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Abstract 

Plant-parasitic nematodes are destructive pests causing crop losses accounting for billions of 

dollars annually. To defend against invading pathogens plants rely on innate immune system 

which involves the recognition of microbe/pathogen associated molecular pattern 

(MAMPs/PAMPs) and endogenous damage associated molecular pattern (DAMPs), by plasma 

membrane localized pattern recognition receptors (PRRs). Recognition of these molecular 

signatures activates responses as Pathogen Associated Molecular Pattern-Triggered immunity 

(PTI). The role of PTI during plant pathogen interaction has been well studied for many 

microbes of pathological importance, but not well described for plant nematode interactions.  

Here we examined the role of PTI at early stages of nematode infection on plants. We describe 

the activation of PTI responses in Arabidopsis thaliana by a nematode aqueous diffusate termed 

NemaWater in a manner depending on a common co-receptor BAK1. Experiments performed 

after treatment of NemaWater with proteinase K and also with heating, reduce the PTI-like 

responses observed in untreated NemaWater samples. These results further indicate that the 

elicitor/s contained in NemaWater is/are of proteinaceous in nature. Considering the role played 

by BAK1 as co-receptor specifically for those PRRs that recognizes proteinaceous ligands, we 

identified a leucine-rich repeat receptor-like kinase, termed NILR1 that was specifically 

regulated upon infection by nematodes. Loss-of-function mutants of NILR1 were 

hypersusceptible to several nematode species and exhibited impaired PTI responses triggered by 

NemaWater. We show that NILR1 is essential for PTI responses initiated by nematodes (Chapter 

2).  

NemaWater protein fraction analysis revealed the presence of nematode proteins components 

including surface coat associated proteins (Chapter 3). We hypothesize that plants are able to 

recognize nematode through an unknown conserved protein molecule possibly exposed on the 

surface of the nematode cuticle.  

Apart from recognition of conserved nematode associated molecular patterns by PRRs, plant 

innate immunity can also be activated as a result of cell damage and subsequent release of 

endogenous DAMP molecules. Plant invasion by nematodes and migration through cells causes 

cell-damage and possible release of cell wall fragments either in the form of oligogalacturionides 

(OGs), ATP, or small peptides that can act as DAMPs and activate host defence responses. These 
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Abstract 

molecular mechanisms mediating damage responses during plant-nematodes interactions are not 

well understood. Here we report that polygalacturonase-inhibiting proteins (PGIPs) genes 

involved in the formation of active OG elicitors in Arabidopsis were strongly induced in 

response to cyst nematodes. Experiments with loss-of-function mutants and overexpression lines 

showed an increased and reduced cyst nematode infection, respectively. These finding suggest 

that cyst nematode during migration within the root cause cell damage which as a result induce 

camalexin and indole-glucosinolate biosynthesis pathways in a PGIP- dependent manner thereby 

restricting nematode establishment and development (Chapter 4). The exact ligands that interact 

directly with PGIPs and how active OGs are formed and act as elicitors of defense during 

nematode infection of plants are still elusive.  

In Chapter 5, we studied the Arabidopsis peptide receptor (AtPEPRs) and their role in defense 

responses against nematode. Our result showed a high susceptibility of pepr1/2 double mutant to 

cyst nematode. In contrast, we did not observe significant differences in root-knot nematode 

infection of pepr1/2 mutant compared to control.  

This study clearly indicates that plants have a recognition mechanism for nematode elicitors as 

well as host derived elicitors released as a result of cell damage caused by nematodes. 

Understanding how both defense regulation pathways function together will provide valuable 

information for engineering durable crop resistance against plant parasitic nematodes and 

increase crop yield. 
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Zusammenfassung 

Pflanzenparasitäre Nematoden sind wichtige Schaderreger, die jährlich Ertragsverluste von 

vielen Milliarden Dollar verursachen. Pflanzen verteidigen sich gegen eindringende Pathogene 

mit Hilfe ihres Immunsystems, das auf der Erkennung von „Microbe/Pathogen 

Associated Molecular Patterns“ (MAMPs/PAMPs) und endogenen „Damage Associated 

Molecular Patterns“ (DAMPs) durch in der Plasmamembran lokalisierte Pattern Recognition 

Receptors (PRR) beruht. Die Erkennung der molekularen Signaturen führt zur Aktivierung der 

„Pattern-Triggered Immunity“ (PTI). Die Rolle der PTI ist für eine Reihe von wichtigen 

Pflanzen-Pathogen-Interaktionen gut untersucht, für die Interaktion zwischen Pflanzen und 

Nematoden aber kaum bekannt.  

Ziel der vorliegenden Arbeit war es, die Rolle von PTI in der frühen Infektionsphase zu 

untersuchen. Es zeigte sich , dass PTI in Arabidopsis thaliana durch eine wässrige Lösung 

von Nematodenausscheidungen, die als NemaWater bezeichnet wurde, in Abhängigkeit vom 

Ko-Rezeptor  BAK1 ausgelöst wird. Die Behandlung von NemaWater mit Proteinase K und 

Hitze reduzierten die PTI-artigen Pflanzenreaktionen, die mit unbehandeltem NemaWater 

ausgelöst werden. Daraus kann geschlossen werden, dass in NematWater enthaltene Elizitoren 

aus Protein bestehen. Unter Einbeziehung der Rolle, die der BAK1 Korezeptor spezifisch 

zusammen mit den PRR spielt, die Proteinliganden erkennen, gelang es uns, eine nematoden 

responsive Leucine-Rich Repeat Receptor-like Kinase zu identifizieren, die wir als 

NILR1 bezeichneten. Funktionsverlust-Mutanten von NILR1 waren gegenüber 

mehreren Nematodenarten hypersuszeptibel  und zeigten nach NemaWater-Behandlung eine 

eingeschränkte PTI-Reaktion. Wir konnten zeigen, dass NILR1 eine essentielle Rolle für 

die Auslösung von PTI durch Nematoden spielt (Kapitel 2). 

Analysen der Proteinfraktion von NemaWater ergaben,  dass sich darin verschiedene 

Nematodenproteine einschließlich Proteine der Nematodenoberfläche (Kapitel 3) 

befanden. Daher stellen wir die Hypothese auf, dass  Pflanzen in der Lage sind, Nematoden 

anhand einer bisher unbekannten konservierten Proteinmoleküls zu erkennen, das 

möglicherweise auf der Oberfläche der Kutikula präsentiert wird. 

Neben der Erkennung von „Nematode Associated Molecular Patterns“ durch PRR kann das 

pflanzliche Immunsystem auch durch  geschädigte Zellen und nachfolgend freigesetzte endogene 

DAMP Moleküle aktiviert werden. 
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Zusammenfassung 

Wenn Nematoden in Pflanzen eindringen und durch Zellen wandern verursachen sie Zellschäden 

und damit möglicherweise die Freisetzung von Zellwandbestandteilen entweder in Form von 

Oligogalacturoniden (OGs), kleinen Peptiden oder ATP-Molekülen, die als DAMPs die 

Wirtsabwehr aktivieren können. Die molekularen Abläufe während der Interaktion zwischen 

Pflanzen und Nematoden im Zusammenhang mit der Reaktion auf  Zellschäden sind weitgehend 

unbekannt. Wir konnten zeigen, dass Gene, die für Polygalacturonase-Inhibiting Proteins 

(PGIPs) kodieren und für die Bildung von OG-Elizitoren in Arabidopsis verantwortlich sind, im 

Verlauf der Infektion durch Zystennematoden stark aufreguliert sind. Experimente mit 

Funktionsverlust-Mutanten und Überexpressionslinien zeigten eine gesteigerte bzw. reduzierte 

Nematodeninfektion. Diese Ergebnisse zeigen, dass Zystennematoden während der Wanderung 

durch die Wurzel Zellschäden verursachen und abhängig von PIGPs die Biosynthesewege von 

Camalexin und Indol-Glukosinolaten aktivieren, wodurch sie die Etablierung und die  

Entwicklung von Nematoden  einschränken (Kapitel 4). Allerdings ist noch nicht bekannt, 

welche Moleküle als Liganden der PGIPs agieren, wie OGs gebildet werden und wie diese als 

Elizitoren der Abwehrreaktion gegen Nematoden agieren.  

In Kapitel 5 wird beschrieben, wie die Rolle von Peptidrezeptoren in Arabidopsis (AtPEPRs) bei 

der Abwehr gegen Nematoden untersucht wurde.  Die Doppelmutante pepr1/2  war gegenüber 

Zystennematoden hoch anfällig, zeigte aber in der Reaktion auf den Befall von 

Wurzelgallennematoden keine signifikanten Unterschiede zur Kontrolle. 

Die hier beschriebenen Untersuchungen zeigen, dass Pflanzen einen molekularen Mechanismus 

besitzen, mit dem sie aus Nematoden stammende Elizitoren und pflanzliche Elizitoren, die durch 

Nematoden verursachte Zellschäden freigesetzt werden, erkennen können. Erkenntnisse, die 

dazu führen, zu verstehen, wie beide Abwehrwege zusammenspielen, geben wertvolle 

Informationen zur Entwicklung von dauerhafter Resistenz gegen pflanzenparasitäre Nematoden.  
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Chapter 1 Introduction 
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1. Nematodes

Nematodes are small round worms belonging to the kingdom Animalia and phylum Nematoda. 

They are known to be the most abundant animals on the planet (Adams et al., 2006). More than 

28,000 nematode species have been described (Hugot et al., 2001; Wyss, 2002), which is less 

than 3% of the total nematode species assumed to exist (De Deyn, Raaijmakers et al., 2003). 

Majority of nematode species are free living, but an estimated 15% (more than 4100 nematode 

species in 197 genera) are described as plant parasitic (Decraemer & Hunt, 2006; Decraemer & 

Hunt, 2013; Blok et al., 2008). Apart from being plants parasitic, some nematodes parasitize 

animals and are a threat to human lives as diseases causing agents (Hotez et al., 2008; Chan et 

al., 1994). Other types of nematodes are beneficial as decomposers of organic matter and are 

involved in nitrogen mineralization processes (Ferris et al., 1998; Beare, 1997). Nematode 

species are biologically diverse and versatile, occupying diverse habitats and constitute nearly 

90% of all metazoans in number (Hugot et al. 2001). One of the best known and well-studied 

animals is the bacterial feeding nematode Caenorhabditis elegans. Being the first animal to have 

its DNA sequenced completely (Riddle et al., 1997), C. elegans helped scientist understand 

function of individual cells in nematode development. Further, it also provided insights into the 

nematode biology, neural development and behavior (Riddle et al., 1997; Sulston et al., 1988; 

Kenyon, 1988). 

1.1. Nematode cuticle structure and surface coat 

The cuticle of nematodes is a very important component having multiple roles, ranging from 

protection against the harsh environment to acting as an exoskeleton for the attachment of 

muscles for locomotion and maintenance of post-embryonic body shape (Wright, 1987). In 

parasitic species, the cuticle represents the site of contact with the host’s immune responses 

(Kennedy & Harnett (Eds.), 2013). Based on microscopic observation of the internal anatomy, 

the nematode cuticle is divided into three distinct layers and transverse structures as illustrated 

by Davies & Curtis, 2011 Fig.1. These layers are the cortical, medial, and basal layer (Bird & 

Bird, 1991; Lee, 2002; Baldwin & Perry, 2004). 

1
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Figure 1: The internal anatomy of the nematode cuticle. The basal layer (endocuticle) is striated and contains 

collagen. The medial layer also contains collagen but can be variable and often contains struts. The cortical layer(the 

epicuticle) lies above the medial layer and possesses a number of specialized features such as annulations and alae 

which are made up of cuticlins, lipids, glycolipids, proteins, and glycoprotein’s. Overlying the epicuticle is an 

amorphous fuzzy structure, the microvilli, that is carbohydrate rich and contains mucins which make up the surface 

coat or glycocalyx (Davies & Curtis, 2011).  

The basal layer is striated and made of collagens. The medial layer possesses struts, which 

connect the basal and cortical layers together (Edgar et al., 1982). Above the median layer lies 

the cortical layer possessing a number of specialized features such as annulations and 

prominently made of cuticlins, lipids, protein, and surface associated carbohydrates (Blaxter & 

Robertson, 1998; Cox et al., 1981). The outer layer is the epicuticle overlaid by an amorphous 

carbohydrate-rich surface coat (SC) or glycocalyx Fig.1; (Himmelhoch & Zuckerman, 1978; 

Zuckerman et al., 1979). Hence the cuticle serves as the first point of contact between the 

nematode and the host organism. The most widely studied cuticle is that of C. elegans (Cox et 

al., 1981; Edgar et al., 1982). There are conflicting arguments concerning the suitability of C. 

elegans cuticle to be used as a model to study cuticle of plant-parasitic nematodes (PPN). 

Nevertheless, it is still used to understand aspects of host-pathogen interactions that involve 

studying cuticle and its surface. 

2
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1.2. Plant parasitic nematodes 

Different species of Plant parasitic nematodes (PPN) parasitize different plant organs such as 

seeds, stem and leaves, but majority of them are parasites of roots. PPNs can be grouped in 

various classes depending on their mode of parasitism (Perry & Moens, 2011). Majority PPN 

feed outside without entering the root tissues and migrates from one cell after the other causing 

damage (Bridge & Starr, 2007). This class of PPN is referred to as migratory ectoparasites (e.g. 

Tylenchorhynchus spp. and Longidorus spp.). Sedentary ectoparasites contrary to migratory 

ectoparasites feed on same root tissue for few days before moving to another (e.g. Criconemilla 

spp., and Paratylenchus spp.). However, Hoplolaimus spp. and Helicotylenchus spp are semi-

endoparasites feeding both outside of root tissue and partially entering the root cortical or outer 

stellar cells (Yeates et al., 1993). By contrast to ectoparasites, endoparasitic nematodes feed 

inside the root tissues. They can be either migratory endoparasites, e.g. the root lesion nematode 

Pratylenchus spp, Hirschmaniella oryzae, and Radopholus spp. or sedentary 

endoparasites, which is the economically most important and widely studied group of PPN 

and includes root-knot nematodes (Meloidogyne spp.) and cyst nematodes (Heterodera spp. 

and Globodera spp.) (Perry & Moens, 2011). Because most plant parasitic nematodes live in 

the soil, the damage caused by them is difficult to identify, estimate and control (Stirling et 

al., 1998). Farmers, agronomists and pest management consultants have long underestimated 

the impact caused by plant parasitic nematodes. It has been estimated that about 10 % of world 

crop production is lost as a result of plant nematode damage Table 1(Sasser & Freckman, 

1987). Monetary crop losses due to nematode exceeds $100 billion annually (McCarter, 

2009; Koenning  et al., 1999), making them a major threat to agricultural production and food 

security worldwide. 

3
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Table 1: Worldwide estimated losses due to damage by plant parasitic nematodes (Sasser & Freckman, 1987) 

Life sustaining 

crops 

Annual Loss (%) Economically 

important crops 

Annual Loss (%) 

Banana 19.7 Cacao 10.5 

Barley 6.3 Citrus 14.2 

Cassava 8.4 Coffee 15 

Chickpea 13.7 Cotton 10.7 

Coconut 17.1 Cowpea 15.1 

Corn 10.2 Eggplant 16.9 

Field bean 10.9 Forages 8.2 

Millet 11.8 Grapes 12.5 

Oat 4.2 Guava 10.8 

Peanut 12 Melons 13.8 

Pigeon pea 13.2 Misc. Other 17.3 

Potato 12.2 Okra 20.4 

Rice 10 Ornamentals 11.1 

Rye 3.3 Papaya 15.1 

Sorghum 6.9 Pepper 12.2 

Soybean 10.6 Pineapple 14.9 

Sugar beet 10.9 Tea 8.2 

Sugar cane 15.3 Tobacco 14.7 

Sweet potato 10.2 Tomato 20.6 

Wheat 7 Yam 17.6 

Average 10.70% Average 14.00% 

Overall average 12.3% 

1.3. Cyst Nematodes 

The cyst nematodes are important parasites with a highly specialized interaction with plants. 

They induce the formation of a syncytial structure within the roots of their host, which serves as 

nutrient source for the developing nematode (Moen et al., 2018; Wieczorek & Grundler, 2006; 

Hofmann & Grundler, 2007). Cyst nematode are grouped into eight genera within the subfamily 

Heteroderinae e.g. Heterodera, Globodera, Paradolichodera, Dolichodera, Cactodera, 

Betulodera, Punctodera and Vittatidera, (Subbotin et al., 2010a, b). The most economically 

important species belong to Globodera and Heterodera genera (Moens et al., 2018). The cyst 

nematodes have a unique and common feature in that, the adult female turn her cuticle to a 
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strong and durable protective cover for the eggs. This cover helps the eggs and juveniles to 

persist in the soil for a long period of time till the environment is deemed favorable to hatch. 

1.4. Sugar Beet cyst nematode – Heterodera schachtii 

Beet cyst nematode (Heterodera schachtii Schmidt) was first observed in 1859 by Hermann 

Schacht near Halle, Germany and later described by Schmidt in 1871. H. schachtii is a major 

pest in sugar beet (Beta vulgaris) production with a wide host range within 95 genera from 23 

different plant families including Chenopodiaceae and Cruciferae (Steele, 1965; Grundler et al., 

1997). The impact includes yield losses and decrease in sugar content of sugar beet. Due to its 

low mobility, H. schachtii depends on soil moisture to spread (Wallace, 1958). Symptoms occur 

in patches in the field. Infected plant shows stunted growth with leaves of severely affected plant 

turning yellow due to decreased chlorophyll contents (Hillnhünter et al., 2012). Distribution of 

cyst nematodes within and among fields can be by irrigation water, vegetative plant parts, and 

soil infested with eggs or larvae, which adhere to farm implements, animals, or humans (Riggs, 

1977;  Gray et al., 1992). Annual yield losses as a result of H. schachtii are estimated at $90 

million annually (Müller, 1999).  

1.4.1. Life cycle 

Eggs of H. schachtii are embedded in the dead body of the female known as the cyst and might 

stay in the soil for several years until the environmental conditions become favorable for the 

second stage juvenile (J2) to hatch. Several factors can contribute in triggering the J2 to hatch 

including contact with roots of the host plant (Harveson & Jackson, 2008), adequate soil 

moisture and temperature above 50oC. The root exudates also stimulate the J2 to hatch 

(Harveson & Jackson, 2008). Plant volatiles, temperature, pH, CO2 concentrations guide the J2s 

to move towards the root of host plant (Perry, 1997; Fenoll et al., 1997). 

The infective J2s penetrate the root in the elongation zone above the root tip (Wyss & Grundler, 

1992; Lilley et al., 2005) and migrate towards the vascular cylinder where they selects a single 

cell to induce an initial syncytial cell without destroying the plasma lemma (Fig. 2). Afterwards, 

this single cell develops into a multinucleate syncytium through local dissolution of cell wall, 

and the formation of a large multinucleate feeding structure (Gheysen & Jones, 2006). The 

mechanism of selecting an initial syncytia cell is not known but the secretions from the nematode 

glands trigger the host cell to undergo structural modification, which involves a massive 

5



Chapter 1 Introduction 

reprogramming of root cell development, and expand through the incorporation of neighboring 

cells. The protoplast becomes fused thus forming a syncytium. During the following weeks, 

juveniles undergo three moults (J3, J4, and adult) (Wyss & Grundler, 1992) and sex can be 

determined before the J2 moult to J3 stage (Grundler, 1988; Wyss, 1992). After the fourth moult, 

females become lemon-shaped, which are visible as white dots attached to the roots (Fig. 2).  

The swollen bodies in the adult stage become filled with eggs. Due to extensive growth during 

maturation, the swollen females rupture the root and only their anterior part remains embedded 

in the root tissue (Perry, 1989; Sijmons et al., 1991). Cyst nematodes are sexually dimorphic 

with the swollen lemon shaped bodies of mature female filled with about 200-250 eggs, 

becoming sedentary for the rest of their life. 

Figure 2: Life cycle of a cyst nematode (H. schachtii). It highlights the initiation of feeding site by second stage 

juvenile (J2s) and subsequent development into mature syncytia while the nematode becomes either male or female 

(Siddique & Grundler, 2018).The feeding structure of female nematodes is bigger in comparison to male which 

correlates to the size and amount of nutrient the female needs. 

Males however, do not swell to the same extent and after molting to J4, they regain the 

vermiform body shape inside the J3 cuticle (Fig.2). The adult male emerges from the cuticle and 

migrates to a female for mating, attracted by sexual pheromones. After fertilization, the female 

6
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dies and becomes a robust brown cyst protecting up to several hundred eggs.  In the absence of a 

host, juveniles within the eggs can persist in the cyst for several years (Sijmons et al., 1991). The 

mechanism of sex determination by H. schachtii is not well understood. However under 

favorable conditions, more J2 develop into mature female than male. In the event that host plants 

are less-susceptible, more males are developed as compared to female (Trugdill, 1967). High 

nutrient availability can promote female nematode development of H. schachtii while scarcities 

increase male development (Betka et al., 1991). Mueller et al., 1981, reported that male J2 

consume 29 times less food than female. Nevertheless, the host plants can influence the 

nematode size, penetration and establishment rate, number of eggs and syncytium size (Siddique 

et al., 2009). Defense gene activation and hypersensitive response of host cell could alter the 

development of nematode (Holbein et al., 2016).  

1.5. Root-knot nematodes 

Root-knot nematodes (RKNs) cause most significant economic damage in food crop production. 

The nematode was first described in 1887 by Göldi (Meloidogyne exigua) as the cause of root 

galling on coffee plants in Brazil (Chitwood, 1949). Göldi, 1892 described them as member of 

the genus Meloidogyne which is of Greek origin meaning, ‘apple- shaped female’. Based on 

temperature requirements, RKN are placed into two groups of species known as thermophils and 

cryophils (Moens et al., 2009). Thermophils species of Meloidogyne cannot survive soil 

temperature below 10 oC (e.g. M. incognita, M. arenaria, M. javanica, M. exigua), they are 

mostly predominant in the tropical and subtropical climatic conditions (Moens et al., 2009), 

whereas cryophils (e.g. M. hapla, M. chitwoodi), are able to survive below 10 oC soil 

temperatures (Moens et al., 2009). The asexually reproducing nematode (Meloidogyne spp) is 

the most widespread and probably the most economically important plant parasitic nematode 

pest of tropical and subtropical regions throughout the world. It occurs as a pest on a very wide 

range of crops (e.g. tomato, carrot, groundnut, etc.). Global annual crop losses of up to 5% are 

incurred due to RKN (Sasser & Carter, 1985).  

7
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1.5.1. Meloidogyne incognita 

The southern root-knot nematode Meloidogyne incognita, is the most widespread and probably 

the most devastating plant parasitic nematode pest throughout the world (Sasser, 1979), 

especially in the tropical and subtropical regions. It belongs to the thermophils group of species 

of Meloidogyne which strive well in soil temperature above 10 oC (Moens et al., 2009). The 

species is highly polyphagous with a broad host range. It’s able to parasitize vegetable crops, 

fruit trees and ornamental plants. Global crop losses due to M. incognita is estimated at $78 

billion (Chen et al., 2004), especially on cucurbitaceous and solanaceous plants. The assembled 

genome sequence of M. incognita is up to 86 Mb mostly existing in pairs of homologous and 

diverse segments (Abad et al., 2008). The RKN, M. incognita is becoming a key model system 

for understanding plant metazoan interaction; not only because the genome is sequenced but also 

its ability to effectively infect Arabidopsis thaliana.  

1.5.2. Life cycle 

Mature females of RKN deposit eggs (up to 1000 or more) in a gelatinous matrix (egg sac or egg 

mass), which can be observed attached to the protruding posterior end of the females on the root 

surface (Fig. 3a). This sac protects the eggs from dehydration (Mitkowski & Abawi, 2003). The 

first stage juvenile develops in the egg, and the first moult usually occurs within the eggshell, 

giving rise to the second-stage juvenile, which emerges free into the soil or plant tissue (Bird, 

2004). The infective second stage juveniles’ hatch from the eggs and move through the soil in 

search of roots of suitable host plants (Bird, 2004). The J2 usually penetrate host roots just 

behind the root tip region (Fig.4), and establish their special permanent feeding sites (giant cells) 

in the vascular tissues of the root (Fig. 3b; Cabello et al., 2014). The formation of giant cell 

during compatible interactions involved the reprogramming of selected cells and promoting 

mitosis and cell expansion with the aid of effector molecules secreted from the esophageal 

glands of the nematode (Mitchum et al., 2013; Marella et al., 2013; Cabello et al., 2014). Once 

the nematode begins feeding on tissue of a favorable host, the second, third and fourth moults 

occurs giving rise to the third, fourth and adult stages respectively (Mitkowski & Abawi, 2003). 

Between moults, there is further growth and development of the nematode, with concurrent 

development of the reproductive systems in the two sexes. Upon maturity, the female deposits 

eggs and the life cycle is repeated. The giant cells provide nutrients for the nourishment of 

sedentary nematodes throughout its lifecycle (Mitkowski & Abawi, 2003). Root cells around the 
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feeding sites are induced to enlarge and form galls (knots) and often involves an extensive 

secondary root formation and branching of the main root (Fig. 3c).  

Figure 3: Physical symptom of RKN crop infection a) Root-knot nematode female and egg mass (Sardanelli, 

2010), b) RKN feeding sites with group of cells known as the giant-cell (Escobar et al., 2015), c) Carrot typically 

undergoes severe folding with galling predominantly found on lateral roots (Mitkowski & Abawi, 2003). 

Depending upon the host and soil temperature, the entire life cycle of RKN may be completed 

within 17 to 57 days (Mitkowski & Abawi, 2003). The degree of root galling generally depends 

on three factors: nematode population density, Meloidogyne species and ‘race’, and host plant 

species or cultivar (Jones et al., 1967; Barker & Olthof, 1976). As the density of nematodes 

increases in a particular field, the number of galls per plant also increases. Large numbers of 

nematodes penetrating roots in close proximity also will result in larger galls. Finally, each crop 

responds differently to root-knot nematodes infection. 

a b c 
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Figure 4: Life cycle of root-knot nematodes (M. incognita). Pre-parasitic second stage juvenile hatches, guided by 

many factors find root and enter usually near the root tip region. After entry the nematode initiate the formation of 

permanent feeding structure (Giant cells), become sedentary and starts feeding. Manipulation of the cell cycle by the 

larva result in formation of galls and the nematode develop into adult female. Mature female produce egg mass 

which then develop into next generation (Siddique & Grundler, 2018) 

1.6. Arabidopsis thaliana - a model plant 

The small crucifer A. thaliana is a common model plant in molecular sciences because of the 

small genome size, short life cycle, and ease of propagation with a well-developed classical 

genetics of the species (Sijmons et al., 1991). It belongs to the Brassicaceae family with 

approximately 6 weeks of life cycle. The genome of A. thaliana composes of 125Mb with 

115.4Mb sequenced regions. The genome consists of 25,498 genes encoding proteins from 

11,000 different protein families (Arabidopsis Genome Initiative, 2000). A. thaliana was long 

thought to have the smallest genome among higher plant with only 5 chromosomes (2n=10), but 

the smallest known flowering plants' genomes recently is said to belong to plants in the genus 

Genlisea, order Lamiales, species includes Genlisea margaretae, a carnivorous plant, with a 

genome size of 63.4 Mbp (Greilhber et al., 2006), and G. tuberose has 61 Mbp (Fleischmann et 

al., 2014). A. thaliana genome was the first fully sequenced genome among plant species 

(Arabidopsis Genome Initiative, 2000). Colombia-0 ecotype is the most commonly used in 
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molecular research and mutants can be ordered from Stock centers such as Arabidopsis 

Biological Resource Center (ABRC) and Nottingham Arabidopsis Stock Centre (NASC). 

Advantage of A. thaliana as a model are numerous and include ease of transforming plants with 

Agrobacterium tumefaciens (Somerville & Koornneef, 2002), as well as by chemical or radiation 

mutagenesis to generate mutants. Arabidopsis is susceptible to many pathogen including bacteria 

and fungi (Dangl, 1993). Furthermore, A. thaliana is suitable host for a few root-parasitic 

nematodes (Sijmons et al., 1991; Wyss & Grundler, 1992; Grundler et al 1998; Wang et al., 

2016). In combination with H. schachtii, and M. incognita, this plant therefore served as model 

system during this study. 

1.7. Plant defense strategies against pathogens 

Plants are sessile and cannot evade pathogenic microbe or pest attack and therefore rely 

exclusively on the innate immune system for protection (Ausubel, 2005; Nürnberger et al., 2004; 

Zipfel & Felix, 2005; Jones and Dangl, 2006). Plants lack the adaptive immune system 

(Nürnberger et al., 2009), including specialized immune cells, as present in higher animals 

(Medzhitov, 2007). Innate Immunity is a basal defense system against pathogen, which exists in 

both plant and animal kingdom, with conserved signaling components (Nürnberger et al., 2004; 

Zipfel et al., 2004; Nürnberger & Brunner, 2002). Since plant's entire immune response is not 

based on an adaptive/acquired system as seen in mammals (Nürnberger et al., 2009; (Medzhitov, 

2007), it would appear to be an evolutionary ancient defense mechanism able to genetically 

distinguish ‘self’ from ‘non-self’ (Medzhitov, 2001), and result in downstream cascades to 

counter or eliminate pathogen attack. 

Pathogen associated molecular patterns (PAMPs) are recognized as conserved molecular 

signatures (non-self) by membrane localized pattern-recognition receptors (PRRs) of host cell 

serving as a surveillance system against invasion of pathogens (Akira & Hemmi, 2003; Boller & 

Felix, 2009). Recognition of these PAMPs initiates pattern-triggered immunity (PTI), the first 

line of defense in host plants as illustrated in the Zig-Zag model by Jones and Dangl, 2006 and in 

many other reviews (Zvereva et al., 2012). PAMPs are very unique to microbes and therefore are 

not present in the host organism (Medzhitov & Janeway, 1997). 

Several microbes conserved molecular signature recognized by plant PRRs have been described 

(Table 2.), and includes bacterial flagellin (Gómez-Gómez et al., 1999; Felix et al., 1999; 
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Gómez-Gómez & Boller, 2002), lipopolysaccride (Aderem & Ulevitch, 2000; Medzhitov & 

Janeway, 2002; Newman et al., 2007; Livaja et al., 2008; Loucks et al., 2013), peptidoglycan 

PGN (Girardin et al., 2003; Gust et al., 2007), elongation factor Tu (Kunze et al., 2004; Zipfel et 

al., 2006), fungal chitin (Felix et al., 1993; Boller, 1995; Nürnberger & Brunner, 2002), and 

nematode pheromones Ascarosides (Manosalva et al., 2015). Pathogens possess a wide array of 

PAMPs of diverse chemical structures and a single class of pathogen can have or secrete 

multiple PAMPs (Aderem & Ulevitch, 2000). The number of PAMPs presence in the plant-

pathogen interaction sites may determine the intensity of induced gene expression. Different 

PAMPs may induce the same signaling system but the intensity of the defense signaling gene 

expression may differ (Zipfel et al., 2004). Also a single PAMP may not be able to activate all 

the defense signaling related genes and multiple of these conserved molecules maybe required to 

activate a complex signaling system. 

1.8. Receptor-like kinases in PAMPs perception and defense activation 

Receptor-like kinases (RLKs) are one of the largest gene families in plant (Melissa et al., 2012). 

John Walker and Ren Zhang, 1990 were the first to report and clone the protein kinases 

resembling animal receptor ‘tyrosine’ kinase from maize. As for them the clone contains a 

putative extracellular domain characterized by a signal sequence and a hydrophobic 

transmembrane region manifesting the phenotypic structure of RLKs (Walker & Zhang, 1990). 

Following that, a series of genetic research and phenotype studies by many scientists revealed 

the diverse roles of RLKs ranging from control of organisms growth and development (Shpak et 

al., 2005; Postel et al., 2010; Van Norman et al., 2011; Dao et al., 2018), to stress responses 

including both biotic and abiotic related stress (Walker, 1994; Krishna et al., 2003; Morillo & 

Tax, 2006; Osakabe et al., 2013). RLKs in developmental functions includes epidermal 

differentiation by CRINKLY-4 gene reported in maize (Bencraft et al., 1996), morphogenesis 

and determining organ shape by ERECTA gene in Arabidopsis (Torii et al., 1996), and 

maintenance of stem cells in the shoot apical meristems mediated by CLAVATA-1 gene in 

Arabidopsis (Tax & Kemmerling, 2012). 
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Table 2: Structure of plant pattern recognition receptors and their corresponding ligand 

PAMP/Endogenous 

elicitor 

Origin PRR Structure Reference 

Flg22 Gram-negative bacteria FLS2 LRR-RLK Felix et al., 1999; 

Gómez-Gómezet al., 

2001 

EFTu Gram-negative bacteria EFR LRR-RLK kunze et al., 2004 

Ax21 Xanthomonas oryzae XA21 LRR-RLK Song et al., 1995; Lee et 

al., 2009 

Pep1 Plant DAMP PEPR1 LRR-RLK Huffaker et al., 2006; 

Yamaguchi et al., 2006 

Pep2 Plant DAMP PEPR2 LRR-RLK Yamaguchi et al., 2010 

Xylanase (EIX1) Fungi LeEIX1, 

LeEIX2 

LRR-RLP Bailey et al., 1990; Ron 

& Avni, 2004 

Chitin All fungi CERK1 

(Arabidopsis) 

LysM-RLK Felix et al., 1993; Kaku 

et al., 2006; Miya et al., 

2007 

Chitin All fungi CEBiP (rice) LysM-RLP Shimizu et al., 2010 

ß-glucans fungi (Pyricularia oryzae), 

Oomycetes (Phytophthora 

spp) 

GBP Glycoside 

hydrolases 

Umemoto et al., 1997 

Mannose Gram-negative bacteria MBL Lectin receptor 

kinase 

Eddie et al., 2009 

Oligogalacturonids  Plant DAMPs WAK1 Wall-associated 

RLK 

Brutus et al., 2010 

INF1 elicitin Phytophthora infestans NbLRK1 Lectin-like 

receptor kinase 

Kanzaki et al., 2008 

Capsicein elicitin Phytophthora capsici NgRLK1 PR5 protein 

kinase 

Kim et al., 2010 

Lipopolysaccharides Gram-negative 

bacteria(Xanthomonas, 

Pseudomonas) 

LORE Lectin S-

domain RLK 

Newman et al., 1995; 

Ranf et al., 2015 

Peptidoglycan Gram-positive and Gram-

negative bacteria 

Lym1 & 

Lym3 

LysM-receptor 

kinase 

Gust et al., 2007; 

Willmann et al., 2011 

Ascarosides 

(Ascr#18) 

Nematodes Unknown Unknown Manosalva et al., 2015 

More than 600 RLKs protein have been reported in A. thaliana (Shiu & Bleecker, 2001; Torii. 

2004), and rice have more than 1131 RLK protein (Shiu et al., 2004). Belvin and Anderson, 

(1996), reported that the plant RLKs are closely related to RLK/pelle family of Drosophila 

melanogaster fruit flies. Cao et al., 1996, also reported their close relation to mammalian 

Interleukin Receptor-Associated Kinases (IRAK), which has a small family of cytoplasmic 

kinases without extracellular domain (ECD) or transmembrane region.  
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Receptor-like cytoplasmic kinases (RLCKs) belong to the RLK family lacking extracellular 

domain and transmembrane regions (Shin & Blecker, 2001). Both RLKs in plant and mammalian 

IRAKs are likely to be orthologs inherited from an ancestral kinase that is present in the common 

ancestor of plants and animals. The related kinases make them to be classified together as 

members of the RLK/Pelle family (Shin & Blecker, 2001). 

RLKs are well characterized PRRs common features including the presence of an N-terminal 

signal sequence at the extracellular domain that varies in structure, a single membrane-spanning 

region linking the ligand binding region to the downstream kinase domain, and a cytoplasmic 

protein kinase catalytic domain with almost similar structures (Fig. 5.). Receptor-like protein 

(RLP) unlike RLK lack intracellular kinase domain and therefore need an adapter protein for 

signal transduction (Zipfel, 2009; Zipfel, 2014). 

The plant receptor-like protein kinases (RLPKs) are structurally related to the polypeptide 

growth factor receptors of animals (Carpenter et al., 1990; Normanno et al., 2006), which consist 

of a large extracellular domain, a single membrane spanning segment and a cytoplasmic domain 

of the protein kinase gene family (Walker, 1994; Lease et al., 1998). This reveals the close 

similarities in the structural organization between plant and animal RLK family. 

Receptor protein kinases (RPK) are classified into three major subclasses (tyrosine, 

Serine/threonine and histidine kinases) based on the kinase domain substrates specificity 

(Becraft, 2002; Afzal et al., 2008). Receptor tyrosine kinases (RTK) are involved in the 

phosphorylation of tyrosine residues and included most of the animal RLK (Becraft, 2002). 

Serene/threonine kinases (STK) phosphorylates serine and threonine residues (Becraft, 2002), 

which includes most of the plant RLKs (Hardie, 1999). Histidine kinases receptors are 

phosphorylated at histidine residue site involved in signaling for growth and development. 

Examples of histidine kinases includes ethylene receptor ETR1 (Bleecker & Kende, 2000) and 

cytokinin receptor CRE1 (Inoue et al., 2001) that facilitate response to ethylene and cytokinin 

hormones respectively (Bleecker & Kende, 2000).  

Serene/threonine RPKs on the basis of their extracellular ligand-binding domain can also be 

classified into six groups e.g. S-domain RLK, LRR-RLK class, TNFR (tumor-necrosis factor 

receptor) class, EGF (epidermal growth factor) class, PR class, and Lectin class (Kohorn et al., 
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1992, Nasrallah & Nasrallah, 1993, reviewed in Walker, 1994, Becraft et al., 1996, Herve et al., 

1996, Wang et al., 1996, Li et al., 2002). Among these, the S-locus receptor kinase (SRK) group 

was the first to be identified with a self-incompatibility nature in Brassica reproduction 

(Katchroo et al., 2002, Takayama & Isogai, 2003).  

RLKs with leucine-rich repeat (LRR)-containing extracellular domains comprise the largest 

subfamily of transmembrane RLKs in plants with over 200 members in A. thaliana out of the 

more than 600 RLKs protein (Shiu & Bleecker, 2001; Torii, 2004). An example of these receptor 

with LRR-domain includes flagellin receptor FLS2 of A. thaliana (Table 2.), which perceives a 

highly conserved domain of bacteria flagellin (Gómez-Gómez & Boller, 2000; Asai et al., 2002). 

FLS2 was first identified as a receptor for flg22 from bacteria in an experiment using the model

plant A. thaliana (Gómez-Gómez & Boller, 2000). Arabidopsis FLS2 recognize bacteria flagellin 

by direct binding of an immunogenic protein defined by a conserved length of 22 amino acids 

hence the name flg22 (Fig. 5), which is located close to the N-terminus of flagellin in bacteria 

(Felix et al.,1999; Chinchilla et al., 2006; Sun et al., 2013). Experiments with mutants from A. 

thaliana lacking the FLS2 receptor were shown to be more susceptible to diseases caused by 

Pseudomonas syringae DC3000 compared to Col-0 (Zipfel et al., 2004). Apart from A. thaliana 

FLS2 perception, flg22 is recognized by most higher plant and the functional orthologs of FLS2 

have been identified in a wild relative of tobacco Nicotiana benthamiana (Hann & Rathjen, 

2007), rice Oryza sativa (Takai et al., 2008), tomato Solanum lycopersicum (Robatzek et al., 

2007), and grapevine Vitis vinifera (Trda et al., 2014). This shows that receptors are highly 

conserved in different genera of plants as it evolves to recognize and defend itself against 

intruders.  

Many proteins that function in plant innate immunity responses reside on, or are, associated with 

the plasma membrane (PM). The plasma membrane is the cellular interface that regulates the 

exchange of molecules and information between cells and their environment. The PM is engaged 

in a range of plant physiologic processes including growth and development, ion and transport of 

metabolite, with consciousness of environmental changes, and disease resistance (Marmagne et 

al., 2004; Mongrand et al., 2010). Several studies have analyzed PM dynamics during pathogen 

perception and immune signaling including the amplification signaling pathways described by 

Yadeta et al., 2013. The kinase domain as can be described is like the central processing unit of a 
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computer, receiving and accepting relevant inputs from outside extracellular domain and 

transforming them to generate outputs. Protein phosphorylation at the C-terminal has an 

extensive role in immune signaling and quantitative proteomics of phosphopeptides enriched 

from PM fractions isolated from tissue treated with PAMPs has uncovered novel modes of 

protein regulation during immunity (Benschop et al., 2007; Nuhse et al., 2007). 

Other sub-families of the LRR can function together as co-receptors to signal for a derived 

peptide of avirulent protein factor. Leucine rich receptor Serine/threonine protein kinase BAK1 

as detailed in many studies revealed their function as a co-receptor to perceive flg22 and is 

required for the full activation of FLS2 and other extracellular containing LRR RLKs (Table 2), 

and thereby triggering immune signaling (Chinchilla et al., 2007; Sun, et al., 2013; Heese et al., 

2007; Roux et al., 2011). The rice PRR gene, Xanthomonas resistance 21 (XA21), functions to 

recognize a conserved sulfated peptide called AxYs22 (Table 2), derived from the rice 

Xanthomonas oryzae protein Ax21 which catalysis XA21-mediated protection (Lee et al., 2009). 

The recognition of conserved PAMPs by PRRs RLKs triggers mitogen-associated protein 

kinases (MAPKs) activation, production of reactive oxygen species (ROS), Ca2+ burst, 

transcriptional reprogramming, hormones biosynthesis, and deposition of callose to strengthen 

the cell wall (Nürnberger et al., 2004; Ronald & Beutler, 2010; Segonzac & Zipfel, 2011). 

A lot of researches during last decades have decisively established that plants have a perception 

system on the cell surface as the first line of defense against unwanted intruders (Boller & Felix, 

2009; Zipfel & Robatzek, 2010).  
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Figure 5: A model for the amplification of signaling pathways for PAMPs in Arabidopsis. The FLS2 innate 

immune receptor recognizes a 22 amino acid epitope of the bacterial PAMP flagellin (flg22). In the presence of 

flg22, FLS2 form a heterodimer with its co-receptor BAK1 and multiple trans-phosphorylation events occur 

between the kinase domains of FLS2, BAK1, and BIK1/PBLs, leading to the activation of plant innate immunity 

and disease resistance. Within minutes of flg22 perception, the NADPH oxidase RBOHD pathway is activated, 

potassium and calcium ion fluxes occur, and the apoplast is alkalinized. SNARE [soluble NSF (N-ethylmaleimide-

sensitive factor) accessory protein receptor] protein complex drives the process of vesicle fusion with the target 

organelle in membrane trafficking. GPI-anchored protein COBRA controls orientational cell expansion, a potential 

regulator of cellulose biogenesis. The ABC transporters PEN3 (transports AMP- antimicrobial peptides) and water 

transporters (Yadeta et al., 2013) 

Some receptors however, signal in responses to DAMPs (damage associated molecular pattern), 

peptides release as a result of cell damage or wounding by insects (Boller & Felix, 2009). One 

good example of DAMP is Arabidopsis cell damage signal peptides and corresponding receptors 

(PEPR1/2) reported by Krol et al., 2010. 

Although PAMPs are described for many pathogens, NAMPs (Nematode-associated molecular 

patterns) that trigger PTI during nematode-plant interaction have not been well characterized 

(Holbein et al., 2016), and are the focus of several active research programs including this thesis. 

The only known PAMPs from nematodes to be reported so far is a small signaling molecule 

known as ascarosides (Manosalva et al., 2015), which are widely conserved among nematodes 

(Choe et al., 2012). Ascaroside (Ascr#18), the most abundant in plant parasitic nematodes, is 
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perceived in nanomolar and picomolar concentration (Manosalva et al., 2015). However, the 

receptor that perceives Ascr#18 as a NAMP is still elusive. Other works also suggest the 

activation of PTI during nematode plant interaction as evidence by silencing of BAK1 

orthologues SISERK3A and or SISERK3B in tomato (Solanum lycopersicum), result in 

susceptibility of plant to root-knot nematode (Peng et al., 2014). Teixeira et al., 2016, also 

reported that nematode infection in Arabidopsis triggers PTI responses in a BAK-dependent and 

also independent manner as they observed bak1-5 mutant being more susceptible to root-knot in 

comparison to control. 

 As nematodes continue to threaten world food security, and most of the chemical control under 

scrutiny due to environmental concerns (Tytgat et al., 2000), effect on human health and nations 

economic benefit, it will be therefore of utmost important to put focus on engineering resistance 

cultivars. This is possible via identification of resistance genes or RLKs potentially involved in 

signaling against nematode and thereby engineering crop to confer resistance in the long run. 

Sedentary biotrophs nematodes apart from host environmental factors depends on the feeding 

site formation for their survival, if disrupted by the resistance of a cultivar will help in reducing 

the nematode population and impact they will cause to crops.  

1.9 . Aims and objectives 

Previous studies have showed that plant parasitic nematodes during initial infection and 

migratory stage secrete effectors that contribute in suppressing plant basal immune responses in 

order to facilitate parasitism. However, the role of plant basal defense during early stages of 

infection is not well understood. In this thesis we aimed at deciphering plant early defense 

system against nematodes. The objective was to study the mechanisms of nematodes-induced 

PTI responses in plants and to screen for potential nematode PAMPs that elicits plant innate 

immunity. Also we studied the importance of DAMPs responses during plant-nematode 

interaction. 
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Abstract

Plant-parasitic nematodes are destructive pests causing losses of billions of dollars annu-

ally. An effective plant defence against pathogens relies on the recognition of pathogen-

associated molecular patterns (PAMPs) by surface-localised receptors leading to the activa-

tion of PAMP-triggered immunity (PTI). Extensive studies have been conducted to charac-

terise the role of PTI in various models of plant-pathogen interactions. However, far less is

known about the role of PTI in roots in general and in plant-nematode interactions in particu-

lar. Here we show that nematode-derived proteinaceous elicitor/s is/are capable of inducing

PTI in Arabidopsis in a manner dependent on the common immune co-receptor BAK1. Con-

sistent with the role played by BAK1, we identified a leucine-rich repeat receptor-like kinase,

termed NILR1 that is specifically regulated upon infection by nematodes. We show that

NILR1 is essential for PTI responses initiated by nematodes and nilr1 loss-of-function

mutants are hypersusceptible to a broad category of nematodes. To our knowledge, NILR1

is the first example of an immune receptor that is involved in induction of basal immunity

(PTI) in plants or in animals in response to nematodes. Manipulation of NILR1 will provide

new options for nematode control in crop plants in future.

Author summary

Host perception of pathogens via receptors leads to the activation of antimicrobial defence

responses in all multicellular organisms, including plants. Plant-parasitic nematodes

cause significant yield losses in agriculture; therefore resistance is an important trait in

crop breeding. However, not much is known about the perception of nematodes in plants.

Here we identified an Arabidopsis leucine-rich repeat receptor-like kinase, NILR1 that is

specifically activated upon nematode infection. We show that NILR1 is required for the

induction of immune responses initiated by nematodes and nilr1 loss-of-function mutants
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are hypersusceptible to a broad category of nematodes. Manipulation of NILR1 will pro-

vide new options for nematode control in crop plants in the future.

Introduction

Plant-parasitic nematodes attack the majority of economically significant crops, as shown by

international surveys indicating an overall yield loss of 12%. In some crops, such as banana, a

loss of up to 30% has been reported. Losses amount to $100 billion annually worldwide [1].

The economically most important nematodes belong to the group of sedentary endoparasitic

nematodes that includes root-knot nematodes (Meloidogyne spp.) and cyst nematodes (Globo-
dera spp. and Heterodera spp.). Most chemical pesticides used for control of plant-parasitic

nematodes are environmentally unfriendly, expensive and ineffective in the long term. There-

fore, an increased demand for novel crop cultivars with durable nematode resistance is inevita-

ble [2, 3]. In this context, it is important to identify and characterize the different natural

means by which plants defend themselves against nematodes.

The infection cycle for root-knot and cyst nematodes begins when second-stage juveniles

(J2) hatch from eggs. J2, the only infective stage, search for roots guided by root exudates.

They invade the roots by piercing the epidermal root cells using a hollow spear-like stylet.

After entering the roots, they migrate through different cell layers until they reach the vascular

cylinder. There, root-knot nematodes induce the formation of several coenocytic giant cells,

whereas cyst nematodes induce the formation of a syncytium. Because established juveniles

become immobile, the hypermetabolic and hypertrophic feeding sites serve as their sole source

of nutrients for the rest of their lives. In a compatible plant-nematode interaction, plant

defence responses are either down-regulated or overcome by the nematodes [4–6]. A cocktail

of secreted molecules including effectors that are synthesized in the oesophageal glands of the

nematodes is purportedly responsible for modulating the plant defences as well as the induc-

tion and development of the syncytium [7–10]. Whereas most root-knot nematodes reproduce

parthenogenically, cyst nematodes reproduce sexually. Although the mechanism of sex deter-

mination in cyst nematodes is not clear, studies have shown that the majority of juveniles

develop into females under favourable nutritional conditions. When juveniles are exposed to

adverse growth conditions, as it is the case with resistant plants, the number of male nema-

todes increases considerably [11].

Numerous studies have shown that plants sense microbes through the perception of patho-

gen/microbe-associated molecular patterns (PAMPs or MAMPs) via surface-localised pattern

recognition receptors (PRRs), leading to the activation of PAMP-triggered immunity (PTI).

The activation of PTI is accompanied by the induction of an array of downstream immune

responses including bursts of calcium and reactive oxygen species (ROS), cell-wall reinforce-

ment, activation of mitogen-associated and calcium-dependent protein kinases (MAPKs and

CDPKs), and massive reprogramming of the host transcriptome [12–15]. Together, these

downstream responses can fend off the pathogen’s infection. PAMPs are typically evolutionary

conserved across a class of pathogens and perform an important function in the pathogen life

cycle [16].

Plant PRRs are either plasma membrane-localised receptor-like kinases (RLKs) or receptor-

like proteins (RLPs) [14]. Both RLKs and RLPs consist of an extracellular receptor domain

(ECD) for ligand perception, a single membrane-spanning domain, but only RLKS have a

cytoplasmic kinase domain. The major classes of RLKs are leucine-rich repeat (LRR)-RLKs,

lysine-motif (LysM)-RLKs, crinkly4 (CR4)-RLKs, wall-associated kinases (WAKs),
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pathogenesis-related protein 5 (PR5)-RLKs and lectin-RLKs (LeCRKs). Nevertheless, it is

becoming increasingly clear that PRRs do not act alone but are part of multiprotein complexes

at the plasma membrane [13]. For example, the LRR-RLK BRASSINOSTEROID INSENSI-

TIVE-1 (BRI1)-ASSOCIATED KINASE 1 (BAK 1) forms receptor complexes with various

LRR-containing PRRs to positively regulate PTI [14–15, 17]. In addition to PAMPs, plant

PRRs can also perceive endogenous molecules, so-called damage-associated molecular pat-

terns (DAMPs) that are released upon cell damage or pathogenic attack [16].

Although extensive studies have been conducted to characterise the role of PTI response in

various models of plant-pathogen interactions, relatively less information is available pertain-

ing to nematode-induced PTI responses in plants. To date, no PRR that recognises a nema-

tode-associated molecular pattern (NAMP) has been identified [18]. However, some recent

work suggests that nematode infection triggers PTI responses in host through surface-localised

receptors. For example, silencing of the orthologues of BAK1 in tomato (Solanum lycopersi-
cum, Sl) (SlSERK3A or SlSERK3B) has been shown to increase the susceptibility of these plants

to nematodes due to defects in activation of basal defence [19]. In a more recent publication, it

was shown that nematode infection triggers PTI responses in Arabidopsis in a BAK1-depen-

dent and BAK1-independent manners. These authors showed that several PTI-compromised

mutants including bak1-5 were significantly more susceptible to root-knot nematodes as com-

pared to control [20]. However, the identity of ligands and/or receptors involved in BAK1-me-

diated response remains unknown. As far as NAMP identification is concerned, ascarosides,

which are conserved nematode-secreted molecules, have been shown to elicit plant defence

responses that lead to reduced susceptibility against various pathogens [21].

In comparison to PTI, Effector-triggered immunity (ETI) during plant-nematode interac-

tion is relatively well studied. A number of host resistance genes (R-genes) against nematodes

have been described and their mode of action is relatively well investigated [22]. Notably, a

host cell-surface immune receptor Cf-2 has been shown to provide dual resistance against a

parasitic nematode Globodera rostochiensis and a fungus Cladosporium fulvum through sensing

perturbations of the host-derived protease RCR3 by the venom allergen-like protein of Globo-
dera rostochiensis [23]. In the present study, we provide evidence that nematodes induce PTI-

like responses in Arabidopsis that rely on the perception of elicitors by membrane-localised

LRR-RLKs.

Results

Nematode infection triggers PTI responses in host plants

To reveal changes in gene expression in response to nematodes at and around the infected

area, GeneChip analysis was performed. Small root segments (approx. 0.5 cm) containing

nematodes that were still in their migratory stage (defined as continuous stylet movement),

were cut and compared with corresponding root segments from plants that were not infected.

Total RNA was extracted, labelled, and amplified to hybridize with the GeneChip Arabidopsis

ATH1 Genome (Affymetrix UK Ltd). The ATH1 Genome Array contains more than 22,500

probe sets representing approximately 24,000 genes. Subsequent analysis of the data showed

that approximately 2,110 genes were differentially expressed (FDR< 0.05; Fold change > 1.5).

Among them, 1,139 were upregulated, whereas 971 were downregulated (S1 Data). To explore

regulation of the biological processes, molecular functions, and their distribution across differ-

ent cellular components, a gene ontology enrichment analysis was performed on significantly

upregulated genes. Those categories which were particularly over-represented in the differen-

tially upregulated genes included the immune system response, response to stimulus, death,

and the regulation of the biological processes (Fig A in S1 Text). We have previously published
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a subset of 62 genes representing selected jasmonic acid (JA), ethylene (ET) and salicylic acid

marker (SA), signalling and biosynthesis genes from this GeneChip data, which were also vali-

dated by qRT-PCR [24]. In general, transcript levels of genes involved in JA/ET signalling and

biosynthesis were increased. However, in comparison to JA/ET, changes in SA-related genes

were relatively less pronounced. Nevertheless, a slight increase in a SA biosynthesis (PAL1)

and few SA signalling genes (NPR1, NPR3) was also observed (S2 Data). A detailed look at the

transcriptomic data indicate that nematode infection triggered the induction of genes previ-

ously shown to be induced during PTI (Fig 1A) [25–27].

NemaWater elicits PTI responses in host plants

Our transcriptome data showed the induction of PTI-like responses upon nematode infection,

however, it was unclear whether this induction was due to the recognition of nematodes by

plant receptors or whether it was the result of wounding due to continuous nematode move-

ment. To clarify this, we established a PTI screening assay involving the measurement of ROS

burst, one of the hallmark responses of PTI. For this purpose, we incubated the pre-infective J2

of H. schachtii in H2O for 24 hours at RT. The water obtained after removing the nematodes

was termed as NemaWater (Heterodera schachtii NemaWater, HsNemaWater; Meloidogyne
incognita NemaWater, MiNemaWater) and was used to treat Arabidopsis roots (see Methods

for details). After treatment, ROS burst was measured using a root-based procedure adapted

from a previous work [27]. Flg22 and H2O treatments were used as positive and negative con-

trols, respectively. Treatment with flg22 as well as with HsNemaWater induced a strong and

consistent ROS burst in roots (Fig 1B). The ROS burst with HsNemaWater was, however,

slightly delayed as compared to flg22; the ROS burst to flg22 occurs within 10 to 40 min, while

that to HsNemaWater occurred after 20 to 120 min. Although HsNemaWater induced a con-

sistent ROS burst in Arabidopsis roots, it was not clear whether this is due to the presence of a

NAMP in HsNemaWater or whether it is due to the production of an eliciting-molecule by

plants (upon NemaWater treatment), which in turn induced production of ROS burst in

roots. Such an eliciting-molecule could be called as DAMP or a NIMP (nematode-induced

molecular pattern). One way to address the question of NAMP, or DAMP/NIMP was to dilute

the HsNemaWater with H2O and analysed the production of ROS burst in roots. We hypothe-

sised that if ROS burst is due to production of a DAMP or NIMP, diluting the NemaWater

would not only reduce the magnitude of the ROS burst but may also slow its kinetics. How-

ever, our data showed that although magnitude of ROS burst was reduced strongly upon dilu-

tion, there was no delay in production of ROS between different dilutions (Fig 1C). Next, we

incubated the HsNemaWater with Arabidopsis roots for 60 min and then used this HsNema-

Water for production of ROS burst on fresh roots. The data showed that prior incubation of

HsNemaWater with roots did not cause any significant change in magnitude as well as kinetics

of ROS Burst (Fig 1D). Regardless of the nature or origin of elicitor, activation of ROS burst

upon HsNemaWater treatment confirmed our observations from transcriptomic studies indi-

cating that PTI-like responses are induced upon nematode detection.

To confirm whether NemaWater from different species of nematodes elicit a similar

response, we produced NemaWater from the root-knot nematode species, Meloidogyne incog-
nita (MiNemaWater) and performed ROS burst assays. We observed a strong and consistent

ROS burst (Fig 1E) similar to that of H. schachtii (Fig 1B). A prolonged treatment of young

Arabidopsis seedlings with flg22 activated defense responses and leads to growth inhibition

[28]. Although the mechanism underlying this growth inhibition is unclear, it is commonly

accepted that activation of defense responses may take the resources away from growth.

Importantly, this assay has frequently been used to analyse the eliciting capacity of PTI

Nematode perception in plants
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Fig 1. Nematode infection induced defense responses in plants that are characteristics of PTI. (A) Expression of PTI marker genes

in microarray analysis upon nematode infection in migratory stage. Root segments from uninfected roots were used as control. Values

indicate fold change compared with control. Asterisk indicates significant difference to control (FDR <0.05; Fold change >1.5). (B) Root

segments from Col-0 plants were treated with water, HsNemaWater or flg22 and ROS burst was measured using L-012 based assay from

0 to 120 min. (C) Root segments from Col-0 plants were treated with water, different dilutions of HsNemaWater or flg22 and ROS burst

Nematode perception in plants

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006284 April 13, 2017 5 / 22

39

https://doi.org/10.1371/journal.ppat.1006284


components [28, 29]. We tested whether NemaWater also caused seedling growth inhibition,

and found that both flg22 and HsNemaWater inhibited seedling growth and reduced the root

weight to a similar extent (Fig 1F, Fig B in S1 Text). Our results suggest that NemaWater con-

tains potential elicitor/s that is/are recognized by an immune receptor in plants leading to the

activation of PTI-like responses. To test this hypothesis, we incubated 12-day-old Arabidopsis

seedlings in HsNemaWater for one hour: ddH2O alone was used as a control. RNA was

extracted from the roots of both the non-treated control and NemaWater-treated seedlings.

They were subsequently labelled, amplified, and hybridized with a GeneChip, as described

above. The data analysis showed that 2,520 genes were differentially expressed, of which, 1,422

were upregulated and 1,098 were downregulated (FDR< 0.05; Fold change> 1.5; S3 Data). A

gene ontology enrichment analysis for differentially upregulated genes showed the over-repre-

sentation of categories such as immune system response, response to stimulus, death, signaling

and the regulation of the biological processes (Fig C in S1 Text). A look at the expression of

hormonal response gene upon HsNemaWater treatment showed the same tendency for upre-

gulation of JA/ET-related genes as observed upon nematode infection as described above (S2

Data). Moreover, a significant increase in the expression of genes characteristics for PTI was

detected (Fig 2A). This upregulation in expression of PTI marker genes was very similar to

that observed upon infection with nematodes (Fig 2B). Interestingly, expression of camalexin

biosynthesis genes (PAD3/CYP71B15, CYP71A12) was upregulated only in nematode-infected

plants but was not regulated upon HsNemaWater treatment (Fig 2B). This was further con-

firmed by analyzing a reporter line (pCYP71A12:GUS) [30] on treatment either with nema-

todes or with HsNemaWater. We found a strong GUS expression upon nematode infection,

whereas such an expression was absent in seedlings treated with HsNemaWater (Fig 2C–2E).

We validated the microarray data by measuring the expression of 13 genes via qRT-PCR upon

treatment with HsNemaWater. Our analysis showed a similar trend for expression of selected

genes as shown by microarray data (Table 1). Together, these results suggest that both nema-

tode infection and NemaWater treatment induce PTI responses including a significant activa-

tion of JA pathways. The data analysis also showed that the changes in gene expression

triggered upon treatment of seedlings with HsNemaWater were to an extent similar to those

that were observed upon nematode infection (Fig 2F and S4 Data). Even so, both treatments

induced expression of a distinct set of genes, which may reflect differences in both treatments

such as number and concentration of elicitors, duration of treatments, physical damage, etc.

On the basis of our finding that NemaWater triggers PTI responses, we asked whether pre-

treatment with NemaWater effects plant responses to nematodes and other pathogens. To test

this, plants were pre-treated with HsNemaWater 24 hours prior to inoculation and were then

infected with juveniles of H. schachtii or M. incognita or the virulent bacterial pathogen Pseu-
domonas syringae pv. tomato (see Methods for details). We found a strong decrease in number

of nematodes in HsNemaWater-treated plants compared with Col-0 (Fig 3A and 3B, Fig D in

S1 Text). Similarly, the growth of virulent P. syringae was also reduced strongly upon HsNema-

Water treatment (Fig 3C and 3D).

was measured using L-012 based assay from 0 to 120 min. (D) Root segments from Col-0 plants were incubated with HsNemaWater for 1

hour and then this HsNemaWater was used for production of ROS burst on fresh root segments. Water, fresh HsNemaWater or flg22,

were used as controls. (E) Root segments from Col-0 plants were treated with water, MiNemaWater, or flg22 and ROS burst was

measured using L-012 based assay from 0 to 120 min. (B-E) Bars represent mean ± SE for three technical replicates. Experiment was

repeated three times with same results. RLU, relative light units. (F) 5-day-old Col-0 seedlings were incubated in water, HsNemaWater or

flg22 for seven days. Fresh weight was measured at 12 days after germination. Data were analysed using t-test. Asterisk represent

significant difference to water-treated control root segments (P<0.05). Hs, Heterodera schachtii. Mi, Meloidogyne incognita.
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NemaWater-induced PTI responses are mediated by BAK1

Induction of PTI by NemaWater indicated the presence of putative elicitor(s) in NemaWater.

To test whether these elicitors is/are of proteinaceous nature, we added Proteinase K to HsNe-

maWater and performed a ROS production assay. Duration and intensity of NemaWater-

induced ROS burst varied in different experimental batches, which may be due to differences

in the concentration of elicitors in different preparations of NemaWater and the possibility

that NemaWater may contain more than one elicitor. Therefore, we used total photon count

as a more reliable parameter for quantification of ROS burst activation in this study. We

observed that the treatment of HsNemaWater with Proteinase K or heat strongly reduced the

induction of ROS burst (Fig 4A). These results were further confirmed by seedling growth

inhibition assays (Fig 4B). BAK1 has been shown to act as a co-receptor for LRR-RLKs and

LRR-RLPs, which typically detect proteinaceous ligands [14, 15]. Considering the data from

Proteinase K treatment (Fig 4A and 4B) and recently published data on root-knot nematodes

[20], we hypothesized that bak1 mutants would be more susceptible to cyst nematodes. A nem-

atode infection assay was performed on bak1-5 and the double mutant bak1-5 bkk1-1 (BKK1

Fig 2. NemaWater treatment induced defense responses in plants that are characteristics of PTI. (A) Expression of

PTI marker genes in microarray analysis upon HsNemaWater treatment. Root segments from uninfected roots were used as

control. Asterisk indicates significant difference to control (FDR <0.05; Fold change >1.5). (B) A heatmap showing expression

of PTI marker genes upon nematode infection or upon HsNemaWater treatment. (A-B) Values represent fold change

compared with control. (C-E) Expression of glucuronidase (GUS) driven by pCYP71A12 in control (C), H. schachtii infection at

migratory stage (D) and HsNemaWater treated plants (E) (F) A Venn diagram showing distribution of upregulated genes in

Arabidopsis upon nematode infection or upon HsNemaWater treatment.

Nematode perception in plants

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006284 April 13, 2017 7 / 22

41

https://doi.org/10.1371/journal.ppat.1006284.g002
https://doi.org/10.1371/journal.ppat.1006284


being the closest homolog of BAK1) [31]. Both mutants were significantly more susceptible to

nematodes compared with Col-0, as they allowed more females to develop (Fig 4C). We also

investigated whether BAK1 is required for PTI-responses upon HsNemaWater treatment and

found that the nematode-derived ROS burst was strongly reduced in bak1-5 mutants (Fig 4D).

Similar results were obtained in seedling growth inhibition assays (Fig 4E and Fig E in S1

Text).

Table 1. Validation of changes in gene expression upon HsNemaWater treatment via qRT-PCR. The values represent relative fold change in response

to NemaWater treatment as compared with control roots. 18S was used as housekeeping gene to normalize the data. All values are means of three biological

replicates +/- SD.

Locus GeneChip qRT-PCR Function

Fold Change Control vs HsNemaWater treated roots

At3g55950 2.2 3.6 +/- 1.6 Crinkly4 Related 3

At4g21390 8.3 6.9 +/- 2.51 B120: serine/threonine kinase

At1g66880 4.3 5.3 +/- 1.1 Protein kinase superfamily protein

At1g69930 38.4 38.1 +/- 6.2 Glutathione-s-transferase 11

At3g46230 36.4 34.2 +/- 18.7 Heat shock protein 17.4

At2g38470 12.6 10.0 +/- 7.7 WRKY33

At5g25930 6.0 5.22 +/- 0.3 LRR-RLK, Protein phosphorylation

At4g23190 5.2 5.38 +/- 1.1 Cysteine-rich-RLK

At1g74360 4.1 3.28 +/- 2.2 Nematode-Induced-LRR-RLK 1

At5g48540 3.7 3.03 +/- 1.3 RLK-family protein

At1g11050 3.6 2.52 +/- 0.9 ATP-binding protein kinase

At1g61590 -2.4 -1.56 +/- 0.28 Defense response protein kinase

At4g26790 -2.5 -9.3 +/- 6.6 GDSL-motif esterase/lipase

Fig 3. Pre-treatment with NemaWater induces resistance to pathogens. (A-B) Roots of Col-0 plants were treated with water or HsNemaWater

prior to infection and number of females were counted at 14 dai for cyst nematodes and number of galls were counted at 19 dai for root-knot

nematodes. Bars represent mean ± SE for three independent biological replicates. (C-D) Plants were sprayed with flg22 or HsNemaWater prior to

inoculation and C. F.U/cm2 was counted at 4 dai. Bars represent mean ± SE. Experiments were repeated three times with similar results. Asterisks

represent significant difference to water-treated control root segments (P<0.05).
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Nematode-triggered PTI is mediated by LRR-RLK NILR1

Within the group of 593 commonly upregulated genes between two microarray experiments,

52 genes encoded RLKs (including 11 LRR-RLKs, 7 LeCRKs and 1 LysM-RK) and 2 encoded

RLPs (S4 and S5 Data). Out of 52 candidate RLKs, we selected homozygous loss-of-function

T-DNA mutants for ten genes (from five different RLK families), including those coding for

three LRR-RLKs and one LeCRK. Confirmed loss-of-function mutants were then screened for

infection against H. schachtii. Of particular interest, we found one LRR-RLK mutant, termed

NILR1 (NEMATODE-INDUCED LRR-RLK 1; NILR1, At1g74360), which showed a consis-

tent increase in the number of female nematodes as compared with Col-0 (Fig 5A and Fig F

Fig 4. NemaWater treatment induced PTI responses were reduced strongly upon proteinase K, heat treatment, and in bak1-5 plants. (A)

Effect of Proteinase K and heat on production of ROS burst in root segments from Col-0 plants treated with water, HsNemaWater or flg22. ROS

burst was measured by using L-012 based assay from 0 to 120 min. PK, Proteinase K. Bars represent mean ± SE for two independent biological

replicates. Data were analysed using single-factor ANOVA and Tukey’s post hoc test (P<0.05). Columns sharing same letter are not statistically

different. (B) 5-day-old Col-0 seedlings were incubated in water, HsNemaWater, or flg22 with or without Proteinase K for seven days. Fresh weight

was measured at 12 days after germination. Bars represent mean ± SE for two independent biological replicates. Data were analysed using single-

factor ANOVA and Tukey’s post hoc test (P<0.05). Columns sharing same letter are not statistically different. (C) Average number of female

nematodes per plant in Col-0, bak1-5 and bak1-5 bkk1. (D) Root segments from Col-0 and bak1-5 plants were treated with water, HsNemaWater or

flg22 and ROS burst was measured using L-012 based assay from 0 to 120 min. (E) 5-days-old Col-0 and bak1-5 seedlings were incubated in water,

HsNemaWater or flg22 for seven days. Fresh weight was measured at 12 days after germination. (C-E) Bars represent mean ± SE for three

independent biological replicates. Data were analyzed using single-factor ANOVA and Dunnet post hoc test. Asterisks represent significant

difference to control (P<0.05).
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Fig 5. Knock-out nilr1-1 enhances susceptibility to nematodes. (A) Average number of female

nematodes induced by H. schachtii per plant in Col-0, nilr1-1 and nilr2-1. Bars represent mean ± SE for three

biological replicates. (B) Average number of galls induced by M. incognita per plants in Col-0, nilr1-1 and nilr2-

1. Bars represent mean ± SE for three biological replicates. (C) Root segments from Col-0, and nilr1-1 plants

were treated with water, HsNemaWater or flg22 and ROS burst was measured using L-012 based assay from

0 to 120 min. Bars represent mean ± SE for sixteen biological replicates. (D) 5-day-old Col-0 and nilr1-1

seedlings were incubated in water, HsNemaWater, or flg22 for seven days. Fresh weight was measured at 12

days after germination. Bars represent mean ± SE for three independent biological replicates. (E) 5-day-old

Col-0 and nilr2-1 seedlings were incubated in water, HsNemaWater, or flg22 for seven days. Fresh weight

was measured at 12 days after germination. Bars represent mean ± SE for three independent biological

replicates. (F) Root segments from Col-0 and nilr2-1 plants were treated with water, HsNemaWater or flg22

and ROS burst was measured using L-012 based assay from 0 to 120 min. Bars represent mean ± SE for

sixteen biological replicates (A-E) Data were analysed using single-factor ANOVA and Tukey’s post hoc test

(P<0.05). Columns sharing same letter are not statistically different.
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and G in S1 Text). In comparison to nilr1-1, the loss-of-function mutant for NILR2
(AT1G53430) did not show any change in susceptibility to nematodes (Fig 5A). Based on our

data with Proteinase K and BAK1, we hypothesized that NILR1 may be a PRR involved in the

perception of nematodes. Therefore, this study focused on the characterization of NILR1 and
NILR2, while other candidate genes will be described elsewhere.

To test NILR1’s involvement in nematode perception other than H. schachtii, we analysed

nilr1-1 mutants for infection with root-knot nematode M. incognita. Our data showed that

nilr1-1 was significantly more susceptible to M. incognita than Col-0. In comparison, there was

no change in susceptibility of nilr2-1 to M. incognita (Fig 5B). To investigate whether enhanced

susceptibility of nilr1-1 to nematodes is due to impairment in PTI responses, we performed

ROS burst assays on root segments from Col-0 and nilr1-1 upon treatment with NemaWater

from two different nematode species (H. schachtii and M. incognita). Notably, the Nema-

Water-induced ROS burst was strongly reduced in nilr1-1 (Fig 5C and Fig H in S1 Text). Simi-

lar results were obtained in seedling growth inhibition assays (Fig 5D and Fig I in S1 Text). We

also tested nilr2-1 for seedling growth inhibition and ROS burst induction upon treatment

with NemaWater. We found that even though ROS production was reduced in nilr2-1 upon

HsNemaWater treatment, the growth of these plants was inhibited to the same extent as Col-0

(Fig 5E and 5F and Fig I in S1 Text). Next, we isolated an additional homozygous knock-out

T-DNA line for NILR1 (nilr1-2) and analysed it for infection by H. schachtii and production of

ROS burst upon HsNemaWater treatment (Fig J-L in S1 Text). We observed that nilr1-2 plants

were impaired in ROS production and were also significantly more susceptible to H. schachtii
as compared to Col-0 (Fig K-L in S1 Text). Together our results show that NILR1 is an impor-

tant component of host immune responses that are activated upon nematode infection.

NILR1 is widely conserved in dicotyledonous plants

NILR1 is closely related to LRR-RLK BRI1, belonging to the subfamily X of LRR-RLKs [32].

NILR1 encodes a serine/threonine kinase with 1,106 amino acid residues (predicted molecular

weight 121.8 kDa) and shows all of the characteristics of an LRR-RLK. NILR1 has been sug-

gested to have an extracellular domain with 22 tandem copies of LRRs, which are interrupted

by a 76-amino acid island located between LRR17 and LRR18. The island domain of NILR1 is

longer than those of BRI1 and contains a cysteine cluster with the pattern of Cx25Cx16C, which

is followed by a transmembrane domain and a cytoplasmic kinase domain (Fig M-N in S1

Text) [31]. Moreover, a pair of cysteines at the amino terminal flanks NILR1’s LRR domain

with the characteristic spacing formerly observed in several plant LRR-RLKs [33]. Previous

analysis has shown that NILR1 is presumably localised to the cell membrane, and that homo-

logs are conserved among ten different species of flowering plants [32]. To gain further

insights into molecular functions of NILR1, we determined its subcellular localization by con-

focal microscopy transiently expressing 35S::NILR1-GFP in the epidermis of Nicotianna
benthamiana. We detected a strong GFP signal at the plasma membrane (PM) (Fig 6A). The

PM localization of NILR1 was confirmed by co-localization with PM marker (see Methods for

details). To investigate the conservation of NILR1, we conducted a BLAST search using ECD’s

amino acid sequence of NILR1 against non-redundant protein sequences of all land plants.

We detected homologues of NILR1 among different species of the Brassicaceae family. Addi-

tionally, orthologues of NILR1 were found to be widely conserved in the genome of various

dicotyledonous as well as monocotyledonous plant species. (Fig O in S1 Text). To further

determine whether NILR1 is conserved across the plant kingdom and to test for effects of

NemaWater, we measured the ROS burst upon HsNemaWater treatment in the dicotyledon-

ous tomato, sugar beet (Beta vulgaris) and tobacco (Nicotianna benthamiana), as well as in
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Fig 6. NILR1 is localised in plasma membrane. (A) Confocal microscopy of epidermis of Nicotianna benthamiana transiently expressing

35S:NILR1-GFP and plasma membrane marker 35S:PIP2A-mCherry. Scale, 50 μm. (B-E) Leaf discs from tomato (B), N. benthamiana (C),

sugarbeet (D) and rice plants were treated with water, HsNemaWater or flg22 and ROS burst was measured using L-012 based assay from

0 to 120 min. Bars represent mean ± SE for three technical replicates. Experiment was repeated three times with same results. RLU,

relative light units.
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monocotyledonous rice (Oryza sativa). We detected a strong ROS burst in sugar beet and

tomato (Fig 6B and 6C), the magnitude of ROS burst was delayed and reduced in N. benthami-
ana (Fig 6D). In comparison to dicotyledonous, experiments with monocotyledonous rice

showed that NemaWater induce a ROS burst, which was above the water control (Fig 6E).

However, this burst was strongly delayed and was not consistent across several experiments.

A further exploration of publicly available Arabidopsis expression data through the eFP

browser [33] revealed that NILR1 is only moderately expressed in sepals and in senescent

leaves under controlled growth conditions. However, NILR1 expression is upregulated in

response to biotic stresses such as Botrytis cinerea, Phytophthora infestans and non-adapted

Pseudomonas syringae strains (Fig P and Q in S1 Text). Also NILR1 shows a low basal expres-

sion in various root tissues but displays a relatively high expression in endodermis, pericycle

and stele [34]. The overall structure of NILR1 and its similarity to BRI1 supports its role as a

surface-localised receptor that is involved in the perception of extracellular signals.

Discussion

In comparison to other pathosystems, not much is known about the importance of PTI in host

defense against nematodes. In fact, no PRR involved in nematode perception has thus far

been characterized. Additionally, so far only ascarosides have been recently shown to act as

NAMPs. On the other hand, a number of nematode resistance genes (R-genes) either at the

cell surface or inside cells have been characterised [22, 23]. In the present study, we provide

insights into the molecular events associated with the basal resistance of plants to nematodes.

We demonstrate that PTI-like responses are activated upon nematode infection and that they

contribute significantly to basal resistance against nematodes.

The observation that cyst nematode infection induces the activation of a number of JA bio-

synthesis and signalling genes during migratory stages is supported with biochemical measure-

ments showing an elevated amount of JA in Arabidopsis roots 24 hours after nematode

infection [24]. In contrast to JA there was no strong activation of SA signalling in our tran-

scriptome data during migratory stages. Nevertheless, a slight increase in some SA biosynthesis

and signalling genes was observed. Intriguingly, plants that are deficient in different aspects of

SA-signalling and biosynthesis have been shown to be more susceptible to cyst nematode

infection [35]. These observations raise the question as to whether JA activation in roots upon

nematode infection is only because of wounding during migration. Remarkably, we observed

the same pattern of JA activation in roots upon treatment with HsNemaWater indicating that

JA activation is an important component of defense responses that are activated upon nema-

tode recognition and is not only correlated to wounding. This hypothesis contradicts the gen-

eral view that SA plays a more prominent role against biotrophs while JA/ET appears to be

more important in resistance against necrotrophic pathogens and herbivorous insects [36–38].

This view, however, is mainly based on observations with leaf pathogens, whereas only limited

information is available on the role of plant hormones in defense against root pathogens [39].

It may be that JA plays a more dominant role in the plant-pathogen interactions in roots. This

hypothesis is supported by experiments on rice plants that indicated a key role for JA during

interaction with root-knot nematodes [40]. Unlike the migratory phase, a number of studies

addressing changes in gene expression during the sedentary phase of cyst and root-knot nema-

todes infection revealed a strong suppression of host defence responses [4–6]. Based on data

from the current study and previous literature, we concluded that nematode invasion activates

PTI responses, which are suppressed during later stages of nutrient acquisition and feeding

site development. Indeed, an increasing number of nematode effectors involved in suppression

of PTI have been characterised during last few years [8, 10, 18, 22, 23].
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We observed that NemaWater treatment triggers responses, including ROS burst, immune

gene expression and seedling growth inhibition that are characteristic of PTI. In addition,

plants treated with NemaWater were more resistant to nematodes compared with water-

treated control plants. On the basis of these data we propose that NemaWater contains elici-

tor/s that is/are perceived by plant surface-localised receptors leading to activation of PTI.

The fact that NemaWater derived from two different nematode species induces similar

responses suggests that the elicitor component/s is/are conserved among different nematode

species. Although the identity of the elicitor in NemaWater remains unknown, it is likely to be

a heat-sensitive protein since treatment with heat as well as with Proteinase K strongly reduced

its activity. Nevertheless, the residual growth inhibition in spite of addition of Proteinase K in

NemaWater hints towards the possibility of an additional non-proteinaceous NAMP in Nema-

Water. However, it is also plausible that the residual growth inhibition is caused by Proteinase

K itself. This view is supported by our data (Fig 4A) and some previous studies where a slight

ROS burst was observed upon Proteinase K treatment alone [27].

NemaWater-induced responses are dependent on BAK1, which has been shown to act as a

co-receptor for LRR-type PRRs, which typically detect proteinaceous ligands [12, 15, 17].

Even though we hypothesise that the NemaWater-derived elicitor/s is/are perceived by a sur-

face-localized receptor, the possibility remains that such elicitor/s may not come into contact

with host plants during infection. However, the fact that NemaWater was produced by incu-

bating the nematodes without any further treatment strongly supports the idea that the elicitor

is naturally secreted into the environment. It is also possible that the treatment of seedlings

with NemaWater leads to the release of plant endogenous elicitors (DAMPs), which are again

sensed by plants leading to the activation of PTI responses. However, since diluting Nema-

Water reduced only the magnitude but did not slow down the kinetics of ROS burst and thus

makes it unlikely that a NemaWater induced DAMP is responsible for activation of PTI

responses. Regardless of the origin of elicitor, it is clear that induction of PTI responses

involves a component of NemaWater (therefore a NAMP) and is not only due to direct

mechanical wounding by nematodes.

Loss of NILR1 expression enhances the susceptibility of plants to nematodes suggesting that

it is involved in the recognition of nematode-associated patterns. We propose that NILR1 is a

PRR (or a component of a PRR complex) that recognises a NAMP leading to the activation of

PTI responses. This hypothesis is supported by experiments showing that nilr1-1 is defective in

the ROS burst as well as in seedling growth inhibition upon NemaWater treatment compared

with Col-0. Notably, nilr1-1 and nilr1-2 did not respond differently to flg22 as compared with

Col-0. On the other hand, bak1-5 was defective in PTI activation in response to both flg22 and

NemaWater indicating a BAK1-mediated role for NILR1 in nematode recognition. In compar-

ison to nilr1 (nilr1-1, nilr1-2), nilr2-1 did not show any change in susceptibility to neither cyst

nor to root-knot nematodes compared to Col-0. Similarly, there was no change in seedling

growth inhibition as compared with Col-0. Nevertheless, activation of ROS burst upon Nema-

Water treatment was decreased in nilr2-1 as compared with Col-0. This seemingly contradic-

tory observation raises the question as to whether NILR2 also plays a role in perception of

nematodes. A possible explanation could be that knocking out NILR2 may alter receptor com-

plex formation and function, which selectively influence downstream signalling pathways

without substantially influencing plant susceptibility to nematodes. This hypothesis also pre-

dicts that distinct signalling pathways that are activated during nematode perception may lead

to diverse signalling outputs independently from each other. In fact, a recent study suggests

activation of BAK1-dependent and BAK1-independent PTI pathways in response to RKN

infection [19].
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In conclusion, the identification of NILR1 as an LRR-RLK required for NemaWater-

induced immune responses and basal resistance to nematodes is a major step forward in

understanding of the molecular mechanisms underlying plant-nematode interactions. More-

over, the wide distribution of NILR1 among monocot and dicot plants is different from the

majority of currently known PRRs and provides a unique opportunity for manipulation. How-

ever, sequence similarity does not necessarily indicate similar functions. It is therefore plausi-

ble that some of these homologues represent BRI1 or similar receptors and appeared in our

analysis due to close similarity between NILR1 and BRI1. In fact, absence of a consistent ROS

burst in rice plants upon NemaWater treatment hints that rice plants may not encode a func-

tional NILR1. However, it is also possible that production of ROS burst upon treatment with

NemaWater in some plant species such as rice requires further optimisation. A more detailed

study would be needed to investigate this aspect.

Future work will focus on the purification and identification of elicitor/s present in Nema-

Water that are recognised in an NILR1-dependent manner. Further, conservation and func-

tion of NILR1 in various crop plants will be investigated. This will not only help in increasing

our understanding of induced immune responses, but also provide potential opportunities to

breed or engineer durable resistance against nematodes.

Materials and methods

Plant growth and nematode infection

Arabidopsis thaliana seeds were sterilized with 0.6% sodium hypochlorite and grown in Petri

dishes containing agar medium supplemented with modified Knop’s nutrient medium under

the previously described conditions [41, 42]. The infection assays with cyst nematodes were

performed as previously described [41]. Briefly, 60–70 J2s of H. schachtii were inoculated to

the surface of an agar Knop medium containing 12-days-old plants under sterile conditions.

For each experiment, 15–20 plants were used per genotype and experiments were repeated at

least three times independently. The number of females per plant was counted at 14 days after

inoculation (dai). For each experiment, 15–20 plants were used per genotype, and experiments

were repeated at least three times independently.

For infection assays with root-knot nematodes, approximately 100 J2s of M. incognita were

inoculated to the surface of agar MS-Gelrite medium containing 12-day-old plants and num-

ber of galls was counted at 21 dpi. M. incognita was propagated on greenhouse cultures of

tomato (Solanum lycopersicum cv. Moneymaker) plants. Galls on roots of tomato were cut into

smaller pieces of approximately 1 cm, crushed, and incubated for 3 min in 1.5% NaOCl2. Sub-

sequently, the suspension was passed through a series of sieves to separate nematode eggs from

root pieces. Eggs were collected in a 25 μm sieve. For surface sterilisation, eggs were incubated

in a 10% NaOCl2 for 3 minutes and washed with abundant sterile water. The clean egg suspen-

sion was further washed with 150 μL Nystatin (10,000 U/ mL) and 2mL gentamycin sulphate

(22.5 mg/mL) in a total volume of 30 mL. The suspension was stored at RT in darkness.

Freshly hatched J2s were rinsed in water, incubated for 20 minutes in 0.5% (w/v) streptomy-

cin-penicillin and 0.1% (w/v) ampicillin-gentamycin solution and for 3 minutes in 0.1% (v/v)

chlorhexidine and washed three times with liberal amounts of sterile autoclaved water. For

each experiment, 15–20 plants were used per genotype, and experiments were repeated at least

three times independently.

Gene expression analysis at the nematode migratory stage

Ten hours after inoculation with H. schachtii, small root segments containing nematodes with

moving stylets were marked under the binocular. Movement of stylet indicates the migration
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phase of nematodes. The infected area around nematode head was then dissected. Corre-

sponding root segments from uninfected plants were used as a control. RNA was extracted

using a Nucleospin RNA extraction kit (Macherey-Nagel, Durren, Germany) according to the

manufacturer’s instructions. The quality and quantity of RNA was analysed using an Agilent

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and a Nanodrop (Thermo Fisher

Scientific, Waltham, MA, USA) respectively. The cDNA synthesis was performed with

NuGEN’s Applause 3’Amp System (NuGEN, San Carlos, CA, USA) according to the manufac-

turers’ instructions. NuGEN’s Encore Biotin Module (NuGEN) was used to fragment cDNA.

Hybridization, washing and scanning were performed according to the Affymetrix 30 Gene-

Chip Expression Analysis Technical Manual (Affymetrix, Santa Clara, CA, USA). Three chips

each were hybridized with control and infected samples, with each microarray representing an

independent biological replicate. The primary data analysis was performed with the Affymetrix

Expression Console v1 software using the MAS5 algorithm.

NemaWater production and gene expression analysis upon NemaWater

treatment

Approximately 300 brown cysts were collected from nematode stock culture, which was main-

tained on mustard roots under sterile conditions. These cysts were incubated in 3 mM ZnCl2

in funnels (hatching chambers) to induce hatching. Before collection of J2s, the hatching

chamber was checked for microbial contamination. After seven days, J2s were collected in a

falcon tube containing double distilled autoclave water. The mixture of nematode in ZnCl2

was spinned at 800 rpm for 3 min and supernatant was discarded. Afterwards, 1 ml of 0.05%

HgCl2 was added and nematodes were incubated in it for 3 min to surface-sterilize them.

HgCl2 was then removed and autoclaved double distilled water was added in excess (approxi-

mately 30 ml). The J2s were left in water for three min to wash them and remove HgCl2. After

3 min, nematodes were spinned down at 800 rpm for 3min and the entire washing step was

repeated three times.

Approximately 40,000 sterile J2s of H. schachtii were incubated in 2 ml dd H2O for 24 hours

at room temperature with continuous shaking. Afterwards, the nematode-water mixture was

briefly centrifuged at 800 rpm for 2 minutes. The supernatant was removed to a new Eppen-

dorf tube and was labelled as NemaWater. All steps of NemaWater production were per-

formed under sterile conditions. Twelve-days-old Arabidopsis plants grown in Knop medium,

as described above, were removed from agar plates and incubated in NemaWater for one hour

each. Whole roots from 10 plants were cut and frozen in liquid nitrogen. Arabidopsis roots

treated only with dd H2O were used as a control. Three biological replicates were performed.

RNA was extracted, amplified and hybridised to perform a microarray analysis, as described

above. Three chips for each were hybridised for a control and for NemaWater treated samples,

with each microarray representing an independent biological replicate.

Statistical analysis of microarray data

Affymetrix.CDF and.CEL files were loaded into the Windows GUI program RMAExpress

(http://rmaexpress.bmbolstad.com/) for background correction, normalisation (quantile) and

summarisation (median polish). After normalisation, the computed robust multichip average

(RMA) expression values were exported as a log scale to a text file. Probe set annotations were

performed by downloading Affymetrix mapping files matching array element identifiers to

AGI loci from ARBC (http://www.arabidopsis.org). All genes that were more than 1.5 fold dif-

ferentially regulated (t-test; P< 0.05) were pre-selected for further analysis using False dis-

cover rate at 5%.
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Validation of microarray chip data upon NemaWater treatment

To validate the microarray expression data, 11 up- and two down-regulated genes were ran-

domly selected. The samples were collected in the same manner as the microarrays analysis for

NemaWater. RNA was extracted using a Nucleospin RNA Xs (Macherey- Nagel, Germany) kit

according to the manufacturer’s instructions. cDNA was synthesized using a High Capacity

cDNA Reverse Transcription Kit (Life technologies cat.no. 4368814), according to the manu-

facturer’s instructions. The transcript abundance of targeted genes was analysed using the Ste-

pone Plus Real-Time PCR System (Applied Biosystems, USA). Each sample contained 10 μL of

Fast SYBR Green qPCR Master Mix with uracil-DNA, glycosylase, and 6-carboxy-x-rhoda-

mine (Invitrogen), 2 mM MgCl2, 0.5 μL of forward and 0.5 μL of reverse primers (10 μM),

2 μL of complementary DNA (cDNA) and water in 20 μL of total reaction volume. Samples

were analysed in three technical replicates. To serve as an internal control, 18S genes were

used. Relative expression was calculated as described previously [43], by which the expression

of the target gene was normalized to 18S to calculate fold change. All primer sequences are

listed in S6 Data.

Genotyping and expression analysis of knock-out mutants

Single T-DNA inserted knockout mutants for selected genes (AT1G74360: nilr1-1,

SAIL_859_H01, nilr1-2, GK-179E06; AT1G53430: nilr2-1, SALK129312C) were ordered from

relevant stock centre. The homozygosity of mutants was confirmed via PCR using primers

given in S6 Data. The homozygous mutants were confirmed to be completely absent from

expression through RT-PCR with primers given in S6 Data.

Oxidative burst assay

The production of an ROS burst was evaluated using a modified protocol adapted from previ-

ous work [27]. Small root segments (approx. 0.5 cm) were cut from 12-days-old plants and

floated in ddH2O for 12 hours. Afterwards, the root segments were transferred to a well in a

96-well plate containing 15 μl of 20 μg/ml horseradish peroxidase and 35 μl of 0.01M

8-Amino-5-chloro-2,3-dihydro-7-phenyl-pyrido[3,4-d] pyridazine sodium salt (L-012, Wako

Chemicals). Next, 50 μl of either 1 μM flg22 or NemaWater was added to the individual wells.

The experiments were performed in four technical replicates, and ddH2O was used as a nega-

tive control. Light emission was measured as relative light units in a 96-well luminometer

(Mithras LB 940; Berthold Technologies) over 120 minutes and analysed using instrument

software and Microsoft Office Excel. For experiments with Proteinase K, 100 μl of Proteinase

K was added to 1 ml of NemaWater or flg22, and the mixture was incubated at 37˚C for 4

hours. For heat treatment, samples were incubated at 90˚C for 30 min. ddH2O was used as a

negative control. The experiments were performed in three technical replicates and indepen-

dently repeated multiple times as indicated in figure legends.

Growth inhibition assay

Arabidopsis plants were grown in Knop medium, as described above. Five-days-old plants

were transferred to a well in a 6-well plate containing a liquid MS medium supplemented with

either 1 ml of 1 μM flg22 or NemaWater. ddH2O was used as a negative control. Fresh weight

and length of the roots were measured 7 days after they were transferred to MS medium. The

experiments were performed in three technical replicates and independently repeated multiple

times as indicated in figure legends.
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In silico structural analysis and localization of NILR1

The amino acid sequence for ECD of NILR1 was used to blast against all land plants sequences

resulting in 318 hits across kingdom. Representative sequences from 44 unique species were

used to generate a multiple alignment file. A Gblock function was used to refine alignment,

and a maximum-likelihood analysis was performed with the PHYML software [44]. A non-

parametric approximate likelihood ratio test was used for branch support as an alternative to

usual bootstrapping procedure [45].

ECD sequence of NILR1 was used to search the SWISS-MODEL template library (SMTL

version 2016-03-23, PDB release 2016-03-18) with Blast and HHBlits for evolutionary related

matching structures matching [46–48]. NILR1 match best with BRASSINOSTEROID INSEN-

SITIVE 1 (BRI1) and the PDB file from SWISS-MODEL was used to view 3-dimensional

structures with NCBI Cn3D [49].

Coding region of NILR1 was amplified without stop codon using gateway forward and

reverse primers as given in S6 Data. The amplified fragment was cloned into pDONR207

using BP clonase (Invitrogen) according to manufacturer’s instructions. The resultant pEN-

TRY vector (pENTRY/NILR1) was then used to clone NILR1 into the destination vector

pMDC83:CGFP [50] using LR clonase (Invitrogen) according to manufacturer’s instructions.

The expression vector (35S:NILR1-GFP) was transformed into Agrobacterium strain GV3101

and co-infiltrated together with a plasma membrane mCherry marker 35S:PIP2A-mCherry
[51] into epidermis of 6-week old Nicotianna benthamiana leaves [52]. The GFP and mCherry

signal was detected using a confocal microscope (Zeiss CLSM 710).

Supporting information

S1 Text. (A) GO categories preferentially upregulated during migratory stages of nematode

infection. (B) Inhibition of root growth upon NemaWater treatment. 5-day-old Col-0 seed-

lings were incubated in water, HsNemaWater or flg22 for seven days. Fresh weight of root was

measured at 12 days after germination. Data were analyszed using t-test. Asterisk represent sig-

nificant difference to water-treated control root segments (P<0.05). Hs, Heterodera schachtii.
(C) GO categories preferentially upregulated upon NemaWater treatment. (D) An illustration

of our method for cyst nematode counting. Each petridish is screened at 14 dpi under the bin-

ocular microscope and each female nematode is marked (represented by dots) to calculate rate

of infection per plant. (E) NemaWater treatment growth inhibition was reduced strongly in

bak1-5. 5-day-old Col-0 and bak1-5 seedlings were incubated in water, NemaWater, or flg22

for seven days. Fresh weight of the root was measured at 12 days after germination. Data were

analyzed using single-factor ANOVA and Dunnet’s post hoc test (P<0.05). Columns sharing

same letter are not statistically different. (F) Genotyping for NILR1 and NILR2 mutants.

Genomic DNA of Col-0 or knockout lines (nilr1-1, nilr2-1) was PCR amplified using primers

given in S6 Data. The presence or absence of intact wild-type allele is shown. (G) RT-PCR for

presence or absence of gene expression in Col-0 or knockout mutants. RNA from Col-0 or

knockout lines (nilr1-1, nilr2-1) was extracted to synthesize single stranded cDNA. The pres-

ence or absence of expression is shown using primers given in S6 Data. (H) Knock-out nilr1
enhances susceptibility to nematodes. Root segments from Col-0, and nilr1-1 plants were

treated with water, flg22 or NemaWater from M. incognita (MiNemaWater) and ROS burst

was measured using L-012 based assay from 0 to 120 min. Bars represent mean ± SE for twelve

biological replicates. (I) NemaWater-induced growth inhibition was reduced strongly in nilr1-
1. 5-day-old Col-0, nilr1-1and nilr2-1 seedlings were incubated in water, NemaWater, or flg22

for seven days. Fresh weight of the root was measured at 12 days after germination. Data were

analyzed using single-factor ANOVA and Dunnet’s post hoc test (P<0.05). Columns sharing
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same letter are not statistically different. (J) Expression analysis of for nil1-2 mutants. RT-PCR

for presence or absence of gene expression in Col-0 or knockout mutants. RNA from Col-0 or

knockout line (nilr1-2) was extracted to synthesize single stranded cDNA. The presence or

absence of expression is shown using primers given in S6 Data. (K) Knock-out nilr1-2
enhances susceptibility to nematodes. Average number of female nematodes per plants in Col-

0 and nilr1-2. Bars represent mean ± SE for six biological replicates. (L) Knock-out nilr1-2
enhances susceptibility to nematodes. Root segments from Col-0 and nilr1-2 plants were

treated with water, flg22 or NemaWater from M. incognita (MiNemaWater) and ROS burst

was measured using L-012 based assay from 0 to 120 min. Bars represent mean ± SE for three

technical replicates. Experiment was repeated three times with similar results. (M) NILR1

encodes a LRR receptor kinase. Primary structure of the NILR1 divided into signal peptide; N-

terminal containing a pair of cysteine residues (underlined); the LRR domain with LRR con-

sensus residues in grey; the island domain containing a cysteine cluster with the pattern of

Cx2Cx16C; the transmembrane domain; and the Ser/Thr kinase domain. (N) A putative struc-

tural model for ECD of NILR1. The model was built using BRI1 as template. Conserved and

similar residues between BRI1 and NILR1 are highlighted as red or blue respectively. Grey

color represents additional residues. (O) Conservation of NILR1 in land plants. A phylogram

tree generated from maximum-likelihood trees construction method based on alignment of

sequence spanning NILR1’s ECD. The number next to each branch (in brown) indicates a

measure of support. The number varies between 0 and 1 where 1 represent maximum. (P)

Expression of NILR1 during development stages of plants. As revealed by eFP browser. (Q)

Expression of NILR1 under different biotic stress conditions as revealed by eFP browser [34].

(PDF)

S1 Data. Arabidopsis genes differentially regulated (FDR<0.05; Fold change >1.5).during

migratory stages of nematode infection. Root segments from uninfected roots were used as

control. Values indictae fold change compared with control.

(XLSX)

S2 Data. Expression data for a selection of Jasmonic Acid- (JA), Ethylene- (ET) and Sali-

cylic Acid genes (SA)-related biosynthesis, signaling and marker genes with fold changes

obtained from microarrays analysis representing migratory stages of nematode infection.

Values indictae fold change compared with control. Values in green are significantly different

(FDR<0.05; Fold change>1.5).

(XLSX)

S3 Data. Arabidopsis genes differentially regulated (FDR<0.05; Fold change >1.5) upon

HsNemaWater treatment. Root segments from uninfected roots were used as control. Values

indictae fold change compared with control.

(XLSX)

S4 Data. A set of commonly upregulated genes between two microarrays (S1 and S3 Data).

(XLSX)

S5 Data. All RLKs and RLPs differentially commonly upregulated between two microar-

rays (S1 and S3 Data).

(XLSX)

S6 Data. Primer sequences used in this study.

(DOCX)
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Abstract 

Plants defend themselves against invading pathogen through recognition of conserved 

molecular pattern (PAMPs) by plasma membrane localized pattern recognition receptors. The 

recognition of these molecular signatures activates responses as PAMP-triggered immunity. 

The output as a result of PTI activation includes the generation of reactive oxygen species, 

defense gene expression and production of antimicrobial compounds. The role of PTI during 

plant pathogen interaction has been well documented for many microbes of pathological 

importance. However little is known about PTI in nematode plant interaction till now. Here we 

showed that a proteinaceous molecule from plant parasitic nematode activates PTI-like 

response including ROS-burst, seedling growth inhibition and defense gene expression in 

Arabidopsis. Moreover, pre-treatment of seedling with NemaWater protein fraction induce 

resistance against cyst nematode H. schachtii. NemaWater fraction analysis by SDS-

polyacrylamide and Tandem liquid-chromatography mass-spectrometry revealed the presence 

of nematode proteins component. Nematode surface coat proteins were also represented in the 

data which could be assumed at least one or more of them are involved in activation of defense. 

This study shows that plants are able to recognize nematode through an unknown conserved 

protein molecule. Understanding of this pattern will help in genetically modifying crops for 

resistance against plant parasitic nematodes and in doing so improve crop yield. 

Keywords: Nematode, defense, protein molecules, PTI, Arabidopsis 
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Introduction 

Plants are sessile and cannot escape pathogen and other environmental interference.Therefore, 

they evolved sophisticated mechanisms for protection against those biotic and abiotic influence. 

During initial contact, plant recognized conserved pathogen associated molecular pattern by cell 

surface pattern recognition receptors leading to the socalled pathogen associated molecular 

pattern- triggered immunity (Jones & Dangl, 2006; Zipfel, 2008). PAMP-triggered immunity 

(PTI) has been well studied for many phytopathogens including bacteria (Gómez-Gómez & 

Boller, 2002; Nürnberger et al., 2004; Kunze et al., 2004), fungi (Kaku et al., 2006; Miya et al., 

2007), oomycete (Kanzaki et al., 2008), and insect pest (Howe & Jander, 2008). However, the 

importance of PTI during plant nematode interaction is still at an infant stage. Ascarosides are 

signaling molecules that are widely conserved among different types of nematodes (Choe et al., 

2012). Ascaroside 18 (Ascr#18) is highly abundant  in plant parasitic nematodes and has recently 

been shown to beperceived by plants in nanomolar and picomolar concentration (Manosalva et 

al., 2015). Nevertheless, molecular machinery including the receptor involved in Ascr#18 

recognition remains unknown.  PAMPs are diverse and vary in different forms. A 22-amino acid 

peptide sequence from flagellin (flg22) and elongation factor Tu (elf18) are among themost 

widely studied PAMPs  that activate PTI responses in plants (Gómez-Gómez & Boller, 2002; 

Kunze et al., 2004). Similarly, the role of chitin (polysaccharide) from fungal cell wall is well 

studied as a PAMP with the receptor well characterized (Kaku et al., 2006; Miya et al., 2007). 

As evidenced by numerous research findings, plant receptor-like kinase of leucine-rich repeat 

(LRR) class perceived proteinaceous molecules forming a heterodimer with 

BRASSINOSTEROID INSENSITIVE 1-Associated Receptor Kinase 1 (BAK1) as co-receptors 

(Chinchilla et al., 2007; Heese et al., 2007). Reports showed that silencing of BAK1 orthologues 

SISERK3A and or SISERK3B in tomato (Solanum lycopersicum), result in increased 

susceptibility of plant to root-knot nematodes (Peng et al., 2014). Nematode infection in 

Arabidopsis triggers PTI responses in a BAK1-dependent and also independent manner showing 

that bak1-5 mutant were more susceptible to root-knot in comparison to control (Teixeira et al., 

2016). In our previous work, we reported the activation of PTI-like responses in Arabidopsis by 

a nematode aqueous diffusate termed NemaWater in a manner depending on BAK1 (Mendy et 

al., 2017). Similar to root-knot nematodes, bak1-5, was also found to be hypersusceptible to both 

cyst (Heterodera schachtii) and root knot nematode (Meloidogyne incognita) confirming the role 
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of BAK1 gene in basal defense against plant parasitic nematode. Our finding also further 

indicates that a proteinaceouse molecule present in NemaWater is/are involved in activating 

plant defense responses. This was confirmed by experiments performed after treatment of 

NemaWater with proteinase K and also with heating, which reduces the ROS burst and seedling 

growth inhibition phenotype observed in untreated samples (Mendy et al., 2017). A leucine-rich 

repeat receptor like kinase referred to as NILR1 (Nematode induce LRR-receptor 1) has been 

shown to be specifically expressed upon treatment with NemaWater in Arabidopsis plants 

(Mendy et al., 2017). However, the ligand(s) that induces NILR1 expression is still elusive. In 

this work, we used column chromatography, sodium dodecyl sulfate (SDS) polyacrylamide gel 

electrophoresis and protein Mass-spec analysis method to identify all proteins present in 

NemaWater and tried to functionally characterize them for nematode associated molecular 

pattern (NAMPs) screening. 

Results 

NemaWater concentrated protein induce PTI responses in Arabidopsis 

We previously reported the induction of PTI-like responses such as ROS burst, seedling growth 

inhibition, defense gene expression and induce resistance to nematodes in plants upon 

NemaWater treatment (Mendy et al., 2017). To fractionate and identify protein available in 

NemaWater, we used vivaspin column and concentrated proteins present in NemaWater for 

further analysis. The concentrated protein label as (Fraction) and flow through (Filtrate) was then 

used to treat Arabidopsis seedlings and ROS burst was measured (see method for detail). Flg22 

and ddH2O were used as positive and negative controls respectively. Treatment with 10 kDa 

fraction of HsNemaWater protein as well as unfractionated HsNemaWater and flg22 induces 

ROS-burst both in Arabidopsis shoot and root samples (Fig.1a, b). Interestingly, we also 

observed a slight ROS burst upon treatment of Arabidopsis with flow through (filtrate). 

Nevertheless the amount of ROS produced by fractionated protein was much higher than filtrate. 

Next, we tested bak1-5 mutant for activation of ROS-burst upon protein (fraction or filtrate) 

treatment. Compared to Col-0 plant treated with HsNemaWater protein fraction, there was a 

significant reduction in ROS burst in bak1-5 mutant Fig.1d.  
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Figure 1: NemaWater concentration proteins induce PTI responses in Arabidopsis. a) Leaf discs from Col-0 

plant were treated with HsNemaWater or HsNemaWater protein fraction, filtrate, or flg22 and ROS burst was 

measured using L-012 based system from 0 - 120 min. b) Root segments from Col-0 plant were treated with 

HsNemaWater or HsNemaWater protein fraction, filtrate, or flg22 and ROS burst was measured using L-012 based 

system from 0 - 120 min. Bars represent mean ± SE for three technical and biological replicates respectively. RLU - 

Relative Light Unit (s). c) Gene expression analysis after treatment with HsNemaWater concentrated protein. Col-0 

seedlings were incubated in HsNemaWater, HsNemaWater protein fraction or filtrate for 1hr. Total RNA was 

extracted and cDNA synthesize and used as a template for gene expression analysis using gene specific primers. Bar 

represent mean ± SD for three technical and three biological replicates. d) Col-0 and bak1-5 plants root segments 

were treated with HsNemaWater, HsNemaWater fraction, filtrate and flg22 and ROS-burst was measured using L-

012 based method between 0-120 min, ddH2O was used as negative control. Bar represent mean ± SE for four 

technical and two biological replicates. 
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NemaWater treatment of seeding induces PTI gene expression (Mendy et al., 2017); we 

therefore wanted to test whether we observe a similar trend by treating plants with fractionated 

protein. To do so, 12 day old seedlings were incubated in 1mL protein fraction (10kDa) or in 

filtrate. After 1 hour, the roots were separated from the shoot; RNA was extracted and cDNA 

was synthesized. Gene expression analysis was performed for marker genes (JAZ6, CYP81F2, 

ERF13, JAZ10), which have been shown to be induced by NemaWater treatment. Excitingly, we 

observed a significant increase in transcript of all tested marker genes Fig.1c, confirming our 

hypothesis that plants are able to recognize an unknown proteinaceous molecule in NemaWater. 

To test whether treating plants with fractionated protein also leads to similar seedling growth 

inhibition as observed for NemaWater, we treated 5 day old Arabidopsis seedling with 

HsNemaWater, protein fraction, filtrate, and flg22 or water control. The results showed that 

HsNemaWater protein fraction causes seedling growth inhibition to a similar extent as observed 

in HsNemaWater treated plants Fig. 2a-c (Mendy et al., 2017). Nevertheless, we also observed a 

significant growth inhibition for samples treated with NemaWater filtrate. The phenomena 

underlying the cause of seedling growth inhibition during prolong treatment with peptide 

elicitors is poorly understood, but one common explanation is that plants reallocate resources to 

immunity during pathogen attack thereby compromising growth (Kunze et al., 2004, Mendy et 

al., 2017). Next, we treated plants with protein fraction and incubated them for 48 hours prior to 

infection with juveniles of cyst nematodes. Numbers of adult female and male nematodes were 

counted at 13 day post infection (dpi). Result showed that pre-treatment with both HsNemaWater 

and also HsNemaWater protein fraction led to a reduction in nematode development Fig. 2d.  
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Figure 2: Seedling growth inhibition and induce resistance. (a-c) Five day old Arabidopsis Col-0 seedlings were 

incubated in water, HsNemaWater, protein fraction, filtrate or flg22 for seven days. Fresh weight was measured at 

12 days after germination. Data were analyzed using One-way ANNOVA and Fishers LSD test (P<0.05). Those 

columns sharing same letter are not statistically different from each other. d) Roots of Col-0 12 day old plants were 

treated with water, HsNemaWater or protein fraction prior to infection with ~ 60 second stage juveniles. Female 

were counted at 14 dpi, bars represent mean ±SE for three independent biological replication. 

Protein gel electrophoresis revealed the abundance of protein in NemaWater 

Next, we made a Trichloroacetic acid (TCA) precipitation of HsNemaWater and resultant pellets 

were analyzed through Mass Spectrometry for the presence of nematode proteins in it. We found 

c 
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that more than 200 proteins were present in the HsNemaWater, many of them with known 

biological functions Fig.3a.  

To further evaluate the proteinaceous molecule in NemaWater causing PTI responses, we used 

spin column to concentrate protein in HsNemaWater (see material and methods for more detail). 

The concentrated protein was acetone precipitated and loaded on 10% acrylamide gel for protein 

analysis. After silver staining and Coomassie blue staining solutions (Fig.3b & Fig.3c), we 

observed abundance of stained protein band in both 10kDa and 50kDa protein fraction. For 

sample analysis, we used gel stained in Coomassie blue by excising protein bands. Due to 

difficulty in separating individual bands in 50kDa column samples (Fig.3b), no sample was 

included for Tandem liquid-chromatography mass-spectrometry (LC-MS/MS) analysis. 

Mass-spectrometry analysis revealed the presence of nematode cuticle proteins in 

HsNemaWater 

To identify potential nematode molecular patters that cause PTI responses, we perform a LC-

MS/MS analysis of 13 highly intensively stained protein bands Fig.3c. The 13 protein bands 

were analyzed individually to elucidate the available peptides or amino acids. The LC-MS/MS 

data were blasted against Globodera pallida genome (Cotton et al., 2014), which is closest 

available genome sequence of cyst nematode since H. schachtii complete genome sequences was 

not available. More than 400 nematode proteins were found in NemaWater Fig. 3d. More 

proteins were found in protein gel band number 2 (Nema-02) when looking at individual protein 

band data Fig. 3e. Using WormBase parasite (http://parasite.wormbase.org/index.html), and 

NCBI blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins), we annotated all the 

detected proteins to the respective protein coding gene. We found that more than 100 proteins 

have known biological functions with remaining more than 300 proteins were uncharacterized or 

no clear biologically know function described Fig. 3d, S1.  
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Figure 3: Protein gel electrophoresis and LC-MS/MS analysis revealed the abundance of protein in 

NemaWater. a) HsNemaWater was TCA precipitated and the protein pellet analyze with LC/MS/MS for available 

peptides. b) Silver staining after NemaWater protein concentration, acetone precipitation and sodium dodecylsulfate 

gel electrophoresis. 1- ddH2O control, 2- ddH2O acetone precipitated also control, 3 - 50k vivaspin concentrated, 4- 

50k vivaspin concentrated plus acetone precipitated, 5 - 10K vivaspin plus acetone precipitated, 6 - empty well. c) 

Coomassie blue staining after NemaWater protein concentration, precipitation and SDS-PAGE electrophoresis. 1- 

empty well, 2 - 10K plus acetone precipitated, 3- empty well, 4 - 10K plus acetone precipitated, 5 - empty well, 6 

10K plus acetone precipitated. Protein label 1 to 13 represent those band excised from the gel for peptide analysis.  

d) Total number of protein in Mass-spec, the number of characterizes and uncharacterized proteins were also shown.

e) Chart showing the total protein identified from each band. The bands were incised from the gel and analyze

individually comparing to corresponding band from H2O control. 
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Discussion 

Nematodes are a continuous threat to global food security and an estimated 10% of yield is lost 

every year due to nematode damage (Sasser & Freckman, 1987). The mode of defense against 

nematode by plants has not been well understood. Plant recognizes invading pathogen through 

their conserved molecules which serves as molecular signature to activate a cascade of defense 

signals, thereby prevents further establishment and development of pathogens (Jones & Dangl, 

2006). We previously reported the involvement of a novel proteinaceous molecule from a 

nematode aqueous solution in defense activation mediated by BAK1 in Arabidopsis (Mendy et 

al., 2017). The concentrated proteins were used to test for defense elicitation in Arabidopsis and 

also further analysis. As previously observed in NemaWater treated plants (Mendy et al., 2017), 

treatment with concentrated proteins (Fraction) causes ROS burst in both shoots and roots of A. 

thaliana (Fig.1a, b). The ROS burst in both root and shoot indicates that the responses for 

NAMPs are conserved in both plant tissues. This also raises the question whether plant can 

recognize all kind of plant parasitic nematodes in a similar manner. Further studies need to be 

done to answer that. Mutant plants of bak1-5were impaired in activation of ROS burst as 

observed in Col-0 when challenged with HsNemaWater protein fraction. BAK1 has been known 

to play role as co-receptor for many plant PRRs especially those that recognize proteinaceous 

molecules (Liebrand et al., 2014; Macho & Zipfel, 2014; Albert et al., 2015). Previous studies 

also showed that HsNemaWater defense activation in plant is mediated by BAK1 gene. This was 

confirmed by ROS burst and seedling growth inhibition with bak1-5 mutant in which there was 

impaired immune responses as observed in Col-0 plants treated with HsNemaWater (Mendy et 

al., 2017).  

We tested the expression of defense related plant hormone genes upon treatment with protein 

fraction. We observed an increase in transcriptome especially, Jasmonic acid (JA) hormone 

genes 1hour after treatment with protein fraction (Fig. 1c). These genes were also seen in our 

microarray data to be increased in transcription during early phase of nematode infection and as 

well as upon treatment with HsNemaWater (Fig. S1). Together, these results confirm our 

previous finding that Arabidopsis is able to recognize some unknown protein molecules from 

plant parasitic nematodes and activate PTI. The finding further strengthens the important role 

played by plant hormones JA/ET pathway during nematode recognition and signaling (Nahar et 
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al., 2011; Mendy et al., 2017). However, the late phase of nematode development is 

characterized by down-regulation of defense genes and defense related phytohormones (Ithal et 

al., 2007a, b; Jammes et al., 2005; Barcala et al., 2010). This is due to the nematodes secreting 

effector proteins that suppress early defense responsive genes including those coding for 

hormones biosynthesis (Holbein et al., 2016; Gardner et al., 2015; Goverse et al., 2014; Baum, 

2012). This enables the nematode to effectively establish and successful development in the host 

plant, hence, leading to a compatible interaction. 

To further characterize the protein molecules, we did a protein gel electrophoresis after acetone 

precipitation of protein fraction. A clear protein stained bands were observed ranging from as 

low as 15kDa to more than 180kDa confirming the presence of protein molecules in 

HsNemaWater (Fig. 3) and also gave us clue of the different protein sizes. Nematode surface 

proteins such as cuticle collagen, cuticulin, surface enolase, tetraspanin with extracellular 

domain, heat shock proteins etc., were found to be present in the mixture of proteins from LC-

MS/MS analysis. We assume that plants may have evolved to recognize nematode through one 

of their conserved surface proteins and activate basal defense responses mediated by BAK1 gene 

against them.  

In animal parasitic nematodes, a number of reports have described extracellular vesicles (EV) 

trafficking and their involvement in parasites-host-interactions (Coakley et al., 2015). Apart from 

the important role they serve in normal cell physiology, vesicles also transport molecules 

including excretory secretory proteins from pathogens to host (Coakley et al., 2015; Marcilla et 

al., 2012). Extracellular vesicles delivered in the host organism may carry molecules that helps 

the pathogen either escape or activate immune responses (Eichenberger et al., 2018). The role of 

EV trafficking have not been described in host plant-nematode-interaction. In bacterial feeding 

free living nematode Caenorhabditis elegans, EV have been reported with predicted function in 

communication and mating behaviors (Liégeois et al., 2006). Helminths worm parasite EV 

proteomes have revealed abundance of proteins involved in immune modulation such as 14-3-3 

and Heat-shock protein family (Eichenberger et al., 2018). The 14-3-3 protein has been shown to 

play vital role in modulating toll-like-receptors ability to initiate pro-inflammatory cytokine 

induction and also suppression of nitric oxides (NO) production by macrophages (Butt et al., 

2012). Hsp70 family proteins are molecular chaperones which can act as damage associated 
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molecular pattern (DAMPs) to activate inflammatory immune responses (Eichenberger et al., 

2018). These proteins, (Hsp), and other exosome associated proteins including enolase and 

aldolase were highly abundance in HsNemaWater protein analysis data. However, the molecular 

mechanism by which these proteins are released into the host plant and their unique role in 

immune modulation is not well understood. 

In conclusion, the analysis and identification of proteins in NemaWater is one step closer to 

finding potential NAMP involved in defense elicitation in plant. Identification of nematode 

NAMPS will serve as a molecular marker to screen for resistance mechanism in plants. 

Nematodes continue to be a potential threat to food security worldwide with little or no effective 

control mechanism in place. Therefore, it’s important to understand the plant molecular aspects 

of pathogen recognition and immune activation pattern. Information of which will be important 

in breeding for durable resistance against nematode in the near future. 

Material and Methods 

NemaWater Preparation 

NemaWater was prepared as described previously (Mendy et al., 2017) by hatching of cysts in 

3mM ZnCL2 in a modified hatching chamber. The ZnCl2 served as inducer of hatching for the 

cyst maintained on mustard plants. After several days of incubation (approximately seven days), 

the hatched second stage juvenile were collected and surface sterilized with 0.05% HgCl2 for 3 

min followed by washing to removed traces of HgCl2 all of which was done under sterile 

conditions. Afterwards, the clean and sterile J2s (~ 40,000 J2s/2ml), were incubated on a shaker 

for 24 hours for NemaWater production. NemaWater was finally recovered by centrifugation at 

800 rpm for 2 minutes and the supernatant transferred to a new Eppendorf tube and labeled as 

NemaWater. 

NemaWater Protein Concentration with Vivaspin column method 

Vivaspin®6 (Sartorius) sample concentrators were used to concentrate proteins from NemaWater 

based on sizes MWCO (molecular weight cut-off). Three different column were used (5000, 

10000 and 50000 MWCO). The column contained two compartments, lower and upper chamber 

where the upper chamber contained concentrated protein (fraction) and the lower holds the flow 
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through (filtrate). Both compartments are separated by a semi permeable membrane. The protein 

was concentrated by application of centrifugation which force solvent through the membrane 

thereby leaving protein in the upper compartment. Concentrated proteins was recovered with 

pipette and used for analysis or stored at -80oC for further use. 

NemaWater Trichloroacetic acid (TCA) precipitation 

The TCA protein precipitation was done according to (Link & LaBaer, 2011); Fresh TCA was 

prepared by adding 0.8g TCA in 0.7ml MilliQ water. 80% (w/v) TCA was added to the protein 

solution to bring the TCA concentration to 20%. The sample mixture was incubated on ice for 

1.5 hrs, and at -20°C overnight. Afterwards the samples were spin at maximum speed in a 

microcentrifuge for 15 min / 4°C. The pellets were washed 3x with ice cold acetone; followed by 

spinning for 10min / 4°C. The pellets were allowed to air dry for 10 min at RT (caution not to 

dry too long!). The pellets were resuspended in 10µl buffer for Trypsin digestion. 

NemaWater acetone precipitation 

Ice cold acetone was used to precipitation protein. Four times volume (4x vol.) acetone was 

added to the sample and incubated at -20oC for 1 hour. Afterwards, the samples were spinned 

down at 13000 rpm for 8 min to form a protein pellet. Acetone was poured out carefully without 

disturbing the protein pellet and the samples were further dried under a clean bench for few mins 

to remove remaining acetone. The protein pellet was dissolved with water and stored in -80oC for 

further use.  

SDS-PAGE gel electrophoresis 

Precast 10% polyacrylamide gel was used for the SDS-PAGE electrophoresis. 15µl H2O and 15 

µl of GLB (gel loading dye) were added to the protein pellet and mix thoroughly until pellet 

completely dissolved. Afterwards the samples were incubated at 95oC for 10min to denature the 

protein. After incubation, the samples were spinned at 13000rpm for 1min followed by loading 

on gel. For control sample, ddH2O treated in the same condition as NemaWater was used. 
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Staining of protein gel 

Two methods were applied to stain protein gel after electrophoresis silver staining and 

Coomassie brilliant blue method. 

Silver staining 

Silver staining method was use to visualize the protein band on a 1D gel after electrophoresis due 

to its high sensitive in detecting total protein by deposition of metallic silver on the surface of a 

gel where protein bands are present. This method was applied as previously described in Mortz 

et al., 2001. The 1D gel after electrophoresis was incubated in a fixer containing 40% ethanol, 

10% acetic acid, and 50% H2O for 1 hr. Afterwards, the gel was transferred to a new container 

with H2O and incubated overnight with 2-3 times change of water to wash away traces of acetic 

acid. This also helps reduce background staining at the same time increase sensitivity. The 

following day, the gel was sensitized in 0.02% sodium thiosulfate for 1 min followed by washing 

in H2O 3 times with 20 sec incubation for each wash. Afterwards, the gel was incubated in 4oC 

cold 0.1% silver nitrate solution containing 35% formaldehyde followed by washing in H2O 

again for 3 times with 20 sec incubation time. The gel was developed in 3% sodium carbonate 

containing 0.05% formaldehyde and the process was terminated when staining was sufficiently 

done by incubating the gel in 5% acetic acid for 5 min. For storage the gel was place in 1% 

acetic acid solution and stored in 4oC. Samples from silver staining method were not use in LC-

MS/MS analysis. This method was only applied for protein visualization process. 

Coomassie blue Staining 

To visualize and obtain samples for mass spectrometer analysis, the SDS-PAGE gel bands were 

stained with SimplyBlue TM SafeStain (Invitrogen) Coomassie staining solution. SimplyBlue TM 

SafeStain is easy to use, with less harm to users and environment. All staining procedures were 

performed according to the manufacturer’s instruction, unless stated otherwise 

(https://assets.thermofisher.com/TFS-Assets/LSG/manuals/simplyblue_man.pdf). Gel was rinsed in 

deionized water 3 times with 5 min incubation between the changes of water. This helps to 

remove SDS and salts from the buffer which can interfere with the dye binding to the proteins. In 

a new container with gel, 20mL of SimplyBlue TM SafeStain with 2mL of 20% NaCl (w/v) was 

added and incubated with gentle shaking overnight. The staining solution was removed and the 
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gel washed 5 times in 100 mL of water with replacement every 1 hour. Gel picture was taken 

after wards Fig.2a. To collect samples for protein analysis, highly visibly stained bands were 

label 1-13 and the label band were incised carefully and place in an Eppendorf 0.5mL Safe-Lock 

protein LoBind Microcentrifuge Tubes Cat No. 0224331064. Control samples were collected 

from H2O loaded wells corresponding to the same size as NemaWater samples. 

Mass-spectrometer protein analysis 

Protein bands were excised from polyacrylamide gel and placed in a low protein binding tube. 

The tubes were then label and send for LC-MS/MS based protein analysis.  

ROS measurement 

Reactive oxygen species measurements were done based on Mendy et al., 2017. Small root 

segments were cut from 12 days old Arabidopsis plants and incubate in ddH2O overnight. Prior 

to experiment, the root segments were transferred into a 96 well plate containing 15 µl of 20 

µg/ml horseradish peroxidase and 35 µl 0.1M 8-Amino-5-chloro-2,3-dihydro-7-phenyl-

pyrido[3,4-d] pyridazine sodium salt (L-012, Wako Chemicals). Next, 50 μl of either 1 μM flg22 

or concentrated NemaWater protein was added to the individual wells and ddH2O was used as 

control. Photon was measured as relative light unit (RLU) in a 96-wel luminometer (TECAN 

Infinite ® 200 PRO) over 120 mins and data analysis done with the instrument software and 

Microsoft Office Excel. 

Gene expression analysis upon treatment with concentrated protein from NemaWater 

Twelve-days-old Arabidopsis plants grown in Knop medium were incubated in concentrated 

HsNemaWater protein for one hour. Afterwards the whole roots were cut and frozen in liquid 

nitrogen. Arabidopsis roots treated only with ddH2O were used as a control with the experiment 

replicated biologically three times. RNA was extracted from the samples using a NucleoSpin 

RNA Xs (Macherey-Nagel, Germany) kit according to the manufacturer’s instructions. 

Complementary DNA (cDNA) was synthesized using a High Capacity cDNA Reverse 

Transcription Kit (Life technologies cat.no. 4368814), according to the manufacturer’s 

instructions. The transcript abundance of targeted genes was analyzed using the StepOnePlus™ 

Real-Time PCR System (Applied BioSystems, USA). Each sample contained 10 μL of Fast 
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SYBR Green qPCR Master Mix with uracil-DNA, glycosylase, and 6-carboxy-x-rhodamine 

(Invitrogen), 2mM MgCl2, 0.5 μL of forward and 0.5 μL of reverse primers with both primers 

having 10μM concentration, 1μL of complementary DNA (cDNA) and H2O was added making a 

20 μL of total reaction volume. Samples were analyzed in three technical replicates with the 18S 

genes used as internal control. The expression of targeted genes was normalized to the internal 

control (18S) in order to calculate relative expression as described in Pfaffl, 2001. 

Seedling growth inhibition assay 

Modified knop media was used to grow Arabidopsis plants as previously described. Five day old 

seedlings were transferred into a 6 well plate containing liquid MS medium supplemented with 

either 1 ml of HsNemaWater, HsNemaWater protein fraction, 1 μM flg22 or water control. The 

plants fresh weight was taken after 7 days of growth inside peptide supplemented medium. Root 

length was also measured. The experiments were conducted in five technical replicates and three 

biological replicates. 

Induce resistance in Arabidopsis 

Ten day old Arabidopsis seedling growing on knop media in 6 well plates were treated with 1 

mL of HsNemaWater, HsNemaWater protein fraction, or water control and incubated for 48 

hours prior to infection with ~ 60 sterile second stage juveniles of H. schachtii. Nematode adult 

female and males were counted at 13 dpi. 

Statistically analysis 

Data analysis were done with SigmaPlot 12 version, using One-way ANNOVA and Fisher LSD 

test (P<0.05) for pair-wise comparisons. For qRT-PCR ∆CT values were analyzed as previously 

recommended (Livak & Schmittgen, 2001) 
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Supplementary data 

Table S1: Arabidopsis defense related hormones genes differentially regulated (FDR<0.05; Fold change >1.5) 

during migratory stages of nematode infection and also upon plant treatment with HsNemaWater. Root 

segments from uninfected roots were used as control. Values indicate fold change compared with control. 

ATG locus Gene 

Symbol 

Microarray data 

Migratory p-Value NemaWater p-Value Gene Title 

At1g72450 JAZ6 3,40 0,0117 4,29 0,0002 JAZ6 (JASMONATE-ZIM-DOMAIN PROTEIN 6) 

At5g57220 CYP81F2 16,66 0,0180 7,80 0,0111 CYTOCHROME P450, FAMILY 81, SUBFAMILY F, 

POLYPEPTIDE 2", CYP81F2 

At2g44840 ERF13 5,90 0,0153 6,04 0,0035 ERF13 (ETHYLENE-RESPONSIVE ELEMENT 

BINDING FACTOR 13) 

At5g13220 JAZ10 12,54 0,0006 3,90 0,0121 JAZ10 (JASMONATE-ZIM-DOMAIN PROTEIN 10) 

At1g17380 JAZ5 6,48 0,0171 3,06 0,0038 JAZ5 (JASMONATE-ZIM-DOMAIN PROTEIN 5) 

At2g34600 JAZ7 1,74 0,2522 3,10 0,0071 JAZ7 (JASMONATE-ZIM-DOMAIN PROTEIN 7) 

At5g64900 PROPEP1 3,17 0,0004 3,63 0,0019 PROPEP1 (Elicitor peptide 1 precursor) 

At2g35980 NHL10 13,17 0,0001 7,14 0,0185 ARABIDOPSIS NDR1/HIN1-LIKE 10 
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Abstract

When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form 
of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence 
responses. However, the molecular mechanisms mediating damage responses in plant–nematode interactions remain 
unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as 
polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the 
root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are 
involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in 
response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed 
that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-
mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate 
pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage 
perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of 
PGIP in plant resistance to cyst nematodes.

Key words:  Damage-associated molecular patterns (DAMPs), glucosinolate, nematode, oligogalacturonide (OG), pattern-
triggered immunity (PTI), plant-parasitic nematodes, polygalacturonase (PG), polygalacturonase-inhibiting protein (PGIP).

Introduction

Plant-parasitic nematodes attack almost all major crops 
throughout the world, causing damage that has been esti-
mated at >US$100 billion per year (Nicol et  al., 2011). 
The ~4100 known species of plant-parasitic nematodes 
(Decraemer and Hunt, 2006) display a wide variety of para-
sitic strategies, including simple migratory endoparasites that 

live in soil and feed on different tissue layers, and more com-
plex migratory endoparasites that move continuously as they 
feed, thereby causing extensive necrosis of the infected tis-
sues. However, the most complex and economically import-
ant is a group of sedentary endoparasites that includes cyst 
nematodes (CNs; Globodera spp. and Heterodera spp.) and 
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root-knot nematodes (RKNs; Meloidogyne spp.). Infective-
stage CN and RKN juveniles (J2) invade the plant root near 
the tip and move through different tissue layers to reach 
the vascular cylinder. Once inside the root, RKN J2s move 
intercellularly, whereas CN J2s move intracellularly, causing 
more damage to the host tissues. After reaching the vascular 
cylinder, CNs induce the formation of a syncytium, whereas 
RKNs induce the formation of 5–7 giant cells. Both the syn-
cytium and giant cells are hypermetabolic sink tissues, and 
serve as the sole source of nutrients for growing nematodes 
throughout their entire life cycle (Kyndt et al., 2013; Siddique 
and Grundler, 2015). In the case of RKNs, the development 
of giant cells is accompanied by hypertrophy and hyperplasia 
of neighbouring tissues, leading to the formation of typical 
knot-like galls in roots.

The first barrier encountered by nematodes during root 
invasion is the cell wall. Nematodes utilize two strategies to 
penetrate the plant cell wall: a stylet is used to pierce through 
the wall, and an array of  cell wall-degrading enzymes is 
secreted to disrupt wall rigidity, including pectate lyase 
(de Boer et  al., 2002; Vanholme et  al., 2007), endo-β-1, 
4-glucanase (Smant et al., 1998; de Boer et al., 1999), and
polygalacturonase (PG) (Jaubert et al., 2002). PGs are key
enzymes that cleave the α1–4 linkage between the d-galac-
turonic acid residues of  homogalacturonan (Kalunke et al.,
2015; Rahman and Joslyn, 1953b; Themmen et  al., 1982).
PGs are well characterized in fungi, bacteria, and insects,
and their action on the outer plant cell wall is essential for
further wall degradation by other wall-degrading enzymes
(Rahman and Joslyn, 1953a, b; Kester and Visser, 1990).
Several fungi secrete PGs, including Aspergillus flavus
(Whitehead et  al., 1995), Botrytis cinerea (Cabanne and
Doneche, 2002; Favaron et  al., 1992), Aspergillus niger
(Maldonado and de Saad, 1998), Claviceps purpurea (Oeser
et al., 2002), and Sclerotinia sclerotiorum (Reymond-Cotton
et al., 1996). A number of  bacteria also produce PGs, includ-
ing Agrobacterium tumefaciens (Rodriguezpalenzuela et al.,
1991), Ralstonia solanacearum (Huang and Allen, 2000),
and Bacillus polymyxa (Nagel and Vaughn, 1961). Similarly,
the salivary glands of  some insect species that feed on plants
produce PGs, which help them feed on host tissues (Strong
and Kruitwagen, 1968; Laurema et  al., 1985; Celorio-
Mancera et  al., 2008, 2009). As stated above, nematodes
also secrete PGs. In fact, the first PG of  animal origin was
isolated from the RKN Meloidogyne incognita, where it has
been suggested to have a role in parasitism (Jaubert et al.,
2002). In addition, the transcriptome of  the beet cyst nema-
tode (BCN), Heterodera schachtii, was recently described to
encode a PG (Fosu-Nyarko et al., 2016).

Plant cell walls can inhibit microbial PG activity via a 
leucine-rich repeat defence protein called PG-inhibiting pro-
tein (PGIP), which attenuates pectin degradation. The crys-
tal structure of PGIP contains a central leucine-rich repeat 
domain with 10 imperfect repeating units, each derived from 
24 amino acid residues. Most leucine-rich repeat proteins 
have one β-sheet connected with a helix on the convex side or 
β-turns (Di Matteo et al., 2003). In contrast, the leucine-rich 
repeat domain in PGIP is organized to form two β-sheets; 

sheet B1 occupies the concave inner side of the molecule 
and contains amino acid residues that are crucial for inter-
actions with PGs (Di Matteo et  al., 2003). The association 
of PGIP with PG inhibits PG-mediated cell wall degradation 
and generates oligogalacturonides (OGs) with elicitor activity 
(Bishop et al., 1981; Hahn et al., 1981; Nothnagel et al., 1983; 
Benedetti et  al., 2015). These OGs have a degree of poly-
merization between 10 and 15 (Cote and Hahn, 1994), and 
they activate defence responses such as the reactive oxygen 
species (ROS) burst (Galletti et al., 2008), callose deposition 
(Bellincampi et al., 2000), phytoalexins (Davis et al., 1986), 
and nitric oxide (Rasul et al., 2012).

The importance of PGIPs in nematode infection is sup-
ported by a study in pea (Pisum sativum L.) where PsPGIP1 
has been shown to be differentially expressed in susceptible 
and resistant genotypes in response to Heterodera goettin-
giana infection (Veronico et al., 2011). In situ hybridization 
analysis confirmed that PsPGIP1 is localized specifically in 
the syncytium of a resistant pea genotype, suggesting that 
PsPGIP1 disrupts syncytium development inside the host 
root (Veronico et al., 2011). Further progress in this field 
requires a detailed analysis of the roles of PG, PGIP, and OG 
in plant–nematode interactions (Holbein et al., 2016). Here, 
we investigate the role of PGIPs in Arabidopsis during infec-
tion with the BCN H. schachtii and the RKN M. incognita. 
We found that PGIP1-mediated defence responses form an 
important component of host basal resistance to CNs but not 
to RKNs.

Materials and methods

Plant growth conditions and nematode infection assays
Arabidopsis plants were grown in either Knop medium (for BCN 
infection) or Murashige and Skoog (MS) medium (for RKN infec-
tion) as described previously (Siddique et al., 2015). The T-DNA 
insertion mutants were ordered from the Nottingham stock centre 
(pgip1-1, SALK_001662.33.10.x. pgip1-2, GK-092G09-012001, 
pgip2-1, and GK-717A02-025309). Salk lines were genotyped 
(Supplementary Fig. S1 at JXB online) using primers listed in 
Supplementary Table S1. GK lines were screened for homozygosity 
through sulfadiazine resistance. The homozygous T-DNA inser-
tion mutants were checked for lack of  expression (Supplementary 
Fig. S2) using the primers listed in Supplementary Table S1. 
Twelve-day-old plants were infected with surface-sterilized 60–80 
J2 individuals of  BCN or RKN (M.  incognita). For BCN, the 
average number of  males and average number of  females was 
counted at 12 days post-inoculation (dpi) (Siddique et al., 2015). 
For RKN, the average number of  galls was determined at 21 dpi. 
All infection assays for BCN and RKN were repeated a minimum 
of  three times and each experiment consisted of  15–20 individual 
plants. The average area of  syncytia and average female area were 
measured at 14 dpi as described previously (Siddique et al., 2015). 
Approximately 30 syncytia and associated nematodes were meas-
ured for each experiment, and each experiment was repeated three 
times. To determine the average area of  galls, ~30 galls were out-
lined and measured for each experiment, and each experiment was 
repeated three times

Cloning and transformation of promoter::GUS lines
Promoter regions upstream of the start codons of PGIP1 (1214 bp) 
and PGIP2 (483  bp) as previously described by Ferrari et  al. 
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(2003) were amplified from genomic DNA using primers given in 
Supplementary Table S1 and cloned in a Gateway cloning vector, 
pDONR 207 (Invitrogen), according to the manufacturer’s instruc-
tions. The verified fragments were fused with the β-glucuronidase 
(GUS) gene in the expression vector pMDC162 (Curtis and 
Grossniklaus, 2003). These promoter::GUS constructs were intro-
duced into Agrobacterium tumefaciens strain GV3101 for the trans-
formation of 4- to 6-week-old Arabidopsis plants by the floral dip 
method (Clough and Bent, 1998). After drying of plants, seeds (T0) 
were harvested and sterilized before growing on Knop medium sup-
plemented with 25 µg ml−1 hygromycin. Three independent homo-
zygous plants were selected for further analysis. Homozygous lines 
were grown in Knop medium and infected with nematodes to ana-
lyse the GUS expression in a time-course analysis. The infected or 
uninfected roots were incubated with X-gluc for 12–14 h at 37 °C. 
After overnight incubation, the reaction was stopped and samples 
were washed with 70% ethanol. Staining was carried out at different 
time points for H. schachtii (1, 3, 5, and 10 dpi) and M. incognita (1, 
3, 7, and 15 dpi). The stained syncytia and galls were photographed 
with a Leica DM4000 inverted microscope equipped with LAS soft-
ware (Leica Microsystems) and fitted with an Olympus C-5050 digi-
tal camera.

Quantitative RT–PCR
Arabidopsis plants were grown and infected with nematodes as 
described above. Root segments containing the infection zone were 
cut, and total RNA was extracted using an RNeasy Plant Mini Kit 
(Qiagen) following the manufacturer’s instructions. Contaminating 
DNA was digested with DNase1 using a DNA-free™ DNA 
Removal Kit (Ambion) and the RNA was used to synthesize cDNA 
using a High Capacity cDNA Reverse Transcription Kit (Applied 
Biosynthesis, Darmstadt, Germany) following the manufacturer’s 
instructions. Quantitative reverse transcription–PCR (qRT–PCR) 
was performed with the StepOne Plus Real-Time PCR System 
(Applied Biosystems) using the primers given in Supplementary 
Table S1. Each sample contained 10 μl of  Fast SYBR Green qPCR 
Master Mix (Invitrogen), 2 mM MgCl2, 0.5 μl each of forward and 
reverse primers (10 μM), 2 μl of  cDNA, and water in a 20 μl total 
reaction volume. UBQ5 and β-tubulin was used as an endogenous 
control except for assays involving nematode feeding sites (galls 
and syncytia). For galls and syncytia, 18S and UBP22 were used 
as housekeeping genes as recommended previously (Hofmann and 
Grundler, 2007). cDNA was diluted 1:100 for 18S amplification. 
Data were analysed using Pfaffl’s method (Pfaffl, 2001). Data shown 
are an average of three independent experiments. Each experiment 
consisted of three technical replicates. Primer sequences used for 
qRT–PCR analysis along with their respective efficiencies are listed 
in Supplementary Table S1.

Generation of overexpression and complementation lines
To overexpress AtPGIP1 and AtPGIP2, full-length coding 
sequences of both genes were amplified from cDNA synthesized 
from RNA isolated from 12-day-old Arabidopsis plants. The pri-
mer pairs used to amplify the coding sequences from both genes are 
listed in Supplementary Table S1. The amplified PCR product was 
cloned into Gateway cloning vector pDONR207 (Invitrogen). The 
cloned fragments were verified through sequencing and transferred 
via Gateway recombination into the pMDC32 vector, where they 
were placed under the control of the double Cauliflower mosaic virus 
(CaMV) 35S promoter to engineer AtPGIP1 and AtPGIP2 overex-
pression. The verified constructs were introduced into A.  tumefa-
ciens strain GV3101, which was used for the transformation of 4- to 
6-week-old Col-0 plants by the floral dip method (Clough and Bent,
1998). After drying of plants, seeds (T0) were harvested and sterilized 
before being sown on Knop medium supplemented with 25 µg ml−1

hygromycin. Transformants were selected to produce homozygous
plants. At least two independent homozygous lines with the highest

up-regulation were selected for further studies. Complemented lines 
of pgip1 mutants were obtained by cloning a wild-type copy of the 
PGIP1 gene under the control of the CaMV 35S promoter using 
the Gateway cloning system as described above. Two homozygous 
complemented lines carrying an insertion of the wild-type gene were 
used in this study.

Plant treatment with OGs
OGs with a degree of polymerization between 10 and 15 were pur-
chased commercially (GAT114, Elicityl, France). Arabidopsis seeds 
were sterilized and grown in 6-well plates containing 5 ml of liquid 
Knop medium. After 9 d of germination, the medium was removed 
and 3 ml of fresh medium was added to the wells before adding 30 µl 
of  OGs to a final concentration of 50 µg ml−1. After 24 h of treat-
ment, the plants were gently placed in semi-solid Knop medium and 
allowed to recover from any stress for a few hours. Water-treated 
plants were used as a control and handled in the same manner. 
Afterwards, the OG- and water-treated plants were inoculated 
with 70–80 sterile J2s and evaluated for infection after 12–14 dpi as 
described above.

Measurement of ROS
Apoplastic measurement of hydrogen peroxide in small root seg-
ments was carried out via a luminol-based detection method as 
previously described (Mendy et al., 2017). Arabidopsis plants were 
grown in Knop medium for 2 weeks, after which uniform root pieces 
measuring ~0.2  cm were cut with a knife and placed in a 96-well 
plate with water for 24  h to reduce the wounding response. After 
overnight incubation, the water was removed and replaced with flg22 
solution, and ROS was measured as described (Mendy et al., 2017).

Statistical procedures
Data were statistically analysed using SigmaPlot 12, applying t-test 
(P<0.05) for pairwise comparisons. For qPCR, statistical procedures 
were applied to ∆CT values as recommended previously (Livak and 
Schmittgen., 2001).

Results

PGIP1 and PGIP2 are induced by nematode infection

Arabidopsis plants contain a family of two PGIP genes desig-
nated as PGIP1 and PGIP2. To assess the regulation of PGIP 
genes during different stages of nematode infection, we evalu-
ated the expression of these genes in published transcriptomic 
data (Jammes et  al., 2005; Szakasits et  al., 2009; Barcala 
et al., 2010; Mendy et al., 2017). These analyses revealed that 
PGIP1 expression increased during migratory (10  h post-
inoculation, hpi) and sedentary stages of BCN infection with 
H. schachtii (Supplementary Table S2). In contrast, there
were no significant differences in PGIP1 and PGIP2 expres-
sion levels in microarrays of root segments containing giant
cells or galls infected with the RKN M. javanica or M. incog-
nita (Jammes et al., 2005; Barcala et al., 2010; Cabrera et al.,
2014). However, a recent next-generation sequencing-based
transcriptome profiling of Arabidopsis found that expres-
sion of both PGIP1 and PGIP2 is significantly up-regulated
in galls (3, 5, and 7 dpi) induced by the RKN M. incognita
(Yamaguchi et al., 2017).

We validated these microarray data using Arabidopsis 
plants that were grown in vitro and infected with BCNs or 
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RKNs. RNA was extracted and analysed for the expression 
of PGIP1 and PGIP2 via qRT–PCR. For BCNs, infected 
root segments were sampled at 10 hpi (migratory stage; ~0.2 
cm around the nematode head) or 10 dpi (sedentary stage). 
The results confirmed that PGIP1 expression increases dur-
ing the migratory stage at 10 hpi upon BCN infection (Fig. 
1a), but we were unable to confirm PGIP1 up-regulation dur-
ing the sedentary stage at 10 dpi (Fig. 1b). For RKN, root 
segments were collected at 24 hpi (root tips; migratory stage), 
7 dpi (sedentary stage), or 15 dpi (sedentary stage). We found 
no change in expression for PGIP1 and PGIP2 at the migra-
tory stage with RKN (Fig. 1c), but the expression of both 
was increased during the sedentary stages at 7 dpi and 15 dpi 
(Fig. 1d, e).

To determine the spatiotemporal expression patterns of 
PGIP genes during plant–nematode interactions, we trans-
formed Arabidopsis with PGIP1::GUS or PGIP2::GUS 
constructs and generated 3–5 independent homozygous 
lines. Although PGIP1 and PGIP2 are induced by wound-
ing in leaves, their expression patterns in roots have not been 
determined. Therefore, we wounded the roots of 10-day-old 
plants and performed GUS staining 1  h after wounding. 
We observed specific and strong GUS staining indicating 

PGIP1 and PGIP2 expression at and around the wounding 
sites (Fig.  2a). Next, we performed a time-course analysis 
of PGIP expression during BCN infection using the PGIP 
promoter::GUS fusions. The majority of root infection zones 
exhibited strong GUS staining at 1, 3, and 5 dpi, and no GUS 
staining was observed in uninfected root segments. The GUS 
staining intensity declined considerably at 10 dpi for both 
PGIP1 and PGIP2 (Fig. 2a). Next, we analysed the spatiotem-
poral expression patterns of PGIP1::GUS and PGIP2::GUS 
in response to infection with the RKN. No GUS staining was 
observed at 1 dpi for both PGIP1 and PGIP2. In contrast, 
GUS-specific staining was observed at 3 dpi onward in galls 
induced by M.  incognita (Fig. 2b). Taken together, we con-
cluded that gene expression for both PGIP1 and PGIP2 is 
strongly induced during migratory stages of BCN infection 
but not during RKN migration.

PGIP-mediated signalling is involved in cyst nematode 
infection

To explore the role of PGIPs in nematode infection, we 
characterized loss-of-function T-DNA insertion mutants 
for PGIP1 (pgip1-1 and pgip1-2) and PGIP2 (pgip2-1) 

Fig. 1.  PGIP genes are activated in Arabidopsis upon nematode infection. Validation of changes in PGIP gene expression upon nematode infection via 
qRT–PCR. The values represent relative fold change in response to nematode infection with the value in uninfected control root set to 1. (a, c) UBQ5 and 
β-tubulin were used as housekeeping genes to normalize the data. (b, d, e) 18S and UBP22 were used as housekeeping genes to normalize the data. 
(a–e) Data bars represent the mean ± SE for three independent experiments. Data were analysed using t-test (P<0.05). Asterisks represent statistically 
significant differences from uninfected control root.
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(Supplementary Figs S1, S2). Plants were grown in vitro for 
12 d and then infected with J2s of BCN or RKN. For BCN, 
we counted the numbers of nematode females and males at 12 
dpi, and the average syncytium size and average size of nema-
tode females at 14 dpi. For RKN, we counted the number of 
galls and average area of galls at 21 dpi. After BCN infec-
tion, we observed a significant increase in the average num-
ber of females in both PGIP1 mutants (pgip1-1 and pgip1-2) 
compared with the Col-0 control (Fig.  3a; Supplementary 
Fig. S3a). Moreover, we also observed a significant increase 
in average syncytium size in pgip1-1 and pgip1-2 infected 
with BCN, but did not observe any significant differences in 
average female size (Fig. 3b, c; Supplementary Fig. S3b, c). 
However, our data did not show any significant differences 
in average number of females, average female size, or aver-
age syncytium size in pgip2-1 infected with BCN, but we did 
observe a significant reduction in the average number of males 
compared with the Col-0 control (Supplementary Fig. S4a–
c). After RKN infection, we did not observe any changes in 
the average gall number or size in all tested lines (Fig. 3d–g). 
These combined results suggest that PGIP1 knockout leads 
to hypersusceptibility of plants to CNs but not to RKNs. 
To confirm this differential susceptibility further, we trans-
formed pgip1-1 mutants with the 35S::PGIP1 overexpression 
construct and analysed the homozygous transgenic plants 
using nematode infection assays. The number of females of 
BCNs in transgenic plants did not differ from that of Col-0. 
However, one of the lines showed a significant increase in the 

number of males as well as the total number of nematodes 
(Supplementary Fig. S5a–d).

PGIP1 overexpression and OG treatment reduce 
susceptibility to cyst nematode infection but not root-
knot nematode infection

As loss-of-function PGIP1 mutants were hypersusceptible to 
CN infection, we hypothesized that PGIP1 overexpression 
might mitigate plant susceptibility to nematode infec-
tion. We produced transgenic plants expressing PGIP1 or 
PGIP2 under the control of 35S promoters (35S::PGIP1 and 
35S::PGIP2), performed qRT–PCR analysis of the resultant 
lines, and selected three homozygous lines (L2, L9, and L10) 
that displayed the highest PGIP expression levels for further 
experiments (Fig. 4a). We did not observe any significant 
phenotypic differences in the transgenic lines and the Col-0 
controls. Then, 12-day-old transgenic (L2, L9, and L10) 
and Col-0 plants were infected with J2s of H. schachtii, and 
the results were evaluated at 14 dpi. The number of females 
and total number of nematodes per plant were significantly 
reduced for L9 and L10 compared with Col-0, but neither of 
these parameters differed for L2 (Fig. 4b). The average syn-
cytium size significantly declined in all three transgenic lines 
compared with Col-0, but there were no significant differences 
in the sizes of female nematodes (Fig. 4c, d). In contrast, 
no significant differences were observed for any parameters 
in any lines overexpressing PGIP2 (Supplementary Fig. 

Fig. 2.  Activation of PGIP::GUS expression in Arabidopsis roots upon CN and RKN infection. (a) Expression of PGIP1::GUS and PGIP2::GUS in 
Arabidopsis roots upon wounding or H. schachtii infection at 1, 3, 5, and 10 dpi, respectively. Scale bar=200 µm. (b) Expression of PGIP1::GUS and 
PGIP2::GUS in Arabidopsis roots upon M. incognita infection at 1, 3, 7, 12, and 15 dpi, respectively. Scale bar=200 µm.
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S6a–d). Overexpression of PGIP1 or PGIP2 also did not 
affect the average gall number or size induced by RKN in-
fection (Supplementary Fig. S7). These data suggest that 
overexpression of PGIP1 leads to reduced susceptibility of 
plants to CNs but not to RKNs.

PGIP promotes the formation of OGs, which in turn acti-
vate host defence responses to restrict pathogen development. 
To evaluate whether OGs have a similar role in plant–nema-
tode interactions, we treated the Col-0 plants with OGs and 
infected them with BCN. The number of females and the sizes 
of syncytium and females were significantly lower in plants 
treated with OGs than in water-treated (mock) control plants 
(SupplementaryFig. S8a–c), suggesting that OG-induced host 
defence responses are able to restrict infection of nematodes.

PGIP-mediated defence responses activate indole-
glucosinolate and camalexin responses

Apoplastic ROS production is one of the hallmarks of 
pattern-triggered immunity (PTI) responses, which are acti-
vated after pathogen attack or elicitor treatment (Siddique 
et  al., 2014). To investigate whether PGIPs are involved in 
PTI responses and whether pgip1 hypersusceptibility to 
nematode infection results from impaired ROS production, 

we quantitatively evaluated PTI responses by performing a 
luminol-based detection assay. Root segments from 2-week-
old pgip1-1 and pgip2 mutant plants displayed the same level 
of ROS production in response to the immunogenic peptide 
flg22 as wild-type plants (Fig. 5a). These results indicate that 
elicitor-induced ROS production is independent of both 
PGIP1 and PGIP2, suggesting that it plays no role in PGIP-
mediated defence responses.

We hypothesized that the hypersusceptibility of pgip1 
mutants might be due to impaired expression of genes in 
defence-related pathways. Therefore, we assessed the expres-
sion of the following genes that are strongly up-regulated 
during the migratory stage of infection as determined in our 
recent microarray data (Mendy et  al., 2017): JAZ8 (Chini 
et  al., 2007), which is involved in jasmonic acid signalling; 
NPR2, a salicylic acid marker gene (Canet et  al., 2010); 
PROPEP1, a member of the PROPEP family that is induced 
in response to wounding (Huffaker et  al., 2006); and three 
genes involved in the synthesis of camalexin and indole-glu-
cosinolate, including CYP81F2 [encodes a cytochrome P450 
involved in indol-3-yl-methyl glucosinolate catabolism (Clay 
et  al., 2009)], CYP71B15 [PAD3, catalyses the final step in 
camalexin biosynthesis (Zhou et al., 1999; Schuhegger et al., 
2006)], and CYP71A12 [dehydrates indole-3-acetaldoxime 

Fig. 3.  CN and RKN infection assays in PGIP1 and PGIP2 receptor mutant plants. (a) Average number of females and males per plant present in Col-0 
pgip1-1 mutant lines at 12 dpi. (b, c) Average sizes of female nematodes (b) and plant syncytia (c) in Col-0 and pgip1-1 mutant lines at 14 dpi. (d, f) 
Average number of galls per plant present in Col-0, pgip1-1 (d), and pgip2-1 (f) mutant lines at 21 dpi. (e, g) Average area of galls per plant present in 
Col-0, pgip1-1 (e), and pgip2-1 (g) mutant lines at 21 dpi. (a–g) Bars represent the mean ± SE for three independent experiments. Data were analysed 
using t-test (P<0.05).
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(IAOx) to indole-3-acetonitrile (IAN) (Millet et  al., 2010)]. 
The results from qRT–PCR analyses showed no significant 
changes in the expression of all tested genes between PGIP 
mutants and Col-0 in uninfected roots. Next, we sampled 
roots at 10 hpi (migratory stage of nematode infection) and 
used these samples for qRT–PCR analysis. There were no 
changes in the expression of JAZ8, PROPEP1, or NPR2 in 
pgip1-1 or pgip2-1 compared with Col-0 (Fig. 5b–d). In con-
trast, the normal up-regulation of genes involved in indole-
3-glucosinolate and camalexin biosynthesis (CYP81F2,
CYP71A12, and PAD3) was significantly impaired in pgip1-1
compared with Col-0 (Fig. 5e–g). These results indicate that
pgip1-1 susceptibility to nematode infection results from
impaired induction of camalexin and indole-3-glucosinolate
biosynthesis pathways. To confirm these results, we used
a double mutant cyp79b2/b3, which is strongly impaired in
indole-glucosinolate and camalexin biosynthesis and accu-
mulation (Zhao et al., 2002; Kliebenstein et al., 2005). The
cyp79b2/b3 plants were grown for 12 d in vitro, inoculated

with cyst nematodes, and the numbers of males and females 
were counted. The number of females increased significantly 
in cyp79b2/b3 compared with Col-0 (Fig. 6a). However, we 
did not observe any significant differences in the average sizes 
of females and syncytia in cyp79b2/b3 and Col-0 (Fig.  6b, 
c). Taken together, these results suggested that BCN migra-
tion within roots induced camalexin and indole-glucosinolate 
biosynthesis pathways in a PGIP1-dependent manner, which 
restricted the number of nematodes.

Discussion

In the present study, we established a molecular framework for 
PGIP regulation and downstream signalling in Arabidopsis 
during CN and RKN parasitism. We first analysed the 
expression of PGIP1 and PGIP2 in response to BCN and 
RKN infection and found commonalities, but also differ-
ences between two nematode species. We found that expres-
sion of both PGIP1 and PGIP2 is induced during migratory 

Fig. 4.  Nematode infection assays in PGIP1 overexpression lines. (a) Three independent homozygous lines (L2, L9, and L10) overexpressing PGIP1 
(35S::PGIP1) were selected and analysed for changes in transcript abundance of PGIP1. The values represent relative fold change with the value in 
Col-0 plants set to 1. UBQ5 and and β-tubulin were used as housekeeping genes to normalize the data. (b) Average number of females and males 
per plant present in Col-0 and PGIP1 overexpression lines at 12 dpi. (c, d) Average sizes of female nematodes (c) and plant syncytia (d) in Col-0 and 
PGIP1 overexpression lines at 14 dpi. (a–d) Bars represent the mean ± SE for three independent experiments. Data were analysed using Student’s t-test 
(P<0.05). Asterisks represent statistically significant differences from the corresponding Col-0.
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stages of BCN infection. This expression was localized to 
the infection zone close to the head of nematodes, suggest-
ing that the induction is highly specific to infection. In con-
trast to BCN, RKN migration inside the roots did not induce 
PGIP expression at 1 dpi (migratory stage), unravelling what 
may be a key difference in PGIP regulation between the two 
nematode species. Previously, Ferrari et al. 2003 showed that 
expression of PGIP1 and PGIP2 is induced by wounding in 
leaves and we also observed a highly specific activation of 
PGIP gene expression in roots upon wounding. Therefore, 

the difference in PGIP expression during migratory stages is 
likely to be due to a difference in the migration style of CNs 
versus RKNs. Whereas RKNs migrate intercellularly and 
cause little damage, CNs migrate intracellularly and cause 
severe damage to root cells (Wyss and Zunke, 1986; Wyss 
et al., 1992). The hypothesis that RKN do not cause damage 
during their migration inside the root is also in line with a 
recent study showing that Arabidopsis lines with altered dam-
age perception do not show any change in susceptibility to 
RKN (Teixeira et al., 2016).

Fig. 6.  Cyst nematode infection assays in cyp79b2/b3 lines. (a) Average number of females and males per plant present in Col-0 and cyp79b2/b3 lines 
at 12 dpi. (b, c) Average sizes of female nematodes (b) and plant syncytia (c) in Col-0 and cyp79b2/b3 lines. Data were analysed using Student’s t-test 
(P<0.05). Asterisks represent statistically significant differences from the corresponding Col-0.

Fig. 5.  ROS production and gene expression analysis on root segments. (a) Root segments from Col-0, pgip1-1, and pgip2-1 plants were treated with 
water or flg22, and ROS burst was measured using an L-012-based assay from 0 to 60 min. (b–g) Infected and uninfected root segments (~0.2 cm) 
from Col-0, pgip1-1, and pgip2-1 plants were cut and gene expression was measured. For uninfected roots, data represent relative expression of the 
indicated genes with the value in Col-0 plants set to 1. For infected roots, data represent relative expression of the indicated genes with the value in 
uninfected roots set to 1. Bars represent the mean ±SE for three independent experiments. Data were analysed using Student’s t-test (P<0.05). Asterisks 
represent statistically significant difference from the corresponding Col-0.
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The RKN M.  incognita encodes a PG (MI-PG-1) that is 
secreted into the host tissue to weaken the plant cell wall 
during nematode penetration and intercellular migration 
(Jaubert et al., 2002). However, our experiments to identify a 
functional PG in CN have proven unsuccessful. These obser-
vations raise the question of whether PG secretion by nem-
atodes (if  any) has a role in activation of PGIP expression 
during nematode infection of plant roots. We did not observe 
any PGIP expression during the migratory stage of RKN 
infection and CNs do not appear to encode a PG. Therefore, 
we postulate that PGIP induction during nematode infection 
is independent of nematode-derived PGs, at least during the 
migration stage. This hypothesis is consistent with observa-
tions that MI-PG-1 is an exo-PG, which are not usually inhib-
ited by PGIPs (Jaubert et al., 2002; Schacht et al., 2011).

OG-mediated resistance to the necrotrophic fungal patho-
gen Botrytis cinerea is independent of salicylic acid, jasmonic 
acid, and ethylene, but requires PAD3, which catalyses the 
final step in camalexin biosynthesis (Ferrari et al., 2007). Here, 
we found that knocking out or overexpressing PGIP1 signifi-
cantly increased or decreased, respectively, the susceptibility 
of plants to CN. Further, pre-treatment of plants with OGs 
led to a significant reduction in nematode infection. Based on 
these data, we propose that activation of PGIP in response to 
CN infection promotes the formation of active OG elicitor, 
which in turn activates the expression of genes involved in 
indole-glucosinolate and camalexin biosynthesis. Indeed, we 
found that up-regulation of three key indole-glucosinolate and 
camalexin biosynthesis genes (CYP71A12, CYP71B15/PAD3, 
and CYP81F2) in response to BCN infection was impaired in 
pgip mutants (especially in pgip1) compared with Col-0 con-
trol plants. Conversely, the double mutant cyp79b2/b3, which 
is deficient in camalexin and indole-glucosinolate production, 
displays enhanced susceptibility to CN (Zhao et  al., 2002; 
Kliebenstein et al., 2005). The relevance of camalexin in CN 
infection is further evidenced by the fact that loss-of-function 
pad3 mutants are more susceptible to the BCN (Ali et  al., 
2013). The impaired up-regulation of camalexin and indole-
glucosinolate genes is only partial in pgip mutants, which is 
probably due to the functional redundancy in this gene fam-
ily. It is also plausible that these genes are regulated in both a 
PGIP-dependent and a PGIP-independent manner during CN 
parasitism. RKN invasion of the Arabidopsis root has been 
shown to induce PAD3 expression during migratory stages of 
infection. In addition, mutants that are impaired in indole-
glucosinolate or camalexin biosynthesis are hypersusceptible 
to RKN (Teixeira et al., 2016). These previous observations, 
together with the fact that we did not observe any PGIP expres-
sion during early stages of infection, suggest that camalexin 
and indole-glucosinolate biosynthesis is regulated in a PGIP-
independent manner during plant–RKN interactions.

The consistent expression of PGIP genes in syncytia and 
giant cells during biotrophic stages of parasitism suggests 
that these genes may have a role in nematode parasitism other 
than activation of PTI-like defence responses. PGIPs have 
been shown to interact with partially or completely de-ester-
ified homogalacturonan (HG) in pectin, and protect it from 

the hydrolysing activity of plant or pathogen PGs (Spadoni 
et al., 2006). Thus, the PGIP expression level probably reflects 
a contribution to the mechanical properties of the cell wall 
related to growth and development. Previous studies showed 
that HG in the cell walls of younger syncytia (5 dpi) is highly 
de-esterified compared with that of older syncytia (15 dpi). In 
contrast, highly methylesterified HG was abundant in the cell 
wall of younger (7 dpi) and older (14 dpi) giant cells (Davies 
et al., 2012; Wieczorek et al., 2014). Although the syncytium 
and giant cells perform the same function, they have different 
ontogenies, which might underlie the differences in methyl-
esterification of younger feeding sites associated with CNs 
or RKNs.

The syncytium expands through dissolution of  the cell 
wall and fusion of  root cells. During cell wall expansion, the 
wall is locally degraded and modified, which ultimately leads 
to local wall strengthening and thickening (Siddique et al., 
2012; Wieczorek et al., 2014). In contrast, giant cells grow 
via repeated nuclear division without cytokinesis. Therefore, 
extensive de-esterification of  the cell wall at 5 dpi may facili-
tate wall degradation and promote syncytium expansion. 
Conversely, a higher level of  methylesterification in older 
feeding sites of  both CNs and RKNs may provide higher 
strength and flexibility to the cell wall, which may contrib-
ute to the capacity of  these feeding sites to sustain high tur-
gor pressure during parasitism (Böckenhoff  and Grundler, 
1994). Based on these observations, we hypothesize that the 
high PGIP expression in younger syncytia at 5 dpi plays a 
role in regulation of  local cell wall degradation by allowing 
PGIPs to bind directly PGs (of  plant or nematode origin) 
and HG, protecting the cell wall from further degradation. 
This hypothesis is consistent with our observations that 
PGIP1 knockout or overexpression significantly increases 
or reduces, respectively, the average size of  the syncytium. 
Cell wall degradation slows down as the syncytium expands 
and reaches its maximum size, which was accompanied by a 
reduction in PGIP expression levels. In contrast, PGIP1 was 
consistently and highly expressed in galls/giant cells through-
out the sedentary stages of  nematode development, which 
may protect the cell walls from enzymatic degradation by 
blocking de-esterified HG. However, no significant pheno-
typic differences were observed for RKN infection in any of 
the lines we tested, possibly due to functional redundancy 
within the PGIP gene family.

In conclusion, this study identified the molecular mechan-
ism underlying PGIP-mediated damage-associated responses 
during CN and RKN parasitism of plants. We showed that 
differential regulation of PGIP genes occurs during CN and 
RKN invasion of roots, probably associated with differences 
in nematode migration and feeding habits. We also determined 
that PGIP regulates camalexin and indole-glucosinolate bio-
synthetic pathways in an infection-specific manner. These 
results provide new insights into the functional mechanisms 
underlying nematode parasitism. Clarifying further details of 
damage-associated pathways in plant–nematode interactions 
may lead to novel control measures for this important plant 
parasite.
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Abstract 

Nematode causes cell wall damages during root invasion and migration into the plant cell. The 

damage result to the production of cell wall component like oligogalacturionides and small 

peptides, which can activate damage associated immune responses similar to PTI in plants. The 

role of plant peptides in defense responses during plant nematode interaction has not been well 

studied. Previous reports showed that PEPR receptors do not play vital role in plant responses 

to root-knot nematodes. In this work, we studied Arabidopsis peptide receptors (AtPEPRs) and 

their role in defense responses against beet cyst nematode Heterodera schachtii. Our result 

showed a high susceptibility of pepr1/2 double mutant to H. schachtii. We did not observe any 

significant differences in the number of galls formed as compared to Col-0 wildtype infected 

with Meloidogyne incognita. We also tested the Arabidopsis extracellular ATP receptor 

DORN1 (Does not Respond to Nucleotides) single mutant against both cyst and root knot 

nematode. Although there was an increase in female sizes of the cyst nematode compared to 

wild type, we did not observe any significant difference in total number of nematodes. Our 

result showed the likely involvement of PEPR receptors in mediating defense responses against 

cyst nematodes, probably due to the high damage caused by these nematodes during their 

migration within the cells. 

Keywords: Damage responses, Arabidopsis, PEPRs, cyst nematodes, root-knot, DORN1 
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Introduction 

All multicellular organisms have evolved ways to defend themselves against biotic and abiotic 

factors as well as responding to cellular tissue damages. Apart from recognition of conserved 

microbial/pathogen associated molecular patterns (MAMPs/PAMPs) by cell surface pattern 

recognition receptors (PRRs), plant innate immunity can also be activated by release of 

endogenous molecules into the extracellular space due to membrane damage. Such endogenous 

molecules are referred to as Damage-Associated Molecular patterns (DAMPs) (Lotze et al., 

2007; Bianchi et al., 2007; Tang et al., 2012). Whereas MAMPs/PAMPs are conserved in 

microorganism and are recognized by the host as ‘non-self’, DAMPs are host-derived 

(Matzinger, 1994). DAMPs were first described in animals (Seong & Matzinger, 2004), and the 

High Mobility Group BOX 1 (HMGB1) is among the first and best characterized animal 

DAMPS (Lotze & Tracey, 2005; Schiraldi et al., 2012). Only a few DAMPs have been 

described in plants compared to animals. The best studied plant DAMPs belong to the class of 

polypeptides (peptides) produced from larger proteins and includes systemin recognized by a 

160-kDa systemin cell-surface receptor (Pearce et al., 1991; Constabel et al., 1998), plant

elicitor peptides (Peps) recognized by a leucine-rich repeat (LRR) peptide receptor PEPR1 & 

PEPR2 with BAK1 as co-receptor (Pearce et al., 2001; Huffaker et al., 2006; Yamaguchi et al., 

2010). The recognition of these endogenous molecules helps in amplifying innate immune 

responses (Huffaker et al., 2007). Peptide receptors are well characterized in Arabidopsis 

(Huffaker et al., 2006; Krol et al., 2010), and their homologues described in other crop species 

such as the maize ZmPep1 involved in regulating defense responses against fungal infection 

(Huffaker et al., 2011). However, the role of Pep-receptors during plant nematode interaction is 

not well understood. During plant invasion, nematode uses the stylet to puncture, rupture and 

make openings in the cell (Grundler et al., 1994). As a result, cellular components released into 

the extracellular space of the cell, which could then be recognized as DAMP (Haegeman et al., 

2011; Mitchum et al., 2013). The recognition of DAMP leads to activation of downstream 

immune responses similar to PAMP recognition (Boller & Felix, 2009; Heil & Land, 2014). 

Previous studies showed the strong induction of wound-response pathways due to cell damage 

caused by migratory nematode in rice (Kyndt et al 2012a and 2012b). In our previous work, we 

reported the involvement of polygalacturonase-inhibiting proteins (PGIPs) in mitigating 

infection of host root responses to cyst nematode by activating plant phytohormones camalexin 

and indole-glucosinolate pathways (Shah et al., 2017), highlighting the important role of damage 
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responses and signaling during plant nematode interaction. In this study, we characterized the 

role of PEPR receptors in responses to cyst and root-knot nematodes. We found that PEPRs 

facilitate immune responses to H. schachtii. However we did not observed any significant 

deference in the infection of pepr1/2 double mutant with the root-knot nematode M. incognita. 

These observations support previous report by Teixeira et al. 2016 that PEPR1/2 does not 

mediate defense responses to root-knot nematodes. 

Results 

Arabidopsis PEPR1/2 mediates defense responses to cyst nematode (H. schachtii) but not 

root-knot nematode (M. incognita). 

Arabidopsis PEPR1 is a receptor kinase with extracellular leucine rich repeat domain and 

functions as a receptor for AtPeps. AtPep1, a 23-amino acids precursor peptide encoded by C-

terminal of PROPEP1 gene is a DAMP which activates immune responses in A. thaliana 

(Huffaker et al., 2006; Boller & Felix, 2009). The genome of Arabidopsis encodes a close 

homologue of PEPR1receptor named PEPR 2 which has 76% amino acid similarity (Ryan et al., 

2007; Yamaguchi et al., 2010; Krol et al., 2010; Yamaguchi & Huffaker, 2011). Nevertheless, 

PEPR1 and PEPR2 have different preferences for AtPeps (Yamaguchi et al., 2010). Both PEPR1 

and PEPR2 were induce upon wounding as well as treatment with pathogen PAMPs and are 

reported to be essential in enhance resistance against bacteria pathogen Pseudomonas syringae 

pv tomato DC3000 (Yamaguchi et al., 2010). Nematode penetration causes damage to root 

tissues and depending on the species the damage varies significantly (Grundler et al., 1997; 

Wyss et al., 1992; Wyss & Grundler, 1992). To evaluate the important of damage responses 

during nematode infection, we used double mutant of the already well characterized DAMP 

receptors PEPR1 and PEPR2 (krol et al., 2010), to study the infection of cyst nematode H. 

schachtii and root-knot M. incognita. We observed a significant increased number of adult 

nematode upon infection with cyst nematode H. schachtii (Fig.1a). However, we did not observe 

any significant difference in average size of female nematodes and also in average size of 

nematode-induced syncytium (Fig. 1b). We also tested the already characterized ATP-receptor 

DORN1 (Choi et al., 2014; Tanaka et al., 2014; Teixeira et al., 2016), and observed a significant 

difference in the number of adult female nematode (Fig. 1a). 
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Figure 1: Nematode (H. schachtii) infection assay with pepr1/2 double mutant and dorn1 single mutant 

compare to Col-0 wildtype. a) Twelve day old Arabidopsis plants were infected with ~ 60-70 sterile second stage 

juvinile of H. schachtii. Adult female and males were counted at 13 day post infection (dpi). b) Female and feeding 

site were measure at 14 dpi. Bars represent mean ± SE for three biological replicates. Data analysis was performed 

using OneWay ANOVA and Dunnet test (P<0.05). 

We did not see any significant difference in susceptibility with root-knot nematode M. incognita 

in pepr1/2 double mutant and also in DORN1 single mutant (Fig.2a). We measured the gall sizes 

and also found no differences between pepr1/2,  and dorn1 in comparison to Col-0 (Fig.2b).  

Figure 2: Nematode (M. incognita) infection assay with pepr1/2 double mutant and dorn1 single mutant 

compare to Col-0 wildtype a) Twelve day old Arabidopsis plants grown on MS-medium containing gelrite agar 

were infected with ~ 90-100 sterile second stage juvenile of M. incognita. Number of galls were count at 21 dpi.b) 

Feeding site measurement (galls) was done at 22 dpi. Bars represent mean ± SE for three biological replicates. Data 

analysis was performed using OneWay ANOVA and Dunnet test (P<0.05) 

a b 
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PEPRs gene are induced during nematode infection and upon treatment with 

HsNemaWater 

From our microarray data analysis, we observed an increased in transcription of both PEPR1 and 

PEPR2 gene during migratory stage of nematode infection (10 hours post infection) and also 

after treatment with HsNemaWater Fig. 3a (Mendy et al., 2017). The Precursor of peptide 1 in 

Arabidopsis (PROPEP1, PROPEP2, and PROPEP3), were also upregulated in both nematode 

migratory stage and upon treatment with HsNemaWater Fig. 3a. Table S1 (Mendy et al., 2017). 

However, DORN1 gene was significantly down regulated in both migratory and HsNemaWater 

data respectively Fig. 3a. The low expression of DORN1 gene during infection could be 

associated to the fact that H. schachtii is a root pathogen and DORN1 is shown to recognize 

extracellular ATP (eATP) leading to enhance resistance to mostly above ground pathogen e.g. 

Pseudomonas syringae (Chen et al., 2017; Balagué et al., 2017) and Phytophthora infestans 

(Bouwmeester et al., 2011; Bouwmeester et al., 2014). Teixeira et al., 2016 found no differences 

in number of J2s inside the roots of dorn1-3 and oxDORN1 in comparison with the wild‐type 

and therefore suggesting that DORN1 does not play significant role in RKN perception and 

immunity in Arabidopsis.  

Figure 3: PEPRs and PROPEPs gene expression analysis and ROS-burst measurement in Arabidopsis. a) 

Microarray data analysis during nematode migratory stage and upon plant treatment with HsNemaWater. Root 

segments from uninfected roots were used as control. Values indicate fold change compared with control. b) ROS-

burst measurement with pepr1/2, dorn1 and Col-0 treated with flg22, or water control. ROS-burst was measured 

using L-012 based assay from 0-120 min. c) ROS-burst measurement with pepr1/2, dorn1 and Col-0 treated with, 

OG peptide or water control. ROS burst was measured using L-012 based assay from 0-120 min. Bars represent 

mean ± SE for four technical replicates. Experiment was repeated two times with same results. RLU, Relative light 

units. 
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PEPR1/2 and DORN1 mutant are not impaired in ROS-burst responses triggered by 

flg22and OG 

To check whether double mutant of pepr1/2 and dorn1 single mutant have compromised 

immune responses triggered by flg22 peptide and OG, we treated leaf disk of plants and did a 

ROS-burst measurement. We observed an increased ROS production in mutants treated with 

flg22 peptide Fig.3b, as well as with OG treated plants Fig. 3c. Oligogalacturonides (OGs) are 

oligomers of alpha-1,4-linked galacturonosyl released from plant cell walls upon partial 

degradation of homogalacturonan, or during cell wall damage (Ferrari et al., 2013). OGs are 

recognized by wall-associated kinases (WAKs) receptors and leads to accumulation of 

extracellular H2O2 (Galletti et al., 2008). PEPR1/2 and DORN1 mutant were not impaired in 

responses triggered by OGs meaning in the mutant background the WAK1 receptor maybe fully 

active and functional. It would be otherwise interesting to see how knockout of both WAK1 and 

PEPRs will have an effect on nematode development in plants.  

Discussion 

Plant cells recognize endogenous molecules leaked into the extracellular space of the cell as a 

result of damage. Whereas these molecules are not usually present in extracellular spaces in 

normal undamaged cells, exposure of DAMPs to the extracellular space during pathogen attack 

leads to recognition and activation of defense response similar to recognition of conserved 

(PAMP) molecules (Lotze et al., 2007). Several studies have reported the importance of DAMP 

responses during pathogen invasion with quiet few receptors identified to responses to specific 

kind of damage peptides. In Arabidopsis, LRR-RLKs PEPR1 and PEPR2 have been reported to 

respond to Atpeps, which is a 23-aa peptide AtPep1 derived from the C-terminus of a 92-aa 

precursor protein AtProPep1 are involved in defense responses against pathogen (Huffaker et 

al., 2006; Krol et al., 2010; Yamaguchi et al., 2010). Up to date, little is known about the role of 

DAMP responses during plant nematode interaction. Studies on pepr1/2 mutant with root-knot 

nematode did not show any significant phenotypic differences in infection compared to control 

plants (Teixeira et al., 2016). However, Shah et al., 2017 reported that polygalacturonase-

inhibiting proteins (PGIPs) gene family in Arabidopsis plays a significant role in defense 

responses against beet cyst nematode H. schachtii. Nevertheless, Polygalacturonase (PGs) from 

nematode that bind PGIP in Arabidopsis is not yet identified and it’s likely that plant responses 

to nematode infection could prompt the formation of active OGs, which then activates genes 
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involved in the biosynthesis of indole-glucosinolate and camalexin (Shah et al., 2017). In this 

study, we tested the double mutant pepr1/2 and the extracellular ATP receptor dorn1 single 

mutant against cyst nematode H. schachtii infection. As previously reported by Teixeira et al., 

2016, we did not see any significant differences compared to wild type in both pepr1/2 double 

mutant and dorn1 with root-knot nematode.  Root-knot nematodes penetrate plant cell close to 

the root tip and migrates intercellular between cells, thereby causing less damage (Holbein et al., 

2016). Lesser damage to cell could mean less cell wall fragments release. Genes encoding 

functional and endogenous cellulases and pectinases secreted from the subventral esophageal 

gland cells of plant parasitic nematodes, used to weaken and break down the plant cell wall have 

been reported (Smant et al., 1998; Rosso et al., 1999; Wang et al., 1999; Gao et al., 2004). 

Unfortunately, there are no reports on a plant receptor that recognized extracellular cell wall 

degradation products (e.g. glucose polymers cellodextrins and pectin fragments), derived from 

cell wall break down during nematode migration stage.  

Contrary to root-knot nematode infection, we found a significant increase in average number of 

adult cyst nematode of H. schachtii in pepr1/2 and in dorn1 mutant in comparison to wildtype 

Col-0 Fig. 1a. Cyst nematodes unlike root-knot infective juveniles penetrate plant cells and 

migrate intracellularly into and through the root tissues (Wyss, 1992). During the course of 

migration, the nematode causes damage to cell wall, which may result in the possible release of 

small plant peptides as DAMPs. Nematode infection of plant is shown to triggered expression of 

defense genes including PEPR1 and PEPR2 but not DORN1 in Arabidopsis Fig. 3a (Mendy et 

al., 2017). Consistently the precursors of peptide-1 in Arabidopsis (PROPEP1, PROPEP2, and 

PROPEP3) were upregulated in both nematode migratory stage and upon treatment with 

HsNemaWater (Mendy et al., 2017). This observation gave an impression that, either PEPR 

receptors recognizes peptides derived from cell damage or may rather play a role in amplifying 

the signal responses from recognition of nematode NAMPs by surface receptors and co-

receptors (Yamaguchi et al., 2010). The rapid production of reactive oxygen species (Mittler et 

al., 2011; O´Brien et al., 2012) and cytosolic Ca2+ burst (Monaghan et al., 2015) are one of the 

early defense responses upon pathogen attack or elicitor treatment. Therefore, we investigate 

whether PEPR1/2 and DORN1 mutant have impaired ROS burst production observed in 

wildtype treated with flg22 peptide (Gómez-Gómez & Boller, 2000) and OGs damage peptide 

(Savatin et al., 2014). We observed a strong ROS-burst in both pepr1/2 and dorn1 mutant 

similar to wildtype. These results indicate that the pepr1/2 and dorn1 mutant have active 
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receptors for flg22 and OGs. Moreover, knocking down these genes does not completely impair 

plant immunity. This study provides evidence that PEPR receptors play significant role in 

defense responses during cyst nematode infection. Increased susceptibility to cyst nematode and 

not root-knot nematode probably correlates with the fact that cyst nematode causes more cell 

damage compared to root-knot during early stages of infection. As cyst nematode continues to 

be a problem in crop production, understanding both exogenous and endogenous recognition 

pathway is crucial for engineering durable resistance cultivars. 

Material and methods 

Plant growth medium and nematode infection assay 

Arabidopsis plants growth medium preparation and nematode infection assays were carried out 

as previously described (Siddique et al., 2015; Mendy et al., 2017; Shah et al., 2017). 

Homozygous double mutant of PEPR1/2 were obtained from Belkhadir’s lab. DORN1 mutant 

were also obtain from Gary Stacey’s lab. Plants were grown on modified knop medium for cyst 

nematode (H. schachtii) infection assay and Murashige & Skoog (MS) medium containing 

gelrite agar for root-knot (M. incognita) assay. Twelve day old seedlings were infected with ~60-

70 live and sterile second stage juveniles (J2s) of H. schachtii. Adult female and male numbers 

were evaluated at 13 day-post infection (dpi) and the female and feeding site were measured at 

14 dpi. For M. incognita infection assay, 12 day old plants grown on MS-medium were infected 

with ~90-100 live and sterile second stage J2s. The numbers of galls were evaluated at 21 dpi, 

and the gall sizes measured at 22 dpi. All experiments for both cyst and root-knot nematodes 

infections were repeated three times with ~25-30 individual plants. For size measurement, 

approximately 30 -35 syncytia and nematodes or galls were measured. 

ROS-burst assay 

Reactive Oxygen Species (ROS) burst measurement was done as previously described (Mendy 

et al., 2017). Leaf discs were cut from 12 day old seedlings and incubated overnight in water. 

Afterwards, the water was replaced with 15μl of 20 μg/ml horseradish peroxidase and 35μl of 

0.1M 8-Amino-5-chloro-2, 3-dihydro-7-phenyl-pyrido [3, 4-d] pyridazine sodium salt (L-012, 

Wako Chemicals) in a 96 well plate. Next, 50 μl of either 1 μM flg22 or, Oligogalacturionides 

(OGs) peptide was added to the individual wells. The experiments were performed in four 

technical replicates, and ddH2O was used as a negative control. Light emission was measured as 
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relative light units over 120 minutes in a luminometer (TECAN Infinite® 200 PRO) and data 

were analyzed using instrument software and Microsoft Office Excel.  

Statistical analysis 

Data analysis were done using SigmaPlot 12 version, using OneWay ANNOVA and Fisher LSD 

(P<0.05) for pairwise comparisons 

Supplementary material 

Table S1: Microarray data analysis during nematode migratory stage and after plant treatment with Nemawater 

Gene 

locus 

Gene 

Name 

Fold Change 

Gene discription 
NemaWater p-Value Migratory 

p-

Value 

AT1G73080 AtPEPR1 1,91 0,0003 2,56 0,0003 PEP1 RECEPTOR 1 

AT1G17750 AtPEPR2 3,34 0,0022 3,95 0,0014 PEP1 RECEPTOR 2 

At5g64900 PROPEP1 3,63 0,0019 3,17 0,0004 
ARABIDOPSIS THALIANA 

PEPTIDE 1, precursor of AtPep1 

At5g64890 PROPEP2 11,27 0,0009 5,13 0,0002 
PROPEP2 (Elicitorpeptide 2 

precursor) 

At5g64905 PROPEP3 15,53 0,0014 11,43 0,0047 
PROPEP3 (Elicitorpeptide 3 

precursor) 

At5g09980 PROPEP4 2,40 0,0698 3,26 0,0307 
PROPEP4 (Elicitorpeptide 4 

precursor) 

At5g09990 PROPEP5 -1,83 0,0897 -1,07 0,2853 
PROPEP5 (Elicitorpeptide 5 

precursor) 

At2g22000 PROPEP6 -1,21 0,0371 1,04 0,3333 
PROPEP6 (Elicitorpeptide 6 

precursor) 

AT5G60300 AtDORN1 -1,08 0,6119 -1,00 0,9105 
DOES NOT RESPOND TO 

NUCLEOTIDES 1 
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Plant-parasitic nematodes (PPN) are a major threat to world food security. Previous methods to 

control PPN have several setbacks due to environmental concerns about chemicals usage as 

control mechanisms (Tytgat et al., 2000). Control methods involving host resistance have 

become the focus of many researches nowadays. Understanding the molecular basis by which 

plant recognize nematodes and activate immunity is the main core of this thesis.  

Plants can defend themselves against invading pathogens through recognition of 

microbe/pathogen associated molecular pattern (MAMPs/PAMPs) by cell surface localized 

pattern recognition receptors (PRRs) leading to PAMP-Triggered immunity (PTI). Plant PRRs 

are either receptor-like kinase, which comprises a ligand-binding ectodomain, a transmembrane 

domain and an intracellular kinase domain, or a receptor-like protein, which do not have any 

known intracellular signaling domain (Macho & Zipfel, 2014). Plants PRRs are structurally 

similar to that of animals suggesting convergent evolution between plant and animal recognition 

and signaling system (Zipfel, 2008). Most receptors in defense signaling are specific to certain 

pathogens molecule but others may require a partner protein working as a co-receptor (Yadeta et 

al., 2013). PAMPs are evolutionally conserved across a certain class of pathogens and are also 

evolutionarily distant from their host. Perception of these PAMPs triggers a set of responses, 

which can be used to monitor the recognition process. Examples for such responses include 

generation of reactive oxygen species (ROS), ion fluxes, accumulation of ethylene, as well as 

up-regulation of defence-related genes (Zipfel, 2009). Failure to detect the presence of a 

particular pathogen leads to establishment, development and diseases initiation in host plant. 

PAMPs and PRRs have been well characterized for several important pathogens including 

bacterial flagellin (Gómez-Gómez et al., 1999; Felix et al., 1999; Gómez-Gómez & Boller, 

2002), elongation factor Tu (Kunze et al., 2004; Zipfel et al., 2006), and bacterial cell wall 

component peptidoglycan PGN (Girardin et al., 2003; Gust et al., 2007) are all been shown to 

induce plant immune responses. In fungal pathogens, chitin is a well studied PAMP and the 

receptors in both dicot and monocot have been described (Felix et al., 1993; Boller, 1995; 

Nürnberger & Brunner, 2002). However, the role of PAMP-Triggered Immunity during plant 

nematode interaction is not well studied (Holbein et al., 2016). Several studies have reported that 

plant respond to PPN infection by rapidly activating defense response pathways similar to those 

induced by other pathogens (Kyndt et al., 2012; Vercauteren et al., 2001). Nonetheless, the 
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molecular nature of the nematode derived peptides that elicit immune respond in plant remains 

unknown. Therefore, activation of PTI in plants upon nematode infection is the focus of this 

thesis.  

Ascarosides pheromones are widely conserved among nematodes (Choe et al., 2012) and have 

been shown to activate PTI like responses in plant (Manosalva et al., 2015). Till date no PRR 

that recognize nematode associated molecular patterns (NAMPs) have been characterized 

although quiet a number of nematode resistance genes (R-genes) have been reported (Goverse & 

Smant, 2014; Lozano-Torres et al., 2012). In the past few years, there are reports suggesting that 

nematode infection activate PTI responses in plants (Peng et al., 2014; Teixeira et al., 2016). In 

this study we found out that cyst nematode infection triggered the expression of early defense 

markers including JA/ET biosynthesis and signaling genes (Mendy et al., 2017). These data 

corroborate previous findings by Kammerhofer et al., 2015, where they found an increase in 

level of JA in roots of Arabidopsis 24 hours post infection (hpi). To differentiate nematode-

induced mechanical damage from PAMP recognition, we developed a robust PTI screening 

method based on aqueous diffusate of nematodes known as NemaWater. Treatment of plants 

with NemaWater produced from H. schachtii J2 activated early defense gene expression in a 

similar pattern as previously observed during the migratory stage of the nematode infection. This 

finding suggested that NemaWater contains elicitors that activate early defense responses against 

nematodes. These findings also contradict the general notion that JA/ET play role in response 

against necrotrophic and herbivore insects while SA is important against biotrophs (Howe & 

Jander, 2008; Glazebrook et al., 2003). Maybe that concept only works for leafy pathogens and 

differ in roots. SA biosynthesis genes were only slightly affected in our data in comparison to 

JA/ET even though Arabidopsis plants impaired in SA biosynthesis genes were previously 

showed to be more susceptible to cyst nematodes (Wubben et al., 2008).  

Production of ROS (Mittler et al., 2011; O´Brien et al., 2012) and cytosolic Ca2+ burst 

(Monaghan et al., 2015) are one of the early defense responses upon pathogen attack or elicitor 

treatment. We showed that plant respond to NemaWater treatment by generating ROS. It was 

also interesting to see that NemaWater produced from both cyst and root-knot forming nematode 

cause ROS-burst in Arabidopsis (chapter 2). This further indicates that either the molecules 

involved in eliciting immunity are conserved in both species, or plant recognized both nematode 

species through a different pattern. It will be interesting to find whether plants can also detect 

conserved pattern in other nematodes apart from PPNs. Previous reports showed that 
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entomopathogenic nematodes (EPN) are also able to induce plant defense. This was proven by 

experiments, where it was observed that catalase activity in A. thaliana leaves was significantly 

higher in Steinernema carpocapsae infective juveniles (IJs) treated plants than in the control. 

Similarly, peroxidase activity was increased in host plants treated with S. carpocapsae IJs 

compared to control (Jagdale et al., 2009). PR1-gene was also induced upon infection with S. 

carpocapsae IJs in transgenic A. thaliana leaves through GUS (β-glucuronidase) activity assay 

(Jagdale et al., 2009). Looking at these findings together with our observation, it is possible 

that molecular elicitors contained in NemaWater may be conserved across many nematode 

genera. Although, the identity of the elicitor contained in NemaWater is still elusive. What we 

know is that the elicitor/s in question is proteinaceous in nature and probably heat sensitive. This 

was proven by treatment of NemaWater with Proteinase K enzymes and also heat treatment, in 

either case we observed a reduce PTI activity in plants different from control (non-proteinase k 

treated NemaWater) and ddH2O treatment (Mendy et al., 2017). However, the possibility that 

plant recognizes other molecule types e.g. nematode cuticle associated surface carbohydrates, 

are not ruled out.  

The plant receptor kinase BAK1/SERK3 has been reported to act as co-receptor for those PRRs 

of LRR-class that perceive proteinaceous ligands (Sun et al., 2013; Macho et al., 2014; Albert et 

al., 2015). We found that loss of function BAK1 was more susceptible to nematode infection 

and also impaired in immune responses triggered by NemaWater in wildtype Arabidopsis. This 

further indicates that NemaWater induce immune responses in plants is dependent on 

BAK1gene. BAK1 gene was also induced upon cyst nematode infection as well as NemaWater 

treatment (Mendy et al., 2017). Other works also reported the involvement of BAK1 in immune 

response against nematodes in crop plant as evidence by silencing of BAK1 orthologues 

SISERK3A and or SISERK3B in tomato (Solanum lycopersicum), resulted in enhanced 

susceptibility of plants to root-knot nematodes (Peng et al., 2014). Teixeira et al., 2016, also 

reported that nematode infection in Arabidopsis triggers PTI responses in a BAK-dependent and 

also independent manner as they observed bak1-5 mutant were more susceptible to root-knot in 

comparison to control. These findings together indicate that plants are able to recognize 

nematodes through a receptor that interact with BAK1 as well as through other receptors that do 

not necessarily interact directly with BAK1. Bioassays to identify BAK1 interactors during PTI 

responses to nematodes are a very important step close to finding the receptor that binds ligands.  
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Considering that BAK1 acts as co-receptor for LRR class of PRRs, we found a LRR-RLK that 

was specifically induced upon nematode infection. The Arabidopsis NEMATODE-INDUCED 

LRR-RLK1 (NILR1) is closely related to LRR-RLK BRI1, belonging to the subfamily X of 

LRR-RLKs (Matsushima et al., 2012), encodes a serine/threonine kinase and localized in the 

plasma membrane, therefore, manifesting typical characteristic of a PRR. Functional 

characterization of nilr1 mutant showed a high susceptibility to cyst and root-knot nematodes 

and also impaired ROS-burst (Mendy et al., 2017). NILR1 gene is well conserved in land plants 

and orthologues are found in both dicotyledonous as well as in monocotyledonous plant species.  

To further identify and characterize the elicitor/s present in NemaWater that are recognized in a 

NILR1-dependent manner, we used column chromatography fractionation methods. A number 

of nematode proteins were found in our NemaWater proteomic data. How all the proteins found 

in NemaWater are released after nematode incubation in water is not known. The epicuticle of 

nematodes is covered by a thin layer recognized by electron microscope as a fuzzy coating 

termed ‘surface coat’ (´Wright, 1987; Bird & Bird, 1991). The surface coat of nematodes 

contains various proteins, lipids and carbohydrates either as individual component or as 

glycoproteins, glycolipids or lipoproteins (Spiegel & McClure, 1995). The parasitic nematode 

cuticle and surface coat proteins represents the first site of contact with the host’s immune 

responses (Kennedy & Harnett, (Eds.), 2013). Several research have demonstrated that protein 

molecule on the surface coat are secreted or released into the environment by Meloidogyne spp 

(Lin & McClure, 1996). In pre-parasitic juveniles of M. incognita, surface coat proteins are 

found to be released when J2s were incubated in water for 20 hours (Lin & McClure, 1996) 

indicating that surface coat proteins may be loosely attached on the nematode and therefore 

incubation can cause their release into the water. At this stage it is very difficult to predict the 

actual protein from NemaWater involved in elicitation of immune response in plant.  

Interestingly, some nematodes surface coat associated proteins identified in NemaWater are also 

found to be conserved in animal parasitic nematodes (APN) and serve crucial role in immune 

modulation. For example, enolase a metalloenzyme that catalyzes the conversion of 2-

phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway has been shown to 

act as surface antigen. Experiment with recombinant enolase protein from Clonorchis sinensis is 

showed to induce a mix of Immunoglobulin1/2a (IgG1/IgG2a) immune responses in Sprague-

Dawley rats when administrated subcutaneously (Wang et al., 2014). This suggest that C. 

sinensis enolase (Csenolase) can be used as a potential vaccine candidate to control the worm 
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parasite. Multifunctional enzyme enolase has also been reported to act as a cell surface receptor 

in host-pathogen interactions as well as binding to plasminogen (Wang et al., 2011). Studies 

have shown that enolase from Streptococcus sobrinus have the potential of acting as an 

immunomodulatory protein against dental caries the chronic human infection (Dinis et al., 

2009). They found that rats immunized with recombinant enolase (rEnolase) developed an 

increased level of salivary Immunoglobulin A/G (IgA and IgG) antibodies specific to the protein 

and the scores of dentin caries decrease (Dinis et al., 2009). These findings indicate that enolase 

has immunogenic properties and the ability to modulate immune responses in animals.  Enolase 

was highly abundant in our NemaWater protein analysis data. 

Consistent with the role of enolase in immune modulation in animals we hypothesize that it may 

play a role in plant basal immune activation. Further studies are necessary to examine the 

immunogenic nature of plant parasitic nematodes enolase and determine its potential in eliciting 

plant immune responses. Other important immunogenic protein identify in NemaWater protein 

analysis includes heat shock proteins (HSPs), also reported to act as immune modulators in 

cancer cells by forming a complex with peptides release as a result of protein degradation in 

associated cancer cells (Udono & Srivastava, 1993). Heat shock proteins (e.g. Hsp70), were 

reported in animal parasitic nematodes to be secreted in the host cell by means of extracellular 

vesicle trafficking (Eichenberger et al., 2018). Extracellular vesicles transport secretory proteins 

to the host which may play important role in host immune signaling (Coakley et al., 2015; 

Eichenberger et al., 2018). The role of extracellular vesicle trafficking in animal parasitic worm 

and animal-host-interactions has been well studied. Free living nematode C. elegans EV 

secretions may play important function in communication and mating behavior (Liégeois et al., 

2006). The role of EV trafficking have not been described in host plant-nematode-interactions. It 

could well be that some of the nematode proteins identified in NemaWater protein analysis are 

secreted through extracellular vesicle trafficking. 

The protein analysis and identification of nematode associated surface proteins is one step to 

identify potential NAMPs. We assumed that at least one or more of the immunogenic surface 

proteins identified in NemaWater is recognized by receptor(s) in plants leading to PTI. We also 

hypothesized that at least one of the plant receptor that recognizes nematode NAMPs require 

BAK1/SECRK3 as a co-receptor with others independence of BAK1.  
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We also studied the mechanism of damage responses in plant during nematode infection. Aside 

from the recognition of pathogen associated molecular pattern by surface receptors, plants also 

recognize endogenous molecules exposed to the extracellular space during cell damage (Lotze et 

al., 2007; Bianchi et al., 2007; Tang et al., 2012). These endogenous molecules/peptides activate 

plant immune responses similar to recognition of PAMPs (Boller & Felix, 2009; Heil & Land, 

2014). Nematode invasion and intracellular migration causes massive cell damage (Grundler et 

al., 1994), as a result cellular component are released in extracellular spaces where they are 

recognized as danger signals (Haegeman et al., 2011; Mitchum et al., 2013). The role of DAMP 

responses during plant-nematode interaction is not well studied. We investigate how DAMP 

receptors are involved in activating immune responses against cyst and root knot nematodes. 

The plant cell wall serves as the first barrier encountered by nematodes during root invasion 

(Holbein et al., 2016). There are two main strategies the nematode applied to penetrate the plant 

cell wall. These strategies include the use of stylet to pierce through the wall, and also the 

secretion of cell wall-degrading enzymes which helps to disrupt wall rigidity e.g. pectate lyase 

(de Boer et al., 2002; Vanholme et al., 2007), endo-β-1, 4-glucanase (Smant et al., 1998; de 

Boer et al., 1999), and polygalacturonase (PG) (Jaubert et al., 2002). PGs are key enzymes that 

cleave the α1-4 linkage between the D-galacturonic acid residues of homogalacturonan (Kalunke 

et al., 2015; Rahman & Joslyn, 1953; Themmen et al., 1982). PG was isolated in plant parasitic 

nematode M. incognita with a suggested role in facilitating parasitism (Jaubert et al., 2002). PG-

inhibiting protein (PGIP), a leucine-rich repeat defence protein bind PGs resulting to the release 

of oligogalacturionides (OGs) capable of activating immune responses in plant (Benedetti et al., 

2015). In pea plant (Pisum sativum L.), PsPGIP1 has been shown to be differentially expressed 

in susceptible and resistant genotypes in response to Heterodera goettingiana infection and 

function in disrupting syncytium development inside the host root (Veronico et al., 2011). In this 

work we found that PGIP1 mediate defense responses against cyst nematode H. schachtii in 

Arabidopsis (Shah et al., 2017). PGIP1 mutant were shown to be susceptible to cyst nematode. 

The up-regulation of genes involved in indole-3-glucosinolate and camalexin biosynthesis 

(CYP81F2, CYP71A12, and PAD3) were significantly impaired in pgip1-1 mutant plants which 

indicate that susceptibility of pgip1-1 to nematode infection is as a result of impaired induction 

of camalexin and indole-3-glucosinolate biosynthesis pathways (Shah et al., 2017). To confirm 

these results, we used a double mutant cyp79b2/b3, which is strongly impaired in indole-

glucosinolate and camalexin biosynthesis and accumulation and observed an increased number 

of nematodes infection. These suggest that cyst nematode during migration within the root 

112



Chapter 6 General Discussion 

induced camalexin and indole-3-glucosinolate biosynthesis pathways in a PGIP- dependent 

manner thereby restricting nematode establishment and development. However, the H. schachtii 

PG that causes the expression of PGIP in Arabidopsis is yet to be identified. Future research in 

this area will focus on identifying molecular players involved in activating PGIP gene 

expression during plant cyst nematode interaction. 

The role of peptide receptor (PEPR1/2), and their involvement in defense responses against cyst 

and root-knot nematodes was also studied during the course of this thesis. PEPRs are LRR-

RLKs reported to respond to a 23-aa peptide AtPep1 derived from the C-terminus of a 92-aa 

precursor protein AtProPep1 and together with BAK1 as co-receptor confers resistance to 

pathogens (Huffaker et al., 2006; Krol et al., 2010; Yamaguchi et al., 2010). Studies reported 

that knock-out mutant of pepr1/2 did not show any significant differences in infection with root-

knot nematode compared to control (Teixeira et al., 2016). We found that pepr1/2 double mutant 

were susceptible to cyst nematode infection in Arabidopsis. Root-knot nematode, however, did 

not show significant changes as compared to control in our infection assay which correlates with 

previous finding by Teixeira et al., 2016. The reason for increase susceptibility of cyst nematode 

to pepr1/2 mutant and not root-knot nematode could be associated to the fact that these two 

species of nematode have different penetration and migration pattern during initial infection. 

Cyst nematode infective juveniles penetrates and migrates through the plant root cells 

intracellularly causing severe damage (Wyss, 1992), whereas root-knot nematode migrate 

intercellularly between cells thereby reducing damage. Nevertheless spatio-temporal expression 

pattern for PEPR genes during cyst nematode and not root-knot nematode infection is not 

known. One possible explanation is that damage cause by cyst nematode could result in the 

release of small plant peptides which are then recognizes as DAMPs to activate defense 

responses. Previous studies showed that DAMPs signaling pathways can also be activated upon 

recognition of MAMPs/PAMPs by PRRs acting as immune amplifier (Yamaguchi et al., 2010). 

This could be one possible reason why DAMP related receptors were observed to be expressed 

upon plant treatment with HsNemaWater as well as during the migratory stage of nematode 

infection (Mendy et al., 2017). 

In conclusion, the identification of nematode surface proteins in NemaWater is a step towards 

finding NAMPs involved in immune elicitation in plants. Further work will focus on 

identification of the appropriate ligand in NemaWater that induced NILR1 immune responses 

and basal resistance to nematodes. We assumed there are more plant receptors apart from NILR1 
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involved in nematode NAMPs recognition. Receptors for ascarosides for example are still 

elusive. We also assumed plants may have evolved recognition pattern for nematode surface 

carbohydrate molecules. Lectin binding gene were significantly expressed in our microarray data 

which indicates that not only plants can recognize some unknown nematode surface proteins but 

also some unknown surface carbohydrates. The expression of both PAMP and DAMP receptor 

during cyst nematode infection indicate that plant deploys mechanism to recognize pathogen 

derived elicitors as well as host derived peptide. Understanding of both exogenous and 

endogenous recognition pathway is crucial for engineering durable resistance cultivars.  
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