
Algorithms for Cell Layout

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Vorgelegt von

Pascal Cremer

aus

Neuss

Bonn, Januar 2019

ii

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Stefan Hougardy
2. Gutachter: Prof. Dr. Jens Vygen

Tag der Promotion: 5. April 2019
Erscheinungsjahr: 2019

Acknowledgments

This thesis would not have been possible without the kind support of many people.
First and foremost, I would like to express my gratitude to Prof. Dr. Stefan Hougardy
for his excellent guidance throughout my time at the institute. Our discussions have
been invaluable for the research that has gone into BonnCell.

I would also like to thank Prof. Dr. Jens Vygen, whose imaginative ideas highly
contributed to the long term vision of the project. My special thanks goes to Prof. Dr.
Dr. h.c. Bernhard Korte for providing the excellent working conditions at the institute.

BonnCell would be of much less use if it wasn’t integrated so well into the IBM
environment. Tobias Werner, Gerhard Hellner, and Dr. Iris Leefken took care of this
and much more that made me enjoy our collaboration.

Many students contributed to BonnCell. Thanks go to Lars Friederichs, Alexan-
der Göke, Andreas Gwilt, Thekla Hamm, Silas Rathke, Simon Thomae, and Robert
Vicari, who brought in their own ideas and patiently endured countless code reviews.
I would especially like to thank Benjamin Klotz, whose work as a student has been
invaluable and who seamlessly took over the project so that I had time to write this
thesis.

Out of the many great colleagues I had at this institute, I would especially like to
thank Jannik Silvanus and Philipp Ochsendorf for our in depth discussions on C++
and their tremendous effort to improve compilation times and create powerful general
purpose tools for the entire institute. I also wish to thank Jan Schneider, who wrote
the first version of BonnCell and allowed me to experience a smooth transition into
the project. I would like to thank Andreas Gwilt and Konstantin Fröhlich for their
critical proofreading of parts of this thesis.

Finally, thanks go to my family and to my fiancée Anne, who supported me greatly
when writing this thesis.

iii

Contents

Acknowledgments iii

1 Introduction 1

2 Previous Work 3
2.1 Categories of Cell Layout Generators . 3
2.2 Layout Styles . 4
2.3 Placement . 4
2.4 Design Rules . 6
2.5 Routing . 6
2.6 Challenges due to Manufacturability . 7
2.7 Comparison to Other Tools . 8

3 Definitions and Goals 9
3.1 Problem Definition . 9
3.2 Design Rules . 12

3.2.1 Legality . 12
3.2.2 Routability . 13

3.3 Objective Function . 14

4 Routing 17
4.1 Modular Router Structure . 18
4.2 Mixed Integer Programming Formulation 18

4.2.1 Grid Graph Construction . 18
4.2.2 Steiner Tree Packing . 19
4.2.3 Conditional Constraints . 20
4.2.4 Mapping Design Rule Constraints 21
4.2.5 Trim Shape Model . 22
4.2.6 Vias . 24

4.3 Routing Oracle During Placement . 24
4.4 Post Processing . 25

v

vi CONTENTS

5 Placement Algorithm 27
5.1 Placement Algorithm . 27
5.2 Phases . 28
5.3 Routing of Partial Placements . 33
5.4 FEOL Routing Oracle Cache . 34
5.5 Cell Width Pruning . 42

5.5.1 Combinatorial Approach . 42
5.5.2 MIP Approach . 49

5.6 Netlength Pruning . 55
5.7 Search Tree Ordering . 58
5.8 Parallelization . 61
5.9 Routing Corridors . 63

6 Extensions 71
6.1 Globally Optimum Routings . 71
6.2 Folding . 74

7 Big Cell Placement 77
7.1 Multibit Cells . 78
7.2 Divide Placer . 79

7.2.1 Routability Guaranty . 83
7.2.2 Subcell Splitting . 84
7.2.3 Runtime Distribution . 85

7.3 Linear Arrangement Placer . 86
7.3.1 Min Cut Linear Arrangements 88
7.3.2 Algorithm of Linear Arrangement Placer 92

7.4 Results . 94

8 Comparison to Manual Layouts 97
8.1 Standard Cells . 97
8.2 Latches . 97
8.3 PLCB . 100

9 Summary 107

A Testbeds 109
A.1 Standard Cells . 109
A.2 Latches . 109

Bibliography 113

Chapter 1

Introduction

The design and layout of a modern computer chip is a huge project. To facilitate
independent development of different parts of the chip, several layers of hierarchy are
introduced. The lowest level of the hierarchy is the cell level. Cells are logical gates
and storage elements consisting of transistors connected with wires. In this way, the
higher levels of the hierarchy are almost independent of placement and routing of
individual transistors as cells are seen as black boxes with specified input and output
wire locations. Although this abstraction greatly reduces the complexity of the layout
process, some design and layout flexibility is lost. Cell layouts might not be optimal for
the specific location in which they are used, resulting in increased area usage, worse
timing properties, and higher power consumption. As a remedy, a large library of
cells is used which contains many variants of the same logical function, such that the
best variant for the given situation can be chosen. Some parts of the chip, e.g. static
random-access memory (SRAM), are so critical that custom cells are created. These
cells are used in a single context and can therefore be highly optimized to match the
special needs of their environment.

Most processor chips are released on a two year cycle. With each release transistors
and wires get smaller and are packed more densely to increase the chip’s functionality.
Although the logical functions of most cells remain unchanged, there is no simple way
to migrate existing layouts from one technology node to the next. The layout properties
of a cell are mainly affected by the design rules arising from the manufacturing process.
These design rules are largely individual for each technology node, therefore the cell
layout process can become a severe bottleneck and layout automation tools are much
requested. However, so far human experts have been superior in cell layout in terms
of cell quality. Cell layout tools could not realize cell layouts with the same area usage
as those crafted by experienced engineers.

BonnCell, the program presented in this thesis, is the first to produce cells with
provably minimum area usage in only a fraction of the time needed for manual layout. It
guarantees routability of its transistor placements without using pessimistic restrictions
of the search space. This is achieved by novel algorithms based on graph theory and
other techniques which solve the underlying NP-hard problems in feasible time.

1

2 CHAPTER 1. INTRODUCTION

In addition, BonnCell supports the transition to new technology nodes, for which
a cell image has to be defined which describes layout properties shared by all cells.
These properties, e.g. the cell height, ensure that any two cells can always be placed
legally next to each other. They have a huge impact on all cell layouts and assessment
of the effect on area usage and other features of the standard library is fundamental
when designing the cell image. Therefore, human experts evaluate cell images on a few
hand crafted cell layouts. With BonnCell larger sets of cell layouts and cell images
can be compared against each other to find the best cell image for the chip.

This thesis is organized as follows. Previous work on cell layout generators is
presented next in Chapter 2. In Chapter 3 we define the cell layout problem and
the objective function used to evaluate cell quality. BonnCell can be split into two
main algorithms for placement and routing of transistors. The routing algorithm is
called many times from within the placement algorithm to evaluate the routability of
placements and is therefore presented first in Chapter 4. Subsequently, we present the
placement algorithm in Chapter 5. Details on the algorithms for runtime optimization
and the routability evaluation are provided. In Chapter 6 we discuss two BonnCell
features which extend the capability of the placement algorithm. Some cells are too
large to be solved by a single call of the placement algorithm. These cells are split
into smaller subcells which are placed and routed individually and afterwards merged
into a placement and routing of the original cell. The algorithms for these big cells
are provided in Chapter 7. Finally, in Chapter 8 we compare the layouts generated by
BonnCell to manually crafted ones.

Chapter 2

Previous Work

Although layout automation is widely used in higher layers of the chip hierarchy,
cells are usually hand crafted by experienced human layouters. This is a very time
consuming process which limits the number of library and custom cells that can be
created. Transistor level layouts heavily depend on the design rules and they have to
be rebuilt from scratch with every new technology. To reduce the cost of this process,
cell layout tools are much desired.

Most modern work on automated cell layout is based on the 1-D layout scheme
introduced by Uehara and Cleemput 1979. In this scheme transistors are placed in two
rows. N type transistors (NFETs) are placed on one row next to the ground voltage
power rail and P type transistors (PFETs) are placed on the other row next to the
supply voltage power rail. Previous work based on different layout schemes is difficult
to compare to current approaches due to the large differences in their underlying al-
gorithmic problems. Schneider 2014 gives a detailed review of work on other layout
styles.

2.1 Categories of Cell Layout Generators
Lefebvre, Marple, and Sechen 1997 distinguish three categories for cell layout genera-
tors: procedural generators, re-compaction methods, and cell synthesis tools. Proce-
dural generators use a domain specific language to describe each cell individually. The
description of each cell is usually produced by human experts. Re-compaction methods
aim at improving existing layouts. This includes migration of existing layouts to new
technologies or improvement of certain layout properties like area usage as done by Fu
et al. 2009. Cell synthesis tools build a transistor level layout based on the netlist only.
This is the only category of tools with no requirement of previous layout information.
Some cell synthesis tools also include a compaction step to post optimize their results,
e.g. Ziesemer and Luz Reis 2014 use a MIP based compaction algorithm to improve
layouts generated by their cell synthesis tool Astran. We will focus on cell synthesis
tools as they require no human interaction. BonnCell also falls into the category of
cell synthesis tools.

3

4 CHAPTER 2. PREVIOUS WORK

Figure 2.1: 1-D dual cell layout style (left) and 1-D non-dual cell layout style (right).
Dual cells are easier to place and route, as PFETs and NFETs appear in pairs which
can be placed opposite of each other with the same gate connection. This is not the
case for non-dual cells where there might be different numbers of PFETs and NFETs.

2.2 Layout Styles
Many logic circuits can be implemented by dual pull-up and pull-down transistor net-
works, which means that transistors appear in pairs with the same gate connection.
Figure 2.1 shows a dual and a non-dual cell layout. Many algorithms, including the
seminal work by Uehara and Cleemput 1981, specialize on dual cells as it simplifies the
placement problem, cf. Maziasz and Hayes 1991; Nair, Bruss, and Reif 1983; Nyland
and Reif 1996. However, Iizuka 2006 estimates that only about 50% of the required
cells are dual. BonnCell is not restricted to dual cells.

Every cell synthesis tool has some restrictions on the layout styles it supports.
As written above, many tools only support 1-D dual cells. 1.5-D layout means that
PFETs can be extended into the N region and vice versa. This allows more compact
placements for cells with unbalanced size of PFETs and NFETs but requires the tool
to prevent illegal intersections of PFETs and NFETs. In 2-D layout the cell is placed
on multiple circuit rows and the routing problem includes connecting FETs placed on
different circuit rows. The 1.5-D and 2-D layout styles are illustrated in Figure 2.2.
Finally, free layouts, as used by Riepe and Sakallah 2003, do not make any of these
restrictions on position or orientation of FETs. BonnCell supports all these layout
styles, except for free layouts.

2.3 Placement
Previous approaches to the transistor placement problem differ in several aspects. For
example, tools support different degrees of flexibility for FET folding, i.e. realizing a
FET with different numbers of gate fingers. Support for folding is essential to achieve
dense layouts without the need for manual intervention. Hill 1985 was the first to allow
static folding, i.e. choosing one folding configuration before or after the FET place-
ment algorithm is run. Berezowski 2001 was the first to explore different layout and
folding options simultaneously, so called dynamic folding, in an algorithm based on

2.3. PLACEMENT 5

Figure 2.2: Continuation of layouts styles. The left image shows 1.5-D layout style
where PFETs can be extended into the N region and vice versa. The right image shows
a 2-D layout on multiple circuit rows, where each circuit row can be built in 1-D or
1.5-D layout style.

dynamic programming. BonnCell supports dynamic folding by enumerating differ-
ent FET widths during the placement algorithm. It also provides an extended folding
mode which splits FETs into smaller, individual FETs. These FETs can be placed
independently of each other which allows many more placement configurations. In
some situations this technique helps to significantly reduce the cell area compared to
standard dynamic folding.

The placement objective function of cell synthesis tools does not differ much be-
tween different work, cell area is almost always the top priority. Many placement
algorithms additionally optimize for routability in some way. This can be in the form
of estimating pin density or horizontal length of gate to gate connections, both used
by Ziesemer and Lazzar 2007. Some more recent work take manufacturability into
account as well, cf. Wu et al. 2013. BonnCell’s primary objective is also cell area.
As routability is guaranteed by the algorithm it does not have to be optimized in the
objective function. Instead, an estimation for routing netlength is minimized.

Introduced by Uehara and Cleemput 1981, Euler chains have been used in many
tools to find minimum area placements for dual cells. Since many variants of the
placement problem become NP-hard if transistor folding and non-dual cells are al-
lowed, many other algorithms have been developed. Methods can be divided into
exact approaches and heuristics. Exact approaches like mixed integer programming
(MIP), cf. Gupta and Hayes 1998, satisfiability (SAT), cf. Iizuka 2006, and dynamic

6 CHAPTER 2. PREVIOUS WORK

programming, cf. Bar-Yehuda et al. 1989, have the advantage that optimality of the
solution can be guaranteed. Heuristics like simulated annealing, cf. Guruswamy et al.
1997, and threshold accepting, cf. Ziesemer et al. 2014, can be more suitable for larger
instances, where the exact algorithms fail to find any solution. BonnCell combines
both approaches by solving small and medium sized cells using an exact branch-and-
bound approach. Larger instances are heuristically split into smaller subcells which
can then be solved optimally. BonnCell enumerates all feasible placements and uses
Euler chains to prune infeasible parts of its search tree.

2.4 Design Rules
Most cell synthesis tools use a grid based representation of design rules, cf. Cortadella
et al. 2014; Iizuka 2006; Kang et al. 2018; Karmazin, Otero, and Manohar 2013. In
these tools a routing grid is used and wires need to end on vertices of the grid with
some fixed wire width and via overhang. This has the advantage that wire spacing
and other design rules are easy to formulate. However, depending on the design rules,
this imposes a restriction on the routing space. For example, the rules might require
the wires to be a distance of 1.5 grid edge lengths apart from each other. Due to the
coarseness of the grid, the shortest legal distance that could then be modeled is 2 edge
lengths. BonnCell is able to represent every legal solution. It avoids a grid based
representation of design rules by allowing line end coordinates which are continuous in
one direction, whereas the other direction is gridded by the cell image.

2.5 Routing
Rip-up and reroute is a common approach to cell routing, cf. Jo et al. 2018; Karmazin,
Otero, and Manohar 2013. Nets are routed sequentially, which means that already
routed nets block routing space which might be essential for nets that still have to
be routed. If a net cannot be routed given some already routed nets, the wires of
some of the routed nets are removed (ripped-up) and rerouted after the conflicting
net has been routed. Of course, there is no guarantee that the ripped-up nets can be
successfully rerouted. Usually this strategy is combined with a dynamic cost function
which penalizes routing in highly congested areas. These approaches are all heuristics
and therefore not able to prove that a placement of FETs cannot be routed. Some
routing algorithms do not explore the entire routing search space but use a fixed set
of heuristically generated routes, e.g. Wu et al. 2013.

More recent work focuses on MIP or SAT based approaches which do not depend
on rip-up and reroute but route all nets simultaneously. Cortadella et al. 2014 use a
SAT formulation with gridded design rules which supports double-patterning lithog-
raphy. Kang et al. 2018 present a MIP based routing formulation with a focus on pin
accessibility. Design rules are modeled on a grid with each wire segment either fully
present or absent. This allows turning the MIP problem into a SAT problem, which is
solved within a fraction of the MIP runtime. Compared to BonnCell their approach
respects fewer routing layers at the bottom of the layer stack. Transistors and related

2.6. CHALLENGES DUE TO MANUFACTURABILITY 7

front-end-of-line layers (TS, CA, PC, CT) are fixed during routing and the grid based
approach does not allow to place line ends continuously. A very different SAT formula-
tion has been used by Ryzhenko and Burns 2012. Their approach enumerates different
routes for each net using a maze algorithm and detects conflicts between routes. The
SAT formulation ensures that exactly one route is chosen for each net and no two
routes are in conflict.

2.6 Challenges due to Manufacturability
Multiple patterning techniques are now widely used to overcome the limitations of
photo lithography, cf. Arnold 2009; Liebmann, Chu, and Gutwin 2015; Lin 2009; Pan
2009. These techniques allow to continuously produce smaller feature sizes with each
technology node, despite being limited by 193nm immersion lithography. Layout au-
tomation flows need to adapt to multiple patterning and the resulting tool require-
ments.

There exist many different multiple patterning techniques, each one with different
advantages and disadvantages, cf. Pan, Yu, and Gao 2013. To allow for some depth of
the discussion, we focus on manufacturing of transistor gates using self-aligned double
patterning (SADP) as described by Haffner et al. 2007, 2008; Lai et al. 2008. The
gates are produced in two steps. First, a regular, unidirectional pattern of poly silicon
(PC) is generated by using sidewall spacers. In a second step, unwanted PC features
are cut off using the cut mask (CT). This technique is successful in limiting line end
roughness and allowing smaller gate to gate distances, cf. Burkhardt et al. 2009; Lai
et al. 2008; Sarma et al. 2008.

These manufacturing requirements bring new challenges for cell synthesis tools.
Haffner et al. 2007 described the layer decomposition of desired gate features with
given dimensions into a PC and CT mask. However, they fix the gate lengths be-
fore layer decomposition which often turns out to eliminate all legal decompositions.
Our approach is to fix the transistor positions but leave their gate lengths variable
within given boundaries. After transistor placement, gate lengths are determined si-
multaneously for the entire cell in a SADP compliant manner. The boundaries for the
gate lengths are chosen such that the transistor’s electrical properties, e.g. number of
covered fins, do not change.

Double patterning (DP) and multi patterning (MP) aware routing has been in-
tensely studied for different techniques. Litho-etch-litho-etch (LELE), cf. Pan, Yu,
and Gao 2013, is an alternative to SADP. LELE uses two exposures and etches to
create two coarse patterns. They are combined into a fine pattern which has twice
the resolution of the individual patterns. Instead of creating features and cutting off
extraneous parts as in SADP with a cut mask, both masks are used to generate in-
dependent features. Due to the differences between LELE and SADP, LELE aware
routing techniques cannot be applied to SADP masks. Many approaches to handle
SADP in automated design have been suggested, cf. Du et al. 2013; Fang 2015; Gao
and Pan 2012; Kodama et al. 2013; Mirsaeedi, Torres, and Anis 2011; Pan, Yu, and

8 CHAPTER 2. PREVIOUS WORK

Gao 2013; Xu et al. 2015. Our work differs to previous work for SADP in several
aspects. First, we allow variable transistor gate lengths which gives more flexibility to
find solutions without design rule violations. Second, our algorithm guarantees to find
solutions without design rule violations, if existent.

2.7 Comparison to Other Tools
The main contribution of this thesis is that BonnCell is able to produce provably
minimum area layouts without design rule violations. Other tools cannot guarantee
routability of their placements or use pessimistic restrictions during the placement
phase, thereby wasting area. This is the first tool which is able to guarantee routability
of its placements without sacrificing cell area. This is achieved by sophisticated lower
bounds based on graph theory and other speed up techniques.

Previous versions of BonnCell have been described in Hougardy, Nieberg, and
Schneider 2013 and Schneider 2014. The version presented in this thesis has many
improvements compared to the previous ones. The routing algorithm is built upon a
newMIP formulation with better theoretical performance guarantee and is able to route
all nets simultaneously with exact representation of the design rules. It can guarantee
routability of its placements and supports an extended folding mode. Finally, the initial
version of the big cell mode has been extended and improved to give denser placements
with guaranteed routability, even for very large cells spanning multiple circuit rows.
A preliminary version of the work in this thesis has already been published in Cremer
et al. 2017.

Chapter 3

Definitions and Goals

In this chapter we formalize the Cell Synthesis Problem (Section 3.1) and give
an overview over the design rules and their origin (Section 3.2). Furthermore, we
describe the objective function we use when solving the Cell Synthesis Problem
(Section 3.3).

3.1 Problem Definition
BonnCell’s tasks can be divided into two parts. Placement of field-effect-transistors
(FETs) and routing of their connections. In this process many constraints, so called
design rules, need to be respected. Some design rules are motivated by manufactura-
bility restrictions, others are conventions to ensure that different cells can be placed
next to each other without conflict.

A FET has three contacts, source, drain, and gate. The function of a FET is to
connect its source and drain contacts if and only if a certain voltage is applied at its
gate. It can be thought of as a voltage controllable switch. Furthermore, it acts as
an amplifier, as a small gate current suffices to generate a large drain current. FETs
exist in two types: p-FET and n-FET. For n-FETs, the source and drain contacts are
connected if and only if supply voltage (VDD) is connected to the gate. Conversely, p-
FETs connect source and drain if and only if ground voltage (VSS) is connected to the
gate. These two devices suffice to build standard logic gates like inverters, NANDs, and
NORs, but also storage cells like latches. Figure 3.1 shows the CMOS implementation
of a NAND gate.

FETs can be built with different VT levels. The VT level determines the trade off
between power consumption and switching speed (timing) of a FET. Cells with the
same logical functionality are usually built in different versions s.t. later design stages
can choose the optimum trade off between cell area, power consumption, and timing.

Throughout the chip horizontal power rails ensure the connection of FETs to VSS
and VDD. The cells are placed in so called circuit rows in between these power rails.
The circuit rows are also called bits and large cells can be built as multi bit cells,
spanning multiple bits in vertical direction. For single bit cells, the transistors are
arranged in two stacks, one next to each power rail. One stack consists of the cell’s

9

10 CHAPTER 3. DEFINITIONS AND GOALS

Figure 3.1: CMOS implementation of a NAND gate. Output Y reads 1 (VDD) if one
or both of the inputs A and B are 0 (VSS), otherwise it reads 1. The implementation
uses four FETs, two p-FETs (T1, T2) and two n-FETs (T3, T4). If A or B is connected
to VSS, at least one of the p-FETs, T1 and T2, connects VDD to Y and at least one
of T3 and T4 will disconnect VSS from Y. If both A and B are connected to VDD, T1
and T2 are blocked and T3 and T4 connect Y to VSS. Image source: Wikipedia.

n-FETs and is placed directly next to the lower power rail (VSS), whereas the other
stack contains the p-FETs and is placed directly next to the upper power rail (VDD).

There are different areas of the chip with different purposes and different require-
ments. These requirements are captured by the cell image definition. The cell image
describes the general structure of a cell. For example, different cell images have differ-
ent heights determined by the distance of power rails.

A FET can be built with different sizes. The larger the FET, the lower its resistance
and the more current it can supply. The 7nm technology node uses FinFETs. For
these devices, the size of a FET is discretized in the number of fins it intersects. Fins
are horizontal shapes parallel to the power rails. Number and positions of fins are
given by the cell image. Figure 3.2 shows an image of a cell with placed FETs.

A FET F is defined by a tuple (Smin, Smax, Ng, Ns, Nd, t, v), where

• [Smin, Smax] ⊆ N is the legal size interval of the FET measured in the number of
fins intersected by the gates,

• Ng, Ns, Nd ∈ N are the nets connected to gate, source, and drain, respectively,

• t ∈ {n-FET,p-FET} is the FET’s type, and

• v ∈ N is its VT level.

A legal realization of a FET must intersect S ∈ [Smin, Smax] fins. We allow FETs to
be realized with different numbers of fingers. Therefore, solving the placement problem

3.1. PROBLEM DEFINITION 11

Figure 3.2: Placement of a single bit cell with 6 FETs, 3 n-FETs (lower stack) and 3
p-FETs (upper stack). FETs are covering 2 or 3 fins (thin horizontal rectangles). This
cell image allows FETs to have a height of at most 3 fins. Green rectangles represent
power rails. Blue rectangles represent the gates of the FETs. Some FETs are built
using 1 finger, others using 2 fingers.

does not only include the assignment of locations to each FET but also deciding how
large the FET should be exactly and how many fingers should be used. The total size
S of a FET can be distributed to a number of fingers. Using only one finger, the FET
is realized with one gate, intersecting S fins. Using a larger number of fingers, the FET
is realized with several gates, located next to each other, which in total intersect S fins.
If, for example, the size of a FET is Smin = Smax = 6, it can be realized with 1, 2, 3, and
6 fingers, each covering 6, 3, 2, and 1 fin respectively. The number of fins intersected
by a single finger is called the height of a FET. Depending on the used cell image,
some FET heights can be forbidden, e.g. all 7nm images do not allow FET heights of 1
and there is also an upper bound on the allowed height. A FET realized with f fingers
has f gates and f + 1 source and drain contacts. A FET with several fingers connects
source and drain nets alternately. The placement algorithm is also allowed to swap
FETs. In this case, the source and drain contacts of the FET exchange their places.
Figure 3.3 shows the same FET realized in three different ways.

Definition 3.1. The configuration c of a FET is defined as the tuple (x, f, h, s) where

• x ∈ N is the FET’s x location (measured in PC tracks),

• f ∈ N>0 is the number of fingers,

• h ∈ N>0 is the height measured in fin intersections per finger, and

• NL ∈ {NS, ND} is the leftmost contact net.

We call a FET F swapped if NL = ND. Given a configuration c the terms x(c),
f(c), h(c), and s(c) give the location, finger number, height, and swap status of c
respectively.

12 CHAPTER 3. DEFINITIONS AND GOALS

Ns Nd

Ng

Ns Nd

Ng

Ns

Ng

Nd Ns

Ng

Nd

Ng

Figure 3.3: A FET of size 4 realized with 1 finger, 2 fingers, and 2 fingers swapped.
The heights are 4, 2, and 2 fins respectively. Gates are shown in blue, source and drain
contacts in gray.

Definition 3.2. A placement C is defined as a tuple C = (c1, . . . , cn), where ci is the
configuration for FET Fi.

3.2 Design Rules
There are many placement design rules which have to be obeyed. We split them into
two sets, legality and routability.

3.2.1 Legality
Due to the location of the fins, the cell image guarantees that FETs do not overlap
vertically, cf. Figure 3.2. However, depending on their nets, some FETs will not be
able to be placed opposite of each other with a height of 3 fins. In horizontal direction
FETs need to obey some minimum distance depending on their configuration but this
rule only applies to neighboring FETs. Two FETs of a placement are neighbors, if
there is no other FET in between them. Two neighboring FETs are allowed to share
contacts if they have

• the same height,

• same VT level, and

• the facing contacts belong to the same net.

More formally, this gives the following definition.

Definition 3.3. Two neighboring FETs F1, F2 with configurations c1, c2 and F2 placed
to the right of F1, i.e. x(c2) > x(c1) are allowed to share if

• h(c1) = h(c2),

• VT(F1) = VT(F2), and

• NR(F1, c1) = NL(F2, c2),

3.2. DESIGN RULES 13

F1 F2 F3 F4

Figure 3.4: Illustration of placement legality rule. FETs F1 and F2 have the same VT
level, same height and same contact net facing each other. Thus they are allowed to
share their diffusion regions. FETs F3 and F4 have different height and must therefore
be separated by two empty gate tracks.

0 1 2 3 4 5

F1 F2

(a)

0 1 2 3 4

F1 F2

(b)

Figure 3.5: Placing a FET with larger width can result in denser placements. F1 has
size 4 and can be built with a single finger intersecting 4 fins, or 2 fingers intersecting
2 fins each. Although wider itself, the 2 finger option results in a more compact layout
as it allows sharing with F2. (a) Densest placement if F1 is built with height 4. (b)
With F1 having 2 fingers, F1 and F2 have the same height and can share contacts.

where NL(F, c) denotes the leftmost net of FET F in configuration c. Similarly NR(F, c)

denotes the rightmost net of FET F in configuration c. VT(F) denotes the VT level of
F. In this case the configuration is legal if x(c2) > x(c1) + f(c1). Otherwise it is legal
if x(c2) > x(c1) + f(c1) + 2.

For sharing FETs the diffusion regions overlap and the contact is used simultane-
ously by both FETs. If sharing is not allowed, the gates must have a minimum distance
of 3 PC pitches. Figure 3.4 gives an illustration of this rule. Placements which obey
this rule are called legal. This distance requirement makes the placement problem
complicated, even for a single stack. As illustrated in Figure 3.5, increasing the width
of a FET can allow a denser placement.

3.2.2 Routability
We call a placement legal if it obeys the FET sharing rules described above. A legal
placement might not be manufacturable, as there are many complicated rules, so called
design rules, that need to be obeyed. For example, all gates are manufactured using the

14 CHAPTER 3. DEFINITIONS AND GOALS

self aligned double patterning (SADP) technique. In the first step, a regular pattern
of unidirectional poly shapes is generated. In the second step, these shapes are cut
off by a trim mask, leaving the desired gates. Not all legal placements admit a legal
layer decomposition. Furthermore, the placement is useless if it is not routable on the
metal layers. Therefore, a full routability check needs to decide whether a placement
is usable or not. Placements which pass the routability check, cf. Chapter 4, are called
routable.

The placement legality rules will be obeyed by our placement algorithm by con-
struction. Routability rules are checked by using the routing algorithm as a black box
oracle. Only routable placements are returned by our algorithm. This is very impor-
tant as has been seen with past technologies when BonnCell wasn’t able to guarantee
routability. In many cases the solution found by BonnCell was violating design rules,
i.e. all FETs were placed and nets routed without shorts or opens but the solution was
violating design rules. These remaining violations had to be fixed manually which was
time consuming and not always possible without changing the placement. The main
contribution of this thesis is that BonnCell is able to produce layouts without design
rule violations and without artificial restrictions of the placement or routing search
space.

3.3 Objective Function
We are only interested in placements which are routable under consideration of all
design rules. However, there may be many routable placements for a given instance.
While each of these solutions is acceptable, some of them are more preferable than
others. Minimizing cell area plays a key role as it allows more compact placements of
cells. The smaller the cells, the more functionality one can pack on the limited chip
area. Therefore, the most important criteria in BonnCell’s objective function is area.
Since the cell height is given by the cell image, this means we minimize the cell width.

There might still be many solutions with minimum cell width. From these solutions
we would like to choose the one with minimum routing objective value. This means for
a given placement, we find the optimum routing w.r.t. the routing objective function
Ψ, which mainly measures weighted netlength but also takes other metrics, e.g. M2
track usage, into account. Finding a placement which admits a routing with globally
minimum routing objective value is only achievable for small cells and the topic of
Section 6.1. For medium to large sized cells, the runtime to calculate optimum routings
for each legal placement is too large. Therefore, by default, we optimize the weighted
bounding box netlength which serves as a proxy for the routing objective value. We
calculate lower bounds for the weighted bounding box netlength for partial placements
which allows us to prune parts of the search tree for which we can prove that they
cannot contain the optimum solution.

To summarize, BonnCell returns the solution P which minimizes

Φ(P) = (W(P), φ(P))

3.3. OBJECTIVE FUNCTION 15

lexicographically, whereW(P) is the placement width and φ(P) the weighted bounding
box netlength of P. More details on the weighted bounding box netlength of P will be
given in Section 5.6. The final problem definition reads

Cell Synthesis Problem
Instance: Nets N, FETs F, a cell image and a set of design rules.
Task: Find a legal and routable placement P which minimizes the placement

objective function Φ. Furthermore, find a routing of P, minimizing the
routing objective function Ψ.

Chapter 4

Routing

In previous versions of BonnCell the program flow was divided into two steps. In
the first step, a placement P was computed which minimized some auxiliary objective
function φ(P). In the second step, this placement was routed by the routing algorithm.
Since many placements are not routable, the placement objective function φ measured
features which empirically correlated with routability, e.g. gate to gate netlength. The
current version of BonnCell still uses these two steps. However, the main difference
is that we no longer use a placement objective function which tries to prefer routable
placements but check routability directly during the placement. This is done by using
the main routing algorithm already during the placement step. This approach guar-
antees that the placement algorithm will return a routable solution. The approach
also has a second advantage. Additional routing constraints, like blockage of certain
tracks or routing pins at certain positions, are essential for cell synthesis in real world
situations. These constraints ensure a seamless embedding of the cell into the hierar-
chical context. We let our routing engine decide about the routability of a placement.
Since the routing engine is able to deal with custom constraints, the placement will
automatically adapt to them as well.

In its simplest version, the routability check is run at the leaves of the search
tree and discards all unroutable nodes. This simple approach is too slow in practice
and several speedup techniques are used, cf. Sections 5.3 and 5.4. In this chapter we
introduce the routing engine. The placement algorithm and the speed up techniques
to make it fast enough will be presented in Chapter 5.

In Section 4.1 we describe our modular implementation approach to routing. Then,
we give the description of our MIP model in Section 4.2, containing the grid graph
construction in Section 4.2.1 and the Steiner tree packing problem in Section 4.2.2.
We explain how design rules, in particular trim shape rules and via coloring rules, are
incorporated into that model in Sections 4.2.3 to 4.2.6. For most of this chapter, we
assume that all FETs have already been placed. In Section 4.3, we describe how the
router can handle partial placement input which allows us to prune unroutable parts
of the placement search tree. Finally, post optimization of routings is discussed in
Section 4.4.

17

18 CHAPTER 4. ROUTING

4.1 Modular Router Structure
Our router is based on a mixed integer programming (MIP) approach. Our goal is to
find a legal routing that minimizes weighted netlength and number of vias in order to
optimize the power, timing, and yield properties of the cell. Note that this does not
impose an algorithmic limitation, as our routing engine allows to optimize arbitrary
linear objective functions.

At its core the router solves the Vertex Disjoint Steiner Tree Packing Prob-
lem problem. Additionally, many design rules have to be obeyed. Different design rules
exist for each layer and change with every new technology. BonnCell uses a modular
approach to implement these constraints. Sets of MIP variables and constraints which
implement a certain set of MIP rules are bundled into a group. For example each layer
has its own group which contains all variables to describe shapes on this layer. Addi-
tionally these groups contain some basic constraints to ensure basic relations between
these variables. For example, the TS mask is described by an interval for every TS
track. Group-TS has two variables for each TS track t, the lower lt and upper bound
ut of the TS interval. Additional constraints guarantee that the upper bound is always
above the lower bound ut > lt and that both bounds are within the bit boundary.
Shapes of neighboring layers also have to obey design rules. These rules are gathered
in a separate group, e.g. Group-TS-GO models rules between TS and GO.

This approach has several advantages. First, it helps organizing the code in a
clear way and allows different developers to modify the MIP formulation of different
groups in parallel. This is important as the amount of design rules is too large to be
implemented by a single developer within the required time frame. Second, the groups
make it easy to activate only parts of the design rules. This will be interesting in
Section 5.3 where we improve the runtime of routability checks. Third, given a MIP
solution s, we can post optimize the solution while keeping a subset of variables fixed
to the values given in s. We will use this in Section 4.4 to optimize our routings for
design for manufacturability (DFM).

4.2 Mixed Integer Programming Formulation
4.2.1 Grid Graph Construction
Since each wiring layer only allows either vertical or horizontal wires, we represent the
cell routing space by a three-dimensional grid graph G = (V, E) with edge costs. For
each layer, we are given a set of routing tracks specifying feasible positions for wires
which are not necessarily equidistant.

By intersecting routing tracks on adjacent layers, we obtain the vertex set V. The
edge set E consists both of line segments connecting adjacent intersections on the same
layer as well as vias between stacked vertices on adjacent layers.

Edge costs are obtained by multiplying their geometric length by a layer-, track-,
and net-dependent value. This allows to trade off netlength against the number of
vias and to leave more space for inter-cell routing by increasing certain edge costs. For

4.2. MIXED INTEGER PROGRAMMING FORMULATION 19

example, on M1, only every second track is usable for inter-cell routing due to the
power via pattern, and M2 is widely used for inter-cell routing.

4.2.2 Steiner Tree Packing
First, we define the Vertex Disjoint Steiner Tree Packing Problem and de-
scribe the core MIP we use to solve it. Then, in Sections 4.2.4 to 4.2.6, we explain how
design rules are incorporated into the model.

Vertex Disjoint Steiner Tree Packing
Instance: A graph G = (V, E) and edge costs c : E→ R>0, a set of net indices N ⊆ N

with a set of terminals Tk ⊆ V for each net k ∈ N.
Task: For each net k ∈ N find a Steiner tree Sk, i.e. Sk contains a path from s to t

for each pair of vertices s, t ∈ Tk. Furthermore, the vertex sets of the Steiner
trees V(Sk) must be pairwise disjoint and the total cost

∑
k∈N c(E(Sk))

minimized.

We solve this problem using a MIP formulation. For each net k ∈ N and each
edge e ∈ E, we add a binary variable xke specifying whether edge e is used by net k.
Furthermore, for each edge e ∈ E, we introduce a binary variable xe that determines
whether edge e is used by some net, and add the constraint xe =

∑
k∈N x

k
e . Since xe

is upper bounded by 1, this constraint already guarantees edge disjointness of integral
solutions.

In the following, for some vertex set X ⊂ V, we refer by δ(X) to the set of edges
between X and V \X, and, in the directed case, by δ+(X) to the set of edges leaving X
and by δ−(X) to the set of edges entering X.

We ensure connectivity by adding for each net k ∈ N a formulation of the Steiner
tree problem in graphs to the model. Note that using a formulation with a strong
relaxation is essential for small running times. In Grötschel, Martin, and Weismantel
1997, the undirected cut relaxation is used for that purpose: For each net k ∈ N, we
denote by Tk ⊆ V the set of its terminals. We say that a cut δ(X) separates Tk if both
Tk ∩ X and Tk \ X are nonempty. Then, for each cut separating the terminal set, the
undirected cut relaxation requires at least one edge of the cut to be contained in the
Steiner tree, i.e.

∑

e∈δ(X)

xke > 1 .

However, the undirected cut relaxation has an integrality gap of 2 (Goemans and
Williamson 1995), which is already asymptotically attained in the special case that
G is a circuit, even if all vertices are terminals, as the fractional solution xk ≡ 1

2

demonstrates.
One can strengthen this relaxation by using a bidirected auxiliary graph (V,A) with

A = {(i, j) : {i, j} ∈ E} which contains two opposing edges (i, j) and (j, i) for each original

20 CHAPTER 4. ROUTING

edge {i, j} ∈ E. Choose an arbitrary root terminal rk ∈ Tk and add usage variables ~xkij
for all directed edges (i, j) ∈ A. Then, for each cut δ+(X) ⊂ A with rk ∈ X and Tk \ X
nonempty, require that at least one edge leaving X is used, i.e.

∑

(i,j)∈δ+(X)

~xkij > 1 .

Finally, lower bound the usage of each original edge {i, j} ∈ E by the sum of the
usages of both directed edges (i, j) and (j, i). This relaxation is called bidirected cut
relaxation. The integrality gap of the bidirected cut relaxation is unknown, the largest
known lower bound is 6

5
(Vicari 2018), and no upper bound stronger than 2, which is

implied by the integrality gap of the undirected cut relaxation, is known.
By introducing additional flow variables, one can eliminate the exponential number

of cut constraints, resulting in the multi-commodity flow relaxation, first introduced
by Wong 1984. This relaxation is equivalent to the bidirected cut relaxation (Polzin
2003) and was already used in by Hoàng and Koch 2012 to solve Steiner tree packing
problems. We will also use the multi-commodity flow relaxation:

For each net k, we denote the set of sink terminals Tk \ {rk} by Sk. Then, the multi-
commodity flow relaxation introduces a commodity for each sink s ∈ Sk and requires a
flow of one unit of the commodity from rk to s to be supported by ~xk. More precisely,
for each net k ∈ N, sink s ∈ Sk and directed edge (i, j) ∈ A, a flow variable fksij that is
upper bounded by ~xkij is introduced, representing the flow of the commodity associated
to net k and sink s along the directed edge (i, j). Then, we add flow conservation
constraints at vertices in V \ {s, rk} and enforce that rk sends one unit of flow and that
s receives one unit of flow of the commodity associated to k and s.

Finally, to ensure vertex disjointness, for each net k ∈ N and vertex v ∈ V, we
add a binary vertex usage variable xkv , which upper bounds usage variables of incident
edges, and add the constraint that each vertex may be used by at most one net.

The complete model can be seen in Figure 4.1, where we denote by

bks(v) :=
∑

(i,j)∈δ+(v)

fksij −
∑

(i,j)∈δ−(v)

fksij

the flow balance of the commodity associated to k and s at a vertex v ∈ V. In
this basic formulation, no additional constraints, especially with respect to distances
between shapes, are taken into consideration.

4.2.3 Conditional Constraints
In order to implement complex design rules, we need to model logical implications to
conditionally enable constraints. More specifically, consider a linear inequality of the
form

∑
i∈I aixi 6 b, and let xcond be a binary variable. We want to model

(xcond = 0) =⇒

(∑
i∈I

aixi 6 b

)
.

4.2. MIXED INTEGER PROGRAMMING FORMULATION 21

min
∑
e∈E

cexe

s.t. xe =
∑
k∈N

xke ∀ e ∈ E

xe ∈ {0, 1} ∀ e ∈ E
xke ∈ {0, 1} ∀ e ∈ E, k ∈ N

bks(v) =





1 if v = rk
−1 if v = s

0 otherwise

∀ v ∈ V, k ∈ N, s ∈ Sk

0 6 fksij 6 ~xkij ∀ (i, j) ∈ A, k ∈ N, s ∈ Sk
~xkij + ~xkji 6 xk{i,j} ∀ {i, j} ∈ E, k ∈ N

xkv ∈ {0, 1} ∀ v ∈ V, k ∈ N

xke 6 xkv ∀ v ∈ e ∈ E, k ∈ N∑
k∈N

xkv 6 1 ∀ v ∈ V

Figure 4.1: MIP formulation to solve Vertex Disjoint Steiner Tree Packing by
multicommodity flows.

To this end, let U be an upper bound on
∑
i∈I aixi−b, which can be derived from the

variable bounds. For this, we require that all involved variables xi have finite variable
bounds, which is the case in our application. Then, the constraint

∑

i∈I

aixi −Uxcond 6 b

satisfies our needs: If xcond = 0, then the constraint equals the original constraint, and
if xcond = 1, then

∑
i∈I aixi −U 6 b is always satisfied by the choice of U.

Of course, a similar approach works in order to condition on xcond = 1. By replacing
constraints with equality by two inequalities, the same approach can be applied to
these constraints as well. Finally, in case we need to condition on multiple such binary
conditions, we can recursively apply the procedure above. This technique is known as
the big M method, cf. Griva, Nash, and Sofer 2009.

4.2.4 Mapping Design Rule Constraints
For the wiring within a cell, design rules used to fall into the two basic categories of
same-net and diff-net rules. Same-net rules are in place to avoid specific geometric
configurations of wiring shapes of a single net, while diff-net rules require a certain
minimum distance between wires that belong to different nets. However, in 7nm tech-
nology, all wires on layers used for cell-internal routing are generated as the complement
of trim shapes, which are not associated with any particular net, and constraints on
wire shapes are entirely expressed in terms of constraints on trim shapes. Hence, the
routing model contains additional variables and constraints that model the trim shape

22 CHAPTER 4. ROUTING

> d0

> d1

A1

A2 B

C

Figure 4.2: A trim shape configuration with relevant trim spacing distances, resulting
wires and the assignment of trim shapes to grid graph edges. Each trim shape is
assigned to an edge containing its center.

configuration, and the only additional constraints on non-via edge usage variables are
consistency constraints with the trim shape model.

All features are manufactured using multiple masks in order to increase packing
density: Shapes on different masks are allowed to have a smaller distance than shapes
on the same mask. Hence, a valid routing does not only consist of a disjoint Steiner
tree packing, but also requires features on such layers to be assigned to masks such that
certain design rules are met. We call this assignment coloring. In the 7nm node, this
only affects vias, since wire and trim shapes use a fixed predefined coloring scheme.

4.2.5 Trim Shape Model

Recall that on each routing layer, the routing grid graph consists of parallel routing
tracks. Except on the layer TS, each routing track is associated with a fixed color,
representing the mask that is used to manufacture trim shapes on this track. Since
trim shapes on tracks of different color are independent, we do not consider colors
in the remainder of this section. The full model is then obtained by applying the
following, for each layer and color, to all tracks of that color.

Now, fix a layer and without loss of generality assume that routing tracks on that
layer are horizontal. Figure 4.2 shows a configuration with four trim shapes A1, A2,
B, and C. Note that two trim shapes A1 and A2 will result in a single trim shape A
during manufacturing. Trim shapes on the same track must satisfy a certain minimum
horizontal distance, indicated by d0, while trim shapes on neighboring tracks must
either align to the same coordinate (as in case of A) or again satisfy a minimum
horizontal distance, indicated by d1. Note that the minimum same track trim shape
spacing rule via d0 also encodes a minimum area constraint on the wire in between.
Since trim shapes have a fixed width Wtrim, any trim shape configuration is uniquely
represented by the set of their center coordinates, indicated by crosses.

4.2. MIXED INTEGER PROGRAMMING FORMULATION 23

Then, we can assign each trim shape to an edge which contains the trim shape’s
center. This assignment is illustrated in Figure 4.2, where edges that have a trim shape
assigned to them are highlighted. Since d0 is sufficiently large, at most one trim shape
can be assigned to any edge.

Hence, we can model a trim shape configuration as follows: For each edge e, we add
a binary variable tactive

e which specifies whether there is a trim shape with its center on
e, and an integral variable tpos

e that specifies the exact x coordinate of the trim shape’s
center in case there is one, where

minx(e) 6 t
pos
e 6 maxx(e).

For two adjacent edges e, e′, we have minx(e
′) = maxx(e) + ε, where ε is the base

unit of the technology1. The distance constraints on trim shapes are then modeled as
follows. Let e and f be two edges on the same track with maxx(e) 6 minx(f). There
are three possible cases: If

maxx(f) −minx(e) −Wtrim < d0,

i.e. there is no feasible trim shape configuration with both a trim shape on e and on
f, then we add the constraint

tactive
e + tactive

f 6 1,

modeling that at most one of the two trim shapes may be active. Otherwise, if

minx(f) −maxx(e) −Wtrim < d0,

i.e. there are both feasible and infeasible trim shape configurations with trim shapes
on e and f, we add the constraint(

tactive
e = 1∧ tactive

f = 1
)

=⇒ (tpos
f − tpos

e −Wtrim > d0) ,

which guarantees that trim shapes on e and f are sufficiently far away from each other
if present.

Distance constraints on pairs of edges e, f on neighboring tracks are modeled sim-
ilarly if the x-intervals e and f are disjoint. Otherwise, the only valid configuration
with a trim shape on both e and f requires these to be aligned, which we model as(

tactive
e = 1∧ tactive

f = 1
)

=⇒ (tpos
f = tpos

e) .

Finally, we need to ensure consistency of the edge usage model and the trim shape
model. Used edges may not contain a trim shape, so for each edge e, we add the
constraint

tactive
e + xe 6 1.

1For 7nm technology, we have ε = 1
4
nm. All coordinates have to lie on a regular grid with spacing ε.

24 CHAPTER 4. ROUTING

Furthermore, let e be an edge and k ∈ N be a net. If e is used by net k, then adjacent
edges must also be used by net k unless cut off by a trim shape. Hence, if f is an edge
adjacent to e, add the constraint(

xke = 1
)

=⇒
(
tactive
f + xkf > 1

)
.

4.2.6 Vias
On via layers, we need to assign colors to used edges. For each via e ∈ E, let Me be
the set of possible colors for e. Then, for each via edge e ∈ E, net k ∈ N and color
m ∈Me, we add a binary variable xm k

e and enforce

xke =
∑

m∈Me

xm k
e .

Moreover, for each such edge e and color m, we add a binary variable

xm e =
∑

k∈N

xm k
e ,

representing whether edge e is used with color m by any net.
Then, if two close via edges e, f are not allowed to be used by the same color m,

add the constraint

xm e + xm f 6 1.

Similarly, if two via edges e, f are even too close to be used by different colors,
require

xe + xf 6 1.

Minimum required spacings between vias and trim shapes are implemented analo-
gously to trim-trim-spacings.

4.3 Routing Oracle During Placement
The routing engine is queried during the placement algorithm to prune partial place-
ments that cannot be completed to routable placements. These queries are not per-
formed using the full routing model, but instead either use the FEOL (front-end-of-
line) or FET-access phase. These phases only respect design rules below M0 or up to
M0, respectively.

Instead of forcing net connectivity using flow variables, for each FET contact it
is determined whether a connection to M0 is required, and in that case constraints
enforcing such a connection are added. This results in a much simpler model which
we can afford to solve many times during placement, and, albeit its limited set of
constraints, detects many unroutable placements.

When routing partial placements, we determine the unplaced area where future
FETs might be placed. Then, we only add constraints for placed FETs, and skip all
constraints that depend on the presence of a FET in the unplaced area.

4.4. POST PROCESSING 25

4.4 Post Processing
Design for manufacturability (DFM) rules are soft constraints that are not strictly re-
quired and aim at increasing yield by avoiding configurations with a higher failure risk.
DFM rules include increased trim-via and trim-trim spacings, preferred coordinates for
trim shape locations and preferred via colors at specific locations.

After computing a full routing, we perform a post processing which aims at satis-
fying as many DFM rules as possible while not increasing netlength or via count. For
each DFM rule and each location, we add a binary variable that determines whether
the rule is satisfied at that location. Then, we add a constraint modeling the DFM rule,
conditioned on that variable, and add the binary variable to the objective function, re-
warding all satisfied DFM rules. Finally, we restrict all flow variables, cf. Section 4.2.2,
in the model to the value found in the main routing step. This fixes the structure of the
routing solution, i.e. which vias and edges have been used but not the exact positions
of vias and trim shapes. We solve the MIP with these additional constraints and obtain
a solution with the same structure as the old solution but fewer DFM violations. Since
we restricted the flow variables to fixed values, most of the MIP complexity is gone
and solving these MIPs takes a fraction of the time needed to solve the unconstrained
MIP.

Chapter 5

Placement Algorithm

This chapter starts with the description of the core placement algorithm of BonnCell
in Section 5.1. This core version is capable of finding optimum layouts but only for
small cells. The combinatorial explosion of the number of possible placements makes
it impossible to enumerate all of them. Most of this chapter focuses on showing how
this simple placement framework is extended to prune large parts of the search tree
and find optimum solutions even for larger cells.

The raw core placement algorithm spends the vast majority of the runtime in check-
ing each fully placed instance for routability. There are three natural approaches to
improve the runtime: speeding up the routability check, reducing the number of in-
stances one has to check for routability, and parallelizing the entire algorithm. We
developed several techniques which covered all of these three items. For infeasible in-
stances, the routability check can be sped up by solving subproblems which are already
infeasible (Section 5.2). We also reduced the number of fully placed nodes one has to
visit with several techniques presented in Sections 5.3 to 5.7. Finally, Section 5.8 shows
results for parallelization of the placement algorithm.

5.1 Placement Algorithm
The placement algorithm is based on a branch and bound approach. The basic skeleton
of the algorithm is very simple and easily implemented. It guarantees routability of its
returned placement by using the routing oracle which has been explained in Chapter 4.
For all but very small cells the algorithm in this form will be too slow. The speed up
techniques described in the following chapters are therefore essential for good results
on larger cells.

The basic placement algorithm consists of two parts, PlaceCell (Algorithm 1)
iterates over the cell width in increasing order and calls PlaceCellFixedWidth
(Algorithm 2) for each fixed width. PlaceCellFixedWidth solves the placement
problem for fixed cell width and returns the optimum placement or that no routable
placement exists with the given cell width. It proceeds by placing the FETs iteratively
from left to right for both stacks simultaneously. After some FETs have already been
placed, the next FET is chosen from the remaining FETs and placed to the right of

27

28 CHAPTER 5. PLACEMENT ALGORITHM

the already placed FETs on this stack. For this FET all possible configurations of
position, number of fingers, height, and swap status are tried. The resulting search
tree is illustrated in Figures 5.1 and 5.2. For some FET configurations, the resulting
partial placement is illegal (e.g. violating FET distance requirements) and discarded
directly. The remaining placements are legal but might not be routable. Therefore,
routability is checked for each of these placements by a call of the routing algorithm.
Since we iterate over the cell width in increasing order, we know that the first routable
placement found in this way has minimum cell width. The second objective φ is
optimized by enumeration of all routable placements P with minimum width.

Algorithm 1: PlaceCell
input : FETs F to be placed, nets N, cell image
output: Routable placement P which minimizes Φ(P)

1 for Wcell := 1, 2, . . . do
2 P := PlaceCellFixedWidth(F,Wcell)

3 if P 6= null then
4 return P

Algorithm 2: PlaceCellFixedWidth
input : FETs F to be placed, nets N, cell image, fixed cell width Wcell.
output: Routable placement with width Wcell which minimizes Φ(P), or null if

no such placement exists.
1 Pbest ← null
2 Q← {P∅} // P∅ denotes the empty placement
3 while Q is not empty do
4 P ← PopNode(Q)

5 if P is not feasible then
6 continue

7 if P is fully placed then
8 Pbest ← Best(Pbest, P)

// minimum w.r.t. objective value (cf. Section 3.3)

9 else
10 Q← Q ∪ PlaceNextFET(P)

11 return Pbest // will be null if no routable placement exists

5.2 Phases
Due to the large complexity of the routing problem, routing oracle calls are very ex-
pensive. In many cases placements are illegal even when only a restricted set of rules

5.2. PHASES 29

FET 1

1 finger

height 3

swapped

0 1 2

unswapped

0 1 2

height 4

swapped

0 1 2

unswapped

0 1 2

2 fingers

height 2

swapped

0 1

unswapped

0 1

Figure 5.1: Example of a configuration search tree for a single FET. Properties are set
in the following order: number of fingers, height in fins, swap status, and x position.

empty placement

FET 1

FET 2

FET 3

FET 3

FET 2

FET 2

FET 1

FET 3

FET 3

FET 1

FET 3

FET 1

FET 2

FET 2

FET 1

Figure 5.2: FET permutation search tree for 3 FETs. FETs are placed from left to
right in all possible permutations and all configurations. In the full placement search
tree, permutations of FETs are enumerated for both stacks individually and each of the
FET nodes is expanded by the configuration tree (cf. Figure 5.1) for the corresponding
FET.

is considered. Checking only this restricted set of rules can speed up the oracle call
substantially. We distinguish between three sets of rules, called phases :

1. FEOL (front-end-of-line). Contains only rules below M0. This includes but is
not limited to floating gates, RX coloring, fin trim shapes, and PC trim shapes.

2. FET-access. Contains rules up to M0. Some nets can be routed below M0 by
FET sharing. For all other nets we know that all their terminals must somehow
be connected to M0. In this phase we enforce that all terminals of these nets
are connected to M0. Placements which are illegal w.r.t. FET-access constraints
usually have a highly congested region with many terminals of different nets. M0
trim shapes, via coloring, and all FEOL rules are contained in this group.

3. Full. The entire routing. Also honoring net connections to user-specified pin
tracks and respecting forbidden tracks.

30 CHAPTER 5. PLACEMENT ALGORITHM

FEOL

FET-access

full

Figure 5.3: Routing solutions of FEOL, FET-access, and full phase. Many relevant
layers for the FEOL phase are not shown in the plots. Routings of the FET-access
phase connect each FET terminal to M0, but only for nets which cannot be fully
connected below M0. The full phase runs an entire routing.

5.2. PHASES 31

103 104 105

Nvariables

2.5

3.0

3.5

4.0

N
co

n
st

ra
in

ts
/
N

va
ri

ab
le

s

FEOL
FET-access
full

Figure 5.4: Size of MIP for different phases. Each point represents the routing MIP of
the final placement of one cell of the Latch Subcells testbed in a given phase. There
are about 2 – 4 times as many constraints as variables, for all phases and placement
sizes. The FEOL phase is about 20 times smaller than FET-access and full. Information
about the Latch Subcells and other testbeds are given in Appendix A.

Figure 5.3 shows routing solutions of the three phases for the same instance. If a
placement is illegal w.r.t. FEOL rules, we know that it is also illegal w.r.t. to FET-
access or full, since the FEOL rules are a subset of the rules of the other phases.
Similarly a placement illegal w.r.t. FET-access is also illegal w.r.t. full routing. The
phases are run one after the other. As soon as one phase proves that the placement is
illegal, we stop since we know that the full placement is also illegal. Figure 5.4 shows
number of variables and constraints of the MIPs for different phases.

Due to the large difference in complexity of the phases, their average running time
also differs by orders of magnitude. An FEOL oracle call lasts about 0.1 seconds,
FET-access running time is in the order of seconds and full routing can take hours
on large instances. For placements which are already illegal w.r.t. FEOL rules, the
phase based approach is much faster compared to directly checking full routability.
Figure 5.5 shows the runtime distribution of routability oracle calls for Standard
Cells and Latch Subcells. The results contain the routing corridors feature which
will be the topic of Section 5.9. Routing corridors artificially restrict the search space
of the full phase. Instances which are feasible with routing corridors are guaranteed
to be feasible without routing corridors as well. For instances which are infeasible
with routing corridors, an additional phase without routing corridors has to decide
upon routability. A few interesting things can be observed in Figure 5.5. First, FEOL
checks are much faster than FET-access and full routability checks. Furthermore, their
runtime is much more consistent. The [25, 75] percentile interval is very narrow and

32 CHAPTER 5. PLACEMENT ALGORITHM

4695
feasible

9321
infeasible

209
feasible

0
infeasible

201
feasible

8
infeasible

0
feasible

8
infeasible

10−2

10−1

100

101

102

103

ru
nt

im
e

[s
]

FEOL FET-access full with r.c. full without r.c.

Standard Cells

115361
feasible

100282
infeasible

969
feasible

1783
infeasible

136
feasible

833
infeasible

11
feasible

822
infeasible

10−2

10−1

100

101

102

103

ru
nt

im
e

[s
]

FEOL FET-access full with r.c. full without r.c.

Latch Subcells

Figure 5.5: Box and whisker plot for runtime distribution of routing oracle calls on
Standard Cells and Latch Subcells testbeds. Each of the 8 columns summarizes
runtimes for a specific phase (FEOL, FET-access, full with routing corridors, and full
without routing corridors) and MIP result (feasible and infeasible). The orange line
denotes the median of the runtimes within each category. The lower and upper bound of
the box represent 25th and 75th percentile, respectively. The lower and upper whisker
represent the minimum and maximum runtime. The respective number of data points
is given as x label. Note that there are more feasible FEOL checks than FET-access
checks, as FEOL checks are applied on partial placements, whereas FET-access is only
checked on fully placed nodes.

5.3. ROUTING OF PARTIAL PLACEMENTS 33

N1

F1

N2

F2

(a)

N1

F1 F3

N2

F2

(b)

Figure 5.6: Adding a FET to an illegal placement can make it legal. (a) FETs F1
and F2 are too close to each other. Since their nets N1 and N2 are not equal, the gates
need to be at least 3 tracks apart from each other. (b) Adding FET F3 with contacts
N1 and N2 legalizes the situation but also changes the electrical properties.

the minimum and maximum do not deviate from the median as much as they do for
the other phases. Proving infeasibility is about twice as fast than finding a feasible
solution. For the other phases the results depend on the testbed. In the Standard
Cells testbed all FET-access and almost all full instances were feasible. Exactly the
opposite is true for Latch Subcells instances, where 65% of the FET-access and
86% of the full instance are infeasible. Runtimes fluctuate by a large amount for these
phases. Although only called 209 times, runtimes of the full routability check with
routing corridors span 4 orders of magnitude. Runtimes of cells with and without
routing phases can be seen in Figures 5.7 and 5.8.

5.3 Routing of Partial Placements
For some instances, most leaves of the placement search tree are unroutable. Many of
these instances are unroutable due to a common part of their placement, i.e. there is
a common ancestor in the search tree for which all children are unroutable. If we can
detect that a node only has unroutable children, the enumeration and feasibility check
of those children can be skipped. The key difficulty here is the non-monotonicity
of partial placements w.r.t. to routability. Counter-intuitively, a placement can be
unroutable but the same placement with an additional placed FET is routable. The
same is true for the FET distance rules. Figure 5.6 shows an example where the
addition of a FET to an illegal placement yields a legal placement.

Therefore it is not possible to use a partial placement as the input to our routing
engine and treat it as if it was a full placement to determine the routability of its
descendants. The problem is solved by assigning one of three states to every position
in the partial placement. The states are

• used, FET placed with configuration c

• empty, no FET will be placed here in the full placement

• unknown, potentially empty, but some FET might be placed here in the full
placement

34 CHAPTER 5. PLACEMENT ALGORITHM

The routing formulation contains constraints only for cases where the presence or
absence of a FET is known but not for the unknown case.

Checking partial placements for routability gives a large speedup compared to sim-
ply checking full placements as can be observed in Figures 5.7 and 5.8. These figures
also show the speedup achieved by using multiple routing phases.

5.4 FEOL Routing Oracle Cache
In contrast to the previously presented technique, routing oracle caching does not affect
the search tree. For the Latch Subcells testbed, 85% of the routability oracle runtime
is spent in the FEOL phase (cf. Figure 5.12 on page 39). Many partial placements look
similar from a routability perspective and calling the oracle twice for similar instances
can be avoided. Two full routing instances are equivalent if, for example, they can
be transformed into each other by a permutation of nets. The routing instances still
originate from different placements, but their routability oracle outcome is guaranteed
to be the same. During the FEOL phase there is much more redundancy which can be
exploited. For example, connectivity information is not required, since we do not want
to fully route the nets. This means two placements might give different routability
results in the full phase but are both legal in the FEOL phase due to the FEOL rules
being less strict.

In cases where we can prove that the FEOL instances are equivalent, a single routing
oracle call suffices. To detect these situations, we transform partial placements into a
data structure called FEOL routing instance which contains all information needed
by the FEOL routing oracle but hides other information contained in the placement,
like net names and FET names. This routability data is the only input to the FEOL
routing algorithm. For example, for each track and stack it contains a bool which
denotes whether there exists a FET which must be connected at this position. If
two partial placements are transformed into the same routability data we know, by
construction, that the routability oracle will give the same answer for both. For every
finished call to the routing algorithm, we store the routability data and the oracle
result in a cache. Figure 5.11 shows two partial placements which are transformed into
the same routability data.

The effectiveness of the FEOL cache is shown in Figures 5.13 and 5.14. Figure 5.12
shows that for Latch Subcells instances the relative routability check runtime spent
in the FEOL phase can be reduced from 85% to 60% by using the FEOL cache.

5.4. FEOL ROUTING ORACLE CACHE 35

100 101 102 103 104

tdefault [s]

100

101

102

103
t x
/
t d

ef
au

lt

7.4

43.1

Standard Cells

only check full placements
+ only full routing phase

Figure 5.7: Evaluation of runtime benefits due to partial placement checks and rout-
ing phases on Standard Cells testbed. Runtime of default mode tdefault, including
features presented in the following sections, is shown on the x axis. Relative runtime
of default mode without specific feature tx compared to runtime of default mode is
shown on the y axis. For blue markers the deactivated feature is the routability check
of partial placements, i.e. only full placements are checked for routability using the
routing phases FEOL, FET-access, and full. For orange markers only full placements
are checked but only using the full routing phase. The dashed gray line shows points
for which tx hits the runtime limit of 12h. This means that all cells represented on
this line would have taken longer, i.e. larger value of tx, if not aborted. The entire
testbed is factor 7.4 faster due to the partial placement checks and additionally factor
5.8 faster due to using three routing phases.

36 CHAPTER 5. PLACEMENT ALGORITHM

100 101 102 103 104

tdefault [s]

100

101

102

103
t x
/
t d

ef
au

lt

3.0

16.1

Latch Subcells

only check full placements
+ only full routing phase

Figure 5.8: Same as Figure 5.7 but for Latch Subcells testbed. For this testbed,
the runtime limit was 24h. Runtime savings are not as large as for Standard Cells
instances. Many instances have a larger runtime tdefault, s.t. tx/tdefault cannot be very
large before the timeout is reached. It is obvious, however, that these features are
mandatory to achieve good performance.

5.4. FEOL ROUTING ORACLE CACHE 37

0 10 20 30 40 50 60 70 80 90 100

100

90

80

70

60

50

40

30

20

10

0

0

10

20

30

40

50

60

70

80

90

100

←
fu

ll
[%

]

←
FET

-access
[%

]

FEOL [%] →

Standard Cells

0.1s

1s

10s

100s

1000s

10000s

100000s

Figure 5.9: Ternary plot of relative runtimes of FEOL, FET-access, and full phase.
Each point represents one instance of the Standard Cells testbed and shows which
portion of the routability check runtime was spent in which phase. The bottom left
corner contains instances with 100% runtime spent in full and 0% in the other two
phases. Instances with 100% spent on FET-access would be in the top corner and
instances with 100% on FEOL phase in the bottom right corner. Instances with equal
portions in each phase are exactly in the center of the triangle. Horizontal lines from
bottom to top represent points with 0%, 10%, . . . , 100% relative runtime in the FET-
access phase. Most instances use large parts of their runtime in the full phase with
small contributions from FET-access and FEOL. There are some outliers with more
than 60% FEOL and FET-access runtime though. Colors encode the total routability
check runtime used by a cell. There is a tendency for cells with higher runtime to
use larger runtime portions in the full phase. The black triangle shows relative phase
runtimes for the total runtime of all cells summed up. The plot was created using the
python package ternary (Harper et al. 2015).

38 CHAPTER 5. PLACEMENT ALGORITHM

0 10 20 30 40 50 60 70 80 90 100

100

90

80

70

60

50

40

30

20

10

0

0

10

20

30

40

50

60

70

80

90

100

←
fu

ll
[%

]

←
FET

-access
[%

]

FEOL [%] →

Latch Subcells

0.1s

1s

10s

100s

1000s

10000s

100000s

Figure 5.10: Ternary plot of relative MIP runtimes of FEOL, FET-access, and full
phase. Same plot as Figure 5.9 but on the Latch Subcells testbed. In comparison to
the Standard Cells testbed, many more instances use the majority of their runtime
in the FEOL phase, some even more than 90%. The instances are in general much
more spread out over the diagram. In contrast to the Standard Cells results, higher
routability check runtime correlates with a larger fraction of time spent on the FEOL
phase. The relative runtime summed over all cells uses about 60% of its runtime in
the FEOL phase.

5.4. FEOL ROUTING ORACLE CACHE 39

8 9

7

9 10

2

10 11

5

1 2

5

2 3

6

3 4

7

8 9

7

9 12

13

7 9

2

1 2

5

2 3

6

3 4

7

Figure 5.11: Two partial placements with equivalent FEOL cache key. The place-
ments differ in two FETs on the bottom stack. Note that a simple renaming of net
names is not sufficient to transform one placement into the other. Both instances can
be checked for FEOL routability by a single oracle call.

0 10 20 30 40 50 60 70 80 90 100

100

90

80

70

60

50

40

30

20

10

0

0

10

20

30

40

50

60

70

80

90

100

←
fu

ll
[%

]

←
FET

-access
[%

]

FEOL [%] →

Latch Subcells – Without Phase Cache

0.1s

1s

10s

100s

1000s

10000s

100000s

Figure 5.12: Ternary plot of relative MIP runtimes of FEOL, FET-access, and full
phase. Same plot as Figure 5.10 but without the FEOL cache presented in Section 5.4.
Compared to Figure 5.10 more cells are in the bottom right corner with most of their
runtime spent on the FEOL phase, especially for instances with high total runtime.
The total average uses 85% in the FEOL phase, compared to 60% with FEOL caching.

40 CHAPTER 5. PLACEMENT ALGORITHM

100 101 102 103 104 105

Nquery

0.04

0.06

0.1

0.2

0.3

0.4

0.6

1

2
N

m
is

s/
N

qu
er

y

0.32

0.24

Standard Cells
Latch Subcells

Figure 5.13: FEOL routability oracle cache misses and queries for Standard Cells
and Latch Subcells testbeds. Each point represents one cell. Nquery denotes the
number of cache queries for this cell andNmiss the number of cache misses, i.e. instances
that were not found in the cache and needed a MIP call. The ratio Nmiss/Nquery gives
the number of instances that on average need to be solved by the MIP for each FEOL
instance. A value of 1 means that the cache did not give any improvements. Cells with
only few FEOL instances do not profit from caching. The more FEOL instances are
solved, the hotter the cache, i.e. more FEOL cache keys are already present. For two
Latch Subcells instances, only 5% of the queries could not be found in the cache.
Dotted lines show the ratio of cache misses and hits summed over all instances of the
respective testbed.

5.4. FEOL ROUTING ORACLE CACHE 41

10−1 100 101 102 103 104

tFEOL
no cache [s]

0.04

0.06

0.1

0.2

0.3

0.4

0.6

1

2
tF

E
O

L
w

it
h

ca
ch

e/
tF

E
O

L
n
o

ca
ch

e

0.40

0.28

Standard Cells
Latch Subcells

Figure 5.14: Similar plot compared to Figure 5.13. Total runtime for FEOL instances
tFEOL is shown with and without caching. If MIP runtime were the only contribution to
the total runtime and all instances took the same amount of time for solving, this plot
would look exactly the same as Figure 5.13. MIP runtimes are relatively constant over
different instances, especially for Latch Subcells instances cf. Figure 5.5. However,
MIP solver runtime is not the only contribution to total FEOL runtime. Instance
construction takes some amount of runtime. Especially for those instances which are
easy to solve by the MIP the relative contribution of instance construction becomes
significant. Therefore, runtime improvements are slightly worse than would one would
expect from Figure 5.13. Dotted lines show the runtime ratio for total runtime of
all instances of the respective testbed. As expected, their values are slightly larger
compared to those of Figure 5.13.

42 CHAPTER 5. PLACEMENT ALGORITHM

Figure 5.15: Partial placement with three placed FETs. The remaining FETs can
only be placed in the green area to the right of the placed FETs.

5.5 Cell Width Pruning
The idea of pruning in any branch and bound algorithm is to remove infeasible or
non-optimal nodes of the search tree without visiting them. For a given node, we
want to detect situations in which all of its descendants are either not routable or not
optimal. In cell width pruning this means that given some partial placement we prove
that for any configuration of the remaining FETs the resulting placement is illegal.
Note that at this point we are inside the cell width loop (cf. Algorithm 1 on page 28).
Therefore, the cell width is already fixed, i.e. all FETs must be placed in some limited
area. Furthermore, since FETs are placed from left to right the only available space
is to the right of all already placed FETs as illustrated in Figure 5.15. We want to
decide whether the remaining space suffices to place all remaining FETs. We run this
step independently on both stacks, since the FET sharing rules do not impose any
constraints for FETs from different stacks. Since the FET sharing rules only apply
to FETs which are direct neighbors, only the rightmost placed FET and the width of
the remaining area are relevant. Note that our goal here is merely to prune subtrees
which would violate the FET sharing rules. This by itself does not guarantee that the
remaining placements will be routable. Routability will be checked at a different point
of the algorithm.

5.5.1 Combinatorial Approach

Our cell width pruning is based on Euler chains which have already been used in
previous work on automated cell design. Uehara and Cleemput 1981 introduced them
in their seminal work on placement of dual cells using the 1-D layout style. Weyd 2011
discusses many variants of the placement problem for non-dual cells and analyzes its
complexity for different restricted versions of the problem. The most general case is not

5.5. CELL WIDTH PRUNING 43

discussed but most ideas from the restricted cases can be applied. We will focus on the
most general case directly since it is the one which is relevant in practice. Compared
to previous work our contribution is an algorithm which handles non-dual cells, allows
gaps between FETs, and can be used in practice. As the problem is NP-hard it does
not have polynomial worst case runtime but we show that the runtime is negligible in
practice.

Placement Restrictions

As we will see, the Euler chains method requires restrictions on the search space of
all possible configurations of the FETs which are not placed yet. We iterate over all
possible restrictions and apply the method for each one of them. If there is no legal
placement for any possible restriction, we know that there is no legal placement at all.
If, on the other hand, we find a legal placement obeying some restrictions we keep the
node in our search tree. These restrictions are defined as follows.

Definition 5.1. A restriction r for a FET F is defined as a tuple (f, h, s), where

• f denotes the number of fingers,

• h the height, and

• s the swap status.

A FET configuration c = (x, f, h, s) obeys the restriction r = (f′, h′, s′), if

• f = f′,

• h = h′, and

• f is even ⇒ s = s′.

Definition 5.2. Given a placement C and a restriction R, we say that C = (c1, . . . , cn)

obeys R = (r1, . . . , rn), if ci obeys ri for all i. The set of all legal placements obeying
R is defined as C(R) := {C | C legal, obeying R}.

Note that for odd number of fingers, the swap status is not controlled by a re-
striction. The reason for this will become apparent later. The outer loop of the algo-
rithm described above is shown in Algorithm 3 (CellWidthPruning). The function
Restrictions(F) returns the set of all possible restrictions R s.t. a placement C obey-
ing R exists. The function MinWidth(F, CL, R) determines the minimum width of a
placement of F obeying the restriction R with leftmost placed FET CL. MinWidth uses
a graph model and Euler walks. We will show how to implement MinWidth(F, CL, R)

for CL = null. CL = null means that no FET has been placed on this stack yet. This
algorithm can then easily be extended for CL 6= null.

44 CHAPTER 5. PLACEMENT ALGORITHM

Algorithm 3: CellWidthPruning
input : FETs F to be placed, fixed leftmost FET CL (null if no FET is fixed),

maximum allowed placement width Wmax

output: Does a placement with width at most Wmax exist?
1 for R ∈ Restrictions(F) do
2 if MinWidth(F, CL, R) 6Wmax then
3 return true

4 return false

Minimum Width for Restricted Placements

In the following we will develop the MinWidth algorithm and prove its correctness.
We start with a formal definition of the width of a placement.

Definition 5.3. The width of a placement C = (c1, . . . , cn) is defined as

W(C) := max
i

(x(ci) + f(ci)) −min
i
x(ci)

This allows us to formulate our central lemma.

Lemma 5.4. Let R be a placement restriction. Then,

min
C∈C(R)

W(C) = min
C∈C(R)

(
n∑

i=1

f(ci) + 2Nno-share(C)

)
, (5.1)

where Nno-share(C) is the number of neighboring FETs in C which are not allowed
to share.

Proof. “6”: For a given legal configuration C, assume w.l.o.g. that the indices are
sorted s.t. x(ci) < x(cj) for i < j. Let

G(ci, ci+1) := x(ci+1) − x(ci) − f(ci) ,

be the gap between configurations ci and ci+1. Then

W(C) = x(cn) + f(cn) − x(c0)

=

n−1∑

i=1

(x(ci+1) − x(ci)) + f(cn)

=

n−1∑

i=1

(G(ci, ci+1) + f(ci)) + f(cn)

=

n∑

i=1

f(ci) +

n−1∑

i=1

G(ci, ci+1)

5.5. CELL WIDTH PRUNING 45

We have G(ci, ci+1) > 0 if Fi and Fi+1 are allowed to share and G(ci, ci+1) > 2

otherwise. Therefore,

W(C) >
n∑

i=1

f(ci) + 2Nno-share(C) (5.2)

From Inequality (5.2) we immediately get

min
C∈C(R)

W(C) > min
C∈C(R)

(
n∑

i=1

f(ci) + 2Nno-share(C)

)
.

“6”: Equality in Inequality (5.2) is obtained if all neighboring FETs Fi, Fi+1 have
G(ci, ci+1) = 0 if they can share and G(ci, ci+1) = 2 otherwise. Such a placement can
always be obtained from an existing placement C with

W(C) >

n∑

i=1

f(ci) + 2Nno-share(C)

by moving FETs closer to each other.
Let C be a placement which minimizes

∑n
i=1 f(ci) + 2Nno-share(C). Then we can

construct a placement C′ from C for which

W(C′) =

n∑

i=1

f(ci) + 2Nno-share(C)

This yields

min
C∈C(R)

(
n∑

i=1

f(ci) + 2Nno-share(C)

)
=W(C′)

> min
C∈C(R)

W(C) ,

which concludes the proof.

The left hand side of Equation (5.1) is MinWidth(F, CL, R) for CL = null.
Note that the first summand does not depend on C but is equal for all C obey-
ing R. Therefore, in order to determine minC∈C(R)W(C) we only need to determine
minC∈C(R) 2Nno-share(C). This is where we use Euler chains.

We sort the FETs which are to be placed into different groups. FETs within the
same group can potentially share if placed next to each other. FETs from different
groups are never allowed to share. This reduces the problem to independent groups.

FETs are only allowed to share if they have the same VT level and height. Therefore,
we sort the FETs into groups with equal VT level and height, which is possible since
the height of the FETs is fixed by the restriction. There needs to be a gap between
two FETs of different groups, which means that the number of gaps is minimized if

46 CHAPTER 5. PLACEMENT ALGORITHM

all FETs within one group are placed directly next to each other. We therefore get
Ngroup − 1 gaps between the groups, where Ngroup is the number of groups.

Within each group two FETs can share if they have the same source or drain net,
cf. Figure 3.4 on page 13. For FETs with an even number of fingers the outward facing
nets are equal on both sides. If the FET is not swapped it is the source net on both
sides, if the FET is swapped it is the drain net. Since the swap status is fixed for all
FETs with an even number of fingers, it is known which nets belong to the outward
contacts and we know which pairs of FETs are allowed to overlap. The remaining
part of the placement configuration space which is not restricted are the relative x
positions of the FETs and the swap status of FETs with an odd number of fingers.
In the following we present a linear time algorithm which determines the minimum
number of needed gaps.

Walk Partitions

We use a graph model to determine the minimum number of gaps that need to be left
within one group. For each group we construct the sharing graph G = (V, E), where
V corresponds to the set of nets and E to the set of FETs. For each FET with an odd
number of fingers, we have an edge e = {v,w} connecting the nodes corresponding to
the source and drain net of the FET. For each FET with an even number of fingers we
have a loop e = {v, v}, where v is the net which belongs to the leftmost and rightmost
contact of the FET. An illustration of the sharing graph is given in Figure 5.16. The
idea of the sharing graph is that two FETs can share if their corresponding edges in the
graph have a common vertex. Furthermore, a set of FETs can be placed next to each
other without any gap if and only if there exists a walk in G consisting of the edges
corresponding to the FETs. We call such a placement of a subset of FETs without
gaps a chain.

Definition 5.5. Let G be a graph. We denote by P(G) the size of a minimum partition
of the edges of G into walks.

Theorem 5.6. Let F be a non-empty set of FETs with equal VT level, equal height,
fixed number of fingers, and fixed swap status for FETs with an even number of
fingers. For any placement C, let C|F be the sub placement of C consisting of the
FETs F. Then given a placement C it holds that

min
C∈C(R)

Nno-share(C|F) = P(G(F)) − 1 .

Proof. “6”: Let k := P(G(F)), and P1, . . . , Pk be a partition of the edges of G into
walks. Then for each walk we can place the FETs next to each other in a chain. Since
there are k walks, this gives k chains with k− 1 gaps in between.

“>”: Let C be a placement minimizing Nno-share(C|F). By construction of the graph
G, any chain corresponds to a walk in G. Therefore, this placement yields a partition
of G into Nno-share(C|F) + 1 walks.

5.5. CELL WIDTH PRUNING 47

A

B

C

D E

(a)

A B C D E C B X B

(b)

Figure 5.16: (a) Sharing graph with 5 nodes corresponding to nets (A, B, C, D, E) and
5 edges, corresponding to FETs with an odd number of fingers and 1 loop corresponding
to a FET with an even number of fingers. (b) Placement with minimum number of
gaps. This corresponds to the walks A, B, C, D, and E, C, B, B. Note that the net X
does not appear as a node in the graph since it is the inner net of a FET with an even
number of fingers.

The size P(G) of a minimum partition of a connected graph G into walks can be
determined by the degrees of the vertices. Euler’s well-known result states that for a
connected graph a single walk suffices if no more than 2 vertices have odd degree. This
result can easily be extended.

Theorem 5.7. Let G be a connected graph and Nodd the number of vertices with odd
degree. If G has no edges, i.e. G is the graph consisting of a single unconnected
vertex, then P(G) = 0. Otherwise,

P(G) := max
(
Nodd

2
, 1

)
.

To obtain P(G) for a potentially unconnected graph G, one has to sum the number
of walks for each connected component.

Corollary 5.8. Let G be a connected graph and C1, . . . , Ck its connected compo-
nents. Then

P(G) =

k∑

i=1

P(Ci).

The connected components of a graph can be computed in linear time. Therefore,
using Theorem 5.6 and Corollary 5.8 we are able to compute the minimum number of
gaps in a placement restricted by R in linear time.

Algorithm 3 has to iterate over all restrictions in order to decide whether a place-
ment with width at most Wmax exists. In practice, we only consider restrictions R for
which

∑
i f(ri) 6 Wmax. This means that we start with the minimum number of fin-

gers for each FET and incrementally distribute additional fingers. For some instances

48 CHAPTER 5. PLACEMENT ALGORITHM

A

B

C

D E

F

G

H

I

(a)

E

F

G

H

I

(b)

Figure 5.17: (a) Generalized sharing graph with 9 vertices (nets) and 3 edges for
FETs with an odd number of fingers (Eodd, solid edges) and 8 edges for FETs with an
even number of fingers (E′even, dotted edges). (b) Corresponding vertex cover graph.
A minimum vertex cover of size 2 is denoted by blue vertices.

a large number of FETs are restricted to an even number of fingers and iterating over
all swap states for these FETs becomes a runtime bottleneck. In the following, we show
how the swap states of these FETs can be chosen more efficiently.

Choosing Swap States Efficiently

Given a restriction R, the edges of the sharing graph of R can be divided into two sets
Eodd and Eeven, where Eodd (Eeven) consists of the edges corresponding to odd (even)
finger restrictions. We notice that all edges in Eeven are loops and therefore their
presence does not influence the parity of the vertex degree. Changing the swap state
of a FET restriction with an even number of fingers removes a loop at one vertex
(e.g. corresponding to the FETs source net) and adds a loop at another vertex (e.g.
corresponding to the FETs drain net). This changes neither Nodd in Theorem 5.7, nor
the vertex sets of connected components in Corollary 5.8. However, it might change
whether a connected component consisting of a single vertex has any loops or not. If
the minimum width of a restriction R1 is guaranteed to be no larger than the minimum
width of a restriction R2, there is no need to iterate over R2 in Algorithm 3.

Definition 5.9. An undecided swap placement restriction is a placement restriction
without specifying the swap status for even numbers of fingers. A placement restriction
is consistent with an undecided swap placement restriction if it specifies the same
number of fingers and FET height for each FET.

We construct the generalized sharing graph G = (V, E) of an undecided swap place-
ment restriction as follows. Similar to the sharing graph, let the vertex set V correspond
to the nets. For each FET restricted to an odd number of fingers we have an edge con-
necting the vertices corresponding to source and drain. This gives the edge set Eodd as
for the sharing graph. However, unlike for the sharing graph, for each FET restricted
to an even number of fingers we have an edge connecting the vertices corresponding to
source and drain as well. This gives the edge set E′even. An example for a generalized
sharing graph is shown in Figure 5.17(a).

5.5. CELL WIDTH PRUNING 49

Definition 5.10. Let RU be an undecided swap placement restriction and R a consistent
placement restriction. Then we say the generalized sharing graph of RU is consistent
with the sharing graph of R.

Given an undecided swap placement restriction, we construct a consistent place-
ment restriction which minimizes its corresponding minimum width over all consistent
placement restrictions. In terms of graphs this means that given a generalized sharing
graph, we construct a consistent sharing graph G with minimum P(G). Consistent
sharing graphs are obtained from generalized sharing graphs by replacing each edge
(v,w) ∈ E′even by the loop (v, v) or (w,w). We denote the vertices of the non-empty
connected components of the graph (V, Eodd) by V>0. Adding a loop to an existing
connected component of (V, Eodd) does not increase the size of a minimum walk parti-
tion. Therefore, we can greedily replace all edges in E′even which are incident to V>0 by
loops adjacent to the non-empty connected components. The remaining edges in E′even

connect empty connected components of (V, Eodd). Each vertex which gets assigned at
least one additional loop will result in an additional non-empty connected component.
We want to minimize the number of additional non-empty connected components,
which is equivalent to the Vertex Cover problem on the graph (V \V>0, E

′
even). Fig-

ure 5.17(b) gives an illustration of the Vertex Cover problem resulting from the
generalized sharing graph in Figure 5.17(a).

Although the Vertex Cover problem is NP-hard (Karp 1972), this approach still
results in a runtime improvement compared to the brute force approach. Given an
undecided swap placement restriction the brute force approach would run the linear
time minimum width computation for each of the 2|E′

even| different consistent placement
restrictions. With the Vertex Cover approach, we only have one minimum width
computation and need to solve one Vertex Cover instance on a graph which often
has fewer than |E′even| edges. In practice the Vertex Cover instances are very tiny
s.t. a full enumeration of possible cover sets with increasing cardinality is fast enough.
Figure 5.18 shows the size of vertex cover instances in practice.

Combined, these techniques make our cell width pruning so fast that for most
instances its running time is negligible compared to other parts of the algorithm like
routability checks (cf. Figure 5.19). The resulting speed up of the placement algorithm
is very large, especially for Latch Subcells instances. Figure 5.20 shows the effects
of cell width pruning on the number of search tree nodes as well as resulting placement
runtimes.

5.5.2 MIP Approach

The Euler chains method presented above works well if both stacks can be placed
independently of each other. In practice, however, design rules on the FEOL layers
forbid certain placements which would be seen as legal for both stacks individually. Ef-
ficiently incorporating these additional constraints into the Euler chains method seems
to be difficult, at least if tried in an technology independent manner. An alterna-

50 CHAPTER 5. PLACEMENT ALGORITHM

0 1 2 3 4 5

vertices

#
in

st
an

ce
s

81%

0%
17%

1% 1% 0%

0 1 2 3

edges

81%

17%
2% 0%

Figure 5.18: Vertex cover instances are very small in practice and can be solved by
full subset enumeration. Only instances with up to 5 vertices and up to 3 edges have
been observed on the Standard Cells and Latch Subcells testbeds. Slightly larger
instances have been observed when trying to solve small latches without big cell modes
but even there the largest instances have at most 10 edges.

tive approach is to model the placement problem in a MIP formulation. Additional
constraints can easily be added and adapted to new technologies.

The main motivation for improving the lower bounds are instances with a small
number of large FETs. Figure 5.21 illustrates an example with 6 FETs. Three of these,
one on the P stack and two on the N stack, cannot be placed opposite of each other
if built with maximum height due to the FEOL rules. The width of the placement is
therefore dominated by the sum of the width of both of these FETs and much larger
compared to an independent placement of both stacks. The Euler chains method
underestimates the width of the placement which leads to checking many placement
nodes with the two large FETs being illegally placed opposite of each other.

The MIP approach checks the following additional rules. Two FETs placed opposite
of each other with different gate nets are unroutable if

7 track image

– they both have at least 3 fingers and none of their contact nets are connected
to power, or

– any of them have a height of 3 fins.

9 track image

– they both have at least 3 fingers and none of their contact nets are connected
to power, or

– any of them have a height of 4 fins.

12 track image

– no additional rules are checked.

These rules are derived from design rules from other layers, mainly CT. Unit tests
ensure that these rules stay valid even if design rules change.

5.5. CELL WIDTH PRUNING 51

100 101 102 103 104

tplace [s]

10−5

10−4

10−3

10−2

10−1

100
t l

b
/
t p

la
ce

1.23%

0.41%

Latch Subcells
Standard Cells

Figure 5.19: Runtime of combinatorial lower bounds for the placement width tlb
relative to total placement runtime tplace on Standard Cells and Latch Subcells
testbeds. MIP lower bounds (Section 5.5.2) are not used here. For most instances the
runtime of the lower bound calculation is negligible compared to the total placement
runtime and for every instances it takes less than 10% of the total placement runtime.
There is a trend that instances with larger placement runtime use a higher fraction of
this runtime for lower bound calculation but there is still some gap before the lower
bound runtime could become the runtime bottleneck if this trend continues. The dotted
lines show the relative runtimes of lower bounds for all testbed runtimes summed up.

52 CHAPTER 5. PLACEMENT ALGORITHM

101 102 103 104 105 106 107

Nno-lb

10−3

10−2

10−1

100

N
lb
/
N

n
o-

lb

28.9%

1.8%

2.5%

Search Tree Node Count Comparison

Standard Cells
Latch Subcells
Latch Subcells (24h timeout)

100 101 102 103 104 105

tno-lb [s]

10−3

10−2

10−1

100

t l
b
/
t n

o-
lb

65.2%

4.8%
4.5%

Runtime Comparison

Standard Cells
Latch Subcells
Latch Subcells (24h timeout)

Figure 5.20: Pruning with lower bound on placement width is very effective for larger
instances. Results are shown for Standard Cells and Latch Subcells testbeds.
Nlb denotes the number of nodes in the placement search tree that are considered with
active lower bounds. Nno-lb measures the same number when lower bounds are not
used. tlb and tno-lb measure the respective total placement runtimes, including lower
bound calculation for tlb. Reduction of the number of search tree nodes translates into
shorter placement runtimes but not linearly. Both figures show the same y range to
allow for a comparison. For instances with more than 10.000 nodes more than 50%,
in many cases roughly 95%, can be pruned by cell width lower bounds. Again, the
runtime reduction is slightly less. Some Latch Subcells instances run into a 24h
timeout but only if lower bounds were not used. Those are shown in green. The
dotted lines show relative number of nodes and relative runtime for all testbed cells
combined.

5.5. CELL WIDTH PRUNING 53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

0 6

2

0

2

6 5

4

6

4

5

4

6

4

5

4

6

4

5

4

0 3

5

0

5

3

5

0

5

3

5

0

5

3

5

0

5

3

5

0

5

3

5

1 5

2

1

2

1 5

4

1 3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

Figure 5.21: Instance with 6 FETs whose smallest placement is substantially larger
than the lower bound on placement width for each stack individually. Note that the
PFET (upper stack) with gate net 5, if built with height 3, cannot be placed opposite
of the NFETs with gate nets 2 and 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 6

2

0

2

0 3

5

0

5

3

5

0

5

3

5

0

5

3

5

0

5

6 5

4

6

4

5

4

6

4

5

4

6

4

5

4

1 5

2

1

2

1 3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1

5

3

5

1 5

4

Figure 5.22: Illegal placement of instance of Figure 5.21. This placement is a valid
solution with respect to the Euler walks lower bounds which assumes that both stacks
can be placed independently of each other. The resulting cell is 8 tracks smaller than
the smallest legal layout.

MIP lb. for 6 . . . FETs 0 4 all (6)
number of nodes 599601a 244997 244889
6 30 tracks (runtime) [min] 562 2.2 1.9
6 32 tracks (runtime) [min] - 60.6 60.6
34 tracks first sol. (runtime) [min] - 65.4 64.8
34 tracks proven opt. sol. [min] - 396 41

Table 5.1: Runtimes and number of visited placement nodes for combinatorial lower
bounds on placement width and MIP lower bounds on placement width. Timeout was
set to 600min, at which point the algorithm without MIP lower bounds tried to find a
solution with 32 tracks. For proving that no solution with 6 30 tracks exists, a factor
∼ 300 speedup has been achieved by using the MIP lower bounds.

aNumber of nodes visited after 600min runtime.

54 CHAPTER 5. PLACEMENT ALGORITHM

0 4 ∞

t p
la

ce
[h

]
2.47 2.57 2.49

0.00 0.19 0.22

0 4 ∞

N
n
od

es
[k

] 78
53

41

Standard Cells

0 4 ∞

t p
la

ce
[h

]

22.51 23.03

39.17

0.02 1.40

20.27

0 4 ∞
N

n
od

es
[k

]

1724 1614
1230

Latch Subcells

total MIP lower bound

Figure 5.23: Effect of MIP lower bounds on placement width on Standard Cells
and Latch Subcells testbeds. The MIP lower bounds are only used if the partial
placement has at most k unplaced FETs. Otherwise, the combinatorial lower bounds
are used instead. Results for k = 0, 4,∞ are compared against each other, where ∞
means that the MIP lower bounds are always used. The number of search tree nodes
Nnodes can be reduced by MIP width lower bounds, especially for Standard Cells,
but this does not yield an improved total runtime.

MIP formulation

The MIP formulation contains an integer variable xFpos for each FET F which denotes
the position of F. Furthermore there are integer variables for the width, height and
swap status of each FET. Constraints make sure that only placements without illegal
overlaps are considered. Additionally, there are constraints which model the rules given
above. The lower bounds are calculated in the setting where a partial placement is
present and some FETs still have to be placed. A specific FET FL is chosen which is to
be placed next. The goal is to determine the rightmost possible position for this FET
s.t. the other FETs can still be placed to its right. Therefore, the objective function
is to maximize xFL

pos, the x coordinate of FL. See Klotz 2018 for a detailed description
of the MIP formulation. The basic formulation can be improved upon by adding MIP
cuts which are not needed for correctness of the formulation but exclude fractional
solutions from the LP relaxation, resulting in lower MIP solver runtimes. Klotz 2018
also gives a detailed description which cuts have been added and how this affects the
runtime.

5.6. NETLENGTH PRUNING 55

Overall the MIP lower bounds on placement width have not been very successful in
practice. Figure 5.23 shows that for the Standard Cells and Latch Subcells in-
stances, which are all 9 track, the number of visited placement nodes can be reduced to
almost 50% of the number needed with the combinatorial lower bounds. For the Stan-
dard Cells, this does not significantly reduce the runtime. For the latch instances
this even significantly increases the total running time. The situation is different for
the cell mentioned in the motivation earlier (Figure 5.21). Within a runtime limit of
10h, the cell can only be solved using the MIP lower bounds. Table 5.1 summarizes
the results.

5.6 Netlength Pruning
Once a routable placement has been found, the algorithm continues to search for place-
ments with a better objective value. Since the cell width is fixed at this point, the
only criterion is weighted bounding-box netlength. To reduce the number of nodes
which need to be checked checked before the best solution found is proven to be an
optimum solution, we calculate lower bounds on the weighted bounding-box netlength
for partial placements. In this way we are able to prune parts of the search tree which
might be routable but would be worse solutions compared to the one we have already
found.

Definition 5.11. Given a placement C and net N, let T(N,C) denote the set of x
positions of the source, drain and gate terminals of net N in the placement C. Given a
weight wN for each net N, the weighted bounding-box netlength LBB(C) of a placement
C is defined as

LBB(C) :=
∑

N∈Nsignal

wN(max (T(N,C)) −min (T(N,C))) ,

where Nsignal is the set of signal nets, i.e. all nets except the power nets.

Fast-lb is an easy to compute lower bound for LBB which estimates T(N,C) for
partial placements. It considers the x coordinates of already present terminals and
assigns all not yet placed terminals to their leftmost possible position. Nets for which
no terminal has yet been placed do not contribute to the lower bound. MIP-lb is
a more sophisticated lower bound which estimates the additional netlength of yet
unplaced FETs more precisely. The placement MIP in Section 5.5.2 is also used here
to determine stronger lower bounds on LBB. However, calculation of these stronger
lower bounds is relatively slow. To achieve a good trade off between the saved runtime
by pruning parts of the search tree and runtime spent by calculation of improved lower
bounds, the MIP lower bounds are only calculated if at most 4 FETs remain unplaced.
Figures 5.24 to 5.27 show how many placement nodes can be saved with the lower
bounds and how this affects total placement runtime. One can see that the stronger
MIP based lower bounds achieve additional pruning of nodes. However, the runtime
saved by pruning only just compensates for the additional runtime cost of computing
these lower bounds.

56 CHAPTER 5. PLACEMENT ALGORITHM

101 102 103 104 105 106

Nno-lb

0.1

0.2

0.3

0.4

0.5
0.6

0.8

1
1.2

N
fa

st
-l
b
/
N

n
o-

lb

Standard Cells, total ratio: 92.3%
Latch Subcells, total ratio: 47.2%

Figure 5.24: Effect of Fast-lb on the number of placement nodes. The number of
nodes without lower bounds is shown on the x axis. The relative number of nodes
needed with Fast-lb is shown on the y axis. Node savings get more significant for
large instances with a high number of nodes. The dotted lines show the ratio over total
counts. The exact ratio value is given in the legend.

100 101 102 103 104

tno-lb [s]

0.2

0.3

0.4

0.5
0.6

0.8

1

2

3

t f
as

t-
lb
/
t n

o-
lb

Standard Cells, total ratio: 102.0%
Latch Subcells, total ratio: 63.3%

Figure 5.25: Runtime comparison of Fast-lb vs. no lower bounds, similar to Fig-
ure 5.24. Relative runtimes can be above 1 due to the additional cost of lower bound
computation and, especially for small instances, fluctuations in runtime measurement.
Improvements are slightly less distinct compared to node savings but visually corre-
lated.

5.6. NETLENGTH PRUNING 57

101 102 103 104 105 106

Nno-lb

0.1

0.2

0.3

0.4

0.5
0.6

0.8

1
1.2

N
M

IP
-l
b
/
N

fa
st

-l
b

Standard Cells, total ratio: 94.8%
Latch Subcells, total ratio: 85.4%

Figure 5.26: Effect of MIP-lb compared to Fast-lb on the number of placement
nodes. To allow for a comparison with Figure 5.24, the same x and y range is shown.
MIP-lb is never worse than Fast-lb, i.e. no point is above 1. Improvements are not
as large as they were for Fast-lb compared to no lower bounds.

100 101 102 103 104

tno-lb [s]

0.2

0.3

0.4

0.5
0.6

0.8

1

2

3

t M
IP

-l
b
/
t f

as
t-

lb

Standard Cells, total ratio: 104.1%
Latch Subcells, total ratio: 100.4%

Figure 5.27: Runtime comparison of Fast-lb vs. MIP-lb. Similar to the number of
nodes comparison in Figure 5.26 the runtime does not differ much. The slight node
savings seem to compensate for the additional runtime cost of solving the MIP.

58 CHAPTER 5. PLACEMENT ALGORITHM

5.7 Search Tree Ordering
The main goal of our placement algorithm is to find optimum solutions with respect to
cell width and netlength as quickly as possible. Usually a solution with optimum cell
width but not necessarily optimum netlength can be found faster than an optimum
solution. In the context of Algorithms 1 and 2, finding a placement with provably
optimum width means finding any routable placement inside the cell width loop. Let
twidth be the time needed to find a solution with provably optimum cell width and tnl

the time needed to find a solution which minimizes our objective function Φ defined in
Section 3.3. Since the tool is also used to answer queries such as “find the best placement
in time t”, we are interested in small values for both twidth and tnl. The search tree
enumeration strategy influences the times twidth and tnl. Enumeration strategy here
means which node is picked when we pop from the queue (cf. Line 4 of Algorithm 2).
This analysis assumes that each node takes a certain amount of time to be processed
and that other runtimes, e.g. popping a certain element off the queue, do not contribute
to the total runtime at all. In practice this is a reasonable assumption. We will describe
the Two Stage Strategy used in BonnCell and analyze its properties. Klotz 2018
gives a more detailed comparison of different strategies and rigorous analysis of their
runtime behaviors.

Assume we are given lower bounds l for the netlength for each node n ∈ N. Fur-
thermore, let the netlength of an optimum solution be vopt. To simplify the analysis,
we assume that there is only a single node with netlength vopt. An easy observation is
that we need to visit at least the set of nodes

Nmin := {n ∈ N | l(n) 6 vopt}

to prove optimality of the solution found. The Dijkstra algorithm used to find shortest
paths in graphs can also be applied in this setting. We keep a list of nodes we want to
visit, initially containing only the root vertex. At each step, we choose the next node
n to be the one with the lowest value of l(n). Once we have processed a full placement
node which is routable, we know that this is the optimum solution as we have already
processed all nodes Nmin. Due to our enumeration strategy we have actually visited
exactly the nodes Nmin. Therefore, the Dijkstra Strategy is an optimum strategy
w.r.t. minimizing tnl. Let t̂nl be the runtime needed by the Dijkstra Strategy. The first
solution found by the Dijkstra Strategy is already provably optimal, i.e. twidth = tnl. As
described above, a shorter time until a first solution is found is desirable and achievable
in practice, with more or less minor sacrifices on tnl. The idea is that the placement is
run in two stages. The first stage finds any solution quickly, using a search heuristic.
The second stage uses the Dijkstra Strategy to find an optimum solution. Ideally, the
first stage should only take a fraction of the entire runtime, s.t. twidth is much smaller
than t̂nl. In the second stage the Dijkstra Strategy is applied which processes the set
Nmin. Some of the nodes in Nmin were already processed in the first stage and do
not need to be processed again. The runtime of the second stage is therefore smaller

5.7. SEARCH TREE ORDERING 59

100 101 102 103 104

tdijkstra
width

10−1

100

101
tm

ix
ed

w
id

th
/
td

ij
ks

tr
a

w
id

th

75%

33%

Standard Cells
Latch Subcells

Figure 5.28: Placement runtime until first solution with provable minimum cell width
is found for Standard Cells and Latch Subcells instances. Relative runtime of
Mixed Strategy tmixed

width compared to Dijkstra Strategy tdijkstra
width is shown on the y-axis.

The average over the total runtime shows that the mixed strategy faster finds a width
minimum solution, it uses 75% runtime for Standard Cells and 33% runtime for
Latch Subcells.

60 CHAPTER 5. PLACEMENT ALGORITHM

100 101 102 103 104

tdijkstra
netlength

1.0

0.8
0.9

2.0

3.0

4.0

5.0

6.0

7.0

8.0
9.0

tm
ix

ed
n
et

le
n
gt

h
/
td

ij
ks

tr
a

n
et

le
n
gt

h

144%
127%

Standard Cells
Latch Subcells

Figure 5.29: Entire placement runtime for finding an optimum placement and prov-
ing its optimality. Relative runtime of Mixed Strategy tmixed

netlength compared to Dijkstra
Strategy tdijkstra

netlength is shown on the y-axis. Note that in our model the Dijkstra Strategy
should never be slower which is not the case in our data. The set of processed nodes
of the Dijkstra strategy is indeed a subset of the nodes processed by the Mixed Strat-
egy. The discrepancy could be explained by fluctuations in processor speed and server
loads. Our model also does not take into account runtime needed to sort the nodes in
the Dijkstra strategy.

5.8. PARALLELIZATION 61

1 2 4 8 16 32 64
num threads

1

2

4

8

16

32

64

sp
ee

du
p

en
ti

re
te

st
be

d

perfect scaling
Latch Subcells
Standard Cells

Figure 5.30: Multithreading speedup of entire testbed for Latch Subcells and
Standard Cells instances. Speedup for k threads is measured by t1/tk, where tx
measures the runtime for the entire testbed run with x threads. The Latch Subcells
scale better, see also Figure 5.31. Single threaded the entire Latch Subcells testbed
took 24.3h, the Standard Cells took 3.2h.

than t̂nl. The total runtime tnl is therefore bounded by twidth + t̂nl. If twidth is small
compared to t̂nl, this is a good trade-off. Although there is no mathematical guarantee
that twidth/t̂nl is small, this is often observed in practice.

5.8 Parallelization
Modern processors are implemented with many cores. For a library of cells this allows
us to process many cells in parallel by assigning each cell to a core. For large latch
instances we usually want to solve a single instance as quickly as possible, potentially
using the entire machine. This kind of memory sharing parallelization is more difficult
to implement, as different threads need to communicate. However, potential gains can
be large. A factor 10 speedup means that an instance which used to take a week and
was therefore too large to be solved for practical purposes can now be solved in less than
a day. Given enough computing resources, the entire Latch Subcells testbed can
be solved in three instead of 24 hours using 64 threads per instance (cf. Figure 5.30).
This is less relevant for the Latch Subcells testbed as used here, since it can be
parallelized by running each instance independently in a separate process but more
important for individual very large instances, e.g. the PLCB presented in Section 8.3.

62 CHAPTER 5. PLACEMENT ALGORITHM

100 101 102 103 104

runtime single threaded [s]

100

101

102

103

104

ru
nt

im
e
k
-t

hr
ea

de
d

[s
]

Standard Cells

k = 1

k = 8

k = 64

101 102 103 104

runtime single threaded [s]

101

102

103

104

ru
nt

im
e
k
-t

hr
ea

de
d

[s
]

Latch Subcells

k = 1

k = 8

k = 64

Figure 5.31: Multithreading runtime of all Standard Cells and Latch Subcells
instances. Every circle denotes one instance with single threaded runtime as x coor-
dinate and k-threaded runtime as y coordinate. Note that the standard cell runtimes
for multiple threads improve less compared to the Latch Subcells runtimes. For
Latch Subcells instances, the speedup gets significantly larger for instances with
longer runtime. Scaling for the entire testbed has been reported in Figure 5.30.

5.9. ROUTING CORRIDORS 63

The placement algorithm (Algorithm 2) is very suitable for parallelization. The
search tree consists of independent partial placement nodes which need to be checked
for legality and expanded to child nodes. Both of these operations can be done inde-
pendently of other nodes. Multiple threads simultaneously pop items off the queue,
check for legality, and push new children to the queue. Access to the queue needs to
be synchronized but is no bottleneck since checking for legality is much slower than
queue access. Details of the implementation haven been described in Klotz 2018.

If not done carefully, parallelizing the placement in this way can lead to increased
placement runtime. As we have seen in Section 5.7, for some search tree strategies,
the order in which nodes get processed determines the set of nodes that need to be
processed. With multiple threads processing nodes at the same time additional effects
come into play. For instance, one needs to take special care to make sure that the
search tree order follows the single-threaded search tree order. It can also happen
that a time consuming routability check in one thread is started just before the opti-
mality of another node is shown. A simple implementation would then wait until all
routability checks are finished, even though the result is no longer of any interest. We
have implemented multiple strategies to avoid these kind of situations, s.t. our multi
threaded runs are guaranteed to be faster (only counting time needed to process nodes,
as opposed to e.g. management of the queue) than the single threaded version. This
can be observed in Figure 5.31. Only very few multi threading runs are slightly slower
than the single threaded version, which is unavoidable due to fluctuations in runtime
measurements.

5.9 Routing Corridors
One of BonnCells key design aspects is that given a placement, it is able to find an
optimum routing. To increase user acceptance of the tool we always want to be able to
find a solution which is at least as good as a manual layout. This means that any legal
solution must be contained in our search space. However, this comes at a cost. Many
legal solutions use large detours which are not necessary and allowing these detours in
the MIP formulation slows down the solver.

To overcome this issue, we have the option to restrict the routing to routing corri-
dors. These are rectangular areas on the cell, defined for each net, which the router is
allowed to use. Edges outside of the routing corridor are forbidden. This reduces the
size of the MIP in terms of variables and constraints and also its complexity, which
results in shorter solver runtimes.

Definition 5.12. Routing Corridor Let N be a net with terminals t1, . . . , tn at x
coordinates x(t1), . . . , x(tn) in bits b(t1), . . . , b(tn). Let

x := min
i∈{1,...,n}

xi, b := min
i∈{1,...,n}

bi,

x := max
i∈{1,...,n}

xi, b := max
i∈{1,...,n}

bi,

64 CHAPTER 5. PLACEMENT ALGORITHM

0 6

2

0

2

2 4

5

2

5

4

5

1 5

2

1

2

0 5

4

4 6

5

4

5

1 3

5

1

5

3

5

1

5

1 3

7

1

7

R2(N3)

R2(N2)

Figure 5.32: Two bit instance with routing corridors for nets N2 (blue) and N3
(orange). k = 2 has been used for both routing corridors. Note that routing corridors
always span entire bits, even if a net does not have any terminals on one of the stacks
— see N3 in the shown example.

and k ∈ R>0. Then the routing corridor Rk of net N is defined as

Rk(N) := [x− k, x+ k]× [b, b].

The parameter k allows some routing space to the left and right of the terminals.
This is needed as terminal connections often need overhangs in horizontal direction.
In practice the value k = 2xCPP, where xCPP is the poly pitch, i.e. the distance between
two gates, showed a good trade off between MIP runtime and loss of good routing
solutions. Figure 5.32 shows routing corridors for a two bit instance.

Some instances are so congested that large detours for some nets are necessary.
Confined to routing corridors, these instances become infeasible. This is critical as the
placement feasibility check uses the routing engine to decide routability. We use a two
step approach to solve this problem. When we check a placement for routability, we
first run the routing confined to routing corridors. If this has been successful, we know

5.9. ROUTING CORRIDORS 65

that the placement is routable. If the placement is infeasible with applied routing
corridors, we run the original routing without any routing corridors. Especially for
Standard Cells, most of the placements are routable, s.t. only the fast routability
checks with routing corridors are run. The resulting runtime improvements for the full
routing phase and total placement runtime are shown in Figures 5.33 and 5.34.

After the placement algorithm returned a placement, the router is run to find an
optimum routing of this placement. It is possible that restricting the solution space to
routing corridors discards all optimum routings and we can no longer find an optimum
routing solution. A method to overcome this problem could iteratively confine the
routing space. Initially we search for a solution without routing corridors. As soon as
any, not necessarily optimum, solution is found, we apply routing corridors Rk, where
k is chosen s.t. any solution which uses an edge outside of Rk will have larger objective
value than the solution already found. This is repeated until we have proven optimality
of the routing. This approach has not been implemented as it is difficult to chose the
value k for the routing corridor. The routing objective function not only measures
weighted netlength but also includes terms penalizing track usage. For example, two
nets using the same M2 track are preferred to two nets using different M2 tracks, as
they will block less M2 resources for connections outside of the cell.

Next, we present results of routing corridors on placements of the Double Bit
Latch testbed containing 11 instances. Placements were generated by the multibit
placer (Section 7.1) and Linear Arrangement Placer (Section 7.3) with 12h run-
time limit. Therefore, all placements are guaranteed to be routable without routing
corridors. There are 4 possible outcomes of the routing algorithm:opt, subopt, inf,
and abort. opt means an optimum solution within 2% optimality gap has been found,
subopt means a solution has been found but the optimality gap is larger than 2%,
inf means the instance has been proven to be infeasible, and abort means that no
solution has been found within the runtime limit of 24h.

opt subopt inf abort
Without routing corridors

opt

subopt

inf

abort

W
it

h
ro

ut
in

g
co

rr
id

or
s 0 1 0 0

0 0 0 6

0 0 0 0

0 1 0 3

66 CHAPTER 5. PLACEMENT ALGORITHM

10−1 100 101 102 103 104

tfull
no-rc [s]

10−1

100

tf
u
ll

w
it

h
-r

c/
tf

u
ll

n
o-

rc

22.2%

74.7%

Standard Cells
Latch Subcells

Figure 5.33: Runtime improvement of full phase for routing corridors on Standard
Cells and Latch Subcells testbeds. Each point represents one instance with full
phase runtime without routing corridors tfull

no-rc on the x axis and the relative runtime
used in the full phase with routing corridors tfull

with-rc compared to tfull
no-rc. Full phase

runtime with routing corridors here means that the first routability check uses routing
corridors. If it finds the placement to be unroutable a second full phase without
routing corridors is run. This means that runtime improvements can only be achieved
for instances which are feasible even with routing corridors. It can be observed that
Standard Cells instances show larger improvements compared to Latch Subcells
instances. This is due to the fact that input placements of the full routing check are
much more often feasible than infeasible for Standard Cells. For Latch Subcells
exactly the opposite is the case. This can be observed in Figure 5.5.

5.9. ROUTING CORRIDORS 67

10−1 100 101 102 103 104

ttotalno-rc [s]

10−1

100

tt
ot

al
w

it
h
-r

c/
tt

ot
al

n
o-

rc

38.4%

95.4%

Standard Cells
Latch Subcells

Figure 5.34: Same plot as Figure 5.33 except that total placement runtime ttotal is
shown instead of full phase runtime tfull. Same x and y axis range is shown to allow
for comparison. Results look quite similar to those of Figure 5.33, Latch Subcells
runtimes are effected even less by introducing routing corridors as points are closer to
1 on the y-axis. Same is true for Standard Cells instances but to a lesser extend.
Standard Cells instances with higher total runtime are greatly improved by usage of
routing corridors with few exceptions. This is consistent with Figure 5.9 which shows
that most of the MIP runtime for Standard Cells is spent in the full phase, especially
for instances with high runtime. For Latch Subcells more runtime is spent in the
FEOL phase, as seen in Figure 5.10.

68 CHAPTER 5. PLACEMENT ALGORITHM

For 6 instances the routing corridors have been successful as they provided a so-
lution where no solution could be found without routing corridors. In only one case
both algorithms found a solution. The result without routing corridors has slightly
better objective value (36,200 compared to 36,338 with routing corridors). The opti-
mality gaps were 5.7% and 2% respectively. Routing corridors restrict the search space,
therefore it is expected that the resulting objective value of optimum solutions will be
larger compared to optimum routings without routing corridors. For one instance no
solution could be found with routing corridors but a solution has been found without
routing corridors. In three cases both algorithms were not able to find any solution.
In total using routing corridors allows finding a solution for 6 out of 9 instances where
the algorithm without routing corridors was not able to find any solution. Figure 5.35
shows an example of a multibit routing found with routing corridors.

5.9.
R

O
U

T
IN

G
C

O
R

R
ID

O
R

S
69

Figure 5.35: Multibit routing of SDFFQDICE_X1M which has been found with
routing corridors within 24h and 11% optimality gap.

Chapter 6

Extensions

This chapter contains two extensions of the placement algorithm. Section 6.1 aims
at finding placements with better routing solutions, the Folding Placer in Section 6.2
extends the placement search space to find more compact placements.

6.1 Globally Optimum Routings
The placement objective function introduced in Section 3.3 uses the weighted bounding
box netlength of a placement. This is not the exact objective we are interested in, which
is the routing objective function. It merely serves as an approximation which can
quickly be calculated and estimated with lower bounds for partial placements. Since
routability is already checked during placement in form of running the router on the
placement, we can use the same router call to optimize the routing and use the resulting
objective value as the objective value of the placement. Finding an optimum placement
then means finding the placement which yields the globally optimum routing objective
value. This approach is much slower compared to the objective function introduced in
Section 3.3 for two reasons.

1. Full optimization of the routing is slower than deciding routability.

2. Lower bounds for the weighted bounding box netlength of partially placed in-
stances are much easier to compute than lower bounds for the routing objective.
The routing objective function contains terms such as track costs, which are
hard to estimate. Currently, no lower bounds for the routing objective of partial
placements are implemented in BonnCell.

Results for globally optimum routing experiments are shown in Figures 6.1 and 6.2.
They show that the objective value improvements for Standard Cells are relatively
small, up to 8%. For Latch Subcells the results are stronger as improvements reach
up to 38%. Running times increase dramatically in both cases as expected. Slowdowns
go up to two orders of magnitude. However, BonnCell is the first tool which is able to
find globally optimum placements and routings of cells in 7nm technology. Figure 6.3
compares the placement and routing of a cell whose routing objective value improved
by 28%.

71

72 CHAPTER 6. EXTENSIONS

100 101 102 103 104

total runtime tdefault

1

10

2

3

4

6

20

30

40

60

t o
p
t/
t d

ef
au

lt
Standard Cells

objective improvement
100 cells: none
25 cells: up to 5%
1 cells: 5% to 10%

Figure 6.1: Results for globally optimum routings on Standard Cells testbed.
Each point represents one cell. Colors indicate how much the routing objective value
improved for the globally optimum routing run compared to default settings. 15 in-
stances ran into a timeout in globally optimum routing mode. They lie on the gray
line in the upper right of the plot. For 100 cells the placement found by the default run
allowed a globally optimum routing or no better routing could be found within 24h.
For 25 cells, we could improve the routing objective by up to 5% and for a single cell it
has been approved by 5% to 10%. There are two main reasons why most routings are
already optimal with default settings. First, this indicates that the objective function
used in the default settings is already quite a good estimate for the full routing objec-
tive function. Second, the cells of the Standard Cells testbed do not allow many
different legal placements with minimum width, due to their regular structure. The
position of the points indicate how much additional runtime was spent in the global
optimization mode. Small instances only use about twice as much runtime, whereas
more complicated instances take up to factor 60 more runtime.

6.1. GLOBALLY OPTIMUM ROUTINGS 73

100 101 102 103 104

total runtime tdefault

1

10

2

3

4

6

20

30

40

60

t o
p
t/
t d

ef
au

lt
Latch Subcells

objective improvement
65 cells: none
12 cells: up to 5%
10 cells: 5% to 10%
5 cells: 10% to 20%
8 cells: 20% to 40%

Figure 6.2: Results for globally optimum routings feature on Latch Subcells
testbed. Similarly to the Standard Cells Figure 6.1, 26 instances did not finish
in global optimum routing mode within 24h but some solution has been found for each
of them. These instances lie on the gray line in the upper right of the plot. In com-
parison to the Standard Cells there are several things to note. First, the objective
improvement for this testbed is larger. Some instances even improve by almost 40%.
Notably, almost all of the instances which ran into the 24h timeout show improvements
in the objective function, although further optimization had been possible.

74 CHAPTER 6. EXTENSIONS

0 1 2 3 4 0 1 2 3 4

Figure 6.3: Instance from the Latch Subcells testbed which has 28% objective
value improvement. This globally optimum solution on the right can be built without
M2 which is preferred over the default solution with one M2 track. The default solution
has been found after 25s, the globally optimum solution after 60s.

6.2 Folding

Folding is a technique which splits a FET into several smaller single finger FETs. Each
of the smaller FETs has the same gate, source, and drain connections as the original
FET. The only property which changes is the allowed size interval. This technique can
be useful to find more compact placements.

After splitting a FET F, each of the resulting FETs F1, . . . , Fk has an allowed size
interval containing only a single value1. A FET with size interval [Smin, Smax] can be
split into FETs F1, . . . , Fk with sizes S1, . . . , Sk, if the sum matches the original FET
interval, i.e.

k∑

i=1

Si ∈ [Smin, Smax].

In the following we give an example of an instance which can be placed more densely
using folding. The instance consists of three FETs F1, F2, and F3 with Smin = Smax = 4

for each. The image allows a maximum FET height of 2 fins. The only possibility
to place these FETs without folding is therefore with 2 fingers and height 2. The
source/drain net indices of F1, F2, and F3 are 1/2, 2/3, and 3/4, respectively. F1 and F2
can share contacts as well as F2 and F3 but not both simultaneously. Therefore a gap
of 2 tracks is needed, in the example it is left between F2 and F3. Gates are labeled by
FET names for clarity.

1in this section, a superscript denotes an index.

6.2. FOLDING 75

0 1 2 3 4 5 6 7

2 1

F1

2

F1

2 3

F2

2

F2

3 4

F3

3

F3

Using folding we can split F2 into two FETs F12, F
2
2 with a single finger of height 2

each. This allows all 4 resulting FETs to share contacts in a row without any gaps,
resulting in a denser placement.

0 1 2 3 4 5 6 7

2 1

F1

2

F1

2 3

F12

3 4

F3

3

F3

3 2

F22

Our approach to solve instances using the folding technique does not modify the
BonnCell algorithm described in the previous chapters. Instead, it is built as an
extension, meaning that the folding algorithm will generate instances with split FETs
and let the core algorithm solve these instances. This has the advantage that the code
of the core algorithm is not bloated up by folding logic. The instances generated by
the folding algorithm will consist only of single finger FETs and many of these FETs
will be identical. To avoid enumeration of identical placements by swapping identical
FETs in the search tree, we add a rule which forces a certain ordering of the x positions
of identical FETs. Thomä 2017 describes the folding algorithm in more detail.

Algorithm 4 shows the Folding Algorithm. Basically, it iterates over all cell
widths and for each cell width iterates over all legal partitions of FETs into single
finger FETs. The strength of the algorithm comes from two aspects. First, the or-
der in which single finger partitions are iterated is chosen with care. Distributions
which are heuristically more likely to yield a legal placement are tried first. Sec-
ond, LowerBoundWidth(dp, dn) prevents enumeration of single finger partitions
which result in too large placements. LowerBoundWidth is based on the methods
presented in Section 5.5.

Folding allows to place many of the Standard Cells with smaller width. Fig-
ure 6.4 shows the results. Relative runtimes for placement with folding compared to
placement without folding range from slight speedups to factor 2400 slowdowns. Some
instances cannot be solved with folding within a runtime limit of 24h whereas the
default mode takes only up to 25min on the Standard Cells.

Many of the successful folding solutions obey a very simple structure. They require
only one finger to be split off one or two FET. The previously shown example also
obeys this structure. A prototype implementation based on this heuristic has shown
that solutions with the same quality compared to the full folding algorithm can be
achieved in many cases with similar runtimes compared to the default mode.

76 CHAPTER 6. EXTENSIONS

Algorithm 4: Folding
input : FETs F to be placed
output: Routable folded placement P with minimum width

1 for Wcell := 1, 2, . . . do
2 for Fp := Fpmin, . . . ,Wcell do // # fingers on P stack
3 foreach distribution dp of Fp fingers to Fp do
4 for Fn = Fpmin, . . . ,Wcell do // # fingers on N stack
5 foreach distribution dn of Fn fingers to Fn do
6 if LowerBoundWidth(dp, dn) > Wcell then
7 continue

8 p← PlacementOracle(dp, dn,Wcell)

9 if p is not null then
10 return p

100 101 102 103

tdefault [s]

100

101

102

103

t f
ol

d
in

g
/
t d

ef
au

lt

∆W = 0

∆W = 2

∆W = 4

∆W = 6

Figure 6.4: Results of Folding Algorithm on Standard Cells testbed. 108 out of
126 instances finished within 4 days. One instance gets 6 tracks smaller (∆W = 6),
another instance 4 tracks (∆W = 4), 22 instances improved by 2 tracks (∆W = 2), and
84 instances have already optimum width in default mode (∆W = 0). Note that cells
can only have an even number of tracks as widths due to the cell image. Runtimes
increase heavily especially for instances with larger runtime in default mode tdefault.

Chapter 7

Big Cell Placement

Some cells are currently too large to be solved by the presented placement algorithm,
even if all runtime improvements of Chapter 5 are applied. In the past, designers would
then split the cell into several subcells which are solved independently by BonnCell.
These subcells needed to be connected to each other manually afterwards. The result
was often unsatisfying large, as the choice of subcells determines the total cell width
and is hard to estimate for designers. There were also difficulties to connect the subcells
without using layers above the cell level. Furthermore, the entire approach was tedious
and error prone, as it required a lot manual intervention.

By now, BonnCell is able to automate these tasks and produce better results
compared to the flow described above. It uses different strategies to divide large cells
into manageable subcells, while optimizing the total cell width. It solves these subcells
individually but guarantees routability of the entire cell. All connections between
subcells are realized on cell layers, i.e. up to M2. This is all done fully automatically,
without the need of user intervention. Connections between subcells are guaranteed
by pins. A pin is a set of locations from which the net has to connect at least one.
For example, a north pin is connected if the net connects any point on the north
boundary of the cell. This guarantees that the neighboring cell on the next circuit row
can connect to the net at some point. Pins can also be restricted to an exact position.
This is useful if there already exists a wire in the neighboring cell which needs to be
connected to. All placement algorithms in this chapter make use of the Placement
Oracle which is defined as follows.

Definition 7.1. Given

• a set of FETs F,

• a placed and routed left neighbor cell, i.e. west pins with fixed tracks,

• north and east pins,

• south pins with fixed tracks, and

• the maximum cell width wmax,

77

78 CHAPTER 7. BIG CELL PLACEMENT

the Placement Oracle either finds an optimum placement and routing of F, s.t. the
routing meets all pin requirements and has cell width w 6 wmax, or proves that no
such placement and routing exists.

This routing oracle is implemented by the core placement algorithm presented in the
previous chapters. The big cell placement algorithms can use this oracle to guarantee
routability of the entire cell. The entire cell is built circuit row by circuit row, starting
from the bottom. For each row, several subcells are placed and routed from left to
right, one after the other. Whenever a subcell is solved, all bits below and all subcells
to its left are already placed and routed. This means that it can adapt its routing to
the environment thereby guaranteeing routability of the entire cell.

Next, we describe how FETs are distributed to the circuit rows in Section 7.1. Then,
we describe how individual circuit rows are solved by the Divide Placer (Section 7.2)
and the Linear Arrangement Placer (Section 7.3). Finally, we compare these
placers in Section 7.4.

7.1 Multibit Cells
Very large cells are typically not implemented on one but several bits, i.e. neighboring
circuit rows. To place a cell on several circuit rows, we first compute an assignments
of FETs to the rows using a mixed integer programming approach. Assignments are
evaluated by their number of bit crossing connections and an estimation for the total
cell width. The rows are placed one after the other with each new placement respecting
constraints due to already placed rows.

More specifically, given a set of FETs F with minimum width wF, a number of bits
B, coefficients for the objective function cW , cC ∈ R, we solve the following MIP.

Variables

xFb ∈ {0, 1} ∀F ∈ F, b ∈ {1, . . . , B}. 1 if FET F is placed on bit b

lN ∈ {1, . . . , B} ∀N ∈ N. Lowest bit in which net N appears

uN ∈ {1, . . . , B} ∀N ∈ N. Highest bit in which net N appears

C ∈ N total number of bit crossings

W ∈ N cell width

Objective

Minimize cWW + cCC

Constraints

C =
∑

N∈N

uN − lN

W >
∑

F∈Fs

wFxFb ∀b ∈ {1, . . . , B}, s ∈ {P,N}

xFb = 1⇒ lN 6 b 6 uN ∀F ∈ F, ∀b ∈ {1, . . . , B}, ∀N ∈ N(F),

7.2. DIVIDE PLACER 79

0 2 4 6 8 10 12 14 16 18 20 22

Wlb [tracks]

0

1

2

3

4

5

N
b
it

-c
ro

ss
in

g

Figure 7.1: Estimated cell width Wlb and number of bit crossings Nbit-crossing for the
11 double bit Latch instances. Each point represents one instance. Most latches can
be built with 2 or 3 bit crossings only which means that most of the 25 – 42 nets are
connected within the bits. MIP runtime is very small for every instance, at most 0.13s.

where Fs denotes the FETs of type s and N(F) the set of nets connected to FET F.

To keep nets short, we penalize nets which cross bit boundaries. The MIP describes
a solution which trades this off against the cell width. In practice we use the parameters
cW = 10 and cC = 1 which usually means that from all solutions with minimum
cell width, the solution with minimum number of bit crossings is chosen. The given
constraints do not guarantee that a placement with cell width W exists, but W gives
a lower bound on the cell width. The model assumes that all FETs can be built with
minimum number of fingers and can all share. It is possible that improvements of this
model allow better multibit placements. Figure 7.1 shows the estimated width and
number of bit crossings for 11 double bit Latch instances. Figures 7.2 and 7.3 give an
example placement and routing of the double bit SDFFQ X3M latch.

7.2 Divide Placer
From now on we want to solve a single bit. It could be a single bit instance or a multi
bit instance, where we have already distributed the FETs into separate bits. The larger
the instance, the longer the Placement Oracle takes. Our instance might be too
large to be solved by a single call of the Placement Oracle, so we are looking for
an algorithm which always yields a solution, potentially at the cost of optimality. In
this section we present the Divide Placer in two versions, top down and bottom up.
The two algorithms are similar and shown in Algorithms 5 and 6.

80
C

H
A

P
T

E
R

7.
B

IG
C

E
LL

P
LA

C
E

M
E

N
T

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

Figure 7.2: Double bit placement and routing of the SDFFQ X3M instance.

7.2.
D

IV
ID

E
P

LA
C

E
R

81

Figure 7.3: Isometric projection of SDFFQ X3M built as double bit instance (same
routing as Figure 7.2). Only 7 out of 28 nets are shown to allow views of the lower
layers. Each net is drawn with its own color.

82 CHAPTER 7. BIG CELL PLACEMENT

7

7

7

3

3

3

3

Figure 7.4: Visualization of Divide Placer in top down version. Each row from
top to bottom corresponds to one Placement Oracle call in chronological ordering.
Whenever a Placement Oracle call fails, the cell is divided into two subcells which
are then tried, starting from the left. This makes sure that the cells are solved from
left to right which guarantees routability of the entire cell. Final result consists of the
4 subcells marked with 3.

For the top down version, we try to solve the entire cell with some given time limit.
On failure, we split the cell into two subcells and recursively apply the algorithm on
both of them. If we fail to find a solution for a subcell with only a single FET, the
entire algorithm fails. Otherwise, we concatenate all subcell solutions which yields a
solution of our original instance. Figure 7.4 gives an illustration of the algorithm in
the top down version.

In the bottom up approach, we first split the cell into subcells and recursively apply
the algorithm on these. This gives us a solution for the original cell built from two
subcell solutions. Afterwards we try to find a better solution by solving the cell with a
single Placement Oracle call. If this is successful, the result is preferable over the
two subcell solutions. In practice we restrict the search space of the Placement Or-
acle to only look for solutions which are better than the already found concatenation
of subcell solutions, as this can lead to considerable speedups.

Note that both versions of the Divide Placer allow the cells to be solved from
left to right, i.e. when we solve a subcell, all subcells to the left are already solved.
This property is important as it can be used to guarantee routability of the entire cell.

The Divide Placer makes use of the fact that cells with fewer FETs are, on
average, solved faster than cells with more FETs. Optimum solutions might be lost
however. First, one has to leave gaps between subcells to avoid shorts and guarantee
manufacturability of the cell. Second, with each division into two subcells there is
the chance to separate FETs which could be more densely packed in the same sub-
cell. However, in some cases an instance can be divided into several subcells without
sacrificing the total cell width. Figure 7.5 shows an example of such an instance.

So far, we have only described the basic skeleton of the Divide Placer. Three
main questions remain to be answered: “how is routability guaranteed?”, “how to split

7.2. DIVIDE PLACER 83

Figure 7.5: Example of an instance which can be divided into two subcells and still
be placed with minimum width.

Algorithm 5: Divide Placer - top down
input : FETs F.
output: Routed placement of F or timeout-failure.

1 result ← PlacementOracle(F, tF)
2 if result is successful then
3 return result

4 if |F| = 1 then
5 return timeout-failure // Single FET subcell failed

6 Split F into FL,FR
7 return concat(DividePlacer(FL), DividePlacer(FR))

a cell into two subcells?”, and “how much runtime is given to the Placement Oracle
for each subcell?”. These questions will be answered in the next subsections.

7.2.1 Routability Guaranty

All actions required to guarantee routability are quite technical and we will only give
the high level details. Routability is guaranteed by forcing connections to the subcell
boundaries. If we know that a net N appears in this subcell and also in some subcell to
the right, we force a connection on any track on the right boundary. If we know that a
net N appears in this subcell and also in some subcell to the left we force a connection
to the left boundary but this time to a specific track on a specific layer. This is because
we know that the left neighbor has already a connection of N to its right boundary
and we make sure to connect on the same track. There are some drawbacks with this
techniques. The left subcell doesn’t know about the routing of the right subcell and
will choose any right boundary track. This choice might be very restrictive for the
right subcell as it must adapt its placement to be able to connect properly. A more

84 CHAPTER 7. BIG CELL PLACEMENT

Algorithm 6: Divide Placer - Bottom Up
input : FETs F.
output: Routed placement of F or timeout-failure.

1 if |F| > 2 then
2 Split F into FL,FR
3 P ← concat(DividePlacer(FL), DividePlacer(FR))
4 if P is not successful then
5 return timeout-failure

6 result ← PlacementOracle(F, tF)
7 if result is successful then
8 return result // Guaranteed to be better than P

9 else
10 if |F| = 1 then
11 return timeout-failure // Single FET subcell failed

12 return P

sophisticated approach would find a trade off between both cells but is currently not
implemented. The advantage of the current approach is that we only need to route
single subcells. Once we have found a solution, there is no need to touch it anymore.

7.2.2 Subcell Splitting
Splitting FETs into subcells is done using a MIP approach similar to the bit assignment
MIP used in Section 7.1. We minimize the cut value, i.e. the number of nets that need
to connect both subcells and the total estimated width of both cells. The goal is
to distribute FETs to two subcells, s.t. both of these subcells can be solved quicker
than the original cell. In contrast to the bit assignment MIP, we have to add balance
constraints to make sure that both resulting subcells are significantly smaller than the
original cell. The entire model is given by

Variables

xFk ∈ {0, 1} ∀F ∈ F, ∀k ∈ {1, 2}. 1 if FET F is placed in subcell k

lN ∈ {1, 2} ∀N ∈ N. Leftmost subcell in which net N appears

uN ∈ {1, 2} ∀N ∈ N. Rightmost subcell in which net N appears

C ∈ N total number of bit cuts

Wk ∈ N Width of subcell k ∈ {1, 2}

Objective

Minimize cW(W1 +W2) + cCC

7.2. DIVIDE PLACER 85

Constraints

C =
∑

N∈N

uN − lN

Wk >
∑

F∈Fs

wFxFk ∀k ∈ {1, 2}, ∀s ∈ {P,N}

xFk = 1⇒ lN 6 k 6 uN ∀F ∈ F, ∀k ∈ {1, 2}, ∀N ∈ N(F)
∑

F∈F

xFk > r|F| ∀k ∈ {1, 2},

where r denotes the minimum relative number of FETs that should be in each subcell.
Similar to Section 7.1, the model only very roughly estimates the width of a subcell

by summing up the minimum FET widths. This estimation is only accurate if all FETs
in one subcell can share contacts. Especially for latch instances, this is often not the
case. We tried to use an improved model, which respects the FET sharing rules and
calculates a legal placement for each stack and subcell individually. This improved
model has already been described in Section 5.5.2 to calculate a lower bound on the
cell width. However, the improved model is deactivated by default, since its increased
runtime outweighed the benefits from improved cell division. Irrespective of the exact
model, we use the constants

r =
1

3
, cW = 10, cC = 1.

7.2.3 Runtime Distribution
The goal of the Divide Placer is to find the best possible placement within the given
runtime limit. Therefore, we want to distribute the given runtime limit to Placement
Oracle calls in the most efficient way. In the top down approach we start with the
entire cell, try to solve it and on failure split the cell and recursively apply the procedure
on the two subcells. Our approach assigns the same runtime for the oracle call for the
entire cell as for the sum of the oracle calls for the two subcells. Between the two
subcells the runtime is split evenly. Let t denote the runtime limit for the entire
Divide Placer and t0 the runtime limit for the initial cell containing all FETs. Then
at each recursion depth the total amount of runtime is bounded by t0. As the recursion
depth is bounded by

dmax = log 1
1−r

|F|,

where r is the splitting factor introduced in Section 7.2.2, the value

t0 :=
t

dmax + 1

ensures that the total runtime of all Placement Oracle calls will not exceed the
total runtime limit t. On a given depth level d, the runtime limit for a single subcell

86 CHAPTER 7. BIG CELL PLACEMENT

11

7

3

1 2

1 1

4

2

1 1

1

4

2

1 1

2

1 1

Figure 7.6: Full division tree for an instance with 11 FETs. Each node corresponds
to a subcell and its label denotes the number of FETs inside the subcell. Splitting
continues until every leaf subcell has only a single FET.

is given by 2−dt0 as there are at most 2d subcells on a given depth level. Note that
on some levels there might be less subcells which need to be solved. In this case the
reserved runtime for this depth level will not be entirely used.

With this approach it often happens that a large fraction of the total runtime
limit remains unused after the Divide Placer finishes. This is because the runtime
reserved for the levels deep down the division tree is never used because subcells at
higher levels have already been solved. This gave rise to the bottom up version of the
Divide Placer. In the bottom up approach we calculate the entire division tree as
a first step. See Figure 7.6 for an illustration of an entire division tree for 11 FETs.
The subcells of the tree are solved in post order tree traversal as shown in Figure 7.7.
Initially, each of the FETs gets a runtime budget of t/|F|. When a subcell is solved by
the Placement Oracle the remaining runtime budget of all FETs in this subcell is
summed up and used as the runtime limit for this oracle call. This works as in future
oracle calls these FETs will always be in the same subcell, s.t. the remaining runtime
can be used for these calls.

Results of the two modes compared to lower bounds and the Linear Arrange-
ment Placer (Section 7.3) can be seen in Section 7.4.

7.3 Linear Arrangement Placer
The Linear Arrangement Placer is a bottom up approach to solve large cells.
Its main goal is to overcome the drawbacks of the Divide Placer and find smaller
placements. The main issue of the Divide Placer is that if one subcell is chosen
poorly and the Placement Oracle fails to place it, the mistake cannot be undone
later. In the top down version, this subcell will be split into several smaller subcells,
thereby wasting space. In the bottom up version it can happen that even a small
subcell is hard to solve and no parents of this subcell in the division tree will ever be
tried.

7.3. LINEAR ARRANGEMENT PLACER 87

19

11

5

1 4

2 3

10

8

6 7

9

18

14

12 13

17

15 16

Figure 7.7: Postorder traversal of the tree shown in Figure 7.6. Numbers denote
the order in which subcells are solved by the Placement Oracle in the bottom up
approach.

1

2

3

4 5

6 7

8

9

10 11

12

13

14

15 16

17

18 19

Figure 7.8: Preorder traversal of the tree shown in Figure 7.6. Numbers denote
the order in which subcells are solved by the Placement Oracle in the top down
approach. Note that the children of a node are only solved when the Placement
Oracle did not find a solution for the node itself.

88 CHAPTER 7. BIG CELL PLACEMENT

Subcells which are hard to solve for the Placement Oracle are hard to detect
before calling the oracle. Many technology dependent details decide whether a given
instance is difficult or not. The strategy of the Linear Arrangement Placer is
to try many different subcells which are then combined to a placement of the entire
cell. Most of the subcell solutions will not be used in the final result. This waste of
runtime is compensated by the possibility to choose subcells which fit well together
and discarding unfavorable subcell divisions.

In the Divide Placer the objective function of the division MIP had two parts:
cut value and total cell width. The former is easy to measure without the Place-
ment Oracle, whereas the latter can only be estimated very roughly. The Linear
Arrangement Placer does not try to estimate the cell width but simply generates
many subcells with small cut value. The cell width is optimized by choosing the right
subcells, for which the exact width is known by calling the Placement Oracle.

Subcells are created by distributing the FETs to unique positions 1, . . . , |F|. This
is called a linear arrangement of the FETs. Each interval of positions [a, b] then
corresponds to a subcell containing the FETs from positions a, a + 1, . . . , b. This
approach makes it easy to control the cut value between subcells as they are determined
by the linear arrangement. We compute a linear arrangement which minimizes the
maximum cut k between any two positions. By doing so, we guarantee that a cut of
no more than k exists between any two subcells.

In Section 7.3.1 we give the formal definition of the Min Cut Linear Arrange-
ment Problem and present previous work. We also present the algorithm used in
BonnCell and analyze its performance on real world instances. Section 7.3.2 explains
how the Linear Arrangement Placer uses the subcells generated by the minimum
cut linear arrangement to find a placement of the entire cell.

7.3.1 Min Cut Linear Arrangements
We begin by formally defining the Min Cut Linear Arrangement Problem. The
notation used here is adapted and extended from Hamm 2018.

Definition 7.2. A partial linear arrangement of a hypergraph H = (V, E) is a pair
(X,φ), where X ⊆ V is a subset of vertices and φ a bijection

φ : X↔ {1, . . . , |X|} .

Definition 7.3. The cutwidth of a partial linear arrangement (X,φ) at position i ∈
{1, . . . , |X|} is defined as

cw(X,φ, i) :=
∣∣δ(φ−1({1, . . . , i}))

∣∣
where δ(A) denotes the set of hyperedges adjacent to at least one vertex in A and
V \A.

The cutwidth of a partial linear arrangement (X,φ) is defined as

cw(X,φ) := max
i=1,...,|X|

cw(X,φ, i)

7.3. LINEAR ARRANGEMENT PLACER 89

Definition 7.4. A partial linear arrangement (X,φ) can be extended to a partial linear
arrangement (X′, φ′), if

X ⊆ X′,

φ|X = φ′|X.

Definition 7.5. A linear arrangement of a hypergraph H = (V, E) is a partial linear
arrangement (X,φ) with X = V. We denote the cutwidth of a linear arrangement φ
by cw(φ). Similarly, the cutwidth of a linear arrangement at position i is denoted by
cw(φ, i).

This gives us the following problem definition.

Min Cut Linear Arrangement Problem
Instance: Hypergraph H = (V, E), k ∈ N .
Task: Find a linear arrangement φ of H s.t. cw(φ) 6 k, or decide that no such

linear arrangement exists.

Previous Work

The classical definition of the Min Cut Linear Arrangement Problem operates
on graphs instead of hypergraphs and is therefore a special case of our definition. This
problem is known to be NP-complete, even if vertex degrees are bounded by 3 as shown
by Makedon, Papadimitriou, and Sudborough 1985. This restriction is important for
our application, as the vertices in instances appearing in BonnCell correspond to
FETs which are connected to at most 3 nets: gate, source, and drain. The instances
appearing in BonnCell usually have small cutwidth, which makes it interesting to
look at the complexity parameterized in the maximum cutwidth k. Bevern et al. 2015
have shown that even for hypergraphs one can decide whether a minimum cut linear
arrangement with cutwidth at most k exists or not in linear time, assuming that k
is a constant. However, their algorithm is not constructive. Recently, Hamm 2018
gave a constructive algorithm with the same runtime guarantee. The algorithm used
in BonnCell is a linear program which does not have these runtime guarantees. Its
main advantages are low implementation complexity and extensibility to incorporate
additional constraints, e.g. balancedness of PFETs and NFETs. Göke 2015 designed
and implemented an initial version of the algorithm but did not publish it.

Algorithm used in BonnCell

The following theorem yields the key idea for the algorithm used in BonnCell.

Theorem 7.6. Let k ∈ N and φ1, φ2 be partial linear arrangements of the same
vertices C ⊆ V with cutwidth at most k. Then φ1 can be extended to a linear
arrangement with cutwidth at most k if and only if the same holds for φ2.

90 CHAPTER 7. BIG CELL PLACEMENT

Proof. Assume φ1 can be extended to a linear arrangement with cutwidth at most k.
We show that the same holds for φ2. The other direction follows from symmetry. Let
ψ1 be an extension of φ1 with cutwidth at most k. Define ψ2 : V → {1, . . . , |V |} such
that

ψ2(v) :=

{
φ2(v) v ∈ C
ψ1(v) v 6∈ C .

Then ψ2 is a linear arrangement and an extension of φ2 since ψ2|C = φ2|C and ψ1 is
an extension of φ1. Furthermore, we have

cw(ψ2, i) = cw(φ2, i) 6 k for i 6 |C|

by definition of φ2. Since

ψ−1
1 ({1, . . . , i}) = ψ−1

2 ({1, . . . , i}) for i > |C|,

we also have by definition of cw(ψ, i) that

cw(ψ2, i) = cw(ψ1, i) 6 k for i > |C|.

Therefore, φ2 has cutwidth at most k.

The idea of our algorithm is the following. For increasing i, we calculate all subsets
of V with exactly i vertices, s.t. they can be arranged as a partial linear arrangement
with cutwidth at most k. As we have just shown, it is sufficient to keep a partial linear
arrangement of vertex set X as a representative for all partial linear arrangements of
X. Algorithm 7 shows the algorithm in pseudo code.

Theorem 7.7. Algorithm 7 solves the Min Cut Linear Arrangement Problem
and can be implemented with runtime O(nm2n), where n := |V |, m := |E|.

Proof. We prove correctness first. Algorithm 7 has two parts, the first (Lines 1 to 8)
computes partial linear arrangements with i elements for i = 1, . . . , dn

2
e. It keeps one

representative for each subset of vertices X with |X| = i for which a partial linear ar-
rangement of X with cutwidth at most k exists. Computing partial linear arrangements
up to half the instance is enough as two of them can be matched to a linear arrange-
ment, as done in the second part (Lines 9 to 11). The critical part is the pruning step
in Line 7. This is correct as has been proven in Theorem 7.6.

We show the runtime guarantee next. Before running the algorithm, we initialize
a lookup table to be later able to check if S ∈ C|S| in O(1). Since we need a binary
entry for each of the O(2n) subsets S ⊆ V with |S| 6 dn

2
e, this table needs O(2n) time

for initialization. Initially, only ∅ is contained in C0. We also create a lookup table
to check if |δ(S)| 6 k for all S ⊆ V with |S| 6 dn

2
e. Again the table has O(2n) binary

entries. Each entry takes O(nm) to compute, resulting in a runtime of O(nm2n).

7.3. LINEAR ARRANGEMENT PLACER 91

Algorithm 7: MinCutLinearArrangement
input : Hypergraph H = (V, E), k ∈ N.
output: Linear arrangement φ of H s.t. cw(φ) 6 k, or that no such linear

arrangement exists.

1 C0 ← {∅} // Initialize C0 with the empty list
2 for i = 1, . . . , dn

2
e do

3 Ci ← ∅ // Ci contains lists with exactly i elements
4 for S ∈ Ci−1 do
5 for v ∈ V \ S do
6 S′ ← S+ {v} // append v to the list S′

7 if |δ(S′)| 6 k and S′ 6∈ Ci then
8 Ci ← Ci ∪ {S′}

9 for C ∈ Cdn2 e do
10 if Cc ∈ Cbn2 c then // Cc denotes the complement of C
11 return C + reverse(Cc)

12 return no such linear arrangement exists

Lines 1 to 8 contain three for loops over sets with total cardinality O(n2n). All
operations inside the loops can be done in O(1) time using the lookup tables. Lines 9
to 11 contain one for loop iterating over O(2n) elements. Computing the complement
takes O(n) time. The total runtime is therefore dominated by lookup table creation,
i.e. O(nm2n).

The number of partial linear arrangements considered by the algorithm can indeed
be Ω(2n). Consider the instance with n vertices and a single edge, connecting all
vertices and k = 1. Every linear arrangement has cutwidth exactly 1 and each subset
of vertices is the representative of a partial linear arrangement with cutwidth at most
1. Therefore, at least half of the subsets of V are considered which gives Ω(2n). This
example is somewhat degenerate as it uses a very large edge connecting all vertices.
The bound on the maximum number of vertex subsets the algorithm considers can
be improved to O(2k(logn+s)), where s is the maximum size of an edge. However, real
world instances with k = 5, s = 12, and n ≈ 30 have been observed which can also be
solved within seconds despite the poor worst case bound. It seems that the industry
instances obey some yet undiscovered structure which bounds the number of solution
candidates.

Our application in BonnCell requires some modifications of Algorithm 7. In
Line 7 of Algorithm 7 the first partial linear arrangement with vertex subset S′ is
kept. In practice some linear arrangements are preferable to others. We are not only
interested in the maximum cut value but, given two linear arrangements with equal
maximum cut, we prefer the one which has lower cuts on other positions. When we

92 CHAPTER 7. BIG CELL PLACEMENT

0 5 10 15 20 25 30 35 40 45

Number of FETs

10−4

10−3

10−2

10−1

100

101
R

un
ti

m
e

[s
]

Latch Bits - max cut 3
Latch Bits - max cut 4
Latch Bits - max cut 5
Standard Cells - max cut 2
Standard Cells - max cut 3

Figure 7.9: Runtime of MinCutLinearArrangement algorithm on Standard
Cells and Latch Bits instances. All instances were solved within a few seconds.
Larger cut values result in higher running time.

compare two partial linear arrangements φ,φ′ on the same vertex set S, we keep the
one which minimizes

f(S,φ) :=

|S|∑

i=1

ecw(S,φ,i) .

The same objective function is also minimized when we select a complement in Lines 9
to 11. Note that this does not guarantee that f(S,φ) is globally minimized, as the local
optimum chosen in Line 7 cannot necessarily be extended to a global optimum.

Figure 7.9 shows the runtime of our implementation on the Standard Cells and
Latch Bits instances. All instances are solved within a few seconds and maximum
cut values k are between 2 and 5 (including).

7.3.2 Algorithm of Linear Arrangement Placer

Assume we have already found a min cut linear arrangement with FETs in order
F1, . . . , Fn.

7.3. LINEAR ARRANGEMENT PLACER 93

F1 F2 F3 F4 F5 F6 F7 F8

S3,5

The next step is to choose and solve subcells from this linear arrangement and choose
placed subcells, s.t. the resulting placement for the entire cell is small and routable.
This is done using the dynamic programming algorithm LinearArrangement-
Placer (Algorithm 8).

Algorithm 8: LinearArrangementPlacer
input : FETs F1, . . . , Fn in order of min cut linear arrangement
output: Routable placement P

1 wt ← {0, if t = 0, else ∞}

2 for t := 1, . . . , n do
3 for s := t, . . . , 1 do
4 R← Solve(Ss,t, Ps−1) // Solve Ss,t with Ps−1 as neighbor
5 if R = null then
6 continue

7 else if w(Ps−1 ∪ R) < wt then
8 Pt ← Ps−1 ∪ R
9 wt ← w(Ps−1 ∪ R)

10 return Pn

The algorithm works as follows: wt contains the width of the currently known
smallest placement of F1, . . . , Ft and Pt the corresponding placement. As described in
the introduction of Chapter 7, the Placement Oracle needs to know the placement
of the left neighbor subcell to guarantee routability. It is therefore important that Ps−1
is not updated after subcell Ss,t has been solved. Solving S1,n corresponds to solving
the entire cell as one large subcell. We must therefore expect that some subcells will
not be solvable within the user given time limit T and we need to distribute T to the
Placement Oracle calls. Each iteration of the for loop starting in Line 2 gets at
least T/n of the total runtime. The first iteration will start with a runtime limit of T/n.
As only the subcell S1,1 containing a single FET F1 will be solved in this iteration, we
expect that only a small fraction of the runtime will actually be used. We therefore
distribute the remaining runtime equally to the remaining iterations. The same is done
for all consecutive iterations. As the last Placement Oracle call solves the entire
cell S1,n, we can make sure that all unused runtime will be spent on this instance. This
means if the algorithm finishes early, it has also solved the entire instance optimally, a
nice property which the Divide Placer does not have. The remaining runtime within

94 CHAPTER 7. BIG CELL PLACEMENT

an iteration of Line 2 is given entirely to each Placement Oracle call. The idea is
that the complexity of each call should increase as the number of FETs increases, s.t.
this approach maximizes the number of solved instances within the given time limit.
However, we have observed that in practice some instances get solved faster after more
FETs have been added. Therefore, other strategies to distribute runtime might be
more successful.

Runtime Improvements

For all Placement Oracle calls with s < t in Line 4 of Algorithm 8, we already know
a placement solution for FETs F1, . . . , Ft. We can limit the placement search space of
the Placement Oracle by an upper bound on the placement width which guarantees
that the condition w(Ps−1 ∪ R) < wt of Line 7 holds for any given solution R. This
also avoids Placement Oracle calls which are intuitively undesirable: solving the
subcell S2,t consisting of FETs F2, . . . , Ft, i.e. only splitting off F1 to the left, seems a
bad choice. The first subcell S1,1 will have no FETs on one stack and therefore in most
cases waste space. Having solved S1,1 and other subcells which can be concatenated to
a placement of F1, . . . , Fk already, we get an upper bound on the width of S2,k which
would improve the currently best solution found. In practice, this upper bound is
often low, matching intuition, and proving that no sufficiently small solution of S2,t
exists, takes only a very small amount of time. However, this does not work for the
other direction. Subcells Ss,n−1 will be tried with high effort, although only a single
FET Fn is missing. Here it would help to have Sn,n already solved, so that an upper
bound for the width of Ss,n−1 can be used just as previously. This does not work,
as Placement Oracle calls of Sn,n require the placement of S1,n−1, resulting in a
circular dependency.

This technique helped to reduce runtime of the Linear Arrangement Placer
on Latch Bits instances dramatically as shown in Figure 7.10. As explained above, in
the normal use case of the Linear Arrangement Placer the algorithm will run into
a timeout. This means that saved runtime is invested in further Placement Oracle
calls to improve the quality of the final placement.

7.4 Results
Figure 7.11 shows detailed results of all big cell modes in comparison to lower bounds
on the Latch Bits testbed. For each of the 37 instances, the three big cell modes
(Divide Placer with bottom up approach, Divide Placer with top down approach,
and Linear Arrangement Placer) and the default placer have been run. For most
instances, the default placer does not return a valid placement but only a lower bound
on the width of an area optimum placement. For each cell, wbest denotes the minimum
placement width which has been found by the three big cell modes. For 33 out of 37
instances the Linear Arrangement Placer solution had minimum width. For 6
instances the best solution found met the lower bound and is therefore optimal. The
scatter plot shows one point for each instance and mode. The x coordinate is taken from

7.4. RESULTS 95

232 to 64

416 to 32

158 to 16

124 to 8

42 to 4
t n

o-
u
b
/
t w

it
h
-u

b

no timeout timeout (24h)

Figure 7.10: Histogram of runtime savings on Latch Bits due to upper bound on
maximum subcell width as described in Section 7.3.2. Runtime limit has been set to
24h and subcell width upper bounds have not been used. The time used by this mode
is tno-up. For all but 3 instances, the algorithm reached a timeout, i.e. tno-ub = 24h. In
this flow runtime that would have not been saved with subcell width upper bounds has
been measured and is denoted by twidth-ub. Speedup is measured for each instance as
tno-ub/twith-ub. The speedup of the entire testbed is 8.5. With active upper bounds the
saved runtime will be used to try more subcells, thus improving the found placement
instead of finishing early.

the width of the optimum solution, i.e. for a single instance the points for the 4 modes
have the same x coordinate (cf. wbest = 46). Points with same x and y coordinates are
stacked to show the number of points of each color. The y coordinate gives the relative
placement width of a mode compared to the best solution for this cell. A green point
with y = 1.0 denotes that the linear arrangement mode gave an optimum placement
for this cell. It can be seen that the linear arrangement is dominant for various cell
widths. The divide bottom up approach is slightly better compared to the divide top
down approach, especially for larger cell widths. The gap between lower bound and
best solution increases with the cell widths. It is unclear if this is due to inaccurate
lower bounds or poor big cell solution quality. All cell widths are even numbers of PC
tracks, as this is given by the cell image.

96
C

H
A

P
T

E
R

7.
B

IG
C

E
LL

P
LA

C
E

M
E

N
T

10divide bottom up
7divide top down

33linear arrangement
6lower bound

cells with best result

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

wbest [PC tracks]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

w
x
/
w

b
es

t

10

11

4

5

1

2

2

2

7

2

4

8

6

6

2

1

1

33

4

11

13

7

6

cells by wx/wbest

divide bottom up divide top down linear arrangement lower bound

Figure 7.11: Results of big cell modes on Latch Bits instances. The full description is given in Section 7.4.

Chapter 8

Comparison to Manual Layouts

8.1 Standard Cells
We were able to compare all 126 Standard Cells against the library of manual
layouts created by human experts. BonnCell was able to solve all these cells without
the big cell modes presented in Chapter 7 and therefore with minimum cell width. The
average runtime needed per cell using a single thread was less than 2 minutes.

minimum area layout # cells
BonnCell 10
equal 110
human expert 6

In some cases the BonnCell result improved the library results by more than
25%. Figure 8.1 shows an example of such a cell. For 6 cells the manual layout was
better than the BonnCell layout. BonnCell was not able to find the solutions
found by the experts because it classified them as illegal. In all these cells a technique
was used which allows to leave some nets unconnected, i.e. the terminals of these nets
do not have to be connected with wires. This is possible if, for a given placement,
the terminals already have the same electric potential. Connecting these terminals is
redundant since the wire would not transport any current. BonnCell is currently not
able to detect this kind of situation.

8.2 Latches
Latches are much larger and more complex cells. Manually finding good layouts for
these cells is a challenging task, even for very experienced designers, taking days or
weeks. We compared BonnCell solutions on a testbed of 22 latches ranging in size
between 10 and 72 FETs. For 7 of these 22 latches, BonnCell found a provably area
optimal solution. For the other latches BonnCell ran into a timeout and the solution
found is therefore not guaranteed to be area optimal. Nevertheless, BonnCell found
in all but one case a solution that was either better in area compared to the designer’s
solution or needed less M2 tracks. In one case both BonnCell and the designer found
an area optimum solution without M2 usage.

97

98 CHAPTER 8. COMPARISON TO MANUAL LAYOUTS

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

Figure 8.1: BonnCell layout of a OAI22 X4M instance which improves upon the
manual layout by more than 25%.

latch level # FETs # nets runtime [h:mm:ss] improved1

DFFFQ X1M 38 27 2:45:56 yes
DFFQDICE X1M 43 29 1:39:59 yes
DFFQ X1M 28 21 1:12:31 yes
ELATN X1M 12 11 21:11 yes
ELATS X1M 10 11 17:28 yes
ELAT X1M 12 11 20:19 yes
ELAT X3M 12 11 54:44 yes
ELAT X8M 12 11 55:38 yes
ESLATN X1M 32 25 1:52:08 yes
ESLATS X1M 26 25 1:10:18 yes
ESLAT X1M 32 25 1:36:03 yes
ESLAT X3M 32 25 1:10:49 yes
L1LATF X1M 26 21 1:09:15 both optimum
N1LAT X1M 38 27 2:12:42 yes
N1LAT X3M 38 27 1:14:45 yes
SDFFQN X1M 36 28 2:31:19 yes
SDFFQS X1M 32 27 8:47:09 yes
SDFFQ X1M 36 28 2:07:39 yes
SDFFQ X3M 36 28 1:12:31 yes
SDFFSRPQ X1M 44 34 1:22:14 yes
INVELAT X1M 14 12 1:00:56 yes
INVELAT X3M 14 12 10:54 yes

An example layout for a latch that BonnCell built using 5% less area than the
designer’s solution is shown in Figure 8.2. Using the approach described in Section 7.1,
BonnCell can also build multi bit layouts of cells. Figure 7.2 on page 80 shows a
layout of the same latch with two bits.

1Has BonnCell improved the manual layout by either area usage or number of used M2 tracks?

8.2.
LA

T
C

H
E

S
99

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

Figure 8.2: BonnCell’s layout of the latch SDFFQ X3M that needs 5% less area
than the best designer’s solution while using the same number of M2 tracks.

100 CHAPTER 8. COMPARISON TO MANUAL LAYOUTS

8.3 PLCB
In this section we analyze the performance of BonnCell on the PLCB instance. The
PLCB consists of 128 FETs and 89 nets and is built on 4 bits. Without the use
of BonnCell, the size of the instance makes it impossible to be built by a single
engineer within a reasonable amount of time. Therefore, the instance is split into
several subinstances, which are then built separately by a team of engineers. These
subinstances are not independent, as interfaces at the cell boundaries have to match.
Initially it is not clear what the interfaces could look like, therefore several iterations
of building cells and modifying them to have compatible wiring at the boundary have
to be run. In total, it is a very time consuming task, taking weeks for an entire team.

The PLCB can also be solved by BonnCell’s big cell modes. As for the latches,
the Linear Arrangement Placer returned the best results.

BonnCell 72h 4× 58 tracks
Team of human experts several weeks 4× 68 tracks

The final subcell placement of the PLCB is shown in Figure 8.3, the full placement
and routing solution of the PLCB is shown in Figures 8.4 to 8.6.

The PLCB serves as a good alternative benchmark for the effectiveness of various
speed up methods discussed in this thesis. Although it is only a single instance,
over 1000 subcells have been solved within a single call of the Linear Arrangement
Placer to find a good solution of the entire cell. Figures 8.7 and 8.8 show a comparison
of the PLCB runs with different settings applied.

8.3.
P

LC
B

101

Figure 8.3: Final subcell placement of the PLCB. It can clearly be seen that the bit assignment is not yet optimum as there is
a lot of unused space on the bottom right. However, this solution is 10 tracks smaller in width compared to the human expert
solution which translates into almost 15% area reduction.

10
2

C
H

A
P

T
E

R
8.

C
O

M
PA

R
IS

O
N

T
O

M
A

N
U

A
L

L
A
Y

O
U

T
S

Figure 8.4: Routing of the PLCB placement shown in Figure 8.3 in isometric projec-
tion.

8.3.
P

LC
B

103

Figure 8.5: Same routing as of Figure 8.4 shown in isometric projection up to layer
M0.

10
4

C
H

A
P

T
E

R
8.

C
O

M
PA

R
IS

O
N

T
O

M
A

N
U

A
L

L
A
Y

O
U

T
S

Figure 8.6: Same routing as of Figure 8.4 in z projection.

8.3. PLCB 105

Number of solved subcells

no width lower bounds 964815

full phase only 1039843

no routing corridors 1262985

no go pruning 12811009

no partial placement check 13041012

no ct caching 13121005

no MIP width lower bound 13291012

default 13651016

pure dijkstra strategy 13981124

4 threads 14331044

16 threads 14741249

total number of subcells 2381

Linear Arrangement 72h Linear Arrangement 12h

Figure 8.7: Comparison of number of solved subcells of the Linear Arrangement
Placer on the PLCB. Each row shows two runs with runtime limits of 12h and 72h.
Numbers of solved subcells with 72h runtime limit were always larger compared to
12h runtime limit, therefore the blue bar only shows the additional number of solved
subcells. Effect of runtime improving features is tested by deactivating a single feature
and activating all others. For example, “without FEOL oracle caching” has the same
settings as default but does not use FEOL oracle caching. More solved subcells allow
for better placement of the entire instance. However, a faster Placement Oracle
does not guarantee that more subcells can be solved within a given time limit. As
the bits are solved one after the other, a different routing solution for a lower bit has
influence on the subcells solved in the upper bits. It can clearly be seen that without
lower bounds on the placement width significantly fewer subcells can be solved. The
pure Dijkstra enumeration strategy seems to be beneficial for solving the PLCB. A
possible explanation is that most of the subcells solved by the Linear Arrangement
Placer finish without timeout. In this case the Dijkstra enumeration is the fastest
enumeration strategy as discussed in Section 5.7.

106 CHAPTER 8. COMPARISON TO MANUAL LAYOUTS

Width of PLCB [PC tracks]

bottom up 82bottom up 76

top down 80top down 74

full phase only 70full phase only 68

manual 68

without any width lower bound 66without any width lower bound 62

without go pruning 66without go pruning 62

without routing corridors 66without routing corridors 60

no partial placement check 66no partial placement check 60

without ct caching 66without ct caching 60

without MIP width lower bound 66without MIP width lower bound 60

default 66default 60

pure dijkstra search tree enumeration 64pure dijkstra search tree enumeration 60

4 threads 644 threads 60

16 threads 6016 threads 58

Linear Arrangement 72h
Linear Arrangement 12h

Divide 72h
Divide 12h

Figure 8.8: Width comparison of the PLCB with results from Divide Placer and
Linear Arrangement Placer. Results for Linear Arrangement Placer are
notably better than for the Divide Placer. Manual layout using 68 tracks has taken
weeks for a team of human experts. The best layout with a width of 58 tracks is ob-
tained by using the Linear Arrangement Placer with 16 threads and 72h runtime.

Chapter 9

Summary

Cell layout is a critical step in the design process of computer chips. A cell is a logic
function or storage element implemented in CMOS technology by transistors connected
with wires. As each cell is used many times on a chip, improvements of a single cell
layout can have a large effect on the overall chip performance. In the past years
increasing difficulty to manufacture small feature sizes has lead to growing complexity
of design rules. Producing cell layouts which are compliant with design rules and at the
same time optimized w.r.t. layout size has become a difficult task for human experts.

In this thesis we present BonnCell, a cell layout generator which is able to fully
automatically produce design rule compliant layouts. It is able to guarantee area
minimality of its layouts for small and medium sized cells. For large cells it uses a
heuristic which produces layouts with a significant area reduction compared to those
created manually.

The routing problem is based on the Vertex Disjoint Steiner Tree Packing
Problem with a large number of additional design rules. In Chapter 4 we present the
routing algorithm which is based on a mixed integer programming (MIP) formulation
that guarantees compliance with all design rules. The algorithm can also handle in-
stances in which only part of the transistors are placed to check whether this partial
placement can be extended to a routable placement of all transistors.

Chapter 5 contains the transistor placement algorithm. Based on a branch and
bound approach, it places transistors in turn and achieves efficiency by pruning parts
of the search tree which do not contain optimum solutions. One major contribution of
this thesis is that BonnCell only outputs routable placements. Simply checking the
routability for each full placement in the search tree is too slow in practice, therefore
several speedup strategies are applied.

Some cells are too large to be solved by a single call of the placement algorithm. In
Chapter 7 we describe how these cells are split up into smaller subcells which are placed
and routed individually and subsequently merged into a placement and routing of the
original cell. Two approaches for dividing the original cell into subcells are presented,
one based on estimating the subcell area and the other based on solving the Min Cut
Linear Arrangement Problem.

107

108 CHAPTER 9. SUMMARY

BonnCell has enabled our cooperation partner IBM to drastically improve their
cell design and layout process. In particular, a team of human experts needed several
weeks to find a layout for their largest cell, consisting of 128 transistors. BonnCell
processed this cell without manual intervention in 3 days and its layout uses 15% less
area than the layout found by the human experts.

Appendix A

Testbeds

To evaluate the performance of our algorithms, different testbeds of cell instances are
used. They originate from our industry partner and are real world 7nm instances. All
evaluations have been run on an AMD EPYC 7601 at 2.2GHz.

A.1 Standard Cells
There are 126 instances in the Standard Cells testbed which have 2 to 8 FETs
and represent simple logic cells: INV, NAND, NOR, AOI, and OAI. AOI and OAI
gates implement complex logical functions which in CMOS technology can be built
more effectively compared to the sum of their parts. The cells implement the following
functions.

cell type # inputs function
INV 1 ¬A

NAND 2 ¬(A∧ B)

NOR 2 ¬(A∨ B)

AOI21 3 ¬(A∨ (B∧ C))

AOI22 4 ¬((A∧ B)∨ (C∧D))

OAI21 3 ¬(A∧ (B∨ C))

OAI22 4 ¬((A∨ B)∧ (C∨D))

The testbed contains multiple variants of each cell type. This includes different
power levels and different FET sizes. These realize different trade offs between power
consumption, circuit speed (timing), and cell size. Table A.1 summarizes all instances
of the Standard Cells testbed. BonnCell is fast enough to solve all Standard
Cells instances optimally within a few minutes.

A.2 Latches
Latches, or flip-flops, are much more complex and larger instances compared to the
Standard Cells. Their main function is to store information. In contrast to the
standard logic gates, the output of a latch does not only depend on its input but also
on its current state, i.e. the stored information. Latches exist in different variations

109

110 APPENDIX A. TESTBEDS

cell type # cells # FETs # nets
AOI21 11 6 9
AOI22 11 8 11
INV 17 2 5
NAND2 16 4 7
NAND3 11 6 9
NAND4 5 8 11
NOR2 16 4 7
NOR3 8 6 9
NOR4 5 8 11
OAI21 10 6 9
OAI22 10 8 11

Table A.1: Standard cell instances. Each row shows number of instances, number of
FETs, and number of nets for a given cell type.

and with different power levels. In total our testbed contains 26 different instances, cf.
Table A.2.

All but 4 latch instances are too large to be solved by the BonnCell core routine.
Therefore, the big cell modes (Chapter 7) are used to solve these instances. The big cell
modes work by solving many subcells consisting of some of the FETs of the instance.
Runtime improvements on these subcells correspond to improvements of the overall
big cell mode performance. Therefore, we extract subcells created by the Linear
Arrangement Placer (Section 7.3) and use them as the Latch Subcells testbed.
These instances are all subcells being solved in a single bit Linear Arrangement
Placer run with 19 hours of runtime limit. Subcells contain left and right pins for
each net which needs to connect a neighboring subcell but do not set specific tracks for
these pins to reduce the dependency on a specific routing solution. For each latch there
are between 1 and 9 subcells. In total this process generated 100 subcell instances.

Of the latch instances, 11 are too large for a single circuit row. Those instances are
built as double bit instances using two circuit rows. We use our multibit algorithm
presented in Section 7.1 to split these cells into two single bit instances with M1 pins
in the direction of the other bit. Again, the pins only force connections to the direction
of the other bit instead of specific tracks in order to avoid that these instances depend
on BonnCell routings. Together with the 15 original single bit latch instances, the
22 instances from the 11 double bit latches yield the Latch Bits testbed with 37
instances.

A.2. LATCHES 111

cell type power level # FETs # nets # bits # subcells
DFFFQ X1M 38 27 1 2
DFFFQ2 X1M 60 40 2 6
DFFFQDICE X1M 72 42 2 6
DFFQ X1M 28 21 1 2
DFFQDICE X1M 43 29 1 3
ELAT X1M 12 11 1 1
ELAT X3M 12 11 1 2
ELAT X8M 12 11 1 2
ELATN X1M 12 11 1 1
ELATS X1M 10 11 1 1
ESLAT X1M 32 25 1 4
ESLAT X3M 32 25 2 5
ESLAT X8M 32 25 2 6
ESLATN X1M 32 25 1 4
ESLATS X1M 26 25 1 3
L1LATF X1M 26 21 1 3
L2SFF X1M 48 37 2 5
N1LAT X1M 38 27 2 5
N1LAT X3M 38 27 2 5
N1LAT X8M 38 27 2 9
SDFFQ X1M 36 28 1 3
SDFFQ X3M 36 28 2 4
SDFFQDICE X1M 64 42 2 8
SDFFQN X1M 36 28 1 1
SDFFQS X1M 32 27 1 4
SDFFSRPQ X1M 44 34 2 5

Table A.2: There are several testbeds originating from the latch instances. The Latch
testbed contains 15 single and 11 double bit instances, one for each row of the table.
The Latch Bits testbed contains the original single bit latches and two separate single
bit instances for each double bit latch. The Double Bit Latch testbed contains the
11 double bit instances. The Latch Subcells testbed contains single bit subcells
which have been created by the Linear Arrangement Placer. The # bits and
subcells columns show how many instances each latch contributes to the respective
testbed. In total there are 26 Latch, 11 Double Bit Latch, 37 Latch Bits, and
100 Latch Subcells instances.

Bibliography

W. H. Arnold (2009). “Double-Patterning Lithography”. In: Journal of Micro / Nano-
lithography, MEMS, and MOEMS 8.1 (cit. on p. 7).

R. Bar-Yehuda, J. A. Feldman, R. Y. Pinter, and S. Wimer (1989). “Depth-First-Search
and Dynamic Programming Algorithms for Efficient CMOS Cell Generation”. In:
Transactions on Computer-Aided Design of Integrated Circuits and Systems
8, pp. 737–743 (cit. on p. 6).

K. S. Berezowski (2001). “Transistor Chaining with Integrated Dynamic Folding for
1-D Leaf Cell Synthesis”. In: Euromicro Symposium on Digital Systems Design,
pp. 422–429 (cit. on p. 4).

R. van Bevern, R. G. Downey, M. R. Fellows, S. Gaspers, and F. A. Rosamond (2015).
“Myhill–Nerode Methods for Hypergraphs”. In: Algorithmica 73.4, pp. 696–729
(cit. on p. 89).

M. Burkhardt, J. Arnold, Z. Baum, S. Burns, J. Chang, J. Chen, J. Cho, V. Dai, Y.
Deng, S. Halle, et al. (2009). “Overcoming the Challenges of 22-nm Node Patterning
Through Litho-Design Co-Optimization”. In: Optical Microlithography XXII (San
Jose, California, USA). Vol. 7274 (cit. on p. 7).

J. Cortadella, J. Petit, S. Gomez, and F. Moll (2014). “A Boolean Rule-Based Approach
for Manufacturability-Aware Cell Routing”. In: Transactions on Computer-Aided
Design of Integrated Circuits and Systems 33.3, pp. 409–422 (cit. on p. 6).

P. Cremer, S. Hougardy, J. Schneider, and J. Silvanus (2017). “Automatic Cell Lay-
out in the 7nm Era”. In: Proceedings of the 2017 International Symposium on
Physical Design. ISPD (Portland, Oregon, USA) (cit. on p. 8).

Y. Du, Q. Ma, H. Song, J. Shiely, G. Luk-Pat, A. Miloslavsky, and M. D. Wong (2013).
“Spacer-Is-Dielectric-Compliant Detailed Routing for Self-Aligned Double Pattern-
ing Lithography”. In: Proceedings of the 50nd Design Automation Conference.
DAC (Austin, Texas, USA), pp. 1–6 (cit. on p. 7).

S.-Y. Fang (2015). “Cut Mask Optimization with Wire Planning in Self-Aligned Mul-
tiple Patterning Full-Chip Routing”. In: Proceedings of the 20th Asia and South
Pacific Design Automation Conference. ASP-DAC (Chiba / Tokyo, Japan),
pp. 396–401 (cit. on p. 7).

D.-S. Fu, Y.-Z. Chaung, Y.-H. Lin, and Y.-L. Li (2009). “Topology-Driven Cell Layout
Migration with Collinear Constraints”. In: Proceedings of the International Con-

113

114 BIBLIOGRAPHY

ference on Computer Design: VLSI in Computers and Processors. ICCD (Lake
Tahoe, California, USA), pp. 439–444 (cit. on p. 3).

J.-R. Gao and D. Z. Pan (2012). “Flexible Self-Aligned Double Patterning Aware De-
tailed Routing with Prescribed Layout Planning”. In: Proceedings of the 2012
International Symposium on Physical Design. ISPD (Napa, California, USA),
pp. 25–32 (cit. on p. 7).

M. X. Goemans and D. P. Williamson (1995). “A General Approximation Technique for
Constrained Forest Problems”. In: SIAM Journal on Computing 24.2, pp. 296–
317 (cit. on p. 19).

A. Göke (2015). First Version of Min Cut Linear Arrangement Algorithm (unpub-
lished) (cit. on p. 89).

I. Griva, S. G. Nash, and A. Sofer (2009). Linear and Nonlinear Optimization (cit.
on p. 21).

M. Grötschel, A. Martin, and R. Weismantel (1997). “The Steiner Tree Packing Prob-
lem in VLSI Design”. In: Mathematical Programming 78, pp. 265–281 (cit. on
p. 19).

A. Gupta and J. P. Hayes (1998). “Optimal 2-D Cell Layout with Integrated Transistor
Folding”. In: Proceedings of the 1998 International Conference on Computer-
Aided Design. ICCAD (San Jose, California, USA), pp. 128–135 (cit. on p. 5).

M. Guruswamy, R. L. Maziasz, D. Dulitz, S. Raman, V. Chiluvuri, A. Fernandez,
and L. G. Jones (1997). “Cellerity: A Fully Automatic Layout Synthesis System
for Standard Cell Libraries”. In: Proceedings of the 34th Design Automation
Conference. DAC (Anaheim, California, USA) (cit. on p. 6).

H. Haffner, J. Meiring, Z. Baum, and S. Halle (2007). “Paving the Way to a Full Chip
Gate Level Double Patterning Application”. In: 27th Annual BACUS Symposium
on Photomask Technology (Monterey, California, USA) (cit. on p. 7).

H. Haffner, J. Meiring, Z. Baum, S. Halle, and S. Mansfield (2008). “Solving the Gate
ACLV & ADLV Challenges with Printing Assist Features”. In: Microlithography
World 17.2, pp. 7–11 (cit. on p. 7).

T. Hamm (2018). “Finding Linear Arrangements of Hypergraphs with Bounded
Cutwidth in Linear Time”. Master Thesis. Research Institute for Discrete Mathe-
matics, University of Bonn (cit. on pp. 88, 89).

M. Harper, B. Weinstein, C. Simon, W. Morgan, V. Knight, N. Swanson-Hysell, M.
Evans, M. Greco, and G. Zuidhof (2015). python-ternary: Ternary Plots in
Python. Zenodo (cit. on p. 37).

D. D. Hill (1985). “Sc2: A hybrid automatic layout system”. In: Proceedings of the
1985 International Conference on Computer-Aided Design. ICCAD (San Jose,
California, USA) (cit. on p. 4).

N.-D. Hoàng and T. Koch (2012). “Steiner Tree Packing Revisited”. In: Mathematical
Methods of Operations Research 76.1, pp. 95–123 (cit. on p. 20).

BIBLIOGRAPHY 115

S. Hougardy, T. Nieberg, and J. Schneider (2013). “BonnCell: Automatic Layout of Leaf
Cells”. In: Proceedings of the 18th Asia and South Pacific Design Automation
Conference. ASP-DAC (Yokohama, Japan), pp. 453–460 (cit. on p. 8).

T. Iizuka (2006). “Optimal Layout Synthesis of Standard Cells in Large Scale Inte-
gration”. PhD thesis. Department of Electronic Engineering, Graduate School of
Engineering, The University of Tokyo, Tokyo, Japan (cit. on pp. 4–6).

K. Jo, S. Ahn, T. Kim, and K. Choi (2018). “Cohesive Techniques for Cell Layout
Optimization Supporting 2D Metal-1 Routing Completion”. In: Proceedings of the
23rd Asia and South Pacific Design Automation Conference. ASP-DAC (Jeju
Island, Korea), pp. 500–506 (cit. on p. 6).

I. Kang, D. Park, C. Han, and C.-K. Cheng (2018). “Fast and precise routability analysis
with conditional design rules”. In: System Level Interconnect Prediction Work-
shop (San Francisco, California, USA), p. 4 (cit. on p. 6).

R. Karmazin, C. T. O. Otero, and R. Manohar (2013). “Celltk: Automated Layout for
Asynchronous Circuits with Nonstandard Cells”. In: 19th International Sympo-
sium on Asynchronous Circuits and Systems, pp. 58–66 (cit. on p. 6).

R. M. Karp (1972). “Reducibility Among Combinatorial Problems”. In: Complexity of
Computer Computations, pp. 85–103 (cit. on p. 49).

B. Klotz (2018). “Faster Leaf Cell Placement Algorithms”. Master Thesis. Research
Institute for Discrete Mathematics, University of Bonn (cit. on pp. 54, 58, 63).

C. Kodama, H. Ichikawa, K. Nakayama, T. Kotani, S. Nojima, S. Mimotogi, S.
Miyamoto, and A. Takahashi (2013). “Self-Aligned Double and Quadruple Pat-
terning Aware Grid Routing with Hotspots Control”. In: Proceedings of the 18th
Asia and South Pacific Design Automation Conference. ASP-DAC (Yokohama,
Japan), pp. 267–272 (cit. on p. 7).

K. Lai, S. Burns, S. Halle, L. Zhuang, M. Colburn, S. Allen, C. Babcock, Z. Baum,
M. Burkhardt, V. Dai, et al. (2008). “32 nm Logic Patterning Options with Immer-
sion Lithography”. In: Optical Microlithography XXI (San Jose, California, USA).
Vol. 6924 (cit. on p. 7).

M. Lefebvre, D. Marple, and C. Sechen (1997). “The Future of Custom Cell Generation
in Physical Synthesis”. In: Proceedings of the 34th Design Automation Confer-
ence. DAC (Anaheim, California, USA), pp. 446–451 (cit. on p. 3).

L. Liebmann, A. Chu, and P. Gutwin (2015). “The Daunting Complexity of Scal-
ing to 7nm without EUV: Pushing DTCO to the Extreme”. In: Design-Process-
Technology Co-optimization for Manufacturability IX (San Jose, California,
USA). Vol. 9427 (cit. on p. 7).

B. J. Lin (2009). “Making Double Patterning Cost Single”. In: Journal of Micro /
Nanolithography, MEMS, and MOEMS 8.1 (cit. on p. 7).

F. S. Makedon, C. H. Papadimitriou, and I. H. Sudborough (1985). “Topological Band-
width”. In: SIAM Journal on Algebraic Discrete Methods 6.3, pp. 418–444 (cit.
on p. 89).

116 BIBLIOGRAPHY

R. L. Maziasz and J. P. Hayes (1991). “Exact Width and Height Minimization of
CMOS cells”. In: Proceedings of the 28th Design Automation Conference (San
Francisco, California, USA), pp. 487–493 (cit. on p. 4).

M. Mirsaeedi, J. A. Torres, and M. Anis (2011). “Self-Aligned Double-Patterning
(SADP) Friendly Detailed Routing”. In: Design for Manufacturability through
Design-Process Integration V (San Jose, California, USA). Vol. 7974 (cit. on
p. 7).

R. Nair, A. Bruss, and J. Reif (1983). Linear Time Algorithms for Optimal CMOS
Layout (cit. on p. 4).

L. S. Nyland and J. H. Reif (1996). “An Algebraic Technique for Generating Optimal
CMOS Circuitry in Linear Time”. In: Computers and Mathematics with Appli-
cations 31.1, pp. 85–108 (cit. on p. 4).

D. Z. Pan (2009). “What is Double Patterning Lithography and Its Impact on Nanome-
ter Design?” In: ACM SIGDA Newsletter 39.10 (cit. on p. 7).

D. Z. Pan, B. Yu, and J.-R. Gao (2013). “Design for Manufacturing with Emerging
Nanolithography”. In: Transactions on Computer-Aided Design of Integrated
Circuits and Systems 32.10, pp. 1453–1472 (cit. on p. 7).

T. Polzin (2003). “Algorithms for the Steiner Problem in Networks”. PhD thesis. MPII
Saarbrücken, pp. 1–126 (cit. on p. 20).

M. A. Riepe and K. A. Sakallah (2003). “Transistor Placement for Noncomplemen-
tary Digital VLSI Cell Synthesis”. In: Transactions on Design Automation of
Electronic Systems 8.1, pp. 81–107 (cit. on p. 4).

N. Ryzhenko and S. Burns (2012). “Standard Cell Routing Via Boolean Satisfiability”.
In: Proceedings of the 49th Design Automation Conference. DAC (San Francisco,
California, USA), pp. 603–612 (cit. on p. 7).

C. Sarma, A. Gabor, S. Halle, H. Haffner, K. Herold, L. Tsou, H. Wang, and H. Zhuang
(2008). “Double Exposure Double Etch for Dense SRAM: A Designer’s Dream”.
In: Optical Microlithography XXI (San Jose, California, USA). Vol. 6924 (cit. on
p. 7).

J. Schneider (2014). “Transistor-Level Layout of Integrated Circuits”. PhD Thesis. Re-
search Institute for Discrete Mathematics, University of Bonn (cit. on pp. 3, 8).

S. Thomä (2017). “Algorithmen zum Platzieren ineinander gefalteter Transistoren”.
Bachelor Thesis. Research Institute for Discrete Mathematics, University of Bonn
(cit. on p. 75).

T. Uehara and W. M. van Cleemput (1979). “Optimal Layout of CMOS Functional
Arrays”. In: Proceedings of the 16th Design Automation Conference. DAC (San
Diego, California, USA), pp. 287–289 (cit. on p. 3).

— (1981). “Optimal Layout of CMOS Functional Arrays”. In: Transactions on Com-
puters 30.5, pp. 305–312 (cit. on pp. 4, 5, 42).

R. Vicari (2018). “Simplex Based Graphs Yield Large Integrality Gaps for the Bidi-
rected Cut Relaxation”. Master Thesis. Research Institute for Discrete Mathematics,
University of Bonn (cit. on p. 20).

BIBLIOGRAPHY 117

T. Weyd (2011). “Leaf Cell Layout”. Bachelor Thesis. Research Institute for Discrete
Mathematics, University of Bonn (cit. on p. 42).

R. T. Wong (1984). “A Dual Ascent Approach for Steiner Tree Problems on a Directed
Graph”. In: Mathematical Programming 28.3, pp. 271–287 (cit. on p. 20).

P.-H. Wu, M. P.-H. Lin, T.-C. Chen, T.-Y. Ho, Y.-C. Chen, S.-R. Siao, and S.-H. Lin
(2013). “1-D Cell Generation with Printability Enhancement”. In: Transactions on
Computer-Aided Design of Integrated Circuits and Systems 32.3, pp. 419–432
(cit. on pp. 5, 6).

X. Xu, B. Cline, G. Yeric, B. Yu, and D. Z. Pan (2015). “Self-Aligned Double Patterning
Aware Pin Access and Standard Cell Layout Co-Optimization”. In: Transactions
on Computer-Aided Design of Integrated Circuits and Systems 34.5, pp. 699–
712 (cit. on p. 8).

A. M. Ziesemer and R. A. da Luz Reis (2014). “Simultaneous Two-Dimensional Cell
Layout Compaction Using Milp with Astran”. In: IEEE Computer Society Annual
Symposium on VLSI (Tampa, Florida, USA), pp. 350–355 (cit. on p. 3).

A. Ziesemer and C. Lazzar (2007). “Transistor Level Automatic Layout Generator for
Non-Complementary CMOS Cells”. In: IFIP International Conference on Very
Large Scale Integration, pp. 116–121 (cit. on p. 5).

A. Ziesemer, R. Reis, M. T. Moreira, M. E. Arendt, and N. L. Calazans (2014). “Au-
tomatic Layout Synthesis with ASTRAN Applied to Asynchronous Cells”. In: 5th
Latin American Symposium on Circuits and Systems (LASCAS), pp. 1–4 (cit.
on p. 6).

	Acknowledgments
	Introduction
	Previous Work
	Categories of Cell Layout Generators
	Layout Styles
	Placement
	Design Rules
	Routing
	Challenges due to Manufacturability
	Comparison to Other Tools

	Definitions and Goals
	Problem Definition
	Design Rules
	Legality
	Routability

	Objective Function

	Routing
	Modular Router Structure
	Mixed Integer Programming Formulation
	Grid Graph Construction
	Steiner Tree Packing
	Conditional Constraints
	Mapping Design Rule Constraints
	Trim Shape Model
	Vias

	Routing Oracle During Placement
	Post Processing

	Placement Algorithm
	Placement Algorithm
	Phases
	Routing of Partial Placements
	FEOL Routing Oracle Cache
	Cell Width Pruning
	Combinatorial Approach
	MIP Approach

	Netlength Pruning
	Search Tree Ordering
	Parallelization
	Routing Corridors

	Extensions
	Globally Optimum Routings
	Folding

	Big Cell Placement
	Multibit Cells
	Divide Placer
	Routability Guaranty
	Subcell Splitting
	Runtime Distribution

	Linear Arrangement Placer
	Min Cut Linear Arrangements
	Algorithm of Linear Arrangement Placer

	Results

	Comparison to Manual Layouts
	Standard Cells
	Latches
	PLCB

	Summary
	Testbeds
	Standard Cells
	Latches

	Bibliography

