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Abstract

In this work I theoretically investigate and experimentally realize the storage of short light-pulses in a
fiber-based atom-cavity system. Our miniaturized optical resonator – with seven times the natural atomic
linewidth and a small mode volume – simultaneously ensures a high bandwidth and operation in the
strong-coupling regime. In particular, it enables the storage of light pulses with on average one photon
and a temporal extent of less than 10 ns, which is more than a factor of two shorter than the atomic
excited state lifetime of rubidium. We obtain a storage efficiency of 8 %, consistent with both cavity
losses and the employed level scheme.

In order to improve the coupling and number of measurements for which a single atom can be recycled,
we use dipole-trap assisted, degenerate Raman sideband cooling and a further development of our
carrier-free Raman sideband cooling scheme, which permits a three-dimensional ground state population
of 70 %. The new techniques increase the measurement repetition rate by two orders of magnitude to
∼ 2 kHz. Moreover, for the first time we achieve a Zeeman state preparation fidelity above 95 % in our
experiment.

On this basis, I present the deterministic generation of single photons in the near-adiabatic limit.
By shaping the control laser pulse, we do not only show that we can control the temporal waveform
of retrieved photons, but also reach a faster extraction from the cavity-coupled atom than possible in
free-space. The quantum nature of the retrieved light is verified by measuring a second-order correlation
function, which yields the expected antibunching. Moreover, the generation of photons in the cavity mode
with an efficiency exceeding 66 % is used as a fast hyperfine-state detection method, since our traditional,
non-destructive state detection via a probe laser is no longer applicable in a Raman configuration due
to the absence of a cycling transition. In order to realize Raman coupling between the two hyperfine
ground states, we develop a scheme for shifting the cavity resonance frequency between two hyperfine
transitions. During the scan, we are furthermore able to determine the atom-cavity coupling strength via
the vacuum Rabi splitting in each individual measurement – a useful tool for post-selection of acquired
data sets.

By employing a numerical simulation based on a full quantum-mechanical master equation, I find
the strategy to store a coherent laser pulse with the maximum possible efficiency for a given system.
Although the cavity input field is treated classically, our simulation model is able to calculate efficiencies
for a pure single-photon Fock-state input. Moreover, numerical optimal control methods enable us to
find control pulses with storage efficiencies slightly above those achieved for temporally-scaled adiabatic
control pulses. For our specific system, we finally demonstrate the non-adiabatic storage of a short,
coherent light pulse.

The ability to interact with pulses of high bandwidths encourages quantum hybrid experiments with
quantum dots as single-photon sources. In this context, the stabilization of their emission frequency to an
atomic transition is required. In collaboration with the IFW Dresden, I present a technique to counteract
long-term frequency drifts by applying rate-based feedback to a strain-tunable quantum dot, which results
in frequency deviations smaller than 1.5 % of its emission linewidth. By simultaneously stabilizing the
emission frequency of two quantum dots in separate cryostats, we enhance their two-photon interference
visibility in a Hong-Ou-Mandel measurement from 31 % to 41 %, which corresponds to the maximum
reachable visibility for the given emitters. Frequency-stable, efficient photon sources together with
atom-cavity based quantum memories may facilitate the realization of quantum networks.
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CHAPTER 1

Introduction

A
bout 400 years ago, a series of German narratives addressed the absurd endeavors of citizens
living in a ficticious medieval town called Schilda [2, 3]. The idea of confining light has
seemingly inspired the imagination of the author(s): In one of the stories, the people, called
Schildbürger, built a town hall without windows. The darkness inside led to accidents and

confusion. Not realizing the construction error, they made efforts to collect light in buckets, cans, pots,
potato bags and even mousetraps. But emptying the vessels inside the building did not illuminate the
room – only removing the roof did.

Today, humanity has reached a point where the storage of light is no longer a ridiculous venture,
but actually pursued in scientific projects. Strictly speaking, the light itself is not conserved, but its
properties are copied by absorption and retrieved at a later point in time. This process of re-creating an
indistinguishable and therefore identical state is commonly referred to as storage, also in many aspects of
our everyday life.

Applications of light storage are found in the field of quantum information and communication [4–8],
where the quantity of light is often reduced to the level of single photons. They are the optimum mobile
carriers of quantum information [9], which lead to the term flying qubits. But unfortunately they are less
suitable for processing [10] and storage of information [11]. Better candidates, especially for achieving
(seconds-)long storage times, are neutral atoms [12], ions [13] or solid-state systems [14], which are
stationary qubits. Their interconnection via communication links [15] is referred to as a quantum

network [16, 17] and is the strongest motivation for the development of light-matter interfaces. The
required strong light-matter coupling can be provided by optical cavities (resonators) [18]. They enable
the tight confinement and temporary storage of an electric field, which enhances the interaction rate with
a medium placed at its heart. In particular, neutral-atom based quantum nodes have proven themselves
as versatile systems: Applications ranging from single-photon sources [19, 20], logic gates [21, 22],
quantum memories [23, 24] in elementary CQED networks [25] to platform-comprehensive entanglement
distribution [26] have been demonstrated.

Despite on-going efforts, a severe bottleneck of long-distance communication in a quantum network
are the inevitable losses in optical fibers [27]. Direct signal amplification is excluded due to the no-

cloning theorem [28], hence quantum repeater nodes [29, 30] are needed to create, purify and swap
entanglement [31]. A potential realization out of many [32] is based on storing polarization-entangled
photon pairs emitted by semiconductor quantum dots (QDs) in ensembles of ultra-cold atoms, which
could be facilitated with an optical resonator. Two particular requirements therefore are that first, the QD
emission frequency is compatible with an atomic transition and second, their spectral width matches the
cavity linewidth. The first point can be addressed by frequency-tunable QD sources [33, 34] which are
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Chapter 1 Introduction

referenced to an atomic standard. In order to fulfill the second criterion, the development of so-called
open resonators with high bandwidths is being pushed forward [35, 36]. However, the high bandwidth
means that the achievable light-matter interaction time is shortened. A compensation is possible by
increasing the light-matter coupling, for which two approaches exist. First, reducing the cavity-mode
cross section A amplifies the interaction rate g according to g ∝ 1/

√
A. Second, one can exploit

the collective enhancement provided by atomic ensembles of N atoms, since the collective coupling
strength increases with

√
N. Following this motivation, we employ Fiber-based Fabry-Pérot Cavities

(FFPCs) [37] consisting of microscopic, concave mirrors machined onto the end facets of two opposed
optical fibers to reduce the mode volume while still maintaining optical access to manipulate atomic
ensembles within the cavity region [38, 39]. While high-density clouds of atoms have already been
coupled to FFPCs [40, 41], our focus lies on the controlled manipulation of individual atoms at low
numbers, which allows local addressing [42] or the implementation of quantum registers [43].

In this work I present the fast storage of light pulses in a single rubidium atom coupled to a fiber-based
microcavity. By developing new techniques to control the internal and external states of the atom, light
pulses shorter than the rubidium excited state lifetime are mapped into the single-photon memory. A
subsequent adiabatic read-out generates single photons with arbitrarily malleable waveforms. In order
to understand the underlying dynamics and to determine the optimum storage efficiency, I simulate our
system with a Lindblad master equation approach. On this basis, a specially developed, optimal-control
based pulse optimization algorithm ensures that we apply the most effective control pulses.

The ability to work with high-bandwidth photons paves the way towards hybrid experiments [44] with
quantum dots as single-photon sources. The idea is to combine the advantages of individual systems,
such as the long coherence time in atomic memories [24] and the high emission rate of QDs [45]. In
order to join the diverse platforms, I will show how the tunable QD emission frequency can be stabilized
to rubidium transitions. The scheme is furthermore applied to two distant emitters simultaneously, which
opens possibilities for quantum networking with maximally-indistinguishable photons.
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CHAPTER 2

A Fiber–Cavity System as a Light–Matter

Interface

C
avity Quantum Electrodynamics (CQED) platforms have proven to be excellent for light-
matter interfacing [46], which makes them a strong candidate for quantum networks. Apart
from elementary demonstrations [25], the major challenge of realizing an efficient, scalable
network with a high bandwidth remains. The latter is a strict requirement for today’s most

promising single photon sources [47–49] and is addressed by open cavities. In order to maintain a rate
of coherent interaction above their leakage and loss rates, the overlap of light and matter cross sections
needs to be maximized. A fiber-based resonator greatly reduces the cavity mode waist, while still offering
optical access for the numerous light fields required to trap and manipulate atomic ensembles – a strong
candidate for the collectively enhanced storage of quantum information [40, 41, 50].

Following this motivation, our group developed such a system in the past years. As the work presented
here would not have been possible without this solid, experimental basis, there is a lot to learn about our
setup that is beyond the scope of this thesis. I strongly recommend to read the work of J. Gallego [51] for
insight into CQED basics, the production of fiber cavities and atom trapping, state detection, transport
and coupling to a resonator.

The major modifications to the original apparatus are described in this introductory chapter. Section 2.1
gives a brief overview of the experimental apparatus, followed by a more detailed list of improvements
on the stabilization of the cavity resonance and related light fields (Sec. 2.2 and 2.3). Two entirely new
optical setups to address transitions at the D1 line of rubidium and to create short coherent photon pulses
are presented in Sections 2.4 and 2.5, respectively. In the discussion of modifications we omit the optical
setups for both Raman lasers (cooling and storage), as they are very similar to previous realizations,
e.g. [52].

2.1 An Overview of the Experimental Apparatus

In our experiments, we use a 3D magneto-optical trap [53] to collect a few tens of neutral 87Rb atoms
from the background gas (10−10 mbar), which simultaneously cools them down to ∼50 µK. Subsequently
they are loaded into an optical lattice which acts as an optical conveyor belt [54–56] for transporting
atoms into the ∼ 1 mm distant cavity region, as depicted in Figure 2.1. A near-resonant probe laser at
780 nm non-destructively detects the presence of an atom and stops the transport in real-time, which we
refer to as feedback transport [51, Sec. 3.2]. By sparsely loading the trap we limit the probability of a
detection event to 70 %, such that we are sure to work with a single atom at the cavity, in most cases.
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Figure 2.1: Side (a) and top view (b) of the fiber-based atom-cavity system (not to scale). Atoms are trapped
in a magneto-optical trap (MOT) outside the cavity region (FFPC). After loading them into a 1D optical lattice,
they are transported into the cavity mode, where a single one is confined in three dimensions. The cavity region
is displayed both schematically and in an atom fluorescence image taken by an EMCCD camera. The fiber
dimensions are identified by scattered light. Along the cavity axis, cavity-resonant fields address the atoms via
the high-transmission mirror (HT), while the low-transmission mirror (LT) is reserved for off-resonant beams –
accepting power losses. In both cases, the light is intrinsically guided and coupled to the resonator by single-mode
fibers (SM). Single-photon counting modules (SPCMs) detect the weak, reflected probe light used for atom(-state)
detection. A detailed description of all involved lasers for optical pumping, cooling and photon generation/storage
is found in the main text. The figure is adapted from [39] and illustrates the progress in complexity: A total of 27
beams from 9 lasers are pointed at the atoms.
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2.1 An Overview of the Experimental Apparatus

Table 2.1: Relevant parameters of our cavity system, as obtained from characterization measurements in [51]. The
error bars correspond to either direct or propagated experimental uncertainties. The maximum atom-light coupling
rate gmax is calculated for the ideal case of a single atom at the center of the cavity mode. The finesse values and
the cavity linewidth were measured when the cavity was still outside the vacuum [38].

Parameter Value Extracted from

Mirrors (HT/LT)

Transmission T (126 ± 13) /(13 ± 3) ppm direct measurement
Losses (scat. and abs.) L (26 ± 5) /(25 ± 5) ppm finesse and transmission

Cavity geometry

Length Lcav (93.36 ± 0.03) µm lock-probe beat length
Mode waist w0 (4.40 ± 0.04) µm cavity geometry
Input mode matching ǫHT 0.60 + −0.02 reflection dip asymmetry

Cavity spectroscopy

Free spectral range ∆νFSR (1 606.7 ± 0.5) GHz cavity length
Cavity full width ∆νFWHM (50.8 ± 1.0) MHz sideband-modulated dip
Finesse (780 nm) F 32 800 ± 1 100 FSR-FWHM ratio
Finesse (770 nm) Flock 27 200 ± 1 000 FSR-FWHM ratio
Pol.-mode splitting ∆νspl (9.0 ± 0.3) MHz Hänsch-Couillaud setup [57]
Lock-probe beat length dbeat (31.12 ± 0.01) µm

CQED parameters

Atom-light coupling gmax/2π (121.6 ± 1.1) MHz 87Rb D2-line cycling transition
Cavity field decay κtotal/2π (24.5 ± 0.8) MHz measured cavity linewidth
Atomic dipole decay γ/2π 3.03 MHz rubidium natural decay [58]
Single-atom cooperativity C 100 ± 4

Furthermore, this method constitutes a preselection of the atom-cavity coupling strength g, since only
atoms positioned at the center of the cavity mode will trigger a detection event.

The atom is now located at the heart of the apparatus: A fiber Fabry-Pérot cavity (FFPC) [37], described
in detail in [38]. One of the mirrors presents a higher transmission (HT), ensuring a highly directional
input-output channel. Weakly probing the cavity results in reflection signals from the mirror which are
detected by single-photon counting modules (SPCMs). Against expectations, the low-transmission mirror
(LT) is also put to use as an access port for optical pumping light at 795 nm1. As the quantization axis is
defined by a magnetic guiding field along the cavity axis, only in this direction pure σ-polarized pumping
is attained. For π-polarized pumping, we use linearly-polarized beams co-propagating with the lattice
beams.

The cavity is placed in the center of four aspheric lenses (NA= 0.5), which leads to a high degree
of optical control in our system [60–62] compared to previous approaches [63]. They strongly focus
two pairs of counter-propagating, red-detuned dipole trap beams at 860 nm which create a 2D optical
lattice (DTx,y) [64]. The perpendicular confinement is given by the intra-cavity, blue-detuned lock laser

field [65–67] at 770 nm (DTz), which is used to stabilize the resonator length (Sec. 2.2). As a result, the

1 Far off-resonant w.r.t. the cavity resonance frequency, as opposed to experiments with three resonant wavelengths [59].

5



Chapter 2 A Fiber–Cavity System as a Light–Matter Interface

single atom is located with sub-wavelength precision at the antinode of the cavity mode, that is set to
overlap with the node of selected hyperfine transitions of the D2 line of 87Rb at 780 nm (Sec. 2.3).

The lenses are whetted (dashed lines in Fig. 2.1(b)) to give access to both MOT beams and a new
Raman laser beam at 770 nm which is not only used for (motional-) state spectroscopy but also cools
the atoms down to the 3D motional ground state in our carrier-free Raman cooling scheme [63, 68,
69] (see Sec. 3.2). Spectroscopy of the Zeeman structure can be performed using resonant microwave
radiation [52].

Imaging the atoms is done with 780 nm or 795 nm light [70], where the latter can be useful to prevent
coherent cavity interaction [39], also in the case of optical pumping (see Sec. 2.4). An alternative to avoid
the influence of the cavity is to shift its resonance frequency by several hundred MHz (see Sec. 2.2).

After passing through the pulse shaping setup described in Section 2.5, the pulse laser enters the cavity
resonantly as a weak coherent laser pulse, which is mapped into the atomic hyperfine ground states by a
dedicated, pulsed Raman laser propagating perpendicularly along DTx.

Finally, in Table 2.1 the most relevant cavity parameters are listed. They are based on characterization
measurements in [51].

2.2 An Improved Scheme for Stabilization of the Cavity Resonance

The cavity length is stabilized to the lock laser using the well-known Pound-Drever-Hall (PDH)
method [71]. In the previous setup configuration [51], the lock laser itself was stabilized to a transfer
cavity [72], which in turn was referenced to the probe laser, that is locked to a Doppler-free polarization
spectroscopy [73]. This complicated cavity lock chain has two outstanding disadvantages: First, the cavity
resonance can only be shifted, if we shift the lock laser frequency by acousto-optic modulators (AOMs).
But the finite AOM bandwidth leads to a drop in diffraction efficiency; and the loss of laser power
influences the signal-to-noise ratio of the PDH error signal. This problem was technically circumvented
by introducing a second lock laser between the first one and the transfer cavity. A frequency-offset
lock [74] between the two lock lasers allowed to scan the cavity length for more than ±250 MHz, enough
for a detailed analysis of the vacuum Rabi splitting (VRS) and the Purcell effect presented in [39]. Still,
the frequency scan range was restricted by the laser power. Second, and more importantly, such a lock
chain is too long. While effects such as frequency noise propagation do not affect daily work in an
obvious way, the product of five single lock failure probabilities does2.

We improve the cavity lock chain by stabilizing the lock laser3 to an optical frequency comb4 [77],
which is specified to have a stability of better than 2 · 10−16 in 1 s and 3 · 10−18 in 1000 s, with an
integrated phase noise of < 100 mrad in the range 100 Hz to 2 MHz [78]. Subsequently, the resonator and
the Raman laser for cooling are locked in parallel to the lock laser, reducing the chain length significantly,
as depicted in Figure 2.2. Referencing to a frequency comb has an exciting feature: The cavity length can
be shifted considerably by scanning the lock laser across multiple comb lines [79–81] that are spaced by
250 MHz. While the phase lock to a single comb line is realized with our custom optical phase-locked
loop (OPLL) technique [52, 82], the continuous tuning requires switching between two comb lines.
Hence, we have developed a technique which is presented in detail in [83, 84]. By simultaneously
changing the local oscillator frequency of the OPLL ( fOPLL) and the driving frequency of the in-loop

2 To give an example, the 1.5 m long transfer cavity is prone to temperature drifts and – presumably – air pressure changes /
acoustic noise upon opening and closing the lab door.

3 All 780 and 770 nm lasers in this experiment are interference-filter stabilized external cavity diode laser (IFL), developed in
our group based on [75]. Details see [76].

4 MenloSystems FC1500-250-ULN, but with a downgrade of the SYNCRO-RRE module, which suffers from pending
1 Hz noise.
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Figure 2.2: An improved cavity lock chain for cavity QED experiments. The fiber cavity is stabilized via the
Pound-Drever-Hall (PDH) method to the lock laser, which is in turn referenced to an optical frequency comb via
an optical phase-locked loop (OPLL, φ). The OPLL error signal for frequency feedback is based on an optical
beat signal, which is created at a beam splitter (BS) and detected by a photodiode (PD). The Raman laser for
spectroscopy and cooling is also phase-locked to the lock light and follows any frequency change caused by the in-
and out-of-loop AOM double passes (AOM x2) of the lock laser. An AOM for pulsing the Raman laser before
entering a polarization-maintaining (PM) optical fiber is shown at the bottom. The PDH error signal is created
with the help of both an electro-optic modulator (EOM) for creating a frequency modulation and an avalanche
photodiode (APD) for detection of the lock laser reflection. The correction signal is applied to a piezo-electric
actuator (Piezo), to which the cavity is attached. Inside the light-sealed setup for single-photon detection with low
background noise (shaded area), probe and lock laser are overlapped with the help of a wide interference filter
(WIF) and coupled into the single-mode (SM) fiber spliced to the fiber cavity. In general, adjustments of the laser
power are made with a combination of half-wave plate (λ/2) and polarizing beam splitter (PBS). For details on the
lock mechanisms, polarization control, photon detection and frequency filtering see [51, 52, 60]. Compare to the
previous lock configuration in [51, Fig. 2.21] and the split-off probe lock chain for 780 nm in Figure 2.3.

AOM double pass ( fAOM), we ’jump’ over a comb line without causing an abrupt change of the laser
frequency at the cavity, as long as we ensure:

(

fOPLL, after jump − fOPLL, before jump

)

+ 2 ·
(

fAOM, after jump − fAOM, before jump

)

= 250 MHz

The RF frequencies are provided by Direct Digital Synthesizers5 which feature continuous frequency
changes. Consequently, the duration of a jump is merely limited by the AOM rise time on the ns scale,
which is too fast for piezo-electric actuators to react. Thus the cavity can follow frequency shifts for up to
1 GHz [84], only limited by the mode-hop free range of the reference laser6. An additional out-of-loop
AOM is mainly used for intensity stabilization, but can also be included for frequency scanning.

We characterize the properties of the phase lock and find 99 % of the laser power in the carrier
frequency, concluded from an optical beat signal between lock laser and comb light [83]. While this
is a good value, the limited feedback loop bandwidth gives rise to servo bumps at 1.1 MHz (present
in Fig. 3.4(b)) [84]. By shortening the electronic path of the loop, values up to 1.6 MHz (absent
in Fig. 3.5(b)) are achieved. As the lock laser is part of the Raman spectroscopy setup, frequency

5 Analog Devices EVAL-AD9915 evaluation boards
6 External cavity lasers with additional polarization spectroscopy feedback exhibit large tuning ranges, e.g. 105 GHz at a rate

of 11 Hz [85].
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Figure 2.3: The new probe lock chain for photon storage experiments. The probe laser for atom detection is
referenced to an atomic spectroscopy setup. The pulse laser is phase-locked to the probe laser frequency, which
can be shifted by several AOM double passes (AOMs x2). Not only the pulse laser, but also the attributed Raman
laser follows the probe laser due to a second phase-lock stage. The photon pulse to be stored and its corresponding
Raman pulse are created in pulse-shaping setups as explained in Section 2.5. When pulse and probe laser are
combined at the PBS, they have a fixed phase relation. Inside the light-sealed setup (shaded area), probe, pulse
and lock laser are overlapped and coupled into the SM fiber spliced to the fiber cavity. For details on the lock
mechanisms, polarization control, photon detection and frequency filtering see [51, 52, 60]. Compare to the
previous lock configuration in [51, Fig. 2.21] and the split-off cavity lock chain for 770 nm in Figure 2.2.

components modulated onto its carrier frequency play an important role (see Sec. 3.2.1). They can
propagate to the Raman laser itself, which follows the lock laser at a fixed detuning corresponding to the
rubidium hyperfine splitting of ∼ 6.8 GHz.

2.3 From Cycling Transition to Lambda Configuration

In the experiments presented in this thesis, we have to work with a cavity resonant to two different
hyperfine transitions |F,mF〉 → |F′,m′F〉 of the D2 line (52S 1/2 → 52P3/2). First, we have to detect
the atoms during the feedback transport, for which a high atom-cavity coupling g is required. As g is
proportional to the hyperfine dipole matrix elements, we find that the cycling transitions |2,±2〉→|3′,±3′〉
give the strongest couplings. In combination with the quantization axis defined by the bias magnetic
field, our probe laser is chosen to drive σ−-transitions7. Consequently, with the help of a repumping laser,
a few scattering events pump the atom to |2,−2〉, which provides a two-level system suitable for clean
state detections based on the VRS, see [51, Ch. 5]. The VRS in dependence of the coupling strength is
illustrated in Figure 2.4. Directly detecting the atoms on the |2〉→|2′〉 transition is not possible: Even
if probe lasers with opposite circularity are used simultaneously to avoid dark states, the low coupling
strength leads to reduced reflection contrast, as the intermediate regime is approached. Consequently,
spatial positioning of the atoms is imprecise, which additionally makes it more difficult to estimate the

7 The low birefringent splitting of the cavity supports circularly polarized light and therefore σ±-transitions, see [38].
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Figure 2.4: Frequency spectrum of the open, non-driven atom-cavity system as discussed in [51, Sec. 4.1.1,
cf. Fig. 4.2]. Here, its parameters are (κ, γ)=2π · (41, 3) MHz. Left: The real and imaginary part of the complex
eigenvalues ω̃± of the non-Hermitian Hamiltonian Ĥdiss = ĤJC − i ~ (γ σ̂†σ̂ + κ â†â) describe the vacuum Rabi

splitting (VRS) and the atom- (black) and cavity linewidth (red) at full-width half-maximum, respectively (see also
Ch. 4 for the nomenclature). Right: ω̃± −ωa as a function of the atom-cavity coupling strength g. Thus by changing
the probe laser frequency, we are able to measure the VRS, from which the parameter g is extracted. At the cycling

transition with g ≈ 2π · 80 MHz, we are located deep within the strong-coupling regime. In a Λ-configuration

we approach the intermediate regime with g < 2π · 35 MHz. The reduced coupling strength, despite our cooling
techniques (see Ch. 3), is a consequence of the weaker atomic transition. For all measurements in this work, the
fast- and weak-cavity domain are irrelevant.

number of atoms by the loading efficiency ηload.
As we will see in Chapter 6, photon storage and generation require a Λ-type three-level atom, from

now on referred to as Λ-configuration. In order to realize this level scheme, the cavity resonance has to
be shifted by 267 MHz [58] – as well as the probe, pulse and two Raman laser frequencies8. While the
scanning of the cavity resonance has been discussed in the previous section, the setup for simultaneous
scanning of the other lasers is shown in Figure 2.3. The probe frequency is still stabilized to an atomic
spectroscopy setup, but it also serves as a reference for the pulse laser. This phase lock is then extended by
a second-stage phase lock, in which the attributed Raman laser is locked to the photon laser. Frequency-
shifting all beams is realized by multiple AOM double passes. Here, the loss in probe power is not a
problem, since for atom- and state detection we only need on average 6 · 10−5 photons in the cavity.

In summary, during measurements the resonance setting has to be shifted between two set points,
which we refer to as sweep. If we first shift the probe- and then the cavity lock chain, we are able to
observe half of the VRS. From the frequency-dependent probe reflection we can draw conclusions on the
coupling strength of an atom in each individual loading attempt, which is a useful tool for post-selection
of acquired data sets and referred to as VRS sweep.

2.4 A Reliable Laser Source for Additional Atomic Transitions

Quantum optics experiments heavily rely on the sub-MHz linewidth and long-term stability of lasers. A
significant improvement in this regard was the upgrade from Littrow lasers to interference-filter stabilized

8 For this to work, lock- and probe laser are frequency-tuned with AOMs and 4 locks follow - back and forth every 5 s!
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Chapter 2 A Fiber–Cavity System as a Light–Matter Interface

external cavity diode lasers (IFLs) [63]. However, these lasers are still vulnerable to mode hops caused by
daily thermal drifts. Distributed feedback (DFB) lasers on the contrary offer a single-frequency operation
over several nanometers, at the cost of a limited tuning range around their center wavelength [86] and an
increased linewidth. The difference to standard diodes is the periodic structure of the active region itself,
which forms an interference grating that gives optical feedback. This renders an external cavity optional.

We use two 795 nm DFB lasers9 mounted in special housings10. They are implemented in the existing
setup [70], which is extended such that each laser can be pulsed and frequency-shifted independently with
the help of AOM setups. The suppression exceeds 1012, dispensing with the need of mechanical shutters
and thus allowing pulse times on the µs timescale. With a linewidth of typically 0.6 MHz the diodes are
applicable for frequency-uncritical tasks such as MOT operation or optical pumping11. The previously
unused D line (52S 1/2 → 52P1/2) at 795 nm is now the main transition for the latter. Whenever we
apply D1 light, a single-photon detuning of about 2π · 15 MHz with respect to the excited state is chosen,
for which the a.c. Stark shifts of the dipole trap have to be taken into account. We have extended the
calculation in [60] based on [87, 88] and find a shift of +21.6 MHz/mK for each mF-sublevel of F′ = 2.12

Considering also the equally shifted ground states, the free space transition frequency has to be adjusted
by +42 MHz/mK.

As mentioned in Section 2.3, |2,−2〉 is our target state and, on the practical side, a dark state with
respect to simultaneous, σ−-polarized pumping resonant with |2〉 → |2′〉 and |1〉 → |2′〉. The strict
requirement for pure σ−-transitions is a ~k-vector along the quantization axis, that is parallel to the cavity
axis. The D1 laser frequency cannot be resonant with both the cavity and the atoms along with the probe
laser: Since the free spectral range of the resonator is 1.6 THz, the closest, cavity-resonant detuning with
respect to the atom is 695 GHz. Our only chance to manipulate the atoms is a brute force approach by
entering the cavity through the LT mirror opposite to the lock- and probe laser entrance port. This requires
a laser power of ∼ 1 mW before the fiber, since the LT mirror coefficient of transmission is (13 ± 3) ppm
(see Table 2.1). Considering the SM fiber NA of 0.13, we estimate the beam waist to be above 6 µm at the
position of the atoms. Nevertheless, for F-pumping a pulse length of a few µs is required. From previous
free-space measurements we conclude that losses at splicings and fiber in-coupling must be significant.
The deficit is not entirely unexpected, since UV light at 405 nm is coupled into the same fiber; using the
same collimation lens. The reason is an ever-present finesse decay reported in [51, Appendix A.2], which
is equivalent to a modified cavity loss rate which is introduced in Section 4.1.

2.5 A Setup for Short Light Pulses

A main building block for the experiments in this thesis has been the development of a pulse-shaping
setup. In order to create arbitrary, optical waveforms, the intensity of both pulse and attributed Raman
laser is modulated with a waveguide-based Mach-Zehnder electro-optical intensity modulator. The
operating principle is the following: The incident beam is split into two paths which form the arms of a
Mach-Zehnder interferometer. Each of these arms is a waveguide made from an electro-optic material,
which induces a phase change when a voltage is applied. Thus, intensity modulation occurs due to
time-varying interference of the two phase-shifted beams.

If, however, the RF electrode for changing the voltage is not placed symmetrically between the
waveguide channels, an opposite but unequal phase is induced. As a result, the output has a residual

9 Eagleyard model EYP-DFB-0795-00080-1500-BFW01-0005
10 Thorlabs LM14S2 mount with LD/TEC driver connection
11 Indeed we have stabilized an 894 nm DFB laser to another one in an OPLL, giving two-fold feedback to the LD current and

resulting in 92 % of the power in the carrier of the beat spectrum. The single linewidths were estimated to be around 350 kHz.
12 For F′ = 3 a quadratic shift is observed, see Figure 5.1(b) and [60].
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Figure 2.5: (a) A simplified setup for shaping short, coherent light pulses. A PC is used to generate RF pulse shapes
and trigger sequences, which are then released by a combination of a trigger generator and an arbitrary waveform
generator (AWG). These RF electronics drive an intensity modulator, whose output is intensity-stabilized. There is
an imperfect suppression of the light-pulse background, which we improve with a single-pass AOM for optical
switching. The triggers and pulses are recorded by a time-tagging unit and a pulse monitor. Each device shows a
stored or recorded pulse shape or pattern in a white area, to understand the pulse creation in an intuitive way. For a
full description, see main text. (b) To illustrate the AWG capabilities, we create, record (red points) and fit (black
line) exponentially rising pulse shapes of τ = 8 and 1 ns. Such a shape is e.g. useful for loading a photon into an
empty cavity [91]. How well the optical shape agrees with the expected value can be seen in Figure 5.3(a).

phase modulation, which is synonymous with a frequency chirp. The size of this potentially detrimental
effect is quantified by the intrinsic chirp parameter α0 [89]. Our device is specified to exhibit α0 = 0±0.1;
and by modulating the EOM we verified α ≈ 0 based on the methods in [89, 90].

The frequency chirp, if present, can also be used for the better: In atom optics experiments, chirped
pulses have e.g. been used for adiabatic (de-)excitation [92]. In our experiments, phase adjustments of
the Raman pulse could contribute to the storage efficiency of photon pulses, as discussed in Section 6.1.1.

The pulse-shaping setup is depicted in Figure 2.5(a) in a simplified way13. A Python-based script
running on a PC is used to calculate the individual pulse shapes and a sequence, in which they are

13 In reality, the upper part exists twice; once for the pulse, once for the Raman laser.
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Chapter 2 A Fiber–Cavity System as a Light–Matter Interface

triggered. The data is uploaded via USB to an arbitrary waveform generator (AWG)14 and a trigger
generator15. The AWG features a rise time of 120 ps, allowing sharp features as demonstrated in
Figure 2.5(b). Two different pulse shapes can be stored in a register and triggered alternatingly.

Upon a sequence trigger given by the PC, the trigger generator releases a pulse pattern, which is
time-tagged with 81 ps resolution by the unit16 that also records the SPCM count traces. This way,
generated photon pulse shapes can be reconstructed. Each AWG trigger results in an RF pulse, that
is sent to the intensity-modulating EOM17. This AC component is added to a DC component, which
is regulated by an intensity controller18 such that a low EOM output is maintained outside the pulse
windows. The suppression of the transmission is limited to a factor of ∼ 150 in power, which is only
a factor of ∼ 12 in Rabi frequency. Therefore, single-pass AOMs are used to improve the background
level, but the window size in our implementation is restricted to > 60 ns [93]. For shorter windows, the
AOM pulse does not exhibit a flat plateau onto which the EOM pulse is ideally placed, and also the AOM
efficiency is reduced. This is not a problem for the very weak coherent pulse to be stored, but for the
storage-assisting Raman pulse that needs up to 200 µW of optical power it is. The RF shift caused by the
AOMs is compensated by the OPLLs in the probe lock chain. RF amplifiers allow to set the power for
two successive pulses independently, i.e. the laser power for photon storage can be scanned while the
power for photon generation is fixed. All devices and RF sources are locked to an atomic reference clock
(10 MHz).

The EOMs require an optical input power of 10 mW, which is why the probe/MOT laser cannot be
used as a source. Instead, we have converted the Raman laser setup in [52] to pulse and Raman laser
(Fig 2.3). Both laser frequencies thus have a fixed phase relation upon arriving at the atom position.

A fraction of the pulses is monitored by a fast photodiode19 and a high-bandwidth oscilloscope20. As
expected, the transmitted intensity after the EOM does not depend linearly on the RF amplitude V , but it
approximately follows a sin2(V)-relation, which is pre-compensated in all measurements. Finally, the
pulse is sent through PM fibers to the experiment.

14 WavePond DAx14000, up to 16 M data-point entries per segment, read by internal clock of 4 GHz
15 Rigol DG4102, supporting SCPI commands and arbitrary pulse shapes (such as a trigger sequence) up to 80 MHz.
16 ID Quantique ID800 8-channel time-to-digital converter
17 iXblue NIR-MX800-LN-10-P-P-FA-FA with a bandwidth > 12 GHz
18 Photline MBC-DG-BT-PD
19 Thorlabs DET025AFC with a bandwidth of 2 GHz
20 TEKTRONIX 4104 with a bandwidth of 1 GHz and a sampling rate of 5 Megasamples/second
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CHAPTER 3

Controlling Internal and External States of a

Single Atom in an Optical Cavity

T
he investigation and application of quantum physics demands an extraordinary level of con-
trol. Without the development of cooling techniques to counteract motional state changing
mechanisms, demanding experiments such as high precision metrology [94], quantum logical
gates [95], the observation of optomechanical effects [96] or the coupling of quantized states

of atomic motion to quantum states of light [97] would not have been possible. Not to mention that if an
experiment is based on scattering photons or suffers from parametric heating induced by dipole traps [98,
99], atom losses will greatly reduce the duty cycle.

A prominent approach to reduce the temperature of neutral atoms is evaporative cooling [100]. But
since the mechanism is associated to atom loss, it is only applicable to large atomic ensembles. In the
previous cavity experiment, our group used cavity cooling [101–103] as a standard technique instead.
As a proof of principle, we furthermore demonstrated ground-state cooling of a single atom by both
electromagnetically induced transparency (EIT) [104–106] and carrier-free Raman sideband cooling [63].

Unfortunately, the robust cavity cooling technique does not work in the regime of open resonators,
since the steady-state temperature limit is given by Tcav = ~κ/kB [51]. As a consequence, a trapping
force that holds atoms at the temperature Tcav ≈ 2 mK is required, which we cannot provide. But at
weak cavity probing, we have recently observed a lifetime-enhancing effect. In Section 3.1, we show
phenomenologically that it is based on degenerate Raman sideband cooling [107–110] evoked by the
dipole traps. With strong guiding fields as required for addressing selected Raman transitions, the
technique is no longer applicable. Additionally, the state-changing effect is ever-present and interferes
with optical pumping [111]. We solve this issue by adapting and extending the carrier-free Raman
cooling scheme to three dimensions (Sec. 3.2.2). Finally, we characterize the state preparation required
for photon generation and storage (Sec. 3.3), demonstrating a high degree of control over the internal and
external states of a single atom coupled to the resonator.

3.1 Degenerate Raman Sideband Cooling of a Single Atom

In quantum gas experiments, laser cooling is limited by hyperfine-changing collisions [112]. These
density-dependent heating mechanisms were overcome by traps in the Lamb-Dicke regime [113] and
the development of degenerate Raman sideband cooling [107]. This technique relies on Raman trans-
itions [114] between the vibrational manifolds associated with a pair of magnetic sublevels of a fixed
hyperfine ground state. Remarkably, this coupling is intrinsic to the lattice potential itself and therefore
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Figure 3.1: (a) Optical fields involved in degenerate Raman sideband transitions (cf. Fig. 2.1). In reality, the 860 nm
dipole traps have a small angle with respect to the cavity axis. The magnetic guiding field ~B itself has a controlled
tilt α. Optical pumping is applied along the dipole trap (780 nm) or the cavity axis (780 / 795 nm). (b) The
schematic drawing shows two different ways of reducing the quantized motional state |m〉 in an approximated
harmonic trap potential with trap frequency ν. The blue-detuned lock laser trap (770 nm) drives σ±-polarized
two-photon transitions, whereas the red-detuned dipole traps drive a combination of σ± and π. For the 860 nm
beams, the addressed potentials are not exclusively along the propagation direction, since their wave vector projects
along the cavity axis as well. Repumpers (not shown) transfer the population back towards |F,mF〉 = |2,−2〉, such
that Raman cooling will be constantly present if Equation 3.1 is fulfilled. In F = 1, atoms are lost due to Raman
heating and the absence of cooling.

supersedes a separate set of phase-locked lasers – a convincing argument if one is interested in simplifying
experimental setups.

To observe a cooling effect, the dipole trap beams need to be able to address σ± and π-transitions
simultaneously, while the Zeeman splitting ∆ωB in the presence of a magnetic guiding field strength B

has to match a multiple m of the trap frequency ν [115]:

∆ωB = m · 2π · ν . (3.1)

In [107–109], the lattice consists of three coplanar laser beams, of which two are linearly polarized in
the lattice plane perpendicular to the quantization axis. The third one is elliptically polarized to enable
Raman coupling. Our situation is displayed in Figure 3.1(a). We notice the cooling effect, when the
quantization axis is not collinear with the cavity axis (α , 0). At the same time, the alignment of DTy is
in reality not perpendicular to DTz, as introduced in Figure 2.1, but it has a small angle of ∼ 8◦. For DTx,
which is orthogonal to the imaging plane, we estimate that the angle is below 20◦. As a result, the DTs
(with linear polarization) are no longer purely π-polarized as in [60] and mF-state changing two-photon
transitions can occur.

Two examples of degenerate Raman cooling transitions, which change the approximated harmonic
oscillator state with a vibrational excitation m, are indicated in Figure 3.1(b). The red-detuned, 860 nm
traps have two equivalent possibilities to change m by ∆m = −1. For circularly polarized traps – as
our blue-detuned, 770 nm intra-cavity dipole trap – motional state changes of ∆m = ±2 have been
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3.1 Degenerate Raman Sideband Cooling of a Single Atom
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Figure 3.2: (a) A measurement of the atom trapping lifetime τ in dependence of the Zeeman splitting ∆ωB reveals
degenerate Raman cooling whenever the absolute value of the magnetic field leads to a Zeeman level shift on the
order of the average trap frequencies νx = νy = (350 ± 1) kHz and νz = (224 ± 5) kHz. (b) Measurements of the
survival probability at a fixed, but tilted magnetic field lead to drastically different lifetimes depending on whether
optical pumping by probe light is present (yellow line) or not (red line). From a stretched-exponential fit (see
Eq. 3.3), 1/e lifetimes (dashed, black line) of (42.9 ± 1.0) s and (1.0 ± 0.1) s are obtained, respectively.

reported [107]. In the first case it is straightforward to see that an atom prepared in |F,mF〉 = |2,−2〉 can
undergo only four cooling cycles before it ends up in a dark state. Hence, long atom observation times
probing the cycling transition are only possible in the presence of a repumper |1〉 → |2〉 and a dominantly
σ−-polarized optical pumper (e.g. the probe field |2〉 → |3′〉), which pumps the atoms back towards the
initial state, such that many more iterations are possible until the atom is in the ground state |m = 0〉.1 It
is worthwhile to point out a few subtleties involved in this scheme: Atoms in F = 1 are heated out of the
trap in F = 1 due to the opposite sign of the Landé g-factor (g2 = −g1 = 1/2). For opposite probe light
circularity, cooling is not observed at all for atoms in F = 2.

Aiming to establish degenerate Raman transitions as a robust standard cooling scheme to counteract
lock laser induced heating, we measure the atom trapping lifetime τ in dependence of the Zeeman splitting,
which is regulated by adjusting the current in the Bz coil [60]. The result is shown in Figure 3.2(a). The
individual data points are obtained from lifetime measurements, during which all trapping and repumping
fields are present and the probe light constantly interrogates the atom’s presence. Their confidence
intervals (CIs) are extracted via the bootstrapping method [116]. The error of the fit f (x, ~y) with n

parameters yi and their one-sigma errors ∆yi is visualized by two enclosing curves

f+ (x) = max
[

f (x, (y1 + ∆y1, ..., yi, ..., yn)), ..., f (x, (y1, ..., yi, ..., yn + ∆yn))
]

,

f− (x) = min
[

f (x, (y1 − ∆y1, ..., yi, ..., yn)), ..., f (x, (y1, ..., yi, ..., yn − ∆yn))
]

.
(3.2)

As a model, we use the sum of two Gaussians, since the field configuration α = 0 should lead to
projections of DTx (DTy) on x (y) and z, respectively. It also takes into account that both resonances are
affected by inhomogeneous broadening due to the distribution of atom positions in the 3D trap. At a
splitting on the order of the average trap frequencies νx = νy and νz, we expect an increase in the survival
probability. In other words, DTx,y are cooling independently or even in combination with each other, but
each in two dimensions. The magnetic-field to frequency calibration has been performed with microwave
spectroscopy, which is briefly discussed in Section 3.3. As a first estimate, we obtain the trap frequencies

1 Later on, we replace both optical pumping beams with 795 nm light (Sec. 2.4).
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νx = νy = (350± 1) kHz and νz = (224± 5) kHz, although one has to state that the data quality is affected
by the long measurement time per point. In Section 3.2.2 we obtain more accurate values via Raman
spectroscopy. A surprising outcome in Figure 3.2(a) is the absence of peaks towards higher splittings,
which could be expected for an atom spending most of its time in |F,mF〉 = |2,+2〉. However, microwave
spectroscopy shows a prevalent population in |F,mF〉 = |2,−2〉. One could argue that only σ±-transitions
are involved, such that ∆mF = ∆m = 2 and cooling only takes place along z. The idea has to be discarded
as well, since we also observe an effect on the survival probability of atoms in a 1D trap outside the cavity
region; so the cooling has to take place along y as well. Summarizing, despite the absence of higher-order
peaks in Figure 3.2(a), a trapping lifetime-enhancing process connected to degenerate Raman transitions
is identified and leads to cooling in all dimensions.

In Figure 3.2(b), we try to maximize the cooling effect by tilting ~B to α = 45◦, which increases the
σ-polarization component of the DTs. At the same time, we fix ∆ωB = 2π · 0.35 MHz. The error bars are
given by the Clopper-Pearson CI [117] in accordance with our threshold-based state detection method
described in [51, Sec. 5.2]. The data points are fitted with a stretched exponential of the type

S(t) = A e−(t/τ)n

(3.3)

and its errors are visualized following Equation 3.2. While the function S(t) is a phenomenological
approach, it represents the global time evolution for a distribution of decay processes with independent
amplitudes Ai and lifetimes τi well enough to optimize cooling parameters [118–120]. When the atoms are
constantly repumped in the presence of probe light, an increased 1/e survival probability of (42.9± 1.0) s
is observed. In the absence of nonstop probing, the average lifetime drops to (1.0 ± 0.1) s. In this case,
the atoms do not necessarily escape all three traps2, but they are no longer coupling to the resonator.

The drawback of the degenerate cooling scheme with α , 0◦ is, that the wave vector ~ky of the red
dipole trap DTy is non-orthogonal to the quantization axis given by ~B, leading to spurious effects: On
the one hand, off-resonant fields without pure π-polarization give rise to higher-order energy shifts in
the magnetic sublevels, which are known as vectorial light shifts [121, 122]. On the other hand, and
more importantly, with a tilted magnetic field vector, polarization-sensitive addressing of individual
atomic transitions is impossible. For α = 0◦, the robust technique of σ−-pumping by probe light transfers
a majority of the atomic population into |2,−2〉. But to define a strong guiding field as required for
addressing selected Raman transitions and to avoid heating processes as described in Figure 3.1(b), the
Zeeman splitting has to be bigger than the individual trap frequencies. Therefore, we have to establish
another cooling scheme.

3.2 Carrier–Free Raman Manipulation

Previously, resolved-sideband Raman cooling has been demonstrated in our apparatus in a 1D trap
without cavity [52, 60]. Although this approach of two running-wave Raman beams is the most common
one [123–125], we showed that in a CQED experiment the blue detuned standing-wave dipole trap
created by lock laser light can also serve as a Raman beam. Furthermore, it allows for fundamentally
lower temperature limits due to the absence of two-photon carrier transitions [63, 68]. In this section, we
describe an adaption of this carrier-free Raman manipulation scheme in order to cool in three dimensions.

The dedicated Raman laser (ΩR) at 770 nm is phase-locked to the lock laser (ΩL) as the last element
in the cavity lock chain, see Section 2.2. The frequency offset corresponds to the hyperfine splitting of

2 Lifetime measurements in a 1D trap reveal lifetimes on the order of 10 s, pointing at heating effects specific to the cavity
region.
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Figure 3.3: (a) The circularly polarized, blue detuned dipole trap drives Raman transitions in combination with
a running-wave Raman laser propagating in the xy-plane. The quantization axis along the cavity is defined by a
magnetic bias field. Circularly polarized light at 795 nm optically pumps the atom. (b) Illustration of resolved-
sideband Raman cooling. The single-photon detuning of ∆ = 3∆νFSR = 2π · 4.8 THz is set by the lock laser, while
the two-photon detuning δ between the Raman beams is given by the trap frequency ν. In order to cool the atom,
we drive Raman transitions between the two well-isolated states |2,−2〉 and |1,−1〉, which lower the motional state
from |m〉 to |m − 1〉. An incoherent repumper transfers the population back to |2,−2〉, where it is in a dark state
with respect to the light fields as soon as m = 0 is achieved.

∆HF = 2π · 6.835 GHz plus a variable two-photon detuning δ. The associated optical setup is based on an
OPLL [82, 126, 127] in a similar configuration as in [52]. While a fraction of the laser power is used for
frequency stabilization, the majority is sent to the experiment as pulses for spectroscopy or cooling. The
geometrical beam configuration for Raman cooling is displayed in Figure 3.3(a). The Raman laser is
guided under a slight angle3 diagonally through the xy-plane, which ensures that it has projections to
both DTx and DTy. As a repumper, we now use only D1 light at 795 nm, which propagates along the
quantization axis defined by a magnetic bias field of ∼ 1.8 G (see Sec. 3.3).

Figure 3.3(b) illustrates a cooling cycle. At a Zeeman splitting of 2π ·1.25 MHz and δ = 2π ·ν, we drive
Raman transitions between the two well-isolated states |2,−2〉 and |1,−1〉, which lower the motional
state from |m〉 to |m − 1〉. The virtual level is ∆ = 3∆νFSR = 2π · 4.8 THz blue detuned with respect to the
probe transition. An incoherent repumper transfers the population back to |2,−2〉, where it is in a dark
state with respect to the light fields as soon as m = 0 is achieved.

3.2.1 Raman Spectroscopy

With the intention to characterize the trap frequency νz in the simplest possible configuration, we perform
Raman spectroscopy by sending the Raman laser along DTy [69]. This trap is adiabatically lowered as
soon as an atom is successfully transported to the cavity region and kept in DTx,z, see Figure 3.4(a). Hence,
only motional sidebands connected to z are expected. The experimental sequence consists of degenerate
Raman cooling followed by an increase of the bias field in order to remove |2,−1; m〉 → |1, 0; m′〉
transitions from the spectrum. An optional waiting time of 100 ms is used to expose the atoms to heating
effects. Subsequently, the state |2,−2〉 is prepared by optical pumping, followed by a short spectroscopy

3 The axis is shared with the MOT optics, see Figure 2.1.
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Figure 3.4: Raman spectroscopy. (a) The running-wave Raman beam is sent along DTy, which is ramped down
adiabatically after the feedback transport. The intra-cavity standing wave given by the blue detuned lock laser
light acts as the second Raman field for two-photon transitions. A flow diagram of the experimental sequence is
shown to the right. For Raman spectroscopy, the magnetic field is increased to isolate the transitions depicted in
Figure 3.3(b). For state detection and degenerate Raman cooling, it is reduced to fulfill Equation 3.1. (b) Schematic
drawing of the expected sidebands (±νz,±3νz, ...) along with the measured, carrier-free Raman spectra. The limited
feedback bandwidth of the lock laser OPLL gives rise to additional sidebands (black line). Without heating the
atoms (blue line), the mean motional excitation along z is measured to be mz = (0.13 ± 0.03), which indicates that
the degenerate Raman cooling process is capable of cooling the atoms to the ground state. With heating (red line),
the cooling sideband emerges on the right side of the absent carrier transition (black, dashed line).

pulse. The magnetic field is reduced to its original value, allowing for cooling during the cavity-assisted
readout of the hyperfine state. The same atom is recycled for 20 iterations, during which the two-photon
detuning δ takes different values. They are finally combined in the spectrum in Figure 3.4(b), where the
data point uncertainty is given by the Clopper-Pearson CI. A sum of multiple Lorentzian dips is fitted to
the data and the error is visualized by bands according to Equation 3.2.

Since the atoms are trapped at a standing wave node of the Raman field along z, the electric field
amplitude is proportional to sin (kzẑ) and the resonant coupling between the spin-motional states is
described by

Ω↑mymz,↓m′ym′z = Ωb| 〈↑m′ym
′
z| sin

(

~kzẑ
)

ei~kyŷ σ̂† |↓mymz〉| ,
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in analogy to [63]. σ̂† = |↑〉〈↓| represents the spin raising operator, while the bare two-photon Rabi

frequency is given by Ωb. Since ~ky · ~kz ≈ 0, it follows that sin
(

~kzẑ
)

ei~kyŷ is an asymmetric function along
ẑ. Raman transitions therefore change the symmetry of the vibrational wave function, which imposes
the selection rule ∆mz = ±1,±3, .... In the Lamb-Dicke regime, the geometry of the light fields can be
expressed in first-order terms of harmonic oscillator raising b̂

†
z , b̂
†
y and lowering operators b̂z, b̂y:

sin
(

~kzẑ
)

ei~kyŷ ≈
(

~kzẑ
) (

1̂y + i~kyŷ
)

= ηz

(

b̂†z + b̂z

)

+ i ηyηz

(

b̂†z b̂†y + b̂zb̂
†
y + b̂†z b̂y + b̂zb̂y

)

,
(3.4)

with the Lamb-Dicke parameter η = ∆kR
√

~/(2 matom ωtrap) and ∆kR = |~kz −~ky| [113]. Without a trapping
potential along ŷ, we hence expect the first and third order sidebands of z. They reveal a trap frequency
of νz = 485 ± 27 kHz. In comparison to Section 3.1, we use a deeper optical lattice in order to simplify
the sideband identification. Since we are driving the system strongly, another set of dips shows up, which
is attributed to the OPLL servo bumps at ∼ 1.3 MHz.4 They mainly appear for the heating sideband of
the z direction. The depth of the dips depends on the experimental details of the Rabi spectroscopy pulse
and does not play a role in calculating the mean excitation number mi along the direction i. Assuming a
thermal equilibrium, it is given by the relation

mi =
Ri

1 − Ri

,

where Ri is the ratio of cooling to heating sideband [63]. Since in the presented spectra the sidebands
overlap, we extract the height ratio from the fitted amplitudes. The mean motional excitation along z is
measured to be mz = (0.13 ± 0.03). Since the trap frequency along z is only slightly bigger than νx,y, for
which the Zeeman splitting was set, we conclude that the degenerate Raman cooling process is capable of
cooling the atoms to the three-dimensional ground state. With the value of mz, a one-dimensional ground
state population m0,z = 1/(1 + mz) of (88.5 ± 2.7) % is found.

To observe an effect of the atom temperature on the spectrum, we introduce a waiting time before the
spectroscopy pulse, which leads to a slightly shifted, overall broader and washed-out spectrum, in which
the rise of the cooling sideband is clearly visible. In this case, the atoms leave the motional ground state
up to mz = (0.47 ± 0.06).

3.2.2 Resolved–Sideband Raman Cooling

For the final cooling scenario, the trapping and Raman field configuration is shown in Figure 3.5(a). The
running-wave Raman component travels diagonally through the xy-plane, such that sidebands in both
red-detuned dipole traps are addressed. The experimental procedure is similar to the previous one, except
for an additional resolved-sideband Raman cooling slot before the spectroscopy, for which we switch
the value of δ. The optional heating is realized by driving a heating-sideband transition, which we call
Raman heating and which requires switching δ as well. Overall, with now only a single ramp of the
magnetic field, the sequence is much shorter and allows 122 (25) repetitions with the same, cold (hot)
atom before it is lost – meaning that a full spectrum for each cold atom can be recorded within ∼ 2 s.

Figure 3.5(b) schematically displays the expected, additional sidebands of DTx,y, which are degenerate.
Here, the trap frequency νz has been reduced, but if the intra-cavity trapping potential is too low, the
atom loss increases. Experimentally we find, that a reduction to νz = (309 ± 9) kHz is possible, while

4 We were able to increase them to > 1.6 MHz by reducing the length of the electrical feedback loop (cf. spectrum in
Fig. 3.5(b)).
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Figure 3.5: Raman cooling. (a) The running-wave Raman beam is sent through the xy-plane such that it projects
onto DTx,y. The experimental sequence is extended by a Raman cooling pulse. To avoid waiting times, we address
heating sidebands to record a spectrum for hot atoms. Since the guiding field can now take large absolute values
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the red detuned dipole traps with equal trapping frequencies νx = νy have to be taken into account. In the presence
of Raman cooling pulses at a two-photon detuning δcool = 2π · 0.35 MHz, the mean motional state numbers are
given by mz = (0.02 ± 0.07) and mx,y = (0.18 ± 0.11). Details are found in the main text.
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νx,y = (385 ± 12) kHz is increased compared to the previous setting. In this trapping configuration, it is
expected that Equation 3.4 segues into

sin
(

~kzẑ
)

ei~kyŷ ei~kx x̂ ≈
(

~kzẑ
) (

1̂y + i~kyŷ
) (

1̂x + i~kx x̂
)

. (3.5)

In reality, the angles of the red dipole traps give rise to a combined potential with new eigenmodes
that are rotated by 45◦ relative to the individual lattices, which leads to first order sidebands along x, y

in case of νz ≈ νx,y. This increased dimensionality of Raman transitions in a slightly non-orthogonal
optical lattice has also been discovered by Neuzner et al. [59]. Therefore, in the fit we do not only take
into account the expected sidebands of Equation 3.5 up to the third order along z, but also the first (and
second) order sidebands along x, y and the second order along z with its attributed higher order sidebands
along x, y. The carrier transition is taken into account as well. It might be visible due to the sum of
overlapping νx,y-sidebands as well as the residual gravitational sag discussed in [68]. Additionally, the
running-wave component of the cavity field is limiting the carrier suppression to S = 4F /π ≈ 104, which
is two orders of magnitude lower than in the previous high-finesse cavity, where we have observed an
even higher ratio between carrier and heating sideband.

Previously, two-dimensional ground state cooling was achieved by tuning the trap frequencies [63]. We
used a weaker, second order sideband of DTy, which was overlapped with the first order cooling sideband
along z, i.e. adjusting νy = 2νz so that both directions were addressed simultaneously. As opposed to that
approach, we tune the trap frequencies νz and νx,y almost into resonance, which enhances the motional
coupling and allows three-dimensional ground state cooling. We observe that the detuning for cooling δcool

is relatively insensitive, which allows us to address all cooling directions by setting δcool ≈ 2π · 0.35 MHz.
The mean motional state numbers are given by mz = (0.02 ± 0.07) and mx,y = (0.18 ± 0.11). This
corresponds to a one-dimensional ground state population of m0,z = (97.8±7.1) % and a three-dimensional
one of m0,3D = m0,z · m2

0,(x,y) = (69.8 ± 0.2) %.5 In the presence of Raman heating, the motional state
numbers change to mz = (1.39± 0.85) and mx,y = (0.15± 0.16). The number along x and y is very similar
to the one obtained for the cold spectrum, which can be attributed to the clear uprising and broadening of
the respective transitions. Hence, the motional state cannot be extracted accurately from the fit to the
spread data any longer.

The cooling time slots to obtain these results have been longer than high repetition rate experiments
demand (cf. sequence in Sec. 5.2.1). Problems of our scheme are, that on the one hand the far detuned
Raman fields lead to a small two-photon Rabi frequency [129]

Ωb = ΩRΩL/(2∆) . (3.6)

On the other hand, the atoms do not see a high intensity of Raman light along z since it simultaneously
traps them in a node of the field, which is why we cannot use Equation 3.6 to determine Ωb. However, an
estimate of Ωb and thus the rate at which we should be able to cool can be obtained from the area A of
the sidebands according to

Ωb =
1
ηz

√

2
Az,heating − Az,cooling

π tpulse
, (3.7)

which is derived in [59]. The requirement for this approach is a small pulse area along with the
condition that the sideband area has to depend linearly on the duration of the spectroscopy pulse tpulse.
Comparing the first spectrum (cf. Fig. 3.4(a)) with a pulse duration of 0.2 ms to the cooling spectrum with

5 In a similar experiment with running-wave Raman beams, (89 ± 2) % have been achieved [128].
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tpulse = 0.1 ms, we see that the area decreases by a visible amount, which strengthens the assumption that
we are in the linear regime. For the experimentally determined Lamb-Dicke factor ηz ≈ 0.16 Equation 3.7
yields Ωb ≈ 2π ·428 kHz. For the first-order sidebands along z the Rabi frequency reduces to 2π ·68 kHz.6

This result is in conflict with our observation of atom loss apart from millisecond-long cooling times
(also in [68]). A scan of the repumping power versus the lifetime leads to the optimum repumping rate
and avoids inefficient cooling to a certain extent. Notwithstanding these efforts, the technique of driving
the cooling sideband longer than the decoherence time to shuffle the population between the F-states is
not ideal. A better approach would be to apply alternatingly a Raman π-pulse and a follow-up repumping
pulse [23].

A future improvement could be to use a standing-wave Raman field inside the cavity, which is closer to
resonance and addresses the D1 line [128]. As opposed to our scheme, the atoms are not localized at the
minimum of light intensity. Another possibility is to give up on the resource-efficient carrier-free Raman
cooling scheme and to address sidebands with free-space Raman beams. However, Raman cooling
presently enables interesting options, such as the minute long, free-space imaging of atoms by probing
the cavity only.7 More importantly, the technique allows us to apply pulsed cooling, which enables long
trapping lifetimes and pure mF-state preparation, as we will see in the next section.

3.3 State Preparation and Microwave Spectroscopy

In order to accurately prepare the internal state of an atom, the transitions addressed by optical pump-
ing [111] have to be selected. The effect of polarized light depends on the orientation of its propagation
direction with respect to the quantization axis of the atom. We choose to define this axis by applying a
magnetic field along z that breaks the degeneracy of the Zeeman manifold. It is created by compensation

coils, which compensate the magnetic field of both earth and lab equipment, e.g. the ion pump [60]. By
performing microwave (MW) spectroscopy, we identify the allowed microwave transitions shown in
Figure 3.6(a). The Zeeman splitting ∆ωB between the m f -levels is proportional to the absolute value of
the weak, magnetic bias field B = |~B| [51] and ensures that only selected states of the Zeeman manifold
interact with each other during Raman processes (as in Sec. 3.2.2).

In the absence of any field, i.e. when all external fields are entirely compensated (Bx,y,z = 0),
all microwave transitions are degenerate and state transfer is only observed for the MW frequency
corresponding to the magnetic field insensitive transition number 4. We experimentally search for this
spectrum and subsequently calibrate the conversion of coil current Iz to magnetic field strength Bz(Iz) at
the atom position. This allows to set a strong guiding field for which the frequency of the MW transitions
is already known.

In the following, the state preparation efficiency in |2,−2〉 is investigated, as this is the initial state
for the photon storage attempts in Section 6.2. The experimental sequence to prepare the state and to
measure its population is shown in Figure 3.6(b). It consists of loading, transporting and cooling an
atom, followed by a short state preparation and microwave spectroscopy pulse before the F-state is
detected. The pulse duration of 5 ms is chosen to wash out any coherent Rabi oscillations. In particular,
for the microwave manipulation we transport the atom 20 µm out of the cavity region to avoid fictitious
magnetic fields, which arise from the circularly polarized lock laser field [51]. This transport along DTx,
perpendicular to the conveyor belt, is executed back and forth 44 times per atom, while each time the
microwave frequency νMW is stepped.

6 In the previous CQED setup we measured a heating-sideband Rabi oscillation frequency of 2π · (38.2 ± 0.4) kHz [63, 68].
7 It might be interesting to vary the probe / lock laser frequency in order to measure the vacuum Rabi splitting in free-space

rather than by cavity reflection.
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Figure 3.6: (a) Allowed microwave transitions between the Zeeman levels of the rubidium hyperfine ground states.
In order to prevent inhomogeneous broadening of the individual transitions, the microwave pulses are applied
outside the cavity region, while the state is prepared in the 3D dipole trap. (b) The sequence for optical pumping to
|2,−2〉, which is needed for photon storage (see Sec. 6.2), uses both cooling mechanisms and an atom transport
perpendicular to the conveyor belt. (c) The mF-pumping efficiency using circularly polarized 795 nm light is
determined by a fit of three equidistant Lorentzian curves. From the relative area of the dips we obtain an estimate
for the state preparation efficiency, which is given by ηstate = (95.8 ± 0.1) %. Due to its polarization, the microwave
only addresses σ±-transitions, which is why dip 1 is a measure for the population in mF = −2 (and 3 for mF = −1
and 0). (d) The population is depumped with 780 nm light of all polarizations. Here, the microwave is able to
drive transitions 1-6, but its polarization is unknown. The resulting mF-distribution over the entire F = 1 Zeeman
manifold indicates that mF = 0,±1 have to be taken into account for our photon generation experiments (see
Sec. 5.2). The data has originally been presented in [51] and is reprinted by courtesy of J. Gallego.
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Figure 3.6(a) shows that in the presence of Bz , 0, only a single transition addresses the population
in |2,−2〉. As a consequence of our guiding field of ∼ 1.8 G, transition 1 will be driven by νMW ≈
3 · 0.7 MHz/G · 1.8 G + ∆HF ≈ 3.8 MHz + ∆HF [58]. To ensure that the microwave pulse addresses
σ−-transitions, we align the MW waveguide to the quantization axis. The spectrum in Figure 3.6(c)
reveals that indeed π-transitions (position 2) are suppressed and the population in mF = −1 is only
identified by transition 3 (along with population in mF = 0). Reference points indicate that successful
F-pumping is achieved in > 98 % of the cases. The mF-pumping efficiency is determined by a fit of
three equidistant Lorentzian curves. From the relative area of the dips we obtain an estimate for the state
preparation efficiency, which is given by ηstate = (95.8 ± 0.1) %.

In order to prepare the atoms for photon generation (see Sec. 5.2), we depump the population in |2,−2〉
by applying cross-polarized 780 nm light along DTy such that σ± and π-transitions are addressed. The
resulting mF-distribution over the entire F = 1 Zeeman manifold is displayed in Figure 3.6(d) and has
been originally presented in [51]. The difference here is that the microwave has driven the transitions 3 to
6 equally. For depumping, we use the more efficient D2 transition since the D1 light only depumps the
population due to its finite polarization purity.

In conclusion, we have gained control over the internal and external states of a single atom coupled to
the optical cavity. Properly defining the quantization axis along the resonator has enabled the preparation
of an initial state for both photon generation and storage by optical pumping techniques. The two
presented cooling mechanisms allow to work with well-coupled atoms for several seconds. To our
knowledge, it is the first time that degenerate Raman sideband cooling is used to cool a single atom. Only
recently, the extended carrier-free Raman cooling scheme has been found independently by Neuzner et

al. and our team. With cooling – and thus tighter confinement – the average coupling strength between a
single atom and the cavity has increased significantly compared to the previous setup [51, Sec. 4.2], as
we will see in the measurements presented in Chapter 5. But in order to understand our system, we first
focus on its theoretical description.
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CHAPTER 4

A Coherently Driven Multi–Level Atom in a

Dissipative Cavity

T
heoretical predictions on the behavior of N-level quantum objects coupled to quantized light-
fields with n Fock states are a tough challenge for classical computers. Usually, they are
described in the density-matrix formalism, which requires to solve differential equations with
(n · N)2 dimensional matrices. It was not without reason that quantum systems themselves

were proposed to simulate quantum, many-body phenomena [6, 130].
However, a classical computing approach is still possible if we reduce the complexity of our system.

The preparations in Chapter 3 were based on this approach: We cooled the atoms to their motional ground
state and initialized them in a well-defined Zeeman state, which is isolated by a strong guiding field. The
latter also ensures a high purity for addressing polarization-sensitive transitions. As a consequence, the
dynamics of our system can be approximated by a four-level atom coupled to a two polarization modes
of an optical resonator.

This chapter is devoted to the development of a simulation which describes our experiments in the
chapters to come in a simplified, yet qualitatively accurate way. In Section 4.1, we develop a model,
which allows us to predict the evolution of three states and a single cavity mode at any point in time in
order to understand underlying processes and to give an estimate of the efficiency of storing or generating
a photon in this idealized system. In Chapter 6 we will discuss pulse sequences for photon storage in
such a Λ-configuration. In contrast, a realistic description of our system is given by a four-level atom
coupled to two resonator modes, which leads to different dynamics (Sec. 4.2).

Both models are implemented in a numerical simulation based on a full quantum-mechanical master
equation, which is described in Section 4.3. We discuss our very own pulse optimization algorithm,
which is used in the next chapter to explain the shape of generated photons.

4.1 The Evolution of an Open Quantum System

First, we start with the more intuitive scenario of a closed system: The well-known Jaynes-Cummings
Hamiltonian [131] describes the interaction between two atomic levels and a quantized mode of an
electromagnetic field. We extend this model to a three-level atom with two ground states |g1,2〉 and
one excited state |e〉, where only the transition from |g2〉 → |e〉 with frequency ωa2 is resonant with the
cavity [105]. The Hamiltonian of this atom-cavity system consists of several parts:

ĤJC = Ĥa + Ĥc + Ĥint ,
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where Ĥa and Ĥc are the separate Hamiltonians of atom and cavity mode, while Ĥint describes the
interaction.

We treat the atom-photon interaction in both dipole- and rotating-wave approximations, and simplify
the individual Hamiltonians by putting the dynamics in the frame of the pulse and Raman laser with
frequencies ωp,R. The atom energy in the presence of a single-photon detuning ∆p-a = ωp − ωa2 with
respect to the excited state and a two-photon detuning δ = ∆p-a −

(

ωR − ωa1

)

with respect to the ground
state |g1〉 is given by:

Ĥa = − ~∆p-a · σ̂ee − ~ δ · σ̂g1g1 . (4.1)

We introduce the raising and lowering operators σ†
kl
= |l〉〈k| and σkl = |k〉〈l| which describe the excitation

and de-excitation of the atomic spin, respectively.
The energy of the cavity field can be expressed in analogy to the spectrum of a harmonic oscillator by n

Fock states |0〉 , ..., |n〉. The creation- and annihilation operators â† and â add or remove a photon from the
cavity modeωc, so that its energy for zero pulse-cavity detuning ∆p-c =

(

ωc − ωa2

)−∆p-a = ∆c-a−∆p-a = 0
reads:

Ĥc = − ~∆p-c · â†â = 0 .

The interaction term describes the coupling between the atomic dipole and the electric field of the
cavity mode, which occurs with the Rabi frequency 2g:

Ĥint = i ~ g
(

σ̂†g2eâ + σ̂g2e â†
)

. (4.2)

We extend this model by two coherent, time-dependent driving terms, for which the overall Hamiltonian
Ĥ(t) is given by

Ĥ(t) = ĤJC + Ĥd(t) , (4.3)

with the driving Hamiltonian

Ĥd(t) = i ~
Ω(t)

2

(

σ̂†g1e − σ̂g1e

)

+ ~E(t)
(

â† + â
)

. (4.4)

The first term with Ω(t) stands for the control laser in a Λ-configuration and addresses the atomic
transition which is off-resonant with respect to the cavity. The second term populates the cavity mode
according to the driving strength E(t).

Without dissipative processes, i.e. the interaction of our system with the environment, we cannot
control the ground state population of our system, as is intuitively clear from Equations 4.4 and 4.2:
Any excitations brought into the system would lead to infinite oscillations between the states. The
environmental states on the other hand are unknown, so we introduce the density matrix formalism to
trace them out and to ’open’ our system to loss channels. The Schrödinger equation is replaced by the
master equation [132], which describes the density matrix ρ̂ of our closed system at any point in time:

dρ̂

dt
= L̂ ρ̂ = − i

~

[

Ĥ, ρ̂
]

+ Ĉρ̂ Ĉ† − 1
2

(

ĈĈ†ρ̂ + ρ̂ ĈĈ†
)

. (4.5)

The Liouvillian super-operator L̂ contains both the coherent dynamics given by Equation 4.3 and the
Lindblad terms attributed to the decay and loss channels, which are specified by the collapse operator Ĉ:

Ĉ =
√

2γ1 σ̂g1,e +
√

2γ2 σ̂g2,e +
√

2κtotal â . (4.6)
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Figure 4.1: Abstract sketch illustrating all parameters our simulations depends on. (a) A three-level atom with
two ground states |g1,2〉 and one excited state |e〉 is placed inside a resonator and coherently driven by the pulse
and Raman laser (cf. Fig. 2.3) with the respective Rabi frequencies 2g,Ω. Both cavity and pulse laser have a
single-photon detuning ∆c-a = ∆p-a with respect to the excited state. A resonant Raman condition is found for a
two-photon detuning δ. The system has decay channels, of which κ is the transmission rate of the HT mirror and
κloss is the absorption and scattering loss rate at the mirrors along with the undesired transmission of the LT mirror.
The excited state decay Γ = 2γ = 2(γ1 + γ2) re-populates both ground states. (b) To simulate our measurements,
a four-level atom coupled to two σ±-polarized cavity modes is required. We extend the previous model with an
additional ground state |g3〉 of equal energy as |g2〉. It is coupled to the excited state with 2g′. A new branching
ratio γ = γ′1 + γ

′
2 + γ3 has to be taken into account. In (c) and (d), both models are compared: We consider an atom

in the state |g2〉 and 〈â†â〉 = 1 at t = 0 and let the systems evolve coherently in the absence of decay processes
(closed system). With g =

√
2/3 g′ = 2π · 34 MHz, we observe the expected Rabi oscillations at a rate 2g/2π

for the Λ-configuration, whereas in the tripod configuration the population oscillates between |g2〉 and |g3〉, since
g′ ≈ g.
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The transmission rate κ through the HT mirror and the unwanted damping of the field due to absorption,
scattering at the mirrors and leakage through the LT mirror at rate κloss form the total cavity loss rate
κtotal = κloss + κ. The excited state decay Γ = 2γ to both ground states is considered with independent
rates γ1,2 such that γ = γ1 + γ2. An abstract sketch involving all parameters introduced until now is
shown in Figure 4.1(a).

The conversion of modes on the outside of a resonator to modes on the inside is commonly treated by
the input-output formalism [133, 134]. For mapping a weak coherent pulse with electric field probability
amplitude φin(t) into the atom, we have to express the driving term E(t) in terms of φin(t) which contains
on average ns photons:

E(t) =
√

2κ · √ns · φin(t) . (4.7)

Here, we have considered that φin(t) has a temporal shape of length T , to which it is normalized such that
∫

|φin(t)|2 dt = 1, and a mean number of photons ns.

In summary, we have developed a model, which describes the temporal evolution of an idealized,
three-level atom coupled to a resonator, including losses as well as driven excitations from the outside.
We can extract information, e.g. about the average intra-cavity photon number n = 〈â†â〉 at any point
in time. In the case of single-photon generation, the simulation provides predictions for E(t) = 0. In
Section 6.1.2 we solve Equation 4.5 to investigate the efficiency of coherent-pulse storage in dependence
of its various parameters. For t > T , the system reaches a steady state (L̂ ρ̂ = 0), which allows us to
define the storage efficiency ηstorage by the atomic state population in |g1〉:

ηstorage =
ρg1g1

ns

=
〈σ̂†g1g1

σ̂g1g1〉
ns

. (4.8)

Leaving the regime of weak coherent pulses with on average one photon (ns = 1), we explore the
dynamics of true single-photon Fock-state storage by simulations in the limit ns → 0. Remarkably, the
results for ηstorage then correspond exactly to the predictions in [135, 136]: In the adiabatic storage regime
of TCγ ≫ 1, the storage efficiency is limited to:

ηmax =
C

C + 1
, (4.9)

where C =
g2

κ γ is the cooperativity parameter.

In [137], the - to our knowledge most recent - model to describe single-photon storage is unnecessarily
complex, as it involves the coupling of several electromagnetic modes inside and outside the resonator.
Besides collecting atomic population due to excited state decays (γi) in an auxiliary state outside the
three-level atom1, the main new aspect of that work is an analysis of the drop in efficiency caused by
parasitic losses (κloss). In this situation, a new limit is found:

η′max =
κ

κ + κloss

C′

C′ + 1
, (4.10)

where C′ = g2

(κ+κloss) γ
is the loss-modified cooperativity. For κloss , 0, we obtain efficiencies according

to 4.10 as well2. But in our model,
∑

i ρgigi
+ ρee is conserved, which is a more realistic case.

1 Without explanation, but a benefit would be the ability to quantify the free-space loss.
2 Indirectly visible in Figure 6.2(b), where ηstorage is compared for κ and κtotal.
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4.2 A Four–Level Atom Coupled to Two Cavity Modes

In our experiment, we are not dealing with a Λ-, but a tripod configuration [138]: The mediating excited
state is coupled to both σ± cavity modes (cf. Fig. 5.1(b)). This means an additional state |g3〉 of equal
energy as |g2〉 has to be taken into account, as shown in Figure 4.1(b). The corresponding operators acting
on the photon number in the second cavity mode are b̂† and b̂. Thus we have to update the Hamiltonian
in Equation 4.2 and the collapse operator in Equation 4.6 to

Ĥ′int = i ~ g
(

σ̂†g2eâ + σ̂g2e â†
)

+ i ~ g′
(

σ̂†g3eb̂ + σ̂g3e b̂†
)

and
Ĉ′ =

√

2γ′1 σ̂g1,e +

√

2γ′2 σ̂g2,e +
√

2γ3 σ̂g3,e +
√

2κtotal â +
√

2κtotal b̂ ,

with the new coupling strength g′ and an adjusted branching ratio of the excited state decays γ3 and γ′1,2.
In reality, there are more levels to decay to, but their respective transitions strengths are weak, such that
we may neglect them. Additionally, the excited state population under coherent driving is very small at
any time and κtotal ≫ γi.

To illustrate the difference in the dynamics, we consider an atom in the state |g2〉 and 〈â†â〉 = 1 at
t = 0 and let the systems evolve coherently in the absence of decay processes. The coupling strengths
are chosen to match the special case |e〉 = |2′,−1′〉. Figure 4.1(c) shows the expected energy exchange
between cavity mode a and the excited state |e〉 at a rate 2g/2π. For the additional level and mode, the
population starts to oscillate between the two states |g2〉 and |g3〉 (Fig. 4.1(d)). Since g′ > g, there is
always population left in |g2〉. The excited state still gets populated, but the Rabi frequency is higher at
cost of the contrast. As a consequence, the efficiency of coherent manipulations based on the excited
state population will suffer, e.g. the π-flip storage of short photon pulses [135]. At the same time, a
tripod configuration opens new possibilities, since every photon generation attempt creates entanglement
between the emitted photon and the magnetic sublevels of the atom, which is e.g. useful for teleportation
experiments [139] or the generation of entanglement between different platforms [26]. In [140], the
properties of such a system are investigated and the creation of two-mode Schrödinger-cat states in the
cavity is proposed.

The cooperativity parameter C is defined for a single atom-cavity coupling rate only, and in our
example above one can see that the energy-exchange rate between atom and cavity modes has increased
by a factor of ∼ 1.5. We are not aware of any generalized rate depending on g and g′, so for any
tripod-based calculation of C we give the lower-bound cooperativity value by considering the rate g only.

4.3 Simulating our System: Numerical tools and optimization

methods

Exact analytical solutions to the master equation 4.5 are only possible in special cases. In general,
a numerical approach is the easier choice. We use QuTiP (v4.1), the Quantum Toolbox in Python

(v3.5) [141, 142] to facilitate the process of setting up state vectors, time-(in)dependent Hamiltonians
and (super-)operators and to solve Equation 4.5 with the in-built function mesolve. Based on an ordinary
differential equation solver, it evolves the density matrix and returns a time-binned array of expectation
values for a list of operators. The calculation is based on the absence of correlations between system
and environment (separability), a weak interaction with the environment such that it does not change
upon interaction with the system (Born approximation), much faster dynamics in the environment
i.e. ’no memory’ (Markov approximation) and the negligence of fast rotating terms in the interaction
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picture (secular approximation).
Searching for the highest storage efficiency, we implement optimal control techniques [143]. QuTiP

also dedicates a part of its code to Quantum Optimal Control, a set of functions implementing Chopped

RAndom Basis (CRAB) [144] and GRadient Ascent Pulse Engineering (GRAPE) [145] algorithms for
pulse optimization3. These techniques are based on standard optimization methods of which many are
already implemented in Python, e.g. the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS). While
it is straightforward to set up a problem, the interpretation of results given by QuTiP sometimes is not.
For us it turned out to be more practical to develop our own optimal control scheme, which is used to fit
obtained pulse shapes (Sec. 5.2.2) and to search for the highest transfer probability (Sec. 6.1.3).

We call it Basin hOpping Pulse Optimization (BOPO). Basin-hopping [146] is a stochastic algorithm
which is similar to the well-known Simulated Annealing (SA) algorithm. It is a meta-heuristic, probab-
ilistic technique, which tries to determine the global minimum of a cost function in a large parameter
space by accepting also worse solutions. As opposed to gradient-based search algorithms, it is less liable
to ending up in a local minimum.

The algorithm iterates through cycles composed of random perturbation of the parameters, local
optimization by a routine to be specified and acceptance or rejection of the parameter set P based on
the cost function value. We apply the Nelder-Mead method [147], also known as downhill simplex

method, for the local optimization. Based on the concept of simplices, it approximates local optima by
evaluating cost values along the P + 1 points of a volume and introducing variations such that the cost
value decreases.

We determine the optimal storage parameters with a cost function Cstorage defined as:

Cstorage = 1 − ηstorage

(

~Ω, ~δ
)

+
∑

j

CΩ j
+

∑

k

Cδk , (4.11)

where ~Ω is a time-array of amplitudes, that is interpolated before handing it to mesolve, and each entry
Ω j is constrained by CΩj . Likewise, the corresponding two-photon detunings ~δ are treated and limited
by Cδk . Using a set of interpolated amplitudes is far more reasonable than the common approach of
using Fourier components, as it reduces the parameter space significantly. A problem of Equation 4.11 is
that single Ω j entries are likely to take non-zero, divergent values without significantly improving the

storage efficiency. They are identified by solving Equation 4.5 with ~Ω
∣
∣
∣Ω j=0 . If ηstorage does not decrease

below a certain threshold, the value Ω j will be set to zero. The same procedure is repeated for δk’s. The
underlying idea is that single, less relevant amplitude points are not supposed to make use of the entire
dynamic range of the pulse modulator. In this case, the important features would be compressed to a
low-transmission window, for which distortions of the waveform are observed (cf. Fig. 5.2(a)).

If we are interested in the interpretation of generated single-photon pulse shapes, we use a fit model
based on the cost function Cretrieval:

Cretrieval = nexp(t) − n0 · n (t, τΩ,Ω(t),∆, gdist) , (4.12)

where the average photon number n(t) given by the simulation depends on the mean value of ∆ = ∆p-a

and the driving Rabi frequency Ω(t) and its pulse delay τΩ. The experimentally determined variation in
coupling strengths is implemented as a distribution gdist, over which we average along with the different
initial mF ground states. n is scaled with n0 in order to reduce the difference of n(t) and the measured
average detector counts nexp(t). Once the simulation finds the parameters to recreate nexp(t), we can
estimate the efficiency of photon generation by ρg2g2 in the steady state.

3 In [137], GRAPE was used for pulse optimization.
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CHAPTER 5

Deterministic Generation and Shaping of Single

Photons

T
he generation of single photons has been studied on a variety of platforms [148]. An important
figure of merit is the rate, at which photons are delivered. Here, the efficient collection of a
considerable fraction of the created photons plays a crucial role and often leads to the approach
of enclosing the emitter by a resonator [149–151]1. Miniature fiber-cavities with their intrinsic

coupling between light-guiding glass fiber and resonator mode are an excellent choice and have been
combined with well-known solid-state emitters such as nitrogen-vacancy centers [153, 154], carbon
nanotubes [155] and quantum dots [156, 157]. As a proof of principle, we have demonstrated that – under
continuous illumination – our system delivers single photons as well [39, 51].

Of high interest is the triggered generation of single photons along with a controlled waveform, which
can facilitate information processing or enhance the storage probability of the generated photons in
another medium [158]. Shaping of single photons was first shown in an ion-trap cavity system [149]
and has advanced up to the point where time-bin entanglement [159] in the form of photonic qubits,
qutrits and ququads has been realized [160]. In Section 5.1, the basics for single-photon production are
presented. Subsequently, we show that we do not only control the shape of triggered, single photons,
but also reach a faster extraction of photons from the cavity-coupled atom than possible in free-space
(Sec. 5.2.2). The quantum nature of the emitted light is demonstrated in a Hanbury Brown-Twiss (HBT)
experiment [161] and presented in Section 5.2.3.

The observed efficiency is discussed in Section 5.2.4. Since we cannot access the cavity-based, non-
destructive state detection [51] in a Λ-configuration, we employ the photon generation as a method of
fast state detection to determine the photon storage efficiency in Section 6.2.

5.1 The Atom–Cavity System as a Source of Single Photons

A direct and simple σ±-photon emission into the cavity modes is already triggered by a pulsed, π-
polarized laser with a ~k-vector perpendicular to the cavity and quantization axis, as shown in the
schematic Figure 5.1(a). In this case, the wave-packet envelope is fixed and given by the temporal shape
of the cavity field decay [162]. For more sophisticated shapes, the atomic population has to undergo a
vacuum-Stimulated Raman Adiabatic Passage (vSTIRAP) [163, 164], for which a Λ-configuration is
required, such that all involved states |F〉 , |F′〉 fulfill |F − F′| ≤ 1. The choice of levels resonant with the
cavity has an impact on the maximum generation efficiency: For example, the D2 line can outperform the

1 An alternative, less efficient way is to use high aperture lens objectives (HALOs), with e.g. a 12 % collection efficiency [152].
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Figure 5.1: (a) The atomic state is prepared by short optical pumping pulses (red) along the conveyor belt (cf.
Fig. 2.1). Subsequently, a Raman read pulse (gray) generates a photon in the cavity mode in a vSTIRAP process.
With a certain probability (Sec. 5.2.4), the photon leaks through the HT mirror and is detected by one out of two
SPCMs in a Hanbury Brown-Twiss configuration. The time-tagging unit allows to reconstruct pulse shapes and
to verify the single-photon emission of the triggered photon generation. (b) Level scheme of 87Rb for photon
generation on the D2 line, including Zeeman and AC Stark shifts, whereby the latter are caused by DTx,y. As
indicated by faint arrows, the atom in |F = 1〉 has several possibilities of emitting into the two cavity modes g ≈ g′
(red and orange) when driven by a Raman laser Ω in a tripod configuration. The nomenclature from Chapter 4 is
shown as well. (c) Flow diagram of the experimental sequence for photon generation. The loops sum up to 500
generation attempts per 3 s sequence time. The effective duty cycle is limited by the atom loading procedure and
the cooling efficiency, but within the actual pulsing window the photon-production rate is ∼ 2 kHz.

D1 line [19], where the strongest Λ-compatible coupling transition is |1〉→|1′〉. We use |2〉→|2′〉 instead,
which is in the mF-average weaker by

√
2, but allows to address the strongest cycling transition, which

we need to measure the atom-cavity coupling strength. In addition, we choose to couple the hyperfine
ground states via a virtual level that is ∆p-a = ∆c-a = 2π · 90 MHz blue-detuned with respect to the
excited state |F′ = 2〉. This is not necessarily required for the generation process, but for photon storage
experiments this setting helps to suppress the incoherent storage component.

In a Λ-configuration, the shape of the control laser pulse defines the temporal envelope of the generated
photon. As discussed in Section 4.2, the presence of two cavity modes – both accessible due to κ ≫ ∆ωB –
prevents a clean Λ-configuration. Instead, the coupled levels form a tripod. While this has no effect on the
photon generation efficiency, the obtained shape is no longer fully congruent with the expected one, for
which the control laser pulse is designed. Since the deviations turn out to be marginal and compensable
by adjustments of the control Rabi frequency, we discuss and derive pulses from this approach despite
the mismatch. Another encouraging argument is, that in the adiabatic generation regime, the pulse length
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T is much longer than the cavity damping time (T ≫ 1/κtotal), which ensures that F = 1 is depopulated.
The final mF-state is of minor relevance, since we aim to generate photons of indefinite polarization.

Furthermore, we have to take into account a total of 3x2 possibilities of emitting a photon into one of
the two cavity modes, which is shown in the level scheme in Figure 5.1(b). This leads to variations of the
dipole matrix elements, which has to be considered in a simulation of the system.

5.2 Shaping Single Photons

The STIRAP technique is well-established. While numerous reviews discuss applications, recommended
references are the recent, comprehensive tutorial given by Bruce Shore [165] and the review of Vitanov
et. al. [138]. For our system, the most crucial benefits of this technique are first, the ability to shape the
cavity photon(s) n by designing the temporal amplitude of the Raman read pulse Ω(t) and second, the
high efficiency with which the mechanism converts a single photon of the laser beam to a single photon
in the cavity by following a dark atom-field state |D〉, which prevents occupation of |e〉:

|D〉 (t) = cosϑ(t) |g1, n〉 − sinϑ(t) |g2, n + 1〉 ,

where ϑ(t) is the mixing angle defined by

tanϑ(t) =
Ω(t)

2g
√

n + 1
.

The adiabatic condition is fulfilled if cavity and driving laser provide 2gT (n + 1) ≫ 1 and |ΩT | ≫ 1,
respectively. A more practical condition, as Ω(t) is usually not the limiting parameter, is adapted
from [135]:

TC′γ ≫ 1 , (5.1)

where C′ is the loss-modified cooperativity as discussed in Section 4.1. This inequality is easily fulfilled
for either appropriate (long) pulse lengths or a system in the strong coupling regime (or even more
intuitively: T ≫ κ−1

total, g
−1). In these cases, generation efficiencies close to unity are expected. We face

the strong coupling regime at its border, as indicated in Figure 2.4. Thus a minor excited state population
can occur and lead to scattering of photons into free-space. Part of the generated photons leave through
the HT mirror and become a traveling-wave photon φout (see Sec. 5.2.4). A reasonable choice for the
pulse length T are 100 ns, leading to the lower bound value TC′γ = 18. This leaves the question: How
do we find Ω(t) such that a desired electric field shape φout, des(t) is obtained?

One possibility is to find a simple, analytic solution based on the Schrödinger equation for an atom-
cavity system under assumption of population conservation [166]. For an estimated efficiency close to
unity, Ω(t) is analytically calculated from a set of coupled equations:

cg2 = −
φout, des(t)√

2κ

ce = −
i

g

(

cg2(t) + κ ċg2(t)
)

ρg1g1(t) = 1 − ρee(t) − ρg2g2(t) −
∫ t

0

(

2 γ ρee(t′) + 2 κ ρg2g2(t′)
)

dt′

Ω(t) = −i
ρ̇g1g1(t)

ce(t)
√

ρg1g1(t)
,
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where ci(t) and ρii(t) = ci(t)c∗i (t) are the probability amplitude and population of the state i, respectively
(nomenclature see Ch. 4).

The second option is to exploit time reversal symmetry which holds true in the regime of adiabatic
state transfer. This can be understood in terms of a passive beam-splitter-like transformation, in which
the mapping from a certain input to an output mode – including the atomic states – is considered [135,
167]. A more intuitive example is given by the loading of a photon into an empty, single-sided cavity [91,
168]: Only if the resonator is ’filled’ with an exponentially rising pulse, i.e. the time reversal of the
cavity decay, the field directly reflected at the entrance mirror and the field leaking out of the cavity will
interfere destructively at any point in time. As a consequence, the cavity mode will be populated most
efficiently.

Following the time-reversal approach, in order to generate a photon of shape φout, des(t), we reverse the
temporal envelope of ΩD(t) which is required to store a photon of the shape φout, des(t). The discussion of
the origin of ΩD(t) is postponed to Section 6.1.1, where we introduce several ways of calculating the
driving Rabi frequency for photon storage.

To calculate the ΩD(t), we used γ = 2π · 3 MHz, the measured value of κtotal = 2π · 41 MHz and a
coupling strength of g0 = 2π · 34 MHz, which originates from the VRS measurement and is scaled by√

1/6 to match the |2,−2〉→ |2′,−1〉 transition. The single-photon detuning of ∆0 = 2π · 90 MHz has
been heuristically implemented as described in Section 6.1.1 and is set taking the dipole-trap light shifts
into account.

5.2.1 Measurement Sequence and Repetition Rate

The experimental procedure starts by loading a single atom into the cavity trapping region (ηload = 70 %),
determining its coupling strength to the resonator and cooling it to the motional ground state. Then, the
trigger generator (Sec. 2.5) releases a short sequence of five state preparations in |F = 1〉 (Sec. 3.3), each
one followed by a T = 100 ns long Raman read pulse2. The loops visible in Figure 5.1(c) are a result
of optimizing the sequence for the highest possible atom survival, which is on the order of 40 % due to
the limited Raman cooling efficiency. Along with the atom loading procedure, we end up having 1000
generation attempts per 3 s, which corresponds to a rate of ∼ 2 kHz in the actual pulsing window. Rates
of 1 MHz have been shown for a much shorter window of 100 µs [160], hampered by an atomic fountain
as a source of atoms. In ion-cavity systems, the superior trapping conditions lead to impressive 100 kHz
rates over 90 min [149]. Provided that the cooling scheme is improved as discussed in Section 3.2.2, this
rate is a realistic expectation for our system as well, with a production time limited by the background
pressure.

The generated photon stream is split by a 50:50 beam splitter and guided to two fiber-coupled SPCMs.
Their detection signals are recorded by the time-tagging unit mentioned in Section 2.5, which allows
to correlate the sum of detection events with the time-tagging trigger in order to obtain the pulse shape.
A correlation of the detection events between the two channels is used to check for a single-photon
signature.

5.2.2 A Sine–Squared Shape and a Triple–Peak Pulse

We aim to generate photons with a simple target envelope given by

φout, des(t) ∝ sin2 (π · t/T ) (5.2)

2 In the context of a memory, the Raman laser writes and reads the information.
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Figure 5.2: Generation of single photons with a temporal envelope given by a sine squared as in Equation 5.2. All
pulse shapes are normalized. (a) We compare the calculated Rabi frequency ΩD(t) (dashed, gray line) with the
measured Ωexp(t) ∝

√
I (solid, gray line). For the given parameters and Ωexp(t), we simulate the Λ-system and find

a good agreement between the resulting intra-cavity photon number 〈â†â〉 (solid, red line) and the desired intensity

profile
∣
∣
∣φout, des(t)

∣
∣
∣
2

(dashed, red line). A small kink towards the end of the pulse is caused by the heuristically
implemented single-photon detuning ∆0 in Equation 6.1. The occupation probability ρii of the involved atomic
levels is shown below and gives insight into the dynamics. (b) The reconstructed, experimental photon shape
∣
∣
∣φout, exp(t)

∣
∣
∣
2

(black) differs from the desired shape. The error bars are given by the square root of the number of
detected photons. To this day, the deformation cannot be explained by our tripod-configuration based simulation
and a fit (solid, red line) as described in Equation 4.12. The fit parameters are displayed above and a detailed
discussion is found in the main text. Below, the system dynamics obtained from the fit are shown. For comparison,
a simulation (dashed, red line) based on the parameters from (a) is shown as well (cf. Fig. 6.7). (c) In a VRS
sweep, we determine the individual atom-coupling strength g for each sequence repetition. The distribution of
values is shown with a Gaussian fit and 1σ confidence intervals. Each value still has to be scaled by

√
1/6 to

match the |2,−2〉 → |2′,−1〉 transition. As discussed in the main text, a specified range of coupling strengths
(highlighted area) is used for post-selection in (d) and for an accurate implementation of g in our simulation in (b),
where the displayed data has not been post-selected. (d) The cross-correlation g(2)

c of detected photons according
to Equation 5.5 reveals g(2)

c (0) = (12.2 ± 6.5) %, if post-selection with g ∈ [70, 80] · 2πMHz is applied. In this
case, only single atoms are present. As our correlation is limited to g(2)

c,bg(0) ≈ (13.6 ± 0.1) % by detector dark-
and background counts, the measurement confirms that our system indeed delivers single photons. Another pulse
shaping attempt is presented in Figure 5.3.
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and a more complex, modulated outline

φout, des(t) ∝ sin2 (π · t/T ) − sin2 (π · 2 t/T ) . (5.3)

Both are normalized such that
∫ ∣

∣
∣φout, des(t)

∣
∣
∣
2

dt = 1 and restricted to t ∈ [0,T ]. From the calculated

ΩD(t), we obtain the peak Rabi frequency Ω0. Since Ω0 ∝
√

I, we simply need to adjust the CW power
for the fixed beam waist of 30 µm.

Using the pulse shaping setup and a separate SPCM, we compare the normalized shapes of both
measured and calculated Rabi frequencies Ωexp(t) and ΩD(t) in Figures 5.2(a), 5.3(a)3. The generated
pulses follow very closely the desired contour, and only for lower transmission values of the intensity
modulator the pre-compensation fails (see Sec. 2.5). In the most important region along the slopes4, the
shapes are in excellent agreement.

We simulate a three-level atom with the aforementioned parameters and time-dependent driving
fields to verify that our simulation is capable of producing the expected shapes of the output photon.
We compare the evolution of the intra-cavity photon number 〈â†â〉(t) with the desired intensity profile
∣
∣
∣φout, des(t)

∣
∣
∣
2
. At any point in time they are proportional, since the field leaks out of the cavity at the rate κ:

∣
∣
∣φout, des(t)

∣
∣
∣
2
= 2κ · 〈â†â〉(t) . (5.4)

Besides a minor delay, the most prominent feature is an additional kink at the end of the pulses,
better visible for the fast modulation. It originates from the single-photon detuning and its heuristic
implementation. The formalism, according to which we design the pulses, was originally intended for
∆0 = 0. In this case, the simulated pulse perfectly follows the desired shape. Another aspect of the
simulation is that we are able to understand the dynamics between the three atomic levels: The excited
state population is theoretically negligible and a smooth transfer from |g1〉 to |g2〉 takes place.

The measured generated pulses
∣
∣
∣φout, exp(t)

∣
∣
∣
2

are shown in Figures 5.2(b), 5.3(b). We immediately see
the deviation from the target outline which manifests in a broadening and, for the adiabatic generation,
in a kink towards the end. For the fast retrieval in Figure 5.3(b), we pick the center peak to calculate
the 1/e-time of the rising slope, since it bears the best contrast. We obtain < 12.5 ns, which is faster
than the excited state decay time constant τe = 26.2 ns [58] by a factor of 2. In other words, the photon
extraction is faster than in a free-space scenario and ultimately limited by the cavity intensity-damping
time constant of 1/ (2κtotal) = 1.9 ns.

In order to understand the discrepancy of the shape, we use Equation 4.12 to fit the data as explained in
Section 4.3. The simulated system is a four-level atom coupled to a resonator with two polarization modes
a (σ+, g) and b (σ−, g′). As free fit parameters we leave the Rabi frequency amplitude of the Raman pulse
Ωfit, its delay and the single-photon detuning ∆fit. The scaled coupling strength gfit includes the measured
distribution shown in Figures 5.2(c), 5.3(c) and g′ is derived by the ratio of the respective transition
strengths. Some of the measured g-values exceed the calculated maximum single-atom coupling strength
of g ≈ 120 ·2πMHz (see Table 2.1), which means that a small two-atom contribution has to be considered
in the number of produced photons (Sec. 5.2.3).

Since in the experiment we manipulate a real atom which can initially populate any mF-state, we
average over a set of three branches as shown in Figure 5.1(b) in order to describe it theoretically. The
respective transition strengths and excited state decay ratios are taken into account. This approach is

3 For the sake of completeness, I always mention both figures for general statements, but regarding one of them while reading
the main text is sufficient.

4 See explanation in Sec. 6.1.1.
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Figure 5.3: Generation of single photons with a temporal envelope given by a modulation as in Equation 5.3. All
pulse shapes are normalized. (a) We compare the calculated Rabi frequency ΩD(t) (dashed, gray line) with the
measured Ωexp(t) ∝

√
I (solid, gray line). For the given parameters and Ωexp(t), we simulate the Λ-system and find

a good agreement between the resulting intra-cavity photon number 〈â†â〉 (solid, red line) and the desired intensity

profile
∣
∣
∣φout, des(t)

∣
∣
∣
2

(dashed, red line). A small kink towards the end of the pulse is caused by the heuristically
implemented single-photon detuning ∆0 in Equation 6.1. The occupation probability ρii of the involved atomic
levels is shown below and gives insight into the dynamics. (b) The reconstructed, experimental photon shape
∣
∣
∣φout, exp(t)

∣
∣
∣
2

(black) differs from the desired shape. The error bars are given by the square root of the number of
detected photons. To this day, the deformation cannot be explained by our tripod-configuration based simulation
and a fit (solid, red line) as described in Equation 4.12. The fit parameters are displayed above and a detailed
discussion is found in the main text. Below, the system dynamics obtained from the fit are shown. For comparison,
a simulation (dashed, red line) based on the parameters from (a) is shown as well. An interesting aspect of this
shape is the – not yet limited – 1/e time constant, at which we modulate the Rabo frequency and thus the photon.
With < 12.5 ns, it is shorter than the excited state decay time constant τe = 26.2 ns [58] by a factor of 2 (cf.
purple, dashed line). (c) In a VRS sweep, we determine the individual atom-coupling strength g for each sequence
repetition. The distribution of values is shown with a Gaussian fit and 1σ confidence intervals. Each value still has
to be scaled by

√
1/6 to match the |2,−2〉 → |2′,−1〉 transition. As discussed in the main text, the information can

be used for post-selection and for an accurate implementation of g in our simulation in (b). Here, the displayed data
has not been post-selected. (d) A cross-correlation g(2)

c of detected photons according to Equation 5.5. Two-atom
contributions are present and the amount of data is insufficient for post-selection. A detailed discussion of the
single-photon character is found in Section 5.2.3. Another pulse shaping attempt is presented in Figure 5.2.
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Chapter 5 Deterministic Generation and Shaping of Single Photons

valid considering the atom has to start in one of the three subspaces and is at any time also restricted to
it – this heavily reduces the computational load for our simulation.

With our model, we have not yet been able to explain the observed curve. To this point, we can
exclude an influence of the excited states F′ = 1 and 3, timing jitters of the pulses, insufficient EOM
suppression, a drift of Ω0 on long timescales by regarding only initial and final measurement traces5, a
drift on short timescales by averaging only the first and last 50 attempts over the traces and a ’washing
out’ by distributions of ∆0, g0 and/or Ω0. In [20], post-selection on the coupling strength has been
suggested. We have tried selecting only the g-value for which Ω(t) is designed, but there has not been any
clear influence on the shape. This also means, that the contribution of two-atom cases has no significant
effect on the shape. Moreover, a simulation for the assumed value of g0 and the designed Ω(t) actually
predicts a much faster read-out, which is nicely visible in Figure 5.2(b). This behavior is expected, since
the overall cavity coupling is enhanced with two modes. Instead, we see that the pulse is broadened,
suggesting an overall lower atom-cavity coupling and driving Rabi frequency.

Assuming that our intensity modulator has a residual phase shift component which causes a frequency
chirp of Ω(t), we have modified the simulation by introducing the time-dependent single-photon detuning

∆(t) =
π

2
α0

1
Ω0

dΩ(t)
dt
,

with a chirp parameter α0 as discussed in Section 2.5 and [89]. For α0 > 1, the shapes mainly become
narrower, since state transfer only occurs close to a two-photon resonance. For α0 ≤ 0.1, as specified by
the manufacturer, the effect has been barely visible. Furthermore, two-photon detunings in a range of a
few tens of MHz have not had any considerable effect, as expected for a high-bandwidth cavity.

The temporal occupation of both cavity modes is identical (except for the amplitude), so even if
polarization-dependent detection efficiencies were present, there would be no influence on the shape.

Only an unjustified assumption of two discrete values of Ω0, over which we average, fits to the data.
The reason is obvious considering Figure 5.3(b): First we read out in the beginning, second at the
end, such that overall the ratio between side- and center peaks is reduced. We are not aware of any
experimental aspect that justifies this assumption and conclude by pointing out that the unexpected
behavior of generated photon pulse envelopes is also unclarified in another experiment with a similar
theoretical framework [169]. However, in Section 6.2 we generate pulses on resonance, i.e. with ∆c-a = 0,
and are perfectly able to explain the shape.

5.2.3 A Quantum of Light

A prominent process to generate single photons is spontaneous parametric down-conversion of a pump
photon with high energy into a pair of photons of lower energy. In this process, the pump power as well
as the length of the non-linear medium can lead to multi-photon emission [170]. However, in our tripod
configuration the probability of receiving more than one photon per read pulse and emitter is practically
zero, since the excitation laser frequency is far-detuned from the emission frequency. But in order to
identify the presence of more than one atom, it is interesting to regard the normalized cross-correlation
g

(2)
c (∆x) between photon detections in SPCM 1 and 2. If the individual SPCM sees ci counts in the 100 ns

generation window x, g(2)
c is defined as:

g
(2)
c (∆x) =

1
m

〈c1(x) c2(x + ∆x)〉
〈c1(x)〉 〈c2(x)〉 , (5.5)

5 As a reminder; a single trace uses the same atom for 500 attempts to generate a photon.
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5.2 Shaping Single Photons

where m is the average number of coincidences for ∆x , 0.
In Figures 5.2(d), 5.3(d), we show the detection coincidences for a shift of ∆x windows along with

the Poissonian error given by the number of coincidences. At ∆x = 0, the dip is expected to reach
zero for a perfect single-photon source [171, 172], but it is usually limited by the dark count rates of
the SPCMs and by Raman-scattered lock laser light. These two effects are combined into the rates
xd1 = (3.00 ± 0.03) kcps and xd2 = (1.20 ± 0.01) kcps in order to give the estimate

g
(2)
c,bg(0) ≈

ηretrieval
(

xd1 + xd2

)

(

ηretrieval/2 + xd1

) (

ηretrieval/2 + xd2

) = (13.6 ± 0.1) % ,

which is derived from Equation 5.5 for equal SPCM detection efficiencies and the probability of detecting
a photon per triggered pulse ηretrieval = (2.3 ± 0.1) %. For all g-values in Figure 5.2(c) we find g(2)

c (0) =
(20.9±3.4) %, which means the contrast is not background limited, but most likely constrained by a small
two-atom component6. In order to filter the spurious events, we post-select the data for g ∈ [70, 80] ·
2πMHz (highlighted in Fig. 5.2(c)). As can be seen from Figure 5.2(d), the value g(2)

c (0) = (12.2±6.5) %
is then closer to the background limit, as expected. The bottleneck for giving precise g(2)

c (0) estimates is
the number of measurements – in Figure 5.3(d) the measurement time is shorter, therefore the correlation
is shown for all g-values. The outcome of these measurements suggests that relying on the pre-selection
by the feedback transport might not be sufficient, if we aim to work with a single atom. Also, only
in combination with further measurement techniques such as the cross-correlation we can identify the
single-atom coupling strengths in their measured distribution.

5.2.4 Photon Generation Efficiency

As already mentioned, the probability of detecting a photon per triggered pulse is ηretrieval = (2.3 ± 0.1)%.
This number contains the underlying efficiency of generating a photon inside the cavity mode ηgeneration,
which can be traced back by calibrating the state preparation efficiency ηstate, the relative transmission
through the HT mirror ηHT, the spatial mode-matching between cavity and fiber ηmm, the losses in the
optical path ηpath and the SPCM detection efficiency ηdet:

ηgeneration =
ηretrieval

ηstate ·
(

ηHT · ηmm · ηpath · ηdet

) . (5.6)

Optical pumping via the D2 line has a probability of ηstate = (80 ± 10) % to prepare the atoms in
the initial state. This is a consequence of the fast repetition rate for which the experiment was built,
without knowledge about the final limitation due to insufficient cooling. As discussed in Section 4.1, the
input-output coupling depends on the cavity linewidth κ. From a transmission measurement of the HT
mirror and [37], we derive:

κ =
∆νFSR

2
· THT = 16 · 2πMHz ,

with THT, ∆νFSR listed in Table 2.1. Along with the measured bandwidth of κtotal = 41 · 2πMHz, this
means significant losses of κloss = 25 · 2πMHz are present and lead to ηHT = κ/κtotal = (39 ± 1) %.

The mode matching efficiency has been measured in [38] to be ηmm = (60 ± 2) %. This leaves only the
optical path, which we calibrated for the measurements in [39] to be ηpath = (38 ± 13) %, and the SPCM

6 In this discussion, we omit the additional influence of the ∼ 50 ns detector dead time, since the probability of detecting
both photons and background counts in the 100 ns windows is very small. As a side remark, after-pulsing of the detectors
also plays a role. In accordance with measured probabilities of 1.8 and 0.3 %, we detect a dead-time limited number of 19
two-fold photon events in a single SPCM for the measurement in Figure 5.2.
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Chapter 5 Deterministic Generation and Shaping of Single Photons

quantum efficiency of ηdet = (50 ± 5) %.
Combining all of these numbers, we obtain ηgeneration = (66.4 ± 25.2) %, which covers the expected

value given by C′/(C′ + 1) = 90 % with its error margin mostly due to the uncertain path efficiency. To
retrieve the probability of generating a photon at all, ηgeneration in turn has to be divided by C′/(C′ + 1).
Whereby one must keep in mind that the expected efficiency is defined for a three-level atom, as discussed
in Section 4.2.

The efficiency of generating a photon in the cavity mode also corresponds to
∫ T

0

∣
∣
∣φout, des(t)

∣
∣
∣
2

dt (see
Eq. 5.4), and could be obtained from the simulation by a fit to the experimental data. The atomic state
transfer between the ground states gives the probability of generating a photon at all, including scattering
into free-space. The ratio of both numbers could give an estimate for the Purcell factor in the tripod
configuration.

In conclusion, we achieved a deterministic generation of single photons and estimated the generation
efficiency, which is particularly useful for the photon storage process, in which success is indicated by
a retrieved photon. This can also be used as a method of fast state detection [173], in which a probe
photon is energetically converted into a detection photon. By controlling the temporal envelope of the
read pulse, we control the shape of the emitted photon and achieve an extraction speed beyond the
free-space scenario. Since we are not yet able to fully predict the outcome by our simulation, a next
step would be to repeat the measurements and to record more data, such that a combination of different
post-selection methods is possible, e.g. a restriction of g-values and regarding only the first 50 attempts
simultaneously. If the origin of the distortion cannot be identified, desired shapes will still be obtained
by iterative, measurement-based adjustments to the control pulse. For resonant photon generation, as
performed in Section 6.2, the output shape can be perfectly explained.

In order to boost the overall detection probability ηretrieval, we are currently working on new fiber
cavities with GRaded-INdex (GRIN) lenses that promise a mode-matching efficiency near unity [174].
Simultaneously, we will investigate the finesse degradation discussed in [51, Appendix A.2] to reduce the
cavity losses κloss. Along with small improvements in the optical path an efficiency of ηretrieval > 10 %
should ultimately be feasible.
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CHAPTER 6

Light–Pulse Storage in Atom–Cavity Systems

O
ver the past decade, the storage of light pulses in atomic systems has been shown for ultra-
cold [175–179] and ambient temperature gases [180]. The demonstration of single-atom
quantum memories for polarization qubits encoded in weak, coherent pulses has been
pursued as well [23, 24, 181]; even down to the level of single photons [25, 182]. While

these experiments constitute impressive results, the prestigious goal of storing photons emitted by
quantum dots in order to exploit cross-platform benefits (see Ch. 1) has not been achieved yet [183].

A first step towards such a hybrid experiment has been the direct photonic coupling of an ion-cavity
system with a quantum dot [184]. In order to overcome the bandwidth mismatch between the two
systems, the properties of the laser were imprinted on the photonic emission by working in the Heitler
regime [185]. However, this means that the single photons are no longer deterministically triggered. A
better approach for the efficient storage of high-bandwidth photons is the usage of an open cavity with a
sufficiently large coupling strength beyond the intermediate regime (2g > κtotal − γ [51]) – like the one
employed for the presented experiments.

In order to fully absorb an input light pulse, the temporal envelope of the storage-assisting control
laser has to be matched to its shape [186]. For designing the control pulse, we first consider the more
intuitive adiabatic regime and introduce two analytic approaches to find the correct time-varying Rabi
frequency Ω(t) in a Λ-configuration (Sec. 6.1.1). In Section 6.1.2, we use our previously introduced
simulation framework to show the dependence of the storage efficiency on various pulse parameters. At
the same time, we find and develop two numerical approaches to optimize Ω(t) in the fast storage regime,
where the pulse length approaches the cavity field decay time. One of them relies on the recurring trend
of optimal control (Sec. 6.1.3). As a last theoretical remark, the question whether the storage has a
significant coherent component is answered in Section 6.1.4.

At the end of this chapter, we experimentally demonstrate the control laser-assisted storage of a short
coherent pulse at the single-photon level (Sec. 6.2). Furthermore, we compare the measured storage
efficiencies for different control-pulse parameters with the theoretical expectation.

6.1 Adiabatic and Fast Storage in a Lambda Configuration

In this section, we start with reviewing and extending two prominent storage protocols based on adiabatic
transfer in a Λ-configuration, for which TC′γ ≫ 1 has to be fulfilled (cf. Eq. 5.1). For short input
pulses, we find that a temporal compression of the write pulse and subsequent parameter scans using
our simulation (see Ch. 4) lead to a storage efficiency comparable to that obtained by optimal control
techniques. All simulations use the measured parameters of our system, i.e. (g0, γ) = 2π · (34, 3) MHz,
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Chapter 6 Light–Pulse Storage in Atom–Cavity Systems

where g0 is the weakest coupling strength of the allowed |2,mF〉→|2′,m f ± 1〉 transitions. For now,
κ = 2π · 25 MHz is assumed1. In the discussion of the expected efficiencies, the cavity losses are included
with κloss = 2π · 16 MHz, such that κtotal is once more 2π · 41 MHz.

6.1.1 Adiabatic Storage Schemes

Dilley et al. proposed an analytical method for finding the control pulse Rabi frequency ΩD(t) required
to capture a single photon of arbitrary temporal shape with an atom coupled to a single-sided optical
cavity [136, 187], which is based on the approach of impedance matching [188]: At any point in time, the
photon reflection on the input mirror (HT) has to be zero. This is expressed in terms of the input-output
formalism [133], which Dilley et al. implement in the master equation of the coupled atom-cavity system
in matrix form:





ċg1

ċe

ċg2

φout





=





0 −iΩ∗D/2 0 0
−iΩD/2 i∆0 − γ −i g0 0

0 −i g∗0 −(κ + κloss)
√

2κ
0 0

√
2κ −r









cg1

ce

cg2

φin





, (6.1)

where r is the reflectivity of the HT mirror and ci denotes again the probability amplitude of the state i.
φin(t) is the running-wave probability amplitude of the electric field of the photon and normalized
according to Equation 4.7. We heuristically added the single-photon detuning2 ∆0 and the cavity losses
κloss to the original Equation (5) in [136]. From Equation 6.1 the analytical expression for the Rabi
frequency

ΩD(t) = 2
i ċe(t) + (∆0 + i γ) ce(t) − g0 cg2(t)

cg1(t)
(6.2)

with

cg2(t) =
φin(t)
√

2κ

ce(t) = i
φ̇in(t) − (κ + κloss) φin(t)

g∗0
√

2κ

ρg1g1(t) = ρ0 − ρg2g2(t) − ρee(t) +
∫ t

0

[∣
∣
∣φin(t′)

∣
∣
∣
2 − 2γ ρee(t′)

]

dt′

is obtained. Here, they introduce the population ρii(t) = ci(t)c∗i (t) of the state i ∈ [

g1, g2, e
]

. They find
ρg1g1(t) is given by the continuity balance and by taking population loss into account. On resonance,
cg1(t) is real and Equation 6.2 is solvable with cg1(t) =

√

ρg1g1(t). The main effect of introducing ∆0 , 0
is the expected increase in the required driving strength and the necessity of an average two-photon
detuning δ , 0, which we will discuss later on.

In Equation 6.2, physically realistic, finite photons and thus Raman pulses within an interval [0,T ] are
considered. The photons may start off smoothly with φin(0) = φ̇in(0) = 0 [189], but the second derivative
might be non-zero. As a consequence, Equation 6.2 yields ΩD(0) · cg1(0) , 0. From ρg1g1(t) it follows
that this is only possible for an artificial initial population in |g1〉 – otherwise the write pulse diverges.
Another problem in this derivation of Ω is that any excited state decay reduces the total atomic population
∑

i ρii, which is prevented in our simulation by including decay channels back to the ground states (cf.
Eq. 4.6).

For a T = 100 ns long, sine squared-shaped input pulse φin(t) given by Equation 5.2 and ∆0 = κloss = 0,

1 In Section 6.2 we will see that the value in our experiment is actually lower.
2 In a Λ-configuration, the appropriate choice is given by |∆0| ≫ γC′, adapted from [135].
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Figure 6.1: Comparison of pulse sequences for adiabatic storage of a T = 100 ns long, coherent pulse with a mean
photon number ns = 1 and a temporal envelope given by a sine squared as in Equation 5.2. The simulations are
performed for a Λ-configuration, see Chapter 4. (a) The approach of Dilley et al. is based on impedance matching.
The typical counter-intuitive order, in which the write pulse ΩD (gray) arrives before the incoming photon φin

(orange), is obtained from Equation 6.2. The pulses are normalized and the system parameters are displayed above.
(b) The plot showing the occupation probabilities of the internal atomic states ρii (brown, green, purple) and the
cavity mode 〈â†â〉 (red) reveals a negligible excited state population and a storage efficiency of ηstorage = 57 % for
a coherent input pulse with a mean photon number of ns = 1. This efficiency also corresponds to ρg1g1 (t = 100 ns).
Furthermore, 57 % is the maximum possible state transfer for our cooperativity. (c) Gorshkov et al. derive ΩG by
adiabatic elimination of the excited state. The analytic solution includes a single-photon detuning ∆0 , 0, which
requires a time-dependent adjustment of the two-photon detuning δ (blue). The storage efficiency of 55 % is not
reduced by truncating both amplitudes. (d) Similar dynamics as in (b) are obtained.

we obtainΩD(t) as displayed in Figure 6.1(a). For our system parameters, the initial, false state population
of ρ0 = 0.5 % is chosen too small, leading to ΩD(0) , 0. However, as seen in the simulated dynamics of
the atomic states below (Fig. 6.1(b)), the storage takes place during the falling slope of the write pulse.
The actual value of the Rabi frequency at t ≈ 0 is less critical, as long as it is rising to Ω0 while the
pulse enters3. In STIRAP theory, there is a three-stage description of a process driven by pulses of finite
support [191]. Here, the prior and post interval do not play an important role compared to the interaction
interval, in which the light and Raman pulse overlap the most.

The simulation reveals another aspect: As desired, the excited state population ρee is negligible. The
storage efficiency for a coherent pulse with a mean photon number ns = 1 is ηstorage = 57 %, which
constitutes the optimum for our cavity parameters. The probability P(n) to find n photons in a coherent
pulse is

P(n) = e−ns
nn

s

n!
. (6.3)

Thus the probability of having one or more photons is calculated to be
∑∞

n=1 P(n) = 1 − P(0) = 63 %.

3 In experiments, the control field is mostly ramped adiabatically down and up for storage and retrieval, respectively [23, 190].
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This has to be multiplied by η′max = 90 % as given by Equation 4.10, which finally results in 57 %. In
fact, in the single-photon limit ns → 0 (see Sec. 4.1), the simulation fully agrees with the efficiency of
95 % reported in [136].

A drawback of impedance matching is, that major losses due to excited state population are accepted,
which negatively affects the transfer fidelity between the two ground states. To avoid this problem,
Gorshkov et al. find the optimum pulse by adiabatic elimination of the excited state |e〉. In [135], they
obtain the expression

ΩG(t) = −γ (1 +C) − i∆0
√

2γ (1 +C)
· φin(t)
√

∫ t

0
|φin(t′)|2 dt′

· ei∆0·h(t,T )/[γ2(1+C)2+∆2
0]

h(t,T ) =
∫ T

t

∣
∣
∣ΩG(t′′)

∣
∣
∣
2

dt′′ .

We insert h(t,T ) into the expression for ΩG(t) and take both the natural logarithm and time derivative to
obtain the complex differential equation

Ω̇G(t) =





φ̇in(t)
φin(t)

− φin(t)2

2
∫ t

0
|φin(t′)|2 dt′




·ΩG(t) − i

∆0

γ2 (1 +C)2 + ∆2
0

·ΩG(t)2

= Φin(t) ·ΩG(t) − iα ·ΩG(t)2 .

(6.4)

In order to solve Equation 6.4 we choose to re-write ΩG(t) in terms of real (ΩG,Re(t)) and imaginary part
(ΩG,Im(t)), which leads to a set of two coupled differential equations:

Ω̇G,Re(t) = Φin(t)ΩG,Re(t) + 2αΩG,Re(t)ΩG,Im(t)

Ω̇G,Im(t) = Φin(t)ΩG,Im(t) − α
(

ΩG,Re(t)2 −ΩG,Im(t)2
)

,
(6.5)

with

α =
∆0

γ2 (1 +C)2 + ∆2
0

.

We find the solution to Equation 6.5 numerically, while a congruent analytic expression [137] is given by:

ΩG(t) =
γ (1 +C) + i∆0
√

2γ (1 +C)
· φin(t)
√

∫ t

0
|φin(t′)|2 dt′

· e−i∆0/[2γ(1+C)]·ln
∫ t

0 |φin(t′)|2dt′ . (6.6)

Equation 6.6 does not only tell us the amplitude |ΩG(t)| of the write pulse, but also its time-dependent
two-photon detuning4 δ(t) = d

dt
arg (ΩG(t)): In the presence of a large single-photon detuning and

significantly different Rabi frequencies of Raman and light pulse, the optimum condition for population
transfer is no longer given by a two-photon detuning of zero [165]. Some state transfer concepts, such as
Stark-Chirped Rapid Adiabatic Passage (SCRAP)[192] and Stark-Induced Adiabatic Raman Passage

(SARP) [193] even rely on this effect and try to induce a.c. Stark shifts on purpose.
Figure 6.1(c) shows the pulse shape ΩG obtained for the previous parameters, but with a single-photon

detuning of ∆0 = 2π · 90 MHz, such that ∆0 > κtotal. Towards t = 0, the pulse diverges, but the infinite
part can be truncated without affecting the transfer.5 We arbitrarily limit ΩG to a peak Rabi frequency

4 Note that the phase has to be unwrapped before taking the time derivative.
5 So the exact value of ΩG and ΩD are uncritical around t ≈ 0.
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Figure 6.2: We heuristically implemented a single-photon detuning ∆0 in Equation 6.1. Here, we calculate ΩD for
fixed values ∆0 = 0 (a) and ∆0 = 2π ·90 MHz (b). As a consequence, the peak value increases toΩ0 = 2π ·106 MHz.
Using this pulse design, we simulate the storage efficiency in dependence of variable detunings ∆ and δ (see
Eq. 4.1). We observe that in the second case an average two-photon detuning of δ = 2π · 9 MHz is required. At the
same time, the maximum transfer is 53 %. When taking the cavity losses κloss into account as well, the transfer is
reduced by the factor η′max/ηmax to 36 %, see Equations 4.9, 4.10 in Section 4.1. This is shown in a separate plot
in (b), where ηstorage is plotted against the write pulse amplitude. A vertical line indicates the maximum storage
efficiency.

Ω0 = 2π · 100 MHz with a maximum two-photon detuning δ0 = 2π · 85 MHz. The time-varying δ(t) is
implemented by giving the static Hamiltonian in Equation 4.1 an explicit time-dependence. The resultant
dynamics of the three-level atom are very similar to the previous case; a storage efficiency of 55 % is
reached (Fig. 6.1(d)).

As a last remark, in Equation 6.6 cavity losses are included by substituting C with C′ [137].

In summary, we have reviewed two analytical methods to obtain the optimum storage pulse in the
adiabatic regime. The approach based on excited-state elimination treats the case of non-zero single-
photon detuning and suggests both time-varying amplitude ΩG(t) and two-photon detuning δ(t). We
already mentioned in Section 2.5 that the hereto equivalent phase modulation of the Raman pulse could
be realized by exploiting the residual frequency chirp of a pulse modulator. In fact, the similar shape of
δ(t) and the intensity profile |Ω|2 is likely to make a positive contribution. But in our experiment, we can
only control the laser intensity. Therefore we use our simulation and numerically search for an optimum,
static δ, which can be implemented through the OPLL between pulse and Raman laser. As of now, we
choose to follow the impedance-matching approach of Dilley et al., since it gives equal results for ∆→ 0
and does not require truncating the amplitude. We design ΩD(t) for ∆0 = 2π · (0, 90) MHz and calculate
the storage efficiency in dependence of ∆, δ for both cases. The result for ∆0 = 0 is shown in Figure 6.2(a).
As expected, at ∆ = ∆0 we obtain the previous efficiency. Figure 6.2(b) for ∆0 = 2π · 90 MHz shows that
the transfer success will not fall below 53 %, if the average δ is set to δ = 2π · 9 MHz – which means that
the loss in efficiency here compared to the one using a sophisticated sweep δ(t) is only 2 %.

An estimate for the expected value of δ can also be obtained by the differential light shift δdiff [126]
caused by the pulses. Comparing Equation 6.1 to the classical description of the three-level STIRAP
process [194], we find that the pump Rabi frequency is given by 2g0, which allows us to express δdiff as:

δdiff =
Ω2 − (2 g0)2

4∆0
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In our case, the time-varying Rabi frequencies lead to light shifts within 2π · [−13, 31] MHz, in agreement
with the average value we found simulating the system. Another method [195] allows to estimate the
center of the two-photon detuning interval directly:

δc ≈
Ω2

rms cos (πα′)

8∆0



1 −
Ω2

rms

8∆2
0



 , (6.7)

with

α′ =
2
π

cos−1





Ω0

Ωrms



 .

Here, Ωrms is the rms value of both Rabi frequencies and Ω0 the average Rabi frequency of the write
pulse. From Equation. 6.7 we get δc ≈ 2π · 7.2 MHz.

Cavity losses have a detrimental effect: Part of the photon is no longer coherently mapped into the
atom, but lost due to scattering and absorption on the mirror coating. Figure 6.2(b) illustrates the storage
efficiency with and without losses as a function of the write pulse amplitude. In the presence of κloss, the
transfer is reduced by the factor η′max/ηmax to 36 %, see Equations 4.9 and 4.10 in Section 4.1.

6.1.2 Storage Efficiency in and beyond the Adiabatic Regime

The cavity losses are accurately determined by recording the empty cavity spectrum, while the single-
photon detuning is indirectly measurable by characterizing the a.c. Stark shifts via the trap frequency (see
Sec. 3.2.2). The atom-cavity coupling strength g0 is measured in VRS sweeps. Consequently, we treat
these quantities as being well-known and derive a strategy for obtaining the maximum storage efficiency
in the multidimensional parameter space given by the residual contributing factors: The write pulse delay
τΩ, the two-photon detuning δ and the photons per input pulse ns. To demonstrate that those parameters
cannot be regarded independently, opposing to what is sometimes done [196], we simulate the transfer
probability as the write pulse amplitude and one of those parameters are varied, while all others are kept
at constant values, which grant maximum storage efficiency.

In the adiabatic regime, we use ΩD(t) and vary the delay between write and input pulse. Figure 6.3(a)
confirms our previous observation that the key aspect of the pulse shape is the falling slope. If the control
laser is switched on too early, the loss in transfer can be compensated to a certain extent by increasing
the amplitude of the pulse. As a side remark, the special case of simultaneously terminating pulses is
pursued in fractional STIRAP protocols, e.g. to create coherent superpositions [197].

The parameters δ and ΩD(t) are connected similarly: The pulse causes a light shift, which needs to
be compensated (Fig. 6.3(b)). The region of high efficiency is sharply defined and given by the spectral
properties of the input pulse – the longer T , the sharper the two-photon resonance.

In our single-sided system, experimental techniques to calibrate the photon number per pulse ns are
non-applicable, since the cavity transmission is not accessible [198, 199]. Monitoring the reflection of
near-adiabatic pulses, we cannot distinguish between light which was directly reflected on the HT mirror
and light that leaks out of the resonator. Therefore, we have to determine ns by observing the saturation
of the transfer efficiency ηtransfer for many input photons. As a reminder, the storage efficiency we are
really interested in, still has to be normalized by the number of photons retrospectively (see Eq. 4.8),
so when dealing with ns , 1, the two terms have to be distinguished. During a storage attempt of a
pulse containing more than one photon on average, the probability of not having a photon is reduced
(see Eq. 6.3) and cavity losses are overcome. Also decay from the excited state can lead back to the
initial state, from where the atom can interact with the pulse again, increasing the chance of transfer.
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Figure 6.3: The storage and, for ns , 1, transfer efficiency as a function of the write pulse amplitude and (a) the
write pulse delay τΩ, (b) the two-photon detuning δ and (c) the photons per input pulse ns. The amplitude is
given in multiples of the peak value Ω0 of ΩD in 6.1(a). All of these simulations are performed in the adiabatic
limit with T = 100 ns. (d),(e) and (f) show the dependency for short pulses with T = 10 ns. In particular, we
temporally compress ΩD calculated for ∆0 = 0. The maximum efficiency in each T = 10 ns 2-D map can now be
experimentally found by two independent, one-dimensional scans, e.g. of ns and write pulse amplitude, which
makes it possible to calibrate the average photon number per input pulse. A detailed description is found in the
main text.
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In any case, if the write pulse is absent (i.e. ΩD(t) = 0), the incoherent transfer will be much smaller
than the coherent one, for any mean photon number we simulate. A more detailed discussion is found in
Section 6.1.4. Furthermore, Figure 6.3(c) shows that ns can only be obtained, if ΩD(t) is perfectly known.

So far, we have seen that the knowledge of all control-pulse and system parameters is crucial for
achieving high storage efficiencies. Unfortunately, some of them are not easily found experimentally,
since a two-dimensional map of the transfer efficiency has to be measured, e.g. to confirm the number of
input photons. We will see in the following that the fast storage regime, e.g. with pulses of T = 10 ns
duration, provides a solution. Although Ω(t) can no longer be obtained from Equation 6.2, any short pulse
of that length can be entered in the simulation to investigate the effect of the pulse parameters. As a first
idea, we choose to simply compress ΩD(t) as calculated for ∆0 = κloss = 0, having in mind that TC′γ is
still greater than one. The resulting pulse with shape ΩD,c(t) is used to repeat all dependency-investigating
simulations.

In Figure 6.3(d) we see that both an adiabatic and a π-pulse component contribute to the storage
efficiency. The latter uses the energy exchange between cavity field and atom in order to map the excited
state population from |e〉 to the target state |g1〉 [135]. For increasing write pulse amplitudes, we observe
revivals which we attribute to Rabi oscillations. Besides, the counter-intuitive pulse order as common for
STIRAP processes is no longer the most efficient sequence. Instead, the intuitive order, in which the light
pulse is followed by the Raman pulse leads to the highest storage efficiency. This pattern is also realized
in the adiabatic regime by the B-STIRAP mechanism, in which population transfer relies on adiabatic
following of a bright state [200].

The short pulse is not only less sensitive to δ, but it also leads to the possibility of finding the optimum
storage efficiency experimentally by first scanning the write pulse amplitude and second the two-photon
detuning (Fig. 6.3(e)). Thus, only two one-dimensional scans are required instead of the full 2-D map in
case of T = 100 ns. We see in Figure 6.3(f) that the same kind of decoupling takes place for the mean
photon number per input pulse, which will allow us to find ns = 1.

In summary, the simulation provides a robust strategy to determine the optimum storage efficiency
for non-adiabatic pulses experimentally. We have to define as many parameters as possible in advance.
In order to set the delay between the two pulses, we calibrate the optical path length: The Raman pulse
entering perpendicular to the cavity axis is shone onto the fiber tip directly. Part of the light is scattered
into the cavity fiber and the time between pulse trigger and arrival at the SPCMs is measured. Likewise,
the coherent pulse to be stored is sent to the off-resonant cavity, which results in total reflection at the input
mirror, from where it shares the path of the scattered Raman light. We can determine the delay between
both events with a precision of less than half a nanosecond. The two-photon detuning δ = 0 corresponds
to the carrier transition in our Raman spectra (see Fig. 3.5). The remaining unclear parameters are thus
the write pulse amplitude and ns, which we can find by two independent one-dimensional scans. Thereby,
the initial guess for ns is given by reflecting the input pulse on the HT mirror and considering the path and
detection efficiency discussed in Section 5.2.4. The start point for sweeping the Raman driving strength
is based on measuring the CW peak transmission of the EOM. Its power is measured before the optical
entrance port of the vacuum chamber, and the beam area is estimated from an EMCCD camera image (cf.
Fig. 2.1), which then allows to estimate the Rabi frequency.

6.1.3 Enhancing the Efficiency of Fast Storage by Optimal Control

The simple compression of a write pulse calculated for a different temporal regime might not deliver the
highest storage efficiency for short input pulses. Therefore, as a second method, we use an optimal control
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Figure 6.4: Comparison of pulse sequences in the fast storage regime, where a T = 10 ns long, coherent pulse with
a mean photon number ns = 1 and a temporal envelope given by a sine squared as in Equation 5.2 is mapped into
the atomic ground states. (a) The first approach is based on temporal compression. As the storage process becomes
non-adiabatic, the pulse order changes and ΩD,c (gray) follows φin (orange). (b) The plot showing the occupation
probabilities of the internal atomic states ρii (brown, green, purple) and the cavity mode 〈â†â〉 (red) reveals a
significant excited state population, which is coherently mapped to ρg1g1 . A storage efficiency of ηstorage = 27 %
is achieved (cf. Fig. 6.3(d,e)). (c) As a second approach, we employ optimal control techniques and BOPO (see
Sec. 4.3) to maximize the state transfer. Only when taking a time-dependent two-photon detuning (blue) into
account, we increase the efficiency to 30 %. (d) The dynamics are similar, but the excited state build-up is slightly
favored.

(OC) approach to maximize the state transfer [201]. The idea is also found in a previous experiment,
where an optimization relying on successive time-reversal iterations to shape the input pulse for storage
in an EIT medium [202] was demonstrated [158]. Obviously, this approach does not help providing a
memory for arbitrarily shaped input pulses, e.g. with the natural decay envelope of the quantum dot
emission. Using our BOPO method (see Sec. 4.3) and Equation 4.11, we thus search for the best temporal
shape of the Raman Rabi frequency ΩBOPO(t) to store a pulse of the previous shape.

We find that in the adiabatic limit, the control pulse shape alternates betweenΩD(t) andΩG(t) during the
optimization process, which confirms that the STIRAP scheme delivers the optimal pulse sequence [203].
In the fast storage regime, the OC pulse amplitude does not provide a significant improvement with
respect to the pulse compression shown in Figure 6.4(a,b). But in combination with an optimized,
time-dependent δ(t), the storage efficiency increases from 27 to 30 %, as displayed in Figure 6.4(c,d). We
have to keep in mind, that this difference in efficiency becomes more pronounced when regarding the
single-photon limit ns → 0.

To our knowledge, such an investigation of the storage efficiency beyond the adiabatic limit and in
the presence of a single-photon detuning has not been pursued yet. For ∆0 = 0, concurrent efforts to
exploit optimal control lead to impractical pulse shapes. As discussed in Section 4.3, initial parts of
the pulse found in [137] can most likely be truncated. Although they are probably the best numerical
solution, the discussion of the underlying physics is questionable. The divergent pulse is seen as a means
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Figure 6.5: Whether the storage is a coherent process or not can be quantified by the coherent storage component
βc (dashed line) given in Equation 6.8. In the presence (brown) or absence (purple) of the Raman write pulse, the
evolution of βc and the ground state population ρg1g1 (solid line) during the storage process is shown. (a) In the
adiabatic limit, the storage efficiency is 36 % vs. 1%, while βc = 90 %. (b) For short pulses, the transfer is 27 % vs.
3%, while βc increases to 93 %. In both cases, losses through the excited state are kept small, resulting in coherent
storage.

of impedance matching to maximize the transmission at the HT mirror, but it is almost fully switched
off when the photon arrives. A similar numerical artifact was present in Figure 6.4(c) at t = 2 ns, but its
suppression reduced the efficiency by insignificant 0.08 %6.

Especially for ΩD,c(t), the dynamics in Figure 6.4(b) resemble a mixture of an adiabatic transfer
between ρg2g2 using the cavity population and a coherent mapping of ρee to ρg1g1 similar to a π-pulse. In
Figure 6.4(d), the excited state build-up is slightly favored. It would be interesting to investigate, how the
storage efficiency for the analytical solutions by Gorshkov et al., which propose a π-pulse only, differs
from the one obtained in our work. However, since we cannot control δ(t) and since we are interested in
showing the efficiency as a function of the aforementioned parameters, we stick to the solution given by
compressed pulses ΩD,c.

6.1.4 Estimating the Coherent Storage Component

In the context of (atomic ensemble) quantum memories, a crucial requirement is the coherent state
transfer between the incident field state and the atomic ground state superposition. An experimental
approach to verify its success relies on exploiting the defined phase of the incoming pulse. By sending a
second input pulse of variable phase during the Raman read pulse, interference fringes are observed in
the retrieval efficiency [190]. For technical reasons, the method is not yet accessible in this work, so we
derive the expected coherent storage component

βc =
ρg2g1√
ρg1g1 · ρg2g2

(6.8)

from our simulation. For both discussed scenarios, the target state population ρg1g1 and βc are shown
in Figure 6.5. In the presence of the control field Ω(t) = ΩD(t), an input pulse of T = 100 ns duration
is mapped with an optimized efficiency of 36 % and βc = 90 %. Without the write pulse, part of the
population is still transferred incoherently with ηstorage = 1 %. In the fast storage regime, the transfer
is 27 % vs. 3%, while βc increases to 93 %. In the adiabatic limit, a high degree of coherent storage is
expected for our system, in which the cavity damping of κtotal ≫ γ and the strong atom-cavity coupling
g ≫ γ keep the excited state population small at any point in time. In the fast storage regime, the excited

6 Not to mention that experiments are not even able to resolve this difference.
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state population is built up, but transferred to the ground state in a time window much shorter than the
excited state lifetime. Thus in both cases, the losses through the excited state are kept small.

6.2 Fast Storage of Pulses in a Tripod Configuration

In the previous sections, we have developed a strategy to achieve the optimum storage of short light
pulses in a Λ-configuration. For our experiment the theoretical description is very similar but a few
alterations have to be considered. First, the level structure represents a tripod, in which the chosen
initial state |2,−2〉 is coupled to two cavity modes as discussed in Sections 4.2 and 5.1. As depicted in
Figure 6.6(a), part of the population is transferred to |2, 0〉 by the coherent interaction of the two cavity
modes g and g′. As a consequence of this configuration, the optimum transfer to |1,−1〉 is found for
∆0 = δ = 0. Second, the value of κ in the previous simulations considers only a single input-output
port and is chosen to exceed the cavity losses – in reality, for our resonator the opposite scenario is the
case. The value of κ = 2π · 16 MHz for the HT mirror has been determined in Section 5.2.4. As the
impedance matching between incoming photon and cavity depends on this κ, we expect an overall loss in
storage efficiency for the previously discussed, non-adiabatic pulse length of T = 10 ns (since TC′γ ≈ 1).
Moreover, with κloss = 2π · 25 MHz a significant amount of the photons is lost.

The coherent input light pulse shares its optical path with the probe light, as shown in Figure 6.6(b).
Here, a 97:3 beam splitter ensures that generated photons are detected efficiently. The control laser for
storage and generation is sent along DTx as write and read pulses, respectively. The overall sequence
in Figure 6.6(c) is very similar to the one for photon generation (cf. Fig. 5.1(c)), though here state
preparation is performed by sending D1 light along the cavity (see Sec. 3.3). Each photon storage attempt
consists of cooling, state preparation and synchronized Raman write and input pulses (ΩD,c and φin,
respectively). After a storage time of 1 µs, which is simply chosen to exceed the pulse duration by two
orders of magnitude, a Raman read pulse generates a photon as discussed in Chapter 5. In order to
use this process to infer the storage efficiency, we read out the photon in the adiabatic regime, but on
resonance as well. All steps considered, the repetition rate during the storage part of the sequence is up
to 1.5 kHz. An exemplary, complete data trace for a single atom, recorded by the SPCMs, is shown in
Figure 6.6(d) with 1 ms binning.

For an off-resonant cavity ∆p-c ≫ 0, Figure 6.7(a) displays the normalized detection events for an

input pulse
∣
∣
∣φin, exp

∣
∣
∣
2

with on average ns,exp = 2.1 photons being reflected off the HT mirror. For each data
point, the error bars correspond to the Poissonian error. With the cavity on resonance, we perform three
different experiments: The first consists of the full storage protocol, the second is without a write pulse
and thus indicates the incoherent state transfer caused by optical pumping due to the input pulse and the
third uses neither write nor input pulse, which constitutes a measure of false state preparation. From the
ratio of the integrated detection counts, we obtain a coherent storage component of (79 ± 3) %, while
our simulation predicted > 95 % according to Equation 6.8. Remarkably, the generated photon shape is
now explicable by our simulation – for slightly different system parameters than assumed. The fit based
on Equation 4.12 is successful for a reduced coupling strength of gfit = 0.7 · g0. The origin of the now
excellent agreement between theory and experiment is not yet entirely clear, but it could be connected
to the single-photon detuning of ∆0 = 0, which forms a cleaner tripod system than in Chapter 5.7 The
level configuration with its two cavity modes is also the reason for the shorter output-pulse length of
T ≈ 80 ns, although we aimed for 100 ns (cf. Fig. 5.2(b)).

7 Technical advancements over the past months could also contribute, e.g. improvements on the pulse suppression by
positioning the EOM pulses at the very end of the AOM windows.
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Figure 6.6: (a) Photon storage in a tripod configuration. An atom prepared in |2,−2〉 is not efficiently transferred to
|1,−1〉 by the write pulse Ω (gray), since the coherent interaction with two polarization cavity modes g, g′ (red
and light orange) maps part of the population to |2, 0〉. Subsequent photon generation with a read pulse indicates
successful storage. Our simulation predicts the highest storage efficiencies for ∆0 = δ = 0. (b) The weak coherent
laser pulse shares its path with the probe light. A 97:3 beam splitter (BS) ensures low losses for generated photons.
The initial Zeeman state is prepared using D1 light (orange). (c) Flow diagram of the experimental sequence for
photon storage. The loops sum up to 1000 storage attempts per 4 s sequence time. Within the actual pulsing
window the rate is up to 1.5 kHz. (d) A typical measurement trace for the sequence in (c) (and Fig. 5.1(c)). The
atom-cavity system is probed with a weak laser and the cavity reflection is recorded by both SPCMs. The summed
photon detection events are binned with 1 ms. In the photon storage window, the bins mainly contain background
counts (Raman-scattered lock laser light, SPCM dark counts). The presence of an atom (feedback transport, atom
check) is indicated by a detected count rate of ∼ 60 kcps. Note that during the VRS sweep, the probe light almost
becomes resonant with the atom-cavity system (∼ 30 kcps).
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is reflected off the HT mirror (off-resonant cavity). Correlating the SPCM
counts with the pulse trigger reveals the sine squared shape (Eq. 5.2) of T = 10 ns duration (black, solid line). For
comparison, the atomic excited state decay with a time constant of τe = 26.2 ns [58] is shown (purple, dashed line).
In the photon storage experiment, the write pulse ΩD,c (gray, solid line) is applied with a delay of 4.4 ns to realize
the intuitive pulse order required for optimal, non-adiabatic storage. After a storage time of 1 µs, a Raman read
pulse Ωexp (gray, solid line) generates a photon after the full storage protocol (black dots), from the incoherently
transferred population in the absence of a write pulse (blue dots) and due to false initial state preparation (green
dots), from which we infer a coherent storage component of (79± 3) %, details see main text. A successful fit based
on Equation 4.12 (red, solid line) indicates an atom-cavity coupling strength of gfit = 2π ·22 MHz. (b) Simultaneous
fit of one photon-number, two write-pulse amplitude and one pulse-delay scan to the transfer efficiency simulation
of our system, with the relevant parameters listed above. The error bars indicate the standard deviation of the mean
value. From the fit, we extract the storage efficiency ηstorage = (8.2 ± 0.9) % for a coherent input pulse with an
average photon number of ns = 1. Points towards higher write pulse amplitudes (gray) have been excluded from
the fit. A detailed description is found in the main text.
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In order to determine the storage efficiency, we follow the approach found in Section 6.1.2 and simulate
our system for its parameters (gfit, κ, κloss, γ) = 2π · (22, 16, 25, 3) MHz and an atom in |2,−2〉. In both
the simulation and the experiment, the intuitive pulse order is realized with a delay of 4.4 ns, which is the
optimum delay for the originally measured atom-cavity coupling strength of 2π · 34 MHz. For the actual
value of 2π · 22 MHz – and future storage attempts – τΩ = 6 ns is the best setting. Since our simulation
only considers impedance matching and assumes perfect spatial mode-matching, in the following our
calibration of the photons per pulse in the experiment compensates ηmm (see Sec. 5.2.4). The photon
numbers are set by monitoring the off-resonant cavity reflection and counting the photons per pulse with
the SPCMs.

In our experiment, we first scan the peak Rabi frequency Ω0,exp of the write pulse, while a pulse
containing on average ns,exp = 10 photons is stored. The measurement is repeated for ns,exp = 1. As can
be seen from the simulation in Figure 6.7(b)8, a clear peak in the transfer efficiency is identified. Thus, at
the measured maximum, we vary the mean number of photons contained in the input pulse while keeping
the amplitude of ΩD,c fixed. Also, for ns,exp = 1 and the same ΩD,c we change the relative delay τΩ,exp

between input and write pulse. In all cases, transfer efficiencies given by

ηtransfer, exp =
ηretrieval

ηstate · ηgeneration ·
(

ηHT · ηmm · ηpath · ηdet

)

are measured (cf. Eq. 5.6). Here, ηretrieval is the probability of detecting a photon after a triggered storage
and generation loop, ηstate = (95.8± 0.1) % is the state preparation efficiency discussed in Section 3.3 and
the other factors are listed in Section 5.2.4 except for the on-resonance generation efficiency ηgeneration,
which is assumed to reach its maximally possible value of

C′

C′ + 1
=

g2
fit

g2
fit + κtotal · γ

= (80 ± 5) % .

This assumption is legitimate for two reasons: First, the quantities entering the formula are obtained from
our previous fit and the robust cavity bandwidth measurement. Second, we have increased the Raman
power during the read-out to prevent residual population in F = 1. This can be seen in Figure 6.7(a),
where the generated light-pulse duration is actually shorter than the read pulse.9

The recorded efficiencies of all four scans10 are simultaneously fitted to our simulated maps using the
model

ηtransfer = η̃ · ηtransfer, exp + η0

and a method similar to those described in Section 4.3. A wrong estimation of the losses along the optical
path and/or an error in the estimation of the photon generation efficiency is corrected by η̃, while the
offset η0 is indicating effects such as imperfect state preparation. At the same time, the estimated Rabi
frequency of the Raman laser is corrected with Ω̃11 and the photon number with ñ, while a timing error is

8 Note that the density matrix for a tripod system with 19 Fock states per cavity mode is extremely large. As a consequence,
the resolution in Figure 6.7(b) is reduced in comparison to previous simulations.

9 The F-state preparation efficiency (Sec. 3.3) could be used to determine ηgeneration via the measurement with absent write and
input pulses, but in our case it is afflicted with large errors.

10 Note that they have been recorded in independent measurements over a time period of one week, which points at a high
reproducibility of the presented measurements.

11 Necessary because of false estimations of path losses and beam size, or due to a spread over mF-levels.
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taken into account with the offset τ0:
Ω0 = Ω̃ ·Ω0,exp

ns = ñ · ns,exp

τΩ = τΩ,exp + τ0 .

For the combined fit in Figure 6.7(b), we obtain η̃ = (0.8 ± 0.1), η0 = (0.5 ± 0.1) %, Ω̃ = (0.7 ± 0.1),
τ0 = (0.6 ± 0.2) ns and most importantly ñ = (1.1 ± 0.1), which confirms that we are accurate in our
estimation of the mean photon number per pulse. Peak Rabi frequencies above 3.4 ·Ω0 (ns = 10) and
4.5 ·Ω0 (ns = 1) are neglected in the fit. The significant deviation in efficiency might be explained by a
two-photon Rabi frequency distribution due to different atom positions in the 3D dipole trap. Also, it
could be related to an incoherent storage contribution that scales with the number of input photons, since
the peak-to-deviation ratio in the two measurements changes. As a next step to resolve this issue, more
data should be recorded to make use of our post-selection capability.

Nevertheless, for low photon numbers the deviation from the expected parameters is remarkably small.
Hence, the storage efficiency for a spatially mode-matched coherent pulse with an average photon number
ns = 1 is found to be ηstorage = (8.2 ± 0.9) %, while theoretically we expect 9.7 %. Post-selection on
the atom-cavity coupling strength of well-confined atoms should lead to the observation of up to 12 %
efficiency. If one is interested in the efficiency of storing a photon impinging on the HT mirror, the value
has to be multiplied by ηmm ≈ 0.6. The results can be compared to other atom-cavity systems, although
one has to keep in mind that the losses and average coupling strength are not given in detail: In [23], the
storage efficiency for a 2 µs long pulse is given as 17.5 % (up to 77 % expected12), while in [190], for
an input duration≫ 200 ns a value of 5.7 % is found (up to 98 % expected13). In comparison, we do
not only obtain efficiencies that almost reach the predicted value, but also store light pulses which are
temporally shorter by more than a factor of 40, which is even shorter than the time constant of the atomic
excited-state decay. We fully understand the origin of the measured efficiencies and are finally able to
give the overall quantum memory efficiency of our system, which is

ηmemory = ηstorage · η2
mm · ηHT · ηgeneration = (0.9 ± 0.1) % . (6.9)

Here, we have to keep in mind that the input state has not yet been recreated, since both photon statistics
and temporal envelope of the light pulse are altered.

In conclusion, we have coherently stored a weak, sine-square shaped pulse with on average one
spatially mode-matched photon and less than T = 10 ns duration in our atom-cavity system. The
efficiency of ηstorage = (8.2 ± 0.9) % is close to the expected value for our high-bandwidth cavity and a
tripod configuration. The storage process exhibits a coherent component of ∼ 80 %, which is crucial for
the phase-sensitive storage of photons in atomic ensembles. Our simulation describes the dependency on
write pulse parameters accurately, which allows to adjust the pulse settings for optimal storage in the
next experiments. In the near term, the main focus should lie on improving the confinement of atoms to
increase the atom-cavity coupling strength. Furthermore, for a Λ-configuration, the expected storage
efficiency increases by almost a factor of 2, which suggests to change the employed level scheme. In
the long run, the implementation of low-loss resonators with higher bandwidths in combination with an
increase of the light-matter interaction by placing atomic ensembles within the cavity mode will improve
the storage efficiency significantly. This will also allow to demonstrate the storage of even shorter pulses.
Consequently, real single photon sources, such as quantum dots, can provide the input field. Therefore,

12 Assuming a loss-free, single-sided cavity and the given atom-cavity coupling strengths.
13 Both mirrors are used for input-output coupling.
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in the next chapter we make a step towards realizing hybrid experiments involving a quantum dot by
showing how they can be referenced to atomic transitions.
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CHAPTER 7

Frequency–Stabilizing Quantum Dots to Atomic

Transitions

S
emiconductor quantum dots (QDs) are promising building blocks for photonic quantum com-

puting [204], quantum communication [205, 206] and applications in distributed quantum net-
works [207]. With recent efforts, not only are QDs able to emit high-quality single photons [208–
210] and entangled photon pairs [156, 211–215], they also match optical transitions in neut-

ral atoms [216–218]. These constitute important elements in envisioned quantum repeaters [29] and
’quantum hybrid systems’ [180, 183].

Interfacing the two platforms requires a stable emission frequency of the QD, which is sensitive to sev-
eral external perturbations, including temperature [219, 220] as well as electric [221–223], magnetic [212,
224] and strain fields [225–227]. While these phenomena lead to spectral wandering of the QD emission
over long timescales, they also provide means to fine-tune and match the emission frequencies using
active frequency feedback [33, 34, 228].

In our collaboration with the research group of Prof. Oliver G. Schmidt at the IFW Dresden, we
simultaneously stabilize the emission frequency of two separate QDs via strain tuning of the host
substrates [225, 229]. For this purpose, a rubidium-based Faraday filter serves as an absolute frequency
standard for distant nodes and acts as a tunable frequency discriminator at atomic transitions of rubidium,
a prominent quantum memory candidate [24]. The frequency-stabilized emitters thus become suitable
single-photon sources for our fiber-based atom-cavity system which provides the high bandwidth needed
to interact with short light pulses (as discussed in Ch. 1). Our efficient feedback scheme, for which only
a weak photon flux is necessary, along with the introduction of a common and reproducible standard,
paves the way towards quantum networks with distributed, indistinguishable solid-state emitters [1].

In this chapter, we briefly introduce quantum dots as single photon sources and characterize the spectral
quality of their emission, before we look at their experimental implementation in more detail (Sec. 7.1).
Then, the frequency discriminator (Sec. 7.2.1) and the rate-based feedback technique (Sec. 7.2.2) are
explained. Subsequently, the feedback quality is analyzed (Sec. 7.2.3). As a benchmark, we show
an improved long-term two-photon interference (TPI) visibility of the frequency-stabilized QDs in a
Hong-Ou-Mandel experiment [219, 230–232] (Sec. 7.3). The presented results are adapted from [1] and
constitute a significant step towards our goal to obtain deterministic and stable coupling of single photons
to rubidium-based quantum memories.
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Chapter 7 Frequency–Stabilizing Quantum Dots to Atomic Transitions

7.1 A Brief Introduction to Quantum Dots

A quantum dot is a small solid-state structure which allows the three-dimensional confinement of charge
carriers on the order of their de Broglie wavelength (typically several nm). The associated quantization of
motion results in discrete energy levels, which is why QDs are sometimes referred to as ’artificial atoms’.
These discrete states, along with the Pauli principle, make them ideal, on demand sources of pure single
photons without multi-photon components. In order to trigger the emission, an electron is excited to a
higher level and leaves a hole behind. This bound state is called an exciton. Depending on the lifetime of
the excited state and optical selection rules, the pair recombines under the emission of a photon.

Other competitors, such as atom-cavity systems [20] or spontaneous parametric down-conversion
sources [233] offer advantages in terms of coherence, but their emission rate and brightness cannot
compete with those of QDs [45]. Another advantage is the integrability and scalability of solid-state
technologies.1

The GaAs/AlGaAs QD samples in this work are grown by solid-source molecular beam epitaxy and
in situ Al droplet etching, which leads to the formation of nano-holes with high symmetry. The holes
are subsequently filled with GaAs and overgrown by AlGaAs, which results in a variety of isolated QDs
(Fig. 7.1(b)), of which many emit close to the rubidium D1 transitions [216]. Then, several QD-containing
nanomembranes are obtained using wet chemical etching and are bonded to a piezoelectric actuator
(0.3 mm PMN-PT) via a flip-chip transfer process [235]. Precise emission wavelength control is achieved
by applying a voltage to the actuator.

The QD samples (QD1 & 2) are placed in two separate He cryostats2 at 4 K to avoid thermal excitation
of phonons. A Ti:sapphire laser with 3 ps pulse length and 76 MHz repetition rate is fed through a
grating-based pulse-shaping setup for spectral narrowing. The light is then used to excite both QDs to the
biexciton state (XX) with a resonant two-photon π-pulse [236], which ensures precise temporal control
over the emission as it is required for TPI measurements. The fine-structure splitting S of the exciton
state (X) leads to two cross-polarized XX decay channels, which are followed by the respective X decay,
see Figure 7.1(c) [237]. For symmetric dots or, more general, symmetric electron wave functions in
orthogonal directions, the fine-structure splitting vanishes. As a consequence, the which-path information
is erased and entangled photon-pair emission is observed [216].

For the best control over the photon emission, we chose the XX photons and use strain tuning to make
them compatible with the D1 line of rubidium at 795 nm. Additionally, we select only one XX channel
by polarization filtering. The respective emission spectra of both QDs are shown in Figure 7.1(d).

In order to calculate the expected Faraday filter transmission (Sec. 7.2.1) and photon indistinguishab-
ilities (Sec. 7.3) the emission of both QDs is characterized. Fluorescence decay measurements reveal
lifetimes of T

(QD1)
1 = (155 ± 1) ps and T

(QD2)
1 = (187 ± 1) ps. Using a Michelson interferometer,

the coherence time T2 and thus the Lorentzian linewidth θ of the emitted photons is determined [238,
239]. QD1 exhibits values of T

(QD1)
2 = (153 ± 1) ps and θ(QD1) = (2.08 ± 0.01) GHz, and QD2 of

T
(QD2)
2 = (123 ± 4) ps and θ(QD2) = (2.59 ± 0.08) GHz.

7.2 Frequency Stabilization of a Single–Photon Source

In this section, we introduce the building blocks for frequency-stabilizing a single-photon source step-
by-step. A Faraday filter is used as an atomic reference for frequency discrimination, and the amount
of transmitted photons in a given time interval is used to determine deviations from a frequency set

1 E.g. electrical triggering of single photons has already been demonstrated [234].
2 A flow-cryostat as shown in Figure 7.1(a) (CryoVac KONTI) and a closed cycle cryostat (attocube AttoDRY 1100).
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Figure 7.1: (a) Photograph of a GaAs/AlGaAs QD containing nano-membrane on a piezo-electric actuator. The
copper baseplate beneath the sample is connected to the cold finger of the helium-flow cryostat. A solid immersion
lens (top) in combination with a high-NA objective (bottom) allows for single-dot addressing and efficient photon
collection. The black fragments are as-grown reference samples (wafer pieces). (b) Atomic force microscope
(AFM) image of nano-holes in AlGaAs, which are to be filled with GaAs and capped with another layer of
AlGaAs [216]. The obtained quantum dots have a lateral extent below 100 nm. The QD density of ∼ 0.1/µm2

allows to select one out of thousands for a measurement. (c) A two-photon excitation scheme resonantly addresses
the biexciton state (XX), which decays via the exciton state (X) by emitting two consecutive photons (XX and
X). The fine-structure splitting S of the X state leads to two cross-polarized XX-X decay channels (H and V). (d)

Emission spectra of two separate GaAs/AlGaAs QDs, whose XX emission frequencies are tuned in resonance with
the rubidium D1 transition using piezo-induced strain fields. The scattered excitation laser is partially suppressed
using notch filters. The data in (b) was kindly provided by Robert Keil.
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Figure 7.2: Experimental setup for two-photon interference (TPI) between separate, frequency-stabilized quantum
dots (QDs). A pulsed Ti:sapphire laser resonantly excites the XX state of QD1 and QD2, positioned in separate
cryostats at 4 K. Grating-based spectral filtering (SF) is applied to reduce the laser linewidth. A fiber-integrated,
tunable delay adjusts the excitation to match arrival times of XX photons at the subsequent TPI setup. Both QDs
are mounted on piezo-electric actuators for strain-induced emission frequency control. In each setup, the XX
photons are collected using a confocal microscope, with the addition of a solid immersion lens (SIL) for enhanced
extraction and a half-wave plate (HWP) and polarizer (Pol) for polarization filtering. A fraction of the signal is
branched off by a HWP and a polarizing beam splitter (PBS) and sent through a Faraday filter setup. It consists of a
heated, natural-abundance rubidium vapor cell in a longitudinal magnetic field, enclosed by two crossed polarizers.
A coil current supply and a temperature controller enable tuning of the filter transmission features (see Fig. 7.4).
The transmitted XX photons are detected by single-photon counting modules (SPCMs) 1 & 2 as signal inputs
R(t) for two digital proportional-integral (PI) controllers. Feedback voltages Vout are generated and applied to
the piezoelectric actuators for QD frequency stabilization. An additional Rb vapor cell in the signal arm of QD1
permits characterization of frequency drifts independent of the Faraday filter. The remaining XX photon streams
are sent to the TPI setup, consisting of a beam splitter (BS), monochromators (MCs) and SPCMs 3 & 4. A HWP in
one input arm is used to set the photon (in)distinguishability with respect to the polarization state.

point. This allows to apply a correction signal via strain-tuning of the QD host material, resulting in a
stabilized emitter frequency. The whole setup is displayed schematically in Figure 7.2. Here, we focus
on the components required for feedback, while the TPI measurement and the corresponding setup part is
described in Section 7.3.

It is worth to emphasize that not only QDs, but any single-photon source emitting at an atomic
transition frequency may be stabilized with our feedback approach based on atomic line filtering and rate
estimation.

7.2.1 The Faraday Filter as an Atomic Reference

The signal for frequency discrimination is provided by the Faraday effect: Light traveling through a
dispersive atomic vapor will experience a polarization rotation, if a dc magnetic field is applied parallel
to the propagation direction and if the frequency of the light is close to an atomic transition. Adding
crossed polarizers before and after the vapor cell ensures that only the narrow frequency bands with a
90◦ polarization rotation are transmitted with a high efficiency. Such a setup is referred to as a Faraday

Anomalous Dispersion Optical Filter (FADOF) [240, 241].
Using a narrow-band laser at 795 nm, in Figure 7.3 we illustrate the difference between simple
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Figure 7.3: A weak, narrow-band laser is used to characterize (a) an absorption spectrum and (b) a Faraday filter
spectrum, for which only an additional, crossed polarizer (Pol) before the photodiode (PD) has been introduced.
Both spectra are measured in the presence of a magnetic field of B‖ = 40.2 mT. The fits (red lines) are carried out
with the software ElecSus [242]. The detuning is given with respect to the weighted line center of the rubidium D1

transitions. In the absence of a field (B‖ = 0 mT) the expected transmission is also shown (dashed, black lines).

absorption spectroscopy (a) and Faraday filtering (b). The latter depends on both temperature T and
axially-applied magnetic field B‖. These settings influence the transmission level as well as the overall
spectrum in terms of peak positions and widths. In combination with spectrally broad emitters, having
only two high-transmission features becomes advantageous, as we will see in Figure 7.5.

The magnetic field is generated by a homemade coil, which encloses the Rubidium vapor cell.
Temperature adjustments are realized by a heating strip around the cell that avoids building up a magnetic
field (see schematic filter in Figure 7.2). Since Joule heating by the coil also contributes to the overall
temperature, we counteract this side-effect by regulated water cooling. To a certain extent the dissipated
heat is desirable: A higher temperature leads to a higher filter transmission. However, the temperature
cannot be set arbitrarily high; we are limited to 85◦ C. Then rubidium condensation occurs at the vapor
cell windows, since the core temperature of the cell becomes higher than the window temperature.
Figure 7.4(a) shows the resulting drop in filter transmission for 40.2 mT and 85◦ C.3

To compare measured Faraday filter spectra for given B‖ and T settings with the expected ones, we
use the software ElecSus [242] to calibrate the conversion from coil current to magnetic field and, more
importantly, the absolute frequency axis. ElecSus calculates the electric susceptibility of alkali-metal
vapors [245] to predict their absorptive and dispersive properties. The model includes effects such as
dipole-dipole induced linewidth broadening [246] and axial magnetic fields [247]. The software is based
on Python (v2.7) and has a GUI which simplifies data fitting, for which we leave free parameters for T ,
B‖, additional broadening and the incident angle of polarization, whereas e.g. cell length and isotope
abundance are fixed. From the parameter scan in Figure 7.4, we conclude that the recorded temperatures
at the sensors close to the windows are not reflecting the actual temperature at the core of the cell, as for
high magnetic fields the transmission is lower and the feature width higher than expected. This points at

3 To point out a more extreme case: Starting at ∼ 120◦ C [243], absorption processes referred to as ’curing’ take place [244].
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Figure 7.4: (a) Filter transmission as a function of set temperature T and applied magnetic field B‖. The filled
circles are measured transmission values for the leftmost peak in the Faraday filter transmission (see Fig. 7.3(b)).
The expected values are interpolated and displayed in the background. (b) The width of the peak, which we call
the lock feature, in dependence of the same parameters as in (a). We observe that despite the recorded temperatures
at the sensors close to the cell windows, Joule heating of the magnetic field coil causes an even higher core
temperature, which results in lower transmissions (rubidium condensation) and higher feature widths than expected
(B‖ = 40.2 mT). (c) Frequency tunability of the central point on the falling lock-feature slope around rubidium
transitions (cf. set point in Fig. 7.5(b)). Besides the coarse tuning via the temperature, tuning the magnetic
field allows to shift the transmission peak of the filter, and thus the frequency set point of the stabilized emitter,
accurately to a desired frequency near an atomic hyperfine resonance of the rubidium D1 line – with 24.6 MHz/mT.
As a convenient side effect, the width of the transmission peak changes with 40.8 MHz/mT and can be adjusted to
match the linewidth of the QD.

the aforementioned condensation of rubidium.
After understanding the working principle of the filter and its characterization using a laser, we now

look at the transmission properties of the photon stream emitted by a QD. As depicted in Figure 7.2, a
part of each emission is directed to the filter. The expected transmission TQD is given by a convolution of
a narrow-band, weak laser transmission TL with the broader spectral emission profile f (ν) of the QD,
that is obtained from a coherence time measurement using a Michelson interferometer (Fig. 7.5(a)):

TQD(ν) = (TL ∗ f )(ν) .

Figure 7.5(b) shows the expected curve of TQD2 along with the measured frequency-tuned transmission
of QD2. For a transmission peak close to the desired set frequency νset, the slope around νset serves as
the error signal for frequency stabilization. Changes in frequency are directly translated to a variation of
the FADOF transmission.

The coarse set point is chosen by the appropriate isotope abundance of rubidium. The set point of the
stabilized frequency νset shown in Figure 7.5(b) has been selected for interfacing the XX photons with
the F = 2 to F′ = 1, 2 hyperfine transitions of the D1 line of 87Rb (52S 1/2 → 52P1/2) only. In this case, a
natural isotope abundance is required. If one is interested in addressing F = 1 to F′ = 1, 2 instead, a pure
85Rb vapor cell is the right choice, as can be simulated straightforward with ElecSus. The settings for
transitions at the D2 line (780 nm) are found likewise.4

Further adjustments to the set point are possible using the set temperature of the filter, see Figure 7.5(c).

4 Experiments involving the 85Rb isotope could also address e.g. F = 3 to F′ = 2, 3 at 795 nm using a pure 87Rb vapor cell,
while F = 2 to F′ = 2, 3 would be technically challenging due to a fairly low filter transmission at the appropriate set point,
which is at the beginning of a slope.
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Figure 7.5: (a) The coherence g(1)(τ) of XX photons emitted by QD2 is measured using a Michelson interferometer.
From a fit (dashed, black line) to its absolute value we extract the coherence time T

(QD2)
2 = (123 ± 4) ps and thus a

Lorentzian linewidth of θ(QD2) = (2.59 ± 0.08) GHz, which has to be taken into account in the spectral emission
profile f (ν) of QD2. (b) Faraday-filter transmission spectra measured with a weak, narrow-band laser (solid, black
line) and with the frequency-tuned QD2 (red line). A convolution of the laser transmission with f (ν) of QD2
(dashed, black line) is used to model the QD transmission. The detuning is given with respect to the weighted line
center of the rubidium D1 transitions. The set point for the TPI measurement (Fig. 7.7) with the reference photon
rate Rset = R(νset) is highlighted. Frequency deviations are detected according to Equation 7.2. Only relatively
weak photon streams (here: 6000 photons per second) are required to stabilize the frequency. The vapor cell was
kept at a temperature of 85 ◦C and the magnetic field was set to 40 mT. (c) Rubidium hyperfine transitions F → F′

are addressed by coarse adjustments of the set temperature T and fine-tuning of the magnetic field B‖. For different
temperatures and B‖ = 29.5 mT, the maximum set point slopes are marked, along with the windows over which the
slope decreases by less than 10 %. Stabilizing the frequency to other atomic resonances is discussed in the main
text.

For finer tuning, the magnetic field is sufficient, as shown in Figure 7.4(c). Simultaneously, the width of
the transmission peak can be adjusted to match the linewidth of the QD.

In conclusion, we find that the Faraday filter delivers a reliable set point for any desired wavelength
that addresses 87Rb D-line transitions, including expedient detunings. Furthermore, in any interfacing
experiment, the hyperfine transition of use is most likely fixed, such that an intermediate exchange of
isotopes is obsolete.

7.2.2 Single–Photon Based Feedback Algorithm

The SPCM photon detection rate Rset = R(νset) serves as the reference for frequency feedback. The rate
R(t) of photon events at the SPCM can be written as:

R(t) = R(ν(t)) ≡ TQD(ν(t)) · RQD , (7.1)

which depends on the time-varying center frequency ν(t) of the QD’s spectral emission profile and its
emission rate RQD. By inverting Equation 7.1, the instantaneous frequency deviation from the set point
∆ν(t) ≡ ν(t) − νset can be determined, using the observed detection rate R(t). In practice, deviations from
the set point are kept small by the feedback loop and the linearized relation:

∆ν ≈ 1
dR
dν

∣
∣
∣
νset

∆R , (7.2)
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with ∆R = R(t) − Rset provides a good approximation.

In order to obtain an error signal for feedback, a simple, empirical algorithm is implemented to estimate
the underlying scattering rate at any point in time. Motivated by the fact that photon events lying further
in the past convey less information and should thus be given lower weight with time, an exponential
smoothing filter is chosen to estimate the count rate R(t). The digital implementation is similar to a first
order low pass filter and described by the pseudo-code:

Restimate,n+1 = Restimate,n · d + B · i

where B =
{

1, if a photon arrived
0, else ,

with the decrement d = e−τcycle/τfilter and the increment i = (1 − d)/τcycle. Here, τcycle and τfilter denote the
cycle time of the digital loop and the chosen integration time of the filter, respectively. Instead of using a
discrete averaging window [228], our algorithm represents an infinite impulse response filter and thus
features a smooth frequency response.

There are two important aspects for rate-based frequency estimations: The first one is the correct
detection of variations in the scattering rate R(t) from the stochastic train of photon detection events
observed by the SPCM. We measure the free-running QD frequency-noise power spectral densities [248]
on the rate R(t) to determine the frequency at which the QD 1/ f -noise is exceeded by detection shot noise.
Then the feedback bandwidth of the control system is set to a frequency well below (see Fig. 7.6(a,b)).

The second aspect is the distinction between rate variations due to frequency drifts and due to intensity
changes in the QD emission. The latter could be compensated by adjusting the rate Rset with respect to
a rate measurement before the Faraday filter. Another possibility is creating a dispersive error signal
by taking the difference of the orthogonal circular components of the filter transmission [240]. In our
experiment, QD intensity fluctuations due to sample drifts are taken into account by selecting data
windows in which the count rate after the TPI setup is stable.

The rate estimation algorithm as well as a subsequent standard digital proportional-integral (PI)
controller are implemented on a field programmable gate array (FPGA) 5 using LabVIEW [249]. The
generated correction signal is sent to the strain-tuning piezoelectric actuator beneath the QD via a
high-voltage amplifier. Due to piezo creep, a certain set voltage on the piezoelectric actuator does not
result in a constant strain in the QD membrane. The strain slightly changes over time and therefore
results in a frequency drift, which is compensated by the implemented stabilization.

7.2.3 Characterization of the Feedback Quality

For locking the QD emission frequencies, small count rates of only Rset,QD1 = 3600 cps and Rset,QD2 =

1500 cps are used. Figure 7.6(a) shows the frequency drift of QD1 for the frequency-locked and free-
running case over a duration of T = 40 min. It is determined by measuring the photon transmission
through a separate, heated rubidium vapor cell (see Fig. 7.2), which constitutes an out-of-loop measure-
ment of the frequency drift. Frequency-stabilization leads to a constant frequency within a deviation of
< 30 MHz 6, which is less than 1.5 % of the linewidths of the QD (≥ 2 GHz). In the free-running case, the
frequency detuning ∆ν(t) increases over time, following a logarithmic law known for the displacement

5 National Instruments NI PXI-7842R card
6 Calculated using

√

σ2
N
− N to exclude the detection shot noise. N is the average count number for ≥0.5 s binning times and

σN is the corresponding standard deviation.
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Figure 7.6: (a) Relative emission-frequency drift over time for QD1 in frequency-locked and free-running state,
obtained by an out-of-loop measurement of the transmission through a separate Rb vapor cell. In the stabilized
state the frequency is kept constant within a deviation of less than 30 MHz, which is below 1.5 % of the emission
linewidth. The free-running state reveals a frequency drift due to piezo creep, which is fitted by a logarithmic
function. (b) The relative intensity noise S RIN of the free-running quantum dot emission (solid, blue line) after
the out-of-loop frequency discriminator is calculated according to Equation 7.4 and allows to determine the
maximum possible feedback bandwidth (BW), which is the intersection point of S RIN with the shot noise level
(SNL) (dashed, blue line). The point at which the frequency-locked emission S RIN (solid, red line) is no longer
lower than the free-running S RIN indicates the chosen feedback bandwidth (dashed, red line). (c) Theoretically
expected evolution of the TPI visibility V(t) considering the frequency drift shown in (a). We use the experimentally
determined lifetimes T1 and coherence times T2 of the two separate QDs to model V(t). While the visibility stays
constant in the frequency-locked case (red line), for free-running QDs it drops from Vfree(t = 0 min) = 40 % to
Vfree(t = 100 min) = 25 % (dashed, blue line). The solid blue line represents the time-averaged visibility with a
coincidence integration window of 40 min as used for the experiment in Figure 7.7(c).

change due to piezo creep [250]:

∆ν(t) = ∆ν0 ·
[

1 + α · log10(t − t0)
]

.

Here, ∆ν0 denotes the frequency detuning 1 minute after a certain voltage is applied to the piezo at a time
t0, and α describes the rate of the piezo creep, which depends on the applied voltage and the piezo load.
The displayed data in Figure 7.6(a) is in good agreement with the model.

As a next step, we use the trace of N binned photon detection events xn to determine the frequencies
of the underlying fluctuations and drifts. They can only be detected up to the point, at which the photon
detection shot noise starts dominating the relative intensity noise (RIN). For a given count rate R = xn/∆t,
this shot noise level (SNL) is given by:

SNL =
2
R

(7.3)

in analogy to the shot noise for electric currents.

We determine the shot noise-limited bandwidth by first calculating the power spectral density S xx(ω)
from the count rate fluctuations in the time domain:

S xx(ω) = lim
T→∞

1
T

E
[

|x̂T (ω)|2
]

,
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where E denotes the expectation value and x̂T (ω) is the truncated Fourier transform given by:

x̂T (ω) =
∫ T

0
x(t)e−iωt dt .

Using ω = 2π f and the discretization of the time variable t 7, this expression can be re-written as:

x̂T (ω) =
N∑

n=0

x(n · ∆t)
︸   ︷︷   ︸

=xn

·∆t · e−2πi f n∆t

and

x̂T

(

k

∆t · N

)

= x̂T

(

k

T

)

= ∆t ·
N∑

n=0

xn · e−2πi nk
N

= DFTk [xn] · ∆t ,

with k = −N
2 , ...

N
2 − 1 being the Fourier components. Thus the power spectral density is given by:

S xx(ω) =

∣
∣
∣
∣x̂T

(
k
∆t·N

)∣∣
∣
∣

2

T
=
|DFTk [xn]|2 · (∆t)2

T
.

To obtain the relative intensity noise (RIN), one needs to normalize by the average count number x̄:

S RIN(ω) =
S xx(ω)

x̄2
=

∣
∣
∣
∣DFTk

[
xn

x̄

]∣∣
∣
∣

2
· (∆t)2

T
. (7.4)

For different temporal lengths T of the photon trace and binning sizes ∆t as well as intensities, in the
limit of high frequencies, Equation 7.4 has to lead to the SNL given by Equation 7.3.

The S RIN in Figure7.6(b) shows an 1/ f behavior which leads to an intersection point with the SNL.
This crossing indicates that a feedback bandwidth higher than 300 mHz would add additional noise to
the quantum dot emission frequency. At the set point of Rset,QD2, depicted in Figure 7.5(b), we choose
30 mHz by adjusting the digital PI parameters – one order of magnitude smaller than the limit. In
Figure 7.6(b), this can be seen at the point, where the frequency-locked emission no longer exhibits less
noise than the free-running one (for an extrapolated equal SNL).

To conclude, the feedback bandwidth is determined by the amount of photons branched off for
frequency discrimination. The brighter a single photon source is, the more frequency noise can be
suppressed. While narrowing the spectral emission profile f (ν) is rather unfeasible, our available rate
of photons for frequency stabilization is sufficient to generate an ideal frequency overlap between the
two photon streams, as we will see in the next section. It is important to point out that the bandwidth
is not limited by our feedback scheme, but mainly by the available rate of photons. Quantum dots in
general have shown emission rates of up to several tens of Megahertz [45]. With extremely high rates, the
limitation in our approach is given by the piezo-electric actuators which are able to react to modulations
up to the kHz regime.

7 This step is necessary, since we numerically calculate the Fourier transformation with the SciPy module in Python.
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7.3 Two–Photon Interference from Separate Quantum Dots

In this chapter we show an improved long-term two-photon interference (TPI) visibility of two frequency-
stabilized QDs in a Hong-Ou-Mandel experiment8. Before we actually compare the visibility for
stabilized and free-running emission, we estimate the ideally expected TPI visibility. In Section 7.1 the
lifetimes of the XX state T1 and the coherence times T2 of the respective photons have been determined
for both QDs that are used in this last experiment. We calculate the respective photon indistinguishabilities
I = T2/ (2T1) [253], which are I(QD1) = (49.4 ± 0.5) % and I(QD2) = (32.9 ± 1.1) %. The obtained
values indicate a presence of internal dephasing processes9 in the QDs which degrade the photon
indistinguishability. The latter also sets an upper limit to the achievable TPI visibility for interfering
photons from the two separate dots. The visibility V is calculated by [219]:

V =
γ1γ2

γ1 + γ2
·

γ1 + γ2 + γ
∗
1 + γ

∗
2

(2π δ)2 + (γ1 + γ2 + γ
∗
1 + γ

∗
2)2/4

, (7.5)

with γi = 1/T (QDi)
1 denoting the radiative decay rate and γ∗

i
= (2/T (QDi)

2 − γi) the pure dephasing rate for
the different QDs (i =1,2). The frequency detuning between the photon streams from QD1 and QD2
is specified by δ. Interfering photons of identical frequency (δ = 0) results in a maximum visibility of
V = 40 %, while δ > 0 reduces the visibility.

We use Equation 7.5 to calculate the theoretical TPI interference visibility for the locked and free-
running QDs, taking the experimental parameters of the QD photons into account. Figure 7.6(c) shows
the expected visibility over time, assuming a frequency drift between the two QD emission frequencies
as observed in Figure 7.6(a). Perfect frequency stability results in the maximum achievable visibility of
V = 40 %, while for the measured piezo creep the theoretically expected visibility drops to V = 25 % at
t =100 min. This expected visibility is comparable to other QD based TPI experiments [219, 232, 255].
However, it has been shown that in principle visibilities as high as 98% can be obtained, e.g. by using
charge-tunable QD devices [231]. For quantum repeater applications, photon indistinguishabilities of
99% are ultimately required [256]. As we present in the following, the maximum visibility – together
with tunability to an atomic transition – is only accessible using efficient frequency feedback.

In order to experimentally verify an improved long-term visibility under frequency stabilization, we
compare the TPI of photons from two separate QDs in the frequency-locked and free-running state. Each
QD emission is coupled into a single-mode fiber, delivering a photon rate of RQD ≈ 30 kcps. One part of
each single-photon stream is sent to the TPI setup. It consists of a 50:50 non-polarizing beam splitter (BS),
followed by monochromators for further background suppression and single-photon counting modules
(SPCMs) in each output arm, see Figure 7.2. If photons with equal properties (frequency, polarization,
spatio-temporal mode structure) impinge on a 50:50 beam splitter (BS) at the same time, the probability
amplitudes for simultaneous transmission and reflection interfere destructively, such that only pairwise
propagation after the BS is possible (Fig. 7.7(a)). Equal rates at the BS input ports ensure a maximum
peak at zero delay in the crossed polarizations case. For the HOM measurement, we have rates of 5 kcps
per QD available.

For stabilized QDs, Figure 7.7(b) shows the normalized coincidences of photons in the two beam
splitter output ports versus the delay time τ between the recorded events. The polarization state between
the interfering photons is controlled by a half-wave plate. The interference visibility V is calculated by

8 HOM interference has also been shown for single photons provided by atomic systems [251] and SPDC sources [252].
9 It is not clear what causes them, it could be related to charge noise in the vicinity of the QDs or spectral jittering due to

charge traps [254].
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Figure 7.7: (a) Schematic illustration of the expected outcome of a Hong-Ou-Mandel experiment in the cases of
frequency-stabilized and free-running QD emission. If photons with equal properties (frequency, polarization,
spatio-temporal mode structure) impinge on a 50:50 beam splitter (BS) at the same time, the probability amplitudes
for simultaneous transmission and reflection interfere destructively, such that only pairwise propagation after the BS
is possible. (b) Two-photon interference measurement between two frequency-stabilized, separate QDs, showing
the normalized coincidences versus the delay time τ. The black curve corresponds to perpendicular polarizations
of the photons arriving at the BS. The red curve for parallel polarizations depicts a clear reduction of coincidences
at τ ≈ 0. An interference visibility of Vlock = (41 ± 5) % is obtained. A similar measurement of the visibility with
free-running QDs (not shown) results in Vfree = (31 ± 7) %. (c) Measurement of the interference visibility over
time for both free-running and frequency-locked QDs. Each data point corresponds to the coincidences obtained
for the previous 40 min. The shaded areas are the respective uncertainties based on Poisson counting statistics. At
any measurement time the visibility is higher for frequency-locked QDs than for free-running QDs.

evaluating the peak areas A‖ for parallel and A⊥ for perpendicular polarizations of photons impinging on
the beam splitter at τ = 0:

V =
A⊥ − A‖

A⊥
.

A clear Hong-Ou-Mandel dip is observed, yielding an interference visibility of Vlock = (41 ± 5) %
after dark count correction of the SPCMs (Rdc,SPCM3 = 104 cps, Rdc,SPCM4 = 134 cps). The visibility
agrees well with the expected value of V = 40 % in Figure 7.6(c). Afterwards, a measurement with
free-running QDs is performed. The visibility in that case decreases to Vfree = (31 ± 7) %, due to piezo
creep and other emission frequency perturbations. For ideal quantum emitters the ratio of the peak at
τ = 0 compared to the neighboring peaks equals 0.5 for perpendicular photon polarizations and low
emission rates. For perfectly bright sources with one photon per trigger pulse, this ratio would increase
to 2/3. The origin of these numbers can be understood if all detection cases including the possibility
of photon absences are scaled with the probability of having a photon at the BS input port at all. In our
case, by comparing the detection rate of 5 kcps with the excitation rate of 76 MHz, we are allocated
to the dark emitter limit and expect 0.5. Here, a lower ratio is observed, which can be attributed to
blinking10 of the QD emission [209, 257]. Recorded intensity traces of the photon streams indicate that
there is no blinking on long timescales (milliseconds to hours). In order to observe blinking at shorter
timescales, the second-order autocorrelations g(2)(τ) are measured for both QDs, using an HBT setup.
The result, as shown in [1, 254], shows a significant bunching at small delay times, which is a signature
of blinking of the QD emission. Fitting a bi-exponential results in characteristic blinking timescales of

10 Which can be understood as a high-frequency imbalancing of the emission rates, see previous discussion.
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T
(QD1)
b = 332 ns and T

(QD2)
b = 27 ns, to which the frequency stabilization is insensitive. The blinking

effect can be attributed e.g. to the dark excitonic state [258].
To further compare the two cases of TPI with and without frequency feedback, the interference

visibility is measured as a function of time, as shown in Figure 7.7(c). Each respective data point
corresponds to the coincidences obtained within the previous 40 min. Hence, the integration window is
gradually shifted through the total measurement time of 87 min. The shaded areas display the respective
uncertainties due to Poissonian counting statistics. In the locked and free-running case, both QDs were
frequency-matched at t =0 min. In the free-running case, frequency changes in the QD emission within
the first integration window reduce the visibility for the first data points already (cf. Fig. 7.6(c)).

In conclusion, we have verified that active frequency feedback solely based on measurements of the
emitted single photons is an attractive solution to maintain long-term indistinguishability of photons from
separate solid-state emitters. The rubidium-based Faraday filter offers a common, absolute frequency
reference for distant nodes in a quantum network. Furthermore, matching atomic transitions is desirable
for atom-based quantum memories as potential elements in quantum repeaters. Low filter losses and
an efficient rate-estimation algorithm ensure an effective frequency stabilization. Although we are only
using a small fraction of the photon flux, frequency fluctuations are suppressed to a negligible fraction of
the emission linewidth. While we have shown that the frequency of emitted photons can be kept at a
set point around rubidium transitions, their bandwidth is still a problem that has to be solved in order
to combine the two platforms efficiently. Here, the sample growth plays an important role [259]. Also
internal dephasing processes have to be kept at a minimum to ensure transform-limited linewidths [260].
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CHAPTER 8

Outlook

I
n this thesis I presented the storage of short light pulses in a CQED system consisting of a rubidium

atom coupled to a high-bandwidth fiber Fabry-Pérot resonator. The strong light-matter interaction
enables input-pulse durations shorter than the excited state lifetime of the atomic species. The
subsequent generation of a single photon with a controllable temporal waveform does not only

witness the successful preceding storage, but in principle also creates an entangled state between the
internal state of the atom and the polarization of the generated photon. This is a consequence of the tripod
configuration, in which the system is prepared. While for memory applications a Λ-system is preferred,
this scheme offers interesting possibilities for entanglement distribution, as we will see in this chapter.

The ability to interact with photons of short duration furthermore encourages hybrid experiments
involving semiconductor quantum dots, for which we have already demonstrated frequency-stabilization
of the QD emission to atomic transitions [1]. The bandwidth mismatch between the two platforms
is currently being resolved by the growth of quantum dot samples with lifetime-limited emission and
optical resonators with high bandwidths – like the one employed in the presented experiments. Moreover,
making use of GRIN lenses and reducing the losses due to scattering and absorption, an overall boost in
quantum memory efficiency is to be expected.

Towards Hybrid Quantum Networks

The rapidly expanding field of quantum hybrid systems aims at the development of practical technologies
that overcome the limitations imposed by a single platform, e.g. QDs are producing single photons
at remarkable rates [261], but their applicability as a quantum memory is still discussed [262, 263].
Atomic systems, on the other hand, are approaching storage times of half a second [24]. From my
personal point of view, this shows that our field has to make a transition from separate laboratories to
collaboration networks or research centers, in which different systems – or at least our knowledge about
them – can be combined. Fascinating examples for hybrid experiments include the entanglement of
successive atom-cavity photons in a photonic chip [264], the interaction between a single trapped ion and
resonant, heralded single photons from an entangled-photon source based on spontaneous parametric
down-conversion (SPDC) [182] and a semiconductor–atomic interface for slowing down single photons
emitted by a quantum dot [265].

In that line, I will propose two long-term goals that could be realized in our current fruitful collaboration
with the group of O. Schmidt: The storage of a quantum-dot photon in an atomic ensemble and
entanglement swapping between a real and an artificial atom. But also our CQED system on its own
offers interesting possibilities, such as the dissipative entanglement of two atoms [266], the possible
implementation of which has already been discussed in [51].
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Storage of Even Shorter Light Pulses in an Atomic Ensemble

We have reduced the discrepancy between the bandwidths of our chosen atomic species and a short light
pulse by interfacing both via an impedance matching element – namely our open cavity. But its linewidth
low-pass filters shorter i.e. spectrally broader pulses. So how can we provide a more efficient quantum
memory in the presence of a bandwidth mismatch? Before exchanging the resonator itself with a fast

cavity [184], we can try to improve the storage efficiency, for which we have two major options: First,
the light-matter coupling

√
N · g can be increased by employing ensembles of N atoms. An incoming

photon will be mapped into a coherent superposition of any out of the atoms being transferred to the
target ground state, creating a so-called Dicke state [267, 268]. In other terms, with an increase of g,
the transfer to the excited state, from where we can map to the target ground state, happens faster than
the cavity field decay. Thus for g ≫ κ, the photon is captured with a higher probability than in the
presented measurements with g ≈ κ. A promising technique to place tens of atoms into the optical lattice
within the cavity mode is based on spatial atomic ensemble compression [269] and has been realized in
the prior experiment [60]. Without compression, we have already observed more than 6 atoms in the
cavity region [51]. Second, and more importantly, a clean Λ-system should be realized by making the
cavity resonant with the |1〉 → |1′〉 transition and preparing the atoms in the state |1, 0〉 [23]. This can be
achieved by optical pumping with π-light, which unfortunately bears the risk of heating the atoms and
requires improving our cooling method.

Realizing |1, 0〉 as an initial state also enables the storage of quantum information encoded in the
polarization of a light pulse. Depending on whether it drives the σ+ or the σ−-transition, the atom is
transferred to |2,+1〉 or |2,−1〉, as depicted in Figure 8.1(a). The storage fidelity is obtained by a full
quantum state tomography [270], for which we have already built a setup [271].

Even without encoding quantum information in the incoming pulse, the storage of shorter coherent
pulses – or even true single photons – will be a significant step towards the interconnection of different
platforms.

Entanglement Swapping with Real and Artificial Atoms

A prerequisite for my following proposal is the emission of entangled-photon pairs, as it is the case
for a vanishing spin-related fine-structure splitting (FSS) between the intermediate exciton states [216].
Unfortunately, as soon as the exciton frequency is stabilized to a rubidium transition according to our
scheme, the FSS is altered due to the applied strain field. We therefore propose to split the (bi)exciton
emission according to its polarization and to use two orthogonal degrees of freedom to stabilize the
frequency and the FSS simultaneously [272]. This could be done by two independent control loops with
significantly different bandwidths or with two orthogonal degrees of freedom for feedback, as available
in anisotropic strain-tuning platforms [227].

Alternatively, a QD which is naturally emitting close to rubidium lines and does not have to be tuned
over a wide wavelength range has to be chosen. The group of O. Schmidt has recently reported on the
emission of entangled photon pairs around the D2 line [254]. Fine-tuning of the frequency has been
possible via the temperature, which does not affect the FSS.

The exciton photon can either be used for storage experiments with polarization-encoded quantum
information, or for entangling the atom with the biexciton photon (via entanglement swapping) at a
wavelength, that is ’alien’ to rubidium – i.e. atom-photon entanglement, that could not be created with
our system alone. Furthermore, this can be understood as a proof-of-principle demonstration of quantum
frequency conversion [273] from 780 to 781.6 nm [254]. However, for entanglement distribution in
quantum networks, the common focus is on state-of-the-art fiber technologies at telecom bands. The
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Figure 8.1: (a) Polarization-dependent storage of a light pulse in an atomic ensemble. As opposed to the scheme in
Figure 6.6(a), the atoms have to be initialized in |1, 0〉 to realize a clean Λ-system, in which polarization-encoded
qubits can be stored. (b) Entanglement swapping with a real and an artificial atom (QD) in a hybrid experiment. In
a tripod configuration (see Fig. 5.1(b)) photon generation creates entanglement between the atom-cavity photon and
the atomic mF-states Aatom and Batom (Eq. 8.1). Biexciton (XX) and exciton (X) photons emitted by the quantum
dot are entangled as well (Eq. 8.2, see Fig. 7.1(c)). A dichroic mirror is used to separate X and XX, while the
quarter-wave plate (QWP) transforms circular to linear polarizations. A Bell measurement is performed with the
exciton and cavity photons, using a 50:50 beam splitter (BS) and polarizing beam splitters (PBS) according to
the Innsbruck detection scheme [275]. The state in Equation 8.3 is created when a coincidence is detected by the
SPCMs (two examples shown). The illustration considers Vphoton and HX which projects the entangled state onto
|AatomVXX〉.

wavelength conversion of an entangled photon can be realized by quantum frequency down-conversion
to the C-band at 1560 nm [274] to finally realize an atomic quantum memory entangled with an outgoing
telecom photon.

The idea for the experiment is graphically sketched in Figure 8.1(b). A photon is generated by applying
a control pulse to the atom prepared in |1, 0〉. This results in a circularly polarized photon, which is
transformed to the H,V-basis by a quarter-wave plate, resulting in the entangled atom-photon state

1
√

2

(

|HphotonAatom〉 + |VphotonBatom〉
)

, (8.1)

where Aatom and Batom are Zeeman states the atom is transferred to. At the same time, the biexciton
cascade of the QD is triggered, delivering polarization-entangled photons in the H,V-basis:

|Φ+X, XX〉 =
1
√

2
(|HXHXX〉 + |VXVXX〉) . (8.2)

Both cavity and QD photon are sent to a 50:50 beam splitter, where a Bell measurement [275] is performed
and unambiguously detects the Bell states Ψ±. This event indicates the creation of the entangled state

1
√

2
(|AatomVXX〉 + |BatomVXX〉) . (8.3)

While the biexciton photon can be directly analyzed with respect to its polarization, the atomic state has
to be read out by applying an mF-state selective π-pulse which transfers the population e.g. from Aatom
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back to F = 1. A subsequent, second photon generation attempt will only be successful, if the atom has
been in the state Aatom. Finally, this means that the entanglement-swapping success is confirmed by a
4-fold coincidence.
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[107] V. Vuleti ć, C. Chin, A. J. Kerman and S. Chu, “Degenerate Raman Sideband Cooling of Trapped
Cesium Atoms at Very High Atomic Densities”, Physical Review Letters 81 (1998) 5768.

[108] S. E. Hamann, D. L. Haycock, G. Klose, P. H. Pax, I. H. Deutsch and P. S. Jessen,
“Resolved-Sideband Raman Cooling to the Ground State of an Optical Lattice”,
Physical Review Letters 80 (1998) 4149.
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K. Dörr, G. Bester, A. Rastelli and O. G. Schmidt, “Tuning the Exciton Binding Energies in
Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress”,
Physical Review Letters 104.6 (2010) 067405.

[226] J. Zhang, Y. Huo, A. Rastelli, M. Zopf, B. Höfer, Y. Chen, F. Ding and O. G. Schmidt,
“Single Photons On-Demand from Light-Hole Excitons in Strain-Engineered Quantum Dots”,
Nano Letters 15.1 (2015) 422.

[227] Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding and O. G. Schmidt,
“Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots”,
Nature Communications 7 (2016) 10387.

[228] M. Metcalfe, A. Muller, G. S. Solomon and J. Lawall,
“Active feedback of a Fabry-Perot cavity to the emission of a single InAs/GaAs quantum dot”,
Journal of the Optical Society of America B 26.12 (2009) 2308.

[229] R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack,
J. R. Schröter, A. Rastelli and O. G. Schmidt,
“Nanomembrane Quantum-Light-Emitting Diodes Integrated onto Piezoelectric Actuators”,
Advanced Materials 24.20 (2012) 2668.

[230] C. K. Hong, Z. Y. Ou and L. Mandel,
“Measurement of subpicosecond time intervals between two photons by interference”,
Physical Review Letters 59 (1987) 2044.

[231] R. B. Patel, A. J. Bennett, I. Farrer, C. A. Nicoll, D. A. Ritchie and A. J. Shields,
“Two-photon interference of the emission from electrically tunable remote quantum dots”,
Nature Photonics 4 (2010) 632.

[232] E. B. Flagg, A. Muller, S. V. Polyakov, A. Ling, A. Migdall and G. S. Solomon,
“Interference of Single Photons from Two Separate Semiconductor Quantum Dots”,
Physical Review Letters 104.13 (2010) 137401.

[233] C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state”,
Physical Review Letters 56 (1986) 58.

[234] C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie and A. J. Shields,
“An entangled-light-emitting diode”, Nature 465 (2010) 594.

[235] Y. Zhang, Y. Chen, M. Mietschke, L. Zhang, F. Yuan, S. Abel, R. Hühne, K. Nielsch,
J. Fompeyrine, F. Ding and O. G. Schmidt, “Monolithically Integrated Microelectromechanical
Systems for On-Chip Strain Engineering of Quantum Dots”, Nano Letters 16.9 (2016) 5785.

[236] M. Müller, S. Bounouar, K. D. Jöns, M. Glässl and P. Michler,
“On-demand generation of indistinguishable polarization-entangled photon pairs”,
Nature Photonics 8 (2014) 224.

[237] J. D. Plumhof, R. Trotta, A. Rastelli and O. G. Schmidt, “Experimental methods of post-growth
tuning of the excitonic fine structure splitting in semiconductor quantum dots”,
Nanoscale Research Letters 7.1 (2012) 336.

[238] M. Zopf, “Coherent Strain Tunable Single Photon Sources”,
MSc thesis: Technische Universität Dresden, 2014.

[239] M. Fox, Quantum Optics: An Introduction, Oxford University Press, 2006.

89

http://dx.doi.org/10.1103/PhysRevLett.104.067405
http://dx.doi.org/10.1021/nl5037512
http://dx.doi.org/10.1038/ncomms10387
http://dx.doi.org/10.1364/JOSAB.26.002308
http://dx.doi.org/10.1002/adma.201200537
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1038/nphoton.2010.161
http://dx.doi.org/10.1103/PhysRevLett.104.137401
http://dx.doi.org/10.1103/PhysRevLett.56.58
http://dx.doi.org/10.1038/nature09078
http://dx.doi.org/10.1021/acs.nanolett.6b02523
http://dx.doi.org/10.1038/nphoton.2013.377
http://dx.doi.org/10.1186/1556-276X-7-336


Bibliography

[240] S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup and I. Gerhardt,
“Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition”,
Nature Communications 7 (2016) 13632.
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