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Manuel und meinen Eltern



Abstract

In this work, I investigate the motional control and the transport of single neu-
tral atoms trapped in an optical conveyor belt. The main goal is to prepare the
atoms in the vibrational ground state of the trapping potential with high effi-
ciency and keep the atoms in this state after fast non-adiabatic transport. In this
group, the conveyor belt is used in two systems: (i) In an atom-cavity system,
the three-dimensional ground state is prepared by means of carrier-free Raman
sideband cooling for the first time. (ii) I use one-dimensional microwave sideband
cooling in a state-dependent optical lattice and analyze with a new temperature
model the influence of the anharmonic shape of the trapping potential. In the
next step, I present a numerical simulation of atom transport. Optimal quantum
control theory is used to find transport sequences for different durations without
heating atoms out of the ground state. The measurements with these new se-
quences demonstrate that atoms can be transported by a factor two faster, with
higher fidelity and robustness against experimental imperfections. Additionally, I
analyze the dynamics of atom transport for sequences of multiple transport steps,
which are required for quantum walk experiments. A proof-of-principle measure-
ment demonstrates open-loop live feedback optimization of transport sequences
with the experiment. This technique can further compensate experimental im-
perfections that are not taken into account in the numerical calculation. In the
last part, I examine the fundamental limit of fast atom transport, the so-called
quantum speed limit. It is defined as the minimum time that a quantum state
requires to evolve into an orthogonal one. I investigate the dependencies of this
boundary on different trap depths and the finite radial temperature.
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Chapter 1

Introduction

The simulation of quantum systems on conventional computer often fails, since
the complexity scales exponentially with the dimension of the Hilbert space [1].
To overcome this, Feynman proposed to operate a quantum system instead that
intrinsically follows the laws of quantum mechanics [2]. The field of quantum sim-
ulations explores quantum effects of materials of fundamental or technical interest,
such as solid-state topological insulators [3], by investigating model systems, such
as cold atoms in optical lattices [4]. In these systems a mathematically equivalent
Hamiltonian can be engineered, but with much better controllability and mea-
surability of all parameters. Since there is still no universal quantum simulator,
various quantum systems are proposed to investigate different aspects and regimes.
A commonly used platform is the field of quantum optics.

Photons offer the unique property of being mobile over free space or optical
waveguides, and low decoherences due to their weak interactions with the envi-
ronment. They can be controlled by an uncomplicated architecture through the
use of well-developed components at room temperature. Therefore, they are well
suited to transport quantum information and interconnect different platforms [5].
Coupled to a form a matter, a quantum simulator can be built. The quantum
particles in these simulators are represented by neutral [6] or charged atoms [7]
in traps and cavity systems, circuit excitations in superconducting circuits [8],
Josephson junctions [9] on cavity optomechanical systems [10], nitrogen-vacancy
centers in diamonds [11], or semiconductor quantum dots [12]. In order to study
the interaction between particles, they have to be well isolated from the environ-
ment. In case of single atoms, they are placed in ultra-high vacuum with typical
pressures down to 10−11 mbar. The interactions can be tuned by the coupling
strength with photon fields. In contrast, the nature of nanofabricated systems,
such as superconducting circuits allows a high flexibility of interactions strengths
with lithographic techniques. The complete wavefunction of a few-body system
can be determined. In order to describe the dynamics of a many-body systems,
one typically analyzes certain physical properties like densities, magnetization per
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lattice site or few-body correlations instead [13]. In general, a quantum simulator
should be able to prepare a known quantum state, to engineer a series of inter-
actions with external fields or between constituents with adjustable values and to
provide a reproducible detection scheme.

Ground state cooling of single neutral atoms in a lattice

Unlike ion traps, which use the strong Coulomb interaction with an electromagnetic
field [14, 15], the confinement of neutral atoms in space is controlled by much
weaker dipole interactions. In the last decades, three main types of trapping
techniques have been developed for neutral atoms: The radiation-pressure traps
utilize the effect of strong photon scattering of near-resonant light [16, 17]. The
strong dissipation allows the cooling and accumulation of atoms from a thermal
gas. These traps are well suited to initially collect cold atoms. However, in order
to isolate single atoms and to manipulate their internal state, typically magnetic
[18] and optical dipole [19] traps are used, which do not continuously scatter
photons and thus do not decohere the internal and oscillatory states of the atoms.
These traps are based on the interaction between the magnetic or electric dipole
moment of the atom and an inhomogeneous magnetic or electric field. For example,
magnetic traps are used for evaporative cooling [20] of atomic clouds towards
Bose-Einstein condensation [21]. The optical dipole trap offers a mostly state-
independent trapping mechanism and leaves the internal dynamics of the atom
almost undisturbed [22].

The vibrational ground state marks the quantum-mechanically lowest energy
state of a tightly bound atom. As part of the preparation of a well-defined ini-
tial quantum states, I have investigated two different methods for cooling neutral
atoms to the oscillatory ground state of optical potentials: Microwave and Ra-
man sideband cooling. Raman sideband cooling is much broader applicable, and I
demonstrate three-dimensional ground state cooling in a high-finesse optical cav-
ity system. In case a blue-detuned dipole trap is used, the cooling efficiency can
be increased by a carrier-free sideband cooling technique. Microwave sideband
cooling is the simpler and more robust method, but it requires a state-dependent
displacement of the trapping potential. I use a one-dimensional state-dependent
optical lattice and analyze with a new model the influence of the anharmonic shape
of the trapping potential.

Optimal control of atom transport

The number of coherent quantum operations in our systems are limited by the
coherence time divided by the amount of time each operation lasts. There are two
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ways to increase this number: First, the coherence time can be improved by reduc-
ing noise sources. In this work, I demonstrate the second approach of reducing the
time of an operation down to the fundamental limit through optimal control the-
ory. In case of quantum walk experiments with atoms in a state-dependent lattice,
the coherent operations are coin and shift operations. The coin operation creates
a superposition of the internal states of the cesium atoms. The shift operation is
the coherent, state-dependent transport and thus a delocalization of different parts
of the atomic wavefunction. In order to observe the interference of the spreading
wave packet in position space, it is necessary, that no vibrational excitations are
introduced by the quantum transport. In the past, we used a simple non-adiabatic
linear transport scheme [23]. A sudden acceleration at the beginning excites the
atom into a coherent state. The atom is relaxed into the initial state at the end
of the transport, if the transport time is chosen an integer multiple of the atom
oscillation period in transport direction. With precise knowledge of the system
parameters and dynamics, an advanced transport method can be developed. To-
gether with the high controllability of the system [24] we can use optimal control
theory to generate more complex transport sequences with significantly higher
transport fidelities and shorter transport durations. I present two measurement
techniques to determine the ground state population before and after transport,
which defines the transport fidelity. Furthermore, I characterize the robustness of
the new transport ramps and verify the dependency on the trapping potential and
the spin state. Finally, I investigate the fundamental minimum time for the shift
operation, which is the so-called quantum speed limit.
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Chapter 2

Single atoms in a dipole trap

Laser cooling and positional control of atoms is an essential requirement for ex-
periments studying isolated neutral atoms in an optical dipole trap on a time
scale of seconds. Since the main goal of this work is the investigation of isolated
neutral atoms in optical lattices, a fundamental understanding of those crucial
components is necessary. Preceding experiments on cooling and positional con-
trol of atoms have laid a solid basis for my work. The necessary condition for
the experiments is reached by the commonly used magneto-optical trap (MOT)
in combination with the conveyor belt dipole trap, a technique pioneered in this
group [25].

2.1 Cooling atoms from a thermal background

gas

Cesium atoms

In my experiments, cesium atoms are used to study light-matter interaction. Sev-
eral advantages favor the choice of this atom for quantum optics: the availability of
laser diodes with the appropriate wavelength, a sufficient vapor pressure at room
temperature and a well accessible hyperfine splitting between two ground states
in the microwave regime [26], which is used in frequency standards.

In 1860 cesium was discovered by R. Bunsen and G. Kirchhoff. The name of
this alkali metal originates from the blue color during flame spectroscopy (latin:
caesius = bluish-gray) [27]. Already in 1897, P. Zeeman discovered the spectral
line splitting in alkali metals in the presence of a static magnetic field [28]. The
outermost of those Zeeman states of the hyperfine ground states are used for
the measurements in this work. The quantum number of the hyperfine states is
depicted with F and the quantum number of the corresponding Zeeman states
with mF . In Fig. 2.1 the states with a hyperfine splitting of 2π · 9.2 GHz [26]
used in the two experiments are sketched. Since the outermost Zeeman states of
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Figure 2.1: Level scheme of cesium: The fine structure shows the ground state
L = 0 (J = 1/2) and the first excited state L = 1 (J ′ = 1/2 and J ′ = 3/2).
In the hyperfine structure representation, the outermost Zeeman states form a
quasi two-level system with a hyperfine splitting ∆HFS of 2π · 9.2 GHz. For the
state-dependent lattice we use the states |↓〉 = |F = 3,mF = +3〉 and |↑〉 =
|F = 4,mF = +4〉. It is equally possible to use the |↓〉 = |F = 3,mF = −3〉 and
|↑〉 = |F = 4,mF = −4〉 states, which is applied in the atom-cavity experiment.
The choice of the Zeeman states decides, which polarization of the MOT and
pumping beams has to be used. The purple arrows indicate the closed cycling
transition with the state |F ′ = 5,mF = +5 or − 5〉 of the D2 line for atom trap-
ping and molasse cooling. The pumping beams (gray) for state preparation couple
all states |F = 3 or 4〉 → |F ′ = 4〉 (here exemplarily shown only for the outermost
states).

a hyperfine state have the same coupling efficiency, it is equally possible to choose
the left or right states. In particular, we use:

• for the state-dependent lattice the right states:
|↓〉 = |F = 3,mF = +3〉 and |↑〉 = |F = 4,mF = +4〉

• for the atom-cavity experiment the left states:
|↓〉 = |F = 3,mF = −3〉 and |↑〉 = |F = 4,mF = −4〉 .

These Zeeman sublevels are tunable with an external magnetic field. Following
the selection rules, the |↑〉-state forms a closed cycling transition with the excited
state |F ′ = 5,mF = +5〉 or |F ′ = 5,mF = −5〉, respectively, of the D2-line and
can consequently be treated as a quasi-two-level atomic system. The |↑〉-state is
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prepared with high efficiency of > 99% [29] with the help of a repumping beam on
the |F = 3〉 → |F ′ = 4〉 transition and an optical pumping beam on the |F = 4〉 →
|F ′ = 4〉 transition, both σ-polarized as shown in Fig. 2.1. The choice of the
Zeeman states decides, which polarization of the MOT beams, pumping beams
and further auxiliary fields has to be used. The |↓〉-state can be initialized with
a coherent state transfer on the hyperfine transition with an efficiency up to 98%
[30].

MOT

As a first cooling step, our experiments use the robust technique of a magneto-
optical trap (MOT) to cool cesium atoms from a thermal background gas. A
building block of the MOT is the molasse cooling as proposed by Hänsch and
Schawlow [16]. In each direction a pair of counter-propagating laser beams is
locked to the crossover signal |F = 4〉 → |F ′ = 3〉 × |F ′ = 5〉 by Doppler-free laser
polarization spectroscopy [31] and shifted with an acousto-optic modulator (AOM)
close to the |F = 4〉 → |F ′ = 5〉 transition as shown in Fig. 2.1. The laser beam
is red-detuned by a few multiples of the natural linewidth of the excited state
ΓD2 = 2π·5.2 MHz. Due to the Doppler shift, the scattering probability is strongest
for the beam counter-propagating the atoms’ movement. Since the photons are
scattered in arbitrary direction, the net momentum transfer of many scattering
events damps the atomic motion. For cesium atoms this technique is limited by
the Doppler temperature of TD = h̄ΓD2/(2kB) = 125µK, with the Boltzmann
constant kB. However, off-resonant scattering and polarization impurities of the
MOT beams can pump the atoms from |F = 4〉 → |F ′ = 4〉 → |F = 3〉 out of the
cooling cycle. In the presence of the repumping beam on the |F = 3〉 → |F ′ = 4〉
transition, the atoms are pumped back into the |↑〉-state.

The optical molasse can be extended to a magneto-optical trap by using cir-
cularly polarized molasse beams and a quadrupole field to obtain a position-
dependent Zeeman splitting [17]. The introduced force towards the zero field
position strongly confines the atoms to several tens of micrometers. The atom
loading time, which is the operating time of the MOT, of a few seconds is a trade
off between a high number of trapped atoms and the shortest time possible in
order to reduce the total measurement time. Additional polarization gradient
cooling [32] lowers the temperature below the Doppler cooling limit to around
TSD = 10 µK. After a desired number of atoms is trapped, the MOT is switched
off and the atoms are released with nearly 100% efficiency into the standing wave
potential of around kB · 400µK depth.
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2.2 Neutral atoms in a conveyor belt dipole trap

Standing wave conveyor belt

The atoms cooled down by the MOT are to be transfered into an optical conveyor
belt dipole trap. The idea of an isolating periodic crystal-like potential structure
was realized for neutral atoms by Anderson in the form of a non-dissipative op-
tical lattice [22]. This static dipole trap was further developed in this group to a
conveyor belt to transport atoms over macroscopic distances.

Two counter-propagating laser beams form a standing wave potential. The
frequency of the laser beams ωDT is detuned from the atomic resonance ω0. The
detuning ∆ = ωDT − ω0 reduces the scattering forces. They scale with 1/∆2 [33]
and subsequently are dominated by the dipole force, which scales with 1/∆. The
dipole force between the induced electric dipole moment d̂ of a neutral atom and
the electric field E of the optical lattice results in a spatially varying energy shift,
the so-called ac-Stark shift. The dipole potential UDT of the ground state |g〉 is
the sum of the contributions of all coupled excited states |ei〉

UDT(ρ, zDT) =
∑
i

| 〈g| d̂E |ei〉 |2

h̄∆
,

FDT(ρ, zDT) = −∇UDT(ρ, zDT) ,

(2.1)

with the dipole operator d̂ and cylindric coordinates ρ and zDT, where zDT cor-
responds to the beam axis. Depending on the detuning ∆ the atoms experience
an attractive or repulsive force FDT. It is necessary to operate at least one red-
detuned dipole trap (∆ < 0), in which the atoms are trapped in the intensity
maximum. Additional traps are most beneficial blue-detuned, since the atoms are
trapped in an intensity minimum, which reduces the heating by photon scattering.
In order to avoid interference between different dipole traps, they are decoupled
in frequency or polarization.

The electric field of two counter-propagating laser beams is given by the sum of
its components and the polarization unit vector ε:

E =
1

2
ε(E1ei(k1zDT−ω1t−ϕ) + E2ei(−k2zDT−ω2t)) e−ρ

2/w(zDT)2 , (2.2)

with the wavenumber kj = 2π
λj

, wavelength λj, the electric field amplitude Ej , the

frequency ωj and the Gaussian beam radius w(zDT). The index j refers to the
respective laser beam. In the static dipole trap the laser beams are not detuned
such that k = k1 = k2 and ωDT = ω1 = ω2. The relative phase between the
counter-propagating laser beams is depicted by ϕ. A sinusoidal lattice potential
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with the intensity I(t) = cε0E
2/2, with the electric constant ε0 and a damping

rate Γ is formed:

UDT(ρ, zDT) ≈ 3πc2

2ω3
0

Γ

∆
I(t)

= U cos2(kzDT − ϕ/2) e−2ρ2/w(zDT)2 .

(2.3)

To keep atoms as long as possible in the trap, the noise is reduced by an intensity
stabilization. In the harmonic approximation, the trapping frequency along the
beam direction depends only on the effective trap depth amplitude U and the mass
of the cesium atom mCs:

Ωtrap = 2π

√
2U

mCsλ2
DT

. (2.4)

In the experiments presented in the following, the trapping frequencies are in the
order of 2π (100 − 400) kHz. Along the radial direction ρ, the atoms are weaker
confined. The radial trapping frequency is given by:

Ωrad =

√
4U

mCsw(zDT)2
. (2.5)

For the dipole traps used in this work, the radial trapping frequency is two orders
of magnitude smaller than Ωtrap. The derived potential describes the trapping
behavior of the static standing-wave dipole trap.

In order to transport atoms with the lattice, either a frequency difference ∆ω1

or phase difference ϕ(t) between the two counter-propagating laser beams has to
be introduced. This way a moving standing wave is produced, which acts as a
well controllable conveyor belt for the atoms. The initial position of the atoms
in the trap is determined from a CCD camera image. Depending on the chosen
parameters of the laser beams, we can generate two special kinds of conveyor
belts: a state-dependent lattice is used in the corresponding experiment and a
state-independent conveyor belt is used in the atom-cavity experiment.
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Chapter 3

Cavity electrodynamics with
neutral atoms

Cavity electrodynamics describes the interaction between matter and photons in-
side a cavity. Optical cavity platforms realize a textbook-like situation to study
properties of light-atom interactions [34] or other quantum systems, such as quan-
tum dots [35], silicon-vacancy centers [36] or carbon nanotubes [37]. A single or
a few atoms are placed at rest between two highly reflective mirrors. The Purcell
effect can enhance or suppress radiative decay of the atom into the cavity mode.
The strong coupling regime, where the interaction dominates loss channels, allows
the study of fundamental phenomena in a cavity, such as the generation of single
photons [38] and quantum logic gates [39].

A deeper understanding of the single cavity system is necessary, to use it as
a building block for a quantum computing architecture. Cavity systems are well
suited as such a building block, since it is an atom-photon quantum interface.
A scalable quantum computing architecture could use individual atoms at rest
inside an optical cavity as quantum memories and single flying photons as an in-
terconnection [40–42]. A second potential application is quantum cryptography.
Long-distance quantum cryptography and networks promise high security and ef-
ficient algorithms. In order to prevent the loss of information that is carried by
photons in fibers, a quantum repeater formed by an optical cavity is proposed [43].

In my work, I extend an existing, well-studied cavity experiment with neutral
atoms, which I briefly introduce in this chapter. Details on this setup can be found
in earlier theses [44–47].

3.1 Atom-cavity experimental system

The experiment shown in Fig. 3.1 uses a red-detuned state-independent conveyor
belt to transport atoms from the position of a magneto-optical trap inside an
optical high-finesse cavity. The red-detuned trap is formed by a Nd:Yag laser with
a frequency of 1032 nm. It is so far detuned that the transport is independent of the
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Figure 3.1: Illustration of the atom-cavity experimental system: A single atom is
transported in a conveyor belt (red-detuned dipole trap) from the MOT into a
high-finesse optical cavity. Inside the cavity, the atom is tightly confined in all
three dimensions by two additional blue-detuned dipole traps. An atom in the
|↑〉-state strongly interacts with the intra-cavity field generated by a (σ+ + σ−)-
polarized probe beam. In the strong coupling regime, it suppresses the probe
transmission, which is detected with a single photon counting module (SPCM).
The non-destructive hyperfine state detection is based on mapping the |↓〉- or
|↑〉-state onto the high or low probe transmission without destroying the state.

two ground states |↑〉 and |↓〉. It allows controllable placement of the atom in the
center of the cavity mode with submicrometer precision [48]. Inside the resonator,
two additional blue-detuned dipole traps with a wavelength of 845.5 nm create a
three-dimensional lattice. It confines the atoms to a region of about 100 nm radius
in each lattice site. A summary of the trap parameters is given in Tab. 3.1.

The cavity in our laboratory consists of a pair of polished mirror substrates with
highly reflective coatings resulting in a finesse of 106. The distance between the
mirrors of 160µm is actively stabilized with a lock laser. The fundamental cavity
mode has a waist of 23µm and the maximum coupling strength describing the
atom-cavity interaction is g = 2π · 8 MHz. It is larger than the two loss channels:
the cavity field decay rate is κ = 2π · 0.4 MHz and the atomic dipole decay rate is
γ = 2π ·2.6 MHz. Thus the cavity system operates in the so-called strong coupling
regime. In this domain, a reversible transfer of quantum states is enabled between
atoms and photons in the cavity mode. Already the interaction of a single atom
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Setup Atom-cavity
setup

Direction x y z
Trap wavelength λDT 845.5 1032 845.5 nm
Detuning from D2 line ∆R +3 -60 +3 2π ·THz
Trapping frequency Ωtrap 114 360 180 2π · kHz
Lamb-Dicke parameter η 0.14 0.06 0.10
Trap depth U 74 1103 185 kB · µK
Waist wDT 48 33 23 µm
Powers PDT 18 2000 10 mW

Table 3.1: Summary of the trap properties in the atom-cavity system. In the cavity
experiment a three-dimensional spin-independent trap of one red dipole trap in y-
direction for transport and two static blue-detuned traps for strong confinement
are used.

with the cavity mode field changes significantly the system’s properties. As an
example, the cavity transmission of this system is sketched in Fig. 3.2 (a). Here
a numerical calculation shows that the transmission peak of an empty cavity is
shifted significantly in frequency, even with a single coupled atom.

3.2 Non-destructive state detection using an

optical cavity

To get information about conducted experiment, we detect the quantum state
of the atom inside the cavity. The detection of a quantum state should be fast,
with low atom losses and a high detection fidelity. In general, there are several
techniques that could be employed:

(i) The state-dependent fluorescence detection is based on different laser-induced
scattering rates of the qubit states [49, 50]. Typical fluorescence collection efficien-
cies of a few percent require a large number of scattering events and result in high
detection efficiencies of 99.99 % within 145µs [51]. The energy gained from the
process of photon recoil is a negligible heating effect for ions in such deep traps.
However, neutral atoms confined in optical dipole traps suffer from atom loss be-
fore recording a sufficient number of scattered photons. In order to keep the atoms
trapped, lower detection efficiencies and longer readout times must be accepted.
With the help of high numerical aperture lenses, readout efficiencies of 98.6 % in
1.5 ms [50] and 95 % in 300µs [49] were obtained.
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Figure 3.2: Modified cavity transmission in the strong-coupling regime: (a) In the
strong coupling regime a coupling-induced normal-mode splitting occurs already
for one intra-cavity atom in the weak excitation regime (numerical calculation with
our system parameters). (b) The measurement of the cavity transmission detected
by the SPCM shows, that we can distinguish between a coupled and empty cavity
with a detection fidelity of 98.5 %. The transmission is the same for an uncoupled
atom in the cavity or an empty cavity.

(ii) An alternative is the state-selective push-out followed by fluorescence imag-
ing with high detection efficiencies of > 99 % in 500 ms [52]. This destructive
method is not a good choice for our single atom experiments with atom loading
times of several seconds.

(iii) The cavity offers another more efficient and faster state detection technique
without atom loss and high fidelities up to 99.4 % in 85µs [53]. The main idea
is to map the internal state onto the cavity transmission signal while preserving
the internal state of the atom. Our system is designed such that the |↑〉-state is
strongly interacting while the |↓〉-state stays unaffected by the intra-cavity field.
The empty optical cavity is resonant to a weak probe laser beam with frequency ωp

and the |F = 4〉 → |F ′ = 5〉 transition of the atom. The absolute frequency of the
probe beam is stabilized to a cesium transition by polarization spectroscopy with
a cesium vapor cell [31] and forms the intra-cavity field as shown in Fig. 3.1. The
light behind the cavity is measured with a single photon counting module (SPCM,
Perkin Elmer SPCM-AQRH-13) and set to a count rate of Rbright = 25 kHz as
demonstrated in Fig. 3.2 (b). The probability of having zero or one photon in the
cavity mode is 98%. Due to selection rules, the |↓〉-state does not couple to the
cavity mode and the count rate is indistinguishable from an empty cavity. However,
the coupling of the |↑〉-state with the intra-cavity field dispersively shifts the cavity
resonance frequency by several cavity linewidths 2κ as depicted in Fig. 3.2 (a).
The atom-cavity system is shifted out of resonance and the probe laser is not
transmitted through the cavity. The SPCM count rate of the probe laser reduces
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to Rdark = 2 kHz. Since the distinguishability between one or more coupled atoms
to the cavity is very low in this regime, the measurements are triggered, when a
single atom is detected in the MOT by fluorescence counting with an avalanche
photodiode.

After each measurement, the presence of an atom inside the cavity is verified
for postselection. For that purpose, the σ−-polarized repumping beam keeps the
atom in the coupled |↑〉-state to distinguish between a coupled system and an
empty cavity through the probe transmission. Efficient control of the vibrational
degree of freedom of trapped neutral atoms is crucial to ensure long lifetimes in the
trap and stable position-dependent coupling to the cavity field mode. The atom-
cavity detuning is chosen to be ∆ac = ω0 − ωc = 20 MHz, which allows additional
sub-Doppler Sisyphus-like cavity cooling [54] with a temperature of TSD = 45µK.
The atoms are stored in the cavity for seconds. In the next chapter, I describe
in detail further cooling by means of carrier-free Raman sideband cooling into the
vibrational ground state of the trapping potential, which defines the lowest energy
state.
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Chapter 4

Three-dimensional Raman
ground state cooling inside a
cavity

Control over the vibrational degree of freedom is crucial for neutral atom experi-
ments to allow for optimal localization, reproducibility of indistinguishable states,
stable qubit manipulation and high atomic densities. The lowest temperatures of
trapped atoms are achieved by evaporative cooling to sub micro-Kelvin temper-
atures, which opens the rich field of Bose-Einstein condensation [55]. While this
technique is well suited for large atomic ensembles, single atom experiments re-
quire other methods with less atom losses. A widely used approach is the sideband
cooling method, which was first demonstrated with ions in the so-called resolved
sideband regime due to the macro-motion of the atom in the trap [56]. Strongly
confined atoms are laser or microwave cooled within milliseconds and brought into
their vibrational ground state.

Two main techniques have evolved in the recent decades: microwave and Ra-
man sideband cooling. (i) Microwave sideband cooling is the more robust cooling
method with less effort in maintenance, but it requires a spatial displacement
of the atomic state during the transition. This displacement has already been
demonstrated in experiments such as state-dependent lattices in a relative shift
of different lattices [57, 58] or nanofiber-trapped atoms with a Zeeman state de-
pendent displacement from the trap minimum by inhomogeneous magnetic fields
[59]. In our cavity experiment, the microwave field is not recommended because it
interferes with the sensitive cavity lock. The microwave radiation interacts with
electrical components, such as the shear-piezoelectric transducers, which stabilizes
the cavity length. (ii) Raman sideband cooling allows for higher coupling strengths
in the MHz regime. Furthermore, Raman beams can be more easily extended to
three dimensions and generalized to different ion or atom species compared to
microwave sideband cooling [60–62].

I demonstrate three-dimensional carrier-suppressed Raman ground state cooling
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as an expansion of the cavity experiment described in chapter 3. First, I present
the concept of Raman sideband cooling and the already existing realization of
the Raman laser system. In the second part, I describe the principle of two-
dimensional carrier-free Raman cooling. It is optimized for setups with restricted
optical access by using a minimal number of additional Raman lasers. A second
refinement of this technique is the use of the present blue-detuned dipole traps as
Raman beams, which suppresses the carrier transition and results in a five times
lower fundamental temperature limit [63]. In this work, I extend this scheme to
three dimensions with minimal additional resources.

4.1 Fundamentals of Raman sideband cooling

In the optical regime two laser beams stimulate the electric dipole transition of
the ground states |↑〉 and |↓〉 to the same excited state as shown in Fig. 4.1 (a).
The electric field of those so-called Raman beams ER couples to the electric dipole
moment d̂ of the atom [64] via an intermediate virtual state. The virtual state
is separated from the D2 line by a detuning ∆R. The detuning is much larger
than the atomic linewidth of the excited states and the Rabi frequencies ΩbDT

and ΩRaman of the single-photon transitions. The frequency difference between
the lasers is chosen according to the hyperfine splitting of the ground states. The
population in the excited state is negligible and can be mathematically elimi-
nated. The system is approximated to an effective two-level system with the bare
two-photon coupling strength Ω0 = ΩbDTΩRaman/(2∆R). During the transition,
a photon is scattered from one laser beam into the other Raman beam. This
two-photon method can drive an efficient population transfer between states even
though the single-photon electric dipole transition is forbidden. The strength of
this effective coupling between the ground states is characterized by the atomic
transition Hamiltonian ĤF,mF

:

ĤF,mF
= d̂ER. (4.1)

In order to conduct Raman spectroscopy, one Raman beam is additionally detuned
by the two-photon detuning δR. The basic transition with δR = 0 is called the
carrier transition.

The temperature of the atom in a sinusoidal lattice potential as defined in
eq. (2.3) is determined by the occupation of the vibrational states. In order to
determine the eigenenergies En and eigenstates |n〉, where n defines the vibrational
quantum number for each direction, the one-dimensional stationary Schrödinger
equation is solved

Ĥ |n〉 =

(
p̂2

2mCs

+ U cos2(kz ẑDT)

)
|n〉 = En |n〉 . (4.2)
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Figure 4.1: Raman sideband cooling: (a) The two qubit states, |↑〉 and |↓〉, are
coherently coupled by two far-detuned Raman beams ΩbDT and ΩRaman with a
two-photon detuning δR. (b) The principle of Raman sideband cooling is based
on the removal of vibrational quanta by momentum transfer ∆k in a two-photon
recoil process during the qubit state transfer. The atom is located in the intensity
minimum of the blue-detuned dipole trap, which leads to a suppression of the
carrier transition. However, the atomic motion in the potential gives rise for a
sideband coupling. (c) A Raman cooling cycle consists of a cooling sideband
transition from the |↑〉 to the |↓〉. A strong optical pumping beam transfers the
atom back without changing the vibrational state.

In Fig. 4.2 the result of a numerical simulation for our system is shown. A com-
parison of the eigenenergies and eigenstates between a sinusoidal and harmonic
trapping potential shows a good agreement for the first excited state. A detailed
description of the derivation of the so-called Wannier states in a periodic sinusoidal
lattice is given in appendix A.2.

The Franck-Condon principle allows the separation of the wavefunction into the
product state of a spin state |↑〉 and a vibrational state |n〉 [65]. Our qubit states
are describes by |↑, n〉 = |↑〉 ⊗ |n〉 and |↓, n′〉 = |↓〉 ⊗ |n′〉. The principle describes
that the electronic transition occurs in a negligible short time compared to the
period of the atomic vibration. The strength of the coupling Ωn,n′ between the
states |↑, n〉 and |↓, n′〉 is described in two terms:

h̄Ωn,n′ = 〈↓| ĤF,mF
|↑〉︸ ︷︷ ︸

h̄Ω0

〈n′| ĤFC |n〉
!

6= 0. (4.3)
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The first term describes the bare two-photon Rabi frequency Ω0 and the second
term gives the contribution of the coupling of the vibrational states |n〉 and |n′〉
by the Franck-Condon Hamiltonian ĤFC.

The simplest case is the carrier transition, which couples the same vibrational
states. However, the desired sideband cooling occurs on the transitions described
by the two orthogonal states |n〉 and |n− 1〉. Two conditions must be fulfilled in
the system: First, we need the ability to address vibrational states individually.
This means that the sidebands are resolved. This is given in the so-called Lamb-
Dicke regime. The second requirement is the appropriate design of a coupling of
two orthogonal states. This is done in form of the Franck-Condon Hamiltonian
such that the second term in eq. (4.3) is not zero.

Lamb-Dicke regime

The Lamb-Dicke regime is reached, if the extension of the atomic wave packet x0

due to the strong confinement is significantly smaller than the laser wavelength
λDT of the lattice. The recoil energy Erec due to scattering of a lattice photon
must be smaller than energy spacing Evib between the vibrational levels:

η =
2π

λDT

x0 =

√
Erec

Evib

� 1 (4.4)

is called the Lamb-Dicke parameter [66]. However, since the sideband coupling
strength scales with

√
nη the parameter should not be too small for efficient cool-

ing.

Sideband coupling with Raman beams

In the case of Raman sideband coupling, the atom receives a momentum kick
during the net momentum transfer ∆k = kbDT − kRaman with the wave vectors
of the respective Raman beams. The momentum transfer effectively breaks the
orthogonality of the vibrational states. This allows the coupling of sidebands due
to a residual overlap of the wave functions. The Franck-Condon Hamiltonian is
described by the shape of the electric field operator, which depends on the net
momentum transfer ∆k and the position operator of the atomic center-of-mass
motion r̂. The coupling is maximal for counter-propagating running wave Raman
beams due to the net momentum of two photon recoil energies. Since we want
to cool all directions with minimal technical effort, we choose orthogonal Raman
beams along the dipole traps to simultaneously cool different directions with a net
momentum of one photon recoil in each direction.
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Figure 4.2: Vibrational states in a sinusoidal potential: (a) shows a numeric simu-
lation of the probability densities of the vibrational eigenstates |n〉 with eigenener-
gies En in a red-detuned sinusoidal dipole trap with a potential depth of kB ·25µK.
(b) shows a comparison of the eigenenergies and eigenstates in an harmonic and
sinusoidal potential. They agree well close to the ground state, but for high exci-
tations the approximation is not valid anymore.

Boozer proposed a Raman coupling generated by a blue-detuned standing wave
and a running-wave Raman beam [67]. We use the existing intra-cavity standing
wave as one Raman beam to circumvent optical access limitations. The scheme is
shown in Fig. 4.3. Even though the atoms are confined in the intensity minimum
of the trap, the residual motion of the atoms gives rise to a coupling to the light
field that is used for sideband cooling. The electric field of the Raman standing
wave inside the cavity resonator along the z-direction is well described by a sine
due to the high reflectivity of R ≈ 1. The field of the running wave Raman beam
along the y-direction is represented in the conventional complex exponential form.
The Franck-Condon factor Ĥ∆k

FC is then defined by the Raman photon momentum
transfer ∆kz and ∆ky along the cooling axes x and y:

Ĥ∆k
FC = sin(∆kxx̂)ei∆ky ŷ

≈ (∆kxx̂)(1̂y + i∆kyŷ)

with x̂/ŷ =

√
h̄

2mCsΩtrap,x/y

(b̂†x/y + b̂x/y) .

(4.5)

The expression is approximated by the Taylor expansion and the position operators
are rewritten in harmonic approximation by the raising and lowering operators
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Figure 4.3: Setup for carrier-free Raman sideband cooling: A single cesium atom
is trapped in a three-dimensional lattice potential. The behavior in x- and z-
directions is qualitatively the same. Consequently, for the sake of this scheme,
they are shown together in the same image plane. The red-detuned conveyor belt
overlaps with two running-wave Raman beams along the quantization axis. The
two static blue-detuned dipole traps along the x- and z-direction have a slight
frequency difference of 2π · 160 MHz to prevent interference. A blue-detuned trap
and a running-wave Raman beam form a set of Raman beams to couple the |↑〉-
and |↓〉-state transition. The carrier transition is suppressed, since the atom is
trapped in the zero-crossing of the blue-detuned dipole trap.

along the x, y-direction, which fulfill
√
n |n+ 1〉 = b̂† |n〉 and

√
n− 1 |n− 1〉 =

b̂ |n〉:

Ĥ∆k
FC ≈ ηx(b̂

†
x + b̂x) + ηxηyi(b̂

†
xb̂
†
y + b̂†xb̂y + b̂xb̂

†
y + b̂xb̂y) . (4.6)

The carrier transition is suppressed, since all terms include a raising or lowering of
the vibrational state. The first two terms b̂†x, b̂y describe heating and cooling along
the blue-detuned dipole trap axis only. The other four represent a coupled cooling
and heating along both directions simultaneously. For a perfect sinusoidal standing
wave without an imbalance of the intensity of the two counter-propagating beams
we expect six first order sideband transitions. However, if such an imbalance
occurs, we can account for this by the additional coupling of a weak running
wave along the sinusoidal potential, which drives two photon-transitions with the
running-wave Raman beam:

Ĥ∆k
FC = ei∆kxx̂ei∆ky ŷ

≈ 1̂x1̂y + ηx(b̂
†
x + b̂x) + ηy(b̂

†
y + b̂y) + ηxηy i(b̂

†
xb̂
†
y + b̂†xb̂y + b̂xb̂

†
y + b̂xb̂y)

(4.7)

In a sideband spectrum, we expect the nine peaks which includes a carrier transi-
tion 1̂x1̂y.
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Raman sideband cooling cycle

The main concept of sideband cooling relies on removing a vibrational quanta in
each successive cooling cycle until the ground state is populated and decoupled
from the resonant laser excitation. A cooling cycle shown in Fig. 4.1 (c) consists
of two processes: A coherent coupling at the cooling transition is accomplished
between the two orthogonal states |↑, n〉 and |↓, n− 1〉. The second process is
an incoherent optical pumping on the |F = 3〉 → |F ′ = 4〉 transition, which irre-
versibly recycles the atoms from the |↓, n− 1〉 back to the |↑, n− 1〉. The |↑, 0〉
ground state satisfies the definition of a dark state. The cooling cycle is most
efficient when both coupling strengths are of the same order of magnitude. For
simplicity, both transitions are driven continuously in parallel in our experiment.
The efficiency can be increased by alternately applying a π-pulse on the cooling
transition and a pumping pulse. In the following, I describe the Raman laser
system, which allows cooling in three dimensions.

4.2 Raman laser system

Laser sources

High Raman coupling strength in the MHz regime can be achieved, since powerful
laser diodes are available. In the cavity experiment, the Raman beams are sup-
plied from two interference-filter stabilized external cavity diode lasers as shown in
Fig. 4.4. They provide an optical output power of up to 150 mW. The wavelength
of the lock laser is actively locked to the wavelength of the probe beam to allow
simultaneously coupling of the beams into the cavity. The lock laser wavelength
of 845.5 nm corresponds to a detuning of ∆R = 2π · 3 THz from the cesium D2
line. The first laser is used for both π-polarized blue-detuned dipole traps along x-
and z-direction. The second laser supplies two σ−-polarized running-wave Raman
beams along the quantization axis y.

The blue-detuned Raman dipole traps

The already existing intra-cavity standing wave along the z-direction has a trap
depth of kB · 180µK. In this work, we expand the setup by a new blue-detuned
dipole trap along the third direction x with a trap depth of kB · 70µK respectively.
The implementation is challenging due to limited optical access of the atom-cavity
system. To avoid an additional Raman lock, we want to use the same laser fre-
quency as the existing blue-detuned dipole trap. However, a slight constant shift
in frequency with an AOM can circumvent interference between the different traps.
In the case of the new blue-detuned dipole trap, it is not possible to split light from
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Figure 4.4: Raman locking system: The Raman laser is locked in phase to a lock
laser. The lock laser supplies the intracavity dipole trap along z- and the blue-
detuned dipole trap along x-direction. The lock laser power is enhanced by an
injection locked laser, which is feeding a tapered amplifier. A relative frequency
difference of 2∆ = 2π · 160 MHz from an AOM double pass decouples the traps to
avoid interference. The Raman laser is split into an undisturbed and a frequency
shifted beam. They are recombined and send along the y-direction. The intracav-
ity dipole trap and the frequency shifted running wave Raman beam cool the y-
and z-direction simultaneously, while the other pair cool the x-direction.

the same laser source due to the three orders of magnitude higher required power.
The power is amplified using the laser injection locking technique [68]. Injection
locking is a phenomena of two oscillators with similar frequency. Within a certain
frequency range, which is called the capture range the oscillators synchronize with
each other. The chosen oscillator standard, on which the second oscillator is locked
to, is called the master oscillator.

In this work, we extended the experiment by locking two lasers with this method.
A fraction of the lock laser beam is injected into a free-running identical laser diode.
An isolator prevents a back coupling of light from the injection laser diode into
the lock laser. Within the capture range of the lock, the injection laser follows the
frequency of the master laser and has the same narrow linewidth of a few kHz. An
active lock is not required. It is sufficient to tune the free-running frequency of the
injection laser by the temperature stabilization into the capture range of the lock.
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This new blue-detuned dipole trap shows a slight imbalance between incoming
and back-reflected beam due to lossy optical components, such as the vacuum
glass cell, lenses and filtering optics. As a consequence, the atoms trapped in the
intensity minima of the standing wave experience a small offset field of a running
wave.

The running-wave Raman beams

In our experiment, a precise optical phase lock stabilizes the relative frequency
difference of the two laser frequencies to the hyperfine splitting of the ground states
plus a controllable two-photon detuning δR [69]. One blue-detuned dipole trap and
one running-wave beam defines one set of Raman beams. The first set cools the
yz-direction and the second set is used for cooling along the x-direction. In order to
avoid interference between different Raman beams, they have different frequencies.
To achieve that, one set of Raman beams is guided spatially separated through
the same AOM double pass applying a frequency shift of 2∆ = 2π · 160 MHz. The
running-wave Raman beams are intensity stabilized to a power of 100µW at the
cavity position to reduce fluctuations of the Raman coupling strength.

4.3 Three-dimensional carrier-free Raman

sideband cooling

Two-dimensional temperature model

The temperature of a trapped atomic ensemble can be measured by a variety of
techniques, such as the time-of-flight method [70] or the Doppler broadening of
Raman transitions between the ground states [71]. In this work, the temperature
in two dimensions y and z is quantified by a resolved Raman sideband spectrum.
Precise knowledge about the parameters of the trapping potential is essential for
the positional and temperature control of the atoms in an optical lattice. In most
previous works, a simple Gaussian curve fit of the resonance peaks of a sideband
spectrum is chosen to determine the trapping frequency and the temperature.
However, this is an approximation and only valid for harmonic potentials. There-
fore, I derive a new model, which considers the anharmonicity of a sinusoidal
potential. Furthermore, the model includes also the dynamics of Raman sideband
transitions described by the Franck-Condon Hamiltonian. It leads to the expected
suppression of the carrier transition for a Raman beam formed by a blue-detuned
dipole trap.

We can attribute a temperature T ∗x , T ∗y and T ∗z in each respective dimension. The
spectrum is an average over several hundreds of atoms and determines the mean
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temperature T ∗. If the atoms are in thermal equilibrium, the occupation of the
vibrational states pB(n, T ∗) is distributed according to a Boltzmann distribution.

pB(n, T ∗) =
e
− En

kBT∗∑∞
n=0 e

− En
kBT∗

≈ n̄n

(n̄+ 1)n+1
. (4.8)

The Boltzmann distribution is valid for both directions and thus is shown without
directional indices. By approximating the trap potential by an harmonic potential,
the distribution depends only on the mean vibrational occupation number n̄ [66].
This approximation is suitable for atoms close to the ground state.

In order to determine the temperature, we need to know the distribution pB(n, T ∗).
This is achieved with a two-dimensional Raman sideband spectroscopy in x, y-
and y, z-direction. The state under study is described by the eigenstates |nx〉
and |ny〉 in the ground state |↑〉 and the probabilities pB(nx, T

∗
x ) = |cnx|2 and

pB(ny, T
∗
y ) = |cny |2:

|ψ(0)〉 =
∞∑

nx=0

∞∑
ny=0

cnx |nx〉 ⊗ cny |ny〉 ⊗ |↑〉

=
∑
nx,ny

cnxcny |nx, ny, ↑〉 .

(4.9)

The sideband spectroscopy technique is based on the fact, that the coupling
strength of a Raman transition between ground states depends on the vibrational
state number n. By driving this state with coherent radiation on a transition, the
state under study is mapped onto the internal state |n′x〉⊗|n′y〉⊗|↓〉. The operation
with the Raman coupling strength Ωnx,n′x,ny ,n′y and a phase θ has the general form
of a Rabi oscillation:

|ψ(t)〉 =
∑

nx,n′x,ny ,n′y

cnxcny cos

(
Ωnx,n′x,ny ,n′y

2
t

)
|nx, ny, ↑〉

+ eiθcnxcny sin

(
Ωnx,n′x,ny ,n′y

2
t

)
|n′x, n′y, ↓〉 .

(4.10)

The dependency is used to map the vibrational state of the atoms onto the internal
state in the resolved sideband regime. The internal state can be read out with
standard techniques as a measure for the mapped state. The probability, that the

32



Three-dimensional Raman ground state cooling inside a cavity

state under study ends up in the |↓〉-state is given by

P↓(t) = | 〈ψ(t)|n′x, n′y, ↓〉 |2

=
∑

nx,n′x,ny ,n′y

|cnx|2 |cny |2 sin2

(
Ωnx,n′x,ny ,n′y

2
t

)

=
∑

nx,n′x,ny ,n′y

pB(nx, T
∗
x ) pB(ny, T

∗
y ) sin2

(
Ωnx,n′x,ny ,n′y

2
t

)
.

(4.11)

The coupling strength Ωnx,n′x,ny ,n′y follows from eq. (4.3) and eq. (4.5)

h̄Ωnx,n′x,ny ,n′y = 〈↓| ĤF,mF
|↑〉 · 〈n′x| sin(∆kxx̂) |nx〉 · 〈n′y| ei∆ky ŷ |ny〉

= h̄Ω0 ·FCnx,n′x ·FCny ,n′y .
(4.12)

The Franck-Condon factors FCnx,n′x and FCny ,n′y describe the overlap between the
corresponding eigenstates. They are determined numerically for a certain trap
depth Ux and Uy and the well-known frequency of the dipole trap beams, which
determines the momentum transfer ∆kx and ∆ky of one photon recoil. The eigen-
states as well as the atomic transition frequencies νnx,n′x and νny ,n′y are calculated
by solving the stationary Schrödinger equation from eq. (4.2). In eq. (4.12), we
assume a perfect sinusoidal standing wave without an imbalance of the intensity
of two counter-propagating beams. However, if such an imbalance occurs, we can
account for this by the additional coupling term:

h̄Ωnx,n′x,ny ,n′y = 〈↓| ĤF,mF
|↑〉 · 〈n′x| ei∆kxx̂ |nx〉 · 〈n′y| ei∆ky ŷ |ny〉

= h̄Ω0 ·FC ′nx,n′x
·FC ′ny ,n′y

.
(4.13)

The probability P↓(t) in eq. (4.11) describes the maximum transfer probability for
a resonant driving. For simplicity, I assume Gaussian shaped resonance peaks.
The measured spectrum is then determined by

S(ν) = A ·
∑

nx,n′x,ny ,n′y

P↓(t) · exp

(
−

(ν − νnx,n′x − νny ,n′y − ν0)2

2σ2

)
. (4.14)

The Gaussian widths depend on the driven transition. The sum of the Gaussian
curves result in an asymmetric profile of each sideband. In previous models only
symmetric sidebands are described. In case, no carrier transition is driven in both
directions, the Gaussian width results from a convolution of two Gaussian curves
with the widths σx and σy:

σ =


σz n′x = nx, n

′
y 6= ny,

σy n′x = nx,√
σ2
y + σ2

x otherwise .

(4.15)
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The free parameters of the spectrum fit are the bare Rabi frequency Ω0, two
Gaussian widths σx and σy, the trap depths Ux and Uy and the temperatures in
each direction x and y and a general frequency offset ν0 of the carrier transition
and the amplitude A.

The first blue and red sideband have proven to be very useful to determine
the distribution of the vibrational state occupation. In the following, I describe
how we measure the Raman sideband spectrum for the first order sidebands and
determine the temperature with this derived model.

Measurement of two-dimensional carrier-free Raman
ground state cooling

In order to determine the temperature distribution, we conduct a Raman sideband
spectrum in the atom-cavity system. First, a single atom inside the cavity is
prepared in the |↑〉-state. We are interested in the temperature distribution p(n, T )
of this state under study. After a Raman transfer pulse, we map the vibrational
state onto the |↓〉-state as described before. The population is detected with the
non-destructive state detection technique. For a sideband spectrum, the two-
photon detuning δR from the carrier transition is varied for the transfer pulse.
As mentioned before, the pulse is optimized for a maximum transfer probability
on the first sideband. The resulting spectrum with just cavity cooling is shown
in Fig. 4.5(a) for a detuning range of 1 MHz. The first observation is, that the
spectrum shows six resonance peaks with positions symmetric around the carrier
frequency. A fit of the two-dimensional temperature model to the experimental
data is shown as a red line. The constituting sidebands are shown in yellow. As
expected, the carrier transition is strongly suppressed. The six peaks correspond
to the six terms in eq. (4.6):

Ĥ∆k
FC ≈ ηz(b̂

†
z + b̂z) + ηyηzi(b̂

†
z b̂
†
y + b̂†z b̂y + b̂z b̂

†
y + b̂z b̂y) , (4.16)

with the Lamb-Dicke parameters being ηz = 0.1 and ηy = 0.06. In order to identify
the correspondence between the terms and the peaks, we can vary the intensity of
one dipole trap. This leads to a change of the trap frequencies, which results in a
shift of the position of the corresponding peak.

In order to cool the atoms simultaneously in y- and z-direction, we need to
overlap two sidebands. We adjust the trap frequencies such, that they fulfill the
condition νy = 2 ·νz. Figure 4.5(b) shows the spectrum, where this condition is ful-

filled. Here, the cooling transition b̂z overlaps with the transition b̂†z b̂y. The ladder
heats along the z-direction and cools along the y-direction. The coupling strength
in z-direction Ω0ηz is stronger than the coupled transition strength Ω0ηzηy and
atoms are effectively cooled along the blue-detuned trap axis z. If the atoms are
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Figure 4.5: Measurement of two-dimensional carrier-free Raman sideband cooling:
(a) and (b) shows a spectrum with cavity cooling. The carrier transition is strongly
suppressed due to the nature of the cavity standing-wave Raman beam along the
z-direction and a running-wave Raman beam along the y-direction. Six Raman
couplings are observed and adjusted such that the cooling sideband peaks b†zby and
bz are overlapped by choosing νy = 2 ·νz. The constituting sidebands are shown in
yellow. (c) shows the spectrum with additional two-dimensional Raman sideband
cooling in y- and z-direction. Efficient ground state cooling is indicated by the
vanishing cooling sideband peaks.

in the two-dimensional ground state, they are decoupled from all Raman couplings
and form a dark state of this system.

The sideband heights are proportional to the corresponding coupling strengths.
For a negligible ground state population, we expect a similar height of the heating
and the corresponding cooling sideband. If more atoms populate the ground state,
the cooling sideband height decreases. This is already observed in both discussed
spectra without Raman sideband cooling.

A fit of the two-dimensional temperature model in eq. (4.14) determines the
ground state population p(0) and the mean vibrational state number n̄. These
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parameters are the commonly used quantities to describe the atomic tempera-
ture, since they are comparable between different experiments. In the presence
of just cavity cooling (spectrum in Fig. 4.5(b)), we determine a ground state
population of py(0) = (54.6 ± 8.7) % in y-direction and pz(0) = (10.0 ± 4.4) % in
the z-direction, which corresponds to a mean vibrational occupation number of
n̄y = 0.14 ± 0.11 and n̄z = 0.83 ± 0.30 (see eq. (4.8)).

In the next experiment, we apply two-dimensional Raman sideband cooling as
previously discussed. The atom is prepared in the |↑〉-state and cooled with a
single Raman sideband cooling pulse with a two-photon detuning δR = 180 kHz
of and a duration of 1 ms, which is long enough to reach a thermal equilibrium.
Figure 4.5(c) shows the resulting sideband spectrum. In comparison to the spec-
tra without Raman sideband cooling, we immediately observe a reduction of the
sideband peak heights of b̂z and b̂†z b̂y. The ground state population in z-direction
increases drastically to (89.8 ± 9.7) % and reduces the mean vibrational occupa-
tion number to n̄z = 0.14 ± 0.11. Thus, the additional Raman sideband cooling
lowers the temperature significantly.

An additional observation is that the sidebands in the spectrum just with cav-
ity cooling show a stronger asymmetric shape, a broader linewidth and a position
closer to the carrier transition. This can be attributed to the fact, that the trapping
potential close to the ground state can be approximated by a harmonic potential.
However, for higher temperatures the anharmonicity can not be neglected. This
shows, that the developed two-dimensional temperature model is able to deter-
mine the properties of trapped atoms with higher accuracy, since is takes the
anharmonicity into account.

Cooling efficiency with carrier suppression

Raman sideband cooling with a suppressed carrier leads to a higher cooling effi-
ciency compared to conventional Raman sideband cooling. The cooling efficiency
is described by the rate equation in harmonic approximation [66]. For the final
stage of the cooling, the rate equation is restricted to the vibrational ground and
the first excited state with the probabilities of the respective states p0 + p1 = 1:

ṗ0 = p1
(ηΩ)2

Γrep︸ ︷︷ ︸
cooling rate

+p0

(
���

���
���XXXXXXXXX

(
Ω

2Ωz

)2

(η2Γrep) +

(
ηΩ

4Ωz

)2

Γrep

)
︸ ︷︷ ︸

heating rate

. (4.17)

The first term describes the cooling rate with the Rabi frequency Ω = Ω0,0 ≈ Ω1,1.
It is defined by the probability of the atom being pumped into the first excited
state (ηΩ)2/Γ2

rep times the spontaneous decay rate on the carrier transition Γrep.
The second term involves the off-resonant driving on the Raman carrier transition
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(Ω/2Ωz)
2 with a detuning Ωz and the spontaneous decay on the heating transition

with the rate η2Γrep. The last term describes the off-resonant excitation of the
Raman heating sideband (ηΩ/4Ωz)

2 with a detuning of 2Ωz and the spontaneous
decay on the carrier transition. If the Raman carrier transition is suppressed,
the second term vanishes. In steady state, which is defined by ṗ0 = 0, the mean
vibrational occupation yields

n̄ ≈ p1 =

(
Γrep

2Ωz

)2

(�A1 + 1/4) . (4.18)

The mean vibrational occupation in steady state defines the cooling limit. With
carrier suppression it is five times lower. In the following, the carrier-suppressed
Raman sideband cooling is extended to the third direction x to cool all dimensions
simultaneously.

Three-dimensional Raman ground state cooling

So far, the carrier-free Raman sideband cooling was applied to two spatial di-
rections. In this work, the setup is extended by the second standing-wave blue-
detuned dipole trap along the x-direction for strong confinement in all directions.
An additional running-wave Raman beam along the y-direction allows for simul-
taneous three-dimensional Raman sideband cooling. The details of this injection
locked trap and the new running-wave Raman beam are described in chapter 4.1.

The slight imbalance of the incoming and back-reflected beam of the new blue-
detuned dipole trap leads additionally to the sinusoidal trapping potential to a
small offset field of a running wave. As a consequence, the carrier suppression is
not as strong as for the intra-cavity standing-wave Raman beam. Due to this, we
expect in the Raman sideband spectrum three additional transition peaks. The
nine transition peaks are described in eq. (4.7) by the terms:

H∆k
FC ≈ 1̂x1̂y + ηx(b̂

†
x + b̂x) + ηy(b̂

†
y + b̂y)

+ ηxηy i(b̂
†
xb̂
†
y + b̂†xb̂y + b̂xb̂

†
y + b̂xb̂y)

(4.19)

The Lamb-Dicke parameters are ηx = 0.14 and ηy = 0.06. The measurement of
the Raman sideband spectrum in x, y-direction is performed as in the previous
experiment with two-dimensional ground state cooling. The atoms are prepared
in the |↑〉-state. The state under study is cooled by two-dimensional Raman cool-
ing in y- and z-direction. To determine the spectrum along the x, y-direction, the
new Raman beams are used to map the vibrational state onto the internal ground
state |↓〉. Figure 4.6(a) shows the resulting spectrum with two-dimensional Ra-
man sideband cooling. The x-direction is not cooled, which leads to two strong
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Figure 4.6: Measurement of three-dimensional Raman sideband cooling: The spec-
tra determine the cooling dynamics along the x- and y-direction with
a second set of Raman beams. In the top figure, the atoms are cooled in y, z-
direction by two-dimensional carrier-free Raman sideband cooling. In the lower
figure, the x-direction is simultaneously cooled, which is indicated by the vanishing
cooling sideband bx and brings the atoms into the three-dimensional ground state.

sidebands bx and b̂x. As expected, we observe a small carrier transition in the
center. A fit of the two-dimensional temperature model is shown as a red line
with the constituting peaks (yellow). From the fit parameters we can extract the
ground state population of px(0) = (10.1 ± 6.9)% in x-direction and a mean oc-
cupation number of n̄x = 8.3± 8.1. The ground state population in y-direction is
py(0) = (60.5± 17.9)% with a mean occupation number of n̄y = 0.66± 0.53.

In the next step, we apply additional cooling along the x-direction at a two-
photon detuning δR = 114 kHz. Figure 4.6(b) shows the resulting Raman sideband
spectrum. The sideband bx significantly reduces. From the fit parameters we
extract a ground state population of px(0) = (94.8 ± 3.4)% in x-direction and
a mean occupation number of n̄x = 0.06 ± 0.04. For three-dimensional ground
state cooling we observe a significant reduction of the background noise. As for
the cooling spectra in y, z-direction, the sideband peaks become narrower, more
symmetric and shifted towards higher detunings from the carrier transition with
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Direction Mean vibrational occupation n̄ Ground state population
x 0.06± 0.04 (94.8± 3.4)%
y 0.66± 0.53 (60.5± 17.8)%
z 0.14 ± 0.11 (89.8 ± 9.7)%

Table 4.1: Summary of three-dimensional ground state cooling.

applied cooling. A summary of the achieved results of three-dimensional cooling
is shown in Tab. 4.1.

4.4 Conclusion

In this chapter, I described the experimental apparatus for two-dimensional carrier-
free Raman sideband cooling and showed measurements with this existing setup.
The measurement were interpreted with a newly developed model. The model
considers the anharmonic shape of the lattice and is based on the full Hamiltonian
of the system leading to a better fit of the model to the measured Raman sideband
spectrum.

The two-dimensional trap was extended by a new blue-detuned dipole trap to
strongly confine the atoms also in the third dimension. Challenged by the limited
optical access of the cavity experiment, this carrier-free Raman sideband cooling
scheme is extended along the new dipole trap axis without the need of additional
lasers and allows efficient ground state cooling in all three dimensions. The ground
state occupation of (94.5, 60.5, 89.8) % in x, y, z-direction respectively is achieved
within a few milliseconds and an atom can by repeatably recooled. Recently,
the scheme developed for this system has been adapted by the new fiber cavity
experiment in our group.
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Chapter 5

State-dependent lattice
transport with neutral atoms

In this chapter, I introduce the experimental apparatus for state-dependent lattice
transport, which allows to apply microwave sideband cooling in one dimension.
This is a prerequisite for an optimal control transport of atoms while maintaining
their vibrational ground state occupation. Further details on this experimental
setup can also be found in earlier dissertations [23, 30, 72, 73]. To accomplish the
main goal of this work – optimal control transport – it is crucial to characterize the
system response of the lock system in detail. I gain a deep understanding of the
system by means of signal processing theory, in order to experimentally reproduce
arbitrary transport ramps.

5.1 Atom transport

Position controlling and transport of neutral atoms in optical traps are crucial
for a number of seminal experiments in quantum optics. Atom transport has been
demonstrated by a variety of techniques. A very successful one is the use of optical
tweezers. As an example they have been used to move Bose-Einstein condensates
by means of translating a focusing lens[74]. Even a shift register architecture
is realized with microtraps by shifting the angle of the incident beam through
a microlens array [75]. Optical tweezers are also combined with a spatial light
modulator [76, 77] or an acousto-optic deflector [78] to generate low entropy states.
Another approach of atomic position control is based on moving optical lattices.
This technique shows high precision of the relative position between the lattices
of 1.2 Å [24]. The movement of the lattices can be achieved by frequency [79] and
phase modulation of the lattice beams. With phase modulation to move an optical
lattice, we realize quantum walk experiments [57], a digital atom interferometer
[80] as well as controlled collisions for multi-particle entanglement [81].
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Figure 5.1: Principle of the state-
dependent lattice: Two overlapped
lattices are blue-detuned with respect
to the D1 line and red-detuned with
respect to the D2 line. The resulting
potentials cancel out for one polar-
ization component such that the |0〉
(|1〉) state is effectively trapped by σ+

(σ−)-polarized lattice.

5.2 State-dependent lattice

The multilevel structure of cesium allows the design of a state-dependent lattice
[82]. To gain an intuitive understanding of the principle of a state-dependent
lattice, we use the two degenerate ground states |0〉 and |1〉 in the fine structure
representation

|0〉 = |J = 1/2,mJ = 1/2〉 ,

|1〉 = |J = 1/2,mJ = −1/2〉 .
(5.1)

The total angular momentum J represents the interaction of the orbital momentum
of the electrons with their total electronic spin. It leads to the fine structure
splitting described with the quantum number mJ . As depicted in Fig. (5.1), the
frequency of the lattice beams is chosen to lay in between the D1- and D2-line of
cesium. The interaction of the beam with the D1-line is repulsive, since the beam
is blue-detuned for this atomic transition. Correspondingly, the same beam is red
detuned for the D2-line, which results in an attractive potential. Consequently,
the atoms experience the sum of an attractive and a repulsive trapping potential
as described in eq. (2.3). The frequency is chosen such that the sum exactly
cancels, which we call the magic wavelength. However, as seen in the sketch, there
are transitions, where the atoms only experience the attractive potential. For
example, the state |0〉 experiences an attractive potential of a σ+-polarized trap,
while the forces of the σ−-polarized trap vanish. This is indicated by a dashed
arrow. This means, by choosing the right polarized light, we can apply a force
depending on the state.

Since the D1- and D2-line consist of many atomic hyperfine states, we have to
adapt the principle to the hyperfine representation. The nuclear spin I = 7/2 lifts
this degeneracy and leads to the well known hyperfine ground states used for the

42



State-dependent lattice transport with neutral atoms

cesium standard of time. The outermost Zeeman states can be expressed in the
basis of the fine structure representation yielding [57]

|↑〉 = |I = 7/2,mI = 7/2〉 ⊗ |0〉 ,

|↓〉 =

√
7

8
|I = 7/2,mI = 7/2〉 ⊗ |1〉 −

√
1

8
|I = 7/2,mI = 5/2〉 ⊗ |0〉 .

(5.2)

This indicates that the chosen spin states have two slightly different magic wave-
lengths at 865.9 nm and 869.3 nm. In the experiment, we choose the same wave-
length for both traps, which results in equal distances between the potential wells
of both lattices. In this work, we choose a magic wavelength of 865.9 nm for all
measurements. Then, the σ+-polarized dipole trap confines only atoms in the |↑〉-
state and atoms in the |↓〉-state are attracted by both traps, but dominated by
the σ−-polarized dipole trap:

U↑DT = Uσ+

DT ,

U↓DT =
7

8
Uσ−

DT +
1

8
Uσ+

DT

with

U
σ+/σ−

DT (ρ, z) = Uσ+/σ− cos2(kz − ϕσ+/σ−(t)/2) e−2ρ2/w(zDT)2 .

(5.3)

UDT describes the full potential with the effective trap depth U . The index σ+

and σ− refers to the lattice with the corresponding polarization. The trapping
frequencies of the lattices are both Ωtrap = 2π · 115 kHz along the one-dimensional
trap axis. The weak confinement along the radial direction leads to a trapping
frequency of Ωrad = 2π · 1 kHz. The maximum trap depth U↑ and phase ϕ↑

experienced by the |↑〉-state is by design identical to the σ+-polarized potential.
The trap depth of the |↓〉-state however is a mixture of both circularly polarized
trapping potentials and can be expressed by an effective trap depth U↓ and phase
ϕ↓ [83]:

U↑ = Uσ+

, U↓ =
√
s2
σ + c2

σ

ϕ↑ = ϕσ
+

, ϕ↓ = arctan

{
sσ
cσ

}
,

(5.4)

with

sσ =
7

8
Uσ− sin

{
ϕσ
−
}

+
1

8
Uσ+

sin
{
ϕσ

+
}

,

cσ =
7

8
Uσ− cos

{
ϕσ
−
}

+
1

8
Uσ+

cos
{
ϕσ

+
}

.
(5.5)

A detailed derivation is found in the appendix A.1. The effective potential U↓

changes due to a dipole trap crosstalk for different relative positions between the

43



State-dependent lattice transport with neutral atoms

Figure 5.2: Effective trapping potential and phase of the |↑〉- and |↓〉-state for
the state-dependent lattices: (a) The wavelength of the state-dependent lattices is
chosen such that the U↑ remains unchanged independent from the relative position
of both traps. However, the effective potential U↓ changes due to a dipole trap
crosstalk. For a relative lattice separation of λ/4, it reaches a minimum trap depth.
The trapping potential are identical if both lattices overlap. (b) A linear phase
driving ramp ϕσ

+/σ− results is reproduced by the |↑〉-state, while the |↓〉-state
performs an effective s-shaped driving ramp.

lattices. For a relative lattice separation of λ/4 as shown in Fig. 5.2, the potential
reaches a minimum trap depth. The trapping potentials are identical, if both
lattices overlap. Figure 5.2 (b) shows a linear phase driving ramp of the σ−- and
σ+-lattice. While the atoms in the |↑〉-state experience this linear transport, the
atoms in the |↓〉-state perform an effective s-shaped driving ramp.

5.3 Atom loading and state manipulation

The realization of the state-dependent lattice experiment is shown in Fig. 5.3.
Here, a MOT is overlapped with two state-dependent lattices. During a loading
process, up to 50 atoms are released from the MOT into the standing wave poten-
tial. The |↑〉-state is prepared with two σ+-polarized pumping beams (gray) on the
|F = 3〉 → |F ′ = 4〉 and |F = 4〉 → |F ′ = 4〉 transition, which are overlapped with
the state-dependent lattice. Using microwave radiation, the |↓〉-state is coupled to
the |↑〉-state allowing us to generate an arbitrary superposition state.

Push-out state detection in the state dependent lattice

After performing an experiment, the state of the atoms is determined by a tech-
nique called push-out state detection. The main concept relies on removing atoms
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Figure 5.3: Illustration of the state-dependent lattice experimental setup: Two
state-dependent lattices for each spin state are overlapped with a MOT (not
shown). Two optical pumping beams are used for state preparation and mi-
crowave radiation for state manipulation The number of atoms in the lattice is
counted with an EMCCD camera by collecting the scattered fluorescence imaging
light. For state detection, atoms in the |↑〉-state are removed with a resonant
push-out beam.

in a certain hyperfine state and detecting the atom survival of the other hyper-
fine state. The technique uses the radiation pressure by photon scattering of
a near-resonant laser beam. A strong σ+-polarized laser beam is tuned to the
|F = 4〉 → |F ′ = 5〉 transition and heats the atoms in the |↑〉-state out of the
lattice. Due to selection rules, the |↓〉-state is a dark state and only off-resonant
scattering on the |F = 3〉 → |F ′ = 4〉 limits the overall detection efficiency to 99%.
The number of initialized atoms and remaining atoms after the push-out pulse is
counted by fluorescence imaging with an electron multiplying CCD camera (EM-
CCD, Andor: iXon DV897DCS-FI). This detection technique suffers from atom
loss and a single state measurement takes much longer in comparison to the non-
destructive state detection in the cavity experiment. Nevertheless, the experiment
offers a similarly fast detection over the total measurement time due to the sig-
nificant higher atom loading rate per repetition. This justifies the choice of this
comparatively simple detection technique.
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5.4 Experimental setup of the state-dependent

lattices

The experimental apparatus allows for remarkable degree of position control. De-
tails can be found in the thesis of Robens [30]. The properties of the apparatus
are fundamental to perform optimal control transport in this work. The setup
allows the full control over the trap depths and the relative positions of the state-
dependent lattices. It is sketched in Fig. 5.4 and summarized in this paragraph.

The laser beam generated by a titanium-sapphire laser system (Coherent MBR
110 pumped by Coherent Verdi V18) delivers an output power up to 2.5 W at a
wavelength of 866 nm and is split into two arms with a beam splitter (BS). The
first arm is the intensity-stabilized (σ+ +σ−)-polarized running wave, which enters
the vacuum cell from the left side. This beam is first sent through an acousto-
optic modulator (Gooch & Housego: AOM 3080-122) with a constant frequency
of 80 MHz. In order to clean up the spatial mode, the beam is guided through
a fiber. After the fiber, a fraction is extracted to stabilize the intensity with the
AOM. The second arm generates two beams with a σ+ or σ− polarization, which is
guided through the vacuum cell from the right side. First this second arm is split
with a polarizing beam splitter into two beams. Each beam is being individually
controlled by an AOM with a relative phase and intensity. A Wollaston prism
(WP) with a high extinction ratio (> 10−7) is used to recombine the beams.
The spatial mode is again cleaned up with the help of a fiber. After the fiber a
fraction of the light is extracted in order to control the intensity of each beam.
A second fraction of the light is split up and overlapped with laser light from the
undisturbed output of the laser. This beat signal is used to control the phase of
the two synthesized arms. For the phase and intensity locks of the second arm,
Wollaston prisms are used to separate the beam according to their polarization. It
allows to separately measure the beam intensity and relative phase to the counter-
propagating laser beam of both lattices. A detailed view of the lock systems is
shown in Fig. 5.5. The intensity and phase responses are converted in a servo loop
into an amplitude and frequency signal, which drive the acousto-optic modulator
of the different polarization arms.

The beams are focused down to the experimental region with a waist of 17µm.
The dominating noise source of this synthesized lattices are spatial polarization in-
homogeneities of the laser beams determined by the linear extinction ratio of 5·10−5

characterizing the polarization purity. The high bandwidth of 800 kHz of the phase
and intensity servo loops enables fast transport operations on the microsecond
scale. A waveform generator (Agilent, 33600A) and a direct digital synthesizer
(Analog Devices, EVAL-AD9954) allow the programming of the timing-critical
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Figure 5.4: Experimental apparatus of the state-dependent lattices: The output of
a titanium-sapphire laser system is split to generate both lattices. An intensity-
stabilized (σ+ + σ−)-polarized running wave of constant frequency enters the vac-
uum cell from the left. The σ+- and σ−-polarized beam from the right side is
individually controlled. Parts of the light are extracted and detected with a pho-
todiode in order to control the intensity. In order to control the phase, a beat
signal between the undisturbed output of the laser and the frequency shifted beam
is detected. A detailed view of the lock systems is shown in Fig. 5.5. The phase
and intensity control loops set the frequency and amplitude of a radio frequency
(RF) driving three acousto-optic modulators (AOM) to dynamically steer the trap
depths and relative positions of the state-dependent lattices.
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Setup State-dependent
setup

Direction x y z
Trap wavelength λDT - 865.9 - nm
Detuning from D2 line ∆R - -11 - 2π ·THz
Trapping frequency Ωtrap 1 115 1 2π · kHz
Lamb-Dicke parameter η 1.44 0.13 1.44
Trap depth U 45 79 45 kB · µK
Waist wDT - 17 - µm
Powers PDT - 3 - mW

Table 5.1: Summary of the trap properties in the state-dependent lattice system.
In the experiment we operate two identical red-detuned spin-dependent traps along
the y-direction.

transport ramps with high precision for amplitude and phase modulation. As a
preparatory step in each measurement, the overlap of both lattices is automatically
optimized by the phase control setup.

The state of an atom is detected by fluorescence imaging. It is performed in a
deep trapping potential of U = kB · 370µK to shorten the exposure time to 500 ms
without heating the atoms out of the trap. For the experimental sequences, the
trapping potential is adiabatically lowered by the intensity control setup down to
U = kB · 47µK [30]. This reduces off-resonant scattering of the trapping laser
photons by the atoms, but the system still remain in the Lamb-Dicke regime. The
parameters of the traps are summarized in Tab. 5.1.

5.5 Phase and intensity control systems

The phase and intensity control systems play a key role in the overall system and
thus is described here in more detail. The control systems to drive phase and
intensity ramps are based on an analog proportional-integral-derivative feedback
loop (PID controller: Vescent Photonics, D2-125 laser servo) as shown in Fig. 5.5.
The intensity of the laser beams is recorded with a photodiode (PD) and the signal
is subtracted from a predefined set value VDC, which serves as the error signal of
the PID loop (bandwidth 10 MHz). The output of the PID controller steers the
amplitude of an acousto-optic modulator (AOM) that controls the intensity of the
laser beam. In the case of the phase control system, a beat signal is recorded
at 80 MHz with a fast photodiode (FPD) between the undisturbed output of the
laser and the frequency shifted proportion driving the dipole trap. A bias tee
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Figure 5.5: A detailed view of the intensity and phase control loop. This setup
is installed twice and controls each synthesized arm of the σ+- and σ−-polarized
lattice. The acousto-optic modulator (AOM) controls the phase and amplitude
of the laser beam. Parts of the light are extracted with a pickup plate (PP) and
detected with a photodiode (PD) or a fast photodiode (FPD). In the amplitude
control loop, the signal is subtracted from a computer-controlled reference volt-
age VDC. The signal serves as the error signal of a proportional-integral-derivative
controller (PID). In order to stabilize the phase, a beat signal between the undis-
turbed output of the laser and the frequency shifted proportion is recorded. A
bias tee only passes the radio-frequency signal. A low-noise amplifier (A1) and a
limiting amplifier (A2) in series provide a constant output signal at the beating
frequency independent of the laser intensities. A phase frequency discriminator
(PFD) compares this signal to the programmed waveform of a direct digital syn-
thesizer (DDS), which serves as the error signal for the phase control loop. The
PID drives a voltage controlled oscillator (VCO). The figure is taken with kind
permission from the thesis of Robens [30].

(T) only passes the radio-frequency signal. A low-noise amplifier (A1) and a
limiting amplifier (A2) in series provide a constant output signal at the beating
frequency independent of the laser intensities, which produces the beating signal.
A phase frequency discriminator (PFD) compares this signal to the programmed
waveform of a direct digital synthesizer (DDS), which is stabilized to a 10 MHz
rubidium clock. This signal serves as the error signal of the PID loop, whose
output drives a voltage controlled oscillator (VCO). The frequency and amplitude
of the RF frequency, which drives the AOM, are two independent controllable
quantities. Therefore, the frequency generated by the VCO of the phase control
loop can be combined with the amplitude signal from the intensity control loop.
If we program any arbitrary driving ramp u(t), the control loops do not respond
instantaneously due to a delay time and limited control loop bandwidth. With
an accurate knowledge of the response of such a dynamical system (LTI), which
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is linear and time-invariant in first order approximation, we can consider these
effects to reproduce the optimal driving ramps with highest precision.

Signal processing: Measurement of the impulse response

In this work, we need to be able to operate arbitrary transport ramps. They are
generated by the intensity and phase control system. In order to have full control
over the generated ramps, we need to know the exact response of the system. The
input and output signals of the system can be:

u(t) = {Uσ+

IN , U
σ−

IN , ϕ
σ+

IN , ϕ
σ−

IN } ,

y(t) = {Uσ+

, Uσ− , ϕσ
+

, ϕσ
−} .

(5.6)

They define the trap depths and phases {U↑, U↓, ϕ↑, ϕ↓} that both spin species
experience following eq. (5.5) and (5.4).

In signal processing, the relation between input U(t) and output y(t) is formu-
lated by the convolution theory [84]:

y(t) = (u ∗ g)(t) =

∫ ∞
−∞

u(τ)g(t− τ)dτ . (5.7)

The impulse response function of the system g(t) is defined as the output function
of an impulse δ(t) as the input. The impulse response function can be measured
by applying a Heavyside step function Θ(t) and recording the step response y(t) =
sΘ(t) by an out-of-loop photodiode. The impulse response is then determined by
the derivative of the step response:

g(t) =
d

dt
(Θ ∗ g) (t) =

d

dt
sΘ(t) . (5.8)

The measurement of the step response and its derivative is shown in Fig. 5.6. The
numerically derived derivative shows noise, which results from the noise of the
photodiode signal. To overcome this, the measurement of the impulse response
function is further improved by a transfer function fitting model provided by the
Optimization Toolbox from MATLAB. The model function is described in the
complex frequency space of s = σs + iωs, where ωs describes a frequency with a
damping characterized by σs. The mapping is performed by a Laplace transform:

Y (s) = L[y(t)] =

∫ ∞
0

e−sty(t)dt . (5.9)

The input-output relation simplifies to

Y (s) = G(s)U(s) (5.10)
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Figure 5.6: Fit of the step response from the intensity control setup of the σ−-
polarized lattice arm: (a) The input signal u(t) is a Heavyside unit step function
(green) and the measured step response sΘ(t) delayed by τd is recorded with an
out-of-loop photodiode (blue). (b) The impulse response determined by a simple
derivative (blue) shows a higher noise floor than a fit of the transfer model function
(red) from eq. (5.11). The fit model result is also shown as a step response (red).

The transfer function G(s) is the Laplace transform of the impulse response func-
tion. U(s) is the input signal in the complex frequency space. The transfer func-
tion fit model considers a delay time τd between the input and output signal and
is further described by two polynomials A(s) and B(s):

G(s) = e−sτd
B(s)

A(s)

= e−sτd
b0 + b1s+ b2s

2 + . . .

1 + a1s+ a2s2 + . . .
.

(5.11)

The parameters an and bn are called poles and zeros. The poles contribute with
oscillations in the system response. The number of zeros is in general smaller than
the number of poles. An example of a system with more zeros than poles is the
derivative term in a PID controller that amplifies high-frequencies including noise.
In order to prevent noise amplification, the derivative part includes in general a
low-pass filter to limit the high-frequency gain.

The impulse response function is determined in Fig. 5.6 by the inverse Laplace
transform of the transfer function model:

impulse response g(t) = L −1 [G(s)] ,

step response sΘ(t) =
(
Θ ∗L −1 [G(sΘ)]

)
(t) . (5.12)

The result of this measurement for all four control loops for intensity and phase
of both lattices is shown in Fig. 5.7. Slow linear transport ramps are directly
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Figure 5.7: Fit of the impulse response functions g(t) by the Optimization Toolbox
from MATLAB of all for control systems: intensity (trap depth) and phase (trap
position) for both synthesized σ+- and σ−-polarized dipole trap arms. The result
is used to improve the reproduction of desired arbitrary transport ramps.

applied as u(t) and agree in good approximation with y(t). However, for complex
control ramps, as required for optimal control transport, they are deconvoluted to
determine the input signal to the DDS of both synthesized arms. For non-complex
signals the Laplace transform is equal to a Fourier transform. All processed signals
in the experiments are real, such that:

U(s) =
L [y(t)]

L [g(t)]
=

F [y(t)]

F [g(t)]
,

u(t) = L −1 [U(s)] = F−1 [U(s)] .

(5.13)

The gained knowledge of all impulse responses of the control systems is needed to
generate optimal control ramps in chapter 7.

In the following chapter, the state-dependent lattices are used to demonstrate
microwave sideband cooling into the ground state along the state-dependent lattice
direction. The ground state is a well-defined quantum state which is used in
quantum walk and single atom interferometer experiments.
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Chapter 6

Microwave sideband cooling of
neutral atoms

Microwave sideband cooling is another method to cool atoms into the vibrational
ground state in a trapping potential. In comparison to Raman sideband cooling,
the cooling using microwave sideband coupling shows several advantages: The
longterm stability of microwave fields is better. Additionally maintenance of the
microwave setup requires less effort due to the absence of optical phase and in-
tensity locks. These are necessary to compensate relative frequency drifts of the
Raman lasers and power fluctuations due to mechanical drift of optical compo-
nents in the beam path. Furthermore, the photon microwave field is highly ho-
mogeneous along the lattice compared to the tightly focused laser beams. The
reduced homogeneity of the Raman Rabi frequency results in a shorter coherence
time. Microwave fields are the perfect tool in a state-dependent lattice experiment
to couple vibrational sidebands. A microwave setup already exists to perform
hyperfine state manipulations and to address atoms in individual potential wells.
The ladder method originates from the nuclear magnetic resonance technique and
uses a microwave field with a superimposed high gradient magnetic field along the
lattice axis [85]. Compared to the previously discussed Raman sideband cooling
technique in chapter 4, the microwave photon recoil energy with the wavenum-
ber kMW = 2π/λMW is too weak to drive sidebands efficiently, and only a carrier
transition is driven:

H∆k
FC = ekMWx̂ ≈ 1̂ +O(10−5) . (6.1)

6.1 Fundamentals of microwave sideband cooling

in a state-dependent lattice

The principle of microwave sideband cooling is based on coupling of sideband
transition by a small spatial shift. This shift induces a mechanical force during
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Figure 6.1: The principle of microwave sideband cooling: (a) The two qubit states
|↑〉- and |↓〉-state are coherently coupled by a microwave field ΩMW with a detuning
δM. (b) A MW cooling cycle consists of a cooling sideband transition from the
|↑〉 to the |↓〉. A strong optical pumping beam transfers the atom back without
changing the vibrational state. (c) The sideband coupling is allowed for a spatial
displacement ∆y during the qubit state transfer.

a coherent state transfer [86]. The force results in an effective overlap between
different vibrational wavefunctions, which is a prerequisite for sideband cooling.

Within a single electronic level, electronic dipole transitions generally vanish.
However, selection rules can still allow magnetic dipole transitions, which are sev-
eral orders of magnitude weaker, to couple states of the same electronic level
directly, such as the ground states |↑〉- and |↓〉-state used in this work. The mag-
netic field BMW of a microwave field at 2π ·9.2 GHz couples to the magnetic dipole
moment µ̂ of the atom

ĤF,mF
= µ̂BMW . (6.2)

During the microwave transition, the atom changes its spin state as shown in
Fig. 6.1(a). The wavefunction is distorted by the spatial displacement during the
state transfer. The translation operator describes the Frank-Condon Hamiltonian
which initiates an overlap between vibrational states 〈n′| ĤFC |n〉:

Ĥ∆y
FC = T̂∆y =

∑
y,n

|y + ∆y, n+ ∆n|↓〉〉 〈y, n|↑〉|+ c.c. . (6.3)

The state |y, n〉 describes the position y and the vibrational state n. During the
state transfer, the atom can change the vibrational state by ∆n, when we introduce
a spatial shift ∆y during the coherent transfer. Since the state-dependent lattice
is not ideal, the state |y, n〉 is slightly different for the |↑〉- and |↓〉-state, which
is indicated by the subscript. To get an intuitive picture of the coupling between
vibrational states, the potential is approximated by a harmonic potential. In the
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Lamb-Dicke regime, the momentum operator of the atomic center-of-mass motion
k̂ is expressed by

k̂ =
p̂

h̄
≈
√
mCsΩtrap

2h̄
(b̂†y − b̂y) . (6.4)

Using the momentum operator as the generator of translation allows us to rewrite
the translation operator in momentum space:

T̂∆y = eik̂∆y

= 1̂y + i k̂∆y + ...

≈ 1̂y + 0.5 · i(b̂†y + b̂y) .

(6.5)

The unitary operator 1̂ describes the carrier transition and the second term rep-
resents the two first-order sidebands. The expression has a similar form as the
Franck-Condon operator for Raman sideband cooling (see eq. (4.6)) with the ex-
ception that T̂∆y operates in momentum space.

6.2 One-dimensional temperature model

Similar to the proceeding for Raman sideband cooling, I derive a new model for
microwave sideband cooling. By considering the anharmonicity of the traps and
the dependency of the coupling strength from different vibrational states, it im-
proves the analysis of the experimental data. The mean temperature is determined
from the probability distribution of an atomic ensemble over the vibrational state.
The occupation probabilities p(n) are measured by one-dimensional microwave
sideband spectroscopy along the lattice direction y.

As before the state under study is described by the amplitudes cn and the
vibrational states |n↑〉

|ψ(0)〉 =
∞∑
n↑

cn↑ |n↑〉 ⊗ |↑〉 . (6.6)

The subscript refers to the fact, that the eigenstates can be different for the two
spin states. This state is coherently driven by the microwave field and mapped
onto the internal state |n↓〉 ⊗ |↓〉. The operation is described in the general form
of a Rabi oscillation with a phase θ:

|ψ(t)〉 =
∑
n↑,n↓

cn↑ cos

(
Ωn↓,n↑

2
t

)
|n↑, ↑〉+ eiθcn↑ sin

(
Ωn↓,n↑

2
t

)
|n↓, ↓〉 . (6.7)
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The coupling strength Ωn↓,n↑ follows from eq. (4.3) and eq. (6.5)

h̄Ωn↓,n↑ = 〈↓| ĤF,mF
|↑〉 · 〈n↓| eik̂∆y |n↑〉

= h̄Ω0 ·FCn↓,n↑ .
(6.8)

The Franck-Condon factor FCn↓,n↑ describes the overlap between the correspond-
ing eigenstates. For a well-known lattice shift and given trap depths U↑ and U↓

the factor is determined numerically. A simulation in Fig. 6.2(a) demonstrates
the dependency of the Franck-Condon factor on the lattice shift. The Franck-
Condon factor increases for the size of the lattice shift. A maximum is reached
at different lattice shifts for the three simulated transitions. The optimal lattice
shift reduces with higher initial vibrational state. During the cooling process, the
vibrational state is reduced in each cooling cycle by one vibrational quantum. A
high coupling strength is needed for all vibrational states. For small lattice shift,
the Franck Condon factor for a trap depth of kB · 80µK is very homogeneous over
vibrational levels but also inefficient as shown in Fig. 6.2(b). High lattice shifts
of more than 50 nm, on the other hand, even cause the coupling to drop back to
zero for certain vibrational states. For our experiments, we chose 17 nm as a good
compromise.

The internal state is determined by the push-out state detection as a measure
for the mapped state. The probability, that the state under study is coherently
transfered into the |↓〉-state by a resonant driving is given by

P↓(t) = | 〈ψ(t)|n↓, ↓〉 |2

=
∑
n↓,n↑

|cn↑|2 sin2

(
Ωn↓,n↑

2
t

)
=
∑
n↓,n↑

p(n↑) sin2

(
Ωn↓,n↑

2
t

)
.

(6.9)

For simplicity, I assume Gaussian shaped resonance peaks with a Gaussian width
σ, an offset frequency ν0 and an amplitude A. The measured spectrum is then
determined by

S(ν) = A ·
∑
n↓,n↑

P↓(t) · exp

(
−

(ν − νn↓,n↑ − ν0)2

2σ2

)
. (6.10)

The atomic transition frequencies νnx,n′x and νny ,n′y are numerically derived by solv-
ing the stationary Schrödinger equation from eq. (4.2). If the atoms are in thermal
equilibrium, the occupation of the vibrational states is distributed according to a
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Figure 6.2: Franck-Condon factor for microwave sideband cooling for different lat-
tice shifts and vibrational states for a trapping potential of kB · 80µK: (a) The
Franck-Condon factor of different cooling transition reaches a maximum for differ-
ent lattice shifts. The optimal lattice shift reduces with higher initial vibrational
state. As demonstrated in (b) the Franck Condon factor is very homogeneous for
small lattice shift but also inefficient. High lattice shifts of more than 50 nm, on
the other hand, even cause the coupling to drop back to zero for certain vibrational
states. For our experiments, we chose 17 nm as a good compromise (red).

Boltzmann distribution:

p(n↑/↓, T
∗) =

e
−

En,↑/↓
kBT∗∑∞

n↑/↓=0
e
−

En,↑/↓
kBT∗

. (6.11)

In the following, I describe how we measure the microwave sideband spectrum for
the first order sidebands and determine the temperature with this derived model.

6.3 Measurement of one-dimensional microwave

ground state cooling

In order to determine the probability distribution of the vibrational state occupa-
tion, we conduct a microwave sideband spectrum. In the measurement sequence,
all atoms are prepared in the |↑〉-state and the lattices are shifted apart by 17 nm.
After a Gaussian shaped microwave transfer pulse, the lattices are overlapped
again. The population in the |↓〉-state is measured with the push-out detection
technique.
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Figure 6.3: Measurement of longitudinal microwave sideband cooling into the
ground state in the state-dependent lattice experiment: The red line is a fit fol-
lowing the model in eq. (6.10), which takes into account the anharmonic nature
of our lattice. For comparison: the position marks of the sideband corresponds
to the trap frequency of a harmonic trap with the same trap depth. The anhar-
monicity of the dipole trap manifests for different Boltzmann distributed mean
vibrational states in a frequency shift of the sideband peaks and an asymmetric
broadening. The carrier sideband height is not a free fit parameter. After cooling
the height is reduced. This is due to the fact, that the Rabi frequency depends on
the vibrational state.

A resulting spectrum without microwave cooling is shown in Fig. 6.3(a) for a
trap depth of kB · 90µK. The spectrum shows three distinctive peaks. The central
peak is the carrier transition. The peak to the right is the heating sideband b†y
and the peak to the right is the cooling sideband by. The Gaussian transfer pulse
with a duration of 90µs and a Gaussian width of 9µs is optimized for a maximum
transfer probability on the first sideband. Decoherences dominated by the T2-time
of 30µs reduces the maximum sideband height to 65 %. The one-dimensional
temperature model is shown as a red line. For molasse cooling, I experimentally
achieve a ground state population of (33 ± 2)% and a mean vibrational occupation
number of n̄y = 2.1 ± 0.2 along the lattice direction.
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In a second measurement, a sideband cooling pulse in the shifted lattice is ap-
plied for 20 ms. The result is shown Fig. 6.3(b). The height of the cooling sideband
significantly reduces. The carrier sideband height is not a free fit parameter. After
cooling the height is increased. This is due to the fact, that the Rabi frequency de-
pends on the vibrational state. Microwave sideband cooling improves the ground
state occupation to (98 ± 1)%, which corresponds to a mean vibrational occupa-
tion number of n̄y = 0.02 ± 0.01. Likewise, the width of the sidebands decreases
and the position of the sidebands shifts further away from the carrier transition
frequency due to the anharmonicity of the trapping potential. This shows, that the
developed two-dimensional temperature model is able to determine the properties
of trapped atoms, such as the trap frequency and the ground state population,
with higher accuracy, since is takes the anharmonicity into account.

6.4 Conclusion and outlook

In this chapter, I introduced the principle of microwave sideband cooling in state-
dependent lattices. I developed a new one-dimensional temperature model in a
similar way as for Raman sideband cooling. The model considers the anharmonic
shape of the lattice and is based on the full Hamiltonian of the system leading to
a better interpretation of the measured microwave sideband spectrum. From the
measurement with this existing setup, I determine a ground state population of
(98 ± 1) %.

In order to cool all three dimensions, Raman sideband cooling was recently
demonstrated with (94 ± 4) % ground state population [30] in the radial direction:
For resolved Raman sideband cooling, a blue-detuned hollow beam dipole trap is
overlapped with the state-dependent lattice to increase the radial trap frequency
to 2π · 20 kHz and the Lamb-Dicke parameter to η = 0.3. Two orthogonal phase
locked Raman running waves cool the atoms to in radial direction. However, the
radial cooling limit can be further improved up to a factor of five by carrier-free
Raman sideband cooling, which is demonstrated in chapter 4.3. A radially aligned
Raman beam locked to the blue-detuned hollow beam dipole trap would replace
the current Raman system.

In the next chapter, I use optimal control to transport atoms over one lattice
site while maintaining the ground state population with high fidelity. The fidelity
measurement additionally allows to determine the radial temperature with high
precision.
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Chapter 7

Optimal quantum control for
fast atom transport

Complex dynamical systems are often desired to be controlled using analytical so-
lutions. Analytical methods have the potential to give exact solutions. However,
the more complex the system gets, the more many assumptions and approxima-
tions have to be made to derive an analytical solution. In some of those case, a
numerical approach can be more feasible. If an efficient representation of the dy-
namics exists, optimal control theory is a powerful mathematical tool, to go from
analytical guesses to optimal solutions for a variety of different research fields.
In particular, time-optimal control of linear systems found its path into a large
spectrum of applications in chemistry, aerospace, robotic engineering, economics,
mathematics and physics [87–93]. A small analogy from our daily life is intended
to illustrate the principle of optimal control: consider a waiter serving glasses of
champagne using a tray. His goal is to transport the drinks from the counter to
the guests without spilling the glasses, which for our motivated waiter defines the
target state. At this point, we can also introduce the cost function, which ac-
counts for how well we have reached the target state. In our example this would
be the amount of champagne lost during the transport. A beginner would move
very constantly and slowly, in order to keep the liquid almost at rest in the glass,
which is equivalent to an adiabatic solution. However, a more experienced waiter
can serve the champagne without spilling them much faster by adjusting his speed
and balancing the tray with his hand. This is an optimal control solution. In
control theory, the speed and position of the hand are the control parameters to
be optimized. This example shows that it is not only possible to optimize the
desired system outcome, it is even capable to speed up the process with little loss
of fidelity. Optimal control theory has found successful applications in optimal
quantum control with active manipulation of physical and chemical processes on
the atomic and molecular scale [94].

In general, the time-evolution of a dynamical system is described in the form
of differential equations. Optimal control accomplish the task by numerically im-
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proving the control solutions of a system that starts in a well defined initial state
and evolves into a desired state after a given amount of time. As an example
in quantum chemistry, they have been demonstrated to shape femtosecond laser
pulses to optimize chemical reactions [95–97]. The improvement towards faster and
more robust laser pulses has also been applied in quantum physics in the domain
of few ultracold atoms, such as the stabilization of molecules [98] and the control
of quantum dots [99]. In combination with the raising field of machine-learning
fast optimization has been achieved for the generation of a BEC [100].

7.1 The transport of an atomic wave packet in

optical lattices

One task in our experiment is to transport an atom prepared in the ground state
as fast as possible over a certain distance without heating it as shown in Fig. 7.1.
One example is the quantum walk experiment. A quantum walk is the quantum
analog of a classical random walk and can be regarded as a universal computa-
tional primitive. It builds a basic block for a series of quantum algorithms in
quantum computing [101]. All our experiments are based on discrete operations,
which are repeated in time. Discrete-time quantum walk experiments with single
atoms in optical lattices, as performed with our system, coherently delocalize mat-
ter waves [57]. The basic quantum walk protocol consists of two building blocks:
The coin operation brings an atom into a coherent superposition of the |↑〉- and
|↓〉-state. The shift operation transports each spin component by a certain dis-
tance in opposite direction, which results in a controlled delocalization. Repeating
this process many times, the quantum interference of the two-particle trajectories
show quantum correlations that strongly differ from its classical counterpart. Af-
ter a discrete number of coin and shift operations in a classical random walk, the
probability to end up at a specific final position is given by a binomial distribution.
In a discrete-time quantum walk, the quantum interference caused by the coherent
superposition of the walker over different paths changes the spatial distribution.
Ultimately, the amount of operations we can perform is given by the coherence
time T2 of up to 240µs [30] divided by the amount of time each operation lasts.
Since optimal control theory also holds promise to make the control pulses robust
against small experimental deviations, it seems a natural desire to shorten and
optimize the operations as much as possible. Transporting the atoms using the
state dependent optical lattice, is the most time consuming operation. In former
experiments the transport required several tens of microseconds.

I demonstrate in this chapter, how the process can be significantly reduced in
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Figure 7.1: Simulation of an optimal control atom transport over one lattice site:
The initial and final state are defined as the ground state. The optimal control
transport ramp is optimized for a trap depth of kB · 28.4µK and a transport
duration of 14.5µs and reaches a transport fidelity of 99%). From top to bottom,
the figures show the position of the lattice (red) and the normalized wave packet
(blue) in equal time steps.

time and simultaneously improved in precision. In the first part, I introduce a
measurement technique based on the previously discussed microwave sideband
spectroscopy to quantify the transport fidelity of a driving ramp. I investigate
the transport dynamics in case of linear driving ramps, as used in previous quan-
tum walk experiments [57]. A strong dependency on the longitudinal trapping
frequency and the dipole trap crosstalk for the different spin states was limiting
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the transport time and fidelity.
With the high control of this setup and precise knowledge of the system, I

derive a model to simulate the transport fidelity for an arbitrary transport ramp.
With this model at hand, I use optimal control theory to derive driving ramps
for arbitrary transport times and fidelities up to 99.9999 %. The transport time
is then limited only by the quantum speed limit. It describes a fundamental limit
given by nature and is investigated in chapter 8.

For prospective quantum walk experiments with optimized transport ramps, I
analyze the dynamics of multiple repetitions of the same driving ramp. Further-
more, to overcome even disregarded experimental imperfections, I demonstrate
live optimal control of a driving ramp, where the system optimizes itself. For our
experiment, this method can be used for large-distance optimal control transport,
where the Hilbert space gets too large to be simulated by conventional computers
in a reasonable time.

7.2 Theoretical model of the transport fidelity

In transport experiments, it is important that the transported particle reaches a
certain target state. In this chapter, I derive a theoretical model of the transport
fidelity.

The general definition of the transport fidelity F is given by the squared overlap
between the evolution of the initial state |ψinit〉 after a time T with a target state
|ψtarget〉:

F = | 〈ψtarget|ψ(T )〉 |2

= | 〈ψtarget|Ûevo(T )|ψinit〉 |2

= | 〈ψtarget| exp

(
− i
h̄

∫ T

0

Ĥ(t′)dt′
)
|ψinit〉 |2 .

(7.1)

The initial and target states are the normalized and real-valued vibrational ground
states at different lattice site locations. The initial state is prepared in the vibra-
tional ground state at the lattice position d = 0: |ψinit〉 = |n = 0, d = 0〉. The
target position used in this work is shifted by one lattice site ∆d = λDT/2 or
multiple integers of this distance: |ψtarget〉 = |n = 0, d = ∆d〉. A detailed descrip-
tion of the numeric evaluation of these so-called Wannier states can be found in
appendix A.2. The unitary time-evolution operator Ûevo(T ) is determined by the
system Hamiltonian. In the laboratory frame, the one-particle Hamiltonian is
given by the kinetic energy of the cesium atom with mass mCs and the potential
energy of the sinusoidal lattice potential with the wave number ky:

Ĥ = T̂ + Û =
p̂2

2mCs

+ U↑/↓(t) cos2(kyŷ − ϕ↑/↓(t)/2) . (7.2)
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The control fields that drive the transport ramps, are steered by the potential depth
U↑/↓(t) and the phase ϕ↑/↓(t) for the |↑〉- or |↓〉-state respectively. In the next step,
I decompose the evolution operator into a time-ordered product of operators with
t0 < t1 < t2:

Ûevo(t2, t0) = Ûevo(t2, t1)Ûevo(t1, t0) . (7.3)

This property allows to trace the evolution of the initial state in time, even though
the Hamiltonian is time-dependent. The time steps ∆t of the numeric integration
must be chosen sufficiently small in order to assume a constant Hamiltonian over
this time interval:

|ψ(t+ ∆t)〉 = Ûevo(t+ ∆t, t) |ψ(t)〉

= exp

(
− i
h̄

∫ t+∆t

t

Ĥ(t′)dt′
)
|ψ(t)〉

≈ exp

(
− i
h̄

(
T̂∆t+ Û(t+

∆t

2
)∆t

))
|ψ(t)〉 .

(7.4)

The kinetic energy term T̂ is time-independent and the potential energy term Û
is approximated by the midpoint rule [102]. Both operators can not be simulta-
neously diagonalized in momentum and position space, which would be desired
for a fast numeric integration. However, the kinetic term has a diagonal form in
momentum space and the potential energy term in position space. Since both
operators are arguments of an exponential function, the evaluation is nontrivial.

A general approach to solve the time-dependent Schrödinger equation is the
split-operator exponential fast-Fourier transform method [103]. It splits the oper-
ator into a product of two terms in each representation, which then allows to use
fast-Fourier transform to evaluate the actions of the operators in their respective
local representation. In the following, the second order leapfrog composition is
chosen following from the Baker-Campbell-Hausdorff expansion [104]:

Ûevo(t+ ∆t) = exp

(
− i
h̄
T̂∆t

)
· exp

(
− i
h̄
Û(t+

∆t

2
)∆t

)
+O(∆t2)

= exp

(
− i
h̄

T̂

2
∆t

)
· exp

(
− i
h̄
Û(t+

∆t

2
)∆t

)
· exp

(
− i
h̄

T̂

2
∆t

)
+ O(∆t3)

≈ Û T̂
evo(p̂) Û Û

evo(ŷ) Û T̂
evo(p̂) .

(7.5)
The time tracing of a state ψ is then computed with two additional Fourier trans-
formations to evaluate the actions in their relative representation:

|ψ(y, t+ ∆t)〉 ≈ Û T̂
evo(ŷ) F−1

[
Û Û

evo(p̂) F
[
Û T̂

evo(ŷ) |ψ(y, t)〉
]]

. (7.6)
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The energy during transport can be computed in a similar way:

E(t) ≈F [〈ψ(y, t)|] T̂ (p̂) F [|ψ(y, t)〉]
+ 〈ψ(y, t)| Û(t+ ∆t, ŷ) |ψ(y, t)〉 .

(7.7)

Accuracy of the model

The accuracy of the simulation depends mainly on the approximation by the fac-
torization of the evolution operator in eq. (7.5). It is possible to increase the
precision to the order O(∆t4) [105]. Furthermore, for numerical stability, the time
increment ∆t must be chosen small enough to ensure an accurate computation of
the time-dependent wavefunction. Similarly, the spatial sampling interval interval
∆x must be chosen small enough to accommodate the spatial bandwidth of the
wavefunction. In the simulation, I assume a finite number of lattice sites. The
boundary conditions are chosen to be periodic, which means, when a wave packet
or parts of it are moving beyond the last lattice site, it reappears again in the
first lattice site, and vice versa. Therefore, the number of lattice sites have to be
chosen sufficiently large that the wavefunction is negligible on the grid boundary.

Transport fidelity for finite radial temperature

So far, the one-dimensional model neglects the radial degree of freedom of the
atom in the lattice. The oscillation in the radial direction with a period of
2π/Ωrad = 1 ms (see eq. (2.5)) is small compared to the transport duration of
a few tens of microseconds and therefore, we can regard the atoms radial position
as static during the transport. The radial position distribution Prad(ρ) in harmonic
approximation is given by

Prad(ρ) =
ρ

σ2
exp

(
−ρ2

2σ2

)
σ =

√
kBTrad

mCsΩ2
rad

=

√
kBTrad

4U↑/↓
w(yDT) ,

(7.8)

and depends on the radial temperature Trad and the Gaussian dipole trap beam
waist w(yDT). For a finite radial temperature, the effective trap depth UDT(ρ)
(see eq. (2.3)) changes depending on the radial distance ρ to the trap center. The
further an atom is located away from the trap center, the smaller is the effective
trap depth. Since the optimal control solution can only be optimized for one trap
depth U(t), the transport fidelity is reduced for other trap depths. The average
transport fidelity is then determined by

〈F〉 =
∑
ρ

Prad(ρ) F(UDT(ρ)) dρ . (7.9)
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The strong dependency of the transport fidelity on the trap depth allows to deter-
mine the finite radial temperature with high precision. In the next chapter, I use
this model to interpret the transport fidelity of linear transport of atoms.

7.3 Measurement of the transport fidelity

In order to determine the transport fidelity, the target state needs to be measured.
In this work, target state is defined as the vibrational ground state in a certain
lattice site.

In several ion experiments, transport schemes, which preserve the ground state
have been demonstrated to shuttle atoms between different experimental regions
with a separation of a few hundred micrometers [106–108]: With a linear ramp
lasting just a few microseconds, the atom in the vibrational ground state of the
trap is suddenly accelerated, then moved at a constant velocity and decelerated
rapidly again. As expected, a high transport fidelity of the ground state population
is observed at integer multiples of the period of atomic oscillations in the harmonic
trap 2π/Ωtrap. For other transport durations, the atoms get highly excited. The
excitations were measured using Raman sideband spectroscopy as introduced in
chapter 4.

In our experiment, we typically use transport of single and a few atoms over a
distances of half a lattice site up to several hundreds of lattice sites to generate
low-entropy states [29], to demonstrate the violation of the Leggett-Garg inequal-
ity [109] or to perform quantum walk experiments [110], just to mention a few
recent applications. In this work, I transport for simplicity a single atom in |↑〉- or
|↓〉-state over one lattice site, which corresponds to λDT/2 = 433 nm as a bench-
marking point. The second state-dependent lattice is kept at rest. To quantify the
transport fidelity, I determine the ground state population before and after the
transport. A fit of the derived one-dimensional temperature model (chapter 6.1)
to a microwave sideband spectrum, determines the population occupation of all
vibrational states p(n). For a trap depth of kB ·80µK, n = 18 bound states are ex-
pected by solving the stationary Schrödinger equation. Before transport the atom
is well prepared close to the vibrational ground state. However, after transport
the atoms are excited out of the thermal equilibrium and I assume a Gaussian
distribution with the mean value µ and the standard deviation σ:

p(n) =
1

S
exp

(
−(n− µ)2

2σ2

)
. (7.10)

The one-dimensional temperature model determines this probability distribution.
Without atom loss, the sum of the probability is one. A measurement of the atomic
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Figure 7.2: Measurement and simulation of the transport fidelity for different
transport durations by using a linear transport ramp over one lattice site: (a)
The transport fidelity is measured for the |↓〉-state (blue) and compared to the
derived model in chapter 7.2. A high transport fidelity of the ground state pop-
ulation is observed at integer multiples of the period of atomic oscillations. The
fidelity and robustness increases with higher harmonics. (b) The measured trans-
port fidelity of the |↑〉-state shows a high transport fidelity for different transport
durations. This is a result of the dipole trap crosstalk for the |↓〉-state, when both
state-dependent lattices have the same trap depths.

survival rescales the probability distribution:

S =
∑
n

p(n) . (7.11)

The ground state population manifests itself mainly in the ratio of the cooling
and heating sideband peak heights as well as a small shift of their peak positions.
To keep the measurement within a reasonable measurement time, I measure the
sideband heights at two fixed frequencies, one at the cooling and one at the heating
sideband frequency, for different driving ramps.

For a linear transport, the measured ground state occupation for variable trans-
port durations together with a least square optimization of the previously intro-
duced model in chapter 7.2 is shown in Fig. 7.2 for the |↑〉- and |↓〉-state. As
expected, a high transport fidelity after transport is observed for the first two
multiples of the oscillation period. The period is significantly different for both
spin states. The difference is explained by the crosstalk of the state-dependent
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lattice (see eq. (5.3)): The trapping potential for the |↑〉-state remains constant
throughout the transport. However, for the |↓〉-state, the trap depth temporarily
decreases to 7/8U↓ at half the transport distance as shown in Fig. 5.2. Although
the lattice Uσ−

DT is moved with constant velocity, the |↓〉-state is slightly accelerated
and decelerated according to eq. (5.4). This crosstalk is also responsible that the
periodic peaks for atoms in |↓〉-state are not equidistant. Therefore, it was not
possible to achieve coherent transport of both atoms simultaneously using the first
harmonic of the oscillation period in previous experiments. A transport duration
at for the second or third harmonics was chosen instead. A second reason to choose
a slower transport is an increased robustness against experimental imperfections,
which is indicated by a broadening of the peaks. The experimentally obtained
transport fidelity shows a remarkably good agreement with the theoretical anal-
ysis of the linear transport, making it therefore a reliable tool in the experiment
to precisely extract the trap depth and radial temperature of the atoms. In the
following, I will extend this model for an arbitrary driving ramp.

7.4 Optimal control theory for high transport

fidelity

A main goal of this work is to preserve the ground state occupation of the atoms
after transport with high fidelity. To derive optimal transport ramps, I use optimal
control theory.

Optimal control theory aims to improve the steering of a desired quantum pro-
cess. The optimization problem is formulated as a minimization problem and can
be numerically approached by direct search methods. Two of the most commonly
used algorithms are the Krotov-type method and the gradient ascent pulse engi-
neering (GRAPE) algorithm [94]. The Krotov method is similar to the GRAPE
algorithm, which is an iterative method with monotonic convergence. It has been
used for example to generate control pulses for Bose-Einstein condensates [111].
GRAPE is applied for the design of pulse sequences in nuclear magnetic resonance
spectroscopy and is based on an iterative gradient ascent procedure with many
forward and backward propagations of the target functional [112]. The final error
scales linearly with the number of algorithm iterations.

The computational method, I use for our system, is inspired by the chopped
random-basis (CRAB) algorithm [113]. The numerical calculation is developed in
cooperation with Antonio Negretti [114]. The technique is based on a numerical,
iterative descent, where the error scales exponentially with the number of opti-
mization parameters. While the control fields are usually discretized in time for
the GRAPE and Krotov method, the CRAB algorithm expands the control in a
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function basis, which significantly reduces the dimensionality and the computa-
tional effort.

Optimization algorithm

The basic idea optimal control theory is the minimization of a cost function C
defined in our case by the transport infidelity

C = 1−F
= 1− | 〈ψtarget|Ûevo(T )|ψinit〉 |2 .

(7.12)

The fidelity F was introduced in the previous chapter in eq. (7.1). In case the
target states are unknown or described by a family of target states as for example
in experiments with highly entangled states [115], desired properties or conditions
of the target states can also define the cost function. For the CRAB algorithm
[113], the control fields, which steer the system, are described by a function basis.
This basis is chopped, in order to operate on a finite number M of basis functions.
In order to optimize the transport fidelity, we parameterize the control fields,
which are the potential depth U↑/↓(t) and the phase ϕ↑/↓(t). For a fast optimization
success, the choice of the basis functions is crucial and a prior knowledge about the
system is often necessary to restrict the solutions. The optimal control solutions
derived with the numerical simulation show in most cases a certain symmetry of
the control fields: The phase ramp is point symmetric while the potential depth
ramp is axial symmetric. Therefore, the Fourier series is a reasonable ansatz to
determine a solution. The choice of this ansatz allows additionally to truncate the
basis functions in a physically meaningful way. The maximum frequency is chosen
as the system bandwidth of approximately 1 MHz. The lowest frequency is given
by the time of the transport. The trap depth is then given by a constant offset
U0
↑/↓ modulated with sinus functions. The phase describes a linear ramp plus a

modulation of the same basis functions with the control parameters c = {am, bm}:

U↑/↓(t, T ) = U0
↑/↓ +

M∑
m=0

am sin(νmt), t ∈ [0, T ] ,

ϕ↑/↓(t, T ) =
2π

T
t +

M∑
m=0

bm sin(νmt), t ∈ [0, T ] .

(7.13)

The boundary conditions are defined as an initial phase ϕ↑/↓(t = 0) = 0 and
amplitude U↑/↓(t = 0) = U0

↑/↓ and final phase ϕ↑/↓(t = T ) = 2π and amplitude

U↑/↓(t = T ) = U0
↑/↓. These constraints are satisfied for νm = mπ/T . Furthermore,

we restrict the maximum slope of the phase ramp of 0.838 rad/µs, which is given by
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Figure 7.3: (a) Fidelity landscape of optimal control solutions for different trap
depths and transport times by optimizing the phase of the transport ramps. A
relatively sharp border is observed, where the fidelity starts to significantly reduce
from 100 %. This is identified as the quantum speed limit. (b) The solution for
different numbers of Fourier components is shown for a trap depth of kB · 25µK.
Zero components corresponds to a linear phase ramp. As expected, the point
symmetry of the phase ramp reflects in a significant improvement for even Fourier
components (point symmetric). For the measurements in this work, I optimize 10
Fourier components.

the bandwidth of the phase lock loop, and a maximum trap depth limited by the
available laser power. The conventional CRAB algorithm needs less optimization
parameters then this approach, since the basis is randomized by a random number
that breaks the orthonormality of the functions and leads to a faster convergence
and higher bandwidth [113]. However, for a transport over hundreds of lattice
sites, the number of optimization parameters has to be constraint further, which
can introduce local minima into the solution space [116] and impede the search for
an optimal control solution. A more sophisticated method is the dressed CRAB
algorithm [117], which uses multiple sets of different basis functions in order to
escape from local minima with a reduced number of optimization parameters.

However, for transport experiments over one lattice site, the number of search
iterations for the fixed basis functions described in eq. (7.13) is similarly fast as the
conventional CRAB algorithm. The nonlinear programming solver ”fmincon” from
MATLAB is applied as a direct search solver to approximate the solution to this
optimal control problem. It is based on the interior-point algorithm. Figure 7.3(a)
shows a fidelity landscape of optimal control transport ramps for different trap
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Figure 7.4: State occupation during optimal control transport: The optimal con-
trol solution is optimized for a trap depth of kB · 25µK and a transport time of
20µs close to the quantum speed limit. An atom initialized in the ground state
is highly excited during the transport, which is shown by the state occupation
probability for the different bound states in the lattice. At the end of the ramp,
the state evolves from high excited states back down into the ground state.

depths and transport times. Above a certain transport time, which is defined as the
quantum speed limit, the algorithm always finds an optimal control transport ramp
with fidelity 99.9999 %. The quantum speed limit shows a square root dependency
on the trap depth and follows closely a classical description of the problem. A
deeper analysis of this fundamental limit follows in chapter 8.1.

Figure 7.3(b) shows exemplarily the solution for different Fourier components
for the trap depth of kB · 25µK. It verifies the expectation of the point symmetry
of the phase ramp, since only even Fourier components lead to an improvement of
the transport fidelity. For large transport times the first even Fourier component
is already sufficient to improve almost perfectly the linear transport with zero
Fourier components. However, close to the quantum speed limit higher orders
are necessary. For the measurements shown in this work, I optimize 10 Fourier
components for the amplitude and phase modulation.

Figure 7.4 shows a deeper analysis of an optimal control ramp at a trap depth
of kB · 25µK and a transport time of 20µs close to the quantum speed limit. An
atom initialized in the ground state is highly excited during the transport up to
the highest bound state as the state occupation probability for the different bound
states in the lattice shows. At the end of the ramp, the state evolves from high
excited states back down into the ground state.
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Experimental realization of optimal control transport ramp

The optimal control solution from the numerical calculation has to be implemented
in the physical setup as real phase and amplitude profiles. In order to realize these
driving ramps, we use the phase and amplitude control systems.

An optimal control solution for atom transport over one lattice site in 12.3µs
is shown in Fig. 7.5. The transport ramps are in the time range of a few tens of
microseconds and always show a point symmetry for the phase, and axial sym-
metry for the amplitude. Bandwidth limitations as well as nonlinearities of the
phase and intensity control become relevant. In order to get the optimal control
solution as the output signal from the control systems, the ramps need to be de-
convolved with the measured impulse response functions of the particular system
as described in chapter 5.5. The result is loaded onto the direct digital synthe-
sizer (DDS), which steers the AOM controlling the intensity and phase of the laser
beam as shown in Fig. 7.5(a). The intensity is directly measured by an out-of-loop
photodiode, while the phase is determined by a quadrature measurement. During
the application of this method, the synthesized arms are set to the same intensity.
The interference of the opposite circular polarization of the co-propagating laser
beams results in an effective linear polarization. The angle of the linear polar-
ization depends on the relative phase difference ∆ϕ(t) = ϕσ

+
(t) − ϕσ

−
(t). The

beams are guided through a polarizing beam splitter. An out-of-loop photodiode
measures the intensity proportional to sin2 (∆ϕ(t)/2) according to Malus’s law. In
a second measurement, one synthesized arm is shifted by a phase of π/4 and the
photodiode measures a signal proportional to sin2 (∆ϕ(t)/2 + π/4). With these
two quadrature components, the relative phase between the synthesized arms is
determined as follows:

ϕσ
+

(t)− ϕσ−(t) = arctan

(
sin(∆ϕ(t))

cos(∆ϕ(t))

)
,

cos(∆ϕ(t)) = 1− 2 sin2

(
∆ϕ(t)

2

)
,

sin(∆ϕ(t)) = 2 cos2

(
∆ϕ(t)

2

)
− 1 ,

= 2 sin2

(
∆ϕ(t)

2
+
π

4

)
− 1 .

(7.14)

In order to further improve the phase and amplitude ramp, an iterative optical
feedback is applied to compensate nonlinearities of the control system. The lim-
ited bandwidth is increased by overdriving the control system. A feedback proce-
dure measures the difference between the optical output yi(t) and the expectation
yOC(t). The difference is resized with a scaling factor α ∈ (0, 1) and added to the
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Figure 7.5: Phase measurement of an optimal control solution: (a) The blue phase
ramp shows the optimal control solution from the simulation for a transport du-
ration of 12.3µs. The green input signal of the DDS is the deconvolution of the
ramp with the measured impulse response of the particular control system which
compensates for bandwidth limitations. An iterative optical feedback method also
compensates for nonlinearities of the control system and results in the red input
signal. (b) The quadrature measurement technique measures optically the phase
ramp of the lattice. In this example four iterations are sufficient for a scaling factor
of α = 0.5. The red and blue curve almost perfectly overlap. Quantitatively the
coefficient of determination improves from R2 = 0.9916 to R2 = 0.9997.

previous ramp. After a deconvolution as described in eq. (5.13), the new input
ramp ui+1(t) is determined by:

Ui+1(s) =
F [yi(t) + α(yi(t)− yOC(t)]

F [g(t)]
,

ui+1(t) = F−1 [Ui+1(s)] ,

yi+1(t) = (ui+1 ∗ g)(t) .

(7.15)

The coefficient of determination R2 quantifies the goodness of the observed and
expected driving ramp:

R2 =
1−

∑
[yi(t)− yOC(t)]2∑

[yi(t)− yi(t)]2
. (7.16)

The result of the iterative feedback of four repetitions is shown in Fig. 7.5 and
demonstrates a remarkable good reproduction of the optimal control ramp. The
ramps used for measurements in this chapter are not improved by the iterative
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feedback method and still show slight imperfections. This leads to a slight differ-
ent transport fidelity. In order to compare the measured transport fidelity to the
derived model, we measure all ramps optically by a quadrature measurement. The
iterative feedback method is applied in combination with an improved measure-
ment technique of the transport fidelity described in chapter 8.

Limitations of the optimal control ramps and outlook

The main limitation is the bandwidth of the control system, which constraints the
maximum slope of the driving ramp to 0.838 rad/µs. After the AOM the wave
front of the lattice beams can be distorted. The distortion can change during a
phase ramp driving the AOM. The change in coupling efficiency of the laser light
into the fibers due to the different distortions leads to a change in trap depth. It
has to be compensated by the intensity lock and will be further improved by the
high bandwidth lock system. Further noise sources are beam pointing instabilities,
which result in a change of the trap depth. Off-resonant scattering of the dipole
trap laser photons heats up the atoms and results in a reduced measured fidelity.

A new digital lock system provided by Signadyne (M3300A PXIe AWG and
Digitizer Combination) should soon replace the analog feedback system. In com-
bination with a feed forward technique recently derived in the work of Werninghaus
[118], the bandwidth limit can be improved by one order of magnitude.

7.5 Measurement of optimal control transport

The implemented optimal control ramps are used to transport atoms over one
lattice site. The measurement of the transport fidelity is performed for a constant
trap depth of kB · 80.9µK for the |↑〉- and |↓〉-state.

An example of an optimized phase and amplitude ramp is shown in Fig. 7.6 for
14µs. In order to perform the same transport ramp for both spin states, the ramps
of the σ+-pol. lattice are identical to the simulated ramps, while for the |↓〉-state,
the dipole trap crosstalk is compensated with the σ−-pol. lattice. Further details
on the compensation method can be found in chapter 5 and appendix A.1.1. The
ramps are deconvoluted with the measured impulse responses of the phase and
amplitude control systems and loaded onto the DDS. The DDS steers the AOMs,
which manipulates each individual lattice. In this first approach, the ramps are not
further improved by the iterative feedback method. The optimal control solutions
show the expected improvement in transport fidelity and robustness for various
transport duration in comparison to the linear transport.

Figure 7.7 and 7.8 show the result for the |↑〉- and |↓〉-state, respectively. Each
figure shows a comparison of an optimal control transport, with a nearly constant
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Figure 7.6: Comparison of an optimal control solution for the |↑〉- and |↓〉-state
optimized for a transport duration of 14µs: (a) amplitude ramp and (b) phase
ramp. The optimal control solution is an optimization of the phase ramp with
constant trap depth (red). The ramps of the σ+-pol. lattice are identical to the
simulated ramps. In order to realize the same optimal control solution for the |↓〉-
state, the dipole trap crosstalk is compensated with the σ−-pol. lattice (green).

high fidelity, an elongated single optimal control ramp with a maximal fidelity near
the optimized transport time and a linear transport (blue). The transport fidelities
are determined experimentally as described for the linear transport in chapter 7.3.
The theoretical model of the transport fidelity (red) described in chapter 7.2 is
fitted to the measurement of the linear transport, which determines a slightly
higher trap depth of U↑ = kB · (85.7 ± 1.2)µK and U↓ = kB · (86.7 ± 1.2)µK than
expected, since the model takes into account the anharmonicity of the trapping
potential and a radial temperature Trad,↑ = (8.0 ± 1.6)µK and Trad,↓ = (7.6 ±
1.6)µK. The models in Figure 7.7(a),(b) and 7.8(a)-(c) uses the determined trap
depth and radial temperature from the linear transport. Therefore, the models
are calculated without free parameters and describe all the measurement data
remarkably well. If available, the simulation uses the optically measured ramps
to consider imperfections in their reproduction, which become significant near the
bandwidth limitation of the phase and intensity control system. This is observed in
Fig. 7.7(a) and 7.8(a) for transport durations below 15µs as a decrease in transport
fidelity. With this new transport scheme, it is now possible to reduce the transport
time while maintaining a high fidelity. For both spin states, I choose one optimal
control solution at T = 12µs or T = 14µs. If the ramp is elongated over different
transport times, as shown in Fig. 7.7 (b) and 7.8 (b), the transport fidelity remains
high for several transport durations. This plateau is significantly larger than for
linear transport ramps. This shows, that the optimal control solutions have a
better robustness against experimental imperfections than the linear transport
ramps. Since the optimal control algorithm only optimizes on the transport fidelity,
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Figure 7.7: Measurement of optimal control transport of the |↑〉-state for a trap
depth of kB · 85.7µK: (a) Optimal control transport for different transport dura-
tions is compared with (b) a single optimal control solution optimized for 14µs,
which is elongated for different transport durations and (c) linear transport. Op-
timal control transport shows a significant improvement of the transport fidelities
compared to the linear transport. The optimal control solutions are optimized for
a trap depth of kB · 80.9µK. For lower transport durations the fidelity decreases
below 100 % due to an underestimation of the trap depth, imperfections of the re-
produced transport ramps and a finite radial temperature, which is confirmed by
the numerical calculation. The simulation uses the fit result of the trap depth and
radial temperature from the linear transport. (b) demonstrates a higher robust-
ness of the optimal control solution against experimental imperfections indicated
by a broad plateau.

it can happen that the plateau is asymmetric around the optimized transport time.
In Fig. 7.8 (c) I did not compensate the dipole trap cross talk for the |↓〉-state. As
a consequence, the transport fidelity reduces considerably.

The measurement of optimal control transport shows a remarkable improve-
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Figure 7.8: Measurement of optimal control transport of the |↑〉-state for a trap
depth of kB·86.7µK: (a) Optimal control transport for different transport durations
is compared with a single optimal control solution optimized for 12µs, which is
elongated for different transport durations (b) with and (c) without dipole trap
crosstalk compensation. (d) shows a linear transport. As for the |↑〉-state optimal
control transport shows a significant improvement of the transport fidelities and
robustness compared to the linear transport. The optimal control solutions are
optimized for a trap depth of kB · 80.9µK. The simulation in (a) deviates from the
measurement since the optically measured ramps with deviations from the ideal
ramps are not available, and therefore can not be used in the theoretical model.
The deviations increases significantly for ramps below 15µs near the bandwidth
limit of the control loops. (b) exhibits a significantly higher transport fidelity
compared to (c), which shows the importance to compensate for the dipole trap
crosstalk for the |↓〉-state.
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ment compared to the previous transport scheme with linear ramps. The new
transport scheme overcomes the restriction to choose a certain transport time and
has a higher transport fidelity and robustness against experimental imperfections.
In addition, we can compensate the dipole trap crosstalk, which allows coherent
transport for both spin states simultaneously.

Conclusion

Applications of the state-selective transport employing quantum interference of
atomic wave functions gain a factor of two in transport times compared to previous
experiments. The probability to excite the vibrational state is reduced from 3 %
for linear transport [57] to 1 % for optimal control transport. Additionally optimal
control solutions show a higher robustness against experimental imperfections.
The measurement shows a high sensitivity of the trap depth and the radial finite
temperature. Therefore, the two parameters can be determined with high precision
by a fit of the model. The new transport scheme allows a free choice of the
transport duration, which is only limited by the quantum speed limit. If the
dipole trap cross talk is compensated, the optimal control solutions are applicable
for both spin states equally.

One of the key applications of this setup is the transport over distances of
several lattices sites. In many cases, the transport is not realized in one step, but
in multiple steps with state manipulation operation between transport steps. The
dynamics of multiple transport steps is analyzed in the next chapter.

7.6 Multiple step optimal control transport

With the successful implementation of optimal control transport over one lattice
site, I extend the sequence to a transport over multiple lattice sites. Here, it is
interesting to investigate the robustness of successive transport steps.

The novel, fast optimal control transport can significantly reduce the effects by
decoherence, which turns for example the quantum walk into a classical random
walk. That is why I investigate the successive repetition of an optimal control
solution optimized for a transport duration of 12µs. The delay time between shift
operations of 5µs. This corresponds to the time of a microwave π/2-pulse, which
can be used in quantum walk experiments as a coin operation.

To investigate the robustness of successive transport steps, I measure the trans-
port fidelity and the atom survival in dependence of the number of transport steps.
The result is shown in Fig. 7.9(a). While the single step transport sequence ex-
hibits a high transport fidelity, the excitations for multiple step transport add up
and lead to a significant loss of atoms from the trap. The atom loss rate of the
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Atom prepared in n = 0

Atom prepared in n = 0

Atom prepared in different n

Atom prepared in n = 0

Figure 7.9: Dynamics for multiple successive transport steps with a delay time of
5µs. A single transport step is an optimal control solution that is optimized for a
transport duration of for 12 µs: (a) For atoms prepared in the ground state, the
transport survival as well as the ground state population reduces with increasing
number of transport steps. The simulation for a trap depth of U↑ = kB·83.5µK and
a radial temperature of Trad = 8µK confirms that a nearly constant fraction of the
atoms remains in the ground state for increasing number of steps. (b) Additionally
to (a), the simulation shows the dynamics also in higher excited states, which are
color-coded according to the inset. The population in higher excited states is
almost negligible. It follows that the ground state population is mostly protected
during the transport. However, if an atom gets excited, it is quickly lost from the
trap, which explains the observed high atom loss.

transport fidelity and the groundstate occupation decreases with increasing num-
ber of transport steps. Although atoms get lost from the trap, a significant fraction
of above 75% of the remaining atoms stays in the ground state. The atoms in the
ground state still show a significant robustness against heating during transport.
For the simulation of the transport fidelity and survival, I choose an empirical
estimate for the trap depth of U↑ = kB · 83.5µK and a radial temperature of
Trad = 8µK. The model is in good agreement with the experimental data. This
model is not fitted, because a numerical calculation of up to 30 transport steps is
too computationally demanding as the dimensions of the underlying Hilbert space
grow exponentially with the size of the quantum system.

The simulation in Fig. 7.9 (b) demonstrates that an atom initialized in an excited
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state is quickly lost from the trap. For atom interference experiments, excited
atoms reduce the contrast, since orthogonal modes of the wavefunction can not
interfere. Therefore, the loss of excited atoms is an advantage. It further shows
that the population in higher excited states is almost negligible. It follows that
the ground state population is mostly protected during the transport. However, if
an atom gets excited, it is quickly lost from the trap, which explains the observed
high atom loss. In the next chapter, I show how the atom survival and the ground
state occupation can be improved for certain time delays between the transport
steps.

Robustness of multiple step transport

The atom survival is a good indicator of the preservation of the ground state,
since the excited atoms get quickly lost. In the following measurement shown
in Fig. 7.10, the optimal control ramp for 12µs optimized for a trap depth of
U↑ = kB · 80.9µK is used for 20 transport steps. The survival for different delay
times between the transport steps shows a periodic behavior. The oscillation is
also reproduced by the theoretical model and coincides with the atomic oscillation
period in the trap 2π/Ωtrap. The previous measurements indicate the presence of a
superposition state of the ground state and higher excited states. The distinctive
shape of the oscillation of this measurement confirms this result and even indicates
the coupling of the ground state with the lowest excited states. A localized time-
dependent atomic wavefunction potential is described in the basis of the bounded
eigenfunctions with an amplitude cn and a phase φn:

|ψ(y, t)〉 =

nbound∑
n=0

e−i(Ent/h̄+φn)cn |y, n〉 . (7.17)

The acceleration of the atoms is continuously changed during the optimal control
transport and the position operator ŷ(t) is therefore time-dependent. During a
linear transport, the sudden shift at the beginning of the transport creates a co-
herent state and the expectation value of the position operator oscillates only with
the trap frequency. However, in case of optimal control transport, it is necessary
to assume a coupling with higher order excited states. The expectation value of
the position operator is then described by

〈ŷ(t)〉 = 〈ψ(y, t)| ŷ(t) |ψ(y, t)〉

=

nbound∑
n=0

nbound−n∑
m=0

e−i((En+m−En)t/h̄+φnmcnm + ei((En+m−En)t/h̄+φnmc′nm .
(7.18)

The expectation value oscillates also with higher multiples of the trap frequency
nΩtrap. For simplicity I assume a harmonic potential En = n h̄Ωtrap. The coupling
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Figure 7.10: Measurement of the transport survival of the |↑〉-state depending on
the delay time between 20 successive transport step: An optimal control transport
ramp of 12 µs duration is chosen. At multiples of the harmonic oscillator period of
the trap, high survival is observed, which is confirmed by a numerical calculation
for a trap depth of U↑ = kB ·83.5µK and a radial temperature of Trad = 8µK. The
asymmetric shape of the oscillation indicates a coupling of the ground state with
the lowest excited states. As a consequence, the state oscillates with harmonics of
the trap frequency, which is confirmed with a fit of the expectation value of the
position operator.

is dominated by the interaction between the ground state and the lowest excited
states:

〈ŷ(t)〉 =

nbound∑
n=0

cos(nΩtrapt+ φn)cn

S =

nbound∑
n=0

c2
n .

(7.19)

The atom survival S = (82.1 ± 1.4) % and the ground state population c2
0 =

(73.0 ± 2.9) % after 20 transport steps is determined from the measurement in
Fig. 7.9. A fit of the model 〈ŷ(t)〉 determines an occupation of 8.7+3.2

−2.7 % in the
first and 0.4+0.9

−0.3 % in the second excited state, which agrees well with the simulation
shown in Fig. 7.9. The fit is shown in Fig. 7.10.

Applications with multiple transport steps with robust delay times ensure low
atom losses and preservation of the ground state occupation. Figure 7.11 shows
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Figure 7.11: Measurement of the robustness of successive optimal control transport
sequences for the outstanding delay times of 5µs and 8µs in Fig. 7.10. The delay of
5µs shows a high robustness against experimental imperfection with an atom loss
below 2 %. However, the delay of 8µs shows a high atom loss for multiple transport
steps. The numerical calculation for a trap depth of U↑ = kB ·83.5µK and a radial
temperature of Trad = 8µK is in good agreement with the experimental data.

a comparison of the dependency between transport survival and the number of
transport steps for two delay times of 5µs and 8µs. Those times where chosen
for showing optimal atom survival and highest atom loss. Even after 40 transport
steps, an atom loss below 2 % is observed for the optimal delay time. For the delay
time of 8µs, it can be observed how the atom loss adds up with increasing number
of transport steps.

To avoid the dependency on specific delay times, one could use optimal control
theory to optimize the driving ramp for a desired delay time. However, I noticed
that the computational capacities for the optimization are already limited for large
distances of a few tens of lattice sites. Another approach is live optimal control,
when the experimental measurement time becomes shorter than the time needed
for the numerical calculation. This is discussed in the next chapter.

7.7 Live optimal control

Numeric simulation can show discrepancies to the real experiment due to inac-
curate assumptions or insufficient knowledge of the system parameters. Earlier
optimal control experiments have demonstrated to improve the result further by
replacing the cost function model by the experiment itself [119]. In a closed loop,
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the experiment delivers the fidelity by a direct measurement during the optimiza-
tion of the control parameters. This live optimal control approach is also advan-
tageous for systems that are computationally demanding, such as the considered
transport problem of long distance optimization. For future applications, a trans-
port of atoms over hundreds of lattice sites is considered. The number of iterations
stays the same for simulation and experiment, while the evaluation time of a sin-
gle fidelity estimation is different. An experimental run takes roughly the same
time while the simulation time increases with the Hilbert space and exceeds the
measurement time.

Optimization algorithm

The optimization algorithm is performed exemplary for the |↑〉-state by optimizing
two Fourier components of the phase ramp

U↑(t, T ) = kB · 80µK = const

ϕ↑(t, T ) =
2π

T
t+

2∑
m=0

bm sin(νmt), t ∈ [0, T ] .
(7.20)

In order to determine the cost function with the experiment, the measurement error
has to be considered carefully. Each measurement is averaged with a minimum
number of 15 repetitions and the measurement continues until a measurement
error below 1 % is reached. A single measurement is an average of about ten
atoms. Furthermore, the cost function is determined by several quantities that are
measured one after the other. To reduce the measurement time, I redefine the cost
function to use a minimum number of measurement quantities: I minimize the
cooling sideband height CSBtransport under the condition that the atom survival
Stransport is above the empirical value of 88 %. This condition is necessary, because
the cooling sideband height scales with the survival and is also minimized for a
low-fidelity transport with high atom loss. In a first approach, the cost function
is defined as follows:

C =

{
1 Stransport < 0.88

2(S0 − Stransport) + (CSBtransport − CSB0) Stransport ≥ 0.88 .
(7.21)

S0 and CSB0 describe the atom survival and cooling sideband height without
transport. The survival is empirically weighted stronger by a factor of two because
it is a necessary condition for a high-fidelity transport. The live optimal control is
tested for a transport duration of 12µs starting with a linear ramp as the initial
guess. The demonstration of live optimal control of a transport over one lattice
site is shown in Fig. 7.12. Each data point corresponds to a ramp with two Fourier
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Figure 7.12: Measurement of a transport ramp optimization with live feedback
from the experiment: A transport ramp over one lattice site with a duration of
12µs is optimized. The optimization parameter are two Fourier components. The
empirical cost function is a weighted sum of a survival and cooling sideband height
measurement (blue). The initial guess is a linear transport ramp. The empirical
cost is optimized in 90 optimization steps. The transport fidelity is calculated with
the derived model for the ramps of each optimization steps. The cost function is
defined as the infidelity (red). In agreement with the simulation, the algorithm
determines an optimal control solution with the same infidelity of 32 %.

components, which are optimized in this measurement. A linear ramp of 12µs has
an empirical cost of 58 %. The cost function converges in 90 optimization steps
to 17 % (blue). The transport fidelity is calculated with the derived model for the
ramps of each optimization steps. The cost function is defined as the infidelity
and shown in red. In agreement with this model, the algorithm is able to optimize
both Fourier components reaching a minimum transport infidelity of 32 %. The
same minimum cost is obtained, when the ramps are optimized with the numerical
optimization algorithm. This measurement demonstrates, that live optimal can be
used as an alternative optimization technique.

7.8 Conclusion

In this chapter, I introduced a numeric approach for atom transport based on op-
timal control. A decomposition of the evolution operator allows a computationally
fast simulation of the atomic motion and the tracing of the time evolution of a pre-
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defined initial state. The overlap with a target state defines the transport fidelity,
which is confirmed experimentally. Furthermore, I demonstrated how optimal
control theory can improve atom transport with respect to high fidelities above
99 %, to larger robustness against experimental imperfections and to a factor of
two shorter transport durations as in previous experiments with linear transport
ramps. The ability to choose an arbitrary transport duration above a fundamental
lower bound, the so-called quantum speed limit, and the possibility to incorpo-
rate imperfections resulting from the lattice crosstalk, high transport fidelities are
reached simultaneously for both spin states. With regard to future quantum walk
experiments, I analyzed the dynamics for multiple successive transport sequences.
A key finding here is, that optimal control ramps efficiently protect the ground
state population while excited atoms are quickly lost from the trap. In addition,
I observe interference effects between the ground state and higher excited states,
which lead to a transport efficiency that depends on the delay time between trans-
port steps. For certain delay times, high atom survival of above 98 % is possible
while maintaining the ground state population for up to 40 transport steps. In
a proof-of-principle measurement, I show that a measurement based on the live
feedback algorithm is an alternative to find optimal control transport ramps. The
advantage of this method is, that knowledge of the system parameters is not re-
quired. It may be used in the future for long distance transport optimization,
where the numerical simulation fails due to unfeasible calculation times.
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Chapter 8

The quantum speed limit

In the last century, many research efforts were inspired by the question how to in-
terpret the Heisenberg’s time-energy uncertainty relation [120]. The interpretation
of this particular relation is challenging due to the fact that time is no observable.
In 1945, Mandelstam and Tamm postulated for the first time, that the principle
is not a statement about simultaneous events as for the position-momentum un-
certainty relation, but rather defines a lower boundary for the time a quantum
system needs to evolve from one state into an orthogonal state [121]. Based on
this interpretation, they derived the first expression for the quantum speed limit
in an isolated system. The quantum speed limit describes a maximum rate, but
in general the name is also used to describe the minimum time. The finite energy
of each system leads to a minimum evolution time. From then on, this concept
has been extended to different regimes. In quantum information, the limit is in-
terpreted as the maximum rate, in which quantum information can be processed
and communicated [122, 123]. As a consequence, a quantum computer can only
execute a limited number of operations in a given time. This limit only depends
on the energy and not on the computer architecture. A parallelization of computer
processes can not overcome this fundamental limit, but help to achieve the fastest
computational speed. The bound definition by Mandelstam and Tamm focuses on
free-evolving systems, with the initial state evolving into an arbitrary orthogonal
one.

With regard to the relevant influence of the environment, for example by de-
phasing, thermalization or dissipation in real-life applications, the quantum speed
limit has been generalized to open systems [124–126]. However, many practical
applications are performed with external driving to reach a specific orthogonal
state. Therefore, a new derivation of the quantum speed limit is needed [127–129].
Such driven systems exhibit a non-equilibrium behavior as a result of the interac-
tion of the system with an external time-dependent field. Recent applications of
optimal control at the quantum speed limit have been successfully demonstrated
for two different driven quantum-mechanical systems [130]: The goal of the first
experiment is the coherent transfer of a Rb87 BEC on an atom chip from the vibra-
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tional ground state into the first excited state by displacing the trapping potential.
With the CRAB algorithm, they derive an optimal driving ramp for the shortest
possible time while maintaining a high transfer efficiency. The second experiment
drives a BEC non-adiabatically from the superfluid phase to the Mott-insulating
phase in the shortest possible time using the same algorithm.

In the first part of this chapter, I demonstrate the quantum speed limit for atom
transport. In a second part, I introduce an improved measurement technique to
detect the transport fidelity with higher precision and analyze the dynamics at the
quantum speed limit for different trap depths. Finally, I propose a measurement
scheme to explore the quantum speed limit of a free-evolving system.

8.1 Quantum speed limit of atom transport

In this chapter, I demonstrate the finite-temperature quantum speed limit in trans-
porting an atom from one position to another in space while preserving the ground
state occupation. High-speed operations in these quantum systems build a key
element in quantum information processing and quantum computation. The ion-
trap quantum computer [131] has demonstrated the elementary requirements for
quantum computation in terms of generation of entangled states [132] and error
correction [133]. Shuttling ions between different trapping zones without heating
takes time in the microsecond regime, and is the limiting factor in fast measure-
ment schemes [134, 135]. Entangling gates demonstrated in previous work at NIST
show a reduced error when the atoms are in the quantum ground state [136, 137].
In order to avoid recooling the atoms after the shuttling, transport sequences
have been demonstrated, that maintain the ground state occupation by adjusting
the transport time to multiples of the oscillation period of the ions in the trap
[106–108]. Similar successes of fast and precise transporting in the non-adiabatic
regime without heating were achieved for neutral atom in optical tweezers [74]
and magnetic quadrupole potentials [138]. In the context of quantum walks, fast
atom transport boost the number of possible operation steps and increases the
measurement fidelity, which is limited dominantly by the coherence time of our
system.

The quantum speed limit

The quantum speed limit in our driven system defines the fundamental upper
bound how fast an atom can be transported over some distance without heating.
In order to extract the information about the quantum speed limit out of the
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Figure 8.1: The classical and quantum speed limit: (a) The quantum speed limit
as indicated by the 95 % fidelity limit (black line) of numerically calculated optimal
control solutions shows a square root dependency on the trap depth similar to the
classical speed limit (red line). (b) The classical driving ramp follows an s-shape,
which accelerates or decelerates the atom at the steepest slope of the sinusoidal
lattice potential.

numerical model and the experimental evaluation, I introduce a heuristic limit:

FQSL = | 〈ψtarget|Ûevo(τQSL)|ψinit〉 |2 = 0.95 . (8.1)

The limit τQSL is defined as the shortest transport time for which the fidelity does
not drop below 95 %. The result of a numerical calculation is shown in Fig. 8.1(a):
The color-coded transport fidelity is derived in dependency of the transport time
t and the trap depth U . The solutions are optimized for a transport over one
lattice site and derived with 15 optimization parameters, which corresponds to the
Fourier components in eq. 7.13. The quantum speed limit (black line) shows a
square-root dependency on the trap depth as it is expected also for the classical
case (red line).

The classical speed limit

In the classical approach the atom experiences the largest acceleration or decel-
eration ±amax in the sinusoidal potential at the position 2kxmax − ϕ = ±π/2 as
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shown in Fig. 8.1 (b). The absolute value of the force Fmax is defined as:

Fmax = mCsamax = −|∇UDT|
∣∣∣∣
x=xmax

= −kU sin(2kxmax − ϕ) = ±kU ,

amax = ± 2π

mCSλDT

U .

(8.2)

I assume a transport sequence in which the atom is constantly accelerated half of
the transport time τ and slowed down in the same amount of time with maximum
acceleration and deceleration, respectively. Therefore, the transport ramp follows
an s-shaped driving ramp. The classical speed limit τ classical for transport distance
d is calculated by

d

2
=

1

2
amax

(
τ classical

2

)2

⇒ τ classical =

√
2 dmCS λDT

π U
.

(8.3)

The classical speed limit is proportional to the harmonic oscillator period τharm =√
mCS λDT/(2U). The time of the classical speed limit is always smaller than τQSL

as shown in Fig. 8.1 (a).

Measurement of the quantum speed limit

For an experimental verification of the quantum speed limit, I use a trap depth of
about kB · 25µK. In the limit of a deep trap, the number of maximum excitations
stays way below the number of bound states and the trap is well approximated
by an harmonic potential. For shallow traps, however, the atoms get excited close
to the highest energetic bound states and the anharmonicity of the lattice has
to be taken into account. From the numerical analysis, the quantum speed limit
is expected at 15µs, which is below the bandwidth limitation of the phase and
intensity control system.

In order to derive the optimal control ramps, the trap depth has to be deter-
mined. This is achieved with a measurement of a microwave sideband spectrum.
A trap depth of kB ·18.86µK is determined by fitting three Gaussian curves to the
carrier transition and two sidebands. This fit method is less accurate, than the
newly developed temperature model and leads to an underestimation of the trap
depth.

The transport fidelity of the derived optimal control ramps is measured as fol-
lows: The atoms are prepared in the motional ground state by microwave sideband
cooling. Since the cooling parameters are optimized for a trap depth of kB · 80µK,
the preparation is done in this deeper lattice potential. Then the trap depth is low-
ered adiabatically to about kB ·25µK within 1 ms and the atoms are transport over
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Figure 8.2: Measurement of the quantum speed limit for a measured trap depth of
kB ·18.86µK. The underestimation of the depth of kB ·24.4µK shifts the measured
quantum speed limit to higher transport durations and leads to a partially reduced
transport fidelities above the limit. For a trap depth of kB · 24.4µK, a quantum
speed limit at 15µs is expected (orange curve). The fit model includes the optically
measured driving ramps for kB · 18.86µK and estimates the trap depth and a
radial temperature of 1.9µK and reproduces the measurement result. In addition,
a comparison of the finite- and zero-temperature model is depicted (red and green
curve).

one lattice site. After the potential is adiabatically increased back to kB · 80µK,
the groundstate population is determined with a microwave sideband spectrum as
described in chapter 6.3. The transport fidelity is determined by comparing the
ground state population with and without transport. The result of the fidelity
for different transport durations is depicted in Fig. 8.2 . The measurement (blue)
shows a significant and sudden increase in transport fidelity around 12µs and
reaches high fidelities up to 98 %. Due to the underestimation of the trap depth,
the transport ramps are not always optimal, which is observed in a decrease of the
fidelity for certain transport times above the quantum speed limit. The derived
temperature model described in chapter 7.3 is used to estimate the trap depth
(red). A fit determines a trap depth of kB ·24.4µK, a radial temperature of 1.9µK
and reproduces well the features in the measurement. A lower estimate of the trap
depth shifts the quantum speed limit from 14µs (orange curve) to higher trans-
port durations as expected for shallower lattices (green and red model curve). The
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Figure 8.3: Measurement of the quantum speed limit for a measured trap depth of
kB ·22.15µK. The better estimate of the depth allows a determination of the finite-
temperature quantum speed limit at 25µs, which is larger than the quantum speed
limit at 14µs for an ideal optimal control ramps for the trap depth and perfect
radial ground state cooling (orange curve). In addition, a comparison of the finite-
and zero-temperature model is depicted (red and green curve).

radial temperature affects the curve towards a slower rise time of the fidelity. The
rise of the transport fidelity for transport durations below the quantum speed limit
is an artifact of our measurement technique, where the ground state population of
all lattice sites is measured. Below the quantum speed limit, the transport is so
fast that the atoms can remain in the ground state of the initial trapping site and
give rise to the experimentally measured fidelity.

A second measurement is shown in Fig. 8.3, where the transport ramps are
optimized for a trap depth of kB ·22.15µK. With this better estimate of the depth,
the transport fidelity significantly improves and the measured quantum speed limit
is determined at 25µs. This limit lies above the expected limit of 14µs. The
optimization algorithm to derive the transport ramps assumes an initial state in
the three-dimensional ground state. Since the atoms are not cooled in the radial
direction, we define the finite-temperature quantum speed limit for thermal atoms
analog to the quantum speed limit to reach 95 % transport fidelity within the
error bars. A higher radial temperature increases the probability, that the atom
is located away from the trap center. As a consequence, the effective trap depth
is on average smaller, which leads to the observed higher quantum speed limit.
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The measurement results shows for the first time the transition over the quantum
speed limit, where the transport fidelity suddenly decreases. The theoretical model
well describes the observed measurement data and even allows a good estimate
of the trap depth and the radial temperature. In the next chapter, a second
measurement technique is introduced, which increases the measurement precision
further.

8.2 Direct vibrational state detection scheme

Figure 8.4: Direct, precise and robust measurement technique to determine the
vibrational state population: 1) After the transport in the |↑〉-state, the atoms
are transfered with a π-pulse into the |↓〉-state with 98 % efficiency. 2a)+2b) A
repetition of population transfer by microwave sideband coupling, which is op-
timized on the |↓, n = 1〉 ↔ |↑, n = 0〉 transition, and followed by a push-out of
atoms in the |↑〉-state, removes efficiently atoms above a chosen vibrational state
m (here m=1). 3) The remaining atoms in the |↓〉-state are detected in a survival
measurement.

So far I used a measurement technique that determines the vibrational state occu-
pation indirectly, since it is based on a model fit to sideband heights in a microwave
spectrum. A more precise ground state detection scheme has been demonstrated
[86], which can directly determine the ground state population. The basic idea is
depicted in Fig. 8.4: Atoms are removed above a certain vibrational state and the
remaining atoms are subsequently counted. First, the atoms are cooled down by
microwave sideband cooling and reach a ground state occupation of (98 ± 1) %.
Atoms prepared in the |↑〉-state are transfered via a carrier π-pulse transition into
the |↓〉-state while preserving their vibrational state distribution. In the second
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step, a microwave coupling on the |↓, n+m〉 ↔ |↑, n〉 transition transfers the pop-
ulation with a vibrational number larger than m−1 into the |↑〉-state. A Gaussian
transfer pulse with a duration of 90µs and a Gaussian width of 9µs is used. The
coupling depends on the Franck-Condon factor and the anharmonicity of the trap
for each transition, which leads to different single state transfer efficiency f1(n+m)
of the vibrational states. Atoms in lower vibrational states are not coupled in this
process and remain in the |↓〉-state. A subsequent push-out pulse removes all
atoms in the |↑〉-state. If the sideband transfer and push-out pulse is repeated
N times, the total efficiency to remove atoms above the state |m− 1〉 increases
exponentially according to:

fN(n+m) = 1− (1− f1(n+m))N . (8.4)

In the last step, the remaining atoms are counted by fluorescence detection. The
number of repetitions is a trade off between an efficient removal of atoms in the
states |m+ n〉 and a high survival probability of atoms in lowest vibrational states.
The ground state population is reduced in each repetition step due to off-resonant
state transfer. For the following measurements m = 1 is chosen to determine the
ground state population after transport.

The result is shown in Fig. 8.5 for a different number of repetitions. The mea-
sured data shows three distinctive dips. The central dip corresponds to the carrier
transition and the left and right valley to the first order cooling and heating side-
band, respectively. For the carrier transition, we observe a single transfer efficiency
of the order of 25 %. The total efficiency to remove atoms is improved with increas-
ing number of repetitions. For more than 10 repetitions, the population is almost
completely removed and the dip evolves into a broader basin. The same effect is
observed for the heating sideband since the microwave transfer pulse is optimized
on the sideband transition |↓, n+m = 1〉 ↔ |↑, n = 0〉 with a singe transfer ef-
ficiency of f1(n + m = 1) = 85 %. However, the cooling sideband stays nearly
unaffected and the survival probability reduces only by a few percent for a repe-
tition number of N = 15. A high repetition rate also leads to a broadening of the
dip. The ground state population results directly from the cooling sideband height
rescaled by the survival probability (gray line). In order to reduce the measure-
ment time, only a measurement at the cooling sideband transition is performed.
Since the position of the dips can change for different vibrational state occupation,
the broadening effect of the dips is an advantage. It further reduces the sensitivity
of a measurement of the maximal depth. In the following experiments, N = 10
repetitions are chosen as a good compromise, resulting in a survival probability
of 91 %. Atoms with a vibrational quantum number larger than one are removed
with an efficiency of 97 %.
In the following measurements, the transport fidelity is determined by the ratio
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Figure 8.5: Microwave spectrum for direct measurement of the ground state pop-
ulation for different number of repetitions N : The blue shaded areas are added
to distinguish the different data sets more easily. In this example, the population
is removed in a vibrational states above n = 0. The population on the carrier
and heating sideband (b†) transition is efficiently removed with increasing number
of repetitions, while the cooling sideband (b) keeps the same height and broad-
ens with more repetitions to a plateau. The survival probability indicated by the
gray horizontal line for N = 15 repetitions slightly decreases for higher number of
repetitions. When the population in the carrier is efficiently removed by several
repetitions, the fidelity is directly extracted from the ratio of the cooling sideband
height with and without transport.

of atoms in the ground state before and after transport. This corresponds to the
ratio of the cooling sideband height with and without transport:

F =
Stransport(νcool)

Sno transport(νcool)
. (8.5)

The transport ramps are optimized by the iterative optical feedback method de-
scribed in chapter 5.5.

The result of a linear transport of the |↑〉-state in dependency of the transport
duration is shown in Figure 8.6 for three different trap depths. Similar to the
previous measurements, we observe a high transport fidelity for multiples of the
oscillation period of the atoms in the trap (blue). The theoretical model of the
transport fidelity fit described in chapter 7.2 follows the measurement data with
remarkable agreement (red). In harmonic approximation, the radial temperature
Trad is linear in the trapping frequency and shows the expected proportionality
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Figure 8.6: Measurement of the transport fidelity for linear transport: The three
data sets are measured for three different trap depths. A high transport fidelity
for multiples of the oscillation period of the atoms in the trap is observed (blue).
A theoretical model of the transport fidelity (red) is a fit of the trap depth U↑ and
the temperature Trad of the uncooled radial direction to the measurement data. It
shows a remarkable agreement with the measured data. The radial motion strongly
influences the transport in comparison to an atom in the three-dimensional ground
state depicted in green.

with the square root of the trap depth within the fit error. A smaller trap depth
leads to a shorter longitudinal oscillation period and results mainly in a shift of the
peaks. To demonstrate the effect of the radial temperature the figure also shows
the simulation for zero radial temperature in comparison (green). The peaks shift
towards larger transport durations, since the atoms see a shallower effective trap
depth on average. This averaging leads to a broadening of the peaks and to an
asymmetric shape with a lower fidelity in the peak maximum. A fit of the linear
transport measurements results in an one order of magnitude better estimate of
the trap depth than a microwave spectrum with an error of a few kB · µK. With
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Figure 8.7: Measurement of the transport fidelity for optimal control transport:
The three data sets are measured for the same three trap depths (blue) as for
the previous measurement for linear transport in Fig. 8.6. From the measured
data, the finite-temperature quantum speed limit (FTQSL) is estimated. It is
defined as the transport duration, when the transport fidelity reaches 95 %. The
theoretical model depicted by the red dots with an extrapolated area uses the fit
result of the linear transport measurement. The ramps were originally optimized
for trap depths of U↑ = kB · {5.6, 12, 26}µK, which underestimates the trap depth
a bit. The strong effect of the radial temperature is demonstrated by the zero-
temperature model (green). A numerical calculation for ideal optimal control
ramps and three-dimensional ground state cooling (orange) allows an estimate of
the quantum speed limit (QSL).

this better estimate of the trap depths, the usage of optimal control ramps can be
further improved.

Figure 8.7 shows the measurement data of optimal control transport in the |↑〉-
state for the same choice of shallow trapping potentials. The theoretical model of
the transport fidelity is calculated without free parameters and uses the fit result
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from the linear transport measurement with remarkable agreement. The finite-
temperature quantum speed limit is a rough estimate, because the optimal control
ramps are determined for slightly different trap depths of U↑ = kB ·{5.6, 12, 26}µK
and the execution of the transport ramps include imperfections and constraints as
discussed in chapter 5.5. For comparison, the figure 8.7 also shows the numerical
calculation for the measurement parameters, but at zero radial temperature. The
rise of the fidelity for the shallow trap depth of kB · 6.7µK for transport durations
below the quantum speed limit is, as previously mentioned, an artifact of our
measurement technique, which measures the ground state population of all lattice
sites. For driving ramps faster than the quantum speed limit time, a significant
fraction of the ground state population remains in the initial lattice site.

The following table shows a summary of the quantum speed limit (QSL) for
ideal optimal control ramps in the three-dimensional ground state and the larger
finite-temperature quantum speed limit (FTQSL) determined from the measure-
ments:

Trap depth U↑ [kB · µK] QSL [µs] FTQSL [µs] Radial temperature Trad

6.7 ± 0.1 30.5 ± 0.5 78.1 ± 1.0 2.4 ± 0.1
14.0 ± 0.1 20.0 ± 0.5 49.0 ± 1.0 3.6 ± 0.2
26.8 ± 0.2 (chapter 8.1) 14.0 ± 0.5 25.0 ± 1.0 3.9 ± 0.3
27.9 ± 0.4 13.5 ± 0.5 24.5 ± 1.0 4.6 ± 0.5

Both measurement techniques used in this thesis agree within the error bars. Due
to the astonishing agreement of the theoretical model and the measured data,
we have a lot of confidence in our model, that we can predict the square-root
dependency of the quantum speed limit on the trap depth.

8.3 Conclusion

In conclusion, the fundamental boundary of fast transport of thermal atoms by
means of optimal control theory has been measured for the first time. The bound-
ary was determined by measuring the transport fidelity of optimal control ramps in
dependency of the transport duration. In order to determine the transport fidelity,
a direct measurement technique of the groundstate population shows a significant
improvement compared to an indirect technique based on a fit of the vibrational
state occupation to a microwave spectrum. The finite-temperature quantum speed
limit τFTQSL was estimated for three different trap depth. In order to measure τQSL

of this system, we need to cool the atoms into the three-dimensional ground state,
which can be achieved by additional Raman sideband cooling. This would allow
us to reach even the zero-temperature quantum speed limit, which is smaller by
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a factor 2.5. The analog control system works close to its bandwidth limitation
for such fast atom transport. To enable quantum walk experiments at deeper
trap depths at the quantum speed limit, a new digital control system is prepared
to be installed. The system is based on a digital arbitrary waveform generator
(M3300A from KeySight) with a bandwidth of up to 200 MHz and a sampling rate
of 500 · 106 samples/s.

8.4 Outlook: Quantum speed limit of a static

system

So far, we can measure the quantum speed limit for a driven system. However,
many theoretical studies analyze the quantum speed limit in the regime of a freely
evolving system. Since this regime was never explored experimentally, I want to
propose a measurement with our state-dependent lattice to determine the quantum
speed limit.

The unified bound

Physicists have analytically investigated the quantum speed limit for various types
of quantum systems. The choice of the information metric that measures the dis-
tinguishability of two quantum states, results in a family of independent quantum
speed limits that differ in tightness [139]. When restricting to orthogonal pure or
mixed states in a static system described by a time-independent Hamiltonian, the
unified bound is defined by [140]

t ≥ τQSL = max
{
τQSL

MT , τQSL
ML , ...

}
. (8.6)

I propose a scheme to test the Mandelstam-Tamm (τQSL
MT ) and Margolus-Levitin

(τQSL
ML ) bound, where I consider a process in which a state evolves freely into an

orthogonal one after some time t:

〈ψ(0)|ψ(t)〉 = 0 . (8.7)

The quantum speed limit derived by Mandelstam and Tamm is given by the stan-
dard deviation of the energy ∆E during the evolution [121]:

τQSL
MT =

πh̄

2∆E
,

∆E =

√
〈ψ| Ĥ2 |ψ〉 − 〈ψ| Ĥ |ψ〉2 .

(8.8)

The derivation is based on the Cauchy-Schwarz inequality. This bound is not
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Figure 8.8: Measurement sequence to test the Mandelstam-Tamm and Margolus-
Levitin bound: The left side shows the measurement sequence in top-to-bottom
order and the right side illustrates the Wigner-function representation of the evolu-
tion of the atomic wave packet for the |↑〉-state. An atom is prepared in the ground
state and transfered with a π/2 pulse into a superposition state. After a sudden
displacement of the σ+-pol. lattice (red), the wave packet for the |↑〉-state (blue)
is described by a coherent state |α(0)〉. The wave packet for the |↓〉-state remains
in the unshifted σ−-pol. lattice (black dashed lines). After the free evolution time
t, the Ramsey interferometer sequence is completed with a second π/2 pulse. The
measured Ramsey fringe contrast directly quantifies the overlap 〈α(t)|α(0)〉.

always suitable, since it becomes arbitrarily small for diverging ∆E, although the
average energy is finite [141]. The quantum speed limit defined by Margolus and
Levitin is directly based on the average energy 〈E〉 and the ground state energy
E0 [142]:

τQSL
ML =

πh̄

2(〈E〉 − E0)
,

〈E〉 = 〈ψ| Ĥ |ψ〉 .

(8.9)

Measurement scheme testing the Mandelstam-Tamm and
Margolus-Levitin bound

In order to test the Mandelstam-Tamm and Margolus-Levitin bound, I propose a
measurement scheme based on Ramsey interferometry. In this measurement the
orthogonality of an initial and final state is determined. The sequence is shown in
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Figure 8.9: Numerical analysis of the quantum speed limit in a static system: The
color-coded fidelity describes the overlap between the initial ground state and the
evolved state for different evolution times t and trap depths U (left) as well as for
different lattice shifts (right). The overlap vanishes only for t ≥ τQSL. I also show
the analytically-derived bounds by Mandelstam-Tamm and Margolus-Levitin. The
numerical calculation follows as expected the larger bound τMT. For long evolution
times, a revival of the fidelity is observed.

Fig. 8.8. An atom is prepared in the ground state and transfered with a π/2 pulse
into a superposition state in the overlapped state-dependent lattices:

ψinit =
1√
2

(|↑, n = 0〉 − |↓, n = 0〉) . (8.10)

The evolution is initiated by a sudden displacement ∆y ∈ (0, λDT/4) of the σ+-pol.
lattice trapping the wave packet for the |↑〉-state. In harmonic approximation, the
state in the shifted lattice is described by a coherent state:

|α(t)〉 = eiωtD(α) |0〉 = eiωte−|α|
2/2

∞∑
n=0

αn√
n
|n〉 . (8.11)

The coherent state is generated by definition by the displacement operationD(α) =
exp(αâ†−α∗â). The wave packet for the |↓〉-state remains in the unshifted σ−-pol.
lattice. After the evolution time t, a second π/2 pulse is applied. The wavefunction
is described by

|ψ(t)〉 =
1

2
|↑〉 ⊗ [|α(t)〉 −D(α) |0〉]− 1

2
|↓〉 ⊗ [D(−α) |α(t)〉+ |0〉] . (8.12)
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A subsequent push-out of the |↑〉-state and a survival measurement maps the state
onto the |↓〉-state. We can trace the contrast of a Ramsey fringe, which quantifies
directly the overlap of the initial ground state with the evolved state:

| 〈↓ |ψ(t)〉 |2 =
1

4
| |α(t)〉+D(α) |0〉 |2

=
1

2
+

1

2
Re[〈α(t)|D(α) |0〉〉]

=
1

2
+

1

2
Re[〈α(t)|α(0)〉] .

(8.13)

Figure 8.9 shows a numerical calculation of Re[〈α(t)|α(0)〉] depending on the evolu-
tion time for different trap depths and lattice displacements. For these parameters,
the bound by Mandelstam-Tamm is larger than the bound of Margolus-Levitin and
the quantum speed limit is determined by τQSL = τMT. This is confirmed by the
numerical calculation, which follows the higher bound. We also observe a revival
of the fidelity after one oscillation period, which is expected to be 1 in an ideal
harmonic trap.

The simulation predicts, that we are able to measure the Mandelstam-Tamm
bound and explore the dynamics with our experimental setup. By choosing dif-
ferent trap depths, we can even analyze the regime of an harmonic trap in case of
a deep trap as well as the influence of an anharmonic shape in case of a shallow
lattice.
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Chapter 9

Conclusion

This thesis presents results on motional control of atomic wave packets in optical
lattices and introduces a novel concept of optimal transport: (i) The first part
demonstrates three-dimensional ground state cooling in an optical dipole trap of
an atom-cavity system. The measurement is interpreted with a newly developed
temperature model. (ii) In the second part, I investigate a new method of fast
atom transport without heating in a state-dependent lattice. By means of optimal
control theory, transport ramps are derived and experimentally implemented.

The two-dimensional trap of an atom-cavity system was extended by a new blue-
detuned dipole trap in order to strongly confine atoms in all three dimensions. This
new confinement allows to use the recently developed method of carrier-free Ra-
man sideband cooling additionally along the third direction. This technique is
applicable without the need of additional lasers. The suppression of the carrier
transition is achieved by trapping the atom in the zero-crossing of the electric field
of one of the Raman beams and can lead to a five times higher cooling efficiency.
The temperature in the three-dimensional trap is determined by the measurement
of Raman sideband spectra. A new temperature model is derived to extract the
information about the ground state population. The model includes the dynamics
of Raman sideband couplings described by the Franck-Condon Hamiltonian and
the anharmonic shape of the trapping potential. The ground state occupation of
(94.5, 60.5, 89.8) % in x, y, z-direction, respectively, is achieved within milliseconds.

In a state-dependent lattice, the atoms are cooled into the one-dimensional
ground state by means of microwave sideband cooling. Analog to the cooling
scheme with Raman beams, a temperature model is derived for the microwave
coupling and leads to a better fit to the measured sideband spectrum. A ground
state population of 98 % is determined.

Fast atom transport is challenging, because it can heat atoms out of the ground
state. New transport sequences are derived with an optimization algorithm based
on optimal control theory. This numeric approach allows to optimize the trans-
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port fidelity and to reduce the transport time by a factor two compared to previous
transport schemes. The transport fidelity for the new optimal control ramps are
measured with two techniques: The first technique is based on a fit of the tem-
perature model to a microwave sideband spectrum to determine the ground state
population before and after transport. The second technique is a direct detection
of the vibrational state occupation. Both measurements show, that atoms can be
transported faster, with larger fidelity and a higher robustness against experimen-
tal imperfections compared to previous conventional transport schemes.

The dynamics of multiple successive transport steps of an optimal control ramp
are analyzed. Interference effects between the ground state and higher excited
states are observed in a measurement, which leads to transport efficiencies that
depend on the time delay between transport steps. For certain delay times, high
transport fidelities of 98 % are achieved for up to 40 transport steps.
An alternative optimization algorithm is demonstrated to determine optimal trans-
port sequences. The algorithm using live feedback of the experimental system is
successfully demonstrated. The advantage of this method is, that knowledge of the
system parameters is not required and experimental imperfections of the system
can be compensated.

The fundamental limit of fast transport is given by the so-called quantum speed
limit. It is based on an interpretation of Heisenberg’s uncertainty relation, which
states that the finite energy of a system leads to a minimum evolution time. The
quantum speed limit is determined experimentally and the measurement shows an
astonishing agreement with a theoretical analysis of the transport fidelity. It was
measured, that the speed limit shows a square-root dependency on the trap depth
of the lattice potential.

These results on optimized transport operations are crucial for all upcoming ex-
periments based on coherent multi-path interference effects of atomic wave packets
in optical lattices.
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A Appendix

A.1 State-dependent lattice potential of the

|↓〉-state

The derivation of the effective dipole potential experienced by the atoms for two
state-dependent lattices is derived in this appendix. It closely follows the master
thesis of Groh [83]. The |↓〉-state experience a contribution of both circularly
polarized dipole traps, which is not negligible to perform optimal control transport
of atoms. On the one hand, we want to calculate for given circularly polarized
traps {Uσ− , Uσ+} and arbitrary transport ramps {ϕσ− , ϕσ+}, the resulting effective
potential depth U↓ and movement along the lattice axis ϕ↓ of an atom in the |↓〉-
state. On the other hand, we want to design from a optimal control solution
{Uσ+

= U↑, ϕσ
+

= ϕ↑} the driving ramp {Uσ− , ϕσ
−}, such that the |↓〉-state

experience the same ramp as the |↑〉-state. In the first case, we find an analytic
solution while we apply an iterative approach for the second case.

A.1.1 Calculation of {U ↓, ϕ↓} from {Uσ−
, ϕσ−} and

{Uσ+

, ϕσ+}

The potential depth for the |↓〉-state is a mixture of both polarization components.
This chapter shows that the trapping potential can be rewritten by an effective
potential depth U↓, a phase ramp ϕ↓ and an offset δU↓, which gets important for
atom interferometry:

U↓DT =
7

8
Uσ−

DT +
1

8
Uσ+

DT
!

= U↓ cos2
{

(ϕ− ϕ↓)/2
}
− δU↓ . (A.1)

The circularly polarized trapping potential are similarly defined by

U
σ+/σ−

DT = Uσ+/σ− cos2
{

(ϕ− ϕσ+/σ−)/2
}

. (A.2)

105



Appendix

By using the relation cos2(α) = 1
2
(1 + cos(2α)) and writing down eq. (A.1) using

eq. (A.2) for specific phase ϕ, we get with:

sσ =
7

8
Uσ− sin

{
ϕσ
−
}

+
1

8
Uσ+

sin
{
ϕσ

+
}

,

cσ =
7

8
Uσ− cos

{
ϕσ
−
}

+
1

8
Uσ+

cos
{
ϕσ

+
}

,

UOffset = U↓ − 2δU↓ − 7

8
Uσ− − 1

8
Uσ+

.

(A.3)

ϕ = 0 : UOffset = cσ − U↓ cos(ϕ↓) , (A.4)

ϕ =
π

4
: UOffset = sσ − U↓ sin(ϕ↓) , (A.5)

ϕ =
π

2
: UOffset = −cσ + U↓ cos(ϕ↓) , (A.6)

ϕ =
π

4
+ ϕ↓ : UOffset =

7

8
Uσ− sin

{
ϕσ
− − ϕ↓

}
+

1

8
Uσ+

sin
{
ϕσ

+ − ϕ↓
}

. (A.7)

By adding eq. (A.4) and (A.6), we find that UOffset = 0 and we can determine δU↓

from this. Furthermore, we can calculate tan{ϕ↓} from eq. (A.4) and (A.5), which
determines ϕ↓. Finally, we use the result of ϕ↓ with eq. (A.4) and the relation
cos(arctan(α)) = (1 + α2)−1/2 to determine U↓:

δU↓ =
1

2

(
U↓ − 7

8
Uσ− − 1

8
Uσ+

)
,

ϕ↓ = arctan

{
sσ
cσ

}
,

U↓ =
√
s2
σ + c2

σ .

(A.8)

A.1.2 Iterative approach to derive {Uσ−
, ϕσ−} from

{Uσ+

, ϕσ+}

We want to drive the same transport ramp for both spin states {U↓ = U↑, ϕ↓ = ϕ↑}.
The ramps for the σ+-polarized dipole trap are given by {Uσ+

= U↑, ϕσ
+

= ϕ↑}.
However, the driving ramps for the σ−-polarized dipole trap are determined itera-
tively in the following way. The result of U↓ from eq. (A.8) is a quadratic function
in Uσ− . We use one of its solution Uσ−(ϕσ

−
). Secondly we calculate from eq. (A.7)
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ϕσ
−

in dependency of Uσ− :

Uσ−(ϕσ
−

) =

√
128(U↓)2 +

(ϕσ+)2

2
(cos{2(ϕσ− − ϕσ+)} − 1))− U↑

7
cos{ϕσ− − ϕσ+} ,

ϕσ
−

(Uσ−) = ϕ↓ + arcsin

{
Uσ+

7Uσ−
sin
{
ϕ↓ − ϕσ−

}}
.

(A.9)
As initial guess we use ϕσ

−

initial = ϕσ
+

and alternatingly solve both equations hundred
times in order to converge towards Uσ− and ϕσ

−
.
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A.2 Wannier states and eigenenergies of a

standing wave potential

The stationary Schrödinger equation is solved numerically to determine the eigen-
states or here, the so-called Wannier states, which defines the initial and target
ground state |ψinit〉 and |ψtarget〉 as well as the eigenenergies En. The system
Hamiltonian is given by

Ĥ =
p̂2

2mCs

+ U cos2(kx̂) . (A.10)

The Bloch theorem considers the periodicity of the lattice and the eigenvalue
problem is set in a fixed finite volume and with an infinite family of solutions with
discretely spaced eigenvalues with a band index n:

Ĥ |n〉 = En |n〉 . (A.11)

The derivatives p̂2 = −h̄∂2
x in position space are approximated with the following

discretized difference equation:

f ′′(xi) =
f(xi−1)− 2f(xi) + f(xi−1)

∆x2
. (A.12)

The momentum operator p̂ has only a diagonal form in momentum space compared
to the representation in momentum space:

p̂ |ψ〉 =


p1 0 0

0
. . . 0

0 0 pn

 |ψp〉︸ ︷︷ ︸
momentum space

=
−h̄
∆x2

·



−2 1 0 . . . 0 1

1 −2 1
. . . 0 0

0 1 −2
. . . 0 0

...
. . . . . . . . .

...
...

0 0 0 . . . −2 1
1 0 0 . . . 1 −2


|ψx〉

︸ ︷︷ ︸
position space

.

(A.13)
Our quantum system shares an analogous system Hamiltonian as Bloch electrons
in a crystal in condensed matter physics reduced to one dimension. The eigenstates
in periodic media generally described by the Bloch functions are delocalized over
the whole lattice as shown in Fig. A.1. The form is described by a plane wave
in a continuum with the periodic term uK(x) depending on the Bravais lattice
periodicity Û(x + a) = Û(x) with the Bravais lattice vector L = nLa with the
band index nL and the lattice constant a = λ/2:
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Figure A.1: The comparison between two real-space representations of the system
vibrational eigenstate n = 0: The left side illustrates the delocalized Bloch states
for the first three band indices nK . It shows a periodic function uK(x) with an
envelope eiKx sketched as a black line. The Wannier states associated with the
same vibrational number is a superposition of Bloch states with different K, which
builds a localized wave packet. The phase factor e−iKL is effectively translating
the Wannier state by L. In the background is the red DT to illustrate the position
of the sinusoidal lattice.

ψB(x,K) = eiKxuK(x) . (A.14)

The momentum operator in eq. (A.13) is then defined in momentum space by the
reciprocal wave number K of the Brillouin zones:

p̂ = h̄K = h̄
2π

a
nK . (A.15)

with the band index nK . G. Wannier introduced in 1937 a description of electrons
in insulating crystals [143] by basic wave functions with properties similar to atomic
functions. The model considers the limit, when the overlap between adjacent atoms
is small, atomic separations are large and the wave packets get strongly located to
the lattice center. The same functions can by applied to photonic crystal systems
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[144, 145] and optical lattices [146]. The so called Wannier states form a complete,
orthogonal basis, which still contains the full information about the band structure
of the underlying crystal. They simplify the computations due to its minimum real-
space spread over the lattice. The Wannier states are defined as a superposition
of Bloch waves over all momenta K in the first Brillouin zone and N lattice sites
as shown in Fig. A.1:

ψW (x, L) =
1√
N

∑
K

e−iKLψB(x,K) ,

ψB(x,K) =
1√
N

∑
L

eiKLψW (x, L) .
(A.16)

From A.14 and A.16 can be deduced that the phase eiKL effectively shifts a local-
ized Wannier state to another lattice site:

ψW (x, L = naa) = ψW (x− nLa, L = 0) . (A.17)

For a transport over one lattice site, we identify the initial and target state with
|ψinit〉 = ψW (x, L = 0) and |ψtarget〉 = ψW (x, L = a) for the vibrational ground
state n = 0. Furthermore we identify the periodic function uK(x) as the Bloch
function for K = 0, which corresponds to a superposition of Wannier functions of
different Brillouin zones:

ψB(x,K = 0) = uK(x) =
∑
L

ψW (x, L) . (A.18)
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