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Abstract

Water is a crucial resource for human health, agricultural production and economic develop-
ment. This holds especially true in West Africa, where large parts of the population work as
self-sustaining farmers. Accurate knowledge of available water resources is therefore essential
to properly manage this valuable commodity. Hydrologic modeling is seen as a key aspect in
generating predictions of available resources. However, the overall availability of in situ data
for model parametrization in West Africa has been steadily declining since the 1990s. When
observations are available, they often contain errors and gaps. This lack of data severely hinders
the application of hydrologic models in the region. Nowadays, many global and regional remote
sensing and reanalysis data products exist which may be used to overcome these problems. A
thorough analysis of the contribution of these products to regional simulations of hydrologic
processes in West Africa has so far not been conducted. The purpose of this study is to close
this gap. The study area spans from 3 to 24° latitude and -18 to 16° longitude and encom-
passes, among others, the Niger, Volta, and Senegal river basins. This study focuses on three
key aspects, namely how the performance of remotely sensed and reanalyzed products can be
validated without the availability of in situ data for the region; to what extent semi-distributed
hydrologic models of the region can be parameterized and validated using these data; and how
a fully distributed, grid-based model can be set up, calibrated and validated for sparsely-gauged
river basins using multivariate data inputs.

Comparisons of remote sensing and reanalysis precipitation products for the region show strong
variability. A hydrologic evaluation was conducted, during which the skill of each precipitation
dataset to accurately reproduce observed streamflow in HBV-light simulations was tested. Best
results are achieved by products which include satellite infrared and microwave measurements
as well as bias-correction based on in situ observations. Averaged Nash-Sutcliffe Efficiencies
(NSE) of 0.66 were reached during the calibration of the CMORPH CRT and PERSIANN CDR
products over six subbasins.

In a next step, three SWAT models were set up for the region using multiple remote sensing
and reanalysis data products and then calibrated and validated against observed river discharge
with global and local approaches. While streamflow results differ within models and model
regions, they are mostly satisfactory with coefficient of determination (R2) values of 0.52 and
0.51 for calibrations and 0.63 and 0.61 for validations. In a multivariate validation framework,
the skill of the model in simulating variables not included in the calibration is further evaluated
against remote sensing observations of actual evapotranspiration, soil moisture dynamics, and
total water storage anomaly. Here, it has been shown that the models perform robustly and
reach a good agreement in relation to observations.

Furthermore, the grid-based mHM model was applied to several river basins in the south of
the study area. After the quality of precipitation and evapotranspiration inputs was tested, a
multivariate calibration was conducted. Models were calibrated using discharge observations
(Q) and, to further constrain model boundary conditions, discharge in combination with remote
sensing actual evapotranspiration observations (Q/ET). Finally, the quality of the simulations
was tested against streamflow data as well as against remote sensing actual evapotranspiration,
soil moisture, and total water storage anomaly data. Streamflow simulations performed well
with averaged Kling-Gupta Efficiencies (KGE) of 0.53 for the first (Q) and 0.49 for the second
(Q/ET) calibration. Further variables tested during the multiobjective validation were within
good predictive ranges, especially during the Q/ET calibration. When SWAT and mHM model
results are compared against each other and against external data products, results show that
while both models perform robustly, mHM predictions outperform SWAT results.
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Abstract

This study furthers the understanding of the contribution of remote sensing, reanalysis and
global data products in regional simulations of hydrologic processes in West Africa. Specific
modeling strategies and routines were developed to further increase predictive capabilities of
hydrologic models of the region using these freely-available datasets.
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Zusammenfassung

Wasser ist ein fundamentaler Rohstoff, dessen Verfügbarkeit die menschliche Gesundheit, agro-
nomische Produktivität and ökonomische Entwicklung beeinflusst. Dies trifft besonders in West-
afrika zu, wo große Teile der Bevölkerung von Subsistenzlandwirtschaft leben. Genaue Kenntnisse
über verfügbaren Wasserressourcen sind daher unverzichtbar, um eine nachhaltige Bewirtschaf-
tung sicherzustellen. Hydrologische Modellierung wird allgemeinhin als ein wichtiger Faktor
betrachtet, um verfügbare Ressourcen zu prognostizieren. Allerdings nimmt die Dichte der in
situ gemessenen Daten zur Modellparametrisierung in West Afrika seit den 1990ern kontinuier-
lich ab. Zusätzlich weisen verfügbare Daten teils große Unsicherheiten und Lücken auf. Diese
mangelhafte Datenverfügbarkeit erschwert die Anwendung von hydrologischen Modellen in der
Region stark. Heutzutage existieren zahlreiche Fernerkundungs- und Reanalysedaten, die ge-
nutzt werden können, um das Datenverfügbarkeitsproblem zu umgehen. Allerdings fehlt eine
tiefgreifende Analyse, welchen Beitrag diese Datensätze in regionalen Simulationen der hydrolo-
gischen Prozesse in Westafrika leisten können. Ziel der vorliegenden Studie ist es, diese Lücke zu
schließen. Das Untersuchungsgebiet erstreckt sich von 3 bis 24° geographischer Breite und -18
bis 16° geographischer Länge und umfasst, unter anderem, die Flusseinzugsgebiete von Niger,
Volta und Senegal. Drei Kernaspekte liegen im Fokus dieser Studie: Zunächst wird untersucht,
wie die Leistung von Fernerkundungs- und Reanalysedatensätzen ohne Zuhilfenahme von in
situ Daten validiert werden kann. Weiterhin wird ein semidistributives hydrologisches Modell
mit diesen Datensätzen parametrisiert und validiert. Darauffolgend wird ein Rastermodell unter
Zuhilfenahme von Fernerkundungsdaten aufgesetzt, kalibriert und validiert.

Der Vergleich von Fernerkundungs- und Reanalyseniederschlagsprodukten zeigt eine große Va-
riabilität für die Region auf. Eine hydrologische Evaluierung wurde durchgeführt, wobei die
Stärke der Produkte, gemessenen Abfluss in HBV-light Simulationen zu reproduzieren, begut-
achtet wurde. Es zeigte sich, dass Satellitenprodukte, welche Infrarot- und Mikrowellendaten mit
Bodenobservationen vereinen, am besten abschneiden. CMORPH CRT und PERSIANN CDR
Produkte erreichen eine über die Teileinzugsgebiete gemittelte Nash-Sutcliffe Effizienz (NSE)
von 0.66.

In einem nächsten Schritt wurden drei SWAT Modelle für die Region unter Verwendung ver-
schiedener Datenprodukte aufgesetzt und gegen beobachteten Abfluss in zwei verschiedenen
Ansätzen (global und lokal) kalibriert und validiert. Wärend die Abflusssimulationen in der
Qualität zwischen Modellen und Regionen variieren, sind die Ergebnisse größtenteils akzeptabel
mit einem Bestimmtheitsmaß (R2) von 0.52 und 0.51 für die Kalibrierung und 0.63 und 0.61
für die Validierung. In einer multivariaten Validierung wurden Modellergebnisse der Variablen
tatsächliche Evapotranspiration, Bodenfeuchtedynamik und absolute Wasserspeicheränderung
gegen Fernerkundungsprodukte verglichen. Hier wurde gezeigt, dass das Modell diese Variablen
robust simuliert und gute Ergebnisse erzielt.

Weiterhin wurde das gegitterte mHM Modell auf Flusseinzugsgebiete im südlichen Untersu-
chungsgebiet angewendet. Zunächst wurde die Qualität von Niederschlags- und Evapotranspira-
tionseingangsdaten bewertet. Darauffolgend wurde ein multivariater Kalibrieransatz angewandt,
bei dem zunächst nur nach Abfluss (Q) und nachfolgend nach Abfluss und tatsächliche Evapo-
ration aus Satellitendaten (Q/ET) kalibriert wurde. Die Qualität der Simulationen wurde gegen
Abfluss, tatsächliche Evapotranspiration, Bodenfeuchteanomalie and totale Wasserspeicheran-
omalie evaluiert. Die Abflussimulationen weisen eine hohe Übereinstimmung mit beobachteten
Daten auf. Während der Kalibrierung wurden gemittelte Kling-Gupta Effizienzen (KGE) von
0.53 (Q) und 0.49 (Q/ET) erreicht. Die erweiterte Modellvalidierung während der multivariaten
Analyse hat gezeigt, dass Variablen, welche nicht in der Kalibrierung inkludiert waren, ebenfalls
eine hohe Übereinstimmung mit Fernerkundungsdaten aufweisen. Dies ist besonders unter der
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Zusammenfassung

Q/ET Kalibrierung ersichtlich. Im direkten Vergleich von SWAT und mHM Modellergebnissen
und externen Datensätzen zeigt sich, dass während beide Modelle gute Übereinstimmungen ge-
genüber externen Daten aufweisen, mHM Vorhersagen generell eine höhere Übereinstimmung
als SWAT Ergebnisse aufweisen.

Diese Studie trägt zum tieferen Verständnis davon bei, inwiefern Fernerkundungs-, Reanalyse-
und globale Datensätze hydrologische Vorhersagen in Einzugsgebieten mit spärlicher Daten-
verfügbarkeit verbessern können. Im Zuge dessen wurden spezifische Modellierungsstrategien
entwickelt, um die Vorhersagekraft bestehender Modelle durch die Nutzung frei verfügbarer
Datensätze weiter zu erhöhen.
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1 General Introduction

In the following chapter, a general introduction of the study will be presented. First, the

underlying problem statement will be discussed and a brief overview of key studies motivating

the research will be given. Following this, the arising research questions will be detailed, as well

as the objectives and structure of the study. More comprehensive discussions of the research

topics and state of the art can be found in the introduction sections to each of the main study

chapters 4, 5, 6 and 7.

This study is part of the COAST project (Studying changes of sea level and water storage

for coastal regions in West Africa using satellite and terrestrial data sets) of the University

of Bonn, supported by the Deutsche Forschungsgemeinschaft (German Research Foundation)

under Grant No. DI443/6-1.

1.1 Problem Statement

The climate of West Africa is variable and expected to be highly influenced by climate change.

The Intergovernmental Panel on Climate Change (IPCC) predicts a temperature increase of

between one and two degrees for West Africa until 2050, depending on the representative con-

centration pathway (CO2-equivalent greenhouse gas concentrations) scenario (Oldenborgh et

al. 2013). It is expected that this will have a strong impact on the hydrologic cycle and freshwa-

ter availability (Bormann and Diekkrüger 2004). Many West African countries already frequently

face drought and water stress (Mishra and Singh 2010; Shanahan et al. 2009) and studies have

shown droughts to increase in both frequency and severity (Kasei et al. 2010; Masih et al. 2014).

In West Africa, the majority of the labor force works as self-sustaining farmers and generates

income by selling surpluses (African Development Bank 2018; Hollinger and Staatz 2015; Jalloh

et al. 2013). Since the irrigation infrastructure is poorly developed (FAO 2018), these popu-

lations are highly at risk, with limited water availability threatening both food and economic

security (Schuol et al. 2008a). Integrated water resource management (IWRM) is seen as a

method to ensure sustainable development and to alleviate water crises by managing this valu-

able resource. One key principle of IWRM as recommended by the Dublin Conference in 1992

is a participatory management approach involving users, planners and policymakers (Rahaman

and Varis 2005). However, the quantification of available water resources required to accurately

plan water management strategies remains problematic due to limitations of measurement tech-

niques and data availability. Hydrologic models are important tools in this regard and can

be used to generate predictions of water resources (Beven 2012). However, many of the West
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African river basins are poorly-gauged, with the availability of in situ data further declining

in recent years (Adjei et al. 2012; Hughes 2006). Even when observations are available, they

may include erroneous data or large gaps (Behrangi et al. 2011; Bitew and Gebremichael 2011;

Koutsouris et al. 2016). At a small-scale, appropriately funded research projects can establish

their own measurement networks to suit modeling needs (e.g. for the modeling of inland valleys

in central Benin (Danvi et al. 2017), climate change impact modeling in western Burkina Faso

(Yira et al. 2017), or the modeling of hydrologic processes in a headwater catchment in central

Benin (Giertz et al. 2006)). At the meso- or large scale, this is not possible and hydrologic mod-

eling exercises are severely hindered by the limited data availability. This lack of observations

has even led to the use of statistical weather generators in the region (Schuol and Abbaspour

2006b).

Validating Remotely-Sensed Precipitation Data in Sparsely-Gauged Catchments

Remote sensing is seen as a way to overcome some of the aforementioned problems. While sev-

eral studies use remote sensing observations of parameters such as elevation or leaf area index

(Faramarzi et al. 2010; Schuol et al. 2008a) to parameterize their hydrologic models, the use

of remotely-sensed climatological observations is also becoming more pronounced, with many

products being available free of charge. However, due to the sometimes large variability between

different remote sensing products and limited possibility of validating estimates against ground-

based measurements, results may be heavily biased (Thiemig et al. 2013; Tramblay et al. 2016).

It is therefore necessary to assess the predictive capabilities of different products and to choose

the most appropriate dataset for the study area. Many authors have evaluated the performance

of remote sensing precipitation datasets for regions all over the world (Fujihara et al. 2014;

Koutsouris et al. 2016; Cohen Liechti et al. 2012; Tobin and Bennett 2014), with some recent

articles focusing on the West African domain (Awange et al. 2015; Gosset et al. 2013; Nicholson

et al. 2003; Pfeifroth et al. 2016; Thiemig et al. 2012). However, the question arises how perfor-

mances can be assessed without the availability of in situ data. Considering the data scarcity

in large parts of the world, it has been suggested that precipitation products may be evaluated

in a hydrologic modeling framework, where the performance of the product is assessed based

on its ability to accurately simulate streamflow. For this method, streamflow observations must

be available. While multiple studies focus on this topic (Behrangi et al. 2011; Bitew and Ge-

bremichael 2011; Bodian et al. 2016; Cohen Liechti et al. 2012; Dile and Srinivasan 2014; Fujihara

et al. 2014; Li et al. 2015), only Thiemig et al. (2013) have attempted a hydrologic evaluation for

the West African region. In their study, the authors calibrate a spatially-distributed, physically-

based hydrologic model using four satellite precipitation- and one reanalysis product. They

conclude that remote sensing and reanalysis data can be very useful for hydrologic modeling

purposes, especially for water budget calculations. While degraded performance was observed

for low flow conditions, this might be attributed to errors in the model structure. The authors

stress the fact that precipitation products need to be evaluated for the region (either classically

against gauge data or hydrologically using a model) before being used for further modeling pur-

poses. Since new remote sensing data products are continually emerging and older products are

improved, an overview of the performance of the most popular precipitation datasets for the

2
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region is currently lacking.

Improving Hydrologic Model Parametrization, Calibration and Validation using Remote

Sensing Data

In recent years, there has been a trend towards the use of hydrologic models of ever-increasing

complexity (Samaniego et al. 2010). However, particularly in data-scarce catchments, increases

in model complexity do not necessarily lead to better simulation results. Multiple very com-

prehensive studies have been undertaken by Schuol et al. in setting up the physically-based

semi-distributed Soil and Water Assessment Tool (SWAT) (Arnold et al. 2012b; Srinivasan

et al. 1998) in the West African study area (Schuol and Abbaspour 2006a, 2006b; Schuol et

al. 2008a). In their work, the authors furthermore explore the utilization of a weather gener-

ator to counteract the lack of in situ observations of climatological parameters, as due to the

historical period modeled in their study, no remote sensing data was available. After the model

was set up, water availability was estimated for the entire West African subcontinent (Schuol

et al. 2008a) and afterwards for the whole of Africa (Schuol et al. 2008b). The authors use

a wide variety of global and also remote sensing data to parameterize their model, such as a

digital elevation model, or a global soil information dataset. Especially spatially distributed

models can be over-parameterized, leading to parameter equifinality, where an unlimited num-

ber of parameter combinations may lead to identical results (Orth et al. 2015; Samaniego et

al. 2013; Samaniego et al. 2010). Hydrologic models are typically calibrated and validated using

only discharge observations. While this allows for a confident prediction of runoff, the mod-

eler cannot be certain as to the quality of the estimation of further hydrologic parameters like

actual evapotranspiration or total water storage (Rakovec et al. 2016b; Rakovec et al. 2016a;

Zink et al. 2018). It therefore becomes necessary to separately validate all variables of interest,

which can be achieved by using readily-available remote sensing observations. This has been

attempted, in parts, by Xie et al. (2012), who validated a SWAT model of sub-Saharan Africa

using satellite total water storage observations. Due to the poor availability of streamflow data

for the region, the authors used multi-year average monthly river discharge for the years 1900

to 2001 and a calibration period from 2002-2009. They acknowledge that due to the disagree-

ment in periods of observational data, ”[...] it is difficult to evaluate the model’s adequacy in

simulating the surface water system” (Xie et al. 2012). While Xie et al. compartmentalize total

water storage deviations into storages such as soil moisture or groundwater storage, no further

model results are validated against remote sensing data. The cited studies offer interesting pos-

sibilities, especially in light of using remote sensing and global data products to improve model

parametrization. However, remote sensing observations of, e.g., actual evapotranspiration, soil

moisture and total water storage, offer the potential to further validate the model performance

of variables not included in the calibration.

Parameterizing, Calibrating and Validating a Grid-Based Hydrologic Model using Remote

Sensing Inputs

As has been stated in the previous section, the increasing complexity of hydrologic models leads

to increased equifinality while also becoming more computationally demanding. Especially fully-
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and semi-distributed models suffer from this, as during calibration, parameters must be opti-

mized for each modeling unit (i.e. model polygon or grid cell) (Pokhrel et al. 2008; Beven

1993). While a gridded version of the SWAT model exists (SWAT-GRID, Rathjens and Oppelt

(2012)), it is unsuited for simulations of mesoscale basins due to its structure and computa-

tional constrains (Pignotti et al. 2017). A relatively new grid-based hydrologic model which has

been tailored to use remote sensing and global input data is the mesoscale Hydrologic Model

(mHM) (Samaniego et al. 2010; Kumar et al. 2013b). The model can be calibrated at a com-

putationally efficient coarse resolution, after which it is scaled to produce outputs at a finer

resolution using Multiscale Parameter Regionalization (MPR). mHM has been extensively ap-

plied in Europe and the USA (Kumar et al. 2010; Kumar et al. 2013a; Rakovec et al. 2016b;

Zink et al. 2017; Samaniego et al. 2013; Thober et al. 2015; Hattermann et al. 2017). Due to the

model structure, multivariate calibration and validation combining discharge observations with

remote sensing data can be performed. The grid-based nature allows for model outputs to be

easily compared against remotely-sensed datasets. mHM has further been applied for hydrologic

predictions in a data-scarce basin in India (Samaniego et al. 2011), as well as for soil moisture

quantifications (Samaniego et al. 2013), and has also been calibrated using satellite-observed

total water storage data to improve partitioning of rainfall into runoff components (Rakovec

et al. 2016a). Even though mHM has been applied for climate change impact assessment in the

domain of the Upper Niger river (Hattermann et al. 2017), its performance in the West African

domain remains largely unknown.

This study contributes to ongoing research efforts to better quantify available water resources

of sparsely-gauged basins. Specifically, novel methodological approaches will be developed to

validate remote sensing and global precipitation products without the need for in situ data,

further confirm the performance of hydrologic models using remote sensing data, and set up

a grid-based model for parts of the region using remote sensing data inputs and multivariate

calibration and validation techniques.

1.2 Research Questions

Considering the problem statement and state of the art, several research questions arise to which

this study aims to find answers. Principal and underlying research questions will be described

below.

1. How can the performance of remotely-sensed and reanalyzed precipitation data

be assessed for the study area?

Due to a lack of in situ measurements throughout the study area, validating the performance

of remotely-sensed and reanalyzed precipitation datasets proves problematic. In this study,

a hydrologic evaluation is proposed, where the performance of input data is assessed using a

hydrologic modeling framework. This task can be further differentiated into two underlying

questions, which will be discussed in chapter 4:

a) How can differences between ten precipitation datasets be quantified for West African

river basins of differing locations and sizes?

4
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b) How robust are these products in accurately simulating streamflow during a hydro-

logic evaluation?

2. How can a SWAT model of the study area be set up and multi-objectively

validated using remote sensing observations?

Several studies have explored the possibilities of setting up hydrologic models for parts of- or

even the entire study area. The lack of measured data complicates this, with some studies relying

on the use of statistical weather generators or an upscaling of locally observed data, which may

introduce additional bias. Here, we first establish a routine of setting up the semi-distributed

SWAT model using remote sensing and reanalysis inputs. In a second step, a multi-objective

validation is conducted, where the model performance is evaluated against streamflow, as well

as remotely-sensed actual evapotranspiration, soil moisture and total water storage data. The

following underlying questions are addressed in chapter 5:

a) How can a hydrologic modeling framework for West Africa be set up using only freely

available data?

b) Which simulation quality can be obtained using these datasets?

c) How can a multi-objective validation be performed?

d) How can the potential and limitations of this approach for assessing the water avail-

ability at the regional scale be evaluated?

3. How can the grid-based mHM model be calibrated and validated in a multi-

variate framework for the region?

SWAT is a semi-distributed model relying on the hydrologic response unit approach, during

which geolocational information is lost. It was therefore decided to apply a fully-distributed,

grid-based model in the region. Here, the mHM model is applied in the study area. The use

of mHM is advantageous, as it has been especially developed for predictions at the mesoscale

and is designed to work with common remote sensing input formats. mHM further allows

for the transferability of parameters between different spatial scales, supporting calibration at a

computationally efficient resolution while subsequent runs may be performed at finer resolutions.

The model was set up using remotely-sensed and reanalysis data and again validated against

streamflow and remote sensing actual evapotranspiration, soil moisture and total water storage

estimates. The following underlying questions will be discussed in chapter 6:

a) How can the performance of the mHM model using a multiscale parameter regional-

ization approach be assessed?

b) How does the model perform under multivariate calibration inputs?

c) How can model parameters be transferred between different spatial scales using mul-

tiscale parameter regionalization?
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1 General Introduction

4. How well do SWAT and mHM simulations of key hydrologic variables compare

against each other and against remote sensing, as well as global model results?

For this last research question, model outputs of both SWAT and mHM will be extracted

for an overlapping area and compared against each other and against external data. Selected

variables include actual evapotranspiration, soil moisture anomaly, total water storage anomaly,

groundwater recharge and water yield. This research question is discussed in chapter 7.

1.3 Objectives

Following the problem statement and research questions, the main objectives of this study will

be outlined briefly. The principle objective is to increase the performance and predictive capa-

bilities of select hydrologic models in the West African domain by implementing remote sensing

observations for more rigorous model calibration and/or validation. Modeling frameworks de-

veloped in this study have been communicated to the scientific public through the publication

of research articles and disseminated to West African partner organizations, as has already been

done during a project workshop in Ouagadougou, Burkina Faso, in February 2018. In order

to entice a maximum of researchers to reproduce our modeling approaches for their studies, all

software and data used in this study are easily accessible and free of charge.

Specifically, this study aims to:

1. Analyze and quantify uncertainties of remote sensing precipitation datasets

over West Africa using a hydrologic evaluation framework.

2. Create a framework to set up and validate the semi-distributed hydrologic

SWAT model for the study area using remotely-sensed and reanalyzed data.

3. Create a robust, computationally efficient, multivariate calibration and valida-

tion framework for the application of the grid-based mHM hydrologic model

in the study area.

4. Assess the comparability of select SWAT and mHM outputs against each other

and against external data.

1.4 Structure of this Study

This study is structured into eight chapters, starting with the general introduction as chapter

1. In chapter 2, the study area will be described in detail, focusing on physical (topography,

climate, geology, soils, hydrology and land use), as well as economic (agriculture, population

and economy) aspects. An overview of the three hydrologic models used in this thesis (HBV-

light, SWAT and mHM) and their routines is given in chapter 3. In chapter 4, the possibility of

evaluating the performance of ten precipitation datasets using the HBV-light model is explored.

Chapter 5 focuses on the multi-objective validation of multiple SWAT models set up for the

study area using remote sensing datasets. Special attention is paid to the evaluation of dis-

charge, actual evapotranspiration, soil moisture and total water storage performance. Chapter
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6 presents a modeling framework for the computationally efficient multivariate calibration and

validation of the grid-based mHM model. Results of the simulations using SWAT and mHM are

compared in detail in chapter 7 and a general conclusion is given in chapter 8. Chapters 4, 5,

and 6 have been previously published. The articles have been formatted to fit the style of this

study. Corresponding citations shall be briefly presented:

Chapter 4: Poméon, T., Jackisch, D., Diekkrüger, B., 2017. Evaluating the performance of

remotely sensed and reanalysed precipitation data over West Africa using HBV light. Journal

of Hydrology. 547, 222–235. doi:10.1016/j.jhydrol.2017.01.055.

https://www.sciencedirect.com/science/article/pii/S0022169417300653

Chapter 5: Poméon, T., Diekkrüger, B., Springer, A., Kusche, J., Eicker, A., 2018. Multi-

Objective Validation of SWAT for Sparsely-Gauged West African River Basins-A Remote Sens-

ing Approach. Water 10, 22. doi:10.3390/w10040451.

http://www.mdpi.com/2073-4441/10/4/451

Chapter 6: Poméon, T., Diekkrüger, B., Kumar, R. 2018. Computationally Efficient Multi-

Parameter Calibration and Validation of a Grid-Based Hydrological Model in Sparsely-Gauged

West African River Basins. Water. 10, 26. doi:10.3390/w10101418.

https://www.mdpi.com/2073-4441/10/10/1418
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2 Study Area

2.1 Location and Topography

The study area is located in West Africa, spanning from 3 to 24° latitude and -18 to 16° longitude.

The distinction of West Africa from other regions is not sharp (Iloeje 1986; Morgan and Pugh

1969), with the term “West Africa” itself having been coined by Europeans during the colonial

era (Church 1957; Morgan and Pugh 1969). It has been described as the “[. . . ] area lying west

of the plateaux and peaks of the Cameroons and Adamawa, and south of the Sahara [. . . ]” and as

“[. . . ] the combined area of the former British and French West Africa together with Portuguese

Guinea, Liberia, the Cape Verde Islands, and the islands of Fernando Po, São Tomé and Principe

and Annobon.” (Morgan and Pugh 1969). Nowadays, West Africa is considered to consist of

the 15 member states of the Economic Community of West African States (ECOWAS): Benin,

Burkina Faso, Cape Verde, Ivory Coast, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali,

Niger, Nigeria, Senegal, Sierra Leone, and Togo; as well as Mauritania. The region covers an

area of five million km2 (Jalloh et al. 2013). An overview is presented in Figure 2.1.

Figure 2.1: Study area.
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This study focuses exclusively on continental West Africa without considering islands. Unlike

other major regions of Africa, the relief is mainly flat and low, and does not interrupt zonal

climate and vegetation patterns (CILSS 2016). Some mountainous regions do, however, exist

and shall be briefly mentioned. The Fouta Djallon mountains in Guinea rise 1000 to 1500 m

and are located in the path of southwesterly winds. Consequentially, precipitation is high and

thus the mountains form an important source for several streams and rivers (Church 1957; Iloeje

1986). The Akwapim-Atakora range spans from southern Ghana (Akwapim Hills) through Togo

(Togo Mountains) and into northern Benin (Atakora Mountains), and peaks can reach heights

of almost 1000 m according to digital elevation model data (CILSS 2016; Lehner et al. 2008;

Lehner et al. 2013). The Jos Plateau of central Nigeria is 1200 to 1500 m high, separated from

the Hausaland High Plain by a 600 m scarp. Some Niger tributaries originate here (Iloeje 1986).

In western Cameroon, the 4096 m tall active Mount Cameroon volcano is the highest peak in

western Africa (Encyclopaedia Britannica 2018b). Towards northern Niger, the Aı̈r Mountains

rise between 1000 and 1500 m over a length of 400 km. While rainfalls are higher than in the

surrounding area, they are erratic, mostly falling in extreme events causing severe erosion. The

drainage direction is westwards (Church 1957).

2.2 Climate

The climate of West Africa is strongly influenced by the prevailing northeast and southwest

airstreams. While the northeasterlies are of dry continental origin, the southwesterlies originate

in the Atlantic and are warm and humid. Seasonal changes between these airstreams produce

a limited monsoon, leading to contrasting dry and wet seasons over the course of the year. In

West Africa, the airstreams are convergent in the Intertropical Convergence Zone (ITCZ) located

slightly north of the equator but moving south and north during the year. Because of their vapor

pressure differential, the ITCZ forms a boundary between the humid and dry airmasses, with

the dry, warmer air from the Sahara climbing over the denser, moister air originating in the

Atlantic. This phenomenon is known as the Monsoon Trough (Buckle 1996). Areas north of

8° latitude experience a single annual rainfall maximum between July and August, while along

the coast between Liberia and the Niger delta, an anomalous, short dry season prevails during

this time. Further east towards the central Nigerian coast, this dry season is not experienced

(Buckle 1996; Ojo 1977).

The climate in the region is diverse, spanning from equatorial monsoonal in the south to arid

desert in the north. Figure 2.2 shows an updated Köppen and Geiger climate classification map

for the study area based on the work of Kottek et al. (2006) and Rubel et al. (2017). Exemplary

climate graphs are based on station data from the German Meteorological Office – Climate Data

Center (DWD 2018) and the World Meteorological Organization (WMO 2018).

Equatorial monsoonal climate prevails along the southwest and southeast West African coast.

Here, the climate is humid for most parts of the year. In Port-Harcourt, Nigeria, annual rainfalls

can reach over 2300 mm and the temperature is very stable with a mean of 26.7°C. The climate

in the south and up to central Burkina Faso is mostly equatorial winter dry. Examples here

are Abidjan and Cotonou. Clearly visible is the previously described second dry period in

August. Maximum rainfalls are reached in June during the primary, and October/November
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2.2 Climate

Figure 2.2: Köppen and Geiger climate classification of the study area with examples.

during the secondary rainy season. Rainfall sums vary by 300 mm between the two cities, with

Abidjan reaching 1600 mm and Cotonou 1290 mm, while mean temperatures are equal at 28°C.

Towards the north, precipitation decreases. The hot arid steppe zone covers central Senegal,

southern Mali and northern Burkina Faso and Nigeria. Examples here are Dakar, Niamey and

Ouagadougou. During the single rainy season, maximum precipitation falls in August in all

cities. Out of the three, Ouagadougou has the highest annual precipitation with 736 mm, as

opposed to 530 mm in Niamey and 433 mm in Dakar. Temperatures are similar for Ouagadougou
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and Niamey with 29 and 30°C on average. Peak temperatures are reached in August, with lower

temperatures following during the rainy season. A second peak is reached after the end of the

rainy season in October. Temperatures in oceanic Dakar are lower with an average of 25.7°C,

but rise during the second half of the year. To the north, the climate changes to hot arid

desert. In the example of Timbuktu, Mali, annual rainfalls only reach 191 mm with a mean

temperature of 29.6°C. The rainy season is short with maximum precipitation reached in August,

and temperatures are high from April to October.

West Africa is prone to drought, with a period of severe and long-lasting drought beginning

in the 1960s and reaching into the mid-1970s (Mishra and Singh 2010; Shanahan et al. 2009).

From the 1980s onwards, droughts again occurred frequently (Mishra and Singh 2010). Changing

sea surface temperatures have been identified as the main cause of the variability of the West

African monsoon leading to lower rainfalls (Shanahan et al. 2009). Especially in a region where

subsistence farmers rely on regular rainfalls for crop production, droughts can, and have in

the past, affect the lives of millions of people (Fafchamps et al. 1998; Shanahan et al. 2009).

Studies have shown West African droughts to increase in frequency, severity and area affected

(Kasei et al. 2010; Masih et al. 2014). Besides impacting water availability and food production,

droughts can also trigger further economic, societal, and environmental change (Gautier et

al. 2016). Based on the analysis of 3000 years of sedimentation in Lake Bosumtwi, Ghana, it has

been suggested that the multidecadal droughts faced since the 1960s are in fact not anomalous,

indicating the risk for even longer and severe occurrences (Shanahan et al. 2009).

2.3 Geology

The West African basement complex consists mainly of Pre-Cambrian rocks, like the rest of the

continent. Formations are folded and aligned in a north-south direction. Approximately one

third of these rocks, which can be up to 3000 million years old, is exposed at the surface. In

the other areas, as shown in Figure 2.3, the Pre-Cambrian basement complex is covered by later

rock formations and sedimentary basins which formed during times when large parts of West

Africa were covered by lakes and shallow seas (Ahn 1970; Church 1957; Schlüter 2006). The

Pre-Cambrian basement complex is characterized by metamorphic rocks from earlier formations

with later volcanic intrusions and consists mainly of schists, phyllites, quartzites, granites and

gneisses. The origin of most minerals found in the region, such as diamonds, iron, chromium,

manganese and gold, is associated with Pre-Cambrian materials (Ahn 1970). Evenly eroded

Pre-Cambrian formations provided a level floor for the advance and retreat of shallow seas,

which deposited the materials now covering the basement complex. Large areas, including much

of the Sahara, were covered by sea during the Ordovician and later Silurian periods. During the

Devonian, marine and continental phases alternated and in the Lower Carboniferous, the area

was again covered by sea. Since the Eocene or Oligocene, continental conditions prevail over

West Africa (Church 1957; Schlüter 2006). During the Secondary and Tertiary, intrusions and

extrusions of volcanic outpourings, associated with tectonic uplift processes, further influenced

the geology (Ahn 1970; Church 1957). Volcanic activities continued into the Quaternary, forming

among others the still active Mount Cameroon (Church 1957). Erosion of sandstone is a key

process during the Quaternary, producing vast quantities of sand, which was distributed by the
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Figure 2.3: Exposure of pre-cambrian rocks (up to 3000 mio. years old), partly under younger
coverage. Schlüter (2006), after Key (1992).

wind and, in conjunction with a change in the global climate, facilitated the establishment of

the Sahara Desert (Church 1957; Schlüter 2006). Lastly, the period is defined by the expansion

and contraction of vegetation belts in result to climate changes (Schlüter 2006).

2.4 Soils

Soils in West Africa have developed in subtropical and tropical conditions under high temper-

atures and variable humidity (Gaiser et al. 2010). While soil parent materials are defined by

the underlying geological structures, soil development is also influenced by the climate and veg-

etation belts present in the region (Ahn 1970). Desert and semi-desert soils are generally much
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younger than their counterparts in the humid tropics. Soils in the semi-arid zones have been de-

veloped since the last glacial between 20,000 and 30,000 years ago, while tropical soils have been

developed in the last five million years. Climatic changes over the last two million years have

led to increases and decreases in precipitation. This variability has facilitated the translocation

of soil material, removing either parts of, or the entire soil and exposing parent material, thus

restarting the soil development anew. Contrarily, in humid regions, the land surface remained

stable, which led to the development of older soils (Gaiser et al. 2010). An overview of the

distribution of dominant soil groups is given in Figure 2.4.

Figure 2.4: Soil associations with dominant soil groups across northwestern and western Africa,
Gaiser et al. (2010), based on FAO/AGL (2003).
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Calcisols, Regosols, Arenosols and Leptosols constitute the arid and hyper-arid parts of the

Sahara Desert (Gaiser et al. 2010). Calcisols are generally defined by the accumulation of

calcic materials and may host sparse vegetation, such as shrubs, grasses and herbs, and are

used for grazing. Arenosols offer a low nutrient storage capacity and the sparse vegetation

can be used for extensive nomadic grazing. While agricultural use is possible on these soils,

improper management may cause the soil to become unstable and to revert back to shifting

sands. Regosols, on the other hand, are minimally developed and have only marginal agricultural

significance; while Leptosols are very shallow and extremely stony, allowing for wet season

grazing with a high risk of erosion (IUSS Working Group WRB 2006). On the semi-arid southern

fringe, acidic Arenosols developed from carbonate-free aeolian sand deposits. While these sandy

soils may be deeply rooted, their water retention capacity is low. Towards the sub-humid

savannah in the south, slightly acidic and increasingly loamy Lixisols and Luvisols prevail (Gaiser

et al. 2010). Lixisols host savannah and open woodland vegetation, which is mostly used for

grazing. The soils are prone to erosion as degraded soils have a low aggregate stability. Tillage of

wet Lixisols or the use of heavy machinery compacts the soil and leads to structural deterioration.

The cultivation of tubers and groundnuts further increases the erosion risk. Deteriorated Lixisols

regenerate only slowly. Luvisols are characterized by clay migration into the subsoil. The soils

are fertile and suitable for varying agricultural uses. If a high silt content is present, Luvisols

are also prone to erosion (IUSS Working Group WRB 2006). In the west, soils of Gambia

and the Casamance region of Senegal consist mostly of salt-accumulating Solonchaks, for which

cultivation methods need to be adapted (Gaiser et al. 2010; IUSS Working Group WRB 2006).

The natural vegetation of this estuary zone is composed of mudflats and mangrove swamps

(CILSS 2016).

Approaching the humid areas towards the southern coast, weathered Acrisols and Ferralsols

with low base saturation are predominant (Gaiser et al. 2010). Acrisols need to be carefully

managed to retain their agricultural value. The shifting cultivation (slash and burn) performed

for centuries in the region takes this into account by cultivating an area for one or a few years

with the subsequent regeneration period spanning several decades. This way, limited resources

are preserved (IUSS Working Group WRB 2006; Church 1957). However, this traditional system

has been mostly replaced by crop fallow rotations (Janssen et al. 2010). Ferralsols are deeply

weathered red and yellow soils of the tropics. They have good physical properties and erosion

resistance. However, their chemical fertility is low and needs to be overcome with fertilizer

application for agricultural production (IUSS Working Group WRB 2006).

2.5 Hydrology

Hydrologic conditions strongly vary in the region, with northern countries like Mali and Niger

facing considerably dryer conditions than their southern counterparts, due to the rainfall dis-

tribution in the Monsoon Trough (Buckle 1996). An overview of key hydrologic aspects for the

West African countries is given in Table 2.1. Annual precipitation may be as low as 92 (Mauri-

tania) or 151 mm (Mali) and can reach up to 2500 and 2400 mm in Sierra Leone and Liberia.

Highest surface- and groundwater generation is observed for Guinea, with the Niger, Senegal and

Gambia rivers rising in the Fouta Djallon highlands (Balek 1977; CILSS 2016; FAO-AQUASTAT
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2018). Many downstream countries are highly dependent on external renewable water resources,

such as Mali (50%), Benin (61%), Gambia (62.5%), Niger (89.7%) and especially Mauritania

(96.5%). Only Guinea and Sierra Leone do not receive any external water (FAO-AQUASTAT

2018).

Table 2.1: Key water resource availability indicators. Based on FAO-AQUASTAT (2018).

Country Precipitation Surface Water Groundwater External Water Dependency Ratio

in mm/year in 109 m3/year in 109 m3/year in 109 m3/year in %

Benin 1039 10 1.8 16.1 61

Burkina Faso 748 8 9.5 1 7.4

Ivory Coast 1348 74 37.8 7.3 8.7

Gambia 836 3 0.5 5 62.5

Ghana 1187 29 26.3 25.9 46.1

Guinea 1651 226 38 0 0

Guinea-Bissau 1577 12 14 15.4 49

Liberia 2391 200 45 32 13.8

Mali 282 50 20 60 50

Mauritania 92 0.1 0.3 11 96.5

Niger 151 1 2.5 30.6 89.7

Nigeria 1150 214 87 65.2 22.8

Senegal 686 23.8 3.5 13.2 33.8

Sierra Leone 2526 150 25 0 0

Togo 1168 10.8 5.7 3.2 21.8

Based on the availability of in situ data, eleven river basins were chosen for analysis in this

study, namely the Niger, Senegal, Volta, Comoé, Gambia, Ouémé, Mono, Pra, Ankobra, Couffo

and Ayensu basins. The location of the basins is shown in Figure 2.5. Further details on the

basin areas are given in Table 2.2. The larger and (to this study) most relevant rivers Niger,

Senegal, Volta, Comoé, Gambia and Oueme will be described in more detail below.

Niger The Niger river basin is the largest in West Africa, covering an area of approximately

2.3 Mio. km3 (Lehner et al. 2013; Lehner et al. 2008). The source of the river is located in the

Fouta Djallon highlands in Guinea, from where it flows northwards and seasonally floods the flat

alluvial plain of the Inner Niger Delta in Mali (Balek 1977; CILSS 2016). Flooding occurs along

a length of 380 km and can cover up to 40,000 km2, making the Inner Niger Delta the largest

floodplain in West Africa. The seasonal flooding also plays an important role for the pasture and

rice farming. An estimated one million people depend on the delta’s resources (CILSS 2016).

Further towards the south, in Nigeria, two reservoirs formed by the Kainji and Jebra dams have

been constructed for hydropower generation (Lehner et al. 2011). Downstream, the Niger meets

the Benue, its largest tributary with a length of 1400 km. 130 km before reaching the Atlantic,

the Niger flows into a delta region consisting of lakes, wetlands and channels in the south of

Nigeria (Balek 1977; CILSS 2016). In total, the river is 4100 km long (Balek 1977).
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Figure 2.5: River basins chosen for analysis. See also Table 2.2. For details on reservoirs
exceeding 2 km3 storage capacity, see Table 2.3.

Table 2.2: Selected river basins. Drainage areas calculated based on Hydrosheds basin shape-
files (Lehner et al. 2008; Lehner et al. 2013).

River Basin Area in km2 Countries in Watershed

Niger 2,270,667 Algeria, Benin, Burkina Faso, Cameroon, Chad, Guinea,
Ivory Coast, Mali, Mauritania, Niger, Nigeria

Senegal 480,809 Guinea, Mali, Mauritania, Senegal
Volta 425,425 Benin, Burkina Faso, Ghana, Ivory Coast, Mali, Togo
Comoé 84,675 Burkina Faso, Ghana, Ivory Coast, Mali
Gambia 76,376 Gambia, Guinea, Senegal
Ouémé 60,965 Benin, Nigeria, Togo
Mono 24,451 Benin, Togo
Pra 23,479 Ghana
Ankobra 8523 Ghana
Couffo 3703 Benin, Togo
Ayensu 1725 Ghana

Senegal The Senegal river flows from the western side of the Fouta Djallon highlands towards

the northwest (Balek 1977). At their confluence, the main tributaries Bafing (south) and Bakoye

(north) contribute 50% and 20% of the total flow. Overall, the Senegal is 1800 km long and is

dammed shortly before reaching the sea at St. Louis by the Diama dam (OMVS et al. 2012).
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Volta The Volta river has three main tributaries, which are (from west to east) the Black Volta

(Mouhoun), the White Volta (Nakambe, with the Red Volta (Nazinon) as its main tributary),

and the Oti (Pendjari). The Black Volta originates in the Kong mountains of southwestern

Burkina Faso. It is estimated to be 1363 km long. The White Volta flows from the north of

Burkina Faso 1136 km southwards before it joins the Black Volta in northern Ghana. The Red

Volta, which originates near Ouagadougou in Burkina Faso, is the White Volta’s main tributary

with a length of 393 km. The Oti river flows from the Atakora Mountains in northern Benin,

where it is known as the Pendjari river. It continues southwards through Togo and Ghana,

where it is named Oti. It flows for 936 km, before joining the Volta at Kete Krachi (Mul et

al. 2015). 80 km from its mouth, the Volta is dammed by the Akosombo dam, creating Lake

Volta, the world’s largest artificial lake by area with a surface area of close to 8500 km2 (Balek

1977; CILSS 2016). The reservoir has a storage capacity of 148 km3 and is mainly used for

hydropower generation (Lehner et al. 2011).

Comoé The Comoé, which originates in Mali and flows southwards through Burkina Faso

and Ivory Coast, is the longest river of Ivory Coast, measuring 1160 km in length (Yéo et

al. 2016). While deforestation and an increase in agricultural activities pose a major threat to

the ecosystem along the river, 11,500 km2 of area in northern Ivory Coast have been declared

a national park in 1968 and were designated a UNESCO World Heritage Site in 1983 (CILSS

2016).

Gambia The river Gambia is 1120 km long and also rises in the Fouta Djallon highlands

of Guinea, from where it winds westwards towards the coast at Banjul. It is the only river

in West Africa which is accessible by oceangoing ships. Swampy areas along the banks and

regular saltwater inundation up to 200 km upstream make the western reaches a poor area for

agricultural production. Agriculture is mostly conducted on flats along the mid- and upstream

portions of the river (CILSS 2016; Encyclopaedia Britannica 2018a).

Ouémé The Ouémé river, which originates in the Atacora Mountains, is approximately 510

km long. Its main tributaries are the Zou and Okpara rivers, which are 150 and 200 km long.

Shortly before it would reach the Atlantic in southern Benin, it drains into Lake Nokoué (150

km2 area). The lake is connected to a coastal lagoon system which drains into the sea. The

annual discharge closely follows rainfall trends and is highly variable (Diekkrüger et al. 2010).

Several reservoirs are located in the selected basins. An overview of the largest ones is given

in Table 2.3. The larger reservoirs are mainly used for hydropower generation, but also as a

source for irrigation water, while smaller reservoirs are almost exclusively used for irrigation

(Lehner et al. 2011). The Akosombo dam in Ghana was built in the 1960s and Lake Volta

formed from 1962 to 1966. The main purpose of the dam is the generation of electricity for

the nearby aluminum smelting industry, and the reservoir covers an area of 8500 km2, which

annually fluctuates due to rising and falling lake levels by 1000 km2 (Balek 1977; CILSS 2016;

Gyau-Boakye 2001). Its immense area and storage capacity have significantly impacted the

region and influence the seismicity, sediment loads, morphology, microclimate and prevalence of
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vector-borne diseases like Schistosomiasis and Malaria, in addition to social impacts caused by

resettlements (Gyau-Boakye 2001). Other large reservoirs in the area are significantly smaller,

with the largest, Kainji (Nigeria) and Manantali (Mali) having storage volumes of 15 and 11.3

km3 respectively. Further large dams do not exceed a volume of 8 km3. Most large dams in

West Africa are located in the Niger river basin both on the Niger itself and on its tributaries,

the exception being Akosombo and Kompienga (Volta river basin) and Manantali (Senegal river

basin) (Lehner et al. 2011).

Table 2.3: Reservoirs in the study area with storage capacities exceeding 2 km3. Based on
Lehner et al. (2011).

No. Name Country River Basin River Capacity in km3 Main Use

1 Akosombo Ghana Volta Volta 148 Hydropower

2 Kainji Nigeria Niger Niger 15 Hydropower

3 Manantali Mali Senegal Bafing 11.3 Irrigation

4 Lagdo Cameroon Niger Benue 7.8 Irrigation

5 Shiroro Nigeria Niger Kaduna 7 Hydropower

6 Jebra Nigeria Niger Niger 3.6 Hydropower

7 Dadin Kowa Nigeria Niger Gongola 2.9 Irrigation

8 Selingue Mali Niger Sankarani 2.2 Irrigation

9 Kompienga Burkina Faso Volta Ouale 2 Hydropower

2.6 Agriculture, Land Use and Land Cover

Agriculture plays an important role in the livelihoods of the West African population. While

60% of the labor force are employed in the agricultural sector, it contributes only 35% to the

Gross Domestic Product (GDP). Consequentially, it can be assumed that farmers are poor and

produce mostly at subsistence levels (African Development Bank 2018; Jalloh et al. 2013). On

the other hand, West Africa is emerging as a growing market due to population and income

growth, urbanization, dietary diversification and increasing prices for agricultural products. At

the same time, food demand has shifted from bulk commodities towards more differentiated

and refined products, offering producers the possibility of value addition (Hollinger and Staatz

2015; Jalloh et al. 2013). However, rapid growth may also lead to problems due to limitations

of natural resources such as agricultural land and water (Hollinger and Staatz 2015; Janssen

et al. 2010). An overview of the increase in agricultural areas from 1961 to 2015 for the main

countries within the study region is given in Figure 2.6.

Percentages of agricultural area vary strongly by country, with the wetter southern countries

(e.g. Ghana, Guinea, Ivory Coast, Nigeria, Togo) reaching higher levels than the dryer northern

ones (e.g. Mali, Niger). While 39% of the respective countries’ area were used for agriculture in

1961, this increased to 50% in 2015. All countries (except for Guinea) have seen an increase in

agricultural area. Strongest increases can be seen in Benin (20%), Nigeria (19%), Sierra Leone

(18%) and Ghana (17%). In contrast, worldwide agricultural areas increased from 33 to 36% of

the total area (FAO 2018).
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Figure 2.6: Area used for agriculture in %. Based on FAO (2018).

In rural areas, smallholder agriculture is traditionally performed at the family level, with

husband, wife (or wives) and children working together. For more labor-intensive tasks, e.g.

tillage, additional help may be sought, as observed by the author in central Benin. Families

commonly cultivate main crops on land which belongs to the community, with cultivation rights

granted to individual farmers. Cropped areas may be as small as 0.2 ha and rarely exceed 8 ha.

Traditional shifting agriculture has nowadays been replaced by crop fallow rotation (Janssen

et al. 2010; Morgan and Pugh 1969). A separate “garden” for vegetable cultivation is often

located on communal land (Morgan and Pugh 1969). In Benin and Burkina Faso, the author

has observed these gardens to be mostly located close to both family accommodations and water

sources (improved and unimproved) for irrigation purposes, and protected from livestock and

wild animals by wooden fences, see also Figure 2.7. Interactions between semi-nomadic animal

husbandry and settled agriculture are poor in the region (Janssen et al. 2010). The author

witnessed several conflicts in central Benin in 2013, where crops were destroyed by livestock due

to a lack of coordination of harvest and animal grazing.

The major food crops in West Africa can be differentiated into cereals (sorghum, millet, maize,

and rice), tubers (cassava, sweet potatoes, yams) and legumes (cowpeas and groundnuts). Cocoa,

coffee and cotton constitute the main cash crops (Jalloh et al. 2013). In some countries, such as

Benin, rice is also considered a cash crop due to its comparatively high value (Igué 2000).
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Figure 2.7: Traditional agricultural practices in West Africa. (a): tillage with ox and plough,
(b): hoes used for digging, (c): rice harvest using a sickle, (d): fenced household
vegetable “garden”. Pictures (a), (b) and (c): Benin, 2013; picture (d): Burkina
Faso, 2015. All photos by the author.

The distribution of the main crops closely follows precipitation patterns, with tubers cultivated

mainly in the south, rice in the southwest and cereals in the north. In central West Africa, both

tubers and cereals prevail (Janssen et al. 2010; Morgan and Pugh 1969). In some central areas,

previously unused, seasonally waterlogged and highly suitable inland valleys are increasingly

used for rice production (Windmeijer and Andriesse 1993; Danvi et al. 2016). The evolution of

areas cultivated with the main crops in West Africa is shown in Figure 2.8. An increase can

be observed for all crops. Mainly produced are cereals such as millet and sorghum, which show

a strong increase from 1982 to 1994 and maize, which was cultivated less in the later part of

the 1990s before again increasing from the 2000s onwards. A sudden decrease in the years 2008

and 2009 can be attributed to drought (Kasei et al. 2010). Tubers (cassava, yams), legumes

(groundnuts) and rice are cultivated in roughly equal parts. Cultivated areas sharply increase for

all crops from 2010 onwards, except for millet and groundnuts. Strongest increases in cultivated

area can be observed for yams (8-fold increase), cassava (6.6-fold), rice (5.8-fold) and maize

(4.5-fold). The area cultivated with sorghum almost doubles (1.9-fold increase), groundnuts and

millet areas are increased 1.7- and 1.6-fold, respectively (FAO 2018).

Agriculture in West Africa is almost exclusively rainfed (Janssen et al. 2010). While the area

equipped for irrigation in West Africa has increased threefold (420,000 ha to 1.93 mio. ha) from

1961 to 2015, irrigated land remains marginal in comparison to total agricultural area, with only

Guinea-Bissau and Senegal reaching more than one percent, in comparison to the world average

of seven percent, as is depicted in Figure 2.9. Consequentially, farmers remain dependent on

rainfalls and are vulnerable to water stress (Jalloh et al. 2013).
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Figure 2.8: Area harvested for main crops in West Africa. Based on FAO (2018).

Figure 2.9: Agricultural area equipped for irrigation. Based on FAO (2018).

Two land use and land cover (LULC) maps were utilized in this study: Globcover 2.3 (Fig-

ure 2.10) and Landscapes of West Africa (Figure 2.11). The Globcover 2.3 raster map depicts

the land use of the year 2009 in a 300 m resolution and is produced by the European Space

Agency (ESA) (Bontemps et al. 2011). The Landscapes of West Africa LULC raster dataset

is produced by the Comité permanent Inter-Etats de Lutte contre la Sécheresse dans le Sahel

22



2.6 Agriculture, Land Use and Land Cover

(CILSS) for the years 1975, 2000 and 2013 and is available in a 2 km resolution (CILSS 2016).

In this study, the 2013 map was used.

Vegetation patterns are similar in both maps. While Globcover is a global product, the CILSS

map is only available for CILSS member states and includes neither Cameroon, nor the largely

barren areas towards the Sahara Desert in the north. Both maps, however, show clear patterns

of land cover change from the humid south to the arid north. In the south, the land is dominated

by agriculture, forest and shrubland/savannah. In the central parts, shrubland/savannah and

agriculture are predominant. Towards the north, they give way to agriculture and grassland,

which border on the sparsely vegetated and sandy areas of the Sahara Desert.

Figure 2.12 shows the change in land use from 1975 to 2000 and 2013 in the research basins

based on the CILSS data. This was achieved by first reclassifying the 27 CILSS classes into

seven new classes: agriculture, bare area, forest, grassland, savannah/shrubland, settlements

and wetlands. For a complete overview, Globcover data was included in this analysis, where

the 22 Globcover classes were similarly reclassed. The conversion of savannah/shrubland into

agricultural area is immediately obvious. From 1975 to 2013, savannah decreased by 13.6%,

forest by 2.2% and grassland by 2.66%. On the other hand, agricultural area increased by

15.8%. Bare areas also increased by 1.1%. Further increases can be seen for settlements (0.4%)

and wetlands (0.2%). Globcover predicts a far higher percentage of bare area than CILSS. This

is because the product covers the whole domain, including desert areas not covered by CILSS.

While estimates on agriculture, grassland and savannah/shrubland areas are similar to CILSS

results, they are slightly underpredicted. This may be due to the high percentage of bare area

skewing the results. Forest area is predicted to be higher, which may be due to forests not being

identically classified in Globcover and CILSS maps. Globcover settlement and wetland classes

are also estimated to occur less than CILSS results. In addition to the previous interpretation

approaches, this may also be influenced by pixel sizes, since Globcover offers a finer resolution

of 300 m compared to the 2 km of CILSS, allowing for more accurate representation.
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Figure 2.10: Globcover 2.3 land use and land cover of the year 2009 (Bontemps et al. 2011).

Figure 2.11: CILSS land use and land cover of the year 2013 (CILSS 2016).
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Figure 2.12: Land use and land cover change according to the CILSS maps of 1975, 2000 and
2013 (CILSS 2016). Globcover product (2009) (Bontemps et al. 2011) added for
further reference.

2.7 Population and Economy

Over the last 30 years, the population of West Africa has doubled, growing approximately by

2.7% annually. In poorer countries, growth is higher, and birth rates have lowered only in very

few states. The population is young, with 44% below the age of 15 (Hollinger and Staatz 2015).

The estimated population growth for both rural and urban populations is shown in Figure 2.13.

While West Africa hosted only 2.8% of the world population in the 1950s, with no significant

urbanization, this has dramatically changed. It is estimated that West Africa currently hosts

4.9% of the world population, with rural and urban populations having equalized. Projections

show a constant increase in growth of the urban population, while the growth of the rural

population remains stable. Towards 2100, an estimated 14.1% of the world population could

live in West Africa (FAO 2018). Strong migratory movements exist from rural to urban areas

and, on a larger scale, from landlocked Sahelian countries to wealthier southern states with

coastal access (Hollinger and Staatz 2015).

Except for Mauritania, all West African countries are member states of the Economic Com-

munity of West African States (ECOWAS) (Jalloh et al. 2013). Most of West Africa experiences

economic growth, which was especially strong between 2012 and 2015, then slowed in 2016, and

has recently regained momentum, with a 2.5% increase in the Gross Domestic Product (GPD)

in 2017, which is predicted to rise to 3.6% in 2018. Main drivers are the recovery of the oil price
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and increased production in Nigeria and Ghana, as well as good agricultural performance in

the region. In most countries, services constitute the dominant sector, except for Sierra Leone

and Liberia, where agriculture makes up most of the GDP. Manufacturing remains the lowest

contributing sector and is limited to light industry and production of consumer goods (African

Development Bank 2018).

Figure 2.13: Estimated and projected population growth in West Africa. Based on FAO
(2018).

An overview of the GDP increase from 2000 to 2016 is given in Figure 2.14. While low in a

worldwide comparison, the GPD has increased strongly in West Africa, except for Gambia and

Liberia. However, apart from Ghana, Ivory Coast and Nigeria, West African countries did not

exceed 2500 US $ per capita in 2016. Strongest increases from 2000 to 2016 have occurred in

Ghana (from 2260 to 3980 US $ per capita) and Nigeria (from 2850 to 5440 US $ per capita)

(FAO, 2018). On average, the per capita GDP in West Africa has increased from 2310 to 3900

US $ (FAO 2018).

Access of the population to improved water sources has also rapidly progressed (Figure 2.15),

from 57% in 2000 to 73% in 2015 (FAO 2018). Unimproved water sources include open wells

and streams, while improved sources include potentially safe water sources, such as piped water,

protected wells and springs, and rainwater harvesting (WHO and UNICEF 2017). For an exam-

ple of improved and unimproved water sources, see Figure 2.16. Accessibility to improved water

sources in Niger, Sierra Leone, Togo and Nigeria is limited to less than 70% of the population,

while in the other countries, accessibility is above 75% and in Ghana and Gambia, it reaches

more than 88%, which is on par with the world average of 91% (FAO 2018).
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Figure 2.14: Gross domestic product per capita in 2011 US $. Based on FAO (2018).

Figure 2.15: Access to improved water sources. Based on FAO (2018).
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Figure 2.16: Examples of unimproved and improved water sources. (a): Open well in Burkina
Faso, 2015; (b): Covered borehole with a foot-operated pump in Benin, 2013. All
photos by the author.
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In accordance with the problem statement and accompanying research questions, three models

were identified to fit the scope of this study. In the following chapter, the identification of

suitable models as well as their structure and underlying routines will be described in detail.

Further information on the selected models can be found in chapters 4, 5, and 6.

3.1 HBV-light

To perform a hydrologic evaluation, as proposed under research question one, an appropriate

model first needs to be chosen. Several key requirements were defined. First of all, the model

had to be of a conceptual nature without the need for large amounts of input data. Secondly,

model setup and calibration should be easily and quickly performed, as a total of 60 models

needed to be calibrated and validated. It would furthermore be advantageous to use a model

that has already been applied in data-scarce regions with good results. In order to increase

reproducibility, the model should also be widely accessible free of charge. Two models that

fit all necessary criteria were considered: the French Modèle du Génie Rural à 4 Paramètres

Journalier (GR4J, Perrin et al. (2003)) and the Swedish Hydrologiska Byr̊ans Vattenavdelning-

light model (HBV-light, Bergström (1992) and Seibert and Vis (2012)). HBV-light was chosen

due to its higher number of parameters (10 as opposed to 4) and additional calibration options.

The model has also previously been applied in data-scarce basins (Hattermann et al. 2017;

Bárdossy 2007; Kebede et al. 2014; Zelelew and Alfredsen 2013; Bitew and Gebremichael 2011;

Jackisch et al. 2014).

The conceptual model was developed in the 1970s by Sven Bergström from the Swedish

Meteorological and Hydrological Institute (Bergström 1992; Seibert and Vis 2012). The light

version of HBV (Seibert 2005; Seibert and Vis 2012) is based on the 1992 HBV-6 formulation

(Bergström 1992). Changes include the addition of a warm-up period, as well as the option to

include groundwater level observations and a choice of response routines with a delay parameter

(Seibert 2005). Due to the its ease of application, HBV-light is often used to introduce students

to hydrologic modeling (Seibert and Vis 2012). Its strengths are the low demand for input data

and the limited number of parameters (Rientjes et al. 2013; Rusli et al. 2015). An overview of

the model structure is given in Figure 3.1. It includes four main routines: snow, soil, routing,

and response; and simulates daily discharge based on precipitation, temperature and potential

evapotranspiration timeseries (Seibert and Vis 2012). The model routines will be described in

more detail below, based on Seibert and Vis (2012) and Seibert (2005). Due to the lack of

snowfall in the study area, the snow routine will not be covered in this description.
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Figure 3.1: HBV model structure (Seibert 2000). See also Figure 4.2.

Within the soil routine, the groundwater recharge is computed based on the amount of liquid

precipitation entering the soil (Equation 3.1). Water is partitioned based on the ratio between

the current and maximum water content of the soil box. Concerning evapotranspiration (Equa-

tion 3.2), as long as SSOIL/PFC is above PFC ∗PLP , actual evapotranspiration equals potential

evapotranspiration. If SSOIL/PFC is below this threshold, a linear reduction is used. Recharge

is first added to the upper groundwater box and a percolation parameter defines the maximum

percolation between the upper and the lower box. Runoff is then computed based on either two

or three linear outflow equations (PK0, PK1 and PK2 in d−1). Two outflow equations are used if

the recharge added to the groundwater box SLZ is above a threshold value PUZL and three if it

is below (Equation 3.3). Runoff from the groundwater boxes is then transformed into streamflow

based on a triangular weighting function governed by the PMAXBAS parameter (Equation 3.4).

F (t)

I(t)
=

(
SSOIL(t)

PFC

)PBETA

(3.1)

where I(t) is the amount of liquid water entering the soil profile in mm d−1, F (t) is the flux to

the groundwater in mm d−1, SSOIL(t) is the current amount of water in the soil box in mm, PFC

is the maximum value of water in the soil box in mm and PBETA is a dimensionless parameter

determining the relative contribution of liquid precipitation to runoff.

Eact = Epot ∗min
(
SSOIL(t)

PFC ∗ PLP
, 1

)
(3.2)

where Eact is the actual evapotranspiration in mm d−1, Epot is the potential evapotranspiration

in mm d−1, SSOIL(t) is the current amount of water in the soil box in mm, PFC is the maximum

value of water in the soil box in mm and PFC ∗ PLP is the soil moisture value above which Eact

reaches Epot in mm.

QGW (t) = PK2 ∗ SLZ + PK1 ∗ SUZ + PK0 ∗max(SUZ − PUZL, 0) (3.3)
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where QGW (t) is the flow from the groundwater boxes in mm d−1, PK0, PK1 and PK2 are

recession coefficients per d−1, SUZ is the recharge added to the upper groundwater box, SLZ is

the recharge added to the lower groundwater box and PUZL is a threshold parameter in mm.

Qsim(t) =

PMAXBAS∑
i=1

c(i) ∗QGW (t− i+ 1)

where c(i) =

i∫
i−1

2

PMAXBAS
−
∣∣∣∣u− PMAXBAS

2

∣∣∣∣ ∗ 4

P 2
MAXBAS

du

(3.4)

where Qsim(t) is the simulated streamflow in mm d−1 and PMAXBAS is a triangular weighting

function parameter governing transformation of flow from the groundwater boxes to streamflow.

3.2 SWAT

In this study, it was further evaluated how well a physically-based semi-distributed hydrologic

model can be parameterized and validated using remote sensing observations. Additional re-

quirements were that the model had already been applied in the area and that it was widely used

and free of charge. The selected Soil and Water Assessment Tool (SWAT) (Arnold et al. 1998;

Arnold et al. 2012b) fits all these criteria, and has been intensively used for the region in mul-

tiple studies (Schuol and Abbaspour 2006a, 2006b; Schuol et al. 2008b; Schuol et al. 2008a; Xie

et al. 2012).

SWAT includes hydrology, weather, sedimentation, soil temperature and properties, crop

growth, nutrients, pesticides and agricultural management routines (Arnold et al. 1998; Arnold

et al. 2012b). The first SWAT version was developed by the United States Department of

Agriculture (USDA) and released in the 1990s as SWAT 94.2 (Arnold et al. 2012b; Gassman

et al. 2007), with a GIS (Geographic Information System) interface first introduced in 1998

(Arnold et al. 1998). In this study, SWAT 2012 was used. The model divides a watershed

into subbasins and the subbasins further into Hydrologic Response Units (HRUs): areas with

identical land use, management, topographical- and soil characteristics. While subbasins are

spatially located within the watershed, HRUs represent only fractions of the watersheds and

are no longer spatially identified, thus rendering SWAT a semi-distributed model. However,

as done in this study, watersheds can be set up to contain only the dominant HRU, thereby

preserving spatial distribution (Arnold et al. 2012b). SWAT has the advantage of being usable

in GIS environments (ArcGIS and Q-GIS) and thus having a graphical user interface for data

integration and model manipulation. Also, a dedicated calibration and uncertainty estimation

program named SWAT-CUP (Abbaspour et al. 2007) is freely available. Existing drawbacks are

mainly due to the model structure and physically-based nature of the model. For instance, model

in- and outputs are internally handled via text files, leading to a large number of very small

files in simulations with many subbasins. This approach can be computationally inefficient,

as the computer system will be limited by read and write speeds of the hard drive, and not

by processing power. Due to its physically-based nature, SWAT requires a multitude of input
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parameters which may not be readily available in data-scarce basins. By estimating parameters

where no observations are present, additional bias is introduced.

SWAT simulates the hydrologic cycle based on the water balance equation (Equation 3.5,

Neitsch et al. (2011)). An overview of simulated processes of the land phase is given in Figure 3.2.

SWt = SW0 +

t∑
i=1

(Rday −Qsurf − Ea − wseep −QGW ) (3.5)

where SWt is the final soil water content in mm on day i, SW0 is the initial soil water content

on day i, t is the time in days, Rday is the precipitation on day i in mm, Qsurf is the surface

runoff on day i in mm, Ea is the actual evapotranspiration on day i in mm, wseep is the water

entering the vadose zone from the soil profile on day i in mm and QGW is the return flow on

day i in mm.

Figure 3.2: Schematic representation of the hydrologic cycle as simulated by SWAT (Neitsch
et al. 2011).

SWAT calculates surface runoff volume based on the USDA Soil Conservation Service Curve

Number (SCS CN) (USDA SCS 1972) approach. The curve number rates hydrologic performance

based on soil type, land use, management, slope and soil water content (DeLiberty and Legates

2003), shown in Equation 3.6. The variable retention parameter s, given in the equation with a

constant 254 mm, may change due to fluctuations in soil water content (Equation 3.7) (Arnold

et al. 1998).
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Q =
(R− 0.2s)2

R+ 0.8s
if R > 0.2s

and Q = 0.0 if R ≤ 0.2s

where s = 254

(
100

CN
− 1

) (3.6)

where Q is the surface runoff in mm d−1, R is the precipitation in mm d−1, and s is a variable

retention parameter related to the curve number CN .

s = s1

(
1− FFC

FFC + exp[w1 − w2(FFC)]

)
where FFC =

SW −WP

FC −WP

(3.7)

where s is a variable retention parameter related to the curve number, s1 is the value of s asso-

ciated with CN1, FFC is the fraction of field capacity, w1 and w2 are shape parameters, SW

is the soil water content of the root zone in mm, WP is the wilting point water content in mm

and FC is the water content at field capacity in mm.

Percolation is calculated for each soil layer using a storage routing technique coupled to a

crack-flow model (Arnold et al. 1998). If the water content exceeds field capacity and the layer

below is not saturated, water can percolate. The amount of water percolating is calculated

according to Equation 3.8. Water percolating past the root zone enters the unsaturated vadose

zone, from where it either forms groundwater recharge or becomes return flow in a downstream

subbasin (Neitsch et al. 2011).

SWly,excess = SWly − FCly if SWly > FCly

and SWly,excess = 0 if SWly ≤ FCly

(3.8)

where SWly,excess is the drainable amount of water in the soil layer on a given day in mm, SWly

is the water content of the soil layer on a given day in mm and FCly is the water content of the

soil layer at field capacity in mm.

Lateral flow occurs when water cannot percolate past an impenetrable layer in the soil. This

depends on the amount of water in the soil, saturated hydraulic conductivity, slope, porosity

and length of the hillslope (Equation 3.9, Neitsch et al. (2011)).

Qlat = 0.024 ∗
(

2 ∗ SWly,excess ∗Ksat ∗ slp
φd ∗ Lhill

)
where φd = φsoil − φfc

(3.9)

where Qlat is the water discharged from the hillslope outlet in mm d−1, SWly,excess is the drain-

able amount of water in the soil layer on a given day in mm, Ksat is the saturated hydraulic

conductivity in mm h−1, slp is the increase in elevation per unit distance, φd is the drainable
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porosity of the soil layer in mm/mm, φsoil is the total porosity of the soil layer in mm/mm,

φfc is the porosity of the soil layer at field capacity in mm/mm and Lhill is the length of the

hillslope in m.

SWAT separates the groundwater zone into a shallow and a deep aquifer. Baseflow from

the shallow aquifer is calculated using a linear storage approach. While water from the shallow

aquifer may also revap into the unsaturated zone by evaporative demand or be removed by deep-

rooted plants. Water entering the deep aquifer does not contribute to flow within the subbasin.

The water balance for the shallow aquifer is given in Equation 3.10 (Neitsch et al. 2011).

aqsh,i = aqsh,i−1 + wrchrg,sh −Qgw − wrevap − wpump,sh (3.10)

where aqsh,i is the water stored in the shallow aquifer on day i in mm, aqsh,i−1 is the water

stored in the shallow aquifer on day i− 1 in mm, wrchrg,sh is the recharge entering the shallow

aquifer on day i in mm, Qgw is the baseflow into the main channel on day i, wrevap is the water

moving into the overlying soil zone due to water deficiencies on day i in mm and wpump,sh is the

water removed by abstraction (e.g. pumping) on day i in mm.

3.3 mHM

It was furthermore decided to study the effects of multivariate calibration and validation of a

grid-based model using remote sensing data for the modeling of hydrologic processes in West

Africa. Two main requirements were that the model had to be grid-based and capable of

multivariate calibration. Furthermore, as all software employed in this thesis, it needed to be

free of charge. The choice was made to apply the relatively new grid-based mesoscale Hydrologic

Model (mHM) (Samaniego et al. 2010; Kumar et al. 2013b) in this case. Further considerations

for the use of mHM were its native capability to handle netCDF multidimensional gridded in-

and outputs, easing the data preparation and result evaluation process. A major drawback is

that data preparation can be difficult to accomplish, as input data requirements are very strict

in relation to netCDF cell size and projection formatting. Here, mHM diverges from commonly

accepted conventions. Some programming experience in preparing spatial data using e.g. R or

Python is therefore necessary.

mHM is a spatially explicit hydrologic model and was developed at the Helmholtz Centre

for Environmental Research in Leipzig, Germany. mHM simulates daily and hourly distributed

predictions of hydrologic variables. Numerical approximations of dominant hydrologic processes

are based on the HBV (Bergström 1976, 1992) and VIC (Liang et al. 1994) model formulations.

The model accounts for canopy interception, snow accumulation and melting, soil moisture dy-

namics, infiltration, surface runoff, discharge generation, evapotranspiration, subsurface storage,

deep percolation, baseflow, and flood routing.

At the mesoscale, processes of the hydrologic cycle span different spatial regimes, with input

data separated by several orders of magnitude. To better represent this spatial variability, mHM

is differentiated into three levels. The first level, L0, is the most detailed level and describes

the small-scale properties of the basin (e.g. elevation, slope, soil characteristics and land cover).
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At the second level, L1, dominant mesoscale hydrologic processes are described. L1 represents

the resolution of the hydrologic model routines and output and only requires the regionalized

fields of model parameters as input. The final level, L2, spatially discretizes the meteorological

forcings (e.g. precipitation and temperature) (Samaniego et al. 2010; Samaniego et al. 2017b).

A schematic representation of the model for a single grid cell is given in Figure 3.3. Precipitation

P falls in the grid cell. Actual evapotranspiration from the canopy E1, water bodies E2 and

surface E3 is then calculated based on the potential evapotranspiration (ETP). ETP can be

derived either from input data or by calculation (e.g. Hargreaves-Samani (Hargreaves and

Samani 1985) and Penman-Monteith (Allen et al. 1998) equations), using further meteorological

parameters like temperature or radiation Rs. Excess water is then partitioned into vertical

and lateral flow. Vertically, water percolates into the soil, drains below the root zone into the

unsaturated zone and further recharges groundwater in the saturated zone I, C, K. Laterally,

runoff q1, fast interflow q2, slow interflow q3 and baseflow q4 are differentiated (Samaniego et

al. 2010).

Figure 3.3: Schematic representation of the mHM model (Samaniego et al. 2017b). See also
Figure 6.2.

River basins are open, natural systems and are, especially at the mesoscale, very heteroge-

neous. They have no clear, but rather fuzzy boundary conditions. Since the spatial heterogene-

ity is mainly described through discrete variables (land cover, soil texture, geology, etc.), it is

problematic to assume continuity of the input variables. Therefore, the evolution of the state

variables given at a specific location (pixel) i within the domain Ω is described using a system of

ordinary differential equations (Samaniego et al. 2017b). Seven states are calculated by mHM:

canopy storage, snowpack, soil moisture content in the root zone, impounded water, storage in a

subsurface reservoir, storage in a groundwater reservoir and storage in the channel (Table 3.1).

The ordinary differential equations are given in Equations 3.11 - 3.17. The respective model

inputs, fluxes, outputs and indices are listed in Table 3.2.

35



3 Model Choice and Description

Table 3.1: mHM states. After Samaniego et al. (2017b).

State Description (all water depths in mm) Equation

x1 Depth of the canopy storage 3.11

x2 Depth of the snowpack 3.12

x3 Depth of the soil moisture content in the root zone 3.13

x4 Depth of water impounded in reservoirs, water bodies, or sealed areas 3.14

x5 Depth of the water storage in the subsurface reservoir 3.15

x6 Depth of the water storage in the groundwater reservoir 3.16

x7 Depth of the water storage in the channel reservoir 3.17

ẋ1i = Pi(t)− Fi(t)− E1i(t) (3.11)

ẋ2i = Si(t)−Mi(t) (3.12)

ẋl3i = (1− pl)I l−1
i (t)− El

3i(t)− I li(t) (3.13)

ẋ4i = p1(Ri(t) +Mi(t))− E2i(t) − q1i(t) (3.14)

ẋ5i = ILi (t)− q2i(t)− q3i(t)− Ci(t) (3.15)

ẋ6i = Ci(t)− q4i(t) (3.16)

ẋ7i = Q̂0
i (t)− Q̂1

i (t) (3.17)

For all equations: ∀i ∈ Ω
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3.3 mHM

Table 3.2: mHM inputs, fluxes, outputs and indices (mHM state equations 3.11-3.17). After
Samaniego et al. (2017b).

Inputs Description Unit

P Daily precipitation depth mm d−1

Ep Daily potential evapotranspiration mm d−1

T Daily mean air temperature °C

Fluxes Description Unit

S Snow precipitation depth mm d−1

R Rain precipitation depth mm d−1

M Melting snow depth mm d−1

Ep Potential evapotranspiration mm d−1

F Throughfall mm d−1

E1 Actual evaporation from the canopy mm d−1

E2 Actual evapotranspiration mm d−1

E3 Actual evaporation from free water bodies mm d−1

I Recharge, infiltration, or effective precipitation mm d−1

C Percolation mm d−1

q1 Surface runoff from impervious areas mm d−1

q2 Fast interflow mm d−1

q3 Slow interflow mm d−1

q4 Baseflow mm d−1

Outputs Description Unit

Q̂0
i Simulated discharge entering the river stretch at cell i m3 s−1

Q̂1
i Simulated discharge leaving the river stretch at cell i m3 s−1

Indices Description Unit

l Index denoting a root zone horizon

t Time index for each ∆t interval

pl Overall influx fraction accounting for the impervious cover within a cell

Please note that in Figure 3.3, also after Samaniego et al. (2017b), E2 describes actual evaporation from
free water bodies and E3 actual evapotranspiration.
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3 Model Choice and Description

In mHM, Multiscale Parameter Regionalization (MPR) is applied to estimate the regionalized

fields of model parameters at the L0 resolution and upscaling operators are used to generate

effective parameters at the L1 resolution. The regionalization is performed by linking model pa-

rameters to catchment attributes such as terrain, slope, aspect, soil texture and land cover via

a set of pedotransfer functions and free calibration parameters (Samaniego et al. 2010; Kumar

et al. 2013b). The a priori relationships of the transfer functions and upscaling operators are de-

fined through process understanding and empirical evidence (Samaniego et al. 2010; Samaniego

et al. 2017b). An example is given in Figure 3.4. Here, u are the basin predictors such as land

cover class or flow direction, β are predictors used in the regionalization functions and γ is a

vector of transfer parameters. For more information, see Samaniego et al. (2010).

Figure 3.4: Schematic representation of the multiscale parameter regionalization (Samaniego
et al. 2017b).
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4 Evaluating the Performance of Remotely

Sensed and Reanalysed Precipitation Data

over West Africa using HBV light

This chapter has been published as: Poméon, T., Jackisch, D., Diekkrüger, B., 2017. Evaluating

the performance of remotely sensed and reanalysed precipitation data over West Africa using

HBV light. Journal of Hydrology. 547, 222–235. doi:10.1016/j.jhydrol.2017.01.055.

https://www.sciencedirect.com/science/article/pii/S0022169417300653

Abstract: Water is a crucial resource in West Africa, where large parts of the population rely

on rainfed agriculture. Therefore, accurate knowledge of the water resources is of the utmost

importance. Due to the declining number of rain gauging stations, the use of satellite and

reanalysis precipitation datasets in hydrological modeling is steadily rising. However, accurate

information on the benefits and deficits of these datasets is often lacking, especially in the West

African subcontinent. For validation purposes, these products are commonly compared to freely

available rain gauge data, which has in some cases already been used to bias correct the products

in the first place. We therefore explored the possibility of a hydrological evaluation, where a

model is calibrated for each dataset using streamflow as the observed variable. In this study,

ten freely available satellite and reanalysis datasets (CFSR, CHIRPS, CMORPHv1.0 CRT,

CMORPHv1.0 RAW, PERSIANN CDR, RFE 2.0, TAMSAT, TMPA 3B42v7, TMPA 3B42

RTv7 and GPCC FDDv1) were thus evaluated for six differently sized and located basins in

West Africa. Results show that while performances differ, most datasets manage to somewhat

accurately predict the observed streamflow in a given basin. Best results were achieved by

datasets which use a multitude of input data, namely infrared and microwave satellite data, as

well as observations from rain gauges (usually GPCC) for bias correction. If considering only

the Nash Sutcliffe Efficiency averaged for all six basins during the calibration phase, best results

were achieved by CMORPH CRT and PERSIANN CDR (both 0.66), followed by TAMSAT,

CHIRPS and TMPA 3B42 (all three 0.64). Average results were achieved by RFE 2.0 (0.63),

GPCC (0.61) and TMPA 3B42 RT (0.54). CMORPH RAW and CFSR performed worst (0.36

and -0.34 on average).

Keywords: Precipitation datasets; Satellite precipitation estimates; Hydrological evaluation;

Remote sensing
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4 Evaluating the Performance of Remotely Sensed and Reanalysed Precipitation Data

4.1 Introduction

Precipitation data is one of the most important drivers of hydrological models (Hughes 2006;

Thiemig et al. 2013). However, especially in developing countries, rain gauge (RG) networks are

sparse or nonexistent and often include erroneous data or large gaps (Behrangi et al. 2011; Bitew

and Gebremichael 2011; Koutsouris et al. 2016). This situation is aggravated by a further decline

in the number of rainfall stations due to financial or maintenance problems (Adjei et al. 2012;

Hughes 2006). A large number of satellite-based rainfall estimate (SRFE) and reanalysis (RA)

products with high spatial and temporal resolutions are freely available and have the potential

to complete gaps or even replace rain gauge measurements (Fujihara et al. 2014; Koutsouris

et al. 2016; Thiemig et al. 2013). The uncertainties of these products over western Africa are

largely unknown and only recently scientists have started validating SRFE and RA products

for the sub-continent (Awange et al. 2015). These validations are mostly conducted by using

statistical measures to compare SRFEs to RG point data.

With regard to the fact that most of the existing scientific papers only include and analyse a

few precipitation datasets (Cohen Liechti et al. 2012; Thiemig et al. 2013; Tobin and Bennett

2014), this study further contributes to the ongoing debate on satellite derived precipitation

products’ performances by focusing on eight different state of the art satellite precipitation

datasets, one primarily reanalysis product, and one rain gauge dataset.

SRFE and reanalysis product validation studies over West Africa were carried out, among

others, by Awange et al. (2015), Gosset et al. (2013), Nicholson et al. (2003), Pfeifroth et

al. (2016) and Thiemig et al. (2012). All of the aforementioned use at least one source of RG

data in order to assess the performance of the SRFE or RA product. A major source of RG

data is the Global Precipitation Climatology Center (GPCC) product, which has been used to

validate precipitation datasets in Africa, e.g. by Adeyewa and Nakamura (2003). However, large

data gaps exist over Africa, and the number of gauges sending data varies over time (Awange et

al. 2015). Figure 4.1 gives an overview of GPCC pixels including station data for at least 80% of

days for the period from 2003 to 2013. Also, gauges connected to the Global Telecommunication

System (GTS) are frequently used for bias correction of satellite data, creating merged satellite

rain gauge datasets like TMPA 3B42 or PERISANN CDR (Ashouri et al. 2015; Huffman et

al. 2007). It remains questionable whether the performance of bias corrected SRFEs should

be evaluated against data from the same rain gauges used for the bias correction since the

datasets are not independent (Awange et al. 2015; Maidment et al. 2013; Novella and Thiaw

2013; Thiemig et al. 2012).

A new approach which has recently gained popularity is the so called hydrological evaluation

of SRFE and RA products. In this approach, the performance of the datasets is evaluated by

calibrating a hydrological model for different precipitation products and evaluating the ability of

each product to reproduce the observed streamflow. This method on the one hand circumvents

the need for reliable RG information, but on the other hand introduces the need for streamflow

information as a variable for model calibration (Behrangi et al. 2011; Thiemig et al. 2013). Since

the hydrological evaluation takes place at the watershed scale, no problem of scale discrepancy

arises as with the validation by using point source RG data. Also, the usefulness of the SRFEs

and RA products to generate streamflow is directly evaluated within the hydrological model of
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4.1 Introduction

choice (Bitew and Gebremichael 2011; Thiemig et al. 2013). It should however also be considered

that the model concept and process representation introduces uncertainties into the analysis.

So can the results of excess or below average precipitation for example be dampened by the

parameters governing infiltration and evaporation (Seibert 1997). Nevertheless, when using one

single model concept which has been shown to be applicable to the climatic conditions, the

results may be biased but this bias would be consistent over all precipitation products and

therefore does not affect the interpretation and evaluation.

Studies using this method in recent years are plentiful, e.g. Behrangi et al. (2011), Bitew

and Gebremichael (2011), Bodian et al. (2016), Cohen Liechti et al. (2012), Dile and Srinivasan

(2014), Fujihara et al. (2014) and Li et al. (2015). However, most of these studies focus on

areas outside of West Africa, where only few hydrological evaluations were conducted so far,

covering a limited number of different products and climatological regions. A need for more

studies focusing on West Africa and featuring more products is apparent.

Some of the first authors to validate SRFE and RA products in West Africa were Thiemig

et al. (2013), who evaluated CMORPH (Climate Prediction Center Morphing Technique), RFE

2.0 (African Rainfall Estimation), TMPA 3B42 (Tropical Rainfall Measuring Mission Multi-

satellite Precipitation Analysis), PERSIANN (Precipitation Estimation from Remotely Sensed

Information using Artificial Neural Networks) and ERA-Interim over the Volta basin using the

LISFLOOD model. They concluded that the hydrological evaluation using this model is a

well-suited approach to validate precipitation datasets over sparsely or ungauged catchments,

with their model producing better results in the high flow than during the low flow periods.

During this study, some products were bias corrected for a second simulation (e.g. PERSIANN

and CMORPH, which exhibited biases over lowland areas) using gauge measurements, and

generally produced better results afterwards. They concluded that the best dataset is the

one with the best intrinsic data quality needing the least amount of preprocessing and bias

correction. For the Volta basin, RFE 2.0 and TMPA 3B42 were asserted as best performing.

Also in 2013, Gosset et al. validated PERSIANN, CMORPH, TMPA 3B42 real time, GSMaP

(Global Satellite Mapping of Precipitation) MVK and real time, GPCP (Global Precipitation

Climatology Project), TMPA 3B42, RFE 2.0 and EPSAT-SG (Estimation of Precipitation by

SATellite Second Generation) using high resolution gauge data from two AMMA-CATCH sites in

Niger and Benin as well as two hydrological models. The Soil Conservation Service method (SCS)

was used to generate runoff for the Niamey site and the lumped conceptual Modèle du Génie

Rural à 4 paramètres Journalier (GR4J) was used to generate streamflow for the Benin site.

For the statistical evaluation, the authors concluded that TMPA 3B42 performed best on both

sites with very low biases. RFE 2.0 exhibited low biases but also low correlations to gauge data

with an overestimation of low rain rates. Concerning the hydrological evaluation in the Niamey

area, the two products best able to generate streamflow are TMPA 3B42 (slight overestimation)

and RFE 2.0 (low bias but underestimated streamflow). The evaluation conducted for the

Ouémé area revealed RFE 2.0 and EPSAT to perform best with a slight underestimation of the

discharge. TMPA 3B42 was found to have a high inter-annual variability of the biases and did

not provide adequate results.

In 2014, Fujihara et al., using a conceptual hydrological model, assessed that a bias-corrected
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SRFE dataset outperforms RA datasets over the White Volta basin. Results showed that while

the reanalysis products exhibited acceptable seasonal accuracy, annual variations were not re-

produced. The only merged SRFE/RG product used (GPCP) delivered good results and proved

to be superior. Very recently, Bodian et al. (2016) conducted a hydrological evaluation of TMPA

3B42 precipitation estimates over the Upper Sénégal river basin, also using the GR4J model.

Results showed good agreement with measured discharge.

As stated before, the current study is a contribution to the ongoing debate on satellite derived

and reanalysis precipitation products’ performances. Specifically, we aim at exploring the differ-

ences between the considered datasets for basins of different locations and sizes and evaluating

the robustness of the products in accurately simulating streamflow during a hydrological evalu-

ation. Ten state of the art datasets which were generated according to different methods were

chosen for the evaluation. For the first time, the conceptual HBV model is used in a hydrolog-

ical evaluation, generating knowledge in its applicability in exploring the different capabilities

of precipitation datasets to generate streamflow. HBV was chosen due to it being user-friendly,

easily accessible and free of charge while having been proven to deliver robust results (Seibert

and Vis 2012), in order to entice a maximum of researchers to adopt this validation approach.

Conceptual models like HBV light were already successfully applied in simulating discharge in

West Africa, e.g. by Cornelissen et al. (2013).

4.2 Materials and Methods

4.2.1 Study Area

The basins used to evaluate the performance of the selected precipitation estimates in generating

daily streamflow were chosen within the COAST (Studying changes of sea level and water storage

for coastal regions in West-Africa, using satellite and terrestrial data sets) project study area in

West Africa. Large (about 100,000 km2) as well as small (∼2500 km2) sized basins were identified

both in the south, which is characterized by a bimodal rainy season, and the north, which is

subject to a unimodal rainy season, in order to evaluate differences arising from the diverse

rainfall distributions as well as the increase in aridity from south to north Fink et al. (2010).

The research area (5°N-15°N and 6°W-4°E) is depicted in Figure 4.1. Specific basins were chosen

based on the availability and reliability of discharge data, an overview of the chosen basins is

given in Table 4.1. Subwatersheds within the selected watershed were delineated using the

ArcSWAT model with a threshold area of at least 2500 km2. This seems a reasonable subbasin

size if one wants to model the whole of the subcontinent, as is planned for the future. Schuol

et al. applied the SWAT model to estimate the freshwater availability in West Africa in 2008

and suggested a minimum drainage area for the subbasins of 10,000 km2.

42



4.2 Materials and Methods

Figure 4.1: Research area. Pixels of precipitation products including the subbasin centroids
were used for data extraction. Highlighted GPCC pixels have station data for at
least 80% of days of the period 2003–2013.

Table 4.1: Selected basins.

Subbasin River Country Area River Basin Discharge Observations

Prestea (PR) Ankobra Ghana 4305 km2 Ankobra 1998–2006

Lawra (LA) Black Volta Burkina Faso, 106,074 km2 Volta 1998–2006

Ghana, Mali

Aval Sani (AS) Ouémé Benin 2594 km2 Ouémé 1999–2011

Kaboua (KA) Okpara Benin, Nigeria 9714 km2 Ouémé 1998–2010

Atchérigbé (AT) Zou Benin, Togo 7115 km2 Ouémé 2001–2010

Gbasse (GB) Sota Benin 8504 km2 Niger 2003–2006

4.2.2 Products

Ten precipitation products were identified for evaluation during this study. While this study

focuses on satellite precipitation datasets, the GPCC product, which relies on station data, was

included since it is often used to compare remotely sensed data to observations. We furthermore

included the CFSR reanalysis product because it is often used for SWAT simulations as data can

be downloaded in SWAT format. Although SWAT-ready CFSR is widely used by modelers in
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Africa in our experience, we remain convinced that an evaluation of the data quality is necessary

before use. Each product will be briefly described in this section with an overview being given

in Table 4.2.

Table 4.2: Selected precipitation products. RA: reanalysis, MW: microwave imager, IR: in-
frared, RG: rain gauges (used for bias correction), pres: present, FDDv1: Full Data
Daily Version 1, cov: coverage, res: resolution.

Product Instrument Spatial cov. Spatial res. Temp. cov. Provider Reference

CFSR RA, RG 90°N-90°S 0.3125° 1979–2014 NOAA-NCEP Saha et al. (2010)

CHIRPS MW,IR,RG 50°N-50°S 0.05° 1981-pres. NOAA-CPC Funk et al. (2015)

CMORPH v1.0 RAW MW,IR 60°N-60°S 0.25° 1998-pres. NOAA-CPC Joyce et al. (2004)

CMORPH v1.0 CRT MW,IR,RG 60°N-60°S 0.25° 1998-pres. NOAA-CPC Joyce et al. (2004),

Xie et al. (2011)

PERSIANN CDR MW,IR,RG 60°N-60°S 0.25° 1983-pres. NOAA-NCDC Ashouri et al. (2015)

RFE 2.0 MW,IR,RG AFRICA 0.1° 2000-pres. NOAA-CPC The NOAA Climate

Prediction Center (2002)

TAMSAT IR,RG AFRICA 0.0375° 1983-pres. University of Reading Maidment et al. (2014),

Tarnavsky et al. (2014)

TMPA 3B42 v7 MW,IR,RG 50°N-50°S 0.25° 1998-pres. NASA/JAXA Huffman et al. (2007)

TMPA 3B42RT v7 MW,IR 60°N-60°S 0.25° 2000-pres. NASA/JAXA Huffman et al. (2007)

GPCC FDDv1 RG 90°N-90°S 1° 1988–2013 DWD Schamm et al. (2015)

CFSR: The CFSR (Climate Forecast System Reanalysis) coupled atmosphere-ocean-land sys-

tem is developed at NOAA-NCEP and provides a variety of atmospheric parameters including

precipitation, temperature, wind speed, relative humidity and radiation, available from 1979 to

present (Blacutt et al. 2015; Dile and Srinivasan 2014; Saha et al. 2010). CFSR is based on

historical and operational archives and incorporates various data sources such as radiosondes,

surface observations including rain gauge information or data from satellite instruments (Saha

et al. 2010). Furthermore, precipitation estimates are updated every 6 h in near real time (Fuka

et al. 2013).

CHIRPS: CHIRPS (Climate Hazards Group Infrared Precipitation with Station data) is a

dataset developed especially for drought monitoring purposes. The data is generated from 1981

to present (Funk et al. 2015). Compared to other precipitation products, its main characteristic

is its very fine spatial resolution of 0.05° (Katsanos et al. 2016). CHIRPS uses several data

sources, such as the monthly precipitation climatology CHPclim, infrared measurements from

geostationary satellites, and information from the TMPA 3B42 product. The precipitation

estimates are merged with in situ gauge data from several archives including GTS to reduce

biases (Funk et al. 2015).

CMORPHv1.0 RAW and CRT: CMORPH (Climate Prediction Center Morphing Technique)

is developed by NOAA-CPC and is a global precipitation analysis algorithm, with data available

from 1998 to present 18 h after real time observation. Originally providing precipitation esti-

mates for the period 2002 onwards, two new versions of CMORPH have been released recently

and labeled as CMORPHv1.0 RAW and CRT. The former CMORPH dataset has been renamed

to CMORPHv0.x (Koutsouris et al. 2016). Two versions are available: CMORPH RAW derives
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half hourly precipitation estimates which are based on satellite microwave (MW) and infrared

(IR) information. The precipitation estimates are morphed through a time-weighted linear in-

terpolation (Joyce et al. 2004; Ramarohetra et al. 2013). CMORPH RAW is a satellite-only

product, since no RG information is incorporated (Joyce et al. 2004; Thiemig et al. 2013).

CMORPH CRT is similar to CMORPH RAW, but has been bias-corrected using historical and

real-time gauge data (Xie et al. 2011).

PERSIANN CDR: PERSIANN CDR (Precipitation Estimation from Remotely Sensed Infor-

mation using Artificial Neural Networks-Climate Data Record) is maintained by the University

of California together with NOAA and provides data from 1983 to present (Ashouri et al. 2015).

Precipitation estimates are calculated from IR and MW satellite data (Ashouri et al. 2015; Jo-

bard et al. 2011). Unlike the PERSIANN product (Hsu et al. 1997), which is available in near

real time and solely based on satellite measurements (Awange et al. 2015; Jobard et al. 2011; Ra-

marohetra et al. 2013), PERSIANN CDR incorporates GPCP gauge data into its precipitation

estimates (Ashouri et al. 2015).

RFE 2.0: The RFE (African Rainfall Estimation) 2.0 algorithm was developed by the NOAA

CPC. Daily rainfall estimates are available from late 2000 to present (The NOAA Climate

Prediction Center 2002). The dataset is based on IR and MW data and incorporates rain gauge

information from the GTS network, which is used to correct biases (Cohen Liechti et al. 2012;

Thiemig et al. 2012). Up to 1000 GTS stations are merged to derive the final precipitation

product (Ramarohetra et al. 2013). The product was originally developed for drought monitoring

purposes on the African continent and is available within 24 h after real time (Jobard et al. 2011).

TAMSAT: TAMSAT (Tropical Applications of Meteorology using Satellite data and ground-

based observations) was developed at the University of Reading specifically for continental Africa

with a spatial resolution of 0.0375°, which makes it the finest resolution among all the datasets

considered. Rainfall estimates from TAMSAT are available from 1983 to present. The TAMSAT

method uses IR imagery from METEOSAT (Grimes et al. 1999; Maidment et al. 2014; Tarnavsky

et al. 2014). Rain rates are then calculated based on a cloud temperature threshold, which

varies according to time and location (Jobard et al. 2011). Contrary to other merged products,

TAMSAT does not use GTS data but historical data of about 4000 stations from various African

agencies mostly acquired since the early 1990s (Maidment et al. 2014).

TRMM TMPA 3B42v7: The TRMM (Tropical Rainfall Measuring Mission) Multi-satellite

Precipitation Analysis (TMPA) product is produced at NASA’s Goddard Space Flight Center

(Huffman et al. 2007), with TMPA 3B42v7 (hereafter named TMPA) being the latest version.

Originally developed for rainfall retrievals in the tropics, it has been extended to a quasi-global

coverage. Rainfall estimates are available for the period of 1998 to present. The TMPA algorithm

integrates rainfall estimates from multiple satellites and a variety of sensors. Passive MW data is

derived from several low earth orbiting satellite sensors additionally to satellite IR data (Jobard

et al. 2011). Rain gauge observations from the GPCC are used to bias correct the precipitation

estimates (Moazami et al. 2013; Worqlul et al. 2014).
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TRMM TMPA 3B42v7 RT: Similar to the TMPA 3B42v7 dataset, the TMPA 3B42v7RT

(Real-Time, hereafter named TMPA RT) product is produced by NASA. It provides daily pre-

cipitation estimates from March 2000 to the present day. The product is based on the same

algorithm as TMPA 3B42v7, which combines MW and IR estimates. Unlike 3B42v7, no rain

gauge data is used for bias-correction due to the real-time nature of the product. However, a

climatological adjustment is performed (Huffman et al. 2007). Its precipitation estimates are

available nine hours after overflight (Huffman et al. 2007; Jobard et al. 2011).

GPCC FDDv1: The GPCC FDDv1 product (Global Precipitation Climatology Centre Full

Data Daily 1°) developed at the Deutscher Wetterdienst is a global land-surface precipitation

dataset that covers the period from 1988 to 2013. It is based on station data from up to 29,000

gauge stations per month, including GTS stations with automated quality control. The GPCC

FDDv1 precipitation estimates, hereafter named GPCC, provide a temporal resolution of one

day, while the spatial resolution is 1°, making it the coarsest precipitation dataset among the

analyzed products. Interpolation through a block Kriging scheme with a global variogram is

carried out for each station, producing the daily rainfall totals (Schamm et al. 2015; Schneider

et al. 2015).

4.2.3 Extraction of Precipitation Data

The chosen SRFEs and RA rainfall estimates were acquired via various online sources, all

being freely available to the general public. With the exception of CFSR, all datasets were

distributed in the common netCDF data format. In order to extract the precipitation data

for the research basins, we followed the approach utilized by the semi-distributed, physically

based Soil and Water Assessment Tool (SWAT) hydrological model (Arnold et al. 1998), which

uses weather data from the climate station located closest to the center of each subbasin. This

was accomplished by deriving the centroid for each subbasin and extracting the data from

the precipitation pixel covering this point (Winchell et al. 2010). For larger basins, namely

Atchérigbé, Gbasse and Lawra, precipitation data was likewise derived for each subbasin and in

a second step area-averaged to generate the data for the whole basin. This way, the performance

of the approach for single-cell as well as area-averaged data can be evaluated. When we compared

the SWAT centroid method to calculating the area-average of all pixels in the respective basins

for the TMPA dataset from 1998 to 2013, the correlation of the daily data for both methods was

high, ranging from r = 0.87 to r = 0.99 with a mean r of 0.91. A comparison of the total rainfall

sums generated by both methods revealed an r value of 0.99. The average monthly rainfall

sums were also highly correlated with an r of between 0.998 and 0.999 for all six considered

basins. However, when we considered the amount of rainy days, the basin-averaged method

included between 10.6 and 29.4% (average: 17.8%) more rainy days than the distributed method.

Therefore, the distributed approach was chosen in order to preserve a representative account of

the number of rainy days while at the same time not increasing or decreasing total rainfall sums.

This method was also chosen by Bitew and Gebremichael for basins of 299 and 1656 km2 size

over complex topography in Ethiopia; Dile and Srinivasan for 5–30 km2 basins, also in Ethiopia

and Tobin; and Bennett for basins of between 175 and 200 km2 in Texas (Bitew et al. 2012;

46



4.2 Materials and Methods

Bitew and Gebremichael 2011; Dile and Srinivasan 2014; Tobin and Bennett 2009).

4.2.4 Model

The hydrological evaluation was carried out using the conceptual HBV light model (Seibert

2000). HBV light is a development of the HBV model developed in the 1970s by the Swedish

Meteorological and Hydrological Institute (SMHI) and its current version was made available in

2010 (Seibert and Vis 2012; Singh 1995). Compared to other hydrological models, the relatively

low demand for input data and the limited number of parameters are strengths of the HBV

model (Rientjes et al. 2013; Rusli et al. 2015). The structure of HBV consists of four main

routines (snow-, soil-, routing- and response routine) and simulations of daily discharge are

based on time series of precipitation and temperature, as well as potential evapotranspiration

(Seibert and Vis 2012). Since no snowfalls occur in the research area, the snow routine was not

considered in this study. As shown in Figure 4.2, liquid precipitation contributes to soil moisture

and runoff depending on the actual moisture status. The remaining precipitation contributes

to the soil moisture storage, which can still evaporate as long as there is enough soil water

available. This means that in the soil routine, groundwater recharge and actual evaporation are

simulated as functions of actual water storage (Seibert and Beven 2009). Three components,

namely runoff, interflow and baseflow contribute to the discharge at the outlet of the modeled

basin (Aghakouchak and Habib 2010). The response routine uses three linear reservoir equations

and the final routing routine uses a triangular weighting function to compute discharge (Seibert

and Beven 2009).

Figure 4.2: HBV model structure (Seibert 2000).

The Genetic Algorithm and Powell (GAP) optimization was used to calibrate the model. The

default model parameter ranges were chosen for the calibration, as they are described to be

realistic by the developer (Seibert 2000; Uhlenbrook et al. 1999) and similar sets have been used

in a multitude of studies (Radchenko et al. 2014; Seibert 1999, 1997). Increasing the parameter
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range bears the risk to generate a good simulation by using unrealistic parameter sets. This

is especially the case when rainfall is extremely over- or underestimated and a good discharge

simulation is obtained at the expenses of a realistic simulation of evapotranspiration. Since the

goal was to compare the simulation results of the precipitation products among each other and

not to reach the absolute highest model efficiency, these ranges were accepted for every model

run. The calibrated parameters and their initial ranges are shown in Table 4.3.

The model was calibrated for each precipitation product and basin separately in 10,000 GAP

runs, calibration and validation periods are supplied in Table 4.4. This method was applied

to explore the independence of the results from reference data (see also Behrangi et al. (2011),

Bodian et al. (2016), and Tobin and Bennett (2009)). However, many studies evaluating the

efficiency of SRFE and RA products initially calibrate a model using observed rain gauge data

(Bitew et al. 2012; Gourley et al. 2011; Thiemig et al. 2013). Because no rain gauge data was

available for this study, the only alternative was to use GPCC data. Since some of the evaluated

products were bias-corrected using GPCC data, the question arises whether this method does

not discriminate products not including GPCC data in their estimates. The same holds true for

a classical comparison between GPCC and GPCC-corrected datasets. To test this hypothesis,

the model was also initially calibrated with GPCC data for the Lawra basin and the initial

parameters were applied to the other precipitation products.

Table 4.3: Parameters and their initial (default) ranges in the gap optimization runs.

Parameter Description Unit Min. Max.

Soil moisture routine

Fc Maximum soil moisture storage mm 100 550

Lp Soil moisture threshold for reduction of evaporation mm 0.3 1

BETA Shape coefficient 1 5

Response routine

PERC Maximum flow from upper to lower groundwater box mm d-1 0 4

UZL Threshold parameter for K0 outflow 0 70

K0 Recession coefficient d-1 0.1 0.5

K1 Recession coefficient d-1 0.01 0.2

K2 Recession coefficient d-1 0.00005 0.1

Routing routine

MAXBAS Routing, length of weighting function d 1 2.5

Table 4.4: Calibration and validation periods.

Prestea/Lawra Aval Sani Kaboua Atchérigbé Gbasse

Warm-up 2001 2001-2002 2001 2001-2002 2003

Calibration 2002-2005 2003-2008 2002-2008 2003-2007 2004-2005

Validation 2006 2009-2011 2009-2010 2008-2010 2006

As the objective functions, the Nash Sutcliffe efficiency (NSE) and Percent BIAS (PBIAS)

were chosen. The NSE is calculated as shown in Equation 4.1.
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NSE = 1−
[ ∑n

i=1(Y
obs
i )− (Y sim

i )2∑n
i=1(Y

obs
i )− (Y mean)2

]
(4.1)

where Y obs
i is the ith observation of the variable to be evaluated, Y sim

i is the ith simulation of

the variable to be evaluated, Y mean is the mean of the observed variables and n is the number of

observations. The NSE can take values between -∞ and 1. The performance ratings proposed

by Moriasi et al. (2007) were applied in this study. The result of a simulation is unsatisfactory

if the NSE is ≤ 0.5, satisfactory if between > 0.5 and ≤ 0.65, good if between > 0.65 and ≤ 0.75

and very good if between > 0.75 and ≤ 1.

PBIAS expresses the deviation of the data to be evaluated in percent and is calculated ac-

cording to Equation 4.2.

PBIAS =

∑n
i=1(Y

obs
i − Y sim

i ) ∗ 100∑n
i=1(Y

obs
i )

(4.2)

where Y obs
i is the ith observation of the variable to be evaluated and Y sim

i is the ith simulation of

the variable to be evaluated. It should be noted that positive values indicate an underestimation

and negative values an overestimation (Moriasi et al. 2007).

Since no data on the potential evapotranspiration was available for the chosen basins, ETP

was calculated from the CFSR reanalysis data using the Penman-Monteith approach (Allen et

al. 1998) shown in Equation 4.3:

ETP =
0.408∆(Rn −G) + γ 900

T+273u2(es − ea)

∆ + γ(1 + 0.34u2)
(4.3)

The parameters refer to ”A hypothetical reference crop with an assumed crop height of 0.12 m,

a fixed surface resistance of 70 s m-1 and an albedo of 0.23.” (Allen et al. 1998). Where ETP

is the reference evapotranspiration in mm/day, ∆ is the slope vapor pressure curve in kPa per

°C, Rn is the net radiation at the crop surface in MJ/m²/day, G is the soil heat flux density in

MJ/m²/day, γ is the psychrometric constant in kPa/°C, T is the mean daily air temperature at

2 m height in °C, u2 is the wind speed at 2 m height in m/s and es − ea is the saturation vapor

pressure deficit in kPa.

Since ten precipitation products were evaluated for six basins, 60 models were calibrated and

a validation run was performed for each product and basin. In the last step of the evaluation, a

ranking system was developed in order to gain a one-glance overview of the performance of each

product using NSE and PBIAS values. Products received one point for a very good NSE, two

points for a good NSE, three points for a satisfactory NSE, and four points for an unsatisfactory

NSE. The same was applied for PBIAS with one point being given for a very low PBIAS (<

5%), two points for a low PBIAS (5 < 15%), three points for medium PBIAS (15 < 30%) and

four points for a high PBIAS (> 30%). Products were considered as performing very good if

the score was between two and three, good if between four and five, satisfactory if between six

and seven and unsatisfactory if the score was higher than seven.
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4.3 Results and Discussion

First, the GPCC Full Data Daily (FDD) 1° product gauge coverage was evaluated for the research

area (5°N-15°N and 6°W-4°E, see Figure 4.1). Since the number of stations reporting for each

grid cell are supplied in the GPCC dataset on a daily basis, cells with actual station data for the

period of interest can be derived, as previously shown by Nikulin et al. (2012). The percentage of

pixels with reporting station per observation days (in percentage) over the period of 2003–2013

is shown in Figure 4.3. While a maximum of 48% of pixels include a station for 5% of observation

days, the pixel count quickly reduces if longer timelines are considered. For 50% of the period,

only 33% of the pixels have reporting data included and for 80% of days, this reduces to 23%.

The results show large areas of irregular gauge measurements and interpolation. Therefore, the

GPCC product should by no means be considered as a high resolution gauge dataset in this

region.
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Figure 4.3: Overview of GPCC station data in percent of pixels with reporting station for the
research area of 5°N-15°N and 6°W-4°E (see Figure 4.1).

4.3.1 Comparison of Precipitation Estimates

In a preliminary data exploration, the precipitation estimates derived from all ten products for

the six basins were compared. This was conducted in two steps. In the first step, the average

yearly and monthly sums for the eleven-year period from 2003 to 2013 (the only period where

data from all ten precipitation estimates was available) were calculated for each product and

basin and compared in Figure 4.4.

Results show that in all basins except for Prestea, the average yearly sums of PERSIANN

CDR, TMPA, CHIRPS, CMORPH CRT, RFE 2.0 and GPCC are similar. Average deviations

from the mean are 0.1% for PERSIANN CDR, +2.2% for TMPA, -0.8% for CHIRPS, -5.9% for

CMORPH CRT, -6.1% for RFE 2.0 and +1.1% for GPCC. In the Prestea Basin, RFE 2.0 and
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TAMSAT estimate less precipitation than the average. The CFSR reanalysis product generally

estimates low precipitation rates in the central basins of Aval Sani, Kaboua and Gbasse with an

average of 25.8% less than the mean. In the northernmost basin of Lawra, the average annual

precipitation is decidedly lower with a deviation from the average of -63.9%, the lowest estimation

of all products. In the southern basins however, CFSR tends to deliver higher precipitation

amounts with values for Atchérigbé being close to the mean (-5.6%). In the southernmost

Prestea basin, CFSR seems to overestimate the annual precipitation, deviating from the mean

by 31.1%.

For the CMORPH RAW product annual averages seem high, with the highest yearly precip-

itation of all products being reached in all basins except Prestea, where it comes second after

CFSR. Deviations from the mean are between +18.0% in Prestea and +48.3% in Lawra, with an

average overestimation of 35.8%. TAMSAT generally shows below average annual precipitation,

with values for Aval Sani, Kaboua, Atchérigbé and Gbasse being similar to CFSR values. In

the Lawra basin, values are also below the average (-23.2%) but higher than CFSR. In Prestea,

TAMSAT estimates a lower than average precipitation of -22.2%, which is similar to RFE 2.0

but -760 mm/y lower than CFSR.

The yearly sums generated by the non-bias corrected, real time TMPA RT product are higher

than the mean estimates by an average of 16.1% except for the Kaboua basin, where the sums are

similar. The overestimation of CMORPH RAW in this region as well as the similar performance

of TMPA and RFE 2.0 have also been observed by Thiemig et al. (2012) for the Volta basin,

and Gosset et al. (2013) for Benin and Niger. Pfeifroth et al. (2016) and Thiemig et al. (2012)

both observe an overestimation of the precipitation by the PERSIANN product, which is not

observed in this study, most probably because the PERSIANN CDR product used is created

using different input data as well as bias adjustment.

Figure 4.4: Average yearly precipitation (2003–2013) for all products and basins in mm/year.

When comparing the average monthly rainfall distribution for the same period, as done in

Figure 4.5, CHIRPS, CMORPH CRT, PERSIANN-CDR, RFE 2.0 and TMPA again perform

similarly. While CFSR predicts higher precipitation than the other products in the southern

Prestea basin, it generally predicts lower precipitation in the other basins located further to

the north, the extreme case being the Lawra basin, as well as a distinctly late onset of the

rainy seasons. In the Kaboua basin, CFSR rainfalls are very high during the beginning of the
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rainy season between July and August and in the Atchérigbé basin, a peak can be observed

during August. CMORPH RAW estimates very high peaks for the first rainy season in the

southern Prestea and Atchérigbé basin as well as the central Kaboua basin, while the rainfall

distribution of the Lawra, Aval Sani and Gbasse basins follows the average, although with a

clear overestimation.

In the Kaboua and Atchérigbé basins, CMORPH RAW predicts higher than average precipi-

tation from March to May. TAMSAT rainfall estimates follow the mean distribution but exhibit

lower than average peaks in all basins. TMPA RT precipitation is close to the average in the

Prestea, Kaboua and Gbasse basins but overestimates the peaks in the Lawra and Aval Sani

basins. In the Atchérigbé basin, TMPA RT predicts a peak in May, which is not observed by

other products with the exception of CMORPH RAW. GPCC generally performs very close to

the mean values of all products. With the exception of GPCC, products relying on only two out

of the three possible input data sources (IR, MW, RG) display the highest deviations from the

mean, notably CFSR (RG, reanalysed), CMORPH RAW (MW, IR), TAMSAT (IR, RG) and

TRMM RT (IR, MW).

Figure 4.5: Average monthly precipitation (2003–2013) for all products and basins in
mm/month.

4.3.2 Results of the Hydrological Evaluation

The influence of the model calibration strategy on the SRFEs products’ performances for the

Lawra basin is shown in Figure 4.6. Simulations using GPCC-based model optimum parame-
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ters (initial calibration) are compared to simulations using default model parameter ranges for

individual SRFE products (each product). The results show that if the model is calibrated

using GPCC data, the performance of products using GPCC and/or independent RG data for

bias-correction (namely CHIRPS, CMORPH CRT, PERSIANN CDR, RFE 2.0, TAMSAT and

TMPA) only changes slightly as opposed to calibrations being performed for each product. How-

ever, model efficiencies were observed to be significantly lower for non-corrected precipitation

products (CFSR, CMORPH RAW, TRMM RT) compared to calibrations for each product indi-

vidually. It can therefore be argued that an initial calibration using a dataset that has already

been used to bias-correct the evaluated datasets introduces further bias into the analysis by

discriminating non-corrected products. Therefore, the initial calibration was rejected for this

study.

Figure 4.6: Initial calibration results compared to calibrations for each product in the Lawra
basin.

The results of the hydrological evaluation are diverse, as is visible in the NSE score diagrams

(Figure 4.7). Trends between the products and differences between the basins are evident. For

the southern Prestea basin, none of the products yielded good simulations, the only satisfactorily

performing being PERSIANN CDR (NSE 0.52) and TMPA RT (NSE 0.50). All other products

scored unsatisfactorily, with the worst scoring being CMORPH RAW (NSE -0.53) and CHIRPS

(NSE 0.26). For the validation phase, no product performed satisfactorily.

In the northernmost and largest Lawra basin, the overall best calibrations were achieved. Very

good NSE values of between 0.80 and 0.84 were attained by CHIRPS, CMORPH CRT, GPCC,

RFE 2.0, TAMSAT and TMPA. TMPA RT and CFSR achieved only satisfactory NSE values

and CMORPH RAW was identified as performing poorly. For the validation phase, very good

simulations were achieved by all products except CFSR and CMORPH RAW, which did not

manage to simulate the streamflow accurately. For the Aval Sani basin only CMORPH CRT

achieved a very good simulation (NSE = 0.79). CHIRPS, PERSIANN CDR and TAMSAT pro-

duced good simulations (NSE between 0.70 and 0.74), while CMORPH RAW, GPCC, RFE 2.0

and TMPA only performed satisfactory and CFSR as well as TMPA RT unsatisfactory. During

the validation phase, very good results were observed for CHIRPS and CMORPH CRT, while
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CMORPH RAW, GPCC, TMPA and TMPA RT produced good results. For the Kaboua basin

calibration, CHIRPS, CMORPH CRT, RFE 2.0 and TAMSAT produced good simulations with

NSE values between 0.71 and 0.73. CMORPH RAW, PERSIANN CDR and TMPA performed

satisfactorily, while CFSR, GPCC and TMPA RT calibrated unsatisfactorily. Efficiencies are

better for the validation period with all products except CFSR performing good or very good

simulations. For the calibration of the Atchérigbé basin, good simulations were produced by

CHIRPS, TMPA and TMPA RT (NSE 0.65–0.72). While CFSR and CMORPH RAW performed

unsatisfactory, all other products performed satisfactory calibrations. For the validation phase,

results differ. Here, TMPA produced a very good (NSE = 0.79) and CMORPH CRT, GPCC

and PERSIANN CDR good simulations, while CMORPH RAW, RFE 2.0 and TAMSAT only

produced satisfactory results. CFSR, CHIRPS and TMPA RT performed unsatisfactorily. For

the calibration of the Gbasse basin, TAMSAT produced a very good simulation (NSE 0.76),

while CHIRPS, CMORPH CRT, GPCC, PERSIANN CDR, RFE 2.0 and TMPA RT produced

good simulations. CMORPH RAW and TMPA performed satisfactorily and CFSR delivered

an unsatisfactory result. During the validation, almost all products performed unsatisfactorily

with sometimes highly negative NSE values (-7.89 on average), with the exception of CMORPH

RAW and TMPA RT, which produced satisfactory simulations.

Considering the performances for all basins during the calibration and validation it becomes

apparent that CMORPH CRT performed best, followed by CHIRPS, TAMSAT and TMPA.

PERSIANN CDR and RFE 2.0 performed averagely while GPCC, TMPA RT, CMORPH RAW

and CFSR performed poorly.

Interestingly, discharges simulated by CMORPH CRT, TMPA, PERSIANN CDR and TMPA

RT show similar correlations and standard deviations to observed data in the model results.

This might be due to the same resolution of is 0.25° for each product on the one hand and the

input data on the other, as some of these datasets share input data from the same satellites.

Where products are bias- corrected, the limited number of available gauge products makes it

likely that the same data is used for multiple products.
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Figure 4.7: NSE score for model calibration and validation period. PR: Prestea, LA: Lawra,
AS: Aval Sani, KA: Kaboua, AT: Atchérigbé, GB: Gbasse.

The evaluation of the cumulative discharges and biases for the calibration periods are depicted

in Figures 4.8 and 4.9. The cumulative discharges immediately reveal inconsistencies in some of

the models. Both CMORPH CRT and RAW models underestimate discharges during certain

periods in the Prestea basin but overestimate in mid-2003 in Atchérigbé. During certain points

in time CFSR underestimates streamflow in Lawra, Aval Sani, Kaboua, Atchérigbé and Gbasse

and TMPA RT underestimates periods in Aval Sani. Interestingly, all models underestimate

streamflow in Lawra. Biases for the calibration period are generally low at below 15%. Only in

the Lawra basin we observed an underestimation of streamflow by every model, the strongest

bias being exhibited by CFSR and TMPA RT (both > 30%). The only product that performed

well in this regard is CMORPH RAW (< 15%). While RFE 2.0 and TMPA overestimated in

the Aval Sani basin, CHIRPS overestimated in Prestea. For the validation phase, higher biases

were exhibited by all models. Especially in the Gbasse basin, all models highly overestimated

discharge by over 30% with the exception of CMORPH CRT and TMPA RT. Best performances

were achieved in the Lawra, Aval Sani and Atchérigbé basins with only two models each being

highly biased (CFSR in Lawra and Aval Sani, TMPA RT in Lawra and Atchérigbé, PERSIANN

CDR in Aval Sani and CHIRPS in Atchérigbé). While most models exhibited less than 30%

bias in Prestea and Kaboua, high biases were observed for CMORPH RAW, GPCC, TAMSAT

and TMPA in Prestea and CFSR, GPCC, PERSIANN CDR and TAMSAT in Kaboua. For

both the calibration and validation phase, the models exhibiting the least bias are CMORPH
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CRT, TMPA, CMORPH RAW, TAMSAT and TMPA RT.

Figure 4.8: Cumulative yearly discharges for the calibration period in mm.
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Figure 4.9: Percent bias for model calibration and validation period. PR: Prestea, LA: Lawra,
AS: Aval Sani, KA: Kaboua, AT: Atchérigbé, GB: Gbasse.

When we calculated the scores for each product based on NSE and PBIAS during the cal-

ibration and validation period as shown in Figure 4.10, best results were achieved by the

CMORPH CRT product, followed by TAMSAT, TMPA and CHIRPS. RFE 2.0, PERSIANN

CDR, TMPA RT and GPCC which scored well to average and CMORPH RAW as well as

TMPA RT which scored unsatisfactory. During calibration, best performances were reached in

the Gbasse, Kaboua and Atchérigbé basins, followed by Aval Sani, Presta and Lawra. Inter-

estingly, if NSE and PBIAS values are weighted equally, no product performed unsatisfactorily

during the calibration. It follows that products with unsatisfactory NSE values show low biases

and vice versa. For the validation period, results differ. Here the worst scores are exhibited for

the Gbasse and Prestea basins. This may be due to the short validation periods and missing dis-

charge data. Nevertheless, the CMORPH CRT product scored well in Prestea and satisfactory

in Gbasse. The best validations were achieved for Lawra, Kaboua, Aval Sani and Atchérigbé

with CMORPH CRT being the only product consistently scoring very well, followed by TMPA

with only good or very good scores. CFSR performed worst with only satisfactory scores in

Prestea and Atchérigbé and unsatisfactory performances in all other basins.
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Figure 4.10: Calibration and validation score calculated based on performance of NSE and
PBIAS criteria. PR: Prestea, LA: Lawra, AS: Aval Sani, KA: Kaboua, AT:
Atchérigbé, GB: Gbasse.

Similar results were achieved by Thiemig et al. (2013), with RFE 2.0 and TMPA performing

best over the Volta basin. While the lower performance of their PERSIANN product might be

due to the fact that the PERSIANN CDR product was created using different input data, it is

interesting to note that Thiemig et al. observed high biases for the CMORPH product which

we were also able to reproduce with the RAW product. Gosset et al. (2013) also produced

comparable results with RFE 2.0 and TMPA scoring best in Benin and Niger with good model

performances and low biases, followed by CMORPH RAW which was biased and performed lower

over the Volta catchment. Dile and Srinivasan (2014) discovered high over-and underestimations

of CFSR for several subbasins of the Blue Nile Basin. Interestingly, the two products which rely

largely on ground data, CFSR and GPCC, produce among the worst results. This may be due

to the scarcity of rain gauges in West Africa and the subsequent large scale interpolation of

the data. Since the resolution of these two products is the coarsest, this may also influence the

model, e.g. in regions where multiple subbasins fall within the same pixel. Products relying on

a combination of infrared and microwave satellite instruments as well as rain gauges for bias-

correction, such as CMORPH CRT, TMPA, CHIRPS, TAMSAT (uses only infrared and rain

gauge data), RFE 2.0 and PERSIANN CDR score the highest. However, neither satellite only-

nor ground only products, such as TMPA RT and CMORPH RAW (both using only infrared and

microwave satellite instruments), as well as GPCC (ground-only), are able to produce results of

similar quality. The CFSR reanalysis product scored worst of all considered products. While the

analyzed products feature different spatial resolutions, we were unable to remark any impact
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on the products’ performance. Although CFSR and GPCC have the largest pixel sizes and

worst results, especially if considering the rain gauge density in West Africa, we conclude that

the lack of data and subsequent large-scale interpolation will have a greater influence than the

size of the pixel. Overall the results show that especially in the West African region, which

is characterized by few reporting rain gauges but also a relatively flat topography, combined

satellite-gauge precipitation products prove advantageous over single-source products.

Uncertainties may be introduced into an analysis by the choice of the hydrological model and

calibrating that model for discharge. Especially parameters governing infiltration and evapora-

tion may dampen the effects of over- or underestimated precipitation. It is therefore important

to select realistic ranges for these parameters before the calibration. These parameters can only

influence results in streamflow sums but not in daily distribution. This can explain the fact that

CFSR, CMORPH RAW and TMPA RT show low biases in streamflow although the products

either over- or underestimate precipitation. When analyzing the NSE however it can be seen

that the products deliver weaker results. The model may also be influenced by the potential

evapotranspiration inputs, where CFSR estimates were used, but since the same product was

used for every model, it should not influence the comparison between the precipitation datasets.

The length of the time series also has a certain influence on the performance of the satellite

estimates using the hydrological evaluation approach, especially if it is too short for proper cali-

bration and validation of the model. Thiemig et al. (2013) emphasized that longer time periods

would obtain results that are more robust, as they only analyzed data over five years. This

could be of concern for some of the basins included in this study, e.g. Gbasse, as the time series

records are relatively short to sufficiently calibrate and validate the HBV model.

4.4 Conclusion

The evaluation of remotely sensed and reanalysed precipitation datasets is invaluable in un-

dergauged regions. Especially if considering the challenges for Africa that arise due to climate

change and intensifying rainfall variabilities, these datasets can provide valuable up to date

information beneficial to decision makers. In search of a method to validate precipitation prod-

ucts in the notoriously undergauged West African subcontinent, ten datasets were evaluated,

including satellite estimates, reanalysis data and one gauge product. We furthermore placed

emphasis on comparing real time, post processed, global and regional products in six basins

of different location and size as well as using two sampling strategies. Also, it was evaluated

whether results change significantly if the HBV model is initially calibrated or calibrated for

each rainfall product separately. The calibration of the model for each product seems the most

sensible approach, since the possible introduction of bias during an initial calibration influences

the results at the expense of unrealistic evapotranspiration values. Results showed that satellite

products which use MW, IR and RG data generally produce good to very good simulations. Best

calibrations in terms of NSE were achieved by CMORPH CRT, PERSIANN CDR, TAMSAT,

CHIRPS and TMPA, all of which show significant potential as an alternative to RG data. RFE

2.0, GPCC and TMPA RT performed satisfactorily, while CMORPH RAW and CFSR deliver

the least robust simulations. Interestingly, CFSR predicted very low precipitation rates in the

northern basins and high rates in the south. This was not observed by any other product and
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leads to questioning the intrinsic data quality of the set for this region. The results show that

the best results can be achieved using bias-corrected satellite products, while satellite only or

gauge only products deliver less robust simulations. Many hydrological evaluations of satellite

and reanalysis precipitation data have employed the more complex, physically based SWAT

model (Dile and Srinivasan 2014; Tobin and Bennett 2014). In this study, the easy to learn

conceptual HBV light model has proven to be able to generate robust results. Nevertheless,

uncertainties remain due to possible inaccuracies in the discharge data used and uncertainties

in the model structure. It can be expected that, with longer and more complete discharge time

series, calibration and validation results can be improved.
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Abstract: Predicting freshwater resources is a major concern in West Africa, where large parts

of the population depend on rain-fed subsistence agriculture. However, a steady decline in

the availability of in situ measurements of climatic and hydrologic variables makes it difficult

to simulate water resource availability with hydrological models. In this study, a modeling

framework was set up for sparsely-gauged catchments in West Africa using the Soil and Water

Assessment Tool (SWAT), whilst largely relying on remote sensing and reanalysis inputs. The

model was calibrated using two different strategies and validated using discharge measurements.

New in this study is the use of a multi-objective validation conducted to further investigate

the performance of the model, where simulated actual evapotranspiration, soil moisture, and

total water storage were evaluated using remote sensing data. Results show that the model

performs well (R2 calibration: 0.52 and 0.51; R2 validation: 0.63 and 0.61) and the multi-

objective validation reveals good agreement between predictions and observations. The study

reveals the potential of using remote sensing data in sparsely-gauged catchments, resulting in

good performance and providing data for evaluating water balance components that are not

usually validated. The modeling framework presented in this study is the basis for future

studies, which will address model response to extreme drought and flood events and further

examine the coincidence with Gravity Recovery and Climate Experiment (GRACE) total water

storage retrievals.

Keywords: SWAT hydrological model; GRACE total water storage; MODIS evapotranspira-

tion; ESA-CCI soil moisture; modeling framework

5.1 Introduction

The availability of freshwater is a major concern in West Africa, directly influencing food security,

human health, and economic development (Schuol et al. 2008a). In the region, approximately

60% of the active labor force is employed in agriculture. However, this only contributes 35%
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to the gross domestic product (Hollinger and Staatz 2015; Jalloh et al. 2013). Many West

African farmers are poor and only able to produce close to subsistence levels, rendering them

especially vulnerable to water stress (Jalloh et al. 2013). Therefore, knowledge of the available

water resources is essential and modeling the water balance to estimate available resources can

be an important tool in this respect. Several meso-scale models have been applied to the area,

among others by Andersen et al., who used the physically-based MIKE SHE model to model

the Senegal river basin in 2001 (Andersen et al. 2001). In 2005, Bormann studied the results

of two process-based (SIMULAT-H and TOPLATS) and one conceptual hydrological model

(UHP) applied to the upper Ouémé basin (Bormann 2005). Another approach was employed

by Wagner et al. (2009), who downscaled meteorological fields and remote sensing data over

the White Volta basin for water balance estimation. Due to the lack of in situ data in the

region, remote sensing data is starting to be used more often for water resource estimation,

e.g., by Fujihara et al., who used reanalysis and global precipitation data in 2014 to model the

White Volta basin. The estimation of available water resources has furthermore been a topic of

research for the whole of West Africa in several studies, e.g., by Döll et al. (2003), who used the

WaterGAP Global Hydrology Model to estimate water resources worldwide or Li et al. (2005),

who used the IBIS land surface model in combination with the hydrological HYDRA model

for the Niger and Lake Chad basins. However, calibrating global hydrological models against

long-term annual discharge may lead to poor temporal performance (Schuol et al. 2008a).

Considering these constraints, Schuol et al. employed the semi-distributed, physically-based

hydrological SWAT (Soil & Water Assessment Tool) model to estimate freshwater resources

of West Africa in 1998 (Schuol et al. 2008a; Schuol and Abbaspour 2006a). The model was

later expanded to cover the whole of Africa (Schuol et al. 2008b) and a calibration/validation

approach of this model using GRACE gravity recovery data was performed by Xie et al. (2012),

who found SWAT and GRACE agreeing less in arid and humid regions, albeit using historic

discharge data for the modern period simulated. In their approach, Schuol et al. covered a four

mio. km2 research area in West Africa, which was partitioned into 292 subbasins. Inaccurate

or missing input data have been shown to increase uncertainties of distributed hydrological

models (Schuol and Abbaspour 2006b; Arnold et al. 1998). Especially in developing countries,

observation networks are sparse, and data regularly includes gaps and gross errors (Behrangi

et al. 2011; Bitew and Gebremichael 2011; Koutsouris et al. 2016). A continuous decline in

data availability has been observed in recent years due to political unrest, financial issues,

and maintenance problems (Adjei et al. 2012; Hughes 2006). Schuol et al. circumvented this

data availability problem by training a weather generator to produce daily data using 0.5°

Climate Research Unit monthly data (Schuol and Abbaspour 2006b). While some authors state

that hydrological models may perform poorly due to the limited data availability in the region

(Forootan et al. 2014), Schuol et al. demonstrated the SWAT model to deliver robust results

(Schuol et al. 2008a; Schuol and Abbaspour 2006a; Schuol et al. 2008b).

In recent years, many studies have explored the performance of remotely sensed climate data

in Africa, with the focus being on the evaluation of precipitation estimates. Investigations have

been conducted, among others, for West Africa (Fujihara et al. 2014; Thiemig et al. 2012; Gosset

et al. 2013; Poméon et al. 2017), East Africa (Koutsouris et al. 2016; Thiemig et al. 2012; Bitew

62



5.2 Materials and Methods

et al. 2012; Worqlul et al. 2017; Worqlul et al. 2014), southern Africa (Pombo et al. 2015),

and the entire continent (Awange et al. 2015). Most studies agree that certain precipitation

products perform well and may be used in substituting for in situ gauge data. However, in

regions with complex topography and strong altitude variations over short distances, as e.g., in

Ethiopia, the performance of satellite precipitation estimates declines sharply (Bitew et al. 2012;

Worqlul et al. 2014). We hypothesize that the increasing number of high resolution remote

sensing data products will enable substituting data from gauge networks and render weather

generators, as used in the study by Schuol and Abbaspour (2006b), obsolete. In this study, we

set up a modeling framework by calibrating and validating a SWAT model covering the major

West African river basins for the period of 1998–2013, using freely available remote sensing and

reanalysis products including new climatological, land use, and soil datasets. The starting time

is restricted due to the availability of high resolution satellite data and the end of the modeling

period is determined by the lack of discharge data for model validation. While we have chosen

to use only freely available data to guarantee the best-possible applicability of the framework,

we realize that finding the appropriate discharge data to validate the model is a challenge.

To overcome this problem, a multi-objective validation was conducted, where in addition to

streamflow, the variables actual evapotranspiration, soil moisture, and total water storage were

used to test the model results against available satellite datasets. Therefore, the objectives of

this study are (i) to set up a hydrological modeling framework for West Africa using freely

available data, (ii) to assess which simulation quality can be obtained using these datasets, (iii)

to perform a multi-objective validation, and (iv) to evaluate the potential and limitations of this

approach for assessing water availability at the sub-continental scale.

5.2 Materials and Methods

5.2.1 Research Area

The research area is located between 3° and 24° latitude and -18° and 16° longitude and includes,

among others, the basins of the Niger, Volta, Senegal and Ouémé rivers stretching over 18

countries, as shown in Figure 5.1. The relief in West Africa is low and flat (CILSS 2016) and

rainfall is strongly seasonal, with a unimodal rainy season in the northern part and bimodal rainy

seasons in the south (Fink et al. 2010). Rainfall amounts show a distinct south-north gradient.

Annual average precipitation in the humid Guinea-Congolian region in the south ranges from

2200 to 5000 mm, while in the arid Sahara region, annual rainfall ranges from 0 to 150 mm

(CILSS 2016; Sebastian and Kate 2009; Gessner et al. 2013).

River basins were selected based on the availability of discharge data for calibration purposes.

The total area of the basins selected for the model is 3.4 mio. km2. Due to computational

constraints, three different models were built: South (Volta, Ouémé, Comoé, Mono, Pra, Anko-

bra and Ayensu river basins, 633,000 km2, 41 stream gauges), West (Senegal and Gambia river

basins, 558,600 km2, 9 stream gauges) and Niger (Niger river basin, 2,250,000 km2, 12 stream

gauges).
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Figure 5.1: Research area, Soil and Water Assessment Tool (SWAT) models and available
discharge stations.

5.2.2 The SWAT Hydrological Model

The Soil and Water Assessment Tool (SWAT) represents a continuous-time, semi-distributed,

process-based river basin model. SWAT runs at a daily time step but may be calibrated using

monthly or yearly observed data (Arnold et al. 2012b; Srinivasan et al. 1998). The model is

comprised of eight major components: hydrology, weather, sedimentation, soil temperature and

properties, crop growth, nutrients, pesticides and agricultural management. The hydrological

component of SWAT is based on the water balance equation (Arnold et al. 1998). SWAT has been

proven to be competitive at a number of scales from local to continental, having been employed

for the modeling of water resources in Africa and Europe (Schuol et al. 2008b; Abbaspour et

al. 2015), among others. In this study, SWAT 2012 was used. The major model inputs and data

preparation will be described in detail below.

5.2.3 Input Datasets

� Digital Elevation Model (DEM): The hydrologically conditioned HydroSHEDS (Hydro-

logical data and maps based on SHuttle Elevation Derivatives at multiple Scales) digital

elevation model (DEM) developed by the World Wildlife Fund (WWF) and the United

States Geological Survey (USGS) based on the NASA SRTM (Shuttle Radar Topographic
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Mission) was used for streamflow delineation. HydroSHEDS is available in 3 and 15 arc-

second resolutions (approximately 90 and 500 m) (Lehner et al. 2013; Lehner et al. 2008).

In this study, subbasins were generated using the 500 m version.

� Land use and land cover: The Comité permanent Inter-Etats de Lutte contre la Sécheresse

dans le Sahel (CILSS) Landscapes of West Africa land use and land cover raster dataset

of the year 2013 was used as a basis for developing the land use layer required by SWAT.

Maps are also available for the years 1975 and 2000 at a resolution of 2 km. The maps

were created using local information and remote sensing data in cooperation with US

Aid and USGS (CILSS 2016). Since no data is included for the country of Cameroon,

nor north of the 18th parallel in Mauritania and Mali and north of the 15.5th parallel

in Niger, missing data was replaced using the European Space Agency (ESA) Globcover

2.3 dataset depicting the land use of the year 2009 in a 300 m resolution (Bontemps et

al. 2011). Land use classes were converted to default SWAT classes. It is unclear whether

SWAT allows to realistically simulate plant growth under tropical conditions due to its

implemented heat unit growth model (Neitsch et al. 2011; Alemayehu et al. 2017; Strauch

and Volk 2013). In our study, the management database was adapted by setting fixed

plant and harvest dates corresponding to onset and end of rainy season. When compared

to MODerate-resolution Imaging Spectroradiometer (MODIS) MOD 15A2 leaf area index

(LAI) estimates produced by NASA (Myneni et al. 2015b), SWAT LAI reaches a Pearson’s

r of 0.62, whereas without management modifications this value drops to -0.47.

� Soil: The Harmonized World Soil Database (HWSD) version 1.2 produced by the Food and

Agriculture Organization of the United Nations, the International Institute for Applied

Systems Analysis, ISRIC World Soil Information, the Institute of Soil Science-Chinese

Academy of Sciences and the European Commission’s Joint Research Centre (JRC) in

2012 was used to generate the soil data needed in SWAT. The HWSD supplies a raster

map and database containing several soil physical and chemical parameters for a top-

and subsoil layer (FAO/IIASA/ISRIC/ISS-CAS/JRC 2012). Missing parameters were

estimated from soil texture using pedotransfer functions (Wösten et al. 2001). The HWSD

and its predecessors have been used for SWAT simulations in Africa, the Middle East, and

Europe, among others (Schuol et al. 2008a; Schuol et al. 2008b; Xie et al. 2012; Abbaspour

et al. 2015; Faramarzi et al. 2013; Faramarzi et al. 2010; Malagò et al. 2016).

� Climate: In a previous study, ten precipitation datasets were analyzed for six subbasins in

the study area (Poméon et al. 2017). It was concluded that the Climate Prediction Center

Morphing Technique (CMORPH) version 1 CRT produced by the National Oceanic and

Atmospheric Administration Climate Prediction Centre (NOAA-CPC) performed best.

CMORPHv1 CRT is a global precipitation analysis algorithm, including satellite infrared

and microwave precipitation estimates as well as rain gauge information for bias correc-

tion. Precipitation estimates are available from 1998 onwards at a resolution of 0.25°

(Joyce et al. 2004; Xie et al. 2011). Minimum and maximum 2 m daily temperature data

were compiled from the NASA MERRA 2 reanalysis dataset. Inputs from both satellite

and ground data are included at a resolution of 0.625° ∗ 0.5° (Bosilovich et al. 2016).
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While SWAT-ready climate input files based on the National Centers for Environmental

Prediction (NCEP) climate forecast system reanalysis data (CFSR) (Saha et al. 2010) are

readily available, as discovered in Poméon et al. (2017), CFSR precipitation information

compares worse to other products in the region. No other climate data were necessary as

the authors selected Hargreaves as the potential evapotranspiration method.

� Discharge and reservoirs: Discharge data used in this study was obtained from the Ger-

man Global Runoff Data Center (GRDC) in Koblenz, the French AMMA-CATCH regional

observing system, as well as through personal communication with local agencies. Dis-

charge stations and their temporal coverage (without gaps) are depicted in Figure 5.1 and

summarized in Table 5.1. The 12 largest reservoirs in the study area where downstream

discharge observations are available were included in the model. Reservoir information

was provided by the Global Water System Project (GWSP) Global Reservoir and Dam

(GRanD) database version 1.1 created by Lehner et al. (2011). Missing storage volumes

information was approximated as proposed by Schuol et al. (2008a). Lake Volta was not

modeled due to insufficient data being available.

Table 5.1: Selected river basins and discharge gauges in the study area.

River Basin Area in km2 Gauges SWAT Model

Niger 2,246,220 12 Niger

Senegal 480,289 1 West

Volta 425,133 16 South

Comoé 84,533 3 South

Gambia 78,321 8 West

Ouémé 61,057 17 South

Mono 24,310 1 South

Pra 23,345 1 South

Ankobra 8773 1 South

Kouffo 4122 1 South

Ayensu 1753 1 South

TOTAL 3,437,856 62 All

5.2.4 Multi-Objective Validation Datasets

We decided to validate model simulations using actual evapotranspiration, soil moisture, and

total water storage, in order to evaluate the model performance of processes not reflected in

streamflow. This section gives an overview of the remote sensing data used in the multi-objective

validation.

� Actual evapotranspiration (ETA): Data was extracted from the MODIS MOD 16 dataset

supplied by NASA, available at a 1 km2 spatial- and 8-day or monthly temporal resolution.

ETA is calculated based on the Penman-Monteith equation using ground-based and remote
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sensing datasets. The algorithm includes vapor pressure deficit, leaf area index, enhanced

vegetation index and soil evaporation (Mu et al. 2011; Mu et al. 2007).

� Soil moisture: ESA Climate Change Initiative (CCI) 3.2 soil moisture (SM) retrievals

were used to validate the soil moisture dynamics simulated by SWAT. The product is

generated by blending passive and active microwave soil moisture retrievals generated by

C-band scatterometers and multi-frequency radiometers on multiple spacecraft. Daily data

is available at a resolution of 0.25 degrees but covering only the upper few cm of the soil

(Liu et al. 2012; Liu et al. 2011; Wagner et al. 2012).

� Total water storage (TWS): Gravity Recovery And Climate Experiment (GRACE) TWS

retrievals were used for further model validation. The twin satellite GRACE mission has

been measuring temporal and spatial variations in the Earth’s gravity field since 2002.

GRACE consists of two identical satellites on the same near-circular orbit. The dual

one-way K-band microwave ranging system observes the distance between the two satel-

lites. Changes in the distance in conjunction with complementary tracking data are used

to derive monthly gravity fields, which, subsequently, are converted to mass changes in

terms of equivalent water height according to Wahr et al. (1998). In this study, we used

the ITSG-Grace2016 time series provided by the Institute of Geodesy (IfG) at Technical

University (TU) Graz as sets of spherical harmonic coefficients up to degree and order 90.

As GRACE does not measure geocenter variations, degree 1 coefficients were replaced by

the time series provided by Rietbroek et al. (2012a) and Rietbroek et al. (2012b). The

c20 coefficient, which is corrupted by aliasing effects, was replaced by results from satellite

laser ranging (Cheng et al. 2013). GRACE observes the integral sum of all mass variations

in hydrosphere, atmosphere, biosphere, oceans and mass variations inside of the earth.

Gravity field solutions from ITSG-Grace2016 are already corrected for tides (ocean, earth

and pole tides) and non-tidal atmospheric and oceanic effects. Trends from glacial isostatic

adjustment are about zero in the study region. Therefore, the spherical harmonic coeffi-

cients from ITSG-Grace2016 primarily reflect variations in the terrestrial water storage.

As GRACE-derived gravity solutions are contaminated with correlated noise leading to

the characteristic striping patterns in the north-south direction, the monthly fields were

smoothed using the anisotropic DDK3 filter (Kusche 2007). Filtering implies attenuation

of the signal and further distortion, known as leakage effect. Therefore, TWS time series

derived for the three target areas via spatial averaging were rescaled using the scaling

factor approach (Long et al. 2015). Here, scaling factors were derived from five global

hydrological models for each target area separately (Longuevergne et al. 2010). All com-

putations are accompanied by a thorough error propagation, which starts from the full

error covariance matrices of the spherical harmonic coefficients and results into errors for

the rescaled TWS time series. Since Lake Volta was not modeled in SWAT, the lake signal

was computed using lake height variations and an area varying between 4450 km2 and

9970 km2 (Tanaka et al. 2002; Uebbing et al. 2015) and subsequently subtracted from the

GRACE estimates.
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5.2.5 Model Setup and Calibration/Validation

The model parametrization was conducted using the ArcSWAT 2012 interface (Winchell et

al. 2010). The research areas were divided into subbasins based on the DEM and derived stream

network. We used a streamflow delineation threshold of at least 500 km2 for the southern and

western models (1500 km2 for the Niger model) and manually added outlets where data from

gauging stations was available, generating 2153 subbasins (South: 712; West: 630; Niger: 811).

Next, the subbasins were overlaid with land use and soil maps to derive Hydrological Response

Units (HRUs), units with the same land use, soil and slope characteristics (Neitsch et al. 2011).

In view of computational efficiency, we opted to derive one HRU per subbasin by considering

dominant land use, soil and slope (Schuol et al. 2008b) (divided into 0-1; > 1-5 and > 5% slope).

The dominant land use distribution for each model is displayed in Figure 5.2. In the South

model, range-brush is the dominant land use type (53.6%), followed by agriculture (31.4%)

and forest (7.8%). Both forest and agricultural areas are mostly located in the more humid

south, while rangeland dominates in the arid north. In the western model, rangeland (brush

and grasses) dominates with 40.4 and 47.8%, respectively. 8.6% of the area is barren and 2.9%

under agricultural use. Land use in the Niger model is to almost equal parts range grasses,

barren, agriculture and range brush (26.4, 24.6, 23.3 and 22.2%). The high prevalence of barren

areas can be explained by the hydrologically inactive part of the basin, located in the north-east

(Itiveh and Bigg 2008). Only 2.6% of the area is predominantly forested.

Figure 5.2: Final SWAT land use distribution for each model, where AGRC: close grown agri-
culture; AGRL: agriculture; BARR: barren; FRSD: forest deciduous; RNGB: range
brush; RNGE: range grasses; WATR: water; WETF: wetlands forested; WETL:
wetlands.

After generating the HRUs, reservoirs were included as described in Section 5.2.3. Due to

uncertainties in the climate data, the potential evapotranspiration was calculated using the

1985 Hargreaves equation, which requires only temperature and extraterrestrial radiation inputs

(Neitsch et al. 2011; Hargreaves and Samani 1985). In SWAT, extraterrestrial radiation is
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calculated as a function of location and time of year (Neitsch et al. 2011). The Hargreaves

method has been suggested if the input data quality is in doubt (Droogers and Allen 2002). Since

the evapotranspiration processes in the study region are water-limited, more emphasis should

be placed on the actual evapotranspiration, as it directly influences runoff generation (Weiß and

Menzel 2008). SWAT calculates the Hargreaves (1985) equation as follows (Equation 5.1):

λETP = 0.0023 ∗H0 ∗ (Tmx − Tmn)0.5 ∗ (T̄av + 17.8) (5.1)

where λ is the latent heat of vaporization in MJ/kg, ETP is the potential evapotranspiration

in mm, H0 is the extraterrestrial radiation in MJ/m², Tmx is the maximum air temperature in

°C, Tmn is the minimum air temperature in °C, and T̄av is the average air temperature in °C

(Neitsch et al. 2011).

The simulation covered the period of 1998 to 2013 with a warm-up period from 1996 to 1997.

Since CMORPH precipitation data was only available from 1998 onwards, data from 1998 to

1999 was used as fictitious data for the warm-up period in order to maximize the simulation

period.

The calibration of a semi-distributed watershed model such as SWAT is challenging due to

input uncertainties, model uncertainties and parameter non-uniqueness (Schuol and Abbaspour

2006a; Abbaspour et al. 2007). For the calibration of our models, the Sequential Uncertainty

Fitting version 2 (SUFI-2) procedure of SWAT-CUP (Calibration and Uncertainty Programs,

developed by Karim Abbaspour of the Swiss Federal Institute of Aquatic Science and Technology

(EAWAG), Dübendorf, Switzerland) (Abbaspour et al. 2007) was used. In SUFI-2, all uncer-

tainty (parameter-, model-, and input-uncertainty) is accounted for by the respective parameter

uncertainty. Uncertainties are quantified by the p-factor, which measures the percentage of the

observed data falling into the 95% prediction uncertainty (95PPU) band. A further parameter,

the r-factor, describes the range of the 95PPU. Ideally, one wants the p-factor to be as large as

possible and the r-factor to be as small as possible (Abbaspour et al. 2007).

The model was calibrated using discharge data from 62 gauging stations. Available daily data

was aggregated to monthly data by interpolation whenever seven days in a row were missing and

deleting the month for longer gaps. Due to large data gaps and different lengths of the discharge

time series which did not allow for fixed calibration and validation periods, the first two thirds

of the discharge data were used for calibration and the last third for validation (Abbaspour

et al. 2015).

Two different calibration approaches were used. In the first approach (v1), the model pa-

rameters were globally calibrated, while in the second approach (v2), upstream subbasins were

individually calibrated apart from downstream subbasins in order not to influence results if

discharge gauges are unevenly distributed (Schuol et al. 2008a; Schuol et al. 2008b; Abbaspour

et al. 2015).

A wide variety of potential parameters and ranges for calibration were identified using available

literature and the SWAT manuals (Arnold et al. 2012a; Neitsch et al. 2002). In a second step,

the effects of the parameter ranges on model results were identified through a one at a time

sensitivity analysis coupled with a custom R script graphically representing the reaction of
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SWAT storages and flows. This way, realistic parameter ranges were defined for the research

area. SWAT-CUP allows for certain parameters to be calibrated separately by soil texture or

land use types. This again increases the number of parameters. In our approach, we included

all potential parameters in an initial iteration with 500 (v1) and 1000 (v2) model runs and

used the SWAT-CUP sensitivity analysis tool to assess the global sensitivity of each parameter

(Abbaspour 2015). SWAT-CUP determines the parameter sensitivity by multiple regression of

the Latin Hypercube generated parameter values against the objective function and performing

a t-test. Parameters with a p-value of < 0.05 are assumed to be sensitive (Abbaspour 2015).

To reach an acceptable calibration, three iterations with 500 model runs each were performed

with the sensitive parameters. Parameter ranges are updated automatically after each iteration.

If an acceptable calibration is reached, the validation is performed using the same parameter

ranges and number of simulations. An overview of the included parameters is given in Table 5.2.

Table 5.2: Parameters included in SWAT model and initial ranges.

SWAT Parameter Differs By min max

CN2* Land use -0.5 0.1

SOL AWC* Soil Texture -0.1 0.5

SOL K* Soil Texture -0.5 0.5

SOL BD* Soil Texture -0.5 0.1

EPCO* -0.3 0.3

ESCO* Land use -0.3 0.3

GW DELAY 0 100

GWQMN 0 1000

RCHRG DP 0 1

GW REVAP 0.02 0.2

REVAPMN 0 500

SURLAG 0 10

CN2: runoff curve number; SOL AWC: available water capacity (mm H2O/mm soil); SOL K: saturated

hydraulic conductivity (mm/h); SOL BD: moist bulk density (g/cm3); EPCO: plant uptake

compensation factor; ESCO: soil evaporation compensation factor; GW DELAY: groundwater delay

time (days); GWQMN: threshold depth for return flow to occur (mm H2O); RCHRG DP: deep aquifer

percolation fraction; GW REVAP: groundwater “revap” coefficient; REVAPMN: threshold depth for

“revap” or percolation to occur (mm H2O); SURLAG: surface runoff lag coefficient; *: relative change.

The Kling-Gupta Efficiency (KGE) was chosen as the objective function, as it can be decom-

posed into correlation, bias and relative variability between simulated and observed variables

(Gupta et al. 2009). SWAT-CUP implements the 2009 equation (Gupta et al. 2009; Abbaspour

2015). KGE can take values from -∞ to 1 and is calculated as follows (Equation 5.2) (Gupta

et al. 2009):

KGE = 1−

√
(r − 1)2 +

[(
σs
σm

)
− 1

]2
+

[(
µs
µm

)
− 1

]2
(5.2)

where KGE is the Kling-Gupta Efficiency, r is the regression coefficient between simulated and
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measured variables, σ is the standard deviation, µ is the mean value and s and m are simulated

and measured values, respectively. In this study, we consider KGE values of ≥ 0.5 to be good

and values ≥ 0.7 to be very good.

A further efficiency criterion used in this study is the Nash-Sutcliffe Efficiency (Equation 5.3)

(Nash and Sutcliffe 1970; Moriasi et al. 2007):

NSE = 1−
[ ∑n

i=1(Y
obs
i )− (Y sim

i )2∑n
i=1(Y

obs
i )− (Y mean)2

]
(5.3)

where Y obs
i is the ith observation of the variable to be evaluated, Y sim

i is the ith simulation of

the variable to be evaluated, Y mean is the mean of the observed variables and n is the number of

observations. Similar to KGE, NSE can range from -∞ to 1, where values ≥ 0.5 are acceptable

and values ≥ 0.7 very good (Moriasi et al. 2007).

Finally, percent of model bias or PBIAS is calculated as follows (Equation 5.4) (Moriasi et

al. 2007):

PBIAS =

∑n
i=1(Y

obs
i − Y sim

i ) ∗ 100∑n
i=1(Y

obs
i )

(5.4)

where Y obs
i is the ith observation of the variable to be evaluated and Y sim

i is the ith simulation of

the variable to be evaluated. Positive values represent an underestimation and negative values

an overestimation by the model.

5.2.6 Multi-Objective Validation

Calibration and validation of hydrological models is often done using observed discharge alone,

whereby aspects of the water balance are being neglected (Qiao et al. 2013). In this study, we

perform an additional validation of the model results by comparing ETA, SM and TWS to remote

sensing data. ETA was evaluated using the MODIS MOD16 satellite product (Mu et al. 2007;

Mu et al. 2011). We chose ETA to evaluate the model performance under uncertain precipitation

and land use inputs, as well as to validate the Hargreaves evapotranspiration calculations. The

modeled soil moisture was validated against the ESA CCI SM product (Liu et al. 2011). We

chose to validate the soil moisture, as its inter-annual variability is very high in West Africa

and it is an important factor for crop production. The CCI product was used, as it optimally

fits our period of interest. The evaluation of the soil moisture performance of SWAT proved

problematic, as outputs produced by the model provide soil moisture in mm for the whole profile

or soil layers, while the CCI SM is given in percent over the upper few centimeters of the soil

profile. Furthermore, SWAT calculates plant-available soil moisture rather than absolute soil

moisture as given for the observation (DeLiberty and Legates 2003; Milzow et al. 2011; Rajib

et al. 2016). Therefore, we decided to focus on comparing the dynamics of simulations and

observations instead of absolute values. Finally, the calculated total water storage was validated

using GRACE TWS data. The SWAT total water storage change was estimated from the water

storages by calculating the deviation from the mean water storage during the period of GRACE
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data availability (2003-2013) according to the following formula (Equation 5.5):

∆TWSt = (SW t + SAt +DAt)− SW t + SAt +DAt (5.5)

where ∆TWSt is the total water storage change at time step t, SW t is the soil water storage,

SAt is the shallow aquifer storage and DAt is the deep aquifer storage. All units are in mm.

5.3 Results

5.3.1 Calibration and Validation Results

Results for the three models and two calibration approaches are listed in Table 5.3 and will be

described in detail.

Table 5.3: Calibration and validation results for v1 and v2 models.

Model Objective Function % of Discharge Stations

p r R2 PBIAS KGE KGE ≥ 0 KGE ≥ 0 KGE ≥ 0.5 KGE ≥ 0.7

Calibration

South v1 0.37 0.36 0.53 5.54 0.23 0.48 85 54 20

South v2 0.31 0.71 0.51 -29.71 0.15 0.47 66 39 5

West v1 0.73 1.42 0.57 7.01 0.40 0.54 90 50 20

West v2 0.33 0.79 0.61 -53.50 -0.13 0.38 78 33 0

Niger v1 0.30 0.65 0.46 30.53 0.14 0.38 58 17 0

Niger v2 0.29 0.62 0.41 11.98 0.08 0.35 75 25 25

Average v1 0.47 0.81 0.52 14.36 0.26 0.47 78 40 13

Average v2 0.31 0.71 0.51 -23.74 0.03 0.40 73 32 10

Validation

South v1 0.36 0.44 0.61 -1.39 0.03 0.48 78 37 17

South v2 0.30 0.80 0.60 -62.67 -0.21 0.54 73 49 24

West v1 0.72 12.22 0.74 20.43 0.17 0.47 67 44 11

West v2 0.30 0.97 0.71 -825.36 -8.72 0.32 67 0 0

Niger v1 0.30 0.57 0.52 33.73 0.03 0.30 67 17 8

Niger v2 0.36 0.59 0.53 30.18 0.10 0.48 50 25 8

Average v1 0.46 4.41 0.63 17.59 0.07 0.42 70 33 12

Average v2 0.32 0.78 0.61 -285.95 -2.94 0.45 63 25 11

p: fraction of data bracketed by the 95PPU; r: 95PPU range (dimensionless); R2: coefficient of
determination; PBIAS: percent model bias; KGE: Kling-Gupta Efficiency, KGE ≥ 0: mean KGE of

stations scoring higher than 0.

For the v1 calibration (Figure 5.3), 78% of gauging stations reach a KGE of higher than

zero, meaning that the model performs better than if using observed mean values as predictors

(Gupta et al. 2009). On average, 40% of the gauging stations reach a KGE of more than 0.5,
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while 13% are above 0.7, with the highest average KGE of 0.40 in the West (the overall best

result) and the lowest average KGE of 0.14 found in the Niger region. The average bias is

14.36% and R2 amounts to 0.52, with the highest R2 of 0.57 reached in the West model and the

lowest value of 0.46 in the Niger model. While the range of the model uncertainty (r-Factor)

is 0.82, the percentage of data bracketed by the 95 PPU (p-Factor) is 47%. Calibrations of the

southern model perform best in the Ouémé and White Volta basins and worst in the Black Volta

basin. For the western model, best performances can be observed for the downstream Gambia

tributary rivers, while some upstream stations perform less well. For the Niger model, the best

performance is reached downstream of the confluence of the Benue and the Niger in Lokoja,

while it performs worst in most of the most upstream subbasins.

Concerning validation, 33% of v1 stations reach a KGE above 0.5 and 12% above 0.7. However,

the average KGE is 0.07 due to some poorly-performing stations. If we removed these stations,

KGE would increase to 0.42. R2 is the only factor performing better in the validation than

the calibration (0.63 as opposed to 0.52). While the p-factor is similar to the calibration, the

r-factor is influenced by the large uncertainty band of the West model and reaches 4.41. PBIAS

has also increased to 17.59%. Best performances are reached in the West model.
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Figure 5.3: Calibration and validation results of the v1 (global calibration) models.

While for the v2 approach (Figure 5.4), about the same amount of stations score a KGE of

higher than 0.5 (73%), it generally delivers less robust solutions, with only 32% of discharge

stations reaching a KGE of 0.5 or higher and 10% reaching above 0.7, as opposed to 13% in v1.
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Figure 5.4: Calibration and validation results of the v2 (local calibration) models.

The average KGE value of simulation v2 is worse in the South (0.15) and Niger (0.08) mod-

els and decidedly worse in the West (-0.13). While p and r perform slightly worse in the v2

approach, R2 remains almost constant at 0.51. PBIAS is worse in v2, dropping from 14.36%

underestimation to -23.74% overestimation of streamflow. The Comoé, as well as certain up-
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stream Niger basins, perform better. The v2 validation performs worse than the v1 validation,

with 25% of stations reaching KGE values above 0.5 and 1% above 0.7. The average KGE is low

with -2.94, due to bad performance in the West model. When only taking stations performing

above zero into account, KGE is higher with 0.45 than in the v1 validations (0.42). The highest

KGE is reached in the Niger (0.10). While the r value for v2 is decidedly better (0.78 as op-

posed to 4.41), p is slightly worse (0.32 vs. 0.46). v2 strongly overestimates streamflow (PBIAS:

-285.95), again mainly due to the performance of the West model. R2 performs similar to v1.

Best validation results are reached in the White Volta, Oti and Ouémé.

An example of monthly calibration and validation results for four selected discharge stations

is given in Figure 5.5.

Figure 5.5: Example discharge results for the South (1&2), West (3) and Niger (4) models.

Displayed are the 95PPU ranges of both v1 and v2 calibration and validation, the observed

data, as well as the key efficiency criteria p, R2 and KGE. The stations are located in the Ouémé

(1 Ahlan), White Volta (2 Daboya), Gambia (3 Gouloumbo) and Niger (4 Lokoja) river basins.

For v1, KGE values for all stations are between 0.65 and 0.75. On average, validations perform

less well than calibrations except in Daboya (Validation: 0.94). While performances increase

during v2 in Lokoja, decreases can be observed for the other stations. Only during validation do

Ahlan and Lokoja perform better than v1. At this point, we conclude that for the calibration

and validation of the model with discharge alone, the global calibration (v1) performed slightly

better than the local calibration (v2).
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5.3.2 Multi-Objective Validation Results

During the multi-objective validation, several output variables which were not used for calibra-

tion were kept for further validation by comparing to MODIS ETA, ESA CCI SM and GRACE

data. Concerning actual evapotranspiration, validation results reach good scores, as shown in

Table 5.4 and Figure 5.6.

Table 5.4: Actual evapotranspiration validation against MODIS MOD 16 Data.

Model R2 sig. PBIAS NSE KGE

South v1 0.93 < 0.001 5.0 0.81 0.71

South v2 0.92 < 0.001 6.6 0.73 0.63

West v1 0.92 < 0.001 -15.8 0.88 0.80

West v2 0.91 < 0.001 -15.1 0.87 0.82

Niger v1 0.94 < 0.001 2.8 0.81 0.67

Niger v2 0.94 < 0.001 4.4 0.82 0.70

Average v1 0.93 2.67 0.83 0.73

Average v2 0.92 1.37 0.81 0.72

R2: coefficient of determination; sig: significance level; PBIAS: percent model bias; NSE: Nash-Sutcliffe
Efficiency; KGE: Kling-Gupta Efficiency.

Both the v1 and v2 calibrations of all models fit the observed data very well, with all criteria

being almost identical. Best R2 performances are observed in the Niger model with 0.94. No

model R2 performs below 0.91. In both the West and the Niger models, SWAT overestimates

ETA during the wet seasons. In the South and Niger models, underestimations during the

dry season also occur. On average, the South and Niger model underestimate ETA (PBIAS:

-2.8 - -6.6%), while the West model overestimates by around 15%. In the West model, no

underestimations can be observed due to observed ETA being very low during the dry season.
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Figure 5.6: Monthly simulated actual evapotranspiration validation against MODIS MOD 16
data, where SWAT v1 is the global and v2 the local calibration.

Performance metrics for the soil moisture validation against ESA CCI data are given in Ta-

ble 5.5 and graphical representations in Figure 5.7. Overall, the dynamics fit very well. Years

with lower soil moisture content such as 2002-2003 in the West, or 2001-2003 in the South model

regions are also well represented in the simulations. R2 values are above 0.69 for all models with

best performances reached in South v2 and Niger v1/v2 (0.82 and 0.80). West v1 performed

least well with an R2 of 0.69. v1 and v2 again perform very similarly (v1: 0.75, v2: 0.78).

Table 5.5: Soil moisture validation against ESA CCI data.

Model R2 sig.

South v1 0.77 < 0.001

South v2 0.82 < 0.001

West v1 0.69 < 0.001

West v2 0.73 < 0.001

Niger v1 0.80 < 0.001

Niger v2 0.80 < 0.001

Average v1 0.75

Average v2 0.78

R2: coefficient of determination; sig: significance level.

78



5.3 Results

Figure 5.7: Monthly simulated soil moisture validation against ESA CCI data, where SWAT
v1 is the global and v2 the local calibration.

Finally, total water storage was calculated from SWAT outputs and validated using GRACE

data (see Table 5.6 and Figure 5.8). Again, results show a good fit. Nonetheless, an overestima-

tion of TWS during the dry seasons is apparent in all models, as well as a slight underestimation

during the wet seasons in the Niger and South models. Also apparent is a phase shift in the

model results by approximately half a month. Some fast changes, e.g., the sharp drop and rise in

TWS during the wet season 2012, are not visible in the simulation results at all. Performances

vary, and a very high uncertainty in the West v2 model is immediately apparent. Otherwise, the

dynamics of both calibrations perform similarly with best R2 and NSE results reached in the

globally calibrated models (0.82 and 0.79 as opposed to 0.61 and 0.56 in the locally calibrated

models, respectively). All models except West v2 reach between acceptable and very good R2

and NSE values with the West v1 model performing best and the West v2 model performing

worst.
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Table 5.6: Total water storage validation against GRACE data.

Model R2 sig. NSE

South v1 0.75 < 0.001 0.75

South v2 0.70 < 0.001 0.68

West v1 0.90 < 0.001 0.87

West v2 0.35 < 0.001 0.27

Niger v1 0.82 < 0.001 0.76

Niger v2 0.79 < 0.001 0.72

Average v1 0.82 0.79

Average v2 0.61 0.56

R2: coefficient of determination; sig: significance level; NSE: Nash-Sutcliffe Efficiency.

Figure 5.8: Monthly simulated total water storage validation against GRACE data, where
SWAT v1 is the global and v2 the local calibration.

5.4 Discussion

5.4.1 Model Calibration/Validation Discussion

Results show that satellite and remote sensing data can be used to substitute missing obser-

vations and boundary conditions in a SWAT simulation. Results are promising with especially
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successful calibrations and validations generated for the Ouémé, Gambia and lower Niger basins.

It may be argued that during global calibration (v1), a prevalence of stations in a certain region

may unduly influence the model if the weights of the stations remain the same (Abbaspour

et al. 2015). In our case, this can be observed in the Niger basin, where two of the most

upstream stations perform poorly due to the calibration being influenced by the downstream

gauging stations but performing better when separately calibrated in v2. However, this effect

does not explain the poor performance along the Black Volta river, as similarly poor results

are observed in the v2 simulation. This was also reported by Schuol et al. (2008a). Some of

the discharge stations are highly influenced by upstream reservoirs for which no outflow data is

available. Even when including reservoirs in the SWAT model, we noticed downstream stations

often performed poorly due to the limited amount of data available for proper reservoir setup.

Also problematic is the decline in the availability of discharge measurements and uncertainty

as to their quality, coupled with data gaps. In contrast to Schuol et al. (2008a), we did not

include the Inner Niger Delta in the model. While they set up the delta as an artificial reservoir

and defined the outflow as according to a close downstream station, the closest station for our

timeframe is located almost 500 km downstream.

Also, the Akosombo dam in southern Ghana, which creates Lake Volta, could not be included

due to missing information about in- and outflows. While the lake was removed from GRACE-

derived water storage change (by deriving mass variations using altimeter measurements and

information on the lake area) to correspond to the simulations, the missing lake might lead to

lower actual evapotranspiration simulations in this area. If comparing the amount of discharge

data available for the period modeled by Schuol et al. (calibration from 1970 to 1995) and this

study (1998–2013), the decline in available discharge measurements becomes apparent, with the

exception of the Ouémé basin, where we were able to secure additional stations. Interestingly,

the distribution of well-performing stations is very similar in results from both studies, except

for the upstream Niger stations, which performed less well in our approach. We observed v1

performing stronger in the calibration and validation periods. We attribute this to the global

sensitivity evaluation used in this study. While the 500 runs used to evaluate the sensitivity of the

global calibration seem appropriate, we believe 1000 runs for the local sensitivity analysis might

have been too low, especially considering the large number of parameters used, which influences

the relative sensitivity of each parameter (Abbaspour et al. 2017). While Abbaspour et al.

suggest between 500 and 1000 runs suffice, we believe the effects of more runs especially when

using many parameters should be studied. Opening the parameter ranges further might lead

to increased p-values and better calibrations/validations. However, effects of the parameters

on hydrological processes not represented in the streamflow must be carefully assessed. We

encountered several difficulties with unrealistic soil moisture and aquifer behavior using less

restricted ranges, which led to bad multi-objective validation results. Furthermore, it can be

assumed that if more stations with longer and more complete time series are available, better

and more accurate results can be generated.
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5.4.2 Multi-Objective Validation Discussion

It seems unrealistic to expect more discharge observations becoming available in the near future.

So far, discharge measurements based on satellite-derived water levels have been limited to

rivers wider than about 100 m, their spatial coverage is limited by orbit patterns, and they

rely on assumptions inherent to rating-curve approaches or river hydraulic modeling which are

difficult to verify. Therefore, alternative methods for verifying the accuracy of hydrological

model outputs must be explored (Milzow et al. 2011). The multi-objective validation allows us

to assess the performance of the model for multiple aspects of the water balance. In terms of

actual evapotranspiration, the remote sensing and reanalysis climate forcings allowed for a very

good performance at the basin scale.

When looking at single subbasins, however, the model tends to overpredict ETA in extremely

arid areas. In some very humid subbasins, ETA may likewise be underpredicted. When validat-

ing MOD 16 ETA for South Africa, underpredictions of between 13% and 35% have been found

(Jovanovic et al. 2015; Sun et al. 2012), leading us to assume that the apparent overestimation in

arid areas in our model may in part be due to inaccuracies of the MODIS validation data, while

the underestimation of ETA during the dry seasons in the southern model could be explained

due to Lake Volta not being simulated.

Dynamics of the modeled soil moisture fit the observations very well. The SWAT uncertainties

increase markedly during the wet seasons due to a higher availability of water and thus greater

influence of the governing parameters. SWAT SM outputs do not allow for a direct comparison,

due to the lack of residual water content included in the results.

The validation of the simulated total water storage with GRACE showed good agreement

with some peculiarities. The phase shift of one-half month that we identify, especially in the

South and West models, has also been observed by Grippa et al. (2011) and Ndehedehe et

al. (2016) when comparing multi-model results with GRACE solutions for West Africa. The

most noticeable difference between model and GRACE solutions is the very pronounced decline

in TWS during the dry season retrieved by GRACE, which is not always captured by SWAT.

This discrepancy is very strong in the West and Niger models, and while it may in part be due to

our calculation of the TWS change in SWAT, similar observations have been reported in other

studies. Grippa et al. (2011) compared water storage anomalies derived from nine land surface

models to GRACE, both for the Sahel and West Africa. Their findings are very similar to ours,

with SWAT TWS change estimations of our West model comparing well to the Sahel zone and

the South model to the West Africa zone, while the Niger model lies in between the two. They

assume that incorrectly modeled evapotranspiration during the dry season led to these results.

Boone et al. (2009) also compared land-surface models (LSMs) with GRACE over West Africa

and came to the conclusion that the difference in amplitudes might either be due to deficits

in the precipitation forcing of the LSMs, their insufficient soil depth (where water percolating

past a certain depth is lost, similar to SWAT) or the overestimation of the storage anomalies

by GRACE during the dry season. Similar observations were made by Ndehedehe et al. (2016),

who speculate that differences might be due to anthropogenic influences intensifying land surface

processes which the models cannot capture, or the lack of observed data for model calibration

leading to improper soil moisture outputs and thus wrong TWS solutions. Werth et al. (2017)
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observed an increase in total water storage over the Niger river basin of seven mm/year and

conclude this to be mainly due to an accumulation of groundwater in the Sahel Zone. While

we observe positive trends of the total water storage for all models except West v2, which is

influenced by high uncertainties, trends in SWAT are generally lower than the GRACE solutions.

Furthermore, several studies (Forootan et al. 2014; Werth et al. 2017; Rateb et al. 2017; Hassan

and Jin 2016) report a clear positive trend toward a higher total water storage over the Volta

basin since 2007 due to increased precipitation. We have seen a similar effect before removing

the Lake Volta signal from the GRACE solution, where we observed a trend of 25 mm/year

from January 2007 to December 2010. Afterwards, a positive trend is much less evident, and

we conclude that their results were masked by the strong signal of the lake.

5.5 Conclusion

For the first time, to the authors’ knowledge, has a SWAT model been calibrated using remote

sensing and reanalysis inputs and validated for streamflow, actual evapotranspiration, soil mois-

ture dynamics and total water storage simultaneously, proving its robustness and predictive

capability. Results show that SWAT simulations for different sparsely-gauged regions of West

Africa using freely available remote sensing and reanalysis datasets as input perform surprisingly

well. This framework significantly eases the modeler’s task of acquiring the necessary climato-

logical, land use and soil data to parameterize a physically-based model. Especially considering

the lack of measurements conducted in situ, the use of remote sensing is essential to produce

meaningful assumptions of the water resources in West Africa. While the models perform well

using two different calibration and validation schemes, it is necessary to further validate pa-

rameters apart from streamflow, otherwise errors in other parts of the water balance might

be overlooked. Worqlul et al. (2017) have e.g., shown that streamflow may be well simulated

even if input precipitation data has large errors. We therefore chose to additionally validate

actual evapotranspiration, soil moisture and total water storage outputs. The multi-objective

validation produced very good results and confirmed that the model performs well in the study

area. While our approach delivers good results at the regional, sub-continental scale, we realize

that it might not be appropriate to model smaller catchments. The model framework could be

further improved if data becomes available to accurately model the Niger Inland Delta and Lake

Volta. Also, the sensitivity analysis procedure should be improved if using a large number of

potential parameters, as in our v2 approach. Furthermore, parameters such as actual evapotran-

spiration or leaf area index could be included in a multi-objective calibration using SWAT-CUP.

Our framework offers possibilities for further evaluation of the water cycle in West Africa. In

ongoing work, we plan to evaluate the model performance against global hydrological models

to investigate capabilities and limitations of these models and investigate the model response

to extreme drought and flood events. Also, the performance of SWAT with different remote

sensing inputs can be evaluated for the region. Nonetheless, it is the authors’ opinion that

remote sensing data should only be used to complement and not replace discharge and other

in situ measurements for model calibration and validation. Despite the availability of satellite

measurements, we believe countries should still invest in in situ measurement networks.
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Abstract: The prediction of freshwater resources remains a challenging task in West Africa,

where the decline of in situ measurements has a detrimental effect on the quality of estimates.

In this study, we establish a series of modeling routines for the grid-based mesoscale Hydrologic

Model (mHM) using Multiscale Parameter Regionalization (MPR). We provide a computation-

ally efficient application of mHM-MPR across a diverse range of data-scarce basins using in

situ observations, remote sensing, and reanalysis inputs. Model performance was first screened

for four precipitation datasets and three evapotranspiration calculation methods. Subsequently,

we developed a modeling framework in which the pre-screened model is first calibrated using

discharge as the observed variable (mHM Q), and next calibrated using a combination of dis-

charge and actual evapotranspiration data (mHM Q/ET). Both model setups were validated in

a multi-variable evaluation framework using discharge, actual evapotranspiration, soil moisture

and total water storage data. The model performed reasonably well, with mean discharge KGE

values of 0.53 (mHM Q) and 0.49 (mHM Q/ET) for the calibration; and 0.23 (mHM Q) and

0.13 (mHM Q/ET) for the validation. Other tested variables were also within a good predic-

tive range. This further confirmed the robustness and well-represented spatial distribution of

the hydrologic predictions. Using MPR, the calibrated model can then be scaled to produce

outputs at much smaller resolutions. Overall, our analysis highlights the worth of utilizing addi-

tional hydrologic variables (together with discharge) for the reliable application of a distributed

hydrologic model in sparsely gauged West African river basins.

Keywords: mHM; remote sensing; GRACE total water storage; MODIS/GLEAM evapotran-

spiration; modeling framework
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6.1 Introduction

Due to economic conditions in many West African countries, between 50 and 60% of the la-

bor force works in the agricultural sector, mostly as self-sustaining farmers generating income

by selling surpluses and cash-crops not intended for local consumption (Hollinger and Staatz

2015; Jalloh et al. 2013; African Development Bank 2018). Therefore, water availability not

only directly influences the food security of large parts of the population, but also economic

development (Schuol et al. 2008a). The estimation of available water resources using hydrologic

modeling provides important information for planners and policy makers to mitigate problems

arising due to water shortages. The subject of performing hydrologic predictions in sparsely

gauged West African river basins has been well covered in recent years (Schuol et al. 2008a;

Bormann 2005; Wagner et al. 2009; Fujihara et al. 2014; Schuol and Abbaspour 2006a; Schuol

et al. 2008b; Xie et al. 2012; Poméon et al. 2018). Due to a continuous decline in ground-

based observation networks as a consequence of political unrest and financial instability (Adjei

et al. 2012; Hughes 2006), the authors explored the possibility of setting up the semi-distributed

Soil and Water Assessment Tool (SWAT) model (Arnold et al. 1998; Arnold et al. 2012b; Srini-

vasan et al. 1998) for several West African river basins in a previous study (Poméon et al. 2018).

While multi-objective validation of streamflow, actual evapotranspiration, soil moisture dynam-

ics, and total water storage revealed the model to provide robust results, the applied scale was

coarse due to computational constrains, with the smallest areas of fully distributed estimations,

called subbasins in SWAT, being at least 500 km2 large.

Hydrologic models are generally calibrated by optimizing multiple free parameters to fit a

model output against an observation using objective functions to measure the performance of

the solution (Beven 2012). The continuous increase in computational power and availability of

remotely sensed data for model parametrization has given rise to complex spatially distributed

and semi-distributed hydrologic models in recent years (Samaniego et al. 2010). Well-known

examples for this are the spatially distributed MIKE-SHE model (Schulla and Jasper 2007),

and the semi-distributed SWAT model (Arnold et al. 1998; Arnold et al. 2012b; Srinivasan et

al. 1998). However, especially at the mesoscale, the main problems of contemporary hydrology-

nonlinearity, scale, uniqueness, equifinality and uncertainty-remain (Beven 2001). It has been

suggested that these problems are not adequately addressed by the continuous increase in model

complexity, which does not necessarily relate to an improved performance. Especially, overpa-

rameterization and subsequent parameter equifinality are cited as key problems (Samaniego

et al. 2010; Kumar et al. 2013b; Orth et al. 2015). In spatially distributed models, free pa-

rameters have to be inferred through calibration for each modeling unit, thus increasing the

number of parameters if the model resolution is increased (Pokhrel et al. 2008; Beven 1993).

One technique for reducing the number of free parameters is the Hydrological Response Unit

(HRU) approach, applied, among others, by SWAT, where modeling units of the same physical

characteristics (soil, land use, slope, etc.) are first grouped and then calibrated together (Arnold

et al. 2012b; Becker and Braun 1999; Kumar et al. 2010). Another method of parameter re-

duction, which is applied by the mesoscale Hydrologic Model (mHM) (Samaniego et al. 2010;

Kumar et al. 2013b), is multiscale parameter regionalization (MPR) (Samaniego et al. 2010).

In MPR, model parameters and physical basin parameters are connected via a priori defined
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relationships, e.g., through pedotransfer functions, and only the global parameters that define

these relationships are optimized by calibration (Samaniego et al. 2010; Kumar et al. 2013b).

Multiple studies have explored the performance of the mHM model, mostly for the European

continent (Samaniego et al. 2010; Kumar et al. 2013b; Kumar et al. 2010; Kumar et al. 2013a;

Rakovec et al. 2016b; Rakovec et al. 2016a; Zink et al. 2017; Samaniego et al. 2013; Thober et

al. 2015). Kauffeldt et al. (2016) give an overview of 24 large-scale hydrologic models and their

suitability for the European Flood Awareness System. They state that mHM fulfills almost

all requirements and needs little modification to be adopted. More recently, mHM has also

been included in the Inter-Sectoral Impact Model Intercomparison Project-regional water sector

(ISI-MIP; www.isimip.org), which analyzes forcing and model uncertainties using an ensemble

of hydrologic models and climate scenarios for multiple regions on a century-long timescale,

including the Blue Nile and Niger river basins (Hattermann et al. 2017; Samaniego et al. 2017a;

Krysanova et al. 2017; Huang et al. 2017).

It has been shown by Rakovec et al. (2016a) that the implementation of Gravity Recovery

and Climate Experiment (GRACE)-derived total water storage data significantly improves the

partitioning of rainfall into the runoff components without impairing discharge simulations in 83

European river basins. Furthermore, mHM was used in the framework of the German drought

monitor, where a drought map for the whole of Germany was generated using mHM soil moisture

estimations (Zink et al. 2016). mHM has also been used to produce a high-resolution dataset

of water fluxes for Germany by running the model for seven large German river basins and

validating the results using 222 additional streamflow stations, as well as evapotranspiration,

soil moisture and groundwater recharge data. Results have shown the model to capture the daily

streamflow dynamics at the calibrated stations very well and to also sufficiently estimate stations

not included in the calibration. Daily actual evapotranspiration evaluated against multiple eddy

covariance stations showed little bias and no systematic over- or underestimation. Soil moisture

anomalies also proved to be in good agreement with the observations. Spatial patterns of actual

evapotranspiration and groundwater recharge evaluated against the observations again showed

good agreement (Zink et al. 2017). The application of the model in a data-scarce basin in India

using remote sensing data for model parametrization also produced promising results (Samaniego

et al. 2011).

While calibrating and validating a hydrologic model using discharge observations allows the

modeler to confidently predict runoff, the same cannot be said for the representation of other

hydrologic processes due to parameter equifinality (Poméon et al. 2018; Rakovec et al. 2016b). If,

e.g., modeled discharge is to be reduced to fit observations during calibration, the same effect can

be achieved by increasing either actual evapotranspiration or percolation. Since the prediction

of spatially distributed hydrologic components such as evapotranspiration, soil moisture or total

water storage is increasingly desired, multivariate calibration and validation is of immense value

in producing realistic results other than streamflow (Rakovec et al. 2016b; Rakovec et al. 2016a;

Zink et al. 2018). This holds especially true for data-scarce regions.

Earlier studies have shown the scaling capabilities of mHM-MPR in Europe and the United

States (Kumar et al. 2013a; Rakovec et al. 2016b). This approach will be tested in the data-scarce

West African domain for the first time. In this study, we assess the scalability of mHM as argued
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by Kumar et al. (2013a) by calibrating the model at a computationally efficient coarse scale and

running the calibrated model in finer resolutions. If the scaling capability of the model has been

proven to perform well, it can then be used to generate hydrologic outputs at much smaller,

local scales for various research and policy applications. Furthermore, this approach could be

utilized to include other hydrologic variables at their native resolutions without introducing bias

through data aggregation and disaggregation (Rakovec et al. 2016b).

The objectives for this study are therefore (1) to investigate the performance of the mHM

model using a multiscale parameter regionalization approach for selected sparsely gauged West

African river basins under different precipitation inputs, (2) to assess the multivariate calibration

options of mHM by calibrating the model for streamflow and actual evapotranspiration and val-

idating against these, as well as against soil moisture and total water storage anomaly datasets,

and (3) to assess the transferability of model parameters inferred through MPR between different

spatial resolutions.

This study is part of the German Research Foundation-funded COAST (studying changes of

sea level and water storage for coastal regions in West Africa using satellite and terrestrial data

sets) project. The work builds on previously published studies (Poméon et al. 2017; Poméon

et al. 2018), with the main focus being the assessment of the contribution of remote sensing

evapotranspiration, soil moisture and total water storage estimates in hydrologic simulations of

data-scarce basins.

6.2 Materials and Methods

6.2.1 Study Area

The study area in southern West Africa, located between 4.5 and 15° latitude and -6 and 3.5°

longitude, is presented in Figure 6.1a. The topography of the study area is flat, with the

highest mountain range stretching from southern Ghana (Akwapim Hills) through Togo (Togo

Mountains) and into northern Benin (Atakora Mountains) (CILSS 2016). The highest peaks

reach almost 1000 m according to DEM data (Lehner et al. 2008; Lehner et al. 2013). Rainfalls

in the region are strongly seasonal; bimodal in the south (e.g., Cotonou, see Figure 6.1c) and

unimodal in the north (e.g., Ouagadougou, see Figure 6.1b), with a distinct south-north gradient

of reducing rainfall sums (Fink et al. 2010; Sebastian and Kate 2009; Gessner et al. 2013).

Ten river basins were chosen to be modeled based on the availability of streamflow records for

calibration and validation: Comoé (Ivory Coast, Ghana and Burkina Faso, 74,604 km2, three

gauges), Ouémé (Benin, Nigeria and Togo, 47,562 km2, 13 gauges), Couffo (Benin and Togo,

1672 km2, one gauge), Mono (Togo and Benin, 22,711 km2, two gauges), Pra (Ghana, 22,733

km2, one gauge), Ayensu (Ghana, 1699 km2, one gauge), Ankobra (Ghana, 4246 km2, one

gauge), Black Volta (Burkina Faso, Ivory Coast, Ghana and Mali, 138,440 km2, four gauges),

White Volta (Burkina Faso, Ghana and Togo, 100,036 km2, seven gauges), and Oti (Burkina

Faso, Togo, Benin and Ghana, 60,015 km2, three gauges). Basin areas are relative to the last

modeled gauging station and not the entire river basin. In total, 473,718 km2 and 36 streamflow

gauging stations were modeled.
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Figure 6.1: (a) Study area with basins modeled in mHM; (b) Climate diagram Ouagadougou;
(c) Climate diagram Cotonou. Dashed line indicates break in precipitation axis.
Station data was compiled from the German Meteorological Agency Climate Data
Center (DWD-CDC).

6.2.2 The Mesoscale Hydrologic Model (mHM)

The mesoscale Hydrologic Model (mHM) (Samaniego et al. 2010; Kumar et al. 2013b) is a

spatially explicit, grid-based hydrologic model created specifically for providing distributed pre-

dictions of hydrologic variables like runoff, evapotranspiration, soil moisture and discharge along

the river network. The main components of mHM are based on well-established hydrologic pro-

cess descriptions of large-scale models like HBV (Bergström 1976, 1992) and VIC (Liang et

al. 1994). mHM accounts for the following processes: canopy interception, snow accumulation

and melting, soil moisture dynamics, infiltration, surface runoff, discharge generation, evapo-

transpiration, subsurface storage, deep percolation, baseflow, and flood routing (Samaniego et

al. 2010).

In mHM, different (spatial) levels of modeling components are considered to better account

for the spatial variability of inputs and hydrologic processes. A schematic overview of mHM is

given in Figure 6.2. The model source code is freely available, and further details can be found

at www.ufz.de/mhm. The finest-resolution category is the small-scale morphological input class

Level 0 (L0). This class contains variables such as elevation, slope, soil, and land use. The next

highest resolution, Level 1 (L1) represents the resolution of the hydrologic model routines and

output and only requires the regionalized fields of model parameters (see below). Level 2 (L2)
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is the coarsest-resolution category, containing the large-scale meteorological forcing inputs such

as precipitation and temperature (Samaniego et al. 2010; Samaniego et al. 2017b). mHM uses a

novel Multiscale Parameter Regionalization (MPR) approach to estimate the regionalized fields

of model parameters first at the L0 resolution. Then, an upscaling operator is used to generate

effective parameters at the L1 modeling resolution. Regionalization at the L0 scale is performed

by linking the model parameters to available catchment attributes (terrain, slope and aspect,

soil textural and land cover properties) via a set of pedotransfer functions and free calibration

parameters (see Samaniego et al. (2010) and Kumar et al. (2013b) for further details). The MPR

approach significantly reduces the number of free (calibration) parameters while accounting for

the spatial variability of model parameters required for distributed hydrologic model applications

(see Livneh et al. (2015) for details on estimation of key soil hydrologic parameters using MPR).

Kumar et al. (2013b) found both MPR and HRU approaches to perform similarly regarding daily

streamflow predictions in 45 calibrated southern German river basins. However, MPR proved

to be superior in the preservation of spatiotemporal patterns of water fluxes and, since free

parameters of MPR are not scale-specific, they can be transferred to different modeling scales

without time-intensive recalibration and without introducing significant bias. This effectively

means that mHM can be calibrated at a computationally efficient, coarser L1 resolution and that

the calibrated (free) parameters can then be transferred to a finer resolution. Further studies

also demonstrated the scaling capabilities of mHM on comparatively large domains of European

basins and the Mississippi river basin (Kumar et al. 2013a; Rakovec et al. 2016b).

Figure 6.2: Schematic overview of the mesoscale Hydrologic Model, mHM, developed at the
Helmholtz Centre for Environmental Research—UFZ (Samaniego et al. 2017b).

mHM offers multiple optimization algorithms, such as Monte Carlo Markov Chain (MCMC),

Dynamically Dimensioned Search (DDS), Simulated Annealing (SA) and Shuffled Complex Evo-

lution (SCE) (Samaniego et al. 2017b). In this study, the Dynamically Dimensioned Search

algorithm was used. DDS has been shown to perform well when compared to SCE, converging

90



6.2 Materials and Methods

on a good solution in only 15 to 20% of the model runs required by SCE while also avoiding local

optima (Tolson and Shoemaker 2007). Behrangi et al. (2008) noted that DDS finds a solution

faster than SCE because it has been developed especially for computationally demanding mod-

els, while SCE was originally developed for lumped models, and go on to show that SCE may

be adapted to decrease the number of iterations needed to find a good solution. The authors

suggest a large number of model iterations to ensure good solutions are found by DDS.

6.2.3 Input Data

Morphological Inputs

The HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at

multiple Scales) hydrologically conditioned digital elevation model (DEM) (Lehner et al. 2008;

Lehner et al. 2013) was used as a basis to create the morphological input data. The DEM is

based on Shuttle Radar Topographic Mission (SRTM) data and was developed by the World

Wildlife Fund (WWF) and the United States Geological Survey (USGS). While available in

multiple resolutions, in this study the 500 m resolution was used. The required slope, aspect,

flow direction and flow accumulation data were derived from this dataset.

Soil Inputs

Concerning soil input data, a raster dataset with the location of soil classes and a correspond-

ing lookup table with the attributes’ depth, texture and bulk density are required. This

information was compiled from the Harmonized World Soil Database (HWSD) version 1.2

(FAO/IIASA/ISRIC/ISS-CAS/JRC 2012). The dataset contains physical and chemical param-

eters for a topsoil (0-30 cm) and subsoil (>30-100 cm) layer at a 1 km resolution.

Land Use Inputs

Two land use inputs are necessary, a Land Use and Land Cover (LULC) map and a Leaf

Area Index (LAI) class map with a corresponding lookup table. While mHM recognizes only

three LULC classes (forest, pervious, impervious), an arbitrary number of LAI classes can be

defined. Both maps were generated using the Globcover 2.3 product developed by the European

Space Agency (ESA), representing the global land cover of the year 2009, available at a 300

m resolution (Bontemps et al. 2011). To generate the mHM LULC map, Globcover classes

were reclassified to the three mHM classes. The mHM LAI class map was produced using the

original Globcover classes and calculating long-term monthly LAI values (2003-2013) for each

class from MODerate-resolution Imaging Spectroradiometer (MODIS) MCD15A2v5 LAI data,

produced by the National Aeronautics and Space Administration (NASA) (Myneni et al. 2015a;

Knyazikhin et al. 1999).

Meteorological Inputs

In Poméon et al. (2017), ten remotely sensed and reanalyzed precipitation datasets were evalu-

ated for the study region. Products relying on a combination of satellite microwave and infrared

measurements as well as bias correction using ground-based data generally performed best. Four

91



6 Multi-Parameter Calibration and Validation of a Grid-Based Model

of the best-performing datasets were chosen for exploratory mHM runs. The combination that

performed best in the exploratory runs was used for model calibration. Firstly, the Climate Pre-

diction Center Morphing Technique (CMORPH) v1 CRT was chosen, which is globally available

at a 0.25° resolution from 1998 onwards (Joyce et al. 2004; Xie et al. 2011). CMORPHv1

CRT, hereafter named CMORPH, was also used in SWAT simulations of sparsely gauged river

basins in West Africa (Poméon et al. 2018). Secondly, the Tropical Rainfall Measuring Mission-

Multi-satellite Precipitation Analysis (TRMM-MPA) product version 3B42v7, hereafter named

TMPA, was evaluated. It is available from 50° north to 50° south at a 0.25° resolution from 1998

onwards (Huffman et al. 2007). Further evaluated was PERSIANN CDR version 1, available

from 60° north to 60° south at a 0.25° resolution (Ashouri et al. 2015). All three products include

bias-corrected satellite microwave and infrared measurements (Joyce et al. 2004; Xie et al. 2011;

Huffman et al. 2007; Ashouri et al. 2015). Lastly, the Global Precipitation Climatology Centre

Full Data Daily (GPCC FDD) version 1 global rain gauge product, developed by the German

Meteorological Agency at a 1° resolution, was evaluated (Schamm et al. 2015). For more in-

formation on the used precipitation datasets, please refer to Poméon et al. (2017) (Chapter 4).

While rainfall dynamics are very similar for all datasets, CMORPH estimates on average slightly

less precipitation during the peak of the wet season from June to September (Figure 6.3). For

the 1998 to 2013 long-term monthly average, CMORPH predicts 77 mm monthly precipitation,

TRMM 87 mm, PERSIANN 92 mm and GPCC 86 mm.

Depending on the method chosen to model the potential evapotranspiration (ETP), fur-

ther meteorological inputs are needed to run mHM (Samaniego et al. 2017b). Three methods

were evaluated in this study, namely: the estimation based on air temperature data using the

Hargreaves-Samani method (Hargreaves and Samani 1985) and a direct in-built read-in of poten-

tial evapotranspiration estimates with either LAI or aspect correction. Minimum and maximum

2 m daily temperature was extracted from NASA Modern-Era Retrospective analysis for Re-

search and Applications 2 (MERRA 2) reanalysis data, available at a global grid of 0.625° *

0.5° from 1980 onwards (Bosilovich et al. 2016). Potential evapotranspiration data was obtained

from the Global Land Evaporation Amsterdam Model (GLEAM) v3.1a (Martens et al. 2017;

Miralles et al. 2011). GLEAM data was chosen since it is available for the studied period (model

warm-up starting in 1998) at a daily timestep.

Discharge Inputs

The discharge data used for calibrating and validating the mHM model was obtained from the

German Global Runoff Data Center (GRDC), the French AMMA-CATCH (Analyse Multidisci-

plinaire de la Mousson Africaine-Couplage de l’Atmosphère Tropicale et du Cycle Hydrologique)

regional observing system, and through personal communication with local agencies and part-

ners. Due to different observation periods and gaps in the discharge data that did not allow for

fixed calibration and validation periods, two thirds of the data were used for calibration and one

third for validation (Poméon et al. 2018; Abbaspour et al. 2015).
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Figure 6.3: Long-term (1999–2013) monthly sums of chosen precipitation inputs. Products
were projected in the mHM L2 resolution and averaged over the study area.

Validation Data

Multivariate validation of the modeled soil moisture, actual evapotranspiration and total water

storage anomalies was furthermore performed. For the soil moisture validation, the ESA Cli-

mate Change Initiative (CCI) soil moisture (v4.2; www.esa-soilmoisture-cci.org) combined

product was used. The combined product was created by merging active scatterometer and

passive soil moisture retrievals from multiple satellites. Daily retrievals, although only in the

satellite swaths, are available at a resolution of 0.25° (Liu et al. 2012; Liu et al. 2011; Wagner

et al. 2012; Gruber et al. 2017; Dorigo et al. 2017). Three different datasets were used for the

validation of the actual evapotranspiration, namely MODIS MOD16A2 (Mu et al. 2007; Mu et

al. 2011), GLEAM 3.2a and GLEAM 3.2b (Martens et al. 2017; Miralles et al. 2011). MOD16A2

ETP estimates were further used to validate model results during the exploratory model runs.

For the validation of total water storage anomaly (∆TWS), remotely sensed GRACE retrievals

from ITSG-Grace 2016 time series provided by the Institute of Geodesy at Technical University

Graz (Mayer-Gürr et al. 2016) and adapted for the study area (Poméon et al. 2018) were used.

GRACE estimates are available at a minimum spatial resolution of 400 * 400 km and a temporal

resolution of 30 days (Tapley et al. 2004). While the model can be calibrated using TWS, the

processed timeseries covers all basins and cannot be further spatially disaggregated into single

basins.

6.2.4 Framework of the Modeling Experiment

To be able to place confidence in the model output, the following framework was developed,

where the input data and modeling routines are examined in twelve default simulation runs

before the model is optimized. In the first step after preparing the input data and setting up
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the model, a simulation using the default parameter values was performed. For each subse-

quent run, the precipitation inputs were varied between the four datasets (CMORPH, GPCC,

PERSIANN and TMPA). Likewise, the potential evapotranspiration calculation method was

changed between three options available in mHM, namely the Hargreaves-Samani temperature-

based method (HAR), read-in with automatic LAI correction (LAI) and read-in with automatic

aspect-driven correction (ASP) (Samaniego et al. 2017b) for each precipitation dataset. A

graphical overview of the setup and associated combination numbers is presented in Figure 6.4.

Figure 6.4: Initial model evaluation simulation numbers. ETP method: chosen potential evap-
otranspiration method; HAR: Hargreaves-Samani; ASP: ETP read-in with aspect
correction; LAI: ETP read-in with LAI correction.

In our case, the model is run at a daily timestep from 1998 to 2013, with the year 1998

considered as the warm-up period. While daily streamflow outputs are produced, other variables

are output at a monthly resolution for better comparison to monthly remote sensing estimates.

It has been shown that precipitation estimates have a strong impact on model performance

(Poméon et al. 2017; López et al. 2017). The performance of the simulated streamflow, potential

and actual evapotranspiration and total water storage anomaly were evaluated for each combi-

nation. Once the best initial combination was determined, the most efficient model resolution

was chosen by running the previously defined simulation at different resolutions and evaluating

the required runtime for each resolution. After establishing the best combination of precipi-

tation input data, evapotranspiration calculation method, and modeling resolution, the model

was calibrated for each river basin separately using discharge records as the observed variable.

The optimization method based on the Kling-Gupta Efficiency (KGE) measure was chosen in

this study. KGE offers the advantage of including correlation, bias and relative variability in

its composition. The dimensionless result ranges from -∞ to 1 (Gupta et al. 2009) and will be

regarded as acceptable from 0.5 upwards. For the chosen optimization method, mHM calculates

1 minus the average KGE, where all stations within the specific basin are weighted equally.

As a separate setup, the model was calibrated using an optimization method which includes

both discharge and basin-wide mean actual evapotranspiration (where we used GLEAM 3.2a),

as shown in Equation 6.1.
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SO30 = [1−KGE(Q)] ∗RMSE
(
basinETA

)
(6.1)

where SO30 is the mHM objective function 30, KGE(Q) is the average Kling-Gupta Efficiency

of the discharge simulation (all stations are again weighted equally) and RMSE
(
basinETA

)
is

the root mean squared error of the basin average actual evapotranspiration (ETA) simulation.

The second calibration was chosen to assess the gains of calibrating the model using an

additional dataset (complimenting discharge observations). This approach can be especially

useful in sparsely gauged regions, such as West Africa, where only few discharge observations

exist, but remote sensing evapotranspiration estimates are easily available. Also, more realistic

model results may be obtained if using multiple observed variables in the calibration (Rakovec

et al. 2016a). mHM may also be calibrated using SM or TWS inputs. We chose to use ETA as an

additional variable for two reasons: (1) Several remote sensing ETA products are readily available

and only limited preprocessing is required to adopt the data to mHM. The use of GRACE TWS

fields requires extensive preprocessing and SM retrievals are for the most part only available for

the top few cm of the soil, for which no information is available in the study area. (2) If SM

and TWS information is excluded from the calibration, they remain as independent datasets for

validation (Rakovec et al. 2016a).

Both model set-ups were validated using discharge, actual evapotranspiration, soil moisture

anomaly, and total water storage anomaly data. Soil moisture anomaly was calculated according

to Equation 6.2. This was necessary since absolute comparisons could not be performed using

the model outputs and satellite data, as the soil horizons of the variables differ in depth.

%SManomaly =

(
SWClayer1 − SWClayer1

)
SWClayer1

∗ 100 (6.2)

where %SManomaly is the soil moisture anomaly of the first soil horizon in percent and SWClayer1

is the soil water content of the first soil horizon in mm.

Finally, total water storage anomaly was calculated according to Equation 6.3. While GRACE

provides TWS in mm, the model outputs only allow estimates of the total water storage change

due to the initial conditions being unknown.

TWS = SATstw + UNSATstw + SEALEDstw + SWClayer1 + SWClayer2

∆TWS = TWS − TWS
(6.3)

where TWS is the total water storage, SATstw is the storage in the saturated groundwater

reservoir, UNSATstw is the storage in the unsaturated reservoir, SEALEDstw is the reservoir

of sealed areas, SWClayerX is the soil water content of the respective soil layer and ∆TWS is

the total water storage deviation from the mean.

After an initial trial model run, it was found that actual evapotranspiration may be over-

estimated by mHM using the default parameter ranges for the Hargreaves-Samani coefficient

if calibrating for discharge only, and ranges were restricted to 0.0021-0.0023, as according to

Gavilán et al. (2006), who examined the adjustment of the coefficient in semi-arid Spain. The

minimum and maximum ETP correction factors related to different vegetative covers were also
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restricted to generate reasonable ETA estimations (minimum: 0.90-0.96; maximum: 0.17-0.20).

Other adjustments include the maximum ranges for the recharge coefficient and the geological

recession coefficient parameters, which increased to 200 and 1500 days, to reasonably match

groundwater-dominated low-flow periods. When calibrating for discharge in combination with

ETA during the second calibration, default ranges were used. In total, parameters regulating

interception, soil moisture, direct sealed area runoff, potential evapotranspiration, interflow,

percolation and geology were calibrated (see also Appendix A).

6.3 Results

6.3.1 Initial Model Setup Results

During exploratory screening, the model was run with default parameters while varying the

precipitation inputs and potential evapotranspiration estimation methods. The runs were vali-

dated against discharge, MODIS derived potential (ETP) and actual (ETA) evapotranspiration,

as well as GRACE ∆TWS without calibration of free parameters. Results of these analyses are

displayed in Figure 6.5.

Figure 6.5: Exploratory model results. Where CMORPH CRTv1, GPCC FDDv1, PERSIANN
CDRv1 and TMPA 3B42v7 represent precipitation inputs; LAI, ASP and HAR
are evapotranspiration calculation methods: HAR: Hargreaves-Samani; ASP: ETP
read-in with aspect correction; LAI: ETP read-in with LAI correction; KGE: Kling-
Gupta Efficiency; PBIAS: Percent bias; Q: Discharge; ETP: Potential evapotran-
spiration; ETA: Actual evapotranspiration; ∆TWS: Total water storage deviation
from the mean.

It is apparent that the ASP method (models 2, 5, 8, 11) produces the worst KGE results

regarding Q and ETP, as well as strong negative bias in ETP and between -2% and -13% bias

in ETA validations. It was therefore rejected outright. While the best uncalibrated streamflow

96



6.3 Results

KGE was achieved with the LAI method (models 1, 4, 7, 10), it proved to perform poorly regard-

ing ETP and ETA, with either negative or low KGE values and strong biases with the lowest

being 10% (CMORPH, model 1) and the highest 29% (PERSIANN, model 7). If considering

mean KGE and absolute mean bias, the HAR method (models 3, 6, 9, 12) performs best for all

precipitation products with high KGE values for ETP, ETA and ∆TWS, and the second-best

streamflow results after the LAI method. Biases are also the lowest for all precipitation methods.

CMORPH precipitation and HAR evapotranspiration (model 3) produce the best results out of

all exploratory model runs. This may be due to CMORPH estimating lower precipitation rates

for the region than other products (Poméon et al. 2017). CMORPH precipitation in combination

with the Hargreaves-Samani ETP method has furthermore been proven to produce good results

in SWAT simulations of the region (Poméon et al. 2018). Due to the good performance, this

combination was retained for further analysis.

To choose the most efficient modeling (L1) resolution, the model was set up and run with

three different resolutions. The only constraint was that these resolutions are divisible by the

input data (L0) resolution, and the meteorological forcing (L2) resolution being divisible by

the modeling resolution (L1) - so that the different spatial resolutions are compatible with the

grid-based structure of mHM facilitating the smooth operation of upscaling and downscaling

procedures.

The chosen resolutions were 6.5, 13 and 26 (equal to L2) km. On our intel i5-2400 system

with eight gigabyte RAM, one model run (without loading data) took 4.0 min (6.5 km), 1.6

min (13 km) and 0.9 min (26 km), respectively. Smaller resolutions caused the system to run

out of memory. If considering the 5000 model iterations chosen for the DDS optimization,

this translates to runtimes of 13.9 days, 5.6 days and 3.1 days, respectively. It was therefore

decided to run the model in the 26 km resolution, where L1 is equal to L2, and to test the

MPR performance by running the final calibrated model parameterization at finer resolutions

afterwards.

6.3.2 Calibration and Discharge Validation Results

mHM discharge simulations perform reasonably well for the study region. Results of the two

calibration approaches discharge only (Q) and discharge/actual evapotranspiration (Q/ET) are

listed in Table 6.1 and will be described in detail.

Concerning the Q calibration and validation (Table 6.1 and Figure 6.6), calibration results

are acceptable with an average KGE of 0.53 and R2 of 0.61. 83% of the 36 stations over 10

basins achieve an R2 of greater than 0.5 and 75% reach a KGE of above 0.5. KGE results in

the southern basins tend to reach from acceptable to good except for two stations in the Ouémé

basin, which perform poorly. The model has a comparatively lower accuracy when applied in

the larger northern basins, with two out of seven stations in the White Volta basin not reaching

a positive KGE; and only one station out of four in the Black Volta basin showing reasonable

skill in capturing observed streamflow dynamics. For the validation, 53% of the stations reach

an at least acceptable KGE, resulting in a mean KGE of 0.23. Mean R2 is slightly higher than

during the calibration at 0.65, and 75% of the stations reach an acceptable R2. While streamflow

was underestimated during the calibration by -8.8%, it is overestimated during the validation by
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12.9%. Interestingly, southern stations in the Ankobra, Pra, Ayensu, Mono, and Ouémé river

basins do not perform well during the validation. Reasons may include higher rainfall sums and

different rainfall distributions (two rainy seasons in the south, one rainy season in the north), as

well as data quality issues. White Volta and Oti basins also see some deterioration. Contrarily,

some of the northern Ouémé stations, as well as select stations in the central White Volta and

Oti catchments, outperform the calibration.

Table 6.1: mHM discharge results for both discharge and discharge and evapotranspiration
calibration averaged over study basins.

Objective Function Discharge Stations

R2 sig. PBIAS KGE R2 ≥ 0.5 KGE ≥ 0.5 KGE ≥ 0.7

Q Calibration

Calibration 0.61 < 0.001 -8.8 0.53 83% 75% 39%

Validation 0.65 < 0.001 12.9 0.23 75% 53% 39%

Average 0.63 2.0 0.38 79% 64% 39%

Q/ET Calibration

Calibration 0.56 < 0.001 -8.1 0.49 72% 69% 33%

Validation 0.62 < 0.001 25.2 0.13 75% 47% 28%

Average 0.59 8.5 0.31 74% 58% 31%

R2: coefficient of determination, sig.: significance level, PBIAS: percent bias, KGE: Kling-Gupta

Efficiency, Q Calibration: mHM calibrated using observed discharge, Q/ET Calibration: mHM

calibrated using observed discharge and actual evapotranspiration.

Streamflow predictions of the Q/ET calibration scheme perform slightly worse than the Q

calibration. Results are depicted in Table 6.1 and Figure 6.7. Nonetheless, 72% of the stations

reach an R2 of over 0.5 with an average of 0.56, while 69% achieve an acceptable KGE with an

average of 0.49. Bias is similar to the Q calibration at -8.1%. KGE performance distribution is

almost identical to the Q calibration, except for some stations in the White Volta and Ouémé

catchments, which performed less well. During the validation, 75% of the stations reach an

acceptable R2, which relates to a mean of 0.62, while 47% reach a KGE of at least 0.5, with

the average KGE being 0.13. Positive bias is strong, with 25.2%. KGE distribution is again

similar to the first calibration approach, albeit with some stations in the Black Volta, White

Volta, Oti and Ouémé catchments performing less well. Still, southern stations in the Ankobra,

Pra, Ayensu, Mono and Ouémé catchments perform similarly poor. When comparing averaged

calibration and validation results for both calibration methods, average R2 decreases from 0.63

(Q) to 0.59 (Q/ET), with 79% reaching an acceptable R2 during the first and 74% during the

second calibration. The same holds true for KGE, which decreases from 0.38 (Q) to 0.31 (Q/ET),

with 64% (Q) and 58% (Q/ET) of stations performing acceptably. 39% (Q) and 31% (Q/ET) of

the stations perform well. However, average bias is markedly increased in the second calibration

approach due to overestimation in the validation (8.5% as opposed to 2%).
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Figure 6.6: Discharge calibration and validation results, discharge (Q) calibration method.

Figure 6.7: Discharge calibration and validation results, discharge and actual evapotranspira-
tion (Q/ET) calibration method.

Two example hydrographs for the Comoé and Oti river basin calibration and validation are

given in Figure 6.8. Displayed is the mean monthly observed and simulated discharge of the Q

and Q/ET calibration schemes, as well as the respective key efficiency criteria (R2 and KGE). In
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both examples, Q and Q/ET model setups perform very well, with slightly higher KGE values

reached by the Q model. As can be seen, performance of both models is higher during the

validation period for these basins.

Figure 6.8: Example hydrographs for discharge (Q) and discharge and actual evapotranspira-
tion (Q/ET) model calibrations. Daily model outputs have been aggregated to
monthly data for visual clarity. Model efficiency calculations were performed on
daily data.

6.3.3 Multivariate Validation Results

Results of the two calibration approaches were further validated against actual evapotranspira-

tion, soil moisture anomaly and total water storage anomaly data. Since mHM was set up to

produce monthly output data (except for streamflow, which was daily), all validations are per-

formed with monthly data. Results of the ETA validation are shown in Table 6.2 and Figure 6.9.

For the Q calibration, the model overestimated ETA during the rainy seasons, but acceptable

results are still reached. Compared against the three reference datasets, mHM performs best

against GLEAM 3.2b, with an R2 of 0.93, 6.6% bias and a KGE of 0.73. Good results were also

achieved when validating against GLEAM 3.2a, albeit with a slightly higher bias (8.1%) and

lower, but still acceptable, KGE of 0.64. However, a marked difference could be seen compared

to MODIS data, with a bias of 11.3% and a no longer acceptable KGE of 0.44. It can be ob-

served that the amplitude of MODIS is lower than in the other products. On average, R2 is very

good at 0.93 and bias is reasonable at 8.7%. Average KGE is still acceptable at 0.60. Results

are markedly improved for the Q/ET calibration, but the order of validation performance is

identical, even though GLEAM 3.2a was used as calibration input. Best validation is against

GLEAM 3.2b, with an R2 of 0.97, 5.9% bias and a very good KGE of 0.93. Second highest

validation occurs against GLEAM 3.2a (R2: 0.97; bias: 7.4%, KGE: 0.88) and the validation
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against MODIS, although in itself still good, performs worst of the three (R2: 0.92, bias: 10.7%,

KGE: 0.72). While the mean KGE strongly increases from 0.60 (Q) to 0.84 (Q/ET), mean

RMSE decreases from 15.3 mm (Q) to 9.0 mm (Q/ET).

Table 6.2: mHM modeled actual evapotranspiration validation against remote sensing datasets
averaged over study basins.

Objective Function

Dataset R2 sig. PBIAS KGE RMSE

Q Calibration

MOD 16A2 0.93 < 0.001 11.3 0.44 17.9

GLEAM 3.2a 0.93 < 0.001 8.1 0.64 14.8

GLEAM 3.2b 0.93 < 0.001 6.6 0.73 13.1

Average 0.93 8.7 0.60 15.3

Q/ET Calibration

MOD 16A2 0.92 < 0.001 10.7 0.72 12.3

GLEAM 3.2a 0.97 < 0.001 7.4 0.88 7.9

GLEAM 3.2b 0.97 < 0.001 5.9 0.93 6.9

Average 0.95 8.0 0.84 9.0

R2: coefficient of determination, sig.: significance level, PBIAS: percent bias, KGE: Kling-Gupta

Efficiency, RMSE: root mean squared error in mm/month, Q Calibration: mHM calibrated using

observed discharge, Q/ET Calibration: mHM calibrated using observed discharge and actual

evapotranspiration.

Figure 6.9: Monthly actual evapotranspiration validation averaged over study basins.

Figure 6.10 shows monthly mean raster comparison maps of model ETA against each of the

validation datasets. The maps were produced by first resampling the remote sensing data to the

mHM resolution, aggregating daily to monthly data and then subtracting mHM from remote

sensing results for the period of data availability. Results indicate that mHM Q calibration-

based ETA simulations and MODIS ETA compare well, especially in the central part of the
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study area, but results towards the very north of the Black Volta and White Volta basins show

some overestimation. ETA is underestimated by mHM in the south of the Comoé and Black

Volta basins. In the southern Ankobra, Pra and Ayensu basins, mHM did not manage to capture

the ETA amounts of the MODIS data well, showing strong underestimations. While comparison

against GLEAM 3.2a also performs less well in the south, results are altogether better than for

MODIS with lower over- and underestimations. Comparisons against GLEAM 3.2b also show

good correspondence, except in the very south. Spatial distribution of the Q/ET calibration

results is similar, albeit with slightly lower over- and underestimations.

Figure 6.10: Actual evapotranspiration comparison maps. Shown is the mean monthly devi-
ation of mHM model results from remote sensing results in mm. Positive values
signify an underestimation of mHM and negative values an overestimation.

Both mHM calibration approaches capture the observed soil moisture anomalies well (Fig-

ure 6.11), reaching an R2 of 0.96, with a slightly better KGE performance of the Q/ET cali-

bration (0.75) than the Q calibration (0.70). In both cases, mHM results show overestimation

during the dry seasons and the Q/ET calibration shows an overall greater amplitude. Spatial

correlations are high, as evident in Figure 6.12, except for weaker correlations in the south.
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Figure 6.11: Monthly soil moisture anomaly validation averaged over study basins.

Figure 6.12: mHM soil moisture correlation against ESA-CCI 4.2. (a) mHM discharge calibra-
tion; (b) mHM discharge and actual evapotranspiration calibration. White color
= no data.

The simulated total water storage anomaly was evaluated against GRACE estimates. Results

are shown in Figures 6.13 and 6.14. Both model calibrations fit the ∆TWS estimation observed

by GRACE well, but show a phase shift of approximately one month. The calibration approaches

score a very good R2 of 0.78 for Q and 0.87 for Q/ET against GRACE retrievals. KGE is also

very good at 0.88 and 0.85, while the root mean squared error is similar at 26.2 and 24.9 mm,

respectively. Starting from 2008 onwards, a slight positive trend is established.
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Figure 6.13: Mean monthly total water storage anomaly validation averaged over study basins.

Figure 6.14: Linear regression of mean monthly mHM and GRACE total water storage
anomaly averaged over study basins.

6.3.4 Evaluation of mHM-MPR for Transferability across Scales

After successful calibration of both Q and Q/ET models at a resolution of 26 km, the per-

formance of the Multiscale Parameter Regionalization was evaluated by re-running the models

under a different L1 output resolution with the calibrated optimal parameter sets. Results,

depicted in Table 6.3, show the discharge simulation to remain stable during runs in finer reso-

lutions of 13 and 6.5 km. While the results for both models remain identical for the calibrations

(Q: 0.53, Q/ET: 0.49), validation results increase slightly from 0.23 to 0.28 (Q) and 0.13 to 0.17

(Q/ET). The number of modeled grid cells increases from 830 (26 km) to 3320 (13 km) and

13,280 (6.5 km), while the area per grid cell decreases from 676 to 169 and 42.3 km2. These

results highlight the computational efficiency of the model, which can be calibrated at a coarse

resolution and later run at a more resource-demanding, finer, resolution without introducing

further bias.
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Table 6.3: mHM multiscale parameter regionalization results, pixel count, and pixel size com-
parison for selected resolutions.

Spatial Resolution

26 km 13 km 6.5 km

Mean KGE Discharge

Calibration Q 0.53 0.53 0.53

Calibration Q/ET 0.49 0.49 0.49

Validation Q 0.23 0.26 0.28

Validation Q/ET 0.13 0.15 0.17

Model Domain

Pixel Count 830 3320 13,280

Pixel Area 676 km2 169 km2 42.3 km2

Q: mHM calibrated using observed discharge, Q/ET: mHM calibrated using observed discharge and

actual evapotranspiration; Mean KGE: mean Kling-Gupta Efficiency of all discharge gauges; discharge

is averaged over study basins.

6.4 Discussion

6.4.1 Initial Model Runs and Discharge Calibration and Validation

Results of the twelve exploratory model runs have shown ambiguity, depending on the combi-

nation of precipitation input and actual evapotranspiration calculation method. In our case,

the use of ETA data with aspect correction based on the 500 m DEM was rejected outright, as

it performed quite poorly, the exception being ETA and ∆TWS dynamics. While best uncali-

brated streamflow results were achieved with the LAI correction method, it did not manage to

sufficiently capture either ETP, nor ETA dynamics or amounts. The distribution of LAI classes

has been dismissed as a factor, since selected LAI classes accurately depict a vegetation shift in

line with the changing precipitation patterns from south to north. This leads us to question the

quality of the ETP product used. Due to the period modeled, only the mostly reanalysis-based

GLEAM 3.1a dataset was available, which uses ERA-Interim radiation and air temperature-, as

well as MSWEP precipitation inputs to calculate ETP (Martens et al. 2017). The Hargreaves-

Samani method produced the best ETP simulations. This method has also been proven to

produce robust ETP estimations for the region in SWAT simulations and is preferred when data

availability is limited or the quality in doubt (Droogers and Allen 2002; Poméon et al. 2018). Out

of all precipitation products, CMORPH performed best in combination with the Hargreaves-

Samani method. Due to equifinality, when calibrated, other datasets might perform similarly

well. This has also been observed by Qi et al. (2016) and Thiemig et al. (2013), who both

show product-specific model calibration to improve model results under various remote sensing

precipitation inputs. Therefore, a multi-parameter validation is paramount to confirming the

model robustness.

Calibration of the CMORPH and Hargreaves-Samani model using both Q and Q/ET as ob-
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served variables has shown the model to perform well for the region, leading to acceptable

discharge simulations. However, some of the more northern stations in the Black and White

Volta river basins perform poorly for both calibrations. The same is evident during the vali-

dations, where there are additional problems with several southern stations. Since the model

performs well for other stations in the immediate vicinity, we attribute this to three main fac-

tors: (1) Data quality: Many stations show large gaps in the time-series or other inconsistencies.

While obviously questionable data has been removed, performance might still be influenced. Es-

pecially in later years, data quality decreases while gaps increase. (2) Anthropogenic influences:

mHM currently does not simulate reservoirs or water abstraction. Several reservoirs exist in the

region, such as the Nangbeto reservoir in the southern Mono basin, upstream of the southern-

most station, or the Bagre reservoir in the upper White Volta basin. Additionally, there are a

multitude of smaller dams scattered mostly across the northern parts of the Black and White

Volta basins in Burkina Faso (Lehner et al. 2011). (3) Calibration and validation periods: Due

to having insufficient overlapping discharge timeseries, it was decided to run the model for the

whole period and to use the first two thirds of the discharge records for calibration and the

last third for validation. This approach allows the modeler to use all discharge records, even

without overlap, and is opportune in basins with severely limited data availability (Poméon

et al. 2018; Abbaspour et al. 2015). In this approach, it can occur that data for several stations

in a given basin is available for approximately the same period, while fewer stations have data

for a different period. As the stations are equally weighted during optimization, this might neg-

atively influence the results of the stations which are in the minority, especially under climatic

anomalies.

6.4.2 Multivariate Validation and Scale Transferability of the mHM-MPR Scheme

In addition to discharge, actual evapotranspiration, soil moisture and total water storage anoma-

lies were also validated. This allows the modeler to assess the robustness of the model (Poméon

et al. 2018; López et al. 2017). According to the principle of equifinality, multiple parameter

combinations lead to the same model result. Multi-parameter validation allows the modeler

to check for inconsistencies or unrealistic behavior in the model and to rectify problems. This

furthermore increases the model’s predictive capability, as confidence in the prediction of un-

calibrated, but validated, variables is increased. During model calibration, it became obvious

that if calibrated with default parameter ranges and discharge only, the model tends to remove

surplus water into the atmosphere, leading to elevated ETA results. This was circumvented by

restricting evapotranspiration parameters and opening infiltration parameters. The final result

shows an overall good representation of ETA, although with some positive bias. Interestingly,

when calibrated in combination with discharge and ETA, no such adjustment was necessary,

and the model was able to find a sufficient solution within the default parameter ranges.

While the streamflow performance decreased slightly for this method, ETA performance in-

creased markedly. Both models perform better against GLEAM ETA (a and b) than against

MODIS data; this is especially evident in the southern Comoé, as well as Ankobra, Pra and

Ayensu river basins. Generally, MODIS estimates follow a similar dynamic but are lower than

GLEAM estimates. MODIS data has also been reported to underpredict ETA in parts of South
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Africa (Jovanovic et al. 2015; Sun et al. 2012). GLEAM estimates show a single peak during the

rainy season, while mHM and MODIS estimates tend to exhibit a longer period of maximum

evapotranspiration for most years. Generally, mHM overestimates ETA in the north and under-

estimates in the south. This is more pronounced when compared to MODIS than to GLEAM

data. Soil moisture anomalies are captured very well by both Q and Q/ET calibrations, with

some slight overestimations during the wet seasons from 2006 to 2010. Other wet seasons are

slightly underestimated. It is apparent that the model simulates a smaller loss of soil moisture

in the dry season than CCI estimates. This might be because the upper soil layer simulated in

mHM is 30 cm deep and will dry out significantly slower than the top few centimeters observed

by satellites. While further horizons may be implemented in the model, it remains question-

able whether model performance can be increased, since none of the soil physical parameters

governing infiltration are available for the top few centimeters in the region.

Both Q and Q/ET model calibrations show a generally good agreement with GRACE total

water storage estimates. mHM results appear to be slightly shifted by approximately one month.

The same phenomenon has also been observed for other model simulations of the region (Poméon

et al. 2018; Grippa et al. 2011; Ndehedehe et al. 2016). The ∆TWS amplitude of the Q/ET

calibration is greater than the Q calibration for all years. This can be attributed to the generally

lower ETA estimates, leading to higher groundwater recharge in wet years and subsequently

higher water storages during the wet seasons.

From 2008 to 2010, mHM tends to produce higher estimates than GRACE. Grippa et al. (2011)

come to the conclusion that incorrectly modeled evapotranspiration during the dry season may

negatively influence TWS results. After comparing model and GRACE results for West Africa,

Boone et al. (2009) conclude that differences in amplitudes are due to either inaccuracies in

the model precipitation forcing, deficiencies in the model structure, or the overestimation of the

storage anomalies by GRACE. Ndehedehe et al. (2016) hypothesize that land surface processes

may be influenced anthropogenically, which is not sufficiently reflected in the model. Further-

more, they state that a lack of observed data for the region might lead to uncertain model

predictions of soil moisture, and subsequently questionable TWS solutions. Some studies also

indicate a clear positive trend towards higher water storage in the entire Volta basin from 2007

onwards, which is attributed mainly to an increase in precipitation (Forootan et al. 2014; Rateb

et al. 2017; Hassan and Jin 2016). This is only partly observed in our study. In Poméon et

al. (2018), we conclude that the strong signal of Lake Volta may mask TWS solutions. When

the lake signal was removed during GRACE preprocessing, a positive trend was less obvious.

Similar findings have been reported by Ndehedehe et al. (2016), who observed a decline in TWS

between 2007 and 2011 after removing the signal. Since only the upper Volta basins upstream

of the lake were modeled in mHM, a TWS trend is also less evident.

In the context of multivariate calibration and validation, mHM has previously been shown to

perform well when calibrated with SM and TWS (Rakovec et al. 2016b; Rakovec et al. 2016a).

However, applications have been limited to data-rich regions, e.g., Europe. Here we are consid-

ering the use of multivariate calibration and validation in a data-scarce domain to offset the poor

availability of in situ data. Results show that using this approach, mHM produces reasonably

realistic predictions even in these environments. It should however be considered that remote
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sensing estimates may themselves contain significant bias and generally should be validated for

the specific region of interest. This is especially relevant for evapotranspiration products, where

models are used to generate estimates based on satellite observations. In data-scarce regions,

this proves especially challenging, and was neither conducted in this study, nor are the authors

familiar with validations of the specific products for the study area. Studies conducted in Ger-

many (Zink et al. 2018) and China (Fang et al. 2017) have also shown land surface temperature

inputs to further constrain hydrologic model parameters.

Multiscale parameter regionalization has proven to perform well for discharge calibration

and validation results under both Q and Q/ET calibrations. Calibration results are almost

identical for all three resolutions, and validation results increase slightly for the finer resolutions.

MPR seems to be a promising approach for reducing the runtimes of large-scale hydrologic

models by calibrating at a computationally efficient coarse resolution and running the model

in a significantly finer resolution. Scaling results obtained here are consistent with previous

findings for EU and US regions (Samaniego et al. 2010; Kumar et al. 2013b; Kumar et al. 2013a;

Rakovec et al. 2016b).

6.5 Conclusion

In this study, we have proven mHM to perform reasonably well and to produce robust results

for a (sparsely-gauged) study area in southern West Africa. When considering the lack of

in situ measurements in the region, the use of remote sensing data becomes a necessity to

produce meaningful hydrologic predictions. The model has been developed for the express

purpose of integrating these datasets. Running the uncalibrated model for twelve combinations

of precipitation and evapotranspiration inputs and calculation methods has allowed us to rapidly

screen the performance regarding each combination. This proved to be helpful in choosing the

final model combination for further investigation. The model was first calibrated using discharge

as the observed variable and then, to further reduce model uncertainty, calibrated using discharge

and actual evapotranspiration data. Equifinality dictates that the same result can be achieved

with an infinite combination of model parameters. Since some of these combinations may be

unrealistic, the model may predict variables that were not included in the calibration poorly.

It therefore becomes necessary to either include in the calibration, or to separately validate, all

further variables of interest. This was performed using actual evapotranspiration, soil moisture

anomaly and total water storage anomaly data. It has been shown that mHM can reasonably well

predict discharge in the region. Further validation has confirmed actual evapotranspiration as

well as soil moisture and total water storage anomaly predictions to perform well when compared

to remote sensing products. When model parameters are further constrained using a calibration

based on streamflow and actual evapotranspiration, the performance of the evapotranspiration

simulation is vastly improved, while soil moisture and total water storage anomaly predictions

remain stable. Discharge simulations, however, decrease in performance. Using Multiscale

Parameter Regionalization, the calibrated model can then be run at a finer resolution while

results remain stable. This approach is computationally efficient, as a calibration at a fine scale

would take significantly longer to complete.

Further work is necessary to fully investigate the model uncertainty under different remote
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sensing inputs, as well as the performance of product-specific calibration for each of the con-

sidered precipitation datasets. Also, the contribution of land surface temperature to further

constrain model parameters should be assessed. Since the remote sensing products have not

been validated due to the lack of in situ data in the region, it would be interesting to assess

the uncertainty between different datasets. This is especially relevant for datasets which rely on

models to generate estimates. As a SWAT simulation has already been performed for the study

area, a thorough model comparison will be conducted to assess the strengths of the individual

models in the future. Due to the climate-data friendly nature of the model, climate scenarios

can also be easily implemented.

Our modeling approach allows the modeler to build a robust hydrologic model relatively

quickly by using only freely and easily available remote sensing and reanalysis data and software.

This is especially interesting for predictions in sparsely gauged basins such as in West Africa,

where the availability of data continues to decline. However, remote sensing should ideally be

used to complement, and not replace, in situ measurements. We therefore firmly believe that

there is a necessity for further investment into observation networks in West Africa.
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7.1 Introduction, Workflow and Methods

In this chapter, key simulation results of the mHM and SWAT model runs will be compared with

each other and, where available, against remote sensing or simulation results of global model

runs. Actual evapotranspiration, soil moisture anomaly, total water storage anomaly, ground-

water recharge and water yield were identified as the most relevant variables. Furthermore,

discharge simulations were compared for three exemplary gauges. Only the best-performing

model setups will be compared. This comprises the mHM calibration using discharge and ac-

tual evapotranspiration (mHM Q/ET) at a 6.5 km resolution and the SWAT global calibration

results (SWAT v1). Differing spatial domains and model output formats of the simulation ex-

periments require results to be processed before evaluation. First, an area with model overlap

was chosen for conducting the comparison. In this case, the area comprising the Comoé, Ouémé,

Couffo, Mono, Pra, Ayensu, Ankobra and Volta river basins offers the greatest possible overlap.

mHM produces data in an easily processable netCDF raster format. This is not the case for

SWAT, where results for each subbasin are written in a datafile. SWAT results were processed

by writing the results of each timestep from the datafile to a shapefile containing all subbasins.

Each timestep was then rasterized and timesteps were aggregated into a netCDF raster-brick

for further processing. Both model and remote sensing spatial data were projected to the same

resolution and subset to an identical time period. While the entire river basins were modeled

in SWAT, only the basin areas up to the most downstream discharge gauge were simulated in

mHM. Therefore, SWAT results were masked using the mHM model outline, so as not to bias

the results of the statistical analysis. The time periods of the comparisons were chosen based

on data availability.

A special case presents itself in the actual evapotranspiration comparison, where data was

extracted not only for the entire region, but also for three specific windows (south: 4.5-7.5°N;

central: 7.5-10.5°N; north: 10.5-15°N) based on the observed land cover, to better account for

the variability within the region (see also Figure 7.1). Actual evapotranspiration was further

compared against MODIS MOD16A2 and GLEAM 3.2b data, soil water anomaly against ESA

CCI 4.2 data, and total water storage anomaly against GRACE. For more information about

the datasets used, see chapter 5.2.3 and chapter 6.2.3. New data introduced in this chapter

are ∆TWS estimates compiled from five global models for the region. Similar to GRACE, data

processing (extraction for the region, removal of lake and tidal signals) was conducted by the

Institute of Geodesy of the University Bonn. The five models shall be briefly described:

Global Land Data Assimilation System Models Four land surface models of the Global Land

Data Assimilation System (GLDAS, Fang et al. (2009)) were used for ∆TWS comparison, namely
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the Community Land Model Version 4 (CLM 4), the MOSAIC land surface model (MOSAIC),

the Variable Infiltration Capacity Macroscale Hydrological Model (VIC) and the NOAH land

surface model (NOAH). CLM 4 is an improvement of the previous CLM 3.5 model. It models

surface energy fluxes, as well as hydrologic and biogechemical cycles. The hydrologic model is

based on the Richards equation governing soil water movement and has been improved from

CLM 3.5 using a revised numerical solution. Furthermore, the ground evaporation parameter-

ization has been improved (Lawrence et al. 2011). The MOSAIC model computes energy and

water fluxes from the land surface, which are area-averaged. The name derives from the ”mosaic”

strategy employed by the model, where surface grid cells are divided into homogeneous mosaic

tiles with a unique vegetation or soil type, thereby accounting for the subgrid heterogeneity of

surface characteristics (Koster and Suarez 1996). VIC is a macroscale semi-distributed concep-

tual hydrologic model. Both water and energy balances are calculated within each grid cell. It

includes subgrid variability in vegetation classes and soil moisture storage capacity, baseflow as

a nonlinear recession and surface topography to derive realistic precipitation and temperature

lapse rates (Gao et al. 2009). Lastly, NOAH is a mesoscale global land model which has been

continuously improved since its inception in 1996. Included are evapotranspiration, soil, canopy

and surface hydrology models as well as the parametrization of snow and sea ice (Ek et al. 2003).

Figure 7.1: Spatial domain of model comparison, land use and extraction windows. A: Comoé
- Aniassué; B: Ouémé - Ahlan; C: Oti - Saboba.

Water GAP Global Hydrology Model The Water GAP Global Hydrology Model (WGHM) is

a submodel of the global WaterGAP 2 water use and availability model. WGHM is a conceptual
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model simulating flows between continental water storage compartments (with the exception of

glaciers) and accounts for anthropogenic influences, such as pumping and irrigation. Water is

compartmentalized into canopy, snow, soil, groundwater, lake, reservoir, wetland and river stor-

age. Between one and three free parameters are calibrated against mean annual river discharge

at over 1200 gauging stations (Döll et al. 2003; Döll et al. 2012).

7.2 Results and Discussion

7.2.1 Actual Evapotranspiration

Long-term monthly actual evapotranspiration results for the month of January are presented in

Figure 7.2.

Figure 7.2: Long-term (2003-2013) January actual evapotranspiration. mHM and SWAT re-
sults compared against MODIS MOD 16A2 and GLEAM 3.2b data. White areas
signify missing data.
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mHM results tend to be elevated in the north compared to SWAT, MODIS and GLEAM data,

while in the south, patterns of mHM and GLEAM resemble each other more closely. Contrarily,

SWAT predicts low ETA in the southern areas and MODIS estimates high ETA in the southwest,

which is observed by no other evaluated dataset. Clear differences can be remarked for the long-

term July evapotranspiration (Figure 7.3). Here, mHM and SWAT perform very similarly both

in the north, with ETA rates in the 100-150 mm range, and the south, with rates between 75 and

100 mm. MODIS and GLEAM show quite different patterns. While GLEAM predicts rather

constant ETA values of between 75 and 100 mm for the entire area except the lake Volta region,

MODIS predicts highest ETA rates in the south (100-150 mm), which steadily decrease towards

the north.

Figure 7.3: Long-term (2003-2013) July actual evapotranspiration. mHM and SWAT results
compared against MODIS MOD 16A2 and GLEAM 3.2b data. White areas signify
missing data.
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Decreasing precipitation amounts from south to north strongly influence ETA estimates. Due

to the applied calculation methods, long-term July ETA predictions differ between the applied

models, MODIS and GLEAM data. Therefore, it was decided to generate monthly ETA time-

series for the entire region, as well as three extraction windows (north, central and south).

Results are presented in Figure 7.4 and Table 7.1.

Figure 7.4: Monthly actual evapotranspiration. mHM and SWAT results compared against
MODIS MOD 16A2 and GLEAM 3.2b data.

Monthly ETA patterns averaged over the entire region are similar for all considered estimates.

However, MODIS peak rates are the lowest of all products, while SWAT minimum rates are
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below those estimated by other products. Agreement between the datasets is generally good,

with KGE values ranging from 0.74 (mHM-MODIS) to 0.93 (mHM-GLEAM), the exception

being the comparison of SWAT to MODIS, which performs less well with a KGE of 0.58. RMSE

ranges from 7.3 (mHM-GLEAM) to 14.2 mm (SWAT-MODIS).

Table 7.1: Monthly actual evapotranspiration statistics.

mHM to SWAT to

mHM-SWAT MOD16A2 GLEAM 3.2b MOD16A2 GLEAM 3.2b

Entire Region

R2 0.93 0.92 0.97 0.92 0.91

sig. < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

KGE 0.82 0.74 0.93 0.58 0.82

PBIAS 11.0 13.7 6.9 2.5 -3.6

RMSE 12.6 13.2 7.3 14.3 12.2

Window 1 (North)

R2 0.96 0.88 0.98 0.86 0.95

sig. < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

KGE 0.84 0.06 0.78 0.16 0.79

PBIAS 12.8 86.0 20.9 64.8 7.1

RMSE 12.2 34.3 12.9 31.3 13.1

Window 2 (Central)

R2 0.92 0.88 0.93 0.91 0.85

sig. < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

KGE 0.81 0.90 0.93 0.77 0.85

PBIAS 12.9 -7.6 1.8 -18.2 -9.8

RMSE 13.2 12.4 8.8 18.0 15.2

Window 3 (South)

R2 0.47 0.44 0.82 0.20 0.53

sig. < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

KGE 0.48 0.30 0.75 -0.74 0.51

PBIAS -2.4 -26.4 -14.0 -24.6 -11.9

RMSE 20.4 30.3 15.2 35.8 21.8

R2: coefficient of determination; sig: significance level; KGE: Kling-Gupta Efficiency; PBIAS: Percent
bias; RMSE: root mean squared error in mm/month.

When data is compared for the three extraction windows, results differ. While mHM, SWAT

and GLEAM predict similar ETA in the north (Window 1), MODIS predictions fall considerably

short, with an RMSE of 34.3 mm against mHM and 31.3 against SWAT simulations. In the

central part of the area (Window 2), results are again comparable, but variability between the

estimates is high during the peaks of the rainy and dry seasons. GLEAM predicts a peak,

which is less pronounced in mHM, SWAT and MODIS results. SWAT again predicts low dry

season ETA. In the south (Window 3), differences between the estimates are more pronounced.

Here, not only intensities, but also patterns diverge. While mHM and GLEAM display similar

patterns, SWAT simulates very low ETA during the dry season, leading to poor agreement
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between SWAT and mHM (KGE: 0.48, RMSE: 20.4 mm). MODIS produces a different pattern

with high ETA during the dryer periods and does not compare well to mHM (KGE: 0.48, RMSE:

20.4 mm) and SWAT (KGE: -0.74, RMSE: 35.8).

The potential evapotranspiration for both mHM and SWAT was calculated using the Harg-

reaves equation based on MERRA 2 temperature estimates. As the modeled system is water-,

and not energy-limited, actual evapotranspiration is calculated based on the amount of water

available for evaporation in the soil (as well as in reservoirs and lakes) and transpiration in the

canopy. One major drawback of the SWAT model in tropical regions is a general inability to

accurately simulate plant growth, as its plant routine assumes temperature to be the leading

driver of plant growth. In a water-limited system, however, water availability is the key growth

criterion (Neitsch et al. 2011; Alemayehu et al. 2017; Strauch and Volk 2013). Although a

manual crop management routine based on LAI observations was established in SWAT to more

closely resemble plant development, simulated plant growth remained underdeveloped during

dry seasons, leading to very low LAI values and, consequentially, low estimated transpiration

throughout the region. As plants are modeled to grow more realistically during the rainy sea-

sons, no clear underestimations are observed. In mHM, long-term monthly LAI timeseries can

be defined for an arbitrary number of classes, circumventing this problem.

While MODIS and GLEAM estimates compare more or less well when averaged over the whole

region, they differ strongly for the northern and southern extraction windows. This can be traced

back to the calculation method and data used for each product. As evapotranspiration cannot

be measured from space, proxies are used. MODIS calculates the potential evapotranspiration

by means of a modified Penman-Monteith equation, including soil heat flux calculations and LAI

observations. However, climatological data to calculate the equation is compiled from reanalysis

datasets and reanalyzed precipitation data is further used to drive an actual evapotranspiration

model (Mu et al. 2011). GLEAM, on the other hand, calculates potential evapotranspiration

based on the Priestley and Taylor equation using mainly satellite data, with precipitation data

derived from a mixture of satellite, gauge and reanalysis products (Martens et al. 2017).

Concerning mHM and SWAT ETA estimates, it has to be stressed again that while both

models calculate potential evapotranspiration based on the same equation and input data, mHM

has been calibrated using discharge data and GLEAM 3.2a actual evapotranspiration data, while

ETA was not calibrated in SWAT.

7.2.2 Soil Moisture Anomaly

Long-term soil moisture anomaly estimates for the month of January are shown in Figure 7.5.

Anomalies are calculated locally for each pixel. Patterns of mHM and CCI are comparable,

albeit with some differences. For example, CCI estimates soil moisture to reduce most (-50 to

-75%) in the central parts of the area, while mHM results show SM anomaly to be strongest

towards the north. SWAT shows a very strong SM anomaly of over -75% for the central and

northern areas, while results in the very south are comparable to CCI.

Concerning the long-term July SM anomaly presented in Figure 7.6, patterns of all three

solutions differ. mHM predicts higher values (25 to 50%) towards the east, while CCI data

shows highest anomalies to occur in the north. In the very west, mHM and CCI are comparable.
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While SWAT also simulates higher values in the east, the anomaly is stronger than observed

by CCI and simulated by mHM. Some regions show negative values, while in the south, the

anomaly is higher than indicated by CCI data.

Figure 7.5: Long-term (1999-2013) January soil moisture anomaly in %. mHM and SWAT
results compared against ESA CCI 4.2 data. White areas signify missing data.
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Figure 7.6: Long-term (1999-2013) July soil moisture anomaly in %. mHM and SWAT results
compared against ESA CCI 4.2 data. White areas signify missing data.

The timeseries of the monthly soil moisture anomaly averaged over the area is presented in

Figure 7.7. Accompanying statistics can be found in Table 7.2. mHM and CCI perform quite

similarly for most years, albeit with some overestimation of SM increase in rainy seasons and

underestimation of its decrease during the dry seasons by mHM for the years 2003-2004 and

2006-2012. Contrarily, SWAT results show a far stronger amplitude with both a stronger SM

depletion during the dry seasons and increased storage during the rainy seasons. Consequentially,

while the averaged dynamics of mHM and SWAT simulations are comparable with an R2 of 0.87,

the overall comparison is acceptable with a KGE of 0.60 and RMSE of 31.7%. Compared to

CCI data, SWAT simulations also do not perform very well, with a KGE of 0.55 and RMSE

of 39.3%. When comparing mHM estimates to CCI data, performance is good, with a KGE of

0.93 and RMSE of 13.2%.
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The difference in soil moisture anomaly estimates between the two models cannot be explained

by the soil input data used, as HWSD inputs were used in both cases. However, while mHM

requires only information on the soil texture and bulk density and calibrates all further param-

eters, necessary parameters must first be defined in SWAT. As not all parameters are known

and need to be derived using literature data or transfer functions, this introduces further uncer-

tainty into the model. Also, the depth of the soil profiles used to calculate SM anomaly varies

between mHM (top layer: 0-30 cm), SWAT (entire profile: 0-30 or 100 cm) and CCI (only top

2-4 cm), making a direct comparison difficult. Another factor is the actual SWAT output data,

as residual water content of the soil is not taken into account (Milzow et al. 2011), while it is

accounted for by both mHM and CCI.

Figure 7.7: Monthly soil moisture anomaly in %. mHM and SWAT results are compared
against ESA CCI 4.2 data.

Table 7.2: Monthly soil moisture anomaly statistics.

CCI 4.2 to

mHM-SWAT mHM SWAT

R2 0.87 0.89 0.70

sig. < 0.001 < 0.001 < 0.001

KGE 0.60 0.93 0.55

RMSE 31.7 13.2 39.3

R2: coefficient of determination; sig: significance level; KGE: Kling-Gupta Efficiency; RMSE: root mean
squared error in %.

7.2.3 Total Water Storage Anomaly

Spatial patterns of total water storage anomaly simulated by both mHM and SWAT compare

well to each other, as is shown in Figure 7.8 for long-term January and July ∆TWS. For the
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long-term January estimates, some slight disagreements are apparent in the west, where mHM

suggests a higher depletion, and the east, where the anomaly is stronger in SWAT simulations.

Also, the break between lower and higher depletion in the Volta basin simulated by mHM is

less represented in SWAT. When comparing long-term July ∆TWS, spatial patterns resemble

each other more closely, the exception being mHM, which simulates higher TWS increases in

the south.

Figure 7.8: Long-term (2003-2013) January and July mHM and SWAT ∆TWS estimates.
White areas signify missing data.

Spatially averaged mHM and SWAT ∆TWS results were further compared against data de-

rived from GRACE and five global models. Results are depicted in a Taylor diagram in Fig-

ure 7.9. The diagram shows the (normalized) standard deviation, Pearson’s r correlation and

KGE of the comparison. Concerning the individual performances, circles represent comparisons

against mHM and squares comparisons against SWAT. Numbers signify the product used in the

statistical comparison (1: GRACE; 2: CLM 4; 3: MOSAIC; 4: NOAH 2.1; 5: VIC; 6: WGHM).
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The diamond (�) sign stands for the comparison of mHM and SWAT simulation results. Results

show that all products are highly correlated with Pearson’s r values between 0.85 and 0.95.

KGE values are for the most part above acceptable (≥0.5), except for comparisons of mHM and

SWAT to CLM 4 model results and the direct comparison of mHM to SWAT simulations.

Figure 7.9: mHM and SWAT ∆TWS estimates compared against each other and GRACE, as
well as CLM 4, MOSAIC, NOAH 2.1, VIC and WGHM model estimates.

Highest KGE and r results as well as lowest difference in standard deviation compared to

mHM are shown for GRACE, MOSAIC, NOAH 2.1 and VIC estimates. GRACE, VIC and

WGHM compare best to SWAT.

Area-averaged monthly ∆TWS timeseries of mHM, SWAT, GRACE and an ensemble of global

model results are shown in Figure 7.10, with accompanying statistics presented in Table 7.3. It

can be observed that global model, mHM and SWAT results appear to be slightly shifted by one

half to one month against GRACE. Also, for some years, some of the global models and also

mHM predict very high TWS storage anomalies during the wet seasons, which are not observed

by GRACE or simulated in SWAT. GRACE furthermore predicts the highest depletion in the dry

season out of all products for most years. The amplitude shown by SWAT is considerably lower

than simulated by mHM and observed by GRACE. While the dynamics of mHM and SWAT

compare well (R2: 0.97), KGE performance is below acceptable at 0.45. It should be stated,

however, that SWAT estimates consistently predict ∆TWS within the uncertainty band of the

global model ensemble. As has been shown in Figure 7.9, mHM compares best to GRACE, with

an R2 of 0.87, KGE of 0.85 and RMSE of 24.9 mm/month. Good performance is also observed

when compared against MOSAIC (R2: 0.81, KGE: 0.86), NOAH 2.1 (R2: 0.77, KGE: 0.79),
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and VIC (R2: 0.82, KGE: 0.73) model results. Agreements of SWAT model results compared

to external data are generally lower, with best results reached when compared against WGHM

(R2: 0.76, KGE: 0.77), GRACE (R2: 0.75, KGE: 0.76) and VIC (R2: 0.83, KGE: 0.72).

Figure 7.10: Monthly ∆TWS estimates. mHM and SWAT results are compared against
GRACE data and against an ensemble of CLM 4, MOSAIC, NOAH 2.1, VIC
and WGHM model estimates.

Table 7.3: mHM and SWAT ∆TWS estimates compared against each other and against global
datasets.

mHM to

GRACE CLM 4 MOSAIC NOAH 2.1 VIC WGHM SWAT

R2 0.87 0.82 0.81 0.77 0.82 0.74 0.97

sig. < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

KGE 0.85 -1.10 0.86 0.79 0.73 0.60 0.45

RMSE 24.9 49.6 31.7 33.3 30.6 36.6 26.8

SWAT to

GRACE CLM 4 MOSAIC NOAH 2.1 VIC WGHM mHM

R2 0.75 0.86 0.80 0.80 0.83 0.76 0.97

sig. < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

KGE 0.76 0.16 0.57 0.66 0.72 0.77 0.64

RMSE 25.2 21.4 37.4 29.7 24.5 24.7 26.8

mHM and SWAT results are compared against GRACE remote sensing and against global model (CLM
4, MOSAIC, NOAH 2.1, VIC and WGHM) ∆TWS estimates. R2: coefficient of determination; sig:

significance level; KGE: Kling-Gupta Efficiency; RMSE: root mean squared error in mm/month.
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7.2.4 Groundwater Recharge

As no external groundwater recharge data was available, mHM and SWAT results will be com-

pared only to each other. Figure 7.11 shows long-term January and July recharge rates. Both

mHM and SWAT simulate low recharge during the dry seasons in January, with mHM results

not exceeding 10 mm/month. SWAT simulations are similar, albeit with higher rates of up to

30 mm/month in the south and in some central areas. Spatial patterns are similar during the

rainy season in July, but ranges differ. Both models predict higher recharge in the south and

in a band along the eastern Volta basin through the Mono basin in the south. Here, SWAT

simulates higher recharge rates than mHM. Also, high rates in the southern Ouémé basin are

not simulated by mHM. While SWAT simulates some isolated areas of high recharge in the Volta

basin, mHM results show no such anomalies.

Figure 7.11: Long-term (1999-2013) January and July mHM and SWAT groundwater recharge
estimates.
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Monthly area-averaged groundwater recharge simulated by mHM and SWAT is displayed in

Figure 7.12. Dynamics are similar, albeit with some peculiarities. SWAT, e.g., shows higher

and prolonged recharge rates during almost all rainy seasons except in 2010. Higher recharge is

also simulated during the dry seasons and results appear shifted by approximately one month in

relation to mHM. Consequentially, performance is mediocre with an R2 of 0.58 and KGE of 0.40.

PBIAS of mHM compared to SWAT lies at 50.8% and RMSE is 7.3 mm. Since SWAT simulates

generally lower actual evapotranspiration than mHM, but water yield (see section 7.2.5) remains

remarkably similar, excess water could contribute to groundwater recharge in this case.

Figure 7.12: Monthly mean mHM and SWAT groundwater recharge estimates.

7.2.5 Water Yield

Lastly, simulations of water yield (water entering the stream from each modeling unit) by mHM

and SWAT were compared with long-term January and July results presented in Figure 7.13.

Here, mHM and SWAT perform quite similarly. During the dry season in January, both models

predict low water yield of mainly between 0 and 10 mm/month. But while mHM simulates

slightly elevated water yield in the south, SWAT results show higher rates for isolated regions,

similar to the January groundwater recharge results presented in Figure 7.11. Concerning water

yields in July, spatial patterns again closely resemble each other. The only differences are

discernible in the eastern Volta basin and the central south, where mHM simulates higher yields.

When comparing the timeseries of the area-averaged results, as presented in Figure 7.14,

performances are remarkably similar. Only for certain years does mHM simulate slightly higher

water yields during the peaks of the rainy seasons. Both R2 and KGE reach 0.94, with 4.7%

bias and an RMSE of 2.2 mm/month.
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Figure 7.13: Long-term (1999-2013) January and July mHM and SWAT water yield estimates.

The performance of the mHM and SWAT discharge simulations for three exemplary gauges is

shown in Figure 7.15. Gauges include Aniassué in the Comoé basin (71,252 km2 drainage area),

Ahlan in the Ouémé basin (56,556 km2 drainage area) and Saboba in the Oti basin (39,149 km2

drainage area), which is part of the larger Volta river basin. Since SWAT was run at a monthly

timestep, daily mHM predictions were aggregated to monthly data. Statistics were calculated

at the monthly timestep for both models. While the year 1998 was simulated in SWAT, mHM

simulation outputs start in 1999, due to not all necessary data being available previously.

As can be seen, mHM streamflow simulations outperform SWAT results for almost all gauges

with higher R2 and KGE values and lower biases. Only during the validation at the Ahlan gauge

does SWAT reach a higher KGE than mHM. While streamflow dynamics are acceptably to well

matched by SWAT, biases are generally strong with underestimations during the calibration of

between -13 and -43% and during the validation of between -35 and -51%. Contrarily, mHM

biases range between -13 and 12% for the calibration and -21 and 23% for the validation.
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Figure 7.14: Monthly mean mHM and SWAT water yield estimates.

Figure 7.15: Exemplary mHM and SWAT discharge simulations.
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As both models rely on the same precipitation input data and evapotranspiration calculation

method, these datasets alone cannot account for the observed variability. However, the semi-

distributed approach employed by SWAT only considers climatological information from the

station or pixel located closest to the center of the subbasin polygon. All other points located

within the subbasin are disregarded. In mHM, all spatial input information is accounted for in

the model. Furthermore, while the SWAT model was globally calibrated for all basins together,

river basins were calibrated separately in mHM.

7.3 Conclusion

In this chapter, the best simulation results of the SWAT (Chapter 5) and mHM (Chapter 6)

models have been compared against each other and, where available, against remote sensing

data and global model simulations. Key variables chosen for the comparison include actual

evapotranspiration, soil moisture anomaly, total water storage anomaly, groundwater recharge

and water yield. Long-term spatial comparison of the months of January and July have allowed

a direct comparison of model results during the height of the dry and rainy seasons. Further

spatially-averaged timeseries analysis permits the statistical evaluation of model outputs and

global model and remote sensing data.

Globally, mHM has been shown to compare better than SWAT to external data. While SWAT

offers a solid performance in most cases, this is not the case for each variable in question. Es-

pecially soil moisture anomaly and groundwater recharge outputs remain questionable, as do

simulations of actual evapotranspiration in the south. However, performance of actual evapo-

transpiration for the central and northern region, as well as total water storage anomaly, compare

very well to external datasets and water yield estimates perform very well when compared to

mHM simulations. Interestingly, SWAT simulates a smaller amplitude of ∆TWS, albeit well

within the global model ensemble uncertainty, while mHM simulates a larger amplitude, fitting

better to GRACE remote sensing observations.

A clear advantage of using the mHM model is not only the reduced input data requirements,

but especially the spatial representation of input data. mHM requires spatial data to be prepared

in especially formatted netCDF input files. While this requires a not insignificant amount of

know-how in preparing such datasets, several advantages become apparent. Since most remote

sensing data is supplied in raster format, treatment of inputs remains largely similar and software

developed for data treatment can be applied to a wide range of inputs, as was done in this study.

Multidimensional raster data can also be processed and plotted easily. In SWAT, input data first

has to be written to a single textfile for each raster pixel and data to be used is then chosen by the

model according to the location in relation to the centeroid of each subbasin. Consequentially,

only data from a single pixel is used to parameterize a subbasin. Especially when subbasins are

larger, a great amount of spatial information is lost. Furthermore, mHM outputs all variables

in a single netCDF file, while SWAT writes outputs in text format, requiring the data to be

processed before evaluation.

128



8 General Conclusion

The accurate assessment of available water resources of sparsely-gauged West African river

basins is a major challenge, and has been covered in many studies during the last decades.

Hydrologic models can be used to aid researchers in this regard. While new hydrologic models

are constantly developed and old models improved, the decline of in situ measurement networks

since the 1990s has taken its toll on the quality of the predictions. However, we are currently

at an unprecedented stage in history where remote sensing and reanalysis data products are

available locally and globally for nearly all variables of interest. This change is also reflected in

the literature, where global data and remote sensing products are increasingly used for model

parametrization. Even though many data products are available for the West African region,

less focus seems to be placed on the evaluation of the data quality. Although hydrologic models

are more than ever parameterized using remote sensing data, most often, model calibration and

validation are performed against observed streamflow only.

Here, the use of remote sensing data offers the unparalleled potential of further constraining

the model parameter space during calibration, leading to more robust results. Multivariate

validation can then be used to assess the performance of key hydrologic variables not included

in the calibration. This immense opportunity is furthered by the fact that most of these data

products are globally accessible and free of charge. The main goal of this study is to assess the

contribution of these remote sensing and reanalysis data products in simulations of hydrologic

processes in data-scarce West African river basins. It furthermore contributes to the ongoing

debate on how hydrologic models can be improved using remote sensing products in sparsely-

gauged basins worldwide.

In-depth conclusions have been provided at the end of each of the principal chapters (4, 5, 6

and 7). In the following, the main conclusions of this study will be summarized according to the

four research questions formulated in the general introduction, with conclusions encompassing

the whole study and potential for further investigation presented afterwards.

1. How can the performance of remotely-sensed and reanalyzed precipitation data

be assessed for the study area?

The general lack of in situ precipitation measurements in the study area necessitates the use of

remotely-sensed or reanalyzed data products. Many such products exist and the question arises

how the performance of these products can be validated without ground-based observations.

This question has been divided into two parts:

a) How can differences between ten precipitation datasets be quantified for West African

river basins of differing locations and sizes?
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Ten remotely-sensed and reanalyzed precipitation datasets were identified for comparison in

the region. Data was then extracted for six subbasins of differing size and location in West

Africa. For larger basins, multiple pixels were extracted and averaged, while for smaller basins,

only a single datapoint was used. In a first step, precipitation estimates were directly compared

against each other and against the GPCC gauge-based precipitation product. Results show a

great variability between the products, with some products, such as TAMSAT (satellite infrared

and gauge correction), CFSR (reanalysis), CMORPH RAW (satellite infrared and microwave

measurements) and TMPA RT (satellite infrared and microwave measurements) consistently

providing estimates not in line with predictions of other products. On the other hand, products

relying on satellite infrared and microwave measurements and including gauge-based bias cor-

rection (such as CMORPH CRT, PERSIANN CDR and TMPA) as well as the GPCC product

performed very similarly in all subbasins.

b) How robust are these products in accurately simulating streamflow during a hydro-

logic evaluation?

In order to assess how well these products perform in generating streamflow in a hydrologic

simulation, the HBV-light model was set up and calibrated/validated for each combination of

subbasin and precipitation product (60 models in total). For evaluation purposes, a model

score was constructed based on NSE and PBIAS of the resulting simulations. Results largely

confirm observations of the direct comparison, with satellite products utilizing infrared and

microwave measurements with gauge correction performing best. A drawback of the hydrologic

analysis is that during calibration, free infiltration and evaporation parameters might dampen

effects of unrealistic precipitation estimates. It is therefore necessary to carefully choose realistic

parameter ranges.

2. How can a SWAT model of the study area be set up and multi-objectively

validated using remote sensing observations?

There have been some studies in the recent past focusing on setting up complex physically-

based hydrologic models for the region. With the advent of easily accessible remote sensing

observations, SWAT models using almost exclusively global data and remote sensing products

were applied to the region. The main research question can be divided into four subquestions:

a) How can a hydrologic modeling framework for West Africa be set up using only freely

available data?

It has been shown that almost all data needed to set up the SWAT model for the West African

domain is readily available online. However, some soil characteristics need to be calculated. Al-

ternatively, literature values must to be applied. The best-performing precipitation product from

the HBV-light analysis (CMORPH CRT) was chosen to drive the SWAT simulations. SWAT

cannot read grid-based meteorological data and thus, a textfile containing timeseries information

for each pixel of the input raster needed to be created. This proved to be inconvenient. A major

drawback of the SWAT model proved to be its inability to accurately simulate plant growth

under the alternating rainy and dry seasons of the West African tropics. In order to generate
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somewhat realistic plant growth, remote sensing LAI values were used to define growth in the

plant management routine of the model.

b) Which simulation quality can be obtained using these datasets?

Three SWAT models were set up for the study area: the South model (Volta, Comoé, Ouémé,

Mono, Pra, Ankobra, Couffo and Ayensu river basins), West model (Sénégal and Gambia river

basins) and Niger model (Niger basin). Each model was calibrated using two different ap-

proaches. First, models were globally calibrated and in a second step, upstream subbasins were

calibrated apart. Results show that the models can be successfully calibrated and validated for

some regions, while results for other regions remain poor. When comparing both calibration

methods, the global approach outperforms local calibration. This may be attributed to the vast

number of parameters present for the local calibration and the limited number of model runs

performed during sensitivity analysis. Only considering global calibrations, the South model

performs best over the Ouémé basin, with particularly strong calibrations and validations. This

is explained through the relatively good availability of discharge data with only few gaps in the

region. Select stations in the central Volta and Comoé river basins also calibrate well. The West

model performs best for the downstream Gambia basin, while in the Niger model, only some

select tributary and downstream gauges perform well. The overall mediocre performance can

be explained due to bias introduced when globally calibrating the model for such vast areas.

Additionally, no outflow data was available for reservoirs in the region, which highly influences

the quality of the downstream discharge simulation. The quality of the discharge data is an

additional source of incertitude.

c) How can a multi-objective validation be performed?

While using observed discharge during model calibration allows the researcher to have ap-

propriate confidence in the discharge simulation, uncertainty exists over the performance of

additional key hydrologic variables. Therefore, it was decided to further validate actual evap-

otranspiration, soil moisture dynamics and total water storage using remote sensing data. In

order to perform this analysis, SWAT outputs must first be reformatted into a usable format.

Likewise, timeseries need to be extracted from remote sensing raster data. In this comparison,

results were area-averaged for each timestep and subsequently compared. Concerning actual

evapotranspiration and soil moisture dynamics, both SWAT calibration approaches compare

well to remote sensing data. However, problems in the model structure relating to plant growth

lead to slight deviations of actual evapotranspiration. A comparison of total water storage

anomalies shows that while SWAT simulates the dynamics very well, amplitudes remain lower

than estimated by the satellite product. It is also apparent that the total water storage anomaly

simulation failed during the local calibration of the West model.

d) How can the potential and limitations of this approach for assessing the water avail-

ability at the regional scale be evaluated?

The good results attained by the multivariate validation highlight its merits in confirming

the model robustness. The applied methodology offers the possibility to validate variables not
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included in the calibration against readily available remote sensing data. However, the evaluation

is limited by the fact that results are averaged over the model areas before comparison, which

does not allow to determine the performance for smaller subbasins. Further limits are imposed

by the extensive number of parameters which need to be estimated when running SWAT for

large regions. Not only does this require considerable computing power, parameter equifinality

can also pose problems. Overall, the model structure complicates the use of gridded input data

and comparison of results against external observations and additional routines needed to be

developed to prepare input and output data, which might impede the easy adoption of the

proposed framework. The model could be further improved by including the Niger Inland Delta

and Lake Volta, if observations were available.

3. How can the grid-based mHM model be calibrated and validated in a multi-

variate framework for the region?

mHM is a relatively new grid-based hydrologic model designed specifically for predictions in

data-scarce mesoscale river basins. Due to its multiscale parameter regionalization approach, it

can be efficiently calibrated at a coarse resolution and the calibrated model can then be scaled

and run in a finer resolution. Also, as parameters are linked across different scales, less pa-

rameters need to be estimated, reducing uncertainty introduced through parameter equifinality.

Here, the model was applied to a study area in southern West Africa encompassing the Comoé,

Ouémé, Couffo, Mono, Pra, Ayensu, Ankobra, Black Volta, White Volta and Oti river basins.

Three subquestions were formulated:

a) How can the performance of the mHM model using a multiscale parameter regional-

ization approach be assessed?

Precipitation and potential evapotranspiration inputs and calculation methods can have a pro-

found influence on model performance. Therefore, it was decided to first assess the performance

of four precipitation inputs and three evaporation calculation methods in twelve exploratory

model runs for the region. Results show that CMORPH CRT precipitation together with the

Hargreaves potential evapotranspiration method perform best. The same well-performing com-

bination was also employed in the SWAT models and CMORPH CRT also performed best in

simulating streamflow during the HBV-light hydrologic evaluation. To assess the overall model

performance, mHM was calibrated using two methods, once using only discharge as the ob-

served variable and once using discharge and remotely-sensed actual evapotranspiration. The

calibrated models were evaluated against discharge and remotely-sensed actual evapotranspira-

tion, soil moisture anomaly and total water storage anomaly.

b) How does the model perform under multivariate calibration inputs?

Results show that the mHM model is well-suited for hydrologic simulations of data-scarce West

African river basins. While both calibration methods closely resemble each other when evaluated

against discharge (except during the validation), the discharge and actual evapotranspiration

calibration method produces vastly improved actual evapotranspiration estimates. This confirms

the advantage of using a second observed variable to further constrain boundary conditions
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during model calibration. However, some under- and overestimations can be observed in the

humid south and arid north. Interestingly, remote sensing estimates of the GLEAM and MODIS

actual evapotranspiration products differ quite strongly, which can be attributed to different data

and calculation approaches. Concerning soil moisture and total water storage anomaly, both

calibration methods again perform almost equally well.

c) How can model parameters be transferred between different spatial scales using mul-

tiscale parameter regionalization?

In a last step, the multiscale parameter regionalization approach of mHM was tested by re-

running the calibrated models in two finer resolutions with a strongly decreased pixel size and

increased pixel count. When evaluated against streamflow observations, calibration results re-

mained stable, while results obtained for the validation period slightly increased under both

calibration methods. This confirms the good performance of the multiscale parameter regional-

ization approach in the West African domain. By using this approach, computational demand

and subsequently calibration times can be significantly reduced by calibrating the model in a

coarse resolution and only rerunning the calibrated model once in a finer resolution.

Overall, mHM proved to be well-suited for generating hydrologic predictions of sparsely-

gauged basins in southern West Africa under remote sensing inputs. Multivariate validation

has confirmed the model robustness in estimating variables not included in the calibration. The

grid-based nature of the model eases the modelers task in preparing model in- and outputs

significantly.

4. How well do SWAT and mHM simulations of key hydrologic variables compare

against each other and against remote sensing, as well as global model results?

Lastly, to better assess the performance of both the SWAT and mHM models, results were

compared against each other and against remote sensing, as well as global model results for a

region in southern West Africa. In this case, only the best-performing model iterations were

evaluated, namely the global SWAT calibration and the discharge and actual evapotranspiration

mHM calibration. Simulations of actual evapotranspiration, soil moisture anomaly, total water

storage anomaly, groundwater recharge and water yield were assessed. It has been shown that

mHM estimates consistently outperform SWAT results when compared against remote sensing

and global model results. It should be stressed, however, that while SWAT was calibrated glob-

ally for the entire region, mHM was calibrated locally for each river basin. Of particular interest

is the comparison of actual evapotranspiration outputs, where the divergence of not only the

model results, but also remote sensing estimates can be observed for three different regions of

the study area. Here, the inability of SWAT to accurately simulate tropical plant growth under

alternating wet and dry seasons becomes apparent, as actual evapotranspiration during the dry

seasons is low. This also relates to total water storage simulations, where the SWAT total water

storage anomaly amplitude is lower than mHM and GRACE results. It is interesting to note

that SWAT total water storage simulations compare better to global model results, while mHM

simulations reach a higher degree of agreement with GRACE satellite observations. In cases like

the soil moisture anomaly comparison, the SWAT output format renders a direct comparison

133



8 General Conclusion

difficult, as residual water content is not taken into account. Discharge observations were in-

cluded in the SWAT and mHM calibration schemes and water yield estimations of both models

are remarkably similar.

It can be concluded that the use of remote sensing data for model setup, calibration and vali-

dation positively contributes to achieving robust simulations. Already during the model setup

phase, consistent quality checks using remote sensing and global data products help spot poten-

tial problems early on. Model uncertainty is reduced by constraining the parameter space and

outputs for variables not included in the calibration can be easily validated. The methodological

approaches developed in this study can be easily adapted to improve hydrologic simulations in

sparsely-gauged basins in West Africa, particularly since all data and software used are freely

available, albeit some knowledge in the handling of gridded data is necessary.

Some drawbacks, however, remain. First and foremost, the availability of high-resolution

remote sensing estimates limits analysis to more recent periods, with few products being avail-

able before 1998. Also, satellites have a limited service life and as they are replaced with newer

instruments, the questions remains whether the produced estimates are comparable. The hydro-

logic evaluation using HBV-light is limited by the fact that during calibration, large parameter

ranges may dampen the effects of unrealistic precipitation estimations. While the SWAT model

offers the physically-based estimation of many parameters also relating to plant growth and

nutrient transport, vast amounts of input data are required which are not easily attainable for

data-scarce basins. The crop growth module has been developed for temperate regions, where

crop growth is defined as a function of temperature, rather than water availability. While a new

routine suitable for tropical regions has recently been developed, it has so far not been applied

in the study area. Input and output data formats are also less than convenient, relying on

Fortran-type datafiles instead of spatial formats such as polygons or raster grids. While mHM

offers spatial in- and outputs and generally performs well for the region, some model routines

remain simplistic, such as the inability to account for more than three land use classes, rendering

land use change analysis difficult.

This study contributes methodological advances to the accurate assessment of water re-

sources in sparsely-gauged catchments in West Africa using remote sensing, reanalysis and global

datasets. Still, a potential for further studies remains. Some key aspects to be further studied

were thus identified:

� Assess improvements to the SWAT model by including the Inner Niger Delta

and Lake Volta in the simulations. Further investigate performance at the

small scale using measured soil attributes.

SWAT simulations of the Niger river basin could be further improved by parameterizing

the Inner Niger Delta, a wetland which, due to flooding during the rainy season, has a

profound influence on downstream discharge. However, information on flooding in the delta

is scarce, with studies only recently focusing of this issue, see e.g. Ibrahim et al. (2017).

In SWAT simulations, the delta could be introduced as an artificial reservoir, if in- and

outflow information was available. Furthermore, simulations of the Volta river basin could

be improved if the Akosombo dam, which creates Lake Volta, is included. Again, little

information on in- and outflows is available.
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� Investigate the improvement of SWAT actual evapotranspiration, soil moisture

and total water storage estimates by using a plant routine adapted to tropical

conditions.

Several researchers have explored the possibility of integrating a water availability-based

plant growth module in SWAT, see e.g. Alemayehu et al. (2017). Setting up a SWAT model

for the study area with such a routine could lead to improved actual evapotranspiration

predictions and subsequently more realistic soil moisture and total water storage estimates.

� Assess mHM model uncertainty for exploratory model runs by performing

product-specific calibrations of each combination.

Due to time constrains, the twelve mHM exploratory model runs with different combina-

tions of precipitation and potential evapotranspiration inputs were not calibrated, but run

using default parameters. Assessing the model uncertainty using different combinations

would lead to a more nuanced understanding of the effects precipitation and evapotran-

spiration inputs have on model results.

� Determine the contribution of land surface temperature and total water stor-

age estimates in mHM calibrations.

In this study, mHM was calibrated using a combination of discharge and actual evapo-

transpiration measurements. It has been suggested that land surface temperature and

total water storage estimates included in the calibration also lead to very robust model

results. This needs to be further investigated for the West African study area, especially

as temperatures remain relatively constant over the course of the year.

� Explore the performance of the mHM model applied to the Niger, Sénégal and

Gambia river basins.

In this study, the mHM model was only applied to the southern West African river basins,

where it performed well. Further research is necessary to confirm good model performance

also for the Niger, Sénégal and Gambia river basins.

� Investigate possibilities for climate change analysis using mHM.

Lastly, it would be interesting to assess how well mHM is suited to perform climate change

and land use and land cover scenario analysis. While the grid-based structure and possi-

bilities for netCDF data inputs facilitate large-scale climate data integration, its limited

land cover parametrization of only three classes (previous, impervious, and forest) might

reduce the informational value of the results.

While it has been shown that the quality of hydrologic simulations profits from integrating

remote sensing estimates, it should be stressed that a continued need for high quality in situ

measurements persists, especially regarding streamflow data. Several streamflow timeseries had

to be excluded from this study due to large data gaps or general concerns regarding the data

quality. Also, the quality of remote sensing estimates could be strongly improved if a network

of ground-based measurements was available for appropriate bias correction. Some researchers

are of the opinion that the need for expensive ground-based measurements has been reduced
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8 General Conclusion

by the availability of high resolution satellite data. In the author’s opinion, however, there is a

clear advantage of using a combination of gauge- and satellite-based data, with remote sensing

complementing, and not replacing in situ measurements.
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Ibrahim, M., D. Wisser, A. Ali, B. Diekkrüger, O. Seidou, A. Mariko, and A. Afouda. 2017.
“Water Balance Analysis over the Niger Inland Delta-Mali: Spatio-Temporal Dynamics of
the Flooded Area and Water Losses”. Hydrology 4 (3): 40. doi:10.3390/hydrology4030040.
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Endejan, K. Frenken, J. Magome, C. Nilsson, J. C. Robertson, R. Rödel, N. Sindorf, and D.
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of very high resolution Köppen-Geiger climate zones 1800-2100”. Meteorologische Zeitschrift
26 (2): 115–125. doi:10.1127/metz/2016/0816.

Rusli, S. R., D. Yudianto, and J.-t. Liu. 2015. “Effects of temporal variability on HBV model
calibration”. Water Science and Engineering 8 (4): 291–300. doi:10.1016/j.wse.2015.12.
002.

Saha, S., S. Moorthi, H. L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, D.
Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y. T. Hou, H. Y. Chuang,
H. M. H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. Van Delst, D. Keyser, J. Derber,
M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. Van Den Dool, A. Kumar, W. Wang, C. Long,
M. Chelliah, Y. Xue, B. Huang, J. K. Schemm, W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S.
Zhou, W. Higgins, C. Z. Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R. W. Reynolds, G.
Rutledge, and M. Goldberg. 2010. “The NCEP climate forecast system reanalysis”. Bulletin
of the American Meteorological Society 91 (8): 1015–1057. doi:10.1175/2010BAMS3001.1.

Samaniego, L., R. Kumar, L. Breuer, A. Chamorro, M. Flörke, I. G. Pechlivanidis, D. Schäfer,
H. Shah, T. Vetter, M. Wortmann, and X. Zeng. 2017a. “Propagation of forcing and model
uncertainties on to hydrological drought characteristics in a multi-model century-long ex-
periment in large river basins”. Climatic Change 141 (3): 435–449. doi:10.1007/s10584-
016-1778-y.

Samaniego, L., R. Kumar, and C. Jackisch. 2011. “Predictions in a data-sparse region using a re-
gionalized grid-based hydrologic model driven by remotely sensed data”. Hydrology Research
42 (5): 338–355. doi:10.2166/nh.2011.156.

Samaniego, L., J. Brenner, M. Cuntz, C. M. Demirel, M. Kaluza, R. Kumar, B. Langenberg,
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A Appendix

Table A.1: mHM parameters.

Parameter Lower Threshold Upper Threshold

Interception
canopyInterceptionFactor 0.15 0.4

Soil Moisture
orgMatterContent forest 0 20
orgMatterContent impervious 0 1
orgMatterContent pervious 0 4
PTF lower66 5 constant 0.6462 0.9506
PTF lower66 5 clay 0.0001 0.0029
PTF lower66 5 Db -0.3727 -0.1871
PTF higher66 5 constant 0.5358 1.1232
PTF higher66 5 clay -0.0055 0.0049
PTF higher66 5 Db -0.5513 -0.0913
PTF Ks constant -1.2 -0.285
PTF Ks sand 0.006 0.026
PTF Ks clay 0.003 0.013
rootFractionCoefficient forest 0.9 0.999
rootFractionCoefficient impervious 0.9 0.95
rootFractionCoefficient pervious 0.001 0.09
infiltrationShapeFactor 1 4

Direct Sealed Area Runoff
imperviousStorageCapacity 0 5

Potential Evapotranspiration
minCorrectionFactorPET 0.7 (0.9) 1.3 (0.96)
maxCorrectionFactorPET 0 (0.17) 0.2
aspectTresholdPET 160 200
HargreavesSamaniCoeff 0.0016 (0.0021) 0.003 (0.0027)

Interflow
interflowStorageCapacityFactor 75 200
interflowRecession slope 0 10
fastInterflowRecession forest 1 3
slowInterflowRecession Ks 1 30
exponentSlowInterflow 0.05 0.3

Percolation
rechargeCoefficient 0 50 (200)

Geological Parameter
GeoParam(1) 1 1000 (1500)

Given are the parameters calibrated in mHM and their standard ranges. Values in brackets signify
modified ranges to improve actual evapotranspiration simulations of the Q calibration scheme. During
the Q/ET calibration, default ranges were used. For further details, see Samaniego et al. (2017b) and

www.ufz.de/mhm.
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