Institut für Pharmazeutische Biologie Bonn

Bioinformatische und *in-vitro*-Analyse der *frs*-Biosynthesegencluster von *Cand.* Burkholderia crenata und *Chromobacterium vaccinii*

Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Isabella Schamari

aus Bonn

Bonn 2018

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erstgutachter:	Frau Professor Dr. rer. nat. Gabriele König
Zweitgutachter:	Herr Professor Dr. rer. nat. Werner Knöss
Tag der Promotion:	15.02.2019
Erscheinungsjahr:	2019

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die zum Erfolg dieser Arbeit mit beigetragen haben, besonders bei Frau Professor Gabriele König, die mir das spannende Thema zur Bearbeitung überlassen hat. Mein Dank gilt auch Herrn Dr. Max Crüsemann, der durch seine detailierte Recherche in Datenbanken Teilsequenzen des *cvfrs*-BGC gefunden hat und dadurch einen großen Beitrag dazu geliefert hat, dass die Arbeit in dieser Form überhaupt möglich war. An dieser Stelle danke ich auch Dr. René Richarz, der in mühevoller Kleinarbeit die vorhandenen Sequenzlücken im cvfrs-BGC geschlossen hat, was ebenfalls grundlegend zum Erfolg dieser Arbeit beigetragen hat. Natürlich möchte ich mich auch bei unserem Arbeitskreis bedanken, und insbesondere den Kolleginnen Kollegen, die mit in dieses Projekt involviert waren: Cornelia Hermes, Daniel Wirtz, Tatjana Reuter, Steffen Hild. Ein großer Dank gilt auch unserer Technischen Assistentin Emilie Goralski. Vielen Dank für die Starthilfe in unserem Arbeitskreis und in die Einführung der Methoden. Auch dem Rest des Arbeitskreises ein herzliches Dankeschön, für die anregenden Diskussionen und die vielen Ideen und Hilfestellungen. Ich danke auch der DFG für die Finanzierung unserer Forschergruppe und der Forschergruppe selber für den regen Austausch an Wissen. Vielen Dank an Marc Sylvester und Bernd Gehrig für die Hilfe bei den MALDI-TOF-MS-Messungen.

Zusammenfassung

FR900359 (FR) ist ein selektiver G_q -Proteininhibitor, der ursprünglich aus der Pflanze Ardisia crenata isoliert wurde. G-Proteine spielen eine zentrale Rolle in der Signalübertragung von G-Protein gekoppelten Rezeptoren (GP-CR), die an vielen physiologischen Prozessen beteiligt sind. G-Proteine sind im Vergleich zu GPCRs relativ gering erforscht, da es nur wenig membrangängige G-Protein-Modulatoren gibt. FR kann aufgrund seiner Eigenschaften diese Lücke schließen.

Das Depsipeptid FR besteht aus acht größtenteils ungewöhnlichen Aminosäuren, darunter drei Hydroxyleucine mit unterschiedlichen Seitenketten, N-Methyldehydroalanin, N,O-Dimethylthreonin und der Carbonsäure Phenyllaktat. Ein N-Methylalanin und Alanin sind auch Teil des Peptid-Zyklus.

FR ist ein zyklisches Depsipeptid, bestehend aus 8 Einheiten, von denen 7 Aminosäuren sind. Die meisten davon sind nicht-proteinogenen Ursprungs. Einen weiteren ungewöhnlichen Baustein bildet die Carbonsäure Phenyllaktat, die über eine Esterbindung in den Heterozyklus eingebaut ist. Das Biosynthesegencluster (BGC) von FR konnte in zwei unterschiedlichen Wirtsorganismen lokalisiert werden, in *Candidatus* Burkholeria crenata und in *Chromobacterium vaccinii*. Obwohl *Cand*. B. crenata im Gegensatz zu *C. vaccinii* ein Endosymbiont ist, sind beide BGC strukturell nahezu identisch.

In dieser Arbeit wurden die beiden Nichtribosomalen Peptidsyntethase BGC aus *Cand.* B. crenata und *C. vaccinii* identifiziert und bioinformatisch betrachtet. Hierzu wurden die BGC vor allem auf Gemeinsamkeiten und Unterschiede hin untersucht. Des weiteren wurden die bioinformatischen Grundlagen geschaffen, um einen neuartigen Dehydratisierungsmechanismus durch Kondensierungsdomänen (C-Domänen) zu untersuchen. Ebenfalls konnte für die letzte Adenylierungsdomäne (A-Domäne) aus FrsG (A8) eine für A-Domänen bis jetzt unbekannte Struktur postuliert werden, die sowohl zwei Methyltransferasen (MT-Domänen) als auch zwei Subdomänen enthält. Die A-Domänen aus FrsA (A1) und FrsD (A2) wurden anhand von *in-vitro*-Studien untersucht, um die Biosynthese der nicht-proteinogenen Aminosäure Hydroxyleucin während der FR-Biosynthese zu belegen.

Im ersten Teil der Arbeit konnte durch einen Vergleich der BGC auf DNAund Protein-Ebene die Identität der BGC untereinander bestimmt werden. Hierbei wurde festgestellt, dass die BGC nicht nur untereinander sehr ähnlich sind, sondern sich auch innerhalb des jeweiligen BGC wiederholende Bereiche mit ausgesprochen hoher Identität befinden. Diese sind bei beiden BGC ähnlich groß und ihre Lokalisation ist übereinstimmend.

Eine weitere Besonderheit der *frs*-BGC ist die A-Domäne A8 mit zwei aufeinander folgenden MT-Transferasen. Durch die Analyse der Core-Bereiche der A-Domänen nach Stachelhaus konnte die ungewöhnliche Struktur der A-Domäne A8 aus FrsG genauer bestimmt werden, die nicht nur zwei MT-Domänen, sondern auch zwei A-Subdomänen enthält.

FR enthält die ungewöhnliche Aminosäure N-Methyldehydroalanin. Die *frs*-BGC kodieren aber für kein Enzym, das offensichtlich die Dehydratisierung von Serin zu Dehydroalanin katalysieren könnte. Durch Alignments und an-

schließende Erstellung eines 3D-Modells der C-Domänen C6 und C8 konnte ein Hinweis auf einen neuen putativen Mechanismus für eine Dehydratisierung von Serin zu Dehydroalanin gefunden werden.

Im zweiten Teil der Arbeit wurden die beiden A-Domänen von FrsA und FrsD, und damit die Hydroxyleucin-Biosynthese mithilfe des gut etablierten A-Domänen-Assay nach Phelan et al. 2009 charakterisiert. Hierzu wurden diese A-Domänen heterolog exprimiert und in einem massenspektroskopisch basierten Assay auf ihre Spezifität getestet. Dabei konnte eine eindeutige Prävalenz beider A-Domänen für Leucin gezeigt werden. Diese Erkenntnis präzisiert die bioinformatische Analyse und zeigt, dass die Hydroxygruppe enzymatisch nach dem Beladen des Peptidyl Carrier Protein (PCP) mit Leucin eingefügt wird.

Insgesamt konnten durch diese Arbeit zahlreiche Einblicke und Grundlagen in die Biosynthese von FR erhalten werden, die bei der Modifizierung dieses Wirkstoffes helfen könnten. Neue Strukturvarianten von FR durch Bioengineering können dazu beitragen, die Mechanismen der Funktion von G-Proteinen zu entschlüsseln.

Abstract

FR900359 (FR) is a selective G_q -Protein-inhibitor which is originally isolated from the plant Ardisia crenata. G-Proteins play an important role in the signalling pathways of G-Protein coupled receptors (GPCR) which are involved in many physiological processes. Compared to GPCRs, there is relatively little known about G-Proteins because there are not so many G-Protein inhibitors that are able to pass membranes. FR can close this gap. In this work, the biosynthetic gene clusters (BGCs) of FR from *Candidatus* B. crenata and *Chromobacterium vaccinii* are bioinformatically analyzed and A domains are partially expressed to investigate their specifity.

The depsipeptide FR consists of eight mostly unusual amino acids, including three hydroxyleucines with different site chains: N-methyl-dehydroalanine, N,O-dimethyl-threonine and the carbon acid phenyllactate. N-methyl-alanine and alanine are also part of the peptide.

FR is a cyclic depsipeptide containing 8 building blocks, 7 of which are of non-proteinogenic origin. One of them is the carbonic acid phenyllactate. The BGCs of FR are located in two hosts *Cand.* B. crenata and *C. vaccinii*. Even

though Cand. B. crenata is an endosymbiont, in contrast to C. vaccinii, the BGCs are almost identical.

In the first part of this work, both BGCs were examined for similarities and differences in their overall and detailed structure. Comparing DNA- and protein level, the identity of both BGCs had been determined. It could be shown that both BGC contain repeating sequences with very high identity in the respective BGC. Those are similar in both BGCs respecting their size and location.

Additionally, a novel structure of the A domain A8, which contains two methyltransferases as well as two A subdomains could be predicted. The identity of the BGCs with regard to each other was examined by comparisons on the DNA- and protein-level. Hereby it was shown that both BGC have the same architecture. It could also be shown that within one BGC, repeating sequences can be found which occur in the same way in both clusters.

Both *frs*-BGCs contain the A domain A8 with two methyltransferases which is unique for the BGCs of FR-analogues. By anaylsis of the core motifs of all A domains [Stachelhaus et al., 1999], the unusual structure of the A domain A8 from FrsG could be elucidated in detail. This A domain contains not only two methyltransferases but also two A subdomains.

FR contains the unusual amino acid N-methyl-dehydroalanine, but there is no obvious enzyme that is able to katalyze the dehydratation from serine to dehydroalanine. By alignments and subsequent establishment of a 3D-model from the two very similar C domains C6 and C8, new hints on a putative dehydratation mechanism from serine to dehydroalanine could be found.

In the second part of this work, *in vitro* experiments for the two A domains from FrsA and FrsD were performed in order to examine their substrate specificity. Therefore, these A domains were heterologously expressed and evaluated for their specificity by a mass spectrometry based assay. For both A domains a clear preference for leucine was shown which specified the bioinformatic analysis. Consequently, the hydroxygroup is incorporated into leucine after having been activated and binded to the Peptidyl Carrier Protein (PCP). Through this work we gained insight into the biosynthesis of FR, which could help to modify FR by bioengineering, and to learn more about the mode of action and function of G-Proteins.

Inhaltsverzeichnis

Еш	leitung 5				
1.1	1.1 Naturstoffe und deren Bedeutung für die Pharmazie				
1.2	2 Das Depsipeptid FR900359				
	1.2.1	Quellen für FR900359	11		
	1.2.2	Die Biosynthesegencluster bcfrs und cvfrs von FR	14		
1.3	Nicht	ribosomale Peptidsynthetasen (NRPS)	16		
1.4	4 Adenylierungsdomänen (A-Domänen)				
1.5	Methy	ltransferase-Domänen (MT-Domänen)	22		
1.6	Konde	ensierungsdomänen (C-Domänen)	24		
1.7	Peptic	lyl Carrier Protein oder PCP-Domänen	29		
1.8	MbtH	-ähnliche Proteine	30		
1.9	Thioe	sterasen (TE-Domänen)	33		
1.10	Vorstu	Ifengerichtete Biosynthese von NRPs und Bioengineering			
	von N	RPS	33		
			~ ~		
Ziel	setzun	g der Arbeit	39		
-	rgebnisse				
Erge	\mathbf{bniss}	e	40		
Erg 3.1	e bniss Bioinf	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und	40		
Erg 3.1	e bniss Bioinf <i>cvfrs</i>	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	40 40		
Erg 3.1	e bniss Bioinf <i>cvfrs</i> 3.1.1	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	40 40		
Erg 3.1	ebniss Bioinf <i>cvfrs</i> 3.1.1	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	40 40		
Erge	ebniss Bioinf <i>cvfrs</i> 3.1.1 3.1.2	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	404040		
Erg 3.1	ebnisse Bioinf <i>cvfrs</i> 3.1.1 3.1.2	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	40404046		
Erg. 3.1	 abnisse Bioinf <i>cvfrs</i> 3.1.1 3.1.2 3.1.3 	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	40404046		
Erg. 3.1	 bniss Bioinf <i>cvfrs</i> 3.1.1 3.1.2 3.1.3 	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	 40 40 40 46 49 		
Erg. 3.1 3.2	 bniss Bioinf <i>cvfrs</i> 3.1.1 3.1.2 3.1.3 Bioinf 	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	 40 40 40 40 46 49 		
Erg. 3.1 3.2	 bniss Bioinf cvfrs 3.1.1 3.1.2 3.1.3 Bioinf crenat 	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	 40 40 40 40 46 49 54 		
Erge 3.1 3.2 3.3	 bniss Bioinf <i>cvfrs</i> 3.1.1 3.1.2 3.1.3 Bioinf crenat Bioinf 	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	 40 40 40 40 46 49 54 		
Erge 3.1 3.2 3.3	 bniss Bioinf <i>cvfrs</i> 3.1.1 3.1.2 3.1.3 Bioinf crenat Bioinf crenat 	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	 40 40 40 46 49 54 60 		
Erge 3.1 3.2 3.3 3.4	 bnisse Bioinf cvfrs 3.1.1 3.1.2 3.1.3 Bioinf crenat Bioinf crenat Bioinf crenat 	e ormatische Analyse der Biosynthesegencluster <i>bcfrs</i> und von FR	 40 40 40 46 49 54 60 		
	 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 Ziels 	 1.1 Natura 1.2 Das D 1.2.1 1.2.2 1.3 Nicht 1.4 Adeny 1.5 Methy 1.6 Konde 1.7 Peptic 1.8 MbtH 1.9 Thioes 1.10 Vorstuve von N Zielsetzum 	 1.1 Naturstoffe und deren Bedeutung für die Pharmazie		

		3.4.1	Bioinformatische Analyse der PCP-Domänen und TE-	
			Domänen	70
	3.5	In-vit:	ro-Untersuchungen von A-Domänen	73
		3.5.1	Grundlagen des γ - ¹⁸ O ₄ -ATP-Austausch-Assay nach	
			Phelan et al. für die A-Domänen von Frs A und Frs D $$. $$	73
		3.5.2	Klonierung und Expression der A-Domänen FrsA und	
			FrsD	77
		3.5.3	SDS-PAGE-Analytik der A-Domänen von FrsA und FrsD 7	79
		3.5.4	Durchführung des γ - ¹⁸ O ₄ -ATP-Assay 8	31
		3.5.5	Detektion und Auswertung des $\gamma\textsc{-}\ ^{18}\mathrm{O}_4\textsc{-}\mathrm{ATP}\textsc{-}\mathrm{Austauschs}$	
			mittels MALDI-TOF-MS	32
4	\mathbf{Dis}	kussio	n 9)1
	4.1	Pharn	nazeutische Relevanz von FR)1
	4.2	Hypot	these zur Biosynthese von FR)1
	4.3	Vergle	eich der <i>frs</i> -BGC auf DNA- und Protein-Ebene)3
	4.4	Sich w	viederholende Sequenzabschnitte in beiden frs -BGC 9)3
	4.5	Struk	turelle Besonderheiten der A-Domäne A8 aus FrsG 9	96
	4.6	Bioinf	Formatische Betrachtungen zum Dehydratisierungsmecha-	
		nismu	s der C-Domäne C6)8
	4.7	Spezif	ität der A-Domänen aus FrsA und FrsD 9	99
	4.8	Ausbl	ick)0
5	Ma	terial 1	und Methoden 10)2
	5.1	Verwe	endete Datenbanken und Programme)2
	5.2	Vekto	ren und Organismen)3
		5.2.1	Vektoren)3
		5.2.2	Organismen)4
	5.3	Medie	en und Puffer)6
		5.3.1	Medien)6
		5.3.2	Proteinaufreinigungspuffer)7
		5.3.3	Plasmidpräparationspuffer)8
		5.3.4	Assaypuffer)9

	5.3.5	Anoden- und Kathodenpuffer für die SDS-Analyse . 109 $$
	5.3.6	Weitere Puffer und Lösungen
	5.3.7	Antibiotikastocks
5.4	Mikrol	piologische Techniken
	5.4.1	Stammhaltung in Kryokulturen
	5.4.2	Kultivierung von Bakterien
	5.4.3	Konzentrations bestimmung von Bakterienkulturen 112
	5.4.4	Transformation von Bakterien
	5.4.5	Blau-Weiß-Selektion
5.5	Molek	ularbiologische Methoden
	5.5.1	Polymerase-Kettenreaktion (PCR)
	5.5.2	Kolonie-PCR
	5.5.3	Verwendete Primer
	5.5.4	Reinigen von PCR-Produkten oder Aufkonzentrieren
		von DNA
	5.5.5	DNA-Präparation
	5.5.6	Agarose Gelelektrophorese
	5.5.7	DNA-Isolierung aus Agarosegelen
	5.5.8	Sequenzierung
	5.5.9	Restriktionsspaltung von DNA
	5.5.10	Dephosphorylierung von Vektoren
	5.5.11	Ligation
	5.5.12	Vektorkonstrukte
5.6	Protein	n expression, Protein reinigung und Protein analytik $\ $. $\ . \ 124$
	5.6.1	Protein expression
	5.6.2	Zellaufschluss
	5.6.3	Aufreinigung mit His-Taq
	5.6.4	Entsalzen und Aufkonzentrierung
	5.6.5	Probenvorbereitung für die SDS-PAGE-Analyse $\ .\ .\ .\ .\ 125$
	5.6.6	SDS-Polyacrylamidgelelektrophorese $\ldots \ldots \ldots \ldots \ldots 125$
	5.6.7	Proteinkonzentrationsbestimmungen
	5.6.8	A-Domänen-Assay
	5.6.9	Massenspektrometrische Untersuchung von Proteinen . 128

	5.7	Verwendete Chemikalien	128		
	5.8	Verwendete Enzyme	129		
	5.9	Verwendete Kits und Standards	130		
	5.10	Verwendete Geräte	131		
Ab	kürz	ungsverzeichnis 1	.32		
Ab	bildı	ingsverzeichnis 1	.35		
Tał	belle	nverzeichnis 1	.44		
Literaturverzeichnis					
A	Anh	ang 1	.67		

1 Einleitung

1.1 Naturstoffe und deren Bedeutung für die Pharmazie

Als Naturstoffe werden Metabolite bezeichnet, die von Organismen gebildet werden. Das bedeutet, dass sie tierischen, pflanzlichen oder mikrobiellen Ursprungs sind [Gordon et al., 1997]. Naturstoffe haben seit längerem eine heilkundliche Bedeutung für den Menschen. Zum einen, weil es lange Zeit keine synthetischen Wirkstoffe gab und zum anderen, weil viele dieser Stoffe von Pflanzen oder Bakterien für die eigene Abwehr gegen Schädlinge gebildet wurden und sich im Laufe der Zeit perfekt auf ihr "Target" spezialisiert haben. In vielen Fällen führt eine kleine Modifikation des Naturstoffes sogar zum Wirkverlust. Auch heute ist ein Großteil der neu auf den Markt kommenden Medikamente Naturstoffe oder deren Derivate, darunter Krebsmedikamente, Antiinfektiva, Antidiabetika und andere [Harvey, 2008]. In den Jahren 1981-2014 machte der Anteil der zugelassenen unmodifizierten Naturstoffe an allen zugelassenen Wirkstoffen einen Anteil von 4% aus [Newman and Cragg, 2016].

Für die Produzenten haben Naturstoffe in erster Linie eine ökologische Bedeutung und werden als Abwehrstoffe produziert. Hier spielen auch Symbiosen eine große Rolle [Luo et al., 2014], d.h. viele Spezies produzieren diese Abwehrstoffe nicht selbst, sondern beherbergen Bakterien, die für sie diese Aufgabe übernehmen. Als Beispiel seien die im Wasser lebenden Ascidiaceae [Schmidt et al., 2012] oder Teredinidae [Elshahawi et al., 2013] genannt. Auch bei Pflanzen sind Symbiosen bekannt, wie im Falle von *Psychotria kirkii* und deren Kirkamid produzierendem Endosymbionten *Cand.* Burkholderia kirkii [Sieber et al., 2015].

Auch das Depsipeptid FR900359 (FR), Gegenstand der vorliegenden Arbeit (siehe Abb. 1), wird unter anderem von einem pflanzlichen Endosymbionten, *Cand.* B. crenata, gebildet [Carlier et al., 2016]. FR ist ein selektiver $G_{q/11/14}$ -Protein-Inhibitor [Schrage et al., 2015]. Die in vielen Organismen vorhandene

Signalübertragung über G-Proteine [Link, 2016] führte zu der Überlegung, dass FR genau wie Kirkamid möglicherweise eine ökologische Funktion für die Pflanze Ardisia crenata (A. crenata) besitzt (siehe auch Kap. 1.2.1).

Peptidische Naturstoffe können von nichtribosomalen Peptidsynthetasen (NR-PS) gebildet werden. Diese großen Multienzymkomplexe bilden vorwiegend kleine, oft zyklische Peptide, die anders als die ribosomal gebildeten Peptide nicht nur proteinogene, sondern auch sehr ungewöhnliche Aminosäuren bis hin zu Carbonsäuren in die Peptide integrieren (siehe Kap. 1.3 und folgende). Über molekularbiologische und bioinformatische Methoden konnten gute Einblicke in die Funktion von NRPS-Systemen gewonnen werden. Durch den modularen Aufbau von NRPS, auf den in Kapitel 1.10 weiter eingegangen wird, erhofft man sich neue Möglichkeiten, Wirkstoffe zu entwickeln, indem man diese Systeme genetisch verändert, um neue Naturstoffe zu produzieren (siehe auch Kap. 1.10).

1.2 Das Depsipeptid FR900359

Das zyklische Depsipeptid FR900359 wurde ursprünglich 1988 aus der tropischen Pflanze A. crenata gewonnen [Fujioka M., 1988]. FR besteht aus zehn Einheiten (siehe Abb. 1), wovon sieben Aminosäuren und drei Carbonsäuren sind. Zu den Aminosäuren zählen sechs nicht proteinogene Bausteine, wie die drei Hydroxyleucine, das N-Methylalanin, das N-Methyldehydroalanin und das N,O-Dimethylthreonin. Letztere zwei fallen hier besonders auf. Das sehr seltene N-Methyldehydroalanin ist in dieser Form nur für die Microcystine [Tillett et al., 2000], Sameuramid [Machida et al., 2018] und YM-254890 (YM) bekannt. Das N,O-Dimethylthreonin kommt bis jetzt nur im strukturell sehr ähnlichen YM-254890 (siehe Abb. 2) [Taniguchi et al., 2003] und im Sameuramid [Machida et al., 2018] vor. Des weiteren sind drei Carbonsäuren enthalten: Phenyllaktat, Essigsäure und Propionsäure, die letzteren beiden an N-OH-Leucin gebunden. YM unterscheidet sich von FR lediglich in einem Aminosäuregrundbaustein und in den zwei Acyl-Seitenketten. Anstelle eines der N-acetyl-Hydroxyleucine ist hier ein N-Acetyl-Threonin in den Peptidzyklus eingebaut. Des Weiteren enthält YM einen N-Acetyl-Substituenten an der Hydroxyleucin-Seitenkette, wo FR eine N-Propionyleinheit besitzt (siehe Abb. 1 und 2).

Des weiteren enthält FR drei Hydroxyleucine und zwei Alanine, von denen eines N-methyliert ist. Auch die Art der Bindungen im Peptidring ist teilweise ungewöhnlich. So sind das Phenyllaktat und das N,O-Dimethylthreonin über eine Esterbindung im Ring verknüpft, so dass zwei Esterbindungen benachbart sind. Außerdem gibt es cis-konfigurierte Peptidbindungen [Crüsemann et al., 2018].

Abbildung 1: Das Depsipeptid FR besteht aus acht größtenteils ungewöhnlichen Aminosäuren, darunter drei Hydroxyleucine mit unterschiedlichen Seitenketten, N-Methyldehydroalanin, N,O-Dimethylthreonin und die Carbonsäure Phenyllaktat. Ein N-Methylalanin und Alanin sind auch Teil des Peptid-Zyklus. Die rot markierten Stellen zeigen die Unterschiede von YM und FR auf.

Abbildung 2: Struktur des mit FR verwandten YM-254890. YM unterscheidet sich lediglich dadurch, dass es eine Acetyl- anstatt einer Propionylseitenkette, und eine Methyl- anstatt einer Isopropylgruppe enthält. Die rot markierten Stellen zeigen die Unterschiede von YM und FR auf.

Aufgrund seiner ungewöhnlichen strukturellen Eigenschaften deutet vieles auf einen nicht-ribosomalen Ursprung von FR hin, was die Vermutung nahe legt, dass es kein Metabolit von A. crenata, sondern bakteriellen Ursprungs ist (siehe auch Kap. 1.2.1). A. crenata enthält den Endosymbionten Cand. Burkholderia crenata, der vor allem in den Blatträndern in hoher Konzentration zu finden ist [Crüsemann et al., 2018]. Carlier et al. konnten das Genom von Cand. Burkholderia crenata sequenzieren und stellten fest, dass dieses evolutionär bedingt stark reduziert ist. Das Genom besteht aus einem 2,67 Mb großen Chromosom und zwei extrachromosomalen Plasmiden, eines davon 103 kb und das andere 78 kb groß. Auf dem größeren Plasmid konnte ein BGC für FR, d.h. das bcfrs-BGC gefunden werden [Carlier et al., 2016] [Crüsemann et al., 2018]. Die Zugehörigkeit und Vollständigkeit des bcfrs-BGC wurde durch heterologe Expression des BGC in E. coli bestätigt.

FR inhibiert selektiv heterotrimere Guaninnukleotid bindende Proteine (G-Proteine) der G_q-Familien (Gq, G11, G14) [Schrage et al., 2015]. G-Proteine sind Signalpeptide, die durch membranständige, G-Protein gekoppelte Rezeptoren (GPCRs) aktiviert werden. G-Proteine befinden sich auf der inneren Seite der Zellmembran und lösen von dort aus die Signale aus, die an der Außenseite der Zelle an den GPCRs ankommen [Lefkowitz, 2004] [Rosenbaum et al., 2009]. Ein Drittel aller Arzneistoffe setzt an GPCRs an [Overington et al., 2006] [Rask-Andersen et al., 2011]. GPCRs spielen unter anderem bei Asthma, allergischen Reaktionen, Krebs, Bluthochdruck oder metabolischen Prozessen eine zentrale Rolle [Deshpande and Penn, 2006] [Druey, 2009 [Dorsam and Gutkind, 2007] [Takefuji et al., 2012] [Blad et al., 2012] [Klepac, 2016]. Oft sind diese Signalwege sehr komplex. Es ist meist mehr als ein Rezeptor an der Krankheit beteiligt, was es schwierig macht, Signalwege über GPCRs zu modulieren. Trotz der Vielzahl an GPCR gibt es nur wenige G-Proteine, die die Signale der GPCRs im Zellinneren in einen Effekt übersetzen [Gudermann et al., 1996]. Daher ist es wichtig die Beteiligung der G-Proteine am Signalgeschehen besser zu verstehen, um noch gezielter Einfluss auf diese Signalwege nehmen zu können. Bis jetzt sind G-Proteine aufgrund mangelnder pharmakologischer Werkzeuge kaum erforscht. Einer der wenigen zuverlässigen G-Proteininhibitor ist Pertussistoxin (PTX) (z.B. Hughes et al., 1984] [Sauliere et al., 2012]), welches aber nur für Forschungszwecke zur Verfügung steht und keinerlei therapeutische Relevanz besitzt. Aufgrund der Membrangängigkeit von FR und seiner Eigenschaft, G_q -Proteine zu inhibieren, ist es gut geeignet, die komplexen Signalprozesse von G-Proteinen zu untersuchen [Crüsemann et al., 2018]. In dieser Hinsicht ist FR einzigartig, da es, abgesehen von seinem Strukturanalogon YM, die einzige Substanz ist, die selektiv als hochpotenter Wirkstoff G_q -Proteine inhibieren kann [Nishimura et al., 2010].

1.2.1 Quellen für FR900359

Candidatus Burkholderia crenata

Candidatus Burkholderia crenata ist ein Endosymbiont aus der Klasse der β -Proteobacteria. Er lebt in Symbiose mit A. crenata. Alle Versuche, das Bakterium ohne Wirt zu kultivieren, scheiterten bis jetzt. Der Endosymbiont wird vermutlich vertikal auf die nächste Generation weitergegeben [Pinto-Carbo et al., 2018]. Ein weiteres Beispiel dieser Symbioseart findet man bei Psychotria kirkii und deren Endosymbiont Cand. Burkholderia kirkii [Sieber et al., 2015]. Carlier et al. gelang es 2015, das Genom von Cand. B. crenata zu sequenzieren, welches gegenwärtig als das kleinste Burkholderia-Genom gilt. Das Genom ist stark reduziert, was auf die evolutionäre Entwicklung als Endosymbiont zurückzuführen ist. Einige Gene mit möglicher Funktion für Sekundärmetabolite konnten allerdings eindeutig dem Genom von Cand. B. crenata zugeordnet werden, darunter das putative BGC von FR auf einem 103 kb großen Plasmid. Dieses BGC ist bis jetzt nur für diese Burkholderia Spezies beschrieben worden. Des weiteren wurde ein 19 kb großes PKS-Operon auf einem 78 kb großen Plasmid gefunden, das für zwei putative Typ I trans-AT Polyketidsynthasen codiert [Carlier et al., 2016].

Ardisia crenata

A. crenata ist eine asiatische Pflanze aus der Familie der Primulaceae, die weit verbreitet als Schmuckpflanze Verwendung findet. An den Blatträndern befinden sich kleine Blatteinkerbungen, und die Pflanze bildet rote Früchte aus (siehe Abb. 3).

Abbildung 3: *A. crenata* hat Einkerbungen an den Blatträndern, in denen *Cand.* B. crenata als Endosymbiont eingebettet ist. Die Pflanze wird weit verbreitet als Schmuckpflanze verwendet und hat eine lange Tradition in der chinesischen Medizin.

Phytochemisch wurde die Pflanze 1986 von Fujioka und Kollegen untersucht. Aus dem methanolischen Extrakt von *A. crenata* wurde FR isoliert und Strukturaufklärung mittels ¹H-NMR und massenspektrometrischer Studien vorgenommen. Sie konnten ebenfalls schon zeigen, dass der methanolische Extrakt hemmende Wirkung auf die Blutplättchenaggregation hat und den Blutdruck senkt [Fujioka M., 1988]. Im Genus *Ardisia* gibt es bis jetzt dreißig Arten, für die eine Endosymbiose mit Bakterien belegt werden konnte, darunter auch *A. crenata*, die den Endosymbionten *Cand.* B. crenata in ihren Blatteinkerbungen enthält. Dort sind die Bakterien in einer Matrix aus Schleimstoffen eingebettet [Miller, 1990] [Lersten and Horner, 1976]. Die Weitergabe der Symbionten erfolgt vermutlich vertikal [Pinto-Carbo et al., 2018].

$Chromobacterium \ vaccinii$

Chromobacterium vaccinii (C. vaccinii) ist ein gramnegatives Bakterium, das ebefalls aus der Klasse der β -Proteobakterien stammt. Das Bakterium ist freilebend und wurde von den Wurzeln von Vaccinium macrocarpon (Cranberry) isoliert [Soby et al., 2013]. Das Genom von C. vaccinii wurde teilweise sequenziert [Voing et al., 2015]. Die Sequenz enthielt Bruchstücke von NRPS-Genen, die denen von Cand. B. crenata ähneln. Die teilweise vorliegende Sequenz des FR-BGC wurde im Rahmen dieses Projekts mittels PCR-Lückenschluss vervollständigt. Aus der Fermentationskultur von C. vaccinii konnte ebenfalls FR isoliert werden.

1.2.2 Die Biosynthesegencluster bcfrs und cvfrs von FR

Sowohl Cand. B. crenata als auch C. vaccinii sind in der Lage, das Depsipeptid FR zu bilden [Crüsemann et al., 2018]. Trotz ihrer sehr unterschiedlichen Habitate besitzen sie zwei strukturell identische BGC. Die BGC (siehe Abb. 4) von FR bestehen aus acht Genen. Diese bilden zwei NRPS-Systeme. Die erste NRPS ist durch das erste Gen frsA kodiert und enthält eine Starter-Kondensierungsdomäne (C-Domäne), eine Adenylierungsdomäne (A-Domäne), ein Peptidyl Carrier Protein (PCP) und eine Thioesterasedomäne (TE-Domäne). Zwischen beiden NRPS liegt ein Gen für ein MLP (MbtH like protein), gefolgt von *frsC*, einem Gen, das für eine Malatdehydrogenase kodiert. Es folgen vier weitere Gene mit insgesamt sieben weiteren NRPS-Modulen frsD-frsG. Insgesamt sind acht C-Domänen, acht A-Domänen, acht PCP-Domänen, vier Methyltransferasen (MT-Domänen), zwei TE-Domänen und eine Epimerisierungsdomäne (E-Domäne) vorhanden. Nach der zweiten NRPS folgt die β -Hydroxylase FrsH. Beide BGC haben zwar die gleiche Struktur, unterscheiden sich aber auf der DNA- und Protein-Ebene. Das BGC von Cand. B. crenata wird im Folgenden als bcfrs und das von C. vaccinii als cvfrs bezeichnet. Ein detaillierter Vergleich beider BGC erfolgt im Kap. 3.1 Bioinformatische Analyse der BGC bcfrs und cvfrs von FR.

Abbildung 4: Hypothese zur Biosynthese von FR. Nach der intramolekularen Zyklisierung durch die endständige TE-Domäne aus FrsG, kommt es zur Übertragung der Hydroxyleucinseitenkette durch die TE-Domäne aus FrsA.

1.3 Nicht ribosomale Peptidsynthetasen (NRPS)

NRPS sind Multienzymkomplexe, die hauptsächlich in Mikroorganismen vorzufinden sind. An ihnen findet die Proteinbiosynthese kleiner Peptide statt, die oft zyklischer Natur sind und auch nicht-proteinogene Aminosäuren oder andere ungewöhnliche Bestandteile enthalten [Marahiel, 2009].

Eine NRPS besteht aus mehreren Domänen, die in Module zusammengefasst sind. Jedes Modul ist für die Aktivierung einer Aminosäure und deren Verknüpfung mit der wachsenden Peptidkette zuständig. Dieses Prinzip nennt sich Colinearitätsregel [Süßmuth, 2017]. Für ein Peptid wie FR, das aus acht Bausteinen besteht, braucht man also acht Module, d.h. die Anordnung der Module innerhalb der NRPS bestimmt die Primärstruktur des Peptids.

Abbildung 5: Aufbau einer NRPS: Sie besteht aus aneinandergesetzten Modulen, welche wiederum aus Domänen aufgebaut sind. Ein funktionsfähiges Modul benötigt zwingend eine A-, eine PCP- und eine C-Domäne. Optional können modifizierende Domänen wie MT- oder E-Domänen vorhanden sein. Oft werden NRPS mit einer TE-Domäne abgeschlossen. Die Abfolge der Domänen bestimmt die Struktur des Peptids.

Die Domänen sind die kleinsten funktionellen Einheiten der NRPS. Jede Domäne hat ihre eigene Funktion und zeigt auch isoliert vom Komplex Enzymaktivität. Für ein minimales Elongationsmodul sind mindestens drei Domänen nötig (siehe Abb. 5). Dieses besteht aus einer C-Domäne, einer A-Domäne, und einer PCP-Domäne [Marahiel et al., 1997]. Die Reihenfolge dieser Module bestimmt die Struktur des Pepdids. Ein Startermodul besteht in der Regel aus zwei Domänen und fängt oft mit einer A-Domäne an, die die erste Aminosäure aktiviert. Ein Elongationsmodul fängt mit einer C-Domäne an, um die vorangegangene aktivierte Aminosäure mit der nachfolgenden zu verknüpfen [Linne and Marahiel, 2000].

Innerhalb eines Moduls bildet die A-Domäne (siehe Kap. 1.4) eine Matrize für die jeweilige vorgesehene Aminosäure und aktiviert diese. Die PCP-Domäne (siehe Kap. 1.7) dient als Transportdomäne. Sie überträgt die wachsende Peptidkette auf die PCP-Domäne des nächsten Moduls. Die C-Domäne (siehe Kap. 1.6) kondensiert die Proteinkette mit der nächsten aktivierten Aminosäure. Optional können in einem Modul noch weitere Domänen vorhanden sein, wie zum Beispiel Epimerasen (siehe Kap. 1.6), die die Konfiguration der assemblierten Aminosäuren ändern oder MT-Domänen (siehe Kap. 1.5), die N-, oder O-Methylierungen vornehmen können. So können im Gegensatz zur ribosomalen Peptidsynthese eine Vielzahl ungewöhnlicher Aminosäuren in ein Protein eingebaut werden [Marahiel, 2009] [Süßmuth, 2017]. In den folgenden Kapiteln soll die Funktion der einzelnen Domänen genauer betrachet werden.

1.4 Adenylierungsdomänen (A-Domänen)

Die A-Domänen initiieren die nichtribosomale Peptidsynthese. Im ersten Schritt wird das spezifische Substrat der A-Domäne zum Aminoacyladenylat aktiviert (siehe Abb. 6) und in einem zweiten Schritt das aktivierte Substrat auf den Phosphopantetheinarm der PCP-Domäne übertragen (siehe Abb. 7) [Süßmuth, 2017].

Abbildung 6: Adenylierungsreaktion von A-Domänen: Die selektierte Aminosäure wird mit Hilfe der A-Domäne unter Verbrauch von ATP zum Aminoacyladenylat aktiviert und Pyrophosphat wird abgespalten.

Abbildung 7: Thiolation: In einer zweiten Reaktion überträgt die A-Domäne die aktivierte Aminosäure auf den Phosphopantetheinarm der PCP-Domäne. Die PCP-Domäne dient als Transportdomäne für das entstehende Peptid.

A-Domänen gehören zur Enzymklasse der ANL Superfamilie der Adenylierungsenzyme (Acyl-CoA Syntethasen, NRPS-Adenylierungsdomänen und Luciferase Enzyme). Diese Enzymklasse katalysiert eine initiale Adenylierungsreaktion eines Carboxylatsubstrats unter ATP-Verbrauch. Mit diesen Enzymen teilt die A-Domäne vor allem eine hochkonservierte dreidimensionale Struktur. A-Domänen bestehen aus einer ca. 50 kDa N-terminalen Kerndomäne und einer ca. 10 kDa großen C-terminalen Subdomäne. Beide Untereinheiten sind über eine flexible Gelenkregion miteinander verbunden [Conti et al., 1997].

Um diese dreidimensionale Struktur zu gewährleisten, haben A-Domänen trotz ihrer sehr heterogenen Aminosäuresequenzen sogenannte Core-Regionen. Diese Core-Regionen bilden hochkonservierte Aminosäuremotive innerhalb der Proteinsequenz der A-Domänen, die für alle A-Domänen identisch sind. Sie dienen als Orientierung bei der bioinformatischen Analyse der Sequenz. So liegen die Core-Regionen A1 bis A8 auf der größeren N-terminalen Kerndomäne und die Core-Regionen A9 bis A11 auf der kleineren C-terminalen A-Subdomäne [Conti et al., 1997] [Stachelhaus et al., 1999].

Nachdem mit der Kristallstruktur der A-Domäne von GrsA aus dem Gramicidin-BGC mit ihrem Substrat Phenylalanin die Struktur und die Substratbindungstasche der A-Domänen bekannt war [Conti et al., 1997], konnte aus Alignments von GrsA mit anderen A-Domänen die Bindungstasche für A-Domänen allgemein abgeleitet werden [Stachelhaus et al., 1999].

Die Substratbindungstasche der A-Domänen befindet sich zum Großteil in dem Bereich der Core-Regionen A4 und A5. Hier liegen neun der zehn Bindungsstellen. Eine weitere liegt innerhalb der Core-A10-Region auf der A-Subdomäne [Stachelhaus et al., 1999].

Die Aminosäuren in diesen zehn Positionen variieren von A-Domäne zu A-Domäne, je nachdem, welches Substrat von der A-Domäne aktiviert werden soll. Die Abfolge der Aminosäuren in diesen zehn Positionen legt also die Substratspezifität der A-Domänen fest. Daher werden diese zehn Aminosäuren auch als Stachelhauscode bezeichnet [Stachelhaus et al., 1999]. Position eins und zehn des Stachelhauscodes sind dabei weitestgehend konserviert. In Position eins befindet sich das Asp-235 und in Position zehn das Lys-517. Diese beiden Aminosäuren sind für die Koordination und Bindung der α -Aminogruppe und der Carboxygruppe der Substrataminosäure zuständig. Alle anderen Positionen variieren stark [Stachelhaus et al., 1999]. Die Selektivität einer A-Domäne ist nicht absolut. Die A-Domäne hat sozusagen eine gewisse Fehlertoleranz gegenüber ihrem Substrat. So können oft chemisch sehr ähnliche Aminosäuren wie z.B. Leucin und Isoleucin in unterschiedlichem Maß aktiviert werden. Um trotzdem am Ende der NRP-Synthese ein korrektes Peptid zu bekommen, hat die C-Domäne (siehe auch Kap. 1.6) desselben Moduls ebenfalls eine gewisse Substratselektivität und Korrekturfunktion. So kann es bei einer Fehlaktivierung zum Abbruch der NRP-Synthese kommen [Süßmuth, 2017].

Die Substrate der A-Domänen sind häufig proteinogene Aminosäuren oder auch Carbonsäuren. Die Vielzahl ungewöhnlicher Aminosäuren, die typischerweise in NRPs zu finden sind, entstehen nach oder vor der Assemblierung durch Modifikationen. Diese Modifikationen werden durch andere Domänenarten, wie MT-Domänen oder C-Domänen vorgenommen. Sie werden in den Kapiteln 1.5 und 1.6 noch ausführlicher betrachtet.

Die modifizierenden Enzymdomänen liegen oft C-terminal der A-Domänen. Einige von ihnen sind aber auch in die A-Domänen eingebettet. Dadurch entstehen Didomänen oder unterbrochene A-Domänen. Die Insertionspunkte dieser modifizierenden Domänen liegen sehr häufig zwischen den Core-Regionen der A-Domänen [Labby et al., 2015].

MT-Domänen (siehe auch Kap. 1.5) kommen häufig zwischen der Core-A8und Core-A9-Region der A-Domäne vor, seltener auch zwischen der Core-A2- und Core-A3-Region, wie im Falle von Thiocoralin [Lombo et al., 2006]. Hier liegt die MT-Domäne aus TioN [Al-Mestarihi et al., 2014], die den seltenen Fall einer S-Methylierung darstellt, zwischen der Core-A2- und Core-A3-Region der A-Domäne. Im selben BGC befindet sich auch eine MT-Domäne, die eine zweifache Methylierung vornimmt [Mori et al., 2017]. Im BGC von Microcystin [Tillett et al., 2000] konnte eine zwischen der Core-A8- und Core-A9-Region unterbrochene A-Domäne in McyA gefunden werden, die genau wie bei den *frs*-BGC eine N-Methylierung des sehr seltenen Dehydroalanins vornimmt [Labby et al., 2015]. Weitere modifizierende Domänen, die in A-Domänen gefunden werden konnten, sind beispielsweise Reduktasedomänen, wie im Falle von Cereulid [Magarvey et al., 2006]. Diese liegt zwischen der Core-A8- und Core-A9-Region [Labby et al., 2015]. Im Falle von Myxothiazol [Silakowski et al., 1999] wurden Oxygenasedomänen zwischen der Core-A8- und Core-A9-Region identifiziert, von denen die Monooxygenasen in der Core-A4- und Core-A5-Region eingebettet waren [Labby et al., 2015].

A-Domänen sind ein Teil des großen NRPS-Enzymkomplexes, aber auch als isoliertes Enzym funktional. Eine Funktionsanalyse ist daher über den gut etablierten A-Domänenassay nach Phelan möglich [Phelan et al., 2009]. Dazu wird die A-Domäne mit dem zu testenden Substrat und $\gamma^{18}O_4$ -ATP inkubiert. Der $\gamma^{18}O_4$ -ATP-Verbrauch und das dadurch entstehende, leichtere ¹⁶O₄-ATP kann detektiert werden. Bleibt die Adenylierungsreaktion, wie im Falle eines falschen Substrates, aus, wird das $\gamma^{18}O_4$ -ATP nicht verbraucht, und es kann kein ¹⁶O₄-ATP detektiert werden (siehe auch Kap. 5.6.8).

Um voll funktionstüchtig zu sein, benötigen manche A-Domänen ein Helferprotein, das sogenannte MLP (siehe Kap. 1.8). Das Gen, welches für ein ca. 8 kDa großes Protein kodiert, ist Teil von vielen NRPS-BGC und wurde erstmals für ein BGC aus *Mycobacterium tuberculosis* beschrieben [Quadri et al., 1998]. MLPs haben Einfluss auf die Konformation, Löslichkeit, Spezifität und Funktion der A-Domänen [Schomer and Thomas, 2017]. Das MLP wird oft unabhängig von der A-Domäne exprimiert, bindet aber in einem stöchiometrischen Verhältnis von 1:1 mit der A-Domäne [Boll et al., 2011]. Im Falle von SlgN1, eines Hybrid-PKS/NRPS-Systems des Antibiotikums Streptolydigin [Deboer et al., 1955], kommt das MLP am N-terminalen Ende der A-Domäne als Fusionsprotein vor [Herbst et al., 2013].

Da A-Domänen die entscheidenden Enzyme sind, die für die Substratwahl der NRPSs verantwortlich sind, wurde viel unternommen, um die Funktionsweise und Konformationsänderungen von A-Domänen zu verstehen und daraus Bioengineeringansätze zu entwickeln. Problematisch ist hier vor allem der strukturelle Erhalt und das Zusammenspiel der einzelnen Domänen, das reibungslos funktionieren muss. Im Kapitel 1.10 soll auf dieses Thema weiter eingegangen werden.

1.5 Methyltransferase-Domänen (MT-Domänen)

MT-Domänen sind ca. 45 kDa groß [Süßmuth, 2017] und für die Methylierung der Aminosäurebausteine während der Biosynthese von NRPs zuständig. Es existieren N-, O-, und C-methylierende Domänen [Ansari et al., 2008].

Die meisten MT-Domänen sind in die A-Domäne zwischen der Core-A8- und Core-A9-Region integriert. Es gibt aber auch MT-Domänen, die zwischen der Core-A2- und Core-A3-Region positioniert sind [Labby et al., 2015]. Die N-Methylierung ist die bekannteste Art der Methylierung und kommt nicht nur bei NRPS vor. Einen Überblick hierüber gibt der Review von Chatterjee et al [Chatterjee et al., 2013].

Abbildung 8: Bei der Methylierung wird eine Methylgruppe (rot) durch die MT-Domäne von SAM auf die Aminogruppe übertragen.

Bei der Methylierung von Aminosäuren in der NRP-Synthese wird, während die Aminosäure am PCP gebunden vorliegt, eine Methylgruppe von einem S-Adenosyl-methionin (SAM) als Methylgruppendonor auf die Ami-
nosäure übertragen und als Abgangsgruppe wird S-Adenosyl-L-homocystein abgespalten (siehe Abb. 8) [Ansari et al., 2008]. Das SAM wird in der MT-Domäne durch vier konservierte Bereiche komplexiert, darunter das hochkonservierte GxGxG-Motiv [Velkov and Lawen, 2003]. Die N-Methylierung wurde 2011 von Velkov et al. am Beispiel der Cyclosporin-Synthetase [Lawen and Zocher, 1990] genauer beschrieben. Mit Hilfe von N-Methyltransferaseinhibitoren wurde der Effekt einer Blockierung der MT-Domäne auf die Adenylierungsreaktion und Thioesterbildung sowie auf die Kondensationsreaktion untersucht. Die Bildung von Cyclosporin konnte durch Blockierung der Methylierungsreaktion vollständig unterbrochen werden [Velkov et al., 2011].

Ist eine Methylierung in der Biosyntheseabfolge vorgesehen, scheint sie für den Verlauf der Synthese essentiell zu sein. Bei der Actinomycin-Synthetase [Keller, 1987] wurde eine Valin aktivierende Domäne gegen eine N-Methyl-Valin-Domäne ausgetauscht. Anstatt Valin wurde Methylvalin eingebaut, die weitere Peptidsynthese wurde unterbrochen, da die folgenden Domänen beeinträchtigt waren [Schauwecker et al., 2000]. Bei dem N-methylierten Anthelmintikum PF1022A konnten Weckwerth et al. die komplette Synthese zellfrei durchführen. Hier brach die Synthese allerdings ab, als kein SAM für die Reaktion zugeführt wurde. Die Peptidsynthese ist in diesen Fällen an die Methylierung gebunden [Weckwerth et al., 2000].

Das PKS-NRPS-BGC des Yersiniabactin enthält eine C-Methyltransferase. Diese spaltet vermutlich den am C2 gebundenen Wasserstoff des PCP gebundenen Intermediates ab. Das daraus entstehende delokalisierte Carbanion greift wiederum die elektrophile Methylsulfoniumgruppe des ebenfalls gebundenenen SAM an [Miller et al., 2001].

2018 gelang es Mori et al., eine Kristallstruktur von TioS, einer MT- unterbrochenen A-Domäne aus dem Thiocoralin-BGC, zu erstellen und zu analysieren. Hier konnte erstmals gezeigt werden, wie die dreidimensionale Struktur einer A-MT-Domäne aussieht. Die Domäne bildet ein hantelförmiges Konstrukt, dessen Enden die Hauptdomäne der A- und die MT-Domäne bilden. Die A-Subdomäne bildet das Verbindungsstück [Mori et al., 2018]. Im Falle des Thiocoralin-BGC konnten Mori et al. zwei interessante MT-Domänen finden. Einmal TioS, eine MT-Domäne, die in der Lage ist, eine Zweifachmethylierung an einem Stickstoff vorzunehmen, und TioN, der einzige Fall einer MT-Domäne, für die eine S-Methylierung zurzeit bekannt ist [Al-Mestarihi et al., 2014]. Die N-methylierende Domäne liegt zwischen der Core-A8- und Core-A9-Region und die S-methylierende Domäne zwischen der Core-A2- und Core-A3-Region [Mori et al., 2017].

Das Prinzip der eingebetteten MT-Domänen machten sich Lundi et al. zunutze, indem sie versuchten, eine monofunktionale A-Domäne ohne insertierte MT-Domäne mit jeweils zwei unterschiedlichen fremden MT-Domänen zu erstellen. Dazu fügten sie einmal die O-methylierende Domäne von KtzH und die N-methylierende Domäne von TioS zwischen die Core-A8- und Core-A9-Region ein. Die A-Domäne war danach in der Lage, spezifisch eine Nbzw. O-Methylierung vorzunehmen [Lundy et al., 2018]. Zwischen der Core-A8- und Core-A9-Region scheint also eine natürliche Schnittstelle für weitere Bioengineeringansätze zu sein.

1.6 Kondensierungsdomänen (C-Domänen)

C-Domänen sind sehr vielseitige Domänen innerhalb der NRPS-Komplexe. Sie sind ca. 450 Aminosäuren groß und sind N-terminal der A-Domänen angeordnet, um die PCP-gebundene Aminosäure mit der wachsenden Peptidkette zu verknüpfen [De Crecy-Lagard et al., 1995] [Marahiel et al., 1997].

Mit der ersten Kristallstrukturaufklärung einer C-Domäne von VibH (Vibriobactin-Synthetase) im Jahre 2002 konnte erstmals die Struktur der C-Domänen identifiziert und damit ihre Verwandtschaft zur Klasse der Chloramphenicol-Acetyltransferase-Superfamilie festgestellt werden. Sie bilden monomere Pseudodimere, bestehend aus zwei Unterdomänen, die eine V-förmige Tasche bilden, innerhalb derer die Kondensationsreaktion katalysiert wird

[Keating et al., 2002].

Mit der Kristallstruktur der C-Domäne von CDA konnten mögliche Konformationsänderungen während des Synthesezyklus am Computer simuliert werden [Bloudoff et al., 2013].

Eine weitere Klassifizierung der C-Domänen erfolgte 2007 auf Basis der phylogenetischen Verwandtschaftsverhältnisse [Rausch et al., 2007]. Allen C-Domänen war bis dahin das konservierte HHxxxDG Motiv gemeinsam. Man wusste, dass die Aufgaben der C-Domänen weitaus komplexer waren als nur die Verknüpfung zweier Aminosäuren. 2003 konnte die C5 C-Domäne der Tyrocidin-Synthetase eindeutig einer ${}^{\rm D}C_{\rm L}$ C-Domäne zugeordnet werden, also einer C-Domäne, die eine D-, mit einer L-konfigurierten Aminosäure verbindet [Clugston et al., 2003]. Rausch et al. konnten 2007 über eine phylogenetische Analyse weitere Subtypen von C-Domänen entschlüsseln und ihnen typische Sequenzmotive zuordnen, so dass von da an eine bioinformatische Vorhersage der Subtypen über einen "Hidden-Markov-Algorithmus" möglich war [Rausch et al., 2007].

Die C-Domänen lassen sich über diese phylogenetische Analyse in mehrere Unterklassen einteilen: Die ${}^{\rm L}C_{\rm L}$ -C-Domänen, die die Kondensation zweier L-Aminosäuren katalysieren, und die ${}^{\rm D}C_{\rm L}$ -C-Domänen, die die Kondensationsreaktion zwischen einer D- und einer L-Aminosäure katalysieren. Darüber hinaus gibt es Starter-C-Domänen, die stark verwandt sind mit den ${}^{\rm L}C_{\rm L}$ -C-Domänen, aber eine andere Substratspezifität aufweisen, da sie zum Beispiel Acylierungen katalysieren [Rausch et al., 2007]. Starter-C-Domänen sind in NRPS nicht zwangsläufig vorhanden, da eine Peptidbindung mit einem vorangehenden Peptid nicht nötig ist.

E-Domänen kommen ebenfalls aus der Klasse der C-Domänen. Sie agieren stark mit den C-Domänen zusammen [Linne and Marahiel, 2000]. Anhand der Kristallstruktur der E-Domäne der Tyrocidin-Synthetase konnte gezeigt werden, dass das ausschließlich bei E-Domänen konservierte Glu-882 als Katalysator wirkt und das His-743 im protonierten Zustand das Enolat-Intermediat der Isomerisation stabilisiert [Samel et al., 2014]. Da in den Bakterienzellen vor allem L-Aminosäuren vorhanden sind, werden D-Aminosäuren eher selten direkt eingebaut, sondern aus Epimerisierung einer L-konfigurierten Aminosäure gebildet. Daher folgen auf E-Domänen im nächsten Modul in der Regel ${}^{\rm D}C_{\rm L}$ -C-Domänen [Luo et al., 2002].

Auch Zyklisierungsdomänen (Cy-Domänen) können der Klasse der C-Domänen zugeordnet werden. Sie teilen ebenso wie die E-domänen die Struktur der C-Domänen, allerdings ist hier das katalytische HHxxxDG-Motiv durch ein DxxxxDxxS-Motiv ersetzt, dessen Rolle bei der Katalyse nicht eindeutig bestimmt werden konnte [Dowling et al., 2016]. 2017 konnte der putative Zyklisierungsmechanismus anhand der Kristallstruktur der BmdB-Cy2 Domäne aus dem BGC der Bacillamid Synthetase gefunden werden. Dieser verläuft über eine Säure-Base-Katalyse mit anschließender Dehydratisierung. Anders als bei den C-Domänen spielen hier vor allem die konservierten Aminosäuren T1196 and D1226 eine Rolle [Bloudoff et al., 2017].

Darüber hinaus gibt es C-Domänen, die modifizierende Reaktionen katalysieren. Darunter befinden sich vermutlich Dehydratisierungsreaktionen, wie die Dehydroalaninbildung aus Serin (siehe Abb. 9).

Abbildung 9: Putative Dehydroalaninbildung in NRPS: Dehydroalanin ist eine ungewöhnliche Aminosäure, die auch in NRPs nicht sehr oft vorkommt. Wahrscheinlich wird durch die vorangehende A-Domäne Serin aktiviert, welches in einem zweiten Reaktionsschritt putativ von der C-Domäne zu Dehydroalanin dehydratisiert wird.

Dehydroalanin ist eine für NRPs ungewöhnliche Aminosäure. Es gibt in der Literatur unter den NRPs lediglich zwei Peptide, bei denen eine Dehydroalaninbildung untersucht wurde. Das erste ist das Microcystin, welches Dehydroalanin als Baustein enthält. Man vermutet, dass die Dehydratisierung von Serin zu Dehydroalanin über die C-Domäne erfolgt, dies konnte aber noch nicht nachgewiesen werden [Tillett et al., 2000] [Crüsemann et al., 2018]. Das zweite Peptid ist Nocardicin, ein β -Lactam-Antibiotikum. Hier katalysiert die C-Domäne die Dehydratisierung von Serin zu Dehydroalanin als einem Intermediat der β -Lactam-Bildung. Die C-Domäne des Nocardicin-BGC enthält einen weiteren Histidinrest direkt N-terminal des HHxxxDG-Motivs, der vermutlich die β -Elimination von Wasser und eine anschließende β -Addition am Seryl-(dehydroalanyl-)- β -Kohlenstoff katalysiert [Gaudelli et al., 2015].

Aufgrund der vielseitigen Reaktionen, die C-Domänen katalysieren, war ihre genaue Rolle in der NRP-Synthese lange unklar. 1997 kam in einem Review von Mahariel et al. schon das katalytische Motiv HHxxxDG zur Sprache, von dessen zweitem Histidinrest man eine katalytische Funktion als Base für eine nucleophile Reaktion in der Kondensationsreaktion zweier Aminosäuren vermutete [Marahiel et al., 1997]. Der genaue Kondensationsmechanismus war trotzdem lange unklar.

Der zweite Histidinrest des konservierten Motivs His-147 konnte 1998 von Stachelhaus et al. eindeutig dem katalytischen Zentrum zugeordnet werden. Eine Kondensationsreaktion fand ohne das His-147 nicht statt [Stachelhaus et al., 1998]. Eine weitere Mutationsanalyse diverser, aus 80 C-Domänen gefundener, konservierter Aminosäuren von Bergendahl et al. konnte das noch einmal bestätigen und ebenfalls eine katalytische Funktion des His-147 zeigen, sowie eine strukturelle Unterstützung der Kondensationsreaktion über das Arginin R62 und das Aspartat D151. Eine Mutation von diesen Aminosäuren bewirkte einen Ausfall der Kondensationsreaktion. Weitere Mutationen von konservierten Motiven führten vor allem zu unlöslichem Protein oder zu größeren strukturellen Änderungen im Protein [Bergendahl et al., 2002].

Der zweite Histidinrest des konservierten Motivs ist zwar essenziell, aber seine katalytische Funktion als Base wurde 2007 von Samel et al. für unwahrscheinlich erachtet. Da die Kondensationsreaktion eine weite pH-Toleranz hat, schlossen sie eine generelle Säure-Base-Katalyse aus. Sie vermuteten einen Mechanismus ähnlich dem der ribosomalen Peptidsynthese über elektrostatische Stabilisierung des Substrates in einem tetrahedralen Übergangszustand [Samel et al., 2007]. 2016 konnte dann durch Bloudoff et al. an der Kristallstruktur der C-Domäne des Calcium-Dependent Antibiotic CDA-C1 gezeigt werden, dass der Histidinrest vor allem dafür verantwortlich ist, die α -Aminogruppe des Substrates so in Position zu halten, dass ein nucleophiler Angriff erfolgen kann (siehe Abb. 10) [Bloudoff et al., 2016].

Abbildung 10: Kondensationsreaktion: Mit Hilfe der C-Domänen wird die Peptidbindung zwischen dem entstehenden Peptid des vorangehenden Moduls und der aktivierten Aminosäure des folgenden Moduls geknüpft.

C-Domänen katalysieren die Kondensationsreaktion und tragen in dieser Funktion auch zu einer Fehlerkorrektur durch von A-Domänen falsch aktivierten Substrataminosäuren bei. Sie enthalten zwei Bindungstaschen, eine an der N-terminalen Donorseite und eine stark stereoselektive auf der Cterminalen Akzeptorseite. Letztere weist ebenfalls eine Selektivität gegenüber der Seitenkette des Aminoacyl-Thioesters auf [Ehmann et al., 2000] [Lautru and Challis, 2004]. Die von der A-Domäne zur Verfügung gestellte aktivierte Aminosäure wird dadurch noch einmal "Korrektur gelesen". Die Donorseite ist gegenüber dem Substrat weitaus toleranter. Sowohl Größe als auch Konstitution des hier ankommenden Peptids scheinen keinen Einfluss auf eine Kondensationsreaktion zu haben [Linne and Marahiel, 2000]. Die Selektivität an der Akzeptorseite scheint auch eine Rolle zu spielen, wenn es um die Initiation der Bildung eines NRPs geht. So kann zum Beispiel ein Elongationsmodul keine Initiationsreaktion ausführen. Durch Abtrennung der Nterminalen C-Domäne eines Elongationsmoduls konnte dieses in ein Initiationsmodul umgewandelt werden [Linne and Marahiel, 2000] [Luo et al., 2001] [Lautru and Challis, 2004] [Belshaw et al., 1999] [Ehmann et al., 2000].

2016 konnten Bloudoff et al. erstmals durch Punktmutation des S309G in der C-Domäne des Calcium-Dependent Antibiotic CDA-C1 die Substratspezifität der C-Domäne von Alanin zu Serin abändern [Bloudoff et al., 2016].

1.7 Peptidyl Carrier Protein oder PCP-Domänen

PCP-Domänen bilden flexible Domänen, die das Peptid während der NRP-Synthese zu den einzelnen Domänen transportieren. Sie bestehen aus 80-100 Aminosäuren, [Lai et al., 2006] die vier Helices bilden.

Abbildung 11: Phosphopantetheinylierung: An die inaktive PCP-Domäne wird unter Mitwirkung einer PPTase ein Phosphopantetheinrest an einen hochkonservierten Serinrest des Apo-PCP gebunden. In dieser Form ist die PCP-Domäne in der Lage, sowohl entstehende Peptide als auch aktivierte Aminosäuren kovalent zu binden.

Die vier helikalen Strukturen der PCP-Domänen haben auf der nach innen liegenden Seite hydrophobe Seitenketten und, zur äußeren Umgebung gerichtet, polare Seitenketten [Weber et al., 2000]. In dieser Form ist eine PCP-Domäne noch inaktiv. Sie wird durch Phosphopantetheinyl-Transferasen [Lambalot et al., 1996] in ihre aktive Form umgewandelt. Dabei wird ein Phosphopantetheinrest auf das Ser45 des konservierten Motivs GxxS übertragen [Weber et al., 2000]. Dieser Phosphopantetheinrest hat eine terminale reaktive SH-Gruppe [Abe et al., 2018], die für die kovalente Fixierung der Aminosäure verantwortlich ist (siehe Abb. 11). PCPs besitzen wahrscheinlich keine eigene Substratspezifität [Doekel and Marahiel, 2000].

Tan et al. konnten anhand der Kristallstruktur der A-PCP Domäne von McyG mit dem Intermediat L-Phe-AMP erste Einblicke in das Zusammenspiel von A-Domäne, PCP und deren katalytischen Regelkreis erhalten [Tan et al., 2015]. Owen et al. versuchten nach Austausch verschiedener PCP-Domänen im Indigoidin-Cluster, den Farbstoff weiterhin zu produzieren. Sie stellten fest, dass die Produktion des Indigoidins aufrecht erhalten werden konnte, sobald eine PCP-Domäne eingefügt wurde, die ursprünglich N-terminal einer TE-Domäne stand. Mit PCP-Domänen, die ursprünglich N-terminal einer C-Domäne lagen, kam die Produktion zum Erliegen. Es scheint also einen Unterschied zwischen PCP-Domänen, auf die eine C-Domäne folgt, und zwischen solchen, auf die eine TE-Domäne folgt, zu geben [Owen et al., 2016].

1.8 MbtH-ähnliche Proteine

MbtH ähnliche Proteine, auch MLPs (MbtH like proteins) genannt, sind Proteine, die eine sehr hohe Ähnlichkeit zum Protein MbtH aus dem Mycobactin-BGC aus *Mycobacterium tuberculosis* aufweisen [Quadri et al., 1998]. Gene für MLPs sind sehr oft in NRPS-BGC zu finden und besitzen eine Funktion als Helferprotein für manche A-Domänen.

MLP-Gene kodieren für ein ca. 8 kDa großes Peptid. Die Funktion dieses Pep-

tids war lange unklar, da eine NRP-Synthese oft trotz Knockout des MLP-Gens funktionierte. Dies wurde am Beispiel der Biosynthese des Glycopeptids Balhimycin gezeigt. Nach einem Knockout des MLP-Gens im Balhimycin-BGC wurde die Synthese des Wildtyps nicht beeinträchtigt [Stegmann et al., 2006]. Der Grund dafür war aber keineswegs, dass MLPs für die Biosynthese unwichtig sind, sondern, dass sie funktional gegeneinander austauschbar sind. So konnten Wolpert et al. an der Biosynthese von Clorobiocin zeigen, dass die Clorobiocinsynthese erst stoppte, als sämtliche im Wirtsorganismus vorhandene MLP-Gene inaktiviert wurden [Wolpert et al., 2007]. Zu einem ähnlichen Ergebnis kamen auch Lautru et al., indem sie herausfanden, dass nur ein MLP-Gen für die Produktion des Peptidsiderophores Coelichelin und dem Calcium-Dependent Antibiotic notwendig ist. Die MLPs waren gegeneinander austauschbar [Lautru et al., 2007]. In der Glidobactin Biosynthese konnte nur durch Coexpression des Initiationsmoduls GlbF mit MLP lösliches und aktives Protein gewonnen werden [Imker et al., 2010].

Zhang et al. und Felnagle et al. konnten zeitgleich nachweisen, dass MLPs in der Adenylierungsreaktion mancher A-Domänen benötigt werden [Zhang et al., 2010] [Felnagle et al., 2010]. Es gibt also A-Domänen, die ohne MLPs funktionieren und solche, die ein MLP benötigen. Boll und Kollegen änderten durch eine einfache Mutation des Leucin-383 zu Methionin eine MLPabhängige A-Domäne in eine MLP-unabhängigen A-Domäne ab. Sie fanden heraus, dass A-Domäne und MLP in einem stöchiometrischen Verhältnis von 1:1 binden [Boll et al., 2011]. MLPs scheinen eine gewisse chaperonähnliche Eigenschaft zu besitzen, indem sie die Löslichkeit, Stabilität und Aktivität mancher A-Domänen beeinflussen [Heemstra et al., 2009].

2013 zeigten D. Herbst und Kollegen anhand der Kristallstruktur des Adenylierungsenzyms SlgN1 [Herbst et al., 2013], das in die Biosynthese des Antibiotikums Streptolydigin involviert ist, dass die Aminosäuren Trp-25, Trp-35 des MLP-Proteins und Ala-433 der A-Domäne für die Domäneninteraktion mit dem MLP verantwortlich sind. Das MLP hat keinen Kontakt zum Substrat der A-Domäne. 2016 wurde in einem ähnlichen Ansatz anhand der NRPS EntF die komplette, hochdynamische Domänenarchitektur von EntF mit assoziiertem MLP YbdZ aufgeklärt [Miller et al., 2016]. Durch Kristallisation und Röntgenstrukturanalyse konnten Tarry et al. herausfinden, wie MLPs in der Gesamtstruktur der Domänen eingebettet sind [Tarry et al., 2017].

MLP-Proteine haben auch eine funktionelle Varianz. Schomer et al. tauschten das MLP YbdZ der Enterobactinsyntethase gegen andere MLPs aus. Sie wiesen nach, dass die A-Domäne der Enterobactinsynthetase aus EntF durch unterschiedliche MLPs unterschiedlich gut ihr Substrat aktivieren konnte. Das zeigte sich in starken Ausbeuteschwankungen in der Enterobactin-Produktion. MLPs scheinen also unterschiedlich in der Lage zu sein, die Löslichkeit oder die Katalyse der Adenylierungsreaktion zu beinflussen. Die Komplexität der Interaktion ist bis jetzt nicht restlos geklärt [Schomer and Thomas, 2017].

1.9 Thioesterasen (TE-Domänen)

TE-Domänen sind die endständigen Domänen der NRPS. Sie sind ca. 30 kDa groß und agieren als α/β -Hydrolasen [Süßmuth, 2017]. Sie sorgen für die Produktfreisetzung des fertigen Peptids durch eine nucleophile Reaktion. Nach Bindung der Peptidkette an das Serin des aktiven Zentrums der TE-Domäne wird die Freisetzung des Produkts entweder durch Hydrolyse oder Aminolyse bei linearen Peptiden, oder auch durch intramolekulare Zyklisierung des Peptids erreicht (siehe Abb. 12) [Kopp and Marahiel, 2007] [Süßmuth, 2017].

Abbildung 12: Durch Hydrolyse oder Aminolyse bei linearen Peptiden oder eine intramolekulare Zyklisierungsreaktion wird das fertige Peptid freigesetzt.

1.10 Vorstufengerichtete Biosynthese von NRPs und Bioengineering von NRPS

Der Wunsch, neue Naturstoffanaloga zu synthetisieren, führte im Laufe der Zeit dazu, modulare Biosynthesesysteme, wie sie die NRPS-BGC darstellen, durch vorstufengerichtete Biosynthese, Mutasynthese und genetische Manipulation zu beeinflussen oder abzuändern.

Zu Beginn konzentrierte man sich jedoch auf die einfache Zufütterung von Vorstufen. Bei diesem Prinzip werden dem nativen Naturstoffproduzenten bestimmte Aminosäuren und andere Vorstufen zur Verfügung gestellt, die den natürlichen Substraten ähneln, aber sich hinsichtlich der gewünschten Substituenten unterscheiden. Die ersten Versuche mit dieser Methode wurden schon durchgeführt, bevor man Gencluster kannte. Die vorstufengerichtete Synthese funktionierte am besten in Fällen, in denen das zugefütterte Substrat nur minimal anders war als das natürliche Substrat. So haben Beacco et al. beispielsweise ein chloriertes Alkaloidanalogon eines Ergopeptins durch Fütterung einer Kultur von Claviceps purpurea mit D,L-p-Chlorophenylalanin erhalten [Beacco et al., 1978]. Bister et al. tauschten das Chlorid im Fermentationsmedium von Amycolatopsis balhimycina [Wink et al., 2003] durch andere Halogensalze aus und erhielten unterschiedliche Halogenierungsmuster bei Balhimycin [Bister et al., 2003]. Auch bei Iturin A wurde mit der Vorstufe 3-Fluoro-L-Tvrosin ein fluoriertes Produkt erzeugt [Moran et al., 2009]. Bei Aureobasidin [Takesako et al., 1991], einem zyklischen Depsipeptid, konnten durch Zufütterung unterschiedlicher Aminosäuren sogar ganze Aminosäurebausteine in der Peptidsequenz ausgetauscht werden [Takesako et al., 1996]. Grüschow et al. zeigten 2009 am Beispiel des Antibiotikums Pacidamycin [Karwowski et al., 1989] [Chen et al., 1989] [Fernandes et al., 1989], dass durch Zufütterung von in unterschiedlichen Positionen substituiertem Bromo-Tryptophan abweichende Ausbeuten im Vergleich zur Produktion des nativen Pacidamycins erzielt werden konnten. Bei Zufütterung von Aminosäurevarianten, in denen sich der Brom-Substituent in Position zwei und sieben befand, war die Produktion teilweise höher als die des natürlichen Pacidamycins, wohingegen das Protein bei Substituenten in den Positionen vier, fünf und sechs in deutlich geringerem Ausmaß produziert wurde Grüschow et al., 2009].

Auch *in vitro* konnten durch Fütterungsexperimente Analoga hergestellt werden. Durch Zugabe von L-Alanin, L-Threonin, L-Valin oder L-Norvalin anstatt L-2-Aminobuttersäure, zu einer Enzymfraktion des Rohextrakts von *Tolypocladium inflanatum* erhielt man unterschiedliche Cyclosporin-Derivate [Billich and Zocher, 1987]. Traber et al. benutzten dieses System dazu, in Fermentationskulturen diese Cyclosporine in ausreichender Menge zu synthetisieren, um Strukturaufklärung betreiben zu können [Traber et al., 1989]. Bei Enniatin, einem zyklischen Hexadepsipeptid, wurden *in vitro* durch Precursorzugabe in einer Reaktion mit der Enniatin-Synthetase und *in vivo*-Versuchen durch Fütterung einer Kultur von *Fusarium sambucinum* und *scirpi* diverse Enniatin-Analoga erzeugt. So konnten verschiedenen Aminosäuren gegeneinander ausgetauscht werden und die D-2-Hydroxyisovalerate gegen D-2-Hydroxybuttersäure und D-Laktat ausgetauscht werden [Krause et al., 2001]. Ein Review von Thiericke fasst die Thematik der vorstufengerichteten Biosynthese zusammen [Thiericke and Rohr, 1993].

Einen ähnlichen Ansatz wie die vorstufengerichtete Biosynthese verfolgt die Mutasynthese, bei der die Vorstufen nicht den nativen, sondern mutierten Naturstoffproduzenten zugefüttert werden. Auf diese Weise aktiviert das Enzym Vorstufen, die vorher nicht als Substrat akzeptiert wurden.

Beispielsweise konnten Ankerbauer et al. einen Pseudomonas aeroginosa Mutanten herstellen, dessen Biosynthesegen für die Salicylsäureproduktion ausgeknockt war. Diese Mutante war in der Lage, exogen zugefütterte Salicylsäureanaloga in Pyochelin einzubauen [Ankenbauer et al., 1991]. Das Glycopeptidantibiotikum Balhimycin konnte durch einen Knockout des β -Hydroxy-Tyrosinbildenden Gens und Zufütterung von 3-Fluoro- β -hydroxy-Tyrosin als Fluorbalhimycin erhalten werden [Weist et al., 2002]. Powell et al. knockten eine MT-Domäne im BGC des Calcium-Dependent Antibiotic aus und erhielten durch Zufütterung von dreifach methyliertem Substrat trotzdem ein vollständig methyliertes Calcium-Dependent Antibiotic. Des weiteren wurde anstatt der dreifach methylierten Aminosäure eine dreifach fluoromethylierte Glutaminsäure erfolgreich zugefüttert [Powell et al., 2007]. Im Falle des Antitumorwirkstoffs Sibiromycin erzeugte man durch Knockout des Methyltransferasegens und anschließender Zufütterung von 4-Methylanthranilsäure einen Wirkstoff, der weiterhin antitumorwirksam war, aber verringerte Kardiotoxizität aufwies [Yonemoto et al., 2012].

Sowohl die vorstufengerichtete Synthese, als auch die Mutasynthese funktionieren nur begrenzt, da die Substrate wenig variabel sind. Mit der detaillierten Aufklärung der BGCs versuchte man immer mehr auf genetischer Ebene die BGC zu manipulieren. Hier sind die Ausbeuten oft nicht sehr hoch, da mit einem Engineering der NRPS die dreidimensionale Struktur der Enzyme verändert wird und diese oft in ihrer Funktion beeinträchtigt sind. Die Versuche reichen von einfachen Punktmutationen über die Rekombination von Sequenzen im aktiven Zentrum der A-Domäne bis hin zum Austausch von Domänen oder sogar Modulen [Süßmuth, 2017].

Crüsemann et al. konnten im Falle des Hormaomycins A-Domänen finden, die sich nur im Bereich der für die Spezifität kodierenden Sequenzen stark unterschieden, ansonsten aber eine hohe Identität aufwiesen. Diese natürlichen Rekombinationsschnittstellen wurden genutzt, um eine ca. 400 bp große Sequenz im kodierenden Bereich der A-Domäne auszutauschen, und damit die Substratspezifität der A-Domänen abzuändern [Crüsemann, 2013]. Bei Kries et al. wurde ähnlich wie bei Crüsemann et al. durch Austausch eines Sequenzabschnittes im Bereich des Stachelhauscodes der A-Domäne der cyclo(D-Val-Pro)-Synthetase mit der kodierenden Sequenz der Phenylalanin aktivierenden Domäne der Gramicidinsynthetase die Spezifität von Valin zu Phenylalanin abgeändert [Kries et al., 2015]. Ein relativ kleiner Eingriff in die NRPS der Tyrocidinsyntethase wurde von Villiers et al. vorgenommen. Durch Mutation des Stachelhauscodes erfolgte eine Abänderung der Spezifität der Phenylalanin aktivierenden A-Domäne aus TycA zu Alanin [Villiers and Hollfelder, 2011].

Nicht nur die A-Domänen spielen eine Rolle bei der Wahl des Substrates, sondern auch die C- und andere Domänen. Daher gab es zahlreiche Versuche, vor allem A-Domänen zusammen mit ihren PCP-, C-, oder anderen Domänen auszutauschen. So ist es beispielsweise gelungen, den endständigen Bereich der Daptomycin-NRPS mit dem von zwei sehr ähnlichen NRPS des Antibiotikums A54145 und des Calcium-Dependent Antibiotic (CDA) zu ersetzen. Während Daptomycin Kynurenin enthält, enthalten CDA und A54145 Tryptophan und entweder Isoleucin oder Valin. Zuerst wurde eine Knockout-Variante des Daptomycin-BGC hergestellt, dessen C-terminales Gen *dptD* fehlt, wodurch die Daptomycin Produktion zum Erliegen kam. Durch Coexpression mit einem Vektor, der dptD enthält, konnte die Daptomycin-Produktion wieder hergestellt werden. Von den C-terminalen Genen des CDA-BGC und des A54145 wurden ebenfalls Vektoren erstellt, die zusammen mit dem Knockout-Vektor exprimiert wurden. Bei letzteren beiden wurden anstatt Kynurenin Tryptophan und Isoleucin/Valin in das Peptid eingebaut [Miao et al., 2006] [Coeffet-Le Gal et al., 2006].

Calcott et al. führten am Pyoverdin-BGC Studien zum Austausch von Cund A-Domänen durch. Hier versuchte man die Spezifität der Threonin aktivierenden C-terminalen A-Domäne des endständigen Moduls durch Austausch von entweder nur A-Domänen oder CA-Domänen abzuändern. Auch hier wurde, ähnlich wie in den Versuchen bei Daptomycin, das C-terminale Gen pvdD in ein separates Plasmid kloniert. Die A-, oder CA-Domäne des C-terminalen Moduls wurde entweder durch eine andere A-Domäne oder eine andere A-Domäne mit deren C-Domäne ersetzt. Die für den Austausch verwendeten A- und C-Domänen wurden aus anderen Modulen des Pyoverdin-BGC, oder aus homologen Pseudomonas-BGC genommen. Wurde die native A-Domäne gegen eine andere Threonin-aktivierende A-Domäne ausgetauscht, wurde weiterhin Pyoverdin produziert, wenn auch mit unterschiedlichen Ausbeuten. A-Domänen mit anderen Spezifitäten wurden durch dieses System nicht akzeptiert und produzierten ebenfalls ausschließlich Pyoverdin, allerdings nur in Spuren. Wurde mit der A-Domäne ebenfalls die C-Domäne ersetzt, konnte in zwei Fällen das Threonin einmal durch Serin und einmal durch Lysin ersetzt werden. In anderen Fällen war jedoch der Austausch der CA-Domäne erfolglos [Calcott et al., 2014].

Die Funktionalität einer NRPS wird insbesondere durch die dreidimensionale Struktur und das komplexe Zusammenspiel der einzelnen Domänen untereinander bestimmt. Werden durch Modifikationen die Struktur oder die Beweglichkeit einzelner Domänen stark verändert oder eingeschränkt, kann das zu einem Funktionsverlust der Enzyme führen [Winn et al., 2016]. Tan et al. zeigten durch die Kristallstrukturanalyse der A-PCP-Domäne aus McyG des Microcystin, wie A- und PCP-Domäne interagieren. So ist beispielsweise die Core-A9-Region der A-Domäne an der Interaktion mit der PCP beteiligt [Tan et al., 2015]. Die Manipulation der Linkerregion zwischen PCP und C-Domänen des Daptomycin-BGC führten zu keiner größeren Beeinträchtigung der Daptomycin-Produktion [Doekel and Marahiel, 2000]. Eine weitere Kommunikationsstruktur der Domänen untereinander ist in den Kommunikationsdomänen (communication-mediating domains = COM-Domänen) zu sehen. Zwischen den Domänen befinden sich jeweils miteinander kompatible COM-Domänen, die miteinander interagieren können. Hier führten kleine Modifikationen innerhalb der Domänen-Sequenz dazu, dass keine Interaktion zwischen den COM-Domänen-Partnern mehr stattfand [Hahn and Stachelhaus, 2006].

Bozhüyük et al. gelang es, ein Grundprinzip aus den bisherigen Kenntnissen abzuleiten. Die Module wurden an neu definierten Linkerregionen separiert. Dadurch entstanden CA- oder CAT-Module, die gleich einem Baukastenprinzip aneinander gesetzt wurden, ohne die übergeordnete Domänenarchitektur zu beeinflussen. Mit diesem Ansatz ließen sich künstliche Peptide mit Ausbeuten zwischen 20 mg/L und 50 mg/L generieren [Bozhüyük et al., 2018].

Viele Bioengineeringansätze führen heute schon zu guten Ergebnissen. Es ist unerlässlich, die Komplexität der NRPS-Systeme zu verstehen, wenn man diese für eine erfolgreiche rekombinante Produktion von Naturstoffen nutzen will.

2 Zielsetzung der Arbeit

FR ist ein Naturstoff aus A. crenata, der von symbiontischen Bakterien dieser Pflanze gebildet wird. Aufgrund seiner einzigartigen Hemmung von G_q -Proteinen, welche maßgeblich an der Signaltransduktion von GPCRs beteiligt sind, ist die Aufklärung der Biosynthese als Basis für das Bioengineering von Analoga essenziell. Zu Beginn dieser Arbeit lag nur das BGC aus *Cand.* B. crenata vor. Erste bioinformatische Untersuchungen ließen vermuten, dass es sich um das BGC des FR-Peptids handelt.

Das Hauptziel dieser Arbeit ergab sich mit dem Fund des zweiten *frs*-BGC im Genom von *C. vaccinii*. Die BGC von *Cand*. B. crenata und von *C. vaccinii* sollten bioinformatisch analysiert und auf DNA- und Proteinebene verglichen werden. Daraus sollten sowohl Erkenntnisse über die Details der Biosynthese des FR-Peptids, als auch neue Erkenntnisse über mögliche Bioengineeringansätze gewonnen werden. Aus der detaillierten Strukturanalyse der BGCs sollten auch Hinweise auf mögliche evolutionäre Vorgänge in der Entstehung der BGCs gewonnen werden.

Ein zweites Ziel dieser Arbeit war es, die Spezifität der A-Domänen aus FrsA und FrsD durch Expression zu belegen und die OH-Leucin-Biosynthese während der FR-Biosynthese nachzuvollziehen. Dies war notwendig, da die erste bioinformatische Analyse der A-Domänen nicht erkennen ließ, ob OH-Leucin oder Leucin von der A-Domäne aktiviert wird. Dies sollte auch die Rolle von FrsH im *frs*-BGC beleuchten.

3 Ergebnisse

3.1 Bioinformatische Analyse der Biosynthesegencluster *bcfrs* und *cvfrs* von FR

Carlier et al. konnten 2016 das Genom des Endosymbionten von A. crenata sequenzieren. Auf einem Plasmid wurde ein 35,800 kb großes BGC (*bcfrs*-Gencluster) gefunden [Carlier et al., 2016]. Eine Analyse mit antiSMASH ergab, dass dieses BGC eine NRPS darstellt und aus acht Modulen und insgesamt 31 Domänen aufgebaut ist. Die NRPS weist eindeutige Kolinearität mit der Struktur von FR auf, die hier durch bioinformatische und *in-vitro*-Analyse bestätigt werden soll (siehe Abb. 4). Weiterhin wurden in unserer Arbeitsgruppe in einem anderen Bakterium Teile einer BGC-Sequenz gefunden, die eine große Ähnlichkeit mit dem *bcfrs*-Gencluster aus *Cand.* B. crenata aufweist. Dieses letztere Gencluster (*cvfrs*) stammt aus *C. vaccinii* und lag zu Beginn dieser Arbeit lückenhaft auf mehreren Contigs vor. Diese Lücken konnten durch uns mit Hilfe von PCR vollständig geschlossen werden. Im Folgenden sollen beide BGC bioinformatisch analysiert werden.

3.1.1 Analyse der *bcfrs*- und *cvfrs*-Biosynthesegencluster aus *Cand*. B. crenata und *C.vaccinii* mit antiSMASH

Die antiSMASH-Analyseplattform (antibiotics & Secondary Metabolite Analysis Shell) kann die BGC aller bekannten sekundären Metabolitklassen in Gensequenzen identifizieren und lokalisieren (siehe Kap. 5.1). Die Annotation erfolgt nach der Durchführung von Alignments mit bekannten BGC aus einer Datenbank [Medema et al., 2011]. Seit der Einführung wurde antiS-MASH kontinuierlich weiterentwickelt. Die Uploadformate wurden erweitert und Subcluster, die an der Bildung von Baueinheiten beteiligt sind, können analysiert werden [Blin et al., 2013]. Es wurde der Cluster Finder Algorithmus entwickelt, um mögliche BGC unbekannter Typen sowie Ähnlichkeiten zwischen dem identifizierten BGC und schon bekannten BGC zu finden. Der Algorithmus basiert auf dem Hidden Markov Modell und auf der Annahme, dass auch BGC für unbekannte Metabolitklassen die gleichen Enzymfamilien beinhalten. Mittlerweile können auch aktive Zentren aufgrund bekannter Schlüsselmotive lokalisiert und annotiert werden [Weber et al., 2015]. 2017 wurde antiSMASH um eine Datenbank erweitert, die von antiSMASH annotierte BGC zur Verfügung stellt [Blin et al., 2017b]. Der Review von Blin et al. dokumentiert nochmals alle Leistungsmerkmale von antiSMASH [Blin et al., 2017a].

Die Analyse der frs-Genclustersequenzen durch antiSMASH zeigt, dass beide NRPS-BGC den gleichen Aufbau und die gleiche Anzahl an Domänen haben. Beide BGC bestehen aus jeweils acht Genen, acht Modulen und 31 Domänen. Sie enthalten ebenfalls beide zwei TE-Domänen, was auf zwei NRPS-Systeme hindeutet. Die erste monomodulare NRPS FrsA ist für die Synthese des N-Propionyl-hydroxyleucin zuständig. Dies soll später anhand der bioinformatischen Analyse der C-Domänen und anhand von *in-vitro*-Untersuchungen der A-Domäne bestätigt werden. Diese Seitenkette des FR-Moleküls wird dann vermutlich unter Mitwirkung der TE₁-Domäne ähnlich wie in der Salinamid Biosynthese [Ray et al., 2016] auf das zirkuläre Heptapeptid übertragen, welches von der zweiten NRPS gebildet wird. Die zweite, weitaus größere NRPS mit jeweils sieben weiteren Elongationseinheiten bildet entsprechend unserer Biosynthesehypothese das Depsipeptid mit sieben weiteren Aminosäuren.

Verwendeter Algorithmus	FrsA	FrsD	FrsE 1	FrsE 2	FrsF 1	FrsF 2	FrsG 1	FrsG 2
Stachelhaus code	boh-d-leu	boh-d-leu	N/A	$\operatorname{gln}\operatorname{ser}$	N/A	N/A	boh-d-leu	nme-thr
	d-leu leu	d-leu leu					d-leu leu	
NRPSPredictor 3 SVM	leu	leu	N/A	ser	ala	ala	leu	thr
pHMM	tyr	tyr	trp	ser	ala	ala	tyr	thr
SANDPUMA ensemble	leu	leu	N/A	ser	N/A	N/A	leu	thr
ID to nearest neighbour $(\%)$	51.69	51.69	53.09	58.6	53.83	54.1	51.27	58.68

42

Tabelle 1: A-Domänen Spezifitätsvorhersage nach unterschiedlichen Algorithmen durch antiSMASH von *Cand.* B. crenata. Für die ADomänen von FrsD-FrsG werden jeweils in gleicher Reihenfolge Leucin oder Hydroxyleucin (Leu/OH-Leu), Phenylalanin (Phe) oder Tryptophan (Trp), Serin (Ser), Alanin (Ala), Alanin, Leucin oder Hydroxyleucin und Threonin (Thr) vorhergesagt. Der pHMM-Algorithmus weicht bei FrsA, D und G1 von den Vorhersagen der anderen Algorithmen ab. Schwierigkeiten in der Vorhersage gibt es bei FrsE1. Das Substrat konnte hier nicht eindeutig identifiziert werden, wobei die Aromatizität erkannt wurde. Abkürzungen: boh-d-Leu= β -Hydroxyleucin; bht= Hydroxytyrosin [Blin et al., 2013]; N/A = keine Angabe

Verwendeter Algorithmus	FrsA	FrsD	FrsE 1	FrsE 2	FrsF 1	FrsF 2	FrsG 1	FrsG 2
Stachelhaus code	N/A	N/A	N/A	gln $ $ ser	ala gly	alagly	N/A	thr
NRPSPredictor 3 SVM	leu	leu	phe	ser	ala	ala	leu	thr
pHMM	bht	bht	trp	ser	ala	ala	bht	thr
SANDPUMA ensemble	leu	leu	phe	ala	N/A	N/A	leu	thr
ID to nearest neighbour	49.24	49.24	56.09	60.47	56.24	57.14	49.24	59.78

43

Tabelle 2: A-Domänen Spezifitätsvorhersage nach unterschiedlichen Algorithmen durch antiSMASH von *C. vaccinii*. Für die A-Domänen von FrsD-FrsG werden jeweils in gleicher Reihenfolge Leucin (Leu), Phenylalanin (Phe) oder Tryptophan (Trp), Serin (Ser), Alanin (Ala), Alanin, Leucin und Threonin (Thr) vorhergesagt. Der pHMM-Algorithmus weicht bei FrsA, D und G1 von den Vorhersagen der anderen Algorithmen ab. Schwierigkeiten in der Vorhersage gibt es bei FrsE1. Das Substrat konnte hier nicht eindeutig identifiziert werden, wobei die Aromatizität erkannt wurde. Abkürzungen: bht= Hydroxytyrosin [Blin et al., 2013] ; N/A = keine Angabe

Vergleicht man bioinformatisch die Spezifität der A-Domänen, so ergibt sich für beide BGC eine ähnliche Prognose (siehe Tabellen 1 und 2). Für die A-Domänen von FrsD-FrsG werden jeweils in gleicher Reihenfolge Leucin oder Hydroxyleucin, Phenylalanin oder Tryptophan, Serin, Alanin, Alanin, Leucin oder Hydroxyleucin und Threonin vorhergesagt. Abweichungen von dieser Hypothese zeigt vor allem der pHMM-Algorithmus. In manchen Fällen konnte durch die Algorithmen keine Zuordnung für ein Substrat getroffen werden. Die meisten Substrate wurden von mindestens zwei der Algorithmen im Sinne der Hypothese bestätigt. Die einzige Abweichung zeigt sich bei FrsE1 (Modul 3). Anstatt Phenyllaktat, d.h. dem in FR vorhandenen Baustein, wurde hier Phenylalanin oder Tryptophan als Substrat erkannt. Eine Vorhersage scheint hier aufgrund mangelnder Datenlage noch nicht möglich zu sein. Allerdings wurde sowohl für das bcfrs-Gencluster von Cand. B. crenata, als auch für das cvfrs-Gencluster von C. vaccinii mit Phenylalanin und Tryptophan eine aromatische Aminosäure vorhergesagt, die dem Phenyllaktat sehr ähnlich ist.

Die zweite A-Domäne von FrsE (Modul 4) aktiviert laut antiSMASH-Analyse Serin. Das FR-Peptid enthält an dieser Stelle jedoch N-Methyl-Dehydroalanin. Eine ähnliche Konstellation findet sich in der Biosynthese für Microcystin wieder [Tillett et al., 2000], für das ebenfalls Serin als Substrat vorhergesagt wird. Da in den *frs*-BGC kein offensichtliches Enzym für die Bildung von Dehydroalanin aus Serin vorhanden ist, kann vermutet werden, dass ein ähnlicher Biosynthese-Mechanismus vorliegt [Crüsemann et al., 2018]. Für das Microcystin wird postuliert, dass unter Mitwirkung einer C-Domäne eine Dehydratisierung des Serins zu Dehydroalanin stattfindet [Tillett et al., 2000] [Crüsemann et al., 2018]. Dieser Mechanismus ist jedoch noch nicht belegt. Eine weitere bioinformatische Analyse der C-Domänen wird in Kapitel 3.4 vorgenommen.

FrsE und FrsF enthalten jeweils eine von vier MT-Domänen im BGC. Diese folgen auf die A-Domänen A4 und A6, wohingegen in FrsG zwei MT-Domänen vorhanden sind. Das entspricht genau dem Methylierungsmuster von FR, welches ein einfach methyliertes N-Methyldehydroalanin, ein einfach methyliertes N-Methylalanin, sowie ein zweifach methyliertes N,O-Dimethylthreonin enthält. Man kann also vermuten, dass die Methylgruppen nach der Aktivierung der Aminosäure eingefügt werden, während die Aminosäure am PCP gebunden vorliegt, wie es auch für andere NRPS bereits beschrieben wurde [Marahiel et al., 1997] [Süßmuth, 2017]. Eine weitere bioinformatische Analyse der MT-Domänen beinhaltet Kapitel 3.3.

Zwischen den beiden NRPS-Genen liegt *frsB*, welches für ein MbtH ähnliches Protein codiert. Es folgt *frsC*, ein Gen für eine putative Malat-Dehydrogenase, und mit dem endständigen FrsH das einzige modifizierende Enzym im gesamten BGC. FrsC weist bioinformatisch eine hohe Ähnlichkeit zu einer Malat-Dehydrogenase und L-Laktat-Dehydrogenase auf [Minarik et al., 2002] [Wright et al., 2000]. Daher könnte es die Reduktion von Phenylpyruvat zu Phenyllaktat katalysieren (siehe Abb. 13) [Crüsemann et al., 2018].

Abbildung 13: Hypothetische Reaktion von FrsC: FrsC katalysiert mutmaßlich die Reduktion von Phenylpyruvat zu Phenyllaktat.

FrsH weist bioinformatisch im aktiven Zentrum Ähnlichkeiten mit CmlA, einer eisenabhängigen β -Hydroxylase aus der Chloramphenicolbiosynthese, auf. Dort katalysiert CmlA die Hydroxylierung des PCP-gebundenen *para*-Aminophenylalanin [Makris et al., 2010]. Ein 3D-Modell von FrsH bestätigt die Ähnlichkeit mit CmlA [Crüsemann et al., 2018].

Die Analyse der A-Domänen durch antiSMASH zeigt, dass FrsA, FrsD und FrsG (Modul 7) Leucin oder Hydroxyleucin aktivieren. Das FR-Peptid enthält Hydroxyleucin als Baustein. Die *in-vitro*-Analyse der A-Domänen (siehe Kap. 3.5) zeigt eine eindeutige Prävalenz der A-Domäne A1, A2 und A7 für Leucin. Daher muss vermutet werden, dass die Hydroxylierung nach der Aktivierung von Leucin am Leucin-PCP erfolgt. Hierfür wäre FrsH ein möglicher Kandidat (siehe Abb. 14).

Abbildung 14: Hypothetische Reaktion von FrsH: FrsH weist bioinformatisch eine Ähnlichkeit mit einer β -Hydroxylase aus der Chloramphenicolbiosynthese auf. Dort katalysiert CmlA die Hydroxylierung des PCP-gebundenen *para*-Aminophenylalanin [Makris et al., 2010].

Vergleicht man die Ergebnisse der antiSMASH-Analyse mit der Struktur von FR, so zeigt sich, dass die große NRPS FrsD-FrsG mit hoher Wahrscheinlichkeit den 7-gliedrigen Zyklus von FR bildet, während FrsA höchstwahrscheinlich für die Bildung der Seitenkette und deren Verknüpfung mit dem zyklischen Teil von FR zuständig ist. Die Analyse bestätigt ebenfalls, dass beide BGC nahezu identisch sind, was in den nachfolgenden Kapiteln detaillierter beschrieben werden wird. Es kann davon ausgegangen werden, dass in beiden Fällen die Bildungseinheit für FR vorliegt.

3.1.2 Vergleichende Analyse der Gene des Biosynthesegenclusters aus *Cand.* B. crenata und *C.vaccinii*

Betrachtet man beide *frs*-BGC auf DNA- und Proteinebene, so sind sie hier ebenfalls auffallend ähnlich. Das *bcfrs*-BGC von *Cand.* B. crenata besteht aus 35.800 Basenpaaren, die Größe des *cvfrs*-BGC von *C. vaccinii* beträgt 35.851 Basenpaare. Beide unterscheiden sich damit hinsichtlich der Größe in nur 51 Basenpaaren. Auch beim Vergleich der einzelnen Gene (siehe Tabelle 3) sieht man, dass die Größen nahezu übereinstimmen. Die einzelnen Gene zeigen in Alignments (siehe A27-A44) sowohl auf DNA-Ebene als auch auf Proteinebene zwischen 68% und 85% Identität (siehe Tabelle 3). Der GC-Gehalt der beiden BGC unterscheidet sich ebenfalls nur gering und liegt zwischen 44% und 69% (siehe Tabelle 3).

	FrsA	FrsB	FrsC	FrsD	FrsE	FrsF	$\operatorname{Frs}G$	FrsH
DNA Burk	$3768 \mathrm{bp}$	219 bp	$987\mathrm{bp}$	$3078\mathrm{bp}$	$9048\mathrm{bp}$	$7560 \mathrm{ bp}$	$9411\mathrm{bp}$	$1599 \mathrm{ bp}$
DNA Chro	3819 bp	$219\mathrm{bp}$	$987 \mathrm{\ bp}$	$3081\mathrm{bp}$	$9051\mathrm{bp}$	$7557\mathrm{bp}$	$9408\mathrm{bp}$	$1596 \mathrm{ bp}$
Diff. bp.	$51\mathrm{bp}$	$0 \mathrm{ bp}$	$0\mathrm{bp}$	$3\mathrm{bp}$	$3\mathrm{bp}$	$3\mathrm{bp}$	$3\mathrm{bp}$	$3\mathrm{bp}$
Ident DNA [%]	70	72	68	70	70	73	72	77
GCBurk [%]	58	44	53	60	60	59	58	55
GCChro [%]	66	44	49	69	67	69	68	61
Prot Burk	1255 AS	$72\mathrm{AS}$	$328\mathrm{AS}$	$1025\mathrm{AS}$	$3015\mathrm{AS}$	$2519\mathrm{AS}$	$3136\mathrm{AS}$	$532\mathrm{AS}$
Prot Chro	1272 AS	$72\mathrm{AS}$	$328\mathrm{AS}$	$1026\mathrm{AS}$	$3016\mathrm{AS}$	$2518\mathrm{AS}$	$3135\mathrm{AS}$	$531\mathrm{AS}$
Ident Prot [%]	71	75	72	70	71	75	73	85

Tabelle 3: Vergleich der BGC von *Cand.* B. crenata und *C. vaccinii* auf DNA und Proteinebene. bp=Basenpaare, Diff. bp= Basenpaardifferenz der Gene beider BGC zueinander; AS=Aminosäure, Ident DNA=Identität der Gene von *C. vaccinii* und *Cand.* B. crenata zueinander in Prozent; Ident Prot=Identität von FrsA-FrsH von *C. vaccinii* und *Cand.* B. crenata auf Proteinebene zueinander in Prozent; GCBurk und GCChro=GC-Gehalt der Gene *frsA-frsH* von *C. vaccinii* und *Cand.* B. crenata in Prozent.

Die Größe der Gene unterscheidet sich in den NRPS-Genen nur um wenige Basenpaare, die des MLP-Gens und beider modifizierender Enzyme frsC und frsH sind sogar identisch. Die Identität der BGC auf DNA-Ebene beträgt bei den meisten Genen ca. 70 %. Mit 77 % Identität bildet das frsH hier eine Ausnahme vom Durchschnitt des BGC. frsA und frsD-frsG weisen bei Cand. B. crenata einen GC-Gehalt von ca. 60 % auf, während der GC-Gehalt von C. vaccinii hier mit ca. 70 % um 10 Prozentpunkte höher liegt. Der GC-Gehalt von frsB ist mit 44 % der niedrigste und bei beiden BGC identisch. Der GC-Gehalt der frsH-Gene liegt mit 55 % bei Cand. B. crenata und mit 61 % bei C. vaccinii niedriger als der GC-Gehalt der jeweiligen NRPS-Gene. Bei frsCliegen die GC-Gehalte von Cand. B. crenata mit 53 % und bei C. vaccinii mit 49 % nah beieinander. Hier hat, anders als im Rest des Genclusters, Cand. B. crenata einen leicht höheren GC-Gehalt als C. vaccinii.

3.1.3 Bioinformatische Analyse sich wiederholender Sequenzbereiche in den BGC von *Cand.* B. crenata und *C.vaccinii*

Sowohl das *bcfrs*-BGC aus *Cand.* B. crenata, als auch das *cvfrs*-BGC aus *C. vaccinii* zeigen Bereiche sich wiederholender Basen- bzw. Proteinsequenzen. Darunter versteht man Sequenzabschnitte, die in demselben BGC doppelt oder dreifach vorkommen und dies teilweise unabhängig von Domänen oder Gengrenzen. Um diese identischen Sequenzabschnitte genauer festzulegen, wurde im ganzen BGC nach identischen Aminosäuresequenzen gesucht. In Alignments wurden die Grenzen dieser Bereiche festgelegt (siehe Abb. 15, Alignments nicht gezeigt). Mit gleicher Farbe und mit gleicher Zahl markierte Bereiche sind innerhalb eines BGCs identisch.

Abbildung 15: Der frs-BGC-Vergleich: In gleichen Farben dargestellte und gleich nummerierte Bereiche innerhalb eines BGCs kennzeichnen identische Sequenzabschnitte. Die Farbgebung wurde für beide BGC gleich gewählt. Beide BGC weisen sehr ähnliche sich wiederholende Sequenzabschnitte auf. Bei C. vaccinii sind Unterbrechungen zwischen den Bereichen 4, 6 und 7, während bei Cand. B. crenata im Übergang der Gene frsE zu frsF und frsF zu frsG durchgehend identische Bereiche sind.

In beiden *frs*-BGC wurden jeweils 5 Sequenzabschnitte gefunden, die häufiger als einmal vorkommen. Im *cvfrs*-BGC von *C. vaccinii* ist der Bereich Nr. 4 nicht durchgehend identisch und wurde daher in weitere Bereiche 6 und 7 unterteilt (siehe Abb. 15). Teilweise stimmen diese Sequenzabschnitte mit einzelnen Domänen überein, teilweise sind diese Bereiche auch über Domänen- oder Gengrenzen hinweg zu sehen. Tabellen 4 und 5 zeigen die Häufigkeit, mit der sich die Sequenzabschnitte wiederholen und über welchen Bereich sie sich im Gencluster erstrecken.

Bereich	bp	AS	Häufigkeit	Gene	abgedeckter funktionaler Enzymteil		
1	1011 bp	337 AS	2	frsA, frsD	Starter C-Domäne		
2	$1632 \mathrm{\ bp}$	$544 \mathrm{AS}$	3	frsA, frsD frsG	A-Domänen Leucin		
3	$1548 \mathrm{\ bp}$	$516 \ \mathrm{AS}$	3	frsE, frsF frsG	MT-Domänen		
4	$1956 \mathrm{~bp}$	$652 \ \mathrm{AS}$	2	frsE, frsF	A-Domäne, MT-Domäne, PCP-Domäne		
5	$1467 \mathrm{\ bp}$	489 AS	2	frsF	letzter Teil d. C-Domäne und beide Alanin A-Domänen		
6	$630 \mathrm{\ bp}$	210 AS	2	$frsF \ frsG$	$\operatorname{C-Dom\ddot{a}ne}$		
7	$351 \mathrm{~bp}$	$117 \mathrm{AS}$	2	$frsF \ frsG$	$\operatorname{C-Dom\ddot{a}ne}$		

Tabelle 4: Sequenzbereiche, die im *cvfrs*-BGC von *C. vaccinii* mehrfach vorkommen. Die Abkürzung bp zeigt die Länge der Bereiche in Basenpaaren an. AS zeigt die Länge des Bereichs in Aminosäuren. Bei Genen wurden alle Gene angegeben, die ganz oder zum Teil von diesen sich wiederholenden Bereichen abgedeckt werden.

Bereich	bp	AS	Häufigkeit	Gene	abgedeckter funktionaler Enzymteil
1	$915\mathrm{bp}$	$305\mathrm{AS}$	2	frsA, frsD	Starter C-Domäne
2	$1695\mathrm{bp}$	$565\mathrm{AS}$	3	frsA, frsD, frsG	A-Domänen Leucin
3	1578 bp	$526\mathrm{AS}$	3	frsE, frsF frsG	MT-Domänen
4	$3070\mathrm{bp}$	$680/346\mathrm{AS}$	2	frsE, frsF, frsG	Ende A-Domäne bis C-Domäne
5	1488 bp	$496\mathrm{AS}$	2	frsF	letzter Teil d. C-Domäne und beide Alanin A-Domänen

Tabelle 5: Sequenzbereiche, die im *bcfrs*-BGC von *Cand.* B. crenata mehrfach vorkommen. Die Abkürzung bp zeigt die Länge der Bereiche in Basenpaaren an. AS zeigt die Länge des Bereichs in Aminosäuren. Bei Genen wurden alle Gene angegeben, die ganz oder zum Teil von diesen sich wiederholenden Bereichen abgedeckt werden.

Die frs-BGC von C. vaccinii und Cand. B. crenata zeigen eine sehr ähnliche Beschaffenheit in Größe und Häufigkeit dieser sich wiederholenden Sequenzabschnitte. Eine Ausnahme bildet hier lediglich der bei Cand. B. crenata sehr große durchgängige Sequenzabschnitt 4, der bei C. vaccinii zweimal unterbrochen wird. Alle anderen innerhalb des jeweiligen BGC identischen Sequenzabschnitte unterscheiden sich bei beiden BGC kaum.

Sequenz 1 kodiert für einen großen Teil der Starter-C-Domäne sowohl von FrsA, als auch von FrsD und kommt damit zweimal in jedem BGC vor. Diese Sequenz grenzt direkt an den Abschnitt 2 an. Sequenz 2 kodiert für die A-Domänen, die Leucin aktivieren. Dieser Sequenzabschnitt kommt in beiden BGC dreimal vor und zwar in frsA, frsD und in Modul 7 von frsG. Sequenz 3 kodiert für die putativ N-methylierenden-Domänen und befindet sich in frsE, frsF und frsG und kommt ebenfalls dreimal im gesamten BGC vor. Sequenz 4 ist mit einer Größe von 3070 Basenpaaren bei Cand. B. crenata die mit Abstand größte zusammenhängende sich wiederholende Gensequenz. Sie kommt zweimal im frs-BGC von Cand. B. crenata vor und erstreckt sich jeweils vom letzten Teil der A-Domäne aus den Modulen 4 und 6 über die MT-Domäne, die PCP-Domäne und die C-Domäne des nächsten Gens (Modul 5 und 7). Sequenz 4 ist die einzige Sequenz, die über eine Gengrenze hinaus geht. Der Bereich kommt zweimal vor; einmal im Ubergangsbereich von frsE zu frsF und im Übergangsbereich von frsF zu frsG. Bei C. vaccinii gibt es in dieser Region ebenfalls gleiche Sequenzabschnitte. Diese sind allerdings unterbrochen, einmal zwischen der PCP-Domäne der Module 4 und 6 und in der Mitte der C-Domäne 180 Basenpaare nach der Sequenz, die für das konservierte HHxxxDG Motiv kodiert. Der Sequenzabschnitt 5 kodiert für den C-terminalen Bereich der C-Domäne von FrsF und umfasst die A-Domänen bis kurz vor der Core-A9-Region (siehe Kap. 3.4). Die A-Subdomäne unterscheidet sich bei diesen zwei A-Domänen, sowohl bei Cand. B. crenata als auch bei C. vaccinii wieder. Die Bereiche 6 und 7 kommen nur bei C. vaccinii vor und entstehen dadurch, dass der Bereich der Sequenz 4, der bei Cand. B. crenata durchgehend ist, bei C. vaccinii unterbrochen ist. Sowohl im bcfrs-BGC von Cand. B. crenata, als auch im cvfrs-BGC von C.~vacciniinehmen die sich wiederholenden Bereiche ca
. $24\,\%$ des gesamten BGC ein.

3.2 Bioinformatische Analyse der in den *frs*-BGC von *Cand.* B. crenata und *C.vaccinii* kodierten A-Domänen

A-Domänen nehmen eine zentrale Stellung in der Biosynthese der nichtribosomalen Peptide ein. Durch die Spezifität jeder einzelnen A-Domäne wird die Reihenfolge der Aminosäuren im Peptid determiniert. Die Spezifität lässt sich bioinformatisch über den nichtribosomalen Code nach Stachelhaus vorhersagen (siehe auch Kap. 1.4) [Stachelhaus et al., 1999].

Abbildung 16: Vergleich der Identitäten der A-Domänen auf Proteinebene innerhalb des *cvfrs*-BGCs von *C. vaccinii*. Die Lokalisierung der A-Domänen ist für beide *frs*-BGC gleich. Die Identitäten in dieser Abbildung entsprechen denen von *C. vaccinii*.

Die A-Domänen wurden ebenfalls auf ihre Identitäten überprüft. Auch hier sind auffallend ähnliche Sequenzen zu finden. Die A-Domänen von FrsA (A1), FrsD (A2) und FrsG (A7) gleichen sich zu 100 %. Die beiden Alaninaktivierenden Domänen von FrsF (A5 und A6) gleichen sich zu 91 % und die zweite Domäne von FrsE (A4), die putativ Serin aktiviert, ist ebenfalls noch zu 62 % mit der 2. A-Domäne von FrsF (A6) identisch. Alle anderen aus FrsE1 (A3) und FrsG2 (A8) sind nur zu 30% bis 55% identisch miteinander (siehe Abb. 16, A8 und A10).

A-Domänen besitzen eine hochkonservierte dreidimensionale Struktur, und die Aminosäuren, die diese Struktur aufrecht erhalten, sind ebenfalls hochkonserviert. Die Substrate, die von A-Domänen selektiert und aktiviert werden, sind durch 10 Aminosäuren im aktiven Zentrum der A-Domäne festgelegt. Durch Alignments mit der A-Domäne von GrsA (siehe Kap. 1.4), für die die Aminosäuren des sogenannten nichtribosomalen Code erstmals definiert wurden, kann die Bindungstasche in anderen A-Domänen bestimmt werden. Die Aminosäurekombination in der Bindungstasche determiniert die Aminosäure, die im Rahmen der Biosynthese aktiviert werden soll.

Tabellen 6 und 7 zeigen den nichtribosomalen Code der in den *frs*-BGC kodierten A-Domänen von *Cand.* B. crenata und *C.vaccinii*. Die Codes in den beiden BGC unterscheiden sich in den fett gedruckten Aminosäuren.

A-Domäne	235	236	239	278	299	301	322	330	331	517
A1 Burk	D	А	М	L	V	G	А	\mathbf{V}	С	Κ
A2 Burk	D	А	Μ	\mathbf{L}	V	G	А	\mathbf{V}	С	Κ
A3 Burk	G	А	F	V	Μ	А	G	V	С	Κ
A4 Burk	D	V	W	Η	\mathbf{L}	\mathbf{S}	L	V	D	Κ
A5 Burk	D	V	F	\mathbf{S}	V	А	Ι	V	Υ	Κ
A6 Burk	D	V	F	\mathbf{S}	V	А	Ι	V	Υ	Κ
A7 Burk	D	А	Μ	\mathbf{L}	V	G	А	\mathbf{V}	С	Κ
A8 Burk	D	F	W	Ν	Ι	G	М	V	Η	Κ

Tabelle 6: Nichtribosomaler Code der A-Domänen des *bcfrs*-BGC aus *Cand.* B. crenata für die A-Domänen A1-A8 (siehe auch Abb. 4, 16, A7 und A9).

A-Domäne	235	236	239	278	299	301	322	330	331	517
A1 Chro	D	А	М	L	V	G	А	Α	С	Κ
A2 Chro	D	А	Μ	L	V	G	А	\mathbf{A}	С	Κ
A3 Chro	G	А	F	V	Μ	А	G	V	С	Κ
A4 Chro	D	V	W	Η	L	\mathbf{S}	L	V	D	Κ
A5 Chro	D	V	\mathbf{F}	\mathbf{S}	V	А	Ι	V	Υ	Κ
A6 Chro	D	V	F	\mathbf{S}	V	А	Ι	V	Υ	Κ
A7 Chro	D	А	Μ	L	V	G	А	\mathbf{A}	С	Κ
A8 Chro	D	F	W	Ν	\mathbf{V}	G	Μ	V	Η	Κ

Tabelle 7: Nichtribosomaler Code der A-Domänen des *cvfrs*-BGC aus *C. vaccinii* für die A-Domänen A1-A8 (siehe auch Abb. 4, 16, A7 und A9).

Die Aminosäuren Asp-235 und Lys-517 zeigten im Modell von GrsA eine Bindung zur α -Aminogruppe und α -Carboxygruppe von Phenylalanin. Da diese funktionellen Gruppen in jeder Aminosäure gleich sind, unterscheiden sich die Codes an diesen Stellen bei den meisten A-Domänen kaum. Auch bei den A-Domänen der *frs*-BGC ist das Asp-235 und Lys-517 konserviert. Eine Ausnahme stellt hier die A-Domäne 3 dar, die in Position 235 anstatt einer Asparaginsäure ein Glycin enthält. Das lässt sich dadurch erklären, dass das putative Substrat der A-Domäne 3 eine Carbonsäure und keine Aminosäure ist und daher keine Aminogruppe über die Aspariginsäure koordiniert werden muss.

Das hochkonservierte Lys-517 von A-Domänen ist in der Core-A10-Region der A-Subdomäne zu finden (siehe Kap. 1.4). Bei vielen A-Domänen, auf die eine MT-Domäne folgt, befindet sich die MT-Domäne zwischen der Core-A8und der Core-A9-Region [Labby et al., 2015]. Die Hauptdomäne und die Subdomäne werden also von der MT-Domäne geteilt. Da die *frs*-BGC bei den A-Domänen A4, A6, und A8 von MT-Domänen unterbrochen sind, musste für die Core-A9- und Core-A10-Region ein weiteres Alignment angefertigt werden, um die Position Lys-517 des nichtribosomalen Codes genau zu bestimmen.

Bei der Suche nach der Core-A10-Region in den BGC fiel auf, dass die Core-A10-Region neun und nicht acht mal im gesamten BGC vorhanden ist, wie es der Anzahl der A-Domänen entspricht. Bei einem Alignment dieser Sequenzbereiche (siehe Abb. 17 und 18) fiel auf, dass nicht nur die Core-A10-Region, sondern auch die Core-A9- und Core-A11-Region neunmal in beiden *frs*-BGC zu finden ist, bei den A-Domänen A1, A2, A3, A5 am Ende der A-Domäne, bei den A-Domänen A4, A6 jeweils nach der MT-Domäne. Im Modul der A-Domäne A8 sind zwei MT-Domänen vorhanden. Hier konnte die Core-A9, A10- und A11-Sequenz jeweils bei beiden MT-Domänen am Ende wiederge-funden werden (siehe Abb. 19).

GrsA Core9	QPYLCAYFVSEKHIPLEQL	RQFSSEE <mark>L</mark> PTY <mark>MIP</mark> SYFIQLDKM <mark>P</mark>	LTS <mark>NGK</mark> IDRKQ <mark>LP</mark> EPDLTFGMRVD
FrsA Core9 Burk	DTQLVGYVTIRGEVDGQAL	RRQVANW <mark>L</mark> PEY <mark>M</mark> V <mark>P</mark> AVVLVLEEL <mark>P</mark>	RLP <mark>NGK</mark> LDHQA <mark>LP</mark> APEYTGKRYQRPR
FrsD Core9 Burk	DTQLVGYVTVRGEVDGQAL	RRQVANW <mark>L</mark> PEY <mark>M</mark> V <mark>P</mark> AVVLVLEEL <mark>P</mark>	RLP <mark>NGK</mark> LDHQA <mark>LP</mark> APEYTGKRYQRPR
FrsE1 Core9 Burk	AKQLVGYVVPKEGVMLEPRAM	RRELAEH <mark>L</mark> TDH <mark>M</mark> VPAVLVELSAL <mark>P</mark>	RTP <mark>NGK</mark> LDRSA <mark>LP</mark> A <mark>P</mark> VFVTEGYREPR
FrsE2 Core9 Burk	LKPLSGYVNNPA-NFEQFAAI	RRYVGEQ <mark>L</mark> PDY <mark>M</mark> V <mark>P</mark> AALVLLEGL <mark>P</mark>	LTP <mark>NGK</mark> LDRRA <mark>LP</mark> APEFGTACYRAPG
FrsF1 Core9 Burk	HKQLVGYVVLDD-AAADGQML	RRFLSRH <mark>L</mark> PEY <mark>M</mark> V <mark>P</mark> SAVVVRAAL <mark>P</mark>	LTP <mark>NGK</mark> LDRKA <mark>LP</mark> APTFVSADGRAPR
FrsAF2 Core9 Burk	LKPLSGYVNNPA-NFEQFAAI	RRYVGEQ <mark>L</mark> PDY <mark>M</mark> V <mark>P</mark> AALVLLEGL <mark>P</mark>	LTP <mark>NGK</mark> LDRRA <mark>LP</mark> APEFGTACYRAPG
FrsG1 Core9 Burk	DTQLVGYVTVRGEVDGQAL	RRQVANW <mark>L</mark> PEY <mark>M</mark> V <mark>P</mark> AVVLVLEEL <mark>P</mark>	RLP <mark>NGK</mark> LNHQA <mark>LP</mark> A <mark>P</mark> EYTGKRYQRPR
FrsG2 Core9 Burk	AENTSLFWNCRADLLRDV	RANLRKR <mark>L</mark> PDY <mark>M</mark> QPNHMVLLDTF <mark>P</mark>	LTP <mark>NGK</mark> LDRRA <mark>LP</mark> APEQAAMRVRDIE
FrsG3 Core9 Burk	LKPLSGYVNNPA-NFEQFAAI	<mark>R</mark> RYVGEQ <mark>L</mark> PDY <mark>M</mark> V <mark>P</mark> AALVLLEGL <mark>P</mark>	LTP <mark>NGK</mark> LDRRA <mark>LP</mark> APEFGTACYRAPG
	: :	* . * * *	*** *
		Core A9	Core A10 Core A11

Abbildung 17: Alignment der Core-A9- und Core-A10-Region aus *Cand.* B. crenata. Sequenzen FrsG2 und FrsG3 zeigen den Bereich der zwei Subdomänen der A-Domäne 8.

сл	
∞	

Abbildung 18: Alignment der Core-A9- und Core-A10-Region aus *C. vaccinii*. Sequenzen FrsG2 und FrsG3 zeigen den Bereich der zwei Subdomänen der A-Domäne 8.
In den Alignments (siehe Abb. 17 und 18) wurden mit Hilfe der A-Domäne von GrsA die Core-Bereiche Core-A9 bis A11 festgelegt. Die lila markierten Bereiche zeigen die konservierten Bereiche. Das Lys-517 wurde gelb markiert. Die Sequenzen FrsG2 und FrsG3 zeigen die beiden Core-A9- und Core-A10-Bereiche der A-Domäne A8 aus FrsG. Das bedeutet, dass bei der A-Domäne A8 nicht nur die A-Domäne von den MT-Domänen unterbrochen ist, sondern die Core-A9- bis Core-A11-Bereiche für die A-Domäne A8 zweimal existieren, jeweils am Ende jeder MT-Domäne (siehe Abb. 19). Da diese Core-Regionen auf der A-Subdomäne lokalisiert sind, kann davon ausgegangen werden, dass für die A8-Domäne zwei Subdomänen existieren. Eine Modellierung ist aufgrund mangelnder Datenlage noch nicht möglich. Die A-Domäne mit zwei aufeinander folgenden MT-Domänen ist bisher einzigartig für die NRPS des FR und seiner Derivate.

Abbildung 19: Die erste A-Domäne von FrsG aus Modul 7 ist eine einfache A-Domäne ohne MT-Domäne. Hier liegen die Core-A9- und Core-A10-Regionen unmittelbar nach der Core-A8-Region. Die A-Domäne ist nicht unterbrochen. Die zweite A-Domäne wird von zwei MT-Domänen unterbrochen. Die Core-A9 und Core-A10-Regionen, die sich in der A-Subdomäne befinden, existieren zweimal, jeweils am Ende jeder A-Domäne.

3.3 Bioinformatische Analyse der in den *frs*-BGC von *Cand.* B. crenata und *C.vaccinii* kodierten MT-Domänen

MT-Domänen sind für die Methylierung der von den A-Domänen aktivierten Substrate zuständig. Die MT-Domänen folgen unmittelbar auf die A-Domänen bzw. sind häufig zwischen der Core-A8- und Core-A9-Region der A-Domänen integriert (siehe Kap. 1.4).

Abbildung 20: Vergleich der Identität der MT-Domänen innerhalb des BGCs von *C. vaccinii.*

Das frs-BGC enthält vier Gensequenzen, die für MT-Domänen kodieren. Die MT-Domänen 1, 2 und 4 von *C. vaccinii* sind in ihrer Proteinsequenz zu 100 % identisch, wohingegen die dritte MT-Domäne nur zu ca. 24-27 % Übereinstimmung zu den ersten aufweist (siehe Abb. 20 und A14). Die MT-Domänen, die durch das *bcfrs*-BGC von *Cand.* B. crenata kodiert werden, weisen ähnliche Identitäten auf (siehe A13).

Vergleicht man die MT-Domänen der frs-BGC untereinander, so liegt bei den drei MT-Domänen 1,2 und 4 die Übereinstimmung bei über 72%, und bei den zwei stark abweichenden MT-Domänen MT 3 besteht untereinander auch eine Identität von 73%. Das entspricht ungefähr der durchschnittlichen Identität der Proteinsequenzen, die durch die frs-BGC kodiert werden (siehe Abb. 21 und Tab. 3).

Abbildung 21: MT-Domänen im Vergleich der *frs*-BGC aus *Cand.* B. crenata und *C. vaccinii.*

Das Depsipeptid FR ist an vier Stellen methyliert. Dies betrifft den Baustein des N-Methyldehydroalanin, welcher vom Modul 4 in FrsE bereitgestellt wird, das N-Methylalanin des Moduls 4 aus FrsF und das zweifach methylierte N,O-Dimethylthreonin aus FrsG. Die erste MT-Domäne aus FrsG MT 3 unterscheidet sich in beiden BGC sehr stark von den anderen MT-Domänen MT 1,2 und 4. Letztere enthalten die Konsensussequenz VLEIGVGSGL im BGC von *Cand.* B. crenata und LLEIGVGSG im BGC von *C. vaccinii.* Diese Sequenz ist für die Bindung von S-Adenosylmethionin (SAM) zuständig [Labby et al., 2015]. Es handelt sich hierbei höchstwahrscheinlich um die drei N-Methylierenden Domänen. Die erste MT-Domäne der A-Domäne A8 weicht mit 20 % Übereinstimmung mit den anderen drei MT-Domänen stark von den anderen Domänen ab. Es kann daher vermutet werden, dass es sich hierbei um die O-Methylierende Domäne handelt.

3.4 Bioinformatische Analyse der in den *frs*-BGC von *Cand.* B. crenata und *C.vaccinii* kodierten Kondensierungs-Domänen

C-Domänen katalysieren die Kondensationsreaktion der einzelnen NRP-Bausteine. Das *frs*-BGC kodiert insgesamt 9 C-Domänen, davon eine E-Domäne, die phylogenetisch mit den C-Domänen verwandt ist. Die C-Domänen C1 und C2 sind zu 91 % identisch, während zwischen C6 und C8 eine Identität von 86 % besteht. Alle übrigen C-Domänen (C3, C5, C7, C9) weisen lediglich eine Identität zwischen 53 % und 62 % auf (siehe Abb. 22 und A20). Die Identitäten der C-Domänen von *Cand.* B. crenata liegen in einem ähnlichen Bereich (siehe Abb. A22).

Abbildung 22: Vergleich der Identitäten der C-Domänen, welche im *cvfrs*-BGC von *C. vaccinii* kodiert sind.

Für die phylogenetische Analyse der C-Domänen aus *Cand.* B. crenata [Crüsemann et al., 2018] wurden bekannte C-Domänensequenzen aus der NaPDoS-Datenbank [Ziemert et al., 2012] mit den *bcfrs*-C-Domänensequenzen alignt. Der phylogenetische Baum (siehe Abb. A1) wurde mit Hilfe von FastTree (Version: 2.1.7) erstellt [Price et al., 2009] (siehe Kap. 5.1). Die C-Domänen wurden entsprechend ihrer Typenzuordnung [Rausch et al., 2007] in unterschiedlichen Farben dargestellt.

Die meisten der durch die Analyse der C-Domänen vorhergesagten Eigen-

schaften [Rausch et al., 2007] korrelierten mit der Biosynthese-Hypothese. Die drei als ${}^{\rm L}C_{\rm L}$ ausgewiesenen C-Domänen in den Modulen 3, 6 und 8 katalysieren die Kondensationsreaktion zwischen zwei L-Aminosäuren. Die Epimerase-Domäne und D-Phenyllaktat-akzeptierende Domäne in Modul 4 entsprechen ebenfalls dem postulierten Biosynthesemechanismus. Auch die C-Domänen von FrsA und FrsD korrelieren wie erwartet mit der Klade der Starter-C-Domänen.

Die C-Domänen der Module 5 und 7 (C6 und C8) sind phylogenetisch mit den ${}^{\rm D}{\rm C}_{\rm L}$ -Domänen verwandt, was der erwarteten Biosynthese nicht entspricht. Die C-Domäne C6 verknüpft das L-konfigurierte N-Methyl-Dehydroalanin mit einem L-konfigurierten Alanin, und die C8 verknüpft ein L-konfiguriertes Alanin mit L-Hydroxyleucin. ${}^{\rm D}{\rm C}_{\rm L}$ -C-Domänen verknüpfen aber normalerweise eine D- mit einer L-Aminosäure. Eine dieser C-Domänen könnte an der Bildung von Dehydroalanin aus Serin beteiligt sein, vor allem da die *frs*-BGC kein weiteres Enzym enthalten, das diese Reaktion katalysieren könnte.

Bei den frs-BGC käme für eine solche Reaktion insbesondere die C-Domäne C6 in Frage. Mechanismen, bei denen eine C-Domäne für eine Dehydratisierung eines Serins zuständig sein könnte, wurden bereits in mehreren Fällen beschrieben. Für die Biosynthese von Microcystin wurde postuliert, dass eine Dehydratisierung über eine C-Domäne möglich wäre [Tillett et al., 2000] [Crüsemann et al., 2018], was aber bis jetzt noch nicht belegt werden konnte. Die phylogenetische Analyse der C-Domäne McyA aus dem BGC von Microcystin ergab, dass McyA eine eigene Klade mit anderen C-Domänen bildet, die möglicherweise für Dehydratisierungen verantwortlich sind. Die C6-Domäne der frs-BGC korreliert aber mit den ^DC_L-Domänen und nicht mit den dehydratisierenden C-Domänen. Ein Alignment (siehe Abb. A6) der McyA-C-Domäne mit den C6-Domänen der BGC ergab auch keinen Hinweis auf einen ähnlichen Mechanismus.

Ein anderer Dehydratisierungsmechanismus ist für die NRPS des Nocardicin beschrieben, welches eine ${}^{L}C_{L}$ -C-Domäne besitzt, die die Dehydratisierung

von Serin zu Dehydroalanin, einem Intermediat der β -Lactam Biosynthese, katalysiert [Gaudelli et al., 2015]. Das bedeutet, dass C_{DH}-Kondensierungsdomänen nicht die einzig möglichen Domänen für die Bildung von dehydratisierten Aminosäuren in NRPS sind. Ebenso wurden bei vielen *Pseudomonas Arten* keine C_{DH}-Domänen gefunden, trotz dehydratisierter Aminosäuren in den Produkten. Der Mechanismus der Dehydratisierung des Nocardicins in der Nocardicin-Biosynthese beruht wahrscheinlich auf einem Histidin-Rest direkt vor der Konsensussequenz HHxxxGL [Gaudelli et al., 2015]. Dieses Histidin ist in unserer C-Domäne ebenfalls nicht vorhanden. Es muss also einen anderen zugrundeliegenden Mechanismus geben.

Ein interessanter Hinweis ist, dass die C-Domänen C6 und C8 der beiden frs-BGC eine Identität von 85% zueinander besitzen und damit über der durchschnittlichen Identität der C-Domänen innerhalb desselben BGCs liegen (siehe Abb. 22, A20 und A22). Beide haben ähnliche Substrate, nämlich N-Methyl-Serin für die C-Domäne C6 und N-Methylalanin für die C-Domäne C8, wobei C8 höchstwahrscheinlich keine Dehydratisierung durchführt. Möglich wäre, dass die C-Domäne C8 eine ähnliche Funktion hatte, die im Laufe der Evolution verloren gegangen ist.

Um herauszufinden, welche Unterschiede jeweils zwischen den C-Domänen C6 und C8 in beiden BGC bestehen, wurden innerhalb eines BGCs die C-Domäne C6 gegen C8 alignt (siehe Abb. 23 und 24). Die Alignments zeigen, dass die C-Domänen im N-terminalen Bereich fast identisch sind, wohingegen sie sich im C-terminale Bereich deutlich unterscheidet. Das Alignment der *cvfrs*-Aminosäuresequenz von *C. vaccinii* (siehe Abb. 24) zeigt im mittleren Bereich des Proteins Abweichungen, die aber auch im Laufe der Evolution entstanden sein könnten. Trotz allem ist auch hier die Sequenz vor und nach diesem Bereich der Abweichung wieder identisch.

B.C. B.C.	FrsF C6 D FrsG C8 D	DCL	ETTYPLSPLQKGFLFHAGYDLAHADNYIAQLFLDFDGEVDAGLMRAAADTLIRRHANLRA ETTYPLSPLQKGFLFHAGYDLAHADNYIAQLFLDFDGEVDAGLMRAAADTLIRRHANLRA *******
B.C. B.C.	FrsF C6 D FrsG C8 D	DCL DCL	GFVHPGGREPVQVILREVAACWKEHDWRTEPLVRAAELQSAWHAEDRQRRFDLSQPPLLR GFVHPGGREPVQVILREVAACWKEHDWRTEPLVRAAELQSAWHAEDRQRRFDLSQPPLLR **********************************
B.C.	FrsF C6 D	DCL	FGWLRLPEERTQLVLTYHHILLDGWSLPLVLEELLTLYRTQGDALSLPKTTPYSTYLGWL
B.C.	FrsG C8 D		FGWLRLPEERTQLVLTYHHILLDGWSLPLVLEELLTLYRTQGDALSLPKTTPYSTYLGWL
B.C.	FrsF C6 D	DCL	QGRDRASAQQVWGDYMSGLEGPTLLARRSASEDQTQSKSSLTLPIELTQALNQQARQQGV
B.C.	FrsG C8 D		QGRDRASAQQAWGDYLSGLEGPTLLARRSASEDQTQSKSSLTLPIELTQALNQQARQQGV
B.C.	FrsF C6 D	DCL	TLNTLLQAAWGILLGKLSSSRDVVFGITVAGRPGELPGVERMIGLFINTVPLRLRWRAGE
B.C.	FrsG C8 D		TLNTLLQAAWGILLGKLSSSRDVVFGITVAGRPGELPGVERMIGLFINTVPLRLRWRAGE
B.C. B.C.	FrsF C6 D FrsG C8 D	DCL	TVAELLERLQREQARLLEYQYLDLAEIQRLAGQRQLFDTL <mark>FI</mark> FENYP <mark>F</mark> DAQAIA <mark>P</mark> ALGRT TVVELLERLQREQARLLEYQYLDLAEIQRLAGQRQLFDTL <mark>CV</mark> FENYP <mark>V</mark> NAKAIVQQDEGF **.**********************************
B.C. B.C.	FrsF C6 D FrsG C8 D	DCL	VLSRINGG <mark>EQH</mark> DSHYPVTLMAVP <mark>R</mark> ETLTLYLSYQSGRFEHGTMENLLTRFRTLLEAVVTD GLRHISGG <mark>DRY</mark> MTHYPLSVMI <mark>E</mark> PGERMTLNL <mark>I</mark> YRPASFDAAKRLGAQLIRLLEAIATV * :*.**::: :***::: * * : :** * :. *: * ::: ****:.*
B.C.	FrsF C6 D	DCL	SSCPIVDIDLLTADERQQLLVEWNATDRPLPKVTLPEWFEAQVERTPTAMAVLCDEVAL
B.C.	FrsG C8 D	DCL	PQSPIDTLPWLDKSERRQLLEEWSGKALDSGEITLAELFEAQATRQPNAVALEGPDGCV

Abbildung 23: Alignment der C-Domänen C6 und C8 aus *Cand.* B. crenata. Vergleicht man dieses Alignment mit dem Alignment der C-Domänen C6 und C8 aus *C. vaccinii* (siehe Abb. 24), so stellt man fest, dass sich die C-Domänen C6 und C8 in beiden Alignments im vorderen Teil sehr ähnlich sind und im hinteren Bereich voneinander abweichen. Die farblich markierten Aminosäuren entsprechen den Aminosäuren, die sich bei *C. vaccinii* und *Cand.* B. crenata auf die gleiche Art unterscheiden. Unpolare Aminosäuren wurden gelb und polare ungeladene Aminosäuren hellblau gekennzeichnet. Positiv geladene Aminosäuren wurden grün gekennzeichnet. Negativ geladene Aminosäuren wurden dunkelblau markiert.

C.v. C.v.	FrsF C6 FrsG C8	DCL DCL	MNPKKIEAAYPLSPLQKGFLFHAGYDLQSADSYVAQLFLDFEGELDGAAMRSAADALMRR MNPKKIEAAYPLSPLQKGFLFHAGYDLQSADSYVAQLFLDFEGELDGAAMRSAADALMRR ******
C.v. C.v.	FrsF C6 FrsG C8	DCL DCL	HANLRAGFVHPGGQEPVQVVLREVVAGWEERDWRGRNPQEAAEAQSAWQEADRERRFELS HANLRAGFVHPGGQEPVQVVLREVVAGWEERDWRGRNPQEAAEAQSAWQEADRERRFELS ************************************
C.v. C.v.	FrsF C6 FrsG C8	DCL DCL	QPPLLRFGWLRLPAGRSQLVVTYHHILLDGWSLPLLLEELLALYRAGGGDGGLPEATPYS QPPLLRFGWLRLPAGRSQLVVTYHHILLDGWSLPLLLEELLALYRAGGGDGGLPEATPYS
C.v. C.v.	FrsF C6 FrsG C8	DCL DCL	AYLGWLQERDRAAACEAWGGYLEGLEGPTL <mark>LAQEGQADKGAAAAQARLSLE</mark> LPAELTQAL AYLGWLQERDRAAACEAWGGYLEGLEGPTL <mark>VSTGHPQDHAEQKQRAWR</mark> LPAELTQAL ************************************
C.v. C.v.	FrsF C6 FrsG C8	DCL DCL	TRQARQQGVTLNTLLQAAWGMLLGKLNLSRDVVFGITVAGRPGELPGVERMIGLFINTVP TRQARQQGVTLNTLLQAAWGMLLGKLNLSRDVVFGITVAGRPGELPGVERMIGLFINTVP
C.v. C.v.	FrsF C6 FrsG C8	DCL DCL	VRLRWSAGETVAGLVGRLQREQAGLLDHQHLDLVEIQRLAGQRQLFDTL <mark>FI</mark> FENYP <mark>F</mark> DSQ VRLRWSAGETVAGLVGRLQREQAGLLDHQHLDLVEIQRLAGQRQLFDTI <mark>CV</mark> FENYP <mark>V</mark> DAA ***********************************
C.v. C.v.	FrsF C6 FrsG C8	DCL DCL	AMA <mark>P</mark> DLGQASLRRVSGG EQHESHYPLTLMAVPREMLSLYLSYDAQRFDKGVVQGLLTRFR AMEQPSGGLQLRGVSGG<mark>DRYMTHYPLSLMIE</mark>PGPELKLNL<mark>I</mark>YQPERFEPEAIERLSAQLT ** * .** *****::::::******* * *.* * *::**::::
C.v. C.v.	FrsF C6 FrsG C8	DCL DCL	LLLEAVAAEPSRPVSDIELLDEAERR RLLGVIAAEPSQPVSDIEL

Abbildung 24: Alignment der C-Domänen C6 und C8 aus *C. vaccinii.* Vergleicht man dieses Alignment mit dem Alignment der C-Domänen C6 und C8 aus *Cand.* B. crenata (siehe Abb. 23), so stellt man fest, dass sich die C-Domänen C6 und C8 in beiden Alignments im vorderen Teil sehr ähnlich sind und im hinteren Bereich voneinander abweichen. Im Gegensatz zu *Cand.* B. crenata gibt es bei *C. vaccinii* einen Bereich in der Mitte der C-Domänen, in dem die Proteinsequenzen voneinander abweichen (siehe hellgrüner Bereich). Die farblich markierten Aminosäuren entsprechen den Aminosäuren, die sich bei *C. vaccinii* und *Cand.* B. crenata auf die gleiche Art unterscheiden. Unpolare Aminosäuren wurden gelb und polare ungeladene Aminosäuren hellblau gekennzeichnet. Positiv geladene Aminosäuren wurden grün markiert und negativ geladene Aminosäuren wurden dunkelblau gekennzeichnet.

Die große Abweichung in der Mitte der Sequenz von *C.vaccinii* (hellgrüner Bereich des Alignments Abb. 24) und die vereinzelt unterschiedlichen Aminosäuren bei *Cand.* B. crenata (siehe Abb. 23) scheinen zufällig zu sein, da sie jeweils nur bei *C.vaccinii* oder bei *Cand.* B. crenata vorkommen. Diese Proteinsequenzen sind daher für die Dehydroalaninbildung eher unwahrscheinliche Kandidaten. Im hinteren Bereich der Alignments zeigen die Proteinsequenzen Abweichungen, die sich in 13 Positionen sowohl bei *C.vaccinii* als auch bei *Cand.* B. crenata in den gleichen Aminosäuren unterscheiden. Sowohl die Anzahl, die Position, als auch die Art der abweichenden Aminosäuren stimmen vollständig überein. Die Aminosäuren wurden im Alignment entsprechend ihrer chemischen Eigenschaften farbig dargestellt (siehe Abb. 23 und 24). Es ist sehr unwahrscheinlich, dass dieser Unterschied auf einer Zufälligkeit basiert. Diese 13 Aminosäuren könnten eine Rolle in der Bildung von Dehydroalanin aus Serin spielen.

Um zu überprüfen, ob diese Aminosäuren sich im aktiven Zentrum der C-Domäne befinden, wurde ein 3D-Modell mit "Phyre 2" erstellt (siehe Abb. 25-27). Man erkennt das im blauen Bereich liegende konservierte HHxxxDG Motiv (siehe Abb. 25 und 27), das für die Verknüpfung von 2 Aminosäuren relevant ist [Marahiel et al., 1997]. In unmittelbarer Nähe im gelben Bereich befinden sich die 13 Aminosäuren, in denen sich die Sequenzen von der C6- und der C8-Domäne jeweils unterscheiden. Die Modelle zeigen, dass sich diese Aminosäuren am oberen Rand der V-förmigen Tasche der C-Domäne befinden (siehe Abb. 25-27).

Abbildung 25: 3D-Modell der C6-Domäne von *C. vaccinii*, erstellt mit "Phyre 2"; seitliche Ansicht auf den Tunnel, der durch die beiden Subdomänen entsteht. Die Aminsäuresequenz der C-Domäne ist in Spektralfärbung dargestellt. Der blaue Bereich markiert den N-Terminus, der rote Bereich den Cterminalen Teil des Peptids. Die Aminosäuren des konservierten HDxxxDG-Motivs sind als Van-der-Waals Modell dargestellt, die putativ für die Dehydratisierung von Serin verantwortlichen Aminosäuren als "sticks-and-ball" -Modell. Bei einer seitlichen Ansicht auf die V-förmige Tasche, erkennt man, dass sich die Aminosäuren am oberen Rand der Tasche befinden.

Der blaue Bereich liegt am N-terminalen Ende, der rote Bereich am Cterminalen Ende der C-Domäne. Die Aminosäuren, die putativ an der Dehydratisierung des Serins beteiligt sein könnten, liegen in der Kluft zwischen den beiden Subdomänen und sind als Stäbchen markiert. Sie befinden sich fast alle in einer Ebene am oberen Rand der Tasche. Links oben durch van-der-Waals-Kräfte dargestellte Aminosäuren gehören zum konservierten HHxxxDG-Motiv (siehe Abb. 25). Eine Beschriftung wurde aufgrund der Übersichtlichkeit in dieser Perspektive weggelassen (siehe auch Abb. 26).

Abbildung 26: 3D-Modell der C6-Domäne von *C. vaccinii*, erstellt mit "Phyre 2"; Unteransicht auf den Tunnel, der durch die beiden Subdomänen entsteht. Die Aminsäuresequenz der C-Domäne ist in Spektralfärbung dargestellt. Der blaue Bereich markiert den N-Terminus, der rote Bereich den C-terminalen Teil des Peptids. Die Aminosäuren des konservierten HDxxxDG-Motivs sind nicht dargestellt, die putativ für die Dehydratisierung von Serin verantwortlichen Aminosäuren sind als "sticks-and-ball" -Modell dargestellt und mit Positionsangaben beschriftet.

Abbildung 26 zeigt die C6-Domäne von *C. vaccini* in der Aufsicht auf die Kluft zwischen den beiden Subdomänen. Man sieht, dass die betreffenden 13 Aminosäuren über die komplette Länge des Tunnels verteilt sind. Abbildung 27 zeigt das konservierte HHxxxDG Motiv im Hintergrund.

Abbildung 27: 3D-Modell der C6-Domäne von *C. vaccinii*, erstellt mit "Phyre 2"; Unteransicht auf den Tunnel, der durch die beiden Subdomänen entsteht. Die Aminsäuresequenz der C-Domäne ist in Spektralfärbung dargestellt. Der blaue Bereich markiert den N-Terminus, der rote Bereich den C-terminalen Teil des Peptids. Die Aminosäuren des konservierten HDxxxDG-Motivs sind im Hintergrund durch Van-der-Waals-Darstellung gekennzeichnet, die putativ für die Dehydratisierung von Serin verantwortlichen Aminosäuren sind als "sticks-and-ball" -Modell dargestellt.

Der Dehydratisierungsmechanismus des Nocardicins [Gaudelli et al., 2015] beruht vermutlich auf einem Histidinrest, der direkt an der Dehydratisierung beteiligt ist. Im Fall der FR-Biosynthese befindet sich bei C6 ebenfalls ein Histidinrest und zwar in Position H380, der in C8 nicht vorkommt. Es könnte sich hierbei also um einen wichtigen Teil des aktiven Zentrum der dehydratisierenden C-Domäne handeln.

3.4.1 Bioinformatische Analyse der PCP-Domänen und TE-Domänen

PCP-Domänen haben in erster Linie eine Transportfunktion. Die an den Phosphopantetheinrest gebundenen Aminosäuren und Peptide werden über die PCP-Domänen zu den katalytischen Zentren der anderen Domänen transportiert (siehe Kap. 1.7).

Abbildung 28: PCP-Domänen des *cvfrs*-BGCs. Die PCP-Domänen wurden blau markiert. PCP-Domänen, die sich stärker gleichen in dunkelblau, die anderen etwas heller. Die Prozente geben die prozentuale Identität der Domänen untereinander an.

Die endständigen PCP-Domänen von FrsE und FrsF sind zu 100 % identisch. Beide PCPs befinden sich nach einer A-Domäne, die ein N-Methyliertes Alanin bzw. Dehydroalanin eingefügt hat. Die PCP-Domänen von FrsD und FrsG1 weisen immerhin noch eine Identität von 88 % zueinander auf und folgen auf eine A-Domäne, die in der größeren NRPS die Hydroxyleucine eingefügt haben. Die PCP von FrsA zu FrsD und FrsG sind noch zu ca. 70 % identisch. Alle anderen gleichen sich noch zwischen 40 % und 70 % (siehe Abb. 28).

TE-Domänen stehen am Ende von NRPS. Sie sind für die Freisetzung und eventuelle Zyklisierung des Peptids verantwortlich (siehe Kap. 1.9).

Abbildung 29: TE-Domänen des *cvfrs*-BGCs.

Von den TE-Domänen sind jeweils zwei in jedem BGC vorhanden. Die TE-Domänen sind nur zu 42 % identisch und gleichen sich damit am wenigsten (siehe Abb. 29).

3.5 In-vitro-Untersuchungen von A-Domänen

3.5.1 Grundlagen des γ - ¹⁸O₄-ATP-Austausch-Assay nach Phelan et al. für die A-Domänen von FrsA und FrsD

Die bioinformatische Analyse der A-Domänen mittels antiSMASH ergab für die A-Domänen für FrsA und FrsD eine Spezifität für Leucin oder OH-Leucin. Um die Spezifität der A-Domänen *in vitro* zu differenzieren, wurde für die entsprechenden A-Domänen aus dem *frs*-BGC in *Cand*. B. crenata der γ -¹⁸O₄-ATP-Austausch-Assay nach Phelan [Phelan et al., 2009] durchgeführt. Der Assay basiert auf der Adenylierungsreaktion der A-Domäne. Hierbei wird ein Substrat, welches häufig eine Aminosäure ist, von der A-Domäne aktiviert. Dabei reagiert die Carboxylgruppe der Aminosäure mit der Phosphatgruppe eines Adenosin-Triphosphats (ATP) unter Abspaltung von Pyrophosphat (PPI) zu einem Aminoacyladenylat (siehe Abb. 30).

Abbildung 30: Die Adenylierungsreaktion von A-Domänen erfolgt unter ATP-Verbrauch. Diese Reaktion ist reversibel.

Die so aktivierte Aminosäure kann dann in einem weiteren Schritt auf den Phosphopantethein-Arm der PCP-Domäne geladen werden, um weitere Modifikationen zu unterlaufen und mit der entstehenden Peptidkette verknüpft zu werden (siehe Abb. 31 und Kap. 1.4).

Abbildung 31: Die Aminosäure wird mit Hilfe der A-Domäne unter Verbrauch von ATP zum Aminoacyladenylat aktiviert, um im Anschluss auf den Phosphopantethein-Arm der PCP-Domäne geladen zu werden.

Diese Adenylierungsreaktion ist reversibel. Auf der Rückreaktion des Aminoacyladenylates zu ATP und Aminosäure basiert der γ - ¹⁸O₄-ATP-Austausch-Assay. Im Assay wird γ - ¹⁸O₄-ATP verwendet, welches in der endständigen Phosphatgruppe vier Mal das schwerere ¹⁸O₄-Isotop des Sauerstoffes enthält (siehe auch Abb. 32). Dieses wird während der Adenylierungsreaktion abgespalten. Das so entstandene Adenosin Monophosphat (AMP) wird im Anschluss größtenteils mit ¹⁶O₄-PPI regeneriert, da dieses dem Reaktionsgemisch im Überschuss zugegeben wurde.

Abbildung 32: Austauschreaktion des A-Domänen Assay. Nach Abspaltung der Aminosäure vom AMP wird aus AMP und nicht markiertem PPI ein ATP gebildet, das kein $^{18}\mathrm{O}_4\text{-Isotop}$ mehr enthält.

Mit Hilfe einer Detektion über MALDI-TOF-MS (matrix assisted laser desorption/ionisation time-of-flight mass spectrometry) (siehe Kap. 5.6.9) lässt sich diese Umwandlung des schweren γ - ¹⁸O₄-ATP zu dem leichteren ¹⁶O₄-ATP in einer Massenverschiebung nachweisen (siehe Abb. 32).

Abbildung 33: Allgemeine Darstellung einer MALDI-TOF-Analyse des Reaktionsproduktes einer A-Domäne, γ - ¹⁸O₄-ATP, ¹⁶O₄-ATP und der entsprechenden Aminosäure in Abhängigkeit von der Zeit. Bei der Regenerierung von AMP zu ATP wird ¹⁶O₄-PPI verwendet. Es kommt zur Bildung des ATP mit einem ¹⁶O₄-Isotop-PPI und in der Folge zu einer Detektion des m/z: 506 Peaks anstatt des m/z: 514 Peaks des γ - ¹⁸O₄-ATP. Die Abbildung wurde aus Phelan et al. 2009 entnommen.

Für jede Aminosäure, auf die die A-Domäne getestet werden soll, wird ein Reaktionsansatz hergestellt (siehe Kap. 5.6.8), der die Aminosäure, γ - ¹⁸O₄-ATP und PPI im Überschuss enthält und bei 25 °C inkubiert. Lässt sich im Anschluss ¹⁶O₄-ATP als Peak bei m/z: 506 nachweisen, war die A-Domäne in der Lage, das Substrat zu aktivieren (siehe Abb. 33). Somit kann die Spezifität einer A-Domäne nachgewiesen werden.

Die A-Domänen aus FrsA und FrsD wurden neben anderen gängigen proteinogenen Aminosäuren mit den Aminosäuren Leucin, Hydroxyleucin und Isoleucin getestet, um die vermutete Spezifität für Leucin zu bestätigen und die Toleranz der A-Domäne gegenüber leucinähnlichen Aminosäuren zu untersuchen (siehe Abb. 34). Die bioinformatische Analyse gab sowohl Leucin als auch Hydroxyleucin als mögliche Substrate an.

Abbildung 34: Strukturen von Leucin, Isoleucin und Hydroxyleucin. Um die Toleranz der A-Domänen in FrsA und FrsD zu testen, wurden u.a. diese strukturell ähnlichen Aminosäuren getestet.

3.5.2 Klonierung und Expression der A-Domänen FrsA und FrsD

Um die A-Domänen in funktionierender Form zu erhalten, wurden sie kloniert und in *E. coli* exprimiert. Dazu wurden Primersequenzen (siehe Tabellen 8 und 26) mit Clone Manager (siehe Kap 5.1) erstellt. Die Primer wurden so gewählt, dass sie sowohl die A-Domäne als auch die PCP-Domäne umfassen.

A-Domäne	Primer	Primer	Länge [bp]	Enzym I	Enzym II
	forwarts	$ m r\ddot{u}ckw\ddot{a}rts$			
A1	Ac Adom 1	Ac Adom 1	1671	BamHI	HindIII
	for.	rev.			
A2	Ac Adom 2	Ac Adom 2	1634	NotI	XhoI
	for.	rev.			
MLP	MbtH for	MbtH rev	228	NdeI	XhoI

Tabelle 8: Verwendete Primer mit den dazugehörigen Schnittstellen.

Sowohl die PCR-Fragmente, die mit diesen Primern erstellt wurden, als auch die entsprechenden Vektoren wurden mit den für die Schnittstellen ausgewählten Enzymen (siehe Tabelle 8) wenn nötig über Nacht geschnitten und in einem molaren Verhätnis von 1:3 pET28a:PCR-Fragment über Nacht ligiert (siehe Kap. 5.5.11). Gleiches Vorgehen wurde für das MLP FrsB genutzt. Allerdings wurde hier der Coexpressionsvektor pCDFDuet-verwendet. *E. coli* Bl21 (DE3) star Zellen wurden einmal nur mit dem Plasmid der jeweiligen A-PCP-Domäne und einmal mit der A-PCP-Domäne und dem MLP transformiert, um die entsprechenden Proteine zu exprimieren (siehe auch Kap.

5.5.12).

Dazu wurden TB-Medium Schikanekolben aus Übernachtkulturen angeimpft und bis zu einer OD_{600} von 1,2 kultiviert. Danach wurden die Kulturen auf Eis gekühlt und im Anschluss mit IPTG induziert. Die Kultur wurde über Nacht exprimiert. Am nächsten Tag wurden die Kulturen abzentrifugiert, mit Lysepuffer versetzt und mit Ultraschall-Impulsen aufgeschlossen. Zwischen den Impulsintervallen wurde die Kultur auf Eis gestellt, um ein Überhitzen zu verhindern. Die Zellsuspension wurde abzentrifugiert und der Überstand mit Ni-NTA-Agarose versetzt und auf Eis inkubiert. Das Pellet wurde für die SDS-Analyse aufbewahrt. Die Suspension wurde auf eine Polypropylen-Säule (Quiagen) gegeben und mit unterschiedlich konzentrierten Waschpuffern gewaschen. Anschließend wurde das Protein mit einem Elutionspuffer von der Säule gewaschen (siehe auch Kap. 5.6.4).

Fraktion	A1	A1 mit MLP	Fraktion	A2	A2 mit MLP
WI	$15,\!30$	10,44	W I	$5,\!31$	9,9
WII	1,24	$0,\!63$	W II	$0,\!36$	$0,\!36$
ΕI	$0,\!89$	0,58	ΕI	$0,\!24$	0,71
E II	0,24	0,20	ΕII	$0,\!08$	0,23
E III	$0,\!34$	0,10	ΕIII	$0,\!09$	0,22
konz.	3	3,22	konz.	1,7	5,2

Tabelle 9: Proteinkonzentrationen der Wasch- und Elutionsfraktionen der exprimierten A-Domänen in [mg/mL]. Die Proben wurden auf einem Nanodrop-Gerät der Firma Thermo Scientific gemessen. WI und WII sind Waschschritte mit jeweils 25 mM und 50 mM Imidazolpuffer. EI, EII, EIII sind die Elutionen mit einem 300 mM Imidazolpuffer. Konz. entspricht der mit der Vivaspin 500 Säule aufkonzentrierten Fraktion.

Die Elutionsfraktionen wurden mit Hilfe einer PD10-Säule (GE) umgepuffert und entsalzt. Dazu wurde zunächst die Säule mit Assaypuffer gewaschen. Das Eluat wurden auf die Säule gegeben und im Anschluss mit Assaypuffer (Lösung 3; siehe auch Kap. 5.6.4) eluiert. Das Eluat wurde mit einer Vivaspin 500 Säule 30 MWCO von Satorius aufkonzentriert (siehe auch Kap. 5.6.4).

Von jeder Fraktion (Tabelle 9) wurden Proben für die SDS-Polyacrylamidgelelektrophorese-Analytik (SDS-PAGE) entnommen, wobei das SDS-Gel mit Tris/Tricin-Puffern erstellt wurde (siehe Kap. 5.3.5) [Schägger, 2006].

3.5.3 SDS-PAGE-Analytik der A-Domänen von FrsA und FrsD

Von jeder Fraktion (siehe Tab. 9) wurden Proben für die SDS-PAGE-Analytik entnommen.

Protein	kDa
A1 mit Histag	63
A2 mit Histag	63
MLP	8

Tabelle 10: Zu erwartende Größe der exprimierten Proteine

Die MLPs bei 8 kDa konnten nicht eindeutig identifiziert werden. Die folgenden Gele zeigen die jeweilige A-Domänen auf der Höhe zwischen 60 kDa und 70 kDa (siehe Abb. 35 und 36). Das entspricht der erwarteten Größe (siehe Tab. 10), und die A-Domänen wurden für eine weitere Funktionsanalyse verwendet.

Abbildung 35: FrsA (A1-PCP) zusammen mit MLP exprimiert: Der Pfeil markiert die Position der A-Domäne. Das MLP kann nicht identifiziert werden. L=Ladder, P=Pellet, NI= nicht induzierte Fraktion, I= induzierte Fraktion vor Zugabe von Ni-NTA, FT=Filtrat nach Ni-NTA Entfernung, WI=Waschschritt I, WII= Waschschritt II, EI+EII=Elutionsfraktionen, K=vereinigte, aufkonzentrierte Elutionsfraktionen

Abbildung 36: FrsD (A2-PCP) zusammen mit MLP exprimiert: Der Pfeil markiert die Position der A-Domäne. Das MLP kann nicht identifiziert werden. L=Ladder, P=Pellet, NI= nicht induzierte Fraktion, I= induzierte Fraktion vor Zugabe von Ni-NTA, FT=Filtrat nach Ni-NTA Entfernung, WI=Waschschritt I, WII= Waschschritt II, EI+EII=Elutionsfraktionen, K=vereinigte, aufkonzentrierte Elutionsfraktionen

Die A-Domänen konnten in ausreichender Menge exprimiert und eindeutig bestimmt werden. Das MLP konnte auf den Gelen nicht eindeutig identifiziert werden. In der aufkonzentrierten Fraktion sieht man Verunreinigungen, die trotz mehrmaligen Waschens nicht beseitigt werden konnten.

3.5.4 Durchführung des γ - ¹⁸O₄-ATP-Assay

Die aus der vorangegangenen Expression erhaltenen A-Domänen wurden mit dem gut etablierten γ - ¹⁸O₄-ATP-Assay nach Phelan [Phelan et al., 2009] auf ihre Funktion und Spezifität überprüft. Für den Assay wurden drei Lösungen hergestellt (siehe Kap. 5.3.4). Lösung 1 enthält die zu testende Aminosäure (siehe Tab. 11 und 12), PPi und Tris-Puffer. Lösung 2 besteht aus γ -¹⁸O₄-ATP und Tris Puffer, während die dritte Lösung Tris, Glycerol und 1 mM DTT enthält. Von der 2. und 3. Lösung wurden jeweils 2 µL auf PCR-Tubes verteilt. Im Anschluss wurde jedes der PCR-Tubes mit 2 µL einer Aminosäure-Lösungen (Lösung 1) versetzt. Die Reaktionsansätze wurden inkubiert und im Anschluss mit einer Aminoacridin-Lösung in Aceton versetzt, welches später als Matrix für die MALDI-TOF-MS Messung diente. Im Anschluss wurden die Proben mithilfe einer MALDI-TOF-Messung analysiert (siehe auch Kap. 5.6.9).

3.5.5 Detektion und Auswertung des γ - ¹⁸O₄-ATP-Austauschs mittels MALDI-TOF-MS

Sowohl für die A-Domäne A1 aus FrsA als auch für die A-Domäne A2 aus FrsD wurde bioinformatisch Leucin oder OH-Leucin als Substrat vorhergesagt. Diese Vorhersage sollte durch den Assay genauer bestimmt und eine Abhängigkeit der Aktivierung vom MLP überprüft werden. Des weiteren sollte eine eventuelle Substrattoleranz der A-Domänen gegenüber leucinähnlichen Aminosäuren betrachtet werden.

Im Folgenden sollen exemplarisch die MS-Spektren der 4 Reaktionsansätze der A-PCP-Domänen von FrsA und FrsD mit Leucin, sowohl mit als auch ohne MLP betrachtet werden. Die Spektren (siehe Abb. 37) zeigen in allen vier Reaktionsansätzen eine Aktivierung von Leucin und die damit verbundene Detektion des Massesignals bei m/z: 506. Das bedeutet, dass sowohl die A-Domäne A1 als auch die A-Domäne A2 Leucin unanbhängig von einem MLP aktivieren können.

Abbildung 37: Massenspektrum des A-Domänen-Assay von FrsA (A1-PCP) und FrsD (A2-PCP), einmal mit und ohne MLP. Bei allen Reaktionsansätzen konnte das Massesignal des ¹⁶O₄-ATP-Peak bei m/z: 506 detektiert werden. In allen Fällen fand eine Aktivierung von Leucin statt. Beide A-Domänen sind ohne MLP funktionsfähig.

Die prozentuale Aktivierung aller verwendeter Aminosäuren (siehe Tabelle 11 und 12) wurde berechnet, um das Ausmaß der Aktivierung von Leucin zu bestimmen und eine Substrattoleranz der A-PCP-Domänen zu ermitteln. Um das Ausmaß der Rückreaktion des AMP zu ¹⁶O₄-ATP zu berechnen und damit auch das Ausmaß der Aktivierungsreaktion, wurden die Integrale der im Spektrum vorhandenen Peaks aller ATP-Species verwendet (siehe auch Kap. 5.6.9). Das molare Verhältnis von γ - ¹⁸O₄-ATP zu PPi beträgt 5:1. Daher wird bei der Auswertung davon ausgegangen, dass bei einer gemessenen Aktivierung von 83,33 % eine tatsächliche Aktivierung von 100 % stattgefunden hat. Für die prozentuale Aktivierung der Aminosäuren wurde das Verhältnis von γ - ¹⁸O₄-ATP zur Summe aller gemessenen ATP-Peaks gebildet. Für die Berechnung wurden die jeweiligen Flächen unter den Kurven verwendet, die als Rohdaten aus der Messung entnommen wurden. Nachfolgende Formel diente zur Berechnung des tatsächlichen Austauschs von γ - ¹⁸O₄-ATP [Phelan et al., 2009].

Austausch [%]= $(100/0.833)^{*16}O/(^{18}O+^{16}O)$

Aminosäure	A1 ohne MLP	A1 mit MLP	A2 ohne MLP	A2 mit MLP
Alanin	k. A.	8,3	0	0
Cystein	0	0	0	2,9
Glutaminsäure	0	2,3	0	0
Glycin	0	$1,\!6$	0	0
Histidin	0	0	0	2,4
Leucin	46,0	44,7	17,7	$23,\!3$
Isoleucin	28,1	$19,\!8$	$13,\! 6$	$21,\!1$
Hydroxyleucin	$9,\!6$	0	0	7,5
Lysin	0	0	0	2,9
Methionin	0	0	0	2,4
Asparagin	k. A.	0	0	2,5
Prolin	0	0	0	0
Phenyllaktat	17,2	0.	0	$13,\!4$
$\operatorname{Glutamin}$	0	2,6	0	3,2
Arginin	0	4,5	0	2,5
Serin	3,7	0	0	0
Threonin	0	k. A.	6,6	3,3
Tryptophan	0	0	3,2	4,5
Tyrosin	0	0	0	2,9

Tabelle 11: Berechneter absoluter γ - ¹⁸O₄-ATP-Austausch durch verschiedene Aminosäuren im A-Domänen-Assay für FrsA (A1-PCP) und FrsD (A2-PCP). k.A.=es konnte keine Auswertung gemacht werden; 0=keine Aktivierung vorhanden

Abbildung 38: tatsächlicher prozentualer γ - ¹⁸O₄-ATP-Austausch durch die A-Domänen von FrsA (A1-PCP) und FrsD (A2-PCP) in Anwesenheit der einzelnen Aminosäuren.

Die Auswertung der Assayreihe zeigt, dass sowohl die A1-PCP-Domäne, als auch die A2-PCP-Domäne in erster Linie für Leucin spezifisch sind (siehe Abb. 38 und 39). Es lässt sich ebenfalls eine geringe Substratspezifität für Isoleucin feststellen. Hydroxyleucin wird nicht in größerem Ausmaß aktiviert als der Rest der durchschnittlich gering aktivierten Aminosäuren. Das lässt sich durch die ähnliche Struktur von Leucin und Isoleucin erklären. Hydroxyleucin unterscheidet sich hingegen durch die OH-Gruppe sehr stark von den beiden Anderen (siehe Abb. 34).

Um zu bestimmen, in welchem Verhältnis die A-Domänen aus FrsA und FrsD eine Substrattoleranz gegenüber nicht nativen Substraten haben, wurde die prozentuale Aktivierung von Aminosäuren im Verhältnis zu Leucin (100 %) berechnet.

Aminosäure	A1 ohne MLP	A1 mit MLP	A2 ohne MLP	A2 mit MLP
Alanin	k. A.	$18,\!5$	0	0
Cystein	0	0	0	12,2
Glutaminsäure	0	5,1	0	0
Glycin	0	3,6	0	0
Histidin	0	0	0	10,2
Leucin	100	100	100	100
Isoleucin	61,1	$44,\!3$	76, 9	$90,\!5$
Hydroxyleucin	20,9	0	0	32,0
Lysin	0	0	0	12,2
Methionin	0	0	0	$10,\!1$
Asparagin	k. A.	0	0	$10,\!8$
Prolin	0	0	0	0
Phenyllaktat	$37,\!3$	0	0	$57,\!4$
Glutamin	0	5,7	0	$13,\! 6$
Arginin	0	10,2	0	$10,\!9$
Serin	8,1	0	0	0
Threonin	0	k. A.	$37,\!3$	$14,\!3$
Tryptophan	0	0	$17,\!8$	$19,\!1$
Tyrosin	0	0	0	$12,\!4$

Tabelle 12: Prozentualer γ - ¹⁸O₄-ATP-Austausch durch die Aminosäuren im A-Domänen-Assay in Relation zur Leucin-Aktivierung von FrsA (A1-PCP) und FrsD (A2-PCP). k.A.=es konnte keine Auswertung gemacht werden; 0=keine Aktivierung vorhanden

Abbildung 39: Prozentualer γ - ¹⁸O₄-ATP-Austausch durch die A-Domänen FrsA (A1-PCP) und FrsD (A2-PCP) in Anwesenheit der einzelnen Aminosäuren bezogen auf Leucin.

Der γ - ¹⁸O₄-ATP-Austausch-Assay präzisiert die vorhergehende bioinformatische Analyse. Die A-Domänen FrsA und FrsD aktivieren Leucin. Das Hydroxyleucin wird demnach nach der Aktivierung des Leucins gebildet. Der Assay zeigt ebenfalls, dass sowohl die A-Domänen aus FrsA, als auch FrsD ohne MLP in der Lage sind, Leucin zu aktivieren.

4 Diskussion

4.1 Pharmazeutische Relevanz von FR

Das Depsipeptid FR ist strukturell sehr ungewöhnlich und aufgrund seiner Eigenschaft, selektiv G_q-Proteine zu inhibieren, ein pharmakologisch wertvolles Werkzeug zur Erforschung G_q-Protein vermittelten Signalkaskaden [Schrage et al., 2015]. G-Proteine regulieren eine Vielzahl von Signalwegen in eukaryotischen Zellen und spielen eine zentrale Rolle bei vielen Erkrankungen, wie Asthma, Bluthochdruck, Krebs und vielen anderen [Deshpande and Penn, 2006] [Takefuji et al., 2012] [Dorsam and Gutkind, 2007]. Es gibt bis heute sehr wenig zuverlässige Substanzen, die G-Proteine modulieren können, membrangängig sind und dabei therapeutisches Potential haben [Smrcka, 2013]. FR und YM sind neben PTX die zur Zeit am meisten genutzten G-Protein Modulatoren. Lediglich YM und FR sind mögliche Therapeutika. YM war lange Zeit nicht kommerziell verfügbar und konnte nicht zu Forschungszwecken eingesetzt werden. Mittlerweile ist YM wieder im Handel, aber es gibt neue, noch nicht veröffentlichte Erkenntnisse aus der Forschergruppe FOR2372, die darauf hindeuten, dass sich YM und FR pharmakologisch unterscheiden und keineswegs gegeneinander austauschbar sind.

4.2 Hypothese zur Biosynthese von FR

Durch die vorliegende Arbeit konnte eine plausible Hypothese zur Biosynthese von FR erstellt werden (siehe Abb. 4). FR wird über eine nicht ribosomale Peptidsynthese gebildet. Das entsprechende *frs*-BGC kodiert für zwei TE-Domänen und besteht somit aus zwei NRPS, die beide an der Bildung von FR beteiligt sind. Die TE₂-Domäne der C-terminalen NRPS ist vermutlich für die Zyklisierung und Freisetzung des zyklischen Teils des Peptids verantwortlich. Die TE₁-Domäne der kleineren N-terminalen NRPS ist mutmaßlich für die intermolekulare Übertragung der Seitenkette zuständig. Ein Zusammenspiel zweier NRPS-Systeme, die voneinander durch eine TE-Domäne getrennt sind, ist selten. Eine ähnliche Konstellation kommt z.B. noch bei der Salinamid Biosynthese vor [Tan and Ma, 2008] [Ray et al., 2016]. Diese Anordnung der NRPS setzt eine gute Kommunikation zwischen den zwei NRPS voraus. Um diese Mechanismen besser zu verstehen, sind vor allem weitere funktionelle und kinetische Studien erforderlich.

Das frs-BGC enthält zwei modifizierende Enzyme, FrsC und FrsH, sowie FrsB, ein MLP. FrsC besitzt eine hohe Sequenzähnlichkeit mit einer Malatbzw. L-Laktatdehydrogenase. FrsC ist daher ein möglicher Kandidat, der die Reduktion der Ketogruppe des Phenylpyruvates zu Phenyllaktat bewerkstelligen könnte. FrsH hat keine große Ähnlichkeit mit anderen Proteinen, es enthält aber dasselbe konservierte Motiv, wie CmlA, eine eisenabhängige β -Hydroxylase und könnte deshalb für die Übertragung von Hydroxy-Gruppen auf die Leucin-Bausteine verantwortlich sein [Crüsemann et al., 2018]. Damit sind alle Funktionen modifizierender Enzyme plausibel in die Biosynthesehypothese eingeordnet.

Bioinformatische und *in-vitro*-Untersuchungen dieser Arbeit dienten dazu, ein tieferes Verständnis der Biosynthese von FR zu erhalten. So konnten durch die antiSMASH-Analyse die Spezifitäten der A-Domänen begrenzt vorhergesagt werden. Eine *in-vitro*-Analyse der A-Domänen A1 und A2 aus FrsA und FrsD konnte schließlich die eindeutige Spezifität für Leucin beweisen. Diese detaillierten Einblicke in die FR-Biosynthese machen es künftig möglich, die Struktur von FR durch genetische Modifikation zu verändern. Dies ermöglicht es, ggf. pharmakodynamische Eigenschaften abzuändern, die Pharmakokinetik zu modifizieren, oder durch Einführen von funktionellen Gruppen nachfolgend semisynthetische Varianten herzustellen, oder FR mit Fluoreszensmarkern zu versehen.

FR ist aus zwei unterschiedlichen natürlichen Quellen bekannt. Ursprünglich wurde es aus der tropischen Pflanze A. crenata isoliert, deren Endosymbiont Cand. B. crenata in der Lage ist, FR zu produzieren [Fujioka M., 1988] [Carlier et al., 2016]. Im Verlauf dieser Arbeit konnte C. vaccinii [Voing et al., 2015] als zweiter Produzent ausgemacht und dessen cvfrs-BGC vollständig erhalten werden. Durch Betrachtung sowohl der einzelnen BGC als auch den Vergleich der beiden frs-BGC bcfrs und cvfrs konnten außergewöhnliche Einblicke in die Funktion beider Enzymsysteme erlangt werden, die im Folgenden weiter betrachtet werden sollen.

4.3 Vergleich der frs-BGC auf DNA- und Protein-Ebene

Die bioinformatische Betrachtung und der Vergleich der frs-BGC auf DNAund Proteinebene ergaben grundlegende Erkenntnisse hinsichtlich deren Struktur (siehe Kap. 3.1). Hier konnte über die Größe der Gene gezeigt werden, dass sich die frs-BGC sehr ähnlich sind. Die Identität der Gene des bcfrs-BGC zum cvfrs-BGC beträgt sowohl auf DNA-, als auch auf Proteinebene um die 70 % und ist damit sehr hoch (siehe Tab. 3). Die Gene unterscheiden sich vor allem in ihrem GC-Gehalt (siehe Tab. 3). Wahrscheinlich wurde dieser im Laufe der Zeit an den natürlicherweise vorkommenden GC-Gehalt des Wirtes angepasst. Die Größe der einzelnen Gene unterscheidet sich kaum voneinander, sie weichen weniger als drei bp voneinander ab. Die Ausnahme bildet frsA mit der größten Abweichung. Hier ist cvfrsA um 51 bp größer als bcfrsA. Diese Abweichung ist hauptsächlich N-terminal bei beiden Genen lokalisiert (siehe Abb. A27).

4.4 Sich wiederholende Sequenzabschnitte in beiden *frs*-BGC

Die BGC *bcfrs* und *cvfrs* wurden jeweils auf Bereiche mit hoher Identität untersucht. Der Vergleich beider *frs*-BGC in Bezug auf die sich wiederholenden DNA- bzw. Aminosäuresequenzen konnte noch einmal die strukturelle Gemeinsamkeit beider BGC verdeutlichen (siehe Abb. 15). Die in beiden BGC gefundenen sich wiederholenden Bereiche geben einen möglichen Einblick in ihre Entstehung (siehe Abb. 15). Die Bildung neuer Gene wird von einer Vielzahl rekombinanter Ereignisse, wie Exon shuffling, Genduplikation, Retroposition, Insertionen einzelner Elemente oder Genfusion begünstigt. Durch den Selektionsdruck wird dieser Prozess beschleunigt [Long et al., 2003]. Betrachtet man die Sequenz beider BGC, so konnte gezeigt werden, dass beide BGCs ungewöhnlich viele sich wiederholender Sequenzen innerhalb des BGC haben. Diese natürlich vorkommenden Rekombinationsstellen innerhalb der frs-BGC scheinen auf den ersten Blick willkürlich und liegen auch in Bereichen, in denen Gene enden und neu beginnen. Die Bereiche befinden sich teilweise an funktionellen Übergängen zwischen den einzelnen Domänen, tauchen an anderer Stelle aber in der Mitte einer Domäne auf (siehe Abb. 15).

Die Größe dieser sich wiederholenden Bereiche innerhalb beider frs-BGC reicht von 351 bp bis zu 3070 bp (siehe Tab. 4 und 5). Interessant ist hier, dass die Domänen, welche innerhalb der NRPS die gleiche oder eine ähnliche Funktion haben, durch identische DNA-Sequenzen codiert werden. So haben beispielsweise alle drei Leucin-aktivierenden A-Domänen die gleiche für sie kodierende DNA-Sequenz innerhalb eines BGC (siehe Abb. 15), so dass man vermuten kann, dass diese durch Verdopplung und Rekombination innerhalb des BGCs entstanden sind. Das gleiche gilt für die Alanin-aktivierenden A-Domänen, die N-MT-Domänen oder die beiden Starter-C-Domänen. Der größte gefundene sich wiederholende Bereich geht sogar über zwei Gene hinaus. Er umfasst den nicht-kodierenden Teil der A-Domäne ab der Core-A6-Region über eine MT-Domäne, die PCP-Domäne und einen Großteil der nächsten C-Domäne. Dieser Bereich wurde im N-Methyl-Dehydroalanin-Modul und im N-Methylalanin-Modul gefunden. Der kodierende Bereich der A-Domäne und der terminale C-Domänen-Abschnitt unterscheiden sich wieder, da hier andere funktionelle Eigenschaften verlangt werden. Die kodierenden Bereiche der A-Domäne A4 aus FrsE haben eine Spezifität für Serin und die A-Domäne A6 aus FrsF für Alanin.

Die an die Module 4 und 6 anschließenden C-Domänen, C6 und C8, werden ebenfalls bis zu dem C-terminalen Bereich durch gleiche DNA-Sequenzen codiert, ab dem sich die Funktion beider C-Domänen möglicherweise wieder unterscheidet. Bei Serin wird wahrscheinlich eine Dehydratisierung vorgenommen, das Alanin wird bis auf die anschließende Methylierung nicht modifiziert. Die DNA-Sequenzen, die für den Teil der C-Domänen kodieren, in dem sich die putativ für die Dehydratisierung verantwortlichen Aminosäuren befinden, weichen wieder voneinander ab. Die Rekombinationsstellen dieses
DNA-Abschnittes liegen in diesem Fall an einer Stelle, an der sich innerhalb der codierten Domäne C6 und C8 deren biochemische Funktionen unterscheiden.

Insgesamt scheint es, als wären für die Entstehung der BGC in Bereichen gleicher Funktion auf wenige vorhandene Sequenzen zurückgegriffen und nur diejenigen Bereiche aus einem anderen Genpool heraus entstanden, die eine andere Funktion erhalten haben (siehe Abb. 15). Dabei entsprechen die natürlichen Rekombinationsstellen nicht den Bereichen, die man aus molekularbiologischer oder aus proteinbiochemischer Sicht als funktionelle Einheit betrachten würde, wie beispielsweise eine DNA-Sequenz, die für eine vollständige A-Domäne oder eine vollständige C-Domäne codiert. Die Rekombinationsstellen liegen in der Mitte einer DNA-Sequenz, die für eine Domäne codiert. Das kann zum Einen ausschließlich durch zufällige Ereignisse passieren, oder es könnten sich im Laufe der Evolution innerhalb der Sequenzen Bereiche als sinnvoll herausgestellt haben, die öfter an bestimmten Stellen vorhanden sind. Mögliche Sequenzen wären dafür beispielsweise strukturbildende Elemente, wie die A-Core-Motive bei A-Domänen. Durch den Selektionsdruck könnten auf diese Art und Weise funktionale BGC entstehen. Das so beschriebene Szenario scheint eine effiziente Möglichlichkeit zur Entwicklung des frs-BGC zu sein. Die Tatsache, dass sich diese wiederholenden Bereiche in beiden BGC gleichen, macht es sehr wahrscheinlich, dass beide frs-BGC einen gemeinsamen Ursprung hatten. Nachfolgend wurden die frs-BGC schließlich auf Cand. B. crenata und C. vaccinii und ggf. weitere Bakterien übertragen. In diesem Zusammenhang wäre ein weiterer Vergleich mit den BGC der FR-Analoga YM und Sameuramid [Machida et al., 2018] interessant, die wahrscheinlich einen gemeinsamen Ursprung mit den FR-BGC haben.

Das Verständnis natürlich vorkommender Schnitt- und Rekombinationsstellen in BGCs kann Aufschluss über deren Phylogenie geben und darüber hinaus für Bioengineering-Strategien wichtig sein.

4.5 Strukturelle Besonderheiten der A-Domäne A8 aus FrsG

Die bioinformatische Untersuchung der A-Domänen A8 und der darauf folgenden zwei MT-Domänen ergab eine völlig neue, bislang nicht beschriebene Struktur einer A-Tridomäne (siehe Kap. 3.2). Die A-Domäne A8 ist die bis jetzt einzig bekannte A-Domäne, die zwei MT-Transferasen hat. Die erste ist wahrscheinlich eine O-methylierende-MT-Domäne, die zweite eine Nmethylierende-MT-Domäne. Diese MT-Domänen liegen, wie bei den meisten A-Domänen, zwischen der Core-A8- und Core-A9-Region [Labby et al., 2015]. Interessant ist hier, dass auf beide MT-Domänen jeweils eine Core-A9- und Core-A10-Region folgt. Diese Core-Regionen liegen auf der A-Subdomäne [Conti et al., 1997] [Stachelhaus et al., 1999]. Das bedeutet, dass die A-Domäne A8 zwei Subdomänen enthält. Dieser Fall, der in beiden frs-BGC zu finden ist, ist bis jetzt einzigartig.

Abbildung 40: Kristallstrukturanalyse der A-MT-Domäne aus TioS des Thiocoralin-BGC. Die Abb. ist entnommen aus Mori et al. 2018. Der hellgelbe Bereich stellt die A-Core-Domäne dar, mit dem assoziierten MLP in grau. Der dunkelgelbe Bereich ist die A-Subdomäne. In rot der N-terminale katalytische Bereich der MT-Domäne und in violett die C-terminale SirA-like Region.

Für die A-MT-Domäne aus TioS des Thiocoralin-BGC (siehe Abb. 40) konnte 2018 die Kristallstruktur erstmals ermittelt [Mori et al., 2018] und damit die Beschaffenheit einer A-MT-Domäne gezeigt werden. Sie bildet eine hantelförmige Struktur aus, dessen beide Enden einmal von der A-Domäne mit gebundenem MLP und von der MT-Domäne gebildet werden. Die A-Subdomäne liegt wie ein Verbindungsstück in der Mitte beider Domänen. Im Falle von TioS folgt auf die Subdomäne eine PCP-Domäne, die für die richtige Positionierung des Substrates in den aktiven Zentren beider Domänen sorgt. Im Falle der A-Domäne A8 aus FrsG folgt an dieser Stelle die zweite MT-Domäne mit einer weiteren A-Subdomäne (siehe Abb. 41).

Abbildung 41: A. Schematische Darstellung der A-Domäne A8 aus FrsG mit zwei MT-Domänen, B. Vergleich mit TioS als Beispiel für eine A-Domäne mit einer MT-Domäne und C. Vergleich mit einer A-Domäne ohne MT-Domäne. Die Core-Regionen A9 und A10 sind auf den A-Subdomänen lokalisiert [Conti et al., 1997] [Stachelhaus et al., 1999].

Mori et al. vermuteten für TioS, dass, aufgrund der Distanz der aktiven Zentren von A- und MT-Domäne, beide Enzyme unabhängig voneinander arbeiten können. Eine weitere Subdomäne wie im Falle der *frs*-BGC wirft allerdings die Frage auf, ob die A-Subdomänen in den Methylierungsvorgang involviert sein könnten. Möglicherweise dienen sie als Distanzhalter zwischen den Enzymen und hätte damit eventuell eine stabilisierende Eigenschaft auf die Konformation. Eine weitere Möglichkeit besteht darin, dass die sehr bewegliche A-Subdomäne die Aminosäure nicht nur für den Adenylierungsvorgang, sondern auch für den Methylierungsvorgang in der richtigen Position hält. Das Lys-517 in der Core-A10-Region der A-Subdomäne koordiniert die Carboxygruppe, die in trans zur α -Aminogruppe und zur OH-Gruppe des Threonin steht. Sowohl die α -Aminogruppe, als auch die OH-Gruppe werden von den MT-Domänen methyliert. Ein Transport nur über die PCP-Domäne könnte an dieser Stelle nicht ausreichend sein, um die Reihenfolge der Reaktionen einzuhalten, daher wäre eine Stabilisierung über die A-Subdomäne ein plausibler Mechanismus. Wie hier das genaue Zusammenspiel der einzelnen Domänen aussieht, muss weiter untersucht werden.

4.6 Bioinformatische Betrachtungen zum Dehydratisierungsmechanismus der C-Domäne C6

Der Dehydroalanin-Baustein in FR wird vermutlich durch eine Dehydratisierung von Serin gebildet. Über die Analyse der C-Domänen des befrs und cvfrs konnten eindeutige Hinweise auf einen bisher unbekannten Dehydratisierungsmechanismus gewonnen werden. C-Domänen katalysieren vielseitige Reaktionen in der NRPS-Maschinerie, vor allem die Kondensationsreaktion zweier Substrate, aber auch Dehydratisierungen und andere Modifikationen [Rausch et al., 2007] [Gaudelli et al., 2015]. Die C-Domänen beider frs-BGC weisen innerhalb eines BGC jeweils Identitäten zwischen 40% und 60% auf (siehe Abb. 22, A20 und A22). Diese sind gemessen am Durchschnitt (ca. 70%) der frs-BGC eher gering. Nur die beiden Starter-C-Domänen sowie die C-Domänen C6 und C8 haben höhere Identitäten zueinander. Die Starter-C-Domänen ähneln sich mit um die 90 % Identität innerhalb eines BGCs am stärksten (siehe Abb. 22, A20 und A22), was aufgrund des gleichen Substrates nachvollzogen werden kann. Die überdurchschnittlich hohe Identität zwischen den C-Domänen C6 und C8 lässt sich damit aber nicht erklären. Trotz der hohen Identität zwischen diesen beiden C-Domänen müsste es aufgrund des funktionalen Unterschiedes auch signifikante Unterschiede in der Aminosäuresequenz geben. Die C-Domäne C6 könnte aufgrund der Struktur von FR in eine Dehydratisierung involviert sein, die C-Domäne C8 nicht. Durch Alignments der C-Domänen C6 und C8 miteinander, jeweils für das *bcfrs*und *cvfrs*-BGC (siehe Abb. 23 und 24), konnte gezeigt werden, dass beide C-Domänen im N-terminalen Bereich fast identisch sind, was der Grund für die hohe berechnete Identität ist. Im C-terminalen Bereich hingegen konnten Bereiche gefunden werden, in denen sich die C-Domänen C6 und C8 unterscheiden. Dabei fiel auf, dass sie sich in beiden BGC in 13 Aminosäuren auf identische Art und Weise unterscheiden (siehe Abb. 23 und 24).

An den bekannten Dehydratisierungsmechanismen, wie beispielsweise der in der Nocardicin-Biosynthese, sind Histidin-Reste an der Katalyse beteiligt [Gaudelli et al., 2015]. Die 13 in den frs-BGC gefundenen Aminosäuren der Domänen C6 beinhalten das Sequenzmotiv EQH, das in dieser Form auch in der C-Domäne des BGC von Microcystin (siehe Abb. A6) vorkommt, für die ebenfalls eine Dehydratisierungsfunktion postuliert wurde [Tillett et al., 2000] [Crüsemann et al., 2018]. Dieses Histidinmotiv ist in den C-Domänen C6 beider BGC vorhanden, aber nicht in denen der C-Domänen C8. Dieser Histidinrest könnte also eine Schlüsselrolle in der Dehydratisierung des Serin zu Dehydroalanin spielen. Ein 3D-Modell der C6-Domäne aus C. vaccinii konnte zeigen, dass sich diese 13 Aminosäuren inklusive der EQH-Sequenz im aktiven Zentrum der C-Domäne befinden und in dieser Position für die Katalyse einer solchen Reaktion in Frage kämen (siehe Abb. 25-27). Abschließend kann festgehalten werden, dass diese 13 Aminosäuren mit großer Wahrscheinlichkeit eine Rolle bei der Dehydratisierung des Serins zu Dehydroalanin spielen. Weitere *in-vitro*-Untersuchungen der C-Domänen sind an dieser Stelle nötig.

4.7 Spezifität der A-Domänen aus FrsA und FrsD

Die *in-vitro*-Untersuchung der A-Domänen FrsA und FrsD zeigte, dass diese Leucin als Substrat verwenden, wie es aufgrund der bioinformatischen Analyse vermutet wurde (siehe Tab. 1 und 2). Beide A-Domänen konnten erfolgreich exprimiert werden (siehe Kap. 3.5), allerdings konnte eine hohe Reinheit der Proteine trotz Aufreinigung nicht erreicht werden. Es gab mehrere Verunreinigungen, die unter 20 kDa groß waren.

Das MLP wurde in der SDS-PAGE-Analyse nicht eindeutig detektiert. Ob das MLP nicht exprimiert wurde, aufgrund geringer Größe nicht detektierbar war, oder nicht mit der A-Domäne coeluiert wurde, kann nicht abschließend beurteilt werden. Trotzdem wurde im Assay durch beide A-Domänen Leucin aktiviert. Die Aktivierung von Leucin erfolgte wahrscheinlich unabhängig vom MLP. OH-Leucin wurde im Assay kaum aktiviert (siehe Abb. 38 und 39). Während der FR-Biosynthese erfolgt also zuerst eine Aktivierung von Leucin mit einer anschließenden Hydroxylierung, die potentiell von der β -Hydroxylase FrsH durchgeführt wird (siehe Abb. 38 und 39).

Die A-Domänen FrsA und FrsD wurden sowohl mit, als auch ohne MLP exprimiert. So konnte gezeigt werden, dass beide A-Domänen ohne MLP funktionsfähig sind. Ob eine andere A-Domäne der *frs*-BGC ein MLP benötigt, oder ob die MLP-kodierende Sequenz ein Relikt aus evolutionären Gründen sind, muss in weiteren Experimenten geklärt werden.

4.8 Ausblick

Die Biosynthese-Enzyme des nicht-ribosomalen Pepdids FR werden durch die BGC *bcfrs* und *cvfrs* kodiert. Die bioinformatische Betrachtung beider BGC (siehe Kap. 3.1-3.4) und *in-vitro*-Studien der A-Domänen von FrsA und FrsD (siehe Kap. 3.5) erbrachten Hinweise auf neue Biosynthesemechanismen.

Die bis jetzt einzigartige A-Tridomäne-Struktur von A-Domäne A8 von *bcfrs* und *cvfrs* deutet darauf hin, dass die A-Subdomäne womöglich nicht nur eine Rolle bei der Adenylierungsreaktion spielt (siehe Kap. 3.2). Eine Analyse der Kristallstruktur wäre notwendig, um das strukturelle Zusammenspiel der A-Domäne mit den beiden A-Subdomänen und den integrierten MT-Domänen zu verstehen.

Der bioinformatische Vergleich beider BGC ermöglichte, die potentiell für den

Dehydratisierungsmechanismus, d.h. im Falle von FR die für die Umwandlung von Serin zu Dehydroalanin, wichtigen Aminosäuren der C-Domänen C6 zu finden (siehe Kap. 3.4). Dadurch kann künftig eine gezieltere Durchführung von *in-vitro*-Studien zu Dehydratisierungen in NRPS vorgenommen werden.

Eine interessante Möglichkeit wäre ein Vergleich der *frs*-BGC mit denen von YM-254890 und Sameuramid. Beides sind Strukturanaloga von FR, wobei YM-254890 ebenfalls in einer *Chromobacterium*-Spezies vorkommt. Sameuramid wurde aus marinen Ascidiaceae isoliert [Machida et al., 2018]. Die große Strukturähnlichkeit der Peptide macht einen gemeinsamen phylogenetischen Ursprung sehr wahrscheinlich. Insgesamt bieten die *frs*-BGCs, zusammen mit jenen für YM und Sameuramid, die Chance, die phylogenetische Entwicklung von BGCs nachvollziehen zu können. Wie genau sind diese BGC entstanden und wie hat sich durch Verdopplung einzelner Sequenzen ein System entwickeln können, das in komplexer Art und Weise aufeinander abgestimmt ist? Die Antwort auf solche Fragen könnte helfen, im Labor neue Bioengineeringansätze zu entwickeln.

5 Material und Methoden

5.1 Verwendete Datenbanken und Programme

FastTree: FastTree wurde für die Erstellung des phylogenetischen Baumes der C-Domänen genutzt. Dieser wurde in [Crüsemann et al., 2018] veröffentlicht [Price et al., 2009].

FigTree: FigTree (http://tree.bio.ed.ac.uk/software/figtree/) (Version 1.4.3) ist ein Programm für die grafische Darstellung von phylogenetischen Bäumen und wurde ebenfalls für die Erstellung des phylogenetischen Baumes der C-Domänen genutzt [Crüsemann et al., 2018].

Basic Local Alignment Search Tool (BLAST): [https://blast.ncbi. nlm.nih.gov/Blast.cgi] BLAST sucht Ähnlichkeiten in Sequenzen mithilfe von Datenbanken und gleicht diese ab. Dadurch können Funktionen von Proteinen vorhergesagt werden. Das Tool wird vom National Center for Biotechnology Information (NCBI) zur Verfügung gestellt.

Clustal omega: Clustal omega wurde verwendet, um größere Alignments durchzuführen, oder die Enden der sich wiederholenden Bereiche der Sequenzen festzulegen. [https://www.ebi.ac.uk/Tools/msa/clustalo/] Das Tool wird vom European Bioinformatics Institute (EBI), (EMBL) zur Verfügung gestellt.

antiSMASH: Die antiSMASH-Plattform wurde für die Annotationen der BGC *bcfrs* und *cvfrs* verwendet. Außerdem für die Substratsspezifitätsvorhersage der A-Domänen. antiSMASH wird von vielen Forschungsinstituten und Universitäten unterstützt. [Medema et al., 2011]

Clonemanager: Clonemanager wurde zusammen mit Snapgene für Primerdesign und *in silico*-Klonierungen verwendet. Des weiteren für die Berechnung des GC-Gehalts von Genen (Scientific & Educational Software). **Snapgene Viewer:** Snapgene Viewer wurden zusammen mit Clonemanager für die Bearbeitung von Sequenzen und *in silico*-Klonierung verwendet (Snapgene, Version: 4.1).

Phyre2: Zur Erstellung von Homologie 3D-Modellen wurde die Onlineplattform "Phyre 2" verwendet. Modelle wurden für die C-Domänen abgeleitet [Kelley et al., 2015].

NaPDos: Die für den phylogenetischen Baum verwendeten C-Domänen wurden der NaPDos-Datenbank entnommen [Ziemert et al., 2012].

ACD/ChemSketch (Freeware2015): ChemSketch wurde verwendet, um Strukturformeln zu zeichnen.

DNA/RNA GC Content Calculator Endmemo:

[http://www.endmemo.com/bio/gc.php] Ein Onlinetool, das neben dem Clone Manager für die Berechnung des GC-Gehalts von Genen genutzt wurde.

MIBiG: [https://mibig.secondarymetabolites.org/] [Epstein et al., 2018] MIBiG ist eine Datenbank, in der gesammelte Annotationen und Metadaten diverser BGC und deren Produkte bereitgestellt werden.

5.2 Vektoren und Organismen

5.2.1 Vektoren

Für die Erstellung von Konstrukten wurden folgende Vektoren verwendet (siehe Tab: 13):

Vektor	$\operatorname{Resistenz}$	$\operatorname{Herkunft}$
pGEM-T	Ampicillin	Promega
m pET28a	Kanamycin	Merck KGaA
$\mathrm{pCDFDuet}$	$\operatorname{Streptomycin}$	Merck KGaA
m pCDFA pra	$\operatorname{Streptomycin}$	AG König
	Apramycin	
19E BAC Vektor	Chloramphenicol	Aurelien Carlier
		[Carlier et al., 2016]

Tabelle 13: Verwendete Vektoren

Als Subklonierungsvektor wurde der pGEM-T-Vektor der Firma Promega verwendet, der für eine direkte Klonierung von PCR-Produkten mit A-Überhang geeignet ist und eine Blau-weiß-Selektion erlaubt. Für die Proteinexpression der A-Domänen wurde der pET28a Vektor der Firma Merck verwendet. Als Coexpressionsvektor für die Expression des MLPs wurde der pCDFDuet Vektor, ebenfalls der Firma Merck, verwendet, bei dem eine zusätzliche Apramycinresistenz eingefügt wurde (siehe Abb. A5).

5.2.2 Organismen

Für die Erstellung von Lager- und Expressionsstämmen wurden folgende Organismen verwendet (siehe Tab. 14):

Stamm	Genotyp	$\operatorname{Herkunft}$
<i>E. coli</i> XL-1 blue	recA1 endA1 gyrA96 thi-1 hsdR17	Stratagen
	supE44 relA1 lac relA1 lac F' proAB	
	$lac Iq Z\Delta M15 Tn10 Tet^r$	
$E. \ coli \ Bl21 \ (DE3)$	F- $ompT$ gal dcm lon hsd Sb $(rB$ - mB -)	FA Invitrogen Live
	$\lambda(DE3~[lac~lacUV5 extsf{-}T7]$	Technologies Corporation
	gene 1 ind 1 sam7 nin5])	(Karlsruhe, Germany)
<i>E. coli</i> One shot $Bl21^{TM}$ Star TM (DE3)	$F - ompT hsdS_B (r_B^-, m_B^-) galdcmrne131 (DE3)$	Fa. Thermo Fisher Scientific
E. $coli \alpha$ select silver	F' deoR endA1 recA1 relA1	Fa. Bioline
	gyr A96 hsd R17 (r $_{\rm k}$, m $_{\rm k}^+$)	
	$sup E44$ thi-1 phoA $\Delta(lac ZYA arg F$	
	U169 Φ 80 $lac Z\Delta M15\lambda^{-}$	

Tabelle 14: Verwendete Organismen

105

Zur Lagerung der Konstrukte wurden entweder *E. coli* XL1 blue oder α -select silver verwendet. Zur Expression dienten *E. coli* Bl21 (DE3).

5.3 Medien und Puffer

In den folgenden Abschnitten werden die verwendeten Medien und Puffer beschrieben.

5.3.1 Medien

Zur Kultivierung der Bakterien wurden die in Tabelle 15 aufgeführten Medien verwendet. Für alle Medien wurde MilliQ-Wasser verwendet. Falls ein Bakterium ein Plasmid mit Resistenzgen trug, wurde das entsprechende Antibiotikum zu Beginn der Kultivierung dazu gegeben.

Medium	Bestandteil	Menge
LB-Medium [Bertani, 1951]	Hefeextrakt:	$5\mathrm{g/L}$
	Trypton:	$10~{ m g/L}$
	Natriumchlorid:	$10~{ m g/L}$
LB-Agarplatten	Hefextrakt:	$5{ m g/L}$
	Trypton:	$10~{ m g/L}$
	Natriumchlorid:	$5{ m g/L}$
	Agar:	$15{ m g/L}$
SOC-Medium	Hefeextrakt:	$5{ m g/L}$
	Trypton:	$20~{ m g/L}$
	Natriumchlorid:	$10 \mathrm{mM}$
	Kaliumchlorid:	$2,5\mathrm{mM}$
	Magnesiumchlorid:	$10 \mathrm{mM}$
	Magnesiumsulfat:	$10 \mathrm{mM}$
2xYT-Medium	NaCl	$5{ m g/L}$
	Hefeextrakt	$10~{ m g/L}$
	Trypton	$16~{ m g/L}$
TB-Medium	Hefeextrakt:	$24\mathrm{g/L}$
	Trypton:	$12{ m g/L}$
	Glycerol:	$5{ m g/L}$
TB-10x-Salts	$\mathrm{KH}_{2}\mathrm{PO}_{4}$	$23,1~{ m g/L}$
	K_2HPO_4	125,4 g/L

Tabelle 15: Verwendete Medien

TB-Medium und TB-Salts wurden getrennt voneinander hergestellt, autoklaviert und erst kurz vor Gebrauch des Mediums 1:10 gemischt.

Alle Medien wurden mit MilliQ-Wasser hergestellt und im Anschluss autoklaviert. Die Salzlösung für das TB-Medium wurde nach dem Autoklavieren zugefügt.

5.3.2 Proteinaufreinigungspuffer

Für die Aufreinigung von Proteinen aus Expressionskonstrukten wurden folgende Puffer verwendet (siehe Tab. 16) [Qiagen, 2003].

Puffer	Bestandteil	Menge
Lysepuffer	$\mathrm{NaH}_{2}\mathrm{PO}_{4}$	$50 \mathrm{mM}$
	NaCl	$300\mathrm{mM}$
	$\operatorname{Imidazol}$	$10 \mathrm{mM}$
Waschpuffer 1	NaH_2PO_4	$50 \mathrm{mM}$
	NaCl	$300\mathrm{mM}$
	$\operatorname{Imidazol}$	20 mM
Waschpuffer 2	NaH_2PO_4	$50 \mathrm{mM}$
	NaCl	$300 \mathrm{mM}$
	$\operatorname{Imidazol}$	$30\mathrm{mM}$
Elutionspuffer	$\mathrm{NaH}_{2}\mathrm{PO}_{4}$	$300 \mathrm{mM}$
	NaCl	$300\mathrm{mM}$
	$\operatorname{Imidazol}$	30 mM

Tabelle 16: Proteinaufreinigungspuffer

5.3.3 Plasmidpräparationspuffer

Für die Präparation von Plasmid-DNA oder dem BAC-Vektor wurden folgende Puffer verwendet (siehe Tab. 17) [Quiagen, 2012]

Puffer	Bestandteil	Menge
P1	Tris-HCl (pH8)	$50\mathrm{mM}$
	EDTA (pH8)	$10 \mathrm{mM}$
P2	NaOH	$0,2\mathrm{mM}$
	SDS	1~%
P3	Kaliumacetatlösung $(pH5,5)$	3 M

Tabelle 17: Plasmidpräparationspuffer

Wenn eine größere Menge DNA gewünscht war, oder der BAC-Vector isoliert wurde, dienten die Puffer P1-P3 für die Präparation. 2 mL einer ÜNK wurden abzentrifugiert und das Pellet in 100 µL P1 resuspendiert. Die Zellsuspension wurde mit 200 µL P2 versetzt und nicht länger als 5 min. inkubiert, bis eine Schleimbildung eintrat. Im Anschluss wurde mit 150 µL eiskaltem Puffer P3 neutralisiert. Der Ansatz wurde für 3-5 Minuten auf Eis gestellt. Die ausgeflockten Proteine und Zellreste wurden für 10 min bei voller Geschwindigkeit abzentrifugiert und der Überstand mit dem zweifachen Volumen Ethanol versetzt. Danach wurde die DNA für 10 Minuten bei voller Geschwindigkeit abzentrifugiert. Im Anschluss wurde das Pellet mit einer 70 %igen Ethanol-Lösung gewaschen, für 2 Minuten zentrifugiert und der Überstand restlos entfernt. Das Pellet wurde getrocknet, bis keine Ethanolreste mehr vorhanden waren. Das trockene Pellet wurde im Anschluss in mindestens 30 µL MilliQ-Wasser gelöst.

5.3.4 Assaypuffer

Für die Durchführung des Assays wurden folgende Puffer verwendet (siehe Tab. 18) [Phelan et al., 2009].

Puffer	Bestandteil	Menge
Lösung 1	Aminosäure	$3\mathrm{mM}$
	PPi	$15\mathrm{mM}$
	Tris $(pH:7,5)$	$20\mathrm{mM}$
Lösung 2	γ - ¹⁸ -O ₄ -ATP	$3\mathrm{mM}$
	MgCl	$15\mathrm{mM}$
	Tris $(pH:7,5)$	$20\mathrm{mM}$
Lösung 3	Tris $(pH:7,5)$	$20\mathrm{mM}$
	Glycerol	5%
	DTT	$1\mathrm{mM}$

Tabelle 18: Assaypuffer

5.3.5 Anoden- und Kathodenpuffer für die SDS-Analyse

Für die SDS-Analyse von Proteinen wurden für die Anode und die Kathode verschiedene Puffer verwendet, um eine bessere Auftrennung der Proteine

im kleinen kDa Bereich zu erreichen (siehe Tab. 19) [Schägger, 2006]. Die Puffer wurden in den jweiligen Kathodenbereich bzw. Anodenbereich der Gelkammer gefüllt.

Puffer	Bestandteil	Menge
Kathodenpuffer	Tris (pH 8,25)	$100 \mathrm{mM}$
	Tricin	$100 \mathrm{mM}$
Anodenpuffer	Tris $(pH 8,9)$	$200 \mathrm{mM}$

Tabelle 19: Kathoden- und Anodenpuffer

5.3.6 Weitere Puffer und Lösungen

Für die Gelelektrophorese wurde TBE- oder TAE-Puffer verwendet. Dazu wurde der 10x oder 50x Puffer zu einem 1x Puffer verdünnt. Die Färbe- und Entfärbelösung diente zum Färben- und Entfärben von Proteingelen (siehe Tab. 20).

Puffer	Bestandteil	Menge
TE	Tris-HCl (pH 8)	$100 \mathrm{mM}$
	EDTA	$1\mathrm{mM}$
10X TBE	Tris	$0,\!89~{ m M}$
	EDTA	$0,02~{ m M}$
	H_3BO_3	$0,\!87\mathrm{M}$
50X TAE	EDTA-Na x $2H_2O$	$18,\!61\mathrm{g/L}$
	Eisessig	$60,\!05\mathrm{g/L}$
	Tris	$242,\!28\mathrm{g/L}$
Färbelösung für Proteingele	Essigsäure	10~%
	Methanol	50~%
	Comassie brilliant blue R-250	$0{,}005\%$
	Wasser	40~%
Entfärbelösung für Proteingele	Essigsäure	10~%
	Methanol	30~%
	Wasser	60~%

Tabelle 20: Weitere Puffer und Lösungen, die verwendet wurden.

5.3.7 Antibiotikastocks

Die Antibiotika wurden in Antibiotikastocks bei -20 °C gelagert und bei Gebrauch im Verhältnis 1:1000 verdünnt. Als Lösungsmittel wurde Wasser verwendet. Bei Chloramphenicol wurde Ethanol als Lösungsmittel verwendet (siehe Tab. 21).

Antibiotikum	Konzentration
Ampicillin	100 mg/mL
Apramycin	$100 \mathrm{mg/mL}$
Chloramphenicol	$12 \mathrm{mg/mL}$
Kanamycin	60 mg/mL
Streptomycin	$100 \mathrm{mg/mL}$

Tabelle 21: Für diese Arbeit verwendete Antibiotikastocks.

5.4 Mikrobiologische Techniken

In den folgenden Abschnitten werden die verwendeten Mikrobiologischen Techniken beschrieben.

5.4.1 Stammhaltung in Kryokulturen

Zur längerfristigen Lagerung wurden die Bakterienstämme als Kryokulturen bei -80 °gelagert. Dazu wurden 800 µL einer Übernachtkultur (ÜNK) unter sterilen Bedingungen mit 800 µL Glycerin in ein Kryoröhrchen gefüllt und bei -80 °C gelagert.

5.4.2 Kultivierung von Bakterien

Die Bakterien wurden unter folgenden Bedingungen kultiviert (siehe Tab. 22).

Stamm	Medium	Temperatur	Schüttler-
			geschwindigkeit
<i>E.coli</i> Xl1 blue	LB	37 °C	$200-220\mathrm{RPM}$
<i>E.coli</i> α -select silver	LB	37°C	$200-220 \mathrm{RPM}$
<i>E. coli</i> Bl21 (DE3)	LB, TB	37 °C	$200\text{-}220\mathrm{RPM}$
E. coli One shot	LB, TB	37 °C	$200-220 \mathrm{RPM}$
$Bl21^{TM}$ Star TM (DE3)			

Tabelle 22: Bedingungen zur Kultivierung von Bakterien.

5.4.3 Konzentrationsbestimmung von Bakterienkulturen

Die Bakterienkulturen wurden über die optische Dichte der Bakterienkultur in Relation zum sterilen Medium photometrisch bestimmt. Hierzu wurde ein Nanodrop der Firma Thermo Scientific verwendet.

5.4.4 Transformation von Bakterien

Die Transformation erfolgte entweder mit Elektroporation oder mit Chemischer Transformation .

Herstellung elektrisch kompetenter Zellen: Aus einer ÜNK wurde ein 100 mL LB Erlenmeyerkolben mit 1 mL ÜNK angeimpft. Die Zellen wurden bei 37 °C und 220 RPM bis zu einer OD von 0,5 wachsen gelassen und bei 10.000-15.000 RPM abzentrifugiert. Im Anschluss wurden die Zellen drei mal mit 30 mL MilliQ-Wasser gewaschen und in 100-200 μ L Wasser aufgenommen. Elektrisch kompetente Zellen wurden in Aliquots von 75 μ L aufgeteilt und meistens sofort weiterverwendet oder manchmal nach Zugabe von 10 % Glycerol bei -80 °C eingefroren.

Elektroporation: 75 µL Zellsuspension wurden bei Raumtemperatur mit 1-8 µL Plasmid versetzt und in eine Elektroporationsküvette von 2 mm Durchmesser gegeben. Der Ansatz wurde 2-3 Minuten bei Raumtemperatur inkubiert. Dann wurde in einem Elektroporator der Firma Biorad mit dem Programm Ec2 bei 2,5 kV eine kurzzeitige Spannung angelegt. Unmittelbar danach wurden 800 µL SOC-Medium hinzugegeben und die Zellen für eine Stunde bei 37 °C inkubiert. Danach wurde auf Selektivagar ausplattiert und über Nacht bei 37 °C inkubiert.

Herstellung chemisch kompetenter Zellen: Für die Herstellung chemisch kompetenter Zellen wurden 3 mL LB-Medium mit 30 µL einer Kryokultur angeimpft und über Nacht kultiviert. 2x 100 mL 2xYT-Medium wurden mit jeweils 1 mL ÜNK angeimpft. Die Kulturen wurden bei 37 °C ca. 2 Stunden auf OD_{600} : 0,3-0,4 wachsen gelassen. Die Kultur wurde auf 4 Falkontubes aufgeteilt und 10 Minuten bei 8000 RPM und 4 °C abzentrifugiert. Der Überstand wurde verworfen und die Pellets in jeweils 7,14 mL einer eiskalten $CaCl_2/MgSO_4$ -Lösung (70 mM/20 mM) resuspendiert und 30 Minuten auf Eis inkubiert. Im Anschluss wurde 625 µL 100 % Glycerol zugegeben und zu 50 µL aliquotiert.

Chemische Transformation: 50-100 mL der tiefgefrorenen chemisch kompetenten Zellen wurden mit 1-5 µL Plasmid oder bis zu 10 µL bei Ligationen versetzt und für 20 Minuten auf Eis aufgetaut und inkubiert. Danach wurde für 90 Sekunden auf 42 °C erhitzt, und im Anschluss wurden die Zellen mit 800 mL LB-Medium versetzt und für eine Stunde bei 37 °C inkubiert. Danach wurde auf Selektivagar ausplattiert und über Nacht bei 37 °C inkubiert.

5.4.5 Blau-Weiß-Selektion

Um den Erfolg der Ligation einer PCR in den pGEM-T Vektor zu überprüfen, wurde vor dem Screening der Klone eine Blau-weiß-Selektion durchgeführt. Der besagte Vektor verfügt über ein *lacZ* Gen, welches genau in der MCS liegt. Sobald der Vektor ein Fragment aufnimmt, wird das *lacZ*-Gen unterbrochen, das offene Leseraster zerstört, und es kann keine funktionale β -Galaktosidase exprimiert weden. Das führt dazu, dass nach der Zugabe einer X-Gal-Lösung (4 mg/mL) bei den Kolonien, die ein nicht erfolgreich kloniertes Plasmid aufgenommen haben, eine funktionale β -Galaktosidase exprimiert wird. Diese spaltet das künstliche Substrat in Galaktose und einen Indigofarbstoff, der negative Kolonien blau färbt. Wurde ein Insert erfolgreich kloniert und in ein Bakterium gebracht, ist die Zelle nicht mehr in der Lage, eine funktionierende β -Galaktosidase zu exprimieren und die Kolonien bleiben weiß gefärbt. Das reduziert den Screeningaufwand.

5.5 Molekularbiologische Methoden

In den folgenden Abschnitten werden die verwendeten Molekularbiologischen Techniken beschrieben.

5.5.1 Polymerase-Kettenreaktion (PCR)

Um DNA-Abschnitte zu amplifizieren, wurde eine PCR durchgeführt. Als Template für die A-Domänen und das MLP diente der BAC Clone 19E [Carlier et al., 2016]. Die PCR wurde ebenfalls für die Kontrolle der Subklonierungsvektoren und Expressionsvektoren verwendet. Hier wurden in der Regel erst einmal Kolonie-PCRs durchgeführt. Bei nicht eindeutigem Ergebnis, wurde die DNA isoliert und eine weitere PCR- oder eine Restriktionsanalyse folgte.

Als Reaktionsansatz für die PCR wurden folgende Mischungen verwendet (siehe Tab. 23 und 24).

Bestandteil	Volumen
Puffer	10 µL
DMSO	$2,5\mu L$
MgCl (25 mM)	$2,5\mu L$
dNTP (10 mM)	$1\mu L$
Templat-DNA	$0,5-1\mu L$
DNA-Polymerase $(5 \text{ U}/\mu\text{L})$	$0,25$ - $0,5\mu L$
Vorwärtsprimer	$0,5\mu\mathrm{L}$
Rückwärtsprimer	$0,5\mu\mathrm{L}$
MilliQ-H ₂ O	ad $50 \mu L$

Tabelle 23: Reaktionsansatz für die PCR mit Taq-Polymerase.

Bestandteil	Volumen
Puffer	$5\mu L$
dNTP (10 mM)	1 µL
Templat-DNA	0,5-1 μL
DNA-Polymerase $(5 \mathrm{U}/\mu\mathrm{L})$	$0,25\mu\mathrm{L}$
Vorwärtsprimer	$0,5\mu\mathrm{L}$
Rückwärtsprimer	$0,5\mu\mathrm{L}$
$MilliQ-H_2O$	ad 50 µL

Tabelle 24: Reaktionsansatz für die PCR mit Pfu-Polymerase.

Es wurden zwei unterschiedliche PCR-Protokolle verwendet. Zur Erfolgskontrolle einer Klonierung wurde die Taq-Polymerase verwendet (siehe Tab. 23). Sollte ein PCR-Fragment in ein Plasmid kloniert werden, wurde die Pfu-Polymerase (siehe Tab. 24) verwendet, die eine niedrigere Fehlerrate aufweist als die Taq-Polymerase. Es wurden jeweilige Standardprotokolle der beiden Polymerasen verwendet, in denen die Annealingtemperatur für jeden Primer variiert wurde. Diese wurde für jeden Primer mit einer Gradienten-PCR festgestellt. Die Elongationszeiten richteten sich jeweils nach der Länge des zu amplifizierenden Produkts und der Art der verwendeten Polymerase. Wurde eine Kolonie-PCR-durchgeführt, wurde 1µL Templat verwendet, ansonsten 0,5µL.

Als Temperaturprogramm wurde folgendes Standardtemperaturprotokoll verwendet (siehe Tab. 25).

Schritt	Temperatur	Zeit	Widerholung
1	95 °C	$5\mathrm{min}$	
2	$95 ^{\circ}\mathrm{C}$	$1,\!30\min$	
3	$50-70~^{\circ}{ m C}$	$2,\!30\min$	
4	72 °C	$2,\!30\min$	2-4: 29x
5	72 °C	$4\min$	

Tabelle 25: Temperaturprogramm für die PCR.

Die Annealingtemperatur der Primer wurde durch Gradienten-PCR festgelegt. Die Elongationszeit wurde je nach Fragmentlänge und Geschwindigkeit der Polymerase angepasst.

5.5.2 Kolonie-PCR

Mussten viele Klone auf Plasmide gescreent werden, wurde die Kolonie-PCRverwendet. Dafür wurden die jeweiligen Klone von einer Agarplatte gepickt, in 10 μ L Wasser gelöst und für 10 Minuten auf 95 °C erhitzt. Davon wurde 1-2 μ L als Templat verwendet. Aus Flüssigkulturen wurden jeweils 2 μ L entnommen und dem PCR-Ansatz direkt dazugegeben.

5.5.3 Verwendete Primer

Um die Primer für die Amplifizierung von DNA-Abschnitten zu bekommen, wurden die Primer mit Clone-Manager und Snap-Gene-Viewer designt und von der Fa. Eurofins Genomics synthetisiert (siehe Tab. 26).

Primer	Sequenz
A1 vorwärts	GGATCCGGGCCGGACGAACGCGTGAGCTATGG
A1 rückwärts	AAGCTTCTATTCATACGGATTCCAGCTCTGATTG
A2 vorwärts	GCGGCCGC GACGAACGCGTGAGCTATGGCGAGTTG
A2 rückwärts	CTCGAG TTATAAGACAACCGCCAGCTCCG
FrsB vorwärts	CATATG AGCAATCCTTTTGATGATAAAGAC
FrsB rückwärts	CTCGAG TCATGTTTCATCCGATTGCATCGCATCGAT

Tabelle 26: Sequenzen der verwendeten Primer. Die jeweiligen Schnittstellen sind fett gedruckt.

5.5.4 Reinigen von PCR-Produkten oder Aufkonzentrieren von DNA

Zum Reinigen von PCR-Produkten oder zum Aufkonzentrieren von DNA wurde das Clean and Concentrator Kit der Firma Zymo Research verwendet. Dabei wurde nach den Vorgaben des Herstellers gearbeitet.

5.5.5 DNA-Präparation

Um Plasmide zu isolieren, wurde die *E. coli* Kolonie mit dem gewünschten Plasmid in 3 mL LB-Medium kultiviert und über Nacht bei 37 °C wachsen gelassen. Die Plasmide wurden entweder mit dem Pure yield Miniprep Kit von Promega aufgereinigt oder mit den Puffern P1-P3. Um den BAC zu isolieren oder größere Mengen Plasmid zu isolieren, wurde mit den Puffern P1-P3 gearbeitet. Dazu wurden Kulturen bis zu 50 mL abzentrifugiert und das Zellpellet in 100-200 µL Puffer P1 gelöst. Für den Zellaufschluss wurde 200-400 µL Puffer P2 dazugegeben, bis eine Schleimbildung eintrat, aber nur für 5 Minuten. Im Anschluss wurde der Ansatz mit 150-300 µL eiskaltem Puffer P3 neutralisiert. Gegebenenfalls wurde alles noch mal auf Eis stehen gelassen und im Anschluss abzentrifugiert. Die DNA im Überstand wurde mit doppeltem Volumen 100 % Ethanol ausgefällt und abzentrifugiert. Das Pellet wurde mit wenig 70 % Ethanol gewaschen und getrocknet, bis keine Ethanolrückstände mehr vorhanden waren. Im Anschluss wurde die DNA in mindestes 30 µL MilliQ-H₂O gelöst. Die Lagerung erfolgte bei -20 °C.

5.5.6 Agarose Gelelektrophorese

Zur Analytik von PCR-Fragmenten oder zur Aufreinigung von Restriktionen wurde Gelelektrophorese eingesetzt. In der Regel wurde dafür eine 1 %ige Agaroselösung in TAE-Puffer hergestellt. Für die kleineren Fragmente wie beispielsweise das MLP wurde eine 3 %ige Lösung hergestellt. Diese wurde in der Mikrowelle erhitzt, bis die Agarose vollständig gelöst war. Die Agarose wurde in eine Gelkammer gegossen. Nach Aushärten der Agarose wurde die Kammer mit TAE-Puffer befüllt und der Kamm entfernt. Die Proben wurden mit Ladepuffer versetzt und aufgetragen. Für analytische Zwecke wurden 2-5 µL für präparative Gele wurden zwichen 25 µL und 50 µL verwendet. Als Größenmarker wurde der Gene Ruler Mix der Firma Thermo Fisher Scientific verwendet. Um eine Auftrennung der Proteine zu erreichen, wurde eine Spannung von 90 V bis 100 V für 20-30 Minuten angelegt und das Gel anschließend in einer Ethidiumbromid-Lösung gefärbt. Die Auswertung erfolgte unter UV-Licht mit dem Intas Gel iX Imager.

5.5.7 DNA-Isolierung aus Agarosegelen

Für eine Weiterverarbeitung der DNA-Fragmente aus den Agarosegelen wurden die gewünschten Banden mit einem Skalpell ausgeschnitten, in ein 2mL Eppendorftube überführt und mit dem Qiagen Gel extraction Kit nach Herstellerprotokoll isoliert.

5.5.8 Sequenzierung

Ob die amplifizierten Fragmente von den Polymerasen korrekt abgelesen wurden, wurde überprüft, indem die einzelnen Konstrukte durch die Firma GATC Biotech sequenziert wurden. Hierfür wurde die Didesoxymethode oder Kettenabbruchmethode nach Sanger verwendet [Sanger et al., 1977]. Dafür wird in vier gleichen Reaktionsansätzen jeweils eines der Nukleotide als Didesoxy-Nucleotid beigemischt. Auf diese Weise erfolgt nach Einbau des Nucleotids an dieser Stelle ein Kettenabbruch. Im Anschluss werden die Fragmente über Gelelektrophorese aufgetrennt.

5.5.9 Restriktionsspaltung von DNA

Um die gewünschten Inserts in die Expressionsvektoren zu bringen oder um den Erfolg einer Klonierung zu testen, wurden die Vektoren mit den entsprechenden Restriktionsendonucleasen falls nötig über Nacht geschnitten. Restriktionsendonucleasen katalysieren den Schnitt der DNA an bestimmten palindromischen Sequenzen. In den meisten Fällen wurden zwei verschiedene Restriktionsenzyme verwendet. War das nicht der Fall, wurde der Vektor, der das Fragment aufnehmen sollte, dephosphoryliert, um Selbstligation zu vermeiden. Die Restriktionsendonucleasen wurden nach Vorschrift des Herstellers verwendet. Eine Auftrennung der Fragmente erfolgte im Anschluss über Gelelektrophorese.

5.5.10 Dephosphorylierung von Vektoren

In Fällen, in denen eine Restriktion mit nur einem Enzym durchgeführt wurde, wurden Vektoren dephosphphoryliert, um Selbstligation zu vermeiden. Dazu wurde dem Restriktionsansatz nach vollendeter Restriktion alkalische Phosphatase aus Kälberdarm zugegeben und für eine halbe Stunde inkubiert. Dadurch wurden die Phosphatgruppen am 5-Ende der Vektoren abgespalten. Im Anschluss wurde der Ansatz mit dem Clean and Concentrator Kit der Firma Zymo Research aufgereinigt.

5.5.11 Ligation

Um DNA-Fragmente in Vektoren einzubringen, wurde eine Ligation mit Promega T4 DNA Ligase über Nacht durchgeführt. Dadurch wurden die Diester Bindungen zwischen der 3'-Hydroxygruppe und 5'-Phosphat durch die T4-DNA-Ligase neu verknüpft. Das molare Verhältnis von Insert zu Vektor wurde 3:1 gewählt. Der Reaktionsansatz wurde in der Regel mit 10 µL angesetzt.

Bestandteil	Volumen
T4-DNA Ligase Puffer	1 μL
T4-DNA Ligase	$1\mu L$
Vector:Insert DNA	1:3
MilliQ-Wasser	ad 10 μL

Tabelle 27: Ligationsansatz

Der Reaktionsansatz (siehe Tab. 27) wurde über Nacht bei 16 °C inkubiert und im Anschluss bei 65 °C für 10 Minuten inaktiviert.

5.5.12 Vektorkonstrukte

Folgende Konstrukte, Expressions- und Coexpressionsstämme wurden im Laufe dieser Arbeit erstellt oder verwendet (siehe Tab. 28 und 29):

Konstrukt	Vektor	Insert	${ m Schnittstellen}$	Größe Insert [bp]
pSMART BAC clone 19E	pSMART BAC	komplettes <i>bcfrs</i> -BGC		35811
A1 clone E	pGEM-T	frsA A-PCP-Domäne Cand. B. crenata	BamHI, HindIII	1671
A2 clone 2e	pGEM-T	frsD A-PCP-Domäne Cand. B. crenata	NotI, XhoI	1627
pAC1	pET28a	frsA A-PCP-Domäne Cand. B. crenata	BamHI, HindIII	1671
pAC2	m pET28a	frsD A-PCP-Domäne Cand. B. crenata	NotI, XhoI	1627
MLP 8	pCDFApra	frsB aus $Cand$. B. crenata	NdeI, XhoI	221

Tabelle 28: Konstrukte, die in dieser Arbeit verwendet wurden. Der pSMART BAC clone 19E wurde von Aurelien Carlier zur Verfügung gestellt [Carlier et al., 2016].

Wirt	Vektor I	Vektor II	Resistenzen
<i>E. coli</i> XL-1 blue	A1 clone E	-	$\mathrm{Amp}^{\mathrm{R}}$
<i>E. coli</i> XL-1 blue	A2 clone $2e$	-	$\mathrm{Amp}^{\mathrm{R}}$
E. coli α select silver	pAC1	-	Kan ^R
E. coli α select silver	pAC2	-	$\operatorname{Kan}^{\operatorname{R}}$
One shot $Bl21^{TM}$ Star TM (DE3)	pAC1	-	Kan ^R
One shot $Bl21^{TM}$ Star TM (DE3)	pAC2	-	$\operatorname{Kan}^{\operatorname{R}}$
One shot $Bl21^{TM}$ Star TM (DE3)	pAC1	MLP 8	Kan ^R Strep ^R Apra ^R
One shot $Bl21^{TM}$ Star TM (DE3)	pAC2	MLP 8	Kan ^R Strep ^R Apra ^R

Tabelle 29: Expressionsstämme und Coexpressionsstämme, die in dieser Arbeit verwendet wurden.

Die A-Domänen und das FrsB wurden mittels PCR amplifiziert. Als Templat diente der BAC Vektor 19E. Die A-PCP-Domänen und das MLP wurden mittels pGEM-T subcloniert, positive Klone kultiviert, auf Mutationen überprüft, im Anschluss mit den entsprechenden Restriktionsenzymen geschnitten und in den Expressionsvektor ligiert. Das FrsB wurde mit NdeI aus dem pGEM-T-Vektor geschnitten. Im Anschluss wurde der Klon 8, der das FrsB in der richtigen Orientierung enthielt, ausgewählt.

5.6 Proteinexpression, Proteinreinigung und Proteinanalytik

5.6.1 Proteinexpression

Aus einer ÜNK wurden 5 mL entnommen und in 0.5 L TB-Medium in einen Schikanekolben gegeben. Die Zellen wurden auf OD_{600} : 1,2 wachsen gelassen. Die Kultur wurde im Anschluss für 15 Minuten auf Eis gekühlt, mit einer Endkonzentration von 0.5 mM IPTG induziert und bei 16 °C und 200 RPM über Nacht exprimiert. Am nächsten Tag wurde sie bei 4000 RPM und 4 °C abzentrifugiert und in 2,5 mL Lysepuffer pro g Zellpellet gelöst.

5.6.2 Zellaufschluss

Die Zellsuspension wurde möglichst auf Eis gehalten. Der Zellaufschluss erfolgte mit Ultraschall in einem Branson Sonifier 250 mit einer Leistung von 4.5%. Die Suspension wurde für 10 Sekunden den Impulsen ausgesetzt. Danach erfolgte eine Pause auf Eis von ebenfalls 10 Sekunden, um ein Überhitzen der Proteine zu vermeiden. Dieser Vorgang wurde 10x wiederholt. Danach wurden die unlöslichen Zellfragmente bei 15000 g für 30 Minuten abzentrifugiert. Der Überstand wurde für eine weitere Aufreinigung mit Ni-NTA-Agarose verwendet. Das Pellet wurde für eine SDS-PAGE-Analyse verwahrt.

5.6.3 Aufreinigung mit His-Taq

Der Zellüberstand wurde mit 1 mL einer Ni-NTA-Agarose versetzt und für eine Stunde unter leichtem Schwenken inkubiert. Anschließend wurden die Bestandteile der Suspension über eine Polypropylensäule der Fa. Qiagen voneinander getrennt, zunächst mit 4 mL eines 20 mM Imidazolpuffers gewaschen und danach mit 4-16 mL eines 30 mM Imidazolpuffers. Die Elution erfolgte mit einem 300 mM Imidazolpuffer in drei Elutionen. Das Endvolumen der Elution betrug 2,5 mL, um für den Entsalzungsprozess das entsprechende Volumen zu bekommen. Auch hier wurden aus jeder Fraktion 30 µL Probe für die SDS-Analyse entnommen.

5.6.4 Entsalzen und Aufkonzentrierung

Zum Entsalzen wurden die drei Elutionsfraktionen auf eine mit 4x5 mL Assaylösung vorgewaschene PD10-Desalting column gegeben und mit 3 mL Assaypuffer wieder von der Säule gewaschen. Die entsalzte Proteinlösung wurde in Vivaspin 500 Zentrifugenröhrchen der Größe 30 (30 MWCO molecular weight cut-off) bis auf ein Volumen, das für SDS-PAGE-Analyse und Assay noch nötig war, aufkonzentriert.

5.6.5 Probenvorbereitung für die SDS-PAGE-Analyse

Von jeder Wasch- und Elutionsfraktion wurden 30 µL in ein PCR-Tube gegeben und mit 10 µL Nupage LDS Sample Buffer versetzt. Im Anschluss wurden die Proben für 10 Minuten bei 95 °C denaturiert.

5.6.6 SDS-Polyacrylamidgelelektrophorese

Für die Analytik der Proteinexpression wurde die SDS-PAGE-Analyse verwendet. Dazu wurden die vorbereiteten Proben aus Kapitel 5.6.5 auf ein Polyacrylamid Bisacrylamid Gel aufgetragen (siehe Tab. 30 und 31). Die Elektrophorese wurde mit dem XCell SureLOCK Mini-Cell System der Fa. Thermo Fisher Scientific durchgeführt. Zuerst wurde das Trenngel gegossen und mit Isopropanol überschichtet. Nach vollständiger Polymerisation des Trenngels wurde der Isopropanol entfernt und das Trenn- mit dem Sammelgel überschichtet. Nach vollständiger Polymerisation des Sammelgels wurden die Proben in die Taschen eingebracht und eine Spannung von 90 Volt angelegt, bis die Proben das Trenngel erreicht hatten. Danach wurde die Spannung auf 120 Volt erhöht. Im Anschluss wurden die Gele mit einer Coomassie-Blau-Färbung eingefärbt und analysiert (siehe Kap. 5.3.6). Dazu wurden sie in die Färbelösung gelegt und in der Mikrowelle erhitzt, bis zur leichten Blasenbildung. Danach wurde auf dem Schüttler bei leichter Bewegung für 5 Minuten inkubiert. Im Anschluss wurden die Gele mit Wasser abgespült und über Nacht in die Entfärbelösung gelegt. Um überschüssige Farbe aufzusaugen, wurden Zellstofftücher mit in die Entfärbelösung gelegt.

Bestandteil	Volumen
Acrylamid/Bisacrylamid	$4000 \mu L$
Wasser	$3300\mu\mathrm{L}$
$\mathrm{Tris}/\mathrm{HCl}~\mathrm{pH}$ 6.8 (1 M)	$2500\mu\mathrm{L}$
SDS (10 %)	$100 \mu L$
APS (10%)	$100 \mu L$
TEMED	$4\mu L$

Tabelle	30:	Trenngel
---------	-----	----------

Bestandteil	Volumen
Acrylamid/Bisacrylamid	$510\mu\mathrm{L}$
Wasser	$2040\mu L$
Tris/HCl pH 6.8 (1 M)	$375\mu\mathrm{L}$
SDS (10 %)	$30\mu\mathrm{L}$
APS (10%)	$30\mu\mathrm{L}$
TEMED	3 μL

Tabelle 31: Sammelgel

Als SDS-Laufpuffer wurde das Tris/Tricin-System nach Schagger verwendet, welches eine höhere Auflösung im Bereich kleiner Proteine hat (siehe auch Kap. 5.3.5) [Schägger, 2006].

5.6.7 Proteinkonzentrationsbestimmungen

Die Konzentration der Proteinlösung und der einzelnen Fraktionen wurde in einem Nanodrop-Gerät der Firma Thermo Scientific gemessen. Als Referenz dienten die jeweilig verwendeten Puffer der einzelnen Wasch- und Elutionsfraktionen.

5.6.8 A-Domänen-Assay

Um die Substratspezifität der einzelnen A-Domänen zu bestimmen, wurde ein massenspektrometrisch basierter ATP-Austausch-Assay durchgeführt [Phelan et al., 2009]. Mit Hilfe von MALDI-TOF-MS wurde die Bildung von ATP aus $\gamma^{-18}O_4$ -ATP gemessen. In Anwesenheit des richtigen Substrates und ATP bildet die A-Domäne das entsprechende Substrat-Adenylat. Diese Reaktion unterliegt einem Gleichgewicht. Für den Assay wurde die Aminosäure zusammen mit $\gamma^{-18}O_4$ -ATP und einem Überschuss an PPI inkubiert. Für den Fall des richtigen Substrates wurde das $\gamma^{-18}O_4$ -ATP von der A-Domäne verbraucht, indem es unter Abspaltung der gelabelten Phosphatgruppe an das Substrat bindet. Bei Ausbleiben der folgenden Thiolierungsreaktion, wie sie normalerweise bei der NRPS stattfände, reagiert das Aminoadenylat wieder zu ATP und der Aminosäure. Aufgrund des Überschusses an PPI wird nicht mehr das γ -¹⁸O₄-ATP gebildet, sondern ATP. Im MALDI-TOF-MS-Diagramm kommt es zu einem Shift vom m/z 514 γ -¹⁸O₄-ATP Peak zu einem m/z 506 ATP-Peak. Für den Assay wurden 3 Stock-Lösungen hergestellt (siehe auch Tab. 18, Kap. 5.3.4). Lösung 1: 3 mM der zu testenden Aminosäure, 15 mM PPI, 20 mM Tris (pH 7,5) Lösung 2: 3 mM γ -¹⁸O₄-ATP, 15 mM Mg-Cl in 20 mM Tris Lösung 3: das aufkonzentrierte Enzym in 20 mM Tris mit 5% Glycerol und 1mM DTT. Von jeder Lösung wurden jeweils 2µL in ein 200 µL PCR-Tube gegeben und bei 25 °C für 1 h inkubiert. Im Anschluss wurde den Reaktionsansätzen eine 10 % ige Lösung von 9-Aminoacridin in Aceton zugegeben. Das Aminoacridin dient als Matrix für die spätere MALDI-TOF-MS-Messung. Die MALDI-TOF-MS Messung wurde auf einem Bruker Autoflex durchgeführt. Dafür wurde 1 µL jeder Reaktion auf einen MALDI-Stahl-Target gegeben und im Negativmodus gemessen.

5.6.9 Massenspektrometrische Untersuchung von Proteinen

MALDI-TOF-MS: Für die Analytik des $\gamma^{-18}O_4$ -ATP-Austausch-Assays wurde eine MALDI-TOF-MS-Messung auf einem Bruker Autoflex durchgeführt. Die Detektion erfolgte im Negativmodus bei m/z 450 bis 1200. Die Spektren wurden mit dem Programm Flex analysis von Bruker analysiert. Der prozentuale Austausch wurde mit folgender Formel berechnet.

Austausch [%] = $(100/0.833)^{*16}O/(^{18}O+^{16}O)$

 $(^{18}\mathrm{O}+^{16}\mathrm{O})$ ist die Summe aller Integrale der ATP Peaks mit einer m/z von 506, 508, 510, 512, 514, 528, 530, 532, 534, 536. Das Integral bei m/z 506 entspricht dem Integral des $^{16}\mathrm{O}_4$ -ATP. Da das molare Verhältnis von PPi zu γ - $^{18}\mathrm{O}_4$ -ATP 5:1 beträgt, entspricht ein gemessener Austausch von 83,33 % einer Aktivierung von 100 %. Dadurch enthält die Formel den Ausgleichsfaktor 0,833.

5.7 Verwendete Chemikalien

Folgende Chemikalien wurden im Laufe dieser Arbeit verwendet (siehe Tab 32):

Chemikalie	Firma
Acrylamid	Roth Chemie GmbH (Karlsruhe, Deutschland)
Aceton	Roth Chemie GmbH (Karlsruhe, Deutschland)
Agar	Fluka Chemie GmbH (Buchs, Schweiz)
$CaCl_2 \ge 2H_2O$	Merck KGaA (Darmstadt, Deutschland)
Chloroform	Roth Chemie GmbH (Karlsruhe, Deutschland)
DMSO	Roth Chemie GmbH (Karlsruhe, Deutschland)
Ethanol 99,8 $\%$	Roth Chemie GmbH (Karlsruhe, Deutschland)
Ethidium Bromid	Roth Chemie GmbH (Karlsruhe, Deutschland)
Glycerol	Roth Chemie GmbH (Karlsruhe, Deutschland)
Hefeextrakt	Fluka Chemie GmbH (Buchs, Schweiz)
Imidazol	Roth Chemie GmbH (Karlsruhe, Deutschland)
Isopropanol	Roth Chemie GmbH (Karlsruhe, Deutschland)
KCl	Roth Chemie GmbH (Karlsruhe, Deutschland)
MgCl $25 \mathrm{mM}$ aus Taq -	Promega GmbH (Mannheim, Deutschland)
Polymerase Kit	
$MgCl_2 \ge 6H_2O$	Merck KGaA (Darmstadt, Deutschland)
$MgSO_4 \ge 7H_2O$	Merck KGaA (Darmstadt, Deutschland)
NaCl	Merck KGaA (Darmstadt, Deutschland)
$NaHCO_3$	Roth Chemie GmbH (Karlsruhe, Deutschland)
NaOH	Merck KGaA (Darmstadt, Deutschland)
N,N,N,N-Tetraethylen-	Roth Chemie GmbH (Karlsruhe, Deutschland)
diamin (TEMED)	
Ni-NTA-Agarose	Qiagen GmbH (Hilden, Deutschland)
pegGOLD Agarose	PEQLAB Biotechnologie GmbH (Erlangen,
	Deutschland)
SDS	Roth Chemie GmbH (Karlsruhe, Deutschland)
Tris	Roth Chemie GmbH (Karlsruhe, Deutschland)
Trypton	Roth Chemie GmbH (Karlsruhe, Deutschland)
γ - ¹⁸ O ₄ -ATP	Cambridge Isotope laboratories, Inc. (Andover,
	USA)

Tabelle 32: Verwendete Chemikalien.

5.8 Verwendete Enzyme

Folgende Enzyme wurden im Laufe dieser Arbeit verwendet (siehe Tab. 33):

Enzym	Firma
Restriktionsendonucleasen	New England Biolabs GmbH (Frankfurt,
	${ m Deutschland})$
Restriktionsendonucleasen	Promega GmbH (Mannheim, Deutschland)
Taq-Polymerase	Promega GmbH (Mannheim, Deutschland)
<i>Pfu</i> -Polymerase	Promega GmbH (Mannheim, Deutschland)
T4 Ligase	Promega GmbH (Mannheim, Deutschland)
Alkalische Phosphatase	

Tabelle 33: Verwendete Enzyme.

5.9 Verwendete Kits und Standards

Folgende Kits und Standards wurden im Laufe dieser Arbeit verwendet (siehe Tab. 34):

Kit	Firma
DNA Clean and Concentrator ^{TM}	Zymo Research Corporation
	(Freiburg,Deutschland)
dNTP	Promega GmbH
	(Mannheim, Deutschland)
Gene Ruler DNA Ladder Mix	Fermentas GmbH
Gene Ruler 1kb plus DNA ladder	Fermentas GmbH
NuPAGE LDS Sample Buffer (4X)	Thermo Fisher Scientific
	(Waltham, USA)
Page ruler Unstained	Thermo Fisher Scientific
	(Waltham, USA)
pGEM-T Vector System	Promega GmbH
	(Mannheim, Deutschland)
$PureYield^{TM}$	Promega GmbH
Plasmid Miniprep System	(Mannheim, Deutschland)
QIAprep Spin Miniprep Kit	Qiagen GmbH (Hilden, Deutschland)
QIAquick Gel Extraction Kit	Qiagen GmbH (Hilden, Deutschland)
Vivaspin 500 30 MWCO	Satorius (Göttingen, Deutschland)
Wizard SV Gel and PCR	Promega GmbH
clean-up Kit	(Mannheim, Deutschland)

Tabelle 34: Verwendete Kits und Standards.
5.10 Verwendete Geräte

Folgende Geräte wurden im Laufe dieser Arbeit verwendet (siehe Tab. 35):

Gerät	Firma
Autoklav	Millipore GmbH
	(Schwalbach, Deutschland)
Branson Sonifier 250	G. Heinemann Ultraschall- und
	Labortechnik
	(Schwäbisch Gmünd, Deutschland)
Biometra T3000 Thermocycler	Biometra GmbH
	(Göttingen, Deutschland)
Zentrifuge Heraeus Biofuge fresco	Thermo Fisher Scientific
	(Waltham, USA)
Zentrifuge Heraeus Contifuge Stratos	Thermo Fisher Scientific
	(Waltham, USA)
Zentrifugengefäße $(15/50 \text{ mL})$	TPP AG (Trasadingen, Deutschland)
Eppendorf Zentrifuge 5415	Eppendorf (Hamburg, Deutschland)
Eppendorf Tubes $(0,5, 1,5, 2 \text{ mL})$	Eppendorf (Hamburg, Deutschland)
Gelkammer Horizon 58 und 11.14	Life Technologies
	(Karlsruhe, Deutschland)
Inkubator	Memmert GmbH und Co. KG
	(Staufen, Deutschland)
Inolab pH-Meter	WTW GmbH
	(Weilheim, Deutschland)
Intas iX imager	Intas Science Imaging Instruments
	GmbH (Göttingen, Deutschland)
Laminar Airflow Sterilbank BSB 4A	Heraeus, (Hanau, Deutschland)
(Hera Safe, Klasse II)	
Milli-Q Wassersystem	Millipore (Eschborn, Deutschland)
Multitron Inkubations-Schüttler	IKA Werke GmbH und Co. KG
	(Staufen, Deutschland)
Nalgene Kryoröhrchen	Nalgene Nunc international
	(Rochester, USA)
Waage (Satorius BL 3100)	Satorius AG (Göttingen, Deutschland)
Waage (Satorius BP 221S)	Satorius AG (Göttingen, Deutschland)

Tabelle 35: Verwendete Geräte.

Abkürzungsverzeichnis

A-Domäne	Adenylierungs-Domäne
AMP	A denos inmonophosphat
ATP	A denosint riphosphat
Ala	Alanin
AS	Aminosäure
Asp	Asparaginsäure
antiSMASH	antibiotic & secondary Metabolite Analysis Shell
ANL	Acyl-CoA Syntethasen, NRPS-Adenylierungsdomänen und Luciferase Enzyme
BLAST	Basic Local Alignment search Tool
bp	Basenpaare
BGC	Biosynthesegencluster
bcfrs	Bezeichnung für das Biosynthesegencluster von <i>Candidatus</i> Burkholderia crenata
C-Domäne	Kondensierungsdomäne
cvfrs	Bezeichnung für das Biosynthesegencluster von Chromobacterium vaccinii
CDA	Calcium Dependent Antibiotic
COM-Domäne	communication-mediating domains
DMSO	Dimethylsulfoxid

DNA	Desoxyribonucleinsäure
Dha	Dehydroalanin
EDTA	Ethylendiamintetraessigsäure
\mathbf{FR}	FR900359
frs	Bezeichnung für die FR-Biosynthesegencluster
G_qPCRs	G _q protein couppled receptors
Gly	Glycin
Gln	Glutamin
¹ H-NMR	nuclear magnetic resonance spectroscopy
hHMM	hidden Markov Modell
IPTG	${\rm Isopropyl-}\beta\text{-}{\rm D-thiogalaktosid}$
kDa	Kilodalton
\mathbf{Lys}	Lysin
Leu	Leucin
MT-Domäne	Methyltransferase-Domäne
MALDI	Matrix assisted Laser Desorption/Ionisation
MLP	MbtH like Protein
MWCO	Molecular weight cut-off
Ni-NTA	Nickel Nitrilotriessigsäure
NRPS	Nichtribosomale Peptidsynthetase
PKS	Polyketid Synthetase
PCP	Peptidyl Carrier Protein

PCR	Polymerase Chain Reaction
PPi	Pyrophosphat
PTX	Pertussistoxin
\mathbf{SAM}	S-Adenosyl-Methionin
SDS	Sodium dodecylsulfate
SDS-PAGE	sodium dodecylsulfate polyacrylamide gelelectrophoresis
Ser	Serin
TOF	Time of flight
Thr	Threonin
TEMED	Tetramethylethylendiamin
TE-Domäne	Thioesterase Domäne
ÜNK	Übernachtkultur
YM	YM-254890

Abbildungsverzeichnis

1	Das Depsipeptid FR besteht aus acht größtenteils ungewöhn-	
	lichen Aminosäuren, darunter drei Hydroxyleucine mit unter-	
	schiedlichen Seitenketten, N-Methyldehydroalanin, N,O-Dime-	
	thylthreonin und die Carbonsäure Phenyllaktat. Ein N-Methyl-	
	alanin und Alanin sind auch Teil des Peptid-Zyklus. Die rot	
	markierten Stellen zeigen die Unterschiede von YM und FR auf.	8
2	Struktur des mit FR verwandten YM-254890. YM unterschei-	
	det sich lediglich dadurch, dass es eine Acetyl- anstatt einer	
	Propionylseitenkette, und eine Methyl- anstatt einer Isopro-	
	pylgruppe enthält. Die rot markierten Stellen zeigen die Un-	
	terschiede von YM und FR auf.	8
3	A. crenata hat Einkerbungen an den Blatträndern, in denen	
	Cand. B. crenata als Endosymbiont eingebettet ist. Die Pflan-	
	ze wird weit verbreitet als Schmuckpflanze verwendet und hat	
	eine lange Tradition in der chinesischen Medizin	12
4	Hypothese zur Biosynthese von FR. Nach der intramolekula-	
	ren Zyklisierung durch die endständige TE-Domäne aus FrsG,	
	kommt es zur Übertragung der Hydroxyleucinseitenkette durch	
	die TE-Domäne aus FrsA.	15
5	Aufbau einer NRPS: Sie besteht aus aneinandergesetzten Mo-	
	dulen, welche wiederum aus Domänen aufgebaut sind. Ein	
	funktionsfähiges Modul benötigt zwingend eine A-, eine PCP-	
	und eine C-Domäne. Optional können modifizierende Domä-	
	nen wie MT- oder E-Domänen vorhanden sein. Oft werden	
	NRPS mit einer TE-Domäne abgeschlossen. Die Abfolge der	
	Domänen bestimmt die Struktur des Peptids.	16
6	Adenylierungsreaktion von A-Domänen: Die selektierte Ami-	
	nosäure wird mit Hilfe der A-Domäne unter Verbrauch von	
	ATP zum Aminoacyladenylat aktiviert und Pyrophosphat wird	
	abgespalten	18

7	Thiolation: In einer zweiten Reaktion überträgt die A-Domäne	
	die aktivierte Aminosäure auf den Phosphopantetheinarm der	
	PCP-Domäne. Die PCP-Domäne dient als Transportdomäne	
	für das entstehende Peptid.	18
8	Bei der Methylierung wird eine Methylgruppe (rot) durch die	
	MT-Domäne von SAM auf die Aminogruppe übertragen	22
9	Putative Dehydroalaninbildung in NRPS: Dehydroalanin ist	
	eine ungewöhnliche Aminosäure, die auch in NRPs nicht sehr	
	oft vorkommt. Wahrscheinlich wird durch die vorangehende	
	A-Domäne Serin aktiviert, welches in einem zweiten Reakti-	
	onsschritt putativ von der C-Domäne zu Dehydroalanin dehy-	
	dratisiert wird.	26
10	Kondensationsreaktion: Mit Hilfe der C-Domänen wird die	
	Peptidbindung zwischen dem entstehenden Peptid des voran-	
	gehenden Moduls und der aktivierten Aminosäure des folgen-	
	den Moduls geknüpft	28
11	Phosphopantetheinylierung: An die inaktive PCP-Domäne wird	
	unter Mitwirkung einer PPTase ein Phosphopantetheinrest an	
	einen hochkonservierten Serinrest des Apo-PCP gebunden. In	
	dieser Form ist die PCP-Domäne in der Lage, sowohl entste-	
	hende Peptide als auch aktivierte Aminosäuren kovalent zu	
	binden	29
12	Durch Hydrolyse oder Aminolyse bei linearen Peptiden oder	
	$eine\ intramolekulare\ Zyklisierungs reaktion\ wird\ das\ fertige\ Pep-$	
	tid freigesetzt.	33
13	Hypothetische Reaktion von FrsC: FrsC katalysiert mutmaß-	
	lich die Reduktion von Phenylpyruvat zu Phenyllaktat. \ldots .	45
14	Hypothetische Reaktion von FrsH: FrsH weist bioinformatisch	
	eine Ähnlichkeit mit einer β -Hydroxylase aus der Chloram-	
	phenicolbiosynthese auf. Dort katalysiert CmlA die Hydro-	
	xylierung des PCP-gebundenen $para$ -Aminophenylalanin [Ma-	
	kris et al., 2010]	46

15	Der frs-BGC-Vergleich: In gleichen Farben dargestellte und	
	gleich nummerierte Bereiche innerhalb eines BGCs kennzeich-	
	nen identische Sequenzabschnitte. Die Farbgebung wurde für	
	beide BGC gleich gewählt. Beide BGC weisen sehr ähnliche	
	sich wiederholende Sequenzabschnitte auf. Bei C. vaccinii sind	
	Unterbrechungen zwischen den Bereichen 4, 6 und 7, während	
	bei Cand. B. crenata im Übergang der Gene $frsE$ zu $frsF$ und	
	frsF zu $frsG$ durchgehend identische Bereiche sind	50
16	Vergleich der Identitäten der A-Domänen auf Proteinebene	
	innerhalb des cvfrs-BGCs von C. vaccinii. Die Lokalisierung	
	der A-Domänen ist für beide frs-BGC gleich. Die Identitäten	
	in dieser Abbildung entsprechen denen von <i>C. vaccinii</i>	54
17	Alignment der Core-A9- und Core-A10-Region aus Cand. B.	
	crenata. Sequenzen FrsG2 und FrsG3 zeigen den Bereich der	
	zwei Subdomänen der A-Domäne 8	58
18	Alignment der Core-A9- und Core-A10-Region aus C. vacci-	
	nii. Sequenzen FrsG2 und FrsG3 zeigen den Bereich der zwei	
	Subdomänen der A-Domäne 8	58
19	Die erste A-Domäne von FrsG aus Modul 7 ist eine einfache	
	A-Domäne ohne MT-Domäne. Hier liegen die Core-A9- und	
	Core-A10-Regionen unmittelbar nach der Core-A8-Region. Die	
	A-Domäne ist nicht unterbrochen. Die zweite A-Domäne wird	
	von zwei MT-Domänen unterbrochen. Die Core-A9 und Core-	
	A10-Regionen, die sich in der A-Subdomäne befinden, existie-	
	ren zweimal, jeweils am Ende jeder A-Domäne	59
20	Vergleich der Identität der MT-Domänen innerhalb des BGCs	
	von $C.$ vaccinii	60
21	MT-Domänen im Vergleich der frs-BGC aus Cand. B. crenata	
	und <i>C. vaccinii</i>	61
22	Vergleich der Identitäten der C-Domänen, welche im <i>cvfrs</i> -	
	BGC von <i>C. vaccinii</i> kodiert sind	62

23Alignment der C-Domänen C6 und C8 aus Cand. B. crenata. Vergleicht man dieses Alignment mit dem Alignment der C-Domänen C6 und C8 aus C. vaccinii (siehe Abb. 24), so stellt man fest, dass sich die C-Domänen C6 und C8 in beiden Alignments im vorderen Teil sehr ähnlich sind und im hinteren Bereich voneinander abweichen. Die farblich markierten Aminosäuren entsprechen den Aminosäuren, die sich bei C. vaccinii und Cand. B. crenata auf die gleiche Art unterscheiden. Unpolare Aminosäuren wurden gelb und polare ungeladene Aminosäuren hellblau gekennzeichnet. Positiv geladene Aminosäuren wurden grün gekennzeichnet. Negativ geladene 24Alignment der C-Domänen C6 und C8 aus C. vaccinii. Vergleicht man dieses Alignment mit dem Alignment der C-Domänen C6 und C8 aus Cand. B. crenata (siehe Abb. 23), so stellt man fest, dass sich die C-Domänen C6 und C8 in beiden Alignments im vorderen Teil sehr ähnlich sind und im hinteren Bereich voneinander abweichen. Im Gegensatz zu Cand. B. crenata gibt es bei C. vaccinii einen Bereich in der Mitte der C-Domänen, in dem die Proteinsequenzen voneinander abweichen (siehe hellgrüner Bereich). Die farblich markierten Aminosäuren entsprechen den Aminosäuren, die sich bei C. vaccinii und Cand. B. crenata auf die gleiche Art unterscheiden. Unpolare Aminosäuren wurden gelb und polare ungeladene Aminosäuren hellblau gekennzeichnet. Positiv geladene Aminosäuren wurden grün markiert und negativ geladene Aminosäuren wurden dunkelblau gekennzeichnet.

65

66

253D-Modell der C6-Domäne von C. vaccinii, erstellt mit "Phyre 2"; seitliche Ansicht auf den Tunnel, der durch die beiden Subdomänen entsteht. Die Aminsäuresequenz der C-Domäne ist in Spektralfärbung dargestellt. Der blaue Bereich markiert den N-Terminus, der rote Bereich den C-terminalen Teil des Peptids. Die Aminosäuren des konservierten HDxxxDG-Motivs sind als Van-der-Waals Modell dargestellt, die putativ für die Dehydratisierung von Serin verantwortlichen Aminosäuren als "sticks-and-ball" -Modell. Bei einer seitlichen Ansicht auf die V-förmige Tasche, erkennt man, dass sich die Aminosäuren am oberen Rand der Tasche befinden. 263D-Modell der C6-Domäne von C. vaccinii, erstellt mit "Phyre 2"; Unteransicht auf den Tunnel, der durch die beiden Subdomänen entsteht. Die Aminsäuresequenz der C-Domäne ist in Spektralfärbung dargestellt. Der blaue Bereich markiert den N-Terminus, der rote Bereich den C-terminalen Teil des Peptids. Die Aminosäuren des konservierten HDxxxDG-Motivs

68

sind nicht dargestellt, die putativ für die Dehydratisierung von Serin verantwortlichen Aminosäuren sind als "sticks-and-ball"

28	PCP-Domänen des cvfrs-BGCs. Die PCP-Domänen wurden	
	blau markiert. PCP-Domänen, die sich stärker gleichen in dun-	
	kelblau, die anderen etwas heller. Die Prozente geben die pro-	
	zentuale Identität der Domänen untereinander an	71
29	TE-Domänen des <i>cvfrs</i> -BGCs	72
30	Die Adenylierungsreaktion von A-Domänen erfolgt unter ATP-	
	Verbrauch. Diese Reaktion ist reversibel	73
31	Die Aminosäure wird mit Hilfe der A-Domäne unter Verbrauch	
	von ATP zum Aminoacyladenylat aktiviert, um im Anschluss	
	auf den Phosphopantethein-Arm der PCP-Domäne geladen zu	
	werden.	74
32	Austauschreaktion des A-Domänen Assay. Nach Abspaltung	
	der Aminosäure vom AMP wird aus AMP und nicht markier-	
	tem PPI ein ATP gebildet, das kein ${}^{18}O_4$ -Isotop mehr enthält.	75
33	Allgemeine Darstellung einer MALDI-TOF-Analyse des Re-	
	aktions produktes einer A-Domäne, $\gamma\text{-}\ ^{18}\text{O}_4\text{-}\text{ATP},\ ^{16}\text{O}_4\text{-}\text{ATP}$	
	und der entsprechenden Aminosäure in Abhängigkeit von der	
	Zeit. Bei der Regenerierung von AMP zu ATP wird ${ m ^{16}O_4}$ -PPI	
	verwendet. Es kommt zur Bildung des ATP mit einem ${\rm ^{16}O_4}\text{-}$	
	Isotop-PPI und in der Folge zu einer Detektion des m/z : 506	
	Peaks anstatt des $m/z:$ 514 Peaks des $\gamma\textsc{-}\ ^{18}\mathrm{O}_4\textsc{-}\mathrm{ATP}.$ Die Ab-	
	bildung wurde aus Phelan et al. 2009 entnommen	76
34	Strukturen von Leucin, Isoleucin und Hydroxyleucin. Um die	
	Toleranz der A-Domänen in FrsA und FrsD zu testen, wurden	
	u.a. diese strukturell ähnlichen Aminosäuren getestet	77
35	FrsA (A1-PCP) zusammen mit MLP exprimiert: Der Pfeil	
	markiert die Position der A-Domäne. Das MLP kann nicht	
	identifiziert werden. L=Ladder, P=Pellet, NI=nicht induzier-	
	te Fraktion, I $=$ induzierte Fraktion vor Zugabe von Ni-NTA,	
	FT=Filtrat nach Ni-NTA Entfernung, $WI=Waschschritt I$,	
	$\label{eq:WII} Waschschritt~II,~EI{+}EII{=}Elutionsfraktionen,~K{=}verei{-}$	
	nigte, aufkonzentrierte Elutionsfraktionen	80

36	FrsD (A2-PCP) zusammen mit MLP exprimiert: Der Pfeil	
	markiert die Position der A-Domäne. Das MLP kann nicht	
	identifiziert werden. L=Ladder, P=Pellet, NI= nicht induzier-	
	te Fraktion, I $=$ induzierte Fraktion vor Zugabe von Ni-NTA,	
	FT=Filtrat nach Ni-NTA Entfernung, WI=Waschschritt I,	
	WII= Waschschritt II, EI+EII=Elutionsfraktionen, K=verei-	
	nigte, aufkonzentrierte Elutionsfraktionen	81
37	Massenspektrum des A-Domänen-Assay von FrsA (A1-PCP)	
	und FrsD (A2-PCP), einmal mit und ohne MLP. Bei allen Re-	
	aktionsansätzen konnte das Massesignal des ¹⁶ O ₄ -ATP-Peak	
	bei m/z : 506 detektiert werden. In allen Fällen fand eine Ak-	
	tivierung von Leucin statt. Beide A-Domänen sind ohne MLP	
	funktionsfähig.	83
38	tatsächlicher prozentualer γ - ¹⁸ O ₄ -ATP-Austausch durch die	
	A-Domänen von FrsA (A1-PCP) und FrsD (A2-PCP) in An-	
	wesenheit der einzelnen Aminosäuren.	86
39	Prozentualer γ - ¹⁸ O ₄ -ATP-Austausch durch die A-Domänen	
	FrsA (A1-PCP) und FrsD (A2-PCP) in Anwesenheit der ein-	
	zelnen Aminosäuren bezogen auf Leucin.	89
40	Kristallstrukturanalyse der A-MT-Domäne aus TioS des Thio-	
	coralin-BGC. Die Abb. ist entnommen aus Mori et al. 2018.	
	Der hellgelbe Bereich stellt die A-Core-Domäne dar, mit dem	
	assoziierten MLP in grau. Der dunkelgelbe Bereich ist die A-	
	Subdomäne. In rot der N-terminale katalytische Bereich der	
	MT-Domäne und in violett die C-terminale SirA-like Region	96
41	A. Schematische Darstellung der A-Domäne A8 aus FrsG mit	
	zwei MT-Domänen, B. Vergleich mit TioS als Beispiel für eine	
	A-Domäne mit einer MT-Domäne und C. Vergleich mit ei-	
	ner A-Domäne ohne MT-Domäne. Die Core-Regionen A9 und	
	A 10 sind auf den A-Subdomänen lokalisiert [Conti et al., 1997]	
	[Stachelhaus et al., 1999].	97

A1	Phylogenetische Analyse der C-Domänen mit FastTree. Die	
	Abbildung ist entnommen aus Crüsemann et al. 2018. Die	
	Farben markieren die einzelnen C-Domänen Klassen. Die ro-	
	ten Umrandungen zeigen die C-Domänen des <i>bcfrs</i> -BGCs am	
	Beispiel von Cand. B. crenata	169
A2	Vektorkarte A1-PCP in pET28a.	170
A3	Vektorkarte A2-PCP in pET28a.	171
A4	MLP (frsB) aus dem bcfrs-BGC in pCDFApra.	172
A5	Vektorkarte des pCDFApra. Der Vektor wurde von Luis Lina-	
	res Otoya aus dem pCDFDuett-Vektor erstellt	173
A6	Alignment der C-Domänen aus McyA und der C-Domänen C6	
	aus dem <i>cvfrs</i> -BGC und dem <i>bcfrs</i> -BGC	174
A7	Alignment der A-Domänen aus dem <i>bcfrs</i> -BGC	176
A8	Percent identity Matrix des Alignments der A-Domänen aus	
	dem <i>bcfrs</i> -BGC	177
A9	Alignment der A-Domänen aus dem <i>cvfrs</i> -BGC	179
A10	Percent Identity Matrix des Alignments der A-Domänen aus	
	dem <i>cvfrs</i> -BGC	180
A11	Alignment der MT-Domänen aus dem <i>bcfrs</i> -BGC	182
A12	Alignment der MT-Domänen aus dem <i>cvfrs</i> -BGC	183
A13	Percent Identity Matrix des Alignments der MT-Domänen aus	
	dem <i>bcfrs</i> -BGC	184
A14	Percent Identity Matrix des Alignments der MT-Domänen aus	
	dem <i>cvfrs</i> -BGC	185
A15	Alignment der N-MT-Domänen aus dem <i>bcfrs</i> -BGC und dem	
	<i>cvfrs</i> -BGC	187
A16	Percent Identity Matrix des Alignments der N-Methyltransfe-	
	rasen aus dem <i>bcfrs</i> -BGC und <i>cvfrs</i> -BGC	188
A17	Alignment der O-MT-Domänen aus dem <i>bcfrs</i> -BGC und dem	
	<i>cvfrs</i> -BGC	189
A18	Percent Identity Matrix des Alignments der O-Methyltransfe-	
	rasen aus dem <i>bcfrs</i> -BGC und <i>cvfrs</i> -BGC	189
A19	Alignment der C-Domänen aus dem <i>cvfrs</i> -BGC	191

A20	Percent Identity Matrix des Alignments der C-Domänen aus
	dem <i>cvfrs</i> -BGC
A21	Alignment der C-Domänen aus dem <i>bcfrs</i> -BGC
A22	Percent Identity Matrix des Alignments der C-Domänen aus
	dem <i>bcfrs</i> -BGC
A23	Alignment der PCP-Domänen aus dem <i>cvfrs</i> -BGC 196
A24	Percent Identity Matrix des Alignments der PCP-Domänen
	aus dem <i>cvfrs</i> -BGC
A25	Alignment der TE-Domänen aus dem <i>cvfrs</i> -BGC
A26	Percent Identity Matrix des Alignments der TE-Domänen aus
	dem <i>cvfrs</i> -BGC
A27	Alignment von frsA aus dem bcfrs-BGC und dem cvfrs-BGC. 203
A28	Alignment von $frsB$ aus dem $bcfrs$ -BGC und dem $cvfrs$ -BGC. 203
A29	Alignment von $frsC$ aus dem $bcfrs$ -BGC und dem $cvfrs$ -BGC. 205
A30	Alignment von $frsD$ aus dem $bcfrs$ -BGC und dem $cvfrs$ -BGC. 209
A31	Alignment von $frsE$ aus dem $bcfrs$ -BGC und dem $cvfrs$ -BGC. 219
A32	Alignment von $frsF$ aus dem $bcfrs$ -BGC und dem $cvfrs$ -BGC. 227
A33	Alignment von $frsG$ aus dem $bcfrs$ -BGC und dem $cvfrs$ -BGC. 238
A34	Alignment von frsH aus dem bcfrs-BGC und dem cvfrs-BGC. 240
A35	Percent Identity Matrizes der Alignment von <i>frsA-frsH</i> aus
	dem <i>bcfrs</i> -BGC und dem <i>cvfrs</i> -BGC
A36	Alignment von FrsA aus dem bcfrs-BGC und dem cvfrs-BGC. 244
A37	Alignment von FrsB aus dem <i>bcfrs</i> -BGC und dem <i>cvfrs</i> -BGC. 244
A38	Alignment von FrsC aus dem <i>bcfrs</i> -BGC und dem <i>cvfrs</i> -BGC. 245
A39	Alignment von FrsD aus dem <i>bcfrs</i> -BGC und dem <i>cvfrs</i> -BGC. 247
A40	Alignment von FrsE aus dem <i>bcfrs</i> -BGC und dem <i>cvfrs</i> -BGC. 251
A41	Alignment von FrsF aus dem <i>bcfrs</i> -BGC und dem <i>cvfrs</i> -BGC. 254
A42	Alignment von FrsG aus dem <i>bcfrs</i> -BGC und dem <i>cvfrs</i> -BGC. 258
A43	Alignment von FrsH aus dem <i>bcfrs</i> -BGC und dem <i>cvfrs</i> -BGC. 259
A44	Percent Identity Matrizes der Alignments von FrsA-FrsH aus
	dem <i>bcfrs</i> -BGC und dem <i>cvfrs</i> -BGC

Tabellenverzeichnis

- 1 A-Domänen Spezifitätsvorhersage nach unterschiedlichen Algorithmen durch antiSMASH von Cand. B. crenata. Für die ADomänen von FrsD-FrsG werden jeweils in gleicher Reihenfolge Leucin oder Hydroxyleucin (Leu/OH-Leu), Phenylalanin (Phe) oder Tryptophan (Trp), Serin (Ser), Alanin (Ala), Alanin, Leucin oder Hydroxyleucin und Threonin (Thr) vorhergesagt. Der pHMM-Algorithmus weicht bei FrsA, D und G1 von den Vorhersagen der anderen Algorithmen ab. Schwierigkeiten in der Vorhersage gibt es bei FrsE1. Das Substrat konnte hier nicht eindeutig identifiziert werden, wobei die Aromatizität erkannt wurde. Abkürzungen: boh-d-Leu= β -Hydroxyleucin; bht= Hydroxytyrosin [Blin et al., 2013]; N/A = keine Angabe . . . 42
- 2A-Domänen Spezifitätsvorhersage nach unterschiedlichen Algorithmen durch antiSMASH von C. vaccinii. Für die A-Domänen von FrsD-FrsG werden jeweils in gleicher Reihenfolge Leucin (Leu), Phenylalanin (Phe) oder Tryptophan (Trp), Serin (Ser), Alanin (Ala), Alanin, Leucin und Threonin (Thr) vorhergesagt. Der pHMM-Algorithmus weicht bei FrsA, D und G1 von den Vorhersagen der anderen Algorithmen ab. Schwierigkeiten in der Vorhersage gibt es bei FrsE1. Das Substrat konnte hier nicht eindeutig identifiziert werden, wobei die Aromatizität erkannt wurde. Abkürzungen: bht= Hydroxytyrosin [Blin et al., 2013]; N/A = keine Angabe 43

3	Vergleich der BGC von Cand. B. crenata und C. vaccinii auf	
	DNA und Proteinebene. bp=Basenpaare, Diff. bp= Basen-	
	paardifferenz der Gene beider BGC zueinander; AS=Amino-	
	säure, Ident DNA=Identität der Gene von <i>C. vaccinii</i> und	
	Cand. B. crenata zueinander in Prozent; Ident Prot=Identität	
	von FrsA-FrsH von C. vaccinii und Cand. B. crenata auf Pro-	
	teinebene zueinander in Prozent; GCBurk und GCChro=GC-	
	Gehalt der Gene frsA-frsH von C. vaccinii und Cand. B. cre-	
	nata in Prozent	48
4	Sequenzbereiche, die im <i>cvfrs</i> -BGC von <i>C. vaccinii</i> mehrfach	
	vorkommen. Die Abkürzung bp zeigt die Länge der Bereiche	
	in Basenpaaren an. AS zeigt die Länge des Bereichs in Amino-	
	säuren. Bei Genen wurden alle Gene angegeben, die ganz oder	
	zum Teil von diesen sich wiederholenden Bereichen abgedeckt	
	werden. \ldots	52
5	werden	52 52
5	 werden. Sequenzbereiche, die im <i>bcfrs</i>-BGC von <i>Cand</i>. B. crenata mehr- fach vorkommen. Die Abkürzung bp zeigt die Länge der Be- reiche in Basenpaaren an. AS zeigt die Länge des Bereichs in Aminosäuren. Bei Genen wurden alle Gene angegeben, die ganz oder zum Teil von diesen sich wiederholenden Bereichen abgedeckt werden. Nichtribosomaler Code der A-Domänen des <i>bcfrs</i>-BGC aus 	52 52
5	 werden. Sequenzbereiche, die im <i>bcfrs</i>-BGC von <i>Cand</i>. B. crenata mehr- fach vorkommen. Die Abkürzung bp zeigt die Länge der Be- reiche in Basenpaaren an. AS zeigt die Länge des Bereichs in Aminosäuren. Bei Genen wurden alle Gene angegeben, die ganz oder zum Teil von diesen sich wiederholenden Bereichen abgedeckt werden. Nichtribosomaler Code der A-Domänen des <i>bcfrs</i>-BGC aus <i>Cand</i>. B. crenata für die A-Domänen A1-A8 (siehe auch Abb. 	52 52
5	 werden. Sequenzbereiche, die im <i>bcfrs</i>-BGC von <i>Cand</i>. B. crenata mehr- fach vorkommen. Die Abkürzung bp zeigt die Länge der Be- reiche in Basenpaaren an. AS zeigt die Länge des Bereichs in Aminosäuren. Bei Genen wurden alle Gene angegeben, die ganz oder zum Teil von diesen sich wiederholenden Bereichen abgedeckt werden. Nichtribosomaler Code der A-Domänen des <i>bcfrs</i>-BGC aus <i>Cand</i>. B. crenata für die A-Domänen A1-A8 (siehe auch Abb. 4, 16, A7 und A9). 	52 52 52
5 6 7	 werden. Sequenzbereiche, die im <i>bcfrs</i>-BGC von <i>Cand.</i> B. crenata mehr- fach vorkommen. Die Abkürzung bp zeigt die Länge der Be- reiche in Basenpaaren an. AS zeigt die Länge des Bereichs in Aminosäuren. Bei Genen wurden alle Gene angegeben, die ganz oder zum Teil von diesen sich wiederholenden Bereichen abgedeckt werden. Nichtribosomaler Code der A-Domänen des <i>bcfrs</i>-BGC aus <i>Cand.</i> B. crenata für die A-Domänen A1-A8 (siehe auch Abb. 4, 16, A7 und A9). Nichtribosomaler Code der A-Domänen des <i>cvfrs</i>-BGC aus <i>C</i>. 	52 52 56
5 6 7	 werden. Sequenzbereiche, die im bcfrs-BGC von Cand. B. crenata mehr- fach vorkommen. Die Abkürzung bp zeigt die Länge der Be- reiche in Basenpaaren an. AS zeigt die Länge des Bereichs in Aminosäuren. Bei Genen wurden alle Gene angegeben, die ganz oder zum Teil von diesen sich wiederholenden Bereichen abgedeckt werden. Nichtribosomaler Code der A-Domänen des bcfrs-BGC aus Cand. B. crenata für die A-Domänen A1-A8 (siehe auch Abb. 4, 16, A7 und A9). Nichtribosomaler Code der A-Domänen des cvfrs-BGC aus C. Vaccinii für die A-Domänen A1-A8 (siehe auch Abb. 4, 16, A7 	52 52 56
5 6 7	 werden. Sequenzbereiche, die im <i>bcfrs</i>-BGC von <i>Cand</i>. B. crenata mehr- fach vorkommen. Die Abkürzung bp zeigt die Länge der Be- reiche in Basenpaaren an. AS zeigt die Länge des Bereichs in Aminosäuren. Bei Genen wurden alle Gene angegeben, die ganz oder zum Teil von diesen sich wiederholenden Bereichen abgedeckt werden. Nichtribosomaler Code der A-Domänen des <i>bcfrs</i>-BGC aus <i>Cand</i>. B. crenata für die A-Domänen A1-A8 (siehe auch Abb. 4, 16, A7 und A9). Nichtribosomaler Code der A-Domänen des <i>cvfrs</i>-BGC aus <i>C</i>. <i>vaccinii</i> für die A-Domänen A1-A8 (siehe auch Abb. 4, 16, A7 und A9). 	52 52 56 56

9	Proteinkonzentrationen der Wasch- und Elutionsfraktionen der	
	exprimierten A-Domänen in [mg/mL]. Die Proben wurden auf	
	einem Nanodrop-Gerät der Firma Thermo Scientific gemes-	
	sen. WI und WII sind Waschschritte mit jeweils $25 \mathrm{mM}$ und 50	
	mM Imidazolpuffer. EI, EII, EIII sind die Elutionen mit einem	
	300 mM Imidazolpuffer. Konz. entspricht der mit der Vivaspin	
	500 Säule aufkonzentrierten Fraktion.	. 78
10	Zu erwartende Größe der exprimierten Proteine	. 79
11	Berechneter absoluter γ - ¹⁸ O ₄ -ATP-Austausch durch verschie-	
	dene Aminosäuren im A-Domänen-Assay für FrsA (A1-PCP)	
	und FrsD (A2-PCP). k.A.=es konnte keine Auswertung ge-	
	macht werden; 0 =keine Aktivierung vorhanden	. 85
12	Prozentualer γ - ¹⁸ O ₄ -ATP-Austausch durch die Aminosäuren	
	im A-Domänen-Assay in Relation zur Leucin-Aktivierung von	
	FrsA (A1-PCP) und FrsD (A2-PCP). k.A.=es konnte keine	
	Auswertung gemacht werden; 0=keine Aktivierung vorhanden	88
13	Verwendete Vektoren	. 104
14	Verwendete Organismen	. 105
15	Verwendete Medien	. 107
16	Proteinaufreinigungspuffer	. 108
17	Plasmidpräparationspuffer	. 108
18	Assaypuffer	. 109
19	Kathoden- und Anodenpuffer	. 110
20	Weitere Puffer und Lösungen, die verwendet wurden	. 110
21	Für diese Arbeit verwendete Antibiotikastocks	. 111
22	Bedingungen zur Kultivierung von Bakterien	. 112
23	Reaktions ansatz für die PCR mit Taq -Polymerase	. 114
24	Reaktionsansatz für die PCR mit <i>Pfu</i> -Polymerase	. 115
25	Temperaturprogramm für die PCR	. 115
26	Sequenzen der verwendeten Primer. Die jeweiligen Schnittstel-	
	len sind fett gedruckt.	. 117
27	Ligationsansatz	. 120

28	Konstrukte, die in dieser Arbeit verwendet wurden. Der pS-
	MART BAC clone 19E wurde von Aurelien Carlier zur Verfü-
	gung gestellt [Carlier et al., 2016]
29	Expressionsstämme und Coexpressionsstämme, die in dieser
	Arbeit verwendet wurden
30	Trenngel
31	Sammelgel
32	Verwendete Chemikalien
33	Verwendete Enzyme
34	Verwendete Kits und Standards
35	Verwendete Geräte

Literatur

- Abe, T., Kobayashi, K., Kawamura, S., Sakaguchi, T., Shiiba, K., and Kobayashi, M. (2018). Dipeptide synthesis by internal adenylation domains of a multidomain enzyme involved in nonribosomal peptide synthesis. J. Gen. Appl. Microbiol.
- Al-Mestarihi, A. H., Villamizar, G., Fernandez, J., Zolova, O. E., Lombo, F., and Garneau-Tsodikova, S. (2014). Adenylation and S-methylation of cysteine by the bifunctional enzyme TioN in thiocoraline biosynthesis. J. Am. Chem. Soc., 136(49):17350-17354.
- Ankenbauer, R. G., Staley, A. L., Rinehart, K. L., and Cox, C. D. (1991). Mutasynthesis of siderophore analogues by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A., 88(5):1878–1882.
- Ansari, M. Z., Sharma, J., Gokhale, R. S., and Mohanty, D. (2008). In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites. *BMC Bioinformatics*, 9:454.
- Beacco, E., Bianchi, M. L., Minghetti, A., and Spalla, C. (1978). Directed biosynthesis of analogues of ergot peptide alkaloids with Claviceps purpurea. *Experientia*, 34(10):1291–1293.
- Belshaw, P. J., Walsh, C. T., and Stachelhaus, T. (1999). Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. *Science*, 284(5413):486–489.
- Bergendahl, V., Linne, U., and Marahiel, M. A. (2002). Mutational analysis of the C-domain in nonribosomal peptide synthesis. *Eur. J. Biochem.*, 269(2):620–629.
- Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol., 62(3):293-300.
- Billich, A. and Zocher, R. (1987). Enzymatic synthesis of cyclosporin A. J. Biol. Chem., 262(36):17258–17259.

- Bister, B., Bischoff, D., Nicholson, G. J., Stockert, S., Wink, J., Brunati, C., Donadio, S., Pelzer, S., Wohlleben, W., and Süßmuth, R. D. (2003).
 Bromobalhimycin and chlorobromobalhimycins-illuminating the potential of halogenases in glycopeptide antibiotic biosyntheses. *Chembiochem*, 4(7):658–662.
- Blad, C. C., Tang, C., and Offermanns, S. (2012). G protein-coupled receptors for energy metabolites as new therapeutic targets. *Nat Rev Drug Discov*, 11(8):603-619.
- Blin, K., Kim, H. U., Medema, M. H., and Weber, T. (2017a). Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. *Brief. Bioinformatics*.
- Blin, K., Medema, M. H., Kazempour, D., Fischbach, M. A., Breitling, R., Takano, E., and Weber, T. (2013). antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers. *Nucleic Acids Res.*, 41(Web Server issue):W204-212.
- Blin, K., Medema, M. H., Kottmann, R., Lee, S. Y., and Weber, T. (2017b). The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. *Nucleic Acids Res.*, 45(D1):D555– D559.
- Bloudoff, K., Alonzo, D. A., and Schmeing, T. M. (2016). Chemical Probes Allow Structural Insight into the Condensation Reaction of Nonribosomal Peptide Synthetases. *Cell Chem Biol*, 23(3):331–339.
- Bloudoff, K., Fage, C. D., Marahiel, M. A., and Schmeing, T. M. (2017). Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis. *Proc. Natl. Acad. Sci. U.S.A.*, 114(1):95–100.
- Bloudoff, K., Rodionov, D., and Schmeing, T. M. (2013). Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases. J. Mol. Biol., 425(17):3137–3150.

- Boll, B., Taubitz, T., and Heide, L. (2011). Role of MbtH-like proteins in the adenylation of tyrosine during aminocoumarin and vancomycin biosynthesis. J. Biol. Chem., 286(42):36281–36290.
- Bozhüyük, K. A. J.yuek, K. A. J., Fleischhacker, F., Linck, A., Wesche, F., Tietze, A., Niesert, C. P., and Bode, H. B. (2018). De novo design and engineering of non-ribosomal peptide synthetases. *Nat Chem*, 10(3):275– 281.
- Calcott, M. J., Owen, J. G., Lamont, I. L., and Ackerley, D. F. (2014). Biosynthesis of novel Pyoverdines by domain substitution in a nonribosomal peptide synthetase of Pseudomonas aeruginosa. *Appl. Environ. Microbiol.*, 80(18):5723-5731.
- Carlier, A., Fehr, L., Pinto-Carbo, M., Schäberle, T., Reher, R., Dessein, S., König, G., and Eberl, L. (2016). The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis. *Environ. Microbiol.*, 18(8):2507–2522.
- Chatterjee, J., Rechenmacher, F., and Kessler, H. (2013). N-methylation of peptides and proteins: an important element for modulating biological functions. *Angew. Chem. Int. Ed. Engl.*, 52(1):254–269.
- Chen, R. H., Buko, A. M., Whittern, D. N., and McAlpine, J. B. (1989). Pacidamycins, a novel series of antibiotics with anti-Pseudomonas aeruginosa activity. II. Isolation and structural elucidation. J. Antibiot., 42(4):512– 520.
- Clugston, S. L., Sieber, S. A., Marahiel, M. A., and Walsh, C. T. (2003). Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst. *Biochemistry*, 42(41):12095–12104.
- Coeffet-Le Gal, M. F., Thurston, L., Rich, P., Miao, V., and Baltz, R. H. (2006). Complementation of daptomycin dptA and dptD deletion mutati-

ons in trans and production of hybrid lipopeptide antibiotics. *Microbiology* (*Reading, Engl.*), 152(Pt 10):2993–3001.

- Conti, E., Stachelhaus, T., Marahiel, M. A., and Brick, P. (1997). Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. *EMBO J.*, 16(14):4174–4183.
- Crüsemann, M. Kohlhaas, C. P. J. (2013). Evolution-guided engineering of nonribosomal peptide synthetase adenylation domains. *Chemical Science*.
- Crüsemann, M., Reher, R., Schamari, I., Brachmann, A. O., Ohbayashi, T., Kuschak, M., Malfacini, D., Seidinger, A., Pinto-Carbo, M., Richarz, R., Reuter, T., Kehraus, S., Hallab, A., Attwood, M., Schioth, H. B., Mergaert, P., Kikuchi, Y., Schäberle, T., Kostenis, E., Wenzel, D., E., M. C., Piel, J., Carlier, A., Eberl, L., and König, G. M. (2018). Heterologous Expression, Biosynthetic Studies, and Ecological Function of the Selective Gq-Signaling Inhibitor FR900359. Angew. Chem. Int. Ed. Engl., 57(3):836-840.
- De Crecy-Lagard, V., Marliere, P., and Saurin, W. (1995). Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. C. R. Acad. Sci. III, Sci. Vie, 318(9):927–936.
- Deboer, C. und DIETZ, A., SAVAGE, G. M., and SILVER, W. S. (1955). Streptolydigin, a new antimicrobial antibiotic. I. Biologic studies of streptolydigin. Antibiot Annu, 3:886–892.
- Deshpande, D. A. and Penn, R. B. (2006). Targeting G protein-coupled receptor signaling in asthma. *Cell. Signal.*, 18(12):2105–2120.
- Doekel, S. and Marahiel, M. A. (2000). Dipeptide formation on engineered hybrid peptide synthetases. *Chem. Biol.*, 7(6):373–384.
- Dorsam, R. T. and Gutkind, J. S. (2007). G-protein-coupled receptors and cancer. Nat. Rev. Cancer, 7(2):79–94.

- Dowling, D. P., Kung, Y., Croft, A. K., Taghizadeh, K., Kelly, W. L., Walsh, C. T., and Drennan, C. L. (2016). Structural elements of an NRPS cyclization domain and its intermodule docking domain. *Proc. Natl. Acad. Sci.* U.S.A., 113(44):12432–12437.
- Druey, K. M. (2009). Regulation of G-protein-coupled signaling pathways in allergic inflammation. *Immunol. Res.*, 43(1-3):62–76.
- Ehmann, D. E., Trauger, J. W., Stachelhaus, T., and Walsh, C. T. (2000). Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases. *Chem. Biol.*, 7(10):765–772.
- Elshahawi, S. I., Trindade-Silva, A. E., Hanora, A., Han, A. W., Flores, M. S., Vizzoni, V., Schrago, C. G., Soares, C. A., Concepcion, G. P., Distel, D. L., Schmidt, E. W., and Haygood, M. G. (2013). Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills. *Proc. Natl. Acad. Sci. U.S.A.*, 110(4):295–304.
- Epstein, S. C., Charkoudian, L. K., and Medema, M. H. (2018). A standardized workflow for submitting data to the Minimum Information about a Biosynthetic Gene cluster (MIBiG) repository: prospects for researchbased educational experiences. *Stand Genomic Sci*, 13:16.
- Felnagle, E. A., Barkei, J. J., Park, H., Podevels, A. M., McMahon, M. D., Drott, D. W., and Thomas, M. G. (2010). MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases. *Biochemistry*, 49(41):8815–8817.
- Fernandes, P. B., Swanson, R. N., Hardy, D. J., Hanson, C. W., Coen, L., Rasmussen, R. R., and Chen, R. H. (1989). Pacidamycins, a novel series of antibiotics with anti-Pseudomonas aeruginosa activity. III. Microbiologic profile. J. Antibiot., 42(4):521–526.
- Fujioka M., Koda S., M. Y. (1988). Structure of FR900359, a cyclic depsipeptide from ardisia crenata sims. J. Org. Chem.

- Garg, N., Salazar-Ocampo, L. M., and van der Donk, W. A. (2013). In vitro activity of the nisin dehydratase NisB. Proc. Natl. Acad. Sci. U.S.A., 110(18):7258-7263.
- Gaudelli, N. M., Long, D. H., and Townsend, C. A. (2015). Î²-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis. *Nature*, 520(7547):383–387.
- Gordon, M., Cragg, D. J., Newman, ., M., K., and Snader (1997). Natural products in drug discovery and development. J. Nat. Prod.
- Grüschow, S., Rackham, E. J., Elkins, B., Newill, P. L., Hill, L. M., and Goss, R. J. (2009). New pacidamycin antibiotics through precursor-directed biosynthesis. *Chembiochem*, 10(2):355–360.
- Gudermann, T., Kalkbrenner, F., and Schultz, G. (1996). Diversity and selectivity of receptor-G protein interaction. Annu. Rev. Pharmacol. Toxicol., 36:429–459.
- Hahn, M. and Stachelhaus, T. (2006). Harnessing the potential of communication-mediating domains for the biocombinatorial synthesis of nonribosomal peptides. *Proc. Natl. Acad. Sci. U.S.A.*, 103(2):275–280.
- Harvey, A. L. (2008). Natural products in drug discovery. Drug Discov. Today, 13(19-20):894–901.
- Heemstra, J. R., Walsh, C. T., and Sattely, E. S. (2009). Enzymatic tailoring of ornithine in the biosynthesis of the Rhizobium cyclic trihydroxamate siderophore vicibactin. J. Am. Chem. Soc., 131(42):15317-15329.
- Herbst, D. A., Boll, B., Zocher, G., Stehle, T., and Heide, L. (2013). Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes. J. Biol. Chem., 288(3):1991-2003.
- Hughes, A. R., Martin, M. W., and Harden, T. K. (1984). Pertussis toxin differentiates between two mechanisms of attenuation of cyclic AMP

accumulation by muscarinic cholinergic receptors. *Proc. Natl. Acad. Sci.* U.S.A., 81(18):5680-5684.

- Imker, H. J., Krahn, D., Clerc, J., Kaiser, M., and Walsh, C. T. (2010). Nacylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF. *Chem. Biol.*, 17(10):1077–1083.
- Karwowski, J. P., Jackson, M., Theriault, R. J., Chen, R. H., Barlow, G. J., and Maus, M. L. (1989). Pacidamycins, a novel series of antibiotics with anti-Pseudomonas aeruginosa activity. I. Taxonomy of the producing organism and fermentation. J. Antibiot., 42(4):506–511.
- Keating, T. A., Marshall, C. G., Walsh, C. T., and Keating, A. E. (2002). The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. *Nat. Struct. Biol.*, 9(7):522– 526.
- Keller, U. (1987). Actinomycin synthetases. Multifunctional enzymes responsible for the synthesis of the peptide chains of actinomycin. J. Biol. Chem., 262(12):5852–5856.
- Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. *Nat Protoc*, 10(6):845–858.
- Klepac, K. e. a. (2016). The Gq signalling pathway inhibits brown and beige adipose tissue. *Nat. Commun.*
- Kopp, F. and Marahiel, M. A. (2007). Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. *Nat Prod Rep*, 24(4):735–749.
- Krause, M., Lindemann, A., Glinski, M., Hornbogen, T., Bonse, G., Jeschke, P., Thielking, G., Gau, W., Kleinkauf, H., and Zocher, R. (2001). Directed biosynthesis of new enniatins. J. Antibiot., 54(10):797–804.
- Kries, H., Niquille, D. L., and Hilvert, D. (2015). A subdomain swap strategy for reengineering nonribosomal peptides. *Chem. Biol.*, 22(5):640–648.

- Labby, K. J., Watsula, S. G., and Garneau-Tsodikova, S. (2015). Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. *Nat Prod Rep*, 32(5):641–653.
- Lai, J. R., Koglin, A., and Walsh, C. T. (2006). Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis. *Biochemistry*, 45(50):14869–14879.
- Lambalot, R. H., Gehring, A. M., Flugel, R. S., Zuber, P., LaCelle, M., Marahiel, M. A., Reid, R., Khosla, C., and Walsh, C. T. (1996). A new enzyme superfamily - the phosphopantetheinyl transferases. *Chem. Biol.*, 3(11):923–936.
- Lautru, S. and Challis, G. L. (2004). Substrate recognition by nonribosomal peptide synthetase multi-enzymes. *Microbiology (Reading, Engl.)*, 150(Pt 6):1629–1636.
- Lautru, S., Oves-Costales, D., Pernodet, J. L., and Challis, G. L. (2007). MbtH-like protein-mediated cross-talk between non-ribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145. *Microbiologie (Reading, Engl.)*, 153(Pt 5):1405–1412.
- Lawen, A. and Zocher, R. (1990). Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described. J. Biol. Chem., 265(19):11355–11360.
- Lefkowitz, R. J. (2004). Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci., 25(8):413-422.
- Lersten, N. and Horner, H. (1976). Bacterial leaf nodule symbiosis in angiosperms with emphasis on rubiaceae and myrsinaceae. *Bot Rev.*
- Link, A. und Müller, C. E. (2016). G-Protein-Coupled Receptors: Sustained Signaling via Intracellular Megaplexes and Pathway-Specific Drugs. Angew. Chem. Int. Ed. Engl., 55(52):15962-15964.

- Linne, U. and Marahiel, M. A. (2000). Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. *Biochemistry*, 39(34):10439– 10447.
- Lombo, F., Velasco, A., Castro, A., de la Calle, F., Brana, A. F., Sanchez-Puelles, J. M., Mendez, C., and Salas, J. A. (2006). Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two streptomyces species. *Chembiochem*, 7(2):366– 376.
- Long, M., Betran, E., Thornton, K., and Wang, W. (2003). The origin of new genes: glimpses from the young and old. *Nat. Rev. Genet.*, 4(11):865–875.
- Lundy, T. A., Mori, S., and Garneau-Tsodikova, S. (2018). Engineering Bifunctional Enzymes Capable of Adenylating and Selectively Methylating the Side Chain or Core of Amino Acids. ACS Synth Biol, 7(2):399–404.
- Luo, L., Burkart, M. D., Stachelhaus, T., and Walsh, C. T. (2001). Substrate recognition and selection by the initiation module PheATE of gramicidin S synthetase. J. Am. Chem. Soc., 123(45):11208–11218.
- Luo, L., Kohli, R. M., Onishi, M., Linne, U., Marahiel, M. A., and Walsh, C. T. (2002). Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B. *Biochemistry*, 41(29):9184–9196.
- Luo, Y., Cobb, R. E., and Zhao, H. (2014). Recent advances in natural product discovery. *Curr. Opin. Biotechnol.*, 30:230–237.
- Machida, K., Arai, D., Katsumata, R., Otsuka, S., Yamashita, J. K., Ye, T., Tang, S., Fusetani, N., and Nakao, Y. (2018). Sameuramide A, a new cyclic depsipeptide isolated from an ascidian of the family Didemnidae. *Bioorg. Med. Chem.*, 26(13):3852–3857.

- Magarvey, N. A., Ehling-Schulz, M., and Walsh, C. T. (2006). Characterization of the cereulide NRPS alpha-hydroxy acid specifying modules: activation of alpha-keto acids and chiral reduction on the assembly line. J. Am. Chem. Soc., 128(33):10698–10699.
- Makris, T. M., Chakrabarti, M., Munck, E., and Lipscomb, J. D. (2010). A family of diiron monooxygenases catalyzing amino acid beta-hydroxylation in antibiotic biosynthesis. *Proc. Natl. Acad. Sci. U.S.A.*, 107(35):15391– 15396.
- Marahiel, M. A. (2009). Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J. Pept. Sci., 15(12):799–807.
- Marahiel, M. A., Stachelhaus, T., and Mootz, H. D. (1997). Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. *Chem. Rev.*, 97(7):2651–2674.
- Medema, M. H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M. A., Weber, T., Takano, E., and Breitling, R. (2011). antiS-MASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. *Nucleic Acids Res.*, 39(Web Server issue):W339-346.
- Miao, V., Coeffet-Le Gal, M. F., Nguyen, K., Brian, P., Penn, J., Whiting, A., Steele, J., Kau, D., Martin, S., Ford, R., Gibson, T., Bouchard, M., Wrigley, S. K., and Baltz, R. H. (2006). Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics. *Chem. Biol.*, 13(3):269–276.
- Miller, B. R., Drake, E. J., Shi, C., Aldrich, C. C., and Gulick, A. M. (2016). Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtHlike Proteins Support a Highly Dynamic Domain Architecture. J. Biol. Chem., 291(43):22559-22571.
- Miller, D. A., Walsh, C. T., and Luo, L. (2001). C-methyltransferase and cyclization domain activity at the intraprotein PK/NRP switch point of yersiniabactin synthetase. J. Am. Chem. Soc., 123(34):8434-8435.

Miller, I. (1990). Bacterial leaf nodule symbiosis. Adv Bot Res.

- Minarik, P., Tomaskova, N., Kollarova, M., and Antalik, M. (2002). Malate dehydrogenases-structure and function. *Gen. Physiol. Biophys.*, 21(3):257–265.
- Moran, S., Rai, D. K., Clark, B. R., and Murphy, C. D. (2009). Precursordirected biosynthesis of fluorinated iturin A in Bacillus spp. Org. Biomol. Chem., 7(4):644-646.
- Mori, S., Garzan, A., Tsodikov, O. V., and Garneau-Tsodikova, S. (2017). Deciphering Nature's Intricate Way of N,S-Dimethylating l-Cysteine: Sequential Action of Two Bifunctional Adenylation Domains. *Biochemistry*, 56(46):6087–6097.
- Mori, S., Pang, A. H., Lundy, T. A., Garzan, A., Tsodikov, O. V., and Garneau-Tsodikova, S. (2018). Structural basis for backbone Nmethylation by an interrupted adenylation domain. *Nat. Chem. Biol.*
- Newman, D. J. and Cragg, G. M. (2016). Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod., 79(3):629–661.
- Nishimura, A., Kitano, K., Takasaki, J., Taniguchi, M., Mizuno, N., Tago, K., Hakoshima, T., and Itoh, H. (2010). Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. *Proc. Natl. Acad. Sci. U.S.A.*, 107(31):13666–13671.
- Ortega, M. A., Hao, Y., Zhang, Q., Walker, M. C., van der Donk, W. A., and Nair, S. K. (2015). Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. *Nature*, 517(7535):509-512.
- Overington, J. P., Al-Lazikani, B., and Hopkins, A. L. (2006). How many drug targets are there? *Nat Rev Drug Discov*, 5(12):993–996.
- Owen, J. G., Calcott, M. J., Robins, K. J., and Ackerley, D. F. (2016). Generating Functional Recombinant NRPS Enzymes in the Laboratory Setting via Peptidyl Carrier Protein Engineering. *Cell Chem Biol*, 23(11):1395– 1406.

- Phelan, V. V., Du, Y., McLean, J. A., and Bachmann, B. O. (2009). Adenylation enzyme characterization using gamma -(18)O(4)-ATP pyrophosphate exchange. *Chem. Biol.*, 16(5):473–478.
- Pinto-Carbo, M., Gademann, K., Eberl, L., and Carlier, A. (2018). Leaf nodule symbiosis: function and transmission of obligate bacterial endophytes. *Curr. Opin. Plant Biol.*, 44:23–31.
- Powell, A., Al Nakeeb, M., Wilkinson, B., and Micklefield, J. (2007). Precursor-directed biosynthesis of nonribosomal lipopeptides with modified glutamate residues. *Chem. Commun. (Camb.)*, (26):2683–2685.
- Price, M. N., Dehal, P. S., and Arkin, A. P. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. *Mol. Biol. Evol.*
- Qiagen (2003). The QIA expressionist.
- Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H., and Walsh, C. T. (1998). Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. *Chem. Biol.*, 5(11):631–645.
- Quiagen (2012). Quiagen Plasmid Purification Handbook 04/2012.
- Rask-Andersen, M., Almen, M. S., and Schioth, H. B. (2011). Trends in the exploitation of novel drug targets. *Nat Rev Drug Discov*, 10(8):579–590.
- Rausch, C., Hoof, I., Weber, T., Wohlleben, W., and Huson, D. H. (2007). Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. *BMC Evol. Biol.*, 7:78.
- Ray, L., Yamanaka, K., and Moore, B. S. (2016). A Peptidyl-Transesterifying Type I Thioesterase in Salinamide Biosynthesis. Angew. Chem. Int. Ed. Engl., 55(1):364–367.

- Rosenbaum, D. M., Rasmussen, S. G., and Kobilka, B. K. (2009). The structure and function of G-protein-coupled receptors. *Nature*, 459(7245):356– 363.
- Samel, S. A., Czodrowski, P., and Essen, L. O. (2014). Structure of the epimerization domain of tyrocidine synthetase A. Acta Crystallogr. D Biol. Crystallogr., 70(Pt 5):1442–1452.
- Samel, S. A., Schoenafinger, G., Knappe, T. A., Marahiel, M. A., and Essen, L. O. (2007). Structural and functional insights into a peptide bondforming bidomain from a nonribosomal peptide synthetase. *Structure*, 15(7):781–792.
- Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A., 74(12):5463– 5467.
- Sauliere, A., Bellot, M., Paris, H., Denis, C., Finana, F., Hansen, J. T., Altie, M. F., Seguelas, M. H., Pathak, A., Hansen, J. L., Senard, J. M., and Gales, C. (2012). Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. *Nat. Chem. Biol.*, 8(7):622–630.
- Schauwecker, F., Pfennig, F., Grammel, N., and Keller, U. (2000). Construction and in vitro analysis of a new bi-modular polypeptide synthetase for synthesis of N-methylated acyl peptides. *Chem. Biol.*, 7(4):287–297.
- Schmidt, E. W., Donia, M. S., McIntosh, J. A., Fricke, W. F., and Ravel, J. (2012). Origin and variation of tunicate secondary metabolites. J. Nat. Prod., 75(2):295–304.
- Schomer, R. A. and Thomas, M. G. (2017). Characterization of the Functional Variance in MbtH-like Protein Interactions with a Nonribosomal Peptide Synthetase. *Biochemistry*, 56(40):5380–5390.
- Schrage, R., Schmitz, A. L., Gaffal, E., Annala, S., Kehraus, S., Wenzel, D., Bullesbach, K. M., Bald, T., Inoue, A., Y., S., Galandrin, S., Shridhar, N., Hesse, M., Grundmann, M., Merten, N., Charpentier, T. H., Martz,

M., Butcher, A. J., Slodczyk, T., Armando, S., Effern, M., Namkung, Y., Jenkins, L., Horn, V., Stossel, A., Dargatz, H., Tietze, D., Imhof, D., Gales, C., Drewke, C., E., M. C., Holzel, M., Milligan, G., Tobin, A. B., Gomeza, J., Dohlman, H. G., Sondek, J., Harden, T. K., Bouvier, M., Laporte, S. A., Aoki, J., Fleischmann, B. K., Mohr, K., König, G. M., Tuting, T., and Kostenis, E. (2015). The experimental power of FR900359 to study Gq-regulated biological processes. *Nat Commun*, 6:10156.

Schägger, H. (2006). Tricine-SDS-PAGE. Nat Protoc, 1(1):16–22.

- Sieber, S., Carlier, A., Neuburger, M., Grabenweger, G., Eberl, L., and Gademann, K. (2015). Isolation and Total Synthesis of Kirkamide, an Aminocyclitol from an Obligate Leaf Nodule Symbiont. Angew. Chem. Int. Ed. Engl., 54(27):7968–7970.
- Silakowski, B., Schairer, H. U., Ehret, H., Kunze, B., Weinig, S., Nordsiek, G., Brandt, P., Blocker, H., Hofle, G., Beyer, S., and Müller, R. (1999). New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. J. Biol. Chem., 274(52):37391–37399.
- Smrcka, A. V. (2013). Molecular targeting of $G\alpha$ and $G\beta\gamma$ subunits: a potential approach for cancer therapeutics. *Trends Pharmacol. Sci.*, 34(5):290–298.
- Soby, S. D., Gadagkar, S. R., Contreras, C., and Caruso, F. L. (2013). Chromobacterium vaccinii sp. nov., isolated from native and cultivated cranberry (Vaccinium macrocarpon Ait.) bogs and irrigation ponds. *Int. J. Syst. Evol. Microbiol.*, 63(Pt 5):1840–1846.
- Stachelhaus, T., Mootz, H. D., Bergendahl, V., and Marahiel, M. A. (1998). Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J. Biol. Chem., 273(35):22773-22781.
- Stachelhaus, T., Mootz, H. D., and Marahiel, M. A. (1999). The specificityconferring code of adenylation domains in nonribosomal peptide synthetases. *Chem. Biol.*, 6(8):493–505.

- Stegmann, E., Rausch, C., Stockert, S., Burkert, D., and Wohlleben, W. (2006). The small MbtH-like protein encoded by an internal gene of the balhimycin biosynthetic gene cluster is not required for glycopeptide production. *FEMS Microbiol. Lett.*, 262(1):85–92.
- Süßmuth, R. D. und Mainz, A. (2017). Nonribosomal Peptide Synthesis-Principles and Prospects. Angew. Chem. Int. Ed. Engl., 56(14):3770–3821.
- Takefuji, M., Wirth, A., Lukasova, M., Takefuji, S., Boettger, T., Braun, T., Althoff, T., Offermanns, S., and Wettschureck, N. (2012). G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure. *Circulation*, 126(16):1972–1982.
- Takesako, K., Ikai, K., Haruna, F., Endo, M., Shimanaka, K., Sono, E., Nakamura, T., Kato, I., and Yamaguchi, H. (1991). Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. J. Antibiot., 44(9):919–924.
- Takesako, K., Mizutani, S., Sakakibara, H., Endo, M., Yoshikawa, Y., Masuda, T., Sono-Koyama, E., and Kato, I. (1996). Precursor directed biosynthesis of aureobasidins. J. Antibiot., 49(7):676–681.
- Tan, L. and Ma, D. (2008). Total synthesis of salinamide A: a potent anti-inflammatory bicyclic depsipeptide. Angew. Chem. Int. Ed. Engl., 47(19):3614–3617.
- Tan, X. F., Dai, Y. N., Zhou, K., Jiang, Y. L., Ren, Y. M., Chen, Y., and Zhou, C. Z. (2015). Structure of the adenylation-peptidyl carrier protein didomain of the Microcystis aeruginosa microcystin synthetase McyG. *Acta Crystallogr. D Biol. Crystallogr.*, 71(Pt 4):873–881.
- Taniguchi, M., Nagai, K., Arao, N., Kawasaki, T., Saito, T., Moritani, Y., Takasaki, J., Hayashi, K., Fujita, S., Suzuki, K., and Tsukamoto, S. (2003). YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666. J. Antibiot., 56(4):358–363.

- Tarry, M. J., Haque, A. S., Bui, K. H., and Schmeing, T. M. (2017). X-Ray Crystallography and Electron Microscopy of Cross- and Multi-Module Nonribosomal Peptide Synthetase Proteins Reveal a Flexible Architecture. *Structure*, 25(5):783–793.
- Thiericke, R. and Rohr, J. (1993). Biological variation of microbial metabolites by precursor-directed biosynthesis. *Nat Prod Rep*, 10(3):265–289.
- Tillett, D., Dittmann, E., Erhard, M., von Dohren, H., Borner, T., and Neilan, B. A. (2000). Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. *Chem. Biol.*, 7(10):753–764.
- Traber, R., Hofmann, H., and Kobel, H. (1989). Cyclosporins-new analogues by precursor directed biosynthesis. J. Antibiot., 42(4):591–597.
- van der Donk, W. A. and Nair, S. K. (2014). Structure and mechanism of lanthipeptide biosynthetic enzymes. *Curr. Opin. Struct. Biol.*, 29:58–66.
- Velkov, T., Horne, J., Scanlon, M. J., Capuano, B., Yuriev, E., and Lawen, A. (2011). Characterization of the N-methyltransferase activities of the multifunctional polypeptide cyclosporin synthetase. *Chem. Biol.*, 18(4):464–475.
- Velkov, T. and Lawen, A. (2003). Mapping and molecular modeling of Sadenosyl-L-methionine binding sites in N-methyltransferase domains of the multifunctional polypeptide cyclosporin synthetase. J. Biol. Chem., 278(2):1137–1148.
- Villiers, B. and Hollfelder, F. (2011). Directed evolution of a gatekeeper domain in nonribosomal peptide synthesis. *Chem. Biol.*, 18(10):1290–1299.
- Voing, K., Harrison, A., and Soby, S. D. (2015). Draft Genome Sequence of Chromobacterium vaccinii, a Potential Biocontrol Agent against Mosquito (Aedes aegypti) Larvae. *Genome Announc*, 3(3).
- Weber, T., Baumgartner, R., Renner, C., Marahiel, M. A., and Holak, T. A. (2000). Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. *Structure*, 8(4):407–418.

- Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., Bruccoleri, R., Lee, S. Y., Fischbach, M. A., Muller, R., Wohlleben, W., Breitling, R., Takano, E., and Medema, M. H. (2015). antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. *Nucleic Acids Res.*, 43(W1):W237-243.
- Weckwerth, W., Miyamoto, K., Iinuma, K., Krause, M., Glinski, M., Storm, T., Bonse, G., Kleinkauf, H., and Zocher, R. (2000). Biosynthesis of PF1022A and related cyclooctadepsipeptides. J. Biol. Chem., 275(23):17909-17915.
- Weist, S., Bister, B., Puk, O., Bischoff, D., Pelzer, S., Nicholson, G. J., Wohlleben, W., Jung, G., and Sussmuth, R. D. (2002). Fluorobalhimycin-a new chapter in glycopeptide antibiotic research. Angew. Chem. Int. Ed. Engl., 41(18):3383-3385.
- Wink, J. M., Kroppenstedt, R. M., Ganguli, B. N., Nadkarni, S. R., Schumann, P., Seibert, G., and Stackebrandt, E. (2003). Three new antibiotic producing species of the genus Amycolatopsis, Amycolatopsis balhimycina sp. nov., A. tolypomycina sp. nov., A. vancoresmycina sp. nov., and description of Amycolatopsis keratiniphila subsp. keratiniphila subsp. nov. and A. keratiniphila subsp. nogabecina subsp. nov. Syst. Appl. Microbiol., 26(1):38–46.
- Winn, M., Fyans, J. K., Zhuo, Y., and Micklefield, J. (2016). Recent advances in engineering nonribosomal peptide assembly lines. Nat Prod Rep, 33(2):317–347.
- Wolpert, M., Gust, B., Kammerer, B., and Heide, L. (2007). Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor. *Microbiology (Reading, Engl.)*, 153(Pt 5):1413–1423.
- Wright, S. K., Kish, M. M., and Viola, R. E. (2000). From malate dehydrogenase to phenyllactate dehydrogenase. Incorporation of unnatural amino acids to generate an improved enzyme-catalyzed activity. J. Biol. Chem., 275(41):31689–31694.

- Yonemoto, I. T., Li, W., Khullar, A., Reixach, N., and Gerratana, B. (2012). Mutasynthesis of a potent anticancer sibiromycin analogue. ACS Chem. Biol., 7(6):973–977.
- Zhang, W., Heemstra, J. R., Walsh, C. T., and Imker, H. J. (2010). Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins. *Biochemistry*, 49(46):9946–9947.
- Ziemert, N., Podell, S., Penn, K., Badger, J. H., Allen, E., and Jensen, P. R. (2012). The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. *PLoS ONE*, 7(3):e34064.
A Anhang

Abbildung A1: Phylogenetische Analyse der C-Domänen mit FastTree. Die Abbildung ist entnommen aus Crüsemann et al. 2018. Die Farben markieren die einzelnen C-Domänen Klassen. Die roten Umrandungen zeigen die C-Domänen des *bcfrs*-BGCs am Beispiel von *Cand*. B. crenata

Abbildung A2: Vektorkarte A1-PCP in pET28a.

Abbildung A3: Vektorkarte A2-PCP in pET28a.

Abbildung A4: MLP (*frsB*) aus dem *bcfrs*-BGC in pCDFApra.

Abbildung A5: Vektorkarte des pCDFApra. Der Vektor wurde von Luis Linares Otoya aus dem pCDFDuett-Vektor erstellt.

Alignment der C-Domänen aus MycA und der C-Domänen C6 aus cvfrs und bcfrs

MycA cvfrs bcfrs	QDNFNLTFSFHHSILDGWSVASLLTELLQQYLYLLDKKVLPLSPTPALSFRDFVALEKKT AGRSQLVVTYHHILLDGWSLPLLLEELLALYRAGGGDGGLPEA-TPYSAYLGWLQER EERTQLVLTYHHILLDGWSLPLVLEELLTLYRTQGDALSLPKT-TPYSTYLGWLQGR . :*::** :*****: :* *** * . ** :** :**	60 56 56
MycA cvfrs bcfrs	VQSPECQNYWQEKLRDVTLTKLPQWSKSNQVNQDWDWLVPISSQVSQGLKQLGKQVG DRAAA-CEAWGGYLEGLEGPTLLAQEGQADKGAAAAQARLSLELPAELTQALTRQARQQG DRASA-QQVWGDYMSGLEGPTLLARRSASEDQTQSKSSLTLPIELTQALNQQARQQG :: : : : : : : : : : : : : : : : : : :	117 115 112
MycA cvfrs bcfrs	VPLKSVLLAAHFRVLSLLNNQRDIVTGLVSNGRLEAA-DGEKILGLFLNTLPLRLELSGG VTLNTLLQAAWGMLLGKLNLSRDVVFGITVAGRPGELPGVERMIGLFINTVPVRLRWSAG VTLNTLLQAAWGILLGKLSSSRDVVFGITVAGRPGELPGVERMIGLFINTVPLRLRWRAG * *:::* ** :*. ***:* *:. ***::***:**:**:*	176 175 172
MycA cvfrs bcfrs	<pre>PWSDLV-KQAFDVERECLSWRRYPLAELQKSGQPLFDTAFNFIHFHVYQGIIGV ETVAGLVGRLQREQAGLLDHQHLDLVEIQRLAGQRQLFDTLFIFENYPFDSQAMAPDLGQ ETVAELLERLQREQARLLEYQYLDLAEIQRLAGQRQLFDTLFIFENYPFDAQAIAPALGR : : : *.: *.:*:*: .: **** * * :: . : *</pre>	229 235 232
MycA cvfrs bcfrs	KDLEVLGGKFFNQTNFTLLANFSLHPLSSQIELTLKYDGNYLGEKQMELIGGYYEKTLIA ASLRRVSGG <mark>EQH</mark> ESHYPLTLMAVPREMLSLYLSYDAQRFDKGVVQGLLTRFRLLLEA TVLSRINGG <mark>EQH</mark> DSHYPVTLMAVPRETLTLYLSYQSGRFEHGTMENLLTRFRTLLEA * :.* :::::::::::::::::::::::::::::::::	289 292 289
MycA cvfrs bcfrs	MATEGLERYETCCLLSEQEQHQLLKEWNDTEVHYPDGCIHQLFEEQVKRSPDAIAIITEN VAAEPSRPVSDIELLDEAERRQVLIEWNATERPSPQATLPELFEAQAARAPNAAALFCDG VVTDSSCPIVDIDLLTADERQQLLVEWNATDRPLPKVTLPEWFEAQVERTPTAMAVLCDE :.:: ** *: *: ** *: *: *. : : ** *. *: *: *: *:	349 352 349
MycA cvfrs bcfrs	EQLTYRQLNEKANQLGHYLGKKGVKTESLVGICLERTPEMVIGLLAILKAGGAYVPLDPA ETLDYAELNRRANQLAHWLIGQGVGPEQRVALALPRRAELLVAVLGVLKSGAAYLPLDPA VALDYRELNCRANQIAHWLISQGVGPEQKVALALPRRVELLVAMLGVLKAGAAYLPLDPA * * :** :***:.*:* :** *. *.:.* * *::::*:*******	409 412 409
<mark>rot</mark> : magenta:	Kondensations Motiv Start der nächsten A-Domäne	

Abbildung A6: Alignment der C-Domänen aus McyA und der C-Domänen C6 aus dem cvfrs-BGC und dem bcfrs-BGC.

Alignment der A-Domänen aus dem bcfrs-BGC

GrsA A8_FrsG_2_Burk A4_FrsE_2_Burk A5_FrsF_1_Burk A6_FrsF_2_Burk A3_FrsE_1_Burk A2_FrsD_Burk A1_FrsA_Burk A7_FrsG_1_Burk	MLNSSKSILIHAQNKNGTHEEEQYLFAVNNTKAEYPRDKTIHQLFEEQVSKR
GrsA A8_FrsG_2_Burk A4_FrsE_2_Burk A5_FrsF_1_Burk A6_FrsF_2_Burk A3_FrsE_1_Burk A2_FrsD_Burk A1_FrsA_Burk A7_FrsG_1_Burk	PNNVAIVCENEQLTYHELNVKANQLARIFIEKGIGKDTLVGIMMEKSIDLFIGILAVLKA PDATVLTYRGETLTCAELNARANRLARCLIADGAGPEELIAVALPRSIDMVVSLLAILKT PDASALTFGSQTLSYAVLNACANRLARWLLMHSIGPDDVVAVALPRSIDLVIALLAVVKS PTAMAVLCDEVALDYRELNCRANQIAHWLISQGVGPEQKVALALPRRVELLVAMLGVLKA PTAMAVLCDEVALDYRELNCRANQIAHWLISQGVGPEQKVALALPRRVELLVAMLGVLKA PEAVALAFGDEVLSYAELNKQANRLARMLVAAGLGPEGRVALAVPRSLDMVVALLGVTKA PNAVALEGPDERVSYGELDARANRLASHLQSLGVGPDVVVVCLERSIDMVVALLGIAKA PNAVALEGPDERVSYGELDARANRLASHLQSLGVGPDVVVGVCLERSIDMVVAILGIAKA PNAVALEGPDGCVSYGELDARANRLASHLQSLGVGPDVVVGVCLERSIDMVVAILGIAKA * .: : : : : : : : : : : : : : : : : : :
GrsA A8_FrsG_2_Burk A4_FrsE_2_Burk A5_FrsF_1_Burk A6_FrsF_2_Burk A3_FrsE_1_Burk A2_FrsD_Burk A1_FrsA_Burk A7_FrsG_1_Burk	GGAYVPIDIEYPKERIQYILDDSQARMLLTQKHLVHLIHNIQFNGQVEIFEEDTIKGAAYLPMDPAYPLERLSFMLTDAKPRLLLANMETIRQVAEVSRVSTLALDCPELAQTLTRGAAYLPLDADYPRNRLDFMLTDARPRALLTNGSMVEALSPAAGTQVLLLDAPEWTAARNHGAAYLPLDPAYPAEHLMYMLVDAKPACLLGLGDSIAALPDSNVRAWELDDEAGAAYLPLDPAYPAEHLMYMLVDAKPACLLGLGDSIAALPDSNVRAWELDDEAGAAYLPLDPAYPAEHLMYMLVDAKPACLLGLGDSIAALPDSNVRAWELDDEAGAAYLPLDPAYPAEHLMYMLVDAKPACLLGLGDSIAALPDSNVRAWELDDEAGAAYLPLDPEYPAERLAYMLADAKPTLLMTVNAQLGSLSECAGIPVLALDADSVRDAISQGAAYLPFAPDYPTERLAYMLTDSMAPVLLTESKQVERLPSYWGHLVKL-DRGAAYLPLAPDYPTERLAYMLTDSMAPVLLTESKQVERLPSYWGHLVKL-DR
GrsA A8_FrsG_2_Burk A4_FrsE_2_Burk A5_FrsF_1_Burk A6_FrsF_2_Burk A3_FrsE_1_Burk A2_FrsD_Burk A1_FrsA_Burk A7_FrsG_1_Burk	IREGTNLHVPSKSTDLAYVIYTSGTTGNPKGTMLEHKGISNLKVFFENSLN TDDSNPLVPRPLRSDNAAYLIYTSGSTGAPKGVLIPHSNVLRLLDKTAHWFD LDDRDMVVTERKQPLRPLDAAYVIYTSGSTGLPKGVVNTHHGIVNRLTWMQSAYR VKQALVAQPQENPTPQPRRLRAEHPAYVIYTSGSTGKPKGVEISQRSATDFVSWAHEAFG VKQALVAQPQENPTPQPRRLRAEHPAYVIYTSGSTGKPKGVEISQRSATDFVSWAHEAFG MSGCNLVQSERLCPLQPQHPVCVIYTSGSTGRPKGVMVTHQGIVSLRASQIERFG LDLSGQASSAPARALRPDHLAYVIYTSGSTGQPKGVAVSHAGLAGLVKSQEERFA LDLSQQASSAPARALRPDHLAYVIYTSGSTGQPKGVAVSHAGLAGLVKSQEERFA LDLSWQASSAPARALRPDHLAYVIYTSGSTGQPKGVAVSHAGLAGLVKSQEERFA
GrsA A8_FrsG_2_Burk A4_FrsE_2_Burk A5_FrsF_1_Burk A6_FrsF_2_Burk A3_FrsE_1_Burk A2_FrsD_Burk A1_FrsA_Burk A7_FrsG_1_Burk	VTEKDRIGQFASISFDASVWEMFMALLTGASLYIILKDTI-NDFVKFEQYINQKEITVIT FGPKDVWTLFHSYAFDFSVWEIWGALLTSGRLVVVPQTVS-LAPDEFLTLLEYEKVTILN LDASDVVLQKTPFSFDVSVWEFFWPLLNGARLVMAVPDGH-RDPAYLAELIQRQGVTTLH PDTFGDVLATTSLSFDVSVFELLAPLLCGGRVNLLRDLLVLGERSIERG-SLIS VSAESSVLQFASLSFGAALFEICTSLLTGARLVLVSSIKEALNVETMTALVTRHRLSHMV VAGPVRVLQFASLSFDAAVMEILMAFCSGGRLVLPAAGPLLGEQLEETLNRYAISHAL VAGPVRVLQFASLSFDAAVMEILMAFCSGGRLVLPAAGPLLGEQLEETLNRYAISHAL VAGPVRVLQFASLSFDAAVMEILMAFCSGGRLVLPAAGPLLGEQLEETLNRYAISHAL VAGPVRVLQFASLSFDAAVMEILMAFCSGGRLVLPAAGPLLGEQLEETLNRYAISHAL VAGPVRVLQFASLSFDAAVMEILMAFCSGGRLVLPAAGPLLGEQLEKTLNRYAISHAL :*.::*::::::::::::::::::::::::::::::::

GrsA A8_FrsG_2_Burk A4_FrsE_2_Burk A5_FrsF_1_Burk A6_FrsF_2_Burk A3_FrsE_1_Burk A2_FrsD_Burk A1_FrsA_Burk A7_FrsG_1_Burk	LPPTYVVHLDPERILSIQTLITAGSATSPSLVNKWKEKVTYIN QTPSAFYALMQAERHHGSNGGASLSLRRIIFG GEALDLSALQPWYQRHGDETTQLVN FVPSMLDAFLNEPSSRQCLSLKRVLCS GEVLSGNLA-ALQQHVLKRPLHN AVPSVFAQLLQHGDLRLDASTVVFAGEALPPELVEAVRRRWPGCRAAN AVPSVFAQLLQHGDRLPRTVRIMVAGEHCPAHLVERWSAORFMVN IAPSALETVEAEVVPGLSTLVVGGETCSGATAASWSQGRRMVN IAPSALETVEAEVVPGLSTLVVGGETCSGATAASWSQGRRMVN IAPSALETVEAEVVPGLSTLVVGGETCSGATAASWSQGRRMVN IAPSALETVEAEVVPGLSTLVVGGETCSGATAASWSQGRRMVN IAPSALETVEAE
GrsA A8_FrsG_2_Burk A4_FrsE_2_Burk A5_FrsF_1_Burk A6_FrsF_2_Burk A3_FrsE_1_Burk A2_FrsD_Burk A1_FrsA_Burk A7_FrsG_1_Burk	AYGPTETTICATTWVATKE TIGHSVPIGAPIQNTQIYIVDENLQLKSVGEAGELCIGGMYGITETTVHVSYQPLDSGMCGSRCNSLIGIGIPDLHLFLLDACLQPVPVGGIGELYGGLYGPTEAAVDVTAHACDPN DTGSSIQIGKPIWNTRIHVLDEGLRPVPLGVAGELYIGGIYGPTETTVYAIGTWLKEV - EGSRAPMIGRPLGNTPAYVLDEGLRPVPVGVAGELYIGGGYGSSEVTVCA - TMSQPL - EGSRAPMIGRPLDNTRAYVLDEGLRPVPVGVAGELYIGGGYGSSEVTVCA - TMSQPL - SGRALPPMGAPNANTRLYLLDAGMQPVPAGVMGELYAGAYGPTETTVCV - TMSKPL - SGSDKPKLGRPTLGAKLYVLDSTLQPVPVGVAGELYIAGAYGPTEVTVCV - TMSKPL - SGSDKPKLGRPTLGAKLYVLDSTLQPVPVGVAGELYIAGYY <t< td=""></t<>
GrsA A8_FrsG_2_Burk A4_FrsE_2_Burk A5_FrsF_1_Burk A6_FrsF_2_Burk A3_FrsE_1_Burk A2_FrsD_Burk A1_FrsA_Burk A7_FrsG_1_Burk	EGLARGYWKRPELTSQKFVDNPFVPGEKLYKTGDQARWLSDGNIEYLGRIDNQVKIRGHR AGLARGYHNRASLTAERFVANPFASSKRMYRTGDLARRNVNDIFEYHGRADQQVKVRGFR TGLARGYLNRAGLTAERFVANPYGEGERLYRSGDLARWNAEGELEYLGRVDQQLKIRGFR AGLARGYLNRAGLTAERFVANPYGEGERLYRSGDLARWNAEGELEYLGRVDQQLKIRGFR EGLARGYLNRAGLTAERFVANPYGEGERLYRSGDLARWNAEGELEYLGRVDQQLKIRGFR RGLARGYYQRPGLTAERFVANPFEPGWQMYRTGDLARRDIDGRLDYLGRVDQQLKIRGFR RGLARGYYQRPGLTAERFVANPYGKGERLYRSGDLARWSGEGELEYLGRVDQQLKIRGFR RGLARGYYQRPGLTAERFVANPYGKGERLYRSGDLARWSGEGELEYLGRVDQQLKIRGFR RGLARGYYQRPGLTAERFVANPYGKGERLYRSGDLARWSGEGELEYLGRVDQQLKIRGFR RGLARGYYQRPGLTAERFVANPYGKGERLYRSGDLARWSGEGELEYLGRVDQQLKIRGFR RCLARGYYQRPGLTAERFVANPYGKGERLYRSGDLARWSGEGELEYLGRVDQQLKIRGFR RCLARGYYQRPGLTAERFVANPYGKGERLYRSGDLARWSGEGELEYLGRVDQQLKIRGFR
GrsA A8_FrsG_2_Burk A4_FrsE_2_Burk A5_FrsF_1_Burk A6_FrsF_2_Burk A3_FrsE_1_Burk A2_FrsD_Burk A1_FrsA_Burk A7_FrsG_1_Burk	VELEEVESILLKHMYISETAVSVHKDHQEQPYLCAYFVSEKHIPLEQLRQFSSEELPT IELGEIETVLRQHPGVEDARVVVQTLHDNDCRLVAYLQPSERTAAPLRWLKV IEPGEIEAALCRHPLVSQAVVIAREDTPGHKQLVGYVVLDDAAAL-QRDAEDET-RQVQA IEPGEIEAALCRHPLVSQAVVIAREDTPGHKQLVGYVVLDDAAAL-QRDAEDET-RQVQA IEPGEIEAALCRHPLVSQAVVIAREDTPGHKQLVGYVVLDDAAAL-QRDAEDET-RQVQA IEPAEIEAALRQLPGVAQATVVAWEEVPGAKQLVGYVVLDDAAAL-QRDAEDET-RQVQA IEPAEIEAALRQLPGVAQATVVAWEEVPGAKQLVGYVVRGEVDGQALRRQVANWLPE IEPGEIETVLCQHPQVREAVVVSRT-NGRDTQLVGYVTIRGEVDGQALRRQVANWLPE IEPGEIETVLCQHPQVREAVVVSRT-NGRDTQLVGYVTVRGEVDGQALRRQVANWLPE IEPGEIETVLCQHPQVREAVVVSRT-NGRDTQLVGYVTVRGEVDGQALRRQVANWLPE

<mark>grün</mark>: Core-Regionen nach Stachelhaus <mark>gelb</mark>: Stachelhauscode

Abbildung A7: Alignment der A-Domänen aus dem bcfrs-BGC.

Percent Identity Matrix des A-Domänenalignments aus dem bcfrs-BGC

```
#
#
#
Percent Identity Matrix - created by Clustal2.1
#
#
```

1: GrsA	100.00	31.07	29.65	35.98	27.57	34.84	35.35	35.17	36.40
2: A8_FrsG_2_Burk	31.07	100.00	38.24	36.44	35.30	37.87	37.10	37.10	37.27
3: A4_FrsE_2_Burk	29.65	38.24	100.00	47.43	73.23	40.55	41.10	41.28	42.30
4: A5_FrsF_1_Burk	35.98	36.44	47.43	100.00	84.00	46.71	50.68	51.08	51.08
5: A6_FrsF_2_Burk	27.57	35.30	73.23	84.00	100.00	39.44	42.43	42.43	43.26
6: A3_FrsE_1_Burk	34.84	37.87	40.55	46.71	39.44	100.00	50.09	50.28	50.56
7: A2_FrsD_Burk	35.35	37.10	41.10	50.68	42.43	50.09	100.00	96.92	96.13
8: A1_FrsA_Burk	35.17	37.10	41.28	51.08	42.43	50.28	96.92	100.00	97.79
9: A7_FrsG_1_Burk	36.40	37.27	42.30	51.08	43.26	50.56	96.13	97.79	100.00

Abbildung A8: Percent identity Matrix des Alignments der A-Domänen aus dem bcfrs-BGC.

Alignment der A-Domänen aus dem cvfrs-BGC

CLUSTAL 0(1.2.4) multiple sequence alignment

GrsA FrsG2_Cro FrsE1_Cro FrsG1_Cro FrsA_Cro FrsD_Cro FrsE2_Cro FrsF1_Cro FrsF2_Cro	MLNSSKSILIHAQNKNGTHEEEQYLFAVNNTKAEYPRDKTIHQL
GrsA FrsG2_Cro FrsE1_Cro FrsG1_Cro FrsA_Cro FrsD_Cro FrsE2_Cro FrsF1_Cro FrsF2_Cro	FEEQVSKRPNNVAIVCENEQLTYHELNVKANQLARIFIEKGIGKDTLVGIMMEKSIDLFI FEEQAGRAPQASALSFQGQTLSYAELNARANRLAHALIARGAGPEDLIAAALPRSLDLVV FEAQAKASPDSVALAFGSEQYSYAELDRRANQLARTLAGAGIGPEDIVALAVPRSLDMVV FETQAALTPHAVALESPDARLSYAELDARANRLARHLQSLGVGADVLVGICLERSIDMVV FETQAALTPHAVALESPDARLSYAELDARANRLARHLQSLGVGADVLVGICLERSIDMVV FETQAALTPHAVALESPDARLSYAELDARANRLARHLQSLGVGADVLVGICLERSIDMVV FETQAALTPHAVALESPDARLSYAELDARANRLARHLQSLGVGADVLVGICLERSIDMVV FERQARLTPNAQALIFERQSLSYAALNARANQLCRVLLAHGVGPDDVVAVALPRSIELVV FEAQAARAPNAAALFCDGETLDYAELNRRANQLAHWLIGQGVGPEQRVALALPRRAELLV ** *. *. *: * :: * :: * :: : * :: : : :
GrsA FrsG2_Cro FrsE1_Cro FrsG1_Cro FrsA_Cro FrsD_Cro FrsE2_Cro FrsF1_Cro FrsF2_Cro	GILAVLKAGGAYVPIDIEYPKERIQYILDDSQARMLLTQKHLVHLIHNIQFNGQVEIFEE SLLAILKTGAAYLPLDPDYPAERLGFMLADAKPRLLLGHGEALRHLPVDASTQ-AIALDD ALLGVVKAGAAYLPLDPEYPRERLAHMLSDATPRLLLATSDTVGGLPAFSGLR-VQVLDE AVLGALKSGAAYLPLSPEYPTERLAYMLGDSMAPVLLTDSAQVERLPS-YWGR-VVELDR AVLGALKSGAAYLPLSPEYPTERLAYMLGDSMAPVLLTDSAQVERLPS-YWGR-VVELDR AVLGVLKSGAAYLPLSPEYPTERLAYMLGDSMAPVLLTDSAQVERLPS-YWGR-VVELDR ALLAVVKSGAAYLPLDADYPRERLDFMLADARPAVLLSNAAMAGILSPADGTR-LLSLDE AVLGVLKSGAAYLPLDPAYPAERLAHMLADARPACLLGLGDGIEA-LPDSGVA-CWRLDD AVLGVLKSGAAYLPLDPAYPAERLAHMLADARPACLLGLGDGIEA-LPDSGVA-CWRLDD .:*.:*:****:::: ** **:::* ** :::
GrsA FrsG2_Cro FrsE1_Cro FrsG1_Cro FrsA_Cro FrsD_Cro FrsE2_Cro FrsF1_Cro FrsF2_Cro	DTIKIREGTNLHVPSKSTDLAYVIYTSGTTGNPKGTMLEHKGISNLKVFFE AELGRELALAGDGNPERARPLGADHAAYVIYTSGSTGQPKGVLVPHRNVLRLLDSTE PAWREMVARADGRPLAQRERTRPLLPQHPVCVIYTSGSTGVPKGVAVSHAGLAGLAGSQT LDLDALPDSAPERALRAEHLAYVIYTSGSTGQPKGVAVSHAGLAGLAGSQT LDLDALPDSAPERALRAEHLAYVIYTSGSTGQPKGVAVSHAGLAGLAGSQT PGLLSAQDGADSGDLAAGERRRRLRPQDAAYVIYTSGSTGVPKGVAVSHAGLAGLAGSQT AALRQTLAAQPQSDPTPAQRRLRPEHPAYVIYTSGSSGQPKGVVISQRSAADFVDWAL AALRQTLAAQPQSDPTPAQRRLRPEHPAYVIYTSGSSGQPKGVVISQRSAADFVDWAL
GrsA FrsG2_Cro FrsG1_Cro FrsG1_Cro FrsD_Cro FrsD_Cro FrsE2_Cro FrsF1_Cro FrsF2_Cro	NSLNVTEKDRIGQFASISFDASVWEMFMALLTGASLYIILKDTINDFVKFEQYINQKE RWFGFGAGDVWTLFHSYAFDFSVWEIWGALLSGGRLVVVPRAAVQAPDEFLALLEREK ERFGVSAGSSVLQFASLSFDAAVMEMLWAFCSGGRLVLVASAREAL-NAGAMAELARHG ERFALQGPTRVLQFASLSFDAAVMEMLMAFCSGGRLVLPAAGPLLGEQLLDTLNRHE ERFALQGPTRVLQFASLSFDAAVMEMLMAFCSGGRLVLPAAGPLLGEQLLDTLNRHE SAYRLDASDTVLQFASLSFDAAVMEMLMAFCSGGRLVLPAAGPLLGEQLLDTLNRHE SAYRLDASDTVLQKTPFSFDVSVWEFFWPLLEGARLVLAVPDGHRDPAYLAALIQRER ASFGAETFADVLATTSLSFDVSVFELLTPLLSGGRVRLLRDLLELGERPISGG

:*. :: *. : *. : :

GrsA FrsG2_Cro FrsE1_Cro FrsG1_Cro FrsA_Cro FrsD_Cro FrsE2_Cro FrsF1_Cro FrsF2_Cro	ITVITLPPTYVVHLDPERILSIQTLITAGSATSPSLVNKWKEKVTYI VSVLNQTPSAFYALMQAEAARPETASELALRTVVFGGEALDLSALRSWYQRHGDVGPKLA LSHVVLPPSALEALASERLPDSLGIMVAGEHCPAHLQERWSAGRLMV ISHALISPSALSTADAALAPVLRTLVVGGEACPGATVAAWSAGRRMV ISHALISPSALSTADAALAPVLRTLVVGGEACPGATVAAWSAGRRMV ISHALISPSALSTADAALAPVLRTLVVGGEACPGATVAAWSAGRRMV VTVHFVPSMLEVFLREAGSRQCLSLRRVLCSGEALSGELSALHR-QVLGSPLH -SLISAVPSVFAQLLQHGAVSLEAKTVVFAGEALPPELVAAVRQRWPECRVA : *: :::*.
GrsA FrsG2_Cro FrsE1_Cro FrsG1_Cro FrsA_Cro FrsD_Cro FrsE2_Cro FrsF1_Cro FrsF2_Cro	NAYGPTETTICATTWVATKETIGHSVPIGAPIQNTQIYIVDENLQLKSVGEAGELCIG NMYGITETTVHASYQALDRRLCEEGGNSLIGEAIPDLRLHLLDRWLQPVPAGGVGELYIG NGYGSSEVTVCATISLPLSGRGAPPMGLPNANTRLYVLDAGLQPVPVGVPGELYIA NAYGPTEATACVTMSEPLSGDGAPKLGRPTHNARLYVLDGALQLAPVGVAGELYIA NAYGPTEATACVTMSEPLSGDGAPKLGRPTHNARLYVLDGALQLAPVGVAGELYIA NAYGPTEATACVTMSEPLSGDGAPKLGRPTHNARLYVLDGALQLAPVGVAGELYIA NAYGPTEATACVTMSEPLSGDGAPKLGRPTHNARLYVLDGALQLAPVGVAGELYIA NAYGPTEATACVTMSEPLSGDGAPKLGRPTHNARLYVLDGALQLAPVGVAGELYIA NIYGPTEATACVTMSEPLSGETGVSVPIGAPIWNTRIHVLDAGLRPAPVGVAGELYIA NIYGPTETTVYAIGGWLEAGERAPTIGRPLGNTQTYVLDAGLRPAPVGVAGELYIA NIYGPTETTVYAIGGWLEAGERAPTIGRPLGNTQTYVLDAGLRPAPVGVAGELYIA * ** :*:: : : : : : : : : : : : : : : :
GrsA FrsG2_Cro FrsE1_Cro FrsG1_Cro FrsA_Cro FrsD_Cro FrsE2_Cro FrsF1_Cro FrsF2_Cro	GEGLARGYWKRPELTSQKFVDNPFVPGEKLYKTGDQARWLSDGNIEYLGRIDNQVKIRGH GAGLARGYLNRPGLSAERFIANPFAAGERMYRSGDLARRNAAGALEYQGRADQQVKVRGF GDGLARGYLNRPGLSAERFVANPFAEGERMYRTGDLARRGGDGRLEYLGRTDHQVKIRGF GAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRSDQQVKVRGF GAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRSDQQVKVRGF GAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRSDQQVKVRGF GAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRSDQQVKVRGF GAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF GAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF GAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF GAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF GAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF CAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF CAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF CAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF CAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF CAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF CAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF CAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVRGF
GrsA FrsG2_Cro FrsE1_Cro FrsG1_Cro FrsA_Cro FrsD_Cro FrsE2_Cro FrsF1_Cro FrsF2_Cro	RVELEEVESILLKHMYISETAVSVHKDHQEQPYLCAYFVSEKHIPLEQLRQFSSEELP RIEPGEIETALRGHPGVEDARVVVKAMDGNDQRLIAYLLPSERAAAPLRRWL RIEPAEIEAVLRRLSGVAQAAVVAREDAPGVRQLVGVVVAATEAKLDAQGLRRQLAEHLP RIEPGEIEAVLNRHPQVSQSVVVARQSQGGDSQLVAYVAAVGG-V-EGSELRRLAAGQLP RIEPGEIEAVLNRHPQVSQSVVVARQSQGGDSQLVAYVAAVGG-V-EGSELRRLAAGQLP RIEPGEIEAVLNRHPQVSQSVVVARQSQGGDSQLVAYVAAVGG-V-EGSELRRLAAGQLP RIEPGEIEAVLNRHPQVSQSVVARQSQGGDSQLVAYVAAVGG-V-EGSELRRLAAGQLP RIEPGEIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDA-AALQRDEDSE-SRQVE RIEPGEIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDA-AALQRDEDSE-SRQVE RIEPGEIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDA-AALQRDEDSE-RQVE *:* *:*:*
GrsA FrsG2_Cro FrsG1_Cro FrsG1_Cro FrsA_Cro FrsD_Cro FrsE2_Cro FrsF1_Cro FrsF2_Cro	T-YMIPSYFIQLD-KMPLTSNGKIDRKQLPEPDLTFGMRVDYEAPRNEIEET RAKSSVAAQNAREIELPNGLPVFHHNAAETEFL E-HMVPAALVELA-ALPRTPNGKLDRKALPAPEFGGSHYQRPRNAQEEM E-HMVPAAVVVLE-SLPQLPNGKLDRKSLPAPEFGGSHYQRPRNAQEEM E-HMVPAAVVVLE-SLPQLPNGKLDRKSLPAPEFGGSHYQRPRNAQEEM AWQQVYDTLYD-AHQHQPFGENFGGWDSSYDGQPLPLAQMREWRSATVERIRELR E-HMVPAAMIGLD-VLPLTPSGKLDRKALPAPDFAGRSGRAARDAQE AWQQVYDTLYD-AHQHQPFGENFGGWDSSYDGQPLPLAQMREWRSAT

<mark>grün</mark>: Core-Regionen nach Stachelhaus <mark>gelb</mark>: Stachelhauscode

Abbildung A9: Alignment der A-Domänen aus dem *cvfrs*-BGC.

Percent Identity Matrix des A-Domänenalignments aus dem *cvfrs*-BGC

#
#
#
Percent Identity Matrix - created by Clustal2.1
#
#

180

1:	GrsA	100.00	31.71	35.62	36.35	36.65	37.02	31.16	34.35	31.27
2:	FrsG2_Cro	31.71	100.00	43.69	43.75	43.48	43.48	44.18	46.46	46.64
3:	FrsE1_Cro	35.62	43.69	100.00	52.84	52.84	53.03	46.73	51.37	46.72
4:	FrsG1_Cro	36.35	43.75	52.84	100.00	100.00	99.82	45.56	54.73	50.29
5:	FrsA_Cro	36.65	43.48	52.84	100.00	100.00	99.63	45.30	55.05	50.58
6:	FrsD_Cro	37.02	43.48	53.03	99.82	99.63	100.00	45.49	55.24	50.78
7:	FrsE2_Cro	31.16	44.18	46.73	45.56	45.30	45.49	100.00	52.52	61.97
8:	FrsF1_Cro	34.35	46.46	51.37	54.73	55.05	55.24	52.52	100.00	91.24
9:	FrsF2_Cro	31.27	46.64	46.72	50.29	50.58	50.78	61.97	91.24	100.00

Abbildung A10: Percent Identity Matrix des Alignments der A-Domänen aus dem cvfrs-BGC.

Acre_FrsG_MT_1	GRADQQVKVRGFRIELGEIETVLRQHPGVEDARVVVQTLHDNDCRLVAYLQPSE
Acre_FrsE_MT	EIEAALCRHPLVSQAVVIAREDTPGHKQLVGYVVLDDAAALQR
Acre FrsF MT	EIEAALCRHPLVS0AVVIAREDTPGHK0LVGYVVLDDAAAL0R
Acre FrsG MT 2	EIEAALCRHPLVSÖAVVIAREDAPGHKÖLVGYVVLDDAAALÖR
	***.* .** ***.*
Acre ErsG MT 1	RTAAPI RRWI KVRRDAEA-OGARAEEI PNGMPTEHHNTMETEEI YEETEEDI VYEKH
Acre Erse MT	
Acro Erse MT	
Acro Erec MT 2	
ACT E_FT 30_FT_2	
Aara Frac MT 1	
ACTE_FISG_MT_I	
ACTE_FISE_MI	
Acre_FrsF_MI	RIRELQPRRVLEIGVGSGLLLAPLAPECEAYWGIDLSPIIIAVLERQLSEQIFGDRVRLF
Acre_FrsG_MI_2	RIRELQPRRVLEIGVGSGLLLAPLAPECEAYWGIDLSPIIIAVLERQLSEQIFGDRVRLF
	** : *:::*: : *: : *: : *: *: *: *: *:
Acre_FrsG_MT_1	DCGLSDAVRQERFTFYPNDTLISTSRNSPEAIRGMVKS
Acre_FrsE_MT	ALGAHELLKLPEGNFDVIVINSVLQYFPNAAYLTEVIKQSLERLSPGGALYLGDVRNLAL
Acre_FrsF_MT	ALGAHELLKLPEGNFDVIVINSVLQYFPNAAYLTEVIKQSLERLSPGGALYLGDVRNLAL
Acre_FrsG_MT_2	ALGAHELSKLPEGNFDVIVINSVLQYFPNAAYLTEVIKQSLERLSPGGALYLGDVRNLAL
	* : : : : : : : : ** . ** : : : : : : :
Acre_FrsG_MT_1	FLSQDYMCVLRTLSDVITEH
Acre FrsE MT	LDVFATAVDLCOVGTET-DAASLRRRVEORLLAEKELLVSPAFFSRLRETLPOIGAVDIR
Acre FrsF MT	LDVFATAVDLCOVGTET-DAASLRRRVEORLLAEKELLVSPAFFSRLRETLPOIGAVDIR
Acre FrsG MT 2	I DVEATAVDI COVGTET - DAASI RRRVEORI I AEKELI VSPAFESRI RETI POTGAVDTR
	* • * * • • • • • • • • • • • • • • • •
Acre ErsG MT 1	
Acre Erse MT	
Acre Erse MT	
Acro Erec MT 2	
ACTE_FISE_MI_2	
Aoro Frec MT 1	
ACTE_FISG_MT_I	
ACTE_FISE_MT	
Acre_FrsF_MI	GIPNARLHGEVLVIRRLKSEEGLASWRRWLDESGGVEPEDLYRLGAELGYRVVLIWSNQP
Acre_FrsG_MI_2	GIPNARLHGEVLVIRRLKSEDGLASWRRWLDESGGVEPEDLYRLGAELGYRVVLIWSNQP
Acre_FrsG_MT_1	RDTAIHCLYAVHVSRDAEMRPGHHAENTSLFWNCRADLLRDVRANLRKR <mark>LP</mark> DY <mark>M</mark> Q
Acre_FrsE_MT	DHFDAVFLPEQQRGALDAVYRTPPVLKPLSGYVNNPANFEQFAAIRRYVGEQ <mark>LP</mark> DY <mark>M</mark> V
Acre_FrsF_MT	DHFDAVFLPEQQRGALDAVYRTPPVLKPLSGYVNNPANFEQFAAIRRYVGEQ <mark>LP</mark> DY <mark>M</mark> V
Acre_FrsG_MT_2	DHFDAVFLPEQQRGALDAVYRTPPVLKPLSGYVNNPANFEQFAAIRRYVGEQLPDYMV
	:::* ** * : * : * . : : : * : :: ****
Acre_FrsG_MT_1	PNHMVLLDTFPLTPNGKLDRRALPAPEQAAMRVRDIEPA
Acre_FrsE_MT	PAALVLLEGLPLTPNGKLDRRALPAPEFGTACYRAPGSKQEKVLAQLFAEVLGLPQVGVD
Acre_FrsF_MT	PAALVLLEGLPLTPNGKLDRRALPAPEFGTACYRAPGSKOEKVLAOLFAEVLGLPOVGVD
Acre FrsG MT 2	PAALVLLEGLPLTPNGKLDRRALPAPEFGTACYRAPGSEQEKVLAOLFAEVLGLPOVGVN
	* *** ************

Acre_FrsG_MT_1------Acre_FrsE_MTDSFFDLGGAcre_FrsF_MTDSFFDLGGAcre_FrsG_MT_2DSFFDLGG

<mark>gelb</mark>: konservierte Regionen von MT-Domänen nach Labby et al.. <mark>rosa</mark>: Core A9-Core A11 Bereiche der A-Domänen.

Abbildung A11: Alignment der MT-Domänen aus dem bcfrs-BGC.

FrsG_MT1_Cro FrsF_MT_Cro FrsE_MT_Cro FrsG_MT2_Cro	GRADQQVKVRGFRIEPGEIETALRGHPGVEDARVVVKAMDGNDQRLIAYLLPSERAAA GRADQQLKVRGFRIEPGEIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDAAALQR GRADQQLKVRGFRIEPGEIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDAAALQR EIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDAAALQR ***:** **.*:* *:: .:: :::::::::::::::::
FrsG_MT1_Cro FrsF_MT_Cro FrsE_MT_Cro FrsG_MT2_Cro	PLRRWLRAKSSVAAQNAREIELPNGLPVFHHNAAETEFLYEEIFEDRIYLKHG DEDSESRQVEAWQQVYDTLYDAHQH-QPFGENFGGWDSSYDGQPLPLAQMREWRSATVER DEDSESRQVEAWQQVYDTLYDAHQH-QPFGENFGGWDSSYDGQPLPLAQMREWRSATVER DEDSESRQVEAWQQVYDTLYDAHQH-QPFGENFGGWDSSYDGQPLPLAQMREWRSATVER :. * ::: : : : : : : : : : : : : : :
FrsG_MT1_Cro FrsF_MT_Cro FrsE_MT_Cro FrsG_MT2_Cro	IRLDNDAC <mark>V</mark> FDV <mark>G</mark> ANI <mark>G</mark> LFTLFVGQHCGNATVFAFEPIPPVFGTLSLNAAVHGGKVRLFD IRELRPRRLLEIGVGSGLLLAPLADACEAYWGTDLSPATIAVLEKQLETQSCRDKVRLFA IRELRPRRLLEIGVGSGLLLAPLADACEAYWGTDLSPATIAVLEKQLETQSCRDKVRLFA IRELRPRRLLEIGVGSGLLLAPLADACEAYWGTDLSPATIAVLEKQLETQSCRDKVRLFA **
FrsG_MT1_Cro FrsF_MT_Cro FrsE_MT_Cro FrsG_MT2_Cro	CGLSDAARQETFTFYPNDTLISSSRNSAEATRRMV LGAHELARLPAMRFDCIVINSVLQYFPNAAYLGEVIEQALARLEAGGALYLGDVRNLELL LGAHELARLPAMRFDCIVINSVLQYFPNAAYLGEVIEQALARLEAGGALYLGDVRNLELL * : ** .: ::: :: :: :: :: :: :: ::: :::
FrsG_MT1_Cro FrsF_MT_Cro FrsE_MT_Cro FrsG_MT2_Cro	KSFLINQHGDSDGEAVDELLEERLSSQQYVCGLRSLSDVVAEHGVERI PSFAAAVELRQSEPEVDAAALQRRVSQRLLAEKELLLAPDFFSRLREQLPQIGAVDI PSFAAAVELRQSEPEVDAAALQRRVSQRLLAEKELLLAPDFFSRLREQLPQIGAVDI PSFAAAVELRQSEPEVDAAALQRRVSQRLLAEKELLLAPDFFSRLREQLPQIGAVDI ** .: *. *::::** .: *. *::::** .: *. *:
FrsG_MT1_Cro FrsF_MT_Cro FrsE_MT_Cro FrsG_MT2_Cro	DLLKIDVENAEYDVLRGISDADWPKIRQLVMEVHDVD RLKRGEAA <mark>NELNRYRYEVV</mark> LRKGPCQARSLASAAAEPWSSLGSLSACRERLSVGGDALRV RLKRGEAA <mark>NELNRYRYEVV</mark> LRKGPCQARSLASAAAEPWSSLGSLSACRERLSVGGDALRV *: :::::::::::::::::::::::::::::::::::
FrsG_MT1_Cro FrsF_MT_Cro FrsE_MT_Cro FrsG_MT2_Cro	GRLACIVELLRERGYRVIHEQDRL TGVPNALLHGEAAAARELKAGGSPSALLARLDENGGVRPEALRRLGAELGWRMLATWSRQ TGVPNALLHGEAAAARELKAGGSPSALLARLDENGGVRPEALRRLGAELGWRMLATWSRQ TGVPNALLHGEAAAARELKAGGSPSALLARLDENGGVRPEALRRLGAELGWRMLATWSRQ * : .: .* * *::: .*
FrsG_MT1_Cro FrsF_MT_Cro FrsE_MT_Cro FrsG_MT2_Cro	LQNTAIHCLYAVHASCGSASADAVPKAEPAAVWRSRSALLRDVQAELRSQLPDY AGHFDAVFV-RGEDGEALDGVYQPAGALQPLSGYVNNPANFEQYAAIRRYALEQLPEY AGHFDAVFV-RGEDGEALDGVYQPAGALQPLSGYVNNPANFEQYAAIRRYALEQLPEY AGHFDAVFV-RGEDGEALDGVYQPAGALQPLSGYVNNPANFEQYAAIRRYALEQLPEY : ::: : *.* :* :: * .: :**::
FrsG_MT1_Cro FrsF_MT_Cro FrsE_MT_Cro FrsG_MT2_Cro	MQPNHLVLLDAFPLTANGKLDRRALPTPEQAALRTRDVDPA MVPAAIVLLDALPLTPNGKLDRRALPAPEFGGTGYRAPESERE MVPAAIVLLDALPLTPNGKLDRRALPAPEFGGTGYRAPESEREQLLARLFGEVLGLPQVG MVPAAIVLLDALPLTPNGKLDRRALPAPEFGGTGYRAPESERE

<mark>gelb</mark>: konservierte Regionen von MT-Domänen nach Labby et al. <mark>rosa</mark>: Core A9-Core A11 Bereiche der A-Domänen

Abbildung A12: Alignment der MT-Domänen aus dem cvfrs-BGC.

```
#
#
#
#
#
  Percent Identity Matrix MT-Domänen Cand. B. crenata - created by Clustal2.1
    1: Acre_FrsG_MT_1 100.00
                                                24.36
                                24.36
                                        24.36
    2: Acre_FrsE_MT
                        24.36
                               100.00
                                       100.00
                                                98.10
    3: Acre_FrsF_MT
                        24.36 100.00
                                       100.00
                                                98.10
     4: Acre_FrsG_MT_2
                        24.36
                                98.10
                                        98.10 100.00
```

Abbildung A13: Percent Identity Matrix des Alignments der MT-Domänen aus dem bcfrs-BGC.

```
#
#
  Percent Identity Matrix MT-Domänen C. vaccinii - created by Clustal2.1
#
#
#
    1: FrsG_MT1_Cro 100.00
                                             23.58
                              26.55
                                      26.55
    2: FrsF_MT_Cro
                      26.55
                             100.00
                                    100.00
                                            100.00
    3: FrsE_MT_Cro
                      26.55
                            100.00 100.00
                                            100.00
    4: FrsG_MT2_Cro
                      23.58 100.00 100.00 100.00
```

Abbildung A14: Percent Identity Matrix des Alignments der MT-Domänen aus dem cvfrs-BGC.

Acre_FrsE_MT Acre_FrsF_MT Acre_FrsG_MT_2 FrsE_MT_Cro FrsF_MT_Cro FrsG_MT2_Cro	EIEAALCRHPLVSQAVVIAREDTPGHKQLVGYVVLDDAAALQRDAEDETRQVQAWRQVYD EIEAALCRHPLVSQAVVIAREDTPGHKQLVGYVVLDDAAALQRDAEDETRQVQAWRQVYD EIEAALCRHPLVSQAVVIAREDAPGHKQLVGYVVLDDAAALQRDTEDETRQVQAWRQVYD EIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDAAALQRDEDSESRQVEAWQQVYD EIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDAAALQRDEDSESRQVEAWQQVYD EIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDAAALQRDEDSESRQVEAWQQVYD ********** ::**:****
Acre_FrsE_MT Acre_FrsF_MT Acre_Frs6_MT_2 FrsE_MT_Cro FrsF_MT_Cro Frs6_MT2_Cro	TLYEAHCQQPFGENFGGWDSSYDGQPLPLEEMRAWRQATVERIRELQPRRVLEIGVGSGL TLYEAHCQQPFGENFGGWDSSYDGQPLPLEEMRAWRQATVERIRELQPRRVLEIGVGSGL TLYEAHCQQPFGENFGGWNSSYDGQPLPLEEMRAWRQATVERIRELQPRRVLEIGVGSGL TLYDAHQHQPFGENFGGWDSSYDGQPLPLAQMREWRSATVERIRELRPRRLLEIGVGSGL TLYDAHQHQPFGENFGGWDSSYDGQPLPLAQMREWRSATVERIRELRPRRLLEIGVGSGL TLYDAHQHQPFGENFGGWDSSYDGQPLPLAQMREWRSATVERIRELRPRRLLEIGVGSGL ***:** :******************************
Acre_FrsE_MT Acre_FrsF_MT Acre_Frs6_MT_2 FrsE_MT_Cro FrsF_MT_Cro Frs6_MT2_Cro	LLAPLAPECEAYWGTDLSPTTIAVLERQLSEQTFGDRVRLFALGAHELLKLPEGNFDVIV LLAPLAPECEAYWGTDLSPTTIAVLERQLSEQTFGDRVRLFALGAHELLKLPEGNFDVIV LLAPLAPECEAYWGTDLSPTTIAVLERQLSEQTFGDRVRLFALGAHELSKLPEGNFDVIV LLAPLADACEAYWGTDLSPATIAVLEKQLETQSCRDKVRLFALGAHELARLPAMRFDCIV LLAPLADACEAYWGTDLSPATIAVLEKQLETQSCRDKVRLFALGAHELARLPAMRFDCIV LLAPLADACEAYWGTDLSPATIAVLEKQLETQSCRDKVRLFALGAHELARLPAMRFDCIV LLAPLADACEAYWGTDLSPATIAVLEKQLETQSCRDKVRLFALGAHELARLPAMRFDCIV LLAPLADACEAYWGTDLSPATIAVLEKQLETQSCRDKVRLFALGAHELARLPAMRFDCIV
Acre_FrsE_MT Acre_FrsF_MT Acre_FrsG_MT_2 FrsE_MT_Cro FrsF_MT_Cro FrsG_MT2_Cro	INSVLQYFPNAAYLTEVIKQSLERLSPGGALYLGDVRNLALLDVFATAVDLCQVGTETDA INSVLQYFPNAAYLTEVIKQSLERLSPGGALYLGDVRNLALLDVFATAVDLCQVGTETDA INSVLQYFPNAAYLTEVIKQSLERLSPGGALYLGDVRNLALLDVFATAVDLCQVGTETDA INSVLQYFPNAAYLGEVIEQALARLEAGGALYLGDVRNLELLPSFAAAVELRQSEPEVDA INSVLQYFPNAAYLGEVIEQALARLEAGGALYLGDVRNLELLPSFAAAVELRQSEPEVDA INSVLQYFPNAAYLGEVIEQALARLEAGGALYLGDVRNLELLPSFAAAVELRQSEPEVDA ************************************
Acre_FrsE_MT Acre_FrsF_MT Acre_FrsG_MT_2 FrsE_MT_Cro FrsF_MT_Cro FrsG_MT2_Cro	ASLRRRVEQRLLAEKELLVSPAFFSRLRETLPQIGAVDIRLKRGEAVNELNRYRYEAVLY ASLRRRVEQRLLAEKELLVSPAFFSRLRETLPQIGAVDIRLKRGEAVNELNRYRYEAVLY ASLRRRVEQRLLAEKELLVSPAFFSRLRETLPQIGAVDIRLKRGEAVNELSRYRYEAVLY AALQRRVSQRLLAEKELLLAPDFFSRLREQLPQIGAVDIRLKRGEAANELNRYRYEVVLR AALQRRVSQRLLAEKELLLAPDFFSRLREQLPQIGAVDIRLKRGEAANELNRYRYEVVLR AALQRRVSQRLLAEKELLLAPDFFSRLREQLPQIGAVDIRLKRGEAANELNRYRYEVVLR *:*:***
Acre_FrsE_MT Acre_FrsF_MT Acre_Frs6_MT_2 FrsE_MT_Cro FrsF_MT_Cro Frs6_MT2_Cro	KEPCEAVSLSKVETQTWSDVGNMSACRTRLMQYASMWRIEGIPNARLHGEVLVTRRLKSE KEPCEAVSLSKVETQTWSDVGNMSACRTRLMQYASMWRIEGIPNARLHGEVLVTRRLKSE KEPCEAVSLSEVETQTWSDVGNMSACRTRLMQYAPMWRIEGIPNARLHGEVLVTRRLKSE KGPCQARSLASAAAEPWSSLGSLSACRERLSVGGDALRVTGVPNALLHGEAAAARELKAG KGPCQARSLASAAAEPWSSLGSLSACRERLSVGGDALRVTGVPNALLHGEAAAARELKAG KGPCQARSLASAAAEPWSSLGSLSACRERLSVGGDALRVTGVPNALLHGEAAAARELKAG * **:* **: :: **.:**** ** . *: *:*** ****:*.**
Acre_FrsE_MT Acre_FrsF_MT Acre_FrsG_MT_2 FrsE_MT_Cro FrsF_MT_Cro FrsG_MT2_Cro	EGLASWRRWLDESGGVEPEDLYRLGAELGYRVVLTWSNQPDHFDAVFLPEQQRGALDAVY EGLASWRRWLDESGGVEPEDLYRLGAELGYRVVLTWSNQPDHFDAVFLPEQQRGALDAVY DGLASWRRWLDESGGVEPEDLYRLGAELGYRVVLTWSNQPDHFDAVFLPEQQRGALDAVY GSPSALLARLDENGGVRPEALRRLGAELGWRMLATWSRQAGHFDAVFVRGEDGEALDGVY GSPSALLARLDENGGVRPEALRRLGAELGWRMLATWSRQAGHFDAVFVRGEDGEALDGVY SSPSALLARLDENGGVRPEALRRLGAELGWRMLATWSRQAGHFDAVFVRGEDGEALDGVY :: ***.*** * ***********************

Acre_FrsE_MT	RTPPVLKPLSGYVNNPANFEQFAAIRRYVGEQLPDYMVPAALVLLEGLPLTPNGKLDRRA
Acre_FrsF_MT	RTPPVLKPLSGYVNNPANFEQFAAIRRYVGEQLPDYMVPAALVLLEGLPLTPNGKLDRRA
Acre_FrsG_MT_2	RTPPVLKPLSGYVNNPANFEQFAAIRRYVGEQLPDYMVPAALVLLEGLPLTPNGKLDRRA
FrsE_MT_Cro	QPAGALQPLSGYVNNPANFEQYAAIRRYALEQLPEYMVPAAIVLLDALPLTPNGKLDRRA
FrsF_MT_Cro	QPAGALQPLSGYVNNPANFEQYAAIRRYALEQLPEYMVPAAIVLLDALPLTPNGKLDRRA
FrsG_MT2_Cro	; : : : : : : : : : : : : : : : : :
Acre_FrsE_MT Acre_FrsF_MT Acre_FrsG_MT_2 FrsE_MT_Cro FrsF_MT_Cro FrsG_MT2_Cro	LPAPEFGTACYRAPGSKQE LPAPEFGTACYRAPGSKQE LPAPEFGTACYRAPGSEQE LPAPEFGGTGYRAPESERE LPAPEFGGTGYRAPESERE LPAPEFGGTGYRAPESERE ******* : **** *::*

grün: S-Adenosylmethionin-Bindungsstelle

Abbildung A15: Alignment der N-MT-Domänen aus dem *bcfrs*-BGC und dem *cvfrs*-BGC.

```
#
#
#
  Percent Identity Matrix - created by Clustal2.1
#
#
                        100.00
     1: Acre_FrsE_MT
                                100.00
                                         98.20
                                                 71.94
                                                                 71.94
                                                         71.94
     2: Acre_FrsF_MT
                        100.00
                                100.00
                                         98.20
                                                 71.94
                                                         71.94
                                                                 71.94
     3: Acre_FrsG_MT_2
                         98.20
                                 98.20
                                        100.00
                                                 71.54
                                                         71.54
                                                                 71.54
     4: FrsE_MT_Cro
                         71.94
                                         71.54
                                                100.00
                                                        100.00
                                 71.94
                                                                100.00
                         71.94
     5: FrsF_MT_Cro
                                 71.94
                                         71.54
                                                100.00
                                                        100.00
                                                                100.00
     6: FrsG_MT2_Cro
                         71.94
                                 71.94
                                         71.54
                                                100.00
                                                        100.00
                                                                100.00
```

Abbildung A16: Percent Identity Matrix des Alignments der N-Methyltransferasen aus dem *bcfrs*-BGC und *cvfrs*-BGC.

FrsG1_Acre FrsG1_Chro	GRADQQVKVRGFRIELGEIETVLRQHPGVEDARVVVQTLHDNDCRLVAYLQPSERTAAPL GRADQQVKVRGFRIEPGEIETALRGHPGVEDARVVVKAMDGNDQRLIAYLLPSERAAAPL **********************************
FrsG1_Acre FrsG1_Chro	RRWLKVRRDAEAQGARAFELPNGMPIFHHNTMETEFLYEEIFEDLVYFKHGIRLDDGACV RRWLRAKSSVAAQNAREIELPNGLPVFHHNAAETEFLYEEIFEDRIYLKHGIRLDNDACV ****:.: **.** :*****: **************
FrsG1_Acre FrsG1_Chro	FDVGANIGLFMLFVGQHCRNATIFAFEPIPPVFRTLTLNAEVHGDKVRLFDCGLSDAVRQ FDVGANIGLFTLFVGQHCGNATVFAFEPIPPVFGTLSLNAAVHGGKVRLFDCGLSDAARQ **********
FrsG1_Acre FrsG1_Chro	ERFTFYPNDTLISTSRNSPEAIRGMVKSFLINQHGNHSGDDAEVGELLDERLASQDYMCV ETFTFYPNDTLISSSRNSAEATRRMVKSFLINQHGDSDGEAVDELLEERLSSQQYVCG * ***********************************
FrsG1_Acre FrsG1_Chro	LRTLSDVITEHNVDRIDLLKIDVENAEYNVLQGIVESDWPKIRQLVMEVHDVDGRLRRIV LRSLSDVVAEHGVERIDLLKIDVENAEYDVLRGISDADWPKIRQLVMEVHDVDGRLACIV **:****:***
FrsG1_Acre FrsG1_Chro	DLLLHRGYRVIHEQDRLLRDTAIHCLYAVHVSRDAEMRPGHHAENTSLFWNCRADLLRDV ELLRERGYRVIHEQDRLLQNTAIHCLYAVHASCGSASADAVPKAEPAAVWRSRSALLRDV :** .**********************************
FrsG1_Acre FrsG1_Chro	RANLRKRLPDYMQPNHMVLLDTFPLTPNGKLDRRALPAPEQAAMRVRDIEPA QAELRSQLPDYMQPNHLVLLDAFPLTANGKLDRRALPTPEQAALRTRDVDPA ;*:**.:*********

Abbildung A17: Alignment der O-MT-Domänen aus dem *bcfrs*-BGC und dem *cvfrs*-BGC.

#
#
#
Percent Identity Matrix - created by Clustal2.1
#
#
1: FrsG1_Acre_Burk 100.00 73.08
2: FrsG1_Chro 73.08 100.00

Abbildung A18: Percent Identity Matrix des Alignments der O-Methyltransferasen aus dem *bcfrs*-BGC und *cvfrs*-BGC.

C.vFrsE_C4_Epimer C.vFrsA_C1_start C.vFrsD_C2_start C.vFrsE_C3_LCL C.vFrsF_C7_LCL C.vFrsG_C9_LCL C.vFrsE_C5_DCL C.vFrsE_C5_DCL C.vFrsF_C6_DCL C.vFrsG_C8_DCL	PVESDRNERVDQACGDLPATPIIHWMLAAPPYRRFNQSQLLRTPGGLKRDDLL MKNSESPIHHFQASSAQLDVWISQEVSPNLPNNIAEYLNLAGSLDAGLFL MPIPEIEVLPLSYAQRRLWFTHRFNGPS-PTYNIPIALSLSGEPEQPALQ SGDGELRPPLRRLPRPQTLPLSYAQQRLWFIHHLEGPS-PTYNIPVALRLSGALETDVLE -DPAAVRPPLQRQARPKRLPLSYAQQRLWFLHHLEGPS-STYNIPLALRLKGDLHPEALQ RPLEDVLPLSPLQKGLLFHGLYDPAGVDPYIERVTYQLEGELDPAAMK MNPKKIEAAYPLSPLQKGFLFHAGYDLQSADSYVAQLFLDFEGELDGAAMR MNPKKIEAAYPLSPLQKGFLFHAGYDLQSADSYVAQLFLDFEGELDGAAMR MNPKKIEAAYPLSPLQKGFLFHAGYDLQSADSYVAQLFLDFEGELDGAAMR	53 50 33 49 59 58 48 51 51
C.vFrsE_C4_Epimer C.vFrsA_C1_start C.vFrsD_C2_start C.vFrsE_C3_LCL C.vFrsF_C7_LCL C.vFrsG_C9_LCL C.vFrsE_C5_DCL C.vFrsF_C6_DCL C.vFrsG_C8_DCL	AALQALLDHHDALRLRLDAAASDEALLSIPPAGSVRAGDCLRRIDAVGRDEAEWHLLLAR QALSQVASESAELQYNFRHDGLQL TKFRR - DDEGWEPDFIDVSTHGEP - EHAALRA KTLRQVASETPALQVNFSIEDGRP CPVSR - VHEDWSPDFIDVSTHGEP - EHAALRA AALRDVLARHESLRTLVVESEEGAPAQHILPP - DAAGTFCLAVQTAGSA - AEQAASL AALLDVVRHESLRTVYVQSADDTPLQCVLSV - EQLDDCR - LIVHEPLGE - TRLGAVL QAVADIVERHESLRTVFVDNDGV - PEQRIQSA - EQALP - S - LPRVEVADE - AELQRAL RAAHGLLQRHGNLRACFVDLGKGQPVQIISQL - EALPWQDIDLSMLAGDER - QAMLAQI SAADALMRRHANLRAGFVHPGGQEPVQVVLRE - VVAGWEERDWRGRNPQEA - AEAQSAW SAADALMRRHANLRAGFVHPGGQEPVQVVLRE - VVAGWEERDWRGRNPQEA - AEAQSAW : : : . *:	113 104 87 104 114 111 105 108 108
C.vFrsE_C4_Epimer C.vFrsA_C1_start C.vFrsD_C2_start C.vFrsE_C3_LCL C.vFrsF_C7_LCL C.vFrsG_C9_LCL C.vFrsE_C5_DCL C.vFrsF_C6_DCL C.vFrsG_C8_DCL	EGEAAAERLDCEAGLLLQAVWLDAGDEAGRLLLVIHHLAVDGVSWRVLLPDLQQAWQAAS MRERVEKPFDLARDALFRWTLIRLADERHIFCHVYHHIAMDGAGYVMLLQRIAEVYGALR MRERVEKPFDLARDALFRWTLIRLADERHIFCHVYHHIAMDVAGYVMLLQRIAEVYGALR -ETACRHCFDLSREMPLRAGLFLADGAEPVLLLLHHIAADGDSLPVLARDLELAYRSRL -SEASRHCFDLSCELPLRAELFPLDSGQQVLLLLHHIAGDGGSLPVLADDLAAAYEARC -REAAEHRFDLSSETPLRCTLFRLGEQEWVLLLLIHHIAGDGGSLLPLGRELDAAYAARC REQVRSQRFDLGRAPLLSFTLIRLAADRHQLIMNNHHILLDGWSEPLLWRELMTLYRNGG QEADRERRFELSQPPLLRFGWLRLPAGRSQLVVTYHHILLDGWSLPLLLEELLALYRAGG : : : : : : : : : : : : : : : : :	173 164 147 163 173 170 165 168 168
C.vFrsE_C4_Epimer C.vFrsA_C1_start C.vFrsD_C2_start C.vFrsE_C3_LCL C.vFrsF_C7_LCL C.vFrsG_C9_LCL C.vFrsE_C5_DCL C.vFrsF_C6_DCL C.vFrsG_C8_DCL	QDRAIALDPVGASFRLWSLHLGQEARSSQREAELAHWKWALAAED-PLLGP EGQPAPACGFADADAIVREEERYRQSEQFAVDRAFWQARSAELATAEPP EGQPAPACGFADADAIVREEERYRQSEQFAVDRAFWQARSAELATAEPP RGLAPEWRPLPVQYADYALWQQELLGDLEVPDSLAARQLVYWREALRGMPDVLELPTDHP QGREPAWRPLPVQYADYTLWQRQLLGNERDPDSLIGRQFAYWKQALAGLPDQLCLPTDRP QGRAPDWQPLAVQYADYTLWQRQLLGEENDPESLIAAQFAYWKRTLAGAPEQLTLPTDRP DLGAMPRVTPYRDYLVWLGRRDHEADRQAWRHYLAELETPTLLSPEPP GDGGLPEATPYSAYLGWLQERDRAAACEAWGGYLEGLEGPTLLAQEGQ GDGGLPEATPYSAYLGWLQERDR	223 213 196 223 233 230 213 216 216
C.vFrsE_C4_Epimer C.vFrsA_C1_start C.vFrsD_C2_start C.vFrsE_C3_LCL C.vFrsF_C7_LCL C.vFrsG_C9_LCL C.vFrsE_C5_DCL C.vFrsF_C6_DCL C.vFrsF_C6_DCL C.vFrsG_C8_DCL	RPYDSARDATRTRQSLSLALPPAVTQALLTQATARFHAHANDVLLTVFALAVAVWR LPAADGPFLAFAQTAVIPEDACGGLRMTAER-LGVSQSRLLTAAIVAYFHRW- LPSHRGGKAPFALSAAAHARLKTLAAQ-QGATLSMALQAGLAALLHRL- RPAVASYQGDYCEFRLDAETLKQLKTLARR-HGATLSMALQAALAALLSRL- RPAVASYRGRYLPFELDAGLHAELRRLARD-HDATLSMLLQAGLAALFRL- AAYVDQETYSLALPPALAQALAARAAE-LGITLNTLVQGAWGRVLACL- ADKGAAAQARLSLELPAELTQALTRQARQ-QGVTLNTLLQAAWGMLLGKL- UDHAEQKQRAWRLPAELTQALTRQARQ-QGVTLNTLLQAAWGMLLGKL-	279 264 247 273 283 280 260 266 263

C.vFrsE_C4_Epimer	RRRLPEAPAELLFDLEGHGREARDTGIDLSRTVGWFTSLFPVRLALDCAGLDEALKGGDS	339
C.v. FrsA C1 start	GG00EILFRLAVSARSDATRHAPGHLAHALPLLASLPPRAS	305
C.v. FrsD C2 start	GGOOEILFRLAVSARSDATRHAPGHLAHALPLLASLPPRAS	288
C.v. FrsE C3 LCL	GAGTDIAVGGLLAGRGEESLKELIGFFVNAWVLRVDVSGRPN	315
C.v. FrsF C7 LCL	GAGDDIPLGCPIAGRTDDALANLVGFFVNTWVLRVDTSGRPD	325
C.v. FrsG C9 LCL	GAGEDIPLGCGIAGRTDDALNDMVGFFVNSWVLRADTSGNPD	322
C.v. FrsE C5 DCL	TMS0DVVFGSNVAGRPAELGGIEDMVGLFINTVPLRVRWTRGES	304
C.v. FrsF C6 DCL	NLSRDVVFGITVAGRPGELPGVERMIGLFINTVPVRLRWSAGET	310
C.v. FrsG C8 DCL	NLSRDVVFGITVAGRPGELPGVERMIGLFINTVPVRLRWSAGET	307
	······································	
C.v. FrsE C4 Epimer	LGRLLKSVKE-OLRAIPDRGMGFGLLRH-LNPGARGELAAL-SSPOIGFNYLGRFTAA	394
C.v. FrsA C1 start	LADIAROLDGEVERMRPHTRYRAEDIVRDOAGAGLGRGAOGPVINLMPFAYRFEFGACRV	365
C.v. FrsD C2 start	LADIAROLDGEVERMRPHTRYRAEDIVRDOAGAGLGRGAOGPVINLMPFAYRFEFGACRV	348
C.V. FrsE C3 LCL	FPALLRRVREOALOAYSHODLPFEWLVEOINPARSTSHHPLFOVALVLONNLSADFHL	373
C.v. FrsE C7 ICI	FATI I GRVROOAL AAYSHODVPEERI VELL NPARS ASHHPI FOVNLAL ONNTEPI FRE	383
C.v. FrsG C9 Cl	ETTI I GRVREOAL AAYAHODAPEERI VELTNPSRSSAHHPI EOVNI TI ONNAI PDERI	380
C.V. FrsE C5 DCI	TADMI VRI OAFOVGI I FHOYI DI AFTOFIAGI GDI FDTVYAFENYPVFGDGG	356
C V ErsE C6 DCI		362
C V Ers6 C8 DC1		359
0.01130_00_002		000
C v ErsE C4 Enimer	EGEDWOPAGCAGTEGGODPDMPLPHLLSENAOTLDREOGPELHATWSWAGELEDOEOTAE	454
C v ErsA C1 start		410
C v ErsD C2 start		303
C V ErsE C3 C	EGI AVDORI I GTGTAKEDI AENI EERODGDGRPOGI DGEI EEASDI EDRAGAER	427
C V Frse C7 I CI	SGREVSLETVGNRTAKEDLEENLEEMPSDEPOTOYLOGYVEYATELEDRATVER	437
C V Ers6 C9 C	DGIEVSI SPTEADTAKEDIEENI EETEGI DGOAGGI OGGVEYATDI YEOATVEO	434
C_{V} ErsE C5 DCI		405
C V ErsE C6 DCI	APD-I GOASI RRVSGG-EOHESHYPI TI MAVPREMI SI YI SYDAOREDKGVVOG	400
C V Ers6 C8 DCI		411
0.01.30_00_002	· · · · · · · · · · · · · · · · · · ·	711
C v ErsE C4 Enimer	I ANI WRNAAVALAEHASRPEAGGRSPSDI PI VGI ENTOTERI EAEY	500
C v FrsA C1 start		463
C v ErsD C2 start		446
$C_{\rm V}$ ErsE C3 C		462
C = V = C = C = C		169
C V Ers6 C9 C		480
C v ErsE C5 DC		430
C V ErsE C6 DCI		446
C V Frs6 C8 DC1		436
0.0II30_00_D0L		-50

Abbildung A19: Alignment der C-Domänen aus dem *cvfrs*-BGC.

```
#
#
#
#
Percent Identity Matrix - created by Clustal2.1
#
#
```

100.00	17.67	17.83	21.00	24.22	22.05	20.62	21.11	21.80
17.67	100.00	91.26	19.82	21.25	18.20	21.15	22.73	22.93
17.83	91.26	100.00	19.09	22.36	18.69	20.84	21.14	21.32
21.00	19.82	19.09	100.00	57.30	53.04	24.07	25.86	26.00
24.22	21.25	22.36	57.30	100.00	62.23	23.26	30.14	26.64
22.05	18.20	18.69	53.04	62.23	100.00	23.95	25.92	25.82
20.62	21.15	20.84	24.07	23.26	23.95	100.00	46.68	48.02
21.11	22.73	21.14	25.86	30.14	25.92	46.68	100.00	85.55
21.80	22.93	21.32	26.00	26.64	25.82	48.02	85.55	100.00
	100.00 17.67 17.83 21.00 24.22 22.05 20.62 21.11 21.80	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccc} 100.00 & 17.67 & 17.83 \\ 17.67 & 100.00 & 91.26 \\ 17.83 & 91.26 & 100.00 \\ 21.00 & 19.82 & 19.09 \\ 24.22 & 21.25 & 22.36 \\ 22.05 & 18.20 & 18.69 \\ 20.62 & 21.15 & 20.84 \\ 21.11 & 22.73 & 21.14 \\ 21.80 & 22.93 & 21.32 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Abbildung A20: Percent Identity Matrix des Alignments der C-Domänen aus dem *cvfrs*-BGC.

FrsE_Condensation_4_Epim FrsA_Condensation_1_start FrsD_Condensation_2_start FrsE_Condensation_3_LCL FrsF_Condensation_7_LCL FrsG_Condensation_9_LCL FrsE_Condensation_5_DCL FrsF_Condensation_6_DCL FrsG_Condensation_8_DCL	PLTNGVDSVQEEPCGDLTLTPILRWMWENGPYRLFHQSQLLRAPSGLRRADL 	52 33 31 47 58 59 44 44 44
FrsE_Condensation_4_Epim FrsA_Condensation_1_start FrsD_Condensation_2_start FrsE_Condensation_3_LCL FrsF_Condensation_7_LCL FrsG_Condensation_9_LCL FrsE_Condensation_5_DCL FrsF_Condensation_6_DCL FrsG_Condensation_8_DCL	LAMVQALLDHHDALRMRLHEDDGEARMTI-LPVGTTRAEDCVRRIEIVGVDAVERQV-VL LGALHCVAREASELRCNLHHD-GVRLIKYHRDLAEWVPDFIDVSTEANPEATAL MDALHRVLQEAIVLHVNFSGH-VDRPVQFLRTSKGCAPSFIDVSAQSDPFFAAQ QAALQDVLTRHESLRTLCVEADDGEPMQHILPAQAVTVFRLETHVAA-SVAE-QS DKALRDIMLRHESLRTVYLRSADDTPVQSILPVEHLNDNRLIVRALL-DEEQ-LP RRALEDVVVRHESLRTIFVESEGIPEQKILAPDEACLALQLIDTN-EETG-LD KQAVHGLLLQHSNLRACFVDLGRGQPVQVIVPLSALPWQEIDLSMLGEDEQQAVLE RAAADTLIRRHANLRAGFVHPGGREPVQVILREVAACWKEHDWRTEPLVRAAELQS RAAADTLIRRHANLRAGFVHPGGREPVQVILREVAACWKEHDWRTEPLVRAAELQS : . *:	110 86 84 100 111 110 100 100
FrsE_Condensation_4_Epim FrsA_Condensation_1_start FrsD_Condensation_2_start FrsE_Condensation_3_LCL FrsF_Condensation_7_LCL FrsG_Condensation_9_LCL FrsE_Condensation_5_DCL FrsF_Condensation_6_DCL FrsG_Condensation_8_DCL	ARETDEAILRLDSECGRLVQVVWLDAGSEEGWLRLVIHHLAVDGVSWRVLLSDWQQAWAD SIMRSQVVKSVDMRTDALFRWCLIRLSDEHHIFFHAYHHIVMDGVGYVLLLERVAEVYRA RAMRELAHSPFDLGQDALFRWCLIRLSDEHHIFFHAYHHIVMDVAGYVLLLERVAEVYRA EAVVEASRHCFDLSTEIPLRATLFLAEGAPPLLLLLHHIAADGDSLPVLAKNLEFAYLA PALCEACRYCFDLSREPSLRAELFPLRSGQQVLLLLHHIGADGGSLPVLANDLGFAYEA MALREASDYHFDLSREIPLRCTLFRQESQVWTLLLLHHIAGDGGSLLPLGRDLATAYAA QMQEEDRHQRFDLSHAPLLSFVLIRLAVDRHRLIMSNHHILLDGWSGPLLWRELMKLYRS AWHAEDRQRRFDLSQPPLLRFGWLRLPEERTQLVLTYHHILLDGWSLPLVLEELLTLYRT AWHAEDRQRRFDLSQPPLLRFGWLRLPEERTQLVLTYHHILLDGWSLPLVLEELLTLYRT	170 146 144 160 171 170 160 160
FrsE_Condensation_4_Epim FrsA_Condensation_1_start FrsD_Condensation_2_start FrsE_Condensation_3_LCL FrsF_Condensation_7_LCL FrsG_Condensation_9_LCL FrsE_Condensation_5_DCL FrsF_Condensation_6_DCL FrsG_Condensation_8_DCL	VCVGCAISLDPVGTSFRNWALCLQRD-AQSPQREAELAYWCSMLSTTDMPL LRSDLPLPACRFATASAIVDDEVRYR-ASEQFAVDRAFWQARAALQAKAEPPLPL LRSDLPLPACRFATASAIVDDEVRYR-ASEQFAVDRAFWQARAALQAKAEPPLPL RHESRPPEWSLLAVQYADYTLWQREWLGNIGTADSPAAHQLRYWRGALRG-MPQVMAL RRQGAEPTWQPLPVQYADYTLWQRQLLGDEKDPDSLICRQFAYWEEVLAG-LPDLLRL RRKGLDPAWAPLPVQYADYTLWQRQLLGSEGDPDSLISTQFAYWKQNLAG-AQEQLTL GGDLRAIPRVTPYRDYLDWLARRDLEPDRMAWRGYLRD-LVTPTLL QGDALSLPKTTPYSTYLGWLQGRDRASAQQVWGDYMSG-LEGPTLL QGDALSLPKTTPYSTYLGWLQGRDRASAQQAWGDYLSG-LEGPTLL - * * *	220 200 198 217 228 227 205 205 205
FrsE_Condensation_4_Epim FrsA_Condensation_1_start FrsD_Condensation_2_start FrsE_Condensation_3_LCL FrsF_Condensation_7_LCL FrsG_Condensation_9_LCL FrsE_Condensation_5_DCL FrsF_Condensation_6_DCL FrsG_Condensation_8_DCL	GRRAFDPARDTTRTKQSLSLSLPVRTTQALLTQAATRFHAQANDVLLTVFVLAMAAWRR- SGEPFLAFAESAVIPEAGRLSLKAAAERLGVSLSRLLSAATIAY SGEPFLAFAESAVIPEAGRLSLKAAAERLGVSLSRLLSAATIAY PTDRPRPP-VATHRGGKVPFALPAAAHARLKTLAERQGVTLSMVLQAGLSAL PMDRPRPV-EASYQGDYCEFTLDAGTLQQLKRMARRQGVTLSMTLQAGLAAL PTDHPRPA-VASYRGHYLPFQLEAELHSDLRRLARTNDTTLSMLLQAALAAL APAAP-TEYVIQETYERALPDALASGLTALAEQLGVTLNTVLQGAWGRV ARRSA-SEDQTQSKSSLTLPIELTQALNQQARQQGVTLNTLLQAAWGIL ARRSA-SEDQTQSKSSLTLPIELTQALNQQARQQGVTLNTLLQAAWGIL	279 244 242 268 279 278 253 253 253

FrsE_Condensation_4_Epimer	-QCMGHAPDALLFDLEGHGRETQDTAIDLSRTVGWFTSLFPVRVRLDAVDLDDALGEGAS 338
FrsA_Condensation_1_start	FRRWDGQ-NEMRFRLAVSARSEVTMQAPGYMAHALPLQASFTPHTS 289
<pre>FrsD_Condensation_2_start</pre>	FRRWDGQ-NEMRFRLAVSARSEVTMQAPGNMAHALPLQASFTPRTS 287
FrsE_Condensation_3_LCL	LYRLGAG-SDVVIGGLLAGRNDEALKDLIGFFVNAWVLRTDLSGHPD 314
FrsF_Condensation_7_LCL	LNRMGAG-DDIPLGSPIAGRTDDALINLVGFFVNTWVLRVDTSGRPD 325
FrsG Condensation 9 LCL	FTRLGVG-NDIPLGCGIAGRTDEALGDLVGFFVNTWILRADTSGDPD 324
ErsE Condensation 5 DCL	I GCI TTS-ODVMEGSNVAGRPAEL NGTEDMTGLETNTTPL RVRWSRGES 301
FrsE Condensation 6 DCL	I GKI SSS-RDVVEGTTVAGRPGEI PGVERMTGI ETNTVPI RI RWRAGET 301
FrsG Condensation 8 DCL	I GKI SSS-RDVVEGTTVAGRPGEI PGVERMIGI EINTVPI RI RWRAGET 301
FreE Condensation 4 Enimor	
Frse_Condensation_4_Epimer	
FrsA_condensation_1_start	
FrsD_condensation_2_start	LADIVRQLDGEVRCMRPHIRYRAEDIVRDWASIGGVQGAQGP-VINIMPFSYAFD 341
FrsE_Condensation_3_LCL	FHVLLRRVREQALQAYSHPDLPFEWLVEQLNP1RSTSYHP-LFQVVLVLQNNQRARFR 3/1
FrsF_Condensation_7_LCL	FATLLGRVRSRALAAYAHQDVPFDRLVELLNPVRSISHHP-LFQVNLALQNNVLPKFR 382
FrsG_Condensation_9_LCL	FVTLLGRVREQALAAYAHQDAPFERLVELINPVRSSAHHP-LFQVNLTLQNNALPEFR 381
FrsE_Condensation_5_DCL	IGDVLKRIQSEQVDLLEHQYLDLVEIQSQASHRD-LFDSVYAFENYPVHAND 352
FrsF_Condensation_6_DCL	VAELLERLQREQARLLEYQYLDLAEIQRLAGQRQ-LFDTLFIFENYPFDAQA 352
FrsG_Condensation_8_DCL	VVELLERLQREQARLLEYQYLDLAEIQRLAGQRQ-LFDTLCVFENYPVNAKA 352
FrsE Condensation 4 Epimer	ASEGGDWOLASDVGIEAGODPEMPLPHPLSFDAHTLDRTHGPELTAIWSWGSELFSSDEI 451
FrsA Condensation 1 start	EGECRVTSAHOLTVGLLNALEVAVHDRKTGDGLHTDLYAPOACGSPVOL 392
FrsD Condensation 2 start	
FreE Condensation 2 10	
FreE Condensation 7 LCL	
Free Condensation 0 LCL	
FrsG_condensation_9_LCL	
Frse_condensation_5_DCL	EDEASGP-RVKVVSGGSTIHYPLGLIVNPQAGLSLLFSYRPDCYRRCDI 400
FrsF_Condensation_6_DCL	IAPALGRTVLSRINGGE-QHDSHYPVTLMAVPRETLTLYLSYQSGRFEHGTM 403
FrsG_Condensation_8_DCL	IVQQDEGFGLRHISGGD-RYMTHYPLSVMIEPGERMTLNLIYRPASFDAAK- 402
	: :
FrsE_Condensation_4_Epimer	AELAQLWQQAAMALAEHVTRPGAGGRTPSDLPLVHLHQAQIEQLEVEYPRI 502
FrsA_Condensation_1_start	QQHVRRLARFIEVATA 408
<pre>FrsD_Condensation_2_start</pre>	QQHVRRLARFIEVAAA 406
FrsE Condensation 3 LCL	VRLAYRLSRLLEIWSAAPSQSIAILDLLERSEREQALLEWNATTRPLPALTL 476
FrsF Condensation 7 LCL	ERLLTRFRTLLEAVVTDSSCPIADIDLLTADEROOLLVEWNATDRPLPKVTL 487
FrsG Condensation 9 LCL	ORFIYHFVRLLREVVAAPTAAISALDLSDEAVASSPG-ALDLSASITVDDTI 485
FrsE Condensation 5 DCL	ERTAAYI OCVI FAFAVDSTOPTAOLDI LPPEO-ANGTAOWNDTOHACPSADI 451
FrsE Condensation 6 DCL	
Free Condensation & DCL	
	·
FreE Condensation 4 Enimer	502
FISE_CONDENSALION_4_EPIMer	DUZ
FISA_CONCENSATION_1_START	4UX
Frsp_Condensation_2_start	406
<pre>Frst_Condensation_3_LCL</pre>	AEAFEIQAALTPEAVALAFGDEV- 499
FrsF_Condensation_7_LCL	PEWFEAQVERTPTAMAVLCDEVAL 511
FrsG_Condensation_9_LCL	IGRFAEQVRRAPDATVLTYRGETL 509
FrsE_Condensation_5_DCL	AQLFERQVRLTPDASALTFGSQTL 475
FrsF_Condensation_6_DCL	PEWFEAQVERTPTAMAVLCDEVAL 479
FrsG_Condensation_8_DCL	AELFEAQATRQPNAVALEGPDGCV 477

Abbildung A21: Alignment der C-Domänen aus dem bcfrs-BGC.

```
#
#
#
# Percent Identity Matrix - created by Clustal2.1
#
#
```

100.00	15.99	14.29	20.05	18.76	18.67	20.00	21.70	22.04
15.99	100.00	82.51	18.00	15.25	17.59	19.27	17.14	18.02
14.29	82.51	100.00	18.34	18.09	17.68	20.16	17.49	18.64
20.05	18.00	18.34	100.00	50.10	47.58	27.78	26.96	27.51
18.76	15.25	18.09	50.10	100.00	53.35	27.08	35.81	25.74
18.67	17.59	17.68	47.58	53.35	100.00	25.32	22.60	23.13
20.00	19.27	20.16	27.78	27.08	25.32	100.00	44.00	44.19
21.70	17.14	17.49	26.96	35.81	22.60	44.00	100.00	81.13
22.04	18.02	18.64	27.51	25.74	23.13	44.19	81.13	100.00
	$100.00 \\ 15.99 \\ 14.29 \\ 20.05 \\ 18.76 \\ 18.67 \\ 20.00 \\ 21.70 \\ 22.04$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Abbildung A22: Percent Identity Matrix des Alignments der C-Domänen aus dem bcfrs-BGC.

FrsG_PCP8 FrsF_PCP5 FrsA_PCP_interpro FrsD_PCP_PKS/NRPS FrsG_PCP7	QLLARLFGEVLGLPQVGLHDSFFDLGGHSLLATRLISRIRALFQVELPIRAL DVLCGLFAETLGLPQVSIDDSFFDLGGDSLLATRLISRIRVTQRRELSIRTL QRPRNAQEEMLCGLFAEVLDMEKVGRGDSFFDLGGHSLLATRLIRRIRETLDVELSIRDL EMLCGLFAEVLEVGSVGIDDSFFDLGGHSLLATRLISRIRAALNVELPIRQL EMLCGLFAEVLEVGSVGIDDSFFDLGGHSLLATRLISRIRAALNVELSIREL	52 52 60 52 52
FrsE_PCP3	RALCQLYAQVLDLSKVGIDDGFFDLGGDSISSIQLASRARKAG-WLLTPNQI	51
FrsE_PCP4	QLLARLFGEVLGLPQVGADDSFFDLGGDSIISIQLVSRARKAG-WRLTPRDV	51
FrsF_PCP6	QLLARLFGEVLGLPQVGADDSFFDLGGDSIISIQLVSRARKAG-WRLTPRDV *. *:.:.* : .*. *.******.*: : :* * * * . :	51
FrsG_PCP8	FESPTVAGLARYI 65	
FrsF_PCP5	FECPTVAALARQL 65	
FrsA_PCP_interpro	FEAPCVTELSRHIAEGG 77	
FrsD_PCP_PKS/NRPS	FDLPSVAELLEVL 65	
FrsG_PCP7	FDMPTCAELAPRL 65	
FrsE_PCP3	FRHPRVEDLAAEL 64	
FrsE_PCP4	FQQPTVAALAQAI 64	
FrsF_PCP6	FQQPTVAALAQAI 64 * * * :	

Abbildung A23: Alignment der PCP-Domänen aus dem *cvfrs*-BGC.

.. # # Percent Identity Matrix - created by Clustal2.1 # # 1: FrsG_PCP8 100.00 67.69 63.08 64.62 64.62 39.06 62.50 62.50 2: FrsF_PCP5 63.08 64.62 67.69 45.31 54.69 54.69 67.69 100.00 3: FrsA_PCP_interpro 63.08 63.08 100.00 69.23 69.23 40.62 43.75 43.75 4: FrsD_PCP_PKS/NRPS 64.62 64.62 69.23 100.00 87.69 46.88 46.88 46.88 100.00 5: FrsG_PCP7 64.62 87.69 67.69 69.23 45.31 48.44 48.44 6: FrsE_PCP3 45.31 40.62 46.88 45.31 100.00 59.38 59.38 39.06 7: FrsE_PCP4 54.69 43.75 46.88 48.44 59.38 100.00 62.50 100.00 8: FrsF_PCP6 54.69 43.75 46.88 48.44 62.50 59.38 100.00 100.00

Abbildung A24: Percent Identity Matrix des Alignments der PCP-Domänen aus dem cvfrs-BGC.

TE TE2	GDSKSPYQVLMPIRATGGRHPLFCIHPEGGLGWSYIGLALHLDHEQPIYTLQARGLDGMS 60 PPLFCIHPGGCLSWTYVSLVRYLDAEQPIYGLQARGIDGQS 41 ******* * *.*:*:.*. :** ***** **********	•
TE TE2	ELAPSIPDMAADYIEQIRSIQPNGPYHLLGWSLGGVIAQEVAVQLERVGEKTALLAILDT 12 EPASSIEAMAADYVAQIRGIQPHGPYYLLGWSLGGNLAQAMASQLESMDQEVGLLFLLDS 10 * * ** ****: ***:***:*****************	:0)1
TE TE2	FPIEILHEAMFGKQACAYDLFARVVQEMYLMPIEEARLKSMYLIGLNHMKITAAFSSSHY18GPSPMHKDDEMIEYPLFTKEFKNTFKFHVSETKMQAIFEVTKRHVELIRQSTTPVS15* : ::.:* **::* : ::.:* **::* : ::.:* **::	;0 ;7
TE TE2	GGDLLLFRSLIPYAEDALMPEADTWQPYLSGQLEVHDIECTHMDMMQRDVLKIIGPVLES24QGPALLFRATVPYDESTPLLPPHAWNEYVKGDIEVHEVHCQHAQMNRIEFMEQMGPVIER21* ****: :** *.:: .:*: *::***::* * :* ::::***:**21	.0 .7
TE TE2	KLS 243 KL- 219	

Abbildung A25: Alignment der TE-Domänen aus dem *cvfrs*-BGC.

#
#
#
Percent Identity Matrix - created by
Clustal2.1
#
#
#
1: TE 100.00 42.01
2: TE2 42.01 100.00

Abbildung A26: Percent Identity Matrix des Alignments der TE-Domänen aus dem *cvfrs*-BGC.

frsA_Burk frsA_Chro	atgaaaaacagtgaatcgccaatccatcattttcaggcatcttcagcacagctggatgta *** ******	15 60
frsA_Burk frsA_Chro	tggatggttcagaaaatcgcggcggattatcccaattgcatcgccgagtatctccatttt tggatttctcaggaagtttcaccgaatctgcccaacaatattgccgagtatctgaatctc ***** **** ** * * * ** ** **********	75 120
frsA_Burk frsA_Chro	cgtggagcactggatgggccccattttttgggtgccttgcactgcgttgcaagggaggca gccggctcgttggatgctggattgtttctgcaggctttaagccaggtcgccagtgagagc ** * * ******	135 180
frsA_Burk frsA_Chro	agcgagctgcggtgcaatttgcaccacgatggcgtgcggctgatcaagtatcaccgagat gcggagctgcaatacaacttccgtcacgatggtctccagttgaccaagtttcgtcgagat ******* * *** ** * ******************	195 240
frsA_Burk frsA_Chro	<pre>ttagccgaatgggtgccagatttcattgatgtttcgacagaggcaaaccctgaggcaacg gatgaaggctgggagccggacttcatcgatgtatcgacgcacgggagccggaacacgca * * * **** *** *** *** **************</pre>	255 300
frsA_Burk frsA_Chro	gctctgtcgatcatgcgatcacaggtcgttaagtcagtcgacatgagaacggacgcactg gccctgcgcgccatgcgggagcgggtggagaaacccttcgatctggcgcgggacgcgttg ** *** *** ***** * *** * ** **** **	315 360
frsA_Burk frsA_Chro	tttcgttggtgcctgattcgtctcagcgacgagcatcatatattctttcatgcctatcat tttcgctggaccttgatccgcctggccgacgagcgccacatcttctgccatgtgtatcac ***** *** * **** ** ** ** ** *********	375 420
frsA_Burk frsA_Chro	<pre>cacattgtgatggatggggtgggctatgtgctgctactcgagcgcgtggcggaggtgtat cacatcgcgatggatggggccggctatgtgatgctgctgcagcgcatagccgaggtttac ***** * *********** *****************</pre>	435 480
frsA_Burk frsA_Chro	cgcgcgctgcgctcggatttgccactgccagcatgtcgtttcgctaccgctagcgccatc ggcgcgctgcgggaaggccagccggcaccggcctgcggtttcgccgatgcggatgccatc ****	495 540
frsA_Burk frsA_Chro	gtcgatgatgaggtccgttatcgtgcgtccgaacaatttgccgtggaccgcgccttctgg gtccgcgaggaagagcgctaccgccagtcggagcagttcgcggtcgaccgggcattctgg *** ** ** * ** ** ** ** *** *** *** *	555 600
frsA_Burk frsA_Chro	<pre>caagcgcgcgcgcgttgcaagccaaggcggaaccccctttgccgttgtccggcgagccg caagcgcgctcggccgagctggcgacggcggagccgccgctgccggcggccgatggcccg ********* * * * * * * * * * * * * * *</pre>	615 660
frsA_Burk frsA_Chro	ttcctcgctttcgccgaaagcgcagttattccggaggccggcaggctgagcctgaaagcg ttcctggcgttcgcccagacggcggtgattccggaagacgcctgcgggggggg	675 720
frsA_Burk frsA_Chro	gccgcagagcgtctgggtgtatcgctttcccggttgttaagcgcggccatcatcgcttac acggccgagcggctgggcgtctcccagtcccgttgctgacagcagcaccatcgtcgcttat * ** ***** ***** ** ** * ** ** ***** *** ** **	735 780
frsA_Burk frsA_Chro	<pre>ttccgtcgctgggacggccagaacgagatgcggtttcggctggccgtgtcggcccgcagc ttccatcgctggggcggccagcaagagatcttgttccggctggcggtatcggcgcgcagc **** ******** ***********************</pre>	795 840
frsA_Burk frsA_Chro	gaagtcaccatgcaggcaccaggctatatggcacacgcgttgccgttgcaggcgagcttt gatgcgacgcgac	855 900

frsA_Burk frsA_Chro	acgccccacaccagtcttgccgatatcgtgcgccagctagacggcgaagtgcgctgcatg ccgccgcgccagtctggccgacatcgcgcgacagctggacgggggggg	915 960
frsA_Burk frsA_Chro	cgtccgcacattcgctatcgggcggaagacatcgttcgggactgggcatcgaccggcgga cgtccgcatacccgctatcgggctgaggacatcgtgcgcgaccaggccggtgccggtttg ******** * ********** ** ******** ** **	975 1020
frsA_Burk frsA_Chro	gtgcagggtgcacaggggccggtgatcaacatcatgccgttctcttatgcattcgacttt gggcgcgggggcgcaggggcctgtgatcaacctcatgccttttgcttaccgcttcgagttt * ** ** ** ** ******** ******** *******	1035 1080
frsA_Burk frsA_Chro	ggcgaatgccgagtgacatccgcacatcaattgaccgtcggcttgctgaatgcgctggaa ggcgcctgtcgcgtggagtccgcccatcagctgaccgtcggcgtgctggacacgctggaa **** ** ** *** **** ***** ******	1095 1140
frsA_Burk frsA_Chro	gttgcggtccacgatcgcaagattggcgatggtctgcatatcgacctgtatgccccgcaa gtggcggtgcacgaccgcaagaacggtgacggcctccacctcgatttgtacgcatccgag ** ***** ***** ****** ** ** ** ** ** **	1155 1200
frsA_Burk frsA_Chro	gcatgcggctcgcctgttcagttgcaacagcatgtcagaagactggcgcgtttcattgag cgcggctgcccgcccgaaccgctgcggcggcatgccctgcggctggcccggttcatcgtc ** ** ***** * * * *** * ***** * ******	1215 1260
frsA_Burk frsA_Chro	gtcgcgacggctgtgccacaaagtccgatcgacacactgccatggctggacgagtcggaa gaggcggcggcggagccgtcgcagccggtgtccgacatcgagctgctggacgaggccgag * *** **** * *** * ***	1275 1320
frsA_Burk frsA_Chro	cggaggcaactgctggaggaatggagtggcaacgcactggatttgggcgaaatcacgctg cgccggcaactgctggtcgactggaaccgcaccggaccggaccacggccaggccaccttc ** *******	1335 1380
frsA_Burk frsA_Chro	gcggaactgttcgaagttcaggcaacccgtcagccgaatgccgtggcgctggaggggccg ccgcaactgttcgaaacccaggcggccctcaccccgcacgccgtcgcgctggaaagcccg ** *********** **** **** **** ****	1395 1440
frsA_Burk frsA_Chro	gacgaacgcgtgagctatggcgagttggacgcacgggctaaccgactggcgagtcacctg gacgcccggctcagctatgccgaactggacgcccgcgccaaccggctggcgcgccatctg **** ** * ******** *** **************	1455 1500
frsA_Burk frsA_Chro	cagagtttgggcgtggggccagatgtcgtggtcggggtgtgcttggagcgctcgattgac caaagcctgggcgtcggcgccgacgtgctggtcggcatctgcctggagcgctcgatcga	1515 1560
frsA_Burk frsA_Chro	atggtggtggcgatacttgggatcgccaaggcaggggctgcctatttgccgctcgcgccg atggtggtcgcggtgctgggcgcgctgaagtccggcgccgcctatctgccgctgtcgccg ******* *** * ** ** ** ** ** *** *** *	1575 1620
frsA_Burk frsA_Chro	gattacccgaccgagcgcctggcctacatgctgacggattcgatggcgccagtactttta gagtacccgacggaacggctggcctacatgctgggcgactcgatggcccccgtgctgctg ** ******** ** ** *******************	1635 1680
frsA_Burk frsA_Chro	<pre>accgagtcaaaacaggtcgaacgactgccgtcgtattggggtcatctggtgaagctggat accgactcggcacaagtcgagcggctgccgtcgtattggggccgggtagtcgaactggac ***** ** *** **** *** ***************</pre>	1695 1740
frsA_Burk frsA_Chro	cgactcgatttgtcggggcaggcgtcgagtgcgccggcgcgagcgctacgaccagatcac cggctcgacctggacgctctgccggacagcgcgcggaacggggcgctgcgcgcgagcac ** ***** ** ** * * * * * ** ***	1755 1800

frsA_Burk frsA_Chro	ttggcgtatgtgatctatacctcgggctcgacgggccaacccaaaggggtggcggtcagc ctggcctatgtgatctacacctccggctccaccggccaaccgaagggcgtggcggtcagc **** *********** ***** ***** ** *******	1815 1860
frsA_Burk frsA_Chro	cacgccggcttagctgggttggtaaaaagtcaggaggagcggttcgcggtggccgggccg cacgccggcctggccggccggcagccagacagagcggttcgcgctgcaaggccg ********* * ** ** ** ** ** ** *** ***	1875 1920
frsA_Burk frsA_Chro	gtacgggttctgcagtttgcgtcgctgagttttgacgcagcggtaatggaaatccttatg acgcgggtgctgcaattcgcctcgctgagtttcgacgcgggggggatggaaatgctgatg ***** ***** ** ** ** ****************	1935 1980
frsA_Burk frsA_Chro	gcgttctgcagtggcggtcggttggtattgccggcagcggggccgctgctgggtgagcag gccttctgcagcggcggccggctggtgctgccggcggggggcgctgctgggggg	1995 2040
frsA_Burk frsA_Chro	ctagaggagaccctgaatcgttacgcaatcagtcatgcgctgattgcaccatccgcgctg ctgctggacacgctgaaccgccatgaaattagccacgcgctgatctcgccgtcggcgctg ** *** ** ****** ** * * *** ** ** ******	2055 2100
frsA_Burk frsA_Chro	gagacggtggaagcagaggtcgtgcctggtctgagcacgctggtggtgggaggcgagacc agcaccgcggacgcggcgttggcgccggtcctgcggacgctggtggtgggggggaagcc ** * *** ** * * * * * * * * * * * * *	2115 2160
frsA_Burk frsA_Chro	tgttccggggcaacagcggcgtcgtggtcgcagggaaggcgcatggtcaacgcctacggc tgcccgggcgcgacggtggcggcctggtcggcgggacggcggatggtgaacgcctacggt ** * ** ** ** ** ** ** ****	2175 2220
frsA_Burk frsA_Chro	ccgaccgaggcgacggtgtgtgtgtgacgatgagcaagccgctgtcgggcagcgacaagccg ccgaccgaggcgacggcctgcgtgacgatgagcgagccgctgtccggcgacggcgcgccg **********	2235 2280
frsA_Burk frsA_Chro	<pre>aagctgggtcgaccaacactgggggcaaagctgtatgtgctggatagcacgttgcaaccg aagctgggccgtccgacgcacaacgcgcggctgtacgtgctggatggcgcgctgcaactg ******** ** ** ** ** ** ** ** ********</pre>	2295 2340
frsA_Burk frsA_Chro	gttccggtgggggtggcgggggaactgtacatcgcgggccggggattggcacgtgggtat gcgccggtgggggggggg	2355 2400
frsA_Burk frsA_Chro	<pre>taccaacgacccggactgacggcggagcggttcgtggcgaacccatatggcaaaggcgaa ctgaaccggccggggctgacggcggagcgcttcgtggcgaatccgtacggagagggtgag * ** ** ** ** ******************</pre>	2415 2460
frsA_Burk frsA_Chro	cggctgtatcggtcgggagatctggcacactggagcggggaaggagaactggagtatctg cggctgtaccgcagcggcgacctggcgcggtggacggaagaaggcgagctggaatacctg ******* ** ** ** ** ***** * ***** * ****	2475 2520
frsA_Burk frsA_Chro	ggccgggtggaccaacaactgaaaatccgaggttttcgcatcgagccgggcgagatcgag gggcgcagcgaccagcaggtgaaggtgcggggtttccgtatcgagccgggcgagatcgaa ** ** *****	2535 2580
frsA_Burk frsA_Chro	acggtgttgtgccagcacccgcaggtaagggaggcggtggtggtatcgcgcacaaat gcggtgctgaaccggcatccgcaagtgagccagtcggtggtggtggcgcggcagagccag ***** ** ** ** *** *** ** ** ** ** ** *	2592 2640
frsA_Burk frsA_Chro	<pre>ggccgcgatacgcaactggtgggttatgtcacgatacgtggcgaggtggatgggcaggcg ggcggcgacagccagttggtggcgtacgtggcggccgtcggcgggggggg</pre>	2652 2700

frsA_Burk frsA_Chro	ctacgccgtcaggtagcaaactggttgccagagtacatggtaccggcagtggtggtg ctgcggcgcctggcgggggcagctgccggagcacatggtgccggcggcggtggtggtg ** ** ** * * ** ** ** ** ** **********	2712 2760
frsA_Burk frsA_Chro	ttggaggaattgccgcggctgccgaacgggaagctggatcatcaggcgttgcccgcgccg ctggaatcgctgccgcagttgccgaacgggaagctggaccgcaagtcgctgccggcgccg **** *** ******* * **********	2772 2820
frsA_Burk frsA_Chro	gaatacacgggcaagcgctaccaacgtccgcgcaatgcccaggaggaaatattgtgtggg gagtttggcggctcgcattatcagcggccgcgcaacgcgcaggaggaaatgctgtgcggg ** * * *** ** ** ** ** ** ********* **	2832 2880
frsA_Burk frsA_Chro	ctgtttgcggaagtgctggaagtgggcagtgtgggtatagacgacagttttttcgatttg ctgttcgcggaagtgctggacatggagaaggttggcagggggagacagcttcttcgatctg ***** ************* *** * ** ** * * ****	2892 2940
frsA_Burk frsA_Chro	ggcggtcattcgctgctggcaacacggttgatcagccgaattcgcgccaccatgaacatc ggcgggcactcgttgctggcgacgcggctgatccgccgcatccgcgaaaccttggatgtg ***** ** *** **** ******* ** *** **** ****	2952 3000
frsA_Burk frsA_Chro	<pre>gaactctctattcgcgatctgttcgaatgttctagtgttgccagcttgtcccgacatatt gagctgtcgatccgcgatctgttcgaggctccctgcgtcacggaactgtcccggcatatc ** ** ** ** ** **********************</pre>	3012 3060
frsA_Burk frsA_Chro	gttatcggcaatcagagctggaatccgtatgaagttttgatgcccattcgggcttcggga gccgaaggcggcgacagcaagagcccttatcaagtgttgatgcctattcgggccactggc * *** * *** ** ** ** *** ****	3072 3120
frsA_Burk frsA_Chro	<pre>aaccggcatccgttgttctgcatccacccggaaggtggactgggctggagctacatcggt ggccgccatcccttgttctgcattcatcccgagggcgggttggggttggagctatatcggg *** ***** *************************</pre>	3132 3180
frsA_Burk frsA_Chro	ctggctctgcatctcgatcatttacaacccatctataccctccaggcacgtggtctggac ctggctttgcatctggaccatgagcaaccgatctacaccctgcaagcccggggcctggac ****** ******* ** *** **** ***** ***** ****	3192 3240
frsA_Burk frsA_Chro	ggagtgtccaagttggcgtcatcgatccgggacatggccgcagattatattcaacagatc ggcatgtcggagttggctccgtcgattccggatatggctgccgactatatcgagcaaatc ** **** ******* * ****** * *** ***** ** ** ** ****	3252 3300
frsA_Burk frsA_Chro	cgtactgttcagcctgatggcccatatcacttgttgggctggtcactgggtggcttggtt cgcagcattcagccgaatggcccctatcacttgctgggctggtcgctgggggggg	3312 3360
frsA_Burk frsA_Chro	gctcaggagatggcggtacaacttgagcgagccgatgagaaagttgctctgttggcaata gctcaggaagtggcggtgcagttggagcgggtcggggaaaagacagcgttgctggcaatt ******** ****** ** * ***** ** ** ** **	3372 3420
frsA_Burk frsA_Chro	ctggatactttcccgattgaaatcctgcatgatgcgatgtttggcaagcaggcatgtgcc ctggatacgtttccgattgaaatcctgcatgaggcgatgtttggcaagcaa	3432 3480
frsA_Burk frsA_Chro	tacgacattttcgcgcaggtggtccaggatatgcatgcaatgcagatcgatgaagatcga tatgacctttttgcccgtgtggttcaggaaatgtatttgatgccgatcgaggaggcccga ** *** **** ** * * ***** **** *** ***	3492 3540
frsA_Burk frsA_Chro	ctgaagtccatgtatcagatcggcctgaatcacatgaagatcacggcgactttttcctca ttgaagagcatgtatctgatcggtctcaaccatatgaagatcactgcggccttttcctcc	3552 3600
frsA_Burk frsA_Chro	<pre>tcgcattaccgcggagatttgctgttgttccgctcaacgataccttatgcggacgacgcc tctcattatggtggcgatttgctgctatttcgctccttgattccatatgccgaagacgcg ** ***** * ** ******** * ** ****** *** ****</pre>	3612 3660
------------------------	--	--------------
frsA_Burk	ttgatgccgcaaccagaaacctggagcccatatatttcagggatactggaagttcacgaa	3672
frsA_Chro	ctgatgccagaggcggatacatggcagccttatttgtctggccaattggaagttcatgac ******* * * ** ** *** ** ** ** ** ** **	3720
frsA_Burk	gttgaatgcactcatatggagatgatgcagaaggacgtaacgaaagtaattggccagatt	3732
frsA_Chro	atcgagtgcacacatatggacatgatgcaaagagatgttttgaaaataattggtcctgtt * ** ***** ******* ******* * ** ** ** *	3780
frsA_Burk	ctgaaatcaaagctatcaaaaactgctgaaaagtag 3768	
frsA_Chro	ctcgagtcgaagttgtctgtcaccgctgtcaagcaataa 3819	

Abbildung A27: Alignment von frsA aus dem bcfrs-BGC und dem cvfrs-BGC.

CLUSTAL (0(1	.2.4)	multiple	sequence	alignment
-----------	-----	-------	----------	----------	-----------

frsB_Burk frsB_Chro	atgagcaatccttttgatgataaagacggaatttttaaagttttggtgaatgacgaaaac atgagcaatccctttgatgataaagatggtgtgtttctggttctgatcaatgacgagaat *********** ************************	60 60
frsB_Burk frsB_Chro	<pre>cagcattcgctttggccggattacatcaccgtaccatctggttggaacaccgtatttgga cagcattctctatggccggattatattgcggttccagcaggatggagccagagctttggc ******** ** ********** ** * ** *** ***</pre>	120 120
frsB_Burk frsB_Chro	<pre>cccgcatcccgcgatgcatgtctggattacgttgaaaataactggacagatatgcgaccc cctgcctccaagcaaacttgccttgattatatagaaacaagttggactgatatgaggcct ** ** *** * * * * * * * * * * * * * *</pre>	180 180
frsB_Burk frsB_Chro	aaaagcctgatcgatgcgatgcaatcggatgaaacatga 219 aaaagcctgattgatgcaatggagtgcgatgataaatga 219 *********	

Abbildung A28: Alignment von $f\!rsB$ aus dem $bcf\!rs\text{-}\mathsf{BGC}$ und dem $cv\!frs\text{-}\mathsf{BGC}.$

frsC_Burk frsC_Chro	<pre>atgacaacgcccgttcgagtggtgatctctgggggcagttggtcgcattggtaatagtttg atgaaaaattccgtccgtgtagctatttctggtgcggctggccgcattgccaataacttg **** ** **** ** ** ** ** ** ** ********</pre>	60 60
frsC_Burk frsC_Chro	ttgttcaatattgccagtggccagctgttggggagcgagc	120 120
frsC_Burk frsC_Chro	ctggaggcatcttctcgattaccgatgctaagcggcgtcttgatggagttgcatgacggg ctggagacgcctgccaggttgtcaatgcttaatggcattgcgatggagctgcacgga ****** * * * * * * * * * * **** * ****	180 180
frsC_Burk frsC_Chro	gcttttccattgctcgcgaatgtcgaaatccatgatgatccgtggctagcgtttgacggt gtttttccattacttgccggagtagaggtgagcgatgatccatggcaggcttttgagggc * ********* ** ** ** ** ** ** ******	240 240
frsC_Burk frsC_Chro	gcagactatgcgtttctgatcagttcgccgccgacagtctgagcgaagcatcgaaaacg gcggattatgtttttctgatcagttcgccgctcgatagcctggccacggcatcaaagact ** ** **** ****	300 300
frsC_Burk frsC_Chro	gcggatgccaggatggaaaatcatggcgctacatttgcggtacacggcagagcgctgaac gctgatgcgagaatggagcagcatggcaatactttcgctcttcatggcaaggcattgaat ** ***** ** ***** * ****** *** *** ** *	360 360
frsC_Burk frsC_Chro	ggcgttgccaatcgcgatgtcaaactactggtggtcagcaatccagtcatgctcaacgca gatgtggctagccgcgatgtcaagatactggttatcagcaatcccgtgatgatcaatgca * ** ** * * * *********** *******	420 420
frsC_Burk frsC_Chro	ctaacagtgcaacgcaatgccccgaatctcgatccatcgtgtatatgcgggatgatgcgc ttgatggttcagcgcaacgctccagatttgaattcgtcttgtatttctgcattgatgcgg * * *****	480 480
frsC_Burk frsC_Chro	ttggatcacaaccgcgcacatgcattgctggcgcacaaggcccgggttcatctctcggag ctggatcataatcgcgctcatgctttattggcgcataaagctggagccagcc	540 540
frsC_Burk frsC_Chro	gtcagaaaggtaattgtctggggcaatcacagtcgcacccaataccctgatttcgatcac gtgaggaaagtgattgtttggggtaatcacagctctactcaatacccggattttatcat ** ** ** ** ** ***** ***** ******	600 600
frsC_Burk frsC_Chro	gcgaccattggtggaattccggcctgcaacctgatcagtcacgactggctccgccaggac gccactattggcggagtccgcgtggatgccttgttggagaatgactggctgcatcaagtt ** ** ***** *** * * * * * * * * * * *	660 660
frsC_Burk frsC_Chro	tccgtcgatatcgttagacaacgtgggtatgcagtgatcgatgcctatggcggcttgcga tcaattggccttgtcaggcagcgagggtatgcagtgattgat	720 720
frsC_Burk frsC_Chro	gccgcatcctctgcagcaaaggcggcgattgatcatatgcgggattgggtcttcggcacg gcggcatcctcagcagctaaagcggccatcgatcatatgcgggactggatttttggaacc ** ******** ***** ** ***** ** ********	780 780
frsC_Burk frsC_Chro	cgtgaaggagattggacatccatgggggtattttctgacggctcctatggtgttcccgcc agggacggcgattggacctcgatgggtgttttgtcggatggttcatatggaatcccttct * ** ** ** ******* ** ***** ** ** ** **	840 840
frsC_Burk frsC_Chro	ggaatattcttcggttaccccgtggtctcccatcaaggtgatttacatatcgtcaagaat ggaatcttctttggttttccagttgtagccgatggtggacaggtgaatattgtgcaggga	900 900

frsC_Burk frsC_Chro	ctgaggccgaatccgatcgttctggagaaa ttgcaaattgccctgaaagattggaaaaa ** ** ***	attcatctcagtgcagatgagatttatcag atacatcacagtgccgacgaaatttatcga ** **** ****** ** ** ** *******	960 960
frsC_Burk	agatcaaaaaatttcaagctgatttga	987	
frsC_Chro	cggtgtcagcaattcaatt	987	

Abbildung A29: Alignment von frsC aus dem bcfrs-BGC und dem cvfrs-BGC.

frsD_Burk frsD-Chro	atggagatatggttggcgcagcaattgaggaaggatctattcatcaatatagccgagtat atggaaatatggctggcgcaacagctgatgccggattcgccgaataatattgccgagtat ***** ****** ****** ** *** * **** * ****	60 60
frsD_Burk frsD-Chro	cttcagattgacggggtgttggacatcgcactattcatggacgcgttacaccgagtgctg ctgcatctttccggtccgttggatccagattgtttttcaaaaccttgcggcaggtcgcg ** ** ** ** *** *** ***** * * * * * *	120 120
frsD_Burk frsD-Chro	<pre>caggaagccatagtattacacgtcaatttctccggtcatgttgaccgtcctgtgcaattc agcgagacgccggcattgcaggtcaatttttccattgaggatggacggccttgcccggtt ** * * * *** ** ******* *** * * * * *</pre>	180 180
frsD_Burk frsD-Chro	ttgcgcacaagcaaaggctgcgcaccgagtttcatcgatgtatcagcgcagtctgatcct agccgcgtccatgaggactggagtcctgatttcatcgatgtatcgacgcaggcgagccg *** * * * * * * * * * * * * * * * * *	240 240
frsD_Burk frsD-Chro	ttctttgcagcacaacgggcgatgagagaacttgcgcacagtccgttcgacctggggcag gaacacgcagccctgcgcgccatgcgggagcgggtggagaaacccttcgatctggcgcgg ***** * ** ** *** * ** * * * * * * *	300 300
frsD_Burk frsD-Chro	gacgcactgtttcgttggtgcctgattcgtctcagcgacgagcatcatatattctttcat gacgcgttgtttcgctggaccttgatccgcctggccgacgagcgccacatcttctgccat ***** ******* *** * **** ** ** ** ******	360 360
frsD_Burk frsD-Chro	gcctatcatcacattgtgatggatgtggcgggctatgtgctgctactcgagcgcgtggcg gtgtatcaccacatcgcgatggatgtcgccggctatgtgatgctgctgcagcgcatagcc * ***** ***** * ******** ** *********	420 420
frsD_Burk frsD-Chro	gaggtatatcgcgcattgcgctcggatttgccactgccagcatgtcgtttcgctaccgct gaggtttacggcgcgctgcgggaaggccagccggcaccggcctgcggtttcgccgatgcg ***** ** **** **** **** *	480 480
frsD_Burk frsD-Chro	agcgccatcgtcgatgatgaggtccgttatcgtgcgtccgaacaatttgccgtggaccgc gatgccatcgtccgcgaggaagagcgctaccgccagtcggagcagttcgcggtcgaccgg ******** ** ** ** ** ** ** ** ** ** **	540 540
frsD_Burk frsD-Chro	gccttctggcaagcgcgcgcgcgcgtgcaagccaaggcggaaccccctttgccgttgtcc gcattctggcaagcgcgctcggccgagctggcgacggcggagccgccgctgccggcg ** ******	600 600
frsD_Burk frsD-Chro	ggcgagccgttcctcgctttcgccgaaagcgcagttattccggaggccggcaggctgagc gatggcccgttcctggcgttcgcccagacggcggtgattccggaagacgcctgcggcggg * * * ******* ** ****** * * ** ** ** **	660 660
frsD_Burk frsD-Chro	ctgaaagcggccgcagagcgtctgggtgtatcgctttcccggttgttaagcgcggccatc ctgcggatgacggccgagcggctgggcgtctcccagtcccgtttgctgacagcggccatc *** * * ** *****	720 720
frsD_Burk frsD-Chro	atcgcttacttccgtcgctgggacggccagaacgagatgcggtttcggctggccgtgtcg gtcgcttatttccatcgctggggcggccagcaagagatcttgttccggctggcggtatcg ******* **** ********* ******* * ******	780 780
frsD_Burk frsD-Chro	gcccgcagcgaagtcaccatgcaggcaccaggcaatatggcacacgcgttgccgttgcag gcgcgcagcgatgcgacgcgac	840 840
frsD_Burk frsD-Chro	gcgagctttacgccccgcaccagtcttgccgatatcgtgcgccagctagacggcgaagtg gccagcctgccgccgcgcgccagtctggccgacatcgcgcgacagctggacggcgaggtg ** *** * **** **** **** ***********	900 900

frsD_Burk frsD-Chro	cgctgcatgcgtccgcacatccgctatcgggcggaagacatcgttcgggactgggcatcg gagcggatgcgtccgcatacccgctatcgggctgaggacatcgtgcgcgaccaggccggt * ********* * ********* ** **********	960 960
frsD_Burk frsD-Chro	<pre>accggcggagtgcagggtgcacaggggccggtgatcaacatcatgccgttctcttatgca gccggtttggggcgcgggggcgcagggggcctgtgatcaacctcatgccttttgcttaccgc **** * ** ** ** ** *** ******** *******</pre>	1020 1020
frsD_Burk frsD-Chro	ttcgactttggcgaatgccgagtgacatccgcacatcaattgaccgtcggcgtgctgaat ttcgagtttggcgcctgtcgcgtggagtccgcccatcagctgaccgtcggcgtgctggac ***** ******* ** ** *** ****	1080 1080
frsD_Burk frsD-Chro	gcgctggaagtcgcggtccacgatcgcaagattggtgatggtctgcatattgacctgtat acgctggaagtggcggtgcacgaccgcaagaacggtgacggcctccacctcgatttgtac ********* ***** ***** ****** ****** ****	1140 1140
frsD_Burk frsD-Chro	gccccgcaagcatgcggctcgcctgttcagttgcaacagcatgtcagaagactggcgcgt gcatccgagcgcggctgcccgcccgaaccgctgcggcggcatgccctgcggctggcccgg ** * * * * * ** *** * * * * * * * * *	1200 1200
frsD_Burk frsD-Chro	ttcattgaggtcgcggcggctgtgccacaaagtccgatcgacacactgccatggctggac ttcatcgtcgaggcggcggcggagccgtcgcagccggtgtccgacatcgagctgctggac ***** * * * ******* * ***	1260 1260
frsD_Burk frsD-Chro	gagtcggaacggaggcaactgctggaggaatggagtggcaacgcactggatttgggcgaa gaggccgagcgccggcaactgctggtcgactggaaccgcaccggaccaggaccacggccag *** * ** ** ** ** ********** ** **** *** *** *** ***	1320 1320
frsD_Burk frsD-Chro	atcacgctggcggaactgttcgaggttcaggcaacccgtcagccgaatgccgtggcgctg gccaccttcccgcaactgttcgaaacccaggcggccctcaccccgcacgccgtcgcgctg *** * * ** ********* **** *** *** ***	1380 1380
frsD_Burk frsD-Chro	gaggggccggacgaacgcgtgagctatggcgagttggacgcacgggccaaccgactggca gaaagcccggacgcccggctcagctatgccgaactggacgcccgcgccaaccggctggcg ** * ******* ** * * ****** *** ********	1440 1440
frsD_Burk frsD-Chro	agtcacctgcagagtttgggcgtggggccagacgtcgtggtcgtagtgtgcctggagcgc cgccatctgcaaagcctgggcgtcggcgccgacgtgctggtcggcatctgcctggagcgc * ** ***** ** ** ****** ** * ******	1500 1500
frsD_Burk frsD-Chro	<pre>tcgattgacatggtggtggcgatacttgggatcgccaaggcaggggctgcctatttgccg tcgatcgacatggtggtcgcggtactgggcgtgctgaagtccggcgccgcctatctgccg ***** *****************************</pre>	1560 1560
frsD_Burk frsD-Chro	<pre>ttcgcgccggattacccgaccgagcgcctggcctacatgctgacggattcgatggcgcca ctgtcgccggagtacccgacggaacggctggcctacatgctgggcgactcgatggccccc * ******* **********************</pre>	1620 1620
frsD_Burk frsD-Chro	gtacttttaaccgagtcaaaacaggtcgaacgactgccgtcgtattggggtcatctggtg gtgctgctgaccgactcggcacaagtcgagcggctgccgtcgtattggggccgggtagtc ** ** * * ***** ** *** *** *** ********	1680 1680
frsD_Burk frsD-Chro	<pre>aagctggatcgactcgatttgtcggggcaggcgtcgagtgcgccggcgcgagcgctacga gaactggaccggctcgacctggacgctctgccggacagcgcgcggaacgggcgctgcgc * ***** ** ****** ** ** ** ** ** ** ****</pre>	1740 1740
frsD_Burk frsD-Chro	<pre>ccagatcacttggcgtatgtgatctatacctcgggctcgacgggccaacccaaaggggtg gccgagcacctggcctatgtgatctacacctccggctccaccggccaaccgaagggcgtg * ** *** **** ***** ****************</pre>	1800 1800

frsD_Burk frsD-Chro	gcggtcagccacgccggcttagctgggttggtaaaaagtcaggaggagcggttcgcggtg gcggtcagccacgccggcctggccggccggcagccagacaga	1860 1860
frsD_Burk frsD-Chro	gccgggccggtacgggttctgcagtttgcttcgctgagttttgacgcagcggtaatggaa caaggcccgacgcgggtgctgcaattcgcctcgctgagtttcgacgcggcggtgatggaa ** *** **** ***** ***** ** ** ********	1920 1920
frsD_Burk frsD-Chro	<pre>atccttatggcgttctgcagtggcggtcggttggtattgccggcagcggggccgctgctg atgctgatggccttctgcagcggcggccggctggtgctgccggcggcgggggccgctgct</pre>	1980 1980
frsD_Burk frsD-Chro	ggtgagcagctagaggagaccctgaatcgttacgcaatcagtcatgcgctgattgcacca ggcgaacagctgctggacacgctgaaccgccatgaaatcagccacgcgctgatctcgccg ** ** ***** *** ** ** ** ** * * * ******	2040 2040
frsD_Burk frsD-Chro	<pre>tccgcgctggagacggtggaagcagaggtcgtgcctggtctgagcacgctggtgggga tcggcgctgagcaccgcggacgcggcgttggcgccggtcctgcggacgctggtggtgggc ** ****** ** ** ** ** * * * * * * * *</pre>	2100 2100
frsD_Burk frsD-Chro	ggcgagacctgttccggggcaacagcggcgtcgtggtcgcagggaaggcgcatggtcaac ggggaagcctgcccgggcgcgacggtggcggcctggtcggcggacggcggatggtgaac ** ** **** * *** * ** ** ** ***** * ****	2160 2160
frsD_Burk frsD-Chro	gcctacggcccgaccgaggtgacggtgtgcgtgacgatgagcaagccgctgtcgggcagc gcctacggtccgaccgaggcgacggcctgcgtgacgatgagcgagc	2220 2220
frsD_Burk frsD-Chro	gacaagccgaagctgggtcgaccaacactgggggcaaagctgtatgtgctggatagcacg ggcgcgccgaagctgggccgtccgacgcacaacgcgcggctgtacgtgctggatggcgcg * * ******	2280 2280
frsD_Burk frsD-Chro	ttgcaaccggttccggtgggggggggggggggggggggg	2340 2340
frsD_Burk frsD-Chro	cgtgggtattaccaacgacccggattgacggcggagcggttcgtggcgaacccatatggc cgcggctatctgaaccggccggggctgacggcggagcgcttcgtggcgaatccgtacgga ** ** *** *** * ** ** ** ***	2400 2400
frsD_Burk frsD-Chro	aaaggcgaacggctgtatcggtcgggagatctggcacgctggagcggggaaggagaactg gagggtgagcggctgtaccgcagcggcgacctggcgcggtggacggaagaaggcgagctg * ** ** ** ******* ** ** ** ** ***** ** ****	2460 2460
frsD_Burk frsD-Chro	gaatatctgggccgggtggaccaacaactgaaaatccgaggttttcgcatcgagccgggc gaatacctggggcgcagcgaccagcaggtgaaggtgcggggtttccgtatcgagccgggc ***** ***** ** *****	2520 2520
frsD_Burk frsD-Chro	gagatcgagacggtgttgtgccagcacccgcagttaagggaggcggtggtggtatcgcgc gagatcgaagcggtgctgaaccggcatccgcaagtgagccagtcggtggtggtggtggcgcgg ******** ***** ** ** *** *** *** ***	2580 2580
frsD_Burk frsD-Chro	acgaatggccgcgatacgcaactggtgggttatgtcacggtgcgtggcgaggtggat cagagccagggcggcgacagccagttggtggcgtacgtggcggccgtcggcgggggtggag ** *** **** * ** **** *** *** ***	2637 2640
frsD_Burk frsD-Chro	<pre>gggcaggcgctacgccgtcaggtagcgaactggttgccagagtacatggtaccggcagtg gggtcggagctgcggcgcctggcggcgggggcagctgccggagcacatggtgccggcggcg *** ** *** *** ** ** *** *** *** ******</pre>	2697 2700

frsD_Burk frsD-Chro	gtgctggtgctggaggaattgccgcgg gtggtggtgctggaatcgctgccgcag *** ******	<pre>pctgccgaacgggaagctggatcatcaggcattg ptgccgaacgggaagctggaccgcaagtcgctg ************************************</pre>	2757 2760
frsD_Burk frsD-Chro	cccgcgccggaatacacgggcaagcgc ccggcgccggagtttggcggctcgcat ** ******* * *** **	taccaacgtccgcgcaatacccaggaggaaata tatcagcggccgcgcaacgcgcaggaggaaatg ** ** ** ** ******** * **********	2817 2820
frsD_Burk frsD-Chro	ttgtgtggggctgtttgcggaagtgctg ctgtgcgggctgttcgcggaagtgctg **** *******	ygaagtgaacaatgtgggtatagacgacagtttt ygaagtggggggggtggggtagacgacagtttc ******* * * ** ** **************	2877 2880
frsD_Burk frsD-Chro	ttcgatttgggcggtcattcgctgctg ttcgatctgggcgggcactcgttgctg ****** ******* ** *** ***	Jgcaacacggctcgtcgatcgaatccggacgacg Jgcgacgcggctgatcagccgcatccgggcggcc *** ** ***** ** ** ** ****** **	2937 2940
frsD_Burk frsD-Chro	ctgggtgtgggaactaccgatcaggacg ttgaatgtggagctgccgatccgccag ** ****** ** ****** *	attttcgaccaaccgacgatcgcggagctggcg jctgttcgacctgccctccgtcgcagagctgctt ; * ******* ** * ****	2997 3000
frsD_Burk frsD-Chro	gttgtcttaccacagtgtcaagcgatt gaggttctcccccaataccaaggcgct * ** * ** ** * ****	acgcggccgcctttgagggcgcgtcgacgtgtt gcccggccggccctgcagccgccgccgccag * ****** * * * * **** ** **	3057 3060
frsD_Burk frsD-Chro	gagaatagtgattggagttag caacacgctgtcaggagttga	3078 3081	

Abbildung A30: Alignment von frsD aus dem $bcfrs\operatorname{-}BGC$ und dem $cvfrs\operatorname{-}BGC.$

frsE_Burk frsE_Chro	atgcagaattccgcaatcgaagtgctgccgctttcctatgctcagcggcgactttggttt atgccgatccccgagattgaggttttaccgctttcctatgcgcagcgccgattgtggttt **** ** *** *** ** * * **********	60 60
frsE_Burk frsE_Chro	<pre>acgcattgcatcaaaggacctagtcccgcctataacattcctcttatgctacgcctcgcg acccatcgttttaacggtcccagcccgacttacaatattccgatcgcgctgagtttgtcc ** *** * * *** ** ** ** ** ** * ** *</pre>	120 120
frsE_Burk frsE_Chro	ggcaagcctgcgaaagaagcgctgcaagccgccttacaagatgtgctaactaggcatgag ggcgagccggagcagccggccttgcaggctgcgctgc	180 180
frsE_Burk frsE_Chro	agccttcgtaccctgtgtgtggaggcggacgatggtgaacccatgcagcatattctgccg agcctgcgcaccctggttgtcgaatcggaggagggcgcccccggcgcagcatattctgccg ***** ** ******* *** *** *** *** ** **	240 240
frsE_Burk frsE_Chro	gcgcaggccgtgacggtgtttcgactggaaacgcacgtcgctgccagcgtggccgaacag ccggatgccgcagggactttctgtctggcggttcagaccgccggcagcggggggag ** * **** * *** * *** ****	300 300
frsE_Burk frsE_Chro	<pre>tccgaggcagtggtggaggctagccgccactgctttgatctgtcgaccgagattccgttg gccgcgtcgctggagacggcttgccgccattgctttgatttgtcgcgcgagatgccgttg *** * * *** * **** ****************</pre>	360 360
frsE_Burk frsE_Chro	cgcgcgacgttgtttctggcggaaggggcgccgccgttactactgctgctgctgcatcac cgcgcgggcttgtttctggctgatggcgccgagccggtgttgttgctgctcttgcaccat ****** *********** ** ** ** *** *******	420 420
frsE_Burk frsE_Chro	attgcagcagacggggactcgttgccggtgttggccaagaacttggaatttgcctatctg atcgctgccgacggcgactccctcccggttctggcgcgggatctggaactggcctatcga ** ** ** ***** ***** * ***** * ***** * *	480 480
frsE_Burk frsE_Chro	gcccgtcacgaaagtcggccaccagagtggtcgctactcgccgttcaatacgcggactat tccaggttgcggggcctggcgccggagtggcggccattgccggtgcaatatgccgattac ** * * * * * * * * * * * * * * * * * *	540 540
frsE_Burk frsE_Chro	<pre>acgctttggcagcgggaatggctgggcaatatcggcacagcggacagtcccgccgcacat gcgctgtggcaacaggagttgctgggcgatctggaggtcccggatagcctggcggcccgg **** ***** * *** * ***** ****** ** *****</pre>	600 600
frsE_Burk frsE_Chro	<pre>cagcttcgttattggcgcggtgcgttacgagggatgcctcaggtgatggccctgccgacc caattggttattggcgcgaggcgttgcgaggcatgcccgatgtgctggagttgccgacc ** * ************ ****** ****** ****** *</pre>	660 660
frsE_Burk frsE_Chro	<pre>gatcgaccgcggccgccgtcgctacgcatcgcggcggtaaggtgccgtttgcactgccg gaccatccgcgtccggcggtggccagccatcgcggcggcaaagcgccgttcgcgctgtcc ** * ***** *** * ** * * * * * ********</pre>	720 720
frsE_Burk frsE_Chro	gccgcggcacatgcgcggctgaagacattggccgagaccgaagcggtaacgttgtcgatg gcagcggcgcatgcccgtctgaagacgctggccgcgcaacaggggcgcgacttgtcgatg ** ***** ***** ** ** ******** ********	780 780
frsE_Burk frsE_Chro	gtcttgcaggccggcctttccgctttgctttatcgattaggggctggttccgatgtcgtg gcgttgcaggcgggtctggccgccttgctgcaccgcttgggcgcgggaacggatatcgct * ******* ** ** ** *** **** * *** ** **	840 840
frsE_Burk frsE_Chro	<pre>atcggtggactattggcaggccgcaatgatgaggcattgaaggatctgatcggtttcttc gtgggcggtcttctggccggccgcgcgaagagtcactgaaggaactgatcggctttttc * ** ** ** ** ******************</pre>	900 900

frsE_Burk frsE_Chro	gtcaatgcctgggttttgcggacggatctgtccggccatcccgattttcatgtcctgttg gtaaatgcttgggtattgcgagtggatgtttccggccggc	960 960
frsE_Burk frsE_Chro	cgtcgtgtgcgcgagcaggcacttcaagcttacagtcacccagatctacccttcgagtgg cgccgggtgcgggaacaggcgttgcaagcctacagccatcaggatttgccgttcgagtgg ** ** ***** ** ***** * *****	1020 1020
frsE_Burk frsE_Chro	ctggtcgagcagttgaatccgatccgttccacttcgtatcatccgctgttccaggtggta ctggttgagcagatcaatccggcgcgttccacttcgcatcatcctctatttcaggtcgcg ***** ****** * ****** *************	1080 1080
frsE_Burk frsE_Chro	ttggttttgcagaacaatcagcgtgcccgatttcgattgggcggactggtggtggagcag ctggtgctgcagaacaatctgagcgcggacttccacctggaaggcttggcagtggatcag **** ************ * * * * * * * * * *	1140 1140
frsE_Burk frsE_Chro	<pre>caagtgcttggtacaggtacagcgaagttcgacctcgccttcaatctgtttgagacaatg cggctgcttggaacgggaaccgccaagttcgatctggctttcaatttgttcgagcggcag * ****** ** ** ** ** ** ** ** ** ** **</pre>	1200 1200
frsE_Burk frsE_Chro	agcgacgacgggcacccgctgggcgtgacgggcgatctcgaatacgcatgcgacctgttc gatggcgatggccggccgcaggggttggacggagaactggaattcgcttcggacctgttc * *** ** * * **** *** *** ** ** ** ** *	1260 1260
frsE_Burk frsE_Chro	gatcctcccagcgcggttcgattggcctatcgcttgagccgcttactggaaatctggtcc gaccgcggcgggggggggg	1320 1320
frsE_Burk frsE_Chro	gcagcaccgtcgcagtcgattgccatccttgatttactggagagatcagagcgcgaacaa atgcagccggcgcatttgattgccgaactggatctattggacgacgacgaggcgccggcag *** **** * ******* ** *** *** *** ****	1380 1380
frsE_Burk frsE_Chro	gctttgctggagtggaacgcgacgactcggccactccccgcgttgacgctggcagaagca gcggtgagcggatggaacgattcagcccgtccgctggaggcgggcacgctcgcctgttg ** ** * * * ******* * * * ** ** *** **	1440 1440
frsE_Burk frsE_Chro	ttcgaaacgcaggcggcgcttacaccagaggcggtagcgctggcgtttggcgatgaagta ttcgaagcccaggcaaaggcttcgccggactcggtcgcgctggcttttggctcggagcag ****** * ***** * * * * * * * * * **** ****	1500 1500
frsE_Burk frsE_Chro	ctgagttacgctgaactaaacaacaggccaatcgcttggcacggatgctggttgccgcg tatagctatgccgagctggaccggcgcgccaaccagttggccaggacgctggcgggcg	1560 1560
frsE_Burk frsE_Chro	<pre>ggtctcgggccggaaggcagggtcgcgttggccgttccgagatcgctggatatggtcgtg ggcatcggcccggaggacatcgtcgcgctggcggtgccgccgctcgct</pre>	1620 1620
frsE_Burk frsE_Chro	gctttgctcggcgtgactaaggcggggcgcggcgtatttgccgctagatccagagtatccg gcgttgctggggggtggtcaaggcggggcgctgcctatctgccgctggaccccgagtatccg ** ***** ** *** ***	1680 1680
frsE_Burk frsE_Chro	gcagagcggctggcatacatgctggccgatgcaaagccgacgctgttgatgactgtcaac cgcgagcggttggcccatatgctgtccgacgccacgcc	1740 1740
frsE_Burk frsE_Chro	<pre>gcgcagctcggtagcctgtccgaatgcgcgggggtacccggtgctggcgctggatgccgat gataccgtcggcggtttgccggcattctcaggcttgcgggttcaggtgctggatgagccg * **** * ** * * * * * * * * * * * * *</pre>	1800 1800

frsE_Burk frsE_Chro	tcggttcgggacgcgatttcgcagatgtcaggatgcaacttggttcaatcggaacggctg gcctggcgggagatggttgcccgagcggacgggcggccgttggcgcagcgagagcggacg * **** * * * * * * * * * * * * * * * *	1860 1860
frsE_Burk frsE_Chro	tgtccattgcagcctcagcaccctgtttgcgtgatctatacctccggttcgacaggccgt cgccccttgttgccgcagcacccggtttgcgtgatctacacctcgggctcaaccggcaag * ** *** *** *** ******** **********	1920 1920
frsE_Burk frsE_Chro	ccgaagggcgtgatggtgacccaccagggtatcgtcagcttacgtgccagcca	1980 1980
frsE_Burk frsE_Chro	cgattcggcgtgtccgctgaatcgagcgtgttgcaattcgcctccttgagcttcggcgcg cgtttcggcgtgtctgccggatccagcgtgctgcagttcgcgtcgctgagtttcggggcc ** ********** ** * *** ***** ***** *****	2040 2040
frsE_Burk frsE_Chro	gcgctgttcgaaatttgcacgtctctgttgacaggcgcgcgc	2100 2100
frsE_Burk frsE_Chro	atcaaagaagcgctgaacgttgagacaatgaccgcattggtgactcggcaccggttgagt gcccgcgaggcgctgaatgccggagcgatggcggagctggcggcggcatggtttgagc * ** ******* * * * * * * * * * * * * *	2160 2160
frsE_Burk frsE_Chro	catatggtggtgccgccatccgcgttggacacgttgtgcgccgaccgtctgcctcgtacg catgtggtgctgccgccgtcggcgttggaggcattggcttcggagcggctgccggatagc *** ***** ****** ** ******** * ****	2220 2220
frsE_Burk frsE_Chro	gtccgcatcatggtggcaggtgagcattgtccggcccatctggttgagcgttggtccgcg ctcggcatcatggtggcgggcgagcattgcccggctcatctgcaggaacgctggtcggct ** ******	2280 2280
frsE_Burk frsE_Chro	gatcgattcatggttaacggttacggttcgtctgaagtaaccgtatgcgcgacgatgagt ggccggttgatggtaaacggctacggctcttccgaagtgaccgtgtgcgcgacgatcagc * ** ** ***** ***** ***** ** ** ** *****	2340 2340
frsE_Burk frsE_Chro	cagcccctgtccggccgtgcactcccgccgatgggggcgccgaatgccaatacccgactc ctgccgctgtcgggccgcggcgcgcgccgccgatgggcctgccaatacccggctc * *** ***** ***** * ****** * *********	2400 2400
frsE_Burk frsE_Chro	tacttgctggatgcagggatgcaacccgtcccggcgggcg	2460 2460
frsE_Burk frsE_Chro	gccggggaaggtttggctcgaggttatttgagccgcccgggtcttaccgcggagcgtttt gcaggcgatgggctggcgcggcggctatctgcgccgccgggcctgagcgccgagcgtttc ** ** ** ** ** *** *** ** ** *** *** *	2520 2520
frsE_Burk frsE_Chro	gtcgccaatccattcgagccaggttggcagatgtaccggacgggcgatctcgcacggcg gtcgccaatccgttcgccgagggggaacggatgtatcgcaccggagacctcgcgaggcga ***********	2580 2580
frsE_Burk frsE_Chro	<pre>gacatcgatggccggctcgactatttgggacgcgttgaccatcaggtcaagatccgaggt ggcggggacggcaggctcgaatatctcggccgcaccgaccatcaagtgaagattcgcggt * * ** *** *** ******* *** *** *** ***</pre>	2640 2640
frsE_Burk frsE_Chro	ttccggatcgaaccggctgagattgaggcggcgcttcgccagctaccaggcgtggcccaa ttccgcatcgaacccgcggaaatcgaggctgtgttgcgccgcttgtccggcgtggcgcag ***** ******** ** ** ** ** ***** * * * *	2700 2700

frsE_Burk frsE_Chro	gcgactgtcgtagcttgggaggaggtaccgggggcaaagcaactggttggctacgtcgtg gcggctgtggtcgcccgcgaggatgcgccgggcgtcaggcagctgggggtatgtggg *** **** ** ** ** ** ** ***** * ****** ** ****	2760 2760
frsE_Burk frsE_Chro	cccaaggaggggggttatgctggagccgcgcgccatgcgccgtgagttggccgagcacctg gcggcgacggaagcgaagc	2820 2820
frsE_Burk frsE_Chro	<pre>accgatcatatggttcccgcggtgctggtcgagctatcggctttgccccgaacgccgaac cccgagcatatggtgcctgcagcgctggtggagctggcggccttgccgagaacgccgaac **** ******** ** ** * ***** *****</pre>	2880 2880
frsE_Burk frsE_Chro	ggcaaactcgaccgcagtgccctgccgcggtattcgtcacagaaggatatcgcgag ggcaagttcgaccgcggtgccctgccggtgcccaccttcgccggagggctaccgccg ***** ******** ******************	2940 2940
frsE_Burk frsE_Chro	ccacgcacggcaaaagagtgcaccctatgtcaactgttcgcgcaagtactcgatttgcct ccccgcacggcggaagagcgggcgttgtgccagctgtacgcccaggtactggatttgtcc ** ******* **** * * * * * **********	3000 3000
frsE_Burk frsE_Chro	<pre>caagtaggtatcgacgacgccttctttgatctgggcggcgacagcatcagttccatcca</pre>	3060 3060
frsE_Burk frsE_Chro	ctggccagccgcgcgcgcgaagcgtggctggcacgtgacgccgaaccaggtgtttcgctat cttgccagccgcgcgcgcaaagccggttggctgctgacgccgaaccagatattccggcat ** **********************************	3120 3120
frsE_Burk frsE_Chro	ccgcgcgtgcaggatctggctacggtgatgttgccgttgacaaatggggtggactctgtg ccccgggtcgaggacctggctgcggagcttaagcctgtcgagtccgaccggaacgagcgg ** ** ** ** ***** ***** *** *** *** *	3180 3180
frsE_Burk frsE_Chro	caagaggagccgtgtggtgacctgacgctgacgccgattctacgctggatgtgggaaaac gtggatcaggcctgcggcgatttgccggcgacgcccatcatccactggatgctggccgcg ** ** ** ** ** ** ** ** ** ** ** ******	3240 3240
frsE_Burk frsE_Chro	ggcccatatcgtcttttccatcagtcgcaactgttgcgtgcg	3300 3300
frsE_Burk frsE_Chro	gccgacttgctggcaatggtccaggcgctgctcgatcaccacgatgcgttgcgcatgcgt gatgacctgctggccgcgctgcaggcgctgctggaccatcacgatgccttgcgcctgcgt * *** ******* * * *******************	3360 3360
frsE_Burk frsE_Chro	ctacacgaggacgatggcgaagcgcgcatgacgattctaccggtgggtacgacgagg ttggacgcggcggccagcgatgaggcgctgctatcgattccgcctgccggatcggtgcgg * *** ** * * * **** * *	3417 3420
frsE_Burk frsE_Chro	gccgaggattgcgtgcgtcgtatcgagatcgtgggagtcgatgccgtcgagcgacaggtg gccggcgattgcctgcgccggatcgacgcggtcggtcggt	3477 3480
frsE_Burk frsE_Chro	gtgctggcccgtgaaacggacgaggcaatcctgcgtctggatagcgaatgtggtcgactg ctattggcgcgggaaggggaagccgcggcggaacggctggactgcgaggccggcttgctg * **** ** *** *** *** ** ** ** *** ***	3537 3540
frsE_Burk frsE_Chro	gtgcaagtggtgtggctagatgccggttcggaagaagggtggttacgtcttgtcattcac ctgcaggcggtatggctggatgccggggacgaggccgggcgtttattgctggtgatccat **** * **** *****	3597 3600

frsE_Burk frsE_Chro	catctggccgtggacggcgtgtcgtggcgtgtgttgctatcggattggcagcaagcttgg cacctggcggtggatggcgtttcctggcgcgtgctgttgccggatttgcagcaggcctgg ** ***** ***** ***** ** **** *** ***	3657 3660
frsE_Burk frsE_Chro	gcggacgtgtgcgtggggtgcgctatttcgctcgatccggttggcacgtcgttccgcaac caggcggcgagccaggaccgtgccatcgcgctggacccggtcggggcctcattccggcta ** * * * ** ** ** ** ** ** ** ****	3717 3720
frsE_Burk frsE_Chro	tgggcactgtgtttgcaacgggatgcacagtctccgcagcgcgaagccgagctggcgtac tggtcgctgcatctggggcaagaggcccggtcgtcgcagcgcgaagcggaactggcgcat *** * *** * * * * * * * * * * * * * *	3777 3780
frsE_Burk frsE_Chro	tggtgctcgatgctgtcgacgaccgatatgccgctcggacgacgggcattcgatccagcc tggaaatgggcgctggcggccgaagatccgttgcttggcccgcgtccgtacgattccgcc *** * * **** ** ** ** *** * *** * *** *	3837 3840
frsE_Burk frsE_Chro	cgcgataccacccgaaccaaacagagtctcagcctatcactgcccgtccggacgacccaa cgcgacgccacccggacccggcaaagcctgagcctggctttgccgccggcggtgacccag ***** ******* *** ** ** ** ** ***** * ****	3897 3900
frsE_Burk frsE_Chro	gcgttactgactcaggctgcaacgcgctttcatgcgcaggcgaacgatgtgttgttaacc gcgctgctgacgcaggcgaccgcggtttccacgcccatgccaacgatgtgctgttgacg *** * ***** ***** * ***** * ** ** ** **	3957 3960
frsE_Burk frsE_Chro	gtgtttgtgctcgccatggcagcttggcggcgccaatgcatgggccatgcccccgatgcg gtgtttgcgcttgcggttgcggtttggcggcgccggcgtctgcccgaggcaccggcggag ******* *** ** * * * * * * * ****	4017 4020
frsE_Burk frsE_Chro	ttgctattcgacctggaagggcacggtcgcgagacccaggacaccgcgatcgacctgtcg ttgttgttcgacctggagggccatggacgggaggcgcgggatactggcatcgatttgtcc *** * ********** ** ** ** ** ** ** ** *	4077 4080
frsE_Burk frsE_Chro	cgtacggttggttggtttaccagtctgttcccggtgcgagtgagactggatgccgtcgat cgaaccgtcggctggttcaccagcctgtttccggtgcggctggcgggtggattgcgccggg ** ** ** ** ** *****	4137 4140
frsE_Burk frsE_Chro	ctggacgacgcactaggggagggcgctagcctgggccgtctgctgaagtcggtaaaggag ctggacgaagcgctgaagggcgggggacagcttggggcgcttgctcaagtcggtgaaggaa ******** ** ** ** ** ** *** **** *	4197 4200
frsE_Burk frsE_Chro	<pre>caacttcatgcgttgccggaccggggcctgggcttcggcttgctccgctacttgaaccag cagttgcgggccatcccggaccggggcatgggttttggcttgctgcgccatctgaatccc ** * * * * * * * * * * * * * * * * *</pre>	4257 4260
frsE_Burk frsE_Chro	ggtaccgctgcagagcttgccgcacacggacagccacaaatcggtttcaactatcttggc ggcgcgcgcgggcgagctggccgcgttgagcagtccgcagatcggtttcaattaccttggc ** * * * * ***** ***** * *****	4317 4320
frsE_Burk frsE_Chro	cgctttgcggcatcggagggggggggggggactggcaactggcctcagacgtgggcatcgaggcg cgtttcaccgccgcggagggggggggg	4377 4380
frsE_Burk frsE_Chro	gggcaggatccggaaatgcccctgccgcatccgctgtcgtttgacgcacataccttggac ggacaggatccggacatgcccttgccgcatctcttgtcgttcaatgcccagacgctggac ** **********	4437 4440
frsE_Burk frsE_Chro	cgaacacatgggccggaattaaccgccatttggtcctggggcagcgaattgttctcctcg cgggagcaagggccggaactgcatgccatctggtcatgggccggaagtgttcgatcag ** ** ********* * *****	4497 4500

frsE_Burk frsE_Chro	gacgagattgccgaactggcacagttgtggcagcaggccgcaatggctttagctgagcat gagcagatcgcggagctggcccagttgtggcggcaggcggccgtcgcgctggcggagcac ** **** ** ** ** *****	4557 4560
frsE_Burk frsE_Chro	gtgacaaggccgggggcaggaggccgcacgccgtcggatctgcccctcgttcacttgcat gcctcaaggccggaggccggcggccgctcgccgtcggatctgccgctggtgggtttggag * *****	4617 4620
frsE_Burk frsE_Chro	caggcgcagattgagcaactggaggtggaatatccgcggatcgaagaggtcttgccgttg caaacgcaaatcgagcggctggaggccgagtatcgcccgctggaagatgtgcttccgttg ** **** ** **** ***** ****** ** ***** *	4677 4680
frsE_Burk frsE_Chro	<pre>tctccgctgcagaagggactactgttccacggtctgtacgatccggcggggcgtcgatccc tcgccgctgcaaaagggcttgttattccacggcctgtacgatccggccgg</pre>	4737 4740
frsE_Burk frsE_Chro	tatgtcgagcgattgatctacgcgctagaaggcgaactcgacgccggtgcgctcaagcaa tatatcgagcgagtgacgtatcagctggaaggcgagctcgatcccgcggcgatgaagcgg *** ******* *** ** ** *** **********	4797 4800
frsE_Burk frsE_Chro	gcggtacacggcctgctgctgcagcacagcaatttgcgcgcgtgtttcgttgatctgggc gccgcgcatggcttgttgcagcgccacggcaatctgcgcgcctgctttgtcgatttgggg ** * ** ** *** ** *** *** *** *** *	4857 4860
frsE_Burk frsE_Chro	cgcggacagccagtgcaggttatcgtgccgctttcggcactaccttggcaggaaattgac aaaggccagccggtgcagatcatttcccagctggaggcgctgccatggcaggacatcgat ** ***** ****** * ** * * *** *** ** **	4917 4920
frsE_Burk frsE_Chro	ttgtccatgctgggggggggggggggggggggggggggg	4977 4980
frsE_Burk frsE_Chro	cgtcatcagcggttcgatctgtctcatgcgccgttgttgtctttcgtgctgatccgactc cgcagccagcgtttcgatttggggcgcgctccactgctgtccttcaccctgatccggctg ** ***** ****** ** * * ** ** ** *** **	5037 5040
frsE_Burk frsE_Chro	gctgtcgatcgccaccggctgatcatgagcaaccatcacatcctgctggatggttggt	5097 5100
frsE_Burk frsE_Chro	gggccactgttatggcgcgagttgatgaaattgtatcgaagcggcggcgatctgcgcgc gagcccttgttatggcgggagttgatgacgctgtaccgcaatggcggcgatctgggcgcg * *** ********** ********	5157 5160
frsE_Burk frsE_Chro	ataccgcgcgtgacgccatatcgcgattatctggattggctggc	5217 5220
frsE_Burk frsE_Chro	cccgaccggatggcctggcgcggatatttgcgcgatttggttaccccgacgttgctggct gccgatcgccaggcttggcggcattatctcgccgaattggagacgcctacgctgctgtcg **** ** *** **** **** *** **** **** *	5277 5280
frsE_Burk frsE_Chro	ccagccgcgcccacggagtacgtgatccaggagacctatgaacgggcgttgcccgacgca ccggagccgccggcggcctatgtcgatcaggaaacttacagcctcgccttgccgccagcg ** * **** *** ** ** ** ** ** ** ** ** *	5337 5340
frsE_Burk frsE_Chro	ctggcgagcgggctgactgcgcttgccgaacagttgggggtgacgttgaataccgtgata ctggcgcaagcgctggcggccccgcgccgcagagctgggggatcactctgaataccctggtc	5397 5400

frsE_Burk frsE_Chro	<pre>caaggcgcttggggtagggtgctcgggtgtctcacgacaagccaagacgtgatgttcggt cagggcgcctggggccgggtgttggcatgcctgaccatgagccaggatgtggtgttcggc ** ***** ***** ***** * * ** ** ** ** **</pre>	5457 5460
frsE_Burk frsE_Chro	<pre>tccaacgtagcagggcgccctgcggagctgaacggtatagaagacatgattggcctgttc tctaatgtggcgggcgtcccgccgagctcggtggcatcgaggacatggtggggctgttc ** ** ** ** ** ** ** ** ** ** ** ** ****</pre>	5517 5520
frsE_Burk frsE_Chro	attaatactatcccattacgggtgcgctggtcgcgcgggagaatccatcggcgacgtgcta atcaatacggtgccgctgcgggtgcgctggacgagggggggg	5577 5580
frsE_Burk frsE_Chro	<pre>aagcgcatacagtcggagcaggtcgatctgttagagcaccagtacttggatttggtcgag gtccgcttgcaagcggagcaagtcggcctgctggagcaccagtatctggatctggctgaa *** * ** ******* **** **** **** ***</pre>	5637 5640
frsE_Burk frsE_Chro	attcagagtcaggccagccacagggatttgttcgattcggtctatgcgtttgaaaactat atccaggagctggccggcctgggcgatctgttcgacaccgtgtacgcctttgagaattac ** *** * **** *** * *** * *** ****** * *	5697 5700
frsE_Burk frsE_Chro	ccagtccatgccaacgacgaagacgaagcgtcaggcccccgcgtcaaggtggtaagcggc ccagtgttcggcgatggcggcgcatccgcagccgggccgcgggtgacgggtgtcagcgga ***** * * * * * * * * * * * * * * * *	5757 5760
frsE_Burk frsE_Chro	ggcagcacaacccactatccgctcggattgatcgtcaacccgcaggcag	5817 5820
frsE_Burk frsE_Chro	ctgttcagctaccgaccagattgttatcggcgttgcgatatcgagcgtatcgccgcctac ctgttcagctaccggccggatttgtacttgcctgaggacatccagcgcattgccggctat *************** ** **** ** ** ** ** **	5877 5880
frsE_Burk frsE_Chro	ctgcaatgcgtactggaagcgtttgcggttgattccacccaaccgatcgctcaattggat ctgcaactgacgttgcaggcgtttgccgacgatccggcgcaatccgtcgccggtctggag ******	5937 5940
frsE_Burk frsE_Chro	ctactgccgccggagcaggccaacgggatcgcgcagtggaacgacactcagcacgcttgt ctggctccggtcgagcaggcgggatggctgaggtcctggaatgacaccggccatgcctat ** *** *** ****** ** * * ***** *****	5997 6000
frsE_Burk frsE_Chro	ccatcggcggacctcgcgcagttgttcgagcgtcaggtacggttgacacccgatgcctct ccggatggggacctggcccagctgttcgagcgccaggcaaggctgacgccgaatgcccag ** * ****** ** *** ******************	6057 6060
frsE_Burk frsE_Chro	gcgctaacttttgggtcccaaacgctaagttatgcggtcctgaatgcgtgcg	6117 6120
frsE_Burk frsE_Chro	ctcgccagatggttgttgatgcacagtatcgggccggacgatgtggtcgccgtggcattg ctttgccgggtgttgctggctcacggcgtaggcccggacgatgtggtcgcggtgggcgctg ** * * * ***** ** *** * * * * * * ***	6177 6180
frsE_Burk frsE_Chro	ccgcgttcaatcgatctggtcatcgcgttgttggcggtcgtgaaaagcggcgcagcctat ccgcggtcgatcgaattggtggtggcgctgctggcggtggtgaagagcggcgcggcctac ***** ** ***** **** * *** * **********	6237 6240
frsE_Burk frsE_Chro	ctgccactggatgccgactatccgaggaaccgcctcgacttcatgctgacagatgccaga ctgcccctggacgccgattatccgcgcgaacgcctcgatttcatgctggcggatgccaga	6297 6300

frsE_Burk frsE_Chro	ccgcgagcgttgttgaccaatgggtcgatggtcgaggctctgtcgcccgctgcagggact cccgcggttttgctgagcaatgccgcgatggccggtatcttgtcgccggctgacggcacc ** * *** *** *** **** **** ***	6357 6360
frsE_Burk frsE_Chro	caggtgttgctgctggatgcccctgagtggacggcagcgcgaaatcacctcgatgatcgc cggttgctgagcctcgacgagccgggactgctgtcggcgcaggatggcgcggacagcggc * * * * * * * * * * * * * * * * * * *	6417 6420
frsE_Burk frsE_Chro	gacatggtggtgacagagcgaaagcaaccattgcgtccgctggatgccgcttatgtcatc gatctggccgcggggcgagcgcaggcggcggttgcggccgcaggatgccgcctatgtcatt ** *** * * * ***** * ** * *****	6477 6480
frsE_Burk frsE_Chro	<pre>tatacctccggttcgaccggcctacccaagggagtggtcaacacgcaccatggaatcgtc tacacctctggctcgaccggcaagcccaagggcgtgatcaacacccatcagggcatcgtc ** ***** ** ********* ******** *** ***</pre>	6537 6540
frsE_Burk frsE_Chro	<pre>aatcggctgacgtggatgcaatcggcctatcgactggacgctagcgatgtagttctgcaa aaccggctggcatggatgcaatcggcttaccggctggacgccagcgataccgtcttgcaa ** ****** * ************************</pre>	6597 6600
frsE_Burk frsE_Chro	<pre>aaaactccgttcagtttcgatgtctcggtctgggaatttttctggccgttactcaatggg aagacgccgttcagcttcgatgtttcggtgtgggagttcttctggccgctgctggagggc ** ** ********* ******** ****** ****** ** ****</pre>	6657 6660
frsE_Burk frsE_Chro	gcgaggctggtgatggctgtaccggacggacatcgggatccggcatatctggcggagctg gccaggctggtactggcggttccggacggacatcgcgatccggcctacttggcggcgctc ** ******* ** *** ** ***************	6717 6720
frsE_Burk frsE_Chro	<pre>attcagcgtcaaggtgtcaccacctccatttcgttccttcc</pre>	6777 6780
frsE_Burk frsE_Chro	<pre>aacgagccgagcagccgtcaatgcttgagtttgaagcgtgttctgtgcagtggtgaagtc cgcgaagccggcagccgccaatgcctgagcctgagacgggtgctgtgcagcggcgaggcc *** * ******* ****** **** *** *** ** **</pre>	6837 6840
frsE_Burk frsE_Chro	ttgtctggtaatctggctgcattgcagcaacacgtgttgaaacgaccgttacacaacctc ttgtccggagagttgagcgccttgcatcggcaggtgctgggcagtcctttgcacaatctg ***** ** * ** ** ** ****** * ** *** **	6897 6900
frsE_Burk frsE_Chro	tacggtccgaccgaagccgctgtggacgttaccgcgcatgcctgtgatccgaacgatact tacggcccgaccgaggcagcggtggacgtcaccgcccatgcctgcgagaacggcgaaacc ***** ******** ** ** ******** ********	6957 6960
frsE_Burk frsE_Chro	ggaagttcgatccagatcggcaagccgatctggaatacgcggattcatgtgctggatgaa ggcgtttcggtcccgatcggcgcggatctggaacacccgaatccatgtgctggacgcg ** **** *** *** ******* ***********	7017 7020
frsE_Burk frsE_Chro	<pre>ggcttgcgtccggtgccgttgggtgttgcgggcgagctgtacattggtggaactggactg ggcctgcgtccggcggcgggggggggg</pre>	7077 7080
frsE_Burk frsE_Chro	gcgcggggatacttgaaccgcggggcctgacggcggagcggttcgtggcaaacccgtat gcgcgcggctatctgaaccggccggggctgacggcggagcgcttcgtggcgaatccgtac ***** ** ** ** ******* ****	7137 7140
frsE_Burk frsE_Chro	ggcgaaggtgaacgactgtatcggtcgggcgatttggcgcgttggaacgcggaaggcgaa ggagagggtgagaggttgtaccgcagcggcgacctggcgcggtggacggaagaaggcgag ** ** ***** * ****	7197 7200

frsE_Burk frsE_Chro	cgcctgaagcgaggcgaggcggtgaacgaattgaatcgttaccgctacgaggcggtactg cgcctgaagcggggcgaggcggcgaacgagcttaaccgctaccgctacgaagtggtgttg *********** ******************	8157 8160
frsE_Burk frsE_Chro	tacaaggagccgtgtgaagcggtgtcactgtcgaaggtggaaacgcagacgtggtcggac cgcaagggcccgtgccaggcgcgctcgctggcgtcggcggcggagccgtggtcgtcg ***** **** **** * *** ** ** ** ** ** **	8217 8220
frsE_Burk frsE_Chro	gtggggaatatgtcggcctgccggacaaggctgatgcagtatgcgtcgatgtggcggata ctgggcagcctgtcggcctgccgcgagcggctgtcggtcg	8277 8280
frsE_Burk frsE_Chro	gaaggaattccgaacgcgggttgcatggcgaggtattggtaacgcggcggctgaagtcc acgggggtgccgaacgcgctgctgcatggcgaagcggcggcggggggcggggggctgaaggcg ** * ********* * ******** * ** ********	8337 8340
frsE_Burk frsE_Chro	gaggaggggttggcgtcgtggcgacgttggctggacgagtcgggggggg	8397 8400
frsE_Burk frsE_Chro	gatctgtatcgattgggggcggagctgggttatcgggtggtgttgacatggtcaaaccag gcgctgcgccgtctgggcgcggagctgggctgg	8457 8460
frsE_Burk frsE_Chro	ccggatcatttcgatgcggtgtttctgccggagcagcagcggggtgcactggacgcggtg gcggggcatttcgacgcggtgttcgtgcgggggagaggacggcgaagcgctggacggggtg *** ******** ******* *** *** ** ** ** *	8517 8520
frsE_Burk frsE_Chro	<pre>tataggacgccaccggtgttgaaaccgttatcggggtatgtgaacaacccggcgaatttc taccagccggcgggggcgttgcagccgctgtcgggctatgtgaacaacccggcgaacttc ** * ** * * ** ** **** * *** * ***** ****</pre>	8577 8580
frsE_Burk frsE_Chro	gaacagttcgcagcaatacgccgatatgtggggagaacaactgccggattacatggtgccg gagcagtacgcggcgatccgtcgctacgcgttggagcagttgccggagtacatggtgccg ** **** *** ** ** ** ** ** * * * ** **	8637 8640
frsE_Burk frsE_Chro	gcggcgctggtactgcttgaggggttgccactgacaccaaacgggaagctggaccgccgc gcggcgatcgtgttgctggacgcgttgccgctgacgccgaacgggaagctggaccgcagg ****** * * * **** ** * ****** ********	8697 8700
frsE_Burk frsE_Chro	gcgctaccagcgccggagtttggcacggcatgctatcgagcgccggggtcaaagcaggaa gcgctgccggcgccggagttcggtgggacgggctaccgggcgccggaatcggaacgggag ***** ** ********** ** * * ****	8757 8760
frsE_Burk frsE_Chro	<pre>aaggtgctagcgcaactgtttgccgaagtgctgggtttgccgcaggtgggggggg</pre>	8817 8820
frsE_Burk frsE_Chro	agcttcttcgacctgggcggtgacagcatcatctcaatccagttggtaagccgggctcgc agcttcttcgacctgggcggcgacagcatcatctcgatccagttggtaagccgggcgcgg **********************	8877 8880
frsE_Burk frsE_Chro	<pre>aaggcaggctggcaattgacaccacgcgacatcttccaacaacccaccatcgcagcgctt aaggccggctggcggctgacgccgcgggatgtgttccagcagccgacagtggcggcgctg ***** ******* ***** ** ** ** ** ** ** *</pre>	8937 8940
frsE_Burk frsE_Chro	gcacgccttatcacgccgctgggcaacgaaccggctacgccggcgtctgtggctgcgctg gcccaagcgatcacgccgctggacgacgagccggccgccggctccggcggccacgcca ** * * *****	8997 9000

frsE_Burkcgtcttgatcaagacgaactcgactatctgggctcattgtatggatcgtaa9048frsE_Chroaagcttgatcaagacgaactcaactatttgggctcactatatgaatcctaa9051

Abbildung A31: Alignment von frsE aus dem bcfrs-BGC und dem cvfrs-BGC.

frsF_Burk frsF_Chro	atggatcgtaagaagatcgaaaccacttatccgctgtcgcctctccaaaagggctttctg atgaatcctaaaaaaatcgaagccgcttacccgttgtcgccgttgcagaaaggctttctg *** *** *** ** ** ****** ** **** *** *	60 60
frsF_Burk frsF_Chro	<pre>tttcacgcaggttacgacttggcacatgcggataactatattgcccaactgtttcttgat ttccacgccggttacgatctgcaaagcgcggacagctatgttgcccagttgtttctggat ** ***** ****************************</pre>	120 120
frsF_Burk frsF_Chro	tttgatggcgaagtggatgccgggctcatgcgggcagcggcagatacgttgatccgtcgg ttcgaaggagagctggacggggcggcggtgcggt	180 180
frsF_Burk frsF_Chro	<pre>catgcaaatctgcgggcaggatttgtgcatccgggcggtcgggagccggtgcaagtgatc cacgcgaacctgagggcgggtttcgtgcatccgggcgggc</pre>	240 240
frsF_Burk frsF_Chro	ttgcgggaagtcgcggcctgctggaaggaacacgattggcgaacggaaccccttgtgcgg ctgcgggaagtggtggccggctgggaagagcgtgactggcgggggggaatccgcaggag ******	300 300
frsF_Burk frsF_Chro	gcagccgagttgcaatcggcgtggcatgcggaagatcgtcagcgacgcttcgatctgtcg gcggccgaggcgcaatcggcgtggcaggaggcggaccgcagcgcgtttcgagctgtcg ** ****** ***************** * ** ** **	360 360
frsF_Burk frsF_Chro	<pre>caaccgccgttgctgcggttcggttggctgcgtttgccggaagaacgcactcagctggtg cagccgctgttgctgcggttcggctggctgaggctgccgggggcgcagccagc</pre>	420 420
frsF_Burk frsF_Chro	ctgacttaccaccatattttgctggacggttggtcattgccgctagtgctggaagaactg gtgacctaccatcacattctgctggacggctggtcgctgcccttgctgctggaggagctg **** ***** ** *** *** ********* *****	480 480
frsF_Burk frsF_Chro	ctgacgctataccggacgcagggcgatgcgttatcgctgccgaaaacgacgccgtacagc ctggcgctgtaccgcgccggggggcggggacggcggggctgccggaggcgacgccctacagc *** **** **** * ***** * *****	540 540
frsF_Burk frsF_Chro	acctaccttgggtggttgcaggggcgtgatcgggcatcggcgcagcaggtctggggagat gcgtatctgggttggttgcaggagcgtgaccgcggcggcatgcgaggcctggggcggc * ** ** ** ** ***********	600 600
frsF_Burk frsF_Chro	tatatgtccggtctggaggggccaacgctgctggcgaggaggagtgcgagc tacctggaggggctggaagggccgaccttgcttgcgcaagaaggacaagcggacaaggga ** ** ** ** ***** ***** ** ****	651 660
frsF_Burk frsF_Chro	gaggatcagacgcagagcaaatcgagtctgacgttgccgattgagttgactcaggcgttg gccgctgcggcccaggccagg	711 720
frsF_Burk frsF_Chro	<pre>aaccagcaggcacgacagcagggggtgacgctgaacacgttgttgcaggcggcatgggga acgaggcaggcgggcggcagcaggggggtgacgctgaatacgctgctgcaggcggcctggggc * ****** ** **********************</pre>	771 780
frsF_Burk frsF_Chro	atactgctgggcaagctgagttcgagtcgtgatgtggtgttcgggatcactgtggcgggg atgttgctgggcaagctgaacctgagccgggacgtggtgttcggcatcacggttgcgggc ** *********	831 840
frsF_Burk frsF_Chro	cggccaggtgagttgccgggcgtggagcgtatgattggcctgttcatcaataccgttccg cggccgggggagttgcccggggtggagcggatgataggcctgttcatcaacacggtgccg	891 900

frsF_Burk frsF_Chro	ctccgcttgcgctggcgagcgggagagagaccgtggcggagttgttggaacgcttgcaacga gtacggctgcgatggtcggcgggcgagacggtagcgggcctggtggggcggctgcagcga * ** **** *** *** **** **** **** *** *	951 960
frsF_Burk frsF_Chro	gagcaagcacgcttgctggagtaccagtatctggatctggcagaaatccaacgtctggct gagcaggcgggattgctggaccaccagcatctggacctggtggaaatccagcggctggcc ***** ** * ******** *****	1011 1020
frsF_Burk frsF_Chro	ggacaacgacagttgttcgacacgctgttcattttcgagaactatccgttcgacgcacag ggccagcgccagttgttcgataccttgttcattttcgagaactatcccttcgattcgcag ** ** ** *********** ** *************	1071 1080
frsF_Burk frsF_Chro	gcgattgcgccggcgctggggcggaccgtcttaagtagaatcaacggggggagaacagcat gcgatggcgccggatttgggccaggcatcgctgcgccgcgtgagcgggggaacaacat ***** ******* *** * * * * * * * * * *	1131 1140
frsF_Burk frsF_Chro	gatagtcactatcccgtcaccttgatggcggtgcctcgcgaaacactgacgctgtacctt gaaagccactatccgctgaccctgatggctgtgccgcgggagatgttgagcctatacctg ** ** ******** * *** ******* ***** ** *	1191 1200
frsF_Burk frsF_Chro	tcttatcagagcggccgtttcgaacatgggacgatggaaaacctgctgacacgatttcgc tcctacgatgcacagaggttcgacaagggtgggtggtgcaaggcctgctgacgcgtttccgc ** ** * * * * * * * * * * * * * * * *	1251 1260
frsF_Burk frsF_Chro	acattgctggaagcggtggtgacagactcatcgtgcccgattgtcgacatcgattgttg ctgctgctggaggcggtggcggcggagccgtcgcggccggtgtccgacatcgagctgctg ******* ******* * * * * * * * * * * *	1311 1320
frsF_Burk frsF_Chro	<pre>acggcggatgaacggcagcagttgctggtcgaatggaatgccacggatcgcccattgccg gacgaggccgacggcggcaggtgttgatcgagtggaacgccaccgagcgtccatcgccg * ** ** **** **** ** ** ** ***** ******</pre>	1371 1380
frsF_Burk frsF_Chro	<pre>aaggtcacgttgccggaatggttcgaggcccaggtggaacgaac</pre>	1431 1440
frsF_Burk frsF_Chro	gtgctctgcgacgaagttgcgctcgattaccgcgaactcaattgccgagccaaccagatc ttgttctgcgacggcgagacgctggactacgccgaactgaaccggcgcgccaaccaa	1491 1500
frsF_Burk frsF_Chro	gcacactggttgatttcacaaggtgtcggaccggaacagaaggtggcgctggcgttgccg gcgcattggctgatcgggcagggcgtcggcccggagcagcgggtggcgctggccttgccg ** ** *** **** **** **** ***** ***** ****	1551 1560
frsF_Burk frsF_Chro	cgccgggtggaattgctggtggcaatgctgggggtgttgaaggcagggggggcagcctacttg cggcggggccgagctgctggtcgcggtgctgggcgtgctgaagtccggcgccgcctatctg ** **** ** ** ****** ** ****** *** ***	1611 1620
frsF_Burk frsF_Chro	ccattggacccggcctatccggcggaacatctgatgtacatgctggtcgatgccaaacct ccgctggatccggcctatccggccgagcgcctggcgcacatgctggccgacgccaggccg ** **** ************ ** * *** * *******	1671 1680
frsF_Burk frsF_Chro	gcatgcctgctcggtcttggcgacagcattgcggcgttgccggacagcaacgtgcgcgcc gcctgcctgctggggctgggcgacggcatcgaagcgctgccggacagcggcgtggcttgc ** ******** ** ** ****** **** ****	1731 1740
frsF_Burk frsF_Chro	tgggagctggacgacgaagcggtgaagcaggcactggtggcgcagccgcaagagaatccg tggcggctggatgacgcggcgttgcggcaaacgctggcggcgcagccgcagagcgacccg *** ****** **** *** *** *** * *** * ****	1791 1800

frsF_Burk frsF_Chro	acgcctcaaccgcgacgcttacgcggggggcatccggcttatgtgatctacacatcgggc acgccggcccaacgccggctgcggcccgaacatcccgcctatgtgatctacacctccggc ***** * ** ** * * * * * * * * * * * *	1851 1860
frsF_Burk frsF_Chro	<pre>tcgaccggcaagccgaagggcgtggagatttcgcagcgcagcgcaacggacttcgtgagt tcctccggccagcccaagggcgtggtgatctcccagcgcagcgcggccgacttcgtcgac ** ***** **** ********** *** ** *******</pre>	1911 1920
frsF_Burk frsF_Chro	tgggcgcacgaggcgtttggcccggacacgttcggtgatgtgttagcgaccacatcactc tgggcgctggcgtccttcggcgggaaacctttgccgacgtgctggccactacctcgctc ******* * * * * * * * * * * * * * * *	1971 1980
frsF_Burk frsF_Chro	agtttcgacgtatcagtattcgaacttttggcgccgctgctgtgcggtggccgagtgaat agcttcgacgtctcggtgtttgagctgctgacgccgctgttgagcggcggcgggtgcgg ** ******* ** ** ** ** ** ** ** ** ** *	2031 2040
frsF_Burk frsF_Chro	ttgttgcgcgatcttctggtgctgggcgaacgctcgatcga	2091 2100
frsF_Burk frsF_Chro	gctgtgccttcggtattcgcgcaactgctacagcacggtgacctgcggttggacgcgagc gcggtgccgtcggtgttcgcccagctgttgcagcatggggcggtgtcgctggaggcgaaa ** ***** ***** ***** ** ** ** * ***** ** ** ** ****	2151 2160
frsF_Burk frsF_Chro	acggtggtgttcgcgggcgaggcgttgccgccagaactggtggaggcagtgcgtcgccgc accgtggtgttcgccggagaggcgctgccgccggagctggtgggcggcggtgcggcaacgc ** ******	2211 2220
frsF_Burk frsF_Chro	tggccgggatgtcgggcagcaaacatttatggtccgacagagaccacagtgtatgcgatc tggccggagtgccgggtggcgaatatctacggaccgaccg	2271 2280
frsF_Burk frsF_Chro	ggtacttggctgaaggaagtggaaggctcgcgcgcgcgatgattggccggcc	2331 2334
frsF_Burk frsF_Chro	<pre>aacacgccggcctatgtgctggatgaaggcttgcgtccggtgccggtggtgttgtgggt aatacccagacctacgtgctggacgcgggtctgcgtccggcgccggtgggggtggcgggc ** ** * * * ***** ******** * ** *******</pre>	2391 2394
frsF_Burk frsF_Chro	<pre>gagctgtacattggtggagcgggactggcgcgggggatacttgaaccgcgcgggcctgacg gagctgtacatcgcgggggccgggctggcgcgcgcgctatctgaaccggccgg</pre>	2451 2454
frsF_Burk frsF_Chro	gcggagcggttcgtggcgaacccgtatggcgaaggtgaacgactgtatcggtcgg	2511 2514
frsF_Burk frsF_Chro	ttggcgcgttggaacgcagaaggtgaactggaatacctgggccgggtggaccaacagtta ctggcgcggtggacggaagaaggcgagctggagtacctgggccgggcggaccagcagctg ******* **** * ****** * ****** ********	2571 2574
frsF_Burk frsF_Chro	<pre>aagatccgaggcttccgcattgaaccaggtgagatcgaggcggcgttgtgtcgacatcca aaggtgcggggtttccgtatcgagccgggcgagatcgaggcggcgctgtgccggcatccg *** * ** ** ** ***** ** ** ** ** ** ****</pre>	2631 2634
frsF_Burk frsF_Chro	<pre>ttggtttcacaggcagtggtgattgcacgagaagacacgcccggacataagcaattggtc tcggtggcgcaggcggcggtgattgcgcgggaggacacgccggggccacaagcagctggtg * *** * ****** * *****************</pre>	2691 2694

frsF_Burk frsF_Chro	ttcgcctacgaggcgcgcagacaaggggccgagccgacctggcagcctttgcctgtccag gccgcctacgaggcgcgctgccaggggcgtgaaccggcttggcggccgttgccggtccaa **********************************	3651 3654
frsF_Burk frsF_Chro	<pre>tatgccgattacaccctgtggcagcgccagttgctgggcgatgagaaggacccggacagc tatgccgactacaccttgtggcagcgccagttgctgggaaacgagcgggatccggacagt ******** ****** *********************</pre>	3711 3714
frsF_Burk frsF_Chro	ttgatttgtcgccagttcgcttattgggaagaagtcttggcgggactgccggacttgttg ctgatcggtcgtcagttcgcttattggaagcaagcgttggccggtttgccggatcaactg **** **** *****	3771 3774
frsF_Burk frsF_Chro	<pre>aggttaccgatggatcgtccgcgcccggtggaagccagctatcagggcgactactgcgag tgcctgcccactgaccgccgcgtccggcgatggccagctaccagggcgattactgcgag * * *** * ** ** ** *****************</pre>	3831 3834
frsF_Burk frsF_Chro	ttcacgctcgatgccggcacactgcagcaattgaaacgaatggcacggcgccagggcgtc ttcaggctggatgccgaaaccctgaaacagctgaagacgctggcccgccggcatggcgct **** *** *** ****** ** *** *** ****	3891 3894
frsF_Burk frsF_Chro	acattatcgatgacattgcaggcgggcttggccgcactgcttaaccggatgggtgctggc acgctgtcgatggcgctgcaagcggccttggccgcgttgttgagccgcttgggcgctggc ** * ****** * **** **** ************	3951 3954
frsF_Burk frsF_Chro	gatgacattccgctcggcagcccgattgcgggccgtaccgacgatgcgctgattaatctg gatgacattccgctggggtgcccgatcgccggccggaccgatgatgccttggccaacctg ***********************************	4011 4014
frsF_Burk frsF_Chro	gtcggcttcttcgtgaatacttgggtactgcgcgtggatacctccggccgg	4071 4074
frsF_Burk frsF_Chro	gccacattgctaggacgggtgcgcagtcgagcgcttgccgcgtatgcgcatcaagatgtg gccaccctgctgggccgggtgcgccagcaggccttggccgcctacagccacggacgtg ***** **** ** ** ******** * ** ** ** **	4131 4134
frsF_Burk frsF_Chro	ccgttcgatcgcttagttgaactgctgaatccagtgcgttctatttcgcaccatccacta ccgttcgaacggttggtcgaactgctcaatccggcgcgctcagcctctcatcacccattg ******** ** ** ** ** ******* ***** * *** ** ** ** **	4191 4194
frsF_Burk frsF_Chro	ttccaggttaatctggccttgcagaacaacgtccttccgaaattccgttttttcggacag ttccaggtcaacctggcgctgcagaacaatatcttcccgctgttccgtttttccggccgg	4251 4254
frsF_Burk frsF_Chro	gctgttgcgctcgaaacggtcagtagccggacagcaaagttcgatctgttcttcaatctt gaggtcagcctggaaacggtaggcaatcgaaccgccaagttcgacttgttcttcaatctg * ** ** ******** * * ** ** ** *******	4311 4314
frsF_Burk frsF_Chro	tgcgaaatgccagctgacgggtctcagccatgctatttgcatggttacgtcgagtacgca ttcgaaatgccgtccgatgagccgcaaacccagtatctgcagggttatgtcgaatacgcg * ********* * * * * * * * * * * * * *	4371 4374
frsF_Burk frsF_Chro	agcgatctgttcaatcgtgacacggtagagcgtctattgacacgatttcgcacattgctg accgagctgttcgaccgcgccacggtcgagcgcctgctgacgcgtttccgcctgctgctg * *** ****** * ** * ***** ***** ** **** ** *** ** ***	4431 4434
frsF_Burk frsF_Chro	gaagcggtggtgacagactcatcgtgcccgattgccgacatcgattgttgacggcggat gaggcggtggcggcggagccgtcgcggccgatgtccgacatcgagctgctggacgaggcc	4491 4494

frsF_Burk frsF_Chro	gaacggcagcagttgctggtcgaatggaatgccacggatcgcccattgccgaaggtcacg gagcggcggcaggtgttgatcgagtggaacgccaccgagcgtccatcgccgcaagccacc ** **** **** ** ** ** *** ***** ***** ** ** ** ****	4551 4554
frsF_Burk frsF_Chro	ttgccggaatggttcgaggcccaggtggaacgaacaccgacagcgatggccgtgctctgc ctgccggagctgttcgaagcccaggcggcgcgcgcgcgcg	4611 4614
frsF_Burk frsF_Chro	gacgaagttgcgctcgattaccgcgaactcaattgccgagccaaccagatcgcacactgg gacggcgagacgctggactacgccgaactgaaccggcgcgccaaccaa	4671 4674
frsF_Burk frsF_Chro	ttgatttcacaaggtgtcggaccggaacagaaggtggcgctggcgttgccgcgccgggtg ctgatcgggcagggcgtcggcccggagcagcgggtggcgctggccttgccgcgcgggcc **** ** ** ***** ***** ****	4731 4734
frsF_Burk frsF_Chro	gaattgctggtggcaatgctgggggtgttgaaggcagggcagcctacttgccattggac gagctggtggtggtggtggggggtgctgaagtccggcgccgcctatctgccgctggat ** ******* ** ****** *** ***** * ** **	4791 4794
frsF_Burk frsF_Chro	ccggcctatccggcggaacatctgatgtacatgctggtcgatgccaaacctgcatgcctg ccggcctatccggccgagcgcctggcgcacatgctggccgacgccaggccggcc	4851 4854
frsF_Burk frsF_Chro	ctcggtcttggcgacagcattgcggcgttgccggacagcaacgtgcgcgcctgggagctg ctggggctgggcgacggcatcgaagcgctgccggacagcggcgtggcttgctggcggctg ** ** ** ******* ***** * **** ********	4911 4914
frsF_Burk frsF_Chro	gacgacgaagcggtgaagcaggcactggtggcgcagccgcaagagaatccgacgcctcaa gatgacgcggcgttgcggcaaacgctggcggcgcgcgcgc	4971 4974
frsF_Burk frsF_Chro	ccgcgacgcttacgcgcggagcatccggcttatgtgatctacacatcgggctcgaccggc caacgccggctgcggcccgaacatcccgcctatgtgatctacacctccggctcctccggc * ** ** * * ** * ** *****	5031 5034
frsF_Burk frsF_Chro	<pre>aagccgaagggcgtggagatttcgcagcgcagcgcaacggacttcgtgagttgggcgcac cagcccaagggcgtggtgatctcccagcgcagcg</pre>	5091 5094
frsF_Burk frsF_Chro	<pre>gaggcgtttggcccggacacgttcggtgatgtgttagcgaccacatcactcagtttcgac gcgtccttcggcgcggaaacctttgccgacgtgctggccactacctcgctcagcttcgac * * * * ** *** **** ** ** * ** ** ** **</pre>	5151 5154
frsF_Burk frsF_Chro	gtatcagtattcgaacttttggcgccgctgctgtgcggtggccgagtgaatttgttgcgc gtctcggtgtttgagctgctgacgccgctgttgagcggcggccggtgcggctgctgcgc ** ** ** ** ** ** ** ** ** **********	5211 5214
frsF_Burk frsF_Chro	gatcttctggtgctgggcgaacgctcgatcgaaagggggagtttgattagcgctgtgcct gatctgctggagctgggcgagcggccgatcagcggcggcagcctgatcagcgcggtgccg ***** **** *****	5271 5274
frsF_Burk frsF_Chro	<pre>tcggtattcgcgcaactgctacagcacggtgacctgcggttggacgcgagcacggtggtg tcggtgttcgcccagctgttgcagcatggggcggtgtcgctggaggcgaaaaccgtggtg ***** ***** ** *** * ***** ** ** ** **</pre>	5331 5334
frsF_Burk frsF_Chro	<pre>ttcgcgggcgaggcgttgccgccagaactggtggaggcagtgcgtcgccgctggccggga ttcgccggagaggcgctgccgccggagctggtggcggcggtgcggcaacgctggccggag ***** ** ******* ******* ** ******** *** ****</pre>	5391 5394

frsF_Burk frsF_Chro	tgtcgggtagcaaacatttatggtccgacagagaccacagtgtatgcgatcggtacttgg tgccgggtggcgaatatctacggaccgaccgaaaccacggtatatgcgattgggggctgg ** ***** ** ** ** ** ** ** ** *** ** **	5451 5454
frsF_Burk frsF_Chro	ctgaaggaagcggaaggctcgcgcgcgccgatgattggccgtccgctggacaacacgcgg ctggaggcgggcgagcgcgcgcgacgataggccgccgccggggcaatacccag *** ***	5511 5508
frsF_Burk frsF_Chro	gcctatgtgctggatgaaggcttgcgtccggtgccggtggtgttgcgggcgagctgtac acctacgtgctggacgcgggcctgcgtccggcgccggtgggggggg	5571 5568
frsF_Burk frsF_Chro	<pre>attggtggaactggactggcgcggggatacttgaaccgcggggcctgacggcggagcgg atcgcgggggccgggctggcgcgcggctatctgaaccggccgg</pre>	5631 5628
frsF_Burk frsF_Chro	ttcgtggcaaacccgtatggcgaaggtgaacgactgtatcggtcgg	5691 5688
frsF_Burk frsF_Chro	tggaacgcggaaggcgaactggagtacctgggccgggtggaccaacagttgaagatccga tggacggaagaaggcgagctggagtacctgggccgggcggaccagcagctgaaggtgcgg **** * ******** *******************	5751 5748
frsF_Burk frsF_Chro	ggctttcgcattgaaccaggtgagatcgaggcggcgttgtgtcgacatccattggtttca ggtttccgtatcgagccgggcgagatcgaggcggcgctgtgccggcatccgtcggtggcg ** ** ** ** ** ** ** ** ** ***	5811 5808
frsF_Burk frsF_Chro	caggcagtggtgattgcacgggaagacacgcccggacataagcaattggtcgggtatgtg caggcggcggtgattgcgcgggaggacacgccgggccacaagcagctggtgggctacgtg ***** * ********* ***** ****** ** ** **	5871 5868
frsF_Burk frsF_Chro	gtgctggatgatgccgcggcattgcagcgcgacgcggaagacgagacgcgacaggttcag gtgctggacgacgcggcggcgctgcagcgcgacgaagacagcgaatcgcggcaggtggaa ******** ** ** *** ***** **********	5931 5928
frsF_Burk frsF_Chro	gcgtggcggcaggtgtacgacacgctgtacgaggcgcactgtcagcagcgttcggggag gcgtggcagcaggtctacgacaccctgtacgacgcccaccagcaccagcccttcggcgag *******	5991 5988
frsF_Burk frsF_Chro	<pre>aacttcggcggatgggacagtagttacgacggtcagccattgccgctggaagagatgcgt aacttcggcggctgggacagcagctacgacggccagccgctgccgctggcgcagatgcgc **********************************</pre>	6051 6048
frsF_Burk frsF_Chro	gcctggcgccaggcaacggtggagcggattcgcgagttgcagccgcgccgggtactggaa gaatggcgcagcgccaccgtggagcggatccgcgaactgcgtccgcgccggctgctggaa * ****** ** ** *********** **** ***	6111 6108
frsF_Burk frsF_Chro	<pre>attggggtgggaagcggcttgctgctggcgccgctggcgccggaatgcgaagcctactgg atcggcgtcggcagcggcctgctgctggcgccgctggcggacgcctgcgaagcctactgg ** ** ** ** ** *******</pre>	6171 6168
frsF_Burk frsF_Chro	ggcacggatctgtcaccgacgacgatcgcagtgctggagcggcaactgtcagagcagacc ggcaccgacctgtcgccggcgacgatcgcggtactggagaaacaactggaaacccagtcc ***** ** ***** *** ***	6231 6228
frsF_Burk frsF_Chro	<pre>ttcggagaccgggtgaggctgttcgcgctaggggcgcatgaactgttgaagctgccagaa tgccgcgacaaggtgcgcctgttcgcgctggggcgcacgagctggcggcggctgccggcg * * * *** *** * ****************</pre>	6291 6288

frsF_Burk frsF_Chro	<pre>gggaacttcgatgtgatcgtgatcaattcggtgttgcagtacttcccgaacgcagcgtac atgcgtttcgactgcatcgtgatcaactcggtgctgcagtacttcccgaacgccgcttat</pre>	6351 6348
frsF_Burk frsF_Chro	ctgacggaagtgattaagcagtcgctggagcggttgtcaccgggcggg	6411 6408
frsF_Burk frsF_Chro	ggggacgtgcgcaatttggcgctgctggatgtgtttgctacggcagtggatttgtgtcag ggcgacgtgcgcaatctggagctgctgcccagcttcgcggcggcggtggagctgcggcag ** *********** *** *** **************	6471 6468
frsF_Burk frsF_Chro	gtgggcactgagacggatgcggcgagcttgcggcgtcgagtggagcagcgtttgctggca tcggagccggaggtcgacgcggcggcgcgcgcgggggggg	6531 6528
frsF_Burk frsF_Chro	gaaaaggaactgctggtgtcgccggcgtttttcagccggttgcgtgagacgttgccacag gagaaggaactgctgctggcgccggacttcttcagccggctgcgggaacagctgccgcag ** ********** ** ****** ** **********	6591 6588
frsF_Burk frsF_Chro	attggtgcagtggatattcgcctgaagcgaggcgaggcg	6651 6648
frsF_Burk frsF_Chro	cgctacgaggcggtactgtacaaggaaccgtgtgaagcggtgtcactgtcgaaggtggaa cgctacgaagtggtgttgcgcaaggggcccgtgccaggcggcgctcgct	6711 6708
frsF_Burk frsF_Chro	acgcaaacgtggtcggacgtggggaatatgtcggcctgccggacaaggctgatgcagtat gcggagccgtggtcgtcgtcggcagccgtgtcggccgcggcggcggcggcggcggcggcggcgg	6771 6768
frsF_Burk frsF_Chro	gcgtcgatgtggcggatagaaggaattccgaacgcgggtgcatggcgaggtattggta ggcgacgcgctgcgggtgacgggggtgccgaacgcgctgctgcatggcgaagcggcggcg * * * **** * * * * * * * * * * * * * *	6831 6828
frsF_Burk frsF_Chro	acgcggcggctgaagtccgaggaggggttggcgtcgtggcgacgttggctggacgagtcg gcgcgggagctgaaggcgggcggttcgccgtcggcgctggcggctggacgagaac ***** ******** * * * * * * * * * * * *	6891 6888
frsF_Burk frsF_Chro	ggcggggtcgagccggaggatctgtatcgattgggggcggagctgggttatcgggtggtg ggcggggtacggccggaagcgctgcgccgtctgggcgcggagctgggctggcggatgctg *******	6951 6948
frsF_Burk frsF_Chro	ttgacatggtcaaaccagccggatcatttcgatgcggtgtttctgccggagcagcagcgg gcgacgtggtcgcggcaggcgggggcatttcgacgcggtgttcgtgcggggagaggacggc *** ***** *** *** **** ************	7011 7008
frsF_Burk frsF_Chro	ggtgcactggacgcggtgtataggacgccaccggtgttgaaaccgttatcggggtatgtg gaagcgctggacggggtgtaccagccggcgggggcgttgcagccgctgtcgggctatgtg * ** ******* ****** * ** * ** ***** * ****	7071 7068
frsF_Burk frsF_Chro	<pre>aacaacccggcgaatttcgaacagtttgcagcaatacgccggtatgtggggagaacaactg aacaacccggcgaacttcgagcagtacgcggcgatccgtcgctacgcgttggagcagttg **********************************</pre>	7131 7128
frsF_Burk frsF_Chro	ccggattacatggtgccggcggcgcggtggtactgctggaggggttgccactgacaccaaac ccggagtacatggtgccggcggcgatcgtgttgctggacgcgttgccgctgacgccgaac *****	7191 7188

frsF_Burk frsF_Chro	gggaagctggaccg gggaagctggaccg *****	ccgcgcgcgctaccg cagggcgctgccg * * *****	ggcgccggag ggcgccggag ******	tttggcacg ttcggtggg ** ** *	gcatgctatco acgggctacco * **** **	gagcg gggcg * ***	7251 7248
frsF_Burk frsF_Chro	ccggggtcaaagca ccggaatcggaacg **** ** *	ggaaaaggtgctg ggagcaattgctg *** * ****	ggcgcaactg ggcgcgggctg ***** ***	tttgccgaa ttcggggag ** * **	gtgctgggttt gtgctgggtct *******	tgccg tgccg *****	7311 7308
frsF_Burk frsF_Chro	caggtgggggtgga caggtggggggcgga *****	tgacagcttcttc cgacagcttcttc ********	cgacctgggc cgacctgggc *****	ggcgacagc ggcgacagc *******	atcatctcgat atcatctcgat ********	tccaa tccag ****	7371 7368
frsF_Burk frsF_Chro	ttggtaagccgggc ttggtaagccgggc *****	tcgcaaggcaggo gcggaaggccggo ** ****	ctggcaattg ctggcggctg ***** **	acaccacgc acgccgcgg ** ** **	gacatcttcca gatgtgttcca ** * *****	aacaa agcag * **	7431 7428
frsF_Burk frsF_Chro	cccaccatcgcagc ccgacagtggcggc ** ** * ****	gcttgcacgcct1 gctggcccaagc(*** ** *	tatcacgccg gatcacgccg ********	ctgggcaac ctggacgcg **** *	gaactggctac gctgcggctcc * ****	cgcca cgccc ****	7491 7488
frsF_Burk frsF_Chro	gcgtctgtggctgc agcagtgcggccca ** ***	gctgcgtcttgat agtagcgctcaat * ** **	tcaaaaagaa tcaaaaagaa *********	ctcgactat ctgaactat ** *****	ctgggctcatt ctaggtgcctt ** ** * **	tgtat tgtat *****	7551 7548
frsF_Burk frsF_Chro	ggatcgtaa gaatcctaa * *** ***	7560 7557					

Abbildung A32: Alignment von frsF aus dem bcfrs-BGC und dem cvfrs-BGC.

frsG_Burk frsG_Chro	atggatcgtaagaagattgaaaccacttatccgctgtcgcctctccaaaagggctttctg atgaatcctaaaaaaatcgaagccgcttacccgttgtcgccgttgcagaaaggctttctg *** *** *** ** ** ** *** *** *** *** *	60 60
frsG_Burk frsG_Chro	tttcacgcaggttacgacttggcacatgcggataactatattgcccaactgtttcttgat ttccacgccggttacgatctgcaaagcgcggacagctatgttgcccagttgtttctggat ** ***** ******** ** * * ***** * ***** ****	120 120
frsG_Burk frsG_Chro	tttgatggcgaagtggatgccgggctcatgcgggcagcggcagatacgttgatccgtcgg ttcgaaggagagctggacggggcggcgatgcggtcggcggacggcggacgcggtgatgcgccg ** ** ** ** ** *** * *** * * * ****** *	180 180
frsG_Burk frsG_Chro	<pre>catgcaaatctgcgggcgggattcgtgcatccgggcggtcgggagccggtgcaagtgatc cacgcgaacctgagggcgggtttcgtgcatccgggcgggc</pre>	240 240
frsG_Burk frsG_Chro	ttgcgggaagtcgcggcctgctggaaggaacacgattggcgaacagaaccccttgtgcgg ctgcgggaagtggtggccggctgggaagagcgtgactggcgggggggaatccgcaggag *******	300 300
frsG_Burk frsG_Chro	gcggccgaattgcaatcggcgtggcatgcggaagatcgtcagcgacgcttcgatctgtcg gcggccgaggcgcaatcggcgtggcaggaggcggaccgcagcggcgtttcgagctgtcg ******** ****************************	360 360
frsG_Burk frsG_Chro	<pre>caaccgccattgctgcggttcggttggctgcgtttgccggaagaacgcactcaactggtg cagccgccgttgctgcggttcggctggctgaggctgccggcggggcgcagccagc</pre>	420 420
frsG_Burk frsG_Chro	ctgacttaccaccatattttgctggacggttggtcattgccgctggtgctggaagaactg gtgacctaccatcacattctgctggacggctggtcgctgcccttgctgctggaggagctg **** ***** ** *** *** ********* *****	480 480
frsG_Burk frsG_Chro	ctaacgctataccggacgcagggcgatgcgttatcgctgccgaaaacgacgccgtacagt ctggcgctgtaccgcgccggggggcggggacggcggggctgccggaggcgacgccctacagc ** **** ***** * * ***** * *****	540 540
frsG_Burk frsG_Chro	<pre>acctaccttgggtggttgcaggggcgtgaccgggcatcggcgcagcaggcctggggagat gcgtatctgggttggttgcaggagcgtgaccgcgcggcggcatgcgaggcctggggcggc * ** ** ** ** *****************</pre>	600 600
frsG_Burk frsG_Chro	<pre>tatctgtccggtctggaggggccaacgctgctggcgaggaggagtgcgagcga</pre>	660 660
frsG_Burk frsG_Chro	acgcagagcaaatcgagtctgacgttgccgattgagttgactcaggcgttgaaccagcag gagcagaagcagcgggcttggcgcctgccggcggagctgacgcaggcgctgacgaggcag ***** * * * * * * * * * * * * * * * *	720 720
frsG_Burk frsG_Chro	gcacgacagcagggggtgacgctgaacacgttgttgcaggcggcatggggaatactgctg gcgcggcagcagggggtgacgctgaatacgctgctgcaggcggcctggggcatgttgctg ** ** ********	780 780
frsG_Burk frsG_Chro	ggcaagctgagttcgagtcgtgatgtggtgttcgggatcactgtggcggggcggccaggt ggcaagctgaacctgagccgggacgtggtgttcggcatcacggttgcgggccggcc	840 840
frsG_Burk frsG_Chro	<pre>gagttgccgggcgtggagcgcatgattggcctgttcatcaataccgttccgctcggttg gagttgcccggggtggagcggatgataggcctgttcatcaacacggtgccggtgggtg</pre>	900 900

frsG_Burk frsG_Chro	cgctggcgagcggggagagaccgtggtggagttgttggaacgcttgcaacgagagcaagcg cgatggtcggcgggcgagacggtagcggcctggtggggcggctgcagcggagagcaggcg ** *** *** ***** **** ** ** ** ** ** **	960 960
frsG_Burk frsG_Chro	cgcttgctggagtaccagtatctggatctggccgaaatccaacgtctggctgg	1020 1020
frsG_Burk frsG_Chro	cagttgttcgacacgctctgcgtgttcgagaactacccggtgaatgccaaagcaatcgtg cagctgttcgacaccatctgcgtgtttgagaattatccggtggacgccgcggcgatggag *** ********** ********* ****** ** *****	1080 1080
frsG_Burk frsG_Chro	<pre>caacaggacgagggattcggcttacgccacatctccggcggcgatcgat</pre>	1140 1140
frsG_Burk frsG_Chro	tatccactgtcggtaatgatcgagccaggtgagcgaatgacgctcaatctgatctaccgg tatccgctgtcgctgatgatagagccgggccccgagttgaagctgaatctgatctatcag ***** ****** * ***** ***** **	1200 1200
frsG_Burk frsG_Chro	cctgcttcgttcgatgcggcaaagcgactaggtgcgcaattgatacgcttactc ccggaacggttcgagccggaggcgattgagcgcttgagcgcgcaattgacgcggttgctc ** * ****** *** *** *** ***	1254 1260
frsG_Burk frsG_Chro	<pre>gaagcgatcgcgactgtgccacaaagtccgatcgacaacactgccatggctggacaagtcg ggcgtcatcgcggcggagccgtcgcagccggtgtccgacatcgagctgctggacgaggcc * * ****** * * * * * * * * * * * * *</pre>	1314 1320
frsG_Burk frsG_Chro	gaacggaggcaactgctggaggaatggagtggcaaagcactggattctggcgaaatcacg gagcgccggcaactgctggtcgactggaaccgcaccggaccggaccacggccaggccacc ** ** ************ ** **** *** *** **	1374 1380
frsG_Burk frsG_Chro	ctggcggaactgttcgaggctcaggcaacccgtcagccgaatgccgtggcgctggaggg ttcccgcaactgttcgaaacccaggcggccctcaccccgcacgccgtcgcgctggaaagc * ** ******	1434 1440
frsG_Burk frsG_Chro	ccggacggatgcgtgagctatggcgagttggacgcacgggccaaccgactggcaagtcac ccggacgcccggctcagctatgccgaactggacgcccgcgccaaccggctggcgcgccat ******* * * * ******* *** ******** ** *	1494 1500
frsG_Burk frsG_Chro	ctgcagagtttgggcgtggggccagacgtcgtggtcggggtgtgcttggagcgttcgatt ctgcaaagcctgggcgtcggcgccgacgtgctggtcggcatctgcctggagcgctcgatc ***** ** ******* ** * ****** *********	1554 1560
frsG_Burk frsG_Chro	gacatggtggtggcgatacttgggatcgccaaggcaggggctgcctatttgccactcgcg gacatggtggtcgcggtgctgggcgcgctgaagtccggcgccgcctatctgccgctgtcg *****	1614 1620
frsG_Burk frsG_Chro	ccggattacccgaccgagcgcctggcctacatgctgacggattcgatggcgccagtactt ccggagtacccgacggaacggctggcctacatgctgggcgactcgatggcccccgtgctg ***** ******** ** ** ***	1674 1680
frsG_Burk frsG_Chro	ttgaccgagtcaaaacaggtcgaacgactgccgtcgtattgggggtcatctggtggagctg ctgaccgactcggcacaagtcgagcggctgccgtcgtattgggggcgggtagtcgaactg ******* ** *** *** *** **************	1734 1740
frsG_Burk frsG_Chro	gatcgactcgattgtcgtggcaggcgtcgagtgcgccgggcgcgagcgctacgaccagat gaccggctcgacctggacgctctgccggacagcgcgccggaacgggcgctgcgcgcgag ** ** ***** ** ** ** ** ** ** ** ******	1794 1800

frsG_Burk frsG_Chro	cacttggcgtatgtgatctatacctcgggttcgacggccaacccaaaggggtggcggtc cacctggcctatgtgatctacacctccggctccaccggccaaccgaagggcgtggcggtc *** **** ************ ***** ** ** ** **	1854 1860
frsG_Burk frsG_Chro	agccacgccggcttagctgggttggtaaaaagtcaggaggagcggttcgcggtggccggg agccacgccggcctggccggcctggccggcagccagacaga	1914 1920
frsG_Burk frsG_Chro	ccggtacgggttctgcagtttgcgtcgctgagttttgacgcagcggtaatggaaatcctt ccgacgcgggtgctgcaattcgcctcgctgagtttcgacgcggcggtgatggaaatgctg *** ***** ***** ** ** ** ************	1974 1980
frsG_Burk frsG_Chro	atggcgttctgcagtggcggtcggttggtattgccggcagcggggccgctgctgggtgag atggccttctgcagcggcggccggctggtgctgccggcgggggccgctgctgggggaa ***** ******** ***** **** **** *	2034 2040
frsG_Burk frsG_Chro	<pre>cagctagagaagaccctgaatcgttacgcaatcagtcatgcgctgattgcaccatccgcg cagctgctggacacgctgaaccgccatgaaattagccacgcgctgatctcgccgtcggcg ***** * * * ** ***** ** * * **** ** **</pre>	2094 2100
frsG_Burk frsG_Chro	ctggagacggtggaagcagaggtcgtgcctggtctgagcacgctggtgggggggg	2154 2160
frsG_Burk frsG_Chro	acctgttccggggcaacagcggcgtcgtggtcgcagggaaggcgcatggtcaacgcctac gcctgcccgggcgcgacggtggcggcctggtcggcgggacggcggatggtgaacgcctac **** * * ** ** ** ** ****	2214 2220
frsG_Burk frsG_Chro	ggcccgaccgaggtgacggtgtgcgtgacgatgagcaagccgctgtcgggcagcgacaag ggtccgaccgaggcgacggcctgcgtgacgatgagcgagc	2274 2280
frsG_Burk frsG_Chro	ccgaagctgggtcgaccaacactgggggcaaagctgtatgtgctggatagcacgttgcaa ccgaagctggggccgtccgacgcacaacgcgcggctgtacgtgctggatggcgcgctgcaa ************ ** ** ** ** ** ** ** ******	2334 2340
frsG_Burk frsG_Chro	ccggttccggtggggtgtggcggggggaactgtacatcgcggggccgaggattggcacgtggg ctggcgccggtggggggtggcggggcgagctgtacatcgcgggggccgggctggcgcggc * ** ******	2394 2400
frsG_Burk frsG_Chro	<pre>tattaccaacgacccggattgacggcggagcggttcgtggcgaacccatatggcaaaggc tatctgaaccggccggggctgacggcggagcgcttcgtggcgaatccgtacggagagggt *** * ** ** ** ** *** *************</pre>	2454 2460
frsG_Burk frsG_Chro	gaacggctgtatcggtcgggagatctggcacgctggagcggggaaggagaactggaatat gagcggctgtaccgcagcggcgacctggcgcggtggacggaagaaggcgagctggaatac ** ******* ** ** ** ** **** ** ***** * *	2514 2520
frsG_Burk frsG_Chro	ctgggccgggtggaccaacaactgaaaatccgaggttttcgcatcgagccgggcgagatc ctggggcgcagcgaccagcaggtgaaggtgcggggtttccgtatcgagccgggcgagatc ***** ** ***** ** ***** * ***	2574 2580
frsG_Burk frsG_Chro	gagacggtgttgtgccagcacccgcaggtaagagaggcggtggtggtgtatcgcgcacgaat gaagcggtgctgaaccggcatccgcaagtgagccagtcggtggtggtggtggcgcggcagagc ** ***** ** ** *** *** *** ** ** ** **	2634 2640
frsG_Burk frsG_Chro	ggccgcgatacgcaactggtgggttatgtcacggtgcgtggcgggggggg	2691 2700

frsG_Burk frsG_Chro	gcgctacgccgtcaggtagcgaactggttgccagagtacatggtaccggcagtggtgctg gagctgcggcgcctggcggcggggcagctgccggagcacatggtgccggcggcggtggtg * *** ** ** ** *** *** ***	2751 2760
frsG_Burk frsG_Chro	gtgcttgaggaattgccgcggctgccgaacgggaagctgaatcatcaggcattgcccgcg gtgctggaatcgctgccgcagttgccgaacgggaagctggaccgcaagtcgctgccggcg ***** ** ** ******	2811 2820
frsG_Burk frsG_Chro	ccggaatacacgggcaagcgctaccaacgtccgcgcaatgctcaggaggaaatattgtgt ccggagtttggcggctcgcattatcagcggccgcgcaacgcgcaggaggaaatgctgtgc ***** * *** ** ** ** ** *** ******** **	2871 2880
frsG_Burk frsG_Chro	ggactgtttgcggaagtgctggaagtggacagtgtgggtatagatgacagttttttcgat gggctgttcgcggaagtgctggaagtggggggggcgtcgggatagacgacagtttcttcgat ** ***** ****************************	2931 2940
frsG_Burk frsG_Chro	ttgggcggtcattcgctgctggcaacacggttgatcagccgaattcgcgccacaatgaac ctgggcgggcactcgttgctggcgacgcggctgatcagccgcatccgggcggccttgaat ******* ** *** **** ****** ** ***	2991 3000
frsG_Burk frsG_Chro	<pre>atcgaaccctctattcgcgatctgttcgacatgccgaccagtgccgagctcgcgctccgg gtggagctgtcgatccgggagctgttcgacatgccgacctgcgccgaactggcgccgaga * ** * ** ** ** ** ** ** **********</pre>	3051 3060
frsG_Burk frsG_Chro	ttgagcacgaagccgacggcagtgcgccaacctttgttgccacaagagcgcccaaaacga ctgagcgcggacccggcgcggtgcgcccgccgttgcagcggcaggcgggcg	3111 3120
frsG_Burk frsG_Chro	ctgccgttgtctcatgcacaacagcggttgtggtttctgcaccggttcgaaggtccgagt ctgcctttgtcctatgcgcagcagcggctgtggttcctgtatcgtttcgaagggccgagc ***** ***** **** ** ****** **********	3171 3180
frsG_Burk frsG_Chro	<pre>tccacctacaacatcccactcgccttcaaactgcaagggtcgttggacgtcgaagcgctg tccacctataacattccgctggccttgaggctgaaaggcgatctgcacccggaggctttg ******** **************************</pre>	3231 3240
frsG_Burk frsG_Chro	cgacgagcgctggaagacgtcgtggttcggcatgaaagcctgcgcacgattttcgtggaa cagcaggcggtggccgacattgtggagcggcatgaaagcctgcgcacggtgttcgtcgac * * *** *** *** *** * ****	3291 3300
frsG_Burk frsG_Chro	agcgaaggaatacccgagcagaaaatcttggctccagacgaggcgtgcttggcattacag aacgatggcgtgccagagcagcggatccagtccgcgaacaggcgctgccgtccttgccg * *** ** ** *** ****** *** *** *** ***	3351 3360
frsG_Burk frsG_Chro	cttatcgataccaacgaggaaaccggtttagatatggcgttgcgtgaagcgtccgattac cgcgtcgaggtcgccgacgaagcggaactgcagcgggcattgcgcgaagcggccgagcac * **** * *** *** * * * * * * * * * * *	3411 3420
frsG_Burk frsG_Chro	cacttcgatttgtcgcgggagatcccgctgcgttgcacgctgtttcgccaagagtcccag cgtttcgatttgtcgagcgagacgccgctgcgttgcacgctgttccgcctgggcgagcaa * ****	3471 3480
frsG_Burk frsG_Chro	gtgtggacactcttgctgctgatccaccatatcgcaggggatggcggatccttgcttccg gagtgggtattgctgttgttgatccaccatatcgccggcgatggcggttccttgctgccg * **** * * ** ** ******************	3531 3540
frsG_Burk frsG_Chro	ctggggcgcgacttggccactgcctatgccgcccgacgaaagggattggatccggcttgg ctgggccgggagctggacgccgcctacgccgcgcgctgccaaggccgggcgccggactgg ***** ** ** ** ** ** ** ***** **** *	3591 3600

frsG_Burk frsG_Chro	gcaccgctcccggtacagtacgccgactacaccttatggcaacgccagttgctcggcagt cagccgctggcggtgcaatacgccgactacaccttgtggcagcgccagttgctgggagag ***** **** ** ******************	3651 3660
frsG_Burk frsG_Chro	gaaggcgatcctgacagcctgatatcgactcaatttgcgtattggaagcaaaatctggct gaaaacgatccggagagtctgatcgccgcccagttcgcttattggaagcggacgctggcg *** ****** ** ** ** **** * * *****	3711 3720
frsG_Burk frsG_Chro	ggcgcacaggaacaactgacgctgccgacggatcatccgaggccggcc	3771 3780
frsG_Burk frsG_Chro	cgcggccactatctgccgttccagctggaggctgaactgcatagcgacttgcgccgtctc cgcggccgctatctgccattcgagctggacgccggcttgcatgccgaactacgccggctg ******* ********* *** ******** *** ***	3831 3840
frsG_Burk frsG_Chro	gcgcgcacgaacgacaccacgctgtcgatgctgttgcaagcggccttggctgcgttgttc gcccgcgatcacgacgccaccttgtccatgctgctgcaggcgggggctggcggcgctgttt ** *** **** ***** **** ***** ***** ****	3891 3900
frsG_Burk frsG_Chro	<pre>acccggctcggtgtgggcaacgacattccgctaggctgcggcatagcaggccgcaccgac acccggctgggcgcaggggaggacatcccgctgggctgcggcatcgccgggcgtaccgac ******** ** * * ** * ***** ******</pre>	3951 3960
frsG_Burk frsG_Chro	gaggcgcttggtgatctggtcggatttttcgtgaacacctggatattgcgcgccgacact gatgcgctcaacgacatggtcggcttcttcgtcaatagctgggtgcttcgcgcggacact ** ***** ** ** ****** ** ***** ** ***** ** ****	4011 4020
frsG_Burk frsG_Chro	<pre>tcgggggacccggacttcgtcacgctgctaggccgcgtgcgcgagcaagcgttggcagcc tcgggcaatccggatttcatcacgctgctggggccgggtgcgggagcaggcgctggcggcc ***** * * ***** *** **** ********* *****</pre>	4071 4080
frsG_Burk frsG_Chro	<pre>tacgcccatcaagatgcgccatttgagcgcttggttgagctcatcaacccggtacgatca tatgcccatcaggatgcgccgttcgaacgcttggtcgagttgatcaatccatcgcgctcc ** ******* ******** ** ** ** ********</pre>	4131 4140
frsG_Burk frsG_Chro	agtgcccaccatccattgttccaggtcaatctgactttgcagaacaatgcgttgccagag agcgcccaccaccctttgttccaggtcaatctgactttgcagaacaatgccttgcccgat ** ******* ** *********	4191 4200
frsG_Burk frsG_Chro	<pre>ttccgcctagatggcatgcaggtgagcttgcatcgcattgtgtccgatattgccaagttc ttcaggctggatgggctggaggtttccctgtcgcctatcgaggccgataccgccaagttc *** * ** ***** ** ***** * ***** * ******</pre>	4251 4260
frsG_Burk frsG_Chro	gacctgttcttcaatctgtacgaaacctttgaccaagatggccgcgcactgggattacaa gacctgtttttcaatctgttcgaaatttttggcctggatggccagggggggg	4311 4320
frsG_Burk frsG_Chro	ggtgcggtcgaatacgcgtgcgatttgtacgagcgcgcaacggtacaacggtttatctac ggcggtgtcgagtacgccaccgatctgtacgaacaggcgacggtggagcaattcatgcgc ** * ***** ***** ***** **** * ** ***** *	4371 4380
frsG_Burk frsG_Chro	cacttcgttcggttattgcgtgaagtggtggcagcaccgacagcggcaatttctgcactg cacttccagcgccttttgcgccaggtggcggctgtgccgacggcggccgatcgcggcattg ****** ** * * ***** * **** *** * ***** *** *	4431 4440
frsG_Burk frsG_Chro	<pre>gatttgtctgacgaggcagtcgcctcttcgcccggtgcgctggatttatcggccagcatc gatctgtccgagccgcaaagcgccgccgaagcggattgcgccgcggccg *** *** ** * * * * * * * * * * * * * *</pre>	4491 4491

frsG_Burk frsG_Chro	acggtcgacgacacgatcattggccgattcgcggagcaggtgcggcgcgcaccggatgcg gcggcatccgacagcatcgtccagcggttcgaggagcaggcgggccgagcgccgcaggcg *** ***** *** * ** *** ************	4551 4551
frsG_Burk frsG_Chro	<pre>acggtgctgacttaccggggcgaaacactaacttgtgccgagctaaatgcgcgcgc</pre>	4611 4611
frsG_Burk frsG_Chro	cgtctagcgcggtgcttaatcgccgatggagccggtccggaggaattgattg	4671 4671
frsG_Burk frsG_Chro	ctgccgcgctccatcgatatggtggtcagtttgctcgcgatcttaaaaaccggtgcggcc ttgccgcgttcgctcgatctggtagtgagcctgctggcgattttgaagacgggggccgcc ******* ** ***** **** ** ** ****	4731 4731
frsG_Burk frsG_Chro	<pre>tatctgccgatggatcccgcctatccgctcgagcgactgtcgttcatgttgaccgacgca tatctgccgctggacccggattatccggccgagcgcctgggcttcatgctggccgatgcc ***********************************</pre>	4791 4791
frsG_Burk frsG_Chro	<pre>aagccgaggttgctgctggccaatatggaaacgatccggcaagtggcggaggtgtcacgc aagcctcggctgttgctggggcacggcgaggcgctccggcatctgccggtggacgcgtcg ***** ** ** ** ****** * ** ** ******* ** *** **</pre>	4851 4851
frsG_Burk frsG_Chro	gtaagtactctagcgctcgactgccctgaactggctcaaacgttgacgcgaacggatgat actcaggccatcgcgctggacgatgccgaactgggccgggagctggcgcgggagac * * ***** *** * * *** * * * * * * * *	4911 4911
frsG_Burk frsG_Chro	agcaaccccttggttccaaggccgctgcgaagcgacaatgcagcctacctcatctacaca ggcaatccggaacgcgcgcgtcgttggggcgccgatcatgcggcgtatgtgatctacacc **** ** ** ** ** *** *** **** ****	4971 4971
frsG_Burk frsG_Chro	<pre>tccggttctacaggggcaccgaagggtgttctgattccgcacagcaatgtgctgcgattg tccggctccaccggccagcccaagggcgtgctggtgccgcaccgcaatgtgctgcggctg ***** ** ** ** ** ** ** ** *** ** *** ****</pre>	5031 5031
frsG_Burk frsG_Chro	ctggacaagactgcgcactggtttgattttggtcccaaagatgtttggacgctgttccat ctggacagcaccgagcgctggttcggcttcggcgccggcgacgtatggacgctgttccac ******* ** * * ** ****** * ** ** ** **	5091 5091
frsG_Burk frsG_Chro	<pre>tcttatgcgttcgacttctcggtctgggaaatttgggggggcacttctgacgagcgggcgc tcctatgccttcgatttctcggtctgggagatttggggcgccttgctgagcggcggccgc ** ***** ***** ****** **********</pre>	5151 5151
frsG_Burk frsG_Chro	ctagtggtggtgccgcaaactgtcagtctagcgccggatgaattcttgaccctgttggaa ctggtggtggtgccgcgcgcggcggtgcaggctccggatgagttcctggcgttgctggag ** ******** ** * * * * * * * * * * * *	5211 5211
frsG_Burk frsG_Chro	<pre>tacgagaaagtaaccattttgaaccagacaccgtcggctttctatgcgttgatgcaagcc cgggaaaaagtcagcgtgctgaatcagacgccgtcggcgttctacgccttgatgcaggcg</pre>	5271 5271
frsG_Burk frsG_Chro	gagaggcatcacgggtcgaatggtggagcatcgttgtccttgcgccgcattatctttggt gaggcggcccgtccggaaaccgcgtccgagctggcgttgaggactgtcgttttcggc *** * * * * * * * * * * * * * * * * *	5331 5328
frsG_Burk frsG_Chro	ggggaggcgctcgatttgagcgcattgcagccttggtaccagcgccacggtgacgagacg ggcgaagccttggacctgagcgcgctgagatcttggtatcagcggcatggagacgtcggg ** ** ** * * ** ***	5391 5388

frsG_Burk frsG_Chro	acgcaactagtaaacatgtatggtatcaccgaaacgaccgtacatgtgagctatcagccg ccgaagctggcgaacatgtacggcatcaccgaaaccacggtgcacgccagttaccaggcg ** * ** * * * ******** ** **********	5451 5448
frsG_Burk frsG_Chro	ctcgacagcggaatgtgtggttcccgctgcaatagtctgattggcattggtatcccggat ctggaccgccgcttgtgcgaagaggggcggaaacagcctgatcggcgaggcgataccggac ** *** ** * * **** * ****	5511 5508
frsG_Burk frsG_Chro	ctgcatctgtttctgctggatgcgtgtctgcaacctgtgcccgtgggtgg	5571 5568
frsG_Burk frsG_Chro	ctgtacgtcgggggggggggggtctggcgcgcgggttatcacaatcgggccagcctcacagcg ctgtacatcggcggcgcggc	5631 5628
frsG_Burk frsG_Chro	<pre>gagcgattcgtagcgaatcccttcgcttccagcaaacggatgtaccggaccggcgatctg gagcgtttcatcgccaatccgttcgccgcgggcgaacggatgtaccgcagcggcgatctg ***** *** * ** * ***** *****</pre>	5691 5688
frsG_Burk frsG_Chro	gcacggcgcaacgtcaatgacatcttcgaataccatggccgccgatcaacaggtcaag gcgcggcgcaatgccgcggggggcgctggaataccagggccgagccgaccagcaggtcaag ** ******* * * * * * * * * * * * * * *	5751 5748
frsG_Burk frsG_Chro	gtgcgcggtttccgcattgagctaggcgaaatcgaaacggttttgcgtcagcatccgggc gtgcggggcttccgcatcgagccgggcgagatcgagaccgcgctgcgtggccatcccggg ***** ** ******** **** **** ***** ***** ** ****	5811 5808
frsG_Burk frsG_Chro	gtagaggacgcgagagttgtcgtgcagacgctgcacgacaacgactgtcgcttggttgct gtcgaagatgcccgcgtcgtcgtcaaggcgatggatggcaacgatcagcggctgatcgcc ** ** ** ** * * * * ** ***** ** ** ** *	5871 5868
frsG_Burk frsG_Chro	<pre>tacctccagccgtcggaacgcactgcggcaccgttgcgtcgatggcttaaggtgcggcgg tatctgttgccgtcggagcgcgccgccgccgcccctgagacgctggctg</pre>	5931 5928
frsG_Burk frsG_Chro	<pre>gatgcggaagcacaaggtgcgcgggcattcgagttgccgaacggcatgccgatctttcat agcgtcgccgcgcagaacgcgcgggagatcgagctgcccaacggcctgcct</pre>	5991 5988
frsG_Burk frsG_Chro	<pre>cacaacacgatggaaaccgagttcctttacgaggaaatcttcgaggacctagtctatttc cataacgcggctgaaaccgaattcctttacgaggagatctttgaggatcggatttatctc ** *** ** ** ******** *************</pre>	6051 6048
frsG_Burk frsG_Chro	<pre>aagcacggaatcagactggacgacggtgcctgcgttttcgatgtcggtgcgaacattggc aaacacggcattcgtctggataacgatgcctgcgtgttcgacgtcggcgccaacatcggc ** ***** ** * ***** *** ***********</pre>	6111 6108
frsG_Burk frsG_Chro	ctgtttatgctgttcgtgggtcaacattgtcgcaatgccaccatcttcgcgttcgagccg ttgttcaccttgtttgtcggccagcattgcggcaatgccacggtgttcgccttcgaaccc **** * **** ** ** ** ** ***	6171 6168
frsG_Burk frsG_Chro	attccacccgtgttccgcacgctgacgctcaatgccgaggtgcacggagacaaggtcagg attcccccggttttcggcacgctgtcgctgaacgcggcggttcatggagggaaggtccgc ***** ** ** *** ***	6231 6228
frsG_Burk frsG_Chro	ttgttcgattgcggcttatccgatgcggtgagacaggagcgttttactttctacccgaat ctgttcgattgcgggctgtcggacgcggccaggcaggaaaccttcaccttctatcccaac	6291 6288

frsG_Burk frsG_Chro	gacaccttgatctctaccagccgcaacagccccgaggcgatacgtgggatggtcaagtcc gacaccttgatttccagcagccgaaacagcgcggaagcgactcggcgcatggtcaaatcc *********** ** * * ****** ***** * ** **	6351 6348
frsG_Burk frsG_Chro	ttcttgattaatcagcacgggaatcatagtggcgacgacgcagaggtgggcgaattgctg ttcctgatcaaccagcacggcgacagcgacggcgaggcggtggacgagttgctg *** **** ** ******** *	6411 6402
frsG_Burk frsG_Chro	gacgaacgtcttgcgagccaagactacatgtgcgtgcttagaactctatcggacgttatc gaagagcgcttgagcagccagcagtatgtctgcggattgcgttcgctgtcggacgtcgtg ** ** ** * * * * * **** * ** * * * * *	6471 6462
frsG_Burk frsG_Chro	accgaacataatgtcgatcgtatcgacctgctgaaaatcgatgtcgagaacgcagaatac gccgaacacggcgtggaacgcatcgacttgctgaaaatcgatgtcgaaaacgctgaatac ******* ** ** ** *** ******	6531 6522
frsG_Burk frsG_Chro	<pre>aatgtcttgcagggaatcgtggaatcggattggccgaaaatccggcaactggtgatggaa gatgtcttgcgcggaatctcggacgcggattggccgaagatccggcagttggtgatggag *************************</pre>	6591 6582
frsG_Burk frsG_Chro	gtgcacgatgtcgatggccgtttgcggcgaattgtggatttgttgctccatcgaggttac gtacatgacgtcgacggccgtctggcctgcattgtcgagttgctgcgggagcgcggctat ** ** ** ****** ****** ** ** *********	6651 6642
frsG_Burk frsG_Chro	cgggtgatccacgagcaggaccgcctgttgcgggatacggccatccat	6711 6702
frsG_Burk frsG_Chro	gttcatgttagccgcgatgctgaaatgaggccgggacatcacgccgagaacacctctctg gttcacgccagttgcggctccgcgtcggcggacgccgtgccgaaggccgaaccggctgcg ***** * * * * * * * * * * * * * * * *	6771 6762
frsG_Burk frsG_Chro	<pre>ttttggaactgccgcgcggatttgttacgtgacgtgcgagctaatctgcgtaagcggttg gtctggcgcagccgctcggccctgctgcgcgatgtgcaggcggaattgcgctcgcagctg * *** * ***** *** *** ** ** ** *** ***</pre>	6831 6822
frsG_Burk frsG_Chro	cccgattacatgcaacccaatcacatggtgttactggacacctttccgctgacaccaaac ccggattacatgcagcccaatcatctggtattgctggatgcgttcccgctgaccgccaac ** ******	6891 6882
frsG_Burk frsG_Chro	ggcaagctggaccgccgggccttgccggcaccggaacaggccgcgatgcgtgtacgcgat ggcaagctggaccgccgggcgctgccgacgccggagcaggcggcgctgagaacgcgcgat ************************************	6951 6942
frsG_Burk frsG_Chro	atcgagccggctgagatcgaggcggcgttgtgtcgacatccattggtttcacaggcagtg gtcgatcccgccgagatcgaggcggcgctgtgccggcatccgtcggtggcgcaggcggcg **** ** ** ** *******	7011 7002
frsG_Burk frsG_Chro	gtgattgcacgggaagacgcgcccggacataagcaattggtcgggtatgtggtactggat gtgattgcgcgggaggacacgccgggccacaagcagctggtgggctacgtggtgctggac ******** **** **** *** ** ** ** ***** ****	7071 7062
frsG_Burk frsG_Chro	gatgccgcggcattgcagcgcgacacggaagacgagacg	7131 7122
frsG_Burk frsG_Chro	<pre>caggtgtacgacacgctgtacgaggcgcactgtcagcagccgttcggggagaacttcggc caggtctacgacaccctgtacgacgcccaccagcaccagcccttcggcgagaacttcggc ***** ******** ******** ** *** ** ******</pre>	7191 7182

frsG_Burk frsG_Chro	gggtggaacagtagttacgacggtcagccattgccgctggaagagatgcgtgcctggcgc ggctgggacagcagctacgacggccagccgctgccgctggcgcagatgcgcgaatggcgc ** *** **** *** ** ******* ****** ******	7251 7242
frsG_Burk frsG_Chro	<pre>caggcgacggtggagcggattcgcgagttgcagccgcgcgggtgctagagattggggtg agcgccaccgtggagcggatccgcgaactgcgtccgcgccggctgctggaaatcggcgtc ** ** *******************************</pre>	7311 7302
frsG_Burk frsG_Chro	<pre>gggagcggcttgctgctggcgccgctggcaccggagtgcgaagcctactggggcacggat ggcagcggcctgctgctggcgccgctggcggacgcctgcgaagcctactggggcaccgac ** ****** ***************************</pre>	7371 7362
frsG_Burk frsG_Chro	ctgtcaccaacgacgatcgcagtgctggagcggcaactgtcagagcagaccttcggagac ctgtcgccggcgacgatcgcggtactggagaaacaactggaaacccagtcctgccggac ***** ** ********* ** ****** ******* ****	7431 7422
frsG_Burk frsG_Chro	cgggtgaggctgttcgcgctaggggcacatgaactgtcgaagctgccagaagggaacttc aaggtgcgcctgttcgcgctggggcgcacagagctggcgcggctgccggcggtgcggttc **** * ********** ** ** ** ** ** ** **	7491 7482
frsG_Burk frsG_Chro	gatgtgatcgtgatcaattcggtgttgcagtacttcccgaacgcagcgtacctgacggaa gactgcatcgtgatcaactcggtgctgcagtacttcccgaacgccgcttatctgggcgaa ** ********** ****** ***************	7551 7542
frsG_Burk frsG_Chro	gtgattaagcagtcgctggagcggttgtcaccgggcggggcactgtatttgggggacgtg gtgatcgagcaggcgctggcgggcgggggggggg	7611 7602
frsG_Burk frsG_Chro	cgcaatttggcgctgctggatgtgtttgctacggcagtggatttgtgtcaggtgggcact cgcaatctggagctgctgcccagcttcgcggcggcggtggagctgcggcagtcggagccg ****** *** **** ******* ***********	7671 7662
frsG_Burk frsG_Chro	gagacggatgcggcgagcttgcggcgtcgagtggagcagcgttgctggcgagaaaaagaa gaggtcgacgcggcggcgctgcagcggcgggtgagccagcggctgctggcggagaaggaa *** ** ******* *** *** *** *** **** ****	7731 7722
frsG_Burk frsG_Chro	ctgctggtatcgccggcgtttttcagccggttgcgtgagacgttgccacagattggtgca ctgctggcggcggacttcttcagccggctgcgggaacagctgccgcagatcggcgcg ****** * ****** ** ******** *** ** * ****	7791 7782
frsG_Burk frsG_Chro	gtggatattcgcctgaagcgaggcgaggcggtgaacgaattgagtcgttaccgctacgag gtggacatccgcctgaagcgggggcgaggcggcgacgaggcttaaccgctaccgctacgaa ***** ** *********** ***************	7851 7842
frsG_Burk frsG_Chro	gcggtactgtacaaggagccgtgtgaagcggtgtcactgtcggaggtggaaacgcagacg gtggtgttgcgcaagggcccgtgccaggcgcgctcgctggcgtcggcggcggagccg * *** ** ** ***** ***** * *** ** ** **	7911 7902
frsG_Burk frsG_Chro	tggtcggacgtggggaatatgtcggcctgccggacaaggctgatgcagtatgcgccgatg tggtcgtcgctgggcagcctgtcggcctgccgcgagcggctgtcggtcg	7971 7962
frsG_Burk frsG_Chro	tggcggatagaaggaattccgaacgcacggttgcatggcgaggtattggtaacgcggcgg ctgcgggtgacgggggtgccgaacgcgctgctgcatggcgaagcggcggcggcggggg **** * ** * ******* * * ******** * * ****	8031 8022
frsG_Burk frsG_Chro	ctgaagtccgaggatgggttggcgtcgtggcgacgttggctggacgagtcggggggtc ctgaaggcggggcgg	8091 8082

frsG_Burk frsG_Chro	gagccggaagatctgtatcgattgggtgcggagctgggttatcgggtggtgttgacatgg cggccggaagcgctgcgccgtctgggcgcggagctgggctggcggatgctggcgacgtgg ******** *** *** *** **************	8151 8142
frsG_Burk frsG_Chro	<pre>tcaaaccagccggatcatttcgatgcggtgtttctgccagagcagcagcggggtgcactg tcgcggcaggcggggcatttcgacgcggtgttcgtgcggggagaggacggcgaagcgctg ** *** *** *** **********************</pre>	8211 8202
frsG_Burk frsG_Chro	<pre>gacgcggtgtataggacgccaccggtgttgaaaccgttatcggggtatgtgaacaacccg gacggggtgtaccagccggcgggggcgttgcagccgctgtcgggctatgtgaacaacccg **** ****** * ** * * * **** * **** * ****</pre>	8271 8262
frsG_Burk frsG_Chro	gcgaatttcgaacagttcgcagcaatacgccgatatgtgggagaacaactgccggattac gcgaacttcgagcagtacgcggcgatccgtcgctacgcgttggagcagttgccggagtac ***** ***** **** *** *** ** ** ** ** **	8331 8322
frsG_Burk frsG_Chro	<pre>atggtgccggcagcgctggtactgctggaagggttgccactgacaccaaacgggaagctg atggtgccggcggcgatcgtgttgctggacgcgttgccgctgacgccgaacgggaagctg ************ *** *** ****************</pre>	8391 8382
frsG_Burk frsG_Chro	<pre>gaccgccgcgctaccggcgccggagtttggcacggcatgctatcgagcgccggggtca gaccgcagggcgctgccggcgccggagttcggtgggacgggctaccggggcgccggaatcg ****** * ****** *********************</pre>	8451 8442
frsG_Burk frsG_Chro	gagcaggagaaggtgctggcgcaactgtttgccgaagtgctgggtttgccgcaggtgggg gaacgggagcaattgctggcgcggctgttcggggaggtgctggggtctgccgcaggtgggg ** * **** * ******	8511 8502
frsG_Burk frsG_Chro	gtgaatgacagcttcttcgaccttggcggtcactccttgctggcaacccgtctgattagc ttgcacgacagcttcttcgatctgggcggccactccttgctggcaacccggctgatcagc ** * ********************************	8571 8562
frsG_Burk frsG_Chro	cgggttcgctcgctgttccatatcgatttgccgatccggaccttgttcgagtcgcccacc cgcatccgcgcgctgttccaggtcgagctgccgatccgcgcgctgttcgaatcgccgacg ** * *** ********** **** ************	8631 8622
frsG_Burk frsG_Chro	gtcgccagactggctcgctacattgacgacggcgcaatcgacctcgattcgttcg	8691 8682
frsG_Burk frsG_Chro	ctattaccgatcaaaccggacggcaagcgtgctccgctgttctgcattcatccaggcggg ctgctgccgatcaaacccgacggcaagcgccgccgctgttctgcattcacccgggcggg	8751 8742
frsG_Burk frsG_Chro	tgcctgagttggacctacgttggattggtgcgttatctggatgccgagcaaccgatctac tgcctgagctggacctatgtcagcctggtgcgctacctggatgcggagcagcccatctat ******** ******** ** * ******* ** ******	8811 8802
frsG_Burk frsG_Chro	ggcctgcaagcccgaggcatcgatggcaagagtcaggtggccacttcgatcga	8871 8862
frsG_Burk frsG_Chro	gcaagcgattacgtcgagcagatacgccggattcagccgaaggggccgtactacctgctt gccgccgattacgtggcccagatccgcggcatccagccgcacggcccttattacctgctg ** ********* * ***** *** *** ****** * ** *** ***	8931 8922
frsG_Burk frsG_Chro	ggctggtccttagggggcaacattgcccaggagatggccgtactcttggaacgccagaat ggctggtctctgggaggcaacctcgcccaagccatggcctcgcagctggaaagcatggat ******** * *** ****** * ****** * ******	8991 8982

frsG_Burk frsG_Chro	<pre>catgatgtggggctgctgattctgctcgattccggaccgtctcctatgcacaagaatgac caggaggtgggcttgctgttcctgctcgattccgggccgtcgccgatgcacaaggacgat ** ** ***** ***** * *****************</pre>	9051 9042
frsG_Burk frsG_Chro	gagatgatcgagtatccgctgtttaccaaggaatttaggaaaaaccttcaagttccatgtc gaaatgatcgagtacccgctgttcaccaaggagttcaagaacaccttcaagttccatgtc ** *********** ******** *************	9111 9102
frsG_Burk frsG_Chro	agcgaatcgaagatgcgggccatatttgaggtgagtaagcaccacattgaactgatcaag agcgaaacgaagatgcaggccattttcgaggtgaccaaacgccatgtcgaactgatccgg ****** ******** ****** ** ******* ** **	9171 9162
frsG_Burk frsG_Chro	<pre>cagtctacgactcccgttagccgggggcgtgccctgttgtttcgggccacggtgccttac caatcgaccacgccggtcagccagggcccagcgctgttgttccgggccacggtgccttac ** ** ** ** ** ** ** *** *** *** ******</pre>	9231 9222
frsG_Burk frsG_Chro	gacgaaaatacgccacttctgtcgccccacgcttggaatgactatgtgaaaggggaaata gacgaatctacgccgctgctgcccccgcatgcgtggaatgagtatgtgaaaggcgatatc ****** ****** ** *** ** ** ** ** ******	9291 9282
frsG_Burk frsG_Chro	<pre>gaaatacgcgacattcattgccaacacgcgcacatgaaccacgtcgaattcatggcgcag gaagtgcatgaggtccattgccagcatgcgcaaatgaaccgaatcgaattcatggagcag *** * * * * * * * * * * * * * * * * *</pre>	9351 9342
frsG_Burk frsG_Chro	atgggggaagtgatagagacgaaactggctgagctccatgcccgagccactcgatattaa atgggggccggtgatcgaacgcaagctggccacgctccacgaccagtccacccgccgtaat ****** **** ** ** ** ***** ****** ******	9411 9402
frsG_Burk frsG_Chro	9411 tcttga 9408	

Abbildung A33: Alignment von frsGaus dem $bcfrs\operatorname{-}BGC$ und dem $cvfrs\operatorname{-}BGC.$
frsH_Burk frsH_Chro	atgatgcaagagaatgacgaagtttatctgcgtagccataccaagatcgagccgcttatc atgaccgtatccgataacgtattcctgcgcagccacaccaagatcgagccgttgatc *** * * * * * * * * * * * * ****	60 57
frsH_Burk frsH_Chro	<pre>atgcgctggtatgcgtggtcacatctgatttctccggcccagcatgcgatgaatatggcg atgcgctggtatgcctgggcgcacctggtatcgccagcca</pre>	120 117
frsH_Burk frsH_Chro	<pre>tttcgccacgtgccaatgttgaagtcgttcctcgccgcgcccacggtgcacgaagcggtt tttcgccacttgcccatgctcaagtctttcgtcgcctcgccggcggtgcatgaagccgcg ******************************</pre>	180 177
frsH_Burk frsH_Chro	<pre>tccaataatccggagatgctaggtggcccttatctagaattgaagaaaagcgacgtcgcc tccagcaatccggaaatgctcggcgggccttttctggaactgaagaaaagcgatgccgcc **** ******** ***** ** ** *** *** ***</pre>	240 237
frsH_Burk frsH_Chro	gcggtaaaggcgctatggcaacagactcagcagcggggcgaaaagatgatccagtttgcc gcggtgaaggcgctatggcagcagacccagcagcaggcgggcaggca	300 297
frsH_Burk frsH_Chro	gaagcactgctgaaactggatcgccgtctgcaaaagagcgaagcgggctttagccttgat gaggcgctgctggagctggatcgcaggctgcagcagagcgagaccggcctcagcctcgac ** ** ****** * ******** * ******	360 357
frsH_Burk frsH_Chro	<pre>catgtatatgccgagttgcccgacgcgttgcaagggctggtcgaagtcagctacgaccta catatctacgccgagctgccggagccgctgcagggcctggtggaagtcagctatgacttg *** * ** ****** **** ** ** ** ***** **</pre>	420 417
frsH_Burk frsH_Chro	<pre>cacaaccatccgtcactgcggctgatcgaagaactcctttatctggaggactggatgaac cataaccacccgtctctgcggctgatcgaggagctgctttatctggaggactgggtggac ** ***** ***** ****** *********** ** **</pre>	480 477
frsH_Burk frsH_Chro	gatgatgggcaagagatcgctttcaatttaagcaaagaggaggagcgcgccttcttcatc ggcgctggacaggaaatcgccttcagcttggacaaggaggaggagcgcgctttcttcatg * * *** ** ** ** ***** ****	540 537
frsH_Burk frsH_Chro	<pre>aacacaccgcgcctcgatatgccggggcggatggtggtcccactgccattcgctgacaag aatacgccgcgagtcgacgcgccgggggcgcatggtggtgccgctgccgtttgccgacgcg ** ** ***** **** **** *************</pre>	600 597
frsH_Burk frsH_Chro	cgattcgacttgctggccaccagtcggcttagccccgtctctctc	660 657
frsH_Burk frsH_Chro	gcgctggaaatcccagcaacccaaaggccggcctttcgcgattacttcaccacgacacct gcgctggagattccggaggatcagcgcccggctttccgcgaatatttcaccacctccgcg ******** ** ** ** ** ** ** ** ***** **	720 717
frsH_Burk frsH_Chro	ccgcagcgcaataagccgacgtatcgcggagacggcgtgcgggtccgctactttggccat ccgcagcgcaatgagcccgagtacgaaggcgatggcgtgcgagtccgttatttcggccat ***********	780 777
frsH_Burk frsH_Chro	gcttgcgtgctggtacagtctgcggaggtttccgtactggtcgatccgttcctgaactgg gcttgcgtgctggttcagaccgcggaggtatcggttctggtcgatcccttcctgacctgg ******	840 837
frsH_Burk frsH_Chro	<pre>gaccacaatacagaagagaagcgactgactttttacgacctgccggaccgaatcgattac gaccatcagccggagcagggacggttgaccttctacgatctgccggaccatatcgactac ***** *** *** *** *******************</pre>	900 897

frsH_Burk frsH_Chro	gtgttcatcactcacaaccatccggatcattttagctgcgaagcgctgttgcaactgcgt gttttcctgacccacaaccaccaggatcatttcagctgcgaggcttgctgcaattgcga ** *** * ** ******** * ********* ******	960 957
frsH_Burk frsH_Chro	<pre>aaccgaatcggccatattctggtgccgcgtaataatggcaacaatttcgccgatccatcc</pre>	1020 1017
frsH_Burk frsH_Chro	atgaaattgaccctgaaacggctcgggttcgacaacgtgatggtcatggacgaaatggcg atgaagctgacgctgaagcggctgggttttgacaatgtgatcgtgatggacgagatggcc ***** **** ***** ***** ** ** ***** *****	1080 1077
frsH_Burk frsH_Chro	agcatcaccgtgccagatggccgactggtaagcttgccgtcctatggtgagcattctgat gacatcacgctgccggacggccgattggtgagcctgccgtcctatggcgagcactccgac ****** **** *** ***** **** **** *******	1140 1137
frsH_Burk frsH_Chro	ctgagcatcaccagcaagcacggcctgttcctttcgctgaaaggacgtactttcatgttt ctgagcatcaccagcaagcatggcctgtacctgtcgctgaagggacgcagcttcatgttc **********************************	1200 1197
frsH_Burk frsH_Chro	ctcgccgattccgacgcgaaagaccgtgtgttgtaccgtcgcatcgttcgccaagtgggc ctcgccgattccgacgccaaggaccgcgtgctgtaccggcgcatcatcaagcaggtaggc ***********************************	1260 1257
frsH_Burk frsH_Chro	<pre>agagtcgacaacctgttcattggcatggaatgtgacggggcaccgttaagttggctttat aaggtggacaacctgttcatcggcatggagtgcgacggtgcgcctctgacctggctttac * ** ********************************</pre>	1320 1317
frsH_Burk frsH_Chro	<pre>ggaccctatttgagcaaccctatcggtcgcaaggaagatgagtcgcggcgcttgtccggg ggtccttatctgagcaacccgataggccgcagagaggatgagtcgcggcgtttgtctggg ** ** *** ********** ** *** *** *******</pre>	1380 1377
frsH_Burk frsH_Chro	<pre>tcggattgtgaacgggcttggaggattgtcgaagagtgtgggtgttccccgagcgctggtt tcggattgcgagcgcgcctggcgcatcgtcgaggagtgcggctgcagccaggcgctggtt ********* ** ** ** ** ** ** ****** *** ** ** ** ** ***</pre>	1440 1437
frsH_Burk frsH_Chro	<pre>tatgccatggggcaggagtcctggttccgctttgtcgtcggcttggagtacacgcccgac tacgcaatgggccaggaatcctggttccgtttcgtggtgggcttggagtacaccccggac ** ** ****** ***** ******************</pre>	1500 1497
frsH_Burk frsH_Chro	<pre>aaaaagcagatcgtcgaatccgacgtgttcgtcgatcgttgccggcaagccggtctggat aagaagcagatcgtcgaatccgacaagtttgtcgaccgttgccgccaagccggcatggcg ** ********************************</pre>	1560 1557
frsH_Burk frsH_Chro	ggagaacgtctacacggctgctgcaccgtgcttctatga 1599 gcgcagcgtttgcatggctgccaaaccatgctgctgtag 1596 * * *** * ** ****** *** ***	

Abbildung A34: Alignment von frsH aus dem bcfrs-BGC und dem cvfrs-BGC.

```
#
#
   Percent Identity Matrix - created by Clustal2.1
#
#
#
                     100.00 70.46
70.46 100.00
     1: frsA_Burk
     2: frsA_Chro
#
#
   Percent Identity Matrix - created by Clustal2.1
#
#
#
     1: frsB_Burk
                     100.00 72.15
     2: frsB_Chro
                     72.15 100.00
#
#
   Percent Identity Matrix - created by Clustal2.1
#
#
#
     1: frsC_Burk
2: frsC_Chro
                     100.00 67.88
                     67.88 100.00
#
#
#
   Percent Identity Matrix - created by Clustal2.1
#
#
     1: frsD_Burk
2: frsD-Chro
                     100.00 69.69
                     69.69 100.00
#
#
#
   Percent Identity Matrix - created by Clustal2.1
#
#
     1: frsE_Burk
                     100.00
                             69.93
                      69.93 100.00
     2: frsE_Chro
#
#
#
#
   Percent Identity Matrix - created by Clustal2.1
#
     1: frsF_Burk
2: frsF_Chro
                     100.00 72.69
                     72.69 100.00
```

```
#
#
#
   Percent Identity Matrix - created by Clustal2.1
#
#
     1: frsG_Burk
                     100.00
                             71.52
                     71.52 100.00
     2: frsG_Chro
#
#
#
#
   Percent Identity Matrix - created by Clustal2.1
#
     1: frsH_Burk
2: frsH_Chro
                     100.00
                             77.26
                    77.26 100.00
```

Abbildung A35: Percent Identity Matrizes der Alignment von frsA-frsH aus dem bcfrs-BGC und dem cvfrs-BGC.

FrsA_Burk FrsA_Chro	MQMDIWMVQKIAADYPNCIAEYLHFRGALDGPHFLGALHCVAREA MKNSESPIHHFQASSAQLDVWISQEVSPNLPNNIAEYLNLAGSLDAGLFLQALSQVASES *:*:*: *::: ** *****:: *:**. ** ** ** **	45 60
FrsA_Burk FrsA_Chro	SELRCNLHHDGVRLIKYHRDLAEWVPDFIDVSTEANPEATALSIMRSQVVKSVDMRTDAL AELQYNFRHDGLQLTKFRRDDEGWEPDFIDVSTHGEPEHAALRAMRERVEKPFDLARDAL :**: *::***::* *::** * ********:** :**	105 120
FrsA_Burk FrsA_Chro	FRWCLIRLSDEHHIFFHAYHHIVMDGVGYVLLLERVAEVYRALRSDLPLPACRFATASAI FRWTLIRLADERHIFCHVYHHIAMDGAGYVMLLQRIAEVYGALREGQPAPACGFADADAI *** *********************************	165 180
FrsA_Burk FrsA_Chro	VDDEVRYRASEQFAVDRAFWQARAALQAKAEPPLPLSGEPFLAFAESAVIPEAGRLSLKA VREEERYRQSEQFAVDRAFWQARSAELATAEPPLPAADGPFLAFAQTAVIPEDACGGLRM * :* *** *****************************	225 240
FrsA_Burk FrsA_Chro	AAERLGVSLSRLLSAAIIAYFRRWDGQNEMRFRLAVSARSEVTMQAPGYMAHALPLQASF TAERLGVSQSRLLTAAIVAYFHRWGGQQEILFRLAVSARSDATRHAPGHLAHALPLLASL :******* ****:***:***:**:**:**:**:******	285 300
FrsA_Burk FrsA_Chro	TPHTSLADIVRQLDGEVRCMRPHIRYRAEDIVRDWASTGGVQGAQGPVINIMPFSYAFDF PPRASLADIARQLDGEVERMRPHTRYRAEDIVRDQAGAGLGRGAQGPVINLMPFAYRFEF *::*****.*****************************	345 360
FrsA_Burk FrsA_Chro	GECRVTSAHQLTVGLLNALEVAVHDRKIGDGLHIDLYAPQACGSPVQLQQHVRRLARFIE GACRVESAHQLTVGVLDTLEVAVHDRKNGDGLHLDLYASERGCPPEPLRRHALRLARFIV * *** *********:::::******** *****::**** : * *::*.	405 420
FrsA_Burk FrsA_Chro	VATAVPQSPIDTLPWLDESERRQLLEEWSGNALDLGEITLAELFEVQATRQPNAVALEGP EAAAEPSQPVSDIELLDEAERRQLLVDWNRTGPDHGQATFPQLFETQAALTPHAVALESP *:* **:: ***:***** :* * *: *: :***.**: *:******	465 480
FrsA_Burk FrsA_Chro	DERVSYGELDARANRLASHLQSLGVGPDVVVGVCLERSIDMVVAILGIAKAGAAYLPLAP DARLSYAELDARANRLARHLQSLGVGADVLVGICLERSIDMVVAVLGALKSGAAYLPLSP * *:**.********** ******** **:**********	525 540
FrsA_Burk FrsA_Chro	DYPTERLAYMLTDSMAPVLLTESKQVERLPSYWGHLVKLDRLDLSGQASSAPARALRPDH EYPTERLAYMLGDSMAPVLLTDSAQVERLPSYWGRVVELDRLDLDALPDSAPERALRAEH :************************************	585 600
FrsA_Burk FrsA_Chro	LAYVIYTSGSTGQPKGVAVSHAGLAGLVKSQEERFAVAGPVRVLQFASLSFDAAVMEILM LAYVIYTSGSTGQPKGVAVSHAGLAGLAGSQTERFALQGPTRVLQFASLSFDAAVMEMLM **********************************	645 660
FrsA_Burk FrsA_Chro	AFCSGGRLVLPAAGPLLGEQLEETLNRYAISHALIAPSALETVEAEVVPGLSTLVVGGET AFCSGGRLVLPAAGPLLGEQLLDTLNRHEISHALISPSALSTADAALAPVLRTLVVGGEA ***********************************	705 720
FrsA_Burk FrsA_Chro	CSGATAASWSQGRRMVNAYGPTEATVCVTMSKPLSGSDKPKLGRPTLGAKLYVLDSTLQP CPGATVAAWSAGRRMVNAYGPTEATACVTMSEPLSGDGAPKLGRPTHNARLYVLDGALQL * ***.*:** ****************************	765 780
FrsA_Burk FrsA_Chro	VPVGVAGELYIAGRGLARGYYQRPGLTAERFVANPYGKGERLYRSGDLAHWSGEGELEYL APVGVAGELYIAGAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYL .************************************	825 840
FrsA_Burk FrsA_Chro	GRVDQQLKIRGFRIEPGEIETVLCQHPQVREAVVVSR-TNGRDTQLVGYVTIRGEVDGQA GRSDQQVKVRGFRIEPGEIEAVLNRHPQVSQSVVVARQSQGGDSQLVAYVAAVGGVEGSE ** *****	884 900

FrsA_Burk FrsA_Chro	LRRQVANWLPEYMVPAVVLVLEELPRLPNGKLDHQALPAPEYTGKRYQRPRNAQEEILCG LRRLAAGQLPEHMVPAAVVVLESLPQLPNGKLDRKSLPAPEFGGSHYQRPRNAQEEMLCG *** .*. ***:****.*:********************	944 960
FrsA_Burk FrsA_Chro	LFAEVLEVGSVGIDDSFFDLGGHSLLATRLISRIRATMNIELSIRDLFECSSVASLSRHI LFAEVLDMEKVGRGDSFFDLGGHSLLATRLIRRIRETLDVELSIRDLFEAPCVTELSRHI ******:: .** .*************************	1004 1020
FrsA_Burk FrsA_Chro	VIGNQSWNPYEVLMPIRASGNRHPLFCIHPEGGLGWSYIGLALHLDHLQPIYTLQARGLD AEGGDSKSPYQVLMPIRATGGRHPLFCIHPEGGLGWSYIGLALHLDHEQPIYTLQARGLD . *.:* .**:****************************	1064 1080
FrsA_Burk FrsA_Chro	GVSKLASSIRDMAADYIQQIRTVQPDGPYHLLGWSLGGLVAQEMAVQLERADEKVALLAI GMSELAPSIPDMAADYIEQIRSIQPNGPYHLLGWSLGGVIAQEVAVQLERVGEKTALLAI *:*:** ** *******:********************	1124 1140
FrsA_Burk FrsA_Chro	LDTFPIEILHDAMFGKQACAYDIFAQVVQDMHAMQIDEDRLKSMYQIGLNHMKITATFSS LDTFPIEILHEAMFGKQACAYDLFARVVQEMYLMPIEEARLKSMYLIGLNHMKITAAFSS **********************************	1184 1200
FrsA_Burk FrsA_Chro	SHYRGDLLLFRSTIPYADDALMPQPETWSPYISGILEVHEVECTHMEMMQKDVTKVIGQI SHYGGDLLLFRSLIPYAEDALMPEADTWQPYLSGQLEVHDIECTHMDMMQRDVLKIIGPV *** ******** ************************	1244 1260
FrsA_Burk FrsA_Chro	LKSKLSKTAEK*- 1255 LESKLSVTAVKQ* 1272 *:**** ** *	

Abbildung A36: Alignment von Frs
A aus dem $bcfrs\operatorname{-}BGC$ und dem $cvfrs\operatorname{-}BGC.$

CLUSTAL 0(1.2.4) multiple sequence alignment

FrsB_Burk	MSNPFDDKDGIFKVLVNDENQHSLWPDYITVPSGWNTVFGPASRDACLDYVENNWTDMRP	60
FrsB_Chro	MSNPFDDKDGVFLVLINDENQHSLWPDYIAVPAGWSQSFGPASKQTCLDYIETSWTDMRP ************************************	60
FrsB_Burk	KSLIDAMQSDET* 72	
FrsB_Chro	KSLIDAMECDDK* 72 ******:.*:.*	

Abbildung A37: Alignment von Frs
B aus dem $bcfrs\operatorname{-}BGC$ und dem $cvfrs\operatorname{-}BGC.$

FrsC_Burk FrsC_Chro	MTTPVRVVISGAVGRIGNSLLFNIASGQLLGSEQPVVLSLLEASSRLPMLSGVLMELHDG MKNSVRVAISGAAGRIANNLLFSIASGQLLGDQQPISLSLLETPARLSMLNGIAMELHDG * ***.****.***.*********************	60 60
FrsC_Burk FrsC_Chro	AFPLLANVEIHDDPWLAFDGADYAFLISSPPDSLSEASKTADARMENHGATFAVHGRALN VFPLLAGVEVSDDPWQAFEGADYVFLISSPLDSLATASKTADARMEQHGNTFALHGKALN .*****.**: **** **:***** ***: **********	120 120
FrsC_Burk FrsC_Chro	GVANRDVKLLVVSNPVMLNALTVQRNAPNLDPSCICGMMRLDHNRAHALLAHKARVHLSE DVASRDVKILVISNPVMINALMVQRNAPDLNSSCISALMRLDHNRAHALLAHKAGASLAD .**.****:*****************************	180 180
FrsC_Burk FrsC_Chro	VRKVIVWGNHSRTQYPDFDHATIGGIPACNLISHDWLRQDSVDIVRQRGYAVIDAYGGLR VRKVIVWGNHSSTQYPDFYHATIGGVRVDALLENDWLHQVSIGLVRQRGYAVIDAYGGLR *********** ****** ******: . *:.:********	240 240
FrsC_Burk FrsC_Chro	AASSAAKAAIDHMRDWVFGTREGDWTSMGVFSDGSYGVPAGIFFGYPVVSHQGDLHIVKN AASSAAKAAIDHMRDWIFGTRDGDWTSMGVLSDGSYGIPSGIFFGFPVVADGGQVNIVQG ************************************	300 300
FrsC_Burk FrsC_Chro	LRPNPIVLEKIHLSADEIYQRSKNFKLI* 328 LQICPERLEKIHHSADEIYRRCQQFNLL* 328 *: * ***** ******:*::*::*:*	

Abbildung A38: Alignment von FrsC aus dem bcfrs-BGC und dem cvfrs-BGC.

FrsD_Burk FrsD-Chro	MEIWLAQQLRKDLFINIAEYLQIDGVLDIALFMDALHRVLQEAIVLHVNFSGHVDRPVQF MEIWLAQQLMPDSPNNIAEYLHLSGPLDPDLFFKTLRQVASETPALQVNFSIEDGRPCPV ******** * * ******** * *************	60 60
FrsD_Burk FrsD-Chro	LRTSKGCAPSFIDVSAQSDPFFAAQRAMRELAHSPFDLGQDALFRWCLIRLSDEHHIFFH SRVHEDWSPDFIDVSTHGEPEHAALRAMRERVEKPFDLARDALFRWTLIRLADERHIFCH *. :. :*.******::::* .** ********** ********	120 120
FrsD_Burk FrsD-Chro	AYHHIVMDVAGYVLLLERVAEVYRALRSDLPLPACRFATASAIVDDEVRYRASEQFAVDR VYHHIAMDVAGYVMLLQRIAEVYGALREGQPAPACGFADADAIVREEERYRQSEQFAVDR .****.*******************************	180 180
FrsD_Burk FrsD-Chro	AFWQARAALQAKAEPPLPLSGEPFLAFAESAVIPEAGRLSLKAAAERLGVSLSRLLSAAI AFWQARSAELATAEPPLPAADGPFLAFAQTAVIPEDACGGLRMTAERLGVSQSRLLTAAI ******: *.******* :.********: ********	240 240
FrsD_Burk FrsD-Chro	IAYFRRWDGQNEMRFRLAVSARSEVTMQAPGNMAHALPLQASFTPRTSLADIVRQLDGEV VAYFHRWGGQQEILFRLAVSARSDATRHAPGHLAHALPLLASLPPRASLADIARQLDGEV :***:**.**:*: *************************	300 300
FrsD_Burk FrsD-Chro	RCMRPHIRYRAEDIVRDWASTGGVQGAQGPVINIMPFSYAFDFGECRVTSAHQLTVGVLN ERMRPHTRYRAEDIVRDQAGAGLGRGAQGPVINLMPFAYRFEFGACRVESAHQLTVGVLD **** ********** * :* :****************	360 360
FrsD_Burk FrsD-Chro	ALEVAVHDRKIGDGLHIDLYAPQACGSPVQLQQHVRRLARFIEVAAAVPQSPIDTLPWLD TLEVAVHDRKNGDGLHLDLYASERGCPPEPLRRHALRLARFIVEAAAEPSQPVSDIELLD :********* *****:**** : * *::*. ****** ***	420 420
FrsD_Burk FrsD-Chro	ESERRQLLEEWSGNALDLGEITLAELFEVQATRQPNAVALEGPDERVSYGELDARANRLA EAERRQLLVDWNRTGPDHGQATFPQLFETQAALTPHAVALESPDARLSYAELDARANRLA *:****** :* * :: ::***.**: *:********	480 480
FrsD_Burk FrsD-Chro	SHLQSLGVGPDVVVVVCLERSIDMVVAILGIAKAGAAYLPFAPDYPTERLAYMLTDSMAP RHLQSLGVGADVLVGICLERSIDMVVAVLGVLKSGAAYLPLSPEYPTERLAYMLGDSMAP ******* **: *: ***********************	540 540
FrsD_Burk FrsD-Chro	VLLTESKQVERLPSYWGHLVKLDRLDLSGQASSAPARALRPDHLAYVIYTSGSTGQPKGV VLLTDSAQVERLPSYWGRVVELDRLDLDALPDSAPERALRAEHLAYVIYTSGSTGQPKGV ****:* **********::*:********* **** :********	600 600
FrsD_Burk FrsD-Chro	AVSHAGLAGLVKSQEERFAVAGPVRVLQFASLSFDAAVMEILMAFCSGGRLVLPAAGPLL AVSHAGLAGLAGSQTERFALQGPTRVLQFASLSFDAAVMEMLMAFCSGGRLVLPAAGPLL **********	660 660
FrsD_Burk FrsD-Chro	GEQLEETLNRYAISHALIAPSALETVEAEVVPGLSTLVVGGETCSGATAASWSQGRRMVN GEQLLDTLNRHEISHALISPSALSTADAALAPVLRTLVVGGEACPGATVAAWSAGRRMVN **** :****: ******:*****.*:* :* :* * *******:* ****	720 720
FrsD_Burk FrsD-Chro	AYGPTEVTVCVTMSKPLSGSDKPKLGRPTLGAKLYVLDSTLQPVPVGVAGELYIAGRGLA AYGPTEATACVTMSEPLSGDGAPKLGRPTHNARLYVLDGALQLAPVGVAGELYIAGAGLA *********************************	780 780
FrsD_Burk FrsD-Chro	RGYYQRPGLTAERFVANPYGKGERLYRSGDLARWSGEGELEYLGRVDQQLKIRGFRIEPG RGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRSDQQVKVRGFRIEPG *** :*********************************	840 840
FrsD_Burk FrsD-Chro	EIETVLCQHPQLREAVVVSR-TNGRDTQLVGYVTVRGEVDGQALRRQVANWLPEYMVPAV EIEAVLNRHPQVSQSVVVARQSQGGDSQLVAYVAAVGGVEGSELRRLAAGQLPEHMVPAA	899 900

FrsD_Burk FrsD-Chro	VLVLEELPRLPNGKLDHQALPAPEYTGKRYQRPRNTQEEILCGLFAEVLEVNNVGIDDSF VVVLESLPQLPNGKLDRKSLPAPEFGGSHYQRPRNAQEEMLCGLFAEVLEVGSVGIDDSF *:***.**	959 960
FrsD_Burk FrsD-Chro	FDLGGHSLLATRLVDRIRTTLGVELPIRTIFDQPTIAELAVVLPQCQAITRPPLRARRRV FDLGGHSLLATRLISRIRAALNVELPIRQLFDLPSVAELLEVLPQYQGAARPALQPRRRQ *********************************	1019 1020
FrsD_Burk FrsD-Chro	ENSDWS* 1025 QHAVRS* 1026 ::: **	

Abbildung A39: Alignment von FrsD aus dem bcfrs-BGC und dem cvfrs-BGC.

FrsE_Burk FrsE_Chro	MQNSAIEVLPLSYAQRRLWFTHCIKGPSPAYNIPLMLRLAGKPAKEALQAALQDVLTRHE MPIPEIEVLPLSYAQRRLWFTHRFNGPSPTYNIPIALSLSGEPEQPALQAALRDVLARHE * ***********************************	60 60
FrsE_Burk FrsE_Chro	SLRTLCVEADDGEPMQHILPAQAVTVFRLETHVAASVAEQSEAVVEASRHCFDLSTEIPL SLRTLVVESEEGAPAQHILPPDAAGTFCLAVQTAGSAAEQAASLETACRHCFDLSREMPL ***** **:::* * ***** :** * .:.*.***: :: *.********	120 120
FrsE_Burk FrsE_Chro	RATLFLAEGAPPLLLLLHHIAADGDSLPVLAKNLEFAYLARHESRPPEWSLLAVQYADY RAGLFLADGAEPVLLLLHHIAADGDSLPVLARDLELAYRSRLRGLAPEWRPLPVQYADY ** ****:** *:*************************	180 180
FrsE_Burk FrsE_Chro	TLWQREWLGNIGTADSPAAHQLRYWRGALRGMPQVMALPTDRPRPPVATHRGGKVPFALP ALWQQELLGDLEVPDSLAARQLVYWREALRGMPDVLELPTDHPRPAVASHRGGKAPFALS :***:* **:: . ** **:** *** *****:*: ****:********	240 240
FrsE_Burk FrsE_Chro	AAAHARLKTLAETEAVTLSMVLQAGLSALLYRLGAGSDVVIGGLLAGRNDEALKDLIGFF AAAHARLKTLAAQQGATLSMALQAGLAALLHRLGAGTDIAVGGLLAGRGEESLKELIGFF ************ :*****:****:*****:********	300 300
FrsE_Burk FrsE_Chro	VNAWVLRTDLSGHPDFHVLLRRVREQALQAYSHPDLPFEWLVEQLNPIRSTSYHPLFQVV VNAWVLRVDVSGRPNFPALLRRVREQALQAYSHQDLPFEWLVEQINPARSTSHHPLFQVA ************************************	360 360
FrsE_Burk FrsE_Chro	LVLQNNQRARFRLGGLVVEQQVLGTGTAKFDLAFNLFETMSDDGHPLGVTGDLEYACDLF LVLQNNLSADFHLEGLAVDQRLLGTGTAKFDLAFNLFERQDGDGRPQGLDGELEFASDLF ****** * *: *: *: *: *: *: *: *: *: *: *	420 420
FrsE_Burk FrsE_Chro	DPPSAVRLAYRLSRLLEIWSAAPSQSIAILDLLERSEREQALLEWNATTRPLPALTLAEA DRAGAERLVARFVRLLERWSMQPAHLIAELDLLDDDERRQAVSGWNDSARPLEAGTLACL * .* **. *: **** ** *:: ** ****: .**.**: ** ::*** * ***	480 480
FrsE_Burk FrsE_Chro	FETQAALTPEAVALAFGDEVLSYAELNKQANRLARMLVAAGLGPEGRVALAVPRSLDMVV FEAQAKASPDSVALAFGSEQYSYAELDRRANQLARTLAGAGIGPEDIVALAVPRSLDMVV **:** :*::******* * *****:::**********	540 540
FrsE_Burk FrsE_Chro	ALLGVTKAGAAYLPLDPEYPAERLAYMLADAKPTLLMTVNAQLGSLSECAGIPVLALDAD ALLGVVKAGAAYLPLDPEYPRERLAHMLSDATPRLLLATSDTVGGLPAFSGLRVQVLDEP *****.*******************************	600 600
FrsE_Burk FrsE_Chro	SVRDAISQMSGCNLVQSERLCPLQPQHPVCVIYTSGSTGRPKGVMVTHQGIVSLRASQIE AWREMVARADGRPLAQRERTRPLLPQHPVCVIYTSGSTGKPKGVSVTHQGIASLRASQIE : *: ::: .* *.* ** ** *****************	660 660
FrsE_Burk FrsE_Chro	RFGVSAESSVLQFASLSFGAALFEICTSLLTGARLVLVSSIKEALNVETMTALVTRHRLS RFGVSAGSSVLQFASLSFGAALFEVCMSLLVGARLVLVASAREALNAGAMAELARRHGLS ****** ******************************	720 720
FrsE_Burk FrsE_Chro	HMVVPPSALDTLCADRLPRTVRIMVAGEHCPAHLVERWSADRFMVNGYGSSEVTVCATMS HVVLPPSALEALASERLPDSLGIMVAGEHCPAHLQERWSAGRLMVNGYGSSEVTVCATIS *:*:*****::*.::*** :: *****************	780 780
FrsE_Burk FrsE_Chro	QPLSGRALPPMGAPNANTRLYLLDAGMQPVPAGVMGELYVAGEGLARGYLSRPGLTAERF LPLSGRGAPPMGLPNANTRLYVLDAGLQPVPVGVPGELYIAGDGLARGYLRRPGLSAERF *****. **** **************************	840 840
FrsE_Burk FrsE_Chro	VANPFEPGWQMYRTGDLARRDIDGRLDYLGRVDHQVKIRGFRIEPAEIEAALRQLPGVAQ VANPFAEGERMYRTGDLARRGGDGRLEYLGRTDHQVKIRGFRIEPAEIEAVLRRLSGVAQ ***** * :*****************************	900 900

FrsE_Burk FrsE_Chro	ATVVAWEEVPGAKQLVGYVVPKEGVMLEPRAMRRELAEHLTDHMVPAVLVELSALPRTPN AAVVAREDAPGVRQLVGYVVAATEAKLDAQGLRRQLAEHLPEHMVPAALVELAALPRTPN *:*** *:.**.:******* :::::******* ::::******	960 960
FrsE_Burk FrsE_Chro	GKLDRSALPAPVFVTEGYREPRTAKECTLCQLFAQVLDLPQVGIDDAFFDLGGDSISSIQ GKFDRGALPVPTFAAEGYRPPRTAEERALCQLYAQVLDLSKVGIDDGFFDLGGDSISSIQ **:**.********************************	1020 1020
FrsE_Burk FrsE_Chro	LASRARKRGWHVTPNQVFRYPRVQDLATVMLPLTNGVDSVQEEPCGDLTLTPILRWMWEN LASRARKAGWLLTPNQIFRHPRVEDLAAELKPVESDRNERVDQACGDLPATPIIHWMLAA ******* ** :****:***:***: : *: :. :: **** ***:**	1080 1080
FrsE_Burk FrsE_Chro	GPYRLFHQSQLLRAPSGLRRADLLAMVQALLDHHDALRMRLHEDDG-EARMTILPVGTTR PPYRRFNQSQLLRTPGGLKRDDLLAALQALLDHHDALRLRLDAAASDEALLSIPPAGSVR *** *:******:*.**:* **** :*************	1139 1140
FrsE_Burk FrsE_Chro	AEDCVRRIEIVGVDAVERQVVLARETDEAILRLDSECGRLVQVVWLDAGSEEGWLRLVIH AGDCLRRIDAVGRDEAEWHLLLAREGEAAAERLDCEAGLLLQAVWLDAGDEAGRLLLVIH * **:***: ** * .* :::**** : * ***.* *:*.********	1199 1200
FrsE_Burk FrsE_Chro	HLAVDGVSWRVLLSDWQQAWADVCVGCAISLDPVGTSFRNWALCLQRDAQSPQREAELAY HLAVDGVSWRVLLPDLQQAWQAASQDRAIALDPVGASFRLWSLHLGQEARSSQREAELAH ************************************	1259 1260
FrsE_Burk FrsE_Chro	WCSMLSTTDMPLGRRAFDPARDTTRTKQSLSLSLPVRTTQALLTQAATRFHAQANDVLLT WKWALAAEDPLLGPRPYDSARDATRTRQSLSLALPPAVTQALLTQATARFHAHANDVLLT * *:: * ** * : ****:******************	1319 1320
FrsE_Burk FrsE_Chro	VFVLAMAAWRRQCMGHAPDALLFDLEGHGRETQDTAIDLSRTVGWFTSLFPVRVRLDAVD VFALAVAVWRRRRLPEAPAELLFDLEGHGREARDTGIDLSRTVGWFTSLFPVRLALDCAG **.**:*.***::::**	1379 1380
FrsE_Burk FrsE_Chro	LDDALGEGASLGRLLKSVKEQLHALPDRGLGFGLLRYLNQGTAAELAAHGQPQIGFNYLG LDEALKGGDSLGRLLKSVKEQLRAIPDRGMGFGLLRHLNPGARGELAALSSPQIGFNYLG **:** * ******************************	1439 1440
FrsE_Burk FrsE_Chro	RFAASEGGDWQLASDVGIEAGQDPEMPLPHPLSFDAHTLDRTHGPELTAIWSWGSELFSS RFTAAEGEDWQPAGCAGIEGGQDPDMPLPHLLSFNAQTLDREQGPELHAIWSWAGELFDQ **:*:** *** ** *. *********************	1499 1500
FrsE_Burk FrsE_Chro	DEIAELAQLWQQAAMALAEHVTRPGAGGRTPSDLPLVHLHQAQIEQLEVEYPRIEEVLPL EQIAELAQLWRQAAVALAEHASRPEAGGRSPSDLPLVGLEQTQIERLEAEYRPLEDVLPL ::*********:************************	1559 1560
FrsE_Burk FrsE_Chro	SPLQKGLLFHGLYDPAGVDPYVERLIYALEGELDAGALKQAVHGLLLQHSNLRACFVDLG SPLQKGLLFHGLYDPAGVDPYIERVTYQLEGELDPAAMKRAAHGLLQRHGNLRACFVDLG ************************************	1619 1620
FrsE_Burk FrsE_Chro	RGQPVQVIVPLSALPWQEIDLSMLGEDEQQAVLEQMQEEDRHQRFDLSHAPLLSFVLIRL KGQPVQIISQLEALPWQDIDLSMLAGDERQAMLAQIREQVRSQRFDLGRAPLLSFTLIRL :*****: *.*****:***********************	1679 1680
FrsE_Burk FrsE_Chro	AVDRHRLIMSNHHILLDGWSGPLLWRELMKLYRSGGDLRAIPRVTPYRDYLDWLARRDLE AADRHQLIMNNHHILLDGWSEPLLWRELMTLYRNGGDLGAMPRVTPYRDYLVWLGRRDHE *.***:***.****************************	1739 1740
FrsE_Burk FrsE_Chro	PDRMAWRGYLRDLVTPTLLAPAAPTEYVIQETYERALPDALASGLTALAEQLGVTLNTVI ADRQAWRHYLAELETPTLLSPEPPAAYVDQETYSLALPPALAQALAARAAELGITLNTLV ** *** ** :* *****: *: ** ****. *** ****:* * :**:****:	1799 1800

FrsE_Burk FrsE_Chro	QGAWGRVLGCLTTSQDVMFGSNVAGRPAELNGIEDMIGLFINTIPLRVRWSRGESIGDVL QGAWGRVLACLTMSQDVVFGSNVAGRPAELGGIEDMVGLFINTVPLRVRWTRGESIADML ******** *** ************************	1859 1860
FrsE_Burk FrsE_Chro	KRIQSEQVDLLEHQYLDLVEIQSQASHRDLFDSVYAFENYPVHANDEDEASGPRVKVVSG VRLQAEQVGLLEHQYLDLAEIQELAGLGDLFDTVYAFENYPVFGDGGASAAGPRVTGVSG *:*:***.******************************	1919 1920
FrsE_Burk FrsE_Chro	GSTTHYPLGLIVNPQAGLSLLFSYRPDCYRRCDIERIAAYLQCVLEAFAVDSTQPIAQLD GSTTHYPLGLIVNPQSGLSFLFSYRPDLYLPEDIQRIAGYLQLTLQAFADDPAQSVAGLE ************************************	1979 1980
FrsE_Burk FrsE_Chro	LLPPEQANGIAQWNDTQHACPSADLAQLFERQVRLTPDASALTFGSQTLSYAVLNACANR LAPVEQAGWLRSWNDTGHAYPDGDLAQLFERQARLTPNAQALIFERQSLSYAALNARANQ * * ***. : .**** ** *****************	2039 2040
FrsE_Burk FrsE_Chro	LARWLLMHSIGPDDVVAVALPRSIDLVIALLAVVKSGAAYLPLDADYPRNRLDFMLTDAR LCRVLLAHGVGPDDVVAVALPRSIELVVALLAVVKSGAAYLPLDADYPRERLDFMLADAR *.* ** *.:*****************************	2099 2100
FrsE_Burk FrsE_Chro	PRALLTNGSMVEALSPAAGTQVLLLDAPEWTAARNHLDDRDMVVTERKQPLRPLDAAYVI PAVLLSNAAMAGILSPADGTRLLSLDEPGLLSAQDGADSGDLAAGERRRRLRPQDAAYVI * .**:*.:*. **** **::* ** : :*:: *. *: **:: *** ***	2159 2160
FrsE_Burk FrsE_Chro	YTSGSTGLPKGVVNTHHGIVNRLTWMQSAYRLDASDVVLQKTPFSFDVSVWEFFWPLLNG YTSGSTGKPKGVINTHQGIVNRLAWMQSAYRLDASDTVLQKTPFSFDVSVWEFFWPLLEG	2219 2220
FrsE_Burk FrsE_Chro	ARLVMAVPDGHRDPAYLAELIQRQGVTTLHFVPSMLDAFLNEPSSRQCLSLKRVLCSGEV ARLVLAVPDGHRDPAYLAALIQRERVTTVHFVPSMLEVFLREAGSRQCLSLRRVLCSGEA ****:********************************	2279 2280
FrsE_Burk FrsE_Chro	LSGNLAALQQHVLKRPLHNLYGPTEAAVDVTAHACDPNDTGSSIQIGKPIWNTRIHVLDE LSGELSALHRQVLGSPLHNLYGPTEAAVDVTAHACENGETGVSVPIGAPIWNTRIHVLDA ***:*:*******************************	2339 2340
FrsE_Burk FrsE_Chro	GLRPVPLGVAGELYIGGTGLARGYLNRAGLTAERFVANPYGEGERLYRSGDLARWNAEGE GLRPAPVGVAGELYIAGAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGE ****.*:	2399 2400
FrsE_Burk FrsE_Chro	LEYLGRLDQQLKIRGFRIEPGEIEAALCRHPLVSQAVVIAREDTPGHKQLVGYVVLDDAA LEYLGRADQQLKVRGFRIEPGEIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDAA	2459 2460
FrsE_Burk FrsE_Chro	ALQRDAEDETRQVQAWRQVYDTLYEAHCQQPFGENFGGWDSSYDGQPLPLEEMRAWRQAT ALQRDEDSESRQVEAWQQVYDTLYDAHQHQPFGENFGGWDSSYDGQPLPLAQMREWRSAT ***** :.*:***:**:**:******** :**********	2519 2520
FrsE_Burk FrsE_Chro	VERIRELQPRRVLEIGVGSGLLLAPLAPECEAYWGTDLSPTTIAVLERQLSEQTFGDRVR VERIRELRPRRLLEIGVGSGLLLAPLADACEAYWGTDLSPATIAVLEKQLETQSCRDKVR ************************************	2579 2580
FrsE_Burk FrsE_Chro	LFALGAHELLKLPEGNFDVIVINSVLQYFPNAAYLTEVIKQSLERLSPGGALYLGDVRNL LFALGAHELARLPAMRFDCIVINSVLQYFPNAAYLGEVIEQALARLEAGGALYLGDVRNL ********* :** :** :** ****************	2639 2640
FrsE_Burk FrsE_Chro	ALLDVFATAVDLCQVGTETDAASLRRRVEQRLLAEKELLVSPAFFSRLRETLPQIGAVDI ELLPSFAAAVELRQSEPEVDAAALQRRVSQRLLAEKELLLAPDFFSRLREQLPQIGAVDI	2699 2700

FrsE_Burk FrsE_Chro	RLKRGEAVNELNRYRYEAVLYKEPCEAVSLSKVETQTWSDVGNMSACRTRLMQYASMWRI RLKRGEAANELNRYRYEVVLRKGPCQARSLASAAAEPWSSLGSLSACRERLSVGGDALRV ******* *****************************	2759 2760
FrsE_Burk FrsE_Chro	EGIPNARLHGEVLVTRRLKSEEGLASWRRWLDESGGVEPEDLYRLGAELGYRVVLTWSNQ TGVPNALLHGEAAAARELKAGGSPSALLARLDENGGVRPEALRRLGAELGWRMLATWSRQ *:*** *****.**: .:: ***.*** * ********	2819 2820
FrsE_Burk FrsE_Chro	PDHFDAVFLPEQQRGALDAVYRTPPVLKPLSGYVNNPANFEQFAAIRRYVGEQLPDYMVP AGHFDAVFVRGEDGEALDGVYQPAGALQPLSGYVNNPANFEQYAAIRRYALEQLPEYMVP .******: :: ***.**: .*:****************	2879 2880
FrsE_Burk FrsE_Chro	AALVLLEGLPLTPNGKLDRRALPAPEFGTACYRAPGSKQEKVLAQLFAEVLGLPQVGVDD AAIVLLDALPLTPNGKLDRRALPAPEFGGTGYRAPESEREQLLARLFGEVLGLPQVGADD **:***:.*****************************	2939 2940
FrsE_Burk FrsE_Chro	SFFDLGGDSIISIQLVSRARKAGWQLTPRDIFQQPTIAALARLITPLGNEPATPASVAAL SFFDLGGDSIISIQLVSRARKAGWRLTPRDVFQQPTVAALAQAITPLDDEPAAPAPAATP *****************************	2999 3000
FrsE_Burk FrsE_Chro	RLDQDELDYLGSLYGS* 3015 KLDQDELNYLGSLYES* 3016 :******	

Abbildung A40: Alignment von FrsE aus dem bcfrs-BGC und dem cvfrs-BGC.

FrsF_Burk FrsF_Chro	MDRKKIETTYPLSPLQKGFLFHAGYDLAHADNYIAQLFLDFDGEVDAGLMRAAADTLIRR MNPKKIEAAYPLSPLQKGFLFHAGYDLQSADSYVAQLFLDFEGELDGAAMRSAADALMRR *: ****::****************************	60 60
FrsF_Burk FrsF_Chro	HANLRAGFVHPGGREPVQVILREVAACWKEHDWRTEPLVRAAELQSAWHAEDRQRRFDLS HANLRAGFVHPGGQEPVQVVLREVVAGWEERDWRGRNPQEAAEAQSAWQEADRERRFELS ************************************	120 120
FrsF_Burk FrsF_Chro	QPPLLRFGWLRLPEERTQLVLTYHHILLDGWSLPLVLEELLTLYRTQGDALSLPKTTPYS QPPLLRFGWLRLPAGRSQLVVTYHHILLDGWSLPLLLEELLALYRAGGGDGGLPEATPYS ************************************	180 180
FrsF_Burk FrsF_Chro	TYLGWLQGRDRASAQQVWGDYMSGLEGPTLLARRSASEDQTQSKSSLTLPIELTQAL AYLGWLQERDRAAACEAWGGYLEGLEGPTLLAQEGQADKGAAAAQARLSLELPAELTQAL :****** ****:* :.**.*:********:. ::. ::: :********	237 240
FrsF_Burk FrsF_Chro	NQQARQQGVTLNTLLQAAWGILLGKLSSSRDVVFGITVAGRPGELPGVERMIGLFINTVP TRQARQQGVTLNTLLQAAWGMLLGKLNLSRDVVFGITVAGRPGELPGVERMIGLFINTVP .:************************************	297 300
FrsF_Burk FrsF_Chro	LRLRWRAGETVAELLERLQREQARLLEYQYLDLAEIQRLAGQRQLFDTLFIFENYPFDAQ VRLRWSAGETVAGLVGRLQREQAGLLDHQHLDLVEIQRLAGQRQLFDTLFIFENYPFDSQ :**** ****** *: ******* *::*:****	357 360
FrsF_Burk FrsF_Chro	AIAPALGRTVLSRINGGEQHDSHYPVTLMAVPRETLTLYLSYQSGRFEHGTMENLLTRFR AMAPDLGQASLRRVSGGEQHESHYPLTLMAVPREMLSLYLSYDAQRFDKGVVQGLLTRFR *:** **:: * ::*:****:*****************	417 420
FrsF_Burk FrsF_Chro	TLLEAVVTDSSCPIVDIDLLTADERQQLLVEWNATDRPLPKVTLPEWFEAQVERTPTAMA LLLEAVAAEPSRPVSDIELLDEAERRQVLIEWNATERPSPQATLPELFEAQAARAPNAAA *****.:: * : *: **: **: **:****:********	477 480
FrsF_Burk FrsF_Chro	VLCDEVALDYRELNCRANQIAHWLISQGVGPEQKVALALPRRVELLVAMLGVLKAGAAYL LFCDGETLDYAELNRRANQLAHWLIGQGVGPEQRVALALPRRAELLVAVLGVLKSGAAYL ::** :*** *** ****:*****:******:********	537 540
FrsF_Burk FrsF_Chro	PLDPAYPAEHLMYMLVDAKPACLLGLGDSIAALPDSNVRAWELDDEAVKQALVAQPQENP PLDPAYPAERLAHMLADARPACLLGLGDGIEALPDSGVACWRLDDAALRQTLAAQPQSDP *********: :**:**:********************	597 600
FrsF_Burk FrsF_Chro	TPQPRRLRAEHPAYVIYTSGSTGKPKGVEISQRSATDFVSWAHEAFGPDTFGDVLATTSL TPAQRRLRPEHPAYVIYTSGSSGQPKGVVISQRSAADFVDWALASFGAETFADVLATTSL ** **** *****************************	657 660
FrsF_Burk FrsF_Chro	SFDVSVFELLAPLLCGGRVNLLRDLLVLGERSIERGSLISAVPSVFAQLLQHGDLRLDAS SFDVSVFELLTPLLSGGRVRLLRDLLELGERPISGGSLISAVPSVFAQLLQHGAVSLEAK ************************************	717 720
FrsF_Burk FrsF_Chro	TVVFAGEALPPELVEAVRRRWPGCRAANIYGPTETTVYAIGTWLKEVEGSRAPMIGRPLG TVVFAGEALPPELVAAVRQRWPECRVANIYGPTETTVYAIGGWLEAGERAPTIGRPLG ************************************	777 778
FrsF_Burk FrsF_Chro	NTPAYVLDEGLRPVPVGVVGELYIGGAGLARGYLNRAGLTAERFVANPYGEGERLYRSGD NTQTYVLDAGLRPAPVGVAGELYIAGAGLARGYLNRPGLTAERFVANPYGEGERLYRSGD ** :**** ****.*****	837 838
FrsF_Burk FrsF_Chro	LARWNAEGELEYLGRVDQQLKIRGFRIEPGEIEAALCRHPLVSQAVVIAREDTPGHKQLV LARWTEEGELEYLGRADQQLKVRGFRIEPGEIEAALCRHPSVAQAAVIAREDTPGHKQLV **** *********	897 898

FrsF_Burk FrsF_Chro	GYVVLDDAAADGQMLRRFLSRHLPEYMVPSAVVVRAALPLTPNGKLDRKALPAPTFVSAD GYVVLNAAAADAQALRRFLADQLPEHMVPAAMIGLDVLPLTPSGKLDRKALPAPDFAGRS *****: ****** ******: :***:***:********	957 958
FrsF_Burk FrsF_Chro	GRAPRDEQEALLCDLFAEVLNLTQVTIDDNFFDLGGNSLLATRLIGRIRATQKRELSIRT GRAARDAQEDVLCGLFAETLGLPQVSIDDSFFDLGGDSLLATRLISRIRVTQRRELSIRT *** ** ** :**:****	1017 1018
FrsF_Burk FrsF_Chro	LFEHPTVAGLAKQWSTDDAVRPPLQRQIRPETLPQSFAQQRLWFINQLEGPSPTYNIPVA LFECPTVAALARQLSGDGELRPPLRRLPRPQTLPLSYAQQRLWFIHHLEGPSPTYNIPVA *** ****.**: * * : : : : ***: * : : : :	1077 1078
FrsF_Burk FrsF_Chro	LRVSGPLDIAALDKALRDIMLRHESLRTVYLRSADDTPVQSILPVEHLNDNRLIVRALLD LRLSGALETDVLEAALLDVVRRHESLRTVYVQSADDTPLQCVLSVEQLDDCRLIVHEPLG **:** *: .*: ** *:: **********::******:********	1137 1138
FrsF_Burk FrsF_Chro	EEQLPPALCEACRYCFDLSREPSLRAELFPLRSGQQVLLLLHHIGADGGSLPVLANDLG ETRLGAVLSEASRHCFDLSCELPLRAELFPLDSGQQVLLLLHHIAGDGGSLPVLADDLA * :* .*.**.****** * *******************	1197 1198
FrsF_Burk FrsF_Chro	FAYEARRQGAEPTWQPLPVQYADYTLWQRQLLGDEKDPDSLICRQFAYWEEVLAGLPDLL AAYEARCQGREPAWRPLPVQYADYTLWQRQLLGNERDPDSLIGRQFAYWKQALAGLPDQL ***** ** **:::::::::::::::::::::::::::	1257 1258
FrsF_Burk FrsF_Chro	RLPMDRPRPVEASYQGDYCEFTLDAGTLQQLKRMARRQGVTLSMTLQAGLAALLNRMGAG CLPTDRPRPAMASYQGDYCEFRLDAETLKQLKTLARRHGATLSMALQAALAALLSRLGAG ** *****. ********** *** *************	1317 1318
FrsF_Burk FrsF_Chro	DDIPLGSPIAGRTDDALINLVGFFVNTWVLRVDTSGRPDFATLLGRVRSRALAAYAHQDV DDIPLGCPIAGRTDDALANLVGFFVNTWVLRVDTSGRPDFATLLGRVRQQALAAYSHQDV ******	1377 1378
FrsF_Burk FrsF_Chro	PFDRLVELLNPVRSISHHPLFQVNLALQNNVLPKFRFFGQAVALETVSSRTAKFDLFFNL PFERLVELLNPARSASHHPLFQVNLALQNNIFPLFRFSGREVSLETVGNRTAKFDLFFNL **:**********************************	1437 1438
FrsF_Burk FrsF_Chro	CEMPADGSQPCYLHGYVEYASDLFNRDTVERLLTRFRTLLEAVVTDSSCPIADIDLLTAD FEMPSDEPQTQYLQGYVEYATELFDRATVERLLTRFRLLLEAVAAEPSRPMSDIELLDEA ***:* * **:******::**:* **************	1497 1498
FrsF_Burk FrsF_Chro	ERQQLLVEWNATDRPLPKVTLPEWFEAQVERTPTAMAVLCDEVALDYRELNCRANQIAHW ERRQVLIEWNATERPSPQATLPELFEAQAARAPNAAALFCDGETLDYAELNRRANQLAHW **:*:*:******:** *:.**** *:.*** *::** *::*** :****	1557 1558
FrsF_Burk FrsF_Chro	LISQGVGPEQKVALALPRRVELLVAMLGVLKAGAAYLPLDPAYPAEHLMYMLVDAKPACL LIGQGVGPEQRVALALPRRAELLVAVLGVLKSGAAYLPLDPAYPAERLAHMLADARPACL **.**********************************	1617 1618
FrsF_Burk FrsF_Chro	LGLGDSIAALPDSNVRAWELDDEAVKQALVAQPQENPTPQPRRLRAEHPAYVIYTSGSTG LGLGDGIEALPDSGVACWRLDDAALRQTLAAQPQSDPTPAQRRLRPEHPAYVIYTSGSSG *****.* ******.* .*.*** *::*:**********	1677 1678
FrsF_Burk FrsF_Chro	KPKGVEISQRSATDFVSWAHEAFGPDTFGDVLATTSLSFDVSVFELLAPLLCGGRVNLLR QPKGVVISQRSAADFVDWALASFGAETFADVLATTSLSFDVSVFELLTPLLSGGRVRLLR :**** ******:*** :*** :** :*** :***	1737 1738
FrsF_Burk FrsF_Chro	DLLVLGERSIERGSLISAVPSVFAQLLQHGDLRLDASTVVFAGEALPPELVEAVRRRWPG DLLELGERPISGGSLISAVPSVFAQLLQHGAVSLEAKTVVFAGEALPPELVAAVRQRWPE *** **** *. **************************	1797 1798

FrsF_Burk FrsF_Chro	CRVANIYGPTETTVYAIGTWLKEAEGSRAPMIGRPLDNTRAYVLDEGLRPVPVGVAGELY CRVANIYGPTETTVYAIGGWLEAGERAPTIGRPLGNTQTYVLDAGLRPAPVGVAGELY ************************************	1857 1856
FrsF_Burk FrsF_Chro	IGGTGLARGYLNRAGLTAERFVANPYGEGERLYRSGDLARWNAEGELEYLGRVDQQLKIR IAGAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEYLGRADQQLKVR	1917 1916
FrsF_Burk FrsF_Chro	GFRIEPGEIEAALCRHPLVSQAVVIAREDTPGHKQLVGYVVLDDAAALQRDAEDETRQVQ GFRIEPGEIEAALCRHPSVAQAAVIAREDTPGHKQLVGYVVLDDAAALQRDEDSESRQVE ************************************	1977 1976
FrsF_Burk FrsF_Chro	AWRQVYDTLYEAHCQQPFGENFGGWDSSYDGQPLPLEEMRAWRQATVERIRELQPRRVLE AWQQVYDTLYDAHQHQPFGENFGGWDSSYDGQPLPLAQMREWRSATVERIRELRPRRLLE **:*******:** :***********************	2037 2036
FrsF_Burk FrsF_Chro	IGVGSGLLLAPLAPECEAYWGTDLSPTTIAVLERQLSEQTFGDRVRLFALGAHELLKLPE IGVGSGLLLAPLADACEAYWGTDLSPATIAVLEKQLETQSCRDKVRLFALGAHELARLPA ************************************	2097 2096
FrsF_Burk FrsF_Chro	GNFDVIVINSVLQYFPNAAYLTEVIKQSLERLSPGGALYLGDVRNLALLDVFATAVDLCQ MRFDCIVINSVLQYFPNAAYLGEVIEQALARLEAGGALYLGDVRNLELLPSFAAAVELRQ .** **********************************	2157 2156
FrsF_Burk FrsF_Chro	VGTETDAASLRRRVEQRLLAEKELLVSPAFFSRLRETLPQIGAVDIRLKRGEAVNELNRY SEPEVDAAALQRRVSQRLLAEKELLLAPDFFSRLREQLPQIGAVDIRLKRGEAANELNRY *.***:********************************	2217 2216
FrsF_Burk FrsF_Chro	RYEAVLYKEPCEAVSLSKVETQTWSDVGNMSACRTRLMQYASMWRIEGIPNARLHGEVLV RYEVVLRKGPCQARSLASAAAEPWSSLGSLSACRERLSVGGDALRVTGVPNALLHGEAAA ***.** * **:* **:. :: **.:**** ** *: *:**** ***	2277 2276
FrsF_Burk FrsF_Chro	TRRLKSEEGLASWRRWLDESGGVEPEDLYRLGAELGYRVVLTWSNQPDHFDAVFLPEQQR ARELKAGGSPSALLARLDENGGVRPEALRRLGAELGWRMLATWSRQAGHFDAVFVRGEDG :*.**: :**.*** ***.*** ********	2337 2336
FrsF_Burk FrsF_Chro	GALDAVYRTPPVLKPLSGYVNNPANFEQFAAIRRYVGEQLPDYMVPAALVLLEGLPLTPN EALDGVYQPAGALQPLSGYVNNPANFEQYAAIRRYALEQLPEYMVPAAIVLLDALPLTPN ***.**: .*:****************************	2397 2396
FrsF_Burk FrsF_Chro	GKLDRRALPAPEFGTACYRAPGSKQEKVLAQLFAEVLGLPQVGVDDSFFDLGGDSIISIQ GKLDRRALPAPEFGGTGYRAPESEREQLLARLFGEVLGLPQVGADDSFFDLGGDSIISIQ *********************************	2457 2456
FrsF_Burk FrsF_Chro	LVSRARKAGWQLTPRDIFQQPTIAALARLITPLGNELATPASVAALRLDQKELDYLGSLY LVSRARKAGWRLTPRDVFQQPTVAALAQAITPLDAAAAPPSSAAQVALNQKELNYLGALY ************************************	2517 2516
FrsF_Burk FrsF_Chro	GS* 2519 ES* 2518	

Abbildung A41: Alignment von Frs
F aus dem $bcfrs\operatorname{-}BGC$ und dem $cvfrs\operatorname{-}BGC.$

FrsG_Burk FrsG_Chro	MDRKKIETTYPLSPLQKGFLFHAGYDLAHADNYIAQLFLDFDGEVDAGLMRAAADTLIRR MNPKKIEAAYPLSPLQKGFLFHAGYDLQSADSYVAQLFLDFEGELDGAAMRSAADALMRR *: ****::****************************	60 60
FrsG_Burk FrsG_Chro	HANLRAGFVHPGGREPVQVILREVAACWKEHDWRTEPLVRAAELQSAWHAEDRQRRFDLS HANLRAGFVHPGGQEPVQVVLREVVAGWEERDWRGRNPQEAAEAQSAWQEADRERRFELS ************************************	120 120
FrsG_Burk FrsG_Chro	QPPLLRFGWLRLPEERTQLVLTYHHILLDGWSLPLVLEELLTLYRTQGDALSLPKTTPYS QPPLLRFGWLRLPAGRSQLVVTYHHILLDGWSLPLLLEELLALYRAGGGDGGLPEATPYS ************************************	180 180
FrsG_Burk FrsG_Chro	TYLGWLQGRDRASAQQAWGDYLSGLEGPTLLARRSASEDQTQSKSSLTLPIELTQALNQQ AYLGWLQERDRAAACEAWGGYLEGLEGPTLVSTGHPQDHAEQKQRAWRLPAELTQALTRQ :****** ****: ****:* :***.*******: .: *: *: ** ******:*	240 240
FrsG_Burk FrsG_Chro	ARQQGVTLNTLLQAAWGILLGKLSSSRDVVFGITVAGRPGELPGVERMIGLFINTVPLRL ARQQGVTLNTLLQAAWGMLLGKLNLSRDVVFGITVAGRPGELPGVERMIGLFINTVPVRL ************************************	300 300
FrsG_Burk FrsG_Chro	RWRAGETVVELLERLQREQARLLEYQYLDLAEIQRLAGQRQLFDTLCVFENYPVNAKAIV RWSAGETVAGLVGRLQREQAGLLDHQHLDLVEIQRLAGQRQLFDTICVFENYPVDAAAME ** *****. *: ******* **::*:***.*********	360 360
FrsG_Burk FrsG_Chro	QQDEGFGLRHISGGDRYMTHYPLSVMIEPGERMTLNLIYRPASFDAAKRLGAQLIRLL QPSGGLQLRGVSGGDRYMTHYPLSLMIEPGPELKLNLIYQPERFEPEAIERLSAQLTRLL * * * ** ***************************	418 420
FrsG_Burk FrsG_Chro	EAIATVPQSPIDTLPWLDKSERRQLLEEWSGKALDSGEITLAELFEAQATRQPNAVALEG GVIAAEPSQPVSDIELLDEAERRQLLVDWNRTGPDHGQATFPQLFETQAALTPHAVALES .**: **:: **::****** :* * *: *: :***:**: *:*****	478 480
FrsG_Burk FrsG_Chro	PDGCVSYGELDARANRLASHLQSLGVGPDVVVGVCLERSIDMVVAILGIAKAGAAYLPLA PDARLSYAELDARANRLARHLQSLGVGADVLVGICLERSIDMVVAVLGALKSGAAYLPLS ** :** :** :**************************	538 540
FrsG_Burk FrsG_Chro	PDYPTERLAYMLTDSMAPVLLTESKQVERLPSYWGHLVELDRLDLSWQASSAPARALRPD PEYPTERLAYMLGDSMAPVLLTDSAQVERLPSYWGRVVELDRLDLDALPDSAPERALRAE *:***********************************	598 600
FrsG_Burk FrsG_Chro	HLAYVIYTSGSTGQPKGVAVSHAGLAGLVKSQEERFAVAGPVRVLQFASLSFDAAVMEIL HLAYVIYTSGSTGQPKGVAVSHAGLAGLAGSQTERFALQGPTRVLQFASLSFDAAVMEML	658 660
FrsG_Burk FrsG_Chro	MAFCSGGRLVLPAAGPLLGEQLEKTLNRYAISHALIAPSALETVEAEVVPGLSTLVVGGE MAFCSGGRLVLPAAGPLLGEQLLDTLNRHEISHALISPSALSTADAALAPVLRTLVVGGE **********************************	718 720
FrsG_Burk FrsG_Chro	TCSGATAASWSQGRRMVNAYGPTEVTVCVTMSKPLSGSDKPKLGRPTLGAKLYVLDSTLQ ACPGATVAAWSAGRRMVNAYGPTEATACVTMSEPLSGDGAPKLGRPTHNARLYVLDGALQ :* ***.** *****************************	778 780
FrsG_Burk FrsG_Chro	PVPVGVAGELYIAGRGLARGYYQRPGLTAERFVANPYGKGERLYRSGDLARWSGEGELEY LAPVGVAGELYIAGAGLARGYLNRPGLTAERFVANPYGEGERLYRSGDLARWTEEGELEY	838 840
FrsG_Burk FrsG_Chro	LGRVDQQLKIRGFRIEPGEIETVLCQHPQVREAVVVSR-TNGRDTQLVGYVTVRGEVDGQ LGRSDQQVKVRGFRIEPGEIEAVLNRHPQVSQSVVVARQSQGGDSQLVAYVAAVGGVEGS *** ***:*:*:**************************	897 900

FrsG_Burk FrsG_Chro	ALRRQVANWLPEYMVPAVVLVLEELPRLPNGKLNHQALPAPEYTGKRYQRPRNAQEEILC ELRRLAAGQLPEHMVPAAVVVLESLPQLPNGKLDRKSLPAPEFGGSHYQRPRNAQEEMLC *** .*. ***:****.*:********************	957 960
FrsG_Burk FrsG_Chro	GLFAEVLEVDSVGIDDSFFDLGGHSLLATRLISRIRATMNIEPSIRDLFDMPTSAELALR GLFAEVLEVGSVGIDDSFFDLGGHSLLATRLISRIRAALNVELSIRELFDMPTCAELAPR ************************************	1017 1020
FrsG_Burk FrsG_Chro	LSTKPTAVRQPLLPQERPKRLPLSHAQQRLWFLHRFEGPSSTYNIPLAFKLQGSLDVEAL LSADPAAVRPPLQRQARPKRLPLSYAQQRLWFLYRFEGPSSTYNIPLALRLKGDLHPEAL **:.*:*** ** * ************************	1077 1080
FrsG_Burk FrsG_Chro	RRALEDVVVRHESLRTIFVESEGIPEQKILAPDEACLALQLIDTNEETGLDMALREASDY QQAVADIVERHESLRTVFVDNDGVPEQRIQSAEQALPSLPRVEVADEAELQRALREAAEH ::*: *:* *******:**::*:*:*:*:*:*:*:*:*:	1137 1140
FrsG_Burk FrsG_Chro	HFDLSREIPLRCTLFRQESQVWTLLLLIHHIAGDGGSLLPLGRDLATAYAARRKGLDPAW RFDLSSETPLRCTLFRLGEQEWVLLLLIHHIAGDGGSLLPLGRELDAAYAARCQGRAPDW :**** * ******** * * *****************	1197 1200
FrsG_Burk FrsG_Chro	APLPVQYADYTLWQRQLLGSEGDPDSLISTQFAYWKQNLAGAQEQLTLPTDHPRPAVASY QPLAVQYADYTLWQRQLLGEENDPESLIAAQFAYWKRTLAGAPEQLTLPTDRPRPAVASY ** **********************************	1257 1260
FrsG_Burk FrsG_Chro	RGHYLPFQLEAELHSDLRRLARTNDTTLSMLLQAALAALFTRLGVGNDIPLGCGIAGRTD RGRYLPFELDAGLHAELRRLARDHDATLSMLLQAGLAALFTRLGAGEDIPLGCGIAGRTD **:****:*: **::****** :*:*******	1317 1320
FrsG_Burk FrsG_Chro	EALGDLVGFFVNTWILRADTSGDPDFVTLLGRVREQALAAYAHQDAPFERLVELINPVRS DALNDMVGFFVNSWVLRADTSGNPDFITLLGRVREQALAAYAHQDAPFERLVELINPSRS :**.*:******:*:***********************	1377 1380
FrsG_Burk FrsG_Chro	SAHHPLFQVNLTLQNNALPEFRLDGMQVSLHRIVSDIAKFDLFFNLYETFDQDGRALGLQ SAHHPLFQVNLTLQNNALPDFRLDGLEVSLSPIEADTAKFDLFFNLFEIFGLDGQAGGLQ ***********************************	1437 1440
FrsG_Burk FrsG_Chro	GAVEYACDLYERATVQRFIYHFVRLLREVVAAPTAAISALDLSDEAVASSPGALDLSASI GGVEYATDLYEQATVEQFMRHFQRLLRQVAAVPTAPIAALDLSEPQSAAEADCAARP *.**** ****:***::*: ** ****:*.* *:****: *:: *:	1497 1497
FrsG_Burk FrsG_Chro	TVDDTIIGRFAEQVRRAPDATVLTYRGETLTCAELNARANRLARCLIADGAGPEELIAVA AASDSIVQRFEEQAGRAPQASALSFQGQTLSYAELNARANRLAHALIARGAGPEDLIAAA :*:*: ** **. ***:*::*:*:*:*:**********	1557 1557
FrsG_Burk FrsG_Chro	LPRSIDMVVSLLAILKTGAAYLPMDPAYPLERLSFMLTDAKPRLLLANMETIRQVAEVSR LPRSLDLVVSLLAILKTGAAYLPLDPDYPAERLGFMLADAKPRLLLGHGEALRHLPVDAS ****:*:******************************	1617 1617
FrsG_Burk FrsG_Chro	VSTLALDCPELAQTLTRTDDSNPLVPRPLRSDNAAYLIYTSGSTGAPKGVLIPHSNVLRL TQAIALDDAELGRELALAGDGNPERARPLGADHAAYVIYTSGSTGQPKGVLVPHRNVLRL ::*** **.: *: :.*.** *** :*:**********	1677 1677
FrsG_Burk FrsG_Chro	LDKTAHWFDFGPKDVWTLFHSYAFDFSVWEIWGALLTSGRLVVVPQTVSLAPDEFLTLLE LDSTERWFGFGAGDVWTLFHSYAFDFSVWEIWGALLSGGRLVVVPRAAVQAPDEFLALLE **.* :**.** ***************************	1737 1737
FrsG_Burk FrsG_Chro	YEKVTILNQTPSAFYALMQAERHHGSNGGASLSLRRIIFGGEALDLSALQPWYQRHGDET REKVSVLNQTPSAFYALMQAEAARP-ETASELALRTVVFGGEALDLSALRSWYQRHGDVG ***::********************************	1797 1796

FrsG_Burk FrsG_Chro	TQLVNMYGITETTVHVSYQPLDSGMCGSRCNSLIGIGIPDLHLFLLDACLQPVPVGGIGE PKLANMYGITETTVHASYQALDRRLCEEGGNSLIGEAIPDLRLHLLDRWLQPVPAGGVGE :* ***********************************	1857 1856
FrsG_Burk FrsG_Chro	LYVGGAGLARGYHNRASLTAERFVANPFASSKRMYRTGDLARRNVNDIFEYHGRADQQVK LYIGGAGLARGYLNRPGLSAERFIANPFAAGERMYRSGDLARRNAAGALEYQGRADQQVK **:**********************************	1917 1916
FrsG_Burk FrsG_Chro	VRGFRIELGEIETVLRQHPGVEDARVVVQTLHDNDCRLVAYLQPSERTAAPLRRWLKVRR VRGFRIEPGEIETALRGHPGVEDARVVVKAMDGNDQRLIAYLLPSERAAAPLRRWLRAKS ******* *****.** *********************	1977 1976
FrsG_Burk FrsG_Chro	DAEAQGARAFELPNGMPIFHHNTMETEFLYEEIFEDLVYFKHGIRLDDGACVFDVGANIG SVAAQNAREIELPNGLPVFHHNAAETEFLYEEIFEDRIYLKHGIRLDNDACVFDVGANIG **.** :*****:*:***** :**************	2037 2036
FrsG_Burk FrsG_Chro	LFMLFVGQHCRNATIFAFEPIPPVFRTLTLNAEVHGDKVRLFDCGLSDAVRQERFTFYPN LFTLFVGQHCGNATVFAFEPIPPVFGTLSLNAAVHGGKVRLFDCGLSDAARQETFTFYPN ** ******* *** **********************	2097 2096
FrsG_Burk FrsG_Chro	DTLISTSRNSPEAIRGMVKSFLINQHGNHSGDDAEVGELLDERLASQDYMCVLRTLSDVI DTLISSSRNSAEATRRMVKSFLINQHGDSDGEAVDELLEERLSSQQYVCGLRSLSDVV *****:**** ** * **********: .*: *.********	2157 2154
FrsG_Burk FrsG_Chro	TEHNVDRIDLLKIDVENAEYNVLQGIVESDWPKIRQLVMEVHDVDGRLRRIVDLLLHRGY AEHGVERIDLLKIDVENAEYDVLRGISDADWPKIRQLVMEVHDVDGRLACIVELLRERGY :** **********************************	2217 2214
FrsG_Burk FrsG_Chro	RVIHEQDRLLRDTAIHCLYAVHVSRDAEMRPGHHAENTSLFWNCRADLLRDVRANLRKRL RVIHEQDRLLQNTAIHCLYAVHASCGSASADAVPKAEPAAVWRSRSALLRDVQAELRSQL ************************************	2277 2274
FrsG_Burk FrsG_Chro	PDYMQPNHMVLLDTFPLTPNGKLDRRALPAPEQAAMRVRDIEPAEIEAALCRHPLVSQAV PDYMQPNHLVLLDAFPLTANGKLDRRALPTPEQAALRTRDVDPAEIEAALCRHPSVAQAA ********:**************************	2337 2334
FrsG_Burk FrsG_Chro	VIAREDAPGHKQLVGYVVLDDAAALQRDTEDETRQVQAWRQVYDTLYEAHCQQPFGENFG VIAREDTPGHKQLVGYVVLDDAAALQRDEDSESRQVEAWQQVYDTLYDAHQHQPFGENFG ******:******************************	2397 2394
FrsG_Burk FrsG_Chro	GWNSSYDGQPLPLEEMRAWRQATVERIRELQPRRVLEIGVGSGLLLAPLAPECEAYWGTD GWDSSYDGQPLPLAQMREWRSATVERIRELRPRRLLEIGVGSGLLLAPLADACEAYWGTD **:**********************************	2457 2454
FrsG_Burk FrsG_Chro	LSPTTIAVLERQLSEQTFGDRVRLFALGAHELSKLPEGNFDVIVINSVLQYFPNAAYLTE LSPATIAVLEKQLETQSCRDKVRLFALGAHELARLPAMRFDCIVINSVLQYFPNAAYLGE ***:******:**: *: *:******************	2517 2514
FrsG_Burk FrsG_Chro	VIKQSLERLSPGGALYLGDVRNLALLDVFATAVDLCQVGTETDAASLRRRVEQRLLAEKE VIEQALARLEAGGALYLGDVRNLELLPSFAAAVELRQSEPEVDAAALQRRVSQRLLAEKE **:*: ** ** ************ ** **:**** * **:******	2577 2574
FrsG_Burk FrsG_Chro	LLVSPAFFSRLRETLPQIGAVDIRLKRGEAVNELSRYRYEAVLYKEPCEAVSLSEVETQT LLLAPDFFSRLREQLPQIGAVDIRLKRGEAANELNRYRYEVVLRKGPCQARSLASAAAEP **::* ******* ************************	2637 2634
FrsG_Burk FrsG_Chro	WSDVGNMSACRTRLMQYAPMWRIEGIPNARLHGEVLVTRRLKSEDGLASWRRWLDESGGV WSSLGSLSACRERLSVGGDALRVTGVPNALLHGEAAAARELKAGGSPSALLARLDENGGV **.:*.:**** ** . *: *:*** **** . :*.***	2697 2694

FrsG_Burk FrsG_Chro	EPEDLYRLGAELGYRVVLTWSNQPDHFDAVFLPEQQRGALDAVYRTPPVLKPLSGYVNNP RPEALRRLGAELGWRMLATWSRQAGHFDAVFVRGEDGEALDGVYQPAGALQPLSGYVNNP .** * *******: *** ****** : : ******* : : ******	2757 2754
FrsG_Burk FrsG_Chro	ANFEQFAAIRRYVGEQLPDYMVPAALVLLEGLPLTPNGKLDRRALPAPEFGTACYRAPGS ANFEQYAAIRRYALEQLPEYMVPAAIVLLDALPLTPNGKLDRRALPAPEFGGTGYRAPES *****:****** * ***********************	2817 2814
FrsG_Burk FrsG_Chro	EQEKVLAQLFAEVLGLPQVGVNDSFFDLGGHSLLATRLISRVRSLFHIDLPIRTLFESPT EREQLLARLFGEVLGLPQVGLHDSFFDLGGHSLLATRLISRIRALFQVELPIRALFESPT *:*::**:**:**:**	2877 2874
FrsG_Burk FrsG_Chro	VARLARYIDDGAIDLDSFEVLLPIKPDGKRAPLFCIHPGGCLSWTYVGLVRYLDAEQPIY VAGLARYIDDGEIDDDSFNVLLPIKPDGKRPPLFCIHPGGCLSWTYVSLVRYLDAEQPIY ** ******** ** **********************	2937 2934
FrsG_Burk FrsG_Chro	GLQARGIDGKSQVATSIEGMASDYVEQIRRIQPKGPYYLLGWSLGGNIAQEMAVLLERQN GLQARGIDGQSEPASSIEAMAADYVAQIRGIQPHGPYYLLGWSLGGNLAQAMASQLESMD ************************************	2997 2994
FrsG_Burk FrsG_Chro	HDVGLLILLDSGPSPMHKNDEMIEYPLFTKEFRKTFKFHVSESKMRAIFEVSKHHIELIK QEVGLLFLLDSGPSPMHKDDEMIEYPLFTKEFKNTFKFHVSETKMQAIFEVTKRHVELIR ::****::*****************************	3057 3054
FrsG_Burk FrsG_Chro	QSTTPVSRGRALLFRATVPYDENTPLLSPHAWNDYVKGEIEIRDIHCQHAHMNHVEFMAQ QSTTPVSQGPALLFRATVPYDESTPLLPPHAWNEYVKGDIEVHEVHCQHAQMNRIEFMEQ *********	3117 3114
FrsG_Burk FrsG_Chro	MGEVIETKLAELHARATRY* 3136 MGPVIERKLATLHDQSTRRNS* 3135 ** *** *** ** ::**	

Abbildung A42: Alignment von FrsG aus dem bcfrs-BGC und dem cvfrs-BGC.

FrsH_Burk FrsH_Chro	MMQENDEVYLRSHTKIEPLIMRWYAWSHLISPAQHAMNMAFRHVPMLKSFLAAPTVHEAV -MTVSDNVFLRSHTKIEPLIMRWYAWAHLVSPAQHALNIAFRHLPMLKSFVASPAVHEAA * .*:*:********************************	60 59
FrsH_Burk FrsH_Chro	SNNPEMLGGPYLELKKSDVAAVKALWQQTQQRGEKMIQFAEALLKLDRRLQKSEAGFSLD SSNPEMLGGPFLELKKSDAAAVKALWQQTQQQAGRQIAFAEALLELDRRLQQSETGLSLD *.***********************************	120 119
FrsH_Burk FrsH_Chro	HVYAELPDALQGLVEVSYDLHNHPSLRLIEELLYLEDWMNDDGQEIAFNLSKEEERAFFI HIYAELPEPLQGLVEVSYDLHNHPSLRLIEELLYLEDWVDGAGQEIAFSLDKEEERAFFM *:*****: *****************************	180 179
FrsH_Burk FrsH_Chro	NTPRLDMPGRMVVPLPFADKRFDLLATSRLSPVSLGSLADALEIPATQRPAFRDYFTTTP NTPRVDAPGRMVVPLPFADARFDLLSASRLSSVSFSQLADALEIPEDQRPAFREYFTTSA ****: ********************************	240 239
FrsH_Burk FrsH_Chro	PQRNKPTYRGDGVRVRYFGHACVLVQSAEVSVLVDPFLNWDHNTEEKRLTFYDLPDRIDY PQRNEPEYEGDGVRVRYFGHACVLVQTAEVSVLVDPFLTWDHQPEQGRLTFYDLPDHIDY ****: *.*******************************	300 299
FrsH_Burk FrsH_Chro	VFITHNHPDHFSCEALLQLRNRIGHILVPRNNGNNFADPSMKLTLKRLGFDNVMVMDEMA VFLTHNHQDHFSCEALLQLRGRIGHILVPRNNGNNFADPSMKLTLKRLGFDNVIVMDEMA **:****	360 359
FrsH_Burk FrsH_Chro	SITVPDGRLVSLPSYGEHSDLSITSKHGLFLSLKGRTFMFLADSDAKDRVLYRRIVRQVG DITLPDGRLVSLPSYGEHSDLSITSKHGLYLSLKGRSFMFLADSDAKDRVLYRRIIKQVG .**:**********************************	420 419
FrsH_Burk FrsH_Chro	RVDNLFIGMECDGAPLSWLYGPYLSNPIGRKEDESRRLSGSDCERAWRIVEECGCSRALV KVDNLFIGMECDGAPLTWLYGPYLSNPIGRREDESRRLSGSDCERAWRIVEECGCSQALV :************************************	480 479
FrsH_Burk FrsH_Chro	YAMGQESWFRFVVGLEYTPDKKQIVESDVFVDRCRQAGLDGERLHGCCTVLL* YAMGQESWFRFVVGLEYTPDKKQIVESDKFVDRCRQAGMAAQRLHGCQTMLL* **********************************	

Abbildung A43: Alignment von Frs
H aus dem $bcfrs\operatorname{-}BGC$ und dem $cvfrs\operatorname{-}BGC.$

```
#
#
#
  Percent Identity Matrix - created by Clustal2.1
#
#
     1: FrsA_Burk
                    100.00
                             71.47
                     71.47
     2: FrsA_Chro
                           100.00
#
#
#
  Percent Identity Matrix - created by Clustal2.1
#
#
                    100.00
     1: FrsB_Burk
                             75.00
     2: FrsB_Chro
                    75.00 100.00
#
#
#
  Percent Identity Matrix - created by Clustal2.1
#
#
     1: FrsC_Burk
                    100.00
                             72.26
     2: FrsC_Chro
                    72.26 100.00
#
#
#
   Percent Identity Matrix - created by Clustal2.1
#
#
     1: FrsD_Burk
                    100.00
                             69.66
     2: FrsD-Chro
                     69.66 100.00
#
#
   Percent Identity Matrix - created by Clustal2.1
#
#
#
     1: FrsE_Burk
                    100.00
                             71.04
     2: FrsE_Chro
                     71.04 100.00
```

```
#
#
#
  Percent Identity Matrix - created by Clustal2.1
#
#
                    100.00
     1: FrsF_Burk
                             75.11
                     75.11 100.00
     2: FrsF_Chro
#
#
#
  Percent Identity Matrix - created by Clustal2.1
#
#
     1: FrsG_Burk
                    100.00
                            72.78
     2: FrsG_Chro
                    72.78 100.00
#
#
#
  Percent Identity Matrix - created by Clustal2.1
#
#
     1: FrsH_Burk
                    100.00
                             84.56
     2: FrsH_Chro
                     84.56 100.00
```

Abbildung A44: Percent Identity Matrizes der Alignments von FrsA-FrsH aus dem *bcfrs*-BGC und dem *cvfrs*-BGC.