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Abstract

Remarkable experimental progress and theoretical advancements in the study of strongly corre-
lated systems have opened up new doors towards a better understanding of interesting states of
matter. Such states could possibly be used to develop novel technological applications based on
the principles of quantum mechanics. In recent years, the investigation of both complex solid
state and ultracold atom systems has lead to a number of fascinating discoveries with regards
to their non-equilibrium properties. One route to probe non-equilibrium physics is to consider
the evolution of open systems de�ned by the coupling to an external environment introducing
dissipation. Engineering the environment according to prede�ned requirements can then be
used to dynamically prepare states which are di�cult to access otherwise.

This thesis explores the dynamics of many-body open quantum systems aiming at under-
standing the e�ects resulting from the interplay of kinetic motion, interactions and dissipation
in di�erent physical settings. First, we build upon recent developments concerning the coupling
of ultracold atoms to optical resonators which are subject to photon losses. We show how the
dissipation can trigger an attractor dynamics towards a topologically non-trivial steady state
that is robust against perturbations. The numerically obtained full open system evolution en-
ables us to not only characterize in detail the steady state but also to analyze the features of the
approaching dynamics. Second, we study the propagation of two-time correlation functions in
interacting quantum spin-1/2 chains in contact with an environment causing dephasing. Pro-
vided with the numerically exact full time-evolution, we identify an algebraic scaling regime
where time-translation invariance breaks down and uncover the emergence of aging dynam-
ics. Finally, we study a system of interacting fermionic atoms in a one-dimensional lattice with
particle loss at the central site. There we report on the dissipation-induced deceleration of
the non-equilibrium dynamics known as the quantum Zeno e�ect. As in the majority of cases
quantum many-body systems are not solvable analytically, another central aspect of this thesis
deals with adapting numerical methods based on matrix product state algorithms to investigate
open quantum systems dynamics.
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Zusammenfassung

Bemerkenswerte experimentelle Fortschritte und theoretische Weiterentwicklungen in der Er-
forschung stark korrelierter Systeme haben neue Möglichkeiten zum besseren Verständnis in-
teressanter Materiezustände erö�net. Solche Zustände können möglicherweise genutzt wer-
den, um neue technologische Anwendungen zu entwickeln, die auf den Prinzipien der Quanten-
mechanik beruhen. In den letzten Jahren hat die Untersuchung sowohl komplexer Festkörper-
als auch ultrakalter Atomsysteme zu einer Reihe faszinierender Entdeckungen in Bezug auf ihre
Nichtgleichgewichtseigenschaften geführt. Ein Weg zur Untersuchung der Nichtgleichgewichts-
physik besteht darin, die Zeitentwicklung o�ener Systeme zu betrachten, die durch die Kop-
plung an eine externe Umgebung Dissipationse�ekte einführen. Die speziell zugeschnittene
Realisierung einer Umgebung nach vorde�nierten Anforderungen kann weiter dazu verwen-
det werden, Zustände dynamisch zu erzeugen, die sonst schwer zugänglich sind.

Diese Arbeit untersucht die Dynamik von o�enen Vielteilchen-Quantensystemen und zielt
darauf ab, die E�ekte zu verstehen, die sich aus dem Zusammenspiel von kinetischer Bewegung,
Wechselwirkungen zwischen einzelnen Teilchen und Dissipation in verschiedenen physikalis-
chen Situationen ergeben. Zuerst knüpfen wir an die jüngsten Entwicklungen im Kontext der
Kopplung von ultrakalten Atomen an optische Resonatoren unter zusätzlicher Berücksichti-
gung von Photonenverlusten an. Wir zeigen, wie die Dissipation eine Attraktor-Dynamik hin
zu einem topologisch nicht-trivialen stationären Zustandes auslösen kann, der robust gegen
Störein�üsse ist. Die numerisch gewonnene vollständige Zeitentwicklung des o�enen Systems
ermöglicht es uns, nicht nur den stationären Zustand im Detail zu charakterisieren, sondern
auch die Eigenschaften der Annäherungsdynamik zu analysieren. Außerdem untersuchen wir
die Ausbreitung von Zwei-Zeit-Korrelationsfunktionen bei wechselwirkenden Quantenspin-
1/2-Ketten die in Kontakt mit einer Umgebung stehen, die eine Dephasierung verursacht. Mit
Hilfe der numerisch exakten Zeitentwicklung identi�zieren wir ein algebraisches Verhalten, bei
dem die Zeittranslationsinvarianz zusammenbricht und die Entstehung von Alterungsdynamik
aufgedeckt wird. Schließlich untersuchen wir ein System von wechselwirkenden fermionischen
Atomen in einem eindimensionalen Gitter mit Teilchenverlust im Zentrum. Dort berichten
wir über die dissipationsbedingte Verzögerung der Nicht-Gleichgewichtsdynamik, bekannt als
Quanten-Zeno-E�ekt. Da in den meisten Fällen Vielteilchen-Quantensysteme nicht analytisch
lösbar sind, beschäftigt sich ein weiterer zentraler Aspekt dieser Arbeit mit der Anpassung
numerischer Methoden auf der Grundlage von Matrix-Produkt-Zustandsalgorithmen zur Un-
tersuchung der Dynamik o�ener Quantensysteme.
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Chapter1
Introduction

In many branches of natural sciences understanding the dynamics of systems coupled to an
environment is of paramount importance. For instance, to model local weather and climate
patterns [1], hydrodynamic �ow in bodies of water [2], pedestrian dynamics and tra�c �ow
[3], heat engines [4] and electric charge currents all require to take into account exchanges
with the surrounding. This is also the case in the context of quantum many-body systems,
where investigating their dynamics while in contact with large environments has attracted a
lot of attention in recent years [5–9]. In this setting, the environment introduces dissipation
e�ects for quantum systems, in analogy to, for example, the friction of a moving body or the
damping of electromagnetic waves in classical systems. More precisely, dissipation is de�ned
by the e�ect of a larger environment on a quantum system, which is then commonly termed an
open quantum system [6] to distinguish it from closed systems, which are completely isolated
from external e�ects.

Understanding the dissipative dynamics of large many-body systems is particularly interest-
ing and at the same time extremely challenging as di�erent mechanisms of similar magnitude
are competing. This is already the case in closed systems which exhibit comparable energetic
contributions of the particle motion and the inter-particle interaction enabling the emergence
of interesting collective phenomena such as superconductivity, quantum magnetism or Bose-
Einstein condensation [10]. These di�culties are now compounded by the addition of dissipa-
tive channels. This �eld of research has bene�ted greatly from the experimental developments
concerning ultracold atoms in optical lattices [11], which allows to simulate lattice models with
system parameters that are highly tunable up to remarkable accuracy and where dissipation can
be introduced in a controlled manner. This has been realized for example in form of a variable
light intensity in an imaging procedure [12, 13] or by o�-resonant excitation of Rydberg atoms
[14, 15].

While the additional inclusion of a dissipative coupling to an environment appears on �rst
sight as a further complication, it turns out, that non-equilibrium e�ects can also be utilized
constructively. For example, complex quantum states can possibly be generated with an en-
vironment specially tailored to the situation [16, 17]. Reaching these states is based on the
principle, that the associated time evolution is determined by an exponentially fast approach
of one or more steady states. The latter are stable against perturbations and depend on both
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CHAPTER 1. INTRODUCTION

the properties of the system and the environment. This even promises to pave the way for
producing new quantum materials possessing sought-after characteristics. One example being
the theoretical prediction of dissipatively prepared topological states of matter [18–20] which
are known to be very robust against decoherence and therefore are candidates for emerging
quantum technologies [21, 22].

A category of set-ups providing access to dynamical open system phenomena is given by cold
atoms that are coupled to the light modes of an optical cavity [23] with one fascinating highlight
being the experimental realization of the non-equilibrium dynamical Dicke phase transition
[24, 25]. In fact, in the course of this work we will show, how the dissipative dynamics of a
system that couples cold atoms, an optical cavity mode and the periodic driving �eld of a laser
beam can evoke a self-organization process towards a topologically non-trivial steady state.

Despite the great e�orts and considerable progress on both sides, theoretical and experimen-
tal, most results are focused on the description of steady states, while the time evolution of
these complex systems is still largely unexplored. One way to approach the characterization of
non-equilibrium dynamics is to describe the propagation of correlations in the system. Exper-
imentally, this is directly linked to the spectroscopy of strongly correlated electron materials
using very short laser pulses in pump-probe protocols [26–28] which, for example enabled the
detection of signatures of light-induced superconductivity [29]. From a theoretical point of
view, the description of closed interacting many-body quantum systems is already very chal-
lenging. Since a quantum mechanical state is described as a weighted superposition of all possi-
ble con�gurations, the dimension of the associated Hilbert space grows exponentially with the
number of particles. Although analytical solutions exist for some special cases, often computa-
tional methods are necessary to obtain numerically exact solutions. The di�culty of the task is
exacerbated for open quantum systems, as the evolving object is the density matrix, so that the
corresponding Hilbert space dimension is the square of the dimension of the original space. To
overcome this challenge, we adapt the time-dependent matrix product state algorithm [30] to
open quantum systems. In particular, this novel approach enables us to determine the propaga-
tion of correlation functions and the evolution of local observables. We can then quantitatively
characterize new evolution regimes and identify the processes governing the dynamics in large
interacting open quantum systems.

Outline of the thesis
Chapter 2: We begin with a thorough de�nition of open quantum systems and the notion of
time evolution in this context in Chap. 2. Throughout this work we consider systems, for which
the system-environment coupling can be assumed to be Markovian. We show how this con-
straint leads to the representation of the e�ective open system dynamics by the Lindblad quan-
tum master equation. The interplay of dissipative and Hamiltonian dynamics and the resulting
concepts of steady states and attractor dynamics are demonstrated using three examples.

Chapter 3: To lay the foundation for our theoretical study, we introduce the set of numerical
and analytical tools appropriate for investigating dynamics in strongly correlated systems in
Chap. 3. As a central element we describe the matrix product state (MPS) formalism and how
it is employed to e�ciently represent many-body quantum states in an exponentially large
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Hilbert space with polynomial complexity while keeping an accuracy close to machine pre-
cision. Building up on this, we further derive algorithms enabling the accurate computation
of the time evolution and the low-energy states of the system. This method is complemented
by the technique of adiabatic elimination, which provides an analytic access to the dissipative
dynamics in the strong dissipation limit and opens the way for further numerically less costly
e�ective numerics in this regime.

Chapter 4: In Chap. 4 we present two di�erent methods to simulate open Markovian systems
using matrix product states. To do so, a full evolution of the reshaped density matrix, a pro-
cess known as puri�cation, is compared to a Monte-Carlo wave function (MCWF) sampling of
quantum trajectories. We work out advantages, disadvantages and bene�cial application cases
for both approaches. Finally, we outline two competing schemes for adapting the stochastic
sampling of quantum trajectories to the calculation of two-time correlation functions, which
are powerful tools to capture the open system’s non-equilibrium dynamics. We motivate the
use of the entanglement production as a benchmark measure and compare both strategies in a
speci�c case study.

Chapter 5: Turning to the �rst physical results, we consider quasi-one-dimensional ultracold
fermionic atoms places inside a single mode optical cavity with photon loss. The atoms are cou-
pled to the cavity mode such that an arti�cial magnetic �eld is induced via this coupling. This
triggers a feedback mechanism between atoms and cavity �eld which leads to the emergence of
self-organized topologically non-trivial phases. These are the steady states of the dissipative at-
tractor dynamics which makes them robust against perturbations. Furthermore, we shed more
light on the dynamics by �nding a non-monotonic dependence of the time-scale for the steady
state approach on the dissipation strength, which we will attribute to the quantum Zeno e�ect.
We study this open quantum system numerically using the exact diagonalization method and
compare the results with analytical mean �eld considerations.

Chapter 6: Adapting matrix product state methods to the time evolution of Markovian open
system dynamics enables us to numerically exactly probe two-time correlation functions in
large many-body quantum systems. This allows us for the �rst time to investigate two-time
correlations in strongly interacting systems exposed to Markovian dephasing noise. Examin-
ing the two-time correlations of spin-1/2 operators in a one-dimensional chain of interacting
spins reveals that the evolution is a�ected signi�cantly by the dissipation. In fact, we could dis-
tinguish three successive dynamic regimes. At early times, the system is mostly in�uenced by
the Hamiltonian evolution of the initial state. In contrast to that, the dissipation evokes a very
surprising behavior in the long-time evolution which can be classi�ed as aging dynamics. For
strong spin couplings along the z-direction we further observe an intermediate regime, where
the time range of existence depends highly on the initial state. We will comment how this can
be employed to extract information of the Hamiltonian spectrum of the closed system, which
is hard to obtain otherwise. With the help of many-body adiabatic elimination techniques we
present a path to gain more physical insights regarding the decisive processes, which enables
us to identify the long-time dynamics as a di�usive evolution and provides the exponent of the
scaling in the aging regime analytically.
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CHAPTER 1. INTRODUCTION

Chapter 7: Finally, we present results on the dissipative dynamics of spinless fermions in a
one-dimensional optical lattice potential with nearest neighbor interactions in Chap. 7. Starting
from the ground state of the closed system, a sudden switch-on of a particle loss channel causes
a drain of particles at the central site. The time evolution, monitored by the time dependence
of the spatial resolved density, undergoes two distinct time regions before reaching the limits
of �nite system sizes. The evolution is computed numerically using the Monte-Carlo wave
function algorithm interfaced with the time-dependent matrix product state algorithm. The
early behavior is governed by the emptying of the central occupation of the initial state, given
by the uniform density distribution in the equilibrium ground state. Interestingly, a quasi-
stationary density distribution forms in the vicinity of the central lattice site in the subsequent
second time region. We compare the time scale of the emerging particle loss in dependence
of the dissipation for di�erent interaction strengths, including attractive, repulsive and non-
interacting settings. By doing so, we �nd an occurrence of Zeno behavior, which causes the
particle loss to counter-intuitively slow down for stronger dissipative couplings. We verify this
analytically by adiabatic elimination calculations in the strong dissipation limit.

4



Chapter2
Open quantum systems

This chapter is dedicated to the description of open quantum systems with a special focus
on their evolution in time. To this end, we start by introducing the Lindblad equation which
describes the system’s dynamics and outline the derivation including the conditions for its
validity. Then we supplement the introduced formalism with examples.

2.1. Open system dynamics and Markovian quantummaster equations
An open system S is a quantum system, which is in contact with another system E, called

the environment. The paradigm of open systems is to reduce the consideration exclusively to
the system part, including the e�ect of the environment on the latter, rather than investigating
the full composite set-up. Typically, the environment is chosen to be much larger than the
system, such as, for example, a reservoir with in�nitely many degrees of freedom. As a result,
the coverage of the full system is not feasible. Nevertheless, it is often possible to extract the
essential system dynamics, provided that certain assumptions are ful�lled. The Hilbert space
of the system is de�ned asHS and the one of the environment asHE , such that the full space is
given byHS ⊗HE . Consequently, the Hamiltonian, describing the dynamics of the full system
is a combination of parts acting only on system or environment as well as a coupling terms
between the two

H = HS ⊗ 1 + 1⊗HE +HSE. (2.1)

A natural description for this situation is o�ered by the notion of density matrices, which are
capable of representing statistical mixtures of pure quantum states |ψi〉 by

ρ =
∑

i

pi|ψi〉〈ψi|, (2.2)

where the individual states are weighted with the classical probabilities pi. The distribution
between system and environmental contributions in relation in terms of the Hamiltonian, the
density matrix and the Hilbert spaces is shown in Fig. 2.1. In this framework, quantum me-
chanical expectation values of an operator A are calculated using the trace over the full system
〈A〉 = tr[Aρ]. The density matrix of one subpart is further obtained by performing the par-
tial trace according to the Hilbert space of the other part, i.e. ρS = trE(ρ) for the system’s
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2.1 Open system dynamics and Markovian quantum master equations

system
<latexit sha1_base64="KfQbWJCMsd0OD96/gNvFkfhzc+M="></latexit><latexit sha1_base64="KfQbWJCMsd0OD96/gNvFkfhzc+M="></latexit><latexit sha1_base64="KfQbWJCMsd0OD96/gNvFkfhzc+M="></latexit><latexit sha1_base64="KfQbWJCMsd0OD96/gNvFkfhzc+M="></latexit>

environment
<latexit sha1_base64="WPpPE26Th1pqcJ9d4hZt0CVyM7U="></latexit><latexit sha1_base64="WPpPE26Th1pqcJ9d4hZt0CVyM7U=">AAADBXicjVLJSsRAEH3GfR/16CU4CJ4kI4IeB1zwIig4KqhIkmnHZpJO6PQM6uDZv/CqF2/i1e/wJ/wCD760UVBx6dCp6levXlUvQRrJzHjeU5fT3dPb1z8wODQ8Mjo2XpqY3M2Slg5FLUyiRO8HfiYiqUTNSBOJ/VQLPw4isRc0V/L4XlvoTCZqx5yn4ij2G0qeyNA3hI5Lk4dGnJmOUG2pExULZS6PS2Vv3rPD/e5UCqeMYmwlpWccoo4EIVqIIaBg6EfwkfE7QAUeUmJH6BDT9KSNC1xiiLktsgQZPtEm/w2uDgpUcZ1rZjY7ZJWIUzPTxSznulUMyM6rCvoZ7QvnhcUaP1boWOW8w3PagIqDVnGTuMEpGX9lxgXzvZf/ZNaJnnAHebe/796Qt2x3LclOLZKfR/hRb5URTaxpIy7WLLNBjcCu27aOixo7zW/jXcG1J1On9a0VVkUVij71NG1+S+yHz6Hy9fK/O7sL8xX624vl6k7xMAYwjRnM8faXUMUGtthHiDNc4wa3zpVz59w7D29Up6vImcKn4Ty+AixyoC0=</latexit><latexit sha1_base64="WPpPE26Th1pqcJ9d4hZt0CVyM7U="></latexit><latexit sha1_base64="WPpPE26Th1pqcJ9d4hZt0CVyM7U="></latexit>

full system:
<latexit sha1_base64="GZ+8k5FlaUr3+Sac2GGnqgCgGak="></latexit><latexit sha1_base64="GZ+8k5FlaUr3+Sac2GGnqgCgGak="></latexit><latexit sha1_base64="GZ+8k5FlaUr3+Sac2GGnqgCgGak="></latexit><latexit sha1_base64="GZ+8k5FlaUr3+Sac2GGnqgCgGak="></latexit>

open
<latexit sha1_base64="7ve3vyupEg8i/aUR0BmCiH3pDmo="></latexit><latexit sha1_base64="7ve3vyupEg8i/aUR0BmCiH3pDmo="></latexit><latexit sha1_base64="7ve3vyupEg8i/aUR0BmCiH3pDmo="></latexit><latexit sha1_base64="7ve3vyupEg8i/aUR0BmCiH3pDmo="></latexit>

{HS ⌦HE , HS + HE + HSE , ⇢}
<latexit sha1_base64="PiN/iTwnSyzDawuwB1XMd0Qhe5c=">AAADPHicjVJNSxxBEC3HmLga46pHL0MWQYjIbAiYo2A2rIeAYV0VHFl6ZtvdZueLnl7BDPOb/Af+ixy86MVbMMeccsjryhgw4kcPPVX96tWr6o8gi1RuPO9iwpl8MfXy1XRtZvb13Jv5+sLiXp6OdSi7YRql+iAQuYxUIrtGmUgeZFqKOIjkfjDasvH9E6lzlSa75jSTR7EYJOpYhcIA6tW3/cKPhRmGIiraZa/olK6fGhXL3L2Dt8o1t83hd9a2KtuxuK+HqV/26g1v3ePh3nealdOgauyk9Z/kU59SCmlMMUlKyMCPSFCO75Ca5FEG7IgKYBqe4rikkmaQOwZLgiGAjvAfYHVYoQnWVjPn7BBVIkyNTJdWMD+zYgC2rSrh57C/Mb8xNniwQsHKtsNT2ACKNVb8AtzQEIynMuOKedvLczL7QI+xA9vt47s34H3kXSuwM0bseYT/6n1CRAMbccSlFjMH0Ah4fcJ1XOqiU3sbtwoun0wfVrCVrJJUigJ6GtbeEvrBc2j+f/n3nb336034Xz80NnerhzFNy/SWVnH7G7RJbdpBHyGd0Xe6pCvn3Ll2fjg3f6nORJWzRHeG8+sP/Oi0tA==</latexit><latexit sha1_base64="PiN/iTwnSyzDawuwB1XMd0Qhe5c="></latexit><latexit sha1_base64="PiN/iTwnSyzDawuwB1XMd0Qhe5c="></latexit><latexit sha1_base64="PiN/iTwnSyzDawuwB1XMd0Qhe5c=">AAADPHicjVJNSxxBEC3HmLga46pHL0MWQYjIbAiYo2A2rIeAYV0VHFl6ZtvdZueLnl7BDPOb/Af+ixy86MVbMMeccsjryhgw4kcPPVX96tWr6o8gi1RuPO9iwpl8MfXy1XRtZvb13Jv5+sLiXp6OdSi7YRql+iAQuYxUIrtGmUgeZFqKOIjkfjDasvH9E6lzlSa75jSTR7EYJOpYhcIA6tW3/cKPhRmGIiraZa/olK6fGhXL3L2Dt8o1t83hd9a2KtuxuK+HqV/26g1v3ePh3nealdOgauyk9Z/kU59SCmlMMUlKyMCPSFCO75Ca5FEG7IgKYBqe4rikkmaQOwZLgiGAjvAfYHVYoQnWVjPn7BBVIkyNTJdWMD+zYgC2rSrh57C/Mb8xNniwQsHKtsNT2ACKNVb8AtzQEIynMuOKedvLczL7QI+xA9vt47s34H3kXSuwM0bseYT/6n1CRAMbccSlFjMH0Ah4fcJ1XOqiU3sbtwoun0wfVrCVrJJUigJ6GtbeEvrBc2j+f/n3nb336034Xz80NnerhzFNy/SWVnH7G7RJbdpBHyGd0Xe6pCvn3Ll2fjg3f6nORJWzRHeG8+sP/Oi0tA==</latexit>

HSE
<latexit sha1_base64="pfpXhMad4/FihjcMzepNHrDNn3U=">AAAC93icjVLLSsNAFD3GV+uz6tJNsAiuJBVBl4JWuhEq2gdokSSd1rFpEiapUEv/wa1u3IlbP8ef8AtceDJGQcXHhMm9c+655955OKEno9iynkaM0bHxiclMdmp6ZnZuPrewWI2CnnJFxQ28QNUdOxKe9EUllrEn6qESdtfxRM3p7Cbx2qVQkQz847gfikbXbvuyJV07JlQtnQ2OisOzXN5at/QwvzuF1MkjHeUg94xTNBHARQ9dCPiI6XuwEfE7QQEWQmINDIgpelLHBYaYYm6PLEGGTbTDf5urkxT1uU40I53tsorHqZhpYpVzXys6ZCdVBf2I9oXzSmPtHysMtHLSYZ/WoWJWKx4Qj3FOxl+Z3ZT53st/MptEW9xB0u3vu4/J29a7lmSHGknOw/2ot8eIItbRERNFzWxTw9HrS13HRIWdJrfxrmDqk2nS2toKreKnijb1FG1yS+yHz6Hw9fK/O9WN9QL9w838znH6MDJYxgrWePtb2EEJZfbh4gLXuMGt0TfujHvj4Y1qjKQ5S/g0jMdXRuSZ7Q==</latexit><latexit sha1_base64="pfpXhMad4/FihjcMzepNHrDNn3U="></latexit><latexit sha1_base64="pfpXhMad4/FihjcMzepNHrDNn3U="></latexit><latexit sha1_base64="pfpXhMad4/FihjcMzepNHrDNn3U=">AAAC93icjVLLSsNAFD3GV+uz6tJNsAiuJBVBl4JWuhEq2gdokSSd1rFpEiapUEv/wa1u3IlbP8ef8AtceDJGQcXHhMm9c+655955OKEno9iynkaM0bHxiclMdmp6ZnZuPrewWI2CnnJFxQ28QNUdOxKe9EUllrEn6qESdtfxRM3p7Cbx2qVQkQz847gfikbXbvuyJV07JlQtnQ2OisOzXN5at/QwvzuF1MkjHeUg94xTNBHARQ9dCPiI6XuwEfE7QQEWQmINDIgpelLHBYaYYm6PLEGGTbTDf5urkxT1uU40I53tsorHqZhpYpVzXys6ZCdVBf2I9oXzSmPtHysMtHLSYZ/WoWJWKx4Qj3FOxl+Z3ZT53st/MptEW9xB0u3vu4/J29a7lmSHGknOw/2ot8eIItbRERNFzWxTw9HrS13HRIWdJrfxrmDqk2nS2toKreKnijb1FG1yS+yHz6Hw9fK/O9WN9QL9w838znH6MDJYxgrWePtb2EEJZfbh4gLXuMGt0TfujHvj4Y1qjKQ5S/g0jMdXRuSZ7Q==</latexit>

{HS , HS , ⇢S}
<latexit sha1_base64="sEFYuEVzoTFg7q4aNkMybIAlZN8="></latexit><latexit sha1_base64="sEFYuEVzoTFg7q4aNkMybIAlZN8="></latexit><latexit sha1_base64="sEFYuEVzoTFg7q4aNkMybIAlZN8="></latexit><latexit sha1_base64="sEFYuEVzoTFg7q4aNkMybIAlZN8="></latexit>

{HE , HE , ⇢E}
<latexit sha1_base64="H3+CH3B6OikfuBcMRmZBUSXCFVY="></latexit><latexit sha1_base64="H3+CH3B6OikfuBcMRmZBUSXCFVY=">AAADFXicjVLLTttAFD0xUAItbUqXbCyiSl1UyKmQyhKpDcqmUpBIQIpRNHaGxIpfGk8ipVb2/AF/wbbddFexZd2f6Bew4HhwkAD1Mdb43jn33HPvPLw0DDLtOL8q1tLyyrPV6tr68xcbL1/VXm92s2SifNnxkzBRJ57IZBjEsqMDHcqTVEkReaE89safivjxVKosSOIjPUvlaSSGcXAW+EIT6te23dyNhB75Isxb837enL+3W3fGVaOk33Tn/Vrd2XHMsJ86jdKpoxztpPYbLgZI4GOCCBIxNP0QAhm/HhpwkBI7RU5M0QtMXGKOdeZOyJJkCKJj/odc9Uo05rrQzEy2zyohp2KmjbecB0bRI7uoKulntDecXw02/GOF3CgXHc5oPSquGcUvxDVGZPwrMyqZi17+J3NA9Iw7KLr9++41eXtm1wHZqUGK8/Dv631mRBEbm4iNpmEOqeGZ9dTUsdFhp8VtLBRsczIDWmGsNCpxqSiop2iLW2I/fA6Nx5f/1Ol+2GnQP9yt7x+VD6OKLWzjHW//I/bRQpt9+DjHJb7hu3Vh/bB+Wld3VKtS5rzBg2Fd3wI1V6WG</latexit><latexit sha1_base64="H3+CH3B6OikfuBcMRmZBUSXCFVY="></latexit><latexit sha1_base64="H3+CH3B6OikfuBcMRmZBUSXCFVY="></latexit>

Figure 2.1.: Sketch of a system embedded in a larger environment with the di�erent Hilbert
spaces, Hamiltonians and density matrices.

density matrix and ρE = trS(ρ) for the environment. Translating the Schrödinger equation
for the evolution of states i~∂t|ψ(t)〉 = H|ψ(t)〉 to the density matrix formalism results in the
von-Neumann equation for the evolution of the density matrix of the full system

d

dt
ρ(t) = − i

~
[H, ρ(t)] . (2.3)

The formal integration of Eq. 2.3 for time-independent Hamiltonians followed by tracing out
the environment, provides the time evolution of the density matrix of the system

ρS(t) = trE
[
U(t, 0) ρ(0) U †(t, 0)

]
, (2.4)

with the unitary time-evolution operator U(t, t0) = exp[−iH(t − t0)/~] of the full system.
However, by applying the trace over the environment, the e�ective dynamics in the reduced
system is no longer unitary and can therefore be considered as a form of dissipation. Due
to the usually large size of the environmental Hilbert space, an exact expression for the full
evolution is inaccessible in most of the cases of interest. Instead, it is desirable to limit oneself
to the temporal evolution of the system and to express the e�ects of the environment by system
operators. To achieve this, it is �rst assumed that the system and environment are decoupled
from each other at the beginning and that the environment remains constant in time

ρ(t = 0) = ρS(t)⊗ ρE. (2.5)

This assumption is realistic if the environment is, for example, given by a large reservoir that
is in good approximation una�ected by the dynamics of the system. This can then be used
to specify a dynamic map that calculates the system’s density matrix at a given point in time,
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which is formally de�ned by

V (t) :HS → HS

ρS(0) 7→ V (t)ρS(0) ≡ trE
[
U(t, 0) (ρS(t)⊗ ρE)U †(t, 0)

]
. (2.6)

While this formulation is generally valid, a great simpli�cation can be achieved by additionally
assuming that the dynamical map satis�es the condition of Markovianity, expressed by the
continuous version of the Chapman-Kolmogorov equation [6]

V (t1 + t2) = V (t2)V (t1), ∀t1, t2 ≥ 0. (2.7)

The essence of the above equation is that the future time evolution of the open system de-
pends solely on the current state and is insensitive to the past trajectory of the system in time.
From a physical point of view this consideration is valid if the investigated system-environment
coupling takes place on time scales, which are signi�cantly larger than any time scale of cor-
relations in the environment. That means, the relaxation of the environment is much faster,
than the dissipative reaction in the system. This becomes particularly evident in an alternative
derivation of the Lindblad equation from microscopic principles [6, 31]. Strictly speaking, the
posed condition is already required by the assumption in Eq. 2.5. In addition, Markovianity
enforces that there is no retroactive e�ect from earlier dissipative events on the current state
of the system. The Markov condition always needs to be carefully veri�ed. Nevertheless, in
realizations form the �eld of quantum optics and cold atoms, it is typically well-ful�lled, as, for
example, photon or particle losses happen fast compared to the system evolution and do not
act back on the latter at later times. However, if this condition is met, the family of dynamical
maps, parameterized by the time t, forms a dynamic semigroup {V (t) | t ≥ 0}, with the semi-
group property of Eq. 2.7. It was found by G. Lindblad in 1976 [32], that the most general form
of the generator L of the semigroup, de�ned by

V (t) = eLt, (2.8)

is expressed for a �nite dimensional Hilbert space by the following equation, known as the
Markovian quantum master equation in Lindblad form, or simply Lindblad equation

d
dtρS = LρS = − i

~
[HS, ρS] +D(ρS) (2.9)

with D(ρS) =
N2−1∑

j=1

γj

[
LjρSL

†
j −

1

2

(
L†jLjρS + ρSL

†
jLj

)]
.

The operators Lj are called Lindblad operators or jump operators and represent the e�ects of
the environment felt by the system. The superoperator L which generates the full Markovian
time evolution is commonly known as Lindbladian. While the �rst term of Eq. 2.9 is the von
Neumann equation for the unitary time development of an isolated system under the system
Hamiltonian HS , the operator D(ρ) introduces the Markovian dissipative nature of the open
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2.1 Open system dynamics and Markovian quantum master equations

system and is therefore called dissipator. The strength of the coupling to the environment is
speci�ed separately for each Lindblad operator by γj and de�nes the time scale of the respective
system-environment interaction process. The number N is the dimension of HS . All possible
operations on the system’s density matrix can be expressed in terms of a N2-dimensional basis
of operators, where the requirement of trace-preservation for V (t) reduces the total number
of Lindblad operators by one. That the trace-preservation is satis�ed by the Linblad equation
is directly shown by using the cyclic properties of the trace, yielding tr[LρS(t)] = 0, which is
consistent with ∂ttr[ρ(t)] = 0. Furthermore, the Lindblad equation preserves the hermiticity
and semi-positivity of density matrices [33]. As these conditions are required for a density
matrix to present a physical state as de�ned in Eq. 2.2, we can conclude that the evolution
under Eq. 2.9 of a physical density matrix again represents a statistical mixture of quantum
states. As the only measurable quantities in quantum mechanics are expectation values of
operators 〈A〉 = tr[ρA], the time evolution can be associated either with the operator A or the
density matrix ρ, i.e. 〈A〉(t) = tr[Aρ(t)] = tr[A(t)ρ]. In the case of time-dependent operators
the generator is denoted by L† and the time evolution is given by the so-called adjoint Lindblad
equation

d

dt
A(t) = L†A(t) =

i

~
[HS, A(t)]+

N2−1∑

j=1

γj

[
L†jA(t)Lj −

1

2

(
L†jLjA(t) + A(t)L†jLj

)]
. (2.10)

Since this work deals only with the description of the open system, we will drop the index
marking the system’s density matrix and will use ρ ≡ ρS from now on. Solving Eq. 2.9 provides
the time evolution of the density matrix, given by

ρ(t) = eLtρ(t = 0). (2.11)

The Lindblad superoperator L is a linear operator acting on the space of system density matri-
ces. Therefore, the exponential in Eq. 2.11 can be computed by transforming to the eigenbasis
of L. The time evolution is then calculated by evolving the eigenstates, weighted with their
overlap with the initial state at time zero. As L is a non-hermitian operator, the corresponding
eigenvalues are in general complex and can have a �nite imaginary part. However, the property
of the trace preservation of the Lindblad equation leads to restrictions on the eigenspectrum.
More precisely, the real part of the eigenvalues needs to be less than or equal to zero to prevent
an increase of the trace with time. At the same time, there needs to be at least one eigenstate
with vanishing eigenvalue such that the density matrix does not decay totally over time. Thus,
states satisfying the condition

Lρst = 0 (2.12)

do not evolve in time ρst(t) = ρst and are called steady states. Depending on the system, the
steady state can be unique or not. Indeed we will encounter situations with several steady states
later in this thesis. All other eigenstates ρj with the corresponding eigenvalues λj = −λRj + iλIj
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are subject to an exponential damping with time

ρj(t) = e−λ
R
j t+iλ

I
j tρj(0)

t→∞−−−→ 0, with λRj ∈ R+
0 , λ

I
j ∈ R. (2.13)

As a direct consequence of the last two equations, every state converges to a mixture of steady
states after su�cient long evolution times. The mixing weights are determined by the overlap
of each steady state with the initial state. In the case of unique steady states the system always
evolves towards a steady state – a behavior known as attractor dynamics.

2.2. Examples of open quantum systems
To build up an intuition for the Lindblad dynamics we continue by describing three di�erent

open quantum system realizations. The �rst two are analytically accessible models from the
�eld of quantum optics and are related to the work presented later. The third example shows
how cold atoms in optical lattices o�er a possible way to implement interacting many-body
open quantum systems.

2.2.1. Optical single-mode cavity with photon losses

Let us begin, by considering a single bosonic mode represented by the Hamiltonian H =
~ω0 a

†a. Here a and a† are annihilation and creation operators, which satisfy the bosonic com-
mutation relation [a, a†] = 1. The Hilbert space of this problem is spanned by the Fock states
de�ned by the occupation number n as |n〉, with the operator actions a|n〉 =

√
n|n − 1〉 and

a†|n〉 =
√
n+ 1|n + 1〉. This setting appears, for example, when studying a single mode of a

photon �eld in an optical cavity formed by two mirrors, facing each other. The open system
nature is introduced by adding photon losses to the model caused by the imperfect mirrors.
Consequently, the only Lindblad operator is here the photon loss operator a with the loss rate
κ so that the associated Lindblad equation is given by

d

dt
ρ(t) = −iω0

[
a†a, ρ(t)

]
+ κ

(
aρ(t)a† − 1

2
a†aρ(t)− 1

2
ρ(t)a†a

)
. (2.14)

The adjoint Lindblad equation from Eq. 2.10 for the photon number operator Na(t) = a†a(t)
together with the bosonic commutation relation, yields the di�erential equation ∂t〈Na(t)〉 =
−κ〈Na(t)〉 which is readily solved by

〈Na(t)〉 = e−κt〈Na(t = 0)〉. (2.15)

Here the unique steady state is the vacuum state |0〉 and the exponential decay of the occupation
number in Eq. 2.15 displays the attractor dynamics towards this state in time.

2.2.2. Driven two-level system

Let us now turn to a more involved example which shows the interplay and competition
between the unitary evolution de�ned by the system Hamiltonian of an open system with the
dissipation caused by the interaction with the environment. To this end, we present the example
of a single atom with two internal states |g〉 and |e〉, which can be identi�ed as the ground state
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2.2 Examples of open quantum systems

~!eg
<latexit sha1_base64="7yoDnquCTqjJjyDOGr5/jOGBVAc="></latexit><latexit sha1_base64="7yoDnquCTqjJjyDOGr5/jOGBVAc="></latexit><latexit sha1_base64="7yoDnquCTqjJjyDOGr5/jOGBVAc="></latexit><latexit sha1_base64="7yoDnquCTqjJjyDOGr5/jOGBVAc="></latexit>

|gi
<latexit sha1_base64="+Gl0WG1fihF9rFuiXQAn1TtjNWU=">AAADAnicjVLLSsNAFL2Nr7Y+GnXpJlgEVyUVQZfFF26ECvYBrcgkHWNomoTJtFCLO//CrW7ciVt/xJ/wC1x4ZkwFFR8TJvfOueeee+fhxIGfSNt+zhgTk1PTM9lcfnZufqFgLi7Vk6gvXF5zoyASTYclPPBDXpO+DHgzFpz1nIA3nO6uijcGXCR+FJ7IYcxPe8wL/XPfZRLQmVloIyotz2oLFnoBPzOLdsnWw/rulFOnSOmoRuYLtalDEbnUpx5xCknCD4hRgq9FZbIpBnZKI2ACnq/jnK4oj9w+WBwMBrSLv4dVK0VDrJVmorNdVAkwBTItWsM80IoO2Koqh5/AvmJeasz7scJIK6sOh7AOFHNa8Qi4pAsw/srspcxxL//J7AA9xw5Ut7/vXoK3rXftgx1rRJ2H+1FvDxEBrKsjFu1rpgcNR68Huo5FNXSqbmOsYOmT6cAybblWCVNFBj0Bq24J/eA5lL9e/nenvlEqwz/eLFZ20oeRpRVapXXc/hZV6JCq6EO9kBu6pTvj2rg3HozHd6qRSXOW6dMwnt4A9emdyA==</latexit><latexit sha1_base64="+Gl0WG1fihF9rFuiXQAn1TtjNWU="></latexit><latexit sha1_base64="+Gl0WG1fihF9rFuiXQAn1TtjNWU="></latexit><latexit sha1_base64="+Gl0WG1fihF9rFuiXQAn1TtjNWU="></latexit>

|ei
<latexit sha1_base64="SdyuJR3prXri1bMPBH2ypQ3V7WA="></latexit><latexit sha1_base64="SdyuJR3prXri1bMPBH2ypQ3V7WA="></latexit><latexit sha1_base64="SdyuJR3prXri1bMPBH2ypQ3V7WA="></latexit><latexit sha1_base64="SdyuJR3prXri1bMPBH2ypQ3V7WA="></latexit>

⌦cos(!pt)�x
<latexit sha1_base64="eGgxIS5B0N3UUEG1VVuclFmeAjk=">AAADE3icjVLLThRBFD00PniIjrpkU3FiAhvSY0x0OfFB3BggcYCEJpPqnqKtTL/SVUNE4pY/4C/YwoadYcsH8BN8AQtPFQ2JEoHqVN9b55577q1HXGXa2DA8GwvGHzx89Hhicmr6yczTZ63nL1ZNOaoT1UvKrKzXY2lUpgvVs9pmar2qlczjTK3Fw48uvrataqPL4pvdqdRmLtNCb+lEWkL9loiWcpVKESWlmYtK5/crYedFZHSay/6PfqsdLoR+iJtOp3HaaMZy2TpHhAFKJBghh0IBSz+DhOG3gQ5CVMQ2sUuspqd9XOEXppg7IkuRIYkO+U+52mjQgmunaXx2wioZZ81Mgdeci14xJttVVfQN7QXnT4+l/62w65Vdhzu0MRUnveJX4hbfybgrM2+YV73cJ3NAdIs7cN3evntL3nu/a0125RF3Hsl1vU+M1MSGPiLw2TNTasR+ve3rCPTYqbuNKwXhT2ZAK71VXqVoFCX1alp3S+yHz6Hz7+XfdFbfLHTor7xtdz80D2MCs3iFOd7+O3TxBcvsI8EeDnCIo2A/OA5+ByeX1GCsyXmJv0Zw+gcmQqRc</latexit><latexit sha1_base64="eGgxIS5B0N3UUEG1VVuclFmeAjk="></latexit><latexit sha1_base64="eGgxIS5B0N3UUEG1VVuclFmeAjk=">AAADE3icjVLLThRBFD00PniIjrpkU3FiAhvSY0x0OfFB3BggcYCEJpPqnqKtTL/SVUNE4pY/4C/YwoadYcsH8BN8AQtPFQ2JEoHqVN9b55577q1HXGXa2DA8GwvGHzx89Hhicmr6yczTZ63nL1ZNOaoT1UvKrKzXY2lUpgvVs9pmar2qlczjTK3Fw48uvrataqPL4pvdqdRmLtNCb+lEWkL9loiWcpVKESWlmYtK5/crYedFZHSay/6PfqsdLoR+iJtOp3HaaMZy2TpHhAFKJBghh0IBSz+DhOG3gQ5CVMQ2sUuspqd9XOEXppg7IkuRIYkO+U+52mjQgmunaXx2wioZZ81Mgdeci14xJttVVfQN7QXnT4+l/62w65Vdhzu0MRUnveJX4hbfybgrM2+YV73cJ3NAdIs7cN3evntL3nu/a0125RF3Hsl1vU+M1MSGPiLw2TNTasR+ve3rCPTYqbuNKwXhT2ZAK71VXqVoFCX1alp3S+yHz6Hz7+XfdFbfLHTor7xtdz80D2MCs3iFOd7+O3TxBcvsI8EeDnCIo2A/OA5+ByeX1GCsyXmJv0Zw+gcmQqRc</latexit><latexit sha1_base64="eGgxIS5B0N3UUEG1VVuclFmeAjk="></latexit>

pump
<latexit sha1_base64="RNFJ6wCSRIC1h8TnJv4QJyv313M="></latexit><latexit sha1_base64="RNFJ6wCSRIC1h8TnJv4QJyv313M="></latexit><latexit sha1_base64="RNFJ6wCSRIC1h8TnJv4QJyv313M="></latexit><latexit sha1_base64="RNFJ6wCSRIC1h8TnJv4QJyv313M="></latexit>

Hint
<latexit sha1_base64="7srp53ROsTHTx0U2oUaa+7/sl48="></latexit><latexit sha1_base64="7srp53ROsTHTx0U2oUaa+7/sl48="></latexit><latexit sha1_base64="7srp53ROsTHTx0U2oUaa+7/sl48="></latexit><latexit sha1_base64="7srp53ROsTHTx0U2oUaa+7/sl48="></latexit>

photon bath
<latexit sha1_base64="LO76b9uVrW1eG8JHItUMnUxbVoQ="></latexit><latexit sha1_base64="LO76b9uVrW1eG8JHItUMnUxbVoQ="></latexit><latexit sha1_base64="LO76b9uVrW1eG8JHItUMnUxbVoQ="></latexit><latexit sha1_base64="LO76b9uVrW1eG8JHItUMnUxbVoQ="></latexit>X

k

~!ka†
kak

<latexit sha1_base64="7lI8LjDomfLrMxHUHSqXc3BVIAs="></latexit><latexit sha1_base64="7lI8LjDomfLrMxHUHSqXc3BVIAs="></latexit><latexit sha1_base64="7lI8LjDomfLrMxHUHSqXc3BVIAs="></latexit><latexit sha1_base64="7lI8LjDomfLrMxHUHSqXc3BVIAs="></latexit>

Figure 2.2.: Full model con�guration of a two-level atom driven by a laser beam and coupled
to the environment of a photon bath.

and the excited state separated by the energy ~ωeg which is further coupled to a bath of photon
modes [31, 34, 35]. After the so-called rotating wave approximation [35], the corresponding
Hamiltonian reads

H = HA +Hint +HBath, (2.16)

with the contributions

HA =
~ωeg

2
σz,

Hint = ~
∑

k

gk

(
akσ

+ + a†kσ
−
)
,

HBath =
∑

k

~ωka
†
kak. (2.17)

Here, σz represents the third Pauli matrix for the two atomic states de�ned by σz = |e〉〈e| −
|g〉〈g| and σ+ = |e〉〈g| is the excitation and σ− = |g〉〈e| the deexcitation operator. The photon
modes labeled by the wave vector k are represented by the bosonic annihilation (creation)
operators ak(a†k). When reducing the consideration to a single photon mode, a scenario which
is, for example, arising for a photon �eld in an optical cavity, the model becomes the well-
known Jaynes-Cummings model [35]. In addition to the Hamiltonian from Eq. 2.16 the atom is
further exposed to a pump beam which acts as a classical coherent light �eld driving

Hdrive = ~Ω cos(ωpt)σ
x, (2.18)

with σx = σ+ + σ−. The full set-up is sketched in Fig. 2.2. Instead of working with the to-
tal Hamiltonian model, the photon bath is now regarded as an environment connected to the
two-level atom which plays the role of an open system. While also atomic transitions can be
induced by a reservoir with a �nite number of photons, the example here should be limited
to the photon vacuum and only takes into account the process of spontaneous atomic deex-
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2.2.2 Driven two-level system

citations accompanied by the emission of photons. For fast relaxation times of the bath after
the photon emission and negligible back-action of the photon on the atom, the atomic open
system dynamics can be assumed to be Markovian. Transforming the remaining atomic Hamil-
tonian, i.e. HA +Hdrive, to a frame rotating with the pump frequency ωp by the transformation
U = exp[iωpt/2σ

z] and tracing out the environment, the evolution of the two-level system is
described by the Lindblad master equation

d

dt
ρ(t) = −i∆

2
[σz, ρ]− iΩ

2
[σx, ρ] + γ

(
σ−ρσ+ − 1

2
σ+σ − ρ− 1

2
ρσ+σ−

)
. (2.19)

Here, the detuning ∆ = ωeg−ωp and the dissipation strength of the spontaneous decay γ have
been introduced. With the general representation of the system’s density matrix

ρ(t) = ρee(t)|e〉〈e|+ ρeg(t)|e〉〈g|+ ρge(t)|g〉〈e|+ ρgg(t)|g〉〈g|, (2.20)

the Lindblad equation can be reformulated in matrix form as

d

dt




ρee(t)
ρeg(t)
ρge(t)
ρgg(t)


 =




−γ iΩ
2

− iΩ
2

0
iΩ
2
−i∆− γ

2
0 − iΩ

2

− iΩ
2

0 i∆− γ
2

iΩ
2

γ − iΩ
2

iΩ
2

0







ρee(t)
ρeg(t)
ρge(t)
ρgg(t)


 . (2.21)

To access the full time evolution, the matrix of Eq. 2.21 needs to diagonalized and exponentiated.
For the case of resonant driving (∆ = 0) and an initial preparation of the atom in the ground
state |g〉 the occupation probability of the excited state is

ρee(t) =
Ω2

γ2 + 2Ω2

[
1− e−

3γ
4
t

(
cos(Ω′t) +

3γ

4Ω′
sin (Ω′t)

)]
, (2.22)

with the e�ective frequency Ω′ =
√

Ω2 − γ2/16. We show the time-dependence of ρee for dif-
ferent parameter combinations of driving and dissipation strength in Fig. 2.3. It becomes clear
that the time evolution is determined on the one hand by oscillations that can be identi�ed for
the dissipation-free case (γ = 0) as the known Rabi oscillations in a driven two-level system
[35]. Nevertheless, these oscillation are also a�ected by the dissipation, as the e�ective fre-
quency also depends on γ. Furthermore, there is an exponential attenuation, with a damping
strength that depends on the dissipative coupling. Namely, stronger dissipations here result in
a faster decay of the oscillations towards a stationary value. This value is the occupation of the
excited atomic state in the steady state, and is given by

ρee(t)
t→∞−−−→ Ω2

γ2 + 2Ω2
. (2.23)

It depends non-linearly on both, the driving Ω and the dissipation γ, which underlines the
interwoven contribution of both aspects. In summary, the presented model is an example of
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2.2 Examples of open quantum systems
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Figure 2.3.: Evolution of the excited state occupation of a driven two-level atom coupled to the
environment of a photon bath causing atomic deexcitations due to spontaneous
emission events. Rabi oscillations originating in the Hamiltonian motion are ex-
ponentially damped when approaching the steady state expectation value. The
initial state is here chosen as ρ(t = 0) = |g〉〈g|.

how dissipation e�ects and unitary Hamiltonian dynamics both have a substantial in�uence on
the attractor dynamics as well as on the steady state. Throughout this thesis we will present
results aiming to understand the interplay of Hamiltonian and dissipative dynamics, similar to
this simple example, in the context of large strongly-correlated many-body systems, where we
will uncover and interpret the occurrence of interesting phenomena, regarding both, the steady
state and the dissipative dynamics.

2.2.3. Cold atoms and optical lattices as a realization for interacting open many-body
systems

A physical situation in which strong interactions in many-particle systems as well as dissi-
pative e�ects occur, is given by the �eld of cold atoms subjected to optical lattice potentials.
As the open systems investigated in this thesis are mostly formulated with this realizations in
mind, we brie�y present the basics of the concept here and comment on possible in�uences of
Markovian noise.

The idea relies on using light-matter interaction to �rst cool neutral atoms to very low tem-
peratures, where quantum �uctuations become relevant, and to build a periodic lattice poten-
tial subsequently. The former is achieved by a technique known as laser cooling [36], which
employs absorption and spontaneous emission of a cloud of atoms, and can be followed by
evaporative cooling which removes the hotter fraction of atoms from the sample [37]. This
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2.2.3 Cold atoms and optical lattices as a realization for interacting open many-body systems

makes it possible to cool down atoms to the scale of a few nano Kelvin and observe phenom-
ena such as Bose-Einstein condensation [38] or a degenerate Fermi gas [39]. In contrast to
that, the creation of a potential felt by the cooled neutral atoms is implemented using the
conservative dipole interaction of a laser light-�eld with the electric dipole moment of the
atoms induced by the AC stark shift. As the energy shift is proportional to the intensity of
the classical beam, optical standing waves formed by counter-propagating laser beams create
space-dependent periodic potentials for the atoms [40]. Deep optical lattices enforce the atoms
to be well-localized in space and allow the expansion in Wannier functions, which enables
the restriction to discrete lattice sites. This method is known as the tight-binding approxi-
mation [41]. This enables the establishment of an analogy to the type of potentials felt by
valence electrons in a solid. However, cold atoms in optical lattice bear the advantage, that
the system properties like depth, geometry and e�ective dimensionality of the potential as
well as the inter-particle interaction strength [42–44] are highly tunable. Furthermore, the
lattice is not perturbed by lattice vibrations or potential defects. A two-dimensional optical
square lattice potential V (x, y) with the corresponding discrete lattice is shown in Fig. 2.4.

Figure 2.4.: Optical lattice potential V (x, y)
with localized sites of the tight-
binding approximation.

It has been found that cold atoms in optical lat-
tices are an ideal test environment for observing
a variety of interesting many-body quantum ef-
fects for both bosonic and fermionic atoms [45].
Examples include the experimental observation of
the super�uid to Mott insulator transition [46], the
BEC-BCS crossover [47, 48] or the implementation
of arti�cial magnetic �elds to simulate topological
quantum matter [49]. When extending the con-
sideration by the coupling to a Markovian envi-
ronment, the emergent attractor dynamics can be
used as a robust way to stabilize complex many-
body states as steady states of the corresponding
Lindbladian [50]. To achieve this, the form of the
bath is designed accordingly. Experimental setups
of open quantum systems with cold atoms have already been realized for example by coupling
the atoms to an external laser[12, 13] or by o�-resonant excitations of Rydberg atoms [14, 15].
While the preparation of long-lasting steady states is interesting for its own sake, this thesis
shows in a variety of instances, that also the approaching dynamics shows non-trivial behav-
ior. On the one hand, this determines the speed of the convergence to the steady state, but
also shows unexpected properties such as aging, known from the non-equilibrium relaxation
dynamics of glasses.
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Chapter3
Methods

This chapter contains the approaches and prerequisites, we will use for accessing the dynamics
of large interacting many-body system in contact with Markovian environments throughout
the rest of the thesis. First of all, we introduce matrix product states in Sec. 3.1, which puts us
in the position to analyze the full time evolution of large interacting complex systems quasi-
exactly with an accuracy close to machine precision. Important algorithms are the variational
ground state search in Sec. 3.1.3 and the time-evolution in Sec. 3.1.4. After that, we show, how
an exact diagonalization of the Lindblad matrix of the corresponding di�erential equation can
be employed for the simulation of small systems in Sec. 3.2. We also present opportunities
for stretching the limits, posed by the exponential growing Hilbert space, as far as possible.
Finally, we present an analytical tool in Sec. 3.3, going by the name of adiabatic elimination,
which is based on the separation of di�erent time scales for strong dissipations, allowing the
introduction of a perturbative approximation.

3.1. Matrix product state techniques
This section gives an introduction and overview over di�erent methods in the formulation

of matrix product states (MPS), where we focus in this chapter on the description of pure multi-
particle states and introduce an analogous formalism for density matrices in the next chapter.
The concept of matrix product states relies on the reduction of the large set of degrees of free-
dom of the quantum many-body wave function, which is growing exponentially with system
size, to the most important contributions. In fact, the state representation can be broken down
to polynomial complexity regarding the system size by exploring only the most relevant sub-
space of the Hilbert space. As it will turn out, the corresponding approximation is valid, if the
entanglement between two subsystems, created from a splitting of the original systems into two
parts, is small. This is, for example, ful�lled by low-dimensional ground states of short-ranged
gapped Hamiltonians, where the entanglement scales with the surface of the boundary instead
of the volume of the system[51]. Consequently, matrix product states are a helpful tool to ex-
press ground states of gapped one-dimensional models, as for example spin-chains [52] or the
(Bose) Hubbard model [53, 54], where the boundary between subsystems is zero-dimensional. A
variational systematic ground state search, the density matrix renormalization group (DMRG),
makes it possible to extract, among other things, ground state energies, excitation gaps and

14



3.1.1 Matrix product states and matrix product operators

correlation functions. Although the scheme is especially good for one-dimensional set-ups,
there also exist successful approaches to extend the method to two-dimensional problems [55–
57]. Another very impactful extension is the application of the MPS formalism to the real-time
dynamics of quantum states, where the wave function is approximately constrained to a sub-
space, that is adapted continuously during the course of time evolution [58]. Given that the
initial state is well represented by a MPS and that the entanglement growth for local Hamil-
tonians is limited by the Lieb-Robinson bound [59], a valid compression scheme for evolved
states is guaranteed up to some threshold time marking the limit of convergence. In the last
years a lot of e�ort has been devoted to the implementation of these methods in the form of
open source packages, including ALPS [60], Open Source MPS [61] and ITensor [62]. Here we
use the latter, due to its �exible interface, the e�cient implementation and the native support
of the inclusion of conserved quantities.

This subsection is structured such, that we begin with a general introduction of matrix prod-
uct states and matrix product operators. Then we discuss in Sec. 3.1.2, how the representation
can bene�t from conserved quantities originating from symmetries of the model, given by the
Hamiltonian for closed systems or the Lindbladian for their open counter parts. Thereafter, we
present a variational method to �nd the ground state known by the name density matrix renor-
malization group algorithm (DMRG) in Sec. 3.1.3, as well as an approach to access the system
dynamics in the language of MPS in Sec. 3.1.4. The description of the methods mentioned so
far is loosely oriented at the review article by U. Schollwöck of Ref. [30]. The discussion on
possibilities to extend the existing time evolution algorithms to Markovian non-equilibrium sit-
uations is moved to its own chapter (Chap. 4), where we show a variety of di�erent approaches
and comment on the computational e�ciency in di�erent scenarios.

3.1.1. Matrix product states and matrix product operators

The key problem addressed by the matrix product state formalism is to �nd an e�cient way
to encode the quantum many-body wave function, based on an approximation, which is well-
understood on physical grounds due to a direct link to the entanglement between two subsys-
tems. To emphasize this, let us begin by considering a bipartite system which can be decom-
posed into the two partsA andB, so that the common Hilbert space is given byH = HA⊗HB .
Regarding the complex amplitudes of a wave function as a matrix, allows for the rewriting of a
pure quantum state by performing a singular value decomposition (SVD)

|ψ〉 =
∑

ij

cij|i〉A ⊗ |j〉B SV D
=
∑

ijα

UiαSαV
†
α,j|i〉A ⊗ |j〉B. (3.1)

Here, the rectangular amplitude matrix of dimension Na × NB with matrix elements cij is
decomposed into a product of three matrices. The S matrix is a diagonal matrix

S = diag(s1, s2, . . . , smin(NA,NB)), (3.2)

with the dimension being the minimum of the dimensions of the two participating subspaces,
i.e. min(NA, NB). The diagonal elements, which are all real and non-negative, are called singu-
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3.1 Matrix product state techniques

lar values and in the following we will assume a descending order s1 ≤ s2 ≤ . . . ≤ smin(NA,NB).
The matrix U has the dimension NA × min(NA, NB) and the additional property U †U = 1.
In the case of NA ≤ NB , U is also a square matrix and therefore unitary. On the other side,
there is the matrix V † with dimension min(NA, NB) × NB , which also satis�es the equation
V †V = 1, and similarly, if NB ≤ NA, this matrix is unitary. Reformulating Eq. 3.1 leads to

|ψ〉 =

min(NA,NB)∑

α=1

sα

[(∑

i

Uiα|i〉A
)
⊗
(∑

j

V ∗jα|j〉B
)]
≡

min(NA,NB)∑

α=1

sα|α〉A ⊗ |α〉B, (3.3)

which is the well-known Schmidt decomposition with {|α〉A} and {|α〉B} forming an orthonor-
mal basis of the respective Hilbert subspaces A and B due to the properties of U and V †. One
of the remarkable features of the Schmidt decomposition is the direct connection to the von-
Neumann entanglement entropy SvN, a measure of the entanglement between two subsystems.
More precisely, using the reduced density matrix for one of the subsystems, de�ned as

ρA = trB [|ψ〉〈ψ|] =
∑

αβγ

sαsβ B〈γ|α〉A|α〉BA〈β|B〈β|γ〉B =
∑

α

s2
α|α〉AA〈α|, (3.4)

the entanglement entropy can then be written as

SvN = −tr [ρA log ρA] = −
r∑

α

s2
α log

(
s2
α

)
.

The limit of the sum is denoted by r, which stands for the number of non-vanishing singu-
lar values, which is equal to the rank of the original matrix. This relation of singular values
to the entanglement entropy provides the possibility for a physical intuition concerning this
representation of the quantum state. In addition to this, the reformulation in terms of the sin-
gular value decomposition o�ers another big advantage, as it makes it possible to establish a
well-controlled approximation scheme. A common way to compress a rectangular matrix is to
perform a singular value decomposition and to truncate the matrix S at a maximal dimension
D < r. Indeed, this truncation scheme generates the rank-D matrix with the lowest deviation
from the original matrix according to the Frobenius norm [30]. If the singular values decay
fast enough, such that the sum of truncated values is small, the combined size of the three
matrices in the matrix product can be reduced signi�cantly without loosing too much infor-
mation. This will prove to be very helpful in quantum many-body systems, where the Hilbert
space dimension grows exponentially. Apart from that, the same idea is used in a variety of dif-
ferent contexts, including image compression [63] and the principal component analysis from
statistics, aiming to �nd the best independent statistical variables [64].

In the following, we will make extensive use of singular value decompositions, resulting in
a large amount of tensors and tensor contractions. A tensor of rank r is de�ned as a r-fold
indexed object, so that a vector, for example, is a rank-1 or a matrix a rank-2 tensor. A set of
several tensors, which are connected via shared indices is known as a tensor network [65]. In
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3.1.1 Matrix product states and matrix product operators

order to keep a clean overview, a graphical notation o�ers a clearer view on the topic. In this
setting, a tensor is represented as a shape, for example a circle, and its indices are marked by
lines. A contraction of two tensors according to one index can the be visualized by connecting
the corresponding index lines. This gives rise to the representation of

a vector ~v = (~v)i ≡

i

, a matrix M = Mij ≡
i

j

, and a rank-3 tensor Tijk ≡
i

j k

.

(3.5)
Applying this to the singular value decomposition from Eq. 3.1 yields

cij =
i j

SV D
=

U S V †

i j

α α =
∑

α

UiαSαV
†
αj. (3.6)

Here, the matrices U, S and V † can be contracted by their shared index α.
With these prerequisites, we can now turn to the introduction of matrix product states. Let us

consider a one dimensional �nite system on a discrete lattice with L sites and d di�erent states
at each of these sites. The basis of the Hilbert space is given by B = {|σ1, σ2, . . . , σL〉} ≡ {|~σ〉}
with the local states σl ∈ {1, . . . , d} at site l. In the following, we present a calculation resulting
in a decomposition of the many-body wave function of a quantum state into local rank-3 tensors
with both, the usual tensor index notation and the diagrammatic approach. The starting point
is the representation of a general pure state as a superposition of basis states. The amplitudes
can then be identi�ed with a rank-L tensor

|ψ〉 =
∑

σ1,...,σL

cσ1,...,σL|~σ〉 =
∑

σ1,...,σL

σ1 σ2 σ3 . . . σL

|~σ〉, (3.7)

with the abbreviation |~σ〉 ≡ |σ1, . . . , σL〉. This tensor has dL elements, originating from the
local Hilbert space dimension d. In this thesis we follow the convention of using vertical lines
for the indices of the local basis, which we will also refer to as the physical or the site indices.
Also, a tensor with physical indices sticking out from the top are depicting ket-states like |ψ〉,
and tensors with site indices at the bottom are depicting their self-adjoint bra-states 〈ψ|. The
�rst step is to reshape the amplitudes by isolating the index from the �rst site σ1 and combining
the remaining indices to one large index, such that the tensor becomes a matrix of the form

|ψ〉 =
∑

σ1,...,σL

c(σ1)(σ2,...,σL)|~σ〉. (3.8)
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It is then straight-forward to apply a SVD to the now rectangular matrix giving

|ψ〉 SV D=
∑

σ1,...,σL

∑

a1

Aσ1
1,a1

(
SV †

)
a1,σ2,...,σL

|~σ〉 =
∑

σ1,...,σL

∑

a1

σ1 σ2 σ3 . . . σL
a1

A |~σ〉.

(3.9)
We denoted the matrix originally introduced as U by A for a reason which will become clear
soon. Also, A has been reshaped to a third order tensor by adding a dummy index of extend
one for later consistency. We now have separated the contribution from site one to the wave
function which is now covered by a single tensor, connected to the rest of the wave function via
the index a1 of the singular value matrix S. In contrast to the physical site indices, this index
type is known as a bond index, where we use the convention to write bond indices as subscripts
and site indices as superscripts. Repeating this procedure for the second site combining indices
as (a1, σ2), (σ3, . . . , σL) results in

|ψ〉 SV D=
∑

~σ

∑

a1,a2

Aσ1
1,a1

Aσ2
a1,a2

(
S̃Ṽ †

)
a2,σ3,...,σL

|~σ〉 =
∑

~σ

∑

a1,a2

σ1 σ2 σ3 . . . σL
a1 a2

A A |~σ〉.

(3.10)
Iterating this operation for all sites, we arrive at the form

|ψ〉 =
∑

~σ

Aσ1Aσ2Aσ3 . . . AσL|~σ〉 =
∑

~σ

∑

a1,...,aL−1

σ1 σ2 σ3 . . . σL
a1 a2 a3 aL−1

A A A A |~σ〉. (3.11)

In this equation we omitted the bond indices, so that the amplitude is ultimately given by a
product of indexed matricesAσl , which is why this representation is known as a matrix product
state. The dimension of these matrices can be deduced from the dimension of the U matrix in
the SVD, for an even number of sites one �nds (1 × d), (d × d2), . . . , (dL/2−1 × dL/2), (dL/2 ×
dL/2−1, . . . , (d×1). While this is an exact representation for an arbitrary pure state, the maximal
value for the dimension of bond indices close to the chain center grows exponentially with the
system size. However, assuming a su�ciently fast decay of the singular values associated with
each bond, it is possible to truncate the S matrix and to maximally keep D singular values at
each SVD application. The quality of this cuto� approximation is controlled by the truncation
error, sometimes also called truncation weight, de�ned at bond (l, l+1) as the sum of discarded
squared singular values

εl(D) =
∑

al>D

s2
al
. (3.12)

The truncation error is typically aimed to be kept of the order 10−10 or lower. Via the Schmidt
decomposition this approximation is directly linked to the entanglement. For example, if two
subsystems separated at the bond (l, l + 1) are given by a product state and therefore do not
show any entanglement, only one singular value needs to be kept. On the other hand, an equal
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3.1.1 Matrix product states and matrix product operators

superposition of states, which is maximally entangled, can not be approximated well by this
truncation scheme, as all singular value are equal and no hierachical order exists. As mentioned
earlier, from a physical point of view, the criterion of fast decaying singular values is ful�lled,
for example, by ground-states of one-dimensional short-ranged gapped Hamiltonians or the
evolution of initial states with with low entanglement between subparts.

Investigating the Aσl matrices from Eq. 3.11 reveals another relation. As the matrices corre-
spond to the matrix U from the SVD, we can conclude

∑

al−1,σl

U∗al′ ,(al−1,σl)
U(al−1,σl),al = δal,al′ ⇔

∑

σl

Aσl†Aσl = 1al,a′l ⇔
al−1

a′l−1 a′l

al

σl

A

A†

=

a′l

al

1 .

(3.13)
Tensors, ful�lling this condition are called left-normalized and if every local site tensor is left-
normalized, the state is a left-canonical MPS. In the construction above this relation is true for
all site tensors Aσl , which we illustrate from now on by the shared green color. Nevertheless,
the matrix product state representation is not unique. In fact, every two tensors connected by
a bond are subject to a gauge degree of freedom as
∑

σ1,...,σL

Aσ1 . . . AσL|σ1, . . . , σL〉 =
∑

σ1,...,σL

Aσ1X1X
−1
1 Aσ2X2X

−1
2 . . . XL−1X

−1
L−1A

σL|σ1, . . . , σL〉.

(3.14)
For example, another way to build an MPS, is to �rst isolate the site L on the right lattice
boundary, perform an SVD and assign the V † matrix as the site tensor BσL

aL,1
. Iterating this

gives the following MPS form

|ψ〉 =
∑

σ1,...,σL

σ1 σ2 . . . σL−1 σL

|~σ〉 SVD
=

∑

σ1,...,σL

∑

aL−1

σ1 σ2 . . . σL−1 σL
aL−1

B |~σ〉

= . . . =
∑

σ1,...,σL

∑

a1,...,aL−1

σ1 σ2 σ3 . . . σL
a1 a2 a3 aL−1

B B B B |~σ〉 =
∑

σ1,...,σL

Bσ1 . . . BσL|~σ〉. (3.15)

In contrast to the left-normalized MPS, theBσL matrices inherit the characteristics from the V †
matrix such that the following relation is satis�ed

∑

σl

BσlBσl† = 1al−1,a
′
l−1
⇔

al−1

a′l−1 a′l

al

σl

B

B†

=

a′l−1

al−1

1 . (3.16)
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3.1 Matrix product state techniques

This gauge choice is de�ned as right-normalized, corresponding matrices are colored red in
the tensor network diagrams and states constructed from right-normalized matrices only, are
dubbed right-canonical states. Another representation which will turn out to be quite useful is
the so-called mixed-canonical form. In this case a orthogonality center is introduced at some
site l, for which all sites left to this site are left-normalized and all sites right to it are right-
normalized

|ψ〉 =
∑

σ1,...,σL

Aσ1 . . . Aσl−1MσlBσl+1 . . . BσL|σ1, . . . , σL〉. (3.17)

This form is particularly handy, when calculating expectation values of local variables such as
Ôl =

∑
σl,σ

′
l
Oσl,σ

′
l |σl〉〈σ′l|. The properties for left- and right-normalized tensors from Eq. 3.13

and 3.16 makes it possible to reduce the calculation to tensor contractions, which only involve
the corresponding local tensor at site l

〈ψ|Ôl|ψ〉 =

l

l

Ôσl,σ
′
l =

l

l

Ôσl,σ
′
l . (3.18)

Having established the picture of single site operators as tensors, now brings us to a more
general approach to dealing with operators in the tensor network formalism. Indeed it is ben-
e�cial to develop a local tensor representation of operators which include contributions from
di�erent sites, as for example for interacting Hamiltonian and Lindbladian operators. In analogy
to the formalism for states, we introduce matrix product operators (MPO), where an operator
acting on all sites is decomposed into a product of local rank-4 site tensors in the following way

Ô =
∑

σ1,...,σL
σ′1,...,σ

′
L

c(σ1,...,σL),(σ′1,...,σ
′
L)|~σ′〉〈~σ| =

∑

σ1,...,σL
σ′1,...,σ

′
L

σ′1 σ′2 . . . σ′L−1 σ
′
L

σ1 σ2 . . . σL−1 σL

|~σ′〉〈~σ|

=
∑

σ1,...,σL
σ′1,...,σ

′
L

∑

b1,...,bL−1

W
σ1,σ′1
1,b1

W
σ2,σ′2
b1,b2

. . .W
σL,σ

′
L

bL−1,1
|~σ′〉〈~σ| (3.19)

=
∑

σ1,...,σL
σ′1,...,σ

′
L

∑

b1,...,bL−1

σ′1 σ′2 σ′L−1 σ′L

σ1 σ2

. . .

σL−1 σL

b1 b2 bL−2 bL−1W W W W |~σ′〉〈~σ|

To distinguish the local MPO tensors from MPS tensors, we will use squares instead of circles
in the tensor diagrams. It is now left to show, that this kind of representation is feasible in
practical applications, which means, that the formulation is possible and e�cient in terms of a
not too large bond dimension. We demonstrate a way to achieve this for a Hamiltonian, which
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3.1.1 Matrix product states and matrix product operators

couples only nearest neighbor sites by the operators P̂ and Q̂, given by

H =
L−1∑

j=1

PjQj+1, (3.20)

with PjQj+1 = 1⊗ . . .⊗1⊗ P̂ ⊗ Q̂⊗1⊗ . . .⊗1. Let us arbitrarily pick one of theses operator
strings corresponding to the interaction according to one bond. Building up the tensor product
of operators from the right lattice boundary at site L, there can be either a identity or a Q
operator. In the latter case, the P operator needs to follow immediately when going to the next
site. Otherwise, either another identity or theQ operator can follow. Therefore, there are three
distinct states during the creation process: (1) only identity have been encountered so far, (2)
the previous site was covered by a Q operator and (3) the PQ-coupling term has been passed
already and there are just unities up to the left boundary. This construction process of building
an operator string s with the three states is visualized by this computational graph

1

2 3

s = 1

s = Q̂ s

s = 1⊗ s

s = Q̂⊗ s
s = P̂ ⊗ s

s = 1⊗ s

,

where we have the two possible inputs 1 and Q as operators for site L, followed by the pro-
cedure outlined above. Another way to represent this is to use transition matrices, giving the
product H =

∏L
j=1W

j with

W [1] =
(
0̂ P̂ 1

)
, for 1 < l < L : W [l] =




1 0̂ 0̂

Q̂ 0̂ 0̂

0̂ P̂ 1


 ,W [L] =




1
Q̂

0̂


 . (3.21)

This is exactly what we were looking for to achieve a representation as in Eq. 3.19. Due to the
number of di�erent internal states during the construction, the matrix dimension and with it
the bond dimension of the MPO-formulation for this Hamiltonian is three, so that we can con-
clude that there exists a very e�cient MPO representation for nearest neighbor Hamiltonians.
This scheme can be straight-forwardly extended, for example, to external �eld or next-nearest
neighbor terms, which come at the cost of a larger bond dimension. We will use this method
later for example to implement the Hamiltonian for interacting spinless fermions in Chap. 7 or
the Lindbladian of a XXZ spin-1/2 chain with dephasing in Chap. 6.
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3.1 Matrix product state techniques

3.1.2. Quantum number conservation

While the MPS formalism is already a very powerful tool for the e�cient representation of
states, it can bene�t even further by adding symmetry considerations to the approach [30]. If
a Hamiltonian is invariant according to a symmetry transformation, the corresponding matrix
can be block-diagonalized into several symmetry blocks. In the Hamiltonian setting, each sym-
metry can also be associated with a conserved quantity, so that single symmetry blocks can be
labeled by the value of said observable de�ning a quantum number. Prominent examples are
the conservation of the total magnetization in a Heisenberg spin chain or the particle number
conservation in Hubbard-type models. We restrict ourselves here to Abelian symmetries, where
symmetry transformations of the same symmetry group commute. Nevertheless, non-Abelian
symmetries have also been studied within the framework of tensor networks [66] and promise
further computational improvement. For the Lindbladian the situation is more involved, and
will be discussed in more detail in Sec. 3.2, but also there special cases exist where symmetry
blocks can be connected to quantum numbers.

In this thesis we use the quantum number conservation features provided by the ITensor
libraries [62]. Here we also follow parts of the documentation concerning the encoding of
quantum numbers in the implementation [67]. In the tensor network language it is useful to
express this property via assigning additional information to the tensor indices. More precisely,
a quantum number is assigned to each index and the indices are grouped according to this num-
bers, respectively. A helpful concept is to regard the quantum numbers as a �ux which enters
or leaves a tensor through the indices. This suggests to also extend the graphical notation by
assigning arrows indicating the direction of the �ux. The convention here is that the quantum
number �ux of indices entering a tensor, as labeled by the arrows, is subtracted from the �ux
leaving the tensor. Furthermore, it is important that this �ux is well-de�ned for every allowed
tensor, meaning, that it is possible to classify the tensor to a single symmetry block by summing
over the impact of all indices. To demonstrate this implementation, let us consider two spin-1/2
sites coupled via the Hamiltonian H = Jx(S

x
1S

x
2 +Sy1S

y
1 ) + JzS

z
1S

z
2 , with Sα = ~

2
σα, where σα

are the Pauli matrices. Using the basis B = {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}, the Hamiltonian matrix
is block diagonal (here we choose ~2Jx = 2 and ~2Jz = 4)

H =

1

1 1

1 1

1







0

1

−1

1 0 −1

. (3.22)

This Hamiltonian conserves the total magnetization M =
∑

j S
z
j which can be used to de�ne

conserved quantum numbers, so that the two original four-dimensional indices have been dis-
tributed on the three arising quantum number sectors, denoted by the red numbers. Only index
combinations contribute to the tensor, which have the same incoming and outgoing quantum
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3.1.3 Ground state search - Density matrix renormalization group (DMRG)

number �ux, whose direction is visualized by the arrows. Consequently H has a well-de�ned
total �ux of zero. To give an example for the use of the diagrams, the application of the Hamil-
tonian to the up-down state is expressed by

H| ↑↓〉 =

↑↓

H
= | ↓↑〉 = ↓↑ . (3.23)

Applying this quantum number �ux to matrix product states for large systems, o�ers a neat
way of restricting the MPS manifold to certain symmetry sectors without having to go through
the exponentially large Hilbert space to select states exhibiting a certain quantum number.
Therefore, starting with an MPS in one sector ensures that it never leaves this sector, as long
as no operators with �nite �ux are applied. This is for example a typical scenario in the ground
state search or the time evolution algorithms presented in the next two sections. On the other
hand, switching between blocks with di�erent quantum number is computationally just as easy,
as only one operator with a well de�ned non-zero �ux divergence needs to be applied.

3.1.3. Ground state search - Density matrix renormalization group (DMRG)

We will continue by presenting the very successful applications of tensor network based
algorithms to the problem of �nding the ground state of a large many-body Hamiltonian. The
procedure can also be generalized to the optimization problem of �nding the eigenstate for the
lowest eigenvalue of an operator which can be e�ciently represented in MPO form, although
a general statement according the fast decay of singular values and therefore the quality of
the approximation can not be made. Originally, the method goes by the name density matrix
renormalization group (DMRG) and has been developed in the formalism of density matrices
by S. White [68]. However, it turned out that matrix product states naturally arise in the course
of the algorithm and a tensor network formulation is very rewarding, especially in terms of the
interpretability due to the link to the entanglement entropy [30, 69].

The optimization problem for �nding the ground state |gs〉 is de�ned as

|gs〉 = argmin|ψ〉
〈ψ|H|ψ〉
〈ψ|ψ〉 , (3.24)

with the constraint for the wave function to have unit norm, i.e. 〈ψ|ψ〉 = 1. The Hamiltonian
is assumed to be well-representable as an MPO with a not too large dimension DW of the bond
indices bl (cf. Eq. 3.19) and the wave function is represented in MPS form with bond dimension
D and local physical dimension d. Using the Langrange formalism for constrained optimization
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3.1 Matrix product state techniques

problems, the Langrange function is given by

〈ψ|H|ψ〉 − λ (〈ψ|ψ〉 − 1) =
∑

σ1,...,σL
σ′1,...,σ

′
L

∑

a1,...,aL−1

a′1,...,a
′
L−1

∑

b1,...,bL−1

[
A
σ′1∗
1,a′1

. . . A
σ′l−1∗
a′l−2,a

′
l−1
M

σ′l∗
a′l−1,a

′
l
B
σ′l+1∗
a′l,a
′
l+1
. . . B

σ′L∗
a′L−1,1

× Aσ1
1,a1

. . . Aσl−1
al−2,al−1

Mσl
al−1,al

Bσl+1
al,al+1

. . . BσL
aL−1,1

×W σ1,σ′1
1,b1

W
σ2,σ′2
b1,b2

. . .W
σL,σ

′
L

bL−1,1

]
,

− λ
{ ∑

σ1,...,σL

∑

a1,...,aL−1

a′1,...,a
′
L−1

[
Aσ1∗

1,a′1
. . . A

σl−1∗
a′l−2,a

′
l−1
Mσl∗

a′l−1,a
′
l
B
σl+1∗
a′l,a
′
l+1
. . . BσL∗

a′L−1,1

×Aσ1
1,a1

. . . Aσl−1
al−2,al−1

Mσl
al−1,al

Bσl+1
al,al+1

. . . BσL
aL−1,1

]
− 1

}

= − λ
{

− 1

}
, (3.25)

with the Lagrange parameter λ. We used here the mixed canonical form of Eq. 3.17 for the
MPS as also indicated by the colors (green = left- and red=right-normalized) in the diagram.
The number of tensor elements to be optimized is of the order of DL−1dL, so that this problem
has by far to many degrees of freedom to be tackled in its entirety. The key idea of the DMRG
algorithm for approaching this task, is to variationally updating a single local tensors at a site l
of the MPS to approximate the total minimum from Eq. 3.24, while keeping the rest of the MPS
�xed, which corresponds to the following local update scheme

l
←− argmin

l




L R

l

l

/
l

l




.

(3.26)
The full algorithm is then an iteration of successive single site minimizations. Exploiting the
properties of the mixed canonical state, the expression of the norm can be simpli�ed to the
contribution at site l as

〈ψ|ψ〉 =
∑

al−1,σl,al

Mσl∗
al−1,al

Mσl
al−1,al

. (3.27)

The expectation value of the Hamiltonian has, apart from the variational site tensor at site l,
three constant constituents:

• all the contracted tensors left from site l which we de�ne as Lal−1,bl−1,a
′
l−1

, as displayed
in Eq. 3.26,

• all the contracted tensors right from site l, de�ned as Ral,bl,a
′
l
, also marked in Eq. 3.26,
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3.1.3 Ground state search - Density matrix renormalization group (DMRG)

• and the local MPO tensor of the Hamiltonian at site l, which is W σl,σ
′
l

bl−1,bl
.

Using all the introduced objects, the Lagrange function from Eq. 3.25 can be rewritten as

∑

σl,σ
′
l

∑

al,bl,a
′
l

al−1,bl−1,a
′
l−1

L
al−1,a

′
l−1

bl−1
W

σl,σ
′
l

bl−1,bl
R
al,a
′
l

bl
Mσl∗

al−1,al
M

σ′l
a′l−1,a

′
l
− λ





∑

al−1,σl,al

Mσl∗
al−1,al

Mσl
al−1,al

− 1



 .

(3.28)
We can then summarize the in�uence of the tensors L, R and W [l] by executing all tensor
contractions of indices not connected to Mσl or Mσ′l , giving rise to an e�ective tensor

(Heff)a
′
l−1,σ

′
l,a
′
l

al−1,σl,al
≡
∑

bl−1,bl

L
al−1,a

′
l−1

bl−1
W

σl,σ
′
l

bl−1,bl
R
al,a
′
l

bl

⇔
a′l−1

σ′l

a′l

al−1

σl

al
Heff ≡

a′l−1

al−1

bl−1

a′l

al
bl

σ′l

σl

L RW . (3.29)

In fact this tensor is an e�ective Hamiltonian, giving the total energy of the system when con-
tracted with a local site tensor at site l. The minimal energy under the norm constraint is then
found by solving the Lagrange equation of the �rst kind. The requirement for the derivative
of the Lagrange function with respect to Mσl∗

al−1,al
to vanish, then translates to to the e�ective

eigenequation
Heff ·~v = λ~v, (3.30)

whereHeff is a matrix with the combined row [column] index i = (a′l−1, σ
′
l, a
′
l) [j = (al−1, σl, al))]

and ~v is the local MPS tensor Mσl
al−1,al

. Due to the hermiticity of the full many-body Hamilto-
nian, also Heff is hermitian, so that the matrix can be diagonalized and the optimal local tensor
corresponds to the eigenvector for the lowest eigenvalue. At the same time, this eigenvalue
is also the estimated ground state energy at this step of optimization. Although the compu-
tational complexity has been reduced remarkably, the dimension of the e�ective Hamiltonian
(dD2)× (dD2) can be quite large. Fortunately, we are just interested in the lowest eigenvalue
and its eigenvector for the ground state search, so that Lanczos type algorithms for �nding
only a certain part of the eigenspectrum can be employed in this part. We will comment on this
method in further detail in Sec. 3.2.

After having solved the constrained optimization problem for one site, we can apply this
consecutively on all sites. This is commonly referred to as sweeping through the lattice, where
one sweep starts with an entirely right-normalized state, optimizes the �rst site, uses an SVD
to left normalize it and then moves on to the second site. This is repeated until the right system
boundary at site L is reached. Then the process is inverted, so that the MPS is optimized ac-
cording to site L, which is then right normalized before the method moves on to site L− 1. A
sweep is �nished once the left boundary is reached again. The initial state is usually a random
MPS initialized with the chosen maximal bond dimension D, which never changes during the
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3.1 Matrix product state techniques

updates. Then the sweeping takes place until the change of the found ground state energy is
below a prede�ned threshold. One important practical detail is, that a construction of the L and
R tensors is computationally very expensive due to the many contractions at each site. As their
size (D2DW )× (D2DW ) allows us to keep them in memory, it is favorable to store the (L,R)l
pairs for each site l and update them with the new site tensors after the one-site optimization at
the corresponding site. This also makes it possible to recycle the L matrices generated during
a right sweep, as they reappear when sweeping left again. The same is true for the R matrices
when switching directions after sweeping left.

One problem arising in this single-site optimization concept is the possibility to get stuck in a
local minimum as the optimization is limited to the state manifold with �xed bond dimensionD.
A way to improve on this issue is to apply the local minimization on two sites simultaneously

l, l + 1
←− argmin




L R

/

 .

(3.31)
The ground state can be found analogously to the one-site algorithm, by rewriting the Lagrange
equation as a eigen equation and using a sparse matrix eigensolver yielding an optimal two-site
tensor. This tensor can be decomposed back to the two site tensors with the SVD

Mσl,σl+1
al−1,al+1

= Uσl
al−1,α

SαV
†
α,al+1

, (3.32)

so that when sweeping from left to right, site l is updated with the U matrix and site l + 1
with SV † and when sweeping from right to left site l + 1 is updated with V † and site l with
US. It is important to note here, that the new index α can have a dimension of up to dD so
that S needs to be truncated to recover the original bond dimension D. Although this step is
computationally more costly compared to the one-site optimization, the convergence is usually
faster, as the optimization is done in a higher-dimensional space from which the most in�uential
contribution is selected when truncating the singular values. For this reason, we will use this
method later for calculating ground states.

3.1.4. Time evolution - Time-dependent matrix product state algorithm (tMPS)

Another large area of applications of matrix product states is the time-evolution of states in
correlated one-dimensional quantum systems. We will present the unitary evolution of a pure
quantum state here and extend this to Markovian open quantum systems in Chap. 4. For a time-
independent Hamiltonian H , the time-evolved state at time t of a system which has initially
been prepared as |ψ(t = 0)〉 is obtained from the formal solution of the Schrödinger equation

|ψ(t)〉 = e−iHt/~|ψ(t = 0)〉. (3.33)

This problem can also be reformulated for �nding the ground state by performing an evolution
with an imaginary time β = it. Nevertheless, usually the DMRG algorithm from the previous
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3.1.4 Time evolution - Time-dependent matrix product state algorithm (tMPS)

Order Suzuki-Trotter decomposition

1st order e−iH∆t/~ = e−iHodd∆t/~e−iHeven∆t/~ +O(L∆t2)

2nd order e−iH∆t/~ = e−iHodd∆t/2~e−iHeven∆t/~e−iHodd∆t/2~ +O(L∆t3)

4th order e−iH∆t/~ = U(τ1)U(τ2)U(τ3)U(τ2)U(τ1) +O(L∆t5),

with U(τi) = e−iHoddτi/2~e−iHevenτi/~e−iHoddτi/2~

and τ1 = τ2 = 1
4−41/3 ∆t, τ3 = ∆t− 2τ1 − 2τ2

Table 3.1.: Suzuki-Trotter decompositions of the time-evolution operator for a short-ranged
Hamiltonian, which only connects nearest neighbor sites [30].

section shows better performance, and is therefore preferred. Tensor networks are one possi-
bility to encode the e�ect of the time evolution operator, which is infeasible to calculate exactly
in larger interacting systems. The basic concept is to restrict the states to a subspace of the
Hilbert space which is adapted during the course of time-evolution [58].

While it is possible to express a large range of Hamiltonians rigorously as MPOs with low
bond dimension, the exponentiation in the corresponding time evolution operator produces
again a large rank-L tensor

e−iHt/~ = exp


−

it

~
∑

~σ,~σ′

σ′1 σ′2 σ′L−1 σ
′
L

σ1 σ2

. . .

σL−1 σL

|~σ ′〉〈~σ|




=
∑

~σ,~σ′

σ′1 σ′2 . . . σ′L−1 σ
′
L

σ1 σ2 . . . σL−1 σL

|~σ ′〉〈~σ| . (3.34)

As a �rst step, the full operator is split up into many small time steps. With t = N∆t, the
evolution operator equals (exp[−i∆tH/~])N . There exist approximations for the exponential,
which are exact up to �rst or second order in the time step without further restrictions for the
model [70]. Another recent development has shown that it is possible to adapt the DMRG al-
gorithm to the problem of time-evolution using the projector on the tangent space of the MPS
manifold [71, 72], known as the time-dependent variational principle (TDVP). Nevertheless, the
task is simpli�ed substantially, when assuming short-ranged Hamiltonians which only couple
adjacent sitesH =

∑L−1
j=1 hj,j+1, appearing in many places across quantum many-body physics

in one dimension. In this case, each of the bond-Hamiltonians hj,j+1 commutes with the Hamil-
tonian of all other bonds, except its direct neighbors. It is advantageous to divide the full model
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Hamiltonian into the groups of odd and even bonds

H =

L−1
2∑

j=1

h2j−1,2j +

L−1
2∑

j=1

h2j,2j+1 ≡ Hodd +Heven, (3.35)

where [Hodd, Heven] 6= 0 but each bond summand of the even and odd sums commutes with all
other summands, allowing the exact decompositions e−iHoddt/~ =

∏
j e−ith2j−1,2j/~ and e−iHevent/~ =∏

j e−ith2j,2j+1/~. If the time step ∆t is then chosen to be su�ciently small, the full evolution
operator can be approximated by the Suzuki-Trotter decomposition [73, 74]. In fact, there exists
a whole family of associated decompositions, distinguished by the order of the exponent. Table
3.1 lists the �rst, second and fourth order decomposition. The time-evolution steps for a single
bond,

e−ihj,j+1t/2~ =
∑

σj ,σj+1

σ′j ,σ
′
j+1

e−ihj,j+1∆t/2~

σ′j σ′j+1

σj σj+1

|σ′jσ′j+1〉〈σjσj+1| (3.36)

are called gates and can be calculated either by diagonalizing and exponentiating the two-site
Hamiltonian or by using a very large order expansion, which is possible to do for tensors of
this size. The bond gate, as de�ned in Eq. 3.36, can be seen as a matrix with dimension (d2 ×
d2), resulting in a bond dimension of d2 when rewriting in terms of local operators using an
SVD. As a consequence, the contraction of this bond gate with two sites of an MPS, Mσj and
Mσj+1 , yields a two-site tensor, which, when divided into two sites again, has an increased bond
dimension of d2D. Therefore, similar to the two-site DMRG optimization, the growing bond
dimension eventually needs to be truncated to be computationally realizable. The process of a
bond gate application can be seen as an exploration of a subspace of the Hilbert space larger
than the one covered by the MPS with the �xed bond dimension D, followed by a projection
on the latter. Working again with MPSs in mixed canonical form, a full time step for the second
order formula from Table 3.1 starts with successively applying all odd gates starting from the
left lattice boundary with time step ∆t/2 while moving the orthogonality center to the left site
before every gate. This is followed by applying all even gates with ∆t with a pass of the chain
from right to left and then again an application of all odd gates from left to right with the time
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3.1.4 Time evolution - Time-dependent matrix product state algorithm (tMPS)

step ∆t/2. In terms of the diagram representation the order of gate application is expressed by

|ψ(t+ ∆t)〉 = e−iH∆t/~|ψ(t)〉 = e−iHodd∆t/2~e−iHeven∆t/~e−iHodd∆t/2~|ψ(t)〉+O(L∆t3)

=
∑

σ1,...,σ10

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

|~σ〉+O(L∆t3),

(3.37)

where the purple gates represent odd an the orange gates even bonds and the dotted arrow
illustrates the order of gate applications. An alternative for the second order decomposition, is
a back and forth sweep of bond gate applications through the lattice

e−iH∆t/~ =
L−1∏

j=1

e−ihj,j+1∆t/2~
1∏

j=L−1

e−ihj,j+1∆t/2~ +O(∆t2), (3.38)

which has the same order of accuracy in the time step. Regarding the convergence of the
method, we need to keep track of two error sources: On the one hand, there is the trunca-
tion error caused by the compression occurring after each gate application. The needed bond
dimension scales exponentially with the von Neumann entropy D ∼ exp[SvN(t)] [75], which
is restricted by the Lieb-Robinson bound [59] to a maximally linear growth in time for local
Hamiltonians [76]. Therefore, when starting with a low entangled state, as for example a prod-
uct state, there typically exists a threshold time for each de�ned maximally bond dimension,
after which the truncation error exceeds a prede�ned accuracy goal due to the increase of en-
tanglement. This time, which marks the time region of convergence for the cuto� error and
is sometimes referred to as run-away time, can be determined as the time where two identical
time evolution calculations for di�erent values of D begin to deviate. On the other hand, a sys-
tematic error is induced by the �nite time step, which controls the quality of the Suzuki-Trotter
representation. As a result there exists a trade-o� among these two error sources: Increasing the
order of the Suzuki-Trotter decomposition causes a lower time step error but at the same time
needs more gate applications and therefore more truncation procedures so that the truncation
error increases.

Let us present a case study to support this statement with data. For this purpose we consider
the XX spin-1/2 model

HXX = J

L−1∑

j=1

(
Sxj S

x
j+1 + Syj S

y
j+1

)
(3.39)

with Sα = ~
2
σα for a chain of spins with length L. We compute the time-evolution of the state

with all spins in the �rst half of the system aligned upwards and all spins in the second half
downwards |ψ(t = 0)〉 = | ↑ . . . ↑↓ . . . ↓〉. The local magnetization 〈Szj 〉 can be accessed ana-
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Figure 3.1.: Deviation of tMPS results from exact analytic calculations for a XX spin-1/2 chain
of length L = 100, J = 1 and initial state |ψ0〉 = | ↑ . . . ↑↓ . . . ↓〉. Left panels:
For a �xed time step, di�erent bond dimensions are compared and run-away times
(black markers) are determined accordingly. Right panels: Deviation for �xed bond
dimension and di�erent time step sizes are plotted. Both second (top panel) and
fourth (bottom panel) Suzuki-Trotter orders are shown.

lytically for the XX-model [77, 78]. We show the time dependence of the deviation of a tMPS
calculation from the exact solution in Fig. 3.1. First of all, we observe that the run-away times
as displayed by the black markers move to later times for larger bond dimension of the MPS.
Moreover, for a �xed time step (left panel) we see, that a larger order of the decomposition of
the time evolution operator results in earlier run-away times. On the other side, when keeping
the bond dimension constant, a smaller time step does not necessarily show a better accuracy,
but there rather exists a minimum of the deviation for intermediate time step sizes.

3.2. Exact diagonalization of the Lindbladian
For small systems it is possible to access the non-equilibrium properties of �nite open systems

by computing the full Lindbladian spectrum or parts of it by employing exact diagonalizaton
(ED) techniques. This method, which is generally suitable for solving �rst order di�erential
equation systems, is also well-established in computational many-body physics of closed quan-
tum systems, where it has been successfully used to describe low-energy features in the proxim-
ity of the models’ ground states, as well as for the time-evolution of the wave function [79, 80].
Among others, application include work on quantum magnetism [81–83] and fermionic models
such as the t-J model [84, 85] or the Hubbard model [86, 87]. For these examples, the di�erential
equation, generating the dynamics, is given by the Schrödinger equation i~∂t|ψ(t)〉 = H|ψ(t)〉,
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so that the problem breaks down to the diagonalization of the Hamiltonian matrix H . The �rst
step of this procedure is to �nd an e�cient way to represent the basis of the corresponding
Hilbert space H. For example, the basis states of a spin-1/2 chain model, given by a lattice of
spins with local basis Bi = {| ↑〉, | ↓〉} at site i, can be conveniently labeled using binary
numbers

| ↑↑↓↑↓↓〉 = |1101002〉 = |5210〉. (3.40)

The next step is to compute the matrix elements of the Hamiltonian, where it is often bene-
�cial to make use of the potential sparseness of the matrix in favor of memory and run time.
Once the matrix is set-up, it is usually the most practical approach to use an eigensolver of
an already implemented linear algebra backend like for example one of the various versions of
LAPACK (Linear Algebra Package). In the work presented in this thesis, we use the optimized
extension MKL (Math Kernel Library) provided by Intel. The usual approach of these packages
to extract the eigensystem of a matrix �rst uses a sequence of similarity transformations like
Jacobi or Hausholder transformations, followed by a QR decomposition. For details we refer
to chapter 11 of Ref. [88]. Now there are two possible paths to follow. Either one aims at the
full spectrum of the matrix, where suitable algorithms have a cubic space and time complexity
O(D3), with D being the dimension of the Hilbert space. In other cases, the consideration is
focused on a certain region of the eigenspectrum exclusively. The latter allows to use Lanczos-
type methods[89], where the original matrix is truncated to the so-called Krylov space, where
it has the form of a tridiagonal matrix. The Krylov space is engineered such that the lowest (or
largest) eigenvalue of the resulting matrix coincides with the one from the original matrix. In
this case, the most expensive part of the algorithm is the application of the Hamiltonian matrix
to a state vector. Repeating the steps of this procedure for the space orthogonal to the found
state of lowest energy additionally provides access to the excitation spectrum and also enables
an approximative determination of the system dynamics [90]. In Chap. 5, we determine the full
spectrum but will also comment on the relevance of the contribution of di�erent eigenstates. A
challenge, shared by all applications, is the exponential growth of the Hilbert space dimension
with the system size as for example the number of sites of a lattice L. For the spin model from
Eq. 3.40 with local dimension being two, the linear matrix extension grows with 2L, resulting in
already 32,768 states for only 15 sites, which already makes the numerical solution impractical
for this system size using standard algorithms without additional input. Recently, parallelizing
subparts of the diagonalization routines in terms of using distributed memory, for example in
the appearing matrix products, leads to notable advancements for the reachable system sizes
[91]. We will introduce further, more physically oriented, strategies to expand these boundaries
and soften the limitations.

Let us now shift to the time evolution of open system described by the Lindblad equation,
introduced in Eq. 2.9. This increases the complexity further, as the object of interest is the
density operator

ρ =
∑

m,n

ρmn|m〉〈n|, (3.41)

a matrix with a linear extend of dim(H). To be able to use diagonalization techniques for the
super operator L, we reshape the density matrix to vector form, which is then an element of
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3.2 Exact diagonalization of the Lindbladian

the super space formed by the tensor product of the original Hilbert space with its dual space
Hsuper = H⊗H∗. We denote elements of this space with double angular parentheses | · 〉〉. The
spaceHsuper is again a Hilbert space with the corresponding inner product 〈〈ρ1|ρ2〉〉 = tr(ρ†1ρ2).
In our case we sort the new basis such that the reshaped vector is given by stacking the matrix
rows. For a two-dimensional space this works as follows

ρ =
∑

m,n

ρmn|m〉〈n| −→ |ρ〉〉 =
∑

m,n

ρmn|m,n〉〉, and
(
ρ11 ρ12

ρ21 ρ22

)
−→




ρ11

ρ12

ρ21

ρ22


 . (3.42)

Matrix multiplications in the original space are also represented di�erently in the super space:
A · ρ→ (A⊗ 1) · |ρ〉〉 and ρ ·B → (1⊗ BT ) · |ρ〉〉. This notation enables us now to write down
the Lindblad equation in matrix form

d

dt
|ρ(t)〉〉 =

[
− i
~
H ⊗ 1 +

i

~
1⊗HT

+
∑

j

γj

(
Lj ⊗ (L†j)

T − 1

2
L†jLj ⊗ 1− 1

2
1⊗ (L†jLj)

T

)]
|ρ(t)〉〉. (3.43)

We summarize all terms of the matrix acting on the vectorized density matrix on the right hand
side, by de�ning them as the Lindblad matrix ML. In contrast to the Hamiltonian, this matrix
is in general not hermitian. In a scenario where we build up this matrix by iterating through
the basis states, it is also convenient, to specify the element-wise form of this equation given
by

d

dt
ρmn(t) = − i

~
∑

k

(Hmkρkn(t)− ρmk(t)Hkn) (3.44)

+
∑

j

γj
∑

k,l

[
(Lj)mkρkl(t)(Lj)

∗
nl −

1

2
(Lj)

∗
km(Lj)klρln(t)− 1

2
ρmk(t)(Lj)

∗
lk(Lj)ln

]
,

where each ρmn is the coe�cient of one basis vector in a linear combination representation of
|ρ〉〉. A crucial property of the Lindblad matrix is, that its linear extent is quadratic in the dimen-
sion of the system Hilbert space, i.e. ML ∈ CD2×D2 . This ampli�es the restrictions to small sys-
tems, originating in the exponential growth of the system space, even further. Formally, Eq. 3.43
can be solved by |ρ(t)〉〉 = exp(MLt)|ρ(t = 0)〉〉. To be able to calculate the exponential, we use
the numerical diagonalization of the Lindblad matrix yielding U−1MLU = diag[λ1, . . . , λD2 ],
so that the full time evolution can be determined as

|ρ(t)〉〉 = U diag
[
eλ1t, . . . , eλD2 t

]
U−1|ρ(t = 0)〉〉. (3.45)

At this point, it makes sense to recapitulate the features of the Lindbladian eigenspectrum in-

32



−2.0 −1.5 −1.0 −0.5 0.0
Re(λα)

−2

−1

0

1

2

Im
(λ

α
)

∆

Figure 3.2.: Eigenspectrum of the Lindblad matrixML of an openXX spin chain of sizeL = 4
dissipatively connected to a Markovian environment via the Lindblad jump oper-
ators Lj = Szj , with a dissipative coupling strength ~γ/J = 1. The dissipative
gap is denoted by ∆, and the points are plotted with an opacity of 20% so that
degenerate eigenvalues appear darker.

troduced in Sec. 2.1. As the Lindblad equation conserves the norm the real part of the complex
eigenvalues need to be non-positive, i.e.

{λα = −λRα + iλIα|λRα ∈ R+
0 , λ

I
α ∈ R}. (3.46)

To present an example, we investigate the spectrum of the XX spin-1/2 chain de�ned by the
Hamiltonian from Eq. 3.39 with a dissipator that introduces bulk dephasing noise represented
by the Lindblad operators {Szj }

D(ρ) = γ
∑

j

[Szj ρS
z
j − ρ/4]. (3.47)

The corresponding spectrum is shown in Fig. 3.2. Another feature of the spectrum portrayed in
Fig. 3.2 is the mirror symmetry of eigenvalues of the Lindblad matrix around the real axis. This
originates in the conservation of hermiticity by the Lindblad evolution, (Lρ)† = Lρ† which
guarantees, that if there is a eigenvector of ML with �nite imaginary part, there also exists a
eigenvector for the complex conjugated eigenvalue. As a consequence of these spectral prop-
erties, the contribution of an eigenstates of the Lindblad matrix ML to the dynamics, is either
restricted to a complex phase factor or is exponentially damped in time. Of special interest are
the states with the largest non-vanishing real part eigenvalue, a quantity also known as the
dissipative gap of the spectrum and denoted by ∆ in the spectrum of Fig. 3.2. These states are
the non-steady states which survive the longest and therefore have the largest impact on the
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3.2 Exact diagonalization of the Lindbladian

late dynamics in the approach of the steady state(s). At the same time, at least one vanishing
eigenvalue needs to exist, so that the state does not decay entirely. This can either be a unique
eigenstate or a manifold spanned by eigenstates of zero eigenvalues. The rigorous condition
for the uniqueness of the steady state requires the Lindblad matrix to be (i) irreducible and (ii)
aperiodic [92]. This, together with the Perron-Frobenius theorem [93] ensures a unique steady
state. Intuitively, the conditions mean, that all states are connected by the Lindbladian, so that
states from di�erent regions in state space do not evolve decoupled from one another, and that
there do not exist periodic structures in the dynamics leading to repeating circular movement
involving a subset of all states only. Importantly, not all of the states of a manifold of eigenstates
with vanishing eigenvalues translate to physical density matrices, de�ned by the properties

1. the density matrix is hermitian, ρ = ρ†,
2. it has unit trace, tr(ρ) = 1,
3. it is positive semi-de�nite, 〈ψ|ρ|ψ〉 ≥ 0 ∀ |ψ〉 ∈ H/{~0} .

Although there is no straight-forward way to �nd linear independent eigenstates ful�lling these
conditions, a few strategies can help to resolve the problem. One option to obtain one physical
state is to start with a certain valid state and calculate the time evolution for very long times
which then is essentially a physical stationary state, as the Lindblad dynamics conserves the
posed conditions. A more pragmatic approach, is to conduct a grid search over eigenstate
combinations, which is only a doable way if the degeneracy is small. One can improve on this
by incorporating the hermiticity and unit trace condition in the search. More systematically,
one could also use the given restrictions to build a linear equation system which needs to be
solved accordingly.

Nevertheless, before doing so, it turns out to be very rewarding to look out for symmetries of
the Lindbladian �rst. As we see later, this allows the block diagonalization of the correspond-
ing matrix, and therefore clearly breaks the condition of irreducibility and aperiodicity for the
uniqueness of steady states introduced above. Therefore, the goal is to split up the Lindbladian
in irreducible, aperiodic blocks with maximally one steady state. In Hamiltonian systems, this
has been proven to be a very impactful simpli�cation of the problem, as it allows to block-
diagonalize the Hamiltonian matrix and treat the single symmetry blocks independently. For a
unitary time evolution, the following equivalence relations hold

given φ ∈ R, J = J† : H = eiφJHe−iφJ ⇔ [J,H] = 0⇔ d

dt
〈ψ(t)|J |ψ(t)〉 = 0 (3.48)

That means, models that are invariant under symmetry transformations generated by an ob-
servable J , conserve this observable in the course of quantum dynamics. For Lindbladian sys-
tems the situation is more complicated [94, 95]. A symmetry of the Lindbladian is present, if
transforming the density matrix of the initial state with the corresponding symmetry trans-
formation, time-evolving the transformed state before applying the inverse transformation is
equivalent to the bare Lindblad dynamics, i.e.

e−iφJ
[
L
(

eiφJρ(t = 0)e−iφJ
†
)]

eiφJ
† ≡ U †LUρ(t = 0)⇔ L = U †LU (3.49)
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Here we de�ned the symmetry transformation U as applied to density matrices. Using the
introduced notation for operators acting on the super spaceHsuper of vectorized density matrices
|ρ〉〉, this is given by U = exp[iφ(J ⊗ 1− 1⊗ J∗)] [95]. Together with Eq. 3.49, one �nds that
the commutator [L, J ⊗ 1 − 1 ⊗ J∗] vanishes. As this commutator is not directly linked to
the time evolution of the operator J , as it is in unitary systems via the Heisenberg equation of
motion, it is not possible to draw conclusions about conservation laws. The latter is much rather
characterized by eigenstates corresponding to vanishing eigenvalues of the Lindblad master
equation for operators satisfying d

dt
J̃ = L†J̃ = 0, with J̃ = J ⊗ 1 − 1 ⊗ J∗. Nevertheless,

one special case, which we will also employ later in Chap. 5, is when an operator J commutes
with both, the Hamiltonian and all Lindblad jump operators. This satis�es the commutator
relation mentioned before and therefore guarantees a symmetry relation as in Eq. 3.49 but also
poses a conserved quantity. Independent of the existence of conservation laws, symmetries
always guarantee the possibility of decomposing the Lindblad matrixML into symmetry blocks
and therefore reduce the numeric complexity of the problem remarkably. Coming back to the
issue of degenerate zero-eigenvalue states, this decomposition can also help by engineering the
symmetry blocks such, that ideally only one zero-eigenvalue state exists per block. This state
is then necessarily a physical steady state, because it is attractively approached in time by a
physical initial state prepared in the part of the space of density matrices.

3.3. Many-body adiabatic elimination
An analytic approach to the time evolution of the density matrix generated by the Lindblad

master equation introduced in Eq. 2.9 can be obtained by focusing on the parameter regime,
where the dissipation plays the dominant role. A method exploiting this property is given by
the so-called many-body adiabatic elimination. This section gives a general introduction of
this method along the lines of [96] and outlines ways to extract information analytically as well
as shows how it can be employed to implement approximative numerical methods which are
computational more feasible than the full solution.

The �rst step is to identify the kernel of the dissipator D, also known as the dissipation-free
subspace, denoted by Λ0 and de�ned as

Λ0 ≡ {ρ | D(ρ) = 0} . (3.50)

Next, the full Lindblad superoperator L is split up into L = L0 +LV , where L0 is de�ned such,
that its application to every state in Λ0 is again an element of the dissipation-free subspace,

L0 = −i [HD, · ] +D, (3.51)
LV = −i [HV , · ] , (3.52)

where H = HD +HV and L0ρ
0 ∈ Λ0 , LVρ0 6∈ Λ0 ∀ρ0 ∈ Λ0.

Now, for strong dissipation strengths the dissipator becomes the dominant part of the model,
which results in the formation of bands of the eigenvalues of L0 in the complex plane perpen-
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3.3 Many-body adiabatic elimination
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Figure 3.3.: Numerically computed eigenspectra of the Lindbladian of the open XX spin-1/2
chain of length L = 4, de�ned by Eq. 3.39 and Eq. 3.47. The real part has been
rescaled as λ̃α,j = λα,j2/γ

2. For large dissipation strength the spectrum forms
bands, parallel to the imaginary axis which can be labeled by their shared real part
value, as displayed in the panels for ~γ/J = 2, 3.

dicular to the real axis. To emphasize this we plot the eigenspectrum of the open XXspin-1/2
chain, as de�ned in Eq. 3.39 and Eq. 3.47, for di�erent dissipation strengths in Fig. 3.3. It be-
comes clear that here the real parts of the eigenvalues will move to certain well-separated �xed
values as soon as the dissipation exceeds the Hamiltonian contributions, where the distance in
between bands depends on the dissipation strength. In this regime, we denote the eigenvalues
by λα,j = −λRα + iλIα,j with λRα ≥ 0 and λIα,j ∈ R, where the bands are labeled by α, accounting
for the shared real part of the eigenvalues. The naming order is consistent with the order of
the real parts, i.e. 0 = λR0 ≥ λR1 ≥ λR2 ≥ . . . ≥ λRN . The bands can be associated with higher
dissipative subspaces, which we denote by Λα accordingly. As a consequence, the operator L0

applied to states in a given subspace causes an evolution, which is limited to the respective
subspace, while LV enables the switching between di�erent spaces. This behavior is portrayed
in Fig. 3.4.
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Figure 3.4.: Dissipative subspaces, spanned by
the eigenvectors of L0 with equal
real part of the eigenvalues, λRα .

Using the projector Pα for the αth dissipative
subspace, all physical density matrices can be ex-
pressed as a superposition of its projection on the
di�erent subspaces ρ =

∑
α P

αρ. With the de�-
nition Vαβ ≡ PαLVP β , the full dynamics of the
density matrix can be rewritten as

d
dtρ = (L0 + LV) ρ =

∑

α

L0P
αρ+

∑

β 6=α
Vβαρ.

(3.53)
For times t � 1/γ, the time evolution is domi-
nated by states from the dissipation free subspace,
as all eigenvalues with non-vanishing real part,
cause an exponential decay of the associated states
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3.3.1 Kinetic Monte-Carlo method

in time. As a result, the higher dissipative subspaces can be adiabatically eliminated. A con-
sistent derivation of the e�ective evolution in Λ0 is presented in the appendix in section A.1,
yielding the �nal result in Eq. A.6

d

dt
ρ0
j(t) ≈ λ0,jρ

0
j(t)−

∑

k,l,α6=0

1

λα,k
V0α
j,kVα,0k,l ρ

0
l (t). (3.54)

Intuitively, this approximation takes into account the motion in the dissipation-free space orig-
inated in L0, as well as a transition to one of the higher subspaces, followed immediately by
a transition back to Λ0. But it neglects for example the coupling between di�erent higher
subspaces, as these processes scales with the inverse product of two eigenvalues with non-
vanishing real part.

While still describing the quantum motion of the system, Eq. 3.54 has the form of a classical
Master equation [6]

d

dt
~P = A~P , (3.55)

where ~P is a vector containing the weights associated with the coe�cients of each element of
the dissipation-free subspace, i.e. ~P = (ρ0

1, ρ
0
2, . . .)

T . The matrix A connects then elements of
Λ0 with the matrix elementsAjj = λ0,j−

∑
k,α6=0

1
λα,k
V0α
j,kVα,0k,j andAjl = −∑k,α6=0

1
λα,k
V0α
j,kVα,0k,l

and ful�lls the conditions for a stochastic matrix, given by Aij ≥ 0 for i 6= j and Aii ≤ 0 as
well as

∑
iAi,j = 0. The latter property allows the rewriting of Eq. 3.55 as

d

dt
Pj =

∑

l 6=j
(AjlPl − AljPj) . (3.56)

The time-discretizion of Eq. 3.55 ful�lls the criteria for a Markov chain [6]

prob
(
ρ0
j(ti)|ρ0

a0
(t0); ρ0

a1
(t1); . . . ; ρ0

ai−1
(ti−1)

)
= prob

(
ρ0
j(ti)|ρ0

ai−1
(ti−1)

)
. (3.57)

In the course of this thesis, one application of this formalism uses Eq. 3.54 to derive a system
of di�erential equations for correlators in spin-1/2 chains in a special case. The next section
presents an alternative route, by developing a sampling method for solving Eq. 3.55 numerically.

3.3.1. Kinetic Monte-Carlo method

The �ndings in this section will enable a modeling of the master equation by the means
of Monte Carlo averages over many di�erent time-dependent trajectories in phase space. The
probabilities of di�erent states, summarized in the vector ~P , are represented here by the weights
of di�erent elements of Λ0. This sampling procedure is know as the kinetic Monte Carlo algo-
rithm [97] and has repeatedly been applied to problems of non-equilibrium dynamics [98–100].
A �rst order approximation of Eq. 3.55 gives

Pj(t+ ∆t) = Pj(t) + ∆t
∑

l

(A)j,lPl. (3.58)
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3.3 Many-body adiabatic elimination

Algorithm 1: Kinetic Monte Carlo (KMC)
Input : # samples, dissipation strength γ, Hamiltonian parameters, t�nal, ∆t
Output: MC average of observable measurements

1 time steps← range of times from t = 0 to t�nal in steps of ∆t ;
2 for n← 1 to number of MC samples do
3 initialize initial state p;
4 for ti ∈ time steps do
5 measure observables and update MC average;
6 η ← rand[0, 1);
7 S = 0;
8 for q ∈ states /{p} do
9 S ← S + rate(p→ q);

10 if S > η then
11 p← q;
12 break;

The matrix A covers both, the gain and loss of Pj from and to other states of the state space.
The creation of a trajectory in time works then as follows. First, an initial state is de�ned, which
could be either a hand-selected state or just a random choice, followed by the computation of
the rates corresponding to the transfer from this state to any other state and to itself

rate(j → j) = 1−∆t
∑

l 6=j
Al,j (3.59)

rate(j → l) = ∆t(A)l,j. (3.60)

Then a new state is stochastically selected according to the rates in Eq. 3.59 and 3.60. Com-
putationally, it is the most e�cient way to draw a random number η ∈ [0, 1) and iteratively
add up the rates rate(j → l 6= j). When the accumulated sum surpasses the value of η, the
corresponding transition to the most recently added rate is realized, i.e. the state is updated
for the next time step t+ ∆t. When η is not reached after all possible changes have been pro-
posed, no update needs to be done. These steps are repeated until the desired time is reached.
If a su�ciently large number of trajectories is sampled, the Monte Carlo average of measured
time-dependent observables approaches the solution of Eq. 3.55. The algorithm is summarized
in Alg. 1. We will apply this algorithm for the XXZ spin-1/2 chains considered in Chap. 6.
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Chapter4
Matrix product state techniques for
Markovian open system dynamics

4.1. Introduction
In this chapter, we present how the concept of tensor networks, as introduced for Hamil-

tonian systems in Sec. 3.1.1, can be generalized to the description of the dynamics of open
quantum systems in contact with a Markovian environment. The time evolution is given by
the Lindblad master equation

d

dt
ρ = Lρ = − i

~
[H, ρ] +

∑

j

γj

(
LjρL

†
j −

1

2
L†jLjρ−

1

2
ρL†jLj

)
(4.1)

and therefore needs to be expressed in terms of the system’s density matrix ρ. A variety of
approaches for one-dimensional systems utilizes tensor network representation for an e�cient,
simulation of the dynamics [101]. Here we will outline two prominent strategies, both of which
will be applied to research problems from non-equilibrium many-body dynamics in Chap. 6 and
Chap. 7. The �rst idea, described in Sec. 4.2, consists of reshaping the density matrix to vector
form by de�ning an auxiliary space and parsing it to a matrix product state structure [30, 102,
103]. The time-evolution for short-ranged Lindbladians can then be formulated analogously
to the procedure portrayed in Sec. 3.1.4. This approach is closely related to the problem of
�nding quantum states at a �nite temperature [30, 102], which typically are mixed states and
therefore given by density matrices as well. Subsequent thereto, we present an alternative
pathway in Sec. 4.3, consisting of a Monte-Carlo average of stochastically sampled time-evolved
wave function trajectories, where the e�ect of the environment is included by a probabilistic
application of jump operators Lj , which interrupts the otherwise deterministic evolution [6,
104, 105]. This method has been interfaced with di�erent many-body time evolution techniques
[106] including the successful integration of matrix product state methods [107–109]. In this
context we will pay special attention to the computation of two-time correlation functions of
the form 〈Â(t2)B̂(t1)〉 and will present a comprehensive study, comparing the convergence of
two di�erent approaches in Sec. 4.4 as proposed by Breuer, Kappler and Petruccione [34] on
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4.2 Puri�cation of the density matrix

the one hand and by Mølmer, Castin and Dalibard [110] on the other hand.

4.2. Puri�cation of the density matrix
To be able to employ the techniques developed for quantum states from Sec. 3.1.4 for dissipa-

tive Lindblad dynamics, the density matrix needs to be encoded as an MPS. This can be achieved
by adding an auxiliary spaceHaux to the consideration, which is a copy of the original physical
spaceHphys [30]. Using Choi’s isomorphism [111], we can rewrite a density matrix ρ of a mixed
state in the physical space as a pure state |ρ〉〉 in the doubled Hilbert spaceHphys ⊗Haux

ρ =
∑

α

s2
α|α〉P P 〈α| −→ |ρ〉〉 =

∑

α

s2
α|α〉P ⊗ |α〉Q, (4.2)

where |α〉P ∈ Hphys and |α〉Q ∈ Haux. This procedure is known as puri�cation, where the
original density matrix is recovered by tracing out the auxiliary space, i.e.

ρ = trQ (|ρ〉〉〈〈ρ|) =
∑

α

s2
α|α〉P P 〈α|. (4.3)

The cyclic property of the trace leaves a freedom of choice for the auxiliary space such that
the transformation as presented in Eq. 4.2, is not unique. More precisely, the trace condition
is satis�ed for a general rewriting of the density matrix as |ρ〉〉 =

∑
α s

2
α|α〉P ⊗ U |α〉Q with U

being an arbitrary unitary transformation.

4.2.1. Puri�cation of a matrix product state

The �rst step in using the tMPS machinery, is to encode the initial puri�ed state as a matrix
product state. Given a basis {|σ1, . . . , σL〉} of a one dimensional lattice system with L sites, it
is straightforward to de�ne a basis state in the MPS formalism. As the state is a product state
of all sites, the bond dimension is zero and the corresponding puri�ed MPS reads

|σ1, σ2, . . . σL〉P P 〈σ1, σ2, . . . σL| −→ |σ1σ1σ2σ2 . . . σLσL〉〉. (4.4)

Here, the auxiliary sites are included in between the physical sites. The construction for a state
vector |ψ〉P with �nite bond dimensionD is more involved [102]. It begins with making a copy
|ψ′〉 of the original state and assign it to the auxiliary state, so that the puri�ed state is given by

|ψ〉P ⊗ |ψ′〉Q =
∑

σ1...σL
σ′1...σ

′
L

Mσ1 . . .MσLMσ′1 . . .Mσ′L|σ1, σ
′
1, . . . , σLσ

′
L〉〉

=
∑

σ1...σL
σ′1...σ

′
L

[
σ1 σ2 σ3 . . . σL σ′1 σ′2 σ′3 . . . σ′L |σ1, σ

′
1, . . . , σLσ

′
L〉〉
]
. (4.5)
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4.2.2 Time evolution of the puri�ed density matrix

Next, the tensors of physical and auxiliary sites are combined for all lattice sites by element-
wise multiplication

Mσl
al−1,al

M
σ′l
a′l−1,a

′
l
→ (MM)

σ1,σ′1
al−1,a

′
l−1,al,a

′
l
≡

σl
al−1 al ·

σ′l
a′l−1 a′l =

σl σ′l
al−1

a′l−1

al

a′l
. (4.6)

The sticking out bond indices are combined to a joint bond index by (al−1, a
′
l−1)→ λ̃′l−1. Start-

ing then from the left side, the physical and the auxiliary site are separated using a SVD on
the matrix obtained by regrouping the indices by (σl, λ̃

′
l−1) × (σ′l, λ̃

′
l). The index of the sin-

gular value spectrum, which we name λl is truncated at the maximal allowed bond dimension
D. Truncating also the merged external indices λ̃′l via SV D, yielding a new bond index λ′l.
Iterating this for all sites brings the puri�ed state to the form

|ρ〉〉 =
∑

σ1...σL
σ′1...σ

′
L

Aσ1Aσ
′
1 . . . AσLAσ

′
L|σ1, σ

′
1, . . . , σLσ

′
L〉〉

=
∑

σ1...σL
σ′1...σ

′
L

σ1 σ′1 σ2 σ′2 σ3 σ′3 . . . σL σ′L

λ1 λ′1 λ2 λ′2 λ3 λ′3 λ′L−1 λL
|σ1, σ

′
1, . . . , σLσ

′
L〉〉 .

To summarize this, having started from a pure state in MPS form with bond dimension D, the
puri�ed state of the corresponding density matrix has been created with the same bond dimen-
sion. It is important to notice here, that the truncations, used in the SVD steps, are quite drastic
approximations. Considering the bond SVD between sites σl and σ′l, the dimension is broken
down from dD2 to D. For the merged indices between sites σ′l and σl+1 the reduction is done
from D2 to D. That means, if we for example want to calculate the dissipative evolution of the
ground state of the Hamiltonian system found by DMRG, we are confronted with the follow-
ing fact. The accuracy of performing the ground state search with maximal bond dimension
D followed by a puri�cation including SVD truncations cutting the bond index back to D, is
equivalent to doing the ground state search with a bond dimension

√
D and purifying without

truncation. In other words, if we want to keep the accuracy of the ground state search, and
do not truncate in the course of the puri�cation, the bond dimension of the puri�ed MPS in-
creases quadratically. Therefore, the dissipative time evolution of higher entangled initial states
poses a scenario, where already the construction of the initial state is very costly so that the
Monte-Carlo wave function method, presented in the next section, can be advantageous.

4.2.2. Time evolution of the puri�ed density matrix

The Lindbladian’s action on the doubled Hilbert space is equivalent to the de�nition in Eq.
3.43 of Sec. 3.2 and is explained in detail there. Analogous to the Sec. 3.1.4, we now assume
only nearest-neighbor coupling of the Hamiltonian and add the constraint of allowing only
jump operators localized to a single site. Consequently, sites σl and σl+1 as well as σ′l and σ′l+1
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4.2 Puri�cation of the density matrix

are coupled via the Hamiltonian and sites σl and σ′l are coupled by the �rst term of the dissipator,
i.e. LiρL†i . The Lindbladian can then be split up into the parts

L =
L−1∑

l=1

L2l−1,2l,2l+1,2l+2 =
L−1∑

l=1

L4l−3,4l−2,4l−1,4l +
L−1∑

l=1

L4l−1,4l,4l+1,4l+2 ≡ Lodd + Leven, (4.7)

with [Lodd,Leven] 6= 0, but all summands of the odd and even Lindbladian commute. The associ-
ated time evolution operators exp[Lodd∆t] and exp[Leven∆t] can therefore be decomposed into
sets of four-site gates, acting on the physical and auxiliary part of two neighboring sites, repre-
sented by the four indices in Eq. 4.7 . Just as in the unitary time evolution case, we can now use
a Suzuki-Trotter decomposition, for example with a second order accuracy, and approximate
the evolution of the puri�ed density matrix by one time step as a sequence of gates

|ρ(t+ ∆t)〉〉 = eL∆t|ρ(t)〉〉 = eLodd∆t/2eLeven∆teLodd∆t/2|ρ(t)〉〉+ O(L∆t3)

=
∑

σ1...σL
σ′1...σ

′
L

σ1 σ′1 σ2 σ′2 σ3 σ′3 σ4 σ′4 σ5 σ′5 σ6 σ′6

× |σ1, σ
′
1, . . . , σLσ

′
L〉〉+O(L∆t3). (4.8)

Again, the odd gates are colored purple and the even gates orange and the dotted arrow speci�es
the gate application order. The single time step evolution is repeated iteratively until the desired
�nal time is reached. When applying one four-site gate to an MPS, the bond dimension increases
on the three a�ected bonds as can be read o� from the following tensor diagram, where the
dimensions are annotated next to the indices in blue color.

σl σ′l σl+1 σ′l+1

D D D D D

d d d d

d d d d

SV D−→ σl σ′l σl+1 σ′l+1

D D D D D

d2 d4 d2

d d d d

d d d d

−→
σl σ′l σl+1 σ′l+1

D d2D d4D d2D D

d d d d

Therefore, assuming a previous bond dimension of D results in a dimension d2D at the outer
two bonds and a dimension of d4D at the central bond. Hence, another compression back to
D using the established SVD method, is necessary. Intuitively, the evolution of one time step
includes the exploration of a larger subspace of the full Hilbert space Hphys ⊗ Haux before
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4.2.3 Calculation of expectation values

being projected onto the most important states of the D-dimensional MPS manifold. The gate
contractions can be optimized further by utilizing so-called swap gates [112], which we will not
discuss here.

A decisive restriction is encountered, when extending the puri�cation method in terms of
MPS using quantum number conservation in the fashion of Sec. 3.1.2. More precisely, the
Lindbladian can only be represented by quantum number conserving MPO tensors, when each
jump operator also respects the same conversation law. Otherwise, it is not possible to as-
sign a well-de�ned quantum number �ux to the dissipator, and with it also not to the Lindbla-
dian. To demonstrate this fact, we consider the example of a two-level systems with the basis
B = {|0〉, |1〉}, where the unitary evolution is described by a diagonal Hamiltonian H , which
conserves a quantum number indicated by the basis labels. The e�ect of the environment is
mimicked by the deexcitation operator σ− = |0〉〈1| as a jump operator, which does not con-
serve the quantum number. For this set-up, we �nd the following total quantum number �ux
for the di�erent parts of the dissipator

σ−|n〉〈n|σ+ = δn,1|0〉〈0| −→ ∆QN = −2,

σ+σ−|n〉〈n| = δn,1|1〉〈1| −→ ∆QN = 0,

|n〉〈n|σ+σ− = δn,1|1〉〈1| −→ ∆QN = 0, (4.9)

where σ+ is the hermitian conjugate of σ−. Consequently, the dissipator has �nite contributions
from di�erent �ux sectors and the time evolution of the MPS of a puri�ed density matrix can not
be restricted to a single symmetry block. That means that important application instances, as for
example those containing dissipation in the form of particle loss or deexcitation mechanisms,
lack the improvement opportunities o�ered by simulation with quantum number conserving
codes.

4.2.3. Calculation of expectation values

Provided with the time evolved puri�ed density matrix, we are left with the task to calculate
expectation values of observables to extract information about the system. The trace relation
for the expectation value of an operator A translates to a scalar product

〈A〉 = tr(ρA) = 〈〈1|A|ρ〉〉, with |1〉〉 =
L⊗

l=1

∑

σl

[|σl〉P ⊗ |σl〉Q] . (4.10)

At the same time, the state |1〉〉 is the puri�cation of the unnormalized in�nite temperature state
[113]. Unfortunately, the possibility to be able to encode this state as a product state as shown in
Eq. 4.10 gets lost, when using good quantum numbers, where the vector of the puri�ed density
matrix can not be separated into contributions of the single sites anymore. Another obstacle
becoming apparent when exploiting good quantum numbers in the algorithm, is that |1〉〉 spans
over all symmetry blocks, so that a restriction to a certain quantum number sector makes a
manual selection of basis states ful�lling this condition very cumbersome. Here we show, how
we make use of the gauge degree of freedom for the auxiliary space of the constituents of |1〉〉,
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4.2 Puri�cation of the density matrix

de�ned by
|σl〉P ⊗ |σl〉Q −→ |σl〉P ⊗ U |σl〉Q ≡ |σl〉P ⊗ |σ̃l〉Q, (4.11)

to overcome this hurdle. To this end, the transformation U is chosen such, that the quantum
number of the full initial state is equally distributed to the local pairs of physical and auxiliary
states by

QN (|σl〉P ⊗ |σ̃l〉Q) =
1

dL
QN (|ρ(t = 0)〉〉) , ∀l ∈ {1, . . . , L}. (4.12)

This practice automatically guarantees the restriction of the trace generating state |1〉〉 to the
symmetry sector selected by the initial state. Supposing that the observable can be brought to
an e�cient MPO representation, we can then proceed to calculate the expectation value. In the
exemplary and important case of a local observable the measurement is carried by the following
tensor contractions

〈Al〉 = 〈〈1|Al|ρ(t)〉〉 = . . . . . .

σ1 σ′1 σl−1 σ′l−1 σl σ′l σl+1 σ′l+1 σL σ′L

|σ1σ̃1〉 |σl−1σ̃l−1〉 |σlσ̃l〉 |σl+1σ̃l+1〉 |σLσ̃L〉

Al

With this decomposition into local tensors, the problems of selecting basis states respecting the
quantum number conservation as well as the large bond dimension of an MPS representation
of |1〉 are both solved. Finally, also the initial state and the Lindbladian gates need to be adapted
to be consistent with this auxiliary gauge choice. With U =

⊗L
l=1 (1⊗ U), the transformation

relations are

L −→ U †LU
|ρ(t = 0)〉〉 −→ U|ρ(t = 0)〉〉. (4.13)

A very useful property of the full density matrix evolution and the scheme for measuring ob-
servables is the straight-forward access to two time correlation functions of the form

〈A(t2)B(t1)〉 = tr
(
AeL(t2−t1)BeLt1ρ(t = 0)

)
. (4.14)

After purifying the initial state, the puri�ed density matrix is evolved until time t1, where the
operator B is applied, followed by an evolution to t2, where an ordinary measurement of A is
carried out.

4.2.4. Puri�cation approach for the open XXZ chain

As this formalism will be used later to calculate time-dependent correlation functions for a
dissipative XXZ spin-1/2 chains with local dephasing noise in Chap. 6, we will present the
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4.2.4 Puri�cation approach for the open XXZ chain

procedure for this example here. The corresponding Lindblad equation is given by

∂

∂t
ρ(t) = LXXZ · ρ(t) = − i

~
[HXXZ , ρ(t)] + γD [ρ(t)] , (4.15)

with HXXZ =
L−1∑

j=1

[
Jx
(
Sxi S

x
i+1 + Syi S

y
i+1

)
+ JzS

z
i S

z
i+1

]
,

D [ρ(t)] =
L∑

j=1

(
Szj ρ(t)Szj −

1

4
ρ(t)

)
,

and the basis is given by tensor product of the local Sz eigenbasis {|σ1, . . . , σL〉} with σl ∈ {↑
, ↓}. This model conserves the total magnetization and the covered initial states are all placed
in the symmetry sector of vanishing magnetization. In fact, all initial states used in Chap. 6
are pure states of the form |σ1, . . . , σL〉P . According to the conservation of the magnetization,
a transformation of the auxiliary sites, satisfying the condition posed in Eq. 4.12 is given by
the Pauli matrix in x-direction U = σx. With this we can rewrite the state |1〉〉 for the trace
calculation as

|1〉〉 =
L⊗

l=1

∑

σl

|σl〉P |σl〉Q

−→
[

L⊗

l=1

(1⊗ σx)
]

L⊗

l=1

∑

σl

|σl〉P |σl〉Q =
L⊗

l=1

[
| ↑〉P | ↓〉Q + | ↓〉P | ↑〉Q

]
(4.16)

With the relation for the spin operators,

(σx)† Sxσx = Sx, (σx)† Syσx = −Sy, and (σx)† Szσx = −Sz, (4.17)

the only e�ect of the associated transformation from Eq. 4.13 on the Lindbladian, is the addition
of a negative sign for the Szj ρSzj parts in the dissipator. Moreover, the puri�cation of the studied
initial states with this gauge choice, includes a �ipping of the physical spins for the auxiliary
sites, so that |σ1 . . . σL〉〈σ1 . . . σL| → |σ1σ̄1 . . . σLσ̄L〉〉, with σ̄ pointing in the opposite spin
direction of σ.

In conclusion, the puri�cation of the density matrix, followed by a time evolution approxi-
mated by a sequence of gates originating from a Suzuki-Trotter decomposition can be a pow-
erful tool for the prediction of Markovian quantum many-body dynamics. The compression of
the density matrix by the means of singular value decomposition and the step size of the time
discretization o�er good ways to control the convergence of the simulation. Di�culties can
arise due to the e�ective doubling of the system size so that the bond dimension for a exact
representation at the central bond can be as large as dL, compared to dL/2 for a pure state MPS,
with L being the size of the physical system. Furthermore, in contrast to pure states, the bond
dimension of the puri�ed states can not be linked to a physical quantity as the von-Neumann
entropy, so that the applicability and quality of the truncation procedure is subject to tests for
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Figure 4.1.: Convergence of tMPS method according to system size L (upper panel), discarded
truncation weight ε (middle panel) and time step τ (lower panel). Model parame-
ters here are ~γ/Jx = 4.0 and Jz/Jx = 2. The initial state is the Neel state. If not
speci�ed di�erently, the convergence parameters are chosen as L = 80, ε = 10−12

and τ = 0.05.

every situation. As mentioned before, the puri�cation of highly entangled pure states can be
very challenging memory-wise, with resource requirements of several hundred gigabytes of
RAM. Nevertheless, starting with an initial density matrix, that can be encoded as a puri�ed
state with a low bond dimension, as for example a basis state of the corresponding many-body
basis, the rise of the bond dimension during the dissipative evolution typically allows computa-
tions up to long evolution times. In these cases, large systems can be simulated e�ciently with
an state approximation accuracy for the SVD truncation error of the order of 10−10, which we
regard as quasi-exact.

Nevertheless, there are several aspects, crucial for the validity of the results, which need to
be kept track of to guarantee the numerical convergence. More precisely, the following three
di�erent parameters, in�uencing the physical accuracy of the tMPS simulations:

• The system size L: As we strive for connecting our �ndings to macroscopic quantum
materials, the in�uence of �nite size e�ects should be eliminated as well as possible.
To do so, it is necessary to ensure, that the local region of observable measurements,
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is governed by the actual dynamics of the bulk instead of boundary in�uences. This
criterion can be con�rmed for simulation measurements by comparing di�erent chain
lengths L, and identifying the time when the deviation becomes non-negligible.

• The truncation weight ε: Here, as well as in Chap. 6, the initial states used, are exclusively
product states, corresponding to matrix product states with unit bond dimension. In
the subsequent time evolution the necessary bond dimension to represent the density
matrix as an MPS grows. To cover this correctly, the truncation weight ε needs to be
monitored. In analogy to the system size analysis above, the time region where the results
are converged, is determined by comparing di�erent truncation weight thresholds for the
same model realization.

• The Suzuki-Trotter time step τ : Inherent to the second order Suzuki-Trotter decompo-
sition of the exponential, the �nite time step results in a systematic error. Again, con-
trasting di�erent time steps allows to judge the in�uence of this point on the overall
convergence.

The outlined procedure is exempli�ed in Fig. 4.1 for the equal-time correlations of operators
measuring the spin along the z-orientation

~Cd(t1, t1) = 〈SzL/2(t1)SzL/2+d(t1)〉, (4.18)

where the system has been initial prepared in the Neel state ρ(t = 0) = |ψNeel〉〈ψNeel|, with

|ψNeel〉 = | ↑↓↑↓ . . . ↑↓〉. (4.19)

From the plot we can read o�, that we need a system with at least L = 60 sites and a truncation
weight of maximally ε = 10−10 to describe the shown time region well. Furthermore, the size
of the time step, does not show a very large in�uence on this variable, which might change
drastically by switching to other observables. This convergence analysis has been done for all
data shown in Chap. 6, including also the computations of two-time functions.

4.3. Monte-Carlo wave functions - stochastic sampling of quantum tra-
jectories

After having discussed the procedure and the advantages and disadvantages of the expres-
sion and time evolution of the full density matrix in terms of tensor networks, let us now in-
troduce a technique going by the name of Monte-Carlo wave function method as introduced
by [104, 105] and summarized in [6]. This idea for modeling the dynamics of Markovian open
quantum system is based on the replacement of the system’s density matrix evolution, gener-
ated by the Lindblad equation (Eq. 2.9), by stochastic processes in the Hilbert space. Therefore,
the description is broken down to the evolution of states in Hilbert space, rather than density
matrices. The action of the environment is included as a probabilistic element. The density
matrix can be retrieved by computing the expectation value, denoted by E, via the integration
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i|Ô
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Figure 4.2.: Sketch of the Monte-Carlo wave function sampling. The evolution is here exem-
plary displayed by the expectation value of an observable Ô for three distinct tra-
jectories, where the stochastic jump operator applications cause discontinuities in
time.

over the full Hilbert space

ρ(t) = E (|ψ〉〈ψ|) =

∫
DψDψ∗|ψ〉〈ψ| T [ψ, t|ψ0, t0] , (4.20)

where the conditional transition probability for the system to be in state |ψ〉 at time t, given that
it was initially prepared in |ψ0〉, is denoted by T [ψ, t|ψ0, t] [6]. In this concept, the state vector
|ψ〉 is a random variable in Hilbert space and the transition probability needs to be constructed
such, that the expectation value of Eq. 4.20 satis�es the Lindblad equation for the density
matrix. This procedure is known as the unravelling of the master equation. In this work we
chose the formulation in terms of piece-wise-deterministic processes as used in [104], since this
approach is straight-forward to integrate with the established tMPS algorithm. Alternatively,
implementations using di�usion processes also exist [114, 115]. The statistical nature of the
unravelling allows direct access to the dynamics by Monte-Carlo simulations [116], providing
time-resolved expectation values of observables via a sampling and subsequent averaging of
statistically independent trajectories in Hilbert space and time, see [106] and references therein.
This section is structured such, that we �rst introduce the algorithm for the trajectory sampling
according to the piece-wise deterministic processes, followed by proving its equivalence to the
Lindblad master equation.

4.3.1. Stochastic sampling algorithm for quantum trajectories

In line with the derivation in [106], we �rst introduce a non-hermitian e�ective Hamiltonian
and rewrite the Lindblad equation (Eq. 2.9) as

d

dt
ρ = −i [Heff , ρ] +

∑

j

γjLjρL
†
j, with Heff = H − i

2

∑

j

γjL
†
jLj. (4.21)
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4.3.1 Stochastic sampling algorithm for quantum trajectories

The full time evolution is then split up into small time steps ∆t starting from a normalized
initial state |ψ0〉 = |ψ(t = 0)〉. If the initial state is not pure, but a mixed state

ρ0 =
∑

s

ps|ψs0〉〈ψs0|, (4.22)

the initial state vector is sampled according to the classical probabilities ps. The computation
of a single time step ∆t starts with evolving the state under the e�ective Hamiltonian

|ψ(t+ ∆t)〉 = U(∆t)|ψ(t)〉 = e−iHeff∆t|ψ(t)〉 (4.23)

As Heff is not hermitian, the time evolution operator U(∆t) is also non-unitary, which leads
to a strictly monotonic decay of the norm. Assuming a normalized state at time t the squared
norm equals

〈ψ(t+ ∆t)||ψ(t+ ∆t)〉 = 1− p, with p ∈ (0, 1]. (4.24)

Moreover, a �rst order expansion of the evolution operator U(∆t) = 1 + i∆tH + O(∆t2)
determines the loss in norm as

p =
∑

j

∆t γj〈ψ(t)|L†jLj|ψ(t)〉
︸ ︷︷ ︸

≡pj

+O(∆t2) =
∑

j

pj +O(∆t2). (4.25)

Next, the stochastic component is added to the algorithm: A random number η ∈ [0, 1) is
chosen from a continuous uniform distribution. Depending on the random number, one of the
following actions is performed:

1. if η > p: update the state vector at the new time with the normalized state, that has been
already obtained from the deterministic evolution with the e�ective Hamiltonian

|ψ(t+ ∆t)〉 ←− e−iHeff∆t|ψ(t)〉√
1− p , (4.26)

2. if η < p: select one of the jump operators with regard to the probability distribution
Πj = pj/p and apply it to the original state at time t with subsequent normalization

|ψ(t+ ∆t)〉 ←− Lj|ψ(t)〉√
〈ψ(t)|L†jLj|ψ(t)〉

. (4.27)

Iterating this for all time steps up to the �nal time provides a single evolved trajectory. As
sketched in Fig. 4.2, di�erent trajectories are characterized by longer periods of deterministic
time evolution, which are interrupted by sudden changes caused by the occasional application
of jump operators. The frequency of jump applications is de�ned by the steepness of the norm
decay and therefore related to the strength of the dissipative coupling of the jump operators
given by {γj}. To simulate the open system dynamics properly a su�ciently large number of
these samplesR is needed to re�ect the derived properties for the expectation value. More pre-
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4.3 Monte-Carlo wave functions - stochastic sampling of quantum trajectories

cisely, the expectation values of an observable Ô is approximated by the Monte-Carlo average
over all trajectory realizations [6]

〈Ô(t)〉 =

∫
DψDψ∗〈ψ|Ô|ψ〉T [ψ, t|ψ0, t0] ≈ 〈〈Ô〉〉 ≡ 1

R

R∑

r=1

〈ψr(t)|Ô|ψr(t)〉. (4.28)

We will use the notation of 〈〈. . .〉〉 for the Monte-Carlo averages over many trajectories |ψr(t)〉,
to distinguish them from usual quantum expectation values, which should not be confused with
the notation for a puri�ed state. The accuracy of this estimation depends on the sample size,
and can be quanti�ed by the standard deviation of the mean for a measured expectation value

σmean,t(Ô) =
σt(Ô)√
R

=

√√√√ 1

R(R− 1)

R∑

r=1

(
〈ψr(t)|Ô|ψr(t)〉 − 〈〈Ô〉〉

)2

. (4.29)

As the sampling process of di�erent trajectories is independent from each other, the standard
deviation of the mean decreases with an increasing number of samples as σmean,t(Ô) ∼ 1/

√
R.

From an implementation perspective, the statistical independence of the di�erent trajectories
allows a straight-forward parallelization of the method. With the Monte-Carlo average being
the only interaction point of the di�erent samples, the scaling to many processes is near to op-
timal. For this thesis we use the OpenMPI C++ library package [117] to distribute the trajectory
sampling over a large number of cores of a computer cluster consisting of several nodes.

4.3.2. Equivalence to the Lindblad master equation

It is still left to show, that this algorithm simulates the Lindblad dynamics correctly. In order
to show this, let us start with the Monte-Carlo approximation of the expectation value de�ned
in Eq. 4.20, i.e. ρ(t) = E[|ψ(t)〉〈ψ(t)|] which we will name σ̄ here. According to the algorithm,
the time evolution stochastically chooses between deterministic evolution and jump application
by

σ̄(t+ ∆t) = (1− p)
[

e−iHeff∆t

√
1− p σ̄(t)

eiH
†
eff∆t

√
1− p

]
+ p

[∑

j

(
γjΠj

∆t

pj
Ljσ̄(t)L†j

)]
. (4.30)

Here we used the expression for pj from Eq. 4.25. Expanding the non-unitary evolution operator
up to the �rst order, brings the equation to the form

σ̄(t+ ∆t) = (1− iHeff∆t) σ̄(t)
(

1 + iH†eff∆t
)

+ ∆t
∑

j

(
γjLjσ̄(t)L†j

)
+O(∆t2), (4.31)
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4.3.2 Equivalence to the Lindblad master equation

which can be further rewritten as

σ̄(t+ ∆t) = σ̄(t) + ∆t
{
− i [H, σ̄(t)]

+
∑

j

γj

(
Ljσ̄(t)L†j −

1

2
σ̄(t)L†jLj −

1

2
L†jLjσ̄(t)

)}
+O(∆t2).

(4.32)

Building the di�erence quotient, the resulting equation re�ects the Lindblad equation for the
density matrix, which is reconstructed from averaged wave functions. As a result, the intro-
duced piece-wise deterministic process poses a valid way for unravelling the Lindblad master
equation, given that the time step is su�ciently small.

Observing the derivation in Eq. 4.32, the repeated appearance of �rst order expansions raises
the question, if there is room for improving the time step accuracy. Indeed, it is possible to
identify the last line of the former equation as a �rst order Taylor expansion. It is possible to
extend this to, for example, a second order accuracy by expanding the density matrix as

ρ(t+ ∆t) = ρ(t) + ∆t
d

dt
ρ(t) +

1

2
(∆t)2 d2

dt2
ρ(t) +O(∆t3). (4.33)

Inserting this into the Lindblad equation for the respective derivatives makes it possible to
derive a more complex combination of di�erent types of jump operator sampling schemes.
Nevertheless, this construction is numerically more costly than the �rst order approximation
with a smaller chosen time step, as it involves signi�cantly more evaluations of expectation
values at each time step.

So far, we have left open the question on how to compute the time step of the deterministic
evolution as presented in Eq. 4.26. As mentioned before, in particular for many-body quantum
systems, the exponentiating of the Hamiltonian is potentially very complicated for its own sake.
In fact, the MCWF approaches has been interfaced with many di�erent integration techniques
from the �eld of condensed matter numerics [106]. A very e�cient variant is to apply the
tMPS algorithm, developed in Sec. 3.1.4. To this end, the states in the stochastic evolution
are formulated as MPSs and the dynamics can be found by successively applying bond gates to
them, given that the Hamiltonian consists of only short-ranged terms. The fact, that we are only
dealing with wave functions brings many bene�ts in comparison to the puri�cation approach.
More precisely, we circumvent the challenge of puri�cation arising from highly entangled initial
states. As we bypass the reformulation of the full density matrix, there is no increase in bond
dimension because of this. Furthermore, we can keep the interpretability of the bond dimension
by its connection to the von-Neumann entanglement entropy. In addition to that, the e�ective
Hamiltonian can be assigned to a well-de�ned quantum number �ux in most cases, as the term
L†jLj is typically quantum number conserving, even if the sole jump operators Lj are not.
This is for example true for particle loss (gain) and (de-)excitation operators. Also these jump
operators have a unambiguous �ux, which can be non-zero, such that their applications are
realizable in the framework of quantum number conservation. This increases the e�ciency in
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4.3 Monte-Carlo wave functions - stochastic sampling of quantum trajectories

the trajectory sampling drastically.
Nevertheless, it is important to note, that these advantages are situation dependent. One

systematic comparison study has been implemented in [118] for the Bose-Hubbard model. In-
deed, evolving a low-entangled initial state, where the puri�ed density matrix does not increase
too fast, might be favored over the sampling of a large number of state trajectories, where the
sample size is typically of the order of 104. With the MPS point of view in mind, a closer look
on the jump probabilities in Eq. 4.25 reveals that the determination of the single probabilities
can be rather expensive, due to the necessary calculation of expectation values for all jump
operators, which is especially tedious in settings with large sets of Lindblad operators {Li}.
An improvement regarding this issue can be formally achieved by sampling a so-called waiting
time τ , which de�nes the length of the deterministic evolution until the next jump occurs. The
corresponding cumulative distribution is speci�ed by the decay of the norm

P (t, τ) = 1− ‖exp (−iHeffτ) |ψ(t)〉‖ . (4.34)

Practically, this can be implemented by drawing a random number η ∈ [0, 1) and performing
the non-unitary deterministic time evolution until the norm passes the threshold posed by the
random number. This approach reduces the frequency of jump probability calculations to the
number of time steps where actual jumps are happening and therefore reduces the computa-
tional load substantially.

4.3.3. Monte-Carlo wave functions for the open XXZ-chain

Similar to the puri�cation section, we continue by testing the algorithm for the spin-1/2
chain under the in�uence of bulk dephasing as modeled by the Lindblad equation Eq. 4.15. To
illustrate the process of the trajectory sampling, Fig. 4.3 shows the Monte-Carlo average of
the local Sz-correlations at the central bond, as established in Eq. 4.18, over a large number
of wave function measurements in comparison to the expectation values of single trajectories.
It is clearly visible, that the single trajectories are decomposed into intervals of smooth time
evolution, which are separated by kinks, marking the times of stochastic jump applications.
The statistical errors as provided by the standard deviation of the mean are smaller than the
linewidth in the plot and are here of the order of 10−4. A further important measure of conver-
gence is the von-Neumann entropy. More speci�cally, as the MPS is brought to mixed canonical
form before the gate contractions, an SVD on the bond of the gate application, brings the state
in the form of the Schmidt decomposition. For this reason, the strength of the entanglement
determines what bond dimension needs to be kept, to ful�ll a certain accuracy goal for the
truncation error. More than that, it provides a way to draw an unbiased conclusions on the
numeric complexity, independent of precise hardware speci�cations. To underline the relation
of entanglement and bond dimension, we show in the left panel of Fig. 4.4 the time-dependent
entanglement entropy for a single trajectory and several di�erent maximally allowed bond di-
mensions. The displayed entropy shows the entanglement of the two sub-parts connected by
the bond with the largest bond dimension in the chain, which is typically the chain center. As
expected, larger values of the entanglement entropy require a large bond dimension. The kinks
can be identi�ed with the stochastic jumps, where usually a jump results in a change of en-
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Figure 4.3.: MCWF average for the time evolution of local z-directional spin correlations de-
�ned in Eq. 4.18 for an openXXZ-chain of lengthL = 32, with model parameters
Jz/Jx = ~γ/Jx = 1 and initial state |ψ0〉 = |ψNeel〉 = | ↑↓↑↓ . . .〉. The average is
compared to the result of 50 single trajectories, the statistic errorbars are smaller
than the line width. Time step and bond dimension are choose as ∆tJx/~ = 0.05
and D = 100

tropy. However, as we are dealing with a stochastic process in time, the von-Neumann entropy
is subject to statistical �uctuations. The right panel of Fig. 4.4 shows the average entropy as
well as the entropy of 50 single trajectories. While the statistical average of the entropy is a
good general indicator, it becomes apparent, that the simulation needs to be capable of much
stronger entangled states as well. This fact needs to be taken into account in the next section,
where we benchmark di�erent ways of evaluating two-time correlation functions.

4.4. Comparison of di�erent sampling approaches for two-time corre-
lation functions

The Monte-Carlo method, as introduced in the previous section, can also be extended to the
calculation of two-time correlation functions, de�ned by the expectation value of the product
of two operators, measured at di�erent times, formally given by

〈B(t2)A(t1)〉 = tr [BV (t2 − t1)AV (t1)ρ(t = 0)] , (4.35)

where we used the de�nition for the propagator of the Lindblad superoperator V (t) ≡ exp[Lt]
from Eq. 2.6. Two time correlations are relevant in many physical situations, they enter, for
example in the determination of the g2 function which gives a measure for coherence of atomic
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Figure 4.4.: Von-Neumann entanglement entropy at the bond with the maximal value for
stochastically sampled quantum trajectories for a dissipative XXZ chain with
L = 32 and Jz/Jx = ~γ/Jx = 1 starting from |ψ0〉 = |ψNeel〉. Left panel: time
dependence of a single wave function with di�erent maximal bond dimension but
same random number seed. Right panel: Monte-Carlo average compared to 50 sin-
gle trajectories in time, with a maximal bond dimension of D = 100. The tMPS
time step is ∆tJx/~ = 0.05 and statistical errors smaller than the line width.

clouds [119], the computation of spectral functions [120] and also the detection of aging dy-
namics as presented in Chap. 6. As the operators are applied at di�erent times, computing
two-time correlation functions is more involved than equal-time observables. More precisely,
when de�ning |φ(t1)〉 ≡ A|ψ(t1)〉, where |ψ(t1)〉 is obtained from the evolution of the initial
state |ψ(t0)〉 by the piece-wise deterministic processes, the measurement from Eq. 4.35 breaks
down to the calculation of matrix elements of time-dependent Heisenberg operators [121]

〈B(t2)A(t1)〉 = 〈ψ(t1)|B(t2)|φ(t1)〉 = tr [B V (t2 − t1)|φ(t1)〉〈ψ(t1)|] . (4.36)

While this expression is well-de�ned in the superspace of reshaped matrices, the unravelling by
the means of trajectory sampling is not straightforward. The problems arise due to the arbitrari-
ness of the object |φ(t1)〉〈ψ(t1)|, which is not restricted to matrices, ful�lling the requirements
for physical density matrices. If the matrix, for instance, is not semi-positive de�nite, the abil-
ity of rewriting it as a mixed state, de�ned by a superposition of states weighted with classical
probabilities as in Eq. 4.22 is not guaranteed. Therefore, a stochastic modeling of this matrix by
wave functions, where the initial state is chosen according to these probabilities, is generally
not possible.

In the following, this section continues with outlining two solutions: the approach of Breuer
and Petruccione [34] on the one side and Mølmer, Castin and Dalibard [110] on the other side.
The entanglement between two subparts of the whole system is the signi�cant property, in�u-
encing the quality of the MPS compression. Therefore we will use it to quantify the computa-
tional e�ort for computing two time correlations in both cases. This sets the foundation for a
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convergence comparison, presented subsequently.

4.4.1. Joint evolution of two states– approach of Breuer et al. [34]

The idea of Breuer et al. [34], is based on the doubling of the Hilbert space at the �rst appli-
cation time t1, by de�ning a normalized vector in the superspace and the corresponding density
matrix

|Θ(t1)〉 =
1√
2

(
|ψ(t1)〉
|φ(t1)〉

)
, and ρ̃(t1) = |Θ(t1)〉〈Θ(t1)| =

(
|ψ(t1)〉〈ψ(t1)| |ψ(t1)〉〈φ(t1)|
|φ(t1)〉〈ψ(t1)| |φ(t1)〉〈φ(t1)|

)
.

It is important to notice, that ρ̃(t1) ful�lls all properties of a physical density matrix so that it
can be reformulated in terms of averages over wave functions in Hilbert space. The following
strategy relies on �nding an operator acting on the superspace, which generates a time evo-
lution for the o�-diagonal elements, which recovers the right-hand side of Eq. 4.36. For this
purpose, the following operators are de�ned

H̃ =

(
H 0
0 H

)
, L̃j =

(
Lj 0
0 Lj

)
. (4.37)

It turns out, that formulating a Lindblad type equation in superspace with H̃ as Hamiltonian
and L̃j as jump operators

d

dt
ρ̃ = − i

~

[
H̃, ρ̃

]
+ D̃(ρ̃), with D̃(ρ̃) =

∑

j

γjL̃j ρ̃L̃
†
j −

1

2
L̃†jL̃j ρ̃−

1

2
ρ̃L̃†jL̃j, (4.38)

results in Lindblad equations for all matrix blocks of the de�ned density matrix and therefore
matches exactly the condition requested for the unravelling. Building upon this, we can con-
tinue by unravelling the Lindblad master equation in the doubled Hilbert space analogous to
Sec. 4.3. An important feature here is, that neither H̃ nor L̃j couple the states |ψ(t1)〉〈ψ(t1)|
and |φ(t1)〉〈φ(t1)|. Hence, the time evolution of the two states can be calculated independently,
but the probability for the application of jump operators needs to be evaluated according to the
joint loss in norm. The full procedure can be summarized as follows:

1. Initialize the wave function in the original Hilbert space of states to |ψ(t = 0)〉 = |ψ0〉.
Compute the time evolution of this state up to t1 following the rules for the piece-wise
deterministic process from Sec. 4.3, giving |ψ(t1)〉.

2. Make a copy of the state and apply the operatorA to it, |φ(t1)〉 ≡ A|ψ(t1)〉 and de�ne the
state in the doubled Hilbert space as |Θ(t1)〉 = 1√

n
(|ψ(t1)〉, |φ(t1)〉)T , where the normali-

zation factor n = 〈Θ(t1)|Θ(t1)〉/〈ψ(t1)|ψ(t1)〉 ensures the transfer of the accumulated
jump probability at time t1 to the doubled space representation.

3. Draw a random number η ∈ [0, 1) and time evolve both states independently with the
e�ective Hamiltonian Heff de�ned in Eq. 4.21, i.e. |ψ(t + ∆t)〉 = e−iHeff∆t|ψ(t)〉 and
|φ(t+∆t)〉 = e−iHeff∆t|φ(t)〉 and calculate the joint squared norm for the jump probability
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4.4 Comparison of di�erent sampling approaches for two-time correlation functions

|ψ(t = 0)〉 |ψ(t1)〉
split
trajec-
tory

|ψ(t1)〉
|φ(t1)〉

|ψ(t2)〉
|φ(t2)〉

joint jumps Lj

Figure 4.5.: Sketch of the creation of one sample for the computation of two-time correlators
following [34]. After the usual evolution up to t1 the trajectory is copied, followed
by a time span characterized by an independent deterministic non-unitary evolu-
tion interrupted by joint jump operator applications.

N = 〈Θ(t+ ∆t)|Θ(t+ ∆t)〉 = 〈ψ(t+ ∆t)|ψ(t+ ∆t)〉+ 〈φ(t+ ∆t)|φ(t+ ∆t)〉.

4. a) If η < 1−N : Select a jump operator according to the distribution Πj = pj/
∑

j pj ,
where pj = 〈ψ(t)|L†jLj|ψ(t)〉+ 〈φ(t)|L†jLj|φ(t)〉 and apply it to both states at time
t.

b) Else: Keep the evolved stats |ψ(t+ ∆t)〉 and |φ(t+ ∆t)〉

5. Repeat step 3 and 4 until time t2 is reached.

6. Compute the two-time correlation function as the Monte-Carlo average over many tra-
jectories and compensate for the normalization factor from step 2 by 〈〈n〈ψ(t2)|B|φ(t2)〉〉〉.

The whole sampling process for one trajectory, which exhibits a splitting at time t1 followed by
a distinct evolution of the pair of states, which is only connected by the jump applications until
t2, is sketched in Fig. 4.5. This method can also be extended to the simulation of non-equilibrium
multi-time correlation functions

〈AN(tN) . . . A2(t2)A1(t1)〉 with t1 < t2 < . . . < tN , (4.39)

where the trajectory is splitted at t1 and the operators are applied to one of the arising branches
at their respective time, so that the complexity is still limited to the evolution of two wave func-
tions. Finally, in the Monte-Carlo average, the normalization factors from each time {t1, . . . , tN}
need to be taken into account. Before presenting results from numerical experiments, we
present the other approach of how to obtain two-time correlators using Monte-Carlo wave
functions.

4.4.2. Separate evolution of four trajectories – approach of Mølmer et al. [110]

An alternative to the procedure from Sec. 4.4.1 has been established in Ref. [110] and re-
viewed in detail in Ref. [106]. It is based on the quantum regression theorem [6], connecting
equal-time to two-time correlations. First of all, it is important to note, that a closed set of
equations for the expectation value of an arbitrary operator formulated in the orthonormal
basis B = {|i〉} as Ô =

∑
ij Oij|i〉〈j| is provided by the Lindblad equation for operators

d

dt
Ô = L†Ô ⇔ d

dt
〈Oij(t)〉 =

∑

kl

Lijkl〈Okl(t)〉. (4.40)

56



4.4.2 Separate evolution of four trajectories – approach of Mølmer et al. [110]

In general, if a relation for an equal-time measurement is known, the quantum regression the-
orem states, that if we are provided with the closed di�erential equation system

d

dt1
〈Bi(t1)〉 =

∑

j

Gij〈Bj(t1)〉 (4.41)

with the kernel Gij , the time dependence of two-time correlations 〈B(t2)A(t1)〉 is generated
by the same kernel [6]

d

d(t2 − t1)
〈Bi(t2)A(t1)〉 =

∑

j

Gij〈Bj(t2)A(t1)〉. (4.42)

Using this relation, the concept of Monte-Carlo wave function integration is to express the two-
time correlator at time t1 in terms of equal-time expectation values of newly created states.
Because of the shared evolution kernel, matching the initial conditions guarantees also the
equivalence at each later point in time. One option to do this is to introduce the following four
states at t1

|χ±R(t1)〉 =
1√
µ±R

(1± A) |ψ(t1)〉

|χ±I (t1)〉 =
1√
µ±I

(1± iA) |ψ(t1)〉 (4.43)

with the normalization de�ned by the factors

µ±R = 〈ψ(t1)| (1± A)† (1± A) |ψ(t1)〉 and µ±I = 〈ψ(t1)| (1± iA)† (1± iA) |ψ(t1)〉. (4.44)

The states |ψ(t1)〉 should be thought of as states obtained from a MCWF unraveling up to time
t1. A direct calculation shows, that a proper grouping of expectation values of A at t1 indeed
restores the corresponding two-time value. The exact form is given by

C(t2 = t1, t1) ≡ 1

4

[
µ+
R〈χ+

R(t1)|B|χ+
R(t1)〉 − µ−r 〈χ−R(t1)|B|χ−R(t1)〉

− iµ+
I 〈χ+

I (t1)|B|χ+
I (t1)〉+ iµ−I 〈χ−I (t1)|B|χ−I (t1)〉

]
(4.45)

=
1

4
〈ψ(t1)|2BA+ 2A†B − i

(
i2BA− 2iA†B

)
|ψ(t1)〉 (4.46)

= 〈ψ(t1)|B(t2 = t1)A(t1)|ψ(t1)〉.

In conclusion, evolving two time correlations 〈B(t2)A(t1)〉with Eq. 4.42 is equivalent to evolv-
ing each of the four equal-time expectation values on the right-hand side of Eq. 4.45 according
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|ψ(t = 0)〉 |ψ(t1)〉
split
trajec-
tories

|χ+
R(t1)〉
|χ−R(t1)〉
|χ+
I (t1)〉
|χ−I (t1)〉

|χ+
R(t2)〉
|χ−R(t2)〉
|χ+
I (t2)〉
|χ−I (t2)〉

independent evolution

Figure 4.6.: Sketch of the creation of one sample for the computation of two-time correlators
following Ref. [110]. The initial dynamics up to time t1 is followed by the splitting
of the wave function into four trajectories from which the two-time expectation
value at t1 can be reconstructed. Then the each sub-trajectory is evolved sepa-
rately.

to Eq. 4.41 and combine them afterwards, such that

C(t2, t1) ≡ 1

4

[
µ+
R〈χ+

R(t2)|B|χ+
R(t2)〉 − µ−r 〈χ−R(t2)|B|χ−R(t2)〉

− iµ+
I 〈χ+

I (t2)|B|χ+
I (t2)〉+ iµ−I 〈χ−I (t2)|B|χ−I (t2)〉

]
(4.47)

Let us also outline the trajectory sampling for this case:
1. De�ne the initial state |ψ(t = 0)〉 = |ψ0〉 and employ the introduced stochastic evolution

up to time t1 to compute |ψ(t1)〉.

2. Create four copies of |ψ(t1)〉 and modify them by the operator applications leading to the
states |χ±R(t1)〉 and |χ±I (t1)〉 as de�ned in Eq. 4.43. Evaluate the norm factors µ±R and µ±I
accordingly and store them for later use in the weighted average.

3. Evolve each of the four states independently up to t2, with the standard procedure of
non-unitary deterministic evolution and jump applications. The single trajectory mea-
surement of the two-time function can then be calculated with Eq. 4.47.

4. Produce a large number of quantum trajectories and �nd the Monte-Carlo average.
The scheme for obtaining one sample is sketched in Fig. 4.6. In contrast to the proposal by
Breuer et al., there is no obvious way to generalize this method to multi-time correlations. On
�rst sight, the fact that this approach needs twice as many trajectories for the creation of one
sample might suggest that it is computationally less favorable. However, the situation is not
that clear, as the decisive factor is the built up entanglement which correlates to the MPS bond
dimension. As the entanglement behavior of many-body quantum systems is not trivial and
very sensitive to the physics of the considered case, one can not make a general statement.

There are two special cases, distinguished by special properties of the operators A and B,
to which we want to pay more attention. Firstly, Eq. 4.46 shows that if the operator at the
�rst time is hermitian, i.e. A = A†, and it further commutes with B, it is su�cient to only
keep |χ±R〉, reducing the number of trajectories after t1 to two. The second case is more sub-
tle; suppose we are dealing with an open system that exhibits a symmetry, which enables the
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4.4.3 Comparison of the introduced MCWF two-time schemes for the XXZ model
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Figure 4.7.: Two-time correlation with di�erent MCWF methods. We compare data from meth-
ods introduced by Breuer et al. [34] and Mølmer et al. [110]. Left panel: Two-time
correlations of z-directional spin operators applied at the same site on di�erent
times. Right panel: Standard deviation of the mean for the same quantity at di�er-
ent times as a function of the number of samples. The black dashed line is a guide
to the eye for the inverse square root scaling with the number of samplesR. Model
parameters for both plots are L = 14, Jz/Jx = ~γ/Jx = 1 and t1Jx/~ = 1. The
initial state is the Neel state and the Suzuki-Trotter time step is ∆tJx/~ = 0.05
and the bond dimension is exact.

block-diagonalization of the Lindbladian. If operator A does not conserve this symmetry, but
rather maps the wave function to a di�erent sector, the states |χ±R,I〉 can not be assigned to a
well-de�ned quantum number. A workaround for this can be implemented by noting that the
contributions |ψ(t1)〉 andA|ψ(t1)〉 are totally decoupled at any time, other than in the selection
process for jumps. Elaborating on this reveals, that it is possible to evolve the latter two states
separately and then construct the |χ±R,I(t)〉 states at every given time t > t1 from them. On
closer inspection, it turns out, that the evolution scheme in this case is exactly equivalent to
the approach from the last section (Sec. 4.4.1).

4.4.3. Comparison of the introduced MCWF two-time schemes for the XXZ model

As a case study, whose physical interpretation will be discussed in Chap. 6 in detail, we
extract two-time correlation functions from the open XXZ spin-1/2 chain where the spins
are subjected to dephasing noise using both presented approaches. The Lindblad equation has
been introduced in Eq. 4.15. To gain a �rst intuition, we evaluate the correlator

〈SzL/2(t2)SzL/2+1(t1)〉, (4.48)

which will turn out to exhibit interesting physics later. Here, the operators at the two di�erent
times are hermitian and commute with each other, so that the method of Sec. 4.4.2 only needs
to make use of the evolution of two trajectories. The comparison in the left panel of Fig. 4.7
shows, that both method arrive at the same results as expected. We continue by analyzing the
convergence of the two methods. As one source of inaccuracy is the statistical error, inherent
to the stochastic sampling, we investigate the standard deviation of the mean (cf. Eq. 4.29) as
plotted in the right panel of Fig. 4.7 at di�erent times. Both methods show the expected inverse
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Figure 4.8.: Entropy evolution for branches of di�erent MCWF two-time schemes. Monte-
Carlo average, maximal value among all trajectories and interval of width σ are
shown for the di�erent branches ( represented by di�erent colors) after the split
at t1 of both methods for a chain of L = 15 spins, with Jz/Jx = ~γ/Jx =
1, t1Jx/~ = 1, |ψ0〉 = |ψNeel〉 and Suzuki-Trotter time step ∆tJx/~ = 0.05.

square root dependence on the number of samples R, as a comparison with the black dashed
line shows. This originates from the statistical independence of the sampling. However, the
standard deviation of the mean for the computation with the scheme of Breuer et al. is roughly
a whole order of magnitude smaller compared to the one of Mølmer et al. for all times, so that
also the number of trajectories needed to reach a certain accuracy for this two-time correlation
function is signi�cantly smaller using the �rst approach. Remarkably, the convergence of the
Monte-Carlo average is faster for later times, which hints to the convergence of this expectation
value towards the steady state value. The steady state is known to be unique and the in�nite
temperature state.

To judge the e�ciency, it remains to benchmark the cost of creating a single trajectory. To
this end, we show in Fig. 4.8 the properties of the entanglement entropy, essential for the
approximation quality of the bond dimension truncation. The bond dimension has the larges
in�uence on the needed computational resources, as it is typically larger than the local physical
dimension. It appears quadratically in the matrix dimension of singular value decompositions,
which have a cubic complexity in runtime and memory requirements. We consider the entropy
of single branches of the evolution at times t2 > t1, including the two branches |ψ(t2)〉 and
|φ(t2)〉 of the joint evolution from Sec. 4.4.1, where |φ(t1)〉 ≡ SzL/2|ψ(t1)〉, as well as the two
trajectories from the method in Sec. 4.4.2, i.e the states |χ±R(t2)〉. The results for the latter, give
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the exact same behavior for both states, which is why we only added the data for |χ+
R(t2)〉 to

Fig. 4.8. As in Sec. 4.3.3, we select for each time and trajectory sample the bond with maximal
entanglement in the chain to compute the von-Neumann entropy. The measurement is exact
as the small system of size L = 15 allows a full MPS representation, which has a maximal
bond dimension of 128. The plot contains information about three di�erent features of the
entropy in the simulation. First, we are interested in the average work load of the trajectory
creation, which can be accessed by the Monte-Carlo average of the von-Neumann entropy. In
addition to that, the maximal entropy among all trajectories for each point in time is an im-
portant measure, as it re�ects the worst case scenario for the bond dimension of an MPS at
the given time. Since we can not guarantee the occurrence of every possible trajectory real-
ization in the stochastic sampling, this is a quantity, which can in principle only be assessed
approximately using Monte-Carlo wave functions, and the occurrence of larger values can not
be excluded. The third quantity addresses the strength of �uctuations by displaying the in-
terval [〈〈SvN〉〉 − σt(SvN)/2, 〈〈SvN〉〉 + σt(SvN))/2] around the Monte-Carlo average, using the
standard deviation σt(SvN) as de�ned in Eq. 4.29. While we see a monotonic increase of the
entanglement in each of the branches, both of the evolutions originating from splitting in the
procedure of Breuer et al. show lower entropy values for all times and the given parameter
set. This is true for the average as well as the maximal entropy, which is of the order of twice
the measured mean. The standard deviation increases, pointing out the broadening of entan-
glement distribution according to the participating quantum trajectories, which is causing a
larger spectrum of numerical e�ort for di�erent samples. We conclude, that in this case study
considering this speci�c model and parameter set, the approach of Breuer et al. prevails against
the one by Mølmer et al. in terms of both, memory and run time.

4.5. Conclusion and summary of the results of Chap. 4
In this chapter we introduced di�erent matrix product state approaches to the simulation of

Lindblad dynamics of open quantum systems. The �rst option is given by a reformulation of the
density matrix as a pure state, with the help of an auxiliary space. We showed how the initial
state can be translated to this framework and subsequently time evolved by a sequence of gate
applications for short-ranged Lindbladian models. A peculiarity is given by the extension of the
established method by implementing a e�cient measurement scheme for expectation values,
while exploiting the bene�ts of conserved quantum numbers of the model. The method bears
the advantage that it �nds the quasi-exact dynamics without any other approximation than the
well-controlled truncation and the size of the Suzuki-Trotter time step. A limitation occurs,
when the initial state is already strongly entangled, which requires a large bond dimension for
the MPS representation, as it is for example the case for ground states obtained from preceding
DMRG calculations. In these situations the quadratic increase in bond dimension associated
with the puri�cation process, becomes quickly numerically infeasible. Last but not least, the
e�ective doubling of the system size, increases the requirements of computational resources.

Therefore, we outlined an alternative approach, which promises to overcome some of these
obstacles, at the cost of other approximations. The unravelling of the Lindblad master equation
by a stochastic sampling of quantum trajectories by piece-wise deterministic processes has been
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4.5 Conclusion and summary of the results of Chap. 4

shown to be equivalent to the evolution in terms of density matrices. Consequently, a Monte-
Carlo scheme mimicking this sampling can be implemented, by a piece-wise evolution of wave-
functions in the original Hilbert space. While this circumvents the problems of the puri�cation
mentioned above, the sample size to reach an acceptable statistical error is typically of the order
of 104 and therefore quite large. The statistical accuracy, given by the standard deviation from
the Monte-Carlo average, depends on the observable and the time and has been shown to be
up to 10−2 for the z-directional correlator. Consequently, if a very high precision is required,
the MCWF becomes challenging.

Finally, we compared the performance of two di�erent ways to measure two-time correlation
functions given by Breuer et al. and Mølmer et al. for the XXZ-model with local dephasing at
each site. The statistical error for the local equal-time correlations, which shows the expected
inverse square root scaling with the number of samples, reveals about one order of magnitude
of di�erence between the two proposals, favoring the one of Breuer et al. Observing the en-
tanglement entropy as a measure for the numerical cost related to the bond dimension in all
branches which contribute to the time evolution after the �rst application time, we have found
that also here, the approach by Breuer et al. needs a lower bond dimension for both trajectory
parts, since the entropy is smaller for all times, in the studied example case. Due to the current
restriction on this special model choice, future work is needed to test this statement for other
models, parameter regimes, initial states and observables.
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Chapter5
Dissipative attractor dynamics towards a
chiral state in fermionic ladders coupled
to an optical cavity

5.1. Introduction
In this chapter we propose how to create and investigate a chiral state of spin-polarized

fermionic atoms subjected to a ladder geometry. The atoms are further coupled to a single
mode of a standing-wave light �eld created by a cavity formed by two oppositely aligned mir-
rors. The realized state is a self-organized steady state of the underlying dissipative dynamics
induced by cavity losses. It is approached exponentially fast in time and is characterized by the
appearance of chiral currents cycling around the ladder boundaries. The chiral state is simi-
lar to the observed chiral currents of edge states present in topological non-trivial materials.
These are known to be very robust to external perturbations imposed on the state. We will
pay attention to the properties of the emerging steady state as well as to the dynamics leading
thereto. The introduction to this chapter is structured such, that we start by brie�y introducing
the applications of topology in condensed matter physics, in the way it is appearing in the con-
sidered model, then present the concept of self-organization and its implementation in various
aspects, and �nally describe how we proceed in the presentation of the obtained results in a
short outline.

5.1.1. Topological states in condensed matter physics

A prominent example of topological phases is given by the integer quantum Hall e�ect [122],
where an electric current created by the motion of an ultracold two-dimensional electron gas, is
penetrated by a magnetic �eld perpendicular to the two-dimensional area, which gives rise to a
voltage measured orthogonal to the movement of the electrons. Surprisingly, the corresponding
Hall conductivity is constant over large regions of di�erent magnetic �eld strengths, and only
changes rapidly at very distinct values, resulting in a step-wise structure of the conductance.
This behavior can be related to the topology of the eigenstates {|uµ(k)〉}, belonging to the
eigenenergies {Eµ} of the system, which form the electronic band structure [123]. The topology
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5.1 Introduction

of phases of matter is expressed by topological invariants, which in the case of the quantum
hall e�ect are determined by the Chern number νµ assigned to each electronic band. Assuming
translation invariance justi�es the use of periodic boundary conditions. The Chern number of
one band is then given by the following integral over the �rst Brillouin zone, which is for the
two-dimensional case a torus

νµ =
i

2π

∫

1.BZ

Ωµ(k)dk, (5.1)

where we used the Berry curvature de�ned in [124] and given by

Ωµ(k) = i

(〈
∂u(k)

∂kx

∣∣∣∣
∂u(k)

∂ky

〉
−
〈
∂u(k)

∂ky

∣∣∣∣
∂u(k)

∂kx

〉)
. (5.2)

The latter can be viewed as the geometric phase, also known as Berry phase, which is picked
up by the eigenstate when moving along an in�nitesimal small closed path in k-space. As the
Chern number takes integer values and the Hall conductance is found to be directly related to
it for low enough temperatures,

σH =
e2

h

∑

Eµ<EF

νµ, (5.3)

the step structure of the Hall conductance can be related to the topology of the bulk. The inte-
ger value of the Chern number is insensitive to adiabatic deformations of the model, as small
changes in the Berry curvature are compensated on a global scale. This leads to the great ro-
bustness of the Hall plateaus. Interestingly, in the plateau regions of the Hall conductance, in
the thermodynamic limit the Fermi energy lies in an energy gap of the energy spectrum, pro-
hibiting any hopping in the bulk of the material. The fact that a �nite conductance is measured
is a result of the nature of the �nite sample size, where contributions from the boundary become
important. Indeed, the current is induced by states located at the edges of the system in real
space, with an energy placed in the bulk gap. In general, the so-called bulk-edge correspon-
dence states that the number of emerging edge states equals the total Chern number of occupied
bulk states in the in�nite system [125]. Consequently, edge states are also topologically pro-
tected and robust against external noise, which makes them potentially useful for promising
applications such as quantum computing [21, 22] which rely on long-lasting coherent quantum
states.

Recently, topological e�ects have been discovered in many di�erent areas of condensed mat-
ter physics, one example being the experimental detection of signatures of topological insula-
tors, as for example the existence of edge states, in two and three dimensions [126]. Further-
more, a list of models has been implemented in the �eld of ultra-cold atoms, which are trapped
in optical lattices [127], in particular using strong arti�cial magnetic �elds [128], for example
to realize the two-dimensional fermionic Hofstadter model [49, 129] or to create chiral current
bearing states in bosonic ladder geometries [130]. In the mentioned examples, the arti�cial
magnetic phase is generated by an external phase imprint. In this chapter we present, how
a chiral state can be prepared with the help of an optical cavity in a dynamical self-organized
fashion. Theoretically, the �eld of cold atoms in ladder geometries has been studied extensively
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for both bosonic and fermionic atoms [19, 131–134].

5.1.2. Self-organization of states in open systems

Instead of carefully constructing speci�c quantum states in an equilibrium setting, it can be
advantageous to design the environment of an open quantum systems in a way, that the steady
state is the targeted state acting as an attractor in time [135]. In this approach, certain perturba-
tions to the steady state are corrected exponentially fast in time. Provided that the steady state
is unique, the dynamics leading to the state can be seen as a self-organization process, vastly
independent of the initial state of the system. One example for this is given by the coupling of
a photon-leaking cavity to a gas of cold atoms, where the photon �eld mode e�ectively medi-
ates a global long-range coupling between the atoms causing an accelerated formation of the
steady state. Moreover, a feedback loop between atoms and photons can be established, which
is able to a�ect the light �eld considerably. One remarkable experiment is the observation of
the Dicke quantum phase transition in the form of a non-equilibrium dynamical phase transi-
tion [24, 25]. To this end, a Bose-Einstein condensate of atoms is placed in a cavity, coupled to a
transverse standing wave pump laser oriented perpendicular to the cavity axis. Increasing the
pump strength with time above a certain threshold gives rise to a reordering of the atoms into
a checkerboard density pattern via two-photon scattering processes involving both, pump and
cavity photons, as predicted in earlier theoretical studies [23, 136–139]. Moreover, externally
controlled optical lattices have been created inside optical resonators, enabling, for example, the
experimental realization of a non-equilibrium super�uid to Mott-insulator transition [140, 141],
which raises the hope for future experimental feasibility of the proposed fermionic model.

5.1.3. Outline of the chapter

We continue this chapter by introducing the system and its most important characteristics in
Sec. 5.2 and present a detailed derivation of the model afterwards in Sec. 5.3. Subsequently, we
describe how analytic �ndings, suitable for steady-state predictions, are obtained using the adi-
abatic elimination of the mean �eld of the cavity �eld in Sec. 5.4, as well as the implementation
of exact numerical computations, providing the full open system evolution by diagonalizing the
Lindblad superoperator L exactly in Sec. 5.5. Results concerning features of the steady state
are discussed in Sec. 5.6 and properties of the dissipative dynamics are determined in Sec. 5.7.

5.2. General description of the model and scope of the work
Before we present a detailed derivation of the Hamiltonian part under consideration in the

next section, let us begin with a description of the model at hand [142–144] and with an
overview of the di�erent components. Here we turn our attention to a gas of ultra-cold non-
interacting spinless fermionic atoms suddenly coupled to the single mode of a lossy Fabry-Perot
cavity. The action of the cavity can be interpreted as the mediation of an e�ective long-range
interaction between the fermions. In addition to that, the atoms are con�ned to the localized
sites of a two dimensional optical lattice potential created by orthogonal standing wave lasers.
The lattice geometry is displayed in Fig. 5.1 and consist of a usual lattice in x-direction and
a superlattice structure in y-direction, which is chosen to be parallel to the cavity axis. The
superlattice establishes an energy o�-set ~∆ on every second site. Due to the low temperature,
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Figure 5.1.: Sketch of optical lattice potential, placed inside the cavity created by perpendicular
standing wave laser beams, showing the superlattice with the energy o�set ∆ in
x-direction and a lattice with simple periodicity ini y-direction.

quantum �uctuations are not negligible but rather play an important role regarding the spatial
movement. This enables quantum tunneling, in the context of a discrete lattice also known as
hopping in between sites. While the hopping of particles in y-direction is unconstrained, the su-
perlattice structure in x-direction results in a high suppression of the corresponding tunneling
process.
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Figure 5.2.: Level-scheme of
balanced Raman
transitions.

Another contribution to the set-up is given by two running-
wave pump lasers with frequencies ωp,1 = ωc − ∆/~ and
ωp,2 = ωc+∆/~, which are suddenly switched on and cross the
cavity in opposite directions parallel to the y-axis. As sketched
in Fig. 5.2, the pump beams can scatter inelastically with the
atoms, represented by the states |g〉 and |e〉, and the cavity via
two-photon Raman transitions. The parameters, are the Rabi
frequencies associated with the cavity g0 and the pump lasers
Ωp,1 and Ωp,2 as well as the shifted cavity frequency δcp and dif-
ferent sites of the super lattice are labeled as L and R, as also
denoted in Fig. 5.1. We will present in this chapter that above
a critical pump intensity absorbing and emitting photons from
the cavity mode with the help of one of the two pump beams
can restore the hopping along the y-direction at every second
bond, such that an array of decoupled ladders is formed. This
introduces a feedback loop between the cavity and the atoms:
The inelastic scattering of photons from the pump beams with

the atoms reenables the hopping on the ladder rungs and populates the initially empty cavity
mode. The cavity �eld in return, can scatter with the atoms causing photo-induced tunneling
accompanied by the emission of a photon into the pump modes. An important consequence
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Figure 5.3.: Sketch of the model: Ultracold fermionic atoms are trapped in a lattice of ladder
geometry with legs L and R and coupled to a single-mode photon cavity, which
is subject to losses controlled by the strength κ. The scattering of two transverse
running wave pump beams with the fermions results in a phase imprint ϕ onto the
atoms analogous to a magnetic �eld felt by charged particles.

of this feedback loop is that the running-wave character of the pump beams causes a space
dependent phase transfer onto the fermions during the tunneling, giving rise to a �ux imprint,
which plays the role of an arti�cial magnetic �eld. The following derivation considering all
the mentioned e�ects gives the e�ective Hamiltonian H for this setup in Eq. 5.17. As a last
ingredient, we also add the loss of photons to our investigation. Since the dissipated photons
in good approximation do not act back on the system inside the cavity the environment can be
regarded as Markovian. The overall dynamics is then well-described by the Lindblad master
equation

d

dt
ρ = Lρ = − i

~
[H, ρ] + κ

(
2aρa† − a†aρ− ρa†a

)
, (5.4)

with the dissipation strength κ and the annihilation operator of cavity photons a as the only
Lindblad jump operator. A sketch, summarizing all di�erent contributions to the model is pre-
sented in Fig. 5.3. As we will show, the feedback mechanism leads to the dynamical self-
organization of a topologically non-trivial phase characterized by the presence of a chiral cur-
rent �owing along the ladder edges. This state turns out to be an attractor state in the dissipative
dynamics which is approached exponentially fast in time. Topological phases are known to be
stable against external perturbations and therefore objects of interest. This case bears the ad-
vantage, that the dependence on the �lling fraction of the lattice sites as well as on the strength
of the pump beams open the possibility to shift between states of di�erent topology. Also the
fact, that the state is an attractor state, i.e. a steady state which does not evolve with time,
guarantees a robust dynamic control.
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5.3 Derivation of the model Hamiltonian

5.3. Derivation of the model Hamiltonian
The �rst step in the study of the non-equilibrium properties is to derive the Hamiltonian

of the equilibrium model for the coupled atom-cavity system without considering the photon
losses, leading to the �nial result in Eq. 5.17. To do so, we will �rst consider a set of non-
interacting fermionic two-level atoms coupled to a cavity �eld and a transverse pump beam.
Assuming that the pump frequency is far detuned from the two-level resonance frequency will
allow us to adiabatically eliminate the higher energy state and describe the atom dynamics by
an e�ective motion of the low energy state only. Furthermore, this e�ective evolution can be
described by an e�ective model which yields the same equations of motion for both, the pho-
tons and the atoms. Using the tight-binding approach and constraints given by the underlying
optical lattice geometry, we will �nally arrive at the equilibrium Hamiltonian.

First of all, let us consider a single particle Hamiltonian of one two-level atom coupled to a
single-mode cavity and a coherent running-wave pump beam, which crosses the cavity. After
applying the rotating wave approximation, the atom-cavity coupling is described by the well-
known Jaynes-Cummings model [23] and the full Hamiltonian reads

Hsp = H
sp
atom +H

sp
cavity +H

sp
atom, cavity +H

sp
atom, pump, (5.5)

with the contributions

H
sp
atom =

p2

2m
+ Ve(~r)|e〉〈e|+ Vg(~r)|g〉〈g|+ ~ωeg|e〉〈e|

H
sp
cavity = ~ωca†a

H
sp
atom, cavity = ~g0 cos(~kc~r)

(
|e〉〈g|a+ |g〉〈e|a†

)

H
sp
atom, pump = ~Ωpe

i(~kp~r−ωpt)|e〉〈g|+ ~Ω∗pe
−i(~kp~r−ωpt)|g〉〈e|.

Here |e〉 and |g〉 denote excited and ground state of the atom, which are separated in energy by
~ωeg and subjected to a state-dependent potential Vα=g,e in addition to the free Hamiltonian.
The cavity with the frequency of the dominant mode ωc is represented by the bosonic operators
a and a†, with [a, a†] = 1. All other cavity modes are far detuned. The strengths of the coupling
between the atoms and the pump laser or the cavity are given by the Rabi frequencies g0 for
the cavity and Ωp for the pump beam. The pump laser is represented classically as an electro-
magnetic plane wave propagating with momentum ~kp and frequency ωp. In contrast to that,
the �xed boundary conditions of the resonator mirrors enforce a standing wave mode with mo-
mentum ~kc and the mentioned operator algebra. After shifting to the reference frame rotating
with the frequency of the pump laser, i.e. transforming H with U = eiωpt(|e〉〈e|+a

†a), we change
to the many-body formalism using the concept of second quantization for the description of N
fermionic atoms. By introducing �eld operators, depending on the location ~r, which obey the
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5.3.1 Adiabatic elimination of the excited state

canonical anti-commutation relations
{

Ψf (~r),Ψ
†
f ′(~r

′)
}

= δ3(~r − ~r ′)δf,f ′ ,

and
{

Ψf (~r),Ψf ′(~r
′)
}

=
{

Ψ†f (~r),Ψ
†
f ′(~r

′)
}

= 0 with f, f ′ ∈ {e, g},

the full Hamiltonian for a gas of non-interacting spinless fermionic atoms coupled to a cavity
and a pump beam is given by

H̃ = H̃atom + H̃cavity + H̃atom, cavity + H̃atom, pump. (5.6)

The �rst term covers the free evolution of the atoms. In analogy to the Jaynes-Cummings model,
we only consider two internal states of atoms with mass m, a ground and an excited state. The
corresponding Hamiltonian reads

H̃atom =

∫
d3r

[
Ψ†g(~r)

(
−~2∇2

2m

)
Ψg(~r) + Ψ†e(~r)

(
−~2∇2

2m
+ ~ωegp

)
Ψe(~r)

]
, (5.7)

where we de�ne the shifted resonance frequency ωegp = ωeg − ωp in the rotating frame. Note
here, that we have not taken into account an overall external potential here. Nevertheless, we
will employ the impact of an optical lattice potential later. Again, the change to the interaction
picture causes also a shift for the cavity frequency, so that the contribution of the bosonic
standing wave mode of the cavity is given by

H̃cavity = ~ωcpa†a, with ωcp = ωc − ωp. (5.8)

In analogy to equation 5.5, the couplings of the atoms to the cavity and to the pump beam have
the forms

H̃atom, cavity = ~g0 cos(~kc~r)

∫
d3r
(
Ψ†e(~r) aΨg(~r) + Ψ†g(~r) a

† Ψe(~r)
)
,

H̃atom, pump =

∫
d3r
[
~ΩpΨ

†
e(~r) ei

~kp~r Ψg(~r) + ~Ω∗pΨ
†
g(~r) e−i

~kp~r Ψe(~r)
]
.

5.3.1. Adiabatic elimination of the excited state

In the following subsection, we will use the di�erence in the time scales in the dynamics gen-
erated by di�erent scales of the model parameters of H̃ , to adiabatically eliminate the impact
of the excited state. This approach is based on the assumption, that the pump frequency is far
detuned from the atomic resonance, such that ωeqp � g0,Ωp. As we will see in the following,
each of the operators Ψ

(†)
e (~r, t) and Ψ

(†)
g (~r, t) scales with g0/ωegp or Ωp/ωegp, so that we can,

although dealing with fermions, assume [Ψf (~r),Ψ
†
f (~r
′)] ≈ δ3(~r − ~r ′)δf,f ′ . Another fact sup-

porting this statement is the low occupation of the excited state, allowing to neglect operator
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5.3 Derivation of the model Hamiltonian

combinations of the form Ψ†eΨe. This results in the following equations of motion

d

dt
Ψe(~r) = − i

~
(H0 + ~ωegp) Ψe(~r)−

i

~
Ve�Ψg(~r), (5.9)

d

dt
Ψg(~r) = − i

~
H0Ψe(~r)−

i

~
V †e�Ψg(~r), (5.10)

where we de�ne the e�ective potential Ve� ≡ [~g0 cos(~kc~r)a+ ~Ωpe
i~kp~r] and the free Hamilto-

nian H0 = −~2∇2/2m. Working in the interaction picture again, by transforming the problem
to the rotating frame of ωeqp and formally integrating the di�erential equations it is possible to
write the time dependencies of both �eld operators

Ψe(~r, t) = − i
~

∫ t

t0

e
i
~ (H0+~ωegp)(τ−t)Ve�(τ)Ψg(~r, τ)dτ,

Ψg(~r, t) = e
i
~H0(t0−t)Ψg(~r, t0)− i

~

∫ t

t0

e
i
~H0τV †e�(τ)Ψe(~r, τ)dτ.

Although this system of di�erential equations is not closed, the framework of our assumption
allows us to give an approximate solution for the excited state. To this end, we plug in the
expression for the ground state in the formula of the excited state and apply an integration by
parts on the �rst time integral. Doing this and keeping only terms which are linear in V (†)

e� /ωegp
yields

Ψe(~r, t) ≈ −
1

~ωegp

(
Ve�(t)e−

i
~H0(t−t0)Ψg(t0)− e

i
~ (H0+~ωegp)(t−t0)Ve�(t0)Ψg(t0)

)
. (5.11)

Using the fact that the cavity is initially empty and the pump laser is switched o�, i.e. Veff(t0) =
0, we �nally arrive at

Ψe(~r, t) ≈ −
1

ωegp

(
g0 cos(~kc~r)a+ Ωpe

i~kp~r
)

Ψg(~r, t). (5.12)

As a side note, it is interesting to state, that the same result can be obtained by plausibility
arguments: Taking into account Eq. 5.9 reveals, that if the pump is su�ciently far detuned,
such that ~ωegp dominates the free Hamiltonian, and the excited state dynamics is considered
to reach a steady state fast, i.e. dΨe(~r, t)/dt ≈ 0, Eq. 5.12 arises naturally.
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5.3.2. E�ective Hamiltonian and expansion in Wannier basis

After having successfully eliminated the excited state, the dynamics of the operators of the
ground state and the cavity �eld is given by

d

dt
a = − i

~

{(
~ωcp −

~g2
0

ωeqp

∫
d3r cos2(~kc~r)Ψ

†
g(~r, t)Ψg(~r, t)

)
a

−~g0Ωp

ωegp

∫
d3r cos(~kc~r)e

i~kp~rΨ†g(~r, t)Ψg(~r, t)

}
, (5.13)

d

dt
Ψg(~r, t) = − i

~

{
H0 −

1

ωegp

[
~g2

0 cos2(~kc~r)a
†a

+~g0 cos(~kc~r)
(

Ωpe
i~kp~ra† + h.c.

)
+ ~|Ωp|2

]
Ψg(~r, t)

}
. (5.14)

One can observe that the same dynamics of Eq. 5.13 and Eq. 5.14 is generated by the following
e�ective Hamiltonian

He� = H(cavity) +H(gs) +H(0) +H(1) +H(2). (5.15)

Here H(cavity) has the same contribution from the cavity as in Eq. 5.8 and H(gs) from the part
of Eq. 5.7 concerning the atomic state |g〉 with lower energy, respectively. The other parts,
involving atom photon interactions are given by

H(0) = − ~
ωegp

∫
d3r|Ωp|2Ψ†g(~r, t)Ψg(~r, t),

H(1) = − ~
ωegp

∫
d3r
(
g0Ωpe

i~kp~ra† + h.c.
)

cos(~kc~r)Ψ
†
g(~r, t)Ψg(~r, t),

H(2) = − ~
ωegp

∫
d3rg2

0 cos2(~kc~r)a
†aΨ†g(~r, t)Ψg(~r, t).

At this point, we introduce a deep optical lattice potential felt by the atoms. A very strong op-
tical lattice in z-direction con�nes the atoms to pancake-like arrangements, which restricts the
geometry the x-y-plane as depicted in Fig. 5.3. Two perpendicularly oriented lattice lasers with
half the wave lengths of the cavity mode λx = λy = λc/2 further create a square lattice struc-
ture in the two left space dimensions, where the dependence on the cavity wave length ensures
the same intensity of the cavity �eld at all sites. Imposing an additional laser in x-direction with
the doubled wave length, gives rise to a superlattice potential causing an e�ective additional
energy o�set ∆ on every second lattice site along this direction. As the lattice potential is very
deep, the spatial extension of the fermionic wave function is �nite only in close vicinity of the
lattice sites. Therefore, it makes sense to expand the �eld operators in the basis of well-localized
Wannier functions

Ψ†g(~r, t) =
∑

m,n

W∗(~r − ~Rm,n)c†m,n, (5.16)
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5.3 Derivation of the model Hamiltonian

with the lattice vector ~Rm,n = max~ex+nay~ey and the lattice spacings ax = λx/2 and ay = λy/2.
The operators c(†)

m,n obey the fermionic anti commutation relations {cm,nc†m′,n′} = δm,m′δn,n′ and
{cm,ncm′,n′} = {c†m,nc†m′,n′} = 0.

Combining all this and transforming to a frame rotating with the energy o�set ∆ results in
the �nal Hamiltonian which we will use in the subsequent work

H = Hcavity +H‖ +Hatom, cavity. (5.17)

Again, the cavity part is given by Hcavity = ~δcpa†a, with the shifted frequency δcp = ωcp −∆.
Restricting the free motion of the atoms in vertical direction to nearest neighbor hopping and
neglecting hopping in horizontal direction to due to the superlattice structure, the free atomic
part is given by

H‖ = −J‖
∑

m,n

(
c†m,ncm,n+1 + h.c

)
, (5.18)

with the hopping amplitude J‖ =
∫

d3rW∗(~r − ~Rm,n)(−~2∇2/2m)W(~r − ~Rm,n). The cavity-
atom interaction, including the e�ect of the pump beam is represented by

Hatom, cavity = −~Ω̃
∑

m,n

(
einϕa†c†2m,nc2m+1,n + h.c.

)
. (5.19)

This means, the horizontal hopping, originally suppressed by the potential o�-set of the su-
perlattice, is restored on every second bond in x-direction by creating or annihilating cavity
photons resulting in a potential shape of decoupled ladders (see Fig. 5.3). This form of the atom
light interaction describes the inelastic Raman scattering of both, pump and cavity photons,
with the fermionic atoms. An energy level scheme, discussing the various Raman processes
involved, has been presented in Fig. 5.2. An important feature is the complex phase ϕ = |~kp|ay
imprinted on the fermions during the hopping process on the ladder rungs, which originates
in the running wave nature of the pump beam. This results in an overall picked up complex
phase of eiϕ by fermions, which moves around one square plaquet. Due to the similarity of this
to the complex phase picked up by an electrically charged particle which moves along a closed
trajectory in a region penetrated by a magnetic �eld, this phenomena are known as arti�cial
magnetic �elds. Note here, that ϕ can be tuned by tilting the pump lasers out of the x-y-plane.
In this work we choose the �ux transfer to be ϕ = π/2. It is clear, that the phase transfer of a
pump photon depends on the spatial location as it propagates in a direction perpendicular to the
tunneling process at hand. In contrast to that, the scattered cavity photons resemble a standing
wave parallel to the hopping along the ladder rungs and therefore do not show a net phase
transfer on the atoms. Compared to a static creation of arti�cial magnetic �elds [19, 49, 145–
149] involving usually a �ne-tuning of the laser parameters, the arti�cial �eld here emerges
dynamically in a self-organized way via the feedback mechanism. The strength controlling this
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process combines properties of pump, cavity, atoms and lattice and is given by

Ω̃ =
g0Ωpφy,0(~kp)φx(~kc)

ωegp
(5.20)

with the Wannier function integrals

φy,0(~kp) =

∫
dyW∗(y)W(y)ei|kp|y, (5.21)

φx(~kc) =

∫
dyW∗(x)W(x− 1) cos(|kc|x). (5.22)

As we also will take into account losses of cavity photons due to imperfections of the cavity
mirrors later, the creation of of photons is less likely than the annihilation. Furthermore, an
imbalance of the distribution of fermions on the ladder legs in the initial state can impede the
occupation of the cavity mode. This can lead to a situation, where all atoms are pumped to the
right leg of the ladder. In order to prevent the privileged direction of tunneling, we add another
pump beam, running in the opposite direction of the �rst one, to our model. The frequency for
this beam is chosen as ωp,2 = ωp,1 + 2∆/~, giving rise to a Raman transition connected to the
rung hopping process in the inverse direction. Focusing on one independent ladder, determines
the atom-cavity part of the Hamiltonian to be

Hatom, cavity = −~Ω̃
(
a+ a†

)∑

n

(
einϕc†0,nc1,n + h.c

)
. (5.23)

To guarantee the two Raman processes are balanced [137] we choose the Rabi frequency for
the second pump beam as Ωp,2 = Ωp,1

ωe−ωp,2
ωe−ωp,1 .

5.4. Adiabatic elimination of the cavity �eld and e�ective fermionic
Hamiltonian

Turning back to the full dissipative model, we continue by characterizing the properties of
the steady state to which the non-equilibrium system converges for t → ∞ by a mean �eld
approach for the cavity �eld. This method has been discussed before [20, 23, 142–144, 150]
and was also found to agree with experimental observations [24]. The idea is based on the
assumption that the cavity dynamics happens on much faster time scales as compared to the
atomic motion. Therefore it is possible to assume, that the photon �eld reaches its steady state
instantaneously, such that it does not evolve, i.e. da/dt ≈ 0. From this we can derive the steady
state expectation value of the cavity �eld operator

0 ≈ d

dt
〈a〉 = (δcp − iκ) 〈a〉 − Ω̃〈K⊥ +K†⊥〉,

⇒α ≡ 〈a〉 =
Ω̃

δcp − iκ
〈K⊥ +K†⊥〉. (5.24)
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5.4 Adiabatic elimination of the cavity �eld and e�ective fermionic Hamiltonian

Here, we de�ne the directed atomic coupling along all rungs by K⊥ =
∑L−1

n=0 einϕc†0,nc1,n for
ladders with L rungs. Moreover, we performed a mean �eld decoupling

〈(a+ a†)(K⊥ +K†⊥)〉 ≈ 〈a+ a†〉〈K⊥ +K†⊥〉 (5.25)

in this calculation. We will present a comparison with exact computations, which investigates
the validity of this statement for the considered range of parameters later (cf. discussion con-
cerning Fig. 5.15). As the fermionic operators commute with the Lindblad jump operator, i.e.
the photon annihilation operator a, replacing the cavity �eld with its mean �eld α gives rise to
an Hamiltonian e�ectively describing the motion of the fermions

HF = H‖ −
(
J⊥K⊥ + J⊥K

†
⊥

)
, (5.26)

with J⊥ = ~Ω̃(α + α∗) =
A

2
〈K⊥ +K†⊥〉 ∈ R, and A =

4~Ω̃2δcp
κ2 + δ2

cp

.

We assume, that the steady state can be identi�ed with the ground state of HF . From a plau-
sibility point of view, this is reasonable due to the in�uence of the dissipation. The loss of
photons can cause a decrease in energy, pushing the system towards the ground state. More
quantitatively, the agreement of this method with exact results presented later in this chapter
and in Refs. [142, 144] justi�es this claim. It is an important point to note, that J⊥ itself depends
on the expectation value of fermionic operators. That means, ground state expectation values
of the model in Eq. 5.26 are only meaningful, if the following self-consistency condition is met

J⊥
A

= 〈gsH(J⊥)|K⊥|gsH(J⊥)〉. (5.27)

The decoupling of photonic and fermionic operators further incorporates a Z2 symmetry in
the remaining model, i.e. sign(〈K⊥ + K†⊥〉) = sign(α + α∗) = ±1. This symmetry will be
spontaneously broken in the experiment [24], here we chose, without loss of generality, the
positive sign. This enforces the cavity detuning δcp to be positive which gives also a positive
rung hopping amplitude J⊥.

5.4.1. Bogoliubov transformation and spectrum of the e�ective Hamiltonian

As the HamiltonianHF is quadratic in the fermionic operators, we can diagonalize it and ex-
press the many-body ground state as the Fermi sea of quasi-particles. As usual for free systems,
it is convenient to change into momentum space for the vertical direction by applying a Fourier
transform to the operators cm,n = 1/L

∑
kay

e−ikayncm,kay with the lattice spacing ay = λy/2
yielding

F(HF ) = −2J‖
∑

kay

cos(kay)c
†
m,kay

cm,kay − J⊥
∑

kay

(
c†0,kay+ϕ/2c1,kay−ϕ/2 + h.c.

)
. (5.28)
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5.4.1 Bogoliubov transformation and spectrum of the e�ective Hamiltonian

Shifting the diagonal part corresponding to the y-directional movement accordingly, makes it
possible to write down the matrix form in k-space

∑

kay

(
c†0,kay+ϕ/2 c†1,kay−ϕ/2

)(−2J‖ cos(kay + ϕ
2
) −J⊥

−J⊥ −2J‖ cos(kay − ϕ
2
)

)(
c0,kay+ϕ/2

c1,kay−ϕ/2

)
.

(5.29)
This is a symmetric matrix and therefore diagonalizable. More precisely, we use a Bogoliubov
transformation to compute the eigenspectrum while preserving the fermionic anti-commutation
relation. Doing this, provides the eigenenergies

E±(k) = −2J‖ cos(ϕ/2) cos(kay)±
√
J2
⊥ + 4J2

‖ sin2(ϕ/2) sin2(kay), (5.30)

as well as the �eld operators of the two quasi-particles in momentum space

γ+,k = vkc0,k+ϕ/2ay − ukc1,k−1ϕ/2ay , (5.31)
γ−,k = ukc0,k+ϕ/2ay + vkc1,k−1ϕ/2ay , (5.32)

with the coe�cients

uk =

√√√√√√√
1

2


1− sin(ϕ/2) sin(kay)√(

J⊥
J‖

)2

+ sin2(ϕ/2) sin2(kay)


,

vk =

√√√√√√√
1

2


1 +

sin(ϕ/2) sin(kay)√(
J⊥
J‖

)2

+ sin2(ϕ/2) sin2(kay)


.

The dispersion of the eigenenergies is plotted in Fig. 5.4 for di�erent rung hopping amplitudes
J⊥/J‖. While we see two independent dispersion relations for decoupled ladder legs (J⊥ = 0),
a �nite but small coupling lifts the degeneracies at k = 0 and k = ±π and creates two separate
bands, where the lower one exhibits two distinct minima. Increasing the coupling further to
values J⊥/J‖ >

√
2, results in the opening of a band gap and eventually the two minima merge

to a single one at k = 0. The knowledge of the eigenbasis allows us to specify the ground state
for N particles by successively �lling up the N momentum states corresponding to the lowest
energy states taking into account both, E+(k) and E−(k). The lattice �lling, de�ned by the
ratio of occupied to empty sites of the ladder geometry, i.e. n = N/2L, is then decisive for the
ground state properties. As plotted in Fig. 5.5, there are certain crucial parameter regimes for
di�erent �lling ratios. For n = 1/2 the gap opening at J⊥ =

√
2J‖ marks a liquid to insulator

transition, whereas for n ≤ 1/4 only states of the lower band contribute to the ground state. An
interesting feature appears for even smaller �llings as for example n = 1/8, where the number
of Fermi points changes from four to two by increasing the horizontal hopping amplitude. All
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5.4 Adiabatic elimination of the cavity �eld and e�ective fermionic Hamiltonian
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Figure 5.4.: Dispersion of quasiparticle energies of the e�ective Hamiltonian HF for di�erent
perpendicular coupling strengths J⊥/J‖ and ϕ = π/2.
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Figure 5.5.: Contribution of quasi-particle states to the many-body ground state of HF for
di�erent �llings n and couplings J⊥/J‖.

these features will reoccure in the discussion of the corresponding ground state expectation
values later.

5.4.2. Solutions of the self-consistency equation

Now, that we outlined the determination of the ground state, we return to the condition
posed by the by Eq. 5.27. This limits the set of valid steady states in this approximation to the
ground state of models, containing rung hopping amplitudes which are self-consistent with the
expectation value of the directed tunneling. The latter can be obtained, by transforming the
corresponding operator to the basis of quasi-particles using Eq. 5.31 and 5.32 which results in

K⊥ =
∑

k

ukvk

(
γ†−,kγ−,k − γ†+,kγ+,k

)
. (5.33)
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5.4.2 Solutions of the self-consistency equation

Figure 5.6.: Solutions of self-consistency condition of the directed tunneling for di�erent �ll-
ings. The straight line is the parameter dependence linear in the horizontal tun-
neling with slope 1/A. Intersections of this linear function with the computed
ground state expectation value for L −→ ∞ correspond to self-consistent solu-
tions (©2016 American Physical Society, published in Ref.[144]).

The ground state expectation value of the directed tunneling 〈K⊥〉/L is displayed in Fig. 5.6 as a
function of J⊥/J‖ for di�erent �llings. For situations, where the rung tunneling is much larger
than the leg tunneling and in particular for J⊥/J‖ �

√
2 an expansion of the expectation value

of the directed rung yields 〈K⊥〉/L ≈ aykF/2π, with the momentum kF at the Fermi point
which depends linear on the �lling n. At half-�lling and low J⊥/J‖, 〈K⊥〉 shows a concave
curvature until the point when the band gap opens, causing a kink at J⊥/J‖ =

√
2, followed

by a linear increase. For lower �llings n ≤ 1/4, this linear increase, complemented by a small
logarithmic correction, can already be seen for low rung coupling strength, as only the lower
band is occupied for these parameters. For even lower �llings additionally a cusp appears at
the point where the number of Fermi points changes from four to two as explained above.
For n = 1/8 this happens at J⊥/J‖ = 1. The self-consistent solutions can then be extracted,
by �nding intersection points of this curves with the linear dependence originating from the
mean �eld replacement of the photon �eld with the slope 1/A. Notably, for half-�lling, there is
a critical slope 1/Acr for �nding solutions, with Acr = 4πJ‖/

√
2K(−1) +K(1/2) ≈ 3.39J‖ as

derived in Ref. [143] for a general �uxϕ, whereK is the elliptic integral of �rst kind. Translating
this back to the model parameters leads to the conclusion that non-trivial steady states at half-
�lling can only be observed above a certain pump strength. Below the corresponding critical
slope, i.e. above the critical pump strength, there is an intermediate region of two coexisting
solutions, where one of them only survives over a certain range of slopes. We will discuss
the implications of this on the physical properties of the steady state later in section 5.6. For
n = 1/4 the analysis gives always one solution, independent of the pump strength, whereas
for n = 1/8 again a critical value ~Ω̃cr needs to be passed, after which a single solution exists.
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5.5 Numerical implementation of the exact diagonalization of the Lindbladian

5.5. Numerical implementation of the exact diagonalization of the Lind-
bladian

Having established the various di�erent approximations leading to an analytical understand-
ing of the steady state in Sec. 5.4, it becomes clear, that this treatment can bene�t greatly from
a comparison to numerically exact calculations. In summary, the mean �eld decoupling of
fermionic and photonic �elds, the assumption that the steady state is represented by the ground
state of the e�ective fermionic model HF (Eq. 5.26) and the requirement of a faster relaxation
time scale of the cavity degrees of freedom compared to the atomic ones are potential sources
of inaccuracy. To this end, we conduct an exact diagonalization study as introduced in Sec. 3.2
considering small system and the full Lindblad equation for the system’s density matrix

d

dt
ρ = Lρ = − i

~
[H, ρ] + κ

(
2aρa† − a†aρ− ρa†a

)
, (5.34)

with the Hamiltonian from Eq. 5.17, i.e. H = Hcavity + H‖ + Hatom, cavity. Equally important,
this also poses an unbiased approach to access the full time evolution of the system. This opens
the opportunity to draw conclusions on the dynamics, which is inaccessible by the adiabatic
elimination procedure.

As a �rst step, we need to �nd a basis for the Hilbert space. As this is a composition of cavity
photons, which are bosons, and fermionic atoms on a ladder geometry the Hilbert space is given
by the tensor product

H = Hcavity ⊗Hatoms. (5.35)

Here the cavity photon Hilbert space is given by the direct sum of Fock states for di�erent
particle numbers with the basis Bcavity

{
|nB〉 : nB ∈ N0

}
. The spinless fermions are expressed

in the formalism of second quantization in the occupation basis, restricting the site occupation
to zero or one. This space is spanned by Batoms = {|nF0,0, . . . , nF0,L−1, n

F
1,0, . . . , n

F
1,L−1〉} with

nFm,n ∈ {0, 1}. Furthermore, the fermionic nature of the atoms gives rise to a negative sign
when exchanging particles. For this reason, the order of the di�erent sites needs to be well-
de�ned, here we choose the basis to be leg-wise ordered. This set-up then enables us to specify
the Lindblad matrix ML acting on the superspaceH⊗H∗ of vectorized density matrices |ρ〉〉 as
explained in Sec. 3.2 and de�ned in Eq. 3.43.

5.5.1. Symmetries of the Lindbladian

Finding the full eigensystem of ML also provides the eigenstates |ρ̃0〉〉 corresponding to van-
ishing eigenvalues ML|ρ̃0〉〉 = 0. In the model under investigation these states are not unique,
but span a manifold as discussed in 3.2. As also mentioned before, it is a good idea to iden-
tify symmetries [94, 95] in order to block-diagonalize ML aiming for single zero-eigenvalues
in seperate blocks. In the following, we prove that this route is here successful, such that we
can construct physical density matrices for all steady states. In Table 5.1 we list the di�erent
number of found steady states for lattice �llings and system sizes.

A �rst symmetry to exploit is given by the fact, that the Lindblad equation conserves the
number of fermionic atoms, since the dissipation acts on the cavity photons exclusively, so that
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5.5.1 Symmetries of the Lindbladian

L lattice �lling n = N/2L #steady states

1 1/2 2

2 1/2
1/4

6
2

3 1/2
1/6

6
2

Table 5.1.: Number of steady states for di�erent number of rungs of the ladder L, and di�erent
�llings n.

original model symmetry

ei'
<latexit sha1_base64="5nmUwx0Qu/H4+T5t59SiF6BDfKc=">AAADB3icjVLLSsNAFL2Nr7a+6mPnJlgEVyUVQXFV8IEboYJ9gK1lkk7r0DQJk2mxln6Af+FWN+7ErZ/hT/gFLjwZo6DiY8Lk3jlz7rl35o4duCJUlvWUMMbGJyankqn09Mzs3HxmYbEc+j3p8JLju76s2izkrvB4SQnl8mogOevaLq/Ynd1ov9LnMhS+d6IGAa93WdsTLeEwBaiRWa4pfqGGfHQ2FGatz2RwLkaNTNbKWXqY35187GQpHkU/80w1apJPDvWoS5w8UvBdYhTiO6U8WRQAq9MQmIQn9D6nEaUR2wOLg8GAdvBvY3Uaox7WkWaoox1kcTElIk1awzzQijbYUVYOP4R9wbzUWPvHDEOtHFU4gLWhmNKKR8AVnYPxV2Q3Zr7X8p/IJtAWThBV+/vpFXjb+tQC7EAj0X04H/n2sCOBdfSOSfua2YaGrdd9ncekEiqNuvGuYOqbacIybblW8WJFBj0JG3UJ9eA55L82/7tT3sjl4R9vZgs78cNI0gqt0jq6v0UFOqQi6nDQlWu6oVvjyrgz7o2HN6qRiGOW6NMwHl8BqQ+gnA==</latexit><latexit sha1_base64="5nmUwx0Qu/H4+T5t59SiF6BDfKc="></latexit><latexit sha1_base64="5nmUwx0Qu/H4+T5t59SiF6BDfKc="></latexit><latexit sha1_base64="5nmUwx0Qu/H4+T5t59SiF6BDfKc="></latexit>

e2i'
<latexit sha1_base64="FNXn5xvFfX3f5TS/e+iKr1pGBOw="></latexit><latexit sha1_base64="FNXn5xvFfX3f5TS/e+iKr1pGBOw="></latexit><latexit sha1_base64="FNXn5xvFfX3f5TS/e+iKr1pGBOw="></latexit><latexit sha1_base64="FNXn5xvFfX3f5TS/e+iKr1pGBOw="></latexit> ei(L�1)'

<latexit sha1_base64="+4juNGb3E2natmbpt4lSAxxYlNU="></latexit><latexit sha1_base64="+4juNGb3E2natmbpt4lSAxxYlNU="></latexit><latexit sha1_base64="+4juNGb3E2natmbpt4lSAxxYlNU="></latexit><latexit sha1_base64="+4juNGb3E2natmbpt4lSAxxYlNU="></latexit>

+ phase transfer
<latexit sha1_base64="nt1lszxSJeCRjd1TipKhGEup8IU="></latexit><latexit sha1_base64="nt1lszxSJeCRjd1TipKhGEup8IU="></latexit><latexit sha1_base64="nt1lszxSJeCRjd1TipKhGEup8IU="></latexit><latexit sha1_base64="nt1lszxSJeCRjd1TipKhGEup8IU="></latexit>

0
<latexit sha1_base64="YMnkC5wdduwsZHAdhq8CrEGkyVo="></latexit><latexit sha1_base64="YMnkC5wdduwsZHAdhq8CrEGkyVo=">AAAC8nicjVLJSgNBEK2MWxK3qEcvg0HwFGZEUDwFXPAiJGAWiEF6Jp04ZDZ6OoEY/AKvevEmXv0hf8Iv8ODrdhQ0uPTQU9WvXr2qXpzY9xJpWc8ZY2p6ZnYum8vPLywuLRdWVutJNBAur7mRH4mmwxLueyGvSU/6vBkLzgLH5w2nf6DijSEXiReFZ3IU83bAeqHX9VwmAVWti0LRKll6mJOOnTpFSkclKrzQOXUoIpcGFBCnkCR8nxgl+Fpkk0UxsDaNgQl4no5zuqY8cgdgcTAY0D7+PaxaKRpirTQTne2iio8pkGnSJuaxVnTAVlU5/AT2FfNKY70fK4y1supwBOtAMacVT4FLugTjr8wgZX708p/MDtAudqC6/X33Erw9vWsP7Fgj6jzcz3qHiAhgfR0x6Ugze9Bw9Hqo65hUQ6fqNj4UTH0yHVimLdcqYarIoCdg1S2hHzwH+/vlTzr17ZINv7pTLO+nDyNL67RBW7j9XSrTCVXQh4s6N3RLd4Y07o0H4/GdamTSnDX6MoynN03cl5o=</latexit><latexit sha1_base64="YMnkC5wdduwsZHAdhq8CrEGkyVo="></latexit><latexit sha1_base64="YMnkC5wdduwsZHAdhq8CrEGkyVo="></latexit>

1<latexit sha1_base64="ew7j4PnqgaPrBnK7/lWBz6lnWmg=">AAAC8nicjVLJSgNBEK2MWxK3qEcvg0HwFGZEUDwFXPAiJGAWiEF6Jp04ZDZ6OoEY/AKvevEmXv0hf8Iv8ODrdhQ0uPTQU9WvXr2qXpzY9xJpWc8ZY2p6ZnYum8vPLywuLRdWVutJNBAur7mRH4mmwxLueyGvSU/6vBkLzgLH5w2nf6DijSEXiReFZ3IU83bAeqHX9VwmAVXti0LRKll6mJOOnTpFSkclKrzQOXUoIpcGFBCnkCR8nxgl+Fpkk0UxsDaNgQl4no5zuqY8cgdgcTAY0D7+PaxaKRpirTQTne2iio8pkGnSJuaxVnTAVlU5/AT2FfNKY70fK4y1supwBOtAMacVT4FLugTjr8wgZX708p/MDtAudqC6/X33Erw9vWsP7Fgj6jzcz3qHiAhgfR0x6Ugze9Bw9Hqo65hUQ6fqNj4UTH0yHVimLdcqYarIoCdg1S2hHzwH+/vlTzr17ZINv7pTLO+nDyNL67RBW7j9XSrTCVXQh4s6N3RLd4Y07o0H4/GdamTSnDX6MoynN1Bql5s=</latexit><latexit sha1_base64="ew7j4PnqgaPrBnK7/lWBz6lnWmg="></latexit><latexit sha1_base64="ew7j4PnqgaPrBnK7/lWBz6lnWmg="></latexit><latexit sha1_base64="ew7j4PnqgaPrBnK7/lWBz6lnWmg="></latexit>

0
<latexit sha1_base64="YMnkC5wdduwsZHAdhq8CrEGkyVo=">AAAC8nicjVLJSgNBEK2MWxK3qEcvg0HwFGZEUDwFXPAiJGAWiEF6Jp04ZDZ6OoEY/AKvevEmXv0hf8Iv8ODrdhQ0uPTQU9WvXr2qXpzY9xJpWc8ZY2p6ZnYum8vPLywuLRdWVutJNBAur7mRH4mmwxLueyGvSU/6vBkLzgLH5w2nf6DijSEXiReFZ3IU83bAeqHX9VwmAVWti0LRKll6mJOOnTpFSkclKrzQOXUoIpcGFBCnkCR8nxgl+Fpkk0UxsDaNgQl4no5zuqY8cgdgcTAY0D7+PaxaKRpirTQTne2iio8pkGnSJuaxVnTAVlU5/AT2FfNKY70fK4y1supwBOtAMacVT4FLugTjr8wgZX708p/MDtAudqC6/X33Erw9vWsP7Fgj6jzcz3qHiAhgfR0x6Ugze9Bw9Hqo65hUQ6fqNj4UTH0yHVimLdcqYarIoCdg1S2hHzwH+/vlTzr17ZINv7pTLO+nDyNL67RBW7j9XSrTCVXQh4s6N3RLd4Y07o0H4/GdamTSnDX6MoynN03cl5o=</latexit><latexit sha1_base64="YMnkC5wdduwsZHAdhq8CrEGkyVo="></latexit><latexit sha1_base64="YMnkC5wdduwsZHAdhq8CrEGkyVo="></latexit><latexit sha1_base64="YMnkC5wdduwsZHAdhq8CrEGkyVo="></latexit>

1<latexit sha1_base64="ew7j4PnqgaPrBnK7/lWBz6lnWmg="></latexit><latexit sha1_base64="ew7j4PnqgaPrBnK7/lWBz6lnWmg="></latexit><latexit sha1_base64="ew7j4PnqgaPrBnK7/lWBz6lnWmg="></latexit><latexit sha1_base64="ew7j4PnqgaPrBnK7/lWBz6lnWmg=">AAAC8nicjVLJSgNBEK2MWxK3qEcvg0HwFGZEUDwFXPAiJGAWiEF6Jp04ZDZ6OoEY/AKvevEmXv0hf8Iv8ODrdhQ0uPTQU9WvXr2qXpzY9xJpWc8ZY2p6ZnYum8vPLywuLRdWVutJNBAur7mRH4mmwxLueyGvSU/6vBkLzgLH5w2nf6DijSEXiReFZ3IU83bAeqHX9VwmAVXti0LRKll6mJOOnTpFSkclKrzQOXUoIpcGFBCnkCR8nxgl+Fpkk0UxsDaNgQl4no5zuqY8cgdgcTAY0D7+PaxaKRpirTQTne2iio8pkGnSJuaxVnTAVlU5/AT2FfNKY70fK4y1supwBOtAMacVT4FLugTjr8wgZX708p/MDtAudqC6/X33Erw9vWsP7Fgj6jzcz3qHiAhgfR0x6Ugze9Bw9Hqo65hUQ6fqNj4UTH0yHVimLdcqYarIoCdg1S2hHzwH+/vlTzr17ZINv7pTLO+nDyNL67RBW7j9XSrTCVXQh4s6N3RLd4Y07o0H4/GdamTSnDX6MoynN1Bql5s=</latexit>

Figure 5.7.: S1 symmetry transformation of fermions.

we can reduce the basis to the states containing the same number of atoms as the initial state.
In addition, observing the Hamiltonian Eq. 5.17, reveals another symmetry for the atoms. As
depicted in 5.7, the fermionic Hamiltonian exhibits a mirror symmetry including a correction
for the transferred phase, leading to the transformation

S1 :

{
c0,n → ei(L−1)ϕ/2c1,L−1−n

c1,n → e−i(L−1)ϕ/2c0,L−1−n.
(5.36)

Two consecutive applications result in the identity, which classi�es the transformation as a Z2

symmetry and determines the eigenvalues to λ1 = ±1. Since also both, H‖ and [K⊥ +K†⊥] are
invariant under S1, switching to the eigenbasis which is sorted according to the eigenvalues,
results in a block-diagonal form in the fermionic sector. The transformed operators read

γ†ñ =
1√
2

{
−ei(L−1)ϕ/2c†0,ñ + c†1,ñ : ñ ∈ {0, . . . , L− 1},
ei(L−1)ϕ/2c†0,ñ−L + c†1,2L−ñ−1 : ñ ∈ {L, . . . , 2L− 1}. (5.37)

For the single-particle case, the degeneracies of the positive and negative eigenvalue are equal,
such that the fermionic states γñ|0〉 only couple to states of the same subspace, both of di-
mension L. More precisely, the values ñ ∈ {0, . . . , L − 1} correspond to the negative, and
ñ ∈ {L, . . . , 2L− 1} to the positive eigenvalue of S1. Due to the lack of fermionic operators in
the dissipator the latter is invariant under this transformation and also the Lindblad matrix is
block-diagonal. It is decomposed out of four blocks, as both components of the super space can
be in either one of the two subspaces. For a many-body scenario, we can construct the basis ac-
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5.5 Numerical implementation of the exact diagonalization of the Lindbladian
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Figure 5.8.: Steady state photon number distribution for di�erent truncation cut-o�s nBmax of
the bosonic Hilbert space dimension of the cavity photons for a system of size
L = 3 and N = 3 fermions. Model parameters here are ~κ/J‖ = 0.25, ~Ω̃/J‖ =
~δcp/J‖ = 1.

cordingly forN particles as γ†ñNγ
†
ñN−1

. . . γ†ñ1
|0〉 producing again a block-diagonal Hamiltonian.

In every case further unitary transformations can be found in the space of the quasiparticles of
S1, to balance the number of Hamiltonian blocks with the number of vanishing eigenvalues of
the Lindbladian.

An interesting property is revealed by the already established Z2 symmetry regarding the
coupling of the cavity �eld operators to the directed rung tunneling in Hatom, cavity consisting in
a joint sign �ip of the two while leaving the parallel hopping unchanged

S2 =





K⊥ +K⊥ → −(K⊥ +K⊥),

a+ a† → −(a+ a†),

H‖ → H‖,

⇔





a → −a,
c0,n → −c0,n,

c1,n → c1,n.

(5.38)

As this symmetry does not commute with the jump operator it is considered to be a weak
symmetry [94]. Consecutive application of S1 and S2 reveals that the two symmetry transfor-
mations anti-commute. From this we can draw the conclusion, that S2 maps eigenstates of S1

to the space of the opposite eigenvalues, as can be seen from

S1S2|λ1 = ±1〉 = −S2S1|λ1 = ±1〉 = ∓S2|λ1 = ±1〉. (5.39)

In addition, S2 also commutes with the directed rung tunneling, so that we can deduce anal-
ogously, that S2 maps eigenvalues of [K⊥ + K†⊥] to the space of the corresponding negative
eigenvalue. These two insights together with the fact , that the cavity �eld expectation value
α is proportional to the rung tunneling (cf. Eq. 5.24), allow the statement that the symmetry
blocks of S1 with di�erent sign, also belong to cavity �elds with opposite sign. We prove this
behavior later in our study of the steady state.
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5.5.2 Photon number restriction

Figure 5.9.: Steady state diagram of the mean �eld of the photon �eld α as a function of the
rescaled pump strength AL/J‖ and the atomic �lling of the lattice n = N/2L.
Zero �eld regions are white and the critical pump strength is plotted as a red line.
(©2016 American Physical Society, published in Ref. [144]).

5.5.2. Photon number restriction

While the fermionic space is �nite, due to the �nite system size, the conservation of the parti-
cle number by the Lindbladian and Pauli’s exclusion principle, the bosonic space is in principle
unbounded. In practice, we solve this problem by truncating the dimension of the bosonic
Hilbert space at a maximal photon number nBmax ≡ dim(Hcavity), such that we end up with a
model of �nite size. On phenomenological grounds, this makes sense because we do not ex-
pect too large occupations of the cavity mode for the small systems and not to strong pump
strength, which governs the photon creation via the cavity-assisted rung tunneling. Neverthe-
less, this statement needs always to be validated for the steady state and each time step. In
Fig. 5.8 we show the occupation of the di�erent photonic Fock states for the steady state in the
symmetry block of a ladder with L = 3 rungs and N = 3 atoms which shows the maximal
detected photon �eld. While increasing the cuto� from 10 to 15 Boson states, the distribution
changes quite drastically, whereas this change is reduced for larger photon space dimensions.
Notably, for nBmax = 25, the states of higher photon number are almost empty and the distri-
bution equilibrates to the shown shape. If the threshold is chosen too small, this is also visible
in other observables, indicated by the change of measured expectation values when increasing
the cuto�. If not stated otherwise, we use nBmax = 25.

5.6. Properties of the steady state
After the presentation of the various available techniques for the description of the steady

states which are reached after long times, we now continue with the characterization of the
properties of these states. In the next section we will analyze the attractive dynamics towards
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5.6 Properties of the steady state

Figure 5.10.: Cavity �eld and Chiral current for in�nitely long ladders. Adiabatic elimination
results (lines) are compared to exact diagonalization steady state data (circles)
for a small system of L = 3 rungs and N = 3 atoms with ~κ = 0.05J‖ and
~δcp = J‖. (©2016 American Physical Society, published in Ref. [142]).

the steady states.
We begin with investigating the steady state expectation value of the cavity �eld α, which is

a crucial component in our model, as it establishes a feedback mechanism between the photon
�eld and the rung hopping, causing the creation of an arti�cial magnetic �eld. In the frame-
work of adiabatic elimination from Sec. 5.4, the photon �eld in the steady state is linked to
the ground state expectation value of the directed rung tunneling according to the e�ective
fermionic model, with model parameters satisfying the introduced self-consistency condition.
The result is shown in Fig. 5.9 as a steady state diagram for an in�nitely long ladder (L→∞),
where we show the real part of the photon �eld as a function of the atomic �lling of the lad-
der lattice and the rescaled pump strength A as de�ned in Eq. 5.26. Due to the particle-hole
symmetry of the fermions, this diagram is symmetric with regard to the n = 1/2 axis. In cases
where combinations of pump strength and �lling allow two self-consistent solution, as for ex-
ample at half-�lling and intermediate strong pump, the plot shows the maximal value. The red
line represents the critical value Acr as calculated in Ref. [143], here for the considered �ux of
ϕ = π/2. Interestingly, for almost all �llings, a critical minimal pump strength is needs to be
crossed to have a �nite occupation of the cavity mode. An exception of this is the situation of
n = 1/4 and its hole equivalent n = 3/4, where the quasiparticle bands of the eigenstates of
the e�ective HamiltonHF (cf. Fig. 5.5) are �lled exactly up to the crossing point of the bands in
the case of decoupled legs (J⊥ = 0). This results in a logarithmic rise of the directed tunneling,
enabling a self-consistent solution already for in�nitesimal small values of the pump strength.
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This is also demonstrated in the cuts at a few chosen �llings in the upper panel of Fig.
5.10. The shown lines represent data obtained from the adiabatic elimination for in�nitely
long ladders for three selected �llings. Independent of the �lling, an expansion for strong
pump strengths yields a linear dependence of the photon �eld on the pump intensity, i.e. α ≈
[2Ω̃L/(δcp − iκ)][aykF/(2π)]. The slope here depends on the respective Fermi momenta, and
therefore is stronger for larger �llings as long as n ≤ 1/2.

Another remarkable feature of the steady state is, that a chiral current of atoms, circulating
around the ladder edges, can be detected for a �nite cavity �eld. The corresponding observable
takes into account the opposite motion of the atoms on the two legs and is given by

Jc =
1

L− 1

L−2∑

n=0

(j0,n − j1,n) , with jm,n = −iJ‖
(
c†m,jcm,j+1 − h.c.

)
. (5.40)

The coincidence with the occupation photon �eld is rooted in the recovered cavity-assisted
tunneling, which is also responsible for the arti�cial magnetic �eld felt by the fermions. In-
deed, Fig. 5.10 veri�es, that as soon as the cavity mode is occupied a non-vanishing directed
current appears. The occurrence of edge currents is is a key signature of topologically non-
trivial phases. As a consequence, the considered model promises to be an option for the stable
creation of topological phases, as the steady states are stationary in time and exponentially fast
approached. Even more, the control over the cavity mode occupation via the pump strength,
holds out the prospect for fast dynamical switching between di�erent topological phases, char-
acterized here by a vanishing or �nite chiral current. Note that chiral states located at the
system boundary, have also been found in the two-dimensional equivalent of this model on a
square lattice geometry using the same adiabatic elimination scheme in Ref. [20], which mani-
fests the existence non-trivial bulk topology via the bulk-edge correspondence. This underlines
the topological nature of the found chiral states in the ladder set-up.

Let us discuss the chosen �llings separately in more detail. At half-�lling we see very clearly
the sharp onset of a cavity occupation at the location of the critical pump strength. The two
di�erent curves for n = 1/2 represent the two possible self-consistent solutions (cf. Fig. 5.6),
where the �rst one corresponds to a chiral liquid with J⊥ <

√
2J‖ with occupations in both

quasi-particle bands E±(k) and the second one is a chiral insulator, consisting of states from
the E−-band exclusively. The second solution transitions to the asymptotic linear behavior for
large pump strengths, mentioned above. The chiral current exhibits a more complex relation.
At the critical strength, a jump occurs to a �nite negative value, which reduces while increas-
ing AL/J‖. For this �lling, Fig. 5.10 also includes �ndings from an exact diagonalization (ED)
for a small system of three rungs. In this case, there are six steady states, of which we have
chosen the one maximizing the cavity �eld, which is, at the same time, the state showing the
best agreement with the second solution of the adiabatic elimination approach. The other so-
lution, present for intermediate pump strength, could not be recovered by the exact study. We
will discuss the nature of the steady states of the other blocks later. Notably, we see a good
agreement for the chiral current and the photon �eld of both methods, strengthening the va-
lidity of the assumption made in the adiabatic elimination. The smearing out of the peak can

83



5.6 Properties of the steady state

Figure 5.11.: Steady state expectation values of the cavity �eld (upper panel) and the chiral
current (lower panel) for a �nite system with L = 3 rungs and N = 3 atoms for
di�erent �llings. (©2016 American Physical Society, published in Ref. [144]).

be caused on the ED side by the smallness of the system, leaving space for a prominent role of
quantum �uctuations of atoms and photons. On the other hand, from the adiabatic elimination
perspective, these �uctuations might have been underestimated when we assumed the mean
�eld decoupling of photons and atoms. For quarter-�lling realizations, the existence of self-
consistent solutions for the whole parameter space also results in a �nite, smoothly increasing
chiral current as soon as the pump is switched on. The system is then always in the state of a
chiral insulator. The situation changes at n = 1/8, where a critical threshold exists. Further-
more a kink in both observables marks the point where the number of Fermi points changes
from two, at low pump strength, to four.

A more direct comparison of both approaches is presented in Fig. 5.11, where the adia-
batic elimination calculation is based on the same system size (L = 3), which is reachable
numerically. We generally can infer that the �ndings delivered by both methods are consistent
with each other. Especially the quarter and eighths �lling curves show a good correspondence,
whereas the half-�lling inaccuracy at the sudden onset might su�er from the respective prob-
lems in the treatment of �uctuations. Nevertheless, the quality of the agreement strongly de-
pends on the model parameters and in particular the strength of the dissipation, i.e. the loss
rate of the cavity.

In the maximally reachable system for exact diagonalization, containing six sites distributed
on two ladder lags, with a atom number of three, we can use the introduced symmetries to
split the corresponding Hamiltonian matrix into 6 blocks of sizes {(1×1), (3×3), (6×6), (3×
3), (6×6), (1×1)}, which we will refer to as block 1 to 6. We show the cavity �eld and the chiral
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Figure 5.12.: Cavity �eld and chiral current for the six di�erent blocks in the fermionic sec-
tion of a system with L = 3 and N = 3. Adiabatic elimination is compared to
exact diagonalization for ~κ = 0.05J‖ and ~δcp = J‖ (©2016 American Physical
Society, published in Ref. [144]).

current for the unique steady states, of blocks where both, | . . .〉 and 〈. . . | of the density matrix
to vectorize are placed in the same symmetry sector in Fig. 5.12. The Z2 symmetry of the photon
�eld expectation value of same-sized blocks, can be addressed to the S2 symmetry (see Sec. 5.5.1
and Eq. 5.38). This does not a�ect the motion of the atoms along the legs. The states, which
show the best agreement with the adiabatic elimination for the same �nite system, subject to
the discussed limitations, are located in the two blocks with the extend of six, i.e block 3 and 5.
Moreover, block 1 and 6 belong to the fermion con�gurations where all three particles are found
in the same symmetry sector of S1, which prohibits any further fermion dynamics, resulting in
a vanishing chiral current. A closer look reveals, that the model can be directly mapped to the
well-known Jaynes Cummings model, describing a single two-level system in a cavity coupled
to a cavity mode. In this case, the cavity �eld dependence on the pump strength exhibits a
square root behavior. The two remaining blocks, i.e. block 2 and 4, interestingly match exactly
with our simulation results for a single particle on a three rung ladder. This is also con�rmed
by the comparison with the corresponding adiabatic elimination calculation. The observations
made for the cavity �eld so far, indicate a strong dependence on the coupling between atoms
and photons, mediated by the pump strength. Figure 5.13 reveals that starting with an empty
cavity at low values of ~Ω̃, the low number states of the cavity mode start to be occupied as the
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Figure 5.13.: Dependence of the photon number distribution of the steady state on the pump
strength. Results are shown for L = 3 and half-�lling for the block state which
agrees with the adiabatic elimination, with parameters ~κ = 0.25J‖, ~δcp = J‖.
The gray bars in the lower panel show a �t to a Possonian distribution. (©2016
American Physical Society, published in Ref. [144]).

coupling is increased. Further increasing ~Ω̃ shifts the mean to larger values and also broadens
the width of the arising distribution. As the photon number is limited by the system size, it is
hard to extract the exact form of the distribution. For the current instance, neither a Gaussian
nor a Poissonian could be rejected in a statistical test [151] with con�dence interval of 99%. A
practical consequence of this is, that our exact diagonalization method is limited by a certain
maximal pump strength, as otherwise the number of necessary photon states would cause too
large matrix dimensions.

So far, we restricted our consideration to fairly low values of the photon loss rate. In Fig. 5.14
we present the behavior for di�erently strong dissipative coupling strengths. As the dissipation
strength is included in the de�nition of the rescaled pump strength A, also the sudden onset of
the cavity mode occupation, as well as of the chiral current are shifted to larger values of ~Ω̃
for less perfect cavity mirrors. While the smearing of the peak in the exact diagonalization is
small in a low dissipation situation, it is ampli�ed for larger dissipative couplings. Similarly, the
peak magnitude of the current is suppressed for strong photon losses in the exact calculation.
To support the argument that this is caused by the less accurate approximation made in the
mean �eld decoupling of the photons, we directly measure the decoupled �elds 〈a〉st and 〈a†〉st
in our ED approach and compare them to the photon number in Fig. 5.15. It becomes clear, that
the neglection of �uctuations is only valid for lower values of ~κ and causes strong deviations
otherwise. This discrepancy might be overcome in large systems, which are expected to produce
a larger number of photons in the steady state and therefore are less dependent on �uctuations.
Nevertheless, the strong dissipation regime for this system size, poses a good example of when
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5.6.1 Non-destrucitve measurement scheme for chiral current in the steady state
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Figure 5.14.: Dissipation dependence of the steady state expectation value for di�erent dissi-
pation strengths. We compare the �nite size adiabatic elimination (lines) with the
exact diagonalization (markers), for L = 3, N = 3, and ~δcp = J‖ and a bosonic
cuto� of nBmax = 20 (©2016 American Physical Society, published in Ref. [144]).

the exact diagonalization method is more suitable to describe steady state properties.

5.6.1. Non-destrucitve measurement scheme for chiral current in the steady state
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Inelastic Raman scattering of cavity photons
and probe beam with Rabi frequencies g0,b

and Ω̃′p reenables fermionic hopping.

From an experimental point of view, it is also
noteworthy that it is possible to implement a mea-
surement protocol which makes it possible to mea-
sure the expectation value of the chiral current in
the steady state, without causing a collapse of the
system onto the corresponding eigenstates as pre-
sented in Ref. [143]. In order to achieve this, a mag-
netic �eld gradient is applied in y-direction, yielding
an additional linear term to the optical lattice poten-
tial, felt by the spin-polarized atoms. Adjacent sites
are now separated by an energy o�-set of ∆′, pro-
hibiting transport along the ladder lags. To restore
the hopping, a second cavity mode with doubled fre-
quency ω′c is introduced. As displayed in the sketch,
with the use of a probe laser beam, an inelastic Ra-
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5.6 Properties of the steady state
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Figure 5.15.: Comparison of �nite system adiabatic elimination data with ED results for the
total photon number Na in the cavity and explicitly decoupled photon �elds
〈a†〉〈a〉 = |α|2 for a system of size L = 3, N = 3 atoms and ~δcp/J‖ = 1
(©2016 American Physical Society, published in Ref. [144]).

man scattering process using probe and cavity photons reenables motion in this direction. The
probe beam is passing through the cavity in z-direction, so that there is no net phase transfer
and its frequency ω′p is matching the cavity mode and the potential o�-set. The corresponding
Hamiltonian reads

Hprobe = ~δ′cpb†b+ ~Ω̃′
∑

j,m=0,1

(−1)m
(
b†c†m,jcm,j+1 + h.c.

)
, (5.41)

with the annihilation operator of the new cavity mode b, the shifted cavity frequency δ′cp =

ω′c − ω′p + ∆′/~ and the Rabi frequency of the probe beam Ω̃′. The alternating sign takes
into account the doubling of frequency of the original cavity mode. Using the de�nition
Km = 1

L−1

∑
j c
†
m,jcm,j+1 it is possible to express the Hamiltonian in terms of the chiral current

operator Jc as

Hprobe

L− 1
=

~Ω̃′

2

[
(b+ b†)

∑

m

(−1)m
(
Km +K†m

)
+ i(b− b†)Jc/J‖

]
+

~δ′cp
L− 1

b†b (5.42)
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Computing the equations of motion for the cavity mode are following from the Lindblad equa-
tion and are given by

−i d

dt
〈b〉 = −(L− 1)Ω̃′

2

[∑

m

(−1)m〈Km +K†m〉 − i〈Jc〉/J‖
]
−
(
δ′cp − iκ

)
〈b〉 (5.43)

−i d

dt
〈b†〉 = +

(L− 1)Ω̃′

2

[∑

m

(−1)m〈Km +K†m〉+ i〈Jc〉/J‖
]

+
(
δ′cp + iκ

)
〈b†〉 (5.44)

Both of the left-hand terms vanish for the steady state, such that subtracting the right-hand
side and rearranging the terms provides a relation of the chiral current steady state expectation
value, which only depends on the quadratures of the new cavity mode

〈Jc〉st =
J‖

(L− 1)Ω̃′

(
iδ′cp〈b− b†〉st +

κ′

2
〈b+ b†〉st

)
. (5.45)

In summary, the original y-directional hopping is replaced by cavity assisted tunneling pro-
cesses introduced with the help of an additional cavity mode and a probe beam. The motion
in the steady state in that direction is the result of a self-organization process evoked by the
feedback mechanism of cavity mode and leg hopping. It is therefore possible to associate this
setting with the original model from Eq. 5.17, where the hopping strength J‖ depends on the
strength of the cavity assisted tunneling. The chiral current can then be directly measured by
observing the leaked cavity photons of the new mode.

5.7. Dissipative attractor dynamics
After the presentation of di�erent steady state characteristics, uncovering interesting prop-

erties such as an opportunity to control di�erent topologically non-trivial phases, we will focus
in this section on the dynamics originating in the self-organization process caused by the feed-
back mechanism between the atoms and the cavity �eld. To do so, we consider the process
as a quantum quench initiated by a sudden switch-on of the running-wave pump laser beams.
The cavity mode is initially unoccupied and the fermions are prepared as a pure state in one
of the symmetry sectors of the Lindbladian containing a unique steady state. For the simula-
tion data obtained from exact diagonalization presented here, we considered a fermionic ladder
with L = 3 rungs and N = 3 particles. Using the eigenstates (Eq. 5.37) of the S1 symmetry,
the initial fermion con�guration is chosen to be

|ψ(t = 0)〉fermion = γ†ñ=0γ
†
ñ=2γ

†
ñ=4|0〉. (5.46)

This state is placed in one of the (6 × 6)-blocks introduced in the previous section, where the
steady state corresponds to the solution with the best agreement to the adiabatic elimination
of a system of same size. As a consequence, it is su�cient to calculate the spectrum of the
corresponding block to access the full open system dynamics. As an example we present the
evolution of the chiral current in Fig. 5.16, outlining the approach of the stationary regime,
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5.7 Dissipative attractor dynamics
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Figure 5.16.: Full time evolution of the chiral current for di�erent parameter combinations
obtain by exact diagonalization of a ladder with L = 3 rungs and three fermions.
Initial state is a pure state placed in one of the symmetry blocks and the steady
state approach strongly depends on the dissipative coupling (©2016 American
Physical Society, published in Ref. [144]).

which can be regarded as an attractor, as all states in this block eventually converge to the steady
state. As found by the adiabatic elimination, the steady state expectation values only depend
on the scaled pump strength AL/J‖. This is also con�rmed here, whereas a small deviation
is caused due to the dissipation dependence of the steady state diagram as shown for example
in Fig. 5.14. Nevertheless, even if the same steady state con�guration is reached, the attractor
dynamics is very distinct. While the evolution with ~κ/J‖ = 0.05 is quite long dominated by
oscillations, which are caused by the unitary Hamiltonian dynamics, this oscillating behavior
is damped out quite fast for a stronger coupling, i.e. ~κ/J‖ = 0.5.

To investigate the dependence on the loss rate further we show the absolute value of the
di�erence of the time-dependent current and the steady state value in Fig. 5.17 in a logarith-
mic plot. After a short initial period, an exponentially fast dynamics towards the stationary
regime stands out clearly. Fitting exponential functions to the corresponding region, enables
us to extract the time scales τ controlling the strength of the exponential scaling which appear
as the inverse of the slope of the exponent as the overall behavior is proportional to e−t/τ . In-
terestingly we see a non-monotonic dependence of the time scales on the dissipation strength.
Intuitively, one could expect, that the steady state is reached faster for stronger dissipations,
because other contributions, as for example from the unitary motion are damped out faster.
This can be read-o� by comparing ~κ/J‖ = 0.25 and ~κ/J‖ = 3 in the plot, which show a
faster decay for the larger photon loss-rate. However, increasing the dissipation even further
slows down the dynamics again. The dependence over a larger dissipation range is plotted in
Fig. 5.18. Here we show both the time scale of the exponential approach of the chiral cur-
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Figure 5.18.: Dissipation dependence on the exponential time scale in the attractor dynamics
for the chiral current Jc and the cavity mode occupation Na compared to the
inverse of the ML eigenvalue with the lowest absolute real part. The remaining
parameters are ~Ω/J‖ = 0.8, ~δcp/J‖ = 1, L = 3 and N = 3. (©2016 American
Physical Society, published in Ref. [144]).

rent (green crosses), representing the motion of the atoms, and the time scales obtained from
the convergence to steady state value of the total number of photons in the cavity, Na = 〈a†a〉
(blue crosses). Notably, we see a very good agreement for the time scales of atoms and photons.
That puts in question the assumption used in the adiabatic elimination, where we assumed the
dynamics of the cavity happening on much shorter time scales as the atom part of the system,
which underlines the importance of the numerical veri�cation. Another important �nding, pre-
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5.7 Dissipative attractor dynamics
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Figure 5.19.: (a) Time evolution of the chiral current for the considering all eigenstates (blue
line), only the six eigenstates of the lowest absolute value real part eigenvalues
(including the steady state) and the steady state expectation value. (b) Part of
the Lindbladian spectrum close to the steady state. ∆g denotes the dissipative
spectral gap. Model parameters were chosen as L = 3, N = 3, ~δcp/J‖ =

1, ~κ/J‖ = 5 and ~Ω̃/J‖ = 0.8. (©2016 American Physical Society, published in
Ref. [144]).

sented in Fig. 5.18, is the matching of the time scales with the inverse of the dissipative gap,
given by the real part of the eigenvalue λ1 of the block of the Lindblad matrix, which has the
lowest non-vanishing absolute real part. During the time-evolution, the states of these eigen-
values experience the lowest exponential suppression, and therefore are the non-steady states
which survive the longest resulting in a dominant contribution in the long-term dynamics. This
quantity is often referred to as the dissipative spectral gap ∆g ≡ −J‖/Re(~λ1), and is also an-
notated in the spectrum presented in Fig. 5.19 (b). To underline this connection, we illustrate
in Fig. 5.19(a), that in the long-time limit only very few eigenstates contribute signi�cantly to
the evolution. Namely, we compare the dynamics using the full set of eigenstates to a limited
consideration by restricting the evolution of the initial state to the space of vectorized density
matrices spanned by the eigenstates corresponding to eigenvalues with the lowest absolute val-
ues of the real part. It turns out, that by only taking into account the �rst six states according to
this order, the time dependence of the current can be represented by these states almost exactly,
such that the discrepancy to the full evolution vanishes for late times, here t ' 10~/J‖. Taking
a look at the excerpt of the Lindbladian spectrum for this set-up in Fig. 5.19 (b) shows, that
the �rst six eigenvalues are separated by a small gap along the real axis from the rest of the
spectrum, making this selection particularly appropriate.

Turning back to the discussion of Fig. 5.18, an interesting fact can be deduced: Instead of a
decrease of the time scale while successively increasing the dissipation strength, a minimum ex-
ists at intermediate dissipation strength, after which the time scale counter-intuitively increases
again. This can be explained by the quantum Zeno e�ect [152], where strong dissipation causes
a frequent application of jump operators which resembles a continuous measurement process,
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preventing the open system from evolving [6]. Quantitatively, the behavior in the two regimes,
i.e. small and strong dissipation, is displayed in Fig. 5.20. For small dissipative couplings, the
spectral gap decreases as 1/κ. If increasing the loss rate, depending on the rotated cavity fre-
quency δcp, a minimum is reached after which the Zeno limit is reached and the gap increases
linearly in κ.

It is possible to isolate these two limiting regimes even for the reduced system of just a single
rung, which is then e�ectively described by the Jaynes-Cummings model including photon loss

HJC = ~δcpa†a− ~Ω̃
(
a+ a†

) (
c†0c1 + c†1c0

)
,

d

dt
ρ = − i

~
[HJC, ρ] + κ

(
2aρa† − a†aρ− ρa†a

)
. (5.47)

The fermionic part can be diagonalized with the two unique eigenvalues ±1 and the corre-
sponding eigenstates |±〉. As di�erent fermionic eigenstates do not mix, the Lindblad matrix
ML can be block-diagonalized in four blocks. Restricting the photon number to nB ∈ {0, 1},
allows the rigorous analytic calculation for the steady state and the spectral gap. The steady
state is degenerate and is decomposed of the vacuum state of the cavity and a concentration of
the fermions in one of the two eigensectors, i.e. ρst = [|0〉cavity ⊗ |±〉][〈0|cavity〈±|]. We can also
access the spectral gap, which is for δcp = 0 given by

∆g =
κ

2


−1 +

√
1−

(
4Ω

κ

)2

 . (5.48)
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5.8 Summary of the results of Chap. 5

In the limit of low dissipation this scales with 1/κ and is for strong dissipation linear in κ.
This coincides well with the results from Fig. 5.20. For �nite shifted cavity frequency δcp, the
expression for the gap is more complicated but still yields the same limiting behavior. It is left
to mention, that the value of the dissipation strength corresponding to the minimal time scale,
depends on the cavity frequency. That is, the region, where an inverse scaling in κ is observed,
increases for larger cavity frequencies δcp. After passing the minimum, the time scales collapse
to one linear curve representing the Zeno regime. As a result, a tuning of the cavity frequency,
allows to in�uence the length of the time needed to reach the self-organized steady state.

5.8. Summary of the results of Chap. 5
We reported results on the Markovian open system dynamics of fermionic atoms subjected to

a ladder potential, where the quantum tunneling along the rungs is coupled by two-photon Ra-
man scattering to the single-mode of a lossy optical resonator as well as to two running-wave
pump lasers. The steady states of the dissipative dynamics, have been found to display sig-
natures of topologically non-trivial phases once a critical strength of the pump laser is passed.
More precisely, for a strong enough pump strength, the initially empty cavity mode is populated
and a �nite atomic chiral current cycling around the ladder edge is detected for the stationary
regime. We compared results obtained by the adiabatic elimination of the mean �eld of the
cavity-�eld, including the approximation of a decoupling from the fermionic degrees of free-
dom with numerical exact results for small systems. The latter is possible due to the exploitation
of Hamiltonian symmetries, which can be used to block-diagonalize the corresponding Lindbla-
dian. Provided with numerical exact states, this enabled us to determine the region of validity
of the approximative analytics. A study on the parameter dependence of the current and the
photon �eld shows that the accuracy of the mean �eld decoupling is tied to small dissipation
strengths. Furthermore, we describe the outline of a non-destructive procedure to measure the
steady state expectation value of the chiral current.

Moreover, we investigated the non-equilibrium dynamics towards the steady state, where
we have found that similar steady state expectation values can have very di�erent attractor
dynamics, mainly in�uenced by the strength of the dissipative coupling. The extraction of the
time scales of the exponential approach for photonic and atomic quantities, revealed a non-
linear behavior in the dissipation strength. Namely, starting from the small dissipation limit,
increasing the photon loss rate accelerates the dynamics and the time scale shows an inverse
behavior with the dissipation strength. Increasing the loss rate further shows, the time scale
dependence on the dissipation strength saturates and then displays a linear relation, which
can be addressed to the Zeno e�ect, where the action of the environment can be seen as a
continuous measurement, preventing the quantum evolution by projections on the eigenstates
of the Lindblad operators. The two limits can be motivated by analytic exact calculations for a
system with only one rung of the fermionic ladder lattice, which reduces to the open Jaynes-
Cummings model.
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Chapter6
Dynamics of spin correlations and aging
in open XXZ-chains

6.1. Introduction
In this chapter we study the non-equilibrium propagation of correlations in interacting many-

body quantum systems. The chapter builds upon the work published in [153]. In this context,
two-time correlation functions 〈B(t2)A(t1)〉 constitute a powerful tool to understand the open
system evolution. In equilibrium this correlation is closely related to a number of experimental
methods for extracting spectral properties, utilizing the time-translational invariance in Hamil-
tonian systems, stating that the exact times t1 and t2 are irrelevant but only the time di�erence
t2− t1 is important which can be associated with a single frequency accordingly. Examples in-
clude Angular Resolved Photon Emission Spectroscopy (ARPES) setups [154], which enable the
momentum-resolved measurement of the electronic structure of condensed matter materials,
neutron scattering experiments [155] where the magnetic interaction of the charge-free neu-
trons with material samples gives access to the spin structure, or spectroscopy using Raman or
Bragg scattering [156]. When adding dissipation to the consideration, time-translation invari-
ance is not longer guaranteed. In this situation, probing the system at di�erent times allows to
draw conclusions about the dynamical evolution, which is a generally hard task for open quan-
tum systems so that there are many open research questions. Theoretical work has been done
considering measurements of operator applications at equal time, as for example the spreading
of density correlations in a dissipative Bose-Hubbard model [157] or the relaxation dynamics in
Ising chains [158]. In contrast, two-time correlators have mainly been evaluated using approxi-
mative techniques [96, 159]. In this chapter we will help to �ll the gap by presenting quasi-exact
tMPS simulation results for two-time correlation functions for a system combining large spa-
tial extend, interactions and dissipation. This enables us to identify an emergent aging regime,
a phenomenon known for example from relaxation dynamics in glasses [160]. Moreover, we
will show, that the long-time dependence can be understood in terms of an e�ective di�usive
evolution.

We investigate an open spin chain, where each spin is coupled to an environment via dephas-
ing noise. The latter is occurring in various di�erent situations across di�erent communities in
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6.2 Equilibrium properties of spin chains

physics. In condensed matter setups, dephasing can emerge from �uctuation noise of external
magnetic �elds, observed for instance in superconducting �ux qubits [161]. In a cold atom con-
text, interacting atoms in optical lattices, can scatter inelastically with the lattice laser, leading
to an e�ective dephasing with local density operators as jump operators [162]. In addition, a
possible implementation of spin chains with ultracold atoms in optical lattices providing tunable
dissipation and interaction strengths have been proposed [163]. Furthermore, recent theoreti-
cal studies, focusing on the interplay of interaction and dephasing dissipation, have uncovered
interesting features like a suppression of decoherence in the presence of strong interactions
[99] or dephasing-enhanced transport [164]. Related studies for the spin-chain with dephasing
noise focus on equal-time correlations [165] or the two-time correlations with this special case
of t1 = 0 [100].

We choose for this chapter to use the tMPS time evolution of the puri�ed density matrix
exploiting the conservation of the total magnetization, covered in detailed for the speci�c model
in Sec. 4.2.4. The low local physical dimension d being two, containing only the two distinct spin
orientations per site, results in a comparably low numerical e�ort during the application of four-
site bond gates, where the bond dimension increase scales with up to d4. Also, the limitation
by system size is quite low, enabling us to observe interesting dynamics for up to L = 80 spins.
Resources for simulations of this kind require a typical runtime of the order of ten hours on
machines with 2.6 GHz CPUs and less then 10 GB of RAM, so that the computations are within
reach using HPC clusters. Building on the convergence analysis presented in Sec. 4.2.4, if not
stated otherwise, we use systems of size L = 80, a Suzuki-Trotter time step of ∆tJx/~ = 0.025
and a truncation goal of εtrunc = 10−12, while allowing a maximal bond dimension of D = 500.

The chapter begins with a description of the features of the closed system with an emphasis
on the three distinct phases of the XXZ model and the corresponding properties in Sec. 6.2.
Subsequent to the introduction of the dissipative model in Sec. 6.3, we report on the spreading
of equal-time spin correlations and the di�usive nature of the underlying processes in Sec. 6.4.
Building on this, we turn to the investigation of two-time correlations in Sec. 6.5 and distinguish
three dynamic regimes, most notably a time regime displaying aging for long times.

6.2. Equilibrium properties of spin chains
In the later study of non-equilibrium dynamics of theXXZ model, the Hamiltonian proper-

ties are found to play a crucial role for the evolution in di�erent time regimes. For this reason,
we continue here by giving a short overview of the equilibrium properties of interacting spin-1/2
chains and the corresponding model for a closed quantum system. For this purpose we follow
in parts the review of [166].

The Hamiltonian for theXXZ-model under consideration describes a one-dimensional equally
spaced arrangement of interacting spins with S = 1/2, which reads as

HXXZ =
L−1∑

j=1

[
Jx
(
Sxj S

x
j+1 + Syj S

y
j+1

)
+ JzS

z
jS

z
j+1

]
, (6.1)

including equal interaction strengths Jx for the exchange couplings of neighboring spins along
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the x- and y-spin-direction and a di�erent strength Jz for the z-direction correspondingly. Here
Sα = ~/2σα are the spin-1/2 operators along the directions α ∈ {x, y, z} and σα the Pauli
matrices.

The XXZ-model is solvable by Bethe-Ansatz hence its ground state properties are ana-
lytically accessible. In the following we summarize several key aspects. Depending on the
anisotropy Jz/Jx, marking the deviation from the totally rotation invariant Heisenberg model,
the model exhibits three distinct phases, depicted in the following diagram.

−1 1 Jz/Jx

XYFM AFM

Namely, there is a ferromagnetic phase for Jz/Jx < −1, an antiferromagnetic phase for Jz/Jx >
1 and an intermediate phase exhibiting a gapless Luttinger liquid, also known as XY -phase,
for −1 ≤ Jz/Jx ≤ 1. In the ferromagnetic phase, where the parallel alignment of neigh-
boring spins is energetically favored by the Jz term, the ground state is represented by either
all spins pointing up or down, resulting in a ground state magnetization in the z-direction of
〈Sz〉gs = ±N/2. The collective low-energy excitations, known as magnons, show a dispersion
relation of ε(k) = Jx[1 − cos(k) − (Jz/Jx + 1)] [166], yielding an approximately quadratic
dispersion for small momenta on top of an excitation gap of |Jz/Jx| − 1 at zero momentum.
When approaching Jz/Jx = −1, the rotation symmetry is restored and the originally gapped
excitations become gapless for this anisotropy, as also required by the Goldstone theorem [167].
It is worth mentioning, that the same excitation gap of |Jz/Jx| − 1 applies to a state where the
system is split into half, forming two ferromagnetic regions with opposite magnetization[168].
This state is also used in the course of the work presented in this chapter. In contrast to this,
the low energy properties of the antiferromagnetic phase rely on the fact that antiparallel spin
orientation is energetically preferred. For a �nite-size system, the ground state is dominated
by the mixing of the two possible con�gurations of alternating spin orientation. However, as
the sublattice magnetization, which only takes into account the subset of either even or odd
sites, is not conserved by the Hamiltonian evolution, there are contributions caused by quan-
tum �uctuations to the ground state. For su�ciently strong but �nite anisotropy Jz/Jx � 1,
the excitations can be perturbatively understood by creating domain walls, which separate re-
gions of alternating spins by bonds with equally aligned spins. By �ipping a spin of the ground
state, two domain walls arise, which can propagate in the course of the Hamiltonian time evo-
lution through the system resulting in a continuum in the energy spectrum. The dispersion
relation for excitations in the antiferromagnetic case is linear ε(k) ∼ k on top of a gap opening
at Jz/Jx > 1. The remaining phase to discuss is the XY -phase, where the absolute value of
the anisotropy is smaller than one. While rigorous results can be obtained using Bethe Ansatz
theory, the representation as free spinless fermions, known as Jordan-Wigner transformation
and a perturbative inclusion of weak nearest neighbor interactions can give some additional in-
tuition [169]. In this picture, the ground state of the free model (Jz = 0) is a Fermi sea, where,
for large enough systems, excitation energies of particle-hole type excitations are arbitrarily
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6.3 Spin-1/2 systems with local Markovian dephasing noise

small, so that the spectrum is gapless. This property also survives when including �nite but
small Sz-coupling |Jz/Jx| � 1.

6.3. Spin-1/2 systems with local Markovian dephasing noise

Figure 6.1.: Dissipative coupling of a
spin chain to an environ-
ment.

The scope of the work presented in this chapter, is
to gain new insights into the dynamics of many-body
quantum systems in the presence of both, interactions
and dissipation. To this end, we considerXXZ-chains
in contact with a Markovian environment causing local
dephasing, i.e. the loss of phase coherence (see Fig. 6.1).
The full quantum dynamics is described by the Lind-
blad equation introduced already in Eq. 4.15, which we
repeat here for better readability

∂

∂t
ρ(t) = LXXZ · ρ(t) = − i

~
[HXXZ , ρ(t)] + γD [ρ(t)] , (6.2)

with D [ρ(t)] =
L∑

j=1

(
Szj ρ(t)Szj −

1

4
ρ(t)

)
.

Here the unitary part of the dynamics is generated by the Hamiltonian from Eq. 6.1, while the
dissipation is represented by the set of all local Sz operators included as jump operators in the
dissipator D[ρ]. This process can be understood as a dephasing noise felt by the spins. The
action of the dephasing is assumed to be independent of the position, so that all jump operators
share the same dissipation strength γ. The steady state of this model, approached regardless of
the initial state for in�nite times, is unique and given by

ρsteady =
1

2L

∑

σ1...σL

|σ1 . . . σL〉〈σ1 . . . σL|, (6.3)

also know as the state at in�nite temperature T →∞, of the thermal density operator ρ(T ) =
exp(−Ĥ/T )/Z(1/T ).

Our main method of choice is are numerically exact tMPS simulations of the puri�ed density
matrix. However, to complement our numeric study, we work out solutions valid at long times
using many-body adiabatic elimination, introduced in section 3.3. To this end, we �rst identify
the dissipation-free subspace of the dissipator of Eq. 6.2 as the density matrices corresponding
to the many-body basis states formed from the possible Sz-eigenstates of the single spins, i.e.

Λ0 = {ρ|D(ρ) = 0} = span {|~σ〉〈~σ|} , (6.4)
where ~σ = (σ1, σ2, . . . , σL) and σi ∈ {↑, ↓}.

We will only consider initial states which are located in the symmetry sector of 〈Sztot〉 = 0. As
the Lindbladian LXXZ from Eq. 6.2 conserves the total magnetization, there is the additional
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constraint requiring the considered basis states to have an equal number of sites with spins
pointing up and down for being represented in Λ0. As a consequence of the de�nition of Λ0,
we can decompose the Lindbladian as explained in section 3.3 into LXXZ = L0 +LV , which is
in this case

L0 = − i
~
Jz

L−1∑

i=1

[
Szi S

z
i+1, ·

]
+D( · ) (6.5)

LV = − i
~
Jx

L−1∑

i=1

[(
S+
i S
−
i+1 + S−i S

+
i+1

)
, ·
]
. (6.6)

For times which are much larger than the time scale given by the inverse dissipation strength,
the dynamics is dominated by density matrices from the region in the vicinity of Λ0. Using
the adiabatic elimination approximation (Eq. 3.54) and the fact that L0|~σ〉〈~σ| = 0, the e�ective
dynamics for the amplitudes of a general state in Λ0, i.e. ρ =

∑
~σ ρ

0(~σ, t)|~σ〉〈~σ|, is given by

d
dtρ

0(~σ, t) ≈ −
∑

~σ′,~σ′′,α 6=0

1

λα,~σ′
V0α
~σ,~σ′Vα,0~σ′,~σ′′ρ

0(~σ′′, t), (6.7)

were the appearing elements were introduced in Sec. 3.3. We refer to the appendix A.2 for a
detailed calculation, leading to

d
dtρ

0(~σ, t) =
L−1∑

j=1

J2
xγ

2 [(Jzαj)2 + (~γ)2]
δσj ,σ̄j+1

(
ρ0(~σj, t)− ρ0(~σ, t)

)
(6.8)

with ~σ = (σ1, . . . , σj, σj+1, . . . , σL) and ~σj = (σ1, . . . , σj+1, σj, . . . , σL),
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Figure 6.2.: E�ective evolu-
tion in Λ0.

where we de�ne σ̄ = −σ and αj ≡ −2(σj−1σj + σj+1σj+2).
Intuitively, this equations represents a transition out of the dis-
sipation free subspace by �ipping a pair of antiparallel aligned
neighboring spins in either |~σ〉 or 〈~σ| followed by a transition
back to Λ0 by �ipping the same pair in either the same or the
other part of |~σ〉〈~σ|. One example of this is sketched in Fig. 6.2.
The form of Eq. 6.8 resembles a classical master equation. From
this point on, there are two possible routes to follow:

• Applying kinetic Monte Carlo algorithms for Eq. 6.8.
• Striving for more analytical insights by introducing addi-

tional approximations.
We consider both approaches later.

Interestingly, the evolution of the system’s density matrix un-
der Eq. 6.2 is equivalent to an average of wave function trajectories obtained by a stochastic
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6.4 Equal-time correlations of open spin chains

Hamiltonian, which adds a random time-dependent magnetic �eld to HXXZ

Hstoch. = HXXZ +
L∑

j=1

ξj(t)S
z
j . (6.9)

For this to hold, the random �eld needs to ful�ll the properties of white noise, which is scaled
with the dissipation strength, i.e. 〈〈ξi(t)ξj(t′)〉〉 = γδi,jδ(t − t′) and 〈〈ξi(t)〉〉 = 0. Nevertheless,
from a simulation point of view it is in the application case discussed in the following more
advantageous to work with the puri�ed density matrix, as it is still computationally possible to
reach su�cient large systems and does not require a sampling over many di�erent realizations
which are subject to site-dependent random �elds.

6.4. Equal-time correlations of open spin chains
To begin with the presentation of our results on the open spin-1/2 XXZ-chain dynamics, we

focus �rst on equal-time correlation functions consisting of local operators, which are applied
at the same time. This type of observable will prove to show interesting dynamics, as will be
presented in this chapter. The measurement time is referred to by t1, to comply with the nota-
tion of the two-time correlation functions introduced in section 6.5. Moreover, understanding
the temporal behavior of the equal-time correlation functions is essential for the multi-time
correlators, as they represent the initial condition for the e�ective dynamics. The structure of
the section is arranged such, that we �rst concentrate on tMPS simulation results for the open
system evolution of an equal-time correlator which can be associated with the coherence, re-
�ecting the e�ect of the interplay of interactions and dissipation on the system. Thereafter, the
focus is put on the local correlation functions consisting of operators, which do note couple
di�erent dissipative subspace Λi, where the dynamics leads to a di�usive spreading of the cor-
relations in space. We complement quasi-exact tMPS results, with the evolution obtained from
adiabatic elimination and kinetic Monte-Carlo methods.

A way to quantify the time-dependence of the coherence for the dissipative model from Eq.
6.2, is to evaluate the |〈S+

L/2S
−
L/2+1〉| correlations, as was also found in a related study in Ref.

[165]. For the initial state we choose the Neel state ρ(t = 0) = |ψNeel〉〈ψNeel|, describing a chain
of spins prepared with alternating spin orientation (cf. Eq. 4.19). We will discuss di�erent
choices for the initial state and their e�ect on the dynamics more thoroughly later. Figure 6.3
shows the time evolution of the correlation function, as computed by the tMPS algorithm for
the puri�ed density matrix. This displays the interesting result that the long-time behavior of
the decoherence follows an algebraic decay, as also has been stated in [165]. This can be con-
sidered slow, compared to the commonly observed exponential decoherence decay in gapped
equilibrium interacting many-body systems as well as in many dissipatively damped models.
As a consequence, the inclusion of dissipative e�ects and nearest-neighbor spin interactions
here leads to a longer conservation of coherence. Another notable property is the universal
long-time scaling for di�erent parameter choices, which only in�uence the time evolution at
short times. This early regime is sustained longer for stronger anti-ferromagnetic couplings
which is due to the more costly process of breaking up the energetically favored anti-parallel
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Figure 6.3.: Equal-time correlation function of S+ and S− at the system center for di�erent
z-directional couplings and ~γ/Jx = 2.0. The long-time scaling agrees with the
exponent of approximately 1.58, as found in [165]. Convergence parameters were
hereD = 500 for the bond dimension and a Suzuki-Trotter time step of ∆tJx/~ =
0.025 for a system of size L = 80.

spin orientation of the Néel state.
As a next step, we focus on the equal-time correlation function of the spin operators along the

z-direction, already introduced in Eq. 4.18 asCd(t1, t1), for several distances. This di�ers funda-
mentally from the 〈S+

L/2S
−
L/2+1〉 correlations in the sense that the states of the dissipation-free

subspace are eigenstates of the site-dependent Szj operators. We show the full dissipative time
evolution, obtained by tMPS for the puri�ed density matrix in Fig. 6.4 with ρ(0) = |ψNeel〉〈ψNeel|
as initial state. As indicated by the �t (dotted line) the long-term behavior is governed by an
algebraic decay with an exponent of -1/2 reached eventually by all correlation functions irre-
gardless of the distance. This already hints towards a di�usive nature of the dynamics. This is
also supported by the propagation of the Sz correlation as plotted in Fig. 6.5. The spreading of
the correlation in time depends on the square of the spatial distance d − a behavior expected
for di�usive dynamics.

To add some analytical insight, we apply the adiabatic elimination technique to the correlator.
To do so, Eq. 6.8 can be used to derive a dynamical di�erential equation for the equal-time
correlator

d
dtCd(t, t) =

d
dt〈S

z
nS

z
n+d〉(t) =

∑

~σ,~σ

〈~σ′|
(
SznS

z
n+d

dρ0(~σ, t)

dt |~σ〉〈~σ|
)
|~σ′〉. (6.10)
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Figure 6.4.: Normalized equal-time correlations Cd(t1, t1) for spins which are located at a dis-
tance of d sites from each other with ~γ/Jx = 2.0 and Jz/Jx = 2.0. For all
distances, the long-time dynamics eventually approaches a power law with the
exponent -1/2 (see the dotted line), suggesting a di�usive character of the underly-
ing dynamics. Convergence parameters are again D = 500, ∆tJx/~ = 0.025 for
a system of size L = 80.

If the coupling along the z-direction of the spins is negligible, meaning that ~γ � Jz , the
fraction in the sum of Eq. 6.8 becomes independent of the speci�c bond corresponding to a
spin pair to �ip. In this limit it is possible to derive a closed set of di�erential equations for
~2Cj,j+d(t) = 〈Szj (t)Szj+d(t)〉, yielding

∂

∂t1
Cj,j±1(t) =

D

2
(Cj∓1,j±1 + Cj,j±2 − 2Cj,j±1) ,

∂

∂t1
Cj,j+d(t) =

D

2
(Cj+1,j+d + Cj−1,j+d + Cj,j+d+1

+ Cj,j+d−1 − 4Cj,j+d) , for |d| > 1,

(6.11)

whereD = J2
x

~2γ
. This constant indicates, that there is a slower evolution for stronger dissipation.

The time scale, which is proportional to the inverse ofD, scales linearly with γ – a fact that can
be attributed to the Zeno e�ect, which has appeared already in Sec. 5.7 and can be interpreted
as a continuous measurement of the system by the environment via the jump operators. If the
initial state is translation invariant, which is the case for the Néel state with periodic boundary
conditions, Cj,j+d(t1, t1) just depends on the distance, i.e. Cd(t1, t1), so that it is possible to
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rewrite the equation system as

∂

∂t1
C±1(t1, t1) = D (C±2 − C±1) ,

∂

∂t1
Cd(t1, t1) = D (Cd+1 + Cd−1 − 2Cd) , for |d| > 1. (6.12)

To arrive at a single di�erential equation, describing the correlations for all distances, we re-
de�ne the correlation function by C̃d(t) = Cd for d ≥ 1 and C̃d+1(t) = Cd(t) for d ≤ −1.
This is particularly useful, as it gives a common description for all correlation distances, ex-
cluding d = 0, which is constant as SzjSzj = 1/4. Finally, the set of di�erential equations is
then represented by the following di�usion equation

∂

∂t1
C̃d(t1, t1) = D

(
C̃d+1 + C̃d−1 − 2C̃d

)
, (6.13)

which is valid for −L
2

+ 2 ≤ d ≤ L
2

. In this interpretation, D is a di�usion constant. This
di�erential equation system can be solved for Dt� 1. In short, the calculation is split up into
the following steps: First, a discrete Fourier transformation is applied to C̃(d, t1, t1), then the
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6.4 Equal-time correlations of open spin chains

di�erential equation is solved for the speci�c initial state, i.e. ρ(t = 0) = |ψNeel〉〈ψNeel|. After
going to the continuum limit in k-space, the result is further simpli�ed by the means of Bessel
functions of the �rst kind, with the identity I|n|(z) =

∫ 2π

0
dk
2π

e−iknezcos(k). A detailed calculation,
as presented in appendix A.3, gives

C̃d(t1, t1) =
1

4
e−2Dt1

L/2∑

d′=−L/2+2

[
(−1)d

′
(1− 2δd′≤0)I|d′−d|(2Dt1)

]
. (6.14)

Furthermore, we can use that for large values of z the Bessel functions can be approximated
by I|n|(z) ≈ ez/

√
2πz. Assuming also a large system size L� 1, the correlation functions are

approaching the square root behavior, found in Fig. 6.4

Cd(t1, t1) ∼ − 1√
64πDt1

. (6.15)

While we were able to con�rm the long-time exponent of the algebraic decay of the equal-time
SzSz-correlations, a lot of additional assumptions were made on top of the many-body adiabatic
elimination, including the neglect of the z-directional coupling, a continuum limit and further
long-time limit identities for the appearing Bessel functions. Therefore, it is worthwhile to work
out a numeric solution, working directly with Eq. 6.8. To do so, we implement the Kinetic Monte
Carlo (KMC) algorithm introduced in section 3.3.1. Translating the elements of the current case
to the KMC language, we can identify Λ0 as the state space and extract from Eq. 6.8 the matrix
elements responsible for state changes in the classical master Eq. 3.55

A(~σ → ~σ′j) =
Jx~γ

2 [(Jzαj)2 + (~γ)2]
δσj ,σ̄j+1

, and A(~σ → ~σ) = −
∑

j

A(~σ → ~σ′j). (6.16)

As a consequence the rates for state changes during the evolution of a Monte Carlo trajectory
are rate(~σ → ~σ′j) = ∆tA(~σ → ~σ′j). Now all necessary information is available to implement
the kinetic Monte-Carlo algorithm introduced in Sec. 3.3.1 with |ψNeel〉 as initial state.

As emphasized several times, the time interval where the above statements are valid depends
on the dissipation strength. In Fig. 6.6 a comparison is drawn for the di�erent methods. To
this end, we contrast results from integrating Eq. 6.13, which relies on the assumption of a
negligible z-directional coupling strength, with data obtained by applying the Kinetic Monte
Carlo method as described in the previous paragraph and the quasi-exact tMPS solution for the
full quantum evolution of the puri�ed density matrix. The plot shows that for large dissipation
strength (~γ/Jx = 10, lower panel of Fig. 6.6), all methods are matching well. This makes sense
as the condition ~γ � Jz is well ful�lled and the time region, where many-body adiabatic
elimination is valid, begins very early. For lower dissipative couplings, as shown in the middle
and upper panel of Fig. 6.6, the analytic solution begins to deviate substantially. Especially
the early dynamics is not well-described by this method in this parameter regime, whereas
the long-term behavior still resembles the overall scaling. The Kinetic Monte-Carlo results
perform better, and only show weak inconsistencies even for ~γ/Jx = 2. Nevertheless, the
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Figure 6.6.: Dissipation-dependent comparison of di�erent methods, including tMPS evolution
of the puri�ed density matrix, Kinetic Monte-Carlo (KMC) techniques and an in-
tegration of Eq. 6.13 which we extracted from analytic approximation. This is data
for a system of size L = 80, the Sz coupling strength Jz/Jx = 2 and the dissipa-
tion strength is given in the plot labels. For the KMC simulations we used 5 · 106

trajectory samples and a time step of ∆tJx/~ = 0.025. For the tMPS we allowed
a truncation error of ε = 10−12 and used ∆tJx/~ = 0.025 for the time step.

initial dynamics, which is still highly in�uenced by the Hamiltonian dynamics can also not be
modelled correctly. This results enables us to establish a quantitative judgment concerning the
validity of the approximative mapping to a classical master equation for di�erent choices of the
model parameters. As a consequence, we can con�rm that e�ective dynamics in the dissipation-
free subspaces is also the dominant contribution to the full quantum evolution in the long-time
range, yielding the derived inverse square root scaling of the equal-time correlations, which
re�ects the di�usive nature at long times.

6.5. Two-time correlations of spin operators
After the discussion of certain aspects of the equal-time correlation functions in the open

spin chain, we turn our focus now towards the evolution of two-time correlation functions
〈B(t2)A(t1)〉 with t2 ≥ t1, where we will consider spin operators along all direction as A
and B. The di�erent application times makes the description much more demanding, both
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6.5 Two-time correlations of spin operators

analytically and numerically, as it needs to cover two di�erent periods in time, i.e. before and
after the application time of the �rst operator at t1.

6.5.1. Exponential decay of two-time correlationswhich excite outside of the dissipation-
free subspace

We �rst discuss two-time correlation functions, where the application of the operator at t1
leaves the dissipation-free subspace towards higher dissipative spaces. By recalling, that Λ0 is
the manifold of density matrices diagonal with respect to the eigenstates of the Szj operators,
i.e Λ0 = {|σ1, σ2, . . .〉〈σ1, σ2, . . . |}, we can see that an application of S− causes a transition
out of Λ0. For this reason we investigate the properties of the two-time correlation function
〈S+(t2)S−(t1)〉. As for a su�cient long time t1, when the density matrix consists mainly of
states of Λ0, the projection of the ket-part of ρ(t1) on | ↓〉 by S− results in a excitation to
a higher dissipative space. This is followed by consecutive dynamics therein, before being
projected back to the dissipation-free space by S+ at time t2. As a consequence of that, the non-
vanishing impact of the dissipator imposes an exponential damping on the dynamics. Exactly
this behavior is displayed by the tMPS results shown in Fig. 6.7. The plot reveals, that there is
only a weak dependence of the considered correlator on the choice of the �rst application time.
This is due to the fact that all chosen times are already in the algebraic regime of the equal-time
correlations of d = 1 as a comparison with Fig. 6.4 shows. This points to the predominant
contribution of the dissipation free-space to short distant correlations at t1. In contrast, the
dissipation strength notably e�ects the dynamics as the time scale of the exponential decay as
a function of γ which agrees well with the �ndings of previous studies [96] for small systems.
Because of the prevailing in�uence of the dissipation on the time evolution in this case, we
turn our attention to the more subtle class of two-time correlations where the two application
operators do not couple di�erent subspaces and therefore allow the participation of a variety
of di�erent mechanisms.

6.5.2. Hierarchical non-equilibrium dynamics and aging

We consider now two-time correlators, which do not connect di�erent subspaces, i.e. op-
erators which commute with the action of D(ρ) when applied to a density matrix, a property
which is met by the set of Szj spin operators. Indeed, the two-time correlation function

~Cd(t2, t1) = 〈SzL/2(t2)SzL/2+d(t1)〉 (6.17)

will prove to display rich previously unobserved non-equilibrium quantum dynamics. Namely,
we will identify three distinct time regimes. First we describe an initial period, where oscilla-
tions of expectation values in time mark the residual impact of the unitary part of the Lindblad
equation, including the in�uence of the Hamiltonian parameters as well as the initial state.
In the case of large anisotropies of the interaction strength along di�erent spin directions, a
hierarchical separation of time scales gives rise to an intermediate regime where the time de-
pendence of the two-time correlation function follows a stretched exponential. Subsequently,
a break-down of time-translation invariance and a scaling collapse give clear signatures of ag-
ing at long times. The properties of each of these time regions are discussed in detail in the
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Figure 6.7.: tMPS simulation results of the two-time correlation function 〈S+(t2)S−(t1)〉 for
spin chains of length L = 80, with anisotropy Jz/Jx = 2 and di�erent dissipative
couplings γ and application times t1. The time scale of the observed exponential
decay decreases for increasing dissipation strength. The convergence parameters
are D = 500,∆tJx/~ = 0.025 and L = 80.

following.
The �rst regime is visible in Fig. 6.8, which displays the quantum evolution of a system ini-

tially prepared in the Néel state, obtained by tMPS, as a function of t2 − t1 for di�erent model
parameter choices and di�erent values of t1. The comparison of the time dependence of the
isolated system (γ = 0, grey dotted line in both panels of Fig. 6.8) with the same Hamiltonian
system coupled to an environment, enables us to address the early oscillation close to t1 to the
coherent part of the dynamics. Strong interactions and the impact of a �nite system size are
reasons for the opening of a gap in the energy spectrum commonly causing oscillations of ob-
servable expectation values of the quantum systems in time. For longer times these oscillations
are damped out by the �uctuations induced by the dephasing.

Before we discuss other aspects of the �gure, we �rst want to focus on the long-time be-
havior of the two-time correlation Cd(t2, t1), i.e. for times satisfying t2Jx/~ � t1Jx/~ � 1.
Interestingly, examining in this regime the two-time functions, normalized to the equal-time
correlations at t1, we observe a breaking of time-translation invariance. As indicated in the
top panel of Fig. 6.9, we can identify a time interval where the correlation function decays
algebraically with regard to the ratio of t2/t1 with an exponent of -3/2 and therefore does not
solely depend on time di�erences as for example t2 − t1. In fact, the two-time correlations are
highly in�uenced by the value of t1, i.e. the amount of time the open system has spent evolving
before the �rst operator application. This is a well-known phenomenon in the context of non-
equilibrium materials, like for example glasses, where a parameter, often the temperature, is
suddenly changed from a high to a low value, crossing a characteristic value. The correspond-
ing change of the thermodynamic potential often results in very slow relaxation dynamics due
to competing energy minima. Two-time correlations then depend on the time passed since the
temperature change, referred to as the age of the system, which is why we use this de�nition to
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Figure 6.8.: Two-time correlation of z-directional spin operators acting on the same site in the
center (d = 0) or two central sites separated by one lattice spacing (d = 1), for a
system of length L = 48 and di�erent model and dynamic parameter as speci�ed
in the plot legend. Convergence parameters for the algorithm areD = 500 for the
bond dimension and a Suzuki-Trotter time step of ∆tJx/~ = 0.025.

characterize the process by the name aging[160, 170]. More formally, aging is de�ned in [170]
by the three properties (1) a slow non-exponential relaxation of correlations, (2) the breaking
of time-translational invariance and (3) the presence of a dynamical scaling collapse onto one a
function of t2/t1. Remarkably, all of these conditions are satis�ed in the long-time limit: Consid-
ering the upper panel of Fig. 6.9 the algebraic, time-translation breaking dynamics mentioned
above can be identi�ed as the emergence of a scaling regime reached for a range of di�erent
interaction anisotropies Jz/Jx, dissipation strengths γ and application times t1. Therefore, we
can conclude, that to our knowledge, for the �rst time, we have detected aging in the evolution
of full interacting non-equilibrium quantum systems of large spatial extend. To further expand
our understanding, we use many-body adiabatic elimination building up on the calculations of
the equal-time correlation functions. While the details of the calculation are documented in the
next section, one of the main �ndings is that the two-time correlations for for large times t1
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Figure 6.9.: Upper panel: Aging collapse of the normalized z-directional two-time correla-
tion function for a range of di�erent model parameters and �rst application times
for spin chains of length L = 80 initially prepared in the Néel state. Lower
panel: Comparison of solving the di�erential equation system obtained by many-
body adiabatic elimination to the quasi-exact tMPS result for di�erent dissipation
strengths. Convergence parameters are chosen asD = 500 for the bond dimension
and a Suzuki-Trotter time step of ∆tJx/~ = 0.025 for a system of size L = 80.

and t2 can be described by an closed approximate di�erential equation system, which is strictly
only valid for vanishing Jz coupling strength. As can be seen in the lower panel of Fig. 6.9, the
Integration of this di�erential equation provides very well matching estimates for long times
irregardless of the model parameters. Nevertheless, if the dissipation dominates the evolution,
i.e. ~γ/Jz � 1, the adiabatic elimination computations reproduce the correct time dependence
over the full time range. Furthermore, the careful scaling analysis in the next section, con�rms
the value of the scaling exponent being −3/2 for correlations of sites with a distance of at least
one lattice spacing. It is worth noting, that the analytic treatment relies on large values of t1,
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Figure 6.10.: Occupation of energy eigenstates of HXXZ obtained from exactly diagonalizing
the Hamiltonian for di�erent initial states |ψ0〉 distinguished by the number of
existing domain walls for a chain of length L = 12 and interaction Jz/Jx = 10.

such that aging appears in regions where the waiting time before the �rst application is long
enough for the equal-time correlations to be in the di�usive regime. Also, the occurrence of
aging is not dependent on the initial state, as we tested several di�erent initial system prepara-
tions, including for example the single-domain wall state.

Let us now return to the description of Fig. 6.8 by considering the behavior of the two-time
correlations for �nite dissipative couplings. It becomes apparent, that an intermediate time
region emerges for increasingly strong interaction anisotropies. There the evolution of the
logarithm of the two-time correlations follows a power-law, so that the total behavior has the
form of a stretched exponential

Cd(t2, t1) ∼ e−β(γ)(t2−t1). (6.18)
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Figure 6.11.: Spectrum of HXXZ vs. Jz/Jx,
L = 12, in the Mtot = 0 sector

A similar behavior has been pre-
dicted before, using the approxima-
tive approach of kinetic Monte-Carlo
methods for a similar set-up, t1 = 0
and the Néel state as initial state [100].
The key contribution to the dynamics
can be explained by the dependence of
the energy spectrum of the Hamilto-
nian. As depicted in Fig. 6.11, the spec-
trum splits up into bands for growing
Sz-coupling strength Jz causing a sep-
aration of time scales, distinguishing
between intra- and inter-band rates.
Although the Néel state, i.e. the chosen
initial state, is not the true ground state
of the antiferromagnetic phase of the
XXZ chain, it mainly occupies states
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at the low-energy end of the spectrum for Jz/Jx > 1. Due to the small number of available
states and the large energetical separation of them, excitations in the form of reductions of the
number of domain walls, separating areas of parallel aligned spins, happen on a much larger
time scale then the motion of created e�ects inside the bands. Nevertheless, we want to em-
phasize, that this intermediate regime only exists for a limited duration and will eventually be
transferred to the aging regime. This can be seen, by comparing the two purple lines corre-
sponding to the same parameters in Fig. 6.8 and Fig. 6.9. The transition between the two time
ranges is here marked by kinks in the d = 1 correlations caused by zero crossings ofCd=1(t2, t1).
This illustrates, that at long times, the stretched exponential gives way to the observed aging
dynamics.

Obviously, the choice of the initial state plays an important role for the impact of the time
scale separation on the overall two-time dynamics. To quantify this, we select initial states span-
ning di�erent parts of the spectrum and observe their in�uence of this on the lifetime of the
intermediate stretched exponential regime. More precisely, we use basis states with an increas-
ing number of domain walls (DW), starting with one, i.e the state where we have two oppositely
aligned domains | ↑↑ . . . ↑↓↓ . . . ↓〉. The occupation of energy levels of the corresponding state,
as represented in Fig. 6.10, exempli�es that the main contribution to the DW = 1 state resides
in the well-separated high energy part of the spectrum, whereas more domain walls result in
�nite occupations in the center of the spectrum where the creation of defects is energetically
less costly. Indeed, the two-time evolution in Fig. 6.12 for initial states with di�erent domain
walls numbers, shows shorter regions of stretched exponential behavior. This opens another
application opportunity for the evolution of two-time correlations in this setting. As the du-
ration of the existence of a stretched exponential is tied to the Hamiltonian energy levels, it is
possible to probe the spectrum of spin chains using the system’s non-equilibrium dynamics as
a tool.

6.5.3. Derivation of long-term scaling

This section is dedicated to the development of an analytic understanding of the algebraic
scaling of the two-time correlation functions Cd(t2, t1) with regard to the ratio t2/t1 as it poses
an important signature for the observed aging dynamics. Here we build up on our results for
the equal-time correlation functions obtained by applying many-body adiabatic elimination
techniques as presented in section 6.4. As starting point for our calculation we notice that the
evolution of two-time correlation functions is connected to the dynamics of expectation values
of equal-time observables via the quantum regression theorem [6]. The theorem states, that if
an equation system for a set of equal-time observables {Bj} exists, the two-time correlations
are described by the same equations, i.e

d

dt
〈Bj(t)〉 =

∑

l

Gjl〈Bl(t)〉

⇔ d

dt
〈Bj(t+ τ)A(t)〉 =

∑

l

Gjl〈Bl(t+ τ)A(t)〉. (6.19)
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6.5 Two-time correlations of spin operators
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Figure 6.12.: Dependence of the length of the stretched exponential regime on number of do-
main walls in the initial state. The shown data is for L = 64, ~γ/Jx = 2 and
Jz/Jx = 10. Convergence parameters where D = 500 and ∆tJx/~ = 0.025.

Consequently, in our case we need to �nd a system of equations describing the expectation
values 〈Szj (t1)〉. To do so, we follow the same route we used earlier for the derivation of the
e�ective di�usion equation for the equal-time Sz-correlations. Using adiabatic elimination, the
dynamics of the density matrix for time scales larger than 1/γ and strong dissipation strengths
~γ � Jz can be approximated by Eq. 6.8. This procedure yields

d

dt1
〈Szj (t1)〉 =

D

2

L∑

l=1

(δj+1,l + δj−1,l − 2δj,l) 〈Szl (t1)〉

=
∑

l

Gjl〈Szl (t1)〉, (6.20)

where we assumed periodic boundary conditions and used the already introduced di�usion
constant D = J2

x/~2γ. As a result we can now also specify the dynamics of the translation
invariant two-time correlations ~2Cd(t2 = t1 + τ, t1) = 〈Szj (t1 + τ)Szj+d(t1)〉 in the limits of
the assumptions of weak z-directional spin coupling and long times Dt2 � Dt1 � 1

∂

∂τ
Cd(t2, t1) =

D

2
(Cd−1(t2, t1) + Cd+1(t2, t1)− 2Cd(t2, t1)) . (6.21)

Due to the similarity of this equation with Eq. 6.12, the solution can be found in close anal-
ogy. The situation is structurally di�erent as we do not need to take special care of the case
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6.5.3 Derivation of long-term scaling

d = 0, the previous equation is valid for all distances. As before, the di�erential equation is
solved in Fourier space before we use the continuum limit in momentum space for the back
transformation. Finally, exploiting the identity I|n|(z) =

∫ 2π

0
dk
2π

e−iknezcos(k) for the modi�ed
Bessel functions I|n|(z), the general solution can be written as

Cd(t2, t1) = e−D(t2−t1)

L/2∑

d′=−L
2

+1

Cd′(t1, t1)I|d′−d|(D(t2 − t1)). (6.22)

To maintain the readability of the text, some calculations are moved to appendix A.4. The
core idea of the next step is to split up the sum over distances in a helpful way and to insert
the solutions of the equal-time correlations Cd(t1, t1) as found in Eq. 6.14 for d ≥ 1, using
C−d(t1, t1) = Cd(t1, t1) and C0(t1, t1) = 1/4 (cf. A.4.1). This yields the intermediate result for
large system sizes L� 1

Cd(t2, t1) =
1

4
e−D(t2−t1)I|d|(D(t2 − t1))

+
1

4
e−D(t2+t1)

[
− I|d|(t2 + t1)δd,0

(1− δd,0)(−1)d
d−1∑

j=1−d
(−1)jI|j|(D(t2 + t1))

]

+Gd(t2, t1), (6.23)

where we de�ned

Gd(t2, t1) ≡ e−D(t2−t1)

∞∑

d′=1

Cd′(t1, t1)
[
I|d+d′|(D(t2 − t1))− I|d+d′−1|(D(t2 − t1))

]
. (6.24)

We strive for the long-time scaling, so we are looking for a solution in a time limit where
Dt2 � Dt1 � 1. To this end, we use an asymptotic expansion of the modi�ed Bessel function
for large arguments documented in formula 9.7.1 of [171]. Again we refer to the appendix for a
careful evaluation of the scaling which is split up into the scaling of Gd(t2, t1) in section A.4.2
and the full scaling including all terms in A.4.3. While the �rst two terms in Eq. 6.23 can be
straightforwardly addressed by the mentioned expansion, we also need to take into account
higher orders for the computation of Gd(t2, t1) leading to the following scaling expression for
the equal-time correlations

Cd(t1, t1) ∼ −1

4

1√
2π(t2 − t1)

e
− 1

2
d2

2Dt1 . (6.25)

Using this and taking a continuum limit to resolve the sum over all distances we can determine
the scaling. Due to the di�erence in the initial condition, i.e. the value of the equal-time corre-
lations at t1, we consider the distances d = 0 and |d| ≥ 1 separately. For |d| ≥ 1 the dominant
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6.6 Summary of the results of Chap. 6

scaling of the normalized two-time correlation functions for long times is given by

Cd(t2, t1)

Cd(t1, t1)
∼ −
√

2

(
t2
t1

)−3/2 [
1 +

1√
π

(Dt1)−1/2 − 1

4
(Dt1)−1

]
. (6.26)

For very large Dt1, the leading contribution is prevalent. Therefore, we can conclude that this
scaling agrees with the �ndings from our tMPS simulations shown in the previous section, and
the long-time behavior for |d| ≥ 1 scales as

Cd(t2, t1)

Cd(t1, t1)
∼
(
t2
t1

)−3/2

. (6.27)

As a result of the algebraic scaling with regard to the ratio of t2/t1, we can con�dently state
that the open spin chain exhibits aging caused by di�usive processes arising due to a coupling
to a dephasing environment. One still needs to discuss the scaling of the two-time correlation
at the same site, i.e. d = 0. For this, the equal-time correlation is always constant as (Sz)2 ∼ 1.
Taking this into account leads to the following scaling of the normalized two-time correlations

C0(t2, t1)

C0(t1, t1)
∼ 1√

2π
(Dt1)−1/2

(
t2
t1

)− 3
2
[
1 +

1√
π

(Dt1)−1/2 − 1

4
(Dt1)−1

]
. (6.28)

It is important to note here, that, while time-translation invariance is still broken and a dom-
inant algebraic scaling exists, the latter does not solely depend on t2/t1 and therefore the un-
derlying dynamics can not be regarded as aging.

6.6. Summary of the results of Chap. 6
In summary, the novel contribution described in this chapter is based on the numerical quasi-

exact determination of two-time correlations along di�erent spin directions in an interacting
many-body systems in contact with a environment. To do so, we have implementing an exten-
sion to the tMPS algorithm for systems exhibiting Markovian dissipation, which provides the
full quantum evolution. We could separate the time dependence into three dynamic regimes.
The �rst regime is dominated by the unitary evolution re�ected by oscillations of the two-time
correlation functions. For long times, we were able to detect the breaking of time-reversal
invariance and the scaling collapse of two-time correlation functions to a algebraic decay fol-
lowing a behavior of (t2/t1)−3/2, which is independent of model parameters. Therefore all
criteria for the introduced de�nition for aging are ful�lled. For strong z-directional spin cou-
pling between adjacent sites, the system undergoes an intermediate regime, originating from a
hierarchical contribution of several time scales, determined by spectral properties of the Hamil-
tonian and the initial state. This relation, allows to draw conclusions concerning the spectrum
of the system Hamiltonian by considering the evolution of a state. For local equal-time spin
correlations, we were further able to show, that the dominant mechanisms can be understood
as an e�ective di�usive process at long times.

The numeric analysis is compared to results from adiabatic elimination valid for long times.
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The time evolution can then be described by an e�ective motion in the dissipation free subspace,
which gives an analytic access to the problem. Using this approach, we verify the numerically
found exponents for both, equal-time and two-time correlations, and �nd e�ective di�usion
equations describing the evolution for both correlation functions.
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Chapter7
Zeno dynamics of interacting fermions
with a dissipative defect

7.1. Introduction
One of the key paradigms of quantum mechanics is the collapse of the wave function in the

course of a measurement process. The obtained value of measuring an observable, which is
represented as an hermitian operator, is one of its eigenvalues and the wave function directly
after the measurement is given by the corresponding eigenstate. As the probability for obtaining
a speci�c eigenvalue as a result is related to the overlap of the wave function with the eigenstate,
repeatedly measuring the same observable in short time intervals has a high likelihood to result
in the same measurement outcome. Consequently the system evolution is slowed down by
the projection to one eigenstate. This phenomenon is known as the Zeno e�ect [152] and
has, for example, been observed in ultracold atomic gases [12, 172]. Interestingly, the e�ect
also appears in open systems as the e�ect of the environment can be seen as a sequence of
measurements of the Lindblad jump operators. One example has been experimentally observed
in a realization of the inelastic scattering of cold molecules trapped in optical lattice potentials
[173]. In this framework, double-occupied sites are subjected to two-particle losses, where a fast
on-site loss rate regarding double occupancies suppresses the hopping and freezes the system,
which can be viewed as the creation of e�ective strong on-site repulsive interactions, penalizing
occupations larger than one. Moreover, the dissipative Zeno e�ect has been detected in the
context of highly localized Markovian defects in an atomic Bose-Einstein condensate caused by
the exposure to an electronic beam with very sharp spatial extension [174]. Here, the Zeno e�ect
is characterized by a non-monotonic dependence of the particle loss of condensed atoms on the
e�ective dissipation strength. As the manipulation of single atoms, for example through the
mentioned electron beam setup or by atomic excitations by laser beams [175–177] is possible,
the extension of local dissipation implementations to strongly-correlated models on discrete
lattice sites are reachable.

In this chapter we report the detection of Zeno dynamics in the setting of cold spinless
fermionic atoms localized to the sites of an optical lattice with nearest-neighbor interactions.
The fermions are further subjected to losses on the central site. The strong interactions require
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a full solution of the master equation beyond mean �eld [178]. A related study concerning the
numerically exact investigation of a similar bosonic system in Ref. [109], identi�ed the Zeno ef-
fect for the density evolution in the strong dissipation limit. The limit of the equilibrium model
for strong repulsive interactions is the Tonks-Girardeau gas, where the occupation of one site
by two or more bosons is forbidden, which resembles Pauli’s exclusion principle for fermions
and is therefore very similar to the model considered in this chapter. The Tonks-Girardeau gas
has been realized with cold atoms [179, 180]. Furthermore, analytical insights have been ob-
tained using the Keldysh formalism for the same model under consideration in Ref. [181], where
either the particle interaction or the dissipation has been treated perturbatively. In the present
work, we employ the Monte-Carlo wave function (MCWF) technique (cf. Sec. 4.3) enabling an
accurate description of the full quantum evolution for the fermionic case.

We begin with an introduction of the model at hand, followed by the presentation of three
distinct dynamical regimes which are highly in�uenced by the dissipation strength and the
nearest neighbor coupling. Finally we present the occurrence of Zeno behavior and justify our
�ndings by adiabatic elimination calculations, valid for strong dissipative couplings.

7.2. Dissipative density evolution of interacting ultracold fermionic atoms
Here we consider a gas of cold spinless fermionic atoms con�ned to a one-dimensional optical

lattice of equally spaced sites. In the tight-binding limit the fermions are localized to the discrete
lattice sites, where each site can be maximally occupied by one atom because of Pauli’s exclusion
principle. Moreover, each atom interacts with the particles of the adjacent sites, so that the
situation for a chain of length L is described by the following Hamiltonian

H = −J
(L−1)/2−1∑

l=−(L−1)/2

(
c†l cl+1 + h.c.

)
+V

(L−1)/2−1∑

l=−(L−1)/2

nlnl+1 +V
(
n−(L−1)/2 + n(L−1)/2

) N
L
, (7.1)

with the fermionic annihilation (creation) operators cl (c†l ), satisfying the anti-commutation
relation {cl , c†l′} = δl,l′ , and the de�nition of the local density at site l as nl ≡ c†l cl . The �rst
term is the kinetic energy, represented by the hopping of atoms between neighboring sites
controlled by the amplitude J . The second term contains the interaction via a coupling of the
density of adjacent sites, which can be tuned by changing the coupling strength V to be either
attractive for a negative or repulsive for a positive value of V . To lower the boundary e�ects,
we have additionally included a term, which couples the density at the chain ends to the value
of the average density, given by N/L, where N is the number of particles. In the equilibrium
scenario, this model can be identi�ed with the XXZ spin-1/2 model using the Jordan-Wigner
transformation [169],

H = −2J
L−1∑

l=1

(
Sxl S

x
l+1 + Syl S

y
l+1

)
+ V

L−1∑

l=1

Szl S
z
l+1 + const. (7.2)

where the two di�erent spin direction are related to the presence of particles or holes on the
sites of the lattice. Consequently, it also exhibits the same phases and properties as outlined
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Figure 7.1.: Sketch of the set-up of interacting spinless fermions, displaying the interaction,
the hopping and the Markovian losses at the central site.

in Sec. 6.2. Initially, the system is prepared in the ground state of the Hamiltonian. Then a
contact to an environment at time t = 0 is established by a dissipative quench causing a loss of
fermionic particles. The particle loss acts exclusively at the central lattice site. This process is
assumed to happen very fast compared to the motion of the system, so that the back action of
the lost particles on the system can be neglected and the process can con�dently be described
by the Markovian Lindblad master equation

d

dt
ρ(t) = − i

~
[H, ρ(t)] +D(ρ), with D(ρ) = γ

(
c0ρc

†
0 −

1

2
c†0c0ρ−

1

2
ρc†0c0

)
, (7.3)

where the index zero marks the central site and the dissipation strength is given by the loss
rate γ. To keep the mirror symmetry, we will consider odd-sized chains, a restriction, which
becomes irrelevant in the thermodynamic limit. The full model, including all mechanisms, is
depicted in Fig. 7.1.

The work presented in this chapter is directed to uncover the dynamical properties after the
dissipative quench. To this end, we access the time evolution by applying the Monte-Carlo
wave function technique (MCWF) described in Sec. 4.3 interfaced with the tMPS algorithm
(cf. Sec. 3.1.4) to the evolution of the ground state of the Hamiltonian. The latter is obtained
using the DMRG algorithm from Sec. 3.1.3, which provides the ground state already in MPS
form. One reason, why the MCWF method is preferred here to the puri�cation approach, is
that the ground state typically needs a bond dimension of the order of D = 100 to reach an
adequate truncation accuracy, which results either in a very rough approximation or very high
memory demands in the puri�cation step. Moreover, the jump operator does not conserve the
total particle number while the product with its hermitian conjugate c†mcm does, so that we
can only exploit conserved quantum number in the MCWF code and not in the puri�cation
method. The fact that only a single jump operator is present in the model, limits the space of
possible time-evolved trajectories, so that the statistical sampling becomes feasible. Typically
104 trajectories provide a su�cient accuracy in terms of the standard deviation of the mean
compared to magnitude of the expectation vales of the considered observables.

We will describe the long-time limit for models exhibiting strong dissipations with adiabatic
elimination. For this purpose it is useful to de�ne the dissipation-free subspace, which is not
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Figure 7.2.: Time-dependence of the deviation of the total particle number from the initial
value for di�erent system sizes and interaction strengths and a dissipative cou-
pling of ~γ/J = 6. The data shown is an average of 104 MC samples and statistical
errors are smaller than the line width. Suzuki-Trotter time step is ∆tJ/~ = 0.05
and maximal bond dimension D = 300.

a�ected by the dissipator

Λ0 =
{
ρ0
∣∣D(ρ0) = 0

}
=




∑

{n},{n′}
ρ0
{n},{n′}| . . . n−1, 0, n1 . . .〉〈. . . n′−1, 0, n

′
1 . . . |



 . (7.4)

Furthermore, following the description in Sec. 3.3, the Lindbladian can be split up into two
parts, yielding

L = L0 + LV
with L0 = D( · )− iV [n−1n0 + n0n1, · ]

and LV = −iJ
∑

l

[
c†l cl+1 + h.c., ·

]
− iV

∑

l 6=−1,0

[nlnl+1, · ] . (7.5)

The dissipative nature of the system enables the extraction of dynamical quantities without
perturbing the system by a collapse caused during the measurement process. In the present case,
the loss of particles, can be directly observed in experiments and therefore allows conclusions
on the total particle number in a non-destructive manner. We present MCWF results for the
time-dependence of the deviation of the total particle number N(t) from its initial value in Fig.

119



7.2 Dissipative density evolution of interacting ultracold fermionic atoms

−5 0 5
site l

−0.004

−0.003

−0.002

−0.001

0.000

〈n
i〉(
t)
−
〈n

i〉(
t

=
0)

h̄γ/J = 0.01

−5 0 5
site l

−0.03

−0.02

−0.01

0.00

h̄γ/J = 0.1

−5 0 5
site l

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

h̄γ/J = 70.0

tJ/h̄ =0.0

tJ/h̄ =0.5

tJ/h̄ =1.0

tJ/h̄ =1.5

tJ/h̄ =2.0

tJ/h̄ =2.5

tJ/h̄ =3.0

tJ/h̄ =3.5

Figure 7.3.: Deviation of the density pro�le from the initial distribution for di�erent dissipa-
tive coupling strengths for a free chain V = 0 of size L = 15 with 104 MCWF
samples, an exact MPS simulation (no truncation) and a Suzuki-Trotter time step
of ∆tJ/~ = 0.05. Statistical errors are marked by errorbars when larger then the
line width.

7.2. The plot compares di�erent system sizes and the di�erent behavior of free and interacting
fermions, where the initial particle number is chosen to be N = bL/2c. The behavior reveals
three di�erent time regimes. After a fast early decay, an intermediate time region is reached,
where the particle number depends linearly on the time. This regime eventually breaks down
due to �nite size e�ects caused by the boundary, as displayed by the di�erent deviation points
for di�erent system sizes. The decay of the particle number is notably faster in the linear
region in the presence of repulsive interactions than for free atoms. We will give a quantitative
reasoning for this using adiabatic elimination later. Starting from an almost equal occupation
of sites, only modulated by �nite system e�ects, originating in the non-commensurability of
particle number and system size, it is plausible, that the early loss can be mainly attributed to
the emptying of the initial central site occupation. Indeed, the evolution of the density pro�le
deviation from its initial distribution for di�erent dissipative coupling strengths in Fig. 7.3
shows that the loss of particles at the central site is a dominant contribution at early times.
Comparing di�erent loss rates con�rms a strong dependence of the corresponding time window
on the dissipation. While the pro�le evolution for ~γ/J = 0.01 and ~γ/J = 0.1 still shows a
�nite particle number at the central site as a left-over from the initial state for the presented
time span, the evolution for ~γ/J = 70, reaches the dissipation-free subspace Λ0 in the �rst
time step and stays in this subspace for the rest of the plotted times. Assuming a decoupling
of the central site from the rest of the chain, the central occupation is expected to show an
exponential decay

n0(t)− n0(0) = e−t/τ1n0(0), (7.6)

with a time scale of τ1 = 1/γ. The dependence of this time scale τ1 for the total number of par-
ticles Ntot on the dissipation strength γ is displayed in Fig. 7.4. It is extracted from exponential
�ts of the total particle number in the early time regime. The inverse scaling with the dissi-
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Figure 7.5.: Evolution of spatially resolved particle density for strong dissipation of ~γ/J =
20, chain length L = 63 and di�erent interactions. We used 104 trajectories,
∆tJ/~ = 0.05 and no MPS truncation. Statistical errorbars are smaller than the
line width.

pative coupling veri�es the association of this regime with an initial emptying of the central
site. The assumption that in that time interval this site can be considered as decoupled form
the rest of the system is also supported by the observation, that this behavior is not in�uenced
signi�cantly by the presence of interactions. We now turn to the investigation of the second
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7.2 Dissipative density evolution of interacting ultracold fermionic atoms

regime by examining the density pro�le evolution presented in Fig. 7.5 for a comparably strong
loss rate of ~γ/J = 20 for the di�erent interactions V/J = 0,±1. The initial state for V/J = 0
and V/J = 1 shows the local oscillations of the equilibrium ground state due to the �nite size
e�ect. Remarkably, although the overall dynamics is very di�erent, we can detect a static be-
havior in all three cases, manifested by a quasi-stationary density surrounding the central site,
which survives until the evolution reaches the boundary and the system starts to be emptied
completely, as can be seen for V/J = 1. This situation can be locally viewed as the same set-
up with two reservoirs connected to the ends of the chain [181], resulting in a steady particle
�ow towards the central site. For the free case we observe a decay of the single occupations
with remanent modulation of the initial state. For repulsive interactions, the stationary regime
gives rise to a density pattern that is strongly alternating in space and constant in time. The
local density even surpass the initial density at some sites. This behavior is similar to Friedel
oscillations, occurring in the ground state of Luttinger liquids in the presence of impurities
[169]. This suggests, that the dissipative site may be conceived as a barrier, analogous to an
obstacle represented by a additional potential contribution in the center. Moreover, attractive
interactions result in the formation of density waves which expands towards the boundary.

As can be seen in Fig. 7.5, the expansion velocity is di�erent for all cases. To give a quanti-
tative statement regarding the time scales, we will continue by analyzing the properties of the
time dependence and the most important contributions by employing the many-body adiabatic
elimination method as derived in Sec. 3.3. Using the relation from Eq. 3.53 we consider only the
�rst dissipative subspace corresponding to the eigenspace of L0 with the lowest non-vanishing
real-part eigenvalue given by

Λ1 =
{
|R〉 ⊗

∣∣ρ1
〉〈
ρ̃1
∣∣⊗ 〈R̃|

}
(7.7)

where
∣∣ρ1
〉〈
ρ̃1
∣∣ ∈
{
|0, 1, n1〉〈ñ−1, 0, ñ1|, |n1, 1, 0〉〈ñ−1, 0, ñ1|,

|n−1, 0, n1〉〈ñ−1, 1, 0|, |n−1, 0, n1〉〈0, 1, ñ1|
}

and |R〉, |R̃〉 ∈ {|{nl}〉 : l 6= −1, 0, 1} . (7.8)

Note that this space is very large, as it only introduces restrictions on the central three sites,
represented here by |ρ̃1〉〈ρ̃1|. This gives the following e�ective master equation, valid for times
t� 1/γ

d

dt
ρ0(t) ≈ V00ρ0(t)− 1

λ1

V01V10ρ0(t). (7.9)

This equation describes the e�ective motion of the density matrix ρ0 in the dissipation-free
subspace. The second term in Eq. 7.9 can be expressed in terms of the application of fermionic
operators on the density matrix ρ0(t) as derived in section B.1 of the appendix. The dynamics
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is then described by

d

dt
ρ0(t) = V00ρ0(t)

− J2

{[
2

γ

(
n̂−1 + n̂1 − 2n̂−1n̂1 + ĉ†−1ĉ1 + ĉ†1ĉ−1

)
+ 2

γ
2
− iV

(
γ
2

)2
+ V 2

n̂−1n̂1

]
ρ0(t)

+ ρ0(t)

[
2

γ

(
n̂−1 + n̂1 − 2n̂−1n̂1 + ĉ†−1ĉ1 + ĉ†1ĉ−1

)
+ 2

γ
2

+ iV
(
γ
2

)2
+ V 2

n̂−1n̂1

]}
,

(7.10)

with the local density operators n̂±1 of the sites next to the center and the creation and an-
nihilation operators ĉ(†)

±1 on the same sites, respectively. This enables us now to compute the
time-dependent change of the expectation value of the total particle number via d

dt
〈N(t)〉 ≈

tr[N d
dt
ρ0(t)]. As the operator LV is particle number conserving, the �rst term on the right-

hand side in Eq. 7.10 has no contribution to the evolution of this observable. Using the cyclic
properties of the trace, we arrive at the following relation

d

dt
〈N̂(t)〉 = tr

(
− 4J2N̂

[
1

γ

(
n̂−1 + n̂1 + ĉ†−1ĉ1 + ĉ†1ĉ−1 − 2n̂−1n̂1

)

+
γ

2
[(

γ
2

)2
+ V 2

] n̂−1n̂1

]
ρ0(t)

)
. (7.11)

As the density of the sites in the center is constant for the regarded time span (cf. Fig. 7.5), we
decouple the expectation value of N with the local occupations and replace the latter with the
constant value n±1, which is equal for both sides due to the mirror symmetry of the model. We
do the same for the correlator connecting the sites next to the center and represent 〈c†−1c1〉 as
C−1,1. Therefore, the density evolution is governed by

d

dt
〈N(t)〉 =

(
−8J2

γ
[n±1 + Re (C−1,1)] +

8J2

γ
n2
±1 − 8J2 γ

γ2 + (2V )2
n2
±1

)
〈N(t)〉. (7.12)

The di�erential equation is solved by an exponential ansatz, where the corresponding time
scale τ2 is given by the inverse of the prefactor of the right-hand side of Eq. 7.12. Analyzing
the expression reveals, that in the limit of the adiabatic elimination approximation of strong
dissipation, the relaxation time scale in the time region t� 1/γ is proportional to γ, given that
~γ/J � V/J . This result is known as the Zeno e�ect, where here the strong particle loss plays
the role of the continuous measurement process, which slows down the system dynamics.

In Fig. 7.6, we show the time scales obtained from exponential �ts in the second time regime
as a function of the dissipation strength. The time step needs to be adapted here to still be able
to resolve dynamics on the scale of 1/γ for very strong dissipations. It can be deduced, that for
low dissipation, the overall dynamics is still determined by the initial emptying of the central
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7.2 Dissipative density evolution of interacting ultracold fermionic atoms
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Figure 7.6.: Dissipation dependence of the time scale τ2 of the second dynamic regime, ac-
cessed by exponential �ts of the total particle number evolution. Dotted lines are
�ts with 1/γ and dashed lines linear �ts proportional to γ. The transition to the
Zeno regime is displayed for di�erent interaction strengths. The considered size
was L = 15, and the numerical tMPS time step is ∆tJ/~ = 0.05 for ~γ/J ≤ 10
and ∆tJ/~ = 0.01 for ~γ/J > 10. The average is done over 104 trajectories and
an exact MPS representation.

site, which results in an increasingly faster decay for larger dissipative couplings, which scales
as 1/γ. However, when increasing the loss rate further, a minimum is passed and the linear
Zeno regime is reached, as can be seen from the good agreement with the linear �ts. The
starting point of the Zeno limit is in�uenced by the interaction. A look at Eq. 7.12 shows, that
stronger interactions require higher loss rates for the time scale dependence to be dominated
by the dissipation. Note that the time scales extracted from Eq. 7.12 also depend on the density
next to the center, which is quite di�erent for the di�erent interaction scenarios presented in
Fig. 7.5. The higher density caused by the oscillations for V/J = 1 results in a faster dynamics
than in the free case, which in turn is faster than in the case of V/J = −1. It is important
to state, that in principle both, n±1 and C−1,1, depend on γ, whereby the dependency for the
strong dissipations is found to be almost constant from the numerics, so that their in�uence
on the time scale behavior with γ is negligible. A comparison with the extracted time scales
for ~γ/J = 20 in Fig. 7.6 also recovers the speci�c behavior, regarding di�erent expansion
velocities for di�erent interactions from Fig. 7.5.
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7.3. Summary of results of Chap. 7 and outlook
In this chapter, we presented the detection of three di�erent dynamical regimes found by

numerically exact simulations for the full quantum time evolution of a dissipative chain of in-
teracting spinless fermions. While the �rst regime could be assigned to the clearing of the
initially �nite occupation of the central site by the Markovian loss and the last regime is dom-
inated by boundary e�ects, the second region is characterized by the emergence of a quasi-
stationary density distribution around the center. Depending on the type of the interaction and
its strength, the form of this meta stable state is quite di�erent. Nevertheless, the evolution in
this time region can be generally explained by the Zeno e�ect, which we could trace back to an
e�ective motion in the dissipation-free subspace using adiabatic elimination.

As parts of this project can still be considered as work in progress, we give a short outline
on future directions. While we were able to extract the overall Zeno behavior, marked by the
linear relation of the time scale with the dissipation, the exact time scale values could not be
recovered using the expectation values of n± and C−1,1 as provided by our numerics. As we
have used a mean-�eld decoupling of the total particle number N , it is worthwhile focusing
on the a�ect of this decoupling in further detail. Moreover, a comparison with the results
for transport properties found in Ref. [181], regarding anomalous re�ection and transmission
e�ects according to the dissipative site for momenta close to the Fermi momentum, is desirable.
In order to do so, the de�nition of observables which are measurable with MCWF techniques
and also re�ect these aspects are required.
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Chapter8
Conclusion

In this thesis we have investigated the dynamics of open quantum systems in several di�erent
physical examples. The open nature of a quantum system is represented by a coupling to an
external Markovian environment which establishes the notion of dissipation to the system. The
main contribution of this work is twofold. First, we explore how environmental e�ects can be
used to create interesting steady states which are approached exponentially fast in time and are
stable against perturbations. This is on par with current experimental e�orts that aim for the
engineering of environments to enable the preparation of complex quantum states. Secondly,
we analyze the properties of the dynamics before reaching the steady regime. This concerns the
parameter dependence of the time scale which determines how fast a steady state is approached
as well as the identi�cation of the decisive mechanisms which govern the e�ective evolution.

Perhaps the most interesting settings are found in systems which combine dissipation with
strongly interacting many-body systems, so that a competition among di�erent processes arises.
However, as this makes the access to the full time evolution very demanding, we explained how
we transfer common e�cient numeric approaches to the framework of open system and how
approximations can provide analytical insights. In particular, we describe the implementation
of open system adaptions of the time-dependent matrix product state algorithms with two dif-
ferent techniques; the Monte-Carlo wave function method and the puri�cation method.

We demonstrate how the dissipative dynamics can be used as a stable way to prepare quan-
tum states. A system of cold fermionic atoms con�ned to a ladder-shape potential created by an
optical lattice has been designed such, that the phase imprint of an external pump laser acts as
an arti�cial magnetic �eld for the fermions. The coupling to a cavity mode with photon losses
then introduces the controlled addition of dissipation. We emphasize how it is possible to drive
the system towards desired steady states by adapting the external parameters. In the presence
of an induced arti�cial magnetic �eld, the steady state is a topologically non-trivial state. Thus,
this system can potentially be used to switch between di�erent topological phases. Concerning
the attractor dynamics in the emergence of the steady state, we show that large dissipation
strengths cause a Zeno behavior which can be perceived as a continuous measurement process
that prevents the evolution of the system.

Aiming at a better understanding for the open system dynamics of interacting many-body
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system, we investigated the propagation of correlations in spin-1/2 XXZ chains where each
spin is coupled to its nearest neighbors and additionally to a Markovian environment causing
dephasing. The numerically exact evaluation of two-time correlation functions enables us to
distinguish three di�erent time regimes in the evolution towards the steady state. Most no-
tably, we detected an occurrence of aging dynamics characterized by a scaling collapse of the
correlations on a slow algebraic decay. Additionally, we outline how the dissipative dynamics
can be employed to extract information on the spectrum of the closed system Hamiltonian.

Finally, we discover Zeno dynamics in the evolution of interacting cold atoms in one di-
mension which are suddenly subjected to locally constrained particle losses. More precisely,
after the initial emptying of the region the loss applies to, we observe the emergence of a quasi-
stationary regime around this region which surprisingly shows a slow-down of the total particle
loss when increasing the dissipative coupling.

In summary, the knowledge gained from this extensive study will potentially help in develop-
ing novel approaches to stabilize quantum states absent in equilibrium. For example, the open
system preparation of a chiral state in a cavity poses a �rst step on the path of combining topo-
logical protection and open system control. A natural extension is to consider two-dimensional
lattice geometries, such that a separation of bulk and system boundary is possible and chiral
edge states can be related rigorously to the topology of the bulk. A related study for the steady
state in this context is presented in Ref. [20]. Furthermore, an experimental realization requires
the ability to create optical lattices for ultracold fermionic atoms in cavities as it has recently
been implemented for the bosonic case [141, 182]. Moreover, it was found that the dynamics of
open systems di�ers greatly from the equilibrium evolution. For example, we see a transition to
a regime with di�usively propagating two-time correlation functions in interacting open spin-
1/2 chains. In this context, further research is needed to achieve a more general understanding of
the impact of the open nature on the evolution. Finally, the work presented here is based on the
assumption of a Markovian system-environment coupling. While this is typically well-ful�lled
in quantum optical applications, many examples, e.g. from the �eld of solid state physics, ex-
hibit non-negligible memory e�ects of the environment. To cover this important situations as
well, non-Markovian environments need to be taken into account. While this task has been
addressed in the past [6], it adds an additional layer of complexity compared to the Lindblad
dynamics and therefore leaves room for further development.
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AppendixA
Appendix regarding Chap. 6

A.1. Auxiliary calculation for many-body adiabatic elimination
Using 3.53 while concentrating on the contributions of every single eigen vector, the time

evolution reads as

d
dtρ

α
j (t) = λα,jρ

α
j (t) +

∑

k,β 6=α
Vαβj,k ρβk(t) ≡ λα,jρ

α
j (t) + b(t). (A.1)

Solving the homogeneous part of this di�erential equation (i.e. b(t) ≡ 0) yields ραj (t) = Ceλα,jt.
Using variation of constants a solution of the inhomogeneous equation is given by ραj (t) =

eλα,jt
∫ t

0
dt′e−λα,jt′b(t′) resulting in a general solution of Eq. A.1 as

ραj (t) = ραj (0)eλα,jt +
∑

k,β 6=α

[
eλα,jt

∫ t

0

dt′e−λα,jt′Vαβj,k ρβk(t′)

]
. (A.2)

As also mentioned in section 3.3, contributions from higher subspaces decay exponentially,
where the non-vanishing negative real parts of the eigenvalues and therefore the time scales
are proportional to γ. So the essential part of the long-time behavior for t� 1/γ is dominated
by the dynamics around the dissipation-free subspace. Therefore, the next step is to identify
the most important contributions to ρ0

j(t) de�ned by Eq. A.1. First of all, the integral appearing
in the last equation can be solved by integrating by parts, giving
∫ t

0

dt′e−λα,jt′Vαβj,k ρβk(t′) = − 1

λα,j
e−λα,jtVα,βj,k ρ

β
k(t) +

∫ t

0

dt′
[

e−λα,jt′

λα,j
Vα,βj,k

d
dt′ (ρ

β
k(t′))

]

︸ ︷︷ ︸
O(1/λ2

α,j)

. (A.3)
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The expression for ραj (t) for α 6= 0 is then approximately

ραj (t) ≈ ραj (0)eλα,jt
︸ ︷︷ ︸

decays exp.

− 1

λα,j

∑

k,β 6=α
Vα,βj,k ρ

β
k(t)

≈ − 1

λα,j

∑

k

Vα,0j,k



ρ0
k(t) eλ0,kt︸︷︷︸

=1

− 1

λ0,k

∑

l,β 6=0

V0,β
j,l ρ

β
l (t)

︸ ︷︷ ︸
O(1/λ0,kλβ,l)




− 1

λα,j

∑

k,β 6=α 6=0

Vα,βj,k



ρβk(t) eλβ,kt︸ ︷︷ ︸

decays exp.

− 1

λβ,k

∑

l,β′ 6=β
Vβ,β′j,l ρβ

′

l (t)

︸ ︷︷ ︸
O(1/λβ,kλβ′,l)




≈ − 1

λα,j

∑

k

Vα,0j,k ρ
0
k(t). (A.4)

Finally, we arrive at

d
dtρ

0
j(t) = λ0jρ

0
j(t) +

∑

k,α6=0

V0α
j,kρ

α
k (t)

≈ λ0,jρ
0
j(t) +

∑

k,α6=0

V0α
j,k

(
− 1

λα,k

∑

l

Vα,0k,l ρ
0
l (t)

)
(A.5)

for the e�ective dynamics in the dissipation-free subspace. In a more compact form, this can
be expressed as

d
dtρ

0(t) = L0ρ
0(t)−

∑

α 6=0

V0,αL−1
0 Vα,0ρ0(t). (A.6)

A.2. Derivation of the classical master equation for the XXZ-chain us-
ing many-body adiabatic elimination

Here we will give a more detailed derivation of Eq. 6.8 in the main text, using the adiabatic
elimination approximation from Eq. 6.7. To begin, we start with the general Lindblad equation
for a general state of the dissipation-free subspace Λ0 and apply the superoperator L which is
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A.2 Derivation of the classical master equation for the XXZ-chain using many-body adiabatic
elimination

split up in the parts L0 and LV from Eq. 6.5 and 6.6.

d
dt
∑

~σ

ρ0(~σ, t) =
∑

~σ

ρ0(~σ, t)


L0|~σ〉〈~σ|︸ ︷︷ ︸

=0

+LV |~σ〉〈~σ|


 (A.7)

=
∑

~σ

ρ0(~σ, t)
(−iJx)

2

L−1∑

j=1

[
S+
j S
−
j+1 + S−j S

−
j+1, |σ1 . . . σL〉〈σ1 . . . σL|

]
(A.8)

=
∑

~σ

ρ0(~σ, t)
(−iJx)

2

L−1∑

j=1

δσj ,σ̄j+1
(|σ1 . . . σj+1σj . . . σL〉〈σ1 . . . σL|

−|σ1 . . . σL〉〈σ1 . . . σj+1σj . . . σL|) . (A.9)

Following Eq. 6.7, we need to calculate the eigenvalues of L0 of all the states from Eq. A.9. For
this we compute

L0|σ1 . . . σj+1σj . . . σL〉〈σ1 . . . σL|

= −iJz
[∑

l

Szl S
z
l+1, |σ1 . . . σj+1σj . . . σL〉〈σ1 . . . σL|

]

γ
∑

l

(
Szl |σ1 . . . σj+1σj . . . σL〉〈σ1 . . . σL|Szl −

1

4
|σ1 . . . σj+1σj . . . σL〉〈σ1 . . . σL|

)

=

{
−iJz

4
(σj−1σj+1 + σjσj+2 − σj−1σj − σj+1σj+2) + γ

(
1

2
σjσj+1 −

1

2

)}

× |σ1 . . . σj+1σj . . . σL〉〈σ1 . . . σL|. (A.10)

This means the corresponding eigenvalues, needed for the adiabatic elimination are

λj,~σ = −iJz
4

(σj−1σj+1 + σjσj+2 − σj−1σj − σj+1σj+2)︸ ︷︷ ︸
≡α

+γ

(
1

2
σjσj+1 −

1

2

)
. (A.11)

By mapping this back with another application of LV , we can calculate the approximate dissi-
pative motion, represented solely by states of the dissipation-free subspace:

d
dt
∑

~σ

ρ0(~σ, t) =
∑

~σ

ρ0(~σ, t)

(
−iJx

2

∑

j

δσj ,σ̄j+1

iJx
2

(
1

λj,~σ
+

1

λ∗j,~σ

)

[(|σ1 . . . σL〉〈σ1 . . . σL| − |σ1 . . . σj+1σj . . . σL〉〈σ1 . . . σj+1σj . . . σL|)] .
(A.12)

Inserting the eigenvalues and simplifying the outcome �nally leads to Eq. 6.8 for the time-
dependent weights of the dissipation-free space.
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A.3. Solution for the di�usive equation for the e�ective long-time dy-
namics of the XXZ-chain initially prepared in the Néel state

The following calculation is dedicated to the derivation of the solution presented in Eq. 6.14
of the di�usion equation from Eq. 6.13, i.e

∂

∂t1
C̃d(t1, t1) = D

(
C̃d+1 + C̃d−1 − 2C̃d

)
, for d ∈

{
−L

2
+ 2, . . . ,

L

2

}
, (A.13)

where d < 0 here corresponds to d − 1 in the actual lattice, as explained in the main text. We
also use here periodic boundary conditions, so that C̃−L

2
+1 = C̃L

2
and C̃−L

2
+2 = C̃L

2
+1. The

next step is to apply a Fourier transformation to the correlation function

C̃km =

L
2∑

d=−L
2

+2

e−ikmdC̃d , with km =
2πm

L− 1
,m ∈ {0, . . . , L− 2}

C̃d =
1

L− 1

L−2∑

m=0

eikmdC̃km

This transforms Eq. A.13 to

∂C̃km(t1, t1)

∂t1
= 2D(cos(km)− 1)C̃km(t1), (A.14)

with the general solution

C̃km(t1) = e2Dt1(cos(km)−1)C̃km(t1 = 0). (A.15)

Consequently, we also need to compute the Fourier transform of the initial condition which
reads for the Néel state in terms of the de�ned shifted distances as

C̃km(t1 = 0) = F.T.
[
C̃d(t1 = 0)

]
= F.T.


1

4




L/2∑

d′=−L/2+1

(−1)d
′
(1− 2δd′≤0)δd,d′




 (A.16)

=
1

4

L/2∑

d=−L/2+2

e−ikmd(−1)d(1− 2δd≤0). (A.17)
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A.4 Detailed calculation for the derivation of the dominant scaling of the two-time correlations

Inserting this back into Eq. A.15 and transforming back to real space gives the full solution

C̃d(t1, t1) =
1

L− 1

L−2∑

m=0

eikmdC̃km(t1)

=
1

4

L/2∑

d′=−L/2+2

[
(−1)d

′
(1− 2δd′≤0)

1

L− 1

L−2∑

m=0

e−ikm(d′−d)e2Dt1(cos(km)−1)

]
. (A.18)

By using the continuum limit in k-space, valid for large system sizes, we can replace the mo-
menta sums by integrals 1

L−1

∑L−2
m=0 −→ 1

2π

∫ 2π

0
dk,

C̃d(t1, t1) =
1

4

L/2∑

d′=−L/2+2

(−1)d
′
(1− 2δd′≤0)e−2Dt1

∫ 2π

0

dk
2π

e−ik(d′−d)e2Dt1 cos(k). (A.19)

At this point, it is now possible to use the identity for the Bessel functions of �rst kind men-
tioned in the main text, statingIn(z) =

∫ 2π

0
dk
2π

e−iknez cos k for n ∈ Z. This leads to the solution
as presented in the main text

C̃d(t1, t1) =
1

4
e−2Dt1

L/2∑

d′=−L/2+2

[
(−1)d

′
(1− 2δd′≤0)I|d′−d|(2Dt1)

]
. (A.20)

A.4. Detailed calculation for the derivation of the dominant scaling of
the two-time correlations

This part of the appendix contains side calculations related to section 6.5.3, which outlines
and discusses the main steps to derive a scaling relation for the two-time correlation function
Cd(t2, t1) = 〈Szj (t2)Szj+d(t1)〉 in the open XXZ spin chain in contact with an environment
causing dephasing.

A.4.1. Intermediate representation of the two-time correlation functions

This section presents a detailed derivation of Eq.6.23 starting from the general solution of
the found di�erential equation system from Eq. 6.22. In the following, we use the notation
τ = t2− t1. We begin with splitting up the sum over correlation distances d′ into subparts and
rewrite the expression in terms of the shifted equal-time correlations C̃d(t1, t1) as introduced
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A.4.1 Intermediate representation of the two-time correlation functions

earlier.

Cd(τ, t1) = e−Dτ
{

1

4
Id(Dτ) +

L/2∑

d′=1

C̃d′(t1, t1)Id′−d(Dτ) +
−1∑

d′=−L
2

+1

C̃d′+1(t1, t1)Id′−d(Dτ)

+
0∑

d′=−L
2

+2

C̃d′(t1, t1)Id′−d(Dτ)−
0∑

d′=−L
2

+2

C̃d′(t1, t1)Id′−d(Dτ)

}
.

(A.21)

Next, we perform some rearrangements of the terms by noting that C̃−d+1(t1, t1) corresponds
to C̃d(t1, t1).

Cd(τ, t1) = e−Dτ
{

1

4
Id(Dτ) +

L/2∑

d′=−L
2

+2

C̃d′(t1, t1)Id′−d(Dτ)

+
−1∑

d′=−L
2

+1

C̃d′+1(t1, t1) (Id′−d(Dτ)− Id′+1−d(Dτ))

}

= e−Dτ
{

1

4
Id(Dτ) +

L/2∑

d′=−L
2

+2

C̃d′(t1, t1)Id′−d(Dτ)

︸ ︷︷ ︸
≡ T2

+

L/2−1∑

d′=1

Cd′(t1, t1) (Id′+d(Dτ)− Id′+d−1(Dτ))

}
.

We continue, by �rst considering the second term which we denote by T2. For this, we need
the solution of the shifted equal-time correlations from Eq. 6.14 which can be rewritten as

C̃d(t1, t1) =
1

4
e−2Dt1


−Id(2Dt1) +

L/2∑

d′=−L
2

+2

(−1)d
′
sign(d′)Id′−d(2Dt1)


 .
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A.4 Detailed calculation for the derivation of the dominant scaling of the two-time correlations

Inserting this into the relation for T2, we arrive at

T2 =

L/2∑

d′=−L
2

+2

Id′−d(Dτ)
e−2Dt1

4


−Id′(2Dt1) +

L/2∑

d′′=−L
2

+2

(−1)d
′′
sign(d′′)Id′′−d′(2Dt1)Id′−d(2Dτ)




=
e−2Dt1

4

{
−

L/2∑

d′=−L
2

+2

Id′−d(Dτ)Id′(2Dt1)

︸ ︷︷ ︸
≡T21

+

L/2∑

d′=−L
2

+2

L/2∑

d′′=−L
2

+2

(−1)d
′′
sign(d′′)Id′′−d′(2Dt1)Id′−d(2Dτ)

︸ ︷︷ ︸
≡T22

}

Now, we will take the limit for in�nitely large system sizes, employ the integral relation for the
Bessel functions and the sum representation of the delta function for the two terms which we
de�ned as T21 and T22.

T21 ≈ −
∞∑

d′=−∞
Id′(2Dt1)Id′−d(Dτ)

≈ −
∞∑

d′=−∞

∫ 2π

0

dk

2π
e−id

′ke2Dt1 cos k

∫ 2π

0

dk′

2π
e−i(d−d

′)k′eDτ cos k′

= −
∫ 2π

0

dk

2π
e−idket1+t2 = −Id(D(t1 + t2))

T22 ≈ −
L/2∑

d′′=−L
2

+2

(−1)d
′′
sign(d′′)

∞∑

d′=−∞
Id′′−d′(2Dt1)Id′−d(Dτ)

use T21= −
−1∑

d′′=−L
2

+2

(−1)d
′′
Id−d′′(D(t1 + t2)) +

L/2∑

d′′=1

(−1)d
′′
Id−d′′(D(t1 + t2))

= −
j′−d=L/2−2∑

j′−d=1

(−1)j
′+dIj′(D(t2 + t1)) +

j′+d=L/2∑

j′+d=1

(−1)j
′+dIj′(D(t2 + t1))

≈ −
∞∑

j′=1−d
(−1)j

′+dIj′(D(t2 + t1)) +
∞∑

j′=1−d
(−1)j

′+dIj′(D(t2 + t1))

=

{
Id(D(t2 + t1)) + (−1)d

∑d−1
j′=1−d(−1)j

′
Ij′(D(t2 + t1)) : d > 0

0 : d = 0
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A.4.2 Scaling of Gd(t2, t1) as one part of the two-time correlation functions

Collecting all terms, we arrive at Eq. 6.23 from the main text which we were to derive in this
section.

A.4.2. Scaling of Gd(t2, t1) as one part of the two-time correlation functions

This section covers a complete discussion of the scaling ofGd(t2, t1) which itself is de�ned in
Eq. 6.24 and is one of in total four terms characterizing the long-term behavior of the two-time
correlation function 〈Szj (t2)Szj+d(t1)〉. We begin with extracting the decisive contributions of
the modi�ed Bessel functions. To do so, we employ the asymptotic expansion of the modi�ed
Bessel function, valid for large arguments |z| � 1 and integer order ν, as introduced in equation
9.7.1 of [171]

Iν =
ez√
2πz

(
1− 4ν2 − 1

8z
+

(4ν2 − 1)(4ν2 − 9)

2!(8z)2
− (4ν2 − 1)(4ν2 − 9)(4ν2 − 25)

3!(8z)3
+ . . .

)

=
ez√
2πz

∞∑

k=0

(−1)k

k!

1

(8z)k
ak(z)

with: ak(z) =

{
1 : k = 0

(4ν2 − 1)(4ν2 − 9)(4ν2 − 25) . . . : else
.

From Eq. 6.14 we �nd that the equal-time correlations for large systems L� 1 scale as

Cd′(t1, t1) ∼ −1

4
e−2Dt1Id′(2Dt1). (A.22)

We simplify this now by using the asymptotic series representation of Id′(2Dt1) and work out
the limit of vanishing lattice spacing a.

Id′(2Dt1) ∼ e2Dt1

√
2π(2Dt1)

∞∑

k=0

(−1)k

k!

1

(8 · 2Dt1)k
ak(d

′)

d′≡l′/a∼ e2Dt1

√
2π(2Dt1)

∞∑

k=0

(−1)k

k!

1

(8 · 2Dt1a2)k
[
(4l′2 − 1)(4l′2 − 9) . . .

]

a→0−→ e2Dt1

√
2π(2Dt1)

∞∑

k=0

(−1)k

k!

(
l′2

8 · 2Dt1a2

)k

∼ e2Dt1

√
2π(2Dt1)

e
− 1

2
d′2

2Dt1 .

Next we insert this result into the expression for the equal-time correlation, and insert this
again in the relation for Gd(t2, t1). Approximating the appearing Bessel functions then by the
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A.4 Detailed calculation for the derivation of the dominant scaling of the two-time correlations

�rst terms of the expansion yields the following

Gd(t2, t1) ∼ −e−D(t2−t1) 1

4
√

2π(2Dt1)

∞∑

d′=1

e
− d′2

2(2Dt1) [Id+d′(D(t2−t1))− Id+d′−1(D(t2 − t1))]

∼ −e−D(t2−t1) 1

4
√

2π(2Dt1)

∞∑

d′=1

e
− d′2

2(2Dt1)
eD(t2−t1)

√
2πD(t2 − t1)

×

×
[
1− 4(d+ d′)2 − 1

8D(t2 − t1)
− 1

4(d+ d′ + 1)2 − 1

8D(t2 − t1)

]

∼ −1

4

1

(2π(2Dt1))1/2

1√
2π

1

(D(t2 − t1))3/2

∞∑

d′=1

e
− d′2

2(2Dt1)

(
1

2
− d− d′

)
.

To continue, we perform a continuum limit in the space of lattice distances, so that we can
replace the sum over all distances by known integrals.

Gd(t2, t1) ∼ −1

4

1

(2π(2Dt1))1/2

1√
2π

1

(D(t2 − t1))3/2
×

×
[(

1

2
− d
)∫ ∞

1

dd′e−
d′2

2(2Dt1) −
∫ ∞

1

dd′d′e−
d′2

2(2Dt1)

]

∼ −1

4

1

(2π(2Dt1))1/2

1√
2π

1

(D(t2 − t1))3/2
×

×
[(

1

2
− d
)√

πDt1erfc

(
1

2
√
Dt1

)
− 2Dt1e

− 1
4Dt1

]
.

As we work out a long time limit scaling, we can Taylor expand the erfc and the exponential
function. Doing so and only keeping the largest order in t1 �nally provides a scaling formula
for Gd(t2, t1), given by

Gd(t2, t1) ∼
(

1

2
− d
)(
−
√
π

2

1

8π

1

(Dt1)3/2

(
t1
t2

)3/2
)

+
1

4π
√

2

1

Dt1

(
t2
t1

)3/2

. (A.23)

A.4.3. Long-time scaling of the two-time correlations

While we have found the scaling for Gd(t2, t1) already in the previous section, we still need
to consider the remaining contributions to Eq. 6.23, which we will denote by Rd(t2, t1). As
this distinguishes between on-site correlations and |d| ≥ 1, we will treat both cases separately,
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A.4.3 Long-time scaling of the two-time correlations

starting with the latter

Rd(t2, t1) ∼ 1

4
e−D(t2−t1)Id(D(t2 − t1)) +

1

4
e−D(t2+t1)(−1)d

d−1∑

j=1−d
(−1)jIj(D(t2 + t1))

∼ 1

4
√

2πD(t2 − t1)

(
1− 4d2 − 1

8D(t2 − t1)

)

+
1

4
√

2πD(t2 + t1)
(−1)d

d−1∑

j=1−d
(−1)j

(
1− 4j2 − 1

8D(t1 + t2)

)
.

Using that the sum formulas
∑d−1

j=1−d(−1)j = (−1)d+1 and
∑d−1

j=1−d(−1)jj2 = (−1)d+1(d−1)d
we can further simplify the terms.

Rd(t2, t1) ∼ 1

4
√

2πD(t2 − t1)

(
1− 4d2 − 1

8D(t2 − t1)

)

+
1

4
√

2πD(t2 + t1)

(
−1− 1

8D(t2 + t1)
+

4(d− 1)d

8D(t2 + t1)

)

∼ 1

4
√

2π

{(
1

(D(t2 − t1))1/2
− 1

(D(t2 + t1))1/2

)
− d

2

1

(D(t2 + t1))3/2

+

(
1

8
− d2

2

)(
1

(D(t2 − t1))3/2
− 1

(D(t2 + t1))3/2

)}
.

Expanding each of the three terms for small ratios t1/t2, we end up with a scaling formula for
|d| ≥ 1

Rd≥1(t2, t1) ∼ 1

4
√

2π

1√
Dt1

(
t1
t2

)3/2

− d

8
√

2π

1

(Dt2)3/2
. (A.24)

Now turning to the case of d = 0, the remaining parts is given by

Rd=0(t2, t1) ∼ 1

4
e−D(t2−t1)I0(D(t2 − t1))− 1

4
e−D(t2+t1)I0(D(t2 + t1))
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A.4 Detailed calculation for the derivation of the dominant scaling of the two-time correlations

Applying the same scheme as for |d| ≥ 1, i.e. expansion of the modi�ed Bessel functions and
Taylor expansion of the remaining parts leads to the scaling result.

Rd=0 ∼
1

4
√

2πD(t2 − t1)

(
1 +

1

8D(t2 − t1)

)
− 1

4
√

2πD(t2 + t1)

(
1 +

1

8D(t2 + t1)

)

∼ 1

4
√

2π

[(
1

(D(t2 − t1))1/2
− 1

(D(t2 + t1))1/2

)

+

(
1

(D(t2 − t1))3/2
− 1

(D(t2 + t1))3/2

)]

∼ 1

4
√

2πDt1

(
t1
t2

)3/2

Now we have all ingredients for giving the �nal scaling formula for the two-time correlations
normalized to the equal-time correlations, which scales as

Cd(t1, t1) ∼
{

1/4 : d = 0

−1/
√

64πDt1 : d ≥ 1
.

In summary we end up with the following scaling relation as also mentioned and discussed in
the main text:

Cd>0(t2, t1)

Cd>0(t1, t1)
∼ −
√

2

(
t2
t1

)−3/2 [
1 +

1√
π

(Dt1)−1/2 − 1

4
(Dt1)−1

]
, (A.25)

and

Cd=0(t2, t1)

Cd=0(t1, t1)
∼ 1√

2π
(Dt1)−1/2

(
t2
t1

)− 3
2
[
1 +

1√
π

(Dt1)−1/2 − 1

4
(Dt1)−1

]
. (A.26)
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AppendixB
Appendix regarding Chap. 7

B.1. Derivation of the adiabatic elimination of the �rst dissipative sub-
space

Here we present a calculation of the second term of Eq. 7.9 using the de�nitions of L0 and
LV from Eq. 7.5. Let us examine the e�ect of the application of − 1

λ1
V01V10 on one basis state

of the dissipation-free subspace | . . . n−1 0 n1 . . .〉〈. . . n′−1 0 n′1 . . . |, where nl, n′l are numbers,
labeling the occupation at site l and can take the values zero or one. With the de�nition of the
projectors on the dissipative space Λi as Pi, we get

1

λ1

V01V10| . . . n−1 0 n1 . . .〉〈. . . n′−1 0 n′1 . . . |

= (P0LVP1)
−1

λ1

(P1LVP0) | . . . n−1 0 n1 . . .〉〈. . . n′−1 0 n′1 . . . |

= (P0LVP1)
−1

λ1

iJ

(
n−1 | . . . 0 1 n1 . . .〉〈. . . n′−1 0 n′1 . . . |

+ n1 | . . . n−1 1 0 . . .〉〈. . . n′−1 0 n′1 . . . |
− n′−1 | . . . n−1 0 n1 . . .〉〈. . . 0 1 n′1 . . . |

− n′1 | . . . n−1 0 n1 . . .〉〈. . . n′−1 1 0 . . . |
)

= . . . . (B.1)

Applying L0 to this state allows the identi�cation of the value of λ1 to be

λ1 = −γ
2
− iV ·





n1

n−1

−n′1
−n′−1

⇒ − 1

λ1

=
γ/2− iV nl(
γ
2

)2
+ (V nl)

2
(B.2)
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B.1 Derivation of the adiabatic elimination of the �rst dissipative subspace

We can rewrite all four variants of the last term considering the two cases for each nl of being
either zero or one, so that

− 1

λ1

=
2

γ
(1− nl) +

γ/2 + iV
(
γ
2

)2
+ V 2

nl. (B.3)

Plugging this into Eq. B.1 and applying the mapping back to Λ0 yields

. . . = −J2

{[(
2

γ
(1− n1) +

γ/2− iV
(
γ
2

)2
+ V 2

n1

)
n−1 +

(
2

γ
(1− n−1) +

γ/2− iV
(
γ
2

)2
+ V 2

n−1

)
n1

+

(
2

γ
(1− n′1) +

γ/2 + iV
(
γ
2

)2
+ V 2

n1

)
n′−1 +

(
2

γ
(1− n′−1) +

γ/2 +−iV
(
γ
2

)2
+ V 2

n′−1

)
n′1

]
×

× | . . . n−1 0 n1 . . .〉〈. . . n′−1 0 n′1 . . . |

+

(
2

γ
(1− n1) +

γ/2− iV
(
γ
2

)2
+ V 2

n1

)
n−1(1− n1)| . . . 0 0 1 . . .〉〈. . . n′−1 0 n′1 . . . |

+

(
2

γ
(1− n−1) +

γ/2− iV
(
γ
2

)2
+ V 2

n−1

)
n1(1− n−1)| . . . 1 0 0 . . .〉〈. . . n′−1 0 n′1 . . . |

+

(
2

γ
(1− n′1) +

γ/2 + iV
(
γ
2

)2
+ V 2

n′1

)
n′−1(1− n′1)| . . . n−1 0 n1 . . .〉〈. . . 0 0 1 . . . |

+

(
2

γ
(1− n′−1) +

γ/2 + iV
(
γ
2

)2
+ V 2

n′−1

)
n′1(1− n′−1)| . . . n−1 0 n1 . . .〉〈. . . 1 0 0 . . . |

}
= . . .

(B.4)

Noting that (1− nl)2 = (1− nl) and nl(1− nl) = 0, allows the refactoring to

. . . = −J2

{[
2

γ

(
n−1 + n1 + n′−1 + n′1 − 2n−1n1 − 2n′−1n

′
1

)

+ 2
γ/2− iV
(
γ
2

)2
+ V 2

n−1n1 + 2
γ/2 + iV
(
γ
2

)2
+ V 2

n′−1n
′
1

]
| . . . n−1 0 n1 . . .〉〈. . . n′−1 0 n′1 . . . |

+
2

γ
n−1(1− n1)| . . . 0 0 1 . . .〉〈. . . n′−1 0 n′1 . . . |+

2

γ
n1(1− n−1)| . . . 1 0 0 . . .〉〈. . . n′−1 0 n′1 . . . |

+
2

γ
n′−1(1− n′1)| . . . n−1 0 n1 . . .〉〈. . . 0 0 1 . . . |+ 2

γ
n′1(1− n′−1)| . . . n−1 0 n1 . . .〉〈. . . 1 0 0 . . . |

}

(B.5)

Finally, we can use that nl is the eigenvalue of the local density operators n̂l as well as that
ĉ†l ĉl′|{n}〉 = (1−nl)nl′ |{n}〉. Replacing the eigenvalues with operators results in the following
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relation

. . . = −J2

{[
2

γ

(
n̂−1 + n̂1 − 2n̂−1n̂1 + ĉ†−1ĉ1 + ĉ†1ĉ−1

)

+ 2
γ/2− iV
(
γ
2

)2
+ V 2

n̂−1n̂1

]
| . . . n−1 0 n1 . . .〉〈. . . n′−1 0 n′1 . . . |

+ | . . . n−1 0 n1 . . .〉〈. . . n′−1 0 n′1 . . . |
[

2

γ

(
n̂−1 + n̂1 − 2n̂−1n̂1 + ĉ†−1ĉ1 + ĉ†1ĉ−1

)

+ 2
γ/2− iV
(
γ
2

)2
+ V 2

n̂−1n̂1

]}
. (B.6)

As this is the result for an arbitrary basis state of the dissipation-free subspace, it can be applied
to any linear combination ρ0 of these basis states. Therefore, we can describe the e�ective
dynamics in Λ0 by Eq. 7.10.
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