Efficient Frequent Subtree Mining
Beyond Forests

Dissertation
Zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultit
der
Rheinischen Friedrich-Wilhelms-Universitit Bonn

vorgelegt
von

Pascal Welke

aus
Bonn

Bonn, 2018

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultit der
Rheinischen Friedrich-Wilhelms-Universitit Bonn

Diese Arbeit wurde von Dr. Tamas Horvath und Prof. Dr. Stefan Wrobel betreut

1. Gutachter: Prof. Dr. Stefan Wrobel
2. Gutachter: Prof. Dr. Christian Bauckhage

Tag der Promotion: 20.3.2019
Erscheinungsjahr: 2019

Pascal Welke

Department of Computer Science III
welke @uni-bonn.de

ii

mailto:welke@uni-bonn.de

Declaration

I, Pascal Welke, confirm that this work is my own and is expressed in my own words. Any
uses made within it of the works of other authors in any form (e.g. ideas, equations, fig-
ures, text, tables, programs) are properly acknowledged at the point of their use. A full

list of the references employed has been included.

iii

Acknowledgments

This thesis would not have been possible without the support of many people. In partic-
ular, I would like to thank my supervisors Tamas Horvath and Stefan Wrobel. Without
them, this thesis would not exist. I don’t know many people that have the opportunity
to talk to their supervisor as frequently as I did with Tamas. I know even less', who ad-
ditionally got invited to several intense weeks of discussions, writing, no Internet, and
great food and wine in Nemesvita. I'd like to thank Stefan for the freedom, the generous
support of my work, and for creating our motivating working environment.

During the course of my work on this thesis I was surrounded by a great group of peo-
ple. CAML became KDML, countless coffees were imbibed, discussions were had and
slowly an idea for this thesis manifested. Thank you, Krisztian Buza, Thomas Girtner,
Laurentiu Ilici, Michael Kamp, Olana Missura, Daniel Paurat, Till Schulz, Florian Seif-
farth, Katrin Ullrich, and all the great people at Fraunhofer IAIS. A special thank you also
goes to lonut Andone, Konrad Blaszkiewicz, and Alexander Markowetz for the fruitful
distractions.

I'd like to thank Lars Borutzky, Moritz Fiirneisen, Tamas Horvath, Michael Kamp, Ra-
jkumar Ramamurthy, Florian Seiffarth, Till Schulz, and Stefan Welke, who have read var-
ious draft versions of my thesis and gave valuable feedback, pointed out errors, and asked
nasty helpful questions. All remaining mistakes are of course my own responsibility.

Last but not least, I want to thank my parents Daniela and Stefan Welke and my girl-
friend Hanna Hiinert for everything. You are the best!

! All of them were supervised by Tamas

Abstract

A common paradigm in distance-based learning is to embed the instance space into some
appropriately chosen feature space equipped with a metric and to define the dissimilar-
ity between instances by the distance of their images in the feature space. If the instances
are graphs, then frequent connected subgraphs are a well-suited pattern language to de-
fine such feature spaces. Identifying the set of frequent connected subgraphs and sub-
sequently computing embeddings for graph instances, however, is computationally in-
tractable. As a result, existing frequent subgraph mining algorithms either restrict the
structural complexity of the instance graphs or require exponential delay between the
output of subsequent patterns. Hence distance-based learners lack an efficient way to op-
erate on arbitrary graph data. To resolve this problem, in this thesis we present a mining
system that gives up the demand on the completeness of the pattern set to instead guar-
antee a polynomial delay between subsequent patterns. Complementing this, we devise
efficient methods to compute the embedding of arbitrary graphs into the Hamming space
spanned by our pattern set. As a result, we present a system that allows to efficiently ap-
ply distance-based learning methods to arbitrary graph databases.

To overcome the computational intractability of the mining step, we consider only fre-
quent subtrees for arbitrary graph databases. This restriction alone, however, does not suf-
fice to make the problem tractable. We reduce the mining problem from arbitrary graphs
to forests by replacing each graph by a polynomially sized forest obtained from a random
sample of its spanning trees. This results in an incomplete mining algorithm. However,
we prove that the probability of missing a frequent subtree pattern is low. We show em-
pirically that this is true in practice even for very small sized forests. As a result, our
algorithm is able to mine frequent subtrees in a range of graph databases where state-of-
the-art exact frequent subgraph mining systems fail to produce patterns in reasonable
time or even at all. Furthermore, the predictive performance of our patterns is compara-
ble to that of exact frequent connected subgraphs, where available.

The above method considers polynomially many spanning trees for the forest, while
many graphs have exponentially many spanning trees. The number of patterns found
by our mining algorithm can be negatively influenced by this exponential gap. We hence
propose a method that can (implicitly) consider forests of exponential size, while remain-
ing computationally tractable. This results in a higher recall for our incomplete mining
algorithm. Furthermore, the methods extend the known positive results on the tractabil-
ity of exact frequent subtree mining to a novel class of transaction graphs. We conjecture
that the next natural extension of our results to a larger transaction graph class is at least
as difficult as proving whether P = NP, or not.

Regarding the graph embedding step, we apply a similar strategy as in the mining step.
We represent a novel graph by a forest of its spanning trees and decide whether the fre-
quent trees from the mining step are subgraph isomorphic to this forest. As a result, the
embedding computation has one-sided error with respect to the exact subgraph isomor-
phism test but is computationally tractable. Furthermore, we show that we can leverage
a partial order on the pattern set. This structure can be used to reduce the runtime of the
embedding computation dramatically. For the special case of Jaccard-similarity between
graph embeddings, a further substantial reduction of runtime can be achieved using min-
hashing. The Jaccard-distance can be approximated using small sketch vectors that can
be computed fast, again using the partial order on the tree patterns.

vii

Die Welt geht nicht unter,
wenn wir nicht vollstandig
aufzahlen.

(Tamas Horvdth)

1X

Contents

1. Introduction
1.1. A Motivating Experiment. o .
1.2. Contributions
1.2.1. Efficient Frequent Subtree Mining
1.2.2. Fast Computation in Probabilistic Subtree Feature Spaces
1.3. Outline i e e e e
1.4. Previously PublishedWork.

2. Preliminaries
2.1. NotionsandNotation,
2.2. Frequent Connected SubgraphMining
2.2.1. A Generic Levelwise Mining Algorithm
2.2.2. The Computational Complexity of Frequent Subtree Mining
2.3. Embedding Computation o oL,
2.4. Datasets e e e e e e e e e e

3. Related Work
3.1. Algorithms for the SUBGRAPHISOMORPHISM Problem
3.1.1. Embedding Lists and Exponential Algorithms
3.2. Algorithms forthe FCSMProblem
3.2.1. Frequent Tree Mining Algorithms
3.2.2. Frequent Subgraph Mining Algorithms
3.2.3. Algorithms for Relaxed Problems

4. Probabilistic Frequent Subtrees
4.1. Mining Probabilistic Frequent Subtrees
4.1.1. The Relaxed Frequent Subtree Mining Problem
4.1.2. Probabilistic Bounds and the Importance of Subtrees
4.1.3. Implementation Issues and Runtime Analysis
4.2. Experimental Evaluation
4.2.1. Runtime. e e
4.2.2. Recall e
4.2.3. Stability of Probabilistic Subtree Patterns
4.2.4. Predictive Performance
4.3. SUIMMATY . .« o vttt e e et e e et e et e e e

5. Boosted Probabilistic Frequent Subtrees
5.1. An Efficient Embedding Operator forTrees

N N

10
11
12

13
13
18
20
23
27
28

33

35
37
39
39
42
44

49
51
51
56
58
60
61
65
67
69
72

73

Contents

5.2. Mining Boosted Probabilistic Frequent Subtrees 82
5.2.1. ImplementationIssues 85

5.2.2. Experimental Evaluation 86

5.3. Exact Frequent Subtree Mining on Locally EasyGraphs 90
5.4. SummaryandOpenQuestions 93

6. Fast Computation in Probabilistic Subtree Feature Spaces 95
6.1. Complete Embeddings into Subtree Feature Spaces 97
6.2. Min-Hashing in Subtree FeatureSpaces 101
6.3. Experimental Evaluation 104
6.3.1. EfficiencyGains 105

6.3.2. Predictive and Retrieval Performance 107

6.4. SummaryandOpenQuestions 110

7. Conclusion N3
7.0, DISCUSSION v ittt e e e e e e e e e e e e e e e e e e e 113
7.2, Outlook e e e e 114

A. The HAMILTONIANPATH Problem for Cactus Graphs n7
A.1. Three Necessary Conditions 118
A.2. ALinear Time Algorithm for CactusGraphs 120
A.3. Some Statistics for Real-World Datasets 121
A, SUMMATY . o ¢ v vttt et e e e e e 123

B. Poissons Binomial Distribution 125
Bibliography 127

X1

1. Introduction

Since the advent of the first digital computers in the second half of the twentieth century
there has been a gap between the data analysis tasks one would like to solve and the capa-
bilities of existing systems. The amount of data available to computers always exceeded
the processing power of even the most advanced computers. Progress in the development
of hardware and software did little to solve thisissue.'! That is, despite the ongoing digital-
ization of our society today and the resulting simplification of the data collection process,
it is more and more difficult to analyze the data automatically to derive knowledge from
it. In particular, this data comes in various forms, such as discrete or real valued vectors
(sales transactions, sensor measurements), text, audio, video (communication content),
or relations among entities (communication metadata, access patterns, similarities be-
tween objects). Due to this variability and volume of data it gets increasingly difficult to
derive valuable insights from it.

In the 1990s the field of data mining and knowledge discovery developed. One of its
goals is to devise algorithms to identify interesting patterns in data and to learn from
data, i.e., to automatically synthesize programs (called models) that capture some rela-
tions among data.”? The models can then be applied to novel data, for example to predict
whether some access pattern is fraudulent, or not. One quite general class of such meth-
ods works on data viewed as a collection of examples, or transactions (like sales transac-
tions in a store) from a (usually unknown and possibly infinite) set equipped with some
measure of similarity and tries to infer an unknown target variable. These distance-based
learning methods assume that the target variables of similar examples behave similarly
as well (i.e., that we can learn from the behavior of close-by instances).

If the data can be represented as discrete or real valued vectors of fixed length, vari-
ous similarity measures (such as, for example, the Euclidean distance) are available. If,
however, the data is text, video, or of multi-relational nature, defining a suitable simi-
larity measure for a given learning task is a difficult problem on its own. A common ap-
proach is to embed such structured data into a space spanned by some feature set that is
equipped with an easy-to-compute similarity function. It is of course crucial and nontriv-
ial to choose a suitable feature set and corresponding similarity function for a given learn-
ing task. Indeed, the quality of this method applied to some particular problem strongly
depends on the semantic relevance of the features considered, implying that one might
be interested in feature languages of high expressive power.

! This is of course partly due to human nature: If technical advances have solved certain issues, people im-
mediately strive to address even larger problems.

* Some authors consider both steps to be equivalent (e.g. Shawe-Taylor and Cristianini, 2004) and do not
distinguish between patterns and models.

1. Introduction

In this thesis, we focus on the case that the data at hand consists of relational struc-
tures. More precisely, we consider graphs, i.e., each object in the data represents a set
of entities and there are some binary relations among the entities. Graphs are a power-
ful representation language; communication among people or distributed systems, so-
cial networks, or protein-protein interactions are some examples of using graphs as data
model. In particular, we will pay special attention to chemical molecules, which can also
berepresented as graphs. Here the entities are atoms and the binary relations correspond
to bonds between atoms. Many other applications are possible, e.g., we can view the web
browsing of a user as a walk in a graph where entities are web pages and relations corre-
spond to links, etc. In fact, even text, pictures, or videos can be represented as graphs.

While graphs easily model many real world applications, working with graphs poses
a unique set of challenges. With the great expressive power of graphs comes great com-
putational complexity: Many questions that are trivial to answer for data which is rep-
resented in a different form are not known to be answerable efficiently for graphs. It is
not even known whether graph isomorphism, i.e., if two graphs are equal except for re-
ordering their vertices, can be decided in polynomial time. As a result, defining a suitable
similarity measure for a given set of graphs is a nontrivial task.? Furthermore, regarding
the embedding idea described above, there is no straightforward fixed set of features for
arbitrary graphs that is semantically meaningful. A common way to define such features
is to choose a set of (semantically relevant) graph patterns to span the feature space and
to check whether these features “appear” in the transaction graphs, or not. After this step
we are in the world of fixed length (binary) vectors and can apply any similarity function
available, such as the Euclidean, Hamming, or Jaccard distances.

The most natural and practically relevant definition of one graph appearing in another
is that of subgraph isomorphism. This problem, however, is NP-complete. As a result, we
cannot expect to be able to compute the embedding of a given arbitrary transaction graph
in feasible time. Regarding the choice of the pattern set, a common approach is to find
the set of graph patterns that appear frequently in a given (training) database of graphs.
Since the first application of these so called frequent subgraphs as features to molecule clas-
sification (Deshpande et al, 2005), many further studies have empirically demonstrated
aremarkable predictive performance of frequent patterns on real-world datasets. In fact,
as shown for instance by Bringmann et al (2006) in the context of correlated pattern min-
ing, even very simple patterns, such as paths or trees often suffice to obtain considerable
predictive accuracy. However, despite the structural simplicity of trees, even frequent
subtrees cannot be generated in output polynomial time for arbitrary transaction graphs
(unless P = NP) (Horvath and Ramon, 2010). Furthermore, the subgraph isomorphism
problem from a tree into a graph and hence the embedding computation remains NP-
complete.

This complexity limitation prohibits frequent pattern mining in practically feasible
time even for relatively simple transaction graph databases. In fact, all previous works re-
garding frequent subgraph mining that we are aware of focus on tree databases (Chi et al,
2003, 2004a) or on the domain of chemical graphs (Borgelt and Berthold, 2002; Borgelt

3 A metric that respects graph isomorphism is at least as difficult to compute as graph isomorphism itself.

et al, 2005; Nijssen and Kok, 2005; Riickert and Kramer, 2004; Yan and Han, 2002; Zhao
and Yu, 2008), where the transactions are quite restricted in their structural complexity.
This is not surprising: For tree transactions, frequent subgraphs (trees in this case) can
be generated efficiently (Chi et al, 2005) and the embedding computation can be done
in polynomial time (Matula, 1968). Chemical graphs, on the other hand, have several
structural properties that practically result in good performance of the state-of-the-art
mining algorithms. Once we leave the domain of trees or chemical graphs, however, our
experiments indicate that to the best of our knowledge there exists no system that can
generate frequent subgraphs in practically feasible time and space. We experimented,
e.g., with neighborhood graphs extracted from social networks or with certain artificially
generated graphs. That is, for no apparent* reason the memory requirements of the min-
ing algorithms blow up exponentially, or the algorithms spend more than a day without
outputting any patterns on a dataset of 50 small random graphs to identify the frequent
patterns (cf. Section 4.2) while databases of over 30 000 similarly sized chemical graphs
can be processed in a matter of minutes (Nijssen and Kok, 2005).

However, robust mining and embedding algorithms whose runtimes do not depend on
certain, typically unknown implicit characteristics of the data, but on some user specified
parameters, are of high value. That is, in many applications the transaction graphs have
no (known) specific structural properties that could be utilized by the mining algorithm.
In contrast, all frequent subgraph mining tools we are aware of are explicitly or implicitly
engineered towards certain structural properties of the input graph databases. They are
therefore either not applicable for general graph databases, or cannot guarantee worst-
case runtimes.

In light of these difficulties and requirements, this thesis is dedicated to the identifi-
cation of a set of pattern graphs that is of high practical relevance and can at the same
time be efficiently computed for arbitrary transaction graph databases. We also discuss the
efficient embedding computation for a (novel) transaction graph class given such a set
of patterns. With these two steps, we present a system to define a suitable feature space
given a sample of some graph distribution and then to compute the embeddings for un-
seen graphs. This allows to train and apply distance-based models on graph transactions.
To overcome the computational complexity of the above two problems, we propose to
focus on tree patterns and generate only a random subset of frequent subtrees, called prob-
abilistic frequent subtrees that can be generated with polynomial delay. To compute the
embeddings of transaction graphs in the feature space spanned by these probabilistic fre-
quent subtrees, we employ a similar technique for the subgraph isomorphism problem.
This results in a computationally efficient algorithm that computes a sound but incom-
plete random embedding vector for arbitrary graphs. As a side-effect of our technique,
we extend the positive results on efficient exact frequent subtree mining to a novel graph
class. Before discussing the contributions of this thesis in more detail in Section 1.2, let us
quickly demonstrate the suitability of our proposed approach on chemical data below.

4 We are aware of the reason, see Section 3.1.1.

1. Introduction

NCI109, frequency threshold: 10% NCI1, frequency threshold: 10%

0.8 7 0.8 7
f\//“ — //\\x#,,‘;
9 A et Tl L
<07 S e O
g /(‘:’ lf
k=t i /
& } / —— Frequent Graph Patterns
g 0.6 | l,-’ 0.6 | / Frequent Tree Patterns
o Y i : | A R Prob. Tree Patterns, [= 10
o] / Prob. Tree Patterns, [= 5
y o - - - Prob. Tree Patterns, [= 2
Prob. Tree Patterns, / = 1
0.5 T T 0.5 T
0 5 10 15 20 0 5 10 15 20
Pattern Size (# Edges)

Pattern Size (# Edges)

Figure 1.1.: Predictive performance of a SVM trained and evaluated on different feature
sets. The two plots show the AUC values (y-axis) that are achieved for fea-
tures corresponding to frequent (probabilistic) subgraph patterns up to a cer-
tain number of vertices (x-axis). Each line corresponds to a certain type of pat-
terns. The arrows from the top of the plot indicate the best performance of the

frequent subgraph pattern based classificators.

11. A Motivating Experiment

As a motivation for our probabilistic frequent subtree techniques we investigate a predic-

tive chemistry task for molecular databases. On the one hand, this may seem contradic-

tory to our claim above that traditional frequent subgraph mining systems work well on

such graphs and that we develop a method to go beyond this application scenario. On the

other hand, we wish to compare our method against the “ground-truth” of exact frequent

subgraph and frequent subtree based learning methods. Hence we naturally have to re-
strict our comparison to domains where these two feature sets can be computed within
feasible time and memory constraints.

Recall that we want to represent data that consists of multiple graphsin a feature space
that is spanned by some set of graph patterns P. More exactly, we represent each graph
G by a subset of the patterns in P that match G (i.e., that are subgraph isomorphic to G);
this representation can be stored as a binary vector of fixed length. To do this, we fix a set

of graphs (called database) and compute the sets of
- all frequent subgraphs,
« all frequent subtrees, and

- our probabilistic frequent subtrees

1.1. A Motivating Experiment

in the database for a fixed frequency threshold of 10%. We have observed similar qualita-
tive behavior for other frequency thresholds and do not want to convolute this motivation
by showing multiple similar plots. We then consider the feature representations of the
graphs in the database with respect to the three pattern sets above.

Figure 1.1 shows the results on NCI1 and NCI109. Both datasets consist of chemical
molecules and the taskis to predict whether they are active against certain types of cancer
cells. See Section 2.4 for a more detailed description of these datasets. We report the pre-
dictive performances of support vector machines (SVM) (Cortes and Vapnik, 1995) which
we measure by the area under the ROC curve (AUC) averaged over a three-fold cross vali-
dation.> Furthermore, we defer the discussion of the various pattern sets to the technical
part of this thesis. For now, it suffices to know that our method has a parameter [that
influences its error and runtime in both the pattern mining and graph embedding steps.
Figure 1.1 shows plots for our method with parameter ! € {1,2,5,10}. It contains a plot
for each dataset and a line in each such plot for each generated pattern set. A point on
such a line corresponds to the AUC value (y-axis) of an SVM classifier trained on feature
representations based on patterns up to and including a certain number of edges (x-axis).

The predictive performance of frequent tree patterns (green) and frequent subgraph
patterns (blue) is almost identical over both datasets and all pattern sizes. This moti-
vates and justifies our initial simplification of the frequent subgraph mining problem
(FCSM) to the frequent subtree mining problem (FTM). Furthermore, the predictive per-
formance of the patterns first increases with the pattern size, reaching its optimum for
maximum pattern sizes between 5 and 9 edges, and then decreases. This behavior is
consistent through both datasets and we observed it consistently on a number of other
datasets and across various frequency thresholds. The predictive performance of our
probabilistic subtree patterns shows a similar behavior as a function of the pattern size.
Increasing the sampling parameter [generally increases the predictive performance. In
fact, for [= 10 the best AUC score of the frequent subgraph pattern based classifier can be
matched by our method.

We draw three main conclusions from this experiment that motivate us® to pursue
probabilistic frequent subtree patterns:

1. Our probabilistic patterns are well-suited as a basis for predictive tasks in the con-
text of chemical graph databases.

2. Frequent pattern based classifiers do not seem to benefit from patterns that are too
large. On chemical graphs, pattern sizes up to 9 edges per pattern give good pre-
dictive performance and larger patterns tend to decrease speed as well as accuracy.
This seems to be a general (although not systematically investigated) trend in graph
mining, extending beyond frequent pattern mining and classification, e.g. also to
cyclic patterns (Horvath et al, 2004) or Weisfeiler-Lehman features (Shervashidze
et al, 2011) in a regression setting (Ullrich et al, 2016).

5 Weused libSVM (Chang and Lin, 2011) with a linear kernel function. We did not optimize the soft margin
parameter for each feature representation, but kept it in its default setting to speed up the computation
and to avoid overfitting by chance.

and hopefully the reader, as well

6

1. Introduction

3. Our method works well in practical scenarios even for relatively small values of the
parameter /. This indicates that it can be applied in practically reasonable time and
space to distance-based learning problems that were not feasible before.

1.2. Contributions

As already mentioned, to use distance-based learning methods on graphs, a common
paradigm also followed in this thesis is to embed the instance space (of graphs) into some
appropriately chosen feature space equipped with a metric. In particular, we focus on
embedding (labeled) graphs into the d-dimensional Hamming space (i.e., {0, 1}%) spanned
by the elements of a pattern set of cardinality d for some d > 0. This thesis presents meth-
ods to use frequent subgraphs as features, without any structural restriction on the transac-
tion graph class defining the instance space.” This is motivated, among others, by the
observation that frequent subgraph based learners (see, e.g., Deshpande et al, 2005) are
of remarkable predictive performance for example on the ligand-based virtual screening
problem (Geppert et al, 2008).
Our goal involves two steps solving the following computational problems:

(i) PATTERN MINING: Given a (training) database of arbitrary graphs, compute the set 7
of all frequent subgraphs with respect to some user specified frequency threshold.

(i) GRAPH EMBEDDING: Given an unseen graph (usually drawn from the same dis-
tribution as the training data set), compute its embedding into the Hamming space
spanned by the elements of F.

For the case that the embedding operator is defined by subgraph isomorphism and that
there is no restriction on the transaction and query graphs, both steps are computation-
ally intractable. Nevertheless the pattern mining problem (i) has gained lots of attention
(see Chapter 3), resulting in several practical systems for graph databases restricted in
different ways. The graph embedding problem (ii) is, however, often neglected in the
literature, though it is crucial to the ability of applying the pattern set generated in the
mining step (i) to unseen graphs. We describe our technical contributions to address both
computational problems below.

The overall contribution of this thesis is a robust system to map arbitrary graphs to a
(learned) Hamming space of fixed dimension, therefore allowing to easily apply distance-
based learning methods on graph datasets. By robust we mean that the runtime of our sys-
tem depends not on certain, typically unknown implicit characteristics of the data, but
that it is polynomial in some user specified parameters, the size of the data, and the size
of the output. Such a system is of high value for practical problems: Often the transaction
graphs have no (known) specific structural properties that could be utilized by the mining
or embedding algorithm. Our algorithm is robust because its delay is bounded by a poly-
nomial which depends only on the number and size of the input graphs and on a sampling

7 In fact, we restrict our description to connected transaction graphs. This, however, is only done for ease
of explanation. All our techniques can easily be extended to disconnected transaction graphs.

1.2. Contributions

parameter. The sampling parameter can be used to control the trade-off between recall
and time complexity. In contrast, all frequent subgraph mining tools from other groups
are explicitly or implicitly engineered towards certain structural properties of the trans-
action graphs and have exponential delay in the worst case. Furthermore, they usually
neglect the graph embedding step (ii). As a result, these systems are not applicable in
such a general scenario. Their runtime or memory requirements might explode for cer-
tain datasets and novel graphs cannot be embedded in the feature space spanned by the
frequent patterns in feasible time.

1.2.1. Efficient Frequent Subtree Mining

To arrive at a theoretically efficient and practically fast algorithm for the pattern min-
ing problem (i), we restrict the pattern language to trees. This restriction alone, however,
does not resolve the complexity problems above. Mining frequent subtrees from arbi-
trary graphs is not possible in output polynomial time (unless P =NP, Horvath et al, 2007).
To overcome this limitation, we give up the demand on the completeness of the mining
algorithm. Instead, we propose to efficiently compute a subset of all frequent subtrees,
which we call probabilistic frequent subtrees.

As a first theoretical contribution, we formalize a relaxed frequent subtree mining
problem and give sufficient conditions for the existence of an efficient mining algorithm.
To this end, we extend the generic algorithm in (Horvath and Ramon, 2010) to the case
that (i) pattern and transaction graphs have different characteristics and (ii) only a well
defined subset of all frequent patterns shall be enumerated. In particular, we consider the
case that the transactions are arbitrary graphs and the patterns are trees. Subsequently we
propose two novel mining algorithms that are based on sampling spanning trees of the
transaction graphs.

Probabilistic Frequent Subtrees

The basic insight leveraged by our techniques is the following: A tree is subgraph isomor-
phic to a graph if and only if it is subtree isomorphic to one of the graph’s spanning trees.
Our first algorithm therefore generates probabilistic frequent subtrees in the following
simple way: It replaces each transaction graph in the input database by a forest formed
by the vertex disjoint union of a random subset of its spanning trees. Using, e.g., the level-
wise search algorithm (Mannila and Toivonen, 1997), our algorithm generates the set of
frequent connected subgraphs (i.e., subtrees) for the forest database obtained. Spanning
trees can uniformly be sampled in polynomial time (Wilson, 1996) and subgraph isomor-
phism from a tree into a forest can be decided in polynomial time (Matula, 1968). Hence
the extended generic algorithm of (Horvath and Ramon, 2010) can enumerate probabilis-
tic frequent subtrees with polynomial delay in this way if for each transaction graph, the
number of spanning trees in the sample is bounded by a polynomial of the graph’s size.
The output of our method is sound (that is, all patterns printed are frequent subtrees),
but not necessarily complete (i.e., some frequent subtrees may not be enumerated). Re-
garding the recall of our method (that is, the fraction of frequent subtrees retrieved by our

1. Introduction

algorithm), we show that the set of frequent subtrees is well approximated if the number
of sampled spanning trees is chosen appropriately. We prove that the probability for a
frequent pattern H to be among the probabilistic frequent subtrees is high if the pattern
isimportant. That s, if H is frequent in the spanning trees of sufficiently many transaction
graphs.

Our extensive empirical evaluation demonstrates that the above idea results in a prac-
tically feasible mining algorithm. We show that probabilistic frequent subtrees can be
enumerated forsocial and random graph databases where state-of-the-art exact frequent
subgraph mining systems are not able to produce results in practically feasible time. Fur-
thermore, we demonstrate that the recall of our probabilistic mining technique is high
even for small numbers of sampled spanning trees and that the retrieved set of patterns
is very stable. (Notice that precision is always 100% for the soundness of the algorithm.)
Furthermore, we show that the predictive performance of probabilistic frequent subtrees
is comparable to that of the full set of frequent subgraphs and frequent subtrees on chem-
ical datasets.

Boosted Probabilistic Frequent Subtrees

As a next step, we go beyond the limitation of processing polynomially many spanning
trees per graph only. We present an algorithm able to generate probabilistic frequent
subtrees from arbitrary graphs with polynomial delay by considering a potentially expo-
nentially large implicit subset of the spanning trees for each graph in the database. Our
boosted mining algorithm is based on a novel pattern matching algorithm. For a tree pat-
tern H and atransaction graph G, it (i) partitions G into a certain set of induced subgraphs,
(ii) considers a (random) subset of local spanning trees for each induced graph, and (iii) de-
cides whether H is subtree isomorphic to one of the global spanning trees of GG obtained
by combining its local spanning trees in an appropriate way.

Our pattern matching algorithm traverses a rooted tree generated for G in a bottom-
up manner and computes the final solution from partial solutions calculated before. The
nodes of the rooted tree controlling the evaluation are constructed from the articulation
vertices of G. Each node v of such a tree is associated with a set of spanning trees of a
certain induced subgraph containing v. Our technique requires an efficient combination
of these local spanning trees, as well as a careful assembly of certain partial subtree iso-
morphisms which can be computed efficiently. We prove that our algorithm decides sub-
graph isomorphism from a tree pattern H to G correctly, where & is the set of spanning
trees of GG that can be obtained from combinations of the local spanning trees. Our algo-
rithm runs in time polynomial in the combined size of H, G, and the number of local span-
ning trees that it considers. The significance of this result is that the number of global
spanning trees in & can be exponential in the number of local spanning trees. This prop-
erty has immediate consequences to probabilistic frequent subtree mining.

By considering exponentially many (implicit) global spanning trees instead of poly-
nomially many ones, our technique has an improved performance in terms of recall over
the simple algorithm described above. This improvement is only marginal on molecu-
lar graph datasets, due to the relatively simple graph structure of pharmacological com-

1.2. Contributions

pounds (cf. Horvath and Ramon, 2010; Horvath et al, 2010). On threshold graphs, however,
which have applications among others in spectral clustering (see, e.g., von Luxburg, 2007),
the boosted mining algorithm results in a much higher recall compared to the simple
one. This also results in practical speedups, as it increases the number of patterns that
are found in a given time budget with respect to the simple algorithm.

Exact Frequent Subtree Mining

Theboosting technique mentioned above hasimplications for exact frequent subtree min-
ing as well. We first note that despite more than two decades of research there are only a
few non-trivial theoretical results concerning the complexity of frequent subgraph min-
ing. In particular, if the transaction graphs are restricted to forests then frequent con-
nected subgraphs (i.e., trees) can be generated with polynomial delay (see, e.g., Chi et al,
2005). Using the positive result of Matousek and Thomas (1992), one can show that for
graphs of bounded tree-width (Robertson and Seymour, 1986a) and bounded degree, fre-
quent connected subgraphs can be generated with polynomial delay. In fact, frequent
connected subgraphs can be listed in incremental polynomial time for graphs of bounded
tree-width without restricting the vertex degree of the patterns (Horvath and Ramon,
2010). As a byproduct of our approach, we extend the known positive complexity results
on frequent subgraph mining by a new one formulated for a graph class that is of theoret-
ical as well as practical interest.

Our probabilistic frequent subtree mining algorithms solve the exact frequent subtree
mining problem correctly (i.e., soundly and completely) if all spanning trees are consid-
ered for each database graph. As a result, frequent trees can be mined with polynomial
delay if the number of spanning trees of the transaction graphs is bounded by a polyno-
mial of their size by using the frequent subtree mining algorithm described above. The
efficiency follows from the fact that all spanning trees of a graph can be listed with poly-
nomial delay (Read and Tarjan, 1975) together with the positive result on frequent subtree
mining in forest transaction databases.

The second (boosted) mining algorithm presented in this thesis extends this positive
result to databases where transaction graphs may have exponentially many spanning
trees. In particular, our boosted frequent pattern mining algorithm is correct and effi-
cient (i.e., it has polynomial delay) if the transaction graphs have polynomially many local
spanning trees. We call such graphs locally easy. The number of global spanning trees of a
graph G might be exponential in the number of local spanning trees of G. As a result, the
work in this thesis substantially extends the known positive results on efficient frequent
subtree mining.

The class of locally easy graphs has some interesting properties that are both of theo-
retical and practical relevance. First, it is orthogonal to all graph classes that are defined by
a constant upper bound on some monotone graph property (e.g., graphs of bounded tree-
width); a graph property is called monotone if it is closed under taking subgraphs. By “or-
thogonality” we mean that the class always contains an infinite number of graphs that are
not contained in the other graph class. The previously known positive results on efficient
frequent subgraph mining, however, require the transaction graph class to be monotone.

1. Introduction

Second, the class of locally easy graphs includes a number of interesting and practi-
cally relevant graph classes. Forests and pseudoforests in which every connected component
has at most one cycle constitute two subclasses of locally easy graphs. Further subclasses
can be defined by bounding the maximum number of biconnected blocks sharing a vertex
by a constant. For example, cactus graphs (i.e., in which all edges belong to at most one
simple cycle) of bounded block degree are locally easy. Note that even for cactus graph
transactions (without bounding the block degree by a constant) frequent subtrees can be
mined in incremental polynomial time (Horvath and Ramon, 2010). However, it is un-
known whether this is possible with polynomial delay. We conjecture that generalizing
our positive result on polynomial delay mining of frequent subtrees to the first natural
graph class beyond locally easy graphs is at least as difficult as solving the P vs. NP prob-
lem. Our positive result on mining locally easy graphs is thus another step towards ex-
ploring the border between tractable and intractable fragments of the frequent pattern
mining problem.

1.2.2. Fast Computation in Probabilistic Subtree Feature Spaces

We follow a similar strategy for the pattern matching operator used in the embedding step
(ii) (see page 6): For an unseen graph GG and a set F of tree patterns enumerated in the min-
ing step, we generate a set &(G) of (random) spanning trees of G and compute the set of
all H € F that are subgraph isomorphic to S(G). The incidence vector of this set defines
the embedding (vector) of G into the Hamming space spanned by F. On the one hand,
in this way we decide subgraph isomorphism from a tree into a graph with one-sided er-
ror, as only a negative answer may be erroneous, i.e., when H is subgraph isomorphic
to G, but not to &(G). On the other hand, this probabilistic pattern matching test can
be performed in polynomial time while correct pattern evaluation is computationally in-
tractable (that is, NP-complete). We prove that our probabilistic algorithm decides sub-
graph isomorphism from H into G correctly with high probability if H is frequent in G
and the number of sampled spanning trees is chosen appropriately.

Using our probabilistic technique, we can compute the embedding vector of a graph in
polynomial time by deciding subgraph isomorphism (with one-sided error) for all trees
in the pattern set. This brute-force algorithm can be accelerated by reducing the number
of subgraph isomorphism tests. Utilizing that subgraph isomorphism induces a partial
order on the pattern set and that it is anti-monotone with respect to this order, we can
infer for certain patterns whether or not they match a graph from the evaluations already
performed for other patterns. We propose two such strategies. One is based on a greedy
depth-first search traversal, the other uses binary search on paths in the partially ordered set
of patterns. We show empirically that both algorithms drastically reduce the number of
embedding operator evaluations compared to the baseline obtained by levelwise search.

In a last step, we improve the speed and space consumption of the above method by
applying min-hashing (Broder, 1997). Each graph is represented by a small sketch vector
that can be used to approximate Jaccard-distances. We show that the min-hash sketch of
a given graph with respect to a set of tree patterns can be computed without calculating
the embedding explicitly. We utilize the fact that we are interested in the first occurrence

10

1.3. Outline

of a pattern in some permutation of the pattern set; once we have found it, we can stop
the calculation, as all patterns after this first one are irrelevant for min-hashing. Beside
this straightforward speed-up of the algorithm, the computation of the min-hash sketch
can further be accelerated by utilizing once more the anti-monotonicity of subgraph iso-
morphism on the pattern set. These facts allow us to define a linear order on the patterns
to be evaluated and to avoid redundant subtree isomorphism tests.

Our experimental results demonstrate that the proposed technique can dramatically
reduce the number of subtree isomorphism tests, compared to an algorithm performing
the embedding explicitly. We also show that even for a few random spanning trees per
chemical compound, remarkable precisions of the active molecules can be obtained in a
highly imbalanced chemical dataset by taking the i nearest neighbors of an active com-
pound. Finally, we show that the predictive power of support vector machines using our
approximate similarities compares favorably to that of state-of-the-art related methods.

The stability of our incomplete probabilistic technique is explained by the fact that a
subtree generated by our method is frequent not only with respect to the training set, but,
with high probability, also with respect to the set of spanning trees of a graph. While the
presented embedding techniques are applied to probabilistic frequent subtree patterns
in this thesis, they can be employed in other partially ordered pattern sets and monotone
embedding operators.

1.3. Outline

The remainder of this thesis is structured as follows:

In Chapter 2 we introduce the necessary notions and notation. Among them, we define
a quite general frequent subgraph mining problem and discuss its computational com-
plexity in Section 2.2. It turns out that this complexity is related to the complexity of the
HAMILTONIANPATH problem. We discuss its complexity for an important special case
in Appendix A. Chapter 3 presents related approaches for frequent subgraph mining and
for the subgraph isomorphism problem.

The main contributions of this thesis are presented in the next three chapters. In Chap-
ter 4 we introduce our relaxation of frequent subtree mining and show that it gives rise to
an efficient algorithm for arbitrary graph transaction databases in theory and practice.
Next, we investigate a more intricate algorithm that is able to decrease the error of our
method with respect to the full set of frequent patterns for some types of graph databases
in Chapter 5. In Chapter 6, we show how to efficiently compute the embedding vector for
a graph, given a set of tree patterns. While our methods developed in the previous chap-
ters can be used to do this in polynomial time using a brute-force approach, we propose
several methods that speed up this computation by using a natural partial order on the
pattern set. Finally, Chapter 7 concludes the thesis.

11

Bibliography

1.4. Previously Published Work

This thesis is based on joint work with Tamas Horvath and Stefan Wrobel which has al-
ready been published elsewhere. These publications are, in detail:

Pascal Welke, Tamas Horvath, Stefan Wrobel (2015) On the complexity of frequent sub-
tree mining in very simple structures. In: Jesse Davis, Jan Ramon (eds) Inductive Logic
Programming (ILP) Revised Selected Papers, Springer, Lecture Notes in Computer Sci-
ence, vol 9046, pp 194-209, DOI 10.1007/978-3-319-23708-4_14

Pascal Welke, Tamas Horvath, Stefan Wrobel (2016a) Min-hashing for probabilistic fre-
quent subtree feature spaces. In: Toon Calders, Michelangelo Ceci, Donato Malerba
(eds) Discovery Science (DS) Proceedings, Lecture Notes in Computer Science, vol 9956,
pp 67-82, DOI 10.1007/978-3-319-46307-0_5

Pascal Welke, Tamas Horvath, Stefan Wrobel (2016b) Probabilistic frequent subtree ker-
nels. In: Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbig-
niew Ras (eds) New Frontiers in Mining Complex Patterns (NFMCP) Revised Selected
Papers, Springer, Lecture Notes in Computer Science, vol 9607, pp 179-193, DOI
10.1007/978-3-319-39315-5_12

Pascal Welke (2017) Simple necessary conditions for the existence of a Hamiltonian path
with applications to cactus graphs. CoRR abs/1709.01367, URL http://arxiv.org/
abs/1709.01367

Pascal Welke, Tamds Horvath, Stefan Wrobel (2018) Probabilistic frequent subtrees for
efficient graph classification and retrieval. Machine Learning 107(11):1847-1873, DOI
10.1007/s10994-017-5688-7

Pascal Welke, Tamas Horvath, Stefan Wrobel (2019) Probabilistic and exact fre-
quent subtree mining in graphs beyond forests. Machine Learning DOI 10.1007/
$10994-019-05779-1, (online)

12

http://dx.doi.org/10.1007/978-3-319-23708-4_14
http://dx.doi.org/10.1007/978-3-319-46307-0_5
http://dx.doi.org/10.1007/978-3-319-39315-5_12
http://arxiv.org/abs/1709.01367
http://arxiv.org/abs/1709.01367
http://dx.doi.org/10.1007/s10994-017-5688-7
http://dx.doi.org/10.1007/s10994-019-05779-1
http://dx.doi.org/10.1007/s10994-019-05779-1

2. Preliminaries

In this chapter we collect all necessary terminology and notation used in this thesis. We
assume that the reader is aware of standard mathematical concepts like sets, vectors,
functions, et cetera. We also require knowledge of complexity theory, in particular famil-
iarity with the O-notation and the complexity classes P and NP. For the sake of clarity,
however, we introduce our notation and recall some basic notions from graph theory
(see, e.g., Diestel, 2012; Korte and Vygen, 2012) in Section 2.1. Subsequently, we formally
define the pattern mining problem considered in this work in Section 2.2. As this prob-
lem is a listing problem, we define complexity classes for such problems, as they are
less standard. We provide a generic algorithm and efficiency conditions in Section 2.2.1
and discuss the complexity of the pattern mining problem in Section 2.2.2. Finally, we
describe the datasets used throughout this thesis in Section 2.4.

2.1. Notions and Notation

Sets and Lists

Let S = {s1,592,...} be a set. We denote the cardinality of S by |S| and the empty set by
@. Given some fixed encoding of the elements of S, the size(.S) denotes the sum of the
sizes of its elements in that encoding. A subset X of S is indicatedas X ¢ S. If X ¢ §
and X # S, we write X c S. We denote the set of natural numbers {1,2,...} by N and
the set of real numbers by R. The finite set {1,...,n} c N will be denoted by [n] for all
n € N. Given a finite set X, called alphabet, a sequence, also called list, or string of elements
of ¥ is written as [s1, ..., s,]. In contrast to a set, the order of elements in a sequence is
important. The length of alist , i.e., the number of elements it contains, is denoted by | L|
and the ith element of L is denoted by L[i]. The set of all finite sequences over X is then
denoted by ¥*. Note that in a sequence a certain element s might occur multiple times.
A permutation of ¥ is a sequence that contains each element of ¥ exactly once. There are

exactly |X|! = HE'l i permutations of X.

Graphs

An undirected (resp. directed) graph G = (V, E) consists of a finite set V' of vertices and a set
Ec{X cV:|X|=2}(resp. E c V xV)ofedges. When G is clear from the context, n
denotes |V'| and m denotes |E|. Given G = (V, E') we will often use the notation V(G) :=V
and E(G) := FE to refer to the vertex or edge set of G. We consider only simple graphs,

! Hence, while in | S| the sizes of the elements of S do not matter, in size(S) they do matter.

13

2. Preliminaries

i.e., loops and parallel edges are not permitted.> Unless otherwise stated, by graphs we
mean undirected graphs. An edge {u,v} € E(G) will be denoted by uv. The set N'(v) :=
{weV(G) : vw e E(G)} isthe set of neighbors of v. The cardinality of N'(v) is called degree
of v and denoted by 6(v). A leaf is a vertex that has exactly one neighbor.

A labeled graph is a graph G together with a function ! : F(G)uV(G) — X that assigns
a label from some finite set 3 to each vertex and each edge. Labeled graphs can model
chemical molecules, protein-protein interactions, social networks, the Web graph and
other phenomena. To keep the notation and description concise, we will state all results
for unlabeled graphs. All our arguments naturally apply to labeled graphs as well.

A subgraph of G is a graph G’ with V/(G') € V(G) and E(G’) ¢ E(G). G' is a subgraph
of G induced by a subset V' c V(G) if V(G') = V' and uv € E(G") ifand only ifuv € E(G)
for all u,v € V'. Such an induced subgraph is denoted by G[V'].

A graph is connected if for any v,w € V(G) v can be reached from w by traveling over
a sequence of edges [vvy,v1v2, Vovs, ..., v;w]. G is k-connected if G is connected and the
removal of any set of k — 1 vertices does not destroy this property. We call a 2-connected
graph biconnected. A cycle is a minimal biconnected graph with at least three vertices, i.e.,
theremoval of any edge or vertex results in a path. A block is a maximal subgraph of G with
at least three vertices that is biconnected and a bridge is an edge that does not lie on any
cycle. A biconnected component is a maximal subgraph that is biconnected, i.e., it is either
a block, or a bridge, or an isolated vertex. Finally, a articulation vertex is a vertex whose
removal increases the number of connected components of G.

A forest is a graph that contains no cycle; a tree is a connected forest. A path is a tree
where at most two vertices are leaves3. Note that several works in the graph mining lit-
erature refer to trees as unrooted unordered trees or free trees. In this work, a tree is always
undirected, unless we explicitly say that it is rooted: A rooted tree T’ can be obtained from
a tree 7' by choosing a root r € V(7") and by directing every edge e € E(T") towards r. For
each r € V(T) this definition results in a unique orientation of the edges. A spanning tree
T of a connected graph G is a subgraph of G with V(7T') = V(G) that is a tree.

A common generalization of trees are graphs of bounded tree-width (Robertson and
Seymour, 1986b). This property — in some sense — measures how tree-like a graph G is
by defining a tree structure on certain induced subgraphs of G. A tree decomposition of a
graph G is a tree T together with a mapping bag : V (T') - 2V(%) such that

+ U bag(i) =V(G),
1€V (T)

« e Cbag(i)forsomeie V(T)foralle e E(G),and

« the subgraph T[{i € V(T') : vebag(i)}] of T induced by all vertices whose bags
contain v is connected for allv € V/(G).

* Aloop is an edge from a vertex to itself. Note that according to our definitions this can not happen in an
undirected graph.
3 The empty graph and a single vertex are paths, as well

14

2.1. Notions and Notation

The width of a tree decomposition is the cardinality of its largest bag, max;cy (1) [bag(7)|.
The tree-width of GG is the minimum width of all tree decompositions of GG. Note that the
tree-width of any graph containing at least one edge is at least one. In fact, the tree-width
of a graph G is one if and only if G is a forest.

Another generalization of trees are outerplanar graphs. A graph is outerplanar, if (i) it
can be drawn in the plane in such a way that edges do not cross each other except maybe
in their endpoints and (ii) every vertex lies on the outer face. That is, each vertex can be
reached from outside without crossing any edge. A graph G is outerplanar if and only
if all its biconnected components are outerplanar (Harary, 1994). A biconnected compo-
nent B of an outerplanar graph is either bridge, or it is a maximal induced subgraph of G
composed of a single Hamiltonian cycle and possibly some non-crossing diagonal edges
(Harary, 1994). A d-tenuous outerplanar graph is an outerplanar graph in which each block
has at most d diagonals. Notice that forests are special outerplanar graphs. Furthermore,
outerplanar graphs have tree-width at most two.

Isomorphism and Subgraph Isomorphism

Let G1 = (V1, E1) and G = (Va, E5) be graphs. They are isomorphic, denoted G = Go if
there exists a bijection ¢ : V] — Vo withwuv € E; ifand only if p(u)p(v) € Es forallu, v € V;.
In this case ¢ is called an isomorphism between G and Ga. G is subgraph isomorphic to
Ga, denoted G; < G, if G has a subgraph that is isomorphic to GG;. The corresponding
function ¢ : V(G1) — V(G2) is called subgraph isomorphism. G; < G2 denotes that G; < G2
and (¢ is not isomorphic to G.

As already mentioned in the beginning of this section, we will state all our results for
unlabeled graphs. Nonetheless, we will shortly mention how the subgraph isomorphism
is defined in the labeled case, as many datasets considered in this work consist of labeled
graphs (cf. Section 2.4). Let G; and G2 be two graphs with label functions /; and I; over the
same label set ¥. Then G; and G5 are isomorphic if there exists a subgraph isomorphism
@ such that

« lo(p(v)) =11(v) forallv e V(Gy)
« la(p(v)p(w)) =1l (vw) for allvw € E(Gy).

Checking whether the label of an edge or vertex matches the label of its image can be done
in constant time assuming that a suitable encoding is chosen for the elements in the finite
label set . Hence the algorithms considered in this work can be easily extended to the
labeled case.

The SUBGRAPHISOMORPHISM problem, that is, deciding whether H < G for two
graphs H and G, is one of the classical NP-complete problems (Garey and Johnson, 1979,
Sec. 3.2.1). This negative result holds even for the case that the pattern H is restricted to
trees. We will refer to this latter problem as the SUBTREEISOMORPHISM problem. Its
NP-completeness follows e.g. from the restriction to the problem of deciding whether
there exists a Hamiltonian path in G, i.e., a path that contains all vertices of G (Garey and

15

2. Preliminaries

Johnson, 1979, Sec. 4.2.2). In case that G and H are both trees, the SUBTREEISOMORPH-
1SM problem can be solved in polynomial time (Matula, 1968). Several algorithms were
developed for this problem and are discussed in Section 3.1.

The GRAPHISOMORPHISM problem, that is, deciding whether two graphs G and H
are isomorphic, is neither known to be solvable in polynomial time, nor known to be NP-
complete. Recent work by Babai (2015), claims that there is a quasi-polynomial time al-
gorithm for the GRAPHISOMORPHISM problem. In case both G and H are trees, the
GRAPHISOMORPHISM problem becomes much simpler and can be decided in linear time
(this follows, e.g., from Hopcroft and Wong, 1974).4 One way of solving the GRAPHI-
SOMORPHISM problem is to compute and compare canonical strings, which we will de-
scribe below. First, however, we need additional notation.

Isomorphism is an equivalence relation. That is, for all graphs G, G2, G3, it holds

Reflexivity G; = G,
Symmetry G = Gy ifand onlyif G3 = G, and
Transitivity if G; 2 G2 and G, = G3 then G = Gis.

A graph class G is a set of graphs. We will often define graph classes by some common prop-
erty of the graphs, e.g. the class of all trees, connected graphs, etc. A representative of G is a
set that contains exactly one graph from each equivalenceclass G:= {H € G : H= G} cG.
That is, the elements in the representative of G are unique up to isomorphism.

Posets

A partially ordered set, or poset (.S, <) is a set S together with a binary relation < such that for
all z,y, z € S the following conditions hold:

Reflexivity z < z,
Antisymmetry if x < yand y < z then z = y, and
Transitivity ifz <yandy < zthenz < 2.

For any graph class F the pair (F, <) is a poset. If F is finite, we can represent (F,<) by a
directed graph (F, F) with (71,75) € E ifand only if 71 < T> and there isno 7' ¢ F with
T, <T < Ty forall T1,T, € F. In this way, x < y if and only if there exists a directed path
from z to y in the graph (F, E).

A total order is a poset (.5, <) where for all 2,y € S either 2 < y or y < z. A total order on
S can be represented as a sequence of elements of S. In particular, each permutation of §
defines a total order on S. A topological order on (F, E') (resp. (F,<))is a sequence (i.e., a
total order) F = [11,T5,...,T,] satisfying i < j for all (7},7}) € E. A directed graph has
a topological order if and only if it is acyclic, i.e., if it corresponds to a partial order (see,
e.g. Korte and Vygen, 2012).

4 This result also holds in case at least one of the graphs is a tree: Whether a graph is a tree can be decided
in linear time and a tree can never be isomorphic to a graph that is not a tree.

16

2.1. Notions and Notation

Let (3, <) be a total order. The lexicographical order induced by (X, <) is a total order
(X*,<") of strings over X defined as follows: Let S and S’ be two strings with |S| = |S’|. If
S # S’ letibethe first position where the two strings differ. Then S <’ S’ < S[i] < S'[4]. If
two strings have different length, we obtain their relation (with respect to <’) by padding
the shorter string by a novel element not contained in X that is larger than all elements
in ¥ (with respect to <). The lexicographical order on canonical strings of trees (described
below) is an important part of efficiently removing isomorphic graphs efficiently from a
graph class, i.e., computing a representative of the graph class.

Canonical Forms and Canonical Strings of Trees
Given a graph class G, a canonical string function is a function f : G - ¥* such that
f(G)=f(H) — G=zH

for all G, H ¢ G for a suitable finite alphabet 3. For some G € G, we call f(G) its canonical
string.

Canonical strings allow to decide iftwo graphs are isomorphic by just testing the equal-
ity of their canonical strings. This operation can be done in linear time in the length of
the shorter string (assuming that the size of ¥ is a constant and that comparing elements
in X can be done in constant time). Canonical strings also enable testing if a graph G
is isomorphic to some graph in a set S of graphs in an efficient way: Using prefix trees
(Fredkin, 1960), this can be done in linear time in |f(G)|; in particular, the runtime does
not depend on |S|. The generic graph mining algorithm described in Section 2.2.1 below
requires a way to filter out redundant patterns, i.e., patterns such that some isomorphic
pattern has been evaluated before. This test can be easily implemented using canonical
strings stored in a prefix tree.

A canonical string function that can be computed in polynomial time for all graphs is
unlikely to exist as this would imply a polynomial time algorithm for the SUBGRAPH-
ISOMORPHISM problem. Polynomial time computable canonical string functions are
known, however, for restricted graph classes. If G is the class of all trees (Asai et al, 2003;
Chi et al, 2003; Nijssen and Kok, 2003), the class of all outerplanar graphs (Horvath et al,
2010), or the class of all planar graphs (Hopcroft and Wong, 1974). In fact, there exist sev-
eral canonical string functions for trees that can be computed in linear time (e.g. Hopcroft
and Wong, 1974).

Although our system does not require any specific canonical string function, we now
briefly describe the method we have used. It is based on the ideas presented by Chi et al
(2003). To obtain a canonical string of a tree GG, we first transform G to a rooted tree. To
select a root, we repeatedly remove all leaves together with their incident edges from G
until one or two vertices remain. These vertices are called the center (respectively the bi-
center) of G and are well defined. The method to obtain the center or bi-center of G can be
implemented in O (|V (G)]) (see, e.g., Harary, 1994, Chapter 4). We define the canonical
string for G to be the canonical string of the tree rooted at the center of G if G has a center.
If G has a bi-center then the canonical string of GG is defined to be the lexicographically
smaller of the two canonical strings of the trees rooted at the two bi-centers of G.

17

2. Preliminaries

X(1X(1A))(2A(1B)(1C))

Figure 2.1.: A small tree (left) with its canonical string (right). The vertex shown in gray is
the center of the tree.

To obtain a canonical string for a rooted tree labeled by elements from 3, we start with
an arbitrary but fixed total order on the label set U {(,) } and employ a bottom up method.
The canonical string of a leaf vertex v is simply its label [(v). For some vertex v that is not
a leaf of G we first recursively compute the canonical string c,, for each child w of v. We
add the “(” symbol and /(vw) at the beginning of ¢,, and the “)” symbol at the end of ¢,,.
Then we sort all modified c,,s according to the lexicographical order on the modified ¥*.
This results in a canonical string function for trees that can be computed in polynomial
time (Chi et al, 2003). Figure 2.1 shows a small example.

2.2. Frequent Connected Subgraph Mining

Frequent connected subgraph mining has been an area of active research for the last twenty
years. Itis a natural generalization of the frequent itemset mining problem (Agrawal et al,
1996) to transaction databases consisting of graphs. We will review related work in Chap-
ter 3 and will now formally define the exact computational problem considered in this
thesis. In its most general form, it can be formulated as follows:

FREQUENTCONNECTEDSUBGRAPHMINING (FCSM) problem: Given a finite list D ¢ G
(called graph database) for some graph class G and an integer threshold ¢ € [|D|], list
all graphs P € P for some graph class P, called the pattern class, that are subgraph
isomorphic to at least ¢ graphs in D. The patterns in the output must be pairwise
non-isomorphic.

An equivalent definition of this problem uses a relative (instead of an absolute) fre-
quency threshold. For a given database D and a threshold ¢ € [|D|] the relative frequency
0 is defined as 0 := ﬁ. We will use the relative and absolute thresholds interchangeably
when clear from the context. For some pattern H ¢ P, and database D, we say that H
is t-frequent (respectively 0-frequent) if H is subgraph isomorphic to at least ¢ (respectively
6-|D|) graphs in D. Note that for some fixed input D and ¢, the output of the FCSM problem
is always a finite set of pairwise non-isomorphic graphs, i.e. a finite representative of a

18

2.2. Frequent Connected Subgraph Mining

graph class F ¢ P. We will often refer to the output of the FCSM problem as the frequent
subgraphs of D, omitting the threshold ¢ (resp. #) when clear from the context. Note also
that our notation explicitly allows multiple instances of the same graph in D.

Other authors considered variants of the FCSM problem that are parametrized by the
transaction class only (see, e.g., Horvath and Ramon, 2010). In contrast, we regard a prob-
lem that is parameterized by the transaction class and the pattern class. The reason is that
we are interested in mining frequent trees in graph databases that contain more complex
graphs. A formalization that does not distinguish between pattern class and transaction
class would always require to list the frequent patterns that are not trees as well, if there
are any.

In Section 2.2.1 we give an algorithm for the FCSM problem and formulate sufficient
conditions for G and P that guarantee the algorithm to generate frequent patterns effi-
ciently. These conditions may be of some independent interest for the study of other
special cases of the FCSM problem. Furthermore, in Section 2.2.2 we characterize a rela-
tionship between the computational complexity of the FCSM problem and the question
whether P = NP. To this end, we first review efficiency notions for listing problems like
the FCSM problem.

Starting from Chapter 3, we focus on the special case of the FCSM problem where
P is the class of trees. This special case will be referred to as FREQUENTSUBTREEMI-
NING (FTM) problem. In Chapter 4 and Chapter 5 we will use the generic algorithm to
obtain positive complexity results for the FTM problem without restricting the transac-
tion graph class.

Computational Complexity of Enumeration Problems

We will now define notions of efficiency for problems like the FCSM problem. A listing
problem is a pair (X, {O(z) : x € X}), where X is a set of valid input instances and O(z)
is the set of all acceptable solutions for each x € X. An acceptable solution o € O(x) is a finite
set; an algorithm solving a particular listing problem (X, {O(z) : = € X })is an algorithm
that outputs for each x € X all elements in some 0 € O(z) exactly once in some arbitrary
order. We assume that the listing problems are polynomially balanced. That is: size(G) <
p(size(x))forallz € X, forallo e O(x), and for all G € o for some fixed polynomial p (see,
e.g. Boley, 2011, Chap. 2.2).

Consider the FCSM problem for transaction class G and pattern class P: A valid input
instance x € X consists of a graph database D ¢ G and an integer threshold ¢ € [|D|]. Note
that the definition above allows for multiple correct solutions o € O(z): An acceptable solu-
tion for x is a maximal set of pairwise nonisomorphic graphs o ¢ P such that each graph
G € ois t-frequent in D. There are many such sets, as one can freely choose to replace
a pattern with an isomorphic graph that is not identical. However, each acceptable so-
lution is a representative of the same graph class, that is, the elements in o are pairwise
nonisomorphic and represent the class of all graphs that are t-frequent in D. As a subgraph
can have at most as many vertices and edges as its supergraph, the size of each ¢-frequent
subgraph is smaller or equal to the size of the largest graph(s) in the input database; hence
this listing problem is polynomially balanced.

19

2. Preliminaries

In contrast to the well known decision problems, where the output consists of a single
bit (interpreted as “Yes” or “No”, “Accept” or “Fail”, et cetera) the output of a listing problem
may vary in size. Consider, for example the task of listing all subsets of a set S. There are
25! subsets that need to be listed. Hence a correct algorithm can never return the full set
in time polynomial in the size of the input as writing the output alone takes exponential
time. Therefore, it is common practice to take the size of the output into account when
defining efficiency measures for listing problems.

For listing problems, the following output sensitive complexity measures are distinguished
in the literature (see, e.g., Boley, 2011; Johnson et al, 1988). Suppose an algorithm 2 for
some listing problem (X, {O(z) : z € X}) getsx € X as input and outputs some o € O(z)
as a sequence [py, p2, -+, pn | of patterns. Then 2 generates o

« with polynomial delay, if the time before the output of p;, between the output of any
two consecutive elements p;, p;+1, and between the output of p,, and the termination
of 2l is bounded by a polynomial of size(z),

« in incremental polynomial time, if the algorithm outputs p; in time bounded by a poly-
nomial of size(x), the time between outputting p; and p;,; is bounded by a polyno-
mial of size(x) + 22:1 size(pj), and the time between the output of p,, and termina-
tion is bounded by a polynomial of size(x) + size(0).

« in output polynomial time, if the algorithm outputs the elements of 0 in time bounded
by a polynomial of size(z) + size(0).

Clearly, polynomial delay implies incremental polynomial time, which, in turn, im-
plies output polynomial time. It is an open problem whether the first two classes are iden-
tical, or not. In frequent itemset mining, for example, the FP-Growth algorithm (Han
et al, 2004) lists frequent itemsets with polynomial delay, while the Apriori algorithm
(Agrawal et al, 1996) does so in incremental polynomial time. We note, however, that the
Apriori algorithm can easily be transformed into a polynomial delay algorithm by retain-
ing the output of frequent patterns (Horvath and Ramon, 2010).

The FCSM problem and the FTM problem can not be solved in output polynomial time.
This follows directly from the negative result in (Horvath et al, 2007) which we will de-
scribe below. One way to obtain positive results is to restrict the transaction graph class
G in the FCSM problem. We will review such approaches in Chapter 3. This thesis, how-
ever, restricts the pattern class to the class of trees while not restricting the transaction
graph class.

2.2.1. A Generic Levelwise Mining Algorithm

We obtain the main results of this thesis by adapting a generic levelwise search mining
algorithm to our problem setting. Levelwise search (Mannila and Toivonen, 1997) is one
of the most common techniques in pattern mining that can be used to efficiently mine
frequent patterns for a broad range of problem settings. Its most popular application is
the Apriori algorithm (Agrawal et al, 1996) for frequent itemset mining. In order to find

20

2.2. Frequent Connected Subgraph Mining

Algorithm 2.1 A generic levelwise graph mining algorithm.

input: D c G for some graph class G, a pattern class P, and ¢ > 0 integer
output: all frequent subgraphs of D that are in P

1: let Sp € P be the set of frequent pattern graphs consisting of a single vertex
2: for(l:=0;S,#2;1l:=1+1)do
3: setSjp1:=@and Cj,q := &
forall P ¢ S;do
print P
for all H € p(P) n P satisfying H ¢ C;,; do
add H to Cj 41
if SupPORTCOUNT(H, D) >t then
add H to §;41

Lol R AN

a pattern in level [+ 1, it completely explores all levels up to [. On the one hand, this
strategy is disadvantageous if one is interested in mining large frequent patterns, as all
(usually exponentially many) subpatterns need to be evaluated first. On the other hand, it
allows for very efficient pruning and it allows for an incremental polynomial time pattern
generation in frequent subgraph mining even for some NP-complete pattern matching
operators (Horvath and Ramon, 2010).

Algorithm 2.1 is a generic levelwise search algorithm for the FCSM problem. It is
a slight modification of the related algorithm by Horvath and Ramon (2010); the only
changes are in Lines 1 and 6. It calculates the set of candidate (resp. frequent) patterns of
level [in the set variable C; (resp. S;). In Line 6 it computes the set p(P) of refinements
of a pattern P obtained from P by extending it with an edge in all possible ways. Due to
this fact, Algorithm 2.1is often referred to as a generate-and-test algorithm That is, it either
adds a new vertex w to P and connects it to any vertex in V' (P) by an edge, or it connects
two vertices in V(P) that have not been connected yet.> Clearly, |p(P)| is bounded by
O (|V(P)|2). Subroutine SUPPORTCOUNT(H, D) in Line 8 returns the number of graphs
G e Dwith H < G.

It is shown by Horvath and Ramon (2010) that the original version of Algorithm 2.1
mines frequent patterns with polynomial delay if patterns and transactions satisfy cer-
tain conditions. These conditions have however been formulated for the case that the
pattern and transaction graph classes are the same. In the theorem below we generalize
these conditions to the case that 7 and G can be different.

Theorem 2.1. Let G and P be the transaction and pattern graph classes satisfying the following
conditions:

1. All graphs in P are connected. Furthermore, P is closed downwards under taking subgraphs,
ie., for all H € P and for all connected graphs H' we have H' € P whenever H' < H.

5 For the case of tree pattern generation, the second type of extension can be omitted, as it always results in
cycles. Hence, in this case [p(P)| = |V (P).

21

2. Preliminaries

2. The membership problem for P can be decided efficiently, i.e., for any graph H it can be decided
in polynomial time if H € P.

3. Subgraph isomorphism in P can be decided efficiently, i.e., for all H,, Hy € ‘P, it can be decided
in polynomial time if Hy < Ho.

4. Subgraph isomorphism between patterns and transactions can be decided efficiently, i.e., for all
H € Pand G € G, it can be decided in polynomial timeif H < G.

Then Algorithm 2.1 solves the FCSM problem with polynomial delay in the size of D for P and G.

The proof of this theorem is very similar to the proof in (Horvath and Ramon, 2010).
We nevertheless give it for completeness.

Proof. Let G and P be two graph classes such that Conditions 1-4 hold and let D ¢ G. We
first prove that Algorithm 2.1 is correct (i.e., sound and complete) and irredundant. The
soundness is immediate from Lines 6 and 8. To show the completeness, let H ¢ P be
frequent in D. We prove by induction on | E'(/)| that it will be generated by the algorithm.
The proof of the base case that H consists of a single vertex is straightforward by Line 1.
For the inductive step we have that H has a vertex with degree one or an edge that can be
removed without disconnecting H. Let H' be the graph obtained from H by deleting such
a vertex (and the edge adjacent to it) or such an edge. By construction, H' is connected
and hence H' € P follows from Condition 1 as H' < H. Furthermore, H' is frequent in
D as any subgraph of a frequent graph must be frequent. Therefore H’ will be generated
by Algorithm 2.1 by the induction hypothesis. Furthermore, as H € p(H') n P, we have
H € C|g(p) by Lines 6 and 7. Therefore, H is added to S5y because it is frequent (Line 9),
completing the proof of completeness. Finally, the proof of irredundancy is immediate
from the condition tested in Line 6.

Regarding the delay, the time before outputting the first pattern (or termination if
there is no frequent vertex) is linear in the size of the database. We can count the fre-
quency of a singleton pattern by a single scan over the database. We now show that the
time needed for Lines 6-9 is polynomial in the size of D. Conditions 1-3 imply that there
is a canonical string representation (i.e., a string unique modulo isomorphism) for all
graphs in P that can be computed in polynomial time. We can store S; and C; as prefix
trees of canonical strings of patterns. In this way, we can add and look up patterns in S;
or C; in time linear in the size of the canonical string of a pattern. |p(H)|is polynomial in
the size of H and thus polynomial in the size of D. Therefore, by Condition 2, p(H) n P
can be computed in polynomial time. H ¢ Cj,; can be checked in time linear in the size
of the canonical string representation of H. SUPPORTCOUNT can be implemented by it-
erating over D, checking for each graph G € D if H < (7, and maintaining a counter; by
Condition 4 it runs in polynomial time in the size of D. Overall, the time between print-
ing consecutive patterns and the time between printing the last pattern and termination
is polynomial in the size of D. Actually, we have shown that the delay of Algorithm 2.1
depends polynomially on the number of graphs in D and on the runtime of the check for
Condition 4. We will use this property in Chapter s. O]

22

2.2. Frequent Connected Subgraph Mining

Note that the conditions above allow for mining frequent patterns that do not belong to
G. Furthermore, they enable the generation of restricted subsets of all frequent subgraphs
of some database D. For example, we can mine frequent paths in transaction databases
consisting of trees. We will utilize the latter property when restricting P to trees.

How to efficiently address Condition 4 is usually left out by other graph mining algo-
rithms. In fact, most graph miners focus on efficient candidate enumeration, instead of
embedding computation. The literature typically justifies this by showing experimental
results on chemical graph databases, where the mining systems are fast. In this thesis,
we go in the opposite direction, focusing on the embedding operator, and prove worst
case complexity bounds. We refer the reader to the related work (e.g. Chi et al, 2005) for
a discussion of efficient candidate generation.

Finally, although it is not required by Theorem 2.1, the complexity of deciding mem-
bership in the transaction class G is a crucial (practical) issue. For some well defined
graph classes, e.g., graphs of tree-width at most &£, membership is computationally in-
tractable if £ is not a constant (Arnborg et al, 1987). Therefore deciding whether a given
graph mining algorithm can be applied efficiently (i.e., whether D ¢ G) might already
be intractable. Even worse, the speed of many existing frequent subgraph mining sys-
tems (e.g., Kuramochi and Karypis, 2004; Nijssen and Kok, 2005) often depends on some
graph properties that are not formally stated and hence not testable. We aim to avoid this
question by choosing a problem relaxation that allows efficient algorithms for arbitrary
transaction graph classes. However, we discuss the membership problem for a particular
graph class in Section 5.3, as one of our relaxed algorithms allows for an exact solution to
the FTM problem for this novel graph class.

2.2.2. The Computational Complexity of Frequent Subtree Mining

After giving sufficient conditions for polynomial delay mining of frequent patterns, we
want to investigate the complexity of the FTM problem. We will see that the question
whether frequent tree mining is possible in output polynomial time is equivalent to the
question whether P = NP for a broad range of transaction graph classes. For the remain-
ing transaction graph classes, interestingly, frequent subtree mining is connected to the
complexity of the HAMILTONIANPATH problem. Informally, we can say that proving re-
sults on the efficiency of frequent tree mining will likely be very difficult. This, among
other reasons, leads us to investigate a suitable relaxation of the FTM to obtain a practical
system that fulfills the requirements mentioned in the introduction. An overview of the
results of this section can be found in Figure 2.2.

Horvath et al (2007) have shown that the frequent connected subgraph mining prob-
lem cannot be solved in output polynomial time if P = G is the class of all graphs. Their
proof can be generalized to our more general problem definition that allows the pattern
and the transaction graph class to be different. Using their result, we are able to show
Theorem 2.2 below. This result implies that the FTM problem cannot be solved in out-
put polynomial time for arbitrary transaction graphs, unless P = NP; this is even true if

23

2. Preliminaries

No polynomial delay frequent
tree mining possible = P # NP
(Theorem 2.1)

However, efficient mining might
be possible without implying
anything on P versus NP

The SUBTREEIsO-
MORPHISM problem
is NP-complete for G

Polynomial delay frequent tree
mining possible < P = NP
(Theorem 2.2)

Polynomial delay frequent
tree mining is possible
(Theorem 2.1)

MORPHISM prob-
lem is in P for G

The SUBTREEISO-

7T I I 7 77777777777

77777 7 77 777
777 Y1777 777777777727777777

7 7777 11707777 777
Ry

77 7770777777777 777777777777

7777777777 7007770777777 727777

77777777 770777777777777 777

771777077 777777777777777 77 7

77 7707707707 77777777777777777

7777 Ty

YIIIIIIIII I 7 7777777777707 77777777777
Ay
7077777772272772772272272272272222222222222727

The HAMILTONIANPATH
problem is in P for G

Figure 2.2.: The relationship between the complexities of the HAMILTONIANPATH and
SUBTREEISOMORPHISM problems for transaction graphs from some graph

The HAMILTONIANPATH
problem is NP-complete for G

class G and the complexity of the FTM problem.

we only try to list all frequent paths. The FTM problem stays NP-hard for a broad range
of transaction graph classes, e.g., the class of planar graphs.® We will investigate some

further implications below.

Theorem 2.2. Let G and P be graph classes that contain the class of paths and let the HAMILTON-

IANPATH problem be NP-complete in G. Then the following things are equivalent:

1. P=NP

2. The FTM problem for G and ‘P can be solved with polynomial delay.

3. The FTM problem for G and ‘P can be solved in output polynomial time.

Proof. Let G be a graph class in which the HAMILTONIANPATH problem is NP-complete.
“1=2": If P = NP then the subgraph isomorphism problem can be decided in polyno-
mial time. Hence, by Theorem 2.1 we can find all frequent subtrees in any finite subset of

G with polynomial delay.

® For an overview of graph classes where the HAMILTONIANPATH problem is NP-complete, we refer the

reader tohttp://graphclasses.org/classes/problem_Hamiltonian_path.html.

24

http://graphclasses.org/classes/problem_Hamiltonian_path.html

2.2. Frequent Connected Subgraph Mining

“2=3": If polynomial delay mining is possible, this immediately implies that mining
in output polynomial time is possible.

“z=1": Suppose the FTM problem can be solved in output polynomial time for trans-
actions from G. Let G € G and P be a path with |[V(P)| = [V(G)|. As {G,P} c G, all
2-frequent subtrees in this database are listed in output polynomial time (by assumption
of 3). The number of output patterns is bound by |V (G)| and hence the mining algorithm
terminates in time polynomial in the size of G. The HAMILTONIANPATH problem for G
can be decided by checking whether the path P is 2-frequent. Hence P = NP, as we have
just given a polynomial time algorithm for an NP-complete problem. O

The proofby Horvath et al (2007) for “3=1" uses that the output set has alinear number
of elements in the size of the input database; there are exactly n + 2 nonisomorphic paths
of length at most n.” Therefore an output polynomial time algorithm for this particular
instance is in fact a polynomial time algorithm in the input size. Note that this technique
can not necessarily be generalized to different NP-complete decision problems (e.g., the
CLIQUE problem); a similar database consisting of a clique and some other graph G would
have an exponential number of 2-frequent subgraphs.

Animportant result of this fact is that the proof above holds for all pattern classes that
contain the class of all paths. In particular, Theorem 2.2 holds for the class of paths and
the class of all connected graphs, as well. A “Proof by Restriction” analogously to deci-
sion problems (Garey and Johnson, 1979)® for listing problems does, however, not work
in general. Without the particular structure of the proof of Theorem 2.2 we could not con-
clude that the nonexistence of an output polynomial time algorithm for the FTM problem
implies the nonexistence of an output polynomial time algorithm for the FCSM problem
with some pattern class that contains the class of all trees. For the same input, the output
of the two problems might differ; allowing additional elements in the output reduces the
output sensitive complexity for the same overall runtime. In the proof of “3=1", however,
the output is restricted to the polynomially large set of all frequent paths by construction
of the database. Hence the output sensitive efficiency measures for the different frequent
graph mining problems have the same input (i.e., the input and the output of the problem).

Theorem 2.2 implies that for many graph classes the existence of an output polynomial
time algorithm is equivalent to the existence of a polynomial delay mining algorithm:
This is certainly the case if P = NP. Now suppose P # NP. Then this is equivalent to the
nonexistence of a polynomial delay tree mining algorithm and to the nonexistence of an
output polynomial time tree mining algorithm for graph classes where the HAMILTON-
IANPATH problem cannot be solved in polynomial time. Putting this together, for trans-
action graph classes, where the HAMILTONIANPATH problem is NP-complete, polyno-
mial delay mining, incremental polynomial time mining, and output polynomial time
mining are either all possible or all impossible, i.e., here the complexity hierarchy col-
lapses. This also answers a question posed by Horvath and Ramon (2010) for a large num-

7 Including the empty graph and the singleton graph, containing only one vertex.
8 That is, NP-completeness of the HAMILTONIANPATH problem implies the NP-completeness of the SUB-
GRAPHISOMORPHISM problem.

25

2. Preliminaries

ber of graph classes: Incremental polynomial time subtree or subgraph mining for com-
putationally intractable embedding operators is not possible for this type of transaction
graph classes, unless P = NP.

An Open Problem

After seeing the negative result for frequent tree mining above, it is natural to ask how
far we can go if we are nonetheless interested in mining frequent trees efficiently. That
is, is frequent tree mining possible with polynomial delay or at least in output polyno-
mial time in all graph classes where the HAMILTONIANPATH problem is in P? We do not
know the answer and the question whether efficient frequent subtree mining is possible
remains open even for the transaction graph class of cactus graphs, one of the simplest ex-
tensions of the class of forests. A cactus graph is a graph where every biconnected block is
a simple cycle. The HAMILTONIANPATH problem can be decided for cactus graph trans-
actions in polynomial time. This follows from (Matousek and Thomas, 1992) by noting
that paths have vertex degree at most two and cactus graphs have tree-width at most two.
In fact, this problem can be solved in linear time as shown in Appendix A. The SUBTREE-
ISOMORPHISM problem, however, is already NP-complete for cactus graph transactions
(Akutsu, 1993). We can now show the importance and high difficulty of this open problem
by discussing the potential two answers separately.

(i) Suppose the problem can be solved with polynomial delay. An important immedi-
ate consequence of this result would be that polynomial delay frequent pattern enu-
meration is possible even for NP-complete pattern matching operators, solving an
open problem (cf. Horvath and Ramon, 2010).

(ii) Suppose it cannot be solved with polynomial delay. Then, as the class of trees sat-
isfies Conditions 1-73 of Theorem 2.1, by contraposition we have that Condition 4
of Theorem 2.1 does not hold, i.e., the corresponding subgraph isomorphism prob-
lem is not in P. But this would immediately imply that P # NP, indicating the high
difficulty of proving this case, as the subgraph isomorphism problem lies in NP for
all pattern and text graph classes. Note that this consideration applies also to the
particular case of cactus transaction graphs.

As a result, there is a strong connection between the complexity of the HAMILTONIAN-
PATH problem and the SUBTREEISOMORPHISM problem on the one hand and the FTM
problem on the other hand for a given transaction graph class. Figure 2.2 collects the re-
sults from the above considerations, from Theorem 2.1, and from Theorem 2.2.

We conjecture that case (ii) holds, that is, polynomial delay pattern generation is im-
possible for computationally intractable pattern matching operators. This is certainly
true for graph classes for which the HAMILTONIANPATH problem is NP-complete®. If
our conjecture holds, then it implies that in case of intractable pattern matching opera-
tors, the primary question should be whether the pattern mining problem at hand can be

® We note that the HAMILTONIANPATH problem is polynomial for the case of cactus graphs, making them
an especially interesting candidate graph class. See, also, Appendix A.

26

2.3. Embedding Computation

solved in incremental polynomial time, and not to show that polynomial delay pattern
mining is not possible. Furthermore, even for very simple graph classes, polynomial de-
lay exact frequent subtree mining is most likely very difficult to achieve.

In the remainder of the thesis we hence focus on a relaxation of the frequent subtree
mining problem that allows us to easily guarantee polynomial delay by giving up the de-
mand on completeness of the output. As a result of one of our algorithms for this relaxed
problem, however, we will discuss an exact algorithm for a novel graph classin Section 5.3.
The open problem for cactus graph transactions formulated above shows the significance
of this result. We discuss this connection in Section 5.4.

2.3. Embedding Computation

Once we have found the set of frequent subgraphs or subtrees of a given graph database,
we are usually interested in doing something with them. First, we could use the patterns
directly, for example by manually inspecting them to gain knowledge about the dataset.
Another useful application is to use the patterns as a representation language for graphs
in the input dataset and, more generally, graphs drawn from the same or a similar dis-
tribution. A common way of defining the similarity between two graphs is to compute
some similarity measure of their images in the Hamming-cube {0, 1}/*! spanned by the el-
ements of the set of frequent patterns 7. The binary feature vectors can then be regarded
as the incidence vectors of subsets of . Given a fixed set F of frequent patterns, we define
a feature space as the power set 27 of F and a feature map as fr : G — {H e F : H<G}.
The image of G under fr is called embedding of . For the experimental evaluation of the
frequent subtree miners we develop in this thesis, we will often use the corresponding em-
beddings of graphs, equipped with a suitable metric or kernel function for metric learn-
ing. Formally the task of embedding computation in the context of frequent subtree min-
ing is defined as follows:

TREE EMBEDDING COMPUTATION (TEC) PROBLEM: Given a graph G and a finite set 7
of trees, list all trees P € F, that are subgraph isomorphic to G.

Note that the TEC problem is a special case of the FCSM problem for finite P = F, D =
{G}, and t = 1if F is closed downwards with respect to subgraph isomorphism. Hence,
we can apply a variant of Algorithm 2.1 to solve the problem, as it is possible to decide
whether a tree H is contained in a finite set of trees in linear time in the size of H (cf.
Section 2.1). However, we discuss more efficient alternatives in Chapter 6.

Jaccard Similarity

One similarity function that we investigate in this thesis on the embedding vectors dis-
cussed above is the Jaccard similarity. Given two binary feature vectors f, and f> repre-
senting the sets S and Sy, respectively, their Jaccard-similarity is defined by

|Sl ﬁSQ|

SIM]accard(flvf2) = SIMIaccard(Sl’S2)) |S1 U S

27

2. Preliminaries

with SIMj,ccard (&, @) := 0 for the degenerate case. Aslong as the feature vectors are low di-
mensional (i.e., | F|is small), the Jaccard-similarity can quickly be calculated. If, however,
they are high dimensional, it can be approximated by the following fast probabilistic tech-
nique based on min-hashing (Broder, 1997): For a permutation 7 of F and feature vector f,
define h(f) to be the index of the first entry with value 1in the permuted order of f. One
can show that the following correspondence holds for the feature vectors f; and f; above
(see Broder, 1997, for the details):

SIM]accard(Slst) =P [hﬂ'(fl) = hﬂ(f?)])

where the probability P is taken by selecting 7 uniformly at random from the set of all
permutations of F. This allows for the following approximation of the Jaccard-similarity
between fl and fQ: Generate aset 7y, ..., 7 of permutations of the feature set uniformly
at random and return K'/K, where K" is the number of permutations m; with h,(f;) =
hr,(f2). The approximation of the Jaccard-similarity with min-hashing results in a fast
algorithm if the embedding into the feature space can be computed quickly.

2.4. Datasets

Any general frequent subgraph mining algorithm is expected to process a broad spectrum
of graph databases. Most empirical evaluations, however, concentrate on some particu-
lar type of graph data, mostly representing small molecules. These graphs share certain
properties, e.g. sparsity, small vertex degree, near planarity, and, in particular, a natural
set of frequent patterns corresponding to functional groups. While all these properties
(especially the last one) motivate frequent subgraph mining in the first place, it is also im-
portant to observe the behavior of a mining technique on data that may or may not have
such properties. We therefore conducted experiments on molecular, social, and artificial
datasets. Table 2.1 gives an overview of key statistics of these datasets. Below we briefly
describe their semantics and how we obtained them.

MUTAG (Debnath et al, 1991)is a dataset of 188 connected compounds labeled according
to their mutagenic effect on Salmonella typhimurium. On average, each graph has
20 vertices and 22 edges.

PTC contains 344 connected molecular graphs, labeled according to the carcinogenic-
ity in mice and rats. The graphs have 26 vertices and edges on average. The
dataset was released as part of the Predictive Toxicology Challenge (see https:
//www.predictive-toxicology.org/ptc)held in 2000 and 2001.

NCI1, NCI109 (Wale et al, 2008) consist of 4 110 (resp. 4 127) compounds of which 3530
(resp. 3519) are connected. Both are balanced sets of chemical molecules labeled
according to their activity against non-small cell lung cancer (resp. ovarian cancer)
cell lines. The average number of vertices is 30, the average number of edges is 32
in both datasets.

28

https://www.predictive-toxicology.org/ptc
https://www.predictive-toxicology.org/ptc

2.4. Datasets

Dataset | # Graphs # Vertices # Edges max. Degree
MUTAG | 188 17.93 + 4.58 19.79 + 5.68 4
NCI1 | 4110 29.87+13.56 32.30 + 14.93 4
NCI109 | 4127 29.68 +13.57 32.13+14.96 5
PTC | 344 25.56 +16.25 25.96 + 17.06 4
NCI-HIV | 42688 4571 +23.68 47.71 + 24.57 12
ZINC | 8946757 42.39+6.38 43.92 £ 6.55 5
ER-1.0 | 50 2570 +13.91 24.90 + 13.77 8
ER-1.4 | 50 23.52+14.60 31.90 +20.08 9
ER-1.8 | 50 27.06 + 14.02 48.24 + 25.39 11
ER-2.0 | 50 28.32+£12.60 56.72 +25.93 11
Brownian Motion | 200 30.00 +0.00 43.47 +5.03 9
POKEC neighbors | 100 78.72+£110.29 182.70+300.40 75
POKEC disks | 100 79.72 +110.29 261.42 +405.43 1031
HEPPH neighbors | 1000 19.92 +47.87 888.31 +4548.81 361
HEPPH disks | 1000 20.92 +47.87 908.23 £4593.35 491
ENRON neighbors | 1000 26.61 +74.35 199.55+827.49 420
ENRON disks | 1000 27.61 +74.35 226.16 + 898.94 1244

Table 2.1.: Statistics of our evaluation datasets. We report the number of graph transac-
tions, average number of vertices and edges per graph, and the maximum de-
gree of any vertex in each dataset.

NCI-HIV consists of 42 687 compounds of which 39 337 are connected. The average num-
ber of vertices and edges per graph are 41 and 43, respectively. The molecules are
annotated with their activity against the human immunodeficiency virus (HIV). In
particular, they are labeled by “active” (A), “moderately active” (M), or “inactive” ().
We consider the following three usual binary classification problems: (AMvsl) A
and M together versus I, (AvsMI) A versus M and I, and (AvsI) A versus I where in-
stances labeled by M are removed.

ZINC is a subset of 8946 757 (8 946 755 connected) so called 'Lead-Like’ molecules from
the zinc database (Irwin et al, 2012) of purchasable chemical compounds. The
molecules in this subset have a molar mass between 250g/mol and 350g/mol and
have an average number of 43 vertices and 44 edges.

POKEC is a popular social network in Slovakia with roughly 1.6 million users and more
than 30 million directed edges. The crawl by Takac and Zabovsky (2012) includes
various public attributes of the users (e.g. gender, age, eye color, etc.). We consider
an unlabeled version of this graph as well as a labeled one, where each vertex is
labeled by the corresponding user’s gender (or “unknown” if the information was
not available). In both cases the edges are unlabeled.

29

2. Preliminaries

HEPPH is a co-authorship network extracted from the arXiv preprint server. Vertices
correspond to authors of papers in the area of high energy physics; an undirected
edge connects two authors if they coauthored a paper. The graph consists of 12 008
unlabeled vertices and 118 521 unlabeled edges. This snapshot was originally re-
leased as a part of 2003 KDD Cup (see Gehrke et al, 2003, for an overview).

ENRON is an email communication network (a first description appeared in Klimt and
Yang, 2004). Nodes are email accounts of employees of the Enron company and
their acquaintances and an undirected edge exists if there was at least one email
sent between two accounts. The graph contains 183 831 edges and 36 692 vertices
and is unlabeled.

Erdos-Rényi Datasets All these datasets consist of sparse graphs of varying number of
vertices and edges that were generated in the Erd6s-Rényi random graph model
(Erdés and Rényi, 1959). The datasets have different structural complexity, where
the structural complexity is defined as the expected edge factor g = * (n is the number
of vertices and m the number of edges). For a given ¢, each graph G in the corre-
sponding dataset is generated as follows: We first draw the number n of vertices
uniformly at random between 2 and 50. Then we set the Erd6s-Rényi edge proba-
bility parameter p = %, and finally generate G on n vertices in the usual way with
this p. This implies that the expected number of edges for a graph on n vertices is
q - n. If the resulting graph is connected, we add it to the dataset. The vertices and
edges may be labeled by choosing a label from fixed sets of vertex and edge labels

uniformly at random.

Brownian Motion Datasets To construct such a graph database, we first draw n points
from the two-dimensional unit cube independently and uniformly at random and
label them with c¢ different labels'® at random for some ¢ > 0 integer. Given a pa-
rameter d € (0,/2], we construct a threshold graph by connecting two points if and
only iftheir two-dimensional Euclidean distance is at most d. Subsequent graphsin
the database are obtained by (i) moving each point randomly according to a normal
distribution with standard deviation y centered at its former position and (ii) con-
structing a threshold graph on the resulting set of points with respect to the same
threshold d as above. If a point would leave the unit square due to its random move,
itis reflected back inside. Hence, a database constructed in this way depends on the
parameters n, ¢, d, i, and N, where N is the number of time steps (or equivalently,
the number of graphs in the database).

We process each social network above by replacing directed with undirected edges
(removing duplicate edges and singleton vertices). In order to obtain a graph transac-
tion database from such a social network we consider the graphs induced by the neigh-
borhoods of the vertices. Such small graphs arising from social networks are often

'° The number of vertex labels has a nontrivial influence on the number of (non-isomorphic) spanning trees
of graphs and also on the number of frequent patterns in a graph database.

30

2.4. Datasets

called ego nets. The first dataset variant, which we call disk, contains also the vertex it-
self, while the second variant, called neighborhood only considers the neighbors with the
central vertex removed. More formally, the disk transaction database of a social net-
work G is the set {G[{v} UN(v)] : ve V(G)}, while the neighborhood variant is the
set {G[N(v)] : ve V(G)}. The disk variant results in connected graphs with a central
vertex of high degree, while the neighborhood variant results in mostly disconnected
graphs. Table 2.1 shows the number of such ego nets that we extracted, the average num-
ber of vertices and edges in these ego nets, and the maximum degree of any vertex in the
ego net transaction database.

Data Sources

We obtained the datasets MUTAG, NCI1, NCI109, and PTC from http://www.di.ens.fr/
~shervashidze/code.html. The NCI-HIV dataset can be found at http://cactus.nci.
nih.gov/. We use a version that was provided by Tamas Horvath. The ZINC dataset is
available athttp://zinc.docking.org/subsets/lead-1ike. We downloaded a copy in
August 2014. The social datasets POKEC, YOUTUBE, HEPPH, and ENRON are available at
http://snap.stanford.edu. Forthe generation of the artificial datasets we have written
a small program.

31

http://www.di.ens.fr/~shervashidze/code.html
http://www.di.ens.fr/~shervashidze/code.html
http://cactus.nci.nih.gov/
http://cactus.nci.nih.gov/
http://zinc.docking.org/subsets/lead-like
http://snap.stanford.edu

3. Related Work

We will now review the state-of-the-art of exact and approximate solutions to the FCSM
and FTM problem. In particular, we are interested in (i) identifying cases where efficient
mining is possible and (ii) reviewing the proposed graph mining algorithms with respect
to efficiency (in the sense of Section 2.2.2). As we have seen in the preliminary experi-
ments in Section 1, this question is not only of theoretical, but also of practical interest.
Practical algorithms that reliably work on a broad range of transaction graph databases
are scarce.

The first (theoretical) task is mostly concerned with reviewing algorithms for the Sus-
TREEISOMORPHISM and SUBGRAPHISOMORPHISM problems. These can be used as
embedding operators in Algorithm 2.1 and thus yield complexity results for both prob-
lems. The second (practical) task is concerned with reviewing various frequent subgraph
mining algorithms that were proposed over the last two decades. We will see that all of
these algorithms are (i) restricted to certain pattern or transaction graph classes and guar-
antee some worst-case runtime or (ii) work for arbitrary graph patterns and transactions,
without giving worst-case runtime guarantees. There have been several reviews on the
topic of frequent subgraph mining (Chi et al, 2005; Jiang et al, 2013; Krishna et al, 2011;
Worlein et al, 2005). However, those surveys only consider papers that propose frequent
subgraph mining algorithms, skipping the theoretical results obtainable and treating the
computational complexity only as a minor issue.

Frequent subgraph mining has been an active area of research over the last twenty
years. Reviewing all related work is hence impossible, forcing us to focus on the most
relevant work. We therefore restrict this review to papers that consider a database of
small to medium sized graphs as input where a graph pattern is considered to be frequent
if it is subgraph isomorphic to at least a certain number of graphs in the database. That
is, we restrict our review to articles that consider frequent subgraph mining algorithms
in the sense of Definition 2.2 and relevant relaxations of this task. In the literature, this
scenario is often called the transactional setting of frequent subgraph mining. Furthermore,
we do not consider parallelization efforts, as they are orthogonal to the main technical
contributions in this thesis.

Another direction of frequent subgraph mining research that can be clearly distin-
guished considers the single graph setting. Here, the task is to find all graphs that are “fre-
quent” in a single (large) graph, for varying definitions of frequency (see, e.g., Bringmann
and Nijssen, 2008, for a few such notions). There are also several articles concerned with
frequent tree mining that, in fact, solve problems different to the FTM problem. Vari-
ations include (i) the type of graph database, (ii) the type of patterns, (iii) the notion of
frequency, and (iv) the embedding operator. In particular, various types of “tree” trans-
actions and patterns are considered, e.g., rooted trees (Asai et al, 2003; Chi et al, 2004a;

33

3. Related Work

Nijssen and Kok, 2003; Termier et al, 2002) or rooted ordered trees (Asai et al, 2004; Zaki,
2002). The survey article of Chi et al (2005) gives an excellent overview on the state of
the art before 2005 and organizes the work along dimensions (ii) and (iv). The survey ar-
ticle of Jiang et al (2013) extends the temporal scope to the year 2013 and also addresses
frequent subgraph mining algorithms.

The transactional setting, i.e., the FTM or FCSM problem, has lead to a lot of research
on its own. Between circa 2002 and 2008 various research groups worked on this topic
and published articles and software prototypes. It seems, however, that around the year
2008 the general interest in novel algorithms faded and many people moved on to paral-
lelizing existing algorithms (compare Jiang et al, 2013; Petermann et al, 2017) or solving
different problem formulations using variations of the existing algorithms. Only a few
groups kept working on frequent subgraph mining in the transactional setting after 2008,
focusing e.g. on theoretically efficient algorithms (Horvath and Ramon, 2010) or differ-
ent problem formulations resulting in approximations of the FCSM problem. We are not
aware of any truly novel algorithmic approaches for the exact FCSM or FTM problem that
resulted in practical algorithms for this setting which were released after 2008.

Jiang et al (2013) conclude that this is due to the maturity of the field. We disagree; our
review shows that existing algorithms are either restricted to very simple graph classes
or have exponential delay in the worst case. We have mentioned in Chapter 1 that this in
fact restricts such graph mining algorithms exactly to chemical graph databases. We will
show in Section 4.2 that the state-of-the-art graph mining algorithms (which all have ex-
ponential delay in the worst case) are inapplicable on several non-chemical datasets. In
fact, there is no clear way to predict whether the graph miners in the literature will be
fast or inapplicable on a given dataset, which heavily restricts their usefulness, e.g. in a
data exploration setting. Only recently, Schulz et al (2018) presented the first algorithm
that can efficiently compute an approximation of the set of frequent trees on arbitrary
transaction databases. Hence we conclude that additional work is required to obtain al-
gorithms that are applicable in broader settings; most likely this task involves focusing
more on efficient embedding operators.

Outline

We organize the literature review as follows: In Section 3.1 we discuss algorithms for the
SUBGRAPHISOMORPHISM problem that can be applied in Algorithm 2.1 to obtain a fre-
quent subgraph mining algorithm. Section 3.2 reviews existing integrated algorithms. In
particular, frequent tree mining algorithms (Section 3.2.1), frequent subgraph mining al-
gorithms (Section 3.2.2), and algorithms that approximate the set of frequent subgraphs
in some sense (Section 3.2.3)

34

3.1. Algorithms for the SUBGRAPHISOMORPHISM Problem

3.1. Algorithms for the SUBGRAPHISOMORPHISM Problem

We have discussed the complexity of the FTM problem in Section 2.2. Theorem 2.1 states
that polynomial delay mining of frequent trees is possible if the SUBTREEISOMORPH-
ISM problem (resp. SUBGRAPHISOMORPHISM problem for more general patterns') can
be decided in polynomial time for a given transaction graph class G. Various algorithms
have been proposed for restricted versions of the SUBGRAPHISOMORPHISM problem,;
possibly even more special cases have been shown to remain NP-complete. There is no
way to give a complete overview on the work that was done in this area, and in Chap-
ter 5 we will develop yet another algorithm for the SUBTREEISOMORPHISM problem in
a novel class of transaction graphs. To this end we discuss the most relevant results that
relate to our work. In particular, we focus on the complexity of the SUBTREEISOMORPH-
ISM problem and review the most commonly used practical approach for solving the gen-
eral SUBGRAPHISOMORPHISM problem in the context of frequent connected subgraph
mining.

Perhaps most prominently, the SUBTREEISOMORPHISM problem can be solved in
polynomial time if the pattern graph H is a tree and the transaction graph G is a forest.
Various efficient algorithms have been proposed in the last fifty years (Chung, 1987; Lin-
gas, 1983; Matula, 1968, 1978; Shamir and Tsur, 1999; Verma and Reyner, 1989). However,
the positive result for the SUBTREEISOMORPHISM problem does not hold if the pattern
graph is allowed to be disconnected, i.e., the SUBGRAPHISOMORPHISM problem is NP-
complete even for forest transactions (Garey and Johnson, 1979, Theorem 4.6).

The currently fastest known algorithm for the SUBTREEISOMORPHISM problem for
a tree pattern H and forest transaction G requires

O(IV(G)I - IV(H)|1‘5)
log|V (H)|

time (Shamir and Tsur,1999). All these algorithms have in common that they are dynamic
programming algorithms. Generally, the SUBTREEISOMORPHISM problem is solved by
bottom-up evaluation over a rooted version of one of the two trees. This is done by com-
bining partial subgraph isomorphisms of the children of the current vertex by solving
bipartite matching instances. The algorithms mainly differ in the details of the evalua-
tion and how efficiently they solve the matching instances. We will describe a generaliza-
tion of the algorithm presented in (Shamir and Tsur, 1999)* in Chapter 5 and hence skip
a more detailed discussion here. Any one of the algorithms for tree patterns and forest
transactions can be used for the approach developed in Chapter 4.

The positive result on forest transactions has motivated the question whether the SuB-
TREEISOMORPHISM problem remains feasible for larger transaction graph classes. As
already mentioned in Chapter 2, a common generalization of trees are graphs of bounded

! Obviously, a polynomial time algorithm for the SUBGRAPHISOMORPHISM problem for some graph class
G that contains the class of trees implies a polynomial time algorithm for the SUBTREEISOMORPHISM
problem for transactions in G.

* Theiralgorithm is a simplification of the algorithm presented in (Chung, 1987) with a more elegant solution
for the bipartite matching problems.

35

3. Related Work

tree-width. Matousek and Thomas (1992) have extended the dynamic programming ap-
proach from trees to transaction graphs where the tree-width is bounded by a constant k.
Their algorithm runs in polynomial time if the pattern graph is connected and has vertex
degree k, or is k-connected, where £ is some constant. If such a constraint is not imposed,
the SUBGRAPHISOMORPHISM problem remains NP-complete for bounded tree-width
transactions. Their algorithm first computes a tree decomposition 7" of G and employs
a bottom-up evaluation over some rooted version of 7'. It builds partial subgraph iso-
morphisms for the graph induced by the bags of the current vertex and its descendants.
In fact, many otherwise hard problems can be solved in polynomial time in a similar
way if the tree-width of a graph is bounded by a constant. The work by Matousek and
Thomas (1992) has been generalized to pattern graphs that have log-bounded fragmentation
by Hajiaghayi and Nishimura (2007). A graph G has log-bounded fragmentation if the
removal of k vertices results in at most O (klog |V (G)|) connected components. Graphs
with maximum vertex degree O (log |V (G)|) are log-bounded fragmentation graphs (for
any 0 < k < |[V(G)|). It is important to note, however, that these results imply only that
frequent subtrees can be mined efficiently in bounded tree-width transactions if there is
an additional restriction on the vertex degree of the trees.

A different, more restrictive3, generalization of forests are almost k-forests. A graph
G is an almost k-forest if each block B of G has at most |V (B)| + k edges. Akutsu (1993)
has shown that the SUBGRAPHISOMORPHISM problem can be solved for connected pat-
terns and almost k-forests of bounded vertex degree. Again, if we drop the restriction
on the vertex degree, Akutsu has shown that the SUBGRAPHISOMORPHISM problem is
NP-complete even for tree patterns and almost 0-forest transactions (i.e., cactus graphs).
Such graphs are also called cactus graphs and are outerplanar. This implies that the SUuB-
TREEISOMORPHISM problem for outerplanar graphs is NP-complete. As outerplanar
graphs have tree-width at most two, we have a clear distinction of the complexity of the
SUBTREEISOMORPHISM problem based on the tree-width of the transaction graph class:
The SUBTREEISOMORPHISM problem is in P for the class of graphs with tree-width at
most one and is NP-complete for the class of all graphs with tree-width % for all k£ > 2,
unless we restrict the vertex degree of the pattern tree to be a constant.

Marx and Pilipczuk (2014) systematically investigated the complexity of the Sus-
GRAPHISOMORPHISM problem for several combinations of pattern and transaction
graph classes. They consider the tractability of the problem if one imposes (constant)
bounds any combination of ten parameters, containing, e.g., number of vertices, number
of connected components, maximum vertex degree, and tree-width, for pattern, or trans-
action. Table 1 in their article shows a large number of restrictions of the SUBTREEIsO-
MORPHISM problem that are NP-complete even if some parameters of the transaction
graphs (and even the pattern trees) are constant. Most of their (maximal) positive results
require either the number of vertices or the maximum vertex degree of the pattern to
be constant. The only exception (at least at first glance) relevant to the SUBTREEIsO-
MORPHISM problem is that the SUBGRAPHISOMORPHISM problem between patterns
with a constant number of connected components and transactions with bounded genus,

3 Inthe sense that an almost k-forest has bounded tree-width.

36

3.1. Algorithms for the SUBGRAPHISOMORPHISM Problem

bounded feedback vertex set and bounded vertex degree (sic) can be decided in polyno-
mial time. This, however, restricts the vertex degree of the pattern tree as well: If there
exists a subgraph isomorphism then the maximum vertex degree of the pattern must not
be larger than the maximum vertex degree of the transaction. In this sense, the above
case is no exception from the rule that efficient SUBTREEISOMORPHISM algorithms for
more general graph classes than forests exist only for patterns of bounded vertex degree.
In contrast, the SUBTREEISOMORPHISM algorithm discussed in Chapter 5 is efficient
when both pattern and transaction graph have unbounded vertex degree. The efficiency
of our algorithm depends only on the restriction of a less general branching property of
the transaction graph.

3.11. Embedding Lists and Exponential Algorithms

As positive complexity results even for restrictions of the SUBTREEISOMORPHISM prob-
lem are scarce, some researchers have investigated algorithms for the SUBGRAPHISO-
MORPHISM problem that do not guarantee bounded worst-case runtimes but are fast in
practice on many types of graphs that arise in application settings. To this end, Ullmann
(1976) proposed to explicitly compute the set of all subgraph isomorphisms from a pattern
graph H to a transaction graph.# His algorithm fixes an order [v1,va, ..., vy ()] of the
vertices of /7 and considers the sequence [1, Ha, ..., Hy gy = H] of induced subgraphs
H; = H[U§-=1 v;]. It computes the set

EL(Hi+1,G):={¢ : ¢:V(His1) > V(G) is a subgraph isomorphism}

by extending each subgraph isomorphism ¢ ¢ EL(H;, G) to subgraph isomorphisms
from H;,; to G as follows: The algorithm checks whether the novel vertex v;.1 in H;,;
is compatible to . That is, whether there exists a vertex w € V() that is not yet part of
the image of ¢ and is connected to all images of the neighbors of v;,; in H;,;. Hence each
¢ € EL(H;,G) can be extended to up to [V (G)| - i isomorphisms from H;,; to G. The al-
gorithm either terminates by finding a subgraph isomorphism from H to G or stops after
finding a subgraph isomorphism from some H; to G, but none from H;; to G.

This method works well for chemical graphs and some other workloads (see, e.g.,
Nijssen and Kok, 2005; Zhao and Yu, 2008). Due to a moderate number of vertex and
edge labels, high sparsity and (almost) planarity of chemical graphs the sizes of the sets
EL(H;,G) tend to be small. The runtime of Ullmann’s algorithm is strongly influenced
by the total number of subgraph isomorphisms that exist from any H; in the selected
sequence [H1, Ha, ..., Hjy gy = H] to G. This number is bounded by

|V (H)| [V (H)]
| VO 1o
X LA X () VO

This bound is best possible. Consider the case that G is an unlabeled complete graph: For
each permutation of each k-sized subset of the vertices of G there exists a unique isomor-
phism from (any graph) H with |V/(H)| = k. Hence, the number of subgraph isomor-

4 Checking whether this set is empty, or not, obviously solves the SUBGRAPHISOMORPHISM problem.

37

3. Related Work

phisms that need to be computed may be exponential in the size of G and facultative in the
size of H. There is no known way to compute or estimate the exact number of such embed-
dings (an exact solution in polynomial time would solve the SUBGRAPHISOMORPHISM
problem). Hence it is required to run the algorithm and wait whether it terminates in
feasible time and does not consume all available memory for storing embeddings.

On the other hand, however, this method is easy to implement and particularly well-
suited for the workload of frequent subgraph mining systems. For a breadth-first or
depth-first mining algorithm all (resp. one) subgraphs of any pattern graph H were al-
ready enumerated and the SUPPORTCOUNT method has already been evaluated. Hence,
we have (in the notation from above) already computed E'L(H,y (f)-1,) for some suit-
able direct predecessor’ Hyy (-1 of H = Hjy(py. 1f we store all embeddings for all
patterns from the previous level, we can hence compute the set of embeddings of H into
any graph G in the database, by reusing the embeddings of the predecessor pattern.

In practice, it seems to be the case that alow average vertex degree in combination with
a moderately-sized set of possible vertex and edge labels dramatically reduces the num-
ber of possible subgraph isomorphisms. Empirical evaluations of the existing frequent
subgraph mining systems indicate that this approach works well on chemical graphs and
some other databases. There is generally no guarantee that it is always the case. In fact,
we will see in Section 4.2 that there are many practically relevant graph databases where
the runtime and space requirements of Ullmann’s algorithm explode for no apparent rea-
son.

An extension of Ullmann’s algorithm is due to Cordella et al (1998, 1999). For a given
pattern H and a text graph G, the authors incrementally construct embeddings from sub-
graphs of H into G similar to the algorithm of Ullmann (1976). They propose to add a prun-
ing step during the extension of an embedding. Their algorithm not only checks whether
the embedding can be grown by a single vertex, but also whether the image v’ of the novel
vertex v has enough free neighbors to map v’s not yet mapped neighbors to it. If this is
not the case, no subgraph isomorphism from H to G can exist that maps v tho v'. This
speeds up the algorithm both in theory and in practice. The proposed pruning strategy,
however, cannot be used in the incremental fashion described above: The neighbors of v
are not known at the time of the extension of the embedding. (The novel vertex is always
the last vertex missing to construct a complete embedding of the current pattern graph
H.) Hence all neighbors® of v in H are already mapped to some vertex of G in the current
embedding.

5 When mining graphs that may contain cycles, the notions are slightly modified to allow the extension to
work edge-by-edge, not vertex-by-vertex. In the context of the FTM problem, however, both notions are
equivalent.

® If H is a tree, there is of course only one such neighbor

38

3.2. Algorithms for the FCSM Problem
3.2. Algorithms for the FCSM Problem

Over the last twenty years, a lot of research has focused on practical implementations of
frequent subgraph mining systems. Most of this work has focused on the efficient enu-
meration of candidate patterns and on canonicalization of the patterns to avoid dupli-
cates (Chi et al, 2005; Jiang et al, 2013). Most graph mining papers address the support
counting step in a less detailed manner, either citing some off the shelf subgraph isomor-
phism algorithm, or roughly sketching ways to keep track of all possible embeddings of
patterns into the transaction database (compare Section 3.1.1). Jiang et al (2013) suggest
that this is due to the fact that the subgraph isomorphism problem is seen as “harder to
address”. Hence more work is spent to reduce the number of calls to the subgraph iso-
morphism subroutine as much as possible. While this is an important issue, the bulk of
the computational effort for medium to large graph databases is still to evaluate the em-
bedding operator for candidate patterns on database transactions (Worlein et al, 2005).
This is particularly relevant, as it is even the case for chemical graph databases, where
the subgraph isomorphism algorithms described in Section 3.1.1 are very fast.

In this thesis, we go into the opposite direction. Contrary to most of the related work
we focus on the embedding operator. We will hence review the related work with spe-
cial regard to the embedding computation techniques it employs. Furthermore, we will
also take special interest in the kind of graph databases and the related algorithms used
for their evaluation (if any). For literature reviews focusing more on other aspects, we
refer the reader to (Borgelt, 2009; Chi et al, 2005; Jiang et al, 2013). As it turns out, only
(Chi et al, 2003; Horvath and Ramon, 2010) use efficient embedding operators to solve
the FCSM in incremental polynomial time. (Horvath and Ramon, 2010) is mainly a the-
oretical result as it was not implemented. Thus the only existing implementation with
guaranteed worst-case delay (by Chi et al) can only mine trees in forest transactions.

Unless stated otherwise, all practical systems consider labeled graph databases. That
is, each vertex and edge is assigned a unique element from a finite set of symbols, called
labels. The respective embedding operators are extended to the labeled case, analogously
to the definition of subgraph isomorphism (cf. Section 2.1). Table 3.1 gives an overview of
the existing exact or approximate FTM and FCSM algorithms for the transactional setting.
We will describe them in more detail below.

3.2.1. Frequent Tree Mining Algorithms

Among the practical implementations of frequent subgraph mining algorithms, frequent
tree mining algorithms are most closely related to our work here. Several algorithms have
been proposed for computing the set of frequent trees in databases of trees, forests, or “ar-
bitrary” graphs. As shown in Section 2.2, frequent subtrees can be enumerated efficiently
(i.e., with polynomial delay) in forest transaction databases. However, most systems do
not use an efficient embedding operator and hence may result in exponential delay and
memory consumption even in this case.

39

3. Related Work

Name Reference Transactions SUBGRAPHISOMORPHISM Comment
FreeTreeMiner Chi et al (2003) Forests Chung (19§7)
(polynomial)
HybridTreeMiner Chi et al (2004a) Forests Embeddlng'hsts
(exponential)
FreeTreeMiner Riickert and Kramer (2004) Graphs support sets
(exponential)
F3TM Zhao and Yu (2008) Graphs Ullmann (1976)
(exponential)
FSG Kuramochi and Karypis (2004) Graphs Embedding lists Mines all frequent subgraphs
P P (exponential) q grap
Borgelt and Berthold (2002) Chemical Embedding lists .
MosS$ Borgelt et al (2005) Graphs (exponential) Mines all frequent subgraphs
Cordella et al (1998) .
gSpan Yan and Han (2002) Graphs (exponential) Mines all frequent subgraphs
Embedding lists .
FFSM Huan et al (2003) Graphs (exponential) Mines all frequent subgraphs
Gaston Nijssen and Kok (2004) Graph Embedding lists Can mine paths, trees,
asto Nijssen and Kok (2005) aphs (exponential) and cyclic patterns
- Horvath and Ramon (2010) Bounded Tree-Width §pec1ahzed . Mines all frequent subgraphs
incr. pol. time
SUMMARIZE-MINE Chen et al (2009) Graphs Embeddlng'hsts Mines a random subset of
(exponential) all frequent subgraphs
MUSE Zou et al (2010) Uncertain Embeddmg.hic,ts
Graphs (exgo;dentlia)
. Embedding lists . .
REAFUM Li and Wang (2015) Graphs (exponential) 3 subgraph isomorphism
_ Schulz et al (2018) Graphs Dalmau et ‘::11 (2002) Partlally Injective Homomorphism
(polynomial) results in superset of frequent trees

Table 3.1.: An overview on related frequent subtree and subgraph mining systems for forest and graph transaction databases.

Unless stated otherwise, these methods enumerate the full set of frequent subtrees and are our direct competitors.

40

3.2. Algorithms for the FCSM Problem

FreeTreeMiner by Chi et al (2003) solves the FTM problem for tree databases. This
work introduces tree mining as an area of research and develops the first” algorithm that
uses canonical representations of trees for efficient pattern generation. The authors pro-
pose a canonical string representation for trees and a levelwise algorithm to mine all fre-
quent treesin a tree database. Based on their particular canonical representation, they ar-
gue that all frequent trees can be generated by either joining two frequent trees H+e, H+e¢’
with a common parent H that differ in exactly one edge, or by extending the frequent tree
H by asingle edge f such that the resulting tree has a larger height®. Duplicate candidate
generation is reduced® by identifying nontrivial automorphisms of H and some support
counting steps are avoided by first checking whether all possible parent patterns of H +¢
are frequent. Chi et al use the efficient algorithm of Chung (1987) to compute the support
of a candidate tree pattern in the tree database. They evaluate their algorithm on a chem-
ical dataset, an IP multi-cast dataset that represents one-to-many streaming topologies
on the Internet, and on synthetic datasets.

HybridTreeMiner by Chi et al (2004a) also solves the FTM problem for tree databases,
and, in addition, the problem of mining rooted trees in databases of rooted trees. Hence
the name of the algorithm. There are two main differences to their FreeTreeMiner algo-
rithm above: First, they use a DFS approach, instead of a BFS approach and second, they
propose a novel way of counting the support. Now, the authors resort to embedding lists
but use them in a smart way that requires only one pass over the database. If a candidate
pattern H +e+e' is generated by joining two frequent patterns H +e, H +¢’, its support can
be computed by joining the support lists of the parent patterns: Two embeddings are com-
patible, if they are identical on H, and map the endpoints of e and ¢’ to different vertices.
All embeddings for H + ¢+ ¢’ can therefore be constructed by combining such compatible
embeddings. The extension operation works in a similar way by combining compatible
embeddings of H and the frequent tree corresponding to the single edge f. In this way,
an explicit access to the graph database is not necessary after initially computing the em-
bedding lists of all frequent tree patterns consisting of single edges. They evaluate their
algorithm on a chemical tree dataset and on a synthetic tree dataset and compare it to
FreeTreeMiner (discussed above). They show that this approach is faster by an order of
magnitude. Interestingly, the IP multi-cast dataset is not considered in this study. In (Chi
etal, 2004b), they extended this system to mine only closed frequent subtrees or maximal
frequent subtrees.

FreeTreeMiner by Riickert and Kramer (2004) solves the FTM problem in databases
containing cyclic graphs. The authors propose a canonical string representation that al-
lows their candidate generation process to reduce the number of duplicate evaluations of
candidate patterns. They define the height of a vertex in a tree pattern as the distance to the
root of the canonical representation and generate patterns by only extending on leaves

7 Zaki(2002) introduced “tree mining” before, but considered rooted ordered trees and a different embed-
ding operator.

8 With respect to its canonical representation which is a rooted tree.

° The authors claim to avoid duplicate candidate enumeration by identifying pattern automorphisms. They
donot prove, however, that their technique guarantees nonredundant candidate enumeration. FreeTreeM-
iner additionally compares canonical strings of candidate patterns.

41

3. Related Work

with largest height. When evaluating the frequency of a candidate pattern by computing
all of its embeddings explicitly, the algorithm at the same time computes the embedding
lists for all extensions by a single edge. All extensions of height(H) + 1 are obtained by
combining such single edge extensions. These candidate patterns are only recursively ex-
tended if they are in canonical form. The authors do not prove the correctness of their
algorithm (neither soundness, completeness, nor irredundancy) and evaluate their algo-
rithm on the AIDS database.

F3TM by Zhao and Yu (2008) similarly solves the FTM problem in databases contain-
ing cyclic graphs using a depth-first search over the pattern space. They focus on the can-
didate generation step and employ an iterative version of (Ullmann, 1976) for the support
counting step that is intertwined with the candidate generation step. In particular, for a
frequent pattern H they explicitly store a subset of all subgraph isomorphisms in an em-
bedding list. The authors focus on the candidate generation step and show that the com-
plete set of frequent patterns of a dataset can be obtained by extending the patterns only
on a well defined subset of their vertices, resulting in fewer duplicated candidate patterns.
The number of candidate patterns is further reduced by considering automorphisms of
the patterns and by considering only pattern extensions that are actually present in some
transaction graph. The authors evaluate their algorithm on a variant of the AIDS database
considered also in this thesis (cf. Section 2.4) and on artificial data obtained with the gen-
erator of Kuramochi and Karypis (2001). In (Zhao and Yu, 2007) they extend F3TM to
mine closed frequent trees.

3.2.2. Frequent Subgraph Mining Algorithms

FSG was initially proposed 2001 by Kuramochi and Karypis (2004). It implements Al-
gorithm 2.1 (i.e., it is a levelwise algorithm) for mining all frequent subgraphs in graph
transaction databases. To compute the support of a candidate pattern, FSG stores the sup-
port set of each frequent pattern and intersects the support sets of parent patterns to re-
duce the number of explicit subgraph isomorphism tests to be evaluated for any candidate
pattern: The downward closure property ensures that a candidate can only be subgraph
isomorphic to those graphs where all of its subpatterns are present and hence only such
graphs must be explicitly evaluated using the embedding operator. This method requires
space that is proportional to support set of each frequent pattern in two consecutive lev-
els of the pattern lattice (the current and the previous level). The authors do not disclose
the implementation details or a reference for their embedding operator. They neither
mention additional storage requirements for storing embeddings explicitly, which might
indicate that they use an algorithm that does not require such knowledge. The authors
evaluate FSG on chemical and artificial graph datasets. They do not describe the par-
ticular generation of the artificial graphs. Their graph database generator, however, is
used by several other authors to evaluate their approaches (e.g. Yan and Han, 2002; Zhao
and Yu, 2008). There are graph databases where the performance of FSG drastically de-
creases (compare Chapter 4). Notably, the algorithm was used by Deshpande et al (2005)
to first show the impressive predictive performance of frequent subgraph based learners
on chemical graph datasets.

42

3.2. Algorithms for the FCSM Problem

Borgelt et al propose MoSS, a frequent subgraph miner specifically suited for chem-
ical graph databases (Borgelt and Berthold, 2002; Borgelt et al, 2005). Their algorithm
implements special domain knowledge (e.g., handling of aromatic bonds) and is a depth-
first search over a pattern space that can be “seeded” with a chemically meaningful core
pattern that will be contained in all frequent patterns to be found. The authors use em-
bedding lists to compute the support count; their approach, however, suffers from a miss-
ing graph canonicalization scheme. Hence patterns are enumerated multiple times (and
their support is computed multiple times). Without giving the details, the authors claim
that multiple output of equivalent patterns can be suppressed (which would require de-
ciding the isomorphism problem for pairs of patterns). The authors show experiments in
which they qualitatively analyze the patterns found using their approach on the NCI-HIV
dataset.

gSpan by Yan and Han (2002) mines frequent subgraphs using a depth-first traversal
of the pattern space. To avoid multiple enumeration of the same candidate pattern (up
to isomorphism), it applies an inclusion-exclusion principle on frequent edges. That is, a
pattern is extended with an ever shrinking set of frequent edges. To compute the support
of a candidate pattern, the algorithm recursively works on the support sets of the pat-
terns being extended, resulting in a reduced number of calls to the embedding operator.
Though the authors do not cite or mention it in the paper, the acknowledgments suggest
that gSpan uses the subgraph isomorphism algorithm by Cordella et al (1999). They show
experiments on the datasets used by Kuramochi and Karypis (2004) and show that their
algorithm outperforms FSG. In (Yan and Han, 2003) the authors extend their algorithm
to mine closed frequent subgraphs.

Huan et al (2003) propose FFSM, an algorithm that also mines frequent subgraphs us-
ing a depth-first traversal of the pattern space. They use a novel canonical representa-
tion of arbitrary graphs that has size O (n2) for a graph on n vertices and propose ex-
tension and join operators that generate all frequent patterns. However, these operators
may generate patterns multiple times, not necessarily in canonical form. Without giv-
ing details, the authors claim to be able to decide whether a representation is canonical,
and hence that the algorithm is correct (i.e., each pattern is printed exactly once up to
isomorphism). They use embedding lists to store all possible embeddings of the frequent
patterns in canonical form and show how their extension and join operators can use the
embedding lists to only output frequent patterns. The authors later extend their work to
maximal frequent subtrees, resulting in the SPIN algorithm (Huan et al, 2004).

Gaston (Nijssen and Kok, 2004, 2005) is the fastest frequent subgraph mining system
on chemical graph databases (Worlein et al, 2005). Their algorithm mines frequent pat-
terns in three stages: First, all frequent paths are generated. In the second stage, tree can-
didates are grown from the frequent paths. Finally frequent cyclic graphs are grown from
the frequent trees and frequent paths by adding edges between existing vertices. Hence
Gaston can be seen as both a specialized frequent subtree mining algorithm and as a fre-
quent subgraph mining algorithm: Without overhead, the generation of cyclic graphs can
be avoided by stopping after the tree generation step. Candidate generation is based on an
efficient canonical representation of graphs that is based on depth-first sequences; only
extensions of patterns that are in canonical form are further expanded. This property

43

3. Related Work

can be checked in constant time for trees and paths, yielding a very fast enumeration of
candidate patterns; for cyclic graphs, however, this property is more difficult to check.
Gaston traverses the pattern space in a nonstandard postorder: The support of all exten-
sions of a frequent pattern in canonical form is evaluated before calling the search func-
tion recursively for the first (frequent) extension. In this way, the number of allowed ex-
tension operations can be restricted efficiently, yielding a smaller number of candidate
extensions in subsequent steps. There are two variants of Gaston that differ in their sup-
port counting subroutine. The first variant uses embedding lists, the second computes
the subgraph isomorphisms “from scratch” for each candidate pattern. The authors are
not very specific on the details of the latter. They describe it as a backtracking algorithm
that has exponential worst-case running time in the size of the pattern and the transac-
tion graphs involved. They evaluate their algorithm on an artificial tree dataset and on
three large molecular datasets.

Horvath and Ramon (2010) propose an algorithm that mines all frequent connected
subgraphs in transaction databases consisting of graphs of bounded tree-width. Impres-
sively, their algorithm runs in incremental polynomial time, while the embedding oper-
ator by itself is NP-complete (compare Section 3.1). That is, the SUBGRAPHISOMORPH-
1SM problem is NP-complete for transaction graphs with tree-width at most some con-
stant k if the vertex degree of the pattern is not bounded by a constant, as well. This result
is up to our knowledge the only existing result that describes an efficient algorithm for a
problem in the upper left quadrant of Figure 2.2: The HAMILTONIANPATH problem can
be solved in polynomial time due to the result of Matousek and Thomas (1992), as paths
have vertex degree at most two. Their algorithm identifies a polynomially sized subset of
non-redundant iso-quadruples that are stored for each frequent subgraph and each transac-
tion. Such iso-quadruples represent partial subgraph isomorphisms but — in comparison
to explicitly storing all possible embeddings from the patterns to the transaction graphs
- may represent multiple embeddings of the pattern that are in some sense equivalent.
Their embedding operator extends ideas from (Hajiaghayi and Nishimura, 2007) to the
case that the vertex degree of the pattern is unbounded. Interestingly, the approach of
Horvath and Ramon requires a breadth-first traversal of the pattern space to result in an
efficient algorithm. They show that almost all (>99.9%) of the graphs in a large chemi-
cal graph database have tree-width at most 3, and hence that their result is practically
relevant but don’t give any empirical evaluation of their algorithm. Horvath et al (2013)
extend these techniques to mine all frequent induced subgraphs in transaction databases
consisting of bounded tree-width graphs with unbounded vertex degree in incremental
polynomial time.

3.2.3. Algorithms for Relaxed Problems

As we are interested in a relaxation of the FTM problem in this thesis, our work is related
to other relaxations that were proposed for the transactional setting. There has also been
some interest in dealing with graph databases that contain noisy data. While this setting
is different from ours, some of the resulting algorithms can be applied to exact transac-
tional graph databases and yield approximations of the set of frequent subgraphs.

44

3.2. Algorithms for the FCSM Problem

Chen et al (2009) try to address the drawbacks of the practical frequent subgraph min-
ing systems described in Section 3.2.2 on larger graph transactions, i.e., the large number
of embeddings of a pattern that need to be explicitly considered by the embedding oper-
ators described in Section 3.1.1. To this end, they propose to replace each graph in the
database by a summarized graph and to mine frequent patterns in this novel graph database
using the gSpan algorithm (Yan and Han, 2002). A summarized graph G’ is created from
a labeled transaction graph G by choosing a random partition V(G) = V1UVaU. .. 0V, of
the vertex set of G such that for all i € [k], all vertices in V; have the same label. Now, the
vertices of G’ are the partitions V; and there exists an edge (V;, V;) with label / if and only
if there exists an edge (v;,v;) € E(G) withv; € Vj, v; € V}, and label [. Hence, the sum-
marized graph G’ is not simple, i.e., it may contain self-loops and multiple edges (with
different labels) between any two vertices. This construction results in a two-sided error,
i.e. for two graphs H and G and a summarized graph G’ of G there may be

false negatives: H < Gbut H # G',or
false positives: H # Gbut H < G'.

These effects obviously translate to the set of frequent patterns found by the algorithm
of Chen et al. To deal with false negatives, the authors propose to lower the frequency
threshold in the mining phase and give a probabilistic guarantee on its effectiveness. To
further increase the recall of frequent patterns their algorithm repeats the summariza-
tion independently several times. To address the false positives, they propose to simply
retest the patterns found to be frequent in the summarized graph database on the original
graph database. Together, this yields the SUMMARIZE-MINE algorithm that guarantees
to find a subset of all frequent subgraphs in a given database. As this is very close to our
problem formulation presented in Chapter 4, we explicitly stress the differences: (i) Chen
et al (2009) find frequent subgraphs instead of frequent subtrees and use an exponen-
tial worst-case time embedding algorithm, thus they are not able to guarantee any delay
bounds. (ii) Their algorithm requires to retest all patterns found in the summarized graph
database on the original database to ensure that they are indeed frequent. Hence, (iii) no
real structural simplification of the FCSM or SUBGRAPHISOMORPHISM problems takes
place. The methods proposed in this thesis, on the other hand, (i) guarantee polynomial
delay, by using an efficient embedding operator, (ii) do not require to re-evaluate patterns
on the original database to guarantee that each output pattern is indeed a frequent tree,
and (iii) accomplish this by transforming an infeasible FCSM problem to a FTM problem
which can be solved efficiently (i.e., with polynomial delay).

Zou et al (2010) propose MUSE to mine patterns in databases of uncertain graphs. An
uncertain graph is a labeled graph G together with a probability function p : E(G) —
[0, 1] onitsedges and represents the probability distribution P over all graphs (V(G), E')
for E' ¢ E(G), with P((V(G),E")) := Tleerr p(€e). Now, for a pattern graph H and an
uncertain graph G, the probability of H matching G is defined as

P(H,G)= 3, P(V(G),ENIH, (V(G),E)),
E'cE(G)

45

3. Related Work

where I[(H,(V(G),E")) = 1if H < (V(G),E"), otherwise I(H, (V(G),E")) = 0. Given
a graph database D and a frequency threshold 6 € (0,1], MUSE approximates the set of
all pattern graphs H with ﬁ Yaep P<(H,G) > 0, 1i.e., where the average probability of H
matching the graphsis atleast §. They show that counting the number of such patterns for
a given database is #P-complete (Valiant, 1979) and their algorithm approximates the set
of such patterns. MUSE works by generating patterns on the database with probabilities
removed from the edges by explicitly storing and extending the embeddings as described
in Section 3.1.1. Based on these explicit embeddings they propose an exponential time al-
gorithm to compute the matching probabilities and an approximate algorithm that com-
putes an interval of matching probabilities. They show how to obtain an algorithm that
guarantees with high probability for some € € (0, 1] and a frequency threshold 6 that all
patterns with support at least 6 are output, all patterns with support less than (1-¢)60 will
not be output, and decisions for remaining patterns are arbitrary. However, due to the ne-
cessity of evaluating a function over all embeddings of a pattern, the method does not run
in output polynomial time. In a way, our work in this thesis can be seen as the opposite
approach: We consider some probability distributions on the set of spanning trees given
by the database graphs and obtain frequent subtrees from certain samples directly, in-
stead of mining patterns on the underlying graphs. Our goal, however, is to approximate
the set of exact frequent subtrees in the original database, instead of the set of patterns
whose average probability is above some threshold.

Liand Wang (2015) are interested in transactional graph databases that contain graphs
where some vertices, edges, or labels may be “wrong”. They propose to relax the notion
of isomorphism and subgraph isomorphism. To this end they introduce /3 (subgraph) iso-
morphism, where a graph H is /5 subgraph isomorphic to a graph G if there exists a se-
quence of vertex and edge additions or deletions and relabeling operations of length at
most S that transforms H into a graph that is (subgraph) isomorphic to G. If applied in
Algorithm 2.1 such an embedding operator would result in finding a superset of the fre-
quent patterns with respect to subgraph isomorphism: J subgraph isomorphism is equiv-
alent to subgraph isomorphism for 3 = 0 and for any 3 > 0 the existence of a subgraph
isomorphism from H to GG implies the existence of a 5 subgraph isomorphism from H
to G. Their proposed tool REAFUM, however, first selects a small subset of “representa-
tive” graphs for a given graph database and considers only those patterns as candidates
that can be found in the set of representative graphs. Frequency counting takes place on
the full dataset and is based on storing all embeddings of all approximate matches of the
patterns (i.e., an extension of the ideas described in Section 3.1.1). In their experimental
evaluation they show that they are able to find more patterns than the exact Gaston algo-
rithm on a small molecular dataset. Due to the candidate selection process, the resulting
pattern set is not guaranteed to be a superset of all frequent patterns with respect to nor-
mal subgraph isomorphism.

Recently, Schulz et al (2018) proposed a frequent tree mining algorithm that employs
partially injective embedding operators between graph homomorphism and subgraph iso-
morphism. Subgraph isomorphisms are injective graph homomorphisms; Schulz et al
propose to add some injectivity constraints to graph homomorphisms, while maintain-

46

3.2. Algorithms for the FCSM Problem

ing computational efficiency of the embedding operators. In particular, graph homo-
morphism can be decided in polynomial time for patterns of bounded tree-width and
arbitrary transaction graphs (Dalmau et al, 2002). Hence, for tree patterns, which have tree-
width one, one can add a number of binary injectivity constraints between vertices (im-
plemented by new edges with a new label) to the pattern as long as the resulting graph
remains of bounded tree-width. Deciding homomorphism between such an extended
pattern and a transaction graph that is extended with all possible edges with that new
label ensures that the injectivity constraints are fulfilled. As a result, tree patterns that
are frequent with respect to subgraph isomorphism are frequent with respect to partially
injective homomorphism, as well. Schulz et al propose a mining strategy for this embed-
ding operator that finds a superset of all frequent tree patterns (with respect to subgraph
isomorphism). This is done by mining “maximally” constrained tree patterns that are de-
fined by k-trees. A k-tree is a maximal graph that has tree-width £, that is, the addition
of a novel edge between two existing vertices results in a graph with tree-width k + 1. k-
trees have an algorithmic definition that allows to efficiently enumerate these patterns,
using Algorithm 2.1. The output of the algorithm then is a set of k-trees consisting of a
tree “core” and some binary injectivity constraints. Omitting the injectivity constraints,
we obtain a set of trees, some of which may be isomorphic, that contains the set of fre-
quent subtrees (with respect to subgraph isomorphism). Hence this method can be seen
as approximating the set of frequent subtrees “from the other side” than the algorithms
proposed in this thesis.

47

4. Probabilistic Frequent Subtrees

We will now investigate how to efficiently obtain frequent subtrees from databases of
arbitrary graphs. The main result for this chapter is a polynomial delay frequent tree min-
ing algorithm for arbitrary transaction graphs that is sound, but incomplete. We empirically
demonstrate that (i) the predictive performance of the incomplete output of our mining
algorithm is competitive to that of all frequent subtrees and that (ii) our algorithm is ca-
pable to mine frequent trees efficiently in a broad range of such graph databases where
even the most popular frequent subgraph mining algorithms are unable to produce any
result in reasonable time.

Our preliminary experiments in Chapter 1 showed that most existing frequent sub-
graph or frequent subtree mining systems are practically restricted to very simple graph
databases; usually chemical graphs. On these datasets, however, frequent subtrees are
powerful features, i.e., the predictive performance of learning algorithms based on fre-
quent subtree features is high (e.g. Deshpande et al, 2005). We therefore expect that fre-
quent tree patterns might be good predictors in other settings as well. Furthermore, there
is a general interest in tree-based features for graphs beyond chemical molecules (e.g.
Chi et al, 2004a; Kibriya and Ramon, 2013). However, to empirically evaluate this as-
sumption, e.g. for the social graphs considered in the preliminary experiments, novel
techniques are required to generate such patterns in practically feasible time and space
constraints.

So how can we find frequent subtrees in (more) general graph databases? Recall from
Chapter 2 that we cannot expect an output polynomial time algorithm for the FTM prob-
lem unless P = NP (see Theorem 2.2). Hence we cannot expect to find an efficient exact
algorithm for the FTM problem without either (i) restricting the problem to some feasi-
ble graph class or (ii) giving up the correctness of our algorithm. The state-of-the-art
frequent subtree mining systems follow approach (i) by either using specialized efficient
matching operators for restricted transaction classes (cf. Section 3.1) or by using heuris-
tics that practically restrict them to certain graph classes (cf. Section 3.1.1). As a result
there exists no mining system that is applicable to arbitrary graph databases in prac-
tice. Thus there is a need to build a system that can find frequent subtrees in the graph
databases not yet covered by any algorithm. We hence follow approach (ii) to close this
gap and abandon the requirement of the correctness of the mining algorithm to keep it
applicable to arbitrary databases of small to medium sized graphs. In particular, our algo-
rithm will find a subset of frequent subtrees that can be computed efficiently on all graph
databases.

We present a frequent subtree mining algorithm with one-sided error that is not re-
stricted to any particular graph class. That is, it always terminates in time polynomial in
the size of the database and the number of frequent patterns generated. The algorithm

49

4. Probabilistic Frequent Subtrees

calculates a subset of the frequent subtrees of a given graph database as follows: (i) We rep-
resent each input graph by a forest formed by vertex disjoint copies of k random spanning
trees for some small k and (ii) compute the set of subtrees frequent in the forest database
generated in step (i). See Figure 4.1 for an example. Combining this representation, the
fact that it can be generated in polynomial time, and the positive result that frequent sub-
tree mining in forests can be solved with polynomial delay (cf. Section 3.1), we arrive at an
algorithm computing a subset of the frequent tree patterns in time polynomial in the com-
bined size of the input database and the set of generated tree patterns. In particular, it
will output the patterns with polynomial delay. We call our method probabilistic subtree
mining and the resulting pattern set probabilistic frequent subtrees.

Our approach is sound, but incomplete: Each generated probabilistic tree pattern is
guaranteed to be a frequent subtree of the database. Some frequent subtrees, however,
may be missed by the algorithm, as they are not necessarily frequent with respect to the
random forest database generated in step (i). Hence the set of probabilistic frequent sub-
trees is always a subset of the set of frequent subtrees for a fixed database and frequency
threshold. Our somewhat unusual idea is motivated by the fact that any tree found by our
mining algorithm is not only frequent with respect to the database, but with high proba-
bility it has a relatively high frequency also in the set of spanning trees for each transac-
tion graph containing it. Thus, there must be a high chance that such a tree pattern will
be detected with this method in a query graph as well, if it is part of it.!

We empirically evaluate the proposed method on the real-world and artificial datasets
described in Section 2.4. In particular, we investigate the recall of the probabilistic fre-
quent subtrees with respect to all frequent subtrees for various numbers of random
spanning trees per graph.? Our technique is faster by at least two orders of magnitude on
Erd6s-Rényi random graphs of low density. On social graphs and Erdds-Rényi random
graphs of moderate density, probabilistic frequent subtrees can be found quickly, while
the exact frequent subgraph (subtree) mining algorithms fail. On chemical graphs, we
observed only a marginal loss in the predictive performance of our probabilistic sub-
trees with respect to the exact frequent subtree. We show that with increasing size of the
dataset we needed decreasing numbers of sampled spanning trees per graph to obtain a
close approximation of the predictive performance of frequent subgraphs. In particular,
for the NCI-HIV dataset consisting of more than 40 000 molecular graphs, 5 sampled
spanning trees per graph resulted in almost identical predictive performance.

Outline

The rest of this chapter is organized as follows: Section 4.1 gives a detailed description
of our algorithm and formally defines the relaxation of the FTM problem considered in
this thesis (4.1.1). It also discusses a reason for the practical success of our idea (4.1.2)
and discusses implementation issues (4.1.3). Section 4.2 shows our experimental results

' We assume that the query graph has been selected from the same (unknown) probability distribution as
the graphs in the input database.
* Notice that precision is always 100% due to the soundness of the algorithm.

50

4.1. Mining Probabilistic Frequent Subtrees

regarding the runtime (4.2.1), recall (4.2.2), stability (4.2.3), and predictive performance
(4.2.4) of our probabilistic frequent subtrees. Finally, Section 4.3 concludes with results
and open questions that will be discussed in the following chapters.

4.1. Mining Probabilistic Frequent Subtrees

We now formally define a relaxation of the FTM problem and present our first algorithm
to tackle this problem. The main result of this chapter is similar to Theorem 2.1 for the re-
laxed FTM problem. To arrive at its definition, recall first that the task of finding the set of
all frequent subtrees of a given database D raises the following two related computational
problems (cf. Sections 2.1 and 2.2):

(P1) The FTM Problem: Given a finite set D of graphs and a frequency threshold ¢ € [|D|],
generate the set F of frequent trees, i.e., all trees H with |[{G e D: H < G}| > t.

(P2) The SUBTREEISOMORPHISM Problem: Given a tree H and a graph G, decide whether
ornot H <G.

The second problem appears in the support counting step of all algorithms solving (P1)
with the generate-and-test paradigm. In particular, Algorithm 2.1 calls another algo-
rithm for (P2) as a subroutine. Since we have no restrictions on D and G, both problems
above are computationally intractable. In particular, unless P = NP, (P1) cannot be solved
in output polynomial time (Horvath et al, 2007) and (P2) is NP-complete.

To overcome these limitations, we give up the demand on the completeness of (P1) and
the demand on the correctness of the subtree isomorphism test for (P2). As we will show,
this results in practically effective algorithms. The goal of this thesis is to obtain a system
that is applicable to arbitrary graph databases. In particular, we want to give some output
in reasonable time on any kind of small to medium sized graph data. We approach this
problem by requiring polynomial delay during the generation of frequent trees and are
willing to trade in the correctness of the algorithm. That is, we will require each pattern
listed by our algorithm to be a frequent tree in the database, but will allow to miss some
of the frequent trees.

4.1.1. The Relaxed Frequent Subtree Mining Problem

Regarding the relaxation of (P1), we consider for each graph GG € D a forest &;(G) formed
by the vertex disjoint union of k random spanning trees of G. We then solve (P1) for this
random forest database. More precisely, for a connected? graph G we sample k spanning
trees and S (G) consists of k connected components. Each component is isomorphic
to at least* one of the & sampled spanning trees of G. With this problem relaxation we
arrive at a frequent subgraph mining algorithm that is easy to implement and practically

3> For ease of exposition, we restrict our description to connected graphs. The techniques described in this
thesis can be extended to disconnected graphs by applying them for each connected component separately.
4 It might occur that some of the sampled spanning trees are isomorphic. We address this in Section 4.1.3.

51

4. Probabilistic Frequent Subtrees

Y ol o4l
L K oL

D ={G1,Gy} G2(Gh) S2(Ga) 2-frequent trees

O

Figure 4.1.: A database D consisting of two graphs Gi,G2 (left), the forests G2(G1)
and G3(G2) of two sampled spanning trees of G; and G (middle), and the
set of the five 2-frequent tree patterns found in the forest database D' =
{62(G1),62(G2)} (right). Note that all 2-frequent subtrees are found. Us-
ing only one spanning tree for each graph in this example, however, would
always result in an incomplete output.

effective, as shown in Section 4.2. We call the resulting tree patterns probabilistic frequent
subtrees of D to distinguish them from the set of all frequent trees. Figure 4.1 shows an
example of the idea on a database consisting of two graphs.

Our approach effectively relaxes the problem of mining frequent subtrees in arbitrary
graphs to that of mining trees in a forest database. In contrast to the computational
intractability of (P1), this relaxed problem can be solved with polynomial delay if % is
bounded by a polynomial in the input size. This can be done using Algorithm 2.1 with
a suitable embedding operator (compare Section 3.1). This means in practice that our
algorithm guarantees to find a certain amount of patterns in an acceptable time if k is
chosen appropriately.

Algorithm 4.1 shows the high level pseudo-code of this approach. In addition to D and
t in problem (P1), the input contains an additional parameter i € N as well. & specifies an
upper bound on the number of spanning trees to be generated for the transaction graphs.
It is easy to see that for any D, ¢, and k, Algorithm 4.1 is sound, i.e, its output is always a
subset of the set of frequent trees in D. However, it will not necessarily find all frequent
patterns, i.e., it is incomplete in general. Thus, on the one hand we obtain a polynomial
delay mining algorithm that is fast for small values of k, on the other hand, however, we
disregard some frequent patterns.

Another advantage of our technique is that it assumes neither explicitly nor implicitly
any structural restriction on the input graphs. Random spanning trees can be drawn ef-
ficiently from any graph (Wilson, 1996); after this step, we are in a world that consists of
forests and trees.

52

4.1. Mining Probabilistic Frequent Subtrees

Algorithm 4.1 PROBABILISTIC FREQUENT SUBTREE MINING
input: graph database D c G, frequency threshold ¢ > 0 integer, and k& > 0 integer

output: a random subset of the set of frequent subtrees of D
1 D=y
2: forall G e Ddo
3 sample k spanning trees of G uniformly at random
4 add the forest G, (G) of the vertex disjoint union of those trees to D’
5

: list all subtrees that are ¢-frequent in D’

The above mentioned properties of Algorithm 4.1 can be generalized. We will show
that the mining technique described above can be seen as the generic levelwise algorithm
with a special embedding operator that is used in the SUPPORTCOUNT subroutine (com-
pare Algorithm 2.1). This embedding operator solves a relaxed SUBTREEISOMORPHISM
problem. We will show that efficiency and completeness results analogous to Theorem 2.1
hold in this case, as well.

Let P be the class of trees and G a graph class. Then a function

f:PxG-{0,1}
is a relaxed subtree isomorphism decision function, if for all H € P and G ¢ G it fulfills
one-sidederror f(H,G)=1 = H=x<G
monotonicity f(H,G)=1 = f(H',G)=1forallH' <H

Given such a function f,the SUBTREEISOMORPHISM gejazeq () problem is to decide for
a given tree H and a graph G whether f(H, G) = 1. The relaxed frequent subtree mining
problem with respect to relaxed subtree isomorphism decision function f is defined as
follows:

RELAXED FREQUENT SUBTREE MINING (FTM Rejgzed (f)) PROBLEM: Given a finite set
D c G for some graph class G, and an integer threshold ¢ > 0, list the set of all trees
H with f(H,G) =1 for at least ¢ graphs G in D.

The FTM and FTM g¢j42eq (f) problems are connected in the following way:

Lemma 4.1. Given a finite set D C G for some graph class G, and an integer threshold t > 0, and a
relaxed subtree isomorphism decision function f. Then the output of the FTM grejqzeq (f) problemis
always a subset of the output of the FTM problem.

Proof. We have to show that each element in the output of the FTM g¢j4zeq (f) problem
is frequent with respect to subgraph isomorphism in D. Let H be a tree in the output of
FTM geiazed (f)- Then the support count of H, i.e., the number of graphs G € D such that
f(H,G) = lisatleastt. Hence, by assumption about the one sided error, the support with
respect to subgraph isomorphism is at least ¢. O

53

4. Probabilistic Frequent Subtrees

Theorem 4.2 below shows how to efficiently compute a solution for a FTM gejazed (f)
problem. It practically reduces finding a solution for the FTM gejqzeq (f) problem to find-
ing an efficient embedding algorithm 2A(f) for the SUBTREEISOMORPHISM gejgzed (f)
problem.’

Theorem 4.2. Let 2(f) be an algorithm that solves the SUBTREEISOMORPHISM Rejgzed (f)
problem in polynomial time. Then Algorithm 2.1 using A(f) in the SUPPORTCOUNT subroutine
solves the FTM grejazeq (f) problem with polynomial delay.

Proof Sketch. The proof of Theorem 4.2 is analogous to the proof of Theorem 2.1. Note that
this proof only requires the pattern matching operator to be efficiently computable and
to be monotone. O

Our probabilistic frequent subtree approach proposed in the beginning of this section
is in fact the solution to a FTM gj4.eq problem: Let D be a database of arbitrary graphs
and D’ be a corresponding database of sampled spanning trees G (G) for all G € D. Then

1 ifH < 64(G)

0 otherwise

f(H,G):= {

for all trees H is a relaxed subtree isomorphism decision function for the (finite) transac-
tion graph class G = D. As a result, each choice of a random database D’ for D results
in a SUBTREEISOMORPHISM gejazeqd (f) problem and corresponding FTM gejazed (f)
problem. Both corresponding problems can be solved efficiently, as this particular SuB-
TREEISOMORPHISM Rejuzeqd (f) can be decided in polynomial time: Spanning trees can
be sampled in polynomial time for arbitrary graphs (see Section 4.1.3) and subgraph iso-
morphism between trees and forests can be decided in polynomial time (see Section 3.1).
Note also that the function f can easily be extended to a novel graph G by sampling a
forest 4 (G) for G. To simplify our notation, we omit the decision function f from now
on, when it is clear from the context. The relation H < &;(G) will be referred to as H
probabilistically matches G.

As a result of these considerations, probabilistic frequent subtrees are a way to de-
fine a class of FTM gejqzeq and SUBTREEISOMORPHISM Rejqzed problems. Lemma 4.1
implies that probabilistic frequent subtrees are always a subset of the full set of frequent
subtrees. Theorem 4.2 implies that the full set of probabilistic frequent subtrees for a par-
ticular choice of sampled spanning trees can be mined with polynomial delay. Note that
Algorithm 4.1 implements exactly this approach. We will use the general framework pro-
vided by Lemma 4.1 and Theorem 4.2 in Chapter 5 and the algorithm for the SUBTREE-
ISOMORPHISM Rejgzeqd pProblem in Chapter 6.

Note that the relaxation of (P2) could be implemented in two different ways: (i) Each
time we evaluate a probabilistic match of some pattern H, we sample S;(G) anew for
all G € D or (ii) 6;(G) is sampled once and reused for multiple invocations of the algo-
rithm in the support count step. Our theoretical results above require variant (ii) of the

5 Lemma 4.1 and Theorem 4.2 can also be formulated for a relaxed version of the FCSM problem. Note
further, that formulating the problems with opposite one-sided error (i.e., a “No” is a “No”, but a “Yes” might
be a “No”, as well) results in an algorithm that mines a superset of all frequent patterns. These issues might
be of interest for future work; we don’t investigate them in this thesis.

54

4.1. Mining Probabilistic Frequent Subtrees

61(G)

O—0—b—0 | O—O0—0O—0

Oo—0O—C0O——=0 ;
61(G) . H
D-(G) A | i

Figure 4.2.: A database D consisting of a single graph G (left) and two evaluations of the
probabilistic matching operator with independently sampled sets of span-
ning trees 61(G), 51 (G)’ for two pattern trees H, H' (right). In this case, H'
is a probabilistic match to G, while H is not, although H < H'.

probabilistic match computation. In this way, we reduced the FTM problem on arbitrary
graphs to that of frequent tree mining in a fixed forest database. If we used variant (i) of
the embedding operator in the generic mining algorithm, we would lose the monotoni-
city of the embedding operator: As a result of the resampling of spanning trees it is not
guaranteed that all subgraphs of a pattern were identified as probabilistic matches. Fig-
ure 4.2 illustrates this situation. Due to this situation and due to the fact that sampling
spanning trees induces a nontrivial cost (see Section 4.1.3), we stick with the variant of
the embedding operator that receives a tree H and a forest S;(G) as input, which was
computed in a preprocessing step.

The incompleteness of our proposed probabilistic frequent subtree pattern sets with
respect to the set of frequent subtrees raises two important questions:

1. How stable is the output of Algorithm 4.1 and what is its recall with respect to all fre-
quent subtrees? (Note that precision is always one for the soundness of the algo-
rithm.)

2. How good is the predictive performance of probabilistic frequent subtrees?

Regarding the first question, we show in Section 4.1.2 that certain important tree patterns
are very likely to be among the probabilistic frequent subtrees even for small values of .
To complement this analysis, we show in Section 4.2 on artificial and real-world chemical
graph datasets that (i) the output is very stable even for £ = 1 and (ii) more than 75% of
the frequent patterns can be recovered by using only £ = 10 random spanning trees per
graph.

Regarding the second question above, we experimentally show in Section 4.2 on dif-
ferent real-world benchmark graph datasets that the predictive performance of our prob-
abilistic approach is comparable to the predictive performance of the full set of frequent

55

4. Probabilistic Frequent Subtrees

1.0

=
(o]
|

0.6 |

Inclusion Probability

T T
0.0 0.2 0.4 0.6 0.8 1.0
Importance p

Figure 4.3.: The function 1 - (1 -) for different values of k.

subtrees. In fact, this holds not only for the set of all frequent trees, but also for the full
set of frequent subgraphs. Before presenting the empirical results in Section 4.2, we first
analyze the recall of our approach theoretically in Section 4.1.2 and discuss some imple-
mentation issues and the time complexity of Algorithm 4.1 in Section 4.1.3.

4.1.2. Probabilistic Bounds and the Importance of Subtrees

The rationale behind our probabilistic technique is as follows. For a connected graph G,
let &(G) be the forest of all spanning trees of G. That is, S(G) is the graph formed by
the vertex disjoint union of all spanning trees of GG. For the remainder of this section, we
will regard S5 (G) (resp. &(G)) as a set of k (rep. all) spanning trees of G. Note that this
is equivalent to considering it as a forest in the following sense: There exists a spanning
tree S € 6, (G) (resp. S(G)) (as a set) such that H < S if and only if H < S (G) (resp.
S(G)) (as a forest). Using these notions, a tree 1" is p-important in G if

{5¢6(G):T<S) |
1S(G)| -

Thus, the probability that a p-important tree in G is subtree isomorphic to a spanning
tree of GG generated uniformly at random is at least ;.. Notice that 4 = 1 for any subtree
of the forest formed by the set of bridges of G (i.e., by the edges that do not belong to any
cyclein G). Let & (G) denote a sample of k spanning trees of G generated independently
and uniformly at random and let 7" be a pi-important tree in G. Then

P[3SecSL(G) : T<S]=1-(1-p)k . (4.1)

56

4.1. Mining Probabilistic Frequent Subtrees

which follows directly from
P[VSeGL(Q): T4S5]<(1-p)k.

The bound in (4.1) implies that for any graph G and p-important tree pattern 7" in G for
some p € (0,1],and ford € (0,1),

P[3SeGi(G) : T<xS]>1-9 (4-2)
holds whenever L1
k>—In- . .
2 I (4.3)

xT

Here (4.3) is obtained from (4.1) and (4.2) by the inequality 1 — x < e™™. (See, also, Fig-
ure 4.3 for the function 1 — (1 —) for different values of k). Thus, if k is appropriately
chosen, we have a probabilistic guarantee in terms of the confidence parameter 4 that
all y-important tree patterns will be considered with high probability. Putting the three
facts above together, we have the following claim:

Proposition 4.3. For any graph G, let T' be a ji-important tree in G for some i € (0, 1] and let
5 €(0,1). Then forany k > %ln %,

P[T<Gi(G)]>1-4.

Asanexample, 20 random spanning trees suffice to correctly process a 0.15-important
tree pattern with probability 0.95. Clearly, a smaller value of ;s results in a larger feature
set.

Mining u-Important Patterns

Now let D be a graph database, 1« > 0 some importance value, and ¢ € N a frequency thresh-
old for a FTM gejqzeq problem. Let H be a tree that is yu-important in at least ¢ + x graphs
in D (this implies that H is a frequent tree with respect to the exact FTM problem with
threshold t). Using Proposition 4.3 and a simple application of a standard combinatorics
result (also used by Chen et al, 2009, in a similar context), we have

Theorem 4.4. Let D be a forest database obtained from D by independently sampling k spanning
trees for each G € D uniformly at random. Let H be a tree that is pi-important in at least t + x graphs
in D and let s¥; be the support of H in D¥, i.c., the number of forests G’ € D* with H < G'. Then

t—1 T A ‘

Proof. LetD(H):={G €D : H is u-importantin G},letD*(H) = {G' e D* : Ge D(H)},
and let 0¥, be the support of H in D*(H). The probability that H is t-frequent in D" is
larger or equal to the probability that H is t-frequent in D*(H). Adding additional
forests to D¥(H) that are drawn from graphs in D, where H is subgraph isomorphic

57

4. Probabilistic Frequent Subtrees

to a u/ < p-fraction of the spanning trees can only increase the probability of H being
t-frequent in the larger database (recall that ¢ is an absolute threshold). Hence, we have
P [s’}{ < t] <P [alf{ < t]. Furthermore, the probability of H being ¢t-frequent in D¥(H) can
only decrease if we (pessimistically) assume that the probability of H being subgraph of
any spanning tree of any G € D(H) is exactly .. Therefore we can bound P [o%; < ¢] by the
cumulative density function of a binomial distribution evaluated at ¢ with parameters
n= ‘Dk(H)‘ andp =1 - (1- p)". See Lemma B.1 in the appendix. Hence,

P[s} <t] <P[of <] < zg (‘DkEH”)(l = (1=)"y (1=)P

and setting t + z := |D(H)| = ‘Dk(H)‘ yields the claim. O]

Using Theorem 4.4, we can bound the probability of missing a pattern that is p-
important in a large number of graphs in the database. Even for relatively small values
of k, most frequent subtrees can be expected to be found, if they are y-important in only
marginally more graphs than required by the threshold. For example, if we sample k£ = 20
spanning trees per graph and set the frequency threshold to ¢ = 500, we find any H that
is © = 0.15-important in at least 527 graphs in the original database with probability
greater than 95%. Figure 4.4 shows the probability of missing a tree pattern H that is
p-important on at least ¢ + = patterns for different % (Figure 4.4 (a)) and different values
of t (Figure 4.4 (b)). Note that the bound given by Theorem 4.4 does not depend on the size
of the overall database D; we expect, however, that with increasing size of the database
the actual probability of missing p-important patterns (in the sense of the theorem) will
decrease as we can expect to draw more spanning trees containing H from graphs in D
where H was not py-important.

As we are interested in solving the FTM r.;4.cq4 problem, we can bound the probability
of missing patterns if we keep the frequency thresholds of the exact FTM problem and
the FTM Rrejazeq problem we are considering identical as described in Section 4.1.1. We
note that Theorem 4.4 can be used to bound the number of false negatives also in the case
that we lower the frequency threshold of the FTM gcj4:cq problem we are solving. This,
however, would result in false positives with high probability, i.e., patterns found to be
frequent in the forest database D* for threshold ¢’ < t that are not t-frequent in D. We are
not aware of any efficient way to remove such false positive patterns from the output. One
obvious way would be to solve the (intractable) SUBGRAPHISOMORPHISM problem (P2)
exactly for each pattern tree and transaction graph (in fact, Chen et al, 2009, propose to
do exactly that). But this would immediately destroy the advantageous polynomial delay
guarantee of our approach.

41.3. Implementation Issues and Runtime Analysis

So far, we have not discussed the complexity of Algorithm 4.1 and have left out the im-
plementation details. Line 3 of Algorithm 4.1 can be implemented using the algorithm of
Wilson (1996), which has an expected runtime of O (|V(G)|3) in the worst case. In fact,

58

4.1. Mining Probabilistic Frequent Subtrees

For fixed t = 500, . = 0.15 For fixed k£ = 20, 1 =0.15
..................... o —
k=8 .
= o 200
* k=12 t =400
& e - k=15 - -~ t=500
] k=18 t =600
= - - k=20 C— - t=700
[
©
2
g
[+
S
<
-
~ R
T T T T ‘-—__‘\‘-___“ - :5’:‘_-"“_"-:_-—
0 50 100 150 200 250 40 50
X X
(a) Influence of different numbers of sampled (b) Influence of different frequency thresh-
spanning trees k for fixed threshold ¢ and im- olds ¢ for fixed k and p

portance p

Figure 4.4.: Probability of missing a tree pattern H that is y-important on ¢ + x graphs
in a graph database when sampling k spanning trees per graph and using fre-
quency threshold ¢.

it is conjectured to be much smaller for most graphs (Wilson, 1996). Thus, the sampling
step of our algorithm runs in expected O (k: V(G)]3) time. If we do not require the span-
ning trees to be drawn uniformly, we can improve this time and achieve a deterministic
O (kE|E(G)|log|V(G)|) runtime. This is achieved by choosing a random permutation of
the edge set of a graph and then applying Kruskal’s minimum spanning tree algorithm
(Kruskal, 1956) using this edge order. Itis not difficult to see that this technique can gener-
ate random spanning trees with non-uniform probability. Each spanning tree has, how-
ever, a nonzero probability of being selected in this way. As our experimental results on
molecular graphs of pharmacological compounds show, non-uniformity has no signifi-
cant impact on the predictive performance.

For a practical improvement of the runtime of our algorithm, we note that some span-
ning trees in S5 (G) might be redundant: Since isomorphic spanning trees yield the same
subtrees, it suffices to keep only one spanning tree from each equivalence class. The set
of all sampled spanning trees in &;(G) up to isomorphism can be computed from S;(G)
using some canonical string representation for trees and a prefix tree as data structure as
detailed in Section 2.1. For each tree in &, (&), this can be done in O (|[V(G)|log [V (G)])
time as detailed in Section 2.1. These canonical strings are then stored in and retrieved
from a prefix tree in time linear in their size. We implemented this method as an exten-
sion of Line 4 of Algorithm 4.1.

59

4. Probabilistic Frequent Subtrees

Finally we note that for Line 5 of Algorithm 4.1, we can use any one of the existing al-
gorithms generating frequent connected subgraphs (i.e., subtrees) from forest databases
(cf. Section 3.2). However, many of these algorithms do not guarantee polynomial de-
lay even for forest transaction databases. We therefore implemented a polynomial delay
FTM algorithm based on the generic algorithm from Section 2.2 that uses the subtree iso-
morphism algorithm of Shamir and Tsur (1999) as embedding operator.

4.2. Experimental Evaluation

We now empirically evaluate our probabilistic frequent subtree mining algorithm de-
scribed in Section 4.1 on the datasets described in Section 2.4. First we present results
indicating that it is up to an order of magnitude faster than any comparable frequent sub-
graph mining algorithm on several graph databases beyond chemical graphs and that it
is able to mine frequent patterns also in situations where state-of-the-art algorithms do
not. Next, we demonstrate that the recall of its output is high with respect to the set of all
frequent subtrees. Then we give empirical evidence that probabilistic frequent subtrees
are stable under resampling of the random spanning trees. Finally, we show that the
predictive performance of probabilistic frequent subtree based learners is comparable to
that of exact frequent subtree and frequent subgraph based learners.

We compare our probabilistic frequent subtree mining algorithm, which we call PS,
with Gaston and FSG (see Section 3.2). Both programs are used in the versions provided
by the authors.® FSG is a levelwise algorithm similar to Algorithm 2.1. The FSG imple-
mentation only computes the set of all frequent subgraphs. To obtain the set of frequent
subtrees, one hence needs to compute the set of frequent subgraphs and remove those
graphs that contain cycles; this can be done in linear time. Gaston implements a depth-
first search in the pattern space. It allows to mine the set of frequent subgraphs, as well
as the set of frequent subtrees via a command line argument of the program. Gaston is
available in two variants: One that stores embedding information in memory (Gaston),
and one that re-evaluates its embedding operator (Gaston-re) which has a smaller mem-
ory footprint but is slower. We compare to both variants. We also tried to include gSpan.”
However, the 64-bit version used quite a lot of memory and was repeatedly killed by our
operating system on almost all datasets and parameter settings. We hence refrain from
comparing to any results of gSpan in this study.

Based on the preliminary experiments from Chapter 1, we focus on mining frequent
patterns up to size 10. In this section we use relative frequency thresholds for ease of
comparison among datasets with different numbers of transaction graphs. All our ex-
periments are conducted on a Linux desktop machine with Intel i7-4770 CPU at 3.40GHz
and 16GB of RAM. We use only a single core at a time, as all three implementations are
single-threaded.

® Gaston: http://liacs.leidenuniv.nl/~nijssensgr/gaston/download.html
FSG:http://glaros.dtc.umn. edu/gkhome/pafi/download

" gSpan: https://www.cs.ucsb.edu/~xyan/software/gSpan.htm

60

http://liacs.leidenuniv.nl/~nijssensgr/gaston/download.html
http://glaros.dtc.umn.edu/gkhome/pafi/download
https://www.cs.ucsb.edu/~xyan/software/gSpan.htm

4.2. Experimental Evaluation

6=10% . . . 6 = 20%
e P

10%
103
102

Time [s]

10!
10°

10—1 Il

X

i
1 [}
i it .
I | i

|} 1 H

| 1 H

1 A | B B B 1H

|} H

x{:

|} H

[} 1 1 |} I M H

Ve | 1oL IR R | |} | , It
1M it 1: X X: I Xp: Xi:Z 11} X7z
1 v- ‘= 1= 1: ‘- ‘- - | 13

Vs

-2
10 1.0 1.2 14 16 1.8 2.0 3.0 5.0 10 1.2 14 16 1.8

q q
’DDk:l Dok=5 B0k=20 Dmk=50 DBGaston BBGaston-re EQFSG\

Figure 4.5.: Runtime of our method, compared to FSG and Gaston on Erdds-Rényi
datasets of varying expected edge factor ¢q. Dots over bars signal that the run
was terminated after 24 hours, a small x indicates that the algorithm termi-
nated with an error.

421 Runtime

We compare the runtime of PS, FSG, and both Gaston variants on artificial, social, and
chemical graph datasets. For our algorithm we report the combined time for sampling
and frequent pattern generation. Ourimplementation of PS generates frequent trees with
levelwise search. It uses the algorithm of Shamir and Tsur (1999) as the subroutine for the
support counting step and the algorithm of Wilson (1996) for sampling spanning trees. In
this way, we are able to guarantee pattern enumeration in incremental polynomial time.
Though we used several standard optimizations (e.g., evaluating the embedding operator
only on the intersection of the support sets of the parent patterns), our implementation
can further be improved. Our algorithms were implemented in C and compiled using gcc.

Random Graphs

Figure 4.5 shows the runtime on unlabeled Erdés-Rényi datasets for expected edge fac-
tors ¢ varying between 1.0 and 5.0. (Note the log scale for the y-axis.) That is, by increas-
ing ¢ we decrease the sparsity of the generated graphs, compare Section 2.4. We report
average execution times over three runs for computing the set of frequent patterns and
that of probabilistic frequent subtrees for various numbers of random spanning trees (k).
It turns out that FSG, Gaston, and Gaston-re are very sensible to the parameter ¢. In order
to be able to get any result in reasonable time, we had to restrict the number of graphs in

61

4. Probabilistic Frequent Subtrees

each dataset to 50. Still we had to terminate FSG in several cases where it took more than
24 hours (86 400s). This was consistently the case once g exceeded 1.8. Gaston, on the
other hand, terminated with memory allocation errors for ¢ > 1.4. Gaston-re was able to
compute the frequent patterns up to ¢ = 3.0 in less than a day (roughly ten hours for g = 3)
but failed to terminate in a day for ¢ = 5.0. Up to 50 sampled spanning trees, our prob-
abilistic approach is always faster than all competitors, outperforming them by at least
one order of magnitude. For large g our method still terminates in less than a second for
all k£, while FSG was aborted after a day without finishing and Gaston failed.

To show the scalability with database size, we generated random graph databases with
1000 graphs (of at most 50 vertices, each) and ran probabilistic frequent subtree mining
on them for varying expected edge factors. Our method was able to mine frequent pat-
terns on all such graph databases, while FSG and the Gaston variants were again not able
to finish in one day. It is worthwhile noting that for the large random databases the run-
time of our mining technique did not depend on the expected edge factor ¢ of the graphs,
but only on the sampling parameter k. For £ = 1, mining took at most 6 seconds and for
k = 10 at most 26 seconds, independently of ¢. Scaling of the mining time for the param-
eters in between was roughly linear.

Social Graphs

Neighborhood graphs extracted from social networks pose a huge challenge for existing
exact frequent subtree and frequent subgraph miners. In particular, in the disk variant
any neighborhood graph (ego net) has a central vertex of high degree, whereas chemical
graphs usually have a small constant vertex degree (compare Table 2.1). Furthermore, for
chemical graphs the difference between the number of vertices and the number of edges
is a small constant, which is not the case for ego nets. The vertex degree seems to be an
important parameter of the complexity of many SUBGRAPHISOMORPHISM algorithms
(compare Section 3.1). We will also see below that the number of different embeddings
of tree patterns into ego nets seems to be very high, resulting in exploding runtime and
memory requirements of algorithms that solve the SUBGRAPHISOMORPHISM problem
by explicitly computing and storing all possible embeddings of a pattern.

We therefore for a start only considered the first 100 ego nets (according to the ver-
tex numbering in the original data) of the unlabeled POKEC social network. Still, neither
FSG nor Gaston were able to generate any frequent patterns. In contrast, our probabilistic
frequent subtree mining algorithm was able to mine patterns up to size 10 for both neigh-
borhood and disk variants of POKEC. Table 4.1 shows the average runtimes over three
independent runs of the algorithms for the unlabeled dataset variants. It can be seen that
the mining takes 2-73 times as long on the disk variant, compared to the neighborhood
variant for any fixed £ and 6 in the labeled as well as the unlabeled case.

Next, we consider ego net databases of 1 000 ego-nets each from HEPPH and ENRON
(see Table 4.1). Impressively, FSG is able to mine frequent patterns on both variants of
these datasets, but takes quite some time to find the 201 frequent subtree patterns. Both
Gaston variants, however, fail on all these datasets. Our method, on the contrary, works
on all datasets. We notice that the runtime of our method is more sensitive to the average

62

4.2. Experimental Evaluation

Disks Neighbors

0 Method POKEC HEPPH ENRON POKEC HEPPH ENRON
FSG >1d 10899.83 50419.01 | >1d 10845.28 14936.00
GASTON err err err err err err
GASTON-re | >1d >1d >1d >1d >1d >1d

5% PSFl=1 1.09 2.76 3.19 0.72 2.42 2.67
PSFl =2 1.40 3.82 4.33 0.85 3.05 3.29
PSFl=5 1.65 5.45 5.70 1.05 4.58 4.33
PSFl =10 1.94 7.56 7.50 1.49 6.28 5.40
FSG >1d 10886.86 48479.19 | >1d 10838.66 15796.61
GASTON err err err err err err
GASTON-re | >1d >1d >1d >1d >1d >1d

10% PSFi=1 1.20 2.52 3.40 0.70 2.28 2.44
PSFl =2 1.45 3.60 4.24 0.87 2.98 3.10
PSFl=5 1.64 5.61 5.88 1.15 4.37 4.79
PSFl =10 2.04 7.83 7.42 1.46 5.73 5.79
FSG >1d 11126.28 46542.58 | >1d 10832.73 15924.55
GASTON err err err err err err
GASTON-re | >1d >1d >1d >1d >1d >1d

20% PSFl=1 1.10 2.03 2.56 0.71 1.57 1.97
PSFl =2 1.32 2.95 3.53 0.87 2.26 2.69
PSFl=5 1.63 499 5.96 1.13 3.62 4.25
PSF! =10 1.93 6.49 7.42 1.49 4.72 5.56

Table 4.1.: Runtime (in seconds) of PS, FSG, and Gaston on ego nets extracted from so-
cial networks. “err” denotes that the algorithm terminated with an error,
while “>1d” indicates that we terminated the algorithm after running for a day
(86 400s).

63

4. Probabilistic Frequent Subtrees

unlabeled labeled
disks neighbors disks neighbors

0 k | time # time # time # time #
1 1.09 201 0.72 201 | 68.76 50432 54.84 50339

59 2 1.40 201 0.85 201 | 145.10 61374 119.49 61683
5 1.65 201 1.05 201 | 450.42 64542 318.13 64405

10 | 1.94 201 1.49 201 | 89391 64605 564.48 64573

1 1.20 201 0.70 201 | 32,51 19665 28.00 20963

10% 2 145 201 0.87 201 | 133.45 44889 102.30 47274
5 1.64 201 1.15 201 | 437.27 63358 327.45 62338

10 | 2.04 201 1.46 201 | 895.19 64512 655.00 64098

1 1.10 201 0.71 200 | 10.81 4229 452 2677

20% 2 1.32 201 0.87 200 | 4595 12509 30.38 9982
5 1.63 201 1.13 201 | 322.86 40790 258.09 42261

10 | 1.93 201 1.49 201 | 854.72 60707 623.10 58766

Table 4.2.: Runtime (in seconds) and number [#] of probabilistic frequent subtrees found
by our method on ego nets extracted from the POKEC social network. The la-
beled variants (right) encode the gender of the users and have much larger sets
of probabilistic frequent subtrees. Note that neither FSG nor Gaston were able
to produce any output on these datasets.

number of edges in the transactions, than to the average number of vertices: The run-
times for the disk variants are between factors of 1.5 and 4 larger than for the respective
neighbor variants. The average runtimes (over both parameters of the algorithm) of the
datasets also grow almost monotonically with the average number of edges in the graphs.

For the POKEC dataset, there were also vertex labels available indicating whether the
user represented by the vertex is male, female, or did not provide gender information. Ta-
ble 4.2 shows the runtimes and number of probabilistic frequent subtree patterns found
by our algorithm. We note that there are a lot more frequent patterns that are discovered
by the probabilistic frequent subtree mining algorithm, compared to the unlabeled vari-
ants of the datasets. In fact, in this setting, increasing the sampling parameter k of our
mining algorithm results in a drastic increase in the number of probabilistic frequent tree
patterns that are returned by our algorithm.

As the labels do not change the topology of the graphs we suspect that one reason for
the bad performance of FSG and Gaston on the unlabeled datasets must be the huge num-
ber of possible embeddings of a given unlabeled tree pattern in the text graphs. FSG and
Gaston essentially store (or recompute) all embeddings, while our probabilistic frequent
subtree mining algorithm only stores v-characteristics, whose number is bounded by a
polynomial in the size of the graphs. This gives our algorithm a practical advantage over
the other algorithms that are unable to return results in reasonable time or even at all.

64

4.2. Experimental Evaluation

Runtime on ZINC;qgg

100 -
. 10-
A - § § f
g ' ! '
= N
0.1- i
001 :/E ::25 :::E
5% 10% 20%

Frequency Threshold

Ook=1 Ook=5 Bnk=20 Mok =50 BDGaston EBGaston-re EEBFSG

Figure 4.6.: Runtime results on ZINCjggo (in seconds) for PS, FSG, and Gaston for differ-
ent frequency thresholds 6 € {5%, 10%,20%}.

Chemical Graphs

Figure 4.6 reports the runtime results (in seconds) on a subset of 1 000 molecules of the
ZINC dataset for FSG, both Gaston variants, and for PS with & € {1, 5,20,50}. In contrast
to the runtime on artificial and social datasets, our method is faster than FSG only for
k = 1, while being slower than FSG even for the case of £ = 5. Gaston’s speed on this
dataset is impressive; it outperforms FSG and PS by at least an order of magnitude. Both
variants process the dataset in less than a second for all frequency thresholds.

We therefore assume that FSG and Gaston are highly optimized for structurally very

simple labeled graphs, where they have a competitive advantage over our method. To this
[E(G)]
V(&)

ical datasets D is very low: It is 1.04 for both NCI-HIV and ZINC. Recall that for Erdds-
Rényi datasets with expected edge factor ¢ = 1.0 were able to compute the set of frequent
patterns.

end, we note that the average edge factor (cf. the definition of ¢), i.e., %' > of chem-
GeD

422 Recall

As discussed in Section 4.1, for any graph database D the pattern set 7 found by our prob-
abilistic mining algorithm is a subset of all frequent subtrees F’r, which in turn is a subset
of all frequent subgraphs F'. We now analyze the recall of our method, i.e. the amount of
frequent subtree patterns that are found when applying Algorithm 4.1 for various val-

ues of k and 6. To this end, let the recall R(k,0) := % be the fraction of §-frequent tree

65

4. Probabilistic Frequent Subtrees

0 =10% 0 =20%
100

80
60

40

Recall [%]

20

0 10 12 14 16 18 10 12 14 16 1.8

q q

Ook=1 Ook=5 Ook=10 Bmk=20 MWk =50

Figure 4.7.: Recall of our method on Erdés-Rényi graph databases with varying expected
edge factor ¢, for frequency thresholds 10% and 20%.

patterns found by Algorithm 4.1 for £ random spanning trees. Using one of the exact fre-
quent subgraph miners, we compute the set of frequent trees. As mentioned above, this
can be done with either FSG or Gaston, as long as they are able to produce results.

Figure 4.7 shows the recall R(k, #) of our method for one run on Erd3s-Rényi datasets
and for frequency thresholds 10% and 20%. Itis restricted to expected edge factors g < 1.8,
as neither FSG nor Gaston are able to compute the full set of frequent patterns within a
day beyond this value for the remaining datasets with ¢ > 1.8. We will discuss this issue
in Section 4.2.1 below. Even for a single spanning tree (i.e., for k = 1), the recall is always
above 20%; in most cases actually above 40%. The recall for k¥ = 5 sampled spanning
trees is drastically higher than for k£ = 1; in fact the increase in recall between £ = 5 and
k = 50is much lower. This suggests that k£ = 5might be a good compromise in the trade-off
between runtime and accuracy of our method.

For the chemical graph datasets NCI-HIV and ZINC, we sample 10 subsets of 100
graphs each and report the average value of R(k,0) and its standard deviation. The
results on the two datasets can be found in Table 4.3 for different values of £ and for
frequency thresholds 5%, 10%, and 20%. We have found that at least 95% of all frequent
subgraphs are trees. One can also observe that the fraction of the retrieved tree patterns
grows rapidly with the number of random spanning trees sampled per graph. Sampling
10 spanning trees per graph already results in around 90% recall for the ZINC dataset
and in a recall of 80% for the NCI-HIV dataset.

66

4.2. Experimental Evaluation

Dataset | 0 k=1 k=2 k=3 k=10 k=20
5% 20.13 +1.20 | 35.53 +1.34 | 46.48 +0.51 | 78.32+0.85 | 91.11 £ 1.29
NCI-HIV | 10% | 20.26 £+2.22 | 34.45+1.42 | 4540+1.59 | 79.94 +1.82 | 92.44 + 1.34
20% | 24.45+1.38 | 39.76 + 1.68 | 50.41 +1.14 | 83.38 +1.40 | 94.72 +1.31
5% 36.80+£0.87 | 56.70 +1.65 | 68.42+0.94 | 92.50 +0.45 | 97.92 +0.55
ZINC | 10% | 32.77+1.89 | 51.36 +1.84 | 64.47 +1.40 | 92.49+1.18 | 86.70 +22.83
20% | 31.03+2.59 | 48.99+3.05 | 61.41+3.41 | 90.53 +1.28 | 97.89 + 0.40

Table 4.3.: Recall with standard deviation of the probabilistic tree patterns on the NCI-
HIV and ZINC datasets for frequency thresholds 5%, 10%, and 20%

We were not able to compute the exact set of frequent subtrees or frequent subgraphs
onsocial graphs using FSG or Gaston. Nonetheless we know that the recall of our method
is above 90% on these graphs for £ = 10, in most cases even for £ = 1. This is due to the
fact that there are exactly 201 pairwise non-isomorphic spanning trees of size up to 10
vertices if there are no vertex and edge labels (Sloane, 2016). Hence the number of fre-
quent tree patterns cannot be larger than that. For 10 sampled spanning trees per block
our method has above 90% recall (except on the neighbor variant of HEPPH for 6 = 20%);
often it finds almost all frequent subtrees (for # = 5 even for a single sampled spanning
tree per block). The exact numbers of frequent patterns found by PS are presented in Ta-
bles 4.1and 4.2. The recall of PS on the labeled POKEC variants remains an open question.
Up to our knowledge there are no formulas for the number of nonisomorphic trees in the
general labeled case to provide a lower bound on the recall.

4.2.3. Stability of Probabilistic Subtree Patterns

The results of Section 4.2.2 above indicate that a relatively high recall of the frequent tree
patterns can be achieved on molecular, social, and random graph databases, even for a
very small number of random spanning trees. We now report empirical results show-
ing that the output pattern set of Algorithm 4.1 is quite stable (i.e., independent runs of
our probabilistic frequent tree mining algorithm yield similar sets of frequent patterns).
To empirically demonstrate this advantageous property, we run PS several times on the
same values of the parameters k and § and observe how the union of the probabilistic tree
patterns grows.

To this end, we fix two sets of chemical graphs, each of size approximately 40 000, as
follows: We take all connected graphs in NCI-HIV, as well as a random subset ZINC,;, of
ZINC that contains 40 000 graphs. We run PS five times for the datasets obtained with
parameters k& = 1 and 6 = 10%. Each execution results in a set F; of probabilistic subtree
patterns, from which we define U; = U;':O F; with F(= &. Table 4.4 reports |F; \ U;_1],
i.e., the number of new probabilistic subtree patterns found in iteration i fori € {1,...,5}
on the left. For an initial number of 3920 (NCI-HIV) and 9898 (ZINC,;) probabilistic
patterns, the number of newly discovered patterns reduces to at most 22 in the upcoming
iterations.

67

4. Probabilistic Frequent Subtrees

Iteration

Dataset & 1 2 3 4 5 S(G)
NCI-HIV 1| 3920 20 5 10 14 169
ZINCqr 1| 9898 18 17 11 10 36
ER-1.0 10 692 2 5 8 3 7
ER-1.2 10 750 2 0 0 11 55
ER-1.4 10 806 18 0 0 0 2267
ER-1.6 10 824 1 0 0 0| 3.410°
ER-1.8 10 824 2 0 0 0| 8.7107
ER-2.0 10 850 0 0 1 0| 1.9-10°
ER-3.0 10 814 26 1 4 0| 9.910%
ER-5.0 10 822 4 0 0 20 | 1.1-10%?

118852 4606 5780 5545 4275
POKEC ~5|62772 910 1578 690 799 | . o

disks 10 | 64505 60 61 26 60 | =

20 | 64599 6 5 4 10

119671 6442 6911 8181 6017

POKEC 562637 669 1222 947 1354
neighbors 10 | 64113 211 242 220 186 -

20 | 64499 52 28 51 13

Table 4.4.: Repetitions of the probabilistic frequent subtree mining experiment. The
numbers reported are the number of probabilistic patterns that were not in the
union of all probabilistic patterns found up to the current iteration. The num-
ber in iteration 1 is the number of probabilistic subtrees found. &(G) denotes
the median number of spanning trees per graph in the dataset for comparison.

We observed this behavior consistently on the artificial Erd6s-Rényi graphs (over all
observed edge factors, all numbers of sampled spanning trees, and all frequency thresh-
olds). Table 4.4 shows the results for § = 10%, k£ = 10, and 5 iterations. Each artifi-
cial dataset consists of 50 graphs. In contrast to the experiments in the previous sec-
tions, however, we label the graphs using ten vertex labels and two edge labels, respec-
tively. The number of newly discovered probabilistic patterns cannot be large for unla-
beled Erdds-Rényi graphs, as the recall in this case is very close to one (cf. Section 4.2.2
above). To put our recall and stability experiments into context, note that the median®
number of spanning trees per graph is depicted in Table 4.4, as well.

Finally, we repeat this experiment for the labeled variants of the POKEC dataset. With
the same argument as above, we know that the pattern sets found for the unlabeled vari-
ant must be very stable. The two labeled datasets show a relatively large number of newly
discovered patterns for each of the five iterations and £ = 1 sampled spanning trees. Each

8 We use the median, as there are some graphs with excessively many spanning trees that distort the aver-
age.

68

4.2. Experimental Evaluation

newly discovered set of probabilistic frequent tree patterns in the POKEC variants newly
discovers between 4 200 and 8 200 patterns not contained in the union of the patterns
from previous iterations. However, this number drops dramatically once we increase k.
For k& = 5 the fraction of newly found patterns (with respect to the union of previously
found patterns) is below 3% in all iterations. For k = 20, this number drops to at most 52
newly discovered patterns.

These results together clearly show that the generated feature set does not depend too
much on the particular spanning trees selected at random. Overall this means that inde-
pendent runs of our algorithm yield similar feature sets on the same data. This observa-
tion, combined with the remarkable recall results of the previous experiment, is essential;
high recall and stability together indicate that the predictive performance of any (compu-
tationally intractable) exact frequent subtree based method can closely be approximated
by our (computationally feasible) probabilistic frequent subtree based algorithm, even for
small values of £.

42 4. Predictive Performance

In this section we show that the predictive performance of probabilistic subtree patterns
compares favorably with that of the frequent subgraph patterns. We deliberately con-
sider the more expressive complete output of FSG, including also frequent subgraphs con-
taining cycles, because we compare the runtime of our method to that of FSG needed to
compute all frequent subgraphs. Recall from the preliminary experiments in Chapter 1
that the predictive performance of frequent subtrees is very similar.

We choose, as does most related work, a wrapper method and report the achieved area
under the ROC-curve (AUC) of a well trained support vector machine (SVM) (Cortes and
Vapnik, 1995). To this end, we consider the seven binary classification problems described
in Section 2.4. We compare the predictive performance of (i) the frequent subgraph pat-
terns computed by FSG (Deshpande et al, 2005) with that of (ii) the probabilistic frequent
subtree patterns for different k£ and for different frequency thresholds. We restrict our
evaluation of the predictive performance to chemical graphs only. These graph databases
are the only ones where our competitors could reliably produce results. For (ii), we use
only the results with Wilson’s random spanning tree sampling algorithm (Wilson, 1996);
we obtained nearly identical accuracy and runtime results with the greedy sampling algo-
rithm based on Kruskal’s method (cf. Section 4.1.3). For our evaluation, we use the SVM
provided by the libSVM package (Chang and Lin, 2011) with a radial basis function ker-
nel. We repeat Algorithm 4.1 four times using different sets of sampled trees, resulting in
different sets of probabilistic subtrees and different embedding vectors of the database
graphs. We report the average and standard deviation of AUC values from a 3-fold cross
validation for each resulting database representation. The same procedure is applied to
the frequent subgraph pattern set, here we use a different splitting for the cross valida-
tion in each run.

Note that this evaluation requires us to compute feature vectors for each graph in
the databases. Here, we compute the feature vectors and sets of (probabilistic) frequent
patterns simultaneously for the full data sets using the frequent subgraph mining al-

69

4. Probabilistic Frequent Subtrees

0 k MUTAG PTC NCI1 NCI109
1% 1 81.72 +£1.22 | 56.20 +1.54 | 79.73 £ 0.26 | 78.64 + 0.20
1% 2 82.98 £0.46 | 57.03+0.88 | 81.74 £0.22 | 80.89 +0.15
1% 5 85.47 +0.80 | 59.18 +0.54 | 83.45+0.12 | 83.07 +0.14
1% 10 | 88.33+0.30 | 59.67 +0.26 | 84.09 +0.10 | 83.79 £ 0.15
1% 20 | 89.32+0.14 | 60.10 £ 0.09 | 84.43 +0.06 | 84.23 +0.05
1% FSG | 91.18 +0.46 | 63.62+1.01 | 86.87 +0.10 | 86.84 + 0.09
5% 1 80.79 £1.26 | 54.92+1.69 | 76.90 £ 0.40 | 75.67 +0.23
5% 2 82.30+0.41 | 55.05+1.25 | 78.87+£0.17 | 77.73 £ 0.17
5% 5 84.20+£0.90 | 56.12 +0.67 | 80.75+0.17 | 80.31 +0.16
5% 10 | 86.35+0.15 | 56.14+0.29 | 81.60 +0.10 | 81.12+0.13
5% 20 | 87.66 +£0.26 | 56.34 +0.19 | 82.15+0.05 | 81.73 +0.05
5% FSG | 89.01 +0.64 | 58.00+1.86 | 83.76 +0.13 | 83.86 + 0.06

10% 1 80.99 +1.23 | 54.05+1.84 | 75.41 +0.43 | 74.10 +0.28
10% 2 82.60+0.44 | 54.35+1.48 | 77.28 +0.22 | 76.08 +0.17
10% 5 84.22+0.86 | 54.17 +0.87 | 79.09+£0.16 | 78.05+0.14
10% 10 | 86.23+0.16 | 53.94 +0.28 | 79.95+0.09 | 79.01 +0.10
10% 20 | 86.95+0.11 | 53.99+0.19 | 80.44 +£0.05 | 79.61 + 0.07
10% FSG | 87.34+0.46 | 56.76 +1.96 | 81.66 +0.10 | 81.55+0.24
20% 1 81.02 +£1.43 | 53.36 +2.16 | 72.78 £ 0.35 | 70.84 + 0.32
20% 2 83.12+0.53 | 53.05+0.79 | 74.94 £0.22 | 73.77 £+ 0.17
20% 5 84.68 +0.82 | 52.34+0.89 | 77.05+0.15 | 76.13 +0.11
20% 10 | 86.92+0.16 | 51.86+0.52 | 77.79+0.06 | 76.90 + 0.10
20% 20 | 88.10+0.06 | 51.97 +0.22 | 78.15+0.06 | 77.33 + 0.08
20% FSG | 88.36 +0.00 | 55.82+2.59 | 77.41 +0.09 | 77.92 +0.02

Table 4.5.: AUC values [%] of an SVM classifier on MUTAG, NCI1, NCI109, and PTC for
frequency thresholds ¢t between 1% and 20% when using features generated by
FSG and our method for & € {1,2,5,10,20}.

gorithms. We defer the detailed discussion of this topic to Chapter 6. In particular, we
do not discuss here the case that finding a feature representation should be part of the
learning process.

Table 4.5 shows the results for the classification problems on MUTAG, NCI1, NCI109,
and PTC. We can see that the frequent subgraph patterns outperform our probabilistic
subtree patterns for all frequency thresholds and all choices of k. However, if we select
k = 20 spanning trees, the accuracy is fairly close to that of the exact frequent subtree pat-
terns for all datasets and for all frequency thresholds. Furthermore, the results suggest
that we can achieve or perhaps even increase the predictive accuracy of the exact frequent
subgraph patterns at a certain frequency threshold 6 by using the probabilistic frequent
subtree patterns with parameters k£ = 20 and frequency threshold 6/2. It is also worth
noting that the increase of accuracy slows down as a function of k; the gain of increasing

70

4.2. Experimental Evaluation

0 k Avsl AMuysl AvsMI
5% | FSG 0.0.m 0.0.m 0.0.m
5% 1| 89.27+0.20 | 72.35+0.23 | 88.23 +0.24
5% 2| 89.94+0.12 | 74.09 +0.69 | 89.09 +0.74
5% 5191.17+0.13 | 75.65+0.27 | 90.63 +0.17
10% | FSG | 91.31 £0.38 | 75.29 +0.24 | 90.82 + 0.31
10% 1| 88.53+0.81 | 71.32+0.54 | 87.45+1.18
10% 2 | 88.28+1.51 | 71.09 +£0.21 | 87.29 +0.62
10% 5191.11+0.23 | 74.30 +0.18 | 90.27 + 0.08

20% | FSG | 91.35+0.39 | 74.24 +0.26 | 90.57 £ 0.17
20% 1| 86.75+0.76 | 68.55+0.73 | 86.00 +0.74
20% 2 | 86.40+1.00 | 68.79+0.61 | 85.79 +£0.74
20% 5190.29+0.28 | 73.17 +0.56 | 90.27 £ 0.53

Table 4.6.: Average AUC values for the three learning problems on the NCI-HIV bench-
mark dataset for the frequent subgraph patterns and the probabilistic frequent
subtree patterns for k£ = 1,2 and for different frequency thresholds.

k from one to five spanning trees is much larger than that of increasing k& from five to
ten on all datasets except MUTAG, where the second increase is comparable to the first.
We assume that this behavior on MUTAG is due to the small number of molecules in the
dataset.

The results on NCI-HIV are presented in Table 4.6. On the one hand, one can see that
from a frequency threshold of 10%, the results using frequent subgraph patterns are more
stable than those with the probabilistic frequent subtree patterns on all three problems.
Though the frequent subgraph patterns outperform the probabilistic frequent subtree
patterns on the same frequency threshold, the difference seems marginal once we com-
pare the best results on each problem, especially inlight of the runtime benefits presented
above. On the other hand, however, for the frequent subgraph patterns, the SVM could
be trained only for # = 10%, while for the probabilistic frequent subtree patterns we ob-
tained the result in half of the time for § = 5%. For this frequency threshold, FSG was
unable to produce any result because it ran out of memory. For larger frequency thresh-
olds, we had difficulties with training the SVM using all frequent patterns because of its
excessive memory usage. These observations clearly show the limitation of the frequent
subgraph patterns over the probabilistic frequent subtree patterns when the predictive
performance required can be achieved only for low frequency thresholds. Finally we note
that there is no improvement when sampling two instead of one spanning tree per graph,
but a drastic increase when increasing £ to five. This result fits well with the evaluation
of our method on the artificial datasets.

71

4. Probabilistic Frequent Subtrees

4.3, Summary

We have presented a method to mine probabilistic subtree patterns, i.e., subtrees in a for-
est database obtained by randomly selecting k spanning trees for each transaction graph
in the input database and for some small value of k. Our empirical results on Erdés-Rényi
random graphs, ego nets from social networks, and chemical graphs show that even for
small values of k (k < 20), the output of the probabilistic frequent subtree mining algo-
rithm is of high recall and stability. Runtime comparisons with the FSG and Gaston fre-
quent subgraph mining algorithms clearly demonstrate the superiority of our probabilis-
tic approach on graph datasets beyond chemical graphs: The speed of the probabilistic
frequent subtree mining algorithm is faster by at least one order of magnitude in the few
cases where FSG and Gaston were able to terminate in reasonable time. Furthermore, our
method allowed to mine probabilistic frequent subtrees where the traditional exact meth-
ods failed. Our empirical results on various real-world benchmark graph datasets show
that the probabilistic feature space considered is expressive enough in terms of predictive
performance compared to that of ordinary frequent subgraphs.

One of the strengths of our method is that it is not restricted to any particular graph
class. This advantageous property allows us to empirically investigate frequent subtree
sets on more complicated graph classes beyond molecular graphs, such as random graphs
of medium to high edge density, ego nets and possibly many other types of graph trans-
action databases, such as knowledge graph databases.

However, so far we did not address two important questions that remain to be an-
swered in the subsequent chapters of this thesis: First, the runtime of Algorithm 4.1 di-
rectly depends on the number £ of spanning trees sampled for each graph. Generally, the
number of spanning trees is large for all but the most simple graphs (e.g. cycles). In fact,
Cayley’s formula tells us that there can be up to n" 2 spanning trees in a graph with n
vertices (Cayley, 1889). Thus there is an exponentially large gap between the number of
spanning trees our algorithm considers and the total number of spanning trees. We thus
will investigate in Chapter 5 how to increase the number of spanning trees that can be
efficiently considered. In this way, we try to boost the recall of the probabilistic subtrees
and hence likely their predictive performance.

Another question yet to be addressed is how to efficiently compute the embedding vec-
tors of graphs, given a set of (probabilistic) frequent subtrees. Although this problem ap-
peared in Section 4.2.4 as a subtask, the techniques described in this chapter are not suf-
ficient to solve it completely. Hence, a crucial step is missing for a complete subtree min-
ing system that can be used in an inductive setting. Algorithm 2.1 and Algorithm 4.1 can
both be modified to output the embedding vectors for the graphs in their input database
D. However, novel graphs® cannot be embedded right away in the feature space spanned
by the (probabilistic) subtrees. We address the efficient computation of such embeddings
in Chapter 6.

° That is, graphs that were not part of the database D used for probabilistic frequent subtree mining.

72

5. Boosted Probabilistic Frequent
Subtrees

Utilizing that a tree is subgraph isomorphic to a graph if and only if it is subtree isomor-
phic to one of the graph’s spanning trees, Algorithm 4.1 from the previous Chapter gen-
erates probabilistic frequent subtrees in the following simple way: It replaces each trans-
action graph in the input database by a forest formed by the vertex disjoint union of a ran-
dom subset of its spanning trees and generates the set of frequent connected subgraphs
(i.e., subtrees) for the forest database obtained. These probabilistic frequent subtrees can
be enumerated with polynomial delay if the number of spanning trees in the sample is
bounded by a polynomial of the graph’s size for each transaction graph in the database.
For all but the most simple graphs, however, the number of spanning trees is exponential
in the size of G. In fact, the number of spanning trees of GG is exponential in the cyclomatic
number |E(G)| - |V (G)| + 1 of G

Hence, thereis an exponential gap in the number of spanning trees that Algorithm 4.1
can efficiently consider and the total number of spanning trees of the transaction graphs.
This fact may negatively influence the recall of our probabilistic subtree mining algo-
rithm, as it may lead to a large number of subtrees of the database graphs that are -
important for very small values of 1 only. Such unimportant patterns, however, can only
be reliably found if a large number of spanning trees is considered (cf. Section 4.1.2).

In this chapter we go beyond the limitation of processing polynomially many span-
ning trees only. We present an algorithm which can generate probabilistic frequent sub-
trees from arbitrary graphs with polynomial delay by considering a potentially exponen-
tially large subset of the spanning trees for each graph in the database. The core of our
mining algorithm is a pattern matching algorithm that, for a tree pattern H and trans-
action graph G, (i) partitions G into a certain set of induced subgraphs, (ii) considers a
(random) subset of local spanning trees for each induced graph, and (iii) decides whether
H is subtree isomorphic to one of the global spanning trees of G obtained by combining its
local spanning trees. It is inspired by the paradigms developed by Matousek and Thomas
(1992) and by Shamir and Tsur (1999) for solving subgraph isomorphism for other graph
classes.

In a nutshell, our algorithm decides the pattern matching problem by a dynamic pro-
gramming algorithm traversing a rooted tree generated for GG in a bottom-up manner
and computing the final solution from previously calculated partial ones. In our case, the
nodes of the rooted tree controlling the evaluation are constructed from the articulation
vertices of G. Each node v of such a tree is associated with the set of spanning trees of cer-

! In general, the cyclmatic number, or circuit rank of a graph G is |E(G)| - |V (G)| + ¢, where c is the number
of connected components of G.

73

5. Boosted Probabilistic Frequent Subtrees

tain biconnected components of G containing v. For all such local spanning trees 7, we
solve the partial subtree isomorphism problem corresponding to v by carefully extend-
ing the partial subtree isomorphisms already computed for 7. Iterating over all spanning
trees and over all nodes, we can correctly decide subtree isomorphism for the part of G
which is “below” v in the rooted tree associated with G. We prove that our algorithm de-
cides subgraph isomorphism from H to & correctly, where & is the set of spanning trees
of G'that can be obtained from the combinations of thelocal spanning trees. Furthermore,
our algorithm runs in time polynomial in the combined size of H, G, and f, where fisan
upper bound on the number of selected local spanning trees. The significance of this re-
sult is that the number of global spanning trees in G can be exponential in f. This property
has immediate consequences to probabilistic and exact frequent subtree mining.

Regarding probabilistic frequent subtree mining, by (implicitly) considering exponen-
tially many global spanning trees instead of polynomially many ones, our technique has
animproved performance in terms of recall over the simple algorithm from Chapter 4. On
the one hand, thisimprovement is only marginal on real-world molecular graph datasets,
due to the relatively simple graph structure of pharmacological compounds (cf. Horvath
and Ramon, 2010; Horvath et al, 2010). On the other hand, however, on threshold graphs,
which have applications among others in spectral clustering (see, e.g., von Luxburg, 2007),
the algorithm presented here results in a much higher recall compared to the simple one.
It is important to note that all threshold graphs used in our experiments had a structural
complexity beyond that of the molecular graphs of pharmacological compounds. None of
the state-of-the-art frequent subgraph mining algorithms were able to produce any out-
put for threshold graphs in practically feasible time.?

Our pattern matching operator implies a novel result regarding the complexity of
the (exact) FTM problem, as well. We extend the known positive complexity results on
frequent tree mining by a new one formulated for a graph class that is of theoretical as
well as practical interest. Recall from Chapter 3 that despite more than two decades of
research there are only a few non-trivial theoretical results concerning the complexity
of frequent subgraph mining are known. Beyond forests, frequent connected subgraphs
can be listed in incremental polynomial time for graphs of bounded tree-width (Horvath
and Ramon, 2010). The subgraph isomorphism algorithm proposed in this chapter, how-
ever, is always correct if all local spanning trees are considered.3 Accordingly, a sufficient
condition for our frequent pattern mining algorithm to be correct and efficient (i.e., poly-
nomial delay) is that the input graphs are locally easy: A graph G of size n is locally easy if
for all vertices v of G, the union of the biconnected components containing v has at most
poly(n) spanning trees.

The class of locally easy graphs is orthogonal to all graph classes that are defined by a
constant upper bound on some monotone graph property (e.g., graphs of bounded tree-
width); a graph property is called monotone if it is closed under taking subgraphs. By or-

? Recall that we have observed a similar behavior on Erd4s-Rényi graphs and social graphs in the previous
chapter.

3 Werecall that the problem of deciding whether a tree is subgraph isomorphic to a graph G is NP-complete
in general (see, e.g., Garey and Johnson, 1979) and remains computationally intractable even for very sim-
ple graphs, e.g., when G is a cactus graph (Akutsu, 1993).

74

5.1. An Efficient Embedding Operator for Trees

thogonality we mean that the graph class always contains an infinite number of graphs
that are not contained in the other graph class. It turns out that the class of locally easy
graphs includes a number of interesting and practically relevant graph classes. The most
natural example is the class of forests. Pseudoforests (i.e., graphs in which every connected
component has at most one cycle) and their generalizations, cactus graphs (i.e., in which
all edges belong to at most one simple cycle) of bounded block degree (i.e., the maximum
number of blocks sharing a vertex is bounded by a constant) are some further straight-
forward subclasses of locally easy graphs. Other examples include the class of d-tenuous
outerplanar graphs (Horvath et al, 2010) of bounded block degree and that of k-easy graphs
of bounded block degree, where a graph is k-easy for some constant £ > 0 integer if all bi-
connected components have O (nk) spanning trees. These and other graph classes show
that our positive result on mining locally easy graphs is an important step towards ex-
ploring the border between tractable and intractable fragments of the frequent pattern
mining problem. We conjecture that generalizing our positive result to the first “natu-
ral” graph class beyond locally easy graphs is at least as difficult as solving the P vs. NP
problem.

Outline

The rest of this chapter is organized as follows. We present our subtree isomorphism al-
gorithm in Section 5.1 and prove its correctness and runtime guarantees. Using this pat-
tern matching algorithm, in Section 5.2 we describe our mining algorithm enumerating
probabilistic frequent subtrees in arbitrary graph databases with polynomial delay and
empirically compare its runtime and recall on threshold graphs to our algorithm from
Chapter 4. We discuss exact frequent subgraph mining for locally easy graphs in Sec-
tion 5.3, together with some important theoretical and practical properties of this graph
class. Finally we conclude in Section 5.4 and mention some interesting open problems
for further research.

5.1. An Efficient Embedding Operator for Trees

This section is devoted to the support counting step of our boosted mining algorithm (cf.
SupPPORTCOUNT(H, D) in Line 8 of Algorithm 2.1). In Theorem 5.1 below we first claim
that SUBTREEISOMORPHISM can be decided in time polynomial in the number of local
spanning trees of certain induced subgraphs of G. In Section 5.2 we show that the algo-
rithm used in the proof of this result can be modified in a natural way to decide SUBTREE-
ISOMORPHISM with one-sided error in polynomial time. This is achieved by considering
a potentially exponentially large subset of the spanning trees of G, for any arbitrary graph
G. This modified algorithm will allow for efficient probabilistic frequent subtree mining.
To state Theorem 5.1, our main result for this section, we first introduce the following no-
tation: Foragraph Gandv € V(G),let f,(G) be the number of spanning trees in the union
of the biconnected components containing v and define f,.x(G) = max,ey (@) fo(G).

75

5. Boosted Probabilistic Frequent Subtrees

Theorem 5.1. The SUBTREEISOMORPHISM problem can be solved in time

O (frax(G) - |E(@)| - [V(H)|?) .

To put Theorem 5.1 into context, we note that SUBTREEISOMORPHISM is a well-
known NP-complete problem (it generalizes e.g. the HAMILTONIANPATH problem). If,
however, the transaction graph is a tree, as well, the restricted problem belongs to P (see,
e.g., Shamir and Tsur, 1999). This positive result, together with that on generating the
spanning trees of a graph with polynomial delay (Read and Tarjan, 1975), implies that
SUBTREEISOMORPHISM is in P if G has only polynomially many spanning trees; just
list all spanning trees 7 of G and check if H is subgraph isomorphic to 7. Theorem 5.1 gen-
eralizes this straightforward positive result to graphs that can have exponentially many
spanning trees. To prove Theorem 5.1, we present Algorithm 5.1 and show that it decides
the SUBTREEISOMORPHISM problem correctly (Lemma 5.6) and in time stated in the
theorem (Lemma 5.7).

Algorithm 5.1 is inspired by the ideas in (MatouSek and Thomas, 1992) and (Shamir
and Tsur, 1999). Analogously to tree decompositions of bounded tree-width graphs (see,
e.g., Diestel, 2012), our dynamic programming algorithm splits G into certain induced
subgraphs and evaluates partial (non-induced) subgraph isomorphisms from subtrees of
H to such subgraphs. The evaluation order of our algorithm is, however, controlled by a
rooted tree skeleton defined on the articulation vertices of G. For all nodes v of the tree
skeleton, the biconnected components that are “below” v in G are replaced by a (local)
spanning tree 7 in all possible ways. The subproblem corresponding to v is then solved
by carefully combining 7 with the spanning trees of the previous level. Iterating over all
(local) spanning trees of the biconnected components, we can correctly decide SUBTREE-
IsoMORPHISM for the part of G which is “below” v. We will now describe the algorithm
and necessary notation.

In what follows, H and G denote a tree and an arbitrary graph, respectively. We as-
sume w.l.o.g. that G is connected and that 2 < |V (H)| < |V (G)|, implying that all bicon-
nected components of G contain at least two vertices. We fix an arbitrary vertexr € V(G)
and will implicitly also consider r, when talking about GG. For a block B of GG we define
its root v to be the vertex of B with the smallest distance to and will refer to B as a v-
rooted block. For any v € V(G), the subgraph formed by the set of v-rooted blocks of G is
denoted by B(v). Clearly, B(v) can be empty. On the set of roots of the blocks in G we
define a directed graph 7 as follows (since G and r have been fixed, we omit them in the
notation): For any u,v € V(7)) with u # v, (u,v) € E(T) if and only if there exists a block
B with root v such that u € V' (B). We call T the tree skeleton of G (see, also, Figures 5.1 a)
and b)). In the proposition below we show that 7 is indeed a rooted tree. This tree will be
used to direct our dynamic subgraph isomorphism algorithm.

Proposition 5.2. 7 isa tree rooted at r.

Proof. 1t suffices to show that for all u € V(7) with u # r, u has outdegree at most one;
the claim then follows by noting that the outdegree of r is zero and that 7 is connected,
as G is connected. Suppose for contradiction that there exists u € V(7), u # r, with two

76

5.1. An Efficient Embedding Operator for Trees

T Gy
T T
)
v
x v
)
a) b) c)

Figure 5.1.: G, tree skeleton 7 and G,, for a small graph G (with respect to 7). v is the root
of the block B. Roots are shown in gray, while vertices that are not roots are
shown in white.

different parents vy, ve € V(7). Let B; € B(v;) (i = 1,2). Then By # B; and there is a path
P (resp. P»)in G connecting r and v; (resp. v2) that is edge disjoint with B (resp. Bs). The
union of P; and P, together with the paths connecting « with v; and v with v, contains a
cycle intersecting both B; and By. But then u, v{, and v all belong to the same block of GG,
contradicting the maximality of B; and Bs. O

We need some further concepts. Let v, w € V(G). Then w is below v if all paths connect-
ing r and w in G contain v. A rooted subgraph G, of GG for v is the subgraph of GG induced
by the set of vertices below v (see Figure 5.1 ¢) for an example). The same notation will be
used consistently for the pair consisting of the tree pattern H and some vertexy € V(H),
ie.,foranyu,y € V(H), H, is the tree obtained from the tree H rooted at y by keeping the
subtree rooted at u. The definitions and the connectivity of G imply that G, is connected,
G, = G,and G,, is a single vertex if and only if w ¢ V(T). A vertex w’ € V(G) is called a
child of v, if vw' € E(G) and w’ € V(B(v)).

A guidance tree of G is a pair T = (7,S) such that 7 is a tree skeleton of G and S is
a family of sets S, for all v € V(7). That is, all nodes v of 7 are associated with a set
Sy, called the bag of v. Each S,, is a subset of the set of spanning trees of B(v), called local
spanning trees, all rooted at v. If S, contains all spanning trees of B(v) forevery v € V(7),
then T is referred to as a complete guidance tree of G. For the remainder of this section, by
guidance trees we always mean complete guidance trees. (Incomplete guidance trees will
be considered in Section 5.2.)

Let T = (7,S) be a guidance tree of G and let v € V(7). An iso-triple* £ of H relative to
vis a triple (Hy,7,w) such thatu € V(H),y € N(u) u{u}, 7 € Sy,and w € V(7). Let G’
be an induced subgraph of G and 7’ be a spanning tree of G'. Then G{G’/7} denotes the
graph obtained from G by removing all edges of G’ that are not in 7 (i.e., by substituting
G’ with 7). Now we are able to define the partial subgraph isomorphisms we are inter-

4 Though our terminology is similar to that in (Hajiaghayi and Nishimura, 2007), which in turn is based
on the concepts in (Matousek and Thomas, 1992), the definitions of iso-triples and characteristics in this
thesis are semantically different from their definitions.

77

5. Boosted Probabilistic Frequent Subtrees

Algorithm 5.1 Subgraph Isomorphism from a Tree into a Connected Graph

Input :tree H with |V (H)| > 1 and an arbitrary connected graph G with |V (G)| > |V (H)|
Output: TRUE if H < G; o/w FALSE

MAIN:
1: setC:=0Q
2: pick a vertex r € V(G) and compute the complete guidance tree T = (7,S) of G for
the tree skeleton 7 rooted at
3. forall v € V(T)in a postorder do
4 forall7 ¢S, do /l' Sy € Sisthebagofvin T
5 for all w € V(7) in a postorder do
6: C :=CUCHARACTERISTICS (v, u, T, w)
7 if (H!,7,w) € C then return TRUE
8: return FALSE

FUNCTION CHARACTERISTICS (v, u, T, w):
1 Cri=0
2: forallf € ©,,(7)do
3 forallu e V(H)do

4: let 7’ be the tree satisfying 6 = T u 7’

5: let C; (resp. C) be the set of children of w in 7 (resp. 7') and
Cg = CT U CT/

6: let B = (CyUN (u), E) be the bipartite graph with

cu' € Eifand onlyif (ce Cr A (HY, 7,¢) €C) Vv (ce Cr A (HY, 7', ¢) €C)
for all cu’ € Cy x N'(u)

7: if B has a matching that covers A/ (u) then
: add (H}, 7,w) toC;,
9: forally ¢ N'(u) do
10: if B has a matching covering A/ (u) \ {y} then
11: add (HY,7,w) toC,

12: returnC;

ested in. A v-characteristic is an iso-triple ¢ = (HY, 7, w) relative to v such that there exists
a subgraph isomorphism ¢ from H to (G{ B(v)/7}),, with ¢(u) = w. In the lemma be-
low we provide a characterization of subgraph isomorphisms from H to G in terms of
v-characteristics. Its proof follows directly from the definitions.

Lemma 5.3. Let H be a tree, G be a graph with root r,and T = (T ,S) be a guidance tree of G such
that T is rooted at r. Then H < G if and only if there exists a v-characteristic (H!, T,w) for some
veV(T),ueV(H),TeS,andw e V(7).

78

5.1. An Efficient Embedding Operator for Trees

Figure 5.2.: This figure shows a small graph G with its subgraphs B(v) and B(w) (depicted
by the rounded triangles). One spanning tree 7 of B(v) and 7’ of B(w) are
shown in solid bold and dashed bold, respectively.

Notice that the number of v-characteristics (H,, 7, w) is bounded by a polynomial in
the number oflocal spanning trees 7. To be more exact, there areatmost |V (H) ||V (B(v))|
v-characteristics for each local spanning tree 7 € S,,. We will show how these characteris-
tics can be computed recursively by a post-order traversal of the tree skeleton 7. In order
to recover all v-characteristics, the spanning trees of the w-rooted blocks must carefully
be combined with 7 when w itself is also a root (i.e., w € V(7)). To formalize these con-
siderations, we introduce the following notation. For any v € V(7),7 € S,,and w € V(1)
we define ©,,,(7) by

{rur’ : 778} fweV(T){v}
Opu(T) = o
{r} o/w(ie., ifw ¢ V(T)orv =w),

where 7 U 7’ is the graph with vertex set V(7) u V(7') and edge set E(7) u E(7'). That is,
for the case that w € V(T) \ {v}, O, (7) is the set of trees obtained by “gluing” the local
spanning tree 7 and 7' at vertex w, for all local spanning trees 7’ € S,,. The definition
is correct, as V(7) n V(7') = {w} for this case. Note that if w is a root vertex different
from v then w always has at least one child in B(w), i.e., 7’ is always a tree with at least
one edge. As an example, the combination of the dashed and the bold tree in Figure 5.2
denotes an element of ©,,,(7). In Lemma 5.4 below we first provide a characterization of
v-characteristics for subtrees H{ withy € N'(u).

Lemma 5.4. Let H be a tree, G be a graph, and T = (T, S) be a guidance tree of G. An iso-triple
(HJ,7,w) of H is a v-characteristic for some v € V(T) and y € N (u) if and only if there exists
a0 € O,,(7) and an injective function 1) from N (u) ~ {y} to the children of w in 0 such that for
allu’ € N'(u) ~ {y} thereis a subgraph isomorphism ¢, from Hj, to (G{B(v) U B(w)/0}).(un
mapping v’ to(u').

Proof. “=" Suppose (H,,T,w) is a v-characteristic for some v € V(7) and y € N (u).
Then, by definition, there is a subgraph isomorphism ¢ from Hy to (G{B(v)/7}),
with ¢(u) = w. Let R be an arbitrary spanning tree of (G{B(v)/7}), containing the

79

5. Boosted Probabilistic Frequent Subtrees

image p(H,) as a subtree. Then R[V(B(w))] € S, and R[V(B(v))] = 7 and hence
0 = R[V(B(v))]u R[V(B(w))] € ©yy(7) implying that for all v’ € N (u) \ {y}, p maps
Hyjito (G{B(v) u B(w)/0}) ,(,)- As ¢ is injective we can set 1) to be the restriction of ¢ to
N (u) ~ {y}. As ¢ is a subgraph isomorphism, we can set ¢, to be the restriction of ¢ to
(G{B(v) uB(w)/[0}) ;) for allu” e N'(u) ~ {y}.

“"Let o : V(HY) - V(G ({B(v)/1}),) with ¢ : u » wand 2’ ~ ¢, (2) for all
u' € N(u) ~{y} and 2’ € V(H). Since for all v/, ¢,/ is at the same time a subgraph
isomorphism from H}, to (G{B(v)/7}),,, it holds that ¢,/ (u") = ¥»(u"). But then, as ¢ is
injective, ¢ is a subgraph isomorphism, implying the claim. O]

In Lemma 5.5 we formulate an analogous characterization for the entire pattern H (i.e.,
for y = u). The proof of this lemma is similar to that of Lemma 5.4.

Lemma 5.5. Let H, G,and T = (7,S) be as in Lemma 5.4. An iso-triple (H!,7,w) of H isa
v-characteristic for some v € V(T') ifand only if there exists a 6 € ©,,,(7) and an injective function
¥ from N (u) to the children of w in 6 such that for all u’ € N (u) there is a subgraph isomorphism

pur from H to (G{B(v) u B(w)/6}) () mapping u’ to(u').

Lemma 5.6 below is concerned with the correctness of Algorithm 5.1 deciding subtree
isomorphism from a tree into an arbitrary text graph G. We assume without loss of gen-
erality that G is connected.

Lemma 5.6 (Correctness). Algorithm 5.1 is correct, i.e., for all trees H and connected graphs G
with2 < |V (H)| < |[V(G)|, it returns TRUE ifand only if H < G.

Proof. Algorithm 5.1 first fixes a root 7 of G (Line 2) and computes the complete guidance
tree T = (7,S) of G, where 7 is rooted at . By traversing the skeleton tree 7 in a pos-
torder manner (Line 3), it calculates the set C of v-characteristics forallv € V(7)) (Lines 4—
6). We only need to show that C is correct (i.e., complete and sound); the correctness of the
algorithm then follows directly from Line 7 using Lemma 5.3.

The completeness of C holds by the fact that all possible iso-triples & = (H,/,7,w) rel-
ative to v are tested for being v-characteristics (Lines 3, 4, and 5 of MAIN together with
Lines 3, 7, and 9 of CHARACTERISTICS). Thus, it remains to show that it is decided cor-
rectly whether or not £ = (H;,7,w) is a v-characteristic. We prove this by double in-
duction on the height ~7(v) of v in 7 and on the height /., (w) of w in 7. Depending on
whether or not i, (w) = 0 and h7(v) = 0, four cases can be distinguished. We only show
the base case (i.e., h7(v) = h;(w) = 0) and the most general case (i.e., h(v) > 0 and
h-(w) > 0) by noting that the proofs of the other two cases can be shown by an argumen-
tation similar to the one used for the most general case.

For the base case h7(v) = h-(w) = 0 we have Cy = @ and hence B = (N (u), @) (Lines 5
and 6 of CHARACTERISTICS). Applying Lemma 5.4 to this case, { is a v-characteristic if
and only if N'(u) = {y}, which, in turn, holds if and only if there is a matching covering
N (u) N {y}in B (Lines 10-11 of CHARACTERISTICS), as there are no edges in B.

If hy(v) > 0and h,(w) > 0then C; # @. Two cases can be distinguished: (i) Ifw ¢ V(7T)
then C» = @ and thus Cy = C;.. Applying Lemma 5.4 to this case, £ is a v-characteristic
if and only if there exists an injective function ¢ : N'(u) \ {y} — C; such that for all

80

5.1. An Efficient Embedding Operator for Trees

u’ € N(u) \ {y}, there exist a child c of w in 7 (i.e., ¢ € C) and a subgraph isomorphism
@y from H!, to (G{B(v)/7}). with ¢,/ (u") = ¥(u") = c(i.e., a v-characteristic (H, T, c)).
By the induction hypothesis, the bipartite graph B is constructed correctly in Line 6 of
CHARACTERISTICS, and hence 7 exists if and only if there exists a matching in B cover-
ing V' (u) N {y}. (ii) If w € V(T) then Cy = C; u C» with C;, C;» # @. Then, by Lemma 5.4,
¢ is a v-characteristic if and only if for all u’ € AM'(u) \ {y} there exist a child ¢ of w in 6
and an injective function ¢ : N'(u) ~ {y} = C; u C.s such that there is a subgraph isomor-
phism ¢,/ from H!, to (G{B(v) u B(w)/T u1'}). with ¢/ (u") = (u’") = c. Such a sub-
graph isomorphism either corresponds to a v-characteristic (4, 7, c) for ¢ € C, which
has already been computed by the induction hypothesis on i, (w), or to a w-characteristic
(HY,7',c) for c € C;/, which has already been computed by the induction hypothesis on
hy(v). Hence 9 exists if and only if a matching in B (constructed in Line 6 of CHARAC-
TERISTICS) covering N (u) \ {y} exists (Lines 10-11 of CHARACTERISTICS). The proof
for the v-characteristics (H,, 7, w) using Lemma 5.5 is analog for the check in Lines 7-8
of CHARACTERISTICS. Ul

In Lemma 5.7 below we show that the runtime of Algorithm 5.1 is polynomial in f(G)
and the combined size of H and G, where f(G) = maxg, s |S,| for some complete guid-
ance tree T. Together with Lemma 5.6 this implies Theorem 5.1 by noting that f(G) is
bounded by frax(G).

Lemma 5.7 (Runtime). Algorithm 5.1runsin O (f*(G) -|E(G)|- |V(H)|1'5) time.

Proof. Note that the edge sets of the v-rooted components of G form a partition of E(G),
ie.,
E@) = | BBW). (51)
veV(T)

This partition and the tree skeleton 7 can be computed in linear time (Tarjan, 1972).
By definition, |S,| < f(G) for allv € V(T). Thus, as the spanning trees of a graph
can be generated with linear delay (Read and Tarjan, 1975), S, can be computed in
O (|[E(B(v))|- f(G)) time for each v € V(7). Hence, by (5.1), MAIN spends altogether

O(IE(G)]- (&) (5-2)

time for computing the guidance tree T. Furthermore, MAIN calls subroutine CHARAC-
TERISTICS O (|V(G)|- f(G)) times. This is due to the fact that the number of pairs (v, w)
(cf. Lines 3and 5)is O (|V'(G)|), as each vertex w can occur in at most two sets of v-rooted
components: In B(v) for its unique parent v in 7 (unless w = r) and in B(w) if w is a root
itself. Regarding the complexity of CHARACTERISTICS, note that |O,,(7)| is bounded
by f(G) (see Line 2 of CHARACTERISTICS) and that the bipartite graph B constructed in
Line 6 has at most |\ (u)| + |V (w)]| vertices for any 6 € O,,,(7).

The edges of B can be constructed by membership queries to C. We can implement the
set C of characteristics found by the algorithm as a multidimensional array of polynomial
size (in f(G) and |V (G)|) such that each look-up and storage operation can be performed
in constant time. A maximum matching of B can be found in O (|J\/’(u)|15 [N (w)]) time

81

5. Boosted Probabilistic Frequent Subtrees

(Hopcroft and Karp, 1973, Thm. 3). Applying the same trick asin (Chung, 1987; Shamir and
Tsur, 1999) for ordinary subtree isomorphism, we can answer the matching queries for u
and all of its neighbors in Line 7 and 10 of CHARACTERISTICS using a single bipartite
matching computation and an additional operation that is linear in the size of B. Hence
one iteration of CHARACTERISTICS runs intime O (N (w)| - [V (H)["® - f(G)), using the
handshaking lemma for the tree H,i.e. ¥,cv (i) [N (u)| = 2-|E(H)| € O (|V (H)|) and that
O (Zuev(my N (w)'#) € O ([V (H)["?).

Thus, applying the handshaking lemma a second time for G, we obtain an overall time
complexity O (f(G) (|[E(G)|+ f(G) - |E(G)|- |V(H)|15)) which, in turn, is equal to

O(fA(a)-|1BE@)|-IV(H)[™) (53)

as claimed. O

Note that in the case that / and G are both trees, f(G) = 1 and hence (5.3) corresponds
to the time complexity of the ordinary subtree isomorphism algorithms given in (Chung,
1987; Matula, 1968). We will address the implications of this algorithm for probabilistic
and exact frequent tree mining in the next two sections.

5.2. Mining Boosted Probabilistic Frequent Subtrees

In Chapter 4 we introduced the FTM grcjqzcq problem and presented Algorithm 4.1 enu-
merating probabilistic frequent subtrees with polynomial delay. It is based on replacing
each graph in the input with a forest formed by the vertex disjoint union of a random
subset of its spanning trees. On the one hand, the more spanning trees are considered by
the algorithm, the higher the recall of its output is. On the other hand, however, its delay
depends linearly on the number of spanning trees, implying that in order to guarantee
polynomial delay it can consider at most polynomially many spanning trees per graph. In
this section we show that the results from Section 5.1 allow us to go beyond this limitation.
In particular we now propose a boosted probabilistic frequent subtree mining algorithm
for the FTM Rejq2eq problem that, using a variant of Algorithm 5.1, implicitly considers
exponentially many spanning trees for the transaction graphs and still guarantees polyno-
mial delay. In Section 5.2.2 we empirically compare its performance to that of the simple
algorithm (Algorithm 4.1) from Chapter 4.

Recall that Algorithm 5.1 decides the SUBTREEISOMORPHISM problem by splitting
the input transaction graph G into certain induced subgraphs and by considering the set
of all local spanning trees for all such induced subgraphs. In case it takes not all, but only
some subsets of the local spanning trees, its output becomes correct only with respect to
the subset of global spanning trees of G that can be constructed by “gluing” together the
local spanning trees considered in all possible ways. In Theorem 5.8 below we formulate
a straightforward extension of Theorem 5.1 to this more general setting of the SUBTREE-
ISOMORPHISM problem.

82

5.2. Mining Boosted Probabilistic Frequent Subtrees

Algorithm 5.2 Subgraph Isomorphism from a Tree with One-Sided Error

Input :tree H with [V (H)| > 1 and guidance tree T = (7, S) for some connected graph G
with [V(G)| > |V (H)|
Output: TRUE if H < &(T); o/w FALSE

MaAIN:
1: setC:=0
2: forall v e V(7)) in a postorder do
3: forall7 ¢S, do /ISy € Sisthebagofvin T
for all w € V(7) in a postorder do
C :=CUCHARACTERISTICS (v, u, T, w)
if (H!,7,w) € C then return TRUE

AN

7: return FALSE

To state this result, we need the following notion. Let T = (7, S) be an arbitrary (i.e,
not necessarily complete) guidance tree of G with bag S, € S forallv € V(7)) and consider
the graph T'with V(T') = V(G) and E(T') = Uyey (1) £(70), where 7, € S, forallv e V/(T).
The definitions imply that 7" is a spanning tree of GG. Hence, the disjoint union of all such
spanning trees of GG, i.e, which can be obtained by taking all possible combinations of the
local spanning trees in the bags, forms a forest. We denote this forest by &(T) (recall that
the forest of spanning trees considered by the algorithms in Chapter 4 was denoted by
S (G)). We are ready to formulate the following claim:

Theorem 5.8. Let H be a tree, G be a graph, and T = (T, S) be a guidance tree of G. Then one can
decide whether H < &(T) in time

O(f(@)- V(@) v
where f'(G) = Ug}%(_) |Sul-

Proof. Consider Algorithm 5.2 for the modified pseudo code of MAIN given in Algo-
rithm 5.1, using the same subroutine CHARACTERISTICS. Its input includes T = (7, S),
instead of G. (Line 2 of MAIN in Algorithm 5.1 is accordingly removed.) The proofs of
Lemma 5.6 and Lemma 5.7 immediately apply to the partial sets of local spanning trees
as well, implying the correctness with respect to G(T). Regarding the runtime, note that
we can replace |E(G)|in(5.3) by |V (G)|. Indeed, as T is given as input, Algorithm 5.2 does
not have to consider G directly, as it has a direct access to the local spanning trees via T,
each having at most |V (G)| edges. O

Note that Theorem 5.1 in the previous section is the restriction of Theorem 5.8 above
to the special case that T is a complete guidance tree. Furthermore, Theorem 5.8 shows
that Algorithm 5.2 solves the SUBTREEISOMORPHISM Rejqzeq problem of deciding sub-
graph isomorphism from trees into arbitrary graphs with one-sided error. That is, if Al-
gorithm 5.2 returns “YES”, then the answer is always correct; o/w it may happen that there

83

5. Boosted Probabilistic Frequent Subtrees

exists a spanning tree 7" of G such that H < T, but H # &(T). This property holds also
for the algorithm in Chapter 4, which guarantees efficiency by explicitly considering a
polynomial number of (random) global spanning trees of G. The importance of the resultin
Theorem 5.8 above is that it guarantees polynomial time even for the case that the number
of local spanning trees in the bags of T is bounded by a polynomial of G which, in turn, may
however implicitly represent exponentially many global spanning trees in G(T) (cf. Sec-
tion 5.3 for a straightforward example of this case). This result may be of some indepen-
dent interest. Theorem 5.8 gives rise to the following positive result on efficient mining of
frequent subtrees (without loss of generality, we formulate it for connected transaction
graphs):

Theorem 5.9. Let D be a finite set of connected graphs, T¢; = (T, S) be a guidance tree of G for
all G € D, and let D' be the set of forests defined by D' = {S(T¢) : G € D}. Then for any positive
frequency threshold, the set of frequent subtrees of D' can be generated with delay polynomial in the
combined size of the original dataset D and f', where f' is the maximum cardinality of the bags in T
overall G € D.

Proof. The proof follows directly from Theorem 4.2 together with Theorem 5.8. O]

Clearly, for all positive frequency thresholds, any frequent subtree of D’ is at the same
time a frequent subtree of D as well. (The reverse direction does not hold for potential
incompleteness.) For the particular case, which is in the focus of this section, that the
bags in T; are some random subsets of the corresponding sets of all local spanning trees,
frequent subtrees of D’ will be referred to as probabilistic frequent subtrees. We note that
this definition is different from the one introduced in Chapter 4. Applying Theorem 5.9 to
this case we have that probabilistic frequent subtrees can be listed with polynomial delay
in the size of D, whenever f’ is bounded by a polynomial in the size of D. We now discuss
some algorithmic and implementation issues concerning the generation of such random
bags.

The notions of boosted probabilistic frequent subtrees and probabilistic frequent sub-
trees are connected. Consider a guidance tree T where each bag contains k local spanning
trees sampled independently and uniformly at random and fix some order on the span-
ning trees in each bag. Then, by “gluing” together all “first” local spanning tree in each bag,
we obtain a first global spanning tree. Continuing in this way with all “second”, “third”,
etc., we obtain k global spanning trees which are drawn independently and uniformly at
random (from the set of global spanning trees of GG). Let this set be called &;(G). Recall
from Section 4.1.2 that this set can be interpreted as a forest and is identical to the concept
with the same name considered in Chapter 4.

In the other direction, given a forest G (G) of global spanning trees, we can construct
a guidance tree T = (7,S) by choosing a root and splitting the k global spanning trees
into bags of k local spanning trees for each v € V(7). Hence, fixing either S5 (G) or T and
computing the other as above, we have G;(G) < &((G) and the boosted algorithm con-
siders at least the £ global spanning trees in S;(G) (and possibly more, by considering
other combinations of local spanning trees). As a result, for a given graph database and

84

5.2. Mining Boosted Probabilistic Frequent Subtrees

Algorithm 5.3 BOOSTED PROBABILISTIC FREQUENT SUBTREE MINING
input: a graph database D c G, frequency threshold ¢ > 0 integer, and k£ > 0 integer
output: the set of frequent subtrees of D’ = {&(T¢) : G € D}

1: TD =g

2: forall G ¢ Ddo

3 pick a root r € V(G) and compute a guidance tree T = (7, S) s.t.

S, is a set of k random spanning trees of B(v) for allv e V(7))
4: add T to Tp
5: list all subtrees with frequency atleast¢in D' = {&(T¢) : Tg e Tp}

each set F' of boosted probabilistic frequent subtrees, there exists a set F’ ¢ F of proba-
bilistic frequent subtrees. Further note that for this reason Theorem 4.4 holds for boosted
probabilistic frequent subtrees as well: Considering a superset of global spanning trees
can only increase the success probability of the embedding operator.

5.21. Implementation Issues

We now discuss some algorithmic and implementation issues concerning the generation
of such random bags. Recall that Algorithm 4.1 simply samples k global spanning trees
for each graph in the database. We apply the same idea locally, that is, we sample & local
spanning trees for each bag of T;. Local spanning trees can be sampled in the same way
as global spanning trees, given the v-rooted components: A spanning tree of such an in-
duced subgraph B of G can be generated uniformly at random in expected time O (|V (B) |3)
using the algorithm of Wilson (1996). We can again improve on this time and achieve a
deterministic algorithm with O (|E(B)|-log(|V(B)]|)) runtime if the spanning trees are
not required to be drawn uniformly at random (cf. Section 4.1.3).

Regarding the practical implementation of this algorithm, we note that sampling the
spanning trees is actually never the dominating term. Following the idea of Theorem 5.9,
instead of sampling local spanning trees anew for each invocation of the embedding oper-
ator, we select a root for all G € D in a preprocessing step and consider the corresponding
tree skeleton 7 of G. Algorithm 5.3 shows the pseudo code of this idea. Foreachv ¢ V/(T')
we sample, with replacement, [spanning trees of the v-rooted components, where ! ¢ N
is some user specified parameter. In case of sampling identical local spanning trees for a
block, we keep only one copy to speed up the algorithm. In particular, if all v-rooted com-
ponents are bridges for some v € 7, then the graph induced by the v-rooted components
is a tree. In this case, we can safely just use this tree once, instead of sampling / identical
spanning trees without changing the set of computed v-characteristics. We call such a
root trivial.

The global spanning trees in &(T) above, considered implicitly by our algorithm, are
random. They are generated neither uniformly nor independently from the set of all span-
ning trees of GG, even if we sample the local spanning trees uniformly and independently
at random. This is due to the fact that any random local spanning tree picked for a non-

85

5. Boosted Probabilistic Frequent Subtrees

trivial root contributes to at least two spanning trees in &, whenever G (with respect
to the fixed root) has at least two non-trivial roots. Our experimental results in Sec-
tion 5.2.2 below however show that despite this kind of dependency, the recall increases
by increasing values of [.

5.2.2. Experimental Evaluation

In this section we experimentally demonstrate the advantage of our algorithm mining
probabilistic frequent subtrees by sampling local spanning trees over Algorithm 4.1 sam-
pling global spanning trees. In what follows we will refer to the former technique as
boosted probabilistic subtree (BPS) and to the latter one as probabilistic subtree (PS) mining. In
particular, we show for different values of ¢ that within time ¢, BPS considers a dramati-
cally larger number of spanning trees per graph on average compared to PS, resulting in
an improvement in terms of recall of frequent subtrees.

Our experiments clearly indicate that the amount of improvement strongly depends
on the structural properties of the transaction graphs at hand. The improvement ob-
tained for molecular graphs of small pharmacological compounds is negligible; we ob-
served this consistently on several such benchmark graph datasets. As already men-
tioned, most exact frequent pattern mining algorithms have an excellent performance
on this kind of graphs, with Gaston (Nijssen and Kok, 2005) being notably the fastest.
However, all these exact methods seem to be limited to this particular graph class, as
they were unable to produce any frequent patterns in feasible time, even for slightly
more complicated structures beyond molecular graphs (cf. Section 4.2). In particular,
for small neighborhood graphs extracted from social networks, none of the existing im-
plementations were able to return any frequent patterns. In contrast, already PS could
consistently produce an output having such a high recall (cf. Section 4.2.2) of frequent
patterns that makes BPS unnecessary for this kind of graphs. This is due to the fact that
such neighborhood graphs typically contain only one biconnected component and hence,
BPS and PS behave similarly on them.

If, however, the transaction graphs have exponentially many spanning trees and sev-
eral blocks at the same time, then PS is able to consider only a small fraction of all span-
ning trees, implying a negative impact on the recall. Such situations occur, for exam-
ple, in case of threshold graphs, which are defined by local neighborhood relationships be-
tween objects in a metric space. Two vertices representing two objects are connected by
an edgeifand only ifthe distance of the corresponding objects is smaller than some given
threshold (see Figure 5.3 for a threshold graph on 30 two-dimensional points). This kind
of graphs have different practical applications, for example in spectral clustering (von
Luxburg, 2007). While in that application field there are only rules of thumb on how to
choose a suitable threshold for a particular metric and clustering task, one is interested
in threshold graphs having a high edge density within each cluster and a low one among
the clusters. This requirement typically results in threshold graphs having multiple bi-
connected blocks that are connected by a few bridges only and hence, in a large number
of spanning trees. To demonstrate the advantage of BPS over PS, we have therefore con-
sidered threshold graphs in our experiments.

86

5.2. Mining Boosted Probabilistic Frequent Subtrees

Figure 5.3.: A threshold graph on 30 points in the 2D Euclidean unit square for d = 0.2.

In particular, we evaluate our methods on artificial graph data sets that simulate the
two-dimensional Brownian motion over time (see Section 2.4). To obtain the dataset, we
generated N = 200 graphs with n = 30 vertices with ¢ € {2,5,10,30} random colors. We
set d = 0.2 and ;v = 0.02, as the threshold graphs induced by these numbers fulfilled the
desirable structural properties discussed above.

We first compare the average number of spanning trees and non-isomorphic span-
ning trees considered by the PS and BPS methods. As the resulting graphs may be dis-
connected (see, e.g., Figure 5.3), we extend our algorithms to this case as follows: We com-
pute the number of different> spanning trees considered for each connected component
separately, sum them up, and normalize the result by the number of connected compo-
nents. To obtain the number of non-isomorphic spanning trees for each graph, we com-
pute a canonical string for each tree in the above two sets, count the number of different
strings, and again normalize by the number of connected components of the graph. No-
tice that the average number of non-isomorphic spanning trees calculated in this way can
be smaller than one (e.g. when GG has many singleton vertices with the same label).

Table 5.1 shows the average number of sampled spanning trees and that of non-
isomorphic spanning trees for the threshold graph dataset defined above for BPS and
PS. One can see that for all parameters k € {2, 5,10, 30}, both the average number of sam-
pled spanning trees and the resulting non-isomorphic spanning trees is much larger for
BPS. For example, for 30 labels and k = 10 we get on average only 4.51 different spanning
trees and 4.06 non-isomorphic spanning trees for PS. On the other hand, BPS considers
on average 2 606.08 different and 349.90 non-isomorphic spanning trees, when sam-
pling £ = 10 local spanning trees for each biconnected block. In order to obtain a similar
number of non-isomorphic spanning trees on average with PS, one would need to sample
at least 350 global spanning trees per graph.

Aninteresting observationis that the fraction of non-isomorphic spanning trees to dif-
ferent trees considered is rather different for PS and BPS. While for PS almost all sampled
trees are non-isomorphic, this fraction drops to below 20% for BPS and larger values of
k. We do not know whether this is because the overall number of non-isomorphic span-

5 Here, two spanning trees T, 7" are identical if and only if E(T) = E(T"). This is different from our usual
notion that graphs are equal if and only if they are isomorphic.

87

5. Boosted Probabilistic Frequent Subtrees

2 Labels 5 Labels 10 Labels 30 Labels

k PS BPS PS BPS PS BPS PS BPS
9 1.44 4.89 | 1.44 498 | 1.43 481 | 1.44 4.74
0.94 2.57 | 0.98 2.59 | 0.98 2.65 | 0.99 2.62

3 1.87 2991 | 1.87 32.44 | 1.86 28.13 | 1.86 31.66
1.33 7.89 | 1.40 9.15 | 1.41 8.63 | 1.41 9.68

4 2.27 118.78 | 2.27 102.48 | 2.27 112.12 | 2.26 100.03
1.70 21.44 | 1.78 23.82 | 1.80 29.69 | 1.81 24.81

5 2.66 243.88 | 2.66 243.44 | 2.66 230.08 | 2.65 265.21
2.04 38.58 | 2.16 44.67 | 2.19 53.97 | 2.20 53.69

6 3.04 510.26 | 3.03 465.82 | 3.04 490.62 | 3.05 498.13
2.40 63.13 | 2.53 77.55 | 2.56 91.49 | 2.60 99.82

7 3.42 865.82 | 3.43 880.51 | 3.42 789.28 | 3.41 883.88
2.73 99.16 | 2.91 117.07 | 2.93 129.55 | 2.96 141.80

3 3.79 1364.81 | 3.77 1382.15 | 3.80 1306.57 | 3.77 1231.39
3.06 147.61 | 3.24 161.30 | 3.31 183.91 | 3.32 187.95

9 4.16 1996.29 | 4.17 1979.02 | 4.14 1888.02 | 4.15 1816.81
3.38 200.06 | 3.62 251.41 | 3.65 257.12 | 3.70 277.92

10 451 271793 | 451 2744.65 | 4.51 2868.81 | 4.51 2606.08
3.79 260.56 | 3.97 326.28 | 4.02 364.06 | 4.06 349.90

Table 5.1.: Average number of spanning trees considered by PS and BPS. For each number
k of sampled global (resp. local) spanning trees for PS (resp. BPS) we report the
average number of sampled spanning trees per connected component in the
first row and the resulting average number of non-isomorphic spanning trees per
connected component in the second row.

ning trees is rather small or because of the fact that the combination of local spanning
trees results in many “similar” global spanning trees due to the dependency. We assume
the latter by stressing that the average number of non-isomorphic spanning trees is still
much larger than what can be achieved with a reasonable parameter & for PS.

Finally, we investigate the recall of frequent subtree patterns that can be obtained in a
given time budget. That is, we fix a (low) frequency threshold § = 2% (corresponding to
the absolute frequency threshold of 4) and mine (probabilistic) frequent subtrees on the
threshold graph database for increasing values of k until the algorithm exceeds a runtime
budget of 200 seconds. For a given value of £ and for both methods PS and BPS, we repeat
the mining algorithm ten times and average runtime and recall to mitigate for the effects
of the random samples. Figure 5.4 shows the number of frequent patterns found (y-axis)
per time (x-axis) for increasing values of the sampling parameter k. BPS obtains a signifi-
cantly larger number of frequent patterns per time than PS for all time budgets up to 200
seconds®. For example, for 10 colors, we obtain on average 73 396 patterns in 195 seconds

® Note that according to this definition, the plots in Figure 5.4 can end before z = 200.

88

5.2. Mining Boosted Probabilistic Frequent Subtrees

10 2 Labels 10 5 Labels
3F 7 T - I I
wnn
E dl |
s 2| :
[aW
S
3 0.5 .
81 .
& / DS (k < 48) PS (k < 51)
< ol | —BPS(k<3D) | | | ——BPS (k < 33)
0 50 100 150 200 0 50 100 150 200
10 10 Labels 10 30 Labels
I I I I
[72]
g 1) 11t .
5
Ay
()
o
5 0.5 1o05) |
e}
E PS (k < 59) x PS (k < 83)
Z L —BPS(k<36) | ;o ——BPS (k < 43)
0 50 100 150 200 0 50 100 150 200
Time [s] Time [s]

Figure 5.4.: Recall curves for 2%-frequent subtrees on the threshold graph database for PS
and BPS for different numbers of vertex labels ranging from 2 to 30. Each dot
corresponds to the average of 10 runs of the respective algorithms for some
given value of k, ranging from 1 to the number indicated in the legends.

for k = 59 using PS and 101 503 patterns for k£ = 36 for BPS, a 38.3% increase. Comparing
the runtimes necessary to obtain a given amount of frequent patterns, this difference gets
even more concrete. To obtain at least the same number of frequent patterns returned by
PS in at most 200 seconds, BPS needs only 148.77s, 106.74s, 109.52s, and 124.38s, for 2, 5,
10, and 30 vertex labels, respectively. Thus, on transaction graphs consisting of several
dense biconnected components, such as, for example, threshold graphs, BPS clearly has

a superior performance over PS.

89

5. Boosted Probabilistic Frequent Subtrees

5.3. Exact Frequent Subtree Mining on Locally Easy Graphs

Recall that frequent subtrees can be mined efficiently in forest databases or if the number
of spanning trees in each transaction graph G is polynomial in the size of G. Such graphs
will be referred to as easy graphs. We will now formally define this graph class and in-
vestigate some of its properties. Recall that frequent subtrees can be mined efficiently in
forest databases, or more generally, in graphs having polynomially many spanning trees;
this follows from the results e.g. in (Chi et al, 2005; Horvath and Ramon, 2010). Such
graphs will be referred to as easy graphs. Except for forests, the class of easy graphs is typ-
ically uninteresting from a practical viewpoint, as even for relatively simple graphs be-
yond forests, the number of spanning trees usually grows exponentially with the number of
vertices. Our positive result extends to this practically and theoretically more interesting
situation by requiring easiness not for the entire graph, but only for local surroundings of
the vertices. Formally, a graph G is locally easy if for all v € V(G), the number of spanning
trees of the union formed by the biconnected components of G containing v is bounded
by a polynomial of [V (G)|, i.e., fmaz(G) = O (poly(|]V(G))]|) (cf. Section 5.1). In particu-
lar, for the case that it is bounded by p(|V (G)|) for some polynomial p (resp. by |V (G)|)
we will speak of locally p-easy (resp. locally linearly easy) graphs. Clearly, all easy graphs are
locally easy, but a locally easy graph may contain exponentially many spanning trees (see
Figure 5.5 for an example). We have the following result:

Theorem 5.10. The FTM problem can be solved with polynomial delay for locally easy transaction
graphs.

Proof. By Theorem 2.1, Algorithm 2.1 solves the FTM problem for locally easy transac-
tion graphs with polynomial delay whenever all conditions required are fulfilled. Condi-
tions 1 and 2 of Theorem 2.1 are straightforward when P is restricted to the class of trees
and Condition 3 follows e.g. from (Shamir and Tsur, 1999). Finally, Theorem 5.1 immedi-
ately implies Condition 4 for tree patterns and locally easy transaction graphs. O]

Below we discuss some important properties of locally easy graphs implying the the-
oretical and practical importance of Theorem 5.10 above.

Property 1

The membership problem for locally easy graphs (i.e., whether a graph is locally easy or
not) can be decided in cubic time, implying that it can be checked in polynomial time for
any graph database D whether or not Theorem 5.10 is applicable to D. More precisely, let
G be a graph and p be some polynomial. One can decide in cubic time whether G is locally
p-easy by performing the following steps: (i) Compute first the set of all biconnected com-
ponents of G, (ii) calculate the number of spanning trees for all blocks of G, and (iii) check
forallv € V(G) whether the product of these values for all biconnected components shar-
ing vis at most p(|V (G)|). The claim above then follows by noting that (i) can be solved in
linear (Tarjan, 1972) and (ii) in cubic time using Kirchhoff’s theorem (see, e.g., Chap. 5.6
in Stanley and Fomin, 1999).

90

5.3. Exact Frequent Subtree Mining on Locally Easy Graphs

AR A, BHC

Figure 5.5.: A locally easy graph with exponentially many spanning trees on the left and
a locally linearly easy graph of tree-width 4 on the right.

Property 2

Locally easy graphs may contain exponentially many spanning trees. As an example, con-
sider the graph G given in the left-hand side of Figure 5.5. It is locally linearly easy (for all
v € V(G) there are at most 9 spanning trees in the union of the blocks containing v), still
it has altogether 3°UV (%)) spanning trees. This and other examples show that our result
formulated in Theorem 5.10 is non-trivial, as the brute-force pattern matching algorithm
that decides whether a tree is subgraph isomorphic to a locally easy graph G by testing
subtree isomorphism for all spanning trees of G becomes infeasible for such cases.

Property 3

The class of locally easy graphs contains some interesting graph classes for which the
FTM problem is computationally tractable. As an example, we mention the class of al-
most k-trees of bounded degree; a graph G is an almost k-tree for some k£ > 0 integer, if
|E(B)| < |V(B)| + k for all blocks B of G. One can decide in polynomial time whether a
tree is subgraph isomorphic to an almost k-trees of bounded degree (Akutsu, 1993). Com-
bining this result with Theorem 2.1 we have that the FTM problem can be solved with
polynomial delay for almost k-trees of bounded degree. We can obtain this result directly
by Theorem 5.10 as well because the class of locally easy graphs properly contains that of
almost k-trees of bounded degree. The strength of Theorem 5.10 is that it generalizes the
positive mining result above also to almost k-trees of unbounded degree that are locally
easy.

Property 4

The class of locally easy graphs is orthogonal to all monotone parameterized graph classes.
More precisely, a parameterized graph class G is a family of graph classes {G; : ¢ > 0} such that
(i) for every graph G there exists a non-negative integer : with G € G; and (ii) G; ¢ G for
all j > 0. The smallest integer i satisfying G € G; is denoted by Ig(G). A parametrized graph
class G is monotone if Ig(G1) < Ig(G2) whenever G < Gy, for all graphs G1, G. The size,
order, maximum vertex degree, tree-width, number of spanning trees of a graph are some

91

5. Boosted Probabilistic Frequent Subtrees

straightforward examples of /g defining monotone parameterized graph classes. An ex-
ample for some /g resulting in a non-monotone graph class would be the number of con-
nected or biconnected components. Using the above concepts, we are ready to formulate
the following claim:

Claim 5.11. For any monotone parameterized graph class G = {G; : i > 0} and for any integer k > 0
there are infinitely many locally linearly easy graphs that are not in Gy,.

Proof. Let G be a monotone parametrized graph class and let G1, G2, G, . .. be a sequence
of graphs with Ig(G;) = i. Such a sequence exists by definition. For any i ¢ N, adding
new leafs to G; does not decrease Ig(G;), as G is monotone. However, it will eventually
decrease the local easiness of the resulting graph: For all i > 0, let m(G;) be the maximum
number of spanning trees in the union of the biconnected components of GG; containing
v for any v € V(G;). By adding max(0, m(G;) — |V (G;)|) new leafs (i.e., vertices of degree
1)to G, in an arbitrary way, we obtain a locally linearly easy graph G with I5(G}) > i and
m(G;) =m(G;) foralli > 0. Thus, for any fixed k € N, G}, ; ¢ Gy, forall j > 1, implying the
claim. O

We illustrate the idea in the proof above on the monotone parametrized graph class
induced by the tree-width (see, e.g., Diestel, 2012). Consider the graph G on the right-
hand side of Figure 5.5. It is obtained from the complete graph K, on k vertices for some
k > 3byadding k*~2 -k leafs to some vertex of K. On the one hand, the construction does
not increase the tree-width, i.e., the tree-width of GG is equal to that of K. On the other
hand, as K}, has exactly k*~2 spanning trees by Cayley’s formula, G is a locally linearly
easy graph. Since the construction in this example holds for any £ > 3, local easiness
implies no constant upper bound on the tree-width.

The choice of tree-width in the example above is especially interesting because fre-
quent subtrees of bounded degree can be generated with polynomial delay from graphs of
bounded tree-width. This follows from Theorem 2.1 together with the positive result of
Matousek and Thomas (1992) on subgraph isomorphism between bounded tree-width
graphs. This and other examples provide evidence that our main result formulated in
Theorem 5.10 extends (or complements) several results on the (fixed parameter) tractabil-
ity of the FTM problem for various monotone parametrized graph classes for which sub-
graph isomorphism from a tree can be decided in polynomial time. We note, for exam-
ple, that in the systematic overview of the parameterized complexity of subgraph iso-
morphism by Marx and Pilipczuk (2014), 9 out of the 10 parameters considered result
in monotone graph classes. Hence, our result extends the positive results in their work to
the case that the patterns are restricted to trees.

Property 5

Most of the molecular graphs considered in chemoinformatics are actually locally easy.
To confirm this observation, we first provide a sufficient condition for local easiness. Let
G be a graph and let ¢, k > 0 be integers. Then G is degree-k easy if each block of GG has at

92

5.4. Summary and Open Questions

most O(|V(G)[") spanning trees and it is of block degree-c if each vertex v of G belongs to
at most c distinct blocks.” Clearly, if G is degree-k easy and of block degree-c for some
constants k£ and c, then G is locally easy.

Many of the chemical graphs of pharmacological compounds are d-tenuous outerpla-
nar graphs for d < 5 (Horvath et al, 2010). Informally, each block of such a graph is a pla-
nar graph composed of a single Hamiltonian cycle and at most d non-crossing diagonals.
Clearly, d-tenuous outerplanar graphs are degree-(d + 1) easy. Furthermore, chemical
graphs have typically some very small block degree because they have small vertex degree.
Thus, most chemical graphs are locally easy. To support this claim experimentally, we in-
vestigated local easiness for the graphs in the ZINc dataset®. Our version of the database
contains 8 946 757 “lead-like” compounds. It turns out that for 8 640 166 (96.57%) graphs,
the maximum number of spanning trees in all blocks containing any vertex (i.e., m(G))is
smaller than [V (G)], for 302 541 (3.38%) it is smaller than [V (G)|?, for 1864 (0.02%) it is
smaller than |V (G)[?, and only for the remaining 2 186 (0.02%) graphs this number was
larger than |V (G)|*. Thus, by our result in Theorem 5.10, all frequent trees can be gener-
ated from such chemical graphs with polynomial delay. This complements the positive
result of Horvath et al (2010) on mining frequent connected subgraphs from d-tenuous
outerplanar graphs with respect to a constrained subgraph isomorphism operator.

5.4, Summary and Open Questions

In this chapter we have extended our probabilistic frequent subtree mining framework
to increase the pattern recall. This was achieved by a novel embedding operator that is
able to implicitly consider an exponential number of spanning trees in polynomial time.
The resulting set of boosted probabilistic frequent subtrees of a graph database is at least
as large as a corresponding set of (normal) probabilistic frequent subtrees while giving
the same guarantees. While the amount of improvement in recall per runtime is impres-
sive for threshold graphs and for other potential graph classes satisfying the structural
properties discussed in Section 5.2, it is marginal e.g. for chemical or small neighbor-
hood graphs extracted from social networks. This raises the practical question whether
we can devise a fast practical method to decide for a given graph database (possibly for
each graph separately), whether probabilistic frequent subtrees should be mined sam-
pling global (Chapter 4), or local (Chapter 5) spanning trees.

As a second achievement we have proposed a polynomial delay FTM algorithm for
graph databases consisting of locally easy graphs. This extends on previously known re-
sults w.r.t. the complexity of the FTM problem, as well as the SUBTREEISOMORPHISM
problem. Finding non-trivial transaction classes where the FTM or FCSM problems have
efficient solutions is an important challenge for graph mining, not only from theoretical,
but also from practical aspects.

" Note that the vertex degree is an upper bound on the block degree.
8 Obtained from http://zinc.docking.org

93

http://zinc.docking.org

5. Boosted Probabilistic Frequent Subtrees

It would be interesting to understand how far the positive result of this chapter on
exact frequent subtree mining can be generalized to other pattern classes beyond trees.
Perhaps the first natural question towards this direction would be to ask whether it is
possible to generate frequent locally easy subgraphs (in arbitrary transaction graphs) with
polynomial delay. In order to calculate the v-characteristics for a root vertex v with re-
spect to a vertex u in the pattern, our algorithm combines at most two sets of spanning
trees at any time and assumes that neither u nor the vertices in its local environment
are contained in a cycle. Therefore, in order to apply the algorithm to the more general
patterns of locally easy graphs, we need to work with the spanning trees of certain local
environments of u. However, in contrast to the transaction graphs, it may happen that
such spanning trees are composed of the combination of the spanning trees of the blocks
for a non-constant number of root vertices of the pattern graph. In such a case, an expo-
nential number of spanning trees must be processed. This indicates that, if it is possible
at all, such a generalization would require some more sophisticated approach.

Finally we give arguments clearly indicating the significance of generalizing the posi-
tive result in Theorem 5.10 to transaction graphs beyond locally easy graphs. We suspect
that obtaining such a generalization is at least as hard as solving the millennium prob-
lem P versus NP. In particular, it is natural ask to whether frequent subtrees can be gen-
erated with polynomial delay also from transaction graphs for which we only require the
number of spanning trees per block to be bounded by a polynomial in the size of the whole
graph (i.e., we do not assume any constant upper bound on the block degree). In con-
trast to locally easy graphs, subgraph isomorphism from trees into this type of more gen-
eral graphs becomes NP-complete, even for the very simple class of cactus graphs (i.e., in
which each block is a simple cycle, Akutsu, 1993). We do not know the answer to the ques-
tion above, not even to the case of cactus transaction graphs, as discussed in Section 2.2.2.
That is, even if the blocks are restricted to cycles, subgraph isomorphism becomes NP-
complete if the number of local spanning trees is not bounded by a polynomial, or, more
generally, the block degree is not constant. This shows, that the exact algorithms dis-
cussed in this chapter is on the border between tractability and intractability of both the
FTM and SUBTREEISOMORPHISM problems.

94

6. Fast Computation in Probabilistic
Subtree Feature Spaces

In the previous two chapters we have devised efficient methods to find probabilistic fre-
quent subtrees in arbitrary graph databases. While these patterns may be of interest by
themselves in some applications (Borgelt and Berthold, 2002), frequent subgraph mining
usually tends to be only the first tool in a chain of processing steps from data to knowledge.
That is, one common usage of frequent subgraphs is to use them as features to represent
graphs in a feature space, equipped with some metric to employ distance-based learning
methods. We have already seen such examples in Sections 1.1 and 4.2, where we have
trained a support vector machine on the feature representations spanned by probabilis-
tic frequent subtrees. We will propose practically fast and theoretically efficient methods
to compute such a feature vector f for any graph G, given a set of (probabilistic frequent)
tree patterns F.

Of course, the generic levelwise algorithm presented in Section 2.2 can be easily ex-
tended to output not only the frequent patterns, but also their support sets, in a given
graph database. This, however, does not suffice in most realistic scenarios: When train-
ing amodel, we would like to apply it later to make predictions for novel data. That is, given
an unseen graph G (usually drawn from the same distribution as the training dataset), we
need to compute its embedding into the Hamming space spanned by frequent (probabilis-
tic) subtrees. In the context of chemoinformatics, for example, one might want to predict
whether a newly discovered or previously not synthesizable molecule is expected to be
active against a certain disease based on a model learned on one of the datasets presented
in Section 2.4. Another example might be traces of the browsing behavior of users that ar-
rive as a stream and should be targeted by different ads. In these settings some (or most)
graphs are not available at the time of mining and we hence need an efficient way to com-
pute feature representations of such graphs in order to apply a model to them.

However, the embedding step is mostly neglected in the frequent subgraph mining
community. Most papers in the graph mining context ignore this obvious second step
and focus on the enumeration of frequent subgraph patterns only. The lack of interest
might be explained by the existence of two immediate solutions, namely

Brute Force: We can compute the embedding f by evaluating the embedding operator
for all patterns in F and the novel graph G.

95

6. Fast Computation in Probabilistic Subtree Feature Spaces

Restricted FCSM: The embedding computation problem is a special case of the FCSM
problem for a finite class of tree patterns F (namely the frequent trees identified in
the previous mining step) and a graph database consisting of the single graph G.! f
is the incidence vector of the 1-frequent elements of F in the database {G}.

Both views might have lead the authors in the graph mining community to believe the
problem to be uninteresting; it is easy to code up both solutions, once the machinery for a
frequent subgraph mining algorithm has been implemented. However, both approaches
suffer from the necessity to evaluate the embedding operator on a large number of pat-
terns. As we will show in this section, impressive practical speedups can be gained by
using some additional structure on the pattern set and the fact that it is explicitly given.

Recall from Section 2.1 that the SUBTREEISOMORPHISM problem is NP-complete.
Hence, both formulations above are computationally intractable. If we give up the de-
mand on the correctness of the pattern matching operator (i.e., subgraph isomorphism),
as in the previous chapter, we can compute the set of all H ¢ F that are found to be sub-
graph isomorphic by one of our embedding operators in polynomial time using both the
restricted FCSM and the brute force approach. However, each call to the embedding op-
erator still induces a nontrivial cost and hence we can drastically improve the speed of
the embedding computation by reducing the number of calls to the embedding opera-
tor. Subgraph isomorphism induces a partial order on the pattern set in which it is anti-
monotone. Therefore we can infer for certain patterns whether or not they match a graph
from the evaluations already performed for other patterns. We propose two such strate-
gies. One is based on a greedy depth-first search traversal, the other uses binary search on
paths in the pattern poset. We empirically show that both algorithms drastically reduce
the number of embedding operator evaluations compared to the mentioned two immedi-
ate solutions.

The high dimensionality of the resulting feature space often results in practically in-
feasible time and space complexity for distance-based learning methods. Time and space
requirements can, however, be significantly reduced by using min-hashing (Broder, 1997),
an elegant and powerful probabilistic technique for the approximation of the Jaccard-
similarity. Given a binary feature vector f and a permutation 7 of f, the method is based
on calculating the min-hash value h,(f), which is the position of the first pattern H
matching G, i.e. the position of the first occurrence of a one in the permuted order of
f. For the feature set formed by the set of all paths up to a constant length, min-hashing
has already been applied to graph similarity estimation by performing the embedding
explicitly (Teixeira et al, 2012). We show for the more general case of tree patterns of arbi-
trary size that for a feature vector f and permutation =, h,(f) can be computed without
calculating f. We utilize the fact that we are interested in the first occurrence of a one in
the order corresponding to 7; once we have found it, we can stop the calculation, as all
patterns after i, (f) are irrelevant for min-hashing. Beside this straightforward speed-
up of the algorithm, the computation of the min-hash sketch can further be accelerated

! Using Algorithm 2.1, we can check efficiently whether a generated pattern is contained in the finite set
F using a canonical string function and a trie, as described in Section 2.1. However, more sophisticated
implementations of this check are possible, as discussed later in this chapter.

96

6.1. Complete Embeddings into Subtree Feature Spaces

by utilizing once more the anti-monotonicity of subgraph isomorphism on the pattern
set. These facts allow us to define a linear order on the patterns to be evaluated and to
avoid redundant subtree isomorphism tests.

The experimental results presented in Section 6.3 clearly demonstrate that our tech-
niques can dramatically reduce the number of subtree isomorphism tests with respect to
the algorithm performing the embedding by first explicitly computing f and then apply-
ing min-hashing. It is natural to ask how the predictive performance of the approximate
similarities compares to the exact ones. We show that even for a few random spanning
trees per chemical compound and a small memory requirements of the min-hash sketch,
remarkable precisions of the active molecules can be obtained by taking the %k nearest
neighborsof an active compound fork = 1,...,100. The precision values are close to those
obtained by the full set of frequent subtrees. In a second experimental setting, we analyze
the predictive power of support vector machines using our approximate similarities and
show that it compares to that of state-of-the-art related methods.

Outline

The rest of this chapter is organized as follows: In Section 6.1 we first discuss how to com-
pute complete embeddings. Next, in Section 6.2, we move on to partial embeddings for
min-hashing in subtree feature spaces. We report experimental results evaluating the
practical efficiency of our algorithms in Section 6.3 and also address the predictive per-
formance of the min-hash based approximate distance function. Finally, in Section 6.4
we conclude and mention some interesting directions for further research.

6.1. Complete Embeddings into Subtree Feature Spaces

In this section we deal with the problem of computing complete embeddings into Ham-
ming feature spaces spanned by a given set of tree patterns. The algorithms presented
can be applied to the special case of probabilistic frequent subtrees as well. More pre-
cisely, we consider the following problem:

TREE EMBEDDING COMPUTATION (TEC) PROBLEM: Given a set F of trees and a graph
G, compute the incidence vector f of theset {T' ¢ F: T < G}.

We regard F as the poset (F, <) and assume without loss of generality that the empty tree
1 is an element of F and that F is closed under taking subgraphs modulo isomorphism.
We also assume that the poset (F, <) is provided as a directed acyclic graph F' = (F, E)
with (T1,T) € Fifand only if Ty, T5 € F, |V (T»)| = [V(T1)| + 1, and T} < Tb.

Clearly, the TEC problem is NP-complete. Therefore, we relax it in a way similar to the
relaxation of the FTM problem to the FTM g.j.cq problem in Chapter 4 and approximate
the incidence vector f of {T € F : T < G} by the incidence vector f' of {T ¢ F: T < &(G)}.
Here, we allow the forest &(G) to be either & (G) for some k € N using the techniques
from Chapter 4 or &(T) for some guidance tree T with bag size k using the techniques
from Chapter 5. While this relaxation makes the TEC problem computationally tractable,

97

6. Fast Computation in Probabilistic Subtree Feature Spaces

each invocation of the probabilistic matching operator adds a non-negligible amount of
work, i.e., O (kzn2'5/log n) time for computing subgraph isomorphism from trees into
forests (Shamir and Tsur, 1999), respectively O (k2n2'5/ log n)) time, corresponding to the
runtime of Algorithm 5.2. This super-quadratic and in practice notable complexity mo-
tivates us to minimize the number of calls of the probabilistic matching operator while
computing f’. We present three algorithms for computing f” that significantly reduce the
number of probabilistic pattern matching evaluations in practice compared to the brute-
force algorithm calling the embedding operator | F|-times. We note that all three methods
can be applied without any change to other embedding operators as well, as long as they
are anti-monotone with respect to the partial order induced on F.

Notice that computing f’ for G is equivalent® to computing all frequent subtrees of
the graph database D = {G} for frequency threshold 1, where the pattern language is
restricted to F. As a baseline approach we generate the set of matching patterns with lev-
elwise search (Mannila and Toivonen, 1997), i.e., with breadth-first search traversal of F'
starting at | and pruning by utilizing the anti-monotonicity of the embedding operator
on (F,<). This algorithm, referred to as LEVELWISE from now on, evaluates the proba-
bilistic pattern matching operator exactly for all patterns that probabilistically match G
and for all patterns in the negative border, i.e., which do not probabilistically match G,
but all their subgraphs in F do.

LEVELWISE is optimal in the sense that it evaluates only those non-matching patterns
that are in the negative border (Mannila and Toivonen, 1997). However, one call to the
embedding operator is required for each matching pattern. As F' is given explicitly, we
can reduce this number by leveraging the anti-monotonicity of the embedding operator
downwards as well: If a pattern 7" matches G all of its subgraphs match G as well and
therefore need not be evaluated explicitly. Note that the number of such subgraphs can
be exponential in the size of 7. In F, there is a directed path from each such pattern to 7.
Hence, a traversal strategy that visits large patterns before the evaluation of all of their
subgraphs can reduce the number of calls to the embedding operator. This idea can be
implemented in several ways; we will present two different such traversal strategies.

We first consider a simple greedy search instead of the levelwise traversal of F', that al-
ready works quite well in practice, as we will see in Section 6.3. It reduces the number of
embedding operator evaluations on matching patterns by traversing the supergraphs of
a matching pattern before the evaluation of their subgraphs. However, it might evaluate
non-matching patterns as well that are beyond the negative border. Our experiments in-
dicate that the number of matches that are not explicitly evaluated usually outweighs that
of non-matching patterns beyond the negative border that are evaluated by the greedy
search.

Our implementation of this greedy strategy, called GREEDY, is depicted in Algo-
rithm 6.1. The algorithm iterates through every pattern from small to large and starts
a depth-first search (DFS) traversal on each pattern for which the outcome of the em-
bedding operator is yet unknown and backtracks once a non-matching pattern is found.
It encodes the value of the embedding operator on a pattern in a ternary state variable,

? In the sense that there exist polynomial time reductions between the two problems.

98

6.1. Complete Embeddings into Subtree Feature Spaces

Algorithm 6.1 GREEDY
Input: A graph G and a directed graph F' = (F, F) representing the poset (F, <)

Output: {T e F : T<S(G)}

set state[T'] := unknown forall T € F

fix 6(G)

for T ¢ F in a topological order do
DFS(6(G), T, state, F)

return {T ¢ F : state[T]| = match}

AT T R S

procedure DFS(S(G), T, state, F)
if state[T] = unknown then
if T < G(G) then
for 7" with (7,7") € E do DFS(&(G),T", state, F)
10: set state[T'] = match for all T’ that can reach T'in F.
11: else
12: set state[T'] = noMatch for all T’ reachable from 7" in F'.

e ° 3 D

which can take the values match, noMatch, and unknown. While GREEDY is running,
it updates the state of patterns according to the anti-monotonicity of subgraph isomor-
phism. Due to the fact that we mark subgraphs of matching patterns as matches, it will
likely happen that the state of some or all direct supergraphs of a patternis already known
during backtracking. However, the state of some other (larger) supergraphs might still
be unknown. Hence a single invocation of a DFS starting at L would not suffice to guar-
antee that every pattern has been visited. Note that the state of each pattern changes
from unknown to either match (Line 10) or noM atch (Line 12) whenever the embedding
operator is evaluated in Line 8. Due to Line 7 this means that the operator is evaluated at
most once for each pattern. The remaining runtime of GREEDY isbounded by O (|E(F)|):
The recursion on the edges only happens when the embedding operator is evaluated on
a pattern, which can happen only once as we have seen above. Second, Lines 10 and 12
can be implemented by a BFS or DFS that only traverses patterns in F’ (respectively the
reverse graph of ') whose state is unknown.

As a second idea to use anti-monotonicity for pruning non-matching patterns as well
as matching patterns, we propose BINARYSEARCH described in Algorithm 6.2. The al-
gorithm iteratively searches longest paths in the part of the directed graph F' for which
the value of the embedding operator is still unknown. Such a directed path P in F' corre-
sponds to a chain in the partial order (F, <). Due to the anti-monotonicity of the embed-
ding operator for a fixed graph G there are three cases: (1) All patterns in P match G, (2)
no patterns in P match G, or (3) there is a unique pattern 7" in P whose descendants in P
all match and whose successors in P all do not match G. BINARYSEARCH regards such a
path P in F as an array and searches 7" in O (log |V (P)|) time, all the while maintaining

929

6. Fast Computation in Probabilistic Subtree Feature Spaces

Algorithm 6.2 BINARYSEARCH
Input: A graph G and a directed graph F' = (F, F) representing the poset (F, <)

Output: {Te¢F : T<S(G)}

set state[T'] := unknown forall T ¢ F

fix 5(G)

for T € F in a topological order do

if state[T'] = unknown then

let P be a longest path in F' starting at 7" such that
VT' € V(P) state[T"] = unknown

6: BINARYSEARCH(S(G), P, state, F)

7: return {T € F : state[T] = match}

CANIE T R S

8: procedure BINARYSEARCH(S(G), P, state, F)

o: min =1
10: maz := length(P)
11: while min < mazx do
12: leti := [(min + max)/2|
1% let T := P[i]
14: if state[T'] = unknown then
15: if T < 6(G) then
16: set state[T'] = match for all T’ that can reach T in F'.
17: else
18: set state[T'] = noMatch for all T’ reachable from 7' in F.
19: if state[T] = match then
20: min:i=1+1
21: else
22: mazr:=1—1

the deducible state of the patterns in F. It is noteworthy that long paths are beneficial
for the runtime of this algorithm, as the difference between logz and x increases with

growing x.

Using similar arguments as in the discussion of Algorithm 6.1 above, one can show
that Algorithm 6.2 is correct and evaluates the matching operator at most once for each
tree pattern. A longest path starting at a given pattern in the part of ' where the state of
patterns is unknown can be implemented by a DFS. However, in contrast to the traversal
of F' to maintain the state, there is no guarantee that a given edge is traversed at most
once and in total no better bound than O (|E(F)|2 +|V(F)|- f(G)) can be given for the
runtime of Algorithm 6.2. During our empirical evaluation, however, we saw that the
runtime of BINARYSEARCH was still dominated by the calls to the matching operator.

100

6.2. Min-Hashing in Subtree Feature Spaces

6.2. Min-Hashing in Subtree Feature Spaces

In this section we discuss another application of probabilistic frequent subtrees by con-
sidering the problem of computing the Jaccard-similarity between feature vectors in the
Hamming space spanned by probabilistic frequent subtrees. The Jaccard-similarity (of-
ten also called Tanimoto kernel) is a well-established and commonly used similarity mea-
sure in subgraph feature spaces (see, e.g., Girtner et al, 2003; Teixeira et al, 2012). Despite
the redundancies among the subgraph features it has a number of successful practical ap-
plications (see, e.g., Willett, 2006, for its application in computational chemistry). More
precisely, we consider the following problem:

THE JACCARD SIMILARITY PROBLEM: Given a set F of probabilistic frequent subtrees
and two graphs G, G with random forests G(G1), &(G2), respectively, compute
the Jaccard similarity

SIM]accard(fb fQ) ’

where f; is the incidence vector of the set of trees in that are subgraph isomorphic
to &(G;) (i = 1,2).

Instead of using the naive brute-force algorithm, i.e., performing first the explicit embed-
dings of §(G1) and S((G2) into the Hamming space spanned by F and calculating then
the exact value of SIMjaccard(f1, f2), we follow Broder’s probabilistic min-hashing tech-
nique (Broder, 1997) sketched in Section 2.3. Though the description below is restricted
to tree shaped patterns, the approach can naturally be adapted to any partially ordered
pattern language and anti-monotone embedding operator.

Min-hashing was originally applied to text documents using ¢-shingles as features
(i.e., sequences of ¢ contiguous tokens for some ¢ € N), implying that one can calculate
the explicit embedding in linear time by shifting a window of size ¢ through the docu-
ment to be embedded. In contrast, a naive algorithm embedding the forest S(G) into the
Hamming space spanned by F would require || calls to the embedding operator, each of
which induces superquadratic cost in the worst case. This is practically infeasible when
the cardinality of F is large, which is typically the case. Another difference between the
two application scenarios is that while the set of ¢-shingles for text documents forms
an anti-chain (i.e., the ¢g-shingles are pairwise incomparable), subgraph isomorphism in-
duces a natural partial order on F, as we have seen in the previous section. The transitivity
of subgraph isomorphism allows us to safely ignore features from F that do not influence
the outcome of min-hashing, resulting in a much faster algorithm.

To adapt the min-hashing technique to the situation that the patterns form a nontriv-
ial partial order and embedding computation is expensive, we proceed as follows: In a
preprocessing step, directly after the generation of F, we generate K random permuta-
tionsy,...,mx : F — [|F|] of F and fix them for computing the min-hash values that will
be used for similarity query evaluations (cf. Section 2.3). We assume that our algorithm
will be applied to alarge number of transaction graphs and that the runtime of computing
the embeddings will dominate the overall time complexity. Hence we can allow prepro-
cessing time and space that is polynomial in the size of the pattern set 7. Therefore, we

101

6. Fast Computation in Probabilistic Subtree Feature Spaces

explicitly compute and store 71, . .., 7k, and do not apply any implicit representations of
them.? This is particularly true, as we compute F explicitly in the preprocessing step and
invest time that is polynomial in 7 anyway.

For a graph G with a random forest G(G) and for a permutation 7 of F, let

h(G) = ari%er;l:in {m(T):T<6(G)} .

The sketch of G with respect to 71, ..., 7k is then defined by
SKETCHy, . 7k (G) = (ha)(G),...,har (G)) A4

The rest of this section is devoted to the following problem: Given 71, ..., 7x and a graph
G with forest G(G) as above, compute SKETCHy, ., (G). The first observation that
leads to an improved algorithm computing SKETCH, ., (G) is that for any i € [K],
the set 7 may contain trees that can never be the first matching patterns according to ;.
Indeed, suppose we have two patterns 77, T, € F with 77 < T, and 7;(T}) < m;(T%). Then
for &(G) we have either

1. 71 < 6(G) and hence T3 is not the first matching pattern in 7; or
2. T1 # 6(G) and hence T» # &(G) by the transitivity of subgraph isomorphism.

For both cases, 75 will never be the first matching pattern according to 7; and can there-
fore be omitted from this permutation. Algorithm 6.3 implements this idea for a permu-
tation 7 of F. It filters the permutation 7 and returns an evaluation sequence o by traversing
7 in order and removing all patterns for which Case 1 or 2 hold. This evaluation sequence
can be substituted for the permutation to compute the min-hash values, as stated in the
following lemma:

Lemma 6.1. Let o = (T1,...,1;) be the output of Algorithm 6.3 for a permutation = of F. Then,
for any graph G with S(G),

ho(G) = argmin{i : T; < 6(G)} .
e
Proof. Let H = h(G),i.e., H = argming.z {7(T) : T < &(G)} and let H' = argming, ., {i
T; < 6(G)}. The output of Algorithm 6.3 only contains elements of 7 (Line 7) and main-
tains their order, i.e., if 7 comes before 7" in o, then 7(T") < 7(71"). Hence, 7(H) < w(H").
It only remains to show that H is contained in o. If H is not appended to ¢ in Line 7 then
visited(H) = 1 must have held in Line 4. Hence, there must have been a 7" before H in 7
such that 7' < H. However, H < &(G) implies T' < &6(G), contradicting our assumption
H = h:(G). O

Algorithm 6.3 runs in time O (|F|). The loop starting in Line 5 can be implemented by
a DFS that does not recurse on the visited neighbors of a vertex. In this way, each edge of
F is visited exactly once during the algorithm.

3> See (Broder et al, 2000) for the details of implicitly representing permutations via min-wise independent
hash functions.

AAAAA =i (G) explicitly. Instead, we define some arbi-

trary total order on F and represent each pattern by its position according to this order.

102

6.2. Min-Hashing in Subtree Feature Spaces

Algorithm 6.3 POSETPERMUTATIONSHRINK
Input: directed graph F' = (F, E') representing a poset (F, <) and permutation 7 of 7

Output: evaluationsequence o = (T1,...,T}) € F' forsome 0 < | < | F|with 7(T;) < 7(T})
foralll<i<j<l

1: Initialize o := empty list

2: Initialize visited(T') := 0 forall T ¢ F

3. forall T' € F in the order of w do

4 if visited(T') = 0 then

5: for all 7’ ¢ F (including T') that are reachable from 7 in F' do
6: set visited(T") =1

7: append T'to o

8: returno

We now turn to the computation of SKETCH, ., (G) for a graph G with &§(G). A
straightforward implementation of calculating SKETCH, . (G) for the evaluation se-
quencesoy,...,ox computed by Algorithm 6.3 for 7y, ..., mx justloops through each eval-
uation sequence, stopping each time the first match is encountered. This strategy can
further be improved by utilizing the fact that a pattern 7' may be evaluated redundantly
more than once for a graph G with forest S(G), if T occurs in more than one permuta-
tion before or as the first match. Lemma 6.2 below formulates necessary conditions for
avoiding redundant subgraph isomorphism tests. To this end, let |o| denote the number
of elements in an evaluation sequence o.

Lemma 6.2. Let G be a graph with G(G) and let 01, ... ,0 be the evaluation sequences com-
puted by Algorithm 6.3 for the permutations 71, . .., 7 of F. Let 2 be an algorithm that correctly
computes SKETCHy, . (G) by evaluating subgraph isomorphism in the pattern sequence > =
(o1[1],...,0k[1],01[2],...,0K([2],...). Then A remains correctifforalli ¢ [K]and j € [|o;|],
2 skips the evaluation of o[j] < &(G) whenever one of the following conditions hold:

1. 0;[j'] < S(G) forsome j' € [j—1],

2. there exists a pattern T before ;[j] in ¥ such that o;[j] < T and T < &(G).

3. there exists a pattern T before o;[j] in X such that T < o;[j] and T ¥ &(G),
Proof. 1f Condition 1 holds then the min-hash value for permutation 7; has already been
determined. If 0;[j] < T'and T' < &(G) then 0;[j] < §(G) by the transitivity of subgraph
isomorphism. For the same reason, if 7' < 0;[j] and T ¥ &(G) then o;[j] ¥ 6(G). Hence,

if Condition 2 or 3 holds then 2 can infer the answer to o;[j] < G without explicitly per-
forming the subtree isomorphism test. O

103

6. Fast Computation in Probabilistic Subtree Feature Spaces

Algorithm 6.4 MIN-HASH SKETCH

Input: graph G with forest 5(G), directed graph F' = (F, E) representing a poset (F, <)
and K evaluation sequences 01, ...,0x computed by Algorithm 6.3 for the permu-
tations 7y,...,mg of F

Output: SKETCHy,, . (G)

1: Initialize sketch :=[L,..., 1]

2: Initialize state(T) := unknown forall T € F
3. fori=1to|F|do

4: for j =1to K do

5: if |oj| > i A sketch[j] = L then
6: if state[o;[i]] # unknown then
7: if state[o;[i]] = match then sketch[j] = o;[i]
8: elseif o;[i] < 6(G) then
9: sketch[j] = o]
10: Set state[T'] = match for all T’ that can reach T in F’
11 else
12: Set state[T'] = noMatch for all T’ reachable from 7" in F

13: return sketch

Algorithm 6.4 computes the sketch for a graph G with &(G) along the conditions for-
mulatedin Lemma 6.2. Similarly to the algorithms in Section 6.1it maintains a state for all
T € F defined as follows: unknown encodes that 7' < G is unknown, match that T < 6(G),
and noMatch that T ¥ S(G).

Theorem 6.3. Algorithm 6.4 is correct, ie., it returns SKETCHy, 1, (G). Furthermore, it is non-
redundant, i.e., for all patterns T' € F, it evaluates at most once whether or not T' < S(G).

Proof. The correctness of Algorithm 6.4 isimmediate from Lemmas 6.1and 6.2. Regarding
its non-redundancy, suppose 7' < G(G) has already been evaluated for some pattern 7" =
oi[j]- Then,as T < T, for any o/[j'] = T after 0;[j] in ¥ either Condition 2 or 3 holds and
hence T < §(G) will never be evaluated again. O

Once the sketches are computed for two graphs GG, G, their Jaccard-similarity with
respect to F can be approximated by the fraction of identical positions in these sketches.
We define the similarity of G and G with SKETCH,, . 7, (G1) = SKETCH, 5, (G2) =
(L,...,1)by0.

6.3. Experimental Evaluation
We have conducted various experiments on different real-world and artificial datasets to

evaluate the methods described in the previous section. We evaluate their speed measured
by the number of subtree isomorphism tests performed in Section 6.3.1 and show that our

104

6.3. Experimental Evaluation

Dataset & 0 |F| | LEVELWISE GREEDY BINARYSEARCH
MUTAG 5 10% 452 206.38 116.12 131.07
MUTAG 10 10% 543 244.11 148.02 163.04
MUTAG 15 10% 562 254.86 148.98 167.66
MUTAG 20 10% 573 260.18 151.82 173.91
PTC 5 10% 1430 321.04 175.32 193.84
PTC 5 1% | 9619 734.79 411.26 472.86
PTC 10 10% 1566 354.20 191.70 209.26
PTC 20 10% 1712 376.65 206.36 228.60
DD 5 10% | 8111 3547.22 3883.22 3591.63
DD 10 10% | 18137 667093 T7417.47 6731.36
DD 20 10% | 33100 11005.49 12091.99 11091.27
NCI1 5 10% 1819 431.19 284.74 303.03
NCI1 5 1% | 21306 900.68 617.95 675.61
NCI1 20 10% | 2441 557.70 364.23 392.65
NCI109 5 10% | 2182 462.62 306.05 330.39
NCI109 5 1% | 19099 886.06 607.39 670.34
NCI109 20 10% | 2907 598.36 391.59 422.38

Table 6.1.: Average number of subtree isomorphism tests per graph of the algorithms
from Section 6.1 on different datasets and corresponding pattern sets F for
varying number k of random spanning trees and frequency thresholds 6.

methods drastically reduce this number compared to the brute-force and the levelwise
baseline algorithms discussed in Section 6.1. In Section 6.3.2 we finally evaluate the pre-
dictive and retrieval performance of probabilistic frequent subtrees applied combined with
min-hashing in distance-based methods.

6.3.1. Efficiency Gains

We now empirically investigate the speedup of the methods proposed in Section 6.1 for
computing complete and partial embeddings into probabilistic frequent subtree (PFS)
feature spaces. (We recall that the methods in Section 6.1 are not specific to probabilis-
tic frequent tree patterns.) The main goal of the methods considered was to reduce the
number of subgraph isomorphism tests during the computation of the complete feature
vector or the min-hash sketch for a query graph. We assess their effectiveness from this
aspect by investigating the average number of subtree isomorphism evaluations (i.e., de-
ciding whether T' < §(G)) per graph on various real-world datasets.

We start by investigating our methods computing complete embeddings. To obtain
probabilistic frequent subtree pattern sets, we have applied our frequent subgraph min-
ing method from Chapter 4 with different values of k and 6 to a randomly sampled subset

105

6. Fast Computation in Probabilistic Subtree Feature Spaces

of 10% of the graphs in each dataset.> Using the resulting set of probabilistic trees and
the same k, we computed the binary feature vector for each graph in the datasets and cal-
culated the average number of calls to the pattern matching operator testing 7' < &(G).
Table 6.1 shows the average number of subtree isomorphism tests per graph for the LEv-
ELWISE, GREEDY, and BINARYSEARCH algorithms (cf. Section 6.1). For comparison, we
report the cardinality of each pattern set as well (column |F]), which is the number of
pattern matching evaluations performed by the brute-force embedding algorithm. It can
be seen that GREEDY performs best in general, evaluating the matching operator on aver-
age only on 19.78% of all patterns. BINARYSEARCH evaluates 20.49%, while LEVELWISE
27.47% of all patterns per graph on average. The ranking of the methods is consistent over
all datasets, except for DD, where the ranking is reversed; here, LEVELWISE evaluates
less patterns than BINARYSEARCH which, in turn, evaluates less patterns than GREEDY.
Overall, however, we can conclude that GREEDY and BINARYSEARCH, which prune both
negative and positive patterns, outperform the methods not pruning at all (brute-force)
or pruning only negative patterns (LEVELWISE). This is a significant improvement in
light of the super-quadratic complexity of the embedding operator.

We now compare our min-hash sketching technique (Algorithm 6.4) designed for
probabilistic frequent subtree patterns with the best naive complete embedding algo-
rithm from Table 6.1. It is important to note that our algorithm may perform more
subgraph isomorphism tests than the naive algorithm. This is due to the fact that, in con-
trast to the naive algorithm, we do not traverse F' systematically, but randomly based on
the selected permutations. Table 6.2 shows the average number of subtree isomorphism
tests per graph together with the cardinality of the pattern set, for the same datasets and
pattern sets as in Table 6.1. Column “best naive” shows the average number of evaluations
performed by the best method from Table 6.1. The last four columns are the results of
our algorithm for sketch size K = 32, 64, 128, and 256 respectively. One can see that Al-
gorithm 6.4 (columns MH32-MH256) performs dramatically less subtree isomorphism
tests than the brute-force algorithm (column |F]) and that it outperforms also the best
algorithm for complete embedding computation in all cases, except for = 1%. MH32
evaluates the matching operator on average on 4.74% of all patterns, while MH256 eval-
uates on average 12.92%. For example, on DD for £ = 10 and 6 = 10%, the best naive
algorithm (LEVELWISE) evaluates subtree isomorphism for 11 005 patterns per graph on
average, which is roughly one third of the total pattern set (|F|), while our method eval-
uates subtree isomorphism 345 times on average for sketch size 32, ranging up to 2190
times for sketch size 256. Compared to that, the best naive algorithm performs 6.6 (resp.
1.8) times as many subtree isomorphism tests as our method for K = 32 (resp. K = 256).
Again, this is a significant improvement in light of the high runtime complexity of the
embedding operator.

5 We focus our exposition here on the simpler embedding operator from Chapter 4 and note that the meth-
ods behave similarly using the boosted embedding operator from Chapter 5.

106

6.3. Experimental Evaluation

Dataset & 0 | 7| | bestnaive MH32 MH64 MH128 MH256
MUTAG 5 10% 452 116.12 4993 68.24 96.12 127.42
MUTAG 10 10% 543 148.02 42,77 63.77 90.57 125.39
MUTAG 15 10% 562 14898 45.39 65.96 94.87 13391
MUTAG 20 10% 573 151.82 55.34 76.32 105.15 135.11

PTC 5 10% | 1430 175.32 70.07 102.62 121.12 156.12
PTC 5 1% | 9619 411.26 236.31 327.27 475.35 611.92
PTC 10 10% | 1566 191.70 79.63 108.59 109.44 14791
PTC 20 10% | 1712 206.36 17.60 25.81 31.49 39.62
DD 5 10% | 8111 3547.22 260.47 486.09 846.09 1374.76
DD 10 10% | 18137 6670.93 317.82 568.23 1072.58 1936.42
DD 20 10% | 33100 | 11005.49 344.59 653.66 1242.03 2190.15
NCI1 5 10% | 1819 284.74 89.12 137.75 185.22 221.21
NCI1 5 1% | 21306 617.95 615.62 920.17 1227.52 1378.18

NCI1 20 10% | 2441 364.23 115.07 183.54 220.14 255.58
NCI109 5 10% | 2182 306.05 115.62 170.43 206.23 254.70
NCI109 5 1% | 19099 607.39 532.38 727.15 1057.18 1348.27
NCI109 20 10% | 2907 391.59 110.42 175.76 226.07 284.92

Table 6.2.: Average number of subtree isomorphism tests per graph needed to compute
min-hash sketches for different datasets and corresponding pattern sets F for
varying number of random spanning trees (k) and frequency thresholds 6. We
report the average number of subtree isomorphism tests evaluated by the best
naive method computing a complete embedding for each graph and by Algo-
rithm 6.4 for K =32, 64,128, and 256 (last four columns).

6.3.2. Predictive and Retrieval Performance

Finally we show that min-hashing in PFS feature spaces only slightly decreases the per-
formance of Hamming feature spaces spanned by complete sets of frequent subgraphs. In
fact, the min-hash probabilistic frequent subtree kernels yield results that are compara-
ble to the rbf-kernel over frequent subgraphs. To measure the retrieval performance of
probabilistic frequent subtrees, we use exact and approximate Jaccard-similarities over
PES feature spaces to retrieve the closest molecules given a positive query molecule. We
show that the fraction of the closest molecules that are positive is much higher than the
baseline. These results again indicate that PFS feature spaces are well-suited to express
semantically relevant concepts in chemical graph datasets.

Graph Classification

We start by an empirical analysis of the predictive performance of PFS feature spaces in
the context of graph classification. We also consider the Jaccard-similarity. It induces
a kernel on sets, which is a special case of the Tanimoto kernel (see, e.g., Ralaivola et al,

107

6. Fast Computation in Probabilistic Subtree Feature Spaces

2005). Interestingly, its approximation based on min-hashing is a kernel as well. Hence,
we can use probabilistic frequent subtrees and min-hash sketches in PFS feature spaces
together with these two kernels in support vector machines to learn a classifier. We use
5-fold cross-validation and report the average area under the ROC curve obtained using
libSVM (Chang and Lin, 2011) for the datasets MUTAG, PTC, DD, NCI1, and NCI109. We
omit the results with NCI-HIV because LibSVM was unable to process the Gram matrix
for this dataset. We note, however, that our algorithm required less than 10 (resp. 26)
minutes for sketch size K = 32 (resp. K = 256) for computing the Gram matrix for the
full set of NCI-HIV, while this time was 5.5 hours for the exact Jaccard-similarity. The
runtime of the preprocessing step to compute a set of probabilistic frequent subtrees on
a sample of the database is not counted for both cases, by noting that they were less than
three minutes each.

To this end, we fixed the number of random spanning trees per graph to £ = 5 and
sampled 10% of the graphs in a dataset to obtain the probabilistic frequent subtree pat-
terns of up to 10 vertices. In Table 6.3 we report the results for # = 10% for our min-
hash method with sketch sizes K varying between 32 and 256 (first four rows), for ex-
act Jaccard-similarity (row “PES (Jacc)”), and for the rbf-kernel (row “PES (rbf)”), all using
probabilistic frequent subtrees generated with the parameters above. A lower frequency
threshold is practically unreasonable e.g. for MUTAG, as it contains only 188 compounds.
We compare the results obtained with frequent subgraph patterns (FSG) (Deshpande et al,
2005) using the full set of frequent connected subgraphs of up to 10 vertices with respect
to the full datasets (i.e., not only for a sample of 10%) using the Jaccard (row “FSG (Jacc)”)
and rbf (row “FSG (rbf)”) kernels. We also report results obtained by the Hash-kernel (row
“HK”) (Shi et al, 2009), which uses count-min sketching on random induced subgraphs up
tosize 9.

One can see that the results of MH256 are close to those obtained by exact Jaccard-
similarities over probabilistic frequent subtrees (PSF (Jacc)), which, in turn, are close
to those obtained by exact Jaccard-similarities over all frequent subgraphs (FSG (Jacc)).
Thus, the min-hash kernel in PFS feature spaces performs only slightly worse than in or-
dinary frequent subgraph feature spaces (cf. MH256 vs. FSG (Jacc)). One can also observe
that the min-hash kernel outperforms the rbf-kernel in PFS feature spaces in all datasets,
except for DD (cf. MH256 vs. PSF (rbf)). It also outperforms the rbf-kernel in frequent
subgraph feature spaces on all datasets, except for NCI1 (cf. MH256 vs. FSG (rbf)). While
the Hash-kernel is the best by a comfortable margin on MUTAG, the contrary is true for
DD (cf. MH256 vs. HK). Most notably, it could not provide any result for NCI1 and NCI109
in practically reasonable time.

We also conducted these experiments for k£ = 20 random spanning trees. For identical
frequency threshold, the AUC improved by 3% on MUTAG, while only slightly changing
for the other datasets. Similar results to those in Table 6.3 were obtained when reducing
the frequency threshold of the methods to 1%: The AUC improved roughly by 1%, pro-
cessing time and memory consumption, however, drastically increased.

108

6.3. Experimental Evaluation

60 Method MUTAG PTC DD NCI1 NCI109

10% MH32 87.84 5897 77.58 71.36 77.48
10% MHG64 87.73 58.68 79.91 78.04 79.54
10% MH128 87.59 5697 82.07 79.94 79.94
10% M H256 87.78 57.18 83.58 80.76 81.72

10% PFS(Jacc) 89.04 57.72 85.38 82.28 82.41
10% FSG (Jacc) 89.84 60.60 84.54 8297 82.31
10% PFS (rbf) 84.22 54.17 84.67 79.09 78.05
10% FSG (rbf) 87.34 56.76 82.20 81.66 81.55

HK 93.00 62.70 81.00 n/a n/a

Table 6.3.: AUC values for our method (MH) for sketch sizes K = 32,64,128,256, k = 5
spanning trees per graph, and frequency threshold 6 = 10% to obtain the fea-
ture set. “n/a” indicates that Shi et al (2009) did not provide results for the re-
spective datasets.

Overall, we can conclude that (1) the predictive performance of PFS feature spaces is
comparable to that of frequent subgraph features spaces for molecular graph mining, (2)
Jaccard-similarities (more precisely, the Jaccard-kernel) is a powerful similarity measure
for chemical graphs, and (3) the min-hash kernel in PFS feature spaces is a valid competi-
tor to the rbf-kernel in frequent subgraph feature spaces.

Positive Instance Retrieval

Finally we use a simple setup to evaluate the retrieval performance of min-hashing in
PSF feature spaces by comparing it to exact Jaccard-similarity in PFS feature spaces, as
well as to the path min-hash kernel (Teixeira et al, 2012). For the evaluation we use the
highly skewed NCI-HIV dataset. For each molecule of class A (i.e., “active”) of NCI-HIV,
we retrieve its ¢ nearest neighbors (excluding the molecule itself) from the dataset and
take the fraction of the neighbors of class A. This measure is known in the Information
Retrieval community as precision at i. As a baseline, a random subset of molecules from
NCI-HIV is expected to contain less than 1% active molecules due to the highly skewed
class distribution. All methods show a drastically higher precision for the closest up to
100 neighbors on average than this baseline.

Figure 6.1 shows the average precision at i (taken over all 329 active molecules) for ¢
ranging from 1 to 100. The number £ of sampled spanning trees per graph, as well as the
frequency threshold 6 has a strong influence on the quality of our method. To obtain our
results, we have sampled 5 (resp. 20) spanning trees for each graph and used a random
sample of 4 000 graphs to obtain pattern sets for thresholds 6 = 10% and 6 = 0.5% respec-
tively. We plot the min-hash-based precision for the four feature sets obtained in this
way by our algorithm as a function of i for sketch size K = 64. We have compared this to

109

6. Fast Computation in Probabilistic Subtree Feature Spaces

0.6

0.5
,S —— path min-hash
& 04 | — Exact Jaccard 0 = 10%, k =5
: MH64 0 = 10%, k = 5
o 03| N\ NOw | MH64 6 = 10%, k = 20
= 0 -~ MH646=0.5%, k=5
E -~ MH64 6 = 0.5%, k = 20

0.2 |

0.1 T T T T T

0 20 40 60 80 100
Number of Neighbors ¢

Figure 6.1.: Average fraction of “active” molecules among the ¢ nearest neighbors of pos-
itive molecules in NCI-HIV dataset for path min-hash (Teixeira et al, 2012),
exact Jaccard-similarity for frequent probabilistic tree patterns, and for our
method with K = 64.

the precision obtained by the exact Jaccard-similarity for = 10% and k = 5, as well as to
the precision obtained by path min-hash (Teixeira et al, 2012), both for the same sketch
size K = 64.

The average precision obtained for the exact Jaccard-similarities is slightly better than
that of path min-hash. While our method performs comparably to path min-hash for
6 = 05% and k = 5, for # = 0.5% and k£ = 20 spanning trees it outperforms all other
methods.

We were not able to compute the precisions for § = 1% and for k£ = 20 sampled span-
ning trees for the exact Jaccard-similarity. The Python implementation we used to cal-
culate the similarity computations for exact Jaccard-similarity was inapplicable due to
the high dimensionality of the feature space, independently of the sparsity of the feature
vectors. This indicates that the space required to compute the Jaccard-similarity is crucial
for high-dimensional feature spaces.

6.4. Summary and Open Questions

Many applications require to embed a large number of unseen graphs in a feature space.
Being able to efficiently compute such feature embeddings for arbitrary unseen graphs is
hence an important task. Though the probabilistic pattern matching operators discussed
in the previous two chapters can be evaluated in polynomial time, each invocation during
the embedding of a graph into probabilistic frequent subtree feature spacesinduces anon-

110

6.4. Summary and Open Questions

negligible amount of work. To accelerate the embedding, we introduced different strate-
gies to practically reduce the number of such calls by utilizing the anti-monotonicity of
(relaxed) subgraph isomorphism on the tree pattern poset. In particular, if one is inter-
ested in the Jaccard-similarity between two graphs then min-hash sketches can be com-
puted very efficiently in this way. We empirically demonstrated the effectiveness of our
algorithms, resulting in a theoretically efficient and practically effective system to em-
bed arbitrary graph databases or graph streams into probabilistic frequent subtree fea-
ture spaces. This complements the results of the previous two chapters on the efficient
mining of probabilistic frequent subtrees from arbitrary graph databases.

Our algorithms can easily be adapted to any finite pattern set and pattern matching
operator if the pattern matching operator induces a partial order on the pattern set in
which it is monotone or anti-monotone. They work, for example, if the pattern match-
ing operator is defined by exact subgraph isomorphism or graph homomorphism. While
the number of evaluations of the pattern matching operator can drastically be reduced
in this way, the complexity of the algorithm depends on that of the pattern matching op-
erator. The one-sided error of our probabilistic subtree isomorphism test seems to have
no significant effect on the experimental results. This raises the question whether we
can further relax the correctness of subtree isomorphism resulting in an algorithm that
runs in at most sub-quadratic time, without any significant negative effect on the predic-
tive/retrieval performance.

Furthermore, it would be interesting to investigate whether the evaluation strategies
developed for the embedding computation have a positive effect in the context of ordi-
nary frequent tree mining, as well. If we are only interested in frequent patterns and not
in their support sets in a given database, a variant of the GREEDY algorithm can be used.
That is, we find maximal frequent patterns by depth first search and then generate all
subgraphs of maximal patterns, without checking their support in the database. Further
work, however, is needed to generate these subgraphs nonredundantly (given that some
of them might have been found already) and to efficiently identify the border and com-
pute the support of extensions of this border. Recall that this is necessary, as we do not
explicitly have the poset of frequent patterns given during the mining phase, but wish to
compute it.

111

7. Conclusion

We now discuss the significance of our results in a broader context and outline some di-
rections for future work. For a more detailed overview of the technical contributions, we
refer the reader to Section 1.2.

7.1. Discussion

In this thesis we have proposed a system that allows to apply distance-based learning
methods to arbitrary graph databases. This has been achieved by considering frequent
subtrees as patterns and by relaxing the requirement on the completeness of the min-
ing process and the embedding operator. In particular, we have defined probabilistic
frequent subtrees and shown that they can be mined with polynomial delay in arbitrary
graph databases. As a complementary contribution, we have shown how to quickly com-
pute feature vectors for arbitrary graphs, given a set of tree patterns that span the feature
space.

With these two steps, we have provided the required tools to apply probabilistic fre-
quent subtrees in real life learning scenarios. Here first a suitable feature representation
of an unknown graph distribution can be learned from a sample using the results from
Chapter 4 and 5. Second, a model can be learned that is based on a suitable similarity
measure on this feature representation. Finally, the model can be applied to new unseen
graphs, by computing first a feature representation using the results from Chapter 6 and
then feeding it to the model.

Our methods do not assume any structural or other restriction on the graph databases
at hand. That is, the guarantee of polynomial delay holds for arbitrary graph databases
and allows to mine frequent probabilistic subtrees also in such graph databases where
state-of-the-art exact frequent subgraph and frequent subtree mining algorithms fail to
produce any output in practically feasible time. Most of these algorithms were devel-
oped for chemical applications and stop working for even slightly more complex graph
databases. Our method hence allows to compute frequent subtrees for graph databases
where these patterns could not be computed previously. Furthermore, the efficient com-
putation of feature representations for arbitrary graphs presented in this thesis allows
not only to inspect such patterns qualitatively, but to use them in real-world machine
learning applications.

Recall that the FCSM and FTM problems are computationally intractable. Hence any
practical algorithm has to trade-off among speed, correctness, and general applicability.
We have decided to maintain the general applicability and speed (in the sense of com-
putational complexity) by giving up the correctness of the algorithm. Interestingly, as a

113

7. Conclusion

byproduct of our methods, we obtain a positive result on the complexity of exact frequent
subtree mining for locally easy graphs. That is, we propose a result that maintains the
correctness and speed properties, but gives up the general applicability.

Locally easy graphs restrict the number of spanning trees in certain subgraphs of a
graph without assuming any global structure. Its definition restricts only the block de-
gree of the transaction graphs, and allows an arbitrary number of bridges to be incident
to any vertex in the pattern and the transaction graph. Hence, we obtain the first positive
result on the SUBTREEISOMORPHISM problem that we are aware of, which allows un-
bounded vertex degree of the pattern tree for transaction graphs beyond forests. The ver-
tex degree of the pattern is an important parameter of the complexity of the SUBGRAPH-
ISOMORPHISM problem (cf. Marx and Pilipczuk, 2014). With this result, we conjecture
to be very close to the border between tractable and intractable restrictions of the FTM as
well as the SUBTREEISOMORPHISM problem.

7.2. Outlook

We have proposed two embedding operators, one which samples global spanning trees
and the boosted algorithm which samples local spanning trees. Both can guarantee poly-
nomial delay mining of frequent tree patterns, but differ in their runtimes and recall be-
haviors. It remains an open problem to decide which of the two algorithms should be cho-
sen for a given graph database, or possibly even individually for each graph in a database.
This idea can be extended even further: While we have shown that our methods are supe-
rior to exact frequent subgraph miners on complex graph databases, Gaston and the like
are superior on chemical graphs (and probably on some other simple graph databases as
well). It is possible to combine the potentially inefficient embedding computation with
our method to get the best of both worlds: Introducing a new parameter, we allow a min-
ing algorithm to store at most a certain number of embedding lists per graph. If a can-
didate pattern results in too many embeddings for a given graph, we discard them and
switch to our probabilistic embedding operator for this graph. As the number of embed-
dings of a pattern is polynomial in the number of patterns of its predecessor for any given
graph, this can be implemented efficiently. This adaptive algorithm could preserve the
speed of Gaston on chemical graph databases, respectively that of our algorithm on other
graph databases (with a small overhead). As this is mainly an engineering problem, we
leave it for future work.

Another line of investigation would be to adapt the mining algorithm to the pattern
class at hand. We have opted to consider only tree patterns in this thesis. Other classes
of patterns might, however, allow faster algorithms: Using depth-first search, there is
an immediate O (|[V(H)|-|V(G)|) time algorithm to decide whether a pattern path H is
subgraph isomorphic to a forest G, improving on the runtime of the algorithm for tree
patterns. This implies that probabilistic frequent subpaths can be found faster than prob-
abilistic frequent subtrees. Regarding an extension of our work in the other direction,
there might be other simpler pattern classes, for which probabilistic frequent pattern
mining can be solved efficiently.

114

7.2. Outlook

Other directions for future work of course include novel application areas of frequent
subtree mining in nontrivial graph classes that were previously inaccessible to frequent
subgraph mining. For example, it might be possible to infer new nontrivial connections
between input and output variables of a learning problem by finding frequent patterns in
several neural networks that were trained independently for the same learning problems.
For example, multiple echo state networks (Jaeger, 2002) can be trained easily using the
same training data. Echo state networks have a fixed set of input and output vertices and
a random hidden layer, only the weights of the edges containing vertices from the out-
put layer are trained. Frequent tree patterns that contain output as well as input vertices
might indicate relevant connections between the input and output variables. To this end,
the algorithms presented in this thesis most likely need to be adapted to be able to process
continuous edge labels, instead of only discrete edge labels.

Finally, the computational complexity of other restricted FCSM and FTM problems
should be explored. While the complexities of the various pattern mining problems are
closely related to the complexities of the corresponding embedding operators, there re-
mains an interesting gap in our knowledge: For graph classes where the HAMILTON-
IANPATH problem can be solved in polynomial time, but the SUBGRAPHISOMORPHISM
(resp. SUBTREEISOMORPHISM) problem is NP-complete it is not clear whether a partic-
ular corresponding mining problem can be solved with polynomial delay, in incremental
polynomial time, or if it cannot be solved in output polynomial time, unless P = NP. It
would be interesting to see whether there are additional parameters (apart from the com-
plexity of the HAMILTONIANPATH and the complexity of the embedding operator) that
influence the computational complexity of the pattern mining. Further results, both neg-
ative and positive would be important for a deeper understanding of the computational
difficulties of frequent pattern mining.

115

A. The HAMILTONIANPATH Problem for
Cactus Graphs

In Section 2.2.2 we have discussed a connection between the complexity of the FTM prob-
lem for a transaction class G and the complexity of the SUBTREEISOMORPHISM and
HAMILTONIANPATH problem. In particular, if the HAMILTONIANPATH problem can
be solved in polynomial time and the SUBTREEISOMORPHISM problem is NP-complete
then the complexity of the FTM problem is unclear. As discussed in Section 5.3, cactus
graphs play an important role in the investigation of the border between polynomial de-
lay frequent subtree mining and incremental polynomial time frequent subtree mining.
The HAMILTONIANPATH problem can be decided for cactus graph transactions in poly-
nomial time. This follows from (Matousek and Thomas, 1992) by noting that paths have
vertex degree at most two and cactus graphs have tree-width at most two. The SUBTREE-
ISOMORPHISM problem, however, is already NP-complete for cactus graph transactions
(Akutsu, 1993).

The above result is mainly of theoretical interest: Theorem 5.14 of MatouSek and
Thomas (1992) gives a O (|V(G)[*) time algorithm for the HAMILTONIANPATH problem
for a given cactus graph G. It is possible to improve this runtime dramatically and to
provide an easy-to-implement linear time algorithm for this problem. As we will see,
the presented technique yields a fast linear time algorithm that decides the HAMILTON-
IANPATH problem with one-sided error for arbitrary graphs.

Recall that a Hamiltonian path is a path in a graph G that contains each vertex of G
exactly once. The HAMILTONIANPATH problem (i.e., does there exist a Hamiltonian path
in a given graph G7) is a well studied NP-complete problem with various applications
(Garey and Johnson, 1979). Several algorithms have been proposed to find a Hamiltonian
path in a graph, or to decide that none exists. For example, Held and Karp (1962) give a
O(n?-2") algorithm to compute a Hamiltonian path. Bjorklund (2014) gives a O(1.657")
time algorithm to count the number of Hamiltonian paths in a graph, which can also be
used todecide the HAMILTONIANPATH problem. Due to the exponential time complexity
of those and other algorithms, it would be beneficial to derive simple, fast tests that can
be run in advance to decide at least in some cases if there exists a Hamiltonian path, or
not.

Many authors concentrated on sufficient conditions for a graph to be traceable (i.e.,
that it contains a Hamiltonian path). E.g. Dirac (1973) gives a lower bound on the num-
ber of edges in a graph that implies the existence of a Hamiltonian path. Also, there is a
wide range of graph classes, where we know that a Hamiltonian path exists, e.g. complete
graphs, cycles, paths, or graphs of the platonic solids.

117

A. The HAMILTONIANPATH Problem for Cactus Graphs

We go a different way and consider situations which do not allow for a Hamiltonian
path. That is, we define easily verifiable properties of graphs that prove that a graph is
not traceable. To our knowledge, there is much less work in this direction. As a notable
exception, Chvatal (1973) introduces weakly Hamiltonian graphs and derives necessary
conditions for a graph to contain a Hamiltonian cycle. However, the paper uses quite
involved concepts and the verification of the conditions for a given graph is not straight-
forward. Our conditions, on the other hand, can be checked in linear time and are easy to
understand. They are based on partitioning a graph G into its biconnected components
and defining a graph on those objects. In short, a Hamiltonian path in G can only exist if
this graph is a path.

We start by considering trees and continue by defining a tree structure using the bicon-
nected components of an arbitrary graph to devise conditions in Lemmas A.3and A.4. As
a direct application of our necessary conditions, we devise a linear time algorithm for
cactus graphs in Theorem A.6. Finally, we give statistics of a molecular dataset that were
obtained using our conditions.

Al. Three Necessary Conditions

From now on, we only consider connected graphs, as otherwise there cannot be a Hamil-
tonian path. We start by considering the HAMILTONIANPATH problem for trees. It is
easy to see, that a tree 7" has a Hamiltonian path if and only if 7" is a path.

Lemma A.1. A tree T has a Hamiltonian path if and only if T is a path.

Proof. “<" is clear. “=" Let T be a tree and P a Hamiltonian path in 7. P contains all
vertices of 7' and has thus |V (G)| — 1 edges. Therefore, E(T) = E(P) and thus T is a
path. O

We will show that a generalized version of this holds for a graph defined on the articu-
lation vertices of any graph G. We need the following definition:

Definition A.2. Let G be a connected graph. A vertex v € V (QG) is called articulation vertex if its
removal disconnects G, ie., the graph G — v = (V', E") is disconnected, where V' := V ~ {v} and
E':={ee€ FE : v ¢e}. Thecriticality of v is the number of connected components of G — v.

In atree, every vertex that is not a leafis an articulation vertex. We now prove the first
necessary condition. In the case of trees, it follows directly from Lemma A.1.

Lemma A.3. Let G be a traceable graph. Then all vertices have criticality at most 2.

Proof. Suppose thereisa vertex v with criticality at least 3. Then G-v has three nonempty
connected components C, Cy, C3. Let P be a Hamiltonian path of G and u; (resp. ug, u3)
be the first vertex in V(C) (resp. V(C2),V (C3)) occurring in P (w.l.o.g. in this order).
Any path connecting u; € V(C1) toug € V(C3) in G needs to contain v. Otherwise, u and
w would be contained in the same connected component of G — v. The same is true for a
path from us to uz. Therefore, P contains v at least twice, which is a contradiction to P
being a path. O

118

A.1. Three Necessary Conditions

Figure A.1.: A cactus graph G without a Hamiltonian path. v has criticality 3(Lemma A.3)
and the biconnected component B contains three articulation vertices
(Lemma A.4).

Figure A.1shows an illustration of the situation described in Lemma A.3. Vertex v, has
criticality 3 and therefore does not allow for a Hamiltonian path in the graph. The next
lemma focuses on biconnected components.

Lemma A.4. Let G be a traceable graph. Then each biconnected component of G contains at most
two articulation vertices.

Proof. Suppose there is a biconnected component B of GG that contains three articulation
vertices v1, v2, v3. Removing v; € {v1, v, v3} from G results in a disconnected graph G; :=
G - v;. Now, there exists a connected component B; in G; such that V(B;) n V(B) =
V(B) ~ {v;} and B; is connected. Let X; be the nonempty graph of all other connected
components of G — v;. Recall that B is a biconnected component, thus removing a single
vertex does not disconnect B. Furthermore, all vertices in V' (B) \ {v;} are contained in
the same connected component of G — v;. However, as v; is an articulation vertex, G — v;
is disconnected and thus V(X;) # @. As an example, Figure A.1 shows B; and X for the
case v; = vj.

Claim: V(X;) nV(X;) =@ foralli+ je{1,2,3}.

Using this claim, we can prove the lemma. A Hamiltonian path P of G needs to contain
all vertices in V' (X1), V(X3), V(X3). But to get from any vertex in V' (X;) to a vertex z ¢
V(X;), it needs to pass through v;. To get from v; to x, the path must pass through v;, as

119

A. The HAMILTONIANPATH Problem for Cactus Graphs

v; € V(Bj). Using the same argument as in the proof of Lemma A.3, we see that P needs
to visit one of the articulation vertices v1, v, v3 at least twice, which is a contradiction to
P being a path.

Proof of Claim: Suppose there exists z € V(X;) n V(X;). Asz € V(X;) there exists a
path in X; connecting x to a neighbor of v; in GG. Thus removing x; would not disconnect
x from v; € V(B;), which contradicts x € V (X;). O

Lemma A.3 and Lemma A.4 together show that on any graph G, the existence of a
Hamiltonian path implies a path-structure on the articulation vertices (respectively the
biconnected components) of G. More exactly, let A(G) be the set of articulation vertices
of G and B be the set of biconnected components of G. We define a new graph A(G) =
(A(G), E") where E' is the set of all edges {v, w} such that there exists B € Bwith v, w €
V(B). A similar definition yields a graph B(G) on the biconnected components of G,
where an edge exists between two biconnected components if and only if they share an
articulation vertex. If G is traceable then A(G) (respectively B((G)) must be a path.

The HAMILTONIANPATH problem hence reduces to checking if the two conditions for-
mulated in Lemma A.3 and Lemma A.4 hold and if there is a Hamiltonian path in each
biconnected component’, that

- starts at the first articulation vertex and ends at the second articulation vertex (if
there are two)

- starts at the articulation vertex (if there is one)
- starts and ends at arbitrary vertices (if there is no articulation vertex in G).

Finally, we call biconnected components that contain exactly one articulation vertex
leaf components and finish this section with an easy corollary of the above considerations.

Corollary A.5. Let G be a traceable graph. Then there are either zero or two leaf components.

A.2. A Linear Time Algorithm for Cactus Graphs

The results of Section A.1 imply a polynomial time algorithm for the HAMILTONIAN-
PATH problem for cactus graphs. A cactus graph is a connected graph where every bicon-
nected component is either a single edge or a simple cycle. Figure A.2 shows a cactus
graph and a graph that is no cactus graph.

Theorem A.6. A cactus graph is traceable if and only if all of the following three conditions hold:
« Each vertex has criticality at most two
« Each biconnected component contains at most two articulation vertices

« Ifa biconnected component contains two articulation vertices, they share an edge.

! Finding a Hamiltonian path in an arbitrary biconnected graph is of course still an NP-complete problem.

120

A.3. Some Statistics for Real-World Datasets

LT NP

Figure A.2.: A cactus graph on the left and a graph that is not a cactus on the right.

Proof. Each cycle is traceable, and each Hamiltonian path of a cycle C starts at an arbi-
trary vertex of C' and ends at one of its two neighbors. Edges are also traceable. “=" If
a cactus graph G is traceable then, by Lemmas A.3 and A.4 the first two conditions hold.
Let B be a biconnected component of GG that contains two articulation vertices. If B is
an edge, then the third condition holds trivially. If B is a cycle, then any Hamiltonian
path must enter B through one articulation vertex v, leave it through the other w and can
never enter B again. Therefore, the path from v to w must be a Hamiltonian path of B and
therefore contains all edges in £'(B) except one, which must be {v, w}. “<” We construct
a Hamiltonian path as follows: If G is biconnected (i.e., it has no articulation vertices), we
construct a Hamiltonian path by removing an arbitrary edge. Otherwise, for each cycle,
we remove the edge between the two articulation vertices or one of the edges incident to
the unique articulation vertex in the cycle. Note that by this, each articulation vertex has
degree two in the resulting graph P. As vertices with criticality zero have degree one or
twoin G, every vertex in P has degree less than three. We have removed exactly one edge
from each cycle of GG, thus P contains no cycles and is still connected. Therefore, P is a
tree and by Lemma A.1 a path. O

We can check the conditions of Theorem A.6 in linear time for a graph G as follows:
First, we check if G is connected by a simple breadth first search in linear time. Next, we
compute the biconnected components of G in linear time using Tarjans algorithm (Tarjan,
1972). Having the biconnected components (given as lists of edges), it is easy to compute
the criticality of each vertex in G by counting the number of biconnected components
each vertex occurs in as an endpoint of at least one edge. Having the criticality of each
vertex, we can compute the number of critical vertices per biconnected components by a
single pass over its edge list. To check if GG is a cactus graph, we test if each biconnected
component is either an edge or a simple cycle, which can also be done by a single pass over
all edges in a biconnected component. If there are exactly two, by another pass we can
check if the component contains an edge that contains both critical vertices. Therefore,
the algorithm can be implemented to run in linear time with a small constant.

A.3. Some Statistics for Real-World Datasets

We have implemented some variants of the proposed algorithm and applied them to four
large datasets: NCI-HIV, ZINC, POKEC and ENRON. These datasets are described in Sec-
tion 2.4. For the latter two datasets we report results for all disks and all neighborhoods
extracted from the monolithic graphs.

121

A. The HAMILTONIANPATH Problem for Cactus Graphs

NCI-HIV ZINC POKEC ENRON

neighbors disks neighbors disks

N 42687 8946757 1632803 1632803 36692 36692
C 18028 6517109 209585 666653 19591 15682
T 6 0 205288 296329 19528 15264
X 42658 8946750 1392460 1198327 4625 1292
U 23 7 35055 138147 12539 20136
tn 0.15s 28.97s 10.12s 15.72s 0.18s 0.22s
to 0.22s 44.22s 11.15s 22.85s 0.26s 0.36s
tr 0.24s 55.08s 10.76s 20.64s 0.26s 0.36s
tx 0.23s 49.98s 10.31s 20.24s 0.27s 0.38s

Table A.1.: Statistics for graph data sets. For each dataset, the number of graphs NV, the
number of cactus graphs C, the number of traceable cactus graphs 7', and the
number of untraceable graphs X. U := N —T — X reports the number of graphs
where our algorithm returns the uncertain answer that G might be traceable.
Below the runtimes in seconds for computing these numbers are given.

Table A.1 shows the number of graphs NV, the number of connected cactus graphs C,
the number of traceable cactus graphs 7', as well as the number of (arbitrary) graphs X
that are definitively not traceable. U := N — T — X reports the number of graphs where
our algorithm returns the uncertain answer that G might be traceable. Furthermore, it
reports the time ¢; needed by our implementation to compute value i € {N,C, T, X }. The
numbers were computed by parsing the database from a text file and checking property
i for each graph in the respective database. Times were measured using the GNU time
command summing up sys and user times.

All experiments were done on an Intel Core i7-4470 with 8GB main memory run-
ning Ubuntu 14.04 64bit. The algorithms were implemented in C and compiled using
gcc 4.8.2 with optimization flag -03 enabled. No multi-threading was used. Further-
more, due to the fact that each graph can be processed separately, the maximum memory
consumption at any time was less than 10MB.

tn reports the time our implementation needs to parse the graph database, create
graph objects in memory, and dump them again. The actual tests only add a small over-
head in time compared to just parsing the data. On the other hand, by checking if a
graph (a) is connected and (b) fulfills our three necessary conditions, we can declare
most of the graphs from NCI-HIV, ZINC, and POKEC as non traceable. For ENRON, on
the other hand, roughly half of the neighborhoods and roughly 40% of the disks are
traceable cactus graphs. Most of the remaining graphs in the two ENRON variants are
possibly traceable (i.e., we are not exactly sure and would need to verify using an exact
algorithm). For NCI-HIV, ZINC, and POKEC, however, our algorithm correctly decides

122

A.4. Summary

whether a graph is traceable or not for over 90% of the graphs. In particular, for the
ZINC dataset we would only need to further investigate 7 out of almost 9 million graphs
to check whether they are traceable, or not.

A4, Summary

We have proposed three necessary conditions for a graph to be traceable that are easy
and fast to check. Using them, we proposed a linear time algorithm that decides if a cac-
tus graphis traceable. In more general practical settings, checking these conditions could
be a first step that might, in many cases, make applying one of the exponential time exact
algorithms obsolete. We evaluated our tests’ effectiveness in that respect on three molec-
ular data sets of varying size and showed that most molecular graphs can be easily iden-
tified as non-traceable using our conditions.

Our algorithm can be extended to yield an exact polynomial time algorithm for more
general classes of graphs. Using our conditions, we can reduce the HAMILTONIANPATH
problem in a non-biconnected graph G to smaller HAMILTONIANPATH problems in the
biconnected components of G. We would only need to check if there is a Hamiltonian
path in each biconnected component that connects the two articulation vertices or starts
at the unique articulation vertex, respectively. This is possible in polynomial time if, for
example, the number of spanning trees in each biconnected component is bounded by a
polynomial p in the size of G. This is the case, for example, in locally easy graphs (com-
pare Section 5.3). Here, the algorithm presented in this chapter runs in O (p(G) - |[E(G)|)
time. Algorithm 5.1 solves the HAMILTONIANPATH problem for locally easy graphs in
O (f*(G)-E(G)]- |V(G)|1‘5) time, where f(G) > p(G) (compare Lemma 5.7).

123

B. Poissons Binomial Distribution

In the proof of Theorem 4.4 we have used a bound on the cumulative density function
(CDF) of Poissons binomial distribution (see, e.g., Nedelman and Wallenius, 1986; Wang,
1993) by the CDF of a binomial distribution. While the claim is quite intuitive, we have
not found a proof in any textbook or related article. We will hence prove the result here
for completeness.

Let n € Nand let p; € [0, 1] be the success probability of a binary random variable X;
for alli € [n]. The CDF of Poissons binomial distribution for the parameters {p1,...,p,}
is then given by

P(ZXisk) Z [Ip [T -p)
=0 [n]ieA A
\A|<k

where A := [n] \ A is the complement of A in [n]. The claim used in Theorem 4.4 is as
follows:

Lemma B.1. Letp € [0,1] such that p < p; foralli € [n]. Then the CDF of Poissons binomial
distribution for parameters {p1, . .., p, } can be bounded by the CDF of a binomial distribution with
parameters p and n, i.e., forall k € [n] u {0}

n k
P(ZXi < k) Z()p (1-p)™
i=0 i=0
Proof. Obviously, if p; = p for all i € [n], then Poissons binomial distribution is exactly
the binomial distribution. We shall prove inequality for the case that we replace only
one probability p; by a smaller probability. More exactly we replace the parameters

{p1,...,on} Y {p},...,p}} with

P p; fori+j
b; = .
p fori=j

and consider P (Y7 X/ < k) where X/ is a binary random variable with success probabil-
ity p; for all i € [n]. The proof for the general case then immediately follows by induction
on the number of replaced variables.

Let P(A) := [Tieapi [1;c5(1-pi) and P'(A) := [Tiea p; I1;4(1-p;) forany A € [n]. Then
we can rewrite

p(ixigk): S P(A)= Y (P(A)+PA~{I))+ 3 P(A)

Ac[n] Ac[n] Ac[n]
|Al<k |A|<k |Al=k
jeA JgA

125

B. Poissons Binomial Distribution

for the index j € [n] that we have fixed above. We can now bound this expression by
noting that for any A ¢ [n] with j ¢ Ait holds that P(A) < P'(A),as1-p; <1-p. Hence

> P(A)< Y P'(A).

Ac[n] Ac[n]
|Al=k |Al=k
JEA JEA

Furthermore, we can show for A ¢ [n] with j € A that

[Ioa[T-p)+ I » II (-p)

P(A) + P(A~{j})

i€A A €AN{G} ieA{5}
= p; [] p[l-p)+Q-p;) [o:[I1C(1-ps)
i€AN{j} A ieAN{j} ied

=]I w1 =pi)-(pj+(1-py))

€ AN{j} <A

= JI »]](A-p)

€ AN{j} <A

= [1 »llIC-p)

€A} A
= II »iIIC-p)-(p+(1-p))
€ AN{j} ieA

= P(A)+ PI(AN(j})

As a result, we have

P(iXigk)

>, (P(A)+P(AN{j}) + Z]P(A)

i=0 Ac[n] Acln
|A|<k |Aj=k
jeA JgA
= Y (P'(A+P'(A~N{j}))+ > P(A)
Ac[n] Ac[n]
|A|<k |A|=k
jeA JjEA
< S (PI(A)+P(AN{GH)+ Y Pl(A)
Ac[n] Ac[n]
|A|<k |A|=k
jeA JEA

= P(iX{ < k:)
1=0

126

Bibliography

Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, A Inkeri
Verkamo (1996) Fast discovery of association rules. In: Advances in Knowledge Discov-
ery and Data Mining, AAAI/MIT Press, pp 307-328

Tatsuya Akutsu (1993) A polynomial time algorithm for finding a largest common sub-
graph of almost trees of bounded degree. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences 76(9):1488-1493

Stefan Arnborg, Derek G Corneil, Andrzej Proskurowski (1987) Complexity of finding em-
beddings in a k-tree. SIAM Journal on Algebraic Discrete Methods 8(2):277-284, DOI
10.1137/0608024

Tatsuya Asai, Hiroki Arimura, Takeaki Uno, Shin-Ichi Nakano (2003) Discovering fre-
quent substructures in large unordered trees. In: Gunter Grieser, Yuzuru Tanaka, Ak-
ihiro Yamamoto (eds) Discovery Science (DS) Proceedings, Springer, Lecture Notes in
Computer Science, vol 2843, pp 47-61, DOI 10.1007/978-3-540-39644-4_6

Tatsuya Asai, Kenji Abe, Shinji Kawasoe, Hiroshi Sakamoto, Hiroki Arimura, Setsuo
Arikawa (2004) Efficient substructure discovery from large semi-structured data.
IEICE Transactions on Information and Systems 87-D(12):2754-2763, URL http://
search.ieice.org/bin/summary.php?id=e87-d_12_2754

Laszlé Babai (2015) Graph isomorphism in quasipolynomial time. The Computing Re-
search Repository (CoRR) abs/1512.03547, URL http://arxiv.org/abs/1512.03547

Andreas Bjorklund (2014) Determinant sums for undirected hamiltonicity. SIAM Journal
on Computing 43(1):280-299, DOI 10.1137/110839229

Mario Boley (2011) The efficient discovery of interesting closed pattern collections. PhD
thesis, University of Bonn, URL http://hss.ulb.uni-bonn.de/2011/2700/2700.
htm

Christian Borgelt (2009) Graph mining: An overview, URL http://borgelt.net/
papers/gmagi_09.pdf

Christian Borgelt, Michael R Berthold (2002) Mining molecular fragments: Finding rel-
evant substructures of molecules. In: Vipin Kumar, Shusaku Tsumoto, Ning Zhong,
Philip S Yu, Xindong Wu (eds) IEEE International Conference on Data Mining (ICDM)
Proceedings, IEEE Computer Society, pp 51-58, DOI 10.1109/ICDM.2002. 1183885

127

http://dx.doi.org/10.1137/0608024
http://dx.doi.org/10.1007/978-3-540-39644-4_6
http://search.ieice.org/bin/summary.php?id=e87-d_12_2754
http://search.ieice.org/bin/summary.php?id=e87-d_12_2754
http://arxiv.org/abs/1512.03547
http://dx.doi.org/10.1137/110839229
http://hss.ulb.uni-bonn.de/2011/2700/2700.htm
http://hss.ulb.uni-bonn.de/2011/2700/2700.htm
http://borgelt.net/papers/gmagi_09.pdf
http://borgelt.net/papers/gmagi_09.pdf
http://dx.doi.org/10.1109/ICDM.2002.1183885

Bibliography

Christian Borgelt, Thorsten Meinl, Michael Berthold (2005) Moss: A program for molec-
ular substructure mining. In: Proceedings of the 1st International Workshop on Open
Source Data Mining: Frequent Pattern Mining Implementations, ACM, New York, NY,
USA, OSDM 05, pp 6-15, DOI 10.1145/1133905. 1133908

Bjorn Bringmann, Siegfried Nijssen (2008) What is frequent in a single graph? In:
Takashi Washio, Einoshin Suzuki, Kai Ming Ting, Akihiro Inokuchi (eds) Advances
in Knowledge Discovery and Data Mining, Pacific-Asia Conference (PAKDD) Proceed-
ings, Springer, Lecture Notes in Computer Science, vol 5012, pp 858-863, DOI 10. 1007/
978-3-540-68125-0_84

Bjorn Bringmann, Albrecht Zimmermann, Luc De Raedt, Siegfried Nijssen (2006)
Don't be afraid of simpler patterns. In: Johannes Fiirnkranz, Tobias Scheffer, Myra
Spiliopoulou (eds) European Conference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD) Proceedings, Springer, Lecture Notes in Computer Science,
vol 4213, pp 55-66, DOI 10.1007/11871637_10

Andrei Z Broder (1997) On the resemblance and containment of documents. In: Compres-
sion and Complexity of SEQUENCES Proceedings, IEEE, IEEE Comput. Soc, pp 21-29,
DOI10.1109/sequen.1997.666900

Andrei Z Broder, Moses Charikar, Alan M Frieze, Michael Mitzenmacher (2000) Min-
wise independent permutations. Journal of Computer and System Sciences 60(3):630-
659, DOI 10.1006/jcss.1999.1690

Arthur Cayley (1889) A theorem on trees. Quarterly Journal of Pure and Applied Mathe-
matics 23:376-378, DOI 10.1017/cbo9780511703799.010

Chih-Chung Chang, Chih-Jen Lin (2011) Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology 2(3):1-27, DOI 10.1145/
1961189.1961199

Chen Chen, Cindy Xide Lin, Matt Fredrikson, Mihai Christodorescu, Xifeng Yan, Ji-
awei Han (2009) Mining graph patterns efficiently via randomized summaries. PVLDB
2(1):742-753, URLhttp://www.v1ldb.org/pvldb/2/v1db09-80.pdf

Yun Chi, Yirong Yang, Richard R Muntz (2003) Indexing and mining free trees. In: Xin-
dong Wu, Alex Tuzhilin, Jude Shavlik (eds) IEEE International Conference on Data Min-
ing (ICDM) Proceedings, IEEE Computer Society, pp 509-512

Yun Chi, Yirong Yang, R R Muntz (2004a) Hybridtreeminer: an efficient algorithm for
mining frequent rooted trees and free trees using canonical forms. In: International
Conference on Scientific and Statistical Database Management (SSDBM) Proceedings,
IEEE Computer Society, pp 11-20, DOl 10.1109/SSDM.2004.1311189

128

http://dx.doi.org/10.1145/1133905.1133908
http://dx.doi.org/10.1007/978-3-540-68125-0_84
http://dx.doi.org/10.1007/978-3-540-68125-0_84
http://dx.doi.org/10.1007/11871637_10
http://dx.doi.org/10.1109/sequen.1997.666900
http://dx.doi.org/10.1006/jcss.1999.1690
http://dx.doi.org/10.1017/cbo9780511703799.010
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
http://www.vldb.org/pvldb/2/vldb09-80.pdf
http://dx.doi.org/10.1109/SSDM.2004.1311189

Bibliography

Yun Chi, Yirong Yang, Yi Xia, Richard R Muntz (2004b) Cmtreeminer: Mining both closed
and maximal frequent subtrees. In: Honghua Dai, Ramakrishnan Srikant, Chengqi
Zhang (eds) Advances in Knowledge Discovery and Data Mining, Pacific-Asia Confer-
ence (PAKDD), Proceedings, Springer, Lecture Notes in Computer Science, vol 3056, pp
63-73, DOI 10.1007/978-3-540-24775-3_9

Yun Chi, Richard R Muntz, Siegfried Nijssen, Joost N Kok (2005) Frequent subtree mining
- an overview. Fundamenta Informaticae 66(1-2):161-198

Moon Jung Chung (1987) O(n?®) time algorithms for the subgraph homeomorphism
problem on trees. Journal of Algorithms 8(1):106-112, DOI 10.1016/0196-6774(87)
90030-7

Viaclav Chvatal (1973) Edmonds polytopes and weakly hamiltonian graphs. Mathematical
Programming 5(1):29-40

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento (1998) Subgraph Transfor-
mations for the Inexact Matching of Attributed Relational Graphs, Springer Vienna, pp
43-52.DOI 10.1007/978-3-7091-6487-7_5

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento (1999) Performance eval-
uation of the VF graph matching algorithm. In: International Conference on Image
Analysis and Processing (ICIAP), IEEE Computer Society, pp 1172-1177, DOI 10.1109/
ICIAP.1999.797762

Corinna Cortes, Vladimir Vapnik (1995) Support-vector networks. Machine Learning
20(3):273-297, DOI 10.1007/b£00994018

Victor Dalmau, Phokion G Kolaitis, Moshe Y Vardi (2002) Constraint satisfaction,
bounded treewidth, and finite-variable logics. In: Pascal Van Hentenryck (ed) Prin-
ciples and Practice of Constraint Programming (CP) Proceedings, Springer, Lecture
Notes in Computer Science, vol 2470, pp 310-326, DOI 10.1007/3-540-46135-3_21

Asim K Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan] Shusterman, Corwin
Hansch (1991) Structure-activity relationship of mutagenic aromatic and heteroaro-
matic nitro compounds. correlation with molecular orbital energies and hydrophobic-
ity. Journal of Medicinal Chemistry 34(2):786-797, DOI 10.1021/3jm00106a046

Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, George Karypis (2005) Frequent
substructure-based approaches for classifying chemical compounds. Transactions on
Knowledge and Data Engineering 17(8):1036-1050, DOI 10.1109/tkde . 2005. 127

Reinhard Diestel (2012) Graph Theory, 4th Edition, Graduate texts in mathematics, vol
173. Springer

Gabriel A Dirac (1973) Note on hamilton circuits and hamilton paths. Mathematische An-
nalen 206(2):139-147

129

http://dx.doi.org/10.1007/978-3-540-24775-3_9
http://dx.doi.org/10.1016/0196-6774(87)90030-7
http://dx.doi.org/10.1016/0196-6774(87)90030-7
http://dx.doi.org/10.1007/978-3-7091-6487-7_5
http://dx.doi.org/10.1109/ICIAP.1999.797762
http://dx.doi.org/10.1109/ICIAP.1999.797762
http://dx.doi.org/10.1007/bf00994018
http://dx.doi.org/10.1007/3-540-46135-3_21
http://dx.doi.org/10.1021/jm00106a046
http://dx.doi.org/10.1109/tkde.2005.127

Bibliography

Pal Erdés, Alfréd Rényi (1959) On random graphs I. Publicationes Mathematicae 6:290-
297

Edward Fredkin (1960) Trie memory. Communications of the ACM 3(9):490-499, DOI
10.1145/367390.367400

Michael R Garey, David S Johnson (1979) Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman

Thomas Girtner, Peter Flach, Stefan Wrobel (2003) On graph kernels: Hardness results
and efficient alternatives. In: Bernhard Scholkopf, Manfred K Warmuth (eds) Annual
Conference on Computational Learning Theory and Kernel Workshop, (COLT/Kernel)
Proceedings, Springer, Lecture Notes in Computer Science, vol 2777, pp 129-143, DOI
10.1007/978-3-540-45167-9_11

Johannes Gehrke, Paul Ginsparg, Jon M Kleinberg (2003) Overview of the 2003 KDD cup.
SIGKDD Explorations 5(2):149-151, DOI 10.1145/980972.980992

Hanna Geppert, Tamas Horvath, Thomas Girtner, Stefan Wrobel, Jiirgen Bajorath (2008)
Support-vector-machine-based ranking significantly improves the effectiveness of
similarity searching using 2d fingerprints and multiple reference compounds. Journal
of Chemical Information and Modeling 48(4):742-746, DOI 10.1021/ci700461s

MohammadTaghi Hajiaghayi, Naomi Nishimura (2007) Subgraph isomorphism, log-
bounded fragmentation, and graphs of (locally) bounded treewidth. Journal of Com-
puter and System Sciences 73(5):755-768, DOI 10.1016/j. jcss.2007.01.003

Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao (2004) Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery 8(1):53-87, DOI 10.1023/b:dami . 0000005258 . 31418.83

Frank Harary (1994) Graph Theory. Addison-Wesley series in mathematics, Perseus
Books

Michael Held, Richard M Karp (1962) A dynamic programming approach to sequencing
problems. Journal of the Society for Industrial & Applied Mathematics 10(1):196-210

John E Hopcroft, Richard M Karp (1973) An n"5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing 2(4):225-231, DOI 10.1137/0202019

John E Hopcroft,] K Wong (1974) Linear time algorithm for isomorphism of planar
graphs (preliminary report). In: Robert L Constable, Robert W Ritchie, Jack W Carlyle,
Michael A Harrison (eds) ACM Symposium on the Theory of Computing (STOC) Pro-
ceedings, ACM, pp 172-184, D01 10.1145/800119.803896

Tamas Horvath, Jan Ramon (2010) Efficient frequent connected subgraph mining in
graphs of bounded tree-width. Theoretical Computer Science 411(31-33):2784-2797,
DOI 10.1016/j.tcs.2010.03.030

130

http://dx.doi.org/10.1145/367390.367400
http://dx.doi.org/10.1007/978-3-540-45167-9_11
http://dx.doi.org/10.1145/980972.980992
http://dx.doi.org/10.1021/ci700461s
http://dx.doi.org/10.1016/j.jcss.2007.01.003
http://dx.doi.org/10.1023/b:dami.0000005258.31418.83
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1145/800119.803896
http://dx.doi.org/10.1016/j.tcs.2010.03.030

Bibliography

Tamas Horvath, Thomas Gértner, Stefan Wrobel (2004) Cyclic pattern kernels for predic-
tive graph mining. In: Won Kim, Ron Kohavi, Johannes Gehrke, William DuMouchel
(eds) ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD), Proceedings, ACM, pp 158-167, DOI 10.1145/1014052.1014072

Tamas Horvath, Bjorn Bringmann, Luc De Raedt (2007) Frequent hypergraph mining. In:
Stephen Muggleton, Ramon P Otero, Alireza Tamaddoni-Nezhad (eds) Inductive Logic
Programming (ILP) Revised Selected Papers, Springer, Lecture Notes in Computer Sci-
ence, vol 4455, pp 244-259, DO1 10.1007/978-3-540-73847-3_26

Tamas Horvath, Jan Ramon, Stefan Wrobel (2010) Frequent subgraph mining in outer-
planar graphs. Data Mining and Knowledge Discovery 21(3):472-508, DOI 10.1007/
s10618-009-0162-1

Tamas Horvath, Keisuke Otaki, Jan Ramon (2013) Efficient frequent connected induced
subgraph mining in graphs of bounded tree-width. In: Hendrik Blockeel, Kristian
Kersting, Siegfried Nijssen, Filip Zelezny (eds) European Conference on Machine
Learning and Knowledge Discovery in Databases ECML PKDD Proceedings, Part I,
Springer, Lecture Notes in Computer Science, vol 8188, pp 622-637, DOI 10.1007/
978-3-642-40988-2_40

Jun Huan, Wei Wang, Jan Prins (2003) Efficient mining of frequent subgraphs in the pres-
ence of isomorphism. In: Xindong Wu, Alex Tuzhilin, Jude Shavlik (eds) IEEE Inter-
national Conference on Data Mining (ICDM) Proceedings, IEEE Computer Society, pp
549-552, DOI 10.1109/ICDM.2003. 1250974

Jun Huan, Wei Wang, Jan Prins, Jiong Yang (2004) SPIN: mining maximal frequent sub-
graphs from graph databases. In: Won Kim, Ron Kohavi, Johannes Gehrke, William Du-
Mouchel (eds) ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), Proceedings, ACM, pp 581-586, DOI 10.1145/1014052.1014123

John] Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, Ryan G Coleman (2012)
ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information
and Modeling 52(7):1757-1768, DOI 10.1021/¢ci3001277

Herbert Jaeger (2002) Adaptive nonlinear system identification with echo
state networks. In: Suzanna Becker, Sebastian Thrun, Klaus Obermayer
(eds) Advances in Neural Information Processing Systems (NIPS) Pro-
ceedings, MIT Press, pp 593-600, URL http://papers.nips.cc/paper/
2318-adaptive-nonlinear-system-identification-with-echo-state-networks

Chuntao Jiang, Frans Coenen, Michele Zito (2013) A survey of frequent subgraph
mining algorithms. Knowledge Engineering Review 28(1):75-105, DOI 10.1017/
50269888912000331

David S Johnson, Christos H Papadimitriou, Mihalis Yannakakis (1988) On generating
all maximal independent sets. Information Processing Letters 27(3):119-123, DOI 10.
1016/0020-0190(88)90065-8

131

http://dx.doi.org/10.1145/1014052.1014072
http://dx.doi.org/10.1007/978-3-540-73847-3_26
http://dx.doi.org/10.1007/s10618-009-0162-1
http://dx.doi.org/10.1007/s10618-009-0162-1
http://dx.doi.org/10.1007/978-3-642-40988-2_40
http://dx.doi.org/10.1007/978-3-642-40988-2_40
http://dx.doi.org/10.1109/ICDM.2003.1250974
http://dx.doi.org/10.1145/1014052.1014123
http://dx.doi.org/10.1021/ci3001277
http://papers.nips.cc/paper/2318-adaptive-nonlinear-system-identification-with-echo-state-networks
http://papers.nips.cc/paper/2318-adaptive-nonlinear-system-identification-with-echo-state-networks
http://dx.doi.org/10.1017/S0269888912000331
http://dx.doi.org/10.1017/S0269888912000331
http://dx.doi.org/10.1016/0020-0190(88)90065-8
http://dx.doi.org/10.1016/0020-0190(88)90065-8

Bibliography

Ashraf M Kibriya, Jan Ramon (2013) Nearly exact mining of frequent trees in large
networks. Data Mining and Knowledge Discovery 27(3):478-504, DOI 10.1007/
510618-013-0321-2

Bryan Klimt, Yiming Yang (2004) The enron corpus: A new dataset for email clas-
sification research. In: Jean-Francois Boulicaut, Floriana Esposito, Fosca Giannotti,
Dino Pedreschi (eds) European Conference on Machine Learning (ECML) Proceedings,
Springer, Lecture Notes in Computer Science, vol 3201, pp 217-226, DOI 10.1007/
978-3-540-30115-8_22

Bernhard Korte, Jens Vygen (2012) Combinatorial Optimization. Springer Berlin Heidel-
berg, DOI 10.1007/978-3-642-24488-9

Varun Krishna, N N R Ranga Suri, G Athithan (2011) A comparative survey of algorithms
for frequent subgraph discovery. Current Science 100(2):190-198, URL https://www.
jstor.org/stable/24073045

Joseph B Kruskal (1956) On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society 7(1):48-50, DOI
10.1090/350002-9939-1956-0078686-7

Michihiro Kuramochi, George Karypis (2001) Frequent subgraph discovery. In: Nick Cer-
cone, Tsau Young Lin, Xindong Wu (eds) IEEE International Conference on Data Min-
ing (ICDM), Proceedings, IEEE Computer Society, pp 313-320, DOI 10.1109/ICDM.
2001.989534

Michihiro Kuramochi, George Karypis (2004) An efficient algorithm for discovering fre-
quent subgraphs. Transactions on Knowledge and Data Engineering 16(9):1038-1051,
DOI10.1109/TKDE. 2004 . 33

Ruirui Li, Wei Wang (2015) REAFUM: representative approximate frequent subgraph
mining. In: Suresh Venkatasubramanian, Jieping Ye (eds) SIAM International Con-
ference on Data Mining (SDM) Proceedings, SIAM, pp 757-765, DOI 10.1137/1.
9781611974010.85

Andrzej Lingas (1983) An application of maximum bipartite c-matching to subtree iso-
morphism. In: Giorgio Ausiello, Marco Protasi (eds) Trees in Algebra and Program-
ming (CAAP) Proceedings, Springer, Lecture Notes in Computer Science, vol 159, pp
284-299, DOI 10.1007/3-540-12727-5_17

Ulrike von Luxburg (2007) A tutorial on spectral clustering. Statistics and Computing
17(4):395-416, DOI 10.1007/511222-007-9033-z

Heikki Mannila, Hannu Toivonen (1997) Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery 1(3):241-258, DOI 10.
1023/a:1009796218281

132

http://dx.doi.org/10.1007/s10618-013-0321-2
http://dx.doi.org/10.1007/s10618-013-0321-2
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1007/978-3-642-24488-9
https://www.jstor.org/stable/24073045
https://www.jstor.org/stable/24073045
http://dx.doi.org/10.1090/S0002-9939-1956-0078686-7
http://dx.doi.org/10.1109/ICDM.2001.989534
http://dx.doi.org/10.1109/ICDM.2001.989534
http://dx.doi.org/10.1109/TKDE.2004.33
http://dx.doi.org/10.1137/1.9781611974010.85
http://dx.doi.org/10.1137/1.9781611974010.85
http://dx.doi.org/10.1007/3-540-12727-5_17
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1023/a:1009796218281
http://dx.doi.org/10.1023/a:1009796218281

Bibliography

Daniel Marx, Michal Pilipczuk (2014) Everything you always wanted to know about
the parameterized complexity of Subgraph Isomorphism (but were afraid to ask). In:
Ernst W Mayr, Natacha Portier (eds) International Symposium on Theoretical Aspects
of Computer Science (STACS), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
LIPIcs, vol 25, pp 542-553, DOI 10.4230/LIPIcs.STACS.2014.542

Jifi Matousek, Robin Thomas (1992) On the complexity of finding iso-and other mor-
phisms for partial k-trees. Discrete Mathematics 108(1-3):343-364, DOI 10.1016/
0012-365x(92)90687-b

David W Matula (1968) An algorithm for subtree identification. Siam Review 10:273-274

David W Matula (1978) Subtree isomorphism in o(n5/2). Annals of Discrete Mathematics
2:91-106, DOl 10.1016/50167-5060(08) 70324-8

Jerry Nedelman, Ted Wallenius (1986) Bernoulli trials, poisson trials, surprising vari-
ances, and jensen’s inequality. The American Statistician 40(4):286-289, DOI 10.
2307/2684605

Siegfried Nijssen, Joost N Kok (2003) Efficient discovery of frequent unordered trees. In:
First international workshop on mining graphs, trees, and sequences

Siegfried Nijssen, Joost N Kok (2004) A quickstart in frequent structure mining can make
a difference. In: Won Kim, Ron Kohavi, Johannes Gehrke, William DuMouchel (eds)
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), Proceedings, ACM, pp 647-652, DOI 10.1145/1014052.1014134

Siegfried Nijssen, Joost N Kok (2005) The gaston tool for frequent subgraph mining.
Electronic Notes in Theoretical Computer Science 127(1):77-87, DOl 10.1016/j . entcs.
2004.12.039

André Petermann, Martin Junghanns, Erhard Rahm (2017) Dimspan - transactional
frequent subgraph mining with distributed in-memory dataflow systems. CoRR
abs/1703.01910, URL http://arxiv.org/abs/1703.01910,1703.01910

Liva Ralaivola, Sanjay | Swamidass, Hiroto Saigo, Pierre Baldi (2005) Graph kernels
for chemical informatics. Neural Networks 18(8):1093-1110, DOI 10.1016/j .neunet.
2005.07.009

Ronald C Read, Robert Tarjan (1975) Bound on backtrack algorithms for listing cycles,
paths, and spanning trees. Networks 5:237-252

Neil Robertson, Paul D Seymour (1986a) Graph minors. II. algorithmic aspects of tree-
width. Journal of Algorithms 7(3):309-322, DOI 10.1016/0196-6774(86)90023-4

Neil Robertson, Paul D Seymour (1986b) Graph minors. V. excluding a planar graph.
Journal of Combinatorial Theory, Series B 41(1):92-114, DOI 10.1016/0095-8956 (86)
90030-4

133

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.542
http://dx.doi.org/10.1016/0012-365x(92)90687-b
http://dx.doi.org/10.1016/0012-365x(92)90687-b
http://dx.doi.org/10.1016/S0167-5060(08)70324-8
http://dx.doi.org/10.2307/2684605
http://dx.doi.org/10.2307/2684605
http://dx.doi.org/10.1145/1014052.1014134
http://dx.doi.org/10.1016/j.entcs.2004.12.039
http://dx.doi.org/10.1016/j.entcs.2004.12.039
http://arxiv.org/abs/1703.01910
1703.01910
http://dx.doi.org/10.1016/j.neunet.2005.07.009
http://dx.doi.org/10.1016/j.neunet.2005.07.009
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/0095-8956(86)90030-4
http://dx.doi.org/10.1016/0095-8956(86)90030-4

Bibliography

Ulrich Riickert, Stefan Kramer (2004) Frequent free tree discovery in graph data. In:
Hisham Haddad, Andrea Omicini, Roger L Wainwright, Lorie M Liebrock (eds) ACM
Symposium on Applied Computing (SAC), Proceedings, ACM, pp 564-570, DOI 10.
1145/967900.968018

Till Hendrik Schulz, Tamas Horvath, Pascal Welke, Stefan Wrobel (2018) Mining tree
patterns with partially injective homomorphisms. In: Michele Berlingerio, Francesco
Bonchi, Thomas Girtner, Neil Hurley, Georgiana Ifrim (eds) European Conference on
Machine Learning and Knowledge Discovery in Databases ECML PKDD Proceedings,
Part II, Springer, Lecture Notes in Computer Science, vol 11052, pp 585-601, DOI
10.1007/978-3-030-10928-8_35

Ron Shamir, Dekel Tsur (1999) Faster subtree isomorphism. Journal of Algorithms
33(2):267-280, DO 10.1006/ jagm.1999. 1044

John Shawe-Taylor, Nello Cristianini (2004) Kernel Methods for Pattern Analysis. Cam-
bridge University Press

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, Karsten M
Borgwardt (2011) Weisfeiler-lehman graph kernels. Journal of Machine Learning Re-
search 12:2539-2561

Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alexander | Smola, S V N
Vishwanathan (2009) Hash kernels for structured data. Journal of Machine Learning
Research 10:2615-2637, DOI 10.1145/1577069 . 1755873

Neil James Alexander Sloane (2016) The Online Encyclopedia of Integer Sequences.
A000055: Number of trees with n unlabeled nodes. Online, URL http://oeis.org/
A000055, accessed 2016-11-18

Richard P Stanley, Sergey Fomin (1999) Enumerative Combinatorics, Cambridge Stud-
ies in Advanced Mathematics, vol 2. Cambridge University Press, DOI 10.1017/
CB09780511609589

Lubos Takac, Michal Zabovsky (2012) Data analysis in public social networks. In: Inter-
national Scientific Conference and International Workshop Present Day Trends of In-
novations, pp 1-6

Robert Tarjan (1972) Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1(2):146-160

Carlos H C Teixeira, Arlei Silva, Wagner Meira Jr (2012) Min-hash fingerprints for graph
kernels: A trade-off among accuracy, efficiency, and compression. Journal of Infor-
mation and Data Management 3(3):227-242, URL http://seer.lcc.ufmg.br/index.
php/jidm/article/view/199

134

http://dx.doi.org/10.1145/967900.968018
http://dx.doi.org/10.1145/967900.968018
http://dx.doi.org/10.1007/978-3-030-10928-8_35
http://dx.doi.org/10.1006/jagm.1999.1044
http://dx.doi.org/10.1145/1577069.1755873
http://oeis.org/A000055
http://oeis.org/A000055
http://dx.doi.org/10.1017/CBO9780511609589
http://dx.doi.org/10.1017/CBO9780511609589
http://seer.lcc.ufmg.br/index.php/jidm/article/view/199
http://seer.lcc.ufmg.br/index.php/jidm/article/view/199

Bibliography

Alexandre Termier, Marie-Christine Rousset, Michéle Sebag (2002) Treefinder: a first
step towards XML data mining. In: Vipin Kumar, Shusaku Tsumoto, Ning Zhong,
Philip S Yu, Xindong Wu (eds) IEEE International Conference on Data Mining (ICDM)
Proceedings, IEEE Computer Society, pp 450-457, DOI 10.1109/ICDM.2002.1183987

Julian R Ullmann (1976) An algorithm for subgraph isomorphism. Journal of the ACM
23(1):31-42, DOI 10.1145/321921.321925

Katrin Ullrich, Jennifer Mack, Pascal Welke (2016) Ligand affinity prediction with multi-
pattern kernels. In: Toon Calders, Michelangelo Ceci, Donato Malerba (eds) Discovery
Science (DS) Proceedings, Lecture Notes in Computer Science, vol 9956, pp 474-489,
DOI 10.1007/978-3-319-46307-0_30

Leslie G Valiant (1979) The complexity of computing the permanent. Theoretical Com-
puter Science 8:189-201, DOI 10.1016/0304-3975(79)90044-6

Rakesh M Verma, Steven W Reyner (1989) An analysis of a good algorithm for the sub-
tree problem, corrected. SIAM Journal on Computing 18(5):906-908, DOI 10.1137/
0218062

Nikil Wale, Ian A Watson, George Karypis (2008) Comparison of descriptor spaces for
chemical compound retrieval and classification. Knowledge and Information Systems
14(3):347-375, D01 10.1007/5s10115-007-0103-5

Y H Wang (1993) On the number of successes in independent trials. Statistica Sinica
3(2):295-312, URL http://www3.stat.sinica.edu.tw/statistica/j3n2/j3n23/
j3n23.htm

Pascal Welke (2017) Simple necessary conditions for the existence of a Hamiltonian path
with applications to cactus graphs. CoRR abs/1709.01367, URL http://arxiv.org/
abs/1709.01367

Pascal Welke, Tamas Horvath, Stefan Wrobel (2015) On the complexity of frequent sub-
tree mining in very simple structures. In: Jesse Davis, Jan Ramon (eds) Inductive Logic
Programming (ILP) Revised Selected Papers, Springer, Lecture Notes in Computer Sci-
ence, vol 9046, pp 194-209, DOI 10.1007/978-3-319-23708-4_14

Pascal Welke, Tamas Horvath, Stefan Wrobel (2016a) Min-hashing for probabilistic fre-
quent subtree feature spaces. In: Toon Calders, Michelangelo Ceci, Donato Malerba
(eds) Discovery Science (DS) Proceedings, Lecture Notes in Computer Science, vol 9956,
pp 67-82, DOI 10.1007/978-3-319-46307-0_5

Pascal Welke, Tamas Horvath, Stefan Wrobel (2016b) Probabilistic frequent subtree ker-
nels. In: Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbig-
niew Ras (eds) New Frontiers in Mining Complex Patterns (NFMCP) Revised Selected
Papers, Springer, Lecture Notes in Computer Science, vol 9607, pp 179-193, DOI
10.1007/978-3-319-39315-5_12

135

http://dx.doi.org/10.1109/ICDM.2002.1183987
http://dx.doi.org/10.1145/321921.321925
http://dx.doi.org/10.1007/978-3-319-46307-0_30
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1137/0218062
http://dx.doi.org/10.1137/0218062
http://dx.doi.org/10.1007/s10115-007-0103-5
http://www3.stat.sinica.edu.tw/statistica/j3n2/j3n23/j3n23.htm
http://www3.stat.sinica.edu.tw/statistica/j3n2/j3n23/j3n23.htm
http://arxiv.org/abs/1709.01367
http://arxiv.org/abs/1709.01367
http://dx.doi.org/10.1007/978-3-319-23708-4_14
http://dx.doi.org/10.1007/978-3-319-46307-0_5
http://dx.doi.org/10.1007/978-3-319-39315-5_12

Bibliography

Pascal Welke, Tamas Horvath, Stefan Wrobel (2018) Probabilistic frequent subtrees for
efficient graph classification and retrieval. Machine Learning 107(11):1847-1873, DOI
10.1007/510994-017-5688-7

Pascal Welke, Tamas Horvath, Stefan Wrobel (2019) Probabilistic and exact fre-
quent subtree mining in graphs beyond forests. Machine Learning DOI 10.1007/
$10994-019-05779-1, (online)

Peter Willett (2006) Similarity-based virtual screening using 2d fingerprints. Drug dis-
covery today 11(23):1046-1053

David Bruce Wilson (1996) Generating random spanning trees more quickly than the
cover time. In: Gary L Miller (ed) ACM Symposium on the Theory of Computing (STOC)
Proceedings, ACM, pp 296-303, DOI 10.1145/237814.237880

Marc Worlein, Thorsten Meinl, Ingrid Fischer, Michael Philippsen (2005) A quantita-
tive comparison of the subgraph miners MoFa, gSpan, FFSM, and gaston. In: Ali-
pio Jorge, Luis Torgo, Pavel Brazdil, Rui Camacho, Jodo Gama (eds) European Con-
ference on Principles and Practice of Knowledge Discovery in Databases (PKDD) Pro-
ceedings, Springer, Lecture Notes in Computer Science, vol 3721, pp 392-403, DOI
10.1007/11564126_39

Xifeng Yan, Jiawei Han (2002) gSpan: Graph-based substructure pattern mining. In:
Vipin Kumar, Shusaku Tsumoto, Ning Zhong, Philip S Yu, Xindong Wu (eds) IEEE In-
ternational Conference on Data Mining (ICDM) Proceedings, IEEE Computer Society,
pp 721-724,D0I110.1109/icdm.2002.1184038

Xifeng Yan, Jiawei Han (2003) Closegraph: mining closed frequent graph patterns. In:
Lise Getoor, Ted E Senator, Pedro M Domingos, Christos Faloutsos (eds) ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), Proceed-
ings, ACM, pp 286-295, DOI 10.1145/956750 . 956784

Mohammed Javeed Zaki (2002) Efficiently mining frequent trees in a forest. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
ACM, pp 71-80,DO0I 10.1145/775047 .775058

Peixiang Zhao, Jeffrey Xu Yu (2007) Mining closed frequent free trees in graph databases.
In: Kotagiri Ramamohanarao, P Radha Krishna, Mukesh K Mohania, Ekawit Nantajee-
warawat (eds) International Conference on Database Systems for Advanced Applica-
tions (DASFAA) Proceedings, Springer, Lecture Notes in Computer Science, vol 4443,
pp 91-102,DOI10.1007/978-3-540-71703-4_10

Peixiang Zhao, Jeffrey Xu Yu (2008) Fast frequent free tree mining in graph databases.
World Wide Web 11(1):71-92, DOI 10.1007/s11280-007-0031-z

Zhaonian Zou, Jianzhong Li, Hong Gao, Shuo Zhang (2010) Mining frequent subgraph
patterns from uncertain graph data. IEEE Transactions on Knowledge and Data Engi-
neering 22(9):1203-1218, DOI 10.1109/tkde . 2010.80

136

http://dx.doi.org/10.1007/s10994-017-5688-7
http://dx.doi.org/10.1007/s10994-019-05779-1
http://dx.doi.org/10.1007/s10994-019-05779-1
http://dx.doi.org/10.1145/237814.237880
http://dx.doi.org/10.1007/11564126_39
http://dx.doi.org/10.1109/icdm.2002.1184038
http://dx.doi.org/10.1145/956750.956784
http://dx.doi.org/10.1145/775047.775058
http://dx.doi.org/10.1007/978-3-540-71703-4_10
http://dx.doi.org/10.1007/s11280-007-0031-z
http://dx.doi.org/10.1109/tkde.2010.80

	1 Introduction
	1.1 A Motivating Experiment
	1.2 Contributions
	1.2.1 Efficient Frequent Subtree Mining
	1.2.2 Fast Computation in Probabilistic Subtree Feature Spaces

	1.3 Outline
	1.4 Previously Published Work

	2 Preliminaries
	2.1 Notions and Notation
	2.2 Frequent Connected Subgraph Mining
	2.2.1 A Generic Levelwise Mining Algorithm
	2.2.2 The Computational Complexity of Frequent Subtree Mining

	2.3 Embedding Computation
	2.4 Datasets

	3 Related Work
	3.1 Algorithms for the SubgraphIsomorphism Problem
	3.1.1 Embedding Lists and Exponential Algorithms

	3.2 Algorithms for the FCSM Problem
	3.2.1 Frequent Tree Mining Algorithms
	3.2.2 Frequent Subgraph Mining Algorithms
	3.2.3 Algorithms for Relaxed Problems

	4 Probabilistic Frequent Subtrees
	4.1 Mining Probabilistic Frequent Subtrees
	4.1.1 The Relaxed Frequent Subtree Mining Problem
	4.1.2 Probabilistic Bounds and the Importance of Subtrees
	4.1.3 Implementation Issues and Runtime Analysis

	4.2 Experimental Evaluation
	4.2.1 Runtime
	4.2.2 Recall
	4.2.3 Stability of Probabilistic Subtree Patterns
	4.2.4 Predictive Performance

	4.3 Summary

	5 Boosted Probabilistic Frequent Subtrees
	5.1 An Efficient Embedding Operator for Trees
	5.2 Mining Boosted Probabilistic Frequent Subtrees
	5.2.1 Implementation Issues
	5.2.2 Experimental Evaluation

	5.3 Exact Frequent Subtree Mining on Locally Easy Graphs
	5.4 Summary and Open Questions

	6 Fast Computation in Probabilistic Subtree Feature Spaces
	6.1 Complete Embeddings into Subtree Feature Spaces
	6.2 Min-Hashing in Subtree Feature Spaces
	6.3 Experimental Evaluation
	6.3.1 Efficiency Gains
	6.3.2 Predictive and Retrieval Performance

	6.4 Summary and Open Questions

	7 Conclusion
	7.1 Discussion
	7.2 Outlook

	A The HamiltonianPath Problem for Cactus Graphs
	A.1 Three Necessary Conditions
	A.2 A Linear Time Algorithm for Cactus Graphs
	A.3 Some Statistics for Real-World Datasets
	A.4 Summary

	B Poissons Binomial Distribution
	Bibliography

