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Zusammenfassung 

Im Fokus dieser Arbeit liegen Strategien zur mechanistischen Untersuchung organischer 

Reaktionen mittels Elektrospray-Massenspektrometrie (ESI-MS). Die Ergebnisse zur 

massenspektrometrischen Erforschung einer organokatalytischen Aldolreaktion sowie 

einer oxidativen Kreuzkupplung von Tetrahydroisoquinolin-Derivaten (THIQs) werden 

präsentiert. 

Ein L-Prolin-basierter, ladungsmarkierter Organokatalysator wurde erfolgreich 

synthetisiert. Die positive Ladung ist an einem 1-Ethyl-pyridinium-4-phenoxy-

Substituenten lokalisiert, welcher an die 4-Position des Prolin-Gerüstes bindet. Diese 

Ladungsmarkierung erwirkt eine deutlich gesteigerte Empfindlichkeit gegenüber der 

ESI-MS, wodurch die Detektion sowohl des Katalysator-Moleküls selbst als auch aller 

Katalysator-basierten Spezies einer Reaktionslösung erleichtert werden kann. Mithilfe 

des markierten Organokatalysators gelang die massenspektrometrische Detektion 

zweier zuvor postulierter Reaktionsintermediate der direkten inversen Aldolreaktion 

zwischen Aldehyden und Diethylketomalonat. Ein Versuchsaufbau aus mehreren 

Mikroreaktoren und Spritzenpumpen ermöglichte die Untersuchung der reagierenden 

Lösung unmittelbar nach dem Mischen von Substraten und Katalysator. So konnte der 

zeitliche Verlauf der Reaktion detailliert und bereits ab einer Reaktionszeit von wenigen 

Sekunden verfolgt werden. 

Da die massenspektrometrischen Untersuchungen der genannten Intermediate mittels 

kollisionsinduzierter Fragmentierung keine sicheren Rückschlüsse auf deren genaue 

chemische Struktur zulassen, wurden die Ionen in einer weiteren Studie mittels Infrarot-

Multiphotonendissoziation (infrared multiple photon dissociation, IRMPD) 

charakterisiert und identifiziert. Die Intermediat-Ionen wurden am Freie-Elektronen-

Laser CLIO (Centre Laser Infrarouge d’Orsay) in einem Ionenfallen-

Massenspektrometer im Fokus der intensiven Laserstrahlung isoliert und aus deren 

wellenlängenabhängiger Fragmentierungseffizienz indirekte Infrarot-Spektren 

abgeleitet. Die Messungen wurden mit der Unterstützung und Expertise von P. Maître 

und V. Steinmetz durchgeführt. Zur Interpretation der IRMPD-Spektren wurden 

Dichtefunktional-theoretische Rechnungen der Schwingungsfrequenzen möglicher 

Intermediat-Strukturen herangezogen. Aufbauend auf im Zuge dieser Forschungsarbeit 



Zusammenfassung 

IV 

durchgeführten Optimierungen und Sondierungen der Startstrukturen wurden 

ausführliche Berechnungen durch Zusammenarbeit mit J. Vidic und T. Bredow erhalten. 

Die Ergebnisse legen nahe, dass es sich bei den massenspektrometrisch isolierten, 

intermediären Spezies um Oxazolidinon-Derivate handelt. 

Die mechanistische Untersuchung der CuCl2-katalysierten oxidativen Kreuzkupplung 

von THIQs mit Diethylzink mittels ESI-MS ist ein weiteres Forschungsprojekt dieser 

Arbeit. Das zentrale, positiv geladene Iminium-Intermediat dieser Reaktion wurde 

sowohl nach Umsetzung mit CuCl2 als auch nach elektrochemischer Oxidation 

nachgewiesen und mit ZnEt2 zum Kupplungsprodukt umgesetzt. Dies spricht gegen eine 

Beteiligung jeglicher Kupferspezies während des Kupplungsschrittes. Darüber hinaus 

wurde eine kurzlebige, intermediäre Aminium-Radikal-Spezies detektiert. Für die 

elektrochemische Oxidation kam eine kommerzielle Reaktorzelle zum Einsatz, welche 

auch bei der Aufnahme von spannungsabhängigen Ionenintensitätskurven zur 

massenspektrometrischen (EC-MS) Untersuchung verschiedener THIQ-Substrate 

genutzt wurde. Neben den EC-MS-Messungen wurden außerdem 

Cyclovoltammogramme der einzelnen THIQ-Derivate aufgezeichnet. Die begrenzte 

Substratbreite der Reaktion konnte dadurch auf das unzureichende Oxidationspotential 

von CuCl2 zurückgeführt werden. Die Experimente stellen ein gutes Beispiel für die 

Verknüpfung massenspektrometrischer und cyclovoltammetrischer Methoden mittels 

EC-MS als geeignete Alternative zu synthetischen Screening-Methoden dar. 
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Abstract 

This thesis focuses on strategies for the mechanistic investigation of organic reactions 

using electrospray mass spectrometry (ESI-MS). The results of mass spectrometric 

studies on an organocatalytic aldol reaction as well as an oxidative cross-coupling of 

tetrahydroisoquinoline derivatives (THIQs) are presented. 

An L-proline-based, charge-tagged organocatalyst was successfully synthesized. The 

positive charge is localized on a 1-ethyl-pyridinium-4-phenoxy substituent which binds 

to the 4-position of the proline scaffold. A significantly increased sensitivity towards 

ESI-MS is caused by this charge tag, facilitating the detection of both the catalyst 

molecule itself and any catalyst-derived species of a reacting solution. Using the 

labelled organocatalyst, the mass spectrometric detection of two previously postulated 

reaction intermediates of the direct inverse aldol reaction between aldehydes and diethyl 

ketomalonate was achieved. A setup consisting of several microreactors and syringe 

pumps enabled the investigation of the reacting solution immediately after mixing 

substrates and catalyst. This way, the temporal progression of the reaction could be 

tracked in detail starting from a reaction time of a few seconds. 

Since the mass spectrometric investigation of the above-mentioned intermediates by 

collision-induced fragmentation does not provide reliable indications on their exact 

chemical structure, the ions were characterized and identified by infrared multiple 

photon dissociation (IRMPD) in a further study. The intermediate ions were isolated in 

an ion trap mass spectrometer in the focus of the intense free-electron laser CLIO 

(Centre Laser Infrarouge d'Orsay) and indirect infrared spectra were derived from their 

wavelength-dependent fragmentation efficiency. The measurements were performed 

with the support and expertise of P. Maître and V. Steinmetz. The IRMPD spectra were 

interpreted with the aid of density functional theory calculations of vibrational 

frequencies of possible intermediate structures. Based on optimizations and a 

preselection of input structures, that were carried out in the course of this thesis, 

detailed calculations were obtained in collaboration with J. Vidic and T. Bredow. The 

results suggest that the mass spectrometrically isolated intermediate species exhibit an 

oxazolidinone structure. 
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Another research project of this thesis is the mechanistic investigation of the CuCl2-

catalyzed oxidative cross-coupling of THIQs with diethylzinc by ESI-MS. A positively 

charged iminium species, the key intermediate of this reaction, was detected both after 

conversion with CuCl2 and after electrochemical oxidation and subsequently converted 

to the coupling product by addition of ZnEt2. These findings are not consistent with the 

involvement of any copper species during the coupling step. Furthermore, a short-lived 

intermediary aminium radical species was detected. A commercial reactor cell was used 

for the electrochemical oxidation and also for the acquisition of voltage-dependent ion 

intensity curves for mass spectrometric (EC-MS) investigation of various 

THIQ substrates. In addition to EC-MS measurements, cyclovoltammograms of the 

different THIQ derivatives were recorded. The limited substrate scope of the reaction 

could be attributed to the insufficient oxidation potential of CuCl2. The experiments are 

a good example for the combination of mass spectrometric and cyclovoltammetric 

methods using EC-MS as a suitable alternative to synthetic screening methods. 
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1 Fundamentals 

 

1.1 Electrospray ionization mass spectrometry 

Electrospray ionization (ESI) has become one of the most frequently employed 

ionization techniques in the field of mass spectrometry. This technology involves the 

application of high voltage to a liquid sample at ambient pressure, thereby producing 

charged droplets which can be channeled into the high vacuum of a mass spectrometer. 

The principle has been developed in the course of several years and it needed the work 

of numerous scientists before its enormous potential could be exploited.[5,6] The 

development was fundamentally encouraged by the research of Dole[7] and Fenn,[8–11] 

the latter was honored by a Nobel Prize in 2002.[12] 

 

 
 

Figure 1.1 – Microphotograph of a typical meniscus shape and jet disintegration during the electrospray event in 
steady cone-jet mode for most sufficient ion production. (Reproduced in part from Ref [13] with permission. © 2007 

American Chemical Society.) 

 

ESI enables a direct transfer of analyte solutions into a mass spectrometer under 

comparatively soft conditions. It is suitable for the analysis of a variety of compound 

classes in an extremely broad range of molecular weight. Monoatomic ions, small polar 

molecules, soluble inorganic compounds and also polymers and proteins can be 
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analyzed via ESI-MS. Furthermore, either positively charged analytes or negative ions 

can be transferred into the gas phase, depending on the type of voltage applied.[5,6] 

Depending on the chemical structure of electrosprayed compounds, the ESI process 

often yields intact ions (e.g. M+, M2+, X–, [M–H]–) or ionic adducts (e.g. [M+H]+, 

[M+Na]+, [M+Cl]–), which can be singly or multiply charged. 

Since reacting solutions containing all components of a chemical reaction can be 

directly ionized, ESI is perfectly suited to support mass spectrometric investigations of 

reaction mechanisms.[14]  

 

 
 

Figure 1.2 – Setup of an early ESI interface by Fenn et al.[11] (Reproduced from Ref [5] with permission. © Springer 
International Publishing AG 2017.) 

 

A schematic setup of a typical ESI interface is shown in Figure 1.2. It consists of a thin 

conductive spray capillary and a cylindrical counter electrode. Under ambient pressure 

an electric field of 3 – 6 kV is applied between capillary and counter electrode. The 

analyte solution is passed through and gets exposed to the high voltage at the tip of the 

conductive capillary. The resulting electrospray is nebulized by one or more heated inert 

gas streams and a small part of the material reaches, driven by the electric field, the inlet 

of a transfer capillary. This capillary leads into the first pumping stage were the gas 

expands due to the reduced pressure. A small portion subsequently passes the nozzle of 

a cone-shaped electrode, the skimmer, and enters the high vacuum. Thereupon, the 

resulting ions are focused into the mass analyzing unit by multipoles and ion 

optics.[5,11,15] This continuous analyte flow from ambient pressure into high vacuum 

requires high-performance differential pumping.[5] Modern ESI interfaces often differ 

from this early setup but are still based on the same assembly. 
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The mechanism of ion formation during the ESI process can be summarized as follows: 

The application of high voltage to the infused analyte solution generates an electrically 

charged spray, whose droplets gradually decompose during a repeated disintegration of 

charged micro-droplets until completely desolvated ions are emitted. This course of 

events takes place within less than one millisecond.[5] 

 

 
 

Figure 1.3 – Schematic of the ESI process; magnification of the formation of liquid droplets out of the Taylor cone is 
framed.[16] (Reproduced from Ref [5] with permission. © Springer International Publishing AG 2017.) 

 

The phenomenon of releasing desolvated ions starts with the formation of a so called 

Taylor cone[17] at the end of the spray capillary (Figure 1.3). Even traces of an 

electrolyte in the leaking analyte solution cause sufficient conductivity resulting in a 

charge separation between surface and inner part of the meniscus due to the electric 

field. At a critical field strength, the meniscus changes into a cone shape. As the field 

strength increases, the surface tension is overcompensated by electrostatic forces, 

whereupon a fine beam of highly charged droplets is emitted in the direction of the 

counter electrode (Figure 1.1). Solvent molecules evaporate from these droplets, which 

is accelerated by above mentioned heated inert gas streams. As a result, the charge 

density at the droplet surface increases continuously until the so called Coulomb 

instability is reached, which is given by the Rayleigh equation:[6,18,19] 
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QRy = 8π(ε0γR3)1/2 

 

QRy is the excess charge on a droplet with a spherical radius R, surface tension γ and an 

electric permittivity ε0. At Q ≥ QRy tiny microdroplets, the offspring droplets, are 

released from the parent droplet. After this "uneven fission" the offspring droplets carry 

off about 1–2 % of the mass, but 10–18 % of the charge of their precursor drop.[20] 

The mechanism of the final step, formation of isolated gas-phase ions out of these 

microdroplets, has been described by two different models. According to the "charged 

residue" model[7] complete desolvation of the ions takes place by successive loss of all 

solvent molecules from tiny droplets at the end of a fission cascade. The "ion 

evaporation" model[21] describes a direct evaporation of single ions from the 

microdroplet surface. Affirmations to both theories have been found. The charged 

residue process rather applies to large molecules and ion evaporation is more likely to 

occur when small molecules are involved.[22]  

How effectively a given analyte can be transferred into the gas phase via ESI depends 

on numerous instrumental and chemical parameters.[23] A fundamental requirement is a 

stable electrospray, which is only produced if the formed Taylor cone keeps a 

continuous shape.[24] In this context, the applied capillary voltage and the flow rates of 

both analyte solution and nebulizing gas are decisive.[25] It is not surprising that the ESI 

response is also influenced by structural properties of the analyte itself and its 

concentration in the electrosprayed solution.[23] Neutral analytes need to react with ions 

by adduct formation or undergo electrochemical transformations into detectable species, 

while ionic substances are directly caught by the applied voltage. The surface activity of 

a substance is very decisive in this context. The higher the concentration of analyte 

molecules on the droplet surface, the higher is their concentration in the fissioning 

microdroplets and the more efficient is the release of individual ions.[23] For enhanced 

detection, functional groups that form ionic adducts more easily, can be incorporated in 

substances of interest.[26] Nonpolar residues increase the concentration on the droplet 

surface.[27] Another very effective strategy to increase the ESI response of a given 

analyte is charge-tagging. This method implies the introduction of charged substituents, 

charge tags, into the target compounds and has been successfully applied in the studies 

presented in Chapters 2 and 3.[28–31]   
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1.2 Infrared multiple photon dissociation spectroscopy of trapped 

ions 

Trapped gaseous ions can be heated and forced to dissociate upon the absorption of 

multiple photons.[32] This infrared multiple photon dissociation (IRMPD) can be utilized 

to provide structural information on charged molecules by interpretation of their 

fragmentation mass spectra.[33–36]  

While the low density of a trapped ion cloud impedes ordinary IR spectroscopy, 

IRMPD-MS can be used to derive vibrational spectra from the photon-induced 

fragmentation yield plotted against the respective photon energy. To this end, an intense 

laser beam is focused in the ion trap of a tandem mass spectrometer, e.g. a Fourier 

transform ion cyclotron resonance (FT-ICR)[37] or a quadrupole ion trap (QIT)[38] mass 

spectrometer. Commonly a highly intense and tunable laser beam from a free electron 

laser (FEL)[39–41] is used. During the experiment ions of interest are isolated by mass 

selection and stored in the ion trap of the mass spectrometer. The ion cloud is 

incrementally irradiated with light of a set laser wavelength while MS spectra are 

continuously recorded in order to follow the resulting, wavelength-dependent 

fragmentation. This procedure is carried out stepwise over wavelength values in the 

IR-range. Data processing is done by plotting the IRMPD efficiency, i.e. the 

fragmentation yield, against the respective laser wavelength (cf. Chapter 3). 

 

 
 

Figure 1.4 – Schematic representation of the IRMPD mechanism (Adopted from Ref. [36]) 
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The non-coherent IRMPD process can be described as slow heating. Energy gets 

pumped into the polyatomic ion by intermolecular vibrational redistribution (IVR).[42] 

The successive absorption of numerous photons only occurs at infrared active 

vibrational modes of the ion. Statistical redistribution of the photon energy over all 

vibrational degrees of freedom leads to a relaxation of the resonant vibrational mode, 

which allows various consecutive excitations. This process repeats until the dissociation 

threshold is exceeded and fragmentation occurs.[33–36]  

Usually experimental data is interpreted by careful comparison with computed IR 

spectra obtained by theoretical chemistry calculations. Computations at the density-

functional theory (DFT) level are used in most cases and the best agreement of 

experimental and theoretical spectra is observed when lowest energy structures are 

considered.[34,35] Due to the harmonic approximation in most calculations of infrared 

absorption spectra, the resulting frequencies are generally blue-shifted compared to the 

experimental ones. Calculative inaccuracies can be mitigated by scaling the theoretical 

harmonic spectra with corrective factors.[43,44] 

 

 

1.3 Electrochemistry/Mass spectrometry 

The combination of electrochemical techniques with mass spectrometric analyses 

(EC-MS) is an excellent approach for the examination of redox processes.[45–47] It 

allows the investigation of transient species shortly after their electrochemical 

formation. The basic principle has been known for almost half a century and at least 

since the first reports[48,49] on the coupling of electrochemistry with ESI-MS the number 

and diversity of publications and instrumentations in that promising field have grown 

continually. The opportunity to combine the technique with liquid chromatography is an 

additional advantage. Hitherto, the research activities predominantly focus on the 

mimicry of potential drug metabolisms.[45–47] 

The experimental setups used for EC-MS investigations of redoxactive species often 

consist of commercially available EC-flow-through cells containing a three electrode 

arrangement.[50] But also in-source electrochemical manipulation by functional 

electrospray emitters is an established strategy.[51] Figure 1.5 shows a schematic draw of 

an amphoteric thin-layer cell, a cell-type which was also used for the EC-MS study 
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presented in Chapter 4. The flow cell consists of a working electrode, an auxiliary 

electrode and a reference electrode.  

 

 
 

Figure 1.5 – Schematic drawing of an amphoteric thin-layer cell based on Ref. [50]. 

 

Voltage is applied between working and auxiliary electrode, also described as counter 

electrode, while analyte solutions are passed over the working electrode. Oxidative or 

reductive processes cause a current flow between the two electrodes. The reference 

electrode determines the cell potential for readjustment, since it is affected by the 

current flow and polarization effects.[46,50] For sufficient electrochemical conversion, 

this thin-layer cell arrangement requires comparatively low analyte flow rates in the 

range of ~500 µL/h, which is a detriment in some cases. However, the possibility of the 

implementation of different working electrode materials, such as platinum or glassy 

carbon, increases the range of applications.[50] 

With electrochemical flow-through cells redox processes can be traced very 

descriptively by recording voltage dependent mass spectra, sometimes referred to as 

mass voltammograms.[52–54] The analyte solution is continuously passed through the EC 

cell while varying the applied voltage. Simultaneously a serious of mass spectra is 

recorded to follow changes in the signal intensities of the species of interest. The 

applied voltage is plotted against the detected ion intensity to feature the conversion as a 

function of the cell potential (cf. Figure 4.2 B)). 
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Preamble of Part II 

Organocatalysis can be defined as the acceleration of chemical reactions by the addition 

of substoichiometric amounts of metal-free, organic compounds.[55] Although the 

concept of using purely organic molecules for catalytic purposes had been known more 

than a century, its breakthrough occurred only two decades ago.[56] Since then, 

enantioselective organocatalytic reactions have become fully established in the field of 

asymmetric catalysis. In this respect, organocatalysis can now be regarded as a 

complementary field to metal- as well as enzyme-catalytic reaction types.[55,57] The 

range of reported stereoselective organocatalytic reactions has grown considerably and 

various organocatalysts have been designed in order to achieve higher selectivity and 

increased yields.[58] Concerning the reaction mechanisms, the diversity of 

organocatalytic reactions is based on different activation modes, such as enamine, 

iminium or SOMO activation.[56] L-proline could be referred to as the "organocatalyst of 

the first hour".[59–61] As the only natural amino acid with a secondary amine residue, this 

inexpensive compound exhibits a higher pKa value as well as increased nucleophilicity 

compared to primary amino acids.[55] L-proline reacts more rapidly than other amines 

with carbonyl compounds to form iminium ions and enamines.[62] 

In 2006, Marquez and Metzger presented their results on the ESI-MS analysis of 

proline-catalyzed aldol reactions using microreactors.[63] By investigating the reactions 

of acetone with different benzaldehydes they succeeded in detecting all intermediates of 

the still mostly accepted catalytic cycle for enamine catalysis.[64,65] Without any 

manipulation of their ESI response, some of these intermediary species were detected in 

excellent abundances. One weakness of a mere electrospraying of unmodified reactants 

from a given reaction can be the complexity of the resulting MS spectrum 

(cf. Figure 2.5 a)). Interpretation of the MS data may therefore require singling out 

specific mass-to-charge ratios (m/z) of postulated intermediates while unforeseen 

reaction paths are concealed by the chemical noise. 

One research project of the group of PD Dr. Marianne Engeser is the circumvention of 

this problem by synthetically charge-tagging proline-based organocatalysts for ESI-MS 

studies.[4,66–70] The compounds all carry a 1-ethyl-pyridinium-4-phenoxy substituent, 
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which introduces a stabilized charge into the catalyst molecule. As a result, both the 

proline derivatives themselves as well as adducts and intermediates formed during a 

catalytic cycle exhibit an extremely increased ESI response factor. 

In the diploma thesis preceding this doctoral thesis, first results have already been 

achieved in the course of an ESI-MS investigation of the inverse aldol reaction between 

different aldehydes and diethyl ketomalonate using a charge-tagged proline catalyst. 

Intermediary species of the reaction were detected in excellent intensities.[71] The 

subsequent research activities aimed to improve the synthetic route to the catalyst 

molecule and the synthesis of sufficient quantities thereof. Great efforts were also spent 

to conduct a gapless ESI-MS monitoring of the progress of the aldol reaction. The 

results are presented in Chapter 2. 

Since collision induced fragmentation experiments did not provide a definite structural 

identification of the mentioned intermediates, the ions were examined in an IRMPD 

study. After data processing by determining the fragmentation efficiencies of every 

single IRMPD-MS spectrum, a thorough comparison with theoretical frequencies of 

DFT calculations of putative intermediate structures had to be carried out. The results 

are shown in Chapter 3. 
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2.1 Abstract 

A new 4-hydroxy-L-proline derivative with a charged 1-ethyl-pyridinium-4-phenoxy 

substituent has been synthesized with the aim of facilitating mechanistic studies of 

proline catalyzed reactions by Electrospray ionization (ESI) mass spectrometry. The 

charged residue ensures a strongly enhanced ESI response compared to neutral 

unmodified proline. The connection by a rigid linker fixes the position of the charge tag 

far away from the catalytic centre in order to avoid unwanted interactions. The use of a 

charged catalyst leads to significantly enhanced ESI signal abundances for every 

catalyst-derived species which are the ones of highest interest present in a reacting 

solution. The new charged proline catalyst has been tested in the direct asymmetric 

inverse aldol reaction between aldehydes and diethyl ketomalonate. Two intermediates 

in accordance with the List-Houk-mechanism for enamine catalysis have been detected 

and characterized by gas-phase fragmentation. In addition, their temporal evolution has 

been followed using a microreactor continuous-flow technique.  

 

 
 

Figure 2.1 – Graphical Abstract of: J. A. Willms, R. Beel, M. L. Schmidt, C. Mundt, M. Engeser, Beilstein J. Org. 
Chem. 2014, 10, 2027–2037 (Ref. [1]). 
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2.2 Introduction 

Electrospray ionization (ESI) mass spectrometry[72] has not only developed into a 

standard characterization method for an extremely broad variety of substances[6], but 

has also been recognized as a valuable tool for studying reaction mechanisms by 

transferring species of a reacting solution directly into the gas phase of a mass 

spectrometer[14,28,73–75]. The technique allows glimpses into the reacting solution as a 

function of time[29] and beyond that a characterization of transient intermediates by 

tandem mass-spectrometry. ESI mass-spectrometric mechanistic studies have been 

reported for a broad range of reaction types ranging from transition-metal catalyzed 

polymerization[73,30] and coupling reactions[29,76–83] to purely organic Diels-Alder 

reactions[84,85] to cite only a few representative examples. 

However, the detection of transient reactive species is often hindered by their very low 

concentration. A reacting solution of a catalytic transformation typically contains quite 

a number of different species. Side products, off-cycle resting states, reagent 

degradation products and impurities of various origins may be present in much higher 

concentration than the interesting reactive intermediates. Thus, ESI spectra of reacting 

solutions can be frustratingly complicated and the transient species of interest might be 

superposed with a large number of more intense background signals.[63] In 

quantification using ESI, the detection limit has been lowered significantly by selected 

ion monitoring in MS/MS mode.[6] Similarly, transient reactive species have been 

successfully extracted from the chemical noise by collision induced dissociation (CID) 

MS/MS.[63] However, it is not possible to identify unknown or unexpected species by 

this strategy. 

As a major drawback of ESI mass spectrometry in general, the signal intensity does not 

directly parallel the concentration, but the so called ESI response, i.e. the ionization 

probability during the ESI-process.[6,23] Hence it happens that the reaction intermediates 

of interest are concealed by easily ionizable other compounds present in the reacting 

solution. A convenient approach to solve this problem is the use of covalently attached 

charge-tags.[29–31,73,78,86] Charge-tagging the catalyst selectively enhances the signal 

abundances of all catalyst-derived species in a reacting solution and thus facilitates the 

identification of low-concentrated transient catalytic species. As a complementary 
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approach, charge-tagged substrates have been used to easily identify (“fish for”) 

efficient catalysts.[73,30]  

Since the year 2000, enantioselective catalysis based on small organic metal-free 

molecules has become an enormously growing research topic.[55,56,87–91] A large variety 

of organocatalyzed reactions with high efficiency and selectivity are nowadays known 

so that organocatalysis complements current catalytic fields such as organometallic or 

enzymatic catalysis as an independent subdomain.[55,87–91] Parallel to the enormous 

growth of organocatalytic applications in synthesis, mechanistic studies on 

organocatalytic reactions[64,65,92–97] using ESI mass spectrometry[63,98–108] have been 

reported. The pioneering studies of List and Barbas[61] revealed that the amino acid 

L-proline is an effective catalyst for a great variety of organic reactions, such as the 

direct asymmetric aldol reaction, one of the most important C-C bond-forming reactions 

in organic synthesis.[109] The currently accepted mechanism suggests a central enamine 

intermediate which forms a Zimmerman-Traxler-like transition state with the acceptor 

substrate.[64,65] The activity and enantioselectivity achieved by proline in many cases is 

thought to be due to a templating effect of the OH group directing the aldehyde in a 

preferred position via hydrogen bonding.[87,88] It is still controversial whether 

oxazolidinone formation plays a pivotal role in the catalytic cycle or just serves as an 

rate limiting parasitic off-cycle equilibrium.[92,94,96,110] 

 

 
 

Figure 2.2 – The new charge-tagged proline-derived catalyst 1. 

 

Thus, we aimed to synthesize a charge-tagged L-proline-based organocatalyst for 

mechanistic studies by ESI-MS. Few proline derivatives carrying a covalently fixed 

charge have been reported by now.[102,111] They consist of an imidazolium salt attached 

to hydroxyproline via an ester group at the end of a flexible alkyl spacer. Interestingly, 

such charge tags can cause an enhancement of the catalytic performance through 

electrosteric activation,[111] but backfolding can also alter and disturb the catalytic 

process and induce the formation of side products.[102] In order to fix the charge far 
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away from the catalytic center and thus leave the original catalytic activity of L-proline 

preferably undisturbed, we chose a stiff 1-ethyl-pyridinium unit as charge-carrier 

separated from the catalytic center by a rigid phenyl linker (Figure 2.2).  

 

 
 

Scheme 2.1 – Inverse aldol reaction with aldehyde donors according to Jørgensen.[112] We studied the reaction for 
R = Ph (labelled a throughout this manuscript) and for R = Et (b). 

 

We then tested the applicability of 1 for ESI-MS mechanistic studies on the first 

“inverse” crossed aldol reaction (Scheme 2.1) published in 2002 by Jørgensen and 

coworkers[112] in which the aldehyde acts as the donor in contrast to the “normal” 

crossed aldol mechanism. It represents an interesting version of a typical proline-

catalyzed reaction for which to the best of our knowledge mechanistic studies have not 

been reported so far. 

 

 

2.3 Results and discussion 

2.3.1 Synthesis 

Formation of the charge-carrying unit was accomplished starting from commercially 

available 4-bromophenol using a strategy reported by Diemer et al.[113] Protection of the 

hydroxy-group to yield 3[114] was followed by Suzuki cross-coupling with commercial 

pyridine-4-boronic acid leading to 4. Subsequent deprotection led to 4-(pyridine-4-

yl)phenol 5 (Scheme 2.2).[113] 

The preparation of the charge-tagged catalyst 1 starting from doubly-protected hydroxy-

proline 6[115] is depicted in Scheme 2.3.  
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Scheme 2.2 – Synthesis of 4-(pyridin-4-yl)phenol 5. 

 

To introduce a suitable leaving group for the following step of the synthesis, 6 was 

mesylated to give the derivative 7[116] for which crystals suitable for X-ray analysis have 

been obtained (Figure 2.3).  

 

 
 

Scheme 2.3 – Synthesis of the charge-tagged proline catalyst 1. 
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Figure 2.3 – Molecular structure of 7 in the solid state. 

 

A SN2 reaction with 5[113] led to 8. We abandoned our initial shorter synthetic route 

based on a Mitsunobu reaction leading from 6 directly to the trans-substituted 

diastereomer of 8 due to severe purification difficulties. 8 could be charge-tagged to 9 

using ethyl bromide. Finally, the free catalyst 1 was obtained by acidic deprotection.[117]  

 

2.3.2 Mechanism of the Jørgensen inversed aldol reaction 

According to the mechanistic model for enamine catalysis from List and Houk,[64,65,97] 

the aldol reaction from Jørgensen should proceed via the catalytic cycle shown in 

Scheme 2.4. 

We began our experiments with a test whether the charge tag does not disturb the 

catalysis. Indeed, 1 can achieve the formation of aldol products 2a and 2b, respectively, 

under the reaction conditions given in the literature.[112] Performed in simultaneous 

parallel reaction batches, 1 provides just about the same yields as unmodified proline 

and byproducts were not observed. Further, it is important to note that the substrates do 

not show any reaction when no catalyst, be it charge-tagged or not, is present in the 

solution. 
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Scheme 2.4 – Proposed catalytic cycle[64,65] for the aldol reaction with aldehyde donors[112]; CT = charge tag, 
a: R = Ph, b: R = Et. 

 

The easiest way of ESI reaction monitoring - mixing the reagents and measuring ESI 

spectra after various time intervals - is restricted to reaction times longer than 

approximately one minute and therefore not appropriate for fast conversions like aldol 

reactions. We thus decided to use a more complicated experimental setup of two mixing 

tees connected on-line to the mass spectrometer (Figure 2.4) to detect individual 

intermediates of both reactions by ESI-MS.  
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Figure 2.4 – Experimental setup for continuous-flow ESI-MS experiments using two mixing tee microreactors 
directly coupled to the ESI needle. 

 

These so-called continuous-flow experiments[63,74] allow the sampling of reaction times 

down to seconds. Solutions of the reagents are mixed in the first microreactor and 

diluted to concentrations suitable for ESI-MS in the second microreactor. The reaction 

time between the mixing event and the electrospray is determined by the flow rates and 

capillary lengths. Mass spectra of a solution of diethyl ketomalonate, butyraldehyde and 

unmodified L-proline or 1, respectively, are depicted in Figure 2.4. 

The mass spectra shown in Figure 2.5 do not exhibit abundant signals for the reactants, 

even though these are present in the solution in excess to all other species, a fact that is 

due to the poor ESI response of ketoesters and even more so of aldehydes. In the case of 

the proline-catalyzed solution (Figure 2.5a), the catalyst is not visible either, because of 

an instrumental discrimination of low masses unfortunately unavoidable with our 

instrument. Instead, two expected intermediates of the catalytic cycle indeed are 

observed in reasonable abundances (Figure 2.5a): The signal at m/z 170.12 corresponds 

to [IIbuntagged+H]+ and the one at m/z 344.17 is assigned to [IIIbuntagged+H]+. In contrast, 

signals for the remaining two intermediates Ibuntagged and IVbuntagged have not been 
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found, which probably is due to their very low concentration in the reaction equilibria as 

well as to their facile fragmentation during ESI. Note that the group of Metzger has 

successfully achieved the detection of a similar intermediate for the aldol reaction 

between acetone and selected benzaldehydes using rather unusual and presumably 

extremely soft ESI conditions, and their results indeed confirm its facile 

fragmentation.[63]  

 

 

 
 

Figure 2.5 – ESI mass spectra of acetonitrile solutions of diethyl ketomalonate and butyraldehyde (a) with 
unmodified L-proline (b) or with the charge-tagged catalyst 1 recorded with the continuous-flow setup shown in 

Figure 2.4.  
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Interestingly, the signal at m/z 290.12 can be assigned to a further transient species of 

the reaction – it corresponds to a protonated adduct of proline with 

diethyl ketomalonate. This adduct might simply be a non-covalently bound aggregate, 

i.e. a typical ESI phenomenon,[6] but with regard of the rather low concentrations used 

here and of the observation of the analogous species in the proton-free charge-tagged 

case (see below), we prefer its assignment to a hemiaminal species formed in analogy to 

intermediate I by interaction of the proline nitrogen with the keto group of the 

ketomalonate (structure depicted in Figure 2.5a). In this special case, elimination of 

water is not possible due to the lack of adjacent hydrogen atoms. Its formation thus 

represents an off-cycle equilibrium dead-end in the course of the intended inverse aldol 

reaction. 

In light of the relatively high abundances observed for the reaction intermediates 

catalyzed by uncharged L-proline, the implementation of a charge tag might have been 

considered unneccessary. However, the effect of using the charge-tagged catalyst 1 is 

impressive (Figure 2.5b). The obvious reduction of spectral complexity and chemical 

noise due to the strongly enhanced ESI response of 1 and all its derivatives underlines 

the great benefits of the charge-tagging strategy. In addition to the catalyst 1 at 

m/z 313.16, the three transient species discussed above are found almost exclusively and 

in very high abundances, i.e. the enamine [IIb]+ at m/z 367.20, the iminium [IIIb]+ at 

m/z 541.26 and the side-product [1+ketomalonate]+ at m/z 487.21. Please note that the 

abundance of the latter varies significantly between different reaction runs, in contrast 

to the signals of the other intermediates whose appearances are highly reproducible. 

Very similar findings are observed when phenylacetaldehyde instead of butyraldehyde 

is used. In particular, intermediates [IIa]+ and [IIIa]+ have been detected in high 

abundances. Again, we unfortunately have not been successful in finding suitable 

electrospray conditions to detect the fragile intermediates [Ia]+/[Ib]+ and [IVa]+/[IVb]+. 

More importantly however, additional species that are not present in the unlabelled 

reference system have not been observed. There are no indications for an interference of 

the charge tag with the catalysis, in contrast to the findings with the flexible 

imidazolium-labelled proline derivatives reported previously.[102]  
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Figure 2.6 – ESI(+) CID MS/MS spectra of mass-selected intermediates a) [IIb]+, b) the butyl ester derivative 
[II*b]+, c) [IIIb]+.  
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not a proof for the presence of reactive enamines [IIa]+/[IIb]+ since the isomeric 

zwitterionic iminiums [II’a]+/[II’b]+ and oxazolidinones [II’’a]+/[II’’b]+ (Scheme 2.4) 

have the same elemental composition. Using one of the most important mass 

spectrometric means for structure elucidation, collision induced dissociation (CID) 

experiments have been performed. The results for R = Et are shown in Figure 2.6. 

All four mass-selected ions [IIa]+/[IIb]+ and [IIIa]+/[IIIb]+ show a very strong 
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also be rationalized for the oxazolidinone alternative II’’, whereas it requires an 

additional hydrogen shift from the enamine structure II. On the other hand, the 

comparison with the fragmentation of the structurally related ion [II*b]+ (Figure 2.6b)) 

is instructive. It doubtlessly possesses an enamine structure since it can neither form a 

zwitterionic iminium ion nor undergo lactonization to oxazolidinone II’’b because of its 

tert-butyl blocked carboxylic acid function. The fragmentation of [II*b]+ exclusively 

consists of a loss of [C5,H8,O] which should correspond to a concerted or very fast 

stepwise elimination of iso-butene and CO2 leading to the same product ion at 

m/z 323.21 than the expulsion of CO2 from m/z 367.20. Interpreting the iso-butene loss 

as a closed-shell McLafferty-type rearrangement leads to the postulation of a (very 

short-lived undetected) intermediate enamine [IIb]+ which then obviously is able to 

undergo a facile CO2 elimination. Thus, the fragmentation spectra unfortunately do not 

allow a clear discrimination of the three possible structures II, II’, and II’’. 

Marquez and Metzger mass-selected a signal corresponding to the protonated enamine 

from acetone and untagged L-proline and observed the elimination of CH2O2 (formic 

acid) instead of CO2 as main fragmentation during CID.[63] The protonation during the 

ESI process presumably occurs at the nitrogen atom which enables a direct 

1,2-elimination of formic acid. In our case, the respective charge-tagged species are 

detected in their original form without additional proton which explains the differing 

fragmentation route. 

To monitor the temporal evolution of intermediates during the aldol reaction with the 

continuous-flow setup, series of ESI spectra at different reaction time stages have been 

recorded by varying the flow rate of the analyte solutions or by changing the length of 

the capillary connecting both mixing tees. A resulting graph of the normalized relative 

intensities vs. calculated reaction time is provided in Figure 2.7.  
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Figure 2.7 –  Normalized relative intensities of ESI spectra recorded for the inverse aldol reaction of butyraldehyde, 
diethyl ketomalonate and charge-tagged catalyst 1 at different time stages using the continuous-flow setup with two 

microreactors shown in Figure 2.4. 
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indicating that IIIb is formed out of IIb which is consistent with the mechanism in 

Scheme 4. The gradual increase of the final aldol product 2b is visible as well; an 

enlargement of a factor of 100 has been used in the presentation of Figure 2.7 due to its 

much lower ESI response. Overall, these experiments reflect a very reasonable 

qualitative picture of the reaction behaviour and show that the use of catalyst 1 is 

suitable for the examination of L-proline catalyzed reactions via ESI-MS. However, we 

refrain from a quantitative kinetic modeling of the data to extract rate constants[29] 

because we encountered certain limitations of the method. Most importantly, we could 

not obtain an exact reproducibility of reaction times, probably because of quasi-

unavoidable variations in the actual (dead) volumes of the setup inter alia due to 

varying minor capillary blockings. Moreover, we face a slight increase of signal 

abundances with measuring time (not reaction time) because analytes gradually 

accumulate in the system the longer their solutions are passed through. The extent of 
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this effect depends on the height of the flow rate which necessarily has to be changed 

when observing a reaction process with the continuous-flow method. Nevertheless, we 

would like to emphasize that the quality of the experiments surely suffices to depict the 

“chronological trend” of the reaction process. 

 

 

2.4 Conclusion 

We present the synthesis of the charge-tagged L-proline derived catalyst 1 in which a 

rigid phenylpyridine linker fixes the charge tag far away from the catalytically active 

centre in order to avoid unwanted interactions. In a comparative continuous-flow 

electrospray mass spectrometric study, the new charged catalyst 1 and neutral L-proline 

have been used to investigate the proline-catalyzed inverse crossed aldol reaction of 

aldehydes with diethyl ketomalonate. Two key intermediates of the List-Houk 

mechanism for enamine catalysis in addition to a transient off-cycle species could be 

observed experimentally. The use of 1 further allows facile access to a qualitative 

picture of the temporal evolution of catalyst-containing intermediates. We plan to use 

the new proline catalyst with a non-interfering charge-label presented here as a tool to 

study the templating role of the hydroxyl group in L-proline-catalyzed reactions in the 

gas-phase in the near future. 

 

 

2.5 Experimental 

2.5.1 Synthesis  

Reactions under inert gas atmosphere were performed under argon using standard 

Schlenk techniques and oven-dried glassware prior to use. Thin layer chromatography 

was performed on aluminum TLC plates silica gel 60 F254 from Merck. Detection was 

carried out under UV light (254 and 366 nm). Products were purified by column 

chromatography on silica gel 60 (40 – 63 µm) from Merck. The 1H and 13C NMR 

spectra were recorded on a Bruker Avance 300 spectrometer, at 300.1 and 75.5 MHz, or 

a Bruker AM 400, at 400.1 MHz and 100.6 MHz, at 293 K respectively. The 1H NMR 
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chemical shifts are reported on the δ scale (ppm) relative to residual non-deuterated 

solvent as the internal standard. The 13C NMR chemical shifts are reported on the δ 

scale (ppm) relative to deuterated solvent as the internal standard. Signals were assigned 

on the basis of 1H, 13C, HMQC, and HMBC NMR experiments. Most solvents were 

dried, distilled, and stored under argon according to standard procedures. 4-

Bromophenol, 4-pyridinylboronic acid, trans-N-(tert-butoxycarbonyl)-4-hydroxy-L-

proline, L-proline, diethyl ketomalonate, phenylacetaldehyde and butyraldehyde were 

used as received from commercial sources. 

4-Bromophenol methoxy methyl ether (3):[114] p-Bromophenol (3.00 g, 17.2 mmol) 

was dried under reduced pressure and dissolved in dry THF (160 mL) under inert gas 

atmosphere. NaH (1.32 g, 52.0 mmol) was added and the mixture was stirred at r.t. for 

0.5 h. Methoxy methoxy chloride (2.08 mL, 26.0 mmol) was added dropwise and the 

resulting suspension was stirred for 19 h. The reaction was quenched by addition of a 

MeOH/H2O mixture (1:1, 150 mL) and the aqueous phase was extracted with CH2Cl2 

(4x 50 mL). The combined organic extracts were dried with MgSO4 and the solvents 

were removed in vacuo. The crude product was purified by column chromatography on 

silica gel using cyclohexane/ethyl acetate (10:1) as eluent (Rf = 0.61). Compound 3 was 

obtained as colorless oil (3.38 g, 90 %). The spectroscopic data confirm the reported 

ones.[114] 

4-[4-(Methoxymethoxy)phenyl]pyridine (4):[113] 4-Bromophenol methoxy methyl 

ether 3 (1.5 g, 6.9 mmol), 4-pyridinylboronic acid (1.02 g, 7.5 mmol), [1,1'-

bis(diphenylphosphino)ferrocene]-palladium(II)dichloride dichloromethane complex 

(0.22 g, 0.28 mmol) and Na2CO3 (8.78 g, 82.4 mmol) were suspended in  a H2O/1,2-

dimethoxyethane mixture (1:3, 75 mL), heated to 100  °C und stirred for 16 h. The 

resulting mixture was filtered and the filtrate was mixed with H2O (75 mL) and CH2Cl2 

(75 mL) for phase separation. The aqueous phase was extracted with CH2Cl2 (2x 75 

mL), the combined organic extracts were dried with MgSO4 and the solvents were 

removed in vacuo. The crude product was purified by column chromatography on silica 

gel using ethyl acetate with 5 % triethylamine as eluent (Rf = 0.50). Compound 4 was 

obtained as white solid (1.31 g, 88 %). The spectroscopic data confirm the reported 

ones.[113] 
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4-(Pyridine-4’-yl)phenol (5)[113] and (2S,4R)-tert-Butyl-N-tert-butyloxycarbonyl-4-

hydroxyprolinate (6)[115] were prepared according to literature protocols. 

(2S,4R)-tert-Butyl-N-tert-butoxycarbonyl-4-oxymethanesulfonylprolinate (7) was 

prepared according to a known procedure[116] which was slightly modified: (2S, 4R)-

tert-butyl-N-tert-butyloxycarbonyl-4-hydroxyprolinate 6 (3.14 g, 10.9 mmol) was 

dissolved in CH2Cl2 (55 mL) and cooled to 0 °C. Triethylamine (3.01 mL, 21.5 mmol) 

was added and the mixture was stirred for 0.5 h. Methanesulfonyl chloride (1.33 mL, 

17.1 mmol) was added dropwise over 10 min and the resulting solution was stirred 

overnight without further cooling. The reaction was quenched by addition of a saturated 

solution of NaHCO3 (70 mL) and the aqueous phase was extracted with CH2Cl2 (2x 50 

mL). The combined organic extracts were dried with MgSO4 and the solvents were 

removed in vacuo. The crude product was purified by column chromatography on silica 

gel using cyclohexane/ethyl acetate (2:3) as eluent (Rf = 0.61). Compound 7 was 

obtained as colorless solid (3.55 g, 89 %). Crystals suitable for X-ray analysis have been 

obtained by slow diffusion of cyclohexane into a Et2O solution of 7. 1H-NMR (400 

MHz, CD3OD): δ 5.26 (s, 1H, CH2CHCH2), 4.30-4.23 (m, 1H, CH2CHN), 3.83-3.76 

(m, 1H, NCH2CH), 3.70-3.63 (m, 1H, NCH2CH), 3.14 (s, 3H, S-CH3), 2.67-2.56 (m, 

1H, CHCH2CH), 2.28-2.19 (m, 1H, CHCH2CH), 1.50-1.44 (m, 18H, C(CH3)3) ppm; 
1H-NMR (400 MHz, CD3OD, 333 K): δ 5.26 (s, 1H, CH2CHCH2), 4.30-4.26 (m, 1H, 

CH2CHN), 3.83-3.74 (m, 1H, NCH2CH), 3.72-3.63 (m, 1H, NCH2CH), 3.12 (s, 3H, S-

CH3), 2.67-2.54 (m, 1H, CHCH2CH), 2.30-2.20 (m, 1H, CHCH2CH), 1.48 (s, 9H, 

C(CH3)3), 1.46 (s, 9H, C(CH3)3) ppm; 13C-NMR (100 MHz, CD3OD): δ 173.0/172.9 

(C═O), 155.6 (C═O), 83.1 (C(CH3)3), 82.1/81.9 (C(CH3)3), 80.6/79.9 (CH2CHCH2), 

59.5/59.4 (CH2CHN), 54.1/53.7 (NCH2CH), 38.3 (S-CH3), 37.3 (CHCH2CH), 28.6 

(C(CH3)3), 28.3/28.2 (C(CH3)3) ppm; 13C-NMR (125 MHz, CD3OD, 333 K): δ 172.9 

(C═O), 155.6 (C═O), 83.1 (C(CH3)3), 82.1 (C(CH3)3), 80.5/79.8 (CH2CHCH2), 59.5 

(CH2CHN), 53.9/53.5 (NCH2CH), 38.5 (S-CH3), 38.3/37.3 (CHCH2CH), 28.7 

(C(CH3)3), 28.3 (C(CH3)3) ppm; HRMS-ESI (m/z): [M+Na]+ calcd for 

[C15H27NNaO7S]+, 388.1406; found, 388.1398. The NMR data are consistent with the 

reported ones measured in CDCl3.[116,118] 

(2S,4S)-tert-Butyl-N-tert-butoxycarbonyl-4-(4-(pyridine-4-yl)phenoxy)prolinate (8): 

4-(Pyridine-4’-yl)phenol 5 (0.63 g, 3.7 mmol) and NaH (0.14 g, 5.5 mmol) were 

dissolved in dry DMSO (100 mL) under inert gas atmosphere. The suspension was 



2 A new charge-tagged proline-based organocatalyst for mechanistic ESI-MS studies 

34 

heated to 60 °C and stirred for 1.5 h. (2S,4R)-tert-Butyl-N-tert-butoxycarbonyl-4-

oxymethanesulfonylprolinate 7 (1.33 g, 3.7 mmol) was added and the mixture was 

stirred for 5 d at 60 °C. The reaction progress was controlled by thin layer 

chromatography. The reaction was quenched by addition of H2O (100 mL) and the 

aqueous phase was extracted with CH2Cl2 (2x 80 mL) and with Et2O (2x 80 mL). The 

combined organic extracts were dried with Na2SO4 and the solvents were removed in 

vacuo. Remaining DMSO was removed by distillation. The crude product was purified 

by column chromatography on silica gel using cyclohexane/ethyl acetate (1:3) with 5 % 

triethylamine as eluent (Rf = 0.50). Compound 8 was obtained as colorless solid (1.14 g, 

71 %). 1H-NMR (300 MHz, CD3OD): δ  8.55-8.45 (m, 2H, Ho-py), 7.72 (d, 2H, Hm-ph, 3J 

= 8.8 Hz), 7.67 (d, 2H, Hm-py, 3J = 6.1 Hz), 7.06/7.00 (d, 2H, Ho-ph, 3J = 8.8 Hz), 5.06 (s, 

1H, CH2CHCH2), 4.41-4.26 (m, 1H, CH2CHN), 3.86-3.72 (m, 1H, NCH2CH), 3.72-

3.57 (m, 1H, NCH2CH), 2.67-2.49 (m, 1H, CHCH2CH), 2.47-2.37 (m, 1H, CHCH2CH), 

1.51-1.40 (m, 18H, C(CH3)3) ppm; 13C-NMR (75 MHz, CD3OD): δ 172.5/172.5 (C═O), 

159.7/159.5 (C═O), 156.0 (Cph−O), 150.4 (Co-py−H), 150.1 (Cp-py−C), 131.7/131.4 (Cp-

ph−C), 129.6/129.4 (Cm-ph−H), 122.5 (Cm-py−H), 117.3/117.2/117.2 (Co-ph−H), 

82.9/82.7/82.6 (C(CH3)3), 81.9/81.6 (C(CH3)3), 77.2/76.2 (CH2CHCH2), 60.1/59.8 

(CH2CHN), 53.6/53.2 (NCH2CH),  37.1/36.4 (CHCH2CH), 28.7/28.6 (C(CH3)3), 28.4 

(C(CH3)3) ppm; HRMS-ESI (m/z): [M+H]+ calcd for [C25H33N2O5]+, 441.2389; found, 

441.2390. 

4-(4-((3S,5S)-1,5-Bis(tert-butoxycarbonyl)pyrrolidine-3-yloxy)phenyl)-1-ethyl-

pyridiniumbromide (9): (2S,4S)-tert-Butyl-N-tert-butoxycarbonyl-4-(4-(pyridine-4-

yl)phenoxy)prolinate 8 (0.22 g, 0.5 mmol) was dissolved in bromoethane (13.0 mL, 

174.2 mmol), heated to 43 °C and stirred for 5 d. Bromoethane was removed in vacuo. 

Compound 9 was obtained as yellowish-brown solid (0.26 g, 95 %). 1H-NMR 

(400 MHz, CD3OD): δ  8.89 (d, 2H, Ho-py, 3J = 6.8 Hz), 8.35 (d, 2H, Hm-py, 3J = 6.8 Hz), 

8.08/7.99 (m, 2H, Hm-ph), 7.18/7.11 (d, 2H, Ho-ph, 3J = 8.9 Hz), 5.19-5.13 (m, 1H, 

CH2CHCH2), 4.63 (q, 2H, CH2CH3, 3J = 7.4 Hz),  4.43-4.36 (m, 1H, CH2CHN), 3.89-

3.73 (m, 1H, NCH2CH), 3.71-3.58 (m, 1H, NCH2CH), 2.71-2.55 (m, 1H, CHCH2CH), 

2.47-2.40 (m, 1H, CHCH2CH), 1.67 (t, 3H, CH2CH3, 3J  = 7.4 Hz), 1.52-1.42 (m, 18H, 

C(CH3)3) ppm; 13C-NMR (100 MHz, CD3OD): δ 172.5/172.4 (C═O), 162.0 (Cph−O), 

157.0 (Cp-py−C), 155.9 (C═O), 145.2 (Co-py−H), 131.2/131.1 (Cm-ph-H), 127.5 (Cp-ph-C), 

125.0 (Cm-py−H), 117.8/117.7 (Co-ph−H), 82.7/82.6 (C(CH3)3), 81.6 (C(CH3)3), 
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77.6/76.6 (CH2CHCH2), 60.0/59.8 (CH2CHN), 57.2 (CH2CH3), 53.6/53.2 (NCH2CH),  

37.1/36.3 (CHCH2CH), 28.7/28.6 (C(CH3)3), 28.3 (C(CH3)3), 16.7 (CH2CH3) ppm; 

HRMS-ESI (m/z): [M]+ calcd for [C27H37N2O5]+, 469.2697; found, 469.2692. 

4-(4-((3S,5S)-5-Carboxypyrrolidin-3-yloxy)phenyl)-1-ethylpyridiniumbromid (1) 

was prepared analogous to a known procedure[117] and obtained as beige-brown solid 

(96 %).  1H-NMR (400 MHz, CD3OD): δ  8.92 (d, 2H, Ho-py, 3J = 6.4 Hz), 8.37 (d, 2H, 

Hm-py, 3J = 6.4 Hz), 8.06 (d, 2H, Hm-ph, 3J = 8.6 Hz), 7.27/7.20 (d, 2H, Ho-ph, 3J = 

8.6 Hz), 5.42 (s, 1H, CH2CHCH2), 4.73-4.58 (m, 3H, CH2CH3 and CH2CHN),  3.82-

3.62 (m, 2H, NCH2CH), 2.85-2.73 (m, 1H, CHCH2CH), 2.71-2.63 (m, 1H, CHCH2CH), 

1.67 (t, 3H, CH2CH3, 3J  = 7.3 Hz) ppm; 13C-NMR (100 MHz, CD3OD): δ 171.0  

(C═O), 160.9 (Cph−O), 156.9 (Cp-py−C), 145.4 (Co-py−H), 131.0 (Cm-ph-H), 128.5 (Cp-ph-

C), 125.2 (Cm-py−H), 118.0 (Co-ph−H), 77.3/76.7 (CH2CHCH2), 59.8 (CH2CHN), 57.4 

(CH2CH3), 52.7 (NCH2CH),  35.7 (CHCH2CH), 16.7 (CH2CH3) ppm; HRMS-ESI 

(m/z): [M]+ calcd for [C18H21N2O3]+, 313.1547; found, 313.1563. 

Diethyl 2-hydroxy-2-(2-oxo-1-phenylethyl)malonate (2a) was prepared according to 

the reported procedure[112] and obtained as orange oil. The synthesis was carried out 

twice, once using L-proline (82 %), once using 1 as catalyst (79 %). 

Diethyl 2-hydroxy-2-(1-oxobutan-2-yl)malonate (2b) was prepared according to the 

reported procedure[112] and obtained as orange oil (using L-proline: 83 %, using 1: 

80 %). 

Crystal structure determination: X-ray crystallographic analysis of 7 was performed 

on a Nonius KappaCCD diffractometer using graphite monochromated Mo-Kα 

radiation (λ = 0.71073 Å). Intensities were measured by fine-slicing φ- and ω-scans and 

corrected for background, polarization and Lorentz effects. A semi-empirical absorption 

correction was applied for the data sets following Blessing’s method.[119] The structure 

was solved by direct methods and refined anisotropically by the least squares procedure 

implemented in the ShelX program system.[120] The hydrogen atoms were included 

isotropically using the riding model on the carbon atoms. Selected data: Crystal 

dimensions 0.36 x 0.20 x 0.11 mm3, C15H27NO7S, M = 365.4424, Orthorhombic, space 

group P 21 21 21, a = 7.44860(10), b = 8.94580(10), c = 28.7024(4) Ǻ, α = 90°, β = 90°, 

γ = 90°, V = 1912.55(4) Ǻ3, Z = 4, ρ = 1.269 g cm-3, µ = 0.203 mm-1, F(000) = 748, 

18641 reflections (2θmax = 27.99°) measured (4566 unique, Rint = 0.0606, 
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completeness = 99.4%), R (I > 2σ(I)) = 0.0708, wR2 (all data) = 0.2054. GOF = 1.052 

for 224 parameters and 14 restraints, largest diff. peak and hole 1.557/-0.438 e Å3. 

CCDC-1016532 contains the supplementary data for this structure.  These data can be 

obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif. 

 

2.5.2 Mass spectrometry  

ESI mass spectra were recorded on a Bruker APEX IV Fourier-transform ion cyclotron 

resonance (FT-ICR) mass spectrometer with a 7.05 T magnet and an Apollo 

electrospray (ESI) ion source equipped with an off-axis 70o spray needle. Analyte 

solutions were fed into High Pressure PEEK mixing tees from Alltech and then 

introduced into the ion source with a single- and a dual syringe pump from Cole Parmer 

and KD Scientific, respectively, at flow rates of 50 µL/h to 16 ml/h. The continuous-

flow experiments were performed with a setup of two mixing tees. The first one was 

used for mixing a solution of both butyraldehyde and diethyl ketomalonate (each 

2 mmol/L) with a solution of the catalyst (1 mmol/L) and the second mixing tee served 

for sufficient dilution. Different reaction times were achieved by changing either the 

length of the capillary connecting both tees or by varying the flow rate. The theoretical 

reaction time between 1 and the reactants has been calculated from the experimental 

flow rates considering the volumes of both mixing tees and the connecting capillaries 

and under the assumption that the dilution in the second mixing tee decreases the 

reaction rate in the fashion of a bimolecular elementary reaction. For longer reaction 

times (> 200 s), the results can be compared with the ones from simple ESI 

measurements recorded at various times after offline mixing of the reaction partners. 

The results from both techniques match reasonably well, even though the reaction times 

calculated for the continuous-flow setup seem to be slightly underestimated. 

Ionization parameters were adjusted as follows: capillary voltage: -2.380 to -3.800 V; 

end plate voltage -2300 to 3320 V; capexit voltage: 50 to 100 V; skimmer voltages: 7 to 

17 V; temperature of drying gas: 50 to 80 oC. Nitrogen was used as nebulizing (1.38 to 

4.14 bar) and drying gas (1.38 to 3.10 bar). The ions were accumulated in the 

instruments hexapole for 0.3 to 0.9 s, introduced into the FT-ICR cell which was 

operated at pressures below 10-10 mbar, and detected by a standard excitation and 

detection sequence. Collision-induced fragmentation was performed by on-resonance 
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excitation with argon gas pulsed into the ICR cell followed by a pumping delay of 

3 - 5 s. For each measurement, 8 to 64 scans were averaged. All signal assignments are 

based on exact mass determinations.  
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3.1 Abstract 

An L-proline based catalyst with a charged phenyl-pyridinium substituent (1) was used 

to analyze intermediates of an organocatalyzed aldol reaction by infrared multi-photon 

dissociation (IRMPD) mass spectrometry after transfer into the gas phase via 

electrospray ionization (ESI). IRMPD spectra were interpreted with the aid of density 

functional theory (DFT) computations. A structurally restricted enamine species was 

used as referencing molecule for the calculated vibrational frequencies. A close 

correlation between theory and experiment was found for the energetically most 

favoured oxazolidinone structures. 

 

 

 
 

Figure 3.1 – Graphical Abstract of: J. A. Willms, J. Vidic, J. Barthelmes, V. Steinmetz, T. Bredow, P. Maître, 
M. Engeser, Phys. Chem. Chem. Phys. 2019, DOI: 10.1039/c8cp04905j (Ref. [2]). 
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3.2 Introduction 

During the past two decades, great progress was made in the development of 

asymmetric organocatalysis for the stereoselective functionalization of carbonyl 

compounds.[58,87] The principle of using chiral amines to catalyze organic reactions set 

off a veritable gold rush of publications[55–57,121] and is now an independent branch of 

stereoselective catalysis, complementary to enzymatic and organometallic catalysis. 

 

 
 

Figure 3.2 – a) Iminium (left), enamine (center), oxazolidinone (right) isomers; b) inverse aldol reaction with 
aldehyde donors according to Jørgensen[112]; c) charge-tagged L-proline derived catalysts 1 and 10. 

 

This rapid growth of scientific interest was triggered by the pioneering report from List, 

Lerner and Barbas about an inter- instead of intramolecular[59,60] asymmetric aldol 

reaction catalyzed by L-proline. An enamine catalyzed mechanism was proposed for the 

transformation.[61] While a broad variety of different enamine catalyzed reactions (e.g. 

Aldol,[122,123] Mannich,[124] Michael[125] and also multicomponent reactions[126–128] as 

well as synergistic catalytic transformations[129–133]) and versatile optimized 

catalysts[58,134–136] have been developed since then, opinions still differ on some 

mechanistic details of enamine catalysis. For reactions catalyzed by L-proline, it is 

generally agreed that the reactive key intermediate is an enamine carboxylic acid and/or 

an enamine carboxylate.[61,64,65,92,96,110,137–145] Yet its formation and the distinct role of 
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isomeric oxazolidinone species in the catalytic cycle remain uncertain 

(Figure 3.2a)).[92,110,138–142] The most commonly accepted mechanism for enamine 

catalysis was first proposed by List and Houk (Figure 3.3).[64,65,137] 

 

 
 

Figure 3.3 – Catalytic cycle of the aldol reaction with aldehyde donors catalyzed by 1;[1,64,65,137] Intermediate notation 
used herein: Letter (A/B) with superscript (1/2) for the respective catalyst and superscript acronym (oxa/ena/im) for 

the isomeric structure.* 
 

Electrospray ionization mass spectrometry[6] is a powerful analytical method that has 

evolved into an established technique to investigate reaction mechanisms.[14,28,75,146–148] 

ESI of reacting solutions allows monitoring the reaction progress and characterizing 

intermediates with tandem mass spectrometry. The sensitivity of ESI is very high for 

ionic species, while uncharged derivatives cause lower intensities or could even be 

suppressed by species with a better ESI response.[23] One way to improve the detection 

of specific derivatives is the charge tag strategy: A covalently attached charged 

substituent drastically increases the ESI response of the target compounds.[29–31,78,149,150] 

Established charge tags are cationic ammonium[31,149,151] or phosphonium[29,152] as well 

as anionic sulfonate[153–155] residues. Charge tags can basically be introduced into every 

                                                
* Note that the designation system of the intermediate structures differs from the used notations in 
Chapter 2 for a clearer description of the different isomeric molecular structures. (e.g., 1Aoxa in Chapter 3 
is equivalent to species II''b in Chapter 2.) 
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component of a reaction, e.g. reagents[29,30,78,149,151,152] or catalysts/catalyst 

ligands.[86,153,155] 

In a previous study (see Chapter 2),[1] we used the charge-tagged L-proline-derived 

organocatalyst 1 (Figure 3.2c)) with a 1-ethylpyridinium-4-phenoxy substituent to 

successfully detect intermediates of an inverse aldol reaction published by Jørgensen 

and coworkers.[112] 1 showed a strongly enhanced ESI response compared to 

unmodified L-proline (Figure 3.2b)). The rigid phenylpyridine linker separates the 

charge tag from the catalytically active center, the pyrrolidine nitrogen, in order to avoid 

unintended interactions. The use of 1 enabled the mass spectrometric detection of two 

key intermediates of the List-Houk mechanism for enamine catalysis and also a dead 

end species derived from the catalyst and diethyl ketomalonate. Reaction monitoring 

revealed a qualitative picture of the temporal evolution of catalyst 1, intermediates and 

aldol product. 

Probing the reactivity of a transient species present among and possibly in fast 

equilibrium with many others in the complex mixture of a reacting solution is a very 

difficult task.[156] One experimental approach to access the intrinsic reactivity of a 

specific intermediate is to study isolated ions under well-defined conditions in the gas 

phase.[157–159] These experiments can yield very valuable insight[160,161] although one has 

to keep in mind that the reactivity in the gas phase does not necessarily directly parallel 

the one in solution. With our charge-tagged proline derivative, we observed 

intermediates in sufficient abundances for gas-phase reactivity studies. However, a 

prerequisite for these is a well-defined structure of the reactant ion. In our case, three 

possible isomers are discussed to play a role in solution (Figure 3.2a)) and the situation 

might further be changed after transfer into the gas phase. Thus, a proper structural 

characterization of the detected gas-phase ions is inevitable. Collision induced 

dissociation (CID) of the intermediate species only showed the loss of carbon dioxide. It 

was thus impossible to discriminate between enamine, oxazolidinone and iminium 

isomers for an unambiguous structure assignment of the detected m/z values by simple 

CID experiments. For that reason, we aimed to elaborate on these results with a study 

based on action photodissociation spectroscopy. 

Infrared multi-photon dissociation (IRMPD) spectroscopy[33–36] of trapped ions in the 

gas phase has developed into an effective tool for structure elucidation of ions. There 
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are only few examples regarding the investigation of organocatalytic species.[162] This 

method commonly requires a highly intense and tunable laser beam from a free electron 

laser (FEL) which has been particularly well suited for probing the mid-infrared 

fingerprint region.[39–41] 

In this manuscript, we present IRMPD spectra in the mid-IR range of two ions obtained 

by transferring charge-tagged intermediates of L-proline catalyzed aldol reactions into 

the gas phase via ESI and the corresponding quantum chemical calculations. The study 

aims at a structural characterization of gas-phase variants of key intermediates of the 

List-Houk catalytic cycle. 

 

3.3 Methods 

3.3.1 Mass spectrometry and IRMPD spectroscopy 

Measurements were performed on a commercial 7 T hybrid Fourier transform ion 

cyclotron resonance (FT-ICR) mass spectrometer (Bruker apex-Qe) equipped with an 

Apollo II ESI source coupled to the tunable IR free-electron laser (FEL) of CLIO[39] 

(Centre Laser Infrarouge d’Orsay).[163,164] 

Analyte solutions were fed into a setup of two PEEK mixing tees (Alltech) which was 

directly coupled to the ESI source (Figure S3.1, Appendix S3).[1] In the first mixing tee, 

substrates dissolved in acetonitrile (butyraldehyde and diethyl ketomalonate: each 

[2 mM]; acetone: [10 % v/v]) were mixed with acetonitrile solutions of catalyst 1 

[1 mM]. The second mixing tee served to sufficiently dilute the reacting solution for 

ESI. The flow rates were adjusted to set a theoretical reaction time of approximately 

70 s. Experiments with catalyst 10 did not require a complicated setup due to its lower 

reactivity. Catalyst 10 [1 mM] was simply mixed with the reactant acetone (50 % v/v) 

in acetonitrile and electrosprayed directly.  

The ions of interest were mass-selected with the quadrupole mass filter (if necessary*) 

and accumulated in an argon-filled (10-3 mbar) hexapole ion trap, also allowing for 

                                                
* The analyzed intermediates 1A and 1B show a very simple fragmentation pattern: Only elimination of 
carbon dioxide is observed (Figure S3.5 and S3.6, Appendix S3). Therefore, both ions can be irradiated 
simultaneously for the acquisition of IRMPD spectra without any previous mass selection. Subsequent 
data processing to derive the respective energy dependent fragmentation efficiencies can be carried out 
independently. 
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thermalization. The ions were extracted to the ICR cell where they were irradiated for 

180–1000 ms with infrared light in the 900–1900 cm-1 spectral range. Four mass spectra 

were recorded and averaged for each wavelength. Repeated and sufficient photon 

absorption at a fundamental vibrational frequency of a given ion led to unimolecular 

dissociation which was quantified by monitoring the signal intensities of parent and 

fragment ions in the resulting mass spectra. The fragmentation yield 

(Yfrag = -ln(Iprecursor/[Iprecursor + ΣIfragments]) was plotted against the respective photon 

energy to obtain the presented IRMPD spectra.  

IR spectra were recorded using varying degrees of attenuation of the IR laser beam 

(-3 to -15 dB). High laser fluence in conjunction with large IR absorption cross-section 

may lead to saturation effects, which are accompanied by band red-shifts. Conversely, 

in the case of the reference ion 10Aena
(acetone) (Figure 3.4), an auxiliary broadband CO2 

laser pulse (BFi OPTiLAS, Evry, France) had to be used in order to enhance the 

fragmentation yield. A 30 ms long CO2 pulse following each IR-FEL pulse with a delay 

of a few µs was used.[165] 

 

3.3.2 DFT calculations 

Minima for the examined ions were searched using the Minima Hopping (MH)[166] 

algorithm employing the GPAW[167] code within the ASE framework.[168] The 

wavefunction was calculated with the PBE functional using a dzp (double-zeta valence 

plus polarization functions) basis set. Molecular dynamics (MD) simulations were 

performed with initial temperatures between 325 K and 400 K. The number of 

MD steps for each MH cycle was restricted to 250. The MH structures with lowest 

energy were subsequently fully optimized and their vibrational frequencies were 

calculated at the B3LYP-D3[169,170]/def2-TZVP[171] level using the Gaussian 09 program 

package.[172] For comparison with IRMPD spectra, calculated bands (applied scaling 

factor: 0.979) were convoluted with a gaussian profile with a full width at half 

maximum (FWHM) of 20 cm-1. 
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3.4 Results and discussion 

IRMPD is potentially an isomer specific activation mode providing that each isomer has 

distinct IR signatures. The spectral shifts of carbonyl CO stretching bands could serve 

as a distinct feature for the enamine 1Aena (carboxylic acid), oxazolidinone 1Aoxa 

(lactone) or iminium 1Aim (carboxylate) species. 

 

 
 

Figure 3.4 – a) IRMPD spectra of 10Aena(acetone) (m/z = 367) with 3 dB attenuation of the IR laser (black) and with an 
additional CO2 laser pulse (grey); b) unscaled calculated (B3LYP-D3/def2-TZVP) spectrum of 10Aena(acetone) (anti); 

C=O stretching highlighted; CT = phenyl-pyridinium charge tag (complete structure in Appendix S3). 

 

Interpretation of IRMPD spectra in most cases requires comparison with calculated 

harmonic vibrational frequencies that are commonly derived at the density-functional 

theory (DFT) level. The calculated frequency values are often larger than the 

experimental ones due to the harmonic approximation and limitations of the quantum 

chemical methods. Thus, theoretical frequencies are often uniformly scaled.[43,44]  

 

3.4.1 Scaling approach. 

Finding suitable scaling factors is a non-trivial task.[173] We thus decided to derive an 

individual scaling factor from experimental IRMPD spectra of a closely related 
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reference compound for which a single enamine isomer is expected. We therefore 

synthesized the “blocked” catalyst 10 with a methyl ester group (Figure 3.2c)) and 

mixed it with an excess of acetone in acetonitrile to form enamine 10Aena
(acetone) before 

ESI-MS analysis. 10Aena
(acetone) can neither undergo lactonization to the corresponding 

oxazolidinone nor form a singly charged iminium ion scaffold via hydrogen transfer. 

 
Table 3.1 – Calculated (B3LYP-D3/def2-TZVP) vibrational frequencies (in units of cm-1), experimental IR bands 

and derived scaling factors for selected reference compounds. 

 

We tested the B3LYP-D3[169,170], PBE-D3[176], HCTH93[177] and HCTH407[178] 

functionals to determine vibrational frequencies of 10Aena
(acetone) and compared the 

calculated IR spectra with the experimental IRMPD spectra (Figure 3.4a). The TZVP 

(triple-zeta valence plus polarization functions) basis set was found to provide 

satisfactory results. Altogether, computations at the B3LYP-D3/def2-TZVP level 

Species IR mode Exptl. IR 
Exptl. 

IRMPD 
Theory 

Ratio 

exp/theory 

4-phenyl-pyridine δ'CH, δ''CH 1480c  1522 (17.9) 0.972 

4-phenyl-pyridine δ'CH 1217c  1250 (5.6) 0.974 

methyl acetate νCO 1769d  1815 (351) 0.975 

γ-butyro-lactone νCO 1822c  1856 (419) 0.982 

10Aena
(acetone) νCO  1759 1794 0.980 

10Aena
(acetone) s.v.  1582e 1636 0.968 

10Aena
(acetone) δ'CH, δ''CH  1493 1536 0.972 

10Aena
(acetone) s.v.  1290e 1327 0.972 

10Aena
(acetone) δ'CH  1223e 1248 0.979 

10Aena
(acetone) s.v.  1173e 1194 0.982 

a ν = stretch; δ = in-plane bend; 'pyridine unit, ''phenyl unit, s.v. = three or more 
superposed vibrations; b without scaling; calculated IR intensities (in parentheses) in 

km/mol; c from Ref. [174]; d from Ref. [175]; e 3 dB attenuation of the IR laser. 
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showed the best matching of calculated and measured band shapes and positions and 

were thus used for structural analysis of the IRMPD spectra.* 

The agreement between the computed IR spectrum and the experimental IRMPD 

spectrum of enamine derivative 10Aena
(acetone) is satisfactory (Figure 3.4). Calculated and 

experimental IRMPD frequencies are provided in Table 3.1. This table also includes 

experimental values[180] of vibrational frequencies of simple model molecules, which 

are compared to calculated values at the chosen level of theory. The scaling factor 

derived from the C=O stretching vibrational mode (ratio exp/theory) is 0.98, which is in 

good accordance with reported values for a comparable level of theory.[181] Inspection 

of Table 3.1 suggests that a uniform scaling would be adapted in the present case. Since 

the diagnostic vibration for structural elucidation is the C=O stretching mode, we chose 

0.979 as general scaling factor for the calculations at the B3LYP-D3/def2-TZVP level. 

 

3.4.2 IRMPD experiments 

Intermediate species of the aldol reaction (Figure 3.2b)) catalyzed by 1 were generated 

and transferred into the gas phase using a setup of two mixing tees directly coupled to 

the ESI source (Figure S3.1, Appendix S3). Reaction intermediates of a defined and 

constant reaction time could thus be measured continuously (longer than one hour). This 

made it possible to perform IRMPD spectroscopy within a spectral range of 

1000 wavenumbers in a single run. Ionic reaction intermediates were detected in high 

abundance when mixing catalyst 1 with butyraldehyde and diethyl ketomalonate in 

acetonitrile using the described setup (Figure S3.2, Appendix S3).[1] IRMPD 

spectroscopy of the intermediates 1A (m/z = 367) and 1B (m/z = 541) and the 

implications for their gas-phase structures is reported in the following. 

  

                                                
* When focusing on the experimentally determined C=O stretching band of 2Aena

(acetone) (1759 cm-1), DFT 
computations  on the HCTH93/def2-TZVP level showed the best agreement (1766 cm-1) and scaling was 
not required.[179] Nevertheless, the overall spectral shape and frequency values of other IRMPD spectra 
were much better described with B3LYP-D3/def2-TZVP. 
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3.4.3 IRMPD of species 1A 

 

 

Figure 3.5 – a) IRMPD spectra of 1A (m/z = 367) with 3 dB (light blue) and 12 dB (blue) attenuation; b) calculated* 
IR spectrum of 1Aoxa (exo); c) calculated* IR spectrum of 1Aoxa (endo); d) calculated* IR spectrum of 1Aena (anti); 

e) calculated* IR spectrum of 1Aena (anti, with N-H bridge); *B3LYP-D3/def2-TZVP (scaling: 0.979); 
CT = phenyl-pyridinium charge tag (complete structures in Appendix S3); Relative stabilities of the calculated 

isomers are given on the top right of each spectrum. 
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Reactive intermediate 1A is formed from catalyst 1 and butyraldehyde by condensation 

(Figure 3.3). Essentially, three different structures have to be considered for this ion: 

enamine 1Aena, oxazolidinone 1Aoxa and iminium species 1Aim as well as several 

conformational isomers (e. g. syn/anti enamines) and configurational isomers (e. g. E/Z 

iminium derivatives and endo/exo oxazolidinones) thereof.  

Iminium derivatives derived from L-proline and small ketones or aldehydes were found 

to be energetically less preferred than the corresponding enamines and oxazolidinones 

at the DFT level.[138,182,183]* In the present case, no minimum corresponding to an 

iminium ion could be found. We observed lactonization of iminium structures to the 

corresponding oxazolidinone isomers during optimization before the first MD step in 

the course of the Minima Hopping procedure.[166,167] Thus, the presence of any iminium 

species in the gas phase of the mass spectrometer was ruled out as there are no 

stabilizing solvation effects. The detected species either possess an oxazolidinone or an 

enamine scaffold. 

Figure 3.5 shows two IRMPD spectra of the ion 1A (m/z = 367) compared to calculated 

IR spectra for the four energetically most preferred structures. The two spectra were 

recorded using two different grades of attenuation of the CLIO laser beam. Overall, a 

striking resolution with well-defined bands was achieved. The narrow band in the C=O 

stretching region at 1798 cm-1 has a width (FWHM) of 28 cm-1 in good accordance with 

an IRMPD band resulting from one single infrared active mode.[185] This suggests that 

the examined ion cloud predominantly consists of one species.  

According to the DFT calculations, all other pronounced IRMPD bands result to a large 

extent from vibrational features of the charge-carrying 1-ethylpyridinium-4-phenoxy 

unit, similar to the findings for 10Aena
(acetone). For instance, the intense bands at 

1603 cm-1 and 1191 cm-1 mostly result from C=C stretching and C–H bending 

vibrations of both aromatic rings of the charge tag.  

Overall, the enamine rotamers were found to be higher in energy than the oxazolidinone 

forms. The calculated structure of the exo isomer is slightly more stable than the endo 

analogue which is in accordance with previous calculations on comparable structures 

                                                
* This situation changes when solvation effects are considered which are negligible in the present 
case.[182,184] Conceivable iminium structures are expected to convert into oxazolidinone species during the 
transfer from solution into the gas phase in our experiment. 
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without a charge-tagging unit.[138,182] A preference for the exo form was also reported in 

experimental and theoretical studies of comparable derivatives in solution,[92,141,182,186] 

where exo oxazolidinones are in equilibrium with minor amounts of the corresponding 

endo species.  

A very high correlation between calculations of (exo and endo) oxazolidinone species 

(Figure 3.5b),c)) and the IRMPD spectrum of 1A (Figure 3.5a)) was observed. The most 

intense bands, observed with laser attenuation (blue), at 1191, 1298, 1503, 1603, 1640, 

and 1798 cm-1 nicely match with the most intense predicted IR absorption bands of the 

lowest energy structure. At the highest laser fluence (light blue), two predicted weak 

absorption features below 1100 cm-1 are also observed in the IRMPD spectrum. The 

observed CO stretching frequency is 1798 cm-1. It can be compared to the 1759 cm-1 

band observed for the reference compound, which could be unambiguously assigned to 

an ester carbonyl stretch. The 1798 cm-1 band could thus be assigned to a lactone 

carbonyl stretch. 

The IR spectra calculated for the higher energy enamine isomers do not fit to the 

experimental spectra as well Figure 3.5d),e). The DFT calculations yielded two 

energetically low-lying enamine structures. Both structures have an E-configurated 

C=C double bond which is oriented anti towards the carboxylic acid function. Gschwind 

and coworkers proved the presence of this conformation for enamines in solution by 

NMR of species derived from L-proline and propionaldehyde.[92] One of the two 

calculated energetically low-lying enamine structures features a hydrogen bond between 

the nitrogen atom of the pyrrolidine unit and the hydrogen of the carboxylic acid 

function. The C=O bond length is slightly shorter (1.198 Å) in this enamine structure 

(Figure 3.5e)) compared to the respective structure without N-H hydrogen bonding 

(1.200 Å, Figure 3.5d)), which causes a weak blue-shift of the C=O stretching band by 

~30 cm-1.  

The distinctive feature of both enamine conformations however is the C=C stretching 

vibration below 1700 cm-1 (highlighted in Figure 3.5 with arrows and a red bar). This 

band helps distinguishing the putative enamine conformations from the experimental 

ones: It is not observed in the experiment even when full IR laser power is used. The IR 

spectrum in the C=C stretching region is thus consistent with theory which predicts the 
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enamine isomers too high in energy to be significantly populated at room temperature. 

It can thus be concluded that the examined ions 1A do not possess an enamine structure.  

In summary, the IRMPD spectra revealed an oxazolidinone structure for 1A in the gas 

phase. A mixture of both exo and endo isomers with higher amounts of exo isomers is 

likely. No evidence was found for enamines in accordance with findings reported for 

acetonitrile solutions.[92] Enamines which are considered to be key intermediates of 

L-proline catalyzed aldol reactions might still be present however in an equilibrium 

between stable oxazolidinone species and very small amounts of transient enamine 

intermediates which cannot be monitored due to insufficient sensitivity of our 

experimental setup. 

 

3.4.4 IRMPD of species 1B 

Signals for species 1B (m/z = 541) were detected in excellent abundances. As depicted 

in Figure 3.3, 1B is formed out of 1Aena by nucleophilic addition of the second carbonyl 

substrate, i.e. diethyl ketomalonate. The last step in the proposed catalytic cycle then is 

hydrolysis of 1B to form the aldol product and recover the catalyst. This hydrolysis is 

expected to occur via an iminium species.[61,138,183,184] The structure of the ions 1B was 

analyzed using the same procedure as above. Again, three isomeric oxazolidinone, 

iminium and enamine structures as well as different constitutional or configurational 

isomers thereof had to be considered as possible geometries of 1B. The stereoselectivity 

of the reaction was taken into account.[112]*  

Figure 3.6 shows the comparison of two IRMPD spectra of ion 1B (m/z = 541) with 

calculated IR spectra for energetically low-lying structures. Two carbonyl bands are 

observed at 1759 and 1799 cm-1. Based on the above discussion on the 10Aena
(acetone) and 

1A ions, these two bands can be assigned to ester and lactone carbonyl stretches 

respectively. The theoretical IR spectrum of the exo oxazolidinone structure 

(Figure 3.6b)), which is predicted to be the lowest energy isomer, matches the 

experimental spectrum very well. Although the frequencies of the C=O stretching 

vibration are slightly overestimated, all vibrational bands are sufficiently reproduced. In 

                                                
* In approximation, the reaction was considered to yield exclusively the (S)-product. In any case, the 
spectral features of interest may not be affected significantly by the configuration of the ketomalonate 
periphery. 
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contrast, calculated and measured spectra of the corresponding endo oxazolidinone do 

not correlate as well.  

 

 

 
Figure 3.6 – a) IRMPD spectra of 1B (m/z = 541) with 3 dB (pale blue) and 12 dB (dark blue) attenuation; 
b) calculated* spectrum of 1Boxa (exo); c) calculated* spectrum of 1Boxa (endo); d) calculated* spectrum of 

1Bena (anti); *B3LYP-D3/def2-TZVP (scaling: 0.979); CT = phenyl-pyridinium charge tag (complete structures in 
Appendix S3); Relative stabilities of the calculated isomers are given on the top right of each spectrum. 
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As mentioned above, we observed cyclization to the respective oxazolidinone analogues 

when iminium structures were optimized in the course of the Minima Hopping 

procedure. Therefore, iminium species were not included in the theoretical 

interpretation of the experiment. Nonetheless, deprotonation of the carboxylic acid 

function to form any iminium isomers would cause a significant shift of the carboxylate 

stretching modes to lower frequencies which was not observed in the IRMPD 

spectra.[187,188]  

The enamine isomer exhibits an E-anti conformation of the C=C double bond. In 

addition to poor matching between theory and experiment in the range 1300–1400 cm-1, 

there was no experimental indication for the C=C stretching vibration below 1700 cm-1. 

According to the IRMPD spectra species 1B thus consists of an oxazolidinone scaffold 

with an exo-directed hydroxy-malonate unit. In accordance with the results for 1A, the 

thermodynamically preferred oxazolidinone structure was obtained for 1B as well. The 

presence of minor amounts of other isomeric species however cannot be excluded. 

 

3.4.5 Additional remarks 

The photodissociation experiments on 1A and 1B in the range of 900–1900 cm-1 both 

revealed an exo oxazolidinone structure. Another diagnostic mode for further 

confirmation of the results is the O–H stretching frequency. Unfortunately, our attempts 

to derive IRMPD spectra in the range of 3200 to 3700 cm-1 using a benchtop optical 

parametric oscillator/amplifier (OPO/OPA) laser coupled to a CO2 laser[189] were not 

sufficiently reliable due to insufficient fragmentation yield of the analyzed ions. We 

further probed the ions by gas-phase hydrogen-deuterium exchange[190] (HDX) 

experiments. No hydrogen exchange could be observed for 1A and 1B when applying 

conditions under which HDX of the acidic hydrogen of the catalyst 1 was successful. 

Since the oxazolidinone structures do not bear any acidic protons, these experiments are 

in full accordance with the IRMPD results. 

In addition, we recorded IRMPD spectra in the range of 900–1900 cm-1 of 1A(acetone) 

derived from catalyst 1 and acetone (Figure S3.9, Appendix S3). A comparison of the 

experimental spectrum with calculated spectra of putative structures again indicates an 

oxazolidinone species although the distinction is less concise in this case. 
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The calculated IR spectra match the experimental IRMPD spectra rather well. However, 

even better frequency values would still be desirable. Vibrational frequencies were 

calculated at the B3LYP-D3[169,170]/def2-TZVP[171] level and scaled with an empirical 

factor derived from measurements of the reference molecule 10Aena
(acetone). Indeed, 

10Aena
(acetone) has a well-defined atomic arrangement and is structurally very closely 

related to the ions of interest 1A and 1B. It is thus well-suited as a reference molecule. 

Yet, it exhibits a significantly lower fragmentation efficiency which is illustrated by the 

comparatively high energy required for CID of this ion (see Figure S3.5-8, 

Appendix S3). As a result, the internal energy of the molecule is higher in the course of 

the IRMPD experiment due to the enhanced irradiative excitation which leads to 

slightly broadened, red-shifted bands and thus a reduced comparability of this molecular 

reference.[191,192] Also, theoretical spectra could be further refined. The computed 

derivatives show several structurally closely related local minima. An adequate number 

of lowest minima structures of a given derivative could be taken into account in terms 

of a Boltzmann distribution. The latter could be used to produce an IR spectrum of the 

Boltzmann-weighted computed vibrational frequencies. We chose the 32 most stable 

rotamers of 1Aoxa to illustrate their impact on the theoretical IR spectrum. Vibrational 

frequencies were calculated for each structure and an averaged IR spectrum was created 

taking into account the percentage shares of the individual isomers according to a 

Boltzmann weighting of the respective calculated relative stabilities. Since these local 

minima are structurally very similar, the resulting theoretical IR spectra hardly differ 

and the Boltzmann-weighted average closely matches the spectrum of the most stable 

isomer (Figure S3.11, Appendix S3). Thus, the consideration of only the most stable 

isomer does seem to be justified in this case. 

 

 

3.5 Conclusions 

The charge-tagged organocatalyst 1 is well suited to capture intermediates of L-proline 

catalyzed reactions by ESI mass spectrometry. IRMPD spectra of the ions detected 

when spraying a reacting solution revealed a clear and consistent picture of the 

structures in the gas phase. The detected ions 1A and 1B both are exo oxazolidinones. 

The presence of minor amounts of the respective endo oxazolidinones or other species 
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below the detection limit of our experiment cannot be ruled out.[92,141,182,186] The 

timescale to detect reacting species with our setup is in the order of seconds which 

unfortunately prevents us from probing short lifetime species. 

The verification of the predominant presence of oxazolidinone species for the examined 

gas-phase ions 1A, 1B and 1A(acetone) is a significant result. It is in accordance with the 

energetic profile of the respective isomeric enamine, iminium and oxazolidinone species 

(Figure 3.3). In each case, the oxazolidinone structure is the thermodynamically most 

favored one in the gas phase. This result is fully consistent with the findings for proline-

catalyzed reactions in solution obtained by NMR spectroscopy.[92] 

The distinctive feature of our approach is the charge-tagging substituent. Uncharged 

species typically are protonated during the electrospray ionization process,[63] which 

results in a drastic change of the chemical nature of the species. In contrast, the use of 

charge-tagged catalyst 1 enables the transfer of oxazolidinone intermediates in the gas 

phase while leaving their chemical character unaffected. It thus allows an analysis of the 

gas-phase behavior of intact oxazolidinone derivatives. We currently are studying their 

gas-phase reactivity against volatile carbonyl compounds which could help to gain a 

deeper understanding of the role of oxazolidinone species in the course of enamine 

catalysis.  
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Using an electrochemical flow cell for the ESI-MS 

study on an oxidative coupling reaction 
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Preamble of Part III 

The catalytic functionalization of organic compounds by C-H activation is a very 

attractive and atomic-economic way to construct new C-C as well as C-X bonds without 

the assistance of directing groups and therefore is of considerable benefit for organic 

syntheses. In recent years, various metal catalytic as well as metal free approaches have 

been established to manipulate the reactivity of the normally thermodynamically stable 

carbon-hydrogen bond.[193] One part of this brought field is oxidative coupling of 

tertiary amines[194,195] and a pronounced research activity was initiated by the pioneering 

works of Murahashi[196] and Li[197]. In this respect, considerable interest in derivatives 

of Tetrahydroisochinolines (THIQs), which are common structural motifs in 

alkaloids,[198] emerged and effective nucleophiles as well as catalyst/oxidant systems for 

their functionalization have been developed.[195] However, the circumstance that a 

significant amount of publications deals with the derivatization of N-aryl-THIQ 

compounds is certainly also due to a lower reactivity of, for example, acylated 

analogues.[199] Since the removal of the phenyl group is difficult,[200–202] it can be 

disadvantageous in subsequent synthetic steps. Therefore, efficient coupling of 

alternative THIQ derivatives is desirable.[203–207] A deeper understanding of the 

underlying mechanisms of such reactions could provide a basis for further extension of 

the substrate scope. 

As part of Prof. Dr. Dirk Menche's project in the SFB (Sonderforschungsbereich, 

Collaborative Research Center) 813, Tongtong Wang evaluated a new method for the 

C-1-alkylation of THIQs with diethylzinc. This oxidative coupling reaction was 

proposed to proceed via a radical mechanism.[208] When Wang presented his results at 

an SFB conference, the subsequent discussion gave rise to the idea of experimentally 

proving or refining the proposed reaction mechanism using electrospray mass 

spectrometry (ESI-MS) in a cooperative project between the Engeser and Menche 

groups. With a first ESI-MS screening of the reaction mixture with the unbiased aim to 

detect radical species, a completely new research series started within the course of this 

thesis. As part of the analytics, linking of a commercial electrochemical flow cell with 

the ESI source revealed deeper insight in the formation of the iminium key 
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intermediate. The experiments encouraged a comparison of the MS data with 

cyclovoltammograms of the investigated THIQ substrates, which were thus recorded. 

The eventual outcome was an interdisciplinary mechanistic study presented in 

Chapter 4.  
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4.1 Abstract 

The aerobic oxidative cross-coupling of tetrahydroisoquinolines (THIQs) with 

diethylzinc catalyzed by CuCl2 has been examined by means of electrospray mass 

spectrometry (ESI-MS). Substrates, intermediates, and the product were readily 

detected. Particular emphasis has been placed on the role of CuCl2. Formation of the 

intermediate iminium species has been investigated in more detail by ESI-MS, 

electrochemistry-coupled ESI mass spectrometry, and cyclic voltammetry. Our 

experiments have consistently revealed strong influences of the N-substituent of the 

THIQ derivative and its oxidation stability with respect to CuCl2. The results may help 

to expand the synthetic scope of the reaction, while also further establishing EC-MS as 

a valuable technique for linking mass spectrometry with cyclic voltammetry in 

mechanistic studies of organic redox reactions. 

 

 

 
 

Figure 4.1 – Graphical Abstract of: J. A. Willms, H. Gleich, M. Schrempp, D. Menche, M. Engeser, Chem. Eur. J. 
2018, 24, 2663–2668 (Ref. [3]). 
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4.2 Introduction 

Electrospray mass spectrometry[6] is a powerful tool for gaining insight into the 

mechanisms of chemical reactions in solution. Even reactive intermediates at low 

concentrations may be detected, characterized, and probed for their reactivity, due to the 

low detection limits. Therefore, ESI-MS has been successfully utilized for mechanistic 

investigations of a broad range of organic and inorganic reactions.[14,28,29,75,146,150] A less 

commonly used extension of ESI-MS is online electrochemistry mass spectrometry 

(EC-MS), which has been used for metabolism research by simulating oxidative 

processes.[45,209,210] This technique allows the electrochemical treatment of analytes in 

solution immediately prior to their mass spectrometric analysis, and is thus considered a 

highly suitable method for studying redox reactions in the liquid phase. 

Over the past few years, interest in the oxidative coupling of tertiary amines has been 

increasing.[211,212] This cross-dehydrogenative coupling[194] (CDC) involves the direct 

formation of a C–C bond from an activated C–H bond. THIQs have become a 

compound class of central interest in this research area, and broad ranges of both 

effective nucleophiles and catalyst/oxidant systems for their functionalization have been 

developed.[195] The combination of a CuII catalyst and air or oxygen as an inexpensive 

and sustainable oxidant for the activation of amines has been reported.[213–218] 

 

 
 

Scheme 4.1 – Mechanism of the oxidative coupling of amines via amine radical cation formation.[215] 

 

The key mechanistic feature of the aerobic cross-coupling is the formation of an 

iminium intermediate[219] from the amine substrate by single-electron-transfer (SET) 

and proton-transfer steps (Scheme 4.1).[220–223] Under anaerobic conditions, a radical 

pathway for the coupling step has been assumed.[220,224–227] 

A detailed understanding of the mechanism of CDC reactions[220,221,225] is a core 

requirement for synthetic improvements. We aimed to contribute to the ongoing 
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research activity with a mass spectrometric study. As a model system for the 

experiments, we chose the functionalization of N-phenyl-1,2,3,4-tetrahydroisoquinoline 

11a (N-Ph-THIQ) with diethylzinc, as developed by one of our group (Scheme 4.2).[208]  

 

 
 

Scheme 4.2 – Menche’s aerobic oxidative cross-coupling of THIQs with organozincreagents catalyzed by CuCl2.[208] 

 

Through our experiments, we also aimed to refine the proposed catalytic cycle 

(Scheme 4.3). We chose ESI-MS as a highly suitable method to monitor the copper(II)-

catalyzed formation of the iminium species 14a. 

 

 
 

Scheme 4.3 – Proposed catalytic cycle of the CDC reaction between N-Ph-THIQ 11a and diethylzinc according to 
Menche and co-workers.[208] 

 

In addition, we coupled a commercial electrochemical flow cell to the ESI source of our 

mass spectrometer to obtain ESI mass spectra of electrochemically oxidized THIQ 

species. These data were compared with cyclic voltammograms of the same derivatives. 
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Thus, we present herein a promising technique to bridge the gap between mass 

spectrometry and cyclic voltammetry (CV) using EC-MS. 

 

 

4.3 Results and Discussion 

4.3.1 Formation of the iminium intermediate 

We started our mass spectrometric investigations by focusing on the first half of the 

proposed catalytic cycle for the selected coupling reaction, that is, oxidative formation 

of the key intermediate iminium ion 14a (Scheme 4.3). For this purpose, we analyzed 

solutions of the substrate 11a and CuCl2 in acetonitrile by ESI-MS. The oxidation 

process was followed by MS analysis of diluted samples of the reaction solution, which 

were taken at appropriate time intervals after mixing of the components (Figure 4.2A)). 

The choice of diluent and the analyte concentration proved to be crucial in these 

experiments, because unintended oxidation of THIQ 11a (to intermediate 14a) during 

the ionization process had to be suppressed. The use of pure methanol or acetonitrile as 

spraying solvent and sample concentrations higher than 30 mM did not fulfill this 

requirement. Lower sample concentrations, a 1:1 mixture of dichloromethane and 

methanol as spraying solvent, in combination with mild electrospray conditions, 

delivered the best results.I Owing to the complexity of the ESI process, there are several 

possible explanations for these findings.[228] We assume that faster shrinkage of charged 

droplets due to faster solvent evaporation, lower ion concentration, and reduced 

dielectric constant of the mixture, decrease the oxidation during the ESI event. In any 

case, by using dichloromethane/methanol as spray solvent, it was possible to monitor 

the oxidation process by ESI-MS. A steady increase in the amount of iminium ion 14a 

was detected over the course of 1 h.   

                                                
INote that in the upper MS spectrum of Figure 4.2A) a minor signal of iminium ion 14a can be detected 
even though there is no copper(II) present in the solution. 
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Figure 4.2 – A) ESI(+) mass spectra of samples from solutions in acetonitrile, under O2 atmosphere (balloon), of 
N-Ph-THIQ 11a [12.2 mm] (top), N-Ph-THIQ 11a [12.2 mm] and 0.1 equiv. CuCl2 [1.2 mm] after 0.5 h (center), and 

N-Ph-THIQ 11a [12.2 mm] and 0.1 equiv. CuCl2 [1.2 mm] after 1.0 h (bottom); samples diluted 1:400 with 
CH2Cl2/MeOH (1:1) for ESI; B) selected-ion chromatograms of m/z 210.1, 208.1, and 206.1 plotted against applied 
voltage to a solution of N-Ph-THIQ 11a [3.2 mm] in CH2Cl2/MeOH (1:1) recorded with an EC-MS flow cell set-up; 

peak voltage 2.0 V, magic diamond (MD) electrode. 
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Whilst substrate 11a and intermediate 14a were easily detected, finding evidence for the 

aminium radical cationic intermediate 13a proved to be much more difficult. With a 

nominal mass-to-charge ratio of m/z 209, its assumed MS signal overlaps with the 
13C signal of the isotope pattern of iminium ion 14a. With higher mass spectrometric 

resolution, however, we succeeded in detecting aminium species 13a at trace levels 

(Figure 4.3). 

 

 
 

Figure 4.3 – Enlargement of an ESI(+) mass spectrum with the resolution set to R=100000 reveals the presence of 
13a. N-Ph-THIQ 11a [0.313 mm] was mixed with CuCl2 [0.125 mm] in acetonitrile. After 2.5 min, a sample was 

withdrawn, diluted 1:10 with CH2Cl2/MeOH (1:1), and analyzed with an Orbitrap XL mass spectrometer. 

 

The involvement of a radical intermediate during the oxidation process was also 

indirectly verified by adding a radical scavenger to the reaction mixture, similar to 

previous examinations of other CDC reaction types.[225,229] Formation of iminium ion 

14a was considerably suppressed (although not fully eliminated) when 2,6-di-tert-butyl-

4-methyl-phenol (BHT) was added to a solution of 11a and CuCl2, supporting the 

assumption of involvement of an aminium intermediate (Figure S4.3, Appendix S4). 

Furthermore, we obtained voltage-dependent chromatograms of pertinent ion 

abundances by electrochemically oxidizing compound 11a immediately before MS 

analysis (Figure 4.2B)). For this purpose, a solution of the analyte was pumped through 

an electrochemical flow cell. The applied voltage in the EC cell was gradually increased 

and then decreased while continuously recording mass spectra.[230] Data processing was 

performed by plotting the relative intensity of the MS signals of interest against the 
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applied voltage. Figure 4.2B) shows an impressive example of how the peak due to 

substrate [11a+H]+ (m/z 210.1) decreased as the applied potential was increased to 

around 0.7 V, with the peak of the oxidized form 14a (m/z 208.1) appearing slightly 

thereafter. Furthermore, at higher voltages, a second oxidation to fully aromatic 

isoquinolinium species 17a was detected to a minor extent (m/z 206.1). Due to the 

continuous analyte flow in the set-up, the original signal ratios are recovered once the 

applied voltage is subsequently reduced. In comparison to chemical oxidation 

employing CuCl2 (Figure 4.2A)), the EC cell technique provides useful and consistent 

indications about voltage-dependent oxidative changes of 11a, that is, visible changes of 

the MS signals. 

 

4.3.2 Ethylation of the iminium intermediate with ZnEt2 

To investigate the actual C–C coupling step, the entire CDC reaction was conducted by 

mixing substrate 11a and CuCl2 in acetonitrile and adding a solution of ZnEt2 in 

acetonitrile after 1.5 h. Mass spectra were obtained by ESI-MS analysis of diluted 

samples of the reaction mixture (Figure 4.4). Immediately after mixing pre-formed 14a 

with ZnEt2, the desired coupling product 12a could be detected through a peak due to 

[12a+H]+ (m/z 238.2) with significant intensity (Figure S4.4, Appendix S4). Thus, C–C 

coupling was significantly faster than iminium ion formation. 

In addition, we found “off-cycle” species 15a and 16a, which Klussmann et al. have 

previously observed for CDC reactions with CuCl2·2 H2O/O2 in MeOH.[221,225] The 

generation of hemiaminal 15a can be attributed to contamination with traces of moisture 

during sample preparation. 16a is formed when the reaction mixture is diluted with 

CH2Cl2/MeOH in preparation for ESI-MS analysis. Minor formation of the doubly-

oxidized species 17a has also been reported previously.[221] A small amount of the 

isoquinolinium species was therefore certain to be present in the reaction mixture. In 

fact, its MS signal (m/z 206.1) was rather pronounced and at this juncture we assume 

that the majority of 17a detected in the mass spectrum in Figure 4.4 was generated 

during the ESI process. The same applies to the observation of CuI species rather than 

CuII. It is known from the literature that charge-transfer between the copper center and 

gas-phase solvent molecules, coupled with stabilization of CuI by acetonitrile ligands, 

leads to complete reduction of CuII derivatives in the course of the ESI process.[231–233] 
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No signals due to ZnEt2 (or other zinc species) were detected under the measurement 

conditions applied for the reaction monitoring due to its reactivity towards methanol, its 

moisture sensitivity, and the insolubility of the degradation product ZnO.[234] However, 

optimized inert settings, acetonitrile as spray solvent, and significantly increased 

concentrations of ZnEt2 made it possible to detect zinc-derived species (Figure S4.1 and 

Figure S4.2, Appendix S4). 

 

 
 

Figure 4.4 – ESI(+) mass spectrum of a CDC reaction mixture containing N-Ph-THIQ 11a [50 mm] and 
diethylzinc [0.2m] with CuCl2 [5 mm] as catalyst after 2.5 min; the sample was diluted 1:400 with 

CH2Cl2/MeOH (1:1) for ESI. 

 

Reaction monitoring revealed that the formation of electrophile 14a was rather slow, 

whereas the subsequent coupling with ZnEt2 did not require multi-hour stirring, in 

contrast to our original procedure.[208] The reaction time may indeed be drastically 

shortened. 

In order to ascertain whether the presence of CuCl2 in the reaction mixture is not only 

necessary for oxidation, but also for the ethylation step, the CDC reaction was 

performed without any additives, that is, in the absence of Cu species. A solution of 

substrate 11a in acetonitrile was subjected to electrochemical oxidation in the EC flow 

cell, and then mixed with ZnEt2 in acetonitrile (Figure 4.5).  
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Figure 4.5 – Experimental set-up and resulting ESI mass spectrum for the electrochemically induced (CuCl2-free) 
CDC reaction of 11a with ZnEt2. 

 

Subsequent ESI-MS analysis of the reaction mixture proved formation of the CDC 

product 12a. In addition, unreacted substrate 11a was observed due to incomplete 

oxidation in the EC flow cell. This experiment demonstrated that neither CuCl2 nor any 

other copper species is essential for the ethylation of iminium ion 14a. The success of 

the CDC reaction is thus mainly determined by the stability of the formed 

dihydroisoquinolinium intermediate and by the oxidizing power of the catalyst, as 

shown in the following. These results also explain unsuccessful efforts by our group to 

exert asymmetric induction on the reaction through the use of chiral ligands bound to 

the copper center. 

 

4.3.3 Substituent effects 

We acquired the aforementioned EC cell voltage/ion intensity curves as well as cyclic 

voltammograms of several THIQ derivatives to test their applicability for the examined 

CDC reaction and to combine the results of both analytical techniques. 

Figure 4.6 shows the results of EC/MS examinations as well as cyclic voltammograms 

of 11a and the structurally closely related N-naphth-2-yl-THIQ 11b.  
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Figure 4.6 – A) ESI(+) mass spectrum of a mixture of N-Ph-THIQ 11a [9.5 mm] and N-naphth-2-yl-THIQ 11b 
[9.5 mm] in CH2Cl2/MeOH (1:1) after oxidation in an EC flow cell with 1.0 V; B) selected-ion chromatograms of m/z 

260.1, 258.1, 210.1, and 208.1 plotted against applied voltage to a mixture of N-Ph-THIQ 11a [9.5 mm] and 
N-naphth-2-yl-THIQ 11b [9.5 mm] in CH2Cl2/MeOH (1:1); C) cyclic voltammograms of N-Ph-THIQ 11a [5 mm] 

and N-naphth-2-yl-THIQ 1b [5 mm] in acetonitrile; E vs. Fc/Fc+, Pt electrode, scan rate 50 mVs-1. 

 

Both methods reveal the similar oxidation behavior of the respective substrates, albeit 

with a slightly better oxidizability of 11b. These methods both add insight for a more 

complete view of the process. Whilst cyclic voltammograms provide distinct values of 

the peak current of the oxidation process,[235–237] EC/MS observations give additional 

information about the nature of the oxidized species. Of course, this only applies if the 

electrochemically formed species are sufficiently stable under the experimental 

conditions. 

Since removal of the N-substituent of the THIQ product is highly desirable in organic 

syntheses, we investigated THIQ derivatives with various protecting groups (Figure 4.7 

and Figure S4.8–Figure S4.20, Appendix S4). The results demonstrate that, apart from 

N-naphth-2-yl-THIQ 11b, all other examined substrates were less easily oxidized than 

11a. Thus, N-butyloxycarbonyl-THIQ 11d, N-carbobenzyloxy-THIQ 11e, and 
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N-tosyl-THIQ 11f each show an oxidation peak approximately 1.5 V higher than that of 

11a. This precludes use of the inexpensive and favorable catalyst/oxidant system 

CuCl2/O2 as a suitable reagent for these derivatives. 

 

 
 

Figure 4.7 – Cyclic voltammograms of N-phenyl-THIQ 11a [5 mm] (blue), N-naphth-2-yl-THIQ 11b [5 mm] 
(purple), N-(2-acetoxyethyl)-THIQ 11c [10 mm] (green), N-tert-butyloxycarbonyl-THIQ 11d [10 mm] (gray), 
N-carbobenzyloxy-THIQ 11e [10 mm] (light-blue), and N-tosyl-THIQ 11f [10 mm] (orange) in acetonitrile; 

Pt electrode, scan rate 50 mVs-1. 

 

In accordance with these electrochemical findings, we also successfully detected the 

transient aminium radical cation species 13b derived from N-naphth-2-yl-THIQ 11b in 

the presence of CuCl2 by high-resolution ESI-MS (Figure S4.5, Appendix S4), but 

could not find any indication of similar intermediates when treating the other mentioned 

THIQ derivatives 11c-f with CuCl2. For instance, MS investigation of a mixture of 

N-Boc-THIQ 11d and CuCl2 in acetonitrile indicated no reaction at all. A 

straightforward broadening of the scope of the reaction is probably possible by using a 

more effective oxidizing agent for less reactive substrates. Nevertheless, in the 

particular case of Boc-protected 11d, several side reactions impede successful coupling 

reactions with this specific protective group. In EC/MS experiments, electrochemically 

formed iminium species 14d reacts directly with the electrospray solvent (Figure S4.10, 

Appendix S4). This also explains why reported CDC reactions of 11d have involved 

neat reaction conditions.[238,239] Among the tested THIQ derivatives bearing alternative 
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protective groups, the photolabile[240] N-(2-acetoxyethyl)-THIQ 11c proved to be the 

most promising as a suitable surrogate with the CuCl2/O2 system, even though initial 

studies following our original reaction protocol[208] did not result in any conversion. 

However, an alternative oxidation strategy may facilitate successful ethylation. 

 

 
 

Scheme 4.4 – Refined mechanistic proposal for the CDC reaction with ZnEt2 based on the results presented herein, 
which is in agreement with Klussmann’s previous work.[223] 

 

In line with these analyses, we suggest a refined mechanistic interpretation of the CDC 

reaction without any influence of copper species in the ethylation step, as shown in 

Scheme 4.4. Moreover, a strong dependence on the solvent has to be considered due to 

the solubility of the copper(II) salt and stabilizing effects on the radical cationic (13a) 

and cationic (14a) intermediates. 

 

 

4.4 Conclusion 

Thorough investigations of the aerobic oxidative cross-coupling of THIQs with 

organozinc reagents catalyzed by CuCl2 have provided mass spectrometric insight into 

the reaction process. The transient aminium species 13a could be detected, and the key 

intermediate iminium ion 14a was observed after chemical and/or electrochemical 

oxidation. Voltage-dependent ion intensity curves derived from EC-MS experiments on 

a series of derivatives have provided helpful information about substituent effects and 

oxidation products associated with cyclic voltammetric oxidation peaks. Moreover, the 

ethylated coupling product has also been synthesized under Cu-free conditions by 
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electrochemical generation of the iminium intermediate before treatment with 

diethylzinc. This experiment illustrates the role of CuCl2. Its presence is not essential in 

the actual coupling reaction. 

The results provide a rational explanation for limitations of the ethylation reaction. The 

critical step is the formation of iminium intermediate 14. The oxidation potential of 

CuCl2 is insufficient to oxidize THIQ substrates without N-aryl substituents. More 

efficient oxidants should readily allow an expansion of the substrate scope. 

Furthermore, the technique of linking mass spectrometry with cyclic voltammetry is a 

good example of a rational alternative to synthetic screening methods for reaction 

optimization. 

 

 

4.5 Experimental section 

4.5.1 Mass spectrometry 

ESI mass spectra were recorded from solutions (3 µM-25 mM) in acetonitrile or 

CH2Cl2/MeOH (1:1) on a commercial quadrupole/time-of-flight (Q/TOF) mass 

spectrometer (Bruker micrOTOF-Q) equipped with an Apollo ESI source. In individual 

cases, a commercial Orbitrap mass spectrometer (Thermo Fisher Scientific LTQ-

Orbitrap XL) was utilized for higher mass resolution. Nitrogen was used as spraying 

and nebulizing gas. Signal assignments are based on selected representative experiments 

with careful mass calibration. Voltage/ion intensity curves were obtained with a 

commercial electrochemical flow cell [Antec Scientific ROXY potentiostat and thin-

layer ReactorCell (cell volume: 0.7 µL) with a magic diamond (MD) working electrode 

(Ø: 8 mm), an HyREF reference electrode, and a 50 µm spacer]. This EC cell was 

directly coupled to the ESI source of the Q/TOF mass spectrometer. Peak voltage 

(2.0/3.5 V) and step size (0.1 V per 0.2 min) were adjusted using the corresponding 

software (Dialogue, Antec Scientific). Analyte solutions (3-30 µM) were passed into the 

cell through PEEK tubing (1.6 mm OD × 0.13 mm ID) at a flow rate of 300 µL h-1 using 

a syringe pump (Cole Parmer) and a 250 µL glass syringe (Hamilton).  
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4.5.2 Cyclic voltammetry 

Cyclic voltammograms were recorded from solutions of the analyte (5-10 mM) and 

nBu4N+PF6
– (0.1 M) in acetonitrile with a three-electrode electrochemical cell (Gamry 

Interface 1000 potentiostat) with an Ag/AgNO3 reference electrode (0.01 M with 0.1 M 

nBu4N+PF6
– in acetonitrile), a platinum counter electrode, and a platinum working 

electrode. CV curves were recorded at a potential scan rate of 50 mV s-1. Ferrocene (Fc) 

was added as an internal reference after every experiment, and all of the measurements 

were referenced relative to the E1/2 value of the Fc/Fc+ couple, estimated as ½ (Epa+Epc), 

where Epa=anode peak potential and Epc=cathode peak potential. The cyclic 

voltammogram of ferrocene recorded with our experimental set-up is provided 

(Figure S4.14, Appendix S4). 
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5 Concluding remarks and outlook 

In this thesis charge-tagging, mixing tee infusion, IRMPD and electrochemistry/MS 

were successfully used as sophisticated modern mass spectrometric strategies for the 

mechanistic investigation of an organocatalytic aldol reaction and an oxidative coupling 

reaction by means of ESI-MS. 

The extensive ESI-MS studies on Jørgensen's[112] inverse aldol reaction and the reaction 

of catalyst 1 with acetone presented in Chapters 2 and 3 reveal the predominant 

presence of oxazolidinone derivatives among catalyst-based species in an 

electrosprayed reaction mixture. This fundamental result is consistent with condensed-

phase studies of enamine-catalyzed reactions.[92,141,182] This work presents a unique 

structural examination of such L-proline derived intermediates in the gas phase using 

mass spectrometry. 

The field of application of the charge-tagged catalyst 1 in reaction investigations with 

ESI-MS can be extended in many ways. In a further study on a Diels-Alder reaction 

with inverse electron demand, we have already been successful in detecting and 

analyzing three relevant intermediate species.[4] During investigations of the same 

reaction using either a charge-tagged substrate or no tagging strategy at all, only two or 

less of the three mentioned species were detected. Also, a certain reduction of the 

performance of catalyst 1 compared to L-proline was observed. The potential of 1 may 

therefore be summarized as valuable but conditionally limited. A thorough screening of 

various organocatalytic reactions should provide extremely useful results in form of a 

mass spectrometric isolation of various intermediates. 

As already discussed in Subsection 3.5, an outstanding advantage in ESI-MS 

investigations of intermediates based on 1 is their unaltered chemical nature. Certainly, 

the bulky 1-ethylpyridinium-4-phenoxy unit must influence the catalyst properties and 

its reaction behavior in one way or another. Nevertheless, if the formation and detection 

of intermediary species of interest is successful, they can be investigated in the gas 
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phase without their primary structural properties being affected by protonation, 

oxidation or other ESI influenced changes – an advantage which has already been 

exploited in the MS study in Chapter 3 as well as further investigations[70] and which 

gives rise to additional research projects. The direct initiation of reactions with 

intermediates in the cell of an FT-ICR mass spectrometer by pulsing a second substrate 

offers an excellent opportunity for comparative kinetic measurements with isolated 

intermediate species. For example, the gas-phase reactivity of oxazolidinone species 

could be investigated to elucidate their role in the catalytic cycle of enamine catalysis. 

The study of Menche's[208] aerobic oxidative cross-coupling of THIQs with diethylzinc 

catalyzed by CuCl2, which is presented in Chapter 4, allows a refined postulation of the 

reaction mechanism. In addition to several successful experiments to follow the reaction 

progress using ESI-MS, even the transient aminium species 13a and 13b could be 

detected. The results of ESI-MS, EC/MS and CV measurements consistently revealed 

the strong influence of the N-substituents of the different THIQ substrates on their 

oxidation stability against CuCl2. 

The profitable use of the EC flow cell provided an electrochemical counterpart to the 

results obtained from investigations on the CuCl2 catalyzed formation of iminium key 

intermediate 14a. The results also show that EC/MS is not restricted for the metabolism 

analyses of drugs,[45–47] but is also suitable for the clarification of questions regarding to 

oxidative transformations in solution in organic syntheses. 

Semi-preparative electrochemically induced formation of the coupling product by the 

EC flow cell provided excellent evidence that CuCl2 is not essential for the actual 

coupling step of the CDC reaction (Figure 4.5). This setup is not recommended for 

experimental applications beyond such a proof of principle. For preparative purposes 

the associated low conversion and low flow rates are unfavorable. 

The recording of voltage-dependent ion-intensity curves[52–54] sometimes is a certain 

experimental challenge because a stable electrospray is required for several minutes. 

However, they also offer an excellent method for the observation of oxidative and 

reductive species. Overall, flow cell assisted EC/MS is a suitable alternative to synthetic 

screening approaches. The scope for further research projects on redox processes is not 

limited to a specific substrate type. Furthermore, EC/MS can be considered as a link 
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between mass spectrometry and cyclovoltammetry. It can also serve as highly suitable 

tool for the interpretation of cyclic voltammograms. 

The mass spectrometric and electrochemical methods used in this work will yield useful 

results in countless other experiments. Hopefully, in some cases, this work can provide 

a little help in the investigation of further, unknown processes. 
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S3.1 Mixing tee setup 

 
 

Figure S3.1 – Continuous flow mixing tee setup for the ongoing detection of intermediates 1A, 1B and 1A(acetone). 

 

S3.2 Mass spectra 

 
 

Figure S3.2 – ESI(+) mass spectrum of acetonitrile solutions of diethyl ketomalonate and butyraldehyde [2 mM] as well as 
catalyst 1 [1 mM] recorded with the continuous-flow setup shown in Figure S3.1.  
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Figure S3.3 – ESI(+) mass spectrum of acetonitrile solutions of acetone [10 % v/v] as well as catalyst 1 [1 mM] recorded 
with the continuous-flow setup shown in Figure S3.1. 

 

 

 

 

 
 

Figure S3.4 – ESI(+) mass spectrum of catalyst 10 [1 mM] and acetone [50 % v/v] in acetonitrile. 
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Figure S3.5 – ESI(+) CID MS/MS spectrum of mass-selected 1A. 

 

 

 

 

 
 

Figure S3.6 – ESI(+) CID MS/MS spectrum of mass-selected 1B. 
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Figure S3.7 – ESI(+) CID MS/MS spectrum of mass-selected 1A(acetone). 

 

 

 

 

 
 

Figure S3.8 – ESI(+) CID MS/MS spectrum of mass-selected 10A(acetone). 
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S3.3 Additional IRMPD spectra 

 
 

Figure S3.9 – a: IRMPD spectra of 1A(acetone) (m/z = 353) with 3 dB (light purple) and 12 dB (deep purple) attenuation; b: 
Calculated* spectrum of 1Aoxa(acetone); c: Calculated* spectrum of 1Aena(acetone) (anti); d: Calculated* spectrum of 1Aena(acetone) 

(anti, with N-H bridge); *B3LYP-D3/def2-TZVP (scaling: 0.979). 
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Figure S3.10 – a: IRMPD spectra of the adduct of 1 and diethyl ketomalonate (m/z = 487) with 6 dB (light blue) and 15 dB 
(deep blue) attenuation; b: Calculated* spectrum of the amine derived from catalyst 1 and diethyl ketomalonate); region of 

C=O stretching vibrations highlighted; *B3LYP-D3/def2-TZVP (scaling: 0.979). 

 

 

S3.4 Boltzmann-weighted calculated frequencies of 1Aoxa (exo) 

 
 

Figure S3.11 – Calculated* spectra of 1Aoxa (exo); bright green line: Calculated* spectrum of the found minimum for 1Aoxa 
(exo)**; dark grey line: Boltzmann-weighted calculated* spectra of the 32 most stable rotamers observed during the Minima 

Hopping procedure; *B3LYP-D3/def2-TZVP (scaling: 0.979); **also shown in Figure 3.5. 
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S3.5 Optimized geometries of the presented structures 

S3.5.1 10Aena
(acetone) (anti) – anti enamine derived from acetone and catalyst 10 

 
 

Figure S3.12 – ball-and-stick model of the optimized geometry of 10Aena(acetone) (anti). 

 

C         -4.66764       -0.19947       -0.59339 
C         -3.96740       -0.37706       -1.94640 
C         -2.61962        0.29500       -1.72737 
C         -2.89959        1.40680       -0.70731 
N         -4.22248        1.11654       -0.19316 
C         -4.31377       -1.35661        0.35054 
O         -4.63042       -2.49622        0.13060 
O         -3.63192       -0.95448        1.43061 
O         -1.75237       -0.72363       -1.17128 
C         -0.45603       -0.48494       -0.98329 
C          0.19847        0.70894       -1.32048 
C          1.55357        0.83325       -1.09424 
C          2.31155       -0.21140       -0.54047 
C          1.63286       -1.40234       -0.20819 
C          0.28290       -1.53556       -0.41371 
C          3.73772       -0.07385       -0.32651 
C          4.37406        1.18464       -0.25876 
C          5.72374        1.28411       -0.06455 
N          6.50089        0.18589        0.06706 
C          5.93115       -1.03865        0.01437 
C          4.58633       -1.19254       -0.17812 
C          7.95065        0.32499        0.33902 
C          8.23962        0.41097        1.82915 
C         -4.74663        1.84462        0.86280 
C         -4.10696        2.89100        1.40781 
C         -6.10872        1.42323        1.33398 
H         -5.74979       -0.23895       -0.71234 

H         -4.52173        0.16815       -2.70938 
H         -3.86965       -1.41604       -2.24972 
H         -2.17161        0.65748       -2.65202 
H         -2.87622        2.39900       -1.16979 
H         -2.14533        1.39720        0.08833 
H         -0.34198        1.53233       -1.76072 
H          2.03329        1.75516       -1.39206 
H          2.16464       -2.22362        0.25150 
H         -0.23921       -2.44350       -0.14626 
H          3.80662        2.09877       -0.33457 
H          6.22929        2.23642       -0.00054 
H          6.59964       -1.88062        0.11812 
H          4.19795       -2.19646       -0.24623 
H          8.29003        1.21607       -0.18631 
H          8.44377       -0.53293       -0.11483 
H          7.74910        1.27556        2.27737 
H          9.31372        0.51164        1.98379 
H          7.90374       -0.48681        2.34891 
H         -3.12870        3.21608        1.08770 
H         -4.58081        3.46105        2.19146 
H         -6.83846        1.45699        0.52149 
H         -6.44967        2.08819        2.12329 
H         -6.10104        0.40592        1.73140 
C         -3.29187       -1.98453        2.37331 
H         -2.76925       -1.47986        3.18016 
H         -2.65353       -2.73141        1.90262 
H         -4.19254       -2.47183        2.74298 

  



Appendix 

108 

S3.5.2 1Aoxa (exo) – exo-oxazolidinone derived from butyraldehyde and catalyst 1 

 
Figure S3.13 – ball-and-stick model of the optimized geometry of 1Aoxa (exo). 

C         -4.61055       -1.15871       -0.01542 
C         -3.95242       -2.52568       -0.21736 
C         -2.60615       -2.15887       -0.82398 
C         -2.96341       -0.97889       -1.72933 
N         -4.09199       -0.29145       -1.08491 
C         -4.16003       -0.47321        1.27765 
O         -3.65232        0.73858        0.96435 
O         -4.21492       -0.90382        2.39079 
O         -1.79925       -1.72734        0.29408 
C         -0.53226       -1.34164        0.14803 
C          0.22745       -1.49997       -1.01906 
C          1.54167       -1.07872       -1.03916 
C          2.14961       -0.50036        0.08699 
C          1.36405       -0.35075        1.24902 
C          0.05218       -0.75150        1.28025 
C          3.53580       -0.07877        0.05929 
C          4.28938        0.09879        1.23968 
C          5.59636        0.49763        1.18958 
N          6.21519        0.74079        0.01304 
C          5.53076        0.58025       -1.14138 
C          4.22227        0.18354       -1.14609 
C          7.65050        1.10805       -0.01446 
C          8.54486       -0.11915       -0.08924 
C         -3.82209        0.99303       -0.46239 
C         -4.94994        1.98991       -0.66059 
C         -4.76512        3.31526        0.07967 
C         -3.52692        4.10029       -0.34963 

H         -5.69959       -1.22728       -0.01368 
H         -4.52266       -3.12353       -0.92797 
H         -3.85759       -3.07666        0.71576 
H         -2.11446       -2.98578       -1.33680 
H         -3.26669       -1.36347       -2.70704 
H         -2.12925       -0.29611       -1.89015 
H         -0.19688       -1.96173       -1.89738 
H          2.11368       -1.24414       -1.94158 
H          1.77537        0.12410        2.12866 
H         -0.56105       -0.61705        2.16047 
H          3.85856       -0.10050        2.20824 
H          6.19432        0.62963        2.07927 
H          6.07232        0.79653       -2.05048 
H          3.72079        0.10804       -2.09813 
H          7.84768        1.69261        0.88246 
H          7.79609        1.76182       -0.87274 
H          8.39938       -0.76716        0.77558 
H          9.58840        0.19464       -0.10706 
H          8.34806       -0.69685       -0.99290 
H         -2.87367        1.39465       -0.81726 
H         -5.88297        1.51332       -0.34746 
H         -5.03385        2.16260       -1.73721 
H         -4.72621        3.12455        1.15395 
H         -5.65506        3.92437       -0.09362 
H         -2.60365        3.57903       -0.08730 
H         -3.49624        5.07415        0.14039 
H         -3.52113        4.27243       -1.42912 
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S3.5.3 1Aoxa (endo) – endo-oxazolidinone derived from butyraldehyde and catalyst 1 

 
 

Figure S3.14 – ball-and-stick model of the optimized geometry of 1Aoxa (endo). 

 

H          8.03958       -1.39090        0.38876 
C          8.16004       -0.36489        0.73777 
H          9.22054       -0.11609        0.70298 
H          7.83216       -0.31090        1.77635 
H          7.50727        1.63554        0.20382 
H          7.71170        0.56291       -1.17311 
C          7.38475        0.60842       -0.13576 
N          5.93172        0.31806       -0.12531 
H          5.61109        1.54125        1.51271 
H          6.08453       -0.95003       -1.75351 
C          5.13649        0.85571        0.82608 
C          5.40127       -0.54065       -1.02409 
C          3.80454        0.55493        0.89687 
C          4.07546       -0.87400       -0.99683 
H          3.21721        1.04205        1.65920 
H          3.71883       -1.58259       -1.72774 
C          3.20790       -0.33542       -0.02236 
C          1.79942       -0.67320        0.03422 
H          1.65934       -1.35279       -2.01261 
H          1.52220       -0.09114        2.10406 
C          1.13301       -1.21064       -1.07907 
C          1.04878       -0.47630        1.21204 
C         -0.20897       -1.53025       -1.03797 
C         -0.28198       -0.80522        1.27407 
H         -0.68882       -1.92843       -1.91876 
H         -0.85868       -0.66660        2.17799 
C         -0.93068       -1.33594        0.14757 

O         -2.21891       -1.63054        0.31543 
H         -1.83993        1.44021       -0.64319 
H         -2.40739       -0.16541       -1.87892 
H         -2.70387       -2.81878       -1.32747 
C         -1.26922        4.12132       -0.67019 
C         -3.08798       -1.94818       -0.79523 
H         -2.51645        3.30729        0.89101 
C         -2.72334        2.05340       -0.84124 
C         -3.31708       -0.72185       -1.67719 
C         -2.53982        3.42494       -0.19408 
H         -2.81220        2.16421       -1.92570 
H         -3.71475       -1.05562       -2.63989 
O         -3.76367        1.02123        1.08558 
H         -4.41776       -2.73977        0.75064 
C         -3.95229        1.33544       -0.33363 
H         -3.40932        4.04842       -0.42015 
C         -4.45919       -2.16230       -0.17020 
N         -4.32485        0.09454       -0.98511 
O         -4.46266       -0.60158        2.47337 
C         -4.38919       -0.13938        1.37375 
H         -5.10919       -2.67130       -0.88144 
C         -4.93751       -0.72899        0.07063 
H         -4.81309        2.01012       -0.36412 
H         -6.02717       -0.65364        0.08479 
H         -0.38345        3.52845       -0.42634 
H         -1.15478        5.09874       -0.20021 
H         -1.28014        4.27205       -1.75228 
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S3.5.4 1Aena (E, anti) – anti-enamine derived from butyraldehyde and catalyst 1 

 
 

Figure S3.15 – ball-and-stick model of the optimized geometry of 1Aena (E, anti). 

 

C         -0.39698       -1.70603       -0.66266 
C         -1.70114       -1.31491       -0.83048 
C         -2.35145       -0.50069        0.12014 
C         -1.61674       -0.11239        1.25282 
C         -0.30973       -0.50970        1.44205 
C          0.31871       -1.31366        0.47990 
H          0.11309       -2.29962       -1.40774 
H         -2.21041       -1.60702       -1.73806 
H         -2.08215        0.48398        2.02525 
H          0.21432       -0.20191        2.33379 
C         -3.72330       -0.07740       -0.06779 
C         -4.26850        1.03876        0.60409 
C         -4.60468       -0.75018       -0.94226 
C         -5.56546        1.42048        0.40211 
H         -3.66346        1.63673        1.26722 
C         -5.89369       -0.32674       -1.10937 
H         -4.28735       -1.62840       -1.48202 
H         -5.99902        2.27722        0.89659 
H         -6.58646       -0.83101       -1.76689 
C         -7.79317        1.14746       -0.60119 
H         -7.83670        2.22907       -0.48470 
H         -8.08204        0.91473       -1.62474 
C         -8.68786        0.44184        0.40544 
H         -8.39991        0.68547        1.42856 
H         -9.71968        0.76022        0.25779 
H         -8.64508       -0.64069        0.28135 
N         -6.37432        0.75038       -0.44907 

O          1.56997       -1.76315        0.56310 
C          2.47411       -1.26580        1.57632 
C          3.79219       -1.99632        1.34653 
C          2.80718        0.21603        1.35468 
H          2.04485       -1.47172        2.55681 
C          4.50629       -1.11247        0.31062 
H          3.63987       -3.02323        1.02410 
H          4.37137       -1.99792        2.26903 
H          2.84602        0.76609        2.30181 
H          2.04712        0.69672        0.72782 
H          5.59008       -1.23088        0.37432 
C          4.09526       -1.47503       -1.12032 
O          3.34571       -0.84753       -1.81670 
C          4.63885        1.35144        0.14735 
H          5.55809        1.16855       -0.39433 
C          4.14542        2.58839        0.25310 
H          3.22245        2.74759        0.80062 
C          4.77727        3.82190       -0.32682 
H          4.04488        4.32031       -0.97281 
H          4.97290        4.53456        0.48335 
C          6.06326        3.59997       -1.11505 
N          4.10077        0.20801        0.70957 
O          4.69961       -2.61737       -1.51107 
H          4.41806       -2.80747       -2.42011 
H          5.89926        2.93791       -1.96805 
H          6.84404        3.15964       -0.49109 
H          6.44350        4.54695       -1.49913 
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S3.5.5 1Aena (E, anti, with N-H bridge*) – anti-enamine with N-H bond derived from 

butyraldehyde and catalyst 1 

 
 

Figure S3.16 – ball-and-stick model of the optimized geometry of 1Aena (E, anti, with N-H bridge*). 

 

C         -0.51327       -1.57099       -0.44475 
C         -1.82099       -1.19975       -0.63147 
C         -2.44784       -0.26786        0.22135 
C         -1.68150        0.27807        1.26345 
C         -0.35909       -0.07038        1.45255 
C          0.23673       -1.01078        0.60164 
H         -0.03417       -2.29697       -1.08683 
H         -2.37691       -1.66868       -1.43104 
H         -2.10912        1.02161        1.92156 
H          0.20172        0.38793        2.25235 
C         -3.83290        0.11352        0.02548 
C         -4.61068        0.68647        1.05431 
C         -4.49299       -0.06446       -1.20963 
C         -5.91541        1.03657        0.84147 
H         -4.20172        0.83779        2.04094 
C         -5.80023        0.30300       -1.37048 
H         -3.97239       -0.46590       -2.06478 
H         -6.53218        1.46620        1.61707 
H         -6.32215        0.18580       -2.30883 
C         -7.94182        1.17922       -0.54382 
H         -8.16140        2.02674        0.10306 
H         -8.06290        1.51031       -1.57391 
C         -8.83650       -0.00939       -0.23052 
H         -9.87844        0.27423       -0.37781 
H         -8.61820       -0.85257       -0.88662 
H         -8.71503       -0.33358        0.80348 
N         -6.50826        0.85211       -0.35879 

O          1.49150       -1.45178        0.70440 
C          2.43208       -0.88159        1.63872 
C          3.68070       -1.74261        1.52878 
C          2.91755        0.48364        1.16486 
H          1.99673       -0.86737        2.63741 
C          4.32525       -1.23485        0.23220 
H          3.46277       -2.80685        1.49921 
H          4.33090       -1.53631        2.37880 
H          3.37416        1.02222        2.00561 
H          2.11578        1.10791        0.76706 
H          5.41134       -1.32587        0.27104 
C          3.86252       -2.06314       -0.98149 
O          4.03942       -3.24570       -1.05215 
C          4.85362        1.14301       -0.21644 
H          5.65474        0.74816       -0.82793 
C          4.80467        2.43997        0.08976 
H          3.98221        2.81769        0.68802 
C          5.80885        3.46727       -0.34973 
H          5.28357        4.25217       -0.90638 
H          6.20433        3.96853        0.54087 
C          6.96859        2.94602       -1.19011 
N          3.90778        0.17216        0.13861 
O          3.25981       -1.35543       -1.94738 
H          3.20804       -0.43699       -1.61464 
H          7.64160        3.76108       -1.45625 
H          6.61768        2.49076       -2.11856 
H          7.55244        2.19957       -0.64745 

 

 

 

 

________________________ 

* between the proton of the carboxylic acid function and the pyrrolidine nitrogen   
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S3.5.6 1Boxa (exo) – exo-oxazolidinone derived from butyraldehyde, diethyl 

ketomalonate and catalyst 1 

 
 

Figure S3.17 – ball-and-stick model of the optimized geometry of 1Boxa (exo). 

N          2.20340       -1.33499       -0.05615 
C          2.53156       -2.51121        0.75988 
C          1.19479       -3.12055        1.20156 
C          0.17000       -2.07889        0.75494 
C          0.81377       -1.44750       -0.47799 
C          3.19932       -1.27540       -1.11099 
C          4.34526       -0.29697       -0.81304 
C          3.35761       -3.38170       -0.17809 
O          3.70842       -2.62601       -1.24932 
O          3.65856       -4.52952       -0.05281 
C          5.16903        0.01230       -2.07195 
C          3.72760        0.97974       -0.20861 
O          2.73585        1.44251       -1.09684 
N         -8.47390        1.15648       -0.30643 
C         -8.28587       -0.09015       -0.79319 
C         -7.08330       -0.72967       -0.67222 
C         -5.98727       -0.10736       -0.03680 
C         -6.22755        1.19403        0.45477 
C         -7.44987        1.78914        0.30872 
C         -4.70312       -0.76360        0.10380 
C         -4.58439       -2.16551        0.01012 
C         -3.36974       -2.78960        0.14509 
C         -2.20506       -2.03554        0.36314 
C         -2.29775       -0.63889        0.44719 
C         -3.52889       -0.02735        0.32998 
O         -1.07455       -2.73591        0.47685 
C         -9.76590        1.85266       -0.51086 
C         -9.77491        2.65451       -1.80262 
C          5.92967       -1.17748       -2.65467 
C          3.16142        0.68105        1.20331 
O          3.74176        0.03585        2.03651 
O          2.02461        1.36150        1.43269 
C          0.20952        2.04173        2.81993 
C          1.47860        1.22547        2.76021 
C          4.81941        2.04152        0.05250 
O          5.90660        1.79738        0.49361 

O          4.35742        3.26929       -0.22832 
C          6.18606        4.56459       -1.20990 
C          5.27380        4.38018       -0.01749 
H          3.16146       -2.22280        1.60479 
H          1.15523       -3.31424        2.27021 
H          1.00476       -4.06017        0.68266 
H          0.00972       -1.33284        1.53547 
H          0.42289       -0.46591       -0.74112 
H          0.67111       -2.12531       -1.33253 
H          2.72856       -1.01485       -2.05732 
H          4.99128       -0.72908       -0.04790 
H          5.89389        0.78602       -1.81953 
H          4.50376        0.44015       -2.82657 
H          2.56389        2.37119       -0.90203 
H         -9.13388       -0.54323       -1.28525 
H         -6.99015       -1.71543       -1.10011 
H         -5.46160        1.73679        0.98616 
H         -7.65944        2.77909        0.68645 
H         -5.46270       -2.77972       -0.13067 
H         -3.28352       -3.86602        0.09623 
H         -1.41623       -0.03328        0.58464 
H         -3.56334        1.05254        0.37153 
H         -9.92590        2.49034        0.35699 
H        -10.54316        1.09062       -0.50782 
H         -8.99813        3.41976       -1.79758 
H        -10.73922        3.14993       -1.91400 
H         -9.62148        2.00978       -2.66854 
H          5.26622       -1.95155       -3.03605 
H          6.57166       -1.63868       -1.90202 
H          6.56488       -0.84343       -3.47624 
H         -0.23253        1.96530        3.81444 
H         -0.52128        1.68567        2.09124 
H          0.41274        3.09302        2.61438 
H          2.21957        1.56674        3.48361 
H          1.29632        0.16706        2.95608 
H          5.60826        4.71249       -2.12290 
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H          6.83826        3.70156       -1.33685 
H          6.81285        5.44449       -1.05475 

H          5.83686        4.18856        0.89419 
H          4.61965        5.23707        0.12951 

 

S3.5.7 1Boxa (endo) – endo-oxazolidinone derived from butyraldehyde, diethyl 

ketomalonate and catalyst 1 

 
Figure S3.18 – ball-and-stick model of the optimized geometry of 1Boxa (endo). 

N         -2.27573        1.49421        0.53353 
C         -2.54211        2.88100        0.95902 
C         -1.19530        3.47453        1.38935 
C         -0.20614        2.34832        1.07675 
C         -0.91049        1.54173       -0.00765 
C         -3.34258        1.22948       -0.40817 
C         -3.09226        0.09876       -1.39590 
C         -3.14592        3.50952       -0.30491 
O         -3.55706        2.50193       -1.10943 
O         -3.23588        4.66742       -0.58394 
C         -4.01280        0.17257       -2.63221 
C         -3.17879       -1.29849       -0.71989 
O         -2.56870       -2.18357       -1.63209 
N          8.04187       -1.57258       -0.55717 
C          7.87597       -0.36141       -1.13415 
C          6.74193        0.37505       -0.93408 
C          5.69785       -0.10119       -0.11101 
C          5.91485       -1.36850        0.47309 
C          7.06801       -2.06481        0.24104 
C          4.48500        0.65783        0.11172 
C          4.43534        2.04596       -0.13234 
C          3.28329        2.76406        0.06720 
C          2.11346        2.12153        0.50457 
C          2.13841        0.74132        0.75435 
C          3.30933        0.03723        0.56536 
O          1.04207        2.90791        0.64892 
C          9.30850       -2.31896       -0.73779 
C         10.33311       -1.95710        0.32563 
C         -3.40389        0.96587       -3.78506 
C         -2.39169       -1.33514        0.61848 
O         -1.19626       -1.46716        0.68267 
O         -3.20396       -1.22046        1.66608 
C         -3.69590       -0.91208        3.97738 

C         -2.58787       -1.07839        2.96670 
C         -4.63857       -1.70578       -0.43307 
O         -5.54442       -0.94760       -0.22114 
O         -4.74759       -3.04042       -0.43428 
C         -5.96274       -5.08966       -0.22616 
C         -6.06240       -3.58703       -0.14245 
H         -3.29861        2.91018        1.74632 
H         -1.17947        3.75889        2.43846 
H         -0.95865        4.35724        0.79611 
H         -0.03165        1.72924        1.95875 
H         -0.51706        0.54181       -0.14628 
H         -0.83657        2.09257       -0.95575 
H         -4.97591        0.59425       -2.34632 
H         -4.20125       -0.84584       -2.97360 
H         -2.83349       -3.08400       -1.40587 
H          8.68146       -0.02137       -1.76829 
H          6.65430        1.31755       -1.45103 
H          5.18477       -1.80704        1.13499 
H          7.25894       -3.03064        0.68520 
H          5.32158        2.57739       -0.44970 
H          3.25045        3.83082       -0.10452 
H          1.25330        0.21070        1.06846 
H          3.28498       -1.03042        0.73294 
H          9.67313       -2.09080       -1.73787 
H          9.06170       -3.37898       -0.71080 
H         10.58160       -0.89597        0.28952 
H         11.24696       -2.52633        0.15634 
H          9.96543       -2.19333        1.32467 
H         -3.21369        2.00038       -3.50324 
H         -4.07942        0.97110       -4.64168 
H         -2.46188        0.51600       -4.10780 
H         -3.26944       -0.79259        4.97443 
H         -4.35006       -1.78416        3.98732 
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H         -4.29840       -0.03206        3.75150 
H         -1.93428       -0.20605        2.92412 
H         -1.97654       -1.96023        3.15975 
H         -6.93577       -5.53087       -0.00595 
H         -5.24171       -5.47629        0.49495 

H         -5.66344       -5.40781       -1.22539 
H         -6.76733       -3.17654       -0.86485 
H         -6.35554       -3.24339        0.84967 
H         -4.25920        1.03678        0.14898 
H         -2.06145        0.15666       -1.74724 

 

S3.5.8 1Bena (E, anti, with N-H bridge*) – anti-enamine derived from butyraldehyde, 

diethyl ketomalonate and catalyst 1 

 
 

Figure S3.19 – ball-and-stick model of the optimized geometry of 1Bena (E, anti, with N-H bridge*). 

N         -1.43413        2.19673       -0.00441 
C         -1.52234        3.56598       -0.52015 
C         -0.87914        4.43742        0.56838 
C          0.11169        3.47638        1.20610 
C         -0.66457        2.16850        1.23859 
C         -2.50136        1.32105       -0.22243 
C         -2.51636        0.00350        0.01064 
C         -0.79558        3.73850       -1.86763 
O         -0.67111        4.80832       -2.39142 
O         -0.32159        2.60804       -2.41445 
C         -1.33156       -0.81427        0.47621 
C         -3.82472       -0.73254       -0.23920 
O         -4.74463        0.09421       -0.92503 
N          7.25282       -2.41240        0.22614 
C          6.62118       -2.04635       -0.91135 
C          5.64212       -1.09188       -0.90826 
C          5.25574       -0.44891        0.28743 
C          5.94232       -0.85983        1.44987 
C          6.91548       -1.81884        1.39248 
C          4.21769        0.56286        0.31539 
C          3.85509        1.26402       -0.85195 
C          2.86222        2.21217       -0.83529 
C          2.16969        2.48275        0.35375 
C          2.51994        1.80768        1.52980 

C          3.53325        0.87173        1.50232 
O          1.20620        3.40409        0.26195 
C          8.35560       -3.40097        0.18208 
C          9.70027       -2.73442       -0.06090 
C         -0.12922       -0.76151       -0.47331 
C         -3.62122       -1.96570       -1.15882 
O         -2.68562       -2.13467       -1.89220 
O         -4.68376       -2.76908       -1.07406 
C         -5.98661       -4.67345       -1.68601 
C         -4.71052       -3.91660       -1.96051 
C         -4.38406       -1.23266        1.11001 
O         -3.78187       -1.95772        1.85654 
O         -5.61442       -0.76193        1.33650 
C         -7.64652       -0.58647        2.58330 
C         -6.26887       -1.19997        2.55798 
H         -2.56071        3.85414       -0.69771 
H         -1.62201        4.73119        1.30972 
H         -0.40887        5.32944        0.16390 
H          0.48015        3.79364        2.18152 
H         -1.32159        2.14982        2.11645  
H         -0.01582        1.29883        1.29448 
H         -1.63798       -1.85039        0.58916 
H         -1.03186       -0.50658        1.48153 
H         -5.61972       -0.05633       -0.54568 

 

________________________ 

* between the proton of the carboxylic acid function and the pyrrolidine nitrogen 
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H          6.92510       -2.55944       -1.81188 
H          5.15075       -0.86790       -1.84202 
H          5.73294       -0.40821        2.40687 
H          7.46207       -2.14069        2.26664 
H          4.37523        1.08306       -1.78204 
H          2.57650        2.74918       -1.72897 
H          2.00157        2.00777        2.45548 
H          3.76421        0.34485        2.41764 
H          8.11426       -4.11290       -0.60540 
H          8.34077       -3.93858        1.12862 
H          9.71206       -2.20496       -1.01409 
H         10.48141       -3.49405       -0.08440 
H          9.93868       -2.02570        0.73277 
H         -0.42254       -1.10417       -1.46390 
H         -0.51738        1.88263       -1.79291 

H         -3.37820        1.78237       -0.65672 
H          0.66974       -1.40882       -0.10501 
H          0.28647        0.24302       -0.56605 
H         -6.04237       -5.54541       -2.33927 
H         -6.85968       -4.04827       -1.87559 
H         -6.02152       -5.01740       -0.65179 
H         -3.82243       -4.51832       -1.76577 
H         -4.65591       -3.55435       -2.98740 
H         -8.16493       -0.89402        3.49256 
H         -8.23738       -0.91431        1.72740 
H         -7.59157        0.50254        2.57324 
H         -5.65605       -0.88176        3.40130 
H         -6.29721       -2.28935        2.55139 
H         -0.51738        1.88263       -1.79291 
H         -3.37820        1.78237       -0.65672 

 

S3.5.9 1Aoxa
(acetone) – oxazolidinone derived from acetone and catalyst 1 

 
 

Figure S3 20 – ball-and-stick model of the optimized geometry of 1Aoxa(acetone). 

 

H         -9.30560       -0.25817        0.58484 
C         -8.24574       -0.02746        0.69080 
H         -7.92794       -0.33773        1.68666 
H         -8.12311        1.05293        0.60831 
H         -7.58443       -1.83408       -0.31447 
H         -7.77893       -0.45504       -1.38608 
C         -7.46093       -0.75504       -0.38906 
N         -6.00847       -0.47760       -0.29405 
H         -5.69147       -2.09871        0.95244 
H         -6.15778        1.18430       -1.51812 
C         -5.21554       -1.25304        0.47817 
C         -5.47618        0.59287       -0.92464 
C         -3.88387       -0.98319        0.63118 
C         -4.15064        0.90616       -0.80447 
H         -3.29816       -1.65906        1.23413 
H         -3.79208        1.78597       -1.31522 
C         -3.28520        0.12284       -0.01052 
C         -1.87635        0.42965        0.13778 
H         -1.73007        1.63896       -1.64738 
H         -1.60587       -0.69247        1.97272 

C         -1.20562        1.24592       -0.78762 
C         -1.12855       -0.08320        1.21836 
C          0.13840        1.53422       -0.66195 
C          0.20389        0.20807        1.36661 
H          0.62231        2.15402       -1.40091 
H          0.77866       -0.17384        2.19888 
C          0.85778        1.01921        0.42494 
O          2.14836        1.24372        0.66377 
H          1.75148       -1.36053       -1.00609 
H          2.36686        0.45994       -1.86682 
H          2.62927        2.84532       -0.58140 
C          3.01932        1.86422       -0.30871 
C          2.60932       -1.90807       -1.39322 
C          3.26937        0.93444       -1.49561 
H          2.47174       -2.96109       -1.15386 
H          2.64767       -1.80631       -2.47776 
H          3.68198        1.52912       -2.31602 
O          3.72467       -1.50706        0.69240 
H          4.33344        2.20057        1.40667 
C          3.90375       -1.43067       -0.76836 
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C          4.38429        1.90519        0.36107 
N          4.27053       -0.04210       -1.04641 
O          4.42154       -0.32387        2.46980 
C          4.34171       -0.46671        1.28536 
H          5.03271        2.59836       -0.17420 
C          4.87684        0.46560        0.19520 

C          5.06632       -2.34885       -1.12266 
H          5.96683        0.40861        0.19214 
H          5.99104       -1.98922       -0.67227 
H          5.20031       -2.36983       -2.20387 
H          4.87607       -3.35949       -0.76268 

 

S3.5.10 1Aena
(acetone) (anti) – anti enamine derived from acetone and catalyst 1 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure S3.21 – ball-and-stick model of the optimized geometry of 1Aena(acetone) (anti). 

 

C         -4.74900       -0.32216       -0.11551 
C         -4.26250       -1.08310       -1.36018 
C         -2.87651       -0.50129       -1.60202 
C         -2.98337        0.94895       -1.12051 
N         -4.18996        0.99015       -0.32000 
C         -4.27198       -0.99447        1.17563 
O         -3.40028       -0.59407        1.89707 
O         -4.97852       -2.12032        1.41018 
O         -1.97932       -1.27311       -0.77025 
C         -0.67795       -0.98937       -0.71564 
C         -0.01127       -0.11716       -1.58799 
C          1.34192        0.10089       -1.43477 
C          2.08486       -0.54087       -0.43018 
C          1.39659       -1.42557        0.42546 
C          0.04756       -1.63996        0.29484 
C          3.50320       -0.29533       -0.27105 
C          4.13070        0.86102       -0.78339 
C          5.47092        1.07083       -0.61391 
N          6.24710        0.18062        0.04371 
C          5.68611       -0.93969        0.55119 
C          4.35070       -1.19632        0.40982 
C          7.68228        0.46730        0.27299 
C          7.90265        1.24630        1.55995 
C         -4.50966        2.11572        0.42343 
C         -3.78901        3.24625        0.36716 
C         -5.74794        2.01414        1.26661 

H         -5.83787       -0.30094       -0.08098 
H         -4.91013       -0.83592       -2.20053 
H         -4.24076       -2.16290       -1.23731 
H         -2.55517       -0.59054       -2.63970 
H         -3.05264        1.64650       -1.96246 
H         -2.10480        1.23245       -0.53220 
H         -4.65215       -2.51022        2.23669 
H         -0.54238        0.38375       -2.38263 
H          1.83259        0.75899       -2.13826 
H          1.91706       -1.91423        1.23719 
H         -0.48794       -2.28658        0.97506 
H          3.56129        1.62018       -1.29621 
H          5.96906        1.95398       -0.98595 
H          6.35429       -1.61936        1.05930 
H          3.96901       -2.12343        0.80766 
H          8.04082        1.01859       -0.59459 
H          8.19976       -0.49031        0.29171 
H          7.38678        2.20663        1.53341 
H          8.96790        1.43618        1.69017 
H          7.54848        0.68629        2.42595 
H         -2.89728        3.34887       -0.23243 
H         -4.10345        4.11081        0.93024 
H         -6.62436        1.76961        0.66152 
H         -5.93496        2.96256        1.76320 
H         -5.64784        1.24694        2.03758 
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S3.5.11 1Aena
(acetone) (anti, with N-H bridge*) – anti enamine derived from acetone and 

catalyst 1 

 
 

Figure S3.22 – ball-and-stick model of the optimized geometry of 1Aena(acetone) (anti, with N-H bridge*). 

 

C         -4.71566       -0.45108       -0.19160 
C         -4.18326       -0.80600       -1.58675 
C         -2.83563       -0.10601       -1.62361 
C         -3.11301        1.20488       -0.89984 
N         -4.11641        0.85849        0.10433 
C         -4.32380       -1.53028        0.83590 
O         -4.69402       -2.66479        0.73877 
O         -3.54510       -1.10292        1.84182 
O         -1.94348       -0.94425       -0.85919 
C         -0.63937       -0.67810       -0.75778 
C          0.03861        0.31039       -1.48307 
C          1.39810        0.47363       -1.30700 
C          2.13058       -0.33362       -0.42234 
C          1.42569       -1.31961        0.29816 
C          0.07189       -1.48490        0.14434 
C          3.56151       -0.16468       -0.26027 
C          4.22421        1.03203       -0.60639 
C          5.57689        1.16021       -0.45008 
N          6.32924        0.14910        0.03729 
C          5.73325       -1.01239        0.38653 
C          4.38442       -1.19159        0.24978 
C          7.78353        0.33592        0.25420 
C          8.08344        0.86041        1.64916 
C         -4.82936        1.89055        0.73585 
C         -4.47703        3.17723        0.62156 
C         -5.98404        1.46241        1.59701 

H         -5.80269       -0.41519       -0.19398 
H         -4.82799       -0.37629       -2.35329 
H         -4.11165       -1.87863       -1.74603 
H         -2.44222        0.02796       -2.63060 
H         -3.50360        1.94261       -1.61190 
H         -2.22176        1.63203       -0.43755 
H         -3.36214       -0.16005        1.66353 
H         -0.48399        0.93958       -2.18708 
H          1.90045        1.22201       -1.90414 
H          1.93861       -1.94052        1.01930 
H         -0.47568       -2.22419        0.71226 
H          3.67560        1.88257       -0.97956 
H          6.10382        2.06941       -0.69941 
H          6.38389       -1.78793        0.76311 
H          3.97269       -2.15345        0.51214 
H          8.13489        1.02123       -0.51512 
H          8.25829       -0.62803        0.07874 
H          7.61301        1.82975        1.81710 
H          9.16036        0.98070        1.76566 
H          7.73433        0.16769        2.41548 
H         -3.65250        3.51592        0.01317 
H         -5.02178        3.93160        1.16746 
H         -6.81130        1.07261        0.99986 
H         -6.35708        2.31298        2.16132 
H         -5.69637        0.68184        2.30450 

 

 

 

 

 

________________________ 

* between the proton of the carboxylic acid function and the pyrrolidine nitrogen  
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S3.5.12 Amine derived from diethyl ketomalonate and catalyst 1 

 

Figure S3.23 – ball-and-stick model of the optimized geometry of the amine derived from diethyl ketomalonate and 
catalyst 1. 

 
C          2.70900       -2.14142        0.26851 

C          1.92577       -2.70105        1.45624 

C          0.79243       -1.69903        1.59603 

C          1.46801       -0.36262        1.30190 

N          2.59210       -0.66808        0.39415 

C          2.14359       -2.67849       -1.06625 

O          1.68179       -3.78442       -1.15612 

O          2.21303       -1.85358       -2.10829 

O         -0.16107       -2.03265        0.56476 

C         -1.35439       -1.45472        0.48672 

C         -1.86921       -0.52730        1.40494 

C         -3.14313       -0.02782        1.22743 

C         -3.94059       -0.40280        0.13311 

C         -3.39333       -1.32340       -0.78671 

C         -2.13731       -1.84423       -0.61426 

C         -5.27366        0.13083       -0.04598 

C         -6.00571        0.71226        1.01292 

C         -7.26651        1.20162        0.81558 

N         -7.86058        1.15472       -0.39805 

C         -7.19546        0.60584       -1.43955 

C         -5.93324        0.10218       -1.29518 

C         -9.25367        1.62724       -0.56915 

C        -10.25973        0.50904       -0.34697 

C          3.80296        0.02537        0.72844 

C          4.80085       -0.04431       -0.45811 

O          5.98286        0.41936       -0.09358 

C          7.02487        0.48425       -1.11144 

C          3.52678        1.53843        0.93910 

O          3.81766        2.09132        1.96954 

O          4.51121       -0.42586       -1.56566 

O          2.98848        2.10150       -0.12815 

C          2.78370        3.54498       -0.09047 

C          4.05352        4.27720       -0.46195 

C          6.91257        1.75944       -1.91656 

O          4.39771       -0.47789        1.90055 

H          3.75448       -2.44608        0.30943 

H          2.54225       -2.66626        2.35373 

H          1.57176       -3.71336        1.28505 

H          0.29873       -1.72945        2.56692 

H          1.82642        0.05593        2.24660 

H          0.78360        0.35108        0.84181 

H          2.77502       -1.08480       -1.88009 

H         -1.28142       -0.19561        2.24697 

H         -3.50513        0.69990        1.94045 

H         -3.97703       -1.66657       -1.62925 

H         -1.72108       -2.56501       -1.30440 

H         -5.59711        0.75812        2.01011 

H         -7.84831        1.63784        1.61414 

H         -7.71421        0.60148       -2.38691 

H         -5.44393       -0.29211       -2.17169 

H         -9.33024        2.03954       -1.57400 

H         -9.40274        2.44434        0.13452 

H        -10.11129       -0.30292       -1.05955 

H        -11.26904        0.89792       -0.48062 

H        -10.18178        0.10323        0.66212 

H          6.94475       -0.40045       -1.73988 

H          7.94825        0.44387       -0.53892 

H          2.43554        3.81664        0.90454 
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H          1.99127        3.71232       -0.81618 

H          4.83757        4.09663        0.27255 

H          3.85708        5.35020       -0.49218 

H          4.40588        3.96604       -1.44531 

H          5.98294        1.78228       -2.48438 

H          7.74304        1.81518       -2.62219 

H          6.95842        2.63360       -1.26649 

H          4.64378        0.27863        2.45622 

 

 

S3.6 Syntheses 

Commercially purchased chemicals were used as received without further purification. 

Reactions under inert gas atmosphere were performed using dry argon, standard 

Schlenk techniques and oven-dried glassware. For thin-layer chromatography silica gel 

plates from Merck were used and spots were visualized under UV light (254/366 nm). 

Column chromatography was performed on silica gel from Merck (pore size 60 Å, 40-

63 µm). 1H NMR spectra were recorded at 400 MHz and 500 MHz and 13C NMR 

spectra were recorded at 100 MHz and 125 MHz. Chemical shifts are reported relative 

to the solvent residual peak (1H) or the solvent peak (13C) respectively.[241] The 

abbreviation “s” indicades singlet, “d” doublet, “pd” pseudo-doublet, “t” triplet, “q” 

quartet and “m” multiplet. 

 

S3.6.1 Catalyst 1 

 
 

Figure S3.24 – Structural formula of compound 1. 

 

Preparation of the charge-tagged catalyst 1 has been described previously 

(cf. Subchapter 2.5.1).[1] 
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Figure S3.25 – Synthetic route to catalyst 10. 
 

S3.6.2 (4R)-N-(tert-Butoxycarbonyl)-4-hydroxy-L-proline methyl ester (18) 

 
 

Figure S3.26 – Structural formula of compound 18. 
 

Compound 18 was prepared according to a literature protocol.[242] 

Yield = 95 %; 1H-NMR (500 MHz, DMSO-d6) δ [ppm]: 5.09 (d, 1H, J = 3.7 Hz), 4.25 

(s, 1H), 4.23-4.18 (m, 1H), 3.65/3.62 (s, 3H), 3.43-3.35 (m, 1H), 3.29-3.23 (m, 1H), 

2.15-2.07 (m, 1H), 1.93-1.84 (m, 1H), 1.39/1.32 (s, 9H); 13C-{1H}-NMR (125 MHz, 

DMSO-d6) δ [ppm]: 173.3/172.9, 153.7/153.0, 79.0/78.9, 68.5/67.8, 57.7/57.4, 

54.7/54.4, 51.8/51.7, 38.7, 28.1/27.8. HR-ESI-MS(+) [m/z]: 268.1160 [M+Na]+, calc. 

for C11H19NO5Na+: 268.1155. 
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S3.6.3 (4R)-N-tert-Butoxycarbonyl-4-methylsulfonyloxy-L-proline methyl ester 

(19) 

 
 

Figure S3.27 – Structural formula of compound 19. 
 
Compound 19 was prepared according to a literature protocol (cf. Subchapter 2.5.1).[1] 

The spectroscopic data are in agreement with those previously published.[243] 

 

S.3.6.4 4-(Pyridine-4’-yl)phenol (20) 

 
 

Figure S3.28 – Structural formula of compound 20. 
 

Compound 20 was prepared according to a literature protocol and the spectroscopic data 

are in agreement with those published.[113] 

 

S.3.6.5 (2S,4S)-1-tert-Butyl-2-methyl 4-(4-(pyridin-4´-yl)phenoxy)pyrrolidine-1,2-

dicarboxylate (21) 

 
 

Figure S3.29 – Structural formula of compound 21. 
 

Compound 21 was prepared according to a reported procedure which was slightly 

modified (cf. Subchapter 2.5.1):[1] 

4-(Pyridine-4’-yl)phenol (20, 0.34 g, 2.00 mmol) and NaH (60% dispersion in mineral 

oil, 0.12 g, 3.00 mmol) were dissolved in dry DMSO (20 mL) under inert gas 
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atmosphere. The suspension was heated to 60 °C and stirred for 2.0 h. (4R)-N-tert-

Butoxycarbonyl-4-methylsulfonyloxy-L-proline methyl ester (19, 0.65 g, 2.00 mmol) 

was added and the mixture was stirred for 6 d at 60 °C. The reaction was quenched by 

the addition of H2O (30 mL) and the aqueous phase was extracted with CH2Cl2 (3 × 

25 mL) and with Et2O (2 × 25 mL). The combined organic extracts were dried with 

MgSO4 and the solvents were removed in vacuo. Remaining DMSO was removed by 

vacuum distillation. The crude product was purified by column chromatography on 

silica gel using cyclohexane/ethyl acetate (1:2) with 5% triethylamine as eluent 

(Rf = 0.50). Compound 21 was obtained as yellowish solid. 

Yield = 51 %; 1H-NMR (500 MHz, Methanol-d4) δ [ppm]: 8.55-8.49 (m, 2H), 7.72 (pd, 

2H, J = 8.7 Hz), 7.69-7.64 (m, 2H), 7.02-6.97 (m, 2H), 5.14-5.06 (m, 1H), 4.54-4.45 (m, 

1H), 3.83-3.75 (m, 1H), 3.73/3,71 (s, 3H) 3.69-3.60 (m, 1H), 2.65-2.50 (m, 1H), 2.48-

2.40 (m, 1H), 1.51-1.40 (m, 9H); 13C-{1H}-NMR (125 MHz, Methanol-d4) δ [ppm]: 

174.1/173.9, 159.3, 156.1/155.9, 150.4, 150.1, 131.6, 129.5, 122.5, 117.4/117.3, 81.7, 

77.0/76.1, 59.3/58.9, 53.4, 52.9/52.8/52.7, 36.9/36.2, 28.7/28.5; HR-ESI-MS(+) [m/z]: 

399.1900 [M+H]+, calc. for C22H26N2O5H+: 399.1914. 

 

S.3.6.6 4-(4-(((3S,5S)-1-(tert-Butoxycarbonyl)-5-(methoxycarbonyl)pyrrolidin-3-

yl)oxy)phenyl)-1-ethylpyridinium bromide (22) 

 
 

Figure S3.30 – Structural formula of compound 22. 
 
Compound 22 was prepared according to a reported procedure (cf. Subchapter 2.5.1).[1] 

(2S,4S)-1-tert-Butyl-2-methyl 4-(4-(pyridin-4´-yl)phenoxy)pyrrolidine-1,2-dicarboxy-

late (21, 0.20 g, 0.50 mmol) was dissolved in bromoethane (99 %, 17 mL, 

225.50 mmol) and stirred for 4.5 d at 43 °C. Excessive bromoethane was removed in 

vacuo. Compound 22 was obtained as brownish-yellow, highly viscous oil. 

Yield = quant.; 1H-NMR (400 MHz, Methanol-d4) δ [ppm]: 8.91 (pd, 2H, J = 6.8 Hz), 

8.37-8.32 (m, 2H), 8.05-7.99 (m, 2H), 7.11 (pd, 2H, J = 8.9 Hz), 5.23-5.17 (m, 1H), 

4.64 (q, 2H, J = 7.3 Hz), 4.55-4.49 (m, 1H), 3.88-3.77 (m, 1H), 3.73/3.71 (s, 3H), 3.69-
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3.61 (m, 1H), 2.72-2.56 (m, 1H), 2.48-2.41 (m, 1H), 1.67 (t, 3H, J = 7.3 Hz), 1.50-1.40 

(m, 9H); 13C-{1H}-NMR (100 MHz, Methanol-d4) δ [ppm]: 174.0/173.8, 161.8, 156.9, 

156.0/155.8, 145.2, 131.2, 127.7, 124.9, 117.8, 81.8, 77.4, 76.5, 59.2/58.9, 57.2, 

53.4/52.8/52.8, 36.9, 36.2, 28.7/28.5, 16.7; HR-ESI-MS(+) [m/z]: 427.2198 [M]+, calc. 

for C24H31N2O5
+: 427.2227. 

 

S3.6.7 1-Ethyl-4-(4-(((3S,5S)-5-(methoxycarbonyl)pyrrolidin-3-yl)oxy)phenyl)-

pyridinium chloride (10) 

 
 

Figure S3.31 – Structural formula of compound 10. 
 

Compound 10 was prepared according to a literature protocol.[244] 

4-(4-(((3S,5S)-1-(tert-Butoxycarbonyl)-5-(methoxycarbonyl)pyrrolidin-3-

yl)oxy)phenyl)-1-ethylpyridinium bromide (22, 0.13 g, 0.26 mmol) was dissolved in 

MeOH (18 mL) and cooled to 0 °C with an ice bath. After dropwise addition of acetyl 

chloride (98 %, 1.0 mL, 13.73 mmol) the solution was stirred for 24 h without further 

cooling. The solvent was removed in vacuo. Compound 10 was obtained as brown, 

highly viscous oil. 

Yield = quant.; 1H-NMR (500 MHz, Methanol-d4) δ [ppm]: 8.90 (pd, 2H, J = 6.3 Hz), 

8.35 (pd, 2H, J = 6.3 Hz), 8.05 (pd, 2H, J = 8.4 Hz), 7.20-7.15 (m, 2H), 5.42-5.36 (m, 

1H), 4.78-4.71 (m, 1H), 4.63 (q, 2H, J = 7.3 Hz), 3.83 (s, 3H), 3.76-3.70 (m, 2H), 2.82-

2.73 (m, 1H), 2.72-2.65 (m, 1H), 1.67 (t, 3H, J = 7.3 Hz); 13C-{1H}-NMR (125 MHz, 

Methanol-d4) δ [ppm]: 170.1, 160.6, 156.5, 145.3, 131.3, 128.3, 125.1, 117.9, 76.6, 

59.8, 57.3, 54.3, 52.5, 35.6, 16.8; ESI-MS(+) [m/z]: 327.1711 [M]+, calc. for 

C19H22N2O3
+: 327.1703. 
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S4.1 MS analysis of reaction mixtures  

 

 

 
 

Figure S4.1 – A) ESI(+) mass spectrum of N-Ph-THIQ 11a [134.0 µM], CuCl2 [66.8 µM] and ZnEt2 [50.8 mM] in 
acetonitrile after a reaction time of 0.5 h – diluted 1:1 with acetonitrile; B) Extrema of experimental m/z values for the 

detected zinc species with m/z 164 (top, center) and calculated isotope pattern for [C6H14NZn]+ (bottom). 

 

 

 

 
 

Figure S4.2 – ESI(+) collision induced dissociation (CID) spectrum of the mass-selected ion at m/z 164. Formally the 
detected species can be described as [ZnEt2 + CH3CN + H]+. Since ZnEt2 is a highly reactive compound, we refrain 

from a distinct structural assignment. 
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Figure S4.3 – ESI(+) mass spectra of samples from acetonitrile solutions of A) N-Ph-THIQ 11a [0.64 mM] and 
CuCl2 [64.0 µM] and B) N-Ph-THIQ 11a [0.64 mM], CuCl2 [64.0 µM] and BHT [1.28 mM] at different 

reaction times – samples diluted 1:99 with CH2Cl2/MeOH (1:1). 

 
 

 
Figure S4.4 – Plot of normalized relative intensities in ESI(+) spectra of acetonitrile solutions of 11a [50.0 mM] and 

CuCl2 [5.0 mM] at different reaction times; ZnEt2 [0.2 M] was added after 1 h (red dotted line) – samples diluted 
1:400 with CH2Cl2/MeOH (1:1). 

________________________ 

* Note that: 
- The ESI conditions are a bit too harsh to completely suppress unintended oxidation of 11a to 14a 

during the ionization. 
- No O2 was applied to reoxidize the copper(I) to copper(II). 
- Similar to the results of Klussmann and coworkers[225] for another CDC reaction, the inhibiting 

effect of BHT is too slow to fully suppress the reaction.  
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Figure S4.5 – A zoom into the ESI(+) mass spectrum of N-naphthyl-THIQ 11b [0.313 mM] and CuCl2 [0.125 mM] 
in acetonitrile 2.5 minutes after mixing  – sample diluted 1:10 with CH2Cl2/MeOH (1:1) and analyzed with an 

Orbitrap XL mass spectrometer with resolution set to R = 100000. 

 

 

S4.2 Details of EC-MS experiments  

The voltage-dependent ion-intensity curves were obtained with a commercial 

electrochemical flow cell (Antec Scientific ROXY potentiostat and thin-layer 

ReactorCell) arranged between a manually controlled syringe pump (Cole Parmer) and 

the ESI source of a Q/TOF mass spectrometer (Figure S4.6). Analyte solutions were 

continuously pumped from a 250 µL glass syringe (Hamilton) in and out of the EC cell 

into the ESI ion source through PEEK tubing (1/16” OD x 0.13 mm ID) with a flowrate 

of 300 µL/h. We used a magic diamond (MD) working electrode (Ø: 8 mm), a 50 µm 

spacer, and a HyREF reference electrode (EHyREF [mV] = EAg/AgCl [mV] – 328 [mV] 

+ 29.9 • pH-value). The resulting cell volume was 0.7 µL. At the beginning of every 

experiment analyte solutions were pumped through the whole setup while the EC cell 

remained switched off until a stable MS signal was adjusted. The different EC cell 

events (see Table S4.1–Table S4.3) were programmed beforehand using the software 

Dialogue (Antec Scientific) on a computer which was connected to the EC cell for 

controlling. We programmed a delayed switch-on time for the flow cell within the 

voltage climax EC programs with the aim to record a chromatogram of mass spectra 

unaffected by an applied voltage before recording the actual voltage-dependent ion-

intensity curve. This should check and monitor preferably stable ion abundances. The 
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climax-like voltage variation of the EC cell curves had the purpose to proof 

reproducibility. Due to the continuous analyte flow the initial MS spectra should 

approximately be recovered at the end of the experiment when the EC cell is switched 

off again. Moreover, we recalibrated the voltage trace of every measurement to erase 

the time lag between oxidative penetration and MS analysis. This time lag was 

determined by manually switching on the EC cell at 2-3.5 Volt and measurement of the 

time between this switch-on and the detection of oxidized species (usually 0.2–

0.4 min.). Since the used programs (for MS and EC cell) were operated separately it 

was also very important to note the time lag between MS acquisition and the start of the 

EC cell event. 

 

S4.2.1. Experimental setup 

 
 

Figure S4.6 – A) Schematic experimental assembly of the EC-MS setup – All parts of the EC cell were purchased 
from Antec Scientific; B) Depiction of the EC cell parts. 

 

S4.2.2. CDC reaction between ZnEt2 and electrochemically formed 

iminium 14a 

For the electrochemically induced coupling reaction, a solution of N-Ph-THIQ 11a 

[9.5 µM] in dry acetonitrile was pumped continuously through the EC flow cell similar 

to the setup of Figure S4.6, where it was perpetually oxidized with applying the EC 

program from Table S4.3. However, the oxidized solution was not pumped into the ESI 

source of a mass spectrometer, but into a septum sealed Schlenk flask with an 

acetonitrile solution of ZnEt2 [0.1 M]. This solution was prepared under argon with dry 

acetonitrile (0.54 mL) and a solution of ZnEt2 in n-hexane [1 M] (60 µL, 60 µmol). The 
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solution of N-Ph-THIQ 11a was oxidized and led into the ZnEt2 solution with a flow 

rate of 500 µL/h for 105 min. Afterwards a 100 µL sample of the reaction solution was 

drawn, diluted 1:10 with CH2Cl2/MeOH (1:1) and analyzed by ESI-MS. The resulting 

MS spectrum is shown in Figure 4.5 and Figure S4.7.  

 

 

 
 

Figure S4.7 – ESI(+) mass spectrum of reaction solution of the electrochemically induced CDC reaction between 
N-Ph-THIQ 11a and ZnEt2 in acetonitrile after a reaction time of 105 min – diluted 1:10 with CH2Cl2/MeOH (1:1). 
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S4.2.3. EC cell progamms 

Table S4.1 – EC cell program for the voltage/ion-intensity curve experiments with a voltage climax of 2.0 V. 

time [min] command applied voltage [V] 

0.00 start event - 

2.95 set DC 0.1 

3.00 Cell on - 

3.20 set DC 0.2 

3.40 set DC 0.3 

3.60 set DC 0.4 

3.80 set DC 0.5 

4.00 set DC 0.6 

4.20 set DC 0.7 

4.40 set DC 0.8 

4.60 set DC 0.9 

4.80 set DC 1.0 

5.00 set DC 1.1 

5.20 set DC 1.2 

5.40 set DC 1.3 

5.60 set DC 1.4 

5.80 set DC 1.5 

6.00 set DC 1.6 

6.20 set DC 1.7 

6.40 set DC 1.8 

6.60 set DC 1.9 

6.80 set DC 2.0 

7.00 set DC 1.9 

7.20 set DC 1.8 

7.40 set DC 1.7 

7.60 set DC 1.6 

7.80 set DC 1.5 

8.00 set DC 1.4 

8.20 set DC 1.3 

8.40 set DC 1.2 

8.60 set DC 1.1 

8.80 set DC 1.0 

9.00 set DC 0.9 

9.20 set DC 0.8 

9.40 set DC 0.7 

9.60 set DC 0.6 

9.80 set DC 0.5 

10.00 set DC 0.4 

10.20 set DC 0.3 

10.40 set DC 0.2 

10.60 set DC 0.1 

10.80 set DC 0.0 

11.00 Cell off - 

15.00 end event - 
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Table S4.2 – EC cell program for the voltage/ion-intensity curve experiments with a voltage climax of 3.5 V. 

 

  

time [min] command applied voltage [V]  time [min] command applied voltage [V] 

0.00 start event -  12.00 set DC 3.4 

4.95 set DC 0.1  12.20 set DC 3.3 

5.00 Cell on -  12.40 set DC 3.2 

5.20 set DC 0.2  12.60 set DC 3.1 

5.40 set DC 0.3  12.80 set DC 3.0 

5.60 set DC 0.4  13.00 set DC 2.9 

5.80 set DC 0.5  13.20 set DC 2.8 

6.00 set DC 0.6  13.40 set DC 2.7 

6.20 set DC 0.7  13.60 set DC 2.6 

6.40 set DC 0.8  13.80 set DC 2.5 

6.60 set DC 0.9  14.00 set DC 2.4 

6.80 set DC 1.0  14.20 set DC 2.3 

7.00 set DC 1.1  14.40 set DC 2.2 

7.20 set DC 1.2  14.60 set DC 2.1 

7.40 set DC 1.3  14.80 set DC 2.0 

7.60 set DC 1.4  15.00 set DC 1.9 

7.80 set DC 1.5  15.20 set DC 1.8 

8.00 set DC 1.6  15.40 set DC 1.7 

8.20 set DC 1.7  15.60 set DC 1.6 

8.40 set DC 1.8  15.80 set DC 1.5 

8.60 set DC 1.9  16.00 set DC 1.4 

8.80 set DC 2.0  16.20 set DC 1.3 

9.00 set DC 2.1  16.40 set DC 1.2 

9.20 set DC 2.2  16.60 set DC 1.1 

9.40 set DC 2.3  16.80 set DC 1.0 

9.60 set DC 2.4  17.00 set DC 0.9 

9.80 set DC 2.5  17.20 set DC 0.8 

10.00 set DC 2.6  17.40 set DC 0.7 

10.20 set DC 2.7  17.60 set DC 0.6 

10.40 set DC 2.8  17.80 set DC 0.5 

10.60 set DC 2.9  18.00 set DC 0.4 

10.80 set DC 3.0  18.20 set DC 0.3 

11.00 set DC 3.1  18.40 set DC 0.2 

11.20 set DC 3.2  18.60 set DC 0.1 

11.40 set DC 3.3  18.80 set DC 0.0 

11.60 set DC 3.4  20.10 Cell off - 

11.80 set DC 3.5  25.00 end event  
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Table S4.3 – EC cell program for the electrochemical oxidation of N-Ph-THIQ 11a for the subsequent reaction with 
ZnEt2; The program was repeated throughout the whole experiment. 

time [min] command applied voltage [V] 

0.00 start event - 

0.00 Cell on - 

0.00 set DC 4.0 

0.10 set DC 4.1 

0.20 set DC 4.2 

0.30 set DC 4.3 

0.40 set DC 4.4 

0.50 set DC 4.3 

0.60 set DC 4.2 

0.70 set DC 4.1 

0.80 end event  

 

 

 

 

S4.3 Voltage/ion-intensity curves 

 
 

Figure S4.8 – Voltage/ion-intensity curve of 11b; Selected-ion-chromatograms of m/z 260, 258 and 132 plotted 
against the applied voltage to a solution of N-naphth-2-yl-THIQ 1b [3.2 µM] in  

CH2Cl2/MeOH (1:1) - voltage climax 2.0 V. 
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Figure S4.9 – Voltage/ion-intensity curve of 11c; Selected-ion-chromatograms of m/z 220, 218 and 105 plotted 
against the applied voltage to a solution of N-(2-acetoxyethyl)-THIQ 11c [30.5 µM] in  

CH2Cl2/MeOH (1:1) - voltage climax 3.5 V. 

 

 

 
 

Figure S4.10 – Voltage/ion-intensity curve of 11d; Selected-ion-chromatograms of m/z 286, 270, 256 and 232 
plotted against the applied voltage to a solution of N-(Butoxycarbonyl)-THIQ 11d [19.2 µM] in 

CH2Cl2/MeOH (1:1) - voltage climax 3.5 V.  
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Figure S4.11 – Voltage/ion-intensity curve of 11e; Selected-ion-chromatograms of m/z 290 and 266 plotted against 
the applied voltage to a solution of N-(carbobenzyloxy)-THIQ 11e [30.5 µM] in 

CH2Cl2/MeOH (1:1) - voltage climax 3.5 V. 

 

 

 
 

Figure S4.12 – Voltage/ion-intensity curve of 11f; Selected-ion-chromatograms of m/z 310 and 286 plotted against 
the applied voltage to a solution of N-(tosyl)-THIQ 11f [30.5 µM] in CH2Cl2/MeOH (1:1) - voltage climax 3.5 V. 
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Figure S4.13 – Voltage/ion-intensity curve of 11a and 11b (simultaneously); Selected-ion-chromatograms of m/z 
260, 258, 210 and 208 plotted against the applied voltage to a solution of N-Ph-THIQ 1b [9.5 µM] and of N-naphth-

2-yl-THIQ 11b [9.5 µM] in CH2Cl2/MeOH (1:1) - voltage climax 2.0 V. 

 

 

S4.4 Cyclic voltammetry  

 

 
Figure S4.14 – Cyclic voltammogram of ferrocene in acetonitrile; scan rate: 50 mVs-1. 
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Figure S4.15 – Cyclic voltammogram of 11a in acetonitrile [5 mM]; scan rate: 50 mVs-1. 

 

 

 

 
Figure S4.16 – Cyclic voltammogram of 11b in acetonitrile [5 mM]; scan rate: 50 mVs-1. 
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Figure S4.17 – Cyclic voltammogram of 11c in acetonitrile [10 mM]; scan rate: 50 mVs-1. 

 

 

 

 
Figure S4.18 – Cyclic voltammogram of 11d in acetonitrile [10 mM]; scan rate: 50 mVs-1. 
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Figure S4.19 – Cyclic voltammogram of 11e in acetonitrile [10 mM]; scan rate: 50 mVs-1. 

 

 

 

 
Figure S4.20 – Cyclic voltammogram of 11f in acetonitrile [10 mM]; scan rate: 50 mVs-1. 
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S4.5 Chemicals and syntheses 

All commercially obtained chemicals were used as received without further purification. 

CuCl2 was purchased from Alfa Aesar. Diethylzinc (1 M in n-hexane and 1.5 M in 

toluene) was purchased from Acros Organics and Sigma Aldrich. TLC was performed 

on silica gel plates from Macherey-Nagel and Merck and spots were visualized with a 

UV lamp (254/366 nm). Column chromatography was performed on silica gel from 

Merck (pore size 60 Å, 40-63 µm). 1H NMR spectra were recorded at 400 MHz and 500 

MHz and 13C NMR spectra were recorded at 101 MHz and 125 MHz. Chemical shifts 

are reported relative to the solvent residual peak (1H) or the solvent peak (13C) 

respectively.[241] 

 

S4.5.1. N-Phenyl-1,2,3,4-tetrahydroisoquinoline (11a) 

 

 
 

Figure S4.21 – Structural formula of compound 11a. 

11a was prepared according to a reported procedure.[245] The spectroscopic data are in 

agreement with those previously published.[246] 

 

S4.5.2. N-naphth-2-yl-1,2,3,4-tetrahydroisoquinoline (11b) 

 

 
 

Figure S4.22 – Structural formula of compound 11b. 

11b was prepared according to a reported procedure.[245]  
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Yield (59 %), Rf = 0.5 (cyclohexane/ethyl acetate = 24:1). 1H-NMR (400 MHz, 

CD2Cl2) δ = 7.82-7.73 (m, 3H), 7.47-7.42 (m, 1H), 7.39 (dd, 1H, J = 9.0 Hz, 2.5 Hz), 

7.34-7.29 (m, 1H), 7.27-7.20 (m, 5H), 4.54 (s, 2H), 3.69 (t, 2H, J = 5.9 Hz), 3.06 (t, 2H, 

J = 5.9 Hz) ppm. 13C-NMR (101 MHz, CD2Cl2) δ = 149.0, 135.5, 135.5, 135.1, 129.2, 

129.1, 128.5, 127.9, 127.1, 127.0, 126.9, 126.8, 126.6, 123.4, 119.1, 109.4, 51.4, 47.5, 

29.7 ppm. HR-ESI-MS(+) m/z: 260.1444 [M + H]+, calc. for C19H18N+: 260.1434. 

 

S4.5.3. N-Acetoxyethyl-1,2,3,4-tetrahydroisoquinoline (11c) 

 

 
 

Figure S4.23 – Structural formula of compound 11c. 

1,2,3,4-Tetrahydroisoquinoline (666 mg, 5.00 mmol, 1.0 eq.) were dissolved in CH3CN 

(10.0 mL). K2CO3 (1.35 g, 9.77 mmol, 1.9 eq.) and NaI (75.0 mg, 500 µmol, 0.1 eq.) 

were added and the resulting mixture was stirred for 5 min. After the addition of ethyl 

bromoacetate (600 µL, 5.44 mmol, 1.1 eq.) the mixture was stirred for 6 h at 60 °C. The 

reaction was allowed to cool down to rt before adding ethyl acetate (15.0 mL) and H2O 

(10 mL). The layers were separated and the aqueous layer was extracted with ethyl 

acetate (2 × 10 mL). The combined organic phases were dried over anhydrous MgSO4, 

concentrated in vacuo and purified by flash column chromatography to afford the 11c as 

a yellowish oil. 

Yield (75 %), Rf = 0.17 (cyclohexane/ethyl acetate = 3:2). 1H-NMR (500 MHz, 

CD2Cl2) δ = 2.08 (s, 3H), 2.86 – 2.86 (m, 4H), 2.91 (t, J = 6.0 Hz, 2H), 3.72 (s, 1H), 

4.30 (t, J = 5.9 Hz, 2H), 7.00 – 7.14 (m, 4H) ppm. 13C-NMR (125 MHz, CD2Cl2) δ = 

171.2, 134.4, 134.2, 126.7, 126.4, 125.8, 62.1, 56.4, 56.3, 51.2, 28.9, 21.2 ppm. HR-

ESI-MS(+) m/z: 242.1148 [M + Na]+, calc. for C13H17NO2Na+: 242.1151.   
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S4.5.4. N-Boc-1,2,3,4-tetrahydroisoquinoline (11d) 

 

 
 

Figure S4.24 – Structural formula of compound 11d. 

 

11d was prepared according to a reported procedure.[247] The spectroscopic data are in 

agreement with those previously published.[248] 

 

S4.5.5. N-Benzyloxycarbonyl-1,2,3,4-tetrahydroisoquinoline (11e) 

 

 
 

Figure S4.25 – Structural formula of compound 11e. 

11e was prepared according to a reported procedure and the spectroscopic data are in 

agreement with this literature.[249] 

 

S4.5.6. N-Tosyl-1,2,3,4-tetrahydroisoquinoline (11f) 

 

 
 

Figure S4.26 – Structural formula of compound 11f. 

11f was prepared according to a reported procedure and the spectroscopic data are in 

agreement with this literature.[250] 

 


