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Abstract

The availability of large amounts of data in public repositories provide a useful

source of knowledge in the �eld of drug discovery. Given the increasing sizes of

compound databases and volumes of activity data, computational data mining

can be used to study di�erent characteristics and properties of compounds on

a large scale. One of the major source of identi�cation of new compounds in

early phase of drug discovery is high-throughput screening where millions of

compounds are tested against many targets. The screening data provides op-

portunities to assess activity pro�les of compounds.

This thesis aims at systematically mining activity data from publicly avail-

able sources in order to study the nature of growth of bioactive compounds,

analyze multitarget activities and assay interference characteristics of pharma-

ceutically relevant compounds in context of polypharmacology. In the �rst

study, growth of bioactive compounds against �ve major target families is

monitored over time and compound-sca�old-CSK (cyclic skeleton) hierarchy

is applied to investigate structural diversity of active compounds and topolog-

ical diversity of their sca�olds. The next part of the thesis is based on the

analysis of screening data. Initially, extensively assayed compounds are mined

from the PubChem database and promiscuity of these compounds is assessed

by taking assay frequencies into account. Next, DCM (dark chemical matter)

or consistently inactive compounds that have been extensively tested are sys-

tematically extracted and their analog relationships with bioactive compounds

are determined in order to derive target hypotheses for DCM. Further, PAINS

(pan-assay interference compounds) are identi�ed in the extensively tested set

of compounds using substructure �lters and their assay interference charac-

teristics are studied. Finally, the limitations of PAINS �lters are addressed

using machine learning models that can distinguish between promiscuous and

DCM PAINS. Structural context dependence of PAINS activities is studied by

assessing predictions through feature weighting and mapping.
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Chapter 1

Introduction

In pharmaceutical research and drug discovery, increasing numbers of com-

pounds and activity data are becoming available with the advent of methods

such as high-throughput screening (HTS)1 where increasingly large libraries of

compounds are screened against drug targets in a short period of time. The

increase in data volumes has also been accompanied by increasing data com-

plexity and heterogeneity indicating that the �big data� phenomena originating

from biology and bioinformatics have also entered medicinal chemistry, though

still at a lesser magnitude.2�5 These large volumes of complex activity data

provide considerable challenges to drug discovery scientists.6 Although it is dif-

�cult to analyze rapidly growing numbers of compounds and publicly available

activity data, it represents a valuable source of knowledge and provides oppor-

tunities to learn in the �eld of drug discovery.7 Several e�orts have been made

to build publicly available databases in order to store and maintain informa-

tion concerning increasing numbers of compound structures and their biological

activity records against di�erent targets.

1.1 Publicly Available Compound Databases

Four major public compound repositories are discussed in detail in the following:
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1.1.1 ChEMBL

ChEMBL is an annotated public database containing activity data for small

drug-like bioactive compounds.8,9 It is maintained by European Bioinformat-

ics Institute (EBI) of the European Molecular Biology Laboratory (EMBL).

It provides information regarding binding, functional, and ADMET (absorp-

tion, distribution, metabolism, excretion, toxicity) properties of large number

of compounds.8,9 The core activity data is manually extracted from the pub-

lished medicinal chemistry literature on a regular basis and then curated and

standardized to enhance the quality and utility across di�erent drug discovery

problems.8 ChEMBL version 24 contains nearly 1.8 million compounds from

medicinal chemistry sources that are active against 12,091 targets, forming a

total of more than 15 million ligand-target interactions. ChEMBL also incor-

porates activity data from PubChem database.

1.1.2 PubChem

PubChem is a public repository for chemical structures and their activities

against biological assays.10 It is administered by the US National Institutes

of Health (NIH). The information in PubChem is organized into three related

databases: Substance, Compound and BioAssay. The Substance database con-

tains contributed sample descriptions provided by depositors whereas the Com-

pound database contains unique chemical structures derived from the substance

depositions.11 The PubChem BioAssay database contains compound screening

data.12 The screening data is structured into three types of records: Summary,

Primary and Con�rmatory. A Summary record gives the overview of an ex-

periment. A Primary record contains results from the initial screen in which

the activity assessment is based on percentage inhibition from a single dose. A

Con�rmatory record reports the e�ective concentrations of compounds passing

the primary screen based on multi-concentration dose-response behavior.11 The

PubChem BioAssay database comprises more than 1 million assays with nearly

3.4 million tested compounds, yielding a total of more than 237 million activity

annotations covering more than 11,000 biological targets.
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1.1.3 ZINC

ZINC is a publicly accessible database that collects compounds relevant for

medicinal chemistry from vendor sources as well as other databases.13 It is

maintained by the Department of Pharmaceutical Chemistry at the University

of California, San Francisco (UCSF). The current release of ZINC (ZINC 15)

reports approximately 230 million commercially available compounds.14 ZINC

compounds are widely used for virtual screening applications.13,14

1.1.4 DrugBank

DrugBank is a freely accessible web resource containing information about drugs

and drug candidates.15 It contains detailed drug records such as chemical, phar-

maceutical and pharmacological data associated with comprehensive drug tar-

get information such as sequences, structures and pathways. The latest release

of DrugBank contains 11,885 drug entries; including 2528 FDA approved small

molecule drugs and 5132 unique protein sequences.16

1.2 Promiscuity

Large volumes of compounds and activity data present in the databases can be

used to analyze structure-activity relationships on a large scale which can help

in chemical optimization. It is also possible to study the binding character-

istics of di�erent targets17 and systematically explore multitarget activities of

small molecules on the basis of available data.7 These multitarget activities pro-

vide the foundations of polypharmacology. Polypharmacology is an emerging

concept in drug discovery according to which many pharmaceutically relevant

compounds elicit their therapeutic e�ects by acting on multiple biological tar-

gets.18�22 The molecular basis of polypharmacology is provided by compound

promiscuity, which is de�ned as the ability of compounds to speci�cally in-

teract with multiple targets.23�25 Promiscuity can be estimated computation-

ally by mining rapidly increasing amounts of compound activity data and sys-

tematically assembling target annotations for compounds.21,24,25 However, data

integrity and con�dence levels have to be carefully taken into consideration
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in order to arrive at reliable promiscuity estimates.26 In recent years, several

studies involving rigorous data-driven analysis have provided di�erent promis-

cuity measures of bioactive compounds and drugs. It has been shown by data

analysis that approved drugs directed against di�erent target families bind to

an average of two to seven targets.21 Furthermore, analysis of high-con�dence

data from ChEMBL for bioactive compounds indicated that they interact with

an average of one to two targets and the most promiscuous compounds with

on average two to �ve targets belonging to same target family.25,27 Drug and

compound promiscuity were also monitored over time for a period of 14 years

(2000 to 2014). Average degree of promiscuity of drugs extracted from Drug-

Bank increased from 1.5 in 2000 to 3.2 in 2014 whereas it remained constant

at 1.5 targets for bioactive compounds extracted from high-con�dence data in

ChEMBL, despite the massive growth of compound activity data during that

time.28,29 Thus, computational data mining studies lead to the conclusions that

active compounds and drugs have overall low degrees of promiscuity and drugs

on average have a higher degree of promiscuity compared to bioactive com-

pounds. Promiscuity estimates obtained from computational studies are often

questioned because of data sparseness30 as all active compounds are not tested

against all the targets. However, given the large size of data samples and con-

sistency in results, these observations might not be largely determined by data

incompleteness and should be statistically meaningful.

1.3 Assay Interference

High-throughput screening is a key technology used by pharmaceutical industry

to �nd potential drug candidates.1 However, HTS data is always prone to false

positives or false hits due to undesirable mechanisms of action.31�33 Promiscu-

ity should be clearly distinguished from these non-speci�c interactions or assay

artifacts.34 Not all the interactions between compounds and multiple targets

make positive contributions to polypharmacology. It is important to identify

compound classes that are frequently responsible for false positive assay read-

outs or �bad� promiscuity. These interaction artifacts are generally caused by

compounds prone to colloidal aggregation35�37 or interference compounds that

are highly reactive under assay conditions.38,39 Compounds responsible for as-
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Figure 1.1: Exemplary PAINS. Compounds belonging to three di�erent PAINS classes
are shown. PAINS substructures are highlighted in red.

say interference have been found to originate from both synthetic and natural

sources.40,41 Various mechanisms of compound-based assay interference include

auto�uorescence and quenching,42 covalent modi�cation of proteins and assay

reagents,43 redox reactivity44 or metal chelation.45

Assay artifacts are often di�cult to detect and are recognized in the later

stages of drug discovery programs thereby leading to substantial loss of time

and resources. False-positive activities as a result of assay interference spread

throughout the scienti�c literature and cause problems in further investiga-

tions.46 Therefore, it is important to �lter compounds with liable mechanism

of action before proceeding to biological or chemical optimization. System-

atic e�orts have been made to identify, select and �lter compounds that can

cause assay artifacts. In a landmark study, Baell and Holloway carried out

an analysis of compounds that demonstrated activity in multiple AlphaScreen

assays and put forward 480 chemical classes as candidates for assays interfer-

ence.38 Compounds containing these reactive chemical entities were referred to

as pan-assay interference compounds.38,39,47 PAINS-de�ning moieties typically

represent a compound's substructure and include various classes such as ani-

lines, rhodanines, curcuminoids, Michael acceptors or Mannich bases. Figure

1.1 shows exemplary compounds from three di�erent PAINS classes namely

quinones, catechols and rhodanines.

PAINS classes do not cover the entire spectrum of assay interference mecha-

nisms, still they provide a basis for exploring compounds with potential in-
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terference characteristics. The extrapolative power of PAINS �lters has been

called into question as they were derived from limited experimental data.48,49

Furthermore, evidence of PAINS has been seen in the marketed drugs50,51 in-

dicating that overestimating the magnitude of assay interference can lead to

exclusion of useful compounds with desired activities. Therefore, one has to

be careful while �ltering any potentially reactive compound as predicting assay

interference requires thorough chemical knowledge and experience. Data-driven

studies related to promiscuity and PAINS can help to better understand the

interference potential of liable compounds.

1.4 Dark Chemical Matter

In HTS campaigns, considerable e�orts have been made to design screening

libraries focusing on chemical diversity and good quality of hits.52�54 Millions

of compounds are subjected to screening and evaluated on the basis of activity

pro�les against diverse targets. However, it has been seen that large numbers

of compounds in screening decks do not show any signi�cant biological activity

even after being tested in hundreds of biochemical or cellular assays.55 These

consistently inactive compounds either have speci�c properties that make them

biologically inert or they have not been exposed to the appropriate target. In

this context, a broad analysis of the bioactivities of small molecules in the

Novartis and NIH Molecular Libraries screening collections56 was carried out

and a large fraction of compounds were found to be consistently inactive. The

compounds which were lacking a biological pro�le despite having been screened

in hundreds of high-throughput assays were termed as �dark chemical matter�.57

DCM compounds were notably smaller, more soluble and less hydrophobic than

other compounds in the screening library. Furthermore, when DCM compounds

were tested in additional high-throughput screens, they were found to be active.

Follow-up dose-response experiments con�rmed that DCM compounds were

potent hits.57 This illustrates that although DCM compounds are less active

than other screening compounds under normal HTS conditions, they are far

from being biologically inert. In fact, DCM compounds might prove to be

a potentially valuable resource for �nding hits that are less likely to be false

positives caused by assay interference. Thus, DCM yields less promiscuous
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hits that might have unique selectivity towards a particular target and might

become small molecule probes or lead candidates.

Some of the major concepts in chemoinformatics that have been used in this

thesis for the analysis of data growth, promiscuity, assay interference and DCM

compounds are discussed in next sections.

1.5 Data Representations

Molecules can be easily represented as graphs which are two-dimensional (2D)

representations of chemical structures where nodes correspond to atoms and

edges to bonds. 2D molecular graphs provide information about the connectiv-

ity between atoms and the topology of the molecules. They are simpli�ed ver-

sions of molecular structures and are easily interpretable by medicinal chemists.

They can be converted into machine interpretable form using connection tables

consisting of atom coordinates, bond orders and hybridization states. How-

ever, storing large data sets of complex structures as molecular graphs is not

computationally e�cient. Therefore, chemical languages such as the simpli-

�ed molecular-input line entry system (SMILES) were introduced to facilitate

storage, retrieval, and modeling of chemical structures and chemical informa-

tion.58�60 SMILES transform molecular graphs into strings of ASCII characters

based on prede�ned rules for representing molecular structures. SMILES strings

are compact compared to other methods of representing molecular structures

and reduces the size of large databases considerably. Atoms are represented

by their atomic symbols and branching is denoted by parentheses in SMILES

notation. There are special symbols to denote chirality, isotopes, aromaticity

and stereochemistry of a molecule. SMILES arbitrary target speci�cation or in

short SMARTS is an extension of SMILES which introduces atom and bond

labels containing logical operators.61 It is generally used for searching patterns

or substructure queries in databases. PAINS which are usually present as sub-

structures in a molecule are represented in the form of SMARTS patterns. 2D

molecular representations cannot account for spatial arrangement of atoms or

conformations in a small molecule. For this purpose, three-dimensional (3D)

representations such as pharmacophore models and molecular surfaces are used.
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1.5.1 Molecular Descriptors

For many chemoinformatics applications, compounds are represented using

molecular descriptors, which numerically describe molecular structure and prop-

erties. Di�erent types of molecular descriptors are available to account for

physicochemical, topological, surface and other properties of small molecules.62�64

Molecular descriptors can be classi�ed as 1D, 2D or 3D based on the molecu-

lar representation from where they are derived.65 1D descriptors are calculated

from the molecular formula and are very simple such as atom counts and molec-

ular weights. 2D descriptors are calculated from molecular graphs, for example,

models for estimating the water solubility of a compound are based on 2D rep-

resentations. 3D descriptors are determined from molecular conformations.

1.5.2 Molecular Fingerprints

One of the most popular types of molecular descriptors are molecular �nger-

prints which are generally de�ned as bit string representations of molecular

structure or properties. Each bit position usually accounts for the presence

or absence of a given feature in a binary �ngerprint although di�erent types

of �ngerprints vary substantially in their design and length. If the feature is

present in a molecule, the bit is set to '1' and if the feature is not present, it

is set to '0'. There are also nonbinary versions of �ngerprints where in addi-

tion to presence or absence of a feature, frequency of occurrence of a feature

in a molecule is also monitored.66,67 Such �ngerprints are referred to as count

�ngerprints. A variety of molecular �ngerprints have been developed over the

years that di�er in composition, complexity and length.68 Substructure-based

�ngerprints are one of the most common and widely used 2D �ngerprints that

represent dictionaries of prede�ned structural fragments. The length of these

type of �ngerprints is �xed. A classical example of substructure-based �nger-

prints is Molecular ACCess System (MACCS) structural keys,69 the publicly

available version of which consists of 166 bits, each of which accounts for the

presence or absence of a structural pattern. Figure 1.2 depicts an example of

substructure-based �ngerprint of �xed length 11.

Fingerprints representing molecular topology are another major class of struc-
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Figure 1.2: Substructure-based �ngerprint. A substructural-type �ngerprint represent-
ing 11 features is shown for two di�erent compounds. If a feature is present in a compound,
the corresponding bit is set on as indicated by sky blue color, otherwise it is set o�. Sub-
structural features that account for a particular bit to be set on are also highlighted in the
compound structures. The �gure has been adapted from reference [68].

tural 2D �ngerprints. One prominent example of topological �ngerprints is the

extended connectivity �ngerprint (ECFP).70 It generates di�erent layers of cir-

cular atom environments at a speci�ed distance (depending on the speci�ed

bond diameter) centered around a non-hydrogen atom. Figure 1.3 gives an il-

lustration of how atom environments are calculated for topological �ngerprints.

In case of ECFP4, the maximum bond distance between atoms considered in the

neighborhood of the central atom is four. Each unique environment is mapped

to an integer using a hashing function and the collection of integers forms the

�ngerprint. ECFP4 can theoretically represent about 4 billion features. How-

ever, the features di�er from molecule to molecule; hence they are variable in

length. Both MACCS and ECFP4 �ngerprints are frequently used to represent

compounds in many machine learning applications.
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Figure 1.3: Topological �ngerprint. Calculation of two atom environment layers with a
carbon atom (red) at the center are shown. The �rst layer is colored in blue and the second
layer in green. The resulting circular environments are hashed. The �gure has been adapted
from reference [68].

1.5.3 Sca�olds

Another important concept that is widely used in medicinal chemistry to de-

scribe core structures of bioactive compounds is the molecular sca�old. This

concept is important for hierarchically classifying compounds present in large

compound databases or screening libraries.71 In general terms, a �sca�old� refers

to a molecular core to which functional groups are attached. The sca�old con-

cept has several de�nitions in chemoinformatics and is applied in a subjec-

tive manner.72,73 The most extensively applied sca�old de�nition is the Bemis-

Murcko sca�old (BM sca�old) according to which sca�olds are obtained from

compounds by the removal of all non-ring R-groups while retaining all ring

structures and linker fragments connecting the ring structures.74 One can fur-

ther abstract from chemical structures by generating cyclic skeletons from BM

sca�olds by converting all heteroatoms to carbon and setting all bond orders to

one. According to the molecular hierarchy, a BM sca�old can represent many

compounds and a CSK can represent a set of topologically equivalent BM scaf-

folds.75,76 A compound-sca�old-CSK hierarchy is depicted in Figure 1.4 with

the help of two examples.
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Di�erent applications of the sca�old concept in medicinal chemistry include the

search for privileged substructures or core structures that preferentially inter-

act with a speci�c target family.77 Furthermore, identi�cation of structurally

distinct compounds having similar activity, a task known as �sca�old hopping�

is another major application of sca�old concept. Sca�old hopping refers to the

ability of computational methods to recognize active compounds with di�erent

core structures.78 Ligand-based virtual screening approaches start from known

active compounds for a given target as reference molecules or search templates

and try to identify novel compounds active against the same target. It is one

of the major aims of virtual screening calculations to detect sca�old hops.79

1.6 Similarity Assessment

The assessment of structural similarity of compounds is regarded as a key con-

cept in chemoinformatics and drug discovery. Similarity assessment is gener-

ally required in order to relate structure and biological activity of compounds to

each other. Also, several learning algorithms use similarity measures to quantify

the similarity between two compounds. Computational similarity assessment

mainly depends on the molecular representation and similarity metric used.80,81

The similarity between two compounds is typically calculated by a �ngerprint

comparison or in other words as overlap between �ngerprint strings. For this

purpose, many di�erent similarity coe�cients have been introduced such as

Tanimoto coe�cient (Tc), Dice coe�cient (Dc), Tversky coe�cient (Tv) and

Cosine coe�cient.81,82 The most popular measure of �ngerprint similarity in

chemoinformatics is the Tanimoto or Jaccard coe�cient.82,83 For two binary

molecular �ngerprints A and B, the Tc is de�ned as

Tc (A,B) =
c

a+ b− c

where a and b are the number of bits set on in �ngerprints A and B, respectively

and c corresponds to the number of bits set on in both the �ngerprints. Tc val-

ues range from 0 to 1 with 0 corresponding to no �ngerprint overlap and 1 to

11



Figure 1.4: Compound-sca�old-CSK hierarchy. For three exemplary compounds, cor-
responding sca�olds and CSKs are shown. Two compounds on the left have the same sca�old
highlighted in blue and the sca�old of the third compound is highlighted in maroon. These
structurally distinct sca�olds are represented by the same CSK and therefore are topologically
equivalent. The �gure has been adapted from reference [76].
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Figure 1.5: Matched molecular pair. Two compounds forming an MMP relationship are
shown. The exchanged substructures representing a chemical transformation are highlighted
in blue. The remaining part of the compounds represent the common core.

identical �ngerprints but not necessarily identical molecules. Tc is an example

of a symmetrical similarity coe�cient, which means the value of comparing A

to B is the same as for comparing B to A. The similarity value distributions

of Tc values for MACCS and ECFP4 �ngerprints are generally centered on a

mean value of 0.4 to 0.6 and 0.25, respectively.84

Another popular similarity concept for chemical structures in medicinal chem-

istry is the matched molecular pair (MMP), which is de�ned as pair of com-

pounds that only di�er by a structural change at a single site.85,86 This single

modi�cation to convert one compound to another is termed �chemical transfor-

mation�. Figure 1.5 shows an example of two compounds forming an MMP.

MMPs are mostly generated by fragmentation or maximum common substructure-

based algorithms. MMPs are chemically intuitive compared to numerical sim-

ilarity measures as chemical transformations such as R-group replacements or

core structure modi�cations can directly be associated with activity or other

properties of a molecule. MMPs can further be extended to generate matched

molecular series (MMSs) which are series of structurally analogous compounds

that are only distinguished by chemical modi�cations at a single site.87 MMPs

are usually size-restricted and only small structural changes are allowed in chem-

ical transformations. MMPs can also be generated on the basis of retrosynthetic

fragmentation by applying reaction rules following the retrosynthetic combina-

torial analysis procedure (RECAP).88 These MMPs which are based on chemi-
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cal reactions are termed as RECAP-MMPs.89 Furthermore, global network rep-

resentations can be generated in which nodes represent compounds and edges

represent pairwise RECAP-MMP relationships. Each separate cluster in this

network represents a unique analog series (AS).90

1.7 Machine Learning

Machine learning methods are used to develop computational models that have

the ability to learn from patterns in the data and make predictions. They have

become increasingly popular in the �eld of drug discovery over the past years

for classi�cation of compounds and property predictions. Machine learning

methods are extensively used in ligand-based virtual screening in order to rank

database compounds.79 Some of the most prominent machine learning meth-

ods are naïve Bayesian classi�cation (NB),91 random forests (RF),92 neural

networks (NN)93 and support vector machines (SVM).94

1.7.1 Support Vector Machines

Support vector machines are among the most widely used machine learning

algorithms in chemoinformatics95 mainly for compound activity predictions.

SVM is a supervised learning method originally used for binary object classi�-

cation96 but has also been adapted for multitarget predictions97 and compound

ranking.98 SVMs have gained popularity due to their ability to reach higher per-

formance levels than other prediction methods in many applications.

During learning, SVM uses a set of n training instances {xi, yi} (i = 1, ...., n)

where xi ∈ Rd is the feature vector and yi ∈ {−1, 1} is the class label (pos-

itive or negative) of a training compound i. Positive and negative training

objects are projected into a feature space. A hyperplane H is derived that best

separates positive and negative objects:

H = {x|〈w,x〉+ b = 0}
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Figure 1.6: Support vector machine algorithm. A maximum margin hyperplane for
classifying linearly separable data is derived. Positive and negative data are represented by
�lled and empty circles, respectively. The optimal hyperplane is shown by the solid black line.
Data points determining the hyperplane or the support vectors are depicted by red circles.

where w is the normal vector, b is the bias, and 〈·, ·〉 is a scalar product.

As there can be many hyperplanes that can correctly classify linearly sepa-

rable data, the SVM algorithm chooses an optimal hyperplane that maximizes

the distance between the nearest training objects and the hyperplane. This

distance is called as margin. Figure 1.6 shows a representation of an SVM

for linearly separable data. In this �gure, positive data is represented by �lled

circles towards the y axis and negative data is represented by empty circles to-

wards the x axis. b/||w|| is the o�set of the hyperplane 〈w,x〉+ b = 0 from the

origin. The two dotted hyperplanes 〈w,x〉+ b = 1 and 〈w,x〉+ b = −1 repre-

sent the two borders of the margin with 2/||w|| as the distance between them.

In order to maximize this margin, ||w|| should be minimized. Positive and

negative data on the borders of the margin (depicted by red circles) are called

support vectors. Support vectors determine the position of the hyperplane.
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For data that is not linearly separable, the parametersw and b of the hyperplane

are derived by solving the following optimization problem:

minimize:
1

2
||w||2 + C

n∑
i=1

ξi

subject to: yi (〈xi,w〉+ b) ≥ 1− ξi with ξi ≥ 0 and i ∈ {1, ...., n}

where ξi represent the slack variables
99 that are added to permit errors for train-

ing instances falling within the margin or on the incorrect side of the hyperplane

and C is the cost or regularization hyperparameter introduced to balance train-

ing errors and margin size.

Instead of directly solving the primal optimization problem, it is also possi-

ble to formulate an equivalent dual problem using Lagrangian multipliers:100

maximize:
n∑

i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjyiyj〈xi,xj〉

subject to:
n∑

i=1

λiyi = 0 with 0 ≤ λi ≤ C and i ∈ {1, ...., n}

where λi are the Lagrangian multipliers. Dual expression makes it possible to

compute the normal vector of the hyperplane as:

w =
n∑

i=1

λiyixi

Lagrangian multipliers can be non-zero only for training examples that fall onto

the margin of the hyperplane or are misclassi�ed. This subset of training ex-

amples with non-zero coe�cients falling onto the margin represents support

vectors. Hence, the majority of training examples other than support vectors

can be discarded following the training phase, which makes SVM modeling suit-

able for large data sets.

Test data is then projected into the feature space and classi�ed depending
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on the side of the plane onto which they fall, as determined by the following

decision function:101

f (x) = sgn

(∑
i

λiyi〈xi,x〉+ b

)

Test points with f (x) = 1 are classi�ed as positive and f (x) = −1 are classi�ed
as negative. Furthermore, the decision function can be transformed to a ranking

function by removing the signum function from the above equation and thus,

generating real values for test examples:

g (x) =
∑
i

λiyi〈xi,x〉+ b

The dual formulation also enables the use of the �kernel trick�,102 which is of

critical relevance for SVM modeling. If linear separation of training classes in a

given feature space is not possible, the scalar product 〈·, ·〉 is replaced by a kernel
function K (·, ·) , which corresponds to evaluating the scalar product in higher

dimensional space (without an explicit feature representation in that space).

A variety of kernel functions have been developed, including the Gaussian or

radial basis function kernel, the Tanimoto kernel, and more complex graph

kernels.103,104 The Tanimoto kernel, de�ned in accordance with the Tanimoto

coe�cient, is one of the most popular kernel function in chemoinformatics. It

is de�ned as follows for two compound �ngerprints u and v:

K (u,v) =
〈u,v〉

〈u,u〉+ 〈v,v〉 − 〈u,v〉

SVMs utilizing kernels usually have much higher prediction capacity compared

to linear models. However, the use of kernel functions comes at the price of lack-

ing model interpretability due to black box character of the resulting models.

1.7.2 Random Forests

Random Forest is a machine learning classi�cation method based on an en-

semble of decision trees.92 Each tree is built from a bootstrapped sample of
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training data using a recursive partitioning method. A random subset of fea-

tures is considered during node splitting for the construction of trees, which

avoids the presence of correlated trees because of feature dominance. The �nal

outcome depends on the prediction by the majority of trees i.e., a consensus

prediction. Figure 1.7 shows an example of a small random forest of �ve

decision trees. RF has proven to be a very successful method in chemoinfor-

matics105 in di�erent contexts such as QSAR (Quantitative Structure-Activity

Relationship) modeling106 and predicting protein-ligand binding a�nity.107

Suppose we aim to build an ensemble of B trees {T1 (X) , ..., TB (X)}, where
X = {x1, ..., xp} is a p-dimensional vector of molecular descriptors. For training,

let there be a set of n molecules, D = {(X1, Y1) , ..., (Xn, Yn)}, where Xi, i =

1, ..., n, is a vector of descriptors and Yi is the corresponding class label i.e.,

active or inactive or any property of interest. The training algorithm proceeds

as follows:

1. From the training data, a bootstrap sample is drawn i.e., a random sample

with replacement from n molecules.

2. For each bootstrap sample, a tree is grown where the best split is chosen

from a randomly selected subset of descriptors at each node. The tree is

grown to the maximum size and not pruned back.

3. The above steps are repeated until the required number of trees (B) are

grown.

The training forest is then used to predict test data. The ensemble produces

B outputs
{
Ŷ1 = T1 (X) , ..., ŶB = TB (X)

}
where Ŷb, b = 1, ..., B, is the pre-

diction for a molecule by the bth tree. Outputs of all the individual trees are

combined to produce one �nal prediction. For classi�cation tasks, Ŷ is the

class label predicted by the majority of the trees whereas for regression, it is

the average of individual tree predictions.92,106

RF calculations have relatively low computational costs and a large number

of trees can easily be generated. RF is computationally e�cient even for very

large numbers of descriptors.
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Figure 1.7: Random forest. Five exemplary decision trees are shown, which form a
random forest for classi�cation. The leaf nodes can either be red or green depending upon
the class. The path taken by each test instance is highlighted in yellow. Four out of �ve
decision trees predict that the test instance belongs to the red class, whereas one decision
tree predicts that it belongs to the green class. Therefore, the �nal prediction is �red� by
the random forest as it has the majority vote amongst the built trees. The �gure has been
adapted from reference [105].
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Figure 1.8: Deep Neural Network. A fully connected feed-forward deep neural network
is shown with three hidden layers. Figure has been adapted from reference [108].

1.7.3 Neural Networks

An arti�cial neural network (ANN) is an interconnected group of nodes, similar

to the vast network of neurons in brain. ANN consists of three basic layers:

input, hidden and output layer. Input variables are taken by input nodes and

the variables are transformed through hidden nodes, and in the end output

values are calculated at output nodes. The output values of a hidden unit are

calculated from input values via an activation function which is generally a

nonlinear function to transform linear combination of input signal from input

nodes to an output value. The output value Yi of the node i is calculated as

shown below:

Yi = g

(∑
j

Wij ∗ aj

)
where aj are input variables, Wij is the weight of input node j on node i and

g is activation function. The training of ANN is done by modifying the weight

values iteratively in the network.

Deep Neural Networks (DNNs)108 contain larger number of hidden layers

compared to traditional ANNs, which accounted for one or two hidden layers
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due to limitation of computational power. Availability of more powerful CPUs

and GPU hardware has allowed NN to use many more nodes in each layer.

Figure 1.8 shows an example of a fully connected DNN with three hidden

layers. A fully connected deep feed-forward NN comprises of hundreds of non-

linear process units in multiple hidden layers. DNNs can take large number

of input features and the nodes can automatically extract features at di�erent

hierarchical levels.109

In summary, a variety of machine learning concepts are applied in chemoin-

formatics and computational medicinal chemistry.
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1.8 Thesis Outline

This thesis comprises �ve studies organized into individual chapters. The main

focus of the studies has been to analyze the growth of bioactive compounds

over time as well as to assess the activity pro�les of compounds present in

screening data. Promiscuity and assay interference of screening compounds

are explored in detail. Methods are presented to deduce target hypotheses for

inactive compounds and to re�ne and extend PAINS �lters.

• Chapter 2 presents a study focusing on the target-dependent growth of

bioactive compounds and sca�olds over time. Structural diversity of com-

pounds and topological diversity of sca�olds were explored on a time scale

by applying compound-sca�old-CSK hierarchy. Implications for small

molecule drug discovery were discussed.

• In Chapter 3, the promiscuity of screening compounds was analyzed with

respect to assay frequency. Most extensively assayed compounds tested

against hundreds of assays were extracted from PubChem and their promis-

cuity was systematically determined.

• In Chapter 4, consistently inactive or DCM compounds were systemati-

cally identi�ed from screening data and other bioactive compounds were

searched for analogs. Analog series were generated consisting of DCM

and bioactive compounds and target hypotheses for DCM compounds

were derived.

• Chapter 5 presents a large-scale analysis of PAINS in biological screening

assays. Activity pro�les and hit rates of extensively assayed screening

compounds detected by PAINS �lters were studied in detail.

• In Chapter 6, machine learning models were introduced in order to distin-

guish between PAINS with high and low frequency of activity. SVM, RF

and DNN models were trained using promiscuous and DCM PAINS data

sets and ways to investigate structural context of PAINS were discussed.

Chapter 7 summarizes the major �ndings of all the studies in this thesis and

contains concluding remarks.
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Chapter 2

Assessing the Growth of Bioactive

Compounds and Sca�olds over

Time: Implications for Lead

Discovery and Sca�old Hopping

Introduction

In medicinal chemistry, the growth of bioactive compounds over time has re-

cently been nearly exponential. This increasing volume of data provides a rich

source of knowledge for exploring structure-activity relationships. Furthermore,

activity data can be used to study interaction of ligands with therapeutic tar-

gets or promiscuity of bioactive compounds.

Activity data can also be used to determine the structural diversity of com-

pounds globally as well as for individual targets. In this context, sca�olds

are often used in order to represent the core structures of active compounds.

Sca�olds are systematically extracted from active compounds by removing all

substituents while retaining all ring structures and linker fragments between

ring structures. As a further abstraction from sca�olds, CSKs are generated to

focus on the molecular topology. The hierarchical organization from compounds

to sca�olds to CSKs facilitates comparison of structures at di�erent levels of

abstraction.
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In this work, we intended to explore the nature of compound data growth

and investigate if the newly available active compounds for targets were struc-

turally similar or diverse. The growth of bioactive compounds and sca�olds

was monitored over a span of 15 years for �ve major target families. Sca�olds

and CSKs were systematically extracted for compounds with high-con�dence

activity data from ChEMBL database and compound-sca�old-CSK hierarchy

was employed to analyze structural diversity of compounds and topological di-

versity of sca�olds over time for all major target families.

Reprinted with permission from �Jasial, S.; Hu, Y.; Bajorath J. Assessing the

Growth of Bioactive Compounds and Sca�olds over Time: Implications for

Lead Discovery and Sca�old Hopping. Journal of Chemical Information and

Modeling 2016, 56, 300-307�. Copyright 2016 American Chemical Society
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ABSTRACT: The increase in compounds with activity against five
major therapeutic target families has been quantified on a time scale and
investigated employing a compound−scaffold−cyclic skeleton (CSK)
hierarchy. The analysis was designed to better understand possible
reasons for target-dependent growth of bioactive compounds. There
was strong correlation between compound and scaffold growth across
all target families. Active compounds becoming available over time were
mostly represented by new scaffolds. On the basis of scaffold-to-
compound ratios, new active compounds were structurally diverse and,
on the basis of CSK-to-scaffold ratios, often had previously unobserved
topologies. In addition, novel targets emerged that complemented
major families. The analysis revealed that compound growth is
associated with increasing chemical diversity and that current
pharmaceutical targets are capable of recognizing many structurally different compounds, which provides a rationale for the
rapid increase in the number of bioactive compounds over the past decade. In light of these findings, it is likely that new chemical
entities will be discovered for many small molecule targets including relatively unexplored ones as well as for popular and well-
studied therapeutic targets. Moreover, given the wealth of new “active scaffolds” that have been increasingly identified for many
targets over time, computational scaffold-hopping exercises should generally have a high likelihood of success.

■ INTRODUCTION
In pharmaceutical research, increasing volumes of compounds
and activity data are becoming available. Not only data volumes
but also complexity and heterogeneity are increasing, giving rise
to the advent of big data phenomena in medicinal chemistry,1,2

similar to developments in biology and bioinformatics over the
past decade,3 albeit still at lesser magnitude. Although large
volumes of complex activity data are difficult to analyze, these
data represent a valuable knowledge base for the large-scale
exploration of structure−activity relationships and compound
design.4 Analysis of activity data also helps to better understand
ligand binding characteristics of therapeutic targets5 or
promiscuity among bioactive compounds,6,7 which is defined
as the ability of small molecules to specifically interact with
multiple targets, a prerequisite for polypharmacological
effects.8−10

Activity data can also be related to structural classification
schemes. For example, the scaffold concept has been applied
over the last two decades to define core structures of
compounds in a consistent manner.11 Scaffolds are typically
extracted from compounds by systematic removal of sub-
stituents.12 Accordingly, a series of analogs yields the same
scaffold. The scaffold concept has provided a basis for the
generation of data structures such as the scaffold tree13 to
systematically organize compound collections and annotate
them with activity information. Scaffold-based compound
organization can be extended through the generation of carbon
skeletons, also termed cyclic skeletons (CSKs),14 which

represent a further abstraction from chemical structures
focusing on molecular topology and enable the implementation
of compound−scaffold−CSK hierarchies for structural organ-
ization and data analysis.15 A CSK represents a set of scaffolds
that share the same topology and are only differentiated by
heteroatom replacements and/or bond order variations.
Scaffold and CSK analysis is often carried out to assess the
structural diversity of compound collection, which is from a
chemical perspective more intuitive than the calculation of
descriptor-based similarity values.16−18

The compound−scaffold−CSK hierarchy was previously
employed by us to systematically explore structural relation-
ships between scaffolds across bioactive compounds and study
the potency range distribution of compounds sharing the same
activity that were represented by different scaffolds.15 A major
finding of this analysis was that many pairs of structurally
distinct scaffolds represented highly potent compounds.15

The scaffold concept has also been applied to introduce
“scaffold hopping”,19,20 which refers to computer-aided
identification of compounds that share the same activity but
differ in their core structures. Scaffold hopping through virtual
compound screening is often regarded as one of the central
tasks in computational medicinal chemistry.
We have been interested in exploring the nature of

compound data growth in relation to scaffold growth and
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diversity. How fast are volumes of bioactive compounds
increasing and why are they increasing? Might the increase
largely be due to extension of known compound series
(perhaps reflecting a form of chemical “me-too-ism”)? Or is
diversity generated among novel active compounds? Alter-
natively, might the increase be due to the emergence of novel
targets for which new active compounds are identified? We
have set out to explore these previously unaddressed questions.
Therefore, the increase in bioactive compounds over time

was quantified for five major target families, and the
compound−scaffold−CSK hierarchy was employed to charac-
terize increasing volumes of bioactive compounds and analyze
compound-to-scaffold ratios. For the first time, the growth of
bioactive compounds and scaffolds extracted from them was
followed on a time course over 15 years. This made it possible
to monitor compound-to-scaffold ratios during periods of
largest compound and activity data growth and compare the
progression to earlier years when compound and data volumes
were limited. A major and rather unexpected finding of our
analysis has been that target-based growth of active compounds
was consistently paralleled by increases in scaffold diversity
across all major target families, independent of compound and
data volumes. This has several implications for small molecule
discovery as also discussed herein.

■ MATERIALS AND METHODS
Data Selection and Curation. Compounds and activity

data were extracted from ChEMBL (release 20).21 Only
compounds active against targets belonging to five major
families were considered, including class A G protein-coupled
receptors (GPCRs), ion channels, protein kinases, nuclear
receptors, and proteases. These target families were organized
following the UniProt22 and ChEMBL target classification
schemes.
To ensure high data confidence, several preselection criteria

were applied as implemented in ChEMBL. Compounds were
extracted for which direct interactions (i.e., assay relationship
type “D”) with human single-protein targets at the highest
confidence level (assay confidence score 9) were reported. The
two parameters, “assay relationship type” and “assay confidence
score”, qualify and quantify the level of confidence that a
compound is tested against a given target in a relevant assay
system, respectively. Relationship type “D” and confidence
score 9 indicate the highest level of confidence for activity data
from ChEMBL. Furthermore, two types of potency measure-
ments were considered including (assay-independent) equili-
brium constants (Ki) and (assay-dependent) IC50 values. Only
explicitly specified Ki and IC50 values were taken into account,
and all approximate measurements such as “>”, “<”, or “ ∼ ”
were discarded. In addition, activity records with comments
“inactive”, “inconclusive”, or “not active” were removed.
Furthermore, compounds with activity records that did not
contain publication dates were disregarded.
For a given target, activity data were examined to detect

compound potency values reported in the same or different
years. The following selection criteria were applied. Com-
pounds with multiple potency measurements for the same year
that differed by more than 1 order of magnitude were removed.
In addition, compounds having multiple measurements in
multiple years that differed by more than 1 order of magnitude
were also discarded. However, if multiple measurements were
reported in different years that fell into the same order of
magnitude, the compound and the first reported potency value

were retained. For example, if a potency value of 4 nM was
reported for a given compound in 2010 and 3 nM in 2011 for
the same target, the compound was selected and 2010 potency
value (4 nM) was assigned to the target. Furthermore,
compounds with a single qualifying potency measurement
were also retained.
Selected compounds and their activity data were assigned to

individual years from 2000 to 2014 (all data reported prior to
2000 were assigned to year 2000).
The final curation step yielded all target-based compound

sets for the five major families. Table 1 reports the total number

of targets and compounds available for individual families. A
target belonging to any one of these families was only
considered if at least 10 active compounds were available.
Accordingly, new targets or targets that had for other reasons
very low compound coverage were omitted from further
analysis. The number of these largely unexplored targets varied
from three (nuclear receptors) to 100 (kinases). The number of
compounds that were exclusively active against these targets
and were also excluded from the analysis only ranged from six
(nuclear receptors) to 57 (kinases). Hence, major target
families contained novel and unexplored targets. For these
targets, only small numbers of compounds were available, and
their exclusion could not possibly bias the analysis given the
large number of more than 100,000 qualifying compounds
reported in Table 1. Moreover, when unexplored targets were
omitted, a total of 507 qualifying targets with different degrees
of chemical exploration remained that were associated with
101,825 active compounds including unique 99,216 molecules
(and 2609 “promiscuous” compounds belonging to more than
one target family). Given the large number of qualifying targets
and compounds, the probability that the analysis might be
biased by individual targets was extremely low.

Compound−Scaffold−Skeleton Hierarchy. For com-
pounds of all target sets, a molecular hierarchy was generated.
First, scaffolds were systematically extracted from active
compounds by removing all substituents and retaining ring
systems and linkers between them.12 For each target, the
scaffold-to-compound ratio was calculated by dividing the
number of unique scaffolds available in a given year by the total
number of compounds these scaffolds represented. Hence, a
ratio of 1 meant that each compound contained a unique
scaffold (reflecting highest possible scaffold-based diversity). In
addition, cyclic skeletons (CSKs) were derived from scaffolds
by converting all heteroatoms to carbon and all bond orders to
single bonds.14 A given CSK might represent multiple scaffolds
with conserved topology. For each target, the CSK-to-scaffold

Table 1. Target Family-Based Compound Setsa

number of

target family
all

targets
all

compounds
qualifying
targets

qualifying
compounds

GPCRs 165 46,905 153 46,885
kinases 276 21,756 176 21,699

ion channels 80 10,748 50 10,723
nuclear
receptors

27 5032 24 5026

proteases 143 17,534 104 17,492
aFor each family, the total number of targets and compounds available
in ChEMBL and the number of targets and compounds qualifying for
our analysis are reported.
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ratio was also calculated by dividing the number of unique
CSKs in a given year by the total number of scaffolds they
represented. A ratio of 1 reflected the highest level of
topological diversity within a scaffold set (i.e., all scaffolds
were topologically distinct). All scaffolds and CSKs were
calculated using in-house implementations that utilize the
OpenEye toolkit.23

■ RESULTS AND DISCUSSION

Analyzing the Increase in Active Compounds and
Scaffolds over Time. The compound selection strategy
applied here made it possible to follow target- and family-based
growth of active compounds over time. For each year, the
number of newly reported compounds and the cumulative
number of active compounds were determined on a per-target
basis and monitored for each family. Corresponding scaffolds
and CSKs were also determined. The numbers of compounds,
scaffolds, and CSKs were then related to each other, hence
permitting a target family-based assessment of scaffold growth
and topological diversity accompanying the increase in
compound volumes over time.
Growth of Compounds and Targets. Figure 1 reports

the family-based growth of active compounds and targets over

different years. Beginning in about 2006, a significant general
increase in the number of compounds and targets was
observed. For example, for class A GPCRs and the kinase
family, the number of active compounds increased from 1227
to 46,885 (Figure 1a) and 380 to 21,699 (Figure 1b),
respectively. The number of corresponding targets increased
at different rates. The growth rate of targets from the class A
GPCR family was slower than the growth of the corresponding
compounds, as reported in Figure 1a. Steady increase in the
number of targets was detected for the kinase, ion channel, and
protease family, which paralleled the compound growth, as
shown in Figure 1b, c, and e, respectively. A different pattern
was observed for nuclear receptors where the number of targets
significantly increased in 2004 and then essentially remained
constant between 2008 and 2012 (Figure 1d).

Increase in Scaffolds. Figure 2 reports the increase in the
number of scaffolds in target sets over time. Here, different
observations were made. Both on the basis of the maximal and
average number of scaffolds, striking scaffold growth was
observed for all target families from 2000 to 2014. As a
representative example, the number of available scaffolds for
histamine H3 receptor increased from only one in 2000 to 1270
in 2014. Furthermore, compounds with HERG antitarget

Figure 1. Growth of compounds and targets. In panels (a−e), the growth of compounds and targets is reported for the five target families. For each
year, the cumulative number of compounds is shown using bar graphs (scale on the left vertical axis). In addition, the cumulative number of targets is
traced using a black line (scale on the right axis).
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activity were first detected in 2004. By 2014, HERG ligands
were represented by 2457 scaffolds.
Interestingly, significant differences were evolving between

the median and average number of scaffolds across all families,
except nuclear receptors. The differences indicated that the
scaffold distribution was increasingly dominated by a subset of
the target sets with rapidly growing numbers of scaffolds, as
indicated by the maximal numbers reported in Figure 2. On the
basis of median numbers of scaffolds reported in Table 2, there
was substantial overall growth in scaffold numbers since 2000.

However, different target families exhibited scaffold growth at
varying magnitude. For example, the median number of
scaffolds for class A GPCR targets increased from 14 in 2000
to 102 in 2014. Furthermore, in 2000, only 24 compounds
represented by two scaffolds were detected having activity
against a single nuclear receptor. However, by 2014, the median
number of scaffolds for this family was 68 (Table 2). The
overall smallest increase in the median number of scaffolds,
from 18 to 31, was detected for kinases, although large
increases were observed for a limited number of kinase sets, as
reflected by the differences between median and average
numbers.
The relationship between compound and scaffold growth

was analyzed for all families and was found to be highly
correlated, with correlation coefficients between 0.97 and 0.99.
This strong correlation indicated that data increase was largely
due to the addition of new compounds represented by new
scaffolds. As a control calculation, the correlation between the
number of compounds and scaffolds was also analyzed for all
available targets, regardless of their family relationships. Nearly
perfect correlation was also observed in this case.
Taken together, the findings revealed a steady and significant

increase in the amount of scaffolds for all major target families,

Figure 2. Growth of scaffolds. In panels (a−e), the growth of scaffolds is reported for the five target families using box plots for each year. A box plot
gives the smallest number of scaffolds per year (bottom line), first quartile (lower boundary of the box), median value (thick line), third quartile
(upper boundary of the box), and largest number of scaffolds per year (top line). The largest number of scaffolds per year is explicitly reported for
years when this number exceeds the maximal value given on the vertical axis. The average number of scaffolds per year is traced using a black line.

Table 2. Scaffold Mediansa

median number of scaffolds

target family 2000 2014

GPCRs 14 102
kinases 18 31

ion channels 4 23.5
nuclear receptors 2 68

proteases 16 42

aFor each family, the median number of unique scaffolds over all target
sets is compared for 2000 and 2014.
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which strongly correlated with the growth of compounds.
These families included target sets for which very large
numbers of scaffolds became available over time. New
compounds becoming available each year were predominantly
represented by new scaffolds.
Structural Diversity of Compounds. The scaffold-to-

compound ratio was calculated to quantitatively assess the
structural diversity of active compounds. Figure 3 reports the
distribution of scaffold-to-compound ratios for targets from all
five families. Different trends were observed. As shown in
Figure 3a, b, and e, targets from the class A GPCR, kinase, and
protease family displayed a wide range of scaffold-to-compound
ratios. In these families, targets interacting with structurally
diverse compounds (i.e., ratio close to 1) or structurally
homogeneous compounds (ratio close to 0) frequently
occurred. However, the median and average scaffold-to-
compound ratios remained nearly constant over time, i.e.,
close to 0.5. Hence, on average, an individual scaffold
represented two compounds across these target families.
By contrast, notable fluctuations in the distribution of the

scaffold-to-compound ratios over time were observed for ion
channels and nuclear receptors, as reported in Figure 3c and d,
respectively. These fluctuations likely resulted from the
presence of relatively small numbers of targets and active
compounds for these two families during early years (giving rise

to statistical imbalances). In addition, the mean and average
ratios were lower for these than the other three larger families.
Hence, scaffold-based structural diversity of compounds active
against different ion channels and nuclear receptors was
generally limited.

Topological Diversity of Scaffolds. A CSK represents a
set of topologically equivalent scaffolds. Thus, the CSK-to-
scaffold ratio for a target set is an indicator of the degree of
topological diversity among scaffolds. Distributions of the CSK-
to-scaffold ratios for the five target families are reported in
Figure 4. Average and median CSK-to-scaffold ratios were
above 0.7 for most of the years. Fluctuations in these ratios over
time and differences within and between target families were
limited. Therefore, a high degree of topological diversity of
scaffolds was observed for the majority of target sets.

Scaffold-to-Compound vs CSK-to-Scaffold Ratios. The
CSK-to-scaffold ratios (Figure 4) were generally higher than
the scaffold-to-compound ratios (Figure 3). On average, less
than two scaffolds were represented by a given CSK. There was
no detectable correlation between these two ratios over target
sets and families (data not shown), indicating that high scaffold
diversity (high scaffold-to-compound ratios) did not necessarily
lead to topological diversity (high CSK-to-scaffold ratios) and
vice versa. Figure 5 shows scaffolds from two exemplary target
sets containing compounds with varying degrees of structural

Figure 3. Scaffold-to-compound ratio. In panels (a−e), the scaffold-to-compound ratios are reported for the five target families in a box plot format
according to Figure 2. The average ratio per year is traced using a black line.
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and topological diversity. In Figure 5a, scaffolds from beta-2
adrenergic receptor ligands are shown. Over time, a total of 355
compounds were found to be active against this receptor that
were represented by 173 unique scaffolds and 137 unique
CSKs. Accordingly, the scaffold-to-compound and CSK-to-
scaffold ratios in 2014 were 0.49 and 0.79, respectively. Hence,
in this case, a scaffold represented on average two compounds,
and most of the scaffolds were topologically distinct. By
contrast, Figure 5b shows scaffolds from inhibitors of MAP
kinase-activated protein kinase 5 that yielded a much higher
scaffold-to-compound ratio and much lower CSK-to-scaffold
ratio, i.e., 0.95 and 0.50, respectively. Thus, in this case,
scaffolds had equivalent topology more frequently, but most of
the scaffolds represented only a single inhibitor. In particular,
recurrent scaffold topologies were detected in 2012 and 2013.
Scaffolds sharing these topologies only differed by one or more
heteroatoms, as illustrated in Figure 5b. A variety of
combinations between scaffold-to-compound and CSK-to-
scaffold ratios were observed.
Implications and Conclusions. Herein, we have presented

a systematic analysis of growth of compounds active against
major target families and the scaffolds and CSKs these
compounds contain. The analysis was inspired by our interest
to better understand what might be major cause(s) for the
increase in the number of compounds active against major

target families and how the increase might relate to chemical
diversity and the emergence of new targets. The compound−
scaffold−CSK hierarchy was employed as an indicator of
structural and topological diversity, taking into consideration
that boundaries between existing compound series and new
structural classes are often fluid. Compound series representing
a spectrum of structural relationships might often yield distinct
scaffolds due to heteroatom substitutions in core structures or
ring additions. However, the compound−scaffold−CSK hier-
archy is a robust and consistently applicable analysis scheme to
organize compound populations and assess structural diversity.
As quantified in our analysis, there has been rapid growth of
compounds active against major target families over the past
decade. In addition, new targets have emerged over time
complementing these families. As reported herein, compound
growth is accompanied by a significant increase in the amount
of scaffolds for all major target families. Importantly, new active
compounds mostly contain new scaffolds. Hence, on the basis
of scaffold-to-compound ratios, new active compounds are
structurally diverse and, on the basis of CSK-to-scaffold ratios,
frequently display new topologies. Therefore, the picture is
emerging that major targets interact with many chemically
diverse compounds, giving rise to substantial growth of
bioactive compounds. Although an earlier study had shown
that many compound activity classes were characterized by high

Figure 4. CSK-to-scaffold ratio. In panels (a−e), the CSK-to-scaffold ratios are reported for the five target families in a box plot format according to
Figure 2. The average ratio per year is traced using a black line.
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scaffold diversity,24 the creation of chemical diversity as a major
cause of compound growth was not anticipated. This also
implies that current pharmaceutical targets are capable of

recognizing many structurally distinct compounds. This ability
is essentially at the root of the rapid growth of bioactive
compounds and exploited using increasing numbers of

Figure 5. Exemplary scaffolds. Shown are scaffolds extracted from compounds active against (a) beta-2 adrenergic receptor and (b) MAP kinase-
activated protein kinase 5. For each target, the total number of compounds, scaffolds, and CSKs available in 2014 is reported together with the
scaffold-to-compound and CSK-to-scaffold ratio. For each year, the number of novel scaffolds is given in bold. For example, “2001: 8” means that
eight new scaffolds became available in 2001. Panel (a) shows a representative scaffold per year. Panel (b) shows all new scaffolds for different years.
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bioassays. On the basis of these findings, it is likely that new
active compounds with distantly related or novel structures will
continue to be identified for major target families. By definition,
most of newly identified compounds in recent years represent
“scaffold hops”. This has implications for computational studies
aiming at scaffold hopping. Since compound growth correlates
with scaffold growth, predicting new active compounds with
new scaffolds on the basis of known reference molecules should
generally be a promising exercise, even for well-established
targets, rather than a difficult task. The ultimate question will be
which compound features might present “true” structural/
chemical novelty; a question, however, which is essentially
subjective in nature and difficult to address from first principles.
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Summary

A systematic analysis of compound data growth was carried out in relation to

chemical diversity and emergence of new targets for �ve major target families.

There has been a rapid increase in the number of bioactive compounds and

targets for these target families in the past decade. Furthermore, a signi�cant

increase was found in the number of sca�olds over time and a strong correla-

tion between compound growth and sca�old growth indicated that new active

compounds were represented mostly by new sca�olds. Sca�old-to-compound

ratios and CSK-to-sca�old ratios were calculated for all the targets in target

families and their average and median values were close to 1. This implied that

the new compounds available for target families were structurally diverse and

new sca�olds displayed di�erent topologies.

Hence, current pharmaceutical targets belonging to major target families are

capable of interacting with structurally diverse compounds which might be a

strong reason for the rapid increase in number of bioactive compounds over

years. New compounds with distinct sca�olds will likely continue to be identi-

�ed for these targets in future and will provide interesting insights for studies

aiming at sca�old hopping.

The current analysis was based on the activity data from ChEMBL database

which incorporates data mostly from medicinal chemistry literature. It provides

activity annotations for a compound against a particular target but does not

provide information about how many times a compound has been tested and

against which targets. For this purpose, screening data available in PubChem

BioAssay database can be utilized.

In the next chapter, we focus on the extraction of screening data from PubChem

and determining the degree of promiscuity of the most extensively assayed pub-

lic domain compounds.
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Chapter 3

Determining the Degree of

Promiscuity of Extensively

Assayed Compounds

Introduction

Promiscuity is de�ned as the ability of small molecules to speci�cally interact

with multiple targets. It can be rationalized as the molecular basis of polyphar-

macology, which aims at �nding drugs with multitarget activities. As discussed

in the previous chapter, large volumes of activity data are available in compound

databases. Therefore, it is possible to estimate compound promiscuity through

computational data mining. Promiscuity of drugs and bioactive compounds

has so far been analyzed on the basis of activity annotations only, mainly from

public domain databases such as DrugBank and ChEMBL where activity data

is collected from literature. However, these databases do not provide informa-

tion about assay frequency and inactivity records.

In this study, we extended the promiscuity analysis by taking assay frequency

into account from screening data available in PubChem database so as to ad-

dress the issue of data sparseness related to promiscuity estimates. It is not

possible to directly extract assay frequency information on a per compound

basis from PubChem database. Therefore, in the �rst step, data was curated

to determine assay and activity pro�les of screening compounds in primary
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and con�rmatory assays. In the next step, the most extensively assayed public

domain compounds were identi�ed and their promiscuity was systematically

analyzed.

Reprinted with permission from �Jasial, S.; Hu, Y.; Bajorath J. Determining the

Degree of Promiscuity of Extensively Assayed Compounds. PloS One 2016,

11, e0153873�. Copyright 2016 PLOS
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Abstract
In the context of polypharmacology, an emerging concept in drug discovery, promiscuity is

rationalized as the ability of compounds to specifically interact with multiple targets. Promis-

cuity of drugs and bioactive compounds has thus far been analyzed computationally on the

basis of activity annotations, without taking assay frequencies or inactivity records into

account. Most recent estimates have indicated that bioactive compounds interact on aver-

age with only one to two targets, whereas drugs interact with six or more. In this study, we

have further extended promiscuity analysis by identifying the most extensively assayed

public domain compounds and systematically determining their promiscuity. These com-

pounds were tested in hundreds of assays against hundreds of targets. In our analysis,

assay promiscuity was distinguished from target promiscuity and separately analyzed for

primary and confirmatory assays. Differences between the degree of assay and target pro-

miscuity were surprisingly small and average and median degrees of target promiscuity of

2.6 to 3.4 and 2.0 were determined, respectively. Thus, target promiscuity remained at a

low level even for most extensively tested active compounds. These findings provide further

evidence that bioactive compounds are less promiscuous than drugs and have implications

for pharmaceutical research. In addition to a possible explanation that drugs are more

extensively tested for additional targets, the results would also support a “promiscuity

enrichment model” according to which promiscuous compounds might be preferentially

selected for therapeutic efficacy during clinical evaluation to ultimately become drugs.

Introduction
Polypharmacology is an emerging theme in pharmaceutical research [1–3]. It refers to increas-
ing evidence that the therapeutic efficacy of many drugs depends on multi-target engagement.
For example, this is by now well established for protein kinase inhibitors used in cancer therapy
[4]. In the context of polypharmacology, compound promiscuity has been defined as the ability
of small molecules to specifically interact with multiple targets [5,6], as opposed to engaging in
non-specific or apparent interactions. Accordingly, so-defined promiscuity should not be con-
fused with undesired pan-assay interference (PAINS) [7] or aggregator characteristic of com-
pounds, giving rise to many false-positive assay readouts and doomed compound optimization
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efforts. PAINS are typically reactive under assay conditions and the different types of undesired
reactions associated with major classes of PAINS have been detailed [8]. Rather, promiscuity
can be rationalized as the molecular basis of polypharmacology, which might also result in
unwanted side effects due to specific target engagement.

Given the increasing sizes of compound databases and volumes of activity data, promiscuity
of drugs and bioactive compounds can be estimated through computational data mining. Sev-
eral studies have attempted to determine the numbers of targets drugs or bioactive compounds
are known to be active against, focusing on premier public domain databases such as Drug-
Bank [9], a major source of drug-target annotations, ChEMBL [10,11], the major public reposi-
tory of compound activity data from medicinal chemistry, or the PubChem BioAssay
collection [12], the major public repository of screening data, as well as various commercial
compound databases. For example, surveys of drug targets have indicated that drugs interact
on average with two to seven targets, depending on their primary target families and therapeu-
tic areas, and that more than 50% of current drugs might interact with more than five targets
[3]. On the basis of most recent estimates focusing on high-confidence activity data (i.e., well-
defined single-target assays and precise activity measurements), approved drugs bind on aver-
age to 5.9 targets, whereas bioactive compounds from medicinal chemistry sources bind to 1.5
targets [13]. Interestingly, the average degree of compound promiscuity (i.e., average number
of targets a compound is active against) was not notably higher for compounds active against
major therapeutic targets such as G protein coupled receptors (GPCRs) or protein kinases [13].
Furthermore, mean degrees of promiscuity were not significantly higher for active compounds
from confirmatory assays with, on average, 2.5 targets per compound [13,14]. Moreover, the
degree of promiscuity of bioactive compounds covering the current spectrum of therapeutic tar-
gets did not significantly increase over time when high-confidence activity data were analyzed,
despite the rapid growth in assay and activity data during recent years. For example, between
2004 and 2014, when most significant data growth occurred, detectable compound promiscuity
remained essentially constant, with on average 1.5 targets per bioactive compound [15]. When
promiscuity of drugs was followed over time, moderate increases in the degree of promiscuity
were detected, albeit larger than for bioactive compounds, with the average degree increasing
from 1.5 in 2000 to 3.2 in 2014 [16]. It was also observed that average degrees of promiscuity of
drugs were frequently influenced by small numbers of highly promiscuous drug molecules [13].
Taken together, these studies have indicated that drugs are on average much more promiscuous
than bioactive compounds, which are overall characterized by relatively low degrees of detectable
promiscuity [13,15,16], especially on the basis of high-confidence activity data.

Considering the very large amounts of compound activity data that are already available
[17,18], data mining should be expected to yield statistically meaningful promiscuity estimates
[18]. On the other hand, there is the frequently discussed issue of data incompleteness [19],
referring to the fact that not all available compounds have been tested against all targets. The
generation of a complete compound-target activity matrix has been put forward as the ultimate
goal of chemogenomics [20], which will most likely remain elusive. Regardless, due to data
sparseness, the detectable degree of compound promiscuity might often be lower than true pro-
miscuity, although it is unclear how large discrepancies might be.

In this context, it must also be taken into consideration that major compound repositories
such as ChEMBL and DrugBank, upon which promiscuity estimates are based, collect activity
annotations of compounds reported in the literature, but do not contain assay frequency or
inactivity information, which is typically not reported. No major public compound database
contains information of how many times a compound might have been tested so far against
how many targets. Therefore, it is not possible, for example, to relate promiscuity degrees to
assay frequency across different targets.

Promiscuity of Extensively Assayed Compounds
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One possibility to extend promiscuity analysis through inclusion of assay frequency infor-
mation is provided by screening data available in the public domain, with PubChem being the
major repository. While it is not possible to directly access assay frequency information on a
per compound basis, the data are available and it can be determined how many times a com-
pound was tested in different screening assays and how often -and against which targets- it was
found to be active. Recently, a web-based search tool has been introduced to retrieve such
information from PubChem for individual query compounds [21]. However, for global and
large-scale promiscuity analysis, assay and activity profiles must be determined systematically
for all source compounds and analyzed in context.

In light of the above, we have reasoned that computational compound promiscuity analysis
might be brought up to the next level by examining activity profiles of compounds that have
been extensively assayed, thus addressing data sparseness issues in a previously unconsidered
manner. To these ends, we have undertaken a large-magnitude analysis on the basis of cur-
rently available PubChem assay data. In a first data curation step, it was determined for each
screening compound how often it was assayed and found to be active in primary screens as
well as confirmatory assays. In the second step, promiscuity analysis was carried out for a large
number of extensively tested compounds. In the following, our analysis and the results are pre-
sented in detail.

Material and Methods

Assay Categories
Assay data were taken from the PubChem BioAssay collection (accessed on 7th September
2015) [12], which contains different categories of assays including primary and confirmatory
assays. Primary assays represent original screening data in which the activity assessment is
based on percentage inhibition from a single dose. In this case, a compound is classified as
active if it reduces target activity below an assay-specific threshold of residual activity. The
threshold is often determined on the basis of the activity value distributions resulting from the
screen. Accordingly, primary screens produce activity annotations of test compounds (i.e.,
active vs. inactive) but often not activity values. By contrast, confirmatory assays monitor activ-
ity measurements at varying compound concentrations and typically yield IC50 values derived
from titration curves. In biological screening, it is common practice to re-evaluate initial
screening hits in confirmatory assays. However, not all primary assays in PubChem have con-
firmatory counterparts and vice versa, for at least two reasons. First, primary or confirmatory
assays are often independently deposited; second, increasing numbers of initial screens also use
varying concentrations of test compounds for activity measurements and are thus confirma-
tory in nature. In general, activity annotations from primary screens have lower confidence
than activity values from confirmatory assays, suggesting to best analyze them separately.

Data Collection
Primary and confirmatory assays were selected, as described below. From all available primary
assays, only RNA interference (RNAi) screens were removed. Accordingly, all chemical screens
were retained including primary cell-based assays for which no individual target was specified.
For confirmatory assays, a series of selection criteria was applied using the PubChem BioAssay
search interface [22]. First, “On Hold BioAssays” was set to “no hold”. Second, the type of bioas-
says was specified by setting “Substance type” to “chemical”; “Screening stage” to “confirmatory,
dose-response”; and “Target” to “single”. Third, the “Target type” was set to “protein target”.
Accordingly, all confirmatory assays in which chemical compounds were tested against single
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target proteins with dose-response measurements were selected. Fourth, “Activity (IC50, etc)”
was set to “specified” and “Activity outcome” to “active”.

From each qualifying primary or confirmatory assay, only compounds classified as active or
inactive were taken, whereas compounds with designations such as unspecified or inconclusive
were discarded. For promiscuity analysis, compounds were prioritized that were tested in both
primary and confirmatory assays, as rationalized below. For each compound, its identifier in
PubChem (i.e., PubChem cid), the number of primary and confirmatory assays it was tested in,
the number of primary and confirmatory assays in which it was active, and the number of
unique targets from primary and confirmatory assays with activity were recorded.

The complete set of 437,257 compounds with assay and activity information has been made
freely available as a ZENODO deposition [23].

Assay vs. Target Promiscuity
In our analysis, two types of promiscuity were distinguished. The degree of assay promiscuity
was defined as the number of assays in which a compound was active. Assay promiscuity was
determined by collecting all activity annotations from primary and confirmatory assays,
respectively. Hence, different assays for the same target were counted individually. In addition,
the degree of target promiscuity was defined as the number of unique targets a compound was
active against across all assays. As a hypothetical example, a compound C was tested in assays
1–5 for a target T1 and in assays 6–10 for another target T2 and found to be active in assays 1,
2, 3, 8, and 10. Then, the corresponding assay and target promiscuity for C was five and two,
respectively, indicating that the compound was active in a total of five assays against two tar-
gets. If another compound would be tested in 50 assays and found to be active in, for example,
14 against the same two targets, its assay promiscuity would be 14 and its target promiscuity
would still be two. Hence, this would further differentiate between compounds having the
same degree of target promiscuity. Therefore, these two promiscuity measures are complemen-
tary in nature. If no large and/or systematic discrepancies between assay and target promiscuity
would be observed, there would be no indication of potential assay bias or false negatives that
might affect target promiscuity analysis. Hence, considering assay and target promiscuity in
context provides additional information. We also note that the degree of assay promiscuity of a
compound may exceed its degree of target promiscuity, whereas target promiscuity cannot
exceed assay promiscuity. Assay and target promiscuity were separately determined for com-
pounds from primary and confirmatory PubChem assays.

Results

Assay and Compound Selection Strategy
A total of 1358 qualifying primary and 1823 confirmatory assays were obtained. Primary assays
included 297 cell-based assays from which only assay promiscuity but not target promiscuity
was determined. From primary and confirmatory assays, 836,585 and 457,842 unique com-
pounds were selected, respectively, as reported in Table 1. These assays were directed against
476 (primary assays) and 632 (confirmatory) targets. Taken together, these assays covered a
total of 824 unique targets. Furthermore, from all assays, a total of 146,270,306 and 37,808,671
assay-compound records were assembled, each of which reported the activity or inactivity of a
given compound in an individual assay (Table 1).

From the PubChem BioAssay collection, the number of qualifying primary and confirma-
tory assays and corresponding targets is reported. In addition, the number of unique com-
pounds tested in these assays is given. Furthermore, the total number of assay-compound
records including active and inactive compounds is provided.

Promiscuity of Extensively Assayed Compounds
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Next, the two large sets of compounds from primary or confirmatory assays were further
compared. A subset of 437,257 compounds was tested in both primary and confirmatory
assays. The remaining 399,328 and 20,585 compounds were evaluated only in primary or con-
firmatory assays, respectively. Of nearly 400,000 compounds tested exclusively in primary
assays, ~73% were only evaluated in one to 10 primary assays. By contrast, only 1.5% of these
compounds were tested in more than 50 assays. Furthermore, nearly 91% of these compounds
were found to be consistently inactive in all primary assays they were tested in. These findings
indicated that compounds tested exclusively in primary assays had low assay frequency and
were predominantly inactive and thus not suitable for our promiscuity analysis. Similarly,
~75% of the 20,585 compounds exclusively tested in confirmatory assays were only evaluated
in one to 10 and only ~4% of these compounds were tested in more than 50 assays. Hence,
these infrequently assayed compounds were also not considered suitable for promiscuity
analysis.

By contrast, the 437,257 compounds that were tested in both primary and confirmatory
assays exhibited distinctly different assay frequencies. In this case, ~95% of the compounds
were tested in more than 50 primary and/or confirmatory assays. Moreover, ~85% of these
compounds were evaluated in a total of more than 100 assays. Hence, this subset of 437,257
compounds was extensively tested in both assay categories and strongly preferred for our
analysis.

Assay Frequency Distribution
Fig 1 reports assay frequencies for the 437,257 compounds in detail. In Fig 1A and 1B, the dis-
tribution of compounds over primary and confirmatory assays is shown, respectively. The
majority of these compounds were tested in hundreds of primary assays, with a mean of 325
assays per compound and a median of 347 assays. In addition, many compounds were also
evaluated in more than 100 confirmatory assays (with a mean of 86 and median of 93 assays
per compound). Fig 1C shows the distribution for combined primary and confirmatory assays,
which confirms that most compounds were extensively evaluated, with a mean of 411 assays
per compound and a median of 437 assays. More than 287,000 compounds were tested in a
total of 400–848 assays. Hence, the selected compounds provided an unprecedented source for
promiscuity analysis.

Consistently Inactive Compounds
Although the compounds were tested in hundreds of assays against hundreds of targets, large
numbers of consistently inactive compounds were detected, as reported in Fig 2. In primary
(Fig 2A) and confirmatory assays (Fig 2B), a total of 169,839 and 240,650 compounds were
consistently inactive, respectively. Furthermore, 119,256 compounds were found to be

Table 1. Assay, target, and compound statistics.

Number of Primary Confirmatory

Assays 1358 1823

Targets 476 632

Compounds 836,585 457,842

All 146,270,306 37,808,671

Assay-compound records Activity 1,313,226 611,968

Inactivity 144,957,080 37,196,703

doi:10.1371/journal.pone.0153873.t001
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Fig 1. Assay frequency.Reported is the distribution of compounds tested in increasing numbers of (a)
primary and (b) confirmatory assays. In (c), both assay categories are combined. In each case, the mean and
median number of assays in which a compound was tested is provided.

doi:10.1371/journal.pone.0153873.g001
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consistently inactive in both primary and confirmatory assays. Fig 3 shows examples of struc-
turally diverse compounds that were extensively tested, often in nearly or more than 700 assays,
yet consistently inactive. The observation that 27.3% of the subset of extensively tested com-
pounds was not active in any assay also indicated that there was no general tendency to pro-
duce false-positive assay signals, despite very large number of assays that were considered.
Furthermore, these findings might also be viewed in light of recently described “dark chemical
matter”, i.e., compounds that have been identified as consistently inactive in high-throughput
screening assays of drug discovery projects but that might nonetheless have interesting activi-
ties and functional effects in other assay formats [24].

Fig 2. Inactive compounds. Reported is the distribution of compounds that were consistently inactive in
increasing numbers of (a) primary and (b) confirmatory assays.

doi:10.1371/journal.pone.0153873.g002
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Compound Promiscuity
As the primary focal point of our analysis, we then systematically determined assay and target
promiscuity for all active test compounds including 267,418 and 196,607 compounds from pri-
mary and confirmatory assays, respectively. Fig 4 shows the distribution of compounds that
were active in increasing numbers of primary or confirmatory assays. In Fig 4A, assay promis-
cuity is monitored. On average, a compound was active in 4.7 primary and 3.0 confirmatory
assays, with median values of 3.0 and 2.0, respectively. These values were lower than we antici-
pated. As shown in Fig 4B, and as expected, target promiscuity was lower than assay promiscu-
ity. The average degree of target promiscuity in primary and confirmatory assays was 3.4 and
2.6, respectively, with a median degree of 2.0 in both cases. The observation that mean values
were generally slightly or moderately higher than medians was attributed to the presence of a
small proportion of highly promiscuous compounds, as further discussed below. Fig 5 reports
changes in the degree of assay promiscuity for compounds tested in increasing numbers of pri-
mary (Fig 5A) and confirmatory assays (Fig 5B). In primary assays, median assay promiscuity
essentially remained constant over increasing numbers of assays, except for a statistically small

Fig 3. Exemplary inactive compounds. Shown are nine compounds that were consistently inactive in all assays. For each compound, the number of
primary and confirmatory assays it was tested in is reported in blue and red, respectively.

doi:10.1371/journal.pone.0153873.g003
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sample of compounds tested in 600 to 700 assays where an increase was noted. Similar observa-
tions were made for confirmatory assays, with the exception of a moderate increase in the
spread of promiscuity degrees for compounds tested in 150–250 assays. Fig 6 monitors changes
in the degree of target promiscuity for compounds evaluated in increasing numbers of primary
(Fig 6A) and confirmatory assays (Fig 6B). The distributions and median degrees of target pro-
miscuity closely corresponded to those of assay promiscuity.

Fig 4. Assay and target promiscuity. Reported are the percentages of compounds with increasing degrees of (a) assay and (b) target promiscuity. In
addition, average and median degrees of assay and target promiscuity are reported.

doi:10.1371/journal.pone.0153873.g004

Promiscuity of Extensively Assayed Compounds

PLOS ONE | DOI:10.1371/journal.pone.0153873 April 15, 2016 9 / 15



Fig 5. Assay frequency vs. assay promiscuity. For increasing numbers of (a) primary and (b) confirmatory
assays, the distribution of assay promiscuity is reported in a box plot format. The plot gives the smallest
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Fig 7 shows examples of highly promiscuous compounds that were active in more than 100
or 200 assays and largely responsible for increases in the average over median degree of pro-
miscuity. Most of these compounds contained PAINS substructures [7,8] and were thus prone
to assay artifacts. The filter for PAINS substructures in compounds was implemented using
pattern checker [25] available in ZINC 15 in which a list of 480 SMARTS patterns was pro-
vided [26]. It should be noted that different implementations of PAINS might result in differ-
ent mappings due to the conversion of original structural representations into SMARTS or the
generation of different SMARTS variants [27]. In addition, different sets of fragments might be
used or substructure search routines.

Taken together, the results revealed that assay promiscuity was higher than target promiscu-
ity, as we would anticipate. However, the differences were small, as the average degree of assay
promiscuity only increased by 1.3 and 0.4 in primary and confirmatory assays, respectively.
The differences were even smaller for median promiscuity degrees. In addition, the mean and
median degrees of assay or target promiscuity also only differed by less than 1 or 2.

Discussion
Target promiscuity of drugs and other bioactive compounds has thus far been studied on the
basis of available activity annotations. Most recent surveys exclusively considering high-confi-
dence activity data have resulted in average degrees of target promiscuity of 5.9 for approved
drugs and 1.5 for bioactive compounds from medicinal chemistry sources [13]. Furthermore,
the average degree of target promiscuity of compounds taken from confirmatory bioassays was
2.5 and thus also small [14]. Promiscuity estimates were generally higher for drugs than bioac-
tive compounds. The higher degree of promiscuity among drugs might result from more exten-
sive testing, but this remains uncertain. It is also possible that drug candidates that are
successful in clinical trials might be more promiscuous than others.

Promiscuity analyses reported so far were based on known activity annotations, without
taking assay frequencies or inactivity records into account, which are not available in major
compound databases. This has generally been a point of concern, although very large volumes
of activity data are already accessible, from which statistically meaningful trends can likely be
derived. In light of data incompleteness or sparseness, it is frequently assumed that mining of
compound activity annotations inevitably underestimates true compound promiscuity. This is
likely the case although it remains unclear how large deviations from current promiscuity esti-
mates might be.

We have set out to address these issues and further refine promiscuity analysis. Since it will
hardly be possible to obtain a complete, or nearly complete, compound-target activity matrix
any time soon, if at all, promiscuity analysis can at present only be further extended through
incorporation of screening data. In addition, to address data sparseness concerns, compounds
must be identified that have been extensively tested against many different targets.

Therefore, we have carried out a large-scale promiscuity analysis focusing on extensively
assayed compounds. To our knowledge, this type of analysis is unprecedented. As a basis of
our study, assay data were taken from PubChem and assay frequencies determined for all avail-
able compounds, which required substantial data curation efforts. For the first time, we also
used primary screening data in promiscuity analysis to identify most extensively tested com-
pounds. Because activity annotations from primary screening assays were only approximate in
nature, multiple assays were frequently available for the same target, and a limited amount of

degree of assay promiscuity (bottom line), first quartile (lower boundary of the box), median value (thick line),
third quartile (upper boundary of the box), and largest degree of assay promiscuity (top line).

doi:10.1371/journal.pone.0153873.g005
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Fig 6. Assay frequency vs. target promiscuity. For increasing numbers of (a) primary and (b) confirmatory
assays, the distribution of target promiscuity is reported in box plots according to Fig 5.

doi:10.1371/journal.pone.0153873.g006
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Fig 7. Highly promiscuous compounds. Shown are five exemplary highly promiscuous compounds. For each compound, the number of assays it was
tested in and its assay and target promiscuity are reported. Four of these five compounds contain PAINS substructures (red).

doi:10.1371/journal.pone.0153873.g007
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cell-based assays was also considered, assay promiscuity was distinguished from target promis-
cuity and separately analyzed.

A subset of ~437,000 compounds was identified that were extensively tested in hundreds of
assays against hundreds of targets. These compounds were subjected to promiscuity analysis in
which primary and confirmatory assay data were separately considered. As expected, we found
that assay promiscuity was generally higher than target promiscuity. However, the differences
were surprisingly small, only on the order of 1, as reported above.

Given that primary screening data and extensively assayed compounds were used in our
analysis, it was anticipated to observe higher degrees of target promiscuity for active com-
pounds than previously reported. Average degrees of target promiscuity of 3.4 and 2.6 were
determined for primary and confirmatory assays, respectively. These promiscuity degrees were
only moderately higher, even for primary screening assays, than previously determined for
ChEMBL compounds with available high-confidence activity data. We also detected small sub-
sets of highly promiscuous screening hits, which led to an increase in average target promiscu-
ity over median promiscuity. Highly promiscuous compounds often contained PAINS
substructures and were thus likely to cause assay artifacts. Accordingly, median values might
better estimate promiscuity degrees, at least for compounds from screening sources. The
median degree of target promiscuity was 2.0 for both primary and confirmatory assays and
thus only slightly higher than the corresponding value of 1.5 for ChEMBL compounds.

In conclusion, as revealed by our analysis, target promiscuity remained at a low level for bio-
active compounds, even when studying the most extensively assayed compounds that are cur-
rently available. These findings lend further support to previously drawn conclusions that
bioactive compounds are in general only moderately promiscuous and less promiscuous than
drugs. One possible explanation would be that drugs are much more intensively investigated
and tested for additional targets than bioactive compounds, for example, in many drug repur-
posing projects. Alternatively, given that drugs originate from the pool of bioactive com-
pounds, these results also support the idea of a “promiscuity enrichment model”. The
underlying hypothesis is that promiscuous compounds are preferentially selected for therapeu-
tic efficacy during clinical evaluation and ultimately become drugs. This requires, however,
that desired therapeutic effects due to substantial promiscuity outweigh unwanted side effects
that are also possible.
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Summary

A large-scale promiscuity analysis was carried out on extensively assayed com-

pounds extracted from PubChem BioAssay database. A subset of 437,257 com-

pounds which were tested in both primary and con�rmatory assays was used as

the extensively assayed set. 95% of these compounds were tested in more than

50 assays. Assay promiscuity was calculated separately from target promiscuity

for active compounds in primary and con�rmatory assays to check for poten-

tial assay bias or false negatives. Assay promiscuity was found to be higher

than the target promiscuity but the di�erences were surprisingly small. The

median degree of target promiscuity was 2.0 for both primary and con�rmatory

assays, slightly higher than the corresponding value of 1.5 for ChEMBL com-

pounds. Thus, target promiscuity remained at a low level even for extensively

tested compounds which further gives evidence that bioactive compounds are

less promiscuous than drugs. Small subsets of highly promiscuous compounds

were also detected that were responsible for the increase in mean target promis-

cuity over median promiscuity. These subsets of compounds often contained

PAINS substructures and therefore were prone to assay artifacts. While ana-

lyzing activity pro�les of the extensively tested compound set, large numbers

of consistently inactive compounds were detected. Some of these compounds,

which were tested in hundreds of assays, qualify as DCM.

The analysis of DCM compounds extracted from screening data and deriva-

tion of their target hypotheses are presented in the next chapter.
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Chapter 4

Dark Chemical Matter in Public

Screening Assays and Derivation of

Target Hypotheses

Introduction

A large number of compounds are tested against hundreds of targets during

high-throughput screening campaigns in search of high-quality hits and new

chemical entities. However, many screening compounds are generally found to

be consistently inactive in all the assays they are tested in. These compounds

are termed dark chemical matter.

It has been found that DCM compounds are not completely inert biologically.

When tested in assays for novel targets, DCM compounds may yield selective

hits. Thus, DCM can provide interesting starting points for �nding lead candi-

dates with high target selectivity.

In this work, DCM compounds were systematically extracted from extensively

tested screening compounds and structural relationships between DCM and

bioactive compounds were explored in order to derive target hypotheses for

DCM. The key point was to check whether DCM compounds occur in analog
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series with bioactive compounds that have target annotations in high-con�dence

activity data.

Reproduced from �Jasial, S.; Bajorath J. Dark Chemical Matter in Public

Screening Assays and Derivation of Target Hypotheses. Medicinal Chemistry

Communications 2017, 8, 2100-2104� with permission from The Royal Society

of Chemistry.
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Dark chemical matter in public screening assays
and derivation of target hypotheses

Swarit Jasial and Jürgen Bajorath *

Compounds that are consistently inactive in many screening assays, so-called dark chemical matter (DCM),

have recently experienced increasing attention. One of the reasons is that many DCM compounds may not

be fully inert biologically, but may provide interesting leads for obtaining compounds that are highly selec-

tive or active against unusual targets. In this study, we have systematically identified DCM among exten-

sively assayed screening compounds and searched for analogs of these compounds that have known bio-

activities. Analog series containing DCM and known bioactive compounds were generated on a large scale,

making it possible to derive target hypotheses for more than 8000 extensively assayed DCM molecules.

Introduction

High-throughput screening (HTS) plays a critically important
role in early-phase drug discovery as the primary source of
new active compounds and starting points for medicinal
chemistry.1 Given current standards in the pharmaceutical in-
dustry, millions of compounds are often subjected to screen-
ing campaigns. Striving for chemical diversity and broad
chemical space coverage and focusing on specific bioactivities
continue to be primary design strategies for screening
libraries.2–4 The major goal of library design is maximizing
the number of high-quality hits. However, it has also been
observed that significant numbers of compounds in screening
decks were mostly or consistently inactive in assays they were
tested in.5,6 In a milestone contribution analyzing in-house
screening data of a major pharmaceutical company as well as
screens carried out in the context of the NIH molecular librar-
ies initiative,7 such consistently inactive compounds have
been termed ‘dark chemical matter’ (DCM).6 In HTS, DCM
provides a sharp contrast to molecules with true multi-target
activities8,9 and assay interference compounds,10–14 which
plague screening campaigns and medicinal chemistry
programs. The DCM study showed that more than a third of
the compounds tested in at least 100 NIH library program
assays were consistently inactive.6 Furthermore, 14% of
the compounds in a large pharmaceutical screening deck
were inactive in at least 100 in-house assays.6 In the latter
case, weak activities were also taken into consideration, pro-
viding an explanation for the observed discrepancy in the pro-
portion of DCM between external and in-house screens. As

one would expect, DCM molecules were often smaller, less
aromatic, and more soluble than other screening compounds.
However, despite the lack of activity in large numbers of
assays, at least some DCM molecules might also have a
brighter side. Wassermann et al. confirmed that selected
DCM compounds were active in additional assays. When eval-
uated in off-the-beaten-path assays, including novel targets,
DCM compounds frequently yielded attractive hits. These
findings led to the conclusion that DCM might not be entirely
inert biologically, but may frequently have the potential to
display specific activities.6 Thus, DCM compounds may or
may not be consistently inactive. It follows that DCM should
be of considerable interest in the search for chemical entities
having high target selectivity or unusual activities. To these
ends, structural relationships between DCM compounds and
active molecules might be explored to derive target hypothe-
ses for DCM.

Herein, we report a large-scale computational analysis with
two primary goals. First, a systematic search for DCM in exten-
sively tested screening compounds was carried out to identify
all currently available DCM compounds. Publicly available as-
say data were collected and analyzed. Second, after identifying
DCM molecules it was attempted to derive target hypotheses
for them by systematically evaluating structural relationships
to known bioactive compounds with available high-confidence
activity data and generating analog series. The results of our
analysis are reported in the following.

Methods and materials
Extensively assayed PubChem compounds

From the PubChem BioAssay database,15 compounds tested
in both primary (percentage of inhibition from a single dose)
and confirmatory assays (dose–response titration yielding
IC50 values) were selected.2 A total of 437 257 screening
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compounds were obtained.9 For DCM analysis, PubChem
compounds were selected that were tested in at least 100
primary assays and did not display activity in any primary or
confirmatory assay.

ChEMBL compounds with high-confidence activity data

From ChEMBL16 release 22, compounds with available high-
confidence activity data were selected. Qualifying compounds
were required to form direct interactions (relationship type
“D”) with human targets at the highest confidence level (con-
fidence score 9). Furthermore, two types of potency measure-
ments were considered including equilibrium constants (Ki)
and IC50 values. Only compounds having numerically speci-
fied Ki or IC50 values were accepted and those with approxi-
mate measurements such as “>”, “<”, or “∼” were discarded.
Moreover, PubChem and ChEMBL compounds with PAINS
substructures16–18 or aggregation potential19 were removed.

Identification of analog series

From DCM and ChEMBL compounds, analog series were
extracted using a recently introduced method20 based upon
the matched molecular pair (MMP) concept.21 An MMP is de-
fined as a pair of compounds that are only distinguished by a
chemical modification at a single site, termed a transforma-
tion.22 For MMP generation, random fragmentation of exocy-
clic single bonds22 was replaced by fragmentation according
to retrosynthetic rules,23 generating so-called RECAP-MMPs.24

Transformation size restrictions were applied to limit chemi-
cal changes to those typically observed in series of analogs.25

On the basis of RECAP-MMPs, analog series were systemati-
cally generated and series containing DCM compounds from
PubChem and bioactive analogs from ChEMBL were selected.
Ligand-based target prediction has mostly been carried out
on the basis of statistically supported Tanimoto similarity
calculations.26,27 Compared to such whole-molecule similarity
assessment, we give preference to the detection of analog re-
lationships, which provide a more conservative assessment of
structural relationships on the basis of which target hypothe-
ses might be inferred.

All calculations reported herein were carried out using in-
house scripts with the aid of a chemistry toolkit.28

Results and discussion
Dark chemical matter

We identified 367 557 screening compounds from PubChem
that were tested in at least 100 primary assays. For these com-
pounds, all primary and confirmatory assay records were ana-
lyzed and 81 597 unique compounds were found to be consis-
tently inactive in all primary and confirmatory assays they
were tested in. These compounds represented an – at least to
us – unexpectedly large DCM subset.

Assay frequency

For the 81 597 DCM compounds, assay frequency was deter-
mined, as reported in Fig. 1. On average, these compounds
were tested in 339 primary and 86 confirmatory assays, with
median values of 339 and 88 assays, respectively. Thus, DCM
from PubChem was extensively tested in both primary and
confirmatory assays, yet the compounds were consistently
inactive.

Overlap between PubChem and ChEMBL

As a control, we mapped all DCM compounds from PubChem
to ChEMBL. With 310 compounds, a minute proportion of
0.38% of DCM was detected in ChEMBL. These 310 com-
pounds were annotated with one to 17 targets on the basis of
high-confidence activity data, although they were consistently
inactive in hundreds of PubChem screening assays. These

Fig. 1 Assay frequency distribution for DCM. Histograms show the
distribution of (a) primary and (b) confirmatory assays in which DCM
compounds from PubChem were tested.
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findings provided a hint that it might be possible to derive
target hypotheses for other DCM compounds by exploring
narrowly confined chemical space around them.

Searching for analog series

Therefore, we systematically searched for analog series
consisting of PubChem DCM and ChEMBL compounds with
available high-confidence activity data. The underlying ratio-
nale was that the presence of analogs of DCM in ChEMBL
might provide target hypotheses for these DCM compounds,
taking into consideration that structurally very similar com-
pounds often interact with the same target(s). As reported in
Table 1, an unexpectedly large number of 1400 DCM/
ChEMBL analog series was identified. These series contained
a total of 14 796 analogs and included 8568 DCM com-
pounds. Thus, for 10.5% of DCM, ChEMBL analogs with
high-confidence target annotations were identified. These
analogs were active against a total of 613 targets. Fig. 2 shows
the compound and target distribution of these series. Statis-
tics are reported in Table 1. The median size of the series
was three compounds but series with up to 20 analogs were
frequently detected. About half of the series were annotated
with a single target but series with up to five targets were also
frequently found. Hence, many series were available to com-
pare DCM and ChEMBL analogs and deduce target hypothe-
ses for DCM.

Exemplary series

Fig. 3 shows different examples of analog series containing
DCM and ChEMBL compounds. In Fig. 3a, four DCM analogs
are shown that were tested in more than 400 to 600 assays.
This series contained a known thrombin inhibitor from
ChEMBL. Given the high degree of structural similarity of
these analogs, the DCM compounds should be tested for
thrombin inhibition. If one or another analog would indeed
be a thrombin inhibitor, it might be rather selective, given
the inactivity of DCM analogs in very large numbers of
assays. However, since only one bioactive analog was avail-
able in this case, attention must be paid to its activity records
to exclude potential artifacts. This represents a prime reason
for exclusively considering compounds with high-confidence
activity data for analog series. In Fig. 3b, a series is shown

that consisted of a small DCM and larger ChEMBL analogs
with activity against serotonin receptor isoforms. The small
DCM analog lacked the tertiary amine, a hallmark for seroto-
nin receptor activity.

Nonetheless, it is striking that this small DCM compound
was inactive in all 357 assays it was tested in. In Fig. 3c, a se-
ries with two closely related DCM and three ChEMBL analogs
is shown that were active against the dopamine D2/D4 recep-
tor. In this case, chemical changes were confined to a termi-
nal phenyl ring, revealing some puzzling observations. For
example, the difference between a DCM compound and a D2
and D2/D4 receptor ligand was the change of a para-fluoro to
an ortho-chloro and ortho-methoxy substituent, respectively.
An unsubstituted phenyl ring was present in the other DCM
compound. Hence, structure–activity relationships and DCM
character should be further explored here. Fig. 3d shows two
DCM analogs that were inactive in more than 500 and 600 as-
says, respectively, and two ChEMBL analogs with activity
against HSP 90 and different PI3/4 kinase subunits, respec-
tively. In addition, Fig. 3e depicts a subset of a series
consisting of four DCM and two ChEMBL analogs with activ-
ity against pairs of distinct targets including novel target pro-
teins. Taken together, these examples highlight other oppor-
tunities for deriving target hypotheses for compounds with
DCM character.

Table 1 Analog series containing DCM and ChEMBL compounds

1400 analog series

Total number of compounds 14 796
Number of unique targets 613
Number of ChEMBL compounds 6228
Compounds per series 2–754
Median of compounds per series 3
Targets per series 1–74
Median of targets per series 1

Compound and target statistics are provided for 1400 analog series
consisting of DCM and ChEMBL compounds.

Fig. 2 Size and target distribution of analog series. For analog series
including DCM and ChEMBL compounds, the (a) size and (b) target
distribution is reported. For each series, the total number of unique
targets of ChEMBL analogs was determined.
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Conclusions

Herein we have reported a systematic analysis of DCM from
public screening assays. From a large pool of extensively
assayed compounds, more than 81 000 chemical entities were
identified that were consistently inactive in all primary and
confirmatory assays in which they were tested. There are mul-
tiple possible reasons for inactivity in assays, one of which is
the lack of compound quality or stability. However, given the
very large number of DCM compounds that were identified,
consistent lack of activity could hardly be in general attrib-
uted to compound quality or concentration issues. Single in-
stances likely exist, but DCM character prevails on a large
scale. Identification of DCM was followed by a systematic
search for bioactive analogs. For more than 8000 of these
DCM compounds, varying numbers of ChEMBL compounds
were identified, making it possible to evaluate potential tar-
gets for DCM. A variety of analog series with interesting com-
position were obtained also including series with multiple
DCM and ChEMBL analogs having activity against well-
studied pharmaceutical targets. Thus, DCM might not only
fill niche positions in target space. The analog series we iden-
tified provide starting points for further exploring the assay
behavior of DCM compounds, comparing them directly to
known active analogs, and deriving new experimentally test-
able target hypotheses. Therefore, as a part of our study, the
large number of series containing DCM and bioactive analogs
is made freely available as an open access deposition.29
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Summary

A total of 81,597 unique compounds extracted from extensively assayed com-

pound set were found to be consistently inactive in all primary and con�rmatory

assays they were tested in. A systematic search for bioactive analogs using high-

con�dence data from ChEMBL was carried out for these DCM compounds. For

10.5% of DCM (∼8500 compounds), varying number of ChEMBL analogs were

identi�ed. Furthermore, 1400 analog series with di�erent compositions of DCM

and ChEMBL compounds was obtained. The ChEMBL compounds present in

the DCM/ChEMBL analog series had activity annotations against well-known

pharmaceutical targets which can provide target hypotheses for their DCM

analogs. Thus, the analog series containing DCM and ChEMBL compounds

can be a good starting point for further exploring activities of DCM compounds

against targets of their bioactive analogs.

During the analysis of activity pro�les of extensively assayed compounds from

PubChem (in Chapter 3 ), we also found counterparts of DCM compounds that

were highly promiscuous. These compounds often contained PAINS substruc-

tures and were likely to cause assay interference. However, activity pro�les of

PAINS have not been explored on a large scale.

In the next chapter, we present a systematic analysis of PAINS extracted from

screening data.
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Chapter 5

How Frequently Are Pan-Assay

Interference Compounds Active?

Large-Scale Analysis of Screening

Data Reveals Diverse Activity

Pro�les, Low Global Hit

Frequency, and Many Consistently

Inactive Compounds

Introduction

PAINS are small molecules that might be reactive under assay conditions and

might produce false-positive assay signals, which cause substantial problems for

biological screening and medicinal chemistry. So far, 480 compound classes have

been designated as PAINS, which are typically contained as substructures in

larger compounds. Computational �lters encoding PAINS can be used to detect

compounds with potential chemical liabilities that require follow-up analysis.

Such �lters are controversially viewed in the �eld but provide �rst-path alerts

for potential liabilities.
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Herein, interference characteristics of PAINS have been computationally inves-

tigated by systematically analyzing publicly available screening data and de-

termining activity pro�les of screening compounds with PAINS substructures.

The major goal of the analysis was to examine whether assumed interference

characteristics of PAINS were supported by activities in biological screening

assays.

Reprinted with permission from �Jasial, S.; Hu, Y.; Bajorath J. How Fre-

quently Are Pan-Assay Interference Compounds Active? Large-Scale Analysis

of Screening Data Reveals Diverse Activity Pro�les, Low Global Hit Frequency,

and Many Consistently Inactive Compounds. Journal of Medicinal Chemistry

2017, 60, 3879-3886�. Copyright 2017 American Chemical Society
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How Frequently Are Pan-Assay Interference Compounds Active?
Large-Scale Analysis of Screening Data Reveals Diverse Activity
Profiles, Low Global Hit Frequency, and Many Consistently Inactive
Compounds
Swarit Jasial, Ye Hu, and Jürgen Bajorath*

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische
Friedrich-Wilhelms-Universitaẗ, Dahlmannstr. 2, D-53113 Bonn, Germany

ABSTRACT: Undetected pan-assay interference compounds (PAINS) with
false-positive activities in assays often propagate through medicinal chemistry
programs and compromise their outcomes. Although a large number of
PAINS have been classified, often on the basis of individual studies or
chemical experience, little has been done so far to systematically assess their
activity profiles. Herein we report a large-scale analysis of the behavior of
PAINS in biological screening assays. More than 23 000 extensively tested
compounds containing PAINS substructures were detected, and their hit rates
were determined. Many consistently inactive compounds were identified. The hit frequency was low overall, with median values
of two to five hits for PAINS tested in hundreds of assays. Only confined subsets of PAINS produced abundant hits. The same
PAINS substructure was often found in consistently inactive and frequently active compounds, indicating that the structural
context in which PAINS occur modulates their effects.

■ INTRODUCTION

Pan-assay interference compounds (PAINS) cause false-
positive assay signals due to reactivity under assay conditions,
including covalent modifications or redox effects, chelation,
autofluorescence, or degradation.1−3 More than 450 compound
classes have been designated as PAINS to date, including, for
example, rhodanines, isothiazolones, enones, and quinones1−3

as well as pharmaceutically intensely explored compounds such
as curcuminoids.3,4 Classified PAINS are typically small reactive
or otherwise liable molecules that are contained as
substructures in larger compounds. In addition to PAINS,
other compounds might also be reactive under assay conditions
and elicit artifacts,5 thus widening the spectrum of possible
interference compounds. The most promiscuous compounds
identified across PubChem assays included a variety of putative
interference compounds not classified as PAINS. Although
PAINS and other interference molecules were prevalent among
highly promiscuous compounds, they also contained chemical
entities with no apparent liabilities.5 Molecules having a
tendency to cause assay artifacts are not limited to synthetic
compounds but are also found among natural products.6,7 A
small set of natural products exhibiting a plethora of artificial
biological activities has recently been termed invalid metabolic
panaceas (IMPs).7

Efforts to systematically identify and classify PAINS1−3 are
complemented by case studies that carefully evaluate unrecog-
nized interference compounds and uncover chemical liabil-
ities.8,9 Occasionally, other investigations are reported that
carefully analyze an observed activity associated with PAINS
and ultimately confirm this activity using orthogonal assay

systems or X-ray crystallography.10 However, such investiga-
tions are exceptions. Publications reporting PAINS activities
including unrecognized artifacts in good faith frequently appear,
and individual examples propagate through the literature.4

Not only are potential PAINS widely distributed, but false-
positive assay readouts caused by PAINS are often difficult to
identify.2,3 Consequently, undetected PAINS may proceed far
during doomed optimization efforts until a roadblock is hit and
their artificial nature becomes evident. This presents a
substantial problem for medicinal chemistry.
Although there are controversial views about interference

compounds, increasing awareness of PAINS liabilities is evident
in the field. In fact, an emerging trend can be observed to
exclude a priori any potentially reactive compound from further
consideration, akin to “PAINS paranoia”. This is another point
of concern. Disregarding all potentially reactive or problematic
compounds would be detrimental for medicinal chemistry, just
as much as ignoring PAINS would be. Ultimately, orthogonal
assays and mechanistic studies are required to firmly establish
the validity of active compounds, irrespective of whether they
are designated as PAINS or not, as also emphasized in a recent
editorial by editors of several journals of the American
Chemical Society.11

Many PAINS have been identified in individual medicinal
chemistry and assay campaigns1 from which general assay
interference was extrapolated and supported by literature data
and/or experience values. A key question is whether
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interference characteristics are also supported by considering
large numbers of different assays.
To arrive at a balanced and data-centric assessment of PAINS

and the magnitude of their effects, we have set out to
systematically explore the activity profiles of PAINS in
biological screening assays. Only little prior knowledge exists.
For example, an earlier study reported the results of a dose−
response screen of nearly 200 000 compounds against the
cysteine protease cruzain using a fluorescence assay system.12

Of the initially detected active compounds, 23.7% were
detergent-sensitive indicating aggregation, 3.1% were auto-
fluorescent, and 2.6% contained reactive or undesirable groups.
Hence, there was a substantial fraction of interference
compounds among cruzain screening hits. A similar study
reported a screen on β-lactamase.13 In this case, 95% of the hits
were detergent-sensitive. Follow-up investigations analyzed the
mechanisms of artifactual inhibitors identified in these two
screens.14,15 Taken together, these studies predominantly
focused on colloidal aggregation.
Herein we report a systematic analysis of PAINS in publicly

available screening compounds. Importantly, while our paper
was under review, a closely related investigation was
published.16 In their comprehensive study,16 Capuzzi et al.
analyzed PAINS in AlphaScreen assays (the technology utilized
in the original PAINS report1) available in PubChem16 as well
as other assay formats, PAINS in dark chemical matter and
drugs, and random PAINS in PubChem.15 In the context of
their analysis, Capuzzi et al. reevaluated the original
investigation by Baell and Holloway1 and concentrated on
the question of whether the use of PAINS filters is scientifically
justified. The study of Capuzzi et al. and our analysis share a
global investigation of PubChem compounds. In both cases,
similar and consistent results were obtained, yielding equivalent
conclusions, as further discussed below. In the following, we
present our analysis of PAINS in extensively assayed
compounds originating from PubChem. Taken together,
these at least in part unexpected results provide some fresh
insights into the breadth of interference effects as observed by
analyzing a large body of experimental data.

■ METHODS AND MATERIALS
Compound Data Collection. From the PubChem BioAssay

database,17 compounds were selected that were tested in both primary
assays (resulting in percentage of activity from a single dose) and
confirmatory assays (dose−response assays yielding IC50 values). This
selection criterion was applied to focus the analysis on extensively
assayed compounds. From primary assays, RNA interference screens
were excluded. Compounds designated as “active” or “inactive” were
selected, whereas compounds with attributes such as “unspecified” or
“inconclusive” were disregarded. Confirmatory assays were only
considered if single protein targets were specified. No threshold was
applied to IC50 values so that weak activities of PAINS were also taken
into consideration (leading to an upper-limit assessment of assay
signals from PAINS).
A total of 437 257 compounds were obtained that were active

against 824 targets. More than 95% of these compounds were tested in
more than 50 primary and/or confirmatory assays, with a mean and
median of 411 and 437 assays per compound, respectively. This large
set of extensively assayed compounds and their associated activity/
inactivity records provided the basis for our analysis.
Identification of PAINS. The 437 257 compounds were screened

in silico for PAINS extracted from three public filters, including
RDKit,18 ZINC,19 and ChEMBL.20 Three filters were used to account
for possible implementation discrepancies. SMARTS strings of PAINS
were exported from RDKit (480 strings), ZINC (480), and ChEMBL

(481) and used as substructure queries to search the collection of
extensively assayed compounds for PAINS.21 PubChem compounds
were represented as canonical SMILES generated from hydrogen-
suppressed graphs.

■ RESULTS AND DISCUSSION
PAINS and Assay Frequency. The set of 437 257

compounds tested in both primary and confirmatory assays
contained 27 520 compounds detected as PAINS by at least
one of the filters. These screening compounds included a total
of 270 PAINS as substructures. Figure 1 reports the assay

frequency of the detected PAINS-containing compounds,
confirming that many of these compounds were extensively
tested. For PAINS from primary assays, the median frequency
was 374 assays per compound, and for PAINS from
confirmatory assays, the median was 97.

Active and Inactive PAINS. We determined that 23 036
PAINS-containing compounds (with 265 distinct PAINS
substructures) were tested in at least 100 primary assays and
23 377 compounds (with 266 distinct PAINS substructures) in
at least 50 confirmatory assays. The following analysis was
based upon these most extensively tested compounds. Figure 2
reports their assay results. In primary assays, 18 248 compounds
(with 262 PAINS substructures) were active at least once,
whereas 4788 compounds (121 PAINS substructures) were
consistently inactive in 100 to 594 assays. In confirmatory
assays, 15 659 compounds (258 PAINS substructures) were
active in at least one assay and 7718 (151 PAINS
substructures) were consistently inactive. Primary and con-
firmatory assays shared 13 394 active and 2792 inactive
compounds.

Figure 1. Assay frequency of PAINS. Histograms report the assay
frequency of PAINS from (a) primary and (b) confirmatory assays.
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When primary and confirmatory assays were combined and
PAINS substructures that were represented by at least five
compounds were selected, 20 660 active and 3800 consistently
inactive compounds were obtained that contained 176 and 98
unique PAINS substructures, respectively. All of these 98
PAINS substructures were found in both active and
consistently inactive compounds.
Thus, the majority of PAINS-containing compounds was

active in one or more assays. We note that compounds with
activity in only a single assay cannot be regarded as PAINS,
irrespective of whether they contain PAINS substructures.1,16

However, there also were large numbers of extensively tested
compounds (i.e., ∼21%, primary assays; ∼33%, confirmatory)
that were consistently inactive in all assays, which was an
unexpected finding. Consistently inactive compounds con-
tained many different PAINS. Similarly, the top 20% of
compounds with the largest numbers of hits in primary or
confirmatory assays were also widely distributed over different
PAINS. In both primary and confirmatory assays, quinones
were the class of PAINS that produced most hits, with 388 and
348 active compounds, respectively.
Hit Frequency. After identifying many consistently inactive

PAINS-containing compounds, we determined how frequently
active PAINS produced hits in different assays. Figure 3 reports
the distribution of hits for PAINS and equally sized random
samples of other screening compounds tested in increasing
numbers of primary and confirmatory assays. For both PAINS
and non-PAINS, the results were comparable for both assay
categories. Overall, PAINS displayed slightly higher hit rates
than non-PAINS. While there were small numbers of PAINS
that produced large numbers of hits, with up to 150 and 82 hits
in primary and confirmatory assays, respectively, the hit
frequency of compounds with PAINS substructures was overall
surprisingly low. In primary assays (Figure 3a), median values
were consistently between three and five hits per compound
over the entire range of 100 to more than 500 assays. For
comparison, for non-PAINS, the corresponding medians were
two to three hits per compound. For 7888 PAINS tested in
401−500 assays, the median value was five hits per compound,

and for 2185 PAINS tested in more than 500 assays, the
median was four hits. As shown in Figure 3a, at least 75% of all
PAINS produced fewer than 10 hits, with a median of four hits
per compound. For non-PAINS, at least 75% of the compounds
produced fewer than seven hits, with medians of two to three
hits per compound. Similar observations were made for
confirmatory assays (Figure 3b), where medians for PAINS
over increasing numbers of assays were two to three hits per
compound. For non-PAINS compounds, the corresponding
median values were also two to three hits per compound. For
PAINS, there was one exception. For compounds tested in
more than 150 assays, the median was 15 hits per compound.
However, this sample only included 59 compounds and was
thus too small for reaching statistically sound conclusions. For
8136 compounds tested in 101−150 dose−response assays, the
median value was three hits per compound, and the same
median was obtained for all PAINS tested in confirmatory
assays. As shown in Figure 3b, at least 75% of the PAINS
compounds produced fewer than seven hits. For comparison, at
least 75% of the non-PAINS compounds produced fewer than
five hits. Thus, hit rates were comparable for the majority of
PAINS and non-PAINS and only slightly higher for PAINS.
For the top 20% of PAINS with the largest numbers of hits,

the median values were 20 (primary) and 12 (confirmatory)
hits per compound; for the top 10%, the medians were 30
(primary) and 17 (confirmatory) hits.
Since no activity threshold was applied, weak activities were

taken into account, which resulted in an upper-limit assessment
of hit rates. Furthermore, given that more than 23 000
compounds were tested in hundreds of assays, a proportion
of the observed activities was expected to represent true
positives. Accordingly, potential false-positive rates of PAINS
were overall lower than anticipated for compounds that are
thought to produce assay artifacts. For such compounds, one
would intuitively expect observing multiassay activities in
magnitude at least comparable to the top 10 or 20% as a rule
rather than an exception. Instead, the majority of PAINS-
containing compounds only produced hits in a few of many
single-dose and dose−response assays, might they be artifacts
or not.
Table 1 reports a small subset of PAINS substructures with

large numbers of compounds having hit rates of at least 10%,
including popular candidates.3 However, even these PAINS
substructures represented in part large numbers of consistently
inactive compounds. For comparison, Table 2 reports
individual compounds with very high hit rates not classified
as PAINS. These molecules have potential chemical liabilities5

and are most likely interference compounds.
We also determined the ratio of active PAINS-containing

compounds relative to all active compounds. For extensively
assayed compounds, the ratio was 0.08 and 0.09 for primary
and confirmatory assays, respectively. For those compounds
having hit rates of at least 10%, the ratio was 0.3 in both cases.
Hence, there was a moderate increase in the proportion of
PAINS among compounds with overall highest hit rates, due to
a small subset of PAINS according to Table 1.

Exemplary Compounds. Figure 4 shows further examples
of PAINS-containing compounds and their activity profiles,
which illustrate the entire spectrum of observations made. In
the left column, examples of aminothiophenes and phenyl-
sulfonamides are shown that were tested in about 650 assays
and never produced a hit. Furthermore, thiazolone- and
pyrrole-containing compounds that were tested in nearly or

Figure 2. Active vs inactive compounds. The flowchart reports the
numbers of active and consistently inactive PAINS-containing
compounds from primary and confirmatory assays. The Venn
diagrams in the center reveal the overlaps between active and inactive
compounds from primary and confirmatory assays. The numbers of
PAINS contained as substructures in active and inactive compounds
are also given.
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more than 600 assays yielded a total of only four or five hits.
Furthermore, in the middle, compounds are shown that
produced increasing numbers of hits, ranging from 17 for a
thialindolizine and 45 for an aminoacridine to 69 and 107 for
an aminomethylphenol and dimethylaminostyrene, respectively.
The latter compounds provide examples of small subsets of
compounds with PAINS substructures with large numbers of
hits that were most likely artifacts. Moreover, in the right
column, exemplary pairs of compounds containing classical
PAINS substructures are shown that were either consistently
inactive or active with high frequency. For example, the two p-
benzoquinones were tested in comparable numbers of 252 and
261 assays, respectively. However, the first compound was
consistently inactive, whereas the second produced a total of 91
hits. In addition, the small catechol was tested in 369 assays and
was consistently inactive, whereas the larger catechol produced

135 hits in 592 assays. In the latter case, it was implausible that
so many hits could be genuine.
Taken together, these examples illustrate the variety of

PAINS assay phenotypes that were identified for more than
23 000 most extensively tested screening compounds contain-
ing PAINS substructures. The majority of PAINS were active in
only a small number of assays. Variation of the assay conditions
is expected to modulate the magnitude of compound reactivity
and other potential causes of artifacts. However, comparison of
these exemplary compounds and many others also suggested
that the structural context in which PAINS are presented might
often play an important role for their potential to produce
artifacts. Accordingly, exploring PAINS substructure embed-
ding in a systematic fashion might be an attractive goal for
future research, further extending structure−interference
analysis, for which the first examples have been reported.8,9

Figure 3. Activity profiles. For PAINS (left) and equally sized random samples of non-PAINS (right) from (a) primary and (b) confirmatory assays,
box plots report the distributions of hits for subsets of compounds tested in increasing numbers of assays. “All” (bold) shows the distribution for all
active PAINS and non-PAINS in primary or confirmatory assays. Box plots report the smallest value (bottom line), the first quartile (lower boundary
of the box), the median value (thick line), the third quartile (upper boundary of the box), and the largest value (top line).
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Concluding Remarks. In this work, we have systematically
studied the behavior of compounds containing PAINS
substructures in biological screening assays. There is no
doubt that PAINS present a substantial problem for biological
screening and medicinal chemistry. Waste of time and resources
is inevitable if undetected PAINS with artificial activity enter
compound optimization efforts. Moreover, false-positive
activities reported in the literature are misleading at best and
may catalyze further research that is doomed to fail. Clearly,
indications of potential assay interference, for the detection of
which current PAINS and aggregation filtersalbeit imper-
fectare helpful, must give rise to orthogonal assays and
further experimental follow-up.11

While many compound classes have been designated as
PAINS, a critically important question is to what extent the
notion of PAINS and artificial frequent hitter characteristics are
supported by experimental data. Therefore, we have carried out
a large-scale analysis of PAINS in primary and confirmatory
assays and determined their activity profiles. Extensively
assayed compounds were found to contain a subset of 270
PAINS, and nearly all of them were detected in both active
compounds and thousands of others that were consistently
inactive in single-dose and/or dose−response assays. For active
compounds with PAINS substructures tested in increasing
numbers of assays, hit rates were generally low, with median

values of two to five hits per compound. Only small subsets of
compounds produced an abundance of hits. Moreover, the
same PAINS substructure was often found in consistently
inactive and frequently active compounds, suggesting that the
structural context in which PAINS occur plays a role in causing
undesired effects. Taken together, the results of our analysis
reveal that PAINS are generally far from being excessively
active. Rather, the hit frequencies vary greatly, and many
PAINS are consistently inactive in different assays.
We return to the study of Capuzzi et al.16 Although analysis

details differ, as expected for independent studies, the results
reported herein are very similar to the findings of Capuzzi et al.
for random PubChem compounds. Corresponding findings
include assay frequencies of PAINS, the identification of the
most reactive PAINS, and detection of many consistently
inactive compounds. In fact, on the basis of both analyses,
essentially equivalent conclusions can be drawn, including,
among others, the likely structural context or “molecular
environment”16 dependence of PAINS. At times when
reproducibility of scientific studiesand the lack thereofis
a major issue, it is without doubt reassuring that these two
independently performed analyses of PAINS in screening
compounds are consistent. The interested reader may want to
consider them side by side. Moreover, both the work of
Capuzzi et al. and our analysis clearly indicate that the PAINS

Table 1. PAINS with High Hit Ratesa

aListed are PAINS with the largest numbers of compounds having hit rates of at least 10% in primary and confirmatory assays.
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concept and practical assessment of PAINS are subject to
further evaluation and refinement, just as much as the concept
of colloidal aggregation, the result of another pioneering effort
to control compound activity artifacts, has been continuously
refined and evolved over time.12−15 The results of Capuzzi et al.
and our analysis raise awareness of PAINS-relevant issues that
require further exploration. However, neither Capuzzi et al. nor
we offer practical solutions to address these issues. Thus, future
investigations will be highly encouraged to translate the findings
of rigorous large-scale data analysis into practical guidelines
with utility for medicinal chemistryand ultimately new
computational tools.

As a step in this direction, the results of our analysis are made

freely available. In our study, 270 of 480 PAINS listed in public

filters were found in extensively assayed PubChem compounds.

For each of these 270 PAINS, we make the total number of

assayed compounds, the number of active compounds, their

mean hit rates, and the number of consistently inactive

compounds available in an open access deposition.22 These

data should be helpful to investigators interested in reviewing

or revising current PAINS filters.

Table 2. Other Compounds with High Hit Ratesa

aExtensively tested compounds not classified as PAINS are shown with their PubChem IDs that produced highest hit rates in primary and
confirmatory assays.
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Summary

In our study, ∼23,000 extensively tested compounds containing 270 PAINS

substructures were identi�ed and their activity pro�les were analyzed. Sur-

prisingly, many compounds containing PAINS substructures (∼21% in primary

assays; ∼33% in con�rmatory assays) were found to be consistently inactive.

PAINS with largest number of hits in primary and con�rmatory assays as well as

consistently inactive compounds were widely distributed over di�erent PAINS

substructures. Hit rates of PAINS varied but were often low, with median val-

ues of two to �ve hits for compounds tested in increasing numbers of assays.

Only con�ned subsets of compounds produced an abundance of hits.

A variety of activity pro�les were identi�ed for extensively tested compounds

containing PAINS substructures. Furthermore, the same PAINS substructure

was often found in consistently inactive and frequently active compounds, sug-

gesting that the structural context in which PAINS are presented plays an

important role for interference potential. Thus, a majority of PAINS were

not frequently active in screening assays. In fact, many PAINS were found to

have DCM character. Therefore, it is important to distinguish between PAINS,

which display high and low frequency of activity.

In the next chapter, we discuss how machine learning models can be used to

characterize highly promiscuous and DCM PAINS.
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Chapter 6

Machine Learning Distinguishes

with High Accuracy between

Pan-Assay Interference

Compounds That Are Promiscuous

or Represent Dark Chemical

Matter

Introduction

Systematic analysis of compound activity data associated with PAINS has

shown that PAINS have diverse activity pro�les and PAINS substructures are

found in compounds that are speci�cally active or inactive (Chapter 5 ). The

structural environment of PAINS substructures is likely to play an important

role for assay interference as well as for speci�c activity/inactivity.

PAINS �lters have been viewed critically in the �eld as they are used to �l-

ter potentially liable compounds by only considering the presence of PAINS

substructure, without taking structural context information into account. As

PAINS �lters are not fully reliable, exploring structural context of PAINS is of
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high relevance for medicinal chemistry.

Given the large number of PAINS and the high variability of structural envi-

ronments, it is di�cult to formulate structural rules for di�erentiating between

PAINS e�ects. Therefore, in this study, we used machine learning to distinguish

between PAINS that are highly promiscuous from those having DCM character.

Machine learning models were built using three methods including SVM, RF

and DNN. Feature weighting and mapping were carried out to extract features

responsible for correct predictions thus providing interesting insights into the

structural environment of PAINS.

Reprinted with permission from �Jasial, S.; Gilberg, E.; Blaschke, T.; Bajo-

rath J. Machine Learning Distinguishes with High Accuracy between Pan-Assay

Interference Compounds That Are Promiscuous or Represent Dark Chemical

Matter. Journal of Medicinal Chemistry 2018, 61, 10255-10264�. Copyright

2018 American Chemical Society
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ABSTRACT: Assay interference compounds give rise to false-positives
and cause substantial problems in medicinal chemistry. Nearly 500
compound classes have been designated as pan-assay interference
compounds (PAINS), which typically occur as substructures in other
molecules. The structural environment of PAINS substructures is likely
to play an important role for their potential reactivity. Given the large
number of PAINS and their highly variable structural contexts, it is
difficult to study context dependence on the basis of expert knowledge.
Hence, we applied machine learning to predict PAINS that are
promiscuous and distinguish them from others that are mostly inactive.
Surprisingly accurate models can be derived using different methods such
as support vector machines, random forests, or deep neural networks.
Moreover, structural features that favor correct predictions have been
identified, mapped, and categorized, shedding light on the structural context dependence of PAINS effects. The machine
learning models presented herein further extend the capacity of PAINS filters.

■ INTRODUCTION
Compound screening is the major source of new chemical
entities for drug discovery. However, biological screening is
prone to artifacts due to assay interference for which a variety
of potential mechanisms exist.1−10 False-positive hits that
remain unrecognized and enter chemical optimization
programs ultimately cause substantial waste of time and
resources. Similarly, false-positives that propagate through the
scientific literature may trigger further research activities that
are doomed to fail. Hence, much awareness has been raised in
recent years of compound classes that might cause assay
interference by different mechanisms, which is often difficult to
recognize.3,5,7,9 Clearly, confirmation of a true mechanism of
action responsible for a specific biological activity of a
compound is a crucial step before subjecting a candidate to
chemical optimization and further development.1−5 Com-
pound liabilities leading to assay interference include, among
others, aggregation effects, autofluorescence and quenching,
covalent modification of target proteins and assay reagents,
redox effects, or metal chelation.6−9

Although interference phenomena strongly depend on
experimental conditions, systematic attempts have been made
to identify problematic compound classes. Such efforts have
uncovered colloidal aggregators2,3 and pan-assay interference
compounds (PAINS),6,7,9 which include many different
compound classes such as anilines, rhodanines, curcuminoids,
Michael acceptors, or Mannich bases.6,7,9−11 Typically, PAINS
occur as substructures in larger compounds. Originally, 480

compound classes have been designated as PAINS.6 Some of
these classes and underlying interference mechanisms have
been further explored and detailed, providing multifaceted
views of interference phenomena and recommendations how
to best address them.8,12−14

However, systematic analyses of compound activity data
associated with proposed PAINS have also shown that PAINS
often have very different activity profiles and that PAINS
substructures are also found in compounds that are specifically
active or inactive.15−17 For example, X-ray structures of
protein−PAINS complexes confirmed that prominent PAINS
such as catechols or alkylindoles7 can engage in specific
target−ligand interactions.18,19 Moreover, in some instances,
proposed interference mechanisms and complex formation
revealed by X-ray crystallography follow similar routes.18

Different lines of evidence suggest that the structural context
in which PAINS substructures are presented plays a decisive
role for assay interference and false-positive signals on one
hand and specific activity or inactivity on the other.15,16,18,20,21

For example, chemical modifications of structural analogs
containing PAINS substructures have been shown to strongly
influence their hit rates in biological screening assays.21

Furthermore, significant numbers of compounds with PAINS
substructures have been identified that were consistently
inactive in screening assays15−17 including compounds tested
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in hundreds of primary or confirmatory assays.17 Hence, the
latter screening compounds qualify as “dark chemical matter”
(DCM),22 i.e., small molecules for which any potential
biological activity is yet to be confirmed.
Given that PAINS cover a wide spectrum of activity profiles,

ranging from inactive over specifically active to highly
promiscuous compounds, the PAINS concept has also been
viewed critically, especially with respect to PAINS filters.16

Such filters compile PAINS for substructure searching to flag
compounds with potential liabilities.6 For example, a point of
critique has been that original PAINS filters were based on
limited assay data, calling generalization into question.16

Moreover, PAINS filters do not contain structural context
information. However, albeit imperfect, such filters provide
initial alerts to carefully consider the apparent activity of
compounds with PAINS substructures, for example, by testing
them in orthogonal assays.14

Given the intrinsically limited reliability of PAINS filters to
detect artificial activities, exploring the structural context
dependence of PAINS effects is of high relevance for medicinal
chemistry. However, while this structural context dependence
has been analyzed on a case-by-case basis,18,21 large-scale
analysis on the basis of expert knowledge is essentially
prohibitive. Furthermore, it is difficult to formulate structural
rules for differentiating between PAINS effects, given the large
number of potentially liable substructures and the high
variability of structural contexts.
In light of this situation, we have reasoned that machine

learning might be investigated to distinguish between PAINS
with high and low frequency of activity and build models to
predict if a compound containing a PAINS substructure is
likely to display assay promiscuity. Therefore, we have
generated data sets containing highly promiscuous PAINS
(PROM_PAINS) and PAINS having DCM character
(DCM_PAINS) and investigated different machine learning
algorithms for their ability to distinguish between these PAINS
phenotypes. The resulting models have been unexpectedly
successful in predicting promiscuous and inactive compounds
with PAINS substructures. Feature weighting and mapping
were carried out to rationalize predictions and better
understand the structural context dependence of PAINS
effects. The results of our analysis are presented in the
following.

■ RESULTS

PAINS Characteristics and Distribution. The analysis
was deliberately focused on extensively tested compounds with
PAINS substructures that displayed unusually high hit rates in
screening assays and others that were consistently inactive in
all assays they were tested. Thus, these compound sets marked
opposite ends of the PAINS activity spectrum. Although
PROM_PAINS might have true biological activities, their
unusually high hit frequency is indicative of artifacts. On the
other hand, some DCM_PAINS might be compromised or
insoluble under assay conditions, which could explain why they
do not display any activity. However, the availability of more
than 3000 qualifying DCM_PAINS that were extensively
tested makes it highly unlikely that many of these compounds
might be compromised in one way or another.
Our training and test sets covered a total of 212 different

PAINS, 74 of which were shared by PROM_PAINS and
DCM_PAINS. Hence, 118 and 20 PAINS substructures and

compounds containing them were unique to PROM_PAINS
and DCM_PAINS, respectively.

Machine Learning and Resulting Models. Given the
large number of different machine learning algorithms that are
available, the choice of support vector machine (SVM) and
random forest (RF) algorithms was motivated by their typically
high performance in compound classification and ranking. In
addition, the deep neural network (DNN) method was
selected in light of the increasing popularity of deep learning
in chemistry. Despite algorithmic differences, machine learning
methods used for classification have in common that they
associate molecular features with given class labels (e.g.,
PROM_PAINS versus DCM_PAINS) during model building.
Hence, training data representing different class labels must be
available. It is important to note that activity or reactivity is not
used as a parameter during learning. Rather, classification is
solely guided by associating feature distributions with given
class labels. A known conundrum in machine learning is model
derivation on the basis of unbalanced data sets, due to the
availability of many more negative than positive training
instances and vice versa. Data imbalance often reduces model
quality or biases classification calculations, depending on the
composition of test data sets. Therefore, it is important to take
data imbalance into account during machine learning and
derive alternative models on the basis of training sets with
varying composition. This has also been taken into
consideration when deriving classification models for PAINS,
as discussed in the following.

Global Models. First, global models were built using SVM,
RF, and DNN to distinguish between PROM_PAINS and
DCM-PAINS taking all 212 PAINS substructures into account.
Alternative performance measures were applied including the
area under the ROC curve (AUC ROC), Matthew’s
correlation coefficient (MCC), and balanced accuracy (BA).
Table 1 reports prediction results for global models using
ECFP4 and MACCS as molecular representations. In addition,
Figure 1 shows ROC curves for individual trials. Prediction
accuracy of different models was generally high and
comparable for SVM, RF, and DNN. In fact, differences

Table 1. Performance of Global Modelsa

ECFP4

SVM RF DNN

AUC ROC Mean 0.960 0.946 0.952
SD 0.001 0.002 0.003

MCC Mean 0.797 0.750 0.776
SD 0.007 0.010 0.011

BA Mean 0.902 0.886 0.887
SD 0.004 0.006 0.004

MACCS

SVM RF DNN

AUC ROC Mean 0.935 0.933 0.912
SD 0.001 0.001 0.002

MCC Mean 0.732 0.720 0.680
SD 0.008 0.006 0.006

BA Mean 0.863 0.870 0.835
SD 0.004 0.003 0.004

aReported are the mean and standard deviation (SD) of AUC ROC,
MCC, and BA values for 10 independent trials using SVM, RF, and
DNN global models with ECFP4 and MACCS fingerprints as
descriptors.
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between these methods were only small. Furthermore,
standard deviations of independent trials were also small in
all cases (Table 1), indicating the presence of stable
predictions. For ECFP4, high AUC ROC values of ∼0.950
were obtained for SVM, RF, and DNN as well as high MCC
and BA values, ranging from 0.750 (RF) to 0.797 (SVM) and
from 0.886 (RF) to 0.902 (SVM), respectively.
When using the simpler MACCS fingerprint instead of

ECFP4 as a molecular representation, only slightly lower
values were obtained (Table 1). ROC curves further illustrate
the comparable performance using ECFP4 and MACCS
(Figure 1). There was no notable advantage of DNN over
SVM and RF. All methods reached high performance levels,
more so than we anticipated, leaving only little room for
further improvements.
From Global to Balanced Models. We considered that

the high accuracy of global models might be attributable to 118
PAINS substructures that were only present in PROM_PAINS
and 20 others only present in DCM_PAINS. Compounds
containing class-specific substructures might be straightforward
to classify, which would at least in part explain the observed
accuracy. In addition, the PAINS substructures shared by
PROM_PAINS and DCM_PAINS were represented by larger
numbers of PROM_PAINS, as shown in Figure 2, which might
also favor their identification.
To investigate potential substructure bias and data

imbalance, we generated training and test sets that exclusively
contained shared PAINS substructures and the same number
of PROM_PAINS and DCM_PAINS per substructure. These
sets, which were used to generate and evaluate balanced
models, comprised 54 shared substructures, and each
contained a total of ∼1900 compounds (see Experimental
Section). They provided challenging conditions for predictions
because accurate results could only be anticipated here if
models were able to distinguish between different structural
contexts in which shared PAINS substructures were
embedded. We expected that the variety of structural contexts
in which PAINS substructures were found in active and
inactive compounds17,18,21 would make these predictions very
difficult.
Balanced Models. Table 2 reports prediction results for

balanced SVM, RF, and DNN models, and Figure 3a shows
ROC curves for individual trials. Balanced models displayed
the same characteristics as global models. The relative
performance of balanced SVM, RF, and DNN models was

very similar and, again, only slightly better using ECFP4 than
MACCS. Balanced models also produced stable predictions
with small standard deviations across different trials. They
yielded high AUC ROC values greater than 0.900 as well as
high MCC and BA values, ranging from 0.651 (DNN) to 0.681
(SVM) and from 0.825 (DNN) to 0.841 (SVM), respectively
(Table 2, ECFP4). Compared to global models, the perform-
ance of balanced models was only lower by a small margin, on
the order of 5%, when assessed on the basis of AUC ROC and
BA, and 10% on the basis of MCC values. Thus, although
balanced models were trained to distinguish between
PROM_PAINS and DCM_PAINS containing the same
PAINS substructure, they yielded accurate predictions similar
to global models, another surprising finding. It indicated that
alternative models were capable of distinguishing between
PAINS substructures embedded in compounds representing
different structural environments, which were characteristic of

Figure 1. Receiver operating characteristic curves for global models.
ROC curves are shown for an individual trial distinguishing
PROM_PAINS and DCM_PAINS using SVM (blue), RF (green),
and DNN (red) global models on the basis of ECFP4 and MACCS.

Figure 2. Data imbalance. A density plot is shown for the logarithmic
ratio of PROM_PAINS and DCM_PAINS for shared PAINS
substructures. The shift of the distribution toward positive log values
indicates the presence of more PROM_PAINS than DCM_PAINS.

Table 2. Performance of Balanced Modelsa

ECFP4

SVM RF DNN

AUC ROC Mean 0.920 0.910 0.901
SD 0.006 0.005 0.008

MCC Mean 0.681 0.658 0.651
SD 0.018 0.012 0.014

BA Mean 0.841 0.830 0.825
SD 0.009 0.006 0.007

MACCS

SVM RF DNN

AUC ROC Mean 0.878 0.882 0.837
SD 0.005 0.005 0.007

MCC Mean 0.603 0.597 0.529
SD 0.012 0.012 0.014

BA Mean 0.802 0.799 0.764
SD 0.006 0.006 0.007

aReported are the mean and standard deviation (SD) of AUC ROC,
MCC, and BA values for 10 independent trials using SVM, RF, and
DNN balanced models with ECFP4 and MACCS fingerprints as
descriptors.
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PROM_PAINS on the one hand and DCM_PAINS on the
other.
To assess the performance of the balanced SVM model as a

PROM_PAINS filter for compound libraries, we carried out
five virtual screening-type calculations using ECFP4 as a
molecular representation. For each trial, a screening library
consisting of 300 randomly selected PROM_PAINS from the
test set, 300 random DCM_PAINS from the test set, and 3000
randomly chosen ZINC compounds was assembled.
DCM_PAINS and ZINC compounds were regarded as false
positives. ZINC compounds were required to generate ECFP4
features present in PROM_PAINS. The SVM model yielded
an average ROC AUC of 0.87 and achieved a TP rate of 62%
within the top 100 ranked compounds. Figure 3b shows a
ROC curve for an individual trial. Although the model was
trained to distinguish between PROM_PAINS and
DCM_PAINS, it was also capable of distinguishing PROM_-
PAINS from random ZINC compounds.
Taken together, the results revealed a level of accuracy of

global and balanced models in differentiating PROM_PAINS,
DCM_PAINS and randomly selected compounds that was
higher than anticipated. Moreover, in single SVM trials, only
one of 54 PAINS classes (code “thiaz_ene_B”) was entirely
incorrectly predicted, as shown in Figure 4. In this case,
however, only two training and test compounds were available.
Hence, effective learning was essentially impossible due to data
sparseness, providing an explanation for the incorrect
prediction.
Model Diagnostics. In light of our findings, we

investigated how to further assess and better understand

successful predictions. Due to the black box character of
machine learning models, especially DNN, there was no direct
access to determinants of predictions. However, we adapted a
feature weighting approach developed for SVM (see
Experimental Section) to further explore the predictions.
Given the consistency of predictions using different models,
understanding which topological (ECFP4) features were
prevalent in PROM_PAINS vs DCM_PAINS and vice versa
(and hence contributed differentially to predictions) provided
an opportunity to interpret classification results.

Feature Weights. For all ECFP4 features of test compounds
in balanced data sets, cumulative positive and negative feature
weights (see Experimental Section) were determined. Then,
features were ranked for PROM_PAINS and DCM_PAINS on
the basis of positive and negative weight sums, respectively.
For example, for a given balanced test set, a total of 19 668
ECFP4 features were detected, 2573 and 2527 of which were
found to have positive and negative feature sums, respectively.
Top ranked features were identified for PROM_PAINS
(termed positive features) and DCM_PAINS (negative
features) and further analyzed.

Feature Analysis. Highly ranked positive and negative
ECFP4 features typically differed. Negative features preferen-
tially included aliphatic carbon atoms with varying levels of
hydrogens, cyclic aliphatic ethers, and sp2-hybridized oxygens
of carbonyl and sulfonyl groups. In contrast, highly ranked
positive features included patterns from conjugated ring
systems, chlorine and sulfur atoms, and β-unsaturated carbons
bisecting a ring system. Hence, positive features were
preferentially associated with reactive moieties, whereas
negative features were chemically more inert, which we
considered an interesting finding. For example, Figure 5a
shows an N,N-disubstituted aniline pattern that is a part of a
PAINS substructure and preferentially found in PROM_
PAINS. In fact, aromatic tertiary amines are present in 23
PAINS substructures6−10 and thought to compromise
fluorometric assays due to quenching.23 Figure 5b shows a
feature comprising doubled bonded sp2-hybridzed carbons
representing an unsaturated bond connecting two ring systems,
which was also prevalent in PROM_PAINS. This atom
arrangement is a part of a recurrent Michael acceptor motif

Figure 3. Receiver operating characteristic curves for balanced
models. (a) ROC curves are shown for an individual trial
distinguishing PROM_PAINS and DCM_PAINS using SVM
(blue), RF (green), and DNN (red) balanced models on the basis
of ECFP4 and MACCS. (b) A ROC curve is shown for an individual
trial distinguishing PROM_PAINS, DCM_PAINS, and randomly
selected ZINC compounds using the balanced SVM on the basis of
ECFP4.

Figure 4. Incorrectly predicted PAINS class. Shown are test
compounds containing a PAINS substructure (code: thiaz_ene_B)
that were incorrectly predicted using the balanced SVM model. In this
case, only two training and test compounds were available. The
PAINS substructure is shown in red.
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that is reactive and found in a variety of PAINS substructures.
By contrast, Figure 6a and Figure 6b show examples of highly
ranked negative features representing amide bond and
morpholino patterns that mostly occur outside PAINS
substructures and are stable under physiological conditions.
In Figure 7, exemplary features with positive weight in
PROM_PAINS are shown and their likely chemical reactivity
is given. The frequency of occurrence of these features in
PROM_PAINS was higher than in DCM_PAINS, as also
reported.
The analysis revealed that calculated ECFP4 features

distinguishing PROM_PAINS and DCM_PAINS often
accounted for structural patterns associated with potential
reactivity of PROM_PAINS, which provided a rationale for
successful global classification using different methods.
However, these observations did not explain why compounds
containing the same PAINS substructure were correctly
classified as promiscuous or inactive.
Structural Context Analysis. Differences in the activity of

PAINS containing the same substructure and their correct
prediction can only be rationalized by studying the structural
environment. To address this issue at the level of model-based
classification, top ranked ECFP4 features were mapped onto
PROM_PAINS and DCM_PAINS and categorized with
respect to their structural context. Accordingly, subset features

were entirely contained in PAINS substructures, intersection
features were part of a PAINS substructure and part of its
structural environment, and distinct features completely
mapped outside PAINS substructures.
Figure 8a shows exemplary positive ECFP4 features

belonging to different categories for unsaturated rhodanines

Figure 5. Positive ECFP4 features. Shown are features (in SMARTS
representation) from SVM predictions that were highly ranked for
PROM_PAINS. In exemplary PROM_PAINS, the mapped structural
feature is traced on a gray background and the PAINS substructure is
colored red. (a) shows an N,N-disubstituted aniline ECFP4 feature
detected in different types of aniline PROM_PAINS (PAINS codes6

anil_di_alk_A and anil_di_alk_D). (b) shows an ECFP4 feature
consisting of three doubled-bonded sp2-hybridzed carbon atoms
found in PROM_PAINS (codes het_pyridinium_A and ene_o-
ne_ene).

Figure 6. Negative ECFP4 features. Shown are features (in SMARTS
representation) from SVM predictions that were highly ranked for
DCM_PAINS. In exemplary DCM_PAINS, the mapped structural
feature is traced on a gray background and the PAINS substructure is
colored red. (a) shows an amide-bond feature found in DCM_PAINS
(codes dyes5A and ene_rhod_A) and (b) an aliphatic heterocycle
(codes ene_six_het_A and azo_A).

Figure 7. Prominent features with positive weights. For exemplary
positive features, the SMARTS representation and their likely
chemical reactivity are provided. In addition, the ratio of their
frequency of occurrence in PROM_PAINS versus DCM_PAINS is
reported. For each feature an exemplary compound is given. The
structural feature is traced on a gray background, and the PAINS
substructure is colored red.
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(PAINS code “ene_rhod_A”), a prominent PAINS class.
Reported interference potential of these five-membered
heterocycles with an exocyclic double bond includes protein
reactivity, covalent modification, or metal chelation,24−26

despite their popularity as scaffolds in drug discovery.27 The
potential Michael acceptor activity of the exocyclic double
bond provides a prime example for structural context
dependency since many compounds containing this sub-
structure have distinct activity profiles, including PROM_
PAINS and DCM_PAINS. The identification of positive and
negative features not only provided a rationale for successful
classification, as discussed above, but their mapping and
categorization also helped to explain the influence of structural
contexts on predictions. In Figure 8a, positive features, which
were absent or underrepresented in DCM_PAINS, are
mapped onto correctly predicted PROM_PAINS. Both subset
feature 1 and intersection feature 3 cover a sp2 hybridized
exocyclic carbon at which the attack of a reactive nucleophile
such as a thiol compound occurs. Moreover, the intersection
feature 3 highlights the critically important role of an
additional ring system conjugated with the Michael acceptor
for its activity. Consequently, the presence of an aromatic
feature 4 in the vicinity of the reactive double bond also favors
Michael acceptor reactivity, which is further supported by
increasing the electrophilicity of the double bond, for example,
by a chlorine substitution (feature 5).
Figure 8b shows positive features characterizing p-

hydroxyarylsulfonamides (code “sulfonamide_B”), another
prominent PAINS class prone to redox and thiol reactiv-
ity.8,28,29 The p-hydroxyarylsulfonamides typically display assay
interference if they contain a naphthalene core,8 which is
covered by the intersection features.

Feature mapping did not always provide consistent and
easily interpretable results. An example is shown in Figure 9.
Positively weighted features detected for alkylindoles (code
“indol_3yl_alk”) could not be directly associated with the

Figure 8. Structural context analysis. For two prominent PAINS classes6 including (a) ene_rhod_A and (b) sulfonamide_B, positive ECFP4
features are mapped onto exemplary compounds. Mapped features are traced on a gray background, and the PAINS substructure is colored red. For
each feature, the structural context category is given, as defined in the text.

Figure 9. Noninterpretable feature mapping. For the PAINS class
indol_3yl_alk, positive ECFP4 features are mapped onto exemplary
compounds. For each feature, the structural context category is given.
Mapped structural features are traced on a gray background, and the
PAINS substructure is colored red.
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likely interference mechanism of this class, which is proposed
to rely on the Michael acceptor reactivity of the indoline 3-
position of the corresponding tautomer.6 Here, positive
features in test compounds mapped to conjugated ring systems
distant from the reactive moiety, which could not be
interpreted in chemical terms.
However, we also found that the absence or presence of a

positive or negative feature in structurally similar compounds
could be directly related to correct predictions by the SVM
model. Figure 10 shows two exemplary PAINS classes. In the

first example, the conjugated ring system in the immediate
neighborhood of the exocyclic double bond of the PAINS
substructure (code “ene_five_het_A”) rationalized the correct
prediction of PROM_PAINS. By contrast, when this feature
was absent and replaced by a secondary amine, another
compound was correctly predicted as a DCM_PAINS. In the
second example, reactivity of the PAINS motif (code
“ene_cyano_A”) might be regulated by the electron density
at the exocyclic unsaturated carbon. Introducing an electron
donating methoxy substituent is expected to decrease the
likelihood of nucleophilic attacks at this site. As shown in
Figure 10, a methoxy group represented a feature negatively
weighted by the SVM model and its presence supported the
correct prediction of DCM_PAINS.

■ DISCUSSION AND CONCLUSIONS
In this work, we introduce machine learning models to
distinguish promiscuous PAINS from those that were inactive
across many different screening assays. The large number of
available PAINS, the complex nature of PAINS effects, and the
critical role of the structural context in which PAINS are
presented have thus far precluded the derivation of expert rules
for predicting PAINS with different activity. In light of these
challenges, we have investigated machine learning to facilitate
such predictions. Accurate models were obtained, as revealed
using different performance measures. Importantly, model
performance did not significantly depend on the methods that
were used, and deep learning was not required to achieve
accurate predictions. To exclude the influence of data
imbalance and statistical bias on predictions, we also built
models for balanced data sets that exclusively consisted of

substructures shared by PROM_PAINS and DCM_PAINS.
Although these data sets provided challenging conditions for
predictions, the high performance level of all models nearly
remained constant. Taken together, these findings indicated
that structural/topological patterns distinguished promiscuous
from inactive PAINS that could be readily explored and
exploited by machine learning. However, given the black box
character of machine learning models, a general and widely
appreciated shortcoming, the predictions were difficult to
interpret. The lack of interpretability is a major issue for
machine learning applications in medicinal chemistry, much
more so than for data mining. Therefore, we went a step
further and indirectly assessed predictions through feature
weighting and mapping. First, we identified highly weighted
positive and negative features and found that many positive
features of PROM_PAINS were associated with PAINS
substructures and reactive moieties, which provided an
explanation for their relevance. Moreover, in exemplary cases,
mapping and categorization of features shed light on important
differences in structural contexts, lending credence to
predictions. However, not all successful and unsuccessful
predictions can be rationalized on the basis of feature mapping,
which reflects the general weakness of machine learning
approaches referred to above. Another weakness of machine
learning is the known compound class dependence of activity
predictions, which is difficult to rationalize and also likely to
influence predictions of PROM_PAINS under varying
calculation conditions. By contrast, a particular strength of
machine learning models for PAINS-based activity prediction
is that they take structural context information for PAINS
substructures into account, as shown herein, which sets such
models apart from simple PAINS substructure filters. This is an
important aspect because expert analysis will not be capable of
exploring structural features giving rise to context dependence
on a large scale, due to the very large number of structural
patterns that need to be explored. Large-scale analysis of
PAINS substructure environments inevitably depends on
machine learning.
Taken together, the findings reported herein were

encouraging, and we therefore intend to further expand
mapping of topological features to a variety of PAINS classes
and reconcile the results with observed differences in activity.
This might provide an improved basis for deriving general rules
to predict context-dependent PAINS reactivity.
As a part of our study, we have made our PROM_PAINS

and DCM_PAINS data sets as well as the global and balanced
SVM models available as open access deposition on the
ZENODO platform.30 Since the models were capable of
accurately predicting PROM_PAINS, they further extend
PAINS substructure filters providing initial alerts for follow-
up investigations.

■ EXPERIMENTAL SECTION
Promiscuous and Consistently Inactive Compounds with

PAINS Substructures. A large set of 437 257 extensively tested
compounds31 was obtained from PubChem BioAssays.32 All of these
compounds were tested in both primary assays (percentage of
inhibition from a single dose) and confirmatory assays (dose−
response assays yielding IC50 values). From three public PAINS filters
available in RDKit,33 ZINC,34 and CHEMBL,35 SMARTS36

representations of PAINS were obtained and used as substructure
queries to search the set of extensively assayed PubChem compounds
for PAINS. SMARTS strings from three PAINS filters were used to
account for possible implementation discrepancies.

Figure 10. Correctly predicted PROM_PAINS and DCM_PAINS.
For two PAINS classes (codess ene_five_het_A and ene_cyano_A),
exemplary PROM_PAINS and DCM_PAINS are shown in the
absence or presence of mapped ECFP4 features. Mapped structural
features are traced on a gray background, and the PAINS substructure
is colored red.
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A subset of 27 520 screening compounds were found to contain
substructures representing 270 different PAINS.15 The assay activity
profiles of all compounds containing PAINS substructures were
determined. On the basis of the activity profiles, two data sets were
generated. The first set consisted of compounds with PAINS
substructures that were consistently inactive in at least 100 primary
and varying numbers of confirmatory assays they were tested in and
hence had DCM character (termed DCM_PAINS). The
DCM_PAINS set contained 3059 compounds. The second set
consisted of promiscuous compounds with PAINS substructures
(termed PROM_PAINS). Compounds were classified as PROM_
PAINS if they were tested in at least 100 primary and varying
numbers of confirmatory assays and were active in 10 or more assays
(4944 compounds). In addition, compounds were selected that were
tested in at least 50 confirmatory assays and varying numbers of
primary assays and were active in 10 or more assays (279
compounds). Accordingly, the PROM_PAINS set contained a total
of 5223 compounds. DCM_PAINS and PROM_PAINS represented
94 and 192 PAINS substructures, respectively, 74 of which were
common to both sets. Table S1 of the Supporting Information reports
the 74 shared PAINS substructures and the number of DCM_PAINS
and PROM_PAINS compounds representing them. It cannot be
ruled out that some apparent DCM_PAINS might result from highly
reactive PAINS or might not be stable under experimental conditions.
For example, if PAINS already react when solubilized for an
experiment, they might be recorded as DCM_PAINS although the
original reactive molecule is not tested.
Training and Test Sets for Classification Models. Global

Models. For the generation of “global models”, the PROM_PAINS
and DCM_PAINS sets were randomly divided 10 times into equally
sized training (50%) and test sets (50%). Ten global models were
independently generated, and their results were averaged. Global
models were based on all PAINS substructures, regardless of the
number of PROM_PAINS and DCM_PAINS that represented them.
Balanced Models. Classification models were also built for

“balanced” training sets in which the number of PROM_PAINS
and DCM_PAINS was adjusted for shared PAINS substructures.
Therefore, 54 (of 74) shared PAINS substructures were selected that
were represented by at least two PROM_PAINS and DCM_PAINS
(Table S1). For each substructure, the smaller subset of
PROM_PAINS or DCM_PAINS was selected and the same number
of PROM_PAINS or DCM_PAINS was randomly sampled for the
larger subset. Accordingly, each individual substructure was
represented by the same number of PROM_PAINS and
DCM_PAINS compounds, which were then randomly divided into
training (50%) and test compounds (50%). Ten independent
sampling trials were carried out yielding 10 balanced training and
test sets, each consisting of ∼1900 compounds (since some
compounds contained more than one PAINS substructure, actual
numbers slightly varied over different sampling trials). Classification
models built and evaluated on the basis of balanced sets are referred
to as “balanced models”.
Molecular Representations. Compounds were represented as

extended connectivity fingerprints of bond diameter 4 (ECFP4)37 and
MACCS structural keys.38 ECFP4 is a representative feature set
fingerprint enumerating layered atom environments, which are
encoded by integers using a hashing function. Feature-to-bit mapping
was recorded to enable mapping of fingerprint features to test
compounds. Each feature was also represented as a SMARTS pattern.
MACCS is a binary-keyed fingerprint comprising 166 bits, each of
which accounts for the presence or absence of a structural pattern.
ECFP4 and MACCS fingerprints were generated using in-house
Python scripts based upon the OEChem39 and RDKit33 toolkits,
respectively.
Machine Learning Methods. Models were generated using

SVM, RF, and DNN algorithms and applied to classify PROM_
PAINS and DCM_PAINS. For building predictive models, training
instances were defined by a feature vector x ∈ χ and a class label y ∈
{−1,1}.

Support Vector Machine. SVM is a supervised learning algorithm
that derives a separating hyperplane H such that the distance between
objects with different class labels, the so-called margin, is
maximized.40 This hyperplane is defined by a weight vector w and
a bias b so that H = {x|⟨w,x⟩ + b = 0}. For better model
generalization, slack variables are added to permit errors for training
instances falling within the margin or on the incorrect side of the
hyperplane. To balance training errors and margin size, the cost or
regularization hyperparameter C is introduced, resulting in a primal
optimization problem that can be expressed using Lagrangian
multipliers λi. Dual expression makes it possible to compute the
normal vector of the hyperplane as w = ∑iλiyixi. Lagrangian
multipliers can be nonzero only for training examples that fall onto
the margin of the hyperplane or are misclassified. This subset of
training examples with nonzero coefficients falling onto the margin
represents support vectors. Test data are projected into the feature
space and classified depending on the side of the plane onto which
they fall, i.e., f(x) = sgn(∑iλiyi⟨xi,x⟩ + b) or ranked using the real
value, i.e., g(x) = ∑iλiyi⟨xi,x⟩ + b.41

The dual formulation also enables the use of the “kernel trick”,
which is of critical relevance for SVM modeling. If linear separation of
training classes in a given feature space is not possible, the scalar
product ⟨.,.⟩ is replaced by a kernel function K(.,.), which projects the
data into a higher dimensional space where linear separation might be
possible. One of the most popular kernel function for fingerprint
representations is the Tanimoto kernel42 used herein:

= ⟨ ⟩
⟨ ⟩ + ⟨ ⟩ − ⟨ ⟩

K u v
u v

u u v v u v
( , )

,
, , ,

The hyper-parameter C was optimized using 10-fold cross-validation
on training data with candidate values of 0.01, 0.1, 1, 10, 100, and
1000. SVM calculations and data analysis protocols were implemented
in Python using Scikit-learn.43

Random Forest. RF is an ensemble recursive partitioning method
where each decision tree is built from a bootstrapped44 sample of
training compounds. A random subset of features is considered during
node splitting for the construction of trees.45 The number of trees was
set to 100 and class weights were applied. The minimum number of
samples required to reach a leaf node (min_samples_leaf) was
optimized via 10-fold cross-validation. Candidate values for
min_samples_leaf included 1, 5, 10, 50, 100, 200, and 500. In
addition, the number of features for identifying the best data split
(max_features) was set to square root of the total number of features.
RF calculations were carried out using Scikit-learn.43

Deep Neural Network. A deep feed-forward neural network
models a given function f. For a classification task, y = f(x) maps an
input x to a category y. A feed-forward NN defines a mapping y =
f(x;θ) and learns the value of the parameters θ that result in the best
function approximation.46 DNNs consist of multiple layers of
“neurons”.47 Each neuron accepts an n-dimensional input x and
generates a linearly transformed m-dimensional vector y = WTx + b,
where W and b are parameters of dimension (m, n) and m,
respectively. A nonlinear activation function h(y) is then applied to
the output of a neuron to approximate nonlinear functions. Passing
the output of one neuron to another neuron creates a new layer. We
generated an input layer with 256 output dimensions, two hidden
layers with 256 output dimensions each, and a final output layer
yielding a single number. As an activation function, the rectified linear
unit was used defined as h(y) = max(0,y) except for the final output
layer for which the sigmoid activation function was used defined as

= + −f y( ) 1
1 e y . This DNN architecture was implemented using

PyTorch 0.4.1.48 Network parameters were trained applying the
Adam optimizer and cross-entropy loss with a learning rate of 10−5

until convergence was reached, typically requiring 22 epochs.
Performance Measures. To assess model performance, three

different measures were applied including the area under the receiver
operating characteristic (ROC) curve (AUC),49 Matthew’s correla-
tion coefficient (MCC),50 and balanced accuracy (BA).51 MCC and
BA are defined as
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TP FN
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TN FP

where the abbreviations are as follows: TP, true positives; TN, true
negatives; FP, false positives; FN, false negatives.
For AUC calculations, class label predictions were transformed into

rankings of test compounds in the order of decreasing probability of
promiscuity.
Feature Weighting. For SVM, a feature weighting method52 was

applied to assign different weights to individual fingerprint features for
predictions corresponding to coefficients of primal optimizations. For
the nonlinear Tanimoto kernel, feature weights cannot be calculated
directly because an explicit mapping to high-dimensional space is not
available. However, the Tanimoto kernel can be expressed as the sum
of feature contributions by using a normalization factor to obtain a
constant denominator for each individual support vector.52 If fc(x,d)
is the contribution of feature d to an individual SVM prediction, the
normalization factor is determined by the following equation:

∑
λ

=
+ −

d
y x x

x
x x x x x x

fc ( , )
, , ,

i i id d

i i i
Tanimoto

support vectors

where x is the test instance, xi is the support vector, and yi and λi are
support vector coefficients for the dual solution.
Feature Mapping. Features were ranked according to their

preferential occurrence in either PROM_PAINS or DCM_PAINS,
and the top 30 features from each ranking were transformed into
SMARTS strings to search for PAINS substructures using the KNIME
implementation53 of the RDKit substructure filter. For each successful
match, the list of atom indices was retained for mapping of features to
test compounds.
Mapped features were assigned to three structural context categories

depending on their structural embedding in test compounds. These
categories included features (i) representing a subset of a PAINS
substructure (subset), (ii) overlapping with a PAINS substructure and
the remaining structure of a compound (intersection), and (iii)
mapping to a region in a compound outside the PAINS substructure
(distinct).
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Summary

In this study, we generated machine learning models to distinguish PAINS that

were highly promiscuous from others that were consistently inactive across hun-

dreds of assays. Surprisingly high prediction accuracy was achieved using dif-

ferent models as shown by the performance measures. Also, model performance

was found to be similar using di�erent machine learning methods. There was

no signi�cant advantage in using deep learning models over SVM and RF for

the prediction of PAINS. To rule out any statistical bias in the predictions due

to data imbalance, balanced data sets were generated that exclusively consisted

of shared PAINS substructures between promiscuous PAINS and DCM PAINS

sets. These data sets provided challenging conditions for predictions. However,

the machine learning models still performed well indicating that machine learn-

ing was able to identify structural patterns that distinguished these two PAINS

phenotypes. Although it is di�cult to interpret predictions due to black box

character of machine learning models, feature weighting was applied to rank

features responsible for the predictions of test compounds using SVM. Highly

weighted positive features, which were obtained on the basis of weight sums

over all predictions, could be associated with reactive moieties. In exemplary

cases, mapping and categorization of features helped to explain the in�uence of

structural contexts on predictions.

My major contributions to this study included the generation of promiscuous

and DCM PAINS data sets, derivation of SVM and RF models for classi�cation,

and application of feature weighting methodology to test compounds. Taken

together, machine learning models presented herein further extend the capacity

of PAINS �lters as they also take structural context information into account.
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Conclusion

In this thesis, computational data mining studies are presented to better un-

derstand the nature of compound data growth and to explore target binding

characteristics of di�erent types of compounds present in screening data. Ac-

tivity pro�les of screening compounds have been analyzed in detail to study

multitarget activities and assay interference in context of polypharmacology.

Furthermore, a machine learning approach has been introduced for the classi�-

cation of assay interference compounds. Major results are summarized in this

chapter and conclusions are drawn.

The �rst representative study (Chapter 2 ) provided an analysis of the growth of

bioactive compounds over time in relation to sca�old growth and diversity. The

goal of the analysis was to understand possible reasons behind the increase in

number of active compounds against �ve major target families. The new active

compounds were found to be structurally diverse and new sca�olds were topo-

logically diverse as shown by sca�old-to-compound ratios and CSK-to-sca�old

ratios monitored on a per target basis for di�erent target families. Thus, com-

pound growth was associated with chemical diversity and targets were able to

recognize structurally distinct compounds, which provided a rationale for the

rapid increase of compounds. Since these structurally diverse active compounds

for a particular target represent sca�old hops, sca�old hopping projects will be

of high interest in future as it is likely that current targets will continue to

interact with structurally diverse compounds.

Next studies focused on the analysis of screening data. The goal of the sec-

ond study (Chapter 3 ) was to determine the promiscuity of extensively tested

screening compounds. In light of data incompleteness or sparseness, it is often
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assumed that data mining underestimates true compound promiscuity. There-

fore, to address this concern, most extensively assayed compounds were iden-

ti�ed and promiscuity analysis was performed through the inclusion of assay

frequency information from PubChem database. Assay promiscuity was distin-

guished from target promiscuity to check for discrepancies in order to identify

assay bias or false negatives. The promiscuity estimates from extensively tested

compounds were found to be low with median value of 2.0 for both primary

and con�rmatory assays. The degree of promiscuity remained constant irre-

spective of the number of assays in which the compounds were tested. This

provided further evidence that bioactive compounds had moderate or low de-

grees of promiscuity compared to drugs. These results gave rise to the idea of a

�promiscuity enrichment model� in pharmaceutical research according to which

promiscuous compounds might be preferentially selected during clinical evalu-

ation as potential drug candidates, provided they have no unwanted side e�ects.

The next study was based on the analysis of DCM compounds present in ex-

tensively assayed compounds (Chapter 4 ). DCM compounds are known to be

highly selective and can provide potential hits when tested further under right

assay conditions and against appropriate target. Most of the compounds in

screening decks remain consistently inactive. They can be utilized to �nd inter-

esting leads that are less promiscuous and less prone to assay artifacts. A search

was carried out in ChEMBL for bioactive analogs of DCM compounds on the

basis of high-con�dence activity data. More than 8000 DCM compounds were

found to occur in a variety of analog series with bioactive compounds making

it possible to derive target hypotheses for these compounds. Some of the DCM

compounds were found to be analogs of ChEMBL compounds having target

annotations against well-known pharmaceutical targets. Given the high degree

of similarity between structural analogs, DCM compounds should be tested

against these targets. Therefore, analog series generated in the study provide

good starting points for lead discovery and have been made freely available

publicly in an open access deposition.

In another analysis, activity pro�les of PAINS present in extensively assayed

screening compounds were determined and evaluated (Chapter 5 ). The key
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question was whether assay interference characteristics of PAINS were prevalent

in biological screening assays. A subset of 23,000 compounds were identi�ed as

PAINS consisting of 270 PAINS substructures. Large-scale analysis of PAINS

revealed surprising observations because many PAINS, which are assumed to be

frequent hitters, were found to be consistently inactive. Furthermore, the over-

all hit frequency of PAINS was low. Only few PAINS produced an abundance of

hits. Thus, PAINS showed diverse activity pro�les and were far from being ex-

cessively active. Most importantly, many consistently inactive and highly active

compounds contained same PAINS substructure indicating that the occurrence

of PAINS substructure is not solely responsible for frequent hitter character-

istics. Instead, the structural environment in which a PAINS substructure is

embedded in a molecule is important for determining its activity or inactivity.

Therefore, PAINS �lters do provide initial alerts for �agging compounds prone

to assay interference but they should be tested further for their activity in or-

thogonal assays before removing any potential liable compound.

A major drawback of PAINS �lters is that they do not take structural con-

text information into account. Also, given the large number of PAINS sub-

structures and variety of structural environments in which they are embedded,

it is not possible to derive rules for classifying frequently active and inactive

PAINS based on expert knowledge. Therefore, in the last study (Chapter 6 ),

we attempted to address these issues by applying machine learning to distin-

guish promiscuous PAINS from inactive ones. SVM, RF and DNN models were

built using promiscuous and DCM PAINS data sets represented as MACCS

and ECFP4 �ngerprints. Surprisingly accurate models were obtained with area

under the curve (AUC) and Matthew's correlation coe�cient (MCC) values

reaching around 0.95 and 0.80, respectively. The models were also built for

balanced data sets that exclusively contained shared PAINS substructures and

same number of promiscuous and DCM compounds per substructure in or-

der to avoid any potential statistical bias. The performance of these models

reached AUC and MCC of 0.90 and 0.68, respectively. Hence, the models per-

formed well on the balanced data sets indicating that machine learning was

able to identify and exploit structural patterns distinguishing between promis-

cuous and DCM PAINS. These models further extend the capacity of PAINS
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�lters by considering structural context information. However, due to the black

box character of models, it was di�cult to interpret the predictions. For that

purpose, a feature weighting scheme for SVM model was applied in order to

�nd positive and negative features for an individual prediction. The features

were ranked according to their weights and highly ranked features were used

to study structural context of PAINS in detail. However, not all successful and

unsuccessful predictions could be rationalized as �nal predictions depended on

the combination of features existing within a compound.

In conclusion, data mining and machine learning studies discussed above pro-

vide insights that are useful for drug discovery. It will be promising to de-

velop new approaches in future that are able to identify structurally distinct

compounds for a particular target. Promiscuity analysis has implications for

polypharmacology. Analog series of DCM and bioactive compounds can be

used to �nd potential targets for DCM and further tests should be performed

for DCM against these targets. The analysis of PAINS in screening data puts

emphasis on the careful use of PAINS �lters and structural context dependence

of PAINS activity. Lastly, machine learning provides a way to improve PAINS

�lters as the models consider structural environments. These results pave the

way for further exploration of combinations of structural features and patterns

in PAINS that determine their activity or inactivity.
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