
Improved Cardinality Bounds
for

Rectangle Packing Representations

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Vorgelegt von

Jannik Silvanus

aus

Gerolstein

Bonn, März 2019



ii

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erstgutachter: Herr Professor Dr. Stefan Hougardy
Zweitgutachter: Herr Professor Dr. Jens Vygen

Tag der Promotion: 27.05.2019
Erscheinungsjahr: 2019



Acknowledgments

First and foremost, I would like to deeply thank my advisors Professor Dr.
Stefan Hougardy and Professor Dr. Jens Vygen for guiding and supporting me
in the last years. Their invaluable advice, insights and expertise have been
essential for my theoretical and practical work.

Special thanks go to Professor Dr. Dr. h.c. Bernhard Korte for providing
excellent working conditions at the Research Institute for Discrete Mathematics.

I also need to thank my colleagues: First, I would like to particularly
thank Philipp Ochsendorf for the productive joint work on BonnPlace; I will
certainly miss those technical problem solving sessions. Furthermore, I would
like to thank the other current and former members of the BonnPlace team,
including Dr. Ulrich Brenner and Dr. Jan Schneider. I also thank the rest of
the team, in particular Anna Hermann, Pascal Cremer, Markus Ahrens, Pietro
Saccardi, and Siad Daboul. Lastly, I thank Professor Dr. Stephan Held for his
help regarding BonnOpt and the IBM environment, and Dr. Nicolai Hähnle
for many inspiring discussions.

I wish to thank my sister Anna Silvanus and my parents Gertrud and
Manfred Silvanus. Sadly, my mother is no longer with us to see me complete
this thesis. My parents’ permanent support allowed me a care-free time as
student, despite my father having to accept that I would study mathematics
instead of studying something proper (i.e., becoming an engineer). Of course, I
have to thank Anna Hermann again, not only for proofreading this thesis, but
particularly for the enduring support during the last months.

Finally, I would also like to thank the The On-Line Encyclopedia of Integer
Sequences which made me aware of plane permutations, an insight that proved
to be crucial for this thesis.

iii





Contents

Acknowledgments iii

Contents v

1 Introduction 1

2 Placement in Chip Design 5
2.1 Global Placement . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Macro Placement . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 BonnMacro Overview . . . . . . . . . . . . . . . . . . 8
2.2.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . 10

2.3 Floorplanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Preliminaries 15
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Sets and Functions . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Relations and Orders . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Placements and Representations . . . . . . . . . . . . . . . . . . 17
3.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Floorplans . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Pattern-Avoiding Permutations . . . . . . . . . . . . . . . . . . 24
3.4.1 Plane Permutations . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Biplane Permutations . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Baxter Permutations . . . . . . . . . . . . . . . . . . . . 31

4 Sequence Pairs 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



vi Contents

4.1.1 Geometric Construction: Steplines . . . . . . . . . . . . 34
4.1.2 Structural Permutations . . . . . . . . . . . . . . . . . . 35

4.2 Strict Partial Orders and Biorders . . . . . . . . . . . . . . . . . 37
4.3 The New Construction: Biorder Digraphs . . . . . . . . . . . . . 38
4.4 Reachability in Arborescences . . . . . . . . . . . . . . . . . . . 45

5 Improved Upper Bound 47
5.1 Augmented Digraphs . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 New Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Improved Lower Bound 53
6.1 Forcing Placements . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Many Forced Sequence Pairs . . . . . . . . . . . . . . . . . . . . 55
6.3 Completing the Lower Bound . . . . . . . . . . . . . . . . . . . 60
6.4 Characterization of Forced Sequence Pairs . . . . . . . . . . . . 62

7 Computational Bounds 63
7.1 Theoretical Foundation: Configurations . . . . . . . . . . . . . . 64

7.1.1 Interval Orders . . . . . . . . . . . . . . . . . . . . . . . 64
7.1.2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1.3 Tight Configurations . . . . . . . . . . . . . . . . . . . . 69
7.1.4 SP-Equivalence . . . . . . . . . . . . . . . . . . . . . . . 74
7.1.5 Normalized Configurations . . . . . . . . . . . . . . . . . 79

7.2 Configuration Enumeration . . . . . . . . . . . . . . . . . . . . 80
7.2.1 Partial Configurations and Enumeration Algorithm . . . 80
7.2.2 Consistency Pruning . . . . . . . . . . . . . . . . . . . . 82
7.2.3 Normalization Pruning . . . . . . . . . . . . . . . . . . . 84
7.2.4 Tightness Pruning . . . . . . . . . . . . . . . . . . . . . 87
7.2.5 Implementation Details . . . . . . . . . . . . . . . . . . . 96
7.2.6 SP-Equivalence Filtering . . . . . . . . . . . . . . . . . . 99

7.3 Set Cover Results . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3.1 Set Cover Algorithm . . . . . . . . . . . . . . . . . . . . 101
7.3.2 Main Result: Set Cover Solutions . . . . . . . . . . . . . 103
7.3.3 Analysis of Upper Bound Construction . . . . . . . . . . 106
7.3.4 Symmetric Sets of Sequence Pairs . . . . . . . . . . . . . 108

Summary 115

Notation 117

Index 119

Bibliography 121



Chapter 1
Introduction

In this thesis, we consider axis-aligned rectangle packings. These can be
characterized by the set of spatial relations that hold for pairs of rectangles
(west, south, east, north). A representation of a packing consists of one satisfied
spatial relation for each pair, see Figure 1.1. We call a set R of representations
complete if R contains a representation of every packing of any n rectangles.
Both in theory and practice, the fastest known algorithms for many rectangle
packing problems enumerate a complete set R of representations. The running
time of these algorithms is dominated by the (exponential) size of R.

In this work, we improve the best known lower and upper bounds on the
minimum cardinality of complete sets of representations. The new upper bound
implies theoretically faster algorithms for many rectangle packing problems,
while the new lower bound imposes a limit on the running time that can be
achieved by any algorithm following this approach.

1
2

3
4

(a) A packing admitting
two representations.

Pair r r′

(1, 2) west west
(1, 3) south south
(1, 4) west west
(2, 3) south east
(2, 4) south south
(3, 4) west west

(b) Two representations of
the packing on the left.

1
2

3
4

(c) A packing represented
by r, but not by r′.

Figure 1.1: Rectangle packing representations.
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2 Chapter 1. Introduction

Rectangle Packing and Its Applications

In the simplest rectangle packing problem variant, we are given a set of small
rectangles and one large rectangle, and the task is to find an axis-aligned
packing of the small rectangles into the large rectangle. This problem is
provably computationally difficult1 ([GJ79]), and all known exact algorithms
require exponential running time.

Often, additional constraints have to be satisfied, for example constraints
on the positions of rectangles ([DLMT08]), or upper bounds on the distances
of certain rectangles ([Och19]).

Moreover, one is usually interested in solutions that are not only feasible
(i.e., disjoint packings that satisfy all constraints), but also optimize certain
objectives. Examples of typical objectives include the perimeter or area of
the smallest enclosing rectangle ([MFNK96]), or the total displacement of the
small rectangles compared to an initial, overlapping solution ([BV04; Woc17]).
Another popular variant fixes only the width of the enclosing rectangle, and
asks for a packing that minimizes the total height ([BCR80]).

Rectangle packing problems naturally occur in pallet loading ([Hod82]),
where a set of rectangular objects has to be packed onto a rectangular pallet
using a single layer. The second obvious application of rectangle packing lies
in two-dimensional cutting stock problems: Here, raw rectangular stock sheets
need to be cut into small rectangular pieces ([GG65]), for example in the glass
industry ([Mad79]).

More recently, (map) labeling problems ([FW91; Bar+14]) have been
considered: Rectangular text labels, for example on a map, need to be arranged
in such a way that no two labels intersect.

A less obvious application of rectangle packing is given by certain job
scheduling problems with a shared resource: Each job is represented by a
rectangle whose width corresponds to the contiguous amount of some resource
that is blocked while processing the job, and whose height models the required
time to process the job. Examples include the parallel execution of programs
([Cod60]) and assignments of container ships to berths ([LLQ04; DLMT08]).

However, the application that has driven most theoretical and practical
advances in rectangle packing is chip design: Computer chips consist of
hierarchical, rectangular modules which are connected by millions of electrical
wires and need to be arranged in an axis-aligned packing ([HKRV11]). In a
good packing, the total wire length should be small, as otherwise there might
not be enough space to fit all wires, and moreover the power consumption
of a chip is closely related to the total wire length. Moreover, performance
requirements impose a limit on the time a signal may take to traverse a wire,
and thus on the length of individual wires ([Och19]). See also Chapter 2.

1More precisely, the rectangle packing problem is strongly NP-complete, which can be
shown by a simple reduction from 3-Partition ([GJ79]).
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(a) A non-compacted rectangle
packing.

1

2 3

(b) A compaction of the pack-
ing on the left.

Figure 1.2: Rectangle packing compactions.

Exact Algorithms

In some applications, the (absolute and relative) positions of the rectangles
are not relevant, for example when only minimizing the area of the smallest
rectangle enclosing the packing. In this case, one can restrict to so-called
compacted packings, where no rectangle can be moved to the south or west
without introducing overlap or leaving the enclosing rectangle, cf. Figure 1.2. If
the dimensions of the rectangles are fixed, compacted packings can be efficiently
encoded using O-trees ([GCY99; Tak00]) and B*-trees ([CCWW00]), both of
which allow O

(
n!
n1.5 4n

)
possible encodings for n rectangles and which are the

basis of the theoretically fastest known algorithms for such problems.
However, often the actual positions of the rectangles are important: In chip

design, wire connections need to be short. Similarly, in berth allocation, moving
a rectangle horizontally changes the ship’s position on the berth and hence
the total distance that containers need to be moved, and vertical positions
determine the ships’ waiting times ([DLMT08]). In order to avoid confusion
with the packing variants depicted above, we call these problems placement
problems , consistent with the terminology used in chip design ([HKRV11]).

For placement problems, there is not necessarily an optimum solution that is
compacted, and enumerating O-trees or B*-trees no longer suffices. Instead, the
fastest known algorithms (both in theory and practice) enumerate a complete
set of representations, and for each representation r compute an optimum
placement that is represented by r ([KV08]). In the case of practical algorithms,
the enumeration of representations usually follows a branch-and-bound scheme
([OTT91; FHS16]) or is implicit in an integer programming formulation ([Xu+17;
Woc17; Och19]). Note that the set of placements represented by a fixed
representation r forms a polyhedron with one inequality per rectangle pair, and
hence can be efficiently optimized over using linear programming techniques. In
many cases, the problem of finding an optimum placement that is represented
by r even reduces to a more specific problem which can be solved more quickly,
for example a minimum-cost flow problem ([CFS70; FHS16]).



4 Chapter 1. Introduction

Outline

In Chapter 2, we give more details on placement problems in chip design, and
summarize our practical contributions in this area, which will not be dealt with
in the remainder of this thesis.
In Chapter 3, we fix some general notation, formally introduce rectangle
placements and their representations, and discuss previous work. Furthermore,
we introduce pattern-avoiding permutations which are a key tool for our new
results.
Then, in Chapter 4, the classical sequence pair representation of size (n!)2

([Jer85]) is revisited, which will be the basis for our work. We show a new
construction from which the results of Jerrum [Jer85] can be recovered, and
derive new properties of sequence pairs.
In Chapter 5, we prove a new upper bound of O

(
n!
n6 · (11+5

√
5

2
)n
)

on the
minimum cardinality of complete sets of representations for n rectangles, where
11+5

√
5

2
≤ 11.091. This improves upon the previously best upper bound of

O
(

n!
n4.5 · 32n

)
by Shen and Chu [SC03].

In Chapter 6, we improve the previously best lower bound of n! · 2n−1 ([Sil11])
to Ω

(
n!
n4 · (4 + 2

√
2)n
)
, where 4 + 2

√
2 ≥ 6.828.

Finally, in Chapter 7, we empirically compute the minimum cardinality of
complete sets of representations for small n. Our computations directly suggest
two conjectures, connecting well-known Baxter permutations (cf. Section 3.4.3)
with the set of permutations avoiding an apparently new pattern, which in turn
seem to generate complete sets of representations of minimum cardinality.
Most results of Chapters 4, 5 and 6 are joint work with Jens Vygen ([SV17]).



Chapter 2
Placement in Chip Design

Now, we introduce practical placement problems in chip design in greater
detail, giving more context for this work. Moreover, we briefly describe our
contributions to these practical problems.

The Research Institute for Discrete Mathematics at the University of Bonn
maintains a close cooperation with IBM on chip design (also called VLSI1
design). As part of this cooperation, the software suite BonnTools ([KRV07;
HKRV11]) is developed, which contains optimization algorithms for a wide range
of problems occurring in VLSI design and which has been used for the design
of hundreds of chips at IBM, including the latest POWER and mainframe
processors. The placement engine of BonnTools is called BonnPlace
([BSV08; BHHO15]). The theoretical results in this work have been directly
motivated by the work on BonnPlace algorithms. The details of this practical
work will be briefly covered in this chapter.

The logical properties of a chip are modeled in a hardware description
language (HDL), e.g., Verilog or VHDL. The HDL description is compiled to a
netlist that consists of cells (also called circuits) that implement elementary
logic functions, for example NAND, NOR, and NOT, as well as register cells that
are used to store single bits. Each cell has a set of input and output connectors,
called pins . Additionally to the set of cells, the netlist also contains the set of
nets : Each net consists of a single input pin (which is the output pin of a cell,
or an external input), and a set of output pins (which are input pins of cells,
or external outputs), and models a required electrical connection.

In a design step called physical design, the cells of the netlist have to be

1Very Large Scale Integration

5



6 Chapter 2. Placement in Chip Design

placed (called placement), and all nets have to be realized by physical wires
(called routing). As part of physical design, the netlist may also be slightly
changed: For long wire connections, repeaters may need to be inserted, and
some cells may be replaced by different cells that implement the same logical
function, but have different electrical properties, for example with respect to
timing and power consumption.

A chip consists of many layers which are arranged on top of each other.
The lowest layer is the placement layer, the only layer that contains transistors,
followed by multiple wiring layers, which are connected by via layers. Manu-
facturing constraints require wires to have axis-aligned rectilinear shapes, and
most layers are even uni-directional, i.e., only allow wires in a single direction.

Cells usually have a rectangular outline. Since there is only a single
placement layer, cells must be placed disjointly, and technical constraints
forbid cell rotations. Hence, a valid placement consists of an axis-aligned
rectangle packing.

The quality of a placement is almost entirely determined by its routing
properties: In the first place, the placement must be routable at all, i.e., there
must not be areas where the available wiring space does not suffice to fit all
wires. Moreover, the power consumption of a chip closely depends on the total
wire length, and finally single wires may not be too long, since otherwise signals
take too long to traverse them, limiting the frequency of the chip.

2.1 Global Placement
Each cell needs to be supplied with two different voltage levels which drive
the CMOS transistors used in the implementation of the cell logic and which
are used to encode binary information on a chip. The distribution of these
voltages is implemented in the power grid . The power grid contains horizontal,
equidistant power wires of alternating voltage levels which partition the chip
area into circuit rows . The height of all cells must be a multiple of the circuit
row height, and the height of almost all cells equals the circuit row height.
Such cells are called standard cells . In a valid placement, standard cells need
to align to the circuit rows.

Standard cell placement is also called global placement . Instances are often
huge, containing millions of cells. On the other hand, since all rectangles have
the same height and small width, finding a feasible placement is almost always
trivial, and the difficulty only lies in finding a good placement.

Global placers commonly relax the disjointness constraint to a density
constraint, which requires that everywhere on the chip, the local amount of cell
area does not exceed (a certain fraction of) the available free area. After finding
a placement that satisfies density constraints, the legalization step removes
overlaps ([BV04]), which can usually be done using local changes only.

Thus, the characteristics of global placement are more similar to a con-
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tinuous problem, and hence usually numerical methods are applied ([BV08]).
BonnPlaceGlobal, the global placer of BonnPlace, also uses this idea,
following a recursive approach that assigns cells into smaller and smaller rect-
angular regions, starting with a single region containing the whole chip area. In
each recursion level, a quadratic programming (QP) relaxation (which ensures
small net length) is solved, subject to the constraint that each cell remains in
its region. Then, by solving a minimum-cost flow problem on a bipartite graph,
cells are assigned to the smaller regions of the next recursion level, respecting
the regions’ capacities and minimizing the total induced cell movement.

Other global placers directly incorporate cell density into the relaxation:
Solving the quadratic program is equivalent to minimizing the energy of a
system of attracting forces, and cell spreading is achieved by adding forces to
that system: Spindler, Schlichtmann, and Johannes [SSJ08] iteratively legalize
the QP solution, and add forces pulling cells towards their legalized position,
Lu et al. [Lu+14] add repelling forces, imitating an electrostatic system.

2.2 Macro Placement
Macros are large, non-standard cells. Macros come in two flavors:

Firstly, there are pre-designed macros that are repeatedly used on the same
chip, for example memory arrays containing SRAM memory for processor-
internal caches.

Secondly, there are macros that contain ordinary combinatorial logic and
are often used only once. These occur in hierarchical design: The netlist of a
large chip is partitioned into several clusters, and each cluster is assigned a
rectangular shape that is large enough to contain its logic. Moreover, for nets
crossing the boundary of a cluster the exact location of crossing points (called
ports) is determined. Then, each cluster can be designed independently of the
other clusters, often by different designers or even different teams. Afterwards,
in a step called integration, finished designs of the clusters can simply be
stitched together. Moreover, if the logic of a chip needs to be changed later on,
it suffices to apply changes locally to the containing cluster, and the surrounding
chip may remain untouched. Note that there may be multiple nested hierarchy
levels on a chip. See also Section 2.3.

Since macro sizes may vary greatly, finding a feasible placement often is
non-trivial, and finding a good placement is even more difficult. Due to the
more discrete nature of the problem (compared to global placement), macro
placement algorithms typically reduce the problem of finding a good placement
to the problem of finding a good representation, since for a given representation,
a good placement can usually be found efficiently.
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2.2.1 BonnMacro Overview
BonnMacro, the macro placement algorithm of BonnPlace, works as follows
(cf. Figure 2.1). First, in a step called shredded placement , we compute a macro
placement with good net length properties which ignores macro overlaps, but
ensures that the macros are well-distributed over the chip area. Then, in
macro legalization, we eliminate all overlaps by solving local rectangle packing
instances optimally. Finally, in macro post-optimization, we apply local changes
to the placement that improve secondary objectives where possible.

In shredded placement, every macro is cut into small pieces (called frag-
ments), which are connected by artificial nets of high weights, and the resulting
netlist is placed using BonnPlaceGlobal. An example of such a fragment
placement is given in Figure 2.1(a). Then, the position of each macro is deter-
mined based on its fragments’ positions, see Figure 2.1(b). Due to the large
connectivity between the fragments of a macro, these are usually placed closely
together. Moreover, the shredded global placement satisfies density constraints,
and hence overlaps in the re-assembled macro placement can usually be resolved
locally. Of course, there is no guarantee that this will always be the case.

In macro legalization, the objective is to find a feasible macro placement that
is as close as possible to the initial, overlapping solution. More precisely, we want
to minimize the (weighted) sum of L1 distances of all macros’ legalized center
positions to their initial center positions. An alternative objective function is
the minimization of the (weighted) sum of squared L2 distances, where multiple
small movements are preferred to single, large ones. In both cases, the objective
function decomposes into two independent, dimension-specific components.

Overlaps are eliminated by solving local rectangle packing instances opti-
mally using a branch-and-bound approach ([FHS16]). This algorithm solves
the more general half-perimeter wirelength (HPWL) placement problem: As
input, we are given a rectangular chip area, a set of movable rectangles, and
possibly some rectangular blockages. Additionally, we are given a set of nets.
Each net consists of a set of pins, and each pin has a specified position that
can be on a movable rectangle (e.g., relative to its center), or on the chip area.
The half-perimeter wirelength of a net is the half perimeter of the smallest
axis-aligned rectangle containing all of its pins (also called bounding box ), pos-
sibly weighted by a net-specific weight. Then, the HPWL placement problem
asks for a disjoint packing of the rectangles into the chip area that respects all
blockages, minimizing the sum of half-perimeter wirelengths of all nets. See
Funke, Hougardy, and Schneider [FHS16] for a formal definition.

Note that the HPWL placement problem indeed generalizes the macro
legalization problem: Instead of considering the real nets that are connected to
the macros, for each macro we add an artificial net with two pins, one on the
macro’s center, and one on the chip area at the initial position of the macro’s
center. Then, the half-perimeter of the bounding box of the net’s pins is exactly
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(a) Placement of macro fragments.

(b) Re-assembled macro shapes.

(c) Result of macro legalization, which took less than a second.

Figure 2.1: BonnMacro placement stages.
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the L1 distance between the macro’s legalized and initial positions. Using
multiple nets, we can also model piecewise linear convex cost functions, and
hence also minimize an approximation of the sum of squared L2 movements.

The branch-and-bound algorithm we use to solve HPWL placement problems
([FHS16]) branches on the spatial relations of the rectangles in order to find
an optimum representation (and thereby an optimum placement). During the
algorithm, we maintain a set of spatial relations that have already been assigned.
In order to compute an optimum (possibly overlapping if not all spatial relations
are assigned) placement represented by the partial representation, one can solve
a linear program. However, this linear program has a special structure and
turns out to be the dual of a minimum-cost flow problem, as already noted by
Cabot, Francis, and Stary [CFS70]. Hence, we can use the network simplex
algorithm ([Cun76]) which is very efficient in practice. Moreover, adding spatial
relations during branching corresponds to adding edges in the network flow
problem, which allows to incrementally run the network simplex algorithm
instead of having to solve each minimum-cost flow problem from scratch.

If additional timing constraints need to be satisfied, the linear program no
longer corresponds to a minimum-cost flow problem, and thus we instead solve
an integer programming formulation ([Och19]).

2.2.2 Our Contributions
Compared to an earlier version of BonnMacro ([Fun11; Eng13]), we have
significantly improved the algorithms used in macro legalization.

First, we have revised the branching scheme of the core branch-and-bound
rectangle packing algorithm, using spatial relations that are satisfied in the
input placement as a hint. As a consequence, good solutions are found earlier by
the algorithm, and hence more partial solutions can be discarded by bounding.
On instances occurring in macro legalization, the running time of the branch-
and-bound algorithm is reduced by a factor of 5 on average.

In order to bound the running time of the algorithm, the old BonnMacro
implementation limited local instances to 4 or 5 movable macros, and all other
macros contained in local instances were fixed, i.e., replaced by blockages.
In joint work with Michaelis [Mic15], instead of fixing the location of the
surrounding macros, we only fix the spatial relations between these surrounding
macros. The set of spatial relations that the algorithm has to branch on remains
the same, and hence the running time is only slightly increased, in particular
due to larger minimum-cost flow problems that need to be solved. On the other
hand, the solution space is significantly expanded, allowing the algorithm to find
much better solutions. In order to compensate for the increased running time,
we slightly reduce the number of macros with unrestricted spatial relations.

In joint work with Wochnik [Woc17], we have improved the algorithm
that determines the local instances which are solved by the branch-and-bound
algorithm. Here, we want to compute a rectangle on the chip that contains a



2.2. Macro Placement 11

Figure 2.2: Floorplan prototype of a processor core designed
with the help of BonnMacro, reducing area by 30 %. The area
shown in this image corresponds to the outline of the original
floorplan, the empty white border on the sides is the saved area.

given macro and is as large as possible, but does not intersect too many other
macros. Using the inclusion-exclusion principle, we have designed an efficient
algorithm for this problem, improving upon the previous heuristic approach.

Together with many further algorithmic and implementation improvements,
these changes have significantly reduced the practical running time of Bonn-
Macro legalization, while also improving the solution quality. A direct com-
parison is given in Table 2.1. On one chip, the total movement is slightly
increased, on all other chips the total movement is (in some cases considerably)
reduced. The running time is significantly improved on all chips, up to a factor
of 90. Consequently, BonnMacro can now also be efficiently applied to large
chips: For example, BonnMacro legalization was a crucial tool in the design
of a floorplan prototype of an IBM processor core which reduced the total area
by 30 % compared to the original layout, shown in Figure 2.2.

It remains an interesting open problem to apply our new theoretical results
(cf. Chapter 5) to practical algorithms, e.g., to improve the worst-case running
time of the core branch-and-bound rectangle packing algorithm.
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L1 Movement [mm]

Chip Macros Run Sum Maximum Time [s]

1 37 old 0.6 0.07 9.1
new 0.5 −6% 0.09 +29% 0.2 −98%

2 38 old 2.2 0.46 6.7
new 2.3 +4% 0.50 +8% 0.2 −97%

3 72 old 3.2 0.73 17.1
new 2.9 −12% 0.70 −4% 0.5 −97%

4 219 old 23.0 0.69 9.9
new 12.4 −46% 0.41 −41% 2.4 −76%

5 292 old 4.8 0.11 297.8
new 4.2 −14% 0.10 −7% 3.3 −99%

6 314 old 35.1 1.22 16.0
new 13.1 −63% 0.28 −77% 3.7 −77%

7 2411 old 168.7 1.46 1221.5
new 111.3 −34% 0.45 −69% 19.8 −98%

Table 2.1: Comparison of new BonnMacro legalization with
an older version of BonnMacro from early 2015, essentially
as in [Fun11; Eng13]. Column 1 identifies the chip, column 2
gives the number of macros. Columns 4 and 5 give the sum of
L1 movements of all macros in millimeters, and columns 6 and
7 give the maximum L1 movement of any macro in millimeters.
The last two columns give the running time of macro legalization
in seconds. The overlapping macro placement to be legalized was
a reassembled shredded placement which was placed with 85 %
density. In all runs, the objective function was the minimization
of the unweighted sum of L1 movements. Note that the new
BonnMacro version by default minimizes the area-weighted sum
of squared L2 movements which we modified for this experiment,
allowing for a fair comparison. On chip 7, the old version failed
to find a feasible placement, leaving 21 macros unlegalized. In
all other cases, macro legalization was successful.
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2.3 Floorplanning
In the previous section, we have seen that in hierarchical design, the netlist of
a chip is partitioned into clusters, and each cluster is assigned a rectangular
shape. Then, each cluster can be designed independently of the other clusters,
and the final cluster designs can then be stitched together in the integration
step. Floorplanning is the problem of both determining the partition of the
netlist into clusters, and computing rectangular shapes for these clusters. Here,
we focus on the latter problem, and assume that a clustering is already given.

We have implemented a completely new tool for floorplanning, called
BonnPlan. First, BonnPlan computes a global placement of the non-
clustered netlist using BonnPlaceGlobal. See Figure 2.3(a) for such a
global placement, colored by cluster. Then, for each cluster, we want to
compute a rectangular shape that closely matches the shape of the cluster in
the global placement such that the area of the shape is large enough to fit all
cells of the cluster, and all cluster shapes are disjoint. Hence, the floorplanning
problem is a rectangle packing problem with flexible aspect ratios . There may
also be macros with fixed shapes, for example memory arrays.

More precisely, our objective function is minimizing the sum of L1 distances
of cells to their clusters’ shapes. One can show that this results in a piecewise
linear cost function for each of the four boundary coordinates of every cluster
shape, whose number of segments is roughly the number of cells in the cluster,
which may be huge. We approximate these piecewise linear cost functions by
reducing the number of segments. Moreover, for each cluster, the area of its
shape is pre-determined by the sum of areas of its cell members and a target
density. This induces a nonlinear dependency between the width w and the
height h of the cluster shape. Again, this can be approximated by defining a
piecewise linear function f(w), and requiring h ≥ f(w).

Using these simplifications, BonnPlan computes an optimum solution for
a given representation by solving a linear program (LP). More precisely, we
compute the transitive reduction of the representation, that is, we eliminate
redundant spatial relations which are already implied by other spatial relations.
Then, we add a single disjointness constraint for each remaining spatial relation
to the LP. For example, if 1 is west of 2, and 2 is west of 3, the constraint 1 west
of 3 is redundant and can be omitted. A good representation is then found by
local search, perturbing non-redundant spatial relations whose corresponding
constraints are tight in the current LP solution. An example of a floorplan
computed by BonnPlan is given in Figure 2.3(b).

BonnPlan has been successfully used at IBM to design floorplan prototypes
which are then the basis for further manual adjustments.
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(a) A global placement computed by BonnPlaceGlobal.

(b) Cluster shapes computed by BonnPlan.

Figure 2.3: Global placement and resulting cluster shapes. The
shown area is 2.2 mm wide and contains roughly 1.4 million cells.
Cells are colored by cluster, gray cells do not belong to any cluster
and will remain in the top hierarchy level.



Chapter 3
Preliminaries

After defining basic notation in Section 3.1, we can formally introduce rectangle
placements and their representations in Section 3.2. Then, we discuss previous
work in Section 3.3. In Section 3.4, we introduce the concept of pattern-avoiding
permutations, which will be a key tool for our results.

3.1 Notation
First, we introduce the basic notation used in this thesis. We also refer to the
glossary of notation on page 117 and the index on page 119.

3.1.1 Sets and Functions
We refer by N to the natural numbers excluding 0. Given a natural number
n ∈ N, we denote by JnK the set of integers {1, . . . , n}.

Given a set S, the standard notation S2 = S × S refers to the set of pairs
on S. We denote by 2S the set of ordered pairs consisting of distinct elements
of S:

2S := S2 \
{

(i, i) : i ∈ S
}

Given a function f : 2S → X, we sometimes abbreviate f(i, j) := f
(
(i, j)

)
for

(i, j) ∈ 2S. We call such a function f antisymmetric if

f(i, j) = −f(j, i)

for all (i, j) ∈ 2S.

15
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Given a set S and an element i, we refer by S + i to S together with i, and
by S − i to S without the element i:

S + i := S ∪ { i} S − i := S \ { i}

3.1.2 Relations and Orders
Given a set S, we call a set Q ⊆ S2 a relation on S. We will be interested
in relations on JnK. We say that a relation Q ⊆ S2 is transitive if for all
(i, j), (j, k) ∈ Q we also have (i, k) ∈ Q. Moreover, we denote by tr(Q) the
transitive closure of Q, that is,

tr(Q) :=
{

(i, j) ∈ S2 : there are i = a1, . . . , ap = j

with (am, am+1) ∈ Q for all 1 ≤ m < p
}
.

Note that Q is transitive if and only if tr(Q) = Q.
A relationQ ⊆ S2 is called a strict partial order ifQ ⊆ 2S (anti-reflexivity)
and Q is transitive. We say that i is less than j with respect to Q if (i, j) ∈ Q.
The reversed relation

←−
Q of Q is given by
←−
Q :=

{
(j, i) : (i, j) ∈ Q

}
.

Moreover, the symmetric closure sym(Q) of Q is defined as

sym(Q) := Q ∪ ←−Q.

For example, if Q is a strict partial order, then sym(Q) consists of all pairs
(i, j) such that i is less than j, or j is less than i with respect to Q. We call
pairs (i, j) ∈ sym(Q) comparable with respect to Q.
A strict total order is a strict partial order in which every pair of distinct
elements is comparable.

3.1.3 Graphs
For notation related to graphs, we closely follow Korte and Vygen [KV18].

An undirected graph G =
(
V (G), E(G)

)
is a pair of a set of vertices

V (G) and a set of edges E(G) ⊆
{
{u, v} : u, v ∈ V (G)

}
. We refer by ΓG(u)

to the set of neighbors of a vertex u in G:

ΓG(u) :=
{
v ∈ V (G) : {u, v} ∈ E(G)

}
A (loopless) directed graph (or digraph) G =

(
V (G), E(G)

)
is a pair of

a set of vertices V (G) and a set of edges E(G) ⊆ 2V (G). We refer by δ+(u)
to the set of edges leaving u, and refer by δ−(u) to the set of edges entering u:

δ+(u) :=
{

(u, v) ∈ E(G)
}

δ−(u) :=
{

(v, u) ∈ E(G)
}
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Given a (directed or undirected) graph G and an edge e, we refer by G+ e
to the graph G together with the new edge e, and by G− e to G without the
edge e. Similarly, given a set of edges F , we refer by G+ F to G together with
the edges in F , and by G− F to the graph obtained by removing all edges in
F from G:

G+ e :=
(
V (G), E(G) + e

)
G+ F :=

(
V (G), E(G) ∪ F

)
G− e :=

(
V (G), E(G)− e

)
G− F :=

(
V (G), E(G) \ F

)
Note that the edge set E(G) of a digraph G is a relation on V (G). Now, given
a directed graph G, its transitive closure tr(G) is the directed graph on the
same vertex with the transitive closure of E(G) as edge set:

tr(G) :=
(
V (G), tr

(
E(G)

))
A (directed) path is a digraph G of the form

V (G) = {v1, . . . , vn }, E(G) =
{

(vi, vi+1) : 1 ≤ i < n
}
.

A (directed) cycle is a digraph G of the form

V (G) = {v1, . . . , vn }, E(G) =
{

(vi, vi+1) : 1 ≤ i < n
}
∪
{

(vn, v1)
}
.

A subgraph of a (directed or undirected) graph G is a graph H with V (H) ⊆
V (G) and E(H) ⊆ E(G). We say that G contains H if H is a subgraph of G.

We call a digraph acyclic if it does not contain a cycle. Note that strict
partial orders are exactly the edge sets of transitive closures of acyclic digraphs.

A topological order of an acyclic digraph G is a strict total order
Q ⊆ 2V (G) with E(G) ⊆ Q, in other words, for all edges (u, v) ∈ E(G), the
vertex u must precede the vertex v in Q. If V (G) = JnK, we commonly encode
a topological order of G using a permutation (cf. Section 3.4) π : JnK → JnK,
where we require π(u) < π(v) for all (u, v) ∈ E(G). Note that acyclic digraphs
always have a topological order ([KV18]), but for digraphs containing a cycle a
topological order trivially cannot exist.

3.2 Placements and Representations
Let n ∈ N. A rectangle placement (also just called placement) is a tuple
of coordinate functions P = (mincx,mincy,maxcx,maxcy) from JnK to R with,
for i ∈ JnK,

(i) mincx(i) < maxcx(i), and

(ii) mincy(i) < maxcy(i).



18 Chapter 3. Preliminaries

We often call the elements of JnK rectangles, and call P an n-placement.
For each rectangle i ∈ JnK, the area of i is the half-open rectangular area[

mincx(i),maxcx(i)
)
×
[
mincy(i),maxcy(i)

)
⊆ R2.

A placement P is called feasible if the areas of all rectangles are pairwise
disjoint, that is, for all (i, j) ∈ 2JnK at least one of the following holds:

maxcx(i) ≤ mincx(j) (i is west of j in P )
maxcy(i) ≤ mincy(j) (i is south of j in P )
maxcx(j) ≤ mincx(i) (i is east of j in P )
maxcy(j) ≤ mincy(i) (i is north of j in P )

An antisymmetric1 function r : 2JnK→ {west, south, east, north} is called
a representation, where

−west := east, −south := north,
−east :=west, −north := south.

We say that r represents a feasible placement P (or is a representation of P )
if the following statements hold for all (i, j) ∈ 2JnK:

r(i, j) = west =⇒ i is west of j in P
r(i, j) = south =⇒ i is south of j in P

We call a pair of functions w, h : JnK→ R>0 sizes (or n-sizes if not clear from
the context). A placement of given sizes (w, h) – also called (w, h)-placement –
is a placement (mincx,mincy,maxcx,maxcy) with, for i ∈ JnK,
(i) w(i) = maxcx(i)−mincx(i), and

(ii) h(i) = maxcy(i)−mincy(i).
In the following, we denote by Rn the set of representations on JnK. Let

R ⊆ Rn be a set of representations. We say that R covers a placement P if
R contains a representation of P . Moreover, R is called (w, h)-complete if R
covers every (w, h)-placement. Finally, a set R of representations is complete
for n if R is (w, h)-complete for all n-sizes (w, h). Note that R is complete if
and only if it contains a representation of every placement of any n rectangles.
We are interested in the following numbers:

CRw,h
n := min{|R| : R ⊆ Rn is (w, h)-complete}

CRmin
n := min{CRw,h

n : w, h : JnK→ R>0 }
CRmax

n := max{CRw,h
n : w, h : JnK→ R>0 }

CRn := min{|R| : R ⊆ Rn is complete}
Using this notation, the contributions of this work are new lower and upper
bounds on CRn.

1We require representations to be antisymmetric because the constraint of i being west of
j is the same as requiring j to be east of i.
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3.3 Previous Work
How small can a complete set of representations for n rectangles be? Obviously
it needs to have cardinality at least n! because for placements in which all
rectangles have identical y-coordinates, we must represent all n! horizontal
orders. A trivial upper bound is 4(n2) because for each unordered pair there are
four possibilities. Before this work, the best known bounds were:

n! · 2n−1 ≤ CRmin
n ≤ CRmax

n ≤ CRn = O
(
n!

n4.5
· 32n

)
The first inequality is due to Silvanus [Sil11], and the asymptotic upper bound
is implied by a corresponding bound on the number of general floorplans by
Shen and Chu [SC03], cf. Section 3.3.3. The other inequalities are trivial. For
comparison, our new bounds are

CRn = Ω

(
n!

n4
·
(

4 + 2
√

2
)n)

, 4 + 2
√

2 ≥ 6.828,

CRn = O

n!

n6
·
(

11 + 5
√

5

2

)n
, 11 + 5

√
5

2
≤ 11.091.

3.3.1 Lower Bounds
The only known non-trivial lower bound on CRn is the n! · 2n−1 lower bound
on CRmin

n due to Silvanus [Sil11]. It implies that, given any n-sizes (w, h),
every (w, h)-complete set of representations needs to contain at least n! · 2n−1

representations. The proof works as follows: Assume that rectangle 1 is placed
arbitrarily. Then, given a string s ∈ {0, 1}n−1, place rectangle i + 1 directly
to the east of rectangle i if si = 0, and directly to the north of rectangle i if
si = 1. Applying this procedure to every permutation of the rectangles we
obtain n! ·2n−1 different feasible placements, and one can easily show that there
are no two such placements that share a common representation.

On the contrary, the construction of our lower bound of Ω
(
n!
n4 · (4 + 2

√
2)n
)

on CRn relies on placements of different rectangle sizes, and hence does not
apply to CRmax

n or even CRmin
n .

Korte and Vygen [KV08, page 337] pose the challenge of solving the half-
perimeter wirelength (HPWL) placement problem (cf. page 8 and [FHS16]) in
O(n! · 4n) time (neglecting polynomial factors). Our new lower bound shows
that no algorithm that follows the standard way of enumerating a complete set
of representations can achieve this goal.

However, in the HPWL placement problem (and many other applications),
the rectangle sizes are fixed, i.e., it suffices to enumerate a (w, h)-complete set
of representations for some sizes (w, h) that are part of the problem input. Only
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lower bounds on CRmax
n apply to the worst-case running time of algorithms

using this idea, but no such algorithm with a worst-case running time better
than the best known upper bound on CRn is known. In particular, no upper
bound on CRmax

n stronger than CRn is known.
On the other hand, enumerating a complete set of representations allows to

optimize over all rectangle placements, that is, the determination of rectangle
sizes can be part of the optimization problem ([IN06], also cf. Section 2.3).

3.3.2 Upper Bounds
The first non-trivial upper bound of (n!)2 on CRn was shown by Jerrum
[Jer85] based on the sequence pair representation (rediscovered by Murata et al.

[MFNK96]). Using Stirling’s formula n! = Θ

(√
n
(
n
e

)n)
, see e.g. [KV18], we

get the estimates

(n!)2 = Θ

(
n ·
(
n

e

)2n
)

= Θ

(
n

e2n
22n logn

)
, (3.1)

4(n2) = 4
n(n−1)

2 = 2n
2−n,

which shows that (n!)2 indeed is a dramatic improvement upon the trivial 4(n2)

upper bound. The sequence pair representation maps pairs of permutations
on JnK to representations. More precisely, for any pair of rectangles i, j there
are four possibilities on the relative order of i and j in the two permutations.
These four cases are then mapped to the four possible spatial relations. The
sequence pair representation will be the basis of our new results and is discussed
extensively in Chapter 4.

Nakatake et al. [NFMK96] proposed the bounded sliceline grid representation.
Here, a two-dimensional p× q grid is considered. The rectangles are injectively
assigned to vertices of the grid, and the relative positions of vertices in the
grid induce the spatial relations of the rectangles. In order to ensure that all
placements (in particular those consisting of n rectangles placed in a single row
or column) are represented, we need to consider an n× n grid. Using

n2n ·
(

1− 1

n

)n
=
(
n2 − n

)n
≤ (n2)!

(n2 − n)!
≤ n2n,

it follows that the number of possible assignments of n rectangles into an n× n
grid (and thus the resulting number of representations) is

n! ·
(
n2

n

)
=

(n2)!

(n2 − n)!
= Θ

(
n2n
)

= Θ
(

22n logn
)
.

Comparing with (3.1), we see that this is worse than the sequence pair bound
of (n!)2 by a factor of Θ

(
e2n

n

)
.
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Solution space Size Type Reference

O-tree Θ
(

n!
n1.5 4n

)
compacted [GCY99; Tak00]

B*-tree Θ
(

n!
n1.5 4n

)
compacted [CCWW00]

corner sequence (n!)2 compacted [LCL03]

v-h-tree Θ
(

n!
n1.5 (3+

√
8)n
)

slicing [SO80; YCCG03]

corner block list O
(

n!
n1.5 8n

)
mosaic [Hon+04]

Q-sequence O
(

n!
n1.5 8n

)
mosaic [SKM03]

twin binary sequence O
(

n!
n1.5 8n

)
mosaic [YCS03]

twin binary tree Θ
(
n!
n4 8n

)
mosaic [YCCG03]

sequence pair (n!)2 general [Jer85; MFNK96]

bounded sliceline grid Θ
(
n2n
)

general [NFMK96]

transitive closure graph (n!)2 general [LC05]
TCG-S (n!)2 general [LC04]

Table 3.1: Solution spaces for rectangle placements and floor-
plans. The second column gives the number of encodings in the
solution space. The third column specifies the flexibility of the so-
lution space: “compacted” means that only compacted placements
can be represented (cf. page 3), “slicing” and “mosaic” mean that
only floorplans of this type can be represented (cf. Section 3.3.3),
and “general” means that the solution space induces a complete
set of representations.

Many other solution spaces have been proposed, most of which can only
represent placements with additional properties. An overview is given in
Table 3.1, see also Young [You08] and Chen and Chang [CC08].

Note that these solution spaces are often used as the basis for a local search
routine (e.g., simulated annealing), which not only depends on the size of the
solution space. In this context, important properties of a solution space include
the set of perturbations that can be applied to an encoding, and how fast the
quality of an encoding can be evaluated.

3.3.3 Floorplans
A closely related concept uses a floorplan to represent the relative positions of
rectangles. A floorplan is a dissection of a rectangle by horizontal and vertical
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1
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3

4

(a) A slicing floorplan.

1

2

3

4

5

(b) A non-slicing mosaic
floorplan.

1

2

3

4

(c) A general, non-mosaic
floorplan with a non-reducible
empty room in the center.

Figure 3.1: Floorplan types.

line segments into m smaller rectangles, called rooms , some of which may be
marked as empty . Then, n ≤ m rectangles can be assigned bijectively to the
non-empty rooms. We refer to n (i.e., the number of non-empty rooms) as
the size of the floorplan. A floorplan without empty rooms is called mosaic
floorplan. A mosaic floorplan that can be obtained by recursively splitting a
room vertically or horizontally into two rooms is called slicing floorplan. For
example, the floorplan depicted in Figure 3.1(a) is slicing, and the floorplan
in Figure 3.1(b) is a non-slicing mosaic floorplan. Moreover, the floorplan in
Figure 3.1(b) is a general, non-mosaic floorplan.

The structure of a floorplan can be captured by segment-room relations:
A segment s and a room r have the segment-room relation south if and only
if s contains the bottom edge of r. The other cases west, north, and east are
defined similarly. Then, we consider two floorplans as equivalent if there is a
labeling of their rooms and segments which results in the same segment-room
relations and which preserves empty rooms. Note that some authors consider an
assignment of the rectangles to the non-empty rooms to be part of a floorplan.
In [MFWK97, Property 5], it is shown that for each pair of rooms in a floorplan
equivalence class, one can deduce a spatial relation that is satisfied by each
floorplan in this equivalence class. This is proven by showing for each pair of
rooms the existence of a sequence of segment-room relations that implies a
spatial relation for the pair. In the remainder of this section, when we speak of
floorplans, we mean equivalence classes of floorplans.

Using a bijection ([ABP06]) between Baxter permutations (cf. Section 3.4.3)
and mosaic floorplans, the number of mosaic floorplans of size n is known to
be Θ

(
8n

n4

)
(cf. Theorem 3.17), which was first shown by Yao et al. [YCCG03].

The same map, restricted to separable permutations, is a bijection to slicing
floorplans, showing that the number of slicing floorplans of size n is Θ

(
(3+
√

8)n

n1.5

)
(also first shown by Yao et al. [YCCG03]). Separable permutations are
permutations avoiding the patterns 2413 and 3142, cf. Section 3.4.
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General floorplans may contain an arbitrary number of empty rooms. Young,
Chu, and Shen [YCS03] call an empty room reducible if it can be merged with
adjacent rooms while keeping the spatial relations of the remaining non-empty
rooms implied by the floorplan. For example, the empty room in the floorplan
given in Figure 3.1(c) is not reducible. On the contrary, all rooms in the
floorplan corresponding depicted in Figure 3.1(a) would be reducible if empty.
We call a floorplan redundant if it contains a reducible empty room.

Zhuang et al. [ZSJK02] proved that a general floorplan of size n can contain
at most n −

⌊√
4n− 1

⌋
≤ n non-reducible empty rooms. Hence, any non-

redundant floorplan of size n can be obtained by starting with a mosaic floorplan
of size 2n, marking n rooms as empty, and removing any reducible empty rooms.
Using Stirling’s formula, this implies an upper bound of

O
((

2n

n

)
82n

n4

)
= O

(
4n√
n
· 64n

n4

)
= O

(
256n

n4.5

)
on the number of general non-redundant floorplans of size n.

The best upper bound of O
(

32n

n4.5

)
was shown by Shen and Chu [SC03].

They prove that for each mosaic floorplan of size n (of which there are Θ
(

8n

n4

)
many) there are at most O

(
4n√
n

)
possibilities to insert non-reducible empty

rooms into the floorplan. No stronger lower bound than the number of mosaic
floorplans is known.

Property 1 and Theorem 3 in [MFWK97] imply that for each placement of n
rectangles, there exists a floorplan of size n and an assignment of the rectangles
into the non-empty rooms such that each pair of rectangles satisfies the spatial
relation implied by their rooms in the floorplan. Hence, an upper bound U(n)
on the number of general non-redundant floorplans of size n implies an upper
bound of U(n) · n! on the minimum size of a complete set of representations
for n rectangles.

On the contrary, lower bounds cannot be transferred in the same way: Our
results in Chapter 5 imply CR4 ≤ 23 · 4! (in fact, we show CR4 = 22 · 4! in
Chapter 7), but there are 24 general non-redundant floorplans of size 4: There
are Baxter 4 = 22 mosaic floorplans with 4 rooms, and there are 2 non-mosaic
floorplans: the floorplan depicted in Figure 3.1(c), and the floorplan obtained
by vertically flipping the one depicted in Figure 3.1(c).
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1 2 3 4 5

π(2)

π(3)

π(5)

π(1)

π(4)

(a) Dot diagram of the permutation
π = (π(1), π(2), π(3), π(4), π(5)) =
(4, 1, 2, 5, 3). Highlighted elements form
a match of the pattern on the right.

i j k

π(j)

π(i)

π(k)

(b) The pattern 213.

Figure 3.2: Illustration of a permutation (left) and a pattern
(right). The elements are ordered on the x- and y-axis according
to their relative order in < and <π, respectively.

3.4 Pattern-Avoiding Permutations
Many results in this work use so-called pattern-avoiding permutations . We first
define the basic concepts, and then, in Sections 3.4.1, 3.4.2 and 3.4.3, consider
specific patterns that will be relevant later on.

A permutation is a bijection π : JnK → JnK, and we denote the set of
permutations on JnK by Πn. Given any permutation π on JnK, we associate π
with a strict total order <π by defining i <π j ⇐⇒ π(i) < π(j) for i, j ∈ JnK.
Similarly, the total order ≤π is given by i ≤π j ⇐⇒ π(i) ≤ π(j) for i, j ∈ JnK.

We always denote permutations in the so-called active notation, that is, we
write a permutation π as π = (π(1), π(2), . . . , π(n)). We illustrate permutations
using dot diagrams: Given a permutation π, we draw each element i as a dot
at position (i, π(i)), that is, elements are ordered on the x-axis according to <,
and on the y-axis according to <π. An example is given in Figure 3.2(a).

In the simplest case, a pattern p is just a permutation p ∈ Πm. Given
a permutation π ∈ Πn, we say that π avoids p if there are no indices with
the same pairwise comparison in p and π. More precisely, a match of p in π
consists of indices 1 ≤ a1 < . . . < am ≤ n with ai <π aj ⇐⇒ i <p j for all
(i, j) ∈ 2JmK, and π avoids p if it does not contain a match of p. Using standard
notation, we abbreviate p = (p(1), p(2), . . . , p(m)) by p = p(1)p(2) . . . p(m). For
example, given a permutation π, a match of the pattern 213 consists of elements
i < j < k with j <π i <π k. The pattern 213 is illustrated in Figure 3.2(b),
and we see that the permutation given in Figure 3.2(a) contains a match of
213, given by the highlighted elements.
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Sequence Avoided patterns Reference

powers of 2 2n−1 {213, 312} [SS85]
Catalan numbers Cn {p} for any p ∈ Π3 [Mac15; Knu68; Lov79]
Fibonacci numbers Fn+1 {123, 132, 213} [SS85]
Schröder2 numbers sn−1 {3142, 2413} [Wes95]
Bell numbers Bn {324̄1} [Cal06]

Table 3.2: Well-known sequences counted by pattern-avoiding
permutations in Πn. For example, the number of permutations in
Πn avoiding both 213 and 312 is exactly 2n−1. These permutations
are precisely the permutations with a unique peak, and are
completely determined by the set of elements that occur before
that peak. Note that the last pattern 324̄1 is a so-called barred
battern.

In 1915, MacMahon [Mac15] proved that permutations that can be par-
titioned into two decreasing subsequences are counted by the Catalan num-
bers. Note that these permutations are exactly the 123-avoiding permutations.
Pattern-avoiding permutations were first explicitly considered by Knuth [Knu68]
who showed that a permutation can be sorted using a single stack if and only
if it avoids the pattern 231, and that these permutations are also counted by
the Catalan numbers. Note that, up to symmetry, all patterns of length 3 are
equivalent to one of these patterns, depending on whether the 2 is in the middle
or not. Hence, permutations avoiding any fixed pattern of length 3 are counted
by the Catalan numbers. Similarly, many classical combinatorial sequences
can be recovered as the number of permutations avoiding simple patterns, cf.
Table 3.2.

The patterns we will be interested in are more complicated, adding additional
constraints on valid matches:

A barred pattern contains a barred entry, and a match of a barred pattern
is a match of the pattern without the barred entry that cannot be completed
to a match of the pattern with the barred entry. For example, a match of 21̄3
consists of a match of 23 that cannot be completed to a match of 213, that is,
elements i < k with i <π k such that there is no j (corresponding to the 1)
with i < j < k and j <π i <π k. More generally, one can define barred patterns
with more than a single barred entry, see e.g. [Pud08].

Vincular patterns require that certain elements are adjacent in a match:
For example, in a match of 2413, the elements corresponding to 4 and 1 are
required to be adjacent. This means that a match of 2413 consists of elements
i < j < j + 1 < l with j + 1 <π i <π l <π j. Note that in the literature, the
notation 2 41 3 is more common to refer to the pattern 2413.

2We refer to the large Schröder numbers.
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i j l m

π(j)

π(i)

π(m)

π(l)

Figure 3.3: A bad quartet (i, j, l,m). The light gray square in
the center is empty by the third condition in the definition of bad
quartets. The bad quartet is extreme if the four darker areas are
empty, too.

3.4.1 Plane Permutations
Our new upper bound will be based on plane permutations, which are defined
using a barred pattern:

Definition 3.1. Let π be a permutation on JnK. We say that (i, j, l,m) ∈ JnK4

is a bad quartet of π if the following three conditions hold:

(i) i < j < l < m,

(ii) j <π i <π m <π l,

(iii) there is no k ∈ JnK with j < k < l and i <π k <π m.

Definition 3.2. We call a permutation π on JnK plane if it avoids the pattern
213̄54, i.e., if π does not contain a bad quartet.

Definition 3.3. Let π be a permutation and let (i, j, l,m) be a bad quartet of
π. We call (i, j, l,m) extreme if there is no k ∈ JnK with j < k < l and there
is no kπ ∈ JnK with i <π kπ <π m, that is, if j and l are consecutive, and i and
m are consecutive in π.

See Figure 3.3 for an illustration of (extreme) bad quartets.

Lemma 3.4. Let π be a permutation that contains a bad quartet. Then, π
contains an extreme bad quartet.

Proof. For a permutation σ ∈ Πn, let dσ(i, j) :=
∣∣{e ∈ JnK : i <σ e <σ j }

∣∣ de-
note the number of elements in between i and j in permutation σ. Let (i, j, l,m)
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1 2 3 4 5 6 7 8

π(5)

π(1)

π(6)

π(8)

π(2)

π(4)

π(3)

π(7)

Figure 3.4: The natural embedding of Gπ with π =
(2, 5, 7, 6, 1, 3, 8, 4), which is plane.

be a bad quartet such that Φ := did(j, l) + dπ(i,m) is minimum. If Φ is zero,
then (i, j, l,m) is extreme.

Otherwise, we consider two cases. Suppose first that there is k ∈ JnK
with j < k < l. If k <π i, then (i, k, l,m) is a bad quartet with smaller Φ.
Otherwise, since (i, j, l,m) is a bad quartet, we have m <π k, and (i, j, k,m) is
a bad quartet with smaller Φ.

Secondly, suppose that there is kπ ∈ JnK with i <π kπ <π m. If l < kπ, then
(i, j, l, kπ) is a bad quartet with smaller Φ. Otherwise, we have kπ < j, and
(kπ, j, l,m) is a bad quartet with smaller Φ.

Corollary 3.5. Let π a permutation. Then π is plane if and only if π avoids
the vincular pattern 2143, that is, if there are no indices i < j < j + 1 < m
with j <π i <π m <π j + 1.

Definition 3.6. Given a permutation π on JnK, we define an acyclic directed
graph Gπ with vertex set JnK whose edge set E(Gπ) consists of exactly the pairs
(i, j) with

(i) i < j and i <π j, and

(ii) there is no k with i < k < j and i <π k <π j.

Observation 3.7. Let π be a permutation on JnK and 1 ≤ i, j ≤ n. Then j is
reachable from i in Gπ if and only if i ≤ j and π(i) ≤ π(j).

To explain the name “plane”, one can define a natural embedding of Gπ into
the plane by drawing i in (i, π(i)) ∈ R2 and drawing all edges as straight line
segments (cf. Figure 3.4). It is known ([BB07]) that π is plane if and only if the
natural embedding of Gπ is plane, which we prove here for self-containedness:
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Definition 3.8. Let π be a permutation. The natural embedding(
ψ, (Je)e∈E(Gπ)

)
of Gπ is given by ψ : V (Gπ) → R2 with ψ(i) :=

(
i, π(i)

)
and

J(i,j) =
{

(1− λ)ψ(i) + λψ(j) : 0 ≤ λ ≤ 1
}
⊆ R2.

Proposition 3.9. Let π be a permutation. Then, the natural embedding of Gπ

is plane if and only if π is plane.

Proof. Let
(
ψ, (Je)e∈E(Gπ)

)
be the natural embedding of Gπ. Since all

edges are embedded as straight line segments with finite positive slope, for
each edge (i, j) there is an affine function f(i,j) : [ i, j ] → R with J(i,j) ={(
x, f(i,j)(x)

)
: x ∈ [ i, j ]

}
. Note that by construction, the only vertices that

can intersect the embedding of an edge are its endpoints, since for any vertex
k with ψ(k) ∈ J(i,j) and k /∈ { i, j } we must have i < k < j and i <π k <π j,
contradicting (i, j) ∈ Gπ.

For the first direction, assume that π is not plane. By Lemma 3.4, we
know that π contains an extreme bad quartet (i, j, l,m). In particular, we then
have (i,m), (j, l) ∈ E(Gπ), and clearly J(i,m) and J(j,l) must intersect: We have
f(j,l)(j) = π(j) < π(i) < f(i,m)(j) and f(j,l)(l) = π(l) > π(m) > f(i,m)(l), so f(j,l)

and f(i,m) intersect on the interval [j, l ].
For the other direction, assume that

(
ψ, (Je)e∈E(Gπ)

)
is not plane, and let

(i,m), (j, l) ∈ E(Gπ) be two edges whose embeddings intersect, i.e., we have
J(i,m) ∩ J(j,l) 6= ∅ and i,m, j, l are pairwise different. By definition of Gπ, we
have i < m, π(i) < π(m), j < l, and π(j) < π(l). W.l.o.g. we can assume i < j,
and since edges are embedded as straight line segments we must have j < m,
otherwise J(i,m) and J(j,l) cannot intersect.

If π(i) < π(j), then we must have π(m) < π(j), otherwise (i,m) would not
be an edge of Gπ. But this implies π(i) < π(m) < π(j) < π(l), contradicting
J(i,m) ∩ J(j,l) 6= ∅. Hence, we know that π(j) < π(i) and summarize

i < j < l,m and π(j) < π(i) < π(l), π(m). (3.2)

Now, we consider the two cases m < l and l < m. The first case will lead to a
contradiction, in the second case we will show that π is not plane.

In the first case, we have i < j < m < l, and then the edge (j, l) together
with (3.2) implies π(l) < π(m). Thus, we have π(j) < π(i) < π(l) < π(m). But
now J(i,m) and J(j,l) cannot intersect: Clearly, any point (x, y) ∈ J(i,m) ∩ J(j,l)

needs to satisfy j ≤ x ≤ m. We have f(j,l)(j) = π(j) < π(i) < f(i,m)(j) and
f(j,l)(m) < π(l) < π(m) = f(i,m)(m), so f(j,l) and f(i,m) do not intersect on the
interval [j,m ].

In the second case, we have i < j < l < m. Now, the edge (i,m) together
with (3.2) implies π(m) < π(l). Hence, we have π(j) < π(i) < π(m) < π(l).
Finally, an element k with j < k < l and π(i) < k < π(m) would contradict
that (i,m) and (j, l) are edges of Gπ, so (i, j, l,m) is a bad quartet of π and
thus π is not plane.
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The number of plane permutations was recently analyzed by Bouvel et al.
[BGRR18], solving an open problem due to Bousquet-Mélou and Butler [BB07]:

Theorem 3.10 ([BGRR18]). For n ∈ N, denote by Planen the number of
plane permutations on JnK. Then, for all n ≥ 2, we have

Planen =
24

(n− 1)n2(n+ 1)(n+ 2)

n∑
k=0

(
n+ 1

k + 3

)(
n+ 2

k + 1

)(
n+ k + 3

k

)
= Θ

(
Cn

n6

)
,

where C = 11+5
√

5
2

< 11.091.

For n ≤ 15, Planen is given in Table 3.3 (page 32). Further values can be
obtained from The On-Line Encyclopedia of Integer Sequences (OEIS) [Slo18],
sequence A117106.

Bouvel et al. [BGRR18] prove Theorem 3.10 as follows: First, they observe
that given a plane permutation π ∈ Πn, removing the last element n (i.e.,
restricting the total order of π to the first n − 1 elements) again yields a
plane permutation π′. Hence every plane permutation on JnK can be uniquely
generated by starting with a plane permutation π′ on Jn− 1K, and inserting
n into the strict total order of π′. This operation is called local expansion.
Analyzing the structure of possible local expansions, they prove properties of
the generating function of Planen. This allows to obtain a recurrence formula
for Planen which then yields the closed-form expression. In order to show the
tight bound Planen = Θ( 1

n6 (11+5
√

5
2

)n), Bouvel et al. [BGRR18] apply a result
of McIntosh [McI96] which allows to estimate sums of binomial coefficients.

Now, we briefly sketch how the asymptotic growth rate of Planen can be
derived directly from the closed-form expression, ignoring polynomial factors.

Stirling’s formula n! = Θ

(√
n
(
n
e

)n)
≈
(
n
e

)n
allows to estimate

(
βn

αn

)
≈

(
βn
e

)βn
(
αn
e

)αn(
(β−α)n

e

)(β−α)n
=

(
ββ

αα(β − α)β−α

)n

,

and hence, substituting k = αn with 0 < α < 1, we obtain the estimate(
n

k

)(
n

k

)(
n+ k

k

)
≈
(

(1 + α)1+α

α3α(1− α)2−2α

)n

.

Then, the growth rate of Planen is determined by

max
0<α<1

(1 + α)1+α

α3α(1− α)2−2α =
11 + 5

√
5

2
= φ5,

which is attained at α =
√

5−1
2

= 1
φ
, where φ =

√
5+1
2

is the golden ratio.

https://oeis.org/A117106
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i j l m

π(j)

π(i)

π(m)

π(l)

(a) The pattern 213̄54.

i j l m

π(l)

π(m)

π(i)

π(j)

(b) The pattern 453̄12.

Figure 3.5: Forbidden patterns of biplane permutations. Gray
areas are assumed to be empty.

3.4.2 Biplane Permutations
Definition 3.11. Let π be a permutation on JnK. The reversed permutation
−π is defined by

−π(i) :=n+ 1− π(i)

for i ∈ JnK.

Clearly, reversing a permutation π reverses the strict total order associated
with π: We have i <π j if and only if j <−π i.

Observation 3.12. Let π be a permutation on JnK, and let 1 ≤ i < j ≤ n.
Then j is reachable from i in Gπ if and only if j is not reachable from i in G−π.

Definition 3.13. Let π be a permutation on JnK. We call π biplane if π
avoids the patterns 213̄54 and 453̄12, that is, if both π and −π are plane.

The patterns forbidden in biplane permutations are illustrated in Figure 3.5.
For example, the permutation π depicted in Figure 3.4 is not biplane, as the
elements 2, 4, 5, 8 form a match of 453̄12. Note that a permutation π is biplane
if and only if −π is biplane. Corollary 3.5 directly implies:

Corollary 3.14. Let π be a permutation. Then π is biplane if and only if π
avoids the vincular patterns 2143 and 3412.

Asinowski et al. [Asi+13] have analyzed the number of permutations avoiding
the patterns 2143 and 3412:
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i j j + 1 l

π(j + 1)

π(i)

π(l)

π(j)

(a) The pattern 2413.

i j j + 1 l

π(j)

π(l)

π(i)

π(j + 1)

(b) The pattern 3142.

Figure 3.6: The forbidden patterns of Baxter permutations.
Gray areas are assumed to be empty.

Theorem 3.15 ([Asi+13]). For n ∈ N, denote by Biplanen the number of
biplane permutations on JnK. Then, we have

Biplanen = Θ

(
Cn

n4

)
,

where C = 4 + 2
√

2 ≥ 6.828.

For n ≤ 15, Biplanen is given in Table 3.3 (page 32). Further values can be
obtained from the OEIS [Slo18], sequence A214358.

3.4.3 Baxter Permutations
Definition 3.16. We call a permutation π on JnK Baxter permutation if it
avoids the patterns 2413 and 3142, that is, there are no indices i < j < l with
j + 1 <π i <π l <π j or j <π l <π i <π j + 1.

An illustration of the forbidden pattern of Baxter permutations is given in
Figure 3.6. Baxter permutations were first considered by Baxter [Bax64] when
studying the structure of fixpoints of certain functions. The number of Baxter
permutations was first analyzed by Chung et al. [CGHK78]:

Theorem 3.17 ([CGHK78]). For n ∈ N, denote by Baxtern the number of
Baxter permutations on JnK. Then, we have

Baxtern =
n∑
k=1

(
n+1
k−1

)(
n+1
k

)(
n+1
k+1

)(
n+1

1

)(
n+1

2

) = Θ

(
8n

n4

)
.

For n ≤ 15, Baxtern is given in Table 3.3. Further values can be obtained
from the OEIS [Slo18], sequence A001181.

https://oeis.org/A214358
https://oeis.org/A001181
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n Biplanen Baxtern Planen n!

1 1 1 1 1
2 2 2 2 2
3 6 6 6 6
4 22 22 23 24
5 88 92 104 120
6 374 422 530 720
7 1 668 2 074 2 958 5 040
8 7 744 10 754 17 734 40 320
9 37 182 58 202 112 657 362 880
10 183 666 326 240 750 726 3 628 800
11 929 480 1 882 960 5 207 910 39 916 800
12 4 803 018 11 140 560 37 387 881 479 001 600
13 25 274 088 67 329 992 276 467 208 6 227 020 800
14 135 132 886 414 499 438 2 097 763 554 87 178 291 200
15 732 779 504 2 593 341 586 16 282 567 502 1 307 674 368 000

Table 3.3: The number of biplane (column 2), Baxter (column 3)
and plane (column 4) permutations for n ≤ 15, compared to n!
(last column).



Chapter 4
Sequence Pairs

In this chapter, we review the sequence pair representation of Jerrum [Jer85]
(rediscovered by Murata et al. [MFNK96]), which will be the basis for our new
results. Sequence pairs provide an elegant way to construct representations
that inherently satisfy useful properties:

Definition 4.1. Let (π, ρ) be a pair of permutations on JnK (called a sequence
pair). Then, we define the representation rπ,ρ by

rπ,ρ(i, j) :=


south if i <π j and i <ρ j,

west if i <π j and j <ρ i,

north if j <π i and j <ρ i,

east if j <π i and i <ρ j.

First, we observe that if rπ,ρ(i, j) = rπ,ρ(j, k) = α, then we must have
rπ,ρ(i, k) = α. We will call this property transitivity.

Moreover, we will see that for each sequence pair (π, ρ) there is a placement
that is represented by rπ,ρ, and for each placement P there is a sequence pair
that represents P . The latter result implies:

Theorem 4.2 ([Jer85]). Let n ∈ N. Then, the set{
rπ,ρ : (π, ρ) is a sequence pair on JnK

}
is a complete set of representations.

In Section 4.1, we begin by briefly sketching the way Murata et al. [MFNK96]
construct sequence pairs, and derive useful structural properties of sequence

33
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(a) Negative steplines. (b) Positive steplines.

Figure 4.1: Negative and positive steplines of a feasible rectangle
placement.

pairs. Then, in Section 4.2, we introduce the setting of our construction which is
based on pairs of strict partial orders. In Section 4.3, we give a new construction
(similar to [Jer85]) and recover the results of [Jer85]. The proof of our improved
upper bound (Chapter 5) will be a direct improvement of this construction.
Moreover, we will show that there is a complete set of representations of
minimum cardinality that only consists of representations induced by sequence
pairs, giving an even stronger motivation to study sequence pairs. This result
is new and will be important in Chapters 6 and 7.

Finally, in Section 4.4, we describe an application of sequence pairs to
a completely different problem: We give an efficient reachability oracle for
arborescences based on sequence pairs. The result itself is not new, but shows
that sequence pairs might be useful in different contexts.

4.1 Introduction
4.1.1 Geometric Construction: Steplines
Our new construction is very similar to the one given by Jerrum [Jer85], both of
which are based on partial orders. Before we discuss these, we first briefly sketch
the completely different, geometric construction of Murata et al. [MFNK96].

More precisely, the construction of Murata et al. [MFNK96] is based on
so-called steplines, which are (usually piecewise linear) paths in the plane.
Given a feasible placement P , we first draw a bounding box around P , that
is, a rectangle containing all rectangles in P . Then, for each rectangle i, we
construct a negative stepline, which is a strictly decreasing path that starts in
the north west corner of the bounding box, visits the north west and south
east corners of i, ends in the south east corner of the bounding box, and does
not intersect any of the other rectangles. Similarly, one can define positive
steplines that connect the south west corner of the bounding box with the
north east corner of the bounding box. Furthermore, we require that any two
distinct negative steplines may only intersect in their endpoints, and any two
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distinct positive steplines may only intersect in their endpoints. Murata et al.
[MFNK96] show that it is always possible to find steplines that satisfy these
requirements. This construction is illustrated in Figure 4.1.

It is easy to see that the negative steplines define an order of the rectangles
from south west to north east, and the positive steplines define an order from
south east to north west. These two orders are the permutations π and ρ of
the sequence pair (π, ρ). Furthermore, it is not hard to show that if a rectangle
i precedes a rectangle j in the south west to north east order π, then i must
be south or west of j. Similarly, if i precedes j in ρ, then i must be south or
east of j. Hence, if i precedes j in both orders, then i must be south of j, and
if i precedes j in π but j precedes i in ρ, then i must be west of j. This way,
Murata et al. [MFNK96] show that for every feasible placement P , there exists
a sequence pair (π, ρ) such that rπ,ρ represents P , implying Theorem 4.2.

Before we continue, we fix some notation related to sequence pairs: We refer
by SPn := Π2

n to the set of sequence pairs on JnK, and say that a sequence pair
(π, ρ) ∈ SPn represents a placement P if rπ,ρ represents P . Moreover, we say
that a set SP ⊆ SPn covers a placement P if

{
rπ,ρ : (π, ρ) ∈ SP

}
covers P ,

that is, SP contains a sequence pair that represents P , and say that SP is
complete if

{
rπ,ρ : (π, ρ) ∈ SP

}
is complete.

4.1.2 Structural Permutations
Consider a feasible placement P and a sequence pair (π, ρ) that represents
P . Moreover, assume that we re-label the rectangles in P according to some
permutation τ , resulting in a placement Pτ . Now, also applying τ to (π, ρ)
yields a new sequence pair (π ◦ τ, ρ ◦ τ) that represents Pτ . Clearly, the
sequence pairs (π, ρ) and (π ◦ τ, ρ ◦ τ) have the same structure, which we call
structure-equivalence:

Definition 4.3. Let n ∈ N, and let (π, ρ), (π′, ρ′) be sequence pairs on JnK.
We say that (π, ρ) and (π′, ρ′) are structure-equivalent if there is a permuta-
tion τ ∈ Πn with

(π′, ρ′) = (π ◦ τ, ρ ◦ τ).

Definition 4.4. Let (π, ρ) be a sequence pair. Then, we denote by

struc(π, ρ) := ρ ◦ π−1

the structural permutation of (π, ρ).

Lemma 4.5. Let n ∈ N, and let (π, ρ), (π′, ρ′) be sequence pairs on JnK.
Then, the sequence pairs (π, ρ) and (π′, ρ′) are structure-equivalent if and only
if struc(π, ρ) = struc

(
π′, ρ′

)
.
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Proof. Clearly, if there is a permutation τ with (π′, ρ′) = (π ◦ τ, ρ ◦ τ), then we
have

struc
(
π′, ρ′

)
= ρ′ ◦ π′−1

= (ρ ◦ τ) ◦ (π ◦ τ)−1

= (ρ ◦ τ) ◦ (τ−1 ◦ π−1)

= (ρ ◦ π−1)

= struc(π, ρ).

On the other hand, if ρ ◦ π−1 = ρ′ ◦ π′−1, we can set τ :=π−1 ◦ π′. Then, we
have

π ◦ τ = π ◦ (π−1 ◦ π′)
= π′

and

ρ ◦ τ = ρ ◦ (π−1 ◦ π′)
= (ρ ◦ π−1) ◦ π′

= (ρ′ ◦ π′−1
) ◦ π′

= ρ′.

This observation is not new, in fact, the algorithm given by Bousquet-Mélou
and Butler [BB07] that bijectively maps (unlabeled) mosaic floorplans to Baxter
permutations first generates two labelings π and ρ, and then returns ρ ◦ π−1.

We extend the notion of pattern avoidance from permutations to sequence
pairs using structural permutations: We say that a sequence pair (π, ρ) avoids
a pattern if struc(π, ρ) avoids the pattern. For example, we call (π, ρ) plane
if struc(π, ρ) is plane. Our new upper bound on CRn presented in Chapter 5
considers plane sequence pairs, while the improved lower bound in Chapter 6
is based on biplane sequence pairs. Moreover, the empirical experiments in
Chapter 7 suggest that complete sets of representations of minimum cardinality
are also induced by sequence pairs avoiding a certain pattern.

Finally, we observe that (π, ρ) = (π, struc(π, ρ) ◦ π), and hence the set of
sequence pairs avoiding a certain pattern can be written as the set of sequence
pairs of the form (π, σ ◦ π) where σ avoids the pattern. For example, the set of
plane sequence pairs on JnK is the set{

(π, σ ◦ π) : π, σ ∈ Πn, σ is plane
}
.

Using this notation, the permutation σ defines the structure of the sequence
pair, and the permutation π defines a labeling of the elements. The classical
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(n!)2 upper bound on CRn based on sequence pairs can thus be interpreted as
enumerating n! possible sequence pair structures, and all n! possible labelings
of the rectangles. Our new upper bound given in Chapter 5 still requires
to enumerate all n! possible labelings, but reduces the required number of
structures from n! to O

(
1
n6 · (11+5

√
5

2
)n
)
.

4.2 Strict Partial Orders and Biorders
Similar to Jerrum [Jer85], we will show structural results on certain pairs of
strict partial orders, and then apply these to rectangle placements. However,
in contrast to Jerrum [Jer85], we will consider strict partial orders, which are
equivalent to partial orders, but will simplify notation:

Definition 4.6. Let P = (mincx,mincy,maxcx,maxcy) be a placement on JnK.
The strict partial orders SP ,WP ⊂ 2JnK (corresponding to the spatial relations
south and west) are defined as

SP :=
{

(i, j) ∈ 2JnK : maxcy(i) ≤ mincy(j)
}
,

WP :=
{

(i, j) ∈ 2JnK : maxcx(i) ≤ mincx(j)
}
.

Clearly, the set of representations of a feasible placement P only depends on
SP and WP . In a feasible placement, we know that each pair i, j of rectangles
must be comparable in at least one of SP and WP . We will see that this
property is sufficient to obtain the (n!)2 upper bound.

Definition 4.7. Let S,W be strict partial orders on JnK. We say that (S,W)
is a biorder (or biordering pair) if

2JnK = sym(S) ∪ sym(W),

that is, if every pair (i, j) ∈ 2JnK is comparable in at least one of S and W.

Most results will apply to general biorders, however, the used notation will
be based on the application to rectangle placements, where the set S corresponds
to the south-relations and the set W corresponds to the west-relations.

Observation 4.8. Let P be a feasible placement. Then (SP ,WP ) is a biorder.

Every sequence pair naturally induces a pair of strict partial orders on JnK:

Definition 4.9. Let (π, ρ) be a sequence pair on JnK. The strict partial orders
Sπ,ρ,Wπ,ρ on JnK are given by

Sπ,ρ :=
{

(i, j) ∈ 2JnK : i <π j and i <ρ j
}

= r−1
π,ρ(south),

Wπ,ρ :=
{

(i, j) ∈ 2JnK : i <π j and j <ρ i
}

= r−1
π,ρ(west).

We say that (π, ρ) represents a biorder (S,W) if Sπ,ρ ⊆ S and Wπ,ρ ⊆ W.
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←−S ∩ W

S ∩ W S ∩←−W

←−S ∩←−W

←−S

W

S

←−W

Figure 4.2: The sets S,W,←−S,←−W and their possible intersections.
The unlabeled segments contain the pairs that are in S\

(
W ∪ ←−W

)
,

W \
(
S ∪ ←−S

)
, etc.

Clearly, (π, ρ) represents a placement P if and only if (π, ρ) represents
(SP ,WP ). It is easy to verify that Sπ,ρ and Wπ,ρ are not only strict partial
orders, but also form a biorder. Moreover, every pair (i, j) is comparable in
exactly one of Sπ,ρ and Wπ,ρ. Pairs of partial orders with this property are
called complementary in [Jer85]:

Definition 4.10. Let (S,W) be a biorder on JnK. We say that (S,W) is
complementary if sym(S) ∩ sym(W) = ∅, that is, if every pair (i, j) ∈ 2JnK
is comparable in exactly one of S and W.

Jerrum [Jer85] then shows that the mapping from sequence pairs to comple-
mentary pairs given in Definition 4.9 is a bijection, which was already observed
by Dushnik and Miller [DM41]. This means that every complementary pair
of strict partial orders is of the form (Sπ,ρ,Wπ,ρ) for some sequence pair (π, ρ).
Furthermore, Jerrum [Jer85] shows that for each biorder (S,W), there is a
complementary pair (S ′,W ′) with S ′ ⊆ S andW ′ ⊆ W, and hence each biorder
is represented by some sequence pair, which implies the (n!)2 upper bound.

4.3 The New Construction: Biorder Digraphs
Now, we will show a construction slightly different to the one given by Jerrum
[Jer85] from which these results can be recovered. Given a biorder (S,W), we
want to find a sequence pair (π, ρ) representing (S,W), that is, Sπ,ρ ⊆ S and
Wπ,ρ ⊆ W.

First, we observe that the strict partial orders S and W together with their
reversed orders

←−S and
←−W exhibit a nice structure, depicted in Figure 4.2: Each

pair (i, j) ∈ 2JnK is contained in exactly one of the eight segments, and (j, i) is
in the segment opposite of the segment containing (i, j). The idea will be to
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E(GSW)

←−S ∩ W

S ∩ W S ∩←−W

←−S ∩←−W

←−S

W

S

←−W

(a) The edge set of GSW.

E(GSE)

←−S ∩ W

S ∩ W S ∩←−W

←−S ∩←−W

←−S

W

S

←−W

(b) The edge set of GSE.

Figure 4.3: The edge sets of the south-west and south-east
digraphs of a biorder (S,W).

encode π and ρ as topological orders of digraphs GSW and GSE on the vertex
set JnK (formally defined later in Definition 4.11).

To motivate the construction, we derive some necessary properties of GSW

and GSE: Assume that GSW and GSE are some digraphs with topological orders
π and ρ and consider a pair (i, j) with j <π i. Then, we have (j, i) ∈ Sπ,ρ∪Wπ,ρ

(cf. Definition 4.9). Hence, if (j, i) /∈ S ∪W, then Sπ,ρ * S or Wπ,ρ *W, and
thus (π, ρ) cannot represent (S,W). This implies that whenever

(j, i) /∈ S ∪W ⇐⇒ (i, j) /∈ ←−S ∪ ←−W,

we must guarantee that j is reachable from i in GSW in order to avoid j <π i.
Since we are only interested in topological orders of GSW, we can thus require
that GSW contains all edges (i, j) with (i, j) /∈ ←−S∪←−W. Similarly, if (i, j) /∈ ←−S∪W,
we must ensure that j is reachable from i in GSE, and hence require that GSE

contains all edges (i, j) with (i, j) /∈ ←−S ∪W. We will show that these edges in
fact do suffice:

Definition 4.11. Let (S,W) be a biorder on JnK. The south-west digraph
GSW and south-east digraph GSE are digraphs with vertex set JnK, and with
edge sets:

E(GSW) :=
(
S ∪W

)
\
(←−S ∪ ←−W)

E(GSE) :=
(
S ∪ ←−W

)
\
(←−S ∪W)

Figure 4.3 gives an illustration of GSW and GSE. The edge set of GSW can
also be thought of as the disjoint union of the three segments “only south”,
“south and west” and “only west”. If an element j is reachable from i in one
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of these three segments, then of course j is also reachable from i in GSW. The
following result implies Corollary 4.13 which states that the reverse implication
does also hold, that is, whenever j is reachable from i in GSW, we know that j
is reachable from i in one of the three segments.

Lemma 4.12. Let (S,W) be a biorder on JnK, let GSW and GSE be the south-
west and south-east digraphs of (S,W) and let (i, j) ∈ 2JnK. Then, we have:

(i) If H is a shortest i-j-path in GSW, then either

• E(H) ⊆ S \ sym(W),

• E(H) =
{

(i, j)
}
⊆ S ∩W, or

• E(H) ⊆ W \ sym(S).

(ii) If H is a shortest i-j-path in GSE, then either

• E(H) ⊆ S \ sym(W) = S \ sym(
←−W),

• E(H) =
{

(i, j)
}
⊆ S ∩ ←−W, or

• E(H) ⊆ ←−W \ sym(S).

Proof. We only show the first statement, the second statement then follows by
exchanging W and

←−W.
Let H be a shortest i-j-path in GSW, so E(H) ⊆ E(GSW) = (S\←−W)∪(W\←−S).

If H consists of a single edge, there is nothing to show, so assume |E(H) | ≥ 2.
Claim. There are no two different edges e1, e2 ∈ E(H) with e1 ∈ S \

←−W and
e2 ∈ W \

←−S.
Let (a, b), (b, c) ∈ E(H) be consecutive edges on H with (a, b) ∈ S \ ←−W

and (b, c) ∈ W \ ←−S. As
←−W is transitive, (a, b) /∈ ←−W and (c, b) ∈ ←−W imply

(a, c) /∈ ←−W. Similarly, (b, a) ∈ ←−S and (b, c) /∈ ←−S imply (a, c) /∈ ←−S. We conclude
that (a, c) /∈ ←−W∪←−S, implying (a, c) ∈ (S\←−W)∪(W\←−S) = E(GSW), contradicting
that the edges (a, b) and (b, c) are consecutive on a shortest path. Analogously,
if (a, b) ∈ W \←−S and (b, c) ∈ S \←−W, then (a, c) ∈ (S \←−W)∪ (W\←−S) = E(GSW),
which proves the claim.

Now, as S ∩W = (S \←−W) ∩ (W \←−S), if H contains an edge in S ∩W, that
edge must be the only edge of H, contradicting |E(H) | ≥ 2. Hence, either all
edges of H are in (S \ ←−W) \ (S ∩W) = S \ sym(W), or all edges of H are in
(W \ ←−S) \ (S ∩W) =W \ sym(S).

Recall that given a relation Q ⊆ 2JnK, we denote by tr(Q) the transitive
closure of Q.

Corollary 4.13. Let (S,W) be a biorder on JnK and let GSW and GSE be the
south-west and south-east digraphs of (S,W).

Then, we have:
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(i) tr
(
E(GSW)

)
= tr

(
S \ sym(W)

)
∪
(
S ∩W

)
∪ tr

(
W \ sym(S)

)
(ii) tr

(
E(GSE)

)
= tr

(
S \ sym(

←−W)
)
∪
(
S ∩ ←−W

)
∪ tr

(←−W \ sym(S)
)

Of course, when using topological orders of GSW and GSE, we must ensure
that these graphs are acyclic:

Lemma 4.14. Let (S,W) be a biorder on JnK. Then, the south-west digraph
GSW and the south-east digraph GSE are acyclic.

Proof. By Lemma 4.12, we have (i, j) ∈ S ∪W whenever j is reachable from
i in GSW. This implies (j, i) ∈ ←−S ∪ ←−W, and therefore (j, i) is not an edge of
GSW. So GSW is indeed acyclic. Similarly, if j is reachable from i in GSE, then
by Lemma 4.12 we have (i, j) ∈ S ∪ ←−W, and (j, i) ∈ ←−S ∪W is not an edge of
GSE.

Now, we can show that topological orders of GSW and GSE indeed yield
sequence pairs with the desired properties:

Lemma 4.15. Let (S,W) be a biorder on JnK, let GSW and GSE be the south-
west and south-east digraphs of (S,W), and let (π, ρ) be a sequence pair. Then,
the following statements are equivalent:

(i) π is a topological order of GSW, and ρ is a topological order of GSE.

(ii) Sπ,ρ ⊆ S and Wπ,ρ ⊆ W.

Proof. For the first direction, assume that π and ρ are topological orders of
GSW and GSE.

If (i, j) ∈ Sπ,ρ, then i <π j and i <ρ j, and (j, i) is neither an edge of GSW

nor of GSE. Hence (j, i) /∈ E(GSW) = (S \ ←−W) ∪ (W \ ←−S), so (j, i) ∈ ←−S ∪ ←−W.
Similarly, as (j, i) /∈ E(GSE) = (S \W)∪ (

←−W\←−S), we have (j, i) ∈ ←−S ∪W. This
means (j, i) ∈ (

←−S ∪ ←−W) ∩ (
←−S ∪W) =

←−S ∪ (W ∩ ←−W) =
←−S, so (i, j) ∈ S.

If (i, j) ∈ Wπ,ρ, then i <π j and j <ρ i, and (j, i) is not an edge of GSW

and (i, j) is not an edge of GSE. Again, by (j, i) /∈ E(GSW), it follows that
(j, i) ∈ ←−S ∪←−W, and hence (i, j) ∈ S ∪W. Moreover, as (i, j) /∈ E(GSE), we have
(i, j) ∈ ←−S ∪W. Hence (i, j) ∈ (S ∪W) ∩ (

←−S ∪W) = (S ∩ ←−S) ∪W =W.
For the other direction, if π is not a topological order of GSW, then

there is an edge (j, i) ∈ E(GSW) with i <π j, so (i, j) ∈ Sπ,ρ ∪ Wπ,ρ. Now
(j, i) ∈ E(GSW) = (S ∪W) \ (

←−S ∪ ←−W), so (i, j) /∈ S ∪ W. It follows that
(i, j) ∈

(
Sπ,ρ \ S

)
∪
(
Wπ,ρ \W

)
.

Similarly, if ρ is not a topological order of GSE, then there is an edge
(j, i) ∈ E(GSE) with i <ρ j, so (i, j) ∈ Sπ,ρ ∪

←−−−−Wπ,ρ. Again, (i, j) /∈ S ∪ ←−W,
and it follows that (i, j) ∈

(
Sπ,ρ \ S

)
∪ (
←−−−−Wπ,ρ \

←−W). The result then follows by
observing that Wπ,ρ ⊆ W if and only if

←−−−−Wπ,ρ ⊆
←−W.
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The two previous results imply:

Corollary 4.16. Let (S,W) be a biorder on JnK. Then, there is a sequence
pair (π, ρ) with Sπ,ρ ⊆ S and Wπ,ρ ⊆ W.

In particular, we can show Theorem 4.2 and thus have CRn ≤ (n!)2:

Theorem 4.2 ([Jer85]). Let n ∈ N. Then, the set{
rπ,ρ : (π, ρ) is a sequence pair on JnK

}
is a complete set of representations.

Proof. Let P be a feasible placement. Observation 4.8 and Corollary 4.16 imply
that there is a sequence pair (π, ρ) with Sπ,ρ ⊆ SP and Wπ,ρ ⊆ WP , and hence
rπ,ρ is a representation of P .

Moreover, we can now recover Jerrum’s result that Definition 4.9 establishes
a bijection between sequence pairs and complementary pairs of strict partial
orders:

Proposition 4.17 ([Jer85, Theorem 2]). Let (S,W) be a complementary pair
of strict partial orders on JnK. Then, there is a unique sequence pair (π, ρ) with
Sπ,ρ = S and Wπ,ρ =W.

Proof. Let GSW and GSE be the south-west and south-east digraphs of (S,W).
First, we observe that the topological orders of GSW and GSE are unique: As
every pair (i, j) is comparable in exactly one of S and W, we have

E(GSW) =
(
S ∪W

)
\
(←−S ∪ ←−W) =

(
S \ ←−W

)
∪
(
W \ ←−S

)
= S ∪W,

E(GSE) =
(
S ∪ ←−W

)
\
(←−S ∪W) =

(
S \W

)
∪
(←−W \ ←−S) = S ∪ ←−W,

so both digraphs contain an edge between any pair of endpoints (i, j) ∈ 2JnK.
Hence, by Lemma 4.15, there is a unique sequence pair (π, ρ) with Sπ,ρ ⊆ S
and Wπ,ρ ⊆ W. Finally, since both (S,W) and (Sπ,ρ,Wπ,ρ) are complementary,
we must have Sπ,ρ = S and Wπ,ρ =W.

A natural strategy to improve upon the (n!)2 upper bound would be to
prove that only certain sequence pairs can appear as topological orders of GSW

and GSE. However, there is no hope for this approach:

Proposition 4.18 ([MFNK96, Theorem 2]). Let (π, ρ) be a sequence pair on
JnK. Then, there is a feasible placement P on JnK that is represented by (π, ρ).
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Proof. Let σx be a topological order of (JnK,Wπ,ρ), and let σy be a topological
order of (JnK,Sπ,ρ). We define a placement P = (mincx,mincy,maxcx,maxcy)
by

mincx(i) :=σx(i), mincy(i) :=σy(i),

maxcx(i) :=σx(i) + 1, maxcy(i) :=σy(i) + 1,

for i ∈ JnK. It is easy to verify that P is a feasible placement, and moreover we
have Wπ,ρ ⊆ WP and Sπ,ρ ⊆ SP .

Now, we will characterize representations of the form rπ,ρ and show that
there is a complete set of representations of minimum cardinality that only
consists of representations of this form.

Definition 4.19. Let r a representation on JnK. The sets Sr,Wr are defined
as

Sr :=
{

(i, j) ∈ 2JnK : r(i, j) = south
}
,

Wr :=
{

(i, j) ∈ 2JnK : r(i, j) = west
}
.

Note that Sr and Wr are not necessarily strict partial orders, as transitivity
is not guaranteed. On the other hand, irreflexivity follows from the fact that
we only consider pairs (i, j) ∈ 2JnK, and antisymmetry is clear by the definition.
Moreover, antisymmetry of r implies 2JnK = sym(Sr) ∪ sym(Wr). Finally, a
representation r represents a placement P if and only if Sr ⊆ SP andWr ⊆ WP .

Definition 4.20. Let r be a representation. We call r transitive if Sr and
Wr are transitive, that is, if (Sr,Wr) is a biorder.

Non-transitive representations can be interpreted as being overconstrained:
There are rectangles i and j that must satisfy two fixed spatial relations in
each placement represented by r. It turns out that transitive representations
are exactly the representations induced by sequence pairs:

Theorem 4.21. Let r be a representation. Then r is transitive if and only if
there is a sequence pair (π, ρ) with r = rπ,ρ.

Proof. For the first direction, let (π, ρ) be a sequence pair with r = rπ,ρ. Then
Sr = Sπ,ρ and Wr =Wπ,ρ are strict partial orders, so r is transitive.

For the other direction, assume that r is transitive. Then (Sr,Wr) is a
complementary pair of strict partial orders on JnK, and by Proposition 4.17
there is a unique sequence pair (π, ρ) with Sπ,ρ = Sr and Wπ,ρ =Wr, implying
r = rπ,ρ.

In particular, we get:
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Corollary 4.22. Let n ∈ N. Then, there are exactly (n!)2 transitive represen-
tations on JnK.

This means that the worst-case running time of branch-and-bound based
algorithms (e.g., [FHS16]) that enumerate representations can be bounded in
terms of (n!)2 if it is ensured that only partial representations that can be
completed to transitive representations are considered.

Moreover, we can always replace non-transitive representations by transitive
ones:

Lemma 4.23. Let r be a representation on JnK. Then, there is a sequence pair
(π, ρ) such that every placement represented by r is also represented by rπ,ρ.

Proof. Define

Pr :=
{
P : P is feasible placement on JnK represented by r

}
.

If Pr is empty, there is nothing to show, so assume Pr 6= ∅. Now, set

S :=
⋂
P∈Pr

SP , W :=
⋂
P∈Pr

WP .

As strict partial orders are closed under intersection, S and W are strict partial
orders on JnK. For all placements P ∈ Pr, we have Sr ⊆ SP and Wr ⊆ WP ,
which implies Sr ⊆ S and Wr ⊆ W. Hence, we have 2JnK = sym(S) ∪ sym(W),
so (S,W) is a biorder on JnK.

Thus, using Corollary 4.16, we know that there is a sequence pair (π, ρ) with
Sπ,ρ ⊆ S and Wπ,ρ ⊆ W. In particular, we have Sπ,ρ ⊆ SP and Wπ,ρ ⊆ WP

for every placement P ∈ Pr, so we know that rπ,ρ represents every placement
P ∈ Pr.

Lemma 4.23 directly implies:

Theorem 4.24. Let n ∈ N. There is a set SP ⊆ SPn of sequence pairs such
that

R :=
{
rπ,ρ : (π, ρ) ∈ SP

}
is a complete set of representations of minimum cardinality.
In particular, the minimum cardinality of a complete set of sequence pairs equals
the minimum cardinality of a complete set of representations.

Hence, instead of considering sets of representations, one can restrict oneself
to sets of sequence pairs.
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4.4 Reachability in Arborescences
Before we proceed to prove a stronger upper bound on CRn, we use the
techniques developed so far for a completely different application, namely an
efficient reachability oracle for (out-)arborescences. More precisely, we describe
an algorithm that, given an arborescence T , answers reachability queries on T
in O(1) time, requiring only O(|V (T ) |) preprocessing time. This result is not
new: In fact, Kameda [Kam75] showed that this algorithm can even be applied
to general acyclic plane digraphs with the following property: All vertices with
in-degree 0 or out-degree 0 are on the boundary of the same face, and the
boundary of that face can be partitioned into two contiguous sections containing
only vertices with in-degree 0 or out-degree 0, respectively. We restrict ourselves
to arborescences, which clearly satisfy this property, simplifying the analysis.
Holm, Rotenberg, and Thorup [HRT15] even achieve the same guarantees
for general planar digraphs, using a much more complicated technique. Still,
this result shows that sequence pairs might be useful in different contexts, in
particular also for non-enumerative purposes.

The algorithm is based on two observations. First, if (S,W) is a comple-
mentary pair of strict partial orders on JnK, then there is a sequence pair (π, ρ)
with (S,W) = (Sπ,ρ,Wπ,ρ). Given a pair (i, j), we can decide in constant time
whether (i, j) ∈ Sπ,ρ without explicitly constructing the set Sπ,ρ by just looking
at the permutations π and ρ. Hence, if S is a strict partial order on JnK such
that there exists a strict partial order W with (S,W) complementary, then we
can encode S in a data structure of linear size that answers containment queries
in constant time. We call such strict partial orders S complementable (called
reversible by Dushnik and Miller [DM41]).

The second observation is that the reachability relation of an arborescence
(excluding pairs of the form (u, u)) is indeed complementable, and we can
compute the corresponding sequence pair in linear time:

Let T be an arborescence with root r ∈ V (T ) = JnK and let S be the
reachability relation of T , that is, S = tr(E(T )). Then, for a vertex v ∈ V (T ),
we denote by H[r,v ] the unique r-v path in T . Moreover, assume that for each
vertex u, we are given an arbitrary strict total order <u on δ+(u). We say that
(u, v1) is left of (u, v2) if (u, v1) <u (u, v2). For example, we can imagine that T
is embedded into the plane, and <u corresponds to a geometric order on the
outgoing edges of u. Given two paths H1, H2 that both start in r and do not
contain each other, let (u, v1) ∈ E(H1)\E(H2) and (u, v2) ∈ E(H2)\E(H1) be
the unique edges on H1 and H2 that leave the last common vertex of H1 and
H2. Then, we say that H1 < H2 if (u, v1) <u (u, v2). We can now define W:

W :=
{

(v1, v2) ∈ 2JnK \ sym(S) : H[r,v1 ] < H[r,v2 ]

}
It is not hard to show that W indeed is a strict partial order. Then, by
definition, (S,W) is a complementary pair, and in particular there is a unique
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sequence pair (π, ρ) with S = Sπ,ρ. Moreover, one can verify that π is the
left-first topological order of T , and ρ is the right-first topological order of T ,
which can be computed in linear time by left-first and right-first depth-first
search, respectively.

We conclude:

Proposition 4.25 ([Kam75]). Let T be an arborescence. Then, in O(|V (T ) |)
time, we can compute a data structure that allows to answer reachability queries
on T in O(1) time.



Chapter 5
Improved Upper Bound

In this chapter, we show a new upper bound of O
(
n!
n6 · (11+5

√
5

2
)n
)

on the
minimum cardinality CRn of complete sets of representations.

5.1 Augmented Digraphs
We improve the construction given in Chapter 4 by adding edges to the digraphs
GSW and GSE (cf. Definition 4.11), which restrict their topological orders:

Definition 5.1. Let (S,W) be a biorder on JnK. The augmented south-
west digraph GSW+ and augmented south-east digraph GSE+ of (S,W) are
digraphs with vertex set JnK, and with edge sets

E(GSW+) := E(GSW) ∪
{

(i, j) ∈ ←−S ∩W : i is not reachable from j in GSW

}
,

E(GSE+) := E(GSE) ∪
{

(i, j) ∈ ←−S ∩ ←−W : i is not reachable from j in GSE

}
,

where GSW and GSE are the south-west and south-east digraphs of (S,W).

See Figure 5.1 for an illustration of GSW+ and GSE+. Again, we need to show
that the constructed digraphs are acyclic:

Lemma 5.2. Let (S,W) be a biorder on JnK. Then the augmented digraphs
GSW+ and GSE+ of (S,W) are acyclic.

Proof. It suffices to consider GSW+ (for GSE+, exchange W and
←−W).

Suppose GSW+ contains a cycle. Consider a cycle C with smallest number
of edges. Of course, C must contain at least two edges from E(GSW+) \E(GSW)

47
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E(GSW+)

←−S ∩ W

S ∩ W S ∩←−W

←−S ∩←−W

←−S

W

S

←−W

(a) The edge set of GSW+.

E(GSE+)

←−S ∩ W

S ∩ W S ∩←−W

←−S ∩←−W

←−S

W

S

←−W

(b) The edge set of GSE+.

Figure 5.1: The edge sets of augmented digraphs. Partially
colored segments indicate that a subset of the segment is used in
the edge set.

because GSW is acyclic (Lemma 4.14) and any single added edge does not create
a cycle by construction.

We can partition C into paths that only consist of edges in E(GSW), except
for their last edge, see Figure 5.2. Let vk, vk−1, . . . , v1, v0, b be the vertices of
such a path in C, i.e., only the last edge (v0, b) does not belong to GSW.
Claim. (vi, b) ∈

←−S ∩W for all i = 0, . . . , k.
We show the claim by induction on i. It is true for i = 0 because

(v0, b) ∈ E(GSW+) \ E(GSW). Let now i ≥ 1. As (vi, vi−1) is an edge of
GSW, (vi, vi−1) /∈ ←−W. Moreover, (b, vi−1) ∈ ←−W by the induction hypothesis. As
←−W is transitive, (vi, b) /∈

←−W.
Now (vi, b) is not an edge ofGSW because C is a shortest cycle. As (vi, b) /∈

←−W,
this implies (vi, b) ∈

←−S.
Finally suppose that (vi, b) /∈ W. Then (b, vi) ∈ S \

←−W, and hence
(b, vi) ∈ E(GSW). Then b, vi, vi−1, . . . , v0 is a path from b to v0 in GSW. This
is a contradiction to the fact that (v0, b) ∈ E(GSW+) \ E(GSW). The claim is
proven.

Now let (ai, bi), i = 1, . . . , l, be the edges of C that do not belong to GSW.
We have l ≥ 2, and by the claim (bi−1, bi) ∈

←−S ∩W for all i = 1, . . . , l (where
b0 := bl). This is impossible because

←−S and W are strict partial orders.

Although the following statement is not required for the improved upper
bound, we note:

Proposition 5.3. Let (S,W) be a biorder on JnK. Then, the augmented
digraphs GSW+ and GSE+ of (S,W) have unique topological orders.

Proof. We show that GSW+ has a unique topological order π. The statement
for GSE+ then follows by exchanging W and

←−W. So let (i, j) ∈ 2JnK and w.l.o.g.
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(a) The decomposition of C into
paths that only consist of red edges,
except for the last one, indicated
by alternating background colors.

b
v0

v1

v2

v3

(b) We show that all dashed edges,
joining startpoints of red edges
with the endpoint of their respec-
tive path, must exist in

←−S∩W. This
leads to a cycle in

←−S ∩W and hence
a contradiction.

Figure 5.2: Proof of Lemma 5.2: A shortest cycle in GSW+ with
edges in E(GSW) in red.

we can assume that (i, j) ∈ E(GSW) ∪
(←−S ∩W), otherwise consider (j, i). Let

π be an arbitrary topological order of GSW+.
If (i, j) ∈ E(GSW+), then we must have i <π j.
If (i, j) /∈ E(GSW+), then (i, j) ∈

(←−S ∩W) \ E(GSW+) and hence i is reachable
from j in GSW (otherwise we would have added the edge (i, j) to GSW+). But
then i is also reachable from j in GSW+ and hence j <π i.

We conclude that the relative order of all pairs in <π is fixed, and hence π
is unique.

We now consider topological orders π and ρ of GSW+ and GSE+, respectively.
Since we only added edges, π and ρ are topological orders of GSW and GSE, and
hence Lemma 4.15 still implies Sπ,ρ ⊆ S and Wπ,ρ ⊆ W.

5.2 New Upper Bound
Now, we show that only certain sequence pairs can occur as topological orders
of GSW+ and GSE+ if we restrict to biorders of the form (SP ,WP ) for feasible
placements P .

Lemma 5.4. Let P = (mincx,mincy,maxcx,maxcy) be a feasible placement,
and let GSW+ and GSE+ be the augmented digraphs of (SP ,WP ). Furthermore,
let π and ρ be topological orders of GSW+ and GSE+, respectively. Then (π, ρ) is
plane.
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π(i) π(j) π(l) π(m)

ρ(j)

ρ(i)

ρ(m)

ρ(l)

Figure 5.3: Illustration of (i, j, l,m) and (π, ρ) in the proof of
Lemma 5.4. Gray areas are empty.

Proof. First note that (π, ρ) represents P by Lemma 4.15. For the sake of
contradiction, assume that (π, ρ) is not plane. Then, σ := ρ ◦ π−1 is not plane,
and by Lemma 3.4 σ contains an extreme bad quartet (i′, j′, l′,m′). We have
i′ < j′ < l′ < m′ and there is no element between j′ and l′, i.e., l′ = j′ + 1.
Moreover, we have j′ <σ i

′ <σ m
′ <σ l

′ and there is no element between i′

and m′ in σ. Define i := π−1(i′), l :=π−1(l′), j :=π−1(j′), m :=π−1(m′). Then,
we have i <π j <π l <π m and there is no element between j and l in π.
Furthermore, we have j <ρ i <ρ m <ρ l and there is no element between i and
m in ρ. See Figure 5.3.

Since (π, ρ) represents P , we have Sπ,ρ ⊆ SP and Wπ,ρ ⊆ WP , and hence
(i, l), (i,m), (j, l), (j,m) ∈ Sπ,ρ ⊆ SP and (i, j), (l,m) ∈ Wπ,ρ ⊆ WP .
Claim 1. We have (l, j) /∈ WP .

Suppose that (l, j) ∈ WP . Then (j, l) ∈ ←−−−WP , and thus (j, l) /∈ E(GSW).
Therefore l is not reachable from j in GSW as any vertex on a j-l-path would have
to be in between j and l in the topological order π. But then (l, j) ∈ ←−−SP ∩WP

would be an edge of GSW+, contradicting j <π l.
Claim 2. We have (i,m) /∈ WP .

Suppose that (i,m) ∈ WP . Then (i,m) /∈ E(GSE). Therefore m is not
reachable from i in GSE as any vertex on an i-m-path would have to be in
between i and m in the topological order ρ. But then (m, i) ∈ ←−−SP ∩

←−−−WP would
be an edge of GSE+, contradicting i <ρ m.

The two claims are proved. However, they contradict each other: together
with (i, j), (l,m) ∈ WP they imply

maxcx(i)
(i,j)∈WP

≤ mincx(j)
Claim 1
< maxcx(l)

(l,m)∈WP

≤ mincx(m)
Claim 2
< maxcx(i).
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In Section 7.3.3, our empirical experiments will show that for n ≤ 8, all
plane sequence pairs occur as topological orders of GSW+ and GSE+, and hence
the analysis of Lemma 5.4 is best possible for n ≤ 8.

Observation 5.5. Let n ∈ N. Then, we have{
(π, ρ) : (π, ρ) is plane sequence pair on JnK

}
=
{

(π, ρ) : π, ρ are permutations on JnK, ρ ◦ π−1 is plane
}

=
{

(π, σ ◦ π) : π, σ are permutations on JnK, σ is plane
}
.

In particular, the number of plane sequence pairs is n! times the number of
plane permutations.

We conclude:

Theorem 5.6. Let n ∈ N. Then, the set of plane sequence pairs on JnK is
complete for n.

Proof. The result is a direct consequence of Lemmata 4.15, 5.2 and 5.4.

Theorem 5.7. Let n ∈ N. Then

CRn ≤ n! · Planen = O
(
n!

n6
· Cn

)
,

where C = 11+5
√

5
2
≤ 11.091.

Proof. By Observation 5.5, the number of plane sequence pairs is n! times
the number of plane permutations. By Theorem 3.10, the number of plane
permutations is Θ

(
Cn

n6

)
. The result then follows from Theorem 5.6.

Note that this result does not only imply an improved asymptotic behavior
compared to classical sequence pairs, but also yields a strict improvement for
all n ≥ 4, cf. Table 3.3 (page 32).





Chapter 6
Improved Lower Bound

In this chapter, we prove a lower bound of Ω
(
n!
n4 · (4 + 2

√
2)n
)
on CRn. By

Theorem 4.24, instead of considering complete sets of representations, we can
restrict ourselves to complete sets of sequence pairs. Now, the idea of the new
lower bound is to generate a large set of feasible placements P , each of which
is only represented by a single unique sequence pair, where no sequence pair
occurs twice. Then, every complete set of sequence pairs must contain all these
sequence pairs, and hence we have CRn ≥ |P |.

We construct these placements using biplane permutations, which have
been examined by Asinowski et al. [Asi+13]. They study orders on segments
of floorplans, which have a very similar structure to the rectangles in the
placements considered here.

At the end of this chapter, we show that P has maximum possible cardinality
among all sets of placements with the properties described above, and thus our
lower bound is best possible when using this technique.

6.1 Forcing Placements
Consider a feasible placement P and a pair of rectangles i, j in P . If i is only
west of j in P , then for any sequence pair (π, ρ) representing P we must have
(i, j) ∈ Wπ,ρ. If we further assume that j is only west of some rectangle k, then
also (j, k) ∈ Wπ,ρ, and transitivity implies (i, k) ∈ Wπ,ρ, even if i is also south
or north of k. We will exploit this observation (which will be formalized in
Lemma 6.3) to construct placements that are represented by a unique sequence
pair only.

Given a biorder (S,W) on JnK and a pair (i, j) ∈ 2JnK, we say that i is

53
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1

2

3

4

5

6

7

Figure 6.1: A forcing placement.

south of j in (S,W) if (i, j) ∈ S, i is west of j if (i, j) ∈ W, and so on, even if
(S,W) is not of the form (SP ,WP ) for some placement P .

Definition 6.1. Let (S,W) be a biorder and (i, j) ∈ 2JnK. We say that a
spatial relation α ∈ {west, south, east, north} is forced for (i, j) in (S,W) if
there is a sequence of elements i = a1, . . . , ak = j such that for all 1 ≤ m < k,
the only spatial relation of (am, am+1) in (S,W) is α.

Observation 6.2. Let (S,W) be a biorder on JnK, let i, j, k ∈ JnK and let
α ∈ {west, south, east, north} be a spatial relation. If α is forced for (i, j) and
(j, k) in (S,W), then α is also forced for (i, k) in (S,W).

Lemma 6.3. Let (S,W) be a biorder on JnK, let (π, ρ) be a sequence pair rep-
resenting (S,W) and (i, j) ∈ 2JnK. If a relation α ∈ {west, south, east, north}
is forced for (i, j) in (S,W), then rπ,ρ(i, j) = α.

Proof. If α is forced for (i, j), then there is a sequence i = a1, . . . , ak = j such
that for all 1 ≤ m < k, the only spatial relation of (am, am+1) in (S,W) is α.
Since rπ,ρ represents (S,W), for all 1 ≤ m < k we have rπ,ρ(am, am+1) = α and,
by transitivity of rπ,ρ (cf. Theorem 4.21), we conclude that rπ,ρ(i, j) = α.

Definition 6.4. Let (S,W) be a biorder. We call (S,W) forcing if for all
pairs (i, j) ∈ 2JnK, there is a forced spatial relation for (i, j) in (S,W). We call
a placement P forcing if (SP ,WP ) is forcing.

Note that in particular a forcing placement is feasible. Examples of forcing
placements are given in Figure 1.1(c) (page 1) and Figure 6.1. Using Lemma 6.3,
we note:

Observation 6.5. Let (S,W) be a forcing biorder. Then, there is a unique
sequence pair (π, ρ) representing (S,W).

Hence, we can assign each forcing placement its corresponding sequence pair:
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Definition 6.6. Let P be a forcing placement. The forced sequence pair
(π, ρ) of P is the unique sequence pair (π, ρ) that represents P . We denote by
rP := rπ,ρ the forced representation of P . Moreover, we call a sequence pair
(π, ρ) forced if it is the forced sequence pair of a forcing placement.

Theorem 4.24 directly implies:

Observation 6.7. Let n ∈ N and let SP forced be a set of forced sequence pairs
on JnK. Furthermore, let SP be a complete set of sequence pairs on JnK.
Then, we have SP forced ⊆ SP and hence CRn ≥

∣∣SP forced
∣∣.

6.2 Many Forced Sequence Pairs
Now we get to the main part of the proof: We show the existence of a large set
of forced sequence pairs. The plan is to prove that each biplane sequence pair
is forced, that is, to prove that for each sequence pair of the form (π, σ ◦ π)
with σ biplane there is a forcing placement P such that (π, σ ◦ π) is the forced
sequence pair of P .

This will be done in two steps: In this section, we will prove that every
sequence pair of the form (id, σ) with σ biplane is forced. Then, in Section 6.3,
we will see that one can apply all permutations π to such sequence pairs,
resulting in all sequence pairs of the form (π, σ ◦ π) being forced as desired.

Set rσ := rid,σ. Recall that for a permutation σ on JnK, there is a digraph Gσ

on the vertex set JnK whose edge set contains all pairs (i, k) such that i <σ k
and there is no j with i <σ j <σ k, cf. Definition 3.6.

Lemma 6.8. Let σ be a permutation on JnK and let P be a feasible n-placement.
Then P is a forcing placement with rP = rσ if and only if

(i) for all (i, j) ∈ E(Gσ), i is only south of j in P , and

(ii) for all (i, j) ∈ E(G−σ), i is only west of j in P .

Proof. First, we prove that if (i) and (ii) hold, then P is forcing with rP = rσ.
Let i, j ∈ JnK with i < j. By Observation 3.12, j is reachable from i in either
Gσ or G−σ, but not both. Assume j is reachable from i in Gσ. Then there is a
sequence of vertices i = a1, . . . , ak = j with (am, am+1) ∈ E(Gσ) for 1 ≤ m < k,
so by (i), i south of j is forced. Furthermore, since j is reachable from i in Gσ,
we have i <σ j, so rσ(i, j) = south. The case that j is reachable from i in G−σ
is proven analogously.

For the other direction, let P be forcing with rP = rσ and (i, j) ∈ E(Gσ).
Since i < j and i <σ j, we have rP (i, j) = rσ(i, j) = south, so i is south of j.
It remains to be shown that south is the only spatial relation of (i, j). Since
rP (i, j) = south, i south of j is forced, and there are indices i = a1, . . . , ak = j
such that am is only south of am+1 in P for 1 ≤ m < k. Since rσ = rP represents
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i j n− 1 n

σ(n− 1)

σ(i)

σ(n)

σ(j)

B

C

A

E D

Figure 6.2: Configuration with i < j < n− 1 < n. Gray areas
are claimed to be empty.

P , we have rσ(am, am+1) = south for 1 ≤ m < k, so i = a1 < · · · < ak = j and
i = a1 <σ · · · <σ ak = j. Hence, due to (i, j) ∈ E(Gσ), we have k = 2, and thus
i is only south of j. Again, the case (i, j) ∈ E(G−σ) is proven analogously.

Recall that a permutation σ is called biplane if it avoids the patterns 213̄54
and 453̄12, cf. Definition 3.13. Before we prove the main lemma, we need a
technical auxiliary result:

Lemma 6.9. Let σ be a biplane permutation on JnK with σ(n− 1) < σ(n) < n.
Let (j, n) ∈ E(G−σ) such that j has no outgoing edges in Gσ and let i < j
with (i, n) ∈ E(Gσ). Furthermore, let P = (mincx,mincy,maxcx,maxcy) be a
forcing placement with rP = rσ. Then, i is the only index with this property, and
there is a forcing placement P ′ = (minc ′x,minc ′y,maxc′x,maxc ′y) with rP ′ = rσ
and maxc′x(j) < maxc ′x(i).

Proof. First, note that j 6= n− 1, so j < n− 1, and due to i < j < n− 1 < n
and (n− 1, n), (i, n) ∈ E(Gσ), we must have

n− 1 <σ i <σ n <σ j.

Claim. There is no l ∈ JnK with either

(A) i < l < j and i <σ l <σ n, or

(B) l < i and i <σ l <σ n, or

(C) i < l < j and l <σ i, or

(D) j < l < n− 1 and n <σ l <σ j, or

(E) l < j and n <σ l <σ j.

Figure 6.2 illustrates the setting and the five statements.
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To prove the claim, first observe that an l with (A) would contradict
(i, n) ∈ E(Gσ). Next, this implies that an l with (B) or with (C) would yield
(with i, j and n) a match of the pattern 213̄54, contradicting that σ is plane.
Third, an l with (D) would contradict (j, n) ∈ E(G−σ). Finally, this implies
that an l with (E) would yield (together with j, n− 1 and n) a match of the
pattern 453̄12, contradicting that −σ is plane. The claim is proven.

Now, by (A), (B), and (C) of the claim, there is no l < j with l 6= i and
(l, n) ∈ E(Gσ).

Part (A) and (E) of the claim imply that (i, j) ∈ E(Gσ). Hence, by
Lemma 6.8, i is only south of j in P – in particular i is not west of j – so
maxcx(i) > mincx(j). If maxcx(j) < maxcx(i), there is nothing to show (i.e.,
set P ′ = P ), so assume maxcx(j) ≥ maxcx(i).
Set (minc ′x,minc′y,maxc′x,maxc ′y) = (mincx,mincy,maxcx,maxcy), except for

maxc ′x(j) :=
max

{
mincx(i),mincx(j)

}
+ maxcx(i)

2
.

Then, we have

maxc ′x(j) < maxcx(i) ≤ maxcx(j)

and

maxc ′x(j) ≥ minc′x(j) + maxc ′x(i)

2
> minc ′x(j).

Hence, P ′ is still a placement. Since we only decreased the width of j, P ′
is still feasible, and all only-west and only-east relations of j are still intact.
Moreover, as j has no outgoing edges in Gσ, in order to see that P ′ is still
forcing with rP ′ = rσ, we only need to verify that for all edges (k, j) ∈ E(Gσ),
k is still only south of j. But, by (A), (B), (C) and (E) of the claim, i is the
only predecessor of j in Gσ, and since we only reduced maxc′x(j), j is still not
east of i. Moreover, we have

maxc ′x(j) =
max

{
minc′x(i),minc ′x(j)

}
+ maxc ′x(i)

2

≥ minc′x(i) + maxc ′x(i)

2
> minc′x(i),

so j is not west of i in P ′.

Lemma 6.10. Let σ be a biplane permutation on JnK. Then there is a forcing
placement P of n rectangles with rP = rσ.

Proof. We prove the lemma by induction. The case n = 1 is trivial, so assume
the claim holds for n ∈ N and let σ be a biplane permutation on Jn+ 1K.
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j n n+ 1

σ(n)

σ(n+ 1)

σ(j)

(a) Situation with j < n < n+ 1 and
n <σ n+ 1 <σ j.

l j n n+ 1

σ(n)

σ(n+ 1)

σ(l)

σ(j)

(b) If there exists a predecessor l < j of
n+ 1 in G−σ, then −σ is not plane.

Figure 6.3: Illustrations of order of elements in σ. Gray areas
do not contain any other elements.

First, we consider the case n <σ n + 1. The other case will later be
reduced to this case. Let σ′ be the permutation on JnK given by σ′(i) :=σ(i) if
i <σ n+ 1, and σ′(i) :=σ(i)− 1 otherwise. Clearly, for i, j ∈ JnK, we have i <σ

j ⇐⇒ i <σ′ j. In particular, σ′ is a biplane permutation, so by the induction
hypothesis, there is a forcing placement P ′ = (minc ′x,minc ′y,maxc ′x,maxc ′y)
with rP ′ = rσ′ . Note that Gσ′ is an induced subgraph of Gσ, and G−σ′ is an
induced subgraph of G−σ. This means that if we extend P ′ to some placement
P of n + 1 rectangles, we only need to check edges incident to n + 1 when
applying Lemma 6.8.

If σ(n+1) = n+1, then we can just place n+1 north of all other rectangles:
extend

P ′ = (minc ′x,minc ′y,maxc′x,maxc ′y)

to
P = (mincx,mincy,maxcx,maxcy)

by

mincx(n+ 1) := min
i∈JnK

minc′x(i), mincy(n+ 1) := max
i∈JnK

maxc ′y(i),

maxcx(n+ 1) := max
i∈JnK

maxc′x(i), maxcy(n+ 1) := max
i∈JnK

maxc ′y(i) + 1.

By extending , we mean that P and P ′ agree for i = 1, . . . , n. Then, n+1 does not
overlap with any rectangle, so P is a feasible placement. For (i, n+ 1) ∈ E(Gσ),
by the construction of P , we have that i is only south of n + 1 in P . Since
there are no edges (i, n+ 1) ∈ E(G−σ), we can apply Lemma 6.8 to conclude
that P is forcing with rP = rσ.

So assume σ(n+ 1) < n+ 1. Let j be maximum with (j, n+ 1) ∈ E(G−σ).
Note that j exists since n + 1 is reachable from σ−1(n + 1) in G−σ. This
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configuration is illustrated in Figure 6.3(a). Then j is the only predecessor of
n+ 1 in G−σ: If l < j with n+ 1 <σ l <σ j, then (l, j, n, n+ 1) shows that −σ
is not plane, cf. Figure 6.3(b).

Moreover, j has no outgoing edges in Gσ′ , since if (j, l) ∈ E(Gσ′), then
l < n + 1 and n + 1 <σ l, so n + 1 is reachable from l in G−σ, contradicting
that j is the only predecessor of n+ 1 in G−σ. Hence, rσ′(j, l) 6= north for all
other rectangles l, and as rσ′ represents P ′, there is no rectangle only north of
j in P ′. We can thus w.l.o.g. assume that

maxc′y(j) ≥ max
{

1 + maxc ′y(i) : i ∈ JnK \ {j }
}
, (6.1)

since we can increase the height of j as required. Increasing the size of rectangles
while maintaining a feasible placement does not destroy forced relations, so P ′
is still forcing with rP ′ = rσ′ .

Now, we consider the predecessors of n + 1 in Gσ, which represent the
rectangles that n+ 1 has to be north of. Let i be minimum with (i, n+ 1) ∈
E(Gσ). Again, i exists since (n, n + 1) ∈ E(Gσ). If i < j, by Lemma 6.9
(applied to the case n + 1) there is no i < l < j with (l, n + 1) ∈ E(Gσ) and
w.l.o.g. we can assume that maxc ′x(j) < maxc ′x(i). Note that (6.1) can still be
assumed.
We extend

P ′ = (minc′x,minc ′y,maxc ′x,maxc ′y)

to
P = (mincx,mincy,maxcx,maxcy)

by

mincx(n+ 1) :=maxcx(j), mincy(n+ 1) :=maxcy(j)− 1,

maxcx(n+ 1) := max
l∈JnK

maxcx(l), maxcy(n+ 1) :=maxcy(j).

First, since j is west of n, we have maxcx(n+ 1) ≥ maxcx(n) > mincx(n) ≥
maxcx(j) = mincx(n+ 1). Furthermore, n + 1 is east of j and (using (6.1))
north of all other rectangles, so in particular n + 1 does not intersect any
rectangle, showing that P is a feasible placement.

Now, we verify for all (k, n+ 1) ∈ E(Gσ) that k is only south of n+ 1, and
for all (k, n+ 1) ∈ E(G−σ) that k is only west of n+ 1.

Clearly, by construction of P , j is only west of n+ 1 in P , and j is the only
predecessor of n+ 1 in G−σ. As n+ 1 is north of all rectangles other than j, it
remains to be shown that for (k, n+ 1) ∈ E(Gσ), we have that k is not west of
n+ 1 and not east of n+ 1. The latter already directly follows from the choice
of maxcx(n+ 1).

So let (k, n + 1) ∈ E(Gσ). If k < j we have that k = i, and by
maxcx(i) > maxcx(j) = mincx(n+ 1) we have that i is not west of n + 1.
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Otherwise, i.e., j < k, we have k <σ n + 1 <σ j, so j is west of k. Then
mincx(n+ 1) = maxcx(j) ≤ mincx(k) < maxcx(k), so k is not west of n + 1.
We conclude, using Lemma 6.8, that P is a forcing placement with rP = rσ.

Finally, consider the case n + 1 <σ n. Since σ is biplane, −σ
is biplane as well, and n <−σ n + 1, so there exists a forcing place-
ment P ′ = (minc′x,minc′y,maxc′x,maxc ′y) with rP ′ = r−σ. Now let P =

(minc ′y,minc′x,maxc ′y,maxc ′x), i.e., exchange the role of x-coordinates and y-
coordinates in P ′. As the definition of forcingness is symmetric, clearly P is still
a forcing placement. Moreover, for (i, j) ∈ E(Gσ), we have (i, j) ∈ E(G−(−σ)),
so i is only west of j in P ′, resulting in i only south of j in P . Similarly, if
(i, j) ∈ E(G−σ), then i is only south of j in P ′, so i is only west of j in P .
Hence, by Lemma 6.8, P is a forcing placement with rP = rσ.

6.3 Completing the Lower Bound
Now, we show that one can apply all permutations on JnK to the forcing
placements obtained from Lemma 6.10:

Lemma 6.11. Let (π, ρ) be a biplane sequence pair. Then (π, ρ) is forced.

Proof. As (π, ρ) is biplane, we can write (π, ρ) = (π, σ ◦ π) with σ biplane.
We prove that there is a forcing placement P ′ with rP ′ = rπ,σ◦π. Since σ is
biplane, by Lemma 6.10, there is a forcing placement P such that rP = rσ. We
now show that permuting the rectangles in P according to π yields a forcing
placement P ′ with rP ′ = rπ,σ◦π. So let P = (mincx,mincy,maxcx,maxcy) and
define P ′ = (minc′x,minc′y,maxc ′x,maxc′y) by, for i ∈ JnK,

minc′x(i) :=mincx(π(i)), minc ′y(i) :=mincy(π(i)),

maxc ′x(i) :=maxcx(π(i)), maxc ′y(i) :=maxcy(π(i)).

Obviously, P ′ is still a forcing placement. Furthermore, for i, j ∈ JnK with
i 6= j, we have

rP ′(i, j) = rP
(
π(i), π(j)

)
= rσ

(
π(i), π(j)

)
= rid,σ

(
π(i), π(j)

)
= rπ,σ◦π(i, j).

Hence, there is a large set of forced sequence pairs, and we finally obtain
the new lower bound:

Theorem 6.12. Let n ∈ N. Then, we have

CRn ≥ n! · Biplanen = Ω
(
n! · c

n

n4

)
,

where c = 4 + 2
√

2 ≥ 6.828.
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1

2

3

4 5

Figure 6.4: A feasible placement that is not representable by a
forced representation.

Proof. By Lemma 6.11, there is a set of forced sequence pairs for n that contains
a separate element for each pair π, σ of permutations where σ is biplane. By
Theorem 3.15, the number of biplane permutations is Θ

(
(4+2

√
2)n

n4

)
. The result

now follows from Observation 6.7.

In Chapter 7, we will see that this lower bound is tight for n ≤ 4. However,
for n ≥ 5, we observe:

Proposition 6.13. Let n ∈ N with n ≥ 5. Then CRn > n! · Biplanen.
Proof. First, we prove the case n = 5. Consider the feasible placement P
as depicted in Figure 6.4. We show that P is not representable by a forced
representation.

So suppose that P ′ = (minc′x,minc′y,maxc ′x,maxc ′y) is a forcing placement
such that P is represented by rP ′ . The pair (1, 5) is the only pair without a
forced relation in P . Moreover, there is no 1 < i < 5 such that (1, i) and (i, 5)
have the same relation in P . Hence, the only way to force a relation for (1, 5)
in P ′ is to either let 1 be only west of 5 or let 1 be only south of 5 in P ′.

For all pairs 1 ≤ i < j ≤ 4, there is no k such that (i, k) and (k, j) have the
same relation in P . Hence, all such (i, j) may only have one relation in P ′ as
well. Since 3 is south of 4, but not east of 4, we have minc ′x(3) < maxc ′x(4).
This implies

maxc ′x(1) ≤ minc′x(3) < maxc ′x(4) ≤ minc ′x(5),

so 1 is west of 5 in P ′. Similarly, 2 is west of 3, but not north of 3, so we have
minc ′y(2) < maxc′y(3). Then

maxc ′y(1) ≤ minc′y(2) < maxc ′y(3) ≤ minc ′y(5),

so 1 is south of 5 in P ′. This contradicts the requirement that 1 and 5 have
only one relation in P ′.

For the case n > 5, the same argument works after adding n− 5 rectangles
to P that are east of {1, . . . , 5}.



62 Chapter 6. Improved Lower Bound

6.4 Characterization of Forced Sequence Pairs
We have seen that all biplane sequence pairs are forced. Now, we will show
that all forced sequence pairs are of this type, that is, a sequence pair is forced
if and only if it is biplane. This means that the lower bound of Theorem 6.12
is the best possible result that can be obtained from forcing placements and
their forced sequence pairs.

Lemma 6.14. Let n ∈ N and

SP1 =
{

(π, σ ◦ π) : π, σ ∈ Πn, σ is plane
}
,

SP2 =
{

(π, σ ◦ π) : π, σ ∈ Πn, −σ is plane
}
.

Then, both SP1 and SP2 are complete sets of sequence pairs.

Proof. The fact that SP1 is complete is just a reformulation of Theorem 5.6.
To show that SP2 is complete, let P = (mincx,mincy,maxcx,maxcy)

be a feasible placement. We obtain a new feasible placement P ′ =
(mincy,mincx,maxcy,maxcx) by exchanging the role of x- and y-coordinates
in P . Now, we choose a sequence pair (π, σ′ ◦ π) ∈ SP1 that represents P ′ and
set σ :=−σ′. As −σ = −(−σ′) = σ′ is plane, we know that (π, σ ◦ π) ∈ SP2.
Moreover, σ ◦ π = (−σ) ◦ π = −(σ′ ◦ π), which implies that rπ,σ◦π can obtained
from rπ,σ′◦π by exchanging south and west and exchanging north and east (cf.
Definition 4.1), so (π, σ ◦ π) represents P .

Lemma 6.15. Let P be a feasible placement that is only represented by a
unique sequence pair (π, ρ). Then (π, ρ) is biplane.

Proof. Set σ := struc(π, ρ). As (π, ρ) is the only sequence pair representing
P , Lemma 6.14 directly implies that both σ and −σ must be plane, so σ is
biplane.

We conclude:

Theorem 6.16. Let (π, ρ) be a sequence pair. Then, the following statements
are equivalent:

(i) (π, ρ) is forced.

(ii) There is a feasible placement P such that (π, ρ) is the unique sequence
pair representing P .

(iii) (π, ρ) is biplane.

Proof.
(i) =⇒ (ii) is implied by Observation 6.5,
(ii) =⇒ (iii) is implied by Lemma 6.15, and
(iii) =⇒ (i) is implied by Lemma 6.11.



Chapter 7

Computational Bounds

Recall that by CRn, we refer to the minimum cardinality of a complete set of
representations, that is, a set of representations that contains a representation
for each feasible placement of n rectangles. By Theorem 4.24, CRn also is the
minimum cardinality of a complete set of sequence pairs. In this chapter, we
will compute CRn for small n.

Clearly, the set of sequence pairs representing a placement P only depends
on the set of spatial relations satisfied in P , that is, the pair of strict partial
orders (SP ,WP ). We will call this pair the configuration of P (to be defined
formally later). In Section 7.1, we will identify configurations that are not
relevant for the computation of CRn (as these are in a sense dominated by
other configurations) and demonstrate how to detect them. In Section 7.2, we
then show how to efficiently enumerate the set of all relevant configurations
for fixed n. Finally, in Section 7.3, we reduce the computation of CRn to a set
cover problem and solve it for all n ≤ 8. As the main result, we observe that
CRn = n! · Baxtern for n ≤ 8. Moreover, we introduce the notion of symmetric
sets of sequence pairs, and demonstrate that the minimum cardinality CRsym

n of
symmetric complete sets of sequence pairs even satisfies CRsym

n = n! · Baxtern
for all n ≤ 12, again using optimum set cover solutions. Lastly, we observe that
complete sets of sequence pairs of minimum cardinality seem to be induced by
the set of permutations avoiding a certain pattern. These permutations (called
pseudo-biplane) seem to be equinumerous with Baxter permutations.

63
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7.1 Theoretical Foundation: Configurations
7.1.1 Interval Orders
Before we consider placements and their strict partial orders, we first deal with
the one dimensional case of intervals.

Definition 7.1. Let n ∈ N. An interval placement is a pair of coordinate
functions I = (minc,maxc) with minc,maxc : JnK→ R and minc(i) < maxc(i)
for all i ∈ JnK.

Every interval placement I induces a strict partial order:

Definition 7.2. Let I be an interval placement. Then, the strict partial order
QI is given by

QI :=
{

(i, j) ∈ 2JnK : maxc(i) ≤ minc(j)
}
.

Definition 7.3. Let n ∈ N and let Q be a strict partial order on JnK. We say
that Q is an interval order if there is an interval placement I with QI = Q.

Observation 7.4. Let P be a placement. Then SP and WP are interval orders.

This means that when enumerating pairs (S,W) that are candidates for
(SP ,WP ) of some placement P , we need to ensure that S and W are interval
orders. To this end, as the next step, we will characterize interval orders. First,
we observe that there are strict partial orders that are not interval orders:

Proposition 7.5. Let Q ⊂ 2J4K be given by

Q :=
{

(1, 2), (3, 4)
}
.

Then Q is a strict partial order, but not an interval order.

Proof. One easily verifies that indeed Q is a strict partial order.
Now assume there is an interval placement I = (minc,maxc) with Q = QI .

Then

maxc(1)
(1,2)∈Q
≤ minc(2)

(3,2)/∈Q
< maxc(3)

(3,4)∈Q
≤ minc(4),

contradicting (1, 4) /∈ Q.

In fact, Fishburn [Fis70] showed that a strict partial order is an interval
order if and only if it does not contain four elements that compare as in Q.

In order to efficiently detect interval orders, given a relation Q ⊆ 2JnK,
we model constraints on the coordinate functions minc,maxc of an interval
placement I with QI = Q using a system of linear inequalities. Then, we will
efficiently detect whether that system of inequalities is feasible in O(n2) time,
exploiting the special structure of that system.

Before we proceed to describe that approach in detail, we need some
definitions:
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Definition 7.6. A weighted digraph (G,w) is a digraph G together with a
weight function w : E(G) → R. We call (G,w) conservative if (G,w) does
not contain any cycle C with

w(C) :=
∑

e∈E(C)

w(e) < 0.

Definition 7.7. Let (G,w) be a weighted digraph and let λ : V (G)→ R. We
define the reduced cost function wλ : E(G)→ R by

wλ((u, v)) := w((u, v)) + λ(u)− λ(v).

We call λ a feasible potential if wλ(e) ≥ 0 for all e ∈ E(G).

Clearly, if λ is a feasible potential of (G,w), then (G,w) must be conservative,
since w(C) = wλ(C) ≥ 0 for any cycle C. One can show that the reverse
statement is also true, that is, there exists a feasible potential λ of (G,w) if
and only if (G,w) is conservative ([KV18]).

Feasible potentials are most prominently used in flow and shortest path
problems, where one exploits that computing a shortest path with respect to wλ
yields a shortest path with respect to w. In particular, feasible potentials allow
to use Dijkstra’s algorithm ([Dij59]), which requires nonnegative edge weights,
to compute shortest paths in general, conservative graphs (G,w) ([BL74]).
Moreover, feasible potentials (also called future cost estimates in this context)
allow to speed up Dijkstra’s algorithm in practice ([HNR68]). Note that feasible
potentials are exactly the feasible solutions of the dual of the shortest path LP.

The problem of finding a feasible potential is equivalent to determining
values λ(v) for all v ∈ V (G) such that a certain set of linear inequalities is
satisfied. This means that we can also use algorithms to compute feasible
potentials to solve systems of linear inequalities of this form.

In general graphs (G,w), one can compute a feasible potential (or detect
that none exists) in O

(∣∣V (G)
∣∣ · ∣∣E(G)

∣∣) time ([KV18]) using the Moore-
Bellman-Ford algorithm ([Moo59; Bel58; For56]). However, in our case, we
only need to compute feasible potentials for acyclic digraphs:

Lemma 7.8. Let (G,w) be a weighted, acyclic digraph. Then, we can compute
a feasible potential λ of (G,w) in O

(∣∣V (G)
∣∣+
∣∣E(G)

∣∣) time.

Proof. First, we remark that if (G,w) is acyclic, then (G,w) must also be
conservative, so a feasible potential λ exists.

To compute λ, simply set
λ(v) = 0

for all vertices v ∈ V (G) without ingoing edges. Then, process the remaining
vertices in topological order and set

λ(v) = min
{
λ(u) + w((u, v)) : (u, v) ∈ E(G)

}
.
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Figure 7.1: Constraint graph of WP for a placement P . For
a rectangle i, we draw the vertex vmin

i at the center of i’s left
border, and vmax

i at the center of i’s right border. Edges in E1

are black, edges in E2 red, and edges in E3 blue.

The procedure above is well-defined, since λ(u) is computed before λ(v) if
(u, v) ∈ E(G). Moreover, the resulting function λ clearly is a feasible potential,
and the running time guarantee is satisfied, where we exploit that a topological
order of G can be computed in O

(∣∣V (G)
∣∣+
∣∣E(G)

∣∣) time ([KV18]).

Now, we introduce a weighted digraph that contains two vertices vmin
i , vmax

i

for each interval index i ∈ JnK. The feasible potential will yield coordinates
of intervals, and weighted edges are used to model constraints on distances of
coordinates. A similar construction was considered by Fekete and Schepers
[FS97].

Definition 7.9. Let Q ⊆ 2JnK and let

E1 :=
{

(vmin
i , vmax

i ) : i ∈ JnK
}
,

E2 :=
{

(vmin
j , vmax

i ) : (i, j) /∈ Q
}
,

E3 :=
{

(vmax
i , vmin

j ) : (i, j) ∈ Q
}
.

The constraint graph of Q is the weighted digraph (GQ, wQ) with vertex set

V (GQ) :=
⋃
i∈JnK

{
vmin
i , vmax

i

}
and edge set

E(GQ) :=E1 ∪ E2 ∪ E3

with

wQ((u, v)) :=

{
−1 if (u, v) ∈ E1 ∪ E2,

0 if (u, v) ∈ E3.



7.1. Theoretical Foundation: Configurations 67

An illustration of GQ with Q =WP is given in Figure 7.1.

Lemma 7.10. Let Q ⊆ 2JnK. Then Q is an interval order if and only if
(GQ, wQ) is conservative. Moreover, assume that λ is a feasible potential of
(GQ, wQ), and let minc,maxc : JnK→ R be given by

minc(i) :=−λ(vmin
i ),

maxc(i) :=−λ(vmax
i ).

Then Iλ =
(
minc,maxc

)
is an interval placement with QIλ = Q.

Proof. Let λ′ : V (GQ)→ R be arbitrary and let Iλ′ be defined as above. Then
Iλ′ is an interval placement if and only if

−λ′
(
vmin
i

)
< −λ′

(
vmax
i

)
∀i ∈ JnK.

Moreover, we have Q = QI if and only if

−λ′
(
vmax
i

)
> −λ′

(
vmin
j

)
∀(i, j) /∈ Q,

−λ′
(
vmax
i

)
≤ −λ′

(
vmin
j

)
∀(i, j) ∈ Q.

If λ′ satisfies these constraints, we can w.l.o.g. assume that all strict inequalities
are satisfied with a slack of at least 1 by scaling. Hence, after multiplying with
−1, we see that λ′ exists if and only if there is λ : V (GQ)→ R with

λ
(
vmin
i

)
− 1 ≥ λ

(
vmax
i

)
∀i ∈ JnK,

λ
(
vmin
j

)
− 1 ≥ λ

(
vmax
i

)
∀(i, j) /∈ Q,

λ
(
vmax
i

)
≥ λ

(
vmin
j

)
∀(i, j) ∈ Q,

which are exactly the requirements for λ to be a feasible potential of (GQ, wQ).
Moreover, the constraints for λ imply the constraints for λ′, showing that indeed
Iλ is an interval placement with QIλ = Q.

Lemma 7.10 implies that we can use the Moore-Bellman-Ford algorithm
([Moo59; Bel58; For56]) to detect whether a given set Q ⊆ 2JnK is an interval
order in O(n3) time. However, Corollary 7.12 shows that we can improve the
running time to O(n2):

Lemma 7.11. Let Q ⊆ 2JnK. Then (GQ, wQ) is conservative if and only if GQ

is acyclic.

Proof. We show that GQ does not contain any cycles of nonnegative weight.
As all edges in GQ have nonpositive weight, it suffices to show that GQ does
not contain cycles consisting only of zero weight edges. But all zero weight
edges are of the form (vmax

i , vmin
j ) and hence clearly do not form a cycle.
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Corollary 7.12. Let Q ⊆ 2JnK. Then, in O(n2) time, we can detect that Q is
not an interval order or compute an interval placement I with QI = Q.

Proof. First, in O(n2) time, we compute a topological order of GQ or detect that
GQ contains a cycle [KV18], in which case Lemma 7.10 and Lemma 7.11 show
that Q is not an interval order. Otherwise, we compute a feasible potential
of GQ in O(n2) time using Lemma 7.8, which directly induces an interval
placement I with QI = Q using Lemma 7.10.

The following condition will be useful later on:

Lemma 7.13. Let Q be an interval order and (i, j) ∈ Q. Then Q− (i, j) is not
an interval order if and only if vmin

j is reachable from vmax
i in GQ− (vmax

i , vmin
j ),

that is,
tr
(
GQ

)
= tr

(
GQ − (vmax

i , vmin
j )

)
.

Proof. By Lemmata 7.10 and 7.11, GQ is acyclic, and Q − (i, j) is not an
interval order if and only if its constraint graph GQ−(i,j) contains a cycle. But
GQ−(i,j) is obtained from GQ by reversing the direction of the edge (vmax

i , vmin
j ),

and hence GQ−(i,j) contains a cycle if and only if vmin
j is reachable from vmax

i

in GQ − (vmax
i , vmin

j ).

7.1.2 Configurations
Recall that a pair (S,W) of strict partial orders on JnK is biordering if each
pair of elements (i, j) ∈ 2JnK is comparable in at least one of S and W.

Observation 7.14. Let (S,W) be a pair of strict partial orders on JnK. Then,
we have:

(i) There is a placement P with (SP ,WP ) = (S,W) if and only if (S,W) is
a pair of interval orders.

(ii) There is a feasible placement P with (SP ,WP ) = (S,W) if and only if
(S,W) is a biordering pair of interval orders.

This fact motivates the notion of configurations:

Definition 7.15. A configuration (S,W) on JnK is a biordering pair of
interval orders on JnK. For a feasible placement P , we refer to (SP ,WP ) as the
configuration of P .

Now, let SP ⊆ SPn be a set of sequence pairs. We say that SP covers a
configuration (S,W) if it contains a sequence pair (π, ρ) representing (S,W),
i.e., Sπ,ρ ⊆ S and Wπ,ρ ⊆ W. Clearly, we have:

SP is complete for n
⇐⇒ SP covers (SP ,WP ) for all feasible n-placements P
⇐⇒ SP covers all configurations (S,W) on JnK

(7.1)
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1

2

3

4

(a) A non-tight placement.

1

2

3

4

(b) A tight place-
ment.

1

2

3

4 5

(c) A tight placement con-
taining the pair (1, 5) sat-
isfying two spatial rela-
tions.

Figure 7.2: Examples of (non-)tight placements.

This means that we can compute CRn by explicitly enumerating all configura-
tions and solving a set cover problem (formally defined in Section 7.3.1): Every
sequence pair (π, ρ) ∈ SPn corresponds to a set of represented configurations,
and we want to find a minimum cardinality set of sequence pairs SP that
covers all configurations.

7.1.3 Tight Configurations
Next, we show a sufficient condition for configurations to be irrelevant for the
computation of CRn. This will not only result in smaller set cover instances,
but will also allow us to avoid the enumeration of many configurations.

As a motivating example, consider the placement Pa given in Figure 7.2(a)
and its configuration: Rectangle 1 is both west and south of rectangle 4, but
there is a feasible placement Pb (given in Figure 7.2(b)) where 1 is only south of
4, and all remaining pairs of rectangles satisfy the same unique spatial relation
in both placements. This means that any representation of Pb also represents
Pa and hence we can ignore the configuration of Pa for the computation of CR4.
This fact motivates the concept of tightness :

Definition 7.16. Let (S,W) be a configuration.

• We say that a configuration (S ′,W ′) 6= (S,W) dominates (S,W) if
S ′ ⊆ S and W ′ ⊆ W.

• We call (S,W) tight if there is no configuration that dominates (S,W).

• We call a feasible placement P tight if (SP ,WP ) is tight.

The placement Pc depicted in Figure 7.2(c) is tight although the rectangles
1 and 5 satisfy two spatial relations. Note that the proof of Proposition 6.13
implies that Pc is indeed tight. Now, if some configuration (S,W) is not tight,
there is a configuration (S ′,W ′) 6= (S,W) that dominates (S,W). If (π, ρ) is a
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sequence pair representing (S ′,W ′), then Sπ,ρ ⊆ S ′ ⊆ S and Wπ,ρ ⊆ W ′ ⊆ W,
so (π, ρ) also represents (S,W).

Hence, using (7.1) and Theorem 4.24, we conclude:

Observation 7.17. Let n ∈ N and CT
n be the set of tight configurations on JnK.

Then, we have

CRn = min
{
|SP| : SP ⊆ SPn covers all (S,W) ∈ CT

n

}
.

Before we proceed to characterize tightness, we first need a useful result on
general acyclic digraphs:

Lemma 7.18. Let G be an acyclic digraph and F ⊆ E(G) be a set of edges.
Then, tr(G− F ) = tr(G) if and only if tr(G− f) = tr(G) for all f ∈ F .

Proof. For the first direction, assume that tr(G− F ) = tr(G) and let f ∈ F .
Then

E
(
tr(G)

)
= E

(
tr(G− F )

)
⊆ E

(
tr(G− f)

)
⊆ E

(
tr(G)

)
,

hence tr(G− f) = tr(G).
For the other direction, assume that tr(G− f) = tr(G) for all f ∈ F . We

show F ⊆ tr(G− F ), implying tr(G− F ) = tr(G).
For every (u, v) = f ∈ F , there is a u-v path Hf with

∣∣E(Hf )
∣∣ ≥ 2 in

G− f . Consider some (u, v) = f ∈ F . If Hf is a path in G− F , we are done.
Otherwise, there is f ′ ∈ E(Hf ) ∩ F , and we can replace f ′ in Hf by the path
Hf ′ . As G is acyclic, the result is a strictly longer u-v path. Since the length
of any path in G is bounded, this procedure must terminate after finitely many
steps with a u-v path in G− F .

Lemmata 7.13 and 7.18 imply:

Observation 7.19. Let Q be an interval order and Q′ ⊆ Q. Furthermore, let
F :=

{
(vmax
i , vmin

j ) : (i, j) ∈ Q′
}
. Then, the following conditions are equivalent:

(i) tr
(
GQ − F

)
= tr

(
GQ

)
.

(ii) Q− (i, j) is not an interval order for all (i, j) ∈ Q′.

Now, we can characterize tightness which in particular allows to efficiently
detect tightness:

Lemma 7.20. Let (S,W) be a configuration.
Then (S,W) is tight if and only if

(i) S − (i, j) is not an interval order for all (i, j) ∈ S ∩ sym(W), and

(ii) W− (i, j) is not an interval order for all (i, j) ∈ W ∩ sym(S).
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Proof. For the first direction, assume in case (ii) that W− (i, j) is an interval
order for a pair (i, j) ∈ W ∩ sym(S). Then (S,W− (i, j)) is a biordering pair
of interval orders (i.e., a configuration) and hence dominates (S,W). The other
case follows by symmetry.

For the other direction, let (S′,W ′) be a configuration that dominates
(S,W) and w.l.o.g. assume that W \W ′ is not empty. We will show that there
is a pair (i, j) ∈ W \ W ′ such that W \ {(i, j)} is an interval order. This
will imply the result: As (S′,W ′) is a biorder and (i, j) /∈ W ′, we must have
(i, j) ∈ W ∩ sym(S).

Set ∆ :=W \W ′ and assume, for the sake of contradiction, that W− (i, j)
is not an interval order for all (i, j) ∈ ∆. Then Observation 7.19 implies
that for all (i, j) ∈ ∆, the vertex vmin

j is reachable from vmax
i in G′ :=GW −{

(vmax
i′ , vmin

j′ ) : (i′, j′) ∈ ∆
}
. But E(G′) ∪

{
(vmin
j′ , vmax

i′ ) : (i′, j′) ∈ ∆
}
⊆

E(GW ′), contradicting that GW ′ is acyclic.

Proposition 7.21. Let (S,W) be a configuration on JnK, and 2 < ω < 2.373
the current best matrix multiplication constant. Then, in O(nω) time, we can
detect whether (S,W) is tight.

Proof. Observation 7.19 implies that in order to test the conditions of
Lemma 7.20, it suffices to compute the transitive closure of two digraphs
on 2n vertices. Munro [Mun71] and Furman [Fur70] have shown that an algo-
rithm that computes the product of two Boolean k × k matrices in O(kω) time
implies an algorithm to compute the transitive closure of a k-vertex digraph in
O(kω) time. The currently fastest matrix multiplication algorithm due to Le
Gall [LeG14] achieves a running time of O(kω) with ω < 2.373.

In practice, we use Observation 7.19 to detect tightness in O(n3) time: It
suffices to compute the transitive closures of two acyclic digraphs, which we do
by processing the vertices in reverse topological order. Note that this is still
faster than a naïve implementation of Lemma 7.20, which would take O(n4)
time by applying Corollary 7.12 O(n2) times.

Now, consider a configuration (S,W). By Lemma 7.20, we know that in
order to check whether (S,W) is tight, we only need to verify whether there is
any pair (i, j) that is comparable in both S and W and can be removed from
S or W while maintaining an interval order.

For example, assume there is a pair (i, l) ∈ S ∩W (the other case (i, l) ∈
S ∩ ←−W is symmetric): If W − (i, l) is not an interval order, then there is a
path from vmax

i to vmin
l in the constraint graph GW that does not use the edge

(vmax
i , vmin

l ). Lemma 7.23 shows that there always is such a path that visits at
most two other rectangles j and k, and gives additional properties of j and k
that will be useful later on. In the case of Figure 7.2(c) with i = 1 and l = 5,
we get j = 3 and k = 4. Before we proceed, we need a technical result used in
the proof of Lemma 7.23:
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Lemma 7.22. Let (S,W) be a configuration on JnK. Then, there is an integral
placement P = (mincx,mincy,maxcx,maxcy) with (SP ,WP ) = (S,W) s.t. all
x-coordinates are pairwise different and all y-coordinates are pairwise different.

Proof. First, choose a placement P ′ = (minc ′x,minc ′y,maxc ′x,maxc ′y) with
(SP ′ ,WP ′) = (S,W) and integral coordinates, which can be obtained by scaling
any placement with rational coordinates by a sufficiently large integer.
Define P = (mincx,mincy,maxcx,maxcy) using, for i ∈ JnK,

mincx(i) :=minc′x(i) +
1

3i
, mincy(i) :=minc ′y(i) +

1

3i
,

maxcx(i) :=maxc ′x(i)− 1

3i
, maxcy(i) :=maxc′y(i)− 1

3i
.

As the difference between any pair of coordinates is reduced by at most 2
3
< 1,

any <-relations on pairs of coordinates in P ′ are preserved in P .
Hence, in particular mincx(i) < maxcx(i) and mincy(i) < maxcy(i) for all
i ∈ JnK, so P is a placement. Moreover, since min-coordinates were only
increased and max-coordinates only decreased, all spatial relations that hold
in P ′ still hold in P . On the other hand, all spatial relations that hold in P
also hold in P ′: If i is not west of j in P ′, then maxc ′x(i) > minc ′x(j) and thus
maxcx(i) > mincx(j). The other cases are shown in the same way. Finally, of
course all x-coordinates and all y-coordinates in P are pairwise different by
construction. Finally, to obtain an integral placement with the same properties,
we can again scale all coordinates.

To keep notation simple, Lemma 7.23 is only formulated and shown for one
of the possible cases, the other cases then follow by symmetry. Its setting is
illustrated in Figure 7.3.

Lemma 7.23. Let (S,W) be a tight configuration on JnK and (i, l) ∈ S ∩W.
Then, there are rectangles j, k ∈ JnK with

(i) (i, j) ∈ W \ sym(S),

(ii) (k, l) ∈ W \ sym(S).

Moreover, if j 6= k, then

(iii) (j, k) ∈ (S ∪W) \
(←−S ∪ ←−W).

In particular, vmax
i , vmin

j , vmax
k , vmin

l are the vertices of a path of cost −1 in GW.

Proof. By Lemma 7.22, there is a feasible placement

P = (mincx,mincy,maxcx,maxcy)
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i

l

j

k

(a) The case j 6= k with (j, k) ∈ S \ sym(W).
Note that (j, k) ∈ S∩W or (j, k) ∈ W\ sym(S)
are also possible.

i

lj = k

(b) The case j = k.

Figure 7.3: The setting of Lemma 7.23: If (i, j) ∈ S ∩W, then
Lemma 7.23 guarantees the existence of j, k such that j restricts
i in east direction, and k restricts l in west direction. Moreover,
either j = k (left), or (j, k) ∈ S ∪ W (right). In particular,
vmax
i , vmin

j , vmax
k , vmin

l form a path in GW . By symmetry, there
also must be rectangles that restrict i in north direction, and l in
south direction, yielding a path in GS .

with all different coordinates and (SP ,WP ) = (S,W). Now, choose j minimizing
mincx(j) with

(i, j) ∈ W \ sym(S).

If there is no such j, then (S,W) cannot be tight: There is no rectangle only east
of i, so setting maxcx(i) :=mincx(l)+1 yields a feasible placement P ′ where i is
not west of l, so (SP ′ ,WP ′) dominates (S,W). Hence, j exists. Furthermore, we
must have mincx(j) < mincx(l): Otherwise, as all coordinates in P are pairwise
different, we have mincx(j) > mincx(l), and setting maxcx(i) :=mincx(j) leads
to a feasible placement P ′ such that (SP ′ ,WP ′) dominates (S,W), contradicting
tightness of (S,W).

Using the same argument, we can choose k maximizing maxcx(k) with

(k, l) ∈ W \ sym(S),

and we know that maxcx(i) < maxcx(k). If j = k, we are done, so assume
j 6= k. It remains to be shown that

(j, k) ∈ (S ∪W) \
(←−S ∪ ←−W).

As P is feasible, it suffices to show (j, k) /∈ ←−S ∪ ←−W. We have

mincy(j)
(i,j)/∈S
< maxcy(i)

(i,l)∈S
≤ mincy(l)

(k,l)/∈S
< maxcy(k),

so (j, k) /∈ ←−S.
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1

2

3

4

5

(a)

1

2

3

4

5

(b)

Figure 7.4: Two tight placements with different configurations
that are represented by the same unique sequence pair.

Finally, assume that (j, k) ∈ ←−W. Then maxcx(k) < mincx(j), and setting
maxcx(i) :=mincx(j) and mincx(l) :=maxcx(k) yields a placement P ′ where i
is not west of l. The choice of j and k implies that P ′ is feasible. Again, now
(SP ′ ,WP ′) dominates (S,W), contradicting tightness of (S,W).

7.1.4 SP-Equivalence
In Section 7.1.3, we have seen how to identify configurations that are dominated
by other configurations and hence do not need to be considered for the
computation of CRn.

In this section, we first observe that there are different (possibly tight)
configurations that are represented by the same set of sequence pairs, in which
case we only need to consider one of the two. We will call configurations
SP-equivalent if they are represented by the same set of sequence pairs, and
give a characterization of SP-equivalence. In contrast to tightness, which is only
defined for configurations, all results in this section apply to general biorders.

For example, consider the two placements depicted in Figure 7.4 that have
different configurations. As these are forcing, both are represented by a unique
sequence pair, and clearly these sequence pairs must be the same, as for all
pairs (i, j) the same relation is forced (cf. Definition 6.1) in both placements
for i and j.

Definition 7.24. Let (S,W) and
(
S ′,W ′

)
be biorders on JnK. We say that

(S,W) and
(
S ′,W ′

)
are SP-equivalent if (S,W) and

(
S ′,W ′

)
are represented

by the same set of sequence pairs, that is,{
(π, ρ) : Sπ,ρ ⊆ S and Wπ,ρ ⊆ W

}
=
{

(π, ρ) : Sπ,ρ ⊆ S ′ and Wπ,ρ ⊆ W ′
}
.

Using Observation 7.17, we get:

Observation 7.25. Let n ∈ N and CT
n be the set of tight configurations on

JnK. Moreover, let CT,SP
n ⊆ CT

n be a set that contains a representative of each
SP-equivalence class of CT

n .
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Then, we have

CRn = min
{
|SP| : SP ⊆ SPn covers all (S,W) ∈ CT,SP

n

}
.

In Figure 7.4, we see that for all pairs (i, j) that have different satisfied
spatial relations in the two placements (i.e., (1, 5) and (2, 4)), there is a common
forced relation for (i, j) in both placements. We will show that this is always
the case.

Lemma 7.26. Let G and G′ be two acyclic digraphs on the same vertex set.
Then the set of topological orders of G equals the set of topological orders of G′
if and only if tr(G) = tr(G′).

Proof. A permutation π is a topological order of G if and only if π is a
topological order of tr(G), which shows the first direction.

Now, assume that tr(G) 6= tr(G′), and w.l.o.g. there is an edge (i, j) ∈ E(G′)
such that j is not reachable from i in G. Then G+ (j, i) is acyclic, so let π be
a topological order of G+ (j, i). Then π is also a topological order of G, but
not a topological order of G′.

Lemmata 4.15 and 7.26 imply that we can express SP-equivalence in terms
of the transitive closures of GSW and GSE:

Corollary 7.27. Let (S,W) and
(
S ′,W ′

)
be biorders on JnK, and let GSW,

GSE, G′SW and G′SE be the south-west and south-east digraphs of (S,W) and(
S ′,W ′

)
, respectively.

Then (S,W) and
(
S ′,W ′

)
are SP-equivalent if and only if tr(GSW) = tr(G′SW)

and tr(GSE) = tr(G′SE).

Consider a biorder (S,W). Then, the set tr
(
W \ sym(S)

)
consists of exactly

the pairs (i, j) for which west is forced in (S,W). With this in mind, we can
define the reduction of a biorder, which will play a crucial role to determine
SP-equivalence classes:

Definition 7.28. Let (S,W) be a biorder on JnK. The reduction

red
(
(S,W)

)
:=(Sred,Wred)

of (S,W) is given by

Sred :=S \
(

tr
(
W \ sym(S)

)
∪ tr

(←−W \ sym(S)
))

,

Wred :=W \
(

tr
(
S \ sym(W)

)
∪ tr

(←−S \ sym(W)
))

.
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In other words, in the reduction of (S,W), we remove all pairs (i, j) from
S that have a forced relation different from south, and remove all pairs (i, j)
from W that have a forced relation different from west.

Lemma 7.29. Let (S,W) be a biorder. Then, its reduction red
(
(S,W)

)
is a

biorder.

Proof. Let red
(
(S,W)

)
= (Sred,Wred) be the reduction of (S,W). Since at

most one relation can be forced for a given pair (i, j) in (S,W), clearly every
pair (i, j) is comparable in at least one of Sred and Wred. As Sred and Wred are
subsets of strict partial orders, we only need to show that Sred and Wred are
transitive, and by symmetry it suffices to consider Sred.

So let (i, j), (j, k) ∈ Sred and assume, for the sake of contradiction, that
(i, k) /∈ Sred. As S is transitive and Sred ⊆ S, we know that (i, k) ∈ S, and
hence i west of k is forced, or i east of k is forced. W.l.o.g. assume that i
west of k is forced, that is, k is reachable from i in W \ sym(S). Let H be
a shortest i-k path in

(
JnK,W \ sym(S)

)
, and assume that we have chosen a

counterexample i, j, k minimizing |E(H) |.
As (i, k) ∈ S, we have |E(H) | ≥ 2, and let v be the predecessor of k in H.

Then (v, k) ∈ W \ sym(S), and in particular v 6= j. Moreover, as v is on an
i-k-path in

(
JnK,W \ sym(S)

)
, i west of v is forced, and v west of k is forced.

Now, we consider the pair (j, v).
If j west of v is forced, then j west of k is forced, contradicting (j, k) ∈ Sred.
If v west of j is forced, then i west of j is forced, contradicting (i, j) ∈ Sred. In
particular, we get (j, v) ∈ sym(S). Moreover, (v, k) /∈ S and (j, k) ∈ S imply
(j, v) /∈ ←−S, and hence (j, v) ∈ S. As neither west nor east is forced for (j, v),
this implies (j, v) ∈ Sred. But then (i, j), (j, v) ∈ Sred and (i, v) /∈ Sred (as i
west of v is forced), so i, j, v is a counterexample with smaller |E(H) |.

Note that the reduction of a configuration is not necessarily a configuration
again: For example, the configurations depicted in Figure 7.4 have the same
reduction (Sred,Wred). We have (1, 2), (4, 5) ∈ Sred and (4, 2) /∈ Sred, but
(1, 5) /∈ Sred, hence Sred is not an interval order.

We observe that the set of forced relations does not change when reducing:

Lemma 7.30. Let (S,W) be a biorder and (Sred,Wred) its reduction.
Then, we have

tr
(
S \ sym(W)

)
= tr

(
Sred \ sym(Wred)

)
,

tr
(←−S \ sym(W)

)
= tr

(←−−−Sred \ sym(Wred)
)
,

tr
(
W \ sym(S)

)
= tr

(
Wred \ sym(Sred)

)
, and

tr
(←−W \ sym(S)

)
= tr

(←−−−−Wred \ sym(Sred)
)
.
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Proof. By symmetry, it suffices to show

tr
(
S \ sym(W)

)
= tr

(
Sred \ sym(Wred)

)
.

As for each pair at most one relation can be forced in (S,W), we have
S \ sym(W) ⊆ Sred. Furthermore, Wred ⊆ W implies sym(Wred) ⊆ sym(W),
and hence S \ sym(W) ⊆ Sred \ sym(Wred). This implies tr(S \ sym(W)) ⊆
tr(Sred \ sym(Wred)).

For the other direction, let (i, j) ∈ Sred \ sym(Wred). We need to show
that j is reachable from i in (JnK,S \ sym(W)). Clearly (i, j) ∈ S, and
if (i, j) /∈ sym(W), we are done, so assume (i, j) ∈ sym(W). Then, (i, j) ∈
sym(W)\sym(Wred), so south is forced for (i, j) in (S,W), that is, j is reachable
from i in (JnK,S \ sym(W)).

Hence, taking the reduction is an idempotent operation:

Corollary 7.31. Let (S,W) be a biorder. Then, we have

red
(

red
(
(S,W)

))
= red

(
(S,W)

)
.

Moreover, reducing does not change reachability in GSW and GSE, and hence
also preserves the set of representing sequence pairs:

Lemma 7.32. Let (S,W) be a biorder on JnK and (Sred,Wred) its reduction.
Furthermore, let GSW, GSE, Gred

SW and Gred
SE be the south-west and south-east

digraphs of (S,W) and (Sred,Wred), respectively.
Then, we have tr(GSW) = tr(Gred

SW) and tr(GSE) = tr(Gred
SE ).

Proof. By symmetry, it suffices to show tr(GSW) = tr(Gred
SW).

Using Corollary 4.13 and Lemma 7.30, we get:

E
(

tr(Gred
SW)
)

= tr
(
Sred \ sym(Wred)

)
∪ tr

(
Wred \ sym(Sred)

)
∪ (Sred ∩Wred)

= tr
(
S \ sym(W)

)
∪ tr

(
W \ sym(S)

)
∪ (Sred ∩Wred)

E
(

tr(GSW)
)

= tr
(
S \ sym(W)

)
∪ tr

(
W \ sym(S)

)
∪ (S ∩W)

Clearly, Sred ∩ Wred ⊆ S ∩ W, and hence it suffices to show that S ∩ W ⊆
E
(
tr(Gred

SW)
)
. But if (i, j) ∈ S ∩W, then (i, j) /∈ ←−S ∪ ←−W, so (i, j) /∈ ←−−−Sred ∪

←−−−−Wred

and hence (i, j) ∈ E(Gred
SW).

Now, we can characterize SP-equivalence:

Theorem 7.33. Let (S,W) and
(
S ′,W ′

)
be biorders on JnK. Then (S,W) and(

S ′,W ′
)
are SP-equivalent if and only if red

(
(S,W)

)
= red

((
S ′,W ′

))
.
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Proof. If the reductions of (S,W) and
(
S ′,W ′

)
are equal, then by Corollary 7.27

and Lemma 7.32 we know that (S,W) and
(
S ′,W ′

)
are SP-equivalent.

So assume that (S,W) and
(
S ′,W ′

)
are SP-equivalent. Then, by Corol-

lary 7.27 we have tr(GSW) = tr(G′SW) and tr(GSE) = tr(G′SE), where GSW,
GSE, G′SW and G′SE are the south-west and south-east digraphs of (S,W)
and

(
S ′,W ′

)
, respectively. Furthermore, let red

(
(S,W)

)
= (Sred,Wred) and

red
((
S ′,W ′

))
= (S ′red,W ′red). We need to show that (Sred,Wred) = (S ′red,W ′red).

First, by symmetry, it suffices to show Sred = S ′red. Furthermore, we only need
to show Sred ⊆ S ′red, for the other direction one can exchange (S,W) and(
S ′,W ′

)
. Finally, as Sred = (Sred \W) ∪ (Sred \

←−W), it suffices to prove

Sred \
←−W ⊆ S ′red,

for the other case consider (S,←−W) and (S ′,←−−W ′).
Let (i, j) ∈ Sred \

←−W ⊆ S \ ←−W ⊆ E(GSW) and assume that (i, j) /∈ S ′red. As
(i, j) ∈ E(GSW) and tr(GSW) = tr(G′SW), we know that j must be reachable
from i in G′SW.
Claim 1. We have (i, j) ∈ tr(W ′ \ sym(S ′)), that is, i west of j is forced in(
S ′,W ′

)
.

If (i, j) ∈ S ′, then (i, j) /∈ S ′red implies that we have (i, j) ∈ tr(W ′ \ sym(S ′)) ∪
tr(
←−−W ′ \ sym(S ′)), and as j is reachable from i in G′SW, we must have (i, j) ∈

tr(W ′ \ sym(S ′)).
If (i, j) /∈ S ′, Corollary 4.13 applied to G′SW implies (i, j) ∈ tr(W ′ \ sym(S ′)),
proving Claim 1.

Now, let H ′ be an i-j-path in (JnK,W ′ \ sym(S ′)). The following claim
implies that i west of j is forced in (S,W), contradicting (i, j) ∈ Sred:
Claim 2. Let (a, b) ∈ E(H ′). Then (a, b) ∈ tr(W \ sym(S)).

As (a, b) ∈ W ′ \ sym(S ′), b is reachable from a in G′SW (and hence also in
GSW), and a is reachable from b in both G′SE and GSE. Then, by Corollary 4.13
applied to GSW, we know that one of the following conditions holds:

(i) (a, b) ∈ tr(S \ sym(W))

(ii) (a, b) ∈ S ∩W

(iii) (a, b) ∈ tr(W \ sym(S))

Case (i) would imply that b is reachable from a in GSE, a contradiction.
In case (ii), we have (b, a) ∈ ←−S, and as a is reachable from b in GSE,
Corollary 4.13 applied to GSE implies (b, a) ∈ tr

(←−W \ sym(S)
)
, and hence

(a, b) ∈ tr
(
W \ sym(S)

)
. In the last case, there is nothing to show, which

proves the claim.
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Theorem 7.33 allows us to compute the set of SP-equivalence classes of a
set of biorders by simply computing the set of their reductions, and removing
duplicates. As we already observed in the case of Figure 7.4, the reduction
of a configuration is not necessarily a configuration. This means that directly
enumerating reductions of tight configurations would require to work with
biorders that are not configurations, severely complicating the enumeration
algorithm. Hence, we will not consider SP-equivalence within the configuration
enumeration algorithm, but instead use Theorem 7.33 to filter the enumerated
configurations and only keep a single representative of each SP-equivalence-class.

7.1.5 Normalized Configurations
In this section, we consider a different equivalence relation on biorders, namely
the equivalence relation induced by relabeling the elements of the ground set
(e.g., the rectangles):

Consider a biorder (S,W) on JnK. For each permutation π ∈ Πn, we obtain
a different biorder (π(S), π(W)) (formally defined in Definition 7.35) that has
the same structure as (S,W) by permuting the elements of JnK according to π.
It is easy to see that

(S,W) ∼ (S ′,W ′) :⇐⇒ (S ′,W ′) = (π(S), π(W)) for some π ∈ Πn

defines an equivalence relation on biorders which preserves tightness (in the case
of configurations) and SP-equivalence. This means that in order to enumerate all
tight configurations, it suffices to enumerate a representative of each equivalence
class of tight configurations, and then applying all permutations to the found
representatives.

Recall that the augmented south-west digraph GSW+ (cf. Definition 5.1) of
a biorder (S,W) has a unique topological order (Proposition 5.3). This fact
motivates the following definition:

Definition 7.34. Let (S,W) be a biorder and let GSW+ be the augmented
south-west digraph of (S,W).
We call (S,W) normalized if the unique topological order π of GSW+ is idJnK,
i.e., we have 1 <π . . . <π n.

Now, we give a formal definition of (π(S), π(W)):

Definition 7.35. Let π ∈ Πn be a permutation and Q ⊆ 2JnK. The set
π(Q) ⊆ 2JnK is defined as

π(Q) :=
{

(π(i), π(j)) : (i, j) ∈ Q
}
.

We observe that the edges of GSW+ are permuted according to π:

Observation 7.36. Let (S,W) be a biorder and π ∈ Πn. Furthermore, let GSW+

and Gπ
SW+ be the augmented south-west digraphs of (S,W) and (π(S), π(W)),

respectively. Then, we have E(Gπ
SW+) = π

(
E(GSW+)

)
.
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Hence, π also permutes the elements in the topological order of GSW+ and
we get:

Observation 7.37. Let (S,W) be a biorder. Then, there is a unique normalized
biorder (S ′,W ′) with (S,W) ∼ (S ′,W ′).

Thus, from now on we only consider the efficient enumeration of SP-
equivalence classes of normalized tight configurations.

7.2 Configuration Enumeration
In this section, we describe an algorithm that, given n ∈ N, computes the set
of SP-equivalence classes of normalized tight configurations on JnK. The largest
part of this section will cover the core enumeration algorithm that ignores SP-
equivalence and enumerates the set of normalized tight configurations. Then, in
Section 7.2.6, we will apply Theorem 7.33 to only keep a single representative
of each SP-equivalence class.

The basic idea of the core enumeration algorithm will be to recursively
enumerate partial configurations and use pruning rules to cut off enumeration
subtrees that cannot lead to normalized tight configurations. In Section 7.2.1,
we will describe the basic algorithm and then, in Sections 7.2.2, 7.2.3 and 7.2.4,
introduce pruning rules to eliminate non-interval orders, non-normalized con-
figurations and non-tight configurations.

For each new group of pruning rules, we demonstrate its impact by compar-
ing the algorithm with and without these pruning rules, in both cases using all
previously introduced pruning rules. Hence, the best obtained results are given
at the end of Section 7.2.4. Moreover, Section 7.2.5 covers implementation
details of the core enumeration algorithm.

7.2.1 Partial Configurations and Enumeration Algorithm
The central concept of the algorithm is a partial configuration, which in addition
to S and W is equipped with a set A. The set A consists of all pairs (i, j) for
which we already have decided on the relation in S and W:

Definition 7.38. Let n ∈ N. A partial configuration is a triple (S,W,A)
with S,W,A ⊆ 2JnK, A =

←−A = sym(A) and S ∪W ⊆ A.
We say that a configuration (S∗,W∗) is a completion of (S,W,A) if

S = S∗ ∩ A and W =W∗ ∩ A. Moreover, we refer by compl(S,W,A) to the
set of normalized tight completions of (S,W,A).

Finally, we say that a partial configuration (S,W,A) is invalid if
compl(S,W,A) is empty.

Clearly, the task of computing all normalized tight configurations is equiva-
lent to computing all normalized tight completions of the partial configuration
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(∅, ∅, ∅). Moreover, the only possible completion of a partial configuration
(S,W, 2JnK) is (S,W) itself.

These facts suggest a simple recursive algorithm to enumerate all normal-
ized configurations: Start with the trivial partial configuration (∅, ∅, ∅), and
recursively enumerate the set of possible completions of (S,W,A) by adding
single pairs (i, j) to A and enumerating all possible relations of i and j in
(S,W).

This algorithm is formally described in Algorithm 7.1 (page 83). The
following result immediately implies that it works correctly:

Lemma 7.39. Let (S,W,A) be a partial configuration and (i, j) ∈ 2JnK \ A
with i < j. Furthermore, let

C :=
{(
S + (j, i),W + (i, j)

)
,(

S, W + (i, j)
)
,(

S + (i, j),W + (i, j)
)
,(

S + (i, j),W
)
,(

S + (i, j),W + (j, i)
)}

and A′ :=A ∪
{

(i, j), (j, i)
}
.

Then, we have

compl(S,W,A) =
⋃

(S′,W ′)∈C
compl(S ′,W ′,A′).

Proof. For the first direction, let (S∗,W∗) ∈ compl(S,W,A) be a normalized
tight completion of (S,W,A). We need to show that (S∗ ∩ A′,W∗ ∩ A′) ∈ C.
As (S∗,W∗) is a biorder, we know that (i, j) ∈ sym(S∗) ∪ sym(W∗). There are
eight possible cases, five of which are covered by C. The three remaining cases
are

• (i, j) ∈ ←−S∗ \ sym(W∗),

• (i, j) ∈ ←−S∗ ∩ ←−−W∗,

• (i, j) ∈ ←−−W∗ \ sym(S∗).
However, in all of these three cases we must have an edge (j, i) ∈ E(GSW+)
in the augmented south-west digraph GSW+ of (S∗,W∗) (cf. Definitions 4.11
and 5.1), which together with i < j contradicts that (S∗,W∗) is normalized.

For the other direction, let (S ′,W ′) ∈ C and (S∗,W∗) be a normalized tight
completion of (S ′,W ′,A). Then

S∗ ∩ A =
(
S∗ ∩ A′

)
\
{

(i, j), (j, i)
}

= S ′ \
{

(i, j), (j, i)
}

= S
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and

W∗ ∩ A =
(
W∗ ∩ A′

)
\
{

(i, j), (j, i)
}

=W ′ \
{

(i, j), (j, i)
}

=W,
so (S∗,W∗) is a normalized tight completion of (S,W).

Corollary 7.40. Algorithm 7.1 works correctly.

Note that the order in which we process pairs (i, j) is irrelevant for the
correctness of the algorithm, but will be important later on for some pruning
rules. Moreover, as the proof of Lemma 7.39 does not exploit tightness, we can
easily modify Algorithm 7.1 to enumerate all normalized (including non-tight)
configurations by simply not testing for tightness and not using any pruning
rules that exploit tightness.

The program was implemented in the C++17 programming language and
compiled using clang-7.0.0 with the -O3 compiler flag. All results were
obtained on a machine with two AMD EPYC 7601 32-core processors and 512 GB
of main memory running CentOS Linux 7.6, using 64 threads.

7.2.2 Consistency Pruning
The simplest pruning rule exploits that in a configuration (S,W), the sets S
and W need to be interval orders. Analogously to Definition 7.38, we define:

Definition 7.41. Let n ∈ N. A partial interval order is a pair (Q,A) with
Q,A ⊆ 2JnK, A =

←−A and Q ⊆ A.
We say that an interval order Q∗ is a completion of (Q,A) if Q = Q∗∩A.

Moreover, we refer by compl(Q,A) to the set of completions of (Q,A).
Finally, we call a partial interval order (Q,A) invalid if compl(Q,A) is

empty, and valid otherwise.

Not surprisingly, we will detect whether a partial interval order is valid
based on whether an appropriately chosen constraint graph is acyclic:

Definition 7.42. Let (Q,A) be a partial interval order and let (GQ, wQ) be
the constraint graph of Q (cf. Definition 7.9). Furthermore, let

E ′1 :=
{

(vmin
i , vmax

i ) : i ∈ JnK
}
,

E ′2 :=
{

(vmin
j , vmax

i ) : (i, j) ∈ (A \Q)
}
,

E ′3 :=
{

(vmax
i , vmin

j ) : (i, j) ∈ (A ∩Q)
}
.

The partial constraint graph (GQ,A, wQ,A) of (Q,A) is the subgraph of
GQ on the same vertex set, with edge set

E(GQ,A) := E ′1 ∪ E ′2 ∪ E ′3 ⊆ E(GQ),

and the same edge weights on these edges.
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Algorithm 7.1: Normalized tight configuration enumeration
Input: Integer n ∈ N.
Output: Set of all normalized tight configurations on JnK.

1 return enumerate_recursively(∅, ∅, ∅, 1, 2, n)

// Returns all normalized tight completions of (S,W,A).
// (i, j) is the next pair to be assigned.

2 procedure enumerate_recursively(S,W,A, i, j, n)
// Prune invalid partial configurations.

3 if we can prove that (S,W,A) is invalid then
4 return ∅

// Check if all pairs are assigned.
5 if A = 2JnK then
6 if (S,W) is normalized tight configuration then
7 return

{
(S,W)

}
8 else
9 return ∅

// Enumerate relations of (i, j) in S and W and recurse.

10

C ←
{

(
S + (j, i), W + (i, j)

)
, // i north and west of j(

S, W + (i, j)
)
, // i only west of j(

S + (i, j), W + (i, j)
)
, // i south and west of j(

S + (i, j), W
)
, // i only south of j(

S + (i, j), W + (j, i)
)

// i south and east of j}
11 A′ ← A∪

{
(i, j), (j, i)

}
12 (i′, j′)← next_pair(i, j )
13 return

⋃
(S′,W ′)∈C enumerate_recursively(S ′,W ′,A′, i′, j′, n)

// Returns pair to be processed after (i, j).
// Order is increasing in j and decreasing in i:
// (1, 2); (2, 3), (1, 3); (3, 4), (2, 4), (1, 4); . . .

14 procedure next_pair(i, j)
15 if i = 1 then
16 return (j , j + 1)
17 else
18 return (i− 1, j )
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Lemma 7.43. Let (Q,A) be a partial interval order on JnK.
Then (Q,A) is valid if and only if GQ,A is acyclic.

Proof. For the first direction, assume that (Q,A) is valid and let Q∗ be a
completion of (Q,A). Then GQ,A is a subgraph of GQ∗ . By Lemmata 7.10
and 7.11, we know that GQ∗ is acyclic, so GQ,A must be acyclic.

For the other direction, assume that GQ,A is acyclic. As (GQ, wQ) does not
contain cycles of nonnegative cost (Lemma 7.11), its subgraph (GQ,A, wQ,A)
also does not contain cycles of nonnegative cost and hence is conservative.
Thus, there is a feasible potential λ of (GQ,A, wQ,A). As GQ,A still contains
all edges of the form (vmin

i , vmax
i ), we have λ(vmin

i ) − λ(vmax
i ) − 1 ≥ 0 for all

i ∈ JnK, so Iλ =
(
minc,maxc

)
given by

minc(i) :=−λ(vmin
i ), maxc(i) :=−λ(vmax

i ),

is an interval placement. It is easy to verify that its interval order QIλ is a
completion of (Q,A).

In the algorithm, we will maintain the partial constraint graphs of (S,A)
and (W,A). Moreover, for both graphs we will maintain an all-pairs reachability
table that tells us for all pairs of vertices u, v whether there is a path from u
to v in GS,A or GW,A, respectively. Hence, we can determine whether a new
edge induces a cycle in constant time, and discard all partial assignments that
would lead to such a cycle. In Section 7.2.5, we explain how to update these
reachability tables very efficiently when adding new edges.

We will refer to pruning based on Lemma 7.43 by consistency pruning,
its impact is given in Table 7.1: As expected, the number of enumeration nodes
is significantly reduced, and the set of normalized tight configurations can be
enumerated up to n = 8. We observe that for n ≤ 4, the number of normalized
tight configurations equals the number of biplane permutations (cf. Table 3.3
on page 32), and hence the lower bound introduced in Chapter 6 is tight for
n ≤ 4, complementing Proposition 6.13.

7.2.3 Normalization Pruning
Algorithm 7.1 only allows five of the eight possibilities for the spatial relation
between rectangles i < j, as the other three assignments “only north”, “north
and east”, “only east” cannot lead to a normalized configuration. However,
this restriction is not sufficient to guarantee normalization: For example, the
algorithm would consider the configuration on two rectangles where 1 is both
south and east of 2, but as the augmented south-west digraph contains an edge
(2, 1) in this case, this configuration is not normalized.

The following result gives an alternative characterization of normalized
configurations in the special case that (i, j) ∈ S ∪ W for all i < j, which is
guaranteed by Algorithm 7.1.
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n Pruning Nodes Time [s] Configurations

1
no pruning 1 0.00

1
consistency 1 0.00

2
no pruning 6 0.00

2
consistency 6 0.00

3
no pruning 156 0.00

6
consistency 100 0.00

4
no pruning 19 531 0.00

22
consistency 3 389 0.00

5
no pruning 12 207 031 0.08

98
consistency 202 033 0.01

6
no pruning 3.8 · 1010 116.08

516
consistency 1.9 · 107 0.31

7
no pruning – –

3 140
consistency 2.7 · 109 26.02

8
no pruning – –

21 684
consistency 5.4 · 1011 5465.41

Table 7.1: Impact of consistency pruning. Column 3 gives the
number of nodes in the enumeration tree. Column 4 gives the
running time of the algorithm in seconds. The last column lists
the number of normalized tight configurations for the given n.

Lemma 7.44. Let (S,W) be a configuration on JnK with (i, j) ∈ S ∪W for all
1 ≤ i < j ≤ n.

Then (S,W) is normalized if and only if there is no i ∈ Jn− 1K with
(i, i+ 1) ∈ S ∩ ←−W.

Proof. Let GSW and GSW+ be the (augmented) south-west digraphs of (S,W).
First, we observe that for all i < j the condition (i, j) ∈ S ∪ W implies
(j, i) ∈ ←−S ∪←−W, so (j, i) is not an edge of GSW. In particular, every vertex k can
only reach vertices l with k < l.

For the first direction, assume there is i ∈ Jn− 1K with (i, i+ 1) ∈ S ∩ ←−W.
Then (i, i+ 1) /∈ E(GSW), implying that i+ 1 is not reachable from i in GSW:
Otherwise, every path H from i to i+ 1 needs to contain inner vertices, and
every such inner vertex k ∈ JnK needs to satisfy i < k < i+ 1, a contradiction.
Hence, we have (i+ 1, i) ∈ E(GSW+) and (S,W) is not normalized.

For the other direction, assume that (i, i+ 1) /∈ S ∩ ←−W for all i ∈ Jn− 1K.
We show that (i, i+ 1) ∈ E(GSW+) for all i ∈ Jn− 1K, which implies that (S,W)
is normalized. So let i ∈ Jn− 1K.
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n Pruning Nodes Leaves Time [s] Configurations

1
consistency 1 1 0.00

1
normalization 1 1 0.01

2
consistency 6 5 0.00

2
normalization 5 4 0.01

3
consistency 100 69 0.00

6
normalization 61 40 0.01

4
consistency 3 389 1 997 0.00

22
normalization 1 393 772 0.01

5
consistency 202 033 103 507 0.01

98
normalization 52 009 24 840 0.01

6
consistency 19 200 156 8 660 521 0.31

516
normalization 2 901 007 1 211 968 0.07

7
consistency 2.7 · 109 1.1 · 109 26.02

3 140
normalization 2.3 · 108 8.4 · 107 2.59

8
consistency 5.4 · 1011 1.9 · 1011 5465.41

21 684
normalization 2.4 · 1010 7.9 · 109 274.63

Table 7.2: Impact of normalization pruning. Columns 3 and
4 give the number of nodes and leaves in the enumeration tree,
respectively. Column 5 gives the running time of the algorithm
in seconds. The last column lists the number of normalized tight
configurations for the given n.

If (i, i+ 1) /∈ ←−S, then (i, i+ 1) ∈ (S ∪W) \ (
←−S ∪ ←−W) = E(GSW) ⊆ E(GSW+).

If (i, i+ 1) ∈ ←−S, then (i, i+ 1) ∈ ←−S ∩W. By the observation, we know that i is
not reachable from i+ 1 in GSW, so (i, i+ 1) ∈ E(GSW+).

This means that we can guarantee to only enumerate normalized configura-
tions by simply excluding (i, i+ 1) ∈ S ∩ ←−W. For complete configurations we
can then also skip the test for normalization.

We call this pruning rule (always used together with consistency pruning)
normalization pruning. Table 7.2 shows the impact of normalization pruning.
While the number of nodes in the enumeration tree is reduced compared to
consistency pruning, numbers are still in a similar order of magnitude.

Before we proceed to apply pruning rules exploiting tightness, we can now
also enumerate all normalized (not necessarily tight) configurations by simply
not testing for tightness in line 6 of Algorithm 7.1. As expected, the number of
normalized configurations on JnK equals the number of enumeration leaves for
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the normalization pruning rule as given in Table 7.2, as the algorithm does not
enumerate partial configurations that have no normalized completion.

We see that the number of normalized tight configurations on JnK is much
smaller than the number of normalized configurations on JnK, stressing the
importance of tightness for the computation of CRn. For example, for n = 7,
we would need to consider 7! ·8.4 · 107 > 4 ·1011 configurations, which would not
even fit in memory, while there are only 7! · 3140 < 2 · 107 tight configurations.

Moreover, it is evident that in order to enumerate all normalized tight
configurations for larger n, we need to exploit tightness already during the
enumeration of partial configurations, that is, we need pruning rules based on
tightness.

7.2.4 Tightness Pruning
All tightness pruning rules we will describe are based on Lemmata 7.20 and 7.23:

Lemma 7.20. Let (S,W) be a configuration.
Then (S,W) is tight if and only if

(i) S − (i, j) is not an interval order for all (i, j) ∈ S ∩ sym(W), and

(ii) W− (i, j) is not an interval order for all (i, j) ∈ W ∩ sym(S).

Lemma 7.23. Let (S,W) be a tight configuration on JnK and (i, l) ∈ S ∩W.
Then, there are rectangles j, k ∈ JnK with

(i) (i, j) ∈ W \ sym(S),

(ii) (k, l) ∈ W \ sym(S).

Moreover, if j 6= k, then

(iii) (j, k) ∈ (S ∪W) \
(←−S ∪ ←−W).

In particular, vmax
i , vmin

j , vmax
k , vmin

l are the vertices of a path of cost −1 in GW.

In Lemma 7.23, one can of course exchange the role of S and W to obtain
a path in GS . Moreover, by replacing W with

←−W, we get analogous statements
for (i, l) ∈ S ∩ ←−W.

The pruning rules to be described exploit the order in which we assign pairs
(i, j) in Algorithm 7.1. First, we formalize this order:

Definition 7.45. Let 1 ≤ i < l ≤ n. We say that a partial configuration
(S,W,A) is (i, l)-ready if

A = 2Jl − 1K ∪
{

(j, k) ∈ 2JlK : i < j and i < k
}
.

In particular, if (S,W,A) is (i, l)-ready, then (i, l) /∈ A.
Clearly, whenever Algorithm 7.1 considers a pair (i, j), the current partial

configuration is (i, j)-ready.



88 Chapter 7. Computational Bounds

Weak Tightness Pruning

First, we consider the case (i, l) ∈ S ∩W, which can be dealt with much easier
than the case (i, l) ∈ S ∩ ←−W:

Lemma 7.46. Let 1 ≤ i < l ≤ n and (S,W,A) be an (i, l)-ready partial
configuration. Furthermore, let (S∗,W∗) be a normalized tight completion of
(S,W,A) with (i, l) ∈ S∗ ∩W∗.
Then vmin

l is reachable from vmax
i in both GW,A and GS,A.

Proof. Let GSW be the south-west digraph of (S∗,W∗).
By Lemma 7.23, there are j, k ∈ JnK with

• (i, j) ∈ W∗ \ sym(S∗),

• (k, l) ∈ W∗ \ sym(S∗), and additionally

• (j, k) ∈ (S∗ ∪W∗) \
(←−S∗ ∪ ←−W∗) if j 6= k.

In particular, vmax
i , vmin

j , vmax
k , vmin

l are the vertices of a path H in GW∗ . We
show that H is also a path in GW,A:

The conditions on j and k above imply (i, j), (k, l) ∈ E(GSW), and (j, k) ∈
E(GSW) if j 6= k. As (S∗,W∗) is normalized, we get i < j ≤ k < l. Moreover,
(S,W,A) is (i, l)-ready, so (i, j), (k, l) ∈ A and (j, k) ∈ A if j 6= k. Thus,
S = S∗ ∩ A and W =W∗ ∩ A imply

• (i, j) ∈ W \ sym(S),

• (k, l) ∈ W \ sym(S), and additionally

• (j, k) ∈ (S ∪W) \
(←−S ∪ ←−W) if j 6= k.

It follows that H is a path in GW,A.
The statement that vmin

l is reachable from vmax
i in GS,A follows by symmetry:

Although the definition of normalizedness is not symmetric in S and W (as
GSW+ is not symmetric in S and W), we only used that idJnK is a topological
order of GSW (not GSW+), which is symmetric in S and W.

Lemma 7.46 implies that we only need to consider the case (i, l) ∈ S ∩W
if it is already implied. That is: Either vmin

l is reachable from vmax
i both in

GW,A and GS,A, in which case by consistency pruning (i, l) ∈ S ∩W is the only
assignment of (i, l) that we need to consider, or (i, l) ∈ S ∩W cannot lead to a
normalized tight configuration.

The cases (i, l) ∈ S ∩ ←−W and (i, l) ∈ ←−S ∩ W are more difficult: We can
have an (i, l)-ready partial configuration (S,W,A) that has a normalized tight
completion (S∗,W∗) with (i, l) ∈ ←−S∗ ∩ W∗, but vmin

l is not reachable from
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1

2

3

4

(a) A placement dom-
inating the placement
depicted in the center.

1

2

3

4

(b) A non-tight place-
ment P ′.

kx

ky

i

l

jx = jy

(c) A tight placement P
with labels according to
Lemma 7.47.

Figure 7.5: If a partial configuration (S,W, 2JkK) has a tight
completion, then (S,W) is not necessarily tight: Here, (SP ′ ,WP ′)
is not tight (as can be seen on the left), but (SP ,WP ) is a tight
completion of (SP ′ ,WP ′ ,

2J4K), where P ′ is the placement in the
center, P is the placement on the right, and kx = 1, ky = 2, i = 3,
l = 4, and jx = jy = 5.

vmax
i in GW,A, and vmin

i is not reachable from vmax
l in GS,A. The reason is

that Lemma 7.23 applied to (S∗,W∗) still guarantees the existence of j and
k, but these no longer necessarily precede i or l in the topological order of
GSW+. For example, consider the placement P ′ as depicted in Figure 7.5(b): Set
A := 2J4K \

{
(3, 4), (4, 3)

}
. Then (SP ′ ∩A,WP ′ ∩A,A) satisfies the conditions

above.
In the following, instead of dealing with the two different cases (i, l) ∈ S∩←−W

and (i, l) ∈ ←−S ∩ W where i < l, we instead consider only (i, l) ∈ S ∩ ←−W, no
longer necessarily requiring i < l.

Lemma 7.47. Let (S,W) be a normalized tight configuration and (i, l) ∈ 2JnK
with (i, l) ∈ ←−S ∩W.
Then, there are kx < l and i < jx with

(i) (i, jx) ∈ W \ sym(S).

(ii) (kx, l) ∈ W \ sym(S).

(iii) (jx, kx) ∈ (
←−S ∪W) \ (S ∪ ←−W) if jx 6= kx.

Moreover, there are ky < i and l < jy with

(iv) (l, jy) ∈ S \ sym(W)

(v) (ky, i) ∈ S \ sym(W)
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(vi) (jy, ky) ∈ (S ∪ ←−W) \ (
←−S ∪W) if jy 6= ky.

Finally, we have

(vii) kx 6= ky or jx 6= jy.

In particular,
vmax
i , vmin

jx , vmax
kx

, vmin
l are the vertices of a path in GW, and

vmax
l , vmin

jy , vmax
ky

, vmin
i are the vertices of a path in GS.

Proof. The existence of jx, kx, jy, ky satisfying (i) to (vi) is clear by Lemma 7.23.
Moreover, as (S,W) is normalized, (i) to (vi) imply kx < l, i < jx, ky < i and
l < jy as required.

It remains to show that kx 6= ky or jx 6= jy, so assume for the sake of
contradiction that kx = ky = k and jx = jy = j. If j 6= k, then (iii) and
(vi) clearly contradict each other. But if jx = jy = j = k = kx = ky, then
jx > i > ky leads to a contradiction.

Note that kx = ky or jx = jy can indeed occur as seen in Figure 7.5(c).

Definition 7.48. Let (S,W,A) be a partial configuration on JnK.
We denote by

K(i,l)
x :=

{
kx ∈ JnK : (kx, l) ∈ W \ sym(S)

and vmax
i is not reachable from vmax

kx in GW,A
}

the set of kx-candidates of (i, l) in (S,W,A).
Moreover, we denote by

K(i,l)
y :=

{
ky ∈ JnK : (ky, i) ∈ S \ sym(W)

and vmax
l is not reachable from vmax

ky in GS,A
}

the set of ky-candidates of (i, l) in (S,W,A).

Lemma 7.49. Let (S,W,A) be a partial configuration and let (i, l) ∈ ←−S ∩W.
Then, we have:

(i) If 2JlK ⊆ A and the set of kx-candidates K
(i,l)
x is empty, then (S,W,A)

is invalid.

(ii) If 2JiK ⊆ A and the set of ky-candidates K
(i,l)
y is empty, then (S,W,A)

is invalid.
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Proof. We only show (i), the other case (ii) is shown similarly.
Assume 2JlK ⊆ A. It suffices to prove that if (S,W,A) has a normalized

tight completion (S∗,W∗), then K
(i,l)
x is not empty. So let (S∗,W∗) be a

normalized tight completion of (S,W,A). By Lemma 7.47, there are kx < l
and i < jx with (kx, l) ∈ W∗ \ sym(S∗) such that vmax

i , vmin
jx , vmax

kx
, vmin
l are the

vertices of a path in GW∗ . Note that kx < l implies (kx, l) ∈ 2JlK ⊆ A. Now,
using W = W∗ ∩ A and S = S∗ ∩ A, we have (kx, l) ∈ W \ sym(S). Finally,
since GW∗ is acyclic and vmax

kx
is reachable from vmax

i in GW∗ , we know that
vmax
i is not reachable from vmax

kx
in GW∗ . But GW,A is a subgraph of GW∗ , and

hence vmax
i is not reachable from vmax

kx
in GW,A, which implies kx ∈ K(i,l)

x .

Note that due to the order in which we process pairs in Algorithm 7.1,
we always have 2Jmin{ i, l}K ⊆ A ⊆ 2Jmax{ i, l}K when assigning the relation
between i and l. Hence, we can directly apply the test above to min{ i, l} and
postpone the test for max{ i, l} until 2Jmax{ i, l}K ⊆ A.

Moreover, Lemma 7.47 implies that in a normalized tight placement (S,W)
with (i, l) ∈ ←−S ∩W, we must have i < n and l < n, as i < jx and l < jy. Hence,
we can forbid (i, l) ∈ ←−S ∩W whenever n ∈ { i, l}.

We refer to the tightness pruning rules described so far (when used together
with normalization pruning) as weak tightness pruning, results are given
in Table 7.3. Clearly, the number of enumerated partial configurations is
drastically reduced, and now is in a similar order of magnitude as the number
of normalized tight configurations.

Strong Tightness Pruning

Again, consider a normalized tight configuration (S,W) with (i, l) ∈ ←−S ∩W.
We will now introduce pruning rules that exploit the existence of i < jx and
l < jy, apart from the trivial implication i < n and l < n.

The following simple observation yields a sufficient condition (Lemma 7.52)
to prove that a partial configuration is invalid:

Lemma 7.50. Let (S,W) be a normalized tight configuration on JnK. Assume
that there are i, l, jx, jy ∈ JnK with

• (i, l) ∈ ←−S ∩W,

• (i, jx) ∈ W \ sym(S),

• vmin
l is reachable from vmin

jx in GW,

• (l, jy) ∈ S \ sym(W), and

• vmin
i is reachable from vmin

jy in GS.
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n Pruning Nodes Time [s] Configurations

1
normalization 1 0.01

1
weak tightness 1 0.00

2
normalization 5 0.01

2
weak tightness 3 0.00

3
normalization 61 0.01

6
weak tightness 13 0.01

4
normalization 1 393 0.01

22
weak tightness 77 0.00

5
normalization 52 009 0.01

98
weak tightness 577 0.01

6
normalization 2 901 007 0.07

516
weak tightness 5 321 0.00

7
normalization 2.3 · 108 2.59

3 140
weak tightness 5.9 · 104 0.01

8
normalization 2.4 · 1010 274.63

21 684
weak tightness 7.6 · 105 0.03

9
normalization – –

167 450
weak tightness 1.1 · 107 0.23

10
normalization – –

1 429 100
weak tightness 1.9 · 108 2.09

11
normalization – –

13 350 964
weak tightness 3.6 · 109 34.79

12
normalization – –

135 452 972
weak tightness 7.5 · 1010 732.93

13
normalization – –

1 482 478 624
weak tightness 1.7 · 1012 17 085.22

Table 7.3: Impact of weak tightness pruning. Column 3 gives
the number of nodes in the enumeration tree. Column 4 gives the
running time of the algorithm in seconds. The last column lists
the number of normalized tight configurations for the given n.
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i

l

mjy

(a) vmax
m is reachable from vmax

l in GW .

i

l

mjx

(b) vmax
m is reachable from vmax

i in GS .

Figure 7.6: Illustration of Lemma 7.50 with (i,m), (l,m) ∈
W \ S, including relevant edges (solid) and paths (dashed) in
GS and GW . All drawn edges and paths do not depend on the
placement chosen in this example, but only on the preconditions
of Lemma 7.50. Rectangles implying the indicated paths (e.g., ky

and kx in the sense of Lemma 7.47) are omitted. Note that both
(a) and (b) illustrate parts of both graphs GS and GW : Vertices
in GS are drawn at the lower and upper border of rectangles,
and vertices in GW are drawn at the left and right border of
rectangles.

Moreover, assume that there is m ∈ JnK \
{
i, l, jx, jy

}
with (i,m), (l,m) ∈

(S ∪W) \ (
←−S ∪ ←−W). Then, we have:

(i) If vmax
m is reachable from vmax

l in GW, then (jy,m) /∈ ←−S ∪ ←−W, so jy < m.

(ii) If vmax
m is reachable from vmax

i in GS, then (jx,m) /∈ ←−S ∪ ←−W, so jx < m.

Proof. In the first case, the given conditions directly imply (cf. Figure 7.6(a))
that vmax

m is reachable from vmin
jy in both GS and GW , so (jy,m) /∈ ←−S ∪ ←−W.

In the second case, vmax
m is reachable from vmin

jx in both GS and GW (cf.
Figure 7.6(b)), so (jx,m) /∈ ←−S ∪ ←−W.

Definition 7.51. Let (S,W,A) be a partial configuration and let (i, l) ∈ ←−S∩W.
We say that (i, l) is x-uncovered in (S,W,A) if there is no path from vmax

i to
vmin
l in GW,A that does not consist of a single edge.

We say that (i, l) is y-uncovered in (S,W,A) if there is no path from vmax
l to

vmin
i in GS,A that does not consist of a single edge.

Now Lemmata 7.47 and 7.50 imply:

Lemma 7.52. Let (S,W, 2JmK) be a partial configuration. Let (i, l) ∈ ←−S ∩W
such that both (i,m), (l,m) ∈ (S ∪W) \ (

←−S ∪ ←−W).
Then, we have:
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(i) If vmax
m is reachable from vmax

l in GW,2JmK and (i, l) is y-uncovered in
(S,W, 2JmK), then (S,W, 2JmK) is invalid.

(ii) If vmax
m is reachable from vmax

i in GS,2JmK and (i, l) is x-uncovered in
(S,W, 2JmK), then (S,W, 2JmK) is invalid.

Proof. Again, we only show the first statement (ii), the second statement is
proven analogously.

So assume that vmax
m is reachable form vmax

l in GW,2JmK. We prove that
if (S∗,W∗) is a normalized tight completion of (S,W,A), then (i, l) is not
y-uncovered.

Let (S∗,W∗) be a normalized tight completion of (S,W, 2JmK), and let
jx, jy, kx, ky ∈ JnK as in Lemma 7.47 applied to (S∗,W∗). Note that in particular
we have ky < i < m. Moreover, sinceGW,2JmK is a subgraph ofGW , we know that
vmax
m is reachable from vmax

l in GW . Now, (S∗,W∗) together with i, l, jx, jy,m
satisfy the conditions of Lemma 7.50, and thus we get jy < m. Finally,
vmax
l , vmin

jy , vmax
ky

, vmin
i form a path in GS∗ , and now

{
l, jy, ky, i

}
⊆ JmK implies

that the same vertices form a path in GS,2JmK. Hence, (i, l) is not y-uncovered
in (S,W, 2JmK).

To motivate the next (and last) pruning rule, consider the placement
depicted in Figure 7.7(a): With i = 3 and l = 5, we are still lacking both
j

(3,5)
x and j(3,5)

y to satisfy Lemma 7.47. Moreover, with i = 5 and l = 6, we are
also lacking both j(5,6)

x and j(5,6)
y , and as k(5,6)

x = k
(5,6)
y = 4 is the only possible

assignment for k(5,6)
x and k(5,6)

y in this case, we know that j(5,6)
x 6= j

(5,6)
y . Finally

j
(3,5)
y must be only north of 5, which is not possible for both j(5,6)

x and j(5,6)
y , so

we need to add at least three rectangles to obtain a normalized tight placement.
In particular, if n < 9, we can prune the partial configuration. In Figure 7.7(b),
we see that indeed three rectangles do suffice: j(3,5)

x = j
(3,5)
y = 9, j(5,6)

x = 8 and
j

(5,6)
y = 7.

Lemma 7.53. Let (i, l) ∈ 2JnK and (S,W) be a normalized tight configura-
tion on JnK with (i, l) ∈ ←−S ∩ W. Furthermore, let jx, jy, kx, ky ∈ JnK as in
Lemma 7.47.
Then, for all v ∈

{
jx, jy, kx, ky

}
, we have (i, v), (v, l) ∈ (

←−S ∪W) \ (S ∪ ←−W).

Proof. We only show (i, v) ∈ (
←−S ∪W) \ (S ∪←−W) for all v ∈

{
jx, jy, kx, ky

}
, one

can prove (v, l) ∈ (
←−S ∪W) \ (S ∪ ←−W) analogously. We have

(i, jx) ∈ W \ sym(S) ⊆ (
←−S ∪W) \ (S ∪ ←−W)

and
(i, ky) ∈ ←−S \ sym(W) ⊆ (

←−S ∪W) \ (S ∪ ←−W).
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1

2

3

4

5

6

(a) A partial placement that has
a normalized tight completion.

1

2

3

4

5

6

7

8

9

(b) A normalized tight placement
that is a completion of the place-
ment on the left.

Figure 7.7: At least three rectangles have to be added to the
placement on the left to make it tight.

Furthermore vmax
i is reachable from vmin

jy in GS , so (i, jy) /∈ S. As (i, l) ∈ W
and l is only south of jy, we get a path vmin

i , vmax
i , vmin

l , vmax
jy in GW , so

(i, jy) /∈ ←−W.
Similarly, vmax

kx
is reachable from vmin

i in GW , so (i, kx) /∈ ←−W, and
vmin
kx

, vmax
l , vmin

i , vmax
i is a path in GS , so (i, kx) /∈ S.

Lemma 7.53 implies that if (a, b), (b, c) ∈ ←−S ∩W, then any sets of rectangles

X =
{
j(a,b)

x , j(a,b)
y , k(a,b)

x , k(a,b)
y

}
and

Y =
{
j(b,c)

x , j(b,c)
y , k(b,c)

x , k(b,c)
y

}
satisfying the conditions of Lemma 7.47 must be disjoint, as all elements of X
can only be north or west of b, while elements of Y can only be south or east of
b. Hence, we can obtain a lower bound on the number of rectangles that need
to be added to a partial configuration by considering paths that only use edges
in
←−S ∩W that are uncovered.
More precisely, we construct a weighted graph G whose edges correspond

to pairs (i, l) that are uncovered, and whose edge weights w((i, l)) are a lower
bound on the number of rectangles that need to be added in order to cover
(i, l). The edge weight will be 1, except if both j(i,l)

x and j(i,l)
y are missing, and

we already know that k(i,l)
x = k

(i,l)
y , implying j(i,l)

x 6= j
(i,l)
y :
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Corollary 7.54. Let (S,W, 2JmK) be a partial configuration on JnK and let

Ex :=
{

(i, l) ∈ ←−S ∩W : (i, l) is x-uncovered in (S,W, 2JmK)
}
,

Ey :=
{

(i, l) ∈ ←−S ∩W : (i, l) is y-uncovered in (S,W, 2JmK)
}
.

Furthermore, for (i, l) ∈ Ex ∪ Ey, we denote by K(i,l)
x the set of kx-candidates

of (i, l), and by K
(i,l)
y the set of ky-candidates of (i, l) in (S,W, 2JmK) (cf.

Definition 7.48).
Let (G,w) be the weighted directed graph with vertex set JmK, edge set

E(G) := Ex ∪ Ey,

and weights

w((i, l)) :=

2 if (i, l) ∈ Ex ∩ Ey and
∣∣∣K(i,l)

x ∪K(i,l)
y

∣∣∣ = 1,

1 otherwise.

LetW be the weight of a longest path in (G,w). If n < m+W , then (S,W, 2JmK)
is invalid.

Note that since G is acyclic, we can computeW in O(n2) time by processing
its vertices in topological order.

We refer to the pruning rules according to Lemma 7.52 and Corollary 7.54
when used together with weak tightness pruning by strong tightness pruning,
results are given in Table 7.4: For small n, the benefit of using strong tightness
pruning compared to weak tightness pruning is only marginal, but for large
n there is a substantial reduction in both number of enumeration nodes and
running time, allowing the enumeration of all normalized tight configurations
up to n = 14. For n = 14, the number of leaves of the enumeration tree is
1.6 · 1011 (not given in Table 7.4), less than ten times the number of normalized
tight configurations, demonstrating the effectiveness of pruning.

Note that we only enumerate all normalized tight configurations, but do
not store them, as for n = 14 all normalized tight configurations would not fit
into 512 GB of main memory. Hence, the enumeration of all normalized tight
configurations is only limited by the available memory to store the result, and
hence further speedups of Algorithm 7.1 would be of limited use.

7.2.5 Implementation Details
Finally, we describe a few details of the implementation of Algorithm 7.1. We
represent a strict partial order Q (e.g., S and W) on JnK as a function that
assigns each pair 1 ≤ i < j ≤ n a value indicating whether (i, j) ∈ Q, (j, i) ∈ Q,
or none of the two, allowing to query whether (i, j) ∈ Q holds in constant time.
Moreover, we store all digraphs using adjacency lists.
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n Pruning Nodes Time [s] Configurations

1
weak tightness 1 0.00

1
strong tightness 1 0.01

2
weak tightness 3 0.00

2
strong tightness 3 0.01

3
weak tightness 13 0.01

6
strong tightness 13 0.01

4
weak tightness 77 0.00

22
strong tightness 68 0.01

5
weak tightness 577 0.01

98
strong tightness 472 0.01

6
weak tightness 5 321 0.00

516
strong tightness 3 959 0.01

7
weak tightness 58 827 0.01

3 140
strong tightness 37 757 0.01

8
weak tightness 761 900 0.03

21 684
strong tightness 394 300 0.02

9
weak tightness 11 342 792 0.23

167 450
strong tightness 4 471 047 0.13

10
weak tightness 1.9 · 108 2.09

1 429 100
strong tightness 5.5 · 107 0.91

11
weak tightness 3.6 · 109 34.79

13 350 964
strong tightness 7.1 · 108 10.06

12
weak tightness 7.5 · 1010 732.93

135 452 972
strong tightness 10.0 · 109 138.07

13
weak tightness 1.7 · 1012 17 085.22

1 482 478 624
strong tightness 1.5 · 1011 2078.47

14
weak tightness – –

17 403 502 928
strong tightness 2.3 · 1012 33 302.86

Table 7.4: Impact of strong tightness pruning. Column 3 gives
the number of nodes in the enumeration tree. Column 4 gives the
running time of the algorithm in seconds. The last column lists
the number of normalized tight configurations for the given n.
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Bitsets

Given a directed graph G and a vertex u ∈ V (G), we denote by V +
G (u) the

set of vertices reachable from u in G. As all occurring graphs contain at most
2n vertices (cf. the constraint graphs of interval orders) and n ≤ 14, we have
at most 28 vertices. We can thus encode V +

G (u) in a bitset containing 28 bits.
The union of two such sets can be computed in constant time using a single
bitwise OR-operation. Then, the observation

V +
G (u) = {u} ∪

⋃
(u,v)∈δ+(u)

V +
G (v)

allows to compute an all-pairs reachability table of an acyclic directed graph G
by processing its vertices in reverse topological order. Note that a topological
order of G can be computed in O

(
|V (G) |+ |E(G) |

)
time [KV18]. The total

number of instructions required by this procedure is linear in |V (G) |+ |E(G) |.
Moreover, when adding an edge (a, b) to G, we can use the observation

V +
G+(a,b)(u) =

{
V +
G (u) ∪ V +

G (b) if a ∈ V +
G (u)

V +
G (u) otherwise

to update the reachability table of G. The number of instructions required by
this procedure is linear in

∣∣V (G)
∣∣.

Fixed-Capacity Dynamic-Length Arrays

Again, as n ≤ 14, we can bound the length of most dynamic-length ar-
rays used in the algorithm by a small constant. In particular, this applies
to the storage of strict partial orders, adjacency lists of graphs and their
reachability tables. For these arrays, instead of using ordinary dynamic-
length arrays that rely on dynamic allocations (e.g., std::vector<T>), we use
boost::container::static_vector<T, N>, which is provided by the boost
C++ library [Boo18]. It can only be used to store up to N elements of type T and
uses a fixed-size buffer to store these elements. We can thus completely avoid
the cost of dynamic allocations for these arrays. Moreover, since the contained
elements are stored within the memory of the container itself (and not in a
different, dynamically allocated memory region that needs to be accessed by
following a pointer), cache locality is improved.

Parallelization

Clearly, the enumeration of all normalized tight configurations can easily be
parallelized by simply processing multiple enumeration subtrees in parallel. To
this end, we first run the algorithm with bounded recursion depth, and collect
the set of enumeration nodes that were cut off. Each of these nodes defines
a subtree of the enumeration tree that can be processed independently of the
others, which we then do in parallel, using 64 threads.
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Parallel Fixed cap. arrays Bitsets Relative running time

Yes Yes Yes 1.0
Yes Yes – 2.5
Yes – Yes 4.2
Yes – – 16.9

– Yes Yes 52.3
– Yes – 130.7
– – Yes 210.7
– – – 841.5

Table 7.5: Impact of speedup techniques to enumeration running
time in the case n = 11 with strong tightness pruning. Column
1 specifies whether parallelization was used (with 64 threads).
Column 2 specifies whether we replace generic dynamic arrays by
fixed-capacity arrays that avoid dynamic allocations. Column 3
specifies whether we use bitsets to speed up reachability compu-
tations. The last column gives the running time relative to the
case that all three techniques are used.

Results

Experimental results are given in Table 7.5. Running time is reduced signifi-
cantly both by using bitsets to quickly compute reachability data and using
fixed-capacity arrays to avoid dynamic allocations. Moreover, parallelization
gives a reasonable speedup compared to the number of threads.

7.2.6 SP-Equivalence Filtering
As already mentioned, we ignore SP-equivalence within Algorithm 7.1. It would
be possible to exploit SP-equivalence and directly work on SP-equivalence
classes, which however would significantly complicate both the algorithm and
its analysis. We will see that for small n, the number of SP-equivalence classes
of normalized tight configurations is not drastically smaller than the number
of normalized tight configurations, and hence the running time cost of not
exploiting SP-equivalence within configuration enumeration is limited as well.

We apply Theorem 7.33 to determine the set of SP-equivalence classes by
simply computing the set of reductions, removing duplicate reductions and
then keeping a single arbitrary configuration for each found reduction.

Results are given in Table 7.6, which are restricted to n ≤ 12 due to memory
limitations. First, we remark that by selecting a separate sequence pair for
each SP-equivalence class of tight configurations, one obtains a complete set of
representations, and hence the number of SP-equivalence classes of normalized
tight configurations is an upper bound on CRn

n!
. For n ≤ 4, the number of
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n Configurations SP-eq. classes

1 1 1
2 2 2
3 6 6
4 22 22
5 98 96
6 516 478
7 3 140 2 624
8 21 684 15 550
9 167 450 98 036

10 1 429 100 650 464
11 13 350 964 4 504 774
12 135 452 972 32 356 774

Table 7.6: The number of normalized tight configurations
(column 2) and the number of SP-equivalence classes of normalized
tight configurations (column 3) for n ≤ 12.

SP-equivalence classes equals the number of normalized tight configurations.
This is expected: For n ≤ 4, the number of normalized tight configurations
equals the number of biplane permutations, which by Theorem 6.12 is a lower
bound on CRn

n!
and hence the number of normalized tight SP-equivalence classes.

For n = 5, there are two non-trivial SP-equivalence classes: The configura-
tions depicted in Figure 7.4 (page 74) are SP-equivalent, and rotating these by
90◦ again yields two SP-equivalent configurations.

Comparing with Table 3.3 (page 32), we also observe that, at least for 4 ≤
n ≤ 12, the number of SP-equivalence classes of normalized tight configurations
is strictly less than the number of plane permutations. This implies that the
upper bound of Theorem 5.7 is not tight for 4 ≤ n ≤ 12.

7.3 Set Cover Results
In this section, we finally reduce the computation of CRn to a set cover
problem, where sets correspond to sequence pairs and elements correspond to
configurations. In Section 7.3.1, we formally define the Minimum Set Cover
Problem and describe the reduction-based algorithm that we will use to solve
all occurring set cover instances. Then, in Section 7.3.2, we compute CRn for
n ≤ 8. Moreover, in Section 7.3.3, we show that the analysis of our improved
upper bound construction which is based on topological orders of augmented
digraphs is essentially optimal, and that it is not possible to obtain complete
sets of sequence pairs of minimum cardinality using plane sequence pairs only.
Finally, in Section 7.3.4, we discuss symmetric sets of sequence pairs with
computational results up to n = 12.
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7.3.1 Set Cover Algorithm
First, we formally introduce the Minimum Set Cover Problem. A set
system (U ,M) consists of an arbitrary set U , called universe, and a setM
of subsets of the universe.

Minimum Set Cover Problem
Instance: A set system (U ,M).
Task: Find a minimum cardinality cover N of (U ,M), i.e., a subset

N ⊆M with U =
⋃
N∈N N minimizing |N |.

The Minimum Set Cover Problem is well-known to be NP-complete,
even in the unweighted variant considered here ([KV18]).

In order to solve the arising set cover instances, we will use well-known
reduction techniques that eliminate elements ofM or U , ensuring that optimum
solutions of the reduced instance can be trivially extended to optimum solutions
of the original instance. For example, if we have two sets M1,M2 ∈ M with
M1 ⊆ M2, then we can safely remove M1 from M, as it can be replaced by
M2 in any feasible solution. These reductions are more commonly used as a
preprocessing step before solving the reduced instance using an exact algorithm
with exponential worst-case running time. However, in our case, we will see
that all considered instances will be solved entirely by reductions.

Now, let (U ,M) be an instance of the Minimum Set Cover Problem.
Given an element u ∈ U , we denote by Mu ⊆ M the set of sets in M that
cover u:

Mu := {M ∈M : u ∈M }
We use the following reduction rules which were first observed by Garfinkel
and Nemhauser [GN72]:

(i) IfMu = ∅ for some u ∈ U , then (U ,M) is infeasible.

(ii) IfMu = {N } for some u ∈ U , then every feasible solution contains N .
Reduce the instance to (U \N,

{
M \N : M ∈M−N

}
).

(iii) If Mu1 ⊆ Mu2 for some u1, u2 ∈ U with u1 6= u2, then every cover of
U − u2 also covers U and we say that u1 dominates u2.
Reduce the instance to (U − u2, {M − u2 : M ∈M}).

(iv) If M1 ⊆ M2 for some M1,M2 ∈ M with M2 6= M1, then M1 can be
replaced by M2 in any solution and we say that M2 dominates M1.
Reduce the instance to (U ,M−M1).

The instances to be solved will be huge, more precisely, the universe U may
contain many millions of elements. On the other hand, instances will be sparse,
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that is, the sets M ∈ M will be small, and |M| will have the same order of
magnitude as |U |.

With that in mind, we represent the set system (U ,M) by an undirected
sparse bipartite graph G with V (G) :=U ∪M and

E(G) :=
{
{u,M } : u ∈ U ,M ∈M, and u ∈M

}
.

The neighbors of an element u ∈ U are exactly the sets in Mu, and the
neighbors of a set M ∈ M are exactly the elements of M itself. We store G
using adjacency lists.

Of course, when applying a reduction rule, we do not create a new reduced
instance to be solved, but instead change the current instance with respect to
the reduction rule, and store that the set N is part of the solution in case of
reduction rule (ii).

Given an element u ∈ U , implementing the reduction rules (i) and (ii) is
trivial. The reduction rules (iii) and (iv) both can be implemented in terms of
the following problem: Given a vertex v1 ∈ V (G), compute the set of vertices

dom(v1) :=
{
v2 ∈ V (G)− v1 : ΓG(v1) ⊆ ΓG(v2)

}
.

For an element u ∈ U , the set dom(u) is the set of elements dominated by u,
and for a set M ∈M, the set dom(M) consists of the sets dominating M . In
order to compute dom(v) for a vertex v with ΓG(v) 6= ∅, we observe

dom(v) + v =
⋂

w∈ΓG(v)

ΓG(w).

Hence, dom(v1) can be computed by visiting all neighbors v2 ∈ ΓG(w) of all
neighbors w ∈ ΓG(v1) of v1. Then, dom(v1) + v1 consists of exactly the vertices
v2 which were visited

∣∣ΓG(v1)
∣∣ times. After once initializing a counter for

every vertex v ∈ V (G) in Θ
(∣∣V (G

∣∣) time, we can thus compute dom(v) in

O
(∑

w∈ΓG(v)

∣∣ΓG(w)
∣∣) time, which is sufficiently fast in our application where

G can assumed to be sparse.
Finally, we need to efficiently detect candidate vertices to apply reduction

rules to. Simply repeatedly scanning all vertices and testing all applicable
reduction rules easily leads to a quadratic running time, which is infeasible if
G contains millions of vertices. Instead, we maintain a reduction candidate
queue that initially contains all vertices. In each iteration, we remove a vertex
v from the candidate queue and apply reduction rules to v. If a reduction
rule is successful, we add all vertices whose neighborhood changed back to the
candidate queue.

Note that removing a set from the neighborhood of an element u does
not potentially lead to be u being dominated, but instead may lead to now
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u dominating other elements. Hence, when applying the element dominance
reduction rule (iii) to an element u, we need to check whether u dominates
other elements, and not whether u is dominated by other elements. This is
consistent with the implementation of this reduction rule in terms of dom(u),
which gives the set of elements dominated by u. Hence, whenever a reduction
rule is applicable to a vertex v, we know that v is contained in the candidate
queue.

7.3.2 Main Result: CRn for n ≤ 8

Recall that we can use a set CT,SP
n of SP-equivalence representatives of the set

of tight configurations to compute CRn:

Observation 7.25. Let n ∈ N and CT
n be the set of tight configurations on

JnK. Moreover, let CT,SP
n ⊆ CT

n be a set that contains a representative of each
SP-equivalence class of CT

n .
Then, we have

CRn = min
{
|SP| : SP ⊆ SPn covers all (S,W) ∈ CT,SP

n

}
.

The algorithm described in Section 7.2 allows to enumerate a set CT,SP,N
n of

SP-equivalence representatives of normalized tight configurations. Moreover,
recall that given a set Q ⊆ 2JnK and a permutation π ∈ Πn, the set π(Q) ⊆ 2JnK
is obtained by relabeling the elements of JnK according to π, cf. Definition 7.35.
Identifying configurations that can be transformed into each other by this
operation yields an equivalence relation, and normalized configurations are
unique representatives of the equivalence classes of this equivalence relation.

Hence, we can compute a set CT,SP
n satisfying the conditions of Obser-

vation 7.25 by applying all n! permutations π ∈ Πn to each configuration
(S,W) ∈ CT,SP,N

n :

CT,SP
n :=

{(
π(S), π(W)

)
: (S,W) ∈ CT,SP,N

n , π ∈ Πn

}
We can finally define the set cover instance (U ,M) to be solved: Set

U := CT,SP
n and

M :=
{
Mπ,ρ : (π, ρ) ∈ SPn

}
,

where

Mπ,ρ :=
{

(S,W) ∈ U : (S,W) is represented by (π, ρ)
}

for (π, ρ) ∈ SPn. Then, the cardinality of an optimum solution of (U ,M)
clearly equals CRn.



104 Chapter 7. Computational Bounds

n |U | |M| CRn Tconstr. [s] Tsolve [s]

1 1 1 1 0.00 0.00
2 4 4 4 0.00 0.00
3 36 36 36 0.00 0.00
4 528 576 528 0.00 0.00
5 11 520 14 400 11 040 0.04 0.00
6 344 160 518 400 303 840 0.61 0.14
7 13 224 960 25 401 600 10 452 960 29.38 9.37
8 626 976 000 1 625 702 400 433 601 280 2121.54 1159.56

Table 7.7: Computational set cover results. Column 1 gives
the number of rectangles n, columns 2 and 3 give the size of the
computed set cover instance (U ,M). Note that |U | equals n!
times the number of SP-equivalence classes of normalized tight
configurations (cf. Table 7.6), and |M| = (n!)2. Column 4 gives
the minimum cardinality CRn of a complete set of representations
for n, and the last two columns give the running time of con-
structing and solving the set cover instance, respectively. Note
that Tconstr. covers both the construction of U by applying all n!
permutations to the normalized configurations computed earlier,
and the computation ofM by enumerating the set of sequence
pairs representing given configurations.

The computation ofM is not trivial, as naïvely enumerating all pairs of
sequence pairs and configurations would be computationally infeasible even for
small n. Instead, it suffices to solve the following problem: Given a configuration
(S,W), enumerate the set of sequence pairs (π, ρ) representing (S,W). However,
by Lemma 4.15, computing the set of sequence pairs representing a configuration
can be reduced to the problem of enumerating the set of topological orders of
an acyclic digraph G.

So let G be an acyclic digraph. Recall that one can compute a topological
order of G in O(

∣∣V (G)
∣∣2) time by repeatedly removing a vertex v with in-degree

zero from G ([Kah62]). By maintaining a queue that contains the set of vertices
with in-degree zero, the running time of this algorithm can be improved to
O(
∣∣V (G)

∣∣+ ∣∣E(G)
∣∣), but we do not need this as our graphs are dense. Clearly,

we can instead enumerate the set of all topological orders of G by recursively
enumerating all possible choices for v in each iteration.

Computational results are given in Table 7.7. All set cover results were
obtained using the same machine and compiler as in Section 7.2 (cf. page 82),
using a single thread.

Using this method, we can solve all occurring set cover instances, and
thereby determine CRn for all n ≤ 8. The fact that the set cover instances
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n Biplanen Baxtern Planen |U | /n! CRn/n!

1 1 1 1 1 1
2 2 2 2 2 2
3 6 6 6 6 6
4 22 22 23 22 22
5 88 92 104 96 92
6 374 422 530 478 422
7 1 668 2 074 2 958 2 624 2 074
8 7 744 10 754 17 734 15 550 10 754

Table 7.8: The number of biplane, Baxter and plane permuta-
tions on JnK together with columns 2 and 4 of Table 7.7 normalized
by (n!).

can be solved entirely by simple reduction routines only is quite surprising,
and suggests that the set cover instances exhibit a rich structure that could
possibly also be exploited for new proofs, in particular for stronger lower bound
constructions.

In the largest case n = 8, the average and maximum number of setsM ∈M
covering elements u ∈ U are 2.67 and 25, respectively, and the average and
maximum sizes of sets M ∈ M are 1.03 and 8, respectively, so (U ,M) is
indeed very sparse. Hence, applying the reduction rules given in Section 7.3.1
is very fast, and takes even less time than the construction of (U ,M). The
computation of CR8 required 235 GB of memory, and thus determining CR9

using this approach is clearly infeasible memory-wise.
Both the lower bound (Theorem 6.12) and the upper bound (Theorem 5.7)

on CRn are multiples of n!, and we observe that also CRn is a multiple of n!
for n ≤ 8. Results normalized by n! are given in Table 7.8, and we see that
CRn = n! · Baxtern for n ≤ 8. This motivates the main conjecture of this
chapter:

Conjecture 7.55. Let n ∈ N. Then, we have

CRn = n! · Baxtern.

Note that Conjecture 7.55 would imply CRn = Θ
(
n!
n4 · 8n

)
. In the remainder

of this chapter, we will collect further results supporting Conjecture 7.55. Of
course, Conjecture 7.55 does not imply that the set of Baxter sequence pairs
is a complete set of sequence pairs of minimum cardinality. Clearly, not all
biplane permutations are Baxter permutations, and hence the set of Baxter
sequence pairs is not complete. Instead, it seems that there is a different set
of permutations which are equinumerous to Baxter permutations and yield
a complete set of sequence pairs of minimum cardinality. Note that Baxter
permutations also count mosaic floorplans (cf. Section 3.3.3).
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7.3.3 Analysis of Upper Bound Construction
Although we already know that the upper bound of Theorem 5.7 on CRn

is not tight, this does not yet imply that the construction (i.e., pairs of
topological orders of GSW+ and GSE+) is suboptimal, as the analysis is not
necessarily best-possible. In this section, we will see that for small n, the
analysis indeed is best-possible unless restricted to a subset of configurations
(e.g., tight configurations), since all plane sequence pairs occur as topological
orders of GSW+ and GSE+. Furthermore, we will show that no complete set of
sequence pairs of minimum cardinality can be constructed by considering only
plane sequence pairs, that is, sequence pairs that are obtained as topological
orders of GSW+ and GSE+.

In the first experiment, we determine the set of sequence pairs that arise as
topological orders of the augmented digraphs GSW+ and GSE+ of arbitrary, not
necessarily tight configurations. Recall that we can easily modify Algorithm 7.1
to enumerate the set of all normalized configurations on JnK for n ≤ 8 (cf.
page 86). Hence, we can explicitly compute the set of sequence pairs (π, ρ) that
appear as topological orders of GSW+ and GSE+ of normalized configurations
(S,W). For all such sequence pairs, we must have π = idJnK by definition
of normalization, and furthermore ρ must be plane by Lemma 5.4. The
computational experiment shows that for n ≤ 8, all plane permutations ρ do
occur. Clearly, applying all permutations π ∈ Πn to the set of normalized
configurations by re-labeling their elements yields the set of all configurations
on JnK, resulting in the set of all sequence pairs of the form (π, σ ◦ π) with σ
plane. This means that the analysis of Lemma 5.4 is best possible for n ≤ 8.

However, the fact that all plane sequence pairs occur as topological orders
of GSW+ and GSE+ does not imply that all of these are required. In fact, for
n ≤ 4, we know that the set of biplane sequence pairs is a complete set of
minimum cardinality, which is a subset of the set of plane sequence pairs. This
means that it could be possible to obtain a complete set of sequence pairs of
minimum cardinality by only using a subset of plane sequence pairs, e.g., by
only considering tight configurations and their augmented digraphs. To answer
this question, we repeat the experiment of Section 7.3.2, this time restricted
to plane sequence pairs. This allows us to compute the minimum cardinality
CRplane

n of a complete set of plane sequence pairs on JnK.
Results are given in Table 7.9. As expected, for n ≤ 4, we have CRplane

n =
CRn. However, for n = 5, we need strictly more sequence pairs to cover all
configurations when restricted to plane sequence pairs. This proves that for
5 ≤ n ≤ 8, there is no set of configurations on JnK such that topological orders
of the augmented south-west and south-east digraphs GSW+ and GSE+ of these
configurations leads to a complete set of sequence pairs of minimum cardinality.

We now discuss the case n = 5 in more detail. In the following, we are
only interested in the structure of configurations and ignore the labeling of
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n Biplanen Planen |U | /n! CRn/n! CRplane
n /n!

1 1 1 1 1 1
2 2 2 2 2 2
3 6 6 6 6 6
4 22 23 22 22 22
5 88 104 96 92 94
6 374 530 478 422 450
7 1 668 2 958 2 624 2 074 2 349
8 7 744 17 734 15 550 10 754 13 128

Table 7.9: The minimum cardinality CRplane
n of a complete set

of plane sequence pairs on JnK, normalized by n!, is given in the
last column. The remaining columns are copied from Table 7.8
in order to facilitate comparisons.

the rectangles. In other words, we only consider normalization equivalence
classes of configurations. Note that this is different from considering normalized
configurations, which are representatives of these equivalence classes with a
fixed labeling. Consequently, we say that two equivalence classes share a
sequence pair if there is a labeling of their rectangles that allows the resulting
configurations to share a sequence pair. This way, we can only make statements
about so-called symmetric sets of sequence pairs, which will be formally defined
and discussed in Section 7.3.4. In particular, we stress that the analysis below
does not prove properties of CRn or CRplane

n , but rather gives empirical details
of the solved set cover instances. Still, the resulting observations may be useful
in the construction of stronger lower or upper bounds.

There are 88 equivalence classes whose elements are represented by a
unique sequence pair, counted by biplane permutations. The elements of the
remaining 96− 88 = 8 equivalence classes (cf. columns Biplanen and |U |/n! in
Table 7.9) are represented by exactly two sequence pairs each. Moreover, these
8 equivalence classes can be partitioned into 4 pairs that each share a sequence
pair. This leads to CR5/5! = 88 + 4 = 92. However, for two of these pairs, the
resulting shared sequence pairs are not plane, and hence the corresponding four
configurations are covered by a separate sequence pair each when restricted to
plane sequence pairs, leading to CRplane

5 /5! = 88 + 2 + 4 = 94.
One of these pairs of equivalence classes is illustrated in Figure 7.8, using a

suitable exemplary rectangle labeling. The common sequence pair (π, ρ) is not
plane, as the elements 1, 2, 3, 5 form a bad quartet. Note that (π, ρ) assigns
the pairs (1, 5) and (2, 3) to south, while topological orders of GSW+ and GSE+

assign (1, 5) to west in the case of Figure 7.8(a), and assign (2, 3) to east in the
case of Figure 7.8(b).

Finally, we remark that all 8 equivalence classes that allow to share a
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1
2

3

4

5

(a)

1
2

3

4

5

(b)

π(1)π(2)π(3)π(4)π(5)

ρ(2)

ρ(4)

ρ(1)

ρ(5)

ρ(3)

(c)

Figure 7.8: Two placements with different configurations (left)
that share a non-plane sequence pair (π, ρ) illustrated on the
right.

sequence pair are, up to reflection and rotation, of the type depicted in Figure 7.8.
This includes the placement given in Figure 6.4 (page 61), which we used to
show that the lower bound of Theorem 6.12 is not tight for n ≥ 5.

7.3.4 Symmetric Sets of Sequence Pairs
In this section, we introduce the concept of symmetric sets of sequence pairs,
and compute the minimum cardinality CRsym

n of complete symmetric sets of
sequence pairs for n ≤ 12. In particular, we observe that CRn = CRsym

n

for n ≤ 8, and furthermore CRsym
n = n! · Baxtern for n ≤ 12, supporting

Conjecture 7.55. Finally, we will observe that the resulting set of sequence
pairs (i.e., a complete symmetric set of sequence pairs of minimum cardinality)
is induced by certain pattern-avoiding permutations which we will call pseudo-
biplane. The number of pseudo-biplane permutations seems to equal the number
of Baxter permutations (which we verify for n ≤ 15), and moreover we will
verify that the set of pseudo-biplane sequence pairs is complete for n ≤ 14.

First, we define the symmetry property of a set SP of sequence pairs which
means that if a sequence pair (π, ρ) is contained in SP, then all sequence
pairs (π′, ρ′) that are structure-equivalent to (π, ρ) are also contained in SP,
cf. Definition 4.3.

Definition 7.56. Let n ∈ N and SP ⊆ SPn. We say that SP is symmetric
if

SP =
{

(π ◦ τ, ρ ◦ τ) : (π, ρ) ∈ SP , τ ∈ Πn

}
.

Note that if SP is a complete symmetric set of sequence pairs and (S,W) is
a configuration represented by (π, ρ) ∈ SP , then a sequence pair representing
the configuration obtained by relabeling elements in (S,W) can be obtained by
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simply relabeling the elements in (π, ρ). Moreover, we remark that the sets of
sequence pairs used in the proofs of our new lower and upper bounds on CRn

(Theorems 5.7 and 6.12) are indeed symmetric.
Recall that given a sequence pair (π, ρ), we refer by struc(π, ρ) = ρ ◦ π−1

to the structural permutation of (π, ρ), cf. Definition 4.4. We now extend this
notion to sets of sequence pairs: Given a set SP of sequence pairs, we refer by

struc(SP) :=
{

struc(π, ρ) : (π, ρ) ∈ SP
}

to the set of structural permutations of SP . Symmetric sets of sequence pairs
are uniquely determined by the set of their structural permutations:

Lemma 7.57. Let n ∈ N and SP ⊆ SPn be a symmetric set of sequence pairs.
Then, we have

SP =
{

(π, ρ) : π, ρ ∈ Πn, struc(π, ρ) ∈ struc(SP)
}

=
{

(π, σ ◦ π) : π ∈ Πn, σ ∈ struc(SP)
}
.

In particular, we have |SP | = n! ·
∣∣struc(SP)

∣∣.
Proof. We prove

SP ⊆
{

(π, ρ) : π, ρ ∈ Πn, struc(π, ρ) ∈ struc(SP)
}

=
{

(π, σ ◦ π) : π ∈ Πn, σ ∈ struc(SP)
}

⊆ SP .

The first inclusion directly follows from the definition of struc(SP), and the
subsequent equality is obtained by replacing struc(π, ρ) = ρ◦π−1 by σ. To show
the second inclusion, let σ ∈ struc(SP) and π ∈ Πn be arbitrary. Then, there
are (π′, ρ′) ∈ SP with struc(π, σ ◦ π) = σ = struc

(
π′, ρ′

)
. Now, by Lemma 4.5

we know that (π, σ ◦ π) and (π′, ρ′) are structure-equivalent. Hence, since SP
is symmetric and (π′, ρ′) ∈ SP , we have (π, σ ◦ π) ∈ SP .

Recall that we say that a set of sequence pairs SP covers a set of con-
figurations C if for every configuration (S,W) ∈ C, there is a sequence pair
(π, ρ) ∈ SP representing (S,W).

Definition 7.58. We say that a permutation σ ∈ Πn structure-represents a
configuration (S,W) if there is a sequence pair (π, ρ) representing (S,W) with
σ = ρ ◦ π−1.
Moreover, given a set of configurations C and a set of permutations Π, we say
that Π structure-covers C if for every configuration (S,W) ∈ C, there is a
permutation σ ∈ Π that structure-represents (S,W).
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The following result implies that the computation of CRsym
n can be reduced

to the computation of a set Π of permutations of minimum cardinality that
structure-covers all configurations. This leads to a set cover problem whose sets
correspond to permutations instead of sequence pairs, dramatically reducing
the number of candidate sets.

Lemma 7.59. Let n ∈ N, let C be a set of configurations on JnK, and let
SP ⊆ SPn be a symmetric set of sequence pairs.
Then SP covers C if and only if struc(SP) structure-covers C.

Proof. If SP covers C, then by definition clearly struc(SP) structure-covers C.
For the other direction, assume that struc(SP) structure-covers C, and let

(S,W) ∈ C. Then, there is a sequence pair (π, ρ) representing (S,W) with
struc(π, ρ) ∈ struc(SP), and by Lemma 7.57 we have (π, ρ) ∈ SP .

Recall that given a set Q ⊆ 2JnK and a permutation π ∈ Πn, we denote by
π(Q) the relation obtained from Q by re-labeling the elements of JnK according
to π, cf. Definition 7.35.

Lemma 7.60. Let n ∈ N and let C be a set of configurations on JnK. Define

C ′ :=
{(
τ(S), τ(W)

)
: (S,W) ∈ C, τ ∈ Πn

}
.

Furthermore, let Π ⊆ Πn be a set of permutations.
Then Π structure-covers C if and only if Π structure-covers C ′.

Proof. As C ⊆ C ′, clearly Π structure-covers C if Π structure-covers C ′.
For the other direction, assume that Π structure-covers C, and let(

τ(S), τ(W)
)
∈ C ′ with (S,W) ∈ C and τ ∈ Π. Then, there is a sequence pair

(π, ρ) with struc(π, ρ) ∈ Π such that (π, ρ) represents (S,W), i.e., Sπ,ρ ⊆ S and
Wπ,ρ ⊆ W. Set

(
π′, ρ′

)
:=
(
π ◦ τ−1, ρ ◦ τ−1

)
. Then, we see

Sπ′,ρ′ =
{

(i, j) ∈ 2JnK : π′(i) < π′(j) and ρ′(i) < ρ′(j)
}

=
{

(i, j) ∈ 2JnK : π
(
τ−1(i)

)
< π

(
τ−1(j)

)
and ρ

(
τ−1(i)

)
< ρ
(
τ−1(j)

)}
=
{(
τ(i), τ(j)

)
∈ 2JnK : π(i) < π(j) and ρ(i) < ρ(j)

}
= τ(Sπ,ρ)
⊆ τ(S).

A similar computation showsWπ′,ρ′ ⊆ τ(W), and hence (π′, ρ′) is a sequence pair
representing (τ(S), τ(W)). Furthermore, clearly (π, ρ) and (π′, ρ′) are structure-
equivalent, and hence Lemma 4.5 implies struc

(
π′, ρ′

)
= struc(π, ρ) ∈ Π.
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n |U | |M| CRsym
n /n! Baxtern Tconstr. [s] Tsolve [s]

1 1 1 1 1 0.00 0.00
2 2 2 2 2 0.00 0.00
3 6 6 6 6 0.00 0.00
4 22 22 22 22 0.00 0.00
5 96 100 92 92 0.00 0.00
6 478 556 422 422 0.00 0.00
7 2 624 3 670 2 074 2 074 0.02 0.00
8 15 550 28 012 10 754 10 754 0.12 0.02
9 98 036 242 470 58 202 58 202 0.64 0.17
10 650 464 2 345 814 326 240 326 240 6.43 3.85
11 4 504 774 25 079 566 1 882 960 1 882 960 76.12 99.97
12 32 356 774 293 608 226 11 140 560 11 140 560 1008.99 5085.03

Table 7.10: Symmetric set cover results. Column 1 gives the
number of rectangles, columns 2 and 3 give the size of the set
cover instance (U ,M). Note that |U | equals the number of SP-
equivalence classes of normalized tight configurations (cf. Table 7.6
(page 100)). Column 4 gives the size of an optimum solution of
the set cover instance, i.e., the minimum cardinality CRsym

n of a
complete symmetric set of representations for n divided by (n!).
Column 5 gives the number of Baxter permutations on JnK and
agrees with column 4. The last two columns give the running time
of constructing and solving the set cover instance, respectively.

Lemmata 7.57 and 7.60 imply that we can compute CRsym
n using normalized

configurations only, eliminating the need to explicitly apply all n! labelings to
all normalized configurations. More precisely, recall that we can compute a
set CT,SP,N

n of SP-equivalence representatives of normalized tight configurations.
Then, we construct a set cover instance (U ,M), where

U := CT,SP,N
n

and
M := {Mσ : σ ∈ Πn },

using
Mσ :=

{
(S,W) ∈ U : σ structure-represents (S,W)

}
for σ ∈ Πn. If N ⊆M is an optimum solution of (U ,M), then Lemmata 7.57
and 7.60 imply that CRsym

n = n! · |N |. Results are given in Table 7.10. Again,
we can solve all set cover instances using reductions only.

Solving the largest case n = 12 required approximately 107 GB of memory.
Recall that the running time of the set cover reductions primarily depends
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on the degrees of vertices in the bipartite set cover graph. For n = 12, the
average degree is 5.30 (26.68 for elements u ∈ U and 2.94 for sets M ∈ M),
which is much larger than in the largest case n = 8 of Table 7.7 (page 104),
where the average degree is 1.49. This explains the fact that solving the set
cover instance for CRsym

12 took longer than solving the set cover instance for
CR8, despite both having much fewer elements and sets.

For all tested values of n, e.g., n ≤ 12, we observe CRsym
n = n! · Baxtern.

In particular, this implies CRsym
n = CRn for n ≤ 8, that is, for n ≤ 8 there is

complete set of sequence pairs of minimum cardinality that indeed is symmetric.
Using Lemma 7.57, we conclude that for n ≤ 8, there is a set of permutations

Πopt
n ⊆ Πn such that

SPopt
n :=

{
(π, σ ◦ π) : π ∈ Πn, σ ∈ Πopt

n

}
is a complete set of sequence pairs of minimum cardinality, and we can determine
the set Πopt

n as the optimum solution of the solved set cover instances. Not
surprisingly, Πopt

n is the set of permutations avoiding a certain pattern.
First, we need the auxiliary concept of pseudo-plane permutations. Before

we define pseudo-plane permutations formally in Definition 7.61, recall that
plane permutations π can be characterized as follows: Whenever there are
indices i < j < l < m with j <π i <π m <π l (forming a match of 2143), there
must be an index k with j < k < l and i <π k <π m (forming a match of
21354). For pseudo-plane permutations, there are two more cases in which
matches of 2143 are allowed: In both cases, we do not require an additional
element k such that the relative order of i, j, k, l,m is pre-determined. Instead,
in the first case, we require that the match i, j, l,m of 2143 can be turned into
a match i, j′, l′,m of 2413 by replacing j by j′ and l by l′, where an element
is allowed to be replaced by itself. Of course, at least one of j and l must be
replaced by a different element in order to turn a match of 2143 into a match of
2413. In the second case, we replace i by i′ and m by m′ such that we obtain a
match of 3142. For each possible replacement, the relative order of the replaced
element and the replacing element is pre-determined:

Definition 7.61. Let n ∈ N and π ∈ Πn be a permutation. We say that π is
pseudo-plane if for all indices i < j < l < m with j <π i <π m <π l (i.e., a
match of 2143), one of the following conditions holds:

(i) There is an index k with j < k < l and i <π k <π m (ordinary plane
case: match of 2154 embedded into match of 21354).

(ii) There are indices j′, l′ with j ≤ j′, j ≤π j′, l′ ≤ l, l′ ≤π l, i < l′ < j′ < m,
and j′ <π i <π m <π l

′ (forming a match of 2413).

(iii) There are indices i′,m′ with i ≤ i′, i ≤π i′, m′ ≤ m, m′ ≤π m,
i′ < j < l < m′, and j <π m

′ <π i
′ <π l (forming a match of 3142).
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i j l m

π(j)

π(i)

π(m)

π(l)

(a) Base setting: i, j, l,m form a match
of 2143.

k

π(k)

i j l m

π(j)

π(i)

π(m)

π(l)

(b) Plane case (i): There is k such that
i, j, k, l,m form a match of 21354.

i j l′ j′ l m

π(j)

π(j′)

π(i)

π(m)

π(l′)

π(l)

(c) Example of case (ii): There are j′, l′

such that i, l′, j′,m form a match of 2413.
Note that in this example we have j < l′

and j′ < l, which is not required by the
pattern.

i i′ j l m′ m

π(j)

π(i)

π(m′)

π(i′)

π(m)

π(l)

(d) Example of case (iii): There are
i′,m′ such that i′, j, l,m′ form a match
of 3142. Note that in this example we
have i′ <π m and i <π m′, which is not
required by the pattern.

Figure 7.9: Pseudo-plane permutations: Whenever there is a
match i, j, l,m of the pattern 2143 (see (a)), then one of the three
cases (i), (ii) or (iii) must hold for π to be pseudo-plane. In all
four figures, the elements i, j, l,m of the original match are drawn
in blue, and elements replaced by other elements in the match
(indicated by arrows, e.g., j is replaced by j′ in (c)) are drawn
as diamonds. These examples do not cover all possible cases, as
elements are not necessarily replaced by different elements. For
example, in example (c), j′ = j would be allowed if l′ < j.
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See Figure 7.9 for an illustration of pseudo-plane permutations. Note that
we explicitly allow j′ = j, l′ = l, i′ = i, and m′ = m. Moreover, note that there
are no constraints on the relative order of the pairs (j′, l), (j, l′),

(
π(i′), π(m)

)
,

and
(
π(i), π(m′)

)
.

Definition 7.62. Let n ∈ N and π ∈ Πn be a permutation.
We say that π is pseudo-biplane if both π and −π are pseudo-plane.

Note that plane permutations are in particular pseudo-plane, and hence
biplane permutations are pseudo-biplane. As already mentioned, our computa-
tions show that the resulting set of structural permutations Πopt

n is exactly the
set of pseudo-biplane permutations. This is consistent with Observation 6.7
and Lemma 6.11, which predict that any complete set of sequence pairs contains
all biplane sequence pairs. We summarize the empirical results:

Theorem 7.63. Let n ∈ J12K and set SPopt
n be the set of pseudo-biplane

sequence pairs on JnK, i.e.,

SPopt
n :=

{
(π, σ ◦ π) : π, σ ∈ Πn, σ is pseudo-biplane

}
.

Then, SPopt
n is a complete set of sequence pairs with

∣∣∣SPopt
n

∣∣∣ = CRsym
n .

If n ≤ 8, then we even have
∣∣∣SPopt

n

∣∣∣ = CRn, that is, SPopt
n is a complete set

of sequence pairs of minimum cardinality.

Our computational set cover experiments are restricted to n ≤ 12 due to
memory limitations. Still, we are able to check whether SPopt

n is complete (but
not necessarily of minimum cardinality) for even larger n: Recall that we are
able to enumerate the set of normalized tight configurations up to n = 14,
cf. Table 7.4 (page 97). Now, while enumerating the set of normalized tight
configurations (S,W) in Algorithm 7.1, instead of storing (S,W) in a set, we
check whether (S,W) is represented by a pseudo-biplane sequence pair, which
in turn can be done by enumerating the set of sequence pairs representing
(S,W). Using this idea, we have verified that the set of pseudo-biplane sequence
pairs is indeed complete for all n ≤ 14.

Finally, our experiments show that the number of pseudo-biplane permu-
tations equals the number of Baxter permutations for all n ≤ 12, which we
verified to hold for all n ≤ 15 using explicit enumeration.

We conclude this chapter by giving more specific conjectures which together
imply Conjecture 7.55:

Conjecture 7.64. Let n ∈ N. Then, the number of pseudo-biplane permuta-
tions on JnK equals the number of Baxter permutations on JnK.

Conjecture 7.65. Let n ∈ N. Then, the set of pseudo-biplane sequence pairs
on JnK is a complete set of sequence pairs of minimum cardinality for n.



Summary

Axis-aligned rectangle packings can be characterized by the set of spatial
relations that hold for pairs of rectangles (west, south, east, north). A
representation of a packing consists of one satisfied spatial relation for each
pair. We call a set of representations complete if it contains a representation of
every packing of any n rectangles.

Both in theory and practice, fastest known algorithms for a large class of
rectangle packing problems enumerate a complete set R of representations. The
running time of these algorithms is dominated by the (exponential) size of R.

In this thesis, we have improved the best known lower and upper bounds
on the minimum cardinality CRn of complete sets of representations for n
rectangles. The new upper bound implies theoretically faster algorithms for
many rectangle packing problems, for example in chip design, while the new
lower bound imposes a limit on the running time that can be achieved by any
algorithm following this approach. The proofs of both results are based on
pattern-avoiding permutations.

More precisely, the best known upper bound on CRn is improved from
O
(

n!
n4.5 · 32n

)
to O

(
n!
n6 · (11+5

√
5

2
)n
)
, where 11+5

√
5

2
≤ 11.091. The previously

best known lower bound of n! · 2n−1 is improved to Ω
(
n!
n4 · (4 + 2

√
2)n
)
, where

4 + 2
√

2 ≥ 6.828.

Finally, we have empirically computed the minimum cardinality of com-
plete sets of representations for small n. Our computations directly suggest
two conjectures, connecting well-known Baxter permutations with the set of
permutations avoiding an apparently new pattern, which in turn seem to gen-
erate complete sets of representations of minimum cardinality. Together, these
conjectures would imply CRn = Θ

(
n!
n4 · 8n

)
.
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Notation

JnK The first n integers: JnK :={1, . . . , n}.
idS Identity function on S: idS : S → S with idS(i) = i.
S2 Ordered pairs of elements in a set S: S2 :=

{
(i, j) : i, j ∈ S

}
.

2S Ordered different-element pairs: 2S :=
{

(i, j) ∈ S2 : i 6= j
}
.

←−
Q Reversed relation of Q:

←−
Q :=

{
(j, i) : (i, j) ∈ Q

}
.

sym(Q) Symmetric closure of relation Q: sym(Q) :=Q ∪ ←−Q.
tr(Q) Transitive closure of relation Q.
S + i The set S together with the element i: S + i :=S ∪ { i}.
S − i The set S without the element i: S − i :=S \ { i}.
V (G) Vertices of graph G.
E(G) Edges of graph G.
δ−(v) Set of entering edges of vertex v in a directed graph.
δ+(v) Set of leaving edges of vertex v in a directed graph.
ΓG(v) Set of neighbors of a vertex v in an undirected graph G.
G+ e Graph plus a new edge: G+ e :=(V (G), E(G) + e).
G− e Graph without the edge e: G− e :=(V (G), E(G)− e).
G+ F Graph plus a set of edges G+ F :=(V (G), E(G) ∪ F ).
G− F Graph without a set of edges G− F :=(V (G), E(G) \ F ).
tr(G) Transitive closure of a directed graph G.
Πn Set of permutations π : JnK→ JnK.
SPn Set of sequence pairs (π, ρ) on JnK: SPn := Π2

n.
rπ,ρ Representation of a sequence pair (π, ρ), cf. Definition 4.1.
struc(π, ρ) Structural permutation of a sequence pair: struc(π, ρ) := ρ ◦ π−1.
CRn Minimum cardinality of a complete set of representations.
Planen Number of plane permutations, cf. Theorem 3.10 and Table 3.3.
Biplanen Number of biplane permutations, cf. Theorem 3.15 and Table 3.3.
Baxtern Number of Baxter permutations, cf. Theorem 3.17 and Table 3.3.
<π Total strict order induced by π ∈ Πn: i <π j ⇐⇒ π(i) < π(j).
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118 Notation

(
Sπ,ρ,Wπ,ρ

)
Complementary biorder of a seq. pair (π, ρ), cf. Definition 4.9.

(SP ,WP ) Biorder (or configuration) of a placement P , cf. Definition 4.6.
QI Interval order of an interval placement I, cf. Definition 7.2.
GSW South-west digraph of a biorder (S,W), cf. Definition 4.11.
GSE South-east digraph of a biorder (S,W), cf. Definition 4.11.
GSW+ Augmented south-west digraph, cf. Definition 5.1.
GSE+ Augmented south-east digraph, cf. Definition 5.1.
GQ Interval constraint graph of a relation Q, cf. Definition 7.9.
Gπ Digraph of a permutation π ∈ Πn, cf. Definition 3.6.
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