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Abstract

Supersymmetry (SUSY) was proposed as one of the solutions to the hierarchy problem. In addition,
R-parity (Rp) is often imposed in such models in order to e.g. avoid proton decay. These Rp-conserving
models also predict a stable candidate for cold dark matter. However, Rp-violating (RpV) SUSY
models lead to a rich and distinctive phenomenology that should not be ignored.
While at the Large Hadron Collider (LHC), none of the new fundamental particles predicted

by New-Physics (NP) theories have been discovered yet, both low-energy observables and direct-
production searches at colliders can be exploited in order to constrain further NP theories. Among
others, flavor observables that are already well explained by Standard-Model predictions could receive
contributions from beyond-the-Standard-Model (BSM) physics. The experimental measurements
therefore place limits on these contributions and through them on the NP parameters. In this thesis, we
study the particular case of neutral meson oscillation phenomena, and present updated bounds on RpV
couplings. At the LHC, small RpV couplings could produce displaced vertex signatures. Several new
detectors such as MATHUSLA, CODEX-b, FASER and AL3X have been proposed for long-lived particle
searches. We estimate sensitivity reach of these new components in the parameter space of several
BSM frameworks including RpV-SUSY and heavy neutral leptons.
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CHAPTER 1

Introduction

The modern understanding of the fundamental particles and their interactions was formulated in the
1960’s, leading to the construction of what is known today as the Standard Model of particle physics
(SM). This description results from the successful combination of several theoretical ingredients.
The underlying framework is that of quantum field theory (QFT), which unites special relativity and
quantum mechanics in a consistent way. In this context, the particles appear as the excitations of
quantum fields, whose dynamics is encoded within a Lagrangian density. Another concept of 20th
century particle physics is that of gauge interactions, which led to the successful development of
quantum electrodynamics. In this picture, fundamental forces are carried by vector mediators whose
interaction with matter is strictly determined by considerations of symmetries. The extension of
this concept to the strong and weak interactions resulted in the formulation of the SM gauge group,
SU(3)C × SU(2)L ×U(1)Y , where C, L, Y stand for color, left-chirality and hypercharge, respectively.
Here, SU(3)C is associated to the strong interaction where the gauge mediator is called gluon, and
leads to the confinement of the color-charged particles called quarks into hadrons. This specific
strong dynamics is known as Quantum Chromodynamics (QCD) [1–3]. As for SU(2)L × U(1)Y ,
the corresponding theory was introduced by Glashow, Weinberg and Salam [4–6] and mixes the
electromagnetic and the weak interactions in terms of the so-called electroweak interactions. In the
latter case, the evidence for massive mediators of the weak interactions first appeared in contradiction
with the symmetry concept until the Brout-Englert-Higgs mechanism [7, 8] offered a solution in terms
of spontaneously broken gauge theories. The simplest implementation of this mechanism to the SM
gauge group, known as electroweak symmetry breaking (EWSB), involves a scalar SU(2) doublet
which takes a non-zero vacuum expectation value (VEV), explicitly breaking the gauge symmetry
at the level of the ground state of the scalar potential. This EWSB generates mass terms that were
originally forbidden by the gauge symmetry as in the case of the weak gauge bosons and the SM
fermions. One generator of the electroweak gauge group remains unbroken, and corresponds to the
electromagnetic interaction:

SU(3)C × SU(2)L ×U(1)Y
EWSB
−−−−−→ SU(3)C ×U(1)em, (1.1)

Among the successful predictions of the SM, one finds the existence and mass of W- and Z-bosons
[9–12], the existence of the massless SU(3)C gauge boson gluon [13–16] and of the Higgs boson [17,
18], as well as several fermions (charm and top quarks) [19–22], even though the matter content of the
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Chapter 1 Introduction

model (such as the number of generation of leptons and quarks) was constructed in an empirical way.
As a result of this construction, the SM involves in total 19 independent parameters: 3 lepton masses,
6 quark masses, 3 quark mixing angles, 1 CP-violating phase, 3 gauge couplings, the Higgs mass, the
Higgs VEV, and the QCD vacuum angle. This standard structure has performed satisfactorily in view
of most experimental tests (electroweak precision measurements, flavor transitions and CP properties,
measured Higgs properties). In addition, colliders have not collected evidence so far for the existence
of particles beyond the SM table.
However, the SM theory itself is confronted by both observations and theoretical flaws. From the

observational side, the evidence for neutrino flavor oscillations [23, 24] points towards the existence
of neutrino masses, giving a first hint of beyond-the-SM (BSM) physics, as such masses go beyond
the SM predictions. Popular models of neutrino model building often employ the so-called seesaw
mechanism [25–29] in order to explain the strong hierarchy between the neutrino masses and those
of the charged leptons, postulating the existence of new (possibly very) massive fields. Another
observational issue of the SM is the baryon asymmetry of the Universe [30–34], the fact that there
appears to be much more matter than anti-matter in the Universe today. Although the SM satisfies all
of the Sakharov conditions [35], the predicted baryon asymmetry proves insufficient as compared
to the cosmological data [34, 36, 37]. Besides, there is bountiful evidence, based on astrophysical
observations from the previous and the current century, for the existence of dark matter (DM) [38–46],
pointing to further unexplored territory beyond the SM. We stress that these hints for the existence of
DM only implicates its gravitational interaction, even though an estimate of the production of the
current DM through thermal relics would point towards cross sections and masses of approximately
electroweak size (the WIMP paradigm) [47–51]. A more conceptual problem is that of the status of
gravitational interactions in the SM, since General Relativity cannot be simply embedded within a
QFT framework. However, this problem does not matter up to energies comparable to the Planck scale
MPl ∼ 1019 GeV, where gravitational effects would become large. Before this becomes relevant for
collider experiments, one could instead worry about other flaws of the SM gauge group. There a first
issue appears, known as the strong CP problem. Indeed, gauge and Lorentz symmetries would allow
for the existence of a so-called ‘θ term’, θ̄F̃µν

α Fαµν , that breaks the CP-symmetry, where θ̄ is the QCD
vacuum angle mentioned earlier, to which one would add radiative corrections of e.g. electroweak
origins. However, the experimental measurement of the electric dipole moment of the neutron has
set a very strict upper bound on the magnitude of θ̄: θ̄ < 10−10 [52, 53]. This smallness would
arise as the unnatural tuning of contributions of various origins in the SM. The most well-known
solution is Peccei-Quinn theory which involves new pseudoscalar particles called axions [54–57].
The structure of the SM gauge group itself also raises questions as to the cancellation of the gauge
anomalies (necessary for the renormalizability of a gauge theory). This appears as a largely accidental
fact in the SM. In addition, it is remarkable that the electric charges of fundamental particles always
appear in rational proportions while the hypercharge would in principle allow for irrational numbers.
All these curiosities suggest the existence of a more fundamental structure embedding the SM, and
unifying its gauge groups. This branch of model building, known as Grand Unified Theories (GUT),
motivates the existence of new matter field in close interaction with SM particles, in particular the
Higgs field. Nevertheless, the interpretation of the SM as a low-energy effective theory instead of
a fully fundamental model introduces a new issue: the hierarchy problem. Indeed the Higgs mass
is unprotected with respect to radiative corrections from heavy New-Physics (NP) fields, receiving
quadratic contributions that would push it towards high energies. This contradicts the observation
of a SM-Higgs-like scalar with a mass of 125 GeV [17, 18] at the Large Hadron Collider (LHC)
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1.1 MSSM

in 2012, and previous hints in electroweak precision data [58, 59]. An accidental cancellation of
the large radiative corrections of NP origins with the tree-level bare mass term would violate the
principle of technical naturalness [60]. This argument motivates the extension of the SM in such a
way that the Higgs mass is protected. Possible theoretical solutions include the use of symmetries
such as supersymmetry (SUSY) [61–64], or a global symmetry from composite structure [65–71]. A
further possibility is to resort to extra-dimensions, either flat and large [72, 73] or warped [74]. New
constructions have emerged in recent years such as the ‘clockwork’ [75] and the ‘relaxion’ mechanisms
[76].

Softly-broken supersymmetric extensions of the SM [77, 78] have long been regarded as a leading
class of candidates for the resolution of the hierarchy problem [79–82], as well as a possible framework
in view of understanding the nature of dark matter or the unification of gauge-couplings. SUSY
theories have a symmetrical mapping between fermionic and bosonic representations of the Lorentz
group, resulting in an equal number of fermionic and bosonic degrees of freedom. As long as the
supersymmetry is unbroken, all the particles in the same super-multiplet are degenerate in mass. SUSY
theories have a higher degree of regularity than usual QFT, which can be formulated in terms of non-
renormalization theorems. This property suggested to particle physicists that a supersymmetrization
of the SM could address the hierarchy problem. Indeed, by associating scalars and fermions, SUSY
allows the chiral protection of fermion masses to extend to scalar masses as well. Technically, this
protection takes the form of cancellations between the radiative corrections of partners of the same
super-multiplet. The implementation of this recipe to the matter content of the SM led to the so-called
‘supersymmetric extensions’ of the SM, of which the realization with minimal field content is known
as the Minimal Supersymmetric Standard Model (MSSM). This is the model on which we focus below.

1.1 MSSM

We introduce the MSSM in this section, starting with the field content of the theory. Each SM field
is included in a super-multiplet of N = 1 supersymmetry, in parallel with a superpartner field. The
MSSM names the partners of charged leptons and neutrinos as sleptons and sneutrinos, those of quarks
as squarks. In the Higgs sector, at least two Higgs doublets are needed in the model, as required by
anomaly cancellation of the SM gauge group and the holomorphic property of the superpotential1, in
order to generate masses for both up- and down-type quarks. The superpartners of the Higgs bosons
are called Higgsinos. The gauge fields of the SM, i.e. B-boson, W-bosons and gluons, are represented
in gauge supermultiplets with spin-1/2 superpartners, namely bino, winos and gluinos. We list the
chiral2 super-multiplet fields of the MSSM in Table 1.1 and the gauge superfields in Table 1.2, where
the fields are gauge eigenstates.

The superpotential of the (Rp-conserving) MSSM takes the following form

WMSSM = µHu · Hd + Y e
i j Hd · Li Ēj + Y d

ij Hd · Qi D̄j − Yu
ij Hu · QiŪj, (1.2)

where µ is the Higgsino mass parameter, Y ’s are Yukawa matrices, Q, Ū, D̄, L, Ē , Hu and Hd are the

1 If we restrict ourselves to the renormalizable MSSM, the superpotential remains a polynomial of third degree of the
superfields.

2 A chiral super-multiplet consists of a complex scalar field and a fermionic field, transforming into one another through the
SUSY symmetry.
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Chapter 1 Introduction

Superfield spin 0 spin 1/2 gen. SU(3)C SU(2)L U(1)Y
Q

(
ũL, d̃L

) (
uL, dL

)
3 3 2 1

3

Ū ũ∗R u†R 3 3̄ 1 − 4
3

D̄ d̃∗R d†R 3 3̄ 1 2
3

L
(
ν̃L, ẽL

) (
νL, eL

)
3 1 2 −1

Ē ẽ∗R e†R 3 1̄ 1 2
Hu

(
H+,H0

) (
H̃+, H̃0

)
1 1 2 1

Hd

(
H0,H−

) (
H̃0, H̃−

)
1 1 2 −1

Table 1.1: Chiral supermultiplets in the MSSM

Superfield spin 1 spin 1/2 gen. SU(3)C SU(2)L U(1)Y
B B B̃ 1 1 1 0

Wa Wa W̃a 3 1 3 0
Ga ga g̃a 8 8 1 0

Table 1.2: Gauge supermultiplets in the MSSM

chiral superfields of Table 1.1, and · is the SU(2)L invariant product. The indices i, j, k refer to the
three generations of flavor (the color indices are implicit). The MSSM superpotential recovers the
Yukawa interactions that exist in the SM and includes a term, µHu · Hd, known as the µ-term, which
is unique in the MSSM. The size of the free parameter µ is in principle undetermined and given that
this parameter is SUSY-conserving, one would naively expect a large NP scale. A recent LHC search
in ATLAS for electroweak SUSY production [83] excludes now values of µ, which sets the scale of
the Higgsino masses, depending on other SUSY parameters, up to roughly µ ' 130 GeV. On the other
hand, if µ were very large, it would dominate the minimization conditions of the scalar potential and
forbid the EWSB. In view of these considerations, µ should be comparable in size to the other scales
entering the scalar potential (as we will discuss later, the SUSY soft-breaking scale and the EWSB
scale.)
With the knowledge of the MSSM superpotential WMSSM, one may derive the SUSY-conserving

terms that appear in the interaction Lagrangian as follows:

Lint = −
1
2
∂2WMSSM
∂φi∂φ j

ψiψj −

(∂WMSSM
∂φi

)2
+ h.c., (1.3)

where ∂WMSSM
∂φk

means taking the derivative of WMSSM with respect to the superfield φk and then
replacing the superfields by their scalar components, and ψk is the fermionic component of the
superfield φk .

Since no evidence of superpartners degenerate in mass with SM particles has been found, SUSY, if
realized at all in Nature, should be broken at low energies (above the electroweak scale). Realistic
SUSY-breaking mechanisms are notoriously difficult to design as sum rules forbid this breakdown to
take place in the MSSM sector. Instead, SUSY-breaking effects should be mediated to the standard
sector by some mediators, of which several scenarios have been proposed [74, 84–97]. On the
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1.1 MSSM

gauge eigenstates mass eigenstates name
[ũ, c̃, t̃]L,R ũi, i = 1 . . . 6 up-type squarks
[d̃, s̃, b̃]L,R d̃i, i = 1 . . . 6 down-type squarks
[ẽ, µ̃, τ̃]L,R ẽi, i = 1 . . . 6 sleptons
ν̃e, ν̃µ, ν̃τ ν̃i, i = 1 . . . 3 sneutrinos
H̃−d , (H̃

+
u )
†,W̃−, (W̃+)† χ̃−i , i = 1,2 charginos

H̃0
d, H̃

0
u,W̃

3, B̃ χ̃0
i , i = 1,2,3,4 neutralinos

H0
u,H

0
d h,H, A0

(,G0
) neutral Higgs (,Goldstone)

H−d , (H
+
u )
∗ H±(,G±) charged Higgs (,Goldstone)

g̃ g̃ gluinos

Table 1.3: New gauge and mass eigenstates in the MSSM

other hand, it is possible to parametrize the effect of SUSY-breaking in the MSSM sector in a
phenomenological way by adding so-called ‘soft’ terms to the Lagrangian. These terms are defined by
the property of not spoiling the cancellation of quadratic radiative corrections to the scalar masses.
Such terms are written as follows:

−Lsoft = Q̃†m2
qQ̃ + D̃†m2

dD̃ + Ũ†m2
uŨ + L̃†m2

l L̃ + Ẽ†m2
eẼ + m2

Hu
|Hd |

2
+ m2

Hd
|Hd |

2

+
1
2

(
M1B̃B̃ + M2W̃aW̃a

+ M3g̃
ag̃a + h.c.

)
+

(
Ai j
u Q̃i · HuŨj + Ai j

d
Q̃i · HdD̃j + Ai j

e L̃i · Hd Ẽj + bHd · Hu + h.c.
)
, (1.4)

where D̃ = d̃∗R, Ũ = ũ∗R, Ẽ = ẽ∗R. m2
q, m2

l , m2
d, m2

u, m2
e, m2

Hu
and m2

Hd
correspond to quadratic

parameters for the masses of the squarks, sleptons, and Higgs fields, while M1, M2, M3 are respectively
mass contributions to the masses of binos, winos and gluinos. Ai j

u , Ai j
d
, Ai j

e , b define a holomorphic
function of the scalar fields, hence reminiscent in form of the superpotential. The soft SUSY-breaking
Lagrangian is essential for a successful low-energy phenomenology. Beyond lifting the degeneracy in
mass between the SM particles and their superpartners, these terms are also needed in order to trigger
the EWSB [98].

After the EWSB occurs, fields with the same quantum numbers mix and form mass eigenstates. We
list the gauge eigenstates that are new in the MSSM in Table. 1.3, paired with the corresponding mass
eigenstates. There are in total 6 mass eigenstates for each category among up-type squarks, down-type
squarks, and sleptons. In the sneutrinos sector, there are 3 mass eigenstates. The charged Higgsinos
and charged winos mix to form charginos χ̃±i , i = 1,2, while their neutral counterparts mix with one
another as well as the bino to form neutralinos χ̃0

i , i = 1,2,3,4. As the gauge group SU(3)C remains
unbroken, the gluinos do not mix with other states. In the Higgs sector, five scalar particles remain as
physical degrees of freedom (the other degrees of freedom are the electroweak Goldstone bosons) two
CP-even3 Higgs h and H, one CP-odd neutral pseudoscalar A, and two charged Higgs H±.

At tree-level, the MSSM predicts an upper bound for the lighter CP-even Higgs boson mass:

mh ≤ MZ | cos 2β |, (1.5)

3 All the CP-conserving neutral components in the Higgs sector may mix if CP is broken
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Figure 1.1: Two-loop RG evolution of inverse gauge couplings in the SM (dashed line) and the MSSM (solid
lines). In the MSSM case, the sparticle masses are treated as a common threshold varied between 750 GeV and
2.5 TeV, and α3(mZ) is varied between0.117 and 0.120 with α3 = g2

3/4π. The plot is taken from [100].

where the angle β is defined from the ratio of the two Higgs doublet VEVs, and MZ is the Z-boson mass.
This upper bound is apparently in contradiction with the observed Higgs mass (∼ 125 GeV). However,
such a conclusion would be superficial since it overlooks the impact of the radiative corrections. The
latter are actually known to be sizable due to the mass splitting between the SM particles and their
superpartners. Previous to the Higgs discovery, an upper bound of about 140 GeV on the mass of the
lightest Higgs state had been derived [99], which is in agreement with the measured value.
The running of the SM gauge couplings in the MSSM provides another interesting feature. In

a quantum field theory, it is possible to re-sum the leading radiative corrections depending on the
energy scale via the renormalization group equations. This applies in particular to the three gauge
couplings of the SM, g1,g2 and g3. It was observed that in the presence of the MSSM matter content,
these couplings tend to converge towards a common high-energy limit at the scale of 1016 GeV, which
would allow for a one-step unification as in SU(5) GUT model building. This is illustrated in Fig. 1.1,
which is taken from [100].

In the definition of the MSSM superpotential of Eq. 1.2 and its soft Lagrangian (Eq. 1.4), we have
assumed an implicit ingredient which is R-parity (Rp). Indeed, renormalizability and gauge invariance
alone would allow sets of terms that would break the lepton or the baryon numbers, leading to a
possibly fast proton decay. Rp [101] is an additional discrete symmetry expressed in terms of the
baryon B and the lepton L numbers as well as the spin s, defined for each field as

Rp = (−1)3(B−L)+2s . (1.6)

With this definition, all the SM fields are Rp-even while all the superpartners are Rp-odd. Therefore,
the conservation of Rp implies that transition amplitudes with an odd number of external SUSY
particles vanish. In particular, SUSY particles cannot decay into strict SM final states. Consequently,
the lightest SUSY particle (LSP) is stable, and hence a possible candidate for weakly interacting DM
[102]. This argument is often presented as an additional motivation for Rp. In the following section,
we will see, however, why R-parity-violation should not be so easily dismissed as a framework of
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collider physics.

1.2 RpV-MSSM

In the previous section, we presented Rp as a mean to prevent fast proton decay. However, imposing
Rp does not completely solve the problem. In fact, if we view the Rp-conserving MSSM as an effective
theory embedded in a more fundamental model at some higher energy scale, several Rp-conserving
dim-5 operators could lead to proton decay [103]. This issue is more efficiently addressed by imposing
other types of discrete symmetries such as proton hexality or baryon-triality [104–106]. Therefore,
despite its attractive features, Rp conservation is perhaps not as fundamental as it appears at first. It is
thus legitimate to consider the phenomenology associated with Rp violation (RpV) — see [107, 108]
for reviews — which is not only viable but also opens new mechanisms at colliders.
On the high-energy frontier, the purpose of the LHC was not only the discovery of the SM Higgs

boson, but also the investigation of new particles in the TeV mass range. Typical targets include the
sparticles predicted by SUSY theories. Several years of operation of the LHC have (as yet) failed
to reveal any conclusive evidence for BSM physics [109]. On the contrary, experimental searches
keep placing ever stronger limits on hypothesized strongly [110–113] and even weakly-interacting
[114] particles in the electroweak–TeV range. While this situation tends to leave the simpler models
such as MSSM in an uncomfortable position, it also advocates for a deeper study of more complicated
scenarios such as R-parity-violating MSSM (RpV-MSSM), satisfying the central motivations of the
original paradigm but also requiring more elaborate experimental investigations for testing. In the
traditional collider searches based on R-parity-conserving MSSM, the strategies focus on the detection
of missing transverse energies associated with potential LSP’s that would escape the detector. However,
if a RpV scenario were realized in Nature, this strategy would need to be re-assessed. Indeed, not only
are different signals expected, but there may be no long-lived LSP flying away without decaying (no
missing energy). Collider limits then need to be revisited.
With an unstable LSP, RpV models do not provide an obvious DM candidate, except for the case

where one particle has a lifetime comparable to the age of the Universe.
We now consider the most general RpV-model with minimal superfield content. The superpotential

of the Rp-conserving MSSM is thus extended by the following terms [103]:

WRpV = µi Hu · Li +
1
2
λi jk Li · Lj Ēk + λ

′
i jk Li · Q j D̄k +

1
2
λ′′i jk εabc Ūa

i D̄b
j D̄c

k, (1.7)

where εabc is the 3-dimensional Levi-Civita symbol and the indices a, b, c correspond to the color
index. We note that symmetry-conditions may be imposed on the parameters λi jk and λ

′′
i jk without

loss of generality: λi jk = −λjik , λ
′′
i jk = −λ

′′
ik j . This can be easily derived as follows (take Li · Lj Ēk

operators for example):

λi jkLi · Lj Ēk = λi jkεαβLαi Lβj Ēk = −λjikεβαLαj Lβi Ēk = −λjikLi · Lj Ēk, (1.8)

where εαβ is the 2-dimensional Levi-Civita symbol.
The first three sets of terms of Eq. (1.7) violate lepton number and the last set of terms violate

baryon number. Of course, allowing all the operators to be non-vanishing could lead to fast proton
decay at the electroweak-SUSY scale. A predictive alternative to Rp at this level simply consists in
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imposing conservation of either the baryon or the lepton number [104, 105, 115, 116].
With Rp discarded, new soft SUSY-breaking terms should be included, and can be expressed as

follows:

LRpV, soft = m2
Hdi

H†
d

L̃i + biHu L̃i +
1
2

Ai jk L̃i L̃j Ẽk + A′i jk L̃iQ̃ j D̃k +
1
2

A′′i jkŨi D̃j D̃k + h.c.. (1.9)

Again, only the last set of terms violate baryon number (in the squark sector) while the others violate
lepton number.
With Rp broken, Li and Hd superfields carry the same quantum numbers so that there is an

ambiguity as to the definition of these fields, and the distribution of the electroweak VEV. This is
made obvious by the first term of Eq. 1.7 as well as the first two terms of Eq. 1.9. In the most general
case, the mixing matrices of MSSM and SM particles can take a relatively complicated form which is
simply a consequence of this ambiguity. In practice, it is convenient to work in the basis of fields
where the sneutrino fields have a vanishing VEV, and in this thesis we work in this basis indeed.

We stress that the first set of operators in the RpV superpotential (Eq. 1.7) and the first two sets of
terms in the RpV soft Lagrangian (Eq. 1.9) are sources of several mixings between MSSM and SM
fields: neutrinos-neutralinos, charged leptons-charginos, sneutrinos-neutral Higgs, sleptons-charged
Higgs mixings. While in the Rp-conserving MSSM, there exist already slepton, sneutrino and squark
flavor mixings, these new effects induced by the bilinear operators from the RpV superpotential add
further complexities into the theory, and should be taken into account if one intends to consider the full
RpV-MSSM model. As a side remark, the mixing between the neutrinos and the neutralinos yields
a single massive neutrino state at tree level, and the trilinear RpV couplings can generate massive
neutrinos at one-loop order by themselve or together with bilinear RpV couplings. See e.g. [108] for a
review.

1.3 Phenomenological studies

RpV affects the phenomenology of the MSSM on the whole spectrum of particle physics ranging
from direct searches of NP at e.g. the LHC [117, 118], flavor transitions in the lepton or quark sectors,
to astrophysics and cosmology. In the following subsections, we briefly review limits applying to
RpV-SUSY and originating either indirectly (in SM to SM transitions) or directly in the production
and decays of SUSY particles. We restrict ourselves to a brief discussion here and refer the reader to
Ref. [108] for further details.

1.3.1 Indirect bounds on RpV superpotential couplings

The violation of Rp could generate new interactions between the superfields and the SM fields,
giving contributions to various processes for which the SM itself is already in good agreement with
the experimental measurement. The experimental precision along with the SM and NP theoretical
uncertainties then limit the amount of NP contributions that may enter the process and thus put indirect
bounds on BSM parameters such as the RpV couplings. This class of limits include many possible
processes.
RpV couplings potentially produce new sources of flavor violation both in the lepton and the

quark sectors. Corresponding observables have been studied for a long time as potential probes of
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NP, resulting in relatively strong constraints. In the lepton flavor sector, processes such as µ→ eγ
and µ→ 3e constrain lepton-flavor-violating (LFV) RpV couplings of the L · LĒ type [119–143].
Neutrinoless double beta decay is responsible for the so far strongest bound applying on a single
RpV coupling, λ′111 [144]. In the quark flavor sector, rare decays of mesons, either into leptonic [119,
145–150], semileptonic [146, 151–153], or hadronic final states [154–156], placed severe bounds.
Another example of flavor transition in the quark sector is that of the neutral meson systems including
its CP-conserving and -violating observables [146, 157–165]. We investigate this specific case in
Chapter 2 of this thesis. In addition, some experimental anomalies were observed in recent years
including the so-called B-anomalies with observables R

K (∗)/D(∗)
. The global deviation of the two types

of B-anomalies [166–176] is almost 4σ. This can be accounted for by RpV-SUSY theories [177–182].
Finally, baryon-number-violating observables such as the nucleon decays and the neutron oscillation
have been studied in the context of RpV [108, 145, 154, 183–189].
Here we extract from the literature a selected list of bounds on single RpV couplings and on RpV

coupling products that are relevant to the studies presented in this thesis. It is indeed customary to
assume the dominance of a single RpV coupling or coupling pair when studying the limits derived from
a specific observable. While predictive, this hypothesis, known as the Single Coupling Dominance,
could be simplistic in that it favors a particular base in flavor space at the level of the high-energy
RpV couplings which have no specific reason to be determined by the low-energy consideration. The
couplings λ′i jk of the operator Li · Q j D̄k receive limits from different sources, though the bounds are
substantially weakened for heavy sfermion masses above 1 TeV. For simplicity, we only show the
limits for sfermion masses at 100 GeV. For reviews, see Refs. [108, 190–193]. We list the relevant
bounds on single λ′i jk couplings, reproduced from Ref. [193]:

|λ′112 | < 0.03 , |λ′122 | < 0.2 , |λ′131 | < 0.03 . (1.10)

As for the relevant RpV coupling product bounds, we reproduce the numbers from Ref. [159, 160,
164, 190] for sfermion masses at 100 GeV:

|λ′i21λ
′
i12 | < 1.0 × 10−9 , |λ′i31λ

′
i13 | < 3 × 10−8 , |λ′i32λ

′
i23 | < 7.36 × 10−7 ,

|λ′i21λ
′
i23 | < 1.4 × 10−3 , |λ′i12λ

′
i13 | < 2.52 × 10−2 , |λ′i31λ

′
i33 | < 1.3 × 10−3 ,

|λ′i32λ
′
i33 | < 2.5 × 10−3 , |λ′i32λ

′
i33 | < 2.5 × 10−3 , |λ′i21λ

′
i22 | < 1.4 × 10−6 , (1.11)

|λ′i31λ
′
i12 | < 2.4 × 10−5 , |λ′i12λ

′
i22 | < 2.2 × 10−5 , |λ′′i13λ

′′
i23 | < 4.8 × 10−4 ,

|λ′′i12λ
′′
i23 | < 7.6 × 10−3 , |λ′′i12λ

′′
i13 | < 6.2 × 10−3 .

1.3.2 Constraining RpV from Collider Searches

Non-vanishing RpV couplings imply more instability of sparticles and would result in distinctive
signals at the colliders. In particular, the decay of the LSP via RpV couplings would lead to decay
topologies considerably different from those predicted by the existing searches based on Rp-conserving
SUSY theories. Needless to say, this impact on collider phenomenology has elicited (and is likely to
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keep eliciting) many searches at the high-energy frontier.
With RpV couplings larger than ∼ O(10−5

− 10−4
), sparticles are expected to be short-lived and

their decays lead to signals that may be detected at the colliders. The first types of signals that are
searched for are direct decays of sfermions via trilinear RpV couplings to a pair of SM particles
[194, 195] and those of neutralinos and charginos into three SM fermions with an off-shell sfermion
exchange [196, 197]. Another possibility is that a cascade of sparticle decays happens first, before the
LSP decays via a RpV coupling. Signals of different characteristics may arise depending on whether
the sfermion and the gauginos-Higgsinos are produced singly or in pair, and on the collider type
(proton-proton, electron-positron or electron-proton).

On the other hand, if RpV couplings are of a smaller size, the LSP (such as the lightest neutralino)
becomes long-lived. In recent years, several detectors remote from the beam (O(101

− 102
) m) have

been proposed to be built as new components of the LHC experiments, designed specifically for
discovering long-lived particles (LLPs) [198–201]. In this context, it seems interesting to assess
the sensitivity reach of these detectors in the parameter space of RpV-SUSY theories among other
extensions of the SM. Works in this direction study the possibility of constraining RpV couplings with
displaced vertex signatures in the near future at the LHC [202–205]. Chapter 3 of this thesis presents
our studies in this research direction.

This thesis is organized as follows. In Chapter 2, we present the analytical calculation of the full RpV
contributions to the observable ∆M’s, show the numerical results in a set of benchmark scenarios,
and provide new bounds on the RpV parameters in terms of sfermion masses. In Appendix A the
details of loop calculation results are listed including the definition of loop functions and the analytical
expressions of Wilson coefficients. In Chapter 3, we first introduce the simulation procedure of
LLP signals and the basic setup of future detectors at the LHC including geometries and projected
luminosities of data. Then we estimate the sensitivity reach of these new detectors in the parameter
space of RpV-SUSY and heavy neutral leptons (HNL) theories; experimental searches in this direction
may lead to either discovery of such LLPs or exclusion of larger regions in the parameter space.
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CHAPTER 2

R-parity Violation & Meson Oscillation

One of the possibilities to test the RpV-MSSM is to exploit the many low-energy (LFV/QFV) flavor
observables that are very sensitive to BSM physics. As discussed in the previous chapter, the neutral
meson systems including K0

− K̄0 and Bd/s − B̄d/s, provide several low-energy observables that can
tightly constrain NP contributions. In this chapter, we present our studies in this direction.

This chapter is based on Ref. [165]. In the first section of this chapter, we briefly discuss the current
experimental status of the observables that we consider, and introduce the calculation procedure. In
the second section, we present the general ingredients of the full one-loop analytical calculation of the
Wilson coefficients of the ∆F = 2 EFT (effective field theory) in the RpV-MSSM, referring to the
appendices where the exact expressions are provided. In Section 2.3, we discuss the implementation
of these results employing the public tools SPheno [206–208], SARAH [209–214], FlavorKit [215]
and Flavio [216]. Finally, numerical limits on the RpV-couplings are presented in a few simple
scenarios, before a short conclusion.

2.1 The Current Experimental Status

The superpotential of Eq. (1.7) contains several sources of flavor-violation, in both the lepton and the
quark sectors. Such effects are steadily searched for in experiments, placing severe bounds on the
parameter space of the model. The impact of lepton-flavor violating observables on the RpV-MSSM
has been discussed extensively in the literature, see e.g. [119–143]. In the quark sector, observables
such as leptonic B-decays or radiative b→ s transitions [147, 158, 217] have been considered. Here,
we wish to focus on neutral-meson mixing observables, ∆MK , ∆Md, ∆Ms, for K0, B0

d and B0
s mesons,

respectively. They represent the mass difference between the two mass eigenstates of each of these
meson systems. Such observables have been discussed in the R-parity conserving [218, 219] as
well as in an RpV context in the past [146, 157–164]. Yet, diagrams beyond the tree-level and box
contributions as well as sfermion or RpV-induced mixings have been routinely ignored. The purpose
of this chapter consists in addressing these deficiencies and proposing a full one-loop analysis of the
meson-mixing observables in the RpV-MSSM.
Experimental investigations of the neutral meson systems at the modern experiments usually

proceed via an explicit measurement of the time dependence of the flavor oscillations, performed in
a particular collider environment where the dominant production mode of kaons (B-mesons) goes
through ss̄ (bb̄) pair production. The principle of these experiments exploits the difference between
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the flavor eigenstates, determined at the production and decay vertices, and the mass eigenstates,
determining the free evolution of the quantum state between the two vertices. The measurement
hence essentially consists of two ingredients: the decay-time measurement and flavor tagging. Given
the significant boost and the relatively large lifetime of the neutral kaons and B-mesons, there is
a macroscopic distance between the production vertex and the decay vertex, which is sufficiently
large for modern detectors with high-precision silicon tracking systems to discern. Conventionally,
the hemisphere where one valence quark is reconstructed with the decay vertex is known as the
vertex side, and the other is called the opposide side. The energy of the mesons deposits as they
move in the detector chamber and it is hence possible to measure the momentum of the mesons,
which, combined with the distance between the vertices, allows for the determination of the proper
time lived by the mesons. Complementarily, flavor tagging has to be performed on the mesons at
the production and decay vertices, in order to determine the charge of the valence quark (bottom
and strange) and hence whether the oscillation has taken place or not. Depending on the collider
environment and the meson type, different strategies are employed for such purposes. When the
neutral kaon system is under consideration, an absorber is often placed at the position of flavor tagging.
As K0 and K̄0 interact strongly with the nuclei of the material of the absorber, measurement of the
strangeness of the outgoing particles allows for determination of the kaon flavor. As for the B-meson
systems, depending on the collider type, different methods for the flavor tagging are used. In an e+e−

environment, a combination of determining the charge of a lepton produced from a semileptonic B
decay and the charge of a kaon produced in the decay chain b → c → s offers information from
the two different sources. On the other hand, in a hadron collider setup, the flavor tagging is much
more difficult because of the many more complicated background events. Two strategies are applied
there, characterized as ‘same-side’ and ‘opposite-side’ techniques. The same-side tagging technique
[220, 221] extracts charge-correlation information from the additional particles produced during the
fragmentation processes for the B-mesons of interest. The opposite-side algorithms [222, 223] use the
strategies similar to what is applied in an e+e− collider. They look for decay products of the B-meson
from the opposide side.

From the experimental perspective, the measurements of B-meson oscillations by the ALEPH,
DELPHI, L3, OPAL, CDF, D0, BABAR, Belle, ARGUS, CLEO and LHCb collaborations have been
combined by the Heavy-Flavor Averaging Group [224], leading to the averages:

∆M exp
d
= 0.5065 ± 0.0019 ps−1, (2.1a)

∆M exp
s = 17.757 ± 0.021 ps−1. (2.1b)

These values are in excellent agreement with the SM computations [225–227], resulting in tight
constraints on new physics contributions. However, we note that the latest SM evaluation of ∆Ms

[228] is in tension with Eq. (2.1). This largely appears as a consequence of the new lattice evaluation
of the non-perturbative parameter f 2

Bs
BBs

by Ref. [229], with reduced uncertainties. While this
situation interestingly favors effects beyond the SM, we prefer to remain conservative as long as the
new value of f 2

Bs
BBs

is not confirmed by other studies. We thus assume that the uncertainties on the
SM prediction are still of the order of the older computations.

For the K0
− K̄0 system, the Particle Data Group [230] combines the experimental measurements as:

∆M exp
K = (0.5293 ± 0.0009) · 10−2 ps−1. (2.2)
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Despite the precision of this result, constraints from K0
− K̄0 mixing on high-energy contributions are

considerably relaxed by the large theoretical uncertainties due to long-distance effects. Historically,
estimates of the latter have been performed using the techniques of large N QCD— see e.g. Ref. [231]
— while lattice QCD collaborations such as [232] are now considering the possibility of evaluating
these effects in realistic kinematical configurations. Ref. [233] settles for a long-distance contribution
at the level of (20 ± 10)% of the experimental value, and we follow this estimate below. Concerning
short-distance contributions, Ref. [234] performed a NNLO study of the charm-quark loops, resulting
in a SM estimate of ∆MSM, Short Dist.

K = (0.47 ± 0.18) · 10−2 ps−1.
Beyond the mass differences, CP-violating observables are also available in the meson-mixing

system. Although our study is valid for these as well, we will not discuss them in the following, since
we do not wish to pay much attention to the new-physics phases.

The computation of the meson oscillation parameters is usually performed in a low-energy effective
field theory (EFT), where short-distance effects intervene via the Wilson coefficients of dimension 6
flavor-changing (∆F = 2) operators [235]. This procedure ensures a resummation of large logarithms
via the application of the renormalization group equations (RGE) from the matching high-energy
(e.g. electroweak) scale down to the low-energy (meson-mass) scale where hadronic matrix elements
should be computed [236]. In this work, we calculate the contributions to the Wilson coefficients
arising in the RpV-MSSM up to one-loop order. The λ′ couplings of Eq.(1.7) already generate a
tree-level diagram. Going beyond this, at one-loop order, diagrams contributing to the meson mixings
involve both R-parity conserving and R-parity violating couplings. These are furthermore intertwined
via RpV-mixing effects stemming for example from the bilinear term µiHu · Li. Our analysis goes
beyond the approximations that are frequently encountered in the literature. We also find occasional
differences with published results, which we point out accordingly.

2.2 Matching conditions for the ∆F = 2 EFT of the RpV-MSSM

We consider the ∆F = 2 EFT relevant for the mixing of (d̄idj)-(d̄jdi) mesons — di corresponds to the
down-type quark of ith generation (d, s or b). The EFT Lagrangian is written as

LEFT =

5∑
i=1

CiOi +

3∑
i=1

C̃iÕi, (2.3)

where we employ the following basis of dimension 6 operators:

O1 = (d̄jγ
µPLdi)(d̄jγµPLdi), Õ1 = (d̄jγ

µPRdi)(d̄jγµPRdi),

O2 = (d̄jPLdi)(d̄jPLdi), Õ2 = (d̄jPRdi)(d̄jPRdi), (2.4)

O3 = (d̄
a
j PLdb

i )(d̄
b
j PLda

i ), Õ3 = (d̄
a
j PRdb

i )(d̄
b
j PRda

i ),

O4 = (d̄jPLdi)(d̄jPRdi), O5 = (d̄
a
j PLdb

i )(d̄
b
j PRda

i ).

The superscripts (a, b = 1,2,3) refer to the color indices when the sum is not trivially contracted within
the fermion product. We have employed the usual four-component spinor notations above, with PL,R

denoting the left- and right-handed projectors.
The Wilson coefficients Ci, C̃i associated with the operators of Eq.(2.4) in the Lagrangian of the
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EFT — Eq.(2.3) — are obtained at high-energy by matching the di d̄j → dj d̄i amplitudes in the EFT
and in the full RpV-MSSM. We restrict ourselves to the leading-order coefficients (in a QCD/QED
expansion) on the EFT-side. On the side of the RpV-MSSM, we consider only short-distance effects,
i.e. we discard QCD or QED loops. Indeed, the photon and gluon are active fields in the EFT, so that a
proper processing of the corresponding effects would require a NLOmatching procedure. Furthermore,
both tree-level and one-loop contributions are considered in the RpV-MSSM: we stress that this does
not induce a problem in power-counting, as the tree-level contribution is a strict RpV-effect, so that
Rp-conserving (or violating) one-loop amplitudes are not (all) of higher QED order. Numerically
speaking, one possibility is that the tree-level is dominant in the Wilson coefficients, in which case,
the presence of the one-loop corrections does not matter. This case is essentially excluded if we
consider the experimental limits on the meson-oscillation parameters. If, on the contrary, the tree-level
contribution is of comparable (or subdominant) magnitude with the one-loop amplitudes, then the
electroweak power-counting is still satisfied. Yet, one-loop contributions that are aligned with the
tree-level always remain subdominant.
For our calculations in the RpV-MSSM, we employ the Feynman ‘t Hooft gauge [237] and

dimensional regularization [238, 239]. For reasons of consistency with the tools that we employ
for the numerical implementation, DR-renormalization conditions will be applied. However, in the
results that we collect in the Appendix, the counterterms are kept in a generic form, which allows for
other choices of renormalization scheme. We apply the conventions where the sneutrino fields do
not take vacuum expectation values.1 Moreover, the λ′ couplings of Eq.(1.7) are defined in the basis
of down-type mass-states, i.e. a CKM matrix appears when the second index of λ′ connects with an
up-type field, but not when it connects to a down-type field [157]. Mixing among fields are considered
to their full extent, including left/right and flavor squark mixings, charged-Higgs/slepton mixing,
neutral-Higgs/sneutrino mixing, chargino/lepton mixing and neutralino/neutrino mixing. The details
of our notation and the Feynman rules employed can be found in Appendix A.1. As a crosscheck, we
performed the calculation using two different approaches for the fermions: the usual four-component
spinor description and the two-component description [242].

On the side of the EFT, the operators of Eq.(2.4) each contribute four tree-level Feynman diagrams
to the di d̄j → dj d̄i amplitude. Half of these contributions are obtained from the other two by an
exchange of the particles in the initial and final states: as the dimension 6 operators are symmetrical
over the simultaneous exchange of both di’s and both dj’s, we may simply consider two diagrams and
double the amplitude. The two remaining diagrams correspond to an (s↔ t)-channel exchange. We
exploit these considerations to reduce the number of diagrams that we consider on the side of the
RpV-MSSM to only one of the s/t-channels.

The tree-level contribution to the di d̄j → dj d̄i amplitudes is due to the λ′ couplings of Eq.(1.7). It
involves a sneutrino exchange where, however, sneutrino-flavor and sneutrino-Higgs mixing could
occur. The appearance of RpV contributions at tree-level complicates somewhat a full one-loop
analysis: one-loop contributions indeed depend on the renormalization of the di d̄j-sneutrino vertex
(and of its external legs). In principle, one could define this vertex ‘on-shell’, i.e. impose that one-loop
corrections vanish for on-shell di, dj external legs — while the counterterm for the sneutrino field
is set at momentum p2

= M2
K ,B ' 0. In such a case, one could restrict oneself to calculating the

box-diagram contributions to di d̄j → dj d̄i . However, in any other renormalization scheme, self-energy

1 For the general rotation to this basis see Ref. [240]. See also Ref. [241] for a discussion of this in terms of physics at the
unification scale.
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d̄j

di

d̄i

dj

(a) Tree-level Feynman diagram
(Appendix A.2)

d̄j

di

d̄i

dj

(b) Tree-level Feynman diagram
with quark self-energies (Appendix A.3)

d̄j

di

d̄i

dj

(c) Tree-level Feynman diagram
with scalar self-energies (Appendix A.4)

d̄j

di

d̄i

dj

(d) Tree-level Feynman diagram
with vertex corrections (Appendix A.5)

Figure 2.1: The tree level diagram and its one-loop corrections.

and vertex-correction diagrams should be considered. Yet, if the λ′ couplings contributing at tree-level
are small, the impact of the vertex and self-energy corrections is expected to be limited, since these
contributions retain a (at least) linear dependence on the tree-level λ′. These contributions are
symbolically depicted in Fig.2.1.
One-loop diagrams contributing to di d̄j → dj d̄i include SM-like contributions (box diagrams

with internal u, c, t quarks, W and Goldstone bosons), 2-Higgs-doublet-model-like contributions
(box diagrams with internal u, c, t quarks, charged-Higgs bosons and possibly W or Goldstone
bosons), Rp-conserving SUSY contributions (box diagrams with chargino/scalar-up, neutralino/sdown
or gluino/sdown particles in the loop) and RpV-contributions (self-energy and vertex corrections,
box diagrams with sneutrino/quark, slepton/quark, lepton/squarks, neutrino/squark or quark/squark
internal lines). The RpV-driven mixing further intertwines these contributions, so that the distinction
among e.g. the Rp-conserving chargino/scalar-up and RpV lepton/scalar-up boxes becomes largely
superfluous. For all these contributions, with exception of the self-energy diagrams on the external
legs, we neglect the external momentum, as it controls effects of order mdi , j

, which are subdominant
when compared to the momentum-independent pieces of order MW or MSUSY. Yet, when a SM-fermion
f appears in the loop, some pieces that are momentum-independent still come with a suppression of
order m f /MW ,SUSY. We keep such pieces even though they could be discarded in view of the previous
argument.
The diagrams of Fig.2.1 are calculated in Appendix A.2 (tree-level contribution), Appendix A.3

(di-quark self-energies), Appendix A.4 (scalar self-energy) and Appendix A.5 (vertex corrections).
Fig.2.2 lists the various relevant topologies involved in box diagrams. The corresponding contributions
are presented in Appendix A.6. The relevant loop functions are provided in Appendix A.1.3.
While we go beyond the usual assumptions employed to study the ∆F = 2 Wilson coefficients in

the RpV-MSSM, it is possible to compare the outcome of our calculation to partial results available
in the literature. First, in the limit of vanishing RpV-parameters, we recover the well-known results
in the Rp-conserving MSSM, which are summarized in e.g. the appendix of Ref. [218]. Then,
RpV-contributions from the tree-level and box-diagram topologies have been presented in Ref. [158]
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(a)
Vector/fermion/vector/fermion “straight"
box (Appendix A.6.1)

d̄j

di

d̄i

dj

(b) Scalar/fermion/scalar/fermion
“straight" box (Appendix A.6.1)

d̄j

di

d̄i

dj

(c) Scalar/fermion/scalar/fermion “scalar-
cross" box (Appendix A.6.3)

d̄j
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d̄i

dj

(d) Scalar/fermion/scalar/fermion
“fermion-cross" box (Appendix A.6.4)
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(e)
Vector/fermion/scalar/fermion “straight"
box (Appendix A.6.1)

d̄j
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d̄i
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(f)
Vector/fermion/scalar/fermion “cross"
boxes (Appendix A.6.6)

d̄j
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d̄i
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(g)
Vector/fermion/scalar/fermion “fermion-
cross" box (Appendix A.6.4)

Figure 2.2: The topologies of box diagrams that appear in the neutral mesons mixing with the RpV-MSSM.

in the no-mixing approximation. Taking this limit and neglecting further terms that are not considered
by this reference, we checked that our results coincided, with the exception of the coefficient c′λ

′

LR of
Ref. [158] (a piece of the contribution to C5). Transcripted to our notations, the result of Ref. [158]
reads:

c′λ
′

LR = −
1

64π2 λ
′∗
i1kλ

′
j2kλ

′
im1λ

′∗
jm2D2(m

2
Ni
,m2

N j
,m2

dk
,m2

dm
)

−
1

64π2 λ
′∗
i1kλ

′
j2kλ

′
im1λ

′∗
jm2D2(m

2
νi
,m2

νj
,m2

D̄k
R

,m2
D̄m

R
), (2.5)

while we obtain:

c′λ
′

LR =
1

32π2 λ
′∗
i1kλ

′
j2kλ

′
im1λ

′∗
jm2D2(m

2
Ni
,m2

N j
,m2

dk
,m2

dm
)

+
1

32π2 λ
′∗
i1kλ

′
j2kλ

′
im1λ

′∗
jm2D2(m

2
νi
,m2

νj
,m2

Dk
R

,m2
Dm

L
). (2.6)

The mismatch lies in the prefactor and the sfermion chiralities. Another class of λ′ boxes involving an
electroweak charged current has been considered in the no-mixing limit in Ref. [159]. There, we find
agreement with our results. As self-energy and vertex corrections have not been considered before,
the opportunities for comparison are more limited. Still, we checked that the scalar self-energies were
consistent with the results of Ref. [243]. Finally, our results can be controlled in another fashion, using
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the automatically generated results of public tools: we detail this in the following section.

2.3 Numerical implementation and tools

In order to determine limits from the meson oscillation measurements on the parameter space of the
RpV-MSSM, we establish a numerical tool implementing the one-loop contributions to the ∆F = 2
Wilson coefficients and deriving the corresponding theoretical predictions for ∆MK ,d,s. To this end,
we make use of the Mathematica package SARAH [209–214] to produce a customized spectrum
generator based on SPheno [206–208]. SPheno calculates the complete supersymmetric particle
spectrum at the one-loop order and includes all important two-loop corrections to the neutral scalar
masses [244].
The routines performing the calculation of flavor observables are generated through the link to

FlavorKit [215]. FlavorKit makes use of FeynArts/FormCalc [245–247] to calculate the leading
diagrams to quark and lepton flavor violating observables. For the meson mass differences, the
tree-level and box diagrams as well as the double-penguin contributions are included per default.
However, as parameters within SPheno are defined in the DR scheme, it is in principle necessary to
implement the self-energy and vertex corrections. We added the vertex corrections via PreSARAH
[215], which enables the implementation of new operators into FlavorKit within certain limits. As the
scalar self-energies cannot be generated in this fashion, we incorporated these by hand.
The Wilson coefficients computed by FlavorKit and PreSARAH at the electroweak matching scale

are stored in analytical form in the Fortran output of FlavorKit. We compared these expressions with
our results of the previous section; we found explicit agreement in almost all cases — and adapted the
code to match our results in the few cases where it proved necessary.2

After the Wilson coefficients at the electroweak matching scale are computed, further steps are
necessary in order to relate them to the observables ∆MK ,d,s. The FlavorKit output includes a
theoretical prediction for these observables, however the hadronic input parameters are more up-to-date
in the more recently-developed code Flavio [216], which shares an interface with FlavorKit using
the FLHA standards [248]. We hence use Flavio to process the Wilson coefficients as calculated
by FlavorKit. First, the Wilson coefficients must be run to a low-energy scale using the QCD
RGE’s of the EFT [236]. In the case of the K0

− K̄0 system, the impact of the charm loop is sizable
[234]: we upgraded the NLO coefficient ηcc coded within Flavio to the NNLO value 1.87(76)
[234] and ηct = 0.496(47) [249]. For consistency, the charm mass in the loop functions is set to the
MS value mc(mc) ' 1.28 GeV. Then, the hadronic dynamics encoded in the dimension 6 operators
must be interpreted at low-energy in the form of hadronic mixing elements: this step gives rise to
“bag-parameters”, which are evaluated in lattice QCD. Here, Flavio employs the bag parameters of
Ref. [250] for the K0

− K̄0 system and of Ref. [229] for the B0
d − B̄0

d and B0
s − B̄0

s systems. In addition,
the CKM matrix elements within Flavio are derived from the four inputs |Vus |, |Vub |, |Vcb | and γ.
We set these to the fit-results of Ref. [230]: |Vus | ' 0.22506, |Vub | ' 3.485 · 10−3, |Vcb | ' 4.108 · 10−2

and γ ' 1.236. Moreover, we changed the B0
d decay constant to a numerical value of 186 MeV [251].

Finally, we added the observable ∆MK to Flavio (based on pre-included material) and made sure that

2 In rare cases, we identified seemingly minor — but numerically important — differences between our computation and
the FlavorKit code, namely in a few tree-level contributions to C5 (which should be absent), as well as in C̃2,3 and C2,3
for a few one-loop box diagrams. We fixed those appearances in the code as well as the relative sign between tree and
one-loop contributions after correspondence and cross-checking with the FlavorKit authors.
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Chapter 2 R-parity Violation & Meson Oscillation

the predicted SM short-distance prediction was consistent with the theoretical SM estimate given by
Ref. [234].
A quantitative comparison of the predicted ∆MK ,d,s with the experimental results of Eqs.(2.1)

and (2.2) requires an estimate of the theoretical uncertainties. The Wilson coefficients have been
obtained at leading order, which implies higher-order corrections of QCD-size. In the case of the
SM-contributions, large QCD logarithms are resummed in the evolution of the RGEs between the
matching electroweak scale and the low-energy scale. However, for the new-physics contributions,
further logarithms between the new-physics and the electroweak scale could intervene — FlavorKit
computes the new-physics contributions to the Wilson coefficients at the electroweak scale, hence
missing such logarithms. Therefore, the higher-order uncertainty is larger for contributions beyond the

SM and can be loosely estimated as O
(
αS

π log µ2
NP

µ2
EW

)
, where µNP and µEW represent the new-physics

and electroweak scales, respectively. Further sources of uncertainty are the RGE evolution in the EFT
and the evaluation of hadronic matrix elements. For the SM matrix elements, the uncertainties on
ηcc , ηct and ηtt are of order 30% [234], 10% [249] and 1% [252], respectively, leading to a large SM
uncertainty in ∆MK and a smaller one in ∆Md,s. For the K0

− K̄0 system, the bag-parameters are
known with a precision of ∼ 3% in the case of B(1)K and ∼ 7% for the other operators [250]. For the
B0
d − B̄0

d system, the uncertainty is of order 10% [229] — and even 20% for B(3)Bd
. For the B0

s − B̄0
s ,

the bag parameters are known at about 7% accuracy [229] — 14% for B(3)Bs
. Finally, CKM matrix

elements contribute to the uncertainty at the level of a few percent. To summarize, we decided to
estimate the theoretical uncertainties of our predictions for the meson oscillation parameters in the
RpV-MSSM as follows:

• 40% ×
[
|∆MSM, Short. Dist.

K | + |∆MRpV-MSSM, Short. Dist.
K − ∆MSM, Short. Dist.

K |
]
for the short-distance contribu-

tion to∆MK . As explained above, we will employ the estimate of Ref. [233] for the long-distance
contribution: ∆MSM, Long Dist.

K ' (20 ± 10)% × ∆M exp
K .

• 15% × |∆MSM
d,s | + 30% × |∆MRpV-MSSM

d,s
− ∆MSM

d,s | for the evaluation of ∆Md,s.

These uncertainty estimates restore the magnitude of the SM uncertainties [225–227, 234]. Concerning
the new-physics part, we stress that the calculation employs a (QCD/QED) LO matching and misses
running effects between the SUSY and the matching scales, which motivates conservative estimates.
Finally, we note that our calculation of the Wilson coefficients for the ∆F = 2 transition also

provides access to CP-violating observables such as εK . These would grant complementary constraints
on the parameter space, in particular when the RpV-parameters of Eq.(1.7) are considered as complex
degrees of freedom. Obviously, in the presence of e.g. a large RpV tree-level contribution to the
di d̄j → dj d̄i amplitude, it is always possible to choose the phases of the λ′-parameters such that,
amongst others, εK is in agreement with the experimental measurement (within uncertainties that
are dominated by the theoretical evaluation [234]). On the other hand, it is less trivial whether such
an adjustment would be possible within the magnitude of the NP contributions that is compatible
with ∆M’s. For simplicity — keeping in mind that our numerical studies are strictly illustrative in
purpose and do not aim at conveying an exhaustive picture of possible RpV-effects associated to the
meson-oscillation parameters —, we restrict ourselves to real values of the RpV-parameters and do
not consider the CP-violating observables below. In practice, the Rp-conserving contributions beyond
the SM in the scenarios that we consider in the following section are always subleading to RpV effects,
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so that any deviation of the CP-violating observables from the SM predictions (caused by the CKM
phase) is proportional to the RpV parameters and could be compensated via the corresponding RpV
phases. Of course, if one chooses not to exploit this degree of freedom, the scenario with real RpV
parameters itself would be subject to stronger limits when the CP-violating observables are also taken
into account.

2.4 Numerical results

We are now in a position to study the limits on RpV-parameters that are set by the meson-oscillation
parameters. However, it makes limited sense to scan blindly over the RpV-MSSM parameter space
imposing only constraints from the ∆M’s. Comparable analyses of all the relevant observables for
which experimental data is available would be necessary. We will thus restrict ourselves to a discussion
of the bounds over a restricted number of parameters and in a few scenarios. The input parameters
that we mention below correspond to the SPheno input defined at the MZ scale.

We first consider the case where no explicit source of flavor violation appears in the Rp-conserving
parameters. The flavor transition is thus strictly associated to the CKM matrix or to the RpV-effects.
The latter can intervene in several fashions:

• Flavor violation in the λ′ couplings could lead to tree-level contributions to the ∆M’s. The
relevant combinations — in the absence of sneutrino mixing — are of the form λ′f IJλ

′∗
f J I , where

(I, J) are the indices of the valence quarks of the considered meson — i.e. (1,2), (1,3) and (2,3)
for ∆MK , ∆Md and ∆Ms respectively — and f is the flavor of the sneutrino mediator.

• Flavor violation in the λ′ couplings could also intervene at the loop-level only. This happens
when, for instance, one product of the form λ′mnIλ

′∗
mnJ or λ′mInλ

′∗
mJn is non-zero — again, (I, J)

corresponds to the valence quarks of the meson; m and n are internal to the loop.

• Finally, the flavor transition can be conveyed by the λ′′ couplings, in which case it appears only
at the loop level in the ∆M’s. Possible coupling combinations include λ′′m12λ

′′
m23, λ

′′
m12λ

′′
m13 or

λ′′m13λ
′′
m23.

Below, we first consider these three cases separately, before we investigate possible interferences
between tree- and loop-level generated diagrams for several non-zero λ′ couplings. However, we avoid
considering simultaneously non-zero LQD̄ and ŪD̄D̄ couplings: then, discrete symmetries no longer
protect the proton from decay, so that the phenomenology would rapidly come into conflict with
associated bounds. Still, we note that some diagrams contributing to the meson mixing parameters
would combine both types of couplings: these are also provided in the appendix.

Then, flavor transitions can also be mediated by Rp-conserving effects. In this case, flavor violation
could originate either in the CKM matrix, as in the Minimal Flavor Violation scenario [253], or
in new-physics parameters, such as the soft squark bilinear and trilinear terms. We briefly discuss
possible interferences with RpV-contributions.
For simplicity, we consider only the case of real λ′(′) and disregard the bilinear R-parity violating

terms (though they are included in our analytical results in the appendix).
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Scenario MA/TeV µ/TeV tan β mq̃/TeV M1,2/TeV M3/TeV
SM-like 3.5 2 10 2 2 2
2HDM 0.8 2 10 2 2 2
SUSY-RpV(a) 1.2 0.6 10 ' 2 0.5 2
SUSY-RpV(b) 1.2 0.3 10 ' 2&1t̃ ,b̃ 0.5 2

Table 2.1: Input parameters for various scenarios under consideration. With 2&1t̃ ,b̃ we imply mq̃1,2
= 2TeV

while keeping a lighter third generation, mq̃3
= 1TeV.

2.4.1 Bounds on a pair of simultaneously non-zero LQD̄ couplings

Tree Level Contributions

Let us begin with the case where only two LQD̄ couplings are simultaneously non-vanishing and
contribute to the ∆M’s at tree-level. For doing so, we choose a spectrum of the form of an effective
SM at low mass, where we have fixed the squark, higgsino and gaugino masses to 2 TeV, while
varying all the slepton masses simultaneously in the range 0.2 − 2 TeV. The important parameter
values are listed in the first line of Table 2.1. In addition, the stop trilinear coupling At , of order
3 TeV (without endangering (meta)stability of the potential however3), is adjusted so that the lighter
Higgs mass satisfies mh ≈ 125 GeV (within 3 GeV). We also considered several other scenarios, listed
in Table 2.1, e.g. involving lighter charged Higgs or lighter squarks of the third generation, but the
general properties of the constraints remained qualitatively unchanged. In fact, the predicted values
of ∆M’s in the Rp-conserving limit only differ at the percent level (a barely noticeable variation in
view of the uncertainties) between these four scenarios, which can be placed into the perspective
of the systematic suppression of the SUSY Rp-conserving loops due to the high squark masses. As
the Rp-conserving contributions do not depend on the parameters that we vary in this subsection,
the nσ-boundaries (n = 0, · · · ,3) are only shifted by an imperceptible amount in parameter space
when comparing the various scenarios of Table 2.1. Therefore, we only present the results in the
SM-like scenario here. All the input is defined at the electroweak scale, so that we can discuss the
various classes of RpV-contributions to the ∆M’s without the blurring effect due to the propagation of
flavor-violation via RGE’s between a high-energy scale and the electroweak scale.
In Fig. 2.3, we present the limits set by ∆Md, ∆Ms and ∆MK on the tree-level flavor violating

contributions. The plots in the first column are obtained for a positive product λ′ · λ′, while those
in the second column correspond to negative λ′ · λ′. For each observable, the most relevant λ′ · λ′

combination, leading to a tree-level contribution, was selected. The individual sub-figures depict the
extension of the 0,1,2,3σ regions in the plane defined by the corresponding flavor-violating λ′ · λ′

product and the slepton mass. The colors in Fig. 2.3 are chosen such that purple regions are excluded at
three standard deviations or more; red regions are excluded at ≥ 2σ—which is the limit that we apply
later on, in order to decide whether a point in parameter space is excluded or allowed experimentally;
the orange regions correspond to a prediction of the ∆M within 1 and 2σ; finally, the green areas
are consistent with the experimental measurement within 1σ, while the black curves reproduce the

3 The stability of the electroweak minimum was tested for individual points. To this end, we generated a model file allowing
for non-vanishing squark VEVs with SARAH and tested it through the numerical code Vevacious [254], interfaced with
CosmoTransitions [255]. A parameter point is deemed unstable on cosmological time-scales, and therefore ruled out, if
the mean tunnelling time is smaller than 21.7% of the age of the Universe.
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central values exactly. Experimental and theoretical uncertainties are added in quadrature to define
the total uncertainty Utot =

√
U2
theo +U2

exp. In the case of ∆MK , the theoretical uncertainties from
long-distance and short-distance contributions are also combined quadratically. Since experimentally
one cannot tell apart the two mass eigenstates of B0

d/s, we simply consider the absolute value of ∆Md/s

in our evaluation. When we plot ∆Md,s, this feature may result in a doubling of the solutions for the
central value or of the 1σ-allowed regions, such as in the upper-left and middle-left plots of Fig. 2.3.
For K0, instead, the mass ordering, and hence the sign of ∆MK is known.
The limits that we obtain on the λ′ couplings contributing at tree-level are relatively tight. In the

scenarios of Fig.2.3, the 2σ bounds read approximately:
λ′i13λ

′
i31 . 1.6 × 10−6

( mν̃i
1TeV

)2
, −λ′i13λ

′
i31 . 4 × 10−7

( mν̃i
1TeV

)2
,

λ′i23λ
′
i32 . 3.6 × 10−5

( mν̃i
1TeV

)2
, −λ′i23λ

′
i32 . 8 × 10−6

( mν̃i
1TeV

)2
,

|λ′i12λ
′
i21 | . 2.2 × 10−8

( mν̃i
1TeV

)2
,

(2.7)

where we assume that only one lepton flavor, namely i, has non-vanishing RpV-couplings — therefore
the bounds only depend on the mass of the corresponding sneutrino ν̃i . Alternatively, with degenerate
sneutrinos, we could sum over the index i on the left-hand side of Eq. (2.7). Limits on these products
of couplings have been presented in Ref. [190] for a SUSY mass of 100 GeV and in [164] for a mass
of 500 GeV – as explained above, our limits can be confronted to the bounds applying on

∑
i λ
′
i13λ

′
i31,

etc., in these references. In comparison, the bounds that we obtain in Fig.2.3 are somewhat stronger,
at least by a factor ∼ 3. This result should be put mainly in the perspective of the reduction of the
experimental uncertainty in the recent years.

1-Loop Contributions to Flavor Transition

Next, we turn to the case where a pair of LQD̄ couplings mediate the flavor transition only at the
loop-level and we focus on coupling combinations of the form λ′mnIλ

′∗
mnJ or λ′mInλ

′∗
mJn (with I, J the

valence quarks of the meson). In principle we could consider other combinations, such as λ′mnIλ
′∗
m̃nJ ,

λ′mnIλ
′∗
mñJ , λ

′
mInλ

′∗
m̃Jn or λ

′
mInλ

′
mJñ (with m , m̃, n , ñ). However, either the associated contributions

are CKM suppressed or they would require several λ′ · λ′ products to be simultaneously non-zero
or non-degenerate scalar / pseudoscalar sneutrino fields. We thus restrict ourselves to the two types
mentioned above. For these, we note that the limits are independent of the flavor m of the slepton field.
In this context, RpV-effects in ∆M’s are dominated by diagrams involving the comparatively light
(charged or neutral) sleptons. We thus concentrate on these below. We can distinguish two types of
contributions:

• If one of the pair of non-vanishing LQD̄ couplings is one of those involved for the tree-level
exchange diagram — i.e. if it contains the two flavor indices of the valence quarks of the meson
— we find that quark self-energy corrections on the tree-level diagram can be comparable to or
even dominant over box contributions.

• If neither of the non-vanishing LQD̄ couplings participates in the tree-level diagrams, box
diagrams are the main contributions.
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Figure 2.3: Constraints from the ∆M’s on scenarios with RpV-mediated flavor violation contributing at tree-level,
as a function of the sneutrino mass. The plots on the left correspond to the upper limit on positive λ′ · λ′; those
on the right to lower limits on negative λ′ · λ′ combinations. The green, orange, red and purple colors represent
regions within [0,1σ], [1σ,2σ], [2σ,3σ] and > 3σ bounds, respectively. The experimental central value is
exactly recovered on the black lines. For these plots, the parameter set of the scenario SM-like of Table 2.1 has
been employed.
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Figure 2.4: Constraints from the ∆M’s on scenarios with RpV-mediated flavor violation of LQD̄-type, where
the RpV-violating contribution is dominated by a box diagram. The limits are plotted against the slepton mass
and follow the same color-code as Fig.2.3. For these plots, the parameter set of the scenario SUSY-RpV(a) of
Table 2.1 has been employed.
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Chapter 2 R-parity Violation & Meson Oscillation

This difference impacts both the magnitude of the resulting bounds and their dependence on the
slepton mass, as we shall see below.
The spectrum that we focus on in this subsection (and later on) is described in the third row of

Table 2.1. The choice of the scenario SUSY-RpV(a) instead of SM-like is motivated by the wish not
to systematically suppress the loop diagrams associated with charginos/neutralinos. We will also
comment on the mild differences that we obtain in the other scenarios of Table 2.1.
In Fig.2.4, we consider non-vanishing λ′121λ

′
123, λ

′
112λ

′
113 and, finally, λ

′
113λ

′
123. In these cases, the

box diagrams dominate over the fermionic self-energy corrections. For each scenario, the limits from
the ∆M’s essentially originate in one of the three observables ∆Md, ∆Ms or ∆MK . The corresponding
limits approximately read: 

|λ′i21λ
′
i23 | . 3.4 × 10−2

( m̃
i

1TeV

)
,

|λ′i12λ
′
i13 | . 1.6 × 10−1

( m̃
i

1TeV

)
,

|λ′i13λ
′
i23 | . 6.3 × 10−2

( m̃
i

1TeV

)
,

(2.8)

where m̃
i
denotes the mass of the degenerate sneutrinos and charged sleptons. Here, we note that the

mass dependence of the form (λ′ · λ′)2 < c ·m2
˜̀ differs from that appearing when the RpV-contribution

intervenes at tree-level. It is characteristic of the leading RpV-diagrams in the considered set-up,
corresponding to the box formed out of two charged sleptons and two up-type quarks in the internal
lines and to the box consisting of two sneutrinos and two down-type quarks: these diagrams roughly
scale as (λ′ · λ′)2/m2

˜̀. As a consequence, the limits for positive and negative λ′ · λ′ products are
comparable. In addition, the bounds on λ′ · λ′ now scale about linearly with the sparticle mass.

Expectedly, the limits are much weaker in these box-dominated scenarios than in the case where the
flavor transition appears at tree-level. Refs. [159, 160, 164] presented limits on the corresponding
coupling-combinations for a sfermion mass of 100 or 500 GeV. The bounds that we derive are of the
same order. Similarly to the case where the RpV-contribution to the flavor transition is mediated at
tree-level, the investigation of the various scenarios of Table 2.1 results in very little variations.

Finally, we turn to the case where one of the non-vanishing λ′ involves both flavors of the valence
quarks of the K0, B0

d,s meson while the other is flavor-diagonal (and contains only one of the valence
flavors). Then, the dominant diagrams are of the form of Fig. 2.1(b): one ∆F = 1 transition is mediated
by the non-vanishing λ′ with both valence-flavor indices, while the second ∆F = 1 transition appears
at the loop level — typically through a SM loop (W /up-type quark), i.e. in association with the CKM
matrix. We stress that such contributions were dismissed in previous analyses and are considered here
for the first time.

Corresponding scenarios are displayed in Fig.2.5, where ∆MBd
, ∆MBs

and ∆MK are plotted against
λ′131 · λ

′
133, λ

′
132 · λ

′
133 and λ′121 · λ

′
122, respectively. The bounds have a comparable scaling to that

appearing in the scenario with tree-level sneutrino exchange, but the constraints are far weaker. At 2σ:
λ′i31λ

′
i33 . 6 × 10−4

( mν̃i
1TeV

)2
, −λ′i31λ

′
i33 . 2.7 × 10−3

( mν̃i
1TeV

)2
,

λ′i32λ
′
i33 . 1.4 × 10−2

( mν̃i
1TeV

)2
, −λ′i32λ

′
i33 . 3 × 10−3

( mν̃i
1TeV

)2
,

|λ′i21λ
′
i22 | . 1.5 × 10−3

( mν̃i
1TeV

)2
,

(2.9)

where −λ′i31λ
′
i33,−λ

′
i32λ

′
i33 > 0. Due to the inclusion of the missing and obviously relevant self-energy
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∆m
B0
d

∆m
B0
s

∆m
K0

|λ′i jk · λ
′
imn | 2σ bound |λ′i jk · λ

′
imn | 2σ bound |λ′i jk · λ

′
imn | 2σ bound

(i31)(i13)(T) 1.6 × 10−6
(i32)(i23)(T) 3.6 × 10−5

(i12)(i21)(T) 2.2 × 10−8

(i11)(i13)(S) 1.8 × 10−3
(i22)(i23)(S) 9.5 × 10−3

(i12)(i11)(S) 1.5 × 10−3

(i21)(i13)(S) [2.8 × 10−4
] (i12)(i23)(S) [4.2 × 10−2

] (i22)(i21)(S) 1.5 × 10−3

(i31)(i23)(S) 0.15 (i32)(i13)(S) 0.33 (i12)(i31)(S) 9 × 10−6

(i31)(i33)(S) 2.7 × 10−3
(i32)(i33)(S) 1.4 × 10−2

(i32)(i21)(S) 4.2 × 10−5

(i21)(i23)(B) 3.4 × 10−2
(i12)(i13)(B) 0.16 (i32)(i11)(B) 0.64

(i21)(i33)(B) 0.64 (i22)(i33)(B) 0.74 (i22)(i31)(B) 0.24
(i11)(i33)(B) 0.64 (i12)(i33)(B) 4 (i22)(i11)(B) 4
(i11)(i23)(B) N/A (i22)(i13)(B) N/A (i32)(i31)(B) 0.01
(i12)(i31)(S) [0.012] (i23)(i31)(S) N/A (i21)(i11)(S) 5 × 10−3

(i13)(i32)(S) [0.73] (i22)(i32)(S) 0.23 (i22)(i12)(S) 5.8 × 10−3

(i13)(i33)(B) 0.05 (i23)(i33)(S) 0.24 (i23)(i12)(S) 2.2 × 10−2

(i11)(i31)(B) 0.07 (i21)(i32)(S) [2.25] (i21)(i13)(S) 2.3 × 10−4

(i12)(i32)(B) 0.05 (i21)(i31)(B) 0.21 (i23)(i13)(B) 6.3 × 10−2

Table 2.2: Compilation of the latest bounds on relevant couplings of LQD̄ operators, coming from the considered
meson oscillation observables. These limits were established with the spectrum defined in the row SUSY-RpV(a)
of Table 2.1, with slepton and sneutrino masses of 1 TeV. The precise 2σ boundary obviously depends on the
sign of the non-vanishing λ′ · λ′ product: we always apply the most conservative (weakest) limit. In the list of
couplings, the comment “(T)/(S)/(B)” indicates that the coupling product is dominated by a tree-level/quark
self-energy/box contribution. “N/A” means that we did not identify upper-limits on the couplings below 4π
(a rough limit from perturbativity considerations). Above the horizontal line, the non-vanishing coupling
combinations select right-handed external quarks. Below this line, the external quarks are left-handed. The
scaling with the sneutrino/slepton mass is roughly quadratic for all λ′ · λ′ products that contain both valence
flavors in (at least) one of the non-vanishing λ′, linear otherwise: see more precise explanation in the main body
of the text. Some combinations contribute to two observables, such as λ′i13λ

′
i32, relevant for both ∆Md and ∆Ms .

In such a case, the square brackets identify the weaker limit.
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Figure 2.5: Constraints from the ∆M’s on scenarios with RpV-mediated flavor violation of LQD̄-type, where
the dominant RpV-diagram involves a one-loop quark self-energy. The limits are plotted against the sneutrino
mass and follow the color code of Fig. 2.3. For these plots, the parameter set of the scenario SUSY-RpV(a) of
Table 2.1 has been employed.
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2.4 Numerical results

diagrams, the bounds that we report are accordingly tighter than in the literature[159, 160, 164]. If
we compare the various scenarios of Table 2.1, we again observe little change at the qualitative level.
However, the exact position of the nσ (n = 0, · · · ,3) boundaries is shifted by a numerical prefactor
of order unity, homogeneous in the whole range of scanned parameters of Fig. 2.5. This prefactor
is characteristic of the magnitude Rp-conserving loop entering the off-diagonal quark self-energy.
For example, the upper-bounds on λ′131λ

′
133 are stronger by a factor ∼ 2 in the SM-like scenario, as

compared to the scenario SUSY-RPV(a) (shown in the plots), by a factor ∼ 1.3 in the scenario 2HDM
and by a factor ∼ 1.6 in the scenario SUSY-RPV(b). Other numbers (of the same order) intervene for
the two other considered sets of λ′ · λ′.
In Table 2.2, we compile the 2σ bounds on λ′ · λ′ products that we derive for 1TeV sleptons

in the scenario SUSY-RpV(a) of Table 2.1 (the limits depend only weakly on the chosen scenario).
In this list, the pairs λ′ · λ′ are taken non-zero only one at a time and, in particular, for a unique
(s)lepton flavor i. As explained above, the scaling with the slepton/sneutrino mass depends on the
choice of non-vanishing λ′: essentially quadratic if at least one of the non-vanishing λ′ contains both
valence-flavors of the decaying meson, linear otherwise. One of the ∆M’s is usually more sensitive to
a specific λ′ · λ′ product than the other two. etc.

2.4.2 Bounds on a pair of simultaneously non-zero Ū D̄D̄ couplings

We proceed with our analysis and now consider baryonic RpV, i.e. non-zero ŪD̄D̄ couplings. The
corresponding RpV-effects appear only at the radiative level and are dominated by box diagrams.
Contrarily to existing analyses [158], we always consider heavy gluinos (as indicated by the current
status of LHC searches), so that the associated diagrams generally remain subdominant. In this setup,
three classes of diagrams compete: (1) boxes including two squarks and two quarks in internal lines,
which scale like (λ′′ · λ′′)2, (2) boxes including two quarks, one squark and a W-boson, which scale
like λ′′ · λ′′ but involve a CKM-suppression and a quark-chirality flip, and (3) similarly boxes with
two squarks, one quark and a chargino, which scale like λ′′ · λ′′. The matter of the chirality flip can
be easily understood as only right-handed quarks couple via λ′′ but only left-handed quarks couple
to a W . Therefore, such diagrams with an internal W line are mostly relevant when the internal
quark line involves a top-quark. As to the boxes with an internal chargino line, we also find that such
contributions are mainly relevant for an internal stop line: indeed, the higgsino contribution scales
with the Yukawa coupling, hence is suppressed for squarks of first or second generation. In addition,
the gaugino contribution relies on left-right squark mixing, which we keep negligible for squarks of
the first and second generation — making the assumption that the trilinear soft terms are proportional
to the Yukawa couplings [77].
From now on, all the parameters are set to the values of the scenario SUSY-RpV(a) of Table 2.1,

except for those that are explicitly scanned over (e.g. the squark masses). In Fig. 2.6, we present
the 1, 2 and 3σ limits on coupling combinations allowing for internal (s)top lines. The relevant
right-handed squarks are assumed to be mass-degenerate. The regime with small λ′′ couplings is
dominated by the box diagrams involving W bosons and top quarks in the internal lines. We find that,
for low mass values, this contribution scales with the squark mass in an intermediate fashion between
linear and quadratic, because of the finite top mass effects. These effects largely vanish for squark
masses above O(1 TeV) and we then recover the scaling with λ′′ ·λ′′

m2
q̃

. The supersymmetrized version of

the W boxes, i.e. boxes with internal charginos, are also contributing with a scaling of λ
′′
·λ′′

m2
q̃

. However
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Figure 2.6: Limits on Ū3D̄i D̄j couplings from the meson oscillation parameters. Internal (s)top lines are allowed
by such couplings. The color code is similar to that of the previous plots. For these plots, the parameter set of
the scenario SUSY-RpV(a) of Table 2.1 has been employed except for the squark masses that are scanned over.
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Figure 2.7: Limits on Ū1D̄i D̄j couplings from the meson oscillation parameters. In this case, amplitudes with
internal top lines vanish. The color code is similar to that of the previous plots. For these plots, the parameter
set of the scenario SUSY-RpV(a) of Table 2.1 has been employed except for the squark masses that are scanned
over.
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their impact w.r.t. the W boxes is always reduced. At large values of the couplings and for light squarks,
the purely ŪD̄D̄-mediated diagrams appear to be the most relevant, scaling with (λ

′′
·λ′′)2

m2
q̃

— in analogy

to the slepton box-diagrams with non-vanishing LQD̄ coupling — so that the bounds on λ′′ · λ′′ show
a roughly linear dependence with the squark mass. Then, for both large |λ′′ · λ′′ | and heavier quarks,
the W-mediated diagrams and these purely ŪD̄D̄ boxes can be of comparable magnitude, hence lead
to interference structures. This interplay between various contributions brings about a non-trivial
mass dependence of the bounds on the λ′′ couplings, with both constructive as well as destructive
effects between the individual amplitudes. The plots for negative λ′′ · λ′′ couplings perfectly illustrate
this fact, in particular in the case of ∆Ms. Beyond this interference regime, at sufficiently large squark
masses, the contribution from the UDD box with an internal W-line eventually supersedes the pure
UDD amplitude.

Since the bounds on the individual coupling combinations do not scale with a simple power law in
mq̃R

, we refrain from showing approximate expressions as we did in the scenarios with flavor-violation
of LQD̄-type.

In Fig. 2.7, by contrast, the choice of non-vanishing λ′′ couplings does not allow for internal (s)top
lines. Thus the RpV-diagrams with mixed W /squark or chargino/quark internal lines are suppressed,
and the scaling of the limits from meson-oscillation parameters is closer to linear. In addition, the
2σ bounds are somewhat milder than in the previous case and roughly symmetrical for positive and
negative λ′′ · λ′′ products. Thus, in this case, we extract the approximate bounds on Ū1D̄i D̄j coupling
pairs: 

|λ′′112λ
′′
123 | . 2.8 × 10−2

(ms̃R , ũR

1TeV

)
,

|λ′′112λ
′′
113 | . 1.2 × 10−1

(md̃R , ũR

1TeV

)
,

|λ′′113λ
′′
123 | . 3.6 × 10−2

(mb̃R , ũR

1TeV

)
,

(2.10)

Given that the scaling of the bounds on λ′′ · λ′′ pairs decidedly depends on the specific choice of
couplings, we refrain from showing a compilation table as Table 2.2 for the LQD̄ couplings, since it
would only be representative of a specific SUSY spectrum.

2.4.3 Competition among LQD̄-driven contributions

Bounds on individual RpV-coupling products may be misleading, in the sense that several RpV-effects
could cancel one another. In fact, the decomposition along the line of the low-energy flavors provides
likely-undue attention to these specific directions of RpV, while the latter have no deep specificity from
the high-energy perspective. In particular, RGE’s are expected to mix the various flavor-directions of
non-vanishing RpV-couplings, while the boundary condition at, say, the GUT scale, has no particular
reason for alignment with the low-energy flavor directions [241, 256]. Obviously however, the relevant
directions in flavor space are highly model-dependent and we have no particular suggestion to make
from the low-energy perspective of this work. Instead, we simply wish to illustrate the possibility
of allowed directions with large RpV-couplings. To this end, we allow for two non-vanishing λ′ · λ′

coupling products and investigate the limits originating in the ∆M measurements.
If we consider Figs. 2.3 and 2.5, the tree-level diagram for λ′i31 · λ

′
i13 = O(10−6

) and the RpV-box
for λ′i31 · λ

′
i33 = O(10−4

)— implying a hierarchy λ′i13/λ
′
i33 = O(10−2

) – naively contribute to ∆Md by
amplitudes of comparable magnitude. Whether these contributions can interfere destructively clearly
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Figure 2.8: Limits from the meson-oscillation parameters on two RpV-directions of LQD̄-type. The parameters
are set to the values in the third row of Table 2.1, with slepton/sneutrinos of 1TeV. As in the previous plots, the
color code reflects the level of tension between our predictions and the experimental measurements.
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depends on the form of the amplitudes but also on the sign of the non-vanishing couplings. In Fig. 2.8,
we complete the results from Figs. 2.3 and 2.5 by now allowing for three non-vanishing couplings. In
practice, we set the slepton/sneutrino mass to 1TeV and keep one LQD̄ coupling to a constant value:
λ′131 = 0.01, λ′132 = 0.1, or λ′121 = 0.1. Then, we vary two independent λ′, our choice depending
again on the valence quarks of the considered ∆M. However, we stress that this procedure in fact
opens three non-trivial λ′ · λ′ directions, so that the game is somewhat more complex than just playing
one contribution versus the other.

As expected, in the plots of Fig. 2.8, the interplay of various RpV-contributions opens funnel-shaped
allowed regions for comparatively large values of the LQD̄ couplings, highlighting the possibility
of destructive interferences. We note that, considering that the tree-level and radiative contributions
do not necessarily have the same scaling with respect to the slepton/sneutrino mass, the ‘allowed
angle’ depends on the sfermion spectrum. Of course, the choice of parameters falling within the
allowed funnels appears to be fine-tuned from the perspective of this work, but might be justified from
a high-energy approach. On the other hand, constructive interferences lead to the ‘rounded edges’
observed in some of the plots.
As mentioned earlier, we will not consider the interplay of LQD̄- and ŪD̄D̄-couplings, since

such scenarios are of limited relevance without a quantitative analysis of the proton decay rate.
On the other hand, our discussion in this subsection points to the relevance of considering a full
evaluation of the ∆M’s (and other observables), when considering RpV-scenarios beyond the simplistic
one-coupling-dominance approach.

2.4.4 Competition between flavor violation in the R-parity conserving and R-parity
violating sectors

RpV-couplings are not the only new sources of flavor violation in SUSY-inspired models. In fact,
the large number of possible flavor-violating parameters of the Rp-conserving soft-SUSY-breaking
Lagrangian is often perceived as a weakness for this class of model, known as the SUSY Flavor
Problem. In particular, the soft quadratic mass-terms in the squark sector m2

Q,Ū ,D̄ and the trilinear
soft terms AU ,D are matrices in flavor-space that are not necessarily aligned with the flavor-structure
of the Yukawa/CKM matrices. In this case, flavor-violation is generated in L − L, R − R (for m̃2) or
L − R (for A) squark mixing. Correspondingly, flavor-changing-neutral gluinos or neutralinos, as
well as new flavor-changing chargino couplings, could contribute to ∆MK ,d,s in e.g. diagrams of the
form of Fig. 2.2, (b–d) — see e.g. Ref. [160]. Here, we wish to illustrate the potential interplay of
Rp-conserving and RpV flavor violation. In particular, we note that the presence of flavor-violating
effects in RpV-couplings would likely mediate flavor-violation in the squark sector via the RGE’s
[256].

We will focus on Rp-conserving flavor-violation in the quadratic squark mass parameters m2
i j , where

we assume the diagonal terms to be degenerate for squarks of left-handed and right-handed type (for
simplicity): m2

D̄
= m2

Q ≡ m2. Flavor-violation in the trilinear soft terms would lead to comparable
effects at the level of the meson-oscillation parameters. However, large A-terms easily produce new
(e.g. color- and charge-violating) minima in the scalar potential, that lead to instability of the usual
vacuum, with possibly short-time tunnelling. In fact, we find that such stability considerations typically
constrain the A-terms much more efficiently than the ∆M’s.
In Fig. 2.9, we allow for non-vanishing m2

13, m2
23 or m2

12, simultaneously with non-zero λ′113λ
′
131,

λ′123λ
′
132 and λ′112λ

′
121. The former induce contributions to ∆Md, ∆Ms and ∆MK through Rp-
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Figure 2.9: Constraints from the meson-oscillation parameters in the presence of both flavor-violating LQD̄-
couplings and (Rp-conserving) flavor-violating mixing in the squark sector. The spectrum is set to the scenario
SUSY-RpV(a) of Table 2.1, with the slepton/sneutrino mass at 1.5TeV. The flavor-violating quadratic soft mass
parameters in the squark sector, m2

i j , are chosen to be degenerate for left-handed and right-handed squarks. The
color code follows the same conventions as before.
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Figure 2.10: Constraints from the meson-oscillation parameters in the presence of both flavor-violating ŪD̄D̄-
couplings and flavor-violating squark mixing. The parameters are set to the scenario SUSY-RpV(a) from
Table 2.1. The color code is unchanged compared to previous plots.
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conserving squark mixing, while the latter provide RpV tree-level contributions to the same ∆M’s.
The parameters are set to the scenario SUSY-RpV(a) of Table 2.1, with the slepton/sneutrino mass
at 1.5TeV. In analogy with the results of section 2.4.3, we observe that Rp-conserving and RpV
contributions may interfere destructively or constructively. Thus, allowed funnels with comparatively
large values of the RpV-couplings open. In particular, we note that a tiny m2

12 is sufficient for relaxing
limits from ∆MK , while the typical values of m2

13 and m2
23 affecting ∆Md and ∆Ms are significantly

larger.
A similar analysis can be performed with RpV of the ŪD̄D̄-type. This is shown in Fig. 2.10.
In this subsection, we have stressed that the limits originating from meson-oscillation parameters are

quite sensitive to the possible existence of flavor-violating sources beyond that of the RpV-couplings.
A full analysis of these effects thus appears necessary when testing a complete model.

2.5 Conclusions

In this chapter, we have analyzed the meson-mixing parameters ∆Md,s and ∆MK at the full one-loop
order in the RpV-MSSM. In particular, we have completed earlier calculations in the literature, in
which only tree-level and box diagrams were usually considered. We also performed a numerical study
based on our results and employing recent experimental and lattice data. The tighter limits that we
derive — as compared to older works — illustrate the improvement of the precision in experimental
measurements, but also the relevance of some of the new contributions that we consider. In particular,
the interplay of SM-like and LQD̄-type flavor-violation modifies the scaling of the bounds with the
sneutrino/slepton mass for a whole class of couplings. Finally, we have emphasized the possibility of
interference effects amongst new sources of flavor violation, either exclusively in the RpV-sector or
in association with Rp-conserving squark mixing. While the appearance of allowed directions with
comparatively large couplings largely intervenes as a fine-tuned curiosity in the low-energy perspective
of our work, it also stresses the relevance of a detailed analysis of the observables when considering a
complete high-energy model, since accidental relations among parameters could affect the picture of
low-energy limits.
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CHAPTER 3

R-parity Violation & Displaced Vertex Signatures

There has recently been an increased interest in neutral long-lived particles (LLPs) which arise
naturally in various models of dark matter or baryogenesis, for example1. In the past few years
several experimental proposals with improved sensitivities to LLPs have been widely discussed. For
instance, there are the planned fixed target experiment SHiP [258], the near detector of the future DUNE
experiment [259], or also NA62 [260]. However, note that the primary goal of NA62 is to measure
precisely Br(K+ → π+νν̄), while the main task of the near detector of DUNE is just monitoring the
neutrino flux for the far detector [259]. Surprisingly, even though not designed for this purpose, the
LHC detectors ATLAS and CMS, have a relevant sensitivity to LLPs [202, 261–263]. Nevertheless,
there are significant gaps in sensitivity to these models at the LHC.

It is expected that the LHC will deliver up to L = 3000/fb of luminosity over the next (15-20) years
[264]. Perhaps unsurprisingly, a number of new proposals to search for LLPs have appeared, all based
on the idea to exploit LHC’s large luminosity: MATHUSLA [198], CODEX-b [199], FASER [200] and
AL3X [201], which would be located at various positions with respect to the interaction points (IPs) of
ATLAS, CMS, LHC-b or ALICE, using the LHC events. The physics potential of these experiments has
so far not been fully discussed in the literature and it is the aim of the current chapter to estimate,
and compare to each other and previous experiments, the sensitivity of these proposals for fermionic
LLPs in the context of a class of BSM models. The discussion in this chapter collects the content of
Refs. [203–205]
MATHUSLA [198] is a proposed very massive detector, possibly to be located above ground on top of

the ATLAS/CMS experiment. The sizeable distance of MATHUSLA from the IP of the LHC beams implies
that MATHUSLA is required to have a huge detection volume in order to possess a large coverage of polar
angle. CODEX-b [199] is a proposal that takes advantage of a relatively large shielded empty space near
the location of the LHCb experiment. Being closer to the IP, CODEX-b proposed size is much smaller
than that of MATHUSLA. Since it is to be installed at LHCb instead of ATLAS or CMS, CODEX-b will have
an expected luminosity of 300/fb, one order of magnitude smaller than the other two experiments,
if LHCb runs until 2035 with upgrades to a Phases-II [265]. The authors of FASER [200] propose to
construct a very modestly sized detector, situated in the very forward direction relative to either the
ATLAS or the CMS IP. Recently a further experiment has been proposed, AL3X [201], which would be
located at the ALICE site at the LHC. It differs from MATHUSLA, CODEX-b and FASER in that the center
of the detector is located only 11.25m from the ALICE IP, and furthermore the detector would have a

1 For reviews and further models see Refs. [257, 258].

37



Chapter 3 R-parity Violation & Displaced Vertex Signatures

magnet. Due to the proximity to the IP the experiment would have a significantly higher geometric
acceptance, even for a comparatively small detector, than the other three proposed new experiments.
Such a small detector could be equipped with dense tracking instrumentation, which would be further
improved by the magnetic field. We will summarize the experimental parameters of the different
detectors in Sec. 3.1.
The CODEX-b physics proposal [199] examined two benchmark models, i.e. Higgs decay to dark

photons, and B-meson decays via a Higgs mixing portal. Several FASER papers have respectively
studied dark photons produced through light meson decays and photon bremsstrahlung [200], dark
Higgs bosons produced through B- and K-mesons [266], heavy neutral leptons [267] and axion-like
particles [268]. There are also studies investigating MATHUSLA with dark Higgs [269], exotic Higgs
decays to LLPs [198, 270], and the Dynamical Dark Matter framework [271]. In a MATHUSLA white
paper [272], the theory community presented detailed studies of MATHUSLA’s potential of detecting
LLPs in many different models. Ref. [273] investigated inelastic Dark Matter models at various
existing and proposed LHC experiments including CODEX-b, FASER and MATHUSLA.
LLPs can be scalars, fermions or vectors. Neutral fermionic LLPs are also often called heavy

neutral fermions (HNFs) in the literature. In this chapter we shall focus on two examples: (a) the
lightest neutralino in SUSY, which can decay via RpV interactions. Somewhat surprisingly a light
neutralino with a mass between 0.5 and 5 GeV, which we shall consider, is still consistent with all
observations [274–277].2 (b) heavy neutral leptons (HNLs). These are often also called sterile
neutrinos in the literature. However we prefer the term HNL, because within the experimental neutrino
oscillation community sterile neutrinos are usually identified with neutrinos with masses of order
O(eV), whereas we shall focus on masses between 0.1 and 10 GeV. For the neutralinos we consider the
single production from D- and B-mesons decays via a RpV coupling, and the direct pair production
from Z-boson decays via the Higgsino component. For the HNLs we simulate the production from
D-and B-mesons via the mixing of HNLs with νe,µ.
Before closing this introduction, we mention that there exist already many searches for HNLs (and

other HNFs). For a review on constraints for sterile neutrino see, for example, Ref. [278]. Also the
main LHC experiments, ATLAS and CMS, have searched for HNFs. ATLAS [279] published results
of a search based on the final state ll j j, giving only weak upper limits on the mixing of the HNLs
V2
αN ' (10−2

− 10−1
) (with α = e, µ) for mN ∼ (100 − 500) GeV. CMS searched for HNLs in trilepton

final states and very recently published limits as low as V2
αN ' 10−5 in the mass range (10 − 100) GeV

[280]. With these results [280], CMS now gives limits competitive with those derived by the DELPHI
experiment at LEP [281].
Note that for small mixing angles V2

αN below, say V2
αN ∼ 10−7, for mN ∼ O(10) GeV, the decay

lengths of HNLs become large enough to be detected experimentally and ATLAS/CMS could search for
HNLs using the “displaced vertex” signal [282]. However, current displaced vertex search strategies,
as used by CMS [283] for example, are not very well suited for light, say mN

<
∼ 100 GeV, HNLs [284].

We also mention in passing that our other HNF candidate, the neutralino, has been studied as an
LLP candidate before. RpV-SUSY and neutralinos as LLPs are mentioned in the SHiP proposal [258]
and the SHiP sensitivity for neutralinos has been studied in more details in [202, 285].

The outline of this chapter is as follows. In Sec. 3.1 we discuss the set-up of the proposed detectors
and define the parameters for our analysis. We furthermore describe the details of our simulation of
the long-lived HNFs. In Sec. 3.2 we present our results for the sensitivity of AL3X, CODEX-b, FASER

2 In fact even a massless neutralino is consistent with all observations [277].
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and MATHUSLA to long-lived light neutralinos. We consider separately the pair-production via Z0

decays and the single production via rare heavy meson decays. In Sec. 3.3 we show our results for the
sensitivity of the proposed detectors to long-lived HNLs. In Sec. 3.4 we summarize and reach our
conclusions.

3.1 Simulation and Detectors

In this section we outline our simulation procedure and introduce the setup of the proposed detectors
AL3X, CODEX-b, FASER, and MATHUSLA. Throughout this work we assume zero background events
and 100% detector efficiency. See the relevant discussions about this matter in Refs. [198–201].

3.1.1 Simulation Procedure

In order to obtain the expected number of detectable decay events, we estimate the total number, NM ,
of mother particles M produced at the LHC from existing experimental results. In our studies M can
be a D- or a B-meson, or a Z-boson. We then calculate the branching ratio of the various Ms into the
LLP(s), and compute the average decay probability of these LLPs inside the decay chamber of the
detector. Since for BR(Z → χ̃0

1 χ̃
0
1 ) we have only an experimental upper limit, we will assume two

different values of BR(Z → χ̃0
1 χ̃

0
1 ) in our numerical study for illustration.

Since the rare decays of charm and bottom mesons into HNLs lead to the strongest sensitivity reach
in HNLmass mN and mixing squared |VαN |

2
(α = e, µ), defined in Sec. 3.3, we focus on these channels,

discarding the complementary contributions from W-, Z- and Higgs bosons.3 Similarly, in the case
when an RpV L ·QD̄ coupling induces single production of a neutralino, we consider only rare decays
of D- and B-mesons. From results published by the LHCb collaboration [286, 287], we estimate the
number of produced mesons over a hemisphere for an integrated luminosity of L = 100/fb:

ND± = 5.27 × 1014, ND±s
= 1.70 × 1014, ND0

= 1.00 × 1015,

NB± = 2.43 × 1013, N
B0 = 2.43 × 1013, N

B0
s
= 5.48 × 1012,

NB±c
= 5.54 × 1010. (3.1)

Besides the LLPs produced from rare meson decays, we furthermore include the case of light
neutralinos pair-produced from Z-boson decays. Experimentally viable light neutralinos must be
dominantly bino-like [274, 275], with only a small higgsino component, which couples to the Z-boson.
However, given the large cross section for Z-boson production at the LHC, we may still obtain good
sensitivity reach in L · QD̄ couplings up to a neutralino mass roughly half of the Z-boson mass. The
ATLAS collaboration published the experimentally measured cross section of Z → `+`− (` = e, µ) in
pp collisions at

√
s = 13 TeV [288]. With the BR(Z → `+`−) given by the PDG [289], we estimate

the number of Z-bosons produced to be

NZ = 2.94 × 109, (3.2)

over a hemisphere for L = 100/fb.
3 The latter were, however, taken into account in Ref. [204].
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We write the total number of LLPs produced, Nprod
LLP , as

Nprod
LLP =

∑
M

NM · BR(M → LLP(s) + X), (3.3)

where M can be either a D-meson, a B-meson, or a Z-boson. To determine the average decay
probability of the LLPs inside the “detectable region”(“d.r.”), 〈P[LLP in d.r.]〉, we perform a Monte
Carlo (MC) simulation with Pythia 8.205 [290, 291]. We implement the following formula:

〈P[LLP in d.r.]〉 =
1

NMC
LLP

NMC
LLP∑
i=1

P[(LLP)i in d.r.] , (3.4)

where NMC
LLP is the number of LLPs generated in the MC simulation sample. We generate the

D- and B-mesons by making use of the matrix element calculators HardQCD:hardccbar and
HardQCD:hardbbbar, respectively, of Pythia. Note that the differential cross section of producing
heavy flavor mesons in the very forward direction, where FASER sits, is not validated in Pythia. In
order to solve this problem, we reweigh the Pythia meson production cross section at different ranges
of transverse momentum and pseudorapidity by the corresponding more reliable numbers calculated
by using FONLL [292–295]. In order to extract the kinematics of pair-produced neutralinos from
Z-boson decays, we resort to the “New-Gauge-Boson Processes" provided by Pythia to generate pure
Z ′-bosons with the same mass as the SM Z-boson and let it decay to a pair of new fermion particles.
Finally, we calculate the number of observed decays of the LLPs in the detector,

Nobs
LLP = Nprod

LLP · 〈P[LLP in d.r.]〉 · BR(LLP→ visible only), (3.5)

where we also include BR(LLP→ visible only), the branching ratio of the LLP into only visible states
such that the event may be reconstructed by the detectors. In particular, for the AL3X detector, Ref.
[201] points out that the LLP vertex is required, in order to point back to the IP, and thus be able to
reduce the background.

With Pythia providing the kinematical information of each generated (LLPi), we can easily derive
its velocity βi and Lorentz boost factor γi. We calculate the total decay width of the HNLs by
using the formulas given in Ref. [278]. As for the decay width of the light neutralinos, we use the
relevant expressions for neutralino two-body decays given in Ref. [202] for a neutralino mass below
∼ 3.5 GeV, and take the three-body decay results given by SPheno-4.0.3 [206, 207] for larger masses.
Combining the total decay width Γtot(LLP) with the βi and γi, we express the decay length, λi, of a
given LLP, (LLP)i, in the laboratory frame:

λi = βiγi/Γtot(LLP), (3.6)
λzi = β

z
i γi/Γtot(LLP), (3.7)

where λzi is the z-component of λi along the beam axis. The decay length is required in order to
calculate the decay probability P[(LLP)i in d.r.].
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θi

Figure 3.1: Side-view sketch of the AL3X detector with definition of distances and angles used in text. The
detector is cylindrically symmetric around the beam axis. IP denotes the interaction point 2 at the LHC. The
dashed line describes an example LLP track, with polar angle θi .

3.1.2 New Detectors

The AL3X Detector

AL3X (“A Laboratory for Long-Lived eXotics") [201] is proposed as an on-axis cylindrical detector
situated several meters from IP2 in the ALICE/L3 cavern at the LHC. It has a length of Ld = 12m and
an inner/outer radius of 0.85/5 m. In virtue of its proximity to the IP, its pseudorapidity coverage of
η ∈ [0.9,3.7] is large relative to other proposed future detectors such as MATHUSLA ([0.9,1.8]) [272]
and CODEX-b ([0.2,0.6]) [199], and it has a full azimuthal coverage.4 We calculate the probability of
each individual LLP decaying inside the detector fiducial chamber P[(LLP)i in d.r.] as:

P[(LLP)i in d.r.] = e
−

Li
λz
i (1 − e

−
L′i
λz
i ) , (3.8)

Li = min
(
max

(
Lh,

Lv

tan θi

)
, Lh + Ld

)
, (3.9)

L ′i = min
(
max

(
Lh,

Lv + H
tan θi

)
, Lh + Ld

)
− Li , (3.10)

where Lh = 5.25m is the horizontal distance from the IP to the near end of the detector, Lv = 0.85
m and H = 4.15 m are respectively the inner radius and the transverse length of the detector, and θi
is the polar angle of (LLP)i with respect to the beam axis. In Ref. [201] the authors employed the
benchmark integrated luminosities 100/fb and 250/fb, so that practical concerns such as moving the IP
and beam quality, and constraints from backgrounds may be investigated. Here we follow their choice
of luminosities. In Fig. 3.1 we show a profile sketch of AL3X.

The CODEX-b Detector

CODEX-b (“Compact detector for Exotics at LHCb") [199] was proposed as a cubic detector with
dimension 103 m3, sitting inside an underground cavity at a distance L = 25 m from the LHCb IP.
The differential production distribution is flat in the azimuthal angle and the azimuthal coverage
of the detector is about 0.4/2π ≈ 6%. The polar angle range of the CODEX-b experiment at the

4 FASER (η >∼ 6.9) covers a small angular region in the extreme forward direction.
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Ld
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θi

Figure 3.2: Side-view sketch of the CODEX-b detector with definition of distances and angles used in text. IP
denotes the interaction point in LHCb. The dashed line describes an example LLP track.

appropriate azimuthal angle is between 11.4◦ and 32.5◦. This corresponds to the pseudorapidity range
η ∈ [0.2,0.6]. For this narrow range, and at the precision of this analysis, we also treat the polar angle
differential production distribution as flat. As we mentioned earlier, LHCb is expected to have a total
integrated luminosity of 300/fb, smaller by one order of magnitude than ATLAS or CMS. We calculate
P[(LLP)i in d.r.] with the following expression:

P[(LLP)i in d.r.] =


0.4
2π
· e
− L
λi (1 − e

−
Ld
λi ), ηi ∈ [0.2,0.6],

0, else,
(3.11)

where we approximately treat the box detector as a spherical shell segment with the volume length
Ld = 10m. ηi is the pseudorapidity of (LLP)i and ηi = − ln[tan θi/2]. A brief sketch of the setup of
CODEX-b is shown in Fig. 3.2.

The FASER Detector

L

IP
Ld R

θi

Figure 3.3: Side-view sketch of the FASER detector with definition of distances and angles used in text. The
dashed line describes an example LLP track.

FASER (“ForwArd Search ExpeRiment") [200] proposes to build a small cylindrical detector placed
a few hundred meters downstream of the ATLAS or CMS IP in the very forward region. In a series of
papers [200, 266–268] several different variants of FASER have been proposed. In this chapter, we
focus on a recent setup, which would sit at a particularly promising location in the side tunnel TI18
[268]. We denote the distance from the IP to the near end of the detector as L = 470m, the radius of
FASER as R = 1m, and the detector length as Ld = 10m. Following is the expression for calculating
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the probability for a given LLPi to decay inside FASER:

P[(LLP)i in d.r.] = e
−L
λz
i (1 − e

−
Li
λz
i ) , (3.12)

Li =



0 , tan θi >
R
L
,

Ld , tan θi <
R

L + Ld

,

R
tan θi

− L , else .

(3.13)

There is no azimuthal angle suppression because the FASER detector is cylindrical. Here the three
cases correspond respectively to 1) the extended potential LLP trajectory misses the decay chamber,
2) the extended potential LLP trajectory passes through the entire length of the detector, and 3) the
extended LLP trajectory exits through the side of the detector. In practice, we treat the third case as
negligible. It corresponds to the very narrow angular range θi ∈ [0.1194◦,0.1219◦]. And furthermore
the decay products of the LLPs may exit through the side and may thus miss the detector. These LLPs
hence would not be detected. A sketch of the geometric configuration of FASER is shown in Fig. 3.3.

The MATHUSLA Detector

Lh

Lv

Ld

H

θi
IP

Figure 3.4: Side-view sketch of the MATHUSLA detector with definition of distances and angles used in text. The
dashed line describes an example LLP track.

In Ref. [198] it has been proposed to construct a surface detector 100m above the ATLAS/CMS IP
called MATHUSLA (“MAssive Timing Hodoscope for Ultra Stable neutraL pArticles"). The detector
should be horizontally offset by 100m from the IP and with a massive dimension of 200m×200m×20m,
MATHUSLA is expected to have excellent sensitivity for detecting LLPs. Below we show the formulæ
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for calculating P[(LLP)i in d.r.] in MATHUSLA:

P[(LLP)i in d.r.] =
1
4
· e
−Li
λz
i (1 − e

−
L′i
λz
i ) , (3.14)

Li = min
(
max

(
Lh,

Lv

tan θi

)
, Lh + Ld

)
, (3.15)

L ′i = min
(
max

(
Lh,

Lv + H
tan θi

)
, Lh + Ld

)
− Li . (3.16)

Here, Lh and Lv are the horizontal and vertical distance from the IP to the near end of MATHUSLA, and
they both equal 100m. Ld = 200m is the horizontal length of MATHUSLA and H = 20m is its height.
The factor 1/4 comes from the azimuthal angle coverage. Both MATHUSLA and FASER expect to have
3/ab luminosity of data by ∼ 2035. We show the schematic plot of MATHUSLA in Fig. 3.4.

3.2 Light Neutralinos Decaying via R-parity Violation

With Rp violated, the LSP is no longer stable and therefore there are no constraints on its nature from
cosmology. Thus, even charged or coloured SUSY particles could be the LSP. Here, we are exclusively
interested in the case where the lightest neutralino is the LSP.
In the so-called CMSSM the gaugino mass terms M1 and M2 follow the approximate relation

M1 ' (1/2)M2. This leads to a lower limit on m
χ0

1
of roughly m

χ0
1
>
∼ 46 GeV [296]. However, in more

general SUSY models, M1 and M2 are just free parameters and it is easy to show that for [277]

M1 =
M2M2

Z sin(2β) sin2 θW

µM2 − M2
Z sin(2β) cos2 θW

, (3.17)

the lightest neutralino is massless at tree-level. In our numerical studies we will simply take the mass
of the lightest neutralino, m

χ0
1
as a free parameter, without resorting to any underlying SUSY breaking

model. Note, however, that this lightest neutralino necessarily has to be mostly bino, due to the lower
mass limits on charginos that can be derived from LEP data [296].

In the RpV-MSSM superpotential (Eq. 1.7), the presence of the dimensionful parameters µi , and/or
the Yukawa couplings λi jk and/or λ

′
i jk leads to lepton-number violation, whilst a non-vanishing λ′′i jk

violates baryon-number. In this subsection we only discuss the phenomenology of non-vanishing λ′.
This choice conserves baryon number and hence does not lead to unobserved decays of the proton.
See also Refs. [104, 118, 297–300] on the motivation for this choice of couplings and on the changes
in phenomenology due to RpV. The L · QD̄ operators predict, among others, the following effective
operators between the neutralino, and the SM fermions u, d, ` and ν:

L ⊃ GS,ν
iab
( χ̃0PLνi)(dbPLda)

+GS,`
iab
( χ̃0PL`i)(dbPLua) + h.c. . (3.18)

The effective couplings G depend on several masses of the scalar supersymmetric partners f̃ of the
SM fermions, the mixing within the neutralino sector and are linear in λ′. Formulæ for the partial
widths of neutralino decays via L · QD̄ couplings can be found in Refs. [202, 274, 277, 301]. If all f̃
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are mass degenerate, G can be written as O(1) × λ′iab/m
2
f̃
. Bounds on various combinations of λ′iab

and m f̃ can be set from searches for exotic decays in the meson sector, see e.g. Ref. [165, 190, 193,
302]. In the special case of mass degenerate f̃ they can be compared to our sensitivity curves as we
show below.

The absence of any R-parity violating terms predicts a stable χ̃0. In contrast, the terms in Eq. (3.18)
directly imply a long-lived particle, which eventually decays into SM fermions.

3.2.1 Pair Production of χ̃0
1 from Z-Boson Decays

There are various possibilities to produce neutralinos at the LHC. One of them is the decay of
on-shell Z-bosons into pairs of neutralinos if m

χ̃0
1
<
∼ mZ/2. The corresponding partial decay width

Γ(Z → χ̃0
1 χ̃

0
1 ) has been calculated in Ref. [303]. Important for us is the coupling between a Z-boson

and two neutralinos:

g
Zχ0

i χ
0
j
= (Ni3Nj3 − Ni4Nj4)c2β + (Ni3Nj4 + Ni4Nj3)s2β . (3.19)

Here, Ni j is the matrix that diagonalizes the neutralino mass matrix and c2β/s2β are cosine and sine of
β, with tan β being the usual ratio of the vacuum expectation values of the two Higgs doublets. Thus,
the relevant coupling for the decay to neutralinos is proportional to the Higgsino content in χ0

1 and is
not suppressed by small RpV parameters. Different from the case of the single production of χ̃0

1 and
HNLs, therefore for neutralinos production cross section and decay length are not related.

Importantly, there is an upper bound on Γ(Z → χ0
1 χ

0
1 ) from the LEP measurement of the invisible

width of the Z-boson. The PDG [296] gives for Γ(Z →inv) a value in agreement with the standard
model calculation with three generations of light neutrinos and the error bar on the measurement
corresponds to an upper limit on the branching ratio into additional invisibly final states of roughly
BR(Z → χ̃0

1 χ̃
0
1 ) <∼ 0.1 % at 90 % c.l.

The Higgsino content in the lightest neutralino depends mostly on the parameter combination M1/µ.
LEP gives a lower limit of roughly µ >∼ 100 GeV [296]. The limits from a ATLAS search [83] imply
that µ should be larger than 130 GeV. For a cross check, we used the model MSSMTriRpV from
the repository of SARAH-4.12.2 [209–214]. We perform numerical calculations with SPheno-4.0.3
[206–208]. For the choice

M2 = 500 GeV, µ = 130 GeV, tan β = 10, (3.20)

and a lightest neutralino mass m
χ0

1
� mZ/2, we find BR(Z → χ̃0

1 χ̃
0
1 ) ' 0.06 %. Thus, given current

constraints on SUSY parameters, the Higgsino content in the lightest neutralino can still be large
enough to (nearly) saturate the experimental bound on BR(Z → χ̃0

1 χ̃
0
1 ).

5

In our numerical calculations, we will not do a scan over the soft SUSY breaking parameters.
Instead we will treat both, the mass of the lightest neutralino and BR(Z → χ̃0

1 χ̃
0
1 ) as a free parameter

in our numerical study. Note, however, that a future lower limit on µ larger than the numbers quoted
above will consequently result in smaller values for the maximally achievable BR(Z → χ̃0

1 χ̃
0
1 ).

For our analysis we therefore choose BR(Z → 2 χ̃0
1 ) = 10−3 and 10−5,6 as two representative and

5 We have also checked that such a “largish” Higgsino content is not in disagreement with the experimental upper bound on
the Higgs invisible width [304, 305].

6 Here and elsewhere the values chosen for BR(Z → χ̃0
1 χ̃

0
1 ) should be understood as the branching ratio of Z boson to a
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Figure 3.5: Sensitivity estimates shown in the plane spanned by the neutralino mass and the effective RpV
coupling λ′112/m

2
f̃
for two different assumptions of the Z branching ratio to neutralinos. Sensitivity curves

denote the expected measurement of 3 visible events. Here we perform Monte-Carlo simulation for AL3X only;
we extract the corresponding results for CODEX-b, FASER and MATHUSLA from Ref. [204] (where the hadronic
corrections on the decay width of the neutralinos of mass O(GeV) were not included). Solid lines consider all
hadronic final states while dashed lines — only evaluated for AL3X in this work — only consider the branching
ratio into the charged K±e∓ final state for observable neutralino decays. Overlaid current RpV limits on λ′112 are
shown for comparison, using different assumptions on the degenerate sfermion mass m f̃ . The references are
given in the text.

experimentally viable values for this invisible branching ratio. We would also like to mention that the
lower limits on charged SUSY particles require that the lightest neutralino must be mostly bino, for
the low mass we consider in Sec. 3.2.
For this benchmark analysis, we choose λ′112 to be the only non-vanishing RpV operator. In that

case, the neutralino can decay into u+ s̄+ e−and d+ s̄+ νe final states, as well as their respective charge
conjugates. We use these inclusive final states to calculate the total lifetime of the neutralino, see
Ref. [204]. However, in practice it may only be feasible to detect charged final states with light mesons,
χ̃0

1 → K±e∓. We also calculate the partial decay width into this particular final state according to
Ref. [202] and multiply with the corresponding branching ratio. We determine results for both cases,
i.e. if only the charged meson final state or if all hadronic final states can be observed. For simplicity,
in the results for this scenario, shown in Fig. 3.5, we show both cases only for the AL3X detector, while
for the other detectors we show only the case where all hadronic final stats can be observed.
Fig. 3.5 shows the results for both benchmark values of BR(Z → χ̃0

1 χ̃
0
1 ). We choose the mass of

the neutralino as one free parameter, which for kinematic reasons must be smaller than mZ/2. As
explained above, RpV-induced decays of the neutralino depend on the effective coupling λ′/m2

f̃
, which

is why we choose this as our second free parameter. Current limits on the RpV operators L1Q1D̄2 are
taken from Ref. [193] and compared to our results. Note, however, that such a comparison is only
valid if all sfermions are mass degenerate. See the discussion in Ref. [202]. Here we perform MC
simulation for AL3X only and overlap the results with those for CODEX-b, FASER and MATHUSLA from

pair of χ̃0
1 ’s for m

χ̃0
1
� mZ . With m

χ̃0
1
increased up to the threshold mZ/2, phase space suppression effect becomes

important and is correctly taken into account in our study.
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Ref. [204]. In the latter, the hadronic corrections on the neutralinos decay width were not included
for neutralino mass below ∼ 4 GeV. If these effects were included, the reach of the corresponding
detectors in λ′112/m

2
f̃
would be extended by approximately one order of magnitude in the low mass

regime.
Since the smallness of λ′112 controls only the decay length, but not the production cross section, in

principle very small values of λ′112 are accessible in these searches. Note that the values of λ
′
112 shown

can reach values several order of magnitudes smaller than the current upper limit on λ′112 [193].
We observe that for invisible branching ratios close to the current PDG limit, AL3X is sensitive to

values of λ′112/m
2
f̃
down to 10−12 GeV−2, if all hadronic final states can be observed, while MATHUSLA

may reach even the smallest values of λ′112/m
2
f̃
. This strongest sensitivity is reached for neutralino

masses near the kinematic threshold, at m
χ̃0

1
≈ 40 GeV. FASER is expected to be less sensitive than

CODEX-b, while AL3X outperforms FASER and CODEX-b over the entire parameter range. From the
AL3X isocurves, one observes that the sensitivity drops by nearly one order of magnitude, if only the
charged final state K±e∓ is taken into account. Note that all the experiments could reach λ′112/m

2
f̃

several orders of magnitude smaller than the current limits on the λ′112 coupling. The lighter the
neutralino, the lower the sensitivity on λ′112/m

2
f̃
. But even for O(GeV) masses AL3X and MATHUSLA

may be expected to significantly improve on current limits. Note that smaller neutralino masses have a
reduced accessible final state phase space and hence a reduced difference in sensitivity between the
conservative “K±e∓” and the optimistic “all hadronic final states”.
As for BR(Z → χ̃0

1 χ̃
0
1 ) = 10−5, it is apparent to observe from the plot on the right of Fig. 3.5 that

the overall sensitive regions in the parameter space shrinks dramatically, as a result of the reduced
number of produced neutralinos. FASER now has its sensitive coverage of a very small size, while
AL3X and MATHUSLA may still reach values of λ′112/m

2
f̃
several orders of magnitude smaller than the

current limits.
Note that too large values of λ′ render the neutralino too short-lived to reach the detector which

leads to upper bounds on the sensitivity to λ′ for all LLP experiments. In comparison to FASER,
MATHUSLA and CODEX-b, AL3X covers the largest region of parameter space here, due to its proximity
to IP2. However, for masses above 10 GeV, sizable RpV couplings may still evade both current
detection limits and even the limits from AL3X@250/fb.

In summary, if the lightest neutralino has a mass in the range (few) GeV to mZ/2, LLP searches at
AL3X, FASER, CODEX-b and MATHUSLA can probe part of RpV-SUSY parameter space not accesible
in any other experiment.

3.2.2 Single Production of χ̃0
1 from Rare D and B-Meson Decays

In this subsection, we estimate the sensitivity reach of the proposed detectors for discovering singly
produced light neutralinos from D- and B-mesons via RpV L · QD̄ operators, and compare them
with each other. We also interpret our studies in a model independent way, independently of the
RpV couplings. Instead we set bounds on the product of the branching ratios of the production of an
LLP from a meson decay and the decay of the LLP to a meson and charged lepton in terms of the
neutralino decay length cτ. This can be applied to any potential LLP. As mentioned above, neutralinos
that are produced from charm and bottom meson decays are necessarily lighter than 10 GeV and are
dominantly bino-like to avoid existing bounds, see Ref. [277]. Formulæ for the partial widths of heavy
meson decays and for the partial widths of neutralino decays via L · QD̄ couplings can be found in
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Refs. [202, 274, 277, 301].
In principle, one single L · QD̄ coupling introduces several effective SM operators and hence may

simultaneously induce both meson decays to neutralinos and neutralino decays to lighter mesons.
However, as Ref. [202] points out, due to kinematic constraints only the coupling λ′112 may lead to
such a complete decay chain:

K0
L/S → χ̃0

1ν, χ̃
0
1 → K±l∓. (3.21)

Moreover, since the mass difference between K0
L/S and K± is only 4 MeV, the kinematically allowed

neutralino mass range is very small and this case is not worth studying. Therefore, we only consider
scenarios with two distinct non-vanishing RpV operators, one for the production of the neutralinos
and the other for the decay.
In Sec. 1 we have shown upper limits on the couplings λ′i jk for the operator LiQ j D̄k and their

products that are relevant to our studies. Therefore, here we refrain from repeating them.
Throughout this subsection, we assume that all sfermions have degenerate masses m f̃ . This

allows us to directly compare the λ′i jk bounds to our results even though the respectively relevant
operators depend on the masses of possibly different SUSY particles. Note that results for significantly
non-degenerate SUSY spectra may therefore differ significantly and can change the relative importance
of bounds from different sources.
We calculate the relativistic kinematical variables βi and γi of a neutralino χ̃0

1 by the following
formulas:

γi = Ei/mχ̃0
1
, (3.22)

βi =

√
1 − γ−2

i . (3.23)

The z-component of βi is obtained as:

βzi = pzi /Ei . (3.24)

Results

In Ref. [202] a series of benchmark scenarios representative of L ·QD̄ couplings were investigated. In
these scenarios, both the light lepton flavor (electron/muon) and the heavy tau flavor are considered,
as the τ lepton leads to large phase space suppression effects. Also, different neutral or charged
D- and B-mesons which would decay to the neutralino are considered; this is important because
the cross sections of producing these mesons substantially differ, cf. Eq. (3.1). In this subsection,
we exemplarily choose two benchmark scenarios with different choices for the non-vanishing λ′,
summarized in Table 3.1. We choose these two scenarios because they are representative for a class of
L · QD̄ couplings combinations. For more details, see the discussion below. For each scenario we
have a different initial meson flavor, which produces the neutralinos via decays. This is important
as these differ in their LHC production yields, see Eq. (3.1), as well as the different final states the
neutralinos decay into. Due to the simultaneous presence of several operators from one λ′ coupling,
see Eq. (3.18), we often expect both charged and neutral final states. We call the former “visible”, as
only those can be experimentally measured by an LLP experiment. We need to consider all possible
final states for the total lifetime of the lightest neutralino, τ

χ̃0
1
, but multiply the final number with the
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Scenario 1 Scenario 2
λ′prod for production λ′122 λ′131

λ′dec for decay λ′112 λ′112
produced meson(s) Ds B0, B̄0

visible final state(s) K±e∓,K∗±e∓ K±e∓,K∗±e∓

invisible final state(s) via λ′prod (η,η′, φ) + (νe, ν̄e) none
invisible final state(s) via λ′dec (K0

L,K
0
S,K

∗
) + (νe, ν̄e) (K

0
L,K

0
S,K

∗
) + (ν, ν̄)

Table 3.1: Features of the R-parity violating benchmark scenarios studied in this section.

“visible branching ratio”, i.e. the fraction of decays into a charged final state. More details on these
benchmarks, including formulae for the respective decay widths and branching ratios can be found in
Ref. [202].

Since the operators for production and decay scale with λ′/m2
f̃
, we have three free parameters in the

theory, after assuming that all SUSY fermions f̃ have degenerate masses, namely: λ′P/m
2
f̃
, λ′D/m

2
f̃
,

and m
χ̃0

1
. Here λ′P/D is the LQD̄ coupling giving rise to the production/decay of the χ̃0

1 , and m2
f̃

is the sfermion mass relevant for the production/decay process, respectively.7 We therefore show
model-dependent plots in two separate planes for the aforementioned benchmark scenarios: m

χ̃0
1
vs.

(λ′P/m
2
f̃
= λ′D/m

2
f̃
) and λ′P/m

2
f̃
vs. λ′D/m

2
f̃
. For the latter plane, we present results for three different

values of m
χ̃0

1
.

In addition, we present model-independent results in the plane BR vs. cτ for a generic LLP. Here
cτ is the decay length of the LLP, and BR is the product of the branching ratios of the respective
meson decaying to the LLP and of the LLP decaying to a charged meson and a charged lepton. These
results can be interpreted in terms of any LLP which has the same or similar reaction chain.

For the two benchmark scenarios, we choose to show all three types of plots. Depending on the exact
construction of the detectors, they can possibly also track neutral mesons. We thus show sensitivity
estimates for two cases: 1) only charged final states can be tracked, and 2) both neutral and charged
ones.

Benchmark Scenario 1

We begin with the RpV scenario with Ds-mesons produced at the LHC, which decay to a neutralino,
which in turn travels for a macroscopic distance before decaying to a kaon and a lepton. In this
scenario we assume λ′122 and λ′112 are the only non-vanishing L · QD̄ couplings. λ′122 gives rise to the
production of χ̃0

1 via
Ds → χ̃0

1 + e± , (production) (3.25)

and to the invisible neutralino decay

χ̃0
1 → (η/η

′
/φ) + νe , (decay via λ′122) (3.26)

7 The explicit formulae including the dependence on the relevant sfermion masses are given in Ref. [202].

49



Chapter 3 R-parity Violation & Displaced Vertex Signatures

Figure 3.6: Sensitivity estimate of AL3X:250/fb and CODEX-b for Benchmark Scenario 1. On the left, we show
the reach in terms of m

χ̃0
1
and λ′P/m

2
f̃
= λ′D/m

2
f̃
. The light blue/blue/dark blue regions enclosed by the solid

black lines correspond to ≥ 3/3 × 103
/3 × 106 events. The light blue region is extended only slightly below by

a dashed curve, representing the extended sensitivity reach if we assume our detectors can also detect neutral
decays of the neutralino. The hashed solid lines correspond to the single RpV couplings’ limit for different
sfermion masses. On the right, the two couplings are not required to be identical and plots in the plane λ′P/m

2
f̃

vs. λ′D/m
2
f̃
are shown for the detectors. We consider three choices of m

χ̃0
1
: 600 MeV (light blue), 1200 MeV

(blue), 1800 MeV (dark blue). The solid hashed lines again represent the individual coupling bounds and the
hashed dot-dashed line is the upper bound derived from the limit on the product of the two LQD̄ couplings for
m f̃ = 1TeV.

On the other hand, λ′112 leads to both visible and invisible decays

χ̃0
1 →

{
K (∗)± + e∓ ,

K0
S,L + νe .

(decay via λ′112) (3.27)

The invisible decays are important to take into account in the evaluation because they affect the total
width of χ̃0

1 . We summarize this scenario in Table 3.1.
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Figure 3.7: Sensitivity estimate of FASER and MATHUSLA for Benchmark Scenario 1. The format is the same as
in Fig. 3.6

We now present our results. In Figs. 3.6 and 3.7 we show model-dependent sensitivity estimates for
the four detectors: AL3X, CODEX-b, FASER and MATHUSLA. In the left column, plots are presented in
the plane m

χ̃0
1
vs. (λ′P/m

2
f̃
= λ′D/m

2
f̃
). We have set λ′D = λ

′
P, and vary their values and the mass of

χ̃0
1 . In order to see how the number of neutralino decay events change with varying mass and RpV

couplings, we show the light blue, blue, and dark blue areas corresponding to the parameter space
where respectively ≥ 3, ≥ 3 × 103 and ≥ 3 × 106 events are observed. The hashed solid lines denote
the present RpV limits for a set of sfermion mass values, Eq. (1.10), translated to λ′/m̃2. We show
the product bound from Eq. (1.11) only in the AL3X plot for a 5 TeV sfermion mass , for illustration
purpose. The bound on λ′/m̃2 scales linearly with the sfermion mass, when taking the scaling of the
bound on λ′ into account.

The 3-event dashed contour isocurve is extended to the lighter shaded region, bounded by a dotted
line; this is obtained when we assume that invisible decays of the neutralinos can be detected as well.
Whether this will be possible is an outstanding experimental question. In any case, we observe that for
this benchmark scenario this would only give a very small extension in the sensitivity reach.
The range of sensitivity in the neutralino mass m

χ̃0
1
is strictly determined by the kinematics of the
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production and decay
(MK± + me) < m

χ̃0
1
< (MDs

− me) . (3.28)

and is thus identical for the three experiments. The range in sensitivity in λ′/m̃2 is determined by the
experimental set-up. Comparing the results for the four detectors, we find that for this model CODEX-b
and FASER reach similar values of λ′/m2

f̃
, while AL3X is more sensitive by a factor ∼ 2 and MATHUSLA

is more sensitive by a factor ∼ 5. Furthermore, they can all extend well beyond existing low-energy
limits on the R-parity violating couplings.

On the right in Figs. 3.6 and 3.7, we show plots in the plane λ′P/m
2
f̃
vs. λ′D/m

2
f̃
for three values of

m
χ̃0

1
: 600MeV (light blue region),1200 MeV (blue region),1800 MeV (dark blue region). For these

results, the requirement that λ′P = λ
′
D is lifted, so we observe an interplay between the production and

decay of χ̃0
1 . We may compare each detector’s sensitivity range in different parameters. For example,

the λ′P/m
2
f̃
reach of FASER is only weaker than that of MATHUSLA by a factor ∼ 3, even though FASER

is more than 25,000 times smaller than MATHUSLA. This arises because FASER exploits the advantage
of receiving the light D-mesons (and the produced neutralinos) boosted in the very forward direction,
where the differential production cross section is significantly higher. As for the reach in λ′D/m

2
f̃
,

MATHUSLA and AL3X show the strongest potential. Here we include single coupling bounds as solid
hashed lines for three different sfermion masses (250, 1000 and 5000 GeV) and now also the product
bound as a dashed hashed line for a 1 TeV sfermion mass. Again all experiments are sensitive well
beyond existing limits.

Figure 3.8: Model-independent sensitivity estimates for different experiments. We show the sensitivity reach as
isocurves of 3 events of visible decays of neutralinos of mass 1200 MeV. For the axes, we choose the neutralino’s
unboosted decay length cτ and the relevant meson branching ratio times the relevant neutralino visible branching
ratio. For scenario 1, regions with large cτ and large branching ratio are impossible to construct theoretically.
λ′P = λ

′
122, λ

′
D = λ

′
112.
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We next consider a model-independent description, where we interpret our results in terms of the
physical observables, BR= BRP · BRD , instead of the RpV-SUSY parameters. Here

BRP = BR(Ds → LLP + e±) , (3.29)
BRD = BR(LLP→ K (∗)± + e∓) , (3.30)

and we allow for any LLP. The results are shown in Fig. 3.8. The blue isocurve is for 3 events of
visible decays inside the FASER decay chamber for the LLP mass value mLLP = 1200 MeV. The purple
curve is for CODEX-b, the red for MATHUSLA and the yellow (orange) for AL3X:100(250)/fb. We do
not show the curve for the other two mass value (600 and 1800 MeV) because they are almost the
same as that for 1200 MeV. Remember that in Scenario 1, increasing λ′P simultaneously increases
Br(Meson→ χ̃0

1 + X) and decreases cτ. For that reason there exists a region in this parameter plane
which is theoretically impossible and we marked this as the hashed region in the upper right corner in
Fig. 3.8. No such effect exists for Scenario 2. The cτ position of the valley of the isocurves, the point
of maximal sensitivity, is determined by

〈βγ〉cτ ≈ 〈L〉 , (3.31)

where 〈βγ〉 is the average boost of the neutralinos flying in the direction of the detector and 〈L〉 is the
distance from the IP to the middle of the respective detector. We estimate 〈βγ〉 of the neutralinos that
fly inside each detector by simulating 10,000 events in each case, and summarize the results for each
Benchmark Scenario and detector in Table 3.2. The values for 〈L〉 are

〈L〉 =


11.25 m for AL3X,
30.0 m for CODEX − b,
475 m for FASER,
223 m for MATHUSLA

(3.32)

Using the values of Benchmark Scenario 1, we get for the most sensitive cτ value

(cτ)max. sensitivity =


1.43 m for AL3X,
18.3 m for CODEX − b,
0.85 m for FASER,
77 m for MATHUSLA

(3.33)

which agrees with Fig. 3.8.
The BR position of the valleys is determined by the luminosity of the experiment, the cross section

of producing Ds-mesons, the pseudorapidity coverage, the volume of the detector and the product
of the branching ratios. The BR reach of CODEX-b is roughly one order of magnitude larger than
that of FASER. This is mainly due to the fact that LHCb has a one order of magnitude lower projected
luminosity than that of ATLAS/CMS. Perhaps more importantly, in spite of the huge volume difference
between MATHUSLA and CODEX-b/FASER, the BR reach in MATHUSLA is only one order of magnitude
stronger than that in FASER. For large cτ values MATHUSLA performs far better than CODEX-b, but for
shorter neutralino lifetimes the detectors perform equally well. The reason is that the distance traveled
to MATHUSLA is about ten times larger than for CODEX-b, such that less neutralinos reach the former
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Benchm. Sc. m
χ̃0

1
(MeV) 〈βγ〉AL3X 〈βγ〉CODEX-b 〈βγ〉FASER 〈βγ〉MATHUSLA

1 (Ds) 1200 7.878 1.64 560 2.87
2 (B0 & B̄0) 1000 19.57 4.07 793 7.32

Table 3.2: Summary of 〈βγ〉 values for each detector in all the Benchmark Scenarios. Inside the parenthesis in
each column, the type of the mother meson of the neutralino is given.

detector for short-lived neutralinos. This leads to a similar sensitivity despite the larger integrated
luminosity and the larger detector size of MATHUSLA. AL3X outperforms both FASER and CODEX-b,
and can obtain far stronger results than MATHUSLA for models with cτ below roughly 20 m. Again, this
can be explained by the different geometry: whilst AL3X is designed with a target-to-detector-distance
of about 5 m close to the IP, MATHUSLA is planned as a surface experiment with a respective distance
of more than 140 m. As scenario 1 relies on the abundant production of D-mesons, SHiP which works
at a centre-of-mass energy of ≈ 27 GeV is significantly more sensitive. AL3X can only improve on the
expected SHiP bound for scenarios with mean decay paths below 0.1 m, due to the proximity of the
detector to IP2.

Note that Fig. 3.8 is very similar to the first plot of Fig. 1 in Ref. [204], the result of which was
obtained in the context of a Type-I Seesaw model, where the right-handed neutrino is the LLP with
a mass of 1 GeV produced from D-meson decays. This illustrates the model-independence of the
results shown in the BR-cτ-plane.

Benchmark Scenario 2

We now study one scenario where bottom mesons decay to a neutralino. Since the bottom mesons are
much heavier than the charm mesons, the mass reach improves compared to the previous scenarios. In
the present Benchmark Scenario 2, as before, we have λ′D = λ

′
112 giving both invisible and visible

neutralino decays. For the neutralino production we have λ′P = λ
′
131 such that B0 (and B̄0) decay to a

neutralino. This is summarized in Table 3.1. Kinematically we can thus probe

(MK± + me) < m
χ̃0

1
< (M

B0 − me) . (3.34)

For this scenario we start with showing the model-dependent plots in the plane λ′P/m
2
f̃
vs. λ′D/m

2
f̃

in Figs. 3.9 and 3.10. Here, λ′P does not produce any invisible final state from neutralino decays,
see Table 3.1, which is why there is no lower bound on the sensitivity to λ′D/m

2
f̃
= λ′112/m

2
f̃
. In the

previous scenario, CODEX-b shows similar sensitivity reach in λ′P/D/m
2
f̃
to that of FASER, but now

the former exceeds the latter, despite the fact that its projected luminosity is smaller by one order of
magnitude. This is because the B-meson mass is more than twice the D-meson mass, and hence the
produced B-mesons are not as much boosted in the very forward direction as the D-mesons. For the
same reason, we also have a larger sensitive mass range than in the previous benchmark scenario.
AL3X and MATHUSLA again has the most extensive sensitivity range.
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Figure 3.9: Model-dependent sensitivity estimate of AL3X and CODEX-b for Benchmark Scenario 2. The format
is the same as in Fig. 3.6.

Figure 3.11: Model-independent sensitivity estimates for different experiments. The format is the same as that
in Fig. 3.8. λ′P = λ

′
131, λ

′
D = λ

′
112.
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Figure 3.10: Model-dependent sensitivity estimate of FASER and MATHUSLA for Benchmark Scenario 2. The
format is the same as in Fig. 3.6.

We proceed by showing in Fig. 3.11 the model-independet results, as in Benchmark Scenario 1,
presented in the plane BR(Meson → χ̃0

1 + X) × BR( χ̃0
1 → charged final state) vs the proper decay

length, cτ, of the neutralino. We observe that AL3X:250/fb reaches smaller visible branching ratios
than MATHUSLA by a factor ∼ 4 and than SHiP by about one order of magnitude. FASER now has
a similar reach in the visible branching ratio as CODEX-b. The positions of the cτ at the valley of
different experiments can be explained in a similar way as in the previous benchmark scenario, cf.
Table. 3.2.

Decay Branching Ratios of the χ̃0
1

After having presented results of the two benchmark scenarios in the previous subsections, we
supplement our results by showing in Fig. 3.12 the decay branching ratios of the χ̃0

1 to visible, i.e.
charged meson final states, as a function of m

χ̃0
1
in the kinematically allowed range for these scenarios.

The curves can be well understood by considering the kinematic thresholds for the various neutralino
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Figure 3.12: Branching ratios of χ̃0
1 to visible states in Benchmark Scenarios 1 & 2 as a function of m

χ̃0
1
[GeV],

where we set λ′P = λ
′
D . For each curve, only the kinematically allowed range of m

χ̃0
1
is plotted.

decays. For Benchmark Scenarios 1 and 2 the first decay channel to open is to the charged kaon:
χ̃0

1 → K±e∓. Thus the visible branching ratio starts at 1. It rapidly drops as the K0-threshold is
crossed. The asymptotic value of the branching ratios in Benchmark Scenarios 1 and 2 is simply
determined by the number of charged or neutral decay channels. For example, in Benchmark Scenario
2 above all thresholds there are 4 visible final states and 8 invisible final states, giving a branching
ratio to visible of 4/(4+4)=1/2. The bump in Benchmark Scenario 1 (red curve) is due to the extra
threshold of the η-meson below the K+∗ and K0∗ masses. Note that it is the vector meson K0∗ which
is relevant for the neutralino decay, not the pseudoscalar [202].

3.3 Heavy Neutral Leptons

In this section we discuss the prospects of AL3X, CODEX-b, FASER, and MATHUSLA for detecting heavy
neutral leptons (HNLs). The standard model predicts neutrinos to be massless, in contrast to the
results of neutrino oscillation experiments. 8 The simplest extension of the SM, which can explain the
experimental data, adds n fermionic singlets. Oscillation data requires n ≥ 2. The Lagrangian of this
model contains two new terms

L
νR = Yν L̄H†νR + MN νRνR (3.35)

Here, we have suppressed generation indices. In general MN is a complex symmetric (n,n) matrix,
while Yν is a (3,n) matrix. In the simple model considered here, without new interactions for the
νR, one can perform a basis change and choose the entries of MN to be diagonal, real and positive.
The masses of the active neutrinos are small, if (Yνv) · M

−1
N � 1, this is the essence of the seesaw

mechanism. Diagonalization of the mass matrix leads then to three light, active neutrinos and n nearly
sterile mass eigenstates (or, HNLs), which we denote by N in the following.

8 For the status of oscillation data, see for example the recent global fit [306].
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Figure 3.13: Estimates for the sensitivity of different experiments to HNLs in the plane mixing angle squared,
|VαN |

2, versus mass of the HNL, mN [GeV]. Here we perform Monte-Carlo simulation for AL3X only; we
extract the corresponding results for CODEX-b, FASER and MATHUSLA from Ref. [204]. The references for the
individual curves are given in the text.

The heavy sterile neutrino Charged (CC) and Neutral Current (NC) interactions are

L =
g
√

2
Vα j l̄αγ

µPLNjW
−
Lµ +

g

2 cos θW

∑
α,i, j

VL
αiV
∗
α jNjγ

µPLνiZµ, (3.36)

where i = 1,2,3 and j = 1, ..,n and α denotes the charged lepton generation. The left-handed sector
neutrino mixing matrix VL is measured in neutrino oscillations. Vα j describes the mixing between
ordinary neutrinos and HNLs. Within the simple seesaw model, described by Eq. (3.35), one expects
that Vα j is roughly of the order of Vα j ∝

√
mν/MN , i.e. |Vα j |

2
' 5 × 10−11

(
mν

0.05 eV )(
1 GeV
MN
). However,

in extensions of this simple framework, for example the inverse seesaw [307], much larger values
for the mixing can occur, despite the smallness of the observed neutrino masses. For this reason,
for the sensitivity estimates of the different experiments we will take |Vα j |

2 as a free parameter in
our calculations. Note that the mixing between the HNLs and the active neutrinos controls both,
production and decay of the HNLs.

Oscillation data shows two large mixing angles in the active neutrino sector [306]. Thus, one expects
that the HNLs couple typically to more than one generation of charged leptons too, see Eq. (3.36). It
is easy to fit all oscillation data with the seesaw mechanism, described by Eq. (3.35). However, the
Yukawa matrices can be fixed by such a fit only up to an orthogonal rotation matrix containing three
complex parameters [308], leaving |Vα j | essentially as free parameters.9 In our sensitivity estimates

9 For an extension of this Casas-Ibarra parametrization for the inverse seesaw case, see [309].
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we will simply assume that only one HNL exists in the mass range to which the experiments are
sensitive. We will also not distinguish between e and µ flavours, assuming simply that only one of the
corresponding |VαN | is non-zero. Since we are only interested in estimating sensitivity ranges, not in
a full reconstruction of the seesaw parameters, this should be a reasonable approximation.

We now turn to the discussion of the results. Fig. 3.13 shows sensitivity estimates for the considered
recent experimental proposals to HNLs. Here we perform the Monte-Carlo simulation exactly
according to the procedure described in Sec. 3.1 only for the detector AL3X. For CODEX-b, FASER and
MATHUSLA , we reproduce the isocurves from Ref. [204]. The difference between the two approaches
would yield very little impact for this plot at the qualitative level. For AL3X we show two curves,
one for 100/fb and one for 250/fb, corresponding to the two options discussed in Ref. [201]. The
grey area in the background shows the parameter space currently excluded according to Ref. [310] by
the searches from PS191 [311], JINR [312], CHARM [313], and DELPHI [281]. Fig. 3.13 shows that
CODEX-b and FASER have quite similar sensitivities below mN ' 3.2 GeV to HNL parameters, while
MATHUSLA does better than both in most parts of the parameter space. AL3X is quite competitive for
the search of HNLs, with a sensitivity better than FASER, CODEX-b or NA62, even for only 100/fb of
statistics. In the mass range above mN ∼ 2GeV, AL3X has a sensitivity that is better than the estimate
for SHiP [314], and only slightly worse than MATHUSLA. FASER and CODEX-b are only worse than
SHiP by approximately one order of magnitude. Below mN ∼ 2GeV, SHiP gives the best sensitivity,
with AL3X@250/fb only roughly a factor (2 − 3) less sensitive than MATHUSLA which performs only
slightly worse than SHiP.

3.4 Conclusions

In this chapter we have investigated the sensitivity of the proposed detectors AL3X, CODEX-b, FASER and
MATHUSLA for detecting long-lived fermions in the context of the lightest neutralino of supersymmetry,
and HNLs, also known as heavy sterile neutrinos. For the neutralino study, we consider two production
mechanisms: pair-production from on-shell Z-boson decays via the (small) higgsino component of
the neutralinos, and single production from D- or B-meson decays via a RpV L · QD̄ coupling. In the
study of neutralinos produced from a meson, we take two benchmark scenarios from Refs. [202, 203]
for illustration of our results. Scenario 1 has the neutralino produced from a Ds-meson decay while
scenario 2 from a B0-meson decay. For the HNLs case, we present results where solely the mixing
between νe/µ and the HNL, N , is non-vanishing.
We present our results for detecting neutralinos pair-produced from Z-boson decays by showing

two plots respectively for BR(Z → 2 χ̃0
1 ) = 10−3 at the experimental upper limit and for BR(Z →

2 χ̃0
1 ) = 10−5, switching on a single L · QD̄ coupling: λ′112, which induces neutralino decays to kaons

and leptons. The plots are shown in the plane λ′112/m
2
f̃
vs. m

χ̃0
1
, cf. Fig. 3.5. We find the proposed

detectors have a mass reach from ∼ 1 GeV up to ∼ mZ/2. While MATHUSLA has the strongest reach
in λ′112/m

2
f̃
, AL3X is only slightly worse by a factor ∼ 2. Novel parameter space, which is orders of

magnitude more sensitive than the present experimental limits on λ′112/m
2
f̃
, can be probed by all of

these detectors.
We show three sets of plots for two benchmark scenarios for the light neutralinos singly produced

from a charm or bottom meson, where two L ·QD̄ couplings are switched on: λ′P and λ′D , responsible
for the production and the decay of the lightest neutralino, respectively. In the first set corresponding
to the plots in the left column of Figs. 3.6, 3.7, 3.9 and 3.10 in the λ′P/m

2
f̃
= λ′D/m

2
f̃
vs. m

χ̃0
1
plane,
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we find for both scenarios, CODEX-b and FASER have a similar reach in λ′/m2
f̃
while AL3X:250/fb

and MATHUSLA are stronger by less than one order of magnitude. In the second set, the plots in
the right column of Figs. 3.6, 3.7, 3.9 and 3.10, shown in the plane λ′P/m

2
f̃
vs. λ′D/m

2
f̃
for three

representative values of m
χ̃0

1
, we find that in scenario 1, CODEX-b and FASER have a similiar reach

in both λ′P/m
2
f̃
and λ′D/m

2
f̃
, and are worse than AL3X and MATHUSLA by approximately one order of

magnitude. In the other scenario associated with a B0-meson, again we observe a similar reach in both
λ′P/m

2
f̃
and λ′D/m

2
f̃
from CODEX-b and FASER, while AL3X:250/fb and MATHUSLA show comparable

performance. In particular, AL3X is more sensitive than SHiP by about a factor of 5 in both axes. In
the final set of plots, Figs. 3.8 and 3.11, we present results in the plane Br(meson→ χ̃0

1 )·Br( χ̃
0
1 →

visibles) vs. cτ, the proper decay length of χ̃0
1 , and compare the different experiments. In Scenario 1,

SHiP shows the strongest sensitivity in the product of branching ratios, covering all the sensitive areas
of the other proposed detectors, while in Scenario 2 AL3X supersedes the whole sensitivity region of
SHiP, and complements MATHUSLA in different cτ regimes. At the end, we also show an illustrative
plot in Fig. 3.12, depicting the visible branching ratio of the lightest neutralino in the two benchmark
scenarios considered, as a function of the neutralino mass.
As for our HNL results, we present a plot in the plane of mixing angle squared, |VαN |

2, vs. mass,
mN , where α = e, µ, cf. Fig. 3.13. We consider AL3X with 100/fb or 250/fb integrated luminosity, and
show theoretical projections for all four detectors. We find that AL3X reaches smaller mixing angles
than both FASER and CODEX-b in its whole mass reach, but is weaker than MATHUSLA by a factor ∼ 3
for masses below ∼ 4GeV. Compared to SHiP, AL3X and MATHUSLA perform worse in mixing angle
reach for mN below the D-meson threshold, ∼ 2GeV, but better than SHiP for larger mass values.
In summary, we conclude that different experiments can complement each other in the parameter

space of the different models considered here. In these studies, it seems having the three experiments,
AL3X, SHiP and MATHUSLA can cover and extend the parameter space that could be covered by other
detectors such as CODEX-b and FASER. Of course, it might be interesting to study also other models
for these proposed detectors and to make comparisons. Finally, we stress that our sensitivity estimates
are based on the assumption of essentially background-free experimental searches. Any unforeseen
background could seriously affect these conclusions.
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CHAPTER 4

Conclusions and Outlook

Ever since the discovery of the Higgs boson in 2012 completing the mass spectrum of the Standard
Model, particle physics has been confronted with the question of pursuing its development without a
clear guiding principle. The different theoretical and observational issues faced with the SM clearly
imply the existence of new physics beyond the SM. This forces us to understand the SM merely as a
low-energy effective field theory embedded in a more fundamental description, which in turn leads
to the hierarchy problem. Solving the latter hence became one of the main requirements demanded
of NP models, and several categories of theoretical constructions of BSM physics were proposed
to serve this very purpose: a new symmetry, extra dimensions, etc. One particular concept is the
supersymmetry which has stood as one of the most promising guiding principles in view of extending
the SM. In these models, the quadratic sensitivity of the mass of the Higgs boson with respect to NP
scales is put under control by the symmetry, thus solving the hierarchy problem in an elegant manner.
Furthermore, unification of gauge couplings at a GUT scale of ∼ 1016 GeV is realized. R-parity
appears as a natural ingredient of such models, as a means to forbid the violation of the baryon and the
lepton numbers, and predicts the stability of the lightest Rp-odd particle, hence a possible candidate
for cold DM. However, Rp is insufficient to protect the Lagrangian from higher dimensional terms,
as produced by SUSY GUTs, that would induce proton decay. Thus, an equally viable alternative at
the electroweak-SUSY scale consists in imposing directly the lepton or the baryon symmetry in the
Lagrangian instead of Rp. New scenarios appear as the witnesses of a distinctive phenomenology in
these models. Signals of decays mediated by RpV couplings are actively searched for at high-energy
colliders, while indirect constraints also emerge from low-energy observables, in particular, in the
presence of new sources of flavor violation. In the RpV-SUSY scenario, the LSP is no longer a stable
DM candidate, as it would decay via a RpV coupling to SM particles. It would be still possible to
accommodate the DM interpretation, provided one of the particles is sufficiently long-lived. In this
thesis, we presented our work confronting the R-parity-violating MSSM with flavor observables based
on updated experimental measurements in the neutral meson systems, and with projected searches at
the LHC, based on displaced vertices.

In Chapter. 1, we recalled the basic ingredients of the SM, its limitations, a few promising avenues
for BSM model building, as well as the motivations underlying the MSSM, R-parity and R-parity
violation. The hierarchy problem persists as a central guideline for envisioning NP extensions of
the SM. The elegant solution employing supersymmetry holds whether Rp is broken or not. Other
benefits of these models include the prediction of the Higgs boson mass in the correct range and the
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convergence of the SM gauge couplings at high energy pointing towards one-step unification. We
then discussed the parameters and the spectrum of the RpV-MSSM, insisting on the extensive mixing
effects that potentially arise. The last section of this chapter is devoted to a discussion of several
phenomenologically relevant issues of RpV-SUSY in collider physics. This short review explores two
directions: indirect bounds from low-energy observables involving only SM external states, and direct
constraints from collider searches.
In Chapter. 2, we focused on testing the RpV-MSSM in the neutral meson systems with the

CP-conserving quark-flavor-violating observables ∆MK , ∆Md and ∆Ms. We started with a discussion
of the current experimental status of these observables along with a brief introduction to the principle
and techniques involved in the experimental measurements. We then recalled the theoretical EFT
framework in which these observables are usually evaluated, which allows to re-sum logarithms
between high- and low-energy scales: flavor-violating effects are encoded within dim-6 operators
whose Wilson coefficients collect high-energy contributions from the SM and beyond. The evaluation
of the low-energy operators is a complex problem of hadronic physics that is addressed by lattice
and effective descriptions. We restricted ourselves to considering the different types of Feynman
diagrams at one-loop order which contributes to the Wilson coefficients at the matching scale. In the
RpV-MSSM, contributions appear at tree-level through an sneutrino exchange. At one-loop level,
box diagrams had already been partial explored in the literature. We completed this analysis, but
also added contributions from self-energy and penguin diagrams which had been overlooked, even
though consistency of the one-loop evaluation requires them in any renormalization scheme that is not
on-shell. We also considered the field mixings to their full extent and collected the analytic expressions
of the Wilson coefficients in Appendix A. For numerical investigation, we applied the computer tools
SARAH, SPheno and Flavio. We considered various benchmark scenarios and presented multiple
nσ (n=1,2,3) boundaries in the RpV parameter space, after taking into account experimental results,
SM predictions, and the uncertainties from SM and NP predictions. A list of the updated bounds on
various RpV coupling products was provided, too. Finally, we studied the interplay between different
sources of flavor violation, R-parity violationg or conserving that could interfere constructively or
destructively. Such scenarios illustrate the complexities of combining the flavor-violating contributions
in a full model.
In Chapter. 3, we presented a search strategy to investigate displaced vertex signatures at future

experiments at the LHC. There, most of past searches focused on promptly decaying new particles.
However, another regime involves longer lifetime. In recent years there have been several LLP-search
proposals for new detectors at the LHC, that would exploit the large volume of data available (3/ab)
at the High-luminosity LHC (after 15-20 years of data collection). Among these experiments, we
considered CODEX-b, FASER, MATHUSLA and AL3X. By using Monte-Carlo simulation tools, we were
able to estimate the sensitivity reach of these detectors for BSM theories. In this thesis, we considered
two models: RpV-MSSM and heavy neutral leptons, where the LLPs are respectively the lightest
neutralino and the HNL itself. We started with a detailed description of the simulation procedure for
discovering LLPs in these detectors, and then described the geometries of each detector along with the
projected integrated luminosity at the corresponding interaction point. In the RpV-MSSM scenario,
we assumed that the lightest neutralino was the LSP, which would become long-lived and decay via
a RpV coupling. We considered here two possible mechanisms for producing the light (O(GeV))
neutralinos: pair production from Z-boson decays via the Higgsino components of the neutralinos,
and single production from charm and bottom mesons via a RpV coupling. We presented our results
either in the parameter space of the model, or in a model-independent manner. We concluded this
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chapter by discussing the sensitivity reach in the HNL model. The HNLs are hypothesized heavy
states that would mix with active neutrinos. In this work, we considered only the HNLs produced from
rare charm and bottom mesons decays, and hence HNL masses in the O(GeV) range. We presented a
plot in the plane of mixing squared vs. the HNL mass, and compared the 3-event isocurves of the
various experiments. In the end, we concluded that these future detectors could complement each
other in the parameter space of the models that we studied, and also stressed that these results were all
based on the assumption of zero background events, as the appearance of the latter could seriously
distort these conclusions.
The RpV-MSSM stands as one of the viable and promising possibilities of extending the SM

and the Rp-conserving MSSM. In the aftermath of the Higgs discovery and in the absence of solid
NP signatures, a challenging question consists in evaluating how much of the popular models is
already constrained and how robustly these limits hold when one considers effects beyond the standard
scenarios. In this thesis, we have presented our work in a direction consistent with these guidelines,
exploiting flavor observables and displaced vertices to illustrate this goal. Improved precision in
experimental measurements, higher intensity and energies of colliders, should allow discovery of new
fundamental particles and/or exclusion of larger area in the parameter space of various BSM models.
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APPENDIX A

Analytic Expressions of Wilson Coefficients for
RpV contributions to meson oscillation

A.1 Notations

A.1.1 Mixing matrices

• The squark mass matrices mix left- and right-handed components. We define the mass-
eigenstates in terms of a unitary rotation of the gauge/flavor-eigenstates:{

Uα = XUL

α f
U f

L + XUR

α f
Ū f ∗

R

Dα = XDL

α f
D f

L + XDR

α f
D̄ f ∗

R

(A.1)

Here, Uα (resp. Dα) represents the scalar-up (resp. sdown) mass state with mass mUα
(resp.

mDα
). Summation over the generation index f is implicit.

• R-parity violation leads to a mixing of charged-Higgs and slepton fields. We define the
mass-eigenstates H±α with mass mHα

as:

H−α = XC
αu H−u + XC

αd H−d + XC

αE
f
L

E f
L + XC

αE
f
R

Ē f ∗
R . (A.2)

• Similarly, the neutral Higgs mass-states involve both the doublet-Higgs, H0
u = vu +

h0
u+ı a

0
u√

2
and

H0
d = vd +

h0
d+ı a

0
d√

2
, and the sneutrino fields, N f

L =
h0
Nf
+ı a0

Nf
√

2
; in the CP-violating case, CP-even

and CP-odd components mix as well.

Sα = XR
αu h0

u + XR
αd h0

d + XR
αN f

h0
N f
+ X I

αu a0
u + X I

αd a0
d + X I

αN f
a0
N f
. (A.3)

Sα denotes the mass-eigenstate associated with the mass mSα
.

• The charged winos w̃+, w̃−, higgsinos h̃+u , h̃−d and lepton fields e f
L , ē f

R define the chargino sector.
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For the mass mχ±k
, the associated eignstate is given by:{

χ+k = Vkw w̃+ + Vku h̃+u + Vke f
ē f
R ,

χ−k = Ukw w̃− +Ukd h̃−d +Uke f
e f
L .

(A.4)

• The violation of R-parity also mixes neutrino and neutralino states. The eigenstate with mass
m
χ0
k
reads:

χ0
k = Nkb b̃0

+ Nkw w̃0
+ Nku h̃0

u + Nkd h̃0
d + Nkνf

ν
f
L . (A.5)

A.1.2 Feynman rules

Here, we list the various couplings that are relevant in our calculation. The combinatorial factors
appearing in the lagrangian density in the case of identical coupling particles have been explicitly
factored out, e.g. L 3 −gSαZZ

2 SαZ Z .

• Neutral-Higgs-sneutrinos / down quarks:

g
Sαdkdi
L = −

1
√

2

[
Y i
dδki(X

R
αd + ıX

I
αd) + λ

′
f ik(X

R

αN
f
L

+ ıX I

αN
f
L

)

]
= (g

Sαdidk
R )

∗ (A.6)

• Charged-Higgs-sleptons / quarks:

g
Hαukdi
L = −Y k

u VCKM
ki XC

αu ; g
Hαukdi
R = −Y i

dVCKM
ki XC

αd − λ
′∗
f liV

CKM
kl XC

αE
f
L

(A.7)

• sdowns / neutralino-neutrinos / down quarks:

g
Dαχkdi
L = −

1
√

2

(
g′

3
N∗
kb̃
− gN∗kw̃

)
XDL

αi − Y i
dN∗kdXDR

αi − λ
′
f iβN∗kνf XDR

αβ

g
Dαχkdi
R = −

√
2

3
g′Nkb̃XDR

αi − Y i
dNkdXDL

αi − λ
′∗
f βiNkνf

XDL

αβ (A.8)

• sdowns / gluinos / down quarks (T A are the colour Gell-Mann matrices):

g
Da
α g̃

Adb
i

L = −
√

2gse−ıφM3
/2XDL

αi T A
ab ; g

Da
α g̃

Adb
i

R =
√

2gseıφM3
/2XDR

αi T A
ab (A.9)

• scalar-ups / chargino-leptons / down quarks:

g
Uαχkdi
L = VCKM

βi

[
Yβu V∗kuXUR

αβ − gV∗kw̃XUL

αβ

]
g
Uαχkdi
R = VCKM

β f

[
Y i
dδi fUkdXUL

αβ + λ
′∗
l f iUkel

XUL

αβ

]
(A.10)

• scalar-ups / down quarks (a, b, c: colour-indices):

g
Ua
α db

k d
c
i

L = 0 ; g
Ua
α db

k d
c
i

R = εabcλ
′′∗
f kiX

UR

α f
(A.11)
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• sdowns / up / down quarks (a, b, c: colour-indices):

g
Da
αu

b
k d

c
i

L = 0 ; g
Da
αu

b
k d

c
i

R = εbacλ
′′∗
k f iX

DR

α f
(A.12)

• W / up / down quarks:
g
Wukdi
L =

g
√

2
VCKM
ki ; g

Wukdi
R = 0 (A.13)

• Z / down quarks:

g
Zdkdi
L =

√
g′2 + g2

2

(
−1 +

2
3

s2
W

)
δik ; g

Zdkdi
R =

√
g′2 + g2

3
s2
W δik (A.14)

• Neutral-Higgs-sneutrinos / up quarks:

g
Sαu juk
L = −

Y j
u
√

2
δjk

(
XR
αu + ıX

I
αu

)
=

(
g
Sαuku j

R

)∗
(A.15)

• Neutral-Higgs-sneutrinos / charginos-leptons:

g
Sαχ

+
j χ
−
k

L = −
1
√

2

{
Y f
e

[(
XR
αd + ıX

I
αd

)
V∗je f

U∗ke f
−

(
XR
αÑ f
+ ıX I

αÑ f

)
V∗je f

U∗kd
]

+ g
[(

XR
αu − ıX

I
αu

)
V∗juU∗kw +

(
XR
αd − ıX

I
αd

)
V∗jwU∗kd +

(
XR
αÑ f
− ıX I

αÑ f

)
V∗jwU∗ke f

]
+λ f mn

(
XR
αÑ f
+ ıX I

αÑ f

)
V∗jenU∗kem

}
=

(
g
Sαχ

+
k χ
−
j

R

)∗
(A.16)

• Neutral-Higgs-sneutrinos / neutrino-neutralinos:

g
Sαχ

0
j χ

0
k

L = −
g′

2

[(
XR
αu − ıX

I
αu

)
(N∗juN∗kb + N∗jbN∗ku) −

(
XR
αd − ıX

I
αd

)
(N∗jdN∗kb + N∗kdN∗jb)

−

(
XR
αÑ f
− ıX I

αÑ f

)
(N∗jνf N∗kb + N∗kνf N∗jb)

]
+
g

2

[(
XR
αu − ıX

I
αu

)
(N∗juN∗kw + N∗jwN∗ku) −

(
XR
αd − ıX

I
αd

)
(N∗jdN∗kw + N∗kdN∗jw)

−

(
XR
αÑ f
− ıX I

αÑ f

)
(N∗jνf N∗kw + N∗kνf N∗jw)

]
=

(
g
Sαχ

0
k χ

0
j

R

)∗
(A.17)

• Neutral-Higgs-sneutrinos / W’s:

gSαWW
=

g2

√
2

(
vuXR

αu + vdXR
αd

)
(A.18)

89



Appendix A Analytic Expressions of Wilson Coefficients for RpV contributions to meson oscillation

• Neutral-Higgs-sneutrinos / Z’s:

gSαZZ
=

g′2 + g2

√
2

(
vuXR

αu + vdXR
αd

)
(A.19)

• Neutral-Higgs-sneutrinos / W-ghosts g±W ’s:

gSαgW gW = −
g2

2
√

2

[
vu(X

R
αu + ıX

I
αu) + vd(X

R
αd − ıX

I
αd)

]
(A.20)

• Neutral-Higgs-sneutrinos / Z-ghosts gZ ’s:

gSαgZgZ = −
g′2 + g2

2
√

2

[
vuXR

αu + vdXR
αd

]
(A.21)

• Neutral-Higgs-sneutrinos / W / Charged-Higgs-sleptons:

gSαWHk =
g

2

[
(XR
αd − ıX

I
αd)X

C ∗
kd − (X

R
αu + ıX

I
αu)X

C ∗
ku + (X

R
αÑ f
− ıX I

αÑ f
)XC ∗

kẼ
f
L

]
(A.22)

• Neutral-Higgs-sneutrinos / Z / Neutral-Higgs-sneutrinos:

gSαZSk = ı

√
g′2 + g2

2

[
XR
αdX I

kd − X I
αdXR

kd − XR
αuX I

ku + X I
αuXR

ku + XR
αÑ f

X I
k Ñ f
− X I

αÑ f
XR
kÑ f

]
(A.23)

• Neutral-Higgs-sneutrinos / scalar-ups:

gŨkŨlSα = −
√

2

[
Y f 2
u vuXR

αu +
1
4

(
g′2

3
− g2

)
(vuXR

αu − vdXR
αd)

]
X
Ũf

kL
X
Ũf ∗

lL

−
√

2

[
Y f 2
u vuXR

αu −
g′2

3
(vuXR

αu − vdXR
αd)

]
X
Ũf

kR
X
Ũf ∗

lR

−
1
√

2

[
Af f ′

u (X
R
αu + ıX

I
αu) − µ

∗Y f
u δf f ′(X

R
αd − ıX

I
αd)

]
X
Ũf ′

kR
X
Ũf ∗

lL

−
1
√

2

[
Af f ′ ∗
u (XR

αu − ıX
I
αu) − µY f

u δf f ′(X
R
αd + ıX

I
αd)

]
X
Ũf

kL
X
Ũf ′ ∗

lR
(A.24)
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A.1 Notations

• Neutral-Higgs-sneutrinos / sdowns:

gD̃k D̃lSα = −
√

2

[
Y f 2
d

vdXR
αd +

1
4

(
g′2

3
+ g2

)
(vuXR

αu − vdXR
αd)

]
X
D̃ f

kL
X
D̃ f ∗

lL

−
vd
√

2

[
Y f
d
λ′∗gh f (X

R
αÑg
− ıX I

αÑg
) + Yh

d λ
′
gf h(X

R
αÑg
+ ıX I

αÑg
)

]
X D̃h

kL
X
D̃ f ∗

lL

−
√

2

[
Y f 2
d

vdXR
αd +

g′2

6
(vuXR

αu − vdXR
αd)

]
X
D̃ f

kR
X
D̃ f ∗

lR

−
vd
√

2

[
Y f
d
λ′∗gf h(X

R
αÑg
− ıX I

αÑg
) + Yh

d λ
′
gh f (X

R
αÑg
+ ıX I

αÑg
)

]
X
D̃ f

kR
X D̃h ∗

lR

−
1
√

2

[
Af f ′

d
(XR
αd + ıX

I
αd) − µ

∗Y f
d
δf f ′(X

R
αu − ıX

I
αu) + A′

gf f ′
(XR
αÑg
+ ıX I

αÑg
)

]
X
D̃ f ′

kR
X
D̃ f ∗

lL

−
1
√

2

[
Af f ′ ∗
d
(XR
αd − ıX

I
αd) − µY f

d
δf f ′(X

R
αu + ıX

I
αu) + A′∗

gf f ′
(XR
αÑg
− ıX I

αÑg
)

]
X
D̃ f

kL
X
D̃ f ′ ∗

lR
(A.25)
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• Neutral-Higgs-sneutrinos / Charged Higgs-sleptons

gHkHlSα = −
√

2
{[

Y f 2
e vdXR

αd +
1
4

(
−g′2 + g2

)
(vuXR

αu − vdXR
αd)

]
δf f ′

−
vd
2

[
Y f ′

e λ∗
f g f ′
(XR
αÑg
− ıX I

αÑg
) + Y f

e λ f ′gf (X
R
αÑg
+ ıX I

αÑg
)

]}
XC

kẼ
f
L

XC ∗

lẼ
f ′

L

−
√

2

{[
Y f 2
e vdXR

αd +
g′2

2
(vuXR

αu − vdXR
αd)

]
δf f ′

−
vd
2

[
Y f
e λ
∗

f g f ′
(XR
αÑg
− ıX I

αÑg
) + Y f ′

e λ f ′gf (X
R
αÑg
+ ıX I

αÑg
)

]}
XC

kẼ
f
R

XC ∗

lẼ
f ′

R

−
1
√

2

[
Af ′ f
e (X

R
αd + ıX

I
αd) − µ

∗Y f
e δf f ′(X

R
αu − ıX

I
αu) + Agf ′ f (X

R
αÑg
+ ıX I

αÑg
)

]
XC

kẼ
f
R

XC ∗

lẼ
f ′

L

−
1
√

2

[
Af f ′ ∗
e (XR

αd − ıX
I
αd) − µY f

e δf f ′(X
R
αu + ıX

I
αu) + A∗

gf f ′
(XR
αÑg
− ıX I

αÑg
)

]
XC

kẼ
f
L

XC ∗

lẼ
f ′

R

−
1

2
√

2

[
g′2(vuXR

αu − vdXR
αd) + g

2
(vuXR

αu + vdXR
αd)

]
XC
kuXC ∗

lu

−
1

2
√

2

[
g′2(vdXR

αd − vuXR
αu) + g

2
(vuXR

αu + vdXR
αd)

]
XC
kdXC ∗

ld

−
g2

2
√

2

[
vu(X

R
αd − ıX

I
αd) + vd(X

R
αu − ıX

I
αu)

]
XC
kuXC ∗

ld

−
g2

2
√

2

[
vu(X

R
αd + ıX

I
αd) + vd(X

R
αu + ıX

I
αu)

]
XC
kdXC ∗

lu

+
1
√

2

[
Af f ′

e (X
R
αÑ f
+ ıX I

αÑ f
)XC

kẼ
f ′

R

XC ∗
ld + Af f ′ ∗

e (XR
αÑ f
− ıX I

αÑ f
)XC

kdXC ∗

lẼ
f ′

R

]
+

Y f 2
e vd
√

2

[
(XR
αÑ f
− ıX I

αÑ f
)XC

kdXC ∗

lẼ
f
L

+ (XR
αÑ f
+ ıX I

αÑ f
)XC

kẼ
f
L

XC ∗
ld

]
+

Y f
e
√

2

[
µ∗(XR

αÑ f
+ ıX I

αÑ f
)XC

kẼ
f
R

XC ∗
lu + µ(X

R
αÑ f
− ıX I

αÑ f
)XC

kuXC ∗

lẼ
f
R

]
−

g2

2
√

2

[
(XR
αÑ f
+ ıX I

αÑ f
)XC

kẼ
f
L

(vuXC ∗
lu + vdXC ∗

ld ) + (X
R
αÑ f
− ıX I

αÑ f
)(vuXC

ku + vdXC
kd)X

C ∗

lẼ
f
L

]
(A.26)

• Cubic Neutral-Higgs-sneutrinos:

gSαSβSγ =
g′2 + g2

4
√

2

[
vu

(
Π

S uuu
αβγ + Π

Auuu
αβγ − Π

S udd
αβγ − Π

Audd
αβγ − Π

S uÑ f Ñ f

αβγ − Π
AuÑ f Ñ f

αβγ

)
+vd

(
Π

S ddd
αβγ + Π

Addd
αβγ − Π

S duu
αβγ − Π

Aduu
αβγ − Π

S dÑ f Ñ f

αβγ − Π
AdÑ f Ñ f

αβγ

)]
(A.27)

where:

Π
S abc
αβγ =XR

αaXR
βbXR

γc + XR
αbXR

βcXR
γa + XR

αcXR
βaXR

γb + XR
αaXR

βcXR
γb + XR

αcXR
βbXR

γa + XR
αbXR

βaXR
γc

Π
Aabc
αβγ =XR

αa

(
X I
βbX I

γc + X I
βcX I

γb

)
+ XR

βa

(
X I
αbX I

γc + X I
αcX I

γb

)
+ XR

γa

(
X I
αbX I

βc + X I
αcX I

βb

)
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A.1 Notations

• Neutral-Higgs-sneutrinos / W quartic:

gWWSαSβ =
g2

2

[
XR
αuXR

βu + X I
αuX I

βu + XR
αdXR

βd + X I
αdX I

βd + XR
αÑ f

XR
βÑ f
+ X I

αÑ f
X I
βÑ f

]
(A.28)

• Neutral-Higgs-sneutrinos / Z quartic:

gZZSαSβ =
g′2 + g2

2

[
XR
αuXR

βu + X I
αuX I

βu + XR
αdXR

βd + X I
αdX I

βd + XR
αÑ f

XR
βÑ f
+ X I

αÑ f
X I
βÑ f

]
(A.29)

• Neutral-Higgs-sneutrinos / scalar-ups quartic:

gŨkŨlSαSβ = −Y f 2
u

(
XR
αuXR

βu + X I
αuX I

βu

) (
X
Ũf

kL
X
Ũf ∗

lL
+ X

Ũf

kR
X
Ũf ∗

lR

)
−

[
1
4

(
g′2

3
− g2

)
X
Ũf

kL
X
Ũf ∗

lL
−
g′2

3
X
Ũf

kR
X
Ũf ∗

lR

]
×

(
XR
αuXR

βu + X I
αuX I

βu − XR
αdXR

βd − X I
αdX I

βd − XR
αÑ f ′

XR
βÑ f ′
− X I

αÑ f ′
X I
βÑ f ′

)
(A.30)

• Neutral-Higgs-sneutrinos / sdowns quartic:

gD̃k D̃lSαSβ = −Y f 2
d

(
XR
αdXR

βd + X I
αdX I

βd

) (
X
D̃ f

kL
X
D̃ f ∗

lL
+ X

D̃ f

kR
X
D̃ f ∗

lR

)
−

[
1
4

(
g′2

3
+ g2

)
X
D̃ f

kL
X
D̃ f ∗

lL
+
g′2

6
X
D̃ f

kR
X
D̃ f ∗

lR

]
×

(
XR
αuXR

βu + X I
αuX I

βu − XR
αdXR

βd − X I
αdX I

βd − XR
αÑ f ′

XR
βÑ f ′
− X I

αÑ f ′
X I
βÑ f ′

)
−

Y f
d

2

(
λ′∗gh f X D̃h

kL
X
D̃ f ∗

lL
+ λ′∗gf hX

D̃ f

kR
X D̃h ∗

lR

) [
(XR
αd + ıX

I
αd)(X

R
βÑg
− ıX I

βÑg
) + (α↔ β)

]
−

Y f
d

2

(
λ′gh f X

D̃ f

kL
X D̃h ∗

lL
+ λ′gf hX D̃h

kR
X
D̃ f ∗

lR

) [
(XR
αd − ıX

I
αd)(X

R
βÑg
+ ıX I

βÑg
) + (α↔ β)

]
−

1
2

(
λ′gh f λ

′∗
mnf X D̃n

kL
X D̃h ∗

lL
+ λ′gf hλ

′∗
mf nX D̃h

kR
X D̃n ∗

lR

) [
(XR
αÑg
+ ıX I

αÑg
)(XR

βÑm
− ıX I

βÑm
) + (α↔ β)

]
(A.31)
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Appendix A Analytic Expressions of Wilson Coefficients for RpV contributions to meson oscillation

• Neutral-Higgs-sneutrinos / Charged Higgs-sleptons quartic:

L 3 −Y f 2
e

[
|H0

d |
2
(
|E f

L |
2
+ |Ec f

R |
2
)
+ |N f

L |
2H+d H−d − H0

dN f ∗
L H+d E f

L − H0∗
d N f

LE f ∗
L H−d

]
− λjkiλ

∗
mniN

j
LNm ∗

L En ∗
L Ek

L − λi jkλ
∗
imnN j

LNm ∗
L Ec k

R Ec n ∗
R − Y f

e Y f ′

e N f
LN f ′ ∗

L Ec f
R Ec f ′ ∗

R

+ Y f
e

[
λ∗f i jH

0
dN i ∗

L Ec f
R Ec j ∗

R + λ∗i j f H0
dN j ∗

L E i ∗
L E f

L + λ
∗
i j f N f

LN i ∗
L E j ∗

L H−d + cc
]

−
g′2

4

[
|H0

u |
2
− |H0

d |
2
− |N f

L |
2
] [

H+u H−u − H+d H−d − |E
f ′

L |
2
+ 2|Ec f ′

R |
2
]

−
g2

4

[(
|H0

u |
2
+ |H0

d |
2
+ |N f

L |
2
)

H+u H−u +
(
|H0

d |
2
+ |H0

u |
2
− |N f

L |
2
)

H+d H−d

+ 2N f
LN f ′ ∗

L E f ∗
L E f ′

L +
(
|H0

u |
2
− |H0

d |
2
− |N f

L |
2
)
|E f

L |
2
+ 2H0 ∗

u H0 ∗
d H+u H−d + 2H0

uH0
dH+d H−u

+2N f ∗
L H0 ∗

u H+u E f
L + 2N f

LH0
uE f ∗

L H−u + 2N f ∗
L H0

dH+d E f
L + 2N f

LH0 ∗
d E f ∗

L H−d
]

(A.32)

The coupling gHkHlSαSβ is obtained through the replacements H+u → XC
ku, H+d → XC

kd,
E f ∗
L → XC

kẼ
f
L

, Ec f
R → XC

kẼ
f
R

, H−u → XC ∗
lu , H−d → XC ∗

ld , E f
L → XC ∗

lẼ
f
L

, Ec f ∗
R → XC ∗

lẼ
f
R

,

H0
u → XR

.u + ıX
I
.u , H0

d → XR
.d + ıX

I
.d, and N f

L → XR
.Ñ f
+ ıX I

.Ñ f
(. = α, β indifferently, such that

the coupling is symmetric over the exchange α↔ β in the end).

• Neutral-Higgs-sneutrinos quartic:

gSαSβSγSδ =
g′2 + g2

32

[
Π

S uuuu
αβγδ + Π

S dddd
αβγδ − 2ΠS uudd

αβγδ − 2Π
S uuÑ f Ñ f

αβγδ + 2Π
S ddÑ f Ñ f

αβγδ

+Π
S Ñ f Ñ f Ñ f ′ Ñ f ′

αβγδ +Π
P uuuu
αβγδ +Π

P dddd
αβγδ − 2ΠP uudd

αβγδ − 2Π
P uuÑ f Ñ f

αβγδ + 2Π
P ddÑ f Ñ f

αβγδ

+ Π
P Ñ f Ñ f Ñ f ′ Ñ f ′

αβγδ + 2ΠS uu P uu
αβγδ + 2ΠS dd P dd

αβγδ − 2ΠS uu P dd
αβγδ − 2ΠS dd P uu

αβγδ

−2Π
S uu P Ñ f Ñ f

αβγδ − 2Π
S Ñ f Ñ f P uu

αβγδ + 2Π
S dd P Ñ f Ñ f

αβγδ + 2Π
S Ñ f Ñ f P dd

αβγδ + 2Π
S Ñ f Ñ f P Ñ f ′ Ñ f ′

αβγδ

]
(A.33)

where:

Π
S abcd
ijkl =

∑
σ∈S4

XR
σ(i)aXR

σ(j)bXR
σ(k)cXR

σ(l)d ; ΠP abcd
ijkl =

∑
σ∈S4

X I
σ(i)aX I

σ(j)bX I
σ(k)cX I

σ(l)d

Π
S ab P cd
ijkl =

∑
σ∈S4

XR
σ(i)aXR

σ(j)bX I
σ(k)cX I

σ(l)d

A.1.3 Loop-functions

The loop functions relevant for our computations are

• A0(m) = −16π2ı
∫

dDk

(2π)D
1

k2
−m2 .
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A.2 Tree level contributions

• B0(p,m1,m2) = −16π2ı
∫

dDk

(2π)D
1

[k2
−m2

1][(k+p)
2
−m2

2]
.

• pµB1(p,m1,m2) = −16π2ı
∫

dDk

(2π)D
kµ

[k2
−m2

1][(k+p)
2
−m2

2]
.

•
[
gµνB22 + pµpνB21

]
(p,m1,m2) = −16π2ı

∫
dDk

(2π)D
kµkν

[k2
−m2

1][(k+p)
2
−m2

2]
.

• C0(p1, p2,m1,m2,m3) = −16π2ı
∫

dDk

(2π)D
1

[k2
−m2

1][(k+p1)
2
−m2

2][(k+p1+p2)
2
−m2

3]
.

•
[
pµ1 C11 + pµ2 C12

]
(p1, p2,m1,m2,m3) = −16π2ı

∫
dDk

(2π)D
kµ

[k2
−m2

1][(k+p1)
2
−m2

2][(k+p1+p2)
2
−m2

3]
.

•
[
gµνC24 + pµ1 pν1C21 + pµ2 pν2C22 + (p

µ
1 pν2 + pµ2 pν1)C23

]
(p1, p2,m1,m2,m3) =

− 16π2ı
∫

dDk

(2π)D
kµkν

[k2
−m2

1][(k+p1)
2
−m2

2][(k+p1+p2)
2
−m2

3]
.

• D0(m1,m2,m3,m4) = −16π2ı
∫

dDk

(2π)D
1

[k2
−m2

1][k
2
−m2

2][k
2
−m2

3][k
2
−m2

4]
.

• D2(m1,m2,m3,m4) = −16π2ı
∫

dDk

(2π)D
k2

[k2
−m2

1][k
2
−m2

2][k
2
−m2

3][k
2
−m2

4]
.

Explicit expressions for these functions in the limit of vanishing external momenta can e.g. be found
in Ref. [315].

A.2 Tree level contributions

The tree-level contribution to the di d̄j → dj d̄i amplitudes corresponds to the topology of Fig.2.1(a)
and is mediated by a sneutrino internal line. It generates the following terms in the EFT:

LEFT 3
1

2m2
Sα

[(
g
Sαd jdi
L

)2
O2 +

(
g
Sαd jdi
R

)2
Õ2 + 2g

Sαd jdi
L g

Sαd jdi
R O4

]
(A.34)

where the couplings g
Sαd jdi
L,R are defined in Eq.(A.6). The sum over sneutrino/neutral-Higgs mixed

states Sα with mass mSα
is implicit. The operators O2, Õ2, etc, are defined in Eq.(2.4).

A.3 di − d j self-energy contributions

Loop corrections on the external d-fermion legs are determined by the LSZ reduction. Defining the
matrix of renormalized di − dj self energies as: Σ̂

i j
(p/) = Σ̂i jL (p/)PL + Σ̂

i j
R (p/)PR = PL Σ̃

i j
L (p/)+ PRΣ̃

i j
R (p/),
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we derive the contribution to the EFT:
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p/′dj

+
dΣ̃iiR
dp/

�����
p/di

+
dΣ̃iiR
dp/

�����
p/′di

ª®®¬
+

∑
k, j

g
Sαdk di
R

©«
mdk

Σ̂
jk
R + p/d j

Σ̂
jk
L

m2
d j
−m2

dk

������
p/dj

+

mdk
Σ̂
jk
R + p/′d j

Σ̂
jk
L

m2
d j
−m2

dk

������
p/′dj

ª®®®®¬
+

∑
k,i

g
Sαd j dk

R

©«
mdk

Σ̃
ki
R + p/di

Σ̃
ki
L

m2
di
−m2

dk

������
p/di

+
mdk

Σ̃
ki
R + p/′di

Σ̃
ki
L

m2
di
−m2

dk

������
p/′di

ª®®®¬


+ g
Sαd j di

R


1
2
g
Sαd j di

L

©«
dΣ̂

j j
L

dp/

�����
p/dj

+
dΣ̂

j j
L

dp/

�����
p/′dj

+
dΣ̃iiL
dp/

�����
p/di

+
dΣ̃iiL
dp/

�����
p/′di

ª®®¬
+

∑
k, j

g
Sαdk di
L

©«
mdk

Σ̂
jk
L + p/d j

Σ̂
jk
R

m2
d j
−m2

dk

������
p/dj

+

mdk
Σ̂
jk
L + p/′d j

Σ̂
jk
R

m2
d j
−m2

dk

������
p/′dj

ª®®®®¬
+

∑
k,i

g
Sαd j dk

L

©«
mdk

Σ̃
ki
L + p/di

Σ̃
ki
R

m2
di
−m2

dk

������
p/di

+
mdk

Σ̃
ki
L + p/′di

Σ̃
ki
R

m2
di
−m2

dk

������
p/′di

ª®®®¬

ª®®®¬O4

 , (A.35)

where the momenta p/d j
, p/′d j

, p/di and p/′di are evaluated at the values md j
, −md j

, mdi
and −mdi

. We
list below the contributions to the self-energies.
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A.3 di − d j self-energy contributions

A.3.1 Scalar/fermion loop

− ıΣ
S/ f
d j di
(p/) =

ı

16π2

{
−p/

[
g
S f d j ∗

L g
S f di
L PL + g

S f d j ∗

R g
S f di
R PR

]
B1 +m f

[
g
S f d j ∗

R g
S f di
L PL + g

S f d j ∗

L g
S f di
R PR

]
B0

}
(−p,m f ,mS ) (A.36)

The scalar/fermion pair (S/ f ) is summed over the following list of particles:

• Higgs-sneutrino/down: couplings from Eq.(A.6).

• Charged Higgs-slepton/up: couplings from Eq.(A.7).

• sdown/neutralino-neutrino: couplings from Eq.(A.8).

• sdown/gluino: couplings from Eq.(A.9); color-factor C2(3) = 4/3.

• sup/chargino-lepton: couplings from Eq.(A.10).

• sup/down: couplings from Eq.(A.11); color factor: εabcεabd = 2δcd.

• sdown/up: couplings from Eq.(A.12); color factor: εabcεabd = 2δcd.

A.3.2 Vector/fermion loop

− ıΣ
V / f
d j di
(p) = −

ı

16π2

{
(D − 2)p/

[
g
V f d j ∗

L g
V f di
L PL + g

V f d j ∗

R g
V f di
R PR

]
B1

+Dm f

[
g
V f d j ∗

R g
V f di
L PL + g

V f d j ∗

L g
V f di
R PR

]
B0

}
(−p,m f ,mV ) (A.37)

The vector/fermion pair (S/ f ) is summed over the following list of particles:

• W /up: Eq.(A.13).

• Z/down: Eq.(A.14).

A.3.3 Counterterm

Defining the generic d-mass counterterm δmd ji = δmL
d jiPL+δmR

d jiPR as well as the d-wave-function
counterterm δZd ji = δZL

d jiPL + δZR
d jiPR, we arrive at the following contribution:

− ıΣCT
d j di
(p) = ı

p/

2

[(
δZL

d ji + δZ
L ∗
d i j

)
PL +

(
δZR

d ji + δZ
R ∗
d i j

)
PR

]
− ı

[(
δmL

d ji +
1
2

(
mdi

δZR ∗
d i j +md j

δZL
d ji

))
PL +

(
δmR

d ji +
1
2

(
mdi

δZL ∗
d i j +md j

δZR
d ji

))
PR

]
(A.38)

In principle, δmL
d ji =

(
δmR

d ij

)∗
= δY L

d jivd + Y i
dδi jδvd.
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Appendix A Analytic Expressions of Wilson Coefficients for RpV contributions to meson oscillation

A.4 Sneutrino-Higgs self-energies

We assume that the tadpoles (Higgs, gauge bosons) vanish, which supposes certain relations at the
loop-level between vevs and tree-level parameters. Then, defining the renormalized neutral-scalar
self-energy matrix Σ̂Sαβ , we derive the following contribution to the EFT:

LEFT 3
−1

2m2
Sα

m2
Sβ

[
g
Sαd jdi
L Σ̂

S
αβg

Sβd jdi
L O2 + g

Sαd jdi
R Σ̂

S
αβg

Sβd jdi
R Õ2 + 2g

Sαd jdi
L Σ̂

S
αβg

Sβd jdi
R O4

]
.

(A.39)
The various contributions to the neutral-scalar self-energies are listed below.

A.4.1 Scalar A0-loop

− ıΣ
S AS

αβ = −
ı

16π2 g
S̃S̃SαSβ A0(mS̃) . (A.40)

This contribution is summed over the scalar S̃, taking value in the following list of particles:

• scalar-ups: couplings from Eq.(A.30). 3 colors contributing.

• sdowns: couplings from Eq.(A.31). 3 colors contributing.

• Charged Higgs-sleptons: couplings from Eq.(A.32).

• Higgs-sneutrinos: couplings from Eq.(A.33); symmetry-factor 1/2.

A.4.2 Vector A0-loop

− ıΣ
S AV

αβ =
ı

16π2 g
VVSαSβ D A0(mV ) (A.41)

The vector V belongs to the following list of particles:

• W’s: couplings from Eq.(A.28).

• Z’s: couplings from Eq.(A.29); symmetry-factor 1/2.

A.4.3 Scalar B-loop

− ıΣ
S BS

αβ ==
ı

16π2 g
SδSγSαgSγSδSβ B0(mSγ

,mSδ
) (A.42)

The scalar pair (Sγ,Sδ) is summed over the particles:

• scalar-ups: couplings from Eq.(A.24). 3 colors contributing.

• sdowns: couplings from Eq.(A.25). 3 colors contributing.

• Charged Higgs-sleptons: couplings from Eq.(A.26).

• Higgs-sneutrinos: couplings from Eq.(A.27).

98



A.4 Sneutrino-Higgs self-energies

A.4.4 Fermion B-loop

− ıΣ
S B f

αβ =
−2ı

16π2

{[
g
Sα f̃ f

L g
Sβ f̃ f ∗

L + g
Sα f̃ f

R g
Sβ f̃ f ∗

R

]
DB22

+

[
g
Sα f̃ f

L g
Sβ f̃ f ∗

R + g
Sα f̃ f

R g
Sβ f̃ f ∗

L

]
m f m f̃ B0

}
(m f ,m f̃ ) (A.43)

List of particles for the fermion pair ( f , f̃ ):

• ups: couplings of Eq.(A.15). 3 colors contributing.

• downs: couplings of Eq.(A.6). 3 colors contributing.

• charginos-leptons: couplings of Eq.(A.16).

• neutrino-neutralinos: couplings of Eq.(A.17); symmetry-factor 1/2.

A.4.5 Vector B-loop

− ıΣ
S BV

αβ =
ı

16π2 g
SαVVgSβVV DB0(mV ,mV ) (A.44)

The vector V is summed over:

• W’s: couplings of Eq.(A.18).

• Z’s: couplings of Eq.(A.19); symmetry-factor 1/2

A.4.6 Ghost B-loop

− ıΣ
S Bg

αβ = −
ı

16π2 g
SαgggSβggB0(mg,mg) (A.45)

The contribution is summed over the ghost fields g:

• gW ’s: couplings of Eq.(A.20).

• gZ : couplings of Eq.(A.21).

A.4.7 Scalar/vector B-loop

− ıΣ
S BSV

αβ =
ı

16π2 g
SαVS ∗gSβVSDB22(mV ,mS) (A.46)

List of particles for the scalar/vector pair (S/V):

• Charged Higgs-slepton / W : couplings of Eq.(A.22).

• Higgs - sneutrino / Z: couplings of Eq.(A.23).
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Appendix A Analytic Expressions of Wilson Coefficients for RpV contributions to meson oscillation

A.4.8 Counterterms

Defining the neutral scalar mass and wave-function counterterms δm2
αβ and δZS

αβ:

− ıΣSCT
αβ = −ı

[
δm2

αβ +
1
2
δZS

αβ

(
m2
Sα
+ m2

Sβ

)]
(A.47)

A.5 Vertex corrections

The vertex corrections to the EFT are obtained as:

LEFT 3
1

2m2
Sα

[
g
Sαd jdi
L V̂

Sαd jdi
L O2 + g

Sαd jdi
R V̂

Sαd jdi
R Õ2 +

(
g
Sαd jdi
R V̂

Sαd jdi
L + g

Sαd jdi
L V̂

Sαd jdi
R

)
O4

]
(A.48)

where the d̄jdi-neutral-Higgs renormalized vertex function V̂Sαd jdi = V̂
Sαd jdi
L PL + V̂

Sαd jdi
L PR

receives the contributions listed below.

A.5.1 Scalar/fermion loop with cubic scalar coupling

− ıV̂
Sαd j di [S f f , S3

] = −
ı

16π2 g
SαSk Sl

[
g
Sl f d j ∗

R g
Sk f di
L PL + g

Sl f d j ∗

L g
Sk f di
R PR

]
m fC0(m f ,mSk

,mSl
) (A.49)

List of particles for the scalar/fermion triplet (Sk,Sl/ f ):

• Higgs-sneutrino/down: couplings from Eqs.(A.6),(A.27).

• Charged Higgs-slepton/up: couplings from Eqs.(A.7),(A.26).

• sdown/neutralino-neutrino: couplings from Eqs.(A.8),(A.25).

• sdown/gluino: couplings from Eqs.(A.9),(A.25); color-factor C2(3) = 4/3.

• sup/chargino-lepton: couplings from Eqs.(A.10),(A.24).

• sup/down: couplings from Eqs.(A.11),(A.24).

• sdown/up: couplings from Eqs.(A.12),(A.25).

A.5.2 Scalar/fermion loop without cubic scalar coupling

− ıV̂
Sαd j di [S f f ] = −

ı

16π2

{[
g
S fl d j ∗

R g
Sα fl fk
R g

S fk di
L PL + g

S fl d j ∗

L g
Sα fl fk
L g

S fk di
R PR

]
DC24

+

[
g
S fl d j ∗

R g
Sα fl fk
L g

S fk di
L PL + g

S fl d j ∗

L g
Sα fl fk
R g

S fk di
R PR

]
m fk

m fl
C0

}
(mS ,m fk

,m fl
) (A.50)

List of particles for the scalar/fermion triplet (S/ fk, fl):

• Higgs-sneutrino/down: couplings from Eq.(A.6).
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A.5 Vertex corrections

• Charged Higgs-slepton/up: couplings from Eqs.(A.7),(A.15).

• sdown/neutralino-neutrino: couplings from Eqs.(A.8),(A.17).

• sup/chargino-lepton: couplings from Eqs.(A.10),(A.16).

• sup/down: couplings from Eqs.(A.11),(A.6).

• sdown/up: couplings from Eqs.(A.12),(A.15).

A.5.3 Vector/fermion loop with scalar-vector coupling

− ıV̂
Sαd j di [SVV ,V f f ] = −

ı

16π2 g
SαVkVl

[
g
Vl f d j ∗

R g
Vk f di
L PL + g

Vl f d j ∗

L g
Vk f di
R PR

]
Dm f C0(m f ,mVk

,mVl
) (A.51)

The vector/fermion triplet (Vk,Vl/ f ) takes the following values:

• W /up: couplings from Eqs.(A.13),(A.18).

• Z/down: couplings from Eqs.(A.14),(A.19).

A.5.4 Vector/fermion loop with scalar-fermion coupling

− ıV̂
Sαd j di [SVV , S f f ] =

ı

16π2

{[
g
V fl d j ∗

R g
Sα fl fk
L g

V fk di
L PL + g

V fl d j ∗

L g
Sα fl fk
R g

V fk di
R PR

]
D2 C24

+

[
g
V fl d j ∗

R g
Sα fl fk
R g

V fk di
L PL + g

V fl d j ∗

L g
Sα fl fk
L g

V fk di
R PR

]
Dm fk

m fl
C0

}
(mV ,m fk

,m fl
) (A.52)

The vector/fermion triplet (V/ fk, fl) takes the following values:

• W /up: couplings from Eqs.(A.13),(A.15).

• Z/down: couplings from Eqs.(A.14),(A.6).

A.5.5 Vector/Scalar/fermion loops

−ıV̂
Sαd j di [VS f ] = −

ı

16π2

{
gVSSα

[
g
S f d j ∗

R g
V f di
L PL + g

S f d j ∗

L g
V f di
R PR

]
+ gSVSα

[
g
V f d j ∗

R g
S f di
L PL + g

V f d j ∗

L g
S f di
R PR

]}
× DC24(m f ,mS ,mV ) (A.53)

List of particles for the scalar/vector/fermion triplet (S/V/ f ):

• charged-Higgs-slepton/W /up: couplings from Eqs.(A.13),(A.7),(A.22).

• neutral-Higgs-sneutrino/Z/down: couplings from Eqs.(A.14),(A.6),(A.23).
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Appendix A Analytic Expressions of Wilson Coefficients for RpV contributions to meson oscillation

A.5.6 Counterterms
The counterterm contribution −ıV̂Sαd jdi [CT] reads:

ı

{
−

1
√

2

[
δYL

d ji (X
R
kd + ıX

I
kd ) + δλ

′L
f i j (X

R
k Ñ f

+ ıX I
k Ñ f
)

]
+

1
2

[
δZR ∗

d jlg
Sαdl di
L + δZL

d ilg
Sαd j dl

L + δZS
kαg

Sαd j di

L

]}
PL

+ ı

{
−

1
√

2

[
δYR

d ji (X
R
kd − ıX

I
kd ) + δλ

′R
f j i (X

R
k Ñ f

− ıX I
k Ñ f
)

]
+

1
2

[
δZL ∗

d jlg
Sαdl di
R + δZR

d ilg
Sαd j dl

R + δZS
kαg

Sαd j di

R

]}
PR

(A.54)

where δYR
d ji =

(
δY L

d ij

)∗
is the counterterm to the Yukawa coupling and δλ′Rf ji =

(
δλ′Lf ji

)∗
is the

counterterm to the λ′ coupling.

A.6 Box diagrams

Here, we collect the box-diagram contributions to the di d̄j → dj d̄i amplitude. The results are listed
according to the topologies of Fig.2.2.

A.6.1 Vector/fermion/vector/fermion “straight” box
Case Vα,β colour-singlets

LEFT 3
1

32π2

{
g
Vα fk d j ∗

L g
Vβ fk di

L g
Vβ fl d j ∗

L g
Vα fl di
L D2 O1 + g

Vα fk d j ∗

R g
Vβ fk di

R g
Vβ fl d j ∗

R g
Vα fl di
R D2 Õ1

+ 16g
Vα fk d j ∗

R g
Vβ fk di

L g
Vβ fl d j ∗

R g
Vα fl di
L m fk

m fl
D0 O2 + 16g

Vα fk d j ∗

L g
Vβ fk di

R g
Vβ fl d j ∗

L g
Vα fl di
R m fk

m fl
D0 Õ2

+ 16
[
g
Vα fk d j ∗

R g
Vβ fk di

L g
Vβ fl d j ∗

L g
Vα fl di
R + g

Vα fk d j ∗

L g
Vβ fk di

R g
Vβ fl d j ∗

R g
Vα fl di
L

]
m fk

m fl
D0 O4

−2
[
g
Vα fk d j ∗

L g
Vβ fk di

L g
Vβ fl d j ∗

R g
Vα fl di
R + g

Vα fk d j ∗

R g
Vβ fk di

R g
Vβ fl d j ∗

L g
Vα fl di
L

]
D2 O5

}
(mSα

,m fk
,mSβ

,m fl
) (A.55)

List of particles:

• W / up: couplings from Eq.(A.13).

A.6.2 Scalar/fermion/scalar/fermion “straight” box
Case 1: Sα,β colour-singlets

LEFT 3
1

32π2

{
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sβ fl d j ∗

L g
Sα fl di
L

D2
4

O1 + g
Sα fk d j ∗

R g
Sβ fk di

R g
Sβ fl d j ∗

R g
Sα fl di
R

D2
4

Õ1

+ g
Sα fk d j ∗

R g
Sβ fk di

L g
Sβ fl d j ∗

R g
Sα fl di
L m fk

m fl
D0 O2 + g

Sα fk d j ∗

L g
Sβ fk di

R g
Sβ fl d j ∗

L g
Sα fl di
R m fk

m fl
D0 Õ2

+

[
g
Sα fk d j ∗

R g
Sβ fk di

L g
Sβ fl d j ∗

L g
Sα fl di
R + g

Sα fk d j ∗

L g
Sβ fk di

R g
Sβ fl d j ∗

R g
Sα fl di
L

]
m fk

m fl
D0 O4

−

[
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sβ fl d j ∗

R g
Sα fl di
R + g

Sα fk d j ∗

R g
Sβ fk di

R g
Sβ fl d j ∗

L g
Sα fl di
L

]
D2
2

O5

}
(mSα

,m fk
,mSβ

,m fl
) (A.56)

List of particles:

• Higgs-sneutrino / down: couplings from Eq.(A.6).
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A.6 Box diagrams

• Charged Higgs-slepton / up: couplings from Eq.(A.7).

Case 2: fk ,l colour-singlets

LEFT 3
1

32π2

{
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sβ fl d j ∗

L g
Sα fl di
L

D2
4

O1 + g
Sα fk d j ∗

R g
Sβ fk di

R g
Sβ fl d j ∗

R g
Sα fl di
R

D2
4

Õ1

+ g
Sα fk d j ∗

R g
Sβ fk di

L g
Sβ fl d j ∗

R g
Sα fl di
L m fk

m fl
D0 O3 + g

Sα fk d j ∗

L g
Sβ fk di

R g
Sβ fl d j ∗

L g
Sα fl di
R m fk

m fl
D0 Õ3

−

[
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sβ fl d j ∗

R g
Sα fl di
R + g

Sα fk d j ∗

R g
Sβ fk di

R g
Sβ fl d j ∗

L g
Sα fl di
L

]
D2
2

O4

+

[
g
Sα fk d j ∗

R g
Sβ fk di

L g
Sβ fl d j ∗

L g
Sα fl di
R + g

Sα fk d j ∗

L g
Sβ fk di

R g
Sβ fl d j ∗

R g
Sα fl di
L

]
m fk

m fl
D0 O5

}
(mSα

,m fk
,mSβ

,m fl
) (A.57)

List of particles:

• sdown / neutrino-neutralino: couplings from Eq.(A.8).

• sup / chargino-lepton: couplings from Eq.(A.10).

Case 3: all fields colour-triplets

LEFT 3
1

32π2

{
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sβ fl d j ∗

L g
Sα fl di
L

D2
2

O1 + g
Sα fk d j ∗

R g
Sβ fk di

R g
Sβ fl d j ∗

R g
Sα fl di
R

D2
2

Õ1

+ g
Sα fk d j ∗

R g
Sβ fk di

L g
Sβ fl d j ∗

R g
Sα fl di
L m fk

m fl
D0(O2 +O3) + g

Sα fk d j ∗

L g
Sβ fk di

R g
Sβ fl d j ∗

L g
Sα fl di
R m fk

m fl
D0(Õ2 + Õ3)

+ (O4 +O5)

( [
g
Sα fk d j ∗

R g
Sβ fk di

L g
Sβ fl d j ∗

L g
Sα fl di
R + g

Sα fk d j ∗

L g
Sβ fk di

R g
Sβ fl d j ∗

R g
Sα fl di
L

]
m fk

m fl
D0

−

[
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sβ fl d j ∗

R g
Sα fl di
R + g

Sα fk d j ∗

R g
Sβ fk di

R g
Sβ fl d j ∗

L g
Sα fl di
L

]
D2
2

)}
(mSα

,m fk
,mSβ

,m fl
) (A.58)

List of particles:

• sdown / up: couplings from Eq.(A.12).

• sup / down: couplings from Eq.(A.11).

Case 4: fk ,l colour-octets

LEFT 3
1

32π2

{
11
18

g
Sα fk d j ∗

L g
Sβ fk di

L g
Sβ fl d j ∗

L g
Sα fl di
L

D2
4

O1 +
11
18

g
Sα fk d j ∗

R g
Sβ fk di

R g
Sβ fl d j ∗

R g
Sα fl di
R

D2
4

Õ1

+g
Sα fk d j ∗

R g
Sβ fk di

L g
Sβ fl d j ∗

R g
Sα fl di
L m fk

m fl
D0

(
7

12
O2 +

1
36

O3

)
+g

Sα fk d j ∗

L g
Sβ fk di

R g
Sβ fl d j ∗

L g
Sα fl di
R m fk

m fl
D0

(
7
12

Õ2 +
1

36
Õ3

)
+

[
g
Sα fk d j ∗

R g
Sβ fk di

L g
Sβ fl d j ∗

L g
Sα fl di
R + g

Sα fk d j ∗

L g
Sβ fk di

R g
Sβ fl d j ∗

R g
Sα fl di
L

]
m fk

m fl
D0

(
7

12
O4 +

1
36

O5

)
−

[
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sβ fl d j ∗

R g
Sα fl di
R + g

Sα fk d j ∗

R g
Sβ fk di

R g
Sβ fl d j ∗

L g
Sα fl di
L

]
D2
4

(
1
18

O4 +
7
6
O5

)}
(mSα

,m fk
,mSβ

,m fl
)

(A.59)

List of particles:

• sdown / gluino: couplings from Eq.(A.9) (stripped from Gell-Mann matrix element).
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Appendix A Analytic Expressions of Wilson Coefficients for RpV contributions to meson oscillation

Case 5: fk ,l colour-octet+singlet

LEFT 3
1

32π2

{
1
3
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sβ fl d j ∗

L g
Sα fl di
L

D2
4

O1 +
1
3
g
Sα fk d j ∗

R g
Sβ fk di

R g
Sβ fl d j ∗

R g
Sα fl di
R

D2
4

Õ1

+ g
Sα fk d j ∗

R g
Sβ fk di

L g
Sβ fl d j ∗

R g
Sα fl di
L m fk

m fl
D0

1
2

(
O2 −

1
3
O3

)
+ g

Sα fk d j ∗

L g
Sβ fk di

R g
Sβ fl d j ∗

L g
Sα fl di
R m fk

m fl
D0

1
2

(
Õ2 −

1
3
Õ3

)
+

[
g
Sα fk d j ∗

R g
Sβ fk di

L g
Sβ fl d j ∗

L g
Sα fl di
R + g

Sα fk d j ∗

L g
Sβ fk di

R g
Sβ fl d j ∗

R g
Sα fl di
L

]
m fk

m fl
D0

(
O4 −

1
3
O5

)
+

[
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sβ fl d j ∗

R g
Sα fl di
R + g

Sα fk d j ∗

R g
Sβ fk di

R g
Sβ fl d j ∗

L g
Sα fl di
L

]
D2
4

(
1
3
O4 −O5

)}
(mSα

,m fk
,mSβ

,m fl
)

(A.60)

List of particles:

• sdown / gluino / sdown / neutralino-neutrino: couplings from Eqs.(A.8),(A.9) (stripped from
Gell-Mann matrix element); ×2 (π-rotated diagram).

A.6.3 Scalar/fermion/scalar/fermion “scalar-cross” box

Case 1: Sα,β colour-singlets

LEFT 3
1

32π2

{
−g

Sα fk d j ∗

L g
Sβ fk di

L g
Sα fl d j ∗

L g
Sβ fl di

L

D2
4

O1 − g
Sα fk d j ∗

R g
Sβ fk di

R g
Sα fl d j ∗

R g
Sβ fl di

R

D2
4

Õ1

+ g
Sα fk d j ∗

R g
Sβ fk di

L g
Sα fl d j ∗

R g
Sβ fl di

L m fk
m fl

D0 O2 + g
Sα fk d j ∗

L g
Sβ fk di

R g
Sα fl d j ∗

L g
Sβ fl di

R m fk
m fl

D0 Õ2

+

[
g
Sα fk d j ∗

R g
Sβ fk di

L g
Sα fl d j ∗

L g
Sβ fl di

R + g
Sα fk d j ∗

L g
Sβ fk di

R g
Sα fl d j ∗

R g
Sβ fl di

L

]
m fk

m fl
D0 O4

+

[
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sα fl d j ∗

R g
Sβ fl di

R + g
Sα fk d j ∗

R g
Sβ fk di

R g
Sα fl d j ∗

L g
Sβ fl di

L

]
D2
2

O5

}
(mSα

,m fk
,mSβ

,m fl
) (A.61)

List of particles:

• Higgs-sneutrino / down: couplings from Eq.(A.6).

Case 2: fk colour-singlet

LEFT 3
1

32π2

{
g
Sα fk d j ∗

R g
Sβ fk di

L g
Sα fl d j ∗

R g
Sβ fl di

L m fk
m fl

D0(O2 −O3) + g
Sα fk d j ∗

L g
Sβ fk di

R g
Sα fl d j ∗

L g
Sβ fl di

R m fk
m fl

D0(Õ2 − Õ3)

+ (O4 −O5)

( [
g
Sα fk d j ∗

R g
Sβ fk di

L g
Sα fl d j ∗

L g
Sβ fl di

R + g
Sα fk d j ∗

L g
Sβ fk di

R g
Sα fl d j ∗

R g
Sβ fl di

L

]
m fk

m fl
D0

−

[
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sα fl d j ∗

R g
Sβ fl di

R + g
Sα fk d j ∗

R g
Sβ fk di

R g
Sα fl d j ∗

L g
Sβ fl di

L

]
D2
2

)}
(mSα

,m fk
,mSβ

,m fl
) (A.62)

List of particles:

• sup / chargino-lepton / sup / down: couplings from Eqs.(A.10),(A.11).

• sdown / neutralino-neutrino / sdown / up: couplings from Eqs.(A.8),(A.12).
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A.6 Box diagrams

Case 3: fk colour-triplet

LEFT 3
1

32π2

{
−g

Sα fk d j ∗

L g
Sβ fk di

L g
Sα fl d j ∗

L g
Sβ fl di

L

D2
4

O1 − g
Sα fk d j ∗

R g
Sβ fk di

R g
Sα fl d j ∗

R g
Sβ fl di

R

D2
4

Õ1

+ g
Sα fk d j ∗

R g
Sβ fk di

L g
Sα fl d j ∗

R g
Sβ fl di

L m fk
m fl

D0
1
6
(5O2 +O3) + g

Sα fk d j ∗

L g
Sβ fk di

R g
Sα fl d j ∗

L g
Sβ fl di

R m fk
m fl

D0
1
6
(5Õ2 + Õ3)

+

[
g
Sα fk d j ∗

R g
Sβ fk di

L g
Sα fl d j ∗

L g
Sβ fl di

R + g
Sα fk d j ∗

L g
Sβ fk di

R g
Sα fl d j ∗

R g
Sβ fl di

L

]
m fk

m fl
D0

1
6
(5O4 +O5)

+

[
g
Sα fk d j ∗

L g
Sβ fk di

L g
Sα fl d j ∗

R g
Sβ fl di

R + g
Sα fk d j ∗

R g
Sβ fk di

R g
Sα fl d j ∗

L g
Sβ fl di

L

]
D2
4

1
3
(O4 + 5O5)

}
(mSα

,m fk
,mSβ

,m fl
)

(A.63)

List of particles:

• sdown / gluino / sdown / up: couplings from Eqs.(A.12),(A.9) (stripped from Gell-Mann matrix
element); ×2 (π-rotated diagram).

A.6.4 Scalar/fermion/scalar/fermion “fermion-cross” box

Case 1: fk colour-singlet

LEFT 3
1

32π2

{
g
Sα fk d j ∗

L g
Sβ fk d j ∗

L g
Sα fl di
L g

Sβ fl di

L

m fk
m fl

2
D0 O1 + g

Sα fk d j ∗

R g
Sβ fk d j ∗

R g
Sα fl di
R g

Sβ fl di

R

m fk
m fl

2
D0 Õ1

− g
Sα fk d j ∗

R g
Sβ fk d j ∗

R g
Sα fl di
L g

Sβ fl di

L m fk
m fl

D0(O2 +O3) − g
Sα fk d j ∗

L g
Sβ fk d j ∗

L g
Sα fl di
R g

Sβ fl di

R m fk
m fl

D0(Õ2 + Õ3)

−

[
g
Sα fk d j ∗

L g
Sβ fk d j ∗

R g
Sα fl di
R g

Sβ fl di

L + g
Sα fk d j ∗

R g
Sβ fk d j ∗

L g
Sα fl di
L g

Sβ fl di

R

]
D2
2

O4

+

[
g
Sα fk d j ∗

R g
Sβ fk d j ∗

L g
Sα fl di
R g

Sβ fl di

L + g
Sα fk d j ∗

L g
Sβ fk d j ∗

R g
Sα fl di
L g

Sβ fl di

R

]
D2
2

O5

}
(mSα

,m fk
,mSβ

,m fl
) (A.64)

List of particles:

• sdown / neutrino-neutralino: couplings from Eq.(A.8).

Case 2: Sα colour-singlet

LEFT 3
1

32π2

{
−g

Sα fk d j ∗

R g
Sβ fk d j ∗

R g
Sα fl di
L g

Sβ fl di

L m fk
m fl

D0 O3 − g
Sα fk d j ∗

L g
Sβ fk d j ∗

L g
Sα fl di
R g

Sβ fl di

R m fk
m fl

D0 Õ3

− (O4 −O5)

( [
g
Sα fk d j ∗

R g
Sβ fk d j ∗

L g
Sα fl di
R g

Sβ fl di

L + g
Sα fk d j ∗

L g
Sβ fk d j ∗

R g
Sα fl di
L g

Sβ fl di

R

]
+

[
g
Sα fk d j ∗

L g
Sβ fk d j ∗

R g
Sα fl di
R g

Sβ fl di

L + g
Sα fk d j ∗

R g
Sβ fk d j ∗

L g
Sα fl di
L g

Sβ fl di

R

] )
D2
2

}
(mSα

,m fk
,mSβ

,m fl
) (A.65)

List of particles:

• Charged Higgs-slepton / up / sdown / up: couplings from Eqs.(A.7),(A.12).

• Higgs-sneutrino / down / sup / down: couplings from Eqs.(A.6),(A.11).
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Case 3: fk ,l colour-octets

LEFT 3
1

32π2

{
1
18

g
Sα fk d j ∗

L g
Sβ fk d j ∗

L g
Sα fl di
L g

Sβ fl di

L m fk
m fl

D0 O1 +
1
18

g
Sα fk d j ∗

R g
Sβ fk d j ∗

R g
Sα fl di
R g

Sβ fl di

R m fk
m fl

D0 Õ1

−
1
9
g
Sα fk d j ∗

R g
Sβ fk d j ∗

R g
Sα fl di
L g

Sβ fl di

L m fk
m fl

D0(O2 +O3) −
1
9
g
Sα fk d j ∗

L g
Sβ fk d j ∗

L g
Sα fl di
R g

Sβ fl di

R m fk
m fl

D0(Õ2 + Õ3)

−
1
9

[
g
Sα fk d j ∗

R g
Sβ fk d j ∗

L g
Sα fl di
R g

Sβ fl di

L + g
Sα fk d j ∗

L g
Sβ fk d j ∗

R g
Sα fl di
L g

Sβ fl di

R

]
D2
4
(5O4 − 3O5)

−
1
9

[
g
Sα fk d j ∗

L g
Sβ fk d j ∗

R g
Sα fl di
R g

Sβ fl di

L + g
Sα fk d j ∗

R g
Sβ fk d j ∗

L g
Sα fl di
L g

Sβ fl di

R

]
D2
4
(3O4 − 5O5)

}
(mSα

,m fk
,mSβ

,m fl
)

(A.66)

List of particles:

• sdown / gluinos: couplings from Eq.(A.9) (stripped from Gell-Mann matrix element).

Case 4: fk ,l colour-octet+singlet

LEFT 3
1

32π2

{
1
6
g
Sα fk d j ∗

L g
Sβ fk d j ∗

L g
Sα fl di
L g

Sβ fl di

L m fk
m fl

D0 O1 +
1
6
g
Sα fk d j ∗

R g
Sβ fk d j ∗

R g
Sα fl di
R g

Sβ fl di

R m fk
m fl

D0 Õ1

−
1
3
g
Sα fk d j ∗

R g
Sβ fk d j ∗

R g
Sα fl di
L g

Sβ fl di

L m fk
m fl

D0(O2 +O3) −
1
3
g
Sα fk d j ∗

L g
Sβ fk d j ∗

L g
Sα fl di
R g

Sβ fl di

R m fk
m fl

D0(Õ2 + Õ3)

+
1
3

[
g
Sα fk d j ∗

R g
Sβ fk d j ∗

L g
Sα fl di
R g

Sβ fl di

L + g
Sα fk d j ∗

L g
Sβ fk d j ∗

R g
Sα fl di
L g

Sβ fl di

R

]
D2
4
(O4 − 3O5)

+
1
3

[
g
Sα fk d j ∗

L g
Sβ fk d j ∗

R g
Sα fl di
R g

Sβ fl di

L + g
Sα fk d j ∗

R g
Sβ fk d j ∗

L g
Sα fl di
L g

Sβ fl di

R

]
D2
4
(3O4 −O5)

}
(mSα

,m fk
,mSβ

,m fl
)

(A.67)

List of particles:

• sdown / gluino / sdown / neutralino-neutrino: couplings from Eqs.(A.8),(A.9) (stripped from
Gell-Mann matrix element); + diagram with χ0

↔ g̃.

A.6.5 Vector/fermion/scalar/fermion “straight” box
Case S colour-singlet

LEFT 3
1

32π2

{
−g

V fk d j ∗

L g
S fk di
L g

S fl d j ∗

L g
V fl di
L m fk

m fl
D0 O1 − g

V fk d j ∗

R g
S fk di
R g

S fl d j ∗

R g
V fl di
R m fk

m fl
D0 Õ1

− 2g
V fk d j ∗

R g
S fk di
L g

S fl d j ∗

R g
V fl di
L D2(O2 +O3) − 2g

V fk d j ∗

L g
S fk di
R g

S fl d j ∗

L g
V fl di
R D2(Õ2 + Õ3)

−

[
g
V fk d j ∗

L g
S fk di
R g

S fl d j ∗

R g
V fl di
L + g

V fk d j ∗

R g
S fk di
L g

S fl d j ∗

L g
V fl di
R

]
D2O4

+2
[
g
V fk d j ∗

L g
S fk di
L g

S fl d j ∗

R g
V fl di
R + g

V fk d j ∗

R g
S fk di
R g

S fl d j ∗

L g
V fl di
L

]
m fk

m fl
D0 O5

}
(mV ,m fk

,mS ,m fl
) (A.68)

List of particles:

• Z / down / sneutrino-neutral Higgs /down: couplings from Eqs.(A.6),(A.14); ×2 (π-rotated
diagram).

• W / up / charged Higgs-slepton / up: couplings from Eqs.(A.7),(A.13); ×2 (π-rotated diagram).
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A.6 Box diagrams

A.6.6 Vector/fermion/scalar/fermion “cross” boxes
Case S colour-singlet

LEFT 3
1

32π2

{
−

(
g
V fk d j ∗

L g
S fk di
L g

V fl d j ∗

L g
S fl di
L m fk

m fl
+ g

S fk d j ∗

L g
V fk di
L g

S fl d j ∗

L g
V fl di
L

)
m fk

m fl
D0 O1

−

(
g
V fk d j ∗

R g
S fk di
R g

V fl d j ∗

R g
S fl di
R + g

S fk d j ∗

R g
V fk di
R g

S fl d j ∗

R g
V fl di
R

)
m fk

m fl
D0 Õ1

− 2
(
g
V fk d j ∗

R g
S fk di
L g

V fl d j ∗

R g
S fl di
L + g

S fk d j ∗

R g
V fk di
L g

S fl d j ∗

R g
V fl di
L

)
D2 O3

− 2
(
g
V fk d j ∗

L g
S fk di
R g

V fl d j ∗

L g
S fl di
R + g

S fk d j ∗

L g
V fk di
R g

S fl d j ∗

L g
V fl di
R

)
D2 Õ3

+

[
g
V fk d j ∗

L g
S fk di
R g

V fl d j ∗

R g
S fl di
L + g

V fk d j ∗

R g
S fk di
L g

V fl d j ∗

L g
S fl di
R

+g
S fk d j ∗

L g
V fk di
R g

S fl d j ∗

R g
V fl di
L + g

S fk d j ∗

R g
V fk di
L g

S fl d j ∗

L g
V fl di
R

]
D2 O4

+ 2
[
g
V fk d j ∗

L g
S fk di
L g

V fl d j ∗

R g
S fl di
R + g

V fk d j ∗

R g
S fk di
R g

V fl d j ∗

L g
S fl di
L

+g
S fk d j ∗

L g
V fk di
L g

S fl d j ∗

R g
V fl di
R + g

S fk d j ∗

R g
V fk di
R g

S fl d j ∗

L g
V fl di
L

]
m fk

m fl
D0 O5

}
(mV ,m fk

,mS ,m fl
) (A.69)

List of particles:

• Z / down / sneutrino-neutral Higgs / down: couplings from Eqs.(A.6),(A.14).

A.6.7 Vector/fermion/scalar/fermion “fermion-cross” box
Case S colour-triplet

LEFT 3
1

32π2

{
g
V fk d j ∗

R g
S fk d j ∗

R g
S fl di
L g

V fl di
L

D2
4
(O2 −O3) − g

V fk d j ∗

L g
S fk d j ∗

L g
S fl di
R g

V fl di
R

D2
4
(Õ2 − Õ3)

+2
(
g
V fk d j ∗

L g
S fk d j ∗

R + g
V fk d j ∗

R g
S fk d j ∗

L

) (
g
S fl di
R g

V fl di
L + g

S fl di
L g

V fl di
R

)
m fk

m fl
D0(O4 −O5)

}
(mV ,m fk

,mS ,m fl
)

(A.70)

List of particles:

• W / up / sdown / up: couplings from Eqs.(A.13),(A.12); ×2 (π-rotated diagram).

• Z / down / sup / down: couplings from Eqs.(A.14),(A.11); vanishes from antisymmetry of λ′′;
×2 (π-rotated diagram).
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