From C-phosphanylated thiazole-2-thiones to phosphaalkenes and tricyclic 1,4-diphosphinines

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn
vorgelegt von
Imtiaz Begum
aus
Pakistan

Bonn, 2018

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

\author{

1. Gutachter:
 2. Gutachter:
 Prof. Dr. Johannes Beck
}

Tag der Promotion: 02 Mai, 2019
Erscheinungsjahr: 2019

Education is not the learning of facts, it's rather the training of the mind to think.
Albert Einstein

Some results of this PhD thesis were previously published.

(1) I. Begum, G. Schnakenburg, Z. Kelemen, L. Nyulászi, R. T. Boere', R. Streubel, Chem. Commun. 2018, DOI: 10.1039/c1038cc08158a.

Conference contributions

1. I.Begum, A. Koner, R. Streubel, ${ }^{11}$ th European Workshop on Phosphorus Chemistry,Sofia/Bulgaria, 24.-26.03.2014; "Synthesis, structure and reactivity of novel backbone P-functionalised NHC-precursors" (Poster Presentation)
2. I.Begum, R. Streubel, $1^{\text {st }}$ European Conference on Smart Inorganic Polymers, Maribor/ Slovenia, September 21-23, 2014, "Synthesis of P-functional thiazole,-2-thiones, novel candidates for main group element and metal coordination polymer" (Poster Presentation)
3. SIPs Summer School 25. - 30. September 2014 (Small Angle Scattering methods) Chemistry Building of Graz University of Technology, Graz/Austria \& Synchrotron facility Elettra, Trieste, Italy.
4. I.Begum, R. Streubel,13 ${ }^{\text {th }}$ European Workshop on Phosphorus Chemistry, Berlin/Germany, 07-09.03.2016; "Synthesis and reactivity studies on bis-NHC precursors based on new scaffolds containing P-linkers" (Poster Presentation)
5. I.Begum, R. Streubel, $2^{\text {nd }}$ International conference on Sustainable Phosphorous Chemistry Berlin/Germany, 09-10.03.2016.
6. I.Begum, R. Streubel, Deutsch-Österreichischer Mitarbeiterworkshop Hauptgruppenchemie Kassel/Germany.11-13.03.2016; synthesis of P-functional thiazol-2-thiones: Novel candidates for main group element and metal coordination polymers. (Oral Presentation)
7. I.Begum, R. Streubel, 14 ${ }^{\text {th }}$ International Symposium on Inorganic Ring Systems Regensburg/Germany, 26-31.07.2015."Synthesis of P-functional thiazole-2-thiones precursors for NHCs?"
(Poster Presentation)
8. I.Begum, D.P. Gates, R. Streubel, $14^{\text {th }}$ European Workshop on Phosphorus Chemistry,Cluj-Napoca/Romaina, 20-22.03.2017. "Synthesis and dimerization of a P -thiazole-2-thion-5-yl substituted phosphaalkene"(Poster Presentation)
9. I. Begum, A. Koner, A. Gese, R. Streubel, $9^{\text {th }}$ Workshop on Conjugated Oligomers and Polymers-New Horizons in Functional π-Systems Bonn/Germany, 27-30.08.2017"From 1,3-heterocyclic-2-thiones to 1,4-diphosphinines: novel tricyclic π-Systems" (Poster Presentation)
10. I.Begum, R. Streubel, Am 9 Deutsch-Österreichischer Mitarbeiterworkshop Hauptgruppen-Element-Chemie (MHC-09) Graz/Austria.06-08.10.2017. "From 1,3-thiazole-2-thiones to novel 1,4-diphosphinines and diphosphabarellenes"(Oral Presentation)
11. I.Begum, R. Streubel, $15^{\text {th }}$ European Workshop on Phosphorus Chemistry,Uppsala/Sweden, 14-16.03.2018. "Synthesis and reactions of novel 1,4diphosphinines"(Oral Presentation)
12. I.Begum, R. Streubel, $22^{\text {nd }}$ International Conference on Phosphorus Chemistry, Budapest/Hungary, 08-13.07.2108. "tricyclic 1,4-diphosphinines: sequential and concerted reactions" (Poster

Presentation)

Die vorliegende Arbeit wurde im Zeitraum von Oktober 2014 bis April 2018 im Arbeitskreis von Prof. Dr. R. Streubel am Institut für Anorganische Chemie der Rheinischen Friedrich Wilhelms-Universität in Bonn angefertigt.

Hiermit versichere ich, dass ich diese Arbeit selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Bonn, den 29.11.2018

Acknowledgements

I believe, a few words will not be enough to express my gratitude and convey my deep appreciation, thanks and acknowledgement to my supervisor Prof. Dr. Rainer Streubel. I thank him with great pleasurefor giving me the opportunity to be co-worker in his research group, for all the support, valuable guidance and constant encouragement during the last four years of my work.

I am also thankful to Prof. Dr. Johannes Beck, Prof. Dr. Dirk Mencheand Prof. Dr. Uwe Deppenmeier for refereeing my thesis.

I convey my kind regards to Prof. Dr. Derek P. Gates for giving the opportunity to work in his group as a visiting research student for three months at the Department of Chemistry, The University of British Columbia, Vancouver, Canada. I also appreciate the friendly working enviroment in his research group.

I would like to thank Prof. Dr. László Nyulásziand Dr. Zsolt Kelemen, Department of Inorganic and Analytical Chemistry, Budapest university of Technology and Economy, Budapest, Hungary for the fruitful collaboration helpful theoretical calculations.

I also convey my gratitude to Prof. Dr. René T. Boeré, Department of Chemistry and Biochemistry the University of Lethbridge Lethbridge, Alberta, Canada for his help to conduct and understand the electrochemistry of our compounds and for sharing the valuable knowledge.

I would like to thank Prof. Dr. Antonio FronteraDepartment of Chemistry-Universitat de les Illes Balears, Palma de Mallorca (Baleares), Spain for fruitful collaboration and for theoretical investigations.

I am very much grateful to Dr. Gregor Schnakenburg, Ms. Charlotte Rödde, Mr. Brian Patrick and Zeyu Han for the single crystal X-ray diffraction measurements.

I specially convey my gratitude to Prof. Dr. Javed Iqbal (Late), Prof. and Dr Zaid Mahmood, Institute of Chemistry, University of Punjab Lahore Pakistan for their valuable guaidenece during my MSc and MPhil research.

I would like to thank our central analytical department, as without their support it would not be possible to carry out the the research work properly. I am grateful to Dr.

Claud Schmidt, Ms. Karen Procknicki and Ms. Hannelore Spitz (NMR spectroscopy), Dr. Marianne Engeser and her colleagues (Mass spectrometry), Dr. Sabine Rings and Ms. Anna Martens (Elemental Analyses) and all members in Chemical Store, Glass Blowing section, Mechanical and Electrical workshops.

I would like to convey my special thanks to the people around me who made my entire stay in Bonn, a pleasant experience for me. First of all I am extremely thankful to Paresh Kumar Majhi for the valuable introductory guidance in the early days of my PhD and beyond. I am also extremely thankful to Abhishek Koner and Andreas Kyri for all those valuable discussions and a sourse of inspiration as ambitious researchers during the highs and lows of my working time.Besides, I also thank the rest of my lab colleagues (especially Tobias Heurich, Dr. Jose Manuel Villalba Franco, Robert Kunzmann) for the friendly atmosphere.

Without the financial support, I suppose, this whole research work would not be possible, for that I would like to convey my gratitude to the DAAD for my PhD fellowship, In particular, I am thankful to Mrs. Dagmar Beerwerth, my DAAD coordinator for being so kind and helpful throughout my fellowship time.I would like alsoto thank University of Bonn and DAAD for further financial support during my stay in Bonn, Germany and Vancouver, Canada.

I wish to thank friends and family, especially my parents for their love and encouragement, without whom I would never have enjoyed so many opportunities in my life. Last but not least my best friend, my beloved husband whose utmost support, love and incouragement kept my spirits always high.

Contents

Chapter 1: Introduction 1
1.1 1,3-Thiazole-2-thiones 1
1.2 1,3-Thiazole-2-ylidenes 2
1.3 Backbone-functionalization of NHCs 4
1.4 Backbone-functionalized bis-NHCs 7
1.5 Backbone-functionalized anionic NHCs 8
1.6 Phosphinines 10
1.7 Diphosphinines 15
Chapter 2: Aims and objectives of the PhD thesis 21
Chapter 3: Synthesis and reactivity studies of P-functional thiazole-2-thiones 22
3.1 Synthesis of 1,3-thiazole-2-thiones 22
3.2 Synthesis of P-functional thiazole-2-thiones 23
3.3 Synthesis of bis(thiazole-2-thione-5-yl)phosphanes. 26
3.4 Synthesis of C^{5}-chlorophosphanyl substituted thiazole-2-thiones 28
Chapter 4: Attempted synthesis of \boldsymbol{C}^{5}-thiazolyl substituted phosphaalkene 34
4.1 Substitution of C^{5}-amino(chloro)phosphanyl thiazole-2-thiones leading to phosphaalkene precursors and a new phosphaalkene complex 35
4.2 Attempted dehydrohalogenation reaction of 11 37
4.3 Synthesis of tungsten complex 13 38
4.4 Dehydrohalogenation reaction of 13 40
4.5 Optimization of reaction conditions. 44
Chapter 5: Investigations on synthesis of tricyclic 1,4-dihydro-1,4-diphosphinines 47
5.1 Synthesis of thiazole-2-thione-derived tricyclic 1,4-dihydro-1,4-diphosphinines 48
5.2 Studies on the optimization of the reaction conditions and yields 51
Chapter 6: Reactivity studies of tricyclic 1,4-dihydro-1,4-diphosphinines 54
6.1 Oxidation of the P-centers in tricyclic 1,4-dihydro-1,4-diphosphinines 54
6.2 Oxidation reaction of tricyclic 1,4-dihydro-1,4-diphosphinine 17a with ortho-chloranil. 59
6.3 Attempted oxidative desulfurization of 1,4-dihydro-1,4-diphosphinines 62
6.4 Reaction with electrophile and comparison with imidazole-based tricyclic 1,4-dihydro-1,4-diphosphinines ($X, R^{\prime}=E t_{2} N$). 64
Chapter 7: Chemistry of thiazole-2-thione-based 1,4-diphosphinines 68
7.1 First indications of a newtricyclic 1,4-diphosphinine 68
7.2 Synthesis of 1,4-dichloro-1,4-dihydro-1,4-diphosphinines 24 69
7.3 Reduction of 1,4-chloro-1,4-dihydro-1,4-diphosphinine 24b, b^{\prime} 71
7.4 Further investigations upon the properties of 1,4-diphosphinine 25 73
Chapter 8: Reactivity studies of 1,4-diphosphinine25 78
8.1 [4+2]-Cycloaddition reactions 78
8.2 Synthesis and reactions of mono anions derived from 1,4-diphosphinine 25 84
8.3 Oxidation of the mono-anion 29b with elemental iodine. 89
8.4 Reaction of 1,4-diphosphinine 25 with MeOTf 91
8.5 Reduction of 1,4-diphosphinine 25 93
Chapter 9: Summary 99
Chapter 10: Experimental section 108
10.1 General. 108
10.2 Melting point determination 108
10.3 Elemental analysis 109
10.4 NMR spectroscopy 109
10.5 Mass spectrometry 109
10.6 UV/vis spectroscopy 109
10.7 Infrared spectroscopy 110
10.8 Cyclic voltammetry 110
10.9 Single crystal X-ray diffraction studies 110
10.10 Chemicals used 111
10.11 List of chemicals used (commercially available) 111
10.12 Synthesis of 5-phosphanyl-thiazole-2-thiones (5a-e) 113
10.13 Synthesis of bis(thiazolyl)phosphanes 6a,b. 119
10.14 Synthesis of 5-(chloro)phosphanyl substituted thaizole-2-thiones 7a-e. 122
10.15 Synthesis of 3-methyl-5-dichlorophosphanyl-thiazole-2-thione (8) 128
10.16 Synthesis of bis(3-isopropyl-thiazole-2-thione-5-yl)chlorophosphane (9) 130
10.17 Synthesis of 3-methyl-5-diphenylmethyl(diethylamino)phosphanyl-thiazole-2-thione (10) 131
10.18 Synthesis of 3-methyl-5-diphenylmethyl(chloro)phosphanyl-thiazole-2-thione (11) 132
10.19 Synthesis of \{pentacarbonyl[chloro(3-methyl-thiazole-2-thione-5-yl)-diphenylmethyl-]- phosphane\}tungsten(0)\} (13) 134
10.20 Synthesis of [pentacarbonyl[\{(diphenylmethylene)3-methyl-thiazole-2-thione-5-yl-]- phosphane\}]tungsten(0)] (14) 135
10.21 Synthesis of [decacarbonyl[\{ $\mu(3,3,4,4-d i p h e n y l)(1,2-d i(3-m e t h y l-t h i a z o l e-2-t h i o n e-5-y l-) 1,3-$ diphosphetane\}]ditungsten(0)] (15) 137
10.22 Synthesis of tricyclic 1,4-dihydro-1,4-diphosphinines 17a-d. 138
10.23 Oxidation reaction of 1,4-dihydro-1,4-diphosphinine (17a) with $\mathrm{H}_{2} \mathrm{O}_{2}$-urea 143
10.24 Oxidation of 17a with elemental sulfur and selenium. 145
10.25 Oxidation of tricyclic 1,4-dihydro-1,4-diphosphinine (17a) with ortho-chloranil 148
10.26 Reaction of tricyclic 1,4-dihydro-1,4-diphosphinine (17a) with MeOTf. 149
10.27 Synthesisof cis/trans 1,4-dihydro-1,4-dichloro-1,4-diphosphinines (24a,b) 150
10.28 Synthesis of thiazole-based 1,4-diphosphinine 25 152
10.29 [4+2]-Cycloaddition reactions of 1,4-diphosphinine 25 153
10.30 Reaction of 1,4-diphosphinine 25 with nucleophiles. 157
10.31 General procedure for the reaction of mono anions $29 a$, $29 b$ with electrophiles: ${ }^{n} \mathrm{BuI}$ and $\mathrm{Ph}_{2} \mathrm{PCl}$. 159
10.32 Oxidation reaction of the mono anion 29b and formation of the P-P dimer of [3,7-dinpropyl-[2,3-d:5,6- d']bis-thiazole-2,6-dithione-4-bis(trimethylsilyl)amino-8-phosphan-1-yl] radical. 162
10.33 Reaction of 1,4-diphosphinine 25 with MeOTf 164
10.34 Two-fold reduction of 1,4-diphosphinine 25 165
10.35 Reaction of 33 with electrophiles (${ }^{n} \mathrm{Bu}$ and MeOTf) 166
Chapter 11: References 168
Chapter 12: Appendix 175
12.1 Crystal data and structure refinement for $5 a$ (IB-71) 175
12.2 Crystal data and structure refinement for 5d (IB-190). 178
12.3 Crystal data and structure refinement for $6 a$ (IB-276) 180
12.4 Crystal data and structure refinement for $6 b$ (IB-270). 183
12.5 Crystal data and structure refinement for $7 a$ (IB-73). 185
12.6 Crystal data and structure refinement for 7c (IB-256). 187
12.7 Crystal data and structure refinement for 8 (IB-74) 189
12.8 Crystal data and structure refinement for 9 (IB-285) 190
12.9 Crystal data and structure refinement for 10 (dg407_a) 192
12.10 Crystal data and structure refinement for 11 (dg408_a) 197
12.11 Crystal data and structure refinement for 13 (IB-241)....... 200
12.12 Crystal data and structure refinement for hydrolysis product of 14 (IB-407-B). 203
12.13 Crystal data and structure refinement for 16 (IB-90) 207
12.14 Crystal data and structure refinement for 17a (IB-79). 210
12.15 Crystal data and structure refinement for 17b (IB-264). 213
12.16 Crystal data and structure refinement for 17c (IB-202). 215
12.17 Crystal data and structure refinement for 18 (IB-94) 218
12.18 Crystal data and structure refinement for 19 (IB-152). 220
12.19 Crystal data and structure refinement for 20 (IB-154). 224
12.20 Crystal data and structure refinement for 24b (IB-266 (P-CI)). 227
12.21 Crystal data and structure refinement for 25 (IB-266). 229
12.22 Crystal data and structure refinement for 26 (IB-282). 231
12.23 Crystal data and structure refinement for 27 (IB-305). 234
12.24 Crystal data and structure refinement for 29b (IB-365). 238
12.25 Crystal data and structure refinement for 30a (IB-409). 241
12.26 Crystal data and structure refinement for 30b (IB-370). 243
12.27 Crystal data and structure refinement for 31 (IB-371). 248
12.28 Crystal data and structure refinement for 32 (IB-310). 252
12.29 Crystal data and structure refinement for 33b (IB-454). 255
List of Figures 264
List of Schemes 267

Abbreviations

$\mathbf{X a , a} \mathbf{a}^{\prime}=$ Represent a mixture of two isomers (cis, trans); where $\mathbf{X}=$ compound number and $\mathbf{a}, \mathbf{a} \mathbf{a}^{\prime}$ are two isomers.

\AA	Ångström	HMQC	Heteronuclear Multiple QuantumCorrelation
-	degree	IR	Infrared
ev	electron volt	ATR	Attenual Total Reflexion
g	gram	HMDS	Hexamethyldisilazide
k	Kelvin	KHMDS	Potassium hexamethyldisilazide
min	minutes	$\mathrm{C}_{6} \mathrm{D}_{6}$	deuerated benzene
h	hour	CDCl_{3}	deuterated chloroform
d	days	$\mathrm{D}_{2} \mathrm{O}$	deuterated water
au	Atomic unit	${ }^{\text {i }} \mathrm{Pr}$	iso-propyl
${ }^{\circ} \mathrm{C}$	degree Celsius	${ }^{\mathrm{n}} \mathrm{Bu}$	n-butyl
br	broad signal	${ }^{\text {n }} \mathrm{Pr}$	n-propyl
Hz	Hertz	${ }^{\mathrm{n}} J_{X, Y}$	coupling constant (between the elements X, Y over n bonds) in Hz
cm	centimeter		
T	temperature	CSD	Cambridge Structural Database
Ar	aromatic substitution	$\Delta \delta$	chemical shift difference
ESI	electrospray ionization	DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
$\mathrm{Et}_{2} \mathrm{O}$	diethyl ether	tert	Tertiary
EA	elemental analysis	${ }^{\text {i Pr }}$	iso-propyl
eq.	equivalent	${ }^{\text {n }} \mathrm{Pr}$	n-propyl
MLn	transition metal fragment bearing n ligands	${ }^{\text {n }} \mathrm{Bu}$	n-butyl
mmol	millimol	${ }^{\mathrm{n}} \mathrm{J}_{\mathrm{X}, \mathrm{Y}}$	coupling constant (between the elements X, Y over n bonds) in Hz
MS	Mass spectrometery	THF	Tetrahydrofuran
m / z	mass to charge ratio	THFd_{8}	deuterated tetrahydrofuran
n	normal	TMEDA	Tetramethylethylenediamine
mm	nanometer	Toluene d_{8}	deuterated toluene
NMR	nuclear magnetic resonance	v	wave number
\%	percent	vs	very strong
PE	Petroleum ether (40/60)	VT-NMR	variable temperature NMR
Ph	Phenyl	w	Weak
calc.	calculated	X	Halogen or leaving group

Abbreviations

ppm	parts per mellion	quint	Quintet
q	quartet	R,R',R"	organic substituent
L	Ligand	r.t.	room temperature
m	medium	S	Singlet
m	multiplett	${ }^{\text {i }}$ Pr	iso-propyl
DEPT	Distortionless Enhancement by Polarization	${ }^{\text {n Pr }}$	n-propyl
M	metal or molar weight in $\mathrm{g} / \mathrm{mol}$	${ }^{\mathrm{n}} \mathrm{Bu}$	n-butyl
LDA	lithium diisopropylamide	Me	Methyl
mg	milligram	${ }^{\mathrm{n}} J_{X, Y}$	coupling constant (between the elements X, Y over n bonds) in Hz
mL	millilitter	CSD	Cambridge Structural Database

Chapter

Chapter 1: Introduction

1.1 1,3-Thiazole-2-thiones

The chemistry of 1,3-thiazoles started in thelate nineteenth century. ${ }^{[1]}$ Since then, great interest emerged due to a broad spectrum of remarkable industrial, biological and pharmaceutical applications. ${ }^{[2]}$ In particular, 1,3-thiazol-2-thiones have valuable applications in photography, radiochemistry, agrochemistry and polymer chemistry. ${ }^{[3]}$

Heteroatom substitution of the thiazole-2-thionebackbone $\left(\mathrm{C}^{4} / \mathrm{C}^{5}\right)$ has been studied, and several examples can be found in literature (the numbering of the heterocycle atoms is according to the IUPAC conventions); some examplesI-IIIare shown in Figure 1.1.

I

II

III

Figure 1.1. Backbone-substituted thiazole-2-thiones $\mathbf{I},{ }^{[4]} \mathbf{I},{ }^{[5]}{ }^{[I I I}{ }^{[6]}$ ($\mathrm{R}=$ alkyl or aryl groups) .
Such substituted thiazole-2-thiones have profound effects on their performance in various applications. For example, commercially available4-amino-5-cyano-thiazole-2-thione I(and similar derivatives)has been used in several chemical transformations. ${ }^{[7]}$.The remarkable aspect, however, is the application of \mathbf{I} in the treatment of central nervous-disorders including Parkinson disease, Huntington's disease, etc. ${ }^{[8]}$ Such compounds also show antitubercular ${ }^{[9]}$ and other biological activities. ${ }^{[10]}$ Beside this, several other heteroatom-substituted thiazole-2thiones such asalkylthio-substituted thiazole-2-thiones $\mathbf{I I}^{[5]}$ and iodo-substituted thiazole-2thione III ${ }^{[6]}$ are known since long. However, backbone P-substituted thiazole-2-thiones are not known to date.

On the contrary, a library of P-substituted imidazole-2-thiones has been established by Streubel and co-workers.Treating imidazole-2-thiones with ${ }^{\mathrm{n}} \mathrm{BuLi}$ in situ generates the
lithiated salts in the first step, reacting it with chloro(diorgano)phosphanes gives access to a wide variety of phosphanylated imidazole-2-thiones $V^{[11]}$ (Scheme 1.1). This experimental approach is very selective, high yielding and functional group tolerant and,therefore, permits a wide range of substitution pattern at N - and P-centers. The mono-phosphanylated imidazole-2thionesthus obtained can be subjected to oxidation(VI), second-phosphanylation(VII), a second oxidation (VIII)and complexation. ${ }^{[12]}$ Using the same lithiation-phosphanylation protocol, synthesis of bis-imidazolyl-phosphanes $\mathbf{I} \mathbf{X},{ }^{[13]} \mathbf{X}^{[14]}$ and also tris-imidazolylphosphanes XI ${ }^{[11 c]}$ wasachieved. All of them represent potential systems for a use as ligands in coordination chemistry.

$$
\begin{aligned}
& \mathrm{R}=\mathrm{Aryl} / / \mathrm{Alkyl} \\
& \mathrm{R}^{\prime}=\mathrm{Alkyl} / \text { Arryl/ } \mathrm{R}_{2} \mathrm{~N} \\
& \mathrm{X}=\mathrm{O} / \mathrm{S} / \mathrm{Se}
\end{aligned}
$$

$\mathrm{IX}^{[13]}$

Scheme 1.1.Phosphanylated imidazole-2-thiones. ${ }^{[11-14]}$

1.2 1,3-Thiazole-2-ylidenes

1,3-Thiazole-2-thiones are also potential precursors for thiazolium salts and, in turn, forNheterocyclic carbenes (NHCs), ${ }^{[15]}$ and thereby ofgreat interest in organometallic, coordinationand catalytic chemistry. ${ }^{[15 \mathrm{~b}, 16]}$

Scheme 1.2.General synthetic route from 1,3-thiazole-2-thiones to thiazole-2-ylidenes ($\mathrm{R}=$ alkyl or aryl groups).
The quest of stable thiazole-2-ylidenes remained unsolved for a long time. In 1958, RonaldBreslow'sinvestigations about thiamine diphosphate (TDP) opened a gateway to thiazole-2-ylidene chemistry. ${ }^{[17]}$ TDP is an essential cofactor and found to be involved in several biological processes. Breslow in his studies suggested that the essential intermediates in the thiamine catalyzed enzymatic pathways included the thiazole-based N-heterocyclic carbene and enaminol. ${ }^{[17]}$ Despite this effective contribution and several other attempts, free thiazole-2-ylidene could not be isolated at that time. ${ }^{[18]}$

Although the synthesis of NHCcomplexes, wherein a sulfur atom is incorporated into the heterocyclic ring, was initiated by Lappert ${ }^{[19]}$ and Stone, ${ }^{[20]}$ independently, almost four decades ago.The first stable thiazole-2-ylideneXVI,however, was reported by Arduengo and co-workers in 1997. ${ }^{[15 a]}$ XVI was accessedvia deprotonation of 3-(2,6-diisopropylphenyl)-4,5dimethylthiazolium chloride ($\mathbf{X V}$) with potassium hydride as a colorless crystalline solid (Scheme 1.3). Attempts to isolate thiazole-2-ylidenes with sterically less demanding groups at the N-center, ended up in a dimerization via $\mathrm{C}^{2}-\mathrm{C}^{2}$ double bond formation (XVII), which was assignedto the lower kinetic stability (Scheme 1.3).

Scheme 1.3. Synthesis of the only known free thiazole-2-ylidene (XVI) and its dimer (XVII) according to Arduengo. ${ }^{[15 a]}$

Today, it can be safely stated that the thiazole-based NHC chemistryis comparatively little developed, which is due to the ratherlower stability compared to imidazole-based NHCs; the latter results from the replacement of one nitrogen atom, being a far better π-donor to the carbene center than a sulfur atom. ${ }^{[21]}$

1.3 Backbone-functionalization of NHCs

The backbone $\left(\mathrm{C}^{4} / \mathrm{C}^{5}\right)$ functionalization of NHCs with various groups, e.g., halo, ${ }^{[22]}$ cyano and nitro ${ }^{[23]}$ has received considerable interest of chemists and the reason is mainly the impact of these moieties on the reactivity including the catalytic properties of NHC metalcomplexes. ${ }^{[24]}$ Due to these investigations, several studies on backbone-heteroatom substitution of NHCs have been reported recently. ${ }^{[25]}$ However, such studies are mainly confined to the imidazole-based NHCs, and the thiazole-based NHCs possess (mostly) alkyl or aryl groups at C^{4} and C^{5} positions. ${ }^{[15 a, 26]}$

Arduengo and co-workers reported the backbone functionalization of NHCs while keeping the carbene carbon (C^{2}) intact (Scheme 1.4). They presented the synthesis of 4,5-dichloro-imidazole-2-ylidene XIX, which showed stability towards moist air for a short exposure.The extraordinary stability of this compound was mainly attributed to the σ-electronegativity effect and π-electron releasing effect of the chlorine atoms positioned at the backbone of the heterocycle. ${ }^{[22 a]}$

Scheme 1.4.Backbone halogenation of NHC XVIII($\mathrm{R}=$ alkyl or aryl groups) according to Arduengo. ${ }^{[22 a]}$ This findingwas followed by several other examples of NHC-backbone substitution; halogenations by Junk, ${ }^{[22 b]}$ deuteration by Rodenzo, ${ }^{[27]}$ silylation by Cui, ${ }^{[25 c]}$ Stalke, ${ }^{[25 e]}$ and Roeskey, ${ }^{[28]}$ phosphanylation by Gates ${ }^{[29]}$ and substitution with various functional groups by Bertrand ${ }^{[30]}$ (Figure 1.2).

$X X^{[22 b]}$

$X X\left[{ }^{[27]}\right.$

$X X I I{ }^{[25 c]}$

XXIV ${ }^{[29]}$

$X X V^{[30]}$

$\left.X X V\right|^{[30]}$

Figure 1.2. Backbone-functionalized imidazole-2-ylidenes ($\mathrm{R}=$ alkyl or aryl groups, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$).
Among these, the work of Gates and co-workers onthe synthesis of backbone P-functionalized imidazole-2-ylidenes can be regarded as prodigious breakthrough.They reported the first backbone phosphanylated imidazole-2-ylideneXXVIII by treating 1,3-dimesitylimidazole-2ylidene with a phosphaalkene(Scheme 1.5). The C^{4}-substituted NHC derivative XXVIII holding the (almost) unprotected C^{2}-position intact was quite unexpected and is believed to be formed via intermediate formation of an abnormal NHC. ${ }^{[29]}$

Scheme 1.5. Backbone-phosphanylation of imidazole-2-ylideneaccording to Gates. ${ }^{[29]}$
Soon after this, Bertrand and co-workers also reported the synthesis of 4- and 4,5functionalized imidazole-2-ylidenes from a single 4,5-unsubstituted imidazole-2-ylidene (Scheme 1.6). In the first step, an imidazolium salt was produced by reacting a sterically protected NHC (XXIX) with an electrophile. In the second step intramolecular transfer of the electrophile from C^{2} to C^{4} resulted in the backbone-functionalized NHC derivatives XXXIvia the formation of formally abnormal carbene adduct. ${ }^{[30]}$

Scheme 1.6.Synthesis of backbone-phosphanylated imidazole-2-ylidene XXXI according to Bertrand. ${ }^{[30]}$
Ruiz devised another experimental approach to achieve the P-substituted imidazole-2ylidenes starting from air and moisture stable imidazolium salts (rather than the NHC). Reaction of the imidazolium salt with LiHMDS gave access to P-functionalimidazole-2ylidene; a less sterically demanding analogue of XXVIII, which also demonstrate that,back-bone-phosphanylation can be achieved without having sterically demanding group at the N center of the heterocycle. ${ }^{[31]}$

This achievement of the NHCs bearing donor moieties positioned at the backbone of the heterocycle opened a new domain in the chemistry of N-heterocyclic carbenes with presumption of extra ordinary stability. ${ }^{[22]}$ By using this strategy not only two chemically and electronically different environments werecombined in a single molecule, ${ }^{[22]}$ but also the P (III)-functional ligand systemlead to multifunctional ligand systems to create homo- and heterobimetallic complexes. ${ }^{[31,33]}$

Streubel and co-workers contributed to the field by developing a high yieldsynthetic approach using easy to handle starting material,i.e.,backbone-phosphanylated imidazole-2-thiones (V, see section 1.1) to get access to P -functional imidazole-2-ylidenemetal complexes (Scheme1.7). They exploited both possible synthetic strategies:oxidative desulfurization (i) and reductive desulfurization (ii) of the P-functional thiones. In the first case, initially phosphanoyl-imidazolium saltswere produced by treating the imidazole-2-tiones \mathbf{V} with $\mathrm{H}_{2} \mathrm{O}_{2}$. In the second step deprotonation with base, in situ generated NHC, which upon treatment with metal precursor lead to the NHC-metal complexes (XXXIII). ${ }^{[11 b]}$ The bis-phosphanoylNHC-complex XXXIV was accessed with same synthetic protocol and converted to heterobimetalliccomplex $\mathbf{X X X} \mathbf{V}^{[34]}$. The reductive desulfurization will be discussed in thesection (1.5).

Scheme 1.7. Synthesis of the backbone-phosphanoyl substituted NHC metal complexes XXXIII and heterobimetallic-complexes XXXV according to Streubel. ${ }^{[11 b, 34]}$

1.4 Backbone-functionalized bis-NHCs

The design and construction of new organic-inorganic hybrid materials have been the subject of great interest for its considerable potential. However,rigid multitopic-NHCs, potential candidates having binding ability to different transition-metals, have not be studied in greater detail. Bielawski and co-workers introduced the design fornon-chelating, rigid bis-NHCs having a fused arene middle ring in 2006,representing a new type of Janus-bis-carbenes. ${ }^{[35]}$ The benzobis(imidazolium)salt XXXVIwas reacted with LDA to create the bis-NHC XXXVII, while its metalcomplexesXXXVIII were produced by reacting it with suitable metal precursors (Scheme 1.8).

Scheme 1.8. Synthesis of bis-NHCs and its complexes according to Bielawski. ${ }^{[35 a]}$

Depending upon the steric bulk of the N-substituent, those bis-NHCs can be isolated as monomeric, ${ }^{[35 a]}$ dimeric ${ }^{[36]}$ or polymeric ${ }^{[37]}$ materials. Furthermore, when suitable metal precursors were reacted with the benzo-bis(imidazolium) salts, main chain-organometallicpolymeric materials were also accessed. ${ }^{[38]}$ The same bis-NHCs were used by Hahn in 2014 to create, supramolecular materials including molecular squares and rectangles. ${ }^{[39]}$

A different synthetic approach was developed by Streubel and co-workers to establish a new design of bis-NHCs having a $P(\mathrm{~V})$-center incorporated as linker (Scheme 1.9). The bisimidazolium salt (XXXIX) was accessed via oxidative-desulfurization of the bis-imidazolyl phosphane IX (see section 1.1). Reacting XXXIXwith two equivalents of potassium hexamethyldisilazide (KHMDS) gave access to the free bis-NHC derivative XL, while treating XXXIX with two equivalents of $K O^{t} \mathrm{Bu}$ and $\operatorname{AgOTf}\left(\mathrm{PPh}_{3}\right)$ lead to the bis-NHCsilver complexXLI. ${ }^{[40]}$

Scheme 1.9. Synthesis of bis-NHC having $P(\mathrm{~V})$ unit as linkerXL and its silver-complexXLIaccording to Streubel. ${ }^{[40]}$

These studies have opened a new area in the design of discrete multitopic NHCs which potentially can bind to different (hard and soft) metal centers.

1.5 Backbone-functionalized anionic NHCs

Backbone-functionalized anionicNHCs represent the strategic approach to fine tune the electronic ligand properties by incorporating an anionic group to the NHCbackbone; Figure 1.3 displays selected examples according to their chronological appearance.

$X L V I^{[11 c]}$

Figure 1.3. Anionic NHCs ($\mathrm{R}=$ alkyl or aryl groups); the cationic parts are not shown.
Lavigne and co-workers ${ }^{[41]}$ postulated the synthesis of anionic imidazol-2-ylidene-4olateXLII, by reacting the starting material 4-hydroxyimidazolium chloride with LiHMDS (2 eq.) (Figure 1.3). The obtained anionic imiazole-2-ylidene was further reacted with sulfur to generate the C^{2}-thione and with a metal precursor to give the corresponding NHCmetal complex.Also,further functionalization at O - and C -centersof the coordinatedNHC was achieved upon reactions with electrophiles. In contrast to XLII, a weekly coordinating anionic functionality $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ was introduced at the NHCbackbone by Tamm and co-workers (XLIII). ${ }^{[25 d]}$ An imidazole-2-ylidene was reacted with ${ }^{\text {n }} \mathrm{BuLi}$ at first to generate anionic dicarbene, which upon treatment with triaryl-borane produced the desired product. Zwitterionicgold complexes of the obtained NHC were obtained via reacting with suitable gold complexes and their catalytic studies towards skeletal rearrangement of enyne were undertaken.Another example of anionic NHC ligands was postulated by Braunstein and coworkers (XLIV). ${ }^{[257]}$ Backbone arylimino-substituted NHC ligands were accessed via reacting imidazolium precursors with LiHMDS and tmeda ($\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethylethylenediamine).

In 2013,Streubel and co-workers ${ }^{[42]}$ reported the synthesis and isolation of the novel zwitterionic compound XLVII via treatment of the imidazol-2-thion-4-yl-substituted phenyl phosphanes IX with four equivalents of potassium (Scheme 10). Reaction of XLVII with KHMDS or ${ }^{\mathrm{n}}$ Buli in the presence of two equivalents of [12-crown-4] resulted intoanionicNHC derivative XLV.The reported ${ }^{31} \mathrm{PNMR}$ resonance was $66.1 \mathrm{ppm}\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=5.4 \mathrm{~Hz} ; \mathrm{M}=\right.$ Li) and $65.7 \mathrm{ppm}\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=5.1 \mathrm{~Hz} ; \mathrm{M}=\mathrm{K}\right)$.

Synthesis of anionic bis-NHC XLVI was also reported by Streubel and co-workers (Scheme 1.10). This derivative was obtained via reaction of a P-H substituted imidazole-2-thione XLVIII with five-fold excess of potassium metal; the reported ${ }^{31}$ PNMR resonance for this compound was reported to be at $-116.0 \mathrm{ppm} .{ }^{[11 \mathrm{cc}]}$

Scheme 1.10.Synthesis of anionic imidazole-2-ylidenes XLV ${ }^{[42]}$ and $\mathbf{X L V I}{ }^{[11 c]}$ according to Streubel.

1.6 Phosphinines

In the following a short overview on the chemistry of phosphinines will be given as they constitute an important part of this thesis.

In 1966, the successful synthesis of λ^{3}-phosphinine \mathbf{L} by Märkl has opened a new area in the chemistry of low-coordinate phosphorus using $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, acting formally as source of PH_{3}, and pyrylium salt XLIX in pyridine (Scheme 1.11). ${ }^{[43]}$

Scheme 1.11. Synthesis of 2,4,6-triphenylphosphinine Laccording to Märkl. ${ }^{[43]}$
Phosphinine, the heavy homologue of pyridine, possesses about 90% of the aromaticity of benzene. ${ }^{[44]}$ Interestingly, some of the chemical disparities of pyridines and phosphinines can be attributed to the lower lying LUMO energies, and consequently increased electron affinity of phosphinines. The lone pair at the phosphinine phosphorus resides in the more diffuse HOMO-2 orbital (Figure 1.4). ${ }^{[45]}$ Altogether, this frontier orbital situation creates ligand
properties of phosphinines as to be weaker sigma donors and stronger π-acceptors compared to pyridines. ${ }^{[46]}$

Figure 1.4. NICS(1) values of benzene and its hetero-analogs as well as frontier orbital energies of phosphinine and pyridine (taken from the literature, contribution of C. Müller) ${ }^{[45]}$.

Since their first discovery, phosphinines have initiated intense research for more than five decades, ${ }^{[47]}$ and, nowadays, the spectrum of applications ranges from luminescent materials, to polymer precursors and ligands in catalysis. ${ }^{[48]}$

A remarkable addition to this field of research was the synthesis of the parent compound, i.e.,LII by Ashe in 1971. They treated the 1,4-dihydro-1,1-di-ndutylstannabenzene (LI) with phosphorus tribromide, which generated the hydrobromide initially; addition of 1,5-diaza-bicyclo[4.3.0]non-5-ene led to the final product LII (Scheme 1.12). In contrast to \mathbf{L}, being a crystalline solid, LII was found to be a colorless, volatile liquid. ${ }^{[49]}$

Scheme 1.12. Synthesis of the parent phosphinineLIIaccording to Ashe. ${ }^{[49]}$
Later on, several new routes to λ^{3}-phosphinines were reported, including those derivatives listed in Figure 1.5. For example: a [4+2]-cycloaddition reaction of 1,3-cyclopentadiene with ${ }^{\text {t BuCP }}$ generated LIII. ${ }^{[50]}$ 1-Benzyl-1,2-dihydro-phospha-naphthalene eliminatesa toluene

Phosphinines

unit upon heating at $260-300{ }^{\circ} \mathrm{C}$ to produceLIV, thus illustrating thatthermal elimination of a small molecule leading to aromatization can be used. ${ }^{[51]}$ Compound LV was accessed via reaction of ethyldiazoacetate with a phosphole sulfide. During the course of reaction,the addition of a carbene at the $C^{2}-C^{3}$ bond of the phosphole initially generates a bicyclic derivative which thermally rearranged to produce LV. ${ }^{[52]}$ Another route used a [4+2]cycloaddition reaction between an 1,3-azaphosphinine and an alkyne, followed by elimination of a nitrile unit thus leading to phosphinine derivative LVI. ${ }^{[53]}$ Recently, Hutner et al.reported a new route to synthesize λ^{3}-phosphinines: ring expansion of zirconacyclopentadienes by insertion of chloro(trimethylsilyl)methyllithium, followed by metathesis with phosphorusto produce phosphinine derivativeLVII. ${ }^{[54]}$

LIII ${ }^{[50]}$

Figure 1.5. Selected examples of phosphinines LIII-LVII to illustrate motifs accessible via different synthetic methodologies.

As mentioned beforehand, phosphinines have interesting π-ligand accepting properties, and a markedly electrophilic phosphorus center. Therefore, they readily react with Grignard and lithio compounds to furnish salts LVIIIwith dihydrophosphinine anions; the latter offer access to regiochemically different substitution products, i.e., 1,1- or 1,2- or 1,4-regioisomers, depending on the nature of the electrophile used in the next step (Scheme 1.13). ${ }^{[55]}$

Scheme 1.13. Sequential reactions of phosphinine Lwith nucleophiles and electrophiles. ${ }^{[55]}$
Besides, a broad spectrum of studies have shown complexation, ${ }^{[45,}{ }^{56]} P$-alkylation, ${ }^{[57]} P$ oxidation, ${ }^{[58]} P$-reduction ${ }^{[59]}$ and cycloaddition reactions ${ }^{[60]}$ of phosphinines, the last two of the list are discussed below.

The reduction of phosphinines has been well established and several examples can be found in literature. In particular, λ^{3}-phosphinines are found to be easily reducible by alkali metals to generate paramagnetic anion radicals and diamagnetic dianions. ${ }^{[59,}{ }^{61]}$ Even paramagnetic trianion radicals have been established by Märkl (Scheme 1.14) for the 2,4,6-triphenyl phosphininevia combined CV and ESR studies. ${ }^{[61]}$ Solutions of these species are found to be intensely colored and extremely sensitive towards oxygen.

Scheme 1.14. Reduction of phosphinineL according to Märkl. ${ }^{[61]}$
In 1999, Mathey and LeFloch reported the synthesis and reactivity of a 2,2-bisphosphinine dianion, including their ${ }^{31}$ PNMR features. ${ }^{[62]}$ Upon reaction of 2,2-biphosphinine LXV with

Phosphinines

excess metal, initially an intense purple color of the reaction solution was observed, which was suggested to be associated with the formation of paramagnetic monoradical anion LXVI. This supposition was supported by the disappearance of the ${ }^{31}$ PNMR signal at that stage of reaction. Uponprolongedreaction time, a color change to dark green was observed which was associated with the appearance of (new) broad signals in the ${ }^{31}$ PNMR spectra (between -5 and -15 ppm depending upon the metal used), and which were assigned to the diamagnetic dianionsLXVII. LXV was regenerated by reacting it with stoichiometric equivalents of hexachloroethane thus represents a chemical evidence illustrating the formation of the dianion LXVII (Scheme 1.15).

Scheme 1.15. Synthesis of 2,2-biphosphinine dianions according to Mathey and LeFloch. ${ }^{[62]}$
Märkl and Lieb ${ }^{[60 a]}$ has demonstrated that the 2,4,6-trisubstituted phosphinines (LXVIII) show only a moderate dienic reactivity and,e.g.,2,4,6-triphenyl phosphinine, showed no reaction with diethyl acetylenedicarboxylate or with maleic anhydride.However, upon reacting LXVIII with highly reactive electron-poor dienophiles,e.g., hexafluoro-2-butyne (at $100^{\circ} \mathrm{C}$), gave access to the corresponding phosphabarrelene LXIX (Scheme 1.16).

Scheme 1.16. Cycloaddition reaction of phosphinines ($\mathrm{R}=$ alkyl or aryl groups). ${ }^{[60 \mathrm{a}]}$

Later on, investigations were further extended by Märkl et al., and [4+2] cycloaddition reactions of phosphinines and arynes to get phosphabarrelenes were established. ${ }^{[60 \mathrm{c}]}$

In contrast to efforts concerningheteroatom-substituted benzene derivatives, which had a great impact on the chemistry of arenes, ${ }^{[63]}$ properties and reactivity of phosphinines are largely dominated by the presence of aryl substituents; this is illustrated by the examples $\mathbf{L X X}$ and LXXI (Figure 1.6). ${ }^{[64]}$ In case of phosphinines, heteroatom per-substitution is unknown and only 2-hydroxy derivatives have been described, recently. ${ }^{[65]}$

LXX

LXXI

Figure 1.6. Benzenes LXX having a complete set of heteroatom substituents and phosphinines LXXI.

1.7 Diphosphinines

In contrast to phosphinines, the chemistry of diphosphinines has been scarcely investigated, and out of the three possible regioisomers, only a few reports on 1,2- and 1,3-diphosphinines are available. For example, Bickelhaupt and co-workers postulated the formation of λ^{5}, λ^{3} diphosphaphenanthrene. When compound LXXIIwas treatedwith hydrogen chloride, initially a cyclic intermediate LXXIIIwas generated, rather than the originally targeted bisdichlorophosphane derivative (Scheme 1.17). Reduction of the intermediate LXXIII with Mg yielded the λ^{5}, λ^{3}-diphosphinine LXXIV, which was found to be a ylide and, therefore, authors concluded no aromaticity. LXXIVwas not isolable and was not purified, but was characterized via ${ }^{31}$ PNMR spectroscopy,i.e., two doublets at 94.5 and -129 ppm with a large ${ }^{1} J_{\mathrm{P}, \mathrm{P}}$ coupling constant of 469 Hz strongly evidenced the proposed $\mathrm{P}=\mathrm{P}$ motif in compound LXXIV. ${ }^{[66]}$

Scheme 1.17. Synthesis of 1,2-diphosphinine LXXIV according to Bickelhaupt. ${ }^{[66]}$
1,3-Diphosphinines are comparatively well investigated, and the first stable $1 \lambda^{3}, 3 \lambda^{3}$-diphosphinine LXXVII was reported by Zennek and co-workers (Scheme 1.18). They showed an efficient synthesis ofLXXVI in the coordination sphere of iron(0) by [2+2+2]-cycloaddition of two phosphaalkynes and a terminal alkyne; subsequent decomplexationunder oxidative conditions led to unligated $\mathbf{L X X V I I}\left(\right.$ Scheme 1.18). ${ }^{[67]}$

Scheme 1.18. Synthesis of 1,3-diphosphinine LXXVII according to Zenneck ($\mathrm{R}=\mathrm{H} / \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3} .{ }^{[67]}$
A unique example of a $1 \lambda^{3}, 3 \lambda^{3}$-diphosphinine is represented by the bis-phosphonium substituted derivative LXXIX which was synthesized via dechlorination of 1,3-diphosphatetraline derivative $\mathbf{L X X V I I I}$ using $\mathrm{GaCl}_{3}\left(\right.$ Scheme 1.19). ${ }^{[68]}$

Scheme 1.19.Synthesis of bis-phosphonium substituted 1,3-diphosphinine LXXIXaccording to Schmidpeter. ${ }^{[68]}$
In comparison to $1 \lambda^{3}, 3 \lambda^{3}$-diphosphinines, $1 \lambda^{5}, 3 \lambda^{5}$-diphosphinines have studied in more detail, and a wide range of $1 \lambda^{5}, 3 \lambda^{5}$-diphosphinine derivatives can be found in literature. Especially
interesting among these is $\mathbf{L X X X}$ (Figure 1.7), reported by Fluck and co-workers, obtained as the final product of the attempted synthesis of $1,1,3,3$-tetrakis(dimethylamino)- $1 \lambda^{5}, 3 \lambda^{5}$ diphosphete, which underwent a Diels-Alder reaction with an alkyne. ${ }^{[69]}$ Compound LXXXI represents the most stable derivative of all known $1 \lambda^{5}, 3 \lambda^{5}$-diphosphinines, which was reported first by Märkl in 1963, and was obtained by stepwise deprotonation of 1,1,3,3-tetraphenyl-1,3-diphosphoniocyclohex-4-ene (Figure 1.7). ${ }^{[70]}$

Figure 1.7. $1 \lambda^{5}, 3 \lambda^{5}$-Diphosphinines according to FluckLXXX ${ }^{[69]}$ andMärklLXXXI ${ }^{[70]}$
By comparison, 1,4-diphosphinines are even less explored, and until recently only a single example of a monocyclic $1 \lambda^{3}, 4 \lambda^{3}$-diphosphinine (LXXXIV) ${ }^{[71]}$ was reported by Kobayashi and co-workers. They used a stepwise protocol, starting with a RhCl_{3} catalyzedaddition of MeOH to the 1,4-diphosphabarrelene LXXXIIto give LXXXIII which eliminates the alkene LXXXV under thermal conditions to provide the 1,4-diphosphinine LXXXIV having four electronwithdrawing CF_{3} groups (Scheme 1.20). Owing to extreme air sensitivity, this compound could neither be isolated nor fully characterized and was only handled as hexane solution. Noteworthy is the reported ${ }^{31}$ PNMR resonance ofLXXXIVthat was determined to be very much at low field (287.0 ppm).

Scheme 1.20. First synthesis of a 1,4-diphosphinine according to Kobayashi (LXXXIV). ${ }^{[71]}$
The chemistry of LXXXIVremained largely unexplored due to the fact that its synthesis was very laborious and the compound was not isolable. Therefore, only few reactions were reported, resulting in formal [4+1]- and [4+2]-cycloaddition reaction products, and only one example of a photoisomerization to provide insight on valence bond isomerization (Scheme 1.21). ${ }^{[72]}$

Scheme 1.21. Reactions of 1,4-diphosphinineLXXXIV. ${ }^{[72]}$
The easy access of imidazole-2-thione-based tricyclic 1,4-diphosphininesXCII ${ }^{[14 a]}$ by Streubel and co-workers has reopened this research area, recently (Scheme 1.22). They reported a multigram synthetic protocol to access 1,4-diphosphinines XCIIvia reduction of the 1,4 -dihydro-1,4-dichloro-1,4-diphosphinines XCIwith ${ }^{n} B u_{3} P$. Interestingly, derivatives XCIIpossess a high degree of aromaticity (NICS(1) value -9.5) and another very remarkable feature was revealed by cyclovoltammetric experiments: two reduction potentials (at -1.74 and -2.59 V) with a total and (!) reversible uptake of 3 electrons. ${ }^{[14 \mathrm{a}]}$ First reactivity studies demonstrated that XCIIcan undergo [4+2]-cycloaddition reactions to give 1,4diphosphabarellenes in high yields, but also reacted with dichalcogenides $\mathrm{PhCh}-\mathrm{ChPh}(\mathrm{Ch}=$ $\mathrm{S}, \mathrm{Se})$ in $[4 \pi+2 \sigma]$-cycloaddition reactions, followed by inversion at the phosphorus center (Scheme 1.23). ${ }^{[73]}$

Scheme 1.22. Imidazole-2-thione based 1,4-diphosphinine according to Streubel ($\mathrm{R}=$ alkyl groups). ${ }^{[14 a]}$

Scheme 1.23. Reactivity studies of imidazole-2-thione-based 1,4-diphosphinine XCII ($\mathrm{R}=$ alkyl groups). ${ }^{[77]}$

Chapter

Chapter 2: Aims and objectives of the PhD thesis

The main aim of this PhD thesis was to synthesize first examples of C^{5}-phosphanyl substituted thiazole-2-thiones and to further extend their chemistry to the following fields of study:

- To employ the C^{5}-phosphanyl substituted thiazole-2-thiones as precursor to phosphaalkenes
- To investigate the formation of thiazole-2-thione-derived tricyclic 1,4-dihydro-1,4diphosphinines
- To conduct reactivity studies of tricyclic 1,4-dihydro-1,4-diphosphinines
- To synthesize thiazole-2-thione-derived 1,4-diphosphinines, and to investigate its chemistry including reduction

Chapter

Chapter 3: Synthesis and reactivity studies of Pfunctional thiazole-2-thiones

3.1 Synthesis of 1,3-thiazole-2-thiones

1,3-Thiazole-2-thiones were synthesized following literature known protocols (Scheme 3.1). ${ }^{[74]}$ The N-methyl derivative was accessed via conventional cyclization reaction between the in situ formed N-alkyl dithiocarbamate nucleophile and chloroacetic acetic acid to create the rhodamine intermediate 3a. Reduction of 3a with sodium borohydride gave access to N methyl thiazole-2-thione (4a). Crude $\mathbf{4 a}$ was purified via sublimation. ${ }^{[74 a]}$

Similar synthetic methodology was adopted (with slight modification) to achieve the $\mathrm{N}^{i} \mathrm{Pr}$ derivative $\mathbf{4 b} .{ }^{[74 b]}$ The dithiocarbamate salt was obtained by adding carbon disulfide and triethylamine to a solution of the iso-propylamine in diethyl ether. The treatment of chloroacetaldehyde with the dithiocarbamate salt $\mathbf{2 b}, \mathbf{c}$, led to cyclization followed by dehydration (one pot synthesis) delivered $N_{-}{ }^{i} \mathrm{Pr}$-thiazole-2-thione 4b in good yields after sublimation. The literature-known protocol for $\mathbf{4 b}$ was extended successfully to $\mathbf{4 c}$ and it was purified via column chromatography using silica as stationary phase and diethyl etherpetrolether (1:5) as eluent. ${ }^{[74 b]}$

a) $\mathrm{R}=\mathrm{Me}$, (i) $=\mathrm{NaOH}\left(2\right.$ eq), Water, (ii) $=$ aq. $\mathrm{KO}_{2} \mathrm{CCH}_{2} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{SO}_{4}$, (iii) $=\mathrm{NaBH} 4, \mathrm{EtOH}$, conc. HCl
b) $\mathrm{R}={ }^{\mathrm{n} P r}$, (i) $=\mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}$, (ii) $=\mathrm{CH}_{3} \mathrm{CN}, \mathrm{ClCH}_{3} \mathrm{CHO}$, (iii) $=\mathrm{H}_{2} \mathrm{SO}_{4}$
c) $R=\operatorname{Pr}$, (i),(ii),(iii) $=$ Same as b

Scheme 3.1. Synthesis of thiazole-2-thiones $\mathbf{4 a},{ }^{[74 a]} \mathbf{4 b}, \mathbf{c}^{[74 b]}$

3.2 Synthesis of P-functional thiazole-2-thiones

The chemistry of P-functional thiazoles can be traced back to 1964 , when Dimroth and Hoffmann reported a new class of thiazole-based compounds: phosphacyanines, having a trivalent phosphorus moiety (XCVII) ${ }^{[75]}$ Later, crystallographic characterization of such dicoordinated phosphorus compounds was reported by Allmann. ${ }^{[76]}$ A recent report on phosphamethine cyanines (XCVIII), ${ }^{[77]}$ and, other P-functional thiazoles ${ }^{[77-78]}$ for example, 2benzothiazolidinyl phosphonate (XCIX) ${ }^{[79]}$ can also be found in the literature. However, in all the above mentioned examples the P-functional group is bound in the C^{2}-position of the heterocycle (Figure 3.1).

Figure 3.1. Literature known P-functional thiazoles $\left(R / R^{1 /} R^{2} / R^{3}=\right.$ alkyl/aryl group).
Keeping in view to extend the chemistry later to low coordinate-phosphorus compounds and/or NHCs chemistry, we were more interested in backbone P-functional thiazole-2thiones. However, upon literature survey it was concluded that only one report on 5-phosphoryl-4-amino-1,3-thiazoline-2-thiones (C) was present so far, which also lacked any structural characterization. ${ }^{[80]}$ To explore and investigate the chemistry, a first study was initiated during my Qualification Thesis at University of Bonn ${ }^{[81]}$ concerning synthesis and characterization of C^{4} / C^{5}-functional thiazole-2-thiones bearing only PPh_{2} groups.

To accomplish the synthesis of C^{5}-aminophosphanyl-substituted thiazole-2-thiones, synthetic protocol already established by Sauerbrey ${ }^{[82]}$ and Majhi ${ }^{[11 c]}$ was employed, but with required modifications. ${ }^{[81]}$ Initial attempts to obtain the C^{5}-phosphanyl-thiazole-2-thiones via lithiationphosphanylation reaction sequence for $\mathbf{4 a}$ using ${ }^{\mathrm{n}} \mathrm{BuLi}$ was met with limited success and led to unselective reactions. However, treating the THF solution of N -methyl-thiazole-2-thiones (4a) with one equivalent of ${ }^{\mathrm{t}} \mathrm{Buli}$ at $-78^{\circ} \mathrm{C}$, and stirring for three hours (between $-78^{\circ} \mathrm{C}$ and
$-70^{\circ} \mathrm{C}$), followed by the addition of chloro(diorgano)phosphanes led to successful synthesis and isolation of C^{5}-phosphanylated thiazole-2-thione 5a,d (Scheme 3.2).

$$
\begin{array}{ll}
\text { 5a) } R=M e, R^{\prime}=E t_{2} N & \text { 5d) } R=M e, R^{\prime}=P h \\
\text { 5b) } R={ }^{\prime} P r, R^{\prime}=E t_{2} N & \text { 5e) } R={ }^{n} \operatorname{Pr}, R^{\prime}=P h \\
\text { 5c) } R={ }^{n} P r, R^{\prime}=E t_{2} N &
\end{array}
$$

Scheme 3.2. Synthesis of C^{5}-phosphanylated thiazole-2-thiones 5a-e.
In contrast to the N-methyl derivative $\mathbf{4 a}$, successful lithiation was achieved using ${ }^{\mathrm{n}} \mathrm{BuLi}$ for 4b,c keeping other reaction conditions constant, and afforded C^{5}-phosphanylated thiazole-2thione $\mathbf{5 b}, \mathbf{c}, \mathbf{e}$. The progress of each reaction was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. After the removal of the formed lithium chloride (via filtration over a frit with a pad of celite ${ }^{\circledR}$), the products were purified via recrystallization from toluene and/or washing with n pentane and obtained as white to yellow powder (5c as yellow sticky solid). The synthesis of selected derivatives of P-functional thiazole-2-thiones 5a-e with different N - and P substituents represents the strategic synthetic approach to extend the chemistry later using these compounds as potential building blocks.

The P-functional thiazole 2-thiones 5a-e were characterized via ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis revealed that regioselective lithiation has occurred as only single signal was observed. Compounds 5a-c resonate in the chemical shift range of $\delta^{31} \mathrm{P}=79.2-79.7 \mathrm{ppm}$ depending on the substituent at the N-center, which are comparable with the related P-functional imidazole-2-thiones $\mathbf{V}\left(\mathrm{R}^{\prime}=\mathrm{R}_{2} \mathrm{~N}, \delta{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}=72.0\right.$-75.0 $\mathrm{ppm}),{ }^{[11 \mathrm{c}]}$ while compound $\mathbf{5 d}$ and $\mathbf{5 e}$ showed resonance signals in the ${ }^{31} \mathrm{P}$ NMR spectrum at 44.4 ppm and 44.3 ppm , respectively, which are also comparable with the reported P functional imidazole-2-thiones $\left(\delta^{31} \mathrm{P}=32.7-35.2 \mathrm{ppm}\right) .{ }^{[14 \mathrm{c}]}$ Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of compounds 5a-e are given in Table 3.1 (for details see experimental section). The assignment of the C^{5}, C^{4} and C^{2} carbon nuclei of $\mathbf{5 a - e}$ was made upon comparison of the respective carbon nuclei of the parent thiazole compound (4a): $\delta{ }^{13} \mathrm{C}=110.9 \mathrm{ppm}, 132.3 \mathrm{ppm}$,
187.4 ppm), and with that of the related C^{4}-phosphanyl imidazole-2-thione ($N-\mathrm{Me}, P-\mathrm{Ph}$) $(1.8185(18))^{[11 a]}$ or $\left(\mathrm{N}^{-} \mathrm{Pr}, \mathrm{P}-\left(\mathrm{Ph}^{\mathrm{i}}\right) \mathrm{NEt}_{2}\right)(1.8260(18) \AA) .{ }^{[83]}$

Table 3.1. ${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ and selected ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR data of 5a-e.

	$\delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (ppm)	$\delta{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ of thiazole ring carbon (ppm)	Yield (\%)
5a	79.6	$\begin{gathered} 128.9\left(\mathrm{~d},{ }^{1}{ }_{\mathrm{P}, \mathrm{C}}=14.0 \mathrm{~Hz}, C^{5}\right), 132.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=17.6 \mathrm{~Hz}, C^{4}\right), \\ 189.5\left(\mathrm{~s}, C^{2}\right) \end{gathered}$	88
5b	79.7	$\begin{gathered} 128.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=18.2 \mathrm{~Hz}, C^{4}\right), 130.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=13.6 \mathrm{~Hz}, C^{5}\right), \\ 189.5\left(\mathrm{~s}, C^{2}\right), \end{gathered}$	98
5c	79.2	$\begin{aligned} 129.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=\right. & \left.14.0 \mathrm{~Hz}, C^{5}\right), 132.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=18.0 \mathrm{~Hz}, C^{4}\right), \\ & 190.2\left(\mathrm{~d},{ }^{3}{ }^{3}, \mathrm{C}=1.0 \mathrm{~Hz}, C^{2}\right) \end{aligned}$	88
5d	44.4	$\begin{aligned} 126.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=\right. & \left.55.6 \mathrm{~Hz}, C^{5}\right), 138.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=46.9 \mathrm{~Hz}, C^{4}\right), \\ & 191.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{P}, \mathrm{C}}=1.6 \mathrm{~Hz}, C^{2}\right) \end{aligned}$	84
5e	44.3	$\begin{aligned} & 126.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=\right.\left.54.7 \mathrm{~Hz}, C^{5}\right), 137.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=47.3 \mathrm{~Hz}, C^{4}\right), \\ & 190.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=1.3 \mathrm{~Hz}, C^{2}\right) \end{aligned}$	80

X-ray diffraction study were performed on crystals, obtained via slow evaporation of dichloromethane solution of compounds $\mathbf{5 a}, \mathbf{d}$. The structures with numbering scheme are given in Figure 3.2, and the selected structural parameters are given in Table 3.2. Complete crystallographic data of compounds $\mathbf{5 a}, \mathbf{d}$ are given in the appendix. Compound 5a and 5d crystallized in the monoclinic and triclinic system with space group $P 2_{1} / \mathrm{c}$ and $P \overline{1}$, respectively. The molecular structures further confirm the regiochemistry, having the phosphanyl substituent in the C^{5} position. The C1-P bond lengths of $\mathbf{5 a}(1.8202(15) \AA)$ and $\mathbf{5 d}(1.826(6) \AA)$ are comparable with that of the related C^{4}-phosphanyl imidazole-2-thione (N $\mathrm{Me}, P-\mathrm{Ph})(1.8185(18))^{[11 \mathrm{ab}]}$ or $\left(N-\mathrm{Pr}, P-(\mathrm{Ph}) \mathrm{Et}_{2} \mathrm{~N}\right)\left(1.8260(18) \AA \AA^{\mathrm{i}} .^{[83]}\right.$ Similarly the exocyclic $\mathrm{C}=\mathrm{S}$ bond of $\mathbf{5 a}(1.6676(15))$ and $\mathbf{5 d}(1.656(5))$ are also comparable with those of the C^{4} phosphanyl imidazole-2-thione ($N-\mathrm{Me}, P-\mathrm{Ph}$) (1.6821(18)). ${ }^{[11 \mathrm{a}]}$

Figure 3.2. Displacement ellipsoids plot (50\% probability) of molecular structure of $\mathbf{5 a}$ (left), $\mathbf{5 d}$ (right) in thecrystal. Hydrogen atoms have been omitted for clarity.

Table 3.2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $\mathbf{5 a}$,d.

	5a	5d
C2-S2	$1.6676(15)$	$1.656(5)$
C1-P	$1.8202(15)$	$1.826(6)$
C9-P	-	$1.831(6)$
N2-P	$1.6979(12)$	$1.697(5)$
N1-C2-S1	$108.16(11)$	$107.7(4)$
S1-C1-P	$122.63(8)$	$128.9(3)$
C3-C1-P	$127.66(11)$	$122.7(4)$
C1-P-C9	-	$101.0(2)$
C1-P-N2	$98.51(6)$	$107.8(2)$

3.3 Synthesis of bis(thiazole-2-thione-5-yl)phosphanes

The synthesis of bis(thiazole-2-thione-5-yl)phosphanes were achieved by using the already discussed (Section 3.2) lithiation-phosphanylation protocol. Noteworthy is that using similar protocols to achieve the N-methyl derivative led to a mixture of products. However, lithiation of the N - ${ }^{\mathrm{i}} \mathrm{Pr}$-substituted thiazole-2-thione $\mathbf{4 c}$ with ${ }^{\mathrm{n}}$ Buli at low temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$, followed by the addition of dichloro(organo)phosphane, selectively afforded compounds $\mathbf{6 a , b}$ (Scheme 3.3). After filtration through silica, recrystallization from toluene, and washing with n pentane, 6a,b were isolated in excellent yields (up to 95%) as white powder. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of compounds $\mathbf{6 a}, \mathbf{b}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of the heterocycle ring-carbon nuclei is given in Table 3.3. The ${ }^{31} \mathrm{P}$ NMR resonances of -42.0 ppm for $\mathbf{6 a}$ and 28.3 ppm for $\mathbf{6 b}$ are comparable with the reported values for the bis(imidazolyl)phosphanes $\mathbf{I X}\left\{\left(\mathrm{R}^{\prime}=\mathrm{Ph}, \delta^{31}=\right.\right.$ $\left.-54.7 \mathrm{ppm}),{ }^{[11 \mathrm{c}, 13]}\left(\mathrm{R}^{\prime}=\mathrm{NMe}_{2}, \delta^{31} \mathrm{P}=16.0 \mathrm{ppm}\right)\right\} .{ }^{[84]}$

Scheme 3.3. Synthesis of bis(thiazolyl)phosphanes 6a,b.

Table 3.3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data and yields of $\mathbf{6 a}, \mathbf{b}$.

	$\delta \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(\mathrm{ppm})$	$\delta{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ of thiazole ring carbon (ppm)	Yield (\%)
$\mathbf{6 a}$	-42.0	$120.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=30.4 \mathrm{~Hz}, C^{5}\right), 136.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=49.4 \mathrm{~Hz}\right.$,	88
$\mathbf{6 b}$	$\left.C^{4}\right), 191.1\left(\mathrm{~s}, C^{2}\right)$,		
	28.3	$125.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=34.9 \mathrm{~Hz}, C^{5}\right), 132.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=37.9 \mathrm{~Hz}\right.$,	95
$\left.C^{4}\right), 189.9\left(\mathrm{~s}, C^{2}\right)$,			

Interestingly no coupling to protons was observed in the ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{6 a}$,however, in case of $\mathbf{6 b}$ coupling to both $C^{4}-\mathrm{H}$ and NEt_{2} protons was observed $\left\{28.3 \mathrm{ppm}\right.$ (quint, ${ }^{3} J_{\mathrm{P}, \mathrm{H}}=$ $11.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=3.4 \mathrm{~Hz}$). Furthermore, $\mathbf{6 a}$ and $\mathbf{6 b}$ were characterized via IR, MS, elemental analysis and single crystal X-ray diffraction analysis. Single crystals for both $\mathbf{6 a}$ and $\mathbf{6 b}$ were obtained via slow evaporation of concentrated dichloromethane solution at low temperature $\left(-35 \mathbf{C}^{\circ}\right) .6 \mathbf{a}$ crystallized in orthorhombic crystal system with space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$, while $\mathbf{6 b}$ crystallized in monoclinic crystal system with space group $\mathrm{P} 2{ }_{1} / \mathrm{n}$. The structures having numbering scheme are given in Figure 3.3 and the selected structural parameters are given in Table 3.4. Complete crystallographic data having fully labeled structures are given in the appendix. The bond lengths and bond angles of both $\mathbf{6 a}$ and $\mathbf{6 b}$ are comparable with the bond lengths and bond angles of literature known bis(imidazolyl) phosphanes, ${ }^{[11 \mathrm{cc}]}$ for example the C1-P and C7-P bond lengths for 6a,b; [C1-P =1.808(2), C7-P $=1.814(2)] 6 \mathbf{a},[\mathrm{C} 1-\mathrm{P}=$ $1.8149(12), \quad \mathrm{C} 7-\mathrm{P}=1.8213(12)] \mathbf{6 b}$ can be compared with the related bis(imidazolyl)phosphanes having - Ph group at P-center [C-P $=1.817(2), \mathrm{C}-\mathrm{P}=1.814(2)]$ and $-\mathrm{NMe}_{2}$ at P-center $[\mathrm{C}-\mathrm{P}=1.8314(19), \mathrm{C}-\mathrm{P}=1.8038(18)]$. Likewise the $\mathrm{C} 1-\mathrm{P}-\mathrm{C} 8$ bond angle of $\mathbf{6 a , b}\left[109.24(17)^{\circ} \mathbf{6 a}, 108.73(8)^{\circ} \mathbf{6 b}\right]$ is also quite comparable with same C-P-C bond angle of the related bis(imidazolyl) phosphanes IX having -Ph group at P-center [101.05(8) ${ }^{\circ}$] however relatively widened in comparison to bis(imidazolyl) phosphanes having the $-\mathrm{NMe}_{2}$ group at P-center [98.97 (8) $\left.)^{\circ}\right]$. ${ }^{[1 \mathrm{cc}, 13,84]}$

Figure 3.3. Displacement ellipsoids plot (50% probability) of molecular structure of $\mathbf{6 a}$ (left), $\mathbf{6 b}$ (right) in the crystal. Hydrogen atoms have been omitted for clarity.

Table 3.4. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $\mathbf{6 a , b}$.

	$\mathbf{6 a}$	$\mathbf{6 b}$
C2-S2	$1.667(2)$	$1.6688(12)$
C8-S4	$1.663(2)$	$1.6762(12)$
C1-P	$1.808(2)$	$1.8149(12)$
C7-P	$1.814(2)$	$1.8213(12)$
C13-P	$1.838(2)$	-
N3-P	-	$1.6896(10)$
N1-C2-S1	$109.24(17)$	$108.73(8)$
N2-C8-S3	$108.51(17)$	$108.70(8)$
S1-C1-P	$128.51(15)$	$120.06(7)$
S3-C7-P	$126.84(13)$	$132.03(7)$
C1-P-C7	$101.84(11)$	$100.31(5)$

3.4 Synthesis of C^{5}-chlorophosphanyl substituted thiazole-2-thiones

The chlorophosphanyl-substituted imidazole-2-thione derivatives have been synthesized and successfully employed as starting point for interesting low co-ordinate phosphorus chemistry by Streubel and co-workers recently. ${ }^{[14 a, ~ 84]}$ Having had the aim to employ the chlorophosphanyl substituted thiazole-2-thiones in low coordinate phosphorus chemistry later, the synthesis of such derivatives was needed. Therefore, $\mathrm{R}^{\prime}\left(\mathrm{Et}_{2} \mathrm{~N}\right) \mathrm{P}$-substituted derivatives $\mathbf{5 a} \mathbf{5}$ e were subjected individually to a scrambling reaction using PCl_{3} (1.05 eq .) in diethyl ether (or dichloromethane for $\mathbf{5 d}, \mathbf{e}$) at $-60^{\circ} \mathrm{C}$ (Scheme 3.4).

a) $R=M e, R^{\prime}=E t_{2} N$
b) $R={ }^{i} \operatorname{Pr}, R^{\prime}=E t_{2} N$
c) $R={ }^{n} \operatorname{Pr}, R^{\prime}=E t_{2} N$
d) $R=M e, R^{\prime}=P h$
e) $R={ }^{n} P r, R^{\prime}=P h$

Scheme 3.4. Synthesis of P-chloro phosphanes (7a-c solv. $=\mathrm{Et}_{2} \mathrm{O}, 7 \mathbf{d}, \mathbf{e}$ solv. $=\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
The reaction progress was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy which revealed completion of reaction after one hour stirring as the the starting material had been completely consumed and two new signals were observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum which wereassigned to products7a-c (114.3-115.1 ppm for $7 \mathbf{a}, \mathbf{c}, \mathbf{d}$ or 55.3 for $7 \mathbf{d} / \mathbf{e}$) and $\mathrm{Et}_{2} \mathrm{NPCl}_{2}$ (163.2 ppm).After work-up 7a-e were isolated in excellent yields (up to 99%). The ${ }^{31} \mathrm{P}$ NMR resonances of compounds $\mathbf{7 a - c}$ (Table 3.5) are comparable with the related literature known P-chloro derivative CI. ${ }^{[14 \mathrm{a}]}$ However, the signals appeared significantly downfield-shifted compared to CIII $\left(\delta^{31} \mathrm{P}=168.7 \mathrm{ppm}\right){ }^{[85]}$ and $\operatorname{CIV}\left(\left(\delta{ }^{31} \mathrm{P}=166.8 \mathrm{ppm}\right) .{ }^{[85]}\right.$ Likewise, the ${ }^{31} \mathrm{P}$ NMR resonances of 7d,e follow the similar trend of difference with the ${ }^{31} \mathrm{P}$ NMR resonance of literature-known imidazole-based derivative $\mathbf{C I I}\left(\delta^{31} \mathrm{P}=37.2 \mathrm{ppm}\right)^{[14 \mathrm{c}]}$ (Figure 3.4, Table 3.5). Compounds CI-CIV were chosen for comparison mainly due to a related P-environment in the respective molecules and, secondly, also because these compounds were crystallographically established.

CI

CII

CIII

CIV

Figure 3.4. Literature reported P-chloro compounds $\mathbf{C I},{ }^{[14 a]} \mathbf{C I I}{ }^{[14 c]}$ and $\mathbf{C I I I}, \mathbf{C I V} .{ }^{[85]}$

Table 3.5. 31P NMR resonances of 7a-e and CI,CII and yields of 7a-e.

	R^{\prime}	$\delta^{31} \mathrm{P}(\mathrm{ppm})$	Yield (\%)
7a	$\mathrm{Et}_{2} \mathrm{~N}$	114.5	96
7b	$\mathrm{Et}_{2} \mathrm{~N}$	115.1	99
7c	$\mathrm{Et}_{2} \mathrm{~N}$	114.4	96
7d	Ph	55.3	92
7e	Ph	55.3	96
CI	-	106.4	-
CII	-	37.2	-

Single crystal X-ray analysis was performed for derivatives 7a and 7c. Crystals of both compounds suitable for X-ray diffraction studies were obtained via slow evaporation ofconcentrated solutions in $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1 ratio) at low temperature $\left(-30{ }^{\circ} \mathrm{C}\right)$. The molecular structures of $7 \mathbf{a}$ and $7 \mathbf{c}$ are given in Figure 3.5 and selected metrical parameters are given in the table below (Table 3.6).

Figure 3.5.Displacement ellipsoids plot (50\% probability) of molecular structure of $\mathbf{7 a}$ (left), $\mathbf{7 c}$ (right) and $\mathbf{8}$ (middle) in the crystal. Hydrogen atoms have been omitted for clarity.

Table 3.6. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $\mathbf{7 a , c}$ and $\mathbf{8 a}$.

	$\mathbf{7 a}$	$\mathbf{7 c}$	$\mathbf{8}$
C2-S2	$1.673(7)$	$1.670(3)$	$1.663(2)$
C1-P	$1.807(7)$	$1.817(3)$	$1.800(2)$
N2-P	$1.651(6)$	$1.655(2)$	-
Cl-P	$2.152(2)$	$2.1350(10)$	$2.0717(8)$
-	-	-	$2.0924(8)$
C3-C1-P	$126.4(5)$	$130.3(2)$	$122.04(15)$
C1-P-N2	$101.8(3)$	$100.05(11)$	-
C1-P-Cl	$94.7(2)$	$95.51(9)$	$99.12(7)$

In contrast to $\mathbf{5 a}$, the bond lengths of the thiazole ring of $\mathbf{7 a}, \mathbf{c}$ showed some small variations. Specifically, a slight shortening was observed for C1-P: [1.807(7) \AA in 7a], [1.817(3) \AA in 7c], $[1.8202(15) \AA$ in 5a]. The $\mathrm{P}-\mathrm{Cl}$ bond distance of $\mathbf{7 a}, \mathbf{c}[2.152(2) \AA 7 \mathbf{a}, 2.1350(10) \AA 7 \mathbf{c}]$ is somewhat elongated but comparable with literature known values of related compounds, for example with $\mathbf{C}{ }^{[14 a]}(\mathrm{dP}-\mathrm{Cl}=2.1274(9) \AA)$ and $\mathbf{C I I}{ }^{[14 c]}(\mathrm{dP}-\mathrm{Cl}=2.1056(1) \AA)$, however it is significantly shorter when compared with heterocyclic chlorophosphanes CIII ${ }^{[85]}(\mathrm{dP}-\mathrm{Cl}=$ $2.759(2) \AA$) and CIV (dP-Cl $=2.3136(7) \AA$).$^{[85]}$ However, the significantly long P-Cl bond in CIII was explained on the basis of high degree of aromatic stabilization of the cationic charge, thereby compound CIII was proposed to be ionic by Denk and co-workers. ${ }^{[85]}$

Interestingly, the methodology of „scrambling" to replace the $\mathrm{Et}_{2} \mathrm{~N}$ group using PCl_{3} was also successfully extended to replacement of both $\mathrm{Et}_{2} \mathrm{~N}$ groups by two Cl moieties. Upon treatment ofa diethyl ether solution of 5a with two equivalents of PCl_{3} at $0{ }^{\circ} \mathrm{C}$ afforded the dichlorophosphanyl thiazole-2-thione 8. The reaction was slower and needed three days of stirring at ambient temperature to reach completion.However, it was selective as revealed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of an aliquot separated from the reaction mixture showed two signals at 133.4 and 163.2 ppm . The latter was assigned to the expected by-product $\left(\mathrm{Et}_{2} \mathrm{NPCl}_{2}\right)$, while the former (133.2 ppm) was assigned to the dichloro-compound $\mathbf{8}$. After in vacuo removal of volatiles, $\mathbf{8}$ was isolated as white powder by recrystallization from n-pentane and $\mathrm{Et}_{2} \mathrm{O}$ mixture (3:1) at $0{ }^{\circ} \mathrm{C}$ in very good yield (82%). $\mathbf{8}$ was fully characterized via NMR, IR, MS, and single crystal X-ray analysis. Single crystals suitable for measurement were obtained by slow evaporation of concentrated dichloromethane solution of $\mathbf{8}$ at $-35^{\circ} \mathrm{C}$. The bond lengths and bond and bond angles of $\mathbf{8}$ are comparable with those of $\mathbf{7 a}$ and $\mathbf{7 c}$ however a noticeable bond contraction occurred in P-Cl
bonds of 8 [2.0717(8), 2.0924(8) \AA] was observed in comparison to that of $7 \mathbf{a}$ and $7 \mathbf{c} ;[2.152(2) \AA 7 \mathrm{a}, 2.1350(10) \AA 7 \mathbf{c}]$.

Recently, Streubel and co-workers synthesized the P-chloro substituted imidazole-2-thione CV and demonstrated its use as starting material to access low-coordinate phosphorus compounds (Scheme 3.5). ${ }^{[84]}$ The P-chloro derivative CV was further converted to the P-H substituted imidazole-2-thione (CVI) by reacting it with ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$. The obtained P-H was deprotonated with KHMDS to afford the phosphanido derivative CVII. ${ }^{[84]}$

$\mathrm{R}=\mathrm{Alkyl}$ group
$\mathrm{L}_{\mathrm{n}}=(\text { thf })_{n}$ or [18-crown-6]
CV

Scheme 3.5. Literature-known P-cloro compound CV and some reactions. ${ }^{[84]}$
Motivated by the easy access and further chemistry of P-chloro substituted imidazole-2-thione derivatives $\mathbf{C V}$, we were eager to explore if the the bis(thiazolyl)phosphane $\mathbf{6 b}$ can also beconverted into the corresponding P-chloro derivative. The synthesis of bis(thiazolyl)chlorophosphane 9 was achieved using the protocol already employed for the synthesis of $\mathbf{8}$ using PCl_{3} in dichloromethane (Scheme 3.6). The reaction was quite fast (completed in one hour) and selective as revealed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring. The conversion of the P-NEt ${ }_{2}$ derivative into the P-chloro was indicated by the expected shift and change in multiplicity of the ${ }^{31} \mathrm{P}$ NMR resonance ($\mathrm{s}, 35.0 \mathrm{ppm}$) as the $\Delta \delta$ value (6.7 ppm) between starting material $(\mathbf{6 b})$ and product ($\mathbf{(9)}$) is very similar to the $\Delta \delta$ value (5.8 ppm) in case of the imidazole-based system. ${ }^{[84]}$

Scheme 3.6. Synthesis of bis(thiazoly)chlorophosphane 9.
Compound 9 was analyzed by NMR, IR, MS, elemental analysis and also single crystal X-ray diffraction techniques. Compound 9 crystallized in monoclinic crystal system with space group $\mathrm{P} 2_{1} / \mathrm{c}$. The crystal structure of $\mathbf{9}$ is given in Figure 3.7 and selected structural parameters are given the figure caption. The P-Cl bond length of 9 (2.0796(4), Å) can be compared with the related literature known P-chloro derivatives (CV, CVIII, CIX). The P-Cl bond lengths of $\mathbf{9}$ [2.0796(4) \AA] is somewhat shorter than that of $\mathbf{C V}[\mathrm{dP}-\mathrm{Cl}=2.1029(6)$ $\AA],{ }^{[84]}$ however it was found to be quite comparable with compound CVIII [dP-Cl $=$ $2.0982(2) \AA]^{[86]}$ and $\mathbf{C I X}[\mathrm{dP}-\mathrm{Cl}=2.061(1) \AA] .{ }^{[87]}$

cV

CVIII

CIX

Figure 3.6. Literature-known P-chloro compounds CV, ${ }^{[84]} \mathbf{C V I I I},{ }^{[86]} \mathbf{C I X} .{ }^{[87]}$

Figure 3.7. Displacement ellipsoids plot (50% probability) of molecular structure of $\mathbf{9}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$) C2-S2 1.6658(13), C1-P 1.8030(13), C7-P $1.7909(13)$, P-Cl $2.0796(4)$, N1-C2-S1 108.80(9), S1-C1-P 129.52(7), C1-P-C7 101.95(6), C1-P-Cl 98.43(4), C7-P-Cl 101.47(4).

Chapter

Chapter 4: Attempted synthesis of C^{5}-thiazolyl substituted phosphaalkene

The prospect of using $\mathrm{P}=\mathrm{C}$ bonds ${ }^{[43,88]}$ in polymer science ${ }^{[89]}$ and catalysis ${ }^{[90]}$ has attracted chemists to this growing field of low-coordinate main group element chemistry. ${ }^{[91]}$ Although the first neutral isolated compound with a phosphorus-carbon π-bond was Märkl's phosphabenzene (2,4,6-triphenyl phosphinine) derivative \mathbf{L} (Figure 4.1), ${ }^{[43]}$ the first acyclic phosphaalkene CXwas synthesized by Becker in 1976. ${ }^{[88]}$ The latter report coincided with a publication by Nixon and Kroto on the synthesis of unstable phosphaalkenes under pyrolysis conditions. ${ }^{[88 b]}$ These fascinating compounds $\mathbf{L}, \mathbf{C X}$, possessing a formal $\mathrm{P}=\mathrm{C}$ bond with a ($3 \mathrm{p}-2 \mathrm{p}$) π-overlap, marked the beginning of what is now a highly active field of research that has had major impact on both fundamental and applied inorganic chemistry.

The strategy of electronic delocalization was key to providing the thermodynamic stabilization necessary for these early compounds featuring main group multiple bonds (L). ${ }^{[88 \mathrm{c}, ~ 88 d]}$ Shortly thereafter, it was realized that large, sterically demanding substituents provide kinetic stability to $\mathrm{P}=\mathrm{C}$ bonds, ${ }^{[88 \mathrm{a}, ~ 88 e]}$ such as in CX and CXI. ${ }^{[88 e]}$

The attempts of Bickelhaupt and his coworkers to achieve a phosphaalkene with „smaller" Psubstituents than Mes, for example $\mathrm{PhP}=\mathrm{CPh}_{2}$, has led to polymeric materials. ${ }^{[88 e]}$ Later on, further attempts were made by Gates and co-workers to isolate the same compound, however, the monomer could only be detected by NMR spectroscopy and, finally, a 1,2-diphosphetane $\left(\mathrm{PhP}-\mathrm{CPh}_{2}\right)_{2}$, formed via head-to-head dimerization was obtained. ${ }^{[92]}$ However, the end-on complex $\left[\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{Ph}_{2} \mathrm{C}=\mathrm{PPh}\right)\right]$ was isolated as such and, therefore, stabilization of phsophaalkenes with sterically less demanding („smaller") P-substituents via complexation was once more exemplified. ${ }^{[92-93]}$ This report, however, contrasts somehow with a head-tohead dimerization of $\left[\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{Me}_{2} \mathrm{C}=\mathrm{PPh}\right)\right]$, also leading to a 1,2-diphosphetane. ${ }^{[94]}$

Nowadays, a wide variety of synthetic methods are available to establish $\mathrm{P}=\mathrm{C}$ bonds, including: (a)the Becker condensation reaction, ${ }^{[95]}$ (b) phospha-variants of the Peterson
olefination, ${ }^{[96]}$ (c) 1,2-elimination reactions, ${ }^{[88 e,}{ }^{97]}(\mathrm{d})$ the phospha-Wittig reaction, ${ }^{[98]}$ and several others. ${ }^{[99]}$

L

CX

CXI

Figure 4.1. Literature-known phosphabenezene $\mathbf{L}^{[88 c]}$ and phosphaalkenes $\mathbf{C X}{ }^{[88 a]}$ and $\mathbf{C X I} .^{[88 e]}$

4.1 Substitution of \boldsymbol{C}^{5}-amino(chloro)phosphanyl thiazole-2-thiones leading to phosphaalkene precursors and a new phosphaalkene complex

As the generation of phosphaalkenes via 1,2-elimination reactions is well established,7a was used to introduce the CHPh_{2} group, using a freshly prepared solution of diphenylmethyllithium, ${ }^{[100]}$ added dropwise to a THF solution of $7 \mathbf{a}$ at $-78{ }^{\circ} \mathrm{C}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring revealed completion after 15 min (Scheme 4.1). Unexpectedly, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture displayed two singlet resonances at 47.0 (80 $\%)$ and $119.1 \mathrm{ppm}(20 \%)$. The former was assigned to the phosphane derivative $\mathbf{1 0}$ while the latter could not be identified.

Scheme 4.1. Strategic synthesis of potential starting material for 1,2-elimination reaction.
Work-up provided10 as crude product that was re-crystallized from a THF/n-hexane mixture at $-40{ }^{\circ} \mathrm{C}$ and, finally, obtained in pure form as a white powder. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}$ (in CDCl_{3}) clearly supported the proposed formulation of the product (see experimental section). For example, the resonances at 7.13-7.50 $(\mathrm{m}, 10 \mathrm{H})$ assigned to the $\mathrm{C}_{6} H_{5}$ protons and, especially, at $4.65(\mathrm{~d}, 1 \mathrm{H})$ whichclearly indicated the $\mathrm{Ph}_{2} \mathrm{CH}$ proton.

Single crystals of $\mathbf{1 0}$, suitable for X-ray crystallographic analysis, were obtained by slow diffusion of n-hexane into a saturated dichloromethane solution at low temperature $\left(-30^{\circ} \mathrm{C}\right)$.

Compound $\mathbf{1 0}$ crystallized in the monoclinic space group $\mathrm{P}_{1} / \mathrm{n}$; the molecular structure is shown in Figure 4.2 and selected bonding parameters are given in figure caption. Since the bond lengths are within the expected range and the differences from 5a are negligible, they will not be discussed further. However, in contrast to $\mathbf{5 a}$ some bond angles in $\mathbf{1 0}$ showed noticeable variation such as S1-C2-P1 $130.36(6)^{\circ}$ in $\mathbf{1 0}$ vs $122.63(8)^{\circ}$ in 5a and C3-C2-P1 $121.46(8)^{\circ}$ in $\mathbf{1 0}$ vs $127.66(11)^{\circ}$ in $\mathbf{5 a}$.

Figure 4.2 Displacement ellipsoids plot (50\% probability) of molecular structure of10 in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: S1-C1 1.7460(11), S1-C2 1.7529(10), C3-C2 1.3489(15), P1-C2 1.8226(10), S2-C1 1.6649(10), P1-C5 1.8751(11), N1-C1-S1 107.82(7), S1-C2-P1 130.36(6), C3-C2-P1 121.46(8).

To substitute the remaining $P-\mathrm{NEt}_{2}$ group in $\mathbf{1 0}$, reaction with PCl_{3} was performed in dichloromethane at $-60{ }^{\circ} \mathrm{C}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of an aliquot removed from the reaction solution after one h revealed that the resonance of $\mathbf{1 0}\left(\delta^{31} \mathrm{P}=47.0\right)$ had been replaced by a new signal at 57.9 ppm which was assigned to P-chloro derivative $\mathbf{1 1}$ (Scheme 4.1). After work-up (see Experimental Section), $\mathbf{1 1}$ was isolated in good yield ($\sim 62 \%$). Compound 11 was characterized via NMR, MS, IR, elemental analysis and single crystal X-ray diffraction analysis. Single crystals of $\mathbf{1 1}$ suitable for X-ray diffraction were obtained by slow diffusion of n-hexane into a concentrated dichloromethane solution at $-30^{\circ} \mathrm{C}$. The molecular structure of $\mathbf{1 1}$ is given in Figure4.3, but as the bond lengths and bond angles are in a normal range, they will not be discussed further.

Figure 4.3. Displacement ellipsoids plot (50\% probability) of molecular structure of compound $\mathbf{1 1}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): S2-C1 1.7380(10), S2C3 1.7464(11), C2-C3 1.3542(14), P1-C3 1.8097(10), S1-C1 1.6661(11), P1-C5 1.8776(11), P1-Cl 2.0255(7), N1-C1-S2 108.60(7), P1-C3-S2 126.48(6), C2-C3-P1 123.27(8).

4.2 Attempted dehydrohalogenation reaction of 11

Having had the potential precursor $\mathbf{1 1}$ for 1,2-elemination reaction, its dehydrohalogenation reactions were attempted. Initial attempts using $\mathrm{LDA}, \mathrm{KtBuO}^{-},{ }^{\mathrm{t}} \mathrm{BuLi}^{\text {or }} \mathrm{Et}_{3} \mathrm{~N}$ (Table 4.1) with different solvents (THF, toluene, diethyl ether) did not meet any success and always led to unselective reactions. However, when a THF solution of $\mathbf{1 1}$ was treated with DBU (1.1 eq.) at ambient temperature (Scheme 4.2), reaction monitoring by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy showed that a selective reaction resulted, initially, showing 11 (57.9 ppm) and only one new resonance at 187.2 ppm .

Scheme 4.2. Dehydrohalogenation reaction of $\mathbf{1 1}$ with DBU.
Table 4.1. Percentage of $\mathbf{1 2}$ (based on ${ }^{31} \mathrm{P}$ NMR intigration) in the reaction mixture with different bases.

	Base	$\mathbf{1 2}$ (\%)
\mathbf{I}	DBU	23
$\mathbf{I i}$	$\mathrm{Et}_{3} \mathrm{~N}$	17
$\mathbf{I i i}$	${ }^{\mathrm{t}} \mathrm{BuLi}$	5
$\mathbf{I v}$	$\mathrm{~K}^{\mathrm{t} \mathrm{BuO}^{-}}$	0
\mathbf{V}	LDA	0

As the downfield shift is characteristic of phosphaalkenes having aryl or alkyl substituents at the alkyledene carbon atom, ${ }^{[92,101]}$ it was tentatively assigned to phosphaalkene 12. However, within 30 min , new signals of several other unidentified phosphorus-containing products (65% of the product mixture) emerged, while the starting material was not yet fully consumed. So we speculate that although the reaction itself was selective the formed phosphaalkene derivative $\mathbf{1 2}$ decomposed under the given reaction conditions, thus rendering $\mathbf{1 2}$ as inseparable part of a mixture. However, some support for the identity of $\mathbf{1 2}$ came from the EI-MS $(70 \mathrm{eV})$ spectrum of this mixture which displayed a peak at $\mathrm{m} / \mathrm{z} 328.1$ that corresponds to the molecular ion of $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NPS}_{2}\right]^{+}$.

4.3 Synthesis of tungsten complex 13

Due to the presence of alone pair at the phosphorus atom and a π-system in phosphaalkenes such ligands exhibit various metal-coordination modes (Figure 4.4), ${ }^{[90 b, 102]}$ and examples are known for all of those given in Figure 4.4; complexes having the η^{1} coordination mode have been reported the most. ${ }^{[92-93, ~ 103] 20] ~}$

A

B

C

D

E

Figure 4.4. Possible metal-coordination modes of phosphaalkenes. ${ }^{[90 b, ~ 102]}$
In an effort to stabilize the proposed phosphaalkene 12, we then turned to the well established concept of metal complex-stabilization due to end-on complexation of the $\mathrm{P}=\mathrm{C}$ unit that had been used in the past with tremendous success, e.g. to synthesize $\left[\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{ClP}=\mathrm{CH}_{2}\right)\right]^{[104]}$, having in mind that the free ligand is not stable in condensed phase. Therefore, the $\mathrm{W}(\mathrm{CO})_{5}$ complex of $\mathbf{1 1}$ was prepared using a THF solution of $\mathbf{1 1}$ and $\left[\mathrm{W}(\mathrm{CO})_{5} \mathrm{MeCN}\right]^{[105]}$ (Scheme 4.3), surprisingly, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum displayed two signals at $86.4\left({ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=295.2\right.$ Hz) and $88.2 \mathrm{ppm}\left({ }^{1} J_{\mathrm{W}, \mathrm{P}}=291.6 \mathrm{~Hz}\right)$. The latter were assigned to two atropisomers of complex 13 due to a possible hindered rotation about the $\mathrm{P}-\mathrm{C}$ bond.

Scheme 4.3. Synthesis of complex 13.
The resonances and the ${ }^{1} J_{\mathrm{W}, \mathrm{P}}$ coupling constants support the constitution of complex 13, especially when compared with the complex $\left[\mathrm{W}(\mathrm{CO})_{5}\left\{\mathrm{PPh}_{2} \mathrm{Cl}\right\}\right]\left(95.4 \mathrm{ppm},{ }^{1} J_{\mathrm{W}, \mathrm{P}}=282.8\right.$ $\mathrm{Hz}) .{ }^{[106]}$ Complex $\mathbf{1 3}$ was isolated via column chromatography at low temperature and finally obtained as bright yellow powder. The ${ }^{1} \mathrm{H}$ NMR spectrum displayed two sets of resonances for the two isomers, e.g., at $6.7 \mathrm{ppm}\left(\mathrm{d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{P}, \mathrm{H}}=5.2 \mathrm{~Hz}\right)$ and $6.9\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{P}, \mathrm{H}}=4.3 \mathrm{~Hz}\right)$ for the $C^{4}-\mathrm{H}$ protons and at $4.8 \mathrm{ppm}\left(\mathrm{d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{P}, \mathrm{H}}=3.3 \mathrm{~Hz}\right)$ and $4.9 \mathrm{ppm}\left(\mathrm{d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{P}, \mathrm{H}}=3.7 \mathrm{~Hz}\right)$ for the $\mathrm{CHPh} h_{2}$ protons. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum the resonances at $65.9 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=\right.$ 7.5 Hz) and $66.5 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=6.2 \mathrm{~Hz}\right)$ were assigned to the $C \mathrm{HPh}_{2}$ carbon nuclei of the two isomers. Single crystals of $\mathbf{1 3}$ suitable for X-ray diffraction studies were obtained by slow evaporation of a concentrated solution in diethyl ether.

Figure 4.5. Displacement ellipsoids plot (50\% probability) of molecular structure of compound $\mathbf{1 3}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond distances (\AA) and angles (${ }^{\circ}$): S1-C2 1.735(7), S1C1 1.747(6), C1-C3 1.331(9), P1-C1 1.807(6), S2-C2 1.747(6), P1-C5 1.875(6), P1-Cl 2.069(2), P1-W 2.4671(15), N1-C2-S1 108.5(4), P1-C1-S1 121.5(3), C3-C1-P1 128.6(5).

Compound $\mathbf{1 3}$ crystallized in the triclinic system with space group $P \overline{1}$. The molecular structure is shown in Figure 4.5 and selected bond lengths and bond angles are given in the caption The bond lengths in $\mathbf{1 3}$ showed only one mentionable deviation from 11: the (exocyclic) bond C2-S2 was significantly elongated [1.747(6) in 13 and 1.6661(11) in 11]. As
the latter value was almost invariant within the set of unligated derivatives described beforehand, it clearly reflects the effect of P-complexation. The bond angles in $\mathbf{1 3}$ follow those of the unligated compound 11, except for P1-C1-S(1) in $\mathbf{1 3}$ which was more acute than in $\mathbf{1 1}\left[126.48(6)^{\circ}\right.$ vs $\left(121.5(3)^{\circ}\right.$ in $\left.\mathbf{1 3}\right]$. This was accompanied by a widening of the C3-C1-P1 angle [128.6(5) ${ }^{\circ}$ in $\mathbf{1 3}$ vs $\left(123.27(8)^{\circ}\right.$ in $\mathbf{1 1}$], thus pointing to a somewhat surprising distortion of the metrics of the thiazole ring, thereby enabling a position of the N-Me group that minimizes steric repulsion. This ring distortion may also affect the C2-S2 bond.

4.4 Dehydrohalogenation reaction of 13

With complex 13 in hand, attempts were then made to achieve a selective 1,2 -elimination using DBU as base (Scheme 4.4). Treatment of a THF solution of $\mathbf{1 3}$ with DBU at $-78{ }^{\circ} \mathrm{C}$ resulted in an immediate color change from yellow to bright red. Importantly, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of an aliquot, taken from the reaction mixture shortly after the addition of DBU, revealed the formation of one major product at $141.1 \mathrm{ppm}\left({ }^{1} J_{\mathrm{W}, \mathrm{P}}=281.7 \mathrm{~Hz}\right)$ and two minor products at $74.9 \mathrm{ppm}\left({ }^{1} J_{\mathrm{W}, \mathrm{P}}=270.2 \mathrm{~Hz}\right)$ and $73.2 \mathrm{ppm}\left({ }^{1} J_{\mathrm{W}, \mathrm{P}}=269.2 \mathrm{~Hz}\right)$ (ratio 72:8:20) (Figure 4.6).

Scheme 4.4. 1,2-Elimination reaction of 13 to give 14, and its dimerization to $\mathbf{1 5 , 1 5}{ }^{\prime}$
Using the data of the known end-on complexes $\left[\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{PhP}=\mathrm{CPh}_{2}\right)\right]\left(\delta=188.1 \mathrm{ppm},{ }^{1} J_{\mathrm{W}, \mathrm{P}}=\right.$ $270.8 \mathrm{~Hz}),{ }^{[92-93]}$ and $\left.[\mathrm{W}(\mathrm{CO}))_{5}\left(\mathrm{PhP}=\mathrm{CMe}_{2}\right)\right]\left(\delta=176.0 \mathrm{ppm},{ }^{1} J_{\mathrm{W}, \mathrm{P}}=261.0 \mathrm{~Hz}\right),{ }^{[94]}$ and taking into account that the thiazole-2-thione substituent exerts a shielding effect on the phosphorus nucleus compared to the phenyl group in all previous cases, the resonance at 141.1 ppm was tentatively assigned to the end-on phosphaalkene tungsten complex 14. In order to gain further support for this assignment of $\mathbf{1 4}$, the solvent was removed in vacuo at $-30^{\circ} \mathrm{C}$ (shortly after having added DBU ($\simeq 5 \mathrm{~min}$)). The thus obtained solid was used for an EI-MS experiment that showed $m / z 651$, clearly assignable to the molecular ion peak of 14 , and the base peak at $m / z 327$ representing the fragment ion after loss of the $\mathrm{W}(\mathrm{CO})_{5}$ group.

Figure 4.6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (THF, $121.5 \mathrm{MHz},-50^{\circ} \mathrm{C}, \simeq 5 \mathrm{~min}$) of an aliquot from the reaction mixture of the synthesis of $\mathbf{1 4}$.

Interestingly, if the same reaction mixture was kept at $-30{ }^{\circ} \mathrm{C}$ for 12 h , the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed that the resonance at 141.1 ppm was no longer present, and the color had changed from red to pale yellow, and only signals at 74.9 ppm (major) and 73.2 ppm (minor) had remained (ratio 97:3) (Figure 4.7 It should be noted that the two products (at 74.9 and 73.2 ppm) grew at the expense of product 14 (at 141.1 ppm).

Figure 4.7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (THF, $121.5 \mathrm{MHz},-30{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$) of an aliquot from the reaction mixture of the synthesis of $\mathbf{1 4}$.

The experimental observations and the analytical data suggested the assignment of resonances at 74.9 and 73.2 ppm to two isomeric dimers of the intermediately formed phosphaalkene
complex 14. Filtration at $-30^{\circ} \mathrm{C}$ and subsequent drying under reduced pressure at $-30^{\circ} \mathrm{C}$ led to $\mathbf{1 5 , 1 5}$ ' as a yellow powder, containing only little amounts of impurities. To obtain a better quality NMR spectroscopic data, complexes $\mathbf{1 5 , 1 5}$ ' were characterized in situ. The ${ }^{1} \mathrm{H}$ NMR spectrum of a THF- d_{8} solution of $\mathbf{1 5 , 1 5}\left(-30^{\circ} \mathrm{C}\right)$ revealed a singlet at $3.5 \mathrm{ppm}(6 \mathrm{H})$ assigned to NCH_{3} and a multiplet at 6.9-7.8 $(22 \mathrm{H})$ assigned to $C^{4}-\mathrm{H}$ and $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{H}$ protons (only the major isomer i.e. 97%). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibited all signals attributable to the expected carbon nuclei of $\mathbf{1 5}$ (only the major isomer i.e. 97%) including two sets of four signals for the phenyl carbon atoms, which suggests the inequivalence of the two phenyl groups. This assignment of $\mathbf{1 5 , 1 5}$ ' as dimers is further supported by the neg. ESI-MS spectrum (salt), i.e., $\mathrm{m} / \mathrm{z} 1336.888$ found for $\left[\mathrm{C}_{4} \mathrm{H}_{28} \mathrm{~N}_{2} 0_{10} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{~W}_{2}\right] \mathrm{Cl}$ (calc. 1336.880). At this point it should be also noted that a selective dimerization was observed only in small scale reactions (up to 100 mg of $\mathbf{1 3}$).

Our assignment of complexes $\mathbf{1 5 , 1 5}$ ' as to be head-to-tail dimers of $\mathbf{1 4}$, i.e., diastereomeric, dinuclear 1,3-diphosphetane complexes, is based on the characteristic ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance of the $C \mathrm{Ph}_{2}$ carbon nuclei found to be a triplet at 68.0 ppm with a ${ }^{1} J_{\mathrm{P}, \mathrm{C}}$ coupling of 7.0 Hz. Furthermore, the absence of the ${ }^{3} J_{\mathrm{P}, \mathrm{C}}$ coupling, expected for the head-to-head-dimer (phosphorus and the $C O$ nuclei) should be noted and which supports the proposed head-to-tail dimerization of 14 .

This assignment is further supported by a comparison with NMR data of the head-to-head dimer of $\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{PhP}=\mathrm{CMe}_{2}\right)(\mathbf{C X I I})(\text { Figure } 4.8)^{[94]}$ showing a doublet for the $C \mathrm{Me}_{2}$ nuclei ($36.9 \mathrm{ppm}, \mathrm{d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=28.2 \mathrm{~Hz}$). So far, there is only one report on dinuclear 1,3-diphosphetane tungsten(0) complexes having P-alkyl substituents, complexes CXIII (Figure 4.8). ${ }^{[107]}$ The ${ }^{31} \mathrm{P}$ resonances of CXIII were in the range of 8.9 to $51.1 \mathrm{ppm}\left({ }^{1} J_{\mathrm{W}, \mathrm{P}}=188.2\right.$ and 218.1 Hz , respectively), but most importantly derivatives CXIII possess ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR features of the NMe_{2}-substituted ring carbon nucleiat $60.5(\mathrm{R}=\mathrm{Me})$ and $62.7(\mathrm{R}=\mathrm{Et}) \mathrm{ppm}$, displaying both a triplet splitting pattern (${ }^{1} J_{\mathrm{P}, \mathrm{C}}=29.7 \mathrm{~Hz}$ and 28.7 Hz , respectively) that lend further strong support for $\mathbf{1 5 , 1 5}$ ' to be head-to-tail dimers.

CXII

CXIII

Figure 4.8. Literature known dinuclear tungsten(0) complexes of 1,2- and 1,3-diphephetanes CXII ${ }^{[94]}$ and CXIII. ${ }^{[107]}$

In order to get more insight into the dimerization product $\mathbf{1 5 , 1 5}$ ',theoretical calculations were performed by Frontera at BP86-D3/def2-TZVPP level of theory. ${ }^{[108]}$ Solvent effects were taken into consideration using the COSMO method ${ }^{[109]}$ and calculated the relative energies of the four possible (calculated) structures given in Figure 4.9. The comparison of the relative energies (Table 4.2) suggested that for both possible dimerization products, head-to-head and head-to-tail, the Gibbs free energies are very similar for both regioisomeric species in trans conformation. Furthermore, the dimer formation energy was found to be favorable for both solvents: $-23.5 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $-23.9 \mathrm{kcal} / \mathrm{mol}$ in THF. Therefore, it has been concluded that despite the interesting observation of solvent dependent dimerization of the formed phosphaalkene (14), the stability of reactants/products could not be differentiated via DFT analysis using the standard solvation methods.

1,3 diphosphetane trans

1,3 diphosphetane cis

1,2 diphosphetane trans

1,2 diphosphetane cis

Figure 4.9. Optimized structures for the proposed dinuclear tungsten(0) complexes of 1,3- and 1,2diphosphetanes (by Frontera).

Table 4.2. Calculated relative energies of various dimers $\mathbf{1 5 , 1 5}$ ' (by Frontera).

	Relative Energies (kcal/mol)		
	Gas phase	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	THF
Head-to-tail cis	14.1	12.6	13.1
Head-to-tail trans	1.7	1.3	1.5
Head-to-head cis	10.6	11.1	11.2
Head-to-head trans	0.0	0.0	0.0

4.5 Optimization of reaction conditions

Further efforts were undertaken to find improved conditions for the formation and isolation of phosphaalkene complex $\mathbf{1 4}$ using toluene as solvent. Upon addition of DBU to $\mathbf{1 3}$ in toluene under ambient conditions, an orange precipitate was formed immediately which, after filtration, formed a red solution in dichloromethane (Scheme 4.5). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this solution showed only one signal at $140.7 \mathrm{ppm}\left({ }^{1} J_{\mathrm{W}, \mathrm{P}}=283.4 \mathrm{~Hz}\right)$. The isolated complex 14 was firmly established via NMR and IR spectroscopy and mass spectrometry. For example, the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 4}$ showed a resonance at 184.7 ppm (${ }^{1} J_{\mathrm{P}, \mathrm{C}}=51.5 \mathrm{~Hz}$) for the $\mathrm{P}=\mathrm{C}$ carbon nucleus which is very close to that of $\left[\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{PhP}=\mathrm{CPh}_{2}\right)\right]\left(\delta^{13} \mathrm{C}=186.7 \mathrm{ppm},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=43.2 \mathrm{~Hz}\right) .{ }^{[93]}$

Scheme 4.5. Synthesis of phosphaalkene complex 14.
Attempts were made to crystallize the phosphaalkene complex 14 using different solvents and/or solvent mixtures, however every time it was only the $\mathrm{DBU} \cdot \mathrm{HCl}$ which crystallized and those attempts were never met with success. In one of the crystallization efforts, n-pentane was slowly diffused into dichloromethane solution of $14 \mathrm{at}-35^{\circ} \mathrm{C}$, thus yielding a few crystals that were used for single crystal X-ray analysis, which showed that during the process of crystallization, hydrolysis of compound $\mathbf{1 4}$ has occurred and only the hydrolyzed product had crystallized (triclinic, $P \overline{1}$). The crystal structure of the hydrolysis product $\mathbf{1 5}$ is given in Figure 4.10 and selected bond lengths and bond angles are given in figure caption. The instability of $\mathrm{P}=\mathrm{C}$ bonds despite transition-metal complexation has been previously observed and studied. ${ }^{[103 a, 110]}$ For example, Mathey reported a study where CXIV was found to react with benzaldehyde at room temperature to generate the phosphaalkene complex CXV, which was prone to decomposition under thermal conditions and trapped by MeOH or benzoic acid (Scheme 4.6). ${ }^{[103 a]}$

Scheme 4.6. Literature-known synthesis of phosphaalkene tungsten complex and its trapping reaction with $\mathrm{MeOH} .{ }^{[103 \mathrm{a}]}$

Figure 4.10. Displacement ellipsoids plot (50% probability) of molecular structure of hydrolysis product $\mathbf{1 4}$ in the crystal. Hydrogen atoms have been omitted for clarity (Except H1 and H5). Selected bond distances (\AA) and angles (${ }^{\circ}$): S1-C3 1.736(4), S1-C1 1.731(4), C1-C2 1.343(5), P-C1 1.831(4), S2-C3 1.666(4), P-C5 1.892(4), PW 2.5095(10), P-O1 1.521(3), N1-C3-S1 108.7(3), P1-C1-S1 124.9(2), C2-C1-P1 125.5(3).

Chapter

Chapter 5: Investigations on synthesis of tricyclic 1,4-dihydro-1,4-diphosphinines

In 1964, Mann and co-workers reported the first example of 1,4-dihydro-1,4-diphosphinines (CXVIII) by a stepwise ring closure using dichloro(organo)phosphanes. ${ }^{[111]}$ The reported synthetic protocol suffered, however, from an unselective reaction, which was later improved by Uchida and co-workers. The structural and electron donor properties of CXVIII were investigated by Uchida. ${ }^{[112]}$ The synthesis of the parent compound (CXVII) was reported by Märkl via reaction of diethinylphosphanes with primary phosphane leading to 1,4-dihydro-1,4-diphosphinine derivatives with different substituents at the P-center. ${ }^{[13]}$ The tricyclic system was not only limited to the unsubstituted benzene annulated units but also tetrafluorobenzene ${ }^{[114]}$ and xylene ${ }^{[115]}$ based systems were reported by Wu and Mazaki, respectively. ${ }^{[114-}$ 115]

Compounds CXIX-CXXI (Figure 5.1) represent the examples having sulfur rich heterocycles, incorporated into the 1,4-dihydro-1,4-diphosphinine framework; thiophene (CXIX), ${ }^{[116]}$ TTF $(\mathbf{C X X})^{[117]}$ and 2,5-thiophenedione $\left(\mathbf{C X X I ~ E ~}=\right.$ S). ${ }^{[118]}$ The synthesis of compound CXIX and CXX represent the synthetic strategy of lithiation of the heterocycle, followed by reaction with dichloro(organo)phosphanes (resulting in lithium halide elimination), while CXXI ($\mathrm{E}=\mathrm{O} / \mathrm{S}$) was a unique example obtained via an elimination of chlorotrimethylsilane. ${ }^{[116-118]}$

Compounds CXXII and \mathbf{X} having the N-heterocycles incorporated into the tricyclic framework illustrates the possible synthetic diversity of this class of compounds. Kostyuk and co-workers reported the synthesis of CXXII via reaction of the corresponding 1,4-dichloro-1,4-diphosphinine with dimethyamine. ${ }^{[119]} \mathbf{X}$ was reported recently by Streubel and co-workers via in situ backbone lithiation of the C^{4}-amino(chloro)phosphanyl-substituted imidazole-2thione followed by salt metathesis and lithium chloride elimination. ${ }^{[14]}$

CXIX ${ }^{[116]}$

Figure 5.1. Literature-known 1,4-dihydro-1,4-diphosphinines.

5.1 Synthesis of thiazole-2-thione-derived tricyclic 1,4-dihydro-1,4diphosphinines

Regarding the above mentioned background of 1,4-dihydro-1,4-diphosphinine chemistry, we were eager to extend this chemistry to a thiazole-based tricyclic system and explore its properties and reactivities.

5.1.1 Reaction of amino(chloro)thioazole-2-thione with a C^{5}-lithiated thiazole-2-thione

Having the amino(chloro)phosphanyl thiazole-2-thiones 7a-e in hand, initial attempts were made to synthesize the acyclic bis(thiazolyl)phosphanes. Upon reaction of N-methyl derivative $7 \mathbf{a}$ with the in situ prepared lithiated thiazole-2-thione (Scheme 5.1), a mixture of products was obtained as revealed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring. The major signal in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at 28.9 ppm (45%) was accompanied by two closely spaced signals at $18.8 \mathrm{ppm}(22 \%)$ and $19.5 \mathrm{ppm}(33 \%)$ (Figure 5.2). The major signal was assigned to the corresponding acyclic compound $\mathbf{1 6}$ as the ${ }^{31} \mathrm{P}$ NMR resonance was in close accordance with the literature known bis(imidazolyl)phosphane ($\mathrm{R}=\mathrm{NMe}_{2}, \delta{ }^{31} \mathrm{P}=16.0$ $\mathrm{ppm})\},{ }^{[84]}$ while the two minor resonances at 18.8 ppm and 19.5 ppm were proposed to be the
cis/trans isomers of the tricyclic 1,4-dihydro-1,4-diphosphinine 17a, \mathbf{a}^{\prime} as the said NMR chemical shifts are similar to the ${ }^{31} \mathrm{P}$ NMR resonances of the literature known tricyclic compound CXXII ($\delta{ }^{31} \mathrm{P}=16.5 \mathrm{ppm}$); ${ }^{[119]}$ the latter is downfield-shifted compared to $\mathbf{X}(\mathrm{R}=$ $\mathrm{Et}_{2} \mathrm{~N}, \delta{ }^{31} \mathrm{P}=3.3$ and 3.9 ppm$) .{ }^{[14 \mathrm{~b}]}$

Scheme 5.1. Reaction of lithiated thiazole-2-thione with 7a

Figure 5.2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{THF}, 25^{\circ} \mathrm{C}\right)$ of the reaction mixture of $\mathbf{1 6}$.
This mixture of products was subjected to column chromatography at $-20^{\circ} \mathrm{C}$ using silica gel as stationary phase and a mixture of petrol ether and diethyl ether (50:50) as eluent. $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ could be separated and was isolated in low yield (19 \%). In ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 17a, \mathbf{a}^{\prime} two sets of signals were observed for each isomer, the experimentally found EI-HRMS m / z value of 464.0514 was in good agreement with the calculated one (464.0515). Owing to a similar solubility of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ towards common organic solvents, the cis/trans isomers could not be separated by column chromatography. However, based on comparison with the literature known imidazole-based tricycle $\mathbf{X},{ }^{[146]}$ the assignment of the ${ }^{31} \mathrm{P}$ NMR resonances to the cis
(18.8 ppm) trans (19.5 ppm) isomers of $\mathbf{1 7}$ was made tentatively.Besides NMR and MS, 17a, \mathbf{a}^{\prime} was established via, IR, elemental analysis and also single crystal X-ray diffraction analysis. Single crystals of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ were obtained via slow evaporation of its dichloromethane solution at $-35^{\circ} \mathrm{C}$. However, $\mathbf{1 6}$ could only be purified up to 95% and it contained 5% of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ as impurity, nevertheless it was also crystallized from this mixture (at $-35^{\circ} \mathrm{C}$) and analyzed via single crystal X-ray diffraction technique. The molecular structure of both $\mathbf{1 6}$ and $\mathbf{1 7}$ (cis isomer) are given in Figure 5.3 and selected bond lengths and bond angles are given in Table 5.1. Both $\mathbf{1 6}$ and $\mathbf{1 7}$ crystallized in triclinic crystal system with space group $P \overline{1}$ In contrast to the C1-P (1.818(4)) and C5-P (1.824(4)) bond lengths of 16 the C1-P1 (1.8344(12)) and C5-P5 (1.8326(12)) bond lengths in $\mathbf{1 7}$ were closer in magnitude. The sixmembered ring in $\mathbf{1 7}$ was not completely planar and P1 and P2 were found to deviate from the plane C1-C2-C5-C6 (P1 by $0.25 \AA$ and P2 by $0.11 \AA$).

Figure 5.3. Displacement ellipsoids plot (50\% probability) of molecular structure of $\mathbf{1 6}$ (left) and $\mathbf{1 7}$ (right) in crystal. Hydrogen atoms have been omitted for clarity.

Table 5.1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $\mathbf{1 6}$ and 17.

	$\mathbf{1 6}$	$\mathbf{1 7}$
$\mathbf{C 2 (3) - S 2}$	$1.672(3)$	$1.6659(12)$
C6(7)-S4	$1.667(4)$	$1.6706(12)$
C1-P(1)	$1.818(4)$	$1.8344(12)$
C5-P(2)	$1.824(4)$	$1.8326(12)$
N3(4)-P(2)	$1.682(3)$	$1.6729(11)$
N1-C2(3)-S1	$108.2(2)$	$108.94(8)$
N2-C6(7)-S3	$108.8(2)$	$108.75(8)$
S1-C1(2)-P(2)	$121.8(2)$	$115.83(7)$
S3-C5(6)-P(1)	$128.4(2)$	$116.40(6)$

| C1-P-C5(6) | $96.77(16) \quad 96.60(5)$ |
| :--- | :--- | :--- |

5.2 Studies on the optimization of the reaction conditions and yields

Having shed light on the mechanism of the tricycle formation, i.e. deprotonation of the amino(chloro)phosphanyl thiazole-2-thione followed by intermolecular nucleophilic substitution reaction with $\mathbf{7 a}$, further attempts were made to optimize the reaction using other bases. Initially, potassium hexamethyldisilazide (KHMDS) was chosen as a sterically demanding and weakly nucleophilic base. The N-methyl derivative $\mathbf{7 a}$ was chosen as start for the investigations and which was subjected to reaction with KHMDS under different reaction conditions. After several attempts, THF turned out as solvent of choice and ambient temperature worked best for a deprotonation, thus leading cleanly to the formation of tricycles 17a-d (Scheme 5.2).

a) $R=\mathrm{Me}, R^{\prime}=E t_{2} N$
b) $R={ }^{n} \operatorname{Pr}, R^{\prime}=E t_{2} N$
c) $R=M e, R^{\prime}=P h$
d) $R={ }^{n} \operatorname{Pr}, R^{\prime}=P h$

Scheme 5.2. Deprotonation of the amino(chloro)phosphanyl thiazole-2-thiones 7a-d to form 17a, a'-d, \mathbf{d}^{\prime}
Compounds $17 \mathbf{a}, \mathbf{a}^{\prime}$ were isolated in 50% yield using the above mentioned reaction conditions. However further attempts were also undertaken using LDA as base (Scheme 5.2). Upon addition of a pre-cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ THF solution of LDA to the solution of7a,b (THF at -78 ${ }^{\circ} \mathrm{C}$), a clean conversion to cis/trans mixture of $\mathbf{1 7 a}, \mathbf{a} \mathbf{a} \mathbf{b}, \mathbf{b}$ 'was achieved after two hours stirring. Products $\mathbf{1 7 a} \mathbf{a}, \mathbf{a} \mathbf{\prime} \mathbf{b}, \mathbf{b}^{\prime}$ were isolated in excellent yields (up to 97%) after removal of LiCl as white powder ($\mathbf{1 7 a}, \mathbf{a}^{\prime}$) or sticky oily solid ($\mathbf{1 7 b}, \mathbf{b}^{\prime}$).

The synthetic protocol for $\mathbf{1 7 a}, \mathbf{a}^{\prime} \mathbf{b}, \mathbf{b}^{\prime}\left(\mathrm{R}^{\prime}=\mathrm{NEt}_{2}\right)$ could be further extended to $\mathbf{1 7} \mathbf{c}, \mathbf{c}^{\prime} \mathbf{d}, \mathbf{d}^{\prime}$ having a phenyl group at the P-center $\left(\mathrm{R}^{\prime}=\mathrm{Ph}\right)$ starting from the phenyl(chloro)phosphanes $7 \mathbf{c}, \mathbf{d}$. The ${ }^{31} \mathrm{P}$ NMR revealed clean conversion into the corresponding cis/trans tricyclic compounds with resonances: 17c, $\mathbf{c}^{\prime}(-40.1$ and $-37.9 \mathrm{ppm})$ and $\mathbf{1 7 d}, \mathbf{d}^{\prime}(-39.8,-40.0 \mathrm{ppm})$, which are comparable with those of the literature known imidazole-derived tricyclic compound $\mathbf{X}\left(\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\operatorname{Ph} \delta^{31} \mathrm{P}=-55.9,-57.1 \mathrm{ppm}\right)^{[14 \mathrm{cc}]}$ and also the TTF based tricyclic
system CXX ($-21.5,-25.6 \mathrm{ppm}) .{ }^{[117]}$ All compounds were isolated in pretty good yields (up to 90%) as white powders and obtained as mixtures of cis/trans isomers. ${ }^{31} \mathrm{P}$ NMR data, yields and isomer ratios (calculated from ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of reaction mixture) of $\mathbf{1 7 a}, \mathbf{a}-\mathbf{d}, \mathbf{d}$ 'are given in Table 5.2.

Table 5.2. ${ }^{31} \mathrm{P}$ NMR data and yields of $\mathbf{1 7 a}, \mathbf{a}^{\prime}-\mathrm{d}, \mathrm{d}$ '.

	$\delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(\mathrm{ppm})$	Isomer ratio	Yield (\%)
$\mathbf{1 7 a}, \mathbf{a}^{\prime}$	$18.8,19.5$	$1: 1$	80
17b, \mathbf{b}^{\prime}	$16.5,19.3$	$1: 1.2$	97
17c, \mathbf{c}^{\prime}	$-40.1,-37.9$	$1: 2$	89
17d, \mathbf{d}^{\prime}	$-39.8,-39.0$	$1: 1$	90

Besides NMR spectroscopy, 17b,b'-d,d' were characterized via MS, IR, elemental analysis (mostly) and also by single crystal X-ray diffraction studies in case of 17a-c. Molecular structure of $\mathbf{1 7 a}$ was discussed in section 5.1, while molecular structures of $\mathbf{1 7 b}$ and $\mathbf{1 7 c}$ are given the Figure 5.4, and selected structural parameters are given in Table 5.3. In case of 17b the trans isomer crystallized in the triclinic crystal system with space group $P \overline{1}$. In contrast to $\mathbf{1 7 a}$ (cis), the six membered ring in $\mathbf{1 7 b}$ (trans) is close to planarity and the distance of P centers from the ring plane is only $-0.12 \AA$ and $0.12 \AA$ below and above the ring plane (C3-C1-C1-C3) respectively. $\mathbf{1 7} \mathbf{c}$ crystallized in the monoclinic crystal system with space group $\mathrm{P} 2_{1} / \mathrm{n}$. Though the phenyl groups of $\mathbf{1 7 c}$ were found to be somewhat distortedi.e., having split sites (0.621 and 0.387 for one Ph 0.533 and 0.466 for the other Ph), however the stereochemistry could be concluded to be cis. The packing pattern in cis $\mathbf{1 7 b}$ illustrate that the molecules are arranged in the form where the phenyl rings of the two parallel lyres are packed opposite to each other, as depicted in diamond plot of $\mathbf{1 7} \mathbf{c}$ in Figure 5.4. The bond lengths and bond angles of both $\mathbf{1 7 b}$ and $\mathbf{1 7 c}$ are comparable with the those of literature known similar compounds, ${ }^{[14 \mathrm{~b}, 14 \mathrm{c}]}$ thereby will not be discussed further.

Figure 5.4Displacement ellipsoids plot (50\% probability) of molecular structure ofof $\mathbf{1 7 b}$ (left) $\mathbf{1 7 c}$ (middle) and its arrangement (right) in the crystal. Hydrogen atoms have been omitted for clarity.

Table 5.3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $\mathbf{1 7 b}$ and $\mathbf{1 7 c}$.

	$\mathbf{1 7 b}$	$\mathbf{1 7 c}$
C2-S2	$1.6632(18)$	$1.679(8)$
C6-S4	-	$1.687(8)$
C1-P(1)	$1.8105(17)$	$1.827(7)$
C3-P(2)	$1.8339(17)$	$1.820(8)$
N2-P	$1.6684(15)$	-
C9-P1	-	$1.940(7)$
C15-P2	-	$1.861(7)$
N1-C2-S1	$108.55(12)$	$109.0(5)$
N2-C6-S3	-	$108.8(6)$
S1-C1-P(1)	$115.46(9)$	$118.0(4)$
S3-C7-P2	-	$117.0(5)$

Chapter

Chapter 6: Reactivity studies of tricyclic 1,4-dihydro-1,4-diphosphinines

The chemistry of 1,4-dihydro-1,4-diphosphinines has not been well explored in terms of reactivity studies so far and mostly remained limited to P-centered coordination chemistry ${ }^{[120]}$ or oxidative studies. ${ }^{[111,113,119]}$ For most of the examples discussed in the chapter 5 (CXVII-CXVI-CXXII and $\mathbf{X})^{[146, ~ 111-113,116-119]}$ the functionalization of the P-center is limited to only
 the tricyclic framework of 1,4-dihydro-1,4-diphosphinine, and introduction of reactive groups at P-center might bring further diversity to this class of compound. Recently, Streubel and coworkers established the chemistry of imidazole-2-thione-based tricyclic 1,4-dihydro-1,4diphosphinines, thus offering a unique building block with more than one potential reactive sites and explored various aspects of this class of compounds. ${ }^{[14]}$

Inspired by the successfully established imidazole-2-thione-based system, it should be of great interest to explore the unique thiazole-2-thione-based 1,4-dihydro-1,4-diphosphinines and investigate their reactivity.

6.1 Oxidation of the P-centers in tricyclic 1,4-dihydro-1,4-diphosphinines

In order to study the oxidation of the P-centers of 1,4 -dihydro-1,4-diphosphinines, while keeping the thione moieties intact, a mild oxidant such as the $\mathrm{H}_{2} \mathrm{O}_{2}$-urea adduct was chosen. A chloroform solution of an isomeric mixture (1:1) of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ was treated with excess of $\mathrm{H}_{2} \mathrm{O}_{2}$ urea adduct at room temperature. A slow but clean reaction resulted in the complete consumption of the starting material and the formation of the $\mathrm{P}(\mathrm{V} / \mathrm{V})$ 1,4-dihydro-1,4diphosphinine 18,18' was observed (Scheme 6.1).

Scheme 6.1. Oxidation reactions of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$-urea, elemental sulfur and selenium.
The progress of the reaction was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, which displayed two signals at -4.2 and -3.3 (1:1) assigned to the cis/trans isomers of $\mathbf{1 8 , 1 8}$ '. The conversion of $\mathrm{P}(\mathrm{III})$ centers to the corresponding $\mathrm{P}(\mathrm{V})$ centers was evident from the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ shift as it was in the expected range for the literature known, similar compound CXXIII ($-4.6,-5.2$ ppm), ${ }^{[14 \mathrm{~b}]}$ however upfield-shifted in comparison to CXXIV(9.1 and 10.3 ppm). ${ }^{[115]}$ After filtration of the unreacted urea and removal of the volatiles in vacuo, 18,18' were isolated as white solid. Compounds $\mathbf{1 8 , 1 8}$ ' were established via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy which showed two sets of all signals corresponding to the two (cis/trans) isomers. Due to the similar solubility of both isomers of $\mathbf{1 8 , 1 8}$ further separation and, hence, assignment of the isomers could not be achieved. Besides NMR, the composition of 18,18' was confirmed by the EI-HRMS as the experimentally found m / z value (496.0416) was in close agreement to the calculated one (496.0413).

CXXIII

CXXIV

Figure 6.1. Literature known P, P^{\prime}-oxides of 1,4-dihydro-1,4-diphosphinines CXXIII ${ }^{[146]}$ and CXXIV. ${ }^{[115]}$
Besides NMR spectroscopy and MS spectrometry, 18,18' was characterized via IR spectroscopy, elemental analysis and also by single crystal X-ray diffraction technique. Preferentially, the trans isomer crystallized from a concentrated dichloromethane solution of $\mathbf{1 8 , 1 8}$ ' at ambient temperature in monoclinic crystal system with space group $\mathrm{C} 2 / \mathrm{c}$. The molecular structure of $\mathbf{1 8}$ is given in Figure 6.2, while the selected structural parameters are given in the figure caption. Upon comparison of bonding parameters with similar $\mathrm{P}(\mathrm{V})$-oxide
derivative CXXIII, ${ }^{[146]}$ it was evident that the bond lengths and bond angles of $\mathbf{1 8}$ falls in the expected range for such compounds and, therefore, will not be discussed further.

Figure 6.2. Displacement ellipsoids plot (50\% probability) of molecular structure of $\mathbf{1 8}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): C2-S2 1.652(3), C1-P 1.795(3), C3-P 1.811(3), P-N2 1.633(3), P-O 1.479(2) N1-C2-S1 108.7(2), S1-C1-P 118.36(18), C1-P-C3 102.10(14), N2-P-O $113.49(14)$.

Once having achieved the P-oxide derivative 18,18' it was of interest to explore the oxidation of the two P-centers with chalcogenes. Oxidation of 1,4-dihydro-1,4-diphosphinine with sulfur has been previously investigated (Figure 6.3, CXXV-CXXVII). ${ }^{[14 b, ~ 119-120]}$ However, for oxidation with selenium, only one example (CXXVI, $\mathrm{X}=\mathrm{Se})^{[119]}$ is known so far, for the class of compounds under discussion. In order to achieve the P, P'-disulfide and P,P'diselenide, a toluene solution of the cis/trans isomer mixture (1:1) of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ was treated with 2.1 molar equivalents of sulfur or selenium at ambient temperature (Scheme 6.1), and thenheated to $100{ }^{\circ} \mathrm{C}$ for 5 days; both reactions were monitored via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectroscopy.

Figure 6.3. Literature known $\mathrm{P}, \mathrm{P}^{\prime}$-sulfides and selenides of 1,4-dihydro-1,4-diphosphphosphinines. ${ }^{[14 b, ~ 119-120]}$
In case of sulfurafter 5 days the starting material was completely consumed, and two new signals had appeared in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at 22.8 ppm and 23.7 ppm (cis/trans ratio 1:1). Similarly for the reaction with selenium two new signals were observed at 13.4 ppm $\left(\mathrm{S}_{\mathrm{sat}}{ }^{1} J_{\mathrm{Se}, \mathrm{P}}=812.0 \mathrm{~Hz}\right)$ and $14.3 \mathrm{ppm}\left(\mathrm{S}_{\mathrm{sat}}{ }^{1} J_{\mathrm{Se}, \mathrm{P}}=830.0 \mathrm{~Hz}\right)$ corresponding to the cis/trans (1.2:1) isomers. Upon comparison with the literature known similar P, P^{\prime}-disulfide derivatives CXXV $\left(\delta^{31} \mathrm{P}=11.6,12.0 \mathrm{ppm}\right){ }^{[120]} \mathbf{C X X V I}\left(\delta^{31} \mathrm{P}=31.9 \mathrm{ppm}\right){ }^{[119]}$ and CXXVII $\left(\delta^{31} \mathrm{P}=13.1\right.$, $13.3 \mathrm{ppm})^{[14 \mathrm{bb}]}$ the signals at 22.8 ppm and 23.7 ppm were easy to assign to the cis/trans isomers of $\mathbf{1 9 , 1 9}$ '.There is only one example of $\mathrm{P}, \mathrm{P}^{\prime}$-diselenide known for 1,4-dihydro-1,4diphosphinine (CXXVI), ${ }^{[119]}$ the observed ${ }^{31} \mathrm{P}$ NMR resonance for the reaction of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ with selenium (13.4 ppm and 14.3 ppm) is close to the observed values for CXXVI (21.1 ppm, 21.4 ppm) which were assigned to $\mathbf{2 0 , 2 0}$ '.

Both $\mathbf{1 9 , 1 9}$ ' and $\mathbf{2 0 , 2 0}$ ' were isolated in excellent yields (88% and 76%) by crystallization from their reaction solutions at $-35^{\circ} \mathrm{C}$. The ratio of the cis/trans isomers of both products i.e. 19,19' (1:1) and $\mathbf{2 0 , 2 0} \mathbf{2}^{\prime}(1: 1)$ remained unchanged if compared to the reactant $\mathbf{1 7 a}, \mathbf{a}^{\prime}(1: 1)$. Compounds 19,19' and 20,20' were analyzed via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic techniques. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of $\mathbf{1 9 , 1 9}$ ' and $\mathbf{2 0 , 2 0}$ ' together with yields and isomer ratios are given in Table 6.1.

Table 6.1. ${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR data and yields of $\mathbf{1 9 , 1 9}$ ' and 20,20'.

	$\delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(\mathrm{ppm})$	Isomer ratio	Yield (\%)
$\mathbf{1 9 , 1 9}$	$22.8,23.7$	$1: 1$	88.8
$\mathbf{2 0 , 2 0}$	$13.4,14.3$	$1.2: 1$	76.5

Besides NMR spectroscopy, 19,19' and 20,20' were characterized via IR, MS, elemental analysis and also by single crystal X-ray diffraction studies. Single crystals were obtained via cooling ($-35{ }^{\circ} \mathrm{C}$) the concentrated toluene (reaction) solution of $\mathbf{1 9 , 1 9}$ ' and 20,20'. The cis isomer of $\mathbf{1 9}$ crystallized in the orthorhombic crystal system with space group $\mathrm{Pca} 2_{1}$. The molecular structure and numbering scheme of $\mathbf{1 9}$ is given in Figure 6.4 while selected bonding parameters are given in the figure caption. Complete crystallographic data and picture with full labeling is given in the appendix. The structural parameters of $\mathbf{1 9}$ will not be discussed further as the bond lengths and angles falls in the range of related P, P 'sulfide derivative CXXVII. ${ }^{[146]}$

Figure 6.4. Displacement ellipsoids plot (50% probability) of molecular structure of 19 in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: C3-S2 1.651(7), C1-P1 1.800(7), C2-P2 1.820(6), P1-N2 1.635(6), P2-N4 1.636(5), P1-S3 1.935(2), P2-S6 $1.938(2)$ N1-C3-S1 108.5(5) N3-C11 S4 108.8(5), S1-C1-P1 117.4(4), C1-P-C10 101.7(3), N2-P1-S3 114.6(2).

In case of $\mathbf{2 0}, \mathbf{2 0}$ ', preferably the trans isomers crystallized in triclinic crystal system with space group $P \overline{1}$ the unit cell contained one independent molecule along with a toluene molecule.The molecular structure and numbering scheme of $\mathbf{2 0}$ is given in the Figure 6.5 and selected bonding parameters are given in the figure caption. Complete crystallographic data and picture with full labeling is given in the appendix. Although a crystal structure of the only known P, ${ }^{\prime}$-diselenide derivative of a 1,4-dihydro-1,4-diphosphinine (CXXVI) ${ }^{[119]}$ was not reported, upon comparison of bonding parameters with other heterocyclic $\mathrm{P}(\mathrm{V})$-selenide derivatives, namely 3 -methyl-5-diphenylselenophosphanoyl-thiazol-2-thione ${ }^{[121]}$ and 1 -
isopropyl-3-methyl-4-diphenylselenophosphoryl-imidazole-2-thione, ${ }^{[11 a]}$ it was evident that the bond lengths and bond angles of $\mathbf{2 0}$ falls in the expected range.

Figure 6.5.Displacement ellipsoids plot (50% probability) of molecular structure of $\mathbf{2 0}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): C2-S2 1.669(2), C1-P 1.795(2), C3-P 1.813(2), P-N2 1.638(2), P-Se 2.0850(6) N1-C2-S1 109.57(17), S1-C1-P 116.83(13), C1-P-C3 101.34(10), N2-P-Se 117.25(8).

6.2 Oxidation reaction of tricyclic $\mathbf{1 , 4}$-dihydro-1,4-diphosphinine 17 a with ortho-chloranil

Investigations of oxidation reactions of 1,4-dihydro-1,4-diphosphinines was further extended to the use of ortho-chloranil, a potential reagent that may provide access to the interesting class of spirocyclic phosphorane derivatives. ${ }^{[14 b, ~ 122]}$ Upon treatment of a dichloromethane solution of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ withtwo equivalents of ortho-chloranil at $-80{ }^{\circ} \mathrm{C}$, light brown color reaction solution was formed (Scheme 6.2). After stirring of the reaction mixture for 16 hours at ambient temperature, an off-white precipitate had formed which was separated via filtration.

Scheme 6.2. Reaction of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ with o-chloranil.

CXXVIII

CXXIX

Figure 6.6. Literature known spirocyclic phosphoranes CXXVIII ${ }^{[123]}$ andCXXIX. ${ }^{[14 b]}$
The ${ }^{31} \mathrm{P}\{\mathrm{I} \mathrm{H}\}$ NMR spectrum of the brown reaction solution showed significantly upfieldshifted signals compared to $\mathbf{1 7 a}, \mathbf{a}^{\prime}\left(\delta^{31} \mathrm{P}=18.8,19.5 \mathrm{ppm}\right.$, ratio $\left.=1: 1\right)$ at -60.1 ppm and -59.2 ppm (ratio 3:1) which were assigned to the cis/trans isomers 21,21'. Upon re-dissolving the off-white precipitate in dichloromethane and measurement of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum one major signal at -59.2 ppm and another minor signal at -60.1 ppm (15:1) appeared, thus revealing that one of the isomers has a significantly lower solubility and, therefore, had precipitated (Figure 6.7). The assignment of the ${ }^{31} \mathrm{P}$ NMR resonances at -60.1 ppm and -59.2 ppm were supported by comparison with literature known similar compounds:CXXVIII-63.3 ppm ${ }^{[123]}$, CXXIX-53.2, -54.9 (Figure 6.6). ${ }^{[146]}$

Figure 6.7. ${ }^{31} \mathrm{P}\left\{{ }^{\mathrm{I}} \mathrm{H}\right\}$ NMR comparison of $\mathbf{1 7 a}, \mathbf{a}^{\prime}\left(\mathrm{THF}, 25^{\circ} \mathrm{C}\right)$ and $\mathbf{2 1 , 2 1}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}\right)$.
21,21' was(almost) isolated (yield $=70 \%$, isomer ratio $15: 1$) after removing the solvent and washing several times with n-pentane (see experimental section). 21,21' was established via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of $\mathbf{2 1 , 2 1}$ ' are given in Table6.2. The proposed composition of 21,21' was further supported by FTMS (pos. ESI) with the experimentally found m / z value of 956.7840 for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{8} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}\right] \mathrm{H}$, being in good agreement with the calculated m / z value of 956.7840 .

Table 6.2. Selected NMR data of 21,21'.

	$\delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (ppm)	Isomer ratio	$\delta{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ of thiazole ring carbon (ppm)
21,21'	-59.2, -60.	15:1	$\begin{gathered} 115.6\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=7.4 \mathrm{~Hz}, o \text {-chloranil ringC }\right) 122.0 \\ \left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=194.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.3 \mathrm{~Hz}, C^{5 / 4}\right), 125.8(\mathrm{~s}, o- \\ \text { chloranil ringC }), 140.2(\mathrm{~s}, o \text {-chloranil ringC }), 158.3 \\ \left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=120.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=24.2 \mathrm{~Hz}, C^{4 / 5}\right), 193.2(\mathrm{t}, \\ \left.J_{\mathrm{P}, \mathrm{C}}=7.6 \mathrm{~Hz}, C=\mathrm{S}\right) . \end{gathered}$

Single crystal X-ray diffraction studies were performed on crystals grown from a concentracted dichloromethane solution of 21, which showed that the cis isomer of $\mathbf{2 1}$ got prefentially crystallized (Figure 6.8). However, the quality of the result was only moderate and therefore, structural parameters will not be discussed.

Figure 6.8. Displacement ellipsoids plot (50% probability) of molecular structure (reduced) of $\mathbf{2 1}$ in the crystal. Hydrogen atoms have been omitted for clarity.

6.3 Attempted oxidative desulfurization of 1,4-dihydro-1,4-diphosphinines

It is well established that oxidative desulfurization of imidazole-2-thiones and thiazole-2thiones thiones can lead to corresponding hetazolium salts, ${ }^{[11 \mathrm{~b}, 40,81 a]}$ which in turn are known precursors to N -heterocyclic carbenes (NHCs). ${ }^{[34][11 \mathrm{~b}, 15,40,81 a]}$ With this background the tricyclic thiazole-based 1,4-dihydro-1,4-diphosphinines ($\mathbf{1 7 a}, \mathbf{a} \mathbf{a}^{\prime}-\mathbf{d}, \mathbf{d}^{\prime}$) represent potential systems to access Bielawski-type bis-carbenes and/or their metal complexes. ${ }^{[35-37]}$

In order to execute the idea, initially $\mathbf{1 7 a}, \mathbf{a} \mathbf{\prime} \mathbf{b}, \mathbf{b}^{\prime}\left(\mathrm{R}=\mathrm{Et}_{2} \mathrm{~N}\right)$ were reacted with 10 molar equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in dichloromethane at $0{ }^{\circ} \mathrm{C}$, thus using the established protocol for oxidative desulfurization of bis(imidazolyl)phosphanes. ${ }^{[40]}$ Although initially a clean reaction was observed which was the oxidation of the P-centers, however, the desulfurization step was found to be very unselective.

In an attempt to solve this issue, and motivated by the anticipation that a P-C bond would be more stable than a P-N bond under such harsh oxidative conditions, a reaction was tried using $\mathbf{1 7} \mathbf{c}, \mathbf{c}^{\prime} \mathbf{d}, \mathbf{d}^{\prime}(\mathrm{R}=\mathrm{Ph})$. But initial attempts using the N-methyl derivative $\mathbf{1 7} \mathbf{c}, \mathbf{c}^{\prime}$ were met with
limited success. However, a selective conversion of the $\mathrm{P}(\mathrm{III})$ into $\mathrm{P}(\mathrm{V})$, resulting in a $\mathrm{P}, \mathrm{P}^{\prime}-$ dioxide, was evident from the upfield shift in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (-3.1 ppm and -3.8 ppm,) in comparison to that of $\mathbf{1 7 d}, \mathbf{d}^{\prime}(-39.8 \mathrm{ppm},-39.0 \mathrm{ppm})$ but further analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra revealed that the desulfurization has not occurred as no $\mathrm{C}^{2}-H$ resonance was observed in the range between 9 and $10 \mathrm{ppm} .{ }^{[11 \mathrm{~b}, 81 \mathrm{a}]}$ Similarly, the resonance of the C^{2} carbon atom at 190.9 ppm in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum confirmed the presence of a $C=\mathrm{S}$ moiety; the expected $\mathrm{C}^{2}-\mathrm{H}$ carbon resonance of a thiazolium derivative would be expected within 140 and144 ppm. ${ }^{[11 \mathrm{~b}, ~ 40, ~ 81 a] ~ U p o n ~ a ~ p r o l o n g e d ~ r e a c t i o n ~ t i m e, ~ o n l y ~}$ decomposition was observed. In order to enhance the solubility and, hence, to increase the reaction progress and avoiding decomposition, the $N-{ }_{-} \mathrm{Pr}$ derivative $\mathbf{1 7 d , d}$ ' was employed under otherwise same conditions (Scheme 6.3). This attempt was met with some success, and the conversion of $\mathbf{1 7 d}, \mathbf{d}^{\prime}$ into the corresponding bis-thiazolium salt 22,22' (only 70% selectivity) was confirmed via ${ }^{31} \mathrm{P}$ NMR spectroscopy, i.e., the resonances at 8.2 ppm and 9.6 ppm (Figure 6.9) were assigned to (cis/trans isomers ratio: 1:1.3).

Scheme 6.3.Attempted oxidative desulfurization of $\mathbf{1 7 d}, \mathbf{d}^{\prime}$.
The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction solution revealed resonances at 9.8 ppm and 10.0 ppm , being in the typical range for the acidic $C^{2}-H$ protons of thiazolium salts (Figure 6.10). Unfortunately, despite several attempts of crystallization from different solvents (or mixture of solvents) or washing, further purification of the product could not be achieved which hindered the isolation and further investigations.

Figure 6.9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of reaction of $\mathbf{1 7 d}, \mathbf{d}^{\prime}$ with $\mathrm{H}_{2} \mathrm{O}_{2}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right)$

Figure 6.10. ${ }^{1} \mathrm{H}$ NMR of reaction of $\mathbf{1 7 d}$, \mathbf{d}^{\prime} with $\mathrm{H}_{2} \mathrm{O}_{2}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right)$.

6.4 Reaction with electrophile and comparison with imidazole-based tricyclic 1,4-dihydro-1,4-diphosphinines ($\mathbf{X}, \mathbf{R}^{\prime}=\mathbf{E t}_{2} \mathbf{N}$)

The extensive, theoretical and experimental investigations conducted upon the recently published imidazole-based 1,4-dihydro-1,4-diphosphinine \mathbf{X} has explained the behavior towards different electrophiles. ${ }^{[146]}$ The theoretical calculations conducted by Fronterainspected the relative nucleophilicities of the S- and P-centers, and the reported calculated isosuface for \mathbf{X} showed that molecular electrostatic potential (MEP) value at the S centers is more negative than that of the P-centers (Figure 6.11). They also reported that the

Reaction with electrophile and comparison with imidazole-based tricyclic 1,4-dihydro-1,4diphosphinines ($\mathrm{X}, \mathrm{R}^{\prime}=\mathrm{Et} 2 \mathrm{~N}$)
HOMO orbital coefficients of the molecules are located more at theS- than at the P-centers thus made the pronounced nucleophilicity of the S-centers evident.

Figure 6.11. Reported MEP isosurface (0.002 a.u.) of compound \mathbf{X} (a) and HOMO plot of compound \mathbf{X}. (b). ${ }^{[146]}$

To investigate and compare the nucleophilicity of the S - vs P-centers of tricyclic thiazolebased 1,4-dihydro-1,4-diphosphinines, similar reactivity studies were undertaken for 17a, \mathbf{a}^{\prime}.

6.4.1 Reaction of tricyclic 1,4-dihydro-1,4-diphosphinine (17a,a') with MeOTf

Methyl trifluoromethanesulfonate (MeOTf) was chosen to react with 1,4-dihydro-1,4diphosphinine ($\mathbf{1 7 a}, \mathbf{a}^{\prime}$) as a case study for two reasons: (i) to understand and compare the nature of $\mathrm{C}=\mathrm{S}$ moiety of thiazole-2-thione-based tricyclic 1,4-dihydro-1,4-diphosphinines with the reported case of $\mathbf{X}\left(\mathrm{R}^{\prime}=\mathrm{Et}_{2} \mathrm{~N}\right)$, for which the theoretically suggested nucleophilic nature of the $\mathrm{C}=\mathrm{S}$ moiety was experimentally proven, ${ }^{[14 \mathrm{~b}]}$ and (ii) to investigate an alternative route which may finally lead to Biewlaski type bis-NHCs. But there is another potential problem: coupling of two in situ generated unstable carbenes leading to $\mathrm{C}=\mathrm{C}$ bond formation. This is best illustrated using the well established synthesis of tetrathiafulvalene (TTF) CXXXIII, obtained after S-methylation of diathiole-2-thione followed by reduction and deprotonation, ${ }^{[124]}$ schematically shown below in (Scheme 6.4).

Scheme 6.4.Synthetic protocol for TTF. [124]

A dichloromethane solution of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ was treated with two molar equivalents of MeOTf at 0 ${ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for three hours $\left(0^{\circ} \mathrm{C}\right.$ to r.t.). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of an aliquot separated from the reaction mixture showed two closely spaced signals at 22.8 ppm and 23.3 ppm (1.3:1) which were very similar to the starting material $\mathbf{1 7 a}, \mathbf{a}^{\prime}\left(\delta^{31} \mathrm{P}=18.8,19.5\right.$ ppm, ratio $=1: 1)($ Scheme 6.5 $)$.

Scheme 6.5. Reaction of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$ with MeOTf.

Figure 6.12. Literature known based S-methylated 1,4-dihydro-1,4-diphosphinine. ${ }^{[14 b]}$
However, upon comparison to the $\Delta \delta$ value (2 to 4 ppm) of the ${ }^{31} \mathrm{P}$ resonance of the recently reported imidazole-based S-methylated 1,4-dihydro-1,4-diphosphinine CXXXIV and its parent compound $\mathbf{X}\left(\mathrm{R}^{\prime}=\mathrm{Et}_{2} \mathrm{~N}\right),{ }^{[146]}$ it became evident that the S-methylated cis/trans products $\mathbf{2 3 , 2 3}$ ' have been formed (Figure 6.13). Products 23,23' were isolated in excellent yield (94 \%) after removal of solvent in vacuo and washing with n-pentane and unequivocally established via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and IR spectroscopy. In the ${ }^{1} \mathrm{H}$ NMR spectrum characteristic signals were observed at 3.07 ppm and 3.08 ppm assigned to the S CH_{3} protons of the two isomers of $\mathbf{2 3 , 2 3}$. Likewise in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum also signals at 19.7 ppm and 9.8 ppm were assigned to the $\mathrm{S}-\mathrm{CH}_{3}$ carbon nuclei of the two isomers. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of $\mathbf{2 3 , 2 3}$ ' are given in Table 6.3. The proposed composition of $\mathbf{2 3 , 2 3}$ ' was further confirmed by elemental analysis and neg. ESI-MS spectrometry having $m / z 149.2$ [OTf] ${ }^{-}$and in the pos. ESI-MS spectrum an m / z value of 247.049 corresponding to $\left[\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}\right]^{2+}$.

Reaction with electrophile and comparison with imidazole-based tricyclic 1,4-dihydro-1,4-

Figure 6.13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR comparison of 17a, $\mathbf{a}^{\prime}\left(\mathrm{THF}, 25^{\circ} \mathrm{C}\right)$ and 23,23' $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$.
Table 6.3. Selected NMR data and yield of $\mathbf{2 3 , 2 3}{ }^{\prime}$.

	$\delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (ppm)	Isomer ratio	$\delta{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ of thiazole ring carbon (ppm)	Yield (\%)
23',23'	22.8, 23.3	(1.3:1)	$\begin{gathered} 120.9\left(\mathrm{q},{ }^{1} J_{\mathrm{P}, \mathrm{~F}}=320.7 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 136.0\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}\right. \\ \left.=26.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=4.2 \mathrm{~Hz}, \mathrm{C}^{5 / 4}\right) 138.7\left(\mathrm{~m}, \mathrm{C}^{4 / 5}\right), \\ 143.3\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=28.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=4.5 \mathrm{~Hz}, \mathrm{C}^{5 / 4} 2^{n d}\right. \\ \text { isomer }) 150 .\left(\mathrm{m}, 4 / 52^{n d} \text { isomer }\right), 183.7\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=\right. \\ \left.4.0 \mathrm{~Hz}, C^{2}\right), 184.0\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=2.4 \mathrm{~Hz}, C^{2} 2^{n d}\right. \\ \text { isomer }) \end{gathered}$	94

Chapter

Chapter 7: Chemistry of thiazole-2-thione-based 1,4diphosphinines

The establishment of a multigram synthetic protocol to access the thiazole-based 1,4-dihydro-1,4-diphosphinine (17) has created the possibility to explore their chemistry mainly in two interesting fields: (i) The alkylamino group at the phosphorus centers of the tricyclic unit might offer access to the very promising 1,4-diphosphinine chemistry and (ii) the thione moieties might enable access to bis-NHCs having two $\mathrm{P}(\mathrm{III})$ and/or $\mathrm{P}(\mathrm{V})$ phosphorus units (Figure 7.1). Any of these synthetic approaches may lead to interesting outcomes as the 1,4diphosphinine chemistry is rather less explored and, due to the intense research conducted on phosphinines ${ }^{[47]}$ and their wide range of applications, ${ }^{[48]}$, 1,4 -diphosphinines deserve intense investigations as initial results showed for imidazole-2-thione based derivatives. ${ }^{[14 a, ~ 73]}$

On the other hand, despite the wide investigation conducted upon NHCs, thiazole-based NHCs are rather less explored, in general, and tricyclic thiazole-based bis-NHCs could open a new area of research on multi-topic ${ }^{[125]}$ heterocyclic ligand arrays.

Figure 7.1. Potentially reactive centers of the 1,4-dihydro-1,4-diphosphinine $\mathbf{1 7}$ ($\mathrm{R}=$ Alkyl group).

7.1 First indications of a newtricyclic 1,4-diphosphinine

The first indication to have the possibility to access 1,4-diphosphinines was obtained from EIMS analysis of $\mathbf{1 7 a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}$ (while \mathbf{a} and \mathbf{a}^{\prime} represent the cis/trans isomers of $\mathbf{1 7 a}$ and so on) as
for both derivatives the fragment ions corresponding to the 1,4-diphosphinine were observed in the EI-MS spectrum in remarkably high percentages (17a,a': $\mathrm{R}=\mathrm{Me}(78 \%), \mathbf{1 7 b}, \mathbf{b}^{\prime}: \mathrm{R}=$ $\left.{ }^{n} \operatorname{Pr}(70 \%)\right)$. On the other hand, the thermal stability of $\mathbf{1 7 a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\mathbf{\prime}}$ in solution was examined because earlier investigations on the N - ${ }^{n}$ Butyl substituted imidazole-2-thione-based 1,4-dihydro-1,4-diphosphinine, has shown thermal cleavage of the P-N bonds. ${ }^{[126]}$ But in the present case, $\mathbf{1 7 a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}$ did not show thermal conversion in toluene at $100^{\circ} \mathrm{C}$ into the $1,4-$ diphosphinines 25a,b. Therefore, a more promising starting point was chosen: the 1,4dichloro derivatives.

7.2 Synthesis of 1,4-dichloro-1,4-dihydro-1,4-diphosphinines 24

In order to synthesize the corresponding 1,4-dichloro-1,4-dihydro-1,4-diphosphinines (24), a PCl_{3}-initiated $\mathrm{P}-\mathrm{N}$ bond cleavage in $\mathbf{1 7 a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}$ was achieved using cis/trans mixtures of $\mathbf{1 7}$ ($\mathbf{a}, \mathbf{a}^{\prime}: 1: 1.6$ and $\mathbf{b}, \mathbf{b}^{\prime}: 1: 1.3$) and two equivalents of PCl_{3} in dichloromethane at $0{ }^{\circ} \mathrm{C}$ (Scheme 7.1). In case of $\mathbf{1 7 a}, \mathbf{a}^{\prime}$, an orange colored precipitate was obtained having extremely low solubility in common organic solvents and only a signal of low intensity was observed at 132.7 ppm in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture. After removal of the solvent and drying (in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$), the EI-MS spectrum of the obtained orange precipitate showed a base peak $\mathrm{m} / \mathrm{z} 319.8$ (100\%) together with the molecular ion peak for 24a, $\mathbf{a}^{\prime}\left(\mathrm{m} / \mathrm{z} 389.7\right.$ (10%) . Altogether the ${ }^{31} \mathrm{P}$ NMR resonance (132.7 ppm) and also the EIMS result ($\mathrm{m} / \mathrm{z} 319.8$ (100%) suggested that 24a, \mathbf{a}^{\prime} was initially formed but could not be detected via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy due to low solubility. However, itdecomposed to the 1,4-diphosphinine which has relatively enhanced solubility and, hence, could be detected via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. Furthermore, the proposed composition of 24a, \mathbf{a}^{\prime} was also supported by HRMS (EI) and the experimentally found value (389.8265) was in good agreement with the calculated one (389.8266). The low solubility and decomposition hindered isolation and full characterization of the product.

However, in case of $\mathbf{1 7 b}, \mathbf{b}^{\prime}$ a yellow precipitate was obtained possessing enhanced solubility thus $\mathbf{2 4 b}, \mathbf{b}$ ' could be unambiguously identified to be formed. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy of this reaction solution revealed a mixture of cis/trans isomers in a 1:1.1 ratio, together with the expected by-product $\mathrm{Et}_{2} \mathrm{NPCl}_{2}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the isolated product showed resonances at 12.7 and 21.3 ppm (ratio 1:1.1), assigned to the cis and trans isomers of 24b respectively, based on comparison with the cis and trans assignment in case of XCI. ${ }^{[14 a]}$. The constitution and composition of the product was further supported by HRMS (EI)
$m / z 445.8896$ which was found to be in agreement with the calculated m / z value of 445.8892 . However, in the EI-MSspectrum of 24b,b' also the loss of both Cl atoms was observed under the EI-MS conditions (m/z 375.9 (85%) [M-2Cl] ${ }^{+}$). Crystals of trans $\mathbf{2 4 b}, \mathbf{b}^{\prime}$ were obtained via slow diffusion of n-pentane into a dichloromethane solution at $-35^{\circ} \mathrm{C} . \mathbf{2 4 b}$ crystallized in triclinic crystal system with space group $P \overline{1}$ and the X-ray diffraction analysis confirmed the constitution of the trans isomer (Figure 7.2). ${ }^{[127]}$ Crystal structure with numbering scheme is given in Figure 7.2 and selected bond lengths and bond angles in figure caption. Although the X-ray crystal structure is not known for $\mathbf{C X X X V}{ }^{[119]}$ and $\mathbf{X C I}{ }^{[14 a]}$, however the $\mathrm{P}-\mathrm{Cl}$ bond length 24b was found to be in the expected range, upon comparison the previously discussed compounds: 9 [dP-Cl $=2.0796(4)], \mathbf{C V}[\mathrm{dP}-\mathrm{Cl}=2.1029(6) \AA],{ }^{[84]} \mathbf{C V I I I}[\mathrm{dP}-\mathrm{Cl}=2.0982(2)$ $\AA]^{[86]}$ and $\mathbf{C I X}[\mathrm{dP}-\mathrm{Cl}=2.061(1) \AA \AA] .{ }^{[87]}$

Scheme 7.1. Synthesis and of 1,4-dichloro-1,4-dihydro1,4-diphosphinines (24a, $\left.\mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}\right)$.

Figure 7.2.Displacement ellipsoids plot (50% probability) of molecular structure of 24b in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ P1-C1 1.828(4), P1-C2 1.817(4), C1-C2 1.350(5), P1-Cl 2.0973(13),C1-P-C2 98.32(17).

The ${ }^{31} \mathrm{P}$ NMR resonances of $\mathbf{2 4 b}, \mathbf{b}^{\prime}(12.7$ and 21.3 ppm) were found to be quite comparable to the values for the literature known 1,4-dichloro-1,4-dihydro-1,4-diphosphinines $\mathbf{C X X X V}{ }^{[119]}$ $(25.8 \mathrm{ppm})$ and (2.6 and 10.9 ppm) XCI. ${ }^{[14 \mathrm{a}]}$

cxXXV

XCI

Figure 7.3. Literature known 1,4-dichloro-1,4-dihydro-1,4-diphosphinines CXXXV ${ }^{[19]}$ and $\mathbf{X C I} .{ }^{[14 a]}$

7.3 Reduction of 1,4-chloro-1,4-dihydro-1,4-diphosphinine 24b,b'

Upon treatment of a dichloromethane solution of $\mathbf{2 4 b}, \mathbf{b}^{\prime}$ with ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{P}$ at $0{ }^{\circ} \mathrm{C}$, a color change from yellow to red was observed which gave initial indication for the formation of 1,4diphosphinine 25 (Scheme 7.2), as it was in close accordance with the color change in case of the recently reported imidazole-based derivative XCII; ${ }^{[14 a]}$ prolonged stirring of the reaction mixture at ambient temperature (16 h) led to the completion of the reaction as revealed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring.

Scheme 7.2. Synthesis of the first thiazole-based 1,4-diphosphinine 25.
The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of an aliquot ofthe reactions solution of $\mathbf{2 5}$ showed two signals, a singlet at 134.7 ppm and another one at 105.2 ppm . The latter could be assigned to the chlorophosphonium chloride salt and the former was tentatively assigned to 25. However, the downfield-shifted singlet resonance indicated a low-coordinate phosphorus compound when compared to XCII. ${ }^{[14 a]}$ But it should be also noted that the resonance was found in the upfield region when compared to LXXXIV. ${ }^{[71]}$

Figure 7.4. The literature known 1,4-diphosphinines LXXXIV ${ }^{[71]}$ and XCII. ${ }^{[14 a]}$
1,4-Diphosphinine $\mathbf{2 5}$ was isolated in good yields (77%) via filtration of the reaction mixture at $-40^{\circ} \mathrm{C}$, followed by washing of the residue with dichloromethane and then with n-pentane at low temperature. Further confirmation of the constitution of the productwas obtained from the HRMS (EI) experiment: the m / z value 375.9516 was in close agreement to the calculated one (375.9515). Elemental analysis also strongly supported the proposed composition of the product. Final confirmation came from the single crystal X-ray diffraction analysis of crystals grown from a dichloromethane solution at $-35^{\circ} \mathrm{C}$. Single crystal X-ray diffraction analysis of 2, being in good agreement with the theoretical results, confirms the tricyclic structure with trans-oriented npropyl groups. Molecules of $\mathbf{2 5}$ crystallize centrosymmetrically in $P \overline{1}$ and display off-set planar stacking with equal inter-ring separations of $3.595 \AA$ such that the N atoms of each thiazole-2-thione ring lie over centroids of 1,4-diphosphinine moieties above or below (Figure 7.5). The $\mathrm{P}-\mathrm{C}$ bond lengths ($\mathrm{P}-\mathrm{C} 11.7390(15) \AA, \mathrm{P}-\mathrm{C} 31.7494(15) \AA$) of the central rings are in good agreement with literature values for phosphinines (Figure 7.6). ${ }^{[47 e, ~ 47 f,}$ ${ }^{128]}$ The symmetry-equivalent $\mathrm{C}-\mathrm{C}$ bond lengths of $1.406(2) \AA$ are comparable with those in benzene $(1.397 \AA) ;{ }^{[129]}$ all these parameters are consistent with a high degree of aromaticity in 25. ${ }^{[127]}$

Figure 7.5.Displacement ellipsoids plot (50% probability) of molecular structure of $\mathbf{2 5}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ P-C1 1.7390(15), P-C3 1.7494(15) C1-C3 1.406(2), C1-P-C3 100.02(7).

1.758
1.385

1.7494
1.406

Figure 7.6. Comparison of the endocyclic $\mathrm{P}=\mathrm{C}$ and/or $\mathrm{C}=\mathrm{C}$ bonds in the six-membered aromatic rings of benzene ${ }^{[129]}$, phosphinine $\mathbf{L},{ }^{[47 e, 47 f, 128]}$ and $\mathbf{2 5}$.

7.4 Further investigations upon the properties of 1,4-diphosphinine 25

Owing to the rigid conjugated π-electronic system of compound 25, its UV/Vis spectrum was recorded and cyclovoltammetric studies were conducted, and to get further insight into the electronic properties, theoretical calculations were also performed. All these aspects are discussed in the chapter below.

7.4.1 UV/Vis spectroscopy and TD DFT calculations

The UV/Vis spectrum of $\mathbf{2 5}$ was measured from its dilute (concentration~ 10^{-6} molar) dichloromethane solution in a sealed quartz cell at room temperature. A strong absorption in the UV/Vis spectrum of25 (Figure 7.7) was observed at $\lambda \max =497 \mathrm{~nm}$. This value was found to be in a very good agreement with the TD DFT calculated value of 502 nm (at B3LYP/6-311+G**//M06-2X/6-311+G**), which is basically the $\operatorname{HOMO}(\pi)-\operatorname{LUMO}\left(\pi^{*}\right)$ transition with a high transition probability. So, the structurally indicated aromaticity of the 1,4-diphosphinine is also strongly supported by the UV/Vis spectroscopic data and by TDDFT calculations too.

Figure 7.7. UV/Vis spectrum of $\mathbf{2 5}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
According to the calculated $\operatorname{NICS}(1)^{[130]}$ values (M06-2X/6-311+G**) all of the three rings of $\mathbf{2 5}^{\prime}$ (the notation ' stands for using Me substituents instead of ${ }^{\text {n }} \mathrm{Pr}$) are aromatic, but the diphosphinine unit is more aromatic $(\operatorname{NICS}(1)=-8.8)$ than the outer rings $(\operatorname{NICS}(1)=-4.9)$ while that of benzene ${ }^{[131]}$ was reported to be -12.8 .

Theoretical investigations (B3LYP/6-311+G**) of Nyulaszi suggested that the HOMO of compound 25, was relatively high in energy (-6.19 eV) and essentially represents the antibonding combination of the HOMOs of the two thiazole-2-thione fragments (Figure 7.8). The LUMO of compound $\mathbf{2 5}$ was found to be low lying (-3.20 eV) being largely stabilized. In conclusion, this high lying HOMO and low lying LUMO resulted in a rather small HOMOLUMO (2.99 eV) gap which in turn lowers the excitation energy thus being in agreement with the observed dark red color of compound 25.

If the theoretical investigations on $\mathbf{2 5}$, arecompared to the previously reported imidazole-2thioned based 1,4-diphosphinine XCII' (B3LYP/6-311+G**), asimilar energetic situationfor the LUMO (-2.93 eV) and HOMO (-5.79 eV) energies was found. The HOMO was found to be relatively high in energy and is responsible for the ylidic character of the $\mathrm{C}=\mathrm{S}$ bond, while the LUMO is strongly stabilized and is basically the lowest π^{*} orbital of the diphosphinine unit. ${ }^{[127]}$ Parallel to the results of theoretical investigation on 25, for XCIIalsothe rather small HOMO-LUMO gap resulted into small excitation energy which explains the red color of compound XCII.

Figure 7.8: Comparative orbital energy manifolds for (left) 25, and (right)XCII ${ }^{[14 a]}$ from B3LYP/6-311+G** and (in brackets) B3LYP/6-311+G**(PCM:THF) calculations.

Table 7.1. M062x/6-311+G** (PCM: THF) relative energies (with respect to the neutral molecule in eV) of the calculated cationic (dicationic) and anionic (dianionic) states for $\mathbf{2 5}$ ' and XCII '.

	M062x/6-311+G**				
	Dication	monocation	neutral	monoanion	Dianion
$\mathbf{2 5}$,	19.53	7.80	0.0	-2.27	-0.60
$\mathbf{X C I I}{ }^{\prime}$	18.47	7.24	0.0	-1.93	+0.04
		M062x/6-311+G**	(PCM: THF)		
$\mathbf{2 5}$,	14.10	6.49	0.0	-3.50	-5.67
$\mathbf{X C I I} \boldsymbol{\prime}$	13.49	6.11	0.0	-3.20	-5.23

7.4.2 Cyclovoltammetric studies

Solution voltammetry on 25 in $\mathrm{THF} /\left[{ }^{[} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ at Pt (Figure 7.9) and Au working electrodes identified two central reduction processes that are very closely spaced $\left(\mathrm{E}_{\mathrm{p}}{ }^{c}(2)=-\right.$ 1.28 V and $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{c}}(3)=-1.45 \mathrm{~V}$ vs. the ferrocene/ferrocenium redox couple, ${ }^{[132]}$ hereafter $\mathrm{Fc}^{+/ 0}$) and are not electrochemically reversible. Nevertheless, return peaks $E_{p}{ }^{a}(3)$ and $E_{p}{ }^{a}(2)$ are observed and the general appearance of the solid trace (-) in Figure 7.9, including off-set reoxidation $\mathrm{E}_{\mathrm{p}}{ }^{a}\left({ }^{\prime}\right)$, is constant over multiple cycles and variation in scan rates from 0.1-1.0 $\mathrm{V} \cdot \mathrm{s}^{-1}$, except that the re-oxidation peak $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{a}}(\mathrm{l})$ increases in intensity with slower scanning but loses intensity with multiple cycles that do not go negative of the starting potential.

Figure 7.9.Composite CVs obtained on 22.0 mM in THF ($0.2 \mathrm{M}\left[{ }^{[} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], \mathrm{v}=0.2 \mathrm{~V} \cdot \mathrm{~s}-1$; scans start from o.c.p. $=-0.69 \mathrm{~V}) .(-)$ Anodic scan through $\mathrm{E}(1) .(-)$ Cycle in cathodic direction through $\mathrm{E}(2,3) ;(\cdots \cdots)$ same but starting anodic.

The oxidation process $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{a}}(1)$ at +0.70 V vs. $\mathrm{Fc}^{+/ 0}$ is irreversible and no further processes can be observed before the solvent limit is reached (compound reactivity limits solvent selection). There are also further reduction processes observable at much more negative potentials.

Justification for treating the radical anion and the dianion as chemically stable species (although quite reactive towards Pt and Au electrode materials) is provided by the recent NMR observation of a related imidazole-2-thione-based dianion ${ }^{[14 c]}$ (i), computational results showing that the dianion is more stable than the neutral species at $\mathrm{M} 06-2 \mathrm{X} / 6-311+\mathrm{G}^{* *}$ (PCM: THF) as shown in Table 7.1 (ii), observation of further well-behaved reduction waves
(iii) and the great similarity to the CV behavior of analogue compound XCII ${ }^{[14 a]}$ (iv). The most important feature of the voltammetry is that $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{c}}(2)$ and $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{c}}(3)$ are at significantly lower potential than in XCII (by 0.52 and 0.50 V). This is in full agreement with the calculated LUMO energies of the two compounds, which are -3.20 eV and -2.93 eV at B3LYP/6$311+\mathrm{G}^{* *}$ (PCM:THF) (see Figure 7.8). Also the M06-2X/6-311+G** (PCM:THF) anion and dianion is more stable for $\mathbf{2 5}^{\prime}$ than for XCII' by 0.30 and 0.44 eV , respectively (see Table 7.1).

The origins of the very close spacings of $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{c}}(2)$ and $\mathrm{E}_{\mathrm{p}}{ }^{c}(3)$, in both 25 and XCII, which approach but do not reach potential inversion, ${ }^{[133]}$ might be sought in the structural changes that accompany the second reduction: the geometry of $\mathbf{2 5}^{-}$remains planar, whilst $\mathbf{2 5}^{2-}$ bends appreciably. ${ }^{[133 a]}$ Indeed, at M06-2X/6-311+G** (PCM:THF) 25,2- ${ }^{2-}$ and XCII ${ }^{\mathbf{2}}{ }^{2-}$ exhibit pyramidalized phosphorus atoms (although, the barrier to planarization is only 4 and 2.3 $\mathrm{kcal} / \mathrm{mol}$, respectively). The calculated stability of the anion is larger than that of the dianion in the gas phase calculation, however, using the PCM:THF model the dianionic state is significantly stabilized (see Table 7.1) in reasonable agreement with the observed CV behavior. In this regard, diphosphinines $\mathbf{2 5}$ and XCII appear to be less structurally robust towards reduction than the comparably-sized PAH anthracene, which remains robustly planar also in the dianion at B3LYP/6-311+G**. Correspondingly, the separation of $\mathrm{E}(2)$ and $\mathrm{E}(3)$ in anthracene is 0.83 V in DMF and 0.60 V in (more strongly solvating) HNMe_{2} solutions. ${ }^{[133 \mathrm{~b},}$ ${ }^{134]}$ In further comparisons to the PAH analogue, the electrochemical stability window for 25, defined as $\Delta \mathrm{Esw}_{s w}=\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{a}}(1)-\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{a}}(2)$, is 1.74 V . In anthracene, $\Delta \mathrm{E}_{\mathrm{sw}} \approx 3.2 \mathrm{~V}$ with an uncertainty caused by measurements of reduction and oxidation in separate experiments using DME and ACN, respectively. ${ }^{[133 d, 135]}$ Consistent with this, the HOMO-LUMO gap in anthracene is correspondingly larger at 3.55 eV than in $\mathbf{2 5}^{\prime}(2.99 \mathrm{eV}$; gas phase computations $) .^{[127]}$

Chapter

Chapter 8: Reactivity studies of 1,4-diphosphinine25

After their first discovery, intense research for more than five decades was devoted to phosphinines. ${ }^{[47]}$ As mentioned beforehand in the introduction, a broad spectrum of studies have revealed complexation, ${ }^{[45,136]}$ P-alkylation, ${ }^{[57]}$ P-oxidation, ${ }^{[58 a-f,}{ }^{137]}$ P-reduction ${ }^{[59 \mathrm{a}-\mathrm{c}]}$ and cycloaddition reactions. ${ }^{[60 \mathrm{a}, 60 \mathrm{~b}]}$ In particular, phosphinines have interesting π-ligand accepting properties and a decidedly electrophilic phosphorus center and, therefore, they readily react with Grignard and organolithium compounds. ${ }^{[55]}$

In contrast, reactivity studies of 1,4 -diphosphinines are not well explored and only few properties and reactions have been reported from the first known compound: formal [4+1] and [4+2] cycloaddition and one example of a photoisomerization. ${ }^{[72]}$ Recently, new reactivity studies have been conducted by Streubel and co-workers on the imidazole-based 1,4diphosphinine XCIV, which has re-opened this research area. ${ }^{[14 a, ~ 73]}$

8.1 [4+2]-Cycloaddition reactions

An interesting aspect of the phosphinine chemistry is their ability to generate phosphabarrelenes owing to some dienic nature of the π-system. ${ }^{[138]}$ First synthesis of the phosphabarrelene was achieved by Märkl in 1968 via reaction of a phosphinine with different alkynes. ${ }^{[60 a]}$ Later on, they also reported other examples generated via cycloaddition reactions of phosphinines with arynes. ${ }^{[60 \mathrm{cc}]}$ Besides other applications, ${ }^{[139]}$ phosphabarrelenes are used in hydrogenation ${ }^{[139 a]}$ of alkenes and rhodium-catalyzed hydroformylation, ${ }^{[140]}$ An interesting addition to this field was the recently reported Rh-catalyzed one-pot tandem reaction sequence under hydroformylation conditions using phosphabarrelene by Müller and coworkers. ${ }^{[141]}$

Interestingly, the first diphosphabarrelene was reported even before the phosphabarrelene by Krespan in 1961. ${ }^{[142]}$ Compound LXXXII was obtained via thermolysis of hexafluoro-2butyne in the presence of red phosphorus, using iodine as catalyst. This methodology needs a long reaction time (8 h) at elevated temperatures $\left(200{ }^{\circ} \mathrm{C}\right)$ under autogenous pressure, and the
maximum yield reported was only 43%. However, later on Kobayashi and co-workers synthesized the same compound via reaction of tetrakis(tri-fluoromethyl)-1,4diphosphabenzene with hexafluoro-2-butyne. ${ }^{[71, ~ 72 b, ~ 143] ~}$ The same tetrakis-(trifluoromethyl)-1,4-diphosphabenzene was used to synthesize few other 1,4-diphospha-barrelenes, as explained in the introduction. Besides, several other 1,4-diphosphabarrelenes are known, being listed in Figure 8.1, and different synthetic methodologies were used to access these compounds.For example, Weinberg and co-workers reported the synthesis of CXXXVIin 1971 via thermolysis of ortho-dichlorobenzene and white phosphorus in the presence of catalytic amount of $\mathrm{FeCl}_{3}\left(20\right.$ \% yield). ${ }^{[144]}$ Attempts to optimize the synthetic protocol by Mazaki and co-workers did not achieve any noticeable improvements, and the yields were even lower (9 \%). ${ }^{[145]}$ Synthesis of 4,8-diphospha[3,4-a:7,8-a]thiophenotriptycene CXXXVIIwas reported by Nakayama and co-workers by reaction of tris(thiophen-2yl)phosphane oxide with tris(phenoxy)phosphane using ${ }^{\mathrm{n}} \mathrm{BuLi}$ as base. ${ }^{[146]}$ However, the yield was less than 11%. Very recently, the reactivity of the imidazole-based 1,4 -diphosphinine XCII was investigated towards few dienophiles by Streubel and co-workers under relatively mild reaction conditions and the corresponding 1,4-diphosphabarrelenes, for example XCIII, were obtained in good yields (up to 95%). ${ }^{[73]}$

LXXXIII ${ }^{[142]}$

CXXXVI ${ }^{[144]}$

CXXXVIII ${ }^{[146]}$

Figure 8.1. Selected examples of 1,4-diphosphabarrelenes.
Motivated by this easy access to the desired 1,4-diphosphabarrelenes, we wanted to investigate if the methodology can be extended to thiazole-based tricyclic systems.

8.1.1 Reaction of tricyclic 1,4-diphosphinine 25 with DMAD

In order to investigate the dienic nature of the 1,4-diphosphinine 25, it was reacted with a typical electron-deficient alkyne, dimethyl acetylenedicarboxylate, at $50{ }^{\circ} \mathrm{C}$ in toluene (Scheme 8.1). After 45 min the red color of the 1,4-diphosphinine had disappeared and a yellow-orange turbid solution was formed. Compound 26 was isolated in very good yield (73 $\%$) by removal of solvent under reduced pressure followed by washing with n-pentane ($2 \cdot 5$ mL). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed only one signal at -75.4 ppm which was comparable to literature known compounds (-87.1 and -93.4 ppm for $\mathbf{C X X X V I [}{ }^{[146]}$ and -87.3 ppm for $\left.\mathbf{X C I I I}{ }^{[73]}\right)$, so it was tentatively assigned to the 1,4 -diphosphabarrelene 26. The ${ }^{1} \mathrm{H}$ NMR spectrum showed, besides signals of the substituent of the tricyclic system, a characteristic signal at 3.82 ppm for the OCH_{3} group of compound 26. The latter group could also be assigned to the signal in ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at 53.4 ppm and the carbon resonance at $157.6 \mathrm{ppm}\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=15.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=14.0 \mathrm{~Hz}, \mathrm{CCO}_{2} \mathrm{Me}\right.$) was assigned to the sp^{2}-hybridized carbon atom. The product 26 was further confirmed by EI-MS, i.e., the molecular ion peak of $\mathbf{2 6}$ was observed at $\mathrm{m} / \mathrm{z} 518.0(68 \%)$ which was further supported by the HRMS m/z value (517.9777) being in agreement with the calculated value (517.9781). Interestingly, one fragmentation pathway under EI-MS conditions of $\mathbf{2 6}$ was the cleavage of the alkyne moiety, to give the $\mathbf{2 5}$-cation (376.0) ($\mathbf{7 5} \%$). Compound 26 was also characterized by micro analysis and single crystal X-ray diffraction analysis. The molecular structure in the solid state is displayed in Figure 8.2, and selected bond lengths and angles are given in the figure caption. The C13-C14 bond distance: 1.336(4) \AA, is in the normal range when compared to literature values of XCIII $\left(1.329(9) \AA\right.$ for), ${ }^{[73]}$ while the distance P1-C1 $(1.846(3) \AA)$ is within the range of phosphabarrelenes $(1.864(2) \AA)^{[147]}$ or $1,4-$ diphosphabarrelenes XCIII $(1.820(6) \AA){ }^{[73]}$

Scheme 8.1. Reaction of 1,4-diphosphinine 25 with DMAD.

Figure 8.2.Displacement ellipsoids plot (50% probability) of molecular structure of $\mathbf{2 6}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ P1-C1 1.846(3), P1-C7 1.818(3), C1-C3 1.348(4), P1-C13 1.870(3), C13-C14 1.336(4), C1-P1-C7 95.63(13).

8.1.2 Reaction of 1,4-diphosphinine 25 with $C=C$ and $N=N$ containing systems

After the successful reaction with DMAD, it seemed to be interesting to investigate other potential 2π-systems as dienophiles in [4+2]-cycloaddition reactions. The reaction of $\mathbf{2 5}$ with 1-phenylpyrrole-1,5-dione also proceeded selectively to give a single product 27 as revealed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (Scheme 8.2).

Scheme 8.2.[4+2]-Cycloaddition reactions of 1,4-diphosphinine 25 to afford 27 and 28.
In comparison to the singlet ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance of $\mathbf{2 6}$, two doublets at -74.3 ppm and -74.7 ppm were observed with a coupling constant ${ }^{3} J_{\mathrm{P}, \mathrm{P}}$ of 28.8 Hz (Figure 8.3). Upon comparison with the literature knownimidazole-derived compound $\operatorname{XCIV}\left(\delta^{31} \mathrm{P}=-86.3\right),{ }^{[73]}$ both resonances were assigned to the two phosphorus atoms of 27. However, in contrast to the singlet resonance of symmetric molecule XCIV, 27 possesses two chiral phosphorus centers due to the presence of sulfur in the five-membered heterocyclic ring. Therefore, the two phosphorus atoms become inequivalentand appeear as doublets in the ${ }^{31} \mathrm{P}$ NMR spectrum.

Figure 8.3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $27\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}\right)$.

27 was isolated in excellent yields (94%) as white powder after washing with n-pentane ($2 \cdot 2$ mL) and drying in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$). and has been fully characterized including MS and elemental analysis. In the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 27 , also two sets of signals were observed for each group of different moieties which confirms the lower symmetry in 27.

The constitution of $\mathbf{2 7}$ was further confirmed by single crystal X-ray analaysis. A reduced molecular structure with numbering scheme is given in Figure 8.4 and selected bond lengths and bond angles are given in the figure caption. Two molecules (enantiomers) were present in the unit cell (Figure 8.4). Both $\mathrm{C}=\mathrm{O}$ bond lengths [C15-O1 1.20(2), C16-O2 1.20(2)] were found to be very similar and the sum of bond angles at N3 atom was found to be around $360^{\circ}\left(\Sigma \angle \mathrm{N} 3=360.1^{\circ}\right)$ which confirmed N 3 to be planar and suggest the delocalization of the N electron pair along the $\mathrm{CO}-\mathrm{CN}-\mathrm{CO}$ centers.

Figure 8.4.Displacement ellipsoids plot (50% probability) of molecular structure of 27 in the crystal; right: selected view along the six membered ring. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right) \mathrm{P} 1-\mathrm{C} 11.82(2)$, $\mathrm{P} 1-\mathrm{C} 71.839(18), \mathrm{P} 2-\mathrm{C} 21.833(19), \mathrm{P} 2-\mathrm{C} 81.819(16), \mathrm{C} 1-\mathrm{C} 21.36(3), \mathrm{C} 7-\mathrm{C} 8$ 1.34(2), P1-C13 1.892(18), P2-C14 1.880(18), C13-C14 1.53(2), C15-O1 1.20(2), C16-O2 1.20(2), N3-C15 1.39(2), N3-C16 1.41(2), N3-C17 1.44(2), C1-P1-C7 96.9(9).

Interestingly, 4-phenyl-1,2,4-triazoline-3,5-dione, a well known strong dienophile, reacted already at low temperature $\left(-40{ }^{\circ} \mathrm{C}\right)$ in toluene with 25 (Scheme 8.2). Initially, a clean reaction was observed as monitored via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy showing two broad signal at -45.5 ppm and -46.0 ppm along with the signal of the starting material (25); this downfield-shift was expected due to the electron-withdrawing effect of the electronegative nitrogen atoms.In order to push the reaction towards completion, the solution was stirred overnight and warmed to ambient temperature. However, the ratio of the reactant and the product remained unchanged (1:2) as revealed via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic monitoring. To get further insights variable temperature (VT) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR experiments were conducted (Figure 8.5). This NMR study clearly demonstrated that the reaction proceeds in the forward direction until $0{ }^{\circ} \mathrm{C}$. However, an equilibrium is established at this temperature and the reaction progression stops. Upon heating to room temperature and/or beyond, a backward reaction (retro-[4+2]) starts and the content of the diphosphinine $\mathbf{2 5}$ increased, reaching a maximum of about 95% at $+60^{\circ} \mathrm{C}$.

Figure 8.5. $\mathrm{VT}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene) study of the reaction of $\mathbf{2 5}$ with 4-phenyl-1,2,4-triazoline-3,5-dione to give 28.

In order to achieve characterization of $\mathbf{2 8}$, the reaction was performed again at $-40^{\circ} \mathrm{C}$ and the solvent removed from a $1: 2$ mixture of $\mathbf{2 5 : 2 8 b}$ at ambient temperature. In the EI-MS spectrum of this mixture, a peak corresponding to the molecular ion of $\mathbf{2 8}$ was observed at $m / z 551.0$ (40%) which supports the proposed composition of the product 28. Apart from this other fragmentation ions were observed and could be assigned to the following fragments, e.g. m / z 376.0 (85%) $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}\right]^{+}$, 334.0 (35%) $\left[\mathrm{M}-\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}-{ }^{-}{ }^{\mathrm{Pr}}\right]^{+}$and 177.1 (40\%) $\left[\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}$. Further confirmation for the composition of 28 was obtained from a HRMS spectrum ($m / z 550.9893$) which was in agreement with the calculated m / z value (550.9897).

8.2 Synthesis and reactions of mono anions derived from 1,4-diphosphinine

 25The addition of nucleophiles to phosphinines giving rise to anionic $\sigma^{3}-\mathrm{P}$ derivatives has been extensively studied, as explained and illustrated in the introduction. ${ }^{[55]}$ In case of phosphinines, as it is a well known fact by now that the phosphorus lone pair resides in the less directional, low lying LUMO leading to its increased electron affinity, ${ }^{[46,148]}$ and a high electrophilic reactivity. ${ }^{[55]}$ However for 1,4-diphosphinines no such study was reported until quite recently. In 2018, Streubel and co-workers reported the first study in this area, showing the addition of nucleophiles (KHMDS or ${ }^{\mathrm{n}} \mathrm{BuLi}$) to the imidazole-based 1,4-diphosphinine
(XCII) to generate the corresponding mono anions (CXXXVIIIa,b). ${ }^{[14 c]}$ However due to lower stability the aforementioned mono anions were not isolated and only generated in situ and detected via ${ }^{31} \mathrm{P}$ NMR spectroscopy ($\delta=12.1$ (d), -76.1 (d) ${ }^{3} J_{\mathrm{P}, \mathrm{P}}=5.7 \mathrm{~Hz}$ for $\mathbf{a}, \delta=-74.3$ (d), -82.5 (d) ${ }^{3} J_{\mathrm{P}, \mathrm{P}}=4.1 \mathrm{~Hz}$ for \mathbf{b}). The in situ generated mono anions (CXXXVIIIa,b) were then reacted with the electrophile MeI and 1,4-disubstituted compounds (CXXXIXa,b) were isolated and characterized (Scheme 8.3).

Scheme 8.3. Recently reported reactivity of a 1,4-diphosphinine towards a nucleophile electrophilesequence, according to Streubel. ${ }^{[14 \mathrm{c}]}$

For the first investigation of the electrophilic reactivityof 1,4-diphosphinine 25 a renowned good nucleophile such as ${ }^{\mathrm{n}} \mathrm{BuLi}$ was used. Upon treatment of an ether suspension of $\mathbf{2 5}$ with ${ }^{n} B u L i$ at $-78{ }^{\circ} \mathrm{C}$, a dark red solution was formed And the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture showed two signals at $\delta=-59.1$ and -21.1 assigned to the anionic and neutral phosphorus centers of product 29a, respectively (Scheme 8.4). Upon treatment of freshly prepared 29a with ${ }^{\mathrm{n}} \mathrm{BuI}$ at $-78^{\circ} \mathrm{C}$, an immediate color change from red to yellow was observed. The reaction progress was monitored via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectroscopy which showed a fast and clean conversion to 30a, \mathbf{a}^{\prime} (Scheme 8.4). The two signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 0 a}, \mathbf{a} ;(\delta=-44.1 \mathrm{ppm}$ and $-38.3 \mathrm{ppm})$ were assigned to the two cis/trans isomers of 30a (2:1). ${ }^{[127]}$

Scheme 8.4. Addition of nucleophiles to 1,4-diphosphinine 25 and reactions with electrophiles to give $\mathbf{3 0 a}, \mathbf{b}$ ($\mathrm{i}=$ $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$, ii $=\mathrm{Et}_{2} \mathrm{O}$, r.t., iii $=\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$, iv $=\mathrm{Et}_{2} \mathrm{O},-70^{\circ} \mathrm{C}$.

Compound 30a, \mathbf{a}^{\prime} was isolated in rather good yield (55%) via filtration of a dichloromethane solution to remove the formed LiI and subsequent washing of the residue with n-pentane. Besides NMR measurements, the proposed constitution of30a, a'was also supported by HRMS (EI) in which the experimental and calculated values are in good agreement (490.0921 vs. 490.0924) and also by elemental analysis. The chemical constitution of 30a, \mathbf{a}^{\prime} was firmely established by single crystal X-ray diffraction studies. Crystals were grown by slow evaporation of concentrated dichloromethane solution. Trans isomer of 30a crystalized in triclinic crystal system with space group $P \overline{1}$. The crystal structure of 30a is given in Figure 8.6 while the selected bond lengths and bond angles are given the figure caption. The bond lengths and bond angles of $\mathbf{3 0 a}$ are comparable with thore of $\mathbf{1 7} \mathrm{c}$ so will not be discussed further

Figure 8.6. Displacement ellipsoids plot (50% probability) of molecular structure ofof 30a in the crystal. Hydrogen atoms have been omitted for clarity.C2-S2 1.662(4), C1-P 1.821(4),C3-P 1.822(4), C7-P 1.864(5), CIC3 1.351(6), C1-P-C3 98.27(19).

A noteworthy contrast stems from the chemistry of a $1,3,5$-triphosphabenzene: a similar reaction sequence, as described beforehand (1. BuLi; 2. MeI and 2,4,6-tri- ${ }^{-1} \mathrm{Bu}-1,3,5$ triphosphabenzene), resulted in the 1,1 '-dialkylation of the same phosphorus atom, thus yielding $1 \lambda^{5}, 3 \lambda^{3}, 5 \lambda^{3}$-triphosphabenzene CXLII(Scheme 8.5). ${ }^{[149]}$

Scheme 8.5. Addition of ${ }^{n}$ butyl lithium and methyl iodide to triphosphabenzene according to Lawless. ${ }^{[149]}$
In order to examine the scope of the nucleophilic addition and reactivity of $\mathbf{2 5}$, a very weak nucleophile (KHMDS) was chosen (Scheme 8.4). But to our surprise, treatment of $\mathbf{2 5}$ with KHMDS in diethyl ether at ambient temperature resulted in a sequence of color change from red to green and after few minutes, to bright red. In accord with the appearance and then fast disappearance of the green color, the formation of the radical anion of $\mathbf{2 5}\left(\mathbf{2 5}^{-}\right)$is suggested. This finding was also supported by the calculated TD-DFT spectra of $\mathbf{2 5}{ }^{-}$, performed by Nyulaszi, which suggests a green color (B3LYP/6-311+G**/M06-2X/6-311+G**)). Finally, the bright red color can be attributed to the anion of $\mathbf{2 9 b}$ (B3LYP/6-311+G**//M06-2X/6$\left.311+\mathrm{G}^{* *}\right){ }^{[127]}$

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture showed two rather broad singlets at -28.6 and 6.7 ppm , assigned to the anionic and neutral phosphorus centers of product

29b,respectively. Compound 29b was isolated as reddish powder in good yields (70 \%) by immediate solvent removal and washing with n-pentane. However, to get excellent NMR data, all NMR experiments were conducted at low temperature $\left(-30^{\circ} \mathrm{C}\right)$ in thf- d_{8}. The neg. ESI-MS experiment showed a peak at $m / z 538.0453$ (calc. 538.0451) which confirmed the composition of the product. The single crystal X-ray diffraction analysis confirmed the constitution; three solvent molecules were present in the unit cell. Within the 1D-coordination polymer each potassium cation is coordinated to the thione sulfur centers of two neighboring molecules and three $\mathrm{Et}_{2} \mathrm{O}$ solvent molecules (Figure 8.7).

Figure 8.7.Displacement ellipsoids plot (50% probability) of a cut-out of the 1D-polymer structure of $\mathbf{2 9 b}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ P1-C1 1.807(4), P1-C7 1.805(4), P2-C3 1.776(4), P2-C9 1.777(4), C1-C3, 1.376(6), C7-C9 1.373(6), P1-N3 1.744(4). C1-P1-C7 95.24(19), C3-P2-C9 96.6(9).

Having the isolated anionic compound 29b in hand, its reactivity was investigated starting with the reaction of $\mathrm{Ph}_{2} \mathrm{PCl}$, representing a rather common main group element electrophile (Scheme 8.4). Upon addition of $\mathrm{Ph}_{2} \mathrm{PCl}$ to a freshly prepared, pre-cooled $\mathrm{Et}_{2} \mathrm{O}$ solution of 29b immediate color change from red to yellow was observed. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed an ABM spin habitus with three different $J_{\mathrm{P}, \mathrm{P}}$ couplings, i.e., $-50.8 \mathrm{ppm}\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=\right.$ $\left.294.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{P}, \mathrm{P}}=15.9 \mathrm{~Hz}\right), 9.5 \mathrm{ppm}\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=294.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}, \mathrm{P}}=18.4 \mathrm{~Hz}\right), 15.0 \mathrm{ppm}\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{P}}=\right.$ $17.1 \mathrm{~Hz})\}$, revealing that the ${ }^{3} J_{\mathrm{P}, \mathrm{P}}$ and ${ }^{4} J_{\mathrm{P}, \mathrm{P}}$ coupling constant magnitudes are very similar. The product 30b was isolated in good yields (65%) after filtration and washing with n-pentane $(2 \times 3 \mathrm{~mL}) .{ }^{[127]}$ The proposed composition of $\mathbf{3 0 b}$ to have a newly formed P-P bond (cf. Scheme 5) was further supported by the experimentally found HRMS (APCI) value (723.1136) for $\left[\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{P}_{3} \mathrm{~S}_{4} \mathrm{Si}_{2}\right]+\mathrm{H}$, which was in good agreement with the calculated one (723.1112). Single crystals were obtained via slow evaporation of its dichloromethane
solution; the result of the X-ray analysis of $\mathbf{3 0 b}$ (Figure 8.8) will be discussed together with that of $\mathbf{3 1}$.

Figure 8.8. Displacement ellipsoids plot (50% probability) of molecular structure of $\mathbf{3 0 b}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$) P1-C1 1.81(2), P1-C7 1.813(19), P1-P3 2.246(6), P2-N3 1.691(16), P2-C3 1.856(19), P2-C9 1.845(19), C1-C3, 1.28(3). C1-P1-C7 96.6(8), C3-P2-C9 96.1(9), C1-P1-P3 106.6(7), P1-P3-C25 101.9(6).

8.3 Oxidation of the mono-anion 29b with elemental iodine

To examine the outcome of an oxidation of the anion 29b, an etherial solution of 29b was treated with half of an equivalent of iodine at low temperature $\left(-70^{\circ} \mathrm{C}\right)$. Again, an immediate color change from red to greenish yellow was observed (Scheme 8.6) suggesting the shortlived radical species. Calculation of the TD-DFT spectrum of the proposedradical species (Nyulaszi) resulted again in excitation energies (leading to absorptions in blue and red) which explains the observed (resulting) greenish color. The $-63.5 \mathrm{kcal} / \mathrm{mol}$ dimerization Gibbs free energy of the radical speciesto give $\mathbf{3 1 , 3 1}$ ' was also in good agreement with the observed short lifetime. ${ }^{[127]}$

Scheme 8.6. Oxidation reaction of the mono-anion 29b with I_{2} to afford $\mathbf{3 1 , 3 1}$.
The final product 31 was isolated by removing the solvent in vacuo ($8 \times 10^{-3} \mathrm{mbar}$), dissolving the crude product in toluene and filtration to remove the formed KI (for more details see the experimental section). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 1}$ showed two sets of signals for two isomers, one major (98%) and one minor (2%) $\left\{-42.1 \mathrm{ppm}\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{P}}=20.1 \mathrm{~Hz}\right.\right.$) $-40.4 \mathrm{ppm}(\mathrm{t}$, $\left.\left.{ }^{3 / 4} J_{\mathrm{P}, \mathrm{P}}=20.4 \mathrm{~Hz}\right), 17.9 \mathrm{ppm}\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{P}}=20.2\right) 19.9 \mathrm{ppm}\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{P}}=20.8\right)\right\}$.

Single crystal X-ray diffraction studies were performed for both $\mathbf{3 0 b}$ (discussed in section 8.2) and 31. The structures of $\mathbf{3 0 b}$ and $\mathbf{3 1}$ are given in Figure 8.8 and 8.9, respectively, and selected bond lengths and bond angles are given in the respective figure captions.

Single crystal X-ray diffraction studies of $\mathbf{3 0 b}$ and $\mathbf{3 1}$ show very similar P-C bond lengths in the central 1,4-dihydro-1,4-diphosphinine rings. However, a slightly longer P1-P3 bond distance of 2.2893(7) \AA is found in 31,compared to $2.246(6) \AA$ in 30b. As in case of 30b only one isomer (trans) was observed which suggests a directional effect of the $\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}$ moiety onto the incoming group. Furthermore, one of the phenyl groups in 30b is observed to have $\pi-\pi$ interactions with the central 1,4-dihydro-1,4-diphosphinine ring on the same molecule. The molecular structure of $\mathbf{3 1}$ shows an orientation of the two tricyclic units with a torsion angle of 60.5° between the P1-P3-C1 and P1-P3-C19 planes. It seems that dispersive forces are responsible for the observed arrangement of substituents in 31' (which is similar to that in 31) since there was no sign of secondary orbital interactions in a second-order perturbation theory analysis made on the NBO basis. Indeed, optimization of a structure with the two tricycles in a trans arrangement results in a geometry which is $\sim 12 \mathrm{kcal} / \mathrm{mol}$ higher in energy when using functionals that account for dispersion interactions ($12.6 \mathrm{kcal} / \mathrm{mol}$ for M06-2X and $12.2 \mathrm{kcal} / \mathrm{mol}$ for $\omega \mathrm{B} 97 \mathrm{XD}$), whereas with the B3LYP functional (no dispersion correction), the energy of the two structures is nearly identical ($\Delta \mathrm{E}=0.2 \mathrm{kcal} / \mathrm{mol}$; basis set
used is $6-311+G^{* *}$). For calculations of rotation about the $\mathrm{P}-\mathrm{P}$ bond in the case of $\mathbf{3 0 b}$, the energy difference using M06-2X is $2.5 \mathrm{kcal} / \mathrm{mol}$, whereas with B3LYP it is $0.8 \mathrm{kcal} / \mathrm{mol}$). Altogether, the dispersive forces operating between the planes of the two tricycles has a sizeable contribution to the energy of the adopted structure. ${ }^{[127]}$

Figure 8.9. Displacement ellipsoids plot (50\% probability) of molecular structure of $\mathbf{3 1}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ P1-C1 1.793(2), P1-C7 1.811(2), P1-P3 2.2893(7), P2-N3 1.7048(18), P2-C3 1.831(2), P2-C9 1824(2), C1-C3, 1.364(3). C1-P1-C7 99.43(9), C3-P2-C9 97.55(9), C1-P1-P3 101.64(7), P1-P3-C25 105.88(7).

8.4 Reaction of 1,4-diphosphinine 25 with MeOTf

Theoretical investigations suggested that the HOMO of compound $\mathbf{2 5}$ is relatively high in energy (-6.19 eV) and represents the antibonding combination of the HOMOs of the two thiazole-2-thione fragments. The LUMO of compound $\mathbf{2 5}$ was found to be low lying (-3.19 eV) and largely stabilized by the involvement of the $\pi^{*} \mathrm{P}=\mathrm{C}$ orbitals $\{$ Chapter 7, Figure 8 (comparative orbital energy manifolds for $\mathbf{2 5}^{\prime}$ and $\mathbf{X C I I}$) $\}$. The theoretically suggested electrophilic nature of the P-center of the 1,4-diphosphinine was also experimentally confirmed (see section 8.2). However, equally interesting would be to experimentally proove the nucleophilic nature of the $\mathrm{C}=\mathrm{S}$ unit of 1,4-diphosphinine through reaction with an electrophile such as MeOTf, as several examples of a similar reactivity were found for the
hetazole-2-thione family i.e., imidazole-2-thiones, ${ }^{[150]}$ thiazole-2-thiones ${ }^{[151]}$ and dithiole-2thiones ${ }^{[124]}$. So, a dichloromethane solution of $\mathbf{2 5}$ wastreated with two equivalents of MeOTf at room temperature (Scheme 8.7). After stirring for 16 h the red color of the reaction mixture got changed to yellow. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture showed a signal at 163.0 ppm which was assigned to the salt $\mathbf{3 2}$. The proton-coupled ${ }^{31} \mathrm{P}$ NMR spectrum did not show a coupling which provided the first indication that S-methylation has occurred. Compound 32 was isolated as white powder in excellent yield (92%) after removal of the solvent and washing with n-pentane ($2 \times 5 \mathrm{~mL}$). In the ${ }^{1} \mathrm{H}$ NMR spectrum of 32 a signal corresponding to the S-Me protons was observed at 5.20 ppm . Besides, in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum a resonance corresponding to the SMe carbon was observed at 20.0 ppm . The proposed chemical composition of the product was further supported by HRMS (pos. ESI) $\mathrm{m} / \mathrm{z} 203.0000$ (calc. $\mathrm{m} / \mathrm{z} 202.9999$). Single crystals of $\mathbf{3 2}$ were obtained via slow evaporation of its dichloromethane solution at low temperature. Single crystal X-ray analysis finally confirmed the S-methylation. 32 crystallized in the monoclinic crystal system with space group $\mathrm{P} 2_{1} / \mathrm{c}$. Molecular structure of $\mathbf{3 2}$ is given in Figure 8.10 and selected bond lengths and angles are given in figure caption. It was found to be an all planar structure having the ${ }^{\mathrm{n}} \mathrm{Pr}$ and -SMe groups trans to eachother. The bond lengths and bond angles of $\mathbf{3 2}$ are comparable with those of $\mathbf{2 5}$, the $\mathrm{S} 2-\mathrm{C} 7$ bond length of $\mathbf{3 2}$ is also comparable with that of the literature known 4,8-dihydro-1,4-diphosphinine-2,5-bis(imidazolium)trifluoromethane sulfo-nate [dS2$\mathrm{C} 7=1.8114(1)] .{ }^{[126]}$

Scheme 8.7. Reaction of $\mathbf{2 5}$ with MeOTf.

Figure 8.10.Displacement ellipsoids plot (50% probability) of molecular structure of $\mathbf{3 2}$ in the crystal (left: topview, right_in-plane-view without anions). Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ P-C1 1.757(5), P-C3 1.749(5), C1-C3 1.391(7), S2-C7 1.799(6), C1-P-C3 98.5(2).

8.5 Reduction of $\mathbf{1 , 4}$-diphosphinine 25

As discussed before in the introduction, the reduction of phosphinines has been well established and several examples of λ^{3}-phosphinines were found to be easily reducible by alkali metals to generate paramagnetic anion radicals and diamagnetic dianions. ${ }^{[59 \mathrm{a}-\mathrm{c}]}$ Dimroth and co-workers reported that reduction of 2,4,6-triphenylphosphinine with potassium metal in THF generates even paramagnetic trianion radicals, however the ESR spectrum of that was not resolved. ${ }^{[59 a]}$ Later on, Märkl extended the investigations via combined CV and ESR studies of stepwise reduction of \mathbf{L} (Scheme 8.8). ${ }^{[61]}$ It has been demonstrated that in LXII the singly occupied orbital is symmetric with respect to the vertical mirrorplane passing through the phosphorus atom. LXII possess the large positive ${ }^{31} \mathrm{P}$ coupling constant $(+3.31 \mathrm{mT})$, giving rise to a noticeable hyperfne anisotropy and thereby it was regarded to be a P-centered radical with $g=2.00456 \pm 0.00005 .{ }^{[61]}$

Märkl characterized LXIV by virtue of ${ }^{31} \mathrm{P}$ and proton hyperfine coupling data.The ENDOR (Electron nuclear double resonance) experiment showed,in contrast to LXII, that the orbital of LXIVbeing occupied by a single electron has a vertical nodal plane through the P -atom, and this and the small and negative ${ }^{31} \mathrm{P}$ coupling value $(-0.267 \mathrm{mT})$ suggested a hydrocarboncentered radical with a gvalue of 2.0027. ${ }^{[61]}$

Scheme 8.8. Reduction of a phosphinine according to Märkl. ${ }^{[61]}$
However, none of such studies have been conducted for 1,4-diphosphinines successfully, so far; earlier attempts by Streubel and co-workers of twofold reductive cleavage of P-C bonds of 1,4-dihydro-1,4-diphosphinine (\mathbf{X}) havehad some success to generate (in situ) the tricyclic bis-phosphanide (CXLIII). However, it was not stable enough to be isolated (under these conditions) and, hence, was reacted with an electrophile (${ }^{(} \mathrm{BuI}$); the final product (CXLIV) was isolated and characterized (Scheme8.9). ${ }^{[14 c]}$

Scheme 8.9. Reductive cleavage of $\mathrm{P}-\mathrm{C}$ bonds to generate in situ tricyclic bis-phosphanide and its follow-up reaction with ${ }^{\mathrm{n}} \mathrm{BuI} .{ }^{[14 \mathrm{c}]}$

On the other hand reduction of thiones with potassium metal to generate carbenes (CXLVI) has been well established by Kuhn and co-workers for imidazole-2-thiones (Scheme 8.10). ${ }^{[152]}$

Scheme 8.10. Reduction of thiones to generate imidazole-2-ylidines accoring to Kuhn ($\mathrm{R}, \mathrm{R}^{\prime}=$ alkyl groups). ${ }^{[152]}$

Therefore, the thiazole-2-thione based 1,4-diphosphinine $\mathbf{2 5}$ represent a potential system that might undergo two-or even six-fold reduction processes, thus opening access to a dianionic and/or dianionic bis-carbenes, respectively. Both of which could open new areas of research.

8.5.1 Two-fold reduction of $\mathbf{1 , 4}$-diphosphinine 25

In order to study the reduction, an ether suspension of $\mathbf{2 5}$ was first treated with two equivalents of Li in diethyl ether. The mixture was stirred at ambient temperature for three days (Scheme 8.11). During this time the red colored suspension of the reaction mixture changed to form a dark blackish redprecipitate and a yellow solution. The precipitateshowed no solubility in $\mathrm{Et}_{2} \mathrm{O}$, so it was filtered and dissolved in THF. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this solution showed two major broad signals at -40.0 and -36.0 ppm which were tentatively assigned to the dianion 33a, constituting 96% of the reaction mixture according to NMR integration; the rest could not be identified. However, the proposed dianion 33a was found to be not stable as decomposition always occurred during theNMR experiments, thus precluding further characterization of the product.

Scheme 8.11. Two-fold reduction of 1,4-diphosphinine 25.
In an attempt to optimize the reaction and/or getting to a more stable product, KC_{8} was used as reducing agent in ether (Scheme 8.11). Initially two equivalents of KC_{8} were used which resulted in a fast reaction and generated dark reddish-black precipitate. Upon dissolution of the precipitate in THF, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR monitoring revealed a faster reaction which was more selective compared to Li. The formed dianionic salt 33b was stable enough to be characterized via NMR spectroscopy. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in THF- d_{8} solution showed two broad signals at -40.7 and -43.7 ppm which were tentatively assigned to the dianionic compound 33b being quite comparable with the imidazole-derived in situ prepared bis-phoaphanide $\operatorname{CXLIV}\left(\delta^{31} \mathrm{P}=-73.6\right){ }^{[14 \mathrm{c}]}$ (Figure 8.11). The appearance of two broad signals, rather than just one, can be explained with different (potential) coordination sides of the dianion and additional interactions of the counter cation with the solvent molecules acting
here as ligands. 33bwas isolated in good yield (70 \%) by filtration of its THF solution to remove the graphite and then subsequent drying in-vacuo $\left(8 \times 10^{-3}\right)$. It is noteworthy to mention that selective reaction was only obtained in the absence of other potentially strong coordinating ligands, for example crown ethers or cryptands. This has been shown by the use of such ligands under otherwise constant conditions which led only to unselective reactions.

Figure 8.11. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 3 b}$ in thf- d_{8}.
The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3 b}$ (thf-d 8) showed signals which were assigned to the protons of ${ }^{\text {n }}$ Pr groups: $\delta=0.92$ (br, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.76 (br, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.11 (br, $2 \mathrm{H}, \mathrm{CH}_{2}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{3}$). In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum all signals could be assigned to all carbon atoms of the proposed product: $\delta=11.7$ ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 21.5 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 50.5 (s , br, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $122.2\left(\mathrm{br},{ }^{4 / 5}\right), 143.6\left(\mathrm{br},{ }^{4 / 5}\right), 185.2$ (br, $C=\mathrm{S}$), 186.2 (br, $C=\mathrm{S}$). Furthermore, the MS spectrum (neg. ESI) showed a peak at 376.9670 which was not close to the expected m / z value of 187.9763 . But it was more in agreement with the calculated m / z value of the mono anion $\left.\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{~S}\right) \mathrm{H}\right]^{-}$(376.9599). This points to a protonation under the conditions of the ESI-MS measurement.

Compound 33b crystallized by cooling a concentrated THF solution at $-35^{\circ} \mathrm{C}$. The single crystal X-ray diffraction analysis was conducted (Figure 8.12) which confirmed the proposed constitution of this interesting low-coordinate phosphorus containing molecule which is the first example of its kind. 33b crystallized in monoclinic crystal system with space group $\mathrm{P} 21 / \mathrm{c}$. Four molecules were found to be present in the unit cell having one potassium cation
(K1) coordinated to the thione sulfur atoms of fourmolecules and one THF molecule. While the other potassium cation (K2) is coordinated with the thione sulfur atoms of two molecules, together with three THF molecules.Furthermore, the two potassium cations had alinkagewith K1-K2 distance of 4.4004(4) \AA. Upon comparison of the bond lengths and bond angles of 33b with the mono anionic compound 29b, it was concluded that the bond lengths and bond angles are quite similar except the P-C bond, which are somewhat longer in 29b [P1-C1 1.807(4), P1-C7 1.805(4), P2-C3 1.776(4), P2-C9 1.777(4)than those of 33b P1-C1 1.786(8), P1-C9 1.768(8), P2-C3 1.778(8), P2-C7 1.771(9).Likewise, the K-S23.2492(16) and KS43.2715(17) distances in 29b are also slightly shorter than those in 33b [K1-S4 3.191(3), K1-S6 3.194(4), K1-S10 3.164(4), K1-S14 3.113(3)].

Figure 8.12. Displacement ellipsoids plot (50% probability) of molecular structure of 33b in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ P1-C1 1.786(8), P1-C9 1.768(8), P2-C3 1.778(8), P2-C7 1.771(9), C1-C3 1.371(11), C7-C9 1.380(11). C1-P1-C9 96.8(4), C3-P2-C7 97.0(4).

In order to get chemical support for the two-fold reduction of $\mathbf{2 5}$, 2 eq. of ${ }^{\mathrm{B}} \mathrm{BuI}$ (or MeOTf) were added to the ether suspension of freshly prepared 33bat $-78{ }^{\circ} \mathrm{C}$,. This led to an immediate dissolution of the dark precipitate and a light yellow colored reaction solution was formed. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture with ${ }^{\mathrm{n}} \mathrm{BuI}$ (Figure 8.13) showed resonances at -44.0 and -38.4 pm which were easy to assign to the cis and trans isomers of $\mathbf{3 0 a}, \mathbf{a}$ 'of this compound. This was independently synthesized using another route: the sequential reaction of 1,4-diphosphinine $\mathbf{2 5}$ with ${ }^{\mathrm{n}} \mathrm{BuLi}$ and ${ }^{\mathrm{n}} \mathrm{BuI}$ (see section 8.2). 30a, a' was completely characterized via various means (NMR, MS, IR and EA and single crystal X-ray diffraction). A similar reactivity was recently reported of an in situ prepared bis-phosphanide by Streubel and co-workers (Figure 8.9), and the ${ }^{31} \mathrm{P}$ NMR resonances of $\mathbf{3 0 a}, \mathbf{a}^{\prime}\left(\delta^{31} \mathrm{P}=-44.0\right.$
$\&-38.4)$ are comparable to the follow-up product, i.e., 1,4 -dihydro-1,4-diphosphinine $\left(\delta^{31} \mathrm{P}=\right.$ $-58.5 \&-66.3) .{ }^{[14 c]}$ In case of MeOTf also a very selective reaction was observed, the ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture showed the formation of two isomers having resonances at $\delta=-50.2 \mathrm{ppm}$ (s) 16% and -54.2 ppm (s $2^{\text {nd }}$ isomer) 84%, assigned to the cis/trans isomers of $\mathbf{3 4}$. Compound $\mathbf{3 4 , 3 4}$ ' was isolated by in vacuo solvent removal yielding crude product, which was redissolved in toluene and filtered to remove the formed KOTf. 34,34' was isolated in excellent yield (88%) and characterized via NMR, MS and elemental enalysis.

Scheme 8.12. Synthesis of the dianion 33b and subsequent reaction with ${ }^{\mathrm{n}} \mathrm{BuI}$ and MeOTf.

Figure 8.13. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (THF) of the reaction e of dianion $\mathbf{3 3 b}$ with ${ }^{\mathrm{n}} \mathrm{BuI}$ (upper) and MeOTf (lower).

Chapter

Chapter 9: Summary

This PhD Thesis describes multigram syntheses of the first examples of C^{5}-phosphanylated thiazole-2-thiones including P-functional derivatives. It further details synthesis and reactions of thiazole-derived phosphaalkene and its tungsten(0) complex, 1,4-dihydro-1,4-diphosphinines and their conversion into 1,4-diphosphinines; initial reactivity studies on the latter were performed, too. First examples of two-fold reduction of a 1,4-diphosphinine leading to a novel, isolable 1,4 -dianionic species.All of the new compounds were fully characterized by spectroscopic means including X-ray diffraction studies in most cases.

In chapter 3 a detailed protocol for the synthesis of C^{5}-phosphanylated thiazole-2-thiones possessing various N - and P -substituents is presented. The key steps are (i) backbone lithiation of the heterocycle, (ii) in situ reactions with chloro(diorgano)phosphanes to afford 5a-e, (iii) and in situ reactions with dichloro(organo)phosphanes to give 6a,b (Scheme 9.1). Subsequent scrambling reaction of 5a-e and $\mathbf{6 b}$ with PCl_{3} furnished the corresponding chlorophosphanes 7a-e and $\mathbf{9}$, respectively.

Scheme 9.1. Synthesis of the C-phosphanylated thiazole-2-thiones 5, 6 and their conversion to P-chloro derivatives 7 and 9.

Chapter 4 describes the use of the C^{5}-chlorophosphanyl-thiazole-2-thione 7a into suitable precursors of a P-thiazolyl-phosphaalkene, including the P-diphenylmethyl-substituted compound 10, followed by the introduction of the $\mathrm{P}-\mathrm{Cl}$ functionality (11) and its dehydrohalogenation reaction with DBU to generate phosphaalkene $\mathbf{1 2}$ which suffered from decomposition (Scheme 9.2). To enhance the stability of the phosphaalkene, end-on pentacarbonyltungsten (0) complexation of $\mathbf{1 1}$ was performed andafforded $\mathbf{1 3}$ (Scheme 9.3). The subsequent dehydrohalogenation of using DBU in toluene furnished the phosphaalkene tungsten(0) complex 14, while a solvent-dependent dimerization afforded the dinuclear complex of 1,3 -diphosphetane $\mathbf{1 5 , 1 5}$ which was further studied by DFT calculations. The comparison of the relative energies suggested that the Gibbs free energies are very similar for both regioisomeric species having atrans conformation. Same was true for thedimer formation energy for both solvents: $-23.5 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $-23.9 \mathrm{kcal} / \mathrm{mol}$ in THF, thus, leading to the conclusion that the stability of reactants/products could not be differentiated via DFT analysis using the standard solvation methods.

Scheme 9.2.Synthesisof phosphaalkene complex 14 and itsdimer 15.
Chapter 5 describes the synthesis of the first thiazole-2-thione-based tricyclic 1,4-dihydro-1,4diphosphinines employing 7a as starting material. Different conditions and bases were tested resulting, finally, in a high-yield synthetic protocol of $\mathbf{1 7 a}$ using LDA as base. This was then expanded to other derivatives with different N - and P -substituents to access derivatives17bd(Scheme 9.3).

Scheme 9.3. Synthesis of tricyclic 1,4-dihydro-1,4-diphosphinines 17.
Chapter 6 describes the reactivity studies on the tricyclic 1,4-dihydro-1,4-diphosphinines $\mathbf{1 7}$. In particular, oxidation reaction with $\mathrm{H}_{2} \mathrm{O}_{2}$-urea, elemental sulfur and selenium resulted in the corresponding $\mathrm{P}(\mathrm{V}), \mathrm{P}^{\prime}(\mathrm{V})$ dioxide $\left(\mathbf{1 8}, \mathbf{1 8}\right.$ '), disulfide $\left(\mathbf{1 9 , 1 9}{ }^{\prime}\right)$ and diselenide (20,20') derivatives, respectively. Reaction of $\mathbf{1 7}$ with O-chloranil resulted in the formation of spirocyclic derivatives $\mathbf{2 1 , 2 1}$ ' in high yields. Reactions of $\mathbf{1 7}$ with a hard electrophile resulted in the formation of bis-thiazolium salts 23,23' via preferred S-methylation (Scheme 9.4). In order to achieve further P-functionalization the $P-\mathrm{NEt}_{2}$ derivatives $\mathbf{1 7 a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}$ were reacted with PCl_{3} thus giving 1,4-dichloro-1,4-diphosphinines $\mathbf{2 4 a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}$.

24a,a',b,b'

Scheme 9.4. Reactions of 1,4-dihydo-1,4-diphosphinine 17.
Chapter 7 describes the reduction of 1,4-dichloro-1,4-diphosphinine 24b using ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{P}$ as mild reducing agent leading to the novel thiazole-derived tricyclic aromatic 1,4-diphosphinine $\mathbf{2 5}$ in high yield (Scheme 9.5). The compound possesses anall-planar tricyclic structure with negative $\operatorname{NICS}(1)$ values $[\mathrm{NICS}(1)=-8.8$ (diphosphinine ring) $(\mathrm{NICS}(1)=-4.9$ (outer rings)] indicating aromaticity in all rings.

Scheme 9.5. Synthesis of 1,4-diphosphinine 25.
The intense red color of $\mathbf{2 5}$, determined via UV/vis spectra showing an absorption at $\lambda_{\max } 497$ nm, was analyzed by TD-DFT calculations, thus enabling attribution to a $\pi-\pi^{*}$ excitation; the latter is in accordance with the calculated HOMO-LUMO gap (2.99 eV). Cyclo voltammetric studieson 25 showed two reversible reduction process at $\mathrm{E}=-1.28$ and -1.45 V vs the ferrocene/ferrocenium redox couple.

Chapter 8 describes reactions of 1,4-diphosphinine 25 including [4+2] cycloadditions with electron deficient dienophiles such as DMAD and N-phenyl maleimide to yield selectively 26 and 27, respectively (Scheme 9.6). However, the reaction of 25 with 4-phenyl-1,2,4-triazoline-3,5-dione to give 28was reversible under given conditions; at a temperature of 60 ${ }^{\circ} \mathrm{C}$ the ratio of 25:28 was determined (95:5) via ${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR signal integration.

28

Scheme 9.6. Synthesis of 1,4-diphosphinine 25 and some [4+2]-cycloaddition reactions.
Furthermore, fundamental reactions of the 1,4-diphosphinine $\mathbf{2 5}$ with nucleophiles followed by addition of electrophiles are detailed. In particular, reactivity towards nucleophiles (${ }^{\mathrm{n}} \mathrm{BuLi}$ and KHMDS) was investigated, and even a week nucleophile such as KHMDS was found to react selectively via addition to the P-center (Scheme 9.7). In both cases, selective formation of the corresponding novel mono-anions 29a,b were achieved. Whereas 29a could be generated only and in situ reacted with ${ }^{n} B u I$ to afford 30a. In contrast, 29b was isolated and fully characterized including X-ray diffraction wrevealing a 1D-coordination polymer structure with K-S linkages in the solid state. 29b reacted selectively with $\mathrm{Ph}_{2} \mathrm{PCl}$ to give the substitution product 30b. Even more interesting was the oxidation of 29bwith a half equivalent of I_{2} selectively affording the $\mathrm{P}-\mathrm{P}$ coupled product $\mathbf{3 1}$.

Scheme 9.7. Sequential addition of nucleophiles/electrophiles to 1,4-diphosphinine $\mathbf{2 5}$ to give $\mathbf{3 0 a}, \mathbf{b}$ and its oxidation with I_{2} to give 31.

Furthermore, initial efforts towards the synthesis of bis-carbenes were undertaken. Firstly and based on the theoretically proposed frontier orbital situation, the nucleophilicity of the S centers of 1,4-diphosphinine $\mathbf{2 5}$ was experimentally examined using areaction with the hard electrophile MeOTf. This resulted in a selective formation of the corresponding doubly S methylated bis-thiazolium salt 32 possessing an unaffected tricyclic 1,4-diphosphinine unit which was fully characterized and structurally confirmed by X-ray diffraction analysis (Scheme 9.8).

Scheme 9.8. Reaction of $\mathbf{2 5}$ with 2 eq. of MeOTf to give 32.

Of particular importance was the outcome of reduction studies of 1,4-diphosphinine 25. With two equivalents of potassium graphite in diethyl ether the corresponding dianionic compound 33bwas obtained selectively which was characterized via NMR spectroscopy and firmly established via single crystal X-ray diffraction analysis. Further derivatization using 2 eq. of ${ }^{\mathrm{n}} \mathrm{BuI}$ or MeOTf as electrophiles yielded30aand 34, respectively (Scheme 9.9).

Scheme 9.9. Reduction of 1,4-diphosphinine $\mathbf{2 5}$ with KC_{8} to give $\mathbf{3 3 b}$ and its follow-up reactions with ${ }^{n} \mathrm{BuI}$ and MeOTf.

Chapter
 10

Chapter 10: Experimental section

10.1 General

All reactions were performed using standard Schlenk techniques under dried (using molecular sieve and phosphorus pentoxide) and deoxygenated (using preheated BTS catalyst at 100-130 ${ }^{\circ} \mathrm{C}$) Argon gas environment. All air and/or moister-sensitive chemicals were stored in either Schlenk flasks or handled in the glovebox. All the solvents used in reactions were dried; Tetrahydrofuran, diethyl ether and n-pentane were dried over sodium wire/benzophenon. Dichloromethane was dried over calcium hydride and further purification was done by distillation and stored in brown glass bottles having Schlenk connections. All glass wares used were dried by heating in the oven prior to use. Schlenk flasks or tubes were prepared before use, by heating under high vacuo and subsequently refilling with Argon gas. OKS grease type 1112 was used for lubrication of all glass joints. The high temperature reactions were done with an oil bath whereas the low temperature ones were performed using a liquid nitrogen/ethanol bath. For the purpose of removing salts formed in the reaction mixture common G3 frits having two Schlenk joints were used, along with either silica gel (Merck 60200) or Celite. For transferring solvents or filtering, stainless steel double needle or filter cannula were used, which were preheated and dried in the oven at $75^{\circ} \mathrm{C}$. Whatman filter papers or glass microfiber filter papers were used for filtration purposes. All the used glass wares were soaked overnight in a KOH -isopropanol bath having some NaOCl (for oxidizing the metal impurities) and then dipped into a HCl -water bath for the sake of neutralization prior to washing with soap water. Then the cleaned glass wares were rinsed with deionized water and acetone simultaneously before drying at $120^{\circ} \mathrm{C}$ in the oven overnight.

10.2 Melting point determination

A Büchi 535 Type S melting point apparatus was used for melting points (or decomposition temperatures) determination, where the sample were placed inside a both sided closed glass capillary tubes; the values are not corrected.

10.3 Elemental analysis

All the elemental analyses were performed with an Elementar Vario Micro elemental analyser by the micro analysis section of the Chemical Institute of the University of Bonn. The given values are the mean of at least three values.

10.4 NMR spectroscopy

Bruker Avance DMX-300, DPX-300, DPX-400 or DMX-500 spectrometers were used to record all the NMR spectra. Dried $\left(\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, THF- d_{8} or $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ using literature procedures were used for the multinuclear NMR characterizations and the chemical resonances are given relative to Tetramethylsilane ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{29} \mathrm{Si} \mathrm{NMR}\right), 1 \mathrm{M} \mathrm{LiCl}$ in $\mathrm{D}_{2} \mathrm{O}\left({ }^{7} \mathrm{Li}\right.$ NMR), $15 \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CDCl}_{3}\left({ }^{11} \mathrm{~B} \mathrm{NMR}\right), \mathrm{CFCl}_{3}\left({ }^{19} \mathrm{~F} \mathrm{NMR}\right)$ or $85 \% \mathrm{H}_{3} \mathrm{PO}^{4}\left({ }^{31} \mathrm{P} \mathrm{NMR}\right)$, respectively. The following abbreviations were used for expression of the multiplicities of the resonance signals: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, sept $=$ septet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad signal. The chemical shifts are expressed in parts per million, ppm. Coupling constants are abbreviated as ${ }^{n} J_{X, Y}$ whereas X and Y express the coupling nuclei (In decending order of atomic number, n denote the number of bonds that separate X and Y). Generally the measurements were performed at 298 K unless some specific temperature is given. For the assignment of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR signals, HMQC, HMBC and DEPT experiments were used.

10.5 Mass spectrometry

Electron ionization mass spectra were recorded on a 95 XL Finnigan using EI (70 eV). ESI mass spectra were recorded on a Bruker Daltonik micrOTOF-Q. LIFDI mass spectra were recorded on a Thermo Finnigan MAT 90 sector instrument equipped with a LIFDI ion source (Linden CMS).

10.6 UV/vis spectroscopy

A Shimadzu UV-1650PC spectrometer ($\lambda=190-900 \mathrm{~nm}$) was used to obtain UV/vis spectra using dichloromethane/THF as the solvent and quartz glass cells (Hellma) of optical path 1 cm at ambient temperature.

10.7 Infrared spectroscopy

IR-spectra were recorded on a Thermo IR spectrometer with an attenuated total reflection (ATR) attachment or on a Bruker Alpha Diamond ATR FTIR spectrometer at room temperature. Following are the abbreviations used for expression of the intensities of the absorption bands:
vs $=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.

10.8 Cyclic voltammetry

Cyclic voltammograms (CVs) were measured under rigorous exclusion of the atmosphere by working in an argon-filled glove box. CVs measured at Au and Pt electrodes "screen printed" onto patterned ceramic plates were very similar and the analysis is here reported in detail only for results at the Pt-surfaced electrodes. The starting potential of -0.690 V (versus $\mathrm{Fc}^{+/ 0}$; all potentials are quoted on this scale) was determined from an open circuit potential (o.c.p.) experiment. Electrochemical samples were recorded with scan rates of $10-500 \mathrm{mVs}-1$ at r.t. under Ar atmosphere. Ferrocene was used as internal/external reference to determine the potentials. Sample solutions (THF) were 2 mM in analyte and 0.2 M in n - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte

10.9 Single crystal X-ray diffraction studies

Single crystal were grown mostly by slow evaporation of saturated solutions of the compounds at $-35^{\circ} \mathrm{C}$ or bydiffusion of non polar solvent into the sample solution. Once grown the single crystalas were separated from thesupernatantsolution and were covered with Fomblin to avoid decomposition.A suitable single crystal was selected under the microscope and loaded onto the diffractometer. Thecrystallographic data was collected on Brucker D8Venture diffractometer, Bruker X8-KappaApexII,Bruker APEX-II CCD, Nonius KappaCCD or STOE IPDS 2T diffractometer equipped with a lowtemperaturedevice at 100.0 K using graphite monochromated $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation $\left(\lambda=1.54178 \AA\right.$) orCu- K_{α} radiation $(\lambda=1.54178)$. The absorption correction, structure solution and structurerefinementwasperformed by Patterson methods or by fullmatrix least squares on F_{2} using theSHELXL-97 programs. The non-hydrogen atoms were refined anisotropically, the hydrogen atomswere included isotropically using the riding model on the bound carbon atoms. For data analyses and further picture preparation of the molecular structure for compounds were done using Diamond3.0 program.

10.10 Chemicals used

All the commercially available chemicals used for experiments are listed below along with the supplier name in the brackets. The chlorophosphanes were further purified by fractional distillation.

10.11 List of chemicals used (commercially available)

Chemicals Supplier Chemicals Supplier

- Acetonitrile (Fisher Scientific)
- n-Butylamine (Acros)
- n-Butyllithium (Acros)
- Carbondisulfide (Sigmaaldrich)
- Chloroform (Fisher Scientific)
- Chloroform-d (Eurisotop)
- Chloroacetaldehyde (Acros)
- Diethylether (VWR)
- Dichloromethane (Biesterfeld)
- Diisopropylamine (Acros)
- Dimethylaminodichlorophosphane (Sigmaaldrich)
- Dimethylsulfoxide (Acros)
- Dimethylacetylenedicarboxylate (Acros)
- Diphenylmethane (Acros)
- Diphenylchlorophosphane (Alfa Aesar)
- Ethanol (Hofmann)
- Lithium metal (Sigmaaldrich)
- Methanol (Aldrich)
- Methyamine (Sigmaaldrich)
- Potassium metal (Riedel de Haen)
- n-Pentane (Grüssing)
- o-Chronil (Across)
- Petrol ether 40/60 (Biesterfeld)
- Phenyldichlorophosphane (Acros)
- 1-Phenylpyrrole-1,5-dione (abcr)
- 4-phenyl-1,2,4-triazoline-3,5-dione (abcr)
- Phosphorustrichloride (Acros)
- Sodium Metal (Riedel de Haen)
- Sodium hydroxide(Sigmaaldrich)
- Selenium (Acros)
- Sulfur (Acros)
- Sulfuricacid (Fluka)
- Tetrahydrofuran (Fisher Scientific)
- THF-d8 (Eurisotop)
- Triflicacid methyl ester (Sigmaaldrich)
- Tributylphosphane (Acros)
- Triethylamine (Sigmaaldrich)
- Toluene (Fisher Scientific)
- Tungstenhexacarbonyl (Across)
- Hydrogen peroxide (Acros)
- Hydrogen peroxide-urea adduct (Acros)
- Iodine (Grüssing)
- Isopropylamine(Sigmaaldrich)
- Isopropanol (Biesterfeld)
- Water-d2 (Eurisotop)

The following compounds were synthesized according to literature known protocols:

- $\operatorname{Bis}($ diethylamino $)$ chlorophosphane, ${ }^{[153]}$
- N -methyl thiazole-2-thione, ${ }^{[74 \mathrm{a}]}$
- N -isopropyl thiazole-2-thione, ${ }^{[74 \mathrm{~b}]}$
- $\mathrm{N}-{ }^{\mathrm{n}}$ propyl thiazole-2-thione. ${ }^{[746]}$
- Potassium graphite ${ }^{[154]}$

10.12 Synthesis of 5-phosphanyl-thiazole-2-thiones (5a-e)

To a solution of the thiazole-2-thiones 4a-c in THF, "butyllithium (for $\mathbf{4 a}$) or "butyllithium (for $\mathbf{4 b}, \mathbf{c}$) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was slowly warmed to $-70^{\circ} \mathrm{C}$ where it was stirred for 3 h . Subsequently, the reaction mixture was cooled again to $-90{ }^{\circ} \mathrm{C}$ whereupon $\mathrm{Et}_{2} \mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{PCl}$ was added. The reaction mixture was stirred overnight as it slowly warmed up to ambient temperature. The orange colored solution was concentrated in vacuo
($8 \cdot 10-3 \mathrm{mbar}$) and the residue was taken up in dry dichloromethane and filtered through a 3 G frit having a celite pad to remove the formed lithium chloride. The solvent was removed from the filtrate and the product was dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. The residue was washed twice with n-pentane ($2-3 \mathrm{~mL} / \mathrm{g}$ of the product) and dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. Yellow to white solids (5a-5e) were thus obtained.

10.12.1 3-Methyl-5-bis(diethylamino)phosphanyl-thiazole-2-thione (5a)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{4 a}$	4.09 g	31.17
${ }^{\mathrm{t}} \mathbf{B u L i}(\mathbf{1 . 9} \mathbf{~ M}$	17.21 mL	32.70
in hexane)	7.20 mL	34.24
$\left(\mathbf{E t}_{2} \mathbf{N}\right)_{\mathbf{2}} \mathbf{P C l}$	130 mL	
$\mathbf{T H F}$		

Yield: $8.42 \mathrm{~g}(27.56 \mathrm{mmol}) 88.4 \%$; light yellow solid.
Melting point: $83^{\circ} \mathrm{C}$
Elemental composition: $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{PS}_{2}$
Molecular weight: $305.43 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$-NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=1.0\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.02(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.6 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.73 ($\mathrm{s} \mathrm{br}, 1 \mathrm{H},{ }^{4} \mathrm{C}-H$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($75.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $: \delta=13.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 36.6\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 41.5$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=17.9 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{CH}_{3}\right), 128.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=14.0 \mathrm{~Hz}, C^{5}\right), 132.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=17.6 \mathrm{~Hz}, C^{4}\right)$, 189.5 (s, $C=\mathrm{S}$).
${ }^{{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}-\mathrm{NMR}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)}: \delta=79.6(\mathrm{~s})$.
IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $: \tilde{v}=2970$ (s$), 2929$ (s), 2859 (m), 2705 (s$), 2518$ (s$), 1556$ (vs), 1558 (vs), 1375 (vs), 1335 (vs), 1193 (vs), 1133 (vs), 1023 (s), 987 (vs), 917 (vs), 902 (s), 847 (s), 791 (s), 703(s), 665(s).

MS (EI, $70 \mathbf{e V}$): m / z (\%) 305.1152 (48) $[\mathrm{M}]^{+}, 233$ (100) $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}\right]^{+}$, 175.1 (8) $\left[\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{P}\right]^{+}, 130.9$ (10) $\left[\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{P}\right]^{+}, 72.0$ (5) $\left[\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}\right]^{+}$.

HR-MS: found: 305.1152 calc. 305.1149 .
Elemental analysis for: $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{PS}_{2}$:

Calculated	C	47.19	H	7.92	N	13.76	S	20.99
Found	C	46.81	H	7.68	N	13.67	S	20.89

10.12.2 3-Isopropyl-5-bis(diethylamino)phosphanyl-thiazole-2-thione (5b)

	amount used $(\mathbf{g} / \mathbf{m L})$	mmol
4b	2.77 g	17.38
${ }^{\mathbf{n}} \mathbf{B u L i}(\mathbf{1 . 6} \mathbf{~ M}$	11.95 mL	19.12
in hexane)		
$\left(\mathbf{E t}_{\mathbf{2}} \mathbf{N}\right)_{\mathbf{2}} \mathbf{P C l}$	4.38 mL	20.86
THF	110 mL	

Yield: $5.64 \mathrm{~g}(16.91 \mathrm{mmol}) 98$, white solid

Melting point: $84.5^{\circ} \mathrm{C}$
Elemental composition: $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{PS}_{2}$

Molecular weight: $333.49 \mathrm{~g} / \mathrm{mol}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=1.07\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.37\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.8\right.$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.09\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.32\left(\right.$ heptet, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, \mathrm{IH}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 6.9(\mathrm{~s}$ br, $\left.1 \mathrm{H},{ }^{4} \mathrm{C}-H\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (75.5 MHz, CDCl ${ }_{3}$) $: \delta=14.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.9\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $42.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=17.9 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{CH}_{3}\right), 50.6\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) 128.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=18.2 \mathrm{~Hz}, C^{4}\right), 130.6(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{C}}=13.6 \mathrm{~Hz}, C^{5}\right), 189.5(\mathrm{~s}, C=\mathrm{S})$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=79.7$ (s).
IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=665(\mathrm{~m}), 703(\mathrm{vs}), 778(\mathrm{vs}), 795(\mathrm{~s}), 810(\mathrm{vs}), 901(\mathrm{vs}), 920(\mathrm{~m}), 996$ (m), 1010 (m), 1022 (vs), 1051 (vs), 1082 (s), 1094 (vs), 1176 (m), 1192 (m), 1284 (m), 1316 (m), 1326 (w), 1368 (s), 1374 (s), 1396 (s), 1454 (vs), 1543 (vs), 2856 (vs), 2927 (vs), 2967 (vs).

MS (EI, 70 eV): $m / z(\%) 333.1$ (38) $[\mathrm{M}]^{+}, 261.0(100)\left[\mathrm{M}-\mathrm{Et}_{2} \mathrm{~N}\right]^{+}$.
HR-MS: found: 333.1461 calc. 333.1464 .

Elemental analysis: for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{PS}_{2}$:

Calculated	C	50.42	H	8.46	N	12.60	S	19.23
Found	C	50.19	H	8.44	N	12.57	S	19.34

10.12.3 3-"Propyl-5-bis(diethylamino)phosphanyl-thiazole-2-thione (5c)

	amount used (g/mL)	mmol
$\mathbf{4 c}$	2.53 g	15.92
${ }^{\mathbf{n}} \mathbf{B u L i}(\mathbf{1 . 6 ~ M}$		
in hexane)	10.9 mL	17.52
$\left(\mathbf{E t}_{\mathbf{2}} \mathbf{N}\right)_{\mathbf{2}} \mathbf{P C l}$	3.85 mL	18.31
$\mathbf{T H F}$	82 mL	

Yield: 4.92 g (14.75 mmol$) 93$ \%; Light yellow sticky solid.
Melting point: $49^{\circ} \mathrm{C}$

Elemental composition: $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{PS}_{2}$
Molecular weight: $333.49 \mathrm{~g} / \mathrm{mol}$
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $: \delta=0.98\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.30 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.07\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $\left.=7.10 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.09\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.09\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ $7.50 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) 6.79 (s br, $1 \mathrm{H},{ }^{4} \mathrm{C}-H$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (75.5 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta=11.1\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=3.2 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 42.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=17.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.5\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $129.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=14.0 \mathrm{~Hz}, C^{5}\right), 132.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=18.0 \mathrm{~Hz}, C^{4}\right), 190.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=1.0 \mathrm{~Hz}, C=\mathrm{S}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (121.5 MHz, CDCl $\left.\mathbf{N a}_{3}\right): ~ \delta=79.2(\mathrm{~s})$.

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{\mathbf{- 1}}\right\}$) : $\mathfrak{v}=2960$ (s), 2930 (vs), 2865 (vs), 1449 (vs), 1436 (vs), 1370 (w), 1320 (s), 1294 (s), 1225 (m), 1191 (m), 1176 (m), 1138 (w), 1105 (s), 1072 (vs), 1048 (vs), 1009 (m), 989 (w), 919 (w), 884 (s), 876 (s), 805 (m), 794 (m), 752 (vs), 710 (s), 665 (w).
$\underline{\text { MS (EI, } 70 \mathrm{eV})}: m / z(\%) 333.1(38)[\mathrm{M}]^{+}, 261.0(100)\left[\mathrm{M}-\mathrm{Et}_{2} \mathrm{~N}\right]^{+}, 189.9$ (50) $\left[\mathrm{M}-2 \mathrm{Et}_{2} \mathrm{~N}\right]^{+}$, $175.1(7)\left[\left(\mathrm{Et}_{2} \mathrm{~N}\right)_{2} \mathrm{P}\right]^{+}$.

HR-MS: found: 333.1465 calc. 333.1462 .

10.12.4 3-Methyl-5-phenyl(diethylamino)phosphanyl-thiazole-2-thione (5d)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{4 a}$	2.50 g	19.05
${ }^{\text {t } \mathbf{B u L i}} \mathbf{(\mathbf { 1 . 7 } \mathbf { ~ M }}$	12.32 mL	20.95
in hexane)		
$\mathbf{P h (E t _ { \mathbf { 2 } } \mathbf { N }) \mathbf { P C l }}$	4.12 mL	20.95
$\mathbf{T H F}$	80 mL	

Yield: $5.00 \mathrm{~g}(16.10 \mathrm{mmol}) 84 \%$; white sticky solid.

Elemental composition: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{PS}_{2}$

Molecular weight: $310.41 \mathrm{~g} / \mathrm{mol}$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \mathbf{2}: \delta=1.05\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.0(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=4.5 \mathrm{~Hz}, 1 \mathrm{H},{ }^{4} \mathrm{C}-H\right), 7.30-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (75.5 MHz, CDCl $\mathbf{M a}_{3}$) $\delta=14.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=3.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 37.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 44.2$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=14.9 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{CH}_{3}\right), 126.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=55.6 \mathrm{~Hz}, C^{5}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=5.0 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right)$,
$128.5\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=1.0 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=17.8 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 138.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=46.9 \mathrm{~Hz}, C^{4}\right)$, $138.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=1.3 \mathrm{~Hz}\right.$, ipso-C6 $\left.\mathrm{H}_{5}\right) 191.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{P}, \mathrm{C}}=1.6 \mathrm{~Hz} C=\mathrm{S}\right)$.

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=44.4$ (s).

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=3010$ (vs), 2964 (vs), 1540 (vs), 1455 (vs), 1430 (s), 1414 (vs), 1378 (s), 1333 (w), 1292 (vs), 1219 (vs), 1193 (vs), 1169 (vs), 1134 (m), 1108 (s), 1052 (vs), 1019 (s), 989 (w), 920 (m), 908 (s$), 861$ (vs), 791 (vs), 779 (vs), 748 (w), $700(\mathrm{~m}), 694$ (s$), 655(\mathrm{~m})$.

MS (EI, $70 \mathbf{e V}$: $m / z(\%) 237.1$ (10) $\left[\mathrm{M}-\mathrm{Et}_{2} \mathrm{~N}\right]^{+}, 180.0$ (100) $\left[\mathrm{P}\left(\mathrm{Et}_{2} \mathrm{~N}\right) \mathrm{Ph}\right]^{+}, 130.9$ (30) [M$\left.\mathrm{P}\left(\mathrm{Et}_{2} \mathrm{~N}\right) \mathrm{Ph}\right]^{+}$,

HR-MS: found: 310.0727 calc. 310.0727 .

10.12.5 3-"Propyl-5-phenyl(diethylamino)phosphanyl-thiazole-2-thione (5e)

	amount used (g/mL)	mmol
$\mathbf{4 c}$	6.58 g	41.33
${ }^{\mathbf{n}} \mathbf{B u L i}(\mathbf{1 . 6} \mathbf{~ M}$	27.13 mL	43.40
in hexane)		
Ph(Et $\mathbf{2} \mathbf{N}) \mathbf{P C l}$	8.54 mL	43.40
THF	215 mL	

Yield: 11.36 g (33.56 mmol) 80%; white solid
Melting point: $99^{\circ} \mathrm{C}$

Elemental composition: $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{PS}_{2}$

Molecular weight: $338.47 \mathrm{~g} / \mathrm{mol}$
${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($500.1 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $: \delta=0.98\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.15 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.04\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.7.34 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $3.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.12(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.24\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{P}, \mathrm{H}}=4.78 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{4}-H\right), 7.26-7.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} H_{5}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($\mathbf{1 2 5 . 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}: \delta=11.1\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=3.5 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 44.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=14.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.4\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $126.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=54.7 \mathrm{~Hz}, C^{5}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=4.9 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 128.6\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 130.2\left(\mathrm{~d} J_{\mathrm{P}, \mathrm{C}}=\right.$ $\left.17.3 \mathrm{~Hz} C_{6} \mathrm{H}_{5}\right), 137.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=47.3 \mathrm{~Hz}, C^{4}\right), 138.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=0.7 \mathrm{~Hz}\right.$, ipso-C $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 190.9(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{P}, \mathrm{C}}=1.3 \mathrm{~Hz} C=\mathrm{S}\right)$,
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}-\mathrm{NMR}\left(\mathbf{2 0 2 . 4} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=44.3$ (s).
IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=2962$ (vs), 2927 (vs), 2872 (vs), 2483 (vs), 1541 (vs), 1477 (vs), 1452 (vs), 1433 (s), 1373 (m), 1318 (vs), 1288 (s), 1211 (s), 1194 (s), 1165 (s), 1132 (w), 1110 (m), 1072 (m), 1050 (m), 1014 (m), 982 (w), 924 (m), 880 (s), 824 (s), 795 (s), 747 (m), 702 (m), 658 (s), 584 (vs), 546 (s), 528 (m), 514 (m), 481 (m), 436 (m), 406 (w).

MS (EI, 70 eV) $: m / z(\%) 338.1$ (25) $[\mathrm{M}]^{+}, 295.0$ (5) $\left[\mathrm{M}-{ }^{-\mathrm{Pr}}\right]^{+}, 266.0$ (27) $\left[\mathrm{M}-\mathrm{Et}_{2} \mathrm{~N}\right]^{+}, 261.0$ (3) $[\mathrm{M}-\mathrm{Ph}]^{+}$.

HR-MS: found: 338.1035 calc. 338.1040 .

Elemental analvsis: for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{PS}_{2}$: found:

Calculated	C	56.78	H	6.85	N	8.28	S	18.94
Found	C	56.42	H	6.72	N	8.29	S	18.83

10.13 Synthesis of bis(thiazolyl)phosphanes 6a,b.

To a solution of the thiazole-2-thione $\mathbf{4 b}$ in THF, "butyllithium was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was slowly warmed to $-70^{\circ} \mathrm{C}$ where it was stirred for 3 h . Subsequently, the reaction mixture was cooled again to $-90{ }^{\circ} \mathrm{C}$ whereupon RPCl_{2} was added. The reaction mixture was stirred overnight as it slowly warmed up to ambient temperature. The orange colored solution was concentrated in vaсиo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$ and the residue was taken up in dry dichloromethane and filtered through a 3 G frit having a celite pad to remove the formed
lithium chloride. The solvent was removed from the filtrate and the product was dried in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$). The residue was washed twice with pentane ($3-4 \mathrm{~mL} / \mathrm{g}$ of the product) and dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. Both $\mathbf{6 a}$ and $\mathbf{6 b}$ were obtained as white solid.

10.13.1 Bis(3-isopropyl-thiazole-2-thione-5-yl)-phenylphosphane (6a)

	amount used $(\mathbf{g} / \mathbf{m L})$	mmol
4b	8.00 g	50.22
nBuLi (1.6 M in hexane)	34.53 mL	55.25
$\mathbf{P h P C l}_{\mathbf{2}}$	3.91 mL	28.81
THF	270 mL	

Yield: 18.00 g (42.39 mmol$) 84.4 \%$; white solid.

Melting point: $233{ }^{\circ} \mathrm{C}$
Elemental composition: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{PS}_{4}$
Molecular weight: $424.59 \mathrm{~g} / \mathrm{mol}$
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{5 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2} \mathbf{2}: \delta=1.40\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.83 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.30$ (heptet,
$\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.89 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.38-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} H_{5}\right), 7.44\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=5.77 \mathrm{~Hz}, 2 \mathrm{H},{ }^{4} \mathrm{C}-\right.$ $H)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 5 . 7} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=21.9\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 51.3\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 120.6(\mathrm{~d}\right.$, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{C}}=30.4 \mathrm{~Hz}, C^{5}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=6.7 . \mathrm{Hz}, C_{6} \mathrm{H}_{5}\right), 130.1\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=18.6 . \mathrm{Hz}\right.$, $C_{6} H_{5}$), 134.4 (s, ipso- $C_{6} \mathrm{H}_{5}$), $136.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=49.4 \mathrm{~Hz}, C^{4}\right), 191.1(\mathrm{~s}, C=\mathrm{S})$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{2 0 2 . 5} \mathbf{M H z}, \mathbf{C D}_{2} \underline{C l}_{2}$): $\delta=-42.0(\mathrm{~s})$.

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=3120$ (vs), 2975 (vs), 2931 (vs), 1545 (s), 1536 (s), 1459 (vs), 1433 (s), 1391 (m), 1376 (s), 1367 (s$), 1321$ (s$), 1309$ (m), 1274 (m), 1190 (m), 1167 (s), 1135 (vs), 1084 (m), 993 (m), 967 (s , 916 (s$), 846$ (vs), 822 (m), 742 (m), 695 (m).

MS (EI, 70 eV): $m / z(\%) 424.1$ (50) $[\mathrm{M}]^{+}, 363.0$ (18) $[\mathrm{M}-2 \mathrm{~S}]^{+}, 267.1$ (60) $\mathrm{M}-\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NS}_{2}\right]^{+}, 77.1$ (20) $[\mathrm{Ph}]^{+}$.

HR-MS: found: 424.0322 calc. 424.0325.
Elemental analysis: for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{PS}_{4}$:

Calculated	C	50.92	H	4.99	N	6.60	S	30.20
Found	C	50.72	H	4.94	N	6.65	S	30.62

10.13.2 Bis(3-isopropyl-thiazole-2-thione-5-yl)-diethylaminophosphane (6b)

	amount used $(\mathbf{g} / \mathbf{m L})$	mmol
4b	1.72 g	10.79
nBuLi (1.6 M in hexane)	7.4 mL	11.85
$\mathbf{E t}_{\mathbf{2}} \mathbf{N P C l} \mathbf{2}_{\mathbf{2}}$	0.86 mL	5.91
THF	60 mL	

Yield: $4.32 \mathrm{~g}(10.29 \mathrm{mmol}) 95.5 \%$, white solid:
Melting point: $166^{\circ} \mathrm{C}$

Elemental composition: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{PS}_{4}$

Molecular weight: $419.62 \mathrm{~g} / \mathrm{mol}$
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=1.03\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.03 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.7.55 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.03\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.30$ (heptet, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.79 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.12\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=3.5,2 \mathrm{H},{ }^{4} \mathrm{C}-H\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $: \delta=14.3\left(\mathrm{~d},{ }^{3}{ }^{3} J_{\mathrm{P}, \mathrm{C}}=3.7 \mathrm{~Hz} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.9(\mathrm{~s}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.0\left(\mathrm{~s},\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 125.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=34.9\right.\right.$ $\left.\mathrm{Hz}, C^{5}\right), 132.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=37.9 \mathrm{~Hz}, C^{4}\right), 189.9(\mathrm{~s}, C=\mathrm{S})$.

${ }^{{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \text { NMR (} \mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3} \text {) }: \delta=28.3 \text { (s). } ~}$

 (s), 1369 (s), 1322 (m), 1314 (m), 1280 (w), 1202 (m), 1169 (s), 1133 (vs), 1094 (m), 1082 (w), 1019 (s), 1002 (w), 990 (w), 923 (s), 855 (vs), 830 (vs), 812 (s), 799 (s), 780 (vs), 737 (vs), 703 (s), 687 (vs), 658 (s).

MS (EI, 70 eV$): m / z(\%) 419.1$ (80) $[\mathrm{M}]^{+}, 347$ (100) $\left[\mathrm{M}-\mathrm{Et}_{2} \mathrm{~N}\right]^{+}, 262.9$ (40) $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NS}_{2}\right]^{+}$, 72.1 (18) $\left[\mathrm{Et}_{2} \mathrm{~N}\right]^{+}$

HR-MS: found: 419.0750 calc. 419.0747.
Elemental analysis: for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{PS}_{4}$: found:

Calculated	C	45.80	H	6.25	N	10.01	S	30.56
Found	C	42.72	H	5.84	N	9.29	S	28.73

10.14 Synthesis of 5-(chloro)phosphanyl substituted thaizole-2-thiones 7a-e

C^{5}-Phosphanyl-thiazole-2-thione (5a-e) was dissolved in dry diethyl ether (or dichloromethane for 7d, 7e) in a Schlenk flask and cooled to $-60^{\circ} \mathrm{C}$. Phosphorus trichloride $\left(\rho=1.570 \mathrm{~g} / \mathrm{cm}^{3}\right)$ was added dropwise and the reaction mixture was slowly warmed up to
room temperature and stirred for two hours. The solvent was removed in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$, and the residue was washed twice with n-pentane ($2-3 \mathrm{~mL} / \mathrm{g}$ of the product) and dried in vaсиo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. A white to yellow solid was thus obtained.

10.14.1 3-Methyl-5-diethylamino(chloro)phosphanyl-thiazole-2-thione (7a)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{5 a}$	5.06 g	16.56
$\mathbf{P C l}_{\mathbf{3}}$	1.58 mL	17.39
$\mathbf{E t}_{\mathbf{2}} \mathbf{O}$	130 mL	

Yield: $4.28 \mathrm{~g}(15.92 \mathrm{mmol}) 96 \%$; white solid.
Melting point: $80^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{PS}_{2}$

Molecular weight: $268.75 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H - N M R}\left(400.1 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=1.0\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.1(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.6 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $7.2\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}^{4}-\mathrm{H}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=14.0\left(\mathrm{~d},{ }^{3}{ }^{\mathrm{P}, \mathrm{C}}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 37.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 43.5$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=14.8 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{CH}_{3}\right), 126.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=48.5 .0 \mathrm{~Hz}, C^{5}\right), 136.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=20.5 \mathrm{~Hz}, C^{4}\right)$, 191.0 ($\mathrm{s}, C=\mathrm{S}$).
$\xrightarrow{{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \text { NMR (} \mathbf{1 6 1 . 9} \mathbf{~ M H z}, \mathbf{C D C l}_{3} \text {) }: \delta=114.5(\mathrm{~s}) .}$
IR (ATR, $\left.\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}\right): \tilde{v}=2971$ (s), 2821 (m), 2774 (m), 2751 (w), 2482 (s), 2387 (w), 1555 (vs), 1538 (m), 1453 (m), 1376 (s), 1322 (vs), 1238 (m), 1206 (vs), 1139 (s), 1023 (vs), 1000 (s), 1007 (s), 981 (s$), 942$ (vs), 826 (s$), 666$ (s$)$.

MS (EI, 70 eV : m / z (\%): 234.9 (10) $[\mathrm{M}-\mathrm{Cl}]^{+}, 194.9$ (18) [M-C4H10N] , 130.9 (82) [M$\left.\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{ClNP}\right]^{+}$, $58.0(90)\left[\mathrm{C}_{4} \mathrm{H}_{20}\right]^{+}$.

Elemental analysisfor: $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{PS}_{2}$:

Calculated	C	35.75	H	5.25	N	10.42	S	23.86
Found	C	35.37	H	5.40	N	10.19	S	23.19

10.14.2 3-Isopropyl-5-diethylamino(chloro)phosphanyl-thiazole-2-thione (7b)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{5 b}$	5.00 g	14.99
$\mathbf{P C l}_{\mathbf{3}}$	1.37 mL	15.74
$\mathbf{E t}_{\mathbf{2}} \mathbf{O}$	100 mL	

Yield: $4.41 \mathrm{~g}(14.85 \mathrm{mmol}) 99 \%$; white solid.

Melting point: $55^{\circ} \mathrm{C}$.
Elemental composition: $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{PS}_{2}$
Molecular weight: $296.81 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=1.10\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.11.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) 3.10-3.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.27$ (heptet, $\left.1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.27$ (s, $\left.1 \mathrm{H}, \mathrm{C}^{4}-H\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=14.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.8(\mathrm{~s}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 43.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=14.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.1\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) 127.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=48.8 \mathrm{~Hz}\right.$, $\left.C^{5}\right), 132.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=14.8 \mathrm{~Hz}, C^{4}\right), 190.2(\mathrm{~s}, C=S)$.
${ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \text {-NMR (} \mathbf{1 6 1 . 9} \mathbf{~ M H z}, \mathbf{C D C l}_{3} \text {): } \delta=115.1 \text { (s). } ~}$

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=2970$ (s), 2933 (vs), 2866 (vs), 2821 (vs), 2775 (vs), 2481 (vs), 1549 (vs), 1533 (s), 1452 (vs), 1393 (m), 1381 (m), 1314 (w), 1279 (w), 1197 (w), 1162 (w), 1135 (s), 1093 (w), 1078 (m), 1042 (m), 1019 (w), 1003 (w), 942 (w), 911 (m), 851 (w), 828 (s), 806 (vs), 787 (w), 697 (s), 666 (w).
 (10) $[\mathrm{Ph}]^{+}$.

Elemental analysis: for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{PS}_{2}$: found:

Calculated	C	40.47	H	6.11	N	9.44	S	21.60
Found	C	39.00	H	6.61	N	9.06	S	20.46

10.14.3 3-nPropyl-5-diethylamino(chloro)phosphanyl-thiazole-2-thione (7c)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{5 c}$	4.02 g	12.35
$\mathbf{P C l}_{\mathbf{3}}$	1.13 mL	12.95
$\mathbf{E t}_{\mathbf{2}} \mathbf{O}$	130 mL	

Yield: 3.52 g (11.85 mmol$) 96$ \%; white solid:
Melting point: $66^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{PS}_{2}$

Molecular weight: $296.81 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=1.0\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.16\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) 1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.2\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.13(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 7.25 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C}^{4}-H$).
${ }^{13} \mathbf{C}\{\mathbf{1 H}\} \mathbf{N M R}\left(75.5 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=11.1\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=6.0 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.8\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 43.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=14.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.7\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $126.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=48.2 .0 \mathrm{~Hz}, C^{5}\right), 135.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=21.0 \mathrm{~Hz}, C^{4}\right), 191.0(\mathrm{~s}, C=S)$.
${ }^{31} \mathbf{P}\{\mathbf{1 H}\} \mathbf{N M R}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta=114.3$ (s).
IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$) : $\tilde{v}=2973$ (vs), 2931 (vs), 2873 (vs), 2821 (vs), 2774 (vs), 2481 (vs), 1544 (s), 1461 (vs), 1435 (vs), 1367 (w), 1324 (s), 1292 (s), 1225 (w), 1194 (w), 1166 (w), 1138 (w), 1112 (s), 1082 (vs), 1022 (w), 992 (w), 939 (w), 886 (m), 876 (s), 838 (w), 803 (w), 788 (m), 744 (s), 708 (s), 668 (w).

MS: EI, 70 eV): m/z (\%): 295.3 (8) $[\mathrm{M}-\mathrm{H}]^{+}, 267.2$ (10) $[\mathrm{M}-\mathrm{Et}]^{+}, 159.0(35)\left[\mathrm{M}-\mathrm{Et}_{2} \mathrm{NPCl}\right]^{+}$.

Elemental analysis for: $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{PS}_{2}$:

Calculated	C	40.47	H	6.11	N	9.44	S	21.60
Found	C	39.91	H	6.26	N	9.23	S	21.09

10.14.4 3-Methyl-5-phenyl(chloro)phosphanyl-thiazole-2-thione (7d)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{5 d}$	4.54 g	14.64
$\mathbf{P C l}_{\mathbf{3}}$	1.40 mL	16.38
$\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$	140 mL	

Yield: $3.68 \mathrm{~g}(13.44 \mathrm{mmol}) 92 \%$; white solid.
Melting point: $111^{\circ} \mathrm{C}$.
Elemental composition: $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClNPS}_{2}$
Molecular weight: $273.73 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$ NMR ($500.1 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $: \delta=3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=4.28 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{4}-H\right)$, 7.44-7.48 (m, 3H, $\mathrm{C}_{6} \mathrm{H}_{5}$) 7.64-7.70 (s, 2H, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}} \mathbf{N M R}\left(\mathbf{1 2 5 . 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=37.5\left(\mathrm{~s}, C H_{3}\right), 125.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=59.4 \mathrm{~Hz}, C^{5}\right), 129.0$ $\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{C}}=7.7 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right) ; 130.6\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=25.0 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 131.2\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 135.9\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=25.0\right.$ $\left.\mathrm{Hz}, i p s o-\mathrm{C}_{6} \mathrm{H}_{5}\right), 139.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=51.6 \mathrm{~Hz}, C^{4}\right), 192.1(\mathrm{~s}, C=\mathrm{S})$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{2 0 2 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=55.3$ (s).
IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$) : $\tilde{v}=3045$ (vs), 2971 (vs), 2818 (vs), 2773 (vs), 2480 (vs), 1692 (vs), 1541 (m), 1478 (s), 1463 (s), 1434 (m), 1418 (s), 1390 (vs), 1338 (w), 1317 (w), 1207 (m), 1142 (w), 1113 (m), 1033 (m), 1010 (w), 971 (m), 913 (w), 844 (w), 805 (s), 750 (w), 698 (w), 689 (w).

MS (EI, $70 \mathbf{e V}$): m/z (\%): 272.9 (100) [M] $]^{+}, 237.9$ (25) [M-Cl] ${ }^{+}, 195.8$ (10) [M-PPh] ${ }^{+}, 164.9$ (12) $[\mathrm{M}-\mathrm{PPhCl}]^{+}$.

HR-MS: found: 272.9602 calc. 272.9603 .

Elemental analysis: for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClNPS}_{2}$:

Calculated	C	43.88	H	3.31	N	5.12	S	23.42
Found	C	44.59	H	3.73	N	5.09	S	24.50

10.14.5 3-"Propyl-5-phenyl(chloro)phosphanyl-thiazole-2-thione (7e)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{5 e}$	11.36 g	33.56
$\mathbf{P C l}_{\mathbf{3}}$	3.08 mL	35.24
$\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$	370 mL	

Yield: 9.71 g (32.17 mmol) 96 \%; white sticky solid.

Elemental composition: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClNPS}_{2}$

Molecular weight: $301.78 \mathrm{~g} / \mathrm{mol}$
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{5 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=1.0\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.83(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.07\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.42\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{4}-H\right)$, 7.42-7.49 (m, 3H, $\mathrm{C}_{6} H_{5}$) 7.64-7.70 (s, 2H, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 5 . 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=11.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 51.7 (s , $\left.C H_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 125.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=59.2 \mathrm{~Hz}, C^{5}\right), 129.1\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=7.9 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right) ; 130.8\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=\right.$ $\left.25.1 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 131.3\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 136.1\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=25.1 \mathrm{~Hz}\right.$, ipso-C$\left.C_{6} \mathrm{H}_{5}\right), 138.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=51.8\right.$ $\left.\mathrm{Hz}, C^{4}\right), 192.0(\mathrm{~s}, C=\mathrm{S})$.

${ }^{31} \mathbf{P}\{\mathbf{1 H}\}$ NMR ($\mathbf{2 0 2 . 4} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=55.3$ (s).

 1431 (m), 1366 (m), 1348 (m), 1320 (s), 1290 (m), 1213 (m), 1133 (w), 1097 (m), 1006 (w$)$, 928 (m), 884 (s$), 842$ (m), 741 (m), 690 (m), 640 (vs), 595 (vs), 548 (vs), 517 (w), 495 (w), 457 (w).

MS (EI, $70 \mathbf{e V}$): m/z (\%): 267.0 (80) $[\mathrm{M}-\mathrm{Cl}]^{+}, 116.9$ (38) $\left[\mathrm{M}-{ }^{\mathrm{n}} \mathrm{Pr}-\mathrm{PPhCl}\right]^{+}, 109.0(25)[\mathrm{PPh}]^{+}$, $77.0(30)[\mathrm{Ph}]^{+}$.

Elemental analysis: for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClNPS}_{2}$:

Calculated	C	47.76	H	4.34	N	4.64	S	21.25
Found	C	48.14	H	4.76	N	4.99	S	21.13

10.15 Synthesis of 3-methyl-5-dichlorophosphanyl-thiazole-2-thione (8)

3-Methyl-5-bis(diethylamiono)phosphanyl-thiazole-2-thione 5a ($1.50 \mathrm{~g}, 4.91 \mathrm{mmol}$) was dissolved in dry 50 mL of diethylether in a Schlenk flask and cooled to $0^{\circ} \mathrm{C}$. Phosphorus trichloride ($0.94 \mathrm{~mL}, 10.8 \mathrm{mmol}, \rho=1.570 \mathrm{~g} / \mathrm{cm}^{3}$) was added dropwise and the reaction mixture was warmed up to room temperature and stirred for three days. The solvent was removed in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$, and the residue was washed twice with n-pentane $(2 \cdot 3 \mathrm{~mL})$ and dried in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$). A yellow solid was thus obtained.

Yield: $=1.00 \mathrm{~g}(4.30 \mathrm{mmol}) 88 \%$; yellow solid
Melting point: $80^{\circ} \mathrm{C}$
Elemental composition: $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{NPS}_{2}$

Molecular weight: $232.07 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$ NMR (300.1 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta=3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=4.3 \mathrm{~Hz}, 1 \mathrm{H},{ }^{4} \mathrm{C}-H\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (75.5 MHz, CDCl ${ }_{3}$) $: \delta=37.7\left(\mathrm{~s}, C H_{3}\right), 125.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=76.3 . \mathrm{Hz}, C^{5}\right), 138.3(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{P}, \mathrm{C}}=60.7 \mathrm{~Hz}, C^{4}\right), 192.1(\mathrm{~s}, C=\mathrm{S})$.
${ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=131.4(\mathrm{~s}) .}$
IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=3094(\mathrm{~s}), 3038(\mathrm{~s}), 1539(\mathrm{~m}), 2751(\mathrm{vs}), 1459(\mathrm{~m}), 1418(\mathrm{~m}), 1338(\mathrm{~s})$, 1313 (vs), 1210 (s), 1134(vs), 1116(s), 1012(vs), 916(vs), 855(s), 701(s), 1000(s).

MS (EI, $70 \mathbf{e V}$: m/z (\%):230.9 (100) [M].+, 195.9 (75) [M-Cl]+, 131.0 (78) [M- PCl2]+.

HR-MS: Found 230.8897 calc. 230.8900.
Elemental analysis: for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{NPS}_{2}$:

10.16 Synthesis of bis(3-isopropyl-thiazole-2-thione-5-yl)chlorophosphane (9)

$\operatorname{Bis}(3-$ isopropyl-thiazole-2-thione-5-yl)-diethyamionophosphane $\mathbf{6 b}(3.36 \mathrm{~g}, 8.00 \mathrm{mmol})$ was dissolved in dry 100 mL of dichloromethane in a Schlenk flask and cooled to $-60{ }^{\circ} \mathrm{C}$. Phosphorus trichloride ($0.77 \mathrm{~mL}, 8.80 \mathrm{mmol}, \rho=1.570 \mathrm{~g} / \mathrm{cm}^{3}$) was added dropwise and the reaction mixture was warmed up to room temperature, and stirred for one hour. The solvent was removed in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$), and the residue was washed twice with n-pentane $(2 \cdot 5$ $\mathrm{mL})$ and dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. A white solid was thus obtained.

Yield: $2.80 \mathrm{~g}(7.31 \mathrm{mmol}) 91 \%$; white solid.
Melting point: $201^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{PS}_{4}$

Molecular weight: $382.94 \mathrm{~g} / \mathrm{mol}$.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=1.39\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.24$ (heptd, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz},{ }^{5} J_{\mathrm{P}, \mathrm{H}}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.51\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=5.73 \mathrm{~Hz}, 2 \mathrm{H},{ }^{4} \mathrm{C}-H\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (75 $\left.5 \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=21.9\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 51.6\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 122.4(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{C}}=48.6 \mathrm{~Hz}, C^{5}\right), 136.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=57.8 \mathrm{~Hz}, C^{4}\right), 191.3(\mathrm{~s}, \mathrm{br}, C=\mathrm{S})$.

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=34.9$ (s)

 (s), 1272 (w), 1197 (m), 1169 (vs), 1138 (vs), 1078 (m), 1011 (w), 916 (vs), 847 (s), 824 (vs), 524 (m), 498 (s), 472 (s), 459 (m), 405 (s).

MS (EI, 70 eV): m / z (\%) 382.1 (100) $[\mathrm{M}]^{+}, 348.1$ (90) [M-Cl] ${ }^{+}, 298.0(65)\left[\mathrm{M}-2^{i} \mathrm{Pr}\right]^{+}$
HR-MS: found: 381.9624 calc. 381.9622.
Elemental analysis for: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{PS}_{4}$:

Calculated	C	37.64	H	4.21	N	7.32	S	33.49
Found	C	37.62	H	4.19	N	7.31	S	34.09

10.17 Synthesis of 3-methyl-5-diphenylmethyl(diethylamino)phosphanyl-thiazole-2-thione (10)

To a solution of $7 \mathbf{a}(7.60 \mathrm{~g}, 28.27 \mathrm{mmol})$ in 200 mL of dry THF, the in situ prepared $\mathrm{Ph}_{2} \mathrm{CHLi}$ (128.27 mmol , in 115 mL THF) was added dropwise using cannula at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 15 min . The orange colored solution was concentrated in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$) and the residue was taken up in dry toluene and filtered via cannula to remove the formed lithium chloride. The solvent was removed from the filtrate in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$ and the residue was dried in vacuo. The residue was recrystallized from THF/nhexane mixture at low tem-perature $\left(-40^{\circ} \mathrm{C}\right)$, washed twice with pentane $(10 \mathrm{~mL}, 7 \mathrm{~mL})$ and dried in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$). A white solid was thus obtained.

Yield:Yield: $7.00 \mathrm{~g}(17.47 \mathrm{mmol}), 61.8 \%$, white solid.
Melting point: $151^{\circ} \mathrm{C}$.
Elemental composition: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{PS}_{2}$
Molecular weight: $400.53 \mathrm{~g} / \mathrm{mol}$.
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=0.76\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.02(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{H}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}-\mathrm{CHPh}_{2}\right), 6.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{C}^{4}-H\right), 7.13-7.50\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75.5 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=14.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=3.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 37.2\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 43.8$ (d, ${ }^{2} J_{\mathrm{P}, \mathrm{C}}=15.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $53.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=11.2 \mathrm{~Hz}, \mathrm{P}-C \mathrm{HPh}_{2}\right), 126.6\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.0 \mathrm{~Hz}\right.$, $\left.C_{6} H_{5}\right), 126.9\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.1 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 127.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=51.8 \mathrm{~Hz}, C^{5}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=12.5 \mathrm{~Hz}\right.$, $\left.C_{6} H_{5}\right), 128.8\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=13.3 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 129.0\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 135.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=36.2 \mathrm{~Hz}, C^{4}\right), 140.1(\mathrm{~d}$, $\left.J_{\mathrm{P}, \mathrm{C}}=16.3 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 141.3\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=12.5 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 189.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=1.1 \mathrm{~Hz} C=\mathrm{S}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=47.9$ (s).
IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=3034$ (w), 2969 (w), 1556 (s), 1493 (m), 1448 (s), 1339 (vs), 1199 (s), 1175 (m), 1140 (vs), 1123 (vs), 985 (vs), 936 (s), 772 (s), 704 (vs), 666 (vs).

MS (EI, 70 eV): $m / z(\%) 400(28)[\mathrm{M}]^{+}, 233(100)\left[\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{PS}_{2}\right]^{+}, 162(63)\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NPS}_{2}\right]^{+}$.
HRMS: found: 400.1194, calc.: 400.1196.
Elemental analysis for: $\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{PS}_{2}$: found:

Calculated	C	62.97	H	6.29	N	6.99	S	16.01
Found	C	62.18	H	6.37	N	7.02	S	15.99

10.18 Synthesis of 3-methyl-5-diphenylmethyl(chloro)phosphanyl-thiazole-2-thione (11)

Compound $\mathbf{1 0}(6.71 \mathrm{~g}, 16.75 \mathrm{mmol})$ was dissolved in 200 mL of dry dichloromethane in a Schlenk flask and cooled to $-60{ }^{\circ} \mathrm{C}$. Phosphorus trichloride ($1.60 \mathrm{~mL}, 18.42 \mathrm{mmol}$) was added dropwise, the reaction mixture was slowly warmed up to room temperature, and stirred for two hours. The solvent was removed in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. The residue was washed twice with n-pentane ($15 \mathrm{~mL}, 10 \mathrm{~mL}$) and dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. A white solid was thus obtained.

Yield: 6.0 g (16.48 mmol$) 98.5 \%$; white solid.
Melting point: $148{ }^{\circ} \mathrm{C}$.
Elemental composition: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClNPS}_{2}$
Molecular weight: $363.85 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.65\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHPh} 2\right)$, $7.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{4}-H\right), 7.16-7.57\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} H_{5}\right)$.

13C $\{\mathbf{1 H}\}$ NMR ($75.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $: \delta=37.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 59.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=24.6 \mathrm{~Hz}, C \mathrm{HPh}_{2}\right)$, $122.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=61.1 \mathrm{~Hz}, C^{5}\right), 127.5\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=1.9 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 127.7\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.2 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right)$, $128.5\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=3.5 \mathrm{~Hz} C_{6} \mathrm{H}_{5}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=3.9 \mathrm{~Hz} C_{6} \mathrm{H}_{5}\right), 129.0\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=13.1 \mathrm{~Hz} C_{6} \mathrm{H}_{5}\right)$, $137.6\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=15.0 \mathrm{~Hz} C_{6} \mathrm{H}_{5}\right), 138.5\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=14.5 \mathrm{~Hz} C_{6} \mathrm{H}_{5}\right), 139.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=50.32 \mathrm{~Hz}, C^{4}\right)$, $191.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=1.4 \mathrm{~Hz} C=\mathrm{S}\right)$.

31P\{1H\} NMR (121.5 MHz, $\mathbf{C D C l}_{3}$): $\delta=57.9$ (s).
IR (ATR, $\tilde{\mathbf{v}}\{\mathbf{c m} \mathbf{- 1 \}}$): $\mathbf{v}=3021$ (w), 1556 (s), 1597 (w), 1548 (s), 1494 (m), 1335 (s), 13215 (s), 1205 (s , 1070 (m), 1006 (vs), 915 (s$), 819$ (s$), 781$ (vs), 743 (s), 704 (vs), 700 (s$)$.

MS (EI, $70 \mathbf{e V}$): m/z (\%) 363 (60) [M] $]^{+}, 167$ (100) $\left[\mathrm{Ph}_{2} \mathrm{C}\right]^{+}$.

HR-MS: found: 363.0070, calc. 363.0072.

Elemental analysis for: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClNPS}_{2}$:

Calculated	C	56.12	H	4.16	N	3.85
Found	C	55.70	H	4.26	N	3.90

10.19 Synthesis of \{pentacarbonyl[chloro(3-methyl-thiazole-2-thione-5-yl)-diphenylmethyl-]-phosphane\}tungsten(0)\} (13)

To a solution of $\mathbf{1 1}(1.00 \mathrm{~g}, 2.74 \mathrm{mmol})$ in 30 mL of dry THF was added dropwise at ambient temperature a solution of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{MeCN}$ in 20 mL of THF $(1.00 \mathrm{~g}, 2.74 \mathrm{mmol})$. The reaction mixture was warmed to $50^{\circ} \mathrm{C}$ and stirred at this temperature for 48 h . The greenish yellow solution was then concentrated in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$) and then purified via column chromatography ($-20^{\circ} \mathrm{C}$ using cryostat) using silica gel as stationary phase and $\mathrm{Et}_{2} \mathrm{O}$ /petrol ether (40/60) as eluent. The obtained bright yellow powder was washed with n-pentane (3 $\mathrm{mL})$ and dried in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$).

Yield: 1.33 g (1.93 mmol$) 70.3$ \%; Yellow solid.

Melting point: $80^{\circ} \mathrm{C}$.
Elemental composition: $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClNO}_{5} \mathrm{PS}_{2} \mathrm{~W}$

Molecular weight: $687.74 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1 ~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=3.56\left(\mathrm{~s},=3 \mathrm{H}, \mathrm{CH}_{3}, 3.64\left(\mathrm{~s},=3 \mathrm{H}, \mathrm{CH}_{3} 2^{\text {nd }}\right.\right.$ isomer), 4.82 ($\mathrm{d},{ }^{2} J_{\mathrm{P}, \mathrm{H}}=3.26 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Ph}_{2}$), $4.89\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{H}}=3.63 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Ph}_{2} 2^{\text {nd }}\right.$ isomer), $6.72(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{P}, \mathrm{H}}=5.23 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{4}-H\right), 6.90\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=4.37 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{4}-H 2^{\text {nd }}\right.$ isomer $), 7.31-7.52(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $=37.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 38.4\left(\mathrm{~s}, \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer $), 65.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=\right.$ $\left.7.5 \mathrm{~Hz}, C \mathrm{HPh}_{2}\right), 66.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=6.2 \mathrm{~Hz}, \mathrm{CHPh} 22^{\text {nd }}\right.$ isomer $), 122.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=20.9 \mathrm{~Hz}, C^{5}\right)$, $127.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=17.3 \mathrm{~Hz}, C^{5} 2^{\text {nd }}\right.$ isomer), $128.3\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.6 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.3\right.$
$\left.\mathrm{Hz}, C_{6} \mathrm{H}_{5}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=1.5 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 129.0\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=7.0 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=7.1\right.$
$\left.\mathrm{Hz}, C_{6} \mathrm{H}_{5}\right), 129.8\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=6.0 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=7.6 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=7.6\right.$
$\left.\mathrm{Hz}, C_{6} \mathrm{H}_{5}\right), 135.8\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=1.0 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 135.8\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=0.8 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 139.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=13.3\right.$
$\left.\mathrm{Hz}, C^{4}\right), 140.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=10.9 \mathrm{~Hz}, C 2^{\text {nd }}\right.$ isomer $\left.{ }^{4}\right), 190.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=2.1 \mathrm{~Hz} \mathrm{C=S}\right), 192.9(\mathrm{~d}$,
${ }^{3} J_{\mathrm{P}, \mathrm{C}}=1.7 \mathrm{~Hz} \mathrm{C}=\mathrm{S} 2^{\text {nd }}$ isomer $), 194.5\left(\mathrm{~d}_{\mathrm{sat},}{ }^{2} J_{\mathrm{P}, \mathrm{C}}=6.9 \mathrm{~Hz},{ }^{1} J_{\mathrm{W}, \mathrm{C}}=126.7 \mathrm{~Hz}, C \mathrm{O}\right), 194.8\left(\mathrm{~d}_{\mathrm{sat}}\right.$,
${ }^{2} J_{\mathrm{P}, \mathrm{C}}=7.0 \mathrm{~Hz},{ }^{1} J_{\mathrm{W}, \mathrm{C}}=126.7 \mathrm{~Hz}, \mathrm{CO} 2^{\text {nd }}$ isomer), $196.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=35.9 \mathrm{~Hz}, \mathrm{CO}\right), 196.8(\mathrm{~d}$,
${ }^{2} J_{\mathrm{P}, \mathrm{C}}=35.3 \mathrm{~Hz}, \mathrm{CO} 2^{\text {nd }}$ isomer $)$.
${ }^{31} \mathbf{P}$ NMR (121.5 MHz, CDC13) $: \delta=84.7\left(\mathrm{~s}_{\mathrm{sat},}{ }^{1} J_{\mathrm{W}, \mathrm{P}}=299.5 \mathrm{~Hz}\right), 85.7\left(\mathrm{~s}_{\mathrm{sat},}{ }^{1} J_{\mathrm{W}, \mathrm{P}}=294.8 \mathrm{~Hz}\right.$ $2^{\text {nd }}$ isomer).

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}^{2} 2079$ (s), 2068 (w), 1906 (vs), 1541 (w), 1493 (w), 1449 (w), 1342(s), 1141 (m), 1002 (s), 746 (s), 699 (vs).

MS: EI, 70 eV : m/z (\%): 687.0 (30) $[\mathrm{M}]^{+}, 323$ (4) $[\mathrm{W}(\mathrm{CO}) 5]^{+}, 166.9$ (100) $\left[\mathrm{PPh}_{2} \mathrm{C}\right]^{+}$.
HR-MS: found: 684.9304, calc. 684.9300 .

Elemental analysis for: $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClNO}_{5} \mathrm{PS}_{2} \mathrm{~W}$:

Calculated	C	38.42	H	2.20	N	2.04	S	9.32
Found	C	38.14	H	2.22	N	1.97	S	9.04

10.20 Synthesis of [pentacarbonyl[\{(diphenylmethylene)3-methyl-thiazole-2-thione-5-yl-]-phosphane\}]tungsten(0)] (14)

In a Schlenk tube, DBU ($0.05 \mathrm{~mL}, 0.33 \mathrm{mmol}$) was added dropwise to a toluene (5 mL) solution of $\mathbf{1 3}(0.19 \mathrm{~g}, 0.27 \mathrm{mmol})$ at ambient temperature. Upon mixing, orange colored precipitate was formed.The precipitate was filtered and the obtained solid was dissolved in dichloromethane and filtered over a frit having silica pad. The filtrate was collected, solvent
was removed in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$ andwashed twice with n-pentane $(2 \cdot 3 \mathrm{~mL})$. Yellow solid was obtained after drying in vacuo ($8 \cdot 10^{-3}$ mbar).

Yield: $0.12 \mathrm{~g}(0.18 \mathrm{mmol}) 67$ \%; yellow solid.

Elemental composition: $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{NO}_{5} \mathrm{PS}_{2} \mathrm{~W}$

Molecular weight: $651.29 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$ NMR ($\left.500.1 \mathbf{M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.15-7.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} H_{5}\right) .7 .20\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{H}}\right.$ $\left.=7.63 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{4}-H\right), 7.32-7.44\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}_{6} H_{5}\right)$.

13C $\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 5 . 7} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=38.0\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 124.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=8.1 \mathrm{~Hz}, C^{5}\right), 129.1$ $\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{C}}=1.4 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=1.4 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.6 \mathrm{~Hz} C_{6} \mathrm{H}_{5}\right), 130.1$ $\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{C}}=3.5 \mathrm{~Hz} C_{6} \mathrm{H}_{5}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=16.1 \mathrm{~Hz} C_{6} \mathrm{H}_{5}\right), 130.8\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=11.7 \mathrm{~Hz} C_{6} \mathrm{H}_{5}\right), 142.1$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=16.8 \mathrm{~Hz}, C^{4}\right), 142.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=16.1 \mathrm{~Hz}\right.$, ipso- $\left.C_{6} \mathrm{H}_{5}\right), 143.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=12.1 \mathrm{~Hz}\right.$, ipso$\left.C_{6} H_{5}\right), 185.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=60.0 \mathrm{~Hz}, \mathrm{P}=C\right), 190.6(\mathrm{~s}, C=\mathrm{S}), 195.1\left(\mathrm{~d}_{\mathrm{sat}},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.7 \mathrm{~Hz},{ }^{1} J_{\mathrm{W}, \mathrm{C}}=\right.$ 125.6 Hz, cis-CO), $197.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=34.2\right.$ trans-CO).
${ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{2 0 2 . 4} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=140.7 \mathrm{ppm}\left({ }^{1} J_{\mathrm{W}, \mathrm{P}}=283.4 \mathrm{~Hz}\right) .}$
IR (ATR, $\tilde{\mathbf{v}}\{\mathbf{c m} \mathbf{- 1 \}}$): $\tilde{v}=2070$ (s), 1990 (vs), 1907 (m), 1642 (vs), 1541 (vs), 1440 (vs), 1339 (s), 1324 (s), 1208 (vs), 1133 (s), 1001 (m), 926 (vs), 891 (vs), 806 (s), 757 (m), 697 (m), 605 (vs), 590 (m), 566 (m), 518 (m), $502(\mathrm{~m}), 420(\mathrm{~m})$.

MS (EI, 70 eV : $\left.\mathrm{m} / \mathrm{z}(\%) 651(30)[\mathrm{M}]^{+}, 327(100)\left[\mathrm{M}-\mathrm{W}(\mathrm{CO})_{5}\right]^{+}, 167.1(100)\left[\mathrm{PPh}_{2} \mathrm{C}\right]^{+}\right)$.

10.21 Synthesis of [decacarbonyl[$\{\mu(3,3,4,4-d i p h e n y l)(1,2-d i(3-m e t h y l-$ thiazole-2-thione-5-yl-)1,3-diphosphetane\}|ditungsten(0)] (15)

DBU ($0.02 \mathrm{~mL}, 0.16 \mathrm{mmol}$) was added dropwise to a THF (3 mL) solution of $\mathbf{1 3}(0.10 \mathrm{~g}$, 0.14 mmol) at $-78^{\circ} \mathrm{C}$. The bright red colored reaction mixture was kept at $-30^{\circ} \mathrm{C}$ for 12 h . Then the formed salt was filtered via cannula at $-30^{\circ} \mathrm{C}$; the color of the filtrate was yellow at this point. The solvent was removed in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$ to afford a yellow powder. The powder was washed with n-pentane $(2 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ and dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$.

Yield: $0.05 \mathrm{~g}(0.04 \mathrm{mmol}), 53 \%$; yellow solid.
Elemental composition: $\mathrm{C}_{44} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{~W}_{2}$
Molecular weight: $1302.58 \mathrm{~g} / \mathrm{mol}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{T H F} \mathbf{d}_{8},-\mathbf{- 3 0}^{\circ} \mathbf{C}\right): \delta=3.5\left(\mathrm{~s},=6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.9-7.8\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{C}^{4}-\mathrm{H}\right.$, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (75.5 MHz, THFd8, $\left.-\mathbf{3 0}{ }^{\circ} \mathbf{C}\right): \delta=37.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 68.0\left(\mathrm{t},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=7.0 \mathrm{~Hz}, \mathrm{CPh}_{2}\right)$, $125.9\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 126.9\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 127.8\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 128.8\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=3.9 \mathrm{~Hz}\right.$, $\left.C_{6} H_{5}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=7.2 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 132.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=11.9 \mathrm{~Hz}, C^{4}\right), 138.1\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=8.5 \mathrm{~Hz}\right.$, ipso-C6H5), $141.7\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=6.7 \mathrm{~Hz}\right.$, ipso-C6 H_{5}), $143.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=11.9 \mathrm{~Hz}, C^{5}\right) 189.2(\mathrm{~s}, \mathrm{C}=\mathrm{S})$, $199.8\left(\mathrm{~d}_{\mathrm{sat}},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.3 \mathrm{~Hz},{ }^{1} J_{\mathrm{W}, \mathrm{C}}=126.2 \mathrm{~Hz}, C \mathrm{O}\right), 203.0\left(\mathrm{~d}_{\mathrm{sat}},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=18.2 \mathrm{~Hz},{ }^{1} J_{\mathrm{W}, \mathrm{C}}=141.4\right.$ $\mathrm{Hz}, \mathrm{CO})$.
 $\left\{\left(\mathrm{s}_{\mathrm{sat}}=J_{\mathrm{W}, \mathrm{P}}=272.7 \mathrm{~Hz} 2^{\text {nd }}\right.\right.$ isomer $\left.) 3 \%\right\}$.

IR (ATR, $\tilde{\mathbf{v}}\{\mathbf{c m} \mathbf{- 1 \}}$): $\tilde{\mathrm{v}}=2928$ (s), 2058 (s), 1895 (vs), 1793 (s), 1640 (s), 1578 (s), 1489 (w), 1445 (m), 1315 (s), 1261 (w), 1205 (w), 1040 (s), 989 (s), 800 (s), 732 (m), 705 (s), 695 (s).
$\underline{\text { MS (neg. ESI-MS): }}\left[\mathrm{C}_{44} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{~W}_{2}\right] \mathrm{Cl}$ found $=1337.8830$, calc. $=1337.8836$.

10.22 Synthesis of tricyclic 1,4-dihydro-1,4-diphosphinines 17a-d

In a Schlenk flask 7a-d (individually) was dissolved in dry THF and cooled to $-78{ }^{\circ} \mathrm{C}$. A THF solution of LDA was added to it at $-78^{\circ} \mathrm{C}$, and the reaction mixture was warmed up to ambient temperature. It was stirred for two hours at this temperature. The solvent was removed in vaсиo ($8 \cdot 10^{-3}$ mbar) and the residue was taken in dicholoromethane and filtered over frit having silica gel. The filtrate was collected; solvent was removed in vacuo ($8 \cdot 10^{-3}$ mbar). The obtained solid was washed twice with n-pentane ($2-3 \mathrm{~mL} / \mathrm{g}$ of the product) and

10.22.1 4,8-Bis(dimethylamino)-3,7-dimethyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6-d']bisthiazole-2,6-dithione (17a)

	amount used (g/mL)	mmol
7a	3.18 g	11.84
LDA	1.52 g	14.21
THF	100 mL	

Yield: 2.20 g (4.73 mmol), 80%; white solid.

Melting point: $232{ }^{\circ} \mathrm{C}$

Elemental composition: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$

Molecular weight: $464.60 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$ NMR ($300.1 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=0.85-1.03\left(\mathrm{~m}, 24 \mathrm{H},\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.86\left(\mathrm{br}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)\right.$, 3.01 (br $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $3.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer),
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=14.1\left(\mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer), $34.9\left(\mathrm{~m}, \mathrm{CH}_{3}\right), 36.8\left(\mathrm{t},{ }^{3 / 4} \mathrm{JP}, \mathrm{C}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer $), 43.7\left(\mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 44.1\left(\mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ $2^{\text {nd }}$ isomer $), 124.9\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=19.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.6 \mathrm{~Hz}, \mathrm{C}^{5 / 4}\right) 127.6\left(\mathrm{~m},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=11.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=\right.$ $10.4 \mathrm{C}^{4 / 5} 2^{\text {nd }}$ isomer), $137.6\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=21.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=8.6 \mathrm{~Hz}, \mathrm{C}^{5 / 4}\right) 144.1\left(\mathrm{dd}, J_{\mathrm{P}, \mathrm{C}}=9.0 \mathrm{~Hz}\right.$, ${ }^{2} J_{\mathrm{P}, \mathrm{C}}=7.4 \mathrm{C}^{4 / 5} 2^{\text {nd }}$ isomer $), 190.3\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=2.3 \mathrm{~Hz}, C=\mathrm{S}\right), 190.5\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=3.5 \mathrm{~Hz}, C=\mathrm{S} 2^{\text {nd }}\right.$ isomer).
${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=18.8$ (s), 19.5 ($\mathrm{s}, 2^{\text {nd }}$ isomer).

IR (ATR, $\tilde{\left.\mathbf{v}\left\{\mathbf{c m}^{-1}\right\}\right): \tilde{v}=2963(\mathrm{~s}), 2924(\mathrm{~m}), 285(\mathrm{~m}), 1493(\mathrm{~m}), 1435(\mathrm{~m}), 1412(\mathrm{~m}), 1375(\mathrm{~s}), ~}$ 1363(m), 1313(vs), 1293 (s), 1261(s), 1197(s), 1137 (s), 1092 (m), 1061(s), 1019(vs), 1000(vs), $929(\mathrm{vs}), 819(\mathrm{vs}), 786(\mathrm{vs}), 671(\mathrm{vs}), 655(\mathrm{vs})$.

MS (EI, $70 \mathbf{e V}$): $m / z(\%) 464.0(100)[\mathrm{M}]^{+}, 392.9$ (23) $\left[\mathrm{M}-\mathrm{NEt}_{2}\right]^{+}, 319.8$ (78)) $\left[\mathrm{M}-2 \mathrm{Et}_{2}\right]^{+}, 72$ (100)) $\left[\mathrm{NEt}_{2}\right]^{+}$.

HR-MS: found: 464.0514, calc. 464.0515.

Elemental analysis for: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$: found:

Calculated	C	41.36	H	5.64	N	12.06	S	27.60
Found	C	40.17	H	5.58	N	11.28	S	26.15

10.22.2 4,8-Bis(dimethylamino)-3,7-din ${ }^{\mathrm{n}}$ propyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6-d']bisthiazole-2,6-dithione (17b)

	amount used $(\mathbf{g} / \mathbf{m L})$	mmol
7b	2.60 g	8.75
LDA	1.03 g	9.63
THF	85 mL	

Yield: $2.22 \mathrm{~g}(4.26 \mathrm{mmol}), 97 \%$, white solid.
Melting point: $181^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$

Molecular weight: $520.71 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$ NMR ($500.1 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $: \delta=0.95-1.02\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.03-1.12$ (br, 12 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.80-2.04 (m, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.74-2.99 (br, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.99-3.16 (br, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer) 3.87-4.03 (m, $4 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.48-4.59 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 5 . 7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta=11.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 11.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer), 14.4 (br, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 14.6 (br, $\mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), 20.7 (${ }^{4 / 5} J_{\mathrm{P}, \mathrm{C}}=2.2 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $20.8\left(\mathrm{t},{ }^{4 / 5} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=2.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer) 44.7 (br, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 44.8 (br, $\mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $49.4\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{C}}=3.4 \mathrm{~Hz} \mathrm{CH} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.3\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{C}}=4.8 \mathrm{~Hz}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), 126.4 (dd, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{C}}=21.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=10.5 \mathrm{~Hz}, \mathrm{C}^{4 / 5}\right), 129.1\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=\right.$ $12.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=10.4 \mathrm{~Hz}, \mathrm{C}^{4 / 5} 2^{\text {nd }}$ isomer), $137.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=24.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.3 \mathrm{~Hz}, \mathrm{C}^{4 / 5}\right), 143.7$ $\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=9.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=7.8 \mathrm{~Hz}, \mathrm{C}^{4 / 5} 2^{\text {nd }}\right.$ isomer $) 190.3\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=2.8 \mathrm{~Hz}, C=\mathrm{S}\right), 190.5\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}\right.$ $=3.6 \mathrm{~Hz}, C=\mathrm{S} 2^{\text {nd }}$ isomer $)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{2 0 2 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=16.5$ (s$), \delta=19.3$ ($\mathrm{s}, 2^{\text {nd }}$ isomer $)$.
IR (ATR, $\tilde{\mathbf{v}\left\{\mathbf{c m}^{-1}\right\} \text {): } \tilde{v}=2961(\mathrm{~m}), 2926(\mathrm{w}), 2867(\mathrm{w}), 1458(\mathrm{~m}), 1377(\mathrm{~m}), 1348(\mathrm{~s}), 1294}$ (m), 1212 (s), 1177 (s), 1139 (vs) 1039 (vs), 1019 (vs), 1001 (vs), 928 (vs) 817 (s), 817 (vs), 661 (vs).

MS (EI, $70 \mathbf{e V}$): m/z (\%) = 520.1 (100) $[\mathrm{M}]^{+}, 449.0(10)\left[\mathrm{M}_{-2} \mathrm{Et}_{2} \mathrm{~N}\right]^{+}, 376.0(70)\left[\mathrm{M}-2 \mathrm{Et}_{2} \mathrm{~N}\right]^{+}$, 434.0 (10) $\left[\mathrm{M}-2^{\mathrm{n}} \mathrm{Pr}\right]^{+}, 72.1$ (85) $\left[\mathrm{Et}_{2} \mathrm{~N}\right]^{+}$.

HR-MS: found $=520.1141$, calc. $=520.1142$.
Elemental analysis for: $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$: found: $\mathrm{C} 45.21, \mathrm{H} 6.35$, N 10.7, S 24.01. calc.: C 46.13, H 6.58, N 10.76, S 24.63.

Calculated	C	46.13	H	6.58	N	10.76	S	24.63
Found	C	45.07	H	6.34	N	10.70	S	24.01

10.22.3 4,8-Diphenyl-3,7-dimethyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6-

 $\left.d^{\prime}\right]$ bisthiazole-2,6-dithione (17c)| | amount used $(\mathbf{g} / \mathbf{m L})$ | $\mathbf{m m o l}$ |
| :---: | :---: | :---: |
| 7c | 2.58 g | 9.42 |
| LDA | 1.16 g | 10.83 |
| THF | 85 mL | |

Yield: $2.0 \mathrm{~g}(4.21 \mathrm{mmol}) 89 \%$; white solid.
Melting point: $280^{\circ} \mathrm{C}$.
Elemental composition: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$

Molecular weight: $474.55 \mathrm{~g} / \mathrm{mol}$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0 . 1 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta=3.50\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.36-7.58\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} H_{5}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75.5 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=37.4\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{C}}=7.14 \mathrm{~Hz}, C H_{3}\right), 123.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=8.4\right.$ $\left.\mathrm{Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=7.0 \mathrm{~Hz}, C^{4 / 5}\right), 130.0\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=4.3 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 131.8\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 132.1\left(\mathrm{~m}, i p s o-C_{6} \mathrm{H}_{5}\right)$, $133.3\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=11.3 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 135.4\left(\mathrm{~m}, C^{4 / 5}\right), 190.6\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=3.2 \mathrm{~Hz} C=\mathrm{S}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=-40.1$ (s) $10 \%,-37.9\left(\mathrm{~s}, 2^{\text {nd }}\right.$ isomer) 90%

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$) : $\tilde{v}=3052$ (vs), 2925 (vs), 2200 (vs), 1966 (vs), 1495 (vs), 1475 (vs), 1454 (vs), 1434 (s), 1415 (vs), 1313 (w), 1201 (vs), 1178 (vs), 1141 (w), 1070 (m), 1023 (vs), 1000 (m), 996 (m), 914 (vs), 827 (s), 741 (m), 690 (w), 672 (m).
 $\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NS}_{2}\right]^{+}$.

HR-MS: found: 473.9675, calc. 473.9672 .

Elemental analysis for: for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$:

Calculated	C	50.62	H	3.40	N	5.90	S	27.02
Found	C	50.36	H	3.47	N	5.82	S	26.71

10.22.4 4,8-Diphenyl-3,7-din ${ }^{\text {propyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6-d']bis- }}$

 thiazole-2,6-dithione (17d)| | amount used $(\mathbf{g} / \mathbf{m L})$ | $\mathbf{m m o l}$ |
| :---: | :---: | :---: |
| 7d | 9.56 g | 31.67 |
| LDA | 3.73 g | 34.84 |
| THF | 300 mL | |

Yield: $7.6 \mathrm{~g}(14.32 \mathrm{mmol}) 90 \%$; white solid.
Melting point: $257^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$

Molecular weight: $530.66 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$-NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=0.76\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.25 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.81(\mathrm{t}, 6 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.38 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer) , 1.02-1.51 (m, 4H, CH2CH2 CH_{3}), 1.68-1.95 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $3.58-3.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.05-4.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ $2^{\text {nd }}$ isomer), 7.30-7.39 ($\mathrm{m}, 10 \mathrm{H}, \mathrm{C}_{6} H_{5}$).7.40-7.55 ($\mathrm{m}, 10 \mathrm{H}, \mathrm{C}_{6} H_{5} 2^{\text {nd }}$ isomer).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $: \delta=10.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $11.1\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ $2^{\text {nd }}$ isomer), $20.2\left(\mathrm{~s}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 20.8\left(\mathrm{~s}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer), $50.8\left(\mathrm{t},{ }^{3 / 4} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=5.9\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $51.9\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{C}}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer $), 124.6\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=17.5\right.$ $\left.\mathrm{Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.2 \mathrm{~Hz}, \mathrm{C}^{4 / 5}\right), 129.8\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=4.0 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right), 130.0\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=4.6 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}\right.$ $2^{\text {nd }}$ isomer), $131.5\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 132.2\left(\mathrm{~s}, C_{6} \mathrm{H}_{5} 2^{\text {nd }}\right.$ isomer $), 132.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=6.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=5.9\right.$ Hz , ipso- $\left.C_{6} \mathrm{H}_{5}\right), 132.8\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=6.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=3.0 \mathrm{~Hz}\right.$, ipso-C6 $\mathrm{H}_{5} 2^{\text {nd }}$ isomer $), 133.0\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=\right.$ $11.03 \mathrm{~Hz}, C_{6} \mathrm{H}_{5}$), $133.9\left(\mathrm{~m}, C_{6} \mathrm{H}_{5} 2^{\text {nd }}\right.$ isomer $), 135.6\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=4.0 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, \mathrm{C}^{5 / 4}\right)$, 138.1(dd, ${ }^{1} J_{\mathrm{P}, \mathrm{C}}=8.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=4.8 \mathrm{~Hz}, \mathrm{C}^{5 / 4} 2^{\text {nd }}$ isomer). Other signal for $C^{4 / 5}$ was not observed.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3} \mathbf{)}: \delta=-39.8(\mathrm{~s}) 36 \%,-38.9\left(\mathrm{~s}, 2^{\text {nd }}\right.$ isomer $) 64 \%$

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\mathfrak{v}=2961$ (vs), 2921 (vs), 2867 (vs), 2159 (vs), 2035 (vs), 1457 (vs), 1433 (s), 1395 (vs), 1375 (vs), 1349 (m), 1287 (s), 1211 (m), 1137 (m), 1106 (s), 1073 (m), 999 (m), 923 (s$), 872$ (s$), 827$ (s$), 744$ (m), 691 (m), 666 (s$), 642$ (s$), 600$ (s$), 545$ (s$), 495$ (m), 478 (m), 458 (m), 437 (m), 425 (m).

MS (EI, 70 eV): $m / z(\%) 530.0(10)[M]^{+}, 487.9$ (10) $\left[\mathrm{M}^{\mathrm{n}}{ }^{\mathrm{Pr}}\right]^{+}, 445.9$ (1w0) $\left[\mathrm{M}-2^{\mathrm{n}} \mathrm{Pr}\right]^{+}$.
HR-MS: found: 530.0296, calc. 530.0298.

10.23 Oxidation reaction of 1,4-dihydro-1,4-diphosphinine (17a) with $\mathbf{H}_{2} \mathrm{O}_{2}$ urea

In a round bottom flask $\mathbf{1 7 a}(0.32 \mathrm{~g}, 0.69 \mathrm{mmol})$ was dissolved in 15 mL of chloroform and $\mathrm{H}_{2} \mathrm{O}_{2}$-urea ($0.14 \mathrm{~g}, 1.53 \mathrm{mmol}$) was added at ambient temperature. The reaction mixture was stirred for 16 hours. The reaction solution was filtered to remove the excess urea and dried in vacuo $\left(8 \cdot 10^{-3}\right.$ mbar).The obtained solid was washed twice with n-pentane $(2 \cdot 2 \mathrm{~mL})$ and dried in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$).
10.23.1 4,8-Bis(dimethylamino)-3,7-dimethyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6-d']bisthiazole-2,6-dithione-4,8-dioxide (18)

Yield: $0.30 \mathrm{~g}(0.60 \mathrm{mmol}) 86.7$ \%; white solid:
Elemental composition: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$
Molecular weight: $496.60 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}: \delta=1.02-1.18\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.96-3.17(\mathrm{~m}, 8 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.17-3.37 ($\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $3.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer $)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.5 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $: \delta=13.7\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 13.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer $), 36.1$
$\left(\mathrm{s}, \mathrm{CH}_{3}\right), 36.2\left(\mathrm{~s}, \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer $), 38.2\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=2.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 38.5\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=2.6\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $125.7\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=13.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=7.8 \mathrm{~Hz}, \mathrm{C}^{5 / 4}\right), 127.7\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=13.3\right.$ $\mathrm{Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.1 \mathrm{~Hz}, C^{5 / 4} 2^{\text {nd }}$ isomer $), 140.8\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=46.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=11.2 \mathrm{~Hz}, \mathrm{C}^{4 / 5}\right), 142.6(\mathrm{dd}$, ${ }^{1} J_{\mathrm{P}, \mathrm{C}}=45.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=11.2 \mathrm{~Hz}, \mathrm{C}^{4 / 5} 2^{\text {nd }}$ isomer $), 190.9\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=8.4 \mathrm{~Hz}, C=\mathrm{S}\right), 192.0\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=\right.$ $8.4 \mathrm{~Hz}, C=\mathrm{S} 2^{\text {nd }}$ isomer).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 1 . 5 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta=-4.2 \mathrm{ppm}(\mathrm{s}) 50 \%,-3.3 \mathrm{ppm}\left(\mathrm{s}, 2^{\text {nd }}\right.$ isomer) 50%
 1380 (vs), 1323 (s), 1294 (s), 1228 (m), 1199 (s), 1151 (m), 1080 (s), 1067 (s), 1019 (m), 948 (m), $926(\mathrm{~s}), 842(\mathrm{~m}), 785(\mathrm{~s}), 701(\mathrm{~m}), 673(\mathrm{~m})$.

MS (EI, $70 \mathbf{e V}$): $\left.m / z(\%) 721.0(100)\left[\mathrm{C}_{4} \mathrm{H}_{10}\right]^{+}, 351.9(8)\left[\mathrm{M}-2 \mathrm{NEt}_{2}\right]^{+}, 424.0(5)\right)\left[\mathrm{M}_{\mathrm{Et}}^{2}\right]^{+}$.
HR-MS: found: 496.0416, calc.: 496.0413.
Elemental analysis for: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$:

Calculated	C	38.70	H	5.82	N	11.28	S	25.82
Found	C	38.52	H	5.12	N	11.06	S	25.28

10.24 Oxidation of 17 a with elemental sulfur and selenium

In a Schlenk flask 17a was dissolved in toluene and sulfur (for 19) or selenium (for 20) was added at ambient temperature. The reaction mixtures were heated to $110{ }^{\circ} \mathrm{C}$ and stirred for 5 days. The reaction solutions were concentrated and kept at $-35^{\circ} \mathrm{C}$, whereupon cooling crystalline solids were obtained. After filtration the obtained solids were washed twice with n pentane $(2 \cdot 5 \mathrm{~mL})$ and dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$.

10.24.1 4,8-Bis(dimethylamino)-3,7-dimethyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6-d']bisthiazole-2,6-dithione-4,8-disulfide (19)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{1 7 a}$	0.39 g	0.84
$\mathbf{1 / 4 S _ { \mathbf { 8 } }}$	0.06 g	1.87
toluene	20 mL	

Yield: $0.40 \mathrm{~g}(0.75 \mathrm{mmol}), 88.8 \%$, White crystalline solid

Melting point: $180^{\circ} \mathrm{C}$

Elemental composition: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{6}$
Molecular weight: $528.72 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=1.09-1.18\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.04-3.21(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.38-3.53 (m, $\mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $3.86\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 5 . 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=13.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer), 35.9 ($\mathrm{s}, \mathrm{CH}_{3}$), $36.2\left(\mathrm{~s}, \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer), $39.5\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=2.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 39.7\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=2.4\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $128.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=93.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=10.7 \mathrm{~Hz}, \mathrm{C}^{5 / 4}\right), 129.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=\right.$ $94.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=10.6 \mathrm{~Hz}, C^{5 / 4} 2^{\text {nd }}$ isomer), $138.2\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=99.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=8.0 \mathrm{~Hz}, \mathrm{C}^{4 / 5}\right), 139.1$ $\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=95.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=8.6 \mathrm{~Hz}, \mathrm{C}^{4 / 5} 2^{\text {nd }}\right.$ isomer), $190.4\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=8.2 \mathrm{~Hz}, C=\mathrm{S}\right), 190.4(\mathrm{t}$, ${ }^{3} J_{\mathrm{P}, \mathrm{C}}=8.1 \mathrm{~Hz}, C=\mathrm{S} 2^{\text {nd }}$ isomer $)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{2 0 2 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$) $: \delta=22.4$ (s) $50 \%, 23.3$ ($\mathrm{s}, 2^{\text {nd }}$ isomer) 50%
 (s), 1198 (vs), 1151 (s), 1073 (s$), 1012$ (m), 945 (s$), 921$ (vs), 842 (m), 783 (s$), 738$ (vs), 710 (m), 687 (m), 628 (s$), 541$ (vs), 494 (s), 462 (s$), 431$ (m).

MS (EI, $70 \mathbf{~ e V}$): $m / z(\%) 528.0(85)[\mathrm{M}]^{+}, 496.0(10)[\mathrm{M}-\mathrm{S}]^{+}, 383.8$ (60) $\left[\mathrm{M}-2 \mathrm{NEt}_{2}\right]^{+}, 320.9$ (80) $\left[\mathrm{M}-2 \mathrm{~S}-2 \mathrm{NEt}_{2}\right]^{+}, 72.1\left[\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}\right]^{+}$.

HR-MS: found: 527.9961, calc. 527.9957.

Elemental analysis for: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{6}$:

Calculated	C	36.35	H	4.96	N	10.60	S	36.38
Found	C	37.73	H	5.04	N	10.34	S	35.46

10.24.2 4,8-Bis(dimethylamino)-3,7-dimethyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6-

 d']bisthiazole-2,6-dithione-4,8-diselenide (20)| | amount used $(\mathbf{g} / \mathbf{m L})$ | $\mathbf{m m o l}$ |
| :---: | :---: | :---: |
| $\mathbf{1 7 a}$ | 0.29 g | 0.63 |
| $\mathbf{S e}$ | 0.11 g | 1.40 |
| toluene | 20 mL | |
| | | |

Yield: $0.30 \mathrm{~g}(0.48), 76.5 \%$ White crystalline solid
Melting point: $244^{\circ} \mathrm{C}$

Elemental composition: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Se}_{6}$

Molecular weight: $622.52 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$ NMR ($500.1 \mathrm{MHz}, \mathbf{C D C l}_{3}: \delta=1.09-1.17\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.12-3.26(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 3.45-3.60 (m, $\mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $3.86\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer) .
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\left.\mathbf{1 2 5 . 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=13.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer $), 36.0$ ($\mathrm{s}, \mathrm{CH}_{3}$), $36.2\left(\mathrm{~s}, \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer), $40.3\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=2.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 40.4\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=2.4\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $127.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=110.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.5 \mathrm{~Hz}, C^{5 / 4}\right), 129.0\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=\right.$ $109.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.0 \mathrm{~Hz}, C^{5 / 4} 2^{\text {nd }}$ isomer), $136.1\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=108.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=6.4 \mathrm{~Hz}, C^{4 / 5}\right)$, $136.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=104.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=7.7 \mathrm{~Hz}, C^{4 / 5} 2^{\text {nd }}\right.$ isomer $), 190.1\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=7.6 \mathrm{~Hz}, C=\mathrm{S}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{2 0 2 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=13.4\left(\mathrm{~S}_{\mathrm{sat}}{ }^{1} J_{\mathrm{Se}, \mathrm{P}}=812.0 \mathrm{~Hz}\right), 54 \% 14.3\left(\mathrm{~S}_{\mathrm{sat}}{ }^{1} J_{\mathrm{Se}, \mathrm{P}}=\right.$ $830.0 \mathrm{~Hz} 2^{\text {nd }}$ isomer) 46 \%

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$) $: \tilde{v}=2964$ (vs), 1495 (vs), 1452 (vs), 1440 (vs), 1412 (vs), 1379 (vs), 1312 (s), 1284 (m), 1197 (vs), 1149 (m), 1063 (s), 1014 (m), 939 (s), 917 (s$), 837$ (m), 780 (s), 714 (vs), $688(\mathrm{~m}), 675(\mathrm{~m})$.

MS (EI, $70 \mathbf{e V}$: $m / z(\%) 623.8$ (60) $[\mathrm{M}]^{+}, 543.9$ (20) $[\mathrm{M}-\mathrm{Se}]^{+}, 464.0(20)[\mathrm{M}-2 \mathrm{Se}]^{+}, 399.8$ (10) $\left[\mathrm{M}-\mathrm{Se}^{2} \mathrm{NEt}_{2}\right]^{+}, 319.9$ (60) $\left[\mathrm{M}-2 \mathrm{Se}-2 \mathrm{NEt}_{2}\right]^{+}, 288.9$ (30) [M-2Se-2NEt2-S] ${ }^{+}, 72.1$ $\left[\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}\right]^{+}$.

HR-MS: found: 615.8901, calc. 615.8900.

Elemental analysis for: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Se}_{2}$:

Calculated	C	30.87	H	4.21	N	9.00	S	20.60
Found	C	30.81	H	4.37	N	8.66	S	19.17

10.25 Oxidation of tricyclic 1,4-dihydro-1,4-diphosphinine (17a) with orthochloranil

In a Schlenk flask $17 \mathrm{a}(0.70 \mathrm{~g}, 1.50 \mathrm{mmol})$ was dissolved in 30 mL of dichloromethane and cooled $-78{ }^{\circ} \mathrm{C}$. O-chloranil $(0.74 \mathrm{~g}, 3.01 \mathrm{mmol})$ was added and the reaction mixture was stirred for 24 hours and warmed up to ambient temperature. Solvent was removed in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$ and the obtained solid was washed twice with n-pentane $(2 \cdot 7 \mathrm{~mL})$ and dried in $\operatorname{vacuo}\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. White solid was thus obtained.

10.25.1 4,8-bis(dimethylamino)-3,7-dimethyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6$\left.\mathrm{d}^{\prime}\right]$ bisthiazole-2,6-dithione-4,8-bis(tetracholorobenzodioxaphosphole) (21)

Yield: $1.40 \mathrm{~g}(1.46 \mathrm{mmol}) 97 \%$; white solid.

Melting point: $339^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{8} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$
Molecular weight: $956.33 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}$): $\delta=1.41\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.23 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.00(\mathrm{br} 8 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$.
${ }^{{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}} \mathbf{N M R}\left(\mathbf{1 2 5 . 7} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=11.4\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 39.4\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 42.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, $115.6\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=7.4 \mathrm{~Hz}\right.$, o-chloranil ringC) $122.0\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=194.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.3 \mathrm{~Hz}, C^{5 / 4}\right)$, 125.8 (s, o-chloranil ringC), 140.2 (s , o-chloranil ringC), $158.3\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=120.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=\right.$ $\left.24.2 \mathrm{~Hz}, C^{4 / 5}\right)$, $193.2\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=7.6 \mathrm{~Hz}, C=\mathrm{S}\right)$.
${ }^{31} \mathbf{P}$ NMR ($202.5 \mathrm{MHz}, \mathbf{C D}_{2} \mathbf{C l}_{2}$): $\delta=-60.1 \mathrm{ppm}(\mathrm{s}) 6 \%,-59.2 \mathrm{ppm}\left(\mathrm{s}, 2^{\text {nd }}\right.$ isomer) 94%
IR (ATR, $\tilde{\left.\mathbf{v}\left\{\mathbf{c m}^{\mathbf{- 1}}\right\}\right): \tilde{v}=2929(\mathrm{w}), 1453(\mathrm{vs}), 1390(\mathrm{~m}), 1277(\mathrm{~s}), 1194(\mathrm{~m}), 1141(\mathrm{~s}), 1065}$ (s), 1006 (vs), $994(\mathrm{~s}), 944(\mathrm{~m}), 928(\mathrm{~m}), 814(\mathrm{vs}), 790(\mathrm{~m}), 708(\mathrm{~s}), 682(\mathrm{~m}), 659(\mathrm{~m})$.

MS (EI, $70 \mathbf{e V}$): m / z (\%) 955.7 (3) $[\mathrm{M}]^{+}, 883.7$ (35) $\left[\mathrm{M}-\mathrm{Et}_{2} \mathrm{~N}\right]^{+}, 710.0$ (5) $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}\right]^{+}$, 464.0 (3) $\left[\mathrm{M}-2 \mathrm{C}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}\right]^{+}, 72(58)\left[\mathrm{NEt}_{2}\right]^{+}$.

FTMS- pos ESI for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{8} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}\right] \mathrm{H}$: found $=956.7840$, calc. $=956.7840$.

Elemental analysis: for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{8} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$:

Calculated	C	35.17	H	2.74	N	5.86	S	13.41
Found	C	34.60	H	3.03	N	5.62	S	12.98

10.26 Reaction of tricyclic 1,4-dihydro-1,4-diphosphinine (17a) with MeOTf

In a Schlenk flask $17 \mathrm{a}(0.50 \mathrm{~g}, 1.07 \mathrm{mmol})$ was dissolved in 25 mL of dichloromethane and cooled $0^{\circ} \mathrm{C}$. MeOTf ($0.25 \mathrm{~mL}, 2.28 \mathrm{mmol}$) was added and the reaction mixture was stirred for 3 hours and warmed up to ambient temperature. Solvent was removed in vacuo ($8 \cdot 10^{-3}$ mbar) and the obtained solid was washed twice with n-pentane $(2 \cdot 3 \mathrm{~mL})$ and dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. Yellow solid was thus obtained.
10.26.1 [4,8-bis(dimethylamino)-3,7-dimethyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6d^{\prime} '|bisthiazole-2,6-bis(thiazolium)]trifluoromethanesulfonate (23)

Yield: $0.80 \mathrm{~g}(1.00 \mathrm{mmol}), 94.3 \%$; Yellow solid.
Melting point: $78^{\circ} \mathrm{C}$
Elemental composition: $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{6}$

Molecular weight: $792.80 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$ NMR ($500.1 \mathrm{MHz}, \mathbf{C D}_{2} \mathbf{C l}_{2}$): $\delta=1.05$ (br, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.13 (br, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), 3.01 (br, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.07 ($\mathrm{s}, \mathrm{SCH}_{3}$), 3.08 ($\mathrm{s}, \mathrm{SCH}_{3} 2^{\text {nd }}$ isomer), 3.20 (br, 8 H , $\mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), 4.03 ($\mathrm{s}, \mathrm{NCH}_{3}$), 4.12 ($\mathrm{s}, \mathrm{NCH}_{3} 2^{\text {nd }}$ isomer) .
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 2 5 . 7 5} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}$) $: \delta=14.7$ (br, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 15.0 (br, $\mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $19.7\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 19.8\left(\mathrm{~s}, \mathrm{SCH}_{3} 2^{\text {nd }}\right.$ isomer $), 40.0\left(\mathrm{~m}, C \mathrm{H}_{3}\right), 40.7\left(\mathrm{t},{ }^{3 / 4} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer), 45.5 (br, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 46.1 ($\mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), 120.9 ($\mathrm{q},{ }^{1} J_{\text {P.F }}=320.7 \mathrm{~Hz}, C F_{3}$), $136.0\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=26.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=4.2 \mathrm{~Hz}, C^{5 / 4}\right) 138.7\left(\mathrm{~m}, \mathrm{C}^{4 / 5}\right), 143.3\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=28.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}\right.$ $=4.5 \mathrm{~Hz}, C^{5 / 4} 2^{\text {nd }}$ isomer) 150. ($\mathrm{m},{ }^{4 / 5} 2^{\text {nd }}$ isomer), $183.7\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=4.0 \mathrm{~Hz}, C=\mathrm{S}\right.$), $184.0\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}\right.$ $=2.4 \mathrm{~Hz}, C=\mathrm{S} 2^{\text {nd }}$ isomer $)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 2 . 5} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right.$) $: \delta=22.8$ (s) $59 \%, 23.3$ ($\mathrm{s}, 2^{\text {nd }}$ isomer) 41%
 (m), 1196 (s), 1145 (m), 1051 (s), 1026 (w), 936 (s), 814 (s), 788 (s), 753 (s), 707 (vs), 663 (vs).
$\underline{\text { MS }}$ (neg. ESI-MS): $\mathrm{m} / \mathrm{z}=149.2[\mathrm{OTf}]^{-}$, (pos. ESI-MS): $\mathrm{m} / \mathrm{z}=247.049\left[\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}\right]^{2+}$.
Elemental analysis for: $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{6}$:

Calculated	C	30.30	H	4.07	N	7.07	S	24.26
Found	C	30.42	H	4.26	N	7.99	S	23.26

10.27 Synthesisof cis/trans 1,4-dihydro-1,4-dichloro-1,4-diphosphinines (24a,b)

To a solution of $\mathbf{1 7 a}(0.14 \mathrm{~g}, 0.30 \mathrm{mmol})$ or $\mathbf{1 7 b}(1.7 \mathrm{~g}, 3.3 \mathrm{mmol})$ in dichloromethane (10 mL for $1 \mathrm{a}, 65 \mathrm{~mL}$ for 1 b$), \mathrm{PCl}_{3}(0.06 \mathrm{~mL}, 0.68 \mathrm{mmol}$ for $1 \mathrm{a}, 0.62 \mathrm{~mL}, 7.18 \mathrm{mmol}$ for 1 b) was added (dropwise with a syringe) at $0{ }^{\circ} \mathrm{C}$ in a Schlenk flask. The reaction mixture was warmed to ambient temperature and stirred for two days. In case of $\mathbf{1 7 a}$ orange colored precipitate was
obtained having no solubility in common organic solvents, so it was filtered, washed with n pentane $(3 \cdot 7 \mathrm{~mL})$ and dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. In case of $\mathbf{1 7 b}$ the solvent was removed in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$) and the remaining yellow colored precipitate was dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. The obtained solid was washed twice with n-pentane $(2 \cdot 5 \mathrm{~mL})$ and dried in vacuo ($8 \cdot 10^{-3}$ mbar). Compound $\mathbf{2 4 b}$ was obtained as $1: 1.1$ mixture of cis and trans isomers. This mixture was used for the following characterization and measurements; further assignments to the isomers was not achieved (due to extremely low solubility, characterization of 24a could not be achieved).
10.27.1 4,8-Dichloro-3,7-dimethyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6-d']bis-thiazole-2,6-dithione (24a)

Elemental composition: $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$

Molecular weight: $391.23 \mathrm{~g} / \mathrm{mol}$.
MS (EI, $70 \mathbf{e V}$):m/z (\%) = 389.7 (10) [M] $]^{+} 319.8$ (100) [M-2Cl] ${ }^{+}$.

HR-MS $\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}\right)$: found $=389.8266$, calc. $=389.8265$.

10.27 .2 4,8-Dichloro-3,7-din propyl-4,8-dihydro[1,4]diphosphinine[2,3-d:5,6-d']bis-thiazole-2,6-dithione (24b)

Yield: $1.24 \mathrm{~g}(2.77 \mathrm{mmol}), 85.0 \%$, yellow solid.

Melting point: $235^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$

Molecular weight: $447.35 \mathrm{~g} / \mathrm{mol}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500.1 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=1.05\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.85-2.10(m, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$, $4.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 2 5 . 7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=11.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 21.s ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 21.5 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $50.8\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 52.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer), 124.6 (d, $\left.J_{\mathrm{P}, \mathrm{C}}=42.0 \mathrm{~Hz}, C^{4 / 5}\right), 141.5\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=37.4 \mathrm{~Hz}, C^{4 / 5}\right), 189.8(\mathrm{~s}, \mathrm{br} C=\mathrm{S})$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=12.7(\mathrm{~s}), \delta=21.3(\mathrm{~s})$.

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1} \mathbf{1}\right.$): $\tilde{v}=2927$ (w), 2867 (w), 1480 (m), 1352 (s$), 1280$ (s), 1214 (s), 1136 (s), 1011 (s) 924 (m), 833 (vs), 669 (vs), 583 (s), 546 (s$), 437$ (vs).

MS (EI, $70 \mathbf{e V}): \mathrm{m} / \mathrm{z}(\%)=445.9(28)[\mathrm{M}]^{+}, 412.9(15)[\mathrm{M}-\mathrm{Cl}]^{+}, 375.9(85)[\mathrm{M}-2 \mathrm{Cl}]^{+}, 345.0$ (6) $[\mathrm{M}-\mathrm{S}]^{+}, 291.8$ (100) $\left[\mathrm{M}-2^{\mathrm{n}} \mathrm{Pr},-2 \mathrm{Cl}\right]^{+}$.

HR-MS $\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}\right)$: found $=445.8896$, calc. $=445.8892$.
Elemental analysisfor $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$:
$\begin{array}{ccccccccc}\text { Calculated } & \text { C } & 32.22 & \text { H } & 3.15 & \mathrm{~N} & 6.26 & \mathrm{~S} & 28.67 \\ \text { Found } & \mathrm{C} & 30.92 & \mathrm{H} & 3.21 & \mathrm{~N} & 6.02 & \mathrm{~S} & 27.35\end{array}$

10.28 Synthesis of thiazole-based 1,4-diphosphinine 25

In a Schlenk flask, ${ }^{n} \mathrm{Bu}_{3} \mathrm{P}(0.4 \mathrm{~mL}, 1.65 \mathrm{mmol})$ was added to a suspension of the $1: 1.1$ mixture of $\mathbf{2 4 b}(0.62 \mathrm{~g}, 1.38 \mathrm{mmol})$ in 15 mL of dichloromethane at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to ambient temperature and stirred overnight. The reaction mixture was filtered via a cannula and the obtained red residue was washed with dichloromethane (1.5 mL) and then with n-pentane $(2 \cdot 5 \mathrm{~mL})$. The obtained bright red color solid was dried in vacuo $\left(8 \cdot 10^{-3}\right.$ mbar).

10.28.1 3,7-Dinpropyl-[2,3-d:5,6-d']bis-thiazole-2,6-dithione-4,8-[1,4]diphosphinine (25)

Yield: $0.40 \mathrm{~g}(1.06 \mathrm{mmol}), 77.0 \%$, red solid.
Melting point: $249^{\circ} \mathrm{C}$.
Elemental composition: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$

Molecular weight: $376.45 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$ NMR ($\left.500.1 \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=1.07\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.57(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 2 5 . 7 5} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}$): $\delta=11.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.6\left(\mathrm{t},{ }^{4 / 5} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=2.3\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 50.7\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{C}}=7.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 154.2\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=36.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=\right.$ $\left.32.1 \mathrm{~Hz}, C^{4 / 5}\right), 164.0\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=33.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=30.1 \mathrm{~Hz}, C^{4 / 5}\right), 190.0\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=3.5 \mathrm{~Hz}, C=\mathrm{S}\right)$.
${ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{2 0 2 . 5} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=134.3 \text { (s). } ~}$
 (vs), 932 (s), 888 (s), 848 (s) 746 (s), 678 (s).
$\underline{\text { MS (EI, } 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=376.0(75)[\mathrm{M}]^{+}, 333.9 \text { (37) }\left[\mathrm{M}^{-\mathrm{n}} \mathrm{Pr}\right]^{+}, 301.0(8)\left[\mathrm{M}{ }^{\mathrm{n}} \mathrm{Pr}-\mathrm{S}\right]^{+}, 291.9}$ (100) $\left[\mathrm{M}-2^{\mathrm{n}} \mathrm{Pr}\right]^{+}$,

HR-MS $\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}\right)$: found $=375.9516$, calc. $=375.9515$.

Elemental analysis for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$:

Calculated	C	38.29	H	3.75	N	7.44	S	34.07
Found	C	38.20	H	3.77	N	7.34	S	33.94

10.29 [4+2]-Cycloaddition reactions of 1,4-diphosphinine 25

In a Schlenk tube, reagent (see the table below) was added to a suspension of 1,4diphosphinine $\mathbf{2 5}$ in dry toluene (temperature is given in the table below). It was stirred (time is given in the table below). Solvent was removed under reduced pressure ($8 \cdot 10^{-3} \mathrm{mbar}$) and the obtained solid was washed with n-pentane $\left(2 \cdot 2 \mathrm{~mL} 26\right.$ and 27a) and dried in vacuo $\left(8 \cdot 10^{-3}\right.$ mbar).
10.29.1 7,8-Bis(methyloxocarbonyl)-[2,3-d:5,6-d']bis(3-nbutyl-thiazole-2-thione)-1,4-diphospha-bicyclo[2.2.2]octa-2,5,7-triene (26)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$	$\mathbf{m i n} /{ }^{\circ} \mathbf{C}$
$\mathbf{2 5}$	0.50 g	1.32	
DMAD	0.17 mL	1.39	
Toluene	20 mL		
Reaction time/temp			$45 / 50$

Yield: $0.50 \mathrm{~g}(0.96 \mathrm{mmol}), 73 \%$, yellow orange solid.
Melting point: $205^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$

Molecular weight: $518.56 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}$) : $\delta=1.01\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.41 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.80(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.82\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 4.27-4.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.5 \mathrm{MHz}, \mathbf{C D}_{2} \mathbf{C l}_{2}$) $: \delta=10.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.3\left(\mathrm{t},{ }^{4 / 5} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.62 \mathrm{~Hz}, \mathrm{~N}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.5\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{C}}=4.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 53.4\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 131.7\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=17.2\right.$ $\left.\mathrm{Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=15.0 \mathrm{~Hz}, C^{5}\right), 157.6\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=15.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=14.0 \mathrm{~Hz}, C \mathrm{CO}_{2} \mathrm{Me}\right), 160.1\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}\right.$ $\left.=11.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.3 \mathrm{~Hz}, C^{4}\right), 165.5\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{C}}=17.1 \mathrm{~Hz}, \mathrm{CCO}_{2} \mathrm{Me}\right), 189.4(\mathrm{br}, C=\mathrm{S})$.

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=-75.4(\mathrm{~s})$.

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=2953(\mathrm{w}), 1711$ (vs), 1572 (m), 1430 (m), 1359 (s), 1332 (m), 1253 (vs), 1212 (vs), 1141 (vs), 1060 (s$), 1020$ (s$), 915$ (m), 879 (s), 815 (vs), 744 (m), 653 (s$), 618$ (s), 468 (s).

MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=292.0(100)\left[\mathrm{C}_{6} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}\right]^{+}, 301(10)\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{3}\right]^{+}, 376.0$ (75) $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}\right]^{+}, 518.0(68)[\mathrm{M}]^{+}$.

HR-MS: found $=517.9777$, calc. $=517.9781$.
Elemental analysis:for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$:

Calculated	C	41.69	H	3.89	N	5.40	S	24.73
Found	C	41.53	H	3.72	N	5.37	S	24.82

10.29.2 7,8-(N-Phenylmaleimide)-[2,3-d:5,6-d']bis(3-npropyl-thiazole-2-thione)-1,4-diphospha-7,8-dihydro-bicyclo[2.2.2]octa-2,5-diene (27)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$	$\mathbf{m i n} /{ }^{\circ} \mathbf{C}$
$\mathbf{2 5}$	0.35 g	0.92	
1-phenyl pyrrole-1,5-			
dione	0.16 g	0.97	
Toluene Reaction time/temp	15 mL		

Yield: $0.48 \mathrm{~g}(0.87 \mathrm{mmol}), 94 \%$, white solid.
Melting point: $289^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$

Molecular weight: $549.62 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}$) $: \delta=1.01\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H}}=7.37 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.10(\mathrm{t}, 3 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.40 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.68-1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.84-1.94(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.86\left(\mathrm{~m}, 1 \mathrm{H},(\mathrm{CHCO})_{2} \mathrm{~N}-\mathrm{Ph}\right), 3.95\left(\mathrm{~m}, 1 \mathrm{H},(\mathrm{CHCO})_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 4.23-4.54(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 6.90-7.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{C}_{6} H_{5}\right), 7.44-7.51\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} H_{5}\right)$.
${ }^{{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}} \mathbf{N M R}\left(75.5 \mathrm{MHz}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right): \delta=11.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 11.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) 22.3$ (d, ${ }^{4} J_{\mathrm{P}, \mathrm{C}}=3.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $22.8\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 44.1\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=16.4\right.$ $\left.\mathrm{Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=2.3 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}\right), 44.6\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=16.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=2.2 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}\right) 51.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=\right.$ $\left.10.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 125.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=29.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=5.8 \mathrm{~Hz}, \mathrm{C}^{5}\right), 126.8\left(\mathrm{~s}, \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.2$ $\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=25.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=5.5 \mathrm{~Hz}, C^{5}\right), 128.8\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 129.9\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right), 131.3\left(\mathrm{~s}, C_{6} \mathrm{H}_{5}\right)$, $151.7\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=21.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=3.5 \mathrm{~Hz}, C^{4}\right), 152.5\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=17.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=2.3 \mathrm{~Hz}, C^{4}\right)$,
$172.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=6.5 \mathrm{~Hz},(\mathrm{CHCO})_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 172.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=6.5 \mathrm{~Hz},(\mathrm{CHCO})_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $191.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=2.0 \mathrm{~Hz}, C=\mathrm{S}\right), 191.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=1.9 \mathrm{~Hz}, C=\mathrm{S}\right)$.
 Hz, P).

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=2966(\mathrm{w}), 2869(\mathrm{w}), 1769(\mathrm{~m}), 1705(\mathrm{vs}), 1491(\mathrm{w}), 1458(\mathrm{~m}), 1360$ (vs), 1286 (s), 1214 (s), 1140 (s), 1024 (s), 925 (s), 821 (s), 735 (s), 696 (s), 621 (m), 735 (s), 696 (s), 621 (m), 541 (m), 452 (s .

MS (EI, 70 eV):m/z $(\%)=549.1(10)[\mathrm{M}]^{+}, 549.1(10)[\mathrm{M}]^{+}, 376.0(85)\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}\right]^{+}$, 291.9 (100) [M-2 $\left.{ }^{\mathrm{n} P r} \mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2}\right]^{+} 173.2$ (50) $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2}\right]^{+}$.

Elemental analysis: for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$:

Calculated	C	48.08	H	3.85	N	7.65	S	23.33
Found	C	48.20	H	3.89	N	7.50	S	23.14

10.29.3 7,8-(4-Phenyl-1,2,4-triazoline-3,5-dione)-[2,3-d:5,6-d']bis(3-npropylthiazole-2-thione)-1,4-diphospha-7,8-dihydro-bicyclo[2.2.2]octa-2,5-diene (28)

The reaction did not proceed to completion and at aconversion of almost 50% an equilibrium was established (as revealed by ${ }^{31} \mathrm{P}$-NMR monitoring). The solvent was removed from this mixture, and the obtained solid was used for the analysis.

	amount used $(\mathrm{g} / \mathbf{m L})$	$\mathbf{m m o l}$	$\mathbf{m i n} /{ }^{\circ} \mathbf{C}$
$\mathbf{2 5}$	0.50 g	1.32	
4-Phenyl-1,2,4- triazolinedione Toluene	0.24 g	2.39	
Reaction time/temp	25 mL		

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (121.5 MHz, Toluene) $: \delta=-47.4(\mathrm{~s})$
MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%) m / z=551.0(40)[\mathrm{M}]^{+}, m / z=376$ (85%) $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}\right]^{+}, 334.0$ (35 \%) $\left[\mathrm{M}-\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4-}{ }^{-} \mathrm{Pr}\right]^{+}, 177.1$ (40\%) $\left[\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}$.

HR-MS: found $=550.9893$, calc. $=550.9897$.

10.30 Reaction of 1,4 -diphosphinine 25 with nucleophiles

To a suspension of $\mathbf{2 5}$ in a Schlenk tube in dry diethylether, the reagent (${ }^{n} \mathrm{BuLi}$ for 29a and KHMDS solution in $7 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ for 29b) was added at $-78^{\circ} \mathrm{C}$ (for 29a) or at r.t. (for 29b). Red solutions were formed (in both cases) which were stirred for 10 min . Only 29b was isolated by immediate solvent removal under reduced pressure ($8 \cdot 10^{-3}$ mbar) and washing with n-pentane $(2 \cdot 3 \mathrm{~mL}) . \mathbf{2 9 b}$ wasobtainedas red powder after drying in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. However, the NMR data are given below of the in situ prepared thf-analogue of $\mathbf{2 9 b}$ measured at $-30^{\circ} \mathrm{C}$.
10.30.1 Lithium $\left(\mathrm{Et}_{2} \mathrm{O}\right)_{\mathrm{n}}\left[3,7-\mathrm{di}^{\mathrm{n}}\right.$ propyl-[2,3-d:5,6-d']bis-thiazole-2,6-dithione-4-nbutyl-8-phosphan-1-ide](29a)

${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{2 0 2 . 4} \mathbf{~ M H z}, \mathbf{E t}_{2} \mathbf{O}\right): ~ \delta=-59.1(\mathrm{~s}),-21.1(\mathrm{~s})$.
10.30.2 Potassium $\left(\mathrm{Et}_{2} \mathrm{O}\right)_{\mathrm{n}}\left[\mathbf{3 , 7 - d i}{ }^{\mathrm{n}}\right.$ propyl-[2,3-d:5,6-d']bis-thiazole-2,6-dithione-4-bis(trimethylsilyl)amino-8-phosphan-1-ide] (29b)

Note: The exact number of solvent ligands (in solution) could not be determined due to in situ preparation and characterization in THF- d_{8} because of stability issues in THF.

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{2 5}$	0.15 g	0.39
KHMDS	0.099	0.44
Ether	10 mL	

Yield: $0.23 \mathrm{~g}(0.28 \mathrm{mmol}), 70 \%$, red solid.

Elemental composition: $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Si}_{2}{ }^{-}\left(\right.$Except for $\left.\left[\mathrm{K}(\text { solv })_{n}\right]^{+}\right)$
${ }^{\mathbf{1} H}$ NMR ($\mathbf{5 0 0 . 1} \mathbf{~ M H z}, \mathbf{T H F}-\mathbf{d}_{8}, \mathbf{- 3 0}{ }^{\circ} \mathbf{C}$): $\delta=-0.11\left(\mathrm{~s}, \mathrm{br}, 9 \mathrm{H},-\operatorname{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.30(\mathrm{~s}, \mathrm{br}, 9 \mathrm{H},=$ $\left.-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.90\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.43 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.97\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.43 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.74-193 (m, 4H, CH2 $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.78-3.96 (br, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.23 (br, 1 H $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.58\left(\mathrm{td}, 1 \mathrm{H}^{2} J_{\mathrm{H}, \mathrm{H}}=5.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=12.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 2 5 . 7 5} \mathbf{~ M H z}, \mathbf{T H F}-\mathbf{d}_{8,}, \mathbf{- 3 0}{ }^{\circ} \mathbf{C}$) $: \delta=2.7\left(\mathrm{~s}, \mathrm{br},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=17.4\right.$ $\left.\mathrm{Hz}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 11.5\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 20.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=4.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{P}, \mathrm{C}}=\right.$ $\left.8.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) 49.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=21.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 49.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=13.9 \mathrm{~Hz}\right.$, $\left.C H_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 106.7\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=17.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=8.2 \mathrm{~Hz}, C^{4 / 5}\right), 126.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=12.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}\right.$ $\left.=8.9 \mathrm{~Hz}, \mathrm{C}^{4 / 5}\right), 148.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=54.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=8.2 \mathrm{~Hz}, C^{4 / 5}\right), 161.2\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=51.1,{ }^{2} J_{\mathrm{P}, \mathrm{C}}=\right.$ $\left.5.9 \mathrm{~Hz}, \mathrm{C}^{4 / 5}\right), 184.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=5.83 \mathrm{~Hz} C=\mathrm{S}\right), 188.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=11.1 \mathrm{~Hz} C=\mathrm{S}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{2 0 2 . 4} \mathbf{~ M H z}, \mathbf{T H F}-\mathbf{d}_{\mathbf{8}}^{\mathbf{- 3 0}}{ }^{\circ}{ }^{\circ} \mathbf{C}$) $: \delta=-28.8(\mathrm{~s}, \mathrm{P}), 6.7(\mathrm{~s}, \mathrm{~N}-\mathrm{P})$.

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $: \tilde{v}=2959(\mathrm{~m}), 1436$ (w), 1397 (m), 1254 (s), 1251 (s), 1207(s), 1133 (vs), 1102 (s), 998 (vs), 856 (vs) 819 (s), 761 (s), 676 (vs), 430 (vs).

MS (neg. ESI-MS): $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Si}_{2}{ }^{-}=$: found $=538.0499$, calc. $=538.0499$.

10.31 General procedure for the reaction of mono anions 29a, 29b with electrophiles: ${ }^{\mathrm{BH}} \mathrm{BI}$ and $\mathrm{Ph}_{2} \mathbf{P C l}$

In a Schlenk tube to an ether solution of freshly prepared 29a/29b,reagent (${ }^{\mathrm{n}} \mathrm{BuI}$ for 29a and $\mathrm{Ph}_{2} \mathrm{PCl}$ for 29b) was added dropwise at $-78^{\circ} \mathrm{C}$ for 29 a or $-70^{\circ} \mathrm{C}$ for $\mathbf{2 9 b}$. The reaction mixture was stirred (for two $\mathrm{h} \mathbf{3 0 a}$ and $30 \mathrm{~min} \mathrm{30b}$) and warmed up to ambient temperature. The solvent was removed in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$ and the residue was taken in dicholoromethane for $\mathbf{3 0 a}$ and toluene for $\mathbf{3 0 b}$ and filtered to remove the formed salt (over frit having silica gel for 30a and via canula for 30b) The filtrate was collected, solvent was removed in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$). The obtained solid was washed twice with n-pentane (3 mL each) and dried in-vacuo($\left.8 \cdot 10^{-3} \mathrm{mbar}\right)$.

10.31.1 4,8-Dinbutyl-3,7-din ${ }^{\text {p }}$ propyl-4,8-dihydro-1,4-diphosphinine[2,3 -d:5,6-d']bis-

 thiazole-2,6-dithione (30a)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{2 5}$	0.13 g	0.33
${ }^{\mathbf{n}} \mathbf{B u L i}$	0.21 mL	0.35
${ }^{\mathbf{n} B u I}$	0.1 mL	0.33
Ether	10 mL	

Yield: $0.09 \mathrm{~g}(0.18 \mathrm{mmol}), 55 \%$, white solid.

Melting point: $165^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$

Molecular weight: $490.68 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=0.82\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.12 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.91(\mathrm{t}$, $6 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.23 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer $)$, $1.00\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.40 \mathrm{~Hz}\right.$,
$\mathrm{P}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.05-1.19 (m, 4H, N-CH2CH2CH3$) 1.21-1.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ $2^{\text {nd }}$ isomer), 1.31-1.50 (m, 4H, P-CH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.51-1.66 (m, 4H, $\mathrm{P}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), 1.67-1.74 (m, 4H, P-CH2CH2CH2CH3), 1.74-1.82 (m, 4H, P-CH2CH2 $\mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), 1.83-1.89 (m 4H, P-CH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.91-214 (m, 4H, P-CH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), 3.79-3.93 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.42-4.60 ($\mathrm{m} .4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer).
 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), 13.6 ($\mathrm{s}, \mathrm{br}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 13.7 (s , br, ${\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}}^{\text {n }}$ isomer), $20.8\left(\mathrm{~s}\right.$, br, $\mathrm{P}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 21.3 (s, br, $\mathrm{P}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), 23.7 (t , $\left.{ }^{4 / 5} J_{\mathrm{P}, \mathrm{H}}=5.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 24.03\left(\mathrm{t},{ }^{4 / 5} J_{\mathrm{P}, \mathrm{H}}=6.1 \mathrm{~Hz}, \mathrm{~N}^{2}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer $), 26.7$ (s , br, $\mathrm{P}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $28.5\left(\mathrm{t},{ }^{2 / 5} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=6.3 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}\right.$ isomer), $31.0(\mathrm{dd}$, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{C}}=19.9 \mathrm{~Hz},{ }^{4} J_{\mathrm{P}, \mathrm{C}}=5.6 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 33.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=25.0, \mathrm{~Hz},{ }^{4} J_{\mathrm{P}, \mathrm{C}}=11.0\right.$ $\mathrm{Hz}, \mathrm{P}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer), $50.7\left(\mathrm{t},{ }^{3 / 5} J_{\mathrm{P}, \mathrm{C}}=7,0, \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $51.8\left(\mathrm{dd},{ }^{3} J_{\mathrm{P}, \mathrm{C}}\right.$ $=13.7 \mathrm{~Hz},{ }^{5} J_{\mathrm{P}, \mathrm{C}}=6,9 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} 2^{\text {nd }}$ isomer $)$, $122.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=13.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=8.0\right.$ $\left.\mathrm{Hz}, \mathrm{C}^{4 / 5}\right), 123.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=12.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=10.2 \mathrm{~Hz}, \mathrm{C}^{4 / 5} 2^{\text {nd }}\right.$ isomer $), 139.2\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=13.5\right.$ $\left.\mathrm{Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=6.8 \mathrm{~Hz}, \mathrm{C}^{4 / 5}\right), 141.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=7.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=6.8 \mathrm{~Hz}, \mathrm{C}^{4 / 5} 2^{\text {nd }}\right.$ isomer), 189.9 (br, $C=\mathrm{S}$), 190.1 (br, $C=\mathrm{S} 2^{\text {nd }}$ isomer).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=-44.1(\mathrm{~s}),-38.3(\mathrm{~s})$.
IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{\mathrm{v}}=2961$ (m), 2926 (w), 2867 (w), 1458 (w), 1348 (s), 11294 (m), 1212 (m), 1177 (m), 1139 (vs), 1097 (s), 1001 (s), 928 (s) 817 (s), 795 (m), 780 (m), 661 (s).

MS (EI,70 eV):m/z (\%) = 549.0 (90) $[\mathrm{M}]^{+}, 433.0(10)\left[\mathrm{M}-{ }^{\mathrm{n}} \mathrm{Bu}\right]^{+}, 390.9(65)\left[\mathrm{M}-{ }^{\mathrm{n}} \mathrm{Bu}-{ }^{\mathrm{n}} \mathrm{Pr}\right]^{+}$, 376.9 (50) $\left[\mathrm{M}-2^{\mathrm{n}} \mathrm{Bu}\right]^{+}, 348.9$ (25) $\left[\mathrm{M}-{ }^{\mathrm{n}} \mathrm{Bu}-2^{\mathrm{n} P r}\right]^{+}, 291.8$ (80) $\left[\mathrm{M}-2^{\mathrm{n}} \mathrm{Bu}-2^{\mathrm{n} P r}\right]^{+}$, 57.1 (60) ["Bu] ${ }^{+}$.

HR-MS: found $=490.0921$, calc. $=490.0924$.
Elemental analysis:for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$:

Calculated	C	48.96	H	6.57	N	5.71	S	26.14
Found	C	48.37	H	6.68	N	5.62	S	23.79

10.31.2 4-Bis(trimethylsilyl)amino-8-diphenylphosphanyl-3,7-din ${ }^{\text {propyl-4,8- }}$ dihydro[1,4]diphosphinine[2,3-d:5,6-d']bis-thiazole-2,6-dithione (30b)

	amount used $(\mathbf{g} / \mathbf{m L})$	$\mathbf{m m o l}$
$\mathbf{2 5}$	0.15 g	0.39
$\mathbf{K H M D S}$	0.099	0.44
$\mathbf{P h}_{\mathbf{2}} \mathbf{P C l}$	0.08 mL	0.49
Ether	10 mL	

Yield: $0.19 \mathrm{~g}(0.26 \mathrm{mmol}), 66$ \%, yellow solid.
Melting point: $147^{\circ} \mathrm{C}$.
Elemental composition: $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{P}_{3} \mathrm{~S}_{4} \mathrm{Si}_{2}$

Molecular weight: $722.02 \mathrm{~g} / \mathrm{mol}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=-0.10\left(\mathrm{~s}, \mathrm{br}, 9 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.33\left(\mathrm{~d}, 9 \mathrm{H},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=2.7 \mathrm{~Hz}\right.$, $\left.-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.01\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.41-2.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.75-3.9(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.36-4.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.05\left(\mathrm{t}, 2 \mathrm{H},{ }^{3 / 4} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=7.56 \mathrm{~Hz}, o-\mathrm{C}_{6} H_{5}\right), 7.26(\mathrm{t}$, $\left.2 \mathrm{H},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{H}}=7.64 \mathrm{~Hz}, o-\mathrm{C}_{6} H_{5}\right), 7.38-7.51\left(\mathrm{~m}, 6 \mathrm{H}, m, p-\mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(75.5 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=3.5\left(\mathrm{~s},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=15.2 \mathrm{~Hz}\right.$, $\left.-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 11.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 11.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.2\left(\mathrm{dd},{ }^{4} J_{\mathrm{P}, \mathrm{C}}=4.5, \mathrm{~Hz},{ }^{5} J_{\mathrm{P}, \mathrm{C}}=1.6\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{P}, \mathrm{C}}=4.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 50.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=6.2 \mathrm{~Hz}\right.$ $C H_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $51.6\left(\mathrm{dd},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=10.5, \mathrm{~Hz},{ }^{4} J_{\mathrm{P}, \mathrm{C}}=7.0 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 116.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=9.3\right.$ $\left.\mathrm{Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=1.4 \mathrm{C}^{4 / 5}\right), 117.0\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=9.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=1.3 \mathrm{C}^{4 / 5}\right), 129.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=7.5 \mathrm{~Hz}, m-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 129.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=5.0 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{5}\right), 129.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=2.0 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{H}_{5}\right), 130.4(\mathrm{~s}, \mathrm{br}, p-$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 130.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=28.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=12.6 \mathrm{~Hz}\right.$, ipso-C6 $\left.\mathrm{H}_{5}\right), 131.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=20.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}\right.$ $=4.6 \mathrm{~Hz}$ ipso- $\left.C_{6} \mathrm{H}_{5}\right), 132.7\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=15.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=11.5 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right), 133.4\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=\right.$
$\left.20.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=3.7 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right), 147.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=5.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=4.4 \mathrm{~Hz}, C^{4 / 5}\right)$, $148.1(\mathrm{dd}$, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{C}}=5.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=4.3 \mathrm{~Hz}, C^{4 / 5}\right), 189.3\left(\mathrm{dd},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=6.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{P}, \mathrm{C}}=1.2 \mathrm{~Hz}, C=\mathrm{S}\right), 189.6(\mathrm{~d}$, ${ }^{3} J_{\mathrm{P}, \mathrm{C}}=5.2 \mathrm{~Hz}$).
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 1 . 5 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta=-50.8 \mathrm{ppm}\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=294.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{P}, \mathrm{P}}=15.9 \mathrm{~Hz}\right.$, $P \mathrm{Ph}_{2}$), $9.5 \mathrm{ppm}\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=294.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}, \mathrm{P}}=18.4 \mathrm{~Hz}, \mathrm{PPPh}_{2}\right), 15.0 \mathrm{ppm}\left(\mathrm{t}, J_{\mathrm{P}, \mathrm{P}}=17.1 \mathrm{~Hz},-\right.$ $\left.P \mathrm{NSi}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=2959$ (m), 1436 (w), 1397 (m), 1354 (s$), 1251$ (s$), 1207$ (s$), 1133$ (vs), 1102 (s), 998 (s), 856 (vs) 761 (m), 734 (m), 676 (s$), 620(\mathrm{w})$.
$\underline{\text { MS (APCI) }}$: $\mathrm{HR}-\mathrm{MS}$: found for $\left[\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{P}_{3} \mathrm{~S}_{4} \mathrm{Si}_{2}\right] \mathrm{H}=723.1136$, calc. $=723.1112$.
Elemental analysis: for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{P}_{3} \mathrm{~S}_{4} \mathrm{Si}_{2}$: found: C 50.00 , H 5.96, N 5.70, S 17.34 Calc.: C 49.91, H 5.86, N 5.82, S 17.76.

Calculated	C	49.91	H	5.86	N	5.82	S	17.76
Found	C	50.17	H	5.95	N	5.75	S	17.43

10.32 Oxidation reaction of the mono anion $29 b$ and formation of the P-P dimer of [3,7-di ${ }^{\text {n }}$ propyl-[2,3-d:5,6-d']bis-thiazole-2,6-dithione-4-bis(trimethylsilyl)amino-8-phosphan-1-yl] radical

In a Schlenk flask a suspension $25(0.31 \mathrm{~g}, 0.85 \mathrm{mmol})$ was prepared using 20 mL of dry diethylether. To this suspension, ether $(15 \mathrm{~mL})$ solution of KHMDS $(0.18 \mathrm{~g}, 0.90 \mathrm{mmol})$ was added at ambient temperature. Red solution was formed which was stirred for 10 min at ambient temperature and then cooled down to $-70^{\circ} \mathrm{C}$. Ether $(10 \mathrm{~mL})$ solution of iodine $(0.06$
g 0.44 mmol) was added dropwise and the reaction mixture turned greenish. The reaction solution was stirred for half an hour and then solvent was removed under reduced pressure $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$. The residue was taken in dry toluene and filtered via cannula to remove the formed potassium chloride. Solvent was removed again in-vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$) and the obtained greenish yellow solid was washed with n-pentane $(2.5 \mathrm{~mL})$ and dried in vacuo ($8 \cdot 10^{-3}$ mbar).

Yield: $0.6 \mathrm{~g}(0.55 \mathrm{mmol}), 65 \%$, Greenish yellow solid.

Melting point: $260{ }^{\circ} \mathrm{C}$.

Elemental composition: $\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{P}_{4} \mathrm{~S}_{8} \mathrm{Si}_{4}$

Molecular weight: $1073.67 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$ NMR (500.1 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta=-0.10\left(\mathrm{~s}, \mathrm{br}, 18 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.41\left(\mathrm{~d}, 18 \mathrm{H},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=2.0\right.$ $\left.\mathrm{Hz},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.97\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.10\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.62-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.78-1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.88-1.98$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.10-2.23 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.23-3.35 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.96-4.05 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.45-4.60 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (125.75 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta=3.6\left(\mathrm{~s},-\operatorname{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=13.6 \mathrm{~Hz}\right.$, $\left.-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 11.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 11.4\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.2\left(\mathrm{~s}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.0(\mathrm{~s}$, br, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 50.9\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{C}}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=4.6, \mathrm{~Hz},-\mathrm{N}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 110.2\left(\mathrm{~m}, C^{4}\right), 128.6\left(\mathrm{~m}, C^{4}\right), 139.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=39.5 \mathrm{~Hz}, C^{5}\right), 151.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=\right.$ $\left.44.7 \mathrm{~Hz}, C^{5}\right), 189.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=3.5 \mathrm{~Hz}, C=\mathrm{S}\right), 190.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=3.5 \mathrm{~Hz}, C=\mathrm{S}\right)$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($202.4 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=-42.1\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{P}}=20.1 \mathrm{~Hz}, \mathrm{P}-\mathrm{P}\right),-40.4\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{P}}=\right.$ 20.4 Hz, P-P $2^{\text {nd }}$ isomer $), 17.9\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{P}}=20.2 \mathrm{~Hz},-\mathrm{PNSi}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right) 19.9\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{P}}=20.8 \mathrm{~Hz},-\right.$ PNSi $2\left(\mathrm{CH}_{3}\right)_{3} 2^{\text {nd }}$ isomer).

IR (ATR, $\left.\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-\mathbf{1}}\right\}\right): \tilde{v}=2963$ (m), 1460 (w), 1432 (w), 1352 (vs), 1345 (s), 1213 (vs), 1141 (vs), 1001 (s), 898 (s), 844 (s) 824 (s), 764 (m), 681 (w), 664 (w), 548 (s), 433 (s).
$\underline{\text { MS (APCI): }} \mathrm{HR}-\mathrm{MS}:$ found for $\left[\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{P}_{4} \mathrm{~S}_{8} \mathrm{Si}_{4}\right] \mathrm{H}=1073.1057$, calc. $=1073.1058$.

Elemental analysis: for $\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{P}_{4} \mathrm{~S}_{8} \mathrm{Si}_{4}$:
$\begin{array}{lllllllll}\text { Calculated } & \mathrm{C} & 40.27 & \mathrm{H} & 6.01 & \mathrm{~N} & 7.83 & \mathrm{~S} & 23.89\end{array}$

$$
\begin{array}{lllllllll}
\text { Found } & \mathrm{C} & 40.17 & \mathrm{H} & 5.88 & \mathrm{~N} & 7.48 & \mathrm{~S} & 23.22
\end{array}
$$

10.33 Reaction of $\mathbf{1 , 4}$-diphosphinine 25 with MeOTf

A dichloromethane (15 mL) solution of $25(0.35 \mathrm{~g}, 0.92 \mathrm{mmol})$ was prepared in a Schlenk tube. To this solution, MeOTf ($0.23 \mathrm{~mL}, 1.97 \mathrm{mmol}$) was added dropwise at ambient temperature. The reaction mixture was stirred overnight. The solvent was removed in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$ from the obtained yellow solution. The residue was washed with n-pentane ($3 \cdot 5$ mL). White solid was obtained.

10.33.1 [3,7-Dinpropyl-[1,4]diphosphinine[2,3-d:5,6-d']bis-thiazole-2,6-bis(thiazolium)]bis-trifluoromethanesulfonate (32)

Yield: $0.6 \mathrm{~g}(0.84 \mathrm{mmol}), 92 \%$, White solid.
Melting point: $150^{\circ} \mathrm{C}$.
Elemental composition: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{6}$
Molecular weight: $704.64 \mathrm{~g} / \mathrm{mol}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $: \delta=3.11\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.43 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.10(\mathrm{~m}, 4 \mathrm{H}$,
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $5.20(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SMe}), 6.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta=11.4\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 20.0(\mathrm{~s}, \mathrm{SMe})$, 20.7 (br, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 55.4\left(\mathrm{t},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{C}}=8.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 120.8\left(\mathrm{q},{ }^{1} J_{\mathrm{P}, \mathrm{F}}=321.0 \mathrm{~Hz}, C \mathrm{~F}_{3}\right) 156.0(\mathrm{t}$, $\left.{ }^{1 / 2} J_{\mathrm{P}, \mathrm{C}}=37.0 \mathrm{~Hz}, C^{4 / 5}\right), 165.4\left(\mathrm{t},{ }^{1 / 2} J_{\mathrm{P}, \mathrm{C}}=34.0 \mathrm{~Hz}, C^{4 / 5}\right), 186.7\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=4.6 \mathrm{~Hz} C=\mathrm{S}\right)$.
$\xrightarrow{{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=164.8(\mathrm{~s}) .}$
 1452 (vs), 1436 (s), 1423 (s), 1327 (vs), 1296 (vs), 1254 (w), 1219 (m), 1139 (w), 1122 (m), 1054 (vs), 1026 (w), 975 (s), 960 (s), 937 (vs), 891 (vs), 843 (s), 632 (w), 571 (m), 516 (m).

HR-MS: pos. ESI found $=203.0000$, calc. $=202.9999$.
EA: for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{6}$: found: C 27.36, H 2.86, N 3.85, S 27.32. calc.: C $27.27, \mathrm{H} 2.86 \mathrm{~N}$ 3.98, S 27.30.

Calculated	C	27.27	H	2.86	N	3.98	S	27.30
Found	C	27.36	H	2.86	N	3.85	S	27.32

10.34 Two-fold reduction of 1,4-diphosphinine 25

$25(50.00 \mathrm{mg}, 0.13 \mathrm{mmol}), \mathrm{KC}_{8}(35.90 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ were stirred together in a Schlenk tube at ambient temperature for 20 minutes. Dark blackish red precipitate was formed. Precipitate was filtered and dissolved in THF and filtered again to remove the unreacted graphite. The filtrate was collected, solvent was removed and the obtained dark solid was dried in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$).

The exact number of solvent ligands (in solution) could not be determined because the reaction was performed in $\mathrm{Et}_{2} \mathrm{O}$ and THF was used for work up, so it is not clear which solvent is coordinated to K^{+}in solution (as both $\mathrm{Et}_{2} \mathrm{O}$ and THF are donating solvents). The ${ }^{1} \mathrm{H}$ NMR (measured in thf- d_{8}) showed only traces of ether.

10.34.1 Dipotassium(thf) ${ }_{n}\left[3,7-\right.$ din$^{\mathrm{n}}$ propyl-[2,3-d:5,6-d']bisthiazole-2,6-dithione-4,8-[1,4]bis-phosphane-1,4-diide](33)

Yield: 42.0 mg ($0.10 \mathrm{mmol} 70 \%$), Blackish red solid (calculated without solvent molecules).
Elemental composition: $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}\right]^{2-}\left(\right.$ Except for the counter cation $2\left[\mathrm{~K}(\text { solv. }) \mathrm{n}_{\mathrm{n}}\right]^{2+}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{T H F}-\mathbf{d}_{8}$): $\delta=0.92\left(b r, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.76 (br, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.11 (br, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.5 \mathrm{MHz}, \mathbf{T H F}-\mathbf{d}_{8}$) $: \delta=11.7\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.5\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 50.5$ (s, br, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $122.2\left(\mathrm{~s}, \mathrm{br},{ }^{4 / 5}\right), 143.6\left(\mathrm{~s}, \mathrm{br},{ }^{4 / 5}\right), 185.2(\mathrm{~s}, \mathrm{br}, C=\mathrm{S}), 186.2(\mathrm{~s}, \mathrm{br}, C=\mathrm{S})$.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 2 1 . 5} \mathbf{~ M H z}$, THF- \boldsymbol{d}_{δ}) $: \delta=-43.7(\mathrm{~s}, \mathrm{br}),-40.7(\mathrm{~s}, \mathrm{br})$.
MS (neg. ESI-MS): $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{~S}^{-}=$found $=376.967$, calc. $=376.9599$.
IR (ATR, $\tilde{\mathbf{v}}\left\{\mathbf{c m}^{-1}\right\}$): $\tilde{v}=2956(\mathrm{w}), 2922(\mathrm{w}), 2863$ (w), 2134 (w), 1432 (m), 1389 (vs), 1268 (m), 1205 (vs), 1131 (vs), 1101 (s) 1045 (m), 992 (vs), 873 (s$), 821$ (s$), 745$ (m), 663 (w), 584 (w), 533 (w), 454 (w).

10.35 Reaction of 33 with electrophiles (${ }^{\mathrm{n}} \mathrm{BuI}$ and MeOTf)

$25(50.00 \mathrm{mg}, 0.13 \mathrm{mmol}), \mathrm{KC}_{8}(35.90 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ were stirred together in a Schlenk tube at ambient temperature for 20 minutes. Dark blackish red precipitate was formed. Precipitate was filtered and dissolved in THF and filtered again to remove the unreacted carbon black. The obtained THF solution of $\mathbf{3 3 b}$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and then precooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ THF solution of E-X [0.03 mL, $0.26 \mathrm{mmol}\left({ }^{(} \mathrm{BuI}\right)$ for $\mathbf{3 0 a} ; 0.03 \mathrm{~mL}, 0.26$ mmol (${ }^{\mathrm{n}} \mathrm{BuI}$) for 34]was added to it. The reaction mixture was stirred for two hours, then solvent was removed in vacuo ($8 \cdot 10^{-3} \mathrm{mbar}$), and the obtained solid was dissolved in toluene and filtered to separate the fomed salt. The filtrate was collected, solvent was removed, and the obtained white solid was dried in vacuo $\left(8 \cdot 10^{-3} \mathrm{mbar}\right)$.
10.35.1 4,8-Dinbutyl-3,7-din ${ }^{\text {n }}$ propyl-4,8-dihydro-1,4-diphosphinine[2,3 -d:5,6-d']bis-thiazole-2,6-dithione (30a)

Yield: $0.052 \mathrm{~g}(0.10 \mathrm{mmol}), 80 \%$, White solid.

See section 10.31
10.35.2 4,8-Dinmethyl-3,7-din ${ }^{\text {n }}$ ropyl-4,8-dihydro-1,4-diphosphinine[2,3 -d:5,6-d']bis-thiazole-2,6-dithione (34)

Yield: $0.047 \mathrm{~g}(0.11 \mathrm{mmol}), 88 \%$, White solid.

Elemental composition: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{2}$
Molecular weight: $406.52 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0 . 1} \mathbf{~ M H z}, \mathbf{T H F}-\mathbf{d}_{8}$) $: \delta=1.01\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.02(\mathrm{t}, 6 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ 2nd isomer), $1.80\left(\mathrm{~m}, \mathrm{P}-\mathrm{CH}_{3}\right), 3.63\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.0$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (75.5 MHz, THF- $\left.\boldsymbol{d}_{\delta}\right): \delta=11.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 18.2\left(\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=8.0 \mathrm{~Hz}\right.\right.$, $\left.{ }^{4} J_{\mathrm{P}, \mathrm{C}}=6.0 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{3}\right), 21.6\left(\mathrm{t},{ }^{4 / 5} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 50.6\left(\mathrm{t}, \mathrm{br},{ }^{3 / 4} J_{\mathrm{P}, \mathrm{C}}=7.2 \mathrm{~Hz}\right.$, $\left.C H_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 124.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=10.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=9.3 \mathrm{~Hz}, C^{4 / 5}\right), 143.3\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=7.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=\right.$ $\left.6.9 \mathrm{~Hz}, C^{5 / 4}\right), 190.5\left(\mathrm{t},{ }^{3} J_{\mathrm{P}, \mathrm{C}}=4.0 \mathrm{~Hz} C^{2}\right)$.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 2 1 . 5} \mathbf{~ M H z}$, THF- \boldsymbol{d}_{8}): $\delta=-50.2 \mathrm{ppm}$ (s) $16 \%,-54.2 \mathrm{ppm}\left(\mathrm{s} 2^{\text {nd }}\right.$ isomer) 84%

MS (EI,70 eV):m/z (\%) = 406.0 (60) $[\mathrm{M}]^{+}, 363.9$ (30) $\left[\mathrm{M}^{-\mathrm{n}} \mathrm{Pr}\right]^{+}, 348.9$ (20) $\left[\mathrm{M}-\mathrm{Me}-{ }^{\mathrm{n} P r}\right]^{+}$, 321.9 (70) $\left[\mathrm{M}-2^{\mathrm{n}} \mathrm{Pr}\right]^{+}, 306.9$ (35) $\left[\mathrm{M}-2^{\mathrm{n}} \mathrm{Bu}-\mathrm{Me}\right]^{+}, 291.9$ (10) $\left[\mathrm{M}-2 \mathrm{Me}-2^{\mathrm{n}} \mathrm{Pr}\right]^{+}$.

HR-MS: found $=405.9986$, calc. $=405.9985$.
Elemental analysis: for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$:

Calculated	C	41.36	H	4.96	N	6.89	S	31.55
Found	C	41.65	H	5.01	N	6.31	S	28.76

Chapter I1

Chapter 11: References

[1] G. Vernin, Chemistry of Heterocyclic Compounds: Thiazole and its derivatives, Vol. 34, John Wiley \& Sons. Inc., 2008.
[2] a) S. J. Kashyap, V. K. Garg, P. K. Sharma, N. Kumar, R. Dudhe, J. K. Gupta, Med. Chem. Res. 2012, 21, 2123-2132;b) M. D. Altıntop, Z. A. Kaplancıklı, G. A. Çiftçi, R. Demirel, Eur. J. Med. Chem. 2014, 74, 264-277;c) P. C. Unangst, D. T. Connor, W. A. Cetenko, R. J. Sorenson, C. R. Kostlan, J. C. Sircar, C. D. Wright, D. J. Schrier, R. D. Dyer, J. Med. Chem. 1994, 37, 322-328;d) A. Agarwal, S. Lata, K. Saxena, V. Srivastava, A. Kumar, Eur. J. Med. Chem. 2006, 41, 1223-1229.
[3] a) A. R. Katritzky, R. D. Tarr, S. M. Heilmann, J. K. Rasmussen, L. R. Krepski, Journal of Polymer Science Part A: Polymer Chemistry 1987, 25, 3205-3214;b) S. J. Heilmann, L. R. Krepski, J. K. Rasmussen, A. R. Katritzky, R. D. Tarr, Vol. US 4,946,962, Google Patents, 1990;c) A. Rossin, G. Giambastiani, CrystEngComm. 2015, 17, 218-228.
[4] K. Gewald, J. prakt. Chem. 1966, 32, 26-30.
[5] G. V. Tormos, V. Y. Khodorkovsky, O. Y. Neilands, S. V. Belyakov, Tetrahedron 1992, 48, 68636874.
[6] a) C. M. Roussel, R. Gallo, M. Chanon, J. Metzger, Bull. Soc. Chim. Fr. 1971, 1902-1907;b) N. Tenn, N. Bellec, O. Jeannin, L. Piekara-Sady, P. Auban-Senzier, J. Íñiguez, E. Canadell, D. Lorcy, J. Am. Chem. Soc. 2009, 131, 16961-16967;c) Y. Le Gal, D. Lorcy, O. Jeannin, F. Barrière, V. Dorcet, J. Lieffrig, M. Fourmigué, CrystEngComm. 2016, 18, 5474-5481.
[7] a) K. Gewald, U. Hain, P. Hartung, Monatsh. Chem. 1981, 112, 1393-1404;b) K. Gewald, U. Hain, R. Schindler, M. Gruner, Monatsh. Chem. 1994, 125, 1129-1143.
[8] P. M. Luthra, C. Mishra, Vol. US 9,518,033, Google Patents, 2016.
[9] M. Chhabria, S. Patel, S. Dholakia, H. Mistry, S. Patel, Anti-Infective Agents 2014, 12, 149-158.
[10] a) C. B. Mishra, D. Sharma, A. Prakash, N. Kumari, N. Kumar, P. M. Luthra, Bioorg. Med. Chem. 2013, 21, 6077-6083;b) F. Azam, I. A. Alkskas, M. A. Ahmed, Eur. J. Med. Chem. 2009, 44, 38893897.
[11] a) S. Sauerbrey, P. Majhi, G. Schnakenburg, A. Arduengo III, R. Streubel, Dalton Trans. 2012, 41, 5368-5376;b) P. Majhi, S. Sauerbrey, G. Schnakenburg, A. Arduengo III, R. Streubel, Inorg. Chem. 2012, 51, 10408-10416;c) P. K. Majhi, PhD thesis, University of Bonn (Bonn), 2014.
[12] P. Majhi, S. Sauerbrey, A. Leiendecker, G. Schnakenburg, A. Arduengo III, R. Streubel, Dalton Trans. 2013, 42, 13126-13136.
[13] S. Sauerbrey, P. Majhi, S. Schwieger, A. Arduengo, R. Streubel, Heteroat. Chem. 2012, 23, 513-519.
$[14]$ a) A. Koner, G. Pfeifer, Z. Kelemen, G. Schnakenburg, L. Nyulászi, T. Sasamori, R. Streubel, Angew. Chem. Int. Ed. 2017, 56, 9231-9235;b) A. Koner, S. Sauerbrey, G. Schnakenburg, A. Bauzá, A. Frontera, R. Streubel, Eur. J. Inorg. Chem. 2018, 2018, 904-916;c) A. Koner, M. Kunz, G. Schnakenburg, R. Streubel, Eur. J. Inorg. Chem. 2018, 3778-3784.
[15] a) A. J. Arduengo III, J. R. Goerlich, W. J. Marsh, Liebigs Ann./Recl. 1997, 365-374;b) I. Piel, M. D. Pawelczyk, K. Hirano, R. Fröhlich, F. Glorius, Eur. J. Org. Chem. 2011, 5475-5484.
[16] a) G. C. Vougioukalakis, R. H. Grubbs, J. Am. Chem. Soc. 2008, 130, 2234-2245;b) O. Hollóczki, Z. Kelemen, L. s. Nyulászi, J. Org. Chem. 2012, 77, 6014-6022;c) D. Enders, T. Balensiefer, Acc. Chem. Res. 2004, 37, 534-541.
[17] R. Breslow, J. Am. Chem. Soc. 1958, 80, 3719-3726.
[18] a) H.-W. Wanzlick, H.-J. Kleiner, Angew. Chem. Int. Ed. Engl. 1964, 3, 65-65;b) H. Sugimoto, T. Ishiba, T. Sato, H. Nakai, K. Hirai, J. Org. Chem. 1990, 55, 467-470;c) H. Sugimoto, K. Hirai, Heterocycles 1988, 27, 877;d) H. Sugimoto, K. Hirai, Heterocycles 1987, 26, 13;e) H. Sugimoto, K. Hirai, Tetrahedron Lett. 1985, 26, 883-886;f) H. Quast, S. Hünig, Angew. Chem. Int. Ed. Engl. 1964, 3, 800-801.
[19] D. J. Cardin, B. Cetinkaya, E. Cetinkaya, M. F. Lappert, J. Chem. Soc. Dalton Trans. 1973, 514-522.
[20] a) P. J. Fraser, W. R. Roper, F. G. A. Stone, J. Organomet. Chem. 1973, 50, 54-56;b) P. J. Fraser, W. R. Roper, F. G. A. Stone, Dalton Trans. 1974, 760-764.
[21] a) D. A. Dixon, A. J. Arduengo, J. Phys. Chem. 1991, 95, 4180-4182;b) C. Heinemann, W. Thiel, Chem. Phys. Lett. 1994, 217, 11-16;c) A. J. Arduengo III, H. R. Dias, D. A. Dixon, R. L. Harlow, W. Klooster, T. Koetzle, J. Am. Chem. Soc. 1994, 116, 6812-6822; d) A. J. Arduengo III, D. A. Dixon, K. K. Kumashiro, C. Lee, W. P. Power, K. W. Zilm, J. Am. Chem. Soc. 1994, 116, 6361-6367;e) A. J. Arduengo III, H. Bock, H. Chen, M. Denk, D. A. Dixon, J. C. Green, W. A. Herrmann, N. L. Jones, M. Wagner, R. West, J. Am. Chem. Soc. 1994, 116, 6641-6649;f) C. Heinemann, T. Müller, Y. Apeloig, H. Schwarz, J. Am. Chem. Soc. 1996, 118, 2023-2038;g) C. Boehme, G. Frenking, J. Am. Chem. Soc. 1996, 118, 2039-2046.
[22] a) A. J. Arduengo, F. Davidson, H. V. R. Dias, J. R. Goerlich, D. Khasnis, W. J. Marshall, T. K. Prakasha, J. Am. Chem. Soc. 1997, 119, 12742-12749;b) M. L. Cole, C. Jones, P. C. Junk, New. J. Chem. 2002, 26, 1296-1303.
[23] a) D. M. Khramov, V. M. Lynch, C. W. Bielawski, Organometallics 2007, 26, 6042-6049;b) D. M. Khramov, E. L. Rosen, A. Joyce, P. D. Vu, V. M. Lynch, C. W. Bielawski, Tetrahedron 2008, 64, 6853-6862.
[24] a) N. Hadei, E. A. B. Kantchev, C. J. O'Brie, M. G. Organ, Org. Lett. 2005, 7, 1991-1994;b) S. Urban, M. Tursky, R. Fröhlich, F. Glorius, Dalton Trans. 2009, 6934-6940.
$[25] \quad$ a) Y. Wang, Y. Xie, M. Y. Abraham, P. Wei, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2010, 132, 14370-14372;b) L. Benhamou, V. Cesar, H. Gornitzka, N. Lugan, G. Lavigne, Chem. Commun. 2009, 4720-4722;c) H. Cui, Y. Shao, X. Li, L. Kong, C. Cui, Organometallics 2009, 28, 5191-5195;d) S. Kronig, E. Theuergarten, C. G. Daniliuc, P. G. Jones, M. Tamm, Angew. Chem. Int .Ed. 2012, 51, 3240-3244;e) R. S. Ghadwal, H. W. Roesky, M. Granitzka, D. Stalke, J. Am. Chem. Soc. 2010, 132, 10018-10020;f) A. A. Danopoulos, K. Y. Monakhov, P. Braunstein, Chem. Eur. J. 2013, 19, 450-455;g) J. P. Moerdyk, C. W. Bielawski, Chem. Commun. 2014, 50, 4551-4553.
[26] J. Müller, K. Öfele, G. Krebs, J. Organomet. Chem. 1974, 82, 383-395.
[27] M. K. Denk, J. M. Rodezno, J. Organomet. Chem. 2001, 617, 737-740.
[28] R. S. Ghadwal, R. Azhakar, H. W. Roesky, Acc. Chem. Res. 2013, 46, 444-456.
[29] J. I. Bates, P. Kennepohl, D. P. Gates, Angew. Chem. Int. Ed. 2009, 48, 9844-9847.
[30] D. Mendoza-Espinosa, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2010, 132, 7264-7265.
[31] J. Rauiz, A. F. Mesa, Chem. Eur. J. 2012, 18, 4485-44888.
[32] S. Gaillard, J.-L. Renaud, Dalton Trans. 2013, 42, 7255-7270.
[33] D. Mendoza-Espinosa, B. Donnadieu, G. Bertrand, Chem.-Asian J. 2011, 6, 1099-1103.
[34] P. K. Majhi, S. C. Serin, G. Schnakenburg, D. P. Gates, R. Streubel, Eur. J. Inorg. Chem. 2014, 49754983.
[35] a) D. M. Khramov, A. J. Boydston, C. W. Bielawski, Angew. Chem. Int .Ed. 2006, 45, 6186-6189;b) D. M. Khramov, A. J. Boydston, C. W. Bielawski, Organic Letters 2006, 8, 1831-1834.
[36] A. J. Boydston, K. A. Williams, C. W. Bielawski, J. Am. Chem. Soc. 2005, 127, 12496-12497.
[37] J. W. Kamplain, C. W. Bielawski, Chem. Commun. 2006, 1727-1729.
[38] a) A. J. Boydston, C. W. Bielawski, Dalton Trans. 2006, 4073-4077;b) A. J. Boydston, J. D. Rice, M. D. Sanderson, O. L. Dykhno, C. W. Bielawski, Organometallics 2006, 25, 6087-6098.
[39] M. Schmidtendorf, F. E. Hahn, J. Organomet. Chem. 2014, 751, 620-627.
[40] P. K. Majhi, G. Schnakenburg, R. Streubel, Dalton Trans. 2014, 43, 16673-16679.
[41] L. Benhamou, V. César, H. Gornitzka, N. Lugan, G. Lavigne, Chem. Commun. 2009, 4720-4722.
[42] P. K. Majhi, G. Schnakenburg, Z. Kelemen, L. Nyulaszi, D. P. Gates, R. Streubel, Angew. Chem. Int. Ed. 2013, 52, 10080-10083.
[43] a) G. Märkl, Angew. Chem. Int. Ed. Engl. 1966, 78, 907-908;b) G. Märkl, F. Lieb, A. Merz, Angew. Chem. Int. Ed. Engl. 1967, 6, 944-945.
[44] a) K. K. Baldridge, M. S. Gordon, J. Am. Chem. Soc. 1988, 110, 4204-4208;b) L. Nyulászi, Chem. Rev. 2001, 101, 1229-1246;c) Z. Benkő, L. Nyulászi, Top. Heterocyclic Chem. 2009, 19, 27-83
[45] C. Müller, L. E. E. Broeckx , I. de Krom, J. J. M. Weemers, Eur. J. Inorg. Chem. 2013, 187-202.
[46] A. Modelli, B. Hajgató, J. F. Nixon, L. Nyulászi, J. Phys. Chem. 2004, 108, 7440-7447.
[47] a) G. Märkl, Phosphorus Sulfur. 1977, 3, 77-108;b) G. Märkl, Chem. unserer Zeit. 1982, 16, 139-148;c) A. J. Ashe III, Acc. Chem. Res. 1978, 11, 153-157;d) F. Mathey, Rev. Heteroat. Chem. 1992, 6, 1-24;e) P. Le Floch, Coord. Chem. Rev. 2006, 250, 627-681;f) C.Müller, L. E. E. Broeckx, I. de Krom, J. J. M. Weemers, Eur. J. Inorg. Chem. 2013, 187-202.
[48] C. Müller, Eur. J. Inorg. Chem. 2016, 569-571.
[49] A. J. Ashe, J. Am. Chem. Soc. 1971, 93, 3293-3295.
[50] a) K. Blatter, W. Rösch, U.-J. Vogelbacher, M. R. J. Fink, Angew. Chem. Int. Ed. Engl. 1987, 26, 8586;b) G. Maas, J. Fink, H. Wingert, K. Blatter, M. Regitz, Chem. Ber. 1987, 120, 819-824.
[51] G. Märkl, K.-H. Heier, Angew. Chem. Int. Ed. Engl. 1972, 11, 1017-1019.
[52] S. Holand, L. Ricard, F. Mathey, J. Org. Chem. 1991, 56, 4031-4035.
[53] G. Märkl, C. Dörges, T. Riedl, F. G. Klärner, C. Lodwig, Tetrahedron Lett. 1990, 31, 4589-4592.
[54] R. A. Hunter, R. J. Whitby, M. E. Light, M. B. Hursthouse, Tetrahedron Lett. 2004, 45, 7633-7636.
[55] a) G. Märkl, A. Merz, Tetrahedron Lett. 1969, 16, 1231-1234;b) G. Märkl, A. Merz, Tetrahedron Lett. 1971, 12, 1215-1218;c) G. Märkl, A. Merz, Angew. Chem. Int. Ed. Engl. 1974, 13, 408-409;d) A. J. Ashe III, T. W. Smith, Tetrahedron Lett. 1977, 407-410;e) G. Märkl, K. H. Heier, Tetrahedron Lett. 1974, 15, 4501-4504;f) G. Märkl, C. Martin, W. Weber, Tetrahedron Lett. 1981, 22, 1207-1210.
[56] P. Le Floch, F. Mathey, Coord. Chem. Rev. 1998, 178, 771-791.
[57] Y. Zhang, F. S. Tham, J. F. Nixon, C. Taylor, J. C. Green, C. A. Reed, Angew. Chem. Int. Ed. 2008, 47, 3801-3804.
[58] a) K. Dimorth, N. Greig, H. Perst, F. W. Steuber, Angew. Chem. Int. Ed. Engl. 1967, 6, 85-86;b) J. C. Bart, J. J. Daly, Angew. Chem. Int. Ed. Engl. 1968, 7, 811-811;c) A. Hettche, K. Dimorth, Chem. Ber. 1973, 106, 1001-1011;d) J.-M. Alcaraz, F. Mathey, J. Chem. Soc., Chem. Commun. 1984, 8, 508-509;e) D. G. Holah, A. N. Hugues, K. L. Knudsen, J. Am. Chem. Soc. 1988, 7, 493-495;f) C. Müller, D. Wasserberg, J. J. M. Weemers, E. A. Pidko, S. Hoffmann, M. Lutz, A. L. Spek, S. C. J. Meskers, R. A. J. Janssen, R. A. v. Santen, D. Vogt, Chem. Eur. J. 2007, 13, 4548-4559;g) K. Dimroth, N. Greif, W. Städe, F. Steuber, Angew. Chem. Int. Ed. Engl. 1967, 6, 711-712.
[59] a) K. Dimroth, W. Steuber, Angew. Chem. Int. Ed. Engl. 1967, 6, 445-446;b) F. Gerson, G. Plattner, A.J. Ashe III, G. Märkl, Mol. Phys. 1974, 28, 601-615;c) H. Plato, W. Lubitz, K. Möbius, J. Phys. Chem. 1981, 85, 1202-1219;d) C. Jongsma, H.G. de Graaf, F. Bickelhaupt, Tetrahedron Lett. 1974, 15, 1267-1270.
[60] a) G. Märkl, F. Lieb, Angew. Chem. Int. Ed. Engl. 1968, 7, 733-733;b) A.J. Ashe III, M.D. Gordon, J. Am. Chem. Soc. 1972, 94, 7596-7597;c) G. Märkl, F. Lieb, C. Martin, Tetrahedron Lett. 1971, 12, 1249-1252.
[61] F. Gerson, P. Merstetter, S. Pfenninger, G. Märkl, Magn. Reson. Chem. 1997, 35, 384-388.
[62] P. Rosa, L. Ricard, F. Mathey, P. Le Floch, Organometallics 1999, 18, 3348-3352.
[63] a) L. Testaferri, M. Tingoli, M. Tiecco, J. Org. Chem. 1980, 45, 4376-4380;b) J. A. Connor, G. A. Hudson, J. Organomet. Chem. 1975, 97, C43-C45;c) Y. Suenaga, T .K.-Sowa, M. Munakata, M. Maekawa, H. Morimoto, Polyhedron 1998, 18, 429-436; d) D. B.Werz, J. H. Schulte, R. Gleiter, F. Rominger, J. Organomet. Chem. 2004, 689, 3132-3142;e) S. Niembro, A. Vallribera, M. Moreno

References

Mañas, New. J. Chem. 2008, 32, 94-98;f) M. Mayor, M. Büschel, K. M. Fromm, J. M. Lehn, J. Daub, Chem. Eur. J. 2001, 7, 1266-1272;g) M. Di Stefano, F. Negri, P. Carbone, K. Müllen, Chem. Phys. 2005, 314, 85-99;h) K. J. Msayib, N. B. McKeown, J. Mater. Chem. 2016, 4, 10110-10113.
[64] a) G. Märkl, F. Lieb, A. Merz, Angew. Chem. Int. Ed. Engl. 1967, 6, 458-459;b) K. Dimroth, N. Greif, W. Städe, F. W. Steuber, Angew. Chem. Int. Ed. 1967, 6, 711-712;c) G. Märkl, G. Y. Jin, E. A. Silbereisen, Angew. Chem. Int. Ed. Engl. 1982, 21, 370-371;d) F. Mathey, P. Le Floch, Sci. Synth. 2005, 15, 1097-1155.
[65] a) Y.-L. Mao, F. Mathey, Chem. Eur. J. 2011, 17, 10745-10751;b) Y. Mao, K. M. H. Lim, Y. Li, R. Ganguly, F. Mathey, Organometallics 2013, 32, 3562-3565;c) A. Hinz, R. Labbow, C. Rennick, A. Schulz, J. Goicoechea, Angew. Chem. Int. Ed. 2017, 56, 3911-3915.
[66] Y. Van Den Winkel, J. Van Der Laarse, F. J. J. De Kanter, T. Van Der Does, F. Bickelhaupt, W. J. J. Smeets, A. L. Spek, Heteroat. Chem. 1991, 2, 17-28.
[67] D. Böhm, F. Knoch, S. Kummer, U. Schmidt, U. Zenneck, Angew. Chem. Int. Ed. Engl. 1995, 34, 198201.
[68] G. Jochem, A. Schmidpeter, Z. Naturforsch., B: Chem. Sci. 1996, 51, 773-777.
[69] E. Fluck, G. Heckmann, E. Gorbunowa, M. Westerhausen, F. Weller, J. Organomet. Chem. 1997, 529, 223-231.
[70] G. Märkl, Z. Naturforsch., B: Chem. Sci. 1963, 18, 1136.
[71] Y. Kobayashi, J. Kumadaki, A. Ohsawa, W. Hamana, Tetrahedron Lett. 1976, 41, 3715-3716.
[72] a) Y. Kobayashi, H. Hamana, S. Fujino, A. Ohsawa, I. Kumadaki, J. Am. Chem. Soc. 1980, 102, 252255;b) Y. Kobayashi, S. Fujino, J. Kumadaki, J. Am. Chem. Soc. 1981, 103, 2465-2466.
[73] A. Koner, Z. Kelemen, G. Schnakenburg, L. Nyulászi, R. Streubel, Chem. Commun. 2018, 54, 11821184.
[74] a) D. M. Wolfe, P R. Schreiner, Eur. J. Org. Chem. 2007, 2825-2838;b) A. Filatre-Furcate, N. Bellec, O. Jeannin, P. Auban-Senzier, M. Fourmigué, J. Íñiguez, E. Canadell, B. Briere, V. Ta Phuoc, D. Lorcy, Inorg. chem. 2016, 55, 6036-6046.
[75] a) K. Dimroth, P. Hoffmann, Angew. Chem. Int. Ed. Eng. 1964, 3, 384-384;b) K. Dimroth, P. Hoffmann, Chem. Ber. 1966, 99, 1325-1331.
[76] R. Allmann, Angew. Chem. 1965, 77, 134-134.
[77] J. F. Binder, A. M. Corrente, C. L. Macdonald, Dalton Trans. 2016, 45, 2138-2147.
[78] a) I. Yavari, A. Mirzaei, L. Moradi, Synth. Commun. 2010, 40, 2407-2414;b) K. Janikowska, S. Makowiec, Phosphorus, Sulfur, and Silicon 2010, 186, 12-20.
[79] H. Küçükbay, E. Çetinkaya, B. Çetinkaya, M. F. Lappert, Synth. commun. 1997, 27, 4059-4066.
[80] T. Dol'nikova, Dol'nikova, Žurnal Vsesoûznogo himičeskogo obŝestva im. D.I. Mendeleeva 1984, 29, 464-466.
[81] a) I. Begum, G. Schnakenburg, R. Streubel, Dalton Trans. 2016, 45, 2955-2962;b) I. Begum, G. Schnakenburg, R. Streubel, Eur. J. Inorg. Chem. 2016, 2016, 5265-5270.
[82] S. Sauerbrey, PhD thesis, University of Bonn (Bonn), 2010.
[83] A. Koner, S. C. Serin, G. Schnakenburg, B. O. Patrick, D. P. Gates, R. Streubel, Dalton Trans. 2017, 46, 10504-10514.
[84] P. K. Majhi, A. Koner, G. Schnakenburg, Z. Kelemen, L. Nyulászi, R. Streubel, Eur. J. Inorg. Chem. 2016, 3559-3573.
[85] M. K. Denk, S. Gupta, A. J. Lough, Eur. J. Inorg. Chem. 1999, 41-49.
[86] A. Decken, C. J. Carmalt, J. A. C. Clyburne, A. H. Cowley, Inorg. Chem. 1997, 36, 3741-3744.
[87] A. S. Batsanov, S. M. Cornet, L. A. Crowe, K. B. Dillon, R. K. Harris, P. Hazendonk, M. D. Roden, Eur. J. Inorg. Chem. 2001, 1729-1737.
[88] a) G. Becker, Z. Anorg. Allg. Chem. 1976, 423, 242-254;b) M. J. Hopkinson, H. W. Kroto, J. F. Nixon, N. P. C. Simmons, J.C.S. Chem. Comm. 1976, 1976, 513-515 ;c) G. Märkl, Angew. Chem. Int. Ed. Engl.

1966, 5, 846-847; d) A. J. Ashe, J. Am. Chem. Soc. 1971, 93, 3293-3295;e) T. C. Klebach, R. Lourens, F. Bickelhaupt, J. Am. Chem. Soc. 1978, 100, 4886-4888.
[89] a) P. W. Siu, S. C. Serin, I. Krummenacher, T. W. Hey, D. P. Gates, Angew. Chem. Int. Ed. 2013, 52, 6967-6970;b) J. I. Bates, J. Dugal-Tessier, D. P. Gates, Dalton. Trans. 2010, 39, 3151-3159;c) C.-W. Tsang, M. Yam, D. P. Gates, J. Am. Chem. Soc. 2003, 125, 1480-1481;d) K. J. T. Noonan, D. P. Gates, Angew. Chem. 2006, 118, 7429-7432;e) K. J. T. Noonan, B. H. Gillon, V. Cappello, D. P. Gates, J. Am. Chem. Soc. 2008, 130, 12876-12877;f) R. C. Smith, J. D. Protasiewicz, J. Am. Chem. Soc. 2004, 126, $2268-2269 ;$ g) S. Kawasaki, J. Ujita, K. Toyota, M. Yoshifuji, Chem. Lett. 2005, 34, 724-725;h) C.-W. Tsang, B. Baharloo, D. Riendl, M. Yam, D. P. Gates, Angew. Chem. 2004, 116, 5800-5803;i) R. C. Smith, J. D. Protasiewicz, Eur. J. Inorg. Chem. 2004, 998-1006.
[90] a) M. Doux, A. Moores, N. Mézailles, L. Ricard, Y. Jean, P. L. Floch, J. Organomet. Chem. 2005, 690, 2407-2415;b) P. L. Floch, Coord. Chem. Rev. 2006, 250, 627-681;c) L. Weber, Angew. Chem. 2002, 114, 583-592;d) J. Dugal-Tessier, S. C. Serin, E. B. Castillo-Contreras, E. D. Conrad, G. R. Dake, D. P. Gates, Chem. Eur. J. 2012, 18, 6349-6359;e) J. Dugal-Tessier, G. R. Dake, D. P. Gates, Org. Lett. 2010, 12, 4667-4669;f) F. Ozawa, M. Yoshifuji, Dalton Trans. 2006, 2006, 4987-4995.
[91] a) M. Regitz, O. Scherer, R. Appel, Multiple bonds and low coordination in phosphorus chemistry. , Stuttgart: G. Thieme Verlag., 1990;b) F. Mathey, in Phosphorus-Carbon Heterocyclic Chemistry, Elsevier, 2001, pp. 1-15.
[92] S. Wang, K. Samedov, S. C. Serin, D. P. Gates, Eur. J. Inorg. Chem. 2016, 4144-4151.
[93] N. H. T. Huy, L. Ricard, F. Mathey, Organometallics 1988, 7, 1791-1795.
[94] A. I. Arkhypchuk, M.-P. Santoni, S. Ott, Organometallics. 2012, 31, 1118-1126.
[95] a) M. Brym, v. Jones, Dalton Trans. 2003, 3665-3667;b) A. Grüenhagen, U. Pieper, T. Kottke, H. W. Roesky, Z. Anorg. Allg. Chem. 1994, 620, 716-722.
[96] a) A. Termaten, D. S. M. van, F. Bickelhaupt, Eur. J. Org. Chem. 2003, 2049-2055;b) A. S. Ionkin, W. J. Marshall, Heteroat. Chem. 2002, 13, 662-666;c) A. Jouaiti, M. Geoffroy, G. Bernardinelli, Chem. Comтии. 1996, 437-438;d) O. Daugulis, M. Brookhart, P. S. White, Organometallics. 2002, 21, 5935$5943 ; \mathrm{e})$ G. Becker, W. Uhl, H. J. Wessely, Z. Anorg. Allg. Chem. 1981, 479, 41-56;f) A. Jouaiti, M. Geoffroy, G. Bernardinelli, Tetrahedron Lett. 1992, 33, 5071-5074;g) A. Jouaiti, M. Geoffroy, G. Bernardinelli, Tetrahedron Lett. 1993, 34, 3413-3416.
[97] a) S. M. Cornet, K. B. Dillon, A. E. Goeta, J. A. Howard, M. D. Roden, A. L. Thompson, J. Organomet. chem. 2005, 690, 3630-3637;b) K. Toyota, S. Kawasaki, M. Yoshifuji, Tetrahedron Lett. 2002, 43, 7953-7959;c) A. Decken, C. J. Carmalt, J. A. C. Clyburne, A. H. Cowley, Inorg. Chem. 1997, 36, 3741-3744.
[98] A. Marinetti, S. Bauer, L. Ricard, F. Mathey, Organometallics. 1990, 9, 793-798.
[99] a) J. I. Bates, B. O. Patrick, D. P. Gates, Dalton Trans. 2010, 39, 3151-3159;b) J. I. Bates, B. O. Patrick, D. P. Gates, New J. Chem. 2010, 34, 1660-1666.
[100] A. Maercker, M. Passlack, Chem. Ber. 1983, 116, 710-723.
 A.-C. Gaumont, B. Pellerin, J.-L. Cabioch, X. Morise, M. Lesvier, P. Savignac, P. Guenot, J.-M. Denis, Inorg. Chem. 1996, 35, 6667.
[102] J. F. Nixon, Chem. Rev. 1988, 88, 1327-1362.
[103] a) P. Le Floch, A. Marinetti, L. Ricard, F. Mathey, J. Am. Chem. Soc. 1990, 112, 2407-2410;b) A. Marinetti, P. Le Floch, F. Mathey, Organometallics 1991, 10, 1190-1195.
[104] B. Deschamps, F. Mathey, J. Chem. Soc., Chem. Commun. 1985, 1010-1010.
[105] U. Koelle, J. Kossakowski, J. Organomet. Chem. 1989, 362, 383-398.
[106] a) C. Zeiher, W. Hiller, I.-P. Lorenz, Chem. Ber. 1985, 118, 3127-3134;b) E. Ocando, S. Majid, J. P. Majoral, A. Baceiredo, G. Bertrand, Polyhedron. 1985, 4, 1667-1668.
[107] L. Weber, M. Meyer, H.-G. Stammler, B. Neumann, Organometallics. 2003, 22, 5063-5068.
[108] R. Ahlrichs, M. Bär, M. Hacer, H. Horn, C. Kömel, Chem. Phys. Lett. 1989, 162, 65-169.
[109] A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 1993, 2, 799-805.
[110] a) P. Le Floch, F. Mathey, Synlett. 1990, 1990, 171-172;b) S. Shah, J. D. Protasiewicz, Coord. Chem. Rev. 2000, 210, 181-201.
[111] M. Davis, F. G. Mann, J. Chem. Soc. 1964, 3770-3785.
[112] H. Akutsu, M. Ogasawara, M. Saburi, K. Kozawa, T. Uchida, Bull. Chem. Soc. Jpn. 1996, 69, 12231226.
[113] G. Märkl, W. Weber, W. Weiß, Chem. Ber. 1985, 118, 2365-2395.
[114] W. R. Cullen, A. W. Wu, 1976, 8, 183-187.
[115] Y. Uchiyama, Y. Mazaki, Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 822-825.
[116] Y. Uchiyama, T. Kawaguchi, K. Kuroda, Heteroat: Chem. 2014, 25, 326-336.
[117] N. Avarvari, M. Fourmigué, Chem. Commun. 2004, 2794-2795.
[118] D. Fenske, E. Langer, M. Heymann, H. J. Becher, Chem. Ber. 1976, 109, 359-362.
[119] A. N. Huryeva, A. P. Marchenko, G. N. Koidan, A. A. Yurchenko, E. V. Zarudnitskii, A. M. Pinchuk, A. N. Kostyuk, Heteroat. Chem. 2010, 21, 103-118.
[120] I. Danila, F. Biaso, H. Sidorenkova, M. Geoffroy, M. Fourmigu, E. Levillain, N. Avarvari, Organometallics 2009, 28, 3691-3699.
[121] I. Begum, G. Schnakenburg, Z. Han, R. Streubel, Dalton Trans. 2017.
[122] S. Sase, N. Kano, T. Kawashima, J. Org. Chem. 2006, 71, 5448-5456.
[123] D. Hellwinkel, A. Wiel, G. Sattler, B. Nuber, Angew. Chem. Int. Ed. Engl. 1990, 29, 689-692.
[124] F. Wudl, M. Kaplan, E. Hufnagel, E. Southwick Jr, J. Org. Chem. 1974, 39, 3608-3609.
[125] a) D. L. Reger, T. D. Wright, R. F. Semeniuc, T. C. Grattan, M. D. Smith, Inorg. chem. 2001, 40, 6212$6219 ;$ b) D. L. Reger, R. F. Semeniuc, M. D. Smith, Inorg. chem. 2001, 40, 6545-6546.
[126] A. Koner, PhD thesis, University of Bonn (Bonn), 2017.
[127] I. Begum, G. Schnakenburg, Z. Kelemen, L. Nyulászi, R. T. Boere', R. Streubel, Chem. Commun. 2018, DOI: 10.1039/c1038cc08158a.
[128] a) R. L. Falconer, C. A. Russell, Coord. Chem. Rev. 2015, 297, 146-167;b) R. Gleiter, H. Lange, P. Binger, J. Stannek, C. Krügger, J. Bruckmann, U. Zenneck, S. Kummer, Eur. J. Inorg. Chem. 1998, 1619-1621.
[129] S. Gundersen, S. Samdal, T. G. Strand, H. V. Volden, J. Mol. Struct. 2007, 832, 164-171.
[130] a) P. von R. Schleyer, H. Jiao, N. J. R. van Eikema Hommes, V. G. Malkin, O. L. Malkina, J. Am. Chem. Soc. 1997, 119, 12669 -12670;b) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317-6318.
[131] I. Alkorta, J. Elguero, Magn. Reson. Chem. 2010, 48, 32-37.
[132] a) G. Gritzner, J. Kůta, Pure \& Appl. Chem. 1984, 56, 461-466;b) A. M. Bond, K. B. Oldham, G. A. Snook, Anal. Chem. 2000, 72, 3492-3496.
$[133]$ a) D. H. Evans, K. Hu, J. Chem. Soc., Faraday Trans. 1996, 92, 3983-3990. ;b) D. H. Evans, Chem. Rev. 2008, 108, 2113-2144;c) A. J. Fry, Electrochem. Commun. 2005, 7, 602-606;d) A. J. Fry, Tetrahedron 2006, 62, 6558-6565.
[134] K. Meerholz, J. Heinze, J. Am. Chem. Soc. 1989, 111, 2325-2326.
[135] A. J. Bard, L. R. Faulkner, J. Leddy, C. G. Zoski, Electrochemical methods: fundamentals and applications, Vol. 2, wiley New York, 1980.
[136] P. Le Floch, F. Mathey, Coor. Chem. Rev. 1998, 178, 771-791.
[137] K. Dimorth, N. Greif, W. Städe, F. W. Steuber, Angew. Chem. Int. Ed. Engl. 1967, 6, 711.
[138] M. Nicolas, P. Le Floch, Curr. Org. Chem. 2006, 10, 3-25.
[139] a) B. Breit, E. Fuchs, Synthesis 2006, 2121-2128;b) O. Piechaczyk, M. Doux, L. Ricard, P. le Floch, Organometallics 2005, 24, 1204-1213;c) M. Blug, C. Guibert, X.-F. Le Goff, N. Mezailles, P. Le Floch, Chem. Commun. 2008, 203.
[140] a) B. Breit, E. Fuchs, Chem. Commun. 2004, 694-695;b) E. Fuchs, M. Keller, B. Breit, Chem. Eur. J. 2006, 12, 6930-6939.
[141] P. S. Bauerlein, I. A. Gonzalez, J. J. M. Weemers, M. Lutz, A. L. Spek, D. Vogt, C. Muller, Chem. Соттии. 2009, 4944-4946.
[142] C. G. Krespan, J. Am. Chem. Soc. 1961, 83, 3432-3433.
[143] Y. Kobayashi, S. Fujino, H. Hamana, Y. Hanzawa, S. Morita, I. Kumadaki, J. Org. Chem. 1980, 45, 4683-4685.
[144] K. G. Weinberg, E. B. Whipple, J. Am. Chem. Soc. 1971, 93, 1801-1802.
[145] U. Yosuke, S. Jun, S. Munenori, Y. Gaku, M. Yasuhiro, Bull. Chem. Soc. Jpn. 2009, 82, 819-828.
[146] A. Ishii, R. Yoshioka, J. Nakayama, M. Hoshino, Tetrahedron Lett. 1993, 34, 8259-8262.
[147] S. Welfelé, N. Mézailles, N. Maigrot, L. Ricard, F. Mathey, P. Le Floch, New. J. Chem. 2001, 25, 12641268.
[148] P. D. Burrow, A. J. Ashe III, D. J. Bellville, K. D. Jordan, J. Am. Chem. Soc. 1982, 104, 425-429.
[149] C. W. Tate, P. B. Hitchcock, G. A. Lawless, Z. Benko, L. Nyulaszi, J. F. Nixon, Compt. Rend. 2010, 13, 1063-1072
[150] K. T. Potts, S. J. Chen, J. Org. Chem. 1977, 42, 1639-1644.
[151] a) R. Riemschneider, S. Georgi, Mh. Chem. 1960, 91, 623-629;b) F. Cristiani, F. A. Devillanova, A. Diaz, G. Verani, Phosphorus and sulfur 1984, 20, 231-240.
[152] N. Kuhn, T. Kratz, Synthesis 1993, 561-562.
[153] B. Punji, J. T. Mague, M. S. Balakrishna, Inorg. Chem. 2007, 46, 10268-10275.
[154] D. M. Ottmers, H. F. Rase, Carbon 1966, 4, 125-127.

Chapter 12

Chapter 12: Appendix

12.1 Crystal data and structure refinement for 5a (IB-71).

Identification code	GSTR416, IB-71 // GXray4048f	μ / mm^{-1}	0.422
Device Type	Bruker X8-KappaApexII	$F(000)$	656
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{PS}_{2}$	Crystal size/ $/ \mathrm{mm}^{3}$	$0.3 \times 0.1 \times 0.08$
Moiety formula	C12 H24 N3 P S2	Absorption correction	empirical
Formula weight	305.43	Tmin; Tmax	0.6828; 0.7460
Temperature/K	100	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Crystal system	monoclinic	2Θ range for data collection/ ${ }^{\circ}$	6.33 to 55.988°
Space group	$\mathrm{P} 21 / \mathrm{c}$	Completeness to theta	0.995
a / \AA	6.1742(5)	Index ranges	$\begin{aligned} & -8 \leq \mathrm{h} \leq 8,-31 \leq \mathrm{k} \leq 31,-13 \\ & \leq 1 \leq 14 \end{aligned}$
b / \AA	24.1038(19)	Reflections collected	15854
c / \AA	10.8461(8)	Independent reflections	$\begin{aligned} & 3848\left[\mathrm{R}_{\text {int }}=0.0322, \mathrm{R}_{\text {sigma }}=\right. \\ & 0.0299] \end{aligned}$
$\alpha /{ }^{\circ}$	90	Data/restraints/parameters	3848/0/168

$\beta /{ }^{\circ}$	$97.663(2)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1599.7(2)$
Z	4
$\rho_{\text {calc }} g / \mathrm{cm}^{3}$	1.268

Goodness-of-fit on $\mathrm{F}^{2} \quad 1.062$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0316, \mathrm{wR}_{2}=0.0714$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0412, \mathrm{wR}_{2}=0.0754$
Largest diff. peak/hole / e \AA^{-3}
$0.37 /-0.27$

Bond Lengths

Atom	Atom	Length/ \AA	Atom	Atom	Length $/ \AA$
S1	C 1	$1.7439(14)$	N 2	C 5	$1.4689(18)$
S 1	C 2	$1.7416(15)$	N 2	C 7	$1.4701(18)$
S 2	C 2	$1.6676(15)$	N 3	C 9	$1.4657(19)$
P	N 2	$1.6979(12)$	N 3	C 11	$1.4721(18)$
P	N 3	$1.6834(13)$	C 1	C 3	$1.349(2)$
P	C 1	$1.8202(15)$	C 5	C 6	$1.522(2)$
N 1	C 2	$1.3544(19)$	C 7	C 8	$1.525(2)$
N 1	C 3	$1.3821(18)$	C 9	C 10	$1.521(2)$
N 1	C 4	$1.4629(19)$	C 11	C 12	$1.516(2)$

Bond Angles

Atom	Atom	Atom	${\text { Angle } /{ }^{\circ}}^{c}$	Atom	Atom	Atom	Angle $/^{\circ}$
C 2	S 1	C 1	$92.93(7)$	C 11	N 3	P	$116.68(10)$
N 2	P	C 1	$98.51(6)$	S 1	C 1	P	$122.63(8)$
N 3	P	N 2	$113.51(6)$	C 3	C 1	S 1	$108.79(11)$
N 3	P	C 1	$99.22(6)$	C 3	C 1	P	$127.66(11)$
C 2	N 1	C 3	$115.49(12)$	S 2	C 2	S 1	$125.34(9)$
C 2	N 1	C 4	$122.39(13)$	N 1	C 2	S 1	$108.16(11)$
C 3	N 1	C 4	$122.09(12)$	N 1	C 2	S 2	$126.50(12)$
C 5	N 2	P	$124.53(10)$	C 1	C 3	N 1	$114.61(13)$
C 5	N 2	C 7	$114.85(12)$	N 2	C 5	C 6	$113.22(13)$
C 7	N 2	P	$113.96(9)$	N 2	C 7	C 8	$115.11(13)$
C 9	N 3	P	$126.12(10)$	N 3	C 9	C 10	$114.41(13)$
C 9	N 3	C 11	$115.99(12)$	N 3	C 11	C 12	$113.34(13)$

Torsion Angles

A	B	C	D	Angle $^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
S1	C1	C3	N1	$-1.15(16)$	C1	P	N2	C5	$48.33(13)$
P	N2	C5	C6	$-39.18(13)$	C1	P	N2	C7	$-61.90(11)$
P	N2	C7	C8	$-77.63(15)$	C1	P	N3	C9	$-52.58(13)$
P	N3	C9	C10	$-07.13(14)$	C1	P	N3	C11	$140.58(11)$
P	N3	C11	C12	$-29.54(12)$	C2	S1	C1	P	$170.37(9)$
P	C1	C3	N1	$-70.28(10)$	C2	S1	C1	C3	$0.58(12)$
N2	P	N3	C9	$50.95(14)$	C2	N1	C3	C1	$1.34(19)$
N2	P	N3	C11	$-15.89(11)$	C3	N1	C2	S1	$-0.81(16)$
N2	P	C1	S1	$52.51(10)$	C3	N1	C2	S2	$179.64(11)$
N2	P	C1	C3	$-39.73(14)$	C4	N1	C2	S1	$177.23(11)$
N3	P	N2	C5	$-55.66(13)$	C4	N1	C2	S2	$-2.3(2)$
N3	P	N2	C7	$94.11(11)$	C4	N1	C3	C1	$-76.71(13)$
N3	P	C1	S1	$168.16(9)$	C5	N2	C7	C8	$75.17(16)$
N3	P	C1	C3	$-24.08(15)$	C7	N2	C5	C6	$71.29(17)$
C1	S1	C2	S2	$179.67(11)$	C9	N3	C11	C12	$62.26(18)$
C1	S1	C2	N1	$0.12(11)$	C11	N3	C9	C10	$59.79(18)$

12.2 Crystal data and structure refinement for 5d (IB-190).

Identification code
Crystal Habitus

Device Type
Empirical formula
Moiety formula
Formula weight
GSTR559, IB-190 /
GXraymo_5083f
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
1.319
clear colourless plate

μ / mm^{-1}	0.432
$\mathrm{~F}(000)$	656

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{PS}_{2}$
C14 H19 N2 P S2

Temperature/K
310.4

Crystal system
Space group
a/Å
b/Å
12.3995(14)
c/ \AA
15.4355(19)
$\alpha /{ }^{\circ}$
91.257(6)
94.697(6)
90.623(6)

Volume/ \AA^{3}
1562.9(3)

Z
4

Crystal size $/ \mathrm{mm}^{3}$
Absorption correction
Tmin; Tmax 0.6113; 0.7459
Radiation
2Θ range for data collection ${ }^{\circ} \quad 4.988$ to 55.998°
Completeness to theta 0.999
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
$\mathrm{R}_{1}=0.0732, \mathrm{wR}_{2}=0.1962$

Largest diff. peak/hole /e $\AA^{-3} \quad 0.81 /-0.53$

Bond Lengths

Atom	Atom	Length/ \AA	Atom	Atom	Length/ ${ }^{\text {® }}$
S1	C1	$1.745(5)$	S1'	C1'	1.754(5)
S1	C2	1.741 (5)	S1'	C2'	1.731(5)
S2	C2	$1.656(5)$	S2'	C2'	$1.672(5)$
P	N2	1.697(5)	P^{\prime}	N2'	1.684(5)
P	C1	1.826(6)	P^{\prime}	C1'	1.819(6)
P	C9	1.831(6)	P^{\prime}	C9'	1.827(5)
N1	C2	$1.367(7)$	N1'	C2'	$1.364(7)$
N1	C3	$1.383(7)$	N1'	C3'	1.388(7)
N1	C4	$1.456(7)$	N1'	C4'	1.460(7)
N2	C5	$1.465(7)$	N2'	C5'	1.475(6)
N2	C7	1.474(6)	N2'	C7'	1.467(6)
C1	C3	1.347(8)	C1'	C3'	1.350(7)
C5	C6	$1.525(8)$	C5'	C6'	1.521(8)
C7	C8	$1.524(8)$	C7'	C8'	1.524(8)
C9	C10	1.407(7)	C9'	C10'	1.396(7)
C9	C14	1.401(8)	C 91	C14'	1.408(7)
C10	C11	1.390 (8)	C10'	C11'	1.400(7)
C11	C12	$1.383(8)$	C11'	C12'	1.398(8)
C12	C13	1.391 (8)	C12'	C13'	1.380(8)
C13	C14	1.390 (8)	C13'	C14'	1.378(8)

Bond Angles

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	S1	C1	$93.5(3)$	C2'	S1'	C1'	93.4(3)
N2	P	C1	107.8(2)	N2'	P^{\prime}	C1'	107.2(2)
N2	P	C9	100.8(2)	N2'	P^{\prime}	C9'	100.3(2)
C1	P	C9	101.0(2)	C1'	P'	C9'	102.0(2)
C2	N1	C3	115.2(4)	C2'	N1'	C3'	114.8(4)
C2	N1	C4	122.8(5)	C2'	N1'	C4'	123.4(4)
C3	N1	C4	122.0(5)	C3'	N1'	C4'	121.8(5)
C5	N2	P	116.4(4)	C5'	N2'	P^{\prime}	115.9(4)
C5	N2	C7	116.2(4)	C7'	N2'	P^{\prime}	122.2(3)
C7	N2	P	120.3(3)	C7'	N2'	C5'	114.7(4)

S1	C1	P	128.9(3)	S1'	C1'	P^{\prime}	129.5(3)
C3	C1	S1	108.3(4)	C3'	C1'	S1'	108.1(4)
C3	C1	P	122.7(4)	C3'	Cl^{\prime}	P^{\prime}	122.1(4)
S2	C2	S1	125.2(3)	S2'	C2'	S1'	125.3(3)
N1	C2	S1	107.7(4)	N1'	C2'	S1'	108.5(4)
N1	C2	S2	127.1(4)	N1'	C2'	S2'	126.2(4)
C1	C3	N1	115.3(5)	C1'	C3'	N1'	115.2(5)
N2	C5	C6	115.1(5)	N2'	C5'	C6'	114.9(5)
N2	C7	C8	112.5(4)	N2'	C7'	C8'	113.4(5)
C10	C9	P	121.5(4)	C10'	C9'	P^{\prime}	122.3(4)
C14	C9	P	119.6(4)	C10'	C9'	C14'	118.8(5)
C14	C9	C10	118.4(5)	C14'	C9'	P^{\prime}	118.6(4)
C11	C10	C9	120.6(5)	C9'	C10'	C11'	120.2(5)
C12	C11	C10	120.1(5)	C12'	C11'	C10'	120.0(5)
C11	C12	C13	120.1(5)	C13'	C12'	C11'	119.7(5)
C14	C13	C12	120.1(5)	C14'	C13'	C12'	120.8(5)
C13	C14	C9	120.6(5)	C13'	C14'	C9'	120.5(5)

12.3 Crystal data and structure refinement for 6a (IB-276).

Identification code	GSTR573, IB-276 $/ /$	μ / mm^{-1}	0.55
	180		

	GXray5183		
Crystal Habitus	clear colourless block	F(000)	888
Device Type	STOE IPDS-2T	Crystal size/mm ${ }^{3}$	$0.18 \times 0.15 \times 0.14$
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{PS}_{4}$	Absorption correction	integration
Moiety formula	C18 H21 N2 P S4	Tmin; Tmax	0.8190; 0.9058
Formula weight	424.58	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Temperature/K	123(2)	2Θ range for data collection/ ${ }^{\circ}$	5.262 to 55.974°
Crystal system	orthorhombic	Completeness to theta	0.99
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$	Index ranges	$\begin{aligned} & -13 \leq \mathrm{h} \leq 15,-10 \leq \mathrm{k} \leq 15, \\ & -20 \leq 1 \leq 20 \end{aligned}$
a / \AA	11.3855(8)	Reflections collected	8682
b/A	11.5308(6)	Independent reflections	$\begin{aligned} & 4789\left[\mathrm{R}_{\text {int }}=0.0260,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0422\right] \end{aligned}$
c/ \AA	15.4838(8)	Data/restraints/parameters	4789/0/230
$\alpha{ }^{\circ}$	90	Goodness-of-fit on F^{2}	0.933
$\beta /{ }^{\circ}$	90	Final R indexes $[I>=2 \sigma$ (I)]	$\begin{aligned} & \mathrm{R}_{1}=0.0252, \mathrm{wR}_{2}= \\ & 0.0533 \end{aligned}$
$\gamma^{/ 0}$	90	Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0308, \mathrm{wR}_{2}= \\ & 0.0540 \end{aligned}$
Volume/ \AA^{3}	2032.8(2)	$\begin{aligned} & \text { Largest diff. peak/hole / e } \\ & \AA^{-3} \end{aligned}$	0.50/-0.26
Z	4	Flack parameter	0.02(4)
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.387		

Bond Lengths

Atom	Atom	Length $/ \mathbf{\AA}$	Atom	Atom	Length/ $\mathbf{\AA}$
S1	C 1	$1.750(2)$	N 2	C 10	$1.489(3)$
S1	C 2	$1.735(2)$	C 1	C 3	$1.345(3)$
S2	C 2	$1.667(2)$	C 4	C 5	$1.522(4)$
S3	C 7	$1.753(2)$	C 4	C 6	$1.493(4)$
S3	C 8	$1.741(2)$	C 7	C 9	$1.344(3)$
S4	C 8	$1.663(2)$	C 10	C 11	$1.522(4)$
P	C 1	$1.808(2)$	C 10	C 12	$1.516(4)$
P	C 7	$1.814(2)$	C 13	C 14	$1.396(4)$
P	C 13	$1.838(2)$	C 13	C 18	$1.400(3)$
N1	C 2	$1.367(3)$	C 14	C 15	$1.389(3)$
N1	C 3	$1.383(3)$	C 15	C 16	$1.395(4)$

N1	C4	$1.483(3)$	C16	C17	$1.381(4)$
N2	C8	$1.357(3)$	C17	C18	$1.390(3)$
N2	C9	$1.386(3)$			

Bond Angles							
Atom	Atom	Atom	$\text { Angle } /^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	S1	C1	92.65(12)	C6	C4	C5	112.7(3)
C8	S3	C7	92.87(11)	S3	C7	P	126.84(13)
C1	P	C7	101.84(11)	C9	C7	S3	108.43(17)
C1	P	C13	101.65(10)	C9	C7	P	124.45(18)
C7	P	C13	101.08(11)	S4	C8	S3	123.58(14)
C2	N1	C3	113.7(2)	N2	C8	S3	108.51(17)
C2	N1	C4	121.98(19)	N2	C8	S4	127.90(19)
C3	N1	C4	124.32(19)	C7	C9	N2	115.3(2)
C8	N2	C9	114.85(19)	N2	C10	C11	109.7(2)
C8	N2	C10	121.1(2)	N2	C10	C12	111.2(2)
C9	N2	C10	124.04(19)	C12	C10	C11	112.8(2)
S1	C1	P	128.51(15)	C14	C13	P	119.45(18)
C3	C1	S1	108.44(17)	C14	C13	C18	119.1(2)
C3	C1	P	123.05(18)	C18	C13	P	120.98(19)
S2	C2	S1	123.34(15)	C15	C14	C13	120.7(2)
N1	C2	S1	109.24(17)	C14	C15	C16	119.8(3)
N1	C2	S2	127.42(18)	C17	C16	C15	119.7(2)
C1	C3	N1	116.0(2)	C16	C17	C18	120.9(2)
N1	C4	C5	111.1(2)	C17	C18	C13	119.7(2)
N1	C4	C6	110.9(2)				

12.4 Crystal data and structure refinement for 6b (IB-270).

Identification code	GSTR575, IB-270 // GXraymo_5182f	$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.346
Crystal Habitus	clear colourless block	μ / mm^{-1}	0.54
Device Type	Bruker D8-Venture	F(000)	888
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{PS}_{4}$	Crystal size/ mm^{3}	$0.25 \times 0.21 \times 0.18$
Moiety formula	C16 H26 N3 P S4	Absorption correction	empirical
Formula weight	419.61	Tmin; Tmax	0.7017; 0.7460
Temperature/K	100	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Crystal system	monoclinic	2Θ range for data collection $/{ }^{\circ}$	5.778 to 55.994°
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$	Completeness to theta	0.996
a / \AA	13.4783(9)	Index ranges	$\begin{aligned} & -17 \leq h \leq 17,-9 \leq k \leq 9,- \\ & 28 \leq 1 \leq 28 \end{aligned}$
b/Å	7.3226(5)	Reflections collected	60380
c/A	21.8904(13)	Independent reflections	$\begin{aligned} & 4985\left[\mathrm{R}_{\text {int }}=0.0300,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0127\right] \end{aligned}$
$\alpha /{ }^{\circ}$	90	Data/restraints/parameters	4985/1/223
$\beta /{ }^{\circ}$	106.580(2)	Goodness-of-fit on F^{2}	1.106
γ^{\prime}	90	Final R indexes $[I>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0243, \mathrm{wR}_{2}=0.0617$
Volume/ \AA^{3}	2070.7(2)	Final R indexes [all data]	$\mathrm{R}_{1}=0.0264, \mathrm{wR}_{2}=0.0629$
Z	4	Largest diff. peak/hole / e	0.37/-0.34

$$
\AA^{-3}
$$

Bond Lengths

Atom	Atom	Length/ \AA	Atom	Atom	Length $/ \AA$
S1	C 1	$1.7404(11)$	N 2	C 9	$1.3797(14)$
S 1	C 2	$1.7317(12)$	N 2	C 10	$1.4829(14)$
S 2	C 2	$1.6688(12)$	N 3	C 13	$1.4734(15)$
S 3	C 7	$1.7485(12)$	N 3	C 15	$1.4724(16)$
S 3	C 8	$1.7382(12)$	C 1	C 3	$1.3498(16)$
S 4	C 8	$1.6762(12)$	C 4	C 5	$1.5219(18)$
P	N 3	$1.6896(10)$	C 4	C 6	$1.5195(17)$
P	C 1	$1.8149(12)$	C 7	C 9	$1.3559(16)$
P	C 7	$1.8213(12)$	C 10	C 11	$1.5172(17)$
N 1	C 2	$1.3633(14)$	C 10	C 12	$1.5207(18)$
N 13	C 3	$1.3922(14)$	C 13	C 14	$1.5191(19)$
N 13	C 4	$1.4773(14)$	C 15	C 16	$1.5262(17)$
N 2	C 8	$1.3610(15)$			

Bond Angles

Atom	Atom	Atom	$\text { Angle }{ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
$\mathrm{C} 2$	S1	C1	93.00(5)	N1	C2	S1	108.73(8)
C8	S3	$\mathrm{C} 7$	92.84(6)	N1	C2	S2	127.89(9)
N3	P	C1	99.60(5)	C1	C3	N1	114.36(10)
N3	P	C7	108.19(5)	N1	C4	C5	109.67(10)
C1	P	C7	100.31(5)	N1	C4	C6	111.01(10)
C2	N1	C3	$114.70(10)$	C6	C4	C5	113.04(11)
C2	N1	C4	121.08(9)	S3	C7	P	132.03(7)
C3	N1	C4	124.16(10)	C9	C7	S3	108.53(8)
C8	N2	C9	114.90(10)	C9	C7	P	119.39(9)
C8	N2	C10	123.27(10)	S4	C8	S3	124.11(7)
C9	N2	C10	121.83(10)	N2	C8	S3	108.70(8)
$\mathrm{C} 13$	N3	P	113.36 (8)	N2	C8	S4	127.18(9)
C15	N3	P	122.33(8)	C7	C9	N2	$115.01(10)$
C15	N3	C13	116.71(10)	N2	C10	C11	110.49(10)
S1	C1	P	120.06(7)	N2	C10	C12	109.68(10)

C3	C1	S1	$109.21(8)$	C11	C10	C12	$111.89(10)$
C3	C1	P	$129.74(9)$	N3	C13	C14	$115.06(11)$
S2	C2	S1	$123.37(7)$	N3	C15	C16	$112.41(11)$

12.5 Crystal data and structure refinement for 7a (IB-73).

Identification code	GSTR468, IB-73 // GXraycu_4500f_pl	$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.464
Crystal Habitus	clear colourless plank	μ / mm^{-1}	6.934
Device Type	Bruker D8-Venture	$\mathrm{F}(000)$	560
Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{PS}_{2}$	Crystal size/ mm^{3}	$0.16 \times 0.08 \times 0.08$
Moiety formula	C8 H14 Cl N2 P S2	Absorption correction	empirical
Formula weight	268.75	Tmin; Tmax	0.2956; 0.7536
Temperature/K	123	Radiation	$\operatorname{CuK} \alpha(\lambda=1.54178)$
Crystal system	monoclinic	2Θ range for data collection $/{ }^{\circ}$	6.588 to 135.47°
Space group	$\mathrm{P} 21 / \mathrm{c}$	Completeness to theta	0.999
a / \AA	12.7695(5)	Index ranges	$\begin{aligned} & -15 \leq \mathrm{h} \leq 15,-16 \leq \mathrm{k} \leq 16, \\ & -8 \leq 1 \leq 8 \end{aligned}$
b / \AA	13.4160(5)	Reflections collected	19438
c/ \AA	7.1453(3)	Independent reflections	$\begin{aligned} & 2207\left[\mathrm{R}_{\text {int }}=0.0613,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0334\right] \end{aligned}$
$\alpha{ }^{\circ}$	90	Data/restraints/parameters	2207/6/131
$\beta /{ }^{\circ}$	95.1700(10)	Goodness-of-fit on F^{2}	1.198
$\gamma^{/ 0}$	90	Final R indexes $[I>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0715, \mathrm{wR}_{2}=0.1922$
Volume/ \AA^{3}	1219.12(8)	Final R indexes [all data]	$\mathrm{R}_{1}=0.0733, \mathrm{wR}_{2}=0.1932$
Z	4	Largest diff. peak/hole / e \AA^{-3}	1.46/-0.55

Bond Lengths

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \mathbf{\AA}$
C1	P	$2.152(2)$	N 1	C 3	$1.379(9)$
S 1	C 1	$1.736(6)$	N 1	C 4	$1.457(8)$
S1	C 2	$1.729(7)$	N 2	C 5	$1.485(8)$
S 2	C 2	$1.673(7)$	N 2	C 7	$1.474(8)$
P	N 2	$1.651(6)$	C 1	C 3	$1.364(9)$
P	C 1	$1.807(7)$	C 5	C 6	$1.515(10)$
N 1	C 2	$1.356(9)$	C 7	C 8	$1.514(10)$

Bond Angles

Atom	Atom	Atom	Angle $/^{\circ}$	Atom	Atom	Atom	Angle $/^{\circ}$
C2	S 1	C 1	$92.9(3)$	S 1	C 1	P	$123.9(4)$
N 2	P	C 1	$108.1(2)$	C 3	C 1	S 1	$108.8(5)$
N 2	P	C 1	$101.8(3)$	C 3	C 1	P	$126.4(5)$
C 1	P	C 1	$94.7(2)$	S 2	C 2	S 1	$124.1(4)$
C 2	N 1	C 3	$114.8(6)$	N 1	C 2	S 1	$109.1(5)$
C 2	N 1	C 4	$122.6(6)$	N 1	C 2	S 2	$126.8(5)$
C3	N 1	C 4	$122.6(6)$	C 1	C 3	N 1	$114.3(6)$
C 5	N 2	P	$116.3(4)$	N 2	C 5	C 6	$111.8(6)$
C 7	N 2	P	$127.5(4)$	N 2	C 7	C 8	$113.6(6)$
C 7	N 2	C 5	$115.2(5)$				

Torsion Angles

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
Cl	P	N2	C5	110.5(4)	C1	P	N2	C5	$150.5(5)$
Cl	P	N2	C7	-57.3(6)	C1	P	N2	C7	41.7(6)
Cl	P	C1	S1	-37.1(4)	C2	S1	C1	P	$167.9(5)$
Cl	P	C1	C3	155.2(6)	C2	S1	C1	C3	1.7(5)
S1	C1	C3	N1	-0.8(8)	C2	N1	C3	C1	-0.9(9)
P	N2	C5	C6	108.4(6)	C3	N1	C2	S1	2.2(7)

P	N2	C7	C8	93.3(7)	C3	N1	C2	S2	$177.3(5)$
P	C1	C3	N1	168.5(5)	C4	N1	C2	S1	$176.0(5)$
N2	P	C1	S1	146.7(4)	C4	N1	C2	S2	4.5(10)
N2	P	C1	C3	45.6(7)	C4	N1	C3	C1	177.3(6)
C1	S1	C2	S2	177.3(5)	C5	N2	C7	C8	-74.6(7)
C1	S1	C2	N1	-2.2(5)	C7	N2	C5	C6	-82.2(7)

12.6 Crystal data and structure refinement for 7c (IB-256).

b/ \AA	9.7436 (7)	Reflections collected	22072
c/ \AA	10.8226(8)	Independent reflections	$\begin{aligned} & 3452\left[\mathrm{R}_{\text {int }}=0.1530,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0932\right] \end{aligned}$
$\alpha /{ }^{\circ}$	93.169(4)	Data/restraints/parameters	3452/0/148
$\beta /{ }^{\circ}$	98.014(5)	Goodness-of-fit on F^{2}	1.012
γ°	95.990(5)	Final R indexes $[1>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0465, \mathrm{wR}_{2}=0.0768$
Volume/ \AA^{3}	715.19(10)	Final R indexes [all data]	$\mathrm{R}_{1}=0.0928, \mathrm{wR}_{2}=0.0890$
Z	2	Largest diff. peak/hole / e \AA^{-3}	0.48/-0.44

Bond Lengths

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \AA$
C 1	P	$2.1350(10)$	N 1	C 4	$1.469(3)$
S 1	C 1	$1.745(3)$	N 2	C 7	$1.471(3)$
S 1	C 2	$1.735(3)$	N 2	C 9	$1.481(3)$
S 2	C 2	$1.670(3)$	C 1	C 3	$1.347(3)$
P	N 2	$1.655(2)$	C 4	C 5	$1.520(3)$
P	C 1	$1.817(3)$	C 5	C 6	$1.521(4)$
N 1	C 2	$1.356(3)$	C 7	C 8	$1.521(3)$
N 1	C 3	$1.384(3)$	C 9	C 10	$1.519(4)$

Bond Angles

Atom	Atom	Atom	Angle $/^{\circ}$	Atom	Atom	Atom	Angle $/^{\circ}$
C2	S 1	C 1	$92.60(12)$	C 3	C 1	S 1	$109.39(19)$
N 2	P	C 1	$106.37(8)$	C 3	C 1	P	$130.3(2)$
N 2	P	C 1	$100.05(11)$	S 2	C 2	S 1	$123.77(16)$
C 1	P	C 1	$95.51(9)$	N 1	C 2	S 1	$108.50(18)$
C 2	N 1	C 3	$115.5(2)$	N 1	C 2	S 2	$127.7(2)$
C 2	N 1	C 4	$122.8(2)$	C 1	C 3	N 1	$114.0(2)$
C 3	N 1	C 4	$121.7(2)$	N 1	C 4	C 5	$111.6(2)$
C 7	N 2	P	$124.47(17)$	C 4	C 5	C 6	$111.5(2)$
C 7	N 2	C 9	$116.29(19)$	N 2	C 7	C 8	$113.9(2)$
C 9	N 2	P	$115.46(16)$	N 2	C 9	C 10	$112.4(2)$
S 1	C 1	P	$119.67(14)$				

12.7 Crystal data and structure refinement for 8 (IB-74).

Identification code	GSTR538, IB-74 // GXraymo_5002f	$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.805
Crystal Habitus	clear colourless plate	μ / mm^{-1}	1.357
Device Type	Bruker D8-Venture	$F(000)$	464
Empirical formula	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NPS}_{2} \mathrm{Cl}_{2}$	Crystal size/ mm^{3}	$0.1 \times 0.06 \times 0.04$
Moiety formula	C4 H4 Cl2 N P S2	Absorption correction	empirical
Formula weight	232.07	Tmin; Tmax	0.6871; 0.7459
Temperature/K	100	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Crystal system	monoclinic	2Θ range for data collection ${ }^{\circ}$	5.208 to 55.976°
Space group	$\mathrm{P} 21 / \mathrm{c}$	Completeness to theta	1
a / \AA	6.5200(11)	Index ranges	$\begin{aligned} & -8 \leq \mathrm{h} \leq 8,-12 \leq \mathrm{k} \leq 12,- \\ & 18 \leq 1 \leq 18 \end{aligned}$
b / \AA	9.4916(17)	Reflections collected	24109
c / \AA	13.822(3)	Independent reflections	$\begin{aligned} & 2062\left[\mathrm{R}_{\text {int }}=0.1060,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0435\right] \end{aligned}$
$\alpha /{ }^{\circ}$	90	Data/restraints/parameters	2062/6/92
$\beta /{ }^{\circ}$	93.257(7)	Goodness-of-fit on F^{2}	1.029
$\gamma /{ }^{\circ}$	90	Final R indexes $[I>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0306, \mathrm{wR}_{2}=0.0461$
Volume/ \AA^{3}	854.0(3)	Final R indexes [all data]	$\mathrm{R}_{1}=0.0528, \mathrm{wR}_{2}=0.0505$
Z	4	Largest diff. peak/hole / e \AA^{-3}	0.42/-0.38

Bond Lengths

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \AA$
Cl 1	P	$2.0924(8)$	P	C 1	$1.800(2)$
Cl 2	P	$2.0717(8)$	N	C 2	$1.360(3)$
S 1	C 1	$1.7403(19)$	N	C 3	$1.373(2)$
S 1	C 2	$1.739(2)$	N	C 4	$1.465(3)$
S 2	C 2	$1.663(2)$	C 1	C 3	$1.347(3)$

Bond Angles

Atom	Atom	Atom	${\text { Angle } /{ }^{\circ}}^{\circ}$	Atom	Atom	Atom	${\text { Angle }{ }^{\circ}}^{\circ}$
C 2	S 1	C 1	$92.05(10)$	S 1	C 1	P	$128.19(12)$
Cl 2	P	C 11	$96.59(3)$	C 3	C 1	S 1	$109.73(14)$
C 1	P	Cl 1	$99.12(7)$	C 3	C 1	P	$122.04(15)$
C 1	P	C 2	$98.94(7)$	S 2	C 2	S 1	$124.90(13)$
C 2	N	C 3	$115.01(17)$	N	C 2	S 1	$108.83(14)$
C 2	N	C 4	$121.30(17)$	N	C 2	S 2	$126.25(16)$
C 3	N	C 4	$123.67(17)$	C 1	C 3	N	$114.35(18)$

12.8 Crystal data and structure refinement for 9 (IB-285).

| Identification code | GSTR579, IB-285 $/ /$ $\rho_{\text {calcg }} / \mathrm{cm}^{3}$ 1.483
 GXray5251f
 Crystal Habitus clear colourless block μ / mm^{-1} 0.793
 Device Type Bruker X8-KappaApexII $\mathrm{F}(000)$ 792. |
| :--- | :--- | :--- | :--- |

Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{PS}_{4} \mathrm{Cl}$	Crystal size/ mm^{3}	$0.32 \times 0.2 \times 0.19$
Moiety formula	C12 H16 Cl N2 P S4	Absorption correction	empirical
Formula weight	382.93	Tmin; Tmax	0.6531; 0.7461
Temperature/K	100	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Crystal system	monoclinic	2Θ range for data collection $/{ }^{\circ}$	5.074 to 55.996°
Space group	$\mathrm{P} 21 / \mathrm{c}$	Completeness to theta	0.997
a/ \AA	12.5874(6)	Index ranges	$\begin{aligned} & -14 \leq h \leq 16,-18 \leq k \leq 18, \\ & -13 \leq 1 \leq 9 \end{aligned}$
b/ \AA	13.8120(7)	Reflections collected	32997
c/A	9.9208(5)	Independent reflections	$\begin{aligned} & 4131\left[\mathrm{R}_{\text {int }}=0.0298,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0174\right] \end{aligned}$
α^{10}	90	Data/restraints/parameters	4131/1/185
$\beta /{ }^{\circ}$	95.9307(15)	Goodness-of-fit on F^{2}	1.104
γ°	90	Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0227, \mathrm{wR}_{2}=0.0540$
Volume/ $/{ }^{3}$	1715.57(15)	Final R indexes [all data]	$\mathrm{R}_{1}=0.0252, \mathrm{wR}_{2}=0.0557$
Z	4	Largest diff. peak/hole / e \AA^{-3}	0.32/-0.23

Bond Lengths

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \AA$
C1	P	$2.0796(4)$	N 1	C 4	$1.4889(16)$
S 1	C 1	$1.7414(12)$	N 2	C 8	$1.3655(15)$
S1	C 2	$1.7379(13)$	N 2	C 9	$1.3747(16)$
S2	C 2	$1.6658(13)$	N 2	C 10	$1.4876(15)$
S3	C 7	$1.7448(12)$	C 1	C 3	$1.3504(17)$
S3	C 8	$1.7445(13)$	C 4	C 5	$1.5187(19)$
S4	C 8	$1.6590(13)$	C 4	C 6	$1.5179(19)$
P	C 1	$1.8030(13)$	C 7	C 9	$1.3497(17)$
P	C 7	$1.7909(13)$	C 10	C 11	$1.5199(17)$
N1	C 2	$1.3661(16)$	C 10	C 12	$1.5232(17)$
N1	C 3	$1.3827(16)$			

Bond Angles							
Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle $/^{\circ}$
C2	S1	C1	92.47(6)	N1	C2	S2	127.68(10)
C8	S3	C7	92.40(6)	C1	C3	N1	114.37(11)
C1	P	Cl	98.43(4)	N1	C4	C5	109.31(10)
C7	P	Cl	101.47(4)	N1	C4	C6	110.67(11)
C7	P	C1	101.95(6)	C6	C4	C5	112.01(11)
C2	N1	C3	114.79(10)	S3	C7	P	130.27(7)
C2	N1	C4	123.46(10)	C9	C7	S3	109.18(9)
C3	N1	C4	121.42(10)	C9	C7	P	120.25(9)
C8	N2	C9	114.86(10)	S4	C8	S3	124.02(7)
C8	N2	C10	121.58(10)	N2	C8	S3	108.59(9)
C9	N2	C10	123.32(10)	N2	C8	S4	127.38(9)
S1	C1	P	129.52(7)	C7	C9	N2	114.96(11)
C3	C1	S1	109.57(9)	N2	C10	C11	108.88(10)
C3	C1	P	120.90(9)	N2	C10	C12	111.49(10)
S2	C2	S1	123.52(8)	C11	C10	C12	112.67(11)
N1	C2	S1	108.80(9)				

12.9 Crystal data and structure refinement for 10 (dg407_a)

Bond precision:
$\mathrm{C}-\mathrm{C}=0.0016 \mathrm{~A}$

Cell:	$\begin{aligned} & \mathrm{a}=9.8047(9 ; \mathrm{b}=21.6697(17) ; \\ & \mathrm{c}=10.5847(9) ; \text { alpha }=90 ; \\ & \text { beta }=113.054(2 ; \text { gamma }=90 \end{aligned}$	
Wavelength	0.71073	
Temperature:	100 K	
	Calculated	Reported
Volume	2069.3(3)	2069.3(3)
Space group	P $121 / \mathrm{n} 1$	P $121 / \mathrm{n} 1$
Hall group	-P 2yn	-P 2yn
Moiety formula	C21 H25 N2 P S2	C21 H25 N2 P S2
Sum formula	C21 H25 N2 P S2	C21 H25 N2 P S2
Mr	400.52	400.52
Dx, g cm-3	1.286	1.286
Z	4	4
Mu (mm-1)	0.342	0.342
F000	848.0	848.0
F000'		
h,k, lmax	14,30,15	14,30,15
Nref	6323	6323
Tmin, Tmax	0.682,0.746	0.682,0.746
Tmin'		
AbsCorr	MULTI-SCAN	
Theta(max)	30.612	30.612
wR2(reflections)	0.0829(6323)	0.0829(6323)
S	1.034	

Bond length

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \AA$
S1	C1	$1.7460(11)$	C 13	H 13	0.93
S1	C 2	$1.7529(10)$	C 13	C 14	$1.3940(15)$
P1	N 2	$1.6692(9)$	C 18	H 18 A	0.97
P1	C 5	$1.8751(11)$	C 18	H 18 B	0.97
P1	C 2	$1.8226(10)$	C 18	C 19	$1.5244(15)$
S2	C 1	$1.6649(10)$	C 17	H 17	0.93
N2	C 18	$1.4669(13$	C 17	C 16	$1.3936(15)$

N2	C20	$1.4679(13)$	C16	H16	0.93
N1	C3	$1.3826(13)$	C10	H10	0.93
N1	C1	$1.3606(13)$	C10	C9	$1.3889(16)$
N1	C4	$1.4615(14)$	C14	H14	0.93
C12	C5	$1.5187(14)$	C8	H8	0.93
C12	C13	$1.4011(14)$	C8	C9	$1.3902(16)$
C12	C17	$1.3951(14)$	C20	H20A	0.97
C5	H5	0.98	C20	H20B	0.97
C5	C6	$1.5191(13)$	C20	C21	$1.5151(17)$
C3	H3	0.93	C9	H9	0.93
C3	C2	$1.3489(15)$	C4	H4A	0.96
C6	C7	$1.3993(14)$	C4	H4B	0.96
C6	C11	$1.3954(14)$	C4	H4C	0.96
C7	H7	0.93	C19	H19A	0.96
C7	C8	$1.3954(14)$	C19	H19B	0.96
C11	H11	0.93	C19	H19C	0.96
C11	C10	$1.3936(14)$	C21	H21A	0.96
C15	H15	0.93	C21	H21B	0.96
C15	C16	$1.3914(16)$	C21	H21C	0.96
C15	C14	$1.3891(16)$			

Bond angle

Atom	Atom	Atom	${\text { Angle } /{ }^{\circ}}^{c}$	Atom	Atom	Atom	Angle $/^{\circ}$
C 1	S 1	C 2	$93.29(5)$	H 18 A	C 18	H 18 B	107.7
N 2	P 1	C 5	$104.41(5)$	C 19	C 18	H 18 A	108.9
N 2	P 1	C 2	$107.76(4)$	C 19	C 18	H 18 B	108.9
C 2	P 1	C 5	$98.30(5)$	C 12	C 17	H 17	119.6
C 18	N 2	P 1	$125.50(7)$	C 16	C 17	C 12	$120.77(10)$
C 18	N 2	C 20	$116.39(8)$	C 16	C 17	H 17	119.6
C 20	N 2	P 1	$118.07(7)$	C 15	C 16	C 17	$119.97(10)$
C 3	N 1	C 4	$122.56(9)$	C 15	C 16	H 16	120
C 1	N 1	C 3	$115.36(9)$	C 17	C 16	H 16	120
C 1	N 1	C 4	$121.95(9)$	C 11	C 10	H 10	120
C 13	C 12	C 5	$121.29(9)$	C 9	C 10	C 11	$119.96(10)$

C17	C12	C5	119.89(9)	C9	C10	H10	120
C17	C12	C13	118.81(9)	C15	C14	C13	120.26(10)
P1	C5	H5	108	C15	C14	H14	119.9
C12	C5	P1	109.12(7)	C13	C14	H14	119.9
C12	C5	H5	108	C7	C8	H8	119.9
C12	C5	C6	111.87(8)	C9	C8	C7	120.29(10)
C6	C5	P1	111.63(7)	C9	C8	H8	119.9
C6	C5	H5	108	N2	C20	H20A	108.9
N1	C3	H3	122.3	N2	C20	H20B	108.9
C2	C3	N1	115.39(9)	N2	C20	C21	113.20(11)
C2	C3	H3	122.3	H20A	C20	H20B	107.8
C7	C6	C5	122.72(9)	C21	C20	H20A	108.9
C11	C6	C5	118.88(9)	C21	C20	H20B	108.9
C11	C6	C7	118.32(9)	C10	C9	C8	119.64(10)
C6	C7	H7	119.7	C10	C9	H9	120.2
C8	C7	C6	120.62(10)	C8	C9	H9	120.2
C8	C7	H7	119.7	N1	C4	H4A	109.5
C6	C11	H11	119.4	N1	C4	H4B	109.5
C10	C11	C6	121.17(10)	N1	C4	H4C	109.5
C10	C11	H11	119.4	H4A	C4	H4B	109.5
C16	C15	H15	120.1	H4A	C4	H4C	109.5
C14	C15	H15	120.1	H4B	C4	H4C	109.5
C14	C15	C16	119.82(10)	C18	C19	H19A	109.5
S2	C1	S1	125.62(6)	C18	C19	H19B	109.5
N1	C1	S1	107.82(7)	C18	C19	H19C	109.5
N1	C1	S2	126.56(8)	H19A	C19	H19B	109.5
C12	C13	H13	119.8	H19A	C19	H19C	109.5
C14	C13	C12	120.37(10)	H19B	C19	H19C	109.5
C14	C13	H13	119.8	C20	C21	H21A	109.5
S1	C2	P1	130.36(6)	C20	C21	H21B	109.5
C3	C2	S1	108.08(7)	C20	C21	H21C	109.5
C3	C2	P1	121.46(8)	H21A	C21	H21B	109.5
N2	C18	H18A	108.9	H21A	C21	H21C	109.5
N2	C18	H18B	108.9	H21B	C21	H21C	109.5
N2	C18	C19	113.45 (10)				

Torsion angle

A	B	C	D	Angle/ ${ }^{\circ}$	A	B	C	D	Angle/ ${ }^{\circ}$
P1	N2	C18	C19	$\stackrel{-}{114.47(10)}$	C7	C6	C11	C10	$0.07(15)$
P1	N2	C20	C21	$113.10(10)$	C7	C8	C9	C10	-0.37(16)
P1	C5	C6	C7	36.08(12)	C11	C6	C7	C8	-0.52(15)
P1	C5	C6	C11	-147.09(8)	C11	C10	C9	C8	-0.08(16)
N2	P1	C5	C12	-61.36(7)	C1	S1	C2	P1	-177.23(8)
N2	P1	C5	C6	174.47(6)	C1	S1	C2	C3	-0.85(8)
N2	P1	C2	S1	-53.41(9)	C1	N1	C3	C2	2.01(13)
N2	P1	C2	C3	130.62(9)	C13	C12	C5	P1	-72.41(10)
N1	C3	C2	S1	-0.43(11)	C13	C12	C5	C6	51.62(13)
N1	C3	C2	P1	176.34(7)	C13	C12	C17	C16	-0.86(15)
C12	C5	C6	C7	-86.54(12)	C2	S1	C1	S2	-177.08(7)
C12	C5	C6	C11	90.30(11)	C2	S1	C1	N1	1.88(8)
C12	C13	C14	C15	-0.11(16)	C2	P1	N2	C18	54.71(10)
C12	C17	C16	C15	-0.03(16)	C2	P1	N2	C20	-122.73(8)
C5	P1	N2	C18	-49.10(10)	C2	P1	C5	C12	-172.20(7)
C5	P1	N2	C20	133.46(8)	C2	P1	C5	C6	63.63(7)
C5	P1	C2	S1	54.70(8)	C18	N2	C20	C21	69.22(13)
C5	P1	C2	C3	-121.27(9)	C17	C12	C5	P1	107.93(9)
C5	C12	C13	C14	178.74(10)	C17	C12	C5	C6	$128.04(10)$
C5	C12	C17	C16	178.81(10)	C17	C12	C13	C14	0.92 (15)
C5	C6	C7	C8	176.33(9)	C16	C15	C14	C13	-0.79(17)
C5	C6	C11	C10	-176.90(9)	C14	C15	C16	C17	0.86(17)
C3	N1	C1	S1	-2.50(11)	C20	N2	C18	C19	63.02(12)
C3	N1	C1	S2	176.45(8)	C4	N1	C3	C2	178.01(9)
C6	C7	C8	C9	0.68 (16)	C4	N1	C1	S1	-178.53(8)
C6	C11	C10	C9	0.23(16)	C4	N1	C1	S2	0.42(15)

12.10 Crystal data and structure refinement for 11 (dg408_a)

Bond precision	$\mathrm{C}-\mathrm{C}=0.0016 \mathrm{~A}$	
	$\begin{aligned} & \mathrm{a}=15.1719(19) \text {; } \\ & \mathrm{b}=7.8102(10) ; \mathrm{c}=15.0707(19) ; \mathrm{alp} \\ & \text { ha=90;beta=110.848(2);gamma= } \end{aligned}$	
Cell:	90	
Wavelength	0.71073	
Temperature:	90 K	
	Calculated	Reported
Volume	1668.9(4)	1668.9(4)
Space group	P 21/c	P 1 21/c 1
Hall group	-P 2ybc	-P 2ybc
Moiety formula	C17 H15 Cl N P S2	C17 H15 Cl N P S2
Sum formula	C17 H15 Cl N P S2	C17 H15 Cl N P S2
Mr	363.84	363.87
Dx, g cm-3	1.448	1.448
Z	4	4
$\mathrm{Mu}(\mathrm{mm}-1)$	0.570	0.570
F000	752.0	754.2
F000'	754.17	
h,k, lmax	21,11,21	21,11,21
Nref	5110	5095
Tmin, Tmax	0.843,0.945	0.654,0.746

Tmin'	0.843	
AbsCorr	MULTI-SCAN	
Data completeness $=$	0.997	$0.0707(5095)$
R(reflections)	$0.0255(4620)$	
$\mathrm{S}=1.043$	$\mathrm{Npar}=199$	
Theta(max)	30.54	

Bond length

Atom	Atom	Length/ /	Atom	Atom	Length/ ${ }_{\text {A }}$
$\mathrm{Cl1}$	P1	2.0726(4)	C15	H15	0.93
S1	$\mathrm{C} 1$	$1.6661(11)$	C11	C6	$1.4013(14)$
$\mathrm{S} 2$	$\mathrm{C} 1$	1.7380 (10)	C11	C10	$1.3995(14)$
$\mathrm{S} 2$	C3	1.7464(11)	$\mathrm{C} 11$	H11	0.93
P1	C5	$1.8776(11)$	C6	$\mathrm{C} 7$	$1.4017(14)$
P1	C3	$1.8097(10)$	$\mathrm{C} 17$	$\mathrm{C} 16$	$1.3975(14)$
N1	$\mathrm{C} 2$	$1.3839(13)$	$\mathrm{C} 17$	H17	0.93
N1	$\mathrm{C} 1$	$1.3648(13)$	$\mathrm{C} 16$	$\mathrm{H} 16$	0.93
N1	$\mathrm{C} 4$	$1.4662(14)$	C7	C8	$1.3948(15)$
C12	C5	$1.5175(13)$	C7	H7	0.93
C12	C13	$1.3983(14)$	$\mathrm{C} 10$	C9	1.3899 (16)
$\mathrm{C} 12$	$\mathrm{C} 17$	$1.4009(14)$	$\mathrm{C} 10$	H10	0.93
C5	C6	$1.5229(14)$	C8	C9	1.3961 (16)
C5	H5	0.98	C8	H8	0.93
C2	C3	1.3542 (14)	C9	H9	0.93
C2	H2	0.93	$\mathrm{C} 14$	H14	0.93
C13	C14	$1.3952(14)$	C4	H4a	0.96
C13	H13	0.93	C4	H4b	0.96
C15	$\mathrm{C} 16$	$1.3938(15)$	C4	H4c	0.96
C15	C14	1.3954(15)			

Bond Angle

Atom	Atom	Atom	Angle $^{\circ}{ }^{\circ}$	Atom	Atom	Atom	Angle $/^{\circ}$
C3	S2	C1	$92.76(5)$	N 1	C 1	S 1	$127.10(8)$
C 5	P 1	Cl 1	$100.46(3)$	N 1	C 1	S 2	$108.60(7)$
198							

Appendix

C3	P1	Cl1	99.58(4)	C16	C17	C12	121.08(9)
C3	P1	C5	97.13(5)	H17	C17	C12	119.46(6)
C1	N1	C2	115.09(9)	H17	C17	C16	119.46(6)
C4	N1	C2	122.36(9)	C17	C16	C15	119.90(10)
C4	N1	C1	122.55(9)	H16	C16	C15	120.05(6)
C13	C12	C5	123.06(9)	H16	C16	C17	120.05(6)
C17	C12	C5	118.46(9)	C8	C7	C6	120.31(10)
C17	C12	C13	118.48(9)	H7	C7	C6	119.84(6)
C12	C5	P1	112.58(7)	H7	C7	C8	119.84(6)
C6	C5	P1	102.95(6)	P1	C3	S2	126.48(6)
C6	C5	C12	117.13(8)	C2	C3	S2	109.14(8)
H5	C5	P1	107.92(3)	C2	C3	P1	123.27(8)
H5	C5	C12	107.92(5)	C9	C10	C11	119.86(10)
H5	C5	C6	107.92(5)	H10	C10	C11	120.07(6)
C3	C2	N1	114.42(9)	H10	C10	C9	120.07(6)
H2	C2	N1	122.79(6)	C9	C8	C7	120.45(10)
H2	C2	C3	122.79(6)	H8	C8	C7	119.77(6)
C14	C13	C12	120.56(9)	H8	C8	C9	119.77(6)
H13	C13	C12	119.72(6)	C8	C9	C10	119.75(10)
H13	C13	C14	119.72(6)	H9	C9	C10	120.12(6)
C14	C15	C16	119.42(9)	H9	C9	C8	120.12(6)
H15	C15	C16	120.29(6)	C15	C14	C13	120.56(10)
H15	C15	C14	120.29(6)	H14	C14	C13	119.72(6)
C10	C11	C6	120.84(10)	H14	C14	C15	119.72(6)
H11	C11	C6	$119.58(6)$	H4a	C4	N1	109.5
H11	C11	C10	$119.58(6)$	H4b	C4	N1	109.5
C11	C6	C5	121.65(9)	H4b	C4	H4a	109.5
C7	C6	C5	119.23(9)	H4c	C4	N1	109.5
C7	C6	C11	118.73(9)	H4c	C4	H4a	109.5
S2	C1	S1	124.29(6)	H4c	C4	H4b	109.5

12.11 Crystal data and structure refinement for 13 (IB-241)

Identification code

GSTR539, IB-241 //
clear dark yellow block
Bruker X8-KappaApexII
$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClNO}_{5} \mathrm{PS}_{2} \mathrm{~W}$
C22 H15 Cl N O5 P S2 W
687.74

100
triclinic
P-1
8.8458(5)
10.6789(7)
14.9336(10)
85.736(4)
74.522(4)
66.311(3)
1244.10(14)

Z
2

$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.836
μ / mm^{-1}	5.015
$\mathrm{~F}(000)$	664
Crystal size $/ \mathrm{mm}^{3}$	$0.12 \times 0.09 \times 0.06$
Absorption correction	empirical
Tmin; Tmax	$0.5481 ; 0.7459$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	2.832 to 56°
Completeness to theta	0.994
Index ranges	$-11 \leq \mathrm{h} \leq 11,-14 \leq \mathrm{k} \leq 14$,
	$-19 \leq 1 \leq 19$
Reflections collected	28743
	$5974\left[\mathrm{R}_{\text {int }}=0.0531\right.$,
Independent reflections	$\left.\mathrm{R}_{\text {sigma }}=0.0444\right]$
Data/restraints $/$ parameters	$5974 / 24 / 299$
Goodness-of-fit on F^{2}	1.08
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0436, \mathrm{wR}_{2}=0.1102$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0524, \mathrm{wR}_{2}=0.1151$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$2.20 /-1.75$

Bond Lengths

Atom	Atom	Length/Å	Atom	Atom	Length/i̊
W	P	$2.4671(15)$	N	C3	1.373(8)
W	C18	2.027(6)	N	C4	$1.460(8)$
W	C19	2.046(8)	C1	C3	1.331 (9)
W	C20	2.042(8)	C5	C6	$1.522(8)$
W	C21	2.056(7)	C5	C12	$1.502(8)$
W	C22	2.064(8)	C6	C7	$1.398(9)$
Cl	P	2.069(2)	C6	C11	1.381 (9)
S1	C1	1.747(6)	C7	C8	$1.392(11)$
S1	C2	$1.735(7)$	C8	C9	1.376(13)
S2	C2	$1.655(6)$	C9	C10	1.372(12)
P	C1	1.807(6)	C10	C11	1.394(10)
P	C5	1.875(6)	C12	C13	$1.390(9)$
O1	C18	$1.106(8)$	C12	C17	1.403 (9)
O2	C19	1.124(10)	C13	C14	$1.384(9)$
O3	C20	1.133(10)	C14	C15	1.383(10)
O4	C21	1.139(9)	C15	C16	1.387(10)
O5	C22	1.131(9)	C16	C17	1.393(9)
N	C2	1.359(8)			

Bond Angles

Atom	Atom	Atom	$\text { Angle } /^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C18	W	P	176.57(19)	S2	C2	S1	125.2(4)
C18	W	C19	86.4(3)	N	C2	S1	108.5(4)
C18	W	C20	86.7(3)	N	C2	S2	126.3(5)
C18	W	C21	87.0(3)	C1	C3	N	114.7(6)
C18	W	C22	91.6(3)	C6	C5	P	112.8(4)
C19	W	P	90.2(2)	C12	C5	P	112.9(4)
C19	W	C21	173.2(3)	C12	C5	C6	116.5(5)
C19	W	C22	$92.2(3)$	C7	C6	C5	119.0(6)
C20	W	P	92.7(2)	C11	C6	C5	122.4(6)
C20	W	C19	89.9(3)	C11	C6	C7	118.6(6)
C20	W	C21	91.2(3)	C8	C7	C6	120.5(7)
C20	W	C22	177.2(3)	C9	C8	C7	120.1(8)

C21	W	P	$96.44(19)$	C10	C9	C8	$119.8(7)$
C21	W	C22	$86.5(3)$	C9	C10	C11	$120.6(8)$
C22	W	P	$89.09(19)$	C6	C11	C10	$120.3(7)$
C2	S1	C1	$92.1(3)$	C13	C12	C5	$118.8(5)$
C1	P	W	$115.25(8)$	C13	C12	C17	$118.6(6)$
C1	P	W	$116.2(2)$	C17	C12	C5	$122.6(5)$
C1	P	C1	$97.6(2)$	C14	C13	C12	$121.0(6)$
C1	P	C5	$101.0(3)$	C15	C14	C13	$120.4(6)$
C5	P	W	$120.11(19)$	C14	C15	C16	$119.4(6)$
C5	P	C1	$103.33(19)$	C15	C16	C17	$120.6(6)$
C2	N	C3	$115.2(5)$	C16	C17	C12	$120.0(6)$
C2	N	C4	$122.2(6)$	O1	C18	W	$176.6(6)$
C3	N	C4	$122.5(6)$	O2	C19	W	$174.9(7)$
S1	C1	P	$121.5(3)$	O3	C20	W	$175.8(8)$
C3	C1	S1	$109.5(5)$	O4	C21	W	$174.8(6)$
C3	C1	P	$128.6(5)$	O5	C22	W	$178.7(7)$

Torsion Angles

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle $/{ }^{\circ}$
W	P	C1	S1	-41.4(4)	C4	N	C2	S2	-5.8(10)
W	P	C1	C3	146.0(6)	C4	N	C3	C1	177.1(7)
W	P	C5	C6	177.4(3)	C5	P	C1	S1	90.3(4)
W	P	C5	C12	-47.9(5)	C5	P	C1	C3	-82.3(6)
Cl	P	C1	S1	$164.5(3)$	C5	C6	C7	C8	177.6(6)
Cl	P	C1	C3	22.9(6)	C5	C6	C11	C10	$178.7(6)$
Cl	P	C5	C6	-52.5(4)	C5	C12	C13	C14	177.8(6)
Cl	P	C5	C12	82.2(4)	C5	C12	C17	C16	$177.0(6)$
S1	C1	C3	N	0.0(7)	C6	C5	C12	C13	$103.0(7)$
P	C1	C3	N	173.4(5)	C6	C5	C12	C17	75.9(8)
P	C5	C6	C7	-89.4(6)	C6	C7	C8	C9	1.6 (12)
P	C5	C6	C11	90.5(6)	C7	C6	C11	C10	$1.2(10)$
P	C5	C12	C13	124.1(6)	C7	C8	C9	C10	0.3(12)

P	C5	C12	C17	-57.0(7)	C8	C9	C10	C11	-1.4(12)
C1	S1	C2	S2	$176.3(5)$	C9	C10	C11	C6	0.7(11)
C1	S1	C2	N	1.4(5)	C11	C6	C7	C8	-2.3(10)
C1	P	C5	C6	48.2(5)	C12	C5	C6	C7	137.7(6)
C1	P	C5	C12	$177.2(4)$	C12	C5	C6	C11	-42.5(8)
C2	S1	C1	P	$174.8(4)$	C12	C13	C14	C15	0.0(11)
C2	S1	C1	C3	-0.9(5)	C13	C12	C17	C16	1.9(10)
C2	N	C3	C1	1.2(9)	C13	C14	C15	C16	0.3(11)
C3	N	C2	S1	-1.7(7)	C14	C15	C16	C17	0.4(11)
C3	N	C2	S2	175.9(5)	C15	C16	C17	C12	-1.6(11)
C4	N	C2	S1	176.5(6)	C17	C12	C13	C14	-1.2(10)

12.12 Crystal data and structure refinement for hydrolysis product of 14 (IB-407-B).

Identification code	GSTR620, IB-407-B $/ /$ GXray5625f	$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.624
Crystal Habitus	clear yellow block	μ / mm^{-1}	3.332
Device Type	Bruker X8-KappaApexII	$\mathrm{F}(000)$	940
Empirical formula	$\mathrm{C}_{68} \mathrm{H}_{76} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{~W}_{2}$	Crystal size $/ \mathrm{mm}^{3}$	$0.24 \times 0.19 \times 0.17$

Moiety formula	2(C22 H16 N O6 P S2 W), 2(C H2 Cl2), C4 H10 O, 2(C9 H15 N2)	Absorption correction	empirical
Formula weight	1885.02	Tmin; Tmax	0.4884; 0.7459
Temperature/K	100	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Crystal system	triclinic	2Θ range for data collection $/{ }^{\circ}$	5.554 to 55.996°
Space group	P-1	Completeness to theta	0.996
a / \AA	12.4512(9)	Index ranges	$\begin{aligned} & -16 \leq \mathrm{h} \leq 16,-17 \leq \mathrm{k} \leq 17, \\ & -19 \leq 1 \leq 19 \end{aligned}$
b/Å	12.9084(10)	Reflections collected	87672
c/A	14.8449(13)	Independent reflections	$\begin{aligned} & 9281\left[R_{\text {int }}=0.0463,\right. \\ & \left.R_{\text {sigma }}=0.0244\right] \end{aligned}$
$\alpha /{ }^{\circ}$	98.754(4)	Data/restraints/parameters	9281/43/491
$\beta /{ }^{\circ}$	110.579(4)	Goodness-of-fit on F^{2}	1.148
$\gamma^{/ 0}$	113.432(4)	Final R indexes $[1>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0328, \mathrm{wR}_{2}=0.0830$
Volume/ \AA^{3}	1927.5(3)	Final R indexes [all data]	$\mathrm{R}_{1}=0.0378, \mathrm{wR}_{2}=0.0863$
Z	1	$\underset{\AA^{-3}}{\text { Largest diff. peak/hole / e }}$	2.29/-1.50

Bond Lengths

Atom	Atom	Length/ \AA	Atom	Atom	Length $/ \mathbf{\AA}$
W	P	$2.5095(10)$	C 10	C 11	$1.395(6)$
W	C 18	$2.009(4)$	C 12	C 13	$1.398(6)$
W	C 19	$2.039(4)$	C 12	C 17	$1.396(6)$
W	C 20	$2.048(4)$	C 13	C 14	$1.383(6)$
W	C 21	$2.034(4)$	C 14	C 15	$1.386(7)$
W	C 22	$2.036(4)$	C 15	C 16	$1.372(8)$
S1	C 1	$1.731(4)$	C 16	C 17	$1.382(7)$
S1	C 3	$1.736(4)$	C 11	C 36	$1.739(5)$
S2	C 3	$1.666(4)$	C 12	C 36	$1.750(5)$
P	O 1	$1.521(3)$	O 7	C 33	$1.410(9)$
P	C 1	$1.831(4)$	O 7	C 34	$1.400(10)$
P	C 5	$1.892(4)$	C 32	C 33	$1.544(9)$
O2	C 18	$1.151(5)$	C 34	C 35	$1.510(9)$
O3	C 19	$1.139(5)$	N 2	C 23	$1.473(6)$
O4	C 20	$1.137(5)$	N 2	C 28	$1.325(5)$
O5	C 21	$1.148(6)$	N 2	C 29	$1.464(6)$

O6	C22	$1.140(5)$	N3	C28	$1.316(6)$
N1	C2	$1.385(5)$	N3	C31	$1.466(18)$
N1	C3	$1.355(5)$	N3	C31S	$1.509(15)$
N1	C4	$1.470(5)$	C23	C24	$1.519(6)$
C0AA	C6	$1.400(6)$	C24	C25	$1.526(6)$
C0AA	C8	$1.381(6)$	C25	C26	$1.525(6)$
C1	C2	$1.343(5)$	C26	C27	$1.536(6)$
C5	C6	$1.522(5)$	C27	C28	$1.498(6)$
C5	C12	$1.513(5)$	C29	C30	$1.345(11)$
C6	C11	$1.388(6)$	C29	C30S	$1.598(11)$
C8	C9	$1.391(7)$	C30	C31	$1.598(19)$
C9	C10	$1.389(7)$	C30S	C31S	$1.129(18)$

Bond Angles

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	${\text { Angle }{ }^{\circ}}^{\circ}$
C18	W	P	$175.99(12)$	C10	C9	C8	$119.6(4)$
C18	W	C19	$86.80(17)$	C9	C10	C11	$120.0(4)$
C18	W	C20	$90.99(17)$	C6	C11	C10	$121.0(4)$
C18	W	C21	$93.34(17)$	C13	C12	C5	$121.7(4)$
C18	W	C22	$88.95(17)$	C17	C12	C5	$120.2(4)$
C19	W	P	$92.25(11)$	C17	C12	C13	$118.0(4)$
C19	W	C20	$91.29(17)$	C14	C13	C12	$120.5(4)$
C20	W	P	$85.13(12)$	C13	C14	C15	$120.7(5)$
C21	W	P	$87.71(13)$	C16	C15	C14	$119.2(4)$
C21	W	C19	$178.56(17)$	C15	C16	C17	$120.7(5)$
C21	W	C20	$90.14(18)$	C16	C17	C12	$120.8(5)$
C21	W	C22	$87.49(18)$	O2	C18	W	$177.2(4)$
C22	W	P	$94.97(12)$	O3	C19	W	$177.3(4)$
C22	W	C19	$91.08(16)$	O4	C20	W	$179.0(4)$
C22	W	C20	$177.62(17)$	O5	C21	W	$178.4(4)$
C1	S1	C3	$92.82(19)$	O6	C22	W	$176.6(4)$
O1	P	W	$117.55(12)$	C11	C36	C12	$112.7(3)$
O1	P	C1	$103.79(17)$	C34	O7	C33	$132.8(15)$
O1	P	C5	$109.02(17)$	O7	C33	C32	$112.6(12)$
			205				

C1	P	W	111.90(13)	O7	C34	C35	124.0(16)
C1	P	C5	96.51(17)	C28	N2	C23	121.8(4)
C5	P	W	115.46(13)	C28	N2	C29	121.0(4)
C2	N1	C4	122.6(3)	C29	N2	C23	117.1(4)
C3	N1	C2	114.5(3)	C28	N3	C31	127.4(7)
C3	N1	C4	122.9(3)	C28	N3	C31S	117.6(7)
C8	C0AA	C6	121.4(4)	N2	C23	C24	113.7(4)
S1	C1	P	124.9(2)	C23	C24	C25	113.4(4)
C2	C1	S1	109.1(3)	C26	C25	C24	115.3(3)
C2	C1	P	125.5(3)	C25	C26	C27	115.0(4)
C1	C2	N1	114.9(4)	C28	C27	C26	113.9(3)
S2	C3	S1	123.4(2)	N2	C28	C27	120.6(4)
N1	C3	S1	108.7(3)	N3	C28	N2	122.0(4)
N1	C3	S2	127.9(3)	N3	C28	C27	117.4(4)
C6	C5	P	113.5(3)	N2	C29	C30S	111.6(5)
C12	C5	P	110.5(3)	C30	C29	N2	114.3(5)
C12	C5	C6	113.4(3)	C29	C30	C31	124.0(9)
C0AA	C6	C5	118.9(4)	C31S	C30S	C29	117.9(10)
C11	C6	C0AA	118.1(4)	N3	C31	C30	105.2(10)
C11	C6	C5	123.0(4)	C30S	C31S	N3	125.2(12)
C0AA	C8	C9	119.9(4)				

12.13 Crystal data and structure refinement for 16 (IB-90)

Identification code	$\begin{aligned} & \text { GSTR412, IB-90 // } \\ & \text { GXray4031f } \end{aligned}$	μ / mm^{-1}	0.837
Device Type	Bruker X8-KappaApexII	F(000)	464
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{PS}_{4}$	Crystal size/ mm^{3}	$0.18 \times 0.1 \times 0.08$
Moiety formula	C H2 Cl2, C12 H18 N3 P S4	Absorption correction	empirical
Formula weight	448.43	Tmin; Tmax	0.6462; 0.7460
Temperature/K	100	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Crystal system	triclinic	2Θ range for data collection $/{ }^{\circ}$	5.526 to 51.996°
Space group	P-1	Completeness to theta	0.922
a / \AA	9.6379(17)	Index ranges	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11,-12 \leq \mathrm{k} \leq 12, \\ & -13 \leq 1 \leq 11 \end{aligned}$
b/ \AA	9.9399(17)	Reflections collected	6890
c/A	11.0264(18)	Independent reflections	$\begin{aligned} & 3567\left[\mathrm{R}_{\text {int }}=0.0312,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0511\right] \end{aligned}$
α°	108.158(4)	Data/restraints/parameters	3567/0/212
$\beta /{ }^{\circ}$	91.978(4)	Goodness-of-fit on F^{2}	1.085
γ^{10}	100.067(4)	Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0423, \mathrm{wR}_{2}=0.1101$
Volume/ \AA^{3}	983.8(3)	Final R indexes [all data]	$\mathrm{R}_{1}=0.0639, \mathrm{wR}_{2}=0.1207$
Z	2	$\underset{\AA^{-3}}{\text { Largest diff. peak/hole / e }}$	0.40/-0.55
$\rho_{\text {calg }} \mathrm{g} / \mathrm{cm}^{3}$	1.514		

Bond Lengths

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \mathbf{\AA}$
C11	C 13	$1.758(4)$	N 1	C 3	$1.382(4)$
C 12	C 13	$1.764(5)$	N 1	C 4	$1.467(5)$
S1	C 1	$1.743(3)$	N 2	C 6	$1.356(5)$
S1	C 2	$1.743(4)$	N 2	C 7	$1.379(4)$
S2	C 2	$1.672(3)$	N 2	C 8	$1.465(5)$
S3	C 5	$1.752(4)$	N 3	C 9	$1.471(5)$
S3	C 6	$1.736(4)$	N 3	C 11	$1.473(5)$
S4	C 6	$1.667(4)$	C 1	C 3	$1.351(5)$
P	N 3	$1.682(3)$	C 5	C 7	$1.354(5)$
P	C 1	$1.818(4)$	C 9	C 10	$1.505(5)$
P	C 5	$1.824(4)$	C 11	C 12	$1.531(5)$
N1	C 2	$1.346(5)$			

Bond Angles

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Cl1	C13	C12	112.0(2)	C3	C1	S1	109.0(3)
C2	S1	C1	92.72(17)	C3	C1	P	128.9(3)
C6	S3	C5	92.88(17)	S2	C2	S1	124.5(2)
N3	P	C1	100.02(16)	N1	C2	S1	108.2(2)
N3	P	C5	109.34(16)	N1	C2	S2	127.3(3)
C1	P	C5	96.77(16)	C1	C3	N1	114.2(3)
C2	N1	C3	115.9(3)	S3	C5	P	128.4(2)
C2	N1	C4	122.5(3)	C7	C5	S3	108.2(3)
C3	N1	C4	121.6(3)	C7	C5	P	123.4(3)
C6	N2	C7	114.9(3)	S4	C6	S3	124.1(2)
C6	N2	C8	121.9(3)	N2	C6	S3	108.8(2)
C7	N2	C8	123.2(3)	N2	C6	S4	127.1(3)
C9	N3	P	120.4(3)	C5	C7	N2	115.2(3)
C9	N3	C11	113.2(3)	N3	C9	C10	115.1(3)
C11	N3	P	123.3(2)	N3	C11	C12	114.5(3)
S1	C1	P	121.8(2)				

Torsion Angles

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
S1	C1	C3	N1	-0.1(4)	C3	N1	C2	S2	179.1(3)
S3	C5	C7	N2	0.3 (4)	C4	N1	C2	S1	$179.6(3)$
P	N3	C9	C10	-33.6(4)	C4	N1	C2	S2	1.2(5)
P	N3	C11	C12	$106.4(4)$	C4	N1	C3	C1	179.1(3)
P	C1	C3	N1	173.2(3)	C5	S3	C6	S4	$178.6(2)$
P	C5	C7	N2	178.3(2)	C5	S3	C6	N2	1.1(3)
N3	P	C1	S1	-49.5(2)	C5	P	N3	C9	110.1(3)
N3	P	C1	C3	138.0(3)	C5	P	N3	C11	48.9(3)
N3	P	C5	S3	-47.3(3)	C5	P	C1	S1	$160.5(2)$
N3	P	C5	C7	135.2(3)	C5	P	C1	C3	26.9(4)
C1	S1	C2	S2	$179.4(2)$	C6	S3	C5	P	$178.6(3)$
C1	S1	C2	N1	1.3 (3)	C6	S3	C5	C7	-0.8(3)
C1	P	N3	C9	149.0(3)	C6	N2	C7	C5	0.5(5)
C1	P	N3	C11	-52.0(3)	C7	N2	C6	S3	-1.1(4)
C1	P	C5	S3	55.9(3)	C7	N2	C6	S4	178.5(3)
C1	P	C5	C7	121.7(3)	C8	N2	C6	S3	176.1(3)
C2	S1	C1	P	174.6(2)	C8	N2	C6	S4	-4.3(5)
C2	S1	C1	C3	-0.7(3)	C8	N2	C7	C5	$176.6(3)$
C2	N1	C3	C1	1.2(5)	C9	N3	C11	C12	53.9(4)
C3	N1	C2	S1	-1.6(4)	C11	N3	C9	C10	165.5(3)

12.14 Crystal data and structure refinement for 17a (IB-79).

Identification code	GSTR411, IB-79 // GXray4016f	μ / mm^{-1}	0.595
Device Type	Bruker X8-KappaApex II	$F(000)$	488
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$	Crystal size/ mm^{3}	$0.180 \times 0.160 \times 0.040$
Moiety formula	C16 H26 N4 P2 S4	Absorption correction	Multi-Scan
Formula weight	464.59	Tmin; Tmax	0.6627; 0.7460
Temperature/K	100(2)	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Crystal system	triclinic	2Θ range for data collection ${ }^{\circ}$	4.082 to 59.964°
Space group	P-1	Completeness to theta	0.995
$\mathrm{a} / \AA{ }^{\text {a }}$	10.2641(5)	Index ranges	$\begin{aligned} & -14 \leq \mathrm{h} \leq 14,-13 \leq \mathrm{k} \leq 14, \\ & -15 \leq 1 \leq 14 \end{aligned}$
b/ \AA	10.6501(5)	Reflections collected	18814
c/Å	11.1884(5)	Independent reflections	$\begin{aligned} & 6192\left[\mathrm{R}_{\text {int }}=0.0243,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0290\right] \end{aligned}$
$\alpha /{ }^{\circ}$	84.638(2)	Data/restraints/parameters	6192/3/241
$\beta /{ }^{\circ}$	63.293(2)	Goodness-of-fit on F^{2}	1.038
$\gamma /{ }^{\circ}$	84.173(2)	Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0264, \mathrm{wR}_{2}=0.0621$
Volume/ \AA^{3}	1085.35(9)	Final R indexes [all data]	$\mathrm{R}_{1}=0.0336, \mathrm{wR}_{2}=0.0657$
Z	2	Largest diff. peak/hole / e \AA^{-3}	0.41/-0.26

Bond Lengths

Atom	Atom	Length/ \AA	Atom	Atom	Length $/ \AA$
S1	C 3	$1.7371(12)$	N 1	C 4	$1.4651(15)$
S 1	C 2	$1.7499(12)$	N 2	C 7	$1.3637(16)$
S 2	C 3	$1.6659(12)$	N 2	C 5	$1.4066(14)$
S 3	C 7	$1.7356(12)$	N 2	C 8	$1.4609(15)$
S 3	C 6	$1.7455(12)$	N 3	C 9	$1.4681(15)$
S 4	C 7	$1.6706(12)$	N 3	C 11	$1.4696(15)$
P 1	N 3	$1.6743(10)$	N 4	C 15	$1.4667(16)$
P 1	C 6	$1.8158(11)$	N 4	C 13	$1.4699(16)$
P 1	C 1	$1.8344(12)$	C 1	C 2	$1.3564(16)$
P 2	N 4	$1.6729(11)$	C 5	C 6	$1.3542(16)$
P 2	C 2	$1.8137(12)$	C 9	C 10	$1.5247(17)$
P 2	C 5	$1.8326(12)$	C 11	C 12	$1.5211(18)$
N 1	C 3	$1.3631(15)$	C 13	C 14	$1.518(2)$
N 11	$1.4082(14)$	C 15	C 16	$1.5152(19)$	

Bond Angles							
Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle $/^{\circ}$
C3	S1	C2	92.40(6)	C2	C1	P1	128.36(9)
C7	S3	C6	92.54(6)	N1	C1	P1	118.60(8)
N3	P1	C6	101.67(5)	C1	C2	S1	110.54(8)
N3	P1	C1	106.44(5)	C1	C2	P2	133.56(9)
C6	P1	C1	96.60(5)	S1	C2	P2	115.83(7)
N4	P2	C2	102.12(5)	N1	C3	S2	127.55(9)
N4	P2	C5	104.12(5)	N1	C3	S1	108.94(8)
C2	P2	C5	96.86(5)	S2	C3	S1	123.50(7)
C3	N1	C1	115.59(10)	C6	C5	N2	112.55(10)
C3	N1	C4	120.81(9)	C6	C5	P2	128.99(9)
C1	N1	C4	123.60(10)	N2	C5	P2	118.46(8)
C7	N2	C5	115.59(10)	C5	C6	S3	110.53(8)
C7	N2	C8	120.62(10)	C5	C6	P1	132.88(9)
C5	N2	C8	123.76(10)	S3	C6	P1	116.40(6)

C9	N3	C11	$116.60(9)$	N2	C7	S4	$126.76(9)$
C9	N3	P1	$118.82(8)$	N2	C7	S3	$108.75(8)$
C11	N3	P1	$124.58(8)$	S4	C7	S3	$124.48(8)$
C15	N4	C13	$116.76(10)$	N3	C9	C10	$112.83(10)$
C15	N4	P2	$119.50(9)$	N3	C11	C12	$113.25(10)$
C13	N4	P2	$123.75(8)$	N4	C13	C14	$113.70(11)$
C2	C1	N1	$112.52(10)$	N4	C15	C16	$113.45(11)$

Torsion Angles

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle/ ${ }^{\circ}$
C6	P1	N3	C9	132.06(9)	C7	N2	C5	C6	2.30(15)
C1	P1	N3	C9	-127.38(9)	C8	N2	C5	C6	-79.44(11)
C6	P1	N3	C11	-47.27(10)	C7	N2	C5	P2	-177.27(8)
C1	P1	N3	C11	53.29(10)	C8	N2	C5	P2	$0.99(15)$
C2	P2	N4	C15	132.55(10)	N4	P2	C5	C6	-11.10(11)
C5	P2	N4	C15	-27.09(10)	C2	P2	C5	C6	-6.71(12)
C2	P2	N4	C13	-47.84(11)	N4	P2	C5	N2	68.39(10)
C5	P2	N4	C13	52.53(11)	C2	P2	C5	N2	$172.78(9)$
C3	N1	C1	C2	1.49(14)	N2	C5	C6	S3	-1.42(12)
C4	N1	C1	C2	-79.13(10)	P2	C5	C6	S3	178.10(7)
C3	N1	C1	P1	173.88(8)	N2	C5	C6	P1	173.27(9)
C4	N1	C1	P1	-6.74(15)	P2	C5	C6	P1	-7.22(18)
N3	P1	C1	C2	-19.42(11)	C7	S3	C6	C5	0.26(9)
C6	P1	C1	C2	-15.16(12)	C7	S3	C6	P1	-175.39(7)
N3	P1	C1	N1	69.55(10)	N3	P1	C6	C5	125.44(12)
C6	P1	C1	N1	173.82(9)	C1	P1	C6	C5	17.10(13)
N1	C1	C2	S1	-1.03(12)	N3	P1	C6	S3	-60.12(7)
P1	C1	$\mathrm{C} 2$	S1	-172.51(7)	C1	P1	C6	S3	-168.46(6)
N1	C1	C2	P2	175.78(9)	C5	N2	C7	S4	$176.96(9)$
P1	C1	C2	P2	4.30 (18)	C8	N2	C7	S4	$-1.36(16)$
C3	S1	C2	C1	0.32(9)	C5	N2	C7	S3	-2.01(12)
C3	S1	C2	P2	$-177.11(7)$	C8	N2	C7	S3	179.67(9)
N4	P2	C2	C1	114.14(12)	C6	S3	C7	N2	$0.98(9)$
C5	P2	C2	C1	8.05(13)	C6	S3	C7	S4	$-178.02(8)$
N4	P2	C2	S1	-69.18(7)	$\mathrm{C} 11$	N3	C9	C10	78.86(13)
C5	P2	C2	S1	-175.26(7)	P1	N3	C9	C10	-00.53(11)

C1	N1	C3	S2	$179.52(9)$	C9	N3	C11	C12	$85.08(13)$
C4	N1	C3	S2	$0.12(16)$	P1	N3	C11	C12	$-95.58(12)$
C1	N1	C3	S1	$-1.19(12)$	C15	N4	C13	C14	$79.06(15)$
C4	N1	C3	S1	$179.41(8)$	P2	N4	C13	C14	$-00.56(13)$
C2	S1	C3	N1	$0.48(9)$	C13	N4	C15	C16	$73.38(15)$
C2	S1	C3	S2	$179.81(8)$	P2	N4	C15	C16	$-06.99(12)$

12.15 Crystal data and structure refinement for 17b (IB-264).

Identification code	GSTR555, IB-264 // GXray5084f	$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.351
Crystal Habitus	clear colourless plate	μ / mm^{-1}	0.512
Device Type	Bruker X8-KappaApexII	$\mathrm{F}(000)$	276
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$	Crystal size $/ \mathrm{mm}^{3}$	$0.13 \times 0.09 \times 0.04$
Moiety formula	C 20 H 34 N 4 P 2 S 4	Absorption correction	empirical
Formula weight	520.69	Tmin; Tmax Temperature $/ \mathrm{K}$	100

a / \AA	$7.9498(4)$	Index ranges	$-10 \leq \mathrm{h} \leq 10,-11 \leq \mathrm{k} \leq 11$, $-14 \leq 1 \leq 14$
$\mathrm{~b} / \AA$	$9.0267(5)$	Reflections collected	17142
c / \AA	$10.7417(6)$	Independent reflections	$3091\left[\mathrm{R}_{\text {int }}=0.0495\right.$, $\left.\mathrm{R}_{\text {sigma }}=0.0369\right]$
α°	$107.368(2)$	Data/restraints/parameters	$3091 / 0 / 139$
$\beta /{ }^{\circ}$	$100.629(2)$	Goodness-of-fit on F^{2}	1.102
γ°	$112.392(2)$	Final R indexes $[\mathrm{I}>=2 \sigma$ $(\mathrm{I})]$	$\mathrm{R}_{1}=0.0359, \mathrm{wR}_{2}=0.0743$
Volume $/ \AA^{3}$	$640.21(6)$	Final R indexes [all data] Z	$\mathrm{R}_{1}=0.0439, \mathrm{wR}_{2}=0.0794$
Z	1	Largest diff. peak/hole $/ \mathrm{e}$ \AA^{-3}	$0.44 /-0.32$

Bond Lengths

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \mathbf{\AA}$
S1	C1	$1.7454(17)$	N 2	C 7	$1.470(2)$
S1	C 2	$1.7331(17)$	N 2	C 9	$1.466(2)$
S2	C 2	$1.6632(18)$	C 1	C 3	$1.358(2)$
P	N 2	$1.6684(15)$	C 3	P^{1}	$1.8339(17)$
P	C 1	$1.8105(17)$	C 4	C 5	$1.517(2)$
P	C3 ${ }^{1}$	$1.8339(17)$	C 5	C 6	$1.523(2)$
N1	C2	$1.361(2)$	C 7	C 8	$1.514(3)$
N1	C 3	$1.401(2)$	C 9	C 10	$1.518(3)$
N1	C4	$1.468(2)$			

Bond Angles

Atom	Atom	Atom	$\text { Angle }{ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C2	S1	C1	92.75(8)	C3	C1	P	134.35(13)
N2	P	C1	101.88(8)	S2	C2	S1	123.97(10)
N2	P	$\mathrm{C} 3^{1}$	106.71(8)	N1	C2	S1	108.55(12)
C1	P	$\mathrm{C} 3^{1}$	96.79(7)	N1	C2	S2	127.48(13)
C2	N1	C3	115.95 (14)	N1	C3	P^{1}	118.66(12)
C2	N1	C4	120.68(14)	C1	C3	P^{1}	128.34(13)
C3	N1	C4	123.23(14)	C1	C3	N1	112.58(15)
C7	N2	P	118.84(12)	N1	C4	C5	111.66(14)
C9	N2	P	123.60(12)	C4	C5	C6	111.47(16)
C9	N2	C7	117.00(15)	N2	C7	C8	113.19(16)

S1
C1
P
115.46(9)

N2
C9
C10
C3
C1
S1
110.17(12)

12.16 Crystal data and structure refinement for 17c (IB-202).

Identification code	GSTR562, IB-202 // GXray5086_1m0	$\rho_{\text {calg }} \mathrm{g} / \mathrm{cm}^{3}$	1.483
Crystal Habitus	clear colourless plate	μ / mm^{-1}	0.607
Device Type	Bruker X8-KappaApexII	F(000)	976
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$	Crystal size/ mm^{3}	$0.26 \times 0.15 \times 0.1$
Moiety formula	C20 H16 N2 P2 S4	Absorption correction	empirical
Formula weight	474.53	Tmin; Tmax	0.396302; 0.745909
Temperature/K	100	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Crystal system	monoclinic	2Θ range for data collection $/{ }^{\circ}$	3.828 to 55.992°
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$	Completeness to theta	0.996
a / \AA	11.595(3)	Index ranges	$\begin{aligned} & -15 \leq \mathrm{h} \leq 15,0 \leq \mathrm{k} \leq 13,0 \\ & \leq 1 \leq 24 \end{aligned}$
b/Å	9.879(3)	Reflections collected	5089
c/ \AA	18.893(5)	Independent reflections	$\begin{aligned} & 5089\left[\mathrm{R}_{\text {int }}=0.1508,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0935\right] \end{aligned}$
$\alpha /{ }^{\circ}$	90	Data/restraints/parameters	5089/93/315
$\beta /{ }^{\circ}$	100.872(9)	Goodness-of-fit on F^{2}	1.431

$\gamma /{ }^{\circ}$	90	Final R indexes $[I>=2 \sigma$ (I) $]$	$\mathrm{R}_{1}=0.1191, \mathrm{wR}_{2}=0.3681$
Volume $/ \AA^{3}$	$2125.3(10)$	Final R indexes [all data]	$\mathrm{R}_{1}=0.1776, \mathrm{wR}_{2}=0.3998$
Z	4	Largest diff. peak/hole $/ \mathrm{e}$ \AA^{-3}	$1.20 /-1.10$

Bond Lengths

Atom	Atom	Length/ \AA	Atom	Atom	Length/ $\mathbf{\AA}$
S1	C1	$1.754(7)$	C9	C14	1.39
S1	C2	$1.742(8)$	C10	C11	1.39
S2	C2	$1.679(8)$	C11	C12	1.39
S3	C6	$1.733(9)$	C12	C13	1.39
S3	C7	$1.761(7)$	C13	C14	1.39
S4	C6	$1.687(8)$	C9S	C10S	1.39
P1	C1	$1.827(7)$	C9S	C14S	1.39
P1	C5	$1.834(9)$	C10S	C11S	1.39
P1	C9	$1.940(7)$	C11S	C12S	1.39
P1	C9S	$1.763(10)$	C12S	C13S	1.39
P2	C3	$1.820(8)$	C13S	C14S	1.39
P2	C7	$1.829(8)$	C15	C16	$1.396(8)$
P2	C15	$1.861(7)$	C15	C20	$1.412(18)$
N1	C2	$1.377(10)$	C15	C20S	$1.436(17)$
N1	C3	$1.424(9)$	C16	C17	$1.401(7)$
N1	C4	$1.445(10)$	C17	C18	$1.32(2)$
N2	C5	$1.409(10)$	C17	C18S	$1.395(9)$
N2	C6	$1.387(10)$	C18	C19	$1.398(10)$
N2	C8	$1.450(10)$	C19	C20	$1.41(2)$
C1	C3	$1.384(11)$	C18S	C19S	$1.44(2)$
C5	C7	$1.360(12)$	C19S	C20S	$1.397(9)$
C9	C10	1.39			

Bond Angles							
Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}{ }^{\circ}$
C2	S1	C1	$92.7(4)$	C5	C7	S3	$110.6(6)$
C6	S3	C7	$92.6(4)$	C5	C7	P2	$132.3(6)$
C1	P1	C5	$98.7(4)$	C10	C9	P1	$125.4(5)$

C1	P1	C9	100.8(4)	C10	C9	C14	120
C5	P1	C9	97.5(4)	C14	C9	P1	114.5(5)
C9S	P1	C1	103.2(6)	C11	C10	C9	120
C9S	P1	C5	104.6(6)	C10	C11	C12	120
C3	P2	C7	97.9(4)	C13	C12	C11	120
C3	P2	C15	98.6(3)	C14	C13	C12	120
C7	P2	C15	102.0(3)	C13	C14	C9	120
C2	N1	C3	116.0(7)	C10S	C9S	P1	121.6(9)
C2	N1	C4	121.9(7)	C10S	C9S	C14S	120
C3	N1	C4	122.1(7)	C14S	C9S	P1	118.4(9)
C5	N2	C8	123.9(7)	C11S	C10S	C9S	120
C6	N2	C5	115.4(7)	C10S	C11S	C12S	120
C6	N2	C8	120.7(7)	C13S	C12S	C11S	120
S1	C1	P1	118.0(4)	C14S	C13S	C12S	120
C3	C1	S1	111.0(5)	C13S	C14S	C9S	120
C3	C1	P1	131.0(6)	C16	C15	P2	118.1(6)
S2	C2	S1	123.3(5)	C16	C15	C20	115.7(9)
N1	C2	S1	109.0(5)	C16	C15	C20S	116.2(8)
N1	C2	S2	127.8(6)	C20	C15	P2	123.5(8)
N1	C3	P2	118.8(6)	C20S	C15	P2	122.1(7)
C1	C3	P2	130.0(6)	C15	C16	C17	120.5(8)
C1	C3	N1	111.2(7)	C18	C17	C16	120.3(11)
N2	C5	P1	118.3(6)	C18S	C17	C16	121.3(12)
C7	C5	P1	129.1(6)	C17	C18	C19	122.6(16)
C7	C5	N2	112.6(7)	C18	C19	C20	116.2(16)
S4	C6	S3	123.1(5)	C15	C20	C19	121.5(15)
N2	C6	S3	108.8(6)	C17	C18S	C19S	118.1(15)
N2	C6	S4	128.0(6)	C20S	C19S	C18S	119.7(16)
S3	C7	P2	117.0(5)	C19S	C20S	C15	120.8(14)

12.17 Crystal data and structure refinement for 18 (IB-94).

Identification code	GSTR469, IB-94 // GXraycu_4499f	$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.472
Crystal Habitus	clear yellow plank	μ / mm^{-1}	5.427
Device Type	Bruker D8-Venture	F(000)	1040
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$	Crystal size/ mm^{3}	$0.25 \times 0.14 \times 0.12$
Moiety formula	C16 H26 N4 O2 P2 S4	Absorption correction	empirical
Formula weight	496.59	Tmin; Tmax	0.3240; 0.7536
Temperature/K	123	Radiation	$\operatorname{CuK} \alpha(\lambda=1.54178)$
Crystal system	monoclinic	2Θ range for data collection/ ${ }^{\circ}$	8.88 to 135.454°
Space group	C2/c	Completeness to theta	0.998
a / \AA	20.1720(11)	Index ranges	$\begin{aligned} & -24 \leq \mathrm{h} \leq 24,-12 \leq \mathrm{k} \leq 12, \\ & -13 \leq 1 \leq 13 \end{aligned}$
b/A	10.2030(5)	Reflections collected	22312
c/ \AA	11.0256(5)	Independent reflections	$\begin{aligned} & 2024\left[\mathrm{R}_{\text {int }}=0.1138,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0475\right] \end{aligned}$
$\alpha /{ }^{\circ}$	90	Data/restraints/parameters	2024/0/130
$\beta /{ }^{\circ}$	99.162(3)	Goodness-of-fit on F^{2}	1.104
γ°	90	Final R indexes $[\mathrm{I} ~>=2 \sigma$	$\mathrm{R}_{1}=0.0627, \mathrm{wR}_{2}=0.1762$

(I)]

Volume $/ \AA^{3} \quad 2240.3(2)$
Z

4

Final R indexes [all data] $\mathrm{R}_{1}=0.0646, \mathrm{wR}_{2}=0.1795$
$\begin{array}{ll}\text { Largest diff. peak/hole / e } & 0.54 /-0.89 \\ \AA^{-3}\end{array}$

Bond Lengths

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \mathbf{\AA}$
S1	C 1	$1.734(3)$	N 1	C 4	$1.471(4)$
S 1	C 2	$1.737(3)$	N 2	C 5	$1.478(4)$
S 2	C 2	$1.652(3)$	N 2	C 7	$1.479(4)$
P	O	$1.479(2)$	C 1	$\mathrm{C}^{1}{ }^{1}$	$1.358(4)$
P	N 2	$1.633(3)$	C 2	$\mathrm{~N}^{1}{ }^{1}$	$1.359(4)$
P	C 1	$1.795(3)$	C 3	C^{1}	$1.358(4)$
P	C 3	$1.811(3)$	C 5	C 6	$1.492(5)$
N 1	$\mathrm{C} 2^{1}$	$1.360(4)$	C 7	C 8	$1.506(5)$
N 1	C 3	$1.395(4)$			

Atom	Atom	Atom	Bond Angles		Atom	Atom	Angle $/^{\circ}$
			Angle ${ }^{\circ}$	Atom			
C1	S1	C2	92.60(15)	C7	N2	P	120.3(2)
O	P	N2	113.49(14)	S1	C1	P	118.36(18)
O	P	C1	114.41(13)	C3 ${ }^{1}$	C1	S1	110.3(2)
O	P	C3	110.62(14)	C3 ${ }^{1}$	C1	P	131.4(3)
N2	P	C1	106.32(15)	S2	C2	S1	124.1(2)
N2	P	C3	109.19(14)	N1 ${ }^{1}$	C2	S1	108.7(2)
C1	P	C3	102.10(14)	N1 ${ }^{1}$	C2	S2	127.2(2)
C2 ${ }^{1}$	N1	C3	115.4(3)	N1	C3	P	120.4(2)
C2 ${ }^{1}$	N1	C4	120.3(3)	C1 ${ }^{1}$	C3	P	125.6(2)
C3	N1	C4	124.3(3)	C1 ${ }^{1}$	C3	N1	113.0(3)
C5	N2	P	120.2(2)	N2	C5	C6	113.8(3)
C5	N2	C7	118.1(3)	N2	C7	C8	112.9(3)

Torsion Angles

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	Angle $/^{\circ}$	\mathbf{A}	B	C	D	Angle $/{ }^{\circ}$
P	N 2	C 5	C 6	$123.3(3)$	C 1	P	N 2	C 7	$-119.0(3)$

P	N2	C7	C8	91.1(3)	C1	P	C3	N1	177.8(2)
O	P	N2	C5	173.9(2)	C1	P	C3	C1 ${ }^{1}$	9.9(3)
O	P	N2	C7	7.6(3)	C2	S1	C1	P	178.24(18)
O	P	C1	S1	-70.1(2)	C2	S1	C1	$\mathrm{C} 3^{1}$	-0.9(2)
O	P	C1	$\mathrm{C} 3^{1}$	108.8(3)	$\mathrm{C} 2^{1}$	N1	C3	P	-169.5(2)
O	P	C3	N1	55.6(3)	$\mathrm{C} 2^{1}$	N1	C3	Cl^{1}	-0.2(4)
O	P	C3	C1 ${ }^{1}$	112.3(3)	C3	P	N2	C5	-62.2(3)
N2	P	C1	S1	56.0(2)	C3	P	N2	C7	131.5(3)
N2	P	C1	$\mathrm{C} 3^{1}$	125.1(3)	C3	P	C1	S1	170.37(16)
N2	P	C3	N1	-70.0(3)	C3	P	C1	$\mathrm{C} 3^{1}$	-10.7(4)
N2	P	C3	$\mathrm{C} 1^{1}$	122.1(3)	C4	N1	C3	P	11.4(4)
C1	S1	C2	S2	179.1(2)	C4	N1	C3	$\mathrm{C} 1^{1}$	-179.2(3)
C1	S1	C2	$\mathrm{N} 1^{1}$	1.0(2)	C5	N2	C7	C8	-75.5(4)
C1	P	N2	C5	47.3(3)	C7	N2	C5	C6	-70.1(4)

12.18 Crystal data and structure refinement for 19 (IB-152).

Identification code	GSTR524, IB-152 // GXray4890f	μ / mm^{-1}	0.724

Crystal Habitus	clear colourless block	F(000)	1104
Device Type	Bruker X8-KappaApexII	Crystal size/ mm^{3}	$0.09 \times 0.08 \times 0.05$
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{6}$	Absorption correction	empirical
Moiety formula	C16 H26 N4 P2 S6	Tmin; Tmax	0.5973; 0.7459
Formula weight	528.71	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Temperature/K	100	2Θ range for data collection $/{ }^{\circ}$	5.95 to 55.998°
Crystal system	orthorhombic	Completeness to theta	0.995
Space group	Pca ${ }_{1}$	Index ranges	$\begin{aligned} & -10 \leq \mathrm{h} \leq 8,-20 \leq \mathrm{k} \leq 18,- \\ & 26 \leq 1 \leq 24 \end{aligned}$
a / \AA	7.5980(7)	Reflections collected	9063
b/Å	15.8071(13)	Independent reflections	$\begin{aligned} & 5034\left[\mathrm{R}_{\text {int }}=0.0490,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0793\right] \end{aligned}$
c/ \AA	19.728(3)	Data/restraints/parameters	5034/37/260
$\alpha /{ }^{\circ}$	90	Goodness-of-fit on F^{2}	1.079
$\beta /{ }^{\circ}$	90	Final R indexes $[I>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0550, \mathrm{wR}_{2}=0.1087$
γ^{\prime}	90	Final R indexes [all data]	$\mathrm{R}_{1}=0.0653, \mathrm{wR}_{2}=0.1142$
Volume/ \AA^{3}	2369.3(4)	$\underset{\AA^{-3}}{\text { Largest diff. peak/hole / e }}$	0.68/-0.48
Z	4	Flack parameter	0.12(17)
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.482		

Bond Lengths

Atom	Atom	Length $/ \AA$	Atom	Atom	Length/ \AA
S1	C 1	$1.740(6)$	N 1	C 3	$1.378(8)$
S1	C 3	$1.745(8)$	N 1	C 4	$1.452(9)$
S2	C 3	$1.651(7)$	N 2	C 5	$1.467(9)$
S3	P 1	$1.935(2)$	N 2	C 7	$1.479(8)$
S4	C 9	$1.750(6)$	N 3	C 10	$1.395(8)$
S4	C 11	$1.745(8)$	N 3	C 11	$1.362(8)$
S5	C 11	$1.656(7)$	N 3	C 12	$1.462(9)$
S6	P 2	$1.938(2)$	N 4	C 13	$1.516(9)$
P1	N 2	$1.635(6)$	N 4	C 15	$1.478(9)$
P1	C 1	$1.800(7)$	C 1	C 2	$1.345(10)$
P1	C 10	$1.806(7)$	C 5	C 6	$1.507(9)$
P2	N 4	$1.636(5)$	C 7	C 8	$1.491(11)$
P2	C 2	$1.820(6)$	C 9	C 10	$1.361(9)$

P 2	C 9	$1.793(7)$	C 13	C 14	$1.495(10)$
N 1	C 2	$1.390(8)$	C 15	C 16	$1.511(9)$

Bond Angles

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C1	S1	C3	92.1(3)	C15	N4	P2	123.2(5)
C11	S4	C9	92.4(3)	C15	N4	C13	117.0(5)
N2	P1	S3	114.6(2)	S1	C1	P1	117.4(4)
N2	P1	C1	106.9(3)	C2	C1	S1	110.9(5)
N2	P1	C10	106.1(3)	C2	C1	P1	131.6(5)
C1	P1	S3	112.8(2)	N1	C2	P2	120.7(5)
C1	P1	C10	101.7(3)	C1	C2	P2	125.8(5)
C10	P1	S3	113.7(2)	C1	C2	N1	113.5(6)
N4	P2	S6	114.6(2)	S2	C3	S1	124.1(4)
N4	P2	C2	107.5(3)	N1	C3	S1	108.5(5)
N4	P2	C9	107.3(3)	N1	C3	S2	127.4(6)
C2	P2	S6	113.1(2)	N2	C5	C6	113.3(6)
C9	P2	S6	112.6(2)	N2	C7	C8	113.1(6)
C9	P2	C2	100.7(3)	S4	C9	P2	117.3(4)
C2	N1	C4	125.3(5)	C10	C9	S4	109.9(5)
C3	N1	C2	115.0(6)	C10	C9	P2	132.6(5)
C3	N1	C4	119.7(5)	N3	C10	P1	121.8(5)
C5	N2	P1	122.6(4)	C9	C10	P1	124.7(5)
C5	N2	C7	117.0(6)	C9	C10	N3	113.3(6)
C7	N2	P1	119.5(5)	S5	C11	S4	124.6(4)
C10	N3	C12	124.9(6)	N3	C11	S4	108.8(5)
C11	N3	C10	115.6(6)	N3	C11	S5	126.7(6)
C11	N3	C12	119.5(6)	C14	C13	N4	111.7(6)
C13	N4	P2	119.2(5)	N4	C15	C16	114.2(6)

Torsion Angles

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
S1	C1	C2	P2	$177.3(3)$	C2	P2	N4	C13	41.0(6)
S1	C1	C2	N1	0.0(7)	C2	P2	N4	C15	$130.0(5)$

S3	P1	N2	C5	-8.1(6)	C2	P2	C9	S4	$170.7(4)$
S3	P1	N2	C7	$177.3(4)$	C2	P2	C9	C10	14.4(7)
S3	P1	C1	S1	67.2(4)	C2	N1	C3	S1	2.1(6)
S3	P1	C1	C2	$108.2(6)$	C2	N1	C3	S2	179.1(5)
S3	P1	C10	N3	-65.0(5)	C3	S1	C1	P1	$175.2(4)$
S3	P1	C10	C9	110.0(5)	C3	S1	C1	C2	1.1(5)
S4	C9	C10	P1	$177.6(3)$	C3	N1	C2	P2	176.0(4)
S4	C9	C10	N3	-2.2(7)	C3	N1	C2	C1	-1.4(7)
S6	P2	N4	C13	167.5(4)	C4	N1	C2	P2	-3.1(8)
S6	P2	N4	C15	-3.4(6)	C4	N1	C2	C1	179.5(5)
S6	P2	C2	N1	-68.6(5)	C4	N1	C3	S1	$178.7(4)$
S6	P2	C2	C1	108.5(5)	C4	N1	C3	S2	0.1(8)
S6	P2	C9	S4	68.6(4)	C5	N2	C7	C8	67.9(8)
S6	P2	C9	C10	106.3(6)	C7	N2	C5	C6	75.7(8)
P1	N2	C5	C6	-93.8(6)	C9	S4	C11	S5	179.8(4)
P1	N2	C7	C8	$122.3(6)$	C9	S4	C11	N3	0.2(5)
P1	C1	C2	P2	-1.7(9)	C9	P2	N4	C13	-66.7(6)
P1	C1	C2	N1	175.6(5)	C9	P2	N4	C15	122.4(5)
P2	N4	C13	C14	119.5(6)	C9	P2	C2	N1	171.0(5)
P2	N4	C15	C16	-82.2(7)	C9	P2	C2	C1	-11.9(6)
P2	C9	C10	P1	-2.4(9)	C10	P1	N2	C5	134.4(5)
P2	C9	C10	N3	173.0(5)	C10	P1	N2	C7	56.4(6)
N2	P1	C1	S1	-59.6(4)	C10	P1	C1	S1	$170.7(3)$
N2	P1	C1	C2	125.0(6)	C10	P1	C1	C2	14.0(7)
N2	P1	C10	N3	61.9(5)	C10	N3	C11	S4	-1.5(7)
N2	P1	C10	C9	$123.2(6)$	C10	N3	C11	S5	178.9(5)
N4	P2	C2	N1	58.8(6)	C11	S4	C9	P2	174.8(4)
N4	P2	C2	C1	124.1(6)	C11	S4	C9	C10	$1.2(5)$
N4	P2	C9	S4	-58.4(4)	C11	N3	C10	P1	178.0(5)

N4	P2	C9	C10	$126.7(6)$	C11	N3	C10	C9	$2.5(8)$
C1	S1	C3	S2	$179.4(4)$	C12	N3	C10	P1	$-3.4(9)$
C1	S1	C3	N1	$-1.8(4)$	C12	N3	C10	C9	-
C1	P1	N2	C5	$117.6(5)$	C12	N3	C11	S4	$179.8(5)$
C1	P1	N2	C7	$-51.6(6)$	C12	N3	C11	S5	$0.2(9)$
C1	P1	C10	N3	$173.5(5)$	C13	N4	C15	C16	$106.6(7)$
C1	P1	C10	C9	$-11.6(6)$	C15	N4	C13	C14	$-69.0(8)$

12.19 Crystal data and structure refinement for 20 (IB-154).

Identification code	GSTR482, IB-154 // GXraymo_4560f	$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.525
Crystal Habitus	clear yellow block	μ / mm^{-1}	2.767
Device Type	Bruker D8-Venture	$\mathrm{F}(000)$	362
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Se}_{2}$	Crystal size $/ \mathrm{mm}^{3}$	$0.22 \times 0.1 \times 0.08$
Moiety formula	$\mathrm{C} 16 \mathrm{H} 26 ~ \mathrm{~N} 4 ~ \mathrm{P} 2 \mathrm{~S} 4 \mathrm{Se} 2$,	Absorption correction	empirical
Formula weight	C 7 H 8	Tmin; Tmax	$0.5154 ; 0.7459$
Temperature/K	714.64	Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
Crystal system	123	2Θ range for data	5.28 to 55.99°

		collection/ ${ }^{\circ}$	
Space group	P-1	Completeness to theta	0.999
a / \AA	8.0145(5)	Index ranges	$\begin{aligned} & -10 \leq h \leq 10,-13 \leq k \leq 13, \\ & -14 \leq 1 \leq 14 \end{aligned}$
b/ \AA	10.0354(7)	Reflections collected	29818
c/ \AA	10.7141(7)	Independent reflections	$\begin{aligned} & 3764\left[\mathrm{R}_{\text {int }}=0.0545,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0283\right] \end{aligned}$
$\alpha /{ }^{\circ}$	74.652(3)	Data/restraints/parameters	3764/93/170
$\beta /{ }^{\circ}$	75.681(3)	Goodness-of-fit on F^{2}	1.046
$\gamma^{/ 0}$	72.251(2)	Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0321, \mathrm{wR}_{2}=0.0750$
Volume/ $/{ }^{3}$	778.30(9)	Final R indexes [all data]	$\mathrm{R}_{1}=0.0412, \mathrm{wR}_{2}=0.0801$
Z	1	$\underset{\AA^{-3}}{\text { Largest diff. peak/hole / e }}$	1.00/-0.58

Bond Lengths

Atom	Atom	Length $/ \mathbf{\AA}$	Atom	Atom	Length $/ \mathbf{\AA}$
Se	P	$2.0850(6)$	C 3	$\mathrm{~N}^{1}{ }^{1}$	$1.399(3)$
S 1	C 2	$1.733(2)$	C 3	$\mathrm{C}^{1}{ }^{1}$	$1.356(3)$
S 1	C 1	$1.739(2)$	C 1	$\mathrm{C}^{1}{ }^{1}$	$1.356(3)$
S 2	C 2	$1.669(2)$	C 5	C 6	$1.514(4)$
P	N 2	$1.638(2)$	C 7	C 8	$1.518(4)$
P	C 3	$1.813(2)$	C 9	C 10	1.39
P	C 1	$1.795(2)$	C 9	C 14	1.39
N 1	$\mathrm{C} 3{ }^{1}$	$1.399(3)$	C 9	C 15	$1.4902(10)$
N 1	C 2	$1.364(3)$	C 10	C 11	1.39
N 1	C 4	$1.464(3)$	C 11	C 12	1.39
N 2	C 5	$1.483(3)$	C 12	C 13	1.39
N 2	C 7	$1.469(3)$	C 13	C 14	1.39

Bond Angles

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	S1	C1	92.04(11)	S2	C2	S1	123.29(15)
N2	P	Se	117.25(8)	N1	C2	S1	109.57(17)
N2	P	C3	105.83(11)	N1	C2	S2	127.14(18)
N2	P	C1	106.78(11)	S1	C1	P	116.83(13)
C3	P	Se	113.37(8)	C3 ${ }^{1}$	C1	S1	110.71(17)

C 1	P	Se	$110.87(8)$	C^{1}	C 1	P	$132.40(18)$
C 1	P	C 3	$101.34(10)$	N 2	C 5	C 6	$114.0(2)$
C^{1}	${ }^{1}$	N 1	C 4	$124.5(2)$	N 2	C 7	C 8
C 2	N 1	$\mathrm{C} 3^{1}$	$114.73(19)$	C 10	C 9	C 14	$112.6(2)$
C 2	N 1	C 4	$120.8(2)$	C 10	C 9	C 15	$113.8(3)$
C 5	N 2	P	$118.91(17)$	C 14	C 9	C 15	$126.2(3)$
C 7	N 2	P	$123.82(18)$	C 9	C 10	C 11	120
C 7	N 2	C 5	$117.1(2)$	C 12	C 11	C 10	120
$\mathrm{~N} 1^{1}$	C 3	P	$120.84(17)$	C 11	C 12	C 13	120
$\mathrm{C}^{1}{ }^{1}$	C 3	P	$126.22(17)$	C 14	C 13	C 12	120
$\mathrm{C}^{1}{ }^{1}$	C 3	$\mathrm{~N} 1^{1}$	$112.9(2)$	C 13	C 14	C 9	120

Torsion Angles

A	B	C	D	Angle $/{ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
Se	P	N2	C5	-76.25(17)	C2	S1	C1	$\mathrm{C} 3^{1}$	-0.8(2)
Se	P	N2	C7	-0.9(2)	C1	S1	C2	S2	-78.61(18)
Se	P	C3	$\mathrm{N} 1^{1}$	-63.27(19)	C1	S1	C2	N1	1.18(19)
Se	P	C3	$\mathrm{C} 1^{1}$	116.9(2)	C1	P	N2	C5	-51.2(2)
Se	P	C1	S1	58.51(15)	C1	P	N2	C7	124.1(2)
Se	P	C1	$\mathrm{C} 3^{1}$	-118.5(2)	C1	P	C3	$\mathrm{N} 1^{1}$	177.88(18)
P	N2	C5	C6	-102.5(3)	C1	P	C3	$\mathrm{C} 1^{1}$	-2.0(3)
P	N2	C7	C8	-97.9(3)	C4	N1	C2	S1	178.77(18)
N2	P	C3	$\mathrm{N} 1^{1}$	66.6(2)	C4	N1	C2	S2	$-1.5(3)$
N2	P	C3	$\mathrm{C} 1^{1}$	-113.3(2)	C5	N2	C7	C8	77.5(3)
N2	P	C1	S1	-70.31(16)	C7	N2	C5	C6	81.9(3)
N2	P	C1	$\mathrm{C} 3^{1}$	112.7(3)	C9	C10	C11	C12	0
C3	P	N2	C5	56.2(2)	C10	C9	C14	C13	0
C3	P	N2	C7	-128.5(2)	$\mathrm{C} 10$	C11	C12	$\mathrm{C} 13$	0
C3	P	C1	S1	179.13(13)	C11	C12	C13	C14	0
C3	P	C1	$\mathrm{C} 3^{1}$	$2.2(3)$	C12	C13	C14	C9	0
$\mathrm{C} 3^{1}$	N1	C2	S1	-1.3(3)	C14	C9	C10	C11	0
$\mathrm{C} 3^{1}$	N1	C2	S2	178.43(19)	C15	C9	C10	C11	$179.6(6)$
C2	S1	C1	P	-78.36(15)	C15	C9	C14	C13	-179.5(6)

12.20 Crystal data and structure refinement for 24b (IB-266 (P-CI)).

1

> Largest diff. peak/hole / e $\quad 0.57 /-0.61$ \AA^{-3}

Bond Lengths

Atom		Atom	Length $/ \AA$	Atom	

Bond Angles							
Atom	Atom	Atom	$\text { Angle }{ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C3	S1	C2	91.63(19)	C2	C1	N1	112.8(4)
C1	P1	Cl 1	97.47(12)	S1	C2	Pl^{1}	116.1(2)
$\mathrm{C} 2^{1}$	P1	Cl1	99.08(13)	C1	C2	S1	111.0(3)
$\mathrm{C} 2^{1}$	P1	C1	98.32(17)	C1	C2	$\mathrm{P} 1^{1}$	132.8(3)
C1	N1	C4	123.7(3)	S2	C3	S1	123.2(3)
C3	N1	C1	114.4(3)	N1	C3	S1	110.1(3)
C3	N1	C4	121.9(3)	N1	C3	S2	126.7(3)
N1	C1	P1	118.3(3)	N1	C4	C5	111.7(3)
C2	C1	P1	128.9(3)	C6	C5	C4	111.2(3)

12.21 Crystal data and structure refinement for 25 (IB-266).

Identification code	GSTR595, IB-266 // GXray5379	$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$. 602
Crystal Habitus	clear yellow plank	μ / mm^{-1}	. 97
Device Type	STOE IPDS-2T	F(000)	682
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{P}_{3} \mathrm{~S}_{6}$	Crystal size/ $/ \mathrm{mm}^{3}$	$0.3 \times 0.16 \times 0.15$
Moiety formula	C12 H13 C12 N2 P2 S4, C6 H7 Cl N P S2	Absorption correction	integration
Formula weight	669.99	Tmin; Tmax	.5612; 0.8133
Temperature/K	123	Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
Crystal system	triclinic	2Θ range for data collection $/{ }^{\circ}$	6.2 to 53.996°
Space group	P-1	Completeness to theta	. 977
a / \AA	6.5339(6)	Index ranges	$\begin{aligned} & -8 \leq h \leq 7,-8 \leq k \leq 8,-41 \leq \\ & \leq 41 \end{aligned}$
b/A	6.6068(6)	Reflections collected	565
c/ \AA	32.349(3)	Independent reflections	$\begin{aligned} & 5625\left[R_{\text {int }}=0.0807,\right. \\ & \left.R_{\text {sigma }}=0.0580\right] \end{aligned}$
$\alpha /{ }^{\circ}$	84.230(8)	Data/restraints/parameters	5625/222/302
$\beta /{ }^{\circ}$	88.655(8)	Goodness-of-fit on F^{2}	2.699
γ^{10}	88.734(8)	Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0978, \mathrm{wR}_{2}=0.4728$
Volume/ A 3	1388.7(2)	Final R indexes [all data]	$\mathrm{R}_{1}=0.1847, \mathrm{wR}_{2}=0.4942$
Z	2	Largest diff. peak/hole / e \AA^{-3}	0.78/-0.68

Bond Lengths

| Atom | Atom | Length $/ \AA \quad$ Atom | Atom | Length $/ \AA$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

C11	P1	$2.102(6)$	$\mathrm{C} 4$	C5	$1.56(2)$
C12	P2	$2.076(5)$	C5	C6	1.36(3)
S1	C2	1.725(18)	C7	C8	1.36(2)
S1	C3	1.689(18)	C10	C11	1.49(2)
S2	C3	1.678(19)	C11	C12	1.56(3)
S3	C7	1.734(17)	Cl1'	P1'	$2.120(5)$
S3	C9	1.714(17)	S1'	C1'	1.762 (18)
S4	C9	1.683(18)	S1'	C2'	1.794(18)
P1	C1	1.824(18)	S2'	C2'	1.64(2)
P1	C7	1.797(18)	P1'	C1'	1.767(18)
P2	C2	1.841(18)	P1'	C6'	1.820(16)
P2	C8	1.839(17)	N1'	C2'	1.37(2)
N1	C1	1.39(2)	N1'	C3'	1.43(2)
N1	C3	1.39(2)	N1'	$\mathrm{C}^{6}{ }^{1}$	1.43 (2)
N1	C4	1.51(2)	C1'	$C 6^{11}$	1.34(2)
N2	C8	1.37(2)	C3'	C4'	1.53(3)
N2	C9	1.33(2)	C4'	C5'	1.65(3)
N2	C10	1.47(2)	C6'	$\mathrm{N} 1^{11}$	1.43(2)
C1	C2	1.36(2)	C6'	Cl^{11}	1.34(2)

Bond Angles

Atom	Atom	Atom	$\text { Angle } /^{\circ}$	Atom	Atom	Atom	Angle $/{ }^{\circ}$
C3	S1	C2	$91.9(9)$	C8	C7	P1	$133.8(13)$
C9	S3	C7	92.4(8)	N2	C8	P2	$118.9(12)$
C1	P1	$\mathrm{Cl1}$	97.2(6)	C7	C8	P2	127.7(14)
C7	P1	Cl1	97.6(5)	C7	C8	N2	113.5(15)
C7	P1	C1	$98.9(8)$	S4	C9	S3	$123.0(10)$
C2	P2	C 2	99.3(5)	N2	C9	S3	109.6(13)
C8	P2	$\mathrm{Cl} 2$	97.3(5)	N2	C9	S4	127.2(13)
C8	P2	$\mathrm{C} 2$	98.7(8)	N2	$\mathrm{C} 10$	C11	114.4(13)
C1	N1	C3	114.6(15)	C10	C11	C12	113.2(15)
C1	N1	C4	121.2(15)	C1'	S1'	C2'	92.4(8)
C3	N1	C4	124.1(16)	C1'	P1'	Cl1'	100.7(5)
C8	N2	C10	123.6(14)	$\mathrm{C} 1^{\prime}$	P1'	C6'	97.2(7)
C9	N2	C8	115.7(14)	C6'	P1 ${ }^{\prime}$	C11'	$97.3(5)$
C9	N2	C10	120.7(15)	C2'	N1'	C3'	119.1(16)

N1	C1	P1	120.1(13)	C2'	N1'	C6 ${ }^{1}$	113.8(14)
C2	C1	P1	128.8(15)	C6 ${ }^{1}$	N1'	C3'	126.9(15)
C2	C1	N1	111.1(16)	S1'	C1'	P1'	116.4(9)
S1	C2	P2	115.8(9)	C6 ${ }^{1{ }^{1}}$	C1'	S1'	109.4(13)
C1	C2	S1	112.2(14)	$\mathrm{C} 6^{11}$	C1'	P1'	134.1(14)
C1	C2	P2	132.0(14)	S2'	C2'	S1'	121.1(10)
S2	C3	S1	125.6(11)	N1'	C2'	S1'	108.4(14)
N1	C3	S1	110.2(14)	N1'	C2'	S2'	130.3(14)
N1	C3	S2	124.3(14)	N1'	C3'	C4'	111.5(14)
N1	C4	C5	109.8(13)	C3'	C4'	C5'	104.5(14)
C6	C5	C4	114.8(16)	$\mathrm{N} 1^{11}$	C6'	P1'	115.3(11)
S3	C7	P1	116.9(9)	C1 ${ }^{11}$	C6'	P1'	128.6(13)
C8	C7	S3	108.7(13)	$\mathrm{C} 1^{11}$	C6'	$\mathrm{N} 1^{11}$	116.0(15)

12.22 Crystal data and structure refinement for 26 (IB-282).

	GSTR581, IB-282 //	$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.495
Identification code	GXray5246f		
clear yellow plate	μ / mm^{-1}	0.579	
Crystal Habitus	Bruker X8-KappaApexII	$\mathrm{F}(000)$	536
Empice Type	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}$	Crystal size $/ \mathrm{mm}^{3}$	$0.24 \times 0.14 \times 0.08$
Moiety formula formula	C 18 H 20 N 2 O 4 P 2 S 4	Absorption correction	empirical
Formula weight	518.54	Tmin; Tmax	$0.6499 ; 0.7460$

Temperature/K	100	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Crystal system	triclinic	2Θ range for data collection/ ${ }^{\circ}$	4.168 to 56°
Space group	P-1	Completeness to theta	0.996
a/ \AA	10.1125(6)	Index ranges	$\begin{aligned} & -13 \leq h \leq 13,-13 \leq k \leq 13, \\ & -15 \leq 1 \leq 15 \end{aligned}$
b/ \AA	10.1260(6)	Reflections collected	29215
c/Å	11.9070(7)	Independent reflections	$\begin{aligned} & 5556\left[\mathrm{R}_{\text {int }}=0.0723,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0597\right] \end{aligned}$
$\alpha /{ }^{\circ}$	77.826(3)	Data/restraints/parameters	5556/0/275
$\beta /{ }^{\circ}$	75.301(3)	Goodness-of-fit on F^{2}	1.061
γ°	89.011(3)	Final R indexes $[I>=2 \sigma$ (I)]	$\begin{aligned} & \mathrm{R}_{1}=0.0515, \mathrm{wR}_{2}= \\ & 0.1003 \end{aligned}$
Volume/ \AA^{3}	1151.99(12)	Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0710, \mathrm{wR}_{2}= \\ & 0.1105 \end{aligned}$
Z	2	$\underset{\AA^{-3}}{\text { Largest diff. peak/hole / e }}$	0.54/-0.44

Bond Lengths

Atom	Atom	Length/ \AA	Atom	Atom	Length $/ \AA \AA$
S1	$\mathrm{C} 2$	$1.741(3)$	O4	C17	$1.209(3)$
S1	C3	1.737(3)	N1	C1	$1.381(4)$
S2	C2	$1.663(3)$	N1	C2	1.369(4)
S3	C7	1.732(3)	N1	C4	1.479(4)
S3	C8	1.735(3)	N2	C8	1.373(4)
S4	C8	1.670(3)	N2	C9	$1.381(4)$
P1	C1	1.846(3)	N2	C10	1.474(4)
P1	C7	1.818(3)	C1	C3	$1.348(4)$
P1	C13	1.870(3)	C4	C5	1.529(4)
P2	C3	1.826(3)	C5	C6	1.523(4)
P2	C9	1.845(3)	C7	C9	$1.350(4)$
P2	C14	1.871(3)	C10	C11	1.520(4)
O1	C15	1.330(4)	C11	C12	1.526(4)
O1	C16	1.454(4)	C13	C14	$1.336(4)$
O2	C15	1.203(4)	C13	C15	1.495(4)
O3	C17	1.331(4)	C14	C17	1.493(4)
O3	C18	1.451(3)			

Bond Angles

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C3	S1	C2	91.97(14)	N1	C4	C5	110.9(2)
C7	S3	C8	91.83(14)	C6	C5	C4	114.0(3)
C1	P1	C13	93.48(12)	S3	C7	P1	125.92(17)
C7	P1	C1	95.63(13)	C9	C7	S3	110.8(2)
C7	P1	C13	94.77(13)	C9	C7	P1	123.2(2)
C3	P2	C9	93.88(13)	S4	C8	S3	123.84(18)
C3	P2	C14	94.79(13)	N2	C8	S3	109.2(2)
C9	P2	C14	94.61(13)	N2	C8	S4	126.9(2)
C15	O1	C16	115.2(2)	N2	C9	P2	125.3(2)
C17	O3	C18	115.2(2)	C7	C9	P2	121.1(2)
C1	N1	C4	124.4(2)	C7	C9	N2	113.5(3)
C2	N1	C1	114.3(2)	N2	C10	C11	111.4(2)
C2	N1	C4	121.3(2)	C10	C11	C12	110.2(3)
C8	N2	C9	114.5(3)	C14	C13	P1	121.1(2)
C8	N2	C10	122.3(3)	C14	C13	C15	125.6(3)
C9	N2	C10	122.9(2)	C15	C13	P1	113.1(2)
N1	C1	P1	124.3(2)	C13	C14	P2	122.2(2)
C3	C1	P1	121.2(2)	C13	C14	C17	123.1(3)
C3	C1	N1	114.4(3)	C17	C14	P2	114.5(2)
S2	C2	S1	123.47(18)	O1	C15	C13	112.5(2)
N1	C2	S1	109.2(2)	O2	C15	O1	125.6(3)
N1	C2	S2	127.3(2)	O2	C15	C13	121.8(3)
S1	C3	P2	127.01(17)	O3	C17	C14	112.3(2)
C1	C3	S1	110.1(2)	O4	C17	O3	125.0(3)
C1	C3	P2	122.9(2)	O4	C17	C14	122.7(3)

12.23 Crystal data and structure refinement for 27 (IB-305).

Identification code	GSTR630, IB-305 // GXraycu_5685g	μ / mm^{-1}	5.167
Crystal Habitus	clear colourless plate	$F(000)$	2272
Device Type	Bruker D8-Venture	Crystal size/ mm^{3}	$0.16 \times 0.07 \times 0.02$
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$	Absorption correction	empirical
Moiety formula	C22 H21 N3 O2 P2 S4	Tmin; Tmax	0.3233; 0.7536
Formula weight	549.6	Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
Temperature/K	150	2Θ range for data collection/ ${ }^{\circ}$	6.48 to 135.442°
Crystal system	orthorhombic	Completeness to theta	1
Space group	Pna2 ${ }_{1}$	Index ranges	$\begin{aligned} & -18 \leq \mathrm{h} \leq 18,-13 \leq \mathrm{k} \leq 13, \\ & -32 \leq 1 \leq 32 \end{aligned}$
a / \AA ¢	15.3334(4)	Reflections collected	76930
b/Å	11.3840(3)	Independent reflections	$\begin{aligned} & 8617\left[\mathrm{R}_{\text {int }}=0.3257,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.1444\right] \end{aligned}$
c / \AA	27.2807(6)	Data/restraints/parameters	8617/121/599
α°	90	Goodness-of-fit on F^{2}	1.022
$\beta /{ }^{\circ}$	90	Final R indexes $[I>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0954, \mathrm{wR}_{2}=0.2203$
$\gamma /{ }^{\circ}$	90	Final R indexes [all data]	$\mathrm{R}_{1}=0.1461, \mathrm{wR}_{2}=0.2659$

Volume $/ \AA^{3}$	$4762.0(2)$	Largest diff. peak/hole $/ \mathrm{e}$ \AA^{-3}	$0.64 /-1.15$
Z	8	Flack parameter	$0.45(5)$
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.533		

Bond Lengths

Atom	Atom	Length/ \mathbf{A}	Atom	Atom	Length $/ \mathbf{A}$
S1	C1	$1.708(19)$	$\mathrm{S} 1^{\prime}$	Cl^{\prime}	$1.739(19)$
S1	C3	1.743(17)	S1'	C3'	1.744(18)
S2	C3	1.655(18)	S2'	C3'	1.667(18)
S3	C8	$1.723(16)$	S3'	$\mathrm{C} 8^{\prime}$	$1.734(16)$
S3	C9	$1.741(17)$	S3'	C9'	1.722(18)
S4	C9	1.657(16)	S4'	C9'	$1.669(18)$
P1	C1	1.82(2)	P1'	$\mathrm{C} 1^{\prime}$	1.824(19)
P1	C7	$1.839(18)$	P1'	C7'	1.848(18)
P1	C13	1.892(18)	P1 ${ }^{\prime}$	C13'	1.877(19)
P2	$\mathrm{C} 2$	$1.833(19)$	P2'	C2'	1.807(19)
P2	C8	1.819(16)	P2'	C8'	1.813(16)
P2	C14	1.880(18)	P2'	C14'	1.896(18)
O1	C15	1.21(2)	O1'	C15'	1.20 (2)
$\mathrm{O} 2$	C16	$1.22(2)$	O2'	C16'	$1.20(2)$
N1	C2	1.38(2)	N1'	C2'	$1.40(2)$
N1	C3	$1.37(3)$	N1'	C3'	$1.38(2)$
N1	C4	$1.48(2)$	N1'	C4'	$1.47(2)$
N2	C7	$1.40(2)$	N2'	C7'	$1.42(2)$
N2	C9	1.37(2)	N2'	C9'	$1.38(2)$
N2	C10	$1.50(2)$	N2'	$\mathrm{C} 10^{\prime}$	$1.46(2)$
N3	C15	$1.40(2)$	N3'	C15'	$1.39(2)$
N3	C16	1.37(2)	N3'	C16'	$1.41(2)$
N3	C17	$1.43(2)$	N3'	C17 ${ }^{\prime}$	$1.44(2)$
C1	C2	$1.36(3)$	$\mathrm{C} 1^{\prime}$	C2'	$1.36(3)$
C4	C5	1.52(3)	C4'	C5'	$1.52(3)$
C5	C6	$1.50(3)$	C5'	C6'	$1.55(3)$
C7	C8	1.34(2)	C7'	C8 ${ }^{\prime}$	$1.35(2)$
$\mathrm{C} 10$	C11	$1.50(3)$	$\mathrm{C} 10^{\prime}$	C11'	$1.52(3)$
C11	C12	$1.50(3)$	C11'	$\mathrm{C} 12^{\prime}$	$1.52(3)$
C13	C14	1.53(2)	C13'	C14'	1.55(2)

C13	C16	1.51(2)	C13'	C16'	1.52(3)
C14	C15	1.52(3)	C14'	C15'	1.52(2)
C17	C18	1.41(3)	C17	C18'	1.40(3)
C17	C22	1.37(3)	C17	C22'	1.40(3)
C18	C19	1.39(3)	C18'	C19'	1.36(3)
C19	C20	1.39(3)	C19'	C20'	1.39(3)
C20	C21	1.41(3)	C20'	C21'	1.39(3)
C21	C22	1.37(3)	C21'	C22'	1.37(3)

Bond Angles

Atom	Atom	Atom	Angle $/{ }^{\circ}$	Atom	Atom	Atom	Angle $/^{\circ}$
C1	S1	$\mathrm{C} 3$	$93.0(9)$	$\mathrm{C} 1^{\prime}$	$\mathrm{S} 1^{\prime}$	C3'	$92.2(9)$
C8	S3	C9	92.6(8)	C9'	S3'	C8'	92.4(8)
C1	P1	C7	96.9(9)	C1'	P1'	C7'	95.8(8)
C1	P1	C13	94.3(8)	C1'	P1'	C13'	93.3(8)
C7	P1	C13	95.2(8)	C7'	P1'	C13'	95.3(8)
C2	P2	C14	95.9(8)	C2'	P2'	C8'	96.0(8)
C8	P2	C2	95.8(8)	C2'	P2'	C14'	96.2(8)
C8	P2	C14	94.8(8)	C8'	P2'	C14'	93.2(8)
C2	N1	C4	122.0 (16)	C2'	N1'	C4'	122.8(16)
C3	N1	C2	116.0(15)	C3'	N1'	C2'	115.3(14)
C3	N1	C4	121.9(15)	C3'	N1'	C4'	122.0(15)
C7	N2	C10	124.7(15)	C7'	N2'	C10'	124.9(14)
C9	N2	C7	114.9(14)	C9'	N2'	C7'	112.5(14)
C9	N2	$\mathrm{C} 10$	120.3(14)	$\text { C } 9^{\prime}$	$\mathrm{N} 2^{\prime}$	C10'	122.6(14)
C15	N3	C17	126.2(16)	C15'	N3'	C16'	112.3(15)
C16	N3	C15	112.4(16)	C15'	N3'	C17 ${ }^{\prime}$	124.6(15)
C16	N3	C17	121.5(15)	C16'	N3'	C17 ${ }^{\prime}$	123.1(15)
S1	C1	P1	127.2(11)	S1'	C1'	P1'	125.2(11)
C2	C1	S1	110.6(14)	C2'	C1'	S1'	$111.2(14)$
C2	C1	P1	122.1(15)	C2'	C1'	P1'	123.5(14)
N1	C2	P2	124.6(13)	N1'	C2'	P2'	124.9(13)
C1	C2	P2	122.7(15)	C1'	C2'	P2'	122.7(14)
C1	C2	N1	112.7(17)	C1'	C2'	N1'	112.4(16)
S2	C3	S1	123.4(11)	S2'	C3'	S1'	123.3(11)
N1	C3	S1	107.6(12)	N1'	C3'	S1'	108.9(12)

N1	C3	S2	129.0(14)	N1'	C3'	S2'	127.9(14)
N1	C4	C5	111.7(15)	N1'	C4'	C5'	110.8(14)
C6	C5	C4	111.7(17)	C4'	C5'	C6'	108.7(17)
N2	C7	P1	122.9(13)	N2'	C7'	P1'	122.4(13)
C8	C7	P1	124.1(13)	C8'	C7'	P1'	123.8(13)
C8	C7	N2	113.0(15)	C8'	C7'	N2'	113.7(15)
S3	C8	P2	126.9(9)	S3'	C8'	P2'	126.6(9)
C7	C8	S3	111.3(12)	C7'	C8'	S3'	110.9(12)
C7	C8	P2	121.3(13)	C7'	C8'	P2'	122.4(13)
S4	C9	S3	124.6(11)	S4'	C9'	S3'	125.0(11)
N2	C9	S3	108.1(11)	N2'	C9'	S3'	110.4(13)
N2	C9	S4	127.2(13)	N2'	C9'	S4'	124.6(14)
N2	C10	C11	112.9(16)	N2'	C10'	C11'	112.2(15)
C12	C11	C10	114.4(19)	C10'	C11'	C12'	113.5(17)
C14	C13	P1	116.4(12)	C14'	C13'	P1'	116.9(13)
C16	C13	P1	107.4(13)	C16'	C13'	P1'	106.0(13)
C16	C13	C14	104.6(14)	C16'	C13'	C14'	103.9(15)
C13	C14	P2	119.9(13)	C13'	C14'	P2'	119.7(13)
C15	C14	P2	106.7(12)	C15'	C14'	P2'	106.8(12)
C15	C14	C13	104.6(14)	C15'	C14'	C13'	105.5(15)
O1	C15	N3	125.4(19)	O1'	C15'	N3'	125.9(17)
O1	C15	C14	126.8(17)	O1'	C15'	C14'	125.5(16)
N3	C15	C14	107.8(16)	N3'	C15'	C14'	108.5(15)
O2	C16	N3	124.6(17)	O2'	C16'	N3'	124.1(18)
O2	C16	C13	126.4(17)	O2'	C16'	C13'	127.0(18)
N3	C16	C13	109.0(15)	N3'	C16'	C13'	108.8(15)
C18	C17	N3	119.4(17)	C18 ${ }^{\prime}$	C17 ${ }^{\prime}$	N3'	122.7(18)
C22	C17	N3	119.5(18)	C18'	C17'	C22'	118.5(19)
C22	C17	C18	121.1(19)	C22'	C17 ${ }^{\prime}$	N3'	118.7(18)
C19	C18	C17	117(2)	C19'	C18'	C17	121(2)
C20	C19	C18	123(2)	C18'	C19'	C20'	121(2)
C19	C20	C21	118.5(18)	C19'	C20'	C21'	118(2)
C22	C21	C20	119.4(19)	C22'	C21'	C20'	122(2)
C17	C22	C21	121(2)	C21'	C22'	C17	120(2)

12.24 Crystal data and structure refinement for 29b (IB-365).

Bond Lengths

Atom	Atom	Length/i̊	Atom	Atom	Length/Å
K	S2	$3.2492(16)$	O1	C21	1.416 (7)
K	S4 ${ }^{1}$	$3.2715(17)$	O2	C24	$1.424(8)$
K	O1	2.733(3)	O2	C25	1.435(6)
K	O2	2.746(4)	O3	C28	1.372(14)
K	O3	2.708(9)	O3	C29	$1.396(8)$
K	O3S	2.774 (8)	N1	C2	1.353(6)
S1	C1	1.748(4)	N1	C3	1.418(5)
S1	C2	1.729(4)	N1	C4	1.465(5)
S2	C2	1.675(4)	N2	C7	1.438(5)
S3	C8	$1.739(5)$	N2	C8	1.330(6)
S3	C9	1.746(4)	N2	C10	1.477(5)
S4	K ${ }^{2}$	$3.2715(17)$	C1	C3	$1.376(6)$
S4	C8	1.691(4)	C4	C5	$1.505(7)$
P1	N3	1.744(4)	C5	C6	1.540(6)
P1	C1	1.807(4)	C7	C9	1.373(6)
P1	C7	1.805(4)	C10	C11	$1.516(7)$
P2	C3	1.776(4)	C11	C12	1.513(8)
P2	C9	1.777(4)	C19	C20	$1.425(8)$
Si1	N3	1.760(4)	C21	C22	$1.435(9)$
Si1	C13	1.865(5)	C23	C24	1.481(10)
Si1	C14	1.866(6)	C25	C26	1.497(8)
Si1	C15	1.856(6)	C27	C28	1.532(15)
Si2	N3	1.765(4)	C29	C30	1.534(16)
Si2	C16	1.872(6)	C28S	O3S	1.43(2)
Si2	C17	1.862(5)	C28S	C27S	1.56(2)
Si2	C18	1.849(6)	C30S	C29S	1.52(2)
O1	C20	1.430(8)	C29S	O3S	1.376(9)

Bond Angles

Atom	Atom	Atom	Angle $/{ }^{\circ}$	Atom	Atom	Atom	Angle $/{ }^{\circ}$
S 2	K	$\mathrm{~S} 4^{1}$	$170.98(5)$	C 2	N 1	C 3	$116.4(3)$
O 1	K	S 2	$94.90(8)$	C 2	N 1	C 4	$121.5(4)$
O 1	K	$\mathrm{~S} 4{ }^{1}$	$82.89(8)$	C 3	N 1	C 4	$122.1(3)$
		239					

O1	K	O2	111.01(11)	C7	N2	C10	121.8(4)
O1	K	O3S	130.8(3)	C8	N2	C7	116.1(4)
O2	K	S2	82.97(8)	C8	N2	C10	122.1(4)
O2	K	S4 ${ }^{1}$	89.64(9)	P1	N3	Sil	114.0(2)
O2	K	O3S	118.2(3)	P1	N3	Si2	125.2(2)
O3	K	S2	97.21(19)	Si1	N3	Si2	120.0(2)
O3	K	S4 ${ }^{1}$	91.54(19)	S1	C1	P1	115.9(2)
O3	K	O1	117.9(2)	C3	C1	S1	110.3(3)
O3	K	O2	130.8(2)	C3	C1	P1	133.7(3)
O3S	K	S2	89.7(2)	S2	C2	S1	124.4(3)
O3S	K	S4 ${ }^{1}$	98.4(2)	N1	C2	S1	109.0(3)
C2	S1	C1	93.0(2)	N1	C2	S2	126.6(3)
C2	S2	K	116.42(16)	N1	C3	P2	118.6(3)
C8	S3	C9	93.2(2)	C1	C3	P2	130.0(3)
C8	S4	K ${ }^{2}$	112.82(17)	C1	C3	N1	111.3(4)
N3	P1	C1	105.81(19)	N1	C4	C5	112.7(4)
N3	P1	C7	107.76(19)	C4	C5	C6	110.2(4)
C7	P1	C1	95.24(19)	N2	C7	P1	118.2(3)
C3	P2	C9	96.6(2)	C9	C7	P1	130.1(3)
N3	Si1	C13	111.6(2)	C9	C7	N2	111.6(4)
N3	Si1	C14	111.1(2)	S4	C8	S3	122.5(3)
N3	Si1	C15	111.7(2)	N2	C8	S3	109.3(3)
C13	Si1	C14	109.7(3)	N2	C8	S4	128.2(4)
C15	Si1	C13	107.5(3)	S3	C9	P2	116.2(2)
C15	Si1	C14	105.0(3)	C7	C9	S3	109.8(3)
N3	Si2	C16	110.6(2)	C7	C9	P2	133.9(3)
N3	Si2	C17	109.3(2)	N2	C10	C11	113.5(4)
N3	Si2	C18	114.3(3)	C12	C11	C10	114.1(4)
C17	Si2	C16	109.3(3)	C19	C20	O1	112.4(5)
C18	Si2	C16	109.1(4)	O1	C21	C22	111.6(5)
C18	Si2	C17	104.0(3)	O2	C24	C23	108.8(6)
C20	O1	K	121.4(3)	O2	C25	C26	114.0(5)
C21	O1	K	121.2(4)	O3	C28	C27	106.7(9)
C21	O1	C20	114.4(4)	O3	C29	C30	111.2(9)
C24	O2	K	127.2(4)	O3S	C28S	C27S	106.3(13)
C24	O2	C25	111.6(5)	O3S	C29S	C30S	110.8(11)
C25	O2	K	118.2(3)	C28S	O3S	K	128.9(9)

C28	O3	K	$128.1(7)$	C29S	O3S	K	$123.3(8)$
C28	O3	C29	$108.3(9)$	C29S	O3S	C28S	$107.7(12)$
C29	O3	K	$123.6(6)$				

12.25 Crystal data and structure refinement for 30a (IB-409).

Identification code	GSTR628, IB-409 // GXraycu_5684f	$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.314
Crystal Habitus	clear colourless block	μ / mm^{-1}	4.806
Device Type	Bruker D8-Venture	F(000)	260
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$	Crystal size/mm ${ }^{3}$	$0.21 \times 0.14 \times 0.12$
Moiety formula	C20 H32 N2 P2 S4	Absorption correction	empirical
Formula weight	490.65	Tmin; Tmax	0.3564; 0.7536
Temperature/K	150	Radiation	CuK $\alpha(\lambda=1.54178)$
Crystal system	triclinic	2Θ range for data collection/ ${ }^{\circ}$	11.064 to 135.498°
Space group	P-1	Completeness to theta	0.996
a / \AA	9.1069(8)	Index ranges	$\begin{aligned} & -10 \leq \mathrm{h} \leq 10,-11 \leq \mathrm{k} \leq 11, \\ & -11 \leq 1 \leq 10 \end{aligned}$
b/ \AA	9.3073(8)	Reflections collected	18123
c/ \AA	$9.3134(8)$	Independent reflections	$\begin{aligned} & 2230\left[R_{\text {int }}=0.0668,\right. \\ & \left.R_{\text {sigma }}=0.0329\right] \end{aligned}$
$\alpha /{ }^{\circ}$	113.126(4)	Data/restraints/parameters	2230/0/129

$\beta /{ }^{\circ}$	$113.896(4)$	Goodness-of-fit on F^{2}	1.127
γ°	$98.092(4)$	Final R indexes $[\mathrm{I}>=2 \sigma$	$\mathrm{R}_{1}=0.0612, \mathrm{wR}_{2}=0.1651$
(I)]	Final R indexes [all data]	$\mathrm{R}_{1}=0.0680, \mathrm{wR}_{2}=0.1709$	
Volume $/ \AA^{3}$	$620.10(10)$	Largest diff. peak/hole $/ \mathrm{e}$ \AA^{-3}	$0.50 /-0.52$
Z	1		

Bond Lengths

Atom	Atom	Length/Å	Atom	Atom	Length/ $/$ ¢
S1	C1	1.743(4)	N	C4	1.472(5)
S1	C2	1.740(5)	C1	C3	1.351(6)
S2	C2	$1.662(4)$	C3	P^{1}	$1.822(4)$
P	C1	$1.821(4)$	C4	C5	$1.519(6)$
P	C3 ${ }^{1}$	1.822(4)	C5	C6	$1.519(7)$
P	C7	1.864(5)	C7	C8	$1.522(6)$
N	C2	1.355(6)	C8	C9	1.525(6)
N	C3	1.403(5)	C9	C10	1.528(7)

Table 3 Bond Angles

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	S1	C1	92.3(2)	N	C2	S1	108.6(3)
C1	P	C3 ${ }^{1}$	98.27(19)	N	C2	S2	128.2(4)
C1	P	C7	99.3(2)	N	C3	P^{1}	118.6(3)
$\mathrm{C} 3^{1}$	P	C7	101.9(2)	C1	C3	P^{1}	128.8(3)
C2	N	C3	116.0(4)	C1	C3	N	112.4(4)
C2	N	C4	120.8(4)	N	C4	C5	111.9(4)
C3	N	C4	123.1(4)	C4	C5	C6	112.4(4)
S1	C1	P	116.2(2)	C8	C7	P	117.5(3)
C3	C1	S1	110.7(3)	C7	C8	C9	113.0(4)
C3	C1	P	132.9(3)	C8	C9	C10	111.7(4)
S2	C2	S1	123.2(3)				

12.26 Crystal data and structure refinement for 30b (IB-370).

	GSTR610, IB-370 //	μ / mm^{-1}	4.44
Identification code	GXraycu_5544f clear light yellow plate	$\mathrm{F}(000)$	3040
Crystal Habitus	Bruker D8-Venture	Crystal size $/ \mathrm{mm}^{3}$	$0.21 \times 0.18 \times 0.03$
Device Type	$\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{Si}_{2} \mathrm{P}_{3} \mathrm{~S}_{4}$	Absorption correction	empirical
Empirical formula	$\mathrm{C} 30 \mathrm{H} 42 \mathrm{~N} 3 \mathrm{P} 3 \mathrm{~S} 4 \mathrm{Si} 2^{\text {Tmin; Tmax }}$	Radiation Moiety formula	721.99

b/A	11.7664(4)	Independent reflections	$\begin{aligned} & 13271\left[\mathrm{R}_{\text {int }}=0.1718\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0576\right] \end{aligned}$
c/Å	33.3168(12)	Data/restraints/parameters	13271/391/774
$\alpha /^{\circ}$	90	Goodness-of-fit on F^{2}	1.131
$\beta /{ }^{\circ}$	90	Final R indexes $[I>=2 \sigma$ (I)]	$\begin{aligned} & \mathrm{R}_{1}=0.1158, \mathrm{wR}_{2}= \\ & 0.2750 \end{aligned}$
$\gamma{ }^{\circ}$	90	Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.1247, \mathrm{wR}_{2}= \\ & 0.2804 \end{aligned}$
Volume/ \AA^{3}	7334.2(5)	$\underset{\AA^{-3}}{\text { Largest diff. peak/hole / e }}$	2.32/-1.10
Z	8	Flack parameter	0.58(7)
$\rho_{\text {calg }} \mathrm{g} / \mathrm{cm}^{3}$	1.308		

Bond Lengths

Atom	Atom	Length/ $/$ ¢	Atom	Atom	Length/i̊
S1	C2	1.74(2)	$\mathrm{S} 1^{\prime}$	C2'	1.709(19)
S1	C3	1.748(19)	S1'	C3'	1.741(18)
S2	C2	1.66(2)	S2'	C2'	1.682(19)
S3	C7	1.729(19)	S3'	C7'	1.747(18)
S3	C8	1.74(2)	S3'	C8'	1.72 (2)
S4	C8	1.653(19)	S4'	C8'	1.66(2)
P1	P3	2.246(6)	P1'	P3'	2.260(6)
P1	C1	1.81(2)	P1'	C1'	1.813(19)
P1	C7	1.813(19)	P1'	C7'	1.826(18)
P2	N3	1.691(16)	P2'	N3'	1.731(16)
P2	C3	1.856(19)	P2'	C3'	1.810(19)
P2	C9	1.845(19)	P2'	C $9{ }^{\prime}$	1.82(2)
P3	C19	1.81(2)	P3'	C19'	1.845(19)
P3	C25	$1.806(19)$	P3'	C25'	1.822(19)
Si1	N3	1.791(17)	Si1'	N3'	1.797(16)
Si1	C13	1.87(2)	Si1'	C13'	1.87(2)
Si1	C14	1.85(2)	Sil^{\prime}	C14'	1.84(2)
Si1	C15	1.86(2)	Si1'	C15'	1.87(2)
Si2	N3	1.778(17)	Si2'	N3'	1.750(16)
Si2	C16	1.83(3)	Si2'	C16'	1.88 (2)
Si2	C17	1.87(2)	Si2'	C17'	$1.85(2)$
Si2	C18	1.83(3)	Si2'	C18'	1.83(2)
N1	C1	1.47(3)	N1'	C1'	1.43(2)

N1	C2	1.36(2)	N1'	C2'	1.33(2)
N1	C4	1.46(3)	N1'	C4'	1.50(2)
N2	C8	1.35(2)	N2'	C8'	1.37(2)
N2	C9	1.38(2)	N2'	C9'	1.44(3)
N2	C10	1.50(2)	N2'	C10'	1.47(2)
C1	C3	1.28(3)	C1'	C3'	1.35(3)
C4	C5	1.51(3)	C4'	C5'	1.49(3)
C5	C6	1.50(3)	C5'	C6'	1.54(3)
C7	C9	1.36(3)	C7'	C9'	1.36(3)
C10	C11	1.46(3)	C10'	C11'	1.56(3)
C11	C12	1.56(3)	C11'	C12'	1.50(3)
C19	C20	1.45(3)	C19'	C20'	1.40(2)
C19	C24	1.37(3)	C19'	C24'	1.38(2)
C20	C21	1.39(3)	C20'	C21'	1.39(3)
C21	C22	1.44(3)	C21'	C22'	1.38(3)
C22	C23	1.36(3)	C22'	C23'	1.38(3)
C23	C24	1.39(3)	C23'	C24'	1.40(3)
C25	C26	1.40(3)	C25'	C26'	1.39(3)
C25	C30	1.41(2)	C25'	C30'	1.38(3)
C26	C27	1.35(3)	C26'	C27 ${ }^{\prime}$	1.38(3)
C27	C28	1.36(3)	C27 ${ }^{\prime}$	C28 ${ }^{\prime}$	1.44(3)
C28	C29	1.41(3)	C28 ${ }^{\prime}$	C29'	1.40(3)
C29	C30	1.37(3)	C29'	C30'	1.41(3)

Bond Angles

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	S1	C3	91.5(9)	$\mathrm{C} 2 \prime$	$\mathrm{S} 1^{\prime}$	C3'	92.4(9)
$\mathrm{C} 7$	S3	C8	92.7(9)	C8'	S3'	C7'	92.2(9)
C1	P1	P3	106.6(7)	C1'	P1'	P3'	104.9(6)
C1	P1	C7	96.2(9)	C1'	P1'	C7'	96.6(8)
C7	P1	P3	$95.5(6)$	$\mathrm{C} 7{ }^{\prime}$	P1'	P3'	$93.7(6)$
N3	P2	C3	104.6(8)	N3'	P2'	C3'	101.7(8)
N3	P2	C9	108.6(8)	N3'	P2'	C9'	109.2(8)
C9	P2	C3	96.4(8)	C3'	P2'	C9'	96.1(9)
C19	P3	P1	101.1(6)	C19'	P3'	P1'	103.3(6)
C19	P3	C25	105.6(9)	C25'	P3'	P1'	101.9(6)

C25	P3	P1	103.1(6)	C25'	P3'	C19'	104.9(8)
N3	Si1	C13	111.0(10)	N3'	Si1'	C13'	110.7(9)
N3	Si1	C14	112.4(9)	N3'	Si1'	C14'	110.3(10)
N3	Si1	C15	111.2(9)	N3'	Si1'	C15'	109.7(9)
C14	Si1	C13	106.4(11)	C14'	Si1'	C13'	106.8(11)
C14	Si1	C15	107.2(11)	C14'	Si1'	C15'	110.8(10)
C15	Si1	C13	108.3(11)	C15'	Si1'	C13'	108.5(10)
N3	Si2	C16	108.6(10)	N3'	Si2'	C16'	112.8(8)
N3	Si2	C17	111.1(9)	N3'	Si2'	C17	108.8(8)
N3	Si2	C18	112.1(13)	N3'	Si2'	C18'	108.9(9)
C16	Si2	C17	107.8(12)	C17'	Si2'	C16'	107.7(9)
C18	Si2	C16	111.1(16)	C18'	Si2'	C16'	109.4(10)
C18	Si2	C17	106.0(13)	C18'	Si2'	C17	109.3(10)
C2	N1	C1	114.1(16)	C1'	N1'	C4'	123.1(15)
C2	N1	C4	123.3(16)	C2'	N1'	C1'	114.9(16)
C4	N1	C1	122.5(16)	C2'	N1'	C4'	121.8(16)
C8	N2	C9	116.7(16)	C8'	N2'	C9'	114.8(16)
C8	N2	C10	118.5(15)	C8'	N2'	C10'	121.8(16)
C9	N2	C10	124.4(15)	C9'	N2'	C10'	123.2(16)
P2	N3	Si1	126.2(10)	P2'	N3'	Si1'	112.5(8)
P2	N3	Si2	113.0(9)	P2'	N3'	Si2 ${ }^{\prime}$	125.7(9)
Si2	N3	Si1	120.5(9)	Si2 ${ }^{\prime}$	N3'	Si1'	121.6(9)
N1	C1	P1	117.2(14)	N1'	C1'	P1'	120.0(13)
C3	C1	P1	131.0(17)	C3'	C1'	P1'	128.2(15)
C3	C1	N1	111.8(18)	C3'	C1'	N1'	111.8(16)
S2	C2	S1	123.9(12)	S2 ${ }^{\prime}$	C2'	S1'	123.5(11)
N1	C2	S1	109.1(14)	N1'	C2'	S1'	110.4(14)
N1	C2	S2	127.0(15)	N1'	C2'	S2'	126.0(15)
S1	C3	P2	115.8(10)	S1'	C3'	P2'	115.9(10)
C1	C3	S1	113.4(16)	C1'	C3'	S1'	110.5(14)
C1	C3	P2	130.2(16)	C1'	C3'	P2'	133.0(15)
N1	C4	C5	112.3(19)	C5'	C4'	N1'	116.0(17)
C6	C5	C4	114.6(18)	C4'	C5'	C6'	113.8(18)
S3	C7	P1	115.4(10)	S3'	C7'	P1'	114.3(10)
C9	C7	S3	110.3(14)	C9'	C7'	S3'	111.7(14)
C9	C7	P1	134.2(15)	C9'	C7'	P1'	134.0(15)
S4	C8	S3	123.3(12)	S4'	C8'	S3'	123.2(12)

N2	C8	S3	107.9(13)	N2'	C8'	S3'	110.0(14)
N2	C8	S4	128.8(15)	N2'	C8'	S4'	126.8(16)
N2	C9	P2	122.8(14)	N2'	C9'	P2'	121.1(14)
C7	C9	P2	123.7(15)	C7'	C9'	P2'	126.1(16)
C7	C9	N2	112.3(16)	C7'	C9'	N2'	111.3(17)
C11	C10	N2	113.7(15)	N2'	C10'	C11'	110.5(16)
C10	C11	C12	112.0(17)	C12'	C11'	C10'	110.2(18)
C20	C19	P3	118.6(14)	C20'	C19'	P3'	118.9(14)
C24	C19	P3	121.0(15)	C24'	C19'	P3'	120.9(13)
C24	C19	C20	119.2(18)	C24'	C19'	C20'	118.9(17)
C21	C20	C19	119.6(18)	C21	C20'	C19'	119.7(18)
C20	C21	C22	119.0(18)	C22'	C21	C20'	120.5(19)
C23	C22	C21	119.9(18)	C21'	C22'	C23'	120.9(19)
C22	C23	C24	121.4(19)	C22'	C23'	C24'	118.3(17)
C19	C24	C23	120.9(19)	C19'	C24'	C23'	121.7(17)
C26	C25	P3	126.8(14)	C26'	C25'	P3'	124.1(15)
C26	C25	C30	116.2(17)	C30'	C25'	P3'	115.9(14)
C30	C25	P3	117.0(14)	C30'	C25'	C26'	119.9(18)
C27	C26	C25	123.1(19)	C27 ${ }^{\prime}$	C26'	C25'	121.2(18)
C26	C27	C28	121(2)	C26'	C27	C28 ${ }^{\prime}$	118.2(18)
C27	C28	C29	118.1(19)	C29'	C28 ${ }^{\prime}$	C27 ${ }^{\prime}$	121.5(18)
C30	C29	C28	121.3(18)	C28 ${ }^{\prime}$	C29'	C30'	116.8(18)
C29	C30	C25	120.2(17)	C25 ${ }^{\prime}$	C30'	C29'	122.2(18)

12.27 Crystal data and structure refinement for 31 (IB-371).

Identification code	GSTR618, IB-371 // GXraycu_5546f	$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.219
Crystal Habitus	clear yellow block	μ / mm^{-1}	4.887
Device Type	Bruker D8-Venture	F(000)	2264
Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{P}_{4} \mathrm{~S}_{8} \mathrm{Si}_{4}$	Crystal size/ mm^{3}	$0.24 \times 0.13 \times 0.12$
Moiety formula	C36 H64 N6 P4 S8 Si4	Absorption correction	empirical
Formula weight	1073.65	Tmin; Tmax	0.3114; 0.7536
Temperature/K	99.99	Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
Crystal system	monoclinic	2Θ range for data collection $/{ }^{\circ}$	7.146 to 135.498°
Space group	$\mathrm{P} 21 / \mathrm{c}$	Completeness to theta	0.999
a / \AA	12.0838(2)	Index ranges	$\begin{aligned} & -14 \leq \mathrm{h} \leq 14,-23 \leq \mathrm{k} \leq 23, \\ & -29 \leq 1 \leq 29 \end{aligned}$
b/ \AA	19.5676(4)	Reflections collected	106752
c/Å	24.8575(5)	Independent reflections	$\begin{aligned} & 10602\left[R_{\text {int }}=0.0628,\right. \\ & \left.R_{\text {sigma }}=0.0289\right] \end{aligned}$
$\alpha /{ }^{\circ}$	90	Data/restraints/parameters	10602/0/539
$\beta /{ }^{\circ}$	95.5499(9)	Goodness-of-fit on F^{2}	1.038
$\gamma /{ }^{\circ}$	90	Final R indexes $[I>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0360, \mathrm{wR}_{2}=0.0938$

Volume $/ \AA^{3}$	$5850.03(19)$
Z	4

Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0395, \mathrm{wR}_{2}=0.0960$
Largest diff. peak/hole / e $\AA_{\AA^{-3}}^{\text {Largest diff. peak/hole / e } \quad 0.97 /-0.51}$

Bond Lengths

Atom	Atom	Length/ $\AA \AA$	Atom	Atom	$\text { Length } / \AA$
S1	C1	$1.749(2)$	Si3	C31	$1.873(3)$
S1	C2	1.732(2)	Si3	C32	$1.847(3)$
S2	C2	1.657(2)	Si3	C33	1.843(3)
S3	C8	$1.740(2)$	Si4	N6	$1.7825(18)$
S3	C9	1.742(2)	Si4	C34	$1.860(3)$
S4	C8	1.656(2)	Si4	C35	1.863(3)
S5	C19	1.742(2)	Si4	C36	1.849(3)
S5	C20	1.732(2)	N1	C2	1.367(3)
S6	C20	1.658(2)	N1	C3	1.400(3)
S7	C26	$1.735(2)$	N1	C4	1.474(3)
S7	$\mathrm{C} 27$	1.739(2)	N2	C7	$1.408(2)$
S8	C26	1.657(2)	N2	C8	$1.366(3)$
P1	P3	2.2893(7)	N2	C10	$1.480(3)$
P1	C1	1.793(2)	N4	C20	$1.366(3)$
P1	C7	1.811(2)	N4	C21	1.404(3)
P2	N3	1.7048(18)	N4	C22	1.478 (3)
P2	C3	1.831(2)	N5	C25	1.405(3)
P2	C9	1.824(2)	N5	C26	1.367(3)
P3	C19	1.796(2)	N5	C28	$1.468(3)$
P3	C25	1.802(2)	C1	C3	1.364(3)
P4	N6	1.7026(17)	C4	C5	1.514(3)
P4	C21	1.832(2)	C5	C6	$1.528(3)$
P4	C27	1.816(2)	C7	C9	1.359(3)
Si1	N3	1.7845(18)	C10	C11	1.518 (3)
Si1	C13	1.866(3)	C11	C12	$1.526(3)$
Si1	C14	1.868(3)	C19	C21	1.358(3)
Si1	C15	1.861(3)	C22	C23	1.519(3)
Si2	N3	1.7928(19)	C23	C24	1.532(3)
Si2	C16	1.869(3)	C25	C27	1.362(3)
Si2	C17	1.856(2)	C28	C29	$1.521(3)$
Si2	C18	1.860(2)	C29	C30	$1.524(3)$

Si3 N6 1.7804(18)

Bond Angles

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	S1	C1	92.66(9)	C21	N4	C22	124.38(17)
C8	S3	C9	92.96(10)	C25	N5	C28	123.34(17)
C20	S5	C19	92.56(10)	C26	N5	C25	115.23(18)
C26	S7	C27	93.08(10)	C26	N5	C28	120.65(17)
C1	P1	P3	101.64(7)	P4	N6	Si3	115.38(10)
C1	P1	C7	99.43(9)	P4	N6	Si4	124.15(10)
C7	P1	P3	96.24(7)	Si3	N6	Si4	120.45(10)
N3	P2	C3	108.05(9)	S1	C1	P1	116.85(11)
N3	P2	C9	104.21(9)	C3	C1	S1	110.26(15)
C9	P2	C3	97.55(9)	C3	C1	P1	132.78(16)
C19	P3	P1	96.44(7)	S2	C2	S1	123.56(12)
C19	P3	C25	99.08(9)	N1	C2	S1	108.71(14)
C25	P3	P1	105.88(7)	N1	C2	S2	127.73(16)
N6	P4	C21	106.72(9)	N1	C3	P2	120.00(14)
N6	P4	C27	102.42(9)	C1	C3	P2	126.96(15)
C27	P4	C21	97.29(9)	C1	C3	N1	112.42(18)
N3	Si1	C13	110.37(10)	N1	C4	C5	112.42(18)
N3	Si1	C14	112.27(11)	C4	C5	C6	110.0(2)
N3	Si1	C15	109.25(11)	N2	C7	P1	120.02(15)
C13	Si1	C14	107.17(13)	C9	C7	P1	126.77(15)
C15	Sil	C13	107.97(15)	C9	C7	N2	113.17(18)
C15	Si1	C14	109.71(13)	S4	C8	S3	124.34(13)
N3	Si2	C16	109.69(11)	N2	C8	S3	108.59(14)
N3	Si2	C17	111.00(10)	N2	C8	S4	127.07(16)
N3	Si2	C18	112.79(10)	S3	C9	P2	116.62(12)
C17	Si2	C16	108.85(12)	C7	C9	S3	109.97(15)
C17	Si2	C18	108.61(11)	C7	C9	P2	132.79(16)
C18	Si2	C16	105.70(13)	N2	C10	C11	113.88(17)
N6	Si3	C31	110.13(11)	C10	C11	C12	110.4(2)
N6	Si3	C32	109.64(13)	S5	C19	P3	116.31(11)
N6	Si3	C33	110.37(11)	C21	C19	S5	110.62(15)
C32	Si3	C31	108.97(18)	C21	C19	P3	133.07(16)

Appendix

C33	Si3	C31	$106.59(16)$	S6	C20	S5	$123.23(13)$
C33	Si3	C32	$111.1(2)$	N4	C20	S5	$108.77(14)$
N6	Si4	C34	$113.83(10)$	N4	C20	S6	$127.99(16)$
N6	Si4	C35	$108.22(11)$	N4	C21	P4	$119.30(15)$
N6	Si4	C36	$111.96(12)$	C19	C21	P4	$127.55(16)$
C34	Si4	C35	$107.80(14)$	C19	C21	N4	$112.34(18)$
C36	Si4	C34	$105.33(13)$	N4	C22	C23	$111.66(18)$
C36	Si4	C35	$109.56(15)$	C22	C23	C24	$110.4(2)$
C2	N1	C3	$115.92(17)$	N5	C25	P3	$119.17(15)$
C2	N1	C4	$119.96(17)$	C27	C25	P3	$127.54(16)$
C3	N1	C4	$124.12(17)$	C27	C25	N5	$113.09(18)$
C7	N2	C10	$124.26(17)$	S8	C26	S7	$123.82(14)$
C8	N2	C7	$115.22(17)$	N5	C26	S7	$108.65(15)$
C8	N2	C10	$120.44(17)$	N5	C26	S8	$127.53(17)$
P2	N3	Si1	$113.90(10)$	S7	C27	P4	$116.30(11)$
P2	N3	Si2	$124.69(10)$	C25	C27	S7	$109.91(15)$
Si1	N3	Si2	$121.02(10)$	C25	C27	P4	$133.67(16)$
C20	N4	C21	$115.63(17)$	N5	C28	C29	$111.28(18)$
C20	N4	C22	$119.95(17)$	C28	C29	C30	$111.4(2)$

12.28 Crystal data and structure refinement for 32 (IB-310).

Identification code	GSTR599, IB-303 // GXray5460av1_pl	$\rho_{\text {cala }} \mathrm{g} / \mathrm{cm}^{3}$	1.681
Crystal Habitus	clear light yellow block	μ / mm^{-1}	0.683
Device Type	Bruker APEX-II CCD	F(000)	716
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{6}$	Crystal size/mm ${ }^{3}$	$0.09 \times 0.04 \times 0.03$
Moiety formula	$\begin{aligned} & \text { C14 H20 N2 P2 S4, 2(C } \\ & \text { F3 O3 S) } \end{aligned}$	Absorption correction	empirical
Formula weight	704.64	Tmin; Tmax	0.6251; 0.7460
Temperature/K	100	Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Crystal system	monoclinic	2Θ range for data collection $/{ }^{\circ}$	6.726 to 55.996°
Space group	$\mathrm{P} 21 / \mathrm{c}$	Completeness to theta	0.996
a / \AA	7.3591(13)	Index ranges	$\begin{aligned} & -8 \leq \mathrm{h} \leq 9,-31 \leq \mathrm{k} \leq 31,- \\ & 10 \leq 1 \leq 10 \end{aligned}$
b/ \AA	23.954(4)	Reflections collected	14729
c/ \AA	8.2757(15)	Independent reflections	$\begin{aligned} & 3333\left[R_{\text {int }}=0.1428,\right. \\ & \left.R_{\text {sigma }}=0.1554\right] \end{aligned}$
$\alpha /{ }^{\circ}$	90	Data/restraints/parameters	3333/0/174
$\beta /{ }^{\circ}$	107.374(7)	Goodness-of-fit on F^{2}	1.071
$\gamma^{/{ }^{\circ}}$	90	Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0761, \mathrm{wR}_{2}=0.1327$

Volume/ $/{ }^{3}$
Z
1392.3(4)

2

Final R indexes [all data] $\quad \mathrm{R}_{1}=0.1488, \mathrm{wR}_{2}=0.1579$
Largest diff. peak/hole / e $\AA_{\AA^{-3}} \quad$ gest diff. peak/hole / e $\quad 0.78 /-0.64$

Bond Lengths

Atom	Atom	Length/ \AA	Atom	Atom	Length/ $\mathbf{\AA}$
S1	C2	$1.701(5)$	C3	P 1	$1.749(5)$
S1	C3	$1.750(5)$	C4	C5	$1.509(7)$
S2	C2	$1.704(5)$	C5	C6	$1.517(7)$
S2	C7	$1.799(6)$	S3	O1	$1.442(4)$
P	C1	$1.757(5)$	S3	O2	$1.430(4)$
P	C3 ${ }^{1}$	$1.749(5)$	S3	O3	$1.438(4)$
N	C1	$1.396(6)$	S3	C8	$1.821(5)$
N	C2	$1.331(7)$	F1	C8	$1.337(6)$
N	C4	$1.484(6)$	F2	C8	$1.331(6)$
C1	C3	$1.391(7)$	F3	C8	$1.344(6)$

Bond Angles

Atom	Atom	Atom	$\text { Angle } /^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	S1	C3	90.9(3)	N	C4	C5	111.6(4)
C2	S2	C7	100.0(3)	C4	C5	C6	111.9(5)
$\mathrm{C} 3^{1}$	P	C1	98.5(2)	O1	S3	C8	102.4(3)
C1	N	C4	121.8(4)	O2	S3	O1	114.9(2)
C2	N	C1	114.7(4)	O2	S3	O3	115.7(2)
C2	N	C4	123.5(4)	O2	S3	C8	103.9(2)
N	C1	P	118.9(4)	O3	S3	O1	114.8(2)
C3	C1	P	129.8(4)	O3	S3	C8	102.4(2)
C3	C1	N	111.3(4)	F1	C8	S3	111.8(4)
S1	C2	S2	124.0(3)	F1	C8	F3	106.6(4)
N	C2	S1	112.7(4)	F2	C8	S3	111.8(4)
N	C2	S2	123.3(4)	F2	C8	F1	107.3(4)
P^{1}	C3	S1	117.8(3)	F2	C8	F3	107.3(4)
C1	C3	S1	110.4(4)	F3	C8	S3	111.7(4)
C1	C3	P^{1}	131.7(4)				

Torsion Angles

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
P	C1	C3	S1	179.1(3)	C3 ${ }^{1}$	P	C1	C3	0.1(7)
P	C1	C3	P^{1}	-0.2(9)	C4	N	C1	P	-0.6(6)
N	C1	C3	S1	0.1(6)	C4	N	C1	C3	178.5(5)
N	C1	C3	P^{1}	$179.1(4)$	C4	N	C2	S1	$178.9(4)$
N	C4	C5	C6	177.7(4)	C4	N	C2	S2	2.9 (7)
C1	N	C2	S1	-1.1(6)	C7	S2	C2	S1	12.6(4)
C1	N	C2	S2	179.3(4)	C7	S2	C2	N	$169.4(5)$
C1	N	C4	C5	-83.4(6)	O1	S3	C8	F1	61.1(4)
C2	S1	C3	P^{1}	178.7(3)	O1	S3	C8	F2	-59.2(4)
C2	S1	C3	C1	-0.6(4)	O1	S3	C8	F3	179.5(3)
C2	N	C1	P	$178.5(4)$	O2	S3	C8	F1	-58.9(5)
C2	N	C1	C3	0.6(6)	O2	S3	C8	F2	$179.2(4)$
C2	N	C4	C5	94.3(6)	O2	S3	C8	F3	60.6(4)
C3	S1	C2	S2	179.2(4)	O3	S3	C8	F1	$179.7(4)$
C3	S1	C2	N	1.0(4)	O3	S3	C8	F2	60.0(4)
C3 ${ }^{1}$	P	C1	N	179.0(4)	O3	S3	C8	F3	-60.3(4)

12.29 Crystal data and structure refinement for 33b (IB-454).

Identification code	GSTR633, IB-454 // GXraycu_5768f	$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.371
Crystal Habitus	clear dark brown block	μ / mm^{-1}	5.714
Device Type	Bruker D8-Venture	$F(000)$	4848
Empirical formula	$\mathrm{C}_{84} \mathrm{H}_{128} \mathrm{~K}_{4} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{P}_{8} \mathrm{~S}_{16}$	Crystal size/ mm^{3}	$0.24 \times 0.22 \times 0.12$
Moiety formula	C84 H128 K4 N8 O9 P8 S16	Absorption correction	empirical
Formula weight	2311.06	Tmin; Tmax	0.2838; 0.7536
Temperature/K	150.01	Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
Crystal system	monoclinic	2Θ range for data collection ${ }^{\circ}$	6.212 to 135.496°
Space group	$\mathrm{P} 21 / \mathrm{c}$	Completeness to theta	0.997
a / \AA	27.6401(13)	Index ranges	$\begin{aligned} & -33 \leq \mathrm{h} \leq 32,-24 \leq \mathrm{k} \leq 24, \\ & -25 \leq 1 \leq 25 \end{aligned}$
b / \AA	20.4176(10)	Reflections collected	133020
c/Å	21.3228(11)	Independent reflections	$\begin{aligned} & 20260\left[R_{\text {int }}=0.1284,\right. \\ & \left.R_{\text {sigma }}=0.0718\right] \end{aligned}$
$\alpha /{ }^{\circ}$	90	Data/restraints/parameters	20260/347/1236
$\beta /{ }^{\circ}$	111.527(3)	Goodness-of-fit on F^{2}	1.056
$\gamma{ }^{\circ}$	90	Final R indexes $[I>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.1206, \mathrm{wR}_{2}=0.2908$
Volume/ \AA^{3}	11194.0(10)	Final R indexes [all data]	$\mathrm{R}_{1}=0.1499, \mathrm{wR}_{2}=0.3127$

$\begin{array}{ll}\text { Largest diff. peak/hole / e } \\ \AA^{-3} & 1.35 /-1.13\end{array}$

Bond Lengths

Atom	Atom	Length/Å	Atom	Atom	Length/i̊
K1	K2	4.400(4)	O5	C68	1.47(2)
K1	S4	3.191 (3)	O6	C69	1.441(19)
K1	S6	3.194(4)	O6	C72	1.413(17)
K1	S10	3.164(4)	07	C73	1.369(7)
K1	S14	$3.113(3)$	O7	C76	1.456 (17)
K1	O1	2.678(12)	O8	C77	1.458(9)
K2	S4	$3.198(3)$	O8	C80	1.47(2)
K2	S6	3.363(3)	O9	C81	1.403(17)
K2	O2	2.720 (10)	O9	C84	1.40(2)
K2	O3	$2.635(10)$	N1	C2	1.340 (10)
K2	O4	2.682(14)	N1	C3	1.413(10)
K2	C61	3.480 (18)	N1	C4	1.477 (11)
K2	O4S	2.64(2)	N2	C8	1.362(10)
K2	C64S	3.36 (3)	N2	C9	1.417(10)
K2	C78 ${ }^{1}$	$3.308(16)$	N2	C10	1.474(10)
K2	$\mathrm{C} 79^{1}$	$3.496(19)$	N3	C13	1.418 (10)
K3	K4	4.618(4)	N3	C14	1.351(11)
K3	S2 ${ }^{2}$	$3.206(4)$	N3	C16	1.472 (11)
K3	S8	$3.160(4)$	N4	C20	1.351(12)
K3	S12	$3.148(4)$	N4	C21	1.418 (10)
K3	$\mathrm{S} 16^{2}$	3.091 (4)	N4	C22	1.454(12)
K3	O5	2.705(16)	N5	C26	1.353(11)
K3	C65	3.46(2)	N5	C27	1.411(10)
K4	S_{1}^{2}	3.770 (4)	N5	C28	1.460 (10)
K4	S2 ${ }^{2}$	$3.314(4)$	N6	C32	1.351(11)
K4	S8	$3.309(4)$	N6	C33	1.412(10)
K4	O6	2.694(11)	N6	C34	1.480 (11)
K4	O7	2.781(13)	N7	C38	1.339 (10)
K4	O8	2.771(13)	N7	C39	1.400 (10)
K4	O9	2.695(10)	N7	C40	1.468 (11)
K4	C69	3.531(18)	N8	C44	1.338 (13)
K4	C73	3.374(16)	N8	C45	1.426 (11)

S1	K4 ${ }^{3}$	$3.770(4)$	N8	C46	1.37(2)
S1	C1	1.747(8)	N8	C46S	1.60(4)
S1	C2	1.710(9)	C1	C3	1.371(11)
S2	$K 3^{3}$	$3.206(4)$	C4	C5	1.506(12)
S2	$K 4^{3}$	$3.314(4)$	C5	C6	1.522(12)
S2	C2	1.701(9)	C7	C9	1.380(11)
S3	C7	$1.752(8)$	C10	C11	1.510(12)
S3	C8	$1.705(9)$	C11	C12	1.509(13)
S4	C8	1.689(9)	C13	C15	1.370(12)
S5	C14	$1.708(9)$	C16	C17	1.514(13)
S5	C15	1.744 (8)	C17	C18	1.529(13)
S6	C14	$1.695(9)$	C19	C21	1.378(12)
S7	C19	$1.739(8)$	C22	C23	1.497(14)
S7	C20	$1.736(10)$	C23	C24	1.518(14)
S8	C20	1.680(9)	C25	C27	1.396(11)
S9	C25	1.742 (8)	C28	C29	1.510(11)
S9	C26	1.714(9)	C29	C30	1.516(12)
S10	C26	$1.685(8)$	C31	C33	1.383(11)
S11	C31	1.746(8)	C34	C35	1.497(13)
S11	C32	1.716 (10)	C35	C36	$1.539(14)$
S12	C32	1.679(9)	C37	C39	1.385(11)
S13	C37	1.742 (8)	C40	C41	1.504(13)
S13	C38	1.738(9)	C41	C42	1.532(16)
S14	C38	1.680(8)	C43	C45	1.377(13)
S15	C43	1.756(8)	C46	C47	1.5000 (10)
S15	C44	1.729 (12)	C46S	C47S	1.498(10)
S16	K3 ${ }^{3}$	$3.091(4)$	C47	C48	1.55(2)
S16	C44	1.693(10)	C47S	C48S	1.51(5)
P1	C1	$1.786(8)$	C49	C50	$1.498(9)$
P1	C9	$1.768(8)$	C50	C51	1.484(19)
P2	C3	1.778(8)	C51	C52	1.47(2)
P2	C7	1.771(9)	C53	C54	$1.483(9)$
P3	C13	$1.769(8)$	C54	C55	1.36(2)
P3	C19	1.801(8)	C55	C56	1.43(2)
P4	C15	1.794(9)	C57	C58	1.492(10)
P4	C21	1.761(9)	C58	C59	1.51(2)
P5	C25	1.773 (8)	C59	C60	1.45(2)

P5	C33	$1.760(8)$	C61S	C62S	$1.52(4)$
P6	C27	$1.762(8)$	C62S	C63S	$1.58(4)$
P6	C31	$1.785(9)$	C63S	C64S	$1.5000(10)$
P7	C37	$1.775(9)$	C65	C66	$1.57(3)$
P7	C45	$1.775(9)$	C66	C67	$1.48(3)$
P8	C39	$1.777(8)$	C67	C68	$1.39(3)$
P8	C43	$1.758(9)$	C69	C70	$1.44(2)$
O1	C49	$1.397(15)$	C70	C71	$1.45(2)$
O1	C52	$1.44(2)$	C71	C72	$1.47(2)$
O2	C53	$1.363(17)$	C73	C74	$1.48(2)$
O2	C56	$1.43(2)$	C74	C75	$1.53(2)$
O3	C57	$1.37(2)$	C75	C76	$1.50(2)$
O3	C60	$1.46(2)$	C77	C78	$1.463(6)$
O4	C64	1.42	C78	K2	$3.308(16)$
O4	C61	1.42	C78	C79	$1.516(9)$
C64	C63	1.42	C79	K2 ${ }^{1}$	$3.497(19)$
C63	C62	1.42	C79	C80	$1.48(2)$
C62	C61	1.42	C81	C82	$1.47(2)$
O4S	C61S	$1.45(4)$	C82	C83	$1.47(3)$
O4S	C64S	$1.46(3)$	C83	C84	$1.54(3)$
O5	C65	$1.40(2)$			

Bond Angles

Atom	Atom	Atom	Angle $/^{\circ}$	Atom	Atom	Atom	Angle $/^{\circ}$
S4	K1	K2	$46.54(7)$	C62	C61	O4	108
S4	K1	S6	$75.92(8)$	C61S	O4S	K2	$135.6(19)$
S6	K1	K2	$49.49(7)$	C61S	O4S	C64S	$102(2)$
S10	K1	K2	$108.08(11)$	C64S	O4S	K2	$106.3(16)$
S10	K1	S4	$147.62(13)$	C65	O5	K3	$110.9(13)$
S10	K1	S6	$103.30(10)$	C65	O5	C68	$108.9(17)$
S14	K1	K2	$111.43(9)$	C68	O5	K3	$118.6(13)$
S14	K1	S4	$97.43(9)$	C69	O6	K4	$113.8(8)$
S14	K1	S6	$158.67(14)$	C72	O6	K4	$136.0(10)$
S14	K1	S10	$71.36(8)$	C72	O6	C69	$106.2(12)$
O1	K1	K2	$138.6(2)$	C73	O7	K4	$103.5(10)$

O1	K1	S4	100.4(3)	C73	O7	C76	101.6(12)
O1	K1	S6	106.5(2)	C76	O7	K4	139.1(12)
O1	K1	S10	110.5(3)	C77	O8	K4	118.0(9)
O1	K1	S14	94.6(2)	C77	O8	C80	102.3(13)
S4	K2	K1	46.40(6)	C80	O8	K4	139.1(10)
S4	K2	S6	73.48(8)	C81	O9	K4	127.7(9)
S4	K2	C61	89.2(3)	C84	O9	K4	119.5(10)
S4	K2	C64S	$72.5(4)$	C84	O9	C81	107.3(12)
S4	K2	C78 ${ }^{1}$	163.1(3)	C2	N1	C3	115.3(7)
S4	K2	$\mathrm{C} 79^{1}$	166.6(3)	C2	N1	C4	121.9(7)
S6	K2	K1	46.23(6)	C3	N1	C4	122.8(7)
S6	K2	C61	92.7(3)	C8	N2	C9	115.9(7)
S6	K2	$\mathrm{C} 79^{1}$	112.6(3)	C8	N2	C10	120.5(7)
O2	K2	K1	58.6(3)	C9	N2	C10	123.6(7)
O2	K2	S4	92.1(3)	C13	N3	C16	121.9(6)
O2	K2	S6	86.2(3)	C14	N3	C13	116.0(7)
O2	K2	C61	178.0(3)	C14	N3	C16	122.0(7)
O2	K2	C64S	153.9(6)	C20	N4	C21	116.0(7)
O2	K2	$\mathrm{C} 78^{1}$	87.8(5)	C20	N4	C22	121.9(7)
O2	K2	$\mathrm{C} 79^{1}$	100.1(5)	C21	N4	C22	122.0(7)
O3	K2	K1	132.5(3)	C26	N5	C27	116.2(7)
O3	K2	S4	101.3(3)	C26	N5	C28	121.4(7)
O3	K2	S6	173.6(3)	C27	N5	C28	122.4(7)
O3	K2	O2	97.9(4)	C32	N6	C33	116.7(7)
O3	K2	O4	93.5(4)	C32	N6	C34	121.4(7)
O3	K2	C61	83.3(4)	C33	N6	C34	121.9(7)
O3	K2	O4S	82.9(5)	C38	N7	C39	116.5(7)
O3	K2	C64S	105.5(6)	C38	N7	C40	120.0(7)
O3	K2	$\mathrm{C} 78^{1}$	95.4(4)	C39	N7	C40	123.5(6)
O3	K2	C79 ${ }^{1}$	71.6(4)	C44	N8	C45	115.0(8)
O4	K2	K1	125.3(3)	C44	N8	C46	122.7(14)
O4	K2	S4	106.5(3)	C44	N8	C46S	121.0(14)
O4	K2	S6	84.5(3)	C45	N8	C46S	123.8(13)
O4	K2	O2	155.9(4)	C46	N8	C45	122.4(14)
O4	K2	C61	22.2(3)	S1	C1	P1	118.4(4)
O4	K2	C78 ${ }^{1}$	69.9(5)	C3	C1	S1	108.9(6)

O4	K2	C79 ${ }^{1}$	63.6(4)	C3	C1	P1	132.6(6)
C61	K2	K1	121.6(3)	S2	C2	S1	123.8(5)
C61	K2	$\mathrm{C} 79^{1}$	78.8(5)	N1	C2	S1	109.9(6)
O4S	K2	K1	119.9(5)	N1	C2	S2	126.2(7)
O4S	K2	S4	86.5(5)	N1	C3	P2	118.8(6)
O4S	K2	S6	92.8(5)	C1	C3	P2	128.6(6)
O4S	K2	O2	178.5(6)	C1	C3	N1	112.5(7)
O4S	K2	C64S	24.8(7)	N1	C4	C5	112.7(7)
O4S	K2	$\mathrm{C} 78^{1}$	93.4(6)	C4	C5	C6	110.1(8)
O4S	K2	$\mathrm{C} 79^{1}$	81.4(6)	S3	C7	P2	118.0(4)
C64S	K2	K1	96.5(5)	C9	C7	S3	109.2(6)
C64S	K2	S6	69.5(5)	C9	C7	P2	132.8(6)
C64S	K2	$\mathrm{C} 79^{1}$	98.0(6)	S4	C8	S3	125.4(5)
$\mathrm{C} 78^{1}$	K2	K1	121.3(3)	N2	C8	S3	109.0(6)
$\mathrm{C} 78^{1}$	K2	S6	89.7(3)	N2	C8	S4	125.6(7)
$\mathrm{C} 78^{1}$	K2	C61	90.5(4)	N2	C9	P1	119.3(6)
$\mathrm{C} 78^{1}$	K2	C64S	101.0(5)	C7	C9	P1	128.6(6)
$\mathrm{C} 78^{1}$	K2	C79 ${ }^{1}$	25.55(19)	C7	C9	N2	111.8(7)
$\mathrm{C} 79^{1}$	K2	K1	146.3(3)	N2	C10	C11	113.6(7)
$\mathrm{S} 2^{2}$	K3	K4	45.87(7)	C12	C11	C10	109.4(8)
S2 ${ }^{2}$	K3	C65	85.6(4)	N3	C13	P3	120.2(6)
S8	K3	K4	45.77(7)	C15	C13	P3	128.8(6)
S8	K3	S2 ${ }^{2}$	71.49(9)	C15	C13	N3	110.8(7)
S8	K3	C65	97.4(4)	S6	C14	S5	124.4(5)
S12	K3	K4	115.38 (10)	N3	C14	S5	109.7(6)
S12	K3	$\mathrm{S} 2^{2}$	158.66(14)	N3	C14	S6	125.8(6)
S12	K3	S8	103.00(10)	S5	C15	P4	117.1(5)
S12	K3	C65	115.7(4)	C13	C15	S5	110.7(6)
$\mathrm{S} 16^{2}$	K3	K4	101.00(12)	C13	C15	P4	132.2(6)
$\mathrm{S} 16^{2}$	K3	$\mathrm{S} 2^{2}$	100.86(11)	N3	C16	C17	113.2(7)
$\mathrm{S} 16^{2}$	K3	S8	141.03(15)	C16	C17	C18	110.0(8)
$\mathrm{S} 16^{2}$	K3	S12	70.00 (9)	S7	C19	P3	117.6(5)
$\mathrm{S} 16^{2}$	K3	C65	120.5(4)	C21	C19	S7	110.8(6)
O5	K3	K4	143.5(3)	C21	C19	P3	131.6(6)
O5	K3	$\mathrm{S} 2^{2}$	102.0(3)	S8	C20	S7	123.5(6)
O5	K3	S8	116.8(3)	N4	C20	S7	109.3(6)
O5	K3	S12	98.9(3)	N4	C20	S8	127.2(7)

O5	K3	S16 ${ }^{2}$	102.2(3)	N4	C21	P4	119.3(6)
O5	K3	C65	22.3(4)	C19	C21	P4	129.1(6)
C65	K3	K4	122.1(4)	C19	C21	N4	111.3(7)
S1 ${ }^{2}$	K4	K3	68.05(7)	N4	C22	C23	111.5(7)
S2 ${ }^{2}$	K4	K3	43.97(7)	C22	C23	C24	111.4(9)
S2 ${ }^{2}$	K4	$\mathrm{S} 1^{2}$	49.77(6)	S9	C25	P5	118.8(5)
S2 ${ }^{2}$	K4	C69	148.8(3)	C27	C25	S9	109.7(6)
S2 ${ }^{2}$	K4	C73	$71.2(3)$	C27	C25	P5	131.4(6)
S8	K4	K3	43.17(7)	S10	C26	S9	124.5(5)
S8	K4	S1 ${ }^{2}$	109.58(9)	N5	C26	S9	109.5(6)
S8	K4	$\mathrm{S} 2^{2}$	68.32(8)	N5	C26	S10	125.9(6)
S8	K4	C69	81.3(3)	N5	C27	P6	119.9(6)
S8	K4	C73	70.5(3)	C25	C27	P6	128.9(6)
O6	K4	K3	128.6(3)	C25	C27	N5	111.2(7)
O6	K4	S^{2}	148.9(3)	N5	C28	C29	112.6(7)
O6	K4	S2 ${ }^{2}$	161.2(3)	C28	C29	C30	110.7(8)
O6	K4	S8	95.3(3)	S11	C31	P6	118.7(4)
O6	K4	07	89.3(4)	C33	C31	S11	109.4(6)
O6	K4	O8	82.6(4)	C33	C31	P6	131.9(6)
O6	K4	O9	89.4(4)	S12	C32	S11	125.2(5)
O6	K4	C69	21.9(3)	N6	C32	S11	108.7(6)
O6	K4	C73	95.1(4)	N6	C32	S12	126.1(7)
O7	K4	K3	116.2(3)	N6	C33	P5	120.0(6)
O7	K4	$\mathrm{S} 1^{2}$	106.8(3)	C31	C33	P5	128.4(6)
07	K4	$\mathrm{S} 2^{2}$	82.7(3)	C31	C33	N6	111.4(7)
07	K4	S8	93.5(3)	N6	C34	C35	112.2(7)
O7	K4	C69	106.9(4)	C34	C35	C36	109.3(9)
07	K4	C73	23.2(2)	S13	C37	P7	118.9(5)
O8	K4	K3	136.5(3)	C39	C37	S13	109.0(6)
O8	K4	$\mathrm{S1}^{2}$	71.4(3)	C39	C37	P7	132.0(6)
O8	K4	$\mathrm{S} 2^{2}$	114.3(3)	S14	C38	S13	124.0(5)
O8	K4	S8	176.0(3)	N7	C38	S13	108.8(6)
O8	K4	O7	89.9(4)	N7	C38	S14	127.2(7)
O8	K4	C69	95.7(4)	N7	C39	P8	118.5(6)
O8	K4	C73	113.0(4)	C37	C39	P8	128.9(6)
O9	K4	K3	69.1(2)	C37	C39	N7	112.4(7)
O9	K4	S1 ${ }^{2}$	71.7(2)	N7	C40	C41	112.3(8)

O9	K4	S2 ${ }^{2}$	100.3(2)	C40	C41	C42	109.1(10)
O9	K4	S8	92.7(2)	S15	C43	P8	118.5(5)
O9	K4	07	173.8(3)	C45	C43	S15	108.4(6)
O9	K4	O8	83.9(3)	C45	C43	P8	133.1(6)
O9	K4	C69	73.4(4)	S16	C44	S15	123.7(7)
O9	K4	C73	162.9(3)	N8	C44	S15	109.9(7)
C69	K4	K3	107.7(2)	N8	C44	S16	126.3(9)
C69	K4	Sl^{2}	143.8(3)	N8	C45	P7	117.9(7)
C73	K4	K3	95.6(2)	C43	C45	P7	128.6(7)
C73	K4	$\mathrm{S} 1^{2}$	110.3(3)	C43	C45	N8	113.3(8)
C73	K4	C69	105.9(4)	N8	C46	C47	121.2(12)
C1	S1	$\mathrm{K} 4^{3}$	148.5(3)	C47S	C46S	N8	107(3)
C2	S1	$\mathrm{K} 4^{3}$	81.1(3)	C46	C47	C48	117.8(19)
C2	S1	C1	93.2(4)	C46S	C47S	C48S	97(3)
$K 3^{3}$	S2	$\mathrm{K} 4^{3}$	90.16(10)	O1	C49	C50	107.2(12)
C2	S2	$K 3^{3}$	115.5(3)	C51	C50	C49	104.7(12)
C2	S2	$\mathrm{K} 4^{3}$	96.4(3)	C52	C51	C50	100.1(14)
C8	S3	C7	93.9(4)	O1	C52	C51	108.2(12)
K1	S4	K2	87.05(9)	O2	C53	C54	105.5(12)
C8	S4	K1	115.9(3)	C55	C54	C53	110.5(13)
C8	S4	K2	110.7(3)	C54	C55	C56	106.3(14)
C14	S5	C15	92.8(4)	C55	C56	O2	108.7(14)
K1	S6	K2	84.27(8)	O3	C57	C58	104.9(14)
C14	S6	K1	110.0(3)	C57	C58	C59	98.5(14)
C14	S6	K2	120.3(3)	C60	C59	C58	105.2(14)
C20	S7	C19	92.6(4)	C59	C60	O3	106.9(16)
K3	S8	K4	91.06(10)	O4S	C61S	C62S	108(3)
C20	S8	K3	113.0(3)	C61S	C62S	C63S	107(2)
C20	S8	K4	127.9(3)	C64S	C63S	C62S	98(2)
C26	S9	C25	93.4(4)	O4S	C64S	K2	49.0(13)
C26	S10	K1	105.8(3)	O4S	C64S	C63S	111(2)
C32	S11	C31	93.7(4)	C63S	C64S	K2	114.6(19)
C32	S12	K3	105.0(3)	O5	C65	K3	46.9(10)
C38	S13	C37	93.2(4)	O5	C65	C66	101.4(17)
C38	S14	K1	115.7(3)	C66	C65	K3	102.8(14)

C44	S15	C43	$93.4(5)$	C67	C66	C65	$101.1(18)$
C44	S16	K3 ${ }^{3}$	$111.4(4)$	C68	C67	C66	$111(2)$
C9	P1	C1	$96.8(4)$	C67	C68	O5	$105.0(18)$
C7	P2	C3	$97.0(4)$	O6	C69	K4	$44.3(7)$
C13	P3	C19	$96.7(4)$	O6	C69	C70	$101.9(14)$
C21	P4	C15	$96.7(4)$	C70	C69	K4	$123.9(14)$
C33	P5	C25	$97.6(4)$	C69	C70	C71	$109.9(17)$
C27	P6	C31	$97.6(4)$	C70	C71	C72	$103.2(15)$
C45	P7	C37	$96.9(4)$	O6	C72	C71	$106.9(13)$
C43	P8	C39	$97.1(4)$	O7	C73	K4	$53.3(8)$
C49	O1	K1	$130.3(9)$	O7	C73	C74	$102.7(14)$
C49	O1	C52	$107.0(12)$	C74	C73	K4	$102.1(12)$
C52	O1	K1	$122.6(9)$	C73	C74	C75	$101.4(14)$
C53	O2	K2	$126.6(9)$	C76	C75	C74	$101.7(12)$
C53	O2	C56	$108.9(10)$	O7	C76	C75	$106.2(12)$
C56	O2	K2	$119.9(10)$	O8	C77	C78	$99.5(13)$
C57	O3	K2	$125.9(9)$	C77	C78	K2	$155.2(13)$
C57	O3	C60	$103.5(13)$	C77	C78	C79	$110.3(14)$
C60	O3	K2	$130.5(12)$	C79	C78	K2	$84.2(9)$
C64	O4	K2	$124.5(9)$	C78	C79	K2	$70.3(9)$
C64	O4	C61	108	C80	C79	K2	$148.5(13)$
C61	O4	K2	$112.4(9)$	C80	C79	C78	$99.3(14)$
C63	C64	O4	108	O8	C80	C79	$108.1(14)$
C62	C63	C64	108	O9	C81	C82	$107.1(13)$
C63	C62	C61	108	C81	C82	C83	$101.7(18)$
O4	C61	K2	$45.4(7)$	C82	C83	C84	$102.4(18)$
C62	C61	K2	$138.1(7)$	O9	C84	C83	$107.0(16)$

List of Figures

Figure 1.1. Backbone-substituted thiazole-2-thiones $\boldsymbol{I},{ }^{[4]} \boldsymbol{I},{ }^{[5]} I I^{[6]}$ ($R=$ alkyl or aryl groups) 1
Figure 1.2. Backbone-functionalized imidazole-2-ylidenes ($R=$ alkyl or aryl groups, $X=C l, B r$). 5
Figure 1.3. Anionic NHCs ($R=$ alkyl or aryl groups); the cationic parts are not shown 9
Figure 1.4. NICS(1) values of benzene and its hetero-analogs as well as frontier orbital energies of phosphinine and pyridine(taken from the literature, contribution of C. Müller) ${ }^{[45]}$.11
Figure 1.5. Selected examples of phosphinines LIII-LVII to illustrate motifs accessible via different synthetic methodologies. 12Figure 1.6. Benzenes LXX having a complete set of heteroatom substituents and phosphinines LXXI.15
Figure 1.7. $1 \lambda^{5}, 3 \lambda^{5}$-Diphosphinines according to Fluck $\mathbf{L X X X}{ }^{[69]}$ and Märkl LXXXI. ${ }^{[70]}$ 17
Figure 3.1. Literature known P-functional thiazoles $\left(R / R^{1} / R^{2} / R^{3}=\right.$ alkyl/aryl group). 23
Figure 3.2. Displacement ellipsoids plot (50\% probability) of molecular structure of 5 a (left), 5d (right) in the crystal. Hydrogen atoms have been omitted for clarity.26
Figure 3.3. Displacement ellipsoids plot (50 \% probability) of molecular structure of $\mathbf{6 a}$ (left), $\mathbf{6 b}$ (right) in the crystal. Hydrogen atoms have been omitted for clarity 28
Figure 3.4. Literature reported P-chloro compounds CI, $^{[14 a]}{ }^{\left[1 I^{[14 c]}\right.}$ and CIII,CIV. ${ }^{[85]}$ 29
Figure 3.5. Displacement ellipsoids plot (50 \% probability) of molecular structure of 7a (left), 7c (right) and 8 (middle) in the crystal. Hydrogen atoms have been omitted for clarity. 30
Figure 3.6. Literature-known P-chloro compounds CV, ${ }^{[84]}$ CVIII, ${ }^{[86]}$ CIX. ${ }^{[87]}$ 33
Figure 3.7. Displacement ellipsoids plot (50% probability) of molecular structure of 9 in the crystal. Hydrogen atoms have beenomitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$) C2-S2 1.6658(13), C1-P 1.8030(13), C7-P 1.7909(13), P-Cl2.0796(4), N1-C2-S1 108.80(9), S1-C1-P 129.52(7), C1-P-C7 101.95(6), C1-P-Cl 98.43(4), C7-P-Cl 101.47(4). 33Figure 4.1. Literature-known phosphabenezene $\boldsymbol{L}^{[88 c]}$ and phosphaalkenes CX ${ }^{[88 a]}$ and CXI. ${ }^{[88 e]}$35
Figure 4.2 Displacement ellipsoids plot (50 \% probability) of molecular structure of 10 in the crystal. Hydrogen atoms have beenomitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$): S1-C1 1.7460(11), S1-C2 1.7529(10), C3-C2 1.3489(15), P1-C2 1.8226(10), S2-C1 1.6649(10), P1-C5 1.8751(11), N1-C1-S1 107.82(7), S1-C2-P1 130.36(6), C3-C2-P1 121.46(8)... 36

Figure 4.3. Displacement ellipsoids plot (50\% probability) of molecular structure of compound 11 in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$): S2-C1 1.7380(10), S2-C3 1.7464(11), C2-C3 1.3542(14), P1-C3 1.8097(10), S1-C1 1.6661(11), P1-C5 1.8776(11), P1-Cl 2.0255(7), N1-C1-S2 108.60(7), P1-C3-S2 126.48(6), C2-C3-P1 123.27(8). ... 37
Figure 4.4. Possible metal-coordination modes of phosphaalkenes. ${ }^{[90 b, ~ 102]}$ 38
Figure 4.5. Displacement ellipsoids plot (50% probability) of molecular structure of compound 13 in the crystal. Hydrogen atomshave been omitted for clarity. Selected bond distances (\AA) and angles (${ }^{\circ}$): S1-C2 1.735(7), S1-C1 1.747(6), C1-C31.331(9), P1-C1 1.807(6), S2-C2 1.747(6), P1-C5 1.875(6), P1-Cl 2.069(2), P1-W 2.4671(15), N1-C2-S1 108.5(4), P1-C1-S1 121.5(3), C3-C1-P1 128.6(5)39
Figure 4.6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (THF, $121.5 \mathrm{MHz},-50^{\circ} \mathrm{C}$, $\simeq 5 \mathrm{~min}$) of an aliquot from the reaction mixture of the synthesis of14.41
Figure 4.7. ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (THF, $121.5 \mathrm{MHz},-30^{\circ} \mathrm{C}, 12 \mathrm{~h}$) of an aliquot from the reaction mixture of the synthesis of 14.
.. 4 41
Figure 4.8. Literature known dinuclear tungsten(0) complexes of 1,2- and 1,3-diphephetanes CXII ${ }^{[94]}$ and CXIII. ${ }^{[107]} 43$
Figure 4.9. Optimized structures for the proposed dinuclear tungsten(0) complexes of 1,3- and 1,2-diphosphetanes (by Frontera).
\qquad
Figure 4.10. Displacement ellipsoids plot (50 \% probability) of molecular structure of hydrolysis product 14 in the crystal. Hydrogen atoms have been omitted for clarity (Except H1 and H5). Selected bond distances (Å) and angles (${ }^{\circ}$): S1-C3 1.736(4), S1-C1 1.731(4), C1-C2 1.343(5), P-C1 1.831(4), S2-C3 1.666(4), P-C5 1.892(4), P-W 2.5095(10), P-O1 1.521(3), N1-C3-S1 108.7(3), P1-C1-S1 124.9(2), C2-C1-P1 125.5(3).46
Figure 5.1. Literature-known 1,4-dihydro-1,4-diphosphinines. 48
Figure 5.2. ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (THF, $25^{\circ} \mathrm{C}$) of the reaction mixture of 16. 49
Figure 5.3. Displacement ellipsoids plot (50 \% probability) of molecular structure of $\mathbf{1 6}$ (left) and 17 (right) in crystal. Hydrogenatoms have been omitted for clarity50
Figure 5.4Displacement ellipsoids plot (50% probability) of molecular structure ofof 17b (left) 17c (middle) and its arrangement(right) in the crystal. Hydrogen atoms have been omitted for clarity53
Figure 6.1. Literature known P, P^{\prime}-oxides of 1,4-dihydro-1,4-diphosphinines CXXIII ${ }^{[146]}$ and CXXIV. ${ }^{[115]}$ 55
Figure 6.2. Displacement ellipsoids plot (50 \% probability) of molecular structure of 18 in the crystal. Hydrogen atoms have beenomitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$): C2-S2 1.652(3), C1-P 1.795(3), C3-P 1.811(3), P-N21.633(3), P-O 1.479(2) N1-C2-S1 108.7(2), S1-C1-P 118.36(18), C1-P-C3 102.10(14), N2-P-O 113.49(14). 56
Figure 6.3. Literature known P, P^{\prime}-sulfides and selenides of 1,4-dihydro-1,4-diphosphphosphinines. ${ }^{[14 b, 119-120]}$.. 57

Figure 6.4. Displacement ellipsoids plot (50 \% probability) of molecular structure of 19 in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$): C3-S2 1.651(7), C1-P1 1.800(7), C2-P2 1.820(6), P1-N2 1.635(6), P2-N4 1.636(5), P1-S3 1.935(2), P2-S6 1.938(2) N1-C3-S1 108.5(5) N3-C11-S4 108.8(5), S1-C1-P1 117.4(4), C1-P-C10 101.7(3), N2-P1-S3 114.6(2). 58
Figure 6.5. Displacement ellipsoids plot (50 \% probability) of molecular structure of 20 in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$): C2-S2 1.669(2), C1-P 1.795(2), C3-P 1.813(2), P-N2 1.638(2), P-Se 2.0850(6) N1-C2-S1 109.57(17), S1-C1-P 116.83(13), C1-P-C3 101.34(10), N2-P-Se 117.25(8). 59

Figure 6.6. Literature known spirocyclic phosphoranes CXXVIIII ${ }^{[123]}$ and CXXIX. ${ }^{[14 b]}$.. 60
Figure 6.7. ${ }^{31}{ }^{\prime}\left\{^{\prime} \mathrm{H}\right\}$ NMR comparison of $\mathbf{1 7 a}, \boldsymbol{a}^{\prime}\left(T H F, 25^{\circ} \mathrm{C}\right)$ and $\mathbf{2 1 , 2 1}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$. 61
Figure 6.8. Displacement ellipsoids plot (50\% probability) of molecular structure (reduced) of 21 in the crystal. Hydrogen atoms have been omitted for clarity. 62
Figure 6.9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of reaction of $17 d$, d^{\prime} with $\mathrm{H}_{2} \mathrm{O}_{2}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right)$... 64
Figure 6.10. ${ }^{1} \mathrm{H}$ NMR of reaction of $17 d$, d^{\prime} with $\mathrm{H}_{2} \mathrm{O}_{2}\left(\mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right)$... 64
Figure 6.11. Reported MEP isosurface (0.002 a.u.) of compound \boldsymbol{X} (a) and HOMO plot of compound \boldsymbol{X}. (b). ${ }^{[14 b]} 65$
Figure 6.12. Literature known based S-methylated 1,4-dihydro-1,4-diphosphinine. ${ }^{[146]}$...................................... 66
Figure 6.13. $\left.{ }^{31}{ }^{2} 1^{1} \mathrm{H}\right\}$ NMR comparison of $\mathbf{1 7 a}, \boldsymbol{a}^{\prime}\left(\mathrm{THF}, 25^{\circ} \mathrm{C}\right)$ and 23,23' $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$. 67
Figure 7.1. Potentially reactive centers of the 1,4-dihydro-1,4-diphosphinine 17 ($R=$ Alkyl group). 68
Figure 7.2. Displacement ellipsoids plot (50% probability) of molecular structure of $\mathbf{2 4 b}$ in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$) P1-C1 1.828(4), P1-C2 1.817(4), C1-C2 1.350(5), P1-Cl 2.0973(13), C1-P-C2 98.32(17). ... 70

Figure 7.3. Literature known 1,4-dichloro-1,4-dihydro-1,4-diphosphinines CXXXV ${ }^{[119]}$ and XCI. $^{[14 a]}$.................... 71
Figure 7.4. The literature known 1,4-diphosphinines LXXXIV ${ }^{[71]}$ and XCII. ${ }^{[14 a]}$... 72
Figure 7.5. Displacement ellipsoids plot (50\% probability) of molecular structure of 25 in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$) P-C1 1.7390(15), P-C3 1.7494(15) C1-C3 1.406(2), C1-P-C3 100.02(7)... 72

Figure 7.6. Comparison of the endocyclic $P=C$ and/or $C=C$ bonds in the six-membered aromatic rings of benzene ${ }^{[129]}$, phosphinine L, ${ }^{[47 e, ~ 47 f, 128]}$ and 25. ... 73
Figure 7.7. UV/Vis spectrum of $25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ... 74
Figure 7.8: Comparative orbital energy manifolds for (left) 25' and (right) XCIIr ${ }^{[14 a]}$ from B3LYP/6-311+G** and (in brackets) B3LYP/6-311+G**(PCM:THF) calculations.
Figure 7.9.Composite CVs obtained on 22.0 mM in $\mathrm{THF}(0.2 \mathrm{M}$ [nBu4N][PF6], v=0.2 V•s-1; scans start from o.c.p. $=-0.69 \mathrm{~V}$). (---) Anodic scan through E(1). (-) Cycle in cathodic direction through E(2,3); (....) same but starting anodic. 76
Figure 8.1. Selected examples of 1,4-diphosphabarrelenes. . 79
Figure 8.2. Displacement ellipsoids plot (50\% probability) of molecular structure of 26 in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$) P1-C1 1.846(3), P1-C7 1.818(3), C1-C3 1.348(4), P1-C13 1.870(3), C13-C14 1.336(4), C1-P1-C7 95.63(13). .81
Figure 8.3. ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $27\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}\right)$. 82
Figure 8.4. Displacement ellipsoids plot (50% probability) of molecular structure of 27 in the crystal; right: selected view along the six membered ring. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$) P1-C1 1.82(2), P1-C7 1.839(18), P2-C2 1.833(19), P2-C8 1.819(16), C1-C2 1.36(3), C7-C8 1.34(2), P1-C13 1.892(18), P2-C14 1.880(18), C13-C14 1.53(2), C15-O1 1.20(2), C16-O2 1.20(2) , N3-C15 1.39(2), N3-C16 1.41(2), N3-C17 1.44(2) , C1-P1C7 96.9(9).
Figure 8.5. $V T^{31} P\left\{{ }^{1} H\right\} N M R$ (toluene) study of the reaction of 25 with 4-phenyl-1,2,4-triazoline-3,5-dione to give $\mathbf{2 8} .84$
Figure 8.6. Displacement ellipsoids plot (50% probability) of molecular structure ofof $30 a$ in the crystal. Hydrogen atoms have been omitted for clarity.C2-S2 1.662(4), C1-P 1.821(4), C3-P 1.822(4), C7-P 1.864(5), CI-C3 1.351(6), C1-P-C3 98.27(19).

Figure 8.7. Displacement ellipsoids plot (50% probability) of a cut-out of the 1D-polymer structure of 29b in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$) P1-C1 1.807(4), P1-C7 1.805(4), P2-C3 1.776(4), P2-C9 1.777(4), C1-C3, 1.376(6), C7-C9 1.373(6), P1-N3 1.744(4). C1-P1-C7 95.24(19), C3-P2-C9 96.6(9).
\qquad
Figure 8.8. Displacement ellipsoids plot (50 \% probability) of molecular structure of 30b in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$) P1-C1 1.81(2), P1-C7 1.813(19), P1-P3 2.246(6), P2-N3 1.691(16), P2-C3 1.856(19), P2-C9 1.845(19), C1-C3, 1.28(3). C1-P1-C7 96.6(8), C3-P2-C9 96.1(9), C1-P1-P3 106.6(7), P1-P3-C25 101.9(6).
Figure 8.9. Displacement ellipsoids plot (50% probability) of molecular structure of 31 in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$) P1-C1 1.793(2), P1-C7 1.811(2), P1-P3 2.2893(7), P2-N3 1.7048(18), P2-C3 1.831(2), P2-C9 1824(2), C1-C3, 1.364(3). C1-P1-C7 99.43(9), C3-P2-C9 97.55(9), C1-P1-P3 101.64(7), P1-P3-C25 105.88(7).

Figure 8.10. Displacement ellipsoids plot (50 \% probability) of molecular structure of 32 in the crystal (left: top-view, right_ in-plane-view without anions). Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$) PC1 1.757(5), P-C3 1.749(5), C1-C3 1.391(7), S2-C7 1.799(6), C1-P-C3 98.5(2). 93
Figure 8.11. The ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR spectrum of 33 b in thf-d ${ }_{8}$.
Figure 8.12. Displacement ellipsoids plot (50% probability) of molecular structure of 33b in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (${ }^{\circ}$) P1-C1 1.786(8), P1-C9 1.768(8), P2-C3 1.778(8), P2C7 1.771(9), C1-C3 1.371(11), C7-C9 1.380(11). C1-P1-C9 96.8(4), C3-P2-C7 97.0(4). .97
Figure 8.13. The ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR spectrum (THF) of the reaction e of dianion 33b with ${ }^{n}$ Bul (upper) and MeOTf (lower). 98

List of Schemes

Scheme 1.1. Phosphanylated imidazole-2-thiones. ${ }^{[11-14]}$ 2
Scheme 1.2. General synthetic route from 1,3-thiazole-2-thiones to thiazole-2-ylidenes ($R=$ alkyl or aryl groups). 3
Scheme 1.3. Synthesis of the only known free thiazole-2-ylidene (XVI) and its dimer (XVII) according to Arduengo. ${ }^{[15 a]}$3
Scheme 1.4. Backbone halogenation of NHC XVIII ($R=$ alkyl or aryl groups) according to Arduengo. ${ }^{[22 a]}$ 4
Scheme 1.5. Backbone-phosphanylation of imidazole-2-ylidene according to Gates. ${ }^{[29]}$ 5
Scheme 1.6. Synthesis of backbone-phosphanylated imidazole-2-ylidene XXXI according to Bertrand. ${ }^{[30]}$ 6
Scheme 1.7. Synthesis of the backbone-phosphanoyl substituted NHC metal complexes XXXIII and heterobimetallic-complexes XXXV according to Streubel. ${ }^{[11 b, 34]}$ 7
Scheme 1.8. Synthesis of bis-NHCs and its complexes according to Bielawski. ${ }^{[35 a]}$ 7
Scheme 1.9. Synthesis of bis-NHC having P(V) unit as linker XL and its silver-complex XLI according to Streubel. ${ }^{[40]}$Scheme 1.10. Synthesis of anionic imidazole-2-ylidenes XLV ${ }^{[42]}$ and XLVI ${ }^{[11 c]}$ according to Streubel.10
Scheme 1.11. Synthesis of 2,4,6-triphenylphosphinine L according to Märkl. ${ }^{[43]}$ 10
Scheme 1.12. Synthesis of the parent phosphinine LII according to Ashe. ${ }^{[49]}$ 11
Scheme 1.13. Sequential reactions of phosphinine L with nucleophiles and electrophiles. ${ }^{[55]}$ 13
Scheme 1.14. Reduction of phosphinine L according to Märkl. ${ }^{[61]}$ 13
Scheme 1.15. Synthesis of 2,2-biphosphinine dianions according to Mathey and Le Floch. ${ }^{[62]}$ 14
Scheme 1.16. Cycloaddition reaction of phosphinines ($R=$ alkyl or aryl groups). ${ }^{[60 a]}$ 14
Scheme 1.17. Synthesis of 1,2-diphosphinine LXXIV according to Bickelhaupt. ${ }^{[66]}$ 16
Scheme 1.18. Synthesis of 1,3-diphosphinine LXXVII according to Zenneck ($R=H / \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}{ }^{[67]}$ 16
Scheme 1.19. Synthesis of bis-phosphonium substituted 1,3-diphosphinine LXXIX according to Schmidpeter. ${ }^{[68]} 16$
Scheme 1.20. First synthesis of a 1,4-diphosphinine according to Kobayashi (LXXXIV). ${ }^{[71]}$ 18
Scheme 1.21. Reactions of 1,4-diphosphinine LXXXIV. ${ }^{[72]}$ 19
Scheme 1.22. Imidazole-2-thione based 1,4-diphosphinine according to Streubel ($R=$ alkyl groups). ${ }^{[14 a]}$ 19
Scheme 1.23. Reactivity studies of imidazole-2-thione-based 1,4-diphosphinine XCII ($R=$ alkyl groups). ${ }^{[73]}$ 20
Scheme 3.1. Synthesis of thiazole-2-thiones 4a, ${ }^{[74 a]} \mathbf{4 b}$, c. $^{[74 b]}$ 22
Scheme 3.2. Synthesis of C^{5}-phosphanylated thiazole-2-thiones 5a-e. 24
Scheme 3.3. Synthesis of bis(thiazolyl)phosphanes 6a,b 26
Scheme 3.4. Synthesis of P-chloro phosphanes (7a-c solv. $=E t_{2} \mathrm{O}, 7 d, e$ solv. $=\mathrm{CH}_{2} \mathrm{Cl}_{2}$). 29
Scheme 3.5. Literature-known P-cloro compound CV and some reactions. ${ }^{[84]}$ 32
Scheme 3.6. Synthesis of bis(thiazoly)chlorophosphane 9 33
Scheme 4.1. Strategic synthesis of potential starting material for 1,2-elimination reaction 35
Scheme 4.2. Dehydrohalogenation reaction of 11 with DBU. 37
Scheme 4.3. Synthesis of complex 13 39
Scheme 4.4. 1,2-Elimination reaction of 13 to give 14, and its dimerization to 15,15 40
Scheme 4.5. Synthesis of phosphaalkene complex 14. 45
Scheme 4.6. Literature-known synthesis of phosphaalkene tungsten complex and its trapping reaction with MeOH. ${ }^{[103 a]}$ 45
Scheme 5.1. Reaction of lithiated thiazole-2-thione with 7a. 49
Scheme 5.2. Deprotonation of the amino(chloro)phosphanyl thiazole-2-thiones 7a-d to form 17a, $a^{\prime}-d, d^{\prime}$...... 51
Scheme 6.1. Oxidation reactions of $17 a, a^{\prime}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$-urea, elemental sulfur and selenium. 55
Scheme 6.2. Reaction of 17a, a' with o-chloranil. 60
Scheme 6.3. Attempted oxidative desulfurization of $17 d, d^{\prime}$. 63
Scheme 6.4. Synthetic protocol for TTF. ${ }^{[124]}$ 65
Scheme 6.5. Reaction of $17 a, a^{\prime}$ with MeOTf. 66
Scheme 7.1. Synthesis and of 1,4-dichloro-1,4-dihydro1,4-diphosphinines (24a, $a^{\prime}, b, b^{\prime}$) 70
Scheme 7.2. Synthesis of the first thiazole-based 1,4-diphosphinine 25 71
Scheme 8.1. Reaction of 1,4-diphosphinine 25 with DMAD 80
Scheme 8.2. [4+2]-Cycloaddition reactions of 1,4-diphosphinine 25 to afford 27 and 28. 81
Scheme 8.3. Recently reported reactivity of a 1,4-diphosphinine towards a nucleophile electrophile sequence, according to Streubel. ${ }^{[14 c]}$ 85
Scheme 8.4. Addition of nucleophiles to 1,4-diphosphinine 25 and reactions with electrophiles to give $\mathbf{3 0 a}, \boldsymbol{b}$ ($i=E t_{2} \mathrm{O},-78^{\circ} \mathrm{C}$, $i i=$$E t_{2} \mathrm{O}$, r.t., iii $=E t_{2} \mathrm{O},-78^{\circ} \mathrm{C}, i v=E t_{2} \mathrm{O},-70^{\circ} \mathrm{C}$86
Scheme 8.5. Addition of "butyl lithium and methyl iodide to triphosphabenzene according to Lawless. ${ }^{[149]}$ 87
Scheme 8.6. Oxidation reaction of the mono-anion 29b with I_{2} to afford 31,31'. 90
Scheme 8.7. Reaction of 25 with MeOTf 92
Scheme 8.8. Reduction of a phosphinine according to Märkl. ${ }^{[61]}$ 94
Scheme 8.9. Reductive cleavage of P-C bonds to generate in situ tricyclic bis-phosphanide and its follow-up reaction with ${ }^{\text {n } B u l} .^{[14 c]}$

Scheme 8.10. Reduction of thiones to generate imidazole-2-ylidines accoring to Kuhn ($R, R^{\prime}=$ alkyl groups). ${ }^{[152]} 94$
Scheme 8.11. Two-fold reduction of 1,4-diphosphinine 25. ... 95
Scheme 8.12. Synthesis of the dianion 33b and subsequent reaction with ${ }^{n} B u l$ and MeOTf............................... 98
Scheme 9.1. Synthesis of the C-phosphanylated thiazole-2-thiones 5, 6 and their conversion to P-chloro derivatives 7 and 9.

