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ABSTRACT 

The design of relevant adaptation strategies for water users in irrigation schemes in 
drylands of Sub-Saharan Africa requires up-to-date information about the current 
performance of these schemes in view of rapid changes in climate and land use, 
population growth, and competing water demands. The entire system of two (a small- 
and a medium-scale) irrigation schemes shared by multiple users in the Upper East 
region of Ghana were examined, including the water reservoir, water conveyance and 
distribution network, cropping fields, and management entity. First, multi-level 
performance indicators with relevance to water delivery, water utilization, and 
agricultural production were adapted and applied based on measurements of 
meteorological, soil and groundwater parameters, irrigation water inputs, crop 
management and yields for two rainy and dry seasons during 2014–2016 in prevalent 
cropping systems. For field-level evaluation, the FAO AquaCrop model was applied to 
develop an improved year-round irrigation schedule for dry-season cultivation of 
tomato and to assess a possibility for supplemental irrigation of maize in the rainy 
season under “wet” and “dry” climate scenarios. Finally, a scenario-based analysis of 
irrigation performance was conducted at scheme scale for the period of 2015–2030 
using the Water Evaluation and Planning System (WEAP), a decision support modeling 
tool. These modeling scenarios considered the observed rainfall variability, introduction 
of supplemental irrigation in the rainy season, irrigable area expansion, and system 
efficiency improvement. 

Technical factors, such as underutilized reservoir storage capacity and 
deteriorated conditions of water delivery infrastructure strongly undermined the 
irrigation system performance. In particular, the medium-scale irrigation scheme 
utilized less than 40% of total storage, whereas the small-scale scheme utilized about 
70% of the storage. The examination of field-level water management practices suggests 
that an application efficiency of 58–68% is achievable in both schemes by improving the 
irrigation scheduling of the major crops. Overall system efficiency can be increased from 
50% to 68% by reducing water conveyance network losses and by eliminating over-
irrigation of fields. The AquaCrop simulations show that improved irrigation schedule 
for dry-season tomato cultivation would result in a water saving of 130–1,325 mm 
compared to traditional irrigation practices, accompanied by approximately 4–14% 
increase in tomato yield. Supplemental irrigation of maize would require 107–126 mm 
of water in periods of low rainfall and frequent dry spells, and 88–105 mm in periods of 
high rainfall and rare dry spells. Therefore, year-round irrigation may be feasible, using 
water saved in dry-season tomato cultivation for supplemental irrigation of maize in the 
rainy season. However, as predicted by the WEAP analysis, supplemental irrigation in 
the small-scale scheme could be possible only if the rise in water demand is 
counterbalanced by about 10% increase in the system efficiency and by setting limits on 
the cultivation of the water-intensive tomato crop in the dry season. The unavailability 
of long-term historical data at present prevents the calibration and validation of the 
WEAP model in Ghana but the conducted scenario analysis sets the framework for 
further evaluation of the potential water scarcity adaptation options. Overall, the 
integrated, whole-system approach is essential in the assessment of suitable options for 
improving reservoir operations and adapting to water scarcity in Sub-Saharan Africa. 



Bewertung der Leistung von Stausee-gespeisten Bewässerungssystemen 
in der Upper East Region, Ghana 
 

KURZFASSUNG 

Vor dem Hintergrund des fortschreitenden Klimawandels, der dynamischen 
Veränderungen der Landnutzung, des starken Bevölkerungswachstums und des sich 
verschärfenden Wettbewerbs um Wasserressourcen, erfordert die Entwicklung 
geeigneter Anpassungsstrategien für die Wassernutzung in Trockengebieten südlich der 
Sahara insbesondere aktuelle Informationen über die derzeitige Qualität des 
Managements von bestehenden Bewässerungssystemen. Für eine kleine und eine 
mittelgroße Bewässerungs-Einheit mit Mehrfachnutzung in der Upper East Region in 
Ghana wurde jeweils das Gesamt-System (und dessen Management) bestehend aus 
Wasserspeicher, Zuleitungs- sowie Verteilungs(kanal)netz und Anbauflächen 
untersucht. Zunächst wurden mehrstufige Indikatoren zur Erfassung der Qualität der 
Bewässerungsdurchführung (in Bezug auf: Wasserverteilung, Wassernutzung, 
landwirtschaftliche Produktion) ausgewählt, strukturiert und angewendet. Die 
Anwendung basierte auf Messungen von Größen aus den Bereichen Meteorologie, 
Boden, Grundwasser, Bewässerungswasser, landwirtschaftliche Aktivitäten und Erträge 
in zwei Regen- und Trockenzeiten in den Jahren 2014–2016 in Bezug auf relevante 
Anbausysteme. Auf der Ebene der bewässerten Felder wurde das FAO AquaCrop-Modell 
zur Erarbeitung ganzjähriger Bewässerungspläne genutzt, die sowohl die Bewässerung 
zum Anbau von Tomaten in der Trockenzeit erlauben als auch die Beurteilung der 
ergänzenden Bewässerung von Mais in der Regenzeit unter "nassen" und "trockenen" 
Klimaszenarien in die Untersuchungen einbeziehen. Schließlich wurde eine Szenarien-
gestützte Analyse der Bewässerung für den Zeitraum 2015–2030 auf der Ebene der 
beiden Bewässerungseinheiten durchgeführt, wozu mit dem WEAP (Water Evaluation 
and Planning System) ein Modell zur Entscheidungsunterstützung eingesetzt wurde. Die 
modellierten Szenarien berücksichtigten die beobachtete Niederschlagsvariabilität, die 
Option zur Einführung ergänzender Bewässerung in der Regenzeit, die 
Bewässerungsfläche und die Verbesserung der Bewässerungseffizienz. 

Technische Faktoren – wie vor allem die unzureichende Nutzung der 
Kapazitäten der Wasserspeicher und der schlechte Zustand der 
Wasserversorgungsinfrastruktur – beeinträchtigten die Durchführung der Bewässerung 
in erheblichem Ausmaß.  In dem mittelgroßen Bewässerungssystem wurden weniger als 
40% der Kapazität des Wasserspeichers genutzt, wohingegen in dem kleinen System 
70% der Speicherkapazität in Anspruch genommen wurden. Die Untersuchung des 
Wassermanagements auf der Feldebene deutet darauf hin, dass in beiden Systemen 
eine Effizienz der Feldaufleitung von 58–68% erreicht werden kann, wenn die Steuerung 
der Bewässerung (angemessene Bewässerungsmengen und –zeitpunkte) für die 
wichtigsten Nutzpflanzen verbessert wird. Die Effizienz der gesamten 
Bewässerungseinheit kann von 50% auf 68% erhöht werden, indem die 
Transportverluste in den Kanälen reduziert und die Überbewässerung von Feldern 
vermieden werden. Die Simulationen mit dem AquaCrop-Model zeigen, dass ein 
verbesserter Bewässerungsplan für den Anbau von Tomaten in der Trockenzeit neben 



einer Wassereinsparung von 130–1 325 mm (im Vergleich zu traditionellen 
Bewässerungspraktiken), auch gleichzeitig einen etwa 4- bis 14 prozentigen Anstieg des 
Ertrages bewirken würde. Die zusätzliche und ergänzende Bewässerung von Mais in der 
Regenzeit würde 107–126 mm Wasser in Perioden mit geringem Niederschlag und 
häufigen Trockenperioden bzw. 88–105 mm in Perioden mit hohem Niederschlag und 
seltenen Trockenperioden erfordern. Daher ist eine ganzjährige Bewässerung 
realisierbar, wenn das Wasser für die zusätzliche Bewässerung von Mais in der Regenzeit 
aus Einsparungen in der Bewässerung von Tomaten in der Trockenzeit gedeckt wird. Die 
Simulationen mit dem WEAP-Modell sagen allerdings voraus, dass eine ergänzende 
Bewässerung in der kleinen Bewässerungseinheit nur dann möglich wird, wenn der 
zusätzliche Bedarf an Bewässerungswasser durch einen Anstieg der Systemeffizienz um 
etwa 10% und die Begrenzung der Flächen für den wasserintensiven Anbau von 
Tomaten in der Trockenzeit kompensiert wird. Die Tatsache, dass historische 
Langzeitdaten in den Untersuchungsgebieten derzeit nicht verfügbar sind, verhindert 
die Kalibrierung und Validierung des WEAP-Modells in Ghana. Dennoch bieten die 
simulierten Szenarien und deren Analysen einen geeigneten Rahmen für weitergehende 
Untersuchungen zum Potenzial der Anpassungsoptionen an Wasserknappheit im 
Untersuchungsgebiet. Zusammenfassend erweist sich der integrierte, ganzheitliche und 
system-basierte Ansatz als geeignet und bedeutsam für die Einschätzung angemessener 
Optionen zur Verbesserung des Betriebs von Wasserspeichern als Maßnahme zur 
Anpassung an die Wasserknappheit in Subsahara-Afrika. 
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1 INTRODUCTION 

 

1.1 Background and problem statement 

Doubling agricultural productivity and incomes as well as strengthening the climate 

change adaption capacity of smallholders is required in order to achieve food security in 

Sub-Saharan Africa (SSA) by the year 2030 (Barakat et al., 2015; Griggs et al., 2013). 

About 60% of the population of SSA lives in rural communities with smallholder farming 

as the primary source of livelihood. Rainfed agriculture practiced on about 80% of the 

global agricultural land contributes 60–70% to the global food basket, and 81% in SSA 

(Rockström and Barron, 2007). Currently, the total global agricultural water demand 

(AWD) is estimated at 6,800 km³ year–1 and an additional 5,600 km³ year–1 would be 

needed by 2050 to eradicate malnourishment and satisfy the expected food demand of 

the world's 9 billion population (Rockström, 2003; Rockström and Barron, 2007). Of this 

additional AWD, 450–2,300 km³ year–1 would be needed in SSA alone (Rockström, 2003; 

Rockström and Barron, 2007). In the meantime, the high rainfall variability and water 

scarcity due to climate change is expected to worsen in SSA, with ripple effects on crop 

water productivity (Boko et al., 2007; de Bruijn and van Dijk, 2006; Sylla et al., 2016). 

The high rainfall variability disincentivizes farmers' investments in sustainable land 

management practices, use of improved seeds, pest and disease control, etc., with 

further adverse impacts on food security (Rockström and Barron, 2007; Sanfo et al., 

2017). With the high dependence on rainfed crop production in most parts of SSA, 

rainfall variability coupled with low-fertility soils results in a yield gap, as the average 

grain yield ranges between 1–2 Mg ha–1 (Adwubi et al., 2009; Kranjac-Berisavljevic et al., 

2014; Rockström and Barron, 2007; You et al., 2011). Furthermore, observed rising 

temperature and frequent warm spells in SSA since 1960 (Boko et al., 2007; New et al., 

2006) have the propensity of increasing crop water demand (due to rising 

evapotranspiration), thereby reducing water productivity during periods of low rainfall 

(Molden et al., 2010; Sekyi-Annan et al., 2017; Teixeira and Bassoi, 2009) and hence 

increase the need for supplemental irrigation (Sanfo et al., 2017; Zwart and 

Bastiaanssen, 2004). 
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As it stands, achieving food security in SSA is hardly attainable without the 

inclusion of improved irrigation management strategies which ensure year-round water 

availability for smallholder agricultural systems, thus making them resilient to the 

impact of climate change and variability. However, only 4% of the cultivated area in the 

SSA is under irrigation, which is rather low as compared to 37% in Asia, 28% in northern 

Africa, and 6% in the whole of Africa (McCartney and Smakhtin, 2010; You et al., 2011). 

The sustainability of more than 19,000 small- and medium-scale irrigation schemes 

constructed all over SSA to provide water for crop irrigation and other multiple users 

including livestock, fishery and drinking water needs is compromised owing to 

population growth, changing climate and land use, increasing water demands, and the 

poor condition of the infrastructure (Acheampong et al., 2014; Mutambara et al., 2016; 

Venot et al., 2012). There should not only be an expansion of the irrigation system in 

SSA to meet current and future food needs (Alam, 1991; You et al., 2011), but also, and 

more importantly, the existing irrigation schemes need to be strengthened by improving 

current water management practices, assisting farmers in implementing these 

strategies, rehabilitating the systems thereby enabling development of sustainable 

adaptation strategies for coping with climate, environmental and demographic changes. 

To ensure food security globally, and in SSA in particular, coordinated development of 

rainfed and irrigated farming systems is recommended (Rockström and Barron, 2007). 

Considering that most of the irrigation schemes in water-scarce regions serve multiple 

purposes, the development of appropriate location- and context-specific irrigation 

schedules for crops by water managers and their adoption by farmers will not only 

increase crop-water productivity (Wp) (Pereira, 2007; Rockström and Barron, 2007; 

Teixeira and Bassoi, 2009), but also enhance water availability (through water savings) 

for the multiple sectors. Moreover, the appropriate irrigation scheduling should allow 

for supplemental irrigation in the rainy season as a result of improved efficiency of on-

farm water applications during the dry season (El Afandi et al., 2010; Molden et al., 2010; 

Sekyi-Annan et al., 2018a; Zwart and Bastiaanssen, 2004). As long as increased irrigation 

efficiency is accompanied by yield increments, this provides incentives for irrigators to 
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engage in sustainable land management strategies (Ali and Talukder, 2008; Molden et 

al., 2010; Pereira, 2007; Rockström and Barron, 2007).  

Since both under- and over-irrigation compromise crop yields, irrigation 

scheduling for crop cultivation has to be properly developed, taking into consideration 

the prevailing irrigation infrastructure (e.g., method of irrigation practiced) and the 

biophysical characteristics of the irrigation site (Ali and Talukder, 2008; Sekyi-Annan et 

al., 2018a). In order to realize the full benefits of improved irrigation schedules, namely 

high crop-water productivity (Wp) and increased water availability, irrigation 

infrastructure should be upgraded with the flow-measuring and -dosage structures, 

while the deteriorating water conveyance and distribution subsystems need to be 

repaired (Ali and Talukder, 2008; Pereira, 2007).  

In addition, institutional innovations of the currently siloed (sector-based) 

water management are required in reservoir-based irrigation schemes, particularly in 

view of water-related conflicts among water users during periods of water shortage 

(Acheampong et al., 2014; de Bruin et al., 2015). A number of studies in SSA (Agyenim 

and Gupta, 2012; Höllermann et al., 2010) pointed out that the adoption of the 

principles of integrated water resources management in the operation of multi-purpose 

reservoirs leads to equitable water allocation and prevents water-related conflicts. 

Consequently, some major aspects of this concept have been applied in this current 

research by employing the whole-system approach in the performance analysis 

including the entire irrigation system, coordinating competing water demands and 

multiple water users, as well as the consideration of the long-term perspective of 

reservoir operation. 

 

1.2 Irrigation scheme development in Sub-Saharan Africa 

SSA has had a long history of irrigation development as the quest for year-round water 

availability for agriculture has always been part of the governments’ discourse on rural 

economic development (Mutambara et al., 2016; Venot et al., 2012). The discourse on 

sustainable irrigation development has become even more prominent in recent times 

due to the anticipated impact of climate change in the region (Boko et al., 2007; 
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McCartney and Smakhtin, 2010). Concerns about a rising water scarcity (drought) in the 

dry season in most parts of SSA coupled with the low productivity of rainfed agriculture 

and the high population growth (about 3% annually) causing food insecurity, poverty 

and rural-urban migration compelled the governments to implement interventions 

(Mutambara et al., 2016). These interventions were meant to ensure water availability 

for year-round crop production, animal husbandry, fishery, domestic water needs (and 

in some cases for hydropower generation) in order to improve the rural economy and 

curb the aforementioned societal problems (Alam, 1991; McCartney and Smakhtin, 

2010; McCully and Pottinger, 2009; World Bank, 2011).  

In the early 20th century, the construction of multi-purpose large-scale 

irrigation schemes with a storage capacity of more than 3 million m³ and an irrigable 

area of about 10,000 ha was seen by policy makers as the panacea for enhancing 

agricultural production under water scarcity conditions and thus rural development 

(Alam, 1991; Burney et al., 2013; McCartney and Smakhtin, 2010). Hence, governments 

in SSA countries with the support of international agencies and donors made huge 

investments in the construction of large-scale irrigation schemes with more than 66% of 

the schemes located in Sudan, Nigeria, South Africa and Madagascar (Asres, 2016; 

Mutambara et al., 2016; You et al., 2011). Most of these were surface irrigation schemes 

operating by gravity flow or motorized pump irrigation, and a few schemes were 

equipped with sprinklers (Alam, 1991; Frenken, 2005). The construction contracts were 

awarded to large global contractors without involving the beneficiary communities 

(Mutambara et al., 2016). After the construction, the operation and maintenance 

responsibilities were undertaken by government institutions (Alam, 1991). 

Underperformance of the schemes has been recorded and attributed to poor design and 

construction, weak management, poor coordination among government agencies in 

charge of the sector, lack of routine maintenance works, and lack of the sense of 

ownership on the part of the beneficiary communities, who perceived the irrigation 

schemes as government's assets (Alam, 1991; Mutambara et al., 2016).  

Consequently, small- and medium-scale schemes were constructed in the 

1960s and 1970s in many SSA countries (Venot et al., 2012). This time round, the 
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potential beneficiary communities were persuaded to contribute to the construction of 

the schemes with labor force and local construction materials in order to instil the sense 

of ownership and also to reduce the construction costs (Alam, 1991; Venot et al., 2012). 

The medium-scale schemes were managed by either a parastatal organisation or a 

private company, whereas the small-scale schemes were managed by Water Users 

Associations (WUAs), which are community-based organisations composed of the 

beneficiaries of the infrastructure. In most of the small-scale schemes, the WUAs were 

trained priror to assuming the tasks of the scheme water management (Venot et al., 

2012). Most of the schemes initially performed well for a few decades but in the long 

run either underperformed or completely failed owing to inadequate financial capacity 

of the WUA to conduct maintenance works, poor technical and managerial skills owing 

to the lack of training of new members of the WUA, and lack of regular technical and 

institutional support from governmental agencies (Acheampong et al., 2014; Djagba et 

al., 2014; Venot et al., 2012). Mutambara et al. (2016) argued that a contributory factor 

to the poor performance of the small- and medium-scale schemes in SSA was the 

governments' perception of the construction of irrigation schemes as social welfare 

projects without introducing any water-use fees as a means of capital cost recovery. The 

latter is commonly practiced in South East Asia where irrigation schemes perform 

comparatively well (Mukherji et al., 2012). Consequently, the approach to irrigation 

scheme management adopted by governments in SSA countries and scheme managers 

rendered the operations of the irrigation schemes unsustainable (Mutambara et al., 

2016). Moreover, the poor performance of small- and medium-scale irrigation schemes 

in northern Gambia, arid and semi-arid lands in Kenya, northern Ghana, Zimbabwe, 

South Africa, Mozambique, Ethiopia, Niger, Tanzania and in several other countries in 

SSA are due to deteriorated infrastructure or total abandonment requiring rehabilitation 

(Acheampong et al., 2014; Berhane et al., 2016; Djagba et al., 2014; Mutambara et al., 

2016; Venot et al., 2012). 

The government of Ghana in collaboration with donor agencies, non-

governmental organisations and the Catholic missions invested significantly in the 

construction of more than 500 multi-purpose small- and medium-scale reservoir-based 
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irrigation schemes in the 1960s and 1970s in the Upper East, Upper West and Northern 

regions of the country. Over 220 of these schemes are in the Upper East region (UER) 

alone (Adwubi et al., 2009; Venot et al., 2012). Of these, the small-scale schemes in the 

UER have storage capacities in the range of 0.005–1 million m³ and irrigable areas of < 

100 ha (Venot et al., 2012).  The two medium-scale schemes have storage capacities 

ranging between 17 and 95 million m³ and irrigable areas > 800 ha. Until 1998, these 

schemes were managed by the government through the Ghana Irrigation Development 

Authority (GIDA) under the auspices of the Ministry of Food and Agriculture (MOFA). 

The lack of involvement of the beneficiary communities in the management activities 

resulted in under-performance and eventual deterioration of the infrastructure 

(Acheampong et al., 2014). In 1998 and 1999, under the Land Conservation and 

Smallholder Rehabilitation Project (LACOSREP) phases I and II, most of these schemes 

were rehabilitated with the formation of WUAs to handle the operation and 

maintenance responsibilities in order to ensure effective utilization and management of 

the infrastructure (Venot et al., 2012). The two medium-scale irrigation schemes, 

namely Tono and Vea, are managed by a parastatal Irrigation Company of the Upper 

Region (ICOUR). 

 

1.3 Research needs 

A number of studies has evaluated the performance of the irrigation schemes in SSA as 

well as in the UER (Asres, 2016; Djagba et al., 2014; Faulkner et al., 2008; García-Bolaños 

et al., 2011). However, quantitative evaluations of the irrigation schemes as the whole 

and with consideration of multiple water users remain scarce. For example, 

Acheampong et al. (2014) used multiple qualitative indicators to measure the irrigation 

performance in the Upper East and Upper West regions of Ghana with the main focus 

on institutional management of small reservoirs, and reported the weak collaboration 

among stakeholders. Mdemu et al. (2009) and Faulkner et al. (2008) focused primarily 

on the water demand side, using scheme-level Wp and relative water supply (ratio of the 

total water supply to the gross irrigation demand) as performance indicators in the UER, 

and highlighted the problem of over-irrigation and ineffective irrigation scheduling. 
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Djagba et al. (2014), García-Bolaños et al. (2011) and Poussin et al. (2015) evaluated the 

field-level crop irrigation only.  

Small and Svendsen (1992), in their exposition of various approaches to 

irrigation performance evaluation, recommended the systems approach where the 

reservoir-based irrigation scheme is considered as a whole system including the water 

reservoir, water conveyance and distribution network, the cropping area, as well as the 

management entity, thereby capturing both the demand and supply sides. Following 

this approach, Asres (2016) analyzed the water supply and demands of the multi-

purpose large-scale Koga reservoir-based irrigation scheme in Ethiopia with the 

objective of enhancing crop irrigation management in the area of 3,576 ha, and 

emphasized the need for improving water management to reduce water losses. In the 

study of four SSA countries including Ghana, Burkina Faso, Zambia and Ethiopia, Venot 

et al. (2012) found contrasting water demands of multiple users in reservoir-based 

irrigation schemes and advocated the recognition of the multi-purpose use of their 

reservoirs besides crop irrigation.  

Previous studies have in particular pointed out an inappropriate water use at 

the field scale in SSA (Asres, 2016; Faulkner et al., 2008) but most research, for example 

in the UER (Barry and Forkuor, 2010; Mdemu, 2008), focused on assessing the traditional 

irrigation practice and scheduling rather than developing an improved irrigation 

schedule for the prevalent cropping systems.  

Furthermore, reservoir-based irrigation schemes have traditionally been 

designed and considered for dry-season crop irrigation alone, in addition to the non-

irrigation water uses of the reservoirs. In the wake of increased climate variability 

reflected in unreliable rainfall patterns and frequent and prolonged dry spells in West 

Africa (de Bruijn and van Dijk, 2006; Sylla et al., 2016), the potential of these schemes 

for supplemental irrigation in the rainy season also needs to be explored to capture 

possible intra- and inter-seasonal variations in the reservoirs’ operation and water 

allocation during both the rainy and dry seasons of cropping. An inter-seasonal 

consideration appears necessary, because climate and land-use changes create an 

increasing need to coordinate supplemental irrigation strategies by overcoming dry 
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spells in the rainy season while allowing for water accumulation in the reservoir to fulfill 

dry-season water demands. 

Considering the multi-purpose nature of these irrigation schemes in the face 

of climate variability, an integrated management of the water demands of the multiple 

sectors would be helpful in order to improve the reservoir's operation by enhancing 

equity among water users and secure environmental integrity (Fowe et al., 2015; Venot 

et al., 2012). To this end, a scenario-based assessment of the performance of the 

schemes is needed to enable water managers to plan water allocation effectively 

(Agyenim and Gupta, 2012; Fowe et al., 2015) and to identify the interlinked effects of 

demand- and supply-management decisions on all users, and thus spot opportunities 

for synergy and mitigation of water-related conflicts. 

Against the backdrop of future food needs, impacts of climate change on water 

resources, and competing water demands, the research priorities are identified on the 

one hand for an integrated assessment of the entire system of reservoir-based irrigation 

schemes, considering the multiple water use sectors and climate variability and, on the 

other hand, a comprehensive field-scale evaluation of current and potential year-round 

water use. In particular, revealing the reasons behind the under-performance of 

irrigation schemes would guide the development of feasible and context-specific 

solutions to optimize the irrigation water management for food production. This study 

aimed to assess the performance of irrigation schemes in SSA using the case example of 

UER in Ghana. 

 

1.4 Research objectives 

The research aimed at developing adaptation options to climate variability and 

increased food demand by improving water management in multi-purpose small- and 

medium-scale irrigation schemes in the UER under different scenarios of water 

availability.  

The specific objectives include:  

i. Assessment of the performance of small- and medium-scale irrigation schemes 

using systems approach and multiple indicators  



Introduction 

9 

 

ii. Development of improved field-scale irrigation scheduling in the schemes for 

dry-season crops 

iii. Assessment of the potential of the irrigation schemes for supplemental irrigation 

in the rainy season 

iv. Assessment of the entire irrigation schemes considering the multi-purpose water 

use and climate variability. 

 

1.5 Outline of the thesis 

The thesis is organized in seven chapters. Following the introductory Chapter 1, the 

climatic, geological and hydrological characteristics of the UER are presented and the 

irrigation schemes selected for the study are described in Chapter 2. Chapter 3 reports 

on the evaluation of the performance of reservoir-based irrigation schemes by focusing 

on one medium-scale and one small-scale irrigation scheme. Chapter 4 presents the 

AquaCrop model-based analysis of suitable irrigation schedules in the study schemes in 

the dry season. Chapter 5 reports on the potential of small- and medium-scale irrigation 

schemes for supplemental irrigation in the rainy season. Chapter 6 presents a scenario-

based assessment of the irrigation schemes using the Water Evaluation and Planning 

System (WEAP) model. Finally, Chapter 7 draws overall conclusions based on the study 

results, outlines limitations of the current study and presents future research needs. 
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2 STUDY REGION 

2.1 Geographical and demographical information 

The Upper East region (UER) is located at the north-eastern corner of Ghana between 

latitudes 10° 30' and 11° 15' North and longitudes 0° and 1° 30' West.  It is bordered to 

the north by Burkina Faso, the east by the Republic of Togo, the west by Sissala East 

district in Upper West region and the south by West Mamprusi district in the Northern 

region (Figure 2.1).  The total land area of the UER is about 8,842 km2, which is 3.7% of 

the total land area of the country (Annor et al., 2009). The region has a population of 

1,046,545, comprising 506,405 males and 540,140 females (GSS, 2012) with over 80% 

engaged in smallholder agriculture as the main source of livelihood (Acheampong et al., 

2014; Adwubi et al., 2009; Akomeah et al., 2011). The UER is currently divided into three 

municipalities and ten districts (Figure 2.1). The main ethnic groups are the Mole-

Dagbon, Grusi, Mande-Busanga and Gurma. Among the Mole-Dagbon, the Nabdam, 

Kusasi, Nankani/Gurense and Builsa dominate. 

 

2.2 Climate and agro-ecological zones 

The UER belongs to the Guinea savanna and Sudan savanna agro-ecological zones (AEZs) 

(Figure 2.2) characterized by a single rainy season starting in April/May and ending in 

September/October, followed by a dry season from November until April/May 

(Amekudzi et al., 2015). The mean annual rainfall is about 970 mm (Figure 2.3). The 

growing period and annual rainfall of the Guinea savanna zone ranges from 180–200 

days and 950–1500 mm, respectively. In the Sudan savanna zone, the growing period is 

in the range of 150–160 days, and annual rainfall ranges between 550 and 900 mm 

(Amisigo et al., 2015; SRID, 2016). The annual potential evapotranspiration (ET0) is twice 

as much as the annual precipitation, but ET is exceeded by rainfall in the rainy season 

(Mdemu, 2008). Most natural surface waters disappear during the dry season, and years 

with below-average rainfall and droughts significantly reduce water availability for 

irrigation, livestock, fishery, domestic uses, and ecology (Mdemu, 2008). Air 

temperatures are consistently high, with a daily maximum of 40 °C in the hottest month 
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(March) and 31 °C in the coolest month (August); the mean annual temperature is 29°C 

(Figure 2.3).  

 

Figure 2.1 Location of the study region and the Vea and Bongo irrigation schemes 
(Shape files data source: WASCAL database) 
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Relative humidity fluctuates considerably from < 10% during the dry season 

(especially in December/January) to > 65% during the rainy season (Sekyi-Annan, 2010) 

with an annual average of 55% (Adwubi et al., 2009). The region generally experiences 

low and moderate wind speeds in the range of 0.4–2.5 m s–1 (Mdemu, 2008). 

 

 

Figure 2.2 Administrative regions and agro-ecological zones in Ghana (Asamoah, 
2018) 
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2.3 Geomorphology, soils, relief and hydrogeology 

Granitic, Birimian, and Voltaian rocks are the parent materials (geological formations) in 

the UER (Adu, 1969; Mdemu, 2008; Ofosu, 2011). Dominant soil types include Gleyic 

Lixisols, Ferric Lixisols, Haplic Lixisols, Lithic Leptosols, and Eutric Fluvisols located in 

flood plains and ephemeral streams (Figure 2.4). Soils in the region and large parts of 

the Sudan savanna zone are characterized by poor fertility influenced by low organic 

matter accumulation, high temperatures catalyzing the rate of decomposition of organic 

matter, and excessive burning of vegetation in the dry season (Mdemu, 2008). 

The region has a mean elevation of 200 m  above sea level (a.s.l.) with gently 

undulating hills (Adu, 1969; Liebe, 2002; Mdemu, 2008). The ranges of Birimian 

Greenstone hills with high elevations (457 m a.s.l.) are dominant along the border 

between Ghana and Burkina Faso in the northern part of Bawku and Zebilla, as well as 

along the White Volta River to the south-west. Areas of the Bongo and Vea irrigation 

schemes are characterized by low elevations in the range of 122–260 m a.s.l. with just a 

few escarpments (518 m a.s.l.) towards the border with Togo (Adu, 1969). 
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Figure 2.3  Walter-Lieth climate diagram of the Upper East region of Ghana based on 
data collected at the Navrongo Meteorological station (latitude 
10°54’0”N and longitude 1°06’0”W; elevation 201 m a.s.l.). Precipitation 
data covered the period 1946–2007, and temperature data were 
measured between 1995 and 2006. Top of graph shows long-term mean 
annual temperature and rainfall. Value at top-left of temperature axis is 
mean of the average daily maximum temperature of the hottest month; 
value at bottom is mean of the average daily minimum temperature of 
the coldest month. Area shaded in blue indicates the moist period and 
area shaded in red shows the arid period. Area filled in blue indicates the 
period of excess water (Sekyi-Annan et al., 2018a). 
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Figure 2.4  Soils in the Upper East region of Ghana (Shape files data source: 
WASCAL database) 
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2.4 Vegetation and land use 

The dominant vegetation types in the UER are grassland savanna associated with shrubs 

and trees, and woodland savanna interspersed with perennial grasses in the southern 

part, and with tussock grasses in the northern part of the region (Mdemu, 2008; 

Obuobie, 2008). The trees are fire- and drought-resistant (Adwubi et al., 2009). The 

principal tree species found within the woodland savannah are Vitellaria paradoxa, 

Adansonia digitata, Butyrospermum parkii, Daniellia oliveri, Tamarindus indica, 

Mitragyna inermis, Khaya senegalensis, Parkia biglobosa, Faidherbia albida, and 

Terminalia macroptera. The tree species associated with grassland savanna include, 

Balanites aegyptiaca, Leptadenia pyrotecnia, Anogeissus leiocarpus, and Acacia spp., 

whereas Aristida spp., Cenchurus biflorus and Schoenfeldia gracilis constitute the 

dorminant grass species (Obuobie, 2008). 

Rainfed and irrigated agriculture is the main land-use type in the UER. The 

principal rainfed crops include sorghum (Sorghum bicolar), millet (Pennisetum glaucum), 

maize (Zea mays), rice (Oryza sativa), cowpea (Vigna unguiculata), and groundnut 

(Arachis hypogaea). Tomato (Solanum lycopersicum), onion (Allium cepa), pepper (Piper 

longum), roselle (Hibiscus sabdariffa), lettuce (Latuca sativa) and rice are cultivated 

under irrigation (Mdemu, 2008; Obuobie, 2008). Crop farming is commonly combined 

with rearing of indigenous livestock species including cattle, donkeys, sheep, goats, pigs, 

and poultry such as chicken, guinea fowl and ducks (Mdemu, 2008; Sekyi-Annan, 2010). 

 

 

2.5 Hydrology and irrigation systems 

The White Volta River drains large parts of the UER southwards through its many 

tributaries and sub-catchments starting from the northeast along the Ghana-Burkina 

Faso border through Bawku East and Bawku West (Figure 2.5). The Sissili, Asibilika and 

Kabia Rivers drain the western side of the region, and the Red Volta River drains the 

central part of the UER. All the rivers join the White Volta River along the Gambaga 

escarpment as this flows in the south-west direction into the Northern region of Ghana 

(Figure 2.5).  
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The northern part of the UER, comprising the Bongo district and parts of the 

Kassena Nankana Municipality, is drained by three main sub-catchments including 

Anayeri, Atankwidi and Yaritanga (Mdemu, 2008; Ofosu, 2011). Both the medium-scale 

Vea and small-scale Bongo irrigation schemes are located within the Yaritanga sub-

catchment of the White Volta Basin. The Tono sub-catchment drains the north-western 

part of the UER. According to Liebe (2002), tributaries located in the south of the White 

Volta River in the Gambaga scarp drain away southward from the river. 

 

 

Figure 2.5 Hydrology, small- and medium-scale reservoirs in the Upper East region 
(Shape files data source: WASCAL database) 

 

The region is dotted with several small- and medium-scale reservoirs located 

in inland valleys (Figure 2.5). The two medium-scale reservoirs (Tono and Vea) were 

constructed on streams, whereas the small-scale reservoirs were constructed in valleys 

to store runoff during the rainy season. 

The hydrogeology of the UER is highly variable with low groundwater yield in 

boreholes ranging between 0.03 and 24.0 m³ h–1, and a mean borehole yield of 2.1 m³ 

h–1 (Ofosu, 2011). According to Obuobie (2008), 8 % of the annual rainfall in the UER 
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recharges groundwater. The main types of aquifers in the UER include fissured zone 

aquifers and weathered zone aquifers, which could be either confined or semi-confined 

(Ofosu, 2011). 

 

2.5.1 Vea irrigation scheme 

The medium-scale Vea irrigation scheme (VIS) lies between 10° 52’ 02” N and W 0° 51’ 

05” (Figure 3.2). Its construction started in 1965 and was completed in 1980. The dam is 

1,585 m long and has a maximum height of 16 m. The catchment area upstream of the 

dam is 13,600 ha and the reservoir surface area at the full supply level is estimated at 

405 ha. The gross irrigable area is approximately 1,197 ha, yet only 850 ha have been 

developed for irrigation. However, due to the currently sub-optimal state of the 

infrastructure, the actual area under irrigation is ≤ 400 ha. The designed storage capacity 

is 17.27 million m³ comprising of 16 million m³ live storage and 1.27 million m³ dead 

storage, i.e., the quantity of the water reservoir that is inaccessible for irrigation by 

gravity flow). The Irrigation Company of the Upper Region (ICOUR) manages the VIS, 

which provides water for crop irrigation, livestock, fish farming and drinking water needs 

to Bolgatanga municipality. Rice, tomatoes and leafy vegetables dominate the irrigated 

cropping systems. Irrigation water supply from the reservoir flows by gravity through 

two main left and right canals, and diverts into 61 lateral canals, i.e., 31 and 30 along the 

two main left and right canals, respectively. The left main canal (14.5 km) with a 

trapezoidal cross-section is out of service due to its poor state. The right main canal is in 

a relatively good working condition and has a rectangular top section in the lined and 

upper most reaches (≈ 70 m long from the offtake tank, the first water collection point 

of the canal; Figure 2.6) with the remaining section (≈ 12 km) of a trapezoidal shape. The 

methods of on-farm water application are basin irrigation for rice farms, and furrow 

irrigation coupled with manual water application using a bowl for the other crops. Farms 

lack drainage facilities. 
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2.5.2 Bongo irrigation scheme 

The small-scale Bongo irrigation scheme (BIS) located between N 10° 54’ 36” and W 0° 

47’ 27” was constructed in 1961 (Figure 3.2). It has an embankment length of 625 m and 

a designed dam height of 6 m. Its catchment area is 98 ha and the estimated reservoir 

area at the full supply level is 20.7 ha. The actual storage capacity and irrigable area are 

0.433 million m³ and 12.05 ha, respectively. The scheme has a dead storage of 2,600 m³. 

It is managed by a community-based WUA and provides water for crop irrigation, 

livestock and fish farming. There are two main left and right trapezoidal canals that 

supply water from the reservoir to the farms by gravity flow (Figure 2.6). No lateral 

canals were constructed. The cropping pattern and irrigation methods are same as in 

the Vea scheme. Similarly, there are no drains on the farms. 

 

 

Figure 2.6  Right main canal in the (a) Bongo irrigation scheme and (b) Vea 
irrigation scheme. 
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3 PERFORMANCE EVALUATION OF RESERVOIR-BASED IRRIGATION SCHEMES 

3.1 Introduction 

Agriculture in Sub-Saharan Africa (SSA), primarily practiced by smallholding farmers, 

faces huge challenges because of increasing water shortages and variability of rainfall 

due to climate change (Boko et al., 2007; Sylla et al., 2016). Agricultural productivity and 

incomes will need to double for achieving food security and strengthening the climate 

change adaptation capacity of the smallholders by 2030 (Barakat et al., 2015; Griggs et 

al., 2013). Improving irrigation water management is an essential part of the adaptation 

strategies. In particular, temporal shifts in the rainy season and the occurrence of dry 

spells can be tackled by introducing supplemental irrigation practices (Fox and 

Rockström, 2003; Sanfo et al., 2017; Zwart and Bastiaanssen, 2004), whereas improving 

irrigation scheduling in the dry season can increase crop-water productivity (El Afandi et 

al., 2010). Field-level soil moisture management in cropping areas, water storage in 

reservoirs to ensure year-round water availability (Droogers and Aerts, 2005; Pereira et 

al., 2002; Rockström and Barron, 2007), and an integrated management of multi-

purpose reservoirs (Venot et al., 2012) are also considered for coping with the impact of 

climate change and variability in SSA.  

At present, more than 50% of the population of SSA relies on rainfed farming 

as the main source of livelihood (You et al., 2011). Nevertheless, over 19,000 reservoir-

based irrigation schemes have been constructed in most of SSA, with more than 1,000 

small- and medium-scale schemes in Ghana, West Africa (Mutambara et al., 2016; 

Pereira et al., 2012; Venot et al., 2012; You et al., 2011). Of these, 220 schemes are 

located in the UER (Adwubi et al., 2009; Venot et al., 2012). In the UER, the reservoir-

based irrigation schemes provide water for crop irrigation in the dry season and for 

other competing users including livestock, fishery and households throughout the year 

(Acheampong et al., 2014; Faulkner et al., 2008). The adequacy of the performance of 

these irrigation schemes is increasingly challenged due to changing climate and land use, 

population growth, and competing demands, besides the basic need for rehabilitation 

of the systems installed mostly in the 1960s and 1970s (Acheampong et al., 2014; 

Berhane et al., 2016; Mutambara et al., 2016; Venot et al., 2012). 
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Although the performance of the irrigation schemes in SSA and also in the UER 

have already been investigated, quantitative evaluations of the irrigation schemes as a 

whole and with consideration of multiple water users are rare. For example, 

Acheampong et al. (2014) used multiple qualitative indicators to measure performance 

in the Upper East and Upper West regions of Ghana with the main focus on institutional 

management of small reservoirs. Mdemu (2008) and Faulkner et al. (2008) focused 

primarily on the water demand side, using scheme-level water productivity and relative 

water supply as performance indicators in the UER. Djagba et al. (2014), García-Bolaños 

et al. (2011) and Poussin et al. (2015) evaluated the field-level crop irrigation only. 

Small and Svendsen (1992) recommended the systems approach to irrigation 

performance assessment where all the components of a reservoir-based irrigation 

scheme including the water reservoir, water conveyance and distribution network, and 

the cropping area as well as the management entity are evaluated in order to capture 

both the demand and supply sides of the scheme as the whole. In accordance with the 

aforementioned approach, Asres (2016) analyzed both the water supply and demand of 

the multi-purpose, large-scale reservoir-based Koga irrigation scheme in Ethiopia with 

the objective of enhancing crop irrigation management in the area of 3,576 ha. 

Furthermore, in the study of the four SSA countries including Ghana, Burkina Faso, 

Zambia and Ethiopia, Venot et al. (2012) found contrasting water demands of multiple 

users in reservoir-based irrigation schemes and advocated the recognition of the multi-

purpose use of their reservoirs besides crop irrigation.  

Such an integrative approach for the assessment of irrigation schemes in SSA 

requires a combination of suitable indicators (Ali, 2011; Bos et al., 2005; Pereira et al., 

2012). In particular, the water availability index provides information about whether 

water availability is adequate to meet the total water demand of the scheme (Xu and 

Wu, 2017). Water conveyance network efficiency, field application efficiency and overall 

system efficiency measure the technical performance of the water delivery subsystem 

and water utilization at field-level (Bos et al., 2005). The adequacy of the crop irrigation 

scheduling can be evaluated through crop water productivity (El Afandi et al., 2010), 

whereas relative transpiration specifies the crop-water status and enables an 
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assessment of appropriateness of irrigation. Lastly, the delivery performance ratio (Bos 

et al., 2005) is useful to assess the ability of the management entity to comply with an 

irrigation schedule.  

This chapter presents the assessment of the performance of irrigation schemes 

in SSA based on the integrated systems approach and considering competing water uses 

of the reservoirs. In particular, the assessment focused on the case of small- and 

medium-scale reservoir-based irrigation schemes in the UER of Ghana with the aim to 

reveal priority components within the systems for the irrigation performance 

improvement. To this end, assessed were (i) the current storage capacity of the 

reservoirs for the overall scheme operations, (ii) the efficiency of the conveyance and 

distribution networks in transporting water from the off-take tank to the field inlet, and 

(iii) the efficiency of the water use at the field level. 

 

3.2 Materials and methods 

3.2.1 Study sites 

The study area in the UER of Ghana was chosen because it is typical for the operations 

of reservoir-based irrigation schemes. The selected medium- and small-scale schemes, 

i.e., the VIS and the BIS located in the Bongo district of the UER, also represent the typical 

spectrum of reservoir-based irrigation schemes in the region. Besides differences in size, 

these irrigation schemes were selected due to their different management modes (Vea 

is managed by the ICOUR and Bongo by a WUA), and because of their accessibility for 

the research. In the Vea reservoir, there is usually a considerable amount of water 

remaining at the end of the dry season owing to underutilization of the water resources. 

The cultivated area per farmer in the study area is in the range of 0.01–0.10 ha 

in the dry season, with the common practice of tomato (Solanum lycopersicum) and rice 

(Oryza sativa) monocropping, and leafy vegetables including roselle (Hibiscus 

sabdariffa), lettuce (Lactuca sativa), and cowpea (Vigna unguiculata) intercropping. 

However, roselle was monocropped in the VIS. Leafy vegetables are cultivated 2–3 times 

in the dry season owing to their relatively short growing cycle. Irrigation water from the 

reservoir is conveyed through canals to the fields by gravity. Water is diverted into 
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furrows and applied to the fields manually using a bowl. The number of irrigation events 

for the cultivation of tomato was 20–29, for leafy vegetables 11–23, and for rice 10. The 

irrigation interval was 7–8 days for rice and 2–5 days for the other crops. Rice farmers 

watered their fields weekly, thereby subjecting the crop to alternating wet and dry 

conditions. During the observation period, the mean groundwater table was in the range 

of 0.6–1.3 m and 0.7–2.8 m below the ground surface in the BIS and VIS, respectively. 

The observations were conducted in the rainy and dry seasons from May 2014 

to April 2016. This chapter presents the results for the dry seasons when most water for 

irrigation is needed. Twelve farming fields were surveyed to capture spatial variations in 

water use. The map, elevation-area and elevation-capacity curves of the VIS were 

collected from the ICOUR through personal communication. Furthermore, the map of 

the BIS and the inventory of dams in the UER were collected from the Ghana Irrigation 

Development Authority also through personal communication. Next, informal group 

discussions with farmers, consultants, and agricultural extension officers were 

conducted to support the appropriate selection of cropping fields for monitoring. Data 

collection covered all components of the scheme including water reservoir, water 

conveyance network, and cropping area as well as the management entity. Suitable 

performance indicators were selected for each component (Figure 3.1).  

 

 

Figure 3.1 Schematic representation of the reservoir-based irrigation schemes and 
indicators for their performance evaluation in the UER of Ghana 
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3.2.2 Selection of farmers' fields 

The fields were selected to represent the top, middle, and tail sections of the irrigable 

area in order to cover the range of water-accessibility conditions. In the VIS, two fields 

were selected in the top section and four fields in the middle section giving a total of 6 

sites (Figure 3.2). No field was selected in the tail section of the VIS because groundnut 

and soybean were cultivated there, and these cropping systems differ significantly from 

the typical farming practice in the scheme. All selected fields were fed by the right main 

canal (mostly through two lateral canals) since the left main canal was seriously 

deteriorated. In the BIS, one field in the top section, four fields in the middle section 

(including two fields along the right and the left canals), and one field in the tail section 

were selected (Figure 3.2). Other criteria for selecting these fields were their cultivation 

in both the rainy and the dry seasons and availability of suitable locations for the 

discharge measurements in the dry season. However, during the study period, the tail-

end field in the BIS was only cropped in the rainy season with rice. The main dry-season 

crops covered in this study were tomato, leafy vegetables and rice. Measurements were 

conducted at two fields in each cropping system per scheme as described in Chapters 4 

and 5. Due to water scarcity caused by malfunctioning infrastructure in the VIS, the rice 

farmers (VF2 and BNF2 fields) could not farm in the 2015–2016 dry season. 
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Figure 3.2 Location of irrigation schemes and study sites. BF1–6 = Bongo fields, 
BNF1, 2 = Bongo Nyariga fields, BoNF1, 2 = Bolga Nyariga fields, BR = 
Bongo right well, BL = Bongo left well, BM = Bongo mid-slope well, BD = 
Bongo downslope well, BU = Bongo upslope well, VF1, 2 = Vea fields, VU 
= Vea upslope well, BNM = Bongo Nyariga middle well, BNJ = Bongo 
Nyariga junction well, TDR1, 2 = Time domain reflectometers. 

 

 

3.2.3 Soil profile characteristics 

A soil profile description was conducted at the study sites to ascertain the soil types and 

their physico-chemical characteristics, and to understand their effect on irrigation 

performance at field level. In addition, soil information was required particularly for 

developing irrigation schedules. To this end, three soil profile pits were dug (at BF1 and 

BF4 in the BIS and at BNF2 in the VIS) to depths of 1.2–1.3 m in the Akrubu and Yaratanga 

soil series identified in the irrigation schemes. Soil samples were collected from the 

morphological soil horizons and analyzed in the soil laboratory at the Soil Research 

Institute in Kumasi, Ghana (Appendices 9.1–9.4).  
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The soil chemical properties, bulk density, soil moisture at saturation, field 

capacity, and permanent wilting point were determined in the laboratory (Mbah, 2012) 

(Appendices 9.5–9.7). Soil pH (1:1) was determined with a glass electrode pH-meter, 

which was standardised with two aqueous solutions of pH 4 and 7. Total nitrogen (N) 

was determined by the Kjeldahl method. The wet combustion method of Walkley and 

Black (Schulte, 1995) was employed to analyse organic carbon and subsequently the 

organic matter content was calculated. Available phosphate (P) was analyzed using Bray-

1 solution, and the ammonium acetate (NH4OAc) pH 7.0 method was applied to 

determine cation exchange capacity (CEC). Concentrations of magnesium (Mg) and 

calcium (Ca) were determined using the atomic absorption spectrophotometer, while 

concentrations of sodium (Na) and potassium (K) were measured with the flame 

photometer.  

Saturated hydraulic conductivity (Ksat) was determined in the laboratory by the 

falling head method (Pedescoll et al., 2011) using undisturbed soil cores from the three 

soil pits. Comparison of the measured Ksat values with those determined from the pedo-

transfer function based on soil texture and organic matter content (Raes et al., 2012a; 

Saxton and Rawls, 2006) revealed significantly lower values than the laboratory 

measured. This was likely caused by incomplete saturation of the undisturbed soil 

samples (especially samples with high clay content) before the test, leakage along the 

metal cylinder during the test, and the impact of soil structure and macropores. 

Consequently, the Ksat values estimated from the pedo-transfer functions were used in 

the study. Infiltration rate was determined in situ with the double ring infiltrometer 

(Touma and Albergel, 1992) at six locations (two locations for each of the fields). 

The soil types identified using the local soil series system and classified 

according to World Reference Base for Soil Resources (FAO, 2014) revealed similar soil 

types in both Bongo and Vea irrigation schemes. In particular, Gleyic Arenosols and 

Calcic Gleysols were found in the BIS cropping fields, and Calcic Gleysols in the VIS fields. 

These soils were characterized by pH > 7, shallowness (0–40 cm) of rooting zone, low 

organic matter and N contents, and low infiltration capacity.  
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3.2.4 Actual storage of the reservoirs 

Vea irrigation scheme  

A water-level logger (TD-DIVER) was installed on April 22, 2014, near the dam in the 

reservoir for continuous recording of water levels at 10-min intervals as information for 

calculating daily means. Using these water-level data coupled with a capacity-elevation 

curve, reservoir storage capacity and time-dependent storage were determined. The 

following equation, which relates reservoir storage (V, m³) with water elevation (E, m), 

was derived from the capacity-elevation curve:  

 

𝑉 = (0.1801 𝐸2 − 64.5258 𝐸 + 5780.2299)  × 106    (3.1) 

 

 

Bongo irrigation scheme  

A geodetic survey was conducted on September 12, 2014, to establish the elevation-

area-capacity curves for the Bongo reservoir. Six staff gauges, each with 100-cm-metric 

graduations, were installed along a straight line in the reservoir starting from the 

deepest location towards the spillway of the dam. The maximum depth of the reservoir 

was 5.5 m. Daily monitoring of the water level from installed staff gauges and elevation-

area-capacity curves were used to determine storage capacity and time-dependent 

volume of the reservoir. Considering the nearly half-square pyramidal shape of the 

Bongo reservoir (Liebe, 2002), the flooded area (A, m²) was first determined from the 

water elevation and storage was calculated as follows: 

 

𝑉 = 0.0154𝐴1.3995     (3.2) 

 

where 

         

𝐴 =  (0.5495  𝐸2 −  246.9193  𝐸 +  27737) × 104  (3.3) 
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The plausibility of this approach was determined by comparing the above 

storage capacity equation (Eq. 3.3), which is specific for the Bongo reservoir, with a 

generic storage capacity equation (V = 0.00857A1.4367) derived for small-scale reservoirs 

in the UER by Liebe et al. (2005). Because the cropping season in 2014–2015 began 

before the establishment of the elevation-area-capacity curves for the Bongo reservoir 

on December 10, 2014, reservoir storage had to be estimated. 

 

 

3.2.5 Gross water demand for multiple users 

Gross irrigation water input 

A 100-cm metallic staff gauge was installed onto the left levee in the direction of flow of 

the lined rectangular section of the right main canal in the VIS to determine discharge 

representing water supply from the off-take tank. Discharge was estimated using 

Manning's equation for open channels (Vatankhah, 2015) and applying the mean value 

of roughness coefficient for concrete-lined channels with trowel finish in the range of 

0.011–0.015 (Chow, 1959). A measuring weir could not be used in Vea due to the height 

of the levee and potential reduction of flow velocity. In the BIS, a 50-cm staff gauge and 

a Cipolletti weir (Boiten, 1993) were installed in both the left and right lined trapezoidal 

canals during the 2014–2015 dry season. In the following dry season, the Cipolletti weirs 

were removed but Manning's equation was used to determine discharge. The duration 

of water supply was recorded and multiplied by discharge to calculate gross water 

supply to the scheme.  

A discharge equation for flows through pipes installed at the field’s inlet during 

irrigation events was developed from in-situ measurements. To this end, the time 

required to fill a bucket of known volume was recorded following the “volumetric 

approach” for seven different water depths read from the staff gauge in the canal. 

Discharges corresponding to the seven measured water depths were computed, and 

subsequently discharge (Q, m³ s–1) was related to water depth (h, m) as shown in Eq. 

3.4. The R² and standard error of Eq. 3.4 are 0.972 and 0.001, respectively. 

 



Performance evaluation of reservoir-based irrigation schemes 

29 

 

   𝑄 = 0.073ℎ1.334     (3.4) 

 

where h is depth of water (m) in the canal at the farm inlet. 

 

𝑄 (𝑀𝑎𝑛𝑛𝑖𝑛𝑔′𝑠) = 𝐴
1

𝑛
𝑅2 3⁄ 𝑆1 2⁄     (3.5) 

 

where A is cross-sectional area of canal in m², n is Manning roughness coefficient, R is 

hydraulic radius in m and S is slope of canal bed; the water level slope was approximated 

by the longitudinal slope of the canal bottom. 

 

  𝑄 (𝐶𝑖𝑝𝑜𝑙𝑒𝑡𝑡𝑖 𝑤𝑒𝑖𝑟) = 1.859𝑏ℎ3 2⁄    (3.6) 

 

where b is length of crest in m and h is height of water level above crest in m. 

In the VF1 field, where a pump was used to obtain water from the right main 

canal, actual discharge of the pump was determined using the volumetric approach. 

Because discharge varied during an irrigation event, the event was split into sub-periods 

of constant discharge. The gross irrigation amount (GIA) per event was determined by 

summing up sub-discharges multiplied by the duration of the respective sub-periods. 

The GIA for each crop per field during the entire dry season was subsequently calculated.  

The GIA of the scheme at field level was computed based on the respective 

shares of irrigable area cultivated with the principal crops. In the VIS, the shares of the 

irrigable area were 37% (rice), 48% (tomato), and 12% (leafy vegetables). In the BIS, 

these shares were 5%, 40%, and 55% for the same crops, respectively. 

 

Livestock water demand 

Data on livestock population of different species in the Gowrie and Bongo Central sub-

districts for the VIS and the BIS, respectively, were collected from Bongo district office 

of the Ministry of Food and Agriculture (MOFA, 2013–2016) of Ghana (Appendix 9.8). 

The livestock water requirement was determined according to Peden et al. (2003). The 

livestock water demand during the 2014–2015 dry season was more than that in the 
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2015–2016 dry season because the former had a longer dry period than the latter (7 vs. 

5 months). During rainy seasons, the livestock largely depended on rainwater, which 

collected in the neighborhood ponds rather than on reservoir water. 

 The daily water intakes for different livestock species under dry and hot 

tropical conditions (Table 3.1) were calculated as follows: 

 

𝐿𝑊𝐷 =  ∑ 𝑃𝑖
𝑛
𝑖=1  𝐷𝑊𝐼𝑖  𝑇𝐿𝑈𝑖      (3.7)

  

where LWD is the livestock water demand (m³ day–1), n is number of different 

species of livestock, P is livestock population per species, DWI is daily water intake (m³) 

per tropical livestock unit (TLU), in which 1 TLU = 250 kg live weight. 

 

Table 3.1  Estimated livestock daily water intake under Sahelian conditions 

Species Tropical Livestock 

Unit (TLU) 

Mean 

liveweight 

(kg) 

Daily water uptake (m³ TLU–1 day–1)  

Wet season Dry season 

Cattle 0.7 180 0.0143 0.0386 

Donkeys 0.4 105 0.0125 0.04 

Sheep 0.1 25 0.02 0.05 

Goats 0.1 25 0.02 0.05 

Source: Adapted from Peden et al. (2003). TLU = tropical livestock unit 

 

 

Fishery water demand 

In the VIS, 22 fish ponds were fed by the reservoir. Data on the dimensions of the ponds 

were collected from the fisheries department of MOFA (Appendix 9.9). In the BIS, where 

fish farming was practiced directly in the reservoir, dead storage was assumed to cover 

the fishery water requirement. 
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Drinking water demand 

Data on water withdrawals from the Vea reservoir were collected from the Ghana Water 

Company Limited (GWCL), and year-round drinking water demand in the VIS was 

computed from monthly water withdrawals during May 2014 through April 2016 

(Appendix 9.10). The Bongo reservoir was not used to cater for drinking water needs as 

these were satisfied via groundwater boreholes. However, large withdrawals were 

recorded in 2014–2015 due to road constructions in Bongo township.  Although urban 

construction was not a regular user of the reservoirs’ water, contractors were able to 

satisfy the occasional water needs for road construction after obtaining permission from 

the local authorities. This aspect was, however, not considered in the current study. 

 

 

3.2.6 Water availability index 

The Water Availability Index (WAI) indicates a reservoir’s capability of meeting the total 

water demand of the scheme (Eq. 3.8), and it assists in analysing whether insufficient 

water availability is caused by low water storage or by internal factors within the 

irrigation system such as percolation and seepage losses along the canals and poor 

irrigation practices at the field level. It therefore indicates the potential of the scheme 

to provide water for supplemental irrigation during dry spells in the rainy season. 

 

WAI =  
Total water supply available to scheme

Total scheme water demand
    (3.8) 

 

Reservoir storage, including dead storage, at the beginning of the dry season was taken 

as total water supply available to the BIS. For the VIS, the storage at the beginning of the 

rainy season (May 21, 2014) was used owing to the year-round water abstractions by 

the GWCL. The total water use of the schemes was determined by adding the gross 

amounts of multiple water uses. 
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3.2.7 Efficiency of water delivery and field application 

Conveyance network efficiency 

The ponding method (Ali, 2011; Leigh and Fipps, 2004), wherein two ends of the canal 

section were blocked with sandbags and clay to create a stagnant pool of water and the 

reduction in water level monitored over 24 h, was applied for the estimation of 

percolation and seepage loss rates of irrigation water flowing from the off-take tank at 

operational level to the tail end of the canal. The condition of the canal reach was not 

uniform, and therefore canal sections of considerable lengths and considered as 

representative of the existing condition were selected for the ponding test, i.e., 358 m 

(right canal) and 347 m (left canal) in the BIS, and 325 m of a lateral canal in the VIS. 

Evaporation loss from the canal was not considered as it was numerically small in 

relation to seepage and percolation losses (as indicated by estimations based on ET0 = 

5.9 mm day–1 and the water surface of the canal). The percolation and seepage losses 

(Sl, m³ s–1) along the total canal reach were determined as follows: 

 

𝑆𝑙  =  𝑃  𝐿  𝑆𝑟     (3.9) 

 

where P is wetted perimeter (m), L is total length of canal (m), and Sr is average seepage 

loss rate (m³ m–² s–1). 

 

The conveyance network efficiency (En, %) was subsequently determined as 

follows:  

 

𝐸𝑛 =
(Qi−Sl)

Qi
∗ 100%    (3.10) 

 

where Qi is the discharge at inlet.  

En indicates the share of water delivery from the off-take tank that reaches the 

field inlet. The En was further determined for each cropping field (Enf) by considering the 

length of the canal section from the off-take tank to the field inlet to assess the overall 

system efficiency at field level depending on the location of the field along the canal. 
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Field application efficiency 

The net irrigation requirement (NIR, mm) per irrigation event during the 2014–2015 dry 

season was estimated from the actual ET and consideration of the capillary rise (Steduto 

et al., 2012). In the following dry season, time domain reflectometry (TDR CS655) 

sensors were installed and the NIR was estimated from the soil moisture change before 

and after irrigation, with field capacity as upper limit. The sensors were installed in two 

fields per irrigation scheme at four soil horizons (Figure 3.2). In the BIS, TDR1 set was 

installed at 0.1, 0.36, 0.56, and 0.72 m, and TDR2 at 0.1, 0.33, 0.52, and 0.64 m. In the 

VIS, TDR1 set was positioned at 0.1, 0.23, 0.47, and 0.61 m, and TDR 2 at 0.10, 0.22, 0.46, 

and 0.70 m. In the VIS, soil moisture time-series in the BNF1 and BNF2 fields were not 

collected in 2015–2016 because the data logger was stolen. Furthermore, the TDR 

sensors installed in deeper horizons (0.4–08 m) in the BNF1 field malfunctioned in 2014–

2015, thus preventing measurements. Groundwater wells were installed in the same 

fields and across schemes with depths from 2–4.9 m and 2.7–5.5 m in the BIS and the 

VIS, respectively (Figure 3.2), to monitor shallow groundwater levels for the estimation 

of the capillary rise to the root zone. Field application efficiency (Ea, %) per event was 

determined as follows: 

 

𝐸𝑎 =
∑

𝑁𝐼𝑅

𝐺𝐼𝐴
𝑛
𝑖  100%

n
    (3.11) 

 

where n is the number of irrigation events.  

Ea estimates the share of water delivered that actually compensates the root-

zone deficit and indicates losses due to evaporation, runoff from the field, and 

percolation below the root zone (Ali, 2011). In 2014–2015, Ea could not be determined 

for BF5 rice field in the BIS and for all VIS fields, except for tomato VF1 field, owing to 

agronomic challenges and diseased/perished crops. 

  

 



Performance evaluation of reservoir-based irrigation schemes 

34 

 

Overall system efficiency  

The overall system efficiency (Es, %) expresses the share of water supply to the entire 

scheme that is put to beneficial use by the crops:  

 

𝐸𝑠 = 𝐸𝑛𝑓𝐸𝑎     (3.12) 

 

Thus, Es measures the degree to which irrigation water supply meets the NIR 

at the scheme level. However, additional water losses (e.g., evaporation) were assumed 

numerically negligible in the Es calculations (Bos and Nugteren, 1990). 

 

 

Delivery performance ratio 

In the absence of canal flow-measuring devices in the VIS and the BIS, the delivery 

performance ratio was adapted by substituting the flow rate of irrigation water by the 

duration of flow. This indicator shows the ability of the management entity to comply 

with the intended irrigation schedule and was determined as follows: 

 

Delivery performance ratio = 
Actual duration of water supply

Intended duration of water supply
   (3.13) 

 

 

3.2.8 Determination of water productivity and relative transpiration 

Water productivity 

A harvest area was demarcated within each of the selected fields. For row crops, two 8-

m long rows were defined for yield determination, whereas for rice fields, 8-m² areas 

were defined (Bell and Fischer, 1994). Plants within this area were harvested at the end 

of the cropping season, and the total aboveground biomass for each crop was weighed. 

The crop yield components (rice grains, tomato fruits, and vegetable leaves) were 

weighed separately. The samples were oven-dried at 70–90 °C to constant weight for at 

least 72 h to determine the dry matter (Bell and Fischer, 1994). However, the fresh 

weights of tomato and leafy vegetables were used in the computation of the crop water 
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productivity, Wp, (kg m–³), as these yield components are sold fresh. The dry season Wp 

was calculated as follows: 

 

𝑊𝑝 =
Crop yield

GIA
     (3.14) 

 

This indicator enabled assessment as to whether water was utilized 

productively. This assessment was restricted to tomato (BNF1) and leafy vegetable 

(BNF2) fields in the VIS, because the early onset of the rainy season in 2016 caused 

waterlogging which, due to the absence of drainage structures, led to failed yields. 

Therefore, crop yield estimations were instead conducted in neighboring fields of similar 

soil conditions and farming practices. 

 

 

Relative transpiration 

The FAO AquaCrop model, which was parameterized and validated with field data 

(Chapter 4) was used to determine the daily actual (Ta) and potential transpiration (Tp) 

that enabled the calculation of the relative transpiration (Tr) of each crop over the crop 

cycle (Eq. 3.15). The data required by the AquaCrop model include climate (daily 

minimum and maximum temperature, solar radiation, relative humidity, wind speed, 

daily rainfall), crop characteristics (planting and harvesting dates, plant density, 

maximum rooting depth, maximum canopy cover, crop yield, aboveground biomass, 

harvest index), soil profile characteristics (texture, soil moisture at saturation, field 

capacity and wilting point, saturated hydraulic conductivity, initial soil fertility, depth to 

soil layer restrictive to root penetration, and fertilization), and irrigation and soil water 

data (method of field-level water application, actual irrigation dates, GIA, soil moisture 

data). When Tr is <1.0, there may be water stress because of soil moisture dropping 

below the allowable depletion limit or aeration stress as a result of over-irrigation. Either 

type of stress leads to crop yield loss. Therefore, Tr indicates the appropriateness of 

irrigation practices and is calculated as follows: 

 



Performance evaluation of reservoir-based irrigation schemes 

36 

 

 𝑇𝑟 =
𝑇𝑎

𝑇𝑝
     (3.15) 

 

The crop Tr in the VIS could be determined only for tomato (VF1 field) in 2014–

2015, and for tomato (BNF1 field) and leafy vegetables (BNF2 field) in 2015–2016, 

because of the failed yields in the other cropping fields. For the same reason, Tr of rice 

at BF5 field could not be determined in 2014–2015. 

 

 

3.3 Results 

3.3.1 Reservoir performance 

Water supply to the VIS and gross water demands of multiple users indicated that only 

36–38% of the available reservoir water was used during the two observation seasons 

(Table 3.2). In the BIS, the 2014–2015 dry season recorded a 30% deficit in water supply 

while about 70% of the available water was used in the following dry season (Table 3.2). 

The low storage of 0.076 million m³ in 2014–2015 further declined to dead storage water 

level in February 2015 largely due to urban construction needs during the study period. 

This reduced the water supply for crop irrigation towards the end of the 2014–2015 dry 

season. 

 

 

3.3.2 Performance of the water conveyance network 

The comparison of the conveyance network efficiencies with the target value of 95% for 

concrete lined canals (Bos et al., 2005) indicates that only the Bongo right canal in the 

small-scale BIS was highly efficient (99%). Considering the relatively good condition of 

the measured section of this canal, the value of En is not representative of the whole 

network because severe deterioration affected about 328 m of the length of the canal. 

Hence, although high conveyance efficiencies are achievable, the current efficiency in 

the deteriorated sections is low. The Bongo left canal in the BIS gave a somewhat lower 

conveyance efficiency of 90% (Table 3.3). The measured lateral canal in the medium-

scale VIS showed an intermediate efficiency value of 91%. 
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Table 3.2  Water availability index (WAI) and the gross water use for multiple users 
of the Vea and Bongo irrigation schemes for two dry seasons 

 Vea irrigation scheme Bongo irrigation scheme 

Water use (million m³) 2014–2015  

 

2015–2016  

 

2014–2015  

 

2015–2016  

 

Initial storage 11.05 13.72 0.076 0.286 

Domestic water withdrawal 2.103 2.074 – – 

Crop irrigation amount 1.99 2.7312 0.0753 0.1891 

Livestock demand 0.0521 0.0373 0.0259 0.0214 

Fishery water use 0.0954 0.0954 0.0026 0.0026 

Gross water use 4.24 4.939 0.1037 0.2131 

WAI 2.6 2.8 0.7 1.3 

 

 
Table 3.3  Dimensions and network efficiencies of conveyance canals in the Vea 

and Bongo irrigation schemes. 

Parameter Vea lateral 

canal 

Bongo right canal Bongo left 

canal 

Top width (m) 0.9 0.75 0.7 

Bottom width (m) 0.34 0.3 0.28 

Total length (m) 1000 570 600 

Operational water depth (m) 0.2 0.37 0.37 

Initial discharge at canal 

head (m³ s–1) 

0.14 0.39 0.28 

Seepage and percolation loss 

rate (m³ m–² s–1) 

1.6155 x 10–5 6.3013 x 10–6 4.3466 x 10–5 

Seepage and percolation loss 

(m³ s–1) 

0.0125 0.0041 0.029 

Network efficiency (%) 91 99 90 
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3.3.3 Soil moisture dynamics and field application efficiency 

The reduced irrigation supply in the BIS in 2014–2015 (Table 3.2) was reflected in the 

relatively sporadic and lower irrigation applications, particularly in the tomato field 

where lowest root-zone soil moisture content (SMC) was observed (Figure 3.3a). 

Otherwise, because of over-irrigation and capillary rise (Table 3.4), SMC in the sub-

horizons (0.2–0.8 m) of the cropping fields was commonly above field capacity (Figure 

3.3) ranging between 14.7 and 18 Vol-% in the BIS. In the following season, the tomato 

field was frequently irrigated with higher GIA per event, and consequently exhibited 

much higher SMC in the root zone (0.37 m) and higher variations in soil water that 

significantly declined towards the end of the cropping season (Figure 3.3b). In the leafy 

vegetables field, only the root-zone (0–0.2 m) showed SMC variations along with a 

midseason decline in 2014–2015 (Figure 3.3c). Such midseason decline was also 

observed in the following year, which was characterized by more frequent and larger 

water applications, resulting in considerable SMC variations (Figure 3.3d).  

As in the BIS, sub-soil SMC in the medium-scale VIS was constantly found above 

field capacity, which measured between 22 and 38.9%. The topsoil showed generally 

lower and much variable SMC as the crop-water uptake was highest in the uppermost 

part of the root-zone and due to the relatively high infiltration rate (226 mm h–1). 

Because of frequent and ample water applications, the root-zone SMC in both VIS fields 

was observed to be near field capacity (about 20%), except in the tomato field that 

showed a prolonged decline in soil water during the middle of the 2014–2015 season 

caused by the interrupted water supply. This interruption resulted from the poor 

condition of the lateral canal that fed the tomato field in the VIS, coupled with the high 

ET (up to 7.9 mm day–1) observed in this period (Figures 3.3e, f). 

The field application efficiency (Ea) ranged more widely from 25–68% in the 

small-scale scheme with an average of 46% across the dry seasons than in the medium-

scale scheme (52–58%) where it averaged 56% (Table 3.4). 
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Figure 3.3  Dry-season gross irrigation amounts and soil moisture profiles in the 
cropping fields of (a) tomato (BF1) in 2014–2015, (b) tomato (BF1) in 
2015–2016, (c) leafy vegetables (BF2) in 2014–2015, (d) leafy vegetables 
(BF2) in 2015–2016 in the Bongo irrigation scheme, and (e) tomato (BNF1) 
in 2014–2015, and (f) leafy vegetables (BNF2) in 2014–2015 in the Vea 
irrigation scheme. 
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Table 3.4  Estimation of field application efficiency in cropping systems of the Vea 
and the Bongo irrigation schemes in two dry seasons 

Scheme/ Crop type Field 

label 

Net irrigation 

requirement 

(mm) 

Capillary 

rise 

(mm) 

Gross 

irrigation 

amount 

(mm) 

Field 

application 

efficiency (%) 

Bongo irrigation scheme 2014–2015 dry season 

Tomato BF1 329 157 586 42 

Tomato BF6 431 25 1247 30 

Leafy vegetable BF2 61 130 195 52 

Leafy vegetable BF3 169 94 404 54 

  2015–2016 dry season 

Tomato BF1 362 169 1719 58 

Tomato BF6 331 27 2259 59 

Leafy vegetable BF2 186 57 792 25 

Leafy vegetable BF3 137 48 683 26 

Rice BF5 58 391 556 68 

Vea irrigation scheme 2014–2015 dry season 

Tomato VF1 440 18 615 58 

  2015–2016 dry season 

Tomato BNF1 220 34 1137 52 

Leafy vegetable BNF2 123 40 707 58 

 
 

 

3.3.4 Overall system efficiency (Es) 

The Es averaged 50% across the schemes and seasons. This was lower than the scheme 

management target of 65% in the VIS, which was not achieved in any of the fields due 

to over-irrigation (Table 3.5). The relatively high Es in one of the two fields located along 

the same lateral in the VIS indicates the variable field application efficiency rather than 

locational differences along the canal. The community management of the small-scale 
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BIS did not set targets for the Es. The system efficiency in all BIS fields showed a wide 

range of values between 24 and 68% across the seasons (Table 3.5).  

 

Table 3.5  Overall system efficiency of Vea and Bongo irrigation schemes for major 
crops in the 2014–2015 and 2015–2016 dry seasons 

Scheme/ Crop 

type 

Field 

label 

Length of 

canal 

section (m) 

Network 

efficiency per 

canal section (%) 

Overall system efficiency 

(%) 

Bongo irrigation scheme  2014–2015 2015–2016 

Tomato BF1 358 99.4 42 58 

Tomato BF6 378 93.5 28 55 

Leafy vegetable BF2 358 99.4 52 25 

Leafy vegetable BF3 347 94 51 24 

Rice BF5 60 99.9 n.d. 68 

Vea irrigation scheme   2014–2015 2015–2016 

Tomato BN F1 30 99.7 n.d. 52 

Leafy vegetable BN F2 50 99.6 n.d. 58 

n.d. = not determined 

 

 

3.3.5 Delivery performance ratio 

The delivery performance ratio of the Vea and the Bongo irrigation schemes was 1.8 and 

0.7, respectively. In the VIS, water supply was planned to last for 4–5 continuous days 

owing to the poor state of canals, but was allowed to continue for 8 days because 

diversions from the main canal delayed water flow to the fields. In the BIS, the agreed 

12-h water supply per irrigation day was interrupted by community meetings or 

traditional ceremonies. These interruptions occurred throughout the observation 

period in at least 2 days out of the 4–5 irrigation days per week. The actual duration of 

daily water supply averaged 8 h. 
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3.3.6 Relative transpiration 

The reduced daily relative transpiration (Tr < 1) was common in crops of both schemes, 

reaching critical values in 2015–2016 (Figure 3.4). The Tr was most likely more reduced 

by over-irrigation (and resulting hypoxia) than by water stress, given that the GIA by far 

exceeded the NIR in most of the cropping fields and that the sub-soil moisture was often 

recorded above field capacity. For example, tomato field BF6 was over-irrigated at the 

GIA of 1,247 mm whereas the seasonal NIR was only 413mm (Table 3.4). The Tr of the 

BIS crops in the 2014–2015 dry season indicates that only leafy vegetables (BF2) 

experienced midseason water stress (average Tr = 0.76) as a result of an insufficient 

irrigation supply. Only the rice field in BIS exhibited optimal Tr (Tr = 1) throughout 2015–

2016, which could be attributed to the aerobic irrigation practice and the groundwater 

contribution through capillary rise (Table 3.4). Tomato (BF1) and leafy vegetables (BF2) 

fields also showed Tr close to the optimum for most of the 2015–2016 season with 

occasional declines due to over-irrigation (Figure 3.4b, d). 

 

 

3.3.7 Crop yield and water productivity 

Similar ranges of tomato yields were observed across the irrigation schemes and seasons 

between 34.3 and 49.2 Mg ha−1 in the BIS, and between 35.3 and 51.3 Mg ha−1 in the 

VIS. The GIA vs. The NIR comparison indicated various degrees of over-irrigation in all 

fields (Table 3.4). This led to a wide range of tomato Wp values from 1.5 to 8.4 kg 

m–³ (Table 3.6).  

The leafy vegetable yields were highly variable from 2.3 to 37.5 Mg ha−1 

depending on crop type, observation season, and irrigation scheme. Overall, the BIS 

produced 76% higher yields of leafy vegetables than the VIS, which might be due to 

different types of leafy vegetable produced and, in particular, due to the legume 

(cowpea) intercropping by the BIS farmers in contrast to the roselle monocropping 

practice in the VIS. Inter-season comparisons among the BIS fields showed generally 

higher Wp in the 2014–2015 dry season than in the subsequent dry season. 
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Figure 3.4  Daily relative transpiration in fields with (a) tomato in 2014–2015) and (b) 
in 2015–2016, (c) leafy vegetables in 2014–2015, and (d) in 2015–2016 in 
the Bongo and Vea irrigation schemes. 

 
 

The highest crop-water productivity observed in tomato BNF1 field in 2015–

2016 could be due to high yield, possibly attributable to better agronomic management 

considering that field application efficiency was only 52% (Table 3.4). Water stress 

observed in the 2014–2015 dry season in leafy vegetables (BF2) and the over-irrigation 

of tomato (BF6) led to lower yields than in the other fields with the same crops (BF3 and 

BF1, respectively). 

 

 

 

 

 



Performance evaluation of reservoir-based irrigation schemes 

44 

 

Table 3.6  Water productivity of main irrigated crops in the Vea and the Bongo 
irrigation schemes 

Scheme/ Crop type Field 

label 

Farm 

size (ha) 

Crop yield 

(Mg ha–1) 

Crop water 

productivity (kg m–³) 

Bongo irrigation scheme 2014-2015  

Tomato BF1 0.04 49.2 8.4 

Tomato BF6 0.10 34.3 2.7 

Leafy vegetable (roselle) BF2 0.03 17.7 8 

Leafy vegetable (roselle) BF2* 0.03 12.5 6.4 

Leafy vegetable (lettuce) BF3 0.02 37.5 9.3 

  2015-2016 

Tomato BF1 0.04 42.8 2.5 

Tomato BF6 0.09 39.6 1.5 

Leafy vegetable (cowpea) BF2 0.03 9.2 1.2 

Leafy vegetable (cowpea) BF2* 0.03 9.7 2.7 

Leafy vegetable (cowpea) BF3 0.01 10.4 2.3 

Leafy vegetable (lettuce) BF3* 0.01 8.8 1.3 

Rice BF5 0.08 5.1 0.9 

Vea irrigation scheme 2015-2016 

Tomato VF1 0.08 35.3 n.d. 

Tomato BNF1 0.10 51.3 4.5 

Leafy vegetable (roselle) BNF2 0.05 2.3 0.3 

Leafy vegetable (roselle) BNF2* 0.05 5 1.1 

* = Second cultivation 
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3.4 Discussion 

3.4.1 Performance of reservoirs and water conveyance systems 

High WAI observed in both dry seasons in the VIS indicates that water availability was 

not a constraint but rather that water resources were underutilized due to 

malfunctioning water delivery infrastructures. Deterioration of infrastructures in small-

and medium-scale reservoir-based irrigation schemes, mostly constructed in the 1960s 

and 1970s, has also been alarming in several other SSA countries including but not 

limited to Ethiopia (Berhane et al., 2016), Benin (Djagba et al., 2014) and Burkina Faso 

(Poussin et al., 2015).  

However, the low WAI observed in the small-scale BIS indicates insufficient 

water availability, exacerbating competing needs among fishery, livestock farming, and 

urban withdrawals. Remarkably, although the Bongo reservoir has never been desilted 

since its construction 55 years ago, its maximum depth only decreased from 6 m to 5.5 m 

(10% loss in storage capacity). Adwubi et al. (2009) reported a larger storage capacity 

loss (4–33%) over a period of 10 years due to siltation in the UER small-scale reservoirs. 

Berhane et al. (2016) observed that about 61% of the micro-dam reservoirs in Ethiopia 

faced siltation problems. Alemaw et al. (2013) also reported that siltation remains a big 

problem in reservoirs in Botswana, where the mean sediment delivery ratio was 81% 

and the sedimentation rate measured 1.74 Mg ha–1 year–1.  

 

 

3.4.2 Field application efficiency 

Although the water storage of the BIS reservoir was larger at the start of the 2015–2016 

season than in the previous dry season, the overall GIA used by the same irrigators also 

rose. Over-irrigation and double (and triple in some cases) cultivation of leafy vegetables 

during the same season offset the reservoir storage increment. The rise in GIA following 

the increase in reservoir storage agreed with the observation of Faulkner (2006) that the 

UER farmers tend to over-irrigate when water availability increases. Observed GIA for 

tomato in both seasons was about 2–5 times the values previously reported for the UER. 

In particular, Barry and Forkuor (2010) and Mdemu (2008) reported a GIA between 274 
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and 852 mm only. Considering similar methods of field-level water application across 

irrigation schemes in the UER, higher GIA might be related to poor irrigation scheduling, 

lack of measuring instruments to control water volume at field inlets, differences in 

water availability in the schemes as well as the shortcomings in institutional aspects of 

water management (Acheampong et al., 2014). Crop over-irrigation led to low field-

application efficiency in most of the fields in this study. Such low values are however, 

not unusual for the UER and fall within the range (21–62%) reported by Yamoah-Antwi 

(2009) for small-scale reservoir-based irrigation schemes in the region. 

Tomato yields were within the upper range or higher than those reported by 

Barry and Forkuor (2010) for the UER (20–36.8 Mg ha−1); on the contrary, Wp values 

were in the lower range or smaller than those reported (2.8–9.7 kgm−³). Rice yield was 

in the upper range of values determined by García-Bolaños et al. (2011) in Mauritania 

(0.6–5.7 Mg ha−1) and by Poussin et al. (2015) in Burkina Faso and the UER (0.7–7.5 Mg 

ha−1). The Wp of rice (0.9 kgm−³) fell within the range (0.8–1.0 kg m−³) measured by Zwart 

and Bastiaanssen (2004) under comparable, alternate wet-dry conditions in India. In 

contrast, García-Bolaños et al. (2011) reported lower rice Wp (0.3–0.6 kg m−³) under a 

continuous flooding irrigation system in Mauritania. 

 

 

3.4.3 Need for whole-system evaluation 

In the medium-scale VIS, the most immediate improvement might be achieved at field 

level by taking into consideration that reservoir storage still appeared adequate and 

repair of the water delivery system would require significant investments. Both under- 

and over-irrigation were observed there, indicating on-farm irrigation scheduling 

(implicated by the field application efficiency) as the most influential factor for raising 

crop-water productivity as well as overall system efficiency. In the small-scale BIS, where 

insufficient reservoir storage and huge water losses along the conveyance network were 

observed, improving field-level water application alone might increase current field 

application efficiency from 46% to 68%. To this end, the management entity should 
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comply with the defined irrigation schedule, which is currently compromised by 

frequent interruptions for community meetings.  

Through the use of WAI, multiple water uses besides crop irrigation highlighted 

the competition that occurred in 2014–2015 in the BIS. This may explain the discrepancy 

with the previous conclusion that water deficit was not pronounced in the UER by 

Faulkner (2006) who estimated relative water supply (in the range of 2.4–5.7) by 

considering the water use for crop irrigation only. A similar conclusion was also made 

for Burkina Faso and the UER by Poussin et al. (2015), who juxtaposed gross irrigation 

demand only with reservoir storage capacity. 

 

 

3.5 Conclusions 

The whole-system evaluation of small- and medium-scale reservoir-based irrigation 

schemes in the UER of Ghana, taking into account their multi-purpose use, reveals that 

several technical factors undermined the performance of the irrigation systems. In 

particular, insufficient storage caused by the competing needs of a growing population 

compromised the performance of the small-scale scheme. In the medium-scale scheme, 

the deteriorated water delivery infrastructure reduced water use to less than 40% of the 

potential storage. Addressing these technical aspects requires significant capital 

investment, but even without it, the overall system efficiency might be increased from 

the current average of 50% to 68% through improved irrigation scheduling at field level. 

To this end, a rise in the field application efficiency from 58 to 68% is achievable through 

eliminating over-irrigation, in particular of tomato fields. This suggests the need for 

further research on the development of suitable irrigation scheduling tools for the 

prevalent cropping systems while considering the external factors that influence the 

field-level water applications during rainy and dry seasons. Evidently, the whole-system 

approach, with a consideration of all water demands, is most appropriate in the 

performance evaluation of reservoir-based irrigation schemes in water-scarce regions, 

as it makes it possible to determine which of the scheme components must be primarily 

improved.
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4 IMPROVING DRY-SEASON CROP IRRIGATION SCHEDULES IN MEDIUM- AND 

SMALL-SCALE RESERVOIR-BASED IRRIGATION SCHEMES 

4.1 Introduction 

Prominent amongst the identified problems in the evaluated UER reservoir-based 

irrigation schemes (Chapter 3) was the issue of over-irrigation. This problem of over-

irrigation which resulted from inappropriate irrigation schedule at field level limited the 

water-use potential of the irrigation schemes, as water scarcity occasionally occurred 

during the observation period with resultant negative impacts on other multiple users 

of the water reservoir. Hence, in order to utilize the potential of these schemes as far as 

possible, development of location-specific and context-compatible irrigation schedules 

for these schemes is needed.  

In water-scarce environments such as the UER, sustainable soil-water 

management (e.g., irrigation scheduling) has been identified as the most influential 

among agricultural management practices, including soil fertility management, selection 

of crop varieties, and control of pests and diseases (Droogers and Aerts, 2005; 

Rockström and Barron, 2007), for enhancing food security as well as improving the 

smallholders' livelihoods (Molden et al., 2010; Rockström and Barron, 2007; Zwart and 

Bastiaanssen, 2004). Ineffective irrigation has dire consequences on crop yield, and so 

site-specific irrigation scheduling for crop cultivation has to be properly developed by 

taking into consideration the prevailing biophysical context in order that crop yield is 

not compromised (Ali and Talukder, 2008; Zwart and Bastiaanssen, 2004).  

Consequently, crop-water-soil-atmosphere models are useful to determine the 

most appropriate irrigation schedules for the prevalent cropping practices and for 

assessing possible alternative scenarios (Greaves and Wang, 2016; Sekyi-Annan et al., 

2017; Steduto et al., 2012). Among the common models capable of simulating irrigated 

crop growth, those requiring large inputs of primary data, for instance APSIM (Gaydon 

et al., 2017) and CropSyst (Sommer et al., 2008), which are not available free of charge, 

e.g., the irrigation scheduling model ISAREG (Fortes et al., 2005), might not be favorable 

for applications in SSA. The DSSAT model (Jones et al., 2003) has been commonly used 

to assess the impact of agronomic inputs on irrigated crop yield but at present is not 
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suitable to evaluate the effectiveness of irrigation practices. Other models such as 

CROPWAT (Surendran et al., 2015) do not distinguish between evaporation (non-

beneficial water consumption) and crop transpiration, and do not provide an estimation 

of yield or, such as EPIC (Wang and Li, 2010), apply simplified routines to evaluate the 

groundwater contribution to crop-water use. Modest requirement for input data, 

consideration of all major agro-hydrological processes, and free availability enabled 

many applications of the FAO AquaCrop model (Raes et al., 2012a) worldwide, including 

in SSA (Mabhaudhi et al., 2014; Walker et al., 2013; Wellens et al., 2013).  

Current irrigation schedules in reservoir-based irrigation schemes in SSA are 

based on locally established rules governing access to water for irrigation, but with little 

consideration of crop- and site-specific water demands in terms of quantity and timing, 

resulting in inappropriate irrigation supply to crops (Chapter 3). For instance, in 

reservoir-based irrigation schemes in onion fields in the UER, the ratio of the total water 

supply to the gross irrigation amount (GIA) ranged between 2.4 and 5.7 during dry-

season crop irrigation (Faulkner et al., 2008). The problem of over-irrigation in such 

schemes was further confirmed by GIAs ranging from 380 to 852 mm for dry-season 

tomato production in the UER (Mdemu, 2008), and between 274 and 838 mm for 

tomato cropping under groundwater irrigation in the same region (Barry and Forkuor, 

2010). Simulations have suggested that the NIR for dry-season tomato ranges from 359 

to 372 mm in the reservoir-based Koga irrigation scheme in Ethiopia (Asres, 2016), 

emphasizing the need and the potential to improve water management through 

irrigation scheduling to reduce water losses and increase productivity. 

This chapter focuses on the assessment and the improvement of the efficiency 

and appropriateness of the traditional irrigation scheduling for the principal dry-season 

crops including tomato, rice and leafy vegetables, and subsequently, the development 

of an improved irrigation schedule for tomato cultivation using the AquaCrop model. 

Tomato was selected over rice and leafy vegetables for the AquaCrop modeling analysis 

because of the high economic value of this crop in the UER.  
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4.2 Materials and methods 

4.2.1 Study sites 

The data collection spanned two consecutive dry seasons from October 2014 to March 

2015, and from November 2015 to April 2016 in the Vea and Bongo irrigation schemes. 

Water allocation in the VIS is supply-driven, and thus a technician implements water 

supply schedules for 4–5 days continuously with 3–4 days interval between schedules. 

In the BIS, where water allocation is demand driven, water can flow for the whole week 

(8 hours per day on average) except on market days, which occur twice a week. 

Currently, irrigators in the small-scale scheme water their crops with as much water as 

possible on days after the community’s market days, i.e., three days in a week or any 

other day, resulting in waste of water (Faulkner, 2006). 

Tomato (Solanum lycopersicum) and rice (Oryza sativa) monocropping and 

leafy vegetables intercropping including roselle (Hibiscus sabdariffa), lettuce (Latuca 

sativa) and cowpea (Vigna unguiculata) are the principal dry-season cropping systems 

in the UER. Local tomato varieties (namely ‘buffalo’) and Jasmine 85 rice were cultivated 

in both the BIS and the VIS. Although the crop calendar differs from one farmer to 

another owing to differences in planting and harvesting dates, similar farming practices 

exist in both schemes (see Appendices 9.9 and 9.10). Tomato was cropped once in the 

dry season in both the BIS and the VIS. The growing and irrigation period lasted for 113–

123 days. In this period, mature tomato fruits were harvested 2–3 times. The duration 

of tomato seedling development was about 14 days. The growing period of rice was 

between 107 and 128 days including the 21 days of seedling development. In the BIS, 

rice is either transplanted or sown directly in the field, whereas only the transplanting 

was observed in the VIS. Roselle sowed by dibbling required between 30 and 49 days to 

mature, whereas lettuce matured in 48–52 days after planting. The seedling 

development of lettuce lasted for 14 days. The crop cycle of cowpea cultivated for its 

leaves was 34–50 days. Leafy vegetables were cropped 2–3 times in the dry season 

owing to the short growing cycle.  

The application of NPK (0.21–0.7 Mg ha–1) and ammonium sulfate fertilizer 

(0.1–0.34 Mg ha–1) for tomato and rice, and of Karate (lambda-cyhalothrin) and DDT 
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insecticides for tomato only was observed in both schemes. The fertilizers were applied 

twice in tomato and rice fields at 2–3 weeks after planting and later at 4–5 weeks after 

planting.  

 

4.2.2 Model description 

The AquaCrop model, developed by the Food and Agricultural Organization (FAO) of the 

United Nations, is a crop-water productivity model that simulates the response of crop 

yield to water supply. The model runs in daily time steps, which provides the basis for 

investigating the appropriateness of irrigation schedules to meet crop-specific demands 

in practical scheme operation. Consequently, the AquaCrop-based schedules have a high 

potential to increase crop-water productivity (Steduto et al., 2012). The model can also 

simulate the effect of climate variability (including variations in temperature, 

atmospheric carbon dioxide and available water/rainfall) on crop production (Steduto 

et al., 2012). Additional useful features of the model are the ability to separate soil 

evaporation from crop transpiration and to quantify the capillary rise from shallow 

groundwater. 

 

 

4.2.3 Data collection and preparation 

The input data required for running AquaCrop were collected from two fields under each 

cropping system in each irrigation scheme (Figure 3.2). The model performance, based 

on the simulation of aboveground dry matter (DM), was assessed with multiple inbuilt 

statistical indicators including the coefficient of determination (R²), normalized root 

mean square error (NRMSE), Nash–Sutcliffe model efficiency coefficient (EF), and 

Willmott's index of agreement (d). The R² indicates the fraction of the variance in 

observed data explained by the model and ranges from 0 (no agreement) to 1 (perfect 

agreement) between simulated and observed data. Typically, R² > 0.5 is acceptable for 

watershed simulations (Raes et al., 2012a). The NRMSE signifies the relative difference 

between the simulated results and the measured data, with NRMSE < 10%, 10–20%, 20–

30%, and > 30% showing excellent, good, fair, and poor model performance, 
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respectively. The EF quantifies the relative magnitude of the residual variance in 

comparison to the variance of the observed data. The EF ranges between 1 and -∞, 

where 1 signifies a perfect match between predictions and observations, 0 indicates that 

predictions are as accurate as the observed means, and a negative value indicates poor 

predictability. The d quantifies the extent to which the measured data are approached 

by the predictions and ranges from 0 (no agreement) to 1 (perfect agreement). 

 

 

Estimation of potential evapotranspiration and net irrigation requirement  

Maximum and minimum air temperatures (Tmax and Tmin, °C), average relative humidity 

(RH, %), wind speed (U, m s–1) and solar radiation (Rs, W m–²) were measured by weather 

stations installed near the study schemes, at 10° 54’ 54.1” N and 0° 49’ 35.3” W in the 

BIS, and 10° 50’ 44.6” N and 0° 54’ 43.9” W in the VIS. The solar radiation data in 2014–

2015 and wind speed data in 2015–2016 measured in the BIS were used for the analysis 

in the VIS owing to unavailable local data. Potential ET was calculated based on the 

Penman-Monteith equation using the FAO ET0 calculator as follows (Allen et al., 1998):  
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where, ET0 is potential evapotranspiration (mm day–1), Rn is net radiation (W m–2), G is 

soil heat flux (W m–2), (es–ea) is vapour pressure deficit of the air (kPa), ρa is mean air 

density at constant pressure (kg m–3) Cp is specific heat of the air (MJ kg–1 °C–1), Δ is slope 

of the saturation vapour pressure-temperature relationship (kPa °C–1), λw is latent heat 

of vaporization (MJ kg–1), γa is psychrometric constant (kPa °C–1), rc is crop resistance (s 

m–1), and ra is aerodynamic resistance (s m–1). 

Next, the NIR was calculated based on the actual ET computed in the AquaCrop 

as follows (Doorenbos, 1997; Steduto et al., 2012): 
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𝑁𝐼𝑅 = ∑ [(𝐾𝑐𝑏+𝐾𝑒)𝐸𝑇𝑜𝑖

𝑛
𝑖=1 − 𝑃𝑒𝑖

− 𝐶𝑅𝑖 − 𝑊𝑏𝑖
]    (4.2) 

 

where n is the number of days in the crop cycle, Kcb is the basal crop coefficient, Ke is 

evaporation coefficient, Pe is effective rainfall (mm), CR is capillary rise (mm), and Wb is 

stored soil water (mm). 

 

 

Crop growth and yield parameters  

Sampling areas were demarcated within all selected fields for the collection of total 

above-ground biomass (AGB) (Bell and Fischer, 1994). For row-cropped fields (tomato 

and leafy vegetables), three rows were defined for biomass sampling. For broadcast 

fields (rice), a 1.5-m wide area which extended to the end of the field was demarcated. 

The AGB was collected bi-weekly, i.e., four times during the vegetative and reproduction 

stages, and once at harvest. Sampling usually started when the crops were well 

established about 21 days after planting. On each sampling day, three samples were 

collected per field. In particular, in the row-cropped fields, one sample was taken from 

each defined row by cutting all plants along a 1-m rod. For rice, the  

1-m² quadrat (or a 0.25-m² quadrat depending on the size of the field) was randomly 

thrown three times in the demarcated area and the plants in the quadrat were cut. At 

harvest, two 8-m row sections in each of the selected row-cropped fields, and an 8-m² 

section in rice fields were demarcated for AGB measurement. AGB was sampled and 

weighed as the yield components, i.e., tomato fruits, rice grains and leaves of the leafy 

vegetables. The samples were weighed, oven-dried at 70–90°C until constant weight for 

at least 72 hours and subsequently the AGB and the yield components were weighed 

(Bell and Fischer, 1994). The planting dates differed from one farmer to another, hence 

the growth stages of the crops at the time of sampling were not the same. Harvest index 

(HI) was estimated as the ratio of the dry yield component to total AGB. Because of the 

short crop cycle of leafy vegetables, only two AGB samplings before the final harvest 

were possible. The tomato yields in BF1, VF1 and BNF1 could not be assessed during the 

2015–2016 season owing to the early onset of the rainy season in 2016, leading to 
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waterlogging and failed tomato yields. Tomato yield measurements were therefore 

conducted in the neighboring fields characterized by similar soil conditions and farming 

practices. The HI of leafy vegetables could not be computed because their AGB was 

harvested by farmers for consumption or sale. Owing to failed rice crops in the BIS and 

technical challenges in the VIS, rice yield could not be assessed in the 2014–2015 dry 

season. 

Plant density (PD) was determined in all sampling fields. Row spacing was 

measured as the average distance between two adjacent rows at five random locations 

in the field (Bell and Fischer, 1994). 

The leaf area index (LAI) was measured bi-weekly with the SunScan probe (SS1-

UM-2.0) at five random locations at each field. It was converted into canopy cover (CC) 

using Eq. 4.3 developed for maize and soybean but applicable to other crops with similar 

leaf shapes (Steduto et al., 2012). The LAI measurements were interrupted in the 2015–

2016 dry season due to technical challenges.  

 

𝐶𝐶 = 1.005[1 − exp(−0.6𝐿𝐴𝐼)]1.2         (4.3) 

 

Maximum rooting depth (RD) was measured by manual excavations of at least 

three plants per crop at harvest time. A summary of all crop growth and yield 

parameters measured and details of their measurements each season are provided in 

Appendices 14–16. 

The GIAs at the farm inlets were determined as described in section 3.2.5. 

 

 

Groundwater monitoring 

Groundwater was monitored from October 1, 2014 to May 11, 2016 to analyze the 

impact of the groundwater table on water fluxes. Seven georeferenced wells were 

installed in the irrigable area of the VIS and five in the BIS (Figure 3.2) at characteristic 

locations, such as valley bottoms, lateral sites, sites near the dam, and in the middle of 

the schemes. PVC pipes perforated up to 1 m from the base were used. The depths of 
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the wells ranged from 2.7 to 5.5 m in the VIS and from 2 to 4.9 m in the BIS. An electric 

contact meter (Seba KLL 077) was used to measure the depth to groundwater table 

weekly throughout the 2014–2016 observation period.  

Capillary rise was estimated in AquaCrop based on soil type and hydraulic 

characteristics (Raes et al., 2012b) as follows: 

 

𝐶𝑅 = exp (
ln(𝑧)−𝑏

𝑎
)      (4.4) 

 

where CR is the expected capillary rise in mm day-1, z is the depth to groundwater table 

in m, and a and b are coefficients specific to the soil type and the hydraulic 

characteristics. 

 

 

4.2.4 Model parameterization and validation for tomato 

The 2014–2015 dry-season dataset from BF1 was used to parameterize the AquaCrop 

model, and the inter-farm model validation was done using the 2014–2015 dataset from 

the BF6 field. For the inter-seasonal validation, the dataset from the BF1 field collected 

in 2015–2016 was used. Data from the other tomato fields (VF1 and BNF1) were either 

unavailable or incomplete owing to technical and agronomic (crop disease attack) 

challenges in 2014–2015, and the early onset of rainfall destroying the crops in 2016. 

The parameters modified in the model were in relation to the weather, soil, 

and agronomic practices (Table 4.1). All the default crop-specific parameters for tomato 

were used in the simulation. The climate file in daily time steps for the period May 21, 

2014 (beginning of the rainfed farming season in 2014) to May 24, 2016 (end of the 

2015–2016 dry-season farming) was created using the AquaCrop ETo file, maximum and 

minimum temperature file, and a rainfall file. 
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Table 4.1  Modified parameters and field data for parameterizing and validating 
AquaCrop for tomato. 

Data required Model 

parameterization 

Inter-farm model 

validation 

Inter-seasonal 

validation 

Site conditions    

Cropping field BF1 (2014–2015) BF6 (2014–2015) BF1 (2015–2016) 

Crop variety ‘Buffalo’ ‘Buffalo’ ‘Buffalo’ 

Growing cycle October 22, 2014 –  

February 11, 2015 

November 11, 2014 – 

March 6, 2015 

November 23, 

2015 – March 18, 

2016 

Planting method Transplanting Transplanting Transplanting 

Soil fertility in relation 

to biomass 

Moderate Moderate Moderate 

Initial canopy cover Very low cover Very low cover Very low cover 

Maximum canopy 

cover 

Fairly covered Fairly covered Fairly covered 

Maximum rooting 

depth 

0.35 m 0.37 m 0.28 m 

Harvest index 0.29 0.29 0.21 

Crop development In growing degree 

days 

In growing degree 

days 

In growing degree 

days 

Field management    

Soil surface cover No mulch No mulch No mulch 

Irrigation practice Irrigation amount per 

event in mm from BF1 

Irrigation amount per 

event in mm from BF6 

Irrigation amount 

per event in mm 

from BF6 

Soil physical 

characteristics 

Field capacity, wilting 

point, soil moisture, 

texture, and thickness 

of soil layer from soil 

pit 1 in BF1 

Field capacity, wilting 

point, soil moisture, 

texture, and thickness 

of soil layer field from 

soil pit 2 near BF6 

Field capacity, 

wilting point, soil 

moisture, texture, 

and thickness of 

soil layer from soil 

pit 1 in BF1 
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Groundwater level Weekly depth to 

groundwater table 

from BR well 

Weekly depth to 

groundwater table 

from BD well 

Weekly depth to 

groundwater 

table from BR well 

Simulation period Calendar of growing 

cycle 

Calendar of growing 

cycle 

Calendar of 

growing cycle 

Field data file Aboveground dry 

matter from BF1 

Aboveground dry 

matter from BF6 

Aboveground dry 

matter from BF1 

Note: BD= Bongo downslope well, BR=Bongo right well, BF = Bongo field 

 

 

4.2.5 Improved irrigation scheduling for tomato cultivation 

Datasets from tomato fields (BF1 and BF6) in 2014–2015 were used to optimize the 

irrigation schedule. Irrigation files for each field were created for the furrow irrigation 

method. The time criterion selected was 'Allowable depletion of 80% of readily available 

water' and the irrigation depth criterion used was 'Back to field capacity'. The irrigation 

water quality was specified as 'excellent' assuming a negligible salinity of irrigation 

water. 

Next, GIA was estimated from the NIR assuming a mean Ea of 55% (Table 3.4). 

In order to translate the observations into useful information for irrigators in the UER, 

Eqs. 4.5 and 4.6 were generated from a graph of GIA against irrigation duration observed 

under the traditional irrigation practice for determining the depth of water in the canal 

(gauge reading (GR), mm) and the duration of irrigation (DI, s) required to achieve the 

estimated GIA, respectively.  

𝐺𝑅 = −0.03𝐺𝐼𝐴3 + 3.4𝐺𝐼𝐴2 − 133.44𝐺𝐼𝐴 + 1769.48   (4.5) 

𝐷𝐼 = 1.11𝐺𝐼𝐴3 − 132.01𝐺𝐼𝐴2 + 5165.04𝐺𝐼𝐴 − 64897.57 (4.6) 
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4.3 Results  

4.3.1 Reference evapotranspiration in the dry season 

Maximum ET0 values (8.5–9.2 mm day–1 in the BIS; 7.9–8.6 mm day–1 in the VIS) were 

recorded in February-March, while the minimum values (3–4.5 mm day–1 in the BIS; 2.7–

4.4 mm day–1 in the VIS) were observed in late October-November in both study 

schemes (Figure 4.1), which can be explained by the temperature, radiation and 

humidity levels in those periods. The relatively low ET0 values observed in the VIS during 

the 2014–2015 season could be attributed to the lower wind speed observed in the area 

as well as a relatively humid micro-climate created by the presence of the bigger Vea 

reservoir. Similar observations were made by Mdemu (2008) in the Tono irrigation 

scheme located in the same region. The similar ET0 values computed for the 2015–2016 

dry season in the BIS and the VIS (Figure 4.1b) most probably resulted from using the 

same data on wind speed and solar radiation for both schemes in that period as local 

data were not available. 

 

 

4.3.2 Crop growth parameters 

The PD of tomato was slightly higher in the BIS (3.3–3.5 plants m–² in 2014–2015, and 

3.6–4.2 plants m–² in 2015–2016) than in the VIS (2.6 plants m–² in 2014–2015, and 3.3–

3.5 plants m–² in 2015–2016) (Table 4.1). The difference was partly due to the narrower 

interrow spacing observed in the BIS (0.28–0.35 m) compared to that in the VIS (0.25–

0.54 m). The remarkably low tomato DM in the Vea BNF1 field in 2014–2015 was due to 

the impact of plant root disease (Figure 4.2). The PD of leafy vegetables ranged between 

51 and 200 plants m–² in the BIS, and between 91 and 118 plants m–² in the VIS.  
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Figure 4.1  Daily reference evapotranspiration (ET0) in the Bongo and Vea irrigation 
schemes observed in (a) 2014–2015 and in (b) 2015–2016 dry seasons. 
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Figure 4.2 Above-ground biomass of (a) tomato in 2014–2015, (b) tomato in 2015–
2016, and (c) rice in 2015–2016 during the irrigated dry season in the 
Bongo and Vea irrigation schemes. 

 

The downward trend of the LAI of tomato observed in the BIS in 2014–2015 

might be due to an insufficient water supply in the later part of the dry season. In 

contrast, the upward trend of the LAI in the VIS reflects an adequate water supply 

(Figure 4.3). The maximum RD of tomato, leafy vegetables and rice ranged between 0.14 

and 0.37 m (Table 4.1), a result of the shallow soil depth, which does not exceed 0.4 m 

in the UER. 
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Figure 4.3 Leaf area index of irrigated tomato during the 2014–2015 dry season in 
the (a) Bongo and (b) Vea irrigation schemes 

 

 

4.3.3 Crop yield components 

Similar crop yields were observed across the irrigation schemes with remarkable 

differences between fields (section 3.3.7; Table 4.1). Low HI values of tomato in the 

range of 0.21–0.3 were determined across irrigation schemes and seasons. In contrast, 

the HI of rice in the BIS was high (0.58). The yield of rough rice was 5.09 Mg ha–1, whereas 

that of white milled rice amounted to 2.4 Mg ha–1. 

 

 

4.3.4 Groundwater level and capillary rise 

The average depth to the groundwater table varied between 0.7 and 2.8 m in the VIS, 

and between 0.6 and 1.3 m in the BIS during 2014–2016 (Figure 4.4). In the BIS, the soil 

waterlogging detected in the BM well occurred in August, and the deepest level (3 m 

measured in the BD well) was observed in May. The BNF2 well in the VIS recorded the 

shallowest groundwater level (0.1 m) in August, while the VF1 well measured the 

deepest groundwater level (3.4 m) in May. The rise in the groundwater table in August 

most probably resulted from the rainfall recharge.  
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Table 4.1  Irrigated crop growth and yield components in the Bongo and Vea 
irrigation schemes during the 2014–2015 and 2015–2016 dry seasons 

Crop 

type 

Field 

label 

Plant 

density 

(plants m–²) 

Maximum 

rooting 

depth (m) 

Fresh yield 

(Mg ha–1) 

Dry yield 

(Mg ha–1) 

Harvest 

index 

Bongo irrigation scheme              2014–2015 

Tomato BF1 3.5 0.35 49.24 2.26 0.29 

Tomato BF6 3.3 0.37 34.28 2.49 n.d. 

Roselle BF2 161 0.20 17.65 n.d. n.d. 

Roselle BF2* 55.7 0.20 12.5 n.d. n.d. 

Cowpea BF2* 31.1 0.20 22.79 n.d. n.d. 

Lettuce BF3 6.3 0.24 37.49 n.d. n.d. 

   2015–2016    

Tomato BF1 3.6 0.28 42.83 1.42 0.22 

Tomato BF6 4.2 n.d. 39.55 1.57 0.21 

Cowpea BF2 25.7 0.14 9.19 n.d. n.d. 

Cowpea BF2* 84 0.14 9.67 n.d. n.d. 

Cowpea BF3 49.3 n.d. 10.42 n.d. n.d. 

Roselle BF2** 104.5 0.27 9.74 n.d. n.d. 

Lettuce BF3* 5.5 n.d. 8.83 n.d. n.d. 

Rice BF5 117.8 0.27 n.d. 5.09 0.58 

Vea irrigation scheme                   2015–2016 

Tomato VF1 3.3 0.24 35.34 1.56 0.29 

Tomato BNF1 3.5 0.29 51.25 2.20 0.30 

Roselle BNF2 38.8 0.22 2.33 n.d. n.d. 

Roselle BNF2* 116.3 0.22 5 n.d. n.d. 

* = Second cultivation in the season, ** = Third cultivation in the season, n.d. = not 
determined/applicable 

 

Furthermore, the groundwater level was influenced by nearby streams, 

reservoirs, and fish ponds. For example, the BU well in the BIS and the VU, BNM and 

BoN wells in the VIS exhibited stable and relatively shallow groundwater levels due to 
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their proximity to the Bongo reservoir, Vea fish ponds, and streams, even when deep 

groundwater levels were recorded at other wells (Figure 4.4). Irrigation events also 

impacted on the water table. For instance, the groundwater level in the BF1 well in the 

tomato field increased steadily from the beginning of the dry season and declined from 

March 4, 2015, when 2014–2015 dry-season irrigation was discontinued. However, the 

VF1 and BNF2 wells in the VIS in the tomato and leafy vegetable fields, respectively, 

exhibited rather variable groundwater levels even during the irrigation period and a 

downward trend after the end of the irrigation period. 
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Figure 4.4 Elevation of the groundwater table during (a) 2014–2015 dry season in 
Bongo (b) 2015–2016 dry season in Bongo (c) 2014–2015 dry season in 
Vea (d) 2015–2016 dry season in Vea (e) 2015 rainy season in Bongo and 
(f) 2015 rainy season in Vea. 
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Figure 4.5 Daily capillary rise into the root zone of dry-season irrigated (a) tomato 
in 2014–2015, (b) tomato in 2015–2016, (c) leafy vegetables in 2014–
2015, (d) leafy vegetables in 2015–2016, and (e) rice in 2015–2016 
simulated in AquaCrop. 

 

The simulated capillary rise (CR) into the root-zone of tomato was 18–157 mm, 

while in leafy vegetable fields it was 40–130 mm across irrigation schemes and cropping 

seasons. The CR into the rice field in the BIS was as high as 391 mm in 2015–2016, which 

could be due to its closeness to the Bongo reservoir, and it thus benefited from seepage 

losses from the reservoir during the dry periods of the crop cycle (Figure 4.5). 
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4.3.5 Traditional irrigation scheduling 

The observed GIA for all the irrigated crops was lower in 2014–2015 than in 2015–2016 

in both schemes (Tables 4.2 and 4.3). Particularly in the BIS, the irrigation interval in all 

the cropping fields was generally shorter in 2015–2016 than in the previous dry season 

owing to the increased availability of water in the Bongo reservoir. Across both irrigation 

schemes and both dry seasons, the overall range of GIA in tomato fields was 21–67 mm 

per irrigation event and 584–2,559 mm per season. These values for leafy vegetables 

were 17–62 mm and 195–707 mm, respectively, whereas those for rice were 10–16 mm 

and approximately 556 mm, respectively. The number of irrigation events for tomato 

ranged between 20 and 29 in both dry seasons. These values for leafy vegetables and 

rice were 9–23 and 10–16, respectively. The relatively low GIA for leafy vegetables was 

due to the short crop cycle.  
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Table 4.2  Observed field-level irrigation practices for cropping systems in the 
Bongo and Vea irrigation schemes during the 2014–2015 dry season  

Crop type Field 

label 

Gross irrigation 

amount per 

crop cycle (mm) 

Gross irrigation 

amount per 

event (mm) 

Irrigation 

interval 

(day) 

Water 

productivity 

(kg m–³) 

Bongo irrigation scheme 

Tomato BF1 586 19–50 4 8.4 

Tomato BF6 1247 17–137 5 2.7 

Roselle BF2 221 17–19 3 8 

Roselle BF2* 195 7–40 3 6.4 

Lettuce BF3 404 8–38 4 9.3 

Rice BF5 n.d. 13–34 8 n.d. 

Vea irrigation scheme 

Tomato VF1 615 13–35 5 n.d. 

Tomato BNF1 584 21–42 5 n.d. 

Roselle BNF2 287 16–40 4 n.d. 

Rice VF2 n.d. 29–48 7 n.d. 

Rice BoNF2 n.d. 15–27 7 n.d. 

n.d. = not determined 

 

 

4.3.6 Model performance 

The results of model evaluation for tomato DM indicated a good agreement (EF=0.65–

0.83, and d=0.87–0.96) and acceptable error margins (NRMSE=17.7–42%) (Figure 4.6). 
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Table 4.3  Observed field-level irrigation practices for cropping systems in the 
Bongo and Vea irrigation schemes during the 2015–2016 dry season  

Crop type Field 

label 

Gross irrigation 

amount per 

crop cycle (mm) 

Gross irrigation 

amount per 

event (mm) 

Irrigation 

interval 

(day) 

Water 

productivity 

(kg m-³) 

Bongo irrigation scheme  

Tomato BF1 1719 20–93 3 2.5 

Tomato BF6 2559 14–133 2 1.5 

Cowpea BF2 359 29–58 4 1.2 

Cowpea BF3 454 12–99 4 2.3 

Lettuce BF3* 683 22–83 3 1.3 

Rice BF5 556 25–113 7 0.9 

Vea irrigation scheme  

Tomato BNF1 1137 33–79 4 4.5 

Roselle BNF2 707 43–99 4 0.3 

Roselle BNF2* 435 43–93 4 1.1 

* = Second cultivation 
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Figure 4.6 Evaluation of Aquacrop-simulated and observed aboveground biomass 
of dry-season irrigated tomato in (a) BF1 in 2014–2015, (b) BF6 in 2014–
2015, and (c) in BF1 in 2015–2016, in the Bongo irrigation scheme. 

 

 

4.3.7 Improved irrigation schedule for tomato  

The optimized irrigation schedule for the dry-season tomato cropping indicated the 

need for longer irrigation intervals (6–13 days) in the early crop growth stage and during 

ripening. In contrast, in the flowering and yield formation stages, irrigation intervals 

should be shorter (2–8 days) (Figure 4.7). The simulated NIR for tomato ranged from 21 

to 29 mm per irrigation event and from 311 to 495 mm per season. The GIA for tomato 

was estimated as 38–52 mm per irrigation event and 566–900 mm per season, assuming 

a 55% application efficiency. 

The improved irrigation schedule would result in a 4–14% yield increment 

while saving 130–1,325 mm (22–52% of GIA) of water, which is otherwise lost through 
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percolation beyond the root zone under the traditional irrigation practice in either 

scheme (Table 4.4). 

 

 

Figure 4.7  Improved irrigation schedule for tomato cultivation during the dry season 
based on the example of BF1 field in the Bongo irrigation scheme. Gross 
irrigation amount was estimated using a field application efficiency of 
55% (Table 3.4). 
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Table 4.4  Potential water saving and yield increase under the improved irrigation 

schedule during the dry seasons of 2014–2016 as simulated in 
AquaCrop. 

Field label Potential 

water 

saving 

(mm) 

Tomato yield 

under traditional 

irrigation (Mg ha-1) 

Tomato yield 

under improved 

irrigation (Mg ha-1) 

Potential 

yield 

increase 

(%) 

BF1 (2014–2015) 130 2.30 2.40 4 

BF6 (2014–2015) 775 2.01 2.30 14 

BF1 (2015–2016) 1,325 1.58 1.79 14 

 
 

4.4 Discussion 

4.4.1 Crop yield 

The yields of fresh tomato fruits were similar across schemes but varied remarkably 

between fields owing to differences in field-level agronomic and irrigation practices and 

constraints. For instance, the tomato root disease in the VIS field impacted negatively 

on the yield, as the application of insecticides protected only the aboveground biomass. 

Over-irrigated tomato in 2015–2016 showed high fresh yields and a higher water 

content of these fruits, i.e., 95% vs 93% in water-scarce 2014–2015. The values of 

tomato fresh yield corresponded to the upper ranges measured by Barry and Forkuor 

(2010) who reported 20–36.8 Mg ha–1 of fresh tomato yields in the UER, but were higher 

than the 18 Mg ha–1 reported by Adu-Dapaah and Oppong-Konadu (2002) for rainfed 

tomato production in the Ashanti and Brong Ahafo regions of Ghana. These findings 

reflect the positive impact of irrigation. However, the lower HI of tomato observed in 

our study (0.21–0.3), compared to values (0.5–0.65) reported by Steduto et al. (2012) 

for rainfed tomato in drylands, could be partly due to over-irrigation. The excessive 

water use was reflected in the low field application efficiencies (30–59%) characteristic 

of almost all the examined fields (Table 3.4). 

The high yields of roselle in the fields in BIS could be due to the influence of 

mixed cropping with cowpea (a leguminous crop) practiced by the farmers (section 
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3.3.7). The observed yield of leafy vegetables was consistent with the values (1.3–7.5 

Mg ha–1) previously reported by Poussin et al. (2015) for the UER.  

The rice yield was consistent with those of Steduto et al. (2012), who reported 

yield of rough rice under aerobic conditions in the range of 4–6 Mg ha–1. Poussin et al. 

(2015) and García-Bolaños et al. (2011) measured average yields of rough rice of about 

4.1 Mg ha–1 and 3.4 Mg ha–1 in Burkina Faso and Mauritania, respectively (section 3.3.7). 

The HI of rice derived in this study, however, was higher than the 0.45–0.5 reported by 

Steduto et al. (2012). This high rice yield could be due to an improved soil aeration 

resulting from the alternate wet-dry method of irrigation practiced in the rice fields. 

 

 

4.4.2 Irrigation practice 

The examination of field-level irrigation practices during the dry season revealed 

ineffective water application for crop production resulting in over-irrigation in both 

schemes, mainly due to lack of consideration of the crop growth stages and water 

storage characteristics of the soil. Over-irrigation was signified by the high GIA in the 

water-abundant 2015–2016 season, when farmers in both schemes used more water by 

shortening irrigation intervals (Table 4.3), leading to lower water productivity than in 

the previous, water-scarce season. Because of the lack of appropriate irrigation 

scheduling and the absence of flow measuring devices in the canals, farmers applied as 

much water as possible especially to the tomato crop, and further increased the water 

application rate with increasing water availability in the reservoir. Faulkner et al. (2008) 

also observed the tendency for excessive water use in response to increasing water 

availability and attributed this phenomenon to the lack of knowledge of efficient and 

effective water application at field level. Moreover, the GIAs of tomato in our study were 

100–400% higher than the range of values (274 and 852 mm) previously reported for 

the UER (Barry and Forkuor, 2010; Mdemu, 2008), thus confirming the need for water 

saving. 
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4.4.3 Improved irrigation scheduling 

The need to adjust irrigation schedules to the local hydro-geological conditions is 

suggested by the modelling analysis. For example, a significant contribution of capillary 

rise from the groundwater was shown to satisfy the NIR of crops. However, the 

groundwater contribution was highly variable, reflecting the spatial variability in hydro-

geological characteristics of the cropping fields. According to Bos et al. (2009), there 

could be varying contributions of shallow groundwater (≤ 3 m) to the root-zone soil 

moisture in fine-textured soils such as those mostly found in the Bongo and Vea 

irrigation schemes. The need to account for this variability complicates the development 

and application of improved farmer irrigation scheduling in the UER.  

The observed increases in tomato yield (4–14%) under the improved irrigation 

schedule most likely resulted from the reduction of the negative effect of over-irrigation 

on crop yield, as the over-irrigated cropping fields showed the highest potential (14%) 

to increase yields under the improved irrigation schedule. The simulated magnitude of 

water saving in the reservoir-based irrigation schemes, which was 22–52% of the GIA 

under the current irrigation practices, indicates that improving irrigation schedules 

offers considerable potential for water saving in the dry season in the UER irrigation 

systems. Overall, however, the improvement of field-level irrigation scheduling alone 

might not be sufficient for optimizing water productivity and availability in the schemes 

(section 3.4.3). To achieve full benefits, equipping irrigation infrastructure with 

discharge-measuring and dosage structures, and repair of the deteriorating water 

conveyance and distribution sub-systems in the UER would be necessary (Ali and 

Talukder, 2008; Pereira, 2007). These interventions to upgrade infrastructure would 

need to be accompanied by training of irrigators in handling these facilities, and by 

further development of water management institutions towards reliable 

implementation of the recommended irrigation schedules. Furthermore, the improved 

irrigation schedule developed for tomato cultivation should undergo on-farm testing 

with farmers' participation to facilitate its out-scaling.  
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4.5 Conclusions 

The potential increment of tomato yield under the improved irrigation schedule ranged 

between 4 and 14% while saving 130–1,325 mm of irrigation water. These results show 

that improving traditional irrigation scheduling under the current performance of the 

schemes would not only enhance water saving during the dry season for the competing 

water demands but also increase the yield of irrigated crops. Therefore, irrigation 

scheduling considering site and crop specificity is an appropriate tool for raising 

irrigation efficiency and water productivity, and subsequently for addressing water 

scarcity in multi-purpose irrigation schemes in semi-arid environments of Sub-Saharan 

Africa. The AquaCrop model has proven to be a reliable tool for developing improved 

irrigation schedules for tomato cultivation in the UER, as it aided in the assessment of 

the efficiency of the traditional irrigation practices and in development of site-specific 

irrigation schedules for this commercially important crop. Parameterized using field data 

collected in reservoir-based irrigation schemes, the AquaCrop model can be further used 

for improving the irrigation schedule for other cropping systems. 
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5 POTENTIAL OF SMALL- AND MEDIUM-SCALE RESERVOIR-BASED IRRIGATION 

SCHEMES FOR SUPPLEMENTAL IRRIGATION IN THE RAINY SEASON 

5.1 Introduction 

Potential water saving through improved irrigation scheduling in the dry season 

(Chapter 4) provides the opportunity for exploring additional uses of reservoir storage 

such as supplemental irrigation to bridge dry spells in the rainy season. The reservoir-

based irrigation schemes in Sub-Saharan Africa (SSA) which store water, mostly surface 

runoff, in the rainy season, were originally designed to supply water for dry-season crop 

irrigation, the livestock sector, fish farming, and domestic use, but not considering 

supplemental irrigation in the rainy season. However, increasing climate variability calls 

for exploring the feasibility of supplemental irrigation for crop cultivation in the rainy 

season (Sanfo et al., 2017). Supplemental irrigation has considerable potential to 

increase grain yield, particularly if provided during critical stages in the crop growing 

cycle (booting and grain filling) (Ali and Talukder, 2008). Because of increasing 

competition for stored water in the dry season, the extra water demand for 

supplemental irrigation is likely to result in a mismatch between water supply and 

demand in the reservoir-based irrigation schemes. Thus, the requirement for 

supplemental irrigation might be satisfied with water saved through increased irrigation 

efficiency as a result of improving dry-season irrigation scheduling (Chapter 4). 

Insufficient water availability, owing to variability in rainfall patterns and 

frequent dry spells exacerbated by climate change (Cook and Vizy, 2012; Sylla et al., 

2016), threatens food security and rural livelihoods in SSA (Sanfo et al., 2017). There, 

more than 95% of arable land is under rainfed crop production, which contributes 81% 

to the regional food basket (McCartney and Smakhtin, 2010; Rockström and Barron, 

2007). Because of variable rainfall and low-input cultivation (Adwubi et al., 2009; 

Kranjac-Berisavljevic et al., 2014), grain yields are only from 1 to 2 Mg ha–1, whereas 

attainable yields range between 4 and 5 Mg ha–1 in the region (Dzanku et al., 2015; 

Rockström and Barron, 2007). Furthermore, risks of crop failure in SSA have increased 

due to land degradation and soil nutrient depletion (Folberth et al., 2013; Vlek et al., 

2017a), signified by negative annual NPK balances with –26 kg ha–1 N, –7 kg ha–1 P2O5, 
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and –23 kg ha–1 K2O as reported in Drechsel et al. (2001). On a continental scale, annual 

NPK losses averaged 54 kg ha–1 (and ranged between 9 kg ha–1 in Egypt and 88 kg ha–1 

in Somalia), resulting in land degradation in more than 40% of Africa’s total farmland 

(Henao and Baanante, 2006; Vlek et al., 2017b). These risks have further reduced the 

already insufficient financial capacity of farmers to invest in sustainable land 

management strategies (Rockström and Barron, 2007; Sanfo et al., 2017). However, 

such strategies are key for optimizing trade-offs between food production and other 

agro-ecosystem services (Vlek et al., 2017b). 

The limited number of studies on supplemental irrigation in SSA has not 

explored the feasibility of using dry-season water savings in reservoir-based irrigation 

schemes. For example, Sanfo et al. (2017) investigated the economic value of 

supplemental irrigation of grain crops using farm ponds of 300 m³ capacity in south-

western Burkina Faso, and reported that in years of low rainfall, supplemental irrigation 

could be a cost-effective intervention to reduce risks of crop failure and increase 

farmers’ incomes. Fox and Rockström (2003) also assessed the effect of supplemental 

irrigation, based on 150 m³ capacity farm ponds, on the grain yield of sorghum in 

northern Burkina Faso and found that supplemental irrigation alone resulted in 

approximately 56% increase in grain yield, making it a useful technology to compensate 

the water shortage in dry spells and shorten the yield gap. Mustapha (2012) studied the 

water productivity of pearl millet under supplemental irrigation applied at five different 

crop growth stages in Nigeria, and reported that the supplemental irrigation amount of 

84 mm applied at booting and grain filling stages could result in a 69% increase in yields. 

In light of the foregoing discussion, this chapter focuses on the assessment of 

the potential for introducing supplemental irrigation in the rainy season as an 

adaptation to climate change. To this end, (i) the frequency and duration of dry spells 

were analysed, (ii) the AquaCrop model was parameterized to render applications for 

rainfed cropping systems in the UER of Ghana, and (iii) the requirement for 

supplemental irrigation of maize was determined under different climate scenarios for 

the rainy season. Maize was chosen over the other rainfed cereal crops because of its 

relatively high socio-economic relevance in the UER.  
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5.2 Materials and methods 

5.2.1 Study site 

The analysis covered the rainy season of 2014 on farms in both the BIS and the VIS sized 

0.01–0.31 ha. Waterlogging on the cropping fields was commonly observed after heavy 

rainfall events owing to the absence of drainage facilities. The principal rainfed cropping 

systems in the UER are monocropping of rice (Oryza sativa) and maize (Zea mays), and 

intercropping of sorghum (Sorghum bicolar) with millet (Pennisetum glaucum). In 

particular, Jasmine 85 rice, a local variety of sorghum, an early-maturing variety of millet 

and Obatanpa maize were cultivated in both irrigation schemes. With the exception of 

rice, all rainfed crops were planted in rows. The shares of the cropping area in the BIS in 

the rainy season were 50%, 40%, and 10% for millet-sorghum, rice and maize, 

respectively, while in the VIS these shares were 34%, 59% and 3%. No supplemental 

irrigation of the rainfed crops was practiced at the time of this study. The AGB of millet 

is not shown in this chapter because, as explained below, millet was harvested shortly 

after the commencement of the study.    

The growing cycle of sorghum ranged between 142 and 143 days after planting 

(DAP), whereas that of millet ranged between 75 and 96 DAP (Appendix 9.11). For rice 

it was 87–107 DAP, and 84–113 DAP for maize (Appendix 9.11). The rates of 

agrochemicals applied on the rainfed crops were similar to those for the irrigated crops 

(see section 4.2.1). On millet-sorghum fields, manure was applied only at plowing, and 

no mineral fertilizer was applied thereafter. In contrast, rice fields received no manure 

but were fertilized during the crop growing cycle. On maize fields, manure was applied 

at plowing, and mineral fertilizer at a later growth stage. Similar to the dry-season 

irrigated crops, the fertilizers were applied twice in rice and maize fields at 2–3 weeks 

after planting and later at 4–5 weeks after planting.  

 

5.2.2 Data collection and preparation in the rainy season 

The same procedures were followed for the collection of the AquaCrop input data as 

described in section 4.2.3. For the dry matter determination in cereal crops (millet, 

sorghum and rice), their grain yields were measured separately from the total AGB.  
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Crop data could only be collected in 2014 because in the following year 

technical challenges (sudden resignation of the field assistant) prevented the 

measurements in both schemes. Because of the late start of the field data collection in 

2014, the AGB of maize during the vegetative stage, and that of early millet at both 

vegetative and reproduction stages was not measured. Of the maize fields, only the BF1 

field was monitored in the BIS, as the BF6 maize field was not cropped by the farmer in 

the 2014 rainy season. Measurement of rice yield components in the BIS BF5 field was 

not possible due to crop failure resulting from the improper application of herbicides. A 

summary of all crop growth and yield parameters measured, and details of their 

measurements are provided in Appendices 17–19. 

Only the groundwater data monitored in 2015 were used for the simulations 

because of the late installation of the groundwater wells in 2014. Furthermore, 

groundwater measurements could not be carried out between June 3, 2015 and July 15, 

2015 owing to a malfunctioning groundwater meter.  

  

 

Rainfall time series analyses and scenario development 

Rainfall data during the years 1998–2014 were obtained for each scheme from the 

Tropical Rainfall Measuring Mission (TRMM) database. The total annual rainfall and total 

number and duration of dry spells were determined by the following conditions: (i) onset 

of rainfall is the beginning of a 10-day period between the second dekad of April and the 

first dekad of May during which the cumulative rainfall is ≥ 25 mm, and a dry spell 

ensuing within 30 days from the start of the 10-day period is ≤ 8 days (Amekudzi et al., 

2015; Cook and Vizy, 2012), (ii) cessation of rainfall is the last rainfall event between the 

third dekad of September and the second dekad of October (Amekudzi et al., 2015), (iii) 

dry spell is two or more consecutive non-rainy days (Kranjac-Berisavljevic et al., 2014), 

as even a period of two days without rainfall at critical growth stages is detrimental to 

crop production in savanna environments, particularly during periods of low rainfall, and 

(iv) frequency of dry spells is the number of dry spells during the rainy season in the 

particular year under focus. 
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Additionally, the inter- and intra-seasonal variability of rainfall was expressed 

in the coefficient of variation based on the annual and monthly rainfall data, 

respectively: 

 

𝐶𝑉 =
𝜎

𝜇
∗ 100 [%]         (5.1) 

 

where CV is coefficient of variation, σ is the standard deviation, and μ the mean of the 

rainfall data. 

For estimation of the supplemental irrigation requirement for maize, two 

climate scenarios (wet and dry regimes) were formulated based on rainfall amount and 

the frequency of dry spells. The first scenario (S1) was a wet year characterized by 20% 

probability of exceedance, i.e., the likelihood of the occurrence of rainfall ≥ 1057 mm, 

and by less frequent dry spells (Raes, 2004). The second scenario (S2) was a dry year 

characterized by 80% probability of rainfall occurrence exceeding 796 mm and by 

frequent dry spells (Raes, 2004) (Figure 5.1).   
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Figure 5.1  Probability plot of the total annual rainfall for the Vea and Bongo 
irrigation schemes for 1998–2014. 

 

 

5.2.3 Model parameterization and validation for maize 

The 2014 rainy season dataset from the VF1 field was used to parameterize the 

AquaCrop model for maize, and the 2014 maize dataset from BF1 field was used to 

validate the model (inter-farm validation). The 2014 maize crop data from BNF1 were 

found to be unreliable owing to the effects of waterlogging, and thus were excluded 

from the AquaCrop analysis. The parameters modified in the model were climate, soil 

characteristics, and agronomic practice (Table 5.1). All the default crop-specific 

parameters for the maize crop were used. The climate file in daily time steps for the 

period May 21, 2014 (beginning of the rainfed farming season in 2014) to May 24, 2016 

(end of the 2015–2016 dry-season farming) was created using the AquaCrop ETo file, 

maximum and minimum temperature file, and a rainfall file. 
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Table 5.1  Modified parameters and field data used for the parameterization and 
validation of the AquaCrop model for rainfed maize. 

 
Data required Model parameterization Inter-farm model validation 

Site conditions   

Cropping field VF1 (2014) BF1 (2014) 

Crop variety Obatanpa Obatanpa 

Growing cycle July 3, 2014 – August 25, 2014 May 24, 2014 – August 14, 2014 

Planting method Direct sowing Direct sowing 

Soil fertility in relation 

to biomass 

Poor Poor 

Initial canopy cover High canopy cover High canopy cover 

Maximum canopy 

cover 

Fairly covered Fairly covered 

Maximum rooting 

depth 

0.30 m 0.36 m 

Harvest index 0.51 0.53 

Crop development In growing degree days In growing degree days 

Field management   

Soil surface cover No mulch No mulch 

Soil physical 

characteristics 

Field capacity, wilting point, 

soil moisture, texture, and 

thickness of soil layer from soil 

pit 3 in BNF1 

Field capacity, wilting point, soil 

moisture, texture, and thickness 

of soil layer from soil pit 1 in BF1 

Groundwater level Weekly depth to groundwater 

table from VF1 well 

Weekly depth to groundwater 

table from BR well 

Simulation period Calendar of growing cycle Calendar of growing cycle 

Field data file Aboveground dry matter from 

VF1 

Aboveground dry matter from 

BF1 

 

 

5.2.4 Supplemental irrigation requirement for maize 

Irrigation scheduling was simulated for the maize fields (VF1 and BF1) by selecting the 

Net irrigation water requirement option in AquaCrop, and 50% allowable root zone 
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depletion. The simulation was run to determine the supplemental irrigation 

requirement under the two aforementioned climate scenarios.  

 

 

5.3 Results  

5.3.1 Reference evapotranspiration in the rainy season 

The maximum ET0 value (7 mm day–1 in the BIS; 6.5 mm day–1 in the VIS) was recorded 

in May, whereas the minimum value (1.4 mm day–1 in both the BIS and the VIS) was 

observed in September in both study schemes (Figure 5.2). Similar to the observation in 

the dry season, the slightly lower ET0 estimated for the VIS in 2014 could be attributed 

to a micro-climate created in the area by the Vea reservoir. 

 

 

Figure 5.2  Daily reference evapotranspiration in the Bongo and Vea irrigation 
schemes in the 2014 rainy season 

 

5.3.2 Rainfall and dry spells  

Rainfall data analysis revealed a high inter-seasonal variability of rainfall (17%) and 

frequent dry spells lasting for 2–16 days (Figure 5.3). From 1998 to 2014, the frequency 

of dry spells in Vea and Bongo ranged between 18 and 28 occurrences. Furthermore, 
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the analysis indicates increasing intra-seasonal rainfall variability in both schemes during 

the observation period. 

 

 

Figure 5.3  Total annual rainfall and frequency of dry spells (FDS) in the Vea and 
Bongo irrigation schemes during the years 1998–2014. 

 

 

5.3.3 Crop growth parameters 

Maximum rooting depth (RD) and plant density (PD) of maize ranged between 0.3 and 

0.36 m, and between 4 and 5 plants m–², respectively, across the irrigation schemes 

(Table 5.1). The decline in the maize AGB in VF1 and BNF1 in the VIS was attributed to 

the effects of late planting (July 3, 2014) and waterlogging, respectively (Figure 5.4a). 

The RD and PD of sorghum ranged from 0.32 to 0.39 m, and from 16 to 19 plants m–², 

respectively, whereas the values for millet ranged between 0.3 and 0.36 m, and between 

20 and 49 plants m–², respectively, across the schemes. The PD of rice in the BIS was in 

the range of 283-466 plants m-² across the schemes (Table 5.1).  

Development of sorghum AGB showed variable trends attributable to the 

heterogeneity of observed PD on the individual fields or the effect of field-level 
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agronomic practices (Figure 5.4b). In general, rice AGB featured an upward trend 

through the vegetative and reproduction stages across the schemes (Figure 5.4c). 

 

 

Figure 5.4  Above-ground dry matter of (a) maize, (b) sorghum, and (c) rice in the 
Bongo and Vea irrigation schemes in the 2014 rainy season.  

 

 

5.3.4 Crop yield components 

In 2014, the maize yield ranged between 1.2 and 2.9 Mg ha–1, and the HI ranged from 

0.41 to 0.53 across the irrigation schemes (Table 5.1). The relatively low yield was 

observed in the BNF1 maize field in the VIS, possibly due to the combined effect of late 

planting and waterlogging that occurred on this farm. A relatively high maize yield was 

recorded in the BIS. The yield of sorghum ranged from 0.9 to 1.7 Mg ha–1. The HI of 

sorghum was remarkably variable among fields, ranging between 0.13 and 0.47. The 

yield of millet and HI ranged widely between 0.1 and 0.8 Mg ha–1, and between 0.03 and 

0.53, respectively. The extremely low yield and HI of millet in BoNF1 field was due to 

late harvesting by the farmer after most grains had been consumed by birds. The yield 
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of rough rice and HI ranged from 3.3 to 4.3 Mg ha–1, and from 0.43 to 0.54, respectively 

(Table 5.1). White rice yield measured 1.7–2.8 Mg ha–1 across the schemes.  

 

Table 5.1  Crop growth and yield components in the Bongo and Vea irrigation 
schemes in the rainy season of 2014 

Crop type Field 

label 

Plant 

density 

(plants m–²) 

Maximum 

rooting 

depth (m) 

Grain yield 

(Mg ha–1) 

Harvest 

index 

Bongo irrigation scheme    

Maize BF1 4.4 0.36 2.9 0.53 

Sorghum BF2 19 0.39 1.7 0.47 

Sorghum BF3 19 0.36 1.0 0.13 

Millet BF2  26 0.36 0.8 0.53 

Millet BF3 47 0.35 0.8 0.48 

Rice BF4 283 n.d. 3.3 0.43 

Rice BF5  349 n.d. n.d. n.d. 

Vea irrigation scheme    

Maize VF1 5.5 0.30 2.6 0.51 

Maize BNF1 4.1 0.35 1.2 0.41 

Sorghum BoNF1 16 0.32 1.4 0.11 

Sorghum BNF2 16 0.35 0.9 0.33 

Millet BoNF1 20 0.33 0.1 0.03 

Millet BNF2 49 0.30 0.4 0.15 

Rice VF2 466 n.d. 4.3 0.54 

Rice BoNF2 316 n.d. 2.8 0.51 

n.d. = not determined 
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5.3.5 Groundwater contribution to maize fields 

The capillary rise into the root zone of maize simulated by AquaCrop was 43–147 mm in 

2014. The daily contribution of capillary rise ranged widely from 0.1‒11.7 mm across 

schemes (Figure 5.5). 

 

 

Figure 5.5 Daily capillary rise into the root-zone of maize in the Bongo and Vea 
irrigation schemes simulated by AquaCrop 

 

 

5.3.6 Model performance 

The model evaluation under maize DM simulation showed a good agreement (EF=0.16-

0.78; d=0.6-0.95) and an acceptable error margin (NRMSE=12-13%) (Figure 5.6). 

However, the low EF (0.16) for maize BF1 field could be due to the fact that biomass 

data for the vegetative stage of maize was missing for that field. 
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Figure 5.6 Evaluation of AquaCrop-simulated and observed above-ground biomass 

of maize in the Vea (a) and Bongo irrigation schemes (b) 
 

 

5.3.7 Scenario analysis of supplemental irrigation requirement for maize 

The favorable climate scenario S1 was observed in 1999 when 1,240 mm of rainfall and 

20 dry spells were recorded in the rainy season, while the S2 in 2012 showed 871 mm 

of rainfall and 28 dry spells (the highest frequency of dry spells during the 17-year 

observation period) (Figure 5.3). Notably, although 2014 recorded the lowest rainfall 

(687 mm), it was not considered the driest year due to the lower frequency of dry spells 

(21) compared with 2012. The supplemental irrigation requirement for rainfed maize in 

S1 was predicted in the range of 88–105 mm (25–29% of NIR of maize). The values 

predicted for S2, the scenario of low rainfall and frequent dry spells, ranged between 

107 and 126 mm (30–35% of NIR of maize) (Figure 5.7). The simulated increase in maize 

yield under supplemental irrigation ranged between 5 and 14%.  
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Figure 5.7  Daily rainfall and net irrigation requirement for supplemental irrigation 

of maize in (a) 1999 wet year and (b) 2012 dry year, as simulated in 
AquaCrop based on the example of maize BF1 field in the Bongo 
irrigation scheme. 
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5.4 Discussion 

5.4.1 Crop yields 

Late planting and/or waterlogging due to the lack of drainage facilities reduced maize 

grain yield to only 1.2 Mg ha–1 in the affected field in the VIS. This observation confirms 

late planting as one of the causes of sub-optimal yield levels of rainfed maize, as rainfall 

typically declines towards the end of the rainy season. Sallah et al. (1997) reported a 

30% loss in maize yields due to late planting in northern Ghana. The observed range of 

maize grain yields in our study (1.2–2.9 Mg ha–1) was similar to that reported for the 

fertilized Obatanpa maize variety in Ghana (1.3 to 2.7 Mg ha–1; (Srivastava et al., 2017)). 

The values of Dzanku et al. (2015) for SSA (1.3–1.4 Mg ha–1) were within the lower range 

of values in this study. However, Sugri et al. (2013) reported the yield potential of the 

Obatanpa maize variety to be 5.5 Mg ha–1 in Ghana.  

Although no mineral fertilizer was applied on sorghum-millet fields, the grain 

yields of sorghum were consistent with those of Steduto et al. (2012), who reported 

grain yields of 0.6 Mg ha–1 and 1–1.5 Mg ha–1 under low input practices in Sudan and 

Burkina Faso, respectively, and 0.5–0.9 Mg ha–1 as a common range in Africa. Breman et 

al. (2001), however, reported values less than 1 Mg ha–1 in Mali due to extremely low 

soil fertility. The observed HI of sorghum, similar to the findings of Steduto et al. (2012), 

was remarkably variable between fields and ranged from 0.1 to 0.5. The observed grain 

yields of early-maturing millet are consistent with values (0.5–0.8 Mg ha–1) reported by 

Breman et al. (2001) in Mali but on average (0.53 Mg ha–1) are slightly higher than the 

average yield in semi-arid regions (0.5 Mg ha–1; de Rouw, 2004).  

The observed grain yield of rough rice was lower than the average yield (4–5 

Mg ha–1) of fertilized lowland rainfed rice reported by Steduto et al. (2012). In contrast, 

the observed HI of rice was higher than 0.35 reported by Steduto et al. (2012).  

Variations in practices of soil nutrient management and often insufficient 

applications of fertilizer in the examined fields could have contributed to the variability 

in yields. Folberth et al. (2013) emphasized that even modest additions of N and P 

fertilizer might double maize production in most of SSA. Insufficient application of 
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mineral fertilizer is common due to the high cost (Folberth et al., 2013; Srivastava et al., 

2017). 

 

 

5.4.2 Feasibility of supplemental irrigation 

The observed temporal variability in rainfall across the irrigation schemes highlights the 

urgent need for water management strategies to reduce the risks in rainfed crop 

production. The intra-seasonal variability of rainfall revealed by the frequency of dry 

spells was found to influence water demand for crop growth more strongly than the 

total rainfall over the growing season. In the VIS, for example, the supplemental 

irrigation requirement for maize simulated with the 2014 rainfall was 29 mm, whereas 

in the wetter year 2012, this value was 107 mm due to the higher frequency of dry spells 

(28). Similarly, although 1999 was recognized as the wet year for S1 according to the 

aforementioned criteria, the simulated NIR for supplemental irrigation of maize was 88 

mm due to the higher intra-seasonal variability (69%) in that year than in 2014 (64%). 

Furthermore, the temporal rainfall variability was consistent with the findings of Fox and 

Rockström (2003), who observed high rainfall variability of > 25% during the years 1923–

1995 in the Sahelian region. Kranjac-Berisavljevic et al. (2014) estimated dry spells 

lasting for 2–13 days in the Savanna agro-ecological zone of Ghana. 

The supplemental irrigation requirement for maize estimated by AquaCrop 

(29–126 mm) was within the range of the values determined by Rockström and Barron 

(2007) in semi-arid Mwala in Kenya (20–240 mm). Overall, considering only the crop 

irrigation sector, the quantity of water saved through improved irrigation scheduling of 

dry-season tomato (as discussed in section 4.4.3) is largely sufficient to accommodate 

supplemental irrigation of maize in the rainy season, and thus as an adaptation to the 

rainfall variability and recurrent dry spells. Even for the dry climate scenario of low 

rainfall coupled with frequent dry spells, about 126 mm of water at field level would be 

required for the supplemental irrigation of maize during the rainy season. 

Furthermore, the simulated yield increase in maize under supplemental 

irrigation would offer an incentive for managers of the Bongo and Vea schemes to 
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explore this strategy. It should be noted that due to the reservoir losses through 

evaporation and seepage, some of the water saved in the dry season might not be 

available for supplemental irrigation in the rainy season or the latter can compromise 

water availability for the dry-season crop production. Therefore, an effective year-round 

irrigation schedule considering the water availability of the entire scheme is required.  

 

 

5.5 Conclusions 

High temporal variability in rainfall and frequent dry spells lasting for 2–16 days are 

common in the UER, requiring adaptive measures to enhance rainfed crop production. 

The supplemental irrigation requirement for maize under the dry climate scenario of 

low rainfall and frequent dry spells was estimated between 107 and 126 mm, whereas 

for periods of high rainfall and rare dry spells, between 88 and 105 mm would be 

required. These demands can be satisfied via improved irrigation scheduling for dry-

season tomato that can potentially save 130–1,325 mm of water, which would 

otherwise be lost through percolation and evaporation. Maize yield increment in the 

range of 5–14% is predicted under supplemental irrigation. 

Given the sub-optimal nutrient management practices observed across the 

study sites, further research should investigate the impact of soil fertility on water 

productivity in assessing the potential of these management practices combined for 

improving crop yields, and the year-round food security in Sub-Saharan Africa. 
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6 SCENARIO-BASED, FUNCTIONAL ASSESSMENT OF MULTI-PURPOSE 

RESERVOIR-BASED IRRIGATION SCHEMES UNDER CLIMATE VARIABILITY  

6.1 Introduction 

After assessing the irrigation performance (Chapter 3), and developing an irrigation 

schedule to tackle the overarching problem of over-irrigation in the reservoir-based 

irrigation schemes (Chapter 4) as well as exploring the use of the potential water saving 

in the dry season for supplemental irrigation in the rainy season (Chapter 5), 

comprehensive information about the current state of the reservoir-based irrigation 

schemes in the UER and possible interventions regarding some of the revealed problems 

has been acquired. In particular, the water savings in the dry season through appropriate 

and effective irrigation scheduling provide an opportunity for supplemental irrigation in 

the rainy season, thus ensuring a year-round water management strategy rather than 

the dry-season-based water management (Sekyi-Annan et al., 2018a). It is thus 

worthwhile at this juncture to capitalize on this information to further conduct a 

functional assessment of these schemes to satisfy competing water demands under 

climate variability. The assessment of the reservoir performance (Chapter 3) is based on 

the existing water storage in the reservoirs, however the assessment under climate 

variability presented in this chapter went a step further to examine the hydrological 

characteristics of the catchment upstream generating runoff into the reservoir. 

Competition for water resources in reservoir-based irrigation schemes in Sub-

Saharan Africa (SSA) is on the rise owing to population growth, climate change and 

multiple water users, posing thus imminent constraints on environment, livelihoods, 

development and economic growth (Adwubi et al., 2009; Fowe et al., 2015). Small- and 

medium-scale reservoirs have been constructed on streams (Fowe et al., 2015) and 

mostly in valleys (Adwubi et al., 2009) all over SSA to provide a year-round water 

availability for competing water users including crop irrigation, livestock, fishery and 

domestic use (Acheampong et al., 2014; Chapter 3). Especially in regions with distinct 

rainy and dry seasons as in northern Ghana, small- and medium-size reservoirs were 

considered as a promising water management intervention and thus introduced (Venot 

et al., 2012). High rainfall intensity combined with low infiltration rate of soils in the 
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reservoir catchments in northern Ghana favors surface runoff generation from rainfall 

(Adwubi et al., 2009; Liebe et al., 2005). Consequently, the collection of runoff during 

the rainy season for usage in dry periods is appropriate under the hydro-geo-climatic 

conditions in semi-arid regions like the UER (Fowe et al., 2015), where mean annual 

rainfall is approximately 970 mm and the mean annual ET0 is about double the rainfall. 

In such a data-scarce environment as the UER and most parts of SSA (Näschen et al., 

2018), water inflows to and outflows from the reservoirs in several locations are either 

ungauged or poorly monitored making hydrological studies on the water storage 

infrastructure a challenging task (Conway et al., 2009; Fowe et al., 2015).  

Current operations of reservoir-based irrigation schemes in the SSA need to 

take into account that most of the reservoirs have lost varying percentages of their 

storage capacity due to siltation as also observed in the BIS (Chapter 3). According to 

Adwubi et al. (2009), the increasing farming activities in the catchment areas combined 

with the aforementioned high rainfall intensity results in reservoir siltation in the UER. 

The loss of the storage capacity of reservoirs limits water sufficiency for the multiple 

water uses in the region including supplemental irrigation.  

Furthermore, the sectoral approach to water management such as that 

currently practiced in Ghana amid multiple users leads to inequitable water allocations 

and related conflicts during periods of water shortage (Chapter 3). Most often, conflicts 

occur between irrigators, who tend to use most of the water (de Bruin et al., 2015), and 

the other competing users. Especially in periods of water scarcity, crop-irrigation 

demand often encroaches on the other multiple water demands (e.g. livestock needs) 

even though livestock water demand is perceived to have the highest priority in small-

scale schemes, where boreholes have been constructed to satisfy the drinking water 

needs (Acheampong et al., 2014).  

Increased spatio-temporal variability in rainfall distribution in most parts of 

SSA has affected reservoir refilling in the rainy season (Boko et al., 2007; Sylla et al., 

2016). The adoption of an integrated approach for reservoir operation by considering 

the current (Chapter 3; Sekyi-Annan et al., 2018b) and future demands of all multiple 

sectors is particularly important to enhance the equitable and fair allocation of the 
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scarce water resources (Höllermann et al., 2010; Venot et al., 2012). An integrated 

approach could forestall water-related conflicts, promote social cohesion among the 

water users, and facilitate the achievement of the overall goal of food security and 

livelihood improvement (Kramer, 2004). This will enhance the resilience of the water 

users to climate change and variability.  

Assessments based on the integrated systems approach accounting for 

competing water demands in a changing environment remain rare in published 

research. For instance, García-Bolaños et al. (2011) diagnosed the performance of 22 

small- and medium-scale reservoir-based irrigation schemes along the banks of the 

Senegal River in Mauritania with the sole focus on irrigated rice, thus excluding fish and 

livestock farming, which are however the important competitors for water. Similarly, 

only irrigation needs were accounted for by the performance evaluation of small-scale 

schemes in the Upper Volta Basin in Ghana and Burkina Faso (Poussin et al. 2015) and 

in the comparative performance analysis in the Ouémé and Zou reservoir-based 

irrigation schemes in Benin (Djagba et al. 2014). Furthermore, Asres (2016) assessed the 

performance of a multi-purpose irrigation scheme in Ethiopia but focused on the field-

level crop irrigation demands only.  

However, a number of studies in SSA applied the model-based approach to 

performance assessment of multi-purpose reservoir-based irrigation schemes. Badou et 

al. (2018) quantified the climate change impact on future green water and blue water 

resources in four sub-basins of the Beninese part of the Niger River Basin under two 

greenhouse gas emissions scenarios, and found that green water will increase in all of 

the four studied sub-basins, while blue water will only increase in one sub-basin. 

However, they reported larger uncertainty for the quantification of blue water than of 

green water. Adgolign et al. (2016) modeled the vulnerability to water shortages of areas 

within the Didessa sub-basin in western Ethiopia under scenarios of increasing domestic 

water demand, increasing irrigation area, and increasing hydropower capacity using the 

Water Evaluation and Planning System (WEAP) model, and predicted a reduction of 

10.3% in the total annual flow of Didessa River by 2050. In particular, the reservoir-based 

irrigation schemes in the Dabena, Anger and Upper Didessa watersheds were forecast 
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to record unmet water demands in 2050. The challenge of incomplete streamflow data 

was overcome in their study by supplementing those data with streamflow simulated in 

the Soil and Water Assessment Tool (SWAT) model. Höllermann et al. (2010) analyzed 

the future water situation of Benin under different scenarios of climate change and 

socio-economic development until 2025 using WEAP, and showed a potential increasing 

pressure on Benin’s water resources which would lead to greater competition for 

surface water, as climate change could decrease inflows and groundwater recharge. 

Constraints with the input data and uncertainties about the model were the main 

challenges faced in their analysis. However, WEAP outputs revealed hot spots for action, 

and thus offered a foundation for future water resource management in Benin. In the 

Upper Ewaso Ng’iro north basin in Kenya, Mutiga et al. (2010) applied WEAP in 

reconciling the water requirements for various competing sectors and the available 

water resources. They revealed that high irrigation water demand was the principal 

cause of excessive water withdrawal in the upstream catchments in particular resulting 

in water shortages downstream and consequently water-related conflicts. 

Water-related conflicts in the reservoir-based irrigation schemes and the lack 

of integrated assessments to reconcile the competing water demands and the available 

water resources stipulate the urgent need to re-think the water management in 

reservoir-based irrigation schemes in the UER by adopting the integrated systems 

approach. This chapter presents the results of this evaluation for the VIS and the BIS in 

the UER considering (i) the entire hydrological system (or unit) consisting of the basin 

generating the surface and subsurface runoff, the water reservoir, the conveyance and 

drainage network, cropping fields, as well as the other competing water users such as 

livestock, fishery and domestic demands, and (ii) current season-related water 

allocation rules into a year-round water allocation strategy, and its evolution over time 

in the face of climate variability using the WEAP model. In this respect, a scenario-based 

analysis should be furthermore conducted to determine future options for the reservoir-

based whole-scheme operations under the increasing water scarcity. To this end, 

simulation results including discharge, water demand and unmet demands under the 

different scenarios were analyzed in order to understand how water demand and supply 
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evolved over time, the impact of rainfall variability, and the magnitude of potential 

shortages in water supply in times of water scarcity.  

 

 

6.2 Materials and methods 

6.2.1 Study site 

This assessment covered the 2014–2016 rainy and dry seasons in the BIS and the VIS 

(Chapter 2). The relevant technical characteristics of the irrigation schemes are 

summarized in Table 6.1. The current volume-elevation curve of the Bongo reservoir 

developed during the fieldwork estimates the elevation of the spillway at 231 m and 

that of the top of the dead storage at 226.6 m. In the case of the Vea reservoir, the 

design volume-elevation curve used for the analysis measured the elevation of the 

spillway and top of the dead storage as 189 m and 181.5 m, respectively. The volume-

elevation curve for the Vea reservoir was developed after the construction of the dam 

about four decades ago, hence the current situation is likely to differ from the designed 

due to sediment accumulation in the reservoir (Adwubi et al., 2009).   

 

Table 6.1  Technical characteristics of the Bongo and Vea dams and reservoirs 

Technical characteristics Bongo dam Vea dam 

Length of dam wall (m) 625 1,585 

Maximum depth (m) 5.5 13.4 

Flooded area at full supply level (ha) 20.7 380 

Storage capacity (million m³) 0.433 17.27 

Live (useful) storage (million m³) 0.43 16 

Dead storage (million m³) 0.003 1.27 

 

The design gross irrigable area of the VIS is 1197 ha. About 70% (850 ha) has 

been developed for cultivation (Chapter 3), meaning that the remaining 30% of the area 

could be developed to increase the irrigation potential of the scheme. Nonetheless, data 

available from the monitored locations are woefully sparse and in September 2013, 

streamflow into and outflows from the Vea reservoir were not monitored. In the BIS, 
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data on discharge into the reservoir were unavailable due to the ungauged Bongo 

catchment.  

The Vea reservoir supplies water to the Ghana Water Company limited (GWCL) 

for treatment and onward distribution to the Bolgatanga municipality, which has a 

population of 131,550 (GSS, 2012). The townspeople in both Vea and Bongo, however, 

depend on boreholes for their domestic water needs. In the irrigable area of the VIS, 22 

fish ponds with surface areas ranging between 0.1 and 0.5 ha, and an average depth of 

1.5 m fed by water from the Vea reservoir were constructed for fish farming, whereas 

fishery in the BIS is done directly in the Bongo reservoir (Chapter 3). 

 

 

6.2.2 Description of the WEAP model 

The WEAP model, developed by the Stockholm Environment Institute, Sweden, has 

produced outputs which have assisted water managers and decision makers in balancing 

water supply generated through catchment-scale hydrologic processes, and spatio-

temporally variable water demands of multiple users having different water allocation 

priorities and water supply preferences (Shirke et al., 2012). By assessing current and 

future water demand and supply management, WEAP has shown to be an effective 

forecasting and policy analysis tool in SSA including in Benin (Höllermann et al., 2010; 

Mutiga et al., 2010), Kenya (Mutiga et al., 2010) and Ethiopia (Adgolign et al., 2016). 

Furthermore, the model can be used as a discussion tool to work out water management 

options jointly with water users. Because the structure of the input data and the level of 

detail (either aggregated or disaggregated), time steps (daily, monthly etc.), and spatial 

extent can be tailored to specific local conditions, WEAP is adaptable and applicable to 

a wide range of contexts and spatial scales such as scheme scale, sub-basin scale and 

basin scale (Sieber and Purkey, 2015). In WEAP simulations, the demand side of the 

water balance equation is put on the same scale as the supply side, thus making it a 

better choice than most hydrological simulation models which are usually supply 

oriented (Sieber and Purkey, 2015). 
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6.2.3 Parameterization of WEAP  

The WEAP model was configured and parameterized with the field data (Figure 6.1) 

collected during May 2014 – May 2015. A current accounts year, which is the baseline 

year depicting the prevailing situation in the scheme and has the most complete 

datasets for the simulations, was created and parameterized following Sieber and 

Purkey (2015).  

 

 

Figure 6.1 Screenshot of the water supply and demand in the Bongo and Vea 
irrigation schemes 

 

 

General parameters 

The current accounts year was set to 2015 (May 21, 2014 to May 20, 2015) and the last 

year of the scenarios to 2030. The latter was set as the last year since it is targeted by 

the Sustainable Development Goals (SDGs) as well as by the Ghana National Climate 

Change Policy to reduce vulnerability in the savanna agro-ecological zone of the country 

(Barakat et al., 2015; MESTI, 2013). The simulations were conducted in daily time steps. 

Monthly time steps were previously used in several hydrological studies conducted in 

the SSA (e.g. Fowe et al. (2015); Höllermann et al. (2010); Ofosu et al. (2010), and Mutiga 

et al. (2010)), but here the daily temporal resolution was applied to ascertain the 

potential real-time changes in the catchment hydrology regarding runoff generation and 
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reservoir refilling, variations in demand and supply, and the resultant impact on the 

reservoir's operation. Furthermore, the daily time step applied for the analysis was 

relevant due to the rather small size of the Bongo and Vea catchments which could 

respond quickly to rainfall, and the fact that irrigation schedules use daily time steps. 

 

 

Water resources and supply 

The rainfall-runoff version of the simplified coefficient method was used in the 

estimation of discharge from the Bongo and Vea catchments (Sieber and Purkey, 2015). 

The aforementioned method determines the fraction of rainfall lost through crop-

specific ET using crop coefficients, and the remainder of the rainfall is simulated as 

discharge to the reservoir. This method was selected due to its suitability for the 

catchment characteristics and the moderate data requirement as observed by Mutiga 

et al. (2010). The 2014 rainfall data were applied for simulations in the current accounts 

year 2014–2015, whereas the long-term (1998–2014) average rainfall data was applied 

for the scenario analyses. Potential evapotranspiration (ET0) for the current accounts 

year was computed using the Penman–Monteith equation (Allen et al., 1998) (Eq. 4.1). 

The crop coefficients (Kc) of maize were used (Allen et al., 1998; Sieber and 

Purkey, 2015), as maize was the dominant rainfed crop. Because WEAP overestimated 

the discharge in both catchments in the current accounts year, the modeled discharge 

data were adapted for the respective schemes by manually dividing the rainfall-runoff 

coefficients with a factor until there was a good agreement between the simulated and 

the observed storage changes in the reservoir for each scheme (Mutiga et al., 2010; 

Ofosu, 2011). Specifically, the daily surface discharges modeled in WEAP were divided 

by an average factor (8 for Vea; 7 for Bongo) such that the simulated daily storage data 

were similar to the daily observed storage. In the BIS, daily observed storage data 

recorded in 2014–2015 were available for December 9, 2014 – March 11, 2015 only, and 

thus this period was focused on the runoff data analysis. 
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Water demand for the multiple users 

Three demand sites (water users) including livestock, fishery, and irrigation were 

identified in the BIS, and in addition the GWCL in the VIS. Furthermore, supplemental 

irrigation of maize in the rainy season was added to the traditional demand sites in the 

schemes under the supplemental irrigation scenario.  

The gross water demands (GWD, m³ a–1) for the respective demand sites were 

used (Table 2). The Annual Water Use Rate (AWUR; m³ ha–1 for irrigation, m³ head–1 for 

livestock, m³ pond–1 for fishery, m³ unit–1 for GWCL) was calculated as follows:  

 

𝐴𝑊𝑈𝑅 =
𝐺𝑊𝐷

𝐴𝐴𝐿
     (6.1) 

 

where the Annual Activity Level (AAL; ha, head, pond or unit) is the factor driving water 

demand for the multiple water users including cropping area (ha), livestock population 

(head), number of fishponds (pond) and water treatment plants (unit). 

The analysis of the water withdrawal data by the GWCL revealed a fixed 

volume of water abstracted over the period 2013–2016 (Appendix 9.10). Hence, it is the 

capacity of the water treatment plant and not the human population that is likely to 

limit the water demand, as has been mostly observed (Adgolign et al., 2016; Mutiga et 

al., 2010). The AWUR for livestock was disaggregated for the different species, namely 

cattle, donkeys, sheep and goats. The irrigation AWUR was specifically computed for 

tomato, leafy vegetables and rice according to their share in the total irrigable area in 

the respective irrigation scheme (Tables 6.2 and 6.3). Although fish farming practiced 

directly in the Bongo reservoir is a non-consumptive water user, it was still considered 

a demand site in the simulation in order to determine the extent to which other users 

(e.g. livestock) might compete with fishery during periods of water scarcity. The fishery 

water demand in the VIS (FWD; m³ a–1) was determined as follows:  

 

𝐹𝑊𝐷 = 𝐴𝐸𝑇0      (6.2) 
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where A is surface area of fishpond at full supply level (m²), and ET0 is average potential 

evapotranspiration (m). 

Subsequently, the FWD in the VIS in 2014–2015 varied from one fishpond to 

another (900–7,500 m³) due to size variations between 600 and 5,000 m², and an 

average ET0 of 1.5 m (Appendix 9.9). However, a mean value of the FWD was applied in 

the analysis (Table 6.3). In the BIS, the dead storage of the reservoir was assumed to 

satisfy FWD (section 3.2.5).  

The GWD for the supplemental irrigation of maize was calculated as the ratio 

of the mean net irrigation water demand of 107 mm per growing season to the system 

efficiency of 52% (Chapter 3). The entire irrigable area was assumed to be cultivated 

with maize only. Hence, the AWUR for the supplemental irrigation scenario was 

estimated by dividing the GWD by the total area under maize cultivation (12.05 ha for 

Bongo, 400 ha for Vea) representing a 100% share of the irrigable area in both schemes.  

 

Table 6.2  Disaggregated water demands for the current accounts year 2015 in the 
Bongo irrigation scheme. GWCL: Ghana Water Company Limited 

Demand site Annual activity level Annual water 

use rate 

Livestock 11,600 heads  

Cattle 21.6% 5.7 m³ head–1 

Donkeys 6.5% 3.4 m³ head–1 

Sheep 33.2% 1.1 m³ head–1 

Goats 38.8% 0.9 m³ head–1 

Irrigation 12.05 ha  

Tomato 40% 9,166.4 m³ ha–1 

Leafy vegetables 55% 4,182.7 m³ ha–1 

Rice 5% 5,556.8 m³ ha–1 

Maize (supplemental irrigation scenario) 100% 2,058 m³ ha–1 

Fishery 1 pond (dead storage) 2,642 m³ 
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The daily share (variation) in annual water use rate for the demand site (Table 

6.4) was estimated based on the period of the year in which water was used for the 

respective purpose, i.e., for each day within the period of interest, a particular share of 

the total water demand was assigned, and “0” was assigned to the remaining part of the 

year. Such was applicable to irrigation, livestock and fishery, which were practiced only 

in the dry season, and for supplemental irrigation which only occurred in the rainy 

season. In the rainy season, the livestock mainly depend on rainwater collected in ponds 

located in the neighborhood rather than on the reservoir water (section 3.2.5). Similarly, 

fishery is not practiced in the rainy season in both irrigation schemes, and thus there is 

no diversion of water into the fishponds in the VIS during this season. 

 

Table 6.3  Disaggregated annual water demands for the current accounts year in 
the Vea irrigation scheme. GWCL: Ghana Water Company Limited. 

Demand site Annual activity level Annual water use 

rate 

GWCL 1 unit 2,103,031 m³ unit–1 

Livestock 22,070 heads  

Cattle 27.5% 5.7 m³ head–1 

Donkeys 0.4% 3.4 m³ head–1 

Sheep 30.4% 1.1 m³ head–1 

Goats 41.7% 1.1 m³ head–1 

Irrigation 400 ha  

Tomato 48% 5,995 m³ ha–1 

Leafy vegetables 12% 4,736.8 m³ ha–1 

Rice 37% 4,132.4 m³ ha–1 

Maize (Supplemental irrigation scenario) 100% 2,058 m³ ha–1 

Fishery 22 ponds 4,336.4 m³ pond–1 
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Table 6.4  Daily share of the annual water use rate for the different demand sites 

Demand site Period of the year Share of annual 

water use rate (%) 

Livestock September 11 – April 11 0.47 

Irrigation December 14 – April 11 0.84 

Fishery December 14 – April 11 0.84 

Supplemental irrigation May 21 – October 30 0.61 

 
 

Water demand priorities were set for the different demand sites based on the 

perception of the ICOUR water manager in the VIS, and the WUA in the BIS (Table 6.5). 

The index 1 represents the highest priority and “2” the lowest priority in Bongo, and “3” 

the lowest priority in Vea. During a period of water shortage, the highest priority 

demand is met as fully as possible by the model before the lower priority demand is 

supplied depending on the available water. Furthermore, in instances when the water 

users have the same demand priorities, WEAP shares the available water equally 

between them in terms of water quantities (Sieber and Purkey, 2015). 

 

Table 6.5  Demand priorities for water users in the Vea and Bongo irrigation 
schemes 

Demand site Priority 

 Vea Bongo 

Ghana Water Company Limited 1 n.a. 

Livestock 2 1 

Fishery 3 2 

Irrigation 3 2 

n.a. = not applicable 

 

 

Hydrology 

The Water Year Method, which forecasts inflows to the reservoir by varying the 

discharge data in the current accounts year based on user-defined variability and 
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adjustment factors, was used to estimate inflows for the entire simulation period (Sieber 

and Purkey, 2015). In particular, the generated inflow data based on the long-term 

average rainfall served as the baseline data for the simulations over the 2015–2030 

period coupled with the adjustment factors. The adjustment factors were estimated 

using the probabilities of exceedance of rainfall determined from historical rainfall data 

(1998–2014) accessed from the Tropical Rainfall Measuring Mission (TRMM) database 

for Bongo and Vea (Figure 6.4). These probabilities of exceedance were classified into 

different climate regimes, i.e., water year types: 10% (very wet), 20% (wet), 50% 

(normal), 80% (dry) and 90% (very dry) according to Raes (2004). Subsequently, the 

adjustment factor for a particular water year was determined as the ratio of the rainfall 

in that year to the rainfall in a normal year (Table 6.6). Hence, these adjustment factors 

express the amount of inflows to the reservoir in a particular water year relative to that 

of a year with normal rainfall. Ofosu (2011) applied a similar approach in the White Volta 

Basin, where he grouped a long-term rainfall dataset into the different climate regimes 

and then estimated the adjustment factors as the mean rainfall for each category to the 

long-term mean (Table 6.6).  

The water year type for the 2014–2015 current account year was specified as 

a ‘normal year’ for both Bongo and Vea based on the long-term average annual rainfall 

of 921 mm (Figure 5.1). The sequence of the water year types for the rainfall variability 

scenario over the simulation period was randomly designed (Table 6.7). The water year 

type for the reference scenario corresponded to that of the current accounts year in 

both schemes for the whole simulation period. The remaining scenarios inherited the 

sequence from their ''parent'' scenarios. In the scenario tree, a former scenario is 

“parent” to the latter, and thus influences it. 

 

 

 

 



Scenario-based, functional assessment of multi-purpose reservoir-based irrigation 
schemes under climate variability 

105 

 

Table 6.6  Water-year types and adjustment factors for estimating inflows to 
Bongo and Vea reservoirs 

 

Water-Year Type Factors  

 Bongo and Vea White Volta Basin*  

Very dry 0.79 0.76 

Dry 0.87 0.89 

Normal 1 1 

Wet 1.15 1.09 

Very wet 1.24 1.27 

*Ofosu (2011) 

 

Table 6.7  Sequence of climate regimes for the rainfall variability scenario 
 

Year Climate regime Year Climate regime 

2015 Normal 2023 Normal 

2016 Very wet 2024 Dry 

2017 Very wet 2025 Very dry 

2018 Very dry 2026 Very dry 

2019 Dry 2027 Dry  

2020 Normal 2028 Normal 

2021 Wet 2029 Wet 

2022 Very dry 2030 Very dry 

 

 

Scenarios and assumptions 

Five scenarios focusing on potential changes in the physical condition and size of the 

irrigation scheme, water availability as influenced by variable rainfall and management 

decision such as the introduction of supplemental irrigation in the rainy season as well 

as relevant assumptions based on field observations (e.g., increasing livestock 

population and cropping area) were formulated for the simulations as follows: 
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Reference scenario  

The reference scenario is a business-as-usual scenario in which the status quo is 

maintained with a yearly livestock population growth of 10%. The 10% growth is the 

national growth rate of livestock populations for projections adopted by the Animal 

Production Unit of the Veterinary Services Department in MOFA of Ghana. This scenario, 

which serves as a baseline for the other scenarios over the 2015–2030 simulation period, 

provides insights into how the reservoir performs in the future if no improvement of the 

system occurs. 

 

 

System efficiency improvement scenario  

The system efficiency improvement scenario simulates the impact of demand 

management strategies, such as water loss reduction through the repair of the water 

conveyance and distribution infrastructure, and the adoption of an improved irrigation 

scheduling, on water availability for the competing water demands. Hence, for the 

simulation, the overall irrigation system efficiency was assumed to improve by 10% in 

order to enhance water saving, as a potential exists to increase system efficiency in the 

Bongo and Vea irrigation schemes by about 36% (Chapter 3). Analysis of the simulation 

results under this scenario sheds light on the sufficiency of the water saved in the dry 

season for the purpose of supplemental irrigation in the rainy season. 

 

 

Irrigable area expansion scenario 

The irrigable area expansion scenario gives an idea of the ability of the reservoir-based 

irrigation scheme to balance water supply and demand as the cropping area gradually 

expands over the simulation period while the current water management practices as 

well as the condition of the water delivery infrastructure remain unchanged. Hence, this 

scenario develops from the reference scenario.  

In the VIS, the current cropping area of 400 ha is assumed to increase by 30 ha 

per annum (7.5%) over the simulation period until the entire (potential) irrigable area of 
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850 ha is cultivated. In the BIS however, the original share of land under tomato 

cultivation was assumed to increase by 50% (from 40 to 60%) across the simulation 

period by the reduction of the area cropped with leafy vegetables by about 36%, as there 

was no opportunity to expand the total irrigable area of the scheme (12.05 ha). This 

assumption for the BIS aimed at assessing the potential limit of water demand in the dry 

season when the production of the water-intensive tomato crop increased under the 

prevailing conditions of the scheme.  

 

 

Rainfall variability scenario  

The rainfall variability scenario ascertains the impact of increased rainfall variability on 

reservoir storage and the scheme's resilience to meet the gross water demands of the 

multiple users of the reservoir. It was assumed that the current rainfall variability of 

18%, determined as the coefficient of variation from the long-term rainfall data (1998–

2014) using Eq. 5.1, will increase to 22% during the 2016–2030 simulation period after 

the baseline water year 2015. The forecast increase in rainfall variability of 22% was 

determined by assuming that 12 of the 15 water years will experience non-normal 

rainfall events including two very wet years, two wet years, three dry years, and five 

very dry years (Table 6.7). 

 

 

Supplemental irrigation scenario 

The supplemental irrigation scenario examines the potential impact of supplemental 

irrigation in the rainy season when refilling of the reservoir occurs on the water supply 

for the multiple water demands in the dry season under the current conditions of the 

irrigation schemes (case I) as well as under the improved system efficiency (case II). 

Under both scenarios, the entire irrigable area in the schemes was assumed to be 

cultivated with maize in the rainy season.  For case II, the rainfall variability during the 

simulation period was taken into consideration to ascertain the limits of potential 

annually unmet water demands after improving the system’s efficiency.  
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6.2.4 Evaluation of the simulation results 

The simulated storage time series were analyzed using statistical indicators such as the 

Nash-Sutcliffe model efficiency coefficient (EF), Willmott's index of agreement (d), the 

coefficient of determination (R²), and the normalized root mean square error (NRMSE) 

(Krause et al., 2005; Raes et al., 2012a). However, because of the unavailability of long-

term historical, hydrological data on water inflow and outflow, reservoir storage, water 

demands and unmet demands for the multiple water users in both irrigation schemes, 

a calibration and validation of the WEAP model could not be carried out in this study. 

 

 

6.3 Results 

6.3.1 Discharge into the reservoir 

The simulated range of runoff coefficients was only slightly wider in the BIS (1.3–14.1%) 

than in the VIS (1.4–12.4%). However, discharge varied notably in the VIS, ranging 

between 0.01 and 6.82 m³ s–1 in contrast to the narrow range (0.01 and 0.06 m³ s–1) in 

BIS. The higher discharge simulated for the Vea catchment is due to its larger catchment 

size compared to that of Bongo (136 km² vs. 0.98 km²).  

 

 

6.3.2 WEAP model performance 

The results of the statistical analysis of the simulated daily storage indicate an excellent 

agreement (d = 1; EF = 0.99) between the observed and the simulated values with 

minimum errors in predictions for the BIS (Figure 6.2a). However, for the VIS, the model 

performed fairly (d = 0.58; EF = -2.23) with an acceptable error margin, which falls within 

the range of 10–20% (Raes et al., 2012a) (Figure 6.2b). The strange pattern exhibited by 

the observed storage in the VIS requires further investigation, as it is unclear whether it 

is due to the use of the designed volume-elevation curve, which probably varied from 

the current situation, or due to measurement irregularities. 
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Figure 6.2 Simulated and observed daily reservoir storage during 2014–2015 in the 
(a) Bongo and (b) Vea irrigation schemes. 
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Scenario analysis 

Reference scenario 

The total annual water demand of the schemes and the unmet demand (water deficit) 

under the business-as-usual scenario increased consistently over the 2015–2030 

simulation period in the BIS (Figure 6.3a, b). The total annual water demand in the VIS 

also showed an upward trend (Figure 6.3c), but since this demand was satisfied by the 

annual water supply, there were no unmet needs over the simulation period.   

 

 

Figure 6.3 Water balance under the reference scenario: (a) water demand in 
Bongo, (b) unmet demand in Bongo, (c) water demand in Vea without 
the impact of rainfall variability during the 2015–2030 simulation 
period. 

 

 

Rainfall variability scenario 

The predicted reduction in total annual unmet water demand (AUWD) in the BIS 

measured 27–34% in very wet years and 3–6% in wet years. However, it increased by 

various degrees depending on the rainfall regime (Figure 6.4). In particular, the increase 

amounted to 6–11% in normal years, 13–23% in dry years, and 12–26% in very dry years. 
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The VIS showed no unmet demands even in very dry years, which is attributable to the 

storage of large quantities of water in the Vea reservoir prior to the onset of rainfall 

resulting from underutilization of the water resources. The water availability in the VIS 

was therefore not affected by the rainfall variability, as the annual supply delivered to 

the multiple water users matched their annual water demand. 

 

 

Figure 6.4 Unmet water demand in Bongo under the rainfall variability scenario.  
 

 

System efficiency improvement scenario 

In the BIS, the AUWD decline of 23–24% under the very wet year and of 6–13% in all 

other years was predicted, resulting from the increase in water availability through the 

improvement of the system efficiency (Figure 6.5). The steep decline in AUWD in very 

wet years is due to the combined effect of efficiency improvement and an increased 

amount of rainfall. In the VIS, the 5% reduction in annual water supply was predicted 

over the simulation period due to the improvement in system efficiency, thereby further 

increasing the water availability in the reservoir. 
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Figure 6.5 Unmet water demand in the Bongo scheme under the system efficiency 
improvement scenario and the impact of rainfall variability. 

 

 

Supplemental irrigation scenario 

The 18–80% rise in AUWD was predicted in the BIS under the supplemental irrigation 

scenario without the improvement in the system efficiency (Figure 6.6a). The increase 

measured 11–48% considering the improvement in the system efficiency (Figure 6.6b).  

In the VIS, there was no unmet water demand across the multiple water users 

under this scenario even without considering the system efficiency improvement. 
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Figure 6.6 Unmet demands for multiple water users under the supplemental 
irrigation scenario and the impact of rainfall variability in the Bongo 
scheme (a) without system efficiency improvement and (b) with system 
efficiency improvement. 

 

 

Irrigable area expansion scenario 

The 8–32% increase in AUWD was revealed for all demand sites in the BIS over the 

simulation period resulting from the 50% expansion of the tomato cropping area and 

the 10% improvement in the system efficiency (Figure 6.7a). In the VIS, the supply to all 

the demand sites over the simulation period was enough to meet the increased water 

demand following the annual expansion of the cropping area coupled with the 

introduction of supplemental irrigation in the rainy season. Thus, no unmet demand was 

recorded in the Vea catchment. 
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Figure 6.7 Unmet water demand in the Bongo scheme under the irrigable area 
expansion scenario and the impact of rainfall variability.  

 

 

6.4 Discussion 

6.4.1 Water availability in the reservoirs 

The detected drying up of the Bongo reservoir in the later part of 2014–2015 confirms 

the observation by Adwubi et al. (2009) that most of the UER small reservoirs dry up 

toward the end of the dry season and start refilling with discharge at the beginning of 

the rainy season. The medium-scale Vea scheme, however, exhibited a different pattern 

due to the appreciable amounts of reservoir water at the onset of both rainy seasons 

due to the underutilization of water resources in this scheme.  

The runoff coefficient, indicating the dynamics of the discharge into the Bongo 

and Vea reservoirs, was found to be consistent with the monthly averages of runoff 

coefficients ranging between 13 and 15% in the much larger Yarigatanga catchment with 

an area of 352 km² (Ofosu, 2011). Similarly, Sanfo et al. (2017) reported runoff 

coefficients of 10–25% for the Sudanian zone of West Africa. 

 

 



Scenario-based, functional assessment of multi-purpose reservoir-based irrigation 
schemes under climate variability 

115 

 

6.4.2 Reference scenario 

The annual increase in the gross water demand in both irrigation schemes under current 

practices and condition of the schemes was due to the increasing water demand of 

livestock resulting from the annual livestock population growth rate of 10%. As a 

consequence of the low reservoir storage in 2014–2015 in Bongo, the water supply was 

insufficient to meet the gross demands. Although the unmet demand declined in 2015–

2016, resulting from an increased water supply, it grew further over the simulation 

period due to the rising water demand for livestock.  

In Vea, where the reservoir storage by far exceeded the total scheme’s water 

demand, the livestock population growth had no effect on the water balance.  

 

 

6.4.3 Rainfall variability scenario 

The impact analysis of rainfall variability on reservoir storage indicates that this factor 

significantly influenced the sufficiency of water supply for the multiple users. The size of 

the water storage infrastructure (dam) was a less influential factor in that respect in the 

BIS in particular, where the reservoir was not filled up to the capacity in 2014–2015 

resulting in water shortages. Fowe et al. (2015) also stated that rainfall variability 

influenced reservoir storage in the Volta basin based on the dependency of runoff 

generation in the upstream catchments on the rainfall pattern.  

The water sufficiency in the Vea scheme during the very dry year with an 

extremely low discharge was due to the relatively large upstream catchment feeding the 

Vea reservoir coupled with the full storage of the reservoir at the beginning of the rainy 

season. 

 

 

6.4.4 System efficiency improvement scenario 

The simulated improvement in the system efficiency suggests that it is an important 

strategy for water saving and subsequently increasing the water availability for the 

competing water users in the Bongo scheme. As stated earlier (Chapter 3), system 



Scenario-based, functional assessment of multi-purpose reservoir-based irrigation 
schemes under climate variability 

116 

 

efficiency improvement could be achieved primarily through canal system rehabilitation 

to reduce seepage and percolation losses as well as appropriate and efficient water 

application at field level. Mutiga et al. (2010) also stated (standard error 0.18%) that an 

improved reservoir-based irrigation system efficiency would reduce unmet water 

demands by enhancing water availability in the upper Ewaso Ng’iro north basin in Kenya. 

As a long-term strategy to improve and sustain a high system efficiency, the shift from 

furrow irrigation practiced at present towards sprinkler and simplified drip systems 

could be considered. 

 

 

6.4.5 Irrigable area expansion scenario 

The simulation results indicate that increasing the cropping area for tomato production 

in the small-scale BIS, which depends solely on the reservoir water supply, would not be 

an adequate option at present. On the one hand, the expansion of the tomato cropping 

area is likely to increase the unmet water demands among the multiple water users. On 

the other hand, cropland cultivated with tomato, a water-intensive crop, would be at 

more risk of water shortages and yield failure. 

 

 

6.4.6 Supplemental irrigation scenario 

The investigation of the schemes’ water balances suggests that supplemental irrigation 

in the rainy season would not conflict with the maintenance of the reservoir storage for 

the dry season water needs. This is because the annual supply delivered under the 

supplemental irrigation scenario without improving system efficiency (case I), and the 

quantity delivered after the efficiency improvement and considering the impact rainfall 

variability (case II) were the same within each scheme over the 2015–2030 simulation 

period. However, the simulated increase in the annual unmet water demand across the 

multiple water users in the BIS indicates that supplemental irrigation has to be 

introduced with caution. The latter implies consultations with relevant stakeholders 
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including the WUA, agricultural extension agents and chiefs coupled with education on 

the potential impacts.  

In contrast, the VIS simulations suggest no restrictions for the introduction of 

supplemental irrigation using the current infrastructure in this medium-scale scheme. 

 

 

6.4.7 Research limitations and outlook  

As water is becoming increasingly scarcer owing to climate variability and increased 

competing demands, exploiting groundwater from shallow wells to supplement water 

supply during periods of low reservoir storage is a scenario to explore in further 

analyses. The monitoring of the groundwater dynamics in the study area revealed a 

shallow groundwater table ranging from 0.6–1.3 m and 0.7–2.8 m on average in the 

Bongo and Vea irrigation schemes, respectively (Figure 4.4). The exploitation of 

groundwater resources in conjunction with system efficiency improvement was 

suggested as a potential option to enhance water security in West Africa (e.g., 

Höllermann et al., 2010). Such an intervention is, however, currently hindered by the 

lack of adequate information about the potential of groundwater resources for irrigation 

coupled with land tenure issues, lack of access to efficient drilling technology, and 

financial constraints (Namara et al., 2011). Raising the system efficiency may have the 

potential to limit groundwater use, as percolation recharging the groundwater would be 

reduced. Hence, conjunctive use options require careful analysis and should be a part of 

long-term water management planning in reservoir-based irrigation schemes. 

Further analysis should take into account the surface and groundwater quality, 

as poor water quality could render large quantities of available water unusable for 

livestock, fishery and domestic use, in some cases (e.g. heavy metal pollution in several 

gold mining areas in Ghana including the UER) unusable even for irrigation (Cobbina et 

al., 2015; Kpan et al., 2014). However, the assessment focusing on water quantity in this 

research is a prerequisite for future studies focusing on developing adaptation strategies 

for multiple water users in reservoir-based irrigation schemes in the UER. 
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6.5 Conclusions 

The model-based scenario analysis explored relevant adaptive options in the reservoir-

based irrigation schemes in the UER to face future needs of increasing crop production 

and productivity while reconciling the water demand of other sectors and coping with 

increasing variability in rainfall. The 6–26% increase in the water supply-demand gap 

was predicted due the rainfall variability in both study schemes. In the small-scale 

scheme of Bongo, the introduction of supplemental irrigation in the rainy season could 

be possible only if the rise in demand is counterbalanced by about 10% increase in 

system efficiency and by setting limits on the cultivation of the water-intensive tomato 

crop in the dry season. In the medium-scale scheme of Vea, the available water is 

underutilized due to the deteriorated water delivery infrastructure. With canal system 

rehabilitation, VIS would have the capacity to meet the gross water demand should the 

whole potentially irrigable area be put under crop cultivation in both rainy and dry 

seasons with the afore-mentioned principal crops. Water allocation for fisheries is 

compromised in periods of water shortages in the small-scale Bongo scheme, as 

livestock consumes the reservoir’s dead storage.  

The WEAP model proved to be a user-friendly and adaptable-to-local context 

tool for the simulation of future water supply-demand nexus in multi-purpose, 

reservoir-based irrigation schemes of the UER, but the simulation results remain to be 

validated against field observations. Further scenario-based analysis should be applied 

to assess the contribution of groundwater resources to reducing water shortages in 

reservoir-based schemes, the impact of rising temperature as well as evaporation on 

water availability in those schemes.  
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7 OVERALL DISCUSSION AND CONCLUSIONS 

7.1 Integrated management of water resources in multi-purpose reservoir-

based irrigation schemes under climate variability 

The increasing demand for year-round water availability in smallholder farming systems 

in arid and semi-arid regions of SSA for food security necessitates the development and 

implementation of appropriate, efficient and sustainable water management strategies. 

This study applied an integrated approach for whole-system assessment of the 

performance of typical, small- and medium scale reservoir-based irrigation schemes to 

reveal the current performance levels and priority areas within the system for irrigation 

performance improvement. This helped to gain a holistic view of scheme performance 

including the aspects of reservoir, water conveyance and distribution network, cropping 

field, management entity and multiple users as well as the interaction between multiple 

water users besides irrigators.  

The results indicate that the water resources of the medium-scale VIS are 

underutilized, as less than 40% of the total storage was in use. This implies a huge 

potential for an improvement primarily through the rehabilitation of the deteriorated 

water delivery infrastructure, the main cause of the underutilized potenial. In particular, 

the overall system efficiency in the small- and medium-scale irrigation schemes can be 

increased from 50% to 68% by reducing losses in the currently malfunctioning water 

conveyance network. This technical intervention would require significant costs that 

might not be afforded in the nearest future. Another, cost-effective option that can be 

immediately pursued for increasing the system’s efficiency is through improving the 

field-scale irrigation scheduling. Over-irrigation observed at field level in both the small- 

and medium-scale irrigation systems led to water wasting and adverse impacts on crop-

water productivity. Under improved irrigation schedules, a relatively high application 

efficiency at field level (58–68%) is achievable under the conditions of small- and 

medium-scale schemes in the UER. The findings of this evaluation fill the knowledge gap 

in the performance of reservoirs in the UER of Ghana and also in general for SSA in the 

context of water scarcity by providing quantitative information about the current 

performance levels of the Vea and Bongo irrigation schemes. The huge potential in both 
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schemes yet to be unlocked for improved water management leading to increased 

agricultural productivity and livelihood improvement is revealed. Furthermore, the 

results serve as a starting point for improvements by tackling the reasons for the current 

performance deficits. Given the applied nature of this study, it provides policy makers 

and irrigation scheme managers with up-to-date information for planning water-related 

interventions in the agricultural sector by drawing on the information about the current 

performance levels and the existing potentials in the reservoir-based irrigation schemes 

in the region.  

Under increasing climate variability and population growth in SSA (Asfaw et al., 

2018; Boko et al., 2007; Sylla et al., 2016), any interventions for improving the water use 

efficiency and water productivity need to be adapted to the changing environment. This 

study explored suitable intervention scenarios considering the multi-purpose use of 

water reservoirs and observed climate variability over the 2015–2030 period through 

simulation analysis using the WEAP model. Rainfall variability will likely increase the 

water supply–demand gap by 6–26% depending on the rainfall regime, causing severe 

water shortages in the small-scale scheme. The simulation results confirm the necessity 

of improving irrigation system efficiency to reduce total unmet demand by increasing 

water availability for the livestock and fishery sectors competing with crop irrigation. 

The medium-scale scheme currently has the capacity to meet the gross water demand 

of the multiple water users even in the scenario where all the potentially irrigable area 

of the scheme is put under year-round tomato-maize crop cultivation. The study brings 

to light the importance of integrating the user-specific water demands of competing 

water users in multi-purpose reservoirs for equitable water allocations by employing 

modeling tools in defining the water use(s) to be prioritized in times of shortages. The 

implementation of the integrated approach to reservoir operation highlighted in this 

study could forestall potential water-related conflicts. 
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7.2 Year-round irrigation management as a feasible adaptation strategy under 

water scarcity 

The whole-system assessment has revealed that improved irrigation schedule to reduce 

water wastage or inadequate water supply at field level is crucial for improving water 

management and increasing crop water productivity in small- and medium-scale 

irrigation schemes, particularly under the observed temporal variability in rainfall (Sekyi-

Annan et al., 2018a). The field-level assessment using AquaCrop model focused on both 

irrigation schedules to ensure a reduction of the associated risks in rainfed crop 

production as well as an appropriate water use during the dry season. The intra-seasonal 

variability of rainfall revealed by the frequency of dry spells was found to have a greater 

influence on water demand for crop growth and yield than the total rainfall over the 

growing season in contrast to the conclusion by Guan et al. (2015) that intra-seasonal 

rainfall variability is less relevant for crop yield than total rainfall. The estimated 

magnitude of water saving under the improved irrigation schedule (130–1,325 mm) 

amounted to 22–52% of the GIA under the current irrigation practices. Considering only 

the crop irrigation sector, the quantity of water saved through improved irrigation 

scheduling of dry-season tomato is largely sufficient to accommodate supplemental 

irrigation of maize in the rainy season, and thus adapted to the rainfall variability and 

recurrent dry spells. Even for the dry climate scenario of low rainfall coupled with 

frequent dry spells, about 126 mm of water at field level would be required for the 

supplemental irrigation of maize during the rainy season. However, because of the 

heterogeneity within and between cropping fields, there is a need to account for the 

spatial variability in hydrogeological features of these fields in irrigation scheduling. The 

simulated increase in maize yield upon the introduction of supplemental irrigation offers 

an incentive for managers of the Bongo and Vea schemes to explore this strategy. 

In the context of multiple water users in the scheme, the option of 

supplemental irrigation in the rainy season currently appears feasible only in the 

medium-scale scheme. In the small-scale scheme, supplemental irrigation could be 

possible only if the rise in water demand is counterbalanced by about 10% increase in 

system efficiency and by setting limits on the cultivation of the water-intensive tomato 
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crop in the dry season. Moreover, due to the reservoir losses through evaporation and 

seepage, some of the water saved in the dry season might not be available for the 

supplemental irrigation in the rainy season. Hence, the whole system water balance by 

juxtaposing the total available reservoir water with the gross user-specific water 

demands for all competing water users all year round, and an effective year-round 

irrigation schedule is required to ensure that supplemental irrigation in the rainy season 

does not compromise water availability for the dry-season crop production. The 

possibility of introducing supplemental irrigation in the rainy season as an adaptation 

strategy in reservoir-based irrigation schemes, and the necessary pragmatic steps to be 

undertaken for its realization have been highlighted in this study.  

In January 2017, the Government of Ghana, through the Ministry of Food and 

Agriculture, expressed the intention to revamp the agricultural sector by implementing 

strategies to ensure a year-round farming in order to achieve food sufficiency and agro-

economic development. Hence, the knowledge revealed in this study about the 

improved irrigation schedule for tomato, and the supplemental irrigation requirement 

for maize in Vea and Bongo could be a useful resource for the implementing agencies 

and institutions. The adoption of the improved irrigation schedule and supplementary 

irrigation by farmers would require significant involvement of agricultural extension 

services. 

 

 

7.3 Advantages and limitations of using modeling tools in agricultural water 

management 

The application of modeling tools in this study has facilitated the formulation of suitable 

water-use options under climate variability in the reservoir-based schemes studied both 

at field scale (AquaCrop) and scheme scale (WEAP). In particular, the AquaCrop model 

is a reliable tool for developing year-round irrigation schedules for cropping systems in 

reservoir-based irrigation schemes. AquaCrop enhanced the evaluation of the 

appropriateness and in turn efficiency and effectiveness of the traditional irrigation 
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practices, creation of a site-specific irrigation schedule for tomato, and estimation of the 

supplemental irrigation requirement for rainfed maize at field level.  

The limitation of the AGB time series to only four samples during the crop cycle 

and once at harvest due to farmer ownership and management of fields affected the 

ability of AquaCrop to interpret completely the variations between the simulated and 

observed data, as EF varied widely from 0.23–0.83, and NRMSE ranged from 11.5–42% 

across crops. Hence, monitoring data on researcher-managed experimental fields might 

be appropriate. Furthermore, the inability of AquaCrop to simulate nutrient dynamics 

and their impact on crop yield mostly likely reduced the magnitude of the simulated 

potential yield increase under the improved irrigation schedule. Hence, a combination 

with a crop growth model such as DSSAT (Jones et al., 2003) would be needed for 

assessing the impact of improved irrigation scheduling on crop growth and yield. 

At scheme level, the WEAP model was useful for the simulation of the future 

evolution of the water supply-demand nexus in the small- and medium-scale reservoir-

based irrigation schemes in the UER. Using the daily time step enabled the model to 

display the interaction between the multiple water demands with appropriate 

frequency. Because of the potential dire impacts of water shortage in dry regions, 

knowledge of the real-time impacts is useful in devising preventive measures. 

The unavailability of long-term historical data was a major drawback of the 

scenario-based analysis, as this challenge prevented the calibration and validation of the 

WEAP model. However, the use of recommended methods (Sieber and Purkey, 2015) 

enabled the assessment of the potential adaptation options to water scarcity. 

Nonetheless, the lack of WEAP calibration and validation compromised the model’s 

ability to mimic completely the actual situation in the reservoir-based irrigation 

schemes, which thus calls for caution in the application of the simulation results where 

EF and NRMSE are 0.99 and 4.17% in the small-scale scheme, respectively, and -2.23 and 

17.53% in the medium-scale scheme, respectively. Continuous whole-system data 

collection on inflows and outflows in reservoir-based irrigation schemes will facilitate 

future performance assessments. 
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Furthermore, the exclusion of a water quality assessment for both the 

reservoir and groundwater is another limitation of this study, as a poor water quality 

could render large quantities of available water unusable. However, the assessment 

focusing on water quantity in this research is a prerequisite for future studies focusing 

on developing adaptation strategies for multiple water users in reservoir-based 

irrigation schemes in the UER. 

The methods employed in data collection for the calculation of the 

performance indicators in this study provided valuable quantitative information about 

the reservoir-based irrigation schemes as a whole. However, according to Bos et al. 

(2005), the errors associated with these measurements range between 1% in the 

determination of irrigation interval, and 25% in the extrapolation of point data on soil 

moisture to field scale. Nonetheless, the whole-system approach implemented in this 

study coupled with the scenario-based assessment of performance is an appropriate 

step towards equitable and sustainable reservoir operations in water-scarce regions.  

 

 

7.4 Outlook and future research needs 

In spite of the challenges plaguing the smallholder irrigation schemes in the UER, a huge 

potential exists in the schemes to support rural agro-economic development for the 

achievement of the SDGs of attaining food security, promoting sustainable agriculture, 

and ensuring the availability and sustainability of water resources. Given the forecast 

impact of climate change and variability on water availability in the UER, and in arid and 

semi-arid SSA at large, diversifying water resources in smallholder agricultural systems 

should be explored. In particular, supplemental irrigation from reservoirs in the rainy 

season should be taken into consideration. Future studies quantifying the groundwater 

resources for crop production and the intra- and inter-seasonal variability of the 

groundwater table would be worthwhile in this respect. Further research also need to 

focus on a detailed assessment of all contributing factors in crop-water productivity, 

especially the interaction between soil moisture and nutrient dynamics, as soil nutrient 

is another influential factor in crop productivity in the savanna due to the inherently 
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poor soils. The interplay between soil moisture and rising temperature (heat stress) is 

another relevant research topic. Overall, a catchment-scale assessment, capturing the 

spatial variability of the multiple uses of inland valleys in SSA appear most appropriate 

in optimizing the use of natural resources in these valleys.  

Besides these research needs, there are also priorities for local development. 

In particular, there is the need to upgrade the schemes through the installation of flow 

measuring devices to enable the measurement and proper dosage of irrigation water 

delivery and application, and to enhance the up-to-date performance evaluation of the 

schemes for efficient water management. Furthermore, the training of water users on 

the subject of climate change and the need to adopt best irrigation practices, and their 

inclusion in decision making about reservoir operations could enhance the improvement 

of the reservoir-based schemes under variable environmental conditions. 
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9 APPENDICES 

 

Appendix 9.1  Pictures of the soil profiles in the Bongo irrigation scheme (BIS) 
and Vea irrigation schemes (VIS) 
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Appendix 9.2  Soil profile description in the Bongo irrigation scheme 
 

Pit 1 (10° 54’ 46.0’’ N, 00° 47’ 30.8’’ W) - Yaratanga series 

Horizon Depth (cm) Description 

Ap 0–12 Dark brown (10YR 3/3) moist; sandy loam; weak fine 

granular; loose, non-sticky non-plastic; porous, many very 

fine and fine roots; rusty root channels; clear smooth 

boundary. 

ABg 12–30 Dark yellowish brown (10YR ¾) moist; common fine faint 

brown mottled;  loamy sand; very few fine quartz gravels; 

weak fine granular; very friable; high pores, common to few 

fine roots, clear smooth boundary. 

Bg 30–56 Light olive brown (2.5Y6/6) moist; common fine distinct 

brownish yellow mottled; sandy loam; weak fine subangular 

blocky; friable; very few fine roots; clear smooth boundary. 

BCg 56–75 Olive yellow (2.5Y 6/6) moist; common fine faint olive yellow 

(2.5Y 5/6) mottled; sandy loam; weak fine granular, friable, 

slightly sticky slightly plastic; clear smooth boundary. 

CBg 75–100 Light olive brown (2.5Y 6/4) moist; sandy loam; common fine 

distinct light brownish gray mottled; sandy loam; single grain; 

loose; gradual smooth boundary. 

Cg 100–125 Light olive brown (2.5Y 6/4) moist; loamy sand; many fine and 

medium distinct yellowish red mottles; structureless; loose; 

 125+ Water table encountered 
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Appendix 9.3  Soil profile description of Bongo irrigation scheme (continued) 
 

Pit 2 (10° 50’ 47.1’’ N, 00° 52’ 28.0’’ W) - Akrubu series 

Horizon Depth (cm) Description 

Ap   0–20 Black (10YR 2/1) moist; silty loam; rusty root channels weak 

fine crumbs; very friable; few fine roots, gradual smooth 

boundary. 

ABgk 20–44 Very dark brown (10 YR 2/2) moist; rusty root channels; 

common fine faint olive yellow mottles; loam; few fine quartz 

gravels; moderate medium subangular blocky to massive; 

slightly sticky slightly plastic, few fine roots, moderately 

calcareous, few manganese dioxide concretion(3% by vol); 

clear smooth boundary 

Bgkcs1 44–80 Light olive brown (2.5Y6/8) moist; loam; mottled olive yellow; 

massive; slightly sticky slightly plastic; common fine quartz 

gravels; few iron and manganese dioxide nodules; strongly 

calcareous; gradual smooth boundary 

Bgkcs2 80–120 Olive brown (2.5Y 4/3) moist; mottled light olive brown; clay; 

massive, sticky plastic; few fine quartz gravels; common 

manganese dioxide and iron concretion; strongly calcareous 

 

 

 

 

 

 

 

 

 

 



 

140 

 

Appendix 9.4  Soil profile description in the Vea irrigation scheme 
 

Pit 3 (10° 50’ 46.9’’ N, 00° 52’ 28.2’’ W) - Akrubu series 

Horizon Depth (cm) Description 

Ap 0–20 Dark brown (10YR3/3) moist; rusty root channels; sandy loam; 

weak fine granular and crumbs with worm cast , very friable, 

many very fine and fine roots; clear smooth boundary 

ABg 20-32 Dark yellowish brown (10YR4/4)moist; common fine distinct 

yellowish red mottles; sandy clay loam; moderate medium and 

coarse subangular blocky to porous massive; slightly hard to 

hard, firm to very firm, sticky plastic; thick clay and humus 

cutans; few manganese concretion, very few fine roots; 

gradual smooth boundary. 

Bcsgk 32–57 Light olive brown (2.5Y 5/4)moist; few fine faint olive yellow 

mottles; gritty clay; common fine quartz gravels and 

manganese dioxide concretions, massive; sticky plastic; very 

few very fine roots, moderately calcareous; gradual smooth 

boundary 

CBcsgk 57–76 Olive yellow (2.5Y 6/6) moist; common fine distinct grayish 

brown mottles; gritty clay; few fine quartz gravels (2%); 

massive; sticky plastic; strongly calcareous; common 

manganese dioxide and calcium carbonate nodules; diffuse 

smooth boundary. 

Ccsgk 76–120/128 Olive yellow (2.5Y 6/6) moist; common fine distinct gray 

mottles; gritty clay; common fine quartz gravels (6%); massive; 

sticky plastic; strongly calcareous; common manganese dioxide 

and calcium carbonate nodules 
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Appendix 9.5   Chemical properties of soils in the Bongo and Vea irrigation schemes      
Exchangeable cations (cmol/kg) 

    
Available-Brays 

  

Profile 

depth (cm) 

pH  

(1:1 H2O) 

OC (%) Total N 

(%) 

OM (%) Ca Mg K Na TEB 

(cmol 

kg-1) 

EA 

(cmol 

kg-1) 

CEC 

(cmol 

kg-1) 

BS (%) ppmP ppmK 

Pit 1 
              

0-12 6.5 1.44 0.16 2.48 3.20 0.80 0.08 0.04 4.12 0.15 4.27 96.49 26.95 31.19 

12-30 7.0 0.41 0.06 0.71 4.01 1.07 0.04 0.03 5.15 0.15 5.30 97.17 5.50 13.25 

30-56 7.2 0.34 0.04 0.59 2.94 1.07 0.03 0.03 4.07 0.05 4.12 98.79 2.55 10.56 

56-75 7.1 0.21 0.04 0.36 1.34 1.07 0.02 0.02 2.45 0.50 2.95 83.05 1.99 8.23 

75-100 7.9 0.14 0.03 0.24 2.40 1.07 0.04 0.30 3.81 0.03 3.84 99.22 3.11 11.03 

100-125 7.9 0.07 0.02 0.12 2.14 1.60 0.03 0.03 3.80 0.03 3.83 99.22 0.88 12.98 

Pit 2 
              

0-20 7.8 1.75 0.16 3.02 15.49 7.34 0.09 0.06 22.98 0.05 23.03 99.78 34.12 35.14 

20-44 8.4 0.51 0.07 0.88 9.08 5.07 0.10 0.06 14.31 0.03 14.34 99.79 2.79 37.12 

44-80 8.7 0.34 0.04 0.59 7.08 4.01 0.10 0.06 11.25 0.03 11.28 99.73 0.24 38.62 

80-120 8.8 0.31 0.04 0.53 8.28 11.21 0.10 0.06 19.65 0.03 19.68 99.85 1.59 34.21 

Pit 3 
              

0-20 7.3 0.72 0.09 1.24 3.74 1.87 0.15 0.08 5.84 0.05 5.89 99.15 13.87 52.48 

20-32 7.7 0.48 0.07 0.83 4.81 3.07 0.07 0.04 7.99 0.05 8.04 99.38 28.70 24.31 

32-57 8.5 0.45 0.07 0.78 8.01 6.14 0.08 0.04 14.27 0.05 14.32 99.65 0.40 29.67 

57-76 8.2 0.41 0.06 0.71 10.68 8.41 0.10 0.06 19.25 0.03 19.28 99.84 0.48 35.29 

76-120/128 8.2 0.31 0.05 0.53 18.16 11.35 0.19 0.08 29.78 0.05 29.83 99.83 0.48 70.13 

OC = Organic carbon, OM = Organic matter, TEB = Total exchangeable bases, EA = Exchangeable acidity, CEC = Cation exchange capacity, BS = Base saturation 
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Appendix 9.6 Physical and hydraulic properties of soils in the Bongo and Vea 
irrigation scheme 

 

Depth 

(cm) 

Soil texture Bulk density 

(g cm –³) 

SAT (%) FC (%) PWP 

(%) 

TAW

(%) 

Ksat 

(mm day–1) 

Pit 1 (Bongo irrigation scheme) 

0-12 Sandy loam 1.10 49.7 16.9 6.2 10.6 1,744 

12-30 Loamy sand 1.27 47.5 19.1 4.3 14.9 1,816 

30-56 Sandy loam 1.26 45.8 19.1 5.8 13.3 1,318 

56-75 Sandy loam 1.28 46.7 14.1 4.2 9.9 1,641 

75-100  Sandy loam 1.36 45.2 18.3 6.4 11.9 1,109 

100-125 Sandy loam 1.44 44.2 17.8 6.3 11.6 885 

Pit 2 (Bongo irrigation scheme) 

0-20 Silt loam 1.07 51.5 34.2 11.0 23.2 632 

20-44 Loam 1.32 44.6 31.1 12.6 18.5 363 

44-80  Loam 1.53 45.1 40.7 18.7 22.0 261 

80-120 Loam 1.40 45.7 44.2 14.8 29.4 192 

Pit 3 (Vea irrigation scheme) 

0-20 Sandy loam 1.37 47.3 20.3 5.4 14.9 1,473 

20-32 Sandy loam 1.59 45.3 22.0 8.8 13.2 625 

32-57 Loam 1.57 45.1 32.9 14.8 18.1 226 

57-76  Loam 1.56 47.0 38.6 14.0 24.6 159 

76-128 Clay loam 1.52 49.7 47.3 17.5 29.8 86 

 SAT = Saturated water content, FC = Field capacity, PWP = Permanent wilting point, TAW = Total available 
water, Ksat = Saturated hydraulic conductivity determined from pedo-transfer functions 
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Appendix 9.7  Infiltration capacity of soils in the Bongo and Vea irrigation schemes 
 

Test location Soil type Initial fo 

(mm h–1) 

fp after 3 h 

(mm h–1) 

Mean fp 

(mm h–1) 

Standard error 

(mm h–1) 

Bongo irrigation scheme 

BF1 A Gleyic arenosol 180 78 76 11 

BF1 B Gleyic arenosol 60 204 296 32 

BF4 A Calcic gleysol 60 42 21 4 

BF4 B Calcic gleysol 60 42 71 9 

Vea irrigation scheme      

BNF2 A Calcic gleysol 180 54 85 20 

BNF2 B Calcic gleysol 1260 24 367 45 

fo = Initial infiltration capacity, fp = infiltration capacity, 3 h = Duration of measurement 
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Appendix 9.8 Estimated population of different livestock species that depend on 
the Bongo and Vea reservoirs 

 

Livestock species Population 
   

2014 2015 2016 
   

Bongo irrigation scheme 

Cattle 2,384 2,623 2,885 

Donkeys 714 785 863 

Sheep 3,664 4,030 4,433 

Goats 4,286 4,714 5,186 

Vea irrigation scheme 

Cattle 5,780 6,358 6,993 

Donkeys 87 96 105 

Sheep 6,394 7,033 7,736 

Goats 8,758 9,634 10,598 
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Appendix 9.9  Fishery water requirement in the Vea irrigation scheme 
 

Pond label Surface area (ha) Storage (m³) 

Pond 1_Lateral 1 0.19 2,850 

Pond 2_Lateral 1 0.36 5,400 

Pond 3_Lateral 1 0.36 5,400 

Pond 5_Lateral 1 0.36 5,400 

Pond 6_Lateral 1 0.36 5,400 

Pond 7 A_Lateral 1 0.23 3,450 

Pond 7 B_Lateral 1 0.23 3,450 

Pond 8_Lateral 1 0.5 7,500 

Pond 9_Lateral 1 0.5 7,500 

Pond 10 A_Lateral 1 0.23 3,450 

Pond 10 B_Lateral 1 0.23 3,450 

Pond 1_Lateral 2 0.06 900 

Pond 2_Lateral 2 0.06 900 

Pond 3_Lateral 2 0.06 900 

Pond 5_Lateral 2 0.5 7,500 

Pond 6_Lateral 2 0.5 7,500 

Pond 7_Lateral 2 0.5 7,500 

Pond 8_Lateral 2 0.5 7,500 

Pond 9_Lateral 2 0.36 5,400 

Pond 10_Lateral 2 0.09 1,350 

Pond 11_Lateral 2 0.09 1,350 

Pond 12_Lateral 2 0.09 1,350 

Total 
 

95,400 

Average depth = 1.5 m 
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Appendix 9.10  Volume of water abstracted from the Vea reservoir by the Ghana 
 Water Company limited (GWCL), Bolgatanga 

 

Month Volume of water abstracted (m³) 
 

2013 2014 2015 2016 
    

January 178,823 168,779 169,846 183,359 

February 152,907 165,819 164,377 175,706 

March 237,138 190,272 185,414 183,847 

April 179,285 178,572 165,834 171,062 

May 176,842 180,714 182,834 181,236 

June 173,389 166,914 172,724 n.d. 

July 176,253 181,622 173,516 n.d. 

August 176,131 186,633 158,798 n.d. 

September 151,114 164,052 155,042 n.d. 

October 169,020 182,659 168,617 n.d. 

November 179,887 172,981 162,832 n.d. 

December 178,970 181,985 186,128 n.d. 

Total 2,129,759 2,121,002 2,045,962 
 

n.d. = not determined 
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Appendix 9.11 Observed farming practices in the Vea and Bongo irrigation schemes in 
the 2014 rainy season. DAP: Days after planting 

Field 

label 

Crop Plot size 

(ha) 

Planting 

method 

Planting 

date 

Harvesting 

date 

Growing 

period (DAP) 

Bongo irrigation scheme 

BF1 Maize 0.14 Dibbling May 24, 

2014 

September 

14, 2014 

113 

BF2 Sorghum 

(S)/Millet 

(M) 

0.02 Dibbling May 24, 

2014 

M: August 23, 

2014 

S: October 14, 

2014 

91 

143 

BF3 Sorghum 

(S)/Millet 

(M) 

0.01 Dibbling May 24, 

2014 

M: August 28, 

2014 

S: October 14, 

2014 

96 

143 

BF4 Rice 0.10 Dibbling July 9, 2014 October 24, 

2014 

107 

Vea irrigation scheme 

VF1 Maize 0.07 Dibbling July 3, 2014 September 

25, 2014 

84 

VF2 Rice 0.03 Transplanting June 26, 

2014 

October 11, 

2014 

107 

BNF1 Maize 0.30 Dibbling June 22, 

2014 

September 

18, 2014 

88 

BNF2 Sorghum 

(S)/Millet 

(M) 

0.30 Dibbling May 31, 

2014 

M: August 14, 

2014 

S: October 20, 

2014 

75 

142 

BoNF2 Rice 0.05 Transplanting August 4, 

2014 

October 30, 

2014 

87 
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Appendix 9.12 Observed farming practices in the Vea and Bongo irrigation schemes in 
the 2014–2015 dry season. DAP: Days after planting 

Field 

label 

Crop Plot size 

(ha) 

Planting 

method 

Planting 

date 

Harvesting 

date 

Growing 

period (DAP) 

Bongo irrigation scheme 

BF1 Tomato 0.04 Transplanting October 21, 

2014 

February 

11, 2015 

113 

BF2 Roselle  0.03 Dibbling November 

26, 2014 

December, 

26, 2014 

30  

BF2* Cowpe

a 

0.02 Dibbling December 

26, 2014 

January 21, 

2015 

26 

BF2* Roselle 0.02 Dibbling January 02, 

2015 

February 

11, 2015 

40 

BF3 Lettuce 0.02 Transplanting December 

04, 2014 

January 21, 

2015 

48 

BF5 Rice 0.04 Transplanting November, 

07, 2014 

n.d. n.d. 

BF6 Tomato 0.10 Transplanting November 

11, 2014 

March 06, 

2015 

115 

Vea irrigation scheme 

VF1 Tomato 0.07 Transplanting December 

14, 2014 

n.d. n.d. 

VF2 Rice 0.05 Transplanting February 

26, 2015 

n.d. n.d. 

BNF1 Tomato 0.05 Transplanting February 

12, 2015 

n.d. n.d. 

BNF2 Roselle 0.04 Dibbling February 

12, 2015 

n.d. n.d. 

BoNF2 Rice 0.06 Transplanting February 

12, 2015 

n.d. n.d. 

* = Second cultivation, n.d. = not determined 
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Appendix 9.13  Observed farming practices in the Vea and Bongo irrigation 
 schemes in the 2015–2016 dry season. DAP: Days after planting 

Field 

label 

Crop Plot 

size 

(ha) 

Planting 

method 

Planting date Harvesting 

date 

Growing 

period 

(DAP) 

Bongo irrigation scheme 

BF1 Tomato 0.04 Transplanting November 23, 

2015 

n.d. n.d. 

BF2 Cowpea 0.03 Dibbling December 3, 

2015 

January 22, 

2016 

50 

BF2* Cowpea 0.03 Dibbling January 24, 

2016 

March 4, 

2016 

40 

BF2** Roselle 0.03 Dibbling March 4, 2016 April 4, 2016 31 

BF3 Cowpea 0.01 Dibbling November 23, 

2015 

December 

27, 2015 

34 

BF3* Lettuce 0.01 Transplanting December 29, 

2015 

February 19, 

2016 

52 

BF5 Rice 0.08 Transplanting January 5, 

2016 

April 28, 

2016 

114 

BF6 Tomato 0.09 Transplanting September 17, 

2015 

January 18, 

2016 

123 

Vea irrigation scheme 

VF1 Tomato 0.08 Transplanting December 27, 

2015 

n.d. n.d. 

BNF1 Tomato 0.10 Transplanting January 2, 

2016 

n.d. n.d. 

BNF2 Roselle 0.05 Dibbling December 30, 

2015 

February 17, 

2016 

49 

BoNF2* Roselle 0.05 Dibbling February 18, 

2016 

March 24, 

2016 

35 

 * = Second cultivation, ** = Third cultivation, n.d. = not determined 
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Appendix 9.14 Summary of crop growth and yield parameters of tomato and details of their measurements in the dry season. The 
superscripts – ‘t’, ‘m’ and ‘ta’ represents locations of the field in the top, middle and tail sections of the irrigable 
area. 

Parameter Method of data collection Frequency of data collection Cropping field 

(Figure 3.2) 

2014–2015 dry season 

Above-ground 

biomass 

Destructive biomass sampling along a 1 m rod on three selected 

rows 

Destructive biomass sampling in two 8 m row sections at harvest 

Four times during the vegetative 

and reproduction stages, and 

once at harvest time 

mBF1, mBF6, 

tVF1, mBNF1 

Plant density Counting of total number of plants along the 1 m rod on the 

three selected rows 

Estimation of the sampling area 

Four times during the vegetative 

and reproduction stages 

mBF1, mBF6, 

tVF1, mBNF1 

Leaf area 

index 

Measurements with the SunScan probe (SS1-UM-2.0) at five 

random locations 

Four times during the vegetative 

and reproduction stages 

mBF1, mBF6, 

tVF1, mBNF1 

Row spacing The average distance between two adjacent rows at five random 

locations 

Once at harvest time mBF1, mBF6, 

tVF1, mBNF1 

Maximum 

rooting depth 

Manual excavations of at least three plants per crop Once at harvest time mBF1, mBF6, 

tVF1 

Crop yield  Harvesting and weighing of total tomato fruits from two 8 m row 

sections 

Once at harvest time mBF1, mBF6 
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2015–2016 dry season 

Above-ground 

biomass 

Destructive biomass sampling along a 1 m rod on three selected 

rows 

Destructive biomass sampling in two 8 m row sections at harvest 

Four times during the vegetative 

and reproduction stages 

mBF1, mBF6, 

tVF1, mBNF1 

Plant density Counting of total number of plants along the 1 m rod on the 

three selected rows 

Estimation of the sampling area 

Four times during the vegetative 

and reproduction stages 

mBF1, mBF6, 

tVF1, mBNF1 

Row spacing The average distance between two adjacent rows at five random 

locations 

Once during the reproduction 

stage 

mBF1, mBF6, 

tVF1, mBNF1 

Maximum 

rooting depth 

Manual excavations of at least three plants per crop Once at harvest time mBF1, mBF6, 

tVF1, mBNF1 

Crop yield Harvesting and weighing of total tomato fruits from two 8 m row 

sections 

Once at harvest time mBF6, and fields 

close to mBF1, 

tVF1, mBNF1 
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Appendix 9.15 Summary of crop growth and yield parameters of leafy vegetable and details of their measurements in the dry 
season. 

Parameter Method of data collection Frequency of data collection Cropping field 

(Figure 3.2) 

2014–2015 dry season 

Above-ground 

biomass 

Destructive biomass sampling along a 1 m rod on three selected 

rows 

Destructive biomass sampling in two 8 m row sections at harvest 

Two times during the vegetative 

and reproduction stages, and 

once at harvest time 

mBF2, mBF3, 

mBNF2 

Plant density Counting of total number of plants along the 1 m rod on the 

three selected rows 

Estimation of the sampling area 

Two times during the vegetative 

and reproduction stages 

mBF2, mBF3, 

mBNF2 

Leaf area 

index 

Measurements with the SunScan probe (SS1-UM-2.0) at five 

random locations 

Two times during the vegetative 

and reproduction stages 

mBF2, mBF3, 

mBNF2 

Row spacing The average distance between two adjacent rows at five random 

locations 

Once at harvest time mBF2, mBF3, 

mBNF2 

Maximum 

rooting depth 

Manual excavations of at least three plants per crop Once at harvest time mBF2, mBF3, 

mBNF2 

Crop yield  Harvesting and weighing of total above-ground biomass from two 

8 m row sections  

Once at harvest time mBF2, mBF3, 

mBNF2 

2015–2016 dry season 
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Above-ground 

biomass 

Destructive biomass sampling along a 1 m rod on three selected 

rows 

Destructive biomass sampling in two 8 m row sections at harvest 

Two times during the vegetative 

and reproduction stages 

mBF2, mBF3, 

mBNF2 

Plant density Counting of total number of plants along the 1 m rod on the 

three selected rows 

Estimation of the sampling area 

Four times during the vegetative 

and reproduction stages 

mBF2, mBF3, 

mBNF2 

Row spacing The average distance between two adjacent rows at five random 

locations 

Once during the reproduction 

stage 

mBF2, mBF3, 

mBNF2 

Maximum 

rooting depth 

Manual excavations of at least three plants per crop Once at harvest time mBF2, mBF3, 

mBNF2 

Crop yield Harvesting and weighing of total above-ground biomass from two 

8 m row sections 

Once at harvest time mBF2, mBF3, 

mBNF2 
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Appendix 9.16   Summary of crop growth and yield parameters of rice and details of their measurements in the dry season. 

Parameter Method of data collection Frequency of data collection Cropping field 

(Figure 3.2) 

2014–2015 dry season 

Above-ground 

biomass 

Destructive biomass sampling in a 1 m² (or 0.25 m²) quadrat at 

three random locations 

Destructive biomass sampling in an 8 m² section at harvest 

Four times during the vegetative 

and reproduction stages, and 

once at harvest time 

tBF5, tVF2, 

mBoNF2 

Plant density Counting of total number of plants along the 1 m² (or 0.25 m²) 

quadrat at three random locations 

Estimation of the sampling area 

Four times during the vegetative 

and reproduction stages 

tBF5, tVF2, 

mBoNF2 

Leaf area 

index 

Measurements with the SunScan probe (SS1-UM-2.0) at five 

random locations 

Four times during the vegetative 

and reproduction stages 

tBF5, tVF2, 

mBoNF2 

2015–2016 dry season 

Above-ground 

biomass 

Destructive biomass sampling in a 1 m² (or 0.25 m²) quadrat at 

three random locations 

Destructive biomass sampling in an 8 m² section at harvest 

Four times during the vegetative 

and reproduction stages 

tBF5 

Plant density Counting of total number of plants in the 1 m² (or 0.25 m²) quadrat 

at three random locations  

Estimation of the sampling area 

Four times during the vegetative 

and reproduction stages 

tBF5 
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Maximum 

rooting depth 

Manual excavations of at least three plants per crop Once at harvest time tBF5 

Crop yield Harvesting and weighing of total rice grains from an 8 m² section Once at harvest time tBF5 
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Appendix 9.17   Summary of crop growth and yield parameters of maize and details of their measurements in the rainy season. 

Parameter Method of data collection Frequency of data collection Cropping field 

(Figure 3.2) 

Above-ground 

biomass 

Destructive biomass sampling along a 1 m rod on three selected 

rows 

Destructive biomass sampling in two 8 m row sections at harvest 

Three times during the crop 

reproduction stage at two 

weeks interval, and once at 

harvest time 

mBF1, tVF1, 

mBNF1 

Plant density Counting of total number of plants along the 1 m rod on the three 

selected rows 

Estimation of the sampling area 

Three times during the crop 

reproduction stage at two 

weeks interval 

mBF1, tVF1, 

mBNF1 

Row spacing The average distance between two adjacent rows at five random 

locations 

Once during the reproduction 

stage 

mBF1, tVF1, 

mBNF1 

Maximum 

rooting depth 

Manual excavations of at least three plants per crop  Once at harvest time mBF1, tVF1, 

mBNF1 

Crop yield  Harvesting and weighing of total maize grain yield from two 8 m 

row sections 

Once at harvest time mBF1, tVF1, 

mBNF1 
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Appendix 9.18  Summary of crop growth and yield parameters of rice and details of their measurements in the rainy season. 
 

Parameter Method of data collection Frequency of data collection Cropping field 

(Figure 3.2) 

Above-ground 

biomass 

Destructive biomass sampling in a 1 m² (or 0.25 m²) quadrat at 

three random locations 

Destructive biomass sampling in an 8 m² section at harvest 

Four times during the vegetative 

and reproduction stages, and 

once at harvest time 

taBF4, tBF5, tVF2, 

mBoNF2 

Plant density Counting of total number of plants in the 1 m² (or 0.25 m²) 

quadrat at three random locations 

Estimation of the sampling area 

Four times during the vegetative 

and reproduction stages 

taBF4, tBF5, tVF2, 

mBoNF2 

Maximum 

rooting depth 

Manual excavations of at least three plants per crop Once at harvest time taBF4, tBF5, tVF2, 

mBoNF2 

Crop yield  Harvesting and weighing of total rice grains from an 8 m² section Once at harvest time taBF4, tBF5, tVF2, 

mBoNF2 
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Appendix 9.19  Summary of crop growth and yield parameters of sorghum and millet, and details of their measurements in the  
   rainy season. 

Parameter Method of data collection Frequency of data collection Cropping field 

(Figure 3.2) 

Above-ground 

biomass 

Destructive biomass sampling along a 1 m rod on three selected 

rows 

Destructive biomass sampling in two 8 m row sections at harvest 

Three times during the crop 

reproduction stage at two 

weeks interval, and once at 

harvest time 

mBF2, mBF3, 

mBNF2, mBoNF1 

Plant density Counting of total number of plants along the 1 m rod on the three 

selected rows 

Estimation of the sampling area 

Three times during the crop 

reproduction stage at two 

weeks interval 

mBF2, mBF3, 

mBNF2, mBoNF1 

Row spacing The average distance between two adjacent rows at five random 

locations 

Once during the reproduction 

stage 

mBF2, mBF3, 

mBNF2, mBoNF1 

Maximum 

rooting depth 

Manual excavations of at least three plants per crop  Once at harvest time mBF2, mBF3, 

mBNF2, mBoNF1 

Crop yield  Harvesting and weighing of total maize grain yield from two 8 m 

row sections 

Once at harvest time mBF2, mBF3, 

mBNF2, mBoNF1 
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Appendix 9.20 Pictures of (a) a meeting with farmers, (b) a geodetic survey for 
elevation-volume-area curves in Bongo, water level measurements in 
(c) groundwater well, (d) irrigation canal, and (e) reservoir, (f) ponding 
test. 
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