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1 INTRODUCTION 

1.1 Targeted therapies in cancer treatment 

1.1.1 General considerations 

The treatment of cancer is one of the fastest approaching medical fields and subject to 

constant change. In 2015 alone, 20 new drugs were approved by the US Food and 

Drug Administration (FDA) for various cancer types, mostly addressing new 

therapeutic targets [1]. However, conventional cytotoxic drugs were, and still are in 

some indications, the backbone of cancer therapy. After a major breakthrough in the 

mid of the 20th century, where it could be shown that the combination of several 

cytotoxic drugs can be highly beneficial for the patient, chemotherapeutic regimens as 

we know them today were developed and further enhanced over the course of time [2]. 

While efficient in some patients, the outcome of chemotherapy can be highly variable. 

Due to their lack of specificity for tumor cells, cytotoxic drugs are usually associated 

with often severe adverse events (AE) [3]. A better understanding of carcinogenesis 

and tumor pathophysiology led to the development of several new classes of drugs 

which aimed to improve the major shortcomings of conventional chemotherapies. 

Despite their often highly different modes of action these new drugs are gathered under 

the term targeted therapy. 

Targeted therapy comprises all treatment approaches which aim to specifically 

intervene in defined processes related to carcinogenesis. Due to their higher 

specificity, those therapies should, in contrast to the conventional cytotoxic drugs, 

ideally increase efficacy and lower the risk of developing typical AE such as nausea, 

alopecia and myelosuppression [4]. Targeted therapies can be subdivided based on 

their mechanism or chemical and/or biological structure. The National Cancer Institute 

of the United States (NCI) defines the following categories: 

− Hormone therapies 

− Signal transduction inhibitors 

− Gene expression modulators 

− Apoptosis inducers 

− Angiogenesis inhibitors 
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− Immunotherapies 

− Monoclonal antibodies that deliver toxic molecules 

The first drug labeled as targeted cancer therapy was the monoclonal antibody 

rituximab which selectively binds the CD20 antigen on the cell surface. Rituximab was 

approved in 1997 for patients with B-cell non-Hodgkin lymphoma no longer responding 

to any other treatment options [5]. 

In 2015, targeted therapies accounted for almost 50% of all cancer therapy costs 

worldwide [6]. An analysis in Germany, France, Italy, Spain and UK showed that 

between 500,000 and 600,000 patients were treated with targeted therapies of any 

kind at time of data acquisition (2014). This accounts for 32% of all cancer drugs used 

in the respective countries [7]. As shown in Figure 1.1, Germany is the leading country 

concerning the use of targeted therapies with a share of more than one third of all 

cancer treatments. Currently, over 80 substances associated with targeted therapy are 

approved by the FDA and European Medicine Agency (EMA), with more potential 

candidates currently in clinical trials [8].  

 

  

 

Fig. 1.1:  Results of the OncoView study by Cegedim Strategic Data [7]. 
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1.1.2 Angiogenesis inhibition 

One of the most promising mechanisms identified for potential drug targets was tumor 

angiogenesis. The therapeutic value of angiogenesis in cancer therapy was first 

mentioned by Judah Folkman in 1971 [9]. Angiogenesis is necessary for several 

physiological processes, such as wound healing or during pregnancy, but is also 

involved in disease development, e.g. ischemia, rheumatoid arthritis and cancer [10]. 

More precisely, angiogenesis is the process of sprouting new vessels from existing 

ones. Angiogenesis has to be differentiated from vasculogenesis, which describes the 

development of entirely new vessels from angioblasts or other progenitor cells, as it 

happens during embryogenesis (Figure 1.2) and intussusception. The latter is the term 

for vessels which are divided by endoluminal migration of endothelial cells resulting in 

two or more new vessels [11]. 

Similar mechanisms are triggered by a tumor once it reaches a critical size, usually 

about ≥ 2 mm. Up to this point, neoplasms are able to cover all nutritional needs by 

passive diffusion [11]. Thus, the main triggers for tumor induced angiogenesis are 

hypoxia and nutrient deficiency. By release of pro-angiogenic factors, such as vascular 

endothelial growth factor (VEGF), the tumor shifts the balance towards increased 

angiogenesis. This process is often referred to as the “angiogenic switch” [10,11]. In 

context of tumor-induced angiogenesis the term “vascular mimicry” was established: 

Tumor cells are able to differentiate into endothelial-like cells and can be part of 

existing vessels or form entirely new ones (Figure 1.2). However, tumor induced 

angiogenesis results in comparatively chaotic structures which often provide only 

irregular supply. In the worst case this can lead to necrosis in tumor areas with critical 

nutrient shortage over a certain period of time [10,11]. 

Angiogenesis is a multifactorial process with a high number of signaling pathways 

involved, of which some, like the mTOR or VEGF pathways, proved to be therapeutic 

targets. Naturally, targeting only isolated pathways or proteins, increases the risk for 

development of resistance to the respective therapies. Currently two main modes of 

resistance are discussed [12,13]: The concept of adaptive or evasive resistance 

describes the first mechanism, which is a direct reaction to the anti-angiogenic 

treatment as alternative signaling pathways are activated and more pro-angiogenic 

cells are recruited from the bone marrow. 
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Furthermore, an increased tight pericyte count is observed, which can serve as 

protection for tumor blood vessels. A more aggressive migration of tumor cells in non-

tumor tissue can also be a result of inhibition of angiogenesis. The second mode of 

resistance describes the already existing indifference or non-responsiveness of a 

tumor to antiangiogenic drugs even before starting the treatment. Thus, the optimal 

combination and sequence of anti-angiogenic treatments are still under discussion and 

the basis of several studies [14,15]. 

 

The VEGF pathway 

The VEGF pathway is critically important to (tumor-) angiogenesis and a target of 

various drugs, including VEGF antibodies and tyrosine-kinase inhibitors (TKI). Most 

research has concentrated on this pathway. The most crucial receptors and their 

respective ligands are shown in Figure 1.3.  

Fig. 1.2: Different mechanism of sprouting angiogenesis and vasculogenesis [10]. 

EC = Endothelial cells, ECM = Extracellular matrix, EPC = Endothelial 

progenitor cells, MMP = Matrix metalloprotease, VEGF = Vascular 

endothelial growth factor, sVEGFR-2 = Soluble vascular endothelial 

growth factor receptor 
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Signaling is mediated via different VEGF homologs which can be further subdivided in 

several isoforms. Depending on receptor specificity and affinity these growth factors 

trigger different effects. VEGF-A, which is often referred to as VEGF, is one of the most 

important ligands. In animal studies it could be shown that VEGF-A deficient mice are 

not capable of surviving due to its crucial role in angio- and vasculogenesis [16]. Angio- 

and vasculogenesis are mainly regulated via vascular endothelial growth factor 

receptor (VEGFR) -1 and -2 which are expressed ubiquitously on endothelial cells, with 

VEGFR-2 being the most common one. VEGFR-3 is primarily expressed in lymphatic 

endothelial cells. Hence, it serves as a mediator in lymphangiogenesis. In addition to 

the receptor tyrosine kinases VEGFR-1 to 3, neuropilin (NRP) -1 and -2 have been 

identified as co-receptors. These are highly specific for one isoform of VEGF (VEGF165) 

and can increase the affinity of VEGF to its other receptors [11,17].  

  

 

Fig. 1.3: VEGF receptor signaling pathway (modified from [17] and [18]). 

VEGF(R) = Vascular endothelial growth factor (receptor),  

NRP = Neuropilin 
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Effects mediated by VEGF through binding the respective receptors include increased 

vessel permeability, activation of endothelial cells, increased endothelial proliferation 

and endothelial invasion and migration [19]. Furthermore, it was shown that VEGF 

regulates blood pressure via promotion of NO-synthase expression and NO activity 

mainly via VEGFR-2 [20,21]. 

A key factor for VEGF expression is hypoxia. Hypoxia triggers the dimerization of 

hypoxia inducible factor-1 α and β (HIF-1) which results in an increased transcription 

of VEGF. HIF-1 originates from the so called “Von Hippel-Lindau” (VHL) tumor 

suppressor gene. VHL has a crucial role in renal cell carcinoma as patients with 

mutations in the VHL gene are likely to develop this malignancy (Section 1.2 and Figure 

1.4). Other important regulators include various oncogenes such as p53 or 

transcription factors [17]. 

 

 

  

 

Fig. 1.4: Effects of the VHL gene product on angiogenesis under normal conditions  

and in case of hypoxia (modified from [18]).  

HIF = Hypoxia-inducible factor, VHL = Von Hippel-Lindau, PDGF = Platelet-

derived growth factor, VEGF = Vascular endothelial growth factor 
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Soluble VEGF receptors 

Soluble forms of all three VEGF receptors have been identified, however their exact 

physiological function is not yet fully understood [22–24]. In general, these soluble 

receptors are able to bind VEGF and its variants to a comparable degree or with an 

even higher affinity as the membrane-bound forms. This led to the assumption that 

sVEGF receptors fulfill regulative tasks in angio- and lymphangiogenesis. Among all 

three soluble receptors sVEGFR-1 is the best investigated. It could be shown that it 

has crucial physiological roles in e.g. embryogenesis and corneal avascularity and is 

also involved in numerous pathological processes, such as the development of 

preeclampsia during pregnancy [25,26]. Interestingly, one of the main functions of the 

soluble isoform of VEGFR-2 seems to be the regulation of lymphangiogenesis as a 

splice variant is binding VEGF-C with a high affinity [27]. sVEGFR-2 has been 

investigated in various tumor entities regarding its role in cancer development and 

during angiogenesis. In this context, it was also observed that sVEGFR-2 plasma 

concentrations are downregulated as reaction to antiangiogenic therapies [24,28]. The 

important role of sVEGFR-3 in corneal alymphaticity suggests regulatory functions in 

lymphangiogenesis [29]. Similar to sVEGFR-2, sVEGFR-3 plasma concentrations 

decrease under antiangiogenic treatment and are therefore heavily investigated as 

potential biomarkers for therapies targeting the VEGF pathway [30–32]. 

 

Drugs targeting tumor angiogenesis 

In 2004, bevacizumab (Avastin®, Roche), the first drug in the class of angiogenesis 

inhibitors, was authorized by the FDA for treatment of colorectal cancer patients. 

Bevacizumab targets VEGF-A which is an important mediator in the VEGF pathway 

(as described above). However, bevacizumab is usually applied in addition to 

conventional cytotoxic drugs, depending on the indication [33]. A distinct feature of 

bevacizumab is an increased efficacy in glioblastoma patients when applied as single 

agent, which led to the approval for this indication in 2009 by the FDA [34]. In the years 

thereafter several drugs with different targets in the VEGF pathway were approved. 

One of the more important subclasses of antiangiogenic treatments are the multi-

tyrosine kinase inhibitors (TKI). While imatinib (Glivec®) is considered as the first TKI, 

the first drug specifically targeting VEGFR-1 and 2 was sorafenib (Nexavar®) in 2006 

[35,36]. Sorafenib was shortly followed by several other VEGF-specific TKI including 
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sunitinib and pazopanib, which are described in more detail later (Sections 1.1.3 and 

1.1.4). 

Another important class of angiogenesis inhibitors include the “mammalian target of 

rapamycin” (mTOR) -inhibitors everolimus (Afinitor®) and temsirolimus (Torisel®) [37]. 

The mTOR is a serine/threonine kinase with a crucial regulative role for cell growth, 

proliferation and also angiogenesis [38]. By inhibition of the mTOR complex 1 

(mTORC1) (Figure 1.7) the transcription and translation of several proteins important 

for cell proliferation is hindered. Of particular importance is the decreased translation 

of HIF-1α resulting in lower VEGF plasma levels and consequently to an impaired 

angiogenesis [38,39]. 

 

Adverse events associated with antiangiogenic treatment 

Whereas antiangiogenic agents in general have moderate toxicity compared to most 

conventional cytotoxic drugs, angiogenesis inhibition can still result in therapy-limiting 

adverse events.  

Hypertension is one of the most often reported adverse events under antiangiogenic 

treatment [40–43]. Mechanistically, increased blood pressure is a result of reduced 

vasodilatation as VEGF triggers the release of NO and prostaglandin I2 (PGI2) under 

normal conditions. Additionally an effect on baroreceptors is discussed since it could 

be shown in animal experiments that an infusion with VEGF reduces the relevant 

signaling pathways resulting in a decreased blood pressure. However, the mechanism 

of this effect is still unknown. A long-term consequence of angiogenesis inhibition is 

the density reduction of smaller vessels and capillaries (“rarefaction”) which can also 

lead to hypertension due to increased vascular resistance [44]. In a more recent study 

in patients treated with sunitinib, increased levels of the highly potent vasoconstrictor 

endothelin-1 were observed, which may contribute to the increase of blood  

pressure [45]. 

Hematologic toxicity such as anemia, leukopenia or thrombocytopenia is commonly 

observed in sunitinib patients and, with a lower frequency, also in pazopanib and 

sorafenib treated patients [36,46,47]. The exact mechanism of these adverse events 

is not known. However, as VEGF receptors are commonly expressed on hematopoietic 

progenitor cells inhibition of these might prevent the maturation process [44,48]. 
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Kumar et al. investigated the different kinase selectivity of sunitinib, pazopanib and 

sorafenib with the result that the latter ones show a lower activity against the KIT (stem 

cell factor)-receptor (cKIT) and Fms-like tyrosine kinase 3 (FLT-3). As both receptors 

are factors in the genesis of hematopoietic cells, this might serve as an explanation for 

the frequency disparity [48]. 

Hypothyroidism was reported by various studies as a common adverse event under 

sunitinib treatment independent of tumor entity [49,50]. In a review from 2011 by Wolter 

et al. three prospective clinical trials in renal cell carcinoma (RCC) patients treated with 

pazopanib were evaluated with respect to reported hypothyroidism. Here, the 

incidence was comparably low with only 4% (26 of 578 patients) [51]. Similarly, other 

TKI, such as sorafenib, show also lower rates of thyroid dysfunction compared to 

sunitinib [52,53]. In a meta-analysis from 2014 12 studies with patients treated with 

sunitinib, axitinib or cediranib were investigated. However, no statistically significant 

difference between sunitinib and cediranib regarding hypothyroidism incidence was 

found. A comparison between axitinib and sunitinib was not possible due to low patient 

numbers in the axitinib group [54]. As a result, the mechanism of TKI-induced thyroid 

dysfunction was mainly investigated for sunitinib. Though, the mode of action of this 

adverse event is not yet fully understood, direct toxic effects of sunitinib leading to 

shrinkage of thyroid tissue are amongst the most popular theories [55]. 

 

1.1.3  Sunitinib 

Sunitinib was first authorized by the FDA and EMA in 2006 under the label Sutent® 

[46]. Initially, marketing authorization was granted for gastro-intestinal stroma tumors 

(GIST) as well as renal cell carcinomas. In a phase III study with 312 imatinib-resistant 

GIST patients it was shown that median time-to-progression (TTP) was significantly 

increased in patients treated with sunitinib (4 weeks on and 2 weeks off treatment) 

compared to placebo (26.6 weeks vs 6.4 weeks) [56]. Similar results were shown in 

the authorization study including 750 treatment-naïve patients with metastasized renal 

cell carcinoma (mRCC) receiving 50 mg sunitinib daily in a 4/2 schedule, with 4 weeks 

continuous dosing and two weeks off treatment. Median progression-free survival 

(PFS) was significantly increased compared to the standard treatment with interferon 

(IFN)-α (11.1 months vs 4.1 months) [57]. Since 2010 sunitinib is also approved for 

patients with non-resectable or metastasized pancreatic neuroendocrine tumors 
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(pNET) [46]. While in general more tolerated than conventional cytotoxic drugs 

sunitinib still may cause severe adverse events. As mentioned in Section 1.1.2 most 

common adverse events (1 in 10 patients) include, amongst others, hypertension, 

hypothyroidism, fatigue and myelosuppression [46]. 

Pharmacologically, sunitinib is an inhibitor of several receptor-tyrosine kinases which 

are associated with angiogenesis and the growth of metastases. Sunitinib inhibits 

platelet-derived growth factor (PDGF) receptor α and β, VEGF receptor 1-3, cKIT,  

FLT-3 receptor, colony stimulating factor 1 (CSF 1) receptor as well as the “rearranged 

during transfection” (RET) receptor [46,58]. 

 

 

As shown in Figure 1.5, sunitinib is primarily metabolized by cytochrome P450 3A4 

which leads to the active metabolite N-desethyl-sunitinib (SU12662). The metabolite 

shows similar pharmacodynamic and pharmacokinetic effects and is responsible for 

23 to 27% of total drug exposure. The volume of distribution is about 2230 L, the 

elimination half-life approximately 40 to 60 h for sunitinib and 80 to 110 h for the active 

metabolite. Plasma protein binding is reported with 95% for sunitinib and 90% for 

 

Fig. 1.5: Chemical structure of sunitinib and its active metabolite SU12662 with 

molecular weights. Sunitinib is a pyrrole class tyrosine kinase inhibitors. 

SU12662 is formed by oxidative elimination of one ethyl group. 
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SU12662, respectively. With 50 to 72% feces is the main route of excretion for 

sunitinib, while up to 20% can be found in urine [46,59]. 

As mentioned above, sunitinib is usually administered once daily in cycles of 6 weeks 

with 4 weeks on and 2 weeks off treatment. Depending on the indication the dose 

varies between 25 and 50 mg daily [46]. Although other regimens such as a 2/1 or 

continuous treatments were tested in smaller studies, there is still no evidence of a 

superiority compared to the standard schedule. However, Kalra et al. pointed out that 

no valuable studies which directly compared different schedules except a comparison 

between the classical 4/2 scheme and continuously dosing are available. Here, only a 

small benefit with respect to toxicity could be observed [60]. 

 

1.1.4 Pazopanib 

Marketing authorization for pazopanib was granted in the United States in 2009 

followed by a European-wide approval by the EMA in 2010. Besides first-line therapy 

for advanced RCC pazopanib is also indicated in soft tissue sarcomas [47]. In the 

authorization study for mRCC with 435 patients it could be shown, that pazopanib 

improved progression-free survival compared to placebo significantly (median PFS: 

9.2 vs 4.2 months) when applied in a dose of 800 mg continuously. Furthermore, a 

subgroup analysis revealed, that also patients pretreated with cytokines can benefit 

compared to placebo (median PFS: 7.4 vs 4.2 months) [61]. For pretreated metastatic 

soft-tissue sarcoma, 372 patients randomized to a pazopanib and a placebo group 

were compared in a phase III trial. Median PFS was significantly higher under daily 

administration of 800 mg pazopanib compared to placebo (median PFS: 4.6 vs 1.6 

months) [62]. Most common adverse events under pazopanib treatment include 

hypertension, myelosuppression and fatigue [47]. 

The pharmacological properties of pazopanib are comparable with sunitinib: as an oral 

multi-tyrosine kinase inhibitor pazopanib targets VEGF receptor -1, -2 and -3, PDGFR-

α and -β as well as c-KIT. 

Pazopanib is primarily metabolized by CYP3A4 and partly by CYP1A2 and CYP2C8. 

There are 4 metabolites which only contribute for 6% of the overall exposure. In-vivo 

binding to human plasma proteins is higher than 99% which results in a low volume of 



12  Introduction 

   

distribution. Excretion is primarily via feces with renal elimination accounting for only  

< 4%. The elimination half-life is stated with 30.9 h [47,59]. 

Oral absorption of pazopanib is most likely limited by solubility as doses above 800 mg 

do not lead to a proportional increase in steady-state concentrations [63]. However, it 

was shown that crushing the tablet before administration can increase rate and extent 

of absorption [64]. Furthermore, pazopanib bioavailability is dependent on food intake: 

compared to fasted state fed condition increases the area under the plasma 

concentration-time curve (AUC) and the maximum observed plasma concentration 

(Cmax) by almost two-fold. A difference between high or low-fat meals was not observed 

[65]. 

In contrast to sunitinib the normal dosing schedule does not include a treatment-free 

interval and it is applied continuously in doses ranging between 400 mg and 800 mg 

on a daily basis [47]. The chemical structure of pazopanib is shown in Figure 1.6. 

 

 

1.2 Metastasized renal cell carcinoma  

1.2.1 Definition and classification 

Kidney cancer of any type is currently the 12th most common cancer worldwide with 

337 860 new cases in 2012 [66]. Renal cell carcinomas (RCC) account for over 90% 

of all renal malignancies [67]. However, incidences highly vary between gender and 

age groups. Of all new cases in 2012 46.8% were registered in patients above 65 years 

[66]. When considering genders separately males are more affected than females at a 

ratio of almost 2:1 (63.3% vs 36.7%). Furthermore, differences between nations and 

ethnicities can be observed, as most cases occur in well-developed countries, mainly 

North America and Europe. This is in accordance with life-style related risk factors, 

 

Fig. 1.6: Chemical structure of pazopanib with molecular weight.  

Pazopanib belongs to the pyrimidine class tyrosine kinase inhibitors. 
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which include, amongst others, obesity, smoking and hypertension [67–69]. Beside 

these extrinsic aspects, several hereditary and genetic risk factors have been identified 

[69]. 

The World Health Organization (WHO) classification of RCCs differentiates between 

numerous histological subtypes [70]: most common are clear-cell, papillary and 

chromophobe entities. Clear cell carcinomas (ccRCC) account for the majority of all 

RCCs (70 – 80%). Usually ccRCC arise sporadic, though genetic dispositions such as 

the VHL disease can trigger the development of carcinomas (Figure 1.4). As a 

consequence the incidence of certain tumor types is increased in these patients. 

Seemingly VHL plays also an important role in non-hereditary malignancies as 18-82% 

of all sporadic ccRCC show somatic mutations in the VHL gene [71]. 

Beside pathological differences, the defined RCC subtype provides value as 

prognostic marker. Patients diagnosed with ccRCC seem to have a significantly worse 

prognosis compared to the other two subtypes [18,67,71].  

 

1.2.2 Treatment options 

Localized renal cell carcinomas are best treated with surgical interventions. The 

newest guideline suggests that nephron-sparing surgeries provide the same benefit for 

the patients as radical nephrectomies. However, in mRCC cytoreductive surgeries are 

no longer curative and have, in most cases, only palliative use [67,68]. 

Conventional chemotherapies show only moderate to no effect in mRCC patients. The 

only agent of this category which is still mentioned in the guidelines is fluorouracil in 

combination with interleukin-2. Until the first antiangiogenic treatments emerged, 

immunotherapy using interferon-α or interleukin-2 was the gold standard. Nowadays 

these agents are rarely used, as the risk-benefit balance and response rates are worse 

than those of modern targeted therapy. The decision which agent to use as initial 

treatment was usually based on the so called Memorial Sloan Kettering Cancer Center 

(MSKCC) score, which includes the Karnofsky performance score, hemoglobin, 

calcium (corrected), time of diagnosis until first-line therapy and LDH [67,68]. As this 

score was developed when patients were treated mainly with immunotherapy, a 

validated score was needed for the newer targeted agents. This is available with the 

Heng Score [72]. A comparison of both scores is shown in Table 1.1.  
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Tab. 1.1:  Comparison between MSKCC and Heng Score [73] 

MSKCC Score Heng Score 

− Karnofsky-Score < 80% − Karnofsky-Score < 80% 

− Hemoglobin < reference value − Hemoglobin < reference value 

− Calcium1 > 10 mg/dL − Calcium* > 10 mg/dL 

− Time from diagnosis to therapy < 

12 month 

− Time from diagnosis to therapy < 

12 month 

− LDH > 1.5 fold increase 

compared to reference value 

− Neutrophilic granulocytes > 

reference value 

 − Thrombocytes > reference value 

1Corrected for serum albumin 

Each risk factor accounts for one point, if the criteria is fulfilled. Dependent on the 

number of points the patient can be assigned to a risk group: favorable (0 points), 

intermediate (1-2 points) or poor (3-6 points). This stratification is then used for therapy 

choice.  

Second- and third-line therapies are then chosen based on the previous treatment 

option. For instance, patients who received a TKI as first-line therapy are usually 

treated with nivolumab or cabozantinib. Second choice are the TKIs axitinib and 

sorafenib as well as the mTOR inhibitor everolimus. On the other hand a first-line 

therapy with immunological agents qualifies for a second-line with the TKIs axitinib, 

sorafenib or pazopanib. An overview of the respective targets of all relevant targeted 

agents is given in Figure 1.7. 

 

Pazopanib versus Sunitinib 

Both agents are indicated for first-line therapy of mRCC and their efficacy seems to be 

largely equivalent. In a phase IV study with 1110 clear cell mRCC patients it was shown 

that PFS was comparable between both drugs when administered in their standard 

regimen and that pazopanib is non-inferior to sunitinib (Hazard ratio (HR): 1.05; 

Confidence interval (CI) 90%: 0.9 – 1.22). With respect to adverse events pazopanib 

proved to be superior to sunitinib with lower incidences of fatigue (63% vs 55%), hand-

foot syndrome (50% vs 29%) and thrombocytopenia (78% vs 41%) [74]. The so called 

PISCES study investigated patient-reported outcomes in a double-blind, cross-over 
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approach using health-related quality of life as endpoint. Patients were either treated 

with pazopanib or sunitinib for 10 weeks followed by a two weeks wash-out period and 

the switched consecutive treatment for another 10 weeks. In the final intention-to-treat 

analysis 114 of 169 initially recruited mRCC patients were considered. Here, 70% 

preferred pazopanib over sunitinib. Patients’ preference was mainly influenced by a 

higher overall quality of life and decreased incidence of adverse events in the 

pazopanib group [75]. 

 

 

1.3 Biomarkers 

1.3.1 Definitions and general considerations 

According to the NCI a biomarker is defined as “a biological molecule found in blood, 

other body fluids, or tissues that is a sign of a normal or abnormal process, or condition 

or disease. A biomarker may be used to see how well the body responds to a treatment 

 

Fig. 1.7: Relevant therapeutic pathways and targets in renal cell carcinoma  

(modified from [18]).  

HIF = Hypoxia inducible factor, VHL = Von Hippel-Lindau, PDGF(R) = 

Platelet derived growth factor (receptor), VEGF(R) = Vascular endothelial 

growth factor (receptor) 
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for a disease or condition.” [4]. The “Biomarkers Definitions Working Group” provides 

a slightly broader definition and includes all objectively quantifiable characteristics 

which can be used as “an indicator of normal biological processes, pathogenic 

processes, or pharmacological responses to a therapeutic intervention” [76].  

Medical biomarkers can be further categorized depending on the type of application. 

A diagnostic biomarker is used for a more detailed diagnosis and discrimination of 

subtypes of a specific disease e.g. a tumor types. Prognostic biomarkers provide 

information on the outcome of a disease independent of treatment, while a predictive 

marker is usually used to estimate the therapy outcome for a patient [76]. Under certain 

circumstances biomarkers can serve as surrogate for clinical endpoints. Per definition 

all surrogate endpoints are biomarkers, but not all biomarkers are surrogate endpoints. 

A surrogate endpoint is therefore a biomarker allowing to draw conclusions on a clinical 

endpoint e.g. survival [4,76]. Surrogate endpoints are of great value for clinical drug 

development as they often allow faster approval and reduced time and cost expenses. 

Between 2008 and 2012, 56 cancer drugs were approved by the FDA with 36 (67%) 

using a surrogate endpoint in the authorization studies [77]. 

 

1.3.2 Biomarkers for cancer treatments 

While targeted drugs are a major improvement over the previously used cytotoxic 

therapies, the decision which agent or dose might provide the most benefit for the 

individual patient is still mostly based on empirical knowledge. Up to now there are only 

few valuable objective methods to differentiate non-responders from responders for 

certain targeted therapies. Hence, considerable effort has been put in the search for 

predictive biomarkers. Of particular interest is the genetic profile of the patient and the 

tumor. 

Pharmacogenetics and pharmacogenomics are often interchangeably used as there is 

no universally accepted definition; however, the term pharmacogenetics is mostly 

applied to describe the differences in drug effects among individual patients with 

respect to the presence of different gene variants in form of single nucleotide 

polymorphisms (SNPs). In contrast, the focus of pharmacogenomics is the so called 

compound variability. Particularly, this means the investigation of drug effects on gene 

expression and their usage for drug discovery [78]. Currently, there are only few 
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examples for pharmacogenetically-guided therapy decisions in cancer treatment, the 

most prominent one being the monoclonal antibody trastuzumab (Herceptin®, Roche). 

Trastuzumab is directed against the human epidermal growth factor receptor 2 (HER2) 

and highly effective in breast cancer patients with a HER2 overexpression in 

combination with chemotherapy. Hence, determination of the HER2 genotype prior to 

therapy start is obligatory [79,80]. At present, the FDA lists 204 drugs with 

pharmacogenetics biomarkers in drug labeling with 71 only in the field of oncology. 

However, most recommendations are not required and only optional which potentially 

hinders the implementation in clinical practice [81]. 

Beside genetic biomarkers, pharmacokinetic disposition (Section 1.4.3) or 

pharmacodynamic response to a drug are investigated for their predictive potential for 

efficacy or toxicity. In case of TKI there is already a wide spectrum of possible 

biomarkers. Most of them can be considered as TKI class effects which were or 

currently are investigated in various tumor types for their predictive performance. For 

instance, the plasma concentrations of sVEGFR-2 and -3, circulating endothelial cells 

and the increase of blood pressure which would all fulfill the criteria as easy-to-

measure surrogates for efficacy or toxicity [28,82,83]. However, despite some 

promising results there is still no biomarker of this kind recommended for any 

angiogenesis inhibitor [67,68,81]. 

 

1.4 Pharmacometrics 

1.4.1 General considerations 

Pharmacometrics is an interdisciplinary field combining aspects of pharmacology with 

statistics and computer sciences. General aim of this discipline is to quantify the 

pharmacological response of a drug and to use the resulting mathematical models for 

further exploration and extrapolation [84]. Originally, pharmacometrics developed from 

the field of pharmacokinetics (PK) which can now be seen as the “fundament” of 

pharmacometric research. Pharmacokinetics itself deals with all processes involved in 

the fate of a drug once it is administered. These are often referred as LADME which is 

the abbreviation for Liberation, Absorption, Distribution, Metabolism and Excretion. In 

lay terms, this is explained as “what the body does to the drug” whereas 

pharmacodynamics (PD) describes “what the drug does to the body”. Pharmacokinetic 
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research usually consists of the analysis of plasma concentration-time data of a drug. 

Here, two basic methods can be used. In case of dense sampling, thus many 

informative data points, a non-compartmental analysis (NCA) is a feasible approach. 

In essence, a NCA is a statistical evaluation of the data without any prior assumptions. 

This allows the calculation of important pharmacokinetic parameters such as AUC, 

Cmax and the drugs half-life [85]. However, if not enough data points are available this 

method becomes unreliable. Alternatively, a model-based analysis can be conducted. 

By choosing a mathematical model to describe the underlying data it is possible to 

generate reliable estimates of key pharmacokinetic parameters [84–86]. Similar 

principles apply for pharmacodynamic data analysis. Whereas a model-independent 

approach is also possible, model-based evaluations are far more common with often 

classical linear or Emax models as basis for dose-response relationships [85]. 

 

 

However, these methods are limited to single or small cohorts of patients as each 

individual has to be evaluated separately. To overcome this limitation, population 

PK/PD is a common approach to analyze large patient groups and quantify inter-

individual differences (Section 1.4.2). Another field that evolved from basic 

pharmacokinetics is the so called physiologically-based pharmacokinetics (PBPK). In 

contrast to population pharmacokinetics, where an appropriate model is chosen based 

 

Fig. 1.8: General implementation of pharmacometric approaches in drug 

development. 
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on the underlying data, PBPK models feature important physiological processes and 

include the physicochemical properties of the drug. Therefore PBPK is referred to as 

a “bottom-up” approach, while population PK/PD is a “top-down” analysis [87]. The 

general concept of pharmacometric analyses in drug development is presented in 

Figure 1.8. 

 

1.4.2 Principles of population pharmacokinetics and –dynamics 

The term population pharmacokinetics was originally established by Lewis Sheiner and 

Stuart Beal who are considered as pioneers in this field. The software package 

NONMEM® which they originally developed (Non-linear Mixed Effects modeling) is still 

the gold standard for population analysis pharmaceutical industry and academia [88]. 

A detailed methodological description can be found in Section 3.8.1. 

Classical methods to cope with population pharmacokinetic data comprise the naïve 

pooling as well as the two-stage approach. Naïve pooling is the simplest method of, 

but also the least preferable, since the individual data from all patients is pooled and 

analyzed in one step. The result is a mean response without taking variability among 

patients into account. This method can be useful when the overall variability is small, 

for example in preclinical data from standardized animals [84]. The two-stage approach 

uses the individual estimates from each patient to calculate population parameters. In 

the first stage a pharmacokinetic model of choice is fitted to each individual’s data. 

From these data a population mean as well as a variance can be calculated for each 

parameter [84]. 

With non-linear mixed effects (NLME) models it is possible to analyze all patients in 

one step and to obtain mean population estimates of the PK/PD parameters of interest 

as well as the variability. This allows the evaluation of large data sets with sparse 

sampling without relying on separate individual estimations for each patient [86,89]. 

Population PK/PD models are not only useful for descriptive analyses, but may also 

allow extrapolation based on the underlying data to investigate e.g. dosing regimens 

which were not part of the original study. By linking PK/PD models with models for 

clinical outcome it is further possible to simulate whole clinical trials and use the results 

as guidance for study planning. This so called “model-informed drug development” can 

be applied to every phase of clinical (or pre-clinical) drug development and is gaining 
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importance in pharmaceutical industry [90,91]. Moreover, population PK/PD models 

can serve as basis for dose individualization and help identifying clinically relevant 

influential factors on PK and PD. 

 

1.4.3 PK/PD dose individualization in oncology 

The NCI defines personalized medicine as “a form of medicine that uses information 

about a person’s genes, proteins, and environment to prevent, diagnose, and treat 

disease. In cancer, personalized medicine uses specific information about a person’s 

tumor to help diagnose, plan treatment, find out how well treatment is working, or make 

a prognosis” [4]. Hence, dose individualization can be considered as a part of 

personalized treatment, as the best drug from a therapeutic perspective needs to be 

adapted to the inter-individual differences in pharmacokinetic and pharmacodynamic 

response of a patient. 

For dose individualization it is therefore possible to target a pharmacokinetic parameter 

correlating with pharmacodynamics or, if feasible, by using a pharmacodynamic 

parameter. 

 

Therapeutic drug monitoring 

The term therapeutic drug monitoring (TDM) refers to a specific method of 

pharmacokinetic dose individualization. Here, the dose is adapted based on a 

pharmacokinetic target quantifying drug exposure in the patient, e.g. the plasma 

concentration or the area under the concentration-time curve (AUC) of a specific drug. 

More precisely, TDM is a pharmacokinetic dose adaption with feedback mechanism, 

as the target parameter is controlled in defined intervals over the course of the therapy. 

This allows a precise correction of the dose if needed. To keep the additional burden 

for the patients to a minimum only very few samples are collected for dose calculation 

[92]. This is possible due to the use of the so called Bayes method of conditional 

probability, which is implemented in almost all modern TDM software programs and is 

described in more detail in Section 3.8.4 [93]. Particularly, this means an existing 

pharmacokinetic model with known mean response and known variability is used to 

estimate individual parameters under the condition of a given pharmacokinetic target 

like the plasma concentration of the respective drug and other influential factors. The 
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individual parameters can then be used to simulate concentration-profiles and to 

optimize dose strength and interval. 

As this method is quite costly and time-consuming, it is not viable for all drugs. Major 

requirements include a known quantitative relationship between pharmacokinetics and 

-dynamics, a narrow therapeutic index and a high inter- and intraindividual  

variability [94]. 

 

Applications in oncology  

While the criteria for PK/PD dosing, more precisely TDM, are fulfilled by a lot of 

anticancer drugs, it is not a commonly used approach in oncology [95,96]. Although it 

has already been proved to have a weak correlation in most cases, body surface area 

(BSA) is still one of the most used parameters for dose adjustment of cytotoxic drugs. 

However, only 30% of inter-individual variability can be explained by BSA [3]. 

Prominent examples of anticancer drugs where pharmacokinetic methods for dose 

adaptations are used include carboplatin and fluorouracil (5-FU). For carboplatin an 

empirical formula can be used for dose calculation which relies on the estimated 

creatinine clearance and a defined target AUC [97]. However, the platinum plasma 

concentration or AUC is usually not measured to control for an adequate dosing so 

that the feedback control of a TDM is missing. 5-FU is applied via continuous infusion. 

Because of the short elimination half-life of 10 to 20 minutes, the AUC can be 

calculated with a simple formula, often referred to as “rectangle” – equation due to the 

shape of the concentration-time curve of 5-FU. Based on predefined algorithms a 

percentage dose increase or decrease can be chosen with respect to the calculated 

AUC value [98]. Despite some promising results, a TDM for 5-FU is usually not 

performed in clinical practice.  

Modern targeted therapies are usually applied in fixed dose regimens with adaptions 

mostly based on the occurrence of certain adverse events. However, TKIs show large 

inter-individual variation in PK/PD parameters [59,96]. In addition, oral administration 

introduces several complications such as additional drug-drug or drug-food 

interactions, e.g. observed for pazopanib and sorafenib with increased drug exposure 

when taken after a meal. Oral therapies are also potentially prone to poor adherence, 

which is known from other medical fields, and can also be observed in targeted cancer 
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therapies [96,99]. Recent reviews summarized potential reasons for non-adherence in 

oral cancer therapies: among others the incidence of adverse events as well as 

duration of therapy were mentioned as crucial [100,101]. Both factors may be reduced 

with optimized and individualized treatments. 

 

1.5 Outcome analysis 

1.5.1 Survival analysis 

Main purpose of every cancer treatment is to maximize the survival of the patient while 

maintaining a certain degree of quality of life. In general, survival analysis in oncology 

differentiates between two types of clinical endpoint: overall survival (OS) and 

progression-free survival (PFS). OS comprises the period from treatment start until the 

patient’s death regardless of the cause. In contrast, PFS includes the time until disease 

progression [4]. PFS is often used as main endpoint, especially in pivotal phase III 

studies, as it allows shorter observation times and is usually a good predictor for OS 

[99]. Furthermore, with the emergence of sequential therapies in almost all fields of 

oncology, the value a drug cannot be assessed by the OS when second and third-line 

therapies may vary among patients [102]. 

One classical and common non-parametric method is the Kaplan-Meier analysis, 

which was already developed in 1958 by two biostatisticians Edward Kaplan and Paul 

Meier. The Kaplan-Meier analysis solves a problem which is frequent in survival data: 

patients dropping out of the study or undefined reasons before the endpoint or the end 

of the study is achieved, so called right-censored data [103]. The patients affected are 

not removed from the analysis but included in the calculation of the results. Another 

important method was introduced by David Cox in 1972. While two or more groups can 

be compared with the Kaplan-Meier method using the log-rank test, it is not possible 

to test continuous or time-dependent influence factors. This was enabled by the Cox 

regression model allowing the calculation of the probability per time unit that an event 

occurs in a patient using the so-called hazard function [103]. Model-based time-to-

event (TTE) analysis can be considered as the evolution of the Cox regression model. 

By linking PK/PD models with an outcome model it is possible to quantify the effects 

of a therapeutic intervention and to estimate their variability [104]. Ideally, such a model 

can be used to simulate clinical set-ups of interest or do discriminate between 
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responders or non-responders (see Section 3.11. for a more detailed description of the 

methodology). 

 

1.5.2 Toxicity analysis 

Management of toxic effects caused by anticancer treatments has always been one 

key intervention to the success of a therapy. In the worst case, adverse events can 

lead to therapy failure and, depending on severity, cause permanent damage or death. 

However, the strength of an adverse event is not easily determined, especially when 

no objective parameter, e.g. laboratory values, can be measured or the patients 

themselves have to rate it based on scales or questionnaires. In most cases this 

automatically leads to a bias either introduced by the physician or the patient. In 

oncology, toxicity is evaluated by the so called Common Terminology Criteria for 

Adverse Events (CTCAE) [105]. This scale orders toxicity into five categories ranging 

from grade 1 (mild) to grade 5 (death). A more detailed description of all grades is 

presented in Table 1.2. 

 

 

While grading allows a better comparability across patients it is also associated with a 

loss of information. This is of particular importance, when the grade of an adverse 

event is included in the dose adaption algorithm as it has been tested for 5-FU [98]. 

Similar to model-based survival analysis, models for adverse events can help to 

quantify the relationship between drug exposition and toxic response, and to identify 

influential factors across populations. Although this is possible by analogous TTE 

approaches, where an event is defined as the occurrence of an adverse event, semi-

mechanistic models are more common. A good example is the model for 

Tab 1.2:  Toxicity grades according to CTCAE v 4.03 [105] 

Grade Description 

1 Mild; asymptomatic or mild symptoms 

2 Moderate; minimal, local or noninvasive intervention indicated 

3 Severe or medically significant but not immediately life-threatening 

4 Life threatening consequences  

5 Death related to adverse events 
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chemotherapy-induced myelosuppression allowing a prediction of the extent of 

myelosuppression independent of the drug used [106]. As the authors stated this 

model could be used for either drug development or to determine the effect of different 

dosage strategies (Figure 1.9). 

 

 

While this approach is highly informative, it is not applicable for all types of toxicity as 

either the required data is not available or, as stated above, no objectively quantifiable 

parameter exists. Hence, alternative methods are being approached. The most 

promising is the use of Markov models which is already established in other fields of 

science. Markov models can make use of categorical data by estimating the probability 

of developing an adverse event of a certain CTCAE grade based on the current state 

(see Section 3.11.4. for a more detailed description of the methodology). One of the 

first pharmacometric applications of Markov models was performed by Karlsson et al., 

who modeled the probability of different sleep states during temazepam therapy [107]. 

In a more recent investigation Markov models have been successfully integrated in a 

modeling framework for lung cancer patients treated with erlotinib [108]. 

Fig. 1.9.: Semi-mechanistic model for chemotherapy-induced myelosuppression 

by Friberg et al. (modified from [106]). Compartments represent the 

different states of neutrophils: Drug effect and a feedback effect regulate 

cell proliferation. 

PROL = proliferating cells, CIRC = circulating cells, TRANS = 

intermediate progenitor cells, ktr, kprol, kcirc  = rate constants between 

different states.  
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2 AIMS AND OBJECTIVES 

Pharmacometric approaches have the potential to individualize and guide anticancer 

therapies. However, the multi-tyrosine kinase inhibitors (TKI) pazopanib and suntinib, 

which are common first-line therapies in patients with metastasized renal cell 

carcinoma (mRCC), are still applied in fixed-dose regimens. Thus, the inter-individual 

variability of drug exposure may be responsible for differences in response or toxicity. 

The development of more rational dosing strategies based on pharmacokinetic and 

pharmacodynamic (PK/PD) models is therefore a promising strategy to optimize 

mRCC treatment. 

Aim of this work was to develop pharmacometric models for sunitinib and pazopanib 

and to integrate them into a greater modeling framework for mRCC patients (Figure 

2.1). Pharmacokinetics of both TKIs were linked to a pharmacodynamic response such 

as plasma concentration of sVEGFR-2, sVEGFR-3 or blood pressure. In a final step 

the established models were linked to models for clinical outcome, in particular 

progression-free survival and toxicity, to explore the potential relationships. 

Data for sunitinib-treated mCRC patients as well as healthy volunteers was already 

available from a previous study. Therefore, a first step was to generate similar data for 

mRCC patients. This was done within the EuroTARGET project, which aimed to 

identify predictive biomarkers in mRCC using a diverse range of state-of-the-art 

methods. 

In case of sunitinib, a pharmacokinetic model for the parent drug and its active 

metabolite SU12662, which was based on data from healthy volunteers by Lindauer et 

al. [109], served as basis for model development. This model was compared to another 

published semi-mechanistic model by Yu et al. [110]. For pazopanib, no internally 

developed model was available; hence a literature research was conducted to identify 

suitable pharmacokinetic models. The pharmacodynamic models for sVEGFR-2, 

sVEGFR-3 and blood pressure developed for healthy volunteers by Lindauer et al. 

were adapted to cancer patients and linked to the respective pharmacokinetic models. 

The developed models for both substances were then used to estimate individual 

pharmacokinetic and pharmacodynamic parameters. Based on these findings outcome 

models were established to explore the relationship between pharmacokinetics, 

biomarker response and the endpoints progression-free survival and toxicity. In 
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particular, a time-to-event (TTE) model was developed to describe the patients’ 

progression-free survival during first line-therapy with sunitinib or pazopanib, whereas 

toxicity was integrated into the modeling framework with a Markovian approach and, 

in case of blood pressure, with a semi-mechanistic model.  

 

 

Fig. 2.1: Scheme of a PK/PD modeling framework for sunitinib and pazopanib. 

Conc. = Concentration, PFS = Progression-free survival; sVEGFR = 

soluble vascular endothelial growth factor receptor 
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3 MATERIAL AND METHODS 

3.1 Materials 

Relevant material used for the underlying analytical methods as well as the technical 

equipment and software packages used for modeling and simulation activities is 

summarized in Tables 3.1. to 3.4. 

 

3.1.1 Chemical substances and reagents 

Tab. 3.1: ELISA Kits and related reagents 

Name Company 

Human VEGF R2/KDR Quantikine® ELISA Kit 

Catalog Number : SVR200 

R&D Systems, Minneapolis, 

USA 

Contains: 

− VEGF R2 Microplate 

− VEGF R2 Conjugate 

− VEGF R2 Standard 

− Assay Diluent RD1W 

− Cell Lysis Buffer 2 

− Calibrator Diluent RD6-31 

− Wash Buffer Concentrate 

− Color Reagent A (Hydrogen peroxide) 

− Color Reagent B (Tetramethylbenzidine) 

− Stop solution (N sulfuric acid) 

− Plate sealers  

 

Human sVEGF R3/Flt-4 DuoSet® ELISA 

Catalog Number: DY349 

R&D Systems, Minneapolis, 

USA 

Contains: 

− Capture Antibody 

− Detection Antibody 

− Standard sVEGF R3 (Flt-4) 

− Streptavidin-HRP 
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Tab. 3.1 continuation  

DuoSet® Ancillary Reagent Kit 2 

Catalog Number: DY008 

R&D Systems, Minneapolis, 

USA 

Contains: 

− ELISA Plate-Coating Buffer 

− Reagent Diluent Concentrate 2 

− Stop Solution 

− Color Reagent A (Hydrogen peroxide) 

− Color Reagent B (Tetramethylbenzidine) 

− Wash Buffer Concentrate 

− Clear Microplates 

− ELISA Plate Sealers 

 

CrossDown® Buffer Appli Chem, Darmstadt 

Fetal Calf Serum (FCD) Sigma-Aldrich, St. Louis, USA 

PURELAB® Plus Water ELGA Berkefeld GmbH 

Sodium Chloride (NaCl) - 

Potassium Chloride (KCl) - 

Biphasic Hydrated Sodium Phosphate 

(Na2HPO4) 

- 

Potassium Dihydrogen Phosphate (KH2PO4) - 

 

3.1.2 Solutions and Buffer 

Tab. 3.2: Overview on solutions and buffers used and their composition 

Constituent  

Phosphate buffered saline (PBS buffer) 

 137 mM NaCl 

 2.7 mM KCl 

 8.1 mM Na2HPO4 

 1.5 mM KH2PO4 

 PURELAB® Plus Water 

 pH 7.2 – 7.4  

 sterile-filtered with a 0.2 µm filter 

 

8.0 g 

0.2 g 

1.15 g 

0.204 g 

Ad 1000 mL 
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Tab. 3.2 continuation  

Reagent Diluent (1:10) 

 Reagent Diluent Concentrate 2 

 PURELAB® Plus Water 

 

1 P 

9 P 

  

Substrate Solution (1:1) 

 Color Reagent A 

 Color Reagent B 

 

1 P 

1 P 

Wash Buffer Dilution (1:25) 

 Wash Buffer Concentrate 

 PURELAB® Plus Water 

 

20 mL 

Ad 500 mL 

Capture Antibody Dilution - 

Detection Antibody Solution - 

Streptavidin-HRP - 

 

3.1.3 Consumables 

Tab. 3.3:  Consumables for one-time usage 

Name Company 

Sarstedt K-Monovetten® Sarstedt AG & Co, Nümbrecht 

Micro tubes 1.5 mL (lightprotected) Sarstedt AG & Co, Nümbrecht 

Pipettes and glass vessels - 

Pipette tips Greiner Labortechnik, 

Frickenhausen 

 

3.1.4 Technical Equipment 

Tab. 3.4:  Technical equipment used for drug and biomarker analysis 

Name Company 

Single-channel pipette E4 XLS 

(10 – 100 µL, 100 – 1000 µL) 

Mettler Toledo GmbH, Gießen 

Multi-channel pipette (12 channels) 

Transferpette® 

(10 – 100 µL, 30 – 300 µL) 

Brand GmbH & Co KG, 

Wertheim 
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Tab. 3.4 continuation  

accu-jet® pro pipette controller Brand GmbH & Co KG, 

Wertheim 

Vortex-Mixer ZXE3 Velp Scientifica srl, Usmate 

(MP), Italien 

Edmund Bühler® TH 15l Incubator Edmund Bühler GmbH Lab Tec, 

Hechingen 

Unimax® 1010 shaker Heidolph Instruments GmbH & 

Co KG, Schwabach 

Multiscan® EX Multiwellreader 

Quartz-Wolfram halogen lamp (450 nm, 570 nm) 

Thermo Electron Corporation, 

Vantaa, Finland 

 

3.1.5 Software 

Tab. 3.5:  Software used for modeling and associated tasks 

Name Company/Authors 

NONMEM® 7.3 Icon Development Solutions, Ellicott City, 

MD, USA 

Pearl-speaks-NONMEM® (PsN)  

v4.4.8 and beyond 

Mats Karlsson, Andrew Hooker, Rikard 

Nordgren, Kajsa Harling (2013-2015) 

Pirana® v2.9.1 and beyond Pirana Software & Consulting BV 2014 

R 

v3.2.3 and beyond  

R Foundation for Statistical Computing, 

Vienna, Austria 

Including the packages: 

 Xpose  

 Lattice 

 drc 

 reshape2 

 survival 

 coin 

 ggplot2 

 clinfun 

 

Niclas Jonsson, Mats Karlsson (2014) 

Deepayan Sarkar (2016) 

Christia Ritz, Jens C. Streibig (2016) 

Hadley Wickham (2016)  

Terry M. Therneau (2016) 

Torsten Hothorn (2008) 

Hadley Wickham (2009) 

Venkatraman E. Seshan (2016) 

Microsoft Excel® 2007 Microsoft Corporation, Redmond, USA 
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NONMEM® [88] was used for the pharmacokinetic and pharmacodynamic data 

analysis. Pearl-speaks-NONMEM® (PsN) served as an additional toolbox for 

computationally intensive statistical methods including bootstraps, visual predictive 

checks (VPC) and case deletion diagnostics (CDD) for model qualification as well as 

stepwise covariate analysis [111]. Pirana® is a user interface developed for NONMEM® 

and was used to simplify model and data management [112].  

Graphical analysis was primarily conducted using the statistical programming 

language R including various supplementary packages [113]. Xpose is a package 

specifically developed to process output from NONMEM and to generate plots for non-

linear mixed effects models, e.g. Goodness-of-fit (GOF) plots and VPCs [114]. Lattice 

and ggplot2 are packages for advanced graphics in R [115,116]. For dataset 

generation and management, the R package reshape2 as well as Microsoft Excel® 

were used dependent on the specific task [117,118]. The package drc was used for 

generating standard curves for the biomarker analytics and calculating the respective 

results [119] Survival analyses were conducted using the survival package together 

with the coin and clinfun packages for the permutation tests [120–122]. 

 

3.1.6 Hardware 

All modeling tasks were performed on an Intel i7® 4970 processor with 4 physical and 

4 theoretical threads (Hyperthreading) on a Windows 64-Bit platform. 

 

3.2 The EuroTARGET project 

3.2.1 Objectives 

EuroTARGET denotes for “European collaborative project on Targeted therapy in 

Renal cell cancer: Genetic and Tumor-related biomarkers for response and toxicity”. 

The general aim was to identify and characterize host- and tumor-related predictive 

biomarkers for response to targeted therapy in patients with metastasized renal cell 

carcinoma (mRCC). For this purpose several state-of-the-art approaches were 

combined to generate as much information as possible on host- and tumor-specific 

factors which could potentially be predictive for therapy outcome.  
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Hence, the main aim can be further divided into several objectives, where each work 

package contributed results with different approaches and methodology. A complete 

description of the work packages can be found in Section 3.2.2, Figure 3.1 and Table 

3.6. 

The following list comprises all project objectives ordered according to the study 

protocol without assigning them to specific work packages or project partners: 

− Create a standardized European clinical databank and bio-repository (germline 

DNA of all patients and serum and frozen tumor tissue of a subgroup) of a large 

series of patients with mRCC treated with different targeted agents. 

− Identify genetic markers for treatment response and toxicity by performing high-

resolution germline whole-genome profiling in patients treated with sunitinib or 

sorafenib 

− Identify exon and microRNA expression markers for treatment response and 

toxicity by gene expression profiling of tumors from patients with and without 

good response 

− Identify kinase activity profiles related to TKI response 

− Identify promoter hypermethylations markers in TKI response 

− Identify resulting protein profiles corresponding to genomic, epigenetic and 

expression alterations related to TKI response 

− Replicate all identified markers in independent patient series 

− Study the functional relevance of replicated markers/networks in vitro by knock-

out and knock-in transfection experiments 

− Identify differentially expressed proteins before and after knock-down/ 

upregulation of genes of interest 

− Identify plasma drug and metabolite levels as phenotype of results 

− Explore the possibility of individualizing dosage regimens by integrating 

biomarker concentration – time profiles into PK/PD models for sunitinib (and 

pazopanib) 
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− Conduct integrated bioinformatical analyses of the results obtained by all 

different approaches in order to maximize the probability to find new markers 

and to understand the interrelatedness between them 

− Construct new risk stratification criteria to be used for personalized mRCC 

patient management 

− Disseminate the new knowledge to medical oncologists, urologists and the 

scientific community 

 

3.2.2 Project design and duration 

The EuroTARGET project was designed as a European-wide non-interventional 

prospective cohort study with an overall duration of 5 years [123]. 

Based on their expertise, project partners were assigned to 12 different work packages 

with one partner taking supervision on all tasks of the respective package. An overview 

on all work packages, their main subjects and the responsible project partner can be 

found in Table 3.6. Focus of the underlying work were the results of work packages 2 

and 7 in a subcohort of the EuroTARGET study population which was additionally 

 

Fig. 3.1:  General concept of the EuroTARGET project. 
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monitored over a defined period during the first-line therapy with sunitinib or pazopanib 

(Section 3.3). Therefore, methods used in other work packages are not explained here 

in detail as it would be beyond the scope of this thesis. 

Design and methods of work packages 2 and 7 are addressed in the following 

paragraphs beginning with 3.3. 

 

WP = Work package  

Tab. 3.6:  Overview of EuroTARGET work packages 

WP Description Lead participant 

1 Retrospective and prospective 

collection of clinical data, genomic 

DNA and tumor tissue 

University of Cambridge 

2 Genetic profiling of mRCC patients Leiden University Medical Center 

3 Transcription profiling of tumor 

material from mRCC patients 

Radboud University Medical 

Center, Nijmegen 

4 Kinase activity profiling of mRCC PamGene, s-Hertogenbosch 

5 DNA methylation biomarkers of 

mRCC 

Bellvitge Biomedical Research 

Institute, Barcelona 

6 Functional studies University Hospital 

Homburg/Saar 

7 PK/PD studies (EuT-PK/PD 

substudy) 

University of Bonn 

8 Data management deCODE Genetics, Reykjavik 

9 Integrated data analysis Netherlands Cancer Institute, 

Amsterdam 

10 Dissemination and Training Central European Society for 

Anticancer Drug Research, 

Vienna 

11 Ethics Institut national de santé et de la 

recherché médicale, Paris 

12 Project Management Radboud University medical 

Center, Nijmegen 
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3.2.3 Patients 

Patients were applicable for the EuroTARGET project if they were 18 and above years 

old, newly diagnosed with metastatic renal cell carcinoma and did not receive a 

treatment for their metastatic disease. Furthermore, patients had to be able to 

understand the patient information and to give informed consent. Recruitment was 

conducted in Germany, Austria, Switzerland, The Netherlands, United Kingdom, 

Iceland and Romania. Although the study was planned as prospective study, 

retrospective inclusion of patients was also possible under the requirement that at least 

one blood sample was available for germline analysis.  

It was planned to include a total of 1100 patients. There was no intention to test a 

formal hypothesis. Hence, a sample size calculation was not conducted.  

 

3.2.4 Medication 

All possible targeted first-line therapies according to the recent guidelines for 

metastasized renal cell carcinoma were allowed. Since this study had a purely 

observational purpose, no dose or treatment recommendations were given. 

 

3.2.5 Sampling procedure 

Each patient was asked to donate 8-10 mL whole blood either collected in Lithium-

Heparin or EDTA tubes for germline analysis. Blood samples were then stored at  

-20°C or, preferably, -80°C until analysis. 

Tumor tissue was collected from each patient, if available. Fresh frozen tumor material 

stored at -80°C was preferable; however, paraffin blocks were also a valid option. All 

tumor samples were reviewed by a designated reference pathologist and then sent to 

the respective project partners for further analyses. 

 

3.2.6 Endpoints 

Progression-free survival (PFS) was chosen as primary endpoint with progression 

ideally defined with respect to the Response Evaluation Criteria In Solid Tumors 

(RECIST) [124]. Usually, the RECIST assessment is not part of the clinical routine; 
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hence, progression documented based on the treating physicians’ expert opinion was 

also viable when no RECIST information was available. 

Treatment toxicity was determined as secondary endpoint. Documentation was 

handled using the Common Terminology Criteria for Adverse events (CTCAE,v 4.03) 

[105]. Only adverse events with grade 3 or higher had to be captured in the electronic 

case report form (eCRF). However, low-grade toxicity could be documented indirectly, 

when it was the reason for a dose reduction of the drug. 

 

3.3 The EuroTARGET-PK/PD (EuT-PKPD) sub-study  

3.3.1 Objectives 

The EuT-PKPD study was designed as a sub-study of the EuroTARGET project and 

comprised the work packages 2 and 7. Main objective was to develop pharmacokinetic 

and pharmacodynamic models by linking sunitinib and pazopanib plasma 

concentrations with biomarker response, here, sVEGFR-2/3 plasma concentrations 

and blood pressure. The final PK/PD models were then used to analyze correlations 

between individual pharmacokinetic disposition, pharmacodynamic response and 

clinical outcome, in particular progression-free survival and therapy-related toxicity.  

In addition, several genotypes were preselected from the literature which have shown 

potential predictive performance or influence on pharmacokinetic, especially sunitinib, 

and pharmacodynamic parameters as well as outcome (Appendix A).  

 

3.3.2 Study design 

The study was conducted as a multi-centric, prospective, open-label, non-randomized 

single-arm phase IV trial. Unlike the main EuroTARGET project, it was not possible to 

keep this work package completely observational due to the legal requirements 

regarding the use of blood samples for pharmacokinetic analyses in Germany. 

Therefore, this work package was handled as a clinical phase IV study embedded in 

the overarching EuroTARGET project. As a consequence, all inclusion criteria for the 

observational EuroTARGET project also applied to sub-study patients in addition to 

the stricter criteria necessary for a phase IV study. To avoid recruitment errors 

“Participation in the EuroTARGET project” was added as an additional requirement for 
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inclusion in the phase IV sub-study. This ensured that only one study population was 

generated and that patients additionally participating in the sub-study were 

documented in the same eCRF as all other patients in the EuroTARGET project. 

However, additional paper CRFs were needed to document sampling times for 

pharmacokinetic samples, blood pressure measurements and adverse events below 

grade 3. 

In total, 9 centers actively recruited patients for this sub-study. Seven were located in 

Germany and two in The Netherlands.  

Study duration was limited to 18 weeks of treatment which corresponds to 3 regular 

sunitinib cycles. In this time frame all sub-study procedures had to be conducted. 

However, patients who completed the phase IV study remained in the non-

interventional part of the EuroTARGET project and were observed for a minimum of 6 

additional months or until disease progression. Official censoring date for all patients 

was the 1th of July 2015. 

 

3.3.3 Patients 

Patients were eligible for this study with an age equal or above 18 years, diagnosed 

metastasized renal cell carcinoma and a planned first-line therapy with either sunitinib 

or pazopanib. Furthermore, the participation in the EuroTARGET project was a 

requirement for the inclusion (Section 3.3.2). Each patient who met the inclusion 

criteria was asked to sign two informed consent forms, one for the EuroTARGET 

project and another one for the EuT-PK/PD sub-study. Both were consistent with the 

newest version of the declaration of Helsinki [125].  

In total, 44 patients were included, with 27 patients receiving sunitinib and 17 

pazopanib. One sunitinib patient was excluded from all analyses due to the lack of 

plasma samples beyond a baseline measurement. Additionally, three patients (two 

sunitinib patients and one pazopanib patient) were excluded from the outcome 

analyses, since the TKI treatment during the study period was not first- but second-

line. However, the pharmacokinetic data from these patients was still used for PK/PD 

model development.  

Patients’ demographics (median and range) per study center and independent of the 

study drug are listed in Table 3.7.  
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3.3.4 Medication 

Patients were treated in accordance to the newest guidelines for the treatment of 

mRCC, the respective summary of product characteristics (SmPC) of sunitinib or 

pazopanib and the treating physician’s discretion [46,47]. No dosing recommendations 

Tab. 3.7:  Patients demographics stratified by study center and total (median and 

range) 

ID1 Age 

[years] 

Gender 

[m/f] 

Weight 

[kg] 

Height 

[cm] 

BMI 

[kg/m2] 

Drug 

[S/P] 

1 
54 

(51 - 74) 
4/0 

84.5 

(83.0 - 87.5) 

184 

(155 – 186) 

25.2 

(24.9 – 34.5) 
4/0 

2 
69.5 

(57 – 75) 
5/1 

80.0 

(75.5 – 83.5) 

179 

(162 – 181) 

25.7 

(23.0 – 30.5) 
6/0 

4 
64 

(47 – 77) 
4/2 

75.5 

(64.5 – 98.0) 

172 

(160 – 183) 

26.9 

(22.3 – 29.3) 
0/6 

7 
67.5 

(55 – 77) 
2/2 

96.0 

NA 

159 

(158 – 172) 

32.4 

NA 
2/2 

8 
67 

(65 – 74) 
3/1 

81.5 

(71.0 – 98.0) 

178 

(165 – 186) 

26.7 

(24.0 – 28-3) 
3/1 

9 
62 

(43 – 80) 
6/1 

85.5 

(71.0 – 106.0) 

180.5 

(175 – 185) 

26.3 

(23.2 – 31.7) 
5/2 

10 
65 

(60 – 70) 
2/0 

70.5 

(65 – 76) 

174.5 

(167 – 182) 

23.1 

(22.9 – 23.3) 
2/0 

14 
75 

(67 – 87) 
1/2 

71.0 

(64.0 – 72.0) 

168 

NA 

25.5 

NA 
0/3 

15 
70.5 

(48 – 82) 
6/2 

77.0 

(76.0 – 91.0) 

170 

(170 – 185) 

26.3 

(22.5 – 31.5) 
5/3 

T 
65 

(43 - 87) 
33/11 

80.0 

(64.0 – 106.0) 

175 

(155 – 186) 

26 

(22 – 35) 
27/17 

1Number assigned to each center according to the study protocol. Note that not all 

EuroTARGET centers participated in the sub-study 

m = Male, = Female; S = Sunitinib, P = Pazopanib; NA = Not applicable, T = Total 

BMI = Body mass index 
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were made in the study protocol and the decision which drug to use was entirely up to 

the treating physician. 

Sunitinib was usually applied in cycles of 6 weeks with a daily dose of 50 mg in patients 

with mRCC. One therapy cycle included 4 weeks on treatment and a therapy 

intermission of two weeks. Besides, alternative schemes like 37.5 mg daily in a 2 

weeks on/1 week off cycle were also applicable dependent on the treating physician’s 

discretion or other considerations [46]. Standard treatment with pazopanib consisted 

of 400 to 800 mg daily without interruptions [47]. 

 

3.3.5 Sampling procedure 

During the study period up to 12 plasma samples were collected from each patient. All 

samples had to be taken during routine check-ups. As these were timed differently in 

the between study centers, there was no fixed sampling schedule. Except for a 

mandatory baseline measurement before treatment start, each center was free to 

develop a schedule according to their specific clinical routine. An example of a possible 

sampling scheme for sunitinib is shown in Figure 3.2.  

 

Since pazopanib is not applied in treatment cycles, a scheme dividing the plasma 

samples within the first 18 weeks of treatment was applicable. 

Once taken, samples were further processed in the respective study center. All 

samples were centrifuged at 1000 g and 4°C for 15 minutes within 30 minutes after 

Fig. 3.2: Example of a sampling schedule for a sunitinib patient receiving a 

standard 4 on/2 weeks off sunitinib cycle. Arrows indicate sampling time-

points. 
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collection. Plasma was then split into 6 aliquots per sample and stored in light-

protected micro tubes at -80°C until analysis. 

 

3.3.6 Endpoints 

Endpoints were chosen in accordance with the main EuroTARGET study (Section 

3.2.6). Outcome was analyzed as progression-free survival, which was defined as the 

time from treatment start to documented disease progression.  

Progression was defined as follows: 

− Progressive disease specified by RECIST [124] 

− Therapy stop/change due to progression 

− New lesion occurred during first-line therapy (date of diagnosis as progression) 

− Death due to the malignancy 

Events were counted as censored data, when the treatment was stopped or changed 

due to a documented toxicity or without any reason, the patient was lost to follow up, 

or no progression occurred until the official censoring date.  

 

3.4 The C-II-005 study 

In order to improve the precision of parameter estimates the final EuroTARGET cohort 

of patients receiving sunitinib was pooled with patients from the C-II-005 study for 

model development. Demographics of this cohort can be found in Table 3.8. 

The C-II-005 study was performed to investigate the beneficial effect of sunitinib as 

add-on to a FOLFIRI therapy schedule including folinate, fluorouracil, and irinotecan, 

in patients with metastasized colorectal cancer (mCRC) and liver metastases. Primary 

endpoint was the reduction of tumor vessel permeability and blood flow determined by 

dynamic-contrast-enhanced magnetic resonance imaging as well as dynamic-

contrast-enhanced ultrasound imaging (DCE-MRI and DCE-USI). Time-to-progression 

(TTP) was defined as a secondary endpoint. Twenty eight patients were included into 

the clinical trial receiving a daily dose of 37.5 mg sunitinib on a 4 weeks on/2 weeks 

off treatment schedule in addition to (FOLFIRI) as first-line therapy. Seven patients 

were excluded from the analysis because of missing drug administration (n = 5), 
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missing data (n = 1), or uncertainty in the documentation of sunitinib intake (n = 1). In 

case of toxicity, sunitinib therapy was interrupted or continued after dose reduction to 

25 mg per day until the symptoms disappeared. Sunitinib was administered around 

breakfast between 7 and 10 am and FOLFIRI was infused biweekly always after 

sunitinib intake [126,127]. 

A detailed PK/PD analysis of the C-II-005 study was conducted by Kanefendt [126]. 

Data from this study was used to improve the PK/PD modeling process and to and to 

increase the chance of correctly identifying genetic covariates for model parameters 

which are independent of tumor entity.  

 

 

3.5 Drug and biomarker analysis 

Plasma concentrations of sunitinib, SU12662 and pazopanib were analyzed at the 

Institute for Biomedical and Pharmaceutical Research (IBMP) in Heroldsberg by 

Christoph Stelzer and Dr. Martina Kinzig under supervision of Prof. Dr. Fritz Sörgel. All 

substances were analyzed by LC-MS/MS using a Tripel-Quadrupol Mass spectrometer 

for detection (Applied Biosystems/MDS Sciex API 5000TM LC-MS/MS, Framingham, 

USA). 

 

3.5.1 Sunitinib and N-Desethylsunitinib (SU12662)  

Sunitinib and SU12662 plasma concentrations were analyzed using a method 

validated according to the recent guidelines of the European Medicines Agency (EMA) 

and the FDA [128,129]. Samples were strictly protected from light during the 

measurement procedure. D5-sunitinib served as internal standard for quantification. 

Lower limit of quantification was determined with 0.06 ng/mL for both, parent drug and 

Tab.3.8:  Demographics for the cohort of mCRC patients (median and range) [126] 

Parameter Unit Median Range 

Age years 61 33 – 85 

Sex m/f 12/9 - 

Weight kg 73 57 – 106 

Height cm 172 149 – 184 

BMI kg/m2 26.0 13.3 – 39.3 
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metabolite. Absolute recovery was reported with 86.0% for sunitinib and 84.8% for 

SU12662. Likewise analytical recovery was equally high for both substances, with 

99.8–109.1% for sunitinib and 99.9–106.2% for SU12662. Linearity was guaranteed 

over a concentration range of 0.06 – 100 ng/mL with r2 > 0.999. Additionally, both 

analytes proved to have a high between-day precision (1.6–6.1% sunitinib, 1.1–5.3% 

SU12662) [130]. 

 

3.5.2 Pazopanib 

The method used for determination of pazopanib concentrations in plasma were based 

on a LC/MS method published by Sparidans et al. [131].  

Analogously to sunitinib, pazopanib plasma concentrations were analyzed using a 

method validated according to recent guidelines of the European Medicines Agency 

(EMA) and the FDA [128,129]. Samples were strictly protected from light during the 

measurement procedure. [13C,2H3]-Pazopanib served as internal standard for 

quantification. Lower limit of quantification was determined with 0.109 µg/mL. Absolute 

recovery was reported with 92%. Likewise analytical recovery was equally high with 

94.8 to 101.8%. Linearity was guaranteed over a concentration range of 0.109 – 107 

µg/mL with r2 > 0.999. Additionally, pazopanib proved to have a high between-day 

precision (2.2 – 10.4%). 

 

3.5.3 sVEGFR-2 

For quantification of sVEGFR-2 in plasma a commercially available immune assays by 

R&D Systems were used [132]. Reproducibility was guaranteed by abiding to internally 

developed standard operating procedures (SOP) (Appendix B.IV). Each run was 

documented with the respective form (Appendix C). Relevant information regarding the 

assay precision, linearity and sensitivity can be found in Table 3.9.  

Quality control (QC) samples in three different concentrations were generated from a 

different batch of the standard solution. All samples as well as the standards were 

measured in duplicate while quality control samples analyzed only once. 

The VEGFR-2 concentrations were calculated with a four parametric logistic curve fit 

using the drc package in R. Baseline values were defined as concentrations measured 
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before the first drug intake. The mean of the measured biomarker response at each 

time-point was used for generating concentration-time profiles stratified by the study 

drug. In order to detect possible confounders, individual concentration-time profiles 

were plotted and investigated. 

 

 

3.5.4 sVEGFR-3 

sVEGFR-3 concentrations were determined with a previously developed and validated 

method by Kanefendt et al. using an Elisa DuoSet® [133,134]. Reproducibility was 

guaranteed by abiding to internally developed SOPs (Appendix B.IV). Each run was 

documented with the respective form (Appendix C). Quality control samples in three 

different concentrations were generated from a different batch of the standard solution. 

All samples as well as the standard were measured in duplicate whereas quality control 

samples were quantified only once. The validation criteria can be found in Table 3.10.  

The concentrations were calculated with a four parametric logistic curve fit using the 

drc package in R®. The mean of the measured biomarker response at each time-point 

was used for generating concentration-time profiles stratified by the study drug. 

Baseline values were defined as concentrations measured before the first drug intake. 

In order to detect possible confounders, individual concentration-time profiles were 

plotted and investigated. 

  

Tab. 3.9:  Validation criteria for the determination of sVEGFR-2 in plasma [127] 

Parameter  

Lower limit of quantification1 4.6 pg/mL  

Between-day precision (CV %)1 5.7 - 7.0% 

Within-day precision (CV %)1 2.9 - 4.2% 

1Determined by R&D Systems 
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3.6 Statistical analysis 

Statistical analysis of the soluble biomarkers sVEGFR-2 and sVEGFR-3 as well as 

blood pressure was performed using R. As two drugs were investigated all analyses 

were performed for both drugs combined and for each treatment subgroup in order to 

rule out major differences. 

 

3.6.1 Outlier analysis 

To identify potential outliers, boxplots of the absolute sVEGFR-2 and -3 concentrations 

were generated. Since the sampling time-points were not unified across patients, all 

measurements were stratified by week of treatment with a maximum observation time 

of 18 weeks. If necessary, sunitinib and pazopanib were administered in different 

doses; therefore, absolute biomarker concentration values were dose normalized 

before plotting. This guaranteed that no values were mistakenly identified as outliers. 

Baseline values (treatment week 0) were excluded from the dose normalization and 

compared separately [135]. Outliers were determined using a model-based approach 

by calculating the conditional weighted residuals (CWRES, Section 3.8.3.). A value 

greater or equal 6 or lower or equal -6 was considered as an outlier. If applicable, the 

respective observation was excluded from the analysis and the influence on parameter 

estimates was investigated. 

 

3.6.2 Assessment of normality 

Parametric statistical tests require the data to be normality distributed. Although 

physiological parameters are usually non-normally distributed, it is still necessary to 

verify this assumption in order to avoid errors by using the wrong test statistics [135]. 

Tab. 3.10: Validation criteria for the determination of sVEGFR-3 in plasma 

(modified from [126,134]) 

Parameter  

Lower limit of quantification1 513.9 pg/mL 

Between-day precision (CV %) 18.3% 

Within-day precision (CV %) 4.9% 

1Not determined. Based on calibration curve 
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In case of violations of the normality assumption, non-parametric methods are highly 

recommended for testing e.g. correlations.  

Normality was tested via graphical examination by generating histograms and quantile-

quantile plots stratified by protein and by treatment. In addition, the Shapiro-Wilk test 

was performed with the same stratification pattern. For this test the following 

calculation was performed [135]: 

With W as the statistic of interest, n as independent and identically distributed 

observations from a normal distribution with unspecified mean and variance. ai 

represents constants that are functions of n. The null hypothesis states that the data is 

normally distributed, whereas the alternative hypothesis implies that the distribution is 

not normal. With a significance level of p < 0.05 the null hypothesis can be rejected.  

 

3.6.3 Correlation analysis 

Since both, sVEGFR-2 as well as sVEGFR-3, are involved in tumor angiogenesis and 

down-regulated under TKI therapy, the correlation between the plasma concentrations 

of both proteins was quantified. Correlation was assessed graphically by linear 

regression and the determination of the correlation coefficient r. In addition the 

Spearman’s rank correlation coefficient (rs) was calculated [135]: 

Sxy denotes for covariance between x and y and Sx/y for the variance of x and y, 

respectively. 

 

3.6.4 Comparison of mean biomarker levels across treatment groups 

To detect differences in drug response the mean levels of sVEGFR-2 and sVEGFR-3 

per treatment week were compared between the respective groups of patients either 

treated with sunitinib or pazopanib. For this purpose the Mann-Whitney-Wilcoxon test 

was used, which is applicable for comparing a non-normally distributed continuous 

variable in two groups [135].  

� = [∑ ���[�]]	�
� �
∑ (�� − �̅)�	�
�  (Eq. 3.1) 

�� = ���������� (Eq. 3.2) 
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3.7 Genetic analysis 

The selection of single nucleotide polymorphisms (SNPs) was based on previously 

reported studies (p < 0.05) of SNPs associated with the treatment outcome of sunitinib 

(or pazopanib) with regard to toxicity and efficacy. Herein, the focus was on SNPs that 

are likely to have an effect on VEGF or VEGF receptors, blood pressure, and SNP 

associations from confirmatory studies in large cohorts. Selected SNPs or combination 

of SNPs were included as covariates if they improved the respective model 

significantly. A list of the selected SNPs can be found in Appendix A. 

SNP analysis was performed at the University of Leiden in the group of Prof. Henk-Jan 

Guchelaar by Dr. Meta Diekstra. Germline DNA was isolated from whole blood 

samples using the Chemagic® Blood kit (PerkinElmer). Genotyping was performed on 

the selected SNPs, using Taqman probes (Applied Biosystems, Nieuwerkerk aan den 

Ijssel, the Netherlands) on the LightCycler480® Real-Time PCR Instrument (Roche 

Applied Science, Almere, The Netherlands). Quality control procedures included SNP 

genotyping plots for each assay. To test for inconsistencies, 5% of all samples were 

measured as duplicates. Samples with a call rate below 80% were excluded from the 

analysis. All SNPs were tested for the Hardy-Weinberg equilibrium [136]. 

 

3.8 Pharmacokinetic/pharmacodynamic data analysis 

3.8.1 Non-Linear Mixed Effects modeling 

Non-Linear Mixed Effects (NLME) modeling is the gold standard in population analysis. 

As initially stated (Section 1.4.2), this method allows the analysis of datasets with only 

sparse individual sampling. In addition to typical estimates of the respective PK/PD 

parameters it is possible to quantify the variability within the population and, if sufficient 

data is available, to explain this variability by inclusion of covariate effects. 

The term NLME is derived from the different effects which are investigated with a 

population models. Mixed effects comprise the so called fixed effects, which refer to 

the population parameters without inclusion of variability, but also includes covariate 

effects. On the other hand, random effects comprise all forms of estimated variability 

in the model. In this study, the software NONMEM® was used for population PK/PD 

analysis [88]. NONMEM® is written in FORTRAN 90/95, which is still evident in the 

modified syntax that is used to define models. The software consists of several core 
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modules with different tasks within the overall package. An overview of the structure of 

NONMEM® is shown in Figure 3.3.  

NM-TRAN is a module which translates the user-supplied data and control files into 

readable data for NONMEM®. A compiler is necessary for adequate translation of the 

code into a format which can be executed by the computer. NONMEM® itself does not 

directly provide models, but relies on user written subroutines for parameter 

estimations via the command PRED. However, NONMEM® also includes the so-called 

PREDPP module which is short for PRED for Population Pharmacokinetics. This 

module simplifies the model building process to a certain degree as it already includes 

subroutines helpful for population analysis as well as subroutines which provide 

already analytical solutions for simple one, two or three compartment models. In the 

simplest case, only PK or PD model parameters and a residual error model have to be 

specified. Though, it is also possible to define more sophisticated models with 

differential equations in PREDPP using the $DES option [88]. 

 

 

  

 

Fig. 3.3: Scheme of the general structure of NONMEM® and important steps 

(modified from [88]). 
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Fixed effects are referred to as THETA (θ) in the NONMEM® while random effects are 

further differentiated into inter-individual (IIV) (ETA, η), intra-occasion (IOV) (KAPPA, 

κ) and residual variability (EPSILON, ε). Variability is assumed to be normally 

distributed across all random effects with a mean 0 and a variance of ω2, κ2 or σ2, 

respectively (Section 3.8.2). 

Methodologically, NONMEM® uses a maximum likelihood approach with an objective 

function (OBJ) based on extended least squares to obtain parameter estimates which 

provide the best fit to the underlying data. In the simplest case a population 

pharmacokinetic model can be described as follows: 

Where θ denotes for the model parameter vector x for the dependent variable, ε for the 

residual variability. Assuming that the total residual variance of Y is a function of the 

structural model f(θ;x) it can be simplified: 

With g being the variance function with respect to f(θ;x) and �� the variance of the 

random variable ε. 

Based on this, the OBJ can be written as: 

��� =  � �[�� − �(��|!)]�
"��(�) + $% ["��(�)]&	

�
�
 (Eq. 3.5) 

Where n is the number of patients in the investigated population and Yi, xi and θ refer 

to the vectors of dependent and independent variables as well as model parameters. 

Even though NONMEM® uses a maximum likelihood approach for parameter 

estimation, the OBJ is calculated as two times the negative log-likelihood; hence, the 

OBJ is minimized during parameter estimation [84,86,88]. However, due to the 

inclusion of random effects, especially inter-individual variability, the calculation of the 

likelihood is no longer trivial as no analytical solution exists. Therefore, NONMEM® 

uses an approximation of the true model by linearization. The most basic variant of this 

approach implemented in NONMEM® is the first-order (FO) method which relies on a 

first-order Taylor series. Mathematically, a Taylor series is a polynomial function which 

is used to approximate a function at a point x given the original function and its 

derivatives at the initial point. The order of a Taylor series is given by the number and 

degree of derivations that are added up to the original function. By definition, a first-

� = �(!|�) + ε (Eq. 3.3) 

"��(�) = ��['(�(!|�))]� (Eq. 3.4) 
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order Taylor series includes the first derivation of the base function [86]. As NONMEM® 

performs the linearization at η=0 using only population mean values, an additional 

step, called POSTHOC, is required after the estimation in order to obtain individual 

parameter estimates. While the FO is approved for simple modeling problems, it could 

be shown that it is less reliable in more sophisticated models as it may introduce bias. 

A well-established method is the first-order conditional estimation (FOCE), which is 

essentially an improved FO algorithm. FOCE uses the same first-order expansion as 

the FO method with the difference that conditional individual estimates are used 

instead of setting η equal to 0. Furthermore, FOCE allows to address the potential 

η,ε-interaction which is relevant when certain residual error models are used that 

incorporate the residual variance as a function of the model prediction (Section 3.8.2) 

[84,86,88]. Another common method is the Laplacian approach: similar to FOCE, 

Laplacian is also a conditional estimation method, however, a second-order Taylor 

expansion is used in this case. Laplacian has proved to be reliable and particularly 

useful for time-to-event and other categorical data as it does not need to calculate a 

likelihood and is directly minimized [88,137]. 

 

3.8.2 Model development 

A population model usually consists of three submodels: a structural model or base 

model, a stochastic model and a covariate model [84,86]. Development of a population 

model starts with the choice of an appropriate structural model. This comprises the 

compartmental model with fixed effect parameters to describe the relevant 

pharmacokinetic processes such as absorption, distribution and elimination. Graphical 

inspection of the data was performed for an initial assumption on the required number 

of distribution compartments and the kinetics of the absorption and elimination 

process. Goodness-of-fit (GOF) plots and changes in the objective function value 

(OFV) were compared in all tested models. Furthermore, visual predictive checks 

(VPCs) were generated for candidate models; this process is explained in detail in 

Section 3.8.3.  

Once a proper structural model was selected, random effects were tested on each 

parameter. As stated above, variability was differentiated in three levels, which require 

different approaches for a correct implementation into the model: Inter-individual (IIV), 

inter-occasion (IOV) and residual variability.  
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Inter-individual variability  

Inter-individual variability (IIV), describes differences between individuals in a 

population of interest. While other models are possible, the standard approach is to 

model IIV with a log-normal distribution (Equation 3.6) as this constraints the 

pharmacokinetic parameters to be greater than zero. This is of particular importance 

for physiological parameters such as clearance and volumes [84,85,137]. 

!� = !* ∙  ,-. (Eq. 3.6) 

θi denotes for the individual parameter estimate, θµ represents the population mean 

and ηi the deviation from this mean for patient i. The underlying assumption is that ηi 

has a mean of zero and a variance of ω2. When assuming that all parameters are 

uncorrelated, the variance-covariance matrix can be expressed as a diagonal matrix. 

However, NONMEM® allows the implementation of block matrices to address and 

estimate correlations between model parameters.  

IIV is usually stated as coefficient of variation (CV). This can be calculated using the 

following equation [86]: 

/"(%) =  �,12 − 1 ∙ 100% (Eq. 3.7) 

IIV was tested on all relevant pharmacokinetic and pharmacodynamic parameters 

during model development. If necessary, correlations between parameters were 

handled by introduction of off-diagonal elements in the variance-covariance matrices. 

 

Inter-occasion variability 

Inter-occasion variability (IOV) describes the variation of pharmacokinetic parameters 

within one individual. Various reasons for time dependency of a parameter exist and 

they can be a consequence of intrinsic, e.g. pathophysiological, or extrinsic changes 

and influence factors. For example, if the clearance of a drug is dependent on renal 

function a progressive renal impairment will have a significant impact on this 

parameter. 

In oncology it is common to interpret therapy cycles as different occasions, since they 

span over a long time period with or without treatment intermission. The importance of 

modeling IOV was pointed out by Karlsson et al. in 1993. The implementation of IOV 
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can prevent the false data acceptance of covariates and reduce bias of parameter 

estimates [138]. 

IOV, denoted with κ, is modeled on the same level of random effects as IIV: 

!� =  !* ∙ ,(-.567) (Eq. 3.8) 

Hence, the additional parameter κj denotes for the deviation from the population mean 

with respect to occasion j. The impact of IOV was tested on relevant parameters, if 

applicable. An occasion was either defined as treatment cycle of sunitinib, which 

corresponds to 6 weeks of pazopanib treatment, or as treatment week. 

 

Residual variability 

Residual variability comprises all variability which cannot be explained by IIV, IOV or 

covariate effects. This includes for example assay variability, errors in dosing histories 

but also model misspecification. To account for this, a proper residual error model has 

to be chosen.  

The most common residual error models include an additive (Equation 3.3), a 

proportional (Equation 3.9) and a combined error model (Equation 3.10): 

� = �(!|�) ∙ (1 + 8) (Eq. 3.9) 

� = �(!|�) ∙ (1 + 8�) + 8� (Eq. 3.10) 

The additive model assumes an error of the same absolute magnitude across the 

range of plasma concentrations. In contrast, the proportional error applies a fixed 

coefficient of variation which results in smaller absolute errors for low values and vice 

versa. The combined error model is most useful when there is a wide range of plasma 

concentration measurements, since the additive error usually applies to smaller 

concentrations and the proportional error to values of higher magnitude [86,137]. The 

usual assumption is that the residual error is equal across all patients. However, this 

is not always the case, especially when data from different studies is pooled in one 

dataset as different sampling and analytical approaches may result in varying residual 

errors across studies. This can be resolved by estimating center or study specific 

residual errors.  

Even though all samples analyzed in this study were processed in the same 

laboratories, residual errors in all models were tested for systematic differences among 

patient groups.  
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Covariate model 

Covariates are described by fixed effects to explain parts of the inter-individual 

variability of a pharmacokinetic parameter. Usually, covariate analysis is performed in 

a step-wise manner [86,137]. Preselected covariates, based on clinical relevance and 

graphical analysis, are implemented into the model in a forward search process. 

Covariates which led to a significant decrease of the objective function value (p < 0.05) 

are kept for the next step. The final forward model is then re-evaluated by backwards 

elimination of each covariate with a stricter significance level (p < 0.01). If a covariate 

effect was still significant in this step, it was kept in the model. 

However, if the investigated population is too small it is difficult to detect a covariate 

effect. To take this into account, potential covariates were identified in the literature 

and then tested manually in addition to the step-wise approach in this study. The 

advantage is that the quantity of the possible effect is already known, and the 

underlying study could be used as verification for previous findings. Clinical and 

biological relevance of newly identified covariates was carefully assessed. 

A full list of all covariates tested in the respective models can be found in Appendix A. 

 

3.8.3 Model qualification 

Model qualification covers methods which allow determining the overall fit of the model, 

the validity of estimated parameters and if the model is suitable for extrapolation, for 

example simulation of different dosing regimens which were not part of the original 

dataset. Due to the lag of validation data set and a small sample size, which did not 

allow data splitting, only internal qualification methods were used [84,139]. 

 

Likelihood ratio test   

The objective function value (OFV) provided by NONMEM® (Section 3.8.1) was used 

primarily for model comparison of nested models depending on the degrees of 

freedom, or more exactly, the number of parameters that changed between models. 

The objective function used by NONMEM® is defined by minus twice the log-likelihood 

with respect to the model parameters. The difference of this value between two nested 

models (dOFV) is chi-square distributed. In this case the term “nested” refers to models 
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which can be converted into each other by addition or removal of one or several 

parameters. As a result, the statistical significance of a parameter or several 

parameters can be assessed by comparing the dOFV with the respective statistic from 

the chi-square distribution [88]. For one degree of freedom, which translates to one 

additional parameter in the model, the OFV has to decrease by at least 3.84 to confirm 

a significant improvement of the model fit with a p-value less than 0.05. Depending on 

the chosen significance criteria and the number of parameters included or removed 

from a model different threshold values were apply. 

 

Goodness-of-fit plots  

Goodness-of-fit (GOF) plots can be used to graphically assess the model fit and help 

to identify model misspecifications. To avoid misinterpretation and ensure easy 

comparability these plots were standardized depending on the model drug [84,139].  

General GOF plots include population predictions vs. observations and individual 

predictions vs. observations. Both types of plots were used to assess the goodness-

of-fit with regard to the estimates of population parameters, without taking inter-

individual variability into account, and individual parameter estimates. X- and Y-axis 

were fixed to have the same length with a line of identity dividing the plot exactly by 

half. Furthermore, a locally weighted scatterplot smoothing (LOESS) was added for a 

better identification of potentially ill-conditioned patterns in the plot [139]. 

Depending on the purpose, different types of residuals are needed and have to be 

computed beforehand to generate plots for model evaluation. Weighted residuals are 

calculated by NONMEM® based on the older FO method, whether this method was 

used for parameter estimation or not. In the worst case this can lead to false decisions 

during the modeling process. Hence, the individual weighted (IWRES) and the 

conditional weighted residuals (CWRES) were used in the underlying analyses [140]. 

  



54  Material and methods 
 

   

Individual weighted residuals  

Individual weighted residuals (IWRES) were calculated by using the difference 

between the observed dependent variable (DV) and individual model predictions 

(IPRED) divided by the square root of the variance ��  as weighting factor. The 

variance is defined by the residual error model (Section 3.8.2) 

9�:;� = <" − 9=:;<√��  (Eq. 3.11) 

 

Conditional weighted residuals  

As FOCE with η,ε-interaction (Section 3.8.1) is the estimation method of choice, 

standard residuals are no longer a reliable diagnostic tool, due to their reliance on the 

older FO method. However, Hooker et al. introduced conditional weighted residuals 

(CWRES) in 2007 which are now a standard diagnostic criterion [140]. Therefore, 

CWRES were automatically calculated for every run. 

/�:;� = ?� − �@ABC(!, ��)��@ABC� (?�)  (Eq. 3.12) 

By using Equation 3.12 the (estimation by using FOCE) empirical Bayes estimates 

(EBE) are taken into account for residual computation whereas the usual WRES are 

calculated at η = 0. 

One major assumption is that residuals are normally distributed with a mean of 0 and 

variance σ2 (Section 3.8.1). Graphically, this can be assessed using quantile-quantile 

plots as well as histograms of CWRES. The former uses the residual quantiles and 

plots them against the quantiles of the normal distribution. Whereas information 

between both types of plots is comparable, quantile-quantile plots are more sensitive 

to violations of the underlying assumptions and can therefore be used in addition to 

classical histogram plots. 

To identify model misspecifications, especially of the structural and residual model, 

plots of CWRES vs. PRED and CWRES vs. TIME and/or TIME AFTER DOSE (TAD) 

were used. Furthermore, plots of |IWRES| vs PRED and vs. TIME were used to 

evaluate the residual error model regarding the independence of residuals, (individual) 

predictions and the independent variable, respectively [139]. All plots were generated 

after every model run using the R packages lattice and xpose (Section 3.1.5). 
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η- and ε-Shrinkage  

Individual estimates of population pharmacokinetic model parameters are highly 

dependent on the quality of the underlying data. While the strength of NLME modeling 

is the analysis of sparse data, too sparse data or varying data quality among patients 

can lead to uninformative parameter estimates. In an extreme case the individual would 

be identical to the population estimates. A misleadingly lower estimate of the variance 

would be the result.  

This phenomenon is called η-shrinkage and can be calculated with the following 

equation 

E − �ℎ�G%H�', = 1 − �<(E;�;)I  (Eq. 3.13) 

Where �<(E;�;) denotes for the standard deviation from the population mean and I 

is the standard deviation of the population. 

Similarly, the lack of sufficient data for the proposed model can lead to a systematic 

decrease of IWRES (see above) which is also called “overfitting” or ε-shrinkage. 

Analogous to the η-shrinkage, ε-shrinkage can be calculated as follows: 

8 − �ℎ�G%H�', = 1 − �<(9�:;�) (Eq. 3.14) 

There is no defined cut-off value for η- or ε-Shrinkage, but a commonly used threshold 

is that either value should not exceed 30% [141]. Shrinkage was calculated for every 

relevant model parameter, if applicable. 

 

Bootstrap  

Nonparametric bootstraps were used to obtain standard errors (SE) and confidence 

intervals (CI) for model parameters. By randomly sampling from the original data set 

with replacement, n new data sets were generated and used for re-estimation of the 

model parameters. Each data set consisted of the same number of patients; however, 

the composition of each set varied as patients could be drawn multiple times or not at 

all. Based on the number of replicates, the bootstrap results were used to calculate the 

variance, and hence standard errors, and confidence intervals of the model parameters 

without knowing the true distribution of the data [86]. 
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The bootstrap variance VarB is calculated using the estimated parameter vector f(xi*) 

and the number of replicates n. 

"��J =  ∑ K�(��∗) − ∑ �(��∗)	�
�% M�	�
� % − 1  
(Eq. 3.15) 

By taking the square root of the variance an estimate of the standard error was 

calculated. By default CIs were obtained using the percentile method, assuming that 

the parameter estimates were asymptotically normally distributed around their means. 

All bootstrap estimates were ranked according to their value, confidence interval 

boundaries were then calculated by N(α/2) and N(1-α/2), respectively [86]. 

In this study, 1000 replicates per bootstrap were generated, which is in accordance 

with the common practice and population pharmacokinetic guidelines [84]. The 95th 

and 5th percentile were then used for calculation of the respective CIs. In case of 

asymmetrical bootstrap distributions the accelerated bias-corrected (BCa) method 

could be used [84,111]. Here, two additional parameters are calculated: b to correct 

for asymmetry and a to correct for skewness. The equation for calculating bias-

corrected confidence intervals is then given by: 

N ∙  O �P ± RS/� + P1 − �(RS/� +  P)& (Eq. 3.16) 

Where N denotes for the bootstrap sample size, φ for the standard normal distribution 

and Z for the Z-distribution. The process of resampling and re-estimation of datasets 

and model parameters was automated by using PsN [111]. 

 

Visual predictive check  

Visual predictive checks (VPCs) are a simulation based diagnostic tool for nonlinear 

mixed effect models. Here, the model of interest is used to simulate data based on the 

final estimates including variability, hence sampling from the OMEGA and SIGMA 

matrices corresponding to inter-individual and residual variability [89]. The simulated 

predictions are then graphically compared to the observed data. By binning of the 

independent variable (usually “Time”) it is assured that all observed data points are 

grouped within other values of comparable magnitude and in a similar observation 

time. It is common practice to use bins equal to the number of observations per patient. 
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However, it is also possible to automatically assign observations into bins in cases 

where a manual subdivision is not feasible [142,143]. 

Prediction-corrected VPCs (pcVPC) are a further advanced version of the original 

approach proposed by Bergstrand et al. [144]. This method is of particular importance 

when data with differences in independent variables, e.g. doses or covariate effects, is 

analyzed as it corrects for these. This is done by normalization of the observed and 

simulated dependent variable with respect to the median prediction of each bin: 

UV��W = X��W + (��W − X��W) ∙ =:;<Y�	 − X��W=:;<�W − X��W  (Eq. 3.17) 

Where pcYij denotes for the prediction-corrected observation of the ith individual at the 

jth time-point and LB is the lower bound at the respective time-point j of individual i. 

PREDbin is the mean population prediction, while PREDij corresponds to the population 

prediction of individual i at time j. 

pcVPCs were generated based on 1000 simulated datasets with regard to the original 

data structure. Bin arrays were constructed based on the weeks on treatment and 

sampling schedules. Graphical presentation of the VPC results included the simulated 

and observed mean as well as the 90% prediction interval with the respective 95% 

confidence bands. Due to the heterogeneity of the sampling schedules across the 

study centers and due to the fact that, in case of sunitinib, two different patient cohorts 

were analyzed simultaneously only the first cycle is shown in the plots. For pazopanib 

the first 6 weeks on treatment were chosen to ensure comparability. VPCs of the full 

observation time for each drug can be found in Appendix D. Furthermore, VPCs for 

sunitinib PK and PK/PD models were stratified by tumor entity to detect potential 

differences between both studies. VPCs used for evaluating the survival model show 

the observed Kaplan-Meier estimates with a 90% prediction interval and were stratified 

by covariates if necessary. In the same way the results of the toxicity models are 

presented. Here, the observed fraction of patients, who developed a certain adverse 

event over time with a 90% prediction interval is shown. 

 

Case deletion diagnostics  

Case deletion diagnostics (CDD) were used to identify individuals with influential 

characteristics within the dataset. In addition, CDD allowed the calculation of bias for 

every model parameter. In principle CDD resembles the so called jackknife approach 
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where n new datasets are generated by removing one individual at a time. Model 

parameters are then re-estimated for each set. In this case n equates to the number of 

individuals in the original data set [86,145]. The jackknife estimate of a model 

parameter !Z is defined by 

!Z[\B] =  1% � !Z�([\B])
	

�
�
 (Eq. 3.18) 

With !Z�([\B]) as the parameter estimate at the ith jackknife sample [146]. 

Based on this value it is possible to calculate the jackknife bias, which is the average 

deviation of the replicated parameter estimates from the original estimate [84,145]: 

�[\B] = (% − 1) ∙ (!Z[\B] −  !Z) (Eq. 3.19) 

Influential subjects can be accessed graphically by plotting the calculated covariance 

ratios versus the Cook’s distance. Cook’s distance is a metric which quantifies the 

change of parameter estimates when a specific subject is removed from the dataset, 

whereas an increase of the covariance ratio is an indicator for a change in parameter 

variability [86]. Furthermore, it is possible to assess the relative changes of each model 

parameter separately to identify subjects with a high influence on the estimate. 

Resampling and re-estimation of datasets and model parameters was automated by 

using PsN [111]. 

 

3.8.4 Bayes estimation  

Bayesian estimation is a common mathematical approach in Therapeutic Drug 

Monitoring (TDM) to gather information on individual pharmacokinetic parameters 

based on an a priori probability which comprises the known distribution of the 

pharmacokinetic parameters in the model and a posteriori probability including the 

plasma concentration(s) of the respective patient. Basis for this method is the Bayes 

theorem with describes the conditional probability of an event A provided B [92]: 

=(^|�) =  =(�|^) ∙ =(^)=(�)  (Eq. 3.20) 

With P(B|A) being the probability of B provided A and P(A) and P(B) the probabilities 

for A and B, respectively. Applied to pharmacokinetics, the same problem can be 

stated as the probability of a model parameter vector A (e.g. clearance, volume of 
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distribution) provided plasma concentration B. The advantage of this method is that 

even in situations where only very limited data is available, reliable parameter 

estimates can be obtained.  

For application in NONMEM® all model parameters were fixed to their respective value 

from the literature (a priori probability) and used for prediction of the individual 

pharmacokinetic parameters based on the sparse samples available (a posterori 

probability). The estimated individual plasma concentrations of each patient were used 

to calculate the relative prediction error (RPE, Equation 3.21) which served as a tool 

to identify potential outliers in the data set. A RPE of 50% was set as threshold for 

excluding a value from the analysis. 

 

3.8.5 Handling of missing data  

Missing data was handled according to predefined rules. For continuous covariates the 

population mean was used as imputed value whereas for categorical covariates the 

most common expression in the respective population was chosen for imputation. In 

case of missing time of drug intake or missing sampling time two options were 

available. If at least one dosing or sampling time was documented, this was also used 

for all cases were this information was missing. Only in the case of a complete lack of 

data on drug intake the clock time was set to 8.00 a.m. assuming that an administration 

in the morning was the most likely scenario. In the same way, clock time was set to 

12.00 p.m. for all cases with no information on sampling time, assuming that a routine 

check-up was most likely scheduled during mid-day. However, since these are rather 

uncertain assumptions, the influence of dosing time was assessed in a sensitivity 

analysis (Section 3.8.6). 

 

3.8.6 Sensitivity analysis 

Fixed model parameters 

Due to the nature of sparse data, not all parameters of a highly sophisticated semi-

mechanistic model can be or should be estimated. In case of physiological processes, 

e.g. liver blood flow, it is a common approach to fix related model parameters to values 

obtained from the literature. However, this demands a high confidence in the reported 

value as all other model parameters could potentially be influenced by this value, 
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introducing a bias in the worst case. To test the influence of the fixed model parameters 

in the underlying study, a sensitivity analysis was performed [147]. The parameters of 

concern were therefore varied between -50 and +50% of the final value used in the 

analysis. Variation of all non-fixed model parameters was quantified using the relative 

prediction  error (RPE) which is defined as 

:=; (%) = !	_` − !Ya�_!	_`  (Eq. 3.21) 

Where θnew denotes for the parameter estimate obtained after varying the concerned 

fixed model parameter and θbase for the original estimate, respectively. 

 

Time of drug intake 

Since the time of drug intake was only documented poorly and the clock-time had to 

be imputed (Section 3.8.5) in several cases, a sensitivity analysis quantifying the 

influence of dosing time was performed. Therefore, time of drug intake was randomly 

varied for each occasion between +3 and -3 hours. This procedure was repeated 50 

times. Based on the parameter estimates of each model the RPE was calculated. 

 

3.8.7 Data below the quantification limit 

Data below the limit of quantification (BQL) can be informative and have a significant 

effect on parameter estimates of a PK/PD if not handled correctly. Several methods on 

how to approach BQL data in modeling can be found in the literature. Two of the most 

common methods are referred to as M1 and M3 [148,149].  

M1 denotes for the removal of all BQL values from the dataset, thus ignoring this data 

completely. While this approach is widely used and reliable if the amount of BQL data 

is low, there is a certain probability of introducing a bias into the parameter estimates. 

A more sophisticated approach is the M3 method. Here, BQL values are included into 

the model fitting process and the likelihood that these values are effectively below the 

quantification limit is estimated [148]. Ideally this should avoid misinterpretation of BQL 

values and reduce bias which can be introduced by omitting these data points 

[148,149]. According to recent comparison between all available methods the M3 

approach is currently the method of choice for handling BQL data [150]. 
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However, as the relative number of BQL data in the underlying study was below 2% 

the M1 method was decided to be sufficient.  

 

3.9 Pharmacokinetic models 

3.9.1 Sunitinib and N-Desethylsunitinib (SU12662) 

Two published semi-mechanistic models for sunitinib and its active metabolite 

SU12662 were considered as basis for describing the study data.  

The model proposed by Lindauer et al. [109], used a transit-compartment approach to 

describe the delayed absorption of sunitinib and takes into account the fraction of the 

parent drug which is metabolized to SU12662 pre-systemically, before entering 

systemic circulation. Distribution of sunitinib is described by a two-compartment model, 

whereas for SU12662 only one compartment was sufficient. The fraction metabolized 

to SU12662 (FM) was fixed to 0.21, however the ratio of pre-systemic (pre) to systemic 

(sys) metabolite formation (RPS) could be estimated with the given parameterization 

of the model: 

bc = bc,de_ + (1 − bc,de_) ∙ bc,��� (Eq. 3.22) 

:=� =  bc,de_bc,���  (Eq. 3.23) 

Basis for this model was a data set of 12 healthy volunteers (6 male and 6 female) who 

received 50 mg sunitinib for 3 or 5 consecutive days [109]. This model was successfully 

applied by Kanefendt et al. to describe sunitinib and SU12662 pharmacokinetics in 21 

patients with colorectal cancer originating from the C-II-005 study (Section 3.4) [126]. 

The second model that was tested was developed by Yu et al. [110] based on data 

from 70 cancer patients with doses ranging from 25 to 50 mg daily. Here, pre-systemic 

metabolization of sunitinib to its active metabolite was described by a hypothetical 

enzyme compartment. This was assumed to be in equilibrium with the central 

compartment, connected by the hepatic blood flow (QH) which was fixed to 80 L/h 

scaled by weight relative to a standard weight of 70 kg.  

The hypothetical compartment was parameterized as follows, with CH being the 

calculated concentration: 
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/f = Ha ∙ ^g + hf ∙ ^i,�j	k�	�Y"i,�j	�k�	�Yhf + /X�j	�k�	�Y  
(Eq. 3.24) 

ka denotes for the absorption rate constant while AD and Ac,sunitinib represent the 

amounts in the dosing or central compartment, respectively. CLsunitinib and Vc,sunitinib 

denote for the clearance and volume of distribution of the central compartment of 

sunitinib, respectively [110]. 

Distribution was, in contrast to the model by Lindauer et al. described by a one- 

compartment model for sunitinib and a two-compartment model for SU12662. For 

comparison with the reported estimates all relevant parameters were also scaled by 

patients’ weight relative to a standard weight of 70 kg in this study.  

 

3.9.2 Pazopanib 

Two population pharmacokinetic models for pazopanib were published so far. Imbs et 

al. used a simple one-compartment model with a dosing lag-time to account for delays 

in absorption processes [151]. The model was based on data from 25 patients who 

received pazopanib in combination with bevacizumab. Yu et al. used a semi-

mechanistic approach to cope with the rather complex absorption process of 

pazopanib (Section 1.1.4) [152]. Pharmakokinetics were described using a two-

compartment model with two first-order absorption rate constants. One fraction of the 

dose was absorbed instantaneously whereas the rest followed with a defined lag-time. 

In addition, the relative dose-related fraction absorbed (rFDose) was accounted with an 

Emax model: 

�bgl�_ = ;ma� ∙ (<no, − 200);<qr + (<no, − 200) (Eq. 3.25) 

Here, Emax describes the maximum effect of the dose on the bioavailable fraction. ED50 

represents the dose level with half of the maximal bioavailable fraction at a dose of 200 

mg. Furthermore, Yu et al. observed that pazopanib bioavailability decreases over time 

with significant differences between expected plasma concentrations after a single 

dose and at steady-state.  

To acknowledge this, an exponential time-decrease was applied to bioavailable 

fraction: 
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�bs�m_ = 1 − ;t + ;t ∙ ,uv∙s�m_ (Eq. 3.26) 

Where Ed denotes for the maximum effect of time.The relative fraction absorbed rF 

was assumed to be 1 if no influencing factors were present. The effects of time and 

dose on rF could be described by the following equation. 

�b = 1 ∙ �bgl�_ ∙ �bs�m_ (Eq. 3.27) 

Due to sparse sampling and missing information on drug intake and measurement 

times for pazopanib it was difficult to obtain reliable population parameter estimates 

with the chosen model. Hence, a Bayesian approach as described in Section 3.8.4 

was used to estimate individual pharmacokinetic parameters for each patient. 

Whereas both models were tested for applicability on the underlying data set, the semi-

mechanistic approach by Yu et al. was used for the final analysis due to the superiority 

of the model regarding already included information on pazopanib pharmacokinetics. 

 

3.10 Pharmacokinetic/pharmacodynamic models 

The final pharmacokinetic models for sunitinib, its active metabolite and pazopanib 

were linked in individual pharmacokinetic/pharmacodynamic (PK/PD) models for each 

biomarker to quantify the relationship between drug plasma concentrations and 

biomarker response. Individual pharmacokinetic parameters of each patient were used 

to calculate plasma concentration-time profiles of the respective drug as influence 

factor for changes in sVEGFR-2 and sVEGFR-3 plasma concentrations as well as 

blood pressure over time. 

 

3.10.1 sVEGFR-2 

The pharmacodynamic model for sVEGFR-2 was originally developed by Lindauer et 

al. in healthy volunteers and linked with the respective pharmacokinetic model for 

sunitinib and SU12662 (Section 3.9.1) [109]. Applicability for cancer patients was 

already demonstrated by Kanefendt et al. in the analysis of mCRC patients alone [126]. 

In this study, this model was tested for its applicability in both tumor entities in patients 

treated with sunitinib and pazopanib, respectively. 

In the following the links between PK and PD models are separately described for the 

study drugs sunitinib and pazopanib. 
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Sunitinib 

VEGFR-2 plasma levels during sunitinib therapy were described using an indirect 

response model: 

wo";xb:2wy = H�	 ∙ K 1(1 + z�{C|@}� ∙ 9N~)M − Hljk ∙ o";xb:2 (Eq. 3.28) 

kin is a zero-order production rate, which was assumed to be equal to the product of 

individual sVEGFR-2 baseline value (BLsVEGFR-2) and the first-order elimination rate 

kout. Mathematically, the baseline can then be calculated by the quotient of kin and kout. 

α denotes for the intrinsic activity of sunitinib on sVEGFR-2 production. The inhibitory 

function INH comprises a hyperbolic function which describes the fractional tyrosine 

kinase inhibition of sunitinib and SU12662 based on the total unbound active 

concentration (ACU). This approach assumes an identical potency of both molecules, 

which has been reported by Faivre et al. [153]. The fixed value of the dissociation 

constant (KD) was originally derived from Mendel et al. [58], whereas protein binding 

values for both substances were fixed to 0.95 and 0.90 for sunitinib and its active 

metabolite, respectively [46,59]: 

9N~ = ^/��g + ^/� (Eq. 3.29) 

 

Pazopanib 

As the pharmacodynamics can be regarded comparable between both TKIs, the same 

base indirect response model was initially used for pazopanib. However, the drug-

specific component, INH, had to be defined for pazopanib as the original PK/PD model 

was developed solely for sunitinib. In case of pazopanib, the active concentration is 

equal to the total concentration with a protein-bound fraction reported between >0.99 

and >0.999 [47,59,151]. Several fixed values in this range were tested in the model. 

However, due to the model structure the actual effect was negligible. The value chosen 

in the final model was 0.999, which is more in accordance with the overall data from 

the literature.  

Furthermore, different transducer signals were tested for pazopanib. These included, 

in addition to the inverse linear relationship used in the PK/PD models for sunitinib 

(Equation 3.28), a linear (with γ fixed to 1), a power (Equation 3.30) and a hyperbolic 

relationship (Equation 3.31). Fractional tyrosine kinase inhibition (INH) was calculated 
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using the active, unbound concentration of pazopanib and the in vitro dissociation 

constant (KD) reported in the SmPC of Votrient® (Equation 3.29) [47]. It was also 

explored if the active concentration of pazopanib is better suited to describe the effect 

(EFF) on sVEGFR-2 plasma concentration in the respective models.  

The following equations were tested in addition to Equation 3.28 during model 

development: 

;bb = 1 +  z ∙ 9N~/^/j� (Eq. 3.30) 

;bb =  1 + z ∙ 9N~/^/j(9N~qr +  9N~/^/j) (Eq. 3.31) 

Besides that, an Emax-model was also tested for comparison as potential relationship 

between PK and PD. As increasing sVEGFR-2 levels were observed in some patients 

while still on treatment according to the documented dosing schemes, the 

implementation of resistance models was investigated by testing feedback models. 

 

Feedback-mechanism 

A potential feedback mechanism induced by pazopanib was tested and integrated 

based on the neutropenia model by Friberg et al. [106]. Here, a rebound effect (REB) 

is calculated based on the individual baseline value of sVEGFR-2 relative to the current 

sVEGFR-2 concentration at time t. An additional exponent γ was included to account 

for the steepness of the effect: 

:;� =  (��o,$G%,�{C|@}�o";xb:2(y) )� (Eq. 3.32) 
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3.10.2 sVEGFR-3 

The pharmacodynamic model for sVEGFR-3 was originally developed by Kanefendt et 

al. in patients with mCRC treated with sunitinib based on the sVEGFR-2 model 

reported by Lindauer et al. [109,126]. Here, this model was tested for its applicability 

in both tumor entities in patients treated with sunitinib and pazopanib, respectively.  

In the following the links between PK and PD models are separately described for the 

study dugs sunitinib and pazopanib. 

 

Sunitinib 

As stated above the analogous indirect response model with an inverse linear 

relationship was already shown to be applicable for sunitinib-treated mCRC patients. 

Hence, the same approach detailed in Section 3.10.1 was used for model development 

analyzing data from both cohorts.  

 

Pazopanib 

Comparable to sVEGFR-2 no PK/PD relation for pazopanib was known from the 

literature. Again, the model developed for linking sunitinib pharmacokinetics with 

sVEGFR-2 plasma concentrations served as basis for model development. Hence, as 

detailed in section 3.10.1, three different transducer signal models as well as Emax and 

feedback relationships were tested for linking pazopanib pharmacokinetics with 

sVEGFR-3 response. The dissociation constant (KD) necessary for calculation of an 

INH (Equation 3.29) value was taken from in the official EPAR/SmPC of Votrient® [47] 

 

3.10.3 Blood Pressure 

The model for systolic and diastolic blood pressure used in this study was also 

developed based on data from 12 healthy volunteers by Lindauer et al. [109]. The 

impact of sunitinib on patients’ blood pressure was described by two separate signals: 

an immediate and a time-delayed effect. The immediate effect was set equivalent to 

the fractional inhibition by sunitinib (INH, Equation 3.29).  
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The time-delayed effect was described by using the following equation: 

w<9N/wy = 1� ∙ (9N~ − <9N/) (Eq. 3.33) 

Where τ denotes for the time needed until the effect occurs and DINC for the time-

delayed effect. 

Diastolic and systolic blood pressure (BPsys/dia) were then described by the sum of both 

signals linked by a proportionality factor R which quantified the proportional 

contribution of the slower signal to the overall effect:  

�=���/t�a = ��X���/t�a  ∙ �1 +  z���/t�a ∙ (9N~ + : ∙ <9N/)� (Eq. 3.34) 

Where, BSLsys/dia denotes for the baseline systolic or diastolic blood pressure. 

Analogous to the other pharmacodynamics models used z���/t�a  denotes for the 

intrinsic activity of sunitinib and its metabolite. 

The individual blood pressure baseline (BSLmsys/dia) was assumed to be variable over 

the course of a day. Therefore, a model reflecting the circadian rhythm of blood 

pressure was implemented. This model was parameterized with two cosine terms 

whereas AMP1 and AMP2 represented the amplitudes and PS1 and PS2 the phase 

shifts: 

��X���/t�a =  ��X����/t�a ∙  
��
��
�1 +

�
��^�=1 ∙ cos ��9�; ∙ 2�24 − =�1�+

^�=2 ∙ cos ��9�; ∙ 2�24 − =�2��
��

��
��
�
 (Eq. 3.35) 

As this model is highly parameterized and only sparse blood pressure measurements 

were available for each patient, several values of this model had to be fixed to the 

respective estimates reported by Lindauer et al. [109]. 

 

3.11 Survival analysis 

In general, methods for analyzing survival data can be categorized in parametric and 

non-parametric approaches. Both were applied in this thesis. Non-parametric survival 

analysis does not rely on a fixed amount of model parameters and makes no 

assumptions on the underlying distribution. The main advantage of this type of analysis 

is that it is easy to use and interpret as it provides a fast summary of the data. On the 

other hand, the implementation of potential predictors is limited [103,154]. In contrast, 
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parametric methods assume a defined distribution of the underlying data and allow the 

implementation of potential influential variables. The most common distributions used 

in models are shown in Section 3.11.3 (Equation 3.45 – 3.47).  

Key feature of all types of survival analyses is that the various types of censored data 

are taken into consideration [103,155]: 

− Right-censored: Data is described as right-censored when patients drop out of 

a study for undefined reasons before the endpoint or the end of the study is 

achieved. Right-censoring can be further classified into three subtypes: 

o Type I: Censoring of patients at time of study end due to not achieving 

the expected endpoint (e.g. not developing a progressive disease). 

o Type II: Censoring of patients due to premature termination of a study 

when the expected number of events already occurred. 

o Randomly censored: Censoring of patients leaving the study prematurely 

due to unknown reasons (Lost to follow-up) 

− Interval censored: Censoring of patients within a certain time interval, as the 

exact date is not known.  

− Left censored: Censoring of patients when an event already happened in an 

undefined time in the past. 

Whereas right-censored data, including the various subtypes, is quite common in 

survival analysis, left-censored data is usually not to be expected. 

The mathematical basis for survival analysis is given by the survivor and the hazard 

function. The survivor function is defined as [103]: 

�(y) = =(� ≥ y) =  1 − b(y) (Eq. 3.36) 

Where F(t) is 

b(y) =  � �(�)w�k
r  (Eq. 3.37) 

F(t) is the cumulative distribution function of a random variable T which describes the 

distribution of survival at time t and is determined by the integral of its probability 

density function f(u). Based on this the survival function S(t) expresses the probability 

that an event has not occurred by time t with P(T≥t). Applied to progression-free 
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survival as endpoint T describes the time until progression and S(t) the probability of 

not developing a progressive disease after time t [103,156].  

The hazard function h(t) describes the instantaneous risk of an event at time t. 

Mathematically, h(t) is defined by  

ℎ(y) =  lim∆k →r
=[(y ≤ � < y + ∆y)|� ≥ y]∆y  (Eq. 3.38) 

Where Δt is an additional time frame of survival beyond time t [103,155,156]. The 

hazard rate can be calculated from the relationship between the survivor function and 

probability density function f(t), which is the derivative of F(t): 

�(y) =  �(y) ∙ ℎ(y) (Eq. 3.39) 

Progression-free survival under first-line therapy with sunitinib and pazopanib, as 

described in section 3.3.6, was evaluated as endpoint in all survival analyses. 

Progression was denoted with 1 and censored data with 0. The non-parametric Kaplan-

Meier analysis is described in section 3.11.1. Parametric methods used in this work 

comprise the Cox regression analysis as well as a model-based time-to-event (TTE) 

approach using NONMEM® described in section 3.11.2 and 3.11.3., respectively. 

 

3.11.1 Kaplan-Meier analysis 

The Kaplan-Meier analysis is one of the most common non-parametric methods used 

in survival analysis. Probability of survival (or the probability of not suffering from a 

progression) can be calculated by multiplying the quotient of patients still alive, which 

results from the difference between the number of patients at risk ni and the number of 

patients with an actual event di at time ti, and divided by the patients at risk at time ti 

for each observed time-point: 

�¥(y�) =  ¦ �%� − w�%� �§
�
�

 (Eq. 3.40) 

Where �¥(y�) denotes for the estimate of the survivor function at time ti with k as vector 

of observed time-points [103,155].  

For graphical analysis the cumulative probability of survival (or no progression) was 

plotted against the observation time. Censored data was denoted with a vertical line at 

the respective point in time. Potential influential factors on progression were tested in 
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univariate analyses. While covariates with only two characteristic values, like gender 

or prior nephrectomy, could be used without modification, continuous covariates had 

to be categorized. Here, categorization was limited to two groups per variable using 

the median as indicator. Single nucleotide polymorphisms, which were already 

categorized, were dichotomized. A list of all tested covariates is shown in Appendix A. 

For assessing potential effects the log-rank test was applied and the p value was 

calculated. In addition, it was necessary to prove these results with a permutation test, 

due to the small sample size as otherwise p values could be false significant. Kaplan-

Meier analysis was performed using the survival package of R whereas the coin 

package was used for permutation tests (Table 3.5) [120,157]. 

 

3.11.2 Cox regression 

The Cox regression model is a semi-parametric model for survival data based on the 

proportional hazard model. The general expression is given by 

ℎ(y) =  ℎr(y) ∙ ,¨ (Eq. 3.41) 

In this case ψ is the linear combination of covariates Xi and their corresponding hazard 

β: 

© =  ª� ∙ «�� +  ª� ∙ «�� … + ª	 ∙ «	� (Eq. 3.42) 

h0(t) can be described as the baseline hazard without any influential factor 

acknowledged. The baseline hazard h0(t) is an unknown entity as the only requirement 

is that h0(t) > 0 ; however by using a maximum likelihood approach the model 

parameters can be estimated [103]. In principle the Cox regression is used to compare 

groups of patients or the influence of covariates based on the hazard ratio (HR) which 

is in general the quotient of hazard functions of two groups with the main assumption 

that the hazard is constant over time [158]: 

~: =  ℎ\(y)ℎJ(y) (Eq. 3.43) 

For parameter estimation the log-likelihood function of the proportional hazard model 

is maximized. This function is specified by [103]: 

Xn'X(ª) = ∑ <��ª«� − ∑ ,­®¯�∈}(k.) �	�
�   (Eq. 3.44) 

with Di being the event indicator which is zero in case of a right censored event and 

one in case of a documented progression. Xi is a vector of covariates for the ith 
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individual with a progression event and the term on the right hand side sums up all 

patients at risk at time ti. The standard method used in the survival package in R is the 

efron algorithm which is a modified version of the likelihood approach explained above. 

However, this method was primarily designed for dealing with tied observations [159]. 

With regard to the low sample size in the underlying cohort every event could be 

assigned to a specific subject. Hence, the use of efron compared to the standard 

approach did not result in different parameter estimates. 

Covariates were tested in a stepwise manner, analogously to the covariate analyses 

for the PK/PD models. The significance criterion for forward inclusion was set to p > 

0.05 and for backward exclusion to p < 0.01. P values were calculated using the Wald- 

and the Likelihood ratio test. Appropriateness of included covariates was assessed by 

calculation of 95% confidence intervals for the estimated β, if possible. Here, the null 

hypothesis (no effect of the respective covariate) could be rejected, if zero was not 

included in the interval. Furthermore, the final models were used for simulation of 

survival curves and compared. A list of all tested covariates is shown in Appendix A. 

Cox regression was performed using the survival package of R [120]. 

 

3.11.3 Model-based time-to-event analysis  

A model-based time-to-event (TTE) approach allows, in contrast to the classical 

survival analysis methods, the direct connection of a PK/PD model with an outcome 

model. In principle, this corresponds to the proportional hazard model used in the Cox 

regression analysis. The hazard β is then estimated similarly to a rate constant in a 

pharmacokinetic model and shares the same unit of time-1. 

Different distributions were tested in this study. The most common distribution used in 

TTE analysis is the exponential distribution with the assumption of a constant hazard 

(β = 0) (Equation 3.45). Due to the relatively short observation times, a constant hazard 

model is usually the appropriate choice for oncology studies. However, additionally two 

time-dependent models were investigated for their applicability. The Gompertz model 

assumes an exponential increase of the baseline hazard over time (Equation 3.46) 

while the Weibull distribution (Equation 3.47) shows a stronger increase of the hazard 

in the beginning becoming almost linear at later time-points [104]. 
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ℎ(y) =  ±r ∙  ,­ (Eq. 3.45) 

ℎ(y) =  ±r ∙  ,­∙k (Eq. 3.46) 

ℎ(y) =  ±r ∙  ,­∙²³ (k) (Eq. 3.47) 

A graphical presentation of all three functions is shown in Figure 3.4. Covariates tested 

included the categorical factors which were also investigated in the classical 

approaches as well as time-dependent covariates. These comprised the plasma 

concentrations and AUC values of sunitinib, SU12662 and pazopanib as well as the 

biomarkers sVEGFR-2/3 and blood pressure. For this purpose the developed PK/PD 

models were linked with the TTE model in a PK/PD/outcome model. Thus, the 

respective exposure parameters could be calculated for every point in time based on 

the individual pharmacokinetic or pharmacodynamic parameter estimates. A covariate 

was kept in the model when its inclusion led to a significant decrease of the objective 

function value (-3.84 with one degree of freedom, p = 0.05). Model appropriateness 

was evaluated, similar to the PK/PD models, with visual predictive checks by simulating 

1000 replicates using the final model parameters and comparing the results to the 

observed survival data using PsN (Section 3.1.5) [111]. Model-based TTE was 

conducted using NONMEM® [88]. 

 

 

  

 

Fig. 3.4: Graphical presentation of the investigated distributions in the model-

based time-to-event analysis. 
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3.12 Markov models for toxicity analysis 

With the exception of hypertension, which was quantified as blood pressure in mmHg 

over the course of the study in all patients, severity of therapy-related toxicity was 

documented using the latest version of the CTCAE v4.03 [105] (Section 1.5.2,  

Tab. 1.2).  

To describe this data appropriately, Markov models were developed to capture the 

presence of certain adverse events and their respective grade over the course of the 

study duration. As only limited data was available for the pazopanib cohort, 

development of these models was solely conducted for sunitinib patients and adverse 

events with a high incidence. The two most common adverse events  

observed in renal cell cancer patients treated with sunitinib patients were 

myelosuppression as well as fatigue. Myelosuppression comprised all blood-related 

adverse events such as anemia, neutropenia, thrombocytopenia and pancytopenia. If 

two blood-related adverse events occurred simultaneously in one patient, the one with 

the highest documented CTCAE grade was included in the analysis. In total, 9 of 24 

sunitinib patients developed a myelosuppression of any grade during the first-line 

therapy and 9 a fatigue of any grade. 

A general statistical approach for analysis of ordered categorical data is the 

proportional odds model [160]. This method allows the modeling of the probability of a 

certain event based on multiple influence factors [154]. For a binominal case, e.g. no 

toxicity or a severity grade of 1, the model can be written as  

$n'Gy(U) = log � U1 − U� =  z ∙ ª« (Eq. 3.48) 

Here, logit(p) is the logarithm of the odd p suffering from grade 1 toxicity. β describes 

the strength of influence of variable X on p and α can be interpreted as baseline risk 

[160,161]. If multiple factors should be acknowledged in the model this can be 

expressed by a linear relationship, similar to the equivalent parameter in the 

proportional hazard model. Main assumption of this approach is that coefficient β is 

identical for every step within the categorized data. In case of drug related toxicity, this 

means that the increase in risk of sustaining a certain grade quantified by β is equal 

for every grade [162]. 

However, one drawback of this method is that all observations are treated as 

independent, which can be quite problematic with regard to the reliability of the 
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estimated probabilities [160]. To cope with this issue a first-order continuous-time 

Markov process was implemented to describe the probabilities of transitions between 

the different toxicity grades in this study. Contrary to the proportional odds model, the 

probability of transition between states is dependent solely on the current observation, 

which is referred to as the Markov property. All other states in the past are ignored and 

have no influence on the transitions [84]. The general definition of the Markov property 

is given by [163]: 

=(«	5� = µ|«� = G�, … , «	u� = G	u�, «	 = G) (Eq. 3.49) 

X is a random variable with a discrete number of possible states, in this case the 

potential CTCAE grades. Assuming that n defines the current time then the equation 

states that the next transition is independent of past events given the actual event. 

However, in this thesis a continuous-time Markov model was used, hence the Markov 

property changes as follows: 

=(«k5e = µ|«e = G) (Eq. 3.50) 

Where t is defined as time at which state i is prevalent and r is the time period the state 

i lasts. Analogous to the discrete case (Equation 3.49) the Markov property is defined 

as memoryless as the possible transition in another state j or the remaining time in the 

current state i is independent of the time already spent in i [163]. 

Analogously to a pharmacokinetic model, a continuous-time Markov process can be 

modeled using a compartmental approach. Each compartment represents a possible 

state with the amounts in a compartment as probabilities which sum up to one in total. 

Transitions between compartments are modeled with rate constants interpreted as 

probabilities for changing the state based on the current state, e.g. k01 for transition 

between no adverse event and CTCAE grade 1 [163,164]. Rate constants describing 

the change to a higher grade can be referred to as “worsening rates”, while “recovery 

rates” characterize the opposite direction. Mathematically, these processes are 

described with ordinary differential equations.  

The number of possible transitions is dependent on the observed data. Usually, it can 

be expected that a toxicity increases gradually over time, so that when severity reaches 

grade 3 the patient has already undergone grade 1 and 2. However, in this study it was 

more often the case that the first grade documented of any toxicity was grade 2 or 

higher. With regard to the CTCAE grading, it is possible that toxicity was nearly 

asymptomatic in the beginning or worsened so fast that no differentiation was possible. 
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Therefore a model which only allowed transitions from the current to the next higher or 

lower state served as basis for analysis. A similar approach was already successfully 

applied to lung cancer patients receiving erlotinib continuously on a daily basis [108]. 

Several reductions of the primary model were tested by assuming that rate constants 

between states are possibly indistinguishable. For comparison a model which allowed 

transitions between all compartments, e.g. switching from the highest grade back to 

the lowest was also considered. The influence of drug exposure (or biomarker 

response) on the worsening and recovery rate constants for blood-related toxicity of 

any grade was tested by using  

− total drug concentration over time 

− active, unbound drug concentration over time 

− cumulative, active, unbound drug AUC over time 

− sVEGFR-2/3 plasma concentration over time  

− sVEGFR-2/3 plasma concentration relative to estimated baseline over time  

In case of missing time frames, e.g. the start of an adverse event was documented, 

but the time-point of recovery was not specified, the duration was set to the end of drug 

intake of the respective cycle. Regardless of the on- or off-phase of sunitinib, the 

minimum duration of an adverse event was assumed to be one week. Model 

performance was evaluated using visual predictive checks for categorical data. The 

model was qualified using the methods as described in Section 3.8.3. Parameter 

estimation was performed using NONMEM® [88].  
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4 RESULTS 

4.1 Biomarker and drug analysis  

4.1.1 sVEGFR-2 

Quality control 

Quality control (QC) samples were analyzed during each assay run to confirm the 

specifications given on precision and accuracy given by the manufacturer. Since 

plasma samples were not available from another cohort of patients, QC samples were 

generated from a different batch of the sVEGFR-2 Kit. Except for one measurement, 

the concentrations of all quality control samples were within the reference range. An 

overview of the QC results for sVEGFR-2 is shown in Table 4.1. 

 

Tab. 4.1: Mean and relative standard deviation (CV, %) of quality control (QC) 

samples for the sVEGFR-2 analysis 

Reference range Mean [pg/mL] CV [%] 

216 - 370 315.5 14.8 

1171 - 1920 1297.9 10.5 

2340 - 3413 2541.0 8.1 

 

Concentration-time profiles (mRCC patients) 

Baseline values were available of 39 patients (88.6%), 25 (92.6%) treated with sunitinib 

and 14 (82.4%) with pazopanib. Missing baseline values were either a result of missing 

samples or the lack of enough material for analysis.  

Mean and median baseline value of the overall population were 9368.4 pg/mL and 

9117.5 pg/mL with a range of 5561.7 – 14211.6 pg/mL, respectively. When building 

subgroups for each drug treatment an arithmetic mean and median of 8982.3 pg/mL 

and 8890.4 pg/mL (range: 5561.7 – 14211.6 pg/mL) were observed for sunitinib 

patients. For pazopanib patients these values denoted with 9937.2 and 9743.6 (range: 

7676.7 – 12679.1 pg/mL), respectively. Figure 4.1 and Figure 4.2 show the mean 

concentration of sVEGFR-2 over the course of the study in patients treated with 

sunitinib and pazopanib, respectively.  
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As expected, sVEGFR-2 concentrations increased to rise again once the off-phase of 

the first cycle started after 4 weeks of continuous dosing in sunitinib patients. 

Pazopanib was given on a daily basis without interruptions; hence the sVEGFR-2 

plasma concentrations did not recover and stayed on a comparable level during the 

whole treatment. Since not all patients were treated over the whole period of 18 weeks 

the most reliable results for biomarker response could be obtained for the first six 

weeks. 

The lowest mean concentration during the first cycle was reached in the fourth 

treatment week for sunitinib with an absolute value of 5069.2 pg/mL which denotes 

with 0.54 relative to baseline. After the same period of time the mean sVEGFR-2 

plasma concentration under pazopanib treatment denoted with 6179.2 pg/mL. 

Whereas the absolute response was slightly lower after 4 weeks of treatment the 

relative response to pazopanib was comparable with 0.56.  

 

Fig. 4.1: Mean relative sVEGFR-2 concentration over time for the first 18 weeks 

after treatment start with sunitinib (not dose normalized). The dashed line 

indicates the mean sVEGFR-2 baseline value of sunitinib patients. Light-

grey boxes indicate the time on treatment. 
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Assessment of normality 

Normality of the sVEGFR-2 plasma concentrations was assessed graphically with QQ-

Plots (Figure 4.3) and using the Shapiro-Wilk test.  

For sunitinib and pazopanib patients combined, the test indicated non-normally 

distributed data with a highly significant p value of 0.00004. This was confirmed when 

building subgroups per treatment resulting in a p value of 0.0008 for sunitinib and 0.004 

for pazopanib.  

The combined data was then log-transformed and tested again. However, this had no 

effect on the overall results with a p-value of 0.001 still indicating non-normally 

distributed data. As a consequence of these findings, solely non-parametric methods 

were used for further analyses (Correlation analysis, 4.1.3). 

 

Fig. 4.2: Mean relative sVEGFR-2 concentration over time for the 18 weeks after 

treatment start pazopanib (not dose normalized). The dashed line 

indicates the mean sVEGFR-2 baseline value of pazopanib patients. The 

light-grey box indicate the time on treatment. 
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Comparison of mean response between sunitinib and pazopanib 

The Mann-Whitney-U test was used to compare the mean responses during the first 4 

treatment weeks, which corresponds to one on-phase of a sunitinib cycle. sVEGFR-2 

response was stronger with sunitinib, independent of dosage. Relative to the mean 

baseline value of each treatment group, sVEGFR-2 plasma levels are decreased by 

43.9% in sunitinib and 37.8% in pazopanib patients in week 4. A comparison of mean 

sVEGFR-2 response to the respective treatment is shown in Table 4.2. 

 

Comparison mRCC and mCRC patients (Sunitinib) 

For mCRC patients, a median baseline value of 9362 pg/mL (range: 7869 – 9941 

pg/mL) was observed, which is slightly higher compared to mRCC patients with a 

median of 8890.4 pg/mL (range: 5561.7 – 14211.6 pg/mL). However, the difference 

was not significantly different. Similar to the mRCC cohort the maximum reduction of 

sVEGFR-2 plasma concentration was achieved after 4 weeks of treatment. 

  

 

Fig. 4.3: Quantile-Quantile plot of absolute sVEGFR-2 concentrations versus the 

quantiles of normal. 
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4.1.2 sVEGFR-3 

Quality control 

Quality control samples were analyzed during each assay run to confirm precision and 

accuracy given by the manufacturer. Since plasma samples were not available from 

another cohort of patient, QC samples were generated from a different batch of the 

sVEGFR-3 Kit. Mean values and relative standard deviations are shown in Table 4.3.  

 

Tab. 4.3:  Mean and relative standard deviation (CV, %) of quality controls for 

sVEGFR-3 

Reference concentration [pg/mL] Mean [pg/mL] CV [%] 

10000.0 9997.2 3.1 

6000.0 5937.5 4.8 

2045.5 2142.7 7.2 

 

  

Tab. 4.2:  Comparison of mean sVEGFR-2 response between sunitinib and 

pazopanib for the first 4 weeks of treatment independent of dose (mRCC 

patients) 

Treatment 

week 

Mean sVEGFR-2 

concentration [pg/mL] 

Mean sVEGFR-2 

concentration [pg/mL] 
p value 

 Sunitinib Pazopanib  

1 8003.6 9116.0 0.26 

2 7282.4 7876.2 0.31 

3 6197.8 7033.5 0.34 

4 5069.2 6179.1 0.24 
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Concentration-time profiles (mRCC patients) 

Baseline values were available from 39 patients (88.6%), 24 (88.9%) treated with 

sunitinib and 15 (88.2%) with pazopanib. Missing baseline values were either a result 

of missing samples or the lack of enough material for analysis.  

Mean and median baseline values of the overall population were 65365.6 pg/mL and 

63132.7 pg/mL with a range of 35854.5 – 103886 pg/mL, respectively. When analyzing 

subgroups for each drug treatment a mean and median of 65433.8 and 64442.1 

(range: 35754.5 – 103886) pg/mL can be observed for sunitinib. For pazopanib 

patients, these values were comparable with 65256.4 and 60247.3 (range: 37159.0 – 

95998.2) pg/mL. Figure 4.4 and Figure 4.5 show the mean concentration of  

sVEGFR-3 over the course of the study in patients treated with sunitinib and 

pazopanib, respectively.  

 

Fig. 4.4: Mean relative sVEGFR-3 concentration over time for the first 18 weeks 

after treatment start with sunitinib (not dose normalized). The dashed line 

indicates the mean sVEGFR-3 baseline value of sunitinib patients. Light-

grey boxes indicate the time on treatment. 
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Assessment of normality 

Analogously to the sVEGFR-2 analysis, normality of the sVEGFR-3 plasma 

concentrations was assessed graphically with QQ-Plots (Figure 4.6) and using the 

Shapiro-Wilk test.  

For sunitinib and pazopanib patients combined, the test indicated non-normally 

distributed data with a highly significant p value < 0.0001. This was confirmed when 

analyzing subgroups per treatment resulting in a p value < 0.0001 for sunitinib and  

< 0.01 for pazopanib.  

The combined data was then log-transformed and tested again. However, this had no 

effect on the overall results with a p value < 0.0002 still indicating non-normally 

distributed data. As a consequence of these findings further analyses used solely non-

parametric methods (Correlation analysis, Section 4.1.3)  

 

Fig. 4.5: Mean relative sVEGFR-3 concentration over time for the first 18 weeks 

after treatment start pazopanib (not dose normalized). The dashed line 

indicates the mean sVEGFR-3 baseline value of pazopanib patients. 

Light-grey boxes indicate the time on treatment. 



84  Results 

   

 

Comparison of mean response between sunitinib and pazopanib 

Whereas the absolute concentrations differed at least at week 4 quite substantially, the 

difference was not statistically significant (Table 4.4). When comparing the mean 

sVEGFR-3 decrease relative to baseline this becomes more evident. At treatment 

week 4 pazopanib led to a 41% lower sVEGFR-3 plasma concentration compared to 

baseline, whereas the effect of sunitinib was slightly stronger with 48%. 

 

Comparison mRCC and mCRC patients (only sunitinib) 

For mCRC patients a median baseline value of 17501 (range: 14617 – 30632) pg/mL 

was observed, which was significantly lower compared to mRCC patients with a 

median of 63133 (range of 35854.5 – 103886) pg/mL. Similarly to the mRCC cohort 

the maximum reduction of sVEGFR-3 plasma concentration was achieved after 4 

weeks of treatment. 

  

 

Fig. 4.6: Quantile-Quantile plot of absolute sVEGFR-3 concentrations versus the 

quantiles of normal. 
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Tab. 4.4:  Comparison of mean sVEGFR-3 response between sunitinib and 

pazopanib for the first 4 weeks of treatment 

Treatment 

week 

Mean sVEGFR-3 

concentration [pg/mL] 

Mean sVEGFR-3 

concentration [pg/mL] 
p value 

 Sunitinib Pazopanib  

1 65511.6 62826.9 0.45 

2 54453.4 54405.0 0.78 

3 39239.16 45604.0 0.43 

4 31730.01 41679.6 0.38 

 

4.1.3  Correlation analysis of sVEGFR-2 and sVEGFR-3 plasma concentrations 

Correlation between sVEGFR-2 and sVEGFR-3 response to sunitinib and pazopanib 

was assessed by graphical inspection (Figure 4.7) and calculation of the Spearman’s 

correlation coefficient (Table 4.5). The use of Spearman’s correlation coefficient was 

necessary due to the non-normal nature of the underlying data. Correlation coefficients 

for the combined cohort as well as separated by drugs were in a similar range, 

indicating that both proteins were comparable in their informative value.  

 

  

Fig. 4.7: Scatterplots of sVEGFR-2 and sVEGFR-3 plasma concentrations.  

(A = under sunitinib treatment, B =  under pazopanib treatment) 
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Tab. 4.5: Correlation analysis sVEGFR-2 and sVEGFR-3 

Treatment Spearman’s correlation coefficient 

Sunitinib/Pazopanib 0.616 

Sunitinib only 0.593 

Pazopanib only 0.658 

 

4.1.4  Blood pressure 

Blood pressure measurements were conducted based on the same schedule for 

determined for plasma sampling. At least one measured value was available for 42 of 

44 patients, including 26 sunitinib and 16 pazopanib patients. Diagnosed hypertension 

was documented for 31 patients (21 sunitinib, 10 pazopanib) while at least 28 patients 

(18 sunitinib, 10 pazopanib) did already receive an antihypertensive treatment before 

or right after starting the targeted therapy.  

In total, 300 measurements were available for analysis. The mean response during 

therapy separated for sunitinib and pazopanib is shown in Figure 4.8. 

Baseline measurements were available for 41 of 44 patients (93.2%) with 25 

accounting for sunitinib (92.6%) and 16 for pazopanib (94.1%). Mean and median 

systolic blood pressure at treatment start was 138.2 mmHg and 136.0 mmHg with a 

range between 99.0 and 179.0 mmHg. After dividing the cohort in subgroups per study 

drug a mean and median of 140.0 mmHg and 137.0 mmHg (range: 99.0 –  

179.0 mmHg) was observed for sunitinib patients and 135.4 mmHg and 133.0 mmHg  

(range: 106.0 – 168.0 mmHg) for pazopanib, respectively. 

Diastolic blood pressure baseline values ranged between 66.0 and 105.0 mmHg for all 

patients with a mean of 82.0 mmHg and a median of 83.0 mmHg. With regard to the 

different treatment groups a mean and median of 83.6 mmHg and 86.0 mmHg  

(range: 66.0 – 105.0 mmHg) resulted for sunitinib and 79.4 mmHg and 78.0 mmHg 

(range: 66.0 – 102.0 mmHg) for pazopanib, respectively. 
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Fig. 4.8.A: Mean relative systolic (upper panel) and diastolic (lower panel) blood 

pressure over time for the first 18 weeks after treatment start with 

sunitinib. The dashed line indicates the mean blood pressure baseline 

value of sunitinib patients. Light-grey boxes indicate the time on 

treatment. 
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Fig. 4.8.B: Mean relative systolic (upper panel) and diastolic blood (lower panel) 

pressure over time for the first 18 weeks after treatment start with 

pazopanib. The dashed line indicates the mean blood pressure 

baseline value of pazopanib patients. Light-grey boxes indicate the 

time on treatment. 
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Comparison of mean response between sunitinib and pazopanib 

Mean response of systolic and diastolic blood pressure show the expected fluctuation 

under sunitinib therapy with increasing values during on-phases and a decrease even 

below the initial baseline value in off-phases. Since pazopanib is administered on a 

daily basis without interruptions a stable increase of systolic and diastolic blood 

pressure was observed with a maximum after 4 weeks of treatment.The Mann-

Whitney-U test was used to compare the mean responses during the first 4 treatment 

weeks, which corresponds to one on-phase of a sunitinib cycle. Mean values per week 

and per drug and their corresponding p values are shown in Table 4.6 A for systolic 

and in Table 4.6 B for diastolic blood pressure. There was no statistically significant 

difference between the mean blood pressure response in sunitinib and pazopanib after 

the first 4 treatment weeks. 

 

Tab. 4.6 A:  Comparison of mean systolic blood pressure response between 

sunitinib and pazopanib for the first 4 weeks of treatment 

Treatment 

week 

Mean systolic blood 

pressure [mmHg] 

Mean systolic blood 

pressure [mmHg] 
p value 

 Sunitinib Pazopanib  

1 134.9 138.2 0.48 

2 140.8 147.5 0.47 

3 157.5 150.6 0.59 

4 138.2 155.0 0.06 

 

Tab. 4.6 B:  Comparison of mean diastolic blood pressure response between 

sunitinib and pazopanib for the first 4 weeks of treatment 

Treatment 

week 

Mean diastolic blood 

pressure [mmHg] 

Mean diastolic blood 

pressure [mmHg] 
p value 

 Sunitinib Pazopanib  

1 83.4 86.5 0.51 

2 85.1 88.2 0.36 

3 91.6 87.4 0.44 

4 84.4 90.3 0.25 
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4.1.5 Sunitinib and N-Desethylsunitinib (SU12662) 

374 samples from 26 mRCC patients were available for analysis (excluding baseline 

measurements for biomarker analysis before treatment start). 8 samples (2.1%) were 

below the limit of quantification for sunitinib or SU12662, respectively. Referring to the 

M1 method (Section 3.8.7), these values were excluded from the dataset. For details 

on the measurements in the included mCRC patients please refer to Kanefendt et al. 

[126]. 

 

Link between pharmacokinetics and pharmacodynamic response 

The relationship between sunitinib pharmacokinetics and biomarker response in 

mRCC patients was assessed by graphical inspection of the mean response of the 

respective biomarker and the INH calculated from the mean measured active 

concentration of sunitinib and SU12662 (Equation 3.29). This PK/PD relationship was 

previously proposed by Lindauer et al. in healthy volunteers [109]. 

As the Figures 4.9 A-D indicate, the effects of active, unbound sunitinib and SU12662 

concentration were time-delayed and full response was reached later in the treatment 

cycle. During the off-phase of two weeks the concentrations of sVEGFR-2 and 

sVEGFR-3 as well as blood pressure recovered. 
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.  

Fig. 4.9:  Mean relative sVEGFR-2 concentration (A), mean relative sVEGFR-3 

concentration (B), mean relative systolic blood pressure (C) and mean 

relative diastolic blood pressure (D) vs. inhibitory function (INH) for the 

first 6 weeks of sunitinib treatment. 
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4.1.6  Pazopanib 

98 samples from 17 mRCC patients were available for analysis (excluding baseline 

measurements for biomarker analysis before treatment start). 3 samples (3.1%) were 

below the limit of quantification for pazopanib (0.1086 µg/mL). Referring to the M1 

method, these values were excluded from the dataset (Section 3.8.7). 

 

Link between pharmacokinetics and pharmacodynamic response 

The relationship between pazopanib pharmacokinetics and the pharmacodynamic 

response was assessed by graphical inspection. Here, the plasma concentration of 

pazopanib and the calculated INH for pazopanib were plotted against the respective 

pharmacodynamic parameter. As the final PK/PD models used the total plasma 

concentration of pazopanib to describe the pharmacodynamic effects on blood 

pressure, sVEGFR-2 and sVEGFR-3, (see Section 4.3) only this relationship is 

presented in Figure 4.10 A-D. 

Similarly to sunitinib, a time delay between the plasma concentrations of pazopanib 

and the maximum decrease or increase of the respective pharmacodynamic effect was 

observed. The usual therapy scheme does not include an off-phase without drug 

administration comparable to sunitinib, but is given continuously instead. Therefore, a 

hysteresis curve could not observed in the underlying data.  
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Fig. 4.10: Mean relative sVEGFR-2 concentration (A), mean relative sVEGFR-3 

concentration (B), mean relative systolic blood pressure (C) and mean 

relative diastolic blood pressure (D) vs. the mean pazopanib plasma 

concentration for the first 6 weeks of pazopanib treatment. 
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4.2 Pharmacokinetic Models 

4.2.1 Sunitinib and N-Desethylsunitinib (SU12662) 

Model development based on Lindauer et al. [109] 

Absorption was described via a transit compartment model. The respective parameters 

could not be estimated with enough precision with the underlying data and were 

therefore fixed to the values reported by Lindauer et al. [109]. The estimated population 

parameters of the remaining model parameters of the base model were different to 

what was previously reported in other analyses [109,126].  

To account for missing dosing information in some cases, a parameter to estimate the 

variability on time of drug intake was considered. Introduction of this parameter led to 

an OFV decrease by 776.8 (p < 0.0001) and highly improved the overall model fit. 

However, the estimation of an inter-individual variability (IIV) on this parameter did not 

improve the model fit further. This was especially obvious when comparing the 

individual concentration vs time plots before and after the inclusion, which did not show 

any improvement. The same was observed when fixing the IIV to an arbitrary high 

value.  Similar to the previous analysis of the mCRC patient data alone by Kanefendt 

et al. [126], the introduction of an additional peripheral compartment for SU12662 led 

to a significant improvement of the model (-30.2, p < 0.0001). However, the population 

parameter for the peripheral volume of the parent drug could not be estimated with 

enough precision and was therefore fixed to the reference value reported by Lindauer 

et al. [109] Separate proportional residual errors were best describing the remaining 

residual variability of the model. 

IIV estimated on clearance, central volume of sunitinib (V1Sunitinib), central volume of 

SU12662 (V1SU12662) and the fraction metabolized to SU12662 (FM) improved the 

model further. The removal of those parameters from the model led to significant 

worsening of the objective function value (CLSunitinib: +55.1 p < 0.0001, V1Sunitinib: +20.3 

p < 0.0001, V1SU12662: +25.3 p < 0.0001, FM: +106.7 p < 0.0001). Estimation of a 

covariance between the IIV of CLSunitinib and the IIV of V1Sunitinib decreased the objective 

function value (OFV) by 20.9 and was therefore kept in the model. 

η- and ε-Shrinkage was below 20% for all estimated parameters, hence a model 

misspecification regarding the statistical model could be excluded. 
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Inter-occasion variability (IOV), based on therapy cycles of sunitinib, was tested on IIV 

of CLSunitinib and V1Sunitinib, but did not lead to a statistically significant model 

improvement, indicating that the pharmacokinetics to not vary over time.  

Based on analysis of the CWRES, six observations were removed from the dataset, 

exceeding values over or under 4.5 and -4.5, respectively. Even though not all of these 

values did exceed the threshold of ± 6 for outliers defined in Section 3.6.1, their 

influence on the model parameters was investigated. The percentage change of the 

model parameters after exclusion is shown in Table 4.7. 

 

Tab. 4.7.:  Percentage changes of population parameters after exclusion of 

potential outliers 

Parameter Unit Percentage change after outlier exclusion 

CLSunitinib [L/h] -1.18 

V1Sunitinib [L] -1.75 

V2Sunitinib [L] Parameter fixed 

QP [L/h] +2.74 

CLSU12662 [L/h] -0.50 

V1SU12662 [L] +2.43 

V2SU12662 [L] -6.41 

QM [L/h] -19.78 

Lag-time [h] +4.47 

ηCLSunitinib  +0.64 

ηV1Sunitinib  -0.53 

ηV1SU12662  -41.10 

ηFM  +1.54 

 

Final parameter estimates of this model can be found in Table 4.8 B. 

  



96  Results 

   

Model development based on Yu et al. [110] 

Similarly to the reference model, liver blood flow (QH) was fixed to 80 L/h and the 

fraction metabolized to SU12662 to 0.21. A second compartment for sunitinib improved 

the model fit significantly (dOFV -128.5, p < 0.0001). However, the volume for the 

respective compartment could not be estimated with sufficient precision and was 

therefore fixed to a value previously reported by Houk et al. (Table 4.8 A) [165]. Fixing 

this parameter increased the OFV by 11.6. However, compared to the base model, the 

effect was still highly significant (dOFV 118.9, p < 0.0001). Similar to the reference 

model, clearance and volume parameters were scaled to a reference body weight of 

70 kg to allow a better comparison with the literature values. In case of missing weight 

data the value was set to the respective population mean, stratified by gender. A 

proportional error model described the residual variability for both molecules best. 

IIV was estimated for sunitinib clearance, central volume of sunitinib and SU12662 as 

well as the fraction metabolized to SU12662. Removal of these parameters from the 

model led to significant worsening of the model fit (CL +90.6 p < 0.0001, V1Sunitinib 

+42.0, p < 0.0001; V1 (SU12662) +18.5, p < 0.0001; FM: +134.7, p < 0.0001). While 

the removal of the IIV on the absorption rate constant ka increased the OFV by 27.3, 

the η-shrinkage on this parameter was reported with > 40% and was therefore 

considered as non-reliable estimate of the variability. η- and ε-Shrinkage was below 

20% for all other estimated parameters, hence a model-misspecification regarding the 

statistical model could be excluded.  

IOV, based on therapy cycles of sunitinib, was tested on the IIV of CL and IIV of 

V1Sunitinib, but did not lead to a statistically significant model improvement, indicating 

that the pharmacokinetics did not vary over the course of the therapy.  

 

Model selection 

The PK model based on the one published by Yu et al. was considered superior and 

was therefore used for further analysis. This decision was based on the comparison of 

goodness-of-fit plots, visual predictive checks, and the reliability of the parameter 

estimates (Figure 4.11 and Appendix D.I). An overview on the final parameter 

estimates including bootstrap residuals and 90% confidence intervals for both models 

can be found in Table 4.8 A-B. 



Results  97 

  

While the VPCs for both models indicate an adequate description of the data over the 

course of the therapy, the GOF plots showed that the model based on Lindauer et al. 

was not able to adequately describe maximum plasma concentrations of sunitinib and 

its metabolite, which is illustrated by a sharper cut-off of the population predictions. In 

addition, when plotting the individual and population predictions of both models against 

each other, it becomes more evident, that some higher plasma concentrations are not 

adequately described when using the model by Lindauer et al. (Appendix D.I). 

In addition the individual predictions, population predictions and CWRES of both 

models were plotted against each other to identify deviations between predictions. For 

this purpose identical data sets, thus without the exclusion of the observations 

mentioned above for the transit compartment based model, were used. These plots 

indicated that the use of the model based on healthy volunteers led to a mistakenly 

identification of potential outliers. The respective observations could be described by 

the other model and were therefore not removed during the modeling process.  

Furthermore, the need for a correction parameter to account for missing or unreliable 

information on dosing time, introduced additional uncertainty when the model based 

on Lindauer et al. was used. This approach was particularly problematic, as it was not 

possible to estimate variability on the correction factor without destabilizing the model. 

Hence, one fixed-effect parameter was applied to all patients which leads to a high 

uncertainty.  

A schematic overview of the final structural model can be found in Figure 4.12. 
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Fig 4.11: Visual predictive check of sunitinib (A) and SU12662 (B) concentrations 

for the first 6 weeks of treatment. The black solid lines indicate the mean 

model prediction and the 90% prediction interval. Dotted lines show the 

measured mean and interval, respectively. Dark and light grey areas 

represent the respective confidence bands.  
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Tab 4.8 A:  Final parameter estimates for sunitinib and SU12662 based on the 

model by Yu et al. [110] 

Parameter Unit Estimate (RSE, %) 
Mean 

(Bootstrap) 
90% CI 

Sunitinib     

ka [1/h] 0.133 (34.6) 0.149 0.097 – 0.251 

CLSunitinib [L/h] 33.9 (6.0) 33.9 30.8 – 37.5 

V1Sunitinib [L] 1820.0 (6.6) 1812.1 1607.8 – 1812.2 

V2Sunitinib [L] 588* - - 

QP [L/h] 0.371 (18.9) 0.373 0.263 – 0.494 

QH [L/h] 80* - - 

σP  -0.367 (14.1) -0.361 -0.450 – (-0.283) 

SU12262     

CLSU12262 [L/h] 16.5 (5.4) 16.5 15.0 – 17.9 

V1SU12262 [L] 730 (14.1) 713.6 545.9 – 872.9 

V2SU12262 [L] 592 (13.2) 604.9 481.0 – 737.4 

QM [L/h] 2.75 (24.6) 2.90 1.96 – 4.27 

FM - 0.21 * - - 

σM - -0.281 (10.8) -0.276 -0.326 – (-0.229) 

IIV     

ηCLSunitinib % 30.3 (29.0) 29.0 22.2 – 35.2 

ρ(CLSunitinib, 

V1Sunitinib) 
. -0.061 (48.3) -0.069 -0.127 – (-0.019) 

ρ(CLSunitinib, 

FM) 
% -0.0425 (40.8) -0.0392 -0.0671 – (-0.0130) 

ηV1Sunitinib % 25.3 (30.3) 23.0 18.0 – 29.7 

ρ(V1Sunitinib, 

V1SU12662) 
- 0.0481 (51.8) 0.0534 0.0091 - 0.0996 

ηV1SU12262 % 42.9 (54.8) 46.5 30.3 – 65.9 

ηFM % 34.6 (20.5) 33.5 27.5 – 38.7 

*Parameter fixed 
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Tab 4.8 B: Final parameter estimates for sunitinib and SU12662 based on the 

model by Lindauer et al. [109] 

Parameter Unit Estimate (RSE, %) 
Mean 

(Bootstrap) 
90% CI 

Sunitinib     

ka [1/h] 0.54* -  

CLSunitinib [L/h] 41.8 (6) 41.0 36.9 – 45.5 

V1Sunitinib [L] 3350 (7) 3330 2952 - 3772 

V2Sunitinib [L] 221* - - 

QP [L/h] 0.674 (29) 0.677 0.368 – 1.037 

NN - 1.46*  - 

RFP - 1.91*  - 

MTT [h] 1.48*  - 

Lag-time [h] -3.97 -3.87 -4.83 - -2.79 

σP mRCC - -0.328 (20) -0.318 -0.430  - (-0.221) 

σP mCRC - -0.365 (15) -0.355 -0.446 – (-0.249) 

SU12262     

CLSU12262 [L/h] 19.8 (5) 19.62 17.84 – 21.66 

V1SU12262 [L] 2110 (8) 2080 1793 - 2376 

V2SU12262 [L] 540 (13) 575 445 – 731 

QM [L/h] 1.46 (26) 1.56 0.98 – 2.43 

FM - 0.21* -  

σM mRCC - 0.322 (11) 0.320 0.260 – 0.382 

σM mCRC  0.273 (9) 0.268 0.224 – 0.308 

IIV     

ηCLSunitinib % 41.4 (15) 38.3 28.7 – 47.6 

ρ(CLSunitinib, 

V1Sunitinib) 
- 0.153 0.144 0.074 – 0.225 

ηV1Sunitinib % 45.3 (16) 43.2 27.2 – 47.5 

ηV1SU12262 % 32.2 (20) 32.3 21.1 – 44.7 

ηFM % 46.8 (11) 43.7 35.8 – 51.6 

RFP = ratio of presystemic to systemic metabolite formation; MTT = mean transit 

time; NN = Number of transit compartments; *Parameter fixed 
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Fig. 4.12: 

 

Schematic overview of the structure of the pharmacokinetic model for 

sunitinib and its active metabolite (modified from Yu et al. [110]). 

 

Covariate Analysis 

The systematic covariate search did not reveal any significant effects on one of the 

model parameters. Of particular interest was the effect of the ABCB1 SNP on 

clearance, which was previously reported by Diekstra et al. [166]. However, this effect 

could not be reproduced with the underlying data. An overview on all covariates tested 

can be found in Appendix A. 

 

Influence of fixed parameters in the final model 

Variation of the fixed parameters of QH, V2Sunitinib and FM resulted in differences 

between the estimated population means of the final model and the respective 

modified models. When fixing the value for QH between -50 and +50% the highest 

effect could be observed for the central volumes of sunitinib and SU12662 with a RPE 

varying between -23.6 - 11.5% and -19.5 – 42.5%, respectively. However, mean RPE 

was below 12% for all parameters and the estimated means were all within the 90 % 

confidence interval of the final model. 
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The variation of V2Sunitinib only affected the estimate of the intercompartmental 

clearance (QP) between the central and the peripheral compartment of with a RPE 

varying between -10.8 and 13.5%. Again, mean RPE was fairly low for all parameters 

with a maximum of 0.43% for QP. Estimated means were all within the 90% confidence 

interval of the final model. 

Varying the fraction metabolized to SU12662 led to expected results. Due to the close 

relationship to all parameters related to the active metabolite, in detail the metabolite 

clearance, the central and peripheral volume and the intercompartmental clearance, 

changing the metabolized fraction resulted in comparable variations in these 

parameters. 

 

Influence of dosing time in the final model 

Due to the inconsistent documentation of dosing time in the mRCC dataset and the 

fixed dosing time-point for the mCRC patients, the influence of the time of drug intake 

was investigated in a sensitivity analysis. Absorption rate constant (ka), in particular, 

was affected by dosing time with a RPE of -36.9%. However, mean (0.084 h-1) and 

median (0.065 h-1) were still within the 90% confidence interval of the final parameter 

estimate. Furthermore, the peripheral volume of distribution and the 

intercompartmental clearance related to SU12622 showed a rather large variation with 

a RPE of -21.7 and 26.5%, respectively. Again, mean and median of both parameters 

were still within the 90% confidence interval of the final parameter estimates of the 

reference model. 

Similarly affected was the residual error estimated for sunitinib, which was increased 

by 25.2% on average. Inter-individual variability on the central compartment of 

SU12662 varied also by a rather large margin with an estimated RPE of 29.8%. Yet, 

all 50 simulated data resulted in comparable parameter estimates with the main 

influence on the absorption process, which was expected due to variability and quality 

in data available for drug intake. Since all parameters estimates were always within 

the bootstrap confidence interval of the main model, the influence of dosing time was 

considered negligible. Fixing the time of drug intake using a consequent rule, as 

described in 3.8.5, resulted in reliable parameter estimates, given the fact that the 

quality of documentation was variable in the underlying study. Results of the sensitivity 

analysis are shown in Table 4.9. 
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Tab. 4.9:  Results of the sensitivity analysis with respect to dosing time 

Parameter Unit Estimate CI (90%) Mean Median RPE, % 

ka 1/h 0.133 0.010 – 0.250 0.084 0.065 -36.9 

V1Sunitinib L 1820 1607.8 – 1812.2 1778.6 1780 -2.3 

CLSunitinib L/h 33.9 30.8 – 37.5 35.3 35.4 4.2 

CLSU12662 L/h 16.5 15.0 – 17.9 16.97 16.9 2.8 

V1SU12662 L 730 545.9 – 872.9 571.36 571 -21.7 

QM L/h 2.75 1.96 – 4.27 3.48 3.4 26.5 

V2 SU12662 L 592 481.0 – 737.4 615.33 633.5 3.9 

QP L/h 0.371 0.263 – 0.494 0.353 0.3555 -4.9 

σP - -0.367 -0.45 - -0.283 -0.459 -0.457 25.2 

σM - -0.281 -0.326 - -0.229 -0.297 -0.295 5.5 

ηV1Sunitinib % 25.3 24.5 - 30.0 29.50 29 16.6 

η V1SU12262 % 42.9 42.42 - 66.3 55.68 47.9 29.8 

ηCLSunitinib % 30.3 29 - 35.9 28.34 29.2 -6.5 

ηFM % 34.6 33.5 - 39.0 34.52 35.2 -0.2 

 

4.2.2 Pazopanib 

Since only limited pharmacokinetic data on patients treated with pazopanib was 

available. A Bayesian approach was chosen to obtain individual pharmacokinetic 

parameters for each individual patient. Basis for this analysis was the model published 

by Yu et al. [152]. No structural changes were made to this model and all population 

parameters and their respective variability were fixed to the reported values, with the 

exception of IOV, as this parameter was very specific to the published analysis (Table 

4.10). A schematic overview of the final model used can be found in Figure 4.13. 
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Fig. 4.13: 

 

Schematic overview of the structure of the pharmacokinetic model for 

pazopanib (modified from Yu et al. [152]). 

 

In this model IIV was only considered for pazopanib clearance (CLPazopanib) the fast 

absorption rate constant (ka(fast)), peripheral volume of distribution (V2Pazopanib) and 

bioavailable fraction (F). Hence, only these parameters varied across the patients in 

this study. Descriptive statistics for each model parameter are shown in Table 4.11. 
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Tab 4.10:  Parameter estimates for pazopanib pharmacokinetics reported by  

Yu et al. [152] 

Parameter Unit Estimate RSE (%) IIV (%) IOV (%) 

ka(fast) h-1 0.40 31 140 - 

ka(slow) h-1 0.12 28 - - 

Ffast % 36.1 34 - - 

Fslow % 63.9 34 - - 

Lag-time h 0.98 6 - - 

CLPazopanib L/h 0.27 23 30.9 - 

V1Pazopanib L 2.43 34 - - 

QP L/h 0.99 29 - - 

V2Pazopanib L 25.1 27 98.2 - 

Rel. F at dose 200 mg - 1* - 35.6 75.5 

Max effect of dose level 

on F 

- 1* - - - 

Half max dose level mg 480 23 - - 

Decrease of F over time % 50.1 27 - - 

Decay constant day-1 0.15 43 - - 

 

Tab. 4.11: Descriptive statistics of individual parameter estimates for pazopanib 

based on the model by Yu et al. [152] 

Statistic CLPazopanib [L/h] VPazopanib [L] ka(fast) [h-1] Rel. F at dose 

200 mg 

Mean 0.24 29.61 0.81 0.36 

Median 0.23 23.50 0.52 0.34 

Range 0.18 – 0.35 3.73 – 95.32 0.08 – 4.25 0.24 – 0.57 

SD 0.05 23.74 0.99 0.10 

Relative  

SD (%) 
19.15 80.18 121.66 27.08 

SD = Standard deviation 
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4.3 PK/PD models 

4.3.1 sVEGFR-2 

Sunitinib 

The model originally developed for healthy volunteers and for sVEGFR-2 could 

successfully be adapted to patients with mRCC and mCRC. The concentration-time 

profile of the soluble receptor was best described using an inverse-linear link between 

PK and PD (Section 3.10.1). An Emax model was tested for comparison but did not 

result in a statistically significant improvement of the model fit. 

 

Tab. 4.12: Final parameter estimates of the sunitinib PK/PD model for sVEGFR-2 

Parameter Unit 
Estimate 

(RSE, %) 

Mean 

(Bootstrap) 

Median 

(Bootstrap) 

90% CI 

(Bootstrap) 

Structural model 

Baseline pg/mL 9030 (2.9) 9038 9030 8602 – 9477 

α - 2.31 (8.8) 2.31 2.31 1.98 – 2.64 

kout 1/h 0.0043 (7.6) 0.0043 0.0043 0.0038 – 0.0049 

KD µg/mL 4* - - - 

Statistical model 

σ - 0.124 (6.8) 0.122 0.122 0.108 – 0-136 

η (Baseline) % 19.9 (21.4) 19.4 19.2 16.0 – 22.8 

Covariate model 

Tumor type 

on α 
- -0.328 (24.6) -0.322 -0.329 -0.440 – -0-186 

FLT-1 on α - -0.565 (25.4) -0.557 -0.562 -0.787 – -0-319 

ABCR2 on 

α 
- -0.311 (37.9) -0.307 -0.306 -0.497 – -0-117 

FLT-1 = VEGFR-3 rs6877011; ABCR2 = ABCB1 rs2032582 

 

In contrast to the reference model by Lindauer et al., the residual error was best 

described by a proportional error model. A combined additive and proportional error 

model did not result in a significant improvement of the model fit (dOFV = -2.64). 

Neither did the subdivision of the residual error by tumor type (mRCC vs mCRC). Using 

solely an additive residual error even worsened the overall model performance (dOFV 
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= +11.59). While the inclusion of IOV per cycle on the estimated baseline and α did 

result in a significant decrease of the OFV (-11.59 and -15.85, respectively), the 

estimated parameter was not reliable due to a high RSE and a shrinkage above 40% 

in both cases. Furthermore, the estimated IOV on sVEGFR-2 baseline was relatively 

low with 9% and therefore most likely not relevant. 

Including an IIV on sVEGFR-2 baseline, intrinsic activity α and degradation constant 

kout lead to a highly significant decrease of the OFV by -261.4 (p < 0.0001). However, 

after stepwise elimination of each IIV from the full statistical model only η (α) and η 

(Baseline) were kept. The removal of η (kout) showed no significant worsening of the 

model fit (dOFV = +3.52) and was therefore not included in the final model. However, 

after the full covariate model was established, the IIV on α approached zero and was 

removed without any effect on the model fit and the OFV, respectively. 

Final parameter estimates and the respective bootstrap mean, median and 90% 

confidence interval can be found in Table 4.12. For comparison the estimates for each 

parameter from the original analysis in healthy volunteers is also shown. 

 

Covariate analysis 

Systematic covariate search revealed three statistically significant covariates which 

were kept in the final model: 

− Higher intrinsic activity of sunitinib/SU12662 for patients with mRCC  

Compared to mRCC patients, mCRC patients showed a 32.8% lower intrinsic 

activity of sunitinib on sVEGFR-2 levels (2.31 vs 1.55). Exclusion of this 

covariate in the final backward elimination step increased the OFV by 8.78 (p = 

0.003) 

− Decreased intrinsic activity of sunitinib/SU12662 for patients with VEGFR-3 

rs6877011 (1=CG/GG;0=CC): 

Patients with a CG/GG allele showed a 56.5% decreased intrinsic activity α 

compared to the wildtype (2.31 vs 1.00 in case of mRCC patients and 1.55 vs 

0.65 for mCRC patients). Exclusion of this covariate in the final backward 

elimination step increased the OFV by 12.35 (p = 0.0004). 
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− Decreased intrinsic activity of sunitinib/SU12662 for patients with ABCB1 

rs2032582 (1=GT/TT; 0=GG)  

Patients with a GT/TT allele had a 31.1% decreased intrinsic activity of 

sunitinib (2.31 vs 1.59 in case of mRCC patients and 1.55 vs 1.07 for mCRC 

patients) on sVEGFR-2 levels compared to wildtype GG carriers. Exclusion of 

this covariate in the final backward elimination step increased the OFV by 6.7 

(p = 0.01). 

In the full covariate model shrinkage on α increased above the threshold value of  

30 % (Section 3.8.3). Removing this parameter from the model increased the OFV by 

2.42. 

  

The pcVPC indicates that the model is able to sufficiently describe the underlying data. 

No model misspecification or systematic errors could be identified in the GOF plots. 

However the population predictions (PRED) vs. dependent variable (DV) plot shows a 

cut-off at high concentrations, indicating that these cannot be described well by the 

population model. This is most likely explained by the individual sVEGFR-2 baseline 

 

Fig 4.14: Visual predictive check of sVEGFR-2 for the first 6 weeks of sunitinib 

treatment. The black solid lines indicate the mean model prediction and 

the 90% prediction interval. Dotted lines show the measured mean and 

interval, respectively. Dark and light grey areas represent the respective 

confidence bands. The dark-grey rectangle represents the time on 

treatment. 
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values, since the PRED do not include inter-individual variations, applying the same 

baseline value for all patients. (Appendix D.II). The covariate effects are listed in Table 

4.12, where FLT-1 denotes for VEGFR-3 rs6877011 and ABCR2 for ABCB1 

rs2032582. 

 

Pazopanib 

sVEGFR-2 plasma concentrations during pazopanib treatment were also best 

described with an inverse-linear relationship of the active pazopanib concentration and 

the turnover rate constant kin. The Emax and the power function provided comparable 

results regarding the overall fit. However, the turnover model using an inverse linear 

relationship was preferred as a similar relationship between sunitinib pharmacokinetics 

and sVEGFR-2 was already successfully established (see above). Using the fractional 

tyrosine kinase inhibition INH (Equation 3.29) instead of the active concentration 

worsened the model fit significantly (dOFV = +5.2). Furthermore, goodness-of-fit plots 

indicated that low plasma concentrations of sVEGFR-2 could not be predicted 

sufficiently enough using INH. Active concentration of pazopanib assumed a protein 

binding of 99.9% [45]. Parameter estimates, except for the magnitude of α, were not 

influenced by this value. 

Applying an IIV on sVEGFR-2 baseline, α and kout decreased the OFV significantly by 

96.52. Systematically removing each parameter again from the model worsened the 

model fit in all cases. OFV increased by 23.9 when fixing IIV on sVEGFR-2 baseline 

concentration to 0 and by 30.5 and 18.2 for IIV on α and kout respectively. 

Although the exclusion of IIV on kout worsened the model fit significantly, this parameter 

introduced a high bias of the model parameters. A case deletion diagnostic (CDD) 

analysis revealed a bias of 281.7% for η (α), 75.5% for α and 82.5% for η (Baseline). 

Removing the parameter from the model reduced the bias (η (α): 9.8%, α: 22.1%,  

η (Baseline): 41.2%) and stabilized the model. Estimation of correlations between 

model parameters had no significant impact on the model performance. 

Table 4.13 shows an overview of the final parameter estimates including bootstrap 

confidence intervals. The respective pcVPC is shown in Figure 4.15. 
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Tab. 4.13: Final parameter estimates of the pazopanib PK/PD model for  

sVEGFR-2 

Parameter Unit 
Estimate 

(RSE, %) 

Mean 

(Bootstrap) 

Median 

(Bootstrap) 

90% CI 

(Bootstrap) 

Structural model 

Baseline pg/mL 9820 (3.4) 9825 9825 9271 – 10390 

α - 22.1 (21.4) 22.5 21.5 15.7 – 30.9 

kout 1/h 0.0038 (27.9) 0.0040 0.0040 0.0022 – 0.0059 

Statistical model 

Residual 

Error 
pg/mL 846 (21.6) 794 818 593 – 981 

η (Baseline) % 12.7 (38.0) 12.4 12.2 8.0 – 15.9 

η (α) % 46 (48.2) 46.0 44.9 26.7 – 62.8 

 

  

 

Fig. 4.15: Visual predictive check of sVEGFR-2 for the first 6 weeks of pazopanib 

treatment. The black solid lines indicate the mean model prediction and 

the 90% prediction interval. Dotted lines show the measured mean and 

interval, respectively. Dark and light grey areas represent the respective 

confidence bands. The dark-grey rectangle represents the time on 

treatment. 
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4.3.2 sVEGFR-3 

Sunitinib 

The model originally developed for healthy volunteers and for sVEGFR-2 could 

successfully be adapted to patients with mRCC and mCRC. Again, the concentration 

time profile of the soluble receptor was best describe using an inverse-linear link 

between PK and PD. Introduction of IIV on all model parameters except KD, which was 

fixed to a literature value, led to a highly significant decrease of the OFV  

(dOFV: -743.56). Yet, the estimated variability on kout showed a shrinkage higher than 

the threshold value of 30% and was therefore removed. This did not lead to a 

significant worsening of the model (dOFV: 0.79). Inter-occasion variability was tested 

on both, the intrinsic activity α and the baseline values, but did not result in a significant 

model improvement (dOFV:-1.96 and -3.31, respectively). Estimation of a covariance 

between α and the sVEGFR-3 baseline value further improved the model, decreasing 

the OFV significantly by -8.03. 

 

Covariate analysis 

In the covariate analysis one influential factor was identified. The inclusion of “tumor 

entity” on the estimated baseline value of sVEGFR-3 highly improved the model fit, 

shown by an increase of 53.68 in the OFV after removal of this parameter. The 

population mean for mRCC patients was estimated to be 63500 pg/mL, whereas for 

mCRC patients a lower value of 22733 pg/mL was predicted. 

Goodness-of-fit plots of the final model can be found in Appendix D.III. Whereas the 

IPRED vs DV plot, where inter-individual variability is taken into account, suggests a 

good model performance, the PRED vs DV graphics reveal that the maximum 

concentrations of sVEGFR-3 cannot be adequately be described using the population 

model, showing a cut-off at a certain concentration. The same was observed for 

sVEGFR-2 and can also be explained by the estimated baseline concentration at time 

zero, which is a set to an identical value for all patients. However, the pcVPC shown 

in Figure 4.16 indicates that the model is able to describe the data sufficiently well. 

An overview on the final model parameters and their respective 90% bootstrap 

confidence interval and standard error is shown in Table 4.14. 
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Tab. 4.14:  Final parameter estimates of the sunitinib PK/PD model for sVEGFR-3 

Parameter Unit 
Estimate 

(RSE, %) 

Mean 

(Bootstrap) 

Median 

(Bootstrap) 

90% CI 

(Bootstrap) 

Structural model 

Baseline pg/mL 63500 (5.9) 63750 63853 57305 – 69800 

α - 1.74 (9.8) 1.76 1.75 1.49 – 2.05 

kout 1/h 0.0053 (7.2) 0.0054 0.0054 0.0047 – 0.0060 

KD µg/mL 4* - - - 

Statistical model 

Residual Error - 0.15 (6.9) 0.15 0.15 0.13 – 0.17 

η (Baseline) % 42.6 (24.4) 40.1 39.8 31.8 – 48.1 

η (α) % 54.3 (43.5) 51.3 50.3 30.9 -68.8 

ρ (Baseline, α)  - 0.123 (39.6) 0.123 0.122 0.045 – 0.209 

Covariate model 

Tumor type on 

baseline 
- -0.642 (6.5) -0.640  -0.703 – (-0.569) 

*Parameter fixed 

 

Fig 4.16: Visual predictive check of sVEGFR-2 for the first 6 weeks of sunitinib 

treatment. The black solid lines indicate the mean model prediction and 

the 90% prediction interval. Dotted lines show the measured mean and 

interval, respectively. Dark and light grey areas represent the respective 

confidence bands. The dark-grey rectangle represents the time on 

treatment. 
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Pazopanib 

Several models showed potential to be best describing PK/PD relationship between 

pazopanib and sVEGFR-3.  

Using the fractional inhibition (INH, Equation 3.29) as influence factor in an inverse-

linear model resulted in poor estimation of low observed concentration. When using 

only the active concentration the model fit highly improved (dOFV: – 20.98). Using a 

direct linear approach decreased the OFV further. However, when adding IIV on all 

relevant parameters both models performed equally well. VPCs indicated that the 

inverse-linear relationship was favorable in this case. Due to the parameterization of 

the model, the choice of the fraction of protein binding had no significant influence on 

parameter estimates except for the magnitude of α. A pcVPC of the final model is 

shown in Figure 4.17.  

 

  

 

Fig 4.17: Visual predictive check of sVEGFR-3 for the first 6 weeks of pazopanib 

treatment. The black solid lines indicate the mean model prediction and 

the 90% prediction interval. Dotted lines show the measured mean and 

interval, respectively. Dark and light grey areas represent the respective 

confidence bands. The dark-grey rectangle represents the time on 

treatment. 
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Introduction of IIV on model parameters improved the fit significantly (dOFV: -106.2). 

However, comparable to the model for sVEGFR-2 in pazopanib patients, IIV on kout 

resulted in a high bias for almost all parameters (α: 80.4%, kout: 568.0%, η (α): 175.4%). 

Removal of η (kout) resolved this issue sufficiently (α: 27.5%, kout: 7.1%, η (α): 121.7%) 

with a moderate increase of the OFV only. 

Table 4.15 shows an overview of the final parameter estimates including bootstrap 

confidence intervals. 

 

Tab 4.15:  Final parameter estimates of the pazopanib PK/PD model for  

sVEGFR-3 

Parameter Unit 
Estimate 

(RSE, %) 

Mean 

(Bootstrap) 

Median 

(Bootstrap) 

90% CI 

(Bootstrap) 

Structural model 

Baseline pg/mL 64300 (5.2) 64300 64178 58672 - 70047 

α - 17.5 (16.5) 18.3 18.0 13.9 – 23.5 

kout 1/h 0.0047 (23) 0.0048 0.0047 0.0032 – 0.0069 

Statistical model 

Residual error % 14.2 (13.0) 13.6 13.8 11.0 – 16.0 

η (Baseline) % 23.6 (39.4) 23.1 22.7 15.0 – 30.2 

η (α) % 61.9 (49.0) 56.1 56.0 24.1 – 75.0 

 

4.3.3 Blood pressure 

Sunitinib 

Similar to the PD models for sVEGFR-2 and -3, the blood pressure model used was 

originally developed using data from healthy volunteers. In this study it could be 

successfully adapted to patients with mRCC. In the base model all parameters 

describing the circadian variation of systolic and diastolic blood pressure were fixed to 

their respective reference values from healthy volunteers. Estimation of these 

parameters was not possible due to the sparse sampling and documentation gaps (e.g. 

missing day-time). Residual error was best described using separate proportional 

models for systolic and diastolic blood pressure. 
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Introduction of an IIV on the estimated baseline values for systolic and diastolic blood 

pressure, as well as for the respective intrinsic activities (α) improved the model fit 

significantly shown by a combined OFV decrease of -214.18. By removing the IIV from 

baseline systolic and diastolic blood pressure the OFV increased by 30.3 and 42.8 (p 

< 0.0001), respectively. A statistically significant worsening of the model fit was also 

observed when removing the estimated IIV from both intrinsic activity parameters. The 

OFV increased by 8.2 (p < 0.01) and 6.0 (p < 0.025). However, both parameters 

showed a high shrinkage value (> 30%). Estimation of a covariance between systolic 

and diastolic IIV decreased the OFV by -14.86. Though, the estimated correlation was 

nearly 100%. Therefore, the statistical model was restructured with both fixed-effect 

parameters for intrinsic activity sharing one η parameter connected via a 

proportionality factor [86]. Here, an additional parameter is estimated, which accounted 

for the correlation between the variability on both intrinsic activities α. Whereas the 

OFV did not change significantly, shrinkage on both parameters decreased below the 

threshold value, leading to more reliable estimates. Removing the IIV on both activity 

parameters from the model showed a significant worsening of the model fit  

(dOFV = 27.2). Final parameter estimates including RSE, bootstrap mean and median 

values as well as the 90% confidence interval are shown in Table 4.16 

 

Covariate analysis 

Since blood pressure data was only available for 25 mRCC patients, only selected 

covariates were tested manually using the same criteria for significance (p < 0.05 for 

forward inclusion and p < 0.01 for backward elimination). Covariates tested included 

diagnosed hypertension at time of treatment start and the intake of antihypertensive 

medication during the targeted therapy. Here, especially the fixed parameters for 

circadian variation were of interest. A significant effect was found for the covariate 

“antihypertensive medication” (BPTRT) on the second amplitude parameter (AMP2), 

which was decreased by 202% (90% CI: 80-315). This resulted in a more even course 

of systolic and diastolic blood pressure throughout the day.  

The visual predictive checks for systolic and diastolic blood pressure are shown in 

Figure 4.18. Whereas the time course of blood pressure could be well described during 

the first 6 weeks of sunitinib treatment, predictions were less reliable at later time-

points, as the VPC of the full time period indicates (Appendix D.X). This can also be 
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observed in the GOF plots shown (Appendix D.IV). The PRED vs DV plot clearly 

indicates that the model cannot cope with unexpectedly high blood pressure values.  

Furthermore, residuals were evenly distributed and did not show any model 

misspecification. 

 

Tab 4.16:  Final parameter estimates of the sunitinib PK/PD model for systolic and 

diastolic blood pressure 

Parameter Unit Estimate 

(RSE, %) 

Mean 

(Bootstrap) 

Median 

(Bootstrap) 

90% CI 

(Bootstrap) 

Structural model 

BSLsyst mmHg 138.0 (2.2) 137.8 137.8 132.7 – 142.6 

BSLdiast. mmHg 82.8 (1.9) 82.8 82.8 80.2 – 85.43 

αsyst - 0.064 (30.9) 0.064 0.063 0.034 – 0.098 

αdiast  0.048 (38.5) 0.048 0.047 0.020 -0.080 

τ h 121* - - - 

PS1 - 0* - - - 

PS2 - 1.4* - - - 

AMP1 - 0.025* - - - 

AMP2 - -0.016* - - - 

σsyst - 0.094 (10.2) 0.093 0.093 0.077 – 0.110 

σdiast - 0.079 (6.3) 0.079 0.079 0.07 – 0.087 

Prop. factor - 1.21 (27) 1.25 1.23 0.85 – 1.69 

Statistical model 

η (BSLsyst) % 9.3 (46.7) 9.1 8.9 5.2 – 12.2 

η (BSLdiast) % 7.4 (28.7) 7.2 7.2 5.1 – 8.8 

η (αsyst) % 105.8 (105.1) 89.0 82.7 42.6 – 123.2 

η (αdiast) % 105.8 (105.1) 89.0 82.7 42.6 – 123.2 

Covariate model 

BPTRT on 

AMP2 
- -2.02 (36.3) -1.99 -1.99 -3.15 - -0.80 

BSL = Baseline; PS = Phase shift; AMP = Amplitude; BPTRT = Treated hypertension; 

Prop. factor = Proportionality factor ; *Parameter fixed 
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Simulations 

Based on these findings simulations were performed to illustrate the effect of 

antihypertensive treatment during sunitinib therapy. Figure 4.19 shows the simulated 

systolic and diastolic blood pressure after one intake of 50 mg sunitinib with and without 

antihypertensive medication. Here, the course of blood pressure is flatter, with delayed 

extreme values due to the co-medication. It has to be noted that here only the direct 

effect of sunitinib on blood pressure is shown, and the delayed one is missing due to 

the simulated intake of only one dose. 

  

 

Fig 4.17: Visual predictive check for systolic (A) and diastolic (B) blood pressure 

during the first six weeks on sunitinib treatment. Black solid lines indicate 

the mean model prediction and the 90% prediction interval. Dotted lines 

show the measured mean and interval, respectively. Dark and light grey 

areas represent the respective confidence bands.  The dark-grey rectangle 

represents the time on treatment. 
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Pazopanib 

Based on the PK/PD model developed for sunitinib, several potential relationships for 

linking pazopanib pharmacokinetics with systolic and diastolic blood pressure were 

tested. Parameters describing the circadian rhythm of blood pressure could not be 

estimated and were fixed to the values reported by Lindauer et al. [109] Best results 

were obtained using active, unbound pazopanib concentration as predictor. Intrinsic 

activity α was quantitatively comparable for systolic and diastolic blood pressure; 

 

 

Fig. 4.18: Simulated systolic/diastolic blood pressure for one day after a single 

dose of 50 mg sunitinib with (A) and without (B) antihypertensive 

treatment. 
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hence, estimation of one αfor both physiological parameters did not result in a 

statistically significant worsening of the model fit (dOFV = +0.16).  

Significant improvements were achieved by estimating IIV on both baseline 

parameters (dOFV = -96.6), while the estimates for IIV on α approached zero signaling 

a non-significant effect. Final parameter estimates including RSE, bootstrap mean and 

median values as well as the 90% confidence interval are shown in Table 4.17 

 

Tab 4.17: Final parameter estimates of the pazopanib PK/PD model for blood 

pressure 

Parameter Unit Estimate 

(RSE, %) 

Mean 

(Bootstrap) 

Median 

(Bootstrap) 

90% CI 

(Bootstrap) 

Structural model 

BSLsyst mmHg 130.0 130.6 130.7 122.2 – 138.2 

BSLdiast mmHg 80.2 80.5 80.3 76.6 – 84.8 

αsyst/diast - 0.91 0.87 0.87 0.39 – 1.32 

τ h 121* - - - 

PS1 - 0* - - - 

PS2 - 1.4* - - - 

AMP1 - 0.025* - - - 

AMP2 - -0.016* - - - 

σsys/dia - 0.091 0.093 0.094 0.079 – 0.107 

Statistical model 

η (BSLsyst) % 6.8 6.3 6.3 3.6 – 8.2 

η (BSLdiast) % 7.8 7.6 7.6 2.4 – 11.0 

Covariate model 

BPDIAG 

on BSLsyst 
- 0.091 0.091 0.094 0.019 – 0.172 

BSL = Baseline; PS = Phase shift; AMP = Amplitude; BPDIAG = Diagnosed 

hypertension; *Parameter fixed 
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Covariate analysis 

Due to the small samples size only the influence of diagnosed hypertension as well as 

active antihypertensive therapy was tested as potential covariate effects. 

Here, patients diagnosed with hypertension had a 9.1% increased mean systolic blood 

pressure baseline throughout the day. Inclusion of this effect into the model decreased 

the OFV significantly by 4.2 (p < 0.05). Furthermore, diagnosed blood pressure had an 

effect on amplitude 1 (AMP1, dOFV = -5.5, p < 0.05). However, inclusion of both effects 

simultaneously showed no significant improvement over the univariate approach. 

Furthermore, the effect on AMP1 was clinically not plausible. Therefore the final model 

featured only the increased systolic baseline blood pressure in patients with diagnosed 

hypertension. The effect of antihypertensive treatment on AMP2 found in the sunitinib 

cohort could not be observed here.  

A pcVPC of the final model is shown in Fig 4.20. The blood pressure values during the 

first six weeks can be predicted reasonably well, while later time-points showed wider 

prediction intervals due to the sparse data (Appendix D.XII). 

 

  

Fig. 4.20: Visual predictive check for systolic (A) and diastolic (B) blood pressure 

during the first six weeks on pazopanib treatment. Black solid lines 

indicate the mean model prediction and the 90% prediction interval. 

Dotted lines show the measured mean and interval, respectively. Dark 

and light grey areas represent the respective confidence bands. The 

dark-grey rectangle represents the time on treatment. 
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4.4 Survival analysis 

4.4.1 Kaplan-Meier analysis and Cox regression 

Details on the registered events and which patients were included in the analysis can 

be found in Appendix E. 

 

Kaplan-Meier analysis (Sunitinib) 

Median PFS for sunitinib patients was calculated with 6.9 months (CI 95%: 4.1 – 12.7 

months, n = 24). For the Kaplan-Meier analysis all continuous covariates were 

dichotomized to allow comparison between two groups, respectively. Patients were 

subdivided by the population median of the sVEGFR-2 and sVEGFR-3 baseline value. 

For sVEGFR-2 this resulted in 11 patients with a higher baseline level than the median 

of 8814.68 pg/mL and 13 patients below this threshold. Median baseline of sVEGFR-

3 for patients investigated was calculated with 63132.66 pg/mL (10 patients above and 

14 patients below). Dichotomized baseline levels of both circulating proteins showed a 

significant favorable effect for patients with a sVEGFR-2 or sVEGFR-3 baseline below 

the population median on PFS (sVEGFR-2, p = 0.005; sVEGFR-3, p = 0.02). Total 

AUC and total steady-state concentration above the population median showed a weak 

but favorable effect for patients with values below the population median (p = 0.048). 

However, permutation tests with n = 100000 confirmed only the effects found for 

sVEGFR-2 and 3 baseline values above the population median (p = 0.008 and 0.03). 

Median survival for patients with sVEGFR-2 baseline levels above the population 

median were estimated with 4.73 months vs 12.65 months. A similar result could be 

observed for sVEGFR-3 with a median survival of 4.11 months vs. 9.07 months. The 

Kaplan-Meier plot for patients treated with sunitinib is shown in Figure 4.21. 
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Cox regression (Sunitinib) 

The results from the Kaplan-Meier analysis could be confirmed in a Cox regression 

analysis. In the univariate analysis the hazard ratio (HR) for a sVEGFR-2 baseline 

above the population median was estimated with 5.60 (p = 0.006, CI 90%: 1.82-17.24). 

For sVEGFR-3 the HR amounted for 3.74 (p = 0.031, CI 90%: 1.36-10.27). 

Furthermore the absolute sVEGFR-2 baseline value in µg/L also showed a significant 

effect in this analysis with a hazard ratio of 1.00028 (p = 0.044, CI 90 %:1.00006-

1.00049). However, the only significant covariates after multivariate analysis were the 

dichotomized baseline values of both soluble proteins (Table 4.18). 

Predicted survival curves using either sVEGFR-2 or sVEGFR-3 baseline as predictor 

are comparable and no difference between both covariates can be observed (Figure 

4.22) 

 

  

 

Fig. 4.21: Kaplan-Meier plot for patients treated with sunitinib including 95%  

confidence interval. The dotted vertical line indicates the median 

survival. 
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Tab. 4.18:  Results of the multivariate Cox regression for sunitinib 

Covariate Hazard ratio p value 

All significant covariates included 

sVEGFR-2 baseline above pop. median 4.64 0.061 

sVEGFR-3 baseline above pop. median 6.27 0.018 

Absolute sVEGFR-2 baseline 1.0003 0.990 

Age 0.926 0.061 

Reduced covariate model 

sVEGFR-2 baseline above pop. median 4.68 0.017 

sVEGFR-3 baseline above pop. median 6.28 0.014 

Age 0.93 0.053 

Final covariate model 

sVEGFR-2 baseline above pop. median 7.50 0.006 

sVEGFR-3 baseline above pop. median 5.36 0.015 

 

 

 

  

Fig. 4.22: Predicted survival curves by the Cox regression model using (A) the 

sVEGFR-2 baseline (dichotomized) and (B) the sVEGFR-3 baseline 

(dichotomized). 
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Kaplan-Meier analysis (Pazopanib) 

Median survival for pazopanib patients was calculated with 12.1 months (80% CI: 5.3 

– 12.5 month). Similar to patients treated with sunitinib the dichotomized covariates 

based on the sVEGFR-2 and sVEGFR-3 baseline values were evaluated. Threshold 

values for sVEGFR-2 and sVEGFR-3 in this cohort were set to 9938.4 pg/mL and 

62412.3 pg/mL, respectively. Patients with a high sVEGFR-2 baseline value had a 

median survival of 2.3 months compared to 12.4 months in the other group. However, 

the effect was not statistically significant (p = 0.051). The other tested covariates 

(radiotherapy, nephrectomy/metastasectomy, sVEGFR-3 baseline) did not have a 

statistically significant effect on PFS in pazopanib patients. The Kaplan-Meier plot for 

patients treated with pazopanib is shown in Figure 4.23. 

 

 

  

 

Fig. 4.23: Kaplan-Meier plot for patients treated with pazopanib including 95% 

confidence interval. The dotted vertical line indicates the median 

survival. 
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Cox regression (Pazopanib) 

Cox regression analysis in the pazopanib cohort did not reveal any significant 

predictors for PFS. However, the strongest effect was observed for baseline sVEGFR-

2 (dichotomized) with a HR of 5.1 (p = 0.06), which is comparable in effect strength to 

sunitinib for the same covariate. In contrast, the effect strength of the dichotomized 

sVEGFR-3 baseline levels was comparatively low in this cohort with a HR of 1.19  

(p = 0.85). Absolute sVEGFR-2 and sVEGFR-3 baseline concentrations as continuous 

covariates were even less informative (HR: 1.0003, p = 0.92 and 1.000007, p = 0.81). 

As stated above, other covariates tested were not significant either. A full list of all 

covariates tested can be found in Appendix A. 

 

Kaplan-Meier analysis (Sunitinib and pazopanib combined) 

A Kaplan-Meier analysis was also performed for all patients (n = 40) regardless of 

treatment group. Median survival in both groups combined was 6.9 months (CI 95%: 

5.3 – 12.5). The respective Kaplan-Meier plot is shown in Figure 4.24.A. However, both 

treatments did not differ statistically significant from each other (p = 0.73) (Figure 24 

B). A sVEGFR-2 baseline value above the median of the investigated population of 

9049 pg/mL (n = 40) was again associated with a longer PFS (p = 0.003). Here, 17 

patients were above and 23 below this threshold. Median survival was calculated with 

5.4 vs. 12.5 months. The same effect was observed for sVEGFR-3: dividing the 

population in two groups below and above the median of 63133 pg/mL showed a 

favorable prognosis for patients with lower baseline concentrations (p = 0.041). The 

other tested covariates did not reveal any additional effects. 
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Fig. 4.23.A: Kaplan-Meier plot of both treatment groups (no stratification) including 

95% confidence interval. The dotted vertical line indicates the median 

survival. 

 

Fig. 4.23.B: Kaplan-Meier plot including all patients (stratified by treatment). 

The dotted vertical lines indicate the median survival for each 

subgroup. 
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Cox regression (Sunitinib and pazopanib combined) 

Comparable to the Cox regression analysis performed for sunitinib patients 

exclusively, sVEGFR-2 baseline values as well as the dichotomized covariate showed 

statistically significant effects with hazard ratios estimated with 1.00028 (p = 0.026, 

95% CI: 1.00008 – 1.00048)  and 3.86 (p = 0.006, 95% CI: 1.66 – 8.97), respectively. 

In addition, a sVEGFR-3 baseline value above the population median also had a 

borderline significant effect on PFS, though weaker compared to the same parameter 

for sVEGFR-2 (HR: 2.69, p = 0.050, 95% CI: 1.19 – 6.12). In both cases patients with 

high baseline value of the respective protein had a lower survival independent of 

treatment (see also Kaplan-Meier analysis). Furthermore, age showed a weak effect 

on survival (HR: 0.95, p = 0.036, 95% CI: 0.91 – 0.99). A significant difference between 

suntinib and pazopanib was not detectable (HR: 0.81, p = 0.64). 

Results of the multivariate analysis including all significant covariates from the 

univariate approach are shown in table 4.19. Here, the effect of absolute sVEGFR-2 

baseline concentration as well as the dichotomized covariate were no longer 

significant. However, as both covariates comprise nearly identical information, 

absolute sVEGFR-2 baseline was removed for further testing. As a result, all three 

covariates were significant with the dichotomized sVEGFR-2 and sVEGFR-3 baseline 

concentrations featuring comparable hazard ratios (HR: 3.5 vs 3.13).  

 

Tab. 4.19:  Results of the multivariate Cox regression (sunitinib and pazopanib) 

Covariate Hazard ratio p value 

All significant covariates included 

sVEGFR-2 baseline above pop. median 5.63 0.070 

sVEGFR-3 baseline above pop. median 3.84 0.032 

Absolute sVEGFR-2 baseline 1.00 0.74 

Age 0.97 0.39 

Final covariate model 

sVEGFR-2 baseline above pop. median 3.50 0.016 

sVEGFR-3 baseline above pop. median 3.13 0.037 

Age 0.95 0.045 
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4.4.2  Model-based time-to-event analysis 

Sunitinib 

The PFS could be described by a parametric time-to-event (TTE) model assuming 

exponentially distributed data with a baseline hazard function λ0 of 0.0252 week-1 (90% 

CI: 0.0168 - 0.0336). The inclusion of the measured sVEGFR-2 baseline value led to 

a decrease of the OFV by 4.14 (p < 0.05) with β defined as the natural logarithm of the 

HR. 

The estimated baseline value of sVEGFR-2 showed a slightly increased effect strength 

with an estimated β of 0.341 vs. 0.260 for the measured value (dOFV: -4.67). The 

dichotomized covariate, dividing patients into two groups with baseline values above 

and below the population median of 8814.68 pg/mL, had the strongest effect with a 

decrease of the OFV by -6.40 (p < 0.025). β was estimated with 1.45 (90% CI: 0.71 – 

2.68), which corresponds to a hazard ratio of 4.26. For comparison, when 

dichotomizing the patients regarding the estimated baseline values the effect was no 

longer significant (β: 0.786, dOFV: -1.93), indicating that the resulting groups differ, 

when using model predicted baseline concentrations. sVEGFR-2 plasma 

concentration over time, relative or absolute to the individual baseline, showed no 

significant effect (β: 0.923, dOFV = -0.3; β: 0.237, dOFV = -3.7).  

None of the other covariates including genotypes, sunitinib pharmacokinetics, 

sVEGFR-3 and blood pressure showed a statistically significant effect on PFS. The 

effect of sVEGFR-3 baseline above the population median identified in the Kaplan-

Meier and Cox regression analysis could not be confirmed in the model based 

approach. Inclusion of this parameter did result in a dOFV of -2.42 with an estimated 

β of 0.867. While the central tendency of the effect was comparable it was statistical 

not significant. Hence, the best prediction was achieved by using the dichotomized 

baseline value of sVEGFR-2: 

λ(t)=λr∙eβ∙sVEGFR-2 baseline (dichotomized) (Eq. 4.1) 

Parameter estimates of the final model including bootstrap mean, median and 

confidence intervals can be found in Table 4.20.  
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Tab 4.20:  Final parameter estimates of the time-to-event model for sunitinib 

patients 

Parameter Unit Estimate 
Mean 

(Bootstrap) 

Median 

(Bootstrap) 

90% CI 

(Bootstrap) 

λ0 week-1 0.0118 (46.3) 0.0121 0.0117 0.0038 – 0.0220 

β - 1.45 (43.3) 1.57 1.49 0.71 – 2.68 

 

The observed Kaplan-Meier curve describing the progression-free survival function of 

the mRCC patients was within the 90% prediction interval of 1000 simulations and 

could sufficiently be described by the time-to-event model (Figure 4.25). However, 

stratification naturally shows wider prediction intervals for the respective subgroups, 

due to the small sample size in each cohort. However, the description of the underlying 

data is still acceptable, though difficult for later time-points as a result of censored data 

(Figure 4.26).  

 

  

 

Fig. 4.25: Visual predictive check of the final time-to-event model for sunitinib (no 

stratification). 
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Pazopanib 

A separate model-based TTE analysis for pazopanib alone was not performed due to 

the limited data. However, results after combined analysis, pooling data from both 

treatment groups, are described in the following section. 

 

Pazopanib and Sunitinib 

As for sunitinib alone, PFS was best described by a parametric TTE model with a 

baseline hazard function λ0 of 0.0232 week-1 (90% CI: 0.0160 – 0.0324  

week-1). Estimation of two different baseline hazard parameters for both study drugs 

had no significant effect, confirming the result of the Kaplan-Meier analysis, that 

survival was comparable in both treatment arms (dOFV = -0.18, not significant). 

In a univariate analysis, sVEGFR-2 baseline concentrations showed significant effects 

comparable to the analysis in sunitinib patients alone. Inclusion of absolute sVEGFR-

2 baseline concentration in µg/L led to a significant decrease of the OFV with an 

estimated β of 0.247 (dOFV = -4.6) and 0.315 (dOFV = -5.3), if the measured or 

estimated baseline values were used, respectively. Dividing patients in subgroups 

below and above the population baseline median also showed a statistically significant 

effect and comparable results between measured and estimated baseline values with 

a beta of 0.938 (dOFV = -4.4) and 1.01 (dOFV = -5.0), respectively. In contrast to 

sunitinib alone, absolute sVEGFR-2 concentration over time had the strongest effect 

Fig. 4.26: Visual predictive check of the final time-to-event model for sunitinib 

stratified by covariate with (A) sVEGFR-2 baseline below the population 

median and (B) sVEGFR-2 baseline above the population median. 
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overall with a dOFV of -8.4.β was estimated with 0.296 L/µg (0.237 L/µg for sunitinib 

patients alone).  

Relative increase in systolic and diastolic blood pressure could also be confirmed as 

significant covariate in the univariate analysis. Effect strength was comparable in both 

cases with a β of 12.7 mmHg-1 for systolic and diastolic blood pressure, respectively. 

Introduction of both parameters decreased the OFV significantly each by 6.7 and 6.8, 

respectively. However, the simultaneous inclusion of systolic and diastolic blood 

pressure had no further effect, indicating that both parameters have the same 

predictive value. Both time-dependent covariates, sVEGFR-2 and systolic blood 

pressure over time were tested in a multivariate approach. When sVEGFR-2 over time 

and relative systolic blood pressure over time were included simultaneously the OFV 

decreased by -10.67 (DF = 2, p < 0.005). However, removing blood pressure as 

predictor from the model had no significant effect (dOFV = + 2.27). In contrast, removal 

of sVEGFR-2 over time showed a borderline significant OFV increase (dOFV= 4.01). 

Therefore, for the final model only sVEGFR-2(t) was kept: 

λ(t)=λr∙eβ∙sVEGFR-2 (t) (Eq. 4.2) 

An estimated β of 0.292 L/µg corresponds to a hazard ratio of 1.33. For example, a 

baseline sVEGFR-2 concentration of 10 µg/L is associated to a hazard of 0.069  

week-1. A decrease by 1 µg/L during treatment therefore reduces the hazard by 25.8% 

(0.0512 week-1). Visual predictive checks indicate that the model can describe the 

underlying survival data sufficiently well (Figure 4.26). An overview of the estimated 

parameter values is given in Table 4.21. 

 

Tab 4.21:  Final parameter estimates of the time-to-event model for sunitinib and 

pazopanib patients with absolute sVEGFR-2 concentration over time 

included as predictor 

Parameter Unit Estimate 
Mean 

(Bootstrap) 

Median 

(Bootstrap) 

90% CI 

(Bootstrap) 

λ0 week-1 0.0037 (78.8) 0.0044 0.0036 0.001 – 0.010 

β L/µg 0.292 (30.9) 0.298 0.296 0.153 – 0.458 
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4.4.3 Simulation of treatment effects 

Figure 4.28 shows a simulation using the population estimates for a 4/2 schedule of 

50 mg sunitinib daily (A) and 800 mg pazopanib on a continuously basis (B), 

respectively. As expected the hazard decreases proportionally to the sVEGFR-2 

plasma concentration. For comparison, sVEGFR-2 baseline value was set to 10000 

pg/mL in both simulations. 

In addition, two simulations were performed showing the most common sunitinib 

regimens in comparison over the course of 18 weeks. Usually, as shown above, 

sunitinib is administered in 4/2 cycles. However, 2/1 cycles are also common practice 

in clinical settings. While the total dose is identical in the same time frame, fluctuations 

of sVEGFR-2 plasma concentrations and therefore in hazard, are lower with a 2/1 

regimen (Figure 4.29). 

 

Fig. 4.27: Visual predictive check of the final time-to-event model including 

sVEGFR-2 over time as predictor stratified for both sunitinib and 

pazopanib patients. 
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Fig. 4.28 B: Simulated treatment effect during 6 weeks of continuously administered 

pazopanib with a daily dose of 800 mg. The black line represents the 

sVEGFR-2 plasma concentration during treatment and the red one the 

hazard during treatment. 

 

  

 

Fig. 4.28 A: Simulated treatment effect during one cycle of sunitinib with 50 mg daily 

intake (4/2). The black line represents the sVEGFR-2 plasma 

concentration during treatment and the red one the hazard during 

treatment. 
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Fig. 4.29 A: Simulated treatment effect during three cycles of sunitinib with 50 mg 

daily intake (4/2). The black line represents the sVEGFR-2 plasma 

concentration during treatment and the red one the hazard during 

treatment. 

 

Fig. 4.29 B: Simulated treatment effect during six cycles of sunitinib with 50 mg daily 

intake (2/1). The black line represents the sVEGFR-2 plasma 

concentration during treatment and the red one the hazard during 

treatment. 
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4.5 Markov models for toxicity analysis 

Myelosuppression 

Occurrence of myelosuppression of any grade could be described using the 

“catenary”- model approach proposed by Keizer et al. and adapted by Suleiman et al. 

[108,167]. A model estimating all possible transitions between states was also tested; 

however, this approach was not feasible for the data of this study, as it relied on too 

many assumptions regarding non-observed transitions. For a full parameterization rate 

constants for non-observed transitions had to be fixed to plausible values. E.g. if only 

transitions between grade 1 and grade 3 were observed, a rate constant for a change 

from grade 1 to 2 or 2 to 3 could not be estimated and was therefore set equal to the 

constant for a grade 1 to 3 switch.  

The inclusion of a time dependency on worsening rate constants improved the model 

fit significantly (dOFV = -20.8, p < 0.0001). In this case overall probability of developing 

a myelosuppression of any grade decreased exponentially over the course of the first-

line therapy. 

Sunitinib treatment had a small effect on worsening rates when adding the cumulative 

AUC of active, unbound sunitinib and SU12662 (AUCu) as linear covariate  

(dOFV = 4.08, p < 0.05). Active, unbound sunitinib and SU12662 concentration 

showed also an effect on recovery rates, when added as exponential covariate (dOFV 

= 4.59, p < 0.05). Here, higher drug concentrations led to a decrease and therefore a 

lower probability of a transition to a lower grade of the adverse event. However, when 

both effects were included simultaneously, the model was no longer stable and no 

reliable parameter estimates could be obtained. Therefore, visual predictive checks 

were used for decision making. Here, the model which solely relied on the effect of ACu 

on recovery rate constants as predictor was superior compared to the model which 

also included AUCu on the worsening rates. In addition, the bootstrap analysis revealed 

that the estimate for the AUCu effect was unreliable as the 90% CI included zero. 

Hence, only the effect of ACu on the recovery rate kB was kept in the model. 

In the final model, the worsening rates k01, k12 and k23 were parameterized as follows: 

Hr�/��/�· =  �"Hr�/��/�· ∙ ,(u§¸∙k) (Eq. 4.3) 

HJ =  �"HJ ∙  ,C@@∙\B¹ (Eq. 4.4) 



136  Results 

   

These rate constants describe the probability over time to switch between the 

respective states of the adverse event. kB denotes for the recovery rate constant, which 

describes the probability of decreasing the current grade. kt quantifies the effect of time 

on worsening constants k01, k12 and k23 and EFF the estimated drug effect on recovery 

rate constants scaled by the ACu. In both cases TV denotes for “typical value” and 

represents the base value of the rate constant without any effect included.  

As the incidence of myelosuppression was relatively low and not all patients developed 

this kind of toxicity of any grade a case deletion diagnostic or jackknife was used to 

identify highly influential individuals in the dataset. Worsening rate constant k23, in 

particular, was highly biased as a result of the low adverse event incidence (jackknife 

estimate: 452%). Removal of one specific patient from the data set increased the 

estimated parameter value by 100.3%. As a consequence the bootstrap analysis for 

obtaining standard errors and confidence intervals for each parameter was stratified, 

to ensure that all bootstrap runs included patients with and without an occurrence of 

this adverse event. This was necessary to avoid biased bootstrap results with respect 

to the low number of subjects in this study. 

Final parameter estimates are shown in Table 4.22. Categorical VPCs indicate that the 

final model can describe the underlying data sufficiently well (Figure 4.30) 

 

Tab. 4.22:  Final parameter estimates of the Markov myelosuppression model for 

patients treated with sunitinib 

Parameter Unit 
Estimate 

(RSE, %) 

Mean 

(Bootstrap) 

Median 

(Bootstrap) 

90% CI  

(Bootstrap) 

k01 day-1 0.0149 (45) 0.0165 0.0157 0.0061 – 0.0299 

k12 day-1 0.101 (47) 0.224 0.103 0.044 – 0.408 

k23 day-1 0.438 (84) 0.778 0.453 0.129 – 2.79 

kB day-1 0.058 (44) 0.061 0.059 0.032 – 0.096 

kt day-1 -0.0207 (28) -0.0228 -0.0210 -0.0397 – 0.0120 

EFF - -0.337 (53) -0.305 -0.329 -0.473 – (-0.088) 



Results  137 

  

 

A simulation for one cycle of 50 mg sunitinib daily intake in 4/2 regime is shown in 

Figure 4.31. The effect of sunitinib on recovery rates can especially be seen in the off 

phase, where toxicity of CTCAE grade 2 shows a slight increase due to the transition 

from higher toxicity grades. 

Fig. 4.29: Visual predictive checks for the development of myelosuppression 

under sunitinib treatment with (A) probability of no toxicity, (B) CTCAE 

Grade 1, (C) CTCAE Grade 2, and (D) CTCAE Grade 3/4. 
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Fig. 4.31: Simulation of a standard sunitinib regimen with 50 mg daily drug intake. 

Lines represent the probability over time to develop a myelosuppression 

of the respective grade. The grey rectangle shows the time on treatment. 

 

Fatigue 

Analogously to myelosuppression under sunitinib treatment, the development of 

fatigue of any grade could be described using the “catenary” – model proposed by 

Suleiman et al. [108] and Keizer et al. [167]. A model allowing transitions between all 

CTCAE grades was rejected for the reasons stated above. 

Recovery and worsening rates were parameterized as follows in the final model: 

Hr�/��/�· =  �"Hr�/��/�· ∙ ,(u§¸∙k) (Eq. 4.5) 

HJ =  �"HJ (Eq. 4.6) 

Where TV denotes for the “typical value” without any effect included. Initially k12 and 

k23 were estimated separately; however, both parameters were highly correlated and 

could not be estimated with sufficient precision. Hence, those parameter values were 

set equal. The overall model performance did not worsen significantly by removing one 

parameter (dOFV = 1.42). Adding a time-dependent constant kt describing the 

exponential decay of the worsening rates decreased the OFV significantly by -9.04 (p 

< 0.01). The same function was tested on the recovery rates, but did not improve the 

model fit significantly. Recovery rates were set equal (kB) for all transitions. A separate 

estimation did not result in a significant improvement.   
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Of the tested covariates none showed a clinically relevant effect. While inclusion of the 

sVEGFR-3 concentration over the course of the therapy decreased the OFV 

significantly by -6.8, the effect was contradictory, since a stronger decrease of 

sVEGFR-3 led to a decreased probability of suffering from fatigue. This, in reverse, 

would suggest that a higher sunitinib exposition decreases the chance of developing a 

fatigue. Hence, this effect was not included in the final model and considered as an 

artifact due to the low patient number and the low incidence of fatigue. 

Final parameter estimates including mean, median and 90% bootstrap confidence 

intervals can be found in Table 4.23. 

Categorical visual predictive checks indicate that the model is able to describe the 

occurrence of fatigue in this mRCC cohort reasonably well, regardless of the low 

incidence rate during the study period (Figure 4.32) 

 

Tab 4.23:  Final parameter estimates of the Markov fatigue model for patients 

treated with sunitinib 

Parameter Unit 
Estimate 

(RSE, %) 

Mean 

(Bootstrap) 

Median 

(Bootstrap) 

90% CI  

(Bootstrap) 

k01 day-1 0.0094 (41.2) 0.0099 0.0091 0.0046 – 0.0173 

k12/k23 day-1 0.0935 (81.7) 0.1112 0.0909 0.0239 – 0.2599 

kB day-1 0.0704 (29.3) 0.0712 0.0695 0.0415 – 0.1078 

kt day-1 -0.0134 (58.6) -0.0145 -0.0132 -0.0256 – (-0.007) 
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Fig. 4.32: Visual predictive checks for the development of fatigue under sunitinib 

treatment with (A) probability of no toxicity, (B) CTCAE Grade 1, (C) 

CTCAE Grade 2, and (D) CTCAE Grade 3/4. 
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5 DISCUSSION 

5.1 PK/PD and Biomarker Analysis 

5.1.1 Pharmacokinetics 

Sunitinib 

The developed pharmacokinetic/pharmacodynamic (PK/PD) models adequately 

describe plasma concentration-time profiles of sunitinib and its active metabolite 

SU12662 in both tumor entities. Covariate analysis on the PK parameters did not 

reveal any significant findings. Differences between both studies were not observed, 

indicating that sunitinib pharmacokinetics are independent of the tumor type. The 

estimated pharmacokinetic parameters are in the same range compared to other 

published population PK analyses [32,165]. Whereas both published semi-mechanistic 

models were able to describe the data, the rigid transit-compartment model developed 

by Lindauer et al. failed to provide accurate estimates without adding a fixed effects 

parameter to account for uncertainties in sampling and dosing times. This problem was 

absent when the model originally developed by Yu et al. was used. Nonetheless, the 

poor documentation is a clear limitation of this study, even though the sensitivity 

analysis proved that parameter estimates are reliable. 

The significant increase of sunitinib clearance in patients with ABCB1 rs2032582 TT  

(-18%, p = 0.02) found in previous studies could not be confirmed [166]. Presumably, 

this may be caused by the relatively small and heterogeneous cohort in this study. 

 

Pazopanib 

Individual PPK parameters for the investigated study population treated with pazopanib 

could be estimated using a Bayesian approach with a population PK model published 

by Yu et al. [110]. 

By using this method, the applicability of the model on new datasets could be verified. 

However, the Bayesian approach limited the pharmacokinetic analysis, as no 

population parameters were estimated for this study cohort. Therefore, a covariate 

analysis was not possible and the estimated individual parameters relied on the fixed 

parameters and their variability based on the original model. With respect to the 

physiological basis of the model, this approach was still considered to be reliable 
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enough to use the resulting individual parameters for further analysis. In particular for 

establishing a link to sVEGFR-2 and sVEGFR-3 plasma concentrations and blood 

pressure.  

As initially stated, absorption of pazopanib is rather complex with respect to extrinsic 

factors. Notably, the simultaneous intake of food can alter the drug exposure 

significantly [64]. A factor which is difficult to control in a routine clinical setting. 

Although patients are usually advised to avoid drug intake right after a meal, this cannot 

be completely ruled out. As the model does not take food effect into account and 

patient’s habits’ were not documented, a potential bias may be introduced. One 

conceivable solution would be to use a mixture model to distinguish between patients 

who took their medication after a meal or in a fasting state. This would allow the 

estimation of different absorption parameters per subgroup, with the advantage that 

grouping is completely data-driven. However, due to the limited data and, in 

consequence, the use of a Bayesian approach, this method was not applicable in this 

study. Furthermore, a mixture model is usually used to distinguish between 

subpopulations with time-independent differences. Theoretically, a food effect could 

occur in multiple occasions over the course of a therapy, which would make it almost 

impossible to account for in a mixture model. Another solution could be the estimation 

of an inter-occasion variability on the respective absorption parameters. This would 

add a time -dependent random effect, to describe the variability of the drug absorption 

within a patient from occasion to occasion. However, the same constraints described 

for the mixture model approach also apply here.  

 

5.1.2  Pharmacodynamic response 

sVEGFR-2 and sVEGFR-3 

Decreasing plasma concentrations of sVEGFR-2 under sunitinib treatment have been 

reported and considered as potential biomarker for several cancer types 

[28,30,126,168,169]. As expected, a slow decrease over the course of 4 weeks on 

treatment followed by a subsequent increase in the off-phase could also be observed 

in this study. However, independent of dose or tumor entity plasma levels did not 

completely recover after the off-phase. Interestingly, intrinsic activity of sunitinib 
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showed a significant difference in both tumor entities, with a stronger decrease in 

sVEGFR-2 plasma concentrations observed for mRCC patients.  

This might be an indicator for a tumor specific resistance mechanism or in general for 

a lower efficacy of sunitinib in mCRC patients. In a double-blind, randomized phase III 

trial where sunitinib was compared to placebo in addition to the standard regimen 

consisting of fluorouracil, folinate and irinotecan (FOLFIRI) no benefit in favor for 

sunitinib could be shown. Quite contrary, median PFS was even lower compared to 

placebo (7.8 vs 9.2 months), which can probably be explained by a higher rate of 

severe adverse events [170]. Similarly, a phase II study with FOLFIRI plus sunitinib as 

first-line therapy in Japanese mCRC patients was prematurely discontinued as no 

additional activity of the combined therapy could be observed [171]. In fact, this could 

well be an isolated problem for sunitinib as other antiangiogenic drugs showed efficacy 

when combined with standard treatment, such as bevacizumab and the TKI 

regorafenib [172,173]. However, it must be noted that regorafenib, even though it was 

approved by FDA and EMA, is no longer available in Germany as no additional benefit 

could be shown according to the Gemeinsamer Bundesausschuss (G-BA) [174]. 

The presence of the variant G-allele in SNP rs6877011 in VEGFR-3 was associated 

with a 56.5% decrease in intrinsic activity on sVEGFR-2 response compared to the 

wild-type in the sunitinib cohort. In a previous study this SNP was shown to be 

associated with a decrease in PFS in mRCC patients (12 vs 4 months) [175]. 

Interestingly, this SNP effect of G-allele carriers of rs6877011 in VEGFR-3 was not 

found for intrinsic activity of sunitinib on sVEGFR-3, but on VEGFR-2. This may be 

explained by a similar binding domain in VEGFR-1, 2 and 3 [176]. A SNP in any of the 

genes encoding these VEGF receptors could result in a conformation change and 

prevent or stimulate binding of the drug ligand to VEGF-receptors, and change the 

ability of sunitinib to decrease the concentration of sVEGFR-2 and sVEGFR-3. This 

assumes that a lower intrinsic activity of sunitinib on sVEGFR-3 also affects  

sVEGFR-2 plasma concentrations. While this could be explained with a higher impact 

of a confirmation change on the binding affinity of sVEGFR-2 compared to sVEGFR-3 

these results have to be interpreted with caution. With respect to the small patient 

cohort, it is still possible that the found relationship is an artifact; hence, it needs to be 

confirmed in a larger study, ideally with a higher number of patients with the respective 

SNP. 
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A similar effect as the 31.1% decrease in intrinsic activity of sunitinib in patients with 

ABCB1 rs2032582 GT/TT compared to wildtype was not reported in the literature so 

far. However, as stated above the same SNP was previously found to be associated 

with an increased sunitinib clearance as well as an increased time-to-dose reduction 

[166,177]. ABCB1 encodes for the transport protein p-glycoprotein (Pgp), which was 

shown to be a principal cause for drug resistance in anticancer treatments [178]. 

Furthermore, a high expression was observed in healthy kidney and colon tissue as 

well as in various tumor tissues including colorectal cancer [179]. Interestingly, van der 

Veldt et al. observed an increased PFS in patients with a TCG copy in the ABCB1 

haplotype (HR 0.52, p = 0.033) [180]. However, similar to the other found influential 

genetic covariates the results need to be validated in a larger cohort.  

The same base model for sVEGFR-2 could also be successfully linked to pazopanib 

pharmacokinetics. Here, the equation for pharmacodynamic effect on sVEGFR-2 

plasma concentrations (INH) (Equation 3.29) was replaced with the active pazopanib 

plasma concentration as it provided a better fit. Using INH as a predictor, resulted in 

poor estimation of lower sVEGFR-2 plasma concentrations. One explanation might be 

the high protein binding of pazopanib which was assumed with 99.9 %, though reports 

vary between > 99% and up to > 99.9% [47,59,151,181]. In fact, no combination of 

binding constant and protein bound fraction tested provided a better fit than plasma 

concentration alone. A possible reason for this could be the high variability of the 

plasma albumin concentration due to various intrinsic and extrinsic factors in cancer 

patients, which is the main binding partner for pazopanib [182,183]. Routine 

determination of this parameter over the course therapy could help to implement a 

dynamic plasma protein binding into the model to capture this process more naturally 

than with a fixed constant leading to improved outcomes. Even though the theoretical 

protein bound fraction of 99.9% was used to calculate the active pazopanib 

concentration in the final model, this parameter only affected the scale of the estimate 

of the intrinsic activity α. Essentially, the implantation of protein binding did no longer 

influence the estimation of the intrinsic activity α, which resulted in a significantly better 

fit. 

Analogously to sVEGFR-2, decreasing concentrations of sVEGFR-3 were reported 

under antiangiogenic treatment with TKI like sunitinib or pazopanib 

[24,28,126,168,169]. The indirect response model originally developed for sVEGFR-2 

was applicable for sVEGFR-3 in both tumor entities and also for both study drugs. 
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Similarly to the model for sVEGFR-2, the INH equation was adapted accordingly for 

pazopanib (see above). 

Observed mean baseline values of sVEGFR-3 were in the same magnitude previously 

reported by Motzer et al. ranging between 22300 and 129200 pg/mL for mRCC 

patients. However, they were significantly higher compared to mCRC patients [184]. 

This finding might indicate a higher expression of this protein in patients with renal cell 

cancer. Unfortunately, data regarding the baseline values of sVEGFR-3 concentration 

in plasma in mCRC patients is sparse, as the first- and second-line treatment usually 

does not involve multi-tyrosine kinase inhibitors [185].  

Interestingly, some patients showed slightly increasing sVEGFR-2 and sVEGFR-3 

plasma concentrations under pazopanib treatment over the course of the study, which 

lead to the assumption that the effect strength of pazopanib may decrease over time. 

Yet, the implementation of any kind of mechanistic approach to describe this behavior, 

e.g. models to account for development of tolerance via feedback response, did not 

result in a model improvement. This may be attributed to the low patient number and 

the fact that only some patients showed this phenomenon. Furthermore, pazopanib 

bioavailability was shown to decrease at steady-state over the course of the therapy, 

which was taken into account by the PK model. If the reduced response was linked to 

steady-state concentrations, it should be observable in all patients. However, dose 

reductions and the possibility of lower adherence in later treatment phases hinder the 

correct interpretation of the results and make further investigations in a larger cohort 

mandatory. 

 

Blood pressure 

Whereas the model is able to describe the mean increase in systolic and diastolic blood 

pressure sufficiently well independent of the study drug, the applicability of the model 

developed based on healthy volunteers is debatable. The main problem is the high 

parameterization of the model. In consequence, parameters for circadian variation had 

to be fixed to the values estimated for healthy volunteers as they could not be reliably 

estimated with the underlying sparse data and missing information on measurement 

times in a few cases. This is particularly problematic when considering that 
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hypertension is a risk factor for mRCC and the circadian rhythm is eventually different 

compared to healthy individuals. 

Although measurements in this study were handled with standardized rules and 

devices, they were still prone to extrinsic distortions of any kind. As all measurements 

were conducted by physicians or study nurses in the respective centers, spikes of 

systolic or diastolic blood pressure can also be the result of the so called “white-coat-

effect” [186]. However, this procedure was necessary to guarantee reliable and 

comparable measurements across all study centers. Self-measurements by the 

patients could be a viable alternative, but require additional measures to ensure 

comparable results, such as journals for documentation, proper instructions by health 

professionals and a certified device [187,188]. Another result of this approach was the 

sparse data especially at later time-points. As a result, the model is able to give 

reasonable predictions for the first cycle, but becomes unreliable in later cycles. 

Interestingly, even though parameters for circadian rhythm of blood pressure could not 

be estimated directly, the effect of blood pressure treatment of any kind could be 

identified as covariate. As the simulations showed (Figure 4.18), this results in a 

smoother course of blood pressure over the day. Due to the lack of data, this covariate 

was dichotomized and the strength of the individual therapy could not be 

acknowledged, which would most likely improve the model fit even further.  

Nevertheless, provided that a large dataset is available, diagnosed hypertension and 

antihypertensive treatment could potentially be implemented as covariates in the 

model. For more reliable estimates of the respective parameters a more dense 

documentation of blood pressure measurements (e.g. a journal given to the patient, 

see above) would be necessary. Even though this would improve the dataset 

significantly, the execution can be challenging as this approach could potentially 

introduce other limitations, e.g. missing values, false documentation or ignoring the 

SOPs for correct measurements by the patient.  
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5.2 Pharmacometric approaches for modeling outcome 

5.2.1 Model-based time-to-event analysis 

Based on the research of the last few years, after the emergence of antiangiogenic 

therapy, there is strong evidence of a potential relationship between sVEGFR-2 and/or 

sVEGFR-3 plasma concentration, hypertension and clinical outcome 

[24,28,30,32,189,190]. These findings could be further confirmed by the results of this 

study. While the effect of sVEGFR-2 decrease over time was not significant in the 

model-based time-to-event analysis (HR: 1.26, P = 0.06), patients with a substantially 

higher baseline value of sVEGFR-2 showed a significantly worse PFS. The estimated 

HR for patients with a sVEGFR-3 baseline above the population median was 2.38 while 

not statistically significant (P = 0.2). An effect of similar magnitude (HR: 2.4,  

95% CI: 1.13 – 5.11) was reported by Harmon et al. for the same covariate [189]. 

Interestingly, both effects were significant in the univariate Cox regression analysis for 

sunitinib with a HR of 5.60 (CI 90%: 1.82 – 17.24) for sVEGFR-2 baseline above the 

median and 3.74 (CI 90%: 1.36 – 10.27) for sVEGFR-3, but deviated when both were 

included simultaneously into the model. Even though our analysis suggests that the 

effect strength differs based on which biomarker is chosen, the direction is the same 

for both. This can be interpreted as a sign of high correlation between both soluble 

receptors; however, the wide confidence interval limits the validity of the results. Yet, 

these effects could be confirmed in the pooled Cox regression analysis of both 

treatment groups. 

PK/PD models for sunitinib and pazopanib in mRCC patients could be successfully 

linked to the TTE model. The novelty here was the possibility to test the predictive 

performance of the investigated biomarkers sVEGFR-2, sVEGFR-3 and blood 

pressure independent of the study drug. In particular, the modeling framework allows 

the outcome analysis of two drugs with different pharmacokinetics but comparable 

pharmacodynamic response in parallel. Previous analyses with similar approaches 

were mostly limited to one drug, while here the class effects of the TKIs pazopanib and 

sunitinib could be used for a pooled analysis of all patients. As both drugs show 

comparable benefits with respect to survival, this kind of analysis can help to further 

differentiate between non-responders and responders. Interestingly, the absolute 

decrease in sVEGFR-2 in plasma over time was found to be predictive for PFS in 

mRCC while the relative decrease had no comparable effect. In a similar approach in 
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GIST patients the sVEGFR-3 concentration was found to be predictive over time [32]. 

The results of our study suggest that sVEGFR-2 and -3 concentrations are highly 

correlated which is probably the reason that some studies attribute effects to one 

protein and vice versa.  

Furthermore, absolute systolic blood pressure over time showed a similar effect when 

included into the model. Probably, sVEGFR-2 and blood pressure describe the same 

effect, which can be explained by the assumption that increase in blood pressure is 

most likely related to VEGFR-2 inhibition [191]. This is also confirmed by the fact that 

no additional effects could be observed when both parameters were tested in the 

model. With respect to the results for the blood pressure model and its limitation in this 

study population, inclusion of sVEGFR-2 concentration over time as predictor in the 

final model is the more reliable approach. However, as blood pressure can be 

measured non-invasive and is in general more accessible, it could be possible to use 

this approach as well, once a more reliable model for cancer patients, especially with 

treated or untreated hypertension, is developed.  

 

5.2.2 Markov models for toxicity analysis 

Linking pharmacokinetic or pharmacodynamic response with toxicity using continuous-

time Markov models is a quite novel approach, and could successfully be applied to 

the toxicity data from this study. However, overall the incidence of toxicity of any kind 

was rather low in both treatment arms. As expected, fewer patients in the pazopanib 

group were affected compared to sunitinib [74,75]. Since Markov models require a high 

amount of observed transitions, only the two most common adverse events in this 

population, myelosuppression and fatigue, could be analyzed [192]. 

The chosen catenary - model assumes that a patient undergoes all grades of the 

respective toxicity until a maximum is reached and vice versa [108,167]. Hence, rate 

constants have to be estimated for each transition to describe the model completely. 

Whereas this approach is plausible from a biological perspective it also requires a 

dense documentation of adverse events. Otherwise, estimates of rate constants will 

be rather high, which corresponds to a fast transition, to describe switches which skip 

grades, e.g. grade 1 to 3. This and the low overall incidence of adverse events are the 

main limiting factors in this work. In several cases, adverse events were only 
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documented with grade 3 or higher and once an improvement was observed the 

documentation stopped. It is possible that these adverse events were not considered 

clinically significant until they reached a higher grade or were just asymptomatic. 

Another factor that rendered the situation more complicated was that end-dates of 

adverse events were missing in some cases. This was particularly an issue in patients 

who suffered from fatigue during sunitinib treatment. It is quite possible that patients 

mentioned this toxicity once to a physician or study nurse but it was not followed-up 

due to being asymptomatic or just not communicated by the patient. Compared to 

myelosuppression the grading of fatigue is more complicated as it relies on the 

physicians’ discretion or a wide variety of questionnaires for quantification [193]. 

However, the assumption that a fatigue persists at least until the end of a sunitinib 

cycle allowed the analysis of this data, but also requires a careful interpretation of the 

results. 

Nonetheless, the visual predictive checks indicated that the models could adequately 

describe the underlying data despite the sparse documentation. The quantitative 

relationship between myelosuppression and the active sunitinib plasma concentration 

(ACu) is an interesting finding as a higher exposure of sunitinib not necessarily 

increases the probability of a higher CTCAE grade but increases the chance to 

maintain the current grade for a longer period of time. In fact, the model suggests that 

sunitinib prolongs the time period in a certain grade. Interestingly, in a similar approach 

by Hansson et al. the relative decrease of sVEGFR-3 was predictive for a higher 

incidence of myelosuppression in patients with GIST treated with sunitinib [32]. While 

this could not be observed in our study the higher exposure to sunitinib seems likely to 

be related to the occurrence of myelosuppression independent of the tumor entity.  

 

5.3 Clinical relevance and potential applications 

PK/PD models can be a first and important step to develop individualized dosing 

strategies. A hypothesis generated in a smaller scale study might help to plan studies 

with a higher sample size and a design to quantify differences in two treatment arms. 

But even though our study was small in comparison, it was still possible to successfully 

apply models developed based on other populations and in other indications, and to 

construct the basis for a larger modeling framework for TKI. 
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As initially stated, dosing strategies for TKI, especially sunitinib and pazopanib, still 

mainly follow a “one-fits-all” strategy with a rigid regimen and fixed doses [67,68]. 

Although it could be shown that high exposition to sunitinib may be related to increased 

efficacy, it is also associated with a higher risk of toxicity [194]. Similar findings are also 

documented for pazopanib [195]. A trend that could also be verified in our study. In 

particular, the increase in blood pressure is a class effect which could be described for 

both dugs in the underlying population. In addition, the risk of maintaining longer 

periods of myelosuppression of any grade were directly linked to sunitinib 

pharmacokinetics in the respective Markov model.  

However, the implementation of a model-based dosing approach into clinical practice 

highly depends on the quality of the model and the underlying data, especially when 

considering a TDM approach for dose individualization. Ideally residual and inter-

individual variability is explained by informative covariates which can guide the dosing 

procedure.  

In an in silico analysis using Monte Carlo simulations it could be shown that a PK 

guided dosing approach could increase the time-to-progression by 15-31% in GIST 

patients treated with sunitinib. Here, a through plasma concentration of < 50 ng/mL 

was used as target for dose adjustment [196]. Noda et al. showed in a small cohort 

that RCC patients with a median total concentration of ≥ 100 ng/mL are associated 

with a higher incidence of grade 3 toxicity [197]. The quantitative relationship between 

sunitinib exposure and the occurrence of certain types of toxicity may therefore be 

valuable for future adverse event management strategies. 

Pazopanib shows a high inter-individual variability under standard treatment conditions 

with respect to the AUC0-24. In a feasibility study with 13 patients no benefit for 

pharmacokinetically guided dosing compared to a fixed dosage regime could be 

identified. The authors of this study stated that this is possibly due to the lack of 

knowledge on what causes the variability in pazopanib patients [198]. However, a 

through value in steady state above a limit of 20 µg/mL seems to be associated with a 

higher efficacy in renal cell carcinoma patients [195,199] 

Besides the already mentioned factors, adherence can be another crucial cause for 

variability in PK and PD parameters. Indeed, both TKI are a good example on how oral 

anticancer treatments in an ambulant setting shift the responsibility for therapy success 

from the treating physician and other health care professionals to the patient. Since 
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the variability of pazopanib can partly be explained by food effects and variable 

absorption due to solubility issues at higher doses, adherence to the therapy becomes 

an even more important aspect [63–65]. Independent of the drug used, it is necessary 

to have better parameters to assess therapy success and to distinguish non-

responders from non-adherent patients. In a study by Byfield et al. it was shown that 

adherence and persistence is comparable between sunitinib and pazopanib, though 

almost 40% of patients in each group had a surprisingly low persistence of below  

80% [200]. An analysis by Margolis et al. indicates an even worse scenario: In a 

retrospective investigation of 2395 mRCC patients more than 50% of the patients were 

non-adherent based on a mean possession ratio below 80%. Here, sunitinib showed 

the worst results across all investigated treatments [201]. A high inter-individual and 

residual variability in PK and PD parameters was also observed in our study for both 

drugs. Even though the identification of several covariates helped to reduce the 

unknown variability there is still uncertainty left. Partly documentation errors can be 

accounted for this, but as evidence suggests also unrecognized non-adherence may 

play a role in addition to unidentified covariates.   

Determination of sVEGFR-2 and -3 concentrations in plasma is comparatively easy 

and cost-effective due to commercially available ELISA kits [132,133]. In a clinical 

setting this can be crucial as not every hospital has the technical equipment for a fast 

analysis of sunitinib or pazopanib. In addition, sunitinib requires light-protected sample 

handling. Otherwise the analytical results might not be reliable due to degradation 

[130,202]. Furthermore, for a viable monitoring approach it is necessary to define target 

parameters and also ranges for these parameters. Even though sVEGFR-2 and 

sVEGFR-3 were investigated as potential biomarkers for various cancer types in 

several studies, none provided guidance for clinical practice [24,28,32,189,203,204]. 

Although our results suggest that a high baseline value of sVEGFR-2 is associated 

with a lower PFS, the chosen median as threshold value is based on a relatively small 

cohort. Another aspect which needs to be considered beforehand is, if sVEGFR-2 

baseline values serve as a prognostic or predictive biomarker [205]. Here, it is 

necessary to validate the findings of this study in larger patient groups treated with 

various first-line therapies for mRCC. The lack of target parameters is even more 

problematic when considering sVEGFR-2 plasma concentration over time as predictive 

factor. The developed modeling framework can be highly valuable in this case to guide 

dosing in a prospective clinical trial. 
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It was not possible to relate higher sVEGFR levels to tumor load of the individual 

patients, as this information was not available in the majority of subjects. Currently, 

there is sparse evidence of a direct quantitative relationship between tumor burden 

and sVEGFR-2 plasma concentrations in mRCC patients. In a preclinical analysis of 

various tumor models the relationship between sVEGFR-2 and tumor size was found 

to be inverse-linear over time in mice. Here, the plasma concentration of sVEGFR-2 

decreased with disease progression. The authors concluded that this might be related 

to the mediation by VEGF which was overexpressed in the investigated tumor models 

[206]. Comparable in vivo results in cancer patients are not available. However, it is 

well known that various tumor types express the membrane-bound variants of VEGFR-

1 -2 and -3 as well as other angiogenic factors to a higher extent [10,11]. Hansen et al. 

reported a significantly higher VEGFR-2 tissue concentration in colorectal carcinoma 

tumor tissue compared to normal colorectal tissue (127 pg/mL vs 78 pg/mL, p < 10-6) 

[207]. By comparing carcinoid neuroendocrine tumors (NET) with pancreatic NET 

(pNET) Zurita et al. showed that sVEGFR-2 expression is significantly higher in the 

latter tumor type, but did not correlate with tumor burden [203]. In an investigation by 

Bierer et al. two RCC subtypes, pRCC and ccRCC (Section 1.2), were compared 

regarding their expression profile. Interestingly, both subgroups differed in expression 

of VEGF-C, D and VEGFR-3 even though for the latter the difference was not 

statistically significant (ccRCC: 44%, pRCC: 61%, p = 0.11) [208]. We observed a 

difference in sVEGFR-3 baseline values between mCRC and mRCC patients. This 

emphasizes the assumption that tumor mass maybe less important than tumor entity 

or even tumor subtype. Nonetheless, measurement of sVEGFR baseline values could 

provide a reliable and easy approach for additional risk assessment in mRCC patients 

in addition to the already established MSKCC- or Heng-Scores (Section 1.2.2) 

Since it is common knowledge that patients treated with TKI are likely to develop 

hypertension, blood pressure was investigated as potential biomarker for therapy 

response with heterogeneous results across studies [83,191,209–211]. In a 

retrospective analysis by Rini et al. it was shown that mRCC patients under sunitinib 

treatment had an improved PFS when they developed hypertension during therapy 

(HR: 0.603, p < 0.001). These results could not be confirmed in a recent analysis of 

the COMPARZ study, which aimed to compare PFS in sunitinib and pazopanib patients 

[74,208]: here, hypertension was assessed after 4 and 12 weeks of treatment. 

Whereas a trend towards a positive effect of high blood pressure could be observed 
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after 4 weeks in both groups (HR: 0.79 for sunitinib and 0.75 for pazopanib), this was 

not confirmed after week 12. 

In theory, blood pressure would be an ideal biomarker as it can be easily measured, 

even by the patients themselves, without reliance on invasive methods. However, this 

accessibility comes with several major shortcomings. To be a usable biomarker, 

measurements have to be reliable and reproducible, which can be difficult as patients 

and clinicians use different devices and do not necessarily stick to standard 

procedures. Even under perfect (study) conditions it is almost impossible to collect 

unbiased blood pressure data, as already discussed in Section 5.1.2. 

Another crucial factor is the prevalence of hypertension. Peak incidence of mRCC 

ranges between 60 and 70 years [69]. According to the epidemiologic bulletin of the 

Robert-Koch Institute (RKI) prevalence of hypertension is up to 33% in the age group 

of 18 to 79, and 75% between 70 and 80 years in Germany. In total, 70% of these 

patients are treated with antihypertensive drugs [212]. This is an obstacle for the 

applicability of blood pressure as biomarker, as increases are potentially already 

suppressed due to antihypertensive treatment in many patients. 

Therefore, further investigations in a larger cohort of patients are certainly needed. 

With a denser sampling it should then be possible to extend the model with relevant 

information on diagnosis and antihypertensive treatment. But even then it will be quite 

challenging to define parameters which quantify the effect of a co-medication with 

respect to the amount of different antihypertensive drugs and regimens. In addition the 

problems regarding reliability of measurements remain, and need to be carefully 

addressed. Developing a standard operational procedure including relevant steps and 

a list of certified devices to guarantee a minimum of consistency across oncological 

centers could be a possible solution. 

The feasibility of more sophisticated dosing approaches could also be hindered by the 

available dosage strengths of sunitinib and pazopanib [46,47]. With a minimum dose 

of 12.5 mg for sunitinib and 400 mg for pazopanib it is quite difficult to target specific 

ranges of PK or PD parameters. Once a validated approach for individualized dosing 

is accessible a higher flexibility regarding possible doses is essential. 
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6 CONCLUSIONS AND OUTLOOK 

Personalized medicine is considered as a key factor to optimize treatments, especially 

in anticancer drug therapy. In order to achieve individualized therapies, a crucial factor 

is the identification and validation of potential predictors for relevant clinical endpoints. 

Here, pharmacometric approaches are of excellent value as they allow to quantify the 

relationships between influential factors and model parameters. In addition, an 

informed model can be used to extrapolate knowledge to other clinically relevant 

questions or serve as basis for therapeutic drug monitoring. 

In this thesis the basis for a PK/PD modeling framework for mRCC patients was 

developed for two common first-line therapies. Whereas the relationship between 

sunitinib pharmacokinetics and the proteins sVEGFR-2 and sVEGFR-3 in plasma was 

already quantified in healthy volunteers and applied to mCRC patients by Kanefendt 

et al., here, it could be shown that different tumor entities can show different response 

to the same treatment [109,126]. This is particularly evident in the different intrinsic 

activity of sunitinib in mRCC and mCRC patients with regard to sVEGFR-2 plasma 

concentrations. Covariates identified in the PD models are biologically plausible, 

though due to the small cohort especially the genetic influential factors need to be 

validated in a larger study. Although blood pressure has the potential to be a viable 

biomarker, this study revealed some limitations in the applicability of the developed 

model. The highly parameterized model relied on estimates from healthy volunteers 

due to the sparse sampling approach used here. For a more precise prediction of blood 

pressure over time several key factors such as physiological changes due to 

hypertension and active antihypertensive treatment need to be implemented and 

quantified. In addition, the value of a semi-mechanistic model could be compared to 

the Markovian approach used for fatigue and myelosuppression. As the CTCAE 

grading is associated with a potential loss of information, it would be highly intriguing 

to see if more sophisticated semi-mechanistic models for these adverse events would 

be more reliable and more precise with regard to outcome prediction. 

The published PK model for pazopanib by Yu et al. could successfully be used for a 

Bayesian estimation of the individual PK parameters in our study [110]. Furthermore, 

it allowed to establish the link between the measured biomarkers and pazopanib PK, 

which represents a novel approach. Even though the models adequately describe the 

PK/PD relationship of pazopanib, there is still unexplained variability which could not 
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be addressed in this thesis due to the low patient number and sparse data. Hence, the 

application of the models in a larger patient cohort and also other indications would be 

highly informative and may allow the identification of covariates.  

As the model-based time-to-event analysis showed, sVEGFR-2 seems to be a 

potential predictor for PFS in patients with mRCC. This was more evident in the 

analysis of survival data of both drugs combined, where not only the baseline value 

was predictive for outcome but also the absolute decrease sVEGFR-2 concentration 

over time. With commercially available kits for quantification, sVEGFR-2 has a great 

potential to be a valuable and cost-effective biomarker for dose individualization. 

Therefore, the next logical step should be to evaluate the effect in a prospective study 

with a dosing approach based on sVEGFR-2 plasma concentrations compared to 

standard fixed dose treatment. However, even though the quantitative association 

could be established, sVEGFR-2 threshold values for dose increase or reduction need 

to be defined for an adequate clinical application. 

Continuous-time Markov models are an excellent method to link PK/PD models with 

categorical outcome data. The approach used in this study allowed estimating the 

quantitative relationship between sunitinib exposure and the development of toxicity of 

a certain grade. However, due to the data limitations the application in this study has 

to be interpreted as a feasibility analysis. Similar to the other outcome models, the 

interpretation of the results is limited by the low patient number which corresponds to 

an overall very low incidence of adverse events. Despite that, the implementation into 

a modeling framework was successful and provided a first hint on the quantitative 

relationship between sunitinib exposure and myelosuppression. Of particular interest 

would be the application to other TKI, especially pazopanib, as this was not possible 

with our data. 

As shown in other studies, modeling frameworks can be highly informative and provide 

an interesting basis for further analyses. Possible applications can be simulation 

studies to show the effect of different sunitinib or pazopanib dosing regimens on PFS 

and toxicity or whole clinical trial simulations. Furthermore, the framework could be 

extended with other models. Conceivable would be a tumor growth model similar to 

the one developed by Hansson et al. in patients with GIST [32]. Tumor growth has the 

advantage of being a progression parameter on a continuous time scale, which can be 

informative also in respect to resistance mechanisms [213]. In addition, the 
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interconnection of the existing models could be further extended. For example, the link 

between Markov models for adverse events and a time-to-event model could provide 

highly valuable information on the effect of a proper toxicity management on overall 

survival.  

In conclusion, the developed modeling framework gives an insight into the quantitative 

relationship between the pharmacokinetics, the pharmacodynamic response and the 

clinical outcome of sunitinib and pazopanib. As it can be easily extended, it also 

provides a solid basis for further investigations. Additionally, this framework can serve 

as a template for pharmacometric analyses of other antiangiogenic drugs used in 

oncology. 
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7 SUMMARY 

This thesis provides the basis for an extensive modeling framework for patients with 

metastatic renal cell carcinoma (mRCC) treated with two common first-line therapies, 

sunitinib and pazopanib. As part of the European-wide EuroTARGET project, which 

aimed at identifying predictive biomarkers in mRCC patients, a pharmacokinetic phase 

IV study was conducted in Germany and the Netherlands. 

Based on a center-specific schedule up to 12 blood samples per patient were collected 

in conjunction with blood pressure measurements. Plasma concentrations of the 

respective study drug and the soluble VEGF receptors 2 and 3 were quantified for each 

time-point using previously established analytical methods. The generated data was 

pooled with the results from a previous study in mCRC patients treated with sunitinib 

(C-II-005) for a combined pharmacokinetic/pharmacodynamic analysis. 

Published pharmacokinetic and pharmacodynamics (PK/PD) models were used as 

basis for this work. For both sunitinib and pazopanib, reliable individual 

pharmacokinetic parameters could be obtained and successfully linked to 

pharmacodynamic models for the potential biomarkers. An inverse-linear relationship 

provided the overall best fit for sVEGFR-2, sVEGFR-3 and blood pressure. Covariate 

analysis of the PK/PD models revealed two single nucleotide polymorphisms (SNPs) 

with influence on the intrinsic activity of sunitinib on sVEGFR-2 plasma concentrations 

(VEGFR-3 rs6877011 and ABCB1 rs2032582). 

Furthermore, a significant difference in response to sunitinib with respect to sVEGFR-

2 between both investigated tumor entities was estimated, indicating a higher activity 

of sunitinib in mRCC patients. sVEGFR-3 baseline concentrations were significantly 

higher in mRCC compared to mCRC patients. The final PK/PD models were then used 

to establish a link to clinical outcome parameters including progression-free survival 

(PFS) and the two most commonly observed adverse events in the mRCC population. 

In a model-based time-to-event (TTE) analysis, a high sVEGFR-2 baseline plasma 

concentration was associated with a worse prognosis for sunitinib patients. In a 

combined analysis of sunitinib and pazopanib the absolute sVEGFR-2 plasma 

concentration over time was a potentially predictive factor. Hence, this model allows 

the prediction of PFS based on the measured sVEGFR-2 plasma concentration. 
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Myelosuppression and fatigue as treatment-associated adverse events were analyzed 

separately using first-order continuous Markov models. Here, active sunitinib plasma 

concentration proved to be influential as a higher exposition did result in prolonged 

time frames of myelosuppression. However, a similar effect was not observed for 

fatigue. 

The modeling framework presented in this thesis provides a better understanding of 

the relationship between the exposure, pharmacological response, and clinical 

outcome of antiangiogenic drugs and is therefore an important step towards finding 

optimal dosing schedules and identifying potential predictive biomarkers for both 

drugs. However, it also emphasizes, that it is might be difficult to find general 

biomarkers for antiangiogenic therapies, which can be applied across different tumor 

entities.
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A.I Pharmacokinetic models 

 

Covariate Comments 

Gender Categorical 

Age Continuous 

Tumor entity (mRCC or mCRC) Categorical 

ABCB1 rs1128503 Additive and general model (if applicable) 

ABCB1 rs2032582 Additive and general model (if applicable) 

ABCB1 rs1045642 Additive and general model (if applicable) 

VEGF A rs699947 Additive and general model (if applicable) 

VEGF A rs833061 Additive and general model (if applicable) 

VEGF A rs2010963 Additive and general model (if applicable) 

IL8 rs1126647 Additive and general model (if applicable) 

VEGF A Haplotype Additive and general model (if applicable) 
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A.II Pharmacodynamic models 

 

Covariate Comments 

Gender Categorical 

Age Continuous 

Weight Continuous 

BSA Continuous 

Tumor entity (mRCC or mCRC) Categorical 

ABCB1 rs1128503 Additive and general model (if applicable) 

ABCB1 rs2032582 Additive and general model (if applicable) 

ABCB1 rs1045642 Additive and general model (if applicable) 

VEGF A rs699947 Additive and general model (if applicable) 

VEGF A rs833061 Additive and general model (if applicable) 

VEGF A rs2010963 Additive and general model (if applicable) 

IL8 rs1126647 Additive and general model (if applicable) 

VEGF A Haplotype Additive and general model (if applicable) 

Continued  

VEGFR-3 rs6877011 Additive and general model (if applicable) 

VEGFR-3 rs307826 Additive and general model (if applicable) 

VEGFR-3 rs307821 Additive and general model (if applicable) 
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A.III Survival analysis and Markov models for toxicity 

 

Covariate Comments 

Age Continuous 

Weight Continuous 

Gender Categorical 

sVEGFR-2 Baseline value Continuous 

sVEGFR-2 above population 

median 

 

Categorical 

sVEGFR-3 Baseline value Continuous 

sVEGFR-3 above population 

median 

 

Categorical 

Prior Surgery (any type) Categorical 

Prior Nephrectomy Categorical 

Radiotherapy  

before/during treatment 

 

Categorical 

Hypertension diagnosed  

at treatment start 

 

Categorical 

Base BP(systolic) Continuous 

Base BP(diastolic) Continuous 

Total AUCSS Continuous 

Total CSS Continuous 

Active AUCSS Continuous 

Active CSS Continuous 

Total AUCSS > Median Categorical 

Total CSS > Median Categorical 

Active AUCSS > Median Categorical 

Active CSS > Median Categorical 

Number of metastases Categorical 

Toxicity of any kind ≥ Grade 3 Categorical 

CYP3A5*3 rs776746 Additive and general model (if applicable) 

ABCB1 rs1128503 Additive and general model (if applicable) 

ABCB1 rs2032582 Additive and general model (if applicable) 
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Continued  

ABCB1 rs1045642 Additive and general model (if applicable) 

VEGF A rs699947 Additive and general model (if applicable) 

VEGF A rs833061 Additive and general model (if applicable) 

VEGF A rs2010963 Additive and general model (if applicable) 

VEGF A rs3025039 Additive and general model (if applicable) 

VEGFR3 rs307826 Additive and general model (if applicable) 

IL8 rs1126647 Additive and general model (if applicable) 

ABCB1 Haplotype Additive and general model (if applicable) 

VEGF A Haplotype Additive and general model (if applicable) 
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A.IV Time-dependent covariates 

 

These covariates were only tested in the model-based time-to-event analysis and the 

Markov models for selected adverse events. 

 

Covariate Comments 

Active concentration of  

sunitinib and SU12662 

 

Continuous 

AUC of active substance Continuous 

Total concentration of  

sunitinib and SU12662 

 

Continuous 

AUC of total substance Continuous 

Absolute concentration of sVEGFR-2 Continuous 

Relative concentration of sVEGFR-2 Continuous 

AUC of sVEGFR-2 Continuous 

Absolute concentration of sVEGFR-3 Continuous 

Relative concentration of sVEGFR-3 Continuous 

AUC of sVEGFR-3 Continuous 

Systolic blood pressure Continuous 

Diastolic blood pressure Continuous 

Relative change in systolic  

blood pressure 

Continuous 

Relative change in diastolic 

blood pressure 

Continuous 

 

Only genotypes which were preselected based on their percentage of occurrence in 

the population were tested. For the PD models sVEGFR-3 related SNPs were tested 

despite the percentage under the threshold due to the high relevance 
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Legend 

AUC(SS) = Area under the curve (steady state), BP = Blood pressure, BSA = Body 

surface area, C(SS) = Concentration (steady state), IL8 = Interleukin 8, mCRC = 

metastasized colorectal carcinoma, mRCC = metastasized renal cell carcinoma, 

(s)VEGF(R) = (soluble) vascular endothelial growth factor (receptor), 
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B.I Blood sampling 



 

 

 



 

Interdisziplinäre 

Arbeitsgruppe 

„Nierentumore“ 

(IAG-N) 

 

 

 

 

Entnahme und Handhabung von Blutproben C-IV-001: EuT-PKPD EUDRACT-No.: 2012-001415-23 

EuroTARGET-Substudie C-IV-001: EuT-PK/PD 

 
Entnahme und Handhabung von Plasmaproben 

 
Blutentnahme 

 

 Entnahmemenge: 7,5 ml 
 

- In EDTA-Monovetten 
 

 
Kontrolle des 
Etiketts 

 

- Studienbezeichnung/Zentrumsnummer 

 
- EuroTARGET-Patientennummer 

 

- Abnahmetag und –zeitpunkt 
 

- „P“ für Pazopanib bzw. „S“ für Sunitinib auf den Deckel des Tubes 

 
- Das Etikett mit Klebefolie schützen! 

 

- Proben entsprechend dem Bestimmungsort mit „Uni Bonn“ kennzeichnen 
 
Zentrifugation 

 

- innerhalb von 30 min nach der Blutabnahme 

 

- 1000 g rel. Zentrifugalbeschleunigung  (bitte Umrechnung beachten, da die 
rpm-Einstellung variiert je nach Art der Zentrifuge (s.u.)) 

 

- Mit Bremsfunktion 
 

- bei 4°C 

 
- für 15 min 

 
 
Abpipettieren 

 
- Abnahmeröhrchen bis zum Pipettieren in der Zentrifuge belassen 

 

- Kontrolle der Pipette (µL-Einstellung, Pipettenspitze) 
 

- 500 µL als Pipetteneinstellung 

 
- Pipettenspitze  nach jeder Probe wechseln 

 

- Es ist darauf zu achten, dass nur Plasma übertragen wird und der unten 
liegende Blutkuchen unangetastet bleibt 

 

- Deckel des Plasmaröhrchens nach dem Pipettieren sofort schließen 
 

- Aufteilung in 6 Aliquote á 500 µL 

 

- Light-protected micro-tubes als Plasmaröhrchen (Sunitinib ist 
lichtempfindlich!) 

 

- Plasmaröhrchen sofort danach einfrieren (aufrecht!) 
 

 
Lagerung 

 

- Bei mind. -80°C 
 

- Sortierung der Proben kontrollieren  

o aufsteigende Reihenfolge der Patientennummern von links nach rechts 
o zeitliche Reihenfolge von vorn nach hinten 



 

Interdisziplinäre 

Arbeitsgruppe 

„Nierentumore“ 

(IAG-N) 

 

 

 

 

Entnahme und Handhabung von Blutproben C-IV-001: EuT-PKPD EUDRACT-No.: 2012-001415-23 

 
Zentrifuge: Umrechnung von „g“in „rpm“ 
 

Sollte an der genutzten Zentrifuge keine Einstellung der Geschwindigkeit über die 
Erdbeschleunigung g möglich sein, empfiehlt sich eine Umrechnung in die üblichen 

rpm (rounds per minute). 

 

Dies ist mit folgender Formel möglich: 

                    
 

Bitte beachten Sie, dass der Zentrifugenradius r (in cm) dabei entscheidend ist 

(zu entnehmen aus der Bedienungsanleitung des jeweiligen Gerätes). 

 
 

 
Versand: 
 

Mit „Uni Bonn“ gekennzeichnete Proben werden auf Trockeneis an folgende 

Adresse versandt (die Abholung wird durch die CESAR organisiert): 
 

Prof. Dr. Ulrich Jaehde 
Pharmazeutisches Institut 

Universität Bonn 

An der Immenburg 4 

D-53121 Bonn 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

Bei Unklarheiten wenden Sie sich bitte an: 

 Achim Fritsch  

(Tel.: 0228-73 5229, E-Mail: a.fritsch@uni-bonn.de). 

mailto:a.fritsch@uni-bonn.de


 

Interdisziplinäre 

Arbeitsgruppe 

„Nierentumore“ 

(IAG-N) 

 

 

 

 

Entnahme und Handhabung von Blutproben C-IV-001: EuT-PKPD EUDRACT-No.: 2012-001415-23 

Dokumentation der Blutprobenentnahme 
 

Klinik:     ______________________ 

EuroTARGET-Patientennummer:  ______________________ 

Zyklus Datum 
[TT.MM.JJ] 

Uhrzeit 
[HH:MM] 

Abstand zur letzten 
Einnahme 

[in Stunden] 

Aktuelle Dosierung 
[in mg]  

(Bitte Datum der 

Dosisanpassung angeben, 

falls zutreffend) 

    
Baseline 
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B.II Blood pressure assessment 



 

 

 



 

Interdisziplinäre 

Arbeitsgruppe 

„Nierentumore“ 

(IAG-N) 

 
 

 

 

[1] Modifiziert nach: Bundesvereinigung Deutscher Apothekerverbände (ABDA). Standardarbeitsanweisung –Blutdruckmessung in 

der Apotheke. Stand:04.2009. Verfügbar auf: http://www.abda.de/leitlinien.html. Letzter Zugriff: 13.04.2012 

Blutdruckmessung C-IV-001: EuT-PK/PD EUDRACT-No.: 2012-001415-23 
 

EuroTARGET-Substudie C-IV-001: EuT-PK/PD 
 

Blutdruckmessung 

Die Messungen erfolgen im Rahmen der klinischen Routineuntersuchung. Sollten während der 
Studienzeit Langzeit-Blutdruckmessungen durchgeführt werden, so ist dies ebenfalls zu 
dokumentieren. 

 
Technische 
Ausstattung 

Die Messungen werden mit einem zertifizierten Gerät der Deutschen 
Hochdruckliga ausgeführt. Ein solches Gerät wird jeder teilnehmenden 

Klinik kostenlos zur Verfügung gestellt.  

Durchführung der 
Messung[1] 

 Messung möglichst zur selben Tageszeit 

 

 Beginn der Messung nach 5 minütiger Ruhepause in sitzender 

Position 

 

 Entsprechende Verlängerung der Ruhephase bei 
außergewöhnlicher Belastung (>5 min) 

 

 Alle Störquellen vermeiden (z.B. Gespräche) 
 

 Bis mindestens eine Stunde vor der Messung sollte der Patient  

auf Coffein-haltige Getränke, Alkohol und Nikotin verzichten 
 

 Der Messarm darf nicht durch zurückgeschobene Kleidung 

abgeschnürt werden (entsprechende Kleidungsstücke, Uhren 

sowie Schmuck vor der Messung ablegen) 
 

 Der untere Rand der Manschette sollte 1-2 cm über der 

Ellenbeuge liegen. Der Messfühler mit dem Schlauch liegt an 
der Arminnenseite 

 

 Den Messarm während der Messung ruhig und leicht 

angewinkelt auf einer Unterlage auflegen und nicht bewegen 
 

 Manschette muss auf Herzhöhe liegen 

 

Dokumentation  Folgende Daten werden auf dem Dokumentationsbogen erfasst. 
 

o Datum und Uhrzeit der Messung 

 
o Systolischer Blutdruck 

 

o Diastolischer Blutdruck 

 
o Puls 

 

o Kommentare/Auffälligkeiten 

 
Bei Unklarheiten wenden Sie sich bitte an Achim Fritsch (0228-73-5229; a.fritsch@uni-bonn.de) 

  

mailto:a.fritsch@uni-bonn.de
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B.III Adverse events 



 

 

 

 



 

Interdisziplinäre 

Arbeitsgruppe 

„Nierentumore“ 

(IAG-N) 

 
 

 

AE - Dokumentationsbogen – CIV-001    EUDRACT-No.: 2012-001415-23 Version 1.0 

Studie C-IV-001: EuT-PK/PD: 
 

Dokumentation von „Adverse Events“ 
 
 

Allgemeine Hinweise zur Dokumentation 
 
Dieser Dokumentationsbogen dient der Erfassung von „Adverse Events“. Sollten bei einem 
Ihrer Patienten „Serious Adverse Events“ auftreten, so melden Sie diese zusätzlich  
innerhalb von 24h via Fax an den Sponsor (Weiteres entnehmen Sie bitte dem 
entsprechenden Dokument). 
 
Der Abschnitt „Kommentar“ dient zusätzlichen Informationen, die zum Verständnis der 
erfassten Daten wichtig sind (z.B. Hospitalisierung aufgrund eines AE etc.). 
 
Die häufigsten Nebenwirkungen von Sunitinib (entsprechend der Fachinformation) finden 
sich bereits im ersten Teil der Dokumentationstabelle aufgelistet. Nicht gelistete 
unerwünschte Ereignisse sowie Rezidive tragen Sie bitte in den entsprechenden freien 
Feldern ein. 
 

 
Bitte nutzen Sie zur Dokumentation den folgenden Bewertungsschlüssel: 

1. Kausalität 

Unwahrscheinlich:   
Möglich:    
Wahrscheinlich:   
Gesichert:     
Nicht zutreffend:     
 

 

[1] 
[2] 
[3] 
[4] 
[5] 
 

2. Intervention 
Keine Intervention:  
Studientherapie angepasst: 
Studientherapie kurzzeitig unterbrochen: 
Studientherapie dauerhaft unterbrochen: 
Begleitmedikation verordnet:  
Nichtmedikamentöse Behandlung:  
  
 

 
[0] 
[1] 
[2] 
[3] 
[4] 
[5] 
 

3. Outcome 
Verbesserung: 
Keine Änderung: 
Verschlimmerung (SAE): 
Unbekannt: 
 

 
[1] 
[2] 
[3] 
[4] 
 

 

 





Appendices  207 

 

   

 

 

 

B.IV Immunoassays 



 

 

 



Standardarbeitsanweisung (SOP) 

Nr.: SOP 3 09 

Klinsiche Pharmazie 
  Revision:  

Gültig ab: Seite 1 von 7 

SOP-Immunoassays.doc.doc 

 

 

 
 

 
 

 

Gültigkeitsbereich: Klinische Pharmazie 

 
Autor(en): Friederike Kanefendt 

Datum/Unterschrift: 

 

Datum/Prof. Dr. Ulrich Jaehde Datum/Friederike Kanefendt 
 
 
 
 

Überprüfungsvermerk/Qualitätssicherung 
 
 
 

Name/Datum/Unterschrift 
 

 
Verteiler: Laborleiter 

Mitarbeiter Labor 3.110 

Mitarbeiter Labor 3.116 

Mitarbeiter Labor 3.117 

weitere Mitarbeiter:    
 
 

Inhalt 1. Zweck / Prinzip 2 

2. Einsatzbereich 2 

3. Messprinzip / Grundlagen 2 

4. Verfahrenskenndaten / Validierung 3 

5. Geräte/Geräteeinstellungen und Material 3 

6. Chemikalien und herzustellende Lösungen 4 

7. Durchführung der Analyse 5 

8. Mitgeltende Unterlagen 7 

 

Titel: Proteinbestimmung mittels ELISA 



Standardarbeitsanweisung (SOP) 

Nr.: SOP 3 09 

Klinsiche Pharmazie 
  Revision:  

Gültig ab: Seite 2 von 7 

SOP-Immunoassays.doc.doc 

 

 

 
 
 

 

 
 

Diese SOP regelt die Bestimmung von proteinogenen Analyten in humanem 
Kalium-EDTA-Plasma mit Hilfe von Enzyme-linked Immunosorbent Assays 
(ELISAs) 

Sie sichert ein einheitliches Vorgehen bei der Vorbereitung der Proben, der 
Durchführung der Assays, die Qualität der Messungen und die Vergleichbarkeit 
der Ergebnisse. 

  2. Einsatzbereich  

 
Die hier beschriebenen Methoden werden angewendet für die Bestimmung der 
proteinogenen Wachstumsfaktoren VEGF-A und VEGF-C und deren löslichen 
Rezeptoren sVEGFR-2 und sVEGFR-3 in humanem Kalium-EDTA- Plasma. 

  3. Messprinzip / Grundlagen  

 
Der ELISA ist ein immunologisches Nachweisverfahren, das auf einer Antigen-
Antikörper-Reaktion beruht. Generell unterscheidet man direkte und indirekte 
ELISA sowie Sandwich- und kompetitive ELISA. Das Messprinzip beruht auf der 
Bindung eines Analyten (Antigen) an freie (kompetitiv) oder immobilisierte für 
diesen Analyten spezifische Antikörper. Anschließend zugegebene Substrate 
werden von Enzymen zu farbigen Produkten umgesetzt oder führen durch die 
katalysierte chemische Umsetzung zu Lumineszenz, deren Intensität 
entsprechend mit einem  UV-Spektrometer oder einem Luminometer gemessen 
werden kann. Diese Enzyme befinden sich entweder auf Zweitantikörpern 
(Sandwich-ELISA), die in einem weiteren Schritt den auf der Platte gebundenen 
Analyten binden, oder sind an das kompetitive Antigen (kompetitiver ELISA), 
das in definierter Menge hinzugefügt wird, gebunden. Anhand parallel 
vermessener Standards und einer entsprechenden Kalibrierkurve kann der 
Analyt quantifiziert werden. 

1. Zweck / Prinzip 



Standardarbeitsanweisung (SOP) 

Nr.: SOP 3 09 

Klinsiche Pharmazie 
  Revision:  

Gültig ab: Seite 3 von 7 

SOP-Immunoassays.doc.doc 

 

 

 
 

 4. Verfahrenskenndaten / Validierung  

 
Die zurzeit verwendeten Testkits für VEGF-A, VEGF-C und sVEGFR-2 wurden 
von der Firma R&D Systems validiert; die Validierungsparameter befinden 
sich im Herstellerprotokoll zum entsprechenden Test. Die Handhabung der 
Tests verläuft nach Protokoll (mitgeltende Unterlagen). Dieses entstammt 
den Anweisungen für die Verwendung der Testkits. Zur Bestimmung von 
sVEGFR-3 wird ein vom humanen VEGFR-3 DuoSet ELISA ausgehender, für 
humanes Plasma validierter, ELISA verwendet [Kanefendt et al. 201X]. Für 
die Validierungskriterien, wie Präzision und Richtigkeit werden nach 
geltenden Vorschriften für Immunoassays Akzeptanzkriterien von ≤ 20 % 
angenommen [DeSilva et al. 2003]. 

5. Geräte/Geräteeinstellungen und Material  

 

5.1 Geräte 

 
• Pipetten/ Mehrkanalpipetten 

• UV-Spektrometer (Thermo Electron Corporation Multiscan EX) 

• Luminometer (Fluostar Optima) 

• Schüttler (Heidolph Instruments Unimax 1010 (d=10mm)) 

5.2 Chemikalien und Reagenzien 

 
• QuantiGlo human VEGF-A Immunoassay (#QVE00B) 

• Quantikine human sVEGFR-2 Immunoassay (#DVR200) 

• Quantikine human VEGF-C Immunoassay (#DVEC00) 

• Materialien zur Bestimmung von VEGF-A, VEGF-C und sVEGFR-2 sind 
im entsprechenden Testkit enthalten 

sVEGFR-3 (R&D Systems, Abingdon, UK) 

• Human sVEGFR-3 (Flt-4) DuoSet ELISA (#DY349) 

• Purelab® Wasser 

• Wash Buffer 0,05 % Tween® 20 in PBS, pH 7,2 – 7,4 (#WA126) 

• Reagent Diluent Concentrate 2 – 1 % (#DY995) 
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• Substrate Solution (#DY999) 

• Stop Solution – 2N H2SO4 (#DY994) 

• CrossDown Buffer (AppliChem, A6485) 

• Fetales Kälberserum (FKS) (Sigma, F7524) 

5.3 Verbrauchsmaterialien 

 
• Clear Polystyrene MicroPlates (#DY990) 

• Parafilm 

• Eppendorf Caps (0,5; 1,5; 2,0 mL) 

• Polypropylen (PP)-Röhrchen (15, 50 mL) 

• Pipettenspitzen 

5.4 Geräteeinstellungen 

 
• Die Geräte sind nach Angaben des Herstellers (Herstellerprotokoll) 

einzustellen. 

• Zu beachten ist bei Verwendung des Schüttlers, dass die Angaben in rpm 
entsprechend auf den verwendeten Schüttler umgerechnet  werden 
müssen. 

 rcf = 1,118 . 10-5 r . rpm2
 

rcf: relative centrifugal force [x g]; r: Radius [cm]; rpm: rotations per 
minute [1/min]  1 inch = 2,54 cm 

6. Chemikalien und herzustellende Lösungen  

 

VEGF-A, VEGF-C und sVEGFR-2: 

Sämtliche Chemikalien, die verwendet werden, werden vom Hersteller mit 
jedem Testkit mitgeliefert. Hergestellt werden müssen Waschpuffer und 
Substratmischungen jeweils nach Anweisung des Herstellerprotokolls. 

sVEGFR-3 

• PBS Puffer 

137 mM NaCl 8,0 g 

2,7 mM KCl 0,2 g 
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8,1 mM Na2HPO4 1,15 g 

1,5 mM KH2PO4 0,204 g 

Purelab Plus® Wasser ad 1000,0 ml 

pH 7,2 – 7,4; 0,2 μm filtriert 

• Reagent Diluent (1:10) 

Reagent Diluent Concentrate 2 1 T 

Purelab Plus® Wasser 9 T 

• Capture Antikörper Verdünnung (1:180) 

Capture Antikörper Konzentrat 1 T 

PBS 179 T 

• Detection Antikörper Verdünnung (1:225) 

Detection Antikörper Konzentrat 1 T 

Reagent Diluent 224 T 

• Streptavidin-HRP (1:200) 

Streptavidin-HRP Konzentrat 1 T 

Reagent Diluent 199 T 

• Substrat-Mischung (1:1) 

Reagent A 1 T 

Reagent B 1 T 

• FCS: 30 min bei 50 °C inaktivieren 

7. Durchführung der Analyse  

 

7.1 Probenentnahme 

 
Vollblut wird durch entsprechend qualifizierte Personen in Kalium-EDTA 
enthaltende Monovetten entnommen und innerhalb von 30 Minuten bei 4 °C, 
1029 x g für 15 min zentrifugiert. Das gewonnene Plasma wird  aliquotiert  und 
bei -80 °C eingefroren und gelagert. 

7.2 Probenvorbereitung 

 
Die Proben und alle weiteren Reagenzien, die für einen Test benötigt werden, 
werden auf Raumtemperatur gebracht. Das Plasma wird gegebenenfalls 
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verdünnt (Angaben in den entsprechenden Versuchsprotokollen oder wenn 
Plasmakonzentrationen oberhalb des oberen Kalibrierbereiches zu erwarten 
sind). 

Während der Inkubation kann es erforderlich sein, die Platten zu schütteln. Um 
Temperaturschwankungen während der Inkubationszeit durch die Erwärmung 
des Schüttlers zu vermeiden, wird eine Styroporplatte in entsprechender Größe 
zur Isolation zwischen Schütteloberfläche und Versuchsplatte gelegt. 

7.3 Kalibrierung 
 

Die Kalibrierung verläuft ebenfalls nach Herstellerprotokoll. Sie basiert auf 
einer Surrogatmatrix auf Basis von FCS. Humanes Plasma kann nicht als 
Kalibriermatrix verwendet werden, da die Analyten endogen in humanem 
Plasma vorkommen und keine humane Leermatrix existiert. Als 
Kalibriermodell dient in der Regel die 4-Parameter logistische Funktion (1) 
für Messungen, bei denen die UV-Absorption gemessen wird, und ein Cubic 
Spline bei der Messung der Lumineszenz. Entsprechende Angaben werden 
ebenfalls in den entsprechenden Versuchsprotokollen gemacht. Zur 
Verifizierung der Kalibrierung werden Qualitätskontrollproben (QCs) auf 
jeder Platte mit vermessen, die vom Hersteller geliefert werden. Diese 
müssen den Herstellerspezifikationen entsprechen. Im Falle der Messung 
von sVEGFR-3 werden die QCs selbst hergestellt und müssen eine Präzision 
(CV,%) und Richtigkeit (RE, %) von ≤ ± 20 % aufweisen. 

 

 

4-Parameter logistische Funktion 

 

X: Konzentration 

Y: Absorption 

A1: untere Asymptote 

A2: obere Asymptote 

X0: Konzentration bei der halber Absorption 

p: Steigungsparameter 

Der Cubic Spline interpoliert Messsignale innerhalb der Kalibrierkurve und 
schätzt somit die Analyt-Konzentrationen entsprechend der Lumineszenz ab. 
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7.4 Messung 

 
Die Proben werden auf der 96-Well-Platte entweder  im  UV-Spektrometer oder 
im Luminometer vermessen. Gemessen wird nach entsprechend vorgegebener 
Inkubationszeit nach Zugabe des Stopp-Reagenzes oder des zur Lumineszenz 
befähigtem Substratgemisches. Erhalten werden die entsprechenden Rohdaten 
für Absorption oder Lumineszenz für jedes Well im Excel-Format. 

7.5 Auswertung 

 
Ausgewertet wird durch entsprechende Berechnung der Konzentrationen des 
Analyten mit Hilfe der abgeschätzten Parameter der Kalibrierkurve. Durch 
die parallel vermessenen QCs, die innerhalb der Akzeptanzkriterien liegen 
müssen, kann überprüft werden, ob die Messungen akzeptiert werden 
können. 

8. Mitgeltende Unterlagen  

 

• Herstellerprotokoll QuantiGlo VEGF-A ELISA (#QVE00B) 

• Herstellerprotokoll Quantikine VEGF-C ELISA (#DVEC00) 

• Herstellerprotokoll Quantikine sVEGFR-2 ELISA (#DVR200) 

• Herstellerprotokoll VEGFR-3 DuoSet (#DV349) 

• Versuchsprotokoll zur VEGF-A-Bestimmung 

• Versuchsprotokoll zur VEGF-C-Bestimmung 

• Versuchsprotokoll zur sVEGFR-2-Bestimmung 

• Versuchsprotokoll zur sVEGFR-3-Bestimmung 
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Mitgeltende Unterlagen SOP 3 09

Versuchsprotokoll zur sVEGFR-2 Bestimmung Datum

1. Herstellen der Reagenzlösungen

alle Reagenzien vor dem Gebrauch auf Raumtemperatur bringen

Waschpuffer

Wash Buffer Concentrate 20 mL

Purelab Wasser ad 500 mL

VEGFR-2 Standard

Rekonstitution mit 1 mL Purelab Wasser

15 min unter leichtem Schütteln stehen lassen

Kalibratoren

Vorgegangen wird nach folgenden Schema ausgehend von dem im Kit enthaltenen Standard 

C7 C6 C5 C4 C3 C2 C1

Probe

Lösung Cx+1

[μL]

Calibrator Diluent

RD6-31 [μL]

Konzentration

[pg/mL]

C7 100 900 5000.0

C6 500 500 2500.0

C5 500 500 1250.0

C4 500 500 625.0

C3 500 500 312.5

C2 500 500 156.3

C1 500 500 78.1

C0 500 0.0 Leerprobe

Qualitätskontrollproben

unverdünnt auftragen

Probe

Konz.-Bereich 

[pg/mL]

QC1 216-370

QC2 1171-1920

QC3 2340-3413

Probenherstellung

Plasma muss 1:5 verdünnt werden 

60 μL Plasma und 240 μL Calibrator Diluent RD6-31



Mitgeltende Unterlagen SOP 3 09

2. ELISA Durchführung

100 μL Assay Diluent RD1W in jedes Well pipettieren

100 μL Standard, QC oder Probe in die entsprechenden Wells pipettieren

mit der adhäsiven Folie abkleben 

Inkubation für 2 h bei Raumtemperatur Start: Temp.:

Ende: Temp.:

Waschen mit Waschpuffer (4 x 400 μL)

Platte ausklopfen und nach dem letzten Schritt absaugen

200 μL sVEGFR-2 Conjugate in jedes Well pipettieren

mit der adhäsiven Folie abkleben 

Inkubation für 2 h bei Raumtemperatur Start: Temp.:

Ende: Temp.:

Waschen mit Waschpuffer (4 x 400 μL)

Platte ausklopfen und nach dem letzten Schritt absaugen

200 μL Substrate Solution in jedes Well pipettieren

Reagenz A 10 mL

Reagenz B 10 mL

Inkubation für 30 min bei Raumtemparatur Start: Temp.:

Lichtschutz!!! Ende: Temp.:

50 μL Stop Solution in jedes Well pipettieren

innerhalb von 30 min Messung der Absorption bei 450 nm und bei 570 nm zur Korrektur
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C.II sVEGFR-3 



 

  

 

 



Mitgeltende Unterlagen SOP 3 09

Versuchsprotokoll zur sVEGFR-3 Bestimmung Datum

1. Herstellen der Reagenzlösungen

alle Reagenzien vor dem Gebrauch auf Raumtemperatur bringen

Waschpuffer

Wash Buffer Concentrate 20 mL

Purelab Wasser ad 500 mL

sVEGFR-3 Standard

Rekonstitution mit 1 mL Purelab Wasser

15 min unter leichtem Schütteln stehen lassen

Reagent Diluent (1:10)

Reagent Diluent Concentrate 2 5.2 mL

Purelab Wasser 46.8 mL

Kalibratoren

Begonnen wird die Verdünnungsreihe mit C7 bestehend aus 45 μL Standard und 1530 μL FKS

für alle weiteren Verdünnungen Cx wird die jeweil vorherige Cx+1 verwendet

Probe

Lösung Cx+1 

[μL]

FKS* 

[μL]

Verdünnungs-

 faktor

Konzentration 

[pg/mL]

C7 45 1530 35 10571.4

C6 700 200 45 8222.2

C5 600 200 60 6166.7

C4 480 240 90 4111.1

C3 300 300 180 2055.6

C2 300 300 360 1027.8

C1 300 300 720 513.9

C0 250 0.0

* inaktiviert 30 min bei 50°C

Qualitätskontrollproben

Gleiches Vorgehen gilt für die Herstellung der QCs, es werden 3 QCs für den Assay verwendet

Probe

Lösung Cx+1 

[μL] FKS [μL]

Verdünnungs-

 faktor

Konzentration 

[pg/mL]

QC2 300 300 360 1027.8

300 300 180 2055.6

QC4 480 240 90 4111.1

600 200 60 6166.7

QC6 700 200 45 8222.2

45 1530 35 10571.4

Probenvorbereitung

Verdünnung 1:10 mit CrossDown Buffer



Mitgeltende Unterlagen SOP 3 09

2. Plattenvorbereitung 1. Tag

pH-Wert bestimmen pH: (Soll: 7,2 - 7,4)

Sterilfiltration der PBS (Sterilfilter 0,2 μm)

Bubble-point-Test 

100 μL Capture-Antikörper Verdünnung in jedes Well pipettieren

4,0 μg/mL Capture-AB 57 μL

PBS 10.2 mL

100 μL in jedes Well pipettieren

Inkubation über Nacht Start: Temp: 

bei Raumtemperatur (RT) Ende: Temp: 

in Dunkelheit

2. Tag Datum

Waschen mit Waschpuffer

3 x mit jeweils 340 μL pro Well

ausklopfen und nach dem letzten Schritt absaugen

300 μL Reagent Diluent in jedes Well (Reagent Diluent immer frisch herstellen)

Inkubation für 2 h bei RT Start: Temp.:

Ende: Temp.:

Waschen mit Waschpuffer

3 x mit jeweils 340 μL pro Well

ausklopfen und nach dem letzten Schritt absaugen



Mitgeltende Unterlagen SOP 3 09

3. ELISA-Durchführung

Datum

100 μL Proben-Lösung in jedes Well pipettieren

Abdecken mit Parafilm

Inkubation für 2 h bei 30 °C Start: Temp.:

cave: Verdunstung!!! Ende: Temp.:

Waschen mit Waschpuffer

3 x mit jeweil (2x 170μL)

ausklopfen und nach dem letzten Schritt absaugen

100 μL Detection-Antikörper Verdünnung in jedes Well pipettieren

0,4 μg/mL Detection-AB 48 μL

Reagent Dil. 10.75 mL

Abdecken mit Parafilm

Inkubation für 2 h bei RT Start: Temp.:

Schütteln bei 272 rpm Ende: Temp.:

Waschen mit Waschpuffer

100 μL Streptavidin-HRP Strept-HRP 52 μL

innerhalb von 60 min Reagent Dil. 10.35 mL

Abdecken mit Parafilm und Alufolie --> Lichtausschluss

Inkubation für 20 min bei RT Start: Temp.:

Schütteln bei 272 rpm Ende: Temp.:

Waschen mit Waschpuffer

100 μL Substrat Verdünnung in jedes Well pipettieren

innerhalb von 15 min Reagenz A 5.1 mL

Reagenz B 5.1 mL

Abdecken mit Parafilm und Alufolie --> Lichtausschluss

Inkubation für 20 min bei RT Start: Temp.:

Ende: Temp.:

50 μL Stop Solution in jedes Well pipettieren

sofortige Messung 

1.  2 x Schüttelschritt

2. Messung der Absorption bei 450 nm und bei 570 nm

 > Differenz: Abs.(450 nm) - Abs.(570 nm)
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D.I Pharmacokinetics (Sunitinib and SU12662) 

 

Sunitinib 

  

  

 

OBS vs IPRED (A), OBS vs PRED (B), CWRES vs PRED (C), CWRES vs Time (D) , |IWRES| vs 

IPRED (E) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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SU12662 

  

  

 

OBS vs IPRED (A), OBS vs PRED (B), CWRES vs PRED (C), CWRES vs Time (D) , |IWRES| vs 

IPRED (E) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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Comparison between the two different pharmacokinetic models for sunitinib by  

Yu et al. [110] and Lindauer et al. [109] 

OBS vs IPRED (Lindauer et al) (A), OBS vs PRED (Lindauer et al)  (B), CWRES vs Scatter plot if 

individual predictions (Sunitinib) (C), Scatter plot if population predictions (Sunitinib) (D) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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D.II PK/PD – sVEGFR-2 (Sunitinib) 

  

  

 

OBS vs IPRED (A), OBS vs PRED (B), CWRES vs PRED (C), CWRES vs Time (D) , |IWRES| vs 

IPRED (E) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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D.III PK/PD – sVEGFR-3 (Sunitinib) 

  

  

 

OBS vs IPRED (A), OBS vs PRED (B), CWRES vs PRED (C), CWRES vs Time (D) , |IWRES| vs 

IPRED (E) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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D.IV PK/PD – Blood pressure (Sunitinib) 

 

Systolic blood pressure 

  

  

 

OBS vs IPRED (A), OBS vs PRED (B), CWRES vs PRED (C), CWRES vs Time (D) , |IWRES| vs 

IPRED (E) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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Diastolic blood pressure  

  

 

 

 

OBS vs IPRED (A), OBS vs PRED (B), CWRES vs PRED (C), CWRES vs Time (D) , |IWRES| vs 

IPRED (E) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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D.V PK/PD – sVEGFR-2 (Pazopanib) 

  

  

 

OBS vs IPRED (A), OBS vs PRED (B), CWRES vs PRED (C), CWRES vs Time (D) , |IWRES| vs 

IPRED (E) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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D.VI PK/PD – sVEGFR-3 (Pazopanib) 

  

  

 

OBS vs IPRED (A), OBS vs PRED (B), CWRES vs PRED (C), CWRES vs Time (D) , |IWRES| vs 

IPRED (E) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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D.VII PK/PD -  Blood pressure (Pazopanib) 

 

Systolic blood pressure 

  

  

 

OBS vs IPRED (A), OBS vs PRED (B), CWRES vs PRED (C), CWRES vs Time (D) , |IWRES| vs 

IPRED (E) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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Diastolic blood pressure 

  

  

 

OBS vs IPRED (A), OBS vs PRED (B), CWRES vs PRED (C), CWRES vs Time (D) , |IWRES| vs 

IPRED (E) 

OBS = Observed values, IPRED = Individual predictions, PRED = Population predictions, CWRES = 

Conditional weighted residuals, IWRES = Individual weighted residuals 
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D.VIII Visual predicitive check – Sunitinib/SU12662 pharmacokinetics 

 

Sunitinib 

 

 

 

SU12662  
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D.IX Visual predictive check - PK/PD – sVEGFR-2 and sVEGFR-3 (Sunitinib) 

 

sVEGFR-2 

 

 

sVEGFR-3 

 

 

 

The black solid lines indicate the mean model prediction and the 90 % prediction 

interval. Dotted lines show the measured mean and interval, respectively. Dark and 

light grey areas represent the respective confidence bands. The dark-grey rectangle 

represents the time on treatment. 
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sVEGFR-3 – Stratified by tumor entity 

 

 

mRCC (A) and mCRC (B). 

The black solid lines indicate the mean model prediction and the 90 % prediction 

interval. Dotted lines show the measured mean and interval, respectively. Dark and 

light grey areas represent the respective confidence bands. The dark-grey rectangle 

represents the time on treatment. 
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D.X Visual predictive check - PK/PD – Blood pressure (Sunitinib) 

 

 

Systolic (A) and diastolic (B) blood pressure  

The black solid lines indicate the mean model prediction and the 90 % prediction 

interval. Dotted lines show the measured mean and interval, respectively. Dark and 

light grey areas represent the respective confidence bands. The dark-grey rectangle 

represents the time on treatment. 
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D.XI Visual predictive check - PK/PD – sVEGFR-2 and sVEGFR-3 (Pazopanib) 

 

sVEGFR-2 

 

 

 

sVEGFR-3  

 

The black solid lines indicate the mean model prediction and the 90 % prediction 

interval. Dotted lines show the measured mean and interval, respectively. Dark and 

light grey areas represent the respective confidence bands. The dark-grey rectangle 

represents the time on treatment. 
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D.XII Visual predictive check - PK/PD – Blood pressure (Pazopanib) 

 

 

Systolic (A) and diastolic (B) blood pressure  

The black solid lines indicate the mean model prediction and the 90 % prediction 

interval. Dotted lines show the measured mean and interval, respectively. Dark and 

light grey areas represent the respective confidence bands. The dark-grey rectangle 

represents the time on treatment. 
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E.I Overview on documented events  

 

Registered events in patients treated with sunitinib first-line (n = 24) 

ID Comment Event TTE [months] 

NM S1 Died as result of malignancy 1 4.83 

NM S2 Lost to follow-up 0 0.43 

NM S3 Lost to follow-up 0 1.45 

NM S4 Lost to follow-up 0 0.3 

NM S5 
Started new treatment,  

w/o reason 0 

4.17 

NM S6 Lost to follow-up 0 10.09 

NM S13 
Started new treatment,  

w/o reason 0 

12.42 

NM S15 PD documented 1 12.65 

NM S17 Died as result of malignancy 1 5.35 

NM S19 Died as result of malignancy 1 6.87 

NM S21 Censored on 01.07.2015 0 6.6 

NM S22 New lesion during first-line 1 9.07 

NM S24 New lesion during first-line 1 5.88 

NM S25 Died as result of malignancy 1 3.45 

NM S27 Lost to follow-up 0 0.23 

NM S28 Lost to follow-up 0 15.24 

NM S29 PD documented 1 0.76 

NM S30 Died as result of malignancy 1 7.03 

NM S31 Censored (brainmetastases) 0 0.36 

NM S32 Therapy stop due to progression 1 4.11 

NM S33 Died as result of malignancy 1 0.46 

NM S39 New lesion during first-line 1 2.96 

NM S42 Lost to follow-up 0 4.2 

NM S43 Died as result of malignancy 1 0.99 

ID = Dataset Identifier, PD = Progressive disease, TTE = Time-to-event 
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Registered events in patients treated with pazopanib first-line (n = 16) 

ID Comment Event TTE [months] 

NM P7 PD documented 1 12.1 

NM P8 PD documented 1 12.5 

NM P9 
New lesion during first-line 

therapy 
1 5.3 

NM P10 
New lesion during first-line 

therapy 
1 2.6 

NM P11 Censored on 01.07.2015 0 3.8 

NM P12 Censored on 01.07.2015 0 1.5 

NM P16 
Started second-line treatment w/o 

documented PD 
0 5.2 

NM P18 PD documented 1 6.0 

NM P20 Censored on 01.07.2015 0 13.1 

NM P23 Changed treatment due to toxicity 0 8.3 

NM P26 Censored on 01.07.2015 0 3.9 

NM P34 Censored on 01.07.2015 0 7.7 

NM P35 New lesion during first-line 1 1.1 

NM P36 Censored on 01.07.2015 0 5.6 

NM P38 
New lesion during first-line 

therapy 
1 0.7 

NM P40 
Patient died during first-line 

therapy 
1 0.8 

ID = Dataset Identifier, PD = Progressive disease, TTE = Time-to-event 
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F.I PK model Sunitinib/SU12662 
   
$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL  
NCOMP =5 
COMP = (DEPOT, DEFDOSE)    
COMP = (OBSLIV)                      
COMP = (CENTRALM)         
COMP = (PERIM)              
COMP = (PERISUN)            
 
$PK 
 
WT = WEIGHT 
IF(WEIGHT.EQ.-99.AND.SEX.EQ.1) WT = 83  ; ET Population mean - male 
IF(WEIGHT.EQ.-99.AND.SEX.EQ.0) WT = 75  ; ET Population mean - female 
ASCL   = (WT/70)**0.75 
ASV    = WT/70 
 
KA  = THETA(1)      
V2  = THETA(2)*ASV * EXP(ETA(1)) 
QH  = THETA(3)*ASCL 
CLP  = THETA(4)*ASCL* EXP(ETA(3)) 
CLM     = THETA(5)*ASCL 
V3      = THETA(6)*ASV * EXP(ETA(2)) 
Q34     = THETA(7)*ASCL  
V4      = THETA(8)*ASV  
FM      = THETA(9)      * EXP(ETA(4)) 
Q25     = THETA(10)*ASCL     
V5      = THETA(11)*ASV     
 
K34 = Q34/V3 
K43 = Q34/V4 
K25 = Q25/V2 
K52 = Q25/V5 
 
S2 = V2 
S3 = V3 
 
$DES 
 
CLIV = (KA*A(1) + QH/V2*A(2))/(QH+CLP) 
 
DADT(1) = -KA*A(1) 
DADT(2) = QH*CLIV-QH/V2*A(2) - K25*A(2) + K52*A(5) 
DADT(3) = FM*CLP*CLIV-CLM/V3*A(3)-K34*A(3) + K43*A(4) 
DADT(4) = K34*A(3)-K43*A(4) 
DADT(5) = K25*A(2) - K52*A(5) 
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PK model Sunitinib/SU12662 – continued  
 
$ERROR 
TY = LOG(F) 
IF(F.LT.0.001) TY = 0.001 
IPRED = TY 
 
IF (CMT.EQ.2) THEN   
W = SQRT(THETA(12)**2)  
Y = IPRED+W*EPS(1) 
ENDIF 
    
IF (CMT.EQ.3) THEN  ; DV log-transformed 
W = SQRT(THETA(13)**2)  
Y = IPRED+W*EPS(2)   
ENDIF 
  
IRES = DV-IPRED 
DEL = 0 
IF(W.EQ.0) DEL = 0.0001 
IWRES = IRES/(W+DEL) 
 
$THETA 
(0, 0.133)   ;1 = KA  
(0, 1820)   ; 2 = V2  
(80) FIX   ; 3 = QH  
(0, 33.9)   ;4 = CLP  
(0, 16.5)   ;5 = CLM  
(0, 730)   ;6 = V3  
(0, 2.75)   ;7 = Q34  
(0, 592)   ;8 = V4  
(0.21) FIX   ;9 = FM  
(0, 0.371)   ;10 = Q25   
(588) FIX   ;11 = V5  
(0,0.367)   ;12 = Prop. Error Suni 
(0,0.281)   ;13 = Prop. Error Metab 
 
$OMEGA BLOCK(4) 
 0.0621    ;1 IIV V2  
 0.0473 0.169   ;2 IIV V3  
 0 -0.0613 0.088   ;3 IIV CLP  
 0 0 -0.0421 0.113   ;4 IIV FM 
 
$SIGMA 
 1 FIX 
 1 FIX 
 
$ESTIMATION SIG=2 SIGL=4 PRINT=1 METHOD=1 INTER MAXEVAL=9999 
NOABORT  
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F.II PK/PD model – sVEGFR-2 (Sunitinib) 
 
$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL       
NCOMP=6  
COMP =(DEPOT,DEFDOSE)   
COMP =(OBSLIV)    
COMP =(CENTRALM)   
COMP =(PERIM)    
COMP =(PERISUN)    
COMP =(VEGFR2)    
 
$PK  
 
; Covariate relationships 
 
;;; ALFAABCR2-DEFINITION START 
IF(ABCR2.EQ.1) ALFAABCR2 = 1     
IF(ABCR2.EQ.-99) ALFAABCR2 = 1    
IF(ABCR2.EQ.0) ALFAABCR2 = ( 1 + THETA(8)) 
;;; ALFAABCR2-DEFINITION END 
 
 
;;; ALFASTUDY-DEFINITION START 
IF(STUDY.EQ.1) ALFASTUDY = 1     
IF(STUDY.EQ.2) ALFASTUDY = ( 1 + THETA(7)) 
;;; ALFASTUDY-DEFINITION END 
 
 
;;; ALFAFLT1-DEFINITION START 
IF(FLT1.EQ.0) ALFAFLT1 = 1    
IF(FLT1.EQ.-99) ALFAFLT1 = 1     
IF(FLT1.EQ.1) ALFAFLT1 = ( 1 + THETA(6)) 
;;; ALFAFLT1-DEFINITION END 
 
;;; ALFA-RELATION START 
ALFACOV=ALFAFLT1*ALFASTUDY*ALFAABCR2 
;;; ALFA-RELATION END 
 
 
;PHARMACODYNAMICS  
         
TVBLV2 = THETA(1 
BLV2   = TVBLV2*EXP(ETA(1)) 
  
TVALFA = THETA(2)              
 
ALFA   = TVALFA*ALFVACOV*EXP(ETA(2))    
  



258  Appendices 

   

PK/PD model – sVEGFR-2 (Sunitinib) - continued 
 
TVKOUT  = THETA(3)              
KOUT  = TVKOUT*EXP(ETA(3))   
  
A_0(6) = BLV2 
 
KIN = BLV2*KOUT 
                                              
TVKD = THETA(4 
KD  = TVKD*EXP(ETA(4)) 
  
;PHARMACOKINETICS      
 
KA = 0.133    
V2 = V2X 
QH = QHX 
CLP = CLPX 
CLM = CLMX 
V3 = V3X 
Q34 = Q34X 
V4 = V4X 
FM = FMX 
Q25 = Q25X   
V5 = V5X    
 
K34  = Q34/V3 
K43  = Q34/V4 
K25  = Q25/V2 
K52  = Q25/V5 
 
S2  = V2 
S3  = V3 
 
$DES  
 
CLIV = (KA*A(1) + QH/V2*A(2))/(QH+CLP) 
 
DADT(1) = -KA*A(1) 
DADT(2) = QH*CLIV-QH/V2*A(2) - K25*A(2) + K52*A(5) 
DADT(3) = FM*CLP*CLIV-CLM/V3*A(3)-K34*A(3) + K43*A(4) 
DADT(4) = K34*A(3)-K43*A(4) 
DADT(5) = K25*A(2) - K52*A(5) 
 
 
CONC = A(3)/V3+A(2)/V2  
 
FC= A(3)/V3*(1-0.90)+A(2)/V2*(1-0.95) 
 
IF(FC.LE.0) THEN 
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PK/PD model – sVEGFR-2 (Sunitinib) - continued  
 
BND=0 
  ELSE  
 BND=FC/(KD+FC)         
  ENDIF  
 
INH = BND    
 
SF=1/(1+ALFA*INH) 
 
 DADT(6)= KIN*SF-KOUT*A(6)   
 
$ERROR  
 
IPRE = A(6) 
RBL = IPRE/BLV2            
IRES = DV-IPRE    
W      = THETA(5)*IPRE        
Y       = IPRE+EPS(1)*W 
 DVRL = DV/BLV2            
 
 DEL = 0 
 IF(W.EQ.0) DEL = 1 
 IWRE = IRES/(W+DEL) 
 
$THETA 
(0, 9030)   ; TVBLV2   
(0, 2.31)   ; TValfa   
(0, 0.00428)   ; THKOUT   
(4) FIX   ; THKD     
(0, 0.124)   ; CV      
(-1, -0.565,5)  ; ALFAFLT11 
(-1, -0.328,5)            ; ALFASTUDY1 
(-1, -0.311,5)  ; ALFAABCR21 
 
$OMEGA 0.0388  ; ETABLVR2 
$OMEGA 0 FIX   ; ETAalfa 
$OMEGA 0 FIX   ; ETAKOUT 
$OMEGA 0 FIX   ; ETAKD 
 
$SIGMA 1 FIX  
 
$ESTIMATION SIG=2 PRINT=1 METHOD=1 INTER MAXEVAL=9999 NOABORT 
 
  



260  Appendices 

   

F.III PK/PD model – sVEGFR-3 (Sunitinib) 
 
$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL       
 
COMP=6 
COMP =(DEPOT,DEFDOSE)   
COMP =(OBSLIV)    
COMP =(CENTRALM)    
COMP =(PERIM)   
COMP =(PERISUN)    
COMP =(VEGFR3)    
 
$PK  
 
; Covariate relationships 
 
;;; BLV3STUDY-DEFINITION START 
IF(STUDY.EQ.1) BLV3STUDY = 1  
IF(STUDY.EQ.2) BLV3STUDY = ( 1 + THETA(6)) 
;;; BLV3STUDY-DEFINITION END 
 
;;; BLV3-RELATION START 
BLV3COV=BLV3STUDY 
;;; BLV3-RELATION END 
 
 
TVBLV3 = THETA(1)               
BLV3   = TVBLV3*BLV3COV*EXP(ETA(1)) 
  
TVALFA = THETA(2)              
ALFA   = TVALFA*EXP(ETA(2))    
 
TVKOUT = THETA(3)               
KOUT   = TVKOUT  
  
A_0(6)=BLV3 
 
KIN = BLV3*KOUT 
                   
TVKD = THETA(4)             ; 
KD = TVKD 
  
K12 = 0.133    
V2      = V2X 
QH     = QHX 
CLP   = CLPX 
CLM  = CLMX 
V3     = V3X   
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PK/PD model – sVEGFR-3 (Sunitinib) – continued  
 
Q34 = Q34X 
V4 = V4X 
FM  = FMX 
Q25 = Q25X   
V5   = V5X    
 
K34  = Q34/V3 
K43  = Q34/V4 
K25  = Q25/V2 
K52  = Q25/V5 
 
S2  = V2 
S3  = V3 
 
$DES  
 
CLIV = (K12*A(1) + QH/V2*A(2))/(QH+CLP) 
 
DADT(1) = -K12*A(1) 
DADT(2) = QH*CLIV-QH/V2*A(2) - K25*A(2) + K52*A(5) 
DADT(3) = FM*CLP*CLIV-CLM/V3*A(3)-K34*A(3) + K43*A(4) 
DADT(4) = K34*A(3)-K43*A(4) 
DADT(5) = K25*A(2) - K52*A(5) 
 
CONC = A(3)/V3+A(2)/V2  
   
FC= A(3)/V3*(1-0.90)+A(2)/V2*(1-0.95) 
 
IF(FC.LE.0) THEN 
 BND=0 
  ELSE  
 BND=FC/(KD+FC)        ; 
  ENDIF  
 
INH = BND     
 
SF=1/(1+ALFA*INH) 
   
DADT(6)= KIN*SF-KOUT*A(6)   
 
$ERROR  
 
IPRE  = A(6) 
RBL    = IPRE/BLV3            
IRES   = DV-IPRE    
W    = THETA(5)*IPRE        
Y       = IPRE+EPS(1)*W 
DVRL  = DV/BLV3   
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PK/PD model – sVEGFR-3 (Sunitinib) – continued  
 
DEL = 0 
IF(W.EQ.0) DEL = 1 
IWRE = IRES/(W+DEL) 
 
$THETA 
(0, 63500)  ; TVBLV3   
(0, 1.74)  ; TValfa   
(0, 0.0054)  ; TVKOUT   
(4) FIX  ; TVKD     
(0, 0.15)  ; CV       
( -0.642) ; BLV3TUMOR 
 
$OMEGA  BLOCK(2) 
0.167   ; ETABLVR3 
0.124 0.258   ; ETAalfa 
 
$SIGMA 1 FIX  
 
$ESTIMATION SIG=2 PRINT=1 METHOD=1 INTER MAXEVAL=9999 NOABORT 
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F.IV PK/PD model – Blood pressure (Sunitinib) 
 
$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL 
NCOMP=8 
COMP = (DEPOT, DEFDOSE)    
COMP = (OBSLIV)            
COMP = (PERISUN)            
COMP = (CENTRALM)          
COMP = (PERIM)             
COMP = (SYS)                
COMP = (DIA)                
COMP = (SST)               
 
$PK 
 
TREAT = 1 
IF(BPTRT.EQ.1) TREAT = (1+THETA(14)) 
IF(BPTRT.EQ.2) TREAT = (1+THETA(14)) 
IF(BPTRT.EQ.-99) TREAT = 1 
 
TVBLS   = THETA(1) 
TVBLD   = THETA(2) 
TVALDI  = THETA(3)  
TVALSY  = THETA(4) 
TVKD    = THETA(5) 
TVTAU  = THETA(6) 
TVPS1   = THETA(7) 
TVPS2   = THETA(8) 
TVAMP1  = THETA(9) 
TVAMP2 = THETA(10) * TREAT 
PROP    = THETA(13) 
  
BLS  = TVBLS  *EXP(ETA(1)) 
BLD  = TVBLD  *EXP(ETA(2)) 
ALDI = TVALDI *EXP(ETA(3)) 
ALSY = TVALSY *EXP(ETA(3)*PROP) 
TAU  = TVTAU 
  
KD = TVKD 
  
; PS1  = TVPS1 
AMP1 = TVAMP1*EXP(ETA(4)) 
 
PS2  = TVPS2 
AMP2 = TVAMP2*EXP(ETA(5)) 
 
K12     = 0.133    
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PK/PD model – Blood pressure (Sunitinib) - continued 
 
V2 = V2X 
QH = QHX 
CLP = CLPX 
CLM = CLMX 
V3 = V3X 
Q34 = Q34X 
V4 = V4X 
FM = FMX 
Q25 = Q25X   
V5 = V5X    
 
K34  = Q34/V3 
K43  = Q34/V4 
K25  = Q25/V2 
K52  = Q25/V5 
 
S2  = V2 
S3  = V3 
  
A_0(8)=0 
   
$DES 
;PK MODEL 
CLIV = (K12*A(1) + QH/V2*A(2))/(QH+CLP) 
 
DADT(1) = -K12*A(1) 
DADT(2) = QH*CLIV-QH/V2*A(2) - K25*A(2) + K52*A(5) 
DADT(3) = FM*CLP*CLIV-CLM/V3*A(3)-K34*A(3) + K43*A(4) 
DADT(4) = K34*A(3)-K43*A(4) 
DADT(5) = K25*A(2) - K52*A(5) 
 
CONC = A(3)/V3+A(2)/V2  
   
FC= A(3)/V3*(1-0.90)+A(2)/V2*(1-0.95) 
  
DADT(6) = BLS*(1+(AMP1*COS((TIME+6)*6.283/24-
PS1)+AMP2*COS((TIME+6)*6.283/12-PS2))) 
DADT(7) = BLD*(1+(AMP1*COS((TIME+6)*6.283/24-
PS1)+AMP2*COS((TIME+6)*6.283/12-PS2))) 
 
IF(FC.LE.0) FC=0  
 
 INH     = FC/(KD+FC)                 
 DADT(8) = 1/TAU*INH-1/TAU*A(8)     
  
 
$ERROR 
 FCx  = A(3)/V3*(1-0.90)+A(2)/V2*(1-0.95)   
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PK/PD model – Blood pressure (Sunitinib) - continued 
 
INHx = FCx/(KD+FCx)                         
 
CBLS =BLS*(1+(AMP1*COS((TIME+6)*6.283/24-
PS1)+AMP2*COS((TIME+6)*6.283/12-PS2))) 
CBLD =BLD*(1+(AMP1*COS((TIME+6)*6.283/24-
PS1)+AMP2*COS((TIME+6)*6.283/12-PS2))) 
  
IF(CMT.EQ.6) THEN 
 IPRE = CBLS*(1+ALSY*(INHx+A(8)))    
IRES = DV - IPRE                                    
 W = THETA(11) * IPRE                           
 Y = IPRE+ERR(1)*W 
 DVRL  = DV/BLS 
 RESP  = 1  
 ENDIF 
 
IF(CMT.EQ.7) THEN 
IPRE = CBLD*(1+ALDI*(INHx+A(8 
IRES = DV - IPRE                                  
W = THETA(12) * IPRE                         
Y = IPRE+ERR(1)*W 
DVRL  = DV/BLD                    
RESP  = 2 
ENDIF 
 
 
 DEL = 0 
 IF(W.EQ.0) DEL = 1   
 IWRE = IRES/(W+DEL)    
   
$THETA 
(0, 138)   ; TVBLS  
(0, 82.8)   ; TVBLD  
(0.0637)    ; TVALSY  
(0.0482)   ; TVALDI  
(4) FIX   ; TVKD  
(121) FIX   ; TVTAU  
(0) FIX   ; TVPS1  
(1.4) FIX   ; TVPS2  
(0.025) FIX   ; TVAMP1  
(-0.016) FIX   ; TVAMP2  
(0.0938)   ; PROP_SYS  
(0.0791)   ; PROP_DIA  
(1.21)    ; THSPROP 
(-2.02)   ; BPAMP2 
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PK/PD model – Blood pressure (Sunitinib) - continued 
 
$OMEGA 0.00854  ; ETABLS 
$OMEGA 0.00551  ; ETABLD  
$OMEGA 0.751  ; ETA ALSY/ALDI 
$OMEGA 0 FIX   ; ETAAMP1  
$OMEGA 0 FIX   ; ETAAMP2  
 
$SIGMA 1 FIX  
 
$ESTIMATION SIG=3 PRINT=1 METHOD=1 INTER MAXEVAL=9999 NOABORT  
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F.V PK model Pazopanib 

$SUBROUTINE ADVAN6 TRANS1 TOL=4 
$MODEL 
COMP=(PAZD1)    
COMP=(CENTSN,DEFOBS)  
COMP=(PAZD2)    
COMP=(PERIPH)   
 
$PK  
DOSE = DOS 
 
CL  = THETA(1)*EXP(ETA(1)) 
V2  = THETA(2) 
KAF  = THETA(3)*EXP(ETA(3)) 
KAS  = THETA(4) 
ALAG3 = THETA(5) 
Q24  = THETA(6) 
V4  = THETA(7)*EXP(ETA(2)) 
 
ED50  = THETA(8) 
EMAX  = THETA(9) 
LAMBDA  =THETA(10)/24 
DCRP    = THETA(11) 
TVFD    = (1-(DOSE-200)*EMAX/(ED50+DOSE-200)) 
TVFT    = 1-DCRP+DCRP*EXP(-LAMBDA*TIME) 
TVF     = TVFD*TVFT *EXP(ETA(4)) 
FR      = THETA(12) 
F1      = FR*TVF 
F3      = TVF-F1 
 
K20 = CL/V2 
K24 = Q24/V2 
K42 = Q24/V4 
S2 = V2 
 
$DES  
 
DADT(1) = -KAF*A(1) 
DADT(2) = KAF*A(1)+KAS*A(3)-K20*A(2)-K24*A(2)+K42*A(4) 
DADT(3) = -KAS*A(3) 
DADT(4) = K24*A(2)-K42*A(4) 
 
$ERROR  
 
TY=F 
 
IF(F.LT.0.001) THEN 
TY=0.001 
ENDIF  
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PK model Pazopanib – continued 
 
IPRE = TY 
 
W = THETA(13)*IPRE + THETA(14) 
Y = IPRE + W*EPS(1) 
  
IRES           = DV-IPRE   
DEL            = 0 
IF(W.EQ.0) DEL = 0.0001 
IWRE           = IRES/(W+DEL)  
 
$THETA   
(0.27) FIX ; 1  CL 
(2.43) FIX  ; 2  V2 
(0.40)   FIX ; 3  KAF 
(0.12)   FIX  ; 4  KAS 
(0.98) FIX  ; 5  ALAG3 
(0.99) FIX   ; 6  Q24 
(25.1) FIX   ; 7  V4 
(480) FIX    ; 8  ED50 
(1 FIX)  ; 9  EMAX 
(0.15) FIX ; 10 LAMBDA  (1/day in 1/h) 
(0.501) FIX  ; 11 DCRP 
(0.63) FIX ; 12 FR 
0.064 FIX  ;13 proportional error 
3.1 FIX          ;14 addtive error 
 
$OMEGA   
0.095 FIX  ; 1 CL 
0.96 FIX  ; 2 V4 
1.96 FIX  ; 3 KAF 
0.13 FIX  ; 4 FREL 
 
$SIGMA   
1 FIX 
 
$ESTIMATION METHOD=1 INTER NOABORT MAXEVAL=0 SIG=3 PRINT=1 
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F.VI PK/PD model – sVEGFR-2 (Pazopanib) 
 
$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL 
COMP =(PAZD1)           
COMP =(CENTSN,DEFOBS)   
COMP =(PAZD2)           
COMP =(PERIPH)   
COMP = (VEGFR2 
COMP = (AUCV2 
    
$ABBREVIATED COMRES = 2 
 
$PK 
 
TVBLV2 = THETA(1)             
BLV2  = TVBLV2*EXP(ETA(1)) 
  
TVALFA  = THETA(2) 
ALFA    = TVALFA*EXP(ETA(2))    
 
TVKOUT  = THETA(3)             
 KOUT    = TVKOUT  
  
A_0(5) = BLV2 
 
KIN = BLV2*KOUT 
 
CL  = YCLX 
V2      = 2.43 
KAF     = YKAFX 
KAS     = 0.12 
ALAG3   = 0.98 
Q24     = 0.99 
V4      = YV4X 
 
TVF     = YF1X 
FR      = 0.63 
F1      = FR*TVF 
F3      = TVF-F1 
 
K20    = CL/V2 
K24    = Q24/V2 
K42   = Q24/V4 
S2     = V2 
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PK/PD model – sVEGFR-2 (Pazopanib) – continued  
 
$DES 
 
DADT(1) =  -KAF*A(1) 
DADT(2) =   KAF*A(1)+KAS*A(3)-K20*A(2)-K24*A(2)+K42*A(4) 
DADT(3) =  -KAS*A(3) 
DADT(4) =   K24*A(2)-K42*A(4) 
CONC = A(2)/V2  
 
FC= A(2)/V2*(1-0.999)   
 
IF(FC.LE.0) THEN 
 BND=0 
  ELSE  
 BND=FC         
  ENDIF  
INH = BND     
 
SF=1/(1+ALFA*INH) 
   
DADT(5)= KIN*SF-KOUT*A(5)   
DADT(6)= A(3)/1000 
  
$ERROR 
 
AUCV2 = A(6) 
   
IPRE = A(5) 
RB = IPRE/BLV2                  
IRES  = DV-IPRE    
W = THETA(5)        
Y = IPRE+EPS(1)*W 
DVRL = DV/BLV2              
   
DEL= 0 
IF(W.EQ.0) DEL = 1 
IWRE = IRES/(W+DEL) 
 
$THETA 
(0, 9820)  ; TVBLV2   
(0, 22.1)  ; TVALFA   
(0, 0.00377)  ; TVKOUT   
(-846)   ; RES_ADD     
 
$OMEGA 0.0159  ; ETABLVR2 
$OMEGA 0.192  ; ETAalfa 
 
$SIGMA 1 FIX  
$ESTIMATION SIG=2 PRINT=1 METHOD=1 INTER MAXEVAL=9999 NOABORT  
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F.VII PK/PD model – sVEGFR-3 (Pazopanib) 
 
$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL 
COMP =(PAZD1)          
COMP =(CENTSN,DEFOBS)   
COMP =(PAZD2)           
COMP =(PERIPH)     
COMP = (VEGFR3) 
COMP = (AUCV2)         
    
$ABBREVIATED COMRES = 2 
 
$PK 
            
TVBLV3  = THETA(1)             
BLV3    = TVBLV3*EXP(ETA(1)) 
  
TVALFA  = THETA(2)             
ALFA    = TVALFA*EXP(ETA(2))    
 
TVKOUT  = THETA(3)            ; 
KOUT    = TVKOUT  
  
A_0(5) = BLV3 
 
KIN = BLV3*KOUT 
                   
 
CL  = YCLX 
V2  = 2.43 
KAF    = YKAFX 
KAS  = 0.12 
ALAG3 = 0.98 
Q24    = 0.99 
V4     = YV4X 
 
TVF    = YF1X 
FR      = 0.63 
F1      = FR*TVF 
F3      = TVF-F1 
 
K20    = CL/V2 
K24    = Q24/V2 
K42    = Q24/V4 
S2     = V2 
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PK/PD model – sVEGFR-3 (Pazopanib) -continued 
 
$DES 
 
DADT(1) =  -KAF*A(1) 
DADT(2) =   KAF*A(1)+KAS*A(3)-K20*A(2)-K24*A(2)+K42*A(4) 
DADT(3) =  -KAS*A(3) 
DADT(4) =   K24*A(2)-K42*A(4) 
 

CONC = A(2)/V2  
   
FC= A(2)/V2*(1-0.999) 
 
IF(FC.LE.0) THEN 
 BND=0 
  ELSE  
 BND=FC       
  ENDIF  
 
INH = BND     
;Signal Function 
SF=1/(1+ALFA*INH) 
 
DADT(5)= KIN*SF-KOUT*A(5)   
DADT(6)= A(5)/1000 
  
$ERROR 
 
AUCV3  = A(6) 
IPRE = A(5) 
RBL = IPRE/BLV3         
IRES = DV-IPRE    
W = THETA(5)*IPRE        
Y = IPRE+EPS(1)*W 
DVRL = DV/BLV3                
 
DEL = 0 
IF(W.EQ.0) DEL = 1 
IWRE = IRES/(W+DEL) 
 
$THETA 
(0, 64300)  ; TVBLVR3 
(0, 17.5)  ; TVALFA 
(0, 0.00471)  ; TVKOUT 
0, 0.142)  ; RES_PROP 
 
$OMEGA 0.0543  ; ETABLVR3 
$OMEGA 0.324  ; ETAalfa 
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PK/PD model – sVEGFR-3 (Pazopanib) -continued 
 
$SIGMA 1 FIX  
 
$ESTIMATION SIG=2 PRINT=1 METHOD=1 INTER MAXEVAL=9999 NOABORT  
  



274  Appendices 

   

F.VIII PK/PD model – Blood pressure (Pazopanib) 

$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL 
NCOMP=8 
COMP = (PAZD1)          
COMP = (CENTSN,DEFOBS)   
COMP = (PAZD2)           
COMP = (PERIPH)   
COMP = (AUC)   
COMP = (SYS)             
COMP = (DIA)             
COMP = (SST)             
 
$PK 
 
IF(BPDIAG.EQ.1)THEN 
DIAG = (1+THETA(10)) 
ELSE 
DIAG = 1 
ENDIF 
 
TVBLS   = THETA(1) * DIAG 
TVBLD   = THETA(2) 
TVALSY  = THETA(3) 
TVTAU   = THETA(4) 
TVPS1   = THETA(5) 
TVPS2   = THETA(6) 
TVAMP1  = THETA(7) 
TVAMP2  = THETA(8)  
  
 
BLS   = TVBLS *EXP(ETA(1)) 
BLD   = TVBLD *EXP(ETA(2)) 
ALSY  = TVALSY *EXP(ETA(4)) 
ALDI  = TVALSY *EXP(ETA(3)) 
TAU   = TVTAU 
  
PS1   = TVPS1 
AMP1 = TVAMP1*EXP(ETA(5)) 
 
PS2  = TVPS2 
AMP2 = TVAMP2*EXP(ETA(6)) 
  
CL      = YCLX 
V2      = 2.43 
KAF     = YKAFX 
KAS     = 0.12 
ALAG3 = 0.98   
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PK/PD model – Blood pressure (Pazopanib) – continued  
 
Q24   = 0.99 
V4    = YV4X 
 
TVF   = YF1X 
FR  = 0.63 
F1    = FR*TVF 
F3     = TVF-F1 
 
K20   = CL/V2 
K24   = Q24/V2 
K42   = Q24/V4 
S2    = V2 
  
A_0(8) = 0 
   
$DES 
 
DADT(1) = -KAF*A(1) 
DADT(2) =  KAF*A(1)+KAS*A(3)-K20*A(2)-K24*A(2)+K42*A(4) 
DADT(3) = -KAS*A(3) 
DADT(4) =  K24*A(2)-K42*A(4) 
 
CONC = A(2)/V2  
   
FC= A(2)/V2*(1-0.999) 
 
DADT(5) = FC 
 
AUCF    = A(5) 
     
DADT(6) = BLS*(1+(AMP1*COS((TIME+6)*6.283/24 
PS1)+AMP2*COS((TIME+6)*6.283/12-PS2))) 
 
DADT(7) = BLD*(1+(AMP1*COS((TIME+6)*6.283/24-
PS1)+AMP2*COS((TIME+6)*6.283/12-PS2))) 
    
IF(FC.LE.0) FC=0  
 
INH     = FC              
 
DADT(8) = 1/TAU*INH-1/TAU*A(8)     
  
$ERROR 
 
 FCx  = A(2)/V2*(1-0.999) 
 INHx = FCx                      
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PK/PD model – Blood pressure (Pazopanib) – continued  
 
CBLS =BLS*(1+(AMP1*COS((TIME+6)*6.283/24-
PS1)+AMP2*COS((TIME+6)*6.283/12-PS2))) 
CBLD =BLD*(1+(AMP1*COS((TIME+6)*6.283/24-
PS1)+AMP2*COS((TIME+6)*6.283/12-PS2))) 
  
IF(CMT.EQ.6) THEN 
 IPRE  = CBLS*(1+ALSY*(INHx+A(8)))     
 IRES  = DV - IPRE                     
 W  = THETA(9) * IPRE                ; 
 Y  = IPRE+ERR(1)*W 
 DVRL = DV/BLS 
 RESP= 1  
ENDIF 
 
IF(CMT.EQ.7) THEN 
 IPRE  = CBLD*(1+ALDI*(INHx+A(8)))    
 IRES  = DV - IPRE                    
 W  = THETA(9) * IPRE                
 Y  = IPRE+ERR(1)*W 
 DVRL= DV/BLD                       
ENDIF 
 
DEL = 0 
IF(W.EQ.0) DEL = 1   
IWRE = IRES/(W+DEL)  
   
$THETA 
(0, 130)  ; TVBLS  
(0, 80.2)  ; TVBLD  
(0.907)  ; TVALSY  
(121) FIX  ; TVTAU  
(0) FIX  ; TVPS1  
(1.4) FIX  ; TVPS2  
(0.025) FIX  ; TVAMP1  
(-0.016) FIX  ; TVAMP2  
(0.0948)  ; PROP_SYS  
(0.0907)  ; COV effect 
 
$OMEGA 0.00456  ; ETABLS 
$OMEGA 0.00613  ; ETABLD  
$OMEGA 0 FIX  ; ETA ALSY 
$OMEGA 0 FIX   ; ETA ALDI 
$OMEGA 0 FIX   ; ETAAMP1  
$OMEGA 0 FIX   ; ETAAMP2  
 
$SIGMA 1 FIX  
 
;$ESTIMATION SIG=3 PRINT=1 METHOD=1 INTER MAXEVAL=9999 NOABORT  



Appendices  277 

 

   

F.IX Time-to-event models 

 
Sunitinib patients (mRCC) 
 
$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL 
NCOMP  =1 
COMP  = (CUMHAZ)           
 
$PK 
               
TVBLHAZ  = THETA(1)          
BLHAZ  = TVBLHAZ*EXP(ETA(1))       
 
TVBETA   = THETA(2) 
BETA   = TVBETA*EXP(ETA(2))   
  
PMN = 8814.3      
IF(VG2B.GT.PMN)THEN 
VGB = 1 
ELSE 
VGB = 0 
ENDIF 
 
$DES     
 
DADT(1) = BLHAZ*EXP(BETA*VGB)              
  
$ERROR   
                 
CHZ   = A(1) 
  
SUR    = EXP(-CHZ  
HAZNOW = BLHAZ*EXP(BETA*VGB)        
                       
IF(DV.EQ.1) THEN  
 Y = HAZNOW*SUR                   
ELSE  
 Y = SUR                       
ENDIF                
   
$THETA 
(0, 0.00007)  ;  TVBLHAZ   
(1.45)   ;  TVBETA    
 
$OMEGA 0 FIX   ;  ETA_HAZ 
$OMEGA 0 FIX   ;  ETA_BETA 
 
$ESTIMATION SIG=2 SIGL=6 MAXEVAL=9999 METHOD=COND LAPLACE LIKE  
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Sunitinib and pazopanib patients (mRCC) 
 
$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL 
NCOMP=12 
COMP = (SUND)              
COMP = (OBSLIV)            
COMP = (PERISUN)           
COMP = (CENTRALM)          
COMP = (PERIM)             
COMP = (PAZD1)            
COMP = (CENTSN)           
COMP = (PAZD2)           
COMP = (PERIPH)   
COMP = (VEGFR2)            
COMP = (AUCV2)             
COMP = (CUMHAZ)            
 
$PK 
 
TVBLHAZ = THETA(1)          
BLHAZ = TVBLHAZ*EXP(ETA(1))       
 
TVBETA  = THETA(2) 
BETA  = TVBETA*EXP(ETA(2))   
 
;PHARMACOKINETICS SUNITINIB 
 
K12_S  = 0.133    
V2_S  = V2X 
QH_S  = QHX 
CLP_S  = CLPX 
CLM_S = CLMX 
V3_S      = V3X 
Q34_S     = Q34X 
V4_S      = V4X 
FM_S      = FMX 
Q25_S     = Q25X   
V5_S      = V5X    
 
K34_S = Q34_S/V3_S 
K43_S = Q34_S/V4_S 
K25_S = Q25_S/V2_S 
K52_S = Q25_S/V5_S 
 
S2 = V2_S 
S3 = V3_S 
 
;PHARMACOKINETIC PAZOPANIB     
 
CL_P      = YCLX 
V2_P     = 2.43 
KAF_P   = YKAFX 
KAS_P     = 0.12  
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Sunitinib and pazopanib patients (mRCC) – continued  
 
ALAG8   = 0.98 
Q24_P   = 0.99 
V4_P      = YV4X 
TVF_P   = YF1X 
FR_P        = 0.63 
F6       = FR_P*TVF_P 
F8      = TVF_P-F6 
 
K20_P   = CL_P/V2_P 
K24_P   = Q24_P/V2_P 
K42_P   = Q24_P/V4_P 
S7       = V2_P     
 
;PHARMACODYNAMICS  sVEGFR2 
 
BLV2   = BSL2X 
ALFA   = AL2X    
 
IF(TRTM.EQ.1)THEN   ; Sunitinib  
KOUT    = 0.0043 
ENDIF 
 
IF(TRTM.EQ.2)THEN   ; Pazopanib  
KOUT    = 0.0038 
ENDIF 
 
KD      = 4 
 
BASE   = BLV2/1000 
   
A_0(10) = BLV2 
 
KIN    = BLV2*KOUT 
 
$DES   
   
;PHARMACOKINETICS SUNITINIB 
 
IF(TRTM.EQ.1) THEN 
 
CLIV = (K12_S*A(1) + QH_S/V2_S*A(2))/(QH_S+CLP_S) 
 
DADT(1) = -K12_S*A(1) 
DADT(2) = QH_S*CLIV-QH_S/V2_S*A(2) - K25_S*A(2) + K52_S*A(5) 
DADT(3) = FM_S*CLP_S*CLIV-CLM_S/V3_S*A(3)-K34_S*A(3) + K43_S*A(4) 
DADT(4) = K34_S*A(3)-K43_S*A(4) 
DADT(5) = K25_S*A(2) - K52_S*A(5) 
 
DADT(6) = 0 
DADT(7) = 0 
DADT(8) = 0 
DADT(9) = 0  
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Sunitinib and pazopanib patients (mRCC) 
 
ENDIF 
 
;;;;TOTAL DRUG PLASMA CONCENTRATION   
CONCS = A(3)/V3_S+A(2)/V2_S  
   
;;;;FREE DRUG CONCENTRATION 
FCS  = A(3)/V3_S*(1-0.90)+A(2)/V2_S*(1-0.95) 
 
;PHARMACOKINETICS PAZOPANIB 
 
IF(TRTM.EQ.2) THEN 
 
DADT(1) = 0 
DADT(2) = 0 
DADT(3) = 0 
DADT(4) = 0 
DADT(5) = 0 
 
DADT(6) =  -KAF_P*A(6) 
DADT(7) =   KAF_P*A(6)+KAS_P*A(8)-K20_P*A(7)-K24_P*A(7)+K42_P*A(9) 
DADT(8) =  -KAS_P*A(8) 
DADT(9) =   K24_P*A(7)-K42_P*A(9) 
 
ENDIF 
 
CONCP = A(7)/V2_P  
   
FCP= A(7)/V2_P*(1-0.999) 
 
; PHARMACODYNAMIC MODEL 
 
BND=0 
 
;Sunitinib 
IF(TRTM.EQ.1.AND.FCS.GT.0)THEN 
BND=FCS/(KD+FCS)        
ENDIF  
 
;Pazopanib 
IF(TRTM.EQ.2.AND.FCP.GT.0)THEN 
BND=FCP        
ENDIF  
 
INH = BND     
 
SF=1/(1+ALFA*INH)   ; Inverse linear model 
   
DADT(10) = KIN*SF-KOUT*A(10)   
DADT(11) = A(10)/1000 
 
CV2     = A(10)/1000 
RV2     = A(10)/BLV2 
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Sunitinib and pazopanib patients (mRCC) 
 
DADT(12) = BLHAZ*EXP(BETA*CV2)              
  
$ERROR   
CV2x   = A(10)/1000                                
CHZ    = A(12)                    
                                    
SUR     = EXP(-CHZ)               
 
IF(DV.EQ.1) THEN  
 HAZNOW = BLHAZ*EXP(BETA*CV2x)        
 Y = HAZNOW*SUR                  
ELSE  
 Y = SUR                          
ENDIF                
   
$THETA 
(0, 0.00002)  ; TVBLHAZ   
(0.292)  ; TVBETA    
 
$OMEGA 0 FIX  ; ETA_HAZ 
$OMEGA 0 FIX  ; ETA_BETA 
 
$ESTIMATION SIG=2 SIGL=6 MAXEVAL=9999 METHOD=COND LAPLACE LIKE  
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F.X Adverse event models 

 
Myelosuppression (Sunitinib only, mRCC) 
 
$ABBREVIATED COMRES = 1 
 
$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL 
NCOMP = 9 
COMP=(DEPOTD)  
COMP=(CENTRAL)  
COMP=(PERIPH)  
COMP=(METC) 
COMP=(METP) 
COMP=(G0) 
COMP=(G1) 
COMP=(G2) 
COMP=(G3) 
 
$PK    
 
IF(NEWIND.NE.2) THEN 
PSDV   = 0 
COM(1) = 0 
ENDIF 
 
IF(NEWIND.NE.2.AND.TIME.EQ.0) F6 =1 
 
PRDV = PSDV 
 
IF(PRDV.EQ.1) COM(1) = 0 
IF(PRDV.EQ.2) COM(1) = 1 
IF(PRDV.EQ.3) COM(1) = 2 
IF(PRDV.EQ.4) COM(1) = 3 
 
;;-------- PK Model ---------- 
 
KA  = 0.133 * 24    
V2  = V2X  
QH  = QHX   * 24 
CLP   = CLPX  * 24 
CLM  = CLMX  * 24 
V3  = V3X 
Q34  = Q34X  * 24 
V4  = V4X 
FM  = FMX 
Q25  = Q25X  * 24 
V5  = V5X    
 
K34   = Q34/V3 
K43   = Q34/V4 
K25   = Q25/V2 
K52   = Q25/V5   
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Myelosuppression (Sunitinib only, mRCC) – continued  
 
S2   = V2 
S3   = V3 
 
;;-------- AE Model ---------- 
 
F6 = 0 
F7 = 0 
F8 = 0 
F9 = 0 
 
IF(COM(1).EQ.0) F6 = 1 
IF(COM(1).EQ.1) F7 = 1 
IF(COM(1).EQ.2) F8 = 1 
IF(COM(1).EQ.3) F9 = 1 
 
 
; Typical values for rate constants / probabilities 
 
TVK01  = THETA(1)  
TVK12  = THETA(2) 
TVK23  = THETA(3)  
TVKB  = THETA(4) 
 
TVGAM = THETA(5) 
TVEFF  = THETA(6) 
 
; Individual Parameters 
 
K01   = TVK01  * EXP(ETA(1))  
K12   = TVK12 
K23   = TVK23 
 
KB    = TVKB 
GAM   = TVGAM 
EFF   = TVEFF 
   
$DES 
 
;;-------- PK Model ---------- 
 
CLIV = (KA*A(1) + QH/V2*A(2))/(QH+CLP) 
 
DADT(1) = -KA*A(1) 
DADT(2) = QH*CLIV-QH/V2*A(2) - K25*A(2) + K52*A(5) 
DADT(3) = FM*CLP*CLIV-CLM/V3*A(3)-K34*A(3) + K43*A(4) 
DADT(4) = K34*A(3)-K43*A(4) 
DADT(5) = K25*A(2) - K52*A(5) 
  
CONC = A(3)/V3+A(2)/V2  
   
FC= A(3)/V3*(1-0.90)+A(2)/V2*(1-0.95) 
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Myelosuppression (Sunitinib only, mRCC) 
 
;;-------- AE Model ---------- 
 
K01_F = K01 * EXP(GAM*T)  
K12_F = K12 * EXP(GAM*T)   
K23_F = K23 * EXP(GAM*T)   
 
KB10  = KB   * EXP(FC*EFF) 
KB21  = KB   * EXP(FC*EFF) 
KB32  = KB   * EXP(FC*EFF) 
 
DADT(6) = A(7)*KB10                   - A(6) * K01_F                    ; No Grade 
DADT(7) = A(6)*K01_F  + A(8)*KB21     - A(7) * (KB10 + K12_F)     ; Grade 1 
DADT(8) = A(7)*K12_F  + A(9)*KB32     - A(8) * (KB21 + K23_F)     ; Grade 2 
DADT(9) = A(8)*K23_F                  - A(9) *  KB32                     ; Grade 3/4 
 
$ERROR        
      
Y = 1 
IF(DV.EQ.1.AND.CMT.EQ.0) Y = A(6) 
IF(DV.EQ.2.AND.CMT.EQ.0) Y = A(7) 
IF(DV.EQ.3.AND.CMT.EQ.0) Y = A(8) 
IF(DV.EQ.4.AND.CMT.EQ.0) Y = A(9) 
 
PB0 = A(6) 
PB1 = A(7) 
PB2 = A(8) 
PB3 = A(9) 
 
; Cumulative Probabilities 
 
CUP0 = PB0 
CUP1 = PB0 + PB1 
CUP2 = PB0 + PB1 + PB2 
CUP3 = PB0 + PB1 + PB2 + PB3 
 
IF(ICALL.EQ.4) THEN 
 IF(CMT.EQ.0)THEN 
  CALL RANDOM (2,R) 
     IF(R.LE.CUP0)                  DV = 1     ;grade 0 
     IF(R.GT.CUP0.AND.R.LE.CUP1)    DV = 2   ;grade 1 
     IF(R.GT.CUP1.AND.R.LE.CUP2)    DV = 3   ;grade 2 
     IF(R.GT.CUP2)                  DV = 4    ;grade 3/4 
 ENDIF 
ENDIF 
 
PSDV = DV 
$THETA 
(0, 0.0149)  ;1 TVK01 
(0, 0.101)  ;2 TVK12 
(0, 0.438)  ;3 TVK23 
(0, 0.058)  ;4 TVKB    
(-0.0207)  ;5 TVGAM    
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Myelosuppression (Sunitinib only, mRCC) 
 
 
(-0.337) ;6 EFF 
 
$OMEGA  
 0 FIX  ; OM_K01 
 
$ESTIMATION SIG=2 MAXEVAL=9999 PRINT=1 METHOD=1 LAPLACIAN LIKE  
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Fatigue (Sunitinib only, mRCC) 
 
$ABBREVIATED COMRES = 1 
 
$SUBROUTINE ADVAN6 TOL=4 
 
$MODEL 
NCOMP = 9 
COMP=(DEPOTD)  
COMP=(CENTRAL)  
COMP=(PERIPH)  
COMP=(METC) 
COMP=(METP) 
COMP=(G0) 
COMP=(G1) 
COMP=(G2) 
COMP=(G3) 
 
$PK    
 
IF(NEWIND.NE.2) THEN 
PSDV   = 0 
COM(1) = 0 
ENDIF 
 
IF(NEWIND.NE.2.AND.TIME.EQ.0) F6 =1 
 
 
PRDV = PSDV 
 
IF(PRDV.EQ.1) COM(1) = 0 
IF(PRDV.EQ.2) COM(1) = 1 
IF(PRDV.EQ.3) COM(1) = 2 
IF(PRDV.EQ.4) COM(1) = 3 
 
;;-------- PK Model ---------- 
 
KA      = 0.133    
V2       = V2X 
QH       = QHX 
CLP  = CLPX 
CLM  = CLMX 
V3  = V3X 
Q34  = Q34X 
V4  = V4X 
FM  = FMX 
Q25  = Q25X   
V5  = V5X    
 
K34   = Q34/V3 
K43   = Q34/V4 
K25   = Q25/V2 
K52   = Q25/V5 
 
S2   = V2 
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Fatigue (Sunitinib only, mRCC) – continued  
 
S3   = V3 
 
;;-------- AE Model ---------- 
 
F6 = 0 
F7 = 0 
F8 = 0 
F9 = 0 
 
IF(COM(1).EQ.0) F6 = 1 
IF(COM(1).EQ.1) F7 = 1 
IF(COM(1).EQ.2) F8 = 1 
IF(COM(1).EQ.3) F9 = 1 
 
 
; Typical values for rate constants / probabilities 
 
TVK01     = THETA(1)  
TVK12     = THETA(2) 
TVKB      = THETA(3) 
 
TVGAM     = THETA(4) 
 
; Individual Parameters 
 
K01  = TVK01  * EXP(ETA(1))  
K12  = TVK12 
K23  = TVK12 
 
KB   = TVKB 
GAM  = TVGAM 
   
$DES 
;;-------- PK Model ---------- 
 
  CLIV = (KA*A(1) + QH/V2*A(2))/(QH+CLP) 
 
DADT(1) = -KA*A(1) 
DADT(2) = QH*CLIV-QH/V2*A(2) - K25*A(2) + K52*A(5) 
DADT(3) = FM*CLP*CLIV-CLM/V3*A(3)-K34*A(3) + K43*A(4) 
DADT(4) = K34*A(3)-K43*A(4) 
DADT(5) = K25*A(2) - K52*A(5) 
 
CONC = A(3)/V3+A(2)/V2  
   
FC= A(3)/V3*(1-0.90)+A(2)/V2*(1-0.95) 
 
;;-------- AE Model ---------- 
 
K01_F = K01 * EXP(GAM*T)  
K12_F = K12 * EXP(GAM*T)  
K23_F = K23 * EXP(GAM*T)  
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Fatigue (Sunitinib only, mRCC) – continued  
 
KB10  = KB   
KB21  = KB 
KB32  = KB 
 
DADT(6) = A(7)*KB10                   - A(6) * K01_F                       ; No Grade 
DADT(7) = A(6)*K01_F  + A(8)*KB21     - A(7) * (KB10 + K12_F)   ; Grade 1 
DADT(8) = A(7)*K12_F  + A(9)*KB32     - A(8) * (KB21 + K23_F)          ; Grade 2 
DADT(9) = A(8)*K23_F                  - A(9) *  KB32                   ; Grade 3/4 
 
$ERROR        
      
Y = 1 
IF(DV.EQ.1.AND.CMT.EQ.0) Y = A(6) 
IF(DV.EQ.2.AND.CMT.EQ.0) Y = A(7) 
IF(DV.EQ.3.AND.CMT.EQ.0) Y = A(8) 
IF(DV.EQ.4.AND.CMT.EQ.0) Y = A(9) 
 
PB0 = A(6) 
PB1 = A(7) 
PB2 = A(8) 
PB3 = A(9) 
 
; Cumulative Probabilities 
 
CUP0 = PB0 
CUP1 = PB0 + PB1 
CUP2 = PB0 + PB1 + PB2 
CUP3 = PB0 + PB1 + PB2 + PB3 
  
PSDV = DV 
$THETA 
(0, 0.00938) ;1 TVK01 
(0, 0.0937) ;2 TVK12 
(0, 0.0704) ;4 TVKB    
(-0.0134) ;5 TVGAM    
 
$OMEGA  
 0 FIX  ; OM_K01 
 
$ESTIMATION SIG=2 MAXEVAL=9999 PRINT=1 METHOD=1 LAPLACIAN LIKE  
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