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Abstract

Climate change is the most challenging factor for modern agriculture. The risk of

heatwaves combined with heavy precipitation events and steady rainfall absence

determines agriculture in many regions of the world. One of the key factors to

mitigate these problems is a optimum soil performance.

By this adapted tillage to improve soil performance and thus, mitigate impacts of

climate change is of outstanding importance. The subsoil (soil layer beneath the

A-horizon) is a soil layer very rich in nutrients and carbon, and contains water

reservoirs which are important during times of drought. However, this soil layer

is very often compacted and soil physical properties do not allow plant roots to

develop into it.

Deep soil loosening (subsoiling) can be highly bene�cial to soil physical properties

and improve soil structure substantially. Beneath, sustainable fertilizer application

is also of outstanding importance. The combination of subsoiling and deep placed

organic fertilizer can be a solution to improve soil performance and secure stable

cereal crop yield at times of climate change.

The objective of this thesis is to test how deep soil loosening, and its combination

with deep placed organic fertilizer a�ects cereal crop development. Subsoiling is

undertaken stripwise and yields are monitored in two distances to the melioration.

Results show that di�erent working tools a�ect plant development and organic

fertilizers being rich in nitrogen (biocompost) and with a dense C:N ratio are highly

valuable to yield development compared to untreated control. Organic fertilizers

with wider C:N ratios do not increase yield in the short-term (year 1) while for one

material (chopped straw) a trend towards positive e�ects is recognizable on the

longer term (year 2). Results at fallow land demonstrate that yields continuously

decrease with distance to the melioration and an optimum strip distance of 1 m

creates bene�cial e�ects for a whole crop area.

The combined results of pre-trial and main-trial allow the conclusion that mixing

of biocompost and chopped straw can substantially increase cereal crop yields at

times of climate change, respectively to weather and soil conditions in the area of

'Rhineland Bonn'.



Zusammenfassung

Der Klimawandel ist einer der Hauptfaktoren, der die moderne Landwirtschaft bee-

in�usst. Das Risiko andauernder Hitzeperioden kombiniert, mit Starkregenereignis-

sen bei gleichzeitig insgesamt geringen Niederschlägen, bestimmt die Landwirtschaft

in weiten Teilen der Welt. Einer der Hauptfaktoren, um diesen Problemen ent-

gegenzuwirken, ist eine optimale Bodennutzung. Angepasste Bodenbearbeitung,

die die Bodenstruktur verbessert und somit dem Ein�uss des Klimawandels entge-

genwirkt, ist von groÿer Bedeutung. Der Unterboden (die Bodenschicht unterhalb

des A-Horizonts) ist reich an Nährsto�en und Kohlensto�, gleichzeitig verfügt er

über tie�iegende Wasserreservoirs, die in Dürreperioden die Wasserversorgung der

Nutzp�anze positiv beein�ussen. Häu�g kann diese Bodenschicht jedoch nicht von

P�anzenwurzeln erschlossen werden, da sie verdichtet ist.

Tiefe Bodenbearbeitung (Unterbodenbearbeitung) kann die Bodenstruktur posi-

tiv beein�ussen und nachhaltig verbessern. Des Weiteren steht ein angepasstes

Düngemanagement im Fokus der Bodenverbesserung. Eine Kombination aus Un-

terbodenbearbeitung und tief eingebrachtem organischen Dünger kann ein Weg

zur nachhaltigen Bodenverbesserung sein und stabile Erträge in Zeiten des Kli-

mawandels sicherstellen.

Die vorliegende Arbeit beschäftigt sich mit den Auswirkungen einer Unterboden-

bearbeitung und deren Kombination mit tief eingebrachtem organischem Dünger

auf die Ertragsentwicklung von Getreidep�anzen. Die Unterbodenmelioration wird

hierbei streifenweise vorgenommen und die Erträge in Abstand zu dem Meliora-

tionsstreifen bonitiert. Die Ergebnisse zeigen, dass unterschiedliche Lockerungs-

werkzeuge den Ertrag beein�ussen und organische Dünger, die reich an Stick-

sto� sind und ein enges C:N Verhältnis haben (Biokompost), den Ertrag positiv

beein�ussen. Organische Dünger mit weiten C:N Verhältnissen beein�ussen den

Ertrag in einem einjährigen Versuch nicht positiv. Ein Trend hin zu einer positiven

Wirkung lässt sich im zweijährigen Versuch in der Variante Strohhäcksel erken-

nen. Die Ergebnisse des Vorversuchs auf einer Brache�äche zeigen, dass der Ertrag

mit zunehmendem Abstand zum Meliorationsstreifen abnimmt und die optimale

Distanz für den Streifen, mit der sich �ächendeckend positive Ergebnisse erzielen

lassen, bei 1 m liegt. Die Ergebnisse aus Vorversuch und Hauptversuch lassen da-

rauf schlieÿen, dass eine Mischung von Biokompost und Stroh ein Substrat für den

Unterboden ergibt mit dem dieser sich nachhaltig verbessern lässt, in der Region

'Rheinland Bonn'.



Contents

List of Abbreviations II

List of Figures III

List of Tables IV

1. INTRODUCTION 1

1.1. Challenges in agriculture at times of climate change . . . . . . . . . 1

1.2. Development of deep tillage in agriculture . . . . . . . . . . . . . . 2

1.3. Use of organic fertilizers in agriculture . . . . . . . . . . . . . . . . 3

1.4. Knowledge of combined deep tillage with introduced organic fertilizers 5

1.5. Aim and limitations of work . . . . . . . . . . . . . . . . . . . . . . 5

2. MATERIALS AND METHODS 7

2.1. Concept of deep tillage . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Description of Incorporation materials . . . . . . . . . . . . . . . . 8

2.3. Design of �eld trial and implementation of deep tillage . . . . . . . 8

2.4. Plant analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. RESULTS AND DISCUSSION 13

3.1. In�uence of di�erent working tools for subsoiling . . . . . . . . . . . 14

3.2. E�ect of di�erent organic materials . . . . . . . . . . . . . . . . . . 14

3.3. Deduction of optimum melioration distance and material . . . . . . 17

4. CONCLUSION 19

Bibliography 21

A. Publication 1: Pre-trial 'Meÿdorfer Feld' 27

B. Publication 2: Main-trial 'Campus Klein Altendorf' 40



List of Abbreviations

% . . . . . . . . . . . . . . . . . . . . . . . Percent

A-horizon . . . . . . . . . . . . . . . �rst 30 cm of the soil, 0-30 cm

B-horizon . . . . . . . . . . . . . . . subsoil, 30-60 cm

C . . . . . . . . . . . . . . . . . . . . . . . untreated Control treatment

C:N . . . . . . . . . . . . . . . . . . . . . Carbon-Nitrogen-Ratio

cm . . . . . . . . . . . . . . . . . . . . . . centimetre

CO2 . . . . . . . . . . . . . . . . . . . . Carbon dioxide

DL . . . . . . . . . . . . . . . . . . . . . . Deep loosening treatment

DLB . . . . . . . . . . . . . . . . . . . . Deep loosening + Biocompost treatment

ha . . . . . . . . . . . . . . . . . . . . . . hectar

m . . . . . . . . . . . . . . . . . . . . . . . meter

N . . . . . . . . . . . . . . . . . . . . . . . Nitrogen

NIRS . . . . . . . . . . . . . . . . . . . Near-Infrared-Sensor

SB . . . . . . . . . . . . . . . . . . . . . . Spring Barley

SD . . . . . . . . . . . . . . . . . . . . . . Standard deviation

SM . . . . . . . . . . . . . . . . . . . . . Spader machine treatment

SMB . . . . . . . . . . . . . . . . . . . . Spader machine + Biocompost treatment

SMCS . . . . . . . . . . . . . . . . . . . Spader machine + Chopped straw treatment

SMG . . . . . . . . . . . . . . . . . . . . Spader machne + Green waste compost treatment

SMS . . . . . . . . . . . . . . . . . . . . Spader machine + Sawdust treatment

t/ha . . . . . . . . . . . . . . . . . . . . tonnes per hectar

TKW . . . . . . . . . . . . . . . . . . . Thousand Kernel weight

vol% . . . . . . . . . . . . . . . . . . . . volumetric percent

WW . . . . . . . . . . . . . . . . . . . . Winter Wheat



List of Figures

2.1. Concept of deep tillage and expected development of biomass . . . . 7

2.2. Weather data during experimental period . . . . . . . . . . . . . . . 9

2.3. Melioration technique of the �eld trial . . . . . . . . . . . . . . . . 11

2.4. Design of one �eld trial plot and plant observation scheme . . . . . 12

3.1. Yield development of di�erent cereal crops grown under di�erent

deep tillage conditions . . . . . . . . . . . . . . . . . . . . . . . . . 13



List of Tables

2.1. Analysis of incorporation materials . . . . . . . . . . . . . . . . . . 8

2.2. Treatment overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1. Results of grain quality parameters . . . . . . . . . . . . . . . . . . 14

3.2. Percentage variance treatments for yield and grain quality parameters 16



1. INTRODUCTION

1.1. Challenges in agriculture at times of climate

change

Agriculture in the 21st century has to rise the challenges of climate change. These

challenges accompany increasing atmospheric CO2 concentrations, global warm-

ing, and changes in precipitation events.

Little is known about common response to these problems by crop plants and

scientists all over the world aim at modelling the consequences for agriculture.

However, di�erent models and main focusses within the models, e.g. concentration

of CO2 or a certain region of the world, large di�erences in yield estimations occur.

The current status of climate change only allows the statement that weather ex-

tremes increase. By this, the risk of heatwaves and heavy precipitation events will

become more frequently (Asseng et al., 2013; Seneviratne et al., 2006). The results

of Christensen (2001) indicate that a trend towards drier summer conditions and

severe �ooding events will increase. These results con�rm the general weather shift

through climate change. Granier et al. (2007) adds that especially the Northern

hemisphere will be a�ected by drought. However, Olesen and Bindi (2002) identify

results of climate change also as a chance for the Northern hemisphere. Their state

that warming will allow the introduction of new species and varieties, crop pro-

duction may increase as the suitable area for crop cultivation will expand. Though

they also state that growing period for determinate crops will reduce, while it will

increase for intermediate crops.

Concerning the global scale Lobell and Field (2007) state that warming has im-

proved yields, if classi�ed as food production per unit of land area, in some areas,

reduced in others or the impact is negligible in further other areas. Even though

impacts on yield are site-speci�c, all sectors will be a�ected by soil moisture de�cits

(Lal, 2004) and the distribution of precipitation throughout the year will change

(Iglesias and Garrote, 2015). As soils are one of the key drivers for agricultural

production and also a sink-source for atmospheric CO2 (Alcantara et al., 2016)

adaption strategies are of major interest.
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First consequences of climate change and drought could be seen in Europe during

the extreme summers 2003 and 2018. Both summers were characterized by extreme

drought caused by high temperatures and rainfall de�cits, resulting in reductions

of yields. The adaption of agricultural systems and ecosystems to this phenomena

is predominant in current agricultural research. Howden et al. (2007) summa-

rize that an investment in technological solutions to adapt towards soil moisture

de�cits and water management as pioneering. Furthermore, precision agriculture

(in all sectors from pest management to variety selection and adaption of tillage to

changing conditions) and improving climate forecast should always be considered.

1.2. Development of deep tillage in agriculture

The use of deep tillage in agriculture is not very widespread and commonly ac-

cepted, although it is known that it can su�ciently decrease bulk density and

penetration resistance of soils. To mitigate the impacts of climate change, No-till

is designated to be the common solution. Investigations to the impact of deep

tillage, so-called subsoiling, were mainly undertaken from the 1980s-1990s. After

that, there is a lack in research studies on this �eld up to the beginning of the

2000's (Schneider et al., 2017).

According to the meta-analysis of Schneider et al. (2017) the de�nition of sub-

soiling comes along with several uncertainties and what it exactly refers to. The

depth of tillage operations, that are named subsoiling ranges from working depths

of 10 cm up to 100 cm. Furthermore, there is a huge variety of machinery used

for this. Subsoiling is undertaken by either deep ploughing, moldboard plough-

ing, disc ploughing, deep chiseling, deep ripping, rotary spader machines or in the

combination of this machinery. Thus, the exact de�nition of subsoiling varies from

study to study which hampers clear interpretations and comparability of studies.

Nonetheless, all studies have in common that they evaluate e�ects concerning yield

development, bulk density development, and very often root development. Elling-

ton (1986) examined very early trials who combined deep ripening with gypsum

application at soil depths of 20 cm and 40 cm. They could demonstrate that e�ects

strongly depend on the soil type and increases wheat yield under very acid and

compacted soil conditions. Blackwell et al. (1990) used a trench digger for deep

loosening and gypsum application at a soil depth of 40 cm. Gypsum was applied

in slots of 15 - 20 cm width and caused faster and deeper wetting in heavy clay

soils which are associated with improved aeration and increased crop yields. Ide

et al. (1987) and Ross (1986) simply subsoiled soils up to a depth of 60 cm on

sugar beets and potatoes. The yield of sugar beets was signi�cantly increased,

2
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which was associated with increased nutrient uptake and water availability, while

for potatoes, this e�ect was only present under arid conditions. Trouse (1983)

demonstrated that subsoiling has bene�cial e�ects on yield development in the

long term of 15-years. Subsoiling up to 60 cm was undertaken by Rolf (1991)

and resulted in reduced bulk densities and penetration resistance, which lead to

increased pore volume and air-�lled porosity of the soil. On the 3-year scale, limi-

tations could be seen for clayey soils. Martínez et al. (2012) and Sun et al. (2017)

focussed on alternating No-till/subsoiling concepts. Both studies promoted pos-

itive e�ects on soil quality and root development on such alternating concepts.

However, the e�ects of subsoiling decrease over time, and special focus has to be

given to the frequency of subsoiling. Besides single subsoiling, the use of a chisel

plough for deep soil loosening is also studied. Cai et al. (2014) and Ghosh et al.

(2006) used a chisel plough at soil depths of 30 cm and 50 cm. Cai et al. (2014)

studies resulted in increased grain yield and biomass of 12.8% and 14.6% on av-

erage compared to the control. Ghosh et al. (2006) could observe 20% increase

in yield of soybeans. Both attributed this to increased root development, which

increased nutrient accumulation and improved water storage within the soil.

Besides deep chisel ploughing, e�ects of single deep ploughing are also investigated

in numerous studies. Deep ploughing decreases the bulk density and penetration

resistance (Baumhardt et al., 2008), increases root length density and nitrogen

uptake (Guaman et al., 2016) and changes root distribution and soil pH positively

(Madeira et al., 1989).

Fabio Pezzi (2005) compared the e�ect of various machines for deep soil loosen-

ing (plough, spader machine, and rotary chisel) and states that the use of rotary

spader machine creates favorable soil biopores and thus improves soil quality

1.3. Use of organic fertilizers in agriculture

The use of organic materials in agriculture as a fertilizer is a common practice, and

it is documented that its application can increase the soil organic carbon content

(SOC, Abiven et al. (2009); Diacono and Montemurro (2010)). However, depend-

ing on the material and application rate e�ects on yield development of crop plants

can vary.

A review by Diacono and Montemurro (2010) concluded that the addition of or-

ganic residues from the compost would increase soil natural fertility and crop yields

may increase up to 250% by long-term application of organic waste compost in high

rates. The soil organic nitrogen content can increase up to 90% from perennial

compost application.

Erhart et al. (2005) evaluated the e�ect of biocompost application on the long-term

3
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scale (10 years). They state that its use can reduce the input of mineral fertilizers

to conventional agriculture and ensure a proper nutrient supply to organic farming

systems. The yield increase under biocompost application was on average, 10% in

10 years. The e�ect of biocompost application developed over time with shallow

e�ects at the beginning and slightly increasing e�ects during the experimental du-

ration. Main reasons were attributed to arid climatic conditions and C:N ratio of

23:1.

The e�ect of biocompost applied in same total quantities in di�erent doses and

intervals in a 5-year �eld trial with permanent rye was evaluated by Hartl et al.

(2003). Their results indicated that biocompost should be applied preferably in

a 2-year interval as this treatment resulted in slightly higher yields than all other

treatments. Evanylo et al. (2008) also examined the e�ects of di�erent applica-

tion rates testing the e�ects of a mixed poultry litter-yard waste compost with a

traditional organic fertilizer (poultry litter) and inorganic fertilizer. On a 3-year

duration, crop yields could not bene�t from low compost rates, but improvements

in bulk density and soil porosity imply bene�cial e�ects on the long term even in

low application rates.

Annabi et al. (2011) and Khalilian et al. (2000) emphasized e�ects of munici-

pal solid waste compost. Khalilian et al. (2000) pointed out that the application

method of compost is of minor interest as their results showed surface application

or injection of this compost has no e�ect on yield development. Annabi et al.

(2011) focussed the e�ects on soil parameters and furthermore tested e�ects of

green waste, wood chips, and biowaste compost. All organic amendments tended

to increase the resistance of soil aggregates to water e�ects compared to the con-

trol, and thus, soil degradation was improved. All materials were disk ploughed

into the soil up to a soil depth of 10 cm. Debosz et al. (2002) also examined the

e�ects of various compost combinations (single soil, soil mixed with compost and

sewage sludge mixed with shredded straw) in an 11-month incubation experiment.

Results promote positive e�ects of waste amendments. Compared to the dynamics

observed in an unamended soil, e�ects are moderate and mainly occur in the �rst

weeks after application.

Besides the application of di�erent composts, the application of sawdust is on in-

terest in the studies of Olayinka and Adebayo (1985). They tested whether there

is a di�erence in sawdust being applied to the surface layer of the soil or incor-

porated into the soil under greenhouse conditions on maize growth. The surface

application signi�cantly decreased yield, while the incorporation of sawdust leads

to a signi�cant increase compared to the control. Following the results of Webster

(1961) the application of sawdust and straw can conserve soil moisture and lead

to increased yields.

4
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1.4. Knowledge of combined deep tillage with

introduced organic fertilizers

The current knowledge of combined deep tillage with introduced organic fertilizers

is not far-reaching. First studies are found during the 1960s by Larson et al. (1960).

They investigated single subsoiling and subsoiling combined with the deep place-

ment of fertilizer (concentrated superphosphate) on a silty loam at soil depths from

40 cm - 60 cm. The response of corn yield to tillage was site-speci�c and ranged

from signi�cant reductions to increases. However, the overall response to fertilizer

application was positive. The studies of Marks and Soane (1987); Soane et al.

(1987) during the late 1980s concentrated on the results of subsoiling and deeply

incorporated phosphorus and potassium fertilizer at various locations. Subsoiling

increased yields of spring crops on sandy soils at severe drought conditions, while

for silty soils under wet conditions yield decrease was predominant. No signi�cant

bene�t from fertilizer introduction could be observed.

Mullins et al. (1994, 1997) concluded that cotton responds with highly increased

yields to subsoiling combined with deeply placed potassium fertilizer. Gajri et al.

(1994) established contributions of maize to di�erent deep placed fertilizers (straw

mulching and farmyard manure). Overall, all treatments increased yields, and

speci�c e�ects could be noticed for each treatment. Single deep loosening resulted

in reduced soil strength and allowed deeper rooting, and straw mulching kept the

surface layer wetter thus improving root growth. Improved root growth was also

detected under farmyard manure.

Recent studies from the 21st century were only established by Gill et al. (2008) and

Leskiw et al. (2012). Gill et al. (2008) could demonstrate that deep placed organic

material doubled biomass production, grain yield was increased by 1.7 times, and

60% more ears were produced compared to the untreated control. This e�ect was

linked to an increase in plant-available water at the subsoil and supply of nitrogen

and other nutrients. Leskiw et al. (2012) combined subsoiling with the injection

of organic pellets. Their results promoted positive structural changes in subsoil

structure, thus allowing better rooting. Nutrient availability increased, and crops

responded with higher yields. A review by Hamza and Anderson (2005) pointed

out that mixing of organic materials and soil seems to be useful to improve soil

bulk density and porosity, which are two key factors for good soil performance.

1.5. Aim and limitations of work

The following thesis has developed as a part of the BonaRes Soil3 project.

5
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The project has the aim to evaluate the e�ects of subsoiling on the soil and cereal

crop development. The sub-project of the Institute of Agricultural Engineering

Bonn covers the entire investigation of the �eld trial from installation up to har-

vest and plant observations.

This implies the invention of a practical subsoiling concept to common �eld trials.

The identi�cation of available machines and equipment involves a detailed litera-

ture analysis to evaluate past subsoiling concepts and their e�ects. However, the

construction and design of the subsoiling concept and machinery is not of primary

focus and belongs to the project working packages of Dr. Oliver Schmittmann

- Institute of Agricultural Engineering. Thus, results about this will not be dis-

cussed, and the complete melioration technique is of intellectual property of Mr.

Schmittmann.

To combine subsoiling with the incorporation of organic material and consequently

meliorate the subsoil, organic materials needed to be identi�ed. Following the

project outline of Soil3 organic materials were identi�ed that are of practical focus

for farmers.

The e�ect of subsoiling and subsoiling with the introduction of organic mate-

rial on the growth of cereal crops is of primary focus within this thesis. By this,

the two-year e�ects are evaluated concerning crop development, which implies an

evaluation of yield and grain parameters. The e�ects are evaluated at the part

of the melioration and in the distance to it for the crops Spring barley (Hordeum

vulgare, 2017) and Winter wheat (Triticum aestivum, 2018)

The following scienti�c issues are discussed within this work:

� Do di�erent subsoiling tools (machinery) in�uence yield and yield parameter

development?

� Are there any di�erences between single subsoiling and subsoiling combined

with di�erent organic materials?

� What is the optimum melioration distance and material for subsoiling?

An outlook gives closing of this thesis to recently arising questions during the

�eldwork process and development of machinery.

6



2. MATERIALS AND

METHODS

2.1. Concept of deep tillage

The general idea of deep tillage and deep tillage combined with intermixing of

organic material is shown in Figure 2.1. The concept proposes a strip-wise im-

plementation of deep tillage into the �eld. Within this strip, the a-horizon of the

soil (classi�ed as 0-30 cm) remains undisturbed, while the b-horizon (classi�ed as

30-60 cm) is meliorated. The term 'melioration' is now used to describe the deep

tillage operation in single or in combination with intermixed organic material.

The melioration of the soil creates an upgraded b-horizon through its loosening

and the introduction of organic material. Thus, the attractiveness of this soil layer

is increased, resulting in increased biomass development above the stripe. The

expected growth of biomass will decrease with increasing distance to the strip.

Figure 2.1.: Concept of deep tillage and expected development of biomass



2. MATERIALS AND METHODS

2.2. Description of Incorporation materials

The di�erent incorporation materials were chosen based on their availability and

possible economic options for farmers.

Table 2.1 gives an overview of the di�erent materials. Biocompost and green waste

compost come from the composting plant 'KRS KompostWerke Rhein-Sieg GmbH

& Co.KG'. The basic material for the biocompst is biological household waste,

while the basis for green waste compost is cuttings from parks and bushes. For

chopped straw wheat straw was used, and sawdust stems from customary animal

bedding (Rai�eisen Hobelspäne 'Pro�').

The sieving analysis was undertaken following Kromer and Schmittmann (1999).

The composition of ingredients and C:N ratio for the two composts are based on

regular internal analysis of the composting plant. For chopped straw and sawdust

an external lab (JenaBios GmbH) was assigned with this analysis.

Table 2.1.: Analysis of incorporation materials. Values, except for C:N ratio, are in given in
percentage (%)

Incorporation material
Biocompost Green waste compost Sawdust Chopped straw

Classi�cation of particle sizes

<3 mm 71,17 58,41 14,90 4,62
3-6 mm 11,19 14,17 19,72 9,77
6-10 mm 7,41 11,60 61,76 7,41
10-15 mm 6,61 8,20 2,19 4,90
15-20 mm 1,67 3,51 0,48 2,56
20-25 mm 1,58 2,94 0,48 1,78
>25 mm 0,37 1,18 0,48 68,95

Ingredients

Total C 41,80 48,00 50,32 42,84
Total N 1,92 1,17 0,13 0,55
Total P 0,75 0,44 0,01 0,22
Total K 1,50 0,92 0,06 1,30

C:N ratio 13:1 24:1 370:1 78:1

2.3. Design of �eld trial and implementation of

deep tillage

The �eld trial was investigated at the 'Campus Klein-Altendorf' experimental

research station (50°37'.51 N;6°59'.32 E), University of Bonn, Germany. According

to the FAO (2015) standard, the soil can be classi�ed as a Luvisol derived from

loess.

Weather data

The climate is characterized by a mean annual air temperature of 9.4� and annual

precipitation of 603.4 mm. The weather data was collected from the weather sta-

8



2.3. Design of �eld trial and implementation of deep tillage

tion of the Campus Klein-Altendorf and its development during the experimental

period is shown in Figure 2.2.

 
Figure 2.2.: Weather data during experimental period

Plot design and treatment overview

The �eld trial covers control plots, deep tilled plots, and deep tilled plots with

incorporated organic material. In total, the experiment consists of eight treatments

in a threefold repetition. The eight treatments are the result of a combination of

di�erent tools for melioration and their combination with organic materials. An

overview of all treatments is shown in Table 2.2.

Table 2.2.: Treatment overview, Materials were mixed into the B-horizon in a quantitative
proportion of 20vol%

Treatment Melioration tool Incorporation material Treatment combination

C - - Control treatment

DL Tine - Deep loosening

DLB Tine Biocompost Deep loosening + Bicompost

SM Spader machine - Deep intermixing

SMB Spader machine Biocompost Deep intermixing + Biocompost

SMG Spader machine Green waste compost Deep intermixing + Green waste compost

SMS Spader machine Sawdust Deep intermixing + Sawdust

SMCS Spader machine Chopped straw Deep intermixing + Chopped straw

9



2. MATERIALS AND METHODS

Melioration was implemented in all plots except for the control during fall 2016.

The plots have a size of 15 m x 3 m (length x width), and melioration was con-

ducted centered within each plot. Figure 2.3 covers the �ve steps of melioration.

Step two was conducted in treatments with organic material (see Table 2.2). Me-

lioration starts with the creation of a centred furrow (15 m x 0.3 m x 0.3 m; length

x width x depth) using a one ploughshare (step one, see Figure 2.1 and Figure

2.3). By this, the a-horizon is uncovered and laid aside without disturbing it. The

placement of organic material is done using a fodder mixer (step two). The us-

age of the fodder mixer furthermore allows homogenization of the material. The

compliance of the quantitative proportion from 20vol% was secured through the

regulation of the forward speed of the tractor and the number of rotations within

the fodder mixer (data was calculated and evaluated as a part of Master Thesis P.

Odenhausen, 2017, unpublished). In a third step, the b-horizon (30 cm - 60 cm)

of the soil is either deep loosened (treatments DL and SM) or organic material

is intermixed into the b-horizon using the deep working tine and spader machine.

During the fourth step, the soil was recompacted using a depth wheel, and the a-

horizon was placed back onto the furrow using a pushing shovel (step �ve). After

this regular �eld operations for seedbed preparation followed (rotary harrow)

10



2.3. Design of �eld trial and implementation of deep tillage

Melioration technique

1: Creation of a furrow

Creation of a 30 cm x 30 cm (width x depth) furrow
using a one plough share

Creation of one furrow within 3 m width, a-horizon
remains uncovered

2: Deposition of material (Treatments DLB, SMB, SMG, SMS and SMCS)

Homogenization of 
material using the 
fodder mixer; 
sample: chopped straw

Deposition of material 
using the fodder mixer;
sample: biocompost

Deposed materials 
(at the front: sawdust, 
at the back: biocompost)

3: Deep loosening and deep loosening with mixing of material

Deep working tine Deep loosening of the 
soil (DL)

Deep loosening of the 
soil and mixing with 
biocompost (DLB)

Spader machine with 3 
(visible 2) rotating 
spates 

Spader machine mixing 
soil and green waste 
compost (SMG)

4: Recompaction of the a-horizon

The a-horizon is returned using a pushing shovel

5: Return of the a-horizon

The b-horizon is recompacted using a depth wheel

Figure 2.3.: Melioration technique of the �eld trial
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2. MATERIALS AND METHODS

2.4. Plant analysis

To evaluate the e�ect of the concept on plant development plant observations

that follow the German standard plant observation system was undertaken (Bun-

dessortenamt, 2000). The standard plant observations for cereals include the con-

tinuous observation of 1-meter growing plants. The guidelines of the system were

adapted and optimized to generate a representative amount of plant observations.

A sketch of the plant observation system is shown in Figure 2.4 and includes that

plants were observed at the part of the melioration and in the distance to it.

Within the melioration, two meters with an o�set of one plant row (plant row 12

& 13) were observed and in 50 cm distance to it one meter left (plant row 8) from

the melioration and one right (plant row 17) was used.

The following parameters were observed during the growth period of spring barley

and winter wheat:

� number of plants

� number of ears

� maximum plant height

� yield, separated into grain and straw yield

After harvest, the grains were analyzed for protein and starch content using NIRS-

technology.

3 m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Plant row

Sowing distance
12.5 cm Distance between

plant observations 0.5 m

Width of melioration
stripe 0.3 m

Width of one field trial plot

Length plant observations 1m
at part of melioration and in 
0.5 m distance to it

15
m

L
en

gt
h

of
on

e
fi
el

d
tr

ia
l
p
lo

t

Figure 2.4.: Design of one �eld trial plot and plant observation scheme
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3. RESULTS AND DISCUSSION

Deep soil loosening and its combination with the introduction of organic material

a�ects crop plant development at all stages. However, depending on the treatment,

e�ects are either positive or negative towards the untreated control (see Figure 3.1

and Table 3.1). The yields observed in the distance to the melioration also vary

among the treatments.

 
Figure 3.1.: Yield development of di�erent cereal crops grown under di�erent deep tillage con-

ditions. �lled: spring barley melioration (year 1); diagonal striped: spring barley
50 cm distance (year 1); dotted: winter wheat melioration (year 2); checked: win-
ter wheat 50 cm distance (year 2); C: control; DL: deep loosening tine; SM: deep
loosening spader machine; DLB: tine + biocompost; SMB: spader machine + bio-
compost; SMG: spader machine + green waste compost; SMS: spader machine
+ sawdust; SMCS: spader machine + chopped straw; error bars represent +/-
standard deviation of dry yield; letters indicate signi�cant di�erences between dry
yields of the treatments in each year and observation row at Tukey's Test p<0.05



3. RESULTS AND DISCUSSION

3.1. In�uence of di�erent working tools for

subsoiling

The in�uence of various working tools on cereal crop development is shown within

the results of the treatments DL and SM. Treatments DL and SM have developed

di�erently. Thus it can be concluded that the type of deep working tool in�uenced

crop development.

Table 3.1.: Results of grain quality parameters. SB: spring barley melioration (year 1); SB50:
spring barley 50 cm distance (year 1); WW: winter wheat melioration (year 2);
WW50: winter wheat 50 cm distance (year 2); DL: deep loosening; SM: spader ma-
chine; DLB: deep loosening biocompost; SMB: spader machine biocompost; SMG:
spader machine green waste compost; SMS: spader machine sawdust; SMCS: spader
machine chopped straw, Letters indicate signifcant di�erces between the treatments
at Tukey's Test p<0.05

C DL DLB SM SMB SMG SMS SMCS

Number of plants / m2 SB 143 147 140 123 152 143 129 143

SB50 144 161 129 147 144 149 119 156

WW 255 229 263 267 243 207 244 229

WW50 224 253 240 225 235 204 249 217

Number of Grains / m2 SB 551a 897ab 708ab 801ab 1123b 564a 548a 576a

SB50 637 912 623 747 715 793 611 557

WW 301abc 263a 425bc 288ab 444c 268a 267a 311abc

WW50 365 345 373 359 391 324 369 349

maximum plant height SB 73cd 76de 80f 74cd 78ef 67b 63a 70bc

SB50 72 74 74 73 74 70 70 70

WW 54a 56a 67b 54a 68b 52a 50a 52a

WW50 57 54 60 53 57 55 55 57

TKG SB 48,3bc 49,0bc 45,0abc 45,3abc 49,5c 41,7a 43,5ab 45,5abc

SB50 47,8ab 49,5b 44,3a 47,0ab 45,8ab 44,5ab 46,3ab 45,8ab

WW 28,7 27,2 29,0 27,7 29,0 28,2 25,3 29,5

WW50 29,8 26,8 29,2 27,5 28,2 28,7 28,5 28,5

Protein (%) SB 11,1ab 12,8c 14,6a 11,1b 14,2cd 9,7a 9,8ab 10,2ab

SB50 11,6abc 12,1bc 12,3bc 11,4ab 12,7c 10,7a 10,7a 11,5abc

WW 9,8a 10,2ab 12,2bc 10,5abc 13,0c 10,5a 10,3ab 9,8a

WW50 10,2 11,2 10,8 11,5 11,7 10,7 10,5 10,5

Starch /%) SB 54,7abc 54,4ab 54,0a 55,2bcd 53,9a 55,7cd 55,8d 55,9d

SB50 54,6 54,8 55,1 55,2 54,7 55,3 55,6 55,4

WW 74,3 74,0 73,2 73,7 72,7 74,0 73,5 74,0

WW50 74,5 73,5 73,7 73,3 73,5 74,0 73,5 74,0

3.2. E�ect of di�erent organic materials

The four di�erent incorporation materials are all classi�ed as organic fertilizers

while their raw materials di�er. The analysis of incorporation materials (see Table
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3.2. E�ect of di�erent organic materials

2.1) shows that materials di�er in structure (sieving analysis), ingredients, and

C:N ratio. Especially the C:N ratio is of major responsibility for slow or fast

implementation of the materials and the usability of N introduced by the materials.

According to Abiven et al. (2009) easily decomposable products have a powerful

and transient e�ect while more recalcitrant products have a lower but longer-

term e�ect. Ros et al. (2006) adds that micro-organisms introduced by compost

have a direct e�ect on soil fertility. Of all materials, biocompost is the only one

which signi�cantly increases dry yield development compared to C in both years.

The introduction of green waste compost, sawdust, and chopped straw lead to

decreased dry yields in year 1. In year 2 the chopped straw increased yield at part

of melioration. Dry yields and grain quality parameters in 50 cm distance vary

positive and negative from C, but signi�cant di�erences are only present at SB 50

for TKG. The e�ect of biocompost is positive but di�ers for DLB and SMB as a

consequence of di�erent machinery used. As the e�ect of biocompost in DLB is

increasing in year 2 (see Table 3.2 dry yield +29.2% year 1 and +80,4% year 2) the

e�ect of SMB remains stable in both years (dry yield +73.5% year 1 and +75.2%

year 2). Diacono and Montemurro (2010) state that materials with similar C:N

ratios may mineralize di�erent amounts of N and thus di�erent amounts of N are

directly available to the crop.

Even though the number of plants slightly di�ers for all years and treatments (see

Table 3.1) none of these di�erences are signi�cant. Di�erent results for SMS and

SMCS could be expected as Procházková et al. (2003) and Webster (1961) state

that the application of sawdust and straw can have a detrimental e�ect on plant

establishment due to the lack of nitrates, physical and biochemical e�ects (e.g.

water consumption for decomposition). Since the material was incorporated into

the subsoil and not applied at the soil surface e�ects came into acount after plant

establishment. The yields of SMG, SMS, and SMCS year 1 are lower than C;

however, this decrease is not signi�cant. Even though yields and yield parameters

for SMG, SMS, and SMCS decreased compared to C, the yields of SMCS are nearly

stable around the experimental period. The introduction of these materials with

a large C:N ratio might have led to a competition of N by plants and microbial

community, thus immobilizing it (Diacono and Montemurro, 2010; Döring et al.,

2005; Olayinka and Adebayo, 1985). The development of grain quality parameters

reinforces the negative e�ect of these materials on crop development.
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3. RESULTS AND DISCUSSION

Table 3.2.: Percentage variance of each treatment towards the control treatment for yield and
grain quality parameters. SB: spring barley melioration (year 1); SB50: spring
barley 50 cm distance (year 1); WW: winter wheat melioration (year 2); WW50:
winter wheat 50 cm distance (year 2); DL: deep loosening; SM: spader machine;
DLB: deep loosening biocompost; SMB: spader machine biocompost; SMG: spader
machine green waste compost; SMS: spader machine sawdust; SMCS: spader ma-
chine chopped straw

DL SM DLB SMB SMG SMS SMCS

Dry yield

SB -1,7 5,7 29,2 73,5 -32,8 -21,8 -8,4
SB50 41,0 20,3 -0,3 12,5 26,8 5,7 -10,9
WW -21,9 -10,2 80,4 75,2 -8,5 -41,5 20,4
WW50 -28,7 -20,5 -13,0 1,4 -21,0 -4,0 -15,8

Straw yield

SB 3,1 4,6 32,5 48,6 -27,2 -17,1 -11,9
SB50 24,3 11,9 -2,7 5,6 20,5 2,5 -15,7
WW -16,5 -14,0 92,7 83,1 -13,2 -43,7 17,9
WW50 -21,6 -24,2 -19,2 -6,3 -23,0 -4,8 -19,5

Grain yield

SB -5,9 6,7 26,3 95,4 -37,8 -26,0 -5,2
SB50 56,1 27,7 1,8 18,9 32,4 8,6 -6,7
WW -28,6 -5,7 65,2 65,4 -2,9 -38,7 23,4
WW50 -35,5 -16,9 -7,0 8,9 -19,0 -3,1 -12,1

Number of plants

SB 2,8 -14,0 -1,9 6,5 0,0 -9,3 0,0
SB50 12,0 1,9 -10,2 0,0 3,7 -17,6 8,3
WW -9,9 4,7 3,1 -4,7 -18,8 -4,2 -9,9
WW50 13,1 0,6 7,1 4,8 -8,9 11,3 -3,0

Number of grains

SB 63,0 45,5 28,6 103,9 2,4 -0,5 4,6
SB50 43,1 17,2 -2,3 12,1 24,5 -4,2 -12,6
WW -12,8 -4,4 41,2 47,3 -11,1 -11,5 3,1
WW50 -5,5 -1,8 2,2 6,9 -11,3 1,1 -4,4

Maximum

plant height

SB 3,7 1,3 9,7 6,5 -7,9 -13,4 -3,5
SB50 2,7 1,0 2,0 2,8 -2,8 -2,8 -2,6
WW 3,1 -0,2 24,4 25,2 -4,7 -8,4 -4,2
WW50 -4,9 -6,0 6,3 0,0 -4,0 -3,9 -0,1

TKG

SB 1,5 -6,1 -6,9 2,5 -13,7 -9,9 -5,8
SB50 3,5 -1,7 -7,3 -4,1 -6,9 -3,1 -4,1
WW -5,1 -3,5 1,2 1,2 -1,7 -11,6 2,9
WW50 -10,1 -7,8 -2,2 -5,6 -3,9 -4,5 -4,5

Protein (%)

SB 15,9 0,3 32,0 28,1 -12,3 -11,7 -7,7
SB50 4,2 -1,4 6,2 9,8 -7,9 -7,2 -0,7
WW 3,7 6,8 23,7 32,2 6,8 5,1 0,0
WW50 9,8 13,1 6,6 14,8 4,9 3,3 3,3

Starch (%)

SB -0,6 0,9 -1,4 -1,5 1,7 2,0 2,2
SB50 0,3 1,1 0,8 0,1 1,3 1,8 1,4
WW -0,4 -0,9 -1,6 -2,2 -0,4 -1,1 -0,4
WW50 -1,3 -1,6 -1,1 -1,3 -0,7 -1,3 -0,7
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3.3. Deduction of optimum melioration distance and material

3.3. Deduction of optimum melioration distance

and material

The development of optimum melioration distance is a two-tier process. On the

one hand, it is in�uenced by the development of machinery (which is one of the

main milestones of the BonaRes Soil3 project) that can implement subsoiling as

shown in Figure 2.3 as a single-phase project. This machinery also has to ful�ll

the tra�c regulations; thus, machine width is limited to 3 m. On the other hand,

the evaluation of yields in the distance to the melioration demonstrates the point

where no bene�cial e�ects of treatment are present.

The results of subsoiling on regularly tilled land in this study show that yields and

yield parameters vary at a distance of 50 cm to the melioration, but none of these

e�ects is signi�cant. Applying subsoiling and subsoiling combined with the intro-

duction of organic material at fallow land (Jakobs et al. (2017), see Appendix A)

a continuous decreasing e�ect with increasing distance to the subsoiling is present.

The results of this trial show that observations in two ranges to the melioration

(50 cm distance and 100 cm distance) allow separation into two signi�cantly dif-

ferent groups. The yields in 100 cm distance are signi�cantly lower than at part

of melioration. At 50 cm distance results are neither signi�cantly di�erent from

the melioration nor 100 cm distance.

These results allowed the conclusion that a melioration distance of 100 cm pro-

motes continuous positive results for a whole crop area, respectively to the e�ects

of pre-trial on fallow land. The machinery of 3 m working width with distances

of 1 m (one melioration strip each meter) was developed by Andreas Christ, ILT

University of Bonn, as master thesis (Konstruktion und Bewertung eines mehrrei-

higen Versuchsträgers zur reihigen Applikation organischer Materialien, unpub-

lished) and application for a patent is running.

Concerning the di�erent incorporation materials, results of pre-trial (see Annex

A) have shown that inhomogeneous and damp materials are not suitable for in-

corporation as their pourability is not secured (cattle manure). Most signi�cant

e�ects in short-term and on a two-year-period emerge under dense C:N ratios (bio-

compost) and materials with moderate to large C:N ratios (green waste compost,

sawdust, and chopped straw) decrease yields. However, long-term e�ects of these

materials may come into account.

Results of year 2 show that the yield of WW and SMCS is increased compared C,

even though this is not statistically secured. This demonstrates that the imple-

mentation of chopped straw has only adverse e�ects on the short-term. Since the

incorporation of biocompost has a strong fertilizer e�ect on the subsoil and signif-

icantly increases yields, a combination with chopped straw seems suitable. Mixing
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3. RESULTS AND DISCUSSION

biocompost and straw can lead to results which are positive on the short-term and

last on the longer term.
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4. CONCLUSION

Subsoiling and subsoiling combined with the introduction of organic materials,

produce either positive or negative e�ects towards an untreated control. E�ects

vary among materials and machinery.

The usage of machinery which is designed for deep �eld tillage (spader machine)

accompanied with weighty machinery which led to problems of speci�c working

within a furrow. Construction and design of a specialized incorporation tool based

on a tine allowing easy practicability of subsoiling procedure. The investigation

of machinery is up to now �nished and enables subsoiling in 1-meter distances

with a total working width of 3 m. Future plant observations have to evaluate if

closer or wider subsoiling distances would be more bene�cial as these assumptions

of distance are based on results of the pre-trial at fallow land.

By this, the evaluation procedure of yield development should be continued for

another few years. Certainly, SD's of most treatments were very high, and ob-

servation of 1-meter, respectively 2-meters per plot is not enough. Harvesting of

crops using a parcel thresher should be included to gain yield information from a

higher sample size.

Concerning the di�erent materials, materials with dense C:N ratios (biocompost)

are highly valuable for yield development. Materials with wide C:N ratios (chopped

straw) come into account over time and mixing of both materials might results in

an improved mixed substrate for subsoiling. However, the e�ects of materials

with moderate (green waste compost) C:N ratios are not bene�cial within a two-

year-period but become it on the longer term. Materials with wide C:N ratios

being highly ligni�ed (sawdust) are not suitable. Single subsoiling improved soil

conditions and may be an e�ective solution at �eld sites with strongly restricted

fertilizer application guidelines.

In total subsoiling and its combination with organic materials can be highly valu-

able to yield development of cereal crops and improve soil conditions if optimum

machinery and materials are used. However, these statements are based on results

from an experimental site which is regularly tilled and of good soil conditions. To

give �nal recommendations experimental sites with soil physical problems (e.g.,

root-restricting soil layers), other soil compositions (e.g., very sandy soils) and

strong weather impacts (e.g., regular absence of rainfall and hot weather condi-



4. CONCLUSION

tions) must be implemented to state bene�cial e�ects of this tillage procedure at

times of climate change.
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Short-term effects of in-row subsoiling and simultaneous
admixing of organic material on growth of spring barley
(H. vulgare)
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Institute of Agricultural Engineering, University of Bonn, D-53115 Bonn, Germany

Abstract

Previous studies have shown that deep tillage, so-called subsoiling, is beneficial for yield development,

and that tillage of deeper soil layers can promote water and nutrient availability during dry periods.

The application of composts to the topsoil has been widely studied and evaluated, and it has been

shown to improve soil stability and plant N uptake. These effects can differ over time depending on

the compost type. Since dry periods have become more frequent, sustainable soil tillage and fertilizer

practices must be developed. A combination of deep soil tillage and compost application might be a

way to ensure proper plant supply during dry periods. Therefore, a field experiment on spring barley

growth was carried out to evaluate the short-term effects of in-row subsoiling with simultaneous

admixing of compost. Two types of composts and one organic fertilizer (Bio: decomposed organic

waste, Green: decomposed green cuttings and CM: cattle manure) were admixed into the subsoil, and

a control treatment received single deep loosening (DL) to a depth of 0.6 m. Yield development, yield

parameters and grain quality were analysed and showed that the DL and Bio treatments resulted in

the highest yields, and a significantly increased ear density and number of kernels. The TKW (100-

kernel weight) of the CM treatment was significantly lower than the other treatments. In all

treatments, a clear trend of decreasing yields with increasing distance to the melioration was observed.

Thus a subsoil tillage every meter can increase overall yield development and offers a new perspective

for sustainable crop production.

Keywords: Subsoil, deep loosening, biocompost, green compost, cattle manure, spring barley

Introduction

Several climate models indicate a general trend towards

warmer and drier summer conditions in Europe, which is

challenging agriculture in the 21st century. Warmer and drier

summer conditions imply changes in temperature and

precipitation that can be associated with higher risks of

heatwaves, droughts and heavy precipitation events

(Seneviratne et al., 2006). These changes may have a great

impact on soil performance thus affecting agricultural

productivity, because, as soils dry, water uptake by plants is

reduced and growth is restricted (Davies, 1991). Moreover,

the soil structural conditions affect the spatial distribution of

roots and the plants ability to take up water (Pardo et al.,

2000). When drought intensifies, the distribution of water

uptake by plants changes from the topsoil to the subsoil

(Br�eda et al., 1995). The studies of Kirkegaard et al. (2007),

indicate that deeper soil layers remain unaffected by

temporary dehydration in contrast to the topsoil. Therefore,

it can be assumed that dry periods may have a minor impact

on plant development if plants are able to easily access the

subsoil with their roots, thus utilizing nutrients, water and

carbon from these soil layers. The method of integrating the

subsoil into soil cultivation can be beneficial because changes

in soil structure will affect plant growth, mostly by

modifying the root physical environment and the water and

nutrient cycles (Angers & Caron, 1998). Batey (2009) found

that the subsoil provides a significant proportion of the

water required by crops to meet transpiration demands. In

dry and warm summers, when soil moisture deficit is high, a

restricted ability of roots to reach subsoil water causes

moisture stress (Batey, 2009) and may result in reduced

yields. However, this can be prevented by relatively small

amounts of easily accessible subsoil water, which is highly
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valuable to the yield (Kirkegaard et al., 2007). Nevertheless,

the structure and density of subsoils always have to be

considered when describing water extraction from and root

growth into these soil layers (Wang & Smith, 2004). An

effective method to enable root development into the subsoil

is subsoiling. Subsoiling can increase the infiltration rate of

soils, reduce bulk density and thus improve grain yield

(Ishaq et al., 2001). The term ‘subsoiling’ is used to describe

various methods of deep soil tillage. Blackwell et al. (1990),

concluded that slotting can be carried out on a wide range

of soils and needs to be combined with gypsum as single

slotting is not persistent. In contrast, Ellington (1986),

pointed out that gypsum depressed wheat growth while

single deep slotting increased it. The effect of subsoiling on

maize growth was examined by Gajri et al. (1994). They

demonstrated that soil strength decreased due to deep soil

tillage, and plants responded with deeper and denser rooting.

These findings were confirmed by a recent study from Cai

et al. (2014) who found that maize plants, grown under

subsoil tillage up to 50 cm, had increased dry yield and grain

yield compared to plants grown using conventional tillage.

Cai et al. (2014), concluded that roots were more likely to

grow downwards with deeper subsoil tillage in soil.

Hartmann et al. (2008) focused on different subsoil

loosening strategies and showed a biomass improvement of

78% in maize after deep soil slotting compared to the

control treatment. They concluded that plants have an

improved access to soil water and therefore sufficient water

supply at important physiological stages. Mullins et al.

(1994) examined the physical changes of in-row subsoiling

on cotton plants. They demonstrated that in-row subsoiling

resulted in a significant reduction in penetration resistance

and cotton plants responded with higher root densities. They

predicted that the increased root density could be beneficial

during drought stress periods. Ross (1986) also found that

effects of subsoiling were the greatest under droughty

conditions, and Marks & Soane 1987, showed that the

effects strongly depend on the soil type, crop and season.

Besides the loosening of deep soil layers enabling root

growth, the increase in soil fertility is a key factor for

sustainable crop production. Many studies have demonstrated

that long-term amendments of organic wastes and animal

manures are beneficial for crop production (e.g. Debosz et al.,

2002; Erhart et al., 2005; Evanylo et al., 2008; Annabi et al.,

2011). Diacono and Montemurro (2010) asserted that the

development of a sustainable agriculture, which implies

sustainable management practices, is the challenge for the

future. They suggested that the application of organic

materials, for example, organic wastes and animal manures is

favourable because they enhance soil organic N content and

store it for mineralization in the following cropping seasons.

Soil fertility and soil aggregate stability can also be

enhanced by the application of organic wastes (Abiven et al.,

2009; Diacono & Montemurro, 2010).

However, Previous work has mainly focussed on either the

effects of subsoiling or the effects, especially long term, of

compost and manure application. The effect of deep-placed

fertilizer on various crops (e.g. ploughed under, Larson

et al., 1960; subsoil fertilization, Ross, 1986; deep mixing of

fertilizer and subsoil, Marks & Soane, 1987) was to

significantly increase yields compared to the control

treatments. Generally, this effect is associated with deeper

rooting of crops, more efficient water extraction and

improved nutrient supply. However, these studies examined

the effect of mineral fertilizers in deeper soil layers while Gill

et al. (2008) researched the effect of deep-placed organic

material. Their results show a doubling of biomass

production in wheat and an increase in grain yield of 1.7

times compared to the untreated control. Based on this, a

combined deep loosening of soils and admixing of organic

material might be highly beneficial for yield development.

The materials selected in present study have different

temporal effects on soil stability, as well as different C/N

ratios and total N contents. Abiven et al. (2009) concluded

that easily decomposable products (biocompost, green waste)

have an intense and transient effect on soil stability, while

recalcitrant products (cattle manure) have a lower but

longer-term effect.

This study examines the effect of deep soil loosening with

admixing of organic material into the subsoil (30–60)
focussing on short-term effects (one growing season). Based

on literature analysis we hypothesize that single deep

loosening and admixing of organic material increases yield

development. To emphasize the single effects of this tillage

option, a fallow area was chosen, as farmland soils are

regularly tilled and well structured. This area has no history

in soil tillage, and differences in plant development can only

be reduced to the single effects of deep loosening and

admixing of organic material.

Materials and methods

Experimental design

The experiment was conducted at the ‘Meßdorfer Feld’

experimental research station (50°430N, 7°030E), University

of Bonn, Germany. The soil is a Luvisol derived from loess

(FAO, 2015). Mean annual temperature is 10.3 °C with a

mean annual precipitation of 669 mm. Weather data are

presented in Figure S2. The field site was left fallow with

uncontrolled growth in recent years. In total, the experiment

included four different treatments replicated three times

(Table 3). Each plot had a size of 3.0 9 2.0 m with a subsoil

tillage stripe of 2.0 9 0.3 9 0.4 m in the centre.

Field site preparation included the removal of

uncontrolled growth, followed by primary and secondary soil

tillage (Figure 1). The removal of uncontrolled grow entailed

the mechanical removal of weeds to ensure a uniform soil
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surface (Figure 1a). Primary soil tillage involved mouldboard

ploughing to a depth of 30 cm (Figure 1b). After this, slots

were prepared using a compact excavator (Type: Kubota

K008-3). One slot was prepared and centred within a width

of 3 m. The slot had a width of 0.4 m based on the

dimensions of the excavator shovel. The a-horizon (0–0.3 m)

of the soil was laid aside, and the b-horizon (from 0.3 m)

was dredged up to 0.6 m using the shovel. Organic material

was placed within the slot on top of the b-horizon and

manually intermixed with it (Figure 1c) at a volume fraction

of 11%, a control treatment received only single subsoil

loosening.

Afterwards, the a-horizon was returned and the soil was

recompacted by driving over with the compact excavator.

Secondary soil tillage included rotary harrow with seedbed

preparation (Figure 1d). In total, three types of organic

material (two different composts and cattle manure) were

admixed to the b-horizon. They were chosen based on their

accessibility and economic options for farmers. The

composts (i) biocompost from decomposed organic

household wastes and (ii) green compost from decomposed

green cuttings from bushes and trees correspond to the

German standard assurance system for composts (RAL-

G€utesicherung). The cattle manure was purchased from the

‘Frankenforst’ experimental farm, University of Bonn.

Samples of all materials were oven-dried at 105 °C to

determine the dry matter content (see Table 1). The

composts were sieved afterwards for particle size

fractionation (Kromer & Schmittmann, 1999; Table 2).

However, sieving of cattle manure was not feasible after

drying.

Plant observations

To evaluate the effect of subsoil amendment on plant

development, continuous plant observations were conducted

during the vegetation period. The observations were carried

out following the guidelines of the German

‘Bundessortenamt’ (Bundessortenamt, 2000). Within one

plot, the observations were made in the middle of the slot

(part of subsoil amendment), and at two distances from the

slot (0.5 and 1 m, see Figure 1d) to determine the effect of

a-Horizon

b-Horizon
a-Horizon
b-Horizon

a-Horizon
b-Horizon

a-Horizon
b-Horizon

1 m 0.5 m

0.4 m
3 m

0.0–0.3 m

0.3–0.6 m

Original (a)
Ploughing
(a-horizon; b)

In-row subsoiling
and admixing (b-horizon; c)

Seedbed
preparation (d)

Figure 1 Sketch of field site preparation. Preparation included the removal of uncontrolled growth (a), followed by ploughing up to 0.3 m (b).

The slots were prepared using a compact excavator, and material was manually intermixed (c). The topsoil was laid back and reconsolidated.

Disc harrowing was applied for seedbed preparation (d).

500

450

400

350

300

250

200

150

100

50

0

Y
ie

ld
 (

g
/m

2
)

0 50 100 0 50 100 0 50 100

Dry yield Straw yield Grain yield

a

ab

b

a
ab

b
a

ab

b

Figure 2 Yield on all treatments. Letters

indicate significant differences between the

yields (P < 0.05). Yield shown are average

values of all treatments at the distance from
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the amendment. To avoid any border effects, each plot

included a border of one seeding row. The number of ears

and plant height was measured at the time of grain

development. Plants were harvested at the time of threshing

ripeness. One metre per observation row was harvested. Dry

yield (total biomass), straw yield and grain yield after

threshing were determined. The total number of kernels per

square metre, 1000-kernel weight (TKW) and kernels per ear

were calculated. Grain quality parameters were examined

using NIR technology. To determine the effects of subsoiling

on grain size, grains were sieved in a sieving tower with

sieving holes of <2.8, 2.8–2.5, 2.5–2.3 and >2.3 mm.

Penetrometer measurements

Penetrometer measurements were undertaken on an

adjoining field in preparation for the experiment (see

Figure S1). Measurements were undertaken on an

undisturbed control and within the centre of deep loosening

slot. An ASAE standard (American Society of Agricultural

and Biological Engineers, 2006) penetrometer was used (Sun

et al., 2003). Data represent average penetration resistances

of n = 5 measurements.

Data analysis

Analysis of variance was performed using SPSS version 20

for Windows. A one-way ANOVA followed by Tukeys’s

significant difference test (post hoc test) was used to test the

effects of treatments and distance to the subsoil tillage.

Results

Effect of subsoil amendment on plant development

To determine the effect of subsoil tillage on plant

development, average yields at different distances from the

subsoil tillage were analysed (Figure 2). A correlation analysis

was performed to determine plant-specific parameters that

Table 1 Characterization of organic materials

Subsoil tillage

material

Dry matter

content (%) SD

Total

N (kg/t)

C/N

ratio

BiocompostA 56.01a 0.96 12.8a 13a

Green compostA 50.60b 3.03 9.2a 22a

Cattle manureB 19.75c 2.25 5.5b 24b

Lowercase letters: significant differences at P < 0.1 between organic

materials. ATotal N content based on the analysis of the composting

plant. BTotal N content based on literature values (KTBL, 2015).

SD: standard deviation

Table 2 Sieving analysis of composts

Compost

Sieving size

<3 mm 3–6 mm 6–10 mm 10–15 mm 15–20 mm 20–25 mm >25 mm

Biocompost 71.2 11.2 7.4 6.6 1.7 1.6 0.4

Green waste 58.4 14.2 11.6 8.2 3.5 2.9 1.2

Table 3 Treatment overview for barley plants grown under subsoil amendment with admixed organic material

Treatment Distance to centre of incorporation Subsoil tillage

DL0 Centre Deep loosening up to 60 cm

DL50 50 cm to DL0 –

DL100 100 cm to DL0, effective control treatment –

Bio0 Centre Deep loosening + admixing of biocompost

Bio50 50 cm to Bio0 –

Bio100 100 cm to Bio0 –

Green0 Centre Deep loosening + admixing of green compost

Green50 50 cm to Green0 –

Green100 100 cm to Green0 –

CM0 Centre Deep loosening + admixing of cattle manure

CM50 50 cm to CM0 –

CM100 100 cm to CM0 –

© 2017 British Society of Soil Science, Soil Use and Management

4 I. Jakobs Geb. Hennings et al.

31



influence yield development at different distances from the

mid-point of residue incorporation (Table 4). Dry yield straw

yield and grain yield were significantly higher (P < 0.05) in

areas of subsoil tillage compared to those at 1 m distance

(Figure 2). However, yields were not significantly different

0.5 m from the subsoil tillage. The correlation analysis showed

a moderate positive (mid-point) to strong (0.5 and 1 m

distance) correlation between straw yield and grain yield at the

mid-point of incorporation. In contrast, correlation between

dry yield and grain yield shows a very strong positive

correlation for all distances. The number of kernels also has a

very strong positive correlation with the grain yield and dry

yield, while correlation to straw yield differs from moderate to

strong. The correlation of TKW to grain yield provides weak

negative correlations which are significant at P > 0.05. For

correlation of TKW versus dry yield and TKW versus kernel

number, weak R-values can be seen. However, for TKW

versus dry yield, the correlation is significantly negative at 1 m

distance from the mid-point of incorporation, while for TKW

versus kernel number, the correlation is significantly negative

at the mid-point of subsoil tillage. Additional growth

parameters cannot be clearly related to yield development.

Even though significant correlations were detected at some

showed distances, the R-values support only weak-to-

moderate correlations.

Effect of admixing material on yield

Deep loosening (DL) of the soil and deep loosening with

admixing of biocompost (Bio) provided significantly higher

dry yields in the amended part (DL0 and Bio0) than in

100 cm (DL100 and Bio100) distances from it. The yield of

the DL0 was almost equal to Bio50, and Bio100 was just

slightly lower than DL50.

Regarding the straw yield (Figure 4), significant

differences (P > 0.1) were detected between Bio0 and Bio100,

and CM0 and CM100. The DL treatments and Green

treatments showed no significant differences in straw yield.

For the DL0 and DL50 treatments, a nearly equal straw

yield was found, while for DL100 it was lower. Figure 5

shows the grain yield on the different treatments and

distances to the subsoil tillage. DL0 had a significantly

(P > 0.1) higher grain yield compared to DL50 and DL100.

Bio0 had the overall highest grain yield, and grain yield of

Bio100 was significantly lower. For CM, the grain yield of

CM50 was higher than CM0. Green provided no significant

differences in grain yield, even though a trend of decreasing

grain yields from Green0 to Green100 is noticeable. A

statistical comparison of the different materials in distance to

the mid-point of residue incorporation was not significant at

P > 0.1 (Figures 3 and 5).

Effect of admixing material on grain quality parameters

The effect of admixing material on grain quality parameters

was evaluated by a sieving analysis and NIR analysis. The

sieving analysis allowed a separation into four groups

(Figure 6). A trend towards decreasing proportions of grains

>2.8 mm with increasing distance to the mid-point of subsoil

tillage was found for Bio and Green treatments. In contrast,

the DL and CM treatments had higher proportions at

100 cm distance than at 50 cm distance to the subsoil tillage.

All treatments had approximately 34% in the fraction

2.8 mm. The fraction <2.2 mm was the lowest mass

proportions.

The grain quality parameters, protein and starch content,

are presented in Figure 7. The protein content of the

different treatments varied between 13% and 17%, while the

vast majority was around 15%. Overall, the protein contents

of DL had the lowest variation, while the variation for

Green was the highest (Figure 7). There were no significant

differences in protein content within or between treatments.
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Table 4 Pearson0s correlation analysis for yield and grain quality parameters of barley

Grain yield Straw yield Dry yield Kernel number TKW Ear number Protein Starch

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Grain yield

0 1

50 1

100 1

Straw yield

0 0.61** 1

50 0.73** 1

100 0.73** 1

Dry yield

0 0.89** 0.90** 1

50 0.92** 0.93** 1

100 0.92** 0.94** 1

Kernel number

0 0.97** 0.63** 0.89** 1

50 0.90** 0.82** 0.92** 1

100 0.95** 0.72** 0.89** 1

TKW

0 �0.51** �0.06 �0.31 �0.33* 1

50 �0.42** �0.00 �0.22 �0.02 1

100 �0.50** �0.28 �0.41** �0.24 1

Ear number

0 0.37** 0.44** 0.45** 0.39* �0.12 1

50 0.26 0.05 0.17 0.14 �0.26 1

100 0.48** 0.38* 0.46** 0.43** �0.36* 1

Protein

0 �0.03 0.19 0.09 0.01 0.23 0.01 1

50 �0.44** �0.38* �0.44** �0.32 0.31 �0.58** 1

100 �0.28 �0.28 �0.31 �0.24 0.17 �0.21 1

Starch

0 0.06 �0.07 �0.01 0.00 �0.30 �0.04 �0.39* 1

50 0.46** 0.23 0.37* 0.34* �0.31 0.46** �0.63** 1

100 �0.26 �0.16 �0.22 �0.29 �0.03 �0.07 �0.46** 1

*P < 0.05; **P < 0.01; parameters grain yield, straw yield, dry yield, kernel number, ear number is related to per m2; TKW 1000-kernel weight.
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The analysis of starch content resulted in significant

differences across the treatments at a distance of 0.5 m to

mid-point of subsoil tillage. Furthermore, Green treatments

resulted in significantly different starch contents. There were

no significant differences within the other treatments.

Discussion

Effect of subsoil tillage on yield development

Our results showed the highest dry yields, straw yields and

grain yields in areas of subsoil tillage (Figure 2). These yields

were significantly higher than those at a 1 m distance. The

results of Cai et al. (2014), demonstrate that subsoiling

improves the soil physical conditions and reduces soil

mechanical resistance to root penetration, allowing root

penetration into deeper soil layers. These deeper soil layers

store minerals nutrients and water, which are of major

importance for plant development during important

physiological stages (Hartmann et al., 2008). Based on the

explanations of Hartmann et al. (2008), and Cai et al.

(2014), it can be assumed that subsoil tillage promoted root

growth into the subsoil. Thus, plants were able to utilize

water, minerals and nutrients from deeper soil layers. The

correlation analysis resulted in very strong correlations

between grain yield versus kernel number and straw yield

versus number of grains. For grain yield, the correlations

slightly decrease with increasing distance to the subsoil

tillage, while for straw yield, the opposite occurs. Passioura

(1976) and Gill et al. (2008), emphasize that plants which

are able to access water from the subsoil late in the

growing season can translocate products of photosynthesis

directly into grain development. The statistically higher

grain yields in areas of subsoil correlation can be explained

by this.

Effect of different treatments on yield

According to the explanations of Abiven et al. (2009), the

effect of the admixed materials can be described follows.

Concerning soil stability, all materials have a strong effect

but on a different timescale. Composts reach their maximum

effect on soil stability within a few months, while cattle

manure reaches its maximum. Abiven et al., (2009) argue

these temporal differences reflect the presence of prehumic

substances in biocompost and green compost. For cattle

manure, the presence of humic substances is crucial for soil

stability. In summary, the short-term effects of organic

matter on soil stability can be associated with the turnover

of microbial products and cells, while the long-term effects

can be explained by humified compounds (Wordell-Dietrich

et al., 2016). Even though Abiven et al. (2009) classified

biocompost and green compost as having a strong and

intermediate effect on soil stability, the analysis of dry

matter content and sieving (Tables 1 and 2) showed

structural differences between the materials.

Biocompost had a higher dry matter content than green

compost and more than 70% of the particles were <3 mm,

while for green compost it was only 58%. Furthermore, the

total N content of biocompost was higher, and the C/N

ratio as having smaller than green compost. Overall, Bio

provided the highest dry yields. Significant differences within

the treatments occured for DL and Bio. For DL, this was

due to the direct effect of the subsoiling. The overall dry

yield and grain yield were higher at DL0 than DL100,

(Figures 3 and 5). This can be explained by the thesis of

Kirkegaard et al. (2007), that subsoil water used in the

postanthesis period is highly beneficial for grain yield. The

strong short-term effect of Bio on yield development can be

explained by the results of Diacono and Montemurro (2010)

and Erhart et al. (2005). They argue that the introduction of
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microorganisms during admixing of compost stimulates plant

growth and ensures proper N supply during early growth

stages and after pollination. The lack of yield differences on

the Green and CM treatments can be traced back to the fact

that a fallow area was chosen to investigate the effect of

deep loosening. The choice of this field site also resulted in

high standard deviations within the replications.

Effect of subsoil tillage on yield parameters

According to the classification of Abiven et al. (2009),

similar effects on yield of green waste and biocompost

could be expected. However, the short-term yield effect of

biocompost on growth of spring barley was stronger than

the effect of green compost. The number of kernels per ear

was highest in Bio50. Yet, as Bio0 provided 34% more

kernels than Bio100 and 33% more ears, we can directly

contribute the higher grain yield to the increased ear

density (Table 5). The ear density as well as the kernel

number is significantly higher (P > 0.1) at Bio0. These

results are consistent with Gill et al. (2008) who found a

similar relationship under deep-placed organic amendment.

For Green, there was a trend towards yield increase under

admixing (Green0), but the yields did not reflect this. Plants

of Green50 were smaller, but number of kernels per ear

and TKW were the highest. The number of ears in Green0

were 11% higher than for Green100, while the number of

kernels was 35% higher. These results contrast to those of
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Bio and the increase in yield of Green0 could not be linked

to an increased ear density. The relatively large C/N ratio

of green waste might have led to a competition of

microbial community and plants for soil N, thus

immobilizing it (Amlinger et al., 2003). The well-studied

positive effects of green waste compost application (Debosz

et al., 2002; Ros et al., 2006; Evanylo et al., 2008; Peltre

et al., 2015) might be manifested over longer periods. The

application of cattle manure to soils is known to increase

soil chemical, physical and biological properties (Lupwayi

et al., 2014). Plant height was highest under CM0, while the

number of ears and the kernel number did not increase.

The studies of Whalen et al. (2000), showed that cattle

manure increases soil pH and thus plant-available nutrients

in the short-term (weeks). While in the longer-term, a

decrease can be observed due to immobilization or

stabilization. These findings promote the development of

significantly higher straw yield under CM0, but grain yield

did not increase. The short-term increase in N seemed to be

beneficial for plant development during stem elongation but

not during anthesis and postanthesis. Regarding differences

of the treatments, it can be figured out that the ear number

of Bio0 is significantly higher and the one of CM0

significantly lower. TKW of CM0 is significantly lower than

for the other treatments. All other yield parameters did not

result in significant differences.

Development of grain yield parameters

A general relationship between grain size, protein content

and starch content exists. Smaller kernels have lower starch

and higher protein contents. Consequently, bigger kernels
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have higher starch content and lower protein content. Thus,

a negative relationship between protein and starch content

exists (Henry & Kettlewell, 1996; Wrigley, 2010). The general

range of protein content for barley ranges from 8 to 15%

and for starch is between 51 and 72%. The specific contents

are mainly influenced by environmental factors and fertilizer

practice (Simmonds, 1995; Henry & Kettlewell, 1996). This

relationship can be observed in the results from the DL

treatment. DL0 has the highest proportion of kernels

>2.8 mm (Figure 6). The results of NIR analysis show

lowest protein contents and highest starch contents

(Figure 7). The results for protein content correlate with the

decreasing yields with increasing distance to the subsoil

tillage. In contrast, starch content did not steadily decrease

between DL0 and DL100. The Bio treatments had slightly

more kernels >2.8 mm, but overall, the kernels were about

the same sizes. Bio0 had the highest protein and the lowest

starch contents. This is in contrast to the theory that higher

yields always imply a reduction in protein content and an

increase in starch content. Nevertheless, all the values were

in the normal range for barley. The Bio treatments seemed

to support a good supply of water and nitrogen which might

have been the basis for the increased protein content.

Green produced significantly different starch contents.

Green50 has the lowest starch but the highest protein

contents, while Green0 has the lowest protein but not the

highest starch content. This supports the theory that the C/N

ratio of green waste compost might have led to an

immobilization of N, and extra N derived from compost

input was not available at important stages of grain

development. CM produced the highest grain yields under

CM50 which is reflected by the kernel size distribution, with a

trend towards smaller kernels under CM50 reports (Figures 5

and 6). However, there were only small difference in the mean

values of protein and starch content. The effect of CM

admixing was mainly detectable on the development of straw

yield but not on grain yield. The results of NIRs analysis

reflect this. For protein content, no significant differences

were noticed across the treatments. Starch content of DL50

and Bio50 treatments were significantly different from each

other.

Conclusions

This paper emphasized the short-term effects of deep

loosening of the subsoil in combination with admixing of

organic material. The different organic materials were shown

to promote short-term improvements in yield even though

the literature suggested mainly long-term effects for some of

the materials. Single deep loosening and admixing of

biocompost into the subsoil produced the highest yields.

Thus, we can conclude that loosening of the subsoil leads to

a better plant supply. Admixing of biocompost, which

introduces active biomass into the subsoil, further influences

plant development in terms of significantly increased ear

densities and kernel numbers, while starch and protein

content did not change significantly. The observations

showed that subsoil loosening with simultaneous admixing of

organic material was still beneficial at a distance of 0.5 m

from the amendment site.
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Abstract: This study examined the effect of stripwise subsoiling and subsoiling combined with the
incorporation of organic material on crop development in a two-year field trial with typical weather
in the first year and hot, dry weather in the second. Subsoiling and its combination with incorporated
organic materials had strong effects on plant development and crop yield of spring barley (2017) and
winter wheat (2018). The subsoil was loosened in 30 cm wide furrows down to a depth of up to 60 cm
with a tine (DL) or a spader machine (SM) and was compared with the same methods of subsoil
loosening combined with the incorporation of compost from biological household wastes (DLB
and SMB). Furthermore, green waste compost (SMG), chopped straw (SMCS) and sawdust (SMS)
were incorporated with the spader machine only. DL successfully reduced penetration resistance
underneath the furrow and enhanced root growth underneath and near the furrow over the whole
experimental period. Grain protein content above the furrow was enhanced compared with the
untreated control (C) in the first year, but grain yield did not increase. DLB also reduced penetration
resistance and increased root growth, but furthermore caused considerable increases in soil mineral
nitrogen underneath the furrow throughout the vegetation period. Consequently, both yield and
grain protein content above the furrow were tendentially increased as compared with the C. In SMB,
grain yield increased even more than in DLB, compared to C, in 2017 (84% for SMB vs. 19% for DLB)
and nearly equally in 2018 (65.4% vs. 65.2%) while all other treatments tendentially decreased grain
yield above the furrow as compared with C. The results indicate that subsoiling with the introduction
of organic material can reduce mechanical impedance and increase soil nitrogen and thereby ensure
stable yields during dry periods, which become more frequent under climate change.

Keywords: compost; straw; sawdust; sub soiling; mechanical impedance

1. Introduction

Tillage is one of the main plant production measures influencing soil conditions. Evaluation and
adaptation of tillage practices offers great potential to counteract the effects of climate change on crop
growth. If field traffic causes soil compaction leading to a deterioration of topsoil and subsoil [1], crop
development is highly affected. Soils respond with reduced permeability to water and air, increased
surface runoff, erosion, flooding and reduced groundwater recharge [2]. The trend to warmer summers
and the increased risk of heat waves may cause soil moisture deficits, which induce water stress for
plants. Water stress is exacerbated in areas of soil compaction since the compacted zone dries out more
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severely, limiting the plant’s ability to take up water and nutrients [3]. Roots are thickened, distorted
and retarded in downward growth. In extreme cases, they may run horizontally for the most part.
However, the risk of soil compaction strongly depends on soil type and crop rotation. Blanco-Canqui
et al. [4] state that different tillage practices can affect the ability of soils to absorb and retain water
which is of major importance considering climate change. While ‘no-till’ has been promoted as the
solution of soil protection for more than a decade, current studies indicate that more attention should
be drawn to the subsoil. Hartmann et al. [5] state that agronomic intensification has resulted in subsoil
degradation and a decline of the productive potential of the soil. Since about 50% of the global soil
organic carbon (SOC) is stored in the subsoil, this should not be underestimated [6,7]. This decline
in the productive potential is widely recognized as a serious limitation for achieving a sustainable
crop production. A recent meta-analysis [8] stated that sub soiling enables tremendous improvements
of soil structure and thus plant development in soils with a root-restricting layer and with less than
70% silt. The main effects can be summarized as a reduced bulk density that intensifies overall root
development [9,10], an increased infiltration capacity [4] and better access of roots to deeper water and
nutrient reservoirs [5,11]. Long-term studies on alternating no-till/subsoiling concepts have shown
that biennial subsoiling significantly improved soil physical properties and increased grain yield [12].

Additionally, soil water storage increased during fallow periods [12]. However, on some soils,
subsoiling may even reduce crop performance as it may result in a complete collapse of the natural
soil structure and thus aggregate compaction [8]. A changing climate implies changing temperatures
which affect the subsoil less than the topsoil [7]. Furthermore, Wordell-Dietrich et al. [7] showed that
mineralization rates are higher in the subsoil since the soil conditions are more stable compared with
the topsoil. Enhanced carbon input into the subsoil is an efficient means to increase C sequestration [12],
with the potential effect of both increasing soil fertility and mitigating climate change. Organic
amendments are enriched in C, and it is well documented that they increase soil organic matter
content [13–15]. According to Freibauer et al. [16], the increase in soil C content should be achieved by
the addition of animal manure, crop residues, sewage sludge or compost, as the application of these
materials can improve soil microbial activity. Thus, it seems reasonable to combine deep loosening
with the incorporation of organic materials to enhance overall soil conditions. Deep soil loosening can
counteract negative effects of topsoil and subsoil compaction, increasing the supply of water, nutrients
and carbon during dry periods and at important physiological stages, while the organic material will
increase carbon input into the subsoil and increase soil microbial activity.

Additionally, it may stabilize the loosened soil structure, thus potentially extending the duration
of subsoiling effects and avoiding the observed collapse of natural soil structure with a subsequent
compaction in fragile soils. The following study presents the effect of deep subsoil loosening in 30 cm
wide furrows with and without the incorporation of organic material on barley and wheat growth. For
deep loosening of the soil, two different tools (spader machine and deep working tine) were used. Four
different organic materials were incorporated into the subsoil. The aim of this study was to test if (i)
different deep loosening tools affect plant development, (ii) different organic materials combined with
deep loosening affect plant development and (iii) which organic material influences plant growth the
most. We hypothesized that plant growth would significantly increase, compared with the untreated
control, because of deep loosening and deep loosening with incorporated organic material.

2. Materials and Methods

2.1. Experimental Setup

The field experiment was conducted at the ‘Campus Klein-Altendorf’ experimental research
station (50◦37’51”N; 6◦59’32”E), University of Bonn, Germany. According to the Food and Agriculture
Organization of the United Nations FAO standard [17], the soil can be classified as a Luvisol derived
from loess. The mean annual air temperature is 9.4 ◦C and the mean annual precipitation is 603.4 mm.
The weather conditions during the experimental period are shown in Figure 1.

B. Publication 2: Main-trial 'Campus Klein Altendorf'
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Figure 1. Overview of weather data during the vegetation period (2016–2018).

The experiment consisted of control plots and deep tillage plots using different tools and
incorporated materials. In fall of 2016, all plots were tilled using a rotary harrow (Lemken Zirkon 300;
5 cm working depth) for seedbed preparation. The deep tilled plots additionally received a subsoil
loosening in three steps (see Table 1). In the first step, a furrow of 30 cm width and depth was created
using a one share plough. The furrow was created centered within the plot width of 3 m.

Table 1. Overview of tillage operations for subsoiling with and without organic material. DL: deep
loosening with tine, SM: spader machine, DLB: deep loosening with tine and bio compost, SMB:
spader machine and bio compost, SMS: spader machine and sawdust, SMCS: spader machine and
chopped straw.

Operation Aim Machinery Treatments

Removal of A-horizon
(0–30 cm)

Creation of a furrow
(centered within 3 m; 30 cm
× 30 cm; width × depth)

One plough share DL, SM, DLB, SMB, SMS
and SMCS

Loosening of the B-horizon
(30–60 cm) Subsoiling Deep working tine

Spader machine
DL
SM

Deposition of organic
material within the furrow Fresh matter incorporation Fodder mixer DLB, SMB, SMS and

SMCS

Mixing of B-horizon and
organic material

Subsoiling with organic
material

Deep working tine
Spader machine

DLB
SMB, SMS and SMCS

Passage with depth wheel Recompaction of B-horizon Depth wheel DL, SM, DLB, SMB, SMS
and SMCS

Passage with leveling panel Return of A-horizon and
closing of furrow Leveling panel DL, SM, DLB, SMB, SMS

and SMCS

For deep loosening and incorporation of material, two different strategies were used. In a first
approach, a spader machine was used and in a second approach, a tine was used to incorporate
the material into the B-horizon. Both tools worked within the furrow and the target working depth
was set up to 60 cm, thus working within the soil depth 30–60 cm. However, the spader machine
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could not intermix the biocompost up to this depth and it just reached a working depth up to 45 cm.
Furthermore, the incorporation of the different materials was very heterogenous. Thus, further soil
analyses (including penetration resistance measurements and root analysis) were not undertaken for
these treatments. After this, the soil was reconsolidated using a depth wheel and the A-horizon was
laid back into the furrow using a leveling panel. Regular tillage followed, using a rotary harrow for
seedbed preparation. Mustard was sown as a catch crop during the fall term. Mustard was mulched in
spring of 2017 and the field was chisel ploughed (15 cm) twice before the rotary harrow (10 cm) with
seedbed preparation took place. The experimental field received 70 kg ha−1 of calcium ammonium
nitrate as general fertilization at the end of March 2017 and 100 kg ha−1 at the end of March 2018.
Spring barley (330 seeds m−2) was sown at the end of March 2017 and harvested in August. Mustard
was sown at the beginning of September 2017 and winter wheat (300 seeds m−2) was sown at the end
of October 2017 and harvested in July 2018.

The complete experiment consisted of eight treatments in a threefold replication, with plots of
3 m × 15 m (width × length). The experiment was designed as a complete randomized block design.
An overview of the different treatments is given in Table 2. It should be noted that only a small portion
of the total nitrogen applied with the incorporated materials became plant available each year.

Table 2. Overview of the different treatments with amounts of incorporated materials in t ha−1 and.
incorporated nitrogen in kg ha−1. C: control, SMG: spader machine and green waste compost.

Treatment Tillage
Operation

Incorporated
Material

Fresh Matter
Incorporated (t ha−1)

N Incorporated
(kg ha−1)

C no deep tillage no material - -
DL tine no material - -

SM spader
machine no material - -

SMB spader
machine bio compost 50 641

SMG spader
machine

green waste
compost 50 355

SMS spader
machine sawdust 50 58

SMCS spader
machine chopped straw 50 246

DLB tine bio compost 50 641

The field site was used for nutrient depletion experiments in the years before establishing the field
trial. Nutrient depletion started in 2013 with a soil composition of 26 mg K2O, 26 mg P2O5, 7 mg MgO,
pH value of 6.7 and humus content of 1.7%. Crop rotation included winter barley (2014 and 2015) and
winter wheat (2016). Fertilization started again after the harvest of 2016 with a soil composition of
10 mg K2O, 20 mg P2O5, 7 mg MgO, pH value of 6.5 and humus content of 1.3%. After fertilization
(2017) the soil had nutrient contents of 18 mg K2O, 22 mg P2O5, 8 mg MgO, a pH value of 6.9 and humus
content of 1.6%. Primary soil tillage including ploughing and seedbed preparation was undertaken
after the harvest of 2016 using a rotary harrow. A disc cultivator was used for stubble incorporation.

2.2. Characterization of Material

The four materials were chosen based on their accessibility and economic feasibility for farmers.
The biocompost was a fresh compost, which means that the rotting process was not finished, and was
based on kitchen wastes from private households. The green waste compost was a finished compost
based on trees, bushes and shrubs from public green spaces and parkland. Sawdust was based on
soft wood (from pine trees) and chopped straw consisted of wheat straw. Table 3 shows the sieving
analysis and compounds of the materials.

B. Publication 2: Main-trial 'Campus Klein Altendorf'
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Table 3. Sieving analysis and dry matter content, C %, N%, P%, K% and C:N of incorporation material.

Sieving Analysis (%) Dry
Matter

(%)

Total
C

(%)

Total
N

(%)

Total
P

(%)

Total
K

(%)Material <3
mm

3–6
mm

6–10
mm

10–15
mm

15–20
mm

20–25
mm

>25
mm C:N

Chopped straw 1 5 10 7 5 3 2 68 78:1 89.5 42.84 0.55 0.22 1.3
Sawdust 1 15 20 62 2 1 - - 370:1 90.4 50.23 0.13 0.01 0.06

Green
compost 2 58 14 12 8 4 3 1 24:1 60.7 48.00 1.17 0.44 0.92

Bio compost 2 71 11 7 7 2 2 - 13:1 66.8 41.80 1.92 0.75 1.50
1 Analysis of components and C:N: external lab analysis. 2 Analysis of components and C:N: quality certification of
composting plant.

2.3. Plant Development and Grain Quality

To determine the impact of subsoiling and deep incorporation of organic materials, standard
plant observations were undertaken. Measurements were made centered in each plot in a twofold
repetition. For each repetition, data from one meter was recorded. Thus, in total, two meters per plot
were recorded in three field replicates. The number of plants (after crop emergence) and the number of
ears (after flowering) were counted. Plant height was measured at the final plant height (Biologische
Bundesanstalt, Bundessortenamt und Chemische Industrie-BBCH 87 according to the standard system
of German ‘Bundessortenamt’ [18]). At the time of threshing ripeness (BBCH 99), the two meters were
harvested manually. Dry matter yield, straw yield and grain yield were determined following the
standard plant observation system of the German ‘Bundessortenamt’ [18]. Thousand kernel weight
(TKW) was calculated, grains were sieved and near-infrared technology (Perten DA7250TM NIR
analyzer) was used to determine protein and starch content.

2.4. Penetrometer Measurements

Penetration resistance was measured shortly after crop emergence, after the harvesting of spring
barley and after the harvesting of winter wheat. The C (control), and treatments DL (deep loosening
with tine) and DLB (deep loosening with tine and bio compost) were measured. The penetration
resistance curve equaled the average values of n = 9 measurements in the center of the plot. A
penetrometer that equaled the standard of the American Society of Association Executives (ASAE)
norm was used [19,20], with a cone size of 1 cm in diameter and an angle of 30◦.

2.5. Soil Sampling for Monitoring Soil Mineral Nitrogen (Nmin) and Gravimetric Soil Water Content

Soil samples were taken 9 May and 21 July, 2017, and 25 April, 28 May and 31 July, 2018 using a
Pürckhauer auger. All three field replicates were sampled (n = 3), except for 9 May, 2017 when only
two field replicates were sampled and 31 July where, because of very time-consuming sampling in
very dry soil, the number of samples was reduced to two per plot and thus samples from all three field
replicates were merged to gain enough material for analysis. In each plot, five samples from 0 to 100 cm
soil depth (directly divided into samples 0–30 cm, 30–50 cm, 50–60 cm, 60–70 cm, 70–100 cm according
to soil horizons and melioration depth) and additionally four samples from 0–30 cm depth (due to
larger heterogeneity in the topsoil) were taken in the area of the furrow. The soil samples were cooled
directly after sampling, then frozen at −18 ◦C and, after extraction with potassium sulfate, analyzed
for NO3

− and NH4+ using a continuous flow analyzer (wavelengths 540 nm and 660 nm, Verband
deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten e.V.-VDLUFA 1991). NO3

−

and NH4+ were summarized as plant-available soil nitrogen [21]. Gravimetric soil water content was
analyzed from 50 g of soil per sample. The treatments C, DL and DLB were measured.

2.6. Analysis of Root-length Density (RLD)

Root-length density (RLD) of spring barley and winter wheat was quantified with the profile
wall method [22] on 6 July 2017 and from 4–6 June 2018 during anthesis. In 2017 two field replicates
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were sampled and in 2018 three field replicates ere sampled within the treatments C, DL and DLB. An
excavator was used to install a trench with a depth of 130 cm (2017) or 230 cm (2018) at the front end of
each plot. After flattening a 100 cm wide vertical profile wall transversely to the plant rows, 0.5 cm of
soil was rinsed off with tap water from a crop sprayer, with simultaneous scratching by use of a fork.
Afterwards, a 100 × 60 cm length times width counting frame was placed on the profile wall. In 2017,
the frame was adjusted with the left side in the middle of the furrow, with the aim to assess the RLD
gradient from underneath the furrow towards the undisturbed soil. However, since this resulted in a
larger area covered for the undisturbed soil than for the treatment, in 2018 this procedure was changed,
and the counting frame was centered over the furrow. Root length was quantified by visual estimation
of the length (cm) in 240 squares of 5 cm × 5 cm size in a range of 100 cm width, from surface soil
until 135 cm depth (spring barley 2017) or 180 cm depth (winter wheat 2018). Roots in holes were
not considered.

Root length (cm) from the soil profile wall was converted into root length density (RLD) (cm cm−3)
by dividing by 12.5 cm−3 (soil volume: 5 cm (height) × 5 cm (width) × 0.5 cm (depth) = 12.5 cm−3). Data
were evaluated for three (2017) or four soil depth classes (2018) in three distance classes: underneath
the furrow (3 or 6 squares, respectively), near the furrow (4 or 8 squares, respectively) and away from
the furrow (13 or 6 squares, respectively) (Table 4). This procedure was not applied for control plots;
here, all 20 squares entered into the analysis. In 2018, one field replicate of the DL treatment was
not considered for data analysis because it deviated strongly from all other plots with only very few
roots present.

Table 4. Distance classes on the profile wall 2017 and 2018, showing the three categorized distances
classes underneath the furrow, near the furrow and away from the furrow and the four depth classes of
0–30, 30–60, 60–120 and 120–180 cm.

2017
Underneath

Furrow
(15 cm)

Near Furrow
(20 cm) Away from Furrow (65 cm)

Depth
(cm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0–30
30–60

60–135

2018
Away from

Furrow
(15 cm)

Near Furrow
(20 cm) Underneath Furrow (30 cm) Near Furrow

(20 cm)

Away from
Furrow
(15 cm)

Depth
(cm) 1 2 3 4 5 6 7 8 9 10 11 12 12 14 15 16 17 18 19 20

0–30
30–60

60–120
120–180

2.7. Statistical Analysis

Statistical analysis of variance of data was conducted using IBM SPSS 20 for Microsoft Windows.
A one-way ANOVA followed by Tukey’s significant difference test was conducted to figure out the
significant effects of each treatment on the development of spring barley and winter wheat. RLD was
statistically tested for treatment, depth and distance effects. The nonparametric Kruskal–Wallis test
followed by Dunn–Bonferroni correction with a significance level of 0.05 was performed using IBM
SPSS Statistics version 24. Nonparametric tests were used because the normal distribution of data was
not always provided.

B. Publication 2: Main-trial 'Campus Klein Altendorf'

46



Agronomy 2019, 9, 296 7 of 16

3. Results

3.1. Effects on Yield Formation

Single subsoiling and subsoiling combined with deep incorporation of organic material impacted
on plant development in different ways was compared with the untreated control treatment for both
years. The number of plants was not affected in both years. The number of ears was higher under
SMB (spader machine and bio compost) compared with C in 2017, while in 2018 it was higher than
under DL, SM (spader machine), SMG (spader machine and green waste compost) and SMS (spader
machine and sawdust) but not higher than C (Table 5). Concerning yield (Figure 2) SMB showed the
highest dry matter yield in both years. However, these differences were not statistically significant.
In 2017, the dry matter yields of SMG, SMS and SMCS (spader machine and chopped straw) were
lower than SMB but not lower than C. Straw yield and grain yield was lowest for SMG in 2017 and for
SMS in 2018. No significant differences in grain yield compared to C were detected in both years. The
treatments SMB and DLB had higher straw yields than C in 2017 and 2018.

Maximum plant height of SMB and DL was significantly higher than C under spring barley and
winter wheat. Plants under SMS were the smallest (63 cm and 50 cm). The 1000-kernel weight (TKW)
differed only for spring barley, with the highest TKW under SMB and the lowest under SMG, which
was significantly lower than the control.

Table 5. Yield parameters of spring barley (2017, year 1) and winter wheat (2018, year 2). Different
letters indicate significant differences between the treatments in each year (p < 0.05, Tukey’s test),
C: control, DL: deep loosening with tine, SM: spader machine, SMB: spader machine and bio compost,
SMG: spader machine and green waste compost, SMS: spader machine and sawdust, SMCS: spader
machine and chopped straw, DLB: deep loosening with tine and bio compost. 1 1000-kernel weight
(TKW).

Crop Treatment
Number
of Plants

(m−2)

Number
of Ears
(m−2)

Maximum
Plant

Height
(cm)

TKW 1 (g)
Protein
Content

(%)

Starch
Content

(%)

C 143 551 a 73 cd 48.3 bc 11.1 ab 54.7 abc
DL 147 897 ab 76 de 49.0 bc 12.8 c 54.0 ab
SM 123 801 ab 74 de 45.3 abc 11.1 b 55.2 bcd

Spring
barley

SMB 152 1123 b 78 ef 49.5 c 14.2 cd 53.9 a
SMG 143 564 a 67 b 41.7 a 9.7 a 55.7 cd
SMS 129 548 a 63 a 43.5 ab 9.8 ab 55.8 d

SMCS 143 576 a 70 bc 45.5 abc 10.2 ab 55.9 d
DLB 140 708 ab 80 f 45.0 abc 14.6 d 54.0 a

C 255 301 abc 54 a 28.7 9.8 a 74.3
DL 229 263 a 56 a 27.2 10.2 ab 74.0
SM 267 288 ab 54 a 27.2 10.5 abc 73.3

Winter
wheat

SMB 243 444 c 68 b 29.0 13.0 c 72.7
SMG 207 268 a 52 a 28.2 10.5 a 74.0
SMS 244 267 a 50 a 25.3 10.3 ab 73.5

SMCS 229 311 abc 52 a 29.5 9.8 a 74.0
DLB 263 425 bc 67 b 29.0 12.2 bc 73.2
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Figure 2. Dry yield, grain yield and straw yield of spring barley (2017) and winter wheat (2018). 
Different letters indicate significant differences between the treatments in each year (p < 0.05, Tukey’s 
test), error bars represent ± SD (n = 6). C: control, DL: deep loosening with tine, SM: spader machine, 
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spader machine and sawdust, SMCS: spader machine and chopped straw, DLB: deep loosening 
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Figure 2. Dry yield, grain yield and straw yield of spring barley (2017) and winter wheat (2018).
Different letters indicate significant differences between the treatments in each year (p < 0.05, Tukey’s
test), error bars represent ± SD (n = 6). C: control, DL: deep loosening with tine, SM: spader machine,
SMB: spader machine and bio compost, SMG: spader machine and green waste compost, SMS: spader
machine and sawdust, SMCS: spader machine and chopped straw, DLB: deep loosening with tine and
bio compost.
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3.2. Effects on Root Development

RLD was measured directly underneath the furrow, near the furrow and away from the furrow.
In 2017 (spring barley) the soil was classified into three layers, while in 2018 (winter wheat) it was
classified into four layers because of higher rooting depth of the winter cereal. In 2017 the RLD
of DL and DLB was significantly higher underneath the furrow, up to 60cm soil depth (Figure 3).
Moreover, the RLD of DLB was increased up to 135cm soil depth. While these differences persisted
near the furrow, being away from the furrow at only 30–60 cm soil depth DL resulted in higher RLD as
compared with the other two treatments. In 2018, the RLD underneath the furrow of both DL and DLB
was increased with up to 60 cm soil depth, but was different from 2017 below this depth, with only DL
resulting in higher RLD. Near the furrow and away from the furrow, the differences in the topsoil and
in the 30–60 cm layer persisted, but below 60 cm DLB also had higher RLD in deeper soil layers.
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Figure 3. Mean root-length density of three soil depth classes (2017) and four soil depth classes (2018).
From left to right: directly underneath the furrow, near the furrow (up to 20 cm distance) and away
from the furrow (2017: 20–85 cm distance, 2018: 20–35 cm distance). Different letters indicate significant
differences (Kruskal–Wallis test followed by Dunn–Bonferroni correction, p < 0.05). C: control, DL:
deep loosening with tine, DLB: deep loosening with tine and bio compost, RLD: root-length density.

3.3. Effects on Soil Nmin and Soil Dry Matter

The deep loosening of the soil and deep loosening combined with the introduction of organic
material caused changes in soil mineral nitrogen (Nmin) content. Figure 4 shows the concentration
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of Nmin over the experimental period. The introduction of biocompost clearly increased Nmin. After
the dry April 2017, Nmin was high in all treatments in May 2017, however, in DLB, it was about twice
that of C and DL, with 130 kg ha-1 below 30 cm soil depth. In July 2017, Nmin was strongly reduced
in all treatments and the major part of Nmin could be found in the topsoil up to 30 cm. Until April
2018, Nmin was increased in deeper soil layers in all treatments. This effect was highest under DLB.
Differences between C and DL were negligible up to a depth of 60 cm. However, Nmin of DLB was
constantly approximately twice as high as C and DL. Furthermore, in July 2018 an increase in Nmin

was observed compared with July 2017 and May 2018, especially up to 60 cm.
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season. At all sampling dates in both years, DLB had the lowest water content in 70 cm soil depth, i.e., 
directly underneath the compost deposit. In April 2018, this difference was significant. 
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Gravimetric Water Content (%) of Soil Depth Classes 
0–30 cm 30–50 cm 50–60 cm 60–70 cm 70–100 cm 
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Figure 4. Soil mineral nitrogen at five sampling dates in five soil depth classes, respectively. Different
letters indicate significant differences of within one sampling date (Tukey’s test, p < 0.05). In May 2017
(only two field replicates sampled) and July 2018 (samples from three field replicates merged) statistical
evaluation was not possible. C: control, DL: deep loosening with tine, DLB: deep loosening with tine
and bio compost.

Soil water content was generally lower in the unusually dry year of 2018 than in 2017 (Table 6).
Furthermore, in 2018, soil water content decreased with soil depth and throughout the cropping season.
At all sampling dates in both years, DLB had the lowest water content in 70 cm soil depth, i.e., directly
underneath the compost deposit. In April 2018, this difference was significant.

Table 6. Gravimetric soil water content in five soil depth classes. Different letters indicate significant
differences within one sampling date (Tukey’s test, p < 0.05). In May 2017 (only two field replicates
sampled) and July 2018 (samples from three field replicates merged) statistical evaluation was not
possible. C: control, DL: deep loosening with tine, DLB: deep loosening with tine and bio compost.

Date Treatment
Gravimetric Water Content (%) of Soil Depth Classes

0–30 cm 30–50 cm 50–60 cm 60–70 cm 70–100 cm

May 2017
C 16.3 15.8 16.6 16.7 16.8

DL 16.5 16.6 16.9 17.2 17.0
DLB 19.0 17.6 16.4 16.8 17.4

July 2017
C 13.6 8.9 10.4 11.7 13.6

DL 14.3 10.2 11.3 12.0 13.1
DLB 14.6 9.2 10.5 11.1 13.0
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Table 6. Cont.

Date Treatment
Gravimetric Water Content (%) of Soil Depth Classes

0–30 cm 30–50 cm 50–60 cm 60–70 cm 70–100 cm

April 2018
C 14.4 15.9 16.3 17.0 b 17.6

DL 15.0 15.8 16.6 17.0 b 17.3
DLB 14.9 16.0 16.2 16.4 a 17.3

May 2018
C 11.6 13.9 15.3 16.0 16.1

DL 12.7 12.8 14.6 16.4 15.9
DLB 12.2 13.5 14.2 14.8 16.0

July 2018
C 9.5 12.6 12.3 14.7 15.1

DL 8.4 12.2 14.4 15.3 15.0
DLB 8.5 11.8 14.2 13.2 14.8

3.4. Effects on Penetration Resistance

Measurements of penetration resistance (Figure 5) showed that after crop emergence in 2017,
penetration resistance was lower in DL and DLB compared to Cup to 60 cm soil depth. These
differences persisted until the harvest of 2017, but after the harvest of 2018, only DL had lower
penetration resistance as compared with the control.
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4. Discussion

4.1. Effect of Sub Soiling and Incorporation of Organic Material on Yield and Root Development

The results of this study show that deep soil loosening or deep soil loosening with the incorporation
of organic material can affect plant development. Generally, single deep soil loosening (subsoiling)
reduces bulk density and deepens the active soil layer, thus promoting root growth into deeper soil
layers, as roots are more prone to grow downwards with deeper subsoil tillage [9]. Ghosh et al. [10]
associated this effect with improved water storage and a higher root-length density. A meta-analysis
comparing different deep tillage options by Schneider et al. [8] concluded that deep tillage causes on
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average a 20% increase in crop yield at sites with root-restricting layers. However, the individual
response depends on the soil type and ranges from slight increases in yield up to large yield depressions.

Statistical analyses of the treatments in comparison to the control allowed a separation into two
groups—those treatments that increased yield and those that decreased yield, as compared to the
control. The treatments SM, SMB and DLB increased yield, while SMG, SMS and SMCS decreased
yield in 2017. Under the treatment DL, only some yield parameters decreased, while others increased.
In 2018, only the treatments SMB and DLB increased yield parameters in comparison to C. Treatments
DL, SMG, SMS and SMCS showed no significant differences as compared to C.

The main differences between the different treatments were (i) the working depth of the deep
loosening tool, with effects on penetration resistance and (ii) C:N ratio and structure of the filling
material, affecting N supply to the crops throughout the vegetation period. With respect to the latter,
our results clearly show that bio compost as the material with the lowest C:N ratio and the finest
structure was the only material with yield increasing effects, while all other materials decreased yield.
Diacono et al. [14] argue that the prompt availability of N, introduced from compost application,
is very low since the majority is bound to the organic N-pool. This contrasts with the significantly
taller plants in SMB and DLB as compared to C in both years in our study and is presumably due to
the effect of extra N from compost, as the plant height of DL and SM was not significantly higher,
thus the subsoil loosening tool was not the deciding factor. Moreover, the organic matter may have
improved soil physical properties, e.g., the water holding capacity. The incorporation of bio compost
is accompanied by the introduction of microorganisms. This stimulates plant growth and ensures
proper N supply during the early growth stages and after pollination [23]. Abiven et al. [15] and
Diacono et al. [14] summarized that easily decomposable products have an intense and transient effect
on aggregate stability (bio compost) while more recalcitrant products have a less pronounced but
longer lasting effect (sawdust and chopped straw, and in our study also green waste compost). The
presence of sawdust can increase soil acidity and affect plant growth negatively because of competition
for nutrients [24]. In contrast, cereal straw can improve soil quality and productivity [25]. Negative
effects on plant germination were expected for plants under SMCS. Procházková et al. [26] stated that
straw is a main source of essential organic matter supplied to the soil, but its incorporation into the soil
can affect germination and plant establishment negatively. However, these expected differences were
not observed. The lowest number of ears and the smallest maximum plant height occurred under SMS
in both years. SMS and SMCS decreased yield compared with C. Plants of SMS were the smallest of
all treatments and produced fewer ears than C in both years. Wei et al. [24] summarized that straw
incorporation can restock the soil organic matter by enhanced carbon input, which has a positive effect
on the accumulation and utilization of nutrients. Even though Procházková et al. [25] also designate
straw to be an essential pool of organic matter to the soil, their studies show that straw incorporation
results in a significant reduction of yields, which is consistent with our results. The authors argue
that this was based on physical and biochemical effects. These effects include water consumption
for straw decomposition and the release and production of phytotoxic substances from straw during
decomposition. Furthermore, with sawdust, a highly-lignified product is incorporated into the soil,
which causes an increase in the population of soil microorganisms, thereby immobilizing N [27]. This
explanation is supported by the very large C:N ratio of SMS and significant smaller plants compared
to C.

With respect to the different loosening tools, results are more complex. Our study identified
that the two deep loosening tools affected plant development differently. The tine breaks up the soil
structure and creates a new microstructure of the subsoil. This microstructure consists of soil aggregates
which are differently sized. The working depth is around 60 cm. In contrast, the spader machine, with
its rotary motion, creates a new microstructure with nearly uniform soil aggregates, and the working
depth was clearly lower than 60 cm. However, when applied without incorporation of any material, the
two loosening tools resulted in similar yield parameters in both years—the only difference was higher
grain protein content in DL in 2017. Plants of DL and SM produced more ears than C (Table 4) but grain
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yield was only slightly increased for SM in 2017. Ji et al. [28] showed that deep tillage (up to 30 cm)
increased RLD at the soil layer by 10–40 cm on loamy soils and by 0–30 cm on clayey soils. Furthermore,
they demonstrated that bulk density was reduced, and soil water content increased. Similarly, in
our study, in DL and presumably also in SM, reduced penetration resistance allowed deeper rooting
of plants, thus the possibility to access water stored in deeper soil layers at important physiological
stages. The studies of Kirkegaard et al. [11] demonstrated that under conditions of drought, water
stored deeply in the soil profile is highly valuable to crop yield as it becomes available during grain
filling. Presumably, in our study, crops of DL benefitted from subsoil water used before anthesis in
2017 more than crops of SM, since TKW was tendentially higher. Concerning yield formation in 2018,
the impact of weather was a major parameter. After abundant rainfall in winter and spring, summer
was extremely dry. These weather conditions were reflected in much lower ear numbers, TKW and
grain yield over all treatments as compared with 2017. Muñoz-Romero [29] pointed out that rainfall is
one of the main determining factors for RLD. Under these weather conditions, RLD in DL was two to
three times higher than in the control throughout all distance classes and soil depths, which, however,
did not result in higher yield parameters and grain yield. Thus, the high investment of assimilates into
roots was obviously not compensated by higher nutrient and water uptake in this treatment. Since, at
the site under study, no root-restricting layer was present before subsoiling, these results are in line
with the meta-analysis by Schneider et al. [8].

The differences between the two working tools also influenced the results of SMB and DLB. The
two deep loosening tools with incorporation of bio compost (SMB and DLB) also resulted in similar
yield parameters in both years—in contrast to mere deep loosening (SM and DL), both had clear
differences as compared with the control. Surprisingly, crop performance in SMB increased even more
as compared with DLB, with a much higher ear number (77% higher than C in SMB vs. 11% higher
than C in DLB), tendentially higher TKW and much higher grain yield (84% vs. 19% higher than C) in
2017. In 2018, only grain protein content was slightly higher in SMB than in DLB. We assume that
the fertilizing effect of the incorporated compost was probably higher in SMB in both years, since the
spader machine mixed bio compost and subsoil more evenly than the tine in the areas of the plot where
the target working depth was reached. Thus, plants of SMB could translocate extra N from compost
directly into grain development. However, we could also observe that the total distribution of bio
compost mixed in by the spader machine was heterogeneous throughout the whole furrow since the
machine could not reach the target working depth. This was reflected by very high SD in yields of
SMB. In contrast, in DLB the crops presumably profited more from reduced penetration resistance in
deeper soil layers. This assumption is supported by the fact that only in 2017 was grain yield higher in
SMB as compared with DLB, while in 2018 it was similar, i.e., the deeper subsoil loosening in DLB may
have compensated for by the higher fertilizer effect in SMB. However, as the data on water content and
penetration resistance show, in DLB the loosening effect also did not persist throughout the dry season
in 2018—below 50 cm soil depth, penetration resistance in DLB was not any more lower than in C, and
the water content in 70 cm soil depth was significantly or tendentially lower in DLB as compared with
the control at all sampling dates in 2018. As a consequence, root growth underneath the furrow was
not increased in DLB in 2018, rather, the increased RLD in DLB below 60 cm near and away from the
furrow suggests that the roots seemed to have grown around the dry soil layer.

4.2. Effect of Sub Soiling and Incorporation of Organic Materials on Soil Parameters

Deep soil loosening causes an increase in infiltration capacity of soil [4]. Hartmann et al. [5]
summarized that loosened furrows can be preferential pathways for water infiltration, even if changes
in porosity characteristics are limited. The increased moisture content in the furrow can reduce
penetration resistance, and root growth into the subsoil is facilitated. Besides the effect of deep
loosening, the introduction of organic material further changes soil properties. The introduction of
compost can increase soil pH levels and soil nitrogen content [30]. Our measurements of soil Nmin

(Figure 4) show that the incorporation of bio compost was a major source of nitrogen for plants. Nmin of
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DLB was about twice as high as C directly after crop emergence (May 2017) and remained higher during
the whole experiment. Single deep soil loosening also increased Nmin in the topsoil compared with C.
To what extent the high Nmin contents in DLB are prone to leaching has to be clarified in future studies
to ensure environmental sustainability of the procedure. Also, compost application to the topsoil
should be compared with compost incorporation into the subsoil to learn whether improved access to
deeper soil layers combined with depositing organic nitrogen sources can secure yields, especially in
years with dry spells when topsoils dry out and their nitrogen reserves become unavailable to crops.

Measurements of penetration resistance show that C has a continuous increase in resistance
during the whole experimental period (Figure 5). Penetration resistances of DL and DLB demonstrate
that the soil was efficiently loosened in up to 60 cm soil depth (DL) and up to 40 cm soil depth (DLB).
After the harvest in 2018, penetration resistances were higher than in 2017 in all treatments, probably
due to the very dry soil. The penetration resistance of DL was still lower than that of C, while in DLB,
below 50 cm soil depth there was no difference from the control. A possible explanation is that the soil
was also tendentially drier in DLB below 50 cm soil depth and significantly drier below 60–70 cm soil
depth as compared with DL. A reason for these differences may be the high water holding capacity of
the compost, which prevented infiltration of water from precipitation to deeper soil layers.

5. Conclusions

The present study confirmed that on regularly tilled soils, deep subsoil loosening alone does not
necessarily result in higher grain yield, even though the objective of reducing penetration resistance
and consequently increasing root growth throughout the soil profile was successfully accomplished.
Incorporation of chopped straw, sawdust or green waste compost even resulted in tendentially or
significantly lower grain yield as compared with the control. Therefore, these materials do not
seem to be suitable for stabilizing the loosened soil structure. In contrast, subsoiling combined with
incorporation of compost from biological household wastes increased both root growth and grain
yields, probably due to both reduced penetration resistance and higher contents of soil mineral nitrogen.
The following years will show how long the effects of reduction in penetration resistance and increased
contents of soil mineral nitrogen persist. Furthermore, future studies should quantify N leaching to
ensure environmental sustainability of the procedure. The results of the first two years presented here
indicate that subsoiling with the introduction of organic material can reduce mechanical impedance
and increase soil nitrogen and thereby ensure stable yields during dry periods, which are becoming
more frequent under climate change.
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