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Summary 

Rice is a staple food for many countries in Africa but the production has never satisfied 

the demand which largely depends on imports. Therefore, more efforts are needed for 

raising yield in order to reduce the gap between potential and actual farmers’ yields. To in-

crease yield, improved management options are to be considered. Thus, this thesis has es-

timated the range of yields and yield gaps at three rice production systems in West 

Africa across climatic zones, the affecting factors and has explored management op-

tions to reduce the gap between potential and actual farmers’ yield. Field surveys were 

carried out between 2012-2014 in 22 sites located in eleven West African countries 

covering the main production systems and the main climatic zones. Management prac-

tices were recorded through interview, crop status from field observations and yield 

recorded at harvest. In central Benin, Nitrogen use efficiency was estimated at different 

field water status using experimental and farmer’s practices’ fields. Finally yield gain 

was estimated after implementation of GAP in selected farmers’ fields. Boundary func-

tion was used to estimate attainable yield. Random forest evaluated the importance of 

variables explaining yield and yield gap variability. 

Average yield was 4.1, 2.0, and 1.5 t/ha in irrigated lowland, rainfed lowland, and rain-

fed upland rice production systems, respectively, with maximum attainable yields of 

8.3, 6.5, and 4.0 t/ha. The factors affecting yields were specific to each production 

system. Yield gaps between potential/water limited yields and actual farmers’ yields 

ranged from 1.1 to 10.2 t/ha and from 3.5 to 10.3 t/ha in irrigated and rainfed systems, 

respectively. Farmers’ yield was 27-51% of potential yield at optimum sowing date in 

irrigated system, and 17-22% of water limited yield at optimum sowing date in rainfed 

systems. In irrigated system, 34% of the yield gap was attributed to weeds, N fertilizer 

application rate and crop establishment methods. In rainfed systems, 30% of this gap 

was explained by rice variety, field hydrology and weed infestation at maturity stage. 

The implementation of GAPs in farmers’ fields reduced the average yield gaps be-

tween 13 and 25% in irrigated system and between 20 and 42% in rainfed lowland 

system. 

These results suggest that there is a large scope for increasing rice yield in West Africa. 

There is a need for site-specific decision support guide including targeted GAPs for an 

efficient use of the available farmers’ resources. 
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1. Background 

Rice is one of the major staple crops for many countries in Africa (Becker and Johnson, 

1999b). However rice consumption in Africa depends largely on imports. Seck et al. 

(2013) reported that African rice imports accounted for 32% of the rice word trade in 

2008. To reduce rice importation and meet growing demand (6 % annually) due to 

increasing population of about 2.9 % per year (Population, 2015), rice production in 

Africa has to be increased. While rice production has steadily increased since the 

1970s mainly due to expansion of cultivated area, it has never satisfied demand. 

In1980’s, area expansion contributed to 96% of increase in rice production while yield 

increase contributed only to 6 % (Seck et al., 2013). Although area expansion is still 

possible in many parts of Africa, more efforts are needed on intensification as current 

yield level is quite low (Becker and Johnson, 1999b) as a result of large differences 

between potential yields and farmers’ actual yields (Wopereis et al., 1999a).  

After the rice crisis of 2008, many efforts to increase production have been deployed 

in Sub-Saharan Africa. Consequently, yield growth rate was increased from 11 

kg/ha/year before 2007 to 108 kg/ha/year after the 2008 rice crisis. The contribution of 

yield increase to production was changed from 24 % in the period 2000-2007 to 71% 

in the period 2007-2012 (Seck et al., 2013). However, the gap between consumption 

demand and production is yet to be closed. Therefore, more efforts are needed for 

raising yield in order to reduce the gap. To increase yield, improved management op-

tions are to be considered, they include introduction of improved varieties, application 

of balance fertilizer, better control of pests and diseases. To decide which manage-

ment option to adopt to increase yield, it’s needed to quantify the yield gap for each 

production system and the affecting factors.  

The yield gap is the difference between the potential yields and yields achieved by 

farmers. Potential yield is defined as the maximum yield attained by a crop (cultivar 

characteristics) in a given environment (solar, radiation, temperature and CO2 concen-

tration during crop growth period) as determined by simulation models when pests and 

disease are controlled with no limitation in water and nutrients (Evans and Fischer, 

1999a). 

 

 The following chapter provides an overview of the existing production systems and 
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their spatial distributions across agro-ecological zones are provided. The potential and 

constraints for rice production in relations to climate, soil and other factors are dis-

cussed. The different approaches to estimate rice yield gap are highlighted. The status 

of knowledge on rice yield gaps in West Africa is provided followed by the research 

objective and the thesis outline. 

2. The major agro-ecological zones in West Africa 

The agro-ecological zones consist of the Sahel with a length of growing period (LGP) 

of 65–90 days, corresponding to arid and semi-arid zones; the dry Savannah with an 

LGP of 90–180 days and the moist Savannah with an LGP of 180–270 days, corre-

sponding to the sub-humid zone; and the forest with an LGP >270 days, corresponding 

to the humid zone. In this thesis, we use the term ‘climatic zone’ which 

2.1. The Sahel 

The Sahel is the transition zone between the Sahara Desert in the North and the Sudan 

Savannah in the south with arid to semi-arid climate (Figure 1.1). From east to west it 

is extended between the Atlantic Ocean to the Red Sea with 5400 km long represent-

ing an area of about 3,053,200 km2. In West Africa, the Sahel zone covers northern 

Senegal, southern Mauritania, central Mali, and southern Niger (Figure 1.1). The veg-

etation is mostly covered in grassland with areas of woodland and shrub. Grass cover 

is fairly continuous across the region, dominated by annual grass species. Acacia is 

the dominant tree species with acacia tortilis the most common along with acacia Sen-

egal and acacia laeta. Other tree species include Commiphora africana, Balanites ae-

gyptiaca, Faidherbia, albida and Boscia senegalensis. The climate in the Sahel is arid 

to semi-arid with strong seasonal variations in rainfall and temperature. The rainfall is 

about 200-600 mm a year which falls from May to October (Table 1.1). Monthly mean 

temperature vary from a minimum of 13-15 °C to a maximum of 38-40 °C in Senegal 

river delta (Haefele et al., 2000). 
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2.2. The dry Savannah 

The Sudan Savannah is a broad belt of tropical Savannah that extends east to west 

across the African continent, from the Atlantic Ocean in the West to the Ethiopian High-

lands in the east. The Sudan Savannah is characterized by a mono-modal rainfall pat-

tern varying from 550 to 1000 mm falling in 90-165 days (Table 1.1). The vegetation is 

formed with different tree species including Combretaceae, Caesalpinoideae and 

some acacia species. 

 

The main soil types found in Sudan Savannah zone are classified as Lixisol and Areno-

sol. They are young immature well drained soils formed of parent materials rich in 

quartz and crystalline rocks of basement complex and sedimentary deposits 

(Enewezor et al., 1990). Soils are generally shallow on the upper parts of the landscape 

overlying a hard petroplinthite rock. The soils have low organic matter content, low 

Figure 1.1: Climatic zones of West Africa  

 Source: modified from (HarvestChoice et al., 2016) 
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cation exchange capacity and poor in nutrient content specially nitrogen and phospho-

rus (Windmeijer and Andriesse, 1993c). 

2.3. The moist Savannah 

The Guinea Savannah is a vegetation belt of around 1,575,000 square kilometers, lo-

cated north-south from south of Senegal to South of Benin and running from east to 

west of the continent. The vegetation is characterized by a woodland Savannah con-

sisting of an open stand of trees. The main tree species are Daniellia oliveri, Lophira 

alata and Terminalia glaucescens (Windmeijer and Andriesse, 1993c). The growing 

period of the Guinea Savannah zone extends over 165 - 270 days with monomodal 

annual rainfall distribution of about 900-1200 mm in the northern part and a bimodal 

rainfall pattern of up to 1500 mm in the south (Table 1.1). The soils in the Guinea 

Savannah are classified as ferruginous tropical, they are coarse to medium textured 

and generally graveled. Due to the presence of an underlying rock plinthite, soils are 

less deep in the upper part of the toposequence. The type of soils is dominantly Acrisol 

and Ferralsol with low inherent fertility in the upper and middle slopes. Because of the 

relatively higher rainfall, rice may occur in all parts of the landscape with a dominant 

frequency in the lower part with single rice cropping the most common practice be-

cause of the absence of irrigation facilities during dry periods. 

2.4. The equatorial Forest 

In the humid forest of West African regions, rainfall generally exceeds potential evap-

otranspiration for more than five months. It includes the south and center of Sierra 

Leone, the entire Liberia, central Ghana and the southern part of Guinea, Côte d’Ivoire, 

Nigeria and Cameroun. Annual rainfall is over 1500 mm with mono-modal rainfall pat-

tern in the west, with four to six humid months (Table 1.1). Bimodal rainfall pattern is 

found in the transition zones of the tropical forest with a major rainy season of four to 

five months and a minor cropping season of about two to three months. A pseudo-

bimodal pattern dominates the wetter forest regions from the center to the south, with 

seven to nine humid months. Soils in the equatorial forest zone are strongly weathered 

and are classified as Ultisols, Alfisols and Inceptisols. Oxisols and Entisols are present 

in smaller areas with a great potential for rice production (Moormann and Wambeke, 

1978). Ultisols are generally found in the bimodal humid forest zone, they are very 

acidic, with low base saturation, low activity clays and very low fertility status. Alfisols 
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are generally found in the drier bimodal and monomodal transition zones between the 

forest and the savannahs. The Ferralsols generally occur in the same high-rainfall belts 

as the Arcisols but they are more finely textured and structurally more stable. They are 

well drained in the upper and middle slopes, deep and poorly drained in the lower 

slopes. Gleysols and Fluvisols are mainly found in river floodplains and inland valleys 

in the bimodal and mono-modal rainfall areas. They have more mixed clay mineralogy, 

higher organic matter content and are more productive when excess water can be 

controlled. 

Table 1.1: Characteristics of the major climatic zones in West Africa 

Climatic zones Length of growing 
periods 

Annual rainfall Rainfall pattern Estimated area 

 (days) (mm)  (x 1000 km2)  % 

Arid 0-90 150-550 Monomodal 1780 27.6 

Semi-arid 90-165 550-1000 Monomodal 1170 18.3 

Sub-humid 165-270 1000-1500 Monomodal 
(North) 

Bimodal (en-
tral-South) 

Pseudo-bi-
modal (else-
where) 

1575 24.6 

Humid > 270 > 1500 Monomodal 
(West) 

Pseudo-bi-
modal (East) 

Bimodal (cen-
tral-South) 

1090 17 

Source: (Andriesse and Fresco, 1991b; Windmeijer and Andriesse, 1993b) 

3. Major rice production systems in West Africa 

In West Africa, five rice production systems are distinguished, they are classified as 

rainfed upland, rainfed lowland irrigated lowland, deep water and mangrove swamp 

with the two latter considered as minor importance in term of surface area 

(Balasubramanian et al., 2007a). Rice productions systems from Sudan Savannah to 
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the equatorial forest follow the continuum from the top hills of the plateau to the bottom 

part of the inland valley swamps (Figure 1.2). Rainfed upland is practiced on the top of 

the landscape and on the middle slopes. At the end slopes, rice fields generally benefit 

from the hydromorphic conditions of the soil due to the shallow groundwater tables at 

the vicinity of the lowland. Rainfed and irrigated lowland rice are practiced in the bottom 

part of the landscape in flooded conditions during part or the entire growing season. 

The total harvested area is about 4.4 million hectares with the rainfed upland and rain-

fed lowland production systems representing each about 38 %. Irrigated rice accounts 

for only 12 % of the total area under rice cultivation (Dingkuhn et al., 1998; Becker et 

al., 2003b). 

3.1. Rainfed upland 

Upland rice production is practiced in unbunded fields under rainfed conditions on nat-

urally well drained flat at the top of the topo sequence and at slopping fields without 

stagnant water (Datta et al., 1990). Upland rice is mostly grown by subsistence oriented 

farmers who do not generally use external inputs. This is mainly due to the lack of 

means and the large surface areas used which limit the possibilities for intensification. 

Grain yield averages about 1 t/ha (Becker and Johnson, 2001c) with a large variation 

among farmers due to the quality of the land (soil variability), the rainfall distribution 

and the difference on management practices (sowing dates, weed control, nutrient in-

put). The most important yield-reducing factor is weed infestation (Johnson et al., 

1997) followed by drought with the other factors including disease (blast), Insects (stem 

borers, termites), and soil conditions (soil acidity, nitrogen and phosphorus deficiency). 

In upland systems, crop water demand is entirely dependent on rainfall which makes 

this production system quite risky in arid areas. Upland rice production system is there-

fore more viable in humid zones from the Guinea Savannah to the humid equatorial 

forest where rainfall is more abundant. Rice plant may also benefit from shallow water 

table in addition to rainfall when grown in hydromorphic areas at the transition zone 

between the lower slope and the bottom part of the landscape. However, with contin-

uous population growth, land pressure reduced fallow periods which aggravated soil 

degradation and soil quality decline (Bationo et al., 1998). In 2009, upland cultivated 

rice area accounted 32% of the total rice area in Africa and occupied 35% of rice pro-

ducers (Diagne et al., 2013b). 
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3.2. Rainfed lowland 

Rainfed lowland rice is grown in the lower part of the topo sequence and in inland 

valley swamps with bunded or unbunded fields flooded by rains and shallow ground 

water table (Saito et al., 2013a). The total area of inland valley swamps is estimated 

about 20 to 40 million ha in West and Central Africa (Duivenbooden et al., 1994). In 

2009 rainfed lowland rice area was estimated to be about 38 % of the total area culti-

vated in rice in Africa which occupied 31 % of rice producers (Diagne et al., 2013b). 

Rice yield in rainfed lowlands ranges from 1 to 3 t/ha. External inputs to enrich soil 

nutrient status and improving water control through bundings are ways to increase 

yield in lowland systems (Andriesse and Fresco, 1991a). The factors that affect rice 

yield in the rainfed lowlands include poor water control, drought, flooding, nutrient de-

ficiency, iron toxicity pests and disease (bacterial leaf blight). Rainfed lowland produc-

tion system is found from the Sudan Savannah to the humid forest agro-ecological 

zones. 

 

Figure 1.2: Rice production continuum 

Source : modified from Defoer et al. (2004) 

3.3. Irrigated lowland 

Irrigated systems are bunded fields with dam-based, water diversion and pump irriga-

tion from rivers in the Sahel. In the humid zones of Guinea Savannah and humid forest, 

irrigation is by gravity or by stream diversion of surface water and tube wells. The total 

area covered by irrigation is 100 000 ha in the humid forest, 150 000 ha in Guinea 

Savannah, 75 000 ha in Sudan Savannah and 175 000 ha in the Sahel (Becker et al., 
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2003a). This production system occupy 26 % of the total area cultivated on rice in 

Africa (Diagne et al., 2013b). Based on the annual flow of rivers, there is a potential 

water more than twenty times what is presently covered by irrigation. Poor water con-

trol, N deficiency due to leaching, soil salinity and acidity and bacterial leaf blight are 

the main factors affecting rice yield in irrigated lowland systems. 

4. The general concept of yield gaps 

Rice yield is determined by the interaction between variety characteristics, environ-

mental conditions and management practices (Figure 1.3). The yield gap is the differ-

ence between potential yield and average farmers’ yield estimated over the same spa-

tial and temporal scale (Lobell et al., 2009a). The different approaches to estimate yield 

gaps depend on the way potential yield is estimated. Potential yield is determined in 

crop growth condition without any biophysical limitations (nutrients, pests, weeds and 

diseases) other than uncontrollable factors, such as solar radiation, air temperature 

and rainfall in rainfed systems. Crop models are used to estimate potential and water 

limited yields in irrigated systems when water is amply supplied and in rainfed systems 

when water can be lacking at some points during part of the growing season (Wart et 

al., 2013). Potential yield is determined in irrigated systems using two factors, solar 

radiation and temperature. In rainfed systems, water limited yield is simulated using 

rainfall and soil physical characteristics as additional factors. 

Therefore the use of crop models validated with field experiments for the site or in the 

surrounding region provides a more robust approach for estimating yield potential for 

a site than using either approach alone. Another alternative to estimating yield potential 

is to survey farmer’s fields and record the maximum yield achieved among a sample 

of farmers in the location of interest (Lobell et al., 2005). The estimates are therefore 

more reliable when measured in farmer’s fields but sample size is larger when collected 

only from farmer’ records. This approach is appropriate in intensively rice cultivation 

systems, where farmers apply high levels of mineral fertilizers and appropriately control 

weed, pest and diseases that make farmers’ yield possible to be close to potential 

yield. Figure 1.3 illustrates potential yield estimates of the three approaches and the 

level of farmers’ average yield and the three yield gaps associated.  

The expected range would be YGM > YGE > YGF with values likely to be close to each 

other in intensively managed systems but YGF would be much lower than YGM and 
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YGE in low input systems. In frequent nutrient, pest and disease stresses average 

farmer’s yield are commonly less than 20% whereas in more intensive systems it can 

be as high as 80% of potential yield. In this study, simulated yield approach was used 

for estimating yield gap. 

 

5. Rice yield gaps in West Africa 

AfricaRice, formerly West African Rice Development Association (WARDA) has ana-

lyzed rice yield gaps in the 1990s for 4 countries in West Africa (Côte, d’Ivoire, Senegal, 

Mali and Burkina Faso) from the Sahel to the Equatorial Forest zone (Becker and 

Figure 1.3: Three different approaches for rice yield gap estimation  

Source: modified from Lobell et al. (2009a): YGM, model-based yield gap (potential 
yield simulated from a model); YGE, experiment-based yield gap (potential yield esti-
mated with field experiments) and YGF, farmer-based yield gap (potential yield esti-
mated with maximum of farmers’ yield  
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Johnson, 1999b; Wopereis et al., 1999a; Becker et al., 2003b). Average farmers’ yield 

was around 3.4 t/ha in Guinea Savannah; 3.6 t/ha in humid forest; 3.9 t/ha in the Sahel 

and 5.1 t/ha in Sudan Savannah (Becker et al., 2003a). Simulated potential yield varied 

from 7 t/ha in the humid forest to more than 10 t/ha in the arid zones due to higher 

solar radiation (Becker et al., 2003a). This potential is therefore constrained in some 

locations by extreme temperature (cold and heat) during dry season (Dingkuhn, 1993). 

Becker et al. (2003a) has reported average on-farm yields of irrigated lowland rice in 

different agro-ecological zones in West Africa ranging from 3.4 to 5.4 t/ha and average 

potential yields from 6.9 to 9.8 t/ha with an average yield gap ranging from 3.2 to 5.9 

t/ha, indicating considerable possibilities for yield increase. On-farm trials in different 

agro-ecological zones in West Africa showed average yields of rainfed lowland rice 

and rainfed upland rice ranging from 1.0 to 2.2 t/ha and from 0.8 to 1.6 t/ha respectively 

(Becker and Johnson, 2001c; Becker and Johnson, 2001b). Potential yields have not 

been estimated using models for upland rice in Africa, yields in trials managed by re-

searchers with sufficient nutrient input and without water stress (Dingkuhn et al., 1998; 

Oikeh et al., 2008; Ekeleme et al., 2009; Saito and Futakuchi, 2009; Kamara et al., 

2010) were considered as potential yield in the upland system, they ranged between 

4.0 to 5.6 t/ha. Thus, large differences exist between farmers’ yields and research sta-

tion’s yields, suggesting that the yield gaps are likely to be high in upland conditions. 

Large yield gaps are noted in irrigated systems due to relatively high potential yields 

of irrigated lowland rice (Dingkuhn and Sow, 1995) and the low yields measured in 

farmers’ fields. Low on-farm yields are caused by a range of biophysical and socio-

economic constraints that lead to abiotic and biotic stresses of the rice crop during its 

growth cycle (Defoer et al., 2004). The major challenge of rice research for develop-

ment in Africa is to reduce rice yields gap by alleviating these stresses through genetic 

improvement and GAPs. Becker et al. (2003a) showed that improved weed control and 

timely N management narrowed yield gap up to 43 % in West African irrigated lowland 

systems in the equatorial forest zone. Becker and Johnson (1999b) has reported large 

yield variability in the forest zone of Côte d’Ivoire mostly due to the age of seedlings, 

delay of transplanting dates, fertilizer application timing, weed and water control. In the 

Sahel irrigated zone of Senegal, yield variability from 0.7 to 7.2 t/ha have been reported 

partly explained by timely application of mineral nitrogen (Dingkuhn, 1993). 
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6. Hypothesis and research objectives 

Since the years 1990s no study has been carried out in farmers’ fields to assess rice 

yield gap and the affecting factors. The last estimation of yield gap focused only on 

four countries in West Africa with only model-based method used to estimate potential 

yield in irrigated systems and farmer-based method in upland systems. 

The objective of this study was to estimate the factors affecting rice production at farm 

level in the main rice production systems in West Africa across agro-ecological zones 

and to explore alternative management options to reduce the gap between potential 

and actual farmers’ yield. Quantitative information on the causes of yield gap is key for 

identifying areas with potential to increase food supply, and for rice research prioritiza-

tion 

We hypothesize that (1) rice yield gap is large in low input systems; (2) improper 

management practices are the principal causes of the large yield gap, and (3) 

improving agricultural practices will increase rice production by minimizing yield-

reducing factors. To test these hypotheses, the following research questions 

are addressed: 

• What is the actual rice yield gap in different rice production systems in West 

Africa? 

• What are the important factors affecting rice yield in different production sys-

tems across agro-ecological zones? 

• What is the contribution of each affecting factor to yield gap for each production 

system across ecological zone? 

• What are the best practices (combination of factors) that minimize yield gap? 

7. Thesis outline 

The thesis consists of an introduction, five chapters (Chapters 1-5) and a general con-

clusion. In chapter, I described the rice-growing environments in West Africa, including 

biophysical information and agricultural practices through literature review and data 

from previous works. The different approaches for yield gap estimation at field level 

were also described. In chapter 2, rice yield variability was assessed in each produc-

tion system across agro-ecological zone and the affecting factors identified using 

boundary function and random forest. In chapter 3, different yield gaps were estimated 
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using oryza2000 crop growth model and the factors affecting yield gap established 

using random forest and multiple regression analysis. In chapter 4, data from survey 

and experimental fields were used to assess rice yield variability in central Benin as 

affected by field water hydrology and N application rates In chapter 5, data from on-

farm GAP testing are analyzed to examine if GAP can increase yield and help narrow 

the yield gaps. Chapter 6 presents a general discussion and conclusion of this thesis.
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Chapter 2 : Variability of yields and its determinants in rice produc-
tion systems of West Africa12 

 

                                            

1 This chapter was partly presented in Tropentag conference, Vienna 2016 as: 

Abibou Niang, Mathias Becker, Frank Ewert and Kazuki Saito 

2 Published in Field Crops Research as: Field Crops Research 207 (2017) 1–12 

Variability and determinants of yields in rice production systems of West Africa 
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Abstract  

Rice (Oryza spp.) is the major staple food for most countries in West Africa, but local 

production does not satisfy the demand. Rice is mainly grown by smallholder farmers, 

and are generally low with a high temporal and spatial variability. Low yields have been 

attributed to unfavorable climate conditions, poor soil quality, and sub-optimum agri-

cultural practices. The objectives of this study were to assess variation in yields of three 

major rice production systems (irrigated lowland, rainfed lowland, and upland) across 

three climatic zones (semi-arid, sub-humid, and humid), and identify factors affecting 

the variation. We analyzed data on yield, climate, soil, and agricultural practices in 

1305 farmers’ fields at 22 sites in 11 West African countries between 2012 and 2014. 

A boundary function approach was used to determine attainable yields. Random forest 

algorithm was used to identify factors responsible for yield variation. 

Average yield was 4.1, 2.0, and 1.5 t/ha in irrigated lowland, rainfed lowland, and rain-

fed upland rice production systems, respectively, with maximum attainable yields of 

8.3, 6.5, and 4.0 t/ha. Yield difference between attainable and average yield tended to 

be higher in irrigated and rainfed lowland rice production systems. In those two sys-

tems, yields were highest in the semi-arid zone, while no difference in yields among 

climatic zones were apparent for upland rice. High yields were associated with high 

solar radiation, intermediate air humidity, multiple nitrogen (N) fertilizer application 

splits, high frequency of weeding operations, the use of certified seeds, and well-lev-

eled fields in irrigated lowland rice. Minimum temperature, rainfall, building of field 

bunds, varietal choice, and the frequency of weeding operations were determinants of 

yield variation in rainfed lowland rice. Varietal choice, bird control, frequency of weed-

ing operations, and the number of N splits affected yields in upland rice production. 

Improving access to inputs and improving their use efficiencies, and site-specific rice 

management strategies must be priority intervention areas to boost yields at regional 

scale independent of the rice production system and the climate zone. 

 

Keywords: climatic zone; boundary function; Oryza spp.; random forest; yield gap 
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1. Introduction 

With six million hectares or 60% of the continent’s rice-growing area, West Africa is the 

most important rice production region in Africa (Diagne et al., 2013b). Production sys-

tems comprise irrigated lowlands, rainfed lowlands, and uplands, with deep water and 

mangrove rice being of only minor importance (Balasubramanian et al., 2007a). Rice 

is grown across agro-ecological zones that are differentiated by the LGP. The agro-

ecological zones consist of the Sahel with an LGP of 65–90 days, corresponding to 

arid and semi-arid zones; the dry Savannah with an LGP of 90–180 days and the moist 

Savannah with an LGP of 180–270 days, corresponding to the sub-humid zone; and 

the forest with an LGP >270 days, corresponding to humid zone (Peel et al., 2007). In 

this paper, we use the term ‘climatic zone’ which comprises arid, semi-arid, sub-humid, 

and humid zones as shown in Figure 2.1. 

Climate attributes such as rainfall, solar radiation, and temperature change markedly 

among climatic zones, with substantially higher solar radiation but also much greater 

temperature and humidity amplitudes in the arid than the humid zone (Windmeijer and 

Andriesse, 1993a). Although high solar radiation is generally associated with high yield, 

extreme temperatures can cause heat- or cold-induced spikelet sterility, resulting in 

low yield (van Oort et al., 2014). These climatic conditions differentially affect soil 

weathering with associated changes in nutrient stocks, cation exchange capacity 

(CEC), and pH (Bouma and Finke, 1993). Thus, rice soils in the humid forest zone tend 

to be highly weathered and acidic with macronutrient deficiencies (Haefele and 

Wopereis, 2005) and microelement toxicities (Becker and Asch, 2005).  

On the other hand, soils in the arid and semi-arid zones are mostly little weathered with 

generally higher CEC and soil pH, but salinity and alkalinity problems are commonly 

observed (Asch et al., 1995; Ceuppens et al., 1997; Saito et al., 2013b). Irrespective 

of climatic zones, irrigated rice is generally produced in bunded paddy fields with irri-

gation, allowing for cultivating more than one crop per year. In all but the arid zone, 

rainfed lowland rice is grown on level to slightly sloping, unbunded or bunded fields in 

lower parts of the toposequence in inland valleys (Touré et al., 2009). 
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Figure 2.1: Location of study sites (top) and climatic zones (bottom) in sub-Saharan Africa. The climatic 
zone map was adapted from HarvestChoice et al. (2016). Numbers in the left map refer to site codes in 
Table 2.1 

. 
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Upland rice is produced on level or sloping unbunded fields in hilly regions within the 

undulating inland valley landscape with low groundwater tables. Such diverse growing 

conditions result in large variation in yields across production systems (Becker and 

Johnson, 2001a; Becker and Johnson, 2001d; Becker et al., 2003b) and farmers’ fields 

within a given system (Saito et al., 2013b). Apart from these climatic and edaphic prop-

erties, and the production systems themselves, farmers’ rice yields are also affected 

by agricultural practices that are largely determined by the resource endowment of 

farmers that differentially influence production orientation, cropping intensity, and input 

use (Angulo et al., 2012; Tanaka et al., 2013). Large farm-to-farm variability has been 

observed for crop establishment date and methods (Tanaka et al., 2013; 2015), varietal 

choice (Dingkuhn and Asch, 1999), tillage method (Becker et al., 2003b), water man-

agement (Becker and Johnson, 2001d), the amount and timing of fertilizer applications 

(Haefele et al., 2003), and the frequency and type of weed and pest control (Wopereis 

et al., 1999b; Kent et al., 2001). All these factors have been reported to affect yields 

and possibly explain their variability. 

Most previous studies assessing on-farm rice yields, yield variation, and agricultural 

practices in West Africa were conducted in the mid- to late 1990s (Wopereis et al., 

1999b; Becker and Johnson, 2001d; Becker and Johnson, 2001a; Becker et al., 2003b) 

with only two recent studies of irrigated lowland rice systems (Tanaka et al., 2013; 

2015), and most having focused on Côte d’Ivoire and Senegal. With rice being grown 

in all 17 countries of the region and with changing rice demand, increasing globalization 

effects and recent technological innovations (new varieties, mechanization, access to 

information and communications technology etc.), rice production systems and agri-

cultural practices have evolved differentially in the past decade with likely implications 

on yields and yield variability. Furthermore, few studies in West Africa have considered 

climate attributes when assessing on-farm yield variation. Thus, it appears timely to re-

assess the performance attributes of major rice production systems. The objectives of 

this study were to determine variations in yield of major rice production systems (irri-

gated lowland, rainfed lowland, and upland rice) across climatic zones (semi-arid, sub-

humid, and humid) in West Africa, and to identify the role of climatic and edaphic at-

tributes and of agricultural practices affecting rice yields and their variation in West 

Africa. 
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2. Material and methods 

2.1. Study sites and sampling frame 

The cross-sectional study of rice performance attributes and their determinants was 

conducted at 22 sites in 11 countries (Table 2.1). These study sites were selected by 

national agricultural research institutes and are considered priority intervention sites 

for national rice research and development. Each study site comprised of up to eight 

rice-producing villages, except for Bo and Kenema in Sierra Leone with 20 villages, 

with up to 50 farmers being randomly selected in each village (34–93 farmers per study 

site). The field surveys were performed during the rainy seasons in 2012, 2013, and 

2014. In total, the sample comprised 1368 farmers’ fields. The distribution of the sites 

by country and climatic zone, the sample size of farmers, and the period of data col-

lection are summarized in Table 2.1. Climate data were collected from automated 

weather stations established in most of the study sites: solar radiation, rainfall, and 

minimum and maximum temperatures. When ground station data time series were in-

complete, weather data were obtained from the online Global Summary of the Day 

(GSOD) or the NASA POWER database (NASA, 2016), The NASA POWER data on 

minimum and maximum temperatures were bias-corrected following Van Wart et al. 

(2015) and van Oort et al. (2014), while solar radiation and rainfall data were used 

directly. Daily minimum and maximum temperatures, and daily mean relative humidity 

were averaged over the complete rice-growing period for each individual farmer’s field, 

and cumulative solar radiation and rainfall were calculated. 

2.2. Data collection 

Information on farmers’ agricultural practices was collected through interviews with in-

dividual farmers. Agricultural practices considered comprised land preparation (tillage, 

bunding, leveling, straw management), planting material and establishment method, 

fertility management (amounts and frequency of fertilizer applications), and pest control 

(frequency of weeding operations and bird control) (Table 2.1). Within each farmer’s 

field, a 200 m2 survey plot was established at the beginning of the wet season. Soil 

samples (0–20 cm) were collected as composites (n=9) at the onset of each cropping 

season along two diagonal transects across the survey plots.  
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Table 2.1: Distribution of study sites and number of farmers’ fields by production system and site. 

Climatic 

zone 

Country Site (code) Total number of fields 

(implementation/sampling year) * 

  Irrigated low-

land 

Rainfed low-

land 

Rainfed up-

land 

Semi-arid Benin Malanville (20) 79 (2 & 3)   

 Burkina Faso Hauts Bassins (10)   34 (2) 

 Mali Sikasso (7)  88 (1 & 2) 9 (1) 

  Kouroumari (6) 41 (1 & 2)   

 Niger Gaya (19) 11 (2)  38 (2)  

  Tillaberi (21) 65 (1 & 2)   

 The Gambia West Coast (1)   70 (1 & 2) 

  Central River (2) 70 (1 & 2)   

Sub-hu-

mid 

Benin Glazoué (18)  34 (1 & 2) 29 (1)  

 Burkina Faso Cascades (11)  44 (2)  

 Ghana Navrongo (12) 32 (1 & 2) 44 (1 & 2) 12 (1) 

  Savelugu (13) 6 (1) 79 (1 & 2)  

  Afife (15) 46 (2)   

 Guinea Haute Guinée (5)   61 (2 & 3) 

 Nigeria Nasarawa (22)  52 (1 & 2)  

 Sierra Leone Tormabum (3)  50 (1 & 2)  

  Bo & Kenema (4)  59 (1 & 2)  

 Togo Plateaux (17)  48 (1 & 2)  

  Maritime (16) 39, 1 & 2   

Humid Côte d’Ivoire Man (8)   73 (2 &3) 

  Gagnoa (9) 58 (1 & 3)   

 Ghana Kumasi (14)  34 (1 & 2)  

*1=2012, 2=2013, 3=2014 
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Soil samples were mixed and air-dried for subsequent laboratory analysis of particle 

size distribution, pH (H2O), total C and N (CN element analyzer), and extractable P 

(Bray-2). The grain yield at harvest was based on the average from three harvest areas 

of 12 m2 each within each survey plot. After eliminating entries with missing values, a 

total of 1305 complete data sets for individual farmers’ fields remained for use in the 

analysis with 10 irrigated lowland sites (447 fields), 11 rainfed lowland sites (565 fields), 

and 7 upland sites (293 fields).  

2.3. Statistical analyses 

Prior to data analysis, normality test was applied to yield values of each production 

system. Prior to the analysis of variance (ANOVA) of soil attributes and grain yield, 

non-parametric Levene’s test was applied to test the homogeneity of variances 

(Nordstokke et al., 2011). ANOVA was conducted to test for statistical significance 

among soil attributes and grain yields in different production systems and climatic 

zones. In cases of significance, mean comparisons were conducted using Scheffe 

post-hoc test when homogeneity of variance was assumed, or Games-Howell post-hoc 

test when homogeneity of variance was not assumed. Pearson’s product moment cor-

relation was used to characterize the relationships among climate variables and se-

lected soil attributes (pH, total N, total C, extractable P, texture).  

To identify the attainable yield responses to solar radiation (all production systems) 

and rainfall (rainfed systems only), boundary curves were fitted (van Ittersum et al., 

2012) with cubic smoothing splines (Daouia et al., 2016) being applied for each pro-

duction system. Maximum attainable yield was calculated using boundary curves and 

maximum solar radiation or rainfall observed. Differences between each pair of actual 

and attainable yields at the same solar radiation or rainfall level were determined and 

mean yield differences were calculated for each production system.  

The relative importance of climate and soil variables on the one hand and of agricultural 

practices on the other hand in explaining farmers’ yields were assessed separately 

using random forest algorithm (Breiman, 2001) implemented in the ‘randomForest’ 

package (Liaw and Wiener, 2002) in R software environment (R development Core 

Team, 2011). 
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Table 2.2: Soil and climate attributes and agricultural management practices determined in 22 study sites 

in West Africa. 

Type Variable Unit or classification 

Soil attribute Clay, silt, and sand (Pipette method) % of dry soil 

 Total C and N (dry combustion ele-

mental analysis) 

% of dry soil 

 pH (1:2.5 soil:water ratio)   

 Extractable P (Bray-2 method)  mg/kg dry soil 

Climate variablea Average daily minimum temperature °C 

 Average daily maximum temperature °C 

 Total solar radiation MJ/m2 

 Average daily relative humidity % 

 Total rainfall mm 

Agricultural practice   

Land preparation Straw management  Removed or returned  

 Tillage method  Manual or mechanical  

 Land leveling  Leveled or not leveled 

 Plot bunding  Bunded or non-bunded  

Planting material and estab-

lishment 

Variety Improved or local 

 Source of seeds  Certified or self-grown 

 Crop establishment method  Transplanting or direct seed-

ing 

Fertility managementb N application rate None, low, or high 

 P application rate  None, low, or high 

 K application rate None, low, or high 

 Fertilizer application frequency  None, once, or more than 

once 

Weed and pest control Herbicide  Use or no use 

 Weeding frequency None, once, twice, or more 

than twice 

 Bird control  Scaring/nets or none 

aClimate values were calculated for each farmer’s field using farmer’s crop duration. 
bAverage N, P, and K application rates are based on all data points after excluding farmers who did 

not apply N, P, or K. Average N application rates were 100, 65, and 37 kg/ha in irrigated, rainfed low-

land, and upland production systems, respectively, with 16, 13, and 9 kg P/ha and 29, 22, and 21 kg 

K/ha. Low fertilizer application indicates that farmer’s application rate was lower, whereas high applica-

tion rate indicates that farmer’s fertilizer application rate was equal to or higher than the average. 

Contributions of climate and soil variables (factors usually not changeable by the 

farmer) were analyzed separately from agricultural practices. In this analysis, five cli-

mate and four soil variables were categorized into two or three classes as follows: 
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Solar radiation (MJ/m2):  ≤2000; >2000 

Relative humidity (%):  ≤50; 51-70; >70 

Maximum temperature (°C): ≤35; >35 

Minimum temperature (°C): ≤23; >23 

Rainfall (mm):   ≤600; >600 

Soil clay content (%):  ≤30; >30 

Soil available P (mg/kg):  ≤10; >10 

Total N content:   ≤0.1; >0.1 

Total C content:   ≤1; >1 

For agricultural practices, we used categorical variables as shown in Table 2.2. The 

effects of the most important climate and soil attributes and agricultural practices iden-

tified by the random forest algorithm were estimated by one-way ANOVA. Statistical 

analyses were performed using SPSS Statistics (ANOVA) for Windows (ver. 23.0) and 

R for Boundary Function and random forest approaches. 

3. Results 

The following sections first describe the observed variation in climatic and edaphic at-

tributes and agricultural practices by production system and climatic zone, and subse-

quently present rice yields and their variability as well as their relationships with climate 

and edaphic attributes and agricultural practices. 

3.1. Variation in climate and edaphic attributes and agricultural practices 

Climatic conditions during the rice-growing season differed substantially between cli-

matic zones (aggregated means across rice production systems). Among climate 

zones, average rainfall ranged from 635 mm (semi-arid zone) to over 854 mm (humid 

zone), whereas average solar radiation ranged from 2000 MJ/m2 (humid zone) to 

2500 MJ/m2 (semi-arid zone) (Table 2.3). Temperature amplitudes were higher and 

relative air humidity was lower in the semi-arid than in the sub-humid zone. Irrigated 

lowland rice production environment showed higher maximum and minimum tempera-

tures and solar radiation, and less humidity and rainfall than the rainfed environments. 

This is ascribed to the dominance of production systems in specific climatic zones. The 
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semi-arid zone accounted for 60%, 22%, and 38% field plots of irrigated, rainfed low-

land, and rainfed upland rice production systems, respectively. The sub-humid zone 

was dominated by rainfed lowland rice (65%), and the humid zone by upland rice pro-

duction (44%). Solar radiation was positively correlated with maximum (r = 0.42, 

P<0.01) and minimum (r = 0.55, P<0.01) temperatures and negatively correlated with 

air humidity (r = –0.33, P<0.01) and rainfall (r = –0.50, P<0.01). 

Table 2.3: Climate data during the rice-growing season: total rainfall, average daily minimum and maxi-
mum temperatures, solar radiation, and humidity by climatic zone and production system, and correlation 
coefficients (Pearson test) among climate variables. 

 Minimum 

temperature 

(°C) 

Maximum 

temperature 

(°C) 

Total radia-

tion (MJ/m2) 

Relative hu-

midity (%) 

Total rainfall 

(mm) 

Climatic zone      

Semi-arid 24 34 2473 64 635 

Sub-humid 23 31 2121 76 680 

Humid 21 30 2012 77 854 

Production system      

Irrigated lowland 24 34 2503 64 470 

Rainfed lowland 23 32 2146 72 752 

Rainfed upland 22 30 2088 80 904 

Pearson’s correlation 

test 

     

Min. temperature 1 0.74** 0.55** –0.79**  –0.16ns 

Max. temperature  1         0.42** –0.95**   0.16** 

Total radiation   1         –0.33** –0.50** 

Relative humidity       1        0.32** 

** Correlation is significant at P≤0.01, ns correlation is not significant. 

 

While soil pH values differed only marginally among climatic zones and production 

systems (coefficient of variation (CV) <13%), soil total C, total N, available P, and tex-

ture differed greatly (CV >50%). Total N, total C, available P, and sand contents tended 

to be highest in the humid zone, and available P was higher in upland rice soils (Table 

2.4). 

 



Variability of yields and its determinants  

26 

 

Table 2.4: Soil attributes (0–20 cm) by climatic zone and production system, and their inter-correlations. 

 pH 

(H2O) 

Total N 

(%) 

Total C 

(%) 

Available 

P (mg/kg) 

Clay (%) Silt (%)  Sand 

(%) 

Climatic zone        

Semi-arid 5.6 0.10 a 1.1 a 3.9 a 31 a 29 a 40 a 

Sub-humid 5.4 0.14 b 1.5 b 3.4 a 26 b 26 b 48 b 

Humid 5.4 0.20 c 2.1 c 6.2 b 21 c 18 c 61 c 

        

Production system       

Irrigated low-

land 

5.7 a 0.11 a 1.3 a 2.5 a 37 a 25 a 38 a 

Rainfed low-

land 

5.2 b 0.15 b 1.7 b 4.0 b 23 b 30 b 47 b 

Rainfed upland 5.6 c 0.06 c 0.8 c 6.8 c 17 c 21 c 62 c 

        

CV (%) 13 66 83 120 69 54 56 

Levene’s test P 

value 

       

Climatic zone ns ** ** ** ** ** ** 

Production 

system 

** ** ** ** ** ** ** 

Pearson’s correlation 

test 

      

pH (H2O) 1 –0.36** –0.32** 0.24** –0.02 –0.16** 0.10** 

Total N   1 0.96** –0.11** 0.35** 0.38** –0.43** 

Total C   1 –0.09* 0.37** 0.42** –0.46** 

Available P    1 –0.29** –0.21** 0.31** 

Clay     1 0.26** –0.86** 

Silt      1 –0.72** 

Means of the same soil parameter with a different letter are significantly different between climatic zones 
and between production systems, ns: not significant, ** significant at P≤0.01, * significant at P≤0.05. 

In general, upland rice soils were of coarser texture than lowland soils. Correlation 

analysis showed that sand content was negatively correlated with total C, total N, clay, 

and silt contents, and positively correlated with available P. Agricultural practices – 

land preparation, planting material and establishment, fertility management, and weed 

and pest control – differed among rice production systems (Table 5). More than 40% 

of farmers in rainfed lowland and 60% in upland rice production systems did not apply 

any fertilizer, while >80% of farmers applied mineral fertilizer to irrigated rice.  
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Table 2.5: Distribution of farmers’ agricultural practices by production system and expressed as the per-
centage share of all fields within each system. 

 

 

Irrigated low-

land 

(%) 

Rainfed low-

land 

(%) 

Rainfed up-

land 

(%) 

Land prepa-

ration Straw return 39 36 71 

 
Building of field bunds 93 27 15 

 
Mechanical tillage 83 52 47 

 
Field leveling 47 23 19 

Planting ma-

terial  Use of improved varieties 94 71 42 

and estab-

lishment Use of certified seed 59 33 20 

 
Transplanting (v. direct seeding) 77 28   7 

Fertility man-

agement 

None, low, and high application of 

mineral N fertilizer  

19, 48, and 

33 

44, 37, and 

19 

62, 27, 

and 11 

 None, low, and high application of 

P fertilizer 

27, 51, and 

22 

54, 31, and 

15 

65, 19, 

and 16 

 None, low, and high application of 

K fertilizer 

32, 46, and 

22 

58, 27, and 

15 

67, 21, 

and 12 

 
Single application of mineral N 20 33 20 

 
>1 application of mineral N 63 28 20 

Weed and 

pest control Use of herbicide 61 49 28 

 
Single weeding 23 51 46 

 
Two weedings 52 30 46 

 
>2 weedings 24 19   8 

 
Bird control (scaring or nets) 46 34 79 

Generally, in the irrigated systems, most farmers applied advanced or recommended practices 

such as mechanical tillage, building of field bunds, and split application of mineral N, and used 

inputs such as improved varieties, fertilizers, and herbicides. Over 70% of upland rice farmers 

returned rice straw to the field. 

3.2. Rice yield 

Rice yields were highly variable, ranging from 0.03 to 8.0 t/ha (Figure 2.3). Across cli-

matic zones, mean yields were 4.1, 2.0, and 1.5 t/ha in irrigated lowland, rainfed low-

land, and upland production systems, respectively. In upland rice, yields ranged from 
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0.03 to about 4.0 t/ha with a >70% probability of <2 t/ha. In rainfed lowlands, yields 

ranged from 0.1 to nearly 6.0 t/ha with a 50% probability of <2.0 t/ha (Figure 2.2). In 

irrigated lowland rice, yields ranged from 0.3 to 8.0 t/ha with >60% probability of 

<5 t/ha. The CV of the yield was higher in rainfed systems (about 60%) than in irrigated 

lowlands (38%). Yield levels differed among climatic zones, with highest yields ob-

tained from lowland production systems in the semi-arid zone.  

 

Figure 2.2: Cumulative probability distribution of rice yields per production system. 

The yield variability was highest in rainfed systems of the sub-humid zone with a CV 

of 63%. In irrigated systems, the yield variability increased from the semi-arid (CV 

29%), through the sub-humid (CV 38%) to the humid zone (CV 44%) (Figure 2.3). 

Upper-limit yields tended to increase with solar radiation up to about 2000 MJ/m2 irre-

spective of the production system, and increased with rainfall amounts up to 700 mm 

in the rainfed systems. Consequently, boundary curves were deployed using total solar 

radiation during the rice-growing period in all three production systems (Figure 2.4), 

and rainfall for the rainfed systems only (Figure 2.5).  
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Figure 2.3: (a) Minimum, the lower quartile, the median (middle), the upper quartile, and maximum of 
yield, and (b) mean yield yields ± standard deviation of the mean in the main rice production systems of 
West Africa. 
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Radiation boundary curves indicate maximum attainable yields of 8.3, 6.5, and 4.0 t/ha 

in irrigated lowland, rainfed lowland, and upland systems, respectively, while rainfall 

boundaries indicate maximum attainable yields of 6.3 t/ha in rainfed lowlands and 

4.0 t/ha in uplands. 

3.3. Assessment of attainable yield using boundary curves 

Yield difference between attainable (radiation-limited) and actual yields were 3.4, 4.2, 

and 2.1 t/ha in irrigated lowland, rainfed lowland, and upland, respectively. In the case 

of rainfall, these differences were 3.9 in rainfed lowland and 2.5 t/ha in upland systems. 

Largest yield difference were observed for irrigated systems in Gagnoa, Côte d’Ivoire 

(4.6 t/ha), Afife, Ghana (4.2 t/ha), and Central River, The Gambia (4.1 t/ha); for rainfed 

lowland systems in Savelugu, Ghana (5.2 t/ha), Glazoué, Benin (5.1 t/ha), and Torma-

bum, Sierra Leone (4.9 t/ha); and for upland systems in Sikasso, Mali (2.5 t/ha) and 

Glazoué, Benin (2.3 t/ha). All rainfed sites with large yield gaps are located in the sub-

humid zone.  

3.4. Factors explaining yield variability 

Given the large differences in climate and soil attributes and agricultural practices on 

the one hand, and the large yield variability on the other, we exploited the observed 

on-farm variability by relating observed yields to climate and soil attributes and man-

agement factors. Random forest models using edaphic and climate attributes ex-

plained 56%, 12%, and 3% in yield variation in irrigated lowland, rainfed lowland, and 

rainfed upland systems, respectively. The four top-ranked edaphic–climatic variables 

explaining the observed yield variability are presented in Table 2.6 for the lowland pro-

duction systems. 

Upland systems are not shown as yield variation was not clearly attributable to either 

climatic or edaphic factors. Solar radiation and soil clay content were consistently key 

explanatory variables of yield variability in lowland systems. In addition, air humidity 

and maximum temperature were relevant variables in irrigated lowlands, while mini-

mum temperature and rainfall explained yield variability in rainfed lowlands. Effects of 

the top four variables on yield are shown in Table 2.7. High yield was associated with 

high solar radiation and maximum temperature in irrigated lowlands and high-rainfall 

and low minimum temperature in rainfed lowlands.  
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Differences in agricultural practices explained 22–36% of variation in yield. Weeding 

frequency was a common explanatory factor in all production systems. The splitting of 

the N application was most relevant in irrigated lowland systems, while variety choice 

was a key factor in both of the rainfed systems (Table 2.8).  

In irrigated rice, highest yields were associated with the number of splits of mineral N 

fertilizer application (yield gain of 1.4 t/ha), and with farmers using certified seeds, high 

weeding frequency, and leveling the fields (yield gains of 1.1 t/ha). 

In rainfed lowlands, the building of field bunds significantly increased rice grain yields 

from 1.6 to 2.9 t/ha. In upland rice, bird control provided yield gains of 0.2 t/ha (Table 

2.9). 

Table 2.6: Main edaphic and climatic variables generated by the random forest algorithm explaining rice 
yield variability in lowland production systems. 

Rank based on %IncMSEa Irrigated lowland Rainfed lowland 

1 Relative humidity Min. temperature 

2 Max. temperature Solar radiation 

3 Solar radiation Soil clay 

4 Soil clay Rainfall 

Mean of squared residuals 0.78 0.88 

% variance explained 56 12 

aRank 1 indicates higher % of increase in mean square error (%IncMSE) = high variable importance. 
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Figure 2.4: Boundary curves for rice yield response to solar radiation in West Africa. Symbols represent 
farmers’ yields per climatic zone and lines show production system boundary curves in irrigated lowland 
(a), rainfed lowland (b) and rainfed upland (c). 
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Figure 2.5: Boundary curves for rice yield response to rainfall in West Africa. Symbols represent farmers’ 
yields per climatic zone and lines represent production system boundary curves in rainfed lowland (a) and 
ranfed upland (b). 
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Table 2.7: Mean yield comparison for the top-ranked climate and soil attributes in lowland rice production 
systems. 

 Rice yield (t/ha)a 

Variable Irrigated lowland Rainfed lowland 

Solar radiation (MJ/m2): ≤2000; >2000 3.2a, 4.7b 2.0a, 2.0a 

Relative air humidity (%): ≤50; >50 ≤70; >70 4.9a, 5.5b, 3.6c  

Maximum temperature (°C): ≤35; >35 3.6a, 5.1b  

Minimum temperature (°C): ≤23; >23  2.2a, 1.8b 

Rainfall (mm): ≤600; >600  1.6a, 1.9b 

Soil clay content (%): ≤30; >30 4.7a, 4.2a 1.8a, 1.9a 

aMean values for each variable followed by a different letter for the same production system are statis-
tically different. 

 

Table 2.8: Most important soil and climate attributes and farmers’ agricultural practices generated by the 
random forest algorithm explaining rice yield variability in different production systems. 

Rank based on %IncMSEa Irrigated lowland Rainfed lowland Rainfed upland 

1 Seed source Variety  Variety 

2 Mineral N splits Weeding frequency  Weeding frequency  

3 Weeding frequency Field bunding Mineral N splits 

4 Land leveling Straw management Bird control 

Mean of squared residuals 1.51 1.01 0.47 

% variance explained 36 27 22 

aRank 1 indicates higher % of increase in mean square error (%IncMSE) = high variable importance. 

Table 2.9: Mean yield comparison for the top-ranked agricultural practices in three rice production sys-
tems. 

Variables Rice yield (t/ha)a 

 Irrigated lowland Rainfed lowland Rainfed upland 

Straw management: removed, returned  1.9a, 2.0a  

Field bunding: unbunded, bunded  1.6b, 2.9a  

Variety: local, improved  1.4b, 2.2a 1.2b, 1.6a 

Seed source: own, certified 3.7b, 4.8a   

Weeding frequency: ≤1, 2, 3 3.7a, 4.2b, 4.8c 1.7a, 2.2b, 2.3b 1.4a, 1.5a, 2.0b 

N applications split: 0, 1, ≥2 3.3a, 3.9b, 4.7c  1.4a, 1.3a, 1.8b 

Land leveling: not leveled, leveled 3.8b, 4.9a   

Bird: none, controlled   1.2b, 1.4a 

aMean values for each variable following by a different letter for the same production system are statis-
tically different. 
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4. Discussion 

This study assessed on-farm rice yields and their variability across three rice produc-

tion systems and three climatic zones of West Africa. The large observed variation in 

yield across and within climatic zones and production systems confirms previous re-

ports in the region, mostly dating back to the 1990s. These studies had shown a large 

range in yields between 0.2 and 9.0 t/ha in irrigated lowlands in four agro-ecological 

zones (Becker et al., 2003b), between 1.3 and 7.8 t/ha in irrigated lowlands of Benin 

(Tanaka et al., 2013), between 0.5 and 12.0 t/ha in irrigated lowlands of Senegal 

(Tanaka et al., 2015), between 0.2 and 6.5 t/ha in rainfed lowlands of Côte d’Ivoire 

(Becker and Johnson, 2001d), and between 0 and 6.0 t/ha in rainfed rice systems of 

Benin (Niang et al., under review). Comparing the average yields of the present and 

the previous studies (at least those conducted at the same locations) highlights that 

yields have hardly improved in the past 20 years. Yield appears to have stagnated at 

2 t/ha in the rainfed lowlands of Kumasi, Ghana (Ofori et al. (2005) and at 1.1 t/ha in 

the uplands of Man, Côte d’Ivoire (Becker and Johnson (2001a). They have even de-

clined from 3.2 to 2.6 t/ha in the irrigated lowlands of Gagnoa, Côte d’Ivoire (Becker et 

al. (2003b) and from 5.7 to 5.1 t/ha in Kouroumari, Mali (Wopereis et al., 1999b). As 

data were not collected in the same farmers’ fields or even in the same villages, and 

as we could not consider possible climatic effects, these 20-year trends must be inter-

preted with caution. 

Evaluating attainable yields and assessing yield responses to resource attributes by 

using boundary functions has previously been successfully applied to soil characteris-

tics (Shatar and McBratney, 2004), weed control and the presence of soil-borne pests 

and diseases (Wairegi et al., 2010), to water use and N fertilizer inputs (Tittonell and 

Giller, 2013), and to combinations of these factors (Casanova et al., 1999; Shatar and 

McBratney, 2004; Wairegi et al., 2010; van Ittersum et al., 2012; Affholder et al., 2013; 

Tittonell and Giller, 2013). In the present study, the application of this approach high-

lighted the importance of solar radiation for all the production systems and of rainfall 

for rainfed rice systems, and it revealed a large scope for increasing grain yields in 

irrigated and rainfed lowland production systems, especially those located in the sub-

humid zone. This confirms previous studies that showed large potential for increasing 

production in inland valleys of the Savannah zone (Rodenburg et al., 2014b). However, 
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the number of seasons for assessing between-year yield variations is limited in the 

present study and, particularly in the rainfed systems, unpredictable and variable rain-

fall could significantly affect yields as well as farmers’ decisions to invest in yield-in-

creasing technologies. Although we identified three priority sites (Glazoué in Benin, 

Savelugu in Ghana, and Tormabum in Sierra Leone) that have potential for raising 

yield in rainfed lowlands, there is an urgent need to assess the effect of climate varia-

bility on rice productivity in these sites. From results of climate risk assessment, differ-

ent types of interventions should be considered (van Oort et al., 2016). As the number 

of study sites in the humid zones was limited, further assessment in more and different 

sites is desirable to confirm the findings of this study. 

Our study indicates that the random forest approach appears to be a robust analytical 

tool for determining factors affecting variation in rice yield. Similar conclusions have 

been drawn previously from assessing variability in the yield of Ruditapes philip-

pinarum (Vincenzi et al., 2011), of the biomass of natural wetland vegetation (Mutanga 

et al., 2012), and also from a study on mineral prospectivity in the Philippines (Carranza 

and Laborte, 2015). Despite the large variation in most soil attributes in the present 

study, edaphic factors had little effect on yield. It is well known that the soil texture and 

its possible linkage with water- and nutrient-holding capacities affect rice productivity 

(Issaka et al., 1996; Becker and Johnson, 1999a; Buri et al., 1999; Becker and 

Johnson, 2001a; Tanaka et al., 2013; Tsujimoto et al., 2013). The apparently overriding 

role of climate attributes compared to edaphic characteristics on rice yields and their 

variability stands in contrast to numerous reports that blame low fertility and progres-

sive soil degradation for low crop productivity in Africa (Sanchez, 2002; Koning and 

Smalling, 2005). Whereas soil fertility-related problems may thus be of lesser rele-

vance than climate attributes and agricultural practices in the current situation, investi-

gating other soil attributes such as micronutrient deficiency and element toxicities (Na, 

Fe), and their linkage with yield deserves further study. The finding of positive relation-

ship between solar radiation and yield in irrigated systems, and between yields and 

minimum temperature (negative) and rainfall (positive) in rainfed lowland systems also 

confirm previous studies in Asia (Seshu and Cady, 1984; Islam and Morison, 1992; 

Peng et al., 2004; Inthavong et al., 2011). 

In this study, we did not consider the depth of the groundwater table in individual farm-

ers’ fields as supplement to rainfall in the boundary analysis of rainfed systems. It has 
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been reported that the depth is highly variable across and within the fields 

(Masiyandima et al., 2003; Worou et al., 2013). Consequently, observed high yields, 

particularly those in rainfed lowlands of drier sites, may have been related to shallow 

groundwater tables (Boling et al., 2007). In such high-yielding fields, farmers might 

have applied substantially more mineral fertilizer than in the strictly rainfed and water 

limited fields. Consequently, best farmers’ yields in rainfed lowlands most likely coin-

cided with a combination of good water availability and higher fertilizer application 

rates.  

Further efforts are needed to group and analyze farmers’ fields according to water 

availability or groundwater depth. This hints at a further limitation of considering only a 

single factor, ignoring possible factor interactions. Thus, larger gap between attainable 

yield and actual yield in rainfed lowland systems when rainfall is higher is likely to be 

attributable to low solar radiation in high-rainfall sites. Use of crop simulation models 

that consider various climate attributes (Bouman et al., 2001) is needed to improve the 

boundary function approach and will be presented in a subsequent paper. 

Some major contributions of agricultural practices to rice yield variation are observed 

across different production systems, whereas others are production system-specific. 

The importance of the number of N splits in irrigated lowland rice has been highlighted 

in previous studies (Becker and Johnson, 1999c; 2001d; Becker et al., 2003b) and 

appears still to be as valid and important today. The effect of leveling on yield in irri-

gated lowland rice, and the effect of weeding interventions irrespective of production 

systems confirm previous studies (Becker and Johnson, 2001d; Becker and Johnson, 

2001a; Ogwuike et al., 2014; Tanaka et al., 2015). However, as discussed by Ogwuike 

et al. (2014), the result in this study does not imply that farmers should spend more 

time weeding their fields, but there is a need to develop or introduce labor saving weed 

management strategies (Rodenburg et al., 2015).  

In this study, certified seed had positive impact on yield of irrigated lowland rice, 

whereas this effect was not shown clearly in other production systems, possibly be-

cause the percentage of famers who used certified seed was limited in those systems. 

Off-types are commonly observed in farmers’ fields in West Africa and have been con-

sidered to reduce yield (Diaz et al., 1998). Certified seed is likely to reduce off-types 

and consequently increase yield in this study. 

In rainfed lowlands, the importance of building field bunds remains a key concern 
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(Worou et al., 2013; Rodenburg et al., 2014b). The varietal choice is important for rain-

fed lowland and upland rice systems, but not in irrigated lowland systems, where im-

proved varieties are commonly grown (>90%). It is well known that improved varieties 

have shown good performance in rainfed systems (Sie et al., 2008; Rodenburg et al., 

2009; Saito and Futakuchi, 2009; Saito et al., 2012). In rainfed upland systems, bird 

control remains as relevant in explaining yields and variability as it was three decades 

ago (Van Dat, 1986). 

Given, on the one hand, the enormous technology progress in recent years (Fischer et 

al., 2009) and the large number of published studies advocating substantial yield gains 

through the adoption of new rice varieties (Adekambi et al., 2009; Yamano et al., 2015) 

or site-specifically adapted production strategies including bunding in rainfed lowland 

systems (Becker and Johnson, 2001d; Touré et al., 2009), and nutrient management 

options for irrigated lowland rice systems (Haefele et al., 2003; Saito et al., 2015a), and 

the apparently rather low productivity gains in the past 20 years on the other hand, 

further detailed studies to identify factors that influence the low uptake of technologies 

or innovations or their limited impact on productivity gains in the rice sector of West 

Africa are required. The present work provides the basis for identifying key production 

systems and guiding such studies. 

From the analysis of over 1300 farmers’ fields in diverse production settings of West 

Africa, we conclude that there is large scope for increasing yields in West Africa, es-

pecially in irrigated and rainfed lowland systems. Production system- and site-specific 

rice management strategies are likely to increase on-farm rice yields with largest po-

tential impact in the rainfed lowlands of the sub-humid zone. Although improving ac-

cess to inputs and their use efficiencies is essential for improving rice yield in low-

yielding sites, there is urgent need to have a better understanding of the reasons why 

some farmers do not use advanced practices or more inputs.  

 



 

 

 

Chapter 3 : Yield gaps and their variability in major rice production 
systems of West Africa 
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Abstract 

This chapter assessed yield gaps and their variability at field level, and identify factors 

affecting the variation in the yield gap due to farmers’ practices in representative rice 

production systems across climatic zones in West Africa. The yield gap is defined as 

the difference between potential yield in irrigated system or water limited yields in rain-

fed rice production systems, and farmer’s yield. Potential and water limited yields at 

optimum crop establishment date in given site and year and farmers’ actual crop es-

tablishment date were estimated using Oryza2000, while farmers’ yields were as-

sessed through surveys conducted in 824 farmers’ fields in 15 sites during the wet 

seasons 2012 to 2014. Random forest algorithm and multiple linear regressions were 

used to identify causes for yield gap. 

There was large variation in the difference between potential/water limited yields at 

optimum and actual crop establishment dates across locations and the range was be-

tween 0 and 3.9 t/ha. Yield gaps between potential/water limited yields at actual crop 

establishment dates and actual farmers’ yields ranged from 1.1 to 10.2 t/ha and from 

3.5 to 10.3 t/ha in irrigated and rainfed systems, respectively. Farmers’ yield was 27-

51% of potential yield at optimum sowing date in irrigated system, and 17-22% of water 

limited yield at optimum sowing date in rainfed systems. In irrigated system, 34% of 

the yield gap could be attributed to weeds, N fertilizer application rate and crop estab-

lishment methods. In rainfed systems, 30% of this gap was explained by type of rice 

variety, field hydrology and weed infestation at maturity stage. These results suggest 

that there is a large scope for increasing rice yield in this region, and barriers preventing 

farmers from adopting technologies including planting and weeding at right timing 

should be removed. 

 

Keywords: Crop simulation model / Oryza spp / random forest/ potential yield /water 
limited yield 
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1. Introduction 

The potential to increase rice (Oryza spp.) production in West Africa is high. Production 

systems comprise mainly irrigated lowlands, rainfed lowlands and uplands, with deep 

water and mangrove rice being of only minor importance (Balasubramanian et al., 

2007a). Rice is grown across agro-ecological zones (AEZ) that are differentiated by 

the length of growing period (LGP). The AEZs consist of the Sahel with an LGP of 65-

90 days, corresponding to arid and semi-arid zones, the dry Savannah with an LGP of 

90-180 days and the moist Savannah with an LGP of 180-270 days, corresponding to 

the sub-humid zone, and the Forest or with an LGP >270 days, corresponding to humid 

zone (Peel et al., 2007; FAO/IIASA, 2012). In this paper, we use the term “climatic 

zone” which comprises arid, semi-arid, sub-humid, and humid zones. Irrespective of 

climatic zones, irrigated rice is generally produced in bunded paddy fields with irrigation 

allowing for cultivating two crops per year. In all but the arid zone, rainfed lowland rice 

is grown on level to slightly sloping, unbunded or bunded fields in lower parts of the 

topo sequence in inland valleys (Touré et al., 2009). Upland rice is produced on level 

or sloping unbunded fields in the hilly regions within the undulating inland valley land-

scape with low groundwater tables. Such diverse growing conditions result in large 

differences in yields between systems (Becker and Johnson, 1999a; Becker and 

Johnson, 1999b) and climatic zones (Becker et al., 2003b), but also among farmers 

within a given system (Saito et al., 2013b). 

Climatic factors such as rainfall, solar radiation, and temperature change markedly 

among climatic zones with substantially higher solar radiation but also much larger 

temperature and humidity amplitudes in the arid than the humid zone (Windmeijer and 

Andriesse, 1993a). High solar radiation is generally associated with high yield, while 

extreme temperatures can cause heat or cold-induced spikelet sterility, resulting in low 

yield (van Oort et al., 2014). Rivers are the main water source for growing irrigated rice 

in the arid and semi-arid zones, while rainfall supplies water for upland and rainfed 

lowland cultivation in most of the sub-humid and humid zone. With opportunities for an 

expansion of the cultivated area being limited, the rapidly-growing rice demand result-

ing from demographic growth and changing consumer preferences, must be largely 

met by productivity gains in addition. Evaluating the capacities of different production 

systems will allow estimating the overall rice production potential of the region. The 
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yield gap is defined as the difference between the (simulated) potential and farmers’ 

actual yields, whereby the potential is usually estimated using crop growth models. 

Potential production constitutes the crop yield under conditions of sufficient supply of 

water and nutrients, optimum crop management, and in the absence of weeds, pest 

and disease. It is determined largely by absorbed photo synthetically active radiation 

and the crop phenological development (Bindraban et al., 2000). Water limited yield is 

the potential yield if water supply falls below a threshold which decreases crop growth, 

and is determined by temperature, rainfall, ground water table and soil physical char-

acteristics. Potential or water limited yields are determined by simulation models with 

plausible and agronomic assumptions (Evans and Fischer, 1999b). Regions with fa-

vorable climate (high solar radiation, low night temperatures and relative humidity) and 

with possibilities for supplying irrigation water show the highest potential. While poten-

tial and water limited yields are largely determined by the production environment (cli-

matic attributes, irrigation infrastructure, and season/crops establishment date) and 

can rarely be effectively counteracted by individual farmers, the efficiency of input and 

resource use is related to farmers’ individual production strategies. These are highly 

variable and may be changed through technological innovation, extension, or capacity 

strengthening. Consequently, farmers’ yields are often highly variable between sites 

and productions systems, resulting not only in very large but also in highly variable 

yield gaps. Knowledge on the extent and determinants of yield gaps can guide the 

envisioned sustainable intensification (Rajapakse, 2003) and the targeting of interven-

tion strategies. 

The yield gap analysis aims to understand yield-limiting and -reducing factors and to 

estimate main determinants responsible for yield variability. In irrigated systems of 

semi-arid West Africa, Wopereis et al. (1999b) reported a rice yield gap of 8.7 t/ha. In 

the irrigated system of the humid forest zone of West Africa, average farmers ‘ yields 

ranged between 44 and 57% of the potential yield estimated from crop models (Becker 

and Johnson, 1999b). In irrigated lowland systems in four agro-ecolological zones, 

Becker et al. (2003b) reported a yield gap range between 3.2 and 5.9 t/ha. Large yield 

variability ranging between 0.2 and 6.5 t/ha was reported from rainfed lowland system 

in three AEZ (Becker and Johnson, 2001d). These prevailing large yield gap and yield 

variability could be explained primarily by age of seedlings at transplanting, the time-

less of weeding operations, and water control measures. Finally, in the arid zone of 
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West Africa where extreme temperature can induce spikelet sterility, choice of optimum 

crop establishment dates was crucial to minimize yield losses and reduce the yield gap 

(Poussin et al., 2003). These reports illustrate that yield gaps differ by production sys-

tem, and that climatic attributes and crop management practices determine their ex-

tent. So far, yield gaps for rice in West Africa have rarely been decomposed into climate 

and management factors. Studies that did consider different climate zones (van 

Ittersum et al., 2012; van Oort et al., 2015c) did not look into management causes. 

Studies that focused on management causes (Becker and Johnson, 1999c; Wopereis 

et al., 1999b) did that only in one climate zone. 

We therefore see the need for site- and system-specifically differentiated yield gap 

analyses, for a separation of exogenously-driven (climate, water availability due to de-

viation from optimum sowing date) and farm endogenous (agricultural practices) yield 

gaps, and for the inclusion of yield gap variability in studies geared towards technology 

targeting. The present paper (i) assesses yield gaps in major rice production systems 

(irrigated and rainfed) across agro-climatic zones (semi-arid, sub-humid and humid) in 

West Africa, (ii) estimates the share and the variability of the yield gap caused by de-

viating from optimum sowing date and (iii) identify key factors affecting the yield gap in 

each production system, and their relative contribution to yield gap and yield gap vari-

ability. 

2. Material and Methods 

Data from farmers’ fields’ survey were combined with model simulations to estimate 

the yield potential and to quantify farmers’ yield gaps and their determining factors. 

2.1. Field data collection 

Farmers’ fields’ survey was conducted between 2012 and 2014 with 824 farmers from 

15 sites/rice production hubs, situated in 8 different countries in West Africa with 2 

years of survey data per site. Sites were reduced from 22 (Table 2.1) to 15 sites with 

sites with one-year data excluded from the analysis. Each selected field was monitored 

during the rainy season using a 200 m2 survey area within each farmer’s field. In each 

survey field, three subplots of 12 m2 were randomly delimited at the beginning of the 

season for observations, visual scoring, and yield measurement. Farmers were ques-
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tioned regarding their management practices, field observations assessed soil attrib-

utes and the extent of yield-reducing factors (visual assessment of weeds, water sta-

tus, lodging, bird damage), and grain yields were measured at harvest (Table 3.1). 

Farmers’ practices during the cropping season were recorded, including methods of 

land preparation, rice variety used, source of rice seeds, crop establishment methods, 

crop establishment dates, fertilizer amount and timing, weeding frequency and method, 

and bird control. Field observations were carried out at tillering, flowering and maturity 

stages of the crop. They included scoring of land leveling, weed infestation (above and 

below rice canopy), soil water hydrology (ponded water, wet or dry soil), percentage of 

plants lodging, and bird damage at maturity. At harvest, grain yield was collected man-

ually from the three harvest areas, air-dried, averaged and expressed at 14% grain 

moisture. Farmers’ practices and field observations were reclassified into category 

groups. Variety and seed sources were classified into local and genetically-improved 

rice varieties and into seeds obtained from own stock or purchased certified seeds. 

Weeding methods included the use of herbicide or other means of weed control. Straw 

was either “returned” (surface mulch, in situ animal feeding or incorporation) or “re-

moved” (manual removal or burning). Weed control measures or fertilizer applications 

were classified into categories based on amounts of product applied or the frequency 

of application (Table 3.1). Upland sites were combined with rainfed lowlands to form 

the rainfed system as most upland fields were situated in hydromorphic zones, expos-

ing attributes typically associated with lowland conditions (i.e. mottling of the soil). 

2.2. Weather data 

Climate data were collected by automated weather station in each site/rice production 

hub, including solar radiation, rainfall, and minimum / maximum temperatures. When 

ground station data time series were incomplete, weather data were extracted from the 

online GSOD database (Climate Prediction Center, 1987) or the POWER database 

(NASA, 2016) and bias-corrected for temperature (T) using the method described by 

Van Wart et al. (2015) and van Oort et al. (2015a). This method estimates parameters 

b0 and b1 using dates with available temperature from a regression equation: 
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Table 3.1: Variables collected in rice farmers’ fields in West Africa 

Variable de-

scription 

Type Data collec-

tion  

Parameter  

Agricultural 

practices 

   

Land prepara-

tion 

Straw management before 

rice cultivation 

Interview 1=returned to the soil, 2= removed from 

the field 

 Tillage method Interview 1= mechanical, 2= manual 

 Land leveling Observation 1= leveled, 2 = not leveled 

 Bunding  Observation  1 = bunded, 2 = not bunded 

Plant material 

and  

   

establishment Variety  Interview 1= improved, 2 = local 

 Sources of seeds  Interview 1= certified, 2 = uncertified  

 Crop establishment 

method 

Interview  1= direct seeding, 2= transplanting at 

21 days after seeding (DAS), 3 = trans-

planting at 22-30 DAS, 4 = transplant-

ing at > 30 DAS  

Fertility man-

agement 

   

 Application rates of nitro-

gen (N), phosphorus (P) 

and potassium (K) fertiliz-

ers  

Interview kg/ha  

 Frequency of fertilizer ap-

plication 

Interview 

 

1 = none, 2= once, 3 = equal to or more 

than twice 

Weed and pest 

control 

   

 Herbicide use for weeding Interview 1 = yes, 2 = no 

 Weeding frequency Interview 1= none or once, 2 = twice, 3 = equal 

or more than three times  

 Bird control  Interview Scaring/nets, or none 

Field and crop 

status 

   

 Field hydrology at tillering, 

around flowering and at 

maturity 

Field obser-

vation 

1 = ponded water, 2= wet soil, 3 = dry 

soil 

 Weed above and below 

rice at tillering, around 

flowering and at maturity 

Field obser-

vation 

0 = no weed, 1 = 1-10%, 2 = 11-30%, 3 

= more than 30 %  

 Bird damage at maturity Field obser-

vation 

0 = no damage, 1= less than or equal 

to 30% damage, 2 = more than 30% 

damage 

 Lodging at maturity Field obser-

vation 

0 = no lodging, 1= 1-10%, 2 = 11-30%, 

3 = 31-60%, 4 = > 60% 
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T (station) = b0 + b1*T (POWER)       

For dates with missing station data, the temperatures (Tmin, Tmax and Tdew) were esti-

mated from POWER, using the estimated b0 and b1 values for bias correction: 

T (station missing) = b0 + b1*T (POWER)       

2.3. Model calibration and validation 

The rice crop growth model ORYZA2000 (Bouman et al., 2001) was used to simulate 

potential yields at optimum sowing date and individually for each farmer’s crop estab-

lishment date to calculate reference yields and estimate yield gaps. Model equations 

were modified based on simulations for irrigated rice in the semi-arid zone of Senegal 

(van Oort et al., 2015a) to better estimate cold or heat sterility, leaf senescence and 

early leaf growth. Full details on the model version used (ORYZA2000v2n13s14), can 

be found in van Oort et al. (2015a). Parameters for phenological development rates 

and base temperature for early leaf growth were calibrated per site. We applied a base 

temperature for development (TBD) of 14°C and an optimum temperature for develop-

ment (TOD) of 31°C, assuming that development rates remain optimal above TOD 

(van Oort et al. 2011). 

We further assumed that the rice varieties were non-photoperiod sensitive, allowing to 

apply the same development rate for the basic vegetative and the photoperiod sensi-

tive phases. For each site, development rates were manually calibrated for the first 

year of observations in such a way that for a given crop establishment period for wet 

season rice, the simulated crop growth duration was similar to the duration recorded 

from field surveys. Only development rate parameters development rate at initial stage 

(DVRI) (for the basic vegetative phase) and development rate at juvenile stage (DVRJ) 

(for the photoperiod sensitive phase) were calibrated (Table 3.3) as they are reportedly 

most variable among rice varieties (Vergara and Chang, 1985). For the phase from 

panicle initiation to flowering (DVRP) and flowering to maturity (DVRR) fixed parame-

ters were used (Table 3.2). 
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Table 3.2: Common input parameters for all sites for model calibration of the ORYZA2000 crop growth 
model 

Parameter Value Unit Description 

TBD 14 °C Base temperature for phenological development1 

TOD 31 °C Optimum temperature for phenological development1 

TMD 999 °C Maximum temperature for development1 

RGRLMX 0.0085 °C day-1 Maximum relative growth rate of leaf area1  

RGRLMN 0.0040 °C day-1 Minimum relative growth rate of leaf area1 

DVRP 0.016667  day-1 Development rate in panicle development2 

DVRR 0.045455  day-1 Development rate in reproductive phase2 

1Source : (van Oort et al., 2015a) ; 2Source: (van Oort et al., 2011). The development stage at panicle 
initiation is 0.65, development stage at flowering is 1.0, therefore the minimum duration for this phase 
(at continuously optimal temperatures) is (1-0.65)/0.016667 = 21 days and duration will be longer at sub-
optimal temperatures. Duration from flowering to maturity is from development stage 1 to 2. Minimum 
duration is therefore (2-1)/ 0.045455 = 22 days 

The value of the base temperature for leaf growth (TBLV) was set a default value of 

14°C. In cases when simulated maximal leaf area index (LAIMAX) was <2, TBLV was 

set back to the ORYZA2000 default value of 8°C to increase simulated LAI and yield 

(Table 3.3). Data from the second year were used for validating simulated crop growth 

durations and yields in the first year. Only sites with complete weather data during the 

survey period were used in the simulations and calibrated parameters for each site / 

rice production hub are reported in Table 3.3. Reported data refer only to the most 

popular variety used at each site. Simulating water limited yield for each farmer’s field 

in the rainfed systems required soil water attributes that were estimated using soil tex-

ture and soil organic carbon content using the model proposed by Saxton et al. (1986). 

Derived parameters comprised bulk density, hydraulic conductivity, and water content 

at saturation, field capacity and wilting point. The groundwater depth was required to 

simulate capillary rise in cases of rainfall deficit was not measured in farmers’ fields. In 

upland systems sites, the groundwater table was set to a high value (1000 cm) with no 

possibility for capillary rise whereas in rainfed lowland it was set to a constant average 

value (between 10 and 40 cm) for each site based on information from national part-

ners cross checked using model simulations and actual farmers’ yields. 
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2.4. Reference yields and yield gaps 

Different yields were measured and simulated in this study, from which we calculated 

the yield gaps: 

• Ypot = potential yield simulated using optimum crop establishment date (irri-

gated) 

• Yfpot = potential yield simulated using farmer’s crop establishment date (irri-

gated) 

• Ywl = water limited yield simulated using optimum crop establishment date (rain-

fed) 

• Yfwl = water limited yield simulated using farmer’s crop establishment date (rain-

fed) 

• Yaf = farmers’ actual yield 

For Ypot and Ywl, we determined the optimal crop establishment date by simulating for 

a period of 100-300 day at 5-day increments to derive the date that provides the highest 

grain yield for a given site / rice production hub and year. Average soil data across 

fields in each site were used for determining optimal crop establishment date for rainfed 

systems. 

Above reference yields were used to estimate different yield gaps as following: 

• YG1 = Ypot - Yaf (irrigated) 

• YG1 = Ywl – Yaf (rainfed) 

• YG2 = Yfpot - Yaf = YG1 – (Ypot - Yfpot) (irrigated) 

• YG2 = Yfwl - Yaf =YG1 – (Ywl – Yfwl) (rainfed) 

(Ypot – Yfpot) and (Ywl – Yfwl) are differences in potential yield or water limited using two 

crop establishment dates (optimum and actual dates). In irrigated systems, sub-opti-

mum crop establishment time could cause spikelet sterility induced by heat or cold 

stress at critical growth stage (Dingkuhn et al., 1995). In rainfed systems, it could result 

in water stress at any growth stage (Bouman et al., 2001). YG2 is caused by all the 

factors (including pests and diseases) except for crop establishment date. The con-

ceptualization of the determination of the different yield gaps and the difference in po-

tential yield is presented in across the 3 climatic zones (Figure 3.1). 
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 Table 3.3: List of selected sites across climatic zones and their properties: name of most popular vari-
ety used, input parameters for the popular variety at each site, and mean simulated and observed crop 
growth duration of rice. 

 

Country 

 

Site Climatic 

zone 

Number 

farmers 

 

Variety name 

 

TBLV1 

 

DVRJ = 

DVRI2 

 

Average crop 

duration3 

Sim. Obs. 

Irrigated systems 

Benin Malanville 
Semi-

arid 
79 IR841 8 0.00935 129 131 

Côte 

d’Ivoire 
Gagnoa Humid 58 Bouaké-189 14 0.01482 117 122 

Ghana Navrongo 
Sub-hu-

mid 
32 Gbewaah 14 0.00798 154 156 

Mali Kouroumari 
Semi-

arid 
42 Kogoni 91-1 8 0.01140 116 123 

Niger Tillabery 
Semi-

arid 
65 Gambiaka 14 0.00741 147 153 

Gambia 
Central 

River 

Semi-

arid 
70 Fourtinoo 14 0.01482 112 119 

Togo Maritime 
Sub-hu-

mid 
39 IR841 14 0.01482 114 123 

Rainfed systems 

Benin Glazoué 
Sub-hu-

mid 
34 Gambiaka 14 0.01368 132 159 

Côte 

d’Ivoire 
Man Humid 73 Demamba 14 0.01140 156 162 

Ghana Kumasi Humid 34 Lapez 8 0.01938 112 127 

Ghana Savelugu 
Sub-hu-

mid 
79 Digang 14 0.01140 139 140 

Mali Sikasso 
Semi-

arid 
88 Sogodogochi 14 0.01596 126 128 

Nigeria Nasarawa 
Sub-hu-

mid 
52 Faro 44 14 0.01710 120 120 

Togo Plateaux 
Sub-hu-

mid 
48 IR841 14 0.01596 122 130 

Gambia West Coast 
Semi-

arid 
70 NERICA 8 0.02166 99 97 

1 TBLV (°C): Base temperature for juvenile leaf area growth 
1,2 the assumption was made that the varieties were not photoperiod sensitive, just one development 
rate parameter was assumed for the vegetative phase, DVRJ (day-1): development rate in juvenile 
phase, DVRI (day-1) was the same as development rate in photoperiod sensitive phase. The develop-
ment stage at emergence and panicle initiation is 0 and 0.65, therefore the minimum duration for this 
phase (at continuously optimal temperatures) is (0.65-0)/DVR. For example, the minimum duration for 
this phase for the common variety in Tillabery is (0.65-0)/ 0.007413 = 87 days and duration will be longer 
at sub-optimal temperatures. 
3 Simulated (Sim.) is the average simulated duration from emergence to physiological maturity averaged 
over farmers’ crop establishment dates in 2 years. Observed (Obs.) is the average recorded duration 
from crop establishment (in the nursery in case of transplanting) to harvesting, averaged over the same 
crop establishment dates as simulated ones. 
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Figure 3.1 : A. Conceptual presentation for determining different yield gaps: 1. YG1 gap between simu-

lated optimum potential (or water limited) and farmers’ actual yield; 2. Potential yield difference is related 

to the deviation from the optimal crop establishment date or difference between simulated potential (or 

water limited) yield at optimum sowing date and farmers’ potential or water limited yield at farmers’ crop 

establishment dates; 3. YG2 gap is related to all other factors than crop establishment date or difference 

between the simulated yield (potential or water limited) at actual crop establishment date and farmers’ 

yields. adapted after Lobell et al. (2009b). B. Difference in potential yield range in the 2 production systems  

The data may also contain variables that are highly correlated between them as a result 
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of instable model. In the presence of correlated variables, the mean squared error does 

not increase because of the presence of the other variable that carries the same infor-

mation. The value of the prediction error after permutation is close to the value of the 

prediction error without permutation with small importance. First, we removed practices 

when their consequences on the field were assessed or measured with field observa-

tions. For example, bunding and land leveling were removed because water status was 

measured. Weeding frequency and herbicide use were subsequently removed from 

the model for weed scores and bird control for bird damage. In irrigated system water 

status was removed from the variables because measured water score was at least 

wet in more than 95% of the cases. To remove the effect of other irrelevant and corre-

lated variables from the model we used the technique of Recursive Feature Elimination 

(Guyon and Elisseeff, 2003). This requires eliminating the least relevant variable in the 

RF classification and to repeat the classification procedure until a stable model was 

obtained. Between two correlated variables the most important variable had higher im-

portance and the other variable tended to be the least important variable and can be 

removed from the model. 

3. Results 

The following section presents the results of the model calibration the distribution of 

yield gaps and their variability by production systems, climatic zones and sites, and the 

relative importance of management factors in explaining the yield gap YG2. 

3.1. Calibration and validation results 

Simulated crop growth durations in different production systems across climatic zones 

for different rice varieties have been plotted against the observed crop durations in the 

first observation year (calibration) and in the second year (validation) which shows a 

reasonable to good accuracy of the simulation (Figure 3.2). 

3.2. Relationship between actual and simulated yields 

In addition, simulated potential (irrigated systems) and water limited yields (rainfed sys-

tems) were plotted against actual farmers’ yields across production systems and cli-

matic zones (Figure 3.3). 
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Figure 3.2 : Crop growth duration of farmers’ varieties, 1. Calibration in irrigated R2 (semi-arid = 0.20, sub-

humid = 0.37 and humid = 0.10), and rainfed R2 (semi-arid, = 0.68, sub-humid = 0.49 and humid = 0.53). 

2. Validation irrigated R2 (semi-arid = 0.75, sub- humid = 0.42 and humid = 0.10) and rainfed R2 (semi-

arid = 0.51, sub-humid = 0.39 and humid = 0.41). 
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Figure 3.3 : Relation between actual farmers’ yields and potential yields in irrigated (left) and water limited 

yields in rainfed system (right) at farmers’ sowing dates at each production system across climatic zones. 

The graphs show the range of the yield gaps and indicate large difference between the 
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irrigated and the rainfed production systems with yields in irrigated system being closer 

to the 1:1 line than in rainfed systems and similar trends being apparent for semi-arid, 

humid and sub-humid climatic zones. Generally, the scatter underlines the large vari-

ability in grain yields, ranging from 0.5 to 8 t/ha in irrigated and from 0.1 to 6 t/ha in 

rainfed production systems. Slope of regression lines in irrigated systems indicate that 

actual yields are 42% below potential in the semi-arid zone (1-0.58 t/ha), 54% in the 

sub-humid zone (1-0.46 t/ha) and 71% in the humid zone (1-0.29 t/ha). In rainfed sys-

tems, actual yields are 77% below potential in semi-arid and sub-humid and 81% in 

humid zones (Figure 3.4). Hence, most farmers operate far from the potential and the 

gaps due to poor management practices and to unaccounted yield-reducing factors 

being very large. 

3.3.  Extent and variability of yield gaps across zones and systems 

The different rice yield gaps show a large variability in all systems with a range of po-

tential differences due to deviation from optimal sowing dates (YG1) between 1.1 and 

10.2 t/ha in irrigated system and between 3.5 and 10.3 t/ha in rainfed system (Figure 

3.1). The range of the difference in potential yield was more important in rainfed sys-

tems (0-6.9 t/ha) than in irrigated systems (0-3.9 t/ha). The difference in potential yield 

due to the deviation from optimum sowing date was relatively more important in semi-

arid zone and in humid zone in irrigated and rainfed systems respectively. Similarly, it 

was lower in humid zone and in semi-arid zone (Figure 3.1 B). In irrigated systems, 

YG1, and YG2 differed significantly between climatic zones. YG2 was higher in humid 

zone and lower in semi-arid zone. In rainfed systems, YG1 was different between zones 

with higher mean values recorded in humid zone and lower mean values in semi-arid 

zone. However, similar values were recorded for YG2 between climatic zones. 

In overall, average yield was 59, 49 and 29 % of the farmers’ potential yield in irrigated 

system and 51, 44 and 27 % of the optimum potential yield. Similarly, it was 27, 24 and 

22 % of the farmers’ water limited yield and 22, 20 and 17 % of the optimum water 

limited yield in rainfed system (Table 3.4).  
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Figure 3.4: Range of the yield gaps in 2 production systems across 3 climatic zones (YG1 and YG2)  
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Table 3.4: Rice yields and yield gaps at each production system across agro-climatic zones 

 Production systems 

 Irrigated  Rainfed 

 Semi-arid Sub-humid Humid  Semi-arid Sub-humid Humid 

 Farmer’s yield (% of potential yield) 

Farmers’ sowing date 59 49 29  27 24 22 

Optimum sowing date 51 44 27  22 20 17 

 Yield gaps (t/ha)a 

YG1 4.6a 5.3b 6.0c  6.6a 7.2b 7.6c 

YG2 3.4a 4.3b 5.5c  5.4a 5.8a 5.8a 

a Yield gaps are compared horizontally between AEZ for the same production system. Yield gaps fol-
lowing with a different letter are significantly different at p<0.05 

In irrigated systems, highest yield gaps were recorded in Navrongo in Ghana, Gagnoa 

in Côte d’Ivoire and Kouroumari in Mali between 5.7-6.4 t/ha for YG1 and between 4-

5.9 t/ha for YG2. Similarly, highest values in rainfed system were between 6.7-7.9 t/ha 

for YG1 and were observed in Kumasi in Ghana, Glazoué in Benin, Sikasso in Mali, 

Savelugu in Ghana and Man in Côte d’Ivoire. Highest YG2 values were between 5.7-

6.7 t/ha and were recorded in the same sites as YG1 except for Kumasi which recorded 

lowest YG2 (Table 3.5). In irrigated system, the CV was between 18-34 % and between 

21-50 % for YG1 and YG2 respectively and between 8-29 % and 22-48 % in rainfed 

system. 

3.4. The role of management factors in the yield gap YG2 

The most important yield predictors resulted from the RF classification were specific to 

each production system. The management factors explained 41 % and 32 % of the 

variance of YG2 in irrigated and rainfed systems respectively. 

In irrigated system, N application rate, weed score above and below rice canopy at 

maturity stage, weed score above rice canopy at tillering stage, N application splits and 

crop establishment method were classified as the most important variables explaining 

the yield gap (YG2). In rainfed system these factors were variety choice, weed score 

above at maturity stage, weed below at flowering stage, straw management, field hy-

drology at flowering stage and N application splits (Table 3.6). 
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Table 3.5: Yield gaps and their variability at site level for each production system. 

Sites YG1  YG2 

 Mean (t/ha) CV (%)  Mean (t/ha) CV (%) 

 Irrigated systems 

Central River 4.4 21  3.9 30 

Gagnoa 6.0 16  5.5 21 

Kouroumari 5.7 27  4.0 50 

Malanville 4.0 34  2.9 46 

Navrongo 6.4 22  5.9 22 

Maritime 4.3 27  3.1 36 

Tillabery 5.0 18  3.0 37 

 Rainfed systems 

Glazoué 7.9 17  6.7 40 

Kumasi 6.7 16  4.6 31 

Man 8.1 8  6.7 25 

Nasarawa 6.3 20  6.0 22 

Plateaux 6.3 15  5.0 27 

Savelugu 8.1 10  5.7 35 

Sikasso 7.0 29  5.7 48 

West Coast 6.0 16  5.2 31 

In Table 3.7 we investigated the effects of these variables on the yield gap YG2. In 

irrigated system transplanting as crop establishment method reduced yield gap by 0.6 

t/ha compared to direct seeding. The percentage of weed invasion above canopy at 

tillering and maturity stages between 1 and 10% increased the yield gap by 0.8 and 

0.5 t/ha while it was 1.2 and 2.3 t/ha increase when weed invasion at maturity stage 

was between 10 and 30% and more than 30% respectively. N application rate de-

creased yield gap by 5 kg/ha for each kg N applied. In rainfed system as it was in 

irrigated system weed above canopy at maturity have significant role on the increase 

of yield gap. It was 0.7, 0.9 and 1.9 t/ha decrease when weed invasion was between 

1-10%, 10-30% and more than 30% respectively. In addition, the use of local variety 

increased the yield gap by 1.5 t/ha whereas an average field hydrology near dry con-

dition increased the yield gap by 1.1 t/ha. 
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Table 3.6: Main management factors generated by the RF algorithm explaining rice yield gap (YG2) vari-

ability 

Rank based on 

%IncMSEa 

Irrigated system Rainfed system 

1 N application rate Variety 

2 Weed score above canopy at ma-

turity 

Weed score above canopy at ma-

turity 

3 Weed score above canopy at tiller-

ing 

Weed score below canopy at flow-

ering 

4 N application splits straw management 

5 Weed score below canopy at ma-

turity 

field hydrology at flowering stage 

6 Crop establishment method N application splits 

Mean of squared residu-

als 

1.6 2.7 

% variance explained 41 32 

a Rank 1 indicates higher % of increase in mean square error (%IncMSE) = high variable importance. 

4. Discussion 

Rice yield gaps were quantified in the two main production systems (irrigated and rain-

fed) and three agro-climatic zones (semi-arid, sub-humid and humid) in West Africa 

and the main causes were investigated. Farmers’ yield gaps were variable in all sys-

tems with an average of 5.3 and 4.4 t/ha in irrigated system and 7.1 and 5.7 t/ha in 

rainfed system for YG1 and YG2 respectively. The results for irrigated systems are con-

sistent with the range and average of yield gaps measured in the semi-arid and sub-

humid zone (Wopereis et al., 1999b) and in the humid zone (Becker et al., 2003b). In 

rainfed system the significant difference in farmers’ yield gap (YG1) between zones 

was due to the difference in potential yield caused by the deviation from optimum crop 

establishment date. YG2 showed no significant difference between climatic zones. On 

average, total yield gap represented 62% and 80% of the yield potential in the irrigated 

and rainfed systems respectively. 
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Table 3.7: Parameter coefficients estimates of the prediction of yield gap (YG2) in irrigated and rainfed 

system of West Africa 

Variables Irrigated system Rainfed system 
 

Coefficients estimate 

Intercept  4.453*** 4.236*** 

Crop establishment method: transplanting -0.619*  

Weed score above canopy at tillering: 1  0.788**  

Weed score above canopy at maturity: 1  0.449* 0.718** 

Weed score above canopy at maturity: 2  1.242** 0.935* 

Weed score above canopy at maturity: 3  2.265*** 1.873*** 

N application rate -0.005*  

Field hydrology at flowering stage: 3  1.064* 

Variety: local  1.447*** 

R2 0.34 0.30 

Coefficients are significant at *P≤0.05, **P≤0.01 and ***P≤0.001 

The management factors that were important in explaining the yield gap YG2 differed 

in some extent between production systems. This is an important and useful finding, 

because it tells us that recommendations to close the yield gap without a clear identi-

fication of the most important factors affecting the gap will be less effective. 

In the rainfed systems the most effective ways to narrow the yield gap would be to 

encourage the dissemination of well improved varieties, promote bunding for water 

control, and to carry out more weeding frequency. These same interventions would 

probably be less useful in the irrigated zones, where priority should be given to pro-

moting fertilizer application mainly nitrogen, weeding frequency and transplanting as 

crop establishment method. The results of this study showed the difference in potential 

yield due to deviating from the optimum crop establishment date. Farmers have gen-

erally less or no control on the crop establishment date mainly due to socio-economic 

factors eg: availability of inputs (seeds, fertilizers), labor and equipment for land prep-
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aration. However, this difference in potential yield was in many cases marginal com-

pared to the yield gap YG2 which represented the largest part of the total farmer’s yield 

gap (YG1) (>80%). 

In both system weed infestation above rice canopy at maturity stage increased signifi-

cantly rice yield gap. The separation of the effects of weed infestation at different 

stages of rice growth was rarely studied and deserve further investigation. From previ-

ous studies, weed infestation in rice fields was reported to negatively affect yield in 

West Africa (Johnson et al., 2004; Rodenburg et al., 2014a). In a recent study, Ihsan 

et al. (2014) has observed drastic reduction of the number of tillers, grain per panicle 

and 1000-grain weight attributed to weeds. Weeds compete with rice for light (above 

rice canopy), water and nutrients (above and below rice canopy), specially nitrogen 

(Becker and Johnson, 2001a). Singh et al. (2008) has observed no yield increase when 

nitrogen fertilizer was applied in the presence of weeds. Behera and Jena (1998) have 

observed increased yield by applying herbicide compared to other weed control. Herb-

icide use has been reported to be effective and labor saving in weed control but their 

relative high cost limit their use in low input systems by resource-poor farmer’s (Kremer 

and Lock, 1993; Rodenburg et al., 2015). 

The importance of N rate in the irrigated system of this study has been reported in 

previous study (Becker et al., 2003b) and is still important as before in explaining the 

variability of rice yield gap among farmers. In this study we observed a decrease in the 

yield gap in irrigated system attributed to transplanting compared to direct seeding. 

This finding agrees with Kim et al. (1992) who reported yield losses due to direct seed-

ing which caused weed growth biomass and promote growth of a large diversity of 

weed species. However, in many cases, despite of the relative yield decrease in direct 

seeding method, it has shown to produce higher income to farmers than transplanting 

as the result of saving in labor (Guang et al., 2005). According to Awan et al. (2015), 

farmers in the semi-arid zone of Pakistan prefer direct seeding to transplanting be-

cause of reduced labor, and less arduous work. In rainfed system, local variety was 

associated with increased yield gap compared to improved varieties. It has been re-

ported a yield increase of 39.7 % in a similar study in Nigeria attributed to the use of 

improved varieties (Saka and Lawal, 2009). In addition, Rodenburg et al. (2009) has 

shown superior weed competitiveness attributed to improved varieties which is an ad-

vantage to achieve higher yield. In a recent study in the rainfed upland system in West 
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Africa, Saito (2016) has reported increased yield with improved varieties compared to 

farmers’ local varieties as a result of greater biomass accumulation, highest harvest 

index and better nutrient use efficiency. Moreover it was also reported weed-suppres-

sive traits for some interspecific improved varieties (Touré et al., 2011; Saito and 

Futakuchi, 2014) which can help reduce weed biomass decreasing the yield gap. Av-

erage field water status was recorded during vegetative stage (tillering) and reproduc-

tive stage (flowering and maturity). In rainfed system, the regression model (Table 3.7) 

showed increasing yield gap by 1.1 t/ha when soil was dry at flowering. This result 

agrees with observed increasing yield with increasing water availability in an experi-

ment in West Africa in a genotypic adaptation of varieties to field hydrology (Saito et 

al., 2010). Many factors that are known to reduce yield gaps did not show significant 

importance in this study. For example, in irrigated system variety choice did not show 

importance in yield gap reduction probably due to the fact that 94% of the farmers used 

improved varieties. 

The analysis of yield gaps at field level, allowed a comparative understanding of their 

magnitude and the factors affecting them in the different production systems across 

climatic zones. This study has identified the most important factors for each production 

system and their relative importance for intervention prioritization. From the results of 

this study, farmer participatory demonstration trials need to be implemented at each 

site with a combination of GAPs to check how much yield gap can be further reduced. 
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Abstract 

Rice is mainly grown under rainfed conditions in West Africa. Unpredictable and varia-

ble rainfall, poor soil quality, and sub-optimal crop management practices are the main 

determinants of low productivity. We assessed the effects of soil water availability and 

fertilizer application, and their interaction on the yield of rainfed rice in Glazoué, De-

partment of Zou-Collines, central Benin between 2010 and 2013. On-farm fertilizer 

management trials and field surveys were conducted in 13 to 39 farmers’ fields per 

year. Field water conditions were visually assessed three times per week during the 

rice-growing season and flood and drought indices were calculated on the basis of 

number of days with ponded water and dry surface soil relative to the total number of 

days for the vegetative, the reproductive and whole rice-growing period. Variations in 

flood and drought indices were related to the sand content of the soil. While nitrogen 

was the most limiting nutrient, average response to N fertilizer application was low with 

an agronomic N use efficiency of only 7–9 kg grain per kg of N applied. Year-to-year 

variation in rainfall and spatial variation in field water status affected both rice yield and 

response to N fertilizer. Some 47% of the observed yield variation was explained by 

field water status and the amounts of N fertilizer applied, with rice response to N ferti-

lizer being less when water was limited. We conclude that the prevailing blanket ferti-

lizer recommendations are unlikely to contribute to yield increases in rainfed systems 

of West Africa. There is a need for field-specific recommendations that consider soil 

texture and the spatial–temporal dynamics of water availability. 

 

Keywords: Agronomic N use efficiency / Drought / Oryza spp. / West Africa 
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1. Introduction 

Rice (Oryza spp.) is an important cereal in West Africa. Driven by increased per-capita 

consumption and population growth, the demand for rice has been rapidly increasing 

since the mid-1980s (Saito et al., 2015b). Local production does not meet the growing 

demand, and about 40% of the consumption is met by rice imports (Seck et al., 2013). 

The prevailing low production has been ascribed mainly to low yields in rainfed sys-

tems, which represent 70% of the total rice cultivation area (Diagne et al., 2013b). 

Rainfed systems generally yield less than irrigated systems, and large gaps between 

simulated potential and actual farmers’ yields (van Oort et al., 2015b) indicate large 

scope for yield increases. However, successes of government and international devel-

opment programs to raise production in rainfed systems have so far been limited 

(Oikeh et al., 2009). Saito et al. (2015b) Indicated that greater proportions of rice-grow-

ing area under irrigation are related to accelerating rice yield growth rates at national 

level. 

Major obstacles for enhancing rice productivity in rainfed systems include: (1) yield-

limiting factors such as water availability (Becker and Johnson, 2001d; Saito and 

Futakuchi, 2009; Touré et al., 2009), poor soil quality (Saito et al., 2013b), including N 

deficiency (Becker et al., 2002), poor soil texture (Abe et al., 2010), iron toxicity (Worou 

et al., 2013), and P deficiency (Oikeh et al., 2008); (2) yield-reducing factors such as 

weeds (Becker and Johnson, 2001a) and birds (Diagne et al., 2013c); (3) sub-optimal 

crop management practices, including low rates (Oikeh et al., 2008; Kamara et al., 

2010) and untimely application of mineral N fertilizer (Becker and Johnson, 2001d), 

leading to low N fertilizer recovery (Wopereis et al., 1999b); and (4) socio-economic 

factors such as subsistence orientation of the production, poor household wealth, and 

limited access to markets. Among the yield-limiting factors, unreliable supply of water 

and N deficiency have been identified as the dominant biophysical constraints (Becker 

et al., 2002). 

While yields can be increased by N fertilizer application (Becker and Johnson, 2001d), 

farmers’ actual application rates are generally lower than recommended rates, as most 

smallholders have limited capital resources and access to external inputs, and are 

faced with high production risk due to unpredictable and variable rainfall (Haefele et 

al., 2013b). Moreover, soil water conditions in inland valleys often vary within short 
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distances (Touré et al., 2009), differentially affecting the efficiency of applied N and 

rendering the prevailing blanket recommendation (no site-specific N application) un-

suitable in most cases. We surmise that an improved understanding of the factors af-

fecting variation in yield and rice response to applied N in relation to field water availa-

bility can guide the development of site-specific recommendations, and consequently 

increase the productivity of rainfed rice in West Africa. 

Using on-farm fertilizer management trials and field surveys from the main rainfed rice-

growing zone in Benin, we (i) assessed variations in on-farm rice yields, (ii) evaluated 

the effects of rainfall and soil attributes on field water status, and (iii) identified interact-

ing effects of field water availability and N application on the yield of rainfed lowland 

rice. 

2. Material and methods 

2.1. Study area and farmers’ practices 

This study was conducted in the villages of Papazoumé (7°55´12˝N, 2°15´36˝E) and 

Sowé (7°59´59˝N 2°12´36˝E) in Glazoué commune, Zou-Collines department in central 

Benin. Central Benin is the major rainfed rice-producing area of the country, with rice 

being grown in inland valleys of diverse and highly variable hydrological conditions 

(Saito et al., 2012). The area falls within the moist Savannah agro-ecological zone 

(FAO/IIASA, 2012). The average annual rainfall of about 1100 mm falls in a mono-

modal pattern and the average temperature is 28°C with little variation over years (Ta-

ble 4.1). Climate data were obtained from a weather station in Savé, about 40 km north 

of the study area. The soils are classified by the World Reference Base for Soil Re-

sources as Ferralsol on the slopes and as Gleysol in the valley bottom lands (FAO, 

2014).  

Tillage is done either manually by hoe or using a cattle-drawn plow, and may include 

open plots or the building of field bunds. The rice cropping season starts in early June 

and ends in late December. Common varieties grown include both upland (NERICA 1, 

NERICA 2, NERICA 4) and lowland rice varieties (NERICA 5, WAB 32, IR 841) that 

are established mainly by direct broadcast or dibble seeding (Saito et al., 2014). The 

distinction between upland and lowland production systems is not clear and depends 

on the position of field plots along the toposequence and the seasonally and annually 
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highly variable field water conditions (Saka and Lawal, 2009). Weeds are mostly re-

moved by hand, though a few farmers also use herbicides. While N fertilizer use is 

common, application rates are highly variable and mostly below the recommended rate 

of 60 kg/ha. Rice is harvested manually by sickle-cutting at ground level. 

Table 4.1: Monthly rainfall and minimum and maximum temperatures in central Benin during rice-growing 
seasons (Savé weather station, 2010-2013). 

Year Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

Maximum temp (°C) 

2010 35 34 34 34 35 37 38 

2011 36 33 33 34 35 37 38 

2012 35 32 32 33 34 34 37 

2013 33 34 31 32 34 36 36 

Minimum temp (°C) 

2010 22 21 21 21 20 21 18 

2011 21 21 20 21 21 21 16 

2012 20 21 21 20 21 21 22 

2013 20 20 20 20 20 20 18 

Rainfall (mm) 

2010 80 99 273 228 153 43 0 

2011 190 93 81 238 124 0 0 

2012 152 248 82 237 119 0 0 

2013 106 115 95 129 107 0 28 

2.2. Experiments and field surveys 

Six on-farm fertilizer management experiments were conducted in a total of 94 farmer 

fields during the wet seasons from 2010 to 2013 (Table 4.2). Each experiment had two 

to five treatments replicated once or twice in each of up to 27 farmers’ fields per year. 

Individual treatment plots, ranging from 15 to 25 m2, were randomized in each field. 

Farmers were selected on the basis of advice from local extension workers and village 

heads, and farmers’ willingness to participate in experiments. Fertilizer application 

rates and timing are shown in Table 4.2. All crop management decisions and actions, 
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except for fertilizer application, were taken by the individual farmers. In experiments 1, 

2, 5, and 6, compound nitrogen, phosphorus, potassium (NPK) fertilizer (15–6–12) was 

applied basally and urea was applied as N top-dressing around panicle initiation (PI) 

stage. Experiments 3 and 4 aimed to identify the most limiting nutrient elements 

through omission plot studies (–N, –P, and –K) using urea, triple-superphosphate, and 

potassium chloride. Application rates differed by village. In experiment 6, the recom-

mended fertilizer rate of 60 kg urea-N/ha (treatment 2, T2) was compared with individ-

ual farmers’ practice (T1) with diverse application rates and timings of the top-dressing. 

In addition, field surveys were conducted in 2011 and 2012 to collect information on 

farmers’ agricultural practices and yields. These surveys were conducted at the same 

farmers’ fields as experiments 2–6, involving a total number of 72 fields or farm house-

holds. 

2.3. Data collection 

At rice seeding, soil samples (0–15 cm depth) were taken from each field; composites 

were made from eight core samples per field. The samples were air-dried and sieved 

for further analysis. As field surveys were conducted in the same fields as the on-farm 

experiments, same soil attributes were used for data analyses. Experiments and field 

surveys conducted over 2010–2013 in central Benin, fertilizer application rate and tim-

ing, and average rice yield. Fractions of particle size (clay, silt, and sand) were deter-

mined using pipette method. The soil pH (H2O, 1:1), organic carbon, and total soil N 

contents, and available Bray-1 P were analyzed following methods described by Houba 

et al. (1995). Between 2011 and 2013, the field water status was recorded visually in 

each field two or three times per week and scored using a three-point scale (1: ponded 

water, 2: wet soil surface, 3: dry soil surface) following Haefele et al. (2006), and data 

were used for the analysis of both experiments and surveys. Flood and drought indices 

were calculated using the number of days with ponded water and dry soil surface (ex-

pressed as a percentage) and separated in (1) the total number of days of the rice-

growing period (seeding to harvest), (2) the vegetative phase (seeding to PI), and 

(3) the reproductive phase (PI to flowering or maturity, or flowering to maturity). Thus, 

a field having standing ponded water in 10 out of a total of 100 field visits had a flood 

index of 10 (Table 4.2).   
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Table 4.2: Experiments and field surveys conducted over 2010–2013 in central Benin, fertilizer application 
rate and timing, and average rice yield. 
__________________________________________________________________________________ 

 
c Yields of the same experiment followed by the same letter are not significantly different at 5% level 

based on least square mean difference. 
 a T indicates fertilizer treatments; TD: top-dressing of urea N; PK, NK, NP, and NPK are nutrient-omis-

sion treatments. 
b DAP: days after planting.  

 

 

Experiment/ 

survey 

Year No. 

farmers’ 

fields 

Treatments / 

Code
a 

Fertilizer application rate (kg/ha) and timing 

(DAP)
b
 

Mean 

yyield
c 

(t/ha) Basal N First  N top-

dressing 

Second N 

top-dressing 

P K 

Survey  2011 33 Farmers’ practice 0–69 

(14–76) 

0–86 (18–

72) 

0 0–

23 

0–

38 

2.3a 

 2012 39 Farmers’ practice 0–69 

(18–94) 

0–69 (42–

91) 

0 0–

20 

0–

38 

1.2b 

Exp. 1 2010 13 No input 0 0 0 0 0 2.2c 

13 T2 15 (13–

24) 

23 (43–54) 0 7 13 2.8b 

13 T3 30 (13–

24) 

23 (43–54) 23 (63–

74) 

13 25 3.6a 

Exp. 2 2011 8 No input 0 0 0 0 0 1.4b 

8 Low N, early TD 15 (15) 23 (45) 0 7 13 1.8b 

8 Low N, late TD 15 (15) 23 (65) 0 7 13 1.7b 

8 Med. N triple split 30 (15) 23 (45) 23 (65) 13 25 2.3a 

8 High N triple split 30 (15) 35 (45) 35 (65) 13 25 2.5a 

Exp. 3 2011 12 No input 0 0 0 0 0 1.6b 

12 PK 0 0 0 30–

50 

50–

83 

2.0b 

12 NK 20–33 

(15) 

40–67 (45) 40–67 

(65) 

0 50–

83 

2.9a 

12 NP 20–33 

(15) 

40–67 (45) 40–67 

(65) 

30–

50 

0 3.0a 

12 NPK 20–33 

(15) 

40–67 (45) 40–67 

(65) 

30–

50 

50–

83 

3.3a 

Exp. 4 2012 16 No input 0 0 0 0 0 0.7b 

16 PK 0 0 0 30 50 0.8b 

16 NK 20 (15) 40 (45) 40 (65) 0 50 1.3a 

16 NP 20 (15) 40 (45) 40 (65) 30 0 1.5a 

16 NPK 20 (15) 40 (45) 40 (65) 30 50 1.6a 

Exp. 5 2012 18 No input 0 0 0 0 0 0.8b 

  18 Recommandation 20 (15) 20 (45) 0 18 12 1.5a 

Exp. 6 2013 27 Farmers’ 

practices 

0–94 

(0–84) 

0–41 (18–

80) 

0 0–

37 

0 1.0a 

  27 Recommandation 40 (0–

27) 

28 (20–66) 0 9 17 1.2a 
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Genotypes were classified by growth duration as short (<100 days – NERICA varie-

ties), medium (~120 days – WAB 32), or long duration (>140 days – IR 841, traditional 

types). PI and flowering dates were calculated as total crop growth duration minus 65 

and 30 days, respectively. Rice management practices were recorded through inter-

views, comprising information on (1) land preparation, (2) seeds and crop establish-

ment, (3) fertility management, and (4) pest and disease management. At maturity, rice 

yields were determined from 8-m2 harvested areas in the center of each field plot and 

corrected to 14% moisture. 

Table 4.3: Selected soil properties, flood and drought indices, and rice planting dates, and their variability. 

 Average Range CV (%)a 

Soil properties (n=126) 

Sand (%) 66 36–84 22 

Silt (%) 22 7–45 57 

Clay (%) 13 9–19 20 

Organic C (g/kg) 6.7 3–12 27 

Total N (g/kg) 0.5 0.2–1.0 33 

pH (H2O) 5.6 4.8–7.6  9 

Bray-1 P (mg P/kg) 5.1 2–13 50 

Flood index (cropping season) 

2011 (n=35) 14 0–76 144 

2012 (n=40)  1 0–13 226 

2013 (n=54)  0.4 0–13 482 

Drought index (cropping season) 

2011 (n=35) 18 0–48 76 

2012 (n=40) 21 0–55 83 

2013 (n=54) 32 0–61 48 

Planting date (Julian day)b 

2010 (n=39) 201 179–217 48 

2011 (n=133) 211 166–250 30  

2012 (n=155) 197 174–212 32 

2013 (n=54) 195 175–221 64 

Yield (t/ha) across all field plots 

2010 (n=39) 2.9 0.2–6.6 62 

2011 (n=134) 2.3 0–6.0 74 

2012 (n=156) 1.2 0–6.1 97 

2013 (n=54) 1.1 0–5.5 103 

a CV: coefficient of variation. 
 b Difference between each farmers’ rice planting date and first farmers’ planting date in each year was 
used to calculate CV. 
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2.4. Statistical analysis 

For each experiment, ANOVA was conducted. Estimates of least square means of 

yield were followed by means comparison between treatments when treatment effects 

were significant (Table 4.2). Multiple linear regressions were applied on field surveys 

and fertilizer management trials, except for experiment 1 in 2010 for which no drought 

or flood indices were available. From the results of the analyses shown in Tables 4.2 

and 4.3, total N fertilizer application rates, planting date, and flood and/or drought index 

were chosen as predictors of rice yield. The number of N splits was not included as it 

was correlated with total N rate (r =0.65, P <0.01). The effects of drought or flooding 

on yield and rice response to applied fertilizer was disaggregated by growth stages 

(vegetative, reproductive, total) as rice yields respond differentially to water conditions 

in different development stages (Bouman et al., 2001)Eighteen models to predict rice 

yield and yield response to fertilizer were applied, fitted, and ranked based on lowest 

Akaike’s information criterion (AIC) using R statistical software (R development Core 

Team, 2011). Factors affecting yield variation of were examined using the following 

models with yield as response variable: 

• Model 1: N rate 

• Model 2: N rate, planting date 

• Model 3: flood and drought indices (planting date to maturity) 

• Model 4: N rate, and flood and drought indices (planting date to maturity) 

• Model 5: planting date, flood and drought indices (planting date to maturity) 

• Model 6: N rate, planting date, flood and drought indices (planting date to ma-

turity) 

• Model 7: flood and drought indices (planting date to PI, PI to maturity) 

• Model 8: N rate, drought index (planting date to PI, PI to maturity) 

• Model 9: N rate, planting date, drought index (planting date to PI, PI to maturity) 

• Model 10: drought index (planting date to PI, PI to flowering, flowering to ma-

turity) 

• Model 11: N rate, flood and drought indices (planting date to PI, PI to flowering, 

flowering to maturity) 

• Model 12: N rate, planting date, flood and drought indices (planting date to PI, 

PI to flowering, flowering to maturity). 
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Multiple linear regression was applied to identify the main factors affecting yield re-

sponse to N, P, and K fertilizers (calculated as the difference between the NPK plots 

and the omission plots (PK, NK, NP), following Cassman et al. (1998). As yield re-

sponses to P or K were very small (Table 4.2), only yield responses to applied mineral 

N were considered in subsequent analyses. Factors affecting the variation of yield re-

sponse to N were examined using the following models with yield response to N as 

response variable: 

• Model 13: drought index (planting date to maturity) 

• Model 14: planting date, flood and drought indices (planting date to maturity) 

• Model 15: drought index (planting date to PI, PI to maturity) 

• Model 16: flood and drought indices (planting date to PI, PI to flowering, flower-

ing to maturity). 

As flood and drought indices were not normally distributed, a generalized linear model 

with binomial distribution was used to identify factors affecting variations in field water 

status (McCullagh and Nelder, 1989). The following models were used with flood or 

drought index as response variable and soil parameters as predictors. Only data of 

2011 and 2012 that had complete soil data were used. As rainfall distribution and 

amount were similar during the most important part of the cropping season (August to 

November) in 2011 and 2012, rainfall was not included as a predictor: 

• Model 17: sand content 

• Model 18: sand and organic C content 

• Model 19: clay content 

• Model 20: clay and organic C content 

3. Results 

3.1. Rice-growing environments and crop management 

Climatic conditions differed between study years and edaphic attributes differed be-

tween fields. Thus, total rainfall during the rice-growing season (June–December) was 

similar in 2010–2012 and 2014 (228–237 mm) but much lower in 2013 (129 mm) (Ta-

ble 4.1). The rainfall distribution during the growing season also differed, differentially 

affecting field water availability during different rice development stages. Thus, rainfall-

induced water limitations occurred during the vegetative growth stage in 2010, during 
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the early reproductive stage in 2013, and during the maturity stage in 2011 and 2012. 

Maximum and minimum temperatures, on the other hand, showed little variation be-

tween years. Soil properties (except for soil pH) differed markedly between fields (Ta-

ble 4.2). Texture classes comprised anything from sand to clay-loam, organic C content 

ranged from 3 to 12 g/kg, total N from 0.2 to 1.0 g/kg, and available P from 2 to 

13 mg/kg soil. Related to rainfall and soil texture, the drought index varied from 0 (no 

day during the rice-growing period without ponded water) to 67 (up to 10 weeks of 

potential water deficit). In terms of crop management, the largest differences were ob-

served in rice planting dates (Julian date 106 to 250) and mineral fertilizer application 

rates (0–155 kg N/ha, 0–38 kg P/ha, and 0–37 kg K/ha). Some 12% of the farmers did 

not apply any fertilizer, and 44% applied fertilizer only once. Less than 44% of the 

farmers followed the recommended split application of N fertilizer. 

3.2. Yield variation and its determinants 

These differences in growing conditions (years and soil attributes) and crop manage-

ment practices resulted in large differences in rice grain yields, with mean yields of 

1.0–3.6 t/ha across experiments and years and individual field yields ranging from 

complete crop failure to more than 6.6 t/ha (Table 4.2). Across experiments, sites, and 

fields, average yields tended to be highest in 2010 and lowest in 2013 (highest drought 

index). Both the fertilizer response and the nutrient-omission trials underlined the role 

of N as the main limiting nutrient. Responses to P and K application tended to be non-

significant. The recommended fertilizer rates were apparently too low in wet years or 

in fields with high flood indices, and provided little yield advantage over the non-

amended control in dry years or in fields with high drought indices. 

Comparing the models, which differed in the site and management attributes used to 

explain rice yields, model 5 provided the best fit for the survey data with an AIC of 310. 

This model considered only the rice planting date and water status throughout the 

growing period (drought and flood indices) for explaining yields and yield variability. In 

the case of the experimental data and the combined experiment plus survey data, 

model 12 provided the best fit with AICs of 718 and 1040, respectively. The model 

considered the planting date, the applied N rate, and the water status (drought and 

flood indices) during the vegetative and reproductive stages, explaining up to 56% of 

the observed variance. In all cases, the field water status (be it expressed as water 

availability in relation to planting date and rainfall, or as the observed drought/flood 
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indices) affected yields. Most critical was the occurrence of drought in the reproductive 

growth stage between PI and flowering. During this period, a 10% increase in the flood 

index was associated with a 0.2 t/ha yield increase. 

 

Table 4.4: Model parameters explaining variations in yield and N fertilizer response, regression coeffi-
cients, and 95% lower / upper confidence interval estimates. 

Variable Estimate 95% confidence inter-

val 

P-valuea 

Lower Upper 

Case 1: Farmer-managed plots (n=100) – model 5 

Flood index (P–M)b  0.022  0.003  0.041 0.02 

Drought index (P–M) –0.034 –0.049 –0.018 <0.01 

Planting date  –0.005 –0.011  0.022 ns 

Intercept  1.112 –2.192  4.416 ns 

Case 2: Farmer-managed on-farm experimental plots (n=244) – model 12 

Flood index (P–PI)  0.101 0.074  0.127 <0.01 

Flood index (PI–F) –0.019 –0.050  0.012 ns 

Flood index (F–M) –0.486 –0.893 –0.079 0.02 

Drought index (P–PI) –0.017 –0.047  0.014 ns 

Drought index (PI–F) –0.065 –0.088 –0.043 <0.01 

Drought index (F–M) –0.040 –0.058 –0.022 <0.01 

Planting date   0.011 –0.001  0.023 ns 

Total N fertilizer applied  0.009  0.006  0.011 <0.01 

Intercept –0.500 –2.936  1.935 ns 

Case 3: All plots (n=344) – model 12 

Flood index (P–PI)  0.069  0.049  0.089 <0.01 

Flood index (PI–F)  0.007 –0.019  0.033 ns 

Flood index (F–M) –0.131 –0.346 0.084 ns 

Drought index (P–PI) –0.011 –0.036 0.014 ns 

Drought index (PI–F) –0.065 –0.086 –0.045 <0.01 

Drought index (F–M) –0.030 –0.045 –0.015 <0.01 

Planting date  0.009 –0.001 0.018 ns 

Total N fertilizer applied 0.007 0.005 0.010 <0.01 

Intercept 0.068 –1.882 2.018 ns 

Yield response to N fertilizer in experiments 3 and 4 (n=28) – model 13 

Flood index (P–M) 0.015 –0.008 0.037 ns 

Drought index (P–M) –0.035 –0.055 –0.015 <0.01 

Intercept 1.703 1.126 2.280 <0.01 

a ns = not significant. 
b Letters in parentheses indicate period index measured for: P: planting, M: maturity, PI: panicle initiation, 
F: flowering. 
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Figure 4.1: Yield response to N fertilizer application in three categories of drought index (N fertilizer: low: 

≤50, medium: >50, ≤80, and high: >80; drought index: low: ≤15, medium: >15, ≤30, and high: >30) 

Mineral N fertilizer rates were significantly related to yield in 66% of the cases and 

strongly interacted with the field water status. Thus, the drought index significantly af-

fected yield response to N fertilizer, and yields declined by 0.35 t/ha for each 10% in-

crease in drought index (model 13, Table 4.3). Largest yield differences between low, 

medium, and high N fertilizer application rates were observed for the lowest drought 

indices (Figure 4.1). N-induced yield increases were highest with low drought indices 

during the reproductive growth stage. N application rate resulted in a 7–9 kg grain in-

crease per kg N applied (cases 2 and 3, Table 4.3). 
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3.3.  Factors affecting field water status 

Model 18, which considered soil texture and C content, proved best suited to describe 

the determinants of flood and drought indices with AICs of 6128 and 4336, respectively. 

High sand content consistently lowered the flood index while increasing the drought 

index, while high organic C content increased the flood index (Table 4.4) 

 

Table 4.5: Model parameters explaining variation of flood and drought indices 

Variable Estimate Std Error P value 

Flood index – model 18 

Sand (%) –0.043 0.002 <0.01 

Organic C (%) 1.388 0.139 <0.01 

Intercept –1.075 0.186 <0.01 

Drought – model 18 

Sand (%) 0.039 0.001 <0.01 

Organic C (%) –0.261 0.092 <0.01 

Intercept –4.173 0.129 <0.01 

4. Discussion 

This study assessed variation in on-farm rice yields in central Benin in relation to rain-

fall, water status, and crop management practices, including fertilizer management. 

Large variation in yield in this study confirmed findings of previous studies in rainfed 

lowland rice systems in West Africa (Becker and Johnson, 2001d; Touré et al., 2009; 

Worou et al., 2013). Year-to-year variation in rainfall and spatial variation in field water 

status strongly affected rice yield in this study. The relationship between rainfall and 

yield in this study is consistent to some extent with previous studies in Asia (Malabuyoc 

et al., 1993; Saito et al., 2006a). Furthermore, our finding of association of water status 

with yield agree with previous reports from Asia (Haefele et al., 2006; 2013a). While 

(Haefele et al., 2006) used average scores over the rice-growing season (higher score 

indicating greater water stress), our approach gave more detailed information on the 

proportion of days with water deficit and flooding during the rice-growing stages. There-
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fore, together with this study, results from previous studies suggest that visual assess-

ment of water status can be a simple and useful means for assessing spatial and tem-

poral variation in water conditions, as well as its influence on rice productivity. 

Our findings of soil N deficiency and effect of N fertilizer application on yield confirmed 

previous studies in rainfed systems in West Africa (Kamara et al., 2010). However, for 

farmer-managed plots (case 1, Table 4.3) the model with total N application rate did 

not provide the best fit. This could be due to limited variation in N fertilizer application 

among farmers in comparison with field experiments. In farmers’ practices, fertilizer 

timing was variable, and this could also have affected the results. Delayed fertilizer 

application results in low fertilizer recovery (Haefele et al., 2013b). The blanket fertilizer 

recommendation did not show higher yield than farmers’ practices in experiment 6. 

This confirms previous studies (Segda et al., 2005; Tittonell and Giller, 2013), and sug-

gests that field-specific recommendations are needed. 

High drought indices were associated with high sand content of the soil, low yield, and 

low yield response to N fertilizer application as sandy soils tend to have reportedly low 

moisture-holding capacities (Homma et al., 2003; Odunze et al., 2010). It is well un-

derstood that N fertilizer should be applied when the soil surface is wet or slightly 

flooded, to avoid N loss through volatilization and increase N fertilizer recovery (Raun 

and Johnson, 1999). We also found that yield response to fertilizers was smaller with 

greater water deficit levels. It should be pointed out that our drought and flood indices 

include the indirect effect of sowing timing and crop duration on yield, as we calculated 

drought and flood indices for actual sowing date and crop duration. For example, if 

short and long duration varieties are sown on the same date and there is terminal 

drought, drought index may be higher or flood index lower for the long duration variety 

than the short-duration variety. Thus, use of short-duration varieties could be an option 

for reducing the drought index, and consequently could result in higher yield under 

drought conditions. Reasons for the positive relationship between drought index and 

soil carbon in this study are not known. But, it must also be recognized that drought 

and flood indices can be affected by soil percolation rates and water runoff from sur-

rounding areas (Bouman et al., 1994), and these factors were not quantified in this 

study 

Field water status and total N application explained 28–56% of yield variation in this 

study. Thus, we did not capture a large part of the yield variation. Other factors such 
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as weeds, pests, and diseases were not consider in this study and may also have 

contributed to yield variation (Rodenburg and Johnson, 2009; de Mey et al., 2012; 

Nwilene et al., 2013; Saito et al., 2013b; Séré et al., 2013). 

Our assessment of the field water status was quite easy and simple, and results indi-

cate that sandy soils have generally higher drought index, and fertilizer should be ap-

plied on wet soils with higher flood index rather than dry soils with higher drought index 

(i.e. index >30%). Where the drought index is expected to be high, N fertilizer should 

not be applied. It remains to be seen, how useful such recommendations will be for 

farmers and their decision-making. Further studies to examine the linkage between 

farmers’ knowledge (of water status and soil texture), and our water status assess-

ment, laboratory analysis (including soil sand content), and rice productivity, could help 

in developing a comprehensive field-specific decision support system (Saito et al., 

2006b). Furthermore, as drought index in a given field is affected by seasonal rainfall 

pattern and amount, forecasting is needed to help farmers decide whether or not to 

apply fertilizer. Thus, the challenge would be to examine if weather forecasting can be 

reliable for recommending fertilizer application. In addition to bunding, used in some 

farmers’ fields in the area, other water conservation measures, such as mulching, land 

leveling, or no-tillage, should also be tested for enhancing soil moisture. Also, in drier 

soils, short-duration rice varieties or upland crops may be recommended if terminal 

drought risk is high. 

We conclude that year-to-year variation in rainfall and spatial variation in field water 

status strongly affect variations in rice yield and yield response to N fertilizer applica-

tion. Yield response to applied N tends to be less when water deficits are severe and 

spatial variations in field water status are related to the sand content of soils. Thus, the 

prevailing blanket fertilizer recommendations are unlikely to contribute to yield increase 

in rainfed systems, and there is a need to develop field-specific recommendations that 

take into account soil texture and the spatial–temporal dynamics of water availability. 
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Abstract 

The rice production in West Africa has not yet satisfied the population’s growing de-

mand partly due to the low farmers’ productivity. If potential production is high in the 

region, actual production has never followed the potential trends because of numerous 

constraints ranging from climate factors, soil problems and crop management prac-

tices. The improvement of farmers’ management practices has the potential to in-

crease yield per unit of area increasing total rice production. Thus, the objective of this 

study was to evaluate the effect of introduced practices in on farmers’ yields and to 

assess factors affecting yield variations. For each site, a combination of GAP were 

selected using knowledge expertise from local researchers for two years and imple-

mented in selected farmers’ fields. From the farmers who have previously participated 

in the yield gap survey, 503 fields were randomly selected. A 200 m2 plot was demar-

cated at each selected farmer’s field where GAP was implemented. Farmer’s manage-

ment practices and crop were monitored during the cropping season and yield meas-

ured at harvest. Average yield gain was higher in rainfed lowland and ranged between 

1.3 and 3.3 t/ha in rainfed lowland whereas in in irrigated lowland it was from -0.9 and 

1.1 t/ha. The yield gain can be further enhanced with optimized sowing date in irrigated 

lowland, with improved varieties and timely application of mineral fertilizers with better 

water control in rainfed lowland system. 

 

Keywords: Bunding / GAP / Leveling / Nitrogen / Oryza spp. / West Africa 
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1. Introduction 

Rice is a staple food crop for many countries in West Africa and its importance has 

increased over the past decades (Seck et al., 2010). Rice is a source of income for 

many rural households and play a key role in regional food security and in national 

economies (Diagne et al., 2013a). While rice production has increased since the 1970s 

due to area expansion, it has never satisfied consumption demand (Seck et al., 2013). 

Although area expansion is still possible in many parts of Africa, more efforts are 

needed to increase rice productivity as farmers’ yield level is quite low (Becker and 

Johnson, 1999b). Most of the constraints to rice production are due to farmers’ man-

agement practices due to the low adoption rate of the modern cropping system tech-

nologies (Balasubramanian et al., 2007b). In previous studies in West Africa, it was 

reported large yield gaps of 3.2-5.9 t/ha across AEZ in the irrigated system in Côte 

d’Ivoire (Becker et al., 2003b) and between 0.6-4.1 t/hain the sub-humid zone of 

Burkina Faso (Wopereis et al., 1999b). From these studies poor water control, low 

fertilizer rate, inefficient weeding practices were reported as the main factors affecting 

yield in irrigated system in Côte d’Ivoire while timing of N, seedling age, inadequate 

water control, K and P deficiency were the main factors in the Guinea Savannah in 

Burkina Faso. 

From the current study, the crop management practices susceptible to increase rice 

production are identified and specific to each production system. In irrigated systems, 

timing of nitrogen fertilizer and strategies to timely control weeds are measures to im-

prove productivity. In rainfed system the low level of farmers’ instruction, the nonexist-

ence of infrastructure (irrigation and drainage schemes), the low level of farmers’ or-

ganization and the quasi-absence of incentive policies are constraints that need to be 

addressed. The measures towards increasing farmers’ yields include: the construction 

of bunds around fields, the dissemination of improved varieties from certified seeds to 

target farmers, the application and the timing of recommended rate of N fertilizer and 

efficient bird control measures. 

The objectives of this study were to evaluate the effect of introduced GAP on farmers’ 

yields and to examine factors that affected the variation of yield gains after the intro-

duction of GAP. 
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2. Materials and methods 

2.1. GAP components 

At each site, 6 farmers out of 10 from each village who earlier participated in the pre-

vious farmer’s yield gap survey (YGS) were randomly selected to participate in the 

current GAP test. The GAP component technologies were selected by local experts 

from National Research System and their partners and were considered as being the 

most important yield-reducing factors and that can be easily adopted by farmers. Once 

the combination of improved practices was selected, farmers were provided with train-

ing on new introduced technologies (eg. how to use mechanical weeders or updated 

training on how to timely apply fertilizer or herbicide, supply of new equipment, seeds 

or fertilizers as required by the GAP component). Farmers were asked to apply the 

technologies in the plot demarcated in fields under supervision during the GAP test 

periods. The practices were subdivided into six groups: land preparation methods, va-

riety and seeds, sowing method, fertilizer input, weed control and harvest. The GAP 

components per group at each site per production system are shown in Annexes 1 and 

2. For a proper yield gain comparison, sites with at least two years data on YGS and 

two years on GAP were considered. 

2.2. GAP implementation 

Each selected farmer applied the GAP components technologies in a 200 m2 plot de-

marcated and separated from his/her own field using bunds. Control plots were not 

implemented during the period of GAP tests to avoid bias induced by farmers copying 

introduced technologies in their own plots. The previous 2 years’ data of the YGS were 

used as control. All planned activities in the GAP plots were supervised by field ob-

servers to make sure operations were done as planned. Each selected field was mon-

itored during the cropping seasons GAP tests were implemented. Three subplots of 12 

m2 were randomly delimited inside the GAP plot at the beginning of the season for 

yield determination. At harvest, all plants in each of the three 12 m2 harvested areas 

were cut and grains were manually threshed, air-dried and weighed. Grain moisture 

content was determined and yields adjusted to 14% humidity. For each field, grain yield 

was the average yield from the three harvest areas. 
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2.3. Yield gain estimation 

To determine the effects of improved practices on yield, yield gain was estimated from 

the following equation: 

Yg (t/ha) = YGAP - YYGS 

Where Yg is yield gain, YGAP is the yield obtained in the GAP test plot at each farmer’s 

field and YYGS the average yield per site during previous YGS (control). 

2.4. Statistical analysis 

 Descriptive statistics were used to estimate mean yield and yield gains at each site. 

3. Results and discussion 

Average yields in GAP fields were variable across sites and were higher than average 

yields obtained in survey fields (Table 5.1). 

Table 5.1. Yields in survey and in GAP plots at different sites and production systems 

  Average farmers’ yield in t/ha (sample num-

ber) 

 

Country Site Survey 

year 1  

Survey 

year 2 

GAP 

year 1  

GAP 

year 2  

GAP compo-

nent1 

Irrigated lowland 

Benin Malanville 4.8 (49) 5.6 (30) 6.1 (29) 4.9 (24) 3, 4, 5, 6 

Mali Kouroumari 5.3 (24) 5.0 (19) 3.7 (8) 4.6 (10) 1, 2, 3, 4 

The Gambia Central river 3.6 (50) 3.7 (20) 5.2 (25) 4.1 (25) 2, 3, 4, 6 

Rainfed lowland 

Benin Glazoué 0.8 (25) 1.9 (9) 1.4 (15) 7.0 (17) 2, 4, 5, 6 

Mali Sikasso 1.8 (43) 2.3 (45) 2.8 (16) 3.9 (20) 3, 4 

Nigeria Nasarawa 2.1 (24) 2.0 (10) 3.2 (16) 4.9 (11) 3,4,5 

Sierra Leone Bo & Kenema 1.8 (50) 2.8 (9) 4.7 (16) 2.8 (20) 1, 2, 3 

11=Land preparation, 2=variety and seed, 3=Sowing method, 4=Fertilizer input, 5=Weed control, 6=Har-
vest 
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Mean yield gains ranged between -0.9 t/ha (Kouroumari) and 3.3 t/ha (Glazoué) (Table 

5.2). N application rates were higher in GAP plots than in YGS fields and can explain 

the positive yield gain obtained in all sites except for Kouroumari, Mali. The negative 

yield gain obtained in Kouroumari can be ascribed to delay sowing date due to the late 

implementation of the GAP plot test during the first year (Table 5.3). Yield gains ob-

tained in rainfed lowland were not only from fertilizer but are not only from fertilizer 

application, but also from other technologies components. For example, bunding and 

leveling, and transplanting (Table 5.2, Annex 2) in Nasrawa, Nigeria have contributed 

to increased yield. In Sierra Leone lowland, yield gain obtained was due to the combi-

nation of bunding, the use of iron tolerant variety and the application of organic ferti-

lizer. In Glazoué, yield in GAP plots increased from 1.4 to 7 t/ha. In the second year 

the variety was changed to a drought tolerant variety (Table 5.1, Annex 2). 

Table 5.2: Yield gaps, yield gains and percentage of yield gap closed after GAP test at site level 

Country Site Average of yield 

gap (t/ha) 

Average of yield 

gain (t/ha) 

Percentage of yield 

gap closed (%) 

Irrigated lowland 

Benin Malanville 4.0 0.5 13 

Mali Kouroumari 5.7 -0.9 0 

The Gambia Central River 4.4 1.1 25 

Rainfed lowland 

Benin Glazoué 7.9 3.3 42 

Mali Sikasso 7.0 1.4 20 

Nigeria Nasarawa 6.3 2.4 38 

Sierra Leone1 Bo & Kenema - 1.7 - 

1Yield gap was not estimated in Sierra Leone due to unavailability of climate data 

In irrigated lowland sites 13% and 25% of the average yield gap estimated during pre-

vious survey years was reduced in Malanville, Benin and in Central River, The Gambia 

respectively. In rainfed lowland, yield gap reduction was higher than in irrigated low-

land. It was 20% in Sikasso, Mali, 38% in Nasrawa, Nigeria and 42% in Glazoué, Benin 

(Table 5.2). In Nasrawa and Glazoué, N fertilizer rate was very low during survey (6 

kg/ha) compared to average N fertilizer rate during GAP test (79 kg/ha) which have 

contributed to higher yield gap reduction in these sites. The higher yield gap obtained 
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in rainfed lowland compared to irrigated lowland can also explained the higher yield 

gap reduction in this system. 

Table 5.3: Average N rates and crop establishment dates recorded during YGS and GAP test 

Country Site Survey 

year 1 

Survey 

year 2 

GAP 

year 1 

GAP 

year 2 

  Average N application rate and number of splits over farmers’ 

fields 

  Rate Splits Rate Splits Rate Splits Rate Split

s 

Irrigated lowland 

Benin Malanville 105 2 86 2 168 3 76 3 

Mali Kouroumari 100 2 84 2 138 3 138 3 

The Gambia Central River 19 2 68 2 76 4 168 4 

Rainfed lowland 

Benin Glazoué 6 1 9 2 85 3 85 3 

Mali Sikasso 73 2 53 2 76 3 76 3 

Nigeria Nasarawa 6 1 0 0 72 1 72 1 

Sierra Leone Bo & Kenema 32 1 3 1 0 - 0 - 

  Average crop establishment date (Julian date) 

Irrigated lowland 

Benin Malanville 187 183 198 217 

Mali Kouroumari 162 192 235 150 

The Gambia Central River 201 202 225 223 

Rainfed lowland 

Benin Glazoué 181 176 194 199 

Mali Sikasso 179 188 184 186 

Nigeria Nasarawa 182 173 205 196 

Sierra Leone Bo & Kenema 200 237 232 226 

 

4. Conclusion 

The implementation of GAPs plots in different sites in West Africa has resulted in in-

creasing yield. There is still a large scope to obtain higher yield gains if other good 

practices including the use of optimum sowing date are integrated in the GAP compo-

nent 3 especially in irrigated system in the arid to semi-arid zone. There is a need for 

a development of a site-specific decision support guide including variety choice and 

source of seeds, weeding timing and method and fertilizer management for an efficient 

use of the available farmers’ resources.  
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Similar yield ranges recorded in this study were reported twenty years ago from rainfed 

upland (Becker and Johnson, 1999a), rainfed lowland (Becker and Johnson, 2001d), 

and irrigated lowland systems (Dingkuhn, 1993; Becker et al., 2003b), indicating stag-

nant yield ranges as reported recently from Senegal river valley (Tanaka et al., 2015). 

The yield difference between climatic zones can be explained by both climatic and 

edaphic conditions (higher solar radiation and lower relative air humidity in arid and 

semi-arid regions, more fragile soils and more exposure to pests and diseases in sub-

humid and humid zones). However, in this study no relationship was found between 

yield and Bray P and between yield and total N and total C. Although soil organic matter 

and total N are important indicator for soil quality, they are not suitable parameters to 

predict rice yields as supported by Ilstedt et al. (2003) in Malaysia and further by Liu et 

al. (2014) in South China. The relative low effect of higher seasonal rainfall on yield in 

rainfed systems suggests that rainfall alone is not a good indicator for available water 

in rainfed systems. The water control measures such as bunding, the ground water 

table depth and water infiltration rate are additional parameters to take into account to 

predict actual farmers’ yield than only seasonal rainfall. The present work presents the 

first comprehensive information on rice yields and crop management methods across 

climatic zones and production systems since the 1990s. In contrast to these initial sur-

veys with 228 observations from upland fields (Becker and Johnson, 2001a), 204 from 

rainfed lowlands (Becker and Johnson, 2001d) and 164 from irrigated lowlands 

(Becker et al., 2003b) in four countries, the present survey covers more than 1300 

farmers’ fields in 11 countries. Overall trends are similar to previous reports with high-

est mean yields obtained in the semi-arid zones and from irrigated systems (Figure 

6.1). However, the yield gains over two decades were marginal. While upland rice 

yields increased by 30% over 20 years (from 1.15 in 1995 to 1.52 t/ha in 2014), com-

parable increases in the rainfed lowlands were observed in the order of 25% (from 1.62 

to 2.02 t/ha). In irrigated systems, yield increases of 18 and 12 % were observed in 

semi-arid and sub-humid zones respectively and a yield decline by 40% was observed 

in the humid zone resulting in an overall yield stagnation in the irrigated systems (3.6 

vs 3.5 t/ha). However, these comparisons should be taken with cautious since surveys 

for the two periods were not carried out in the same locations. 
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The FAO (1999) has reported average yield of 2.1 t/ha in Africa, corresponding to pre-

vious reports in the same period. (Population, 2015). This increase in production is 

most likely due to area expansion with an annual growth rate of 4.6 % in the same 

period (FAOSTAT, 2015). The average yield of 2.4 t/ha reported in this study repre-

sents only a slight increase compared to the 1990s. However, overall rice production 

increased by 5.8 % between 1993 and 2013 (FAOSTAT, 2015). This growth rate is  

higher than the rate of average demographic growth of 2.8 % In contrast to the mean 

yields, both production and cultivated area increased at comparable rates, indicating 

that recent rice production increases in West Africa can primarily be ascribed to an 

expansion of cultivated area rather than productivity gains (Figure 6.2). However, this 

increase in production has not been able to satisfy the increased  

consumption demand as a result of increasing rice imports in most of the surveyed 

countries during the same period (Seck et al., 2013).  

Figure 6.1: Production, population and harvest area growth rates of surveyed countries between 1993 

and 2013. Source: (FAOSTAT, 2015) for production and harvest area data, (Population, 2015) for popu-

lation data 
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In addition, expansion of area is not unlimited, because of growing demand for other 

land use needs. Therefore, the only sustainable way to increase production is the in-

crease of yield per unit of area.  

 In this study, the relatively high rate of farmers that applied improved cropping prac-

tices may explain the reported grain yield increases in the production systems com-

pared to the previous survey. Today, 92% of farmers in the irrigated systems construct 

bunds around their fields, use machines for tillage, and sow improved varieties and 

certified seeds. In this study, bunding in rainfed lowland was associated with 64% yield 

increase. This result confirms the previously reported 60 % increase of grain yield due 

to bunding in the moist Savannah zone (Becker and Johnson, 2001d). The resulting 

improved water control contributes also to reduce weed biomass (Becker and Johnson, 

1999c). Mechanical tillage by deep plowing is particularly beneficial in compacted low-

land soils reducing bulk soil density and improving nutrient and water use efficiency  

(Babalola and Opara-Nadi, 1993). The use of certified seeds was associated with 30% 

increase of yields in irrigated and rainfed lowlands. Similar yield increases of up to 19 

% was ascribed to the use of good quality seeds in a farmer participatory experiments 

in the Philippines (Diaz et al., 1998). 

Figure 6.2: Comparative rice yields between the 1990s and the 2010s in different production systems at 

each climatic zone 
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Transplanting has been adopted by more than two third of the farmers in irrigated sys-

tems and has been linked to the observed 16% yield increase. However, despite this 

yield improvement, there is a shift from transplanting towards direct seeding due to 

lack of labor in some rainfed and irrigated lowlands (Nantasomsaran and Moody, 

1995). Direct seeding reportedly increases weed biomass and results in a reduced 

crop response to fertilizer (Nantasomsaran and Moody, 1995; Singh et al., 2001). A 

higher weeding frequency, more split applications of mineral fertilizers and the incor-

poration of rice straw are gaining popularity in irrigated systems and are also associ-

ated with yield increases. Similar improvements in management practices have been 

observed in rainfed lowland and rainfed upland systems but at lower rates of adoption. 

Increased productivity to meet growing demand requires exploiting much more than 

presently the existing yield variability by up leveling yields to enhance regional produc-

tion. This may be achieved by site and specific targeting of incentive measures for the 

dissemination of current technologies. The following conclusions are derived from the 

analysis of rice yield and yield gaps variability in West Africa described in previous 

chapters: 

• Rice yields and yield gaps variations were large in the different production 

across the main climatic zones in West Africa. 

• Boundary function estimated attainable yields with increasing total solar radia-

tion in all systems and increasing total rainfall in rainfed systems. 

• RF algorithm evaluated the importance of the yield and yield gap determinants 

at different production systems. 

• Yield determinants were specific to each production system. 

• Nitrogen application rate was the most important factor explaining yield varia-

bility in irrigated system whereas water control, variety choice and bird control 

explained most of the variability in rainfed systems. 

• Weeding frequency was selected as an important factor explaining yield varia-

bility regardless the production system. 

• Nitrogen use efficiency was dependent on field water status in rainfed system 

of central Benin. 

• The implementation of GAP plots helped increase average farmers’ yield with 

higher yield gain in rainfed lowland system. 
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• Site-specific GAP components implementation need to be further developed 

with continuous fine tuning in order to find for each site the most important fac-

tors that will yield higher production that is profitable to the farmers. 
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ANNEX 

Annex 1: Components of GAPs in irrigated lowland sites 

Sites GAP components 

Land preparation Variety and seed Sowing method Fertilizer input Weed control Harvest 

Central river 

(Gambia) 

 introduction of 

improved varie-

ties: 

Seed priming 

and soaking to 

increase seed-

ling vigor 

use of rope and 

line markers 

Transplanting at 

20 x 20 cm den-

sity at 14 DAS2, 3 

seedlings/hill 

Basal: 200 

kg/ha NPK1 

(15-15-15) 

Top dress: 

100 kg/ha 

urea at active 

tillering, PI 

and booting 

stages 

 Timely Har-

vesting at 

80% ma-

turity 

       

Kouroumari 

(Mali) 

Land leveling 

with 5 cm water 

height till 20 DAS 

then drain at 21 

DAS 

Pre-germinated 

seeds 

Direct seeding: 

broadcasting 

Transplanting: 

row sowing at 20 

x 20 cm density 

Basal: 100 

kg/ha Days 

after planting 

at 24 DAS 

Top dress 1: 

100 kg/ha 

urea at 20 

days after ba-

sal applica-

tion, 

Top dress2: 

100 kg/ha 

urea at 20 

days after top 

dress 1 

  

       

Malanville 

(Benin) 

  Transplanting at 

15 DAS 

Plant density: 20 

x 20 cm 

Basal: 

200 kg/ha 

NPK at trans-

planting 

Top dress 1: 

50 kg/ha urea 

at PI 

Top dress 2: 

50 kg/ha urea 

at grain filling 

stage 

Post emer-

gence herbi-

cide at 15 

DAS 

Hand weed-

ing when 

needed 

Drainage 

before har-

vest 

       

       

Tillabery 

(Niger) 

  optimal density 

for transplanting 

Deep place-

ment of urea 

super granule 

Use of herbi-

cide to con-

trol weeds 

 

Annex 2: Components of GAPs in rainfed lowland sites 



 

 

 

Sites GAP components 

Land preparation Variety and 

seed 

Sowing method Fertilizer input Weed control Harvest 

Bo & 

Kenema 

(Sierra Le-

one) 

Construction of 

bunds around 

plot 

Variety ROK24 

tolerant to iron 

toxicity. 

1 kg seed 

soaked before 

nursery in 1g/L 

Zn solution 

 Incorporating 

2.5 t/ha rice 

husk 7 days 

before trans-

planting 

  

       

Glazoué 

(Benin) 

 Improved vari-

ety IR 841 

changed to 

early maturing 

drought tolerant 

NERICA L56 in 

the 2nd year 

 Basal: 200 

kg/ha NPK 

(14 23 14) 

latest 21 DAS, 

Top dress 1: 

75 kg/ha urea 

at PI 

Top dress 2: 

50 kg/ha urea 

at grain filling 

stage  

Post emer-

gence herbi-

cide (Garil) at 

4 leaves age 

of plants or 

latest 21 DAS, 

2 manual 

weeding when 

needed 

Drainage 

before har-

vest 

 

       

Nasarawa 

(Nigeria) 

  Transplant in 

rows at 17-21 

DAS, 2 seed-

lings per hill. 

Plant density: 

20 x 20 cm 

 

Basal: 18 

kg/ha P, 33 kg 

K/ha and 

Top dress: 

156 kg/ha pel-

leted urea 

 

Post emer-

gence herbi-

cide: Propanil 

and 2, 4 D at 

4 L/ha (post 

emergence) 

On-time herbi-

cide applica-

tion 

 

       

Sikasso 

(Mali) 

  Dibbling sow-

ing on line with 

20cm x 20cm 

with 3 grains 

per hill 

changed in the 

2nd year to drill-

ing sowing with 

a seeder on 

line with 20cm 

x 20cm by us-

ing 50 kg of 

seeds per ha 

Basal: 200 

kg/ha NPK 

(15-15-15) at 

14 DAS 

Top dress 1: 

50kg/ha urea 

at 18-22 DAS, 

Top dress 2: 

50kg/ha urea 

at 35-40 DAS 

  

       


