by the CDF of a binomial distribution. While the claim is quite intuitive, we have
not found a proof in any textbook or related article. We will hence prove the result here
for completeness.

Let n ∈ N and let pi ∈ [0,1] be the success probability of a binary random variableXi

for all i ∈ [n]. The CDF of Poissons binomial distribution for the parameters {p1, . . . , pn}
is then given by

P(
n

∑
i=0
Xi ≤ k) = ∑

A⊆[n]
∣A∣≤k

∏
i∈A

pi∏
i∈A
(1 − pi)

where A ∶= [n] ∖ A is the complement of A in [n]. The claim used in Theorem 4.4 is as
follows:
Lemma B.1. Let p ∈ [0,1] such that p ≤ pi for all i ∈ [n]. Then the CDF of Poissons binomial
distribution for parameters {p1, . . . , pn} can be bounded by the CDF of a binomial distribution with
parameters p andn, i.e. , for all k ∈ [n] ∪ {0}

P(
n

∑
i=0
Xi ≤ k) ≤

k

∑
i=0
(n
i
)pi(1 − p)n−i

Proof. Obviously, if pi = p for all i ∈ [n], then Poissons binomial distribution is exactly
the binomial distribution. We shall prove inequality for the case that we replace only
one probability pj by a smaller probability. More exactly we replace the parameters
{p1, . . . , pn} by {p′1, . . . , p′n}with

p′i ∶=
⎧⎪⎪⎨⎪⎪⎩

pi for i ≠ j
p for i = j

and considerP (∑ni=0X ′i ≤ k)whereX ′i is a binary randomvariablewith success probabil-
ity p′i for all i ∈ [n]. The proof for the general case then immediately follows by induction
on the number of replaced variables.

LetP (A) ∶=∏i∈A pi∏i∈A(1−pi) andP ′(A) ∶=∏i∈A p′i∏i∈A(1−p′i) for anyA ⊆ [n]. Then
we can rewrite

P(
n

∑
i=0
Xi ≤ k) = ∑

A⊆[n]
∣A∣≤k

P (A) = ∑
A⊆[n]
∣A∣≤k
j∈A

(P (A) + P (A ∖ {j})) + ∑
A⊆[n]
∣A∣=k
j∉A

P (A)
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for the index j ∈ [n] that we have fixed above. We can now bound this expression by
noting that for anyA ⊆ [n]with j ∉ A it holds that P (A) ≤ P ′(A), as 1 − pi ≤ 1 − p. Hence

∑
A⊆[n]
∣A∣=k
j∉A

P (A) ≤ ∑
A⊆[n]
∣A∣=k
j∉A

P ′(A) .

Furthermore, we can show forA ⊆ [n]with j ∈ A that

P (A) + P (A ∖ {j}) = ∏
i∈A

pi∏
i∈A
(1 − pi) + ∏

i∈A∖{j}
pi ∏
i∈A∖{j}

(1 − pi)

= pj ∏
i∈A∖{j}

pi∏
i∈A
(1 − pi) + (1 − pj) ∏

i∈A∖{j}
pi∏
i∈A
(1 − pi)

= ∏
i∈A∖{j}

pi∏
i∈A
(1 − pi) ⋅ (pj + (1 − pj))

= ∏
i∈A∖{j}

pi∏
i∈A
(1 − pi)

= ∏
i∈A∖{j}

p′i∏
i∈A
(1 − p′i)

= ∏
i∈A∖{j}

p′i∏
i∈A
(1 − p′i) ⋅ (p + (1 − p))

= . . .

= P ′(A) + P ′(A ∖ {j})

As a result, we have

P(
n

∑
i=0
Xi ≤ k) = ∑

A⊆[n]
∣A∣≤k
j∈A

(P (A) + P (A ∖ {j})) + ∑
A⊆[n]
∣A∣=k
j∉A

P (A)

= ∑
A⊆[n]
∣A∣≤k
j∈A

(P ′(A) + P ′(A ∖ {j})) + ∑
A⊆[n]
∣A∣=k
j∉A

P (A)

≤ ∑
A⊆[n]
∣A∣≤k
j∈A

(P ′(A) + P ′(A ∖ {j})) + ∑
A⊆[n]
∣A∣=k
j∉A

P ′(A)

= P(
n

∑
i=0
X ′i ≤ k)
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