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Zusammenfassung

In dieser Arbeit wurden verschiedene Rückkopplungen im Boden-Pflanze-Atmosphärensystem

eines 38 ha großen bewaldeten Einzugsgebietes in der Eifel (Westdeutschland) analysiert. Ziel

war, das Verständnis der Auswirkungen von Klimavariablen und Bodenwasserverfügbarkeit auf

Wasserverbrauch und Wachstum von Bäumen bzw. Wäldern zu verbessern. Im Fokus der Studie

stand die Gemeine Fichte (Picea abies [L.] H. Karst.). Diese Art reagiert besonders empfindlich

auf Trockenheit und Hitze.

Der Wasserverbrauch der Bäume wurde anhand von Saftflussmessungen untersucht. Zur Ver-

arbeitung von Saftflussdaten stehen verschiedene Methoden zur Verfügung. Je nach Methode

fallen die Berechnungen des Wasserverbrauches allerdings sehr unterschiedlich aus. Daher wurde

in einem ersten Schritt eine vergleichende Analyse verschiedener Datenbearbeitungsverfahren

durchgeführt. Ziel war dabei, die Unsicherheit von Saftflussmessungen in Bezug auf die gewählte

Datenverarbeitungsmethode zu quantifizieren.

Anschließend wurden die Saftflussdaten verwendet, um einen alternativen Wasserstressfaktor

zu entwickeln. Dieser wurde genutzt, um das Wasserstressmodell nach Feddes für die Gemeine

Fichte zu parameterisieren. Die Analysen ergaben, dass Trockenstress bei Fichten ab einer

mittleren Saugspannung von -4100 cm Wassersäule (-402 kPa) einsetzt. Damit ist die Baumart

resistenter gegen Trockenheit als bislang angenommen. Der permanente Welkepunkt liegt bei

einer mittleren Saugspannung von 15,000 cm Wassersäule (-1471 kPa). Belüftungsstress durch

Staunässe konnte für Fichten im Rahmen dieser Studie nicht nachgewiesen werden.

Die neu parameterisierte Wasserstressfunktion wurde in das bodenhydrologische Modell HYD-

RUS-1D implementiert um zu testen, ob die artspezifische Parametrisierung standortbasierte

Wasserhaushaltsmodellierungen verbessern kann. Tatsächlich konnten für einen Standort mit

zeitweise limitierter Bodenwasserverfügbarkeit realistischere Modellergebnisse erzielt werden.

Die Berücksichtigung von Bodenfeuchtevariabilitäten und artspezifischen Grenzwerten für Bo-

denwasserstress kann somit auch zur Verbesserung der Simulation von Transpirationsflüssen auf

Einzugsgebietsebene beitragen.

In einem weiteren Schritt wurden Langzeitsimulationen der Bodenwasserverfügbarkeit an 48

Standorten innerhalb des Untersuchungsgebietes durchgeführt. Die Ergebnisse und weitere

kleinräumige Standortvariabilitäten wurden anhand von Jahrringdaten mit Jahr-zu-Jahr Vari-

abilitäten im Baumwachstum in Bezug gesetzt. Es konnte nachgewiesen werden, dass die Bo-

denwasserverfügbarkeit skalenübergreifende Auswirkungen auf das Klima-Wachstumssignal von

Fichten hat. So korreliert das regionale Klima-Wachstumssignal auf Einzugsgebietsebene besser

mit der simulierten Bodenwasserverfügbarkeit also mit monatlichen Niederschlägen. Auch die

Bildung von Wachstumsclustern innerhalb des Untersuchungsgebietes orientiert sich vorwiegend

an räumlichen Bodenfeuchtemustern. Dabei zeigte das Wachstumscluster mit den trockensten

Bedingungen die stärkste Klima-Wachstumsbeziehung, während das Cluster mit den feuchtesten

v



Zusammenfassung

Bedingungen mit einer Ausnahme keine signifikante Klima-Wachstumsbeziehungen aufwies. Die

Analyse der Klima-Wachstumssignale aller 48 Einzelstandorte ergab, dass diese in ihrer Aus-

prägung sowohl direkt über die simulierte Bodenwasserverfügbarkeit, als auch indirekt über die

Pflanzdichte an den Bodenwasserhaushalt gekoppelt sind.

Daraus lässt sich schlussfolgern, dass kleinräumig aufgelöste Daten über die Bodenwasserver-

fügbarkeit am Untersuchungsstandort die Interpretierbarkeit von Jahrringdaten verbessern und

dazu beitragen können, artenspezifische Wachstumsgrenzen zu identifizieren.
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Summary

In this study, the soil-vegetation-atmosphere system of a 38 ha forested headwater catchment in

the Eifel region (western Germany) was analyzed with the aim to improve the understanding of

the impacts of climate forcings and soil water supply on tree/forest water use and growth. The

focus species was Norway spruce (Picea abies [L.] H. Karst.), a species, which is known to be

particularly vulnerable to heat and drought.

Tree water use was assessed on the basis of sap flow measurements. The choice of the data

processing approach for sap flow measurements has considerable impacts on the resulting esti-

mates of absolute tree water use. Therefore, a comparative study of different data processing

approaches was conducted to quantify the uncertainty in sap flow estimates, which is related to

the data processing procedure.

In a second step, the sap flow series of two plots with contrasting soil moisture regimes were

used to derive a new water stress factor and to parameterize the Feddes water stress model for

Norway spruce. The onset of drought stress was observed at a root-zone pressure head of -4100

cm water column (-402 kPa). With that, the trees showed a higher drought resistance than

previously assumed. Maximum drought stress was determined for a root zone pressure head of

-15,000 cm water column (-1471 kPa), while aeration stress was not observed.

The newly parameterized water stress function was implemented in the soil hydrological model

HYDRUS-1D with the aim to improve site specific water balance simulations. This aim was

achieved for a plot with temporarily limited soil water supply. Considering soil moisture patterns

and species specific critical limits of soil water supply in the model setup can thus improve the

simulation of transpiration fluxes on the catchment scale.

Based on this finding, long-term water balance simulations were carried out for 48 plots

within the catchment. These and other microsite conditions were set into context with inter-

annual growth variations in terms of tree ring data. The data showed that soil water supply

strongly affects the climate-growth responsiveness of Norway spruce across different levels of data

aggregation. On the regional scale, inter-annual growth variations were better explained by soil

water supply than by monthly precipitation sums. Also the formation of growth clusters within

the catchment mainly followed spatial patterns of soil water supply. While the driest cluster

showed the strongest climate-growth reaction, the climate-growth response of the wettest cluster

was almost completely insignificant. Across all investigated microsites within the test-site, the

climate-growth response of Norway spruce was directly (simulated soil suction of the root-zone)

and indirectly (planting density) related to local soil water supply.

Small-scale information on soil water supply can thus help to improve the interpretability of

tree ring data and to investigate species-specific growth limitations.
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1 Introduction

1.1 Research framework

This doctorate thesis has been developed in the framework of the Transregional Collaborative

Research Center 32 (TR32) funded by the German Research Foundation and in close collabo-

ration with the TERENO-Rur Hydrological Observatory funded by the Helmholtz Association.

The key goals of these research programs are to study and monitor ecosystem controls on

terrestrial system patterns and fluxes and to investigate the impact of global change on these

across scales (Zacharias et al., 2011; Simmer et al., 2015; Bogena et al., 2018).

1.2 Problem statement

Forests cover 30% of the earth’s land surface. Storing 45% of the terrestrial carbon and con-

tributing 50% of the terrestrial net primary production, forest ecosystems provide significant

climate services worldwide. However, the future development of the world’s forest systems and

the magnitude of change in species composition and energy and matter fluxes under climate

change is highly uncertain (Bonan, 2008). For temperate forests, climate scenarios predict an

increase of severe and recurrent droughts (Bréda et al., 2006). This also applies for the Rur

catchment in western Germany, for which a strong increase in temperatures and a precipitation

shift from summer to winter are currently expected (Zacharias et al., 2011).

Since water availability is one of the most important growth factors in temperate forest sys-

tems, such changes in the seasonal course of climate variables are likely to evoke a long-term

shift in species composition (Bréda et al., 2006; Thompson et al., 2009; Hanewinkel et al., 2013).

On the short to medium term, however, present species will be driven towards their physi-

ological limits with unknown consequences for ecosystem processes and fluxes (Bréda et al.,

2006; Thompson et al., 2009). To reduce the high uncertainty in the prediction of future for-

est traits, more research is needed on the assessment of energy and matter fluxes in the forest

soil-vegetation-atmosphere system (Ammer et al., 2018; Thompson et al., 2009) and on the un-

derstanding and quantification of species specific growth and transpiration limitations (Keenan,

2015; Bréda et al., 2006). In this context, the recognition of belowground processes and soil con-

ditions and the implementation of respective thresholds and feedbacks in mechanistic models

are of particular importance (Keenan, 2015; Thompson et al., 2009; Bréda et al., 2006).

The aims of this study are to improve the uncertainty assessment for tree based transpiration

estimates (chapter 2) and to investigate the species specific stress response of Norway spruce

(Picea abies [L.] H. Karst.), which is a wide-spread and economically important species in

Europe. Special emphasis is put on the response of transpiration (chapter 3) and growth (chapter

4) to climate forcings and soil water supply.
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1 Introduction

1.3 State of the art

1.3.1 Basic principles of water flow in trees

The water flowing through the xylem conduits of woody plants is generally called sap (Perämäki,

2005). While xylem anatomy and structure vary e.g. with the tree species (Cruiziat et al., 2002),

the general organizational structure of the stem is always similar (Figure 1.1). The central

spongy tissue of the trunk (pith) is surrounded by a wooden body, from which the inner, non-

active part (heartwood) basically stabilizes the tree (Johnson and Schweingruber, 2012), while

the outer part (xylem; sapwood) contains living ray cells and serves as a pathway for water flow

from the roots to the branches and leaves (Cruiziat et al., 2002; Perämäki, 2005).

Figure 1.1: Organizational structure of a tree trunk. Modified after Johnson and Schweingruber
(2012) and The Botanist (2012)1.

The xylem structure of Norway spruce (Picea abies), which is the focus species of this disser-

tation, is characterized by so-called tracheids (Figure 1.2). This elongated cell type is typical

for conifers and serves at the same time as both supporting and conductive tissue (Hacke and

Sperry, 2015). The xylem body is surrounded by a thin tissue layer (cambium), which is respon-

sible for cell division and thus for secondary growth and tree ring formation. This cell-dividing

tissue layer is directly connected to the phloem, which forms the inner bark and consists of con-

ducting cells that translocate photosynthetic products (mainly sugars) within the tree (Johnson

and Schweingruber, 2012; De Schepper and Steppe, 2010). The outer bark prevents evapora-

tion from the phloem and protects the tree from damage, e.g. by fungal or insect infestation

(Perämäki, 2005).

1
botanistbackyard.blogspot.com; last accessed in November 2018
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Figure 1.2: Scheme of the basic bark and sapwood anatomy of Norway spruce. Source: Krokene et al.
(2008).

Far more than 90% of the water flow in trees ends up in transpiration, which pulls the water

from the soil to the leaves (Hacke and Sperry, 2015; Perämäki, 2005; Cruiziat et al., 2002). On its

way through the xylem conduits, the water (sap) follows dynamic gradients of water potential.

With that, trees can be considered as "kind of hydraulic system[s]" (Cruiziat et al., 2002). These

systems are basically governed by solar radiation, because solar radiation is the main driver of

stomatal activity (Figure 1.3). When stomata open for photosysthesis, water molecules follow the

atmospheric vapour pressure deficit and escape from the leaves. The induced negative pressure

at the evaporating surface of the leaves then pulls the continuous water column upwards and

the water ascents the trunk (Cruiziat et al., 2002; Hacke and Sperry, 2015; Tyree, 1997).

In general, this principle works fairly well, however, it is not immune against failure. Un-

der certain pressure-temperature conditions, the water in the xylem conduits abruptly changes

its phase from liquid to gas (water vapour) (Cruiziat et al., 2002; Hacke and Sperry, 2015;

Perämäki, 2005). This process is called cavitation and directly leads to a reduction of hydraulic

conductivity, which decouples the upper transpiration limit from atmospheric demand and sets

it a function of soil water supply instead (Hacke and Sperry, 2015). Cavitation often occurs

as a consequence of freezing-thawing cycles of xylem sap, but also as a consequence of drought

(Cruiziat et al., 2002; Hacke and Sperry, 2015; Perämäki, 2005).

Following the dynamics of radiation and atmospheric demand, transpiration and thus sap

flow typically show diurnal patterns going hand in hand with diurnal fluctuations of the water

tension in the xylem (Perämäki, 2005; Steppe et al., 2005). The resulting changes in stem water

storage (cf. Figure 1.3) lead to reversable stem diameter fluctuations, which can be monitored

by dendrometers and are inverse to the diurnal sap flow pattern (Figure 1.4).

3



1 Introduction

Figure 1.3: Hydraulic system of a tree. Modified and extended after Cruiziat et al. (2002) and
Johnson and Schweingruber (2012).

Figure 1.4: Example data from the Wüstebach of the year 2013 showing inverse patterns of sap flow
dynamic and diurnal stem expansion (bottom illustration) and how these follow the patterns of

incoming global radiation and atmospheric vapour pressure deficit (upper illustration). VPD: vapour
pressure deficit; R: global radiation; SM50: volumetric soil moisture in 50 cm depth; Fd: sap flow

density; DOY: day of year.
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Additional to these swelling-shrinking cycles, dendrometers are able to detect phases of abso-

lute stem increment (red dots in Figure 1.4). These can be attributed to either irreversable cell

expansion or new cell formation (Deslauriers et al., 2007).

With that, dendrometers can not only be used to estimate tree water status, but also to

monitor intra-annual growing patterns. However, one current challenge in dendroecology is to

put these short-term observations into context with long-term intra-annual growth variations as

obtained from tree ring data (cf. chapter 1.3.2).

1.3.2 Tree ring formation and growth assessment

Tree rings evolve as a results of the cambial activity of trees during the growing season. In

temperate ecosystems with recurring interplay of growing periods and dormant seasons, trees

generally form one distinct ring per year. The formation of a tree ring is "a complex process of

cell division, growth and maturation" (Deslauriers et al., 2017). New cells are built in tangential

orientation, whereas cells directed outwards become part of the phloem, while cells directed

inwards become part of the xylem body (Cocozza et al., 2016; Deslauriers et al., 2017).

Normally, the cambial cell division starts simultaneously on the phloem and the xylem sides.

However, since the first one or two layers of phloem cells generally differentiate without previous

cell division, phloem formation actually starts earlier in the growing season than xylem forma-

tion. For Norway spruce, the shift between the onset of phloem and xylem formation amounts

to 3-5 weeks (Deslauriers et al., 2017).

The rate and duration of cell division and enlargement are mainly determined by genetics and

environmental conditions (Schweingruber, 1996; Cocozza et al., 2016). In temperate forests, the

onset of stem growth is generally related to species-specific temperature thresholds or critical

heat sums (Cocozza et al., 2016). During spring growth, the trees draw on internal nutrient re-

serves that they have stored during the previous year. Wide-lumened and thin-walled earlywood

cells with a high hydraulic conductivity are built to cover the demand for water and nutrients

at this stage. Therefore, the current year tree ring width of some species is more sensitively

correlated to previous year climate conditions than to the climate in the year of ring formation

(Schweingruber, 2007; Neuwirth, 2010).

Over the growing season, a transition of the huge earlywood cells to flatter latewood cells

with narrow lumen and thicker walls can be observed (Figure 1.5). This earlywood to latewood

transition is triggered by hormones and goes hand in hand with a shift in cell functionality.

In the later growing season, matters like lignin, resin, dye and ferment are stored along the

cell walls. This reduces the cell volume, but stabilizes the wood. The decreasing temperatures

towards the end of the growing season go hand in hand with the cessation of cell division and

thus growth. With that, the tree ring is completed (Schweingruber, 1996, 2007).

Timing and appearance of the earlywood to latewood transition are basically driven by ge-

netics and climate. Norway spruce typically shows a continuous transition from earlywood to

latewood (cf. Figure 1.5b). However, seasonal short-term climate oscillations or variations of

the soil water supply may sometimes yield sharp earlywood to latewood transitions as well.
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Figure 1.5: Tree ring structure of Norway spruce in 25x (a), 100x (b), and 450x magnification (c). The
differing cell structure of earlywood and latewood is clearly visible in Figure (c), where the latewood

earlywood border marks the beginning of a new tree ring. Source: Schweingruber (1990).

Consequently, intra-annual variations of cell size and structure hold important information of

the intra-seasonal variability of environmental conditions in the year of ring formation (Schwe-

ingruber, 2007; Deslauriers et al., 2017).

One opportunity to close the gap between high resolution dendrometer data (cf. Figure 1.4)

and annually-resolved tree ring data is therewith the analysis of cell growth and wood anatomy

in intermediate time steps. To this end, small samples of wood (so-called microcores) are taken

from the developing current year tree ring in bi-weekly or shorter time steps. On the basis of

the resulting intra-seasonal microcore chronology, tree rings can be resolved intra-annually and

actual cell growth can be related to the shape of the dendrometer curve (Cocozza et al., 2016;

Michelot et al., 2012; Drew and Downes, 2009).

Nevertheless, the traditional way to analyse the climate-growth response of trees still includes

the correlation of monthly mean climate data with annually-resolved time series of tree ring

widths (Cocozza et al., 2016). Respective basic principles of site selection and data processing

are described in chapter 1.3.4.

1.3.3 Measuring and scaling sap flow

Since more than 90% of the water flow in trees ends up in transpiration and all of that water

passes the trunk (cf. chapter 1.3.1), sap flow measurements can serve as a proxy for tree and

forest transpiration (Perämäki, 2005). With that, sap flow techniques are valuable tools in

studies of forest water and energy budgets (Figure 1.6).

In contrast to classic water balancing approaches and micrometeorological techniques, sap

flow measurements allow for the partitioning of species specific transpiration components from

overall forest evapotranspiration and for the assessment of spatio-temporal transpiration pat-

terns (Smith and Allen, 1996; Kool et al., 2014; Williams et al., 2004; Ringgaard et al., 2012,

2014; Oishi et al., 2008).
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Figure 1.6: Overview of energy (left-hand illustration) and water fluxes (right-hand illustration) in
forest soil-vegetation-atmosphere systems. Source: Bonan (2008).

In combination with measurements of other environmental variables, they provide important

information on plant-physiological responses to varying hydro-climatic conditions (Bräuning and

Steppe, 2016; Leo et al., 2014; Clausnitzer et al., 2011; Lundblad and Lindroth, 2002) and help

to identify species- and site-specific limits of plant hydraulic functioning (Steppe et al., 2015).

Different sap flow systems are commonly in use and commercially available. However, all of

them rely on the principle of heat being used as a tracer for sap movement in the tree (Smith and

Allen, 1996). In heat balance methods, the trunk (Sakuratani, 1981) or a section of the trunk

(Cermák et al., 1973) is “heated electrically and the heat balance is solved for the amount of heat

taken up by the moving sap stream, which is then used to calculate the mass flow of sap in the

stem” (Smith and Allen, 1996). With the heat pulse technique, "sap flux density is determined

from the velocity of a short pulse of heat moving along xylem tissue through conduction and

convection" (Steppe et al., 2010). One empirical approach to determine sap flow rates is the

thermal dissipation technique (Granier, 1985, 1987), where sap flow densities are derived “from

the temperature of sapwood near a continuously-powered heater implanted in the stem” (Smith

and Allen, 1996).

All of these measuring systems have their advantages and disadvantages. In the TR32 project,

we used the Granier system (Granier, 1985, 1987), because it is easily applicable to trees of

larger size. A detailed description of our sensors and the principle of Granier-based sap flow

measurements is given in chapter 2.

As with all sap flow systems, one key issue of the Granier technique is measuring accuracy

(Steppe et al., 2010, 2015). In comparison to gravimetric measurements, Granier-based sap flow

sensors tend to underestimate actual sap flow densities (Steppe et al., 2010). This is partly
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related to the method applied for the conversion of the raw temperature signal into actual sap

flow density (Peters et al., 2018). Different data processing approaches are in use, however,

little attention has been paid to the uncertainty, which is related to the signal transformation.

The research presented in chapter 2 addresses this issue by comparing existing data processing

approaches and quantifying variations in the resulting sap flow densities on different time scales.

The results show that absolute sap flow densities strongly vary with the underlying data pro-

cessing procedure. Therefore, attention should be paid to the selection of the data processing

approach.

Another critical point of Granier type sap flow systems is related to the assessment of natural

radial and circumferential variations of sap velocities within the trunk (Figure 1.7). Granier-

based measurements are point measurements. Since trunk internal velocity profiles may vary

with tree species, tree size, tree age, social position of the tree, and also with ambient conditions,

radial and circumferencial sap flow profiles need to be determined for a proper scaling to whole-

tree water use. This requires sap flow measurements in different sapwood depths and from

different sides of the tree. To further reduce the uncertainty of tree-scale sap flow estimates,

a species- and site-specific calibration of the sensors is generally recommended (Peters et al.,

2018; Steppe et al., 2015; Ford et al., 2004; Gebauer et al., 2008; Phillips et al., 1996; Fiora and

Cescatti, 2006; Čermák et al., 2007).

Figure 1.7: Example of a crossectional velocity profile of a Norway spruce stem. N: northern side of
the stem; S: southern side of the stem; rx/ry: radius in x and y direction; Source: Čermák et al. (2004).

For the scaling of sap flow data from the tree to the forest stand, and therewith to a ground-

area basis, scalars like leaf area, projected crown area or basal area can be used. Age and

diameter distributions, crown-classes, and potential edge-effects should be considered in the

sampling design (Asbjornsen et al., 2011; Köstner et al., 1998; Čermák et al., 2004; Ringgaard

et al., 2012).

Respectively, extensive measurement campaigns are needed to obtain proper estimates of for-

est transpiration from sap flow measurements alone. Therefore, many researchers alternatively

apply water balance models to estimate forest transpiration. These models calculate tran-
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spiration as a function of atmospheric boundary conditions, soil water supply and vegetation

characteristics (Asbjornsen et al., 2011; Arora, 2002). To account for the effects of limited soil

water supply on stand transpiration, they commonly refer to plant water stress functions. These

describe the species-specific water stress response of plants, but have rarely been parameterized

for forest trees, because no common method is available. This issue is adressed in chapter 3,

which shows how to make use of sap flow data to quantify the water stress response of trees and

improve forest water balance simulations.

1.3.4 Analyzing climate-growth relations

Investigating the climate-growth response of specific sites and species is one of the main research

subjects in classic tree ring studies. To maximise the climate signal in the tree ring data, a

proper site selection is of critical importance. Typically, homogeneity in site conditions and

social position of the sample trees are considered necessary prerequisites for building strong

chronologies. These requirements can only be meet by selective sampling. To obtain a solid

mean chronology of a geobotanically and climatically homogeneous site, 20-30 dominant trees

are usually sampled from two opposite sides (Schweingruber et al., 2013). After preparing

the cores for ring width measurements (for detailed information on sample preparation and

measurement techniques cf. Pilcher (2013) and Stokes and Smiley (1968)), the samples typically

undergo the following procedure:

1. Determination of the tree ring widths

Measurements of tree ring widths can either be done visually using microscopes and move-

able object tables or with the help of measuring software that is based on scanned images

of the cores (Pilcher, 2013).

2. Calculation of tree mean curves

A tree mean curve (TMC) is the tree ring chronology resulting from the average of all

growth curves taken from one tree (Kaennel and Schweingruber, 1995). Therewith, TMCs

represent the mean growth behaviour of a tree.

3. Cross-dating

Cross-dating describes the "procedure of matching variations in ring width or other ring

characteristics among several tree ring series allowing the identification of the exact year

in which each tree ring was formed" (Kaennel and Schweingruber, 1995). A proper cross-

dating is essential in any tree ring study, because it is the only possibility to identify

missing rings or false rings that may result from environmental anomalies during the

growing season.

4. Standardization and indexing

Standardization, commonly termed indexation in the dendro community, describes the

process of removing climatic or bio-ecological trends from tree ring series by substracting

or dividing the measured tree ring widths by smoothed values obtained from a filter or a

selected smoothing function (Figure 1.8a). The choice of the filter or smoothing function

depends on the aims of the study. With low-pass filters (e.g. 31-year weighted running
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means of the measured values), long-term environmental fluctuations can be emphasized,

while high-pass-filters (e.g. weighted or unweigthed 5-year running means) are used to

bring short-term fluctuations to the fore (Schweingruber, 1988). One trend that needs to

be removed wherever tree ring series from individual trees of different cambial age are set

into context, is the so-called age trend. This term describes the phenomenon that the

absolute tree ring width typically decreases from the pith to the outermost ring because

of the "geometric constraint of adding an annual volume of biomass to the stem of a tree

that has an increasing radius [over time]" (Helama, 2015). The effect of the selected filter

function on the resulting indexed tree ring series is illustrated in Figure 1.8b.

Figure 1.8: (a) Examples of smoothing functions. (b) Effect of the selected filter
function on the resulting indexed tree ring series. 5-year filters are typically used to
emphasize short-term environmental fluctuations, the 13-year filter can be used to

investigate medium term fluctuations, while the 31-year filter puts long-term fluctuations
to the fore; Modified after Schweingruber (1988).

5. Chronology building

After cross-dating and indexation, the tree ring series of individual trees are aggregated

to mean chronologies (Kaennel and Schweingruber, 1995). The level of data aggregation

depends on the study purpose and may range from individualistic approaches on the tree

or microsite level (Carrer, 2011) over site chronologies regional chronologies (Kaennel and

Schweingruber, 1995).

To investigate the climate-growth responsiveness of specific sites or species, the annual records

of respective growth chronologies are typically correlated with monthly and seasonal mean tem-

peratures or precipitation sums. The strength of the resulting climate-growth relations provides

information on species- and site-specific growth limitations and may decide wether a chronology

is suitable for climate reconstructions or not (Schweingruber, 1996).

One critical issue related to this standard procedure in analyzing the climate-growth response
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of trees is the question of representativeness of the averaged growth chronology for entire popu-

lations and the actual conditions on site. Even though selective sampling is still acknowledged as

appropriate approach for climate growth analysis and climate reconstructions, there is increas-

ing evidence that also geobotanically and climatically homogeneous sites comprise small-scale

heterogeneities in site conditions which may significantly alter the climate-growth responsiveness

of individual trees (Carrer, 2011; Nehrbass-Ahles et al., 2014; Sullivan and Csank, 2016). Such

small-scale heterogeneities are for example caused by management practice (Pretzsch and Dieler,

2011; Primicia et al., 2015), physical and chemical soil properties (Braun et al., 2010; Pretzsch

and Dieler, 2011; Tromp-van Meerveld and McDonnell, 2006; Ibáñez et al., 2018), soil water

state (Ashiq and Anand, 2016; Helama et al., 2016; Jiang et al., 2016; Lévesque et al., 2014;

Linares et al., 2010; Primicia et al., 2015; Zhang et al., 2018), canopy structure (Adams and

Kolb, 2004; Linares et al., 2010; Martín-Benito et al., 2008; Primicia et al., 2015), tree-to-tree

competition (Linares et al., 2010; Primicia et al., 2015; Gleason et al., 2017; Piutti and Cescatti,

1997), and tree size (Carrer and Urbinati, 2004; Linares et al., 2010). The interplay of these

parameters determines the range of climate signals detected among individual trees (Carrer,

2011).

One understudied question in this context is related to level of data aggregation at which

such small-scale effects become significant for average site or stand chronologies. The research

presented in chapter 4 adresses this issue by analyzing tree ring chronologies of 144 even-aged

Norway spruce trees on different levels of data aggregation with the aim to identify the relevance

of small-scale heterogeneities in site conditions for the detected climate-growth signal.

1.4 Study area

The major goal of the TR32 is to study and monitor ecosystem controls on terrestrial sys-

tem patterns and fluxes and to investigate the impact of global change on these across scales

(Zacharias et al., 2011; Simmer et al., 2015; Bogena et al., 2018). Covering a broad range of

environmental gradients, e.g. in altitudes, temperatures, precipitation amounts, and land-use

types, the Rur catchment in western Germany was selected as the central study area and has

turned into a highly instrumented observation site since the beginning of the research activities

in 2007 (Simmer et al., 2015; Bogena et al., 2018).

The total catchment area of the Rur covers about 2354 km2. With 34%, a considerable

proportion of the landcover consists of forests, mainly located in the southern upland part of the

catchment (Simmer et al., 2015). Hence, forests play a significant role for the regional water,

energy and matter cycles. To improve the understanding of respective processes and fluxes in

the forest soil-vegetation-atmosphere system, the 27 ha Wüstebach test-site was implemented

as one of three heavily instrumented research sites in the Rur catchment (Zacharias et al., 2011;

Bogena et al., 2018). All studies of this dissertation were conducted in the setting of this site,

which is not only one of the focus areas of the TR32 project, but was also set up as part of the

TERENO Eifel/Lower Rhine Valley Observatory in 2007 (Bogena et al., 2018).

The Wüstebach test site is located in the catchment of the Wüstebach stream (50°30’N,

6°19’E), which covers an area of 38.5 ha and is situated in the German low mountain ranges

close to the German-Belgian border (Figure 1.9a) (Bogena et al., 2010, 2014, 2018; Zacharias
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et al., 2011).

Altitudes range from 595 m a.s.l. in the north to 628 m a.s.l. in the south. The main valley of

the Wüstebach stream shows an asymmetric V-shape with steeper slopes (11-15°) on the eastern

side than on the western side (7-11°) (Lehmkuhl et al., 2010). Situated in the northern part

of the Eifel mountains, the area is part of the Rhenish Massif, which belongs to the Variscan

orogenic belt. Respectively, the bedrock is characterized by Devonian shales with occasional

sandstone inclusions covered by a periglacial solifluction layer of 1 to 3 m depth (Bogena et al.,

2018; Lehmkuhl et al., 2010).

The present geomorphology of the Wüstebach site is strongly marked by anthropogenic in-

terventions. During medieval and early modern times, the region was characterized by poor

socioeconomic conditions. The population density was low and small and scattered field struc-

tures prevailed. Until the mid of the 19th century, however, the area developed to an important

center for iron melting and other heavy industries. In this period, huge parts of the natural

beech forests were deforested for charcoal production. Under Prussian governance, the first

pine and spruce plantations were established to meet the continuing need for wood for mining

and construction. During the Second World War, forests fell again victim to the high demand

for firewood. In the final stage of the war, the region was the scene of heavy fighting in the

Battle of Bulge. Dugouts, impact craters, and gun emplacements still dominate the small-scale

geomorphology of the Wüstebach site (Lehmkuhl et al., 2010).

After the war the few remaining wood resources were soon exhausted. However, in the late

1940ies, spruce plantations were again established to produce timber and prevent erosion (Bo-

gena et al., 2018; Lehmkuhl et al., 2010). The Wüstebach test-site is situated in one of these

plantations. Meanwhile, the trees (Picea abies [L.] H. Karst.) are ∼70 years old and have

reached a canopy height of ∼30 m (observations from 2016). Due to the high degree of shad-

ing, only sparse shrub, herb, and moss layers have developed below the forest canopy. The

species composition within these layers is typical for acidic and nutrient-poor soils in montane

and sub-Atlantic regions and comprises e.g. black elderberry (Sambucus nigra), common broom

(Cytisus scoparius), white woodrush (Luzula luzloides), blueberry (Vaccinium mytrillus), and

red foxglove (Digitalis purpurea)(Deckers, 2010).

In 2004, the Eifel National Park was established and the Wüstebach catchment became part

of it. Until 2034, about 75% of the conservation area is supposed to be transformed to an

undisturbed landscape with near-natural vegetation. One goal of the National Park Forestry

Service is therefore to convert former spruce plantations into European beech forests (Fagus

sylvatica), which is the potential natural vegetation in the region (Wald und Holz NRW, 2017).

To accelerate the conversion process, forest managers decided to remove a significant proportion

of the spruce forest providing space for natural succession. In this context, a clear-cut experiment

was conducted in the area of the Wüstebach test-site (Bogena et al., 2014, 2018).

To investigate the effects of deforestation on hydrological and biogeochemical cycling, the

site was instrumented with a soil moisture measurement network (TERENO SoilNet; Bogena

et al. (2010)) and observation platforms monitoring the main water and matter fluxes in the

catchment (Bogena et al., 2018).
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Figure 1.9: (a) Location of the Wüstebach test-site within the Eifel National Park and Germany and
overview of nearby climate stations. (b) Overview of the Wüstebach test-site including relevant
instrumentation and sampling sites. The installed dendro-hydro-climate stations (DHC-stations)

include sap flow sensors and dendrometers on 3-4 trees and temperature and relative humidity sensors
to monitor the micro-climate on site. The difference between the displayed contour lines is 2.5 m.
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SoilNet operates wireless and monitors volumetric soil moisture in 5, 20, and 50 cm depth at

150 measuring locations across the test-site. An overview of the measuring locations is given in

Figure 1.9b. Recording the data in 15 min time steps (Bogena et al., 2010), SoilNet provides

high-resolution information on the spatio-temporal soil moisture variability since 2009.

Another centrepeace of the Wüstebach test-site is the micrometeorological tower, which was

installed in 2010. The tower is about 38 m high and measures actual evapotranspiration fluxes

above the forest canopy. The measurements are based on the eddy-covariance (EC) technique

and yield mean estimates of fluxes from a dynamic footprint area (Graf et al., 2014). Shape

and size of this footprint area depend on the wind direction and other micrometeorological

conditions. The radius of the main EC tower footprint in the Wüstebach catchment reaches

approximately 500 m downwind (Graf 2018, personal communication).

Other permanently installed measuring devices in the Wüstebach catchment include three

runoff gauging stations, eight groundwater piezometers, two cosmic-ray neutron probes, a lysime-

ter station, and sampling stations for weekly determination and isotopic analysis of different

components of the hydrological water cycle. For a detailed description of the measuring devices

and additional sampling campaigns in the framework of TERENO, refer to Bogena et al. (2018)

and to the TERENO data discovery portal TEODOOR2.

The instrumentation of the Wüstebach test-site was completed between 2007 and 2010 and

thus well before the deforestation in 2013. About 9 ha of spruce forest were then removed from

the plantation (Figure 1.10) (Bogena et al., 2014, 2018).

2013 2016 

200 m 200 m 

Figure 1.10: Aereal images of the Wüstebach test-site before (2013) and after the deforestation
measure (2016). The dashed yellow lines indicate the border of the test-site. Data source: The State of

North Rhine-Westfalia (www.geoportal.nrw; last accessed in October 2018)

During the clearcut, most trees were felled in the wettest part of the test-site, where Gleysols,

and Histosols (half-bogs) have developed under the influence of groundwater in the riparian

zone of the Wüstebach stream. On the drier hillslopes shallow Cambisols and Planosols prevail

(Figure 1.9b) (Bogena et al., 2018). The soil texture on site is mainly clay loam with a medium

to high coarse material fraction (Gottselig et al., 2017). Bulk densities are slightly higher, while

skeleton contents and (macro-) porosities are lower in the valley bottom than on the slopes

(Gottselig et al., 2017; Rosenbaum et al., 2012; Wiekenkamp et al., 2016).

2
teodoor.icg.kfa-juelich.de; last accessed in October 2018
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1.4 Study area

The weather in the Eifel region is influenced by relatively moist and temperate air originating

from the North Atlantic (Simmer et al., 2015). The climate can thus be classified as a temper-

ate oceanic (Cfb climate according to the Köppen-Geiger classification (Kottek et al., 2006)).

Over the last decades, mean annual precipitation in the Wüstebach area slightly increased from

1234 mm in the period 1955-1985 to 1287 mm in the period 1985-2015 (DWD weather station

Kalterherberg, cf. Figure 1.9a), while annually mean temperatures increased from 7.4 °C to 8.4

°C (DWD weather station Kall-Sistig, cf. Figure 1.9a). The shift in mean annual precipitation

is mainly due to increasing monthly precipitation sums in spring (March) and fall (September

and October), whereas the shift in the mean annual temperature is caused by increasing mean

monthly temperatures in all months except from September (Figure 1.11).

Figure 1.11: Mean monthly temperatures (T) and precipitation sums (P) for the periods 1955-1985 (a)
and 1985-2015 (b), and shift in mean monthly values between these periods (c) according to the data
recorded by the DWD weather stations Kall-Sistig (temperature) and Kalterherberg (precipitation).

Hence, the region is highly susceptible to climate change (Simmer et al., 2015), which makes

it an ideal setting to investigate forest development under climate change and to study the limits

of tree eco-hydrological functioning and growth.

To investigate short-term eco-hydrological processes on the tree level, three so-called dendro-

hydro-climate stations (DHC-stations) were installed in the Wüstebach catchment. Two of them

operated between 2009 and 2011 and were located on sites of contrasting soil moisture regimes

("wet" in the riparian zone and "dry" on the eastern slope of the Wüstebach stream), while the

third DHC-station next to the eddy covariance tower (cf. Figure 1.9b) was installed in 2012 and

is still operating. At each DHC-station 3 to 4 trees were equipped with dendrometers and sap

flow sensors. Furthermore, temperature and relative humidity were monitored in 2 m above soil

surface and thus below the forest canopy (Figure 1.12).

To investigate the long-term climate-growth relationships across the Wüstebach test-site, a

tree ring sampling campaign was conducted in 2016. An overview of the test-site and instru-

mentation and sampling locations referred to in this dissertation is given in Figure 1.9b.
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1 Introduction

Figure 1.12: Experimental design of a DHC-station: (1) Granier-type sap flow sensors and point
dendrometers; (2) Measurements of temperature and relative humidity; (3) Eddy-covariance system

belonging to the TERENO project.

1.5 Research questions and overview of manuscripts

The aims of this study are to improve the uncertainty assessment for sap flow measurements in

trees and to investigate the species specific stress response of Norway spruce to climate forcings

and soil water supply. In this context, three individual manuscripts have been prepared and

published in international peer-reviewed journals, namely Sensors, Water , and Dendrochronolo-

gia.

The first manuscript (chapter 2; Rabbel et al. (2016)) adresses the need for a reliable

quantification of tree water use. As described in chapter 1.3.3, the estimation of absolute tree

water use from Granier-based sap flow measurements comprises many uncertainties. While un-

certainties related to the scaling of the point measurement to the tree have been adressed in

many studies and are usually assessed by considering radial and circumferencial sap flow den-

sity profiles (e.g., Fiora and Cescatti (2006); Nadezhdina et al. (2002); Čermák et al. (2004)),

little attention has been paid to the uncertainty in sap flow estimates, which is related to the

parametrization of the empirical equation (Granier formula) that transfers the raw temperature

signal to sap flow density. In chapter 2, different parameterization approaches are compared to

quantify the effects of the data processing procedure on the resulting sap flow densities. The

main research questions are: How does the parameterization of the Granier formula

affect absolute sap flow density estimates on sub-daily, daily and (intra-) seasonal

scales and which parameterization approach yields the most reliable results?

The second manuscript (chapter 3; Rabbel et al. (2018a)) adresses the need for a better

understanding and quantification of species specific transpiration limitations under considera-
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1.5 Research questions and overview of manuscripts

tion of the soil conditions. An alternative water stress factor is derived from the sap flow density

series of two DHC-stations with contrasting soil moisture regimes and used to parameterize the

Feddes water stress model (Feddes et al., 1978) for Norway spruce. The newly parameterized

Feddes function is implemented in site specific water balance simulations raising the question:

Does the implementation of sap flow data help to improve forest water balance sim-

ulations?

The third manuscript (chapter 4; Rabbel et al. (2018b)) adresses the need for a better

understanding of the role of soil conditions for the climate growth response of trees. The Feddes

parameters developed in manuscript 2 are implemented in long-term water balance simulations

throughout the Wüstebach test-site. The resulting information on long-term spatiotemporal

variations of soil water supply are set into context with tree ring data from 48 microsites (cf.

Figure 1.9b). The underlying research question is: How important are small-scale hetero-

geneities in soil water supply for the growth responsiveness of trees?

An overview of all manuscripts, research questions, and key findings is given in Table 1.1.
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Table 1.1: Overview of manuscripts and related research questions.

Chapter Publication Research focus Research questions Key findings

2

Rabbel, I., Diekkrüger, B.,
Voigt, H., and Neuwirth, B.
(2016): Comparing ∆Tmax

determination approaches for
Granier-based sap flow esti-
mations. Sensors 16(1): 2042.
doi:10.3390/s16122042.

Sap flow data
processing

How does the parameteriza-
tion of the Granier formula
effect absolute sap flow den-
sity estimates and which ap-
proach yields the most reliable
results?

• absolute sap flow density estimates
strongly vary with the underlying data
processing approach

• physically-based parameterizations of the
Granier formula yields more reliable sap
flow density estimates than empirical pa-
rameterization approaches

3

Rabbel, I., Bogena, H.,
Neuwirth, B., and B. Diekkrüger
(2018): Using sap flow data
to parameterize the Feddes
water stress model for Norway
spruce. Water 10(3): 279.
doi:10.3390/w10030279

Water balance
simulations

Does the implementation of
sap flow data help to improve
forest water balance simula-
tions?

• sap flow data can be used to quantify the
water stress response of trees and to de-
termine critical limits of soil water supply

• implementing respective information into
models can help to improve forest water
balance simulations

4

Rabbel, I., Neuwirth, B., Bo-
gena, H., and Diekkrüger, B.
(2018). Exploring the growth
response of Norway spruce
(Picea abies) along a small-scale
gradient of soil water supply.
Dendrochronologia 52: 123-130.
doi:10.1016/j.dendro.2018.10.007

Climate-growth
response

How important are small-
scale heterogeneities in soil
water supply for the growth
responsiveness of trees?

• soil water supply and site characteristics,
which modify the water availability for
trees, dominate the growth responsiveness
of forest microsites

• small-scale information on soil water sup-
ply and site characteristics improve the in-
terpretability of tree ring data and help
to improve our understanding of species-
specific growth limitations
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2 Comparing ∆Tmax determination approaches

for Granier-based sap flow estimations

This chapter has been published as: Rabbel, I., Diekkrüger, B., Voigt, H., and Neuwirth, B.

(2016). Comparing ∆Tmax determination approaches for Granier-based sap flow estimations.

Sensors 16 (1): 2042. doi:10.3390/s16122042. Online available at: http://www.mdpi.com/

1424-8220/16/12/2042/htm

Abbreviations of the original article have been adapted according to the standardized format of

this dissertation.

Abstract: Granier-type thermal dissipation probes are common instruments for quantifying

tree water use in forest hydrological studies. Estimating sap flow using Granier-type sap flow

sensors requires determining the maximum temperature gradient (∆Tmax) between the heated

probe and the reference probe below. ∆Tmax represents a state of zero sap flux, which was orig-

inally assumed to occur each night leading to a ∆Tmax determination on a daily basis. However,

researchers have proven that, under certain conditions, sap flow may continue throughout the

night. Therefore alternative approaches to determining ∆Tmax have been developed. Multiple

∆Tmax approaches are now in use; however, sap flow estimates remain imprecise because the

empirical equation that transfers the raw temperature signal (∆T) to sap flux density (Fd) is

strongly sensitive to ∆Tmax. In this study, we analyze the effects of different ∆Tmax determi-

nation approaches on sub-daily, daily and (intra-)seasonal Fd estimations. On this basis, we

quantify the uncertainty of sap flow calculations, which is related to the raw signal processing.

We show that the ∆Tmax determination procedure has a major influence on absolute ∆Tmax

values and the respective sap flux density computations. Consequently, the choice of the ∆Tmax

determination approach may be a significant source of uncertainty in sap flow estimations.

Keywords: heat dissipation; thermal dissipation; maximum temperature gradient; data pro-

cessing; transpiration; Norway spruce; Picea abies

2.1 Introduction

Granier-type thermal dissipation probes are common instruments for quantifying tree water

use in forest hydrological studies (Verstraeten et al., 2008; Davis et al., 2012; Lu et al., 2004;

Wullschleger et al., 1998; Köstner et al., 1996). Upscaled to a ground area basis, tree water

use is particularly valuable in accounting for actual tree transpiration when partitioning forest

evapotranspiration (Kool et al., 2014; Ringgaard et al., 2012; Wilson et al., 2001). The Granier
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2 Comparing ∆Tmax determination approaches for Granier-based sap flow estimations

system consists of two sensor probes inserted radially into the sapwood, one above the other.

The upper probe is equipped with a heating element and a thermocouple, thus recording the

heat dissipation due to sap flow. The lower probe measures the ambient reference temperature

of the wood (Granier et al., 1996). Sap flux density derived from the temperature gradient

between the two probes using the empirical equation (Granier, 1985, 1987):

F d = 119 ∗

(

∆T max − ∆T

∆T

)1.231

(2.1)

where Fd is the sap flux density (g·m-2·s-1), ∆T is the actual temperature gradient between

the two probes and ∆Tmax the maximum temperature gradient measured between the probes

in a given time period.

Granier’s formula is strongly sensitive to the parameter ∆Tmax, which represents a state of

zero sap flow (Fd = 0). Such zero flow conditions were originally assumed to occur every night

(Granier, 1985, 1987). This assumption led to a ∆Tmax determination on a daily basis (D). How-

ever, there is increased evidence that, under certain conditions, sap flow continues throughout

the night (Zeppel et al., 2013; Phillips et al., 2010; Daley and Phillips, 2006). To improve noctur-

nal sap flow detection, researchers pay much attention to determining the zero flow conditions

and respective ∆Tmax values. Consequently, alternative approaches to determining ∆Tmax have

been developed, all based on the assumption that zero flow is related to erratically occurring

ambient conditions.

There are two main approaches to including this assumption into sap flow calculations: (1)

presuming the recurrence of zero flow within a given time period, during which ∆Tmax is deter-

mined (empirical approaches) or (2) defining ∆Tmax when accompanying environmental mea-

sures suggest that presumed zero flow conditions have been met (physically based approaches).

Most commonly used are the empirical moving window approaches (MW), where ∆Tmax is de-

termined within dynamic time windows of different widths. Within these time windows, zero

flux is assumed to occur only once. While Lu et al. (2004) proposed estimating ∆Tmax over

periods of 7–10 days, in practice researchers applied moving windows of 3 days (Ringgaard et al.,

2012), 4- to 5-days (Reyes-García et al., 2012), 7 days (Moore et al., 2008; Moore and Owens,

2011), 10 days (Köstner and Clausnitzer, 2011; Schwärzel et al., 2009; Oliveras and Llorens,

2001) or even 14-day MWs (Ford et al., 2007) for ∆Tmax determination. The subjectivity of

selecting the MW width has already been identified as a drawback of this approach (Regalado

and Ritter, 2007). The advantage of MW approaches is that they are easy to implement and,

due to their dynamic character, capable of compensating drifts in the data.

Another empirical procedure to overcome both the drift phenomena and the problem of noc-

turnal flow detection is performing a linear regression (LR) of ∆Tmax values that have first

been determined by a 10-day moving window (Lu et al., 2004; Granier, 1987). This approach

has been refined by (1) eliminating the data points that were below the values estimated by

the linear regression and (2) performing a second linear regression through the remaining data

points. This modified regression procedure is known as double regression (DR) (Lu et al., 2004).
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2.2 Materials and methods

However, DR has found limited use because its accuracy has not yet been validated (Regalado

and Ritter, 2007).

By considering actual environmental conditions as zero flow criteria, Oishi et al. (2008, 2016)

defined a baseline upon ∆Tmax values that were observed on days with particularly low vapor

pressure deficit (VPD). Phillips et al. (2010) also set their baseline on nights when VPD fell

to zero for several hours. Regalado and Ritter (2007) dynamically computed ∆Tmax depending

mainly on potential evapotranspiration, while Ward et al. (2008) calculated their baseline from

the relation between nocturnal sap flow estimates derived from the daily ∆Tmax approach and

nocturnal stomatal conductance that was simulated from data of whole-tree chamber experi-

ments.

However, although various determination procedures are in use, little attention has been paid

to assessing uncertainties related to the application of such alternative ∆Tmax approaches. This

study therefore aims to compare existing ∆Tmax approaches and quantify their effects on sap

flux density (g·m-2·s-1) estimations for mature Norway spruce trees in the Eifel National Park

(Schleiden, Germany). Besides the described empirical ∆Tmax approaches, we test the method

of Oishi et al. (2008, 2016) as a representative for VPD-based ∆Tmax approaches and the ∆Tmax

simulation method of Regalado and Ritter (2007). For lack of whole tree chambers, the approach

of Ward et al. (2008) is not considered in this study. The outcome is analyzed on the sub-daily,

daily and (intra-)seasonal scales.

Considering that the analyzed ∆Tmax approaches have been designed to capture nocturnal sap

flow where existing and that we only analyze days with unlikely nocturnal flow, the hypothesis

is that all ∆Tmax approaches yield the same sap flux density estimations as D. Deviations

from D thus represent the uncertainty of sap flow computations, which is related to the ∆Tmax

determination approach.

2.2 Materials and methods

2.2.1 Study site

The study site (50°30’ N, 06°19’ E) is located in the 38 ha Wüstebach catchment (western

Germany) where altitudes range from 595 m a.s.l. to 628 m a.s.l. (Bogena et al., 2014). Hillslopes

are dominated by shallow Cambisols and Planosols while Gleysols and Histosols have developed

in the groundwater-influenced riparian zone along the Wüstebach stream. The soils mainly show

a silty clay loam texture with a medium to high coarse material fraction.

The climate is characterized by an annually mean temperature of 7 °C, a mean annual pre-

cipitation of 1100 to 1200 mm (Sciuto and Diekkrüger, 2010) and an average potential evapo-

transpiration of 630 mm (Graf et al., 2014). The precipitation is more or less evenly distributed

over the seasons with a slight peak in fall (∼500 mm in contrast to ∼300 mm during the other

seasons). Thus, even in summer, periods of high transpirative power alternate with rainy days

and respective low transpiration and sap flow activity. With 320 trees ha-1, the Wüstebach

catchment is densely forested by Norway spruce (Picea abies). The trees were planted in 1949

(Etmann, 2009) and have now reached a canopy height of ∼25 m (Graf et al., 2014).
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2 Comparing ∆Tmax determination approaches for Granier-based sap flow estimations

2.2.2 Sample trees

The three sample trees are located at 50°30’18” N/6°19’52” E, 620 m a.s.l. at an ESE facing

slope with a gradient of 8°. Mean diameter at breast height (DBH) is 54.8 cm, mean projected

crown area (CA) amounts to 54.8 m2 and mean sapwood depth (SWD) is 5.7 cm, which was

determined by drillhole analyses (Table 2.1). To ensure that our investigations are not overlaid

by effects related to the individual phenological development of the trees, we used the overlap

of the trees’ main growing periods as study period. The main growing period is defined as the

time interval during which 5%–90% of the seasonal growth is reached (Jackson, 1952) and could

thus be determined on the basis of dendrometer data (cf. 2.2.4). The study period started on

25 May and ended on 14 August 2012.

Table 2.1: Attributes of sample trees (DBH: diameter at breast height, SWD: sapwood depth, CA:
projected crown area).

Tree DBH (cm) SWD (cm) CA (cm2)
Main growing period

Start End

1 58.4 6.1 52.3 6 May 25 August

2 54.3 5.7 50.1 24 May 25 August

3 51.7 5.4 61.9 15 May 14 August

Means 54.8 5.7 54.8 25 May 14 August

2.2.3 Sap flow measurements and calculation

The improved Granier-type sap flow sensors that we used in our study (type SF-L 20/33, Eco-

matik, Dachau, Germany) include an extra pair of thermocouples that are placed horizontally

to the upper heated probe to account for natural innerwood temperature variations. For instal-

lation scheme and technical details of the sensors, see Figure 2.1. The mean of the inner-wood

temperature variations recorded by the additional SF-L reference probes are subtracted from

the values recorded by the classic Granier system before applying the Granier formula. This

pre-processing of the Granier sensor signal slightly affects absolute sap flow estimates. In this

study, accounting for inner-wood temperature variations reduced mean seasonal sap flow by

3.1%. The sap flow sensors were installed in the outermost 3.3 cm of the sapwood on the north

side of the sample trees at ∼1.5 m above ground. We insulated our probes with reflective

polystyrene and plastic boxes. Measured temperature gradients were recorded at a datalogger

(type CR1000, Campbell Scientific Ltd., Logan, UT, USA) in 30-min intervals. Sap flux density

(Fd) was estimated in line with Granier (1985; 1987).

Besides the classic Granier approach (Granier, 1985, 1987), we applied moving window ap-

proaches of different width (3, 5, 7 and 9 days), and the linear and double regression approaches

(Lu et al., 2004). Furthermore, we tested the application of one single ∆Tmax (absolute max-

imum) and the physically-based methods of Oishi et al. (2008, 2016) and Regalado and Ritter

(2007).
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2.2 Materials and methods

Figure 2.1: Installation scheme and technical details of the used Ecomatik sap flow sensors, type SF-L
20/33, according to (Ecomatik, 2000). The original ∆T between the heated probe and the Granier

reference probe is corrected by substraction of the inner-wood temperature variations (∆Tref_1,
∆Tref_2) recorded by the additional SF-L reference probes.

For the Oishi method, we applied the software baseliner 4.beta (Oishi et al., 2016) which

identifies ∆Tmax when the following conditions are met: (1) nighttime; (2) stable ∆T; and (3)

low VPD. We determined nighttime based on global radiation and set the radiation threshold

for nighttime definition 5.0 W·m-2. This value corresponds to the nighttime definition of Daley

and Phillips (2006) that we also used for data selection (see below). Stable ∆T was identified

when the coefficient of variation for a two-hour period was <0.01. Low VPD conditions were

identified when mean VPD was less than 0.05 kPa for a two-hour period.

For the Regalado and Ritter approach, we applied the software FITDTMAX (available online:

https://aritter.webs.ull.es/software_FITDTMAX.html) using the default transformed po-

tential evapotranspiration (ETp*) limit of 0.1. Since our data had a temporal resolution of

30 min instead of the 15 min resolution used by Regalado and Ritter (2007), we raised the

proportionality tolerance from the default value of 0.05 to 0.1. To ensure the reliability of the

modelled ∆Tmax values and respective sap flux density estimates, we excluded days from our

investigations where the coefficients of determination between the selected transformed potential

evapotranspiration and ∆T were below 0.75 (for more details on the modeling procedure, see

Regalado and Ritter (2007)).

To assess the impacts of the study period length and the position of the study period within

the main growing period on ∆Tmax, we divided our study period into the following sub-periods:

(1) 25 May to 22 June; (2) 23 June to 19 July; and (3) 19 July to 14 August. All ∆Tmax

approaches were applied to both the entire growing period and the sub-periods. Resulting sap

flow densities were analyzed on the sub-daily (30 min resolution), daily and (intra-)seasonal

scales. Although alternative ∆Tmax approaches have been designed to capture nocturnal sap

flux where existing and not to modify day-time sap flux densities, it is obvious that changes

in ∆Tmax affect both nocturnal and day-time Fd estimates (Oishi et al., 2008). To assess the

magnitude of this effect, we separately investigated the effects of alternative ∆Tmax approaches

on nocturnal and day-time Fd estimates, respectively.

An overview of the applied ∆Tmax approaches and their implementation and abbreviation are

given in Table 2.2. All sap flux density estimations were evaluated with regard to (1) the results
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Table 2.2: Theory and implementation of the applied ∆Tmax approaches.

∆Tmax

approach
ID ∆Tmax determination References Implementation in this study

Empirical approaches

Daily
maximum

D Daily maximum Granier (1985) Daily ∆Tmax determination

Moving
window

MW
Dynamic determination based on dynamic
time windows of 3 (MW3) to 14 days (MW14)

Lu et al. (2004),
Ringgaard et al. (2012),

Reyes-García et al. (2012),
Ford et al. (2007)

Dynamic time windows of 3, 5, 7, 9 days,
always starting 1, 2, 3, 4 days before the
actual date of study

Linear
regression

LR
First calculate local maxima of moving 10 day
periods, then calculate new ∆Tmax by
LR of the local maxima and DOY

Lu et al. (2004),
Granier (1987)

LR based on local maxima of 9 day period

Double
regression

DR
Elimination of local ∆Tmax below the LR line
and new LR based on remaining data points

Lu et al. (2004)
Regression and data point selection based
on local maxima of 9 day period

Absolute
maximum

AM Absolute maximum within selected study period
Absolute maximum within selected
study period

Physically-based approaches

Oishi
baseliner

OB

Identification of points in time where flow is
likely zero, based on ∆T stability and biophysical
conditions; baseline is set by interpolation between
selected points; measured ∆T values that exceed
the interpolation line are integrated into the baseline

Oishi et al. (2008),
Oishi et al. (2016)

Model setup for point selection: vapour
pressure deficit threshold = 0.05 kPa;
global radiation threshold for nighttime
definition = 5.0 W·m-2

Simulated
∆Tmax

RR
Daily simulation of ∆Tmax based on the relationship
between potential evapotranspiration and sap flow
readings

Regalado and Ritter (2007)

Model setup: transformed potential
evapotranspiration limit (ETp*) for
nighttime definition = 0.1;
proportionality tolerance = 0.1;
exclusion of days with coefficients of
determination between selected ETp*
and sap flow readings < 0.75
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2.2 Materials and methods

obtained by the original daily ∆Tmax approach (D); (2) their applicability to data series of

different length and (3) data plausibility in terms of climate feedback. Test statistics (one-sided

Mann-Whitney U-tests) were applied to each data series.

To allow for taking D as the reference approach, days of potentially ongoing nocturnal sap

flow were excluded from our investigations. We assumed nocturnal sap flow to potentially occur

as a consequence of (1) nocturnal transpiration; (2) nocturnal tree growth or (3) nocturnal

restoration of the tree’s internal water storage during periods of droughts (Daley and Phillips,

2006; Zeppel et al., 2013).

Periods of ongoing nocturnal transpiration and tree growth were excluded by only using sap flow

data from days on which nocturnal potential evapotranspiration fell to zero while at the same

time relative stem extension (cf. 2.2.4) was zero or negative. Water limitations did not occur

in our study period and could therefore be neglected as a driving factor for nocturnal water

movements in the trees. Applying these criteria, from the original study period of 80 days, 76

days (Tree 1), 77 days (Tree 2) and 72 days (Tree 3) of unlikely nocturnal sap flow remained for

investigation.

2.2.4 Environmental measurements and classification

Tree growth and diurnal stem extension were observed by point dendrometers (type DR, Eco-

matik, Dachau, Germany). The relative stem extension was determined by taking the difference

between two consecutive dendrometer measures. To monitor soil water content, we installed two

SPADE sensor probes (SPADE, sceme.de GmbH, Horn-Bad Meinberg, Germany) in 5, 20 and 50

cm depths. Soil matric potential was recorded by an equitensiometer (EQ15, Ecomatik, Dachau,

Germany) in 20 cm depth. To observe micro-climate on site, we measured air temperature and

relative humidity at 2 m above soil surface (HygroClip2, Rotronic, Ettlingen, Germany). All

data was recorded in a 30 min resolution (datalogger CR1000, Campbell Scientific).

For above-canopy meteorological investigations, we had access to half-hourly climate data

(temperature, global radiation, relative humidity, potential evapotranspiration ETpot) of the

TERENO Observation Network (weather station Schöneseiffen, 3.4 km east of the Wüstebach).

Daily precipitation data was provided by the German Meteorological Service (DWD), weather

station Kalterherberg (9.6 km west of the Wüstebach).

Actual evapotranspiration (ETact) was determined by an on-site eddy-covariance (EC) system

installed at a height of about 38 m (Drüe et al., 2012). The tower is located in direct proximity to

our sample trees within the Wüstebach catchment. Processed data was available in half-hourly

resolution (Graf et al., 2014).

Based on the results of a pilot study in the same catchment, we divided the study period

into days of distinct environmental conditions that were found to impact Fd. These were (1)

days of low/high global radiation, on which the daily global radiation was 0.5 of the standard

deviations below/above the mean daily global radiation between May and September 2012 and

(2) wet days, on which daily precipitation was above 5 mm and dry days, which were defined as

the second day without precipitation. Days that met these conditions were analyzed separately.

Nighttime was defined as the period during which radiation was less than 5.0 W·m-2 (Daley

and Phillips, 2006).
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2 Comparing ∆Tmax determination approaches for Granier-based sap flow estimations

2.3 Results

2.3.1 Sub-daily scale

Maximum temperature gradients (∆Tmax) strongly vary depending on the ∆Tmax approach

(Figure 2.2). For the linear and double regressions, the reference period has a major impact on

the resulting ∆Tmax trend (Figure 2.2b, c). While the Oishi “baseliner” shows similar patterns

as D, RR yields ∆Tmax values that strongly vary about D (Figure 2.2d). All empirical ∆Tmax

approaches yielded higher mean sap flow densities (Fd) than D (p < 0.01). Fd generally increased

with increasing MW width; based on the test statistics (cf. 2.2.3), MW9 and LR were evaluated

as equal (p > 0.1). The largest difference in sap flow density was computed between approaches

RR < D < MW3 < MW7 < DR < AM (Figure 2.3).

Although the means of the sub-period LR distributions (hereinafter referred to as LRsub) still

equaled the respective means of the MW9 distributions, the minority of LRsub distributions

were found to equal the respective parts of the LR distributions obtained from the complete

study period ∆Tmax regression. Some LRsub distributions were significantly smaller and some

significantly larger than the respective parts of LR. Likewise, we could not identify a distinct

relation between DRsub (sub-period DR) and other ∆Tmax approaches.

Since ∆T and ∆Tmax were found to develop dynamically over the growing season (Figure

2.4), the static AM approach led to significantly biased sap flow density distributions and was

therefore not considered for further analysis.

From the physically-based approaches, both OB and RR yielded lower mean Fd than D (p

< 0.01) when applied to the complete study period; applied to the sub-periods, the majority of

the means of the OB distributions equaled those of the D distributions, while RR still yielded

lower sap flow densities than D (p < 0.05, two exceptions). Comparing RR with OB, RR yielded

either equal or lower mean Fd than OB. All tested ∆Tmax approaches yielded higher nocturnal

sap flow densities after radiation intensive days than after days of below-average radiation (p <

0.01).

A comparison of empirical ∆Tmax approaches and D showed that the averaged absolute day-

time sap flux density increase was always higher than the mean Fd increase at nights (p < 0.01).

For the physically-based approaches, in contrast, the difference to D during days and nights was

either equal or higher during the nights than in the daytime (Figure 2.4).

Correlating Fd and climate variables (above-canopy vapor pressure deficit VPDair, below-

canopy vapor pressure deficit VPDstand, radiation R; actual evapotranspiration ETact) all ∆Tmax

approaches yielded satisfactory coefficients of determination (R2 of 0.62 to 0.75).
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2.3 Results

Figure 2.2: ∆T and ∆Tmax by determination approach and tree: (a) ∆T over growing season; (b)
∆Tmax by moving window (MW3, MW7) and regression approaches applied to complete study period
(LR, DR); (c) ∆Tmax by regression approaches applied to sub-periods (LRsub, DRsub); (d) ∆Tmax by
physically-based approaches (OB, RR). Abbreviations of ∆Tmax approaches according to Table 2.2.
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Figure 2.3: (a) Diurnal sap flux density by tree, calculated by the daily ∆Tmax approach (Fd) and (b) deviations (∆ Fd) from D using those ∆Tmax

approaches that yielded the largest Fd differences among each other (b1): Fd deviations from D by MW3, MW7, RR; (b2): Fd deviations from D by DR applied
to complete study period and sub-periods; (b3) Fd deviations from D by AM applied to complete study period and sub-periods). Abbreviations of ∆Tmax

approaches according to Table 2.2.
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2.3 Results

Figure 2.4: Average of the mean, minimum and maximum diurnal sap flux density deviations (∆ Fd)
from D using those ∆Tmax approaches that yielded the largest Fd differences among each other.

Abbreviations of ∆Tmax approaches according to Table 2.2.

2.3.2 Daily scale

Over the entire study period, the physically based approaches and D were evaluated as equal.

The empirical ∆Tmax approaches, in contrast, led to mean daily sap flow densities that signif-

icantly differed from those calculated by the D approach (p = 0.05, one exception). Among

the empirical ∆Tmax approaches, we found a higher homogeneity on the daily scale than on the

sub-daily scale. The most distinct variations were identified between approaches D, MW7, DR

and AM. Sap flux density estimates by AM, however, significantly exceeded all alternative Fd

estimations (p = 0.01) and led to a strongly biased increase of daily sap flow with progressing

study period.

Figure 2.5 shows the absolute and relative mean daily Fd and ∆Tmax increases for different

empirical ∆Tmax approaches. Neglecting the unreliable AM approach, the maximum absolute

daily Fd increase was produced by DR, would correspond to a relative Fd increase of 106.0%

and was induced by a ∆Tmax increase of only 0.04 mV (5.52%).

Analyzing the climate response among the ∆Tmax approaches, we found well-matching rela-

tions between daily sap flow estimations, VPDair, VPDstand and radiation (R2 of 0.51 to 0.84;

Figure 2.6). Except for the poor ETact correlations, the D approach showed the strongest climate

feedbacks among the tested ∆Tmax approaches. While the absolute difference of mean daily Fd

estimations among the ∆Tmax approaches was not related to any climate signal, for both MW7

and DR, the mean relative daily sap flux density increase was higher on low radiation days than

on days of high radiation (p = 0.01).
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2 Comparing ∆Tmax determination approaches for Granier-based sap flow estimations

Figure 2.5: Mean (a) absolute variation and (b) percentage change of ∆Tmax by approach and
respective absolute variation and percentage change of mean daily sap flux density estimations.

Deviations always with regard to the results obtained using the D approach. Abbreviations of ∆Tmax

approaches according to Table 2.2.

Figure 2.6: Relationship between climate variables and mean daily sap flux density (Fd) for different
∆Tmax approaches (always best and worse correlation shown). (a) Fd correlation with global radiation

R; (b) Fd correlation with actual evapotranspiration ETact (correlation only shown for days of high
radiation); (c) Fd correlation with vapor pressure deficit above canopy VPDair; (d) Fd correlation with

on site vapor pressure deficit at 2 m above ground VPDstand. Abbreviations of ∆Tmax approaches
according to Table 2.2.
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2.3.3 (Intra-)seasonal scale

Dependent on ∆Tmax approach and data series, mean (intra-)seasonal Fd varied from D by

-13.9% (RR) to +137.6% (AM). MW sap flow densities increased with increasing MW width,

while Fd response on regression approaches strongly varied by time series and by the reference

period they were applied to (Figure 2.7). Mean Fd derived from MW approaches was 12.5%

(MW3) to 24.7% (MW9) higher than that derived from D, mean Fd calculated by regression

approaches exceeded that of D by 26.0% (LRsub) to 38.5% (DR).

Figure 2.7: Percentage deviation of mean (intra-)seasonal sap flux density estimates using alternative
∆Tmax approaches from estimates using daily ∆Tmax (D). Abbreviations of ∆Tmax approaches

according to Table 2.2.

For those approaches that yielded equal results on the daily scale, mean discrepancies between

mean (intra-)seasonal Fd did not exceed ±10%. However, discrepancies among the approaches

strongly varied by time series, still reaching maximum variations of up to 24%. Except from

RR, all alternative ∆Tmax approaches differed stronger from D on wet days of low radiation

than on dry days of high radiation (Table 2.3).

Table 2.3: Percentage deviation of sap flow estimations yielded using alternative ∆Tmax approaches
from estimates using daily ∆Tmax (D) for different climate conditions. Abbreviations of ∆Tmax

approaches according to Table 2.2.

∆Tmax approach
% Deviation from D

Dry days, high radiation Wet days,low radiation

OB 0 6-10

RR -13 3

MW3 7 25

MW5 12 36

MW7 17 45

MW9 20 53

LR 17 64

DR 24 95

AM 57 202
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2 Comparing ∆Tmax determination approaches for Granier-based sap flow estimations

2.4 Discussion

2.4.1 Sub-daily scale

We observed significant variations between most analyzed ∆Tmax approaches. Among all ∆Tmax

approaches, the largest difference in sap flux density was computed between RR < D < MW3

< MW7 < DR < AM. Although absolute Fd deviations varied not only by the applied ∆Tmax

approach, but also by tree (Figure 2.3), mean percentage deviations were quite homogenous

among the trees (Figure 2.7).

The variations between the MW approaches are particularly critical since MWs of different

reference periods are often used in sap flow studies. Considering that we excluded days of likely

nocturnal sap flux from our investigations, our results indicate that MW approaches produce a

predictable amount of synthetic nighttime flow, and a more than proportional synthetic increase

in daytime flux. The same applies for the regression approaches and AM with the limitation,

however, that for LR, DR, and AM the outcome is not as predictable as for the MW approaches:

As long as the same reference period was being used, we found no difference between sap flow

densities calculated by LR and the MW approach LR was based on (MW9). However, LR sap

flux density estimates strongly varied with the reference period length and its position within

the vegetation period; being based on LR, the same applies for the DR approach. Another

drawback of DR is that it does not show a constant relation to other ∆Tmax approaches.

Not very surprisingly, the most biased sap flow density distributions were produced by AM:

∆T developes dynamically over the growing season and so should ∆Tmax (Oishi et al., 2008).

However, something we can pick from the analysis of AM and other empirical ∆Tmax approaches

is, that the uncertainty of Fd estimates increases with the number of days that lie between the

captured ∆Tmax values. Researchers should be aware of this problem, even when applying

physically based ∆Tmax approaches like OB, because particularly in environments, where zero-

flow criteria are not met for a recognizable number of consecutive days, it might become a

significant source of uncertainty. One solution to handle this uncertainty could be to define a

maximum distance between the captured ∆Tmax values. To define such a maximum distance,

more research would be needed.

In our study, however, the potential problem of non-occurring zero flow criteria for OB sap

flow estimations was of minor importance. We only analyzed days of anyway unlikely nocturnal

flows and found that, depending on the study period, OB yielded either equal or lower sap

flow densities than D. The sometimes slightly lower Fd estimations of OB result from the fact

that some of the ∆T values that met the Oishi selection criteria were even lower than the daily

maximum ∆T (Figure 2.2 d). Thus, the outcome of OB does not only underline the plausibility

of our data exclusion criteria, but also supports our hypothesis that MW and other empirical

∆Tmax approaches produce kind of artificial day- and nighttime flows.

The finding that RR results in similar Fd estimations as OB indicates that the physically based

approaches produce more consistent sap flow estimations than the empirical ∆Tmax approaches

do. Simulating ∆Tmax from ∆T and micrometeorological variables, the RR approach has the

advantage of not being affected by the potential problem of non-occurring zero flow criteria.

However, yielding the weakest climate correlations among all tested ∆Tmax approaches shows
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that RR has other drawbacks: The general fit between transformed ETpot (ETp*) and sap

flux density has great influence on the number of data points that are selected for ∆Tmax

determination. Thus, on days with differing ETp* and sap flow dynamics, it may happen that

∆Tmax cannot be calculated due to a lack of fitting data points.

In the study of Regalado and Ritter (2007), this problem seems to having been of minor

importance. However, Regalado and Ritter used data with a high temporal resolution of 15

min, so they always found enough data points that met their proportionality criteria. Although

we raised the proportionality tolerance to a reasonable level for our 30 min data resolution, we

had to exclude several days from our analysis, because the number of selected data points was

not sufficient for a solid ∆Tmax determination. Of course, to some extent, this kind of problem

could have been handled by further adapting the proportionality tolerance and also the ETp*

limit for night time definition. However, the higher we choose the proportionality tolerance for

data selection, the lower turns the coefficient of determination between the selected ETp* and

Fd points; and since ∆Tmax is derived from the correlation between the selected data points,

the reliability of the simulated ∆Tmax values and respective Fd estimations would then decrease

as well.

Another drawback of the RR procedure is that the correlation strength between the selected

ETp* and Fd values is strongly dependent on actual weather conditions: On wet days with low

radiation we yielded mean R2 between selected ETp* and Fd of 0.72, while on dry days of high

radiation mean R2 was 0.95, which is close to the R2 values reported by Regalado and Ritter

(2007). We therefore conclude that on clear days without precipitation the RR approach may

yield reliable ∆Tmax and respective sap flow estimations, but should be handled with care, when

unsteady weather conditions prevail.

Summarizing the above, it seems that for humid conditions without water limitations, D and

OB lead to the most reliable sap flux density estimations among the ∆Tmax approaches. For

environments with potentially occurring nocturnal flows, OB might be the better choice, but

more research is needed to verify the night-time flow detected by OB against a known standard.

One of the main future challenges in this regard is, however, to create such a standard. So far,

there is a lack of cost-efficient absolute reference measurements that enable us to detect real

night-time flow and calibrate for it.

Lundblad et al. (2001) recalibrated the Granier formula against sap flow measurements of a

tissue heat balance system (Cermák et al., 1973). However, the Čermàk system also refers to a

reference level of assumed zero flow conditions and is thus not solving the problem of nocturnal

flow detection. Other studies use eddy covariance systems as an absolute reference for sap flow

as one component of total ecosystem evapotranspiration (Wilson et al., 2001; Ringgaard et al.,

2014). However, EC systems have the disadvantage that they only capture total ecosystem

fluxes and are known to measure imprecise at nights (Papale et al., 2006). Consequently, it is

neither possible to capture single tree transpiration with this method, nor does it make sense to

correct nocturnal forest transpiration for EC system measurements.

Ward et al. (2008) conducted whole-tree chamber experiments to detect nocturnal transpira-

tion and calibrate the Granier formula for it. They showed that accounting for real night-time

flux is possible and matters. However, chamber experiments are expensive and difficult to im-
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2 Comparing ∆Tmax determination approaches for Granier-based sap flow estimations

plement. Particularly for adult trees and natural forest environments, a convincing solution

for nocturnal flow assessment in Granier-type sap flow systems has not yet been found. Conse-

quently, at this state, the most feasible options to deal with the problem of undetected night-time

flow are (1) to accept the inability of Granier-type sap flow systems to detect ongoing nocturnal

flux as a general constraint of the measuring approach (which holds the risk of underestimat-

ing sap flow and absolute sap flow rates matter in forest hydrological research) or (2) to apply

physically-based approaches as the Oishi’s one including unknown uncertainty caused by the

restrictions described above.

2.4.2 Daily scale

Mean daily sap flow densities of the physically based approaches did not significantly differ from

those of D. The results of the empirical ∆Tmax approaches, in contrast, exceeded those of D by

9.8 (MW3) to 31.5% (DR).

This finding is in line with our findings on the sub-daily scale and indicates that the use

of empirical ∆Tmax approaches may become a significant source of uncertainty in daily sap

flow estimations. For energy driven environments with unlikely nocturnal sap flow activity,

our results suggest the application of D for daily sap flow estimations. D always showed the

best correlation with the selected climate parameters, except from ETact which was generally

weak (cf. Figure 2.6). However, investigations by Wilson et al. (2001) and Köstner (2001)

suggest that better correlations might have been achieved when data for soil evaporation and

understory transpiration data had been available and subtracted from ETact measured using an

EC tower in advance. While OB yielded results comparable to D and might also be an option for

environments with potentially occurring nocturnal flows (cf. 2.4.1), RR should only be applied

with care: Although RR yielded absolute mean Fd estimates that did not significantly differ

from that of D, it showed the weakest daily climate correlations among all ∆Tmax approaches

(also cf. 2.4.1).

2.4.3 (Intra-)seasonal scale

One important issue of forest hydrological research is the quantification of evapotranspiration

and its components. Ringgaard et al. (2012) reviewed that the individually determined evap-

otranspiration components in forests underestimate EC system measurements by up to 20%.

There is broad evidence, that besides scaling issues and miscalculation of other evapotranspira-

tion components, the processing of the raw sap flow signal is one of the main reasons for these

discrepancies. However, our results show that the application of alternative ∆Tmax approaches

is not always the appropriate tool to address this problem. Empirical ∆Tmax determination ap-

proaches translate any intermediate ∆Tmax decrease into nocturnal flow activity, although the

seasonal course of ∆Tmax is also dependent on thermal wood properties and these may vary with

tree water status and environmental conditions (Lu et al., 2004; Davis et al., 2012; Tatarinov

et al., 2005).

In our study, where conditions of unlikely nocturnal sap flow prevail, this mistranslation of

the ∆Tmax synthetically raised (intra-)seasonal sap flux density estimations of individual trees

by between 10.5 (MW3), 57.8 (DR) and 137.6% (AM). In absolute values, (intra-)seasonal sap
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flux density estimates of the physically-based approaches were much more consistent and yielded

similar results as D. However, applying the RR approach significantly decreased data plausibility

on the sub-daily and daily scales. Consequently, OB was the only alternative ∆Tmax approach

that yielded convincing sap flux density estimations and has the potential to detect nocturnal

flow, when occurring.

Nevertheless, more research is needed to validate detected night-time flows by absolute refer-

ence measurements. For this purpose, applicable measuring techniques are needed, that allow for

absolute nocturnal flow detection. Another future challenge will be to deepen the understanding

of the natural ∆Tmax variability and to consider respective findings in the ∆Tmax determination.

2.5 Conclusions

Based on the analyses of sap flow data of three spruce trees, we showed that the ∆Tmax deter-

mination procedure has a major influence on Granier-based sap flux density estimations. While

on days of unlikely nocturnal sap flow, physically-based ∆Tmax determination approaches yield

similar sap flux density estimations as the classic daily ∆Tmax approach, other, empirical ∆Tmax

approaches produce synthetic flows that (1) significantly raise absolute sap flux density estima-

tions on the sub-daily, daily and (intra-)seasonal scales; (2) affect sub-daily and daily sap flux

density dynamics; and (3) reduce data plausibility in terms of climate feedbacks on the daily

scale. We therefore conclude that the use of alternative ∆Tmax approaches may be a signifi-

cant source of uncertainty in sap flow estimations and complicates the comparability of sap flow

studies.

For humid environments with unlikely nocturnal sap flow, our results suggest to apply the

original daily ∆Tmax determination or the physically-based OB approach. RR and other, em-

pirical ∆Tmax determination approaches were found to yield unsatisfactory results.

To improve Granier-type sap flow estimations, future research should focus more strongly

on the development of applicable measuring approaches that allow for absolute nocturnal flow

detection and respective recalibration of the Granier formula. Another future research focus

should be the deepening of our understanding of the natural ∆Tmax variability, which is related

to wood properties and other eco-physiological parameters. Respective findings should be used

to develop new ∆Tmax approaches that allow for a solid, physically-based ∆Tmax determination

and for reliable absolute sap flux density computations.
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Feddes water stress model for Norway spruce

This chapter has been published as: Rabbel, I., Bogena, H., Neuwirth, B., and B. Diekkrüger

(2018). Using sap flow data to parameterize the Feddes water stress model for Norway spruce.

Water 10 (3): 279. doi:10.3390/w10030279. Online available at: http://www.mdpi.com/

2073-4441/10/3/279/htm
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this dissertation.

Abstract: Tree water use is a key variable in forest eco-hydrological studies and is often moni-

tored by sap flow measurements. Upscaling these point measurements to the stand or catchment

level, however, is still challenging. Due to the spatio-temporal heterogeneity of stand structure

and soil water supply, extensive measuring campaigns are needed to determine stand water use

from sap flow measurements alone. Therefore, many researchers apply water balance models to

estimate stand transpiration. To account for the effects of limited soil water supply on stand

transpiration, models commonly refer to plant water stress functions, which have rarely been

parameterized for forest trees. The aim of this study was to parameterize the Feddes water stress

model for Norway spruce (Picea abies [L.] Karst.). After successful calibration and validation

of the soil hydrological model HYDRUS-1D, we combined root-zone water potential simula-

tions with a new plant water stress factor derived from sap flow measurements at two plots of

contrasting soil moisture regimes. By calibrating HYDRUS-1D against our sap flow data, we

determined the critical limits of soil water supply. Drought stress reduced the transpiration

activity of mature Norway spruce at root-zone pressure heads < -4100 cm, while aeration stress

was not observed. Using the recalibrated Feddes parameters in HYDRUS-1D also improved our

water balance simulations. We conclude that the consideration of sap flow information in soil

hydrological modeling is a promising way towards more realistic water balance simulations in

forest ecosystems.

Keywords: HYDRUS-1D; soil water potential; Norway spruce (Picea abies)

3.1 Introduction

Tree water use is a key variable in forest eco-hydrological studies and closely linked to meteoro-

logical conditions and soil water availability (Boyer, 1985; Asbjornsen et al., 2011; Blum, 2011;

Gartner et al., 2009). To monitor the water use of individual trees, a number of methods are
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available (Kool et al., 2014; Wullschleger et al., 1998). Sap flow measurements are most popular,

not only because they are cost-efficient and easy to apply. They also yield reasonable informa-

tion on temporal transpiration patterns and deliver valuable insights into plant-physiological

responses to varying hydro-climatic conditions (e.g., soil moisture limitations). Respectively,

Steppe et al. (2015) identified sap flow as a “key trait in the understanding of plant hydraulic

functioning”.

However, to make stem-based sap flow measurements valuable for watershed and land use

managers, they need to be scaled to a ground area basis (Asbjornsen et al., 2011). Common

scalars in this regard are sapwood area, basal area, diameter or circumference at breast height

and leaf area (Asbjornsen et al., 2011; Köstner et al., 1998; Čermák et al., 2004). However, the

scaling of sap flow measurements from the tree to the forest stand includes many uncertainties.

To begin with, different measuring approaches yield differing estimates of sap flow rates per tree

(Čermák et al., 2004; Steppe et al., 2010; Renninger and Schäfer, 2012; Lundblad et al., 2001).

This is partly related to uncertainties in signal transformation (Bush et al., 2010; Sun et al.,

2012; Rabbel et al., 2016), but also to radial and circumferential variations in sap flow density,

which complicates the scaling from the point measurement to water use by tree (Nadezhdina

et al., 2002; Ford et al., 2004; Gebauer et al., 2008; Phillips et al., 1996; Fiora and Cescatti,

2006; Čermák et al., 2007). Furthermore, sap flow activity and trans-sectional sapwood distri-

bution vary with tree age, tree dimensions, social position of the tree and also with soil water

supply (Gartner et al., 2009; Köstner et al., 2002; Lagergren and Lindroth, 2002; Lundblad and

Lindroth, 2002; Střelcová et al., 2013). Thus, extensive measurement campaigns are needed to

get a solid estimate of stand water use from sap flow measurements alone.

Alternatively, water balance models can be used to estimate stand transpiration. Such mod-

els basically calculate transpiration as a function of atmospheric boundary conditions (potential

evapotranspiration), soil water supply and vegetation characteristics from which leaf area index

(LAI) and stomatal conductance are the most important (Asbjornsen et al., 2011; Arora, 2002).

Under non-limiting conditions, transpiration generally follows the dynamic of atmospheric de-

mand. However, the response of plants to variabilities in soil water supply is highly species-

specific. To account for these species-specific feedbacks in the soil-vegetation-atmosphere sys-

tem, water balance models commonly include plant water stress functions (e.g., van Genuchten

(1987) and Feddes et al. (1978)), where critical limits of soil water supply can be adapted accord-

ing to the vegetation characteristics. For many agricultural crops, such thresholds have already

been defined and included into models that help to optimize irrigation scheduling and crop yields

(Blum, 2011). However, little is known about the species-specific water-stress-response of forest

trees. Since forests play an important role in regional and trans-regional water cycles, there

is evidence that an improved knowledge of tree species-specific water stress thresholds would

greatly enhance the simulations of water fluxes from the forest stand to the watershed and land-

scape scale (Asbjornsen et al., 2011; Čermák et al., 2004; Jones, 2007; Verstraeten et al., 2008;

Schwärzel et al., 2009).

The aim of this study was: (1) to parameterize the Feddes water stress model for Norway

spruce, which is a wide-spread and economically important species in Europe; (2) to investigate if

the species-specific calibration of the Feddes parameters can improve water balance simulations
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in the soil hydrological model HYDRUS-1D (Šimůnek et al., 2013). In a first step, we used

HYDRUS-1D to estimate the root zone water potential for two research plots with contrasting

soil water regimes. We derived the Feddes parameters for Norway spruce from correlations of

the simulated water potentials and a new sap flow-based plant water stress factor.

3.2 Materials and methods

3.2.1 Study area

The study was conducted in the 27 ha Wüstebach experimental test site (Bogena et al., 2014),

which is located in the Rur River catchment close to the German-Belgian border (Figure 3.1).

The test site belongs to the TERENO Eifel/Lower Rhine Valley Observatory (Zacharias et al.,

2011; Bogena et al., 2016). Altitudes range from 595 m a.s.l. in the north to 628 m a.s.l.

in the south. While hillslopes are dominated by shallow Cambisols and Planosols, Gleysols

and Histosols have developed in the groundwater-influenced riparian zone along the Wüstebach

stream.

Figure 3.1: Overview of the Wüstebach test site and its location in Germany. The research plots
(Riparian, Slope) cover differing soil types and topographic situations, which results in contrasting soil

moisture regimes (wet and dry). The grey dots indicate the SoilNet sensor network of which two
stations have been selected for this study (yellow dots). Black dots show the SoilNet stations we

selected to analyze soil moisture variability around the sap flow stations. The difference between the
displayed contour lines is 2.5 m.
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The soils mainly show a silty clay loam texture with a medium to high coarse material fraction

and a litter layer on top (Gottselig et al., 2017). The soils in the valley bottom have slightly

higher bulk densities and lower (macro-) porosities and skeleton contents than those on the

hillslopes (Gottselig et al., 2017; Rosenbaum et al., 2012; Wiekenkamp et al., 2016).

The climate is characterized by an annual mean temperature of 7 °C (Sciuto and Diekkrüger,

2010) and a mean annual precipitation of 1220 mm (Bogena et al., 2014). The annual potential

evapotranspiration of the years 2010–2013 was 630 mm (Graf et al., 2014). The catchment is

forested with Norway spruce that were planted in the late 1940s (Etmann, 2009). The trees

have now reached a height of about 28 m and the tree density is about 320 trees ha-1.

3.2.2 Data and experimental design

We used sap flow data from two research plots (Figure 3.1) from which one (Riparian) is located

in the wetter valley bottom (∼600 m a.s.l.), while the other is situated on the drier hillslope

(Slope, see Figure 3.1) at ∼610 m a.s.l. With a gradient of 2°, the Riparian plot is slightly

inclined towards N, while the Slope plot shows a gradient of 8° in NNW direction. Prevailing

soil types are Gleysol (Riparian) and Cambisol/Planosol (Slope).

At each plot, sap flow of four trees was monitored over 2 years (2009-2010) using improved

Granier-type sap flow sensors (SF-L 20/33, Ecomatik, Dachau, Germany). The classic Granier

system consists of two sensor probes inserted radially into the sapwood, one above the other.

The upper probe is equipped with a heating element and a thermocouple, thus recording the

heat dissipation due to sap flow. The lower probe measures the ambient reference tempera-

ture of the wood. Our improved sensor version includes another pair of thermocouples that is

placed horizontally to the upper heated probe to account for natural inner-wood temperature

variations. The mean of the inner-wood temperature variations recorded by these additional

reference probes is subtracted from the values recorded by the classic Granier system before

applying the Granier formula, where sap flux density is derived from the temperature gradient

between the heated and the lower reference probe using the empirical equation (Granier, 1985,

1987):

F d = 119 ∗

(

∆T max − ∆T

∆T

)1.231

(3.1)

in which Fd is the sap flux density (g·m-2·s-1), ∆T is the actual temperature gradient

between the two probes and ∆Tmax the maximum temperature gradient measured between

the probes in a given time period. Following Rabbel et al. (2016), who found a daily ∆Tmax

determination suitable for the study area, we determined ∆Tmax on the basis of a 24 h moving

window (12 h before and 12 h after the actual point of measurement). This dynamic ∆Tmax

determination procedure appeared the best opportunity to handle potential drifts in ∆Tmax.

The sap flow sensors were installed in the outermost 3.3 cm of the sapwood on the north

side of the sample trees at ∼1.5 m above ground. To ensure that the sensor probes were

completely surrounded by sapwood (i.e., no heartwood), we determined each tree’s sapwood
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3.2 Materials and methods

depth by drill hole analyses before installing the sap flow sensors. We insulated our probes with

reflective polystyrene and plastic boxes. The temperature gradients measured and recorded at

a datalogger (type CR1000, Campbell Scientific Ltd., Logan, UT, USA) in 30-min time steps.

Data gaps were filled using a simple three step procedure: (1) linear regression among all sap flow

series within one plot; (2) choice of the data series with the highest coefficient of determination

(R2) with the data series to be gap-filled; (3) interpolation of missing values from the respective

regression line. Mean daily sap flow density was calculated from the gap-filled hourly data.

Soil moisture was monitored by the wireless sensor network SoilNet, which provides catchment-

wide information on soil water dynamics in 5, 20 and 50 cm depths at 150 measuring locations

(see Figure 3.1). The installed measuring devices are the capacitance soil water content sensors

ECH2O EC-5 and ECH2O 5TE (Decagon Devices, Pullman, WA, USA) (Bogena et al., 2010).

Sensor calibration was performed according to Rosenbaum et al. (2012). For this study, we used

the mean daily soil moisture at 20 and 50 cm depth of two SoilNet stations located close to our

sap flow plots (Figure 3.1). Although there are other SoilNet stations closer to the Slope plot

than the chosen station SN 28, we used this station, because it is located at the same elevation

as the sap flow plot. The SoilNet data from 5 cm depth was not considered in this study, because

the respective sensors were located in the litter layer and not in the mineral soil we focus on

(Figure 3.2).

Figure 3.2: Upper part of the soil columns of the research plots as discretized in HYDRUS-1D and
position of the SoilNet sensors (black dots) in 20 and 50 cm depth below soil surface. The A horizon at

the Riparian plot was very thin and therefore neglected in the parameterization.

Grass reference evapotranspiration ET0 was calculated using the FAO-Penman-Monteith

method (Allen et al., 1998) following Graf et al. (2014), who first calculated hourly ET0 val-

ues and then aggregated these to daily sums. The required input data were obtained from the

TERENO weather station Schöneseiffen (3.4 km east of the Wüstebach site). For gap-filling,
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3 Using sap flow data to parameterize the Feddes water stress model for Norway spruce

linear regression predictors from the same variables of the TERENO station Selhausen (40 km

north) were used. To calculate potential evapotranspiration for specific crops (not grass), ET0

is usually multiplied with the crop coefficient Kc. However, according to Allen et al. (1998) a

Kc value of 1 can be used for coniferous forests.

Therefore, we assume ET0 to represent potential forest transpiration in this study. Daily

precipitation was obtained from the Kalterherberg weather station of the German Meteorological

Service (DWD), which is located 9.6 km east from of the test site and representative for our study

site (Cornelissen et al., 2014). The precipitation data were corrected for systematic measurement

errors according to Richter (1995).

The mean leaf area index was determined by averaging respective measurements (SunScan

SS1, Delta-T Devices Ltd., Cambridge, UK) at 60 selected SoilNet locations within the Wüste-

bach site.

3.2.3 Estimating root-zone water potential

The water potential of the root-zone is a measure for the energy needed to extract water from

the soil (Jones, 1990). Therefore, we consider the root-zone water potential to be a solid measure

to characterize the water availability for plants. However, since water potential is not measured

at the SoilNet stations, we used the 1-D Richards equation as implemented in the HYDRUS-

1D software (Šimůnek et al., 2013) to inversely determine water potential dynamics from the

soil water content (SWC) observations. This is a common approach in soil hydrology, which

also allows for the integration of the point scale SWC measurements into vertical soil moisture

profiles. In HYDRUS-1D the soil hydraulic properties are parameterized with the Mualem-van

Genuchten model (van Genuchten, 1980):

θ(h) =























θr + θs−θr
[1+|αh|n]m h < 0

θs h ≥ 0

(3.2)

K(h) = KsS
0.5
e

[

1 −
(

1 − S0.5/m
e

)m]2
(3.3)

where

m = 1 − 1/n n > 1 (3.4)
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Se =
θ − θr

θs − θr
(3.5)

where h is the pressure head (cm), θr is the residual water content (cm3 cm-3), θs the saturated

water content (cm3 cm-3), α and n are empirical parameters, from which α is related to the air-

entry pressure value and n is related to the pore size distribution, m is the retention curve shape

parameter, which is dependent on n, Ks is the saturated hydraulic conductivity (cm h-1), and

Se is the relative soil saturation.

Both research plots were modelled separately and in daily time steps. As top boundary con-

ditions, we used the corrected precipitation data and the gap-filled potential evapotranspiration

data (see above). The latter was divided into potential evaporation (E0) and potential transpi-

ration (T0) on the basis of the leaf area index (LAI) (Allen et al., 1998). In this study, mean LAI

on site was 4.8 (with a standard deviation of 0.7) and assumed to be constant in time. There-

fore, the differentiation between E0 and T0 was of minor importance. However, applying our

approach to deciduous trees with seasonal LAI dynamics would require the consideration of the

T0 limitation by LAI. For the hillslope plot (Slope) we set the lower boundary condition to free

drainage, following Fang et al. (2015), who found this option to provide the best HYDRUS-1D

simulation results for the Wüstebach catchment.

To account for the groundwater fluctuations in the riparian zone, the lower boundary condi-

tion for the wetter plot (Riparian) was set to deep drainage (Leterme et al., 2012). For the deep

drainage option, the discharge rate at the bottom of the soil profile is defined as a function of

the position of the groundwater table and the empirical parameters Aqh and Bqh (Hopmans and

Stricker, 1989):

q(h) = Aqh exp(Bqh ∗ |h − GWLref|) (3.6)

in which q(h) (cm day-1) is the discharge rate, h (cm) is the pressure head at the bottom of

the soil profile, Aqh (cm day-1) and Bqh (cm-1) are empirical parameters and GWLref (cm) is

the reference groundwater depth. We manually optimized Aqh and Bqh with regard to the best

fit (root-mean-square error) between measured and simulated soil moisture dynamics.

Depending on the local site conditions (Gottselig et al., 2017; Wiekenkamp et al., 2016)

we discretized the HYDRUS-1D soil profiles into two (Riparian) and three (Slope) materials

(one/two soil horizons plus an organic litter layer on top; Figure 3.2). The hydraulic properties

of the litter layer were parameterized according to Bogena et al. (2013). For the other soil

materials, we inversely estimated the Mualem-van-Genuchten parameters from our measured

SWC in 20 and 50 cm depth. We therefore used the inverse solution option as implemented in

HYDRUS-1D, where the objective function Φ is minimized applying the Levenberg-Marquardt

nonlinear least-squares fitting approach (for detailed information on the optimization procedure,
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3 Using sap flow data to parameterize the Feddes water stress model for Norway spruce

see Šimůnek et al. (2013)). Root water uptake in HYDRUS-1D depends on the root distribution

over the soil depth and on soil water availability (Šimůnek et al., 2013). For our Norway spruce

plots, we assumed a rooting depth of 45 cm, which is in line with Ammer and Wagner (2005)

and Clausnitzer et al. (2011). The root zone was assumed to start below the litter layer, which

had a thickness of 6 (Slope) and 9 cm (Riparian), respectively (Figure 3.2). The root density in

spruce forests is typically highest in the upper soil layers (Helmisaari et al., 2007; Puhe, 2003;

Schmid, 2002). Therefore, we assumed the potential root water uptake factor to be 1 in the

uppermost 15 cm of the mineral soil (one third of the root zone). For the deeper layers, we

implemented a linear decrease of the potential root water uptake factor from 1 in 15 cm depth

to 0 in 45 cm depth.

To account for reduced water uptake rates in case of water stress (aeration stress and drought

stress), we used the Feddes plant water stress function (Feddes et al., 1978) as implemented

in HYDRUS-1D. In the Feddes function, a dimensionless water stress factor represents the

water stress level of the plant as a function of the root zone water potential (Figure 3.3). This

water stress factor corresponds to the ratio of actual (Tact) and potential (maximum possible)

transpiration (T0) and thus ranges from 0 (maximum stress/no root water uptake) to 1 (no

stress/optimum root water uptake). Optimum root water uptake (T0 = Tact) is given between

h2 (field capacity FC) and h3 (onset of drought stress). The decreasing plant water stress

between h2 and h1 considers that plants typically experience increasing aeration stress towards

saturated conditions; h4 corresponds to the permanent wilting point (WP), h1 to the point of

maximum aeration stress (anoxic conditions).

 h4                                         h3,low           h3,high           h2       h1         
WP                                                    FC 

root zone water potential 

0

0.2

0.4

0.6

0.8

1

1.2

plant water 

stress factor 

Figure 3.3: Feddes plant water stress function modified after Feddes et al. (1978). Root water uptake
commences with the onset of desaturation at h1 (anoxic moisture conditions), optimum root water

uptake is given between h2 (field capacity, FC) and h3 (onset of drought stress), where indices high and
low refer to the magnitude of potential transpiration rates. From optimum root water uptake towards

h4 (permanent wilting point, WP) the plants experience increasing drought stress.

Presuming that h3 decreases with decreasing T0, HYDRUS-1D allows for making h3 a function

of T0. The range of T0, within which h3 becomes a function of T0 may be defined by the user,

but is usually 1-5 mm day-1 (default values). The h3 value for T0 < 1 mm day-1 is called h3,low,
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3.2 Materials and methods

that for T0 > 5 mm day-1 h3,high. If T0 is between 1 and 5 mm day-1 and the soil dries out to

less than h3,high, the critical root-zone water potential, at which potential root water uptake is

reduced to the actual root water uptake, is linearly related to T0 (Šimůnek et al., 2013).

As start values for the model inversion, we used the Feddes parameters (in cm pressure head)

as proposed by Vogel et al. (2013) for a 90-years-old spruce site in the Czech Republic, where

h1 = h2 = 0 cm, h3,high = -600 cm, h3,low = -1200 cm, and h4 = -15,000 cm. Later, we manually

optimized the Feddes parameters on the basis of our sap flow data (see below).

3.2.4 Model validation

We validated our model setup on the basis of the soil moisture measurements in 20 and 50 cm

depth using a split-sample approach. To consider the observed drop in soil moisture between

the years 2010 and 2011 in the optimization procedure, we chose the years 2009–2011 as the

calibration period. For validation, we used another three year period (2012-2014). The goodness-

of-fit between observed and simulated data was assessed on the basis of the root mean squared

error (RMSE). Our sap flow data was restricted to the years 2009 and 2010 and was therefore

not considered for model validation.

3.2.5 Parameterizing the Feddes model using sap flow data

In the classical Feddes approach, plant water stress is derived from the ratio of Tact and T0 (see

above). The assumption is that this ratio is mainly dependent on soil water supply. However,

Zweifel et al. (2002) showed that Norway spruce reacts to high midday vapor pressure deficits

(VPD) by closing stomata. Thus, the trees physiologically reduce their own transpiration activity

on many days of the growing season. In order not to mix-up this atmospheric stress reaction

with actual soil water stress, we applied a new approach to calculate plant water stress from our

sap flow data. This approach was based on the assumption that the micro-climate is identical

at both plots; thus, in case of atmospheric stress, all trees (Riparian and Slope plot) show the

same physiological reaction.

For each tree we determined the 6 highest Fd values per day. We averaged these maxima by

day and plot and normalized the resulting data series (Fd,n,rip for Riparian and Fd,n,sl for Slope).

For the Riparian plot, we assumed optimum soil water supply, because due to the constant in-

fluence of groundwater the soil at this plot showed relatively high soil water contents throughout

the study period and critical levels of soil water supply as reported from other studies (Lagergren

and Lindroth, 2002; Lundblad and Lindroth, 2002; Schwärzel et al., 2009; Granier et al., 1999,

2000) were never reached. We calculated a drought stress factor Fd,drought (1: optimum water

supply; 0: maximum water stress) for the Slope plot by dividing Fd,n,sl by Fd,n,rip. To ensure

that potential aeration stress at the Riparian plot would not affect our drought stress function,

we only used data of dry days (3rd day without precipitation). We plotted Fd,drought against

the simulated Slope water potential and analyzed the correlation between Fd,drought and root

zone h for different levels of soil water shortage. The data which showed the highest significant

correlation (R2 and Student’s t-test) between Fd,drought and root zone h was used to determine

the drought stress trendline. The intersection of this trendline with the x-axis corresponds to
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3 Using sap flow data to parameterize the Feddes water stress model for Norway spruce

the simulated Slope root zone water potential at maximum drought stress (Fd,drought = 0) and

was therefore interpreted as the permanent wilting point h4.

During model calibration we found that the parameter h3,high was independent from mean

daily sap flow dynamics and hence could not be optimized using sap flow measurements. How-

ever, it is well-known that at high levels of atmospheric demand, the transpiration rate of spruce

forests decreases with increasing vapor pressure deficit (Lagergren and Lindroth, 2002). This

was also confirmed by our own sap flow measurements (data not shown). While coupled soil-

plant-atmosphere continuum models are able to account for atmospheric stress, this process is

not implemented in HYDRUS-1D. Nevertheless, since the Feddes approach is differentiated into

h3,high and h3,low, atmospheric stress can be considered by adapting the T0 range at which h3 is a

function of T0. The study of Zweifel et al. (2002) suggests that spruce trees reduce transpiration

when midday vapor pressure deficit exceeds 1250 Pa independent of soil wetness. Accordingly,

we analyzed days with maximum VPD of approx. 1250 Pa and found that a T0 value of 2.7

mm day-1 can be used as lower boundary for the h3-dependent T0 range. Furthermore, we used

T0 at the day of maximum observed daily Fd (4.8 mm day-1) as the upper boundary for the

h3-dependent T0 range.

To detect potential aeration stress at the Riparian plot, we selected days, for which no drought

stress was observed on the Slope plot. For these days, Fd,n,sl was used as a reference for optimum

water supply. We calculated an aeration stress factor Fd,aeration (1: optimum water supply; 0:

maximum water stress) by dividing Fd,n,rip by Fd,n,sl. To determine the Feddes parameters

h1 and h2, we plotted Fd,aeration against the simulated Riparian root-zone water potential and

analyzed the observed data trend as described for Fd,drought.

3.2.6 Relative extractable soil water (REW)

It is well known that absolute soil water contents do not fully reflect the actual soil water sta-

tus (Jones, 2007; Sadras and Milroy, 1996). Therefore, many researchers refer to the relative

extractable soil water (REW) as a measure of soil water status (e.g., Gartner et al. (2009);

Lagergren and Lindroth (2002); Sadras and Milroy (1996); Hentschel et al. (2016); Gebauer

et al. (2012); Granier et al. (2007)). To compare our Feddes parameters with critical REW

values from the literature, we calculated the mean root-zone water contents corresponding to

the reported critical REW according to the relations described by Hentschel et al. (2016) and

Granier et al. (2007):

REW =
θ − θWP

θFC − θWP
(3.7)

in which θ is the actual water content, θFC is the water content at field capacity, and θWP is

the water content at permanent wilting point. To be consistent with the literature (Hentschel

et al., 2016; Granier et al., 2007), we chose θ at -300 cm pressure head (-0.03 MPa) for θFC and

θ at -16,300 cm pressure head (-1.6 MPa) for θWP.
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3.2.7 Uncertainty assessment

To assess the uncertainty of the simulated root zone water potential related to the assumed

rooting depth and the shape of the potential root water uptake function, we performed a sensi-

tivity analysis. First, we ran the model for each plot assuming constant rooting depth (45 cm),

but differing root distributions (factor 1 in the uppermost 15/30/45 cm of the mineral soil and

linear decrease from 1 to 0 towards the bottom of the root zone). Then, we varied the rooting

depth (30/40/50/60 cm) and simulated the respective root zone water potentials assuming a

root distribution factor of 1 for the uppermost 15 cm of the mineral soil linearly decreasing from

1 to 0 between 15 cm depth and the final rooting depth.

Test statistics (Mann-Whitney U-test) on the similarity of the simulated root zone water

potentials were conducted on the log scale.

To evaluate the small-scale variability of soil water supply around the sap flow stations and

to ensure that the selected SoilNet measuring locations are representative for our sap flow plots,

we simulated the root zone water potentials of 4 (Riparian) and 7 (Slope) surrounding SoilNet

locations (Figure 3.1). These simulations were again performed on the basis of calibrated and

validated Mualem-van Genuchten parameters. From the average root zone water potentials of

the surrounding SoilNet locations, we determined the Feddes parameters as described before

and compared the results with the water stress thresholds as resulting from the initial research

setup.

3.3 Results

3.3.1 Sap flow data

The observed Fd dynamic of both research plots corresponds well to the dynamic of the calculated

ET0 (Figure 3.4). R2 between mean daily Fd and ET0 was 0.78 for the Slope plot and 0.84 for

Riparian plot. The differing absolute Fd among trees and plots result from variations in tree

diameter and crown size (Table 3.1), which can be explained by small-scale variations in planting

density and uneven forest thinning. This becomes particularly apparent for tree 1 of the Riparian

plot (Figure 3.4b).

At the Riparian plot, we observed some data inconsistencies in the winter that were probably

caused by frost events and rodent activity. Therefore, the sap flow sensors were checked and

readjusted at the beginning of the following vegetation period (May 2010). Since we did not use

the noisy data until sensor readjustment, the winter gap at the Riparian plot is slightly longer

than at the Slope plot (Figure 3.4).
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Figure 3.4: Daily potential evapotranspiration (a) and mean daily sap flow density (Fd) by tree and
plot ((b) Riparian; (c) Slope).

Table 3.1: Variation of diameter at breast height (DBH), sapwood depth (SWD), projected crown area
(CA) and mean daily sap flow density (Fd) between May and September by plot and sample tree.

Sample tree

Riparian Slope

DBH SWD CA Fd DBH SWD CA Fd

cm cm m2 g m-2 s-1 cm cm m2 g m-2 s-1

tree 1 57 6 49.2 4.48 44.7 4.7 56.3 4.52

tree 2 40.3 4.2 23.3 2.25 40.9 4.3 60.4 5.09

tree 3 46.3 4.9 22.2 1.56 44.1 4.6 33.8 4.69

tree 4 40.4 4.2 -* 3.13 48.2 5.1 -* 5.24

mean 46 4.8 31.6 2.9 44.5 4.7 50.2 4.89

*These trees were cut before our survey on CA determination; therefore we estimated CA

from the allometric relationships of (Widlowski et al., 2003), where

CA = π ∗ (0.6122 + 0.0536 ∗ DBH)2.
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3.3.2 Simulated soil water dynamics

The Mualem-van Genuchten parameters as resulting from the parameter estimation by HYDRUS-

1D show lower residual, but higher saturated water contents for the Riparian plot than for the

Slope plot. At the Slope plot, α and Ks decrease with depth (Table 3.2).

Table 3.2: Mualem-van Genuchten parameters as obtained from the HYDRUS-1D inverse modeling
procedure by plot and soil layer. θr: residual water content, θs: saturated water content, α: empirical

parameter related to the air-entry pressure value, n: empirical parameter related to the pore size
distribution width, Ks saturated hydraulic conductivity (cm day-1).

Soil layer θr θs α n Ks

Riparian

B* 0 0.63 0.008 1.58 4

Slope

A 0.1 0.52 0.008 1.22 165

B 0.12 0.5 0.001 1.29 78

*The A horizon was very thin and could therefore not be parameterized for this plot.

After inverse modelling, and manual calibration of Aqh and Bqh for the deep drainage option

(-0.85 and -0.012, respectively), the root mean squared errors (RMSE) between observed and

simulated data (Figure 3.5) were 3.6 vol % (Slope), and 4.6 vol % (Riparian). In the validation

period, the RMSE of the Riparian plot slightly increased (5.3 vol %), while that of the Slope

remained the same. The manual calibration of the Feddes parameters slightly improved the

RMSE at the hillslope plot (3.4 vol % for both calibration and validation period), but had no

effect on the RMSE of the Riparian plot simulations.

As expected, SWC in the groundwater-influenced plot (Riparian) were generally higher than

those on the hillslope. The simulated mean annual SWC was 54% for the Riparian plot and 36%

for the Slope). The simulated root zone water potentials (Figure 3.6) highlight the contrasting

soil moisture regimes of the two research plots. The mean simulated annual root zone pressure

heads were -88 cm (Riparian) and -3400 cm (Slope). All simulated daily root-zone h values

ranged from +27 cm (fully saturated soil column; Riparian) to -12,577 cm (very dry conditions

near wilting point; Slope).
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Figure 3.5: Observed (blue) and simulated (red) soil water content (SWC) in 20 and 50 cm depth of
the Riparian (a) and Slope (b) plots. Black vertical lines indicate the border between calibration and

validation periods.
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on the log-scale (single positive values cannot be shown).
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3.3.3 Feddes parameters for Norway spruce (h1, h2, h3,low, h4)

For the Slope plot, we found the measured water stress to be dependent on the simulated root-

zone water potential (Figure 3.7a). The strongest significant correlation between Fd,drought and

simulated root-zone h was observed below -4100 cm (R2 = 0.77, p < 0.001). Thus, we set

h3,low = -4100 cm. Extrapolating the trend-line between Fd,drought and simulated root-zone h

towards the x-axis, where Fd,drought = 0 (maximum water stress), resulted in an h4 value of

-15,000 cm which is often used as - a very general - permanent wilting point (Kirkham, 2014).

Our data did not indicate the occurrence of aeration stress at our research site (Figure 3.7b).

Parameters h1 and h2 were therefore set to 0. The Feddes water stress function as resulting

from our parameterization shows a higher drought resistance of Norway spruce than previously

assumed (Figure 3.7c).
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Figure 3.7: (a) Plant water stress as indicated by sap flow data at the Slope plot; red dots were used
for the extrapolation of the drought stress trend-line (black line); (b) Plant water stress as indicated by
sap flow data at the Riparian plot (no water stress observed); (c) Calibrated water stress function (red
lines) in comparison to the Feddes function used before calibration (grey lines) (cf. Vogel et al. (2013)).

Note that the x-axis in figure (c) is displayed on the log-scale.
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3.3.4 Simulated water balance before and after calibration

The mean annual simulated water balance of the two research plots indicates generally higher

transpiration at the Riparian plot compared to the Slope plot (Table 3.3). While the water

balance of the Riparian plot was not affected by the calibration of the Feddes parameters, the

calibration raised ETact by 10% for the Slope plot. At the same time, drainage decreased by 5%.

For all simulation runs, we achieved a very good fit between mean daily sap flow and simulated

actual transpiration (R2 = 0.82 at Slope and 0.84 at Riparian plot). At the Slope plot, the

correlation between sap flow data and simulated actual transpiration was slightly improved by

the calibration of the Feddes parameters (R2 = 0.83). For the Riparian plot, R2 was not affected

from the calibration.

Table 3.3: Mean annual simulated water balance (October 2009-September 2014) before and after
calibration of the Feddes parameters in HYDRUS-1D. Percentage change of calibrated water balance

component in comparison to un-calibrated value is given in brackets. ET0: potential
evapotranspiration, ETact: actual evapotranspiration; all details in mm year-1.

Water Balance Component Riparian Slope

Precipitation 1321

ET0 597

un-calibrated calibrated un-calibrated calibrated

ETact 597 597 403 445 (+10%)

Surface runoff 54 54 0 0

Drainage 634 634 841 797 (-5%)

3.3.5 Sensitivity of Feddes parameters to root zone variation and SoilNet

measuring location

Variations of the potential root water uptake factor’s depth distribution did not lead to significant

variations of the simulated root zone h (Mann-Whitney U-test). The same applies for variation

of the rooting depths.

The difference between the mean soil water supply of the surrounding SoilNet measuring

locations and that of the stations we selected for our study (SN17 and SN28; cf. Figure 3.1)

was statistically significant (p < 0.001). However, the absolute difference among the simulated

SoilNet locations was small and the contrasting soil moisture regimes between the two plots are

still clearly visible (Figure 3.8). Respectively, the resulting Feddes parameters were only slightly

affected by the selection of the SoilNet measuring location. Parameter h3,low as determined

from the mean root zone water potentials of the surrounding SoilNet locations was -3800 cm,

which is 300 cm below the h3,low value we determined from SN28. h4 decreased from -15,000 cm

(SN28) to -13,600 cm pressure head (mean of the surrounding SoilNet stations), while h2 was

not affected from the choice of the SoilNet measuring location. This indicates that soil type and

elevation were reasonable criteria for the choice of our measuring locations.
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Figure 3.8: Range (grey) and means (red) of simulated root zone water potentials of the SoilNet
stations in the surrounding of our sap flow plots (cf. Figure 3.1). Simulated root zone water potentials
of SN17 (Riparian) and SN28 (Slope) are shown in black. Note that the pressure head (-cm) is plotted

on the log-scale (single positive values cannot be shown).

3.4 Discussion

3.4.1 Soil moisture simulations

The water balance simulation captured the prevailing soil moisture dynamics reasonably well.

Considering the measurement uncertainty of the installed SWC sensors (4-5 vol %; Rosenbaum

et al. (2012)) the RMSE of 3.4 to 5.3 vol. % appear very low and are within the range of other

HYDRUS-1D studies on the Wüstebach test site (Fang et al., 2015; Bogena et al., 2013). The

varying soil hydraulic properties among plots and layers (Table 3.2) fit well to the observations

of Gottselig et al. (2017) and Wiekenkamp et al. (2016). The low Ks value in the riparian

zone is plausible, because the soils in the valley bottom have a higher bulk density and a lower

macro-porosity than the soils on the hillslopes (Rosenbaum et al., 2012; Wiekenkamp et al.,

2016).

The simulated mean annual root-zone water potentials (Figure 3.6) highlight the contrasting

soil moisture regimes of our research plots (wet and dry). These characteristics become even

more pronounced when referring only to the vegetation periods (May-September), where mean

root-zone pressure heads are -124 (Riparian) and -4308 cm (Slope). Covering particularly the

stages of critical soil water supply (undersupply/oversupply) our data seems very suitable for

investigating the on-set of drought and aeration stress in plants.

3.4.2 Water stress response of Norway spruce

There is evidence that the shallow rooting Norway spruce is more vulnerable to drought than

other species with a deeper rooting system (Gartner et al., 2009; Lagergren and Lindroth, 2002;

Cienciala et al., 1994). Also, Gartner et al. (2009) and Střelcová et al. (2013) found the sap
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3 Using sap flow data to parameterize the Feddes water stress model for Norway spruce

flow activity of Norway spruce to decouple from climate variables with increasing soil water

shortage. However, critical levels of soil water supply that induce a decline in sap flow rates and

transpiration considerably vary among studies.

While Gartner et al. (2009) observed gradually decreasing sap flow rates with increasing

soil water shortage for REW < 0.4 (which corresponds to a pressure head of -3240 cm at our

Slope plot), Lagergren and Lindroth (2002) found Norway spruce to be more drought resistant.

Depending on the soil depth considered, they report mean critical REW values of between 0.21

(0-20 cm) and 0.24 (0-50 cm). However, the observed critical REW level strongly varied among

trees (REW: 0.18–0.37), which Lagergren and Lindroth (2002) attribute to the heterogeneous

soil conditions on site. This is in line with Gartner et al. (2009), who found the stress response

of Norway spruce to become increasingly variable between individuals with continuing drought

stress. Comparing the water stress response of Norway spruce among more than 60 pure and

mixed stands, Lundblad and Lindroth (2002) report difficulties in determining a consistent

critical level of REW. For most of the plots, drought limitation of sap flow began around a

REW of 0.3. However, the data scatter around this critical limit was large and a clear decrease

in transpiration for all stands except peat stands was only observed for REW below 0.25.

In simulation studies, a REW level of 0.3-0.4 is commonly used to indicate the on-set of

drought stress in Norway spruce (Schwärzel et al., 2009; Granier et al., 1999, 2000). However,

this critical REW range is widely accepted for many species (not only for spruce) and our data

show that REW does not represent the actual energy state of the soil. For example, at the

Slope plot a REW value of 0.3 corresponds to a root-zone pressure head of -4680 cm, which is

in the same range (pF 3.7) as the critical h value of -4100 cm (pF 3.6) we observed in our study

(Figure 3.7a). However, a REW threshold of 0.3 at the Riparian corresponds to a root-zone

pressure head of -2140 cm suggesting that drought stress would occur much easier at this site

(i.e., at lower soil matric potentials). On the other hand, a critical root-zone water potential of

-4100 cm pressure head would here correspond to a REW of 0.17.

One could argue that the poor fit between our critical h and the critical reported REW values

for the Riparian plot is of minor importance, because critical water contents are never reached

(Lundblad and Lindroth, 2002; Calder, 1998). Moreover, the concept of REW seems to apply

fairly well to the conditions at the Slope plot and to other soils in central European high and

low mountain ranges (Gartner et al., 2009; Schwärzel et al., 2009; Granier et al., 1999, 2000).

However, Norway spruce is also widely distributed in boreal forest landscapes, where typical

critical REW values seem to be lower than 0.3 (Lagergren and Lindroth, 2002; Lundblad and

Lindroth, 2002) and soils are often peaty (Bonan and Shugart, 1989), hence showing similar

characteristics (low residual water content, high saturated water content; Rezanezhad et al.

(2016); Weber et al. (2017); Schwärzel et al. (2006)) as our plot in the riparian zone. Our data

indicates that for such soils the concept of REW is likely to fail. This emphasizes the value of

soil water potential in comparison to other measures of soil water supply, because, respective

water stress thresholds can be applied to any type of soil as long as soil water retention and

plant characteristics are known.

However, while critical soil water potentials have been determined for many agricultural crops,

little effort has been put into the quantification of Feddes parameters for forest trees. To our
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knowledge, the concept of transpiration limiting soil water potentials has hardly been applied

in spruce site simulation studies. In the few studies we found, the drought stress threshold was

generally assumed to be less negative than the value we determined from our sap flow data

(h3,low = -4100 cm).

Huang et al. (2011) set h3 to the root-zone h at a SWC of 27.5% of the SWC at field capacity.

This corresponds to the mean critical SWC they reviewed from different studies on drought stress

in evergreen tree species. Applied to our data and considering field capacity to be represented

by SWC at -300 cm pressure head (see above), this threshold corresponds to a pressure head of

-3890 cm at the Riparian plot, but to h < -10 million cm at the Slope site, which is far below the

common used value for the permanent wilting point. Dependent on the soil type, Rosenqvist

et al. (2010) assumed the onset of drought stress for Norway spruce at water potentials of -500

(coarse sandy soils) to -1000 cm pressure head (clayey soils). However, these texture dependent

water stress thresholds contradict the idea that the soil water potential is already a function of

SWC and soil properties. From a plant physiological perspective, species-specific water stress

thresholds should be used instead. Vogel et al. (2013) set their drought stress thresholds to

-1200 (h3,low) and -600 cm pressure head (h3,high). These parameters were derived from other

hydrological studies that were conducted on similar soils, but had no plant physiological basis.

Nevertheless, applying the parameter set of Vogel et al. (2013) to our simulations, we achieved

a very good fit between measured and simulated SWC (RMSE < 5.3 vol %). Also, mean daily

sap flow and simulated actual transpiration showed high correlations (R2 > 0.82). However,

although the adaptation of the Feddes function had little impact on the general dynamic of the

simulated fluxes, the adjustment of h3,low significantly changed transpiration (p < 0.001) and

drainage fluxes (p < 0.01) at the Slope plot (two-sided Mann-Whitney U-test; Table 3.3) and

made it more realistic: Based on eddy-covariance measurements, Graf et al. (2014) found the

annual ETact in the Wüstebach catchment to cover approximately 90% of ET0. In our Slope plot

simulations this ratio was 80% for the uncalibrated Feddes model, but 87% for the calibrated

simulation run in the same study period (2010–2013). The runoff ratio (runoff/precipitation)

observed by Graf et al. (2014) was 56%, while that in our simulations ranged between 62% (Slope

plot after calibration of the Feddes model) and 65% (Slope plot before calibration of the Feddes

model). This result confirms: (1) the finding of Diekkrüger et al. (1995) that a good fit between

simulated and measured SWC does not necessarily imply that the simulated water fluxes are

correct; and (2) the assumption of Vereecken et al. (2010) that sap flow measurements can help

improving root water uptake simulations.

It has to be noted that the impacts of the Feddes model on simulated water fluxes depend

on local site conditions. The well-watered Riparian plot was not affected by the calibration,

because critical pressure heads were never reached. Drought stress simply did not occur and

although there is evidence on the vulnerability of Norway spruce to waterlogging (Gartner et al.,

2009; Tjoelker et al., 2007), our data did not indicate arising aeration stress in the riparian zone

(Figure 3.7b). One reason could be that spruce indeed only suffers from aeration stress at fully

saturated soils (h1 = h2 = 0), which does not apply to the vegetation periods in this study

(Figure 3.5). Another possible explanation is that the transpiration limiting effects of aeration

stress occur on longer time-scales than the daily scale we were operating at.
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Our data show that soil water supply strongly influences the transpiration of Norway spruce.

Due to the observed drought stress on the hillslope (Figure 3.7a), the simulated actual transpi-

ration at the Slope plot was 13% lower than that of the riparian zone (Table 3.3). This result

highlights the importance of considering soil moisture patterns in the modeling of transpiration

fluxes from the forest plot to the catchment scale.

3.5 Conclusions

In this study, we confirm the potential of sap flow measurements for the determination of water

stress in forest trees. By combining soil hydrological simulations with a water stress factor

derived from sap flow data, we were able to parameterize the Feddes water stress function

for Norway spruce and improve our water balance simulations on site. Our results show that

small-scale variations in soil water supply significantly influence the water balance of spruce

sites. Considering soil moisture patterns in the model setup can thus improve the simulation of

transpiration fluxes on the catchment scale.

Although additional sap flow stations and a bigger sample size per plot would have provided

a more detailed view on the conditions on site, the sampling concept (wet plot against dry plot)

delivered valuable insights into the water stress response of Norway spruce. The advantage of

our sampling approach is that an upscaling of sap flow density to the tree and plot scale is

unnecessary. Hence, uncertainties related to the upscaling procedure (cf. e.g., Steppe et al.

(2015); Köstner et al. (1998); Renninger and Schäfer (2012); Lundblad et al. (2001); Bush et al.

(2010); Sun et al. (2012); Rabbel et al. (2016); Nadezhdina et al. (2002); Ford et al. (2004))

can be avoided. However, to transfer our finding to other sites and settings, more research on

species-specific feedbacks in the soil-vegetation-atmosphere system is needed. There is still a

lack of studies determining the critical limits of soil water supply for trees. Since forests play

a vital role in regional and trans-regional water cycles and, against the background of climate

change, the assessment of respective fluxes becomes increasingly important, future research

should focus on: (1) more species-specific investigations on the water stress response of trees;

and (2) an improved assessment of small-scale variabilities in soil water supply. With our

sampling strategy, we present a simple and cost-efficient approach to achieve these goals, even

with a limited number of sample trees.
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Abstract: The climate-growth response of specific sites and species is one of the main research

subjects in classic tree ring studies. Traditional sampling approaches therefore aim at maximiz-

ing the climate signal of the analyzed tree ring series, which is typically achieved by focusing

on dominant trees or on sites located in particularly temperature or moisture limited environ-

ments. However, there is increasing evidence that these selective sampling strategies cannot

yield chronologies that are representative for entire populations. One promising approach to

gain a deeper understanding of forest dynamics and climate-growth responsiveness is the analy-

sis of climate signal ranges among trees. This individualistic approach requires random sampling

and the integration of information on small-scale heterogeneities in site and tree characteristics.

Here, we analyze the climate-growth response of 144 Norway spruce trees (Picea abies Karst.)

on difference levels of data aggregation. The aim of our study is to investigate the relevance of

small-scale heterogeneities in site conditions, particularly in soil water supply, for the detected

climate-growth signal. We identify soil water supply and site characteristics, which indirectly

modify the water availability for trees, as dominating growth factors across scales. The driest

sites show the strongest climate-growth reaction, while the growth response of wetter sites is

weak or even insignificant. Therefore, we conclude that integrating small-scale information on

site characteristics, particularly on soil water supply, can help to gain a deeper understanding

of species-specific growth limitations.

Keywords: tree growth; soil moisture; soil properties; soil nutrition; planting density; cluster

analysis
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4.1 Introduction

Investigating the climate-growth response of specific sites and species is one of the main research

subjects in classic tree ring studies. Hence, site and tree selection typically aim at maximizing the

climate signal in the inspected growth chronology (Nehrbass-Ahles et al., 2014; Primicia et al.,

2015; Sullivan and Csank, 2016). Respectively, many researchers follow a selective sampling

focusing either on “dominant, large and healthy trees” (Nehrbass-Ahles et al., 2014) or on sites

located in particularly temperature or moisture limited environments (Esper et al., 2007; Sullivan

and Csank, 2016).

However, even though selective sampling is acknowledged as appropriate approach for climate

growth analysis and climate reconstructions (Nehrbass-Ahles et al., 2014), there is increasing

evidence that the resulting tree ring chronologies are likely to miss representativeness for the

tree population (Carrer, 2011; Nehrbass-Ahles et al., 2014; Sullivan and Csank, 2016), because

the climate sensitivity of individual trees largely depends on site and tree characteristics (Car-

rer, 2011; Galván et al., 2014; Primicia et al., 2015). Recent studies show that the growth

responsiveness of trees to climate is related to forest management and composition (Pretzsch

and Dieler, 2011; Primicia et al., 2015), physical and chemical soil properties (Braun et al., 2010;

Pretzsch and Dieler, 2011; Tromp-van Meerveld and McDonnell, 2006; Ibáñez et al., 2018), soil

water state (Ashiq and Anand, 2016; Helama et al., 2016; Jiang et al., 2016; Lévesque et al.,

2014; Linares et al., 2010; Primicia et al., 2015; Zhang et al., 2018), canopy structure (Adams

and Kolb, 2004; Linares et al., 2010; Martín-Benito et al., 2008; Primicia et al., 2015), tree to

tree competition (Linares et al., 2010; Primicia et al., 2015; Gleason et al., 2017; Piutti and

Cescatti, 1997), tree size (Carrer and Urbinati, 2004; Linares et al., 2010), and tree age as a

proxy for other, size related effects (Carrer and Urbinati, 2004; Primicia et al., 2015).

Consequently, researchers increasingly seek for randomized sampling strategies that allow for

both (1) the extraction of a mean climate-growth response and (2) the investigation of the range

of climate signals among trees (Carrer, 2011; Nehrbass-Ahles et al., 2014; Sullivan and Csank,

2016). However, to draw ecological conclusions from heterogeneities in the individual climate-

growth response of trees, a comprehensive sampling design including quantitative data on tree

and site characteristics is indispensable (Babst et al., 2013; Nehrbass-Ahles et al., 2014).

In this study, we analyze tree ring chronologies of 144 Norway spruce trees (Picea abies Karst)

on different levels of data aggregation with the aim to identify the relevance of small-scale

heterogeneities in site conditions for the detected climate-growth signal. Since Norway spruce

is known to be particularly vulnerable to drought (Boden et al., 2014; Bouriaud et al., 2005;

Neuwirth, 2010; Zang et al., 2012, 2014), we focus on small-scale variabilities in simulated soil

water supply and on site characteristics, which indirectly modify the water availability for trees.

Further potentially growth relevant factors we consider in our analysis are soil nutrient states

and pH level. The study area is an even-aged Norway spruce plantation in the Eifel National

Park (western Germany). Hence, age-related modifications of the climate-growth signal do not

play a role in our study.
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4.2 Materials and methods

4.2.1 Study area and data base

This study was conducted in the 27 ha Wüstebach experimental test site, which belongs to the

TERENO Eifel/Lower Rhine Valley Observatory and is located in the Eifel National Park close

to the German Belgian border (Bogena et al., 2018). The area is forested with Norway spruce

that were planted in the late 1940ies (Etmann, 2009). In 2013, one quarter of the trees (8.6

ha) was removed to investigate the effects of deforestation on hydrological and biogeochemical

cycling (Bogena et al., 2014). Altitudes range from 595 m a.s.l. in the north to 628 m a.s.l.

in the south. While the hillslopes are dominated by shallow Cambisols and Planosols, Gleysols

and Histosols have developed in the Riparian zone (a map of the study area is given in the

4.3 section). The soil texture is mainly silty clay loam with a medium to high coarse material

fraction (Gottselig et al., 2017). The mean annual temperature and precipitation sum for the

period 1970-2000 are 7.9 °C (DWD weather station Kall-Sistig in 13.1 km distance to the test-

site) and 1280 mm (DWD weather station Kalterherberg in 9.6 km distance to the test-site),

respectively.

We analyzed tree ring data of 48 microsites with slightly varying soil water supply to explore

small-scale variations in the climate-growth relations. Soil moisture was monitored with the

TERENO sensor network SoilNet (Bogena et al., 2010). SoilNet provides catchment-wide infor-

mation on soil water dynamics in 5, 20 and 50 cm depths with 15 min resolution since 2009 using

ECH2O EC-5 and ECH2O 5TE sensors (Decagon Devices, Pullman, WA, USA). We used the

soil hydrological model HYDRUS-1D (Šimůnek et al., 2013) to generate long-term information

on soil water supply from the SoilNet data. First, we inversely estimated the soil hydraulic

properties for each of our micro-sites as described in Rabbel et al. (2018a) using SoilNet data

from 2010 to 2012 for the model calibration and data from 2013 to 2015 for the model validation.

Based on the validated model setup we conducted long-term simulations of soil water supply in

terms of root-zone pressure heads for the period 1951 to 2000. Daily climate and precipitation

data for the long-term simulations were taken from the DWD weather stations Kall-Sistig and

Kalterherberg, respectively. We considered the effect of forest growth on the water balance by

using a dynamic leaf area index (LAI) as obtained from long-term simulations with the process-

based forest hydrological model LWF-Brook90 (Hammel and Kennel, 2001). For more detailed

information on the climate data processing and simulated LAI, we refer to Cornelissen (2016).

Through logarithmic transformation and aggregation of the daily modelled pressure heads we

obtained mean monthly root-zone pF values for each of our microsites. As additional growth

relevant factors, we considered planting density and soil properties as microsite characteristics in

our study. In this context, we made use of the comprehensive spatially distributed biogeochem-

istry dataset of the Wüstebach (Gottselig et al., 2017). For this study we selected information

on soil horizon depths and horizon-wise bulk density, pH and C-, N- and P-contents.

4.2.2 Tree ring data and chronology building

We selected our microsites with regard to the existing SoilNet measuring locations to draw

the closest possible link between tree ring data and local site conditions. However, since our
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sampling campaign took place after the deforestation event in 2013, Gleysol sites could not be

considered in this study. Each microsite consists of three trees in direct proximity (< 10 m)

to one of the SoilNet stations. We used a HAGLÖF increment corer with 5 mm diameter to

extract two opposite cores at breast height per tree. The sample preparation followed standard

procedures (Stokes and Smiley, 1968). Ring widths were measured at the dendrochronological

lab DeLaWi Tree Ring Analyses (Windeck, Germany) using the moveable object table Lintab

5 (Rinntech, Heidelberg, Germany) and a stereo microscope (Carl Zeiss, Jena, Germany) in

a measuring accuracy of 10 µm. Synchronization and cross-dating were carried out with the

software tools TSAP-WIN (Rinn, 2003) and COFECHA (Holmes, 1983). Tree mean curves

(TMC) were calculated with TSAP-WIN. We detrended each TMC using a high-pass filter

based on binomially weighted 5-year running means (Schweingruber, 1988) to remove age-related

trends and emphasize inter-annual growth variations. Indices (RWI) were calculated as ratio

between actual tree ring widths and the filtered value. In total, we considered 144 trees to

create 48 SoilNet related microsite chronologies (SN) and one regional chronology across all

microsites in the Wüstebach catchment (WÜ). To avoid data inconsistencies, we excluded the

juvenile phase from our investigations and thus only used the period 1970 to 2000 for further

analyses. More recent years were not considered, because of a multi-year data gap in the Kall-

Sistig weather station data. Applying the hierarchical cluster analysis after Ward, which has

already been proven to provide a clear distinction of growth clusters in previous studies (e.g.,

Friedrichs et al. (2009)), we used the squared Euclidian distance as a measure of similarity to

detect SN chronologies (RWI series) with similar growth dynamics. These were aggregated to

respective cluster chronologies (CL) using arithmetic means.

4.2.3 Statistical analysis

We analyzed the climate-growth relationships in the Wüstebach catchment at different levels of

data aggregation using Pearson’s product-moment correlations. WÜ, CL and SN chronologies

were correlated with monthly temperature and precipitation data and mean monthly root-zone

pF over a 18-month window from May of the previous year (denoted with the index p) until

October of the current year of ring formation. Additionally, we considered temperature means,

precipitation sums and mean simulated root-zone pF for the periods March-May (MAM), June-

August (JJA), September-November (SON), April-October (VEG), and annual values (CAL)

for the previous and current year of ring formation.

We correlated the climate signal strength (Pearson’s r) observed on the SN level with the

respective microsite characteristics (exposition, inclination, planting density, mean root-zone

pF, and soil biogeochemistry) to identify the relevance of site characteristics for the detected

climate signal. We conducted this analysis (1) for all 48 SN microsites across the Wüstebach

catchment and (2) for each growth cluster separately.

Since the cluster characteristics considered in this study typically exhibit non-normal distri-

butions, we used U-tests instead of T-tests to identify statistically significant differences in the

mean cluster characteristics and therewith to explain the cluster formation itself. In this con-

text, we applied the software package R (R Core Team, 2018). Significance for both Pearson’s

correlations and U-tests was tested on the 95% significance level (p < 0.05).
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4.3 Results and discussion

4.3.1 Regional climate-growth relations

For the WÜ chronology (Fig. 4.1a), we found significant negative correlations between mean

monthly and seasonal temperatures and RWI for JULp, JJAp and VEGp (Fig. 4.1b), whereas

the strong correlation of RWI and JULp (r=-0.55) seems to dominate the observed seasonal

temperature-growth relations. Significant positive correlations with RWI were observed for

OCTp, JJAp, SONp, and VEGp precipitation sums (Fig. 4.1b). In this case, the strong corre-

lation of RWI and OCTp (r=0.61) dominates the observed significant correlation of RWI and

SONp. The sensitivity to high summer temperatures and low precipitation of the previous year

is typical for Norway spruce in lower altitudes (Fischer and Neuwirth, 2012; Hartl-Meier et al.,

2014; Mäkinen et al., 2002; van der Maaten-Theunissen et al., 2013).

The interplay between positive correlations of RWI with precipitation and negative correla-

tions with temperature for the same periods (JJAp and VEGp) suggests that radial growth

rates in the Wüstebach catchment are mainly controlled by water availability. This finding is

supported by the significant negative correlations of RWI with the mean monthly (JULp, AUGp,

OCTp, NOVp), seasonal (JJAp, SONp, VEGp), and annual (CALp) root-zone pF (4.1b) and in

line with other studies reporting the particularly high vulnerability of Norway spruce to drought

(Boden et al., 2014; Bouriaud et al., 2005; Neuwirth, 2010; Zang et al., 2012, 2014).
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Figure 4.1: WÜ chronology (a) and correlation between respective RWI values and monthly/seasonal
temperatures, precipitation sums, and simulated root-zone pF values (b). Horizontal black lines in

figure b represent the 95% significance level.

4.3.2 Climate growth relations across microsites

The SN chronologies show a considerable scatter in RWI values (Fig. 4.2a). Nevertheless, the

general growth dynamic is similar among SN chronologies. For most of the SN series, we observed

negative RWI peaks in the years 1976 and 1995, which have already been identified as negative

pointer years for the Wüstebach area in a previous study (Thomas et al., 2018). Particularly

high ranges of RWI values among SN chronologies were found for the years 1970 (0.31), 1977

(0.36), and 1996 (0.33) and hence for years that follow negative pointer years (Thomas et al.,

2018). This indicates that the recovery of growth rates after drought years depends on small-

scale environmental conditions.

62



4.3 Results and discussion

Figure 4.2: SN chronologies (a) and correlation between respective RWI values and monthly/seasonal
temperatures and precipitation sums (b). Black horizontal lines represent the 95% significance level.

The monthly/seasonal climate signals among SN chronologies are strongly scattered (Fig.

4.2b), which we attribute to small-scale variabilities in the microsite conditions (e.g., soil prop-

erties).

We found significant negative correlations between the SN chronologies’ temperature signals

and the simulated summer root-zone pF of the previous year (JJAp; Fig. 4.3a). Hence, drier

microsites react stronger to high summer temperatures than wetter microsites, which was also

found by other studies on the regional scale (Ashiq and Anand, 2016; Helama et al., 2016; Jiang

et al., 2016; Lévesque et al., 2014; Zhang et al., 2016). Significant negative correlations with

seasonal temperature signals (JJAp, VEGp) were also found for the local planting density (Fig.

4.3b).This effect indicates an increasing competition for soil water with increasing number of

trees per ground area, which was already observed by Linares et al. (2010) and Primicia et al.

(2015).
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Figure 4.3: Correlation between SN climate signal strength (Pearson’s r) and simulated root-zone pF
(a), planting density (b), P2O5 concentration (c), and NO3- concentration (d). The dashed black lines

indicate the 95% significance level for the observed climate-growth relations. T-signal: temperature
signal as resulting from the correlation of the SN chronologies and mean monthly/seasonal

temperatures; P-signal: precipitation signal as resulting from the correlation of the SN chronologies and
monthly/seasonal precipitation sums; reference periods for the illustrated climate signals: JJAp: Juli to

August of the previous year; SONp: September to November of the previous year.

Interestingly, we did not find any correlations between the precipitation signal of the SN

chronologies and water related microsite characteristics. Instead, seasonal precipitation signals

(SONp, VEGp) were significantly related to the microsite’s soil N and P states. We observed

decreasing precipitation signals with increasing plant available P (P2O5) indicating that insuf-

ficient P supply increases the drought vulnerability of Norway spruce (Fig. 4.3c).

Nitrate N (NO3-), in contrast, shows a significantly positive correlation with the precipitation

signal strength (Fig. 4.3d). One possible explanation is that the enhanced N levels in the

Wüstebach catchment as indicated by C/N ratios well below 25 (Gundersen et al., 1998) reduce

fine-root growth and limit the uptake of other nutrients. The resulting negative effects of excess

N on tree growth and vitality have been described before and may result in a decreased tolerance
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4.3 Results and discussion

against soil-related stress factors (Braun et al., 2010; Kazda, 1990; Mohren et al., 1986; Puhe,

2003; Seith et al., 1996; Thelin et al., 1998). Hence, it seems reliable that microsites of excess

N supply are more vulnerable to water stress than microsites with a more balanced nutrient

supply.

4.3.3 Cluster formation and characteristics

Our cluster analysis resulted in three primary growth clusters with 18 (CL1), 21 (CL2), and 9

SN members (CL3) (Fig. 4.4a). The spatial proximity of the SN sites was not important for

cluster formation (Fig. 4.4b). Instead, the site characteristics of the clusters mainly differed in

the mean simulated soil water supply (Fig 4.5). However, while the mean simulated root-zone

pF of cluster 1 was significantly higher than that of cluster 2 and 3, no significant difference was

found between the moisture regimes of cluster 2 and 3.

CL1 CL2 

CL3 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

linkage distance 

a) 

b) 

Figure 4.4: Dendrogram as resulting from the hierarchical cluster analysis after Ward (a) and spatial
distribution of the clusters within the Wüstebach catchment (b).
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Figure 4.5: Simulated mean monthly soil water supply (black line) and inter-annual variation of the
simulated mean monthly soil water supply (grey) for the period 1970-2000 by growth cluster. Field

capacity and permanent wilting point are generally assumed for pF 2-2.5 and 4.2, respectively.

Nevertheless, the cluster’s climate signal strength was clearly connected to the observed gra-

dient in the mean cluster’s soil water supply: The cluster chronology of the driest cluster (CL1,

Fig. 4.6a) showed the strongest correlation with monthly/seasonal mean temperatures (JULp,

JJAp, CALp, VEGp), while the wettest cluster (CL3) did not show significant temperature-

growth relations at all (Fig. 4.6b). Also, the temperature signal of CL1 was even 0.06 (JULp)

to 0.08 (VEGp) points stronger than that of the mean WÜ chronology. This indicates that our

small-scale clustering approach can help to improve the extraction of a regional climate signal.

The precipitation signal of the cluster chronologies was also modified by mean soil water

supply. However, the effect was not as strong as for the temperature signal. Even though the

precipitation signal strength decreased with increasing root-zone pF, all cluster chronologies still

showed significant correlations with mean seasonal precipitation sums (JJAp, SONp, VEGp).

The OCTp precipitation signal was highly significant (p < 0.001) for all cluster chronologies and

the only signal appearing to be independent from the soil moisture regime.

Internal relations between SN climate signal and microsite characteristics varied among clus-

ters. The analyzed microsite characteristics within the clusters were found to be independent

from each other and also from absolute soil water states. In contrast to our findings on the

regional scale, cluster internal SN temperature signals were not correlated with the simulated

soil water supply. Instead, temperature signals significantly correlated with the planting den-

sity (Fig. 4.7a), which reflects the above described increased competition for water resources

under drought, and with the bulk density of the B horizon (Fig. 4.7b). The increasing climate

sensitivity with increasing bulk density can be explained, because Norway spruce is known to

preferably root humus-rich soil horizons. High skeleton contents and clay-rich B horizons as

present in the Wüstebach catchment hamper the development of the deeper rooting system,

which is particularly important to compensate water shortage under drought (Puhe, 2003).

The cluster internal SN precipitation signals were significantly correlated to soil NO3- (positive

correlation, Fig. 4.7c) and P2O5 (negative correlation, Fig. 4.7d). Furthermore, increasing sen-

sitivities to monthly/seasonal precipitation sums can be observed with increasing bulk densities

(Fig. 4.6e), decreasing soil depth (Fig. 4.7f) and ongoing soil acidification (Fig. 4.7g).
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4.3 Results and discussion

Figure 4.6: Cluster chronologies (a) and respective correlation between RWI values and
monthly/seasonal temperatures and precipitation sums (b). Black horizontal lines represent the 95%

significance level.

We found a noteworthy negative correlation between soil depth and drought sensitivity, which

is reasonable as total soil water storage increases with increasing soil depth. This finding is

also in correspondence to other studies (e.g., Tromp-van Meerveld and McDonnell (2006)), who

explained patterns in forest basal area with spatial variations in soil depth.

The negative effect of soil acidification on root growth and thus on the potential water uptake

of Norway spruce has been reviewed by Puhe (2003) and explains the negative correlation

between soil pF and SN precipitation signal.

Apart from the mean soil water supply, we did not find significant differences in the microsite

characteristics among clusters. Therefore, we attribute the observed cluster-internal dependen-

cies of climate-growth relations from microsite characteristics to the underlying cluster moisture

regimes.
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4.4 Conclusion: soil water supply as a dominating growth factor across scales

4.4 Conclusion: soil water supply as a dominating growth factor

across scales

In this study, we explored the growth response of Norway spruce along a small-scale gradient

of soil water supply. We used different levels of data aggregation to identify the relevance of

the soil water regime and other microsite characteristics on the climate-growth relations in the

Wüstebach catchment. We found significant impacts of soil water supply across all levels of data

aggregation.

On the regional scale (WÜ chronology), the mean seasonal simulated root-zone pF showed

similar (SONp, CALp) or slightly weaker (JJAp, VEGp) correlations with tree growth than

the mean seasonal precipitation sums. However, on the monthly scale, growth variability was

better explained by soil water supply than by monthly precipitation sums (Fig. 4.1b). This

emphasizes the function of the soil as a buffer of precipitation and is in line with other studies

comparing the growth response of trees to soil related wetness indices and to precipitation sums

alone (Scharnweber et al., 2011; van der Maaten-Theunissen et al., 2013).

Across all 48 microsites (SN chronologies), the temperature-growth response was directly

(simulated root-zone pF) and indirectly (planting density) related to local soil water supply.

Cluster-internally, correlations between simulated root-zone pF and climate growth response

were not observed. However, we identified the local soil water supply to be the most dominating

factor in the formation of the growth clusters. Hence, cluster-internal feedbacks between SN

climate signal strength and microsite characteristics already represent a second level of signal

modification. Significant correlations of cluster-internal SN climate-signals were found for plant-

ing density, soil depth, and bulk density and hence for site characteristics that indirectly modify

the availability of soil water for trees (Fig. 4.7).
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5 Synthesis

This dissertation was set up to analyze feedbacks in the soil-vegetation-atmosphere system of

the Wüstebach catchment in the Eifel National Park in western Germany. Being exposed to

rising temperatures and a precipitation shift from summer to winter (Zacharias et al., 2011), the

region is highly susceptible to climate change (Simmer et al., 2015).

Respective changes in the water cycle are likely to drive present plant species towards their

physiological limits (Bréda et al., 2006; Thompson et al., 2009). This particularly applies for

the Wüstebach catchment, where the dominating species is Norway spruce (Picea abies [L.] H.

Karst.), a tree species, which is known to be particularly vulnerable to drought (Boden et al.,

2014; Bouriaud et al., 2005; Neuwirth, 2010; Zang et al., 2012, 2014).

To improve the understanding of climate change impacts on ecosystem processes and fluxes,

this work aimed at...

...a better understanding and quantification of species specific transpiration lim-

itations under consideration of the soil conditions: An alternative water stress factor

was derived from sap flow data and used to parameterize the Feddes water stress model (Feddes

et al., 1978) for Norway spruce. The newly parameterized Feddes function was implemented in

site specific water balance simulations (chapter 3; Rabbel et al. (2018a));

. . . a better understanding of the role of soil conditions for the climate growth re-

sponse of trees: The Feddes parameters developed in chapter 3 were implemented in long-term

water balance simulations. The resulting information on long-term spatiotemporal variations of

soil water supply were set into context with tree ring data from 48 microsites (chapter 4; Rabbel

et al. (2018b)).

The selection of the sap flow data processing procedure for chapter 3 was based on a compar-

ative study of different data processing approaches (cf. chapter 2; Rabbel et al. (2016)). With

that, the research presented in chapter 2 was a prerequisite for the subsequent investigations

and aimed at a more reliable quantification of tree water use.

Results and conclusions of chapter 2-4 are summarized below. Also, limitations of the studies

and consequential future perspectives are discussed.
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Chapter 2: Sap flow data processing

How does the parameterization of the Granier formula affect absolute sap flow

density estimates on sub-daily, daily and (intra-) seasonal scales and which param-

eterization approach yields the most reliable results?

The parameterization of the Granier formula strongly affects absolute sap flow density estimates.

The most critical parameter to determine is ∆Tmax, which is the maximum temperature gradient

between the heated probe and the reference probe below and represents a state of zero sap flux.

Such zero flow conditions were originally assumed to occur every night (Granier, 1985, 1987).

However, it has been proven that sap flow may continue throughout the night as well (Zeppel

et al., 2013; Phillips et al., 2010; Daley and Phillips, 2006).

To improve nocturnal sap flow detection, researchers have developed empirical and physical

approaches to determining ∆Tmax. All approaches are based on the assumption that zero

flow is related to erratically occurring ambient conditions. Empirical approaches presume the

recurrence of zero flow within a given time period, during which ∆Tmax is determined, while

physically based approaches define ∆Tmax when accompanying environmental measures suggest

that presumed zero flow conditions have been met.

On the sub-daily scale, significant variations in sap flow density were observed between most

analyzed ∆Tmax determination approaches. During the day, variations among the approaches

were generally higher than during the night. On the daily scale, empirical ∆Tmax approaches

yielded 9.8 to 31.5% higher sap flow densities than physically-based. Also, the data plau-

sibility in terms of climate feedbacks was lower for empirically based approaches than for the

physically-based. On the (intra-) seasonal scale, sap flow densities derived from empirical ∆Tmax

approaches exceeded those from physically-based by 10.5 to 57.8%.

In conclusion, the choice of the data processing may become a significant source of uncer-

tainty in Granier-based sap flow estimates. Most reliable sap flow densities were derived from a

physically-based parameterization of the Granier formular. The so-called Oishi baseliner (Oishi

et al., 2008, 2016) defines a baseline upon ∆Tmax values that were observed on days with par-

ticularly low vapor pressure deficit. In humid environments, as prevailing in the Wüstebach

catchment, the classic daily ∆Tmax determination also yielded reasonable results.

However, it has been shown that the uncertainty of Granier-based sap flow density estimates

varies not only with the data processing approach, but also with the species the technique is

applied to (Sun et al., 2012; Steppe et al., 2010). To improve the understanding of the natural

and species-specific ∆Tmax variability and consequences for Granier-based sap flow estimates,

comparative studies including different sites and species, longer study periods, and a bigger

sample size should be targeted in future studies.

Shortly after publication of the manuscript (Rabbel et al., 2016), this concern was indeed

adressed by other researchers of the community. Peters et al. (2018) quantified uncertainties in

Granier-based sap flux densities of two conifer species (Larix decidua Mill. and Picea abies (L.)

Karst) caused by different ∆Tmax determination approaches, dampening and sensor calibration.

The study included data of 131 individual trees from 18 sites with climatic conditions ranging

72



from 1.4 to 19.8°C mean annual temperature and 428–1452 mm mean annual precipitation and

confirmed the potential of a physically-based ∆Tmax determination towards more reliable sap

flow density estimates in conifers.

Respective investigations on deciduous trees could further improve our understanding of un-

certainties in Granier-based sap flow measurements. However, the recent progress on the devel-

opment of free software tools for physically-based Granier-type sap flow data processing (Oishi

et al., 2016; Ward et al., 2017) is already an important step towards "more harmonized, trans-

parent and reproducible sap flow data" (Peters et al., 2018).

Chapter 3: Water balance simulations

Does the implementation of sap flow data help to improve forest water balance sim-

ulations?

The implementation of sap flow data indeed improved the water balance simulations presented

in chapter 3. However, first of all, the study confirmed the potential of sap flow measurements

for the determination of water stress in trees. By combining soil hydrological simulations with

a water stress factor derived from sap flow data of two DHC-stations with contrasting soil

moisture regimes, the Feddes water stress model was parameterized for Norway spruce. The

onset of drought stress was observed at a root-zone pressure head of -4100 cm water column

(-402 kPa). With that, the trees showed a higher drought resistance than previously assumed.

Maximum drought stress was determined for a root zone pressure head of -15,000 cm water

column (-1471 kPa). This values is commonly accepted as a very general permanent wilting

point (Kirkham, 2014); aeration stress was not observed.

Implementing the newly parametrized Feddes function in the soil hydrological model HYDRUS-

1D improved the water balance simulations for a plot with temporarily limited soil water supply.

Considering soil moisture patterns and species specific critical limits of soil water supply in the

model setup can thus improve the simulation of transpiration fluxes on the catchment scale.

Probably, additional sap flow stations and a bigger sample size per plot would have provided a

more detailed view on the stress conditions on site. Nevertheless, an extension of the measuring

network is also a question of funds and logistics, and the simple sampling design provided

a cost-efficient opportunity to gain valuable insights into the water stress of Norway spruce.

Since no common alternative is available to quantify the water stress response of forest trees,

the parameterization of the Feddes function on the basis of sap flow data and the resulting

improvement of the forest water balance simulations is a good success.

In comparison to classic water stress factors, where actual evpotranspiration is simply divided

by potential evapotranspiration (Blum, 2011), the sap flow based water stress concept even

holds one considerable advantage: The reduction of transpiration due to stomata closing under

atmospheric stress is not considered as soil water stress. This is particularly valuable for the

determination of critical soil water limits for heat sensitive species, as for example Norway

spruce. These close stomata on many days of the growing season to avoid disproportionate

water loss due elevated vapour pressure deficits (Zweifel et al., 2002). Attributing this kind of
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transpiration reduction to soil water shortage would be misleading and yield unrealistically high

stress levels already at low levels of soil water depletion.

Summarizing the above, sap flow data can be used to quantify the water stress of trees.

Implementing this in models is a promising way towards more realistic forest water balance sim-

ulations. These are needed to assess the role of forests in regional and transregional water cycles

and to reduce the uncertainty in the prediction of forest traits under climate change (Ammer

et al., 2018; Keenan, 2015; Thompson et al., 2009; Bréda et al., 2006). However, there is still

a lack of studies determining soil water stress of forest trees. Therefore, more research on the

species-specific water stress response of trees seems an important future perspective.

Chapter 4: Climate-growth response

How important are small-scale heterogeneities in soil water supply for the growth

responsiveness of trees?

Small-scale heterogeneities in soil water supply significantly affect the growth responsiveness of

trees. As shown in chapter 4, the local soil water regime and other microsite characteristics,

which indirectly modify the water availability for trees, are dominating growth factors across

different levels of data aggregation.

On the regional scale, inter-annual growth variations of Norway spruce were better explained

by soil water supply than by monthly precipitation sums. Also the formation of growth clusters

in the Wüstebach catchment mainly followed spatial patterns of soil water supply. While the

driest cluster showed the strongest climate-growth reaction, the climate-growth response of the

wettest cluster was almost completely insignificant. Across all investigated microsites within the

test-site, the climate-growth response was directly (simulated soil suction of the root-zone) and

indirectly (planting density) related to local soil water supply.

Hence, small-scale information on site conditions, particularly on soil water supply, should be

considered in investigations of species specific growth limitations.

With the SoilNet at hand, the setting in the Wüstebach test-site provided ideal conditions

to analyse the role of small-scale variations in soil water supply for the growth responsiveness

of trees. Nevertheless, the synthetic character of the test-site, which is an even-aged plantation

without considerable herb and shrub layer, has some drawbacks. It is well known that species

diversity and stand structure have huge effects on the stress resilience and stress responsiveness

of trees and forests (Thompson et al., 2009). These effects remained completely unconsidered

in this study. To evaluate the transferability of the results, it would be interesting to conduct

similar investigations in a mixed or near-natural forest system.

Also, it would be interesting to link the observed long-term feedbacks between tree growth and

soil conditions with intra-annual growth dynamics. To this end, existing dendrometer data and

wood anatomical features could be combined and set into context with intra-seasonal dynamics

of soil water supply. Unfortunately, it was well beyond the scope of this dissertation to put the

idea into practice. Nevertheless, it could be worth implementing it in future research projects.
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This dissertation aimed at an improved uncertainty assessment for tree based transpiration

estimates and at a better understanding of the species specific stress response of Norway spruce.

Special emphasis was put on the response of transpiration and growth to climate forcings and

soil water supply.

Summarizing the above, I think that these objectives were achieved. My comparative study

on sap flow data processing approaches already found its way to the community and provided

a hook for a comprehensive large-scale investigation of uncertainties in sap flow measurements.

To me this is a great success. Also, I gained detailed insights into the stress response of Norway

spruce. I was able to quantify species-specific transpiration limitations and found strong feed-

backs between the climate-growth response of Norway spruce and small-scale variations in the

soil water supply. Of course, all results are closely linked to the special setting of the Wüste-

bach test-site. The transferability to other sites and settings still needs to be proved. However,

besides the Norway spruce related details, I contributed new methodological approaches, from

which I hope that one or another will be recognized in future investigations.
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