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ABSTRACT 

Crop pest and diseases are responsible for major economic losses in the agricultural 
systems in Africa resulting in food insecurity. Potential yield losses for major crops across 
Africa are mainly caused by pests and diseases. Total losses have been estimated at 70% 
with approximately 30% caused by inefficient crop protection practices. With newly 
emerging crop pests and disease, monitoring plant health and detecting pathogens early 
is essential to reduce disease spread and to facilitate effective management practices. 
While many pest and diseases can be acquired from another host or via the 
environment, the majority are transmitted by biological vectors. Thus, vector ecology 
can serve an indirect explanation of disease cycles, outbreaks, and prevalence. Hence, 
better understanding of the vector niche and the dependence of pest and disease 
processes on their specific spatial and ecological contexts is therefore required for 
better management and control.  

While research in disease ecology has revealed important life history of hosts 
with the surrounding environment, other aspects need to be explored to better 
understand vector transmission and control strategies. For instance, choosing 
appropriate farming practices have proved to be an alternative to the use of synthetic 
pesticides. For instance, intercropping can serve as a buffer against the spread of plant 
pests and pathogens by attracting pests away from their host plant and also increasing 
the distance between plants of the same species, making it more exigent for the pest to 
target the main crop. Many studies have explored the potential applications of 
geospatial technology in disease ecology. However, pest and disease mapping in crops 
is rather crudely done thus far, using Spatial Distribution Models (SDM) on a regional 
scale.  
Previous research has explored climatic data to model habitat suitability and the 
distribution of different crop pests and diseases. However, there are limitation to using 
climate data since it ignores the dispersal and competition from other factors which 
determines the distribution of vectors transmitting the disease, thus resulting in model 
over prediction. For instance, vegetation patterns and heterogeneity at the landscape 
level has been identified to play a key role in influencing the vector-host-pathogen 
transmission, including vector distribution, abundance and diversity at large. Such 
variables can be extracted from remote sensing dataset with high accuracy over a large 
extent. The use of remotely sensed variables in modeling crop pest and disease has 
proved to increase the accuracy and precision of the models by reducing over fitting as 
compared to when only climatic data which are interpolated over large areas thus 
disregarding landscape heterogeneity.When used, remotely sensed predictors may 
capture subtle variances in the vegetation characteristic or in the phenology linked with 
the niche of the vector transmitting the disease which cannot be explained by climatic 
variables. Subsequently, the full potential of remote sensing applications to detect 
changes in habitat condition of species remains uncharted. This study aims at exploring 
the potential behind developing a framework which integrates both ecological and 
remotely sensed dataset with a robust mapping/modelling approach with aim of 
developing an integrated pest management approach for pest and disease affecting 
both annual and perrennial crops and whom currently there is no cure or existing 
germplasm to control further spread across sub Saharan Africa.   



Herausforderungen und Möglichkeiten der Verwendung von 
ökologischen und Fernerkundungsvariablen für die Schädlings- und 
Krankheitskartierung 
 
KURZFASSUNG 

 

Pflanzenschädlinge und Krankheiten in der Landwirtschaft sind für große wirtschaftliche 
Verluste in Afrika verantwortlich, die zu Ernährungsunsicherheit führen. Die Verluste 
werden auf 70% geschätzt, wobei etwa 30% auf ineffiziente Pflanzenschutzpraktiken 
zurückzuführen sind. Bei neu auftretenden Pflanzenschädlingen und Krankheiten ist die 
Überwachung des Pflanzenzustands und die frühzeitige Erkennung von 
Krankheitserregern unerlässlich, um die Ausbreitung von Krankheiten zu reduzieren und 
effektive Managementpraktiken zu erleichtern. Während viele Schädlinge und 
Krankheiten von einem anderen Wirt oder über die Umwelt erworben werden können, 
wird die Mehrheit durch biologische Vektoren übertragen.  Daraus folgt, dass die 
Vektorökologie als indirekte Erklärung von Krankheitszyklen, Ausbrüchen und Prävalenz 
untersucht werden sollte. Um effektive Vektorkontrollmaßnahmen zu entwickeln ist ein 
besseres Verständnis der ökologischen Vektor-Nischen und der Abhängigkeit von 
Schädlings- und Krankheits-Prozessen von ihrem spezifischen räumlichen und 
ökologischen Kontext wichtig.  

Während die Forschung in der Krankheitsökologie wichtige Lebenszyklen von 
Wirten mit der Umgebung schon gut aufgezeigt hat, müssen weitere Aspekte noch 
besser untersucht werden, um Vektorübertragungs- und Kontroll-Strategien zu 
entwickeln. So hat sich beispielsweise die Wahl geeigneter Anbaumethoden als 
Alternative zum Einsatz synthetischer Pestizide erwiesen. In einigen Fällen wurde der 
Zwischenfruchtanbau als ‚Puffer‘ gegen die Ausbreitung von Pflanzenschädlingen und 
Krankheitserregern vorgeschlagen. Bei diesem Anbausystem werden Schädlinge von 
ihrer Wirtspflanze abgezogen und auch der Abstand zwischen Pflanzen derselben Art 
vergrößert (was eine Übertragung erschwert). 

Viele Studien haben bereits die Einsatzmöglichkeiten von Geodaten in der 
Krankheitsökologie untersucht. Die Kartierung von Schädlingen und Krankheiten in 
Nutzpflanzen ist jedoch bisher eher großskalig erfolgt, unter der Zunahme von 
sogenannten ‚Spatial Distribution Models (SDM)‘ auf regionaler Ebene. Etliche Studien 
haben diesbezüglich klimatische Daten verwendet, um die Eignung und Verteilung 
verschiedener Pflanzenschädlinge und Krankheiten zu modellieren. Es gibt jedoch 
Einschränkungen bei der Verwendung von Klimadaten, da dabei andere 
landschaftsbezogene Verbreitungs-Faktoren ignoriert werden, die die Verteilung der 
Vektoren und Krankheitserreger bestimmen, was zu einer Modell-Überprognose führt. 
Vegetationsmuster und Heterogenität auf Landschaftsebene beeinflussen maßgeblich 
die Diversität und Verteilung eines Vektors und spielen somit eine wichtige Rolle bei der 
Vektor-Wirt-Pathogen-Übertragung. Bei der Verwendung von Fernerkundungsdaten 
können subtile Abweichungen in der Vegetationscharakteristik oder in der Phänologie, 
die mit der Nische des Vektors verbunden sind, besser erfasst werden. Es besteht noch 
Forschungs-Bedarf hinsichtlich der Rolle von Fernerkundungsdaten bei der 



Verbesserung von Artenmodellen, die zum Ziel haben den Lebensraum von 
Krankheitsvektoren besser zu erfassen. Ziel dieser Studie ist es, das Potenzial für die 
Entwicklung eines Rahmens zu untersuchen, der sowohl ökologische als auch aus der 
Ferne erfasste Daten mit einem robusten Mapping- / Modellierungsansatz kombiniert, 
um einen integrierten Ansatz zur Schädlingsbekämpfung für Schädlinge und Krankheiten 
zu entwickeln, der sowohl einjährige als auch mehrjährige Kulturpflanzen betrifft Keine 
Heilung oder vorhandenes Keimplasma zur weiteren Verbreitung in Afrika südlich der 
Sahara.  
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1 GENERAL INTRODUCTION 

1.1 Context 

Agriculture is the main economic activity in sub-Saharan Africa (SSA), which supports 

more than 67% of the population. Development objectives for SSA, where rural 

population heavily depend on food production for their income, includes moving 

towards resource conservation and natural resource management while striving for 

higher agricultural production. This is aimed at increasing economic growth by 4-5 % 

annually to achieve food security and a modest standard of living provided for the 1.3 

billion people expected in the region by 2025 (World Bank 1989). Much of the 

vulnerability of African agricultural systems lies in the fact that its agricultural systems 

remain largely rain-fed and are under-developed as the majority of African farmers are 

small scale farmers with limited financial resources (Benin et al. 2016). Thus, given the 

projected rise in population in Africa, less costly innovations are needed that mutually 

benefit improved farming practices that enhance crop productivity. 

A wide range of naturally occurring biotic and abiotic constraints, including 

poor soil, water scarcity, inappropriate temperatures, crop pests, diseases and weeds 

are well known to reduce food crop productivity in Africa, leading to low input 

efficiencies, reduced crop output and ultimately food insecurity (Reynolds et al. 2015). 

Specifically, crop losses due to pests and disease accounts of up to more than 70 % in 

SSA. These values might extensively ascend under varying climatic conditions whereby 

new and more aggressive pests and diseases have been accounted for to influence the 

stability of crop yields thereby underming food security on the continent. For instance, 

the recent rapid spread of the voracious fall armyworm, Spodoptera frugiperda (J.E. 

Smith) (Lep.: Noctuidea), that has marched through Africa is causing a serious food crisis. 

However, it is not possible to make estimates on overall potential crop losses due to 

climate change. This is partly due to the unexpected adaptation of certain pests to a 

changing environment that creates uncertainties, thus increasing levels of 

unpredictability of spatial and temporal interaction between weather, cropping system 

and pest’s abundance (Chakraborty and Newton 2011).  
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Mitigation measures demands for better understanding of pests and diseases 

habitats and dispersal pattern which is widely affected by a range of environmental 

variables at varying scales. For instance, at regional scale the suitability is majorly 

influenced by climate while at landscape level, climate suitability is modified by land use, 

land cover and topography. Suitability is further modified at local scales by vegetation 

and micro topography (Pearson and Dawson 2003). Morever, recent research has 

further linked pest and disease infestation rates to cropping patterns. A good example 

is the push-pull system technology which entails inter-cropping of repellent and 

attractant crops for insect pest control. The attractant crop draws the insect in (acts as 

the “pull”), whereas the repellent crop deters the insect (acts as the “push”). The push-

pull system that was developed in Africa to protect maize from lepidopteran stemborers 

by planting a grass that is more attractive to the moths as a border and planting a 

repellent legume crop between the rows of maize (Khan et al. 1997).  

In addition, inter-cropping has also been used as a buffer against the spread of 

plant pests and pathogens by increasing the distance between plants of the same 

species, making it more exigent for the pest to target the main crop (Nyasani et al. 2012; 

Songa et al. 2007). Thus, cropping systems are an important variable in control and 

management of pest and disease in Africa. Moreover, useful baseline information feed 

to monitor and understand seasonal cropping pattern changes as a function of climatic 

variability and climate change in Africa are needed. This information, especially if linked 

with yields and crop pest and disease infestation levels, may be very useful for better 

agricultural risk projections in future. 

Besides, the land surface temperature (LST) is a well-known parameter that 

majorly influences pest and disease distribution because of their temperature 

dependence (Marinho et al. 2016; Pearsall and Myers 2001). Ground temperature is 

measured through point measurements that contribute to high spatial variability 

because the locations of ground data stations are generally very sparse in SSA. Contrary 

to this, the usage of remote sensing to retrieve LST can compensate spatial resolution 

of LST measurements derived through ground observations with less man-power and at 

lower cost. Several studies have shown the benefits of using remote sensing derived LST 

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1570-7458.2011.01217.x#b36
http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=spatial+variability
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in monitoring insect pests over the conventional use of temperature retrieved from 

ground weather stations which includes a higher spatial and temporal resolution and 

reasonable accuracies. A god example is MODIS LST which has high spatial 

characteristics to capture the spatial variability of temperature within a finer scale in 

comparison to ground weather station. 

In Africa, the majority of insect pests are often monitored using direct field 

survey methods such as scouting and checking the plants for any damage symptoms. 

These techniques are essentially time-consuming, tiresome, costly and biased since only 

a few sites within the fields are sampled (Bock et al. 2010; Newton and Hackett 1994). 

Sometimes it happens that by the time ground survey is completed the damage area has 

already changed. Thus, complementary and synoptic pest monitoring procedures that 

allow the implementation of site-specific practices are required. 

In this context, remote sensing is capable of offering synoptic, timely, accurate 

and relatively inexpensive data that can be utilized to provide explicit overviews of 

specific pest and disease distribution and damage or infestation level at field level. Also, 

remote sensing allows a wide-area insect pest and disease monitoring approach which 

is less spotty and spatially more effective and coherent compared to point-specific field-

based survey methods (Paul et al. 2003; Abdel-Rahman et al. 2004). Further, state of the 

art remote sensing techniques can be utilized to derive vegetation phenology variables 

from remotely sensed data that offer fine scaled vegetation dynamics information for 

prediction of pests and diseases. This offers great opportunity of linking remotely sensed 

and bioclimatic variables to provide an operational system for monitoring long term 

changes related to the spread of pests and disease in relation to a landscape context 

(Makori et al. 2017). 

Further, remote sensing offers great potential to carry out damage assessment 

promptly, with extensive accuracy and eliminating bias. If sensors are sufficiently 

sensitive to the spectral signature of a pest or disease, it may be possible to detect the 

crop damage at an early stage and monitor the same. Pests and diseases cause the 

damage to the crop in different ways. Insects with chewing and biting mouthparts often 

feed on leafy portion of plants, causing distinctive symptoms like defoliation. This 
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reduces the green biomass present on the plants. By contrast, insects with sucking 

mouthparts suck the cell sap from the leaves, causing shriveling and deformation of 

leaves resembling water stress damage. This characteristic damage may cause changes 

in reflectance and therefore be visible on satellite images. It should be possible to 

quantify damage with additional ground truth calibration. Once the damage is noticed 

it is possible to monitor the pest. In this way it would be possible to provide early 

warning information to areas where the pest is likely to advance. This helps to take 

preventive measures against the pest. Compared to ground surveys, remote sensing is 

cheap and availability of high-resolution satellite images in recent years has also helped 

to improve accuracy. 

With escalating population pressure throughout the world and the need for 

increased agricultural production, this research sought to explore the opportunities and 

challanges of using ecological and remote sensing data for extracting significant 

constraints related to pest and disease ecology such as cropping systems which has not 

been explored before especially in heterogenious landscapes in Africa. In addition, the 

study further highlights the opportunies of improving pest and disease habitat suitability 

modelling with inclusion of vegetation productivity and landscape context perspective 

in relation to disease occurance and finally mapping the diease damage levels to ensure 

that timely mitigation strategies are put in place. The methodology was tested in Kenya 

for two diseases affecting both annual and perrenial crops for which there is presently 

no real resistance in the existing germplasm.  These include maize lethal necrosis disease 

(MLN) affecting maize (annual crop) and the African Citrus greening disease (ACGD) 

greatly affecting citrus (perrenial crop) production in Africa and beyond. This research 

contributes to improved crop productivity by providing a robust modeling approach 

towards enhanced monitoring of ecological pattern, distribution and damage levels 

mapping of pests and diseases in both annual and perrenial crops. 
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1.2 Objectives of the study 

The overall goal of this study is to explore the challenges and opportunities of using 

ecological and remote sensing-based variables for crop pest and disease mapping in 

both annual and perennial crops. The specific objectives of the study are: 

1. To map maize cropping systems using RapidEye observations in highly 

fragmented agro-ecological landscapes in Kenya. 

2. To establish an ecological niche modeling approach for predicting the spatial 

distribution of African citrus triozid, the main vector of ACGD in Africa. 

3. To investigate the impact of cropping systems on maize lethal necrosis severity 

using multi-spectral high to moderate resolution satellite imagery. 

1.3 Outline of the study 

 
This thesis is divided into five chapters.  
 
Chapter 1 provides a broad introduction, background and the rationale of the study. It 

also outlines the objectives and the expectations of the study. 

Chapter 2 presents the results of mapping maize cropping systems using rapidEye 

observation in Kenya as one of the important variables in numerous crop productivity 

models. 

Chapter 3 outlines how remotely sensed vegetation phenological metrics variables 

could potentially improve the habitat suitability mapping of the African citrus triozid 

(ACT) transmitting ACGD on citrus crops in an heterogenious landscape of Kenya. The 

chapter also compares the extracted habitat suitability of ACT with the surrounding 

landscape context based on dispersal characteristics of the pest to understand the role 

of land use, landcover in disease transmission and survival of the vector. 
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Chapter 4 explores the possibilities of mapping maize lethal necrosis disease damage 

levels by combining two acquisations of RapidEye imagery with resampled Landsat 8 

using hierachial random forest classification algorithm. 

Chapter 5 summarises and highlights the key finding of the research and links these to 

draw final conclusions on applicability of remote sensing variables understanding of pest 

and disease ecology for better and timely mitigation measures. Finally, important 

research gaps for future research areas are also suggested.
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2 MAIZE CROPPING SYSTEMS MAPPING USING RAPIDEYE OBSERVATIONS IN 

AGRO-ECOLOGICAL LANDSCAPES IN KENYA  

 

     This chapter has been published as Kyalo et al. (2017) Sensors 17(11): E2537 

 

2.1 Abstract  

Cropping systems information on explicit scales is an important but rarely available 

variable in many crops modeling routines and of utmost importance for understanding 

pests and disease propagation mechanisms in agro-ecological landscapes. In this study, 

high spatial and temporal resolution RapidEye bio-temporal data were utilized within a 

novel 2-step hierarchical random forest (RF) classification approach to map areas of 

mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos 

County, Kenya was used as a study site. Within the study site, field data was collected 

during the satellite acquisition period on general land cover/land use and the two 

cropping systems. Firstly, non-cropland areas were masked out from other land use/ 

land cover (LULC) using the LULC mapping result. Subsequently an optimized RF model 

was applied to the cropland layer to map the two cropping systems (2nd classification 

step). An overall accuracy of 93% was attained for the LULC classification While the class 

accuracies (PA: producer’s accuracy, and UA: user’s accuracy) for the two cropping 

systems were consistently above 85%. We concluded that explicit mapping of different 

cropping systems is feasible in complex and highly fragmented agro-ecological 

landscapes if high resolution and multi-temporal satellite data such as 5-meter RapidEye 

data is employed. Further research is needed on the feasibility of using freely available 

10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important 

variable in numerous crop productivity models. 

 

2.2 Introduction 

Agro-ecological systems in Africa are particularly vulnerable to climate variability and 

climate change due to their over dependence on rainfall (Rockstrom 2003). The 

particular cropping system used by farmers is often a key determinant in climate-smart 
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agriculture concepts and crop diversification and livelihoods strategies (Mersha and Van 

Laerhoven 2016). While information about cropland extents or crop acreages are 

increasingly available and being used in food supply projections (Edgerton 2009), explicit 

information about the actual cropping systems is largely not utilized or available. This 

leads to significant uncertainties of crop production models  and ultimately in food 

security projections for Africa (Antle et al. 2016).  

The cropping system is defined as the planting sequence of crops applied to an 

agricultural area or field over a certain period. In agronomical terms, an agricultural field 

can be mono-cropped, inter-cropped, relay cropped, mixed-cropped or under crop 

rotation (i.e. planting different crops in sequential years) (Panigrahy et al. 2005). Mixed-

cropping is a common practice on small scale farms in developing countries like Kenya. 

In Kenya, maize (Zea mays L.) is the staple food, and it is common to find it mixed with 

bean (Phaseolus vulgaris L.) (Callaghana et al. 1994). The degree of mixed cropping is 

often determined by the need for diversification against a backdrop of increased climate 

variability and the need to increase soil fertility and soil moisture regimes to sustain or 

increase crop productivity (Wang et al. 2014). In this study, we define mixed cropping 

specifically as maize grown in a spatial arrangement with other leguminous crops on the 

same field within the same growing season and mono-cropping as maize grown as a 

single crop within the same time frame and field. 

High and medium spatial resolution satellite data have been widely used for 

agricultural land use mapping in different agro-ecological zones in Africa and beyond 

(Forkuor et al. 2015; Sibanda and Murwira 2011). However, many studies alluded to the 

challenges of accurately mapping crops and cropping systems in Africa on a landscape 

scale primarily due to the small scale and highly fragmented nature of cropping patterns 

as well as their intra- and inter-annual dynamics (Forkuor et al. 2014). The temporal and 

spatial highly variability of cropping systems is often a result of incoherent farmers 

decisions (the planting date often varies from one season or year to the next) and other 

localized and hard to quantify socio-economic factors (Woomer et al. 1997). Moreover, 

rain fed crops are largely indiscriminate from some natural vegetation communities such 

as grassland during the wet or growing season when both (the crops and some natural 
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vegetation types) have the same phenological growing cycles (Conrad et al. 2011a). 

Thus, landscape scale crop mapping mechanism using medium resolution data such as 

30-meter Landsat, a frequently used type of dataset for crop mapping in Africa (Roy et 

al. 2010), has resulted in high spectral heterogeneity and poor mapping results (Husak 

et al. 2008). Essentially, remotely sensed data can provide spatially coherent 

information only on crop acreage and crop vitality on landscape scales with an 

advantage over traditional conventional surveying methods that are often tedious and 

costly (ineffective), especially if crop assessments are performed over larger areas 

(Conrad et al. 2011b).  

Relatively newly available 5-meter RapidEye data are suitable for crop mapping 

in highly fragmented and dynamic landscapes because of the higher and enhanced 

geometrical resolution of the satellite system, particularly in small-scale farming systems 

in Africa where the size of field is relatively small (≤ 1.25 ha) (Cord et al. 2010; Forkuor 

et al. 2015; Forkuor et al. 2014a). The enhanced spectral resolution of RapidEye data in 

the red-edge waveband domain, for instance, allows for significantly enhanced land use 

classification and improved crop discrimination. This could be due to strong correlations 

between the vegetation spectral features at the red-edge band and chlorophyll content 

and also the sensitivity of the red-edge band to differences in leaf structure (Eitel et al. 

2011; Schuster et al. 2012; Tigges et al. 2013). Combined with state-of-the-art and 

hierarchical classification approaches using robust machine learning classification 

algorithms and RapidEye data from different time steps, including their derived 

vegetation indices, explicit and permissible accurate crop type mapping results even in 

complex African landscapes can be generated (Forkuor et al. 2015; Forkuor et al. 2014a). 

Various types of non-parametric machine learning classification methods like random 

forest (RF) have been successfully applied to mapping crops in Africa (Conrad et al. 

2011b; Forkuor et al. 2015).   

Mulianga et al. (2015) characterized cropping practices (crop type and harvest 

mode) of sugarcane-based cropping system in Kenya using re-sampled 15-meter multi-

temporal Landsat dataset and a maximum likelihood classifier. However, sugarcane is 

usually grown on large-scale commercial and homogeneous fields that can be easily 
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discriminated (Abdel-Rahman and Ahmed 2008). To the best of our knowledge, no study 

has yet attempted to map maize-cropping systems in heterogeneous landscapes in 

Africa and, moreover, no study is known that utilized RapidEye time-series data and 

machine learning classification approach in this regard. Accordingly, the main objective 

of the study was to examine the utility of random forest (RF) classifier and new-

generation RapidEye imagery with enhanced waveband coverage in the red-edge 

spectral region for cropping systems mapping. Specifically, we aimed to develop a (semi-

automated) processing scheme to find the optimal RF model parameters by analyzing 

the relative model contribution of the RapidEye spectral indices and individual 

waveband regions (bands) for crop systems mapping. Having information on the spatial 

distributions of maize systems would ultimately help to better understand factors that 

contribute to crop productivity and farm or field level yield variability (Ramert et al. 

2002). 

 

2.3  Study area 

The study area is in Machakos County, about 100 km south-east of Nairobi in Kenya 

(Figure 2.1). The study area lies between the latitudes 1°17'53.71" S and 1°31'8.54" S 

and between the longitudes of 37°28'15.79" E and 37°40'33.43" E. The total study area 

covers about 677 km2 with elevation ranging from 400 to 2100 m above mean sea level 

(MAMSL). The climate is semi-arid with a highly variable rainfall regime distributed over 

two rainy seasons, hence two cropping seasons namely the short rain season and the 

long rain season. Short rains occur from November to January, and long rains from 

March to June with an average rainfall ranging from 500 to 2000 mm (mean annual 

precipitation) and a mean annual maximum temperature of 28°C (Bryan et al. 2013).  

The most widespread vegetation type in Machakos is semi-arid deciduous 

thicket and bush land, dominated by Acacia spp. (Fabaceae) and Commiphora spp. 

(Burseraceae). In drier locations below the elevation of 900 m, thorn bush grades into 

semi-desert vegetation. Moreover, arable land covers about 64% of the total landmass 

of the study area (Mwangi and Mundia 2014), with mixed cropping regularly practiced 

in this region (Woomer et al. 1997). The most prevalent crops in the region are maize, 
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bean, pigeon pea, and cowpea. Maize and bean in most cases are mixed in the long rainy 

season, while cowpea is mainly mixed with maize and bean in the short rainy season. 

Recent uncertainties in rainfall patterns have encouraged mixed cropping with majority 

of farmers mixing maize with bean (Macharia 2004). In addition, irrigated farming is also 

practiced in locations neighboring the Athi River to facilitate small-scale cultivation of 

vegetables, tomatoes and chili peppers.  

 

Figure 2.1    Locations of the study area in Machakos County, Kenya, with the dark blue 
polygon showing the study area. Grey lines illustrate sub-county 
boundaries. 

 
2.3.1 Methodology 

Figure 2.2 summarizes our methodological approach for mapping the two cropping 

systems (mono- and mixed cropping). Basically, we employed a 2-step hierarchical 

classification approach to map the maize cropping systems using bi-temporal RapidEye 

data and the RF classification algorithm. In the first step, we produced a general land 

use/ land cover (LULC) classification map to separate cropland from non-cropland in 
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order to reduce the data complexity for subsequent classification (Forkuor et al. 2014a). 

In the second step, we classified the extracted crop mask into two cropping systems (viz. 

mono- and mixed cropping). 

 
Figure 1.2         Flow chart of the hierarchical classification approach using random forest 

(RF) classifier and Bi-temporal RapidEye data. 
 
2.3.2 Image acquisition and preprocessing 

Two RapidEye images were acquired for the study area on the 3 January 2015 and the 

27 January 2015, during the maize stem elongation (RE1) and flowering (RE2) crop 

phenological development stages, respectively. These two maize phenological 

development stages are characterized using the BBCH (Biologische Bundesanstalt, 

Bundessortenamt und Chemische Industrie) scale (Lancashire et al. 1991). The images 

were acquired at two different acquisition windows to assess the effect of crop 

phenology (the crop life cycle) on mapping cropping systems with an assumption that 
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the spectral features of the crops (mainly bean and cowpea) that are mainly planted 

with maize are distinguishable during the maize flowering stage. 

RapidEye provides images with spatial resolution of 5 m and five spectral bands 

(wavelength regions) which are located at blue (440-550 nm), green (520-590 nm), red 

(630-685 nm), red-edge (690-730 nm) and near infrared (760-850 nm) regions of the 

electromagnetic spectrum. The RapidEye Ortho product (Level 3A) was utilized. To 

retrieve surface reflectance, atmospheric correction was applied using the atmospheric-

topographic correction (ATCOR3) software to remove haze and other atmospheric 

interferences. ATCOR3 is an extension of model ATCOR2 that permits extended three-

dimensional topographic corrections by inclusion of digital elevation model (DEM) data 

to remove illumination difference due to topography effects (Richter 1997). Parameters, 

such as satellite azimuth, illumination elevation, azimuth and incidence angle, which are 

used for atmospheric corrections, were obtained from respective metadata files for 

each image. To reduce illumination effects caused by the terrain on RapidEye imagery, 

topographic corrections were performed using Shuttle Radar Topographic Mission 

(SRTM) digital elevation (DEM) data. The 30 m SRTM DEM data, used in topographic 

correction processes, were re-sampled to 5 m pixel resolution using a bilinear 

interpolation technique. Due to different date and time acquisitions of each tile in the 

RapidEye mosaic, a tile specific stepwise normalization technique using multivariate 

alteration detection (IMAD) was used to normalize the tiles via a central normalization 

reference tile. The image data sets were geo-referenced to Universal Transverse 

Mercator (UTM, zone 36 south).     

Subsequently, mosaicking was applied on all the co-registered normalized tiles 

and two mosaics having a size of ~ 61 by 61 km each were produced initially. To align all 

the corresponding pixels, the two mosaicked images were co-registered to each other 

using image-to-image co-registration to ascertain the alignment of corresponding pixels. 

Finally, regions that were covered by clouds have been masked out. We utilized 30 

vegetation indices calculated from each RapidEye data set (Table 2.1) together with the 

respective five RapidEye bands as input into the RF classification algorithm. The inclusion 

of vegetation indices that are related to vegetation biochemical and biophysical traits 
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like chlorophyll activity and leaf area index, together with the individual spectral bands, 

has proved to significantly improve crop classification accuracies in heterogeneous 

landscapes (Forkuor et al. 2014a). 

 

2.3.3 Field data collection 

A field campaign was conducted within three days from the first image acquisition date 

(3 January 2015) to collect reference data on croplands which in our study area are solely 

mono- and mixed maize cropping systems. Further, field data were collected on non-

cropland, which are composed of water bodies, artificial surfaces and natural 

vegetation. A stratified random sampling was followed to collect the reference data. A 

handheld Global Positioning System (GPS) device with an error of ±3 m was used to 

locate the reference control points. Once a field was identified, we delineated the field 

boundaries (polygon) within a minimum area of 30 by 30 m. To avoid the edge effect, 

we collected the polygon data five meters away from the edge of each field. Geo tagged 

photographs of each cropping system in the sample fields were taken from the main 

four cardinal directions and from the center of the fields for further inspections of the 

cropping systems and crop age. To mitigate the effect of soil background on the crops’ 

spectral features, we only sampled maize fields (mono- and mixed cropping systems) 

that were about three weeks old at the first image acquisition date. The reference data 

were randomly divided into 70% training and 30% validation set. The training set was 

used to train the RF classifier while the validation dataset was used to evaluate the 

accuracy. 
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Table 2.1 Spectral vegetation indices used in the study. Source information is given in the last column. 

Name Index Formula Reference 

Canopy Chlorophyll Content Index CCCI ((RNIR– Rred_edge)/(RNIR +  Rred_edge))/((RNIR– Rred)/(RNIR + Rred)) (El-Shikha et al. 2008) 

Normalized Difference Red edge NDRE (RNIR– Rred_edge )/(RNIR + Rred_edge) (Basso et al. 2011) 

Transformed Soil Adjusted Vegetation 
Index 

TSAVI B(RNIR– B ∗  Rred − A)/(Rred +  B(RNIR − A) + X(1 + B2)) (Strachan et al. 2002) 

Soil Adjusted Vegetation Index Red 
Edge 

SAVI-edge 1.5 ∗ (RNIR– Rred_edge)/(RNIR +  Rred_edge + 0.5)  

Leaf Chlorophyll Index LCI (RNIR– Rred_edge )/(RNIR + Rred) (Pu et al. 2008) 

Soil Adjusted Vegetation Index SAVI 1.5 ∗ (RNIR– Rred)/(RNIR +  Rred + 0.5) (Roujean and Breon 1995) 

Normalized Difference Vegetation 
Index 

NDVI (RNIR– Rred )/(RNIR +  Rred) (Tucker 1979) 

Difference Vegetation Index DVI RNIR– Rred (Tucker 1979) 

Rationalized Normal Difference 
Vegetation Red-Edge Index 

RNDVI-edge (RNIR– Rred)/(RNIR– Rred)1/2 (Roujean and Breon 1995) 

Simple Ration SR RNIR/ Rred (Birth and McVey 1968) 

Chlorophyll Green Chlgreen (RNIR– Rgreen )
−1 (Gitelson et al. 2006) 

Chlorophyll Red-Edge ChlRed-edge (RNIR– Rred_edge )
−1 (Gitelson et al. 2006) 

Green Normalized Difference 
Vegetation 

GNDVI (RNIR– Rgreen )/(RNIR + Rgreen) (Huang et al. 2007) 

Simple Ratio 672/550 Datt5 SR672/550 Rred/ Rgreen (Datt 1998) 

Simple Ratio 695/670 Carter 5 Ctr5 Rred_edge/ Rred (le Maire and Francois 
2004) 

Simple Ratio 710/760 Carter 4 Ctr4 Rred_edge/ RNIR (le Maire and Francois 
2004) 

Wide Dynamic Range Vegetation Index WDRVI (0.1RNIR– Rred_edge )/(0.1RNIR +  Rred_edge) (Ahamed et al. 2011) 

Enhanced Vegetation Index EVI 2.5 ∗ (RNIR– Rred)/(RNIR + 2.4Rred+1) (Ahamed et al. 2011) 
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Notes: Rblue, Rgreen, Rred, Rred_edge and RNIR are surface reflectance value at blue (band1) green (band2), red (band3), red-edge (band4) 

and near infrared (band5) of RapidEye. The parameters for TSAVI slope of the soil line (A) = 1.2 and intercept of the soil line (B) = 0.04 

and adjustment factor (X) = 0.08 

 

Modified Chlorophyll Absorption Ratio 
Index 

MCARI ((RNIR– Rred ) − 0.2(Rred_edge + Rgreen))( Rred_edge/ Rred) (Hunt jr et 
al. 2011) 

Rationalized Normal Difference Vegetation 
Index 

RNDVI (RNIR– Rred_edge)/(RNIR– Rred_edge)1/2  

Disease Water Stress Index DSWI-4 Rgreen/ Rred (Apan et al. 
2003) 

Modified Chlorophyll Absorption Ratio 
Index 

MCARI   

Structure Intensive Pigment Index 3 SIPI3 (RNIR– Rblue )/(RNIR +  Rred) (Blackburn 
1998) 

Anthocyanin Reflectance Index ARI-edge (1/ Rgreen ) − (1/ Rred_edge) (Gitelson et 
al. 2001) 

Disease Water Stress red-edge Index DSWI-edge   

Structure Intensive Pigment Index 2 SIPI2 (RNIR– Rblue )/(RNIR +  Rred_edge) (Blackburn 
1998) 

Enhanced Vegetation Index red-edge2 EVI-edge2 2.5 ∗ (RNIR– Rred_edge)/(RNIR +  2.4Rred_edge +1)  

Transformed Soil Adjusted Vegetation 
Index Red-Edge 

TSAVI-edge B(RNIR– B ∗ Rred_edge − A)/(Rred_edge +  B(RNIR − A) + X(1 + B2))  

Difference Vegetation Index red-edge DVI-edge RNIR– Rred_edge  

Green Leaf Index GLI 2(Rgreen– Rred– Rblue)/2(Rgreen +  Rred +  Rblue) (Hunt jr  et 
al. 2011) 
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2.3.4 Variable importance measure and classification 

A supervised machine learning RF classification algorithm (Breiman 2001) was used to 

classify the bi-temporal RapidEye image data. RF is considered a robust and efficient 

classification approach for crop mapping using high spatial resolution satellite data like 

RapidEye, especially within heterogeneous landscape (Forkuor et al. 2014). It has the 

potential to handle noisy and highly correlated predictor variables, which commonly 

occur in remotely sensed data (Curran and Hay 1986). In particular, RF is an ensemble 

modeling technique, developed by Liaw and Wiener (2002) to improve the classification 

and regression trees (CART) by combining a large set of decision trees. Each tree in the 

RF ensemble is built from a bootstrapped random sample containing approximately 

two-thirds of the training data drawn with replacement. The remaining one third of the 

data that is not included in the bootstrapped training sample, i.e. the out-of-bag (OOB) 

samples, is used to internally evaluate the classification performance. RF classifier uses 

two user-defined parameters (ntree and mtry). To improve the classification accuracy, 

the number of trees (ntree) grown and variables used at each tree split (mtry) were 

optimized based on the OOB error rate with a grid search and a tenfold cross validation 

method (Waske et al. 2009). The number of optimal trees (ntree) was searched between 

500 to 2,500 using a 500 interval, while the optimal mtry was searched on the mtry 

vector of a multiplicative factor with the default mtry being the square root of the total 

number of spectral variables (indices and/or bands) (Breiman 2001). The ensemble 

measures the importance of each spectral variable used in the classification by utilizing 

the permutation of variables which calculates variable importance as the mean decrease 

in classification accuracy using the OOB samples. 

To select the optimal combination of spectral variables that achieved 

significant accuracies from the important variables returned by RF classification model 

using the OOB error rate, we used the RF backward feature elimination method using 

the “varSelRF” package (Diaz-Uriarte 2017) in R statistical software (R core 2013)   for 

the level 2 of distinguishing the two maize cropping systems. To select the most relevant 

spectral variables without any over-fitting, a .632+ bootstrap method with a leave-one-

out cross-validation procedure and replacement from samples that are not part of the 
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RF classification was applied (Efron and Tibshirani 1997). The optimum numbers of 

spectral variables selected were employed to produce the final cropping systems map. 

Finally, a 3 × 3 post-classification majority filter was applied to spatially smooth the 

classified images’ dominant classes so as to reduce salt-and-pepper effects in the 

classification output map. 

 

2.3.5 Accuracy assessment 

A confusion matrix was constructed to assess the accuracy of the classified maps using 

the overall accuracy (OA), producers’ accuracy (PA) and users’ accuracy (UA). The most 

recently proposed allocation  quantity (QD) and allocation (AD) disagreements (Pontius 

and Millones, 2011) were also calculated from the classification confusion matrix to 

evaluate the reliability of the classification map and to measure the agreement between 

the predicted classification features and the reference field data (OOB samples). Class-

wise accuracy assessment was performed for each class using F1-score (Schuster et al. 

2012). This measure represents the harmonic between PA and UA for each class i as 

follows: 

 

 (𝐹1)𝑖 =
2 × 𝑃𝐴𝑖 × 𝑈𝐴𝑖

𝑃𝐴𝑖 + 𝑈𝐴𝑖
                                                                                                       (2.1) 

 

The advantage of using the F1 score for class accuracy evaluation is to give equal 

importance to both precision and recall, by combining PA and UA into a fused measure. 

 

2.4 Results 

2.4.1 Parameterization of the random forest classifiers 

The RF grid search with tenfold cross validation method indicated that ntree value of 

1,000 combined with mtry value of 5 was optimal for classifying general land use and 

land cover (LULC) classes (Figure 2.3a) to separate cropland from non-cropland. On the 

other hand, the mtry value of 15 combined with ntree value of 2,000 resulted in the 

lowest OOB error rate of 0.18% for classifying the mono- and mixed maize cropping 

systems as shown (Figure 2.3b).  
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Figure 2.2       Random forest mtry and ntree optimization grid for the land use land cover 
(LULC) classification result (a) and for the mono- and mixed maize 
cropping systems mapping result (b) using the internal out-of-bag (OOB) 
error rate of RF resulting from a grid search with a tenfold cross validation 
setting. 

 
2.4.2 Spectral variable importance for crop systems mapping 

The backward variable selection method, applied on the RF variable importance ranking, 

resulted in selecting 15 RapidEye spectral variables (Figure 2.4) that were found to be 

the most relevant for mapping mono- and mixed maize cropping systems after crop 

masking. Using the LULC map result (Figure 2.3) Nine and six spectral variables, 

respectively, were selected as important variables from the two RapidEye images, 

captured during the stem elongation and the flowering development stages, 

respectively (Figure 2.4). Moreover, most of the selected variables from both 

observation periods were the RapidEye spectral wavebands themselves. In general, all 

five RapidEye bands (blue, green, red, red-edge and near infrared) were selected as 

useful spectral features for classifying the two maize cropping systems, while only five 

indices (RE1_NDVI, RE1_NDRE, RE2_DVIedge, RE1_LCI and RE1_SIPE3) were useful for 

separating different maize cropping systems (Figure 2.4).    
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Figure 2.3 Mean Decrease in Accuracy of the 15 most important input variables that 

were selected using the random forest backward feature elimination 
function and the .632+ bootstrapping function on importance ranking. 

 
2.4.3 Maize cropping systems mapping  

Visual interpretation of the RF capability to separate the two mapped classes (mono 

cropping and mixed cropping) using a multidimensional class separability proximity 

matrix indicate that the majority of the pixels are generally well separable as shown 

Figure 2.5. 
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Figure 2.4 Random forest class separability proximity matrix using multidimensional 

scaling (MDS); Dim 1 refers to dimension 1 and Dim 2 to dimension 2. 
 
The final thematic cropping systems map produced via the RF algorithm is shown in 

Figure 2.6. It shows that mixed-cropped fields are mostly present in the middle and 

towards the north-eastern part of the study area which is characterized by a lower 

altitude (around 1100 MAMSL.), while most of the mono-cropped fields are found in the 

south-western part of the study area at a mean altitude of 2000 MAMSL. Mono cropped 

fields in the higher lying areas in the range of 1400-2000 m above sea level appeared 

larger and less scattered (fragmented) than those on mixed cropping in the lower areas 

with elevation below 1400 m (Figure 2.6). 
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Figure. 2.5 Maize cropping systems classification map obtained using the proposed 

classification scheme (Figure 2.2). The two inserts, as black and blue 
squares, illustrate two contrasting areas in terms of cropping systems.  

 
2.4.4  Classification accuracies  

To understand the accuracies of the cropping systems map (level 2 classification) that 

uses the cropland mask extracted from LULC result (level 1 classification), the accuracies 

of LULC map are herein reported. The main results of the accuracy assessment for the 

hierarchical level 1 LULC classification are summarized in Table 2.2 for the three 

different combinations which included the RE bands, RE band with all vegetation indices 

and RF selected spectral variables (bands and vegetation indices). The most accurate 

LULC mapping result was obtained from the most important selected vegetation indices 

and spectral bands listed in Figure (2.4) using RF backward selection criteria with an 

overall accuracy of 93.2% and a kappa coefficient of 0.91. Table 2.3 presents the per-

pixel evaluation confusion matrix for the LULC map. Individual accuracies (PA and UA) 

were consistently over 87% with F1-score averagely above 0.88 for all classes (Table 2.3). 

This suggests a very good concealment of croplands from other LULC classes regardless 

of cropland being slightly confused with the natural vegetation class. 
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Table 2.4 summarizes classification accuracies for three classifications 

calibrated for mapping the two maize cropping systems (level 2 classification). The 

optimized RF cropping system mapping result using only the most relevant spectral 

variables selected by RF gave an overall accuracy of 85.7% (kappa coefficient of 0.84) 

whereas the non-optimized result, using all RapidEye bands and the vegetation indices, 

gave a lower overall accuracy of 73.4%. In addition, individual PA and UA for the 

optimized RF result (Table 2.5) were consistently above 84% for both classes with a low 

QD score of 1% and a relatively high AD score of 13% for both cropping systems, 

respectively.  

 
Table 2.2 Overall accuracies and kappa coefficient of agreement for the Land Use Land 

Cover classification. 

 

Table 2.3. Random forest classification confusion matrix for the land use/ land cover 
classes (Level 1) using the 15 most important RapidEye spectral variables and 

30% of the reference data. 

 

Analysis Overall accuracy (%) Kappa coefficient 

RE (bands) 87.46 0.86 

RE (bands)+All RE_veg indices 86.41 0.84 

RF selected spectral variables 93.20 0.91 

Class Artificial 
Surface 

Cropland Natural 
Vegetation 

Water 
Bodies 

Total UA (%) 
 

F1 
Score 

Artificial 
Surface 

904 23 0 18 945 96.48 0.96 

Cropland 11 845 89 0 945 87.84 0.89 

Natural 
Vegetation 

0 94 851 0 945 90.53 0.90 

Water Bodies 22 0 0 923 945 98.09 0.98 

Total 937 962 940 941 3780   

PA (%) 95.66 89.42 90.05 97.67    

OA (%) 93.20       
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Table 2.4. Overall accuracies and kappa coefficient of agreement for the two maize 

mono- and mixed cropping systems. 

 
Table 2.5  Random forest classification confusion matrix for mapping cropping systems 

using the most important 15 RapidEye spectral variables and 30% of the 
reference data.   

 

2.5 Discussion 

The classification results from this study demonstrated the usefulness of the bi-temporal 

RapidEye imagery and RF classification tool for mapping the two major maize cropping 

systems in heterogeneous agro-ecological landscapes. This demonstrates the capability 

of high spatial resolution data with better spectral coverage such as RapidEye to 

distinguish different cropping systems, given both the size and shape of fields in African 

agro-ecological systems. The two images could have captured the spectral 

(phenological) profiles of the two cropping systems and resulted in a better 

discriminatory power between the two cropping systems (Forkuor, 2014b). In addition, 

Analysis  Overall accuracy (%) Kappa coefficient 

RE (bands)  80.24 0.77 

RE (bands) + All RE_veg indices  73.38 0.70 

RF selected spectral variables                  85.71 0.84 

Class Mono Cropping Mixed Cropping Total UA (%) 

Mono maize cropping 486 74 560 84.97 

Mixed maize cropping 86 474 560 86.50 

Total 572 548 1120  

PA (%) 86.79 84.64   

OA (%) 85.71    

QD (%) 1.00    

AD (%) 13.00    
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RF selected NDVI from the first RapidEye acquisition (RE1) among the most significant 

variable in separating the two cropping systems. This could be due to the fact that at the 

stem elongation phenological development stage, mono- and mixed cropping systems 

are easily distinguishable, while at the flowering phenological growth stage the two 

cropping systems seem to have similar morphological and spectral properties (Zhang et 

al. 2012). We observed that the most important spectral indices selected by RF from the 

two acquisitions are commonly related to plant biophysical properties such as Leaf Area 

Index (LAI) and net primary productively (Kim and and Yeom 2015). It is expected that 

mono- and mixed maize cropping systems can differ considerably in these traits since 

mono-cropped maize is known to exhibit a lower LAI especially during the flowering 

stage than maize mixed with legumes (among other factors, largely due to the absence 

of bare soil) (Sun et al., 2014). It is interesting to note that the RE2_NDVI was not 

amongst the selected most important variables. That could be due to fact that the 

second RE2 acquisition corresponded to the maize flowering stage in which the spectral 

contribution are not overly characterized by chlorophyll activities (NDVI) but more by 

spectral contributions from non-chlorophyll plant components, i.e. the cobs, wilting 

leaves and the maize flowers. Moreover, the RF backward variable selection process 

showed that the inclusion of the red-edge bands and spectral indices that use the red-

edge bands (i.e., DVI-edge) were relevant for the maize cropping systems mapping 

result. Similarly, Schuster et al. (2012) found that the red-edge bands improved land use 

classification by 2.7%. 

The spatial cropping system differences we observed between the low and 

high altitude areas (Figure 2.6) could be due to more favourable climatic conditions for 

crop production within mountainous regions as single (mono) crop production is more 

feasible in upland areas that receive higher rainfall (Seck et al. 2012). Farmers in drier 

areas often opt to combine maize with leguminous on the same field (mixed cropping) 

to improve soil fertility and soil moisture in order to attain permissible yields 

(Castellanos  et al. 2014). The crop systems patterns also showed considerable 

differences in field size between the lower and higher lying areas within the study area 

(approximately 0.8 ha in the low altitudinal areas versus an average field size of 0.2 ha 
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in the higher lying areas). These field size differences could be confirmed from the field 

observations.  

The crop system mapping results indicated comparatively high OA of 85.7% 

and individual class accuracies (PA, and UA) > 84% (Bassa 2012). The high accuracies 

could be due to, primarily, the optimal acquisition dates of the imagery, i.e., during the 

stem elongation and flowering crop development stages, respectively. These critical 

crop stages are known to produce better separation between agricultural fields and 

surrounding natural vegetation (Arvor et al. 2011). Specific confusions between the two 

cropping system classes could have numerous reasons such as heterogeneity of the 

landscape, variation in crop age (planting dates) and other agronomical practices (e.g., 

ploughing) (Forkuor et al. 2014; Ozdogan et al. 2010).  Field heterogeneity is largely 

affected by within field spectral variations that are larger than inter-field spectral 

variations due to the crop morphological and physiological properties (Smith et al. 

2003). This confusion is exacerbated by the amount of weed infestation per cropped 

area where a weed-infested mono-cropped maize field could exhibit a similar spatial 

arrangement and thus spectral response like a maize field inter-cropped with a legume 

like cowpea or bean (Romeo et al. 2012). Some sample mono-cropped fields in our study 

area were badly managed and infested by weeds that could have caused the spectral 

confusion with inter-cropped fields as previously mentioned. Another reason for 

heterogeneity and spectral confusion could be the fact that some farmers maintain trees 

within their fields and since we applied a per-pixel classification accuracy assessment, 

spectral confusion between trees and crops could have been exacerbated by this (Cord 

et al. 2010). In other words, some mono-cropped and inter-cropped maize fields could 

have had similar spectral features as a result of woody vegetation that can be found 

within maize fields. Also, in Machakos, the majority of the farmers cultivate crops 

around hamlets, and in many cases the cultivated fields are surrounded by pockets of 

natural vegetation (Vintrou et al. 2009). However, we employed an empirical 

classification approach that could have been more robust in terms of practical and 

operational cropping system mapping. Since our mapping results are produced using the 

most important variables (Figure 2.4). We assumed that collinearity is somewhat 
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accounted for (Strobil et al. 2008). Furthermore, we tested the collinearity between the 

indices selected for final mapping (RE1_NDVI, RE1_NDRE, RE2_DVIedge, RE1_LCI and 

RE1_SIPE3) and found that they were not correlated. 

Maize is generally vulnerable to numerous pests and diseases (Flett et al., 

2002). Choosing appropriate cropping systems can be a valuable alternative to the use 

of synthetic pesticides (Gianoli et al. 2006). For instance, inter-cropping has been used 

as a buffer against the spread of plant pests and pathogens by attracting pests away 

from their host plant and also increasing the distance between plants of the same 

species, making it more exigent for the pest to target their main crop (Seran and Brintha. 

1997). A good example is inter-cropping maize with cowpea/beans has been proved to 

reduce the maize stem borer (Henrik and Peeter 1997) and cowpea/bean thrips (Nyasani 

et al. 2012). As a result, accurate baseline information on cropping systems could be 

used to better understand the relationship between cropping patterns with pest and 

disease propagation mechanisms such as the occurrence of the maize lethal necrosis 

(MLN) disease, reported in Kenya in 2012, which is hypothesized to be linked to the 

spatial distribution of the cropping systems (Mahuku et al. 2015).   

Essentially, “traditional” agricultural land use mapping often renders 

information on the spatial distributions or acreages of certain crops without further 

details of the actual underlying agronomical cropping systems (Husak et al. 2008). 

Information on the cropping systems is vitally needed as a spatial descriptor (parameter) 

within commonly used crop modeling schemes such as the Decision Support System for 

Agro technology Transfer (DSSAT), since these crop systems are key determinants for 

agricultural production and food supply, given that mono-cropped systems generally 

may exhibit different yield cycles than mixed cropping systems. With the advent of new 

satellite constellations with better pixel and temporal resolution, not only crop mapping 

but also crop systems characterization can be performed. This will be of great use to 

crop scientists and decision makers. Moreover, cropping patterns can be related to 

climate change effects and thus to agricultural productivity and as a result the extent of 

food security as for instance mixed cropping systems is a key adaptation mechanism for 

areas experiencing considerable climate variability. 
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2.6 Conclusions 

This study evaluated the potential of 5-m RapidEye multispectral data and the advanced 

RF classification technique in mapping maize cropping systems in a complex, dynamic 

and heterogeneous landscape. To the best of our knowledge, we produced the first 

cropping patterns map for a maize-based cropping system in Kenya. We conclude that 

RapidEye imagery acquired during stem elongation and flowering phenological 

development stages give satisfactory results for separating mono- and mixed maize 

cropping systems.  

We suggest that data on cropping systems mapping, using high resolution 

time-series data, are useful baseline information feeds to monitor and understand 

seasonal cropping pattern changes as a function of climatic variability and climate 

change in Africa. This information, especially if linked with yields and crop pest and 

disease infestation levels may be very useful for better agricultural risk projections. 

Upholding the widely recognized role of the small-scale farming for food security in 

Africa, the extent, distribution and dynamics of cropping systems, as one of the 

important variables in crop productivity models, should further be investigated. This will 

result to increased farm sizes hence making it more feasible to monitor cropping 

systems using freely available remote sensing data sets.  

However, temporal availability of high-resolution data is still restricted by the high cost 

of imagery from semi-commercial sensors such as RapidEye and frequent cloud cover, 

especially in the tropics. Upscale of the results from this study to wide-area monitoring 

of cropping patterns is thus still challenging. Freely available multi-temporal dataset 

from Landsat-8 combined with Sentinel 2a and Sentinel 2b data should be further 

investigated and exploited to improve cropping systems mapping in Africa and beyond. 

Overall, relatively accurate classification results obtained in this study provide 

dependable information that could be used to complement region or field-specific yield 

data to aid decision making in terms of improved crop productivity and food supply 

management.  



Chapter 3: Remotely sensed vegetation variables and ACGD vector distribution 

36 

 

3 IMPORTANCE OF REMOTELY SENSED VEGETATION VARIABLES 

FOR PREDICTING THE SPATIAL DISTRIBUTION OF AFRICAN CITRUS TRIOZID 

(TRIOZA ERYTREAE) IN KENYA  

 

  This chapter has been published as Kyalo et al. (2018) ISPRS Int. J. Geo-Inf 7(11): 429 

 

3.1 Abstract:  

Citrus is considered one of the most important fruit crops globally due to its contribution 

to food and nutritional security. However, the production of citrus has recently been in 

decline due to many biological, environmental, and socio-economic constraints. 

Amongst the biological ones, pests and diseases play a major role in threatening citrus 

quantity and quality. The most damaging disease in Kenya, is the African citrus greening 

disease (ACGD) or Huanglongbing (HLB) which is transmitted by the African citrus triozid 

(ACT), Trioza erytreae. HLB in Kenya is reported to have had the greatest impact on citrus 

production in the highlands, causing yield losses of 25% to 100%. This study aimed at 

predicting the occurrence of ACT using an ecological habitat suitability modeling 

approach. Specifically, we tested the contribution of vegetation phenological variables 

derived from remotely-sensed (RS) data combined with bio-climatic and topographical 

variables (BCL) to accurately predict the distribution of ACT in citrus-growing areas in 

Kenya. A MaxEnt (maximum entropy) suitability modeling approach was used on ACT 

presence-only data. Forty-seven (47) ACT observations were collected while 23 BCL and 

12 RS covariates were used as predictor variables in the MaxEnt modeling. The BCL 

variables were extracted from the WorldClim data set, while the RS variables were 

predicted from vegetation phenological time-series data (spanning the years 2014-

2016) and annually-summed land surface temperature (LST) metrics (2014-2016). We 

developed two MaxEnt models; one including both the BCL and the RS variables (BCL-

RS) and another with only the BCL variables. Further, we tested the relationship 

between ACT habitat suitability and the surrounding land use/land cover (LULC) 

proportions using a random forest regression model. The results showed that the 

combined BCL-RS model predicted the distribution and habitat suitability for ACT better 

than the BCL-only model. The overall accuracy for the BCL-RS model result was 92% (true 
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skills statistic: TSS = 0.83), whereas the BCL-only model had an accuracy of 85% (TSS = 

0.57). Also, the results revealed that the proportion of shrub cover surrounding citrus 

orchards positively influenced the suitability probability of the ACT. These results 

provide a resourceful tool for precise, timely, and site-specific implementation of ACGD 

control strategies. 

 

3.2 Introduction 

Citrus is considered one of the most important fruit crops in the world due to its 

contribution to food and nutritional security (Franco-Vega et al. 2016). Also, citrus is the 

top-ranked fruit crop with regard to its international trade value (Liu et al. 2012). The 

commercially important citrus species are sweet oranges (Citrus sinensis), lemons (Citrus 

limon), limes (Citrus aurantifolia), grapefruit (Citrus paradisi), and tangerines (Citrus 

reticulata). Globally, sweet oranges represent approximately 70% of citrus production. 

In 2016, the global total production of sweet oranges was about 73 million tons (FA0 

2016). In Kenya, citrus is a valuable fruit crop used mainly for domestic consumption as 

a fresh produce with only a small quantity being processed into juice and jams (Ouma, 

2008). Citrus provides some minerals and vitamins like vitamin C, carotenoids, and 

polyphenols that are essential for human health. In terms of the area of production, 

citrus (mainly oranges) ranks third (7,268 ha) after bananas (63,299 ha) and mangoes 

(54,332 ha) in the country (Adhikari et al. 2015).  

Citrus plants can prosper in a wide range of environmental conditions from 

tropical to subtropical climatic conditions (Nicholas 1988). However, the best citrus 

production conditions are found in subtropical climate zones in elevations ranging from 

sea level up to 2100 m above mean sea level (m.m.a.s.l), with an optimal growth 

temperature ranging from 20 °C to 30 °C. In Kenya, citrus fruits’ quantity and quality 

have been considerably declining. For instance, oranges yields at 11.73 ton ha-1 are far 

below (23% less) the global mean yield of 18.45 ton ha-1 (Asharaf et al. 2002; Waithaka 

1991). Two of the major production constraints that hinder citrus production in Kenya 

are insect pests and diseases, among which the African citrus triozid (ACT), Trioza 

erytreae, plays a key role (Icipe 2015). Direct feeding by ACT results in leaf curling and, 
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furthermore, causes deposition of honeydews on infested plants (Khamis et al. 2017a). 

In Africa, ACT is known for transmission of the devastating phloem-limited bacterium 

Candidatus Liberibacter africanus (CLaf), responsible for the African citrus greening 

disease (ACGD) or Huanglongbing (HLB) (Zou et al. 2012). In addition to ACT, HLB is also 

transmitted by the Asian citrus psyllid (ACP) (Diaphorina citri), which is the primary 

vector in Asia (Boykin et al. 2012; Jagoueix et al. 1994) but was also recently discovered 

in eastern Africa (khamis et al., 2017). These two psyllids are distributed according to 

their temperature requirements, with ACT being highly temperature sensitive and thus 

restricted to cooler elevated areas (Aubert 1987; Catling 1973). The common symptoms 

of ACGD are mottling and yellowing of the leaves, reduced tree foliage which results in 

small and bitter-tasting fruits, and the eventual death of severely infected citrus trees 

(Dormann et al. 2013). In Kenya, ACGD is reported to have had the greatest impact on 

citrus production in the highlands, causing yield losses of 25% to 100% (Pole et al. 2010). 

The yield of affected trees is not only considerably reduced by continuous fruit drop, 

dieback, and tree stunting, but also by the poor quality of fruits that remain on the trees 

which are inedible. 

Over the years, different approaches have been used for implementing various 

ACGD preventive and control measures (Alvarez et al. 2016). This includes strict 

regulations of nurseries through a registered disease-free certification scheme to 

prevent the spread of ACGD and its vectors (Grafton-Cardwell et al. 2013). Little is 

known on the spatial distribution of the disease vectors, yet such information could 

greatly assist in developing precise geo- and time-referenced vector distribution maps. 

Such maps can be useful in monitoring the spatial spread and suitable areas for the 

vectors, enabling for a more targeted implementation of interventions. Vector-

transmitted disease propagation follows vector ecological principles as an indirect 

explanation of disease cycles, outbreaks, and prevalence (Moore et al. 2010). One of the 

most frequently used approaches for producing vector distribution maps is the 

ecological niche (EN) modeling approach (Peterson 2006). EN models statistically link 

spatial variabilities in a set of predictor variables to the distribution of species of interest 

that can be a plant disease vector like ACT (Brownstein et al. 2003; Lord 2007). The 
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dependence of plant disease propagation on spatio-temporal environmental niche 

factors of the disease vector has recently received considerable attention (Hol et al. 

2013). Yet, studies focusing on the ways in which geographical environmental factors 

affect the habitat suitability and host-vector dynamics are still limited. In addition, there 

is a need for studies that employ a multi-source variable (e.g., vegetation phenology and 

climate) approach to predict the spatial distribution of plant disease vectors.  

Models have been developed to provide information about diseases and the 

distribution of associated environmental variables that are used as proxies for habitat 

suitability. The best known EN models used in insect-based distribution modeling 

include Generalized Linear Models (GLM), Generalized Additive Models (GAM), Genetic 

Algorithm for Rule-Set Production (GARP), Boosted Regression Trees (BRT), and 

Maximum Entropy (MaxEnt) (Shabani et al. 2016). Studies have compared the 

performance of several EN modeling algorithms to predict the distribution of different 

species and found that MaxEnt was the best-performing model using presence-only data 

(Yackulic et al. 2013). In addition, MaxEnt is the most utilized EN model for estimating 

the distribution of plant insect pests like stink bugs (Halyomorphahalys spp.) (Zhu and 

Woodcock 2012), large pine weevil (Hylobius abietis), and horse-chestnut leaf miner 

(Cameraria ohridella) (Barredo et al. 2015), boreal forest insect pests (Hof and Svahlin 

2016), fruit flies (Marchioro 2016), and disease vector ticks (Ixodes ricinus) (Alkishe et al. 

2017).  

For HLB, a number of studies employed mathematical, and geostatistical 

simulation, life table, and conceptual modeling routines (Chiyaka et al. 2012; Ramirez et 

al. 2016; Vilamiu et al. 2012), to study the distribution of ACP using environmental 

variables as predictors (i.e., temperature and rainfall) in regard to the biology of the 

vector (e.g., developmental stages and their populations) and host plant interactions 

(e.g., number of susceptible or infectious orange trees). These studies demonstrated the 

possibility of estimating the distribution, progression and optimal temperature ranges 

for ACP in countries like the USA, Mexico, Brazil, Vietnam, and Australia. In Africa, 

Shimwela et al. (2016) and Narouei-Khandan et al. (2016) employed two correlative 

MaxEnt and support vector machine modeling approaches to map the potential 
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distribution of ACP using global-scale environmental predictors. These two studies 

reported that Eastern African countries like Kenya and Tanzania would be highly suitable 

for the psyllid. To the best of our knowledge, no other study has employed an EN 

modeling approach to predict the distribution of ACGD vectors in Africa.  

Yet, there is a need for an explicit ACT distribution mapping routine in countries 

such as Kenya, where the transmission of ACGD is mainly due to this vector. Moreover, 

previous studies looked at the relevance and influence of environmental variables in 

predicting the distribution of ACGD vectors but did not consider the expected relevance 

of vegetation patterns and phenology, resulting through interactions between climatic, 

topographic, and vegetation patterns at a landscape scale, which can considerably 

improve the performance of EN models like MaxEnt (Hof and Svahlin 2016). Moreover, 

vegetation patterns and phenology play a key role in influencing vector-host-pathogen 

transmission, including vector distribution, abundance, and diversity (Paull et al. 2012). 

These vegetation-related patterns and phenological variables can only be extracted 

from temporal remotely-sensed datasets. When used in EN models, the remotely-

sensed vegetation pattern and phenological variables are useful additional predictors 

for the spatial distribution of pests and diseases since EN models rely on the correlation 

between a habitat’s characteristics and the biophysical properties of the studied pest 

and disease (Zimmermann et al. 2007). 

Further, much research has focused on the biology of ACT and its dispersal 

(Green and Catling 1971); however, little is known regarding how land use/land cover 

(LULC) features influence the habitat suitability of the vector and its dispersal. However, 

remotely-sensed datasets from different systems have been widely used for the 

identification and separation of citrus orchards from other LULC types for appropriate 

policy making and citrus production forecasting (Amoros Lopez 2011; Ozdemir 2007; 

Shrivastava and Gebelein 2007). More efforts concerning understanding the influence 

of the landscape on the survival of pests and diseases like ACT using remotely-sensed 

variables are crucial. For instance, the context of the landscape has been reported to 

affect the population of crop insects directly, or more frequently, indirectly, through its 

effects on the physical environment around the host plants (Plantegenest et al. 2007). 
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For instance, landscape heterogeneity has been reported to influence the direction and 

distance moved by a dispersed pest and pathogens, in addition to the infestation rate 

(Margosian et al. 2009). For example, Rizzo et al. (2003) reported that the proximity to 

the forest edge was associated with an increase in the infestation of sudden oak death 

disease in California. Avellino et al. (2002) tested the relationship between the 

landscape context and three highly differentiated focal coffee pests and pathogens. 

They found a positive relationship between the studied coffee pest and disease 

incidences and the proportion of different LULC classes at different radii around coffee 

sample plots. Thies et al. (2003) studied the correlation between the local proportion of 

destroyed oilseed canola buds and the characteristics of landscape context. They 

showed that an increase in the landscape complexity was associated with a decrease in 

damage caused to oilseed canola by Meligethes. aeneus. All these studies alluded to the 

fact that the surrounding vegetation provides a refuge for the vectors during periods of 

time when the conditions are unfavorable for the spreading of the disease. Despite this 

strong influence that the landscape properties have on the spread of pests and diseases, 

no research has explored the relationship between ACT habitat suitability with the 

surrounding landscape composition for a better understanding of the ecology and 

spread of ACGD.  

The objectives of this study were, (i) to explore the potential and contribution 

of vegetation phenological variables and Land Surface Temperature (LST) derived from 

remotely-sensed data combined with environmental variables to predict the 

distribution and habitat suitability for ACT at a test site in Kenya using a MaxEnt model 

and, (ii) to test the effect of the surrounding landscape context on the habitat suitability 

of ACT. This was achieved by relating a set of bio-climatic and topographic 

environmental (BCL) variables and remotely-sensed (RS) variables to ACT presence-only 

distributions over a region-specific, i.e., representative agro-ecological gradient.  
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3.3 Methods 

3.3.1 Study area 

The study site consists of 35 administrative counties in three main agro-ecological zones 

in Kenya lying in low-, mid-, and high- elevation zones, see Figure 3.1. The study area 

covers parts of the Coastal, Eastern, Central, and Western regions of Kenya. The Central 

and Western regions exhibit cooler and wetter climatic conditions which are particularly 

favorable for citrus growing. The two regions experience a bi-modal rainfall distribution 

with the major crops being maize and beans, which in most cases are interspersed with 

mangoes and citrus trees, in addition to tea and coffee. Generally, citrus growing across 

the entire country is commonly practiced in small orchards and backyards, with only a 

few big citrus plantations in Kenya. 

In the low-lying coastal region with higher humidity levels, farmers cultivate a 

wide range of food as well as tree crops like coconut palms, mango, citrus, and pawpaw. 

The major citrus-growing areas in the coastal region are Kwale Kilifi and Taita Taveta 

(Oosten 1989). The Eastern region is located in the hot and dry semi-arid savannah 

biome and has similar cropping patterns as the coastal region. It is dominated by steep 

slopes with elevations ranging from 500 to 1200 m above mean sea level (m. a. m. s. l.).  
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Figure 3.1 Study area (major citrus-growing regions) in Kenya where the African citrus 

triozid (Trioza erytreae) presence data were collected. 

 

3.3.2 ACT occurrence data 

Field surveys were conducted along a clearly defined transect within the citrus-growing 

regions from the lowlands to the highlands in Kenya. In general, horticultural farming in 

Kenya is mainly carried out by small-scale producers because of the scarcity of 

productive land for horticultural production. Thus, citrus is grown in a wide range of 

elevations ranging from the lowlands to the highlands of Kenya (George 2008). The study 

area was divided into three elevation zones: Low (0–500 m. a. m. s. l.), middle (501–

1,000 m. a. m. s. l.), and high (>1,000 m. a. m. s. l.). Each elevation zone was regarded as 

a stratum; therefore, we followed a stratified random sampling protocol to collect the 

ACT presence data. In each stratum (i.e., elevation zone), we randomly selected citrus 

orchards and nurseries, including backyards of small farms with a minimum orchard-to-

orchard distance of 2 km for sampling. At least 30 citrus orchards in each stratum were 

sampled and with the aid of a hand-held Global Positioning System (GPS) device with a 
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positional accuracy of ±2 m, the location of the citrus orchard, nursery, or backyard farm 

where ACT was present was recorded as an occurrence point. Specifically, for sample 

citrus orchard and backyard farms ≤ 0.5 ha, all citrus trees were inspected for ACT 

symptoms, while in orchards > 0.5 ha only 20 randomly selected trees were sampled in 

each orchard by moving across the orchard in a W-pattern (Shimwela et al. 2016). 

Presence-only observations (n = 47) were collected across the study area, see Figure 3.1, 

between January 2015 and September 2016. This number of presence-only observations 

is regarded as acceptable in a MaxEnt modeling routine (Amirpour et al. 2013; Peterson 

and Nakazawa 2008). A subset of the ACT presence-only observations was used for 

training the MaxEnt model (75% of the sample observations), and 25% of the sample 

observations were used for model evaluation (Qin et al. 2017). We also collected 

information on the representative sample vegetation cover and type surrounding citrus 

orchards and backyard farms where the ACT was present using geotagged photographs 

that were taken from the main four cardinal directions of the orchards for further 

inspection on how the landscape context could affect the presence of ACT. 

3.3.3  Predictor variables 

We considered 35 variables as potential predictors for estimating ACT distribution and 

habitat suitability. The variables were categorized into BCL and RS variables, see Table 

1. For the BCL variables, we selected variables based on the ecological requirements of 

the vector as reported in previous studies: temperature, humidity, and elevation 

(Shimwela et al. 2016). Temperature and precipitation were represented by 19 

“bioclimatic” variables, see Table 3.1, available from the WorldClim database 

(www.worldclim.org) (Hijmans et al. 2005). WorldClim projects current climatic 

conditions at 1-km spatial resolutions based on observations gathered from different 

weather stations between 1950 and 2000; the point datasets are interpolated using a 

thin plate smoothing spline algorithm to create a seamless raster dataset (Hijmans et al. 

2005). We also used topographical variables related to the potential ACGD vectors’ 

habitat. This included elevation, slope, hill shade, and aspect in degrees, see Table 3.1. 

Hill shade was included as a proxy for relative solar radiation load that accounts for the 

effect of topographic shading (Pierce et al. 2005). We observed in the field that the 
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majority of ACT presence points were on the windward side for mountainous regions as 

opposed to the leeward side; hence, we included hill shade as a predictor variable in our 

ACT distribution model. The topographical variables were extracted from a void-filled 90 

m digital elevation model (DEM) data set from the Shuttle Radar Topographical Mission 

(SRTM) (Jarvis et al. 2008). Using the Environment for Visualizing Images (ENVI) version 

4.8 (Exelis Visual Information Solutions, Boulder, Colorado), both bio-climatic and 

topographical variables were resampled using a bilinear interpolation method to fit the 

250m pixel size of the remotely-sensing variables (Usery et al. 2004).  

RS variables on vegetation phenological metrics and vegetation productivity 

dynamics were derived from a Moderate Resolution Imaging Spectroradiometer 

(MODIS) Enhanced Vegetation Index (EVI) time-series data at a 250-m spatial resolution. 

MODIS products such as Normalized Difference Vegetation Index (NDVI) and EVI are the 

most widely used indices for monitoring of the vegetation phenological pattern (Li et al. 

2010). Matsushita et al. (2007) pointed out that NDVI is easily affected by soil 

background and low vegetation coverage and easily saturated in high vegetation 

coverage. On the other hand, EVI minimizes the noise of soil background and adjusts 

atmospheric aerosol interference, thus improving the sensitivity of mimicking densely 

vegetated sites as compared with NDVI (Huete et al. 2002; Liu et al. ; Wang et al. 2006). 

In the present study, MODIS 16-day EVI composites for the years 2014 to 2016 from the 

National Aeronautics and Space Administration (NASA) Land Processes Distributed 

Active Archive Center (LP DAAC—https://lpdaac.usgs.gov/) were downloaded and 

preprocessed using the MODISTools package in R (Tuck et al., 2014). MODISTools 

provides a function for mosaicking and sub-setting the downloaded data to a selected 

geographical extent. Then, we calculated 11 vegetation phenological metrics, see Table 

3.1, using the TIMESAT software (Jönsson and Eklundh 2004). Namely, we calculated (1) 

start of the season (start of season) which is the time of initial vegetation green up, (2) 

end of the season (end of season) representing time of initial vegetation senescence, (3) 

the length of growing season from green up to senescence (length of season), (4) base 

level, which was calculated by averaging the left and right minimum values (base value) 

that represent the baseline of the seasonal phenology curve, (5) time for the middle of 
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the growing season (mid of season), (6) the highest EVI value of the season (max fitted 

value), (7) seasonal amplitude calculated as the difference between the peak EVI value 

and the average of the left and right minimum values corresponding to the amount of 

EVI change (amplitude), (8) the rate of vegetation green up (left derivative), (9) the rate 

of vegetation senescence (right derivative), (10) proxy for the relative amount of 

vegetation biomass without regarding the minimum EVI values (large integral), and (11) 

the proxy for the relative amount of vegetation biomass while regarding the minimum 

EVI values (small integral). All 11 vegetation phenological metrics (Jönsson and Eklundh 

2004; Penatti and Isnard 2012; Wei et al. 2012) were calculated for the two growing 

seasons within each year. TIMESAT extracts vegetation phenological variables by fitting 

a local function to the time-series datasets (Cai et al. 2017). We fitted the Savitzky-Golay 

smoothing model function that replaces the data value by values in a window using a 

second-order polynomial function with optimum smoothing parameters (Chen 2004; 

Jönsson and Eklundh 2004). The Savitzky-Golay function reduces the effects of residual 

signals and smooths the time-series EVI dataset to a degree determined by the size of 

the smoothing window and reduces the noise caused primarily by cloud contamination 

and atmospheric variability (Cai et al. 2017). The start and end of season threshold 

parameters for the smoothing function were set at 20%, as suggested by Jonsson and 

Eklundh (2004), to optimize the error that could be caused by varying start and end of 

season dates in different locations across the study area (Makori et al. 2017). Only 

variables for the first season were used in this study since data from the second season 

were not consistent throughout all the years across the study area (Makori et al. 2017). 

Our study area cuts across different climatic zones in Kenya with a varying number of 

rainy seasons; hence, some of our sample sites commonly experience unimodal rainfall 

(one rainy season), while others have bi-modal rainfall (two rainy seasons) in a calendar 

year. This variability in the rainy seasons could have caused the variation and 

inconsistency in the vegetation phenological variable across the entire study area during 

the second rainy season. In addition to the vegetation phenological metrics, LST has 

proved to have a major influence on the spread and development of pests and diseases 

(Chabot-Couture et al. 2014). LST variables extracted from time-series MODIS data for 
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the years 2014 to 2016 were averaged for each year and included in the set of predictor 

variables. MODIS LST has a high spatial characteristic that enables the capture of the 

spatial variability of land surface fluxes within a finer scale as opposed to point 

observations taken on the ground. 

Table 3.1 Predictor variables used for modeling the ecological niche for the African citrus 
triozid (Trioza erytreae). The variables were divided into two sets; 
environmental (bio-climatic and topographical) and remote-sensing 
variables. Bold text refers to variables which were selected through a 
multi-collinearity test using the Findcorrelation function in the caret 
package in the R software and finally used in the MaxEnt model. 

Data source Category Variables description Abbreviations Units 

WorldClim Bioclimatic Annual mean temperature Bio 1 oC 

  
Mean diurnal range (mean of monthly 

(max temp, min temp)) 
Bio 2 oC 

  Isothermality (Bio 2/Bio 7) (x100) Bio 3 oC 

  
Temperature seasonality (standard 

deviation x 100) 
Bio 4 oC 

  
Maximum temperature of warmest 

month 
Bio 5 oC 

  
Minimum temperature of coldest 

month 
Bio 6 oC 

  Temperature annual range (Bio 5-Bio 6) Bio 7 oC 

  Mean temperature of wettest quarter Bio 8  oC 

  Mean temperature of driest quarter Bio 9  oC 

  Mean temperature of warmest quarter Bio 11  oC 

  Mean temperature of coldest quarter Bio 11   oC 

  Annual precipitation Bio 12 mm 

  Precipitation of wettest month Bio 13  mm 

  Precipitation of driest month Bio 14  mm 

  
Precipitation seasonality (coefficient of 

variation) 
Bio 15  mm 

  Precipitation of wettest quarter Bio 16  mm 

  Precipitation of driest quarter Bio 17  mm 

  Precipitation of warmest quarter Bio 18  mm 

  Precipitation of coldest quarter Bio19  mm 

SRTM Topographic Ground height Elevation m 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=spatial+variability
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  Sloping direction Aspect degree 

  Steepness of the ground Slope degree 

  Shading effect Hill shade n/a 

MODIS EVI 
Remotely 

sensed 
Time for the start of the season Start of season decades 

  Time for the end of season End of season decades 

  Length of season from start to end 
Length of 

season 
decades 

  Mid of the season Mid of season decades 

  
Difference between maximum and base 

level 
Amplitude n/a 

  Average minimum EVI value Base value n/a 

  Maximum fitted value 
Max fitted 

value 
n/a 

  
Rate of increase at the beginning of 

season 
Left derivative % 

  Rate of decrease at the end of season 
Right 

derivative 
% 

  Large seasonal integral Large integral n/a 

  Small seasonal integral Small integral n/a 

MODIS  Land surface temperature LST oC 

3.3.4 Predictor variable selection 

To examine the expected multi-collinearity among the predictor variables, we 

performed a Pearson correlation test (Figure 3.2) between all the predictor variables 

shown in Table 3.1. Furthermore, the ‘Findcorrelation’ function in the Caret package in 

R was used to eliminate highly correlated variables using the mean absolute error score. 

A correlation coefficient of |r| > 0.7 was set as a collinearity indicator for variables that 

would severely affect our model (Dormann et al. 2013). Variables that met this criterion 

were eliminated from the analysis and only the uncorrelated predictor variables were 

used in the MaxEnt model.    
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Figure 3.2. Collinearity matrix for predictor variables. Darker shades of blue and red 
color indicate high variable collinearity while light shades indicate low 
collinearity between variables. 

 

3.3.5 EN Modeling  

A MaxEnt model algorithm (Phillips et al. 2006) was used to predict the distribution and 

likely suitable sites for ACT. MaxEnt is a presence background machine-learning 

approach that estimates species’ distribution that has maximum entropy subject to a 

set of constraints based upon a user’s knowledge of the environmental conditions at 

known occurrence sites (Yackulic et al. 2013). Like most maximum-likelihood estimation 

methods, the MaxEnt algorithm adopts a uniform distribution and performs several 

iterations in which the weights related to the environmental variables are adjusted to 
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maximize the average probability of point localities. These weights are then used to 

compute the distribution over the entire geographical space (Buermann et al. 2008). 

To minimize overfitting in the MaxEnt model, we implemented a regularization 

method to penalize the model in proportion to the coefficient magnitude (Royle et al. 

2012). Further, we ran MaxEnt models using the default variable responses setting and 

a logistic output format which results in the ACT distribution suitability prediction 

ranging from 0 (less suitable) to 1 (highly suitable). However, a default regularization 

multiplier was doubled to reduce the chance of under or over prediction (Sahlean et al. 

2014). In addition, we used the 10th percentile training presence threshold which 

predicts the 10% most extreme presence observations as absent to eliminate ‘outliers’ 

from the final model (Cord et al. 2014). To study the effects of the vegetation phenology 

and dynamics for predicting ACT distribution, we performed two MaxEnt models, one 

included the environmental variables only (BCL model) and the other included both the 

environmental and remote-sensing variables (BCL-RS model).  

 

3.3.6 EN Models Validation 

Commonly, the accuracy of the MaxEnt distribution suitability maps is assessed using 

conventional accuracy measures such as the area under the curve (AUC) and chi-squared 

(X2) statistics. However, these accuracy statistics are somehow biased and highly 

sensitive to the proportional extent of the predicted presence observations (Anderson 

et al. 2003), as a result of an overestimation of the pseudoabsence samples. Hence, in 

this study, we employed more reliable and adequate measures to evaluate the overall 

MaxEnt model performance. Specifically, we used true skill statistic (TSS) and Cohen’s 

kappa coefficient (Khat) to evaluate the accuracy of the ACT distribution suitability maps 

(Jorge 2011). As compared to TSS, kappa inherently depends on prevalence. However, 

an ideal measure of model performance should not be affected by prevalence but 

combine sensitivity and specificity (Allouche et al. 2006). Thus, TSS combines both 

sensitivity and specificity to account for both omission and commission errors and is not 

affected by prevalence and the size of the validation set and, therefore, is the best 

parameter to measure model performance. Both TSS and Khat range from -1 to +1, where 
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+1 indicates perfect agreement between the observed and predicted ACT observations, 

whereas values <0 indicate no agreement or that most of the predicted ACT 

observations were produced by chance (Zhang et al. 2015). In addition, we used a 

Jackknife procedure to assess the relative importance of each individual predictor 

variable to the ACT distribution suitability model (Matyukhina et al. 2014). To test the 

null hypothesis that there was no statistical (p ≤ 0.05) difference between the 

predictions of the BCL and the BCL-RS MaxEnt models, a two-sample t-test was 

performed. Herein, using ‘ArcGIS create random points’ tool, we generated 500 random 

sample points throughout the study area and compared their predictive power for each 

of the two models (i.e., BCL and BCL-RS). 

 

3.3.7 Landscape Context Calculation 

To describe the landscape context, we used a LULC map at a 20-m spatial resolution over 

the study area based on one year of Sentinel-2A observations ranging from December 

2015 to December 2016 developed and validated by Climate Change Initiative (CCI) Land 

Cover (LC) team (ESA 2017). Since ACT is likely to spread locally up to a distance of 1500 

m by natural dispersal (Van Den Berg 1988), we extracted the LULC proportion within a 

1500 m radius buffer from the center for each of the 24 ACT occurrence points collected 

from the field which were not overlapped within each buffer, see Figure 3.3. The 

proportions of the four major LULC classes (tree cover, shrubs cover, grassland, and 

cropland) within each buffer were calculated. We hypothesize that these four major 

LULC classes could influence the occurrence of ACT within a landscape scale. The same 

buffers were also used to extract the corresponding average habitat suitability scores 

from the suitability map generated by the MaxEnt algorithm. Random forest (RF) 

regression (Breiman 2001; liaw and Wiener 2001) analysis was performed to determine 

the most relevant LULC classes for the ACT habitat suitability scores using the RF variable 

importance by-product. An RF regression model was performed using the default 

settings suggested by Breiman (2001), and the importance of the LULC classes was 

assessed using the RF mean decrease in accuracy (%) metric. 
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Figure 3.3 A 20-m spatial resolution land use/land cover map for the study area 

generated by the Climate Change Initiative (CCI) Land Cover (LC) team. 
Using yearly Sentinel-2 observations. (a), (b), and (c) represent zoomed 
buffers of 1,500 m radius each around certain representative African 
citrus triozid (ACT) occurrence points. 

 

3.4 Results 

3.4.1 EN Models 

The Pearson correlation test for multi-collinearity resulted in selecting only six BCL and 

six RS uncorrelated predictor variables, respectively, see Table 3.1. The overall accuracy, 

TSS, and Khat for both the BCL and BCL-RS MaxEnt models are shown in Table 3.2. A 

combined BCL-RS model gave the highest accuracy of 92% with a TSS score of 0.83 
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compared to the model with only environmental variables (BCL model), which had an 

overall accuracy of 85% and a TSS score of 0.572. TSS and Khat statistics showed a 

prediction better than expected at random (TSS = 0.5) for both models, with the BCL-RS 

model performing better than the BCL model. 

Table 3.2      Accuracy assessment statistics for the developed African citrus triozid (Trioza 
erytreae) MaxEnt models. 

Model 
Bio-climatic and topographical 

variables (BCL, n = 6) 

Bio-climatic, topographical & remotely-

sensed variables (BCL-RS, n = 12) 

Overall accuracy 0.85 0.92 

Sensitivity 0.73 0.91 

Specificity 0.85 0.92 

Khat 0.30 0.42 

TSS 0.57 0.83 

3.4.2 Variable Importance 

Figures 3.4 and 3.5 show the results of the jackknife test of variable importance for the 

BCL and BCL-RS models, respectively. Blue shades show the individual importance of 

each variable when used in isolation, while green shows the model performance when 

the variables are exempted from the model. The figures also show the variables which 

caused the greatest decreases in the gain when omitted, indicating that they provided 

a significant portion of information that was not contained in the other variables. For 

both models (BCL and BCL-RS), the variable with the highest gain (relevance) when used 

in isolation was Bio 18; therefore, Bio 18 appears to have the most useful information 

individually, followed by Bio 16 (for variable definitions see Table 3.1). Likewise, the 

variables that decreased the gain the most when they were omitted were Bio 16 and Bio 
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18 for the BCL model and Bio 16 and LST for the BCL-RS model. These variables appear 

to have the most influence on the models compared to the other variables. 

 

 
Figure 3.4 Jackknife variable importance test of regulated gains for the BCL model. The 

dark blue shades show the regularized training gain for the specific variable, 
light blue shows the relevance when the variable is omitted, while red shows 
the regularized training gain with all the variables combined. 

 

Figure 5. Jackknife variable importance test of regulated gains for the BCL-RS model. The 
dark blue shades show the regularized training gain for the specific variable, 
light blue illustrates gains without the variable, while red shows the 
regularized training gain with all the variables combined. 

 
Table 3.3 presents the percentage that each variable contributed and its permutation 

importance in the BCL and BCL-RS models, respectively. In the BCL model, Bio 16 was 

the variable that contributed the most (48.3%) followed by Bio 18 (44.5%), Elevation 
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(4.0%), and Aspect (2.2%), respectively. Similarly, in the BCL-RS model, Bio 16 

contributed the most (41%), followed by Bio 18 (36.3%), while the contributions for LST, 

Elevation, and Aspect ranged from 4.9% to 6.6%. 

 

Table 3.3 Percentage contributions and permutation importance for each variable to the 
BCL and BCL-RS models, respectively.  

Variables Percent Contribution Permutation Importance 

BCL Model 

Bio 16 49.3 40.5 

Bio 18 44.5 38.9 

Elevation 04.0 18.3 

Aspect 02.2 02.3 

Bio 2 00.0 00.0 

Bio 13 00.0 00.0 

BCL-RS Model 

Bio 16 41.0 30.6 

Bio 18 36.3 23.9 

Land surface temperature 

(LST) 
06.6 11.5 

Elevation 05.3 07.0 

Aspect 04.9 07.8 

Small integral 02.8 03.9 

Large integral 02.5 07.6 

Bio 13 00.5 04.2 

Right derivative 00.2 03.4 

Left derivatives 00.0 00.1 

3.4.3  Habitat Suitability Mapping 

Figure 3.6 shows the predicted habitat suitability map for ACT based on the BCL, see 

Figure 3.6a, and the BCL-RS, see Figure 3.6b, models. The maps indicate the more 

suitable predicted sites with warmers colors (red) and less suitable predicted sites with 

cooler colors (blue). Both models show better predicted conditions in Western, Central, 
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and small parts of Eastern Kenya. These areas have a higher elevation above mean sea 

level. The least suitable sites are mostly towards the coastal region which has lower 

elevations.  

Figure 3.6 Predicted distribution suitability map for African citrus triozid (Trioza 
erytreae) using environmental (BCL model) variables (a), and environmental 
and remotely-sensed (BCL-RS model) variables (b). Blue indicates low 
distribution suitability, while red represents high distribution suitability. 

 
The t-test result showed that the BCL-RS model produced significantly (t-statistic = 

2.8279 and p = 0.005) higher AUC values compared to the BCL model. The t-test 

difference in the means, indicated that RS variables contributed 18% to the prediction 

model when combined with environmental variables. 

 

3.4.4 Relationship between ACT Habitat Suitability and Landscape Context 

We realized that there are diverse and multiscale responses of landscape context (i.e., 

LULC) to the habitat suitability of ACT. Using the mean decrease in accuracy (%) in the 

RF variable importance rank, the “shrubs” class was found to be the most relevant LULC 
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class to ACT habitat suitability followed by “trees”, “grassland”, and “cropland”, 

respectively, as shown in Figure 3.7. 

 
Figure 3.7    The relevance of the four major land use/land cover classes to the habitat 

suitability of African citrus triozid (Trioza erytreae) using a random forest 
variable importance rank. 

 

3.5 Discussion 

This study tests the applicability of an EN modeling approach for predicting the 

distribution and suitable habitat for ACT in citrus-growing regions in Kenya. This was 

achieved through nesting ACT habitat variables with a MaxEnt modeling framework for 

generating distribution information that is fundamental for prioritizing sites in which the 

management of ACGD is most needed or feasible (Forkuor et al. 2017). A reliable and 

accurate ACT distribution map is a valuable information source for monitoring vector 

infestation rates and disease spread. Such a spatial data set can also be used to prioritize 

interventions that prohibit the spread of the disease to unaffected areas (Tonnang et al. 

2017). The “near-real-time” aspect of the remotely-sensing data means that the largely 

neglected aspect of early response can be addressed within integrated pest 

management (IPM) strategies (De Meyer et al. 2010).  

In general, our study shows that both the uncorrelated BCL and RS variables 

were well-associated with the occurrence of ACT in typical Eastern African landscapes 

with their heterogeneous agro-ecologies. The results showed the importance of fusing 
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RS with BCL variables in reducing the overestimated spatial variability in the predictor 

variables and in enhancing the predictive power of the model (Makori et al. 2017). For 

the best performing models, Bio 16 (annual precipitation) had the highest contribution 

towards predicting the habitat suitability for ACT followed by Bio 18 (precipitation of the 

warmest quarter), LST, elevation, aspect, and small integral (MODIS-derived vegetation 

productivity). Precipitation of both the wettest and warmest quarter were important 

variables in defining the habitat suitability of ACT since they regulate the optimal 

temperature ranges within which the triozid survives (Bové 2014). In addition, 

precipitation and temperature regulate citrus flushing circles which are known to be 

highly correlated with the occurrence of ACT (Khamis et al. 2017). The significance of 

the precipitation related variables in describing habitat suitability for ACT was more 

pronounced than elevation, which has been linked with the distribution of the vector in 

a previous study (Shimwela et al. 2016). This could be due to the micro-climatic aspect 

which is not entirely dependent on elevation but also landscape heterogeneity, among 

other aspects. In the BCL model, Bio 16 and Bio 18 alone contributed more than 92% to 

the model performance, while in the BCL-RS model, the contribution from these 

variables was reduced to 77% indicating that inclusion of RS variables contributes 

immensely to the model. Since our aim was to start from known BCL variables that are 

commonly used to predict the spatial distribution of crop pests, then explore the 

contribution of RS variables to the predictive model performance, we did not create a 

model without bioclimatic variables. Also, we did not create any bootstrapped MaxEnt 

models, which could have allowed the quantification of the effect sampling variability 

had on our model results (ACT distribution map).  

Makori et al. (2017) reported that RS information used within habitat suitability 

models is known to better account for explicit landscape patterns, that define habitats, 

thereby reducing model over-fitting and essentially increasing the accuracy and 

precision of habitat suitability models. In addition, our results showed that LST played a 

key role in defining the niche of the ACT vector. This is in agreement with previous 

studies which have shown LST to be a main parameter in pest modeling routines (Blum 

et al. 2015). The influence of RS variables in modeling the habitat suitability of ACT was 
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considerable. The BCL model, as shown in Figure 3.6a, had over-predicted the 

distribution of ACT compared to the BCL-RS model, as shown in Figure 3.6b. In our ACT 

prediction distribution map, areas with high occurrence probabilities are characterized 

by high precipitation, high elevation, lower temperature regimes, and relatively similar 

vegetation productivity patterns.  

The ACT distribution maps using BCL-RS variables show high occurrences of 

ACT in specific locations of the coastal region of Kenya. This disagrees with the findings 

of previous studies that ACT is unlikely to be present in coastal ecosystems. This could 

be related to vegetation dynamics and landscape context (i.e., LULC), which are very 

distinct in some specific areas along the coastal region, such as Wundanyi sub-county in 

Taita-Taveta county where the habitat suitability was reported to be high compared to 

other coastal regions of Kenya using the MaxEnt model. Despite the climate conditions 

being very similar to other regions where the model has predicted a high suitability of 

ACT, vegetation patterns in regions where the habitat suitability is high are very distinct 

and of similar productivities since they have common climatic conditions in terms of 

rainfall and temperature. This is in alignment with the finding from the literature that 

vegetation dynamics play a key role in defining the niche of crop pests and diseases 

(Ratnadass et al. 2012). This result reinforced the importance of both BCL and RS 

variables for modeling the distribution of ACT. Further, our study is a step towards the 

understanding of how the spread of insect pests is enhanced by BCL (both bio-climatic 

and topographic) and RS (vegetation phenological variables and LST), that influence the 

spread and multiplication of the vector in African agro-ecosystems. 

Furthermore, the results from this study revealed that landscape context 

should not be ignored regarding understanding the distribution and dispersal pattern of 

ACT. However, we did not include landscape context in our MaxEnt model since from 

our field observation, we realized that the majority of the citrus orchards in our study 

area are within a cropland class. In our case, a presence-only MaxEnt model would have 

extracted only ‘cropland’ features for all ACT presence points. Therefore, we opted to 

look at the effect of the landscape context on ACT habitat suitability based on the 

dispersal capability of the pest (which is 1500 m). The relationship between ACT habitat 
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suitability and the four major LULC classes across the major citrus-growing regions 

showed that there is an association between the surrounding shrub cover proportion 

and habitat suitability for ACT. Shrub cover near citrus orchards could provide 

alternative host plants for the vector during the time when citrus trees are not flushing 

since ACT is correlated with the flushing rhythm of the citrus host (Cook et al. 2013). In 

addition, from field observations, it became clear that the majority of the ACT-infected 

citrus trees were within shaded areas, and thus trees and shrubs surrounding the citrus 

orchards most likely provide more suitable temperature conditions for the survival of 

ACT. 

To the best of our knowledge, our study is the first attempt to predict the 

distribution of ACT using an enhanced and optimized EN modeling algorithm with BCL 

and RS variables and habitat suitability relationships with the surrounding landscape 

classes. Previous studies have only investigated the role of various environmental 

variables for mapping ACP distribution, but in these studies, links between localized 

factors captured in more sophisticated modeling routines and better consideration of 

landscape patterns were not considered (Shimwela et al. 2016). Future studies should 

explore the relationship between vegetation phenological and other localized pest 

classification factors and ACT densities (i.e., number of insets per unit area) to better 

understand the survival and dispersal patterns of the vector as there is a need for a 

better and more concerted implementation of vector management practices. 

 

3.6 Conclusions 

The impact of spatially heterogeneous environmental factors on ACT population 

dynamics are complex to model. However, understanding the inter-relationship 

between vectors, hosts, and their niches environment can provide valuable information 

for identifying conditions suitable for pathogen introduction and transmission in citrus-

growing regions. By exploring the spatial distribution of ACT, we identified a set of BCL 

factors that are favorable for its development, predicted its spatial occurrence, and 

identified potential areas that, due to their BCL conditions, would be suitable for its 

introduction. 
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The BCL-RS model showed higher accuracy metrics and was deemed 

appropriate for predicting the distribution and potentially suitable areas for ACT. 

Though less important, the influence of vegetation phenological variables and LST for 

determining the habitat suitability of ACT was considerable. Our results revealed that 

apart from the BCL variables like temperature, rainfall, and elevation, which have 

previously been found to define the EN of ACT, vegetation patterns and dynamics at a 

landscape level play a key role in influencing vector-host-pathogen transmission and 

distribution. The ACT distribution prediction maps are an important tool for identifying 

risk zones and understanding risk drivers. Also, the distribution maps can provide 

baseline information for the development and implementation of effective IPM 

strategies. Future studies should look at modeling the density of ACT on a landscape 

scale for the precise application of prevention and control measures. 
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4 ESTIMATING MAIZE LETHAL NECROSIS SEVERITY IN KENYA USING MULTI-

SPECTRAL HIGH TO MODERATE RESOLUTION SATELLITE IMAGERY 

 

4.1 Abstract 

Maize Lethal Necrosis (MLN) is a serious disease in maize that significantly reduces yields 

up to 90% in major maize growing areas in Kenya and other countries in Africa. The 

disease causes chlorotic mottling of leaves and severe stunting which ultimately leads 

to plant death. The spread of MLN in the maize growing regions of eastern Africa has 

intensified since the first outbreak was reported in Kenya in September 2011. In this 

study, 30-meter Landsat-8 and 5-meter multi-temporal RapidEye (RE) imagery was 

combined with field-based assessments on MLN infection rates to map three MLN 

severity levels in Bomet County, Kenya. Two RE level 3A images, acquired during maize 

stem elongation and inflorescence stage, respectively, were combined with one cloud 

free Landsat-8 image (path 169, row 061) acquired during the maximum phenology 

stage. The Landsat was re-sampled to 5 m pixel resolution to fit the RE imagery using 

nearest neighbor re-sampling. Thirty spectral indices for each RE time step were 

computed and included in the mapping model. Machine learning using random forest 

classification, was used on the fused satellite data sets to create a map separating maize 

fields from all other land cover and land use classes. Subsequently, MLN severity levels 

(mild, moderate and high) were mapped using random forest. Integrating RE and 

Landsat-8 data improved the classification accuracy for separating maize croplands from 

non-cropped areas. The optimized random forest algorithm yielded an overall accuracy 

of 90.2%, representing high model performance, in predicting the MLN severity levels 

by combining mild and moderate severe classes into a single class. These results indicate 

the possibility of using time-series of multi-sensor satellite data (with high pixel 

resolutions) and machine learning to monitor the spatial distribution of disease 

infestation rates in fragmented agro-ecological landscapes. 
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4.2 Introduction 

Agriculture is the primary source of livelihood for the most developing countries in 

Africa. In Kenya agriculture contributes up to 65% of the total labour force and 

contributes up to a third to the Kenyan gross domestic product (GDP) (World Bank 2008; 

Omiti et al. 2009). The population of Kenya is rapidly growing and expected to reach 95 

million people by 2050 from a current size of 46 million. The resultant increase in food 

demand has profound implications on agricultural productivity and how intensive land 

can be used for a more sustainable way of food production (FAOSTAT, 2013).  

Maize (Zea mays L.) is the main staple food in sub-Saharan Africa (SSA), covering over 

25 million ha of small holder farmers in the region (FAOSTAT 2010). Maize is the main 

staple of over 85% of the population in Kenya. In 2016 Kenya produced 3.34 million 

tonnes down from 3.68 million tonnes in 2015, which constitutes an approximate 12% 

drop in production. The latter is related to a wide range of abiotic and biotic risk factors 

that can have far reaching consequences for the country’s agricultural systems in the 

future (Ochieng et al. 2016). The former risk factors include uncertain changes in rainfall 

and temperature patterns markedly threatening food production, the latter pests and 

diseases that are likely to intensify under such extreme weather anticipated under 

climate change and in the absence of effective mitigation strategies (Myers et al. 2017).  

Among the many pests and diseases affecting maize farming in Kenya and 

beyond, maize lethal necrosis (MLN) has emerged as a serious disease threat to maize 

production across SSA (Hilker et al. 2007). It was first reported in Kenya in September 

2011 in the Longisa division within Bomet County (Adams et al. 2013; Wangai et al. 

2018). During 2011 MLN spread to other major maize growing regions along the Rift 

Valley and the western part of Kenya towards Lake Victoria. In the following year the 

Kenyan Ministry of Agriculture reported a major drop in maize harvest caused by MLN. 

Since 2012 the disease has also spread rapidly into other countries in East Africa such as 

Tanzania, Uganda, Rwanda and Ethiopia, leading to a serious reduction in maize 

production across the region (Adams et al. 2014; Mahuku et al. 2015). 

MLN is caused by the combined effects of a maize chlorotic mottle virus 

(MCMV) infection and that of any virus from the Potyviridae family, mainly the 
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sugarcane mosaic virus (SCMV) (Deressa 2017; Hilker et al. 2007). MCMV can be 

transmitted by several insect vectors among which maize thrips, leaf beetles and leaf 

hoppers play a major role (Jiang et al. 1990; Nault et al. 1978; Yu et al. 2014). Moreover, 

MCMV can also be seed-borne, leading to disease transmission, albeit at very low rates 

(Jensen et al. 1991). SCMV is mainly spread by several aphid species and by mechanical 

means (Adams et al. 2012). MLN infected maize plants show a range of symptoms, like 

yellowing of leaves, mottling of the leaves leading to premature plant death, failure to 

tassel resulting in warped maize cobs with little to no seeds (Ochieng et al. 2016), 

depending on the number of viruses infecting the plant and time of infection (Castillo 

and Hebert 1974). Early symptoms of an infection are leaves turning yellow and orange, 

that later change to brown before completely drying up.  

Several actions have been proposed for MLN management. For instance, 

farmers are advised to uproot affected plants during early growing stage to ensure that 

the disease does not spread. Another mitigation measure is crop rotation (Uyemoto 

1983) though farmers are often reluctant to change from maize to other crops because 

of profitability reasons and since it is the most important staple food in Kenya (Muthoni 

and Nyamongo 2010). With this regard, detailed information on MLN disease severity, 

incidence and the related effects to quality and quantity of maize production are 

important prerequisites for improved disease management (Mahlein 2015). For 

instance, visual estimates of disease symptoms in the field can determine disease 

severity and incidence (Bock et al. 2010; Newton and Hackett 1994), though such an 

approach is expensive, time consuming and often insufficiently accurate because of the 

human bias (Benson et al. 2015). Consequently, there is a growing demand for more 

precise and automated methods of plants disease monitoring to mitigate disease 

outbreaks by enabling timely adoption of relevant management practices (Geerts et al. 

2006; Palaniswami et al. 2014).  

Remote sensing techniques have demonstrated a high potential in detecting 

the presence and monitoring the spread of agricultural pests and diseases (Mahlein 

2015) as they can induce crop physiological stress and bio-physical changes on the 

infested plant leaves that can alter the reflectance spectra of plants (Fang and 
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Ramasamy 2015). Using plant leaves and canopy spectral signature, remote sensing can 

complement field-based protocols in distinguishing between healthy and different levels 

of damage of infested plants (Albayrak 2008). Moreover, remote sensing technologies 

can reveal the spatial and spectral distribution of pests and diseases over large areas at 

relatively low cost. For instance, Song et al. (2017) evaluated sentinel-2A satellite 

imagery for mapping cotton root rot, demonstrating that the technique can be used for 

precise disease identification if the imagery is taken during the optimum root rot 

discrimination period. Zhang et al. (2016) used a two-date multispectral satellite 

imagery for accurately mapping damage caused by fall armyworm (Spodoptera 

frugiperda) in maize at a regional scale. Franke and Menz (2007) evaluated high 

resolution QuickBird satellite multispectral imagery for detecting powdery mildew 

(Blumeria graminis) and leaf rust (Puccinia recondita) in winter wheat, showing that 

multispectral images are generally suitable to detect infield heterogeneities in plant 

vigor, particularly for later stages of fungal infections, but are only moderately 

appropriate for distinguishing early infection levels. 

This study evaluated the potential of space-borne RapidEye (RE) multi-

temporal data and an advanced Random forest (RF) classification technique in mapping 

MLN severity levels in a complex, dynamic and heterogeneous landscape, typical for 

rural SSA. This information will be important not only for a better understanding of the 

progression of the disease over a relatively large area, but also for the formulation and 

implementation of site-specific strategies for effective control of MLN. 

 

4.3 Study area 

The study was conducted in Bomet and Nyamira Counties located 300 km northwest of 

Nairobi, Kenya. The study sites lie between 34.97°E to 35.06°E and -0.76°S to -0.83°S 

(Figure 4.1) with an elevation range of 1,800-3,000 meters above sea level (m.a.s.l.). 

Bomet falls in a semi-humid climatic zone with mean monthly temperature of 18°C and 

a bi-modal annual rainfall ranging between 1,100-1,500 mm (Jaetzold and Schmidt 

1982). The climate is suitable for growing a wide range of crops. However, maize and 

tea are the most dominant crops in the region, with majority of farmers practicing a 
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maize based mono-cropping system, especially in the southern part of Bomet County 

(Abdel-Rahman et al. 2017).  
 

 

Figure 4.1. Location of the study area in the Bomet and Nyamira Counties of Kenya. 
 

4.4 Methodology 

Figure 4.2 summarizes the methodological approach for mapping severity levels of MLN. 

A two-step hierarchical RF classification using bi-temporal RE and Landsat-8 imagery was 

employed. First a land use/land cover (LULC) classification map was generated to 

delineate cropland from other LULC classes. We used the extracted maize crop mask 

from the first step to classify different MLN severity levels in maize fields (viz mild, 

moderately and highly infected maize plants). 
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Figure 4.2 Flow chart of the two-step random forest classification for mapping maize 
lethal necrosis severity levels. 

 
4.4.1 Field data collection 

A field campaign was conducted to identify different LULC classes from the study area 

and MLN severity levels for each maize farm sampled. A stratified random sampling was 

followed to collect both the LULC and maize fields’ severity reference data. A handheld 

Global Positioning System (GPS) device with an error of ±3 m was used to locate the 

reference control points. Once a field was identified, we delineated the field boundaries 

(polygon) within a minimum area of 10 ×10 m. To avoid an edge effect, we collected the 

polygon data five meters away from the edge of each field. To mitigate the effect of soil 

background on the crop spectral features, we only sampled the field crops that were 

about three weeks old at the first image acquisition date. The reference data for both 

LULC classification and MLN severity mapping were randomly divided into 70% training 
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and 30% validation sets. The training set was used to train the RF classifier while the 

validation dataset was used to evaluate the accuracy. 

Disease severity scores were determined by frequent field visits of MLN 

affected farms by a plant pathologist to access damage levels (Campbell and Neher 

1994). For each sampled farm the maize plants were grouped in specific severity levels 

based on damage levels and visual inspection. The severity was rated using a scale of 0-

5 as described by Paul and Munkvold (2004). The six scales were 0 (no disease), 1 (10-

20% leaf area affected by the disease), 2 (21-40% leaf area affected by the disease), 3 

(41-60% leaf area affected by the disease), 4 (61-80% leaf area affected by the disease) 

and 5 (81-100% leaf area affected by the disease). For consistency MLN damage levels 

were classified as mild (<20%), moderate (20-80%) and high (>80%) (Nutter and Schultz 

1995). 

4.4.2  RapidEye data pre-processing 

Two RE images were tasked for the Bomet site on the 9 December 2014 and 

the 27 January 2015, during the maize stem elongation and the inflorescence stages, 

respectively. RE is a commercial optical earth observation mission that consists of a 

constellation of five satellites with 5 m resolution and a swath width of 77 km with a 

revisit cycle of 5.5 days at nadir (RapidEye 2013). RE imagery is provided in five optical 

bands in the 400-850 nm range of the electromagnetic spectrum. The images used in 

this study were delivered as 3A orthorectified products in the form of 25 × 25 km tiles 

georeferenced to the Universal Transverse Mercator (UTM) projection. 

Atmospheric correction was performed for each RE tile independently using 

the atmospheric-topographic correction (ATCOR 3) software (Guanter et al. 2009). This 

application provides a sensor specific atmospheric database of look-up-tables (LUT) 

which contain results of pre-calculated radiative transfer calculations based on the 

MODTRAN-5 (MODerate resolution atmospheric TRANsmission) model (Berk et al. 

2008). All images were co-registered (image-to-image) to ensure the alignment of the 

corresponding pixels. Subsequently the RE tiles were mosaiced into a single image file 

for each acquisition date. For each image 30 spectral vegetation indices (SVIs) (kyalo et 

al. 2017) (see table 1.1) were computed and combined with the original RE bands (blue, 
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green, red, red edge and near infra-red) as input predictor variables for each acquisition 

to improve the MLN severity levels classification accuracy.  

4.4.3 Landsat-8 data and pre-processing 

Single date Landsat-8 Operational Land Imager (OLI) data for the study area delivered as 

orthorectified and level 1 terrain corrected were acquired from the United States 

Geological Survey (USGS) direct archive on 18 March 2015 during the maize flowering 

stage. The Fmask tool (Zhu and Woodcock 2012) was used for automated cloud and 

cloud shadow masking. All the image tiles covering the study area were converted to 

surface reflectance and digital numbers (DN) and converted to top-of-atmospheric 

(TOA) reflectance using the reflectance rescaling factors provided in the Landsat OLI file 

(Yackulic et al. 2013). Finally, the mosaiced image was atmospherically corrected using 

ENVI FLAASH (the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) which 

runs on a MODTRAN 4 based atmospheric correction algorithm (Cooley et al. 2002; Zhu 

et al. 2012). The spectral bands used in this study included blue (0.45–0.51 μm), green 

(0.53–0.59 μm), red (0.64–0.67 μm), near infrared (NIR; 0.85–0.88 μm), shortwave 

infrared 1 (SWIR 1; 1.57–1.65 μm; SWIR 2; 2.11–2.29 μm) and the panchromatic band 

(0.5–0.68 μm). The final atmospherically corrected tiles were mosaiced and resampled 

to 5 m pixel resolution using the nearest neighbor resampling technique of the 

Environment for Visualizing Images (ENVI) software. 

4.4.4 Random forest algorithm 

We employed the RF machine learning classifier (Breiman 2001; Rodriguez-Galiano et 

al. 2012) to predict the LULC classes, used for crop/masking mask, and also in mapping 

the MLN severity levels. RF was chosen as the preferred classification method since it 

has been proven to be robust to outliers, noise and consistently demonstrated capability 

to handle high dimensional datasets without suffering from overfitting (Barrett et al. 

2014). RF builds an ensemble of individual decision trees from which the final prediction 

is based using majority voting criteria. Each decision tree is trained using a bootstrap 

sample consisting of two thirds of the training data drawn with replacement, and the 

remaining one third of the data, which is not included in the bootstrapped training 
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sample, is used to test the classification and estimate the out-of-bag (OOB) error (Barrett 

et al. 2016).  

Random forest uses two user-defined parameters, the number of trees (ntree) 

and the number of variables used to split the nodes (mtry). The default ntree is 500, 

while the default value for mtry is the square root of the total number of spectral bands 

used in the study. To improve the classification accuracy, the two RF parameters were 

optimized based on the OOB error rate.  

4.4.5 Variable selection and optimization 

Random forest measures the importance of each predictive variable using the mean 

decrease in accuracy that is calculated using the OOB sample data (Georganos et al. 

2018). However, the challenge was to select the fewest number of predictors that offer 

the best predictive power. In this regard, a backward feature elimination method (BFE) 

integrated with RF regression as part of the evaluation process was implemented 

(Guyon and Elisseeff 2003; Mutanga et al. 2012). The BFE uses the ranking to identify 

the sequence in which to discard the least important predictors from the input data sets. 

The method starts with the entire variables and then progressively eliminates the least 

promising variable from the list. For each iteration, the model is optimized by selecting 

the best mtry and ntree, using a grid search and a ten-fold cross validation method 

(Huang and Boutros 2016). The least promising variable is eliminated, and the root mean 

square error is calculated. The smallest subset of variables with lowest root mean square 

error (RMSE) is then selected for the final classification model. 

4.4.6 Accuracy assessment 

Classification accuracy of the RF classifier was assessed using an independent set of field 

data (30%). Overall accuracy (OA) and the F1-Score values were computed from the 

confusion matrices to evaluate the accuracy of generated classes. In addition, the 

producer’s accuracy (PA) and the class specific user’s accuracy (UA) was also calculated 

to evaluate generalization ability of the RF classifier (Congalton 2001). A confusion 

matrix provides information on the correct predictions by comparing the classified map 

with ground information collected from the field. OA refers to the ratio of correctly 

classified pixel to all pixels considered in the model evaluation. The F1-Score is a per 
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category measure which corresponds to the harmonic mean of the user’s accuracies and 

the producer’s accuracies. PA refers to the error of omission which expresses the 

probability of a certain class being correctly recognized, while UA is the error of 

commission which represents the likelihood that a sample belongs to a specific class and 

the classifier accurately assigns it this class. Kappa statistics were also calculated to 

compare the significance between different error matrices generated from the 

generated classification results (McHugh 2012). The Kappa coefficient measures the 

actual agreement between the reference data and a random classifier with a value close 

to one, signifying perfect agreement. To remove noise from the classification a 3×3 cell 

majority filter for all classified maps was applied. This approach replaces secluded cells 

with the classes that matches the majority of cells within a 3×3 matrix. Each filtered 

classified map was finally tested for accuracy. 

 

4.5 Results 

4.5.1 Random forest optimization  

RF parameters (ntree and mtry) were optimized for the two-step classification for the 

different data sets using grid-search technique with 10-fold cross validation. The ntree 

value of 500 and mtry value of 3 setting yielded the least OOB error for the LULC 

classification. In addition, the ntree value of 1,000 and mtry of 5 yielded the best OOB 

error (4.8%) for the MLN severity mapping (Figure 4.3).  
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Figure 4.3 Results of Random forest optimization grid for the land use land cover 
classification result (a) and for the maize lethal necrosis severity mapping 
result in (b). The internal out-of-bag error rate was calculated using a 10- 
fold cross validation and the training data. 

4.5.2  Crop masking 

A LULC map was predicted to discriminate maize crop from other LULC classes using 

different combinations of the acquired RE images and the Landsat-8 image. Six major 

LULC classes were identified based on field observations made within the study area. 

Table 4.1 presents a summary of the results (overall accuracy and F1-Score) when using 

30% as evaluation data. The results revealed that the use of the RE spectral bands gave 

an overall accuracy of 72.3% and 74.8% for single classification of RE1 and RE2, 

respectively. The combination of the two RE images (RE1 and RE2) spectral bands 

improved the overall accuracy to 80.6% while when combining the two RE images 

(bands) with the Landsat-8 imagery (bands) yielded a further overall accuracy 

improvement to 91.05%. In addition, the F1-score for each class was generally above 0.9 

except for cropland and natural vegetation classes which were 0.87 and 0.85, 

respectively, for the optimal classification that combined RE images and Landsat-8 was 

selected for LULC. 

ntree value                                                                                  ntree value                                                                                  
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Table 4.1 Overall and classwise accuracies for land use/land cover mapping using 30% 
of test data. 

 

 

Figure 4.4 shows the LULC map generated from the optimal combination of the two RE 

images with the Landsat-8 image revealing that cropland and grassland are the major 

classes in the study site, with few tea plantations on the northern side of the study area. 

However, there was slight confusion between cropland with natural vegetation and 

forest resulting from the presence of big trees and pockets of bushes inside the cropland 

as observed from the field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class wise accuracies- F1 score 

Image Accuracy 

(%) 

Cropland Forest Grassland Natural 

veg. 

Soil Tea 

RE1 72.34 0.69 0.81 0.69 0.74 0.83 0.81 

RE2 74.80 0.73 0.87 0.84 0.77 0.84 0.70 

RE1+RE2 80.63 0.82 0.92 0.89 0.85 0.78 0.82 

RE1+RE2+ 

LS-8 

91.05 0.87 0.93 0.95 0.83 0.96 0.93 
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Figure 4.4 Land use land cover map obtained using Random forest classifier with two 
early season RapidEye images and one late season Landsat-8 image. 

 

Table 4.2 represents the confusion matrix for the per-pixel evaluation for the LULC 

classification using RF. In general, all LULC classes achieved > 90% user’s accuracy except 

for natural vegetation which had 79.89% due to spectral confusion with cropland. All 

LULC classes achieved > 90% producer’s accuracy except for cropland and natural 

vegetation classes which achieved 83.23% and 86.34%, respectively. Consequently, the 

user’s accuracy was generally > 90% for all classes except the natural vegetation class 

which had 79.89%. The latter can be attributed to the observed confusion between the 

“cropland” and “natural vegetation” classes as shown in the confusion matrix.  
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 Table 4. 2 Confusion matrixes for land use land cover classification using Random forest 
classification with two early season RapidEye images (RE1 and RE2) and 
one late season Landsat image.  

Overall accuracy=91.05%. Kappa=0.89 

 

4.5.3  Maize lethal necrosis severity variable selection  

We used a RF backwards feature elimination procedure to identify the smallest set of 

predictor variables that resulted in the best predictive abilities of the RF model for 

mapping MLN severity levels. The progressive removal of the least important predictor 

variables resulted in the selection of seven spectral variables (indices and/or bands) 

which gave the least OOB error as shown in Figure 4.5. These reduced models were 

compared to models based on the full predictor variables dataset. 

 

 

 

 

 

 

 

 

 

Class Cropland  Forest Grassland Natural veg. Soil Tea Total PA (%) 

Cropland 268  0 1 48 0 5 322 83.3 

Forest 0  303 0 7 0 12 322 94.0 

Grassland 2  0 304 4 12 0 322 94.1 

Natural veg. 18  12 8 278 0 6 322 86.34 

soil 9  0 5 3 305 0 322 94.72 

Tea 0  13 0 8 0 301 322 93.48 

Total 297  328 318 348 317 324 1932  

UA (%) 90.24  92.38 95.60 79.89 96.22 92.90 
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Figure 4.5 Plot for the optimal number of predictor variables selected based on the 
random forest backward feature elimination search function using root 
mean square error.  

 

Four and three spectral variables, respectively, were selected as important variables 

from the two RE images, captured during the maize stem elongation and inflorescence 

development stages, respectively (Table 4.3). Only one spectral band (band 5) for RE2 

was selected amongst the most important variables. In addition, Chlorophyll Index red 

edge (ChlRed-edge) vegetation indices calculated from both acquisitions were selected 

amongst the most significant predictor variables too. Besides, the variable importance 

technique in RF was used to determine the influence of each spectral variable selected 

on the mapping accuracy. ChlRed-edge vegetation indices from RE1 was the most 

important variable with a mean decrease accuracy of 0.221% followed by ChlRed-edge 

vegetation indices from RE2 with a mean decrease accuracy of 0.186%. Band 5 and 
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Transformed Soil Adjusted Vegetation Index Red Edge (TSAVI) from RE2 were the third 

and fourth most significant variables, respectively (Table 4.3). 

 

Table 4.3 Spectral variables selected as the most important predictor variables for 
mapping maize lethal necrosis severity levels using Random forest 
backward feature elimination procedure. 

 

4.5.4 Maize lethal necrosis severity classification  

Table 4.4 presents the accuracy assessment error matrix for the classification map 

generated by the RF most important spectral variables to map three MLN severity 

classes (i.e., mild, moderate and high). The classification achieved an overall accuracy of 

73.33%. The producer’s accuracy, which indicates the probability of actual areas being 

correctly classified, was 60.48% for the mild MLN severity, 60.95% for the moderate and 

98.57% for the high severity classes. The user’s accuracy attained was 66.84% for the 

mild, 61.24% for the moderate and 89.61% for the high severity classes. 

 

Acquisition Spectral variable Abbreviation Mean decrease 

accuracy (%) 

RE1 Chlorophyll Index Red edge ChlRed-edge 0.221 

RE2 Chlorophyll Index Red edge ChlRed-edge 0.186 

RE2 RE Band 5 (Red edge) Band 5 0.091 

RE2 Transformed Soil Adjusted 

Vegetation Index Red Edge 

TSAVI 0.091 

RE1 Green Normalized Difference 

Vegetation Index 

GDVI 0.085 

RE1 Normalized Difference Vegetation 

Index 

NDVI 0.084 

RE1 Normalized Difference Red-Edge NDRE 0.076 
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Table 4.4 Random forest classification confusion matrix for three maize lethal necrosis 
severity classes (mild, moderate and high) using 7 most important 
spectral variables with 30% test dataset.  

Class Mild Moderate High Total Producer’s accuracy 

Mild 127 78 5 210 60.48 

Moderate 63 128 19 210 60.95 

High 0 3 207 210 98.57 

Total 190 209 231 630  

User’s Accuracy 66.84 61.24 89.61 
 

 

Overall accuracy=73.33%. Kappa=0.60 

To improve the overall accuracy, we combined the mild and moderate severity classes 

which depicted high confusion as a result of similar spectral characteristics for the 

majority of the sampled farms. This improved the overall accuracy from 73.33 to 90.18% 

(Table 4.5). 

 

Table 4.5 Error matrix generated for mapping two maize lethal necrosis severity classes 
(mild and high) using 7 most important spectral variables with 30% test 
dataset. 

Overall accuracy=90.18% Kappa=0.92 

 

The final thematic MLN severity map for the two severity classes (mild and high) 

produced via the RF algorithm is shown in Figure 4.6. The red color represents maize 

farms with high severity while the blue color depicts the moderately infected fields. As 

shown in the zoomed portion of the map some of the maize fields harbored both mildly 

as well as highly MLN affected plants which agrees with the field observation (Figure 

4.6).  

Class Mild High Total Producer’s Accuracy 

Mild 202 27 210 92.24 

High 22 197 210 89.95 

Total 215 205 420  

User’s Accuracy 90.18 92.06 
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Figure 4.6 Mapping the spatial distribution of maize lethal necrosis severity levels using 
the seven most important spectral variables selected by random forest. 

 

4.6 Discussion 

This study explored the usefulness of bi-temporal RE imagery and a RF classification tool 

for mapping the MLN severity levels in heterogeneous agro-ecological landscapes in 

Kenya. A two-step optimized RF classification was used to extract a crop mask from LULC 

classification and finally generate an MLN severity map for the Bomet County and 

Southern part of Nyamira County, a major maize growing area in Kenya heavily affected 

by the disease.  

Utilization of the two RE images acquired for the study area during the maize 

early growing stages did not yield promising results in delineating cropland from other 

LULC classes. This could be attributed to the late ploughing of some fields as observed 

during field visits. Thus use of early season RE images alone captured insignificant 

portions of the phenological development of the maize plants, hence the failure to 

produce an accurate crop mask (Forkuor 2014). Subsequently, due to the high costs of 
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RE imagery, the study managed two acquisitions during the maize stem elongation and 

inflorescence stages, respectively. Therefore, we utilized a cloud free Landsat-8 acquired 

during maize flowering stage resampled to RE resolution to improve LULC classification. 

Combining the two acquired RE images with the resampled Landsat-8 image improved 

the classification accuracy by provided additional information on late cultivated fields 

which significantly improved the accuracy for extracting crop mask from LULC 

classification from 80.63% to 91.05%. Similarly, Vladimir et al. (2014) used freely 

available Landsat-8 data with a single RE image to improve classification of small 

agricultural fields in northern Serbia.   

The high OA of our LULC classification map supports the growing evidence that 

RF is a reliable classifier for heterogeneous landscapes (Nguyen et al. 2018). For 

instance, our results revealed a good separability for all the LULC classes apart from the 

slight confusion between cropland and natural vegetation classes. These results 

demonstrate the effectiveness of RF classifier to distinguish cropland from other LULC 

classes in a highly fragmented landscape. The observed overlaps between cropland and 

natural vegetation classes are well known and can be attributed to the spectral similarity 

among the vegetation and cropland caused by the presence of small pockets of shrubs 

within the agricultural land (Forkuor et al. 2015). In addition, the majority of farmers in 

our study area maintains fruit trees such as mangoes and banana trees within their 

fields, resulting in heterogeneity and spectral confusion between crops and other 

vegetation classes (Ayanu et al. 2015). 

Essentially, MLN severity levels can accurately be distinguished if there are no 

other major stressors present that produce similar plant symptoms to those of the 

disease (Zhang et al. 2012). Field observations confirmed that MLN disease was the 

dominant stressor and that there was a minimal amount of interference from other 

biotic and abiotic factors in the sampled maize fields. To minimize such interference, we 

collected training polygons 5 m away from the farm edges to avoid edge effects and 

water logging which was observed to affect maize growing at the field edges in some of 

our sampled maize fields. Nevertheless, care was taken to ensure that infected fields 
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were correctly identified by visually comparing each classification map with its original 

NDVI and true color images in the study. 

The optimal predictor variables selected using optimized RF backward feature 

elimination technique were four SVIs (NDVI, GDVI, ChlRed-edge and NDRE) extracted 

from the RE image acquired during the maize stem elongation stage combined with two 

SVIs (TSAVI and ChlRed-edge) and one spectral band (band 5) from the RE image 

acquired during maize inflorescence. These variables proved capable to discriminate 

two distinguishable MLN severity classes (mild and high) with highest accuracy of 

90.18% and a Kappa value of 0.92.   

TSAVI was selected amongst the important variables for mapping MLN severity 

because of its ability to minimize soil brightness influences from spectral vegetation 

involving red edge and NIR wavelengths (Huete 1988). Besides, TSAVI reduced soil 

background conditions which imposed extensive influence on partial canopy spectra and 

calculated SVIs. Similar results were reported by Dhau et al. (2018) who found that soil 

adjusted vegetation index (SAVI) was amongst the important vegetation indices for 

detecting and mapping of maize streak virus using RE imagery. In addition, GDVI, NDRE 

and NDVI were sensitive to MLN severity probably because severely infected maize 

plants are characterized by low chlorophyll ratio followed by ultimate variations in leaf 

area. Previous studies showed the importance of NDVI in monitoring of crop stress and 

disease detection (Eitel et al. 2011). Yet, GNDVI can better predict the leaf area index 

(LAI) than the conventional NDVI, while NDRE has demonstrated the ability to detect 

crop stress earlier than NDVI and GNDVI which are traditionally used for plant health 

monitoring (Wang et al. 2007). Inclusion of these vegetation indices by RF variable 

selection showed that changes in chlorophyll content is more sensitive to disease 

severity than changes in water content (Wang et al. 2015). Most notably, the presence 

of red edge band provided a critical and subtle measurements of vegetation properties 

such as chlorophyll content necessary for distinguishing between healthy and disease-

affected plants (Song et al. 2017). Therefore, our study supports the conclusion that 

strategically positioned bands such as red edge found in new generation RE 
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multispectral imagery, contain more spectral information, useful for disease mapping in 

crop plants (Eitel et al. 2011).  

Comparing the classification results generated using three MLN severity 

classes (mild, moderate and high) with only two severity classes by merging mild and 

moderate severe classes (mild and high), improved the overall accuracy by 16%. This 

implied that there was enormous spectral confusion between maize fields that were 

mildly and moderately affected by MLN. This confusion can bet attributed to the fact 

that disease estimation is faced with much difficulty at the onset of early symptoms due 

spectral similarity between slightly infected and non-infected areas (Ashourloo et al. 

2014).  

Based on the results from this study, a better understanding of the spatio-

temporal characteristics of plant diseases is crucial to develop detection tools that are 

applicable for multi-temporal analyses and the temporal dimension of crop diseases. 

Therefore, sensor-based identification must be explored further to establish on what 

resolution and magnitudes disease infestation can be mapped with the specific sensors  

(Fang and Ramasamy 2015). Considering that the occurrence of plant diseases is 

dependent of explicit environmental factors and that diseases often exhibit a 

heterogeneous distribution, optical sensing techniques are useful in identifying primary 

disease foci and within field disease severity patterns (Melesse et al. 2007). 

 

4.7 Conclusion 

Monitoring of MLN severity levels is of immense practical importance, given that the 

disease tends to develop rapidly and that it is presently very difficult to precisely forecast 

its development. In this study, a method for mapping MLN severity using multi-temporal 

RE satellite remote sensing data and optimized machine learning algorithm was 

developed and tested, ensuring a systematic monitoring of MLN damage levels over a 

large area. Our results indicate the suitability of remote sensing data as a 

complementary tool for disease monitoring which could help in the development of 

effective disease control strategies. Although, low temporal resolution dataset with high 

spatial resolution is a restrictive factor for practical implementation, the launch of future 
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observation systems with improved repetition rates such as sentinel-2 can broaden the 

field of applications. Therefore, explicit geo-spatial and timely synoptic tools are needed 

for the monitoring of pests and diseases damage levels to facilitate better and more 

targeted mitigation measures in maize and other important crops. Besides, the 

effectiveness of remote sensing-based on the spatio-temporal dynamics of MLN must 

be investigated in future studies to understand linkages between maize pests and 

diseases hotspots with the underlying ecological factors for better and precise 

monitoring and management practices. 
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5 GENERAL CONCLUSION 

 

Against the background of continuing population growth and limited potential to 

enlarge suitable cropland in sub-Saharan Africa (SSA), the rate of decrease in crop 

production has caused an imbalance between the food demand of the growing 

population and the global agricultural output. Enhancing agricultural production 

efficiency is among the important measures to meet the future food demand. Hence 

there is an increasing demand for compherensive understanding of the constraints 

behind low agricultural productivity in SSA. Abiotic and bitoic constraints are among the 

many factors affecting agricultural productiviy leading to decreased crop outputs, 

ultimately resulting in food insecurity. Specifically, the status of agricultural productivity 

in SSA is alarming, and protection against losses majorly caused by crop pests and 

diseases, can play a critical role in improving the situation in SSA. Yet, under utilization 

of smart agricultural concepts and a lack of knowledge and skills has resulted to majority 

of the farmers at the smallholder level being unable to diagnose crop problems 

sufficiently early or do not possess the technical know-how to manage them effectively. 

Protection of crops against plant pests and diseases has an obvious role to play in 

meeting the growing demand for food security. Thus, planning for agricultural 

adaptation and mitigation must lean on informed decision-making processes, especially 

on improved pre- and post-harvest pest and disease management practices. 

In line with the above, this study investigated the opportunities available and 

challenges for using both ecological and remotely sensed based variables for better 

management of crop pests and diseases within the heterogenious landscapes of SSA. 

For instant, cropping pattern has been proved to be amongst the most significant 

parameter in crop productivity models by its utilization as a buffer against rapid spread 

of pests and diseases. Despite its importance, previously, it has not been possible to 

monitor cropping systems in large scale over time. Thus, results presented in Chapter 2 

of this study indicates the possibility of using remote sensing imagery with permisable 

resolution in extracting cropping system variable in a heterogeneous landscape of SSA. 

However, selecting an appropriate imagery is far from being trivial. In this regard, use of 
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multi-temporal data sets using a robust hierarchial classification proved to extract 

different cropping systems with a very high classification accuracy. The same accuracy 

was obtained for extracting cropland from other land use landcover classes for the 

purpose of mapping the disease damage levels in crops (here maize). In this context, it 

is clear that hierarchical classification is a valuable and effective method that should be 

preferred in an operational cropping system mapping and disease severity monitoring 

context, because the findings in this thesis indicate that this concept can be more stable 

and consistently provides higher classification accuracies over different landscapes for 

both annual and perrenial crops.  

It is definate from the foregoing that the many approaches to controlling crop 

pests and diseases causing serious losses in SSA or elsewhere in the tropics could be 

improved through the application of improved techniques such as ecological niche 

modelling (ENM) and remote sensing (RS) for large scale monitoring as depicted from 

the results presented in this study. ENM involves a suite of tools that link known 

occurrences of plant pests and disease or phenomena to geographic information system 

layers that summarize variations in various environmental dimensions. The results in 

Chapter 3 proved the importance of combining ecological variables with remotely 

sensed variables which were deemed appropriate for predicting the distribution and 

potentially suitable areas for the African citrus triozid (ACT), vector of the devastating 

citrus greening disease, using ENM approach as compared to the approach of using the 

existing ecological bioclimatic variables. Remotely-based variables further revealed that 

vegetation patterns and dynamics at a landscape level play a key role in influencing 

vector-host-pathogen transmission and distribution. Based on an ENM approach it is 

possible to understand the ecological niche of insect pests, and thus facilitating more 

precise management practices especially for scarce crops such as citrus in a highly 

fragmented agro-ecological landscape where disease monitoring using remote sensing 

techniques is not possible over a large area. Subsequently, the results in Chapter 4 depict 

that the biotic stress caused by the pests and disease is assumed to interfere with 

photosynthesis and the physical structure of the plant at tissue and canopy level, and 

thus affects the absorption of light energy and alters the reflectance spectrum which 
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can be monitored using RS imagery with permissible resolution. This implies, that 

research into vegetation spectral reflectance can help us gain a better understanding of 

the physical, physiological and chemical processes in plants due to pests and diseases 

attack and to detect the resulting biotic stress at regional scale using RS imagery 

captured during a perfect timing of different damage levels. This significanlty assists 

decision makers in forming strategies for timely management of pests and diseases in 

hotspots to prevent further spread to non-affected areas.  

While the results from this study confirms that application of RS-based tools 

for monitoring of crop pests and diseases have a positive impact on crop productivity in 

SSA, there are limitations associated with the methodoly applied in this study. Amongst 

the main challenges is the often-limited ability to detect early incursions of crop pests 

and plant diseases as a result of cloud cover which prevents optical sensors from 

acquiring useful images during critical crop development stages, especially for annual 

crops. In order to overcome these challenges, satellite information with high spatial and 

temporal resolution are needed to monitor small farm plots. Therefore, data from 

Synthetic Aperture Radar (SAR) sensors that are near-independent of weather 

conditions must be integrated with optical images to improve the temporal coverage of 

available images in SSA. Another challenge related to full implementation of using 

ecological and remote sensed variables for enhanced crop productivity is that, in many 

cases, the details of ecologic parameters associated with occurrences of diseases or of 

species participating in disease transmission (e.g., vectors, hosts, pathogens) may be 

unclear because of small sample sizes, biased reporting, or simply lack of detailed 

geographic or ecologic analysis. This calls for a robust and effective farmer 

communication tools to facilitate routinely updated information on newly emerging 

pests and diseases to the respective authorities for mitigation measure. Concerning the 

operationalization of RS techniques for the monitoring of agricultural pests and diseases 

in a wider range of agricultural landscapes, it can be concluded from the results of this 

study, that despite the high performance of existing methods (e.g. ecological modeling 

and classifier algorithms), one important research issue remains the transferability and 

stability of such methods. This implies that methods developed and tested in one place 
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might not necessarily be applicable to another place or over extended time, 

respectively. Therefore, it seems worthwhile to investigate concepts to use or combine 

existing techniques that can adapt to specific regional or local contexts.  

Even with these caveats, the results from this study have important 

implications. Primary among these is that the evidence presented in this study supports 

the belief that precise pests and diseases monitoring approaches can increase crop 

productivity, and, consequently, reduce food insecurity. Another significant implication 

is that effective policy measures to promote adoption of smart agriculture should 

include effective implementation of agricultural systems that are resillient to majority 

of stressors affecting crop yield in the heterogenious landscapes of SSA. The results from 

this study have proved the capability of using multi-temporal RS datasets and 

environmental variables to develop a robust framework for monitoring pests and 

diseases hotspots at regional scale characterised by the very highly heterogenious 

landscapes of Africa. However, it is crucial not only to adapt the concept of a better 

management of agriculture to existing farming practices (e.g. push-pull adoption) but 

also to engage the government to actively promote technology adoption and ensure 

that information about improved techniques for crop pests and diseases monitoring and 

management are effectively disseminated, and the technologies are subsequently 

adopted. Given the sizeable impacts on potential yield losses, economic surplus and 

poverty and the fact that for the majority of important pests and diseases no cure or 

resistant germplasms exist, the incentive for governments of promoting adoption 

should be considerable. Moreover, a proper monitoring mechanism should be in place 

to ensure that there is no further spread of pests and diseases to non-affected areas. 

Therefore, further research should focus on utilization of freely available recently 

launched RS datasets for better understanding of harmful crop pests and diseases 

significanlty affecting crop productivity in SSA. In addition, since the concepts and 

frameworks presented in this thesis are not restricted to optical data, it seems 

worthwhile to investigate multi-sensory RS data such as radar missions which provide 

spatially enhanced observations (with swaths suitable at least for local applications) with 

high revisit frequencies and that are not dependent on the need for cloud free 
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atmospherically conditions. In conlusion, this study demonstrates the potential of 

integrating ecological and RS datasets for better understanding of crop pests and 

diseases in SSA for effecive management. Thus, the results presented here could 

considerably contribute to the development and implementation of suitable and 

effective integrated pest management strategies to mitigate further spread of the 

aforementioned pests and diseases.  
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