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Abstract  

	

A more complete understanding of the genetic architecture of complex traits and 

diseases can maximize the utility of human genetics in disease screening, 

diagnosis, prognosis, and therapy. Undoubtedly, the identification of genetic variants 

linked to polygenic and complex diseases is of supreme interest for clinicians, 

geneticists, patients, and the public. Furthermore, determining how genetic variants 

affect an individual’s health and transmuting this knowledge into the development of 

new medicine can revolutionize the treatment of most common deleterious diseases. 

However, this requires the correlation of genetic variants with specific diseases, and 

accurate functional assessment of genetic variation in human DNA sequencing studies 

is still a nontrivial challenge in clinical genomics. Assigning functional consequences 

and clinical significances to genetic variants is an important step in human genome 

interpretation. The translation of the genetic variants into functional molecular 

mechanisms is essential in disease pathogenesis and, eventually in therapy design.  

Although various statistical methods are helpful to short-list the genetic variants for 

fine-mapping investigation, demonstrating their role in molecular mechanism requires 

knowledge of functional consequences. This undoubtedly requires comprehensive 

investigation. Experimental interpretation of all the observed genetic variants is still 

impractical. Thus, the prediction of functional and regulatory consequences of the 

genetic variants using in-silico approaches is an important step in the discovery of 

clinically actionable knowledge. Since the interactions between phenotypes and 

genotypes are multi-layered and biologically complex. Such associations present 
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several challenges and simultaneously offer many opportunities to design new 

protocols for in-silico variant evaluation strategies.  

This thesis presents a comprehensive protocol based on a causal reasoning algorithm 

that harvests and integrates multifaceted genetic and biomedical knowledge with 

various types of entities from several resources and repositories to understand how 

genetic variants perturb molecular interaction, and initiate a disease mechanism. 

Firstly, as a case study of genetic susceptibility loci of Alzheimer’s disease, I 

reviewed and summarized all the existing methodologies for Genome Wide 

Association Studies (GWAS) interpretation, currently available algorithms, and 

computable modelling approaches. In addition, I formulated a new approach for 

modelling and simulations of genetic regulatory networks as an extension of the 

syntax of the Biological Expression Language (OpenBEL). This could allow the 

representation of genetic variation information in cause-and-effect models to predict 

the functional consequences of disease-associated genetic variants. Secondly, by 

using the new syntax of OpenBEL, I generated an OpenBEL model for Alzheimer´s 

Disease (AD) together with genetic variants including their DNA, RNA or protein 

position, variant type and associated allele. To better understand the role of genetic 

variants in a disease context, I subsequently tried to predict the consequences of 

genetic variation based on the functional context provided by the network model. I 

further explained that how genetic variation information could help to identify 

candidate molecular mechanisms for aetiologically complex diseases such as 

Alzheimer’s disease (AD) and Parkinson’s disease (PD). Though integration of 

genetic variation information can enhance the evidence base for shared 

pathophysiology pathways in complex diseases, I have addressed to one of the key 
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questions, namely the role of shared genetic variants to initiate shared molecular 

mechanisms between neurodegenerative diseases. I systematically analysed shared 

genetic variation information of AD and PD and mapped them to find shared 

molecular aetiology between neurodegenerative diseases.  

My methodology highlighted that a comprehensive understanding of genetic variation 

needs integration and analysis of all omics data, in order to build a joint model to 

capture all datasets concurrently. Moreover genomic loci should be considered to 

investigate the effects of GWAS variants rather than an individual genetic variant, 

which is hard to predict in a biologically complex molecular mechanism, 

predominantly to investigate shared pathology.  
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Introduction 

Human Genetic Variance Information 

Genetic architecture describes the characteristics of genetic variation that are 

responsible for heritable phenotypic variability. Defining the genetic architecture of a 

complex trait or disease is central to the scientific and clinical goals of human 

genetics, which are to understand disease aetiology and aid in disease screening, 

diagnosis, prognosis, and therapy. Recent technological advances have enabled 

genome-wide association studies and emerging next-generation sequencing studies to 

begin to decipher the nature of the heritable contribution to traits and disease. 

Precisely, genetic architecture encompasses the number of variants participating 

in disease aetiology, the level of their functional impact on the disease, the variant’s 

frequency in population and their interactions with each other and with environmental 

factors [1]. Thus, in contrast to the limited concept of heritability, which refers only to 

the impact of additive genetic effects on a complex disease [2], genetic architecture 

refers broadly to a comprehensive knowledge of all genetic contributions to a given 

phenotype or disease as well as understanding of the characteristics of this 

contribution [3].  

Human genomic architectures can differ from one another at a single base position 

as single nucleotide variants (SNVs), or they can exhibit large structural 

modifications, like copy number variations, inversions and translocations [4]. In two 

randomly selected human genomes, 99.9% of the DNA sequence is identical. The 

remaining 0.1% of DNA sequence comprises variations. Single-nucleotide 

polymorphism (SNP) is the most common type of such variations. SNPs are less 
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mutable than other forms of variations, plentiful (high in frequency on the genome), 

and distributed throughout the genome, in coding regions as well as noncoding 

regions (promoter, intronic, intergenic and regulatory regions) (Figure 1). These 

variations are relevant to diversity in the population, individuality, susceptibility to 

diseases, and individual response to medicine. It has been proposed that genetic 

variants can be used for identification and mapping of complex and common diseases 

and also for homogeneity testing and pharmacogenetic studies.  

 

  

Figure 1: Hierarchical layers of chromatin organization Individual chromosomes cover a 
distinct region within the nucleus known as chromosome territory. At increasing resolution, 
chromosomes are composed of topologically associating domains (TADs), which are structural units 
defined by the high frequency of chromatin interactions between their loci that are partitioned by sharp 
boundaries. Within TADs, enhancer elements and active proximal promoters (both depicted in red) 
form chromatin loops, which are mediated and/or stabilized by protein effectors, noncoding RNAs 
(ncRNAs), and histone posttranslational modifications (PTMs). Enhancers and promoters are 
characterized by the presence of specific histone variants and PTMs on the histone tails. Upon 
transcription activation, elongating RNA polymerase II (RNAP, in green) is phosphorylated at Ser5 and 
Ser2 on its C-terminal domain (CTD) and begins to produce mRNA. Genomic regions that are 
transcriptionally silenced form repressed chromatin domains that are also stabilized by ncRNA and 
other repressive protein complexes. Finally, tracks of repetitive sequence are found in specific 
functional regions of the genome, including CpG islands (CGIs), in which cytosines can be modified 
(5-methylC and 5-hydroxymethylC). (taken from: Aranda S, et al. Sci Adv. 2015 Dec.) 
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Genetic variants may modify the encoded amino acids (non-synonymous) or can be 

silent (synonymous) or simply occur in the noncoding regions. They may influence 

gene regulation, promoter activity (gene expression), messenger RNA (mRNA) 

conformation (stability), and subcellular localization of mRNAs and/or proteins, 

regulation of miRNA and hence may produce disease. Therefore, identification of 

multiple variations in genes and analysis of their effects may lead to a better insight of 

their impact on gene function and health of an individual.  

 

Genetics Architecture and Human Diseases  

Genetic architecture is generally represented as monogenic, oligogenic or 

polygenic, meaning the contribution of one, few, or many genetic variants to 

phenotypic variability, respectively [5]. Moreover, a recent theoretical development 

in genetic architecture modelling has suggested that all complex diseases share a 

single 'omnigenic' architecture [6]. The 'omnigenic' model describes gene 

regulatory networks as adequately interconnected, to allow all expressed genes in a 

disease-relevant cell to participate in the disease progress. This model postulates 

that thousands of 'peripheral' or 'non-core' genes apply non-zero effects on 

essentially all downstream phenotypes [6]. This model can help to explain the 

complexity of genetic architecture, and it’s compatible with the polygenic or 

'infinitesimal' model [7], in which all-genetic variants have a small but non-zero 

contribution in phenotypic variation. These broad yet comprehensive labels have 

been valuable in speculating on the nature of genetic architecture. Moreover 

modern technologies enable diverse data integration and mapping that can provide 

empirical evidence for the depiction of genetic architecture. 
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If, over an observable time frame, an alteration in DNA coding sequence always 

results in a specific disease expression, then the effect of the variant is considered to 

be highly penetrant. Moreover, that particular variant is referred to as a mutation if its 

allele frequency is less than 1%. During the previous century, various diseases have 

been identified as associated with relatively rare mutations, if either dominant (one) or 

recessive (two) variant copies are inherited.  

In the current era, biomedical research is commencing to identify less rare gene 

variations that are linked with common diseases without direct causation. These are 

described as susceptibility polymorphisms. The association of the age of onset of 

Alzheimer’s disease with APOE4 variant and the protective effect of the APOE2 

variant are the most acknowledged and established examples of disease-susceptibility 

polymorphisms relationships [8,9].  

Haplotypes (combinations of two or more variants) can also be linked with the 

expression of diseases. Many closely positioned polymorphisms, particularly within 

small (approximately 50–150 kb) DNA linkage disequilibrium (LD) regions, can 

distinguish a region of LD from other combinations. They can define the time in 

evolution when a new recombination event emerged in the vicinity of a disease 

susceptibility polymorphism. This hypothesis has already been established 

experimentally with the LD region of APOE4 polymorphism. By using a high-density 

SNP mapping analysis, APOE4 was re-discovered across a region of four million 

bases [10–12]. Identification of this small specific LD region limited the focus to only 

two genes, APOC-1 and APOE. Only the APOE4 variant at codon 112 was linked 

with the younger age of onset distribution of AD [13]. This outcome has been 

confirmed by multiple epidemiology studies in various populations with immune-
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cytopathology of human brain, differences in control allele frequencies, protein 

expression in transgenic mice, analyses of neuronal APOE RNA and many others [14-

16].   

For many common diseases, rare mutations confer increased risk in heterozygous 

carriers. However, the vast majority of disease occurs without such mutations. 

Polygenic inheritance can also play a greater role than rare monogenic mutations, 

with multiple common genetic variants of small effect [7, 17-19]. 

Polygenic score is a quantitative metric based on the cumulative effect of multiple 

common polymorphisms, to measure a person's inherited risk. Weights are assigned 

to each genetic variant according to the strength of their association (effect 

estimate) with disease risk. An individual’s score is measured based on how many 

risk alleles they have for each variant (i.e. 0, 1, or 2 alleles) in the polygenic score 

[20]. 

There are several computational algorithms in use to calculate the polygenic score 

of genetic variants. Bayesian approach based ‘LDPred’ is one of them, which 

computes a posterior mean effect size for every variant. In addition, the underlying 

Gaussian distribution determines the fraction of causal markers with a tuning 

parameter [20]. 

A second approach to calculate the polygenic score is ‘pruning and thresholding’. It 

is built using a p value and a linkage disequilibrium-driven clustering procedure 

[21]. Concisely, the algorithm forms clusters around SNPs with associated P values 

within a provided threshold. Each cluster contains all SNPs in the region of 250 kb 

of the tag SNP as identified by a given pairwise correlation (r2) threshold with the 

reference of linkage disequilibrium. The final result contains the most significantly 
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disease-associated SNP for each linkage disequilibrium-based cluster across the 

genome [20].   

It is essential to acknowledge that the risk associated with a high polygenic score 

cannot reveal a single underlying mechanism, but rather may indicate the combined 

influence of multiple pathways [20].  

 

Genetic Variants and Drug Therapy 

Genetic factors also affect individual responses to drug therapy. Accordingly, DNA 

polymorphisms will be valuable in helping researchers determine and understand why 

persons are different in their abilities to absorb or clear certain drugs, furthermore to 

determine why a person may experience an adverse side effect to a specific drug. 

Consequently, the recent discovery of variants promises to revolutionize not only the 

process of disease progression but also the practice of preventative and curative 

medicine. 

Pharmacogenomics is an analysis of the genome and genomic products like RNAs 

and proteins in the context of drug response, whilst pharmacogenetics is the study of 

variability in drug responses connected to genetic factors in different populations. For 

instance, gene expression profiling has enabled the demonstration of distinct gene 

clusters, which may be expressed differentially in healthy and disease tissues. These 

tissue specific gene expression profiles can assist to recognize treatment response at 

the genomic level. However, the expression profiles, which can predict responses to 

medicines in pharmacogenetics, are different from those profiles, which are used to 

estimate inherited differences in our genetic code to predict responses to medicines 
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[22, 23]. These genomic analytical techniques are essential for differential diagnosis 

of patients, specifically for heterogeneous diseases, which may have different 

molecular expression for similar clinical phenotypes. 

In this technological advanced era, pharmacogenetics has promised to patients, that 

new prescribed medicines will be more effective and less likely to have adverse drug 

reactions (ADRs). This role of pharmacogenetics in the reduction of ADRs, has added 

further moral weight to the need to embolden this developing scientific venture. 

Variants may be associated with the absorbance and clearance of medicine. A drug 

verified effective in one patient maybe ineffective in other patients, or even cause an 

adverse reaction. The current practice of pharmaceutical companies is to develop only 

those therapeutic agents to which the "average" patient will respond. Therefore, drugs 

that might benefit a limited number of patients never make it to market. 

Practically, the therapeutic response to conventional drugs (like multifactorial 

strategies, cholinesterase inhibitors) is genotype-specific [22]. Currently, chronic 

administration of anti-parkinson medication induces the phenomenon of "wearing-

off", with further autonomic and psychomotor complications. In order to reduce these 

clinical complications, novel drugs and bioproducts should be developed, which can 

decrease premature neurodegeneration, instigate dopaminergic neuroprotection, and 

improve dopaminergic neurotransmission. Since therapeutic outcomes and 

biochemical changes are likely dependent on genomic profiles of patients, in order to 

optimize therapeutics, personalized treatments should rely on pharmacogenetic 

methodology. [24]  

Genes involved in pharmacogenetic cascade can also be differentially expressed by 

epigenetic deviations (like histone modifications, DNA methylation, microRNA 
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dysregulation), which can induce abnormal drug processing and lead to diminish 

medicinal efficacy and safety [25,26]. Thus variations in the epigenetic machinery are 

accountable for defective tissue-specific expression of genes. Moreover epigenetic 

alterations in metabolic, transporter, and pathogenic genes can also develop drug 

resistance and toxicity [25-27]. 

Pharmacogenetic strategies comprises a series of steps in a multidisciplinary approach 

to develop new drug compounds, which includes: (a) genetic screening (genotyping) 

to find major gene targets; (b) genetic variation analysis to differentiate populations; 

(c) genomic structural and functional analyses by using genetic clusters and 

haplotypes; (d) genotype-phenotype correlations analysis to characterize key 

phenotypes as therapeutic targets associated with metabolic pathway genes; and (e) 

clinical and basic pharmacogenomic procedures implementation for drug 

development [28]. 

In the future, the most suitable drug for a patient could be determined by examining 

his genome profile, prior to his treatment. The ability to target a drug to specific 

patients most likely to benefit, is referred as "personalized medicine", and it would 

pursue medicine manufacturer to develop many more drugs and allow doctors to 

prescribe personalized therapies specific to a patient's needs. 
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Identification of Functional Genetic Variance  –  

Needles in a Haystack 

Identification of functional genetic variants in the human genome is an intimidating 

prospect, but over the last 20 years, biomedical researchers have developed several 

powerful techniques. The underlying philosophy of each technique is a different 

method to compare selected portions of a DNA sequence obtained from different 

individuals who share a common disease. As it is currently difficult to measure and 

evaluate a variant’s overall effect on disease aetiology, therefore, DNA sequence just 

refers to a person's genetic predisposition, or the potential of an individual to develop 

a disease based on genes and hereditary factors. The genetic factors involved in the 

intricate pathways of disease developmental progression are still not fully understood, 

so it is difficult to develop screening tests for a number of diseases and disorders. By 

studying genomic loci that have been found to harbour a genetic variant associated 

with a disease trait, researchers may reveal relevant genes associated with a disease. 

Defining and identifying the role of genetic factors in disease will also help 

researchers better evaluate the role of non-genetic factors on a disease, such as diet, 

behaviour, lifestyle, and physical activity. 

Researchers have also identified a large number of genetic variants, which are not 

accountable for a disease state. Rather, they serve as biological markers for 

identifying a disease on the human genome map, because they are usually located 

near a gene associated with a certain disease.  
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Genome Wide Association Studies (GWASs) 

GWASs implement a simple design to compare allele frequencies for hundreds of 

thousands of common variants distributed on the genome between large samples of 

disease cases and controls. If a variant influences the disease, even slightly, this 

should be apparent as greater allelic frequency in disease cases than controls, given a 

sufficient large sample size. This design has been applied to many different complex 

diseases, with varying levels of success. It is notable that these studies use a sample of 

SNPs to tag variation across the genome. A link between a single SNP and the disease 

cannot be used to conclude that SNP itself is involved. This association could be due 

to any of the other variants in linkage disequilibrium (LD) with it. These are referred 

to as tagged rare variants. Thus the goal of GWAS is not only to identify causal 

alleles but also to point out genomic loci that where they might be located [29] 

(Figure 2). 

GWAS have been reasonably successful for many complex disorders. They have 

identified a number of candidate loci for many diseases. Some of these loci were 

previously involved as sites of known rare mutations that cause apparently Mendelian 

forms of the disease in question, whereas others are novel findings that connect new 

genes in disease progression. For some diseases, the findings congregate on particular 

bio-chemical processes or pathways. These studies have also discovered some shared 

genetic risks across multiple diseases, including neurodegenerative diseases, various 

autoimmune diseases and between schizophrenia and bipolar disorder [29] (Figure 3).   

 



	11	

 

 
Figure 2: Summary workflow of GWAS. GWAS starts with the determination of phenotypes. In 
pharmacogenomics studies, cases are often the patients who do not respond or who develop severe 
adverse reactions, whereas controls are patients who respond to the treatment or who do not develop 
any adverse events after exposure to drug(s) treatment. All the samples are genotyped with chips that 
contain up to hundreds of thousands of SNPs. Quality control (QC) is a crucial step to ensure the 
association studies are performed with a good-quality sample and SNP set. Sample quality control 
usually includes (1) sample quality to exclude poorly genotyped samples, (2) identity-by-state analysis 
to exclude close relatedness samples, and (3) principal component analysis to evaluate population 
stratification of the sample sets to obtain a homogeneous sample set before performing the association 
study. SNPs are excluded if (1) they are of low genotype quality, (2) if they deviate from normal 
distribution by evaluating Hardy–Weinberg equilibrium in control samples, and (3) if they contain 
nonpolymorphic SNPs (minor allele frequency = 0). To evaluate the association distribution, quantile–
quantile plots (Q–Q plot) of observed P value versus expected P value and genomic inflation factor 
(λ value) are evaluated to eliminate the possibility of population substructure. Manhattan plots 
of P value (−log10) versus chromosome loci are utilized to depict an overview of the GWAS, with each 
dot representing a SNP and each color representing a chromosome. The post-GWAS includes (1) a 
meta-analysis that combined multiple studies to identify significantly associated SNPs, and (2) 
functional analysis. Two of the most common functional analyses of the identified variants are (A) 
electrophoretic mobility shift assay (EMSA) to check the existence of proteins, mainly transcription 
factors, binding to SNP-contained DNA fragments and (B) luciferase reporter assay (comparison of 
relative luciferase activity) to assess the associated SNPs that could affect differential gene expression 
(as shown in figure). (3) Other analyses, including gene-based analysis, pathway analysis, polygenic 
risk estimation, SNP–SNP interaction, SNP–environment interaction, etc., could be carried out after 
GWAS. (taken from: Low SK, et al. Clin Cancer Res. 2014 May 15.) 
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Critically, the sample sizes, which are necessary to identify robust and replicable 

findings, are not obtainable be individual groups. Thus, collaborations have 

proliferated to enhance the statistical predictability of GWAS. Moreover, contribution 

of genetic factors also depends on a variant’s allele frequency and effect size 

(Figure 4). 

 

Figure 3: Molecular mechanism sharing in neurodegenerative diseases (taken from: Delgado-
Morales R, et al. Mol Psychiatry. 2017 Apr) 

 

Genetic and Gene Mapping Studies 

Gene mapping studies are used to comprehend genetic architecture and to establish 

the association between DNA sequence variations and phenotypic variability. 

Undoubtedly the field of genetic studies has enjoyed great accomplishment over the 

past decade [29]. These association-mapping studies have gradually become genome-

wide association studies (GWAS), whole-genome sequencing studies (WGS studies) 

and whole-exome sequencing studies (WES studies) [30]. GWAS that is a least 

expensive modern genome-wide gene mapping method have been successfully used 
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in large human populations to understand the direct association of common variants 

with complex diseases [29]. 

 

 

Figure 4. Spectrum of Disease Allele Effects. Disease associations are often conceptualized in two 
dimensions: allele frequency and effect size. Highly penetrant alleles for Mendelian disorders are 
extremely rare with large effect sizes (upper left), while most GWAS findings are associations of 
common SNPs with small effect sizes (lower right). The bulk of discovered genetic associations lie on 
the diagonal denoted by the dashed lines. (taken from: Bush WS, et al. PLoS Comput Biol. 2012) 

 

GWAS and Neurodegenerative Diseases  

Many complex diseases, like heart disease, cancers, Alzheimer’s disease, 

Parkinson’s disease, and diabetes have a significant impact on the health of human 

populations. These diseases are associated with a combination of genetic and 

environmental factors, most of which have not yet been fully identified. The 
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contribution of genetic factors, specifically the links between genetic variants and 

diseases, is a long-established query in the study of complex diseases. 

 

 

Figure 5: GWAS SNP-Trait Discovery Timeline  (taken from: Visscher PM, et al. Am J Hum Genet. 
2017 Jul 6) 

 

Genome-wide association studies (GWAS) have revealed a large number of genetic 

loci associated with disease susceptibility in complex human diseases [31] (Figure 

5). The majority of GWAS have identified that significantly associated genetic 

variants fall outside of DNA coding regions [32,33], which complicates our 

learning of how the specific variants intensify disease susceptibility. Therefore, our 

understanding of the functional impact of genetic variants in a complex disease 

remains limited. It is critical to further determine their role in molecular level 

biological functions [6]. 

 



	15	

Alzheimer's disease (AD):  

Alzheimer's disease is the most common form of dementia. While AD is usually 

diagnosed among people aged 65 and older, it is not a normal part of aging. 

Heritability in AD is up to 76% but genetically it is very complex [34]. 

AD is characterized extracellular β-amyloid (Aβ) senile plaques and intracellular 

hyper-phosphorylated tau protein neurofibrillary tangles [34]. Early onset of AD is 

linked with mutations of the amyloid precursor protein (APP) protein and 

the presenilin1 (PSEN1) and presenilin2 (PSEN2) proteins. For late-onset form of 

AD, apolipoprotein E (APOE) is established explicitly as a susceptibility gene [34]. 

A GWAS of AD, using GERAD1 (Genetic and Environmental Risk in AD 

Consortium 1) sample published in 2009 [35] identified two susceptibility 

loci: Clusterin (CLU) and Phosphatidylinositol Binding Clathrin Assembly Protein 

(PICALM). Another independent AD GWAS presented significant evidence for AD 

association with CLU and Complement C3b/C4b Receptor 1 (CR1), and PICALM, by 

using EADI (European Alzheimer's Disease Initiative sample) data. Further studies 

with independent datasets have replicated the association of AD with CLU, PICALM 

and CR1 [36-39]. Moreover, Seshadri et al. [40] described a significant link between 

AD and Bridging Integrator 1 (BIN1) after merging GERAD1 and EADI with 

CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) data. 

More recently, an extended study by GERAD (GERAD+) and the American 

Alzheimer's Disease Genetic Consortium (ADGC), reported evidence for association 

at the ATP Binding Cassette Subfamily A Member 7 (ABCA7) and the Membrane 

Spanning 4-Domains A (MS4A) loci [41], and suggestive evidence for association 

with SNPs at the CD33 Molecule (CD33), CD2 Associated Protein (CD2AP), AT-
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Rich Interaction Domain 5B (ARID5B) and EPH Receptor A1 (EPHA1) loci [42] 

(Figure 6).  

 

 
 

Figure 6: Genetic variations underlying Alzheimer's disease  (taken from Cuyvers E, et al. Lancet 
Neurol. 2016 Jul) 
 

In AD pathogenesis, psychotic symptoms are considerably more common than the 

general population, by affecting	approximately 40% of cases [43]. Thus psychosis 

is suggested as a marker for a subtype of AD [44]. These symptoms are associated 

with more rapid cognitive [45] and functional decline [46]. It has been estimated in 

three independent cohorts that the heritability of AD and Psychiatry 

is approximately 61% [47-50]. 
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Parkinson’s disease (PD) 

Parkinson's disease belongs to a group of conditions called motor system disorders. 

The four primary symptoms are tremor or trembling in hands, arms, legs, jaw, and 

face; rigidity or stiffness of the limbs and trunk; ‘bradykinesia’ or slowness of 

movement; and postural instability or impaired balance and coordination. PD is the 

most common form of Parkinsonism, the name for a group of disorders with similar 

features. These disorders share the four primary symptoms described above, and all 

are the result of the loss of dopamine producing brain cells [51].  

Genetically, PD is a heterogeneous and complex disorder. Several GWAS for PD 

have been reported and three meta-analyses have been performed. All GWAS indicate 

a strong association to the Synuclein Alpha (SNCA) gene [52,53]. Most studies also 

confirm an association with the Microtubule Associated Protein Tau (MAPT) gene 

[54,55]. An early 2011, a meta-analysis of datasets from five PD GWAS identified 

eleven loci that exceeded the threshold for genome-wide significance. Six had been 

previously identified (MAPT (Microtubule Associated Protein Tau), SNCA 

(Synuclein Alpha), Major Histocompatibility Complex Class II - DR Beta 5 (HLA-

DRB5), Bone Marrow Stromal Cell Antigen 1 (BST1), Cyclin G Associated Kinase 

(GAK) and Leucine Rich Repeat Kinase 2 (LRRK2)), whereas five were novel 

(Aminocarboxymuconate Semialdehyde Decarboxylase (ACMSD), Serine/Threonine 

Kinase 39 (STK39), Methylcrotonoyl-CoA Carboxylase 1 (MCCC1) / Lysosomal 

Associated Membrane Protein 3 (LAMP3), Synaptotagmin 11 (SYT11) and Coiled-

Coil Domain Containing 62 (CCDC62) / Huntingtin Interacting Protein 1 Related 

(HIP1R)) [56]. A second meta-analysis revealed another five Parkinson disease risk 

loci (Parkinson Disease 16 (PARK16), Syntaxin 1B (STX1B), Fibroblast Growth 
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Factor 20 (FGF20), Starch Binding Domain 1 (STBD1) and Glycoprotein Nmb 

(GPNMB)) [57].   

Recently our knowledge of the genetic architecture for PD has improved. Autosomal 

recessive mutations in PTEN Induced Putative Kinase 1 (PINK1), Parkinsonism 

Associated Deglycase (PARK7), and Parkin RBR E3 Ubiquitin Protein Ligase 

(PRKN), and dominant mutations in SNCA, LRRK2, and VPS35 Retromer Complex 

Component (VPS35) cause the disease with high penetrance. Therefore, 

approximately 5–10% of patients have a monogenic form of PD. Furthermore, 

autosomal recessive DnaJ Heat Shock Protein Family (Hsp40) Member C6 

(DNAJC6) mutations are described in predominately atypical as well as typical PD 

[58] (Figure 7). 

 
 
 
Figure 7: Genetics of Parkinson’s disease (taken from: Chang D, et. al. Nature Genetics, 2017) 
 

The latest and most comprehensive meta-analysis, using data from seven million 

polymorphisms, confirmed many previously reported risk loci. Evidence for a new 
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risk variant in the Integrin Subunit Alpha 8 (ITGA8) gene was also found. The risk 

factors identified by these studies provide clues to the basic molecular mechanisms 

involved and offer potential targets for novel treatments [59]. 

Psychiatric symptoms including depression and other visual hallucinations can be a 

prominent feature of PD. Around 25–50% of PD patients experience depression [60-

62]. During the disease progression, dementia ultimately occurs in 20–40% of cases 

[63]. 
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Functional Impact of Genetic Variants at Molecular Level  

The functional impact of SNPs should be closely linked to their interference with (or 

modulation of) normal physiological functions. Some SNPs are very likely to directly 

interfere with bio-molecular functions of genes and genomic regions. By contrast, for 

other SNPs, the mechanism of disease susceptibility is unknown [64]. 

Protein Coding Variants have been most extensively studied due to their direct 

effect on the function of that encoded protein.  

Non-Synonymous genetic variants change the amino acid sequence. They can modify 

amino acid composition, or truncate the protein sequences by causing an early 

translate on stop codon. Indels can also alter protein sequence; its effect on protein 

sequence depends on whether it is in-frame or frame-shifting. This substitution may 

affect protein folding, proper activity of binding or interaction sites, structure, 

stability or solubility of the protein [65].  

Synonymous genetic variants do not alter the codon sequence. However, they can 

still impact protein function by modulating translation rates, with direct consequences 

to protein folding [66]. For instance, translation elongation rates are faster with higher 

codon adaptation to tRNA pools, along transcripts and slower with rare codons. 

Synonymous mutations have been revealed to have significant effects in the folding 

process of the emerging protein and can even modify substrate enzyme specificity 

[67]. This codon usage controls the speed of polypeptides vectorially translation from 

the ribosome and may impact protein-folding pathways [68]. It has also been shown 

that a fraction of codons specify not only an amino acid, but a transcription factor 
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binding site, providing an additional avenue through which synonymous 

polymorphisms may impart a functional effect [69].  

Exonic Splicing Enhancers (ESEs) comprise specific hexamer sequences and an AG 

sequence at the intron-exon borderline. They instruct for the recruitment of the 

splicing complex to immature messengerRNA (pre-mRNA) and lead for intron 

excision and exon joining. SNPs may also present within exon splicing enhancers or 

silencers (ESEs/ESSs), resulting in deleterious intron retention or exon skipping [70 -

73]. SNPs and indels can also interrupt splicing sites to translate the protein isoform 

[74]. 

Regulatory Interactions at non-coding regions can take place over significant 

chromosomal distances up to an entire megabase (1MB) [75]. Genetic risk variants 

are very frequent on non-coding sequences [76]. Post-GWAS studies have revealed 

the capacity of these genetic risk variants to regulate gene expression by modulating 

cis-regulatory machineries through mechanisms involving DNA methylation [77], 

transcription factor binding [78], chromatin looping [79], or miRNA recruitment [80].  

DNA Methylation refers to the addition of methyl groups to a cytosine nucleotide, 

which is basically part of a CpG dinucleotide. This DNA methylation is a heritable 

epigenetic event, which is involved in transcriptional regulation [81]. DNA hyper-

methylation near transcription start sites (TSS) of tumour suppressor genes is 

associated with their silencing [81]. Across the genome, transcription factors bind to 

thousands of regulatory elements. These regulatory elements include promoters 

directly upstream of their target genes, and cis-regulatory elements such as enhancers, 

insulators and silencers [82]. ChIP-seq assays for transcription factors effectively 

annotate these cis-regulatory elements genome-wide. Analysis of these annotations 
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reveals that genetic risk variants commonly target cis-regulatory elements, mainly 

enhancers, in a disease- and tissue-specific manner [83-86] (Figure 8).  

 

Figure 8: Functional genomic elements being identified by the ENCODE pilot phase. The 
indicated methods are being used to identify different types of functional elements in the human 
genome. (taken from: ENCODE Project Consortium. Science. 2004 Oct)	

 

Genetic risk variants located within promoter regions can also change transcription 

factor binding to DNA, leading to differential target gene expression [87,88]. 

Enhancers are commonly targeted by those genetic variants of risk-associated loci that 

map to DNA recognition motifs, bound by transcription factors. These genetic 

variants can modulate the chromatin affinity for transcription factors and 

consequently gene expression [89–94]. Moreover, functional variants within a single 

risk locus can modulate multiple different enhancers. This multi-enhancer variant 

phenomenon was found to be a fundamental feature of many risk loci [95]. 

A genetic variant can modulate chromatin loop formation by altering the DNA 

affinity for looping factors. This can also result in allele-specific chromatin loop 
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formation. The human genome is structured in a three dimensional architecture which 

is thought to regulate a diverse set of DNA-templated processes [96-100]. This 

architecture facilitates the physical interaction of regulatory elements, like promoters 

and enhancers, through long-range chromatin loops or chromatin interactions 

[101,102] (Figure 9). 

 

Figure 9: CTCF loops and enhancer–promoter interactions: CTCF (CCCTC-binding factor) loops 
establish domains in which sequences can interact more frequently. These contacts are thought to help 
promote enhancer–promoter (E–P) interactions when inside the domain but help insulate against those 
outside the domain. Enhancers are shown in yellow bound by a yellow transcription factor, and 
promoters are shown in pink bound by a purple RNA polymerase II (RNAPII).  (taken from: Rowley 
MJ, et al. Nat Rev Genet. 2018 Oct 26) 
 

If even a small fraction of these potential regulatory elements participate in chromatin 

looping, then most of the genomic interactions have to be characterized again, 

because many such loops appear to be tissue-specific [103-105]. These factors 



	24	

contribute to the complexity of a systematic analysis of chromatin interactions [106] 

(Figure 10). 

 

 

Figure 10: Four types of transcription regulatory chromatin loops. (a) Intragenic loops joining the 
5′ and 3′ end of genes may allow recycling of RNA Pol II and facilitate maintenance of transcriptional 
directionality. (b) Enhancer-promoter loops—mediated by sequence-specific transcription factors, and 
possibly assisted by noncoding RNAs or by general DNA binding factors such as CTCF and cohesin—
lead to transcriptional activation. (c) Loops between Polycomb-bound regions (PREs) and promoters 
prevent RNA Pol II recruitment and/or impair transcriptional elongation of promoter-bound RNA 
polymerases. (d) Insulator-mediated loops may segregate individual loci containing the coding part of 
the gene and its regulatory regions from the surrounding genome landscape with other regulatory 
elements. (Taken: Cavalli G, et al. Nat Struct Mol Biol. 2013 Mar) 
	

MicroRNAs (miRNAs) target mRNAs by recognizing their complementary 

sequences mainly in 3’ untranslated regions (3’UTRs). miRNAs largely function as 

post-transcriptional repressors. They can regulate the translation of hundreds of genes 

through sequence-specific binding to mRNA [107] (Figure 11).  
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lncRNAs are non-protein-coding transcripts which are found across intergenic 

regions of the human genome [108]. They can interact with chromatin regulators for 

their recruitment by chromatin [109,110]. Genetic variants can change lncRNA 

tertiary structures [111].  

 

 

Figure 11. Illustrated regulatory network of altered microRNAs and their targeted genes in 
pathophysiology of Parkinson's disease: Altered microRNAs from EOPD and LOPD studies are 
significantly involved in the regulating various molecules in pathophysiological of PD, particularly in 
mitochondrial dysfunction, oxidative stress, neuro-inflammation, and toxic protein accumulation. Red-
colored microRNAs are significantly altered in EOPD patients. (taken from: Arshad AR, et al. Front 
Mol Neurosci. 2017 Oct 31.) 

 

Epistatic Interactions: There are three key categories of epistasis; functional, 

compositional, and statistical [112]. Functional epistasis ascertains the molecular 

interactions that genetic elements have with each another [113]. Compositional 

epistasis reveals the blocking effect on one allele by another allele at a different locus 
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[114]. Statistical epistasis expresses a quantitative way to detect how the genotype at 

one locus effects on the phenotype of another locus [115]; it measures deviation from 

the additive effects of two loci on the phenotype [112].  

 

Strategies to determine the Causal Risk of Genetic Variants 

The complexities of genetic variants are obscured at many different levels. Despite 

exhaustive effort, in most cases the interpretation of identified associations of genetic 

markers with diseases is still unclear. Intensive efforts in functional studies and fine 

mapping are required to more thoroughly understand the effects of genetic variants 

[116]. 

Current approaches to screen and identify the causal risk of variants at various non-

coding loci have generally required multi-step experimental methodologies, like 

identifying allelic differences in both protein-DNA binding and transcriptional 

activity. In transcriptional activity, the allelic differences can be assessed using 

luciferase reporter assays [117]. In protein binding, they can be investigated by 

electrophoretic mobility shift assay and by ChIP to find upstream transcriptional 

regulators [118,119]. Moreover, genome editing techniques like CRISPR-Cas9 can 

be implemented, to determine the function of a specific variant. Then an 

assessment of cellular phenotypes and gene expression can be done [120]. 

Phenotypes can be compared between risk and non-risk alleles, in a carefully 

controlled experimental system. However, these methods are costly, slow and low-

throughput. As GWAS have identified a large number of disease-associated 

variants, it is essential to acquire rapid, high-throughput data and knowledge-driven 
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methods to identify functional candidates linked to genetic risk alleles for the 

pathogenesis of complex diseases. 

In the process of function investigation of genetic risk alleles, annotation of 

functional elements in the genome is a major goal. Annotations include 

determination of the inferred genomic elements where variants reside, like conserved 

elements, protein domains, transcription factor binding sites, promoters, exons, and 

introns. Additional annotations include prediction of the functional effect of variants 

on genomic components, like changes in the strength of transcription factor binding, 

microRNA binding, splicing efficiency, and protein function, annotations of 

biological and molecular processes to link variants across genes and genomic 

elements, and annotation of clinical and molecular characteristics of the gene or 

variant, like disease associations, eQTLs, population frequency, and pharmacogenetic 

variants.  

In order to get a broad picture of the genomic functional components, the data and 

knowledge acquired through different methodologies needs to be combined and 

mapped using appropriate statistical and biological learning techniques. Likewise 

to keep up with these advance technologies, it is essential to design a framework 

for functional annotation. Such a framework can be attained through statistically 

justified and biologically motivated models [121]. 

Furthermore, functional genomic studies, at the RNA level, these consist of gene 

expression studies and at the protein level, these consist of proteomics studies, can 

provide useful complementary information to GWA studies. For instance, functional 

genomic studies can explain molecular and genetic mechanisms that influence disease 

development using critical information about gene regulation under different 
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conditions. GWAS, gene expression and proteomics studies independently have 

shown some successes in identifying genes associated with complex diseases (Figure 

12).  

 

Figure 12: Roadmap for the identification and functional investigation of genetic risk alleles. In 
light of the growing evidence for a spectrum of allelic variation in disorders, diverse approaches, 
including GWAS, customized chips and sequencing, will all be important priorities for establishing 
novel statistical associations. These discoveries provide the foundation for functional investigations 
that aim to advance understanding of disease mechanisms at the molecular, cellular, synaptic and 
neural circuitry levels. (taken from: Mowry BJ, et al. Mol Psychiatry. 2013 Jan) 
 

In conclusion, identification of causal genes for human complex disease is quite 

challenging. Replication is important and valuable, but it is difficult to achieve and 

maybe insufficient for validating GWA findings. Substantial information from other 

resources, such as genomic interactions and in detail molecular mechanistic studies, 
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may be useful for validating and clarifying the functional relevance of genes 

identified in GWA studies [122] (Figure 13). 

 

Figure 13: A schematic illustration for layers of data integration. (taken from: 
http://akross.info/?k=Genomic+Databases+Emerging+Tools+for+Molecular (Accessed on Nov. 2018-
11-07 )) 

 

One of the obvious questions is, which methodology can help in interpretation of 

GWAS data, in which most of the variants have small effects on disease susceptibility 

[123]. There is a lack of efficient and reliable algorithms as well as appropriate multi-

scale modelling methodology, to evaluate the huge number of interdependent data 

from GWAS [124]. One way to reduce the combinatorial complexity of GWAS data 

is to reduce the dimensionality of genetic variation data by taking into account a priori 

knowledge about functional relationships between genes and proteins. Formalized 

knowledge about causal and correlative relationships in systems biology models 

provides a good starting point for that dimension reduction. So far, there have only 

been a few serious efforts to predict how these genetic variants would collectively be 

effective for specific phenotypes [125,126]. Thus there is a need for representation of 

data in standardized formats. Comparisons and evaluations of modern systems 



	30	

biology modelling languages show that XML is superior format for systems biology 

information representation [127,128]. 

BEL (Biological Expression Language) 

BEL (Biological Expression Language) represents knowledge in a computable form 

and is this suitable for use in modelling. It expresses the knowledge as BEL 

Statements that are stored in BEL documents. BEL is a highly expressive, triple-based 

language for the representation of knowledge about causal and correlative 

relationships [129]. BEL represents complex biological content as simplified, 

formalized, computable semantic triples that provide the ability to use and re-use 

experimental observations. 

BEL is currently being applied to biological network analysis, disease modelling, 

understanding drug efficacy and toxicity, mechanisms for drug sensitivity and 

resistance, and other research and development related projects. A suite of software 

components called the BEL Framework provides tools that are required to create, 

compile, assemble and deliver computable knowledge models to BEL-aware 

applications [130]. BEL has the potential to impact scientific literature by introducing 

computable expressions in scientific publishing, that could be integrated efficiently 

into existing knowledge environments [131].  
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Integration of Genome Variance Information with Multi-scale 

Mechanistic Models  

A key task in genetic variants interpretation lies in the ability to predict the molecular 

level mechanistic consequences of gene polymorphisms and mutations. As a 

consequence, systems biomedicine modelling approaches need to combine 

mechanistic information from various levels, including gene expression, miRNA 

expression, protein-protein interaction, genetic variation and pathway information.  

 

1. Review of state-of-the-art approaches for functional interpretation of genetic 

variants 

In this thesis, firstly I summarized the biomedical literature for assessment of the 

functional impact of genetic variation at molecular level. The literature review 

focuses on the functional interpretation of SNPs and mutations in a systems biology 

context with a strong link to network modelling approaches. The aim of that was to 

shed light on the perspectives for enhanced functional interpretation of complex SNP 

and mutation patterns in neurodegenerative disorders. I precisely summarized existing 

methodologies for genome wide association studies, currently available algorithms 

and computable modelling approaches. Moreover, I evaluated the required new 

approaches for modelling and simulations of genetic regulatory networks to predict 

the functional consequences of disease-associated genetic variants. 
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2. Developing predictive models to estimate cognitive decline and resilience in 

Alzheimer’s disease: 

Secondly, the next step was to collect publically available genetics data and to 

develop predictive models. These models estimate cognitive scores, predict 

discordance between cognitive ability and amyloid load, and/or predict diagnostic 

groups by identifying the most significant disease-associated genetic variants. 

For this purpose, we participated in the Alzheimer’s disease DREAM challenge [132], 

a crowdsourced computational project to benchmark the current state-of-the-art in 

predicting cognitive decline in Alzheimer’s disease, by using high dimensional, 

publicly available genetic and structural imaging data (Figure 14).  

 

Figure 14: Dream Challenge overview: The top schematic summarizes the three challenge questions, 
the training and test data. (taken from: Alzheimer's Disease Neuroimaging Initiative. Alzheimers 
Dement. 2016 Jun; 12(6):645-53.) 
 

Major collaborative efforts in the field are evaluating the association of genetic loci 

with AD to identify early biomarkers of diagnosis, but the utility of these approaches 

is not well established. Therefore to ensure that the genetic data were tested across a 
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broad spectrum of the state-of-the-art analytical approaches, the study was intended as 

a community-based challenge. 

The ADNI (Alzheimer’s disease Neuroimaging Initiative) [133] genetics, clinical and 

imaging data were used to train the predictive models. Moreover, data from the ROS 

(Religious Orders Study) [134] and MAP (Memory and Aging Project) [135] from the 

Rush Alzheimers Disease Center, and the European AddNeuroMed [136] study from 

InnoMed (the Innovative Medicines Initiative), were used to validate and test the 

predictive models. 

Predictive models were designed to address the following three questions based on 

genetic data; 1: to predict 2-year cognitive decline and changes in MMSE scores. 2: to 

stratify individuals who exhibit resilience to AD pathology despite evidence of 

amyloid deposition. 3: to estimate MMSE scores using imaging data [137].  

After pre-processing, filtering, and normalization of data, we prioritized SNPs based 

on their correlation with phenotype to stratify patient groups. Then we developed a 

generic ensemble method to integrate several independent models, which include 

linear regression and classification by using decision trees, SVMs, gaussian processes, 

and random forest. Afterwards, predictions were integrated via majority voting for 

classification models and by averaging for regression models (Figure 15).  

In this challenge, more than 500 bioinformaticians worldwide demonstrated the 

viability of crowdsourced approaches in AD research. Our predictive model secured 

9th position in the performance evaluation result (Figure 16). Unfortunately, top-

scoring algorithms were unable to detect meaningful genetic biomarker of either 

cognitive decline or resilience, as the algorithms with the best predictive 

performances did not contain any genetic features beyond APOE haplotype. The 
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failure of this meta-analysis challenge suggested that alternate approaches should be 

considered for prediction of cognitive performance. It is also possible that the data 

were simply inadequate to estimate the cognition decline [137].	

 

 

Figure 15: A Workflow for Ensemble learning with different classifier/regression models to estimate 
cognitive decline and resilience in Alzheimer’s disease 
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While the DREAM challenge failed to detect a substantial genetic contribution to 

onset and progression of AD, linkage studies and heritability estimates have 

demonstrated that there is such a contribution [138-140]. Indeed, overall genetic 

contribution is the accumulated compilation of a large number of genetic loci with 

small epistatic or independent effects [141]. Historically, this type of signal is quite 

challenging to capture in predictive models and implausible to be useful in a 

diagnostic setting [142].  

 

Figure 16. Performance evaluation results: P values (in negative log 10 scale) for intersection union 
tests investigating, which teams performed better than random. Explicitly, we tested the null hypothesis 
that Pearson’s correlation (COR) or Lin’s concordance correlation coefficient (CCC) are equal to zero, 
against the alternative that both COR and CCC are larger than zero. Adopting a 0.05 significance level, 
after Bonferroni correction. (taken from: Alzheimer's Disease Neuroimaging Initiative. Alzheimers 
Dement. 2016 Jun; 12(6):645-53.) 
 

This suggests the need to develop new integrative approaches for biomedical 

heterogeneous data. Alternatively, in smaller scale analyses, prioritization of 

phenotypic depth over sample size may offer a more refined view of disease 
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associated molecular mechanisms. Most likely, successful identification of clinically 

relevant biomarkers of cognition will require the integration of multiple data sources 

and methods that represent greater phenotypic complexity. 

3. Designing a mechanistic approach for the interpretation of disease-associated 

risk variants in complex systems biomedicine models: 

Thirdly, I suggested a mechanistic approach for the interpretation of disease-

associated risk variants in complex systems biomedicine models. I categorized and 

annotated genetic variants according to their predicted functional impact. Variants 

identified by GWA and eQTL studies were integrated with causal mechanisms 

through a multi-scale interconnection network (including genome – transcriptome – 

proteome) of epigenetic and genetic alterations located within significantly influential 

genomic regions. Associated verification evidences were derived from clinical or 

experimental outcomes.  

For the integration of genetic variants into systems biomedicine models, OpenBEL 

(Open Biological Expression Language) [143], the open source version of BEL, has 

been extended. The BEL 2.0 syntax provides a representation for different genetic 

variant types, by introducing new variant functions for DNA, RNA and protein levels. 

This new variant function can be used as an argument within a gene(), rna(), 

microRNA(), or protein() procedure to indicate a sequence variant of the specified 

level. The variant function takes a HGVS (Human Genome Variation Society) [144] 

variant description expression, e.g., for a substitution, insertion, or deletion variant 

(Figure 17).  
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Figure	17:	BEL	variant	representation	at	DNA,	RNA	and	protein	levels.	Proposed	syntax	for	
the	integration	of	genetic	variants	in	cause-and-effect	disease	BEL	model	
	

The extended OpenBEL syntax is intended to support reasoning over cause-effect 

models that include genetic variation information. Accordingly, these variants were 

mapped to a disease model with both well established and novel disease associated 

genes. This is encoded in BEL to represent scientific findings by capturing causal and 

correlative relationships in context.  

Using OpenBEL, I demonstrated how candidate mechanisms for early dysregulation 

events in AD can be identified. My integrative mining approach identifies "chains of 

causation" by comprising genetic information in BEL disease models. Through the 

annotation of disease models with genetic variants ranked according to the functional 

relevance-scoring scheme, I obtained an enhanced interpretation of the functional 

consequences of genetic variants in a mechanistic context.  



	38	

4. Implementing an integrative approach that starts with a data-driven approach 

to identify indicators in GWAS data, and allows for new insights into complex 

mechanisms through knowledge-driven context enrichment: 

Finally, I established an integrative approach that starts with a data-driven approach, 

identifies indicators in GWAS data, and allows for new insights into complex 

mechanisms, through knowledge-driven context enrichment. This approach integrates 

multi-model heterogeneous information and knowledge in biologically meaningful, 

computable graph models (Figure 18).  

 

Figure 18: Integration scheme for GWAS data into systems biology models: Linking of genetic 
variants with Endo-phenotypes and phenotypes by using their functional consequences. 

 

Such computable cause-and-effect models can be very helpful to identify possible 

molecular level perturbation mechanisms that contribute to disease pathology. As 

such, computable mechanistic models are essential to integrate diverse types of data 
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as well as relationships between the nodes. They can help to discover unknown links 

to illustrate the possible mechanism of dysregulation. Integrative models based on 

causal relationships span over multiple levels and scales and establish links e.g. from 

genetics to imaging features in one single, computable graph model.  

I have tried to identify shared mechanisms underlying neurodegenerative diseases by 

a “shared genetics” approach.  My strategy of indicator “enrichment via cause-and-

effect modelling” is a novel contribution to shared genetics. It bears great potential for 

the mechanistic interpretation of the biological impact of genetic variation.  

Finaly, I have also analysed GWAS data in various neurological conditions related to 

neurodegeneration, identified “shared loci” and came up with a short list of interesting 

“genomic hotspots” enriched for genetic variation with relevance for two major 

neurodegenerative diseases, Alzheimer´s Disease (AD) and Parkinsonism. 
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Goal of the thesis 
 

 

 

 

The goal of this thesis is to design an integrative approach to interpret GWAS 

identified variants for neurodegenerative diseases based on their functional 

consequences. This work is limited to the most frequently occurring 

neurodegenerative diseases, AD and PD. This knowledge based integrative mapping 

and interpretation approach can facilitate the discovery novel links between genetic 

mutation and complex genetic diseases. Such links are indispensable to truly 

understand the genetic effect in the biological pathways of neurodegenerative 

diseases.  
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Figure 19: Workflow for the intelligent functional interpretation of genetic variance 
information in multi-scale biomedical cause-and-effect models 

 

1. Literature review to evaluate a network modelling approaches for integration of 

genetic variants in a systems biomedicine context  

The aim of the systematic literature review is to provide a recapitulation of all known 

functional consequences of genetic variants and an exhaustive assessment of their 

perspectives. This review facilitated the identification of an appropriate methodology 

for modelling and simulations of genetic regulatory networks, which can predict the 

functional consequences of disease-associated genomic loci.  

2. Design an extension for evaluated systems biomedicine modelling language to 

integrate genetic variance information 

The second major goal was to design an extension for evaluated systems biomedicine 

modelling language. This extension allows for the integration of genetic variation 

information with mechanistic molecular level knowledge. Moreover, it supports 
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scientific findings by capturing causal and correlative relationships in context and 

applying reasoning over cause-and-effect models. 

3. Establish an integrative approach that allows for new insights into complex 

mechanisms through data and knowledge-driven context enrichment 

The subsequent task was to establish an integrative data-driven approach that finds 

indicators from genetic data and allows for new understanding of complex 

mechanisms through knowledge-driven context enrichment. This approach can take 

multimodal information into account and integrates heterogeneous biomedicine 

knowledge into computable graph models.  
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Chapter 1 
 
Genetic variant data and their functional 
interpretation in biological context  
 
 
Introduction 
 
 

 
 
Figure 20: Part –I: Workflow for the intelligent functional interpretation of genetic 
variance information in multi-scale biomedical cause-and-effect models 

 
Genome-wide association studies (GWAS) have established an important approach in 

human genetics. In total, GWAS are possibly the largest biological investigations of 

humans ever conducted. The total number of people who are genotyped with a 

GWAS array is difficult to know, but undoubtedly exceeds 1 million. Major findings 

from these studies are include the following: a) many common diseases have a 

polygenic architecture, b) the genetic effect sizes of common SNP variants are small, 
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c) the identification of the involvement of genes and biological processes not 

previously suspected, and d) the association of some loci with different diseases.  

The ultimate goal for the post-GWAS era is to highlight those specific genetic 

variants from a risk-associated locus, which account for phenotypic differences based 

on the functional biology it modulates. Even for coding region variants, it is often not 

clear whether they are functional, due to the presence of several closely linked 

variants. Many statistical methods have been proposed to prioritize GWAS signals by 

incorporating diverse functional evidence. GWAS-identified variants can be 

prioritized at both the SNP level and gene level, depending on the biological features 

considered and the input signals. 

In this review, biomedical literature is summarized for assessment of the functional 

impact of genetic variation at molecular level. The review focuses on the 

interpretation of SNPs and mutations in a systems biology context with a strong link 

to network modelling approaches. 
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Abstract 
Regardless of the success of Genome Wide Association Studies (GWAS) to identify 

genetic variants associated with human diseases, investigating the molecular 

mechanisms and disease-associated genes linked to those genetic variants, is a very 

complex task. Specifically, where intergenic genetic variants are linked to the 

adjacent neighbouring genes. Consequently, the inference for the mechanistic 

connection between diseases and its susceptible genetic variants becomes more 

challenging. 

Functional genomics studies can support to reveal the significance of variants via 

intermediate molecular traits. Moreover, approaches like computational and 

bioinformatics predictions based on the variants location and its sequence attributes 

can assist to propose the candidate genes. As, the spectrum of potential functional 

consequences of variants is much broader; it still requires new methodologies to 

predict any molecular level perturbation. Thus, specialized algorithms and 

computable modelling approaches are essential, for the modelling and simulation of 

genetic regulatory networks. 

In this review, we are briefly summarizing all the existing methodologies for genome 

wide association studies, currently available algorithms and computable modelling 

approaches; moreover also emphasizing the required new approaches for modelling 
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and simulations of genetic regulatory networks to predict the functional consequences 

of disease-associated genetic variants. 

 
Key words: GWAS, Genetic variants, SNP, Network biology, Variant’s functional 
consequences, Alzheimer’s disease genetics 

Introduction 

Genome-wide association studies (GWAS) are well established in human genetics. In 

total, GWAS are possibly the largest molecular biology investigations of human 

beings ever conducted. The total number of people, who have been genotyped in 

GWAS studies, exceeds 1 Million. Major insights have been possible based on 

GWAS studies:  

a. Many common diseases have a polygenic architecture, 

b. The genetic effect sizes of common Single	 nucleotide	 polymorphism (SNP) 

variants are small, 

c. The identification of the involvement of genes and biological processes not 

previously suspected, and  

d. The association of some loci with different diseases.  

GWAS have identified thousands of SNPs, known as lead-SNPs, which are associated 

with hundreds of human traits and diseases [1, 2]. These lead-SNPs capture the 

variation present at risk-associated loci, but do not necessarily represent causal 

genetic variants that underlie the molecular mechanism of the association [1]. With 

the original lead-SNP, a collection of genetic variants at each risk-associated locus, all 

putatively causal, are in linkage disequilibrium (LD) according to the initial design of 

the GWAS studies [3, 4]. Those genetic variants, which are within a risk-associated 

locus and in strong LD with the lead-SNP could account for the observed difference 

in phenotype associated with that locus. 

The ultimate goal for the post-GWAS era is to highlight those specific genetic 

variants identified within a risk-associated locus that account for phenotypic 

differences based on the functional biology they modulate. However, more than 88% 

of disease-associated variants fall into non-coding regions of the genome [1], which 

makes it extremely challenging to generate testable hypotheses about the functional 
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involvement of neighbouring genes. Even for SNPs in genic regions, it remains often 

unclear, whether they are functional due to the presence of several closely linked 

variants. A variety of statistical methods have been proposed to prioritize GWAS 

signals by incorporating diverse functional evidence [5]. GWAS identified variants 

can be prioritized at both, the SNP level and gene level, depending on the biological 

features considered and the input signals available. 

Until recently, the functional characterization of risk-associated loci was limited by 

the incomplete annotation of non-coding sequences in the human genome. 

Population-based studies have revealed that non-coding genetic variants are linked 

with gene expression [6–9], RNA splicing [10], transcription factor binding [11], 

chromatin openness measured by DNase I hypersensitivity [12], DNA methylation 

[13], and histone modifications [14–16]. Additionally, SNPs are more commonly 

linked with a particular phenotype if they fall within a DNase I hypersensitive region 

from a disease relevant cell type [17].   

Likewise, with the integration of other data informative about trait association (like 

gene expression, expression quantitative trait loci (eQTL) and others), the prioritized 

genes/loci are more likely to be truly associated with a trait. For instance, there is 

accumulating evidence that trait-associated loci are more intense in regions with 

certain genomic features, such as protein coding regions and eQTL [5]. 

A series of large-scale genomics projects, including the Encyclopedia of DNA 

Elements (ENCODE) [18, 19], the International Human Epigenome Consortium 

(IHEC) [20], the Roadmap Epigenomics [21] and the Functional Annotation of the 

Mammalian Genome (FANTOM) [22] projects, as well as independent labs have 

undertaken significant effort to systematically annotate non-coding regions of the 

human genome in several different cell and tissue types and across several 

developmental stages.  

These large-scale studies have profited from advances in next generation sequencing 

technologies to generate genome-wide maps of functional elements, such as origins of 

replication, transcripts and regulatory elements. RNA-sequencing (RNA-seq) and cap 

analysis of gene expression sequencing (CAGE-seq) approaches led to the 

identification and annotation of known as well as novel transcripts such as long non-
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coding RNA (lncRNA) and enhancer RNA (eRNA) [23–25]. Whole-genome 

epigenetic mapping (WGEM) for histone modifications through chromatin immune-

precipitation sequencing (ChIP-seq) identifies regulatory elements including 

promoters, enhancers, and insulators [26–30].  

Moreover, inter-species evolutionarily conserved DNA sequences can complement 

these maps by predicting potential functional DNA elements [31,32]. Taken together, 

such biological information, across the human genome, assist as the foundation for 

post-GWAS functional studies. 

Genetic Variants and their detection Power 

Genome wide association studies (GWAS): Over the last years, GWAS have 

established as popular approaches for the identification of genetic variants that are 

associated with disease risk loci. In a standard GWAS study design; a case control 

comparison to assess the association between each individual genotyped SNP and 

disease risk is performed. Very often, a discovery phase in which an initial set of 

promising susceptibility loci is identified, is followed by a confirmation stage in 

which the SNPs identified in the initial stage are replicated in a separate study cohort 

[33]. The standard methodology for analyzing GWAS in the discovery phase consist 

of individual SNP analysis, then SNPs are ranked on the basis of their individual p-

values and a threshold is set such that all SNPs with p-value less than that threshold 

will be validated further.  

However, with this individual-SNP analysis, reproducibility is very limited, since 

multiple high-ranked SNPs in the discovery phases are false positives and cannot be 

verified [34]. Besides, the true causal SNP (if it exists at all) is rarely genotyped; 

instead, other typed SNPs which are in linkage disequilibrium (LD) with the causal 

SNP, are being measured and these “related SNPs” may show only moderate effects 

at mechanistic level and – as a consequence – moderate association with the disease 

phenotype. Therefore, a locus-centric analysis could be beneficial to consider the joint 

effect of multiple SNPs in analysis as it is likely that several of these markers are in 

LD with the causal SNP and could show the true effect more effectively [35]. 

Additionally, individual SNP analysis only considers the marginal effect of each SNP 



	63	

and cannot detect epistatic effects. Epistatic interactions between SNPs can contribute 

to disease susceptibility [36].  

The statistical power of a GWAS is a function of sample size, effect size, causal 

allele frequency, and marker allele frequency and its correlation with the causal 

variant [37]. Because GWASs are underpowered to detect associations of modest 

effect sizes (odds ratio (OR) = 1.1–1.5) [38][39][40], large population samples are 

required to detect variants of even moderate effect (OR = 1.5–2). Meta-analyses of 

independent GWASs for a trait reap the full benefit of GWASs that have already been 

performed, greatly increasing sample size and statistical power. When different 

GWASs use different genotyping platforms, only a minority of the SNPs are in 

common to all platforms. Imputation methods have been developed to infer genotypes 

at un-typed SNPs using a reference panel of more densely genotyped samples [41]. 

After imputation, GWAS results can be combined across multiple studies [42]. 

For meta-analysis, it would be ideal to include the raw data as a covariate for all 

studies contributing to the analysis, but meta-analysis could also be done without the 

use of the raw genotypes. It calculates the effect size that each study attributes to the 

genetic variant and weighted according to the relevant study size. In such analysis, 

small studies contribute less than large studies because they are likely to give less 

accurate effect-size estimates [43].  The significance of any given effect size can be 

determined by the size of the sample studied. The simple equation is:

 Significance Test = Effect Size x Study Size 

As an alternative, a natural grouping strategy has been proposed. This approach is 

based on the grouping of SNPs into SNP sets based on proximity to genomic features 

such as genes or haplotype blocks; it can significantly reduce the number of multiple 

comparisons [34]. An extension of gene-based SNP set analysis is to group SNPs 

based on whether they are located within a pathway represented in Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [44] or a Gene Ontology Consortium 

functional category [45]. Even though, making inference on a pathway further reduces 

the number of multiple comparisons, but it still allows inference on a biologically 

meaningful unit [34].  It is noteworthy in this context, that the functional context 

represented by pathways (e.g. in KEGG) can be expanded towards entire computable 

disease models (e.g. in Biological Expression Language (BEL) [46]. 
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Functional impact of Genetic Variants at Molecular level  

The functional impact of SNPs should be closely linked to their interference with (or 

modulation of) normal physiological functions. As, some SNPs are very likely to 

directly interfere with bio-molecular functions of genes and genomic regions whereas 

other SNPs can only convey susceptibility of human diseases by yet unknown 

mechanisms [47]. 

Following section describes the different functional categories that can be articulated 

as “mode-of-SNP-action” classes.  

Genetic variants on coding regions  

Protein Coding SNPs have been most extensively studied due to their direct effect on 

the function of that encoded protein.  

1. Non-synonymous genetic variants: Proteins have a unique sequence of 

amino acids specified by the coding DNA, and a modification to its sequence can 

significantly impact its function [48]. The risk associated with non-synonymous 

genetic variants (nonsense or missense) can easily be translated into a change in 

protein structure or function due to change in amino acid sequence. Non-synonymous 

SNPs can modify amino acid composition, or truncate the protein sequence by 

causing an early codon [49]. Indels (insertion or deletion of nucleotide base(s)) can 

also alter protein sequence with varying consequence depending on whether the indel 

is in-frame or frame-shifting, and this substitution may affect protein folding, proper 

activity of binding or interaction sites, structure, stability or solubility of the protein. 

For example, the rs1990760 SNP associated with type 1 diabetes (T1D), is an 

example of a non-synonymous genetic risk variant of IFIH1 (interferon induced with 

helicase C domain 1) gene, causing an alanine to threonine substitution at position 

946 (A946T) of the IFIH1/MDA5 protein [49].  

 

2. Synonymous genetic variants: Synonymous genetic variants do not alter the 

codon sequence and consequently cannot encode any change in protein sequences. 

However, synonymous genetic risk variants can still impact protein function by 
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modulating translation rates with direct consequences to protein folding [50]. As an 

example, we will discuss here the rs1045642 SNP that maps to the MDR1 (Multidrug 

Resistant-1) gene [51,52]. The MDR1 gene (ABCB1 - relevant human gene) encodes 

a cell membrane transporter protein involved in drug trafficking [53] and the 

rs1045642 SNP changes the drug substrate specificity of MDR1 but does not 

influence the sequence or the expression of the MDR1 protein [52]. Due to the 

rs1045642 SNP, the frequent isoleucine (Ile) codon ATC replaces by the rare Ile 

codon ATT [52]. It has been suggested that this alteration slows down the rate of 

translation of the MDR1 mRNA, and this impacts protein folding [54], and that the 

subsequent altered MDR1 conformation decreases its drug substrate specificity [51–

53]. It has also been shown that a fraction of codons specify not only an amino acid, 

but a transcription factor binding site, providing an additional avenue through which 

synonymous polymorphisms may impart a functional effect [55].  

 

3. Splice Site Genetic Variants: Splicing is a process, in which introns are 

excised and exons are joined, at RNA sequence level [56]. Exonic splicing enhancers 

(ESEs) comprise specific hexamer sequences and an AG sequence at the intron-exon 

borderline, that instruct for the recruitment of the splicing complex to immature RNA 

(pre-mRNA) and lead for intron excision and exon joining. SNPs may also present 

within exon splicing enhancers or silencers (ESEs/ESSs). ESEs and ESSs are 

typically 6 to 8 consecutive nucleotide sequences in an exon region. Similar to the 

SNPs occurring in splice sites, SNPs within ESEs or ESSs can also result in 

deleterious intron retention or exon skipping [56–59]. SNPs and indels can also 

interrupt splicing sites to translate the protein isoform. A mechanistic insight, how a 

SNP can affect splicing, is provided through the rs1800693 SNP example. This SNP 

is located at the edge of exon/intron of the TNFRSF1A (tumour necrosis factor 

receptor superfamily member 1A) gene and is associated with multiple sclerosis. The 

SNP affects the splicing of the TNFRSF1A mRNA and leading to translate an isoform 

[60]. 

Genetic Variants on Non-coding regions 

Mammalian regulatory interactions can take place over significant chromosomal 

distances up to an entire megabase (1MB) [61]. Genetic risk variants are very 
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frequent on non-coding sequences [62]. Post-GWAS studies have revealed the 

capacity of these genetic risk variants to regulate gene expression by modulating cis-

regulatory machineries through mechanisms involving DNA methylation [63], 

transcription factor binding [64], chromatin looping [65], or miRNA recruitment [66]. 

Databases that provide information of experimentally verified transcriptional 

regulatory regions can be used to identify SNPs that can alter gene expression like 

HTRIdb (http://www.lbbc.ibb.unesp.br/htri/) [67]. 

1. DNA methylation and Genetic variants at promoters: DNA methylation 

means addition of methyl groups to a cytosine nucleotide, which is basically part of a 

CpG dinucleotide. This DNA methylation is a heritable epigenetic event, which is 

involved in transcriptional regulation [68]. DNA hyper-methylation near transcription 

start sites (TSS) of tumour suppressor genes associates with their silencing [68]. For 

instance, the HNF1B (hepatocyte nuclear factor 1 homeo-box B) gene is silenced by 

DNA methylation in serous ovarian tumours. The rs7405776 SNP defines a risk locus 

for intrusive serous ovarian cancer that is located within the promoter region of the 

HNF1B gene. This risk-associated locus, at the HNF1B gene promoter region, is 

located in a CpG island and is associated with higher DNA methylation levels [10]. 

 

2. Transcription factor binding to the chromatin and Genetic variants: 

Across the genome, transcription factors bind to thousands of regulatory elements, 

including promoters directly upstream of their target genes and cis-regulatory 

elements such as enhancers, insulators and silencers [69]. ChIP-seq assays for 

transcription factors effectively annotate these cis-regulatory elements genome-wide. 

Analysis of these annotations reveals that genetic risk variants commonly target cis-

regulatory elements, mainly enhancers, in a disease- and tissue-specific manner [17, 

27, 70-73]. For example, loci associated with erythrocyte phenotypes commonly 

harbour enhancers that are functional in K562 erythrocyte leukemia cells, but not 

enhancers that are functional in other cell types [27].  

Genetic risk variants located within promoter regions can also change transcription 

factor binding to DNA, leading to differential target gene expression [74, 75]. For 

example, expression of the a-globin gene locus is affected by a genetic variant 

associated with the a-thalassemia blood disorder [74]. That genetic variant creates a 



	67	

GATA1 motif at a promoter-like region that down-regulates the expression of the 

downstream a-globin genes [74]. Down-regulation of a-globin genes promotes a-

thalassemia [76].  

Enhancers are commonly targeted by those genetic variants of risk-associated loci that 

map to DNA recognition motifs, bound by transcription factors. These genetic 

variants can modulate the chromatin affinity for transcription factors and 

consequently gene expression [77–82]. One example for this type of functional 

impact is the rs1427407 SNP, which is associated with fetal hemoglobin level. It 

decreases the recruitment of the GATA1 (GATA binding protein 1)/TAL1 (T cell 

acute lymphocytic leukemia 1) nuclear complex to the enhancer region, and results in 

lower levels of expression for the BCL11A (B cell CLL/lymphoma 11A) gene, a 

repressor of the fetal hemoglobin level [78]. Likewise, the rs12740374 SNP, which is 

associated with a lower level of plasma low-density lipoprotein cholesterol (LDL-C), 

shows higher expression level of the SORT1 (sortilin 1) gene by increasing the 

binding affinity of the C/EBP (CCAAT enhancer-binding protein) transcription factor 

to chromatin [79]. Over-expression of SORT1 leads to a lower LDL-C level in livers 

[79]. Moreover, functional variants within a single risk locus can modulate multiple 

different enhancers. This multi-enhancer variant phenomenon was found to be a 

fundamental feature of many risk loci [83].  

3. Chromatin loop formation bridging enhancers and promoters and 

Genetic variants: Genetic risk variant can modulate chromatin loop formation, it can 

alter the DNA affinity for looping factors, which can also result in allele-specific 

chromatin loop formation. The human genome is structured in a three dimensional 

architecture which is thought to regulate a diverse set of DNA-templated processes 

[84–88]. This facilitates regulatory elements, like promoters and enhancers, to interact 

physically through long-range chromatin loops, or chromatin interactions, to regulate 

gene expression [89, 90]. This has been shown for the rs12913832 SNP, which 

resides in an enhancer 21 kb upstream of the OCA2 (Oculocutaneous albinism II) 

pigment gene. This particular SNP is a human pigmentation-associated SNP, which 

interferes with (modulates) allele-specific chromatin loop formation [91].  

Recent studies have analyzed CTCF (CCCTC binding factor) [92] and cohesin 

[93,94] binding sites, DNase-hypersensitive sites [95] and putative enhancers [96] on 
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a genome-wide scale. If a minor fraction of these potential regulatory elements 

participate in chromatin looping, then most of the genomic interactions have yet to be 

characterized again, because many such loops appear to be tissue-specific [97-99], 

which makes their comprehensive analysis appear even more disconcerting [100]. 

4. Genetic variants and miRNAs: MicroRNAs (miRNAs) target mRNAs by 

recognizing their complementary sequences mainly in 3’ untranslated regions 

(3’UTRs). miRNAs largely function as post-transcriptional repressors. They recruit 

RNA-induced silencing complex (RISC) to their target mRNAs, leading to mRNA 

degradation or translation repression [101]. They can regulate the translation of 

hundreds of genes through sequence-specific binding to mRNA [102]. Abelson et al. 

showed that SNPs linked to miRNA can affect disease phenotype, they identified a 

mutation, residing in the ‘miR-189’ binding site of gene SLITRK1 (SLIT and NTRK-

like protein 1) that was associated with Tourette’s syndrome [103]. 

SNP variants, linked with miRNAs, can affect gene functionality with three different 

ways: 1) by transcription of primary transcript, 2) by pri-microRNA and pre-

microRNA processing and 3) by effecting the microRNA- microRNA interaction 

[104]. For instance, SNPs, reside in the pri regions of let-7e and mir-16, reduce the 

levels of mature micRNA [105, 106]. Thus, SNPs located in miRNA binding site of 

target mRNAs can interrupt miRNA-dependent regulation and eventually effect gene 

expression in cancer, like a miRNA from let-7 family binds to 3’UTR region of the 

gene RAS and regulates its expression level [107].  For example, the rs100672, a 

Crohn’s disease-associated SNP, lies within the 3’ UTR of the IRGM (immunity-

related GTPase M) gene and this risk allele alters the complementary target sequence 

of miRNA-196 [78]. This reduces miRNA-196 binding to the IRGM mRNA 

increasing the stability of the IRGM mRNA and protein levels [78, 108].  

Tools such as RegRNA 2.0 and miRBase (the microRNA database) can predict how 

genetic variants impact miRNA target specificity [78, 109]. 

5. Genetic variants and Long non-coding RNAs (lncRNAs): lncRNAs are 

non-protein-coding transcripts which could be longer than 200 nucleotides in length. 

lncRNAs are found across intergenic regions of the human genome [23]. They can 

interact with chromatin regulators for their recruitment by chromatin [110, 111], a 
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process, which relies on a highly conserved lncRNA tertiary structure. Though, 

lncRNA tertiary structures can be changed by genetic risk variants [112]. The 9q21.3 

(coronary artery disease) and 22q12.1 (myocardial infarction) risk loci have SNPs 

associated with the ANRIL and MIAT (myocardial infarction associated transcript) 

lncRNAs, respectively [113,114]. The risk SNP rs35955962 is located in the MIAT 

lncRNA, that increases its affinity for nuclear proteins [114].  

The fundamental question about the effective distance between influential regulatory 

elements and target genes has not yet been answered. However, regulatory elements 

(like enhancers) necessary for tissue-specific gene expression have been identified at 

megabase (1MB) distances from their target genes, and have been shown to 

physically interact with them [115, 116].  

Integrative functional post-GWAS methodologies 

Bioinformatics tools/methodologies and integrative functional genomics that combine 

GWAS data, linkage disequilibrium, and whole-genome functional annotations can 

provide a means to identify the targets of risk-associated loci [17,27,70,71].  Such 

tools can be employed to predict the biological impact of genetic risk variants and 

identify putative causal genetic variant responsible for risk loci.  

1. Protein Deleteriousness Predictions: Many computational tools have been 

developed to predict “deleteriousness” of SNPs and indels [117, 118]. These methods 

generally take features like biochemical property of the altered amino acid, 

conservation and sequence homology as input, and use machine-learning technique to 

train a classifier. The most extreme case of protein function interruption is the loss of 

function mutation. However, genome-sequencing studies found that all human carry 

loss of function mutations without obvious phenotypic effect, and such common loss 

of function variants were depleted in polymorphisms associated with complex disease 

like Crohn’s disease and rheumatoid arthritis [119]. The results indicate that the 

“deleteriousness” feature should be interpreted with caution, since disruption of 

protein function does not necessarily have a phenotypic effect. In this regard, the 

“residual variance intolerance score” has been defined quantitatively measure the 

tolerance of a protein to mutations [120]. Numerous tools have been developed to 

predict the putative deleterious effects of non-synonymous SNPs that cause an amino 
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acid change in a translated protein including SIFT (http://sift.jcvi.org/) [110], 

PolyPhen-2 (Polymorphism Phenotyping v2) (http://genetics.bwh.harvard.edu/pph2/) 

[111]. Tools like, PolyPhen and MuTIP predict changes in protein structure imposed 

by genetic risk variants mapping to coding regions [118,121].  

 

2. DNA recognition motifs to modulate transcription factor binding: Motif-

prediction tools, such as HaploReg, RegulomeDB, FunSeq, and SnpEff, identify 

genetic variants that significantly alter DNA recognition motifs to modulate 

transcription factor binding [122–125]. The intra-genomic replicates (IGR) method 

provides an alternative and can predict changes in chromatin-binding affinity of 

transcription factors caused by risk variants without the use of position-weighted 

matrices (PWM) [71].  

 

3. DNase I Hypersensitive Sites: DNase I hypersensitive sites (DHSs) are 

markers of accessible chromatin, which indicate regulatory roles in the transcription 

process. DHS have been mapped in 349 cell and tissue samples genome-wide by 

next-generation sequencing [126]. Enrichment analysis showed that trait-associated 

SNPs are more concentrated within DHS regions, excluding confounding factors such 

as allele frequency and distance from the nearest transcriptional start site [17]. 

 

4. DNA methylation: Epigenome data in disease states are valuable for 

understanding disease and prioritize disease susceptible loci. However, more efforts 

are needed in disease-specific epigenome mapping studies and the implementation of 

databases to make such data publicly available. For DNA methylation alone, one 

database exists, (DiseaseMeth), which has incorporated methylation data for 72 

human diseases [127]. 

 

5. Gene expression: Studying the association between genetic variation and 

gene expression offers a straightforward way to begin the complicated task of 

connecting risk variants to their putative target genes. Networks created using gene 

expression data from patient samples can also model the underlying molecular 

machinery [128] and can be exploited to bridge GWAS results with an underlying 

disease mechanism, as exemplified in the autism spectrum disorder [129].  Chen R 

[130] analysed 476 expression datasets available from Gene Expression Omnibus 
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(GEO), and calculated the frequency that a gene was differentially expressed in these 

datasets, which they called “differential expression ratio.” They found that differential 

expression ratio is positively correlated with the likelihood that a gene harbours 

disease-associated variants, where the list of disease-associated genes was created by 

combining information from the Genetic Association Database (GAD; [131] and 

Human Gene Mutation Database (HGMD; [132]). In addition, they found that among 

the genes discovered in the initial scan of the WTCCC type 1 diabetes mellitus 

GWAS dataset, the differential expression ratio was higher in genes that were 

replicable than those not replicable in follow-up studies. These authors have 

developed an online server, FitSNPs, to incorporate this feature 

(http://fitsnps.stanford.edu/index.php). 

 

6. The Encyclopedia of DNA Elements: There are many more genomic 

features collected and annotated in large community projects, such as the 

Encyclopedia of DNA Elements (ENCODE) [47], which are potentially valuable for 

SNP prioritization. Kindt [133] examined enrichment or depletion of trait-associated 

SNPs in 58 genomic features. The features investigated covered genic and regulatory 

features, conservation features, and chromatin state features (see Table 1 in [133]). 

Among those features, genomic regions annotated as “heterochromatin” and “low 

expression signals” are depleted of trait-associated SNPs, while eQTLs and “strong 

enhancer” showed the highest level of enrichment [70]. 

Genetic Risk Variants’ Analyses  

1. Expression Quantitative Trait Loci: Genetic variation associated with gene 

expression, known as expression quantitative trait loci (eQTL), can identify the target 

genes of risk loci [6–9, 134]. Polymorphism situated in DNA regulatory elements can 

alter the gene transcript frequency. Thus, as a quantitative trait locus, gene transcript 

frequency can be determined with substantial power [135, 136]. Brem et al. [137] 

published the first genome-wide study of gene expression in 2002. eQTLs that link 

locally to adjacent genes, are denoted as cis-eQTLs. Whereas, those that are 

connected to genes at a distance either on the same or different non-homologous 

chromosome, are denoted as trans-eQTLs [138]. In most studies, ‘cis’ (local) has 

often been defined as being within 1 Mb of the variant under consideration [139]. 
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Typically, cis-eQTLs are more abundant near transcription start sites (TSS) and 

transcription end sites (TES), and may map with low frequency more than 20kb away 

from gene [140]. Sometimes, exonic SNPs can also act as cis-eQTLs [140]. Even 

though, some cis-eQTLs are identified as shared or common eQTLs in different tissue 

types, trans-eQTLs are mostly dynamic and tissue-dependent [141].  In humans, the 

effects of cis-eQTLs are usually stronger than those of trans-eQTLs [125, 126]. 

An analysis of Lymphoblastic Cell Line (LCL) eQTLs has revealed that GWAS 

identified SNPs, strongly associated with Crohen’s disease and these variants have 

been demonstrated to impact on PTGER4 (prostaglandin receptor 4) expression; a 

gene located around 270 kb away from the variant region [142].  

In recent years, a number of eQTL studies have been executed, to explore the effects 

of cis and trans-acting variants in human tissues of liver [143], adipose fat [144], 

[145] and brain [146]. The Genotype-Tissue expression (GTex) project 

(http://gtexportal.org), proposed and initiated by National Institutes of Health (NIH) 

(http://www.nih.gov/), promises to make available eQTL information derived from 30 

sets of 1000 samples each, representing 30 different tissues for disease genetics [147]. 

Online tools such as SCAN and the eQTL browser are publicly available to query 

eQTL data [12,134] and several reviews regarding the application of eQTL studies are 

available [148,149]. VarySysDB is a public eQTL database that covers around 36,000 

loci holding 190,000 annotated mRNA transcripts. Besides SNPs, VarySysDB also 

includes indel (deletion/insertion) variants from dbSNP, copy number variants 

(CNVs) from Genomic Variants Database, short tandem repeats and single amino 

acid repeats from H-InvDB and linkage disequilibrium regions from D-HaploDB 

[150]. 

eQTL analysis can also complement pathway-based association approaches that apply 

prior biological knowledge of genes and pathways to the interpretation of GWAS data 

[151–155]. Pathway-based tools, such as ‘Gene Relationships Among Implicated 

Loci’ (GRAIL), can also identify candidate target genes by identifying genes that are 

part of a pathway(s) that is enriched within multiple risk-associated loci identified for 

the same disease [156]. However, pathways are constantly evolving and adapting in 

parallel with our knowledge of them. 
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2. Variant Set Enrichment (VSE) Analysis: The variant set enrichment (VSE) 

approach is among a set of first-generation integrative tools that have been developed 

[71]. It is a permutation-based method that compares the enrichment of genetic risk 

variant sets within any functional genomic element to randomly generated matched 

genetic risk variant sets [71,157]. In essence, it is a statistical test that assays for non-

randomness. Similar methodologies have associated genetic risk variants from various 

diseases with specific chromatin states defined by WGEM [27] and regions of open 

chromatin [17,70]. However, Weng et al. [158] is suggested a SNP Set Enrichment 

Analysis (SSEA), based on ‘Adaptive rank truncated product method’, to assign at 

least one indicative SNP for each gene [158].  

 

3. Gene Set Enrichment (GSE) Analysis: In order to prioritize the set of genes 

mapped with selected SNPs, a Gene set Enrichment analysis could be implemented 

either on the bases of a gene relevant SNP count or functional scores associated with 

SNPs or with their connotation with Gene Ontology (GO) biological process [159]. 

GSE analysis needs multiple data sources, like gene expression, association and 

linkage studies, literature search, and biological pathways for a list of genes.  

WebGestalt is a gene prioritization method, which visualizes and categorizes gene 

sets in multiple biological contexts, like chromosome distribution, GO, tissue 

expression pattern, protein domain information, signaling and metabolic pathways 

and research literature [131]. Another method, Bayesian gene-set analysis (BGSA), is 

suggested by Shahbaba et al. [160], to evaluate the statistical significance of a specific 

pathway, based on the posterior distribution of its parallel hyper-parameter. It is a 

hierarchical Bayesian model, which combines data at the gene level by merging 

significance measures of SNPs linked with each gene, as well as at the pathway level 

by linking significance measures of genes relevant to each pathway [161].  

4. Pathway Enrichment Analysis: Likewise, various methods are implemented 

to evaluate pathway-based analyses for GWAS data, by taking gene set enrichment 

from transcriptomic studies into account [162-164], which have been extensively 

reviewed in the literature [151, 155, 158, 165-172]. These methods could be used to 

test whether a group of genes in a biological pathway are jointly linked with a disease 

and different from selective statistics of genes and pathways. For instance, while 
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using the GSEA framework, to evaluate the statistical significance for permutation 

and correction in multiple testing, Wang et al. allocated the highest statistic value as 

the statistic value of the gene, among all SNPs linked to a gene [155]. Another, 

related method, GSEA-SNP is recommended by Holden et al. [173], which computes 

all SNPs annotated to a pathway without evaluation of summary statistic at gene-

level. While, Chen et al. [168] proposed another approach based on principal 

component, to identify ‘‘eigenSNPs’’ for each gene to measure their joint association 

of multiple SNPs. Segre et al. proposed another protocol named as MAGENTA 

(Meta-Analysis Gene-set Enrichment of variaNT Associations), which can be used for 

both hypothesis testing and hypotheses generating analyses. By using GWAS results, 

it tests for genetic association enrichment in a group of functionally related genes or 

predefined biological processes [153].  

ALIGATOR (Association LIst Go AnnoTatOR) method is suggested by Jones et al. 

[174]. It can be used to check for the overrepresentation of biological pathways, in 

lists of significant SNPs from GWA studies by using gene-ontology terms as index 

[169]. Likewise, Zhang et al. [175] developed an analytical framework named as 

ICSNPathway (Identify candidate Causal SNPs and Pathways) [175], to generate 

hypothesis of SNP, gene and pathway(s) to reveal the disease mechanism.  

5. Co-expression network: Undirected and weighted gene networks that 

characterise the correlation among gene expression levels are known as co-expression 

networks. In a co-expression network, genes (or probes) are represented by vertices, 

which measure the expression levels of gene transcripts. While an edge, between two 

vertices, indicates statistically significant correlation, moreover it is weighted by the 

correlation coefficient value [176].  

Co-expression network can be employed to identify the functional annotation of 

undefined genes. Integration of eQTL analysis with co-expression network is such an 

application that is used successfully for this purpose. One key benefit of it is that 

without prior knowledge, regulatory insights can achieve [177]. 

6. Protein-Protein Interaction (PPI) network and Interactome: Gene set 

enrichment analysis (GSEA) could be improved by performing on protein-protein 

interaction network data, which can provide a better way to evaluate GWAS data by 

measuring the combined effects of multiple markers/genes, while individually that 
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may have very weak to moderate association effects [178]. In biological functions, 

like biochemical reactions, signal transduction systems, transcriptional regulation and 

cytoskeletal structures, binding affinity between proteins is very important; which, 

can be measured by different high- throughput experimental techniques, like affinity 

purification-mass spectrometry and two-hybrid system [176].  

New analytical approaches are well recognized, in which different data resources are 

integrated to get their maximum predicting power. Bakir-Gungor et al. proposed a 

procedure to select functionally significant KEGG pathways by identifying genes 

within these pathways, where these genes are short-listed through SNP analysis, by 

initiating with a list of SNPs associated with selective phenotype in GWAS [179]. 

dmGWAS 2.0, proposed by Jia et al [178], is based on a Dense Module Searching 

(DMS) methodology [191]. It can annotate relevant genes or sub-network region for 

complex diseases, by mapping association signals from GWAS datasets into the 

human PPI network. Particularly for low p-value genes in GWAS data, this DMS 

method systematically explores the most relevant sub-networks [178].  

Moreover, to reveal the most relevant sub-networks for the disease, Liu Y et al. [180] 

has suggested two discrete approaches and the integration of both approaches is used 

to discover well-known as well as novel disease relevant genes or biological pathways 

[180]. PANOGA (Pathway And Network-Oriented GWAS Analysis) is another 

method proposed by Bakir-Gungor et al. [181] The method sum-ups p-values of 

GWAS SNPs and aggregates the functional score of SNPs from predictions produced 

by the SPOT [181] and F-SNP (The Functional Single Nucleotide Polymorphism) 

web-servers [182]; the resulting score is labelled as ‘pw-values’ [179]. PANOGA 

identifies the SNP associated with the gene that shows the most important functional 

effect, from all known SNP/gene transcript designations [179]. 

Iyappan et al. proposed an integrative approach, which takes benefit of the renowned 

and well-accepted RDF technology to incorporate data from different resources. That 

approach can be used to complement major heterogeneous resources (like, omics and 

gene expression data, and literature), to generate hypotheses for causal disease 

mechanisms. This approach not only can help to tackle the ever-growing data; but 

also it can support to integrate new data resources without changing the overall frame- 

work [183].  
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7. Epistatic interactions: Systematically, there are three key categories of 

epistasis; functional, Compositional and Statistical [184]. Functional epistasis 

ascertains the molecular interactions that genetic elements have with each another 

[185]. Compositional epistasis reveals the blocking effect on one allele by another 

allele at a different locus [186]. Statistical epistasis expresses a quantitative way to 

detect how the genotype at one locus effects on the phenotype of another locus [187]; 

it measures deviation from the additive effects of two loci on the phenotype [184]. In 

the literature, for a pair of SNPs, there are two fundamental tests of epistasis. First one 

is the ‘two-locus interaction test’ and the other is ‘two-locus association test allowing 

for interaction’ [188]. 

Mao et al. [189] identified four types of epistasis effects of two candidate gene SNPs 

with linkage disequilibrium (LD) and Hardy-Weinberg disequilibrium (HWD), i.e. 

additive × additive, additive × dominance, dominance × additive, and dominance × 

dominance [190]. Zhang et al. proposed another algorithm, TEAM (Tree-based 

Epistasis Association Mapping), which is exhaustive (i.e. check all epistatic 

interaction). The TEAM algorithm uses the MST (minimum spanning tree) structure; 

and without perusing all individuals, it updates the contingency tables on incremental 

bases for epistatic tests. [191]. Emily et al. [192] proposed a statistic method, named 

as IndOR (independence-based odds ratio), based on the biologically functional 

epistasis.  

Piriyapongsa et al. presented iLOCi (Interacting Loci), a SNP interaction 

prioritization algorithm. iLOCi identifies marker dependencies discretely for case and 

control groups and ranked them by calculating the difference in marker dependencies 

for all possible pairs of case and control groups [193]. Arkin et al. [194] presented an 

algorithm named as EPIQ (EPIstasis detection for Quantitative GWAS) for the 

detection of epistasis in quantitative GWAS data. EPIQ discovers SNPs with epistatic 

effect, without exhaustively testing all pairs of SNPs [194].  

Case Study: GWAS and Alzheimer's disease 
Over the past few years, in the field of Alzheimer's disease like many other complex 

and genetically heterogeneous diseases; the application of GWA screening to reveal 

novel susceptibility genes has attained substantial momentum. Beyond the well-
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known APOE association, more than two-dozen novel susceptibility loci are 

identified by these GWA studies [195].  

Familial and Sporadic Alzheimer's disease 

Alzheimer’s disease is the most common form of dementia and it is linked with 

‘complex’ and multifactorial genetic characteristics. AD can be categorized into two 

major genetic etiologies, the familial AD form and the sporadic form. Familial AD 

typically exhibits an early age of onset (50-65 years) and follows a mendelian way of 

disease transmission; while sporadic AD shows no evident familial aggregation and 

typically it is associated with relatively late-onset age (beyond 65 years). The familial 

form of AD is usually caused by rare and highly penetrant mutation in the genes of 

APP, PSEN1 and PSEN2. GWA studies have identified more than 200 mutations 

within these three genes [196,197]. These genes are linked with the dysfunctioning in 

amyloid-β peptide (Aβ) production, that is a key element of β-amyloid in senile 

plaques [198]. Indubitably numerous other potential disease-causing genes still need 

to be discovered for familial AD, however this type of genetically determined AD 

accounts only for less than five percent of all AD cases [199,200].  

More than 95% of all cases belong to the so-called sporadic form of AD. The genetics 

of sporadic AD is much less well established. Generally, it is believed that sporadic 

AD is likely to be determined by a number of common risk alleles with low-

penetrance, across several distinct loci. Currently, these loci are rather imprecise. 

However, genes located on these loci affect several pathways, many of which are 

supposed to be linked with the production, accumulation and elimination 

(“clearance”) of Aβ. Moreover, there is rational evidence to suggest that collectively, 

these genes have a significant impact on disease susceptibility and age of onset 

[195,201]. 

APOE alleles and Alzheimer's disease 

In account of late-onset AD (LOAD), a number of candidate gene studies dedicatedly 

focused on those potential genes and proteins that play a specific role in Aβ 

production. 

Linkage studies have identified apolipoprotein E (APOE), a gene located on 

chromosome 19q13, as a candidate gene with the epsilon allele showing strong 

association to the disease [202]. The APOE gene has three risk alleles (i.e. the ε2, ε3, 

and ε4). However, out of them, the ε4 allele has a 4-fold greater risk for late-onset AD 

than the ε3 allele [203].  In contrast, the ε2 allele is relatively less common and has 
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some protective effect with longevity [204,205] [Figure 1].  

Hence, some extensive studies suggest that only the ε4 allele of APOE does not 

describe all of the genetic risk of this region of chromosome 19, for AD. There are 

two other potential gene candidates: the first one is TOMM40 (encoding translocase 

of outer mitochondrial membrane 40 homolog) (207,208] and the second one is 

EXOC3L2 (exocyst complex component 3-like-2) [209]. These genes, located in 

close proximity to APOE on chromosome 19, have been proposed to also increase 

disease susceptibility. Involvement of these genes suggests that other biological 

mechanisms, like mitochondrial dysfunction may play a role in disease progression 

[210]. 

 
Figure 1: Schematic representation of the APOE SNPs and genotypes [206]: Two 

SNPs (rs429358 and rs7412) are in strong linkage disequilibrium and result in three 

APOE alleles (E2, E3 and E4). APOE ε4 is a major genetic risk factor for AD. The 

Apo-E2, -E3 and -E4 isoforms, which are encoded by the ε2, ε3 and ε4 alleles of the 

APOE gene, respectively, differ from each other at amino acid residues 112 and/or 

158. Apo-E has two structural domains: the N-terminal domain, which contains the 

receptor-binding region (residues 136–150), and the C-terminal domain, which 

contains the lipid-binding region (residues 244–272); a hinge region joins the two 

domains. A meta-analysis demonstrated a significant association between the ε4 

allele of APOE and AD (Adapted from: Ref.	 Gene.	 2014	 Jul	 25;545(2):185-93.	 doi:	

10.1016/j.gene.2014.05.031)	
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GWAS and Other Susceptibility loci for Alzheimer's disease 

Correspondingly, the largest GWA study for AD to date that included up to around 

75,000 individuals, were performed with European ancestry subjects. These 

association studies identified BIN1, CR1, EPHA1, CD2AP, MS4A6A, CLU, ABCA7, 

PICALM, PTK2B, HLA-DRB5/HLA-DRB1, SLC24A4/RIN3, SORL1, MEF2C, 

INPP5D, ZCWPW1, NME8, FERMT2, CELF1, CD33, CASS4 and EPHA1 as 

susceptibility loci for AD [209,211-215]. Most of these genes congregate into three 

pathways: immune and inflammation response, endocytosis/intracellular trafficking 

and lipid metabolism [216]. 

The SORL1 (Sortilin-Related Receptor, L (DLR Class) A Repeats Containing) gene 

had been established to regulate managing of APP in a candidate gene approach and 

intracellular trafficking [217, 218]. CLU (Clusterin) is a lipoprotein that highly 

expressed in both the brain and the periphery [219]. Like APOE gene, it is also 

involved in lipid transport [220]. It is also hypothesized that CLU acts as an 

extracellular chaperone that regulates receptor-mediated Aβ clearance and Aβ-

aggregation by endocytosis [219]. 

BIN1 (Bridging Integrator 1) is a part of the Bin1/amphiphysin/RVS167 (BAR) 

family that are associated with various cellular processes, including membrane 

trafficking, actin dynamics and clathrin-mediated endocytosis [221], which also 

influence Aβ production, APP processing and Aβ clearance from the brain. The 

PICALM (Phosphatidylinositol Binding Clathrin Assembly Protein) gene is 

associated with clathrin-mediated endocytosis in translocation of adaptor protein 

complex 2 and clathrin to sites of vesicle assembly [222].  

The CD33 gene encodes a transmembrane protein of type-I that is linked to mediating 

cell-cell interactions and sialic acid-binding immunoglobulin-like lectins. In human 

brain, it is expressed in microglial cells; while increased expression of CD33 and 

CD33-positive microglia are observed in AD brains relative to controls. Contrariwise, 

a protective minor allele of the CD33, SNP rs3865444, leads to reductions in both 

CD33 expression in microglial cells and number of insoluble Aβ42 in AD brain. 

Additionally, the level of CD33-immunoreactive microglia positively correlates with 

the level of both insoluble Aβ42 and the amyloid plaque in AD cases. [223,224]. 

CR1 (Complement receptor type 1) is a cell-surface receptor and member of the 

complement system that is associated with clearance of immune-complexes including 

C3b and C4b. Hence, C3b can bind Aβ oligomers; and in this way CR1 may be 
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potentially involved in Aβ clearance. CR1 may also play a role in neuroinflammatory 

processes relevant for AD [225]. During this process, the CLU gene may get involved 

as an inhibitor [226]. 

The MS4A4A/MS4A4E/MS4A6E (Membrane-Spanning 4-Domains, Subfamily-A: 

Members 4A, 4E and 6E) locus maps to chromosome 11 and is a member of a group 

of 15 MS4A genes. As CD33, MS4A4A is also expressed on monocytes and myeloid 

cells, which suggests that it is involved in an immune-related function.  

EPHA1 (EPH Receptor A1) is a member of the protein-tyrosine kinase family and the 

ephrin receptor subfamily. Members of this family are cell surface receptors, which 

binds with ephrin ligands on contiguous cells to regulate synapse formation, axon 

guidance, cell adhesion, migration and plasticity. EPHA1 also regulates cell motility 

and morphology [227]. In humans, besides expression in intestinal epithelium and 

colon epithelium, EPHA1 can be detected also in monocytes [228] and CD4-positive 

T lymphocytes [229]. This may imply that the basis for the genetic association of 

EPHA1 and AD lies in its putative function in the immune system.  

CD2AP (CD2-Associated Protein) produces a scaffolding protein that binds to 

nephrin, actin and other proteins associated with cytoskeletal organization [230]. 

CD2AP is also involved in membrane trafficking and dynamic actin remodelling that 

occurs during receptor cytokinesis and endocytosis, whereas in the immune system, it 

is essential for synapse formation [231]. 

ABCA7 (ATP-Binding Cassette, Sub-Family A (ABC1), Member 7) is a member of 

the ATP-binding cassette (ABC) transporter superfamily. ABC family members 

involve in transportation of several molecules across intra- and extra- cellular 

membranes, including amyloid precursor protein [232] that is involved in host 

defence by influencing the phagocytosis of apoptotic cells by macrophages [233]. In 

addition, ABCA7 interacts with APOA-I and plays a role in cholesterol efflux and 

apolipoprotein-mediated phospholipid uptake from cells [232]. An independent GWA 

study, performed in African Americans, also confirmed that the ABCA7 gene is a 

susceptibility locus for AD [234].  

Ridge et al. projected the phenotypic variance in Alzheimer’s disease case-control 

status concentrating on the 11 known AD markers. By using the HapMap imputed 

ADGC dataset with 2,042,116 SNPs, they anticipated that common variants identified 

in GWAS genes for Alzheimer’s disease, only elucidate 33% of the total phenotypic 

variance; within that APOE alone explicate 6% and other well-known 9 known high 



	81	

frequency SNPs 2%, whereas more than 25% of phenotypic variance are still need to 

be identified [216,235]. 

A rare mutation of TREM2 gene linked to Alzheimer's disease 

A whole genome sequencing study performed by Jonsson et al. based on 2261 

Icelandic individuals, discovered a rare mutation of rs75932628-T (R47H) located on 

TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) gene with a frequency 

of 0.63%. This rare mutation is identified as a new promising genetic risk marker 

associated with AD, with the odds ratio of 2.92. Afterwards, this rare variant was 

confirmed in a replication study with the cohorts from Germany, Norway, Spain, the 

Netherlands and the USA [236,237]. Alongside, the link between the R47H variant 

and LOAD confirmed by Guerreiro et al. with a meta-analysis of three independent 

imputed data sets of GWA studies (i.e. EADI, GERAD and ANM) [238].  

Six additional variants Q33X, Y38C, T66M, D87D, R98W and H157Y were also 

identified as associated with affected cases, which might be linked to AD pathology. 

Out of those three variants Q33X, Y38C and T66M, in the homozygous state, had 

been already identified in relation with a frontotemporal dementia like syndrome 

[239]. The TREM2 gene is linked with inflammatory responses; it is also involved in 

immunological pathways in AD. Microglial cells interact with β-amyloid plaques and 

produce high levels of pro-inflammatory cytokines and reactive oxygen species, 

which may exhibit an alteration in morphology [240].  

TREM2 is the only gene to be recognized with an adequate risk effect in AD since the 

establishment of the ε4 allele of APOE for AD [236,239].  

Conclusion 
Even though, GWAS is very successful in revealing genetic loci associated with 

human diseases and traits, reconnoitring the disease associated genes and molecular 

mechanisms underlying the identified genetic variants is not a trivial task. As more 

than 80% of disease/trait-associated SNPs are located in outside the coding regions, 

and only 12% are located in or close to protein-coding regions of genes, and within 

that even only <5% are non-synonymous SNPs. Thus mostly genetic variants have to 

link to the adjacent (such as 500 kb distant) genes, to nominate them as candidate 

genes. Consequently, the inference for the mechanistic connection between diseases 

and its susceptible genetic loci is more challenging than ever supposed. 

Functional genomics studies can support to reveal the functional significances of 
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variants on intermediate molecular traits like protein products, alternative splicing, 

and gene expression. Thus subsequently, approaches, like computational and 

bioinformatics predictions based on the variants location and its sequence properties, 

can assist to propose the candidate genes. However, the range of potential functional 

consequences of variants is much broader, and therefore, new methodology is 

required to predict alteration in gene function. Furthermore, generally algorithms can 

only estimate variant effects on single proteins; likewise machine-learning 

approaches, that are being used to assess the effect of deleterious SNPs, have 

limitations. 

Substantial knowledge about candidate genes in disease context are required to reveal 

the functional consequences at the molecular level, such as expression data at RNA 

and protein levels with time and space dimensions (such as at what time, in which 

tissue and in which organ). Furthermore, gene regulatory networks consists of many 

components linked to each other by multiple positive and negative feedback 

interactions, thus a deterministic understanding of their context is hard to achieve 

owing to rapidly growing complexity. Therefore, specialized algorithms and 

computable modelling approaches are essential, for the modelling and simulation of 

genetic regulatory networks. 
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Summary 

The keep purpose of genetic studies is to highlight genetic variants from a risk-

associated locus, which account for phenotypic differences. GWAS-identified 

variants can be prioritized at the molecular level, on the basis of their functional 

consequences. 

In this article, I have reviewed and summarized biomedical literature to assess the 

diverse functional impacts of genetic variation at the genomic as well as molecular 

level. I have primarily focused on the interpretation of genetic variants and mutations 

in a systems biology context, by recapitulating numerous computational and 

bioinformatics methodologies which are used to assist in identifying the candidate 

genes. They predict functional consequences of genome based on the disease-

associated variant’s location and their sequence characterization. However, the 

spectrum of potential functional consequences of variants is much broader, and 

therefore, new methodologies are required to predict alteration of gene function. 

Furthermore, most of the algorithms can only estimate variant effects on single 

proteins. Machine-learning approaches used to assess the effect of deleterious SNPs 

have similar limitations. 

In this article, I conclude that gene regulatory networks are comprised of many 

components linked to each other by multiple positive and negative feedback 

interactions. This rapidly-growing complexity makes a deterministic understanding of 

their context hard to achieve. Consequently, dedicated specialized algorithms and 

computable modelling approaches are needed, for the modelling and simulation of 

integrated genetic and molecular level networks. 
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Chapter 2 
 
Genetic Variance Information in Cause-and-
Effect Models 
 
 
Introduction 
 
 

 
 
Figure 21: Part –II: Workflow for the intelligent functional interpretation of genetic 
variance information in multi-scale biomedical cause-and-effect models 

 
Until recently, GWAS data associated with complex diseases or quantitative traits 

could not be annotated effectively in systems biomedicine models, due to unknown 

mechanism of action by which these variants influence disease or quantitative traits. 

Genetic variants located in non-coding regions of the genome have proven especially 

challenging. Contemporarily, a series of large-scale genomics projects (including 

ENCODE, IHEC, FANTOM etc.) have established new approaches to reveal 

functional characterization of these genetic variants. Now the greatest challenge in 
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this computationally advanced era, is the interpretation and mapping of GWAS data 

into biological networks with an evidential reasoning approach to annotate the 

variants’ functional consequences. 

I am proposing here a rational approach to map genetic data into biomedicine models 

to interpret biological insights into clinical benefits. Biological Expression Language 

(BEL) is designed to represent biological knowledge in a computable form by 

capturing causal and correlative relationship in context, where information about 

biological system, reference citation and process of curation could be included. For 

the next version of BEL, I have developed a representation of genetic variant types, 

including substitutions, insertions, deletions, fusions, unspecified mutations and 

variants affecting intergenic regions. These genetic variations could be propagated 

between DNA, RNA and protein levels by using HGVS mutation nomenclature. 
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Abstract	

The	work	we	present	here	is	based	on	the	recent	extension	of	the	syntax	of	the	

Biological	Expression	Language	(BEL);	which	now	allows	for	the	representation	

of	 genetic	 variation	 information	 in	 cause-and-effect	 models.	 In	 our	 paper,	 we	

describe,	 how	 genetic	 variation	 information	 can	 be	 used	 to	 identify	 candidate	

disease	 mechanisms	 in	 diseases	 with	 complex	 aetiology	 such	 as	 Alzheimer´s	

Disease	and	Parkinson’s	Disease.	In	those	diseases,	we	have	to	assume	that	many	

genetic	 variants	 contribute	moderately	 to	 the	 overall	 dysregulation	 that	 in	 the	

case	of	neurodegenerative	diseases	has	such	a	long	incubation	time	until	the	first	

clinical	symptoms	are	detectable.	Due	to	the	multi-level	nature	of	dysregulation	

events,	systems	biomedicine	modelling	approaches	need	to	combine	mechanistic	

information	 from	various	 levels,	 including	gene	expression,	miRNA	expression,	

protein-protein	 interaction,	 genetic	 variation	 and	pathway.	OpenBEL,	 the	 open	
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source	version	of	BEL,	has	recently	been	extended	to	match	this	requirement	and	

we	 demonstrate	 in	 our	 paper,	 how	 candidate	 mechanisms	 for	 early	

dysregulation	 events	 in	 Alzheimer´s	 Disease	 can	 be	 identified	 based	 on	 an	

integrative	 mining	 approach	 that	 identifies	 "chains	 of	 causation"	 that	 include	

SNP	information	in	BEL	models.	

Keywords	

BEL	 Model,	 Alzheimer’s	 Disease,	 Genetic	 Variants,	 GWAS,	 Causal	 Reasoning,	

Cause-and-Effect			

	

Systems	biology	models	and	genetic	variation:	two	separate	worlds	

Barabási	 et al.	 assert	 “given	 the	 functional	 interdependencies	 between	 the	

molecular	components	 in	a	human	cell,	a	disease	 is	rarely	a	consequence	of	an	

abnormality	 in	 a	 single	 gene,	 but	 reflects	 the	 perturbations	 of	 the	 complex	

intracellular	and	intercellular	network”	[1].		

Genome-wide	genetic	association	studies	(GWAS)	have	become	a	very	useful	and	

frequently	 used	 tool	 for	 discovering	 genetic	 variants	 as	 a	 disease	 risk	 [2].	

However,	 for	complex	 traits	and	phenotypes,	 interpretation	of	association	data	

largely	 benefits	 from	 available	 prior	 biological	 and	 environmental	 knowledge,	

spanning	over	multiple	scientific	disciplines	[3].		

In	 human	 genetics,	 several	 strategies	 were	 developed	 and	 implemented	 to	

determine	 the	 effect	 of	 SNPs,	 particularly,	 for	 the	 analysis	 of	 genotyping	 data.	

The	limitation	of	many	of	these	algorithms	is	that	they	can	predict	only	either	to	
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have	 no	 effect	 or	 to	 have	 negative	 effect	 on	 clinical	 readouts	 and	 endpoints.	

However,	the	spectrum	of	possible	biological	effects	caused	by	genetic	variants	is	

much	wider,	 thus	methods	 are	 required	 to	 predict	 also	 potential	 gain,	 loss	 or	

even	 modification	 of	 gene	 function	 [4].	 Moreover,	 most	 of	 the	 algorithms	 can	

only	 predict	 variant	 effects	 on	 individual	 proteins	 [5],	 and	 machine-learning	

supervised	and	semi-supervised	approaches	are	being	used	to	predict	the	effect	

of	 deleterious	 SNPs	 [4].	 Generally,	 GWA	 studies	 are	 used	 to	 establish	 links	

between	 genotypes	 and	 phenotypes	 through	 identifying	 the	 differences	 (and	

commonalities)	 between	 thousands	 of	 individuals.	 These	 approaches	 work	 as	

black	 boxes	 and	make	 use	 of	 statistical	 and	machine-learning	 approaches	 that	

require	huge	datasets.		

In	 order	 to	 reveal	 the	 functional	 context	 at	 the	 molecular	 level,	 substantial	

knowledge	about	the	genes	involved,	their	expression	at	RNA	and	protein	level,	

the	 time	when	 they	 are	 expressed	 and	 in	which	 tissue	 and	 in	which	 organ,	 is	

required.	Regulation	of	gene	expression	is	mediated	through	genetic	regulatory	

systems,	which	are	controlled	by	complex	 interaction	networks	 involving	DNA,	

RNA,	 proteins,	 and	 small	 molecules.	 These	 regulatory	 networks	 involve	 many	

components	linked	to	each	other	by	positive	and	negative	feedback	loops	and	a	

deterministic	 understanding	 of	 their	 dynamics	 is	 hard	 to	 attain	 due	 to	 rapidly	

increasing	 complexity.	 Therefore,	 specialized	methods	 and	 computer	 software	

are	 essential,	 for	 the	modelling	 and	 simulation	 of	 genetic	 regulatory	 networks	

[6].	

Systems	 biology	 is	 the	 systemic	 contextual	 representation	 and	 modelling	 of	 a	

plurality	 of	 discrete	 observations.	 In	 systems	 biology,	 modelling	 is	 a	
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representation	 of	 disease	 high-level	 concepts	 in	 a	 unified	 and	 comprehensive	

network	that	can	help	to	identify	the	differential	sub-networks	by	comparing	it	

with	 a	 network	 representing	 the	 healthy	 state	 [1,7-10].	 Building	 blocks	 of	

systems	 biology	 models,	 such	 as	 signalling	 pathways,	 metabolic	 systems,	 and	

gene	 regulation	 networks	 are	 already	 widely	 used	 in	 computational	 biology.	

Comprehensive	 disease	 models,	 however,	 are	 going	 way	 beyond	 these	

comparably	 well-understood	 functional	 modules.	 One	 of	 the	 explicit	 goals	 of	

systems	 biomedicine	 is	 to	 use	 a	 generalized	 model	 of	 disease	 to	 assess	 the	

parameters	 from	high	 throughput	data	of	a	 single	patient,	 in	order	 to	generate	

‘personalized	models’	that	predict	disease	progression	and	treatment	responses	

[11,12].	

In	systems	biology,	there	are	several	“entry	points”	to	generate	initial	networks:	

protein–protein	 interaction,	metabolic	 networks,	 and	 signalling	pathways	have	

been	widely	used	to	model	biological	processes	[7].	In	the	last	decade,	however,	

new	modelling	 approaches	 have	 been	 developed	 [13].	 For	 pharmacogenomics,	

these	networks	represent	complex	relationships	between	drugs	and	targets.	The	

diseasome	[14]	 is	a	disease	–	gene	and	drug	–	 target	 (protein)	network,	where	

disease	information	is	associated	with	a	gene	and	drugs	are	linked	to	proteins	by	

drug-target	associations	[15].	

Despite	 the	 complexity	 of	 regulatory	 networks,	 attempts	 at	 unravelling	 the	

impact	 of	 genetic	 variation	 on	 regulatory	 networks	 has	 been	 addressed	 by	 a	

number	of	groups.	Leiserson	et	al.	[16],	Carter	et	al.	[17]	and	Atias	et	al.	[18]	have	

worked	 on	 network	 approaches	 to	 scrutinize	 the	 genetic	 risks	 for	 human	

disease.	 They	 have	 developed	methodology	 that	 allows	 to	 detect	 causal	 genes	
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within	disease-associated	loci	by	network	analysis,	and	to	ascertain	causal	paths	

from	allele	 to	disease	 through	 intermediate	molecular	phenotypes	 [16,	17,	18].	

Trynka	 et	 al.	 [19]	 proposed	 new	 approaches	 on	 the	 interpretation	 of	

transcriptional	regulation	effects	to	estimate	the	involvement	of	variant	alleles	in	

common	diseases.	They	suggested	that	most	of	the	causal	complex	trait	variants	

have	 regulatory	 roles	with	 cell	 type	 specificity,	 by	 interconnecting	 GWAS	 data	

with	genome-wide	chromatin	assays	results.	They	emphasized	the	importance	of	

cell-type	specific	regulatory	context	and	highlighted	the	value	of	the	inclusion	of	

epigenomics	information	[19].		

Sahni	 et	 al.	 [20]	 questioned	 the	 strong	 bias	 in	 the	 literature	 towards	 coding	

variant	 effects	 on	protein–DNA,	protein–RNA	and	protein–protein	 interactions.	

He	proposed	to	put	more	emphasis	on	effects	outside	the	protein	centric	scope	of	

functional	assessment,	 to	understand	 the	 impact	of	genetic	variants	on	specific	

interactions;	for	instance,	mechanisms	safeguarding	protein	folding	and	stability	

[20].	

	

Types	of	genetic	variation	information	relevant	for	systems	biomedicine	

If	genetic	variation	 is	 to	be	 included	 in	a	systems	biology	model	of	disease,	we	

need	 to	 assess	 the	 biological	 impact	 of	 a	 single	 nucleotide	 polymorphism	 or	 a	

mutation.	 Dependent	 on	 the	 way	 	 (the	 “mode-of-action”)	 how	 a	 SNP	 or	 a	

mutation	exerts	its	biological	impact,	we	can	distinguish	several	classes	(“types”)	

of	 SNPs.	 In	 this	 section,	 we	 identify	 and	 discuss	 the	 different	 functional	
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categories	that	can	be	distinguished	as	“mode-of-SNP-action”	classes,	(see	Table	

1).	

Table	1:	Types	of	genetic	variation	information	relevant	for	systems	biomedicine:	

DNA	regions	with	functional	categories	and	consequences 

Types	of	genetic	variation	information	relevant	for	systems	biomedicine	
DNA	Regions	 Functional	Categories	 Functional	Consequences	
1. Coding	

regions	
1. Non-synonymous	

genetic	variants	
Change	in	protein	structure	or	function	due	
to	a	change	in	the	amino	acid	sequence	or	
protein	sequence	truncation	

2. Synonymous	genetic	
variants	

Modulating	translation	rates	with	direct	
consequences	to	protein	folding	

3. Exon	Splicing	
Enhancers	or	
Silencers	

Translate	the	protein	isoform	by	
deleterious	intron	retention	or	exon	
skipping	

2. Non-coding	
regions	

1. DNA	methylation	 Associates	with	genes	silencing		
2. Transcription	factor	

binding	to	regulatory	
elements	

Can	change	transcription	factor	binding	to	
DNA	that	leads	to	differential	target	gene	
expression		

3. Chromatin	loop	
bridging	the	
enhancers	and	
promoters	

Can	alter	the	DNA	affinity	for	looping	
factors	and	chromatin	interactions,	which	
regulates	gene	expression	

4. MicroRNAs	 Can	affect	gene	functionality:	1)	by	
transcription	of	primary	transcript,	2)	by	
primary	microRNA	(pri-microRNA)	and	
precursor	microRNA	(pre-microRNA)	
processing	and	3)	by	effecting	microRNA-	
microRNA	interaction		

5. Long	non-coding	
RNAs	(lncRNAs)	

Can	modify	highly	conserved	lncRNA	
tertiary	structure	that	can	affect	chromatin	
regulator’s	interactions	

		

Genetic	variants	on	coding	regions		

The	 risk	 associated	 with	 non-synonymous	 genetic	 variants	 can	 be	 easily	

translated	into	a	change	in	protein	structure	or	function	due	to	a	change	in	the	

amino	 acid	 sequence.	 It	 can	 modify	 amino	 acid	 composition,	 or	 truncate	 the	

protein	 sequence	 by	 causing	 an	 early	 stop	 codon	 [21].	 Synonymous	 genetic	
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variants	 do	 not	 alter	 the	 codon	 sequence.	 However,	 synonymous	 genetic	 risk	

variants	 can	 still	 impact	 protein	 function	 by	modulating	 translation	 rates	with	

direct	consequences	to	protein	folding	[22].	For	example,	rs1045642	SNP	slows	

down	 the	 rate	 of	 translation	 of	 the	 MDR1	mRNA	 and	 impacts	 protein	 folding	

[23].	Exon	 Splicing	 Enhancers	 or	 Silencers	 (ESEs/ESSs)	 are	 typically	 6	 to	 8	

consecutive	nucleotide	sequences	in	an	exon	region.	Where,	SNP	can	also	result	

in	 deleterious	 intron	 retention	 or	 exon	 skipping,	 and	 translate	 the	 protein	

isoform	 [24–27].	 For	 example,	 rs1800693	 SNP	 affects	 the	 splicing	 of	 the	

TNFRSF1A	mRNA	and	leading	to	translate	an	isoform	[28].	

	

	

Genetic	Variants	on	Non-coding	regions:		

Model	 gene	 system	 studies	 have	 revealed	 that	 local	DNA	 interactions	 between	

regulatory	 sites	 and	 genes	 are	 important	 for	 transcriptional	 control.	 Such	

regulatory	 interactions,	 in	 mammals,	 can	 take	 place	 over	 significant	

chromosomal	 distances	 up	 to	 an	 entire	 mega-base	 (1MB)	 [29].	 Genetic	 risk	

variants	 are	 very	 frequent	 on	 non-coding	 sequences	 [30].	 Post-GWAS	 studies	

have	 revealed	 the	 capacity	 of	 these	 genetic	 risk	 variants	 to	 regulate	 gene	

expression	 by	 modulating	 cis-regulatory	 machineries	 through	 mechanisms	

involving	 DNA	 methylation	 [31],	 transcription	 factor	 binding	 [32],	 chromatin	

looping	 [33],	 or	miRNA	 recruitment	 [34].	 If	 SNPs	 occur	 within	 transcriptional	

regulatory	 regions,	 like	 transcription	 factor	 binding	 sites,	 CpG	 islands,	 and	

microRNAs,	 they	 may	 modify	 the	 binding	 affinity	 of	 the	 regions,	 remove	
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recognition	sites,	or	create	new	binding	sites	for	other	regulatory	proteins.	All	of	

these	modifications	can	lead	to	alterations	in	the	level,	timing,	and	localization	of	

gene	expression	[35].		

DNA	 methylation:	 DNA	 methylation	 means	 addition	 of	 methyl	 groups	 to	 a	

cytosine	 nucleotide,	 which	 is	 basically	 part	 of	 a	 CpG	 dinucleotide	 [63].	 DNA	

hyper-methylation	 near	 transcription	 start	 sites	 (TSS)	 of	 tumor	 suppressor	

genes	associates	with	their	silencing	[36].	

Transcription	 factor	 binding	 to	 regulatory	 elements:	 Across	 the	 genome,	

transcription	 factors	 bind	 to	 thousands	 of	 regulatory	 elements,	 including	

promoters	(directly	upstream	of	their	target	genes)	and	cis-regulatory	elements	

such	 as	 enhancers,	 insulators	 and	 silencers	 [37].	 Genetic	 risk	 variants	 located	

within	 promoter	 regions	 can	 also	 change	 transcription	 factor	 binding	 to	 DNA,	

leading	to	differential	target	gene	expression	[38,	39].	For	example,	expression	of	

the	 α-globin	 gene	 locus	 is	 affected	 by	 a	 genetic	 variant	 associated	with	 the	 a-

thalassemia	 blood	 disorder	 [38].	 Enhancers	 are	 commonly	 targeted	 by	 those	

genetic	 variants	 of	 risk-associated	 loci	 that	 map	 to	 DNA	 recognition	 motifs,	

bound	 by	 transcription	 factors.	 These	 genetic	 variants	 can	 modulate	 the	

chromatin	 affinity	 for	 transcription	 factors	 and	 consequently	 gene	 expression	

[40–47].	 For	 example,	 the	 rs12740374	 SNP,	 which	 is	 associated	 with	 a	 lower	

level	 of	 plasma	 low-density	 lipoprotein	 cholesterol	 (LDL-C),	 increases	 the	

expression	level	of	the	SORT1	(Sortilin	1)	gene	by	increasing	the	binding	affinity	

of	 the	 C/EBP	 (CCAAT	 enhancer-binding	 protein)	 transcription	 factor	 to	

chromatin	[46].		
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Chromatin	loop	bridging	the	enhancers	and	promoters:	Genetic	risk	variants	

can	modulate	chromatin	loop	formation;	it	can	alter	the	DNA	affinity	for	looping	

factors,	 which	 results	 in	 allele-specific	 chromatin	 loop	 formation.	 The	 human	

genome	 is	 structured	 in	 a	 three-dimensional	 architecture,	 which	 is	 thought	 to	

regulate	 a	 diverse	 set	 of	 DNA-template	 processes	 [47–52].	 This	 facilitates	

regulatory	 elements,	 like	 promoters	 and	 enhancers,	 to	 interact	 physically	

through	long-range	chromatin	loops,	or	chromatin	interactions,	to	regulate	gene	

expression	[53,	54].	This	has	been	shown	for	the	rs12913832	SNP,	which	resides	

in	 an	 enhancer	 21	 KB	 upstream	 of	 the	 OCA2	 (Oculocutaneous	 albinism	 II)	

pigment	 gene	 [55].	 Over	 the	 last	 decade,	 the	 development	 of	 chromosome	

conformation	 capture	 (3C)	 technology	 has	 initiated	 several	 3D	 studies	 on	

regulatory	 chromatin	 loops,	 but	 what	 has	 been	 done	 until	 now	 is	 far	 from	

exhaustive.	If	a	minor	fraction	of	these	potential	regulatory	elements	participate	

in	 chromatin	 looping,	 then	 most	 of	 the	 genomic	 interactions	 have	 yet	 to	 be	

characterized	again,	because	many	such	 loops	appear	 to	be	 tissue-specific	 [56-

58],	which	makes	their	comprehensive	analysis	appear	even	more	disconcerting	

[59].	

MicroRNAs:	 MicroRNAs	 (miRNAs)	 target	 mRNAs	 by	 recognizing	 their	

complementary	 sequences	mainly	 in	3’	untranslated	 regions	 (3’UTRs).	miRNAs	

largely	 function	 as	 post-transcriptional	 repressors.	 They	 recruit	 RNA-induced	

silencing	complex	(RISC)	to	their	target	mRNAs,	leading	to	mRNA	degradation	or	

translation	 repression	 [60].	 They	 can	 regulate	 the	 translation	 of	 hundreds	 of	

genes	 through	 sequence-specific	 binding	 to	 mRNA	 [61].	 SNP	 variants,	 linked	

with	 miRNAs,	 can	 affect	 gene	 functionality	 with	 three	 different	 ways:	 1)	 by	
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transcription	 of	 primary	 transcript,	 2)	 by	 primary	 microRNA	 (pri-microRNA)	

and	 precursor	 microRNA	 (pre-microRNA)	 processing	 and	 3)	 by	 effecting	

microRNA-	 microRNA	 interaction	 [62].	 For	 example,	 rs10065172,	 a	 Crohn’s	

disease-associated	 SNP,	 lies	 within	 the	 3’	 UTR	 of	 the	 IRGM	 (immunity-related	

GTPase	M)	 gene	 and	 alters	 the	 complementary	 target	 sequence	 of	miRNA-196	

[63].		

Long	non-coding	RNAs	(lncRNAs):	lncRNAs	are	found	across	intergenic	regions	

of	the	human	genome	[64].	They	can	interact	with	chromatin	regulators	for	their	

recruitment	by	chromatin	[65,66],	a	process,	which	relies	on	a	highly	conserved	

lncRNA	tertiary	structure;	that	can	be	changed	by	genetic	risk	variants	[67].	Kim	

et	 al.	 [68]	 described	 enhancer	RNAs	 (eRNAs),	 a	 new	 class	 of	 non-coding	RNAs	

(ncRNAs),	form	from	polymerase	II-bound	enhancers.	The	level	of	expression	of	

eRNAs	 positively	 correlated	 with	 the	 expression	 of	 neighboring	 coding	 genes	

[68]	Genetic	variants	in	enhancer	sequences	can	modify	TF	binding,	resulting	in	

‘improper’	 gene	 expression	 and	 eventually	 susceptibility	 to	 diseases	 [69,	 70].	

The	 micropeptides,	 called	 small	 pri-peptides,	 are	 also	 expressed	 from	 the	

lncRNA-pri	 and	direct	 the	proteolytic	 cleavage	or	other	modifications	of	 target	

proteins	or	transcription	factors	[71].	

Expression	 quantitative	 trait	 loci	 (eQTL):	 Studying	 the	 association	between	

genetic	variation	and	gene	expression	offers	a	straightforward	way	to	begin	the	

complicated	task	of	connecting	risk	variants	to	their	putative	target	genes	[72].	

Networks	 created	 using	 gene	 expression	 data	 from	 patient	 samples	 can	 be	

exploited	 to	 bridge	 GWAS	 results	 with	 an	 underlying	 disease	 mechanism,	 as	

exemplified	 in	 the	 autism	spectrum	disorder	 [73].	Genetic	 variation	 associated	



	113	

with	 gene	 expression,	 known	 as	 expression	 quantitative	 trait	 loci	 (eQTL),	 can	

identify	 the	 target	 genes	 of	 risk	 loci	 [74–78].	 Polymorphism	 situated	 in	 DNA	

regulatory	 elements	 can	 alter	 the	 gene	 transcript	 frequency.	 Thus,	 as	 a	

quantitative	 trait	 locus,	 gene	 transcript	 frequency	 can	 be	 determined	 with	

substantial	power	[79,	80].	Brem	et	al.	published	the	first	genome-wide	study	of	

gene	expression	in	2002	[81].	Stranger	and	Raj	reviewed	the	genetics	of	human	

variation	and	diversity	 in	eQTLs.	These	eQTL	data	are	very	dynamic	with	great	

specificity	for	different	tissues	and	environmental	perturbations	[82].	

The	ENCODE	project:	Identification	of	genomic	functional	elements:		

The	 ENCODE	 project	 has	 delivered	 an	 incredible	 compilation	 of	 genetic	

functional	elements	of	the	human	genome	[83].	As	most	of	the	SNPs	detected	in	

GWAS	 data	 belong	 to	 non-coding	 regions	 of	 the	 genome;	 usage	 of	 ENCODE	

regulatory	elements	to	reinterpret	GWAS	data	sets,	might	be	a	valuable	approach	

[84].	 Undoubtedly,	 structural	 genomic	 variation	 are	 more	 influential	 and	

systemic	 than	 the	 smaller	 scale	 variations,	 however	 any	 framework	 or	

methodology	employed	to	predict	genetic	variant	effects	needs	to	contribute	for	

both	small	and	large-scale	variations	[13].	If	possible,	it	should	be	able	to	predict	

the	 level	 in	 which	 coding	 or	 non-coding	 genetic	 variants	 individually	 or	

collectively	have	a	 functional	 impact	on	biology,	 ranging	 from	relevant	protein	

function	or	expression	to	the	perturbation	of	entire	networks.	 It	can	help	us	to	

annotate	the	massive	amount	of	re-sequencing	data	meaningfully	without	having	

to	test	the	effects	of	all	variants	experimentally	[13].	
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Thus,	now	it	is	the	time	to	move	ahead	from	merely	bio-statistical	approaches	for	

GWAS	 data	 interpretations	 to	 a	 more	 comprehensive	 approach	 that	 can	 be	

acquainted	with	gene–gene	and	gene–environment	 interactions,	along	with	 the	

complexity	of	the	relationship	between	genotype	and	phenotype	[85].	

	

The	need	to	integrate	genetic	variant	information	in	systems	biomedicine	

models	

Currently,	 GWAS	 variance	 data	 interpretation	 has	 become	 a	 bottleneck	 in	 the	

progression	of	mapping	and	exploring	complex	diseases.	For	example,	multiple	

genes	 have	 been	 associated	with	Amyotrophic	 lateral	 sclerosis	 (ALS)	 in	 GWAS	

data,	 but	 there	 is	 no	 clear	 perspective	 of	 involved	 pathways	 and	mechanisms	

that	would	emerge	 from	the	available	high	throughput	data,	by	 taking	multiple	

rare	variants	into	account	[86].		

Substantial	research	for	several	complex	diseases	has	been	conducted	to	unravel	

causal	 mechanisms	 underlying	 their	 disease	 aetiology.	 Often	 this	 type	 of	

research	is	multidisciplinary,	using	research	studies	spreading	over	a	wide	range	

of	 time	 and	 length	 scales.	 Consequently,	 a	 disease	model	 representing	 disease	

aetiology	may	have	many	modules	and	interactions.	Such	a	disease	model	would	

provide	a	nice	template	for	the	interpretation	of	the	functional	consequences	of	

genetic	variation	[87].	

One	 of	 the	 obvious	 questions	 is	 of	 course,	 which	 methodology	 can	 help	 in	

interpretation	 of	 GWAS	 data,	 when	 most	 of	 the	 SNPs	 have	 small	 effects	 on	
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disease	 susceptibility	 [88].	 There	 is	 lack	 of	 efficient	 and	 reliable	 algorithms	 as	

well	 as	 appropriate	 multi-scale	 modelling	 methodology,	 to	 evaluate	 the	 huge	

number	 of	 interdependent	 data	 from	 GWAS	 [5].	 One	 way	 to	 reduce	 the	

combinatorial	 complexity	 of	 GWAS	 data	 is,	 to	 reduce	 the	 dimensionality	 of	

genetic	 variation	 data	 by	 taking	 a	 priori	 knowledge	 about	 functional	

relationships	 between	 genes	 and	 proteins	 into	 account.	 Formalised	 knowledge	

about	causal	and	correlative	relationships	in	systems	biology	models	provides	a	

good	 starting	 point	 for	 that	 dimension	 reduction.	 So	 far,	 there	 have	 been	 only	

few	 serious	 efforts	 to	predict	 how	 these	 genetic	 variants	would	 collectively	 be	

effective	for	specific	phenotypes	[89,	90].	

Systems	biology	modelling	language	syntax	adaptions	

A	massive	amount	of	data	for	molecular	interactions	and	pathways	are	stored	in	

online	databases.	Moreover	experimental	data	is	accumulating	very	rapidly	and	

correspondingly	 the	 demand	 for	 exchange	 of	 data	 to	 allow	 analysis	 and	

comparison	 of	 larger	 datasets	 is	 intensifying.	 Thus	 there	 is	 a	 need	 for	

representation	of	data	in	standardized	formats.	Comparisons	and	evaluations	of	

modern	 systems	 biology	 modelling	 languages	 show	 [91,92]	 that	 XML	 is	 a	

remarkable	 and	 easy-to-use	 format	 for	 systems	 biology	 information	

representation.	Here,	we	compare	the	recent	updates	to	the	standard	XML-based	

representation	formats	for	exchange	of	data.	

The	 Resource	 Description	 Framework	 (RDF)	model	 [93]	 is	 based	 upon	 the	

idea	of	making	statements	about	resources.	A	RDF	statement,	also	called	a	triple	

in	RDF	terminology	is	an	association	of	the	form	(subject,	predicate,	object).	RDF	
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Schema	 (RDFS)	 [94]	 and	 the	Web	 Ontology	 Language	 (OWL)	 [95]	 are	 used	 to	

explicitly	 represent	 the	 meanings	 of	 the	 resources	 described	 on	 the	Web	 and	

how	 they	 are	 related.	 These	 specifications,	 called	 ontologies,	 describe	 the	

semantics	 of	 classes	 and	 properties	 used	 in	Web	 documents.	 These	 ontologies	

should	be	 linked	 to	 a	 top-level	 ontology	 in	 order	 to	 enable	 knowledge	 sharing	

and	 reuse	 [95].	 Unfortunately,	 each	 bio-ontology	 seems	 to	 be	 built	 as	 an	

independent	piece	of	information,	that	does	not	enable	the	sharing	and	reuse	of	

knowledge	and	complicates	data	 integration	[96].	Moreover,	various	sources	of	

biological	data	must	be	combined	 in	order	 to	obtain	a	 full	picture	and	 to	build	

new	knowledge.	However,	a	 large	majority	of	current	databases	does	not	use	a	

uniform	way	to	name	biological	entities.	As	a	result,	a	same	biomedical	object	is	

frequently	associated	with	different	names.		

Systems	 Biology	 Markup	 Language	 (SBML)	 [97-100]	 was	 designed	 by	 the	

Systems	 Biology	 Workbench	 Development	 group.	 The	 purpose	 of	 SBML	 is	 to	

model	biochemical	reaction	networks,	comprising	cell	signalling,	gene	regulation	

and	metabolic	pathways.	In	SBML	‘Species’	is	used	as	a	notation	to	represent	the	

interactors,	while	reaction,	modelling	a	 transformation,	 transport	or	binding	 to	

represent	interaction.	Each	reaction	is	allowed	to	interact	with	three	predefined	

interactors	i.e.	reactant,	product	and	modifier	[101].	An	SBML	model	encodes	a	

reaction	 network	 as	 pathway.	 Mathematical	 relations	 are	 also	 available	 for	

reactions.	References	to	other	sources	and	extra	information	can	be	added	only	

in	the	annotation	field.	Currently,	the	representation	of	parts	of	molecules	is	not	

possible	[102].	
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The	Proteomics	Standards	Initiative	Molecular	Interaction	XML	format	(PSI	

MI)	[103]	is	designed	by	the	Proteomics	Standards	Initiative	that	is	an	initiative	

of	the	Human	Proteome	Organization	(HUPO).	The	main	purpose	of	the	initiative	

is	 to	 standardize	 proteomics	 data	 representation	 to	 facilitate	 data	 exchange,	

comparison	 and	 verification.	 The	 format	 is	 projected	 for	 exchange	 of	 protein-

protein	 interaction	 data	 [103].	 PSI	 MI	 is	 structured	 around	 an	 entry.	 It	 is	 not	

anticipated	 to	 be	 a	 pathway	 [102].	 Links	 to	 publications	 and	 databases	 are	

possible,	but	a	 representation	of	 relationships	 through	mathematical	equations	

and	an	inheritance	is	not	available	[102].	

The	Biological	Pathway	Exchange	(BioPAX)	format	is	designed	by	the	BioPAX	

working	group	[104,	105].	The	main	purpose	of	 this	standard	 is	 to	 introduce	a	

unified	framework	for	sharing	pathway	information.	BioPAX	offers	more	explicit	

use	 of	 relations	 between	 concepts	 than	 SBML	 and	 PSI	 MI.	 It	 is	 defined	 as	

ontology	of	concepts	with	attributes	[105].	However,	reasoning	and	integration	

of	 data	 increases	 its	 computational	 complexity	 [102].	 A	 specific	 data	 type	 is	

available	 for	 pathway	 representation,	 but	 mathematical	 equations	 underlying	

the	relations	are	not	possible.		

CellML	Model	Repository	[106]	contains	biochemical	pathway	models	that	have	

been	 published	 in	 peer-reviewed	 articles	 or	 expressed	 in	 SBML	 [107].	 CellML	

[108]	 and	 the	 CellML	Model	Repository	 are	 part	 of	 the	 IUPS	Physiome	Project	

[109].	The	CellML	Model	Repository	contains	models	describing	a	wide	range	of	

biological	 processes	 [110].	 It	 uses	 mathematical	 descriptions	 of	 biological	

systems	and	adds	semantic	meaning	by	annotating	elements	by	ontologies	and	

constrained	 vocabularies	 [110].	 It	 is	 also	 very	 precise,	 thus	 the	 association	
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between	 dependent	 and	 independent	 species	 is	 implicit	 rather	 than	 explicit.	

However	 due	 to	 this	 generality	 and	 explicit	 nature,	 complexity	 is	 increased,	

especially	 for	 software	 developers,	 consequently,	 there	 are	 a	 very	 few	 tools	

which	can	read	and	write	CellML	[111].			

Biological	Expression	Language	(BEL):	

BEL	 is	a	highly	expressive,	 triple-based	knowledge	representation	 language	 for	

the	 representation	 of	 knowledge	 about	 causal	 and	 correlative	 relationships	

[112].	 Several	 groups	 in	 academia,	 and	 pharma	 are	 already	 applying	 BEL	 in	

various	 areas	 including	 biological	 network	 analysis,	 disease	 modeling,	

understanding	 drug	 efficacy	 and	 toxicity,	mechanisms	 for	 drug	 sensitivity	 and	

resistance,	 and	 other	 research	 and	 development	 related	 projects.	A	 suite	 of	

software	components	called	the	BEL	Framework	provides	tools	that	are	required	

to	create,	compile,	assemble	and	deliver	computable	knowledge	models	to	BEL-

aware	applications	[112].		

BEL	represents	complex	biological	content	as	simplified,	formalized,	computable	

semantic	 triples	 that	 provide	 the	 ability	 to	 use	 and	 re-use	 experimental	

observations.	BEL	can	also	be	used	for	next-generation	sequencing	applications,	

like	 gene	 expression	 profiling	 and	 genome	 annotation	 data,	 by	 using	 Reverse	

Causal	 Reasoning	 (RCR)	 algorithm	 to	 get	 mechanistic	 insights	 into	 the	 high	

throughput	data,	which	could	be	complementary	 to	 the	result	of	analysis	using	

pathway	gene	set.	BEL	has	many	utility	tools	such	as	a	dedicated	Cytoscape	plug-

in	 for	 network	 visualization,	 algorithms	 of	 causal	 reasoning	 (RCR)	 for	

understanding	 disease	 mechanism	 by	 identifying	 up-stream	 and	 down-stream	
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controllers,	 electronic	 workbook	 integration,	 BEL-to-RDF	 translation,	 text	

mining	 in	 BEL,	 and	 nano-publication	 concepts	 [113].	 BEL	 has	 the	 potential	 to	

impact	 scientific	 literature,	by	 introducing	computable	expressions	 in	 scientific	

publishing,	 that	 could	 be	 integrated	 efficiently	 into	 existing	 knowledge	

environment	 [114].	 Moreover,	 these	 causal-reasoning	 models	 can	 provide	 a	

valuable	addition	to	the	biologists	to	interpret	the	gene	expression	data	[115].	By	

using	 these	models,	Huang	CL	et	 al.	 [116]	has	proposed	a	data-driven	method,	

Correlation	 Set	 Analysis	 (CSA),	 to	 detect	 active	 regulators	 in	 disease	 by	

integrating	 co-expression	 analysis	 and	 literature-derived	 causal	 relationships	

[116].		

	

Reasoning	 over	 genetic	 variance	 information	 integrated	 in	 disease	

networks:	concepts	and	strategies	

A	 key	 task	 in	 genetic	 variants	 interpretation,	 to	 understand	 the	 phenotypic	

consequences,	 lies	 in	 the	 ability	 to	 predict	 the	 molecular	 level	 mechanistic	

consequences	of	gene	polymorphisms	and	mutations.		

As	a	consequence,	systems	biomedicine	modelling	approaches	need	to	combine	

mechanistic	 information	from	various	 levels,	 including	gene	expression,	miRNA	

expression,	 protein-protein	 interaction,	 genetic	 variation	 and	 pathway	

information.	 OpenBEL,	 the	 open	 source	 version	 of	 BEL,	 has	 recently	 been	

extended	to	match	this	requirement.	With	the	extended	syntax,	the	new	version	

of	BEL	2.0	 is	now	enabled	 for	 encoding	genetic	 variants	 in	biomedical	models.	

The	last	release	of	the	BEL	syntax	proposes	a	representation	for	different	genetic	
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variant	 types,	 for	 example,	 <substitution>,	 <insertion>,	 <deletion>	 and	

<intergenic>;	 by	 introducing	 new	 variant	 functions	 for	 DNA,	 RNA	 and	 protein	

levels.		

In	this	version,	the	variant	(<expression>)	function	can	be	used	as	an	argument	

within	a	gene(),	rna(),	microRNA(),	or	protein()	to	indicate	a	sequence	variant	of	

the	 specified	 level.	 The	 variant()	 function	 takes	 HGVS	 variant	 description	

expression,	e.g.,	 for	a	substitution,	 insertion,	or	deletion	variants.	The	extended	

BEL	 syntax	 is	 supposed	 to	 support	 reasoning	 over	 cause-effect	 models	 that	

include	genetic	variation	information	

Representation	of	variant	at	Proteins	level:	Effects	of	genetic	variants	located	

on	 coding	 region	 or	 splice	 site,	 if	 express	 at	 protein	 level,	 they	 can	 be	

represented	 through	 protein	 level	 functions.	 Protein	 level	 variants	

representation	 is	 purposed	 to	 see	 the	 genetic	 variants	with	 their	 relevancy	 to	

protein,	 like	 their	 location	 on	 the	 protein	 sequence,	 effect	 on	 the	 protein	

structure	(see	Table	2).		

Representation	 of	 variant	 across	 DNA/RNA:	 To	 see	 the	 genetic	 variants	

impact	 at	 DNA/RNA	 level,	 protein	 level	 variants	 can	 also	 be	 expressed	 by	

DNA/RNA	 level	 functions.	 Whereas,	 genetic	 variants	 located	 on	 non-coding	

regions	(like,	intergenic	or	intronic)	can	only	be	represented	through	DNA/RNA	

level	 functions,	 which	 are	 designed	 to	 see	 the	 genetic	 variants	 with	 their	

relevancy	to	genome	or	gene	expression	(see	Table	3).			
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Table	2:	Representation	of	different	genetic	variant	categories	with	variant	

functions	at	Proteins	level	in	Biological	Expression	Language	(2.0V):	 

Variant	Categories	 Variant()	function	in	protein	

Reference	allele	 p(HGNC:CFTR,	var(=))	

Unspecified	variant	 p(HGNC:CFTR,	var(?))	

Substitution	variant	 p(REF:NP_000483.3,	var(p.Gly576Ala))	

Deletion	variant	 p(REF:NP_000483.3,	var(p.Phe508del))	

Frameshift	variant	(HGVS	short	description)	 p(REF:NP_000483.3,	var(p.Thr1220Lysfs))	

Frameshift	variant	(HGVS	long	description)	 p(REF:NP_000483.3,	var(p.Thr1220Lysfs*7))	

	

Table	3:	Representation	of	genetic	variants	across	DNA/RNA	with	the	reference	of	
chromosomal	or	mRNA	position	in	Biological	Expression	Language	(2.0V):	
	

Level	categories	 var()	function	at	different	genetic	levels	

DNA	-	SNP	 g(SNP:rs113993960,	var(delCTT))	

DNA	-	chromosome	 g(REF:NC_000007.13,	var(g.117199646_117199648delCTT))	

DNA	-	coding	sequence	 g(REF:NM_000492.3,	var(c.1521_1523delCTT))	

RNA	-	coding	sequence	 r(REF:NM_000492.3,	var(c.1521_1523delCTT))	

RNA	-	RNA	sequence	 r(REF:NM_000492.3,	var(r.1653_1655delcuu))	

	

	

Integration	of	genetic	variation	information	in	BEL	models	of	Alzheimer´s	

Disease:	enhanced	functional	interpretation	of	complex	SNP	patterns	

As	 a	 support	of	 this	 review,	here	we	demonstrate	 an	example	 to	highlight	 this	

promising	 approach,	 by	 integrating	 genetic	 variant	 information	 into	 an	

Alzheimer’s	disease	(AD)	BEL	model.		
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We	 have	 recently	 published	 the	 AD	 BEL	 model	 [117].	 This	 model	 has	 4,052	

nodes	and	9,926	edges,	it	was	generated	by	extracting	relevant	knowledge	from	

the	 specific	 biomedical	 literature.	 The	 AD	 BEL	 model	 comprises	 disease-

associated	 genes,	 protein-protein	 interactions,	 miRNAs,	 bioprocesses	 and	

pathways.	To	integrate	disease	specific	genetic	variant	information	into	AD	BEL	

model,	 genetic	 data	 is	 retrieved	 from	 GWAS	 databases	 and	 the	 biomedical	

literature	using	text-mining	methods.	The	AD	BEL	model	was	enriched	with	AD-

SNP	associated	data,	after	annotating	functional	impact	of	these	genetic	variants	

using	the	ENSEMBL	variant	database.	

Subsequently,	 these	 genetics	 variants	 were	 prioritized,	 according	 to	 their	

functional	consequences.	Then	we	mapped	them	to	the	AD	BEL	model	to	identify	

sub-networks	with	SNPs	that	display	a	substantial	biological	impact.	To	complete	

the	 functional	 impact	 assessment	 for	 these	 variants,	 we	 have	 excavated	 the	

biomedical	 literature	 to	analyze	 the	 role	of	 these	SNPs	 in	 the	 context	of	 age	of	

onset	of	AD	and	specifically	in	the	endocytosis	pathway.			

The	 early	 endosome	 is	 the	 first	 vacuolar	 compartment	 in	 the	 context	 of	 EP,	

where	enlarged	early	endosomes	are	identified	as	the	earliest	neuro-pathologic	

features	 to	 develop	 in	 the	 early	 onset	 of	 AD.	 In	 sporadic	 AD,	 endosomal	

enlargement	 adds	 to	 an	 average	 2.5-fold	 larger	 total	 endosomal	 volume	 per	

neuron,	 suggesting	 a	 significant	 increase	 in	 endocytic	 activity.	 It	 is	 the	 site	 of	

internalization	 and	 initial	 processing	 of	 amyloid	 precursor	 protein	 (APP)	 and	

apolipoprotein	 E	 (ApoE),	 two	 significant	 proteins	 in	 AD	 aetiology	 [118-120].	

Here	we	focus	on	the	internalization	of	APP	based	on	the	functional	role	of	SNPs.	
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AD	is	mainly	characterized	by	the	deposition	of	insoluble	amyloid	beta	peptides	

42	(Aβ42)	in	the	brain,	which	cannot	be	easily	removed	through	the	blood	brain	

barrier.	In	healthy	brain,	APP	is	processed	by	ADAM10,	which	produces	soluble	

amyloid	 beta	 peptide	 40	 (Aβ40),	 whereas	 in	 the	 non-amyloidogenic	 pathway,	

APP	 is	 proteolytically	 processed	 by	 BACE	 and	 γ-secretase	 to	 generate	 Aβ42	

peptides.	A	SNP	rs514049,	linked	to	the	ADAM10	gene,	may	perturb	the	normal	

processing	of	APP	to	produce	soluble	Aβ40,	as	rs514049	is	associated	with	lower	

level	 of	 CSF	APPα	 in	 AD	 [121].	 BACE1	 and	BACE2	 associated	with	 γ-secretase	

complex	proteins.	Moreover,	a	SNP	rs3754048,	with	allele	G,	in	the	promoter	of	

APH1A	gene,	might	alter	the	binding	ability	of	YY1	transcription	factor,	resulting	

in	 an	 increased	 level	 of	 APH1A	 and	 γ-secretase	 activity	 to	 facilitate	 Aβ42	

generation	[122].	

All	 these	 players	 in	 the	 non-amyloidogenic	 pathway	 are	 trans-membrane	

proteins,	that	traffic	through	the	endocytic	pathway	[123],	where	these	proteins	

are	internalized	from	the	plasma	membrane	and	recycled	back	to	the	surface	(as	

in	 early	 endosomes	 and	 recycling	 endosomes),	 or,	 alternatively,	 sorted	 to	

degradation	(as	in	late	endosomes	and	lysosomes	[124,	125].	However,	BACE1	is	

a	genetically	very	significant	gene	with	a	number	of	high	ranked	AD-associated	

SNPs.	 It	 is	also	evident	 that	APP	and	BACE1	are	up-regulated	 in	AD.	Moreover,	

experimental	 evidences	 suggested	 that	 at	 the	 cell	 surface,	 APP	 and	 BACE1	

strongly	 interact	 and	 co-localize	 and	 are	 being	 internalized	 together	 into	 early	

endosomes,	 where	 both	 proteins	 remain	 co-localized	 and	 produce	 amyloid-β.	

This	evidence	confirms	that	endocytosis	may	be	an	important	step	for	amyloid-β	
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production	 [126].	 This	 can	 be	 again	 supported	 by	 the	 association	 of	 genetic	

variants	linked	with	the	trafficking	proteins	in	the	EP.		

	

Figure	1:	 In	this	diagram,	we	present	a	flowchart	that	depicts	an	abstracted	BEL	

sub-network	 derived	 from	 the	 original	 AD	 BEL	Model.	 This	 flowchart	 represents	

causal	 relationships	 between	 genes	 and	 genetic	 variants	 for	 the	 EP	 components.	

Gene	 symbols	 written	 in	 the	 textboxes	 with	 red	 outline	 are	 showing	 association	

with	the	GWAS	identified	SNPs	for	AD.		

As	 shown	 in	 Figure	 1,	 there	 are	 two	 branches	 of	 EP:	 firstly,	 clathrin-mediated	

endocytosis	 (CME)	and	secondly,	 retromer-mediated	endocytosis	 (RME).	 In	 the	

CME	pathway,	various	proteins	such	as	CLTC,	PICALM,	DNM2,	EPS15,	and	BIN1	

modulate	APP	transport	for	its	further	internalization,	subsequent	Aβ	generation	
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and	 further	 processing	 in	 lysosomes,	 which	 is	 required	 for	 neurotransmission	

and	signal	transduction.	Clathrin	(CLTC)	is	a	major	protein	component	of	coated	

vesicles	and	coated	pits	in	CME	pathway	[127].	These	specialized	organelles	are	

involved	in	the	intracellular	trafficking	of	receptors	and	endocytosis	of	a	variety	

of	macromolecules	including	APP	with	the	help	of	additional	accessory	proteins	

such	as	PICALM,	EPS1,	DNM2,	EGF	and	 its	 substrate	EPS15.	PICALM	encodes	a	

clathrin	assembly	protein,	which	recruits	CLTC	and	AP2,	and	regulates	the	size	of	

the	clathrin	vesicle	at	neuromuscular	junction,	whereas	an	intronic	PICALM	SNP,	

rs588076,	is	associated	with	allelic	expression	of	a	PICALM	isoform	[128].	Stable	

DNM2	recruitment	during	CME	correlates	well	with	CLTC	lifetime	[129],	while	a	

risk	 allele	 at	 rs892086	 associated	with	 reduced	 expression	 of	DNM2	mRNA	 in	

the	hippocampus	in	AD	patients	compared	to	non-demented	controls	[130].	

On	 the	other	hand,	 the	EP	 is	 also	 regulated	by	 retromer	which	 transports	APP	

from	 early	 endosomes	 to	 trans-Golgi	 network	 (TGN)	 and	 released	 outside	 cell	

mainly	by	retromer	complex	(VPS35,	VPS29,	VPS26),	SORL1,	SNX3,	SNX1,	WASH	

complex	 (KIAA1033)	 and	 so	 on	 [131].	 SORL1	 protein	 belongs	 to	 type-I	 trans-

membrane,	 which	 is	 expressed	 in	 neurons	 and	 plays	 a	 critical	 role	 in	 the	

intracellular	 transport	 and	 in	 APP	 processing.	 SORL1	 binds	 to	 the	 retromer	

complex	and	works	as	an	adaptor	protein	for	APP	trafficking	from	endosomes	to	

TGN.	 It	 is	observed	 that	SORL1	 levels	are	reduced	 in	AD	diseased	brain;	while,	

overexpression	of	it	redistributes	APP	to	the	Golgi	apparatus,	thus	the	placement	

and	interaction	time	of	APP	and	BACE1	is	reduced	in	the	early	endosomes,	which	

will	 reduce	 the	amount	of	Aβ42.	 SNX3	mediates	 recruitment	of	 cargo	 selective	

retromer	complex	 in	association	with	VPS35	[131].	Recent	studies	have	shown	
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that	 SNX3	 and	 RAB7A	 are	 also	 required	 for	 proper	 recruitment	 of	 the	 cargo-

selective	 complex.	 Constitutively	 active	 RAB7A	Q67L	mutant	 is	 overexpressed,	

resulting	 in	 displacement	 of	 the	 cargo-selective	 complex	 [132].	 The	 cargo-

selective	 retromer	 subcomplex	 (VPS35–	 VPS29–	 VPS26)	 recruits	 the	 WASH	

complex	 (KIAA1033),	 which	 mediates	 the	 production	 of	 branched	 actin	

networks	 on	 the	 surface	 of	 endosomes.	 The	 cargo-selective	 retromer	 complex	

together	 with	 SNX27	 and	 the	WASH	 complex	 operate	 in	 the	 endosome-to-cell	

surface	recycling	of	receptors	and	proteins.			

Integration	 of	 genetic	 variation	 information	 enhances	 the	 evidence	 base	

for	shared	pathophysiology	pathways	in	neurodegenerative	diseases	

Parkinson´s	Disease	(PD)	and	AD	may	share	pathophysiological	mechanisms	and	

–	 as	 a	 consequence	 –	may	 actually	 share	 some	of	 their	molecular	 aetiology.	 In	

order	 to	 identify	 evidences	 that	 would	 speak	 for	 shared	 pathophysiology	

between	 AD	 and	 PD,	we	 systematically	 analyzed	 genetic	 variation	 information	

that	is	common	between	AD	and	PD	and	that	can	be	mapped	to	putatively	shared	

pathways.	We	have	selected	the	common	SNPs	from	AD	and	PD	GWAS	data,	and	

mapped	 them	 to	 gene	 annotation.	 Then	 we	 searched	 diseased	 BEL	models	 to	

identify	 the	 functional	 impacts	of	 these	genes	on	AD,	PD	or	neurodegenerative	

diseases	(see	Table	4).		
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Table	4:	A	list	of	common	SNPs/genes	in	AD	and	PD	with	their	possible	role	in	the	
disease	 context	 specifically	 for	 AD	 and	PD	 and	 generally	 for	Neurodegenerative	
diseases	(NDD):	

	

Common	SNPs	
in	AD	&	PD	

Gene	 AD	 PD	 NDD	

rs931977	

(Intronic)	

ERG2	 -	EGR2	targeted	by	
mAChRs	(muscarinic	
acetylcholine	
receptors),	which	is	
associated	with	
cognitive	functions,	
synaptic	plasticity	and	
memory	

-	EGR2	also	associated	
with	apoptosis	

-	 -	EGR2	is	involved	in	
myelination	of	peripheral	
nerves	

rs2672893	

(Intronic)	

RPTOR	 -	RPTOR	is	
downstream	of	MTOR	
and	is	expressed	highly	
in	AD	hippocampus	

-	RPTOR	activates	of	
PI3K-Akt	pathway	

Alpha-synuclein	
reduced	the	
activation	of	AMPK	
target	RPTOR	

-	

rs6488270	

(Intergenic)	

Downstream_variant	for:	

TMEM52B		

Upstream_variant	for:	

GABARAPL1	

-	 GABARAPL1	plays	
role	in	
development	and	
homeostasis	of	the	
mouse	brain	

-	GABARAPL1	presents	a	
regulated	tissue	
expression	and	is	the	
most	highly	expressed	
gene	among	the	family	in	
the	central	nervous	
system	

rs4742095	

(Intergenic)	

Upstream_variant	for:	

CD274	

PLGRKT	

-	PD1/PD-L1	(CD274)	
pathway	have	role	in	
neuroinflammation	of	
AD	

-	PD1/PD-L1	(CD274)	
pathway	is	associated	
with	IL-10	production	

-	 -PLGRKT	is	regulating	
plasminogen	activation	
which	plays	a	key	role	in	
regulating	
catecholaminergic	
neurosecretory	cell	
function	

-PLGRKT	is	also	involved	
in	macrophage	
recruitment	in	the	
inflammatory	response	

-	PLGRKT	is	believed	to	
have	role	in	plasminogen	
binding	and	cell	migration	

rs1984129	

(Intergenic)	

Downstream_variant	for:	

GBP6	

Upstream_variant	for:	

LRRC8B	

-	 -	 -	LRRC8B	is	implicated	in	
proliferation	and	
activation	of	lymphocytes	
and	monocytes	

rs10515758	

(Intergenic)	

Downstream_variant	for:	

EBF1	

Upstream_variant	for:	

-	 -	 -	EBF1	have	role	in	axonal	
pathfinding	

-CLINT1	interacts	with	
clathrin,	the	adapter	
protein	AP-1	and	
phosphoinositides.	This	
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CLINT1	 protein	may	be	involved	
in	the	formation	of	
clathrin	coated	vesicles	
and	trafficking	between	
the	trans-Golgi	network	
and	endosomes	

rs6810871	

(Intergenic)	

Downstream_variant	for:	

FAM114A1,	TMEM156	

Upstream_variant	for:	

KLHL5,	TLR6	

-	 -	 -	FAM114A1	plays	a	role	
in	neuronal	cell	
development	

-	FAM114A1	expressed	in	
dentate	gyrus,	the	
hippocampus,	the	
cerebellum	and	the	
olfactory	bulb	

	

Conclusion:	

Given	the	complexity	of	neurodegenerative	diseases	and	the	limited	accessibility	

to	experimental	tissues	of	brain,	we	need	new	strategies	to	integrate	data	driven	

and	 knowledge	 driven	 approaches	 to	 unravel	 the	 mechanism	 behind	 these	

complex	 diseases.	 Disease	 networks	 based	 on	 the	 systems	 biology	 models,	

comprising	 of	 various	 interacting	 molecules	 such	 as	 genes,	 proteins,	

bioprocesses	 etc.,	 succeeded	 to	 integrate	 most	 of	 the	 available	 data.	 In	 this	

review,	 we	 tried	 to	 recapitulate	 all	 the	 major	 breakthroughs,	 which	

demonstrated	the	collective	capturing	of	disease-related	knowledge,	modelling	it	

as	 a	 system.	 In	 addition,	 we	 have	 revisited	 the	 major	 studies	 around	

identification	 of	 genetic	 variants	 and	 prioritizing	 these	 variants	 based	 on	

statistical	analysis.	

So	 far,	 disease	networks	 could	not	 easily	 accommodate	 information	on	genetic	

variation.	We	have	introduced	a	novel	methodology	based	on	BEL,	which	enables	

us	 to	 integrate	 genetic	 variation	 information	 into	 a	 disease	 network.	 We	

developed	a	 strategy	 to	 analyze	 the	 functional	 consequences	of	 SNPs	based	on	

their	 location	 in	 the	 genome	 and	 an	 interpretation	 of	 their	 putative	 role	 in	 a	
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network	 model.	 Currently	 using	 the	 capabilities	 of	 extended	 BEL	 version,	 we	

have	 developed	 the	 AD	 BEL	 models	 together	 with	 genetic	 variants	 with	 their	

DNA,	RNA	or	protein	position,	variant	 type	and	associated	allele;	which	can	be	

used	 to	 better	 understand	 the	 role	 of	 SNPs	 in	 a	 disease	 context	 and	 tried	 to	

predict	 its	 consequences	 based	 on	 the	 functional	 context	 provided	 by	 the	

network	model.		

Although	 BEL	 provides	 certain	 powerful	 algorithms	 like	 reverse	 causal	

reasoning	(RCR),	which	allows	 identifying	upstream	controllers	of	an	observed	

effect,	 there	are	still	 limitations	 to	overcome	 in	order	 to	enable	reasoning	over	

genetic	 variants.	 It	 is	 obvious,	 that	 we	 need	 to	 develop	 more	 sophisticated	

algorithms	for	reasoning	over	genetic	variant	information	in	network	models,	by	

integrating	 the	 functional	 impact	 of	 genetic	 variants	 on	 genes	 in	 the	 disease	

context.	One	 route	 to	 go	 to	 refine	 that	 algorithm	 is	based	on	machine-learning	

approaches	 to	 train	 a	 model	 with	 the	 established	 knowledge	 of	 functionally	

identified	genetic	variants	 for	different	complex	diseases.	That	model	will	 then	

be	applied	to	neurodegenerative	diseases	to	overcome	the	deficiency	of	genetic	

variant	evidential	data	in	this	area.	

Summary	(Key	points):	

1. Systems	biomedicine	modelling	approaches	need	to	combine	various	types	of	

mechanistic	details	to	address	multi-level	nature	of	disease	dysregulation	

processes	

2. This	work	represents	genetic	variation	information	integration	in	cause-and-

effect	models	to	identify	candidate	disease	mechanisms	in	diseases	with	

complex	aetiology	
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3. It	is	an	integrative	mining	approach	that	identifies	"chains	of	causation"	with	

reasoning	over	genetic	information	in	BEL	models.	

4. It	exemplifies	a	new	strategy	to	integrate	data	driven	and	knowledge	driven	

approaches	to	unravel	the	mechanism	of	complex	diseases	
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Summary 

As the previous version of BEL did not support the representation of genetic variation 

information, I have proposed an extended syntax for OpenBEL that enables the 

coding of genetic variants in biomedicine models. I have proposed a representation 

for different genetic variant types: substitution, insertion-deletion and intergenic, by 

introducing new variant functions: g(SNP:rs113993960,var(delCTT)), 

r(REF:NM_000492.3,var(r.1653_1655delcuu)), and p(HGNC:CFTR,var(p.Phe508del 

)) for DNA, RNA and protein levels respectively. 

The extended BEL syntax is designed to support reasoning over cause-effect models 

that include genetic variation information. This work therefore aims to develop a 

rationale for the mapping of genetic variants to nodes in a BEL network, and to 

generate a rule-set that supports reasoning over a BEL model enriched with genetic 

variance information. 

In this article, I have suggested a mechanistic approach for the interpretation of 

disease-associated risk variants in complex systems biomedicine models. I have 

categorized genetic variants according to their predicted functional impact. Variants 

identified by GWA and eQTL studies are integrated with causal mechanisms through 

a multi-scale interconnection network (including genome – transcriptome – proteome) 

of epigenetic and genetic alterations, located within significantly influential genomic 

regions. Associated validating indicators (“supportive evidences”) are derived from 

clinical or experimental outcomes. Other potential validation signals at the molecular 

level may include protein abundance variation, protein isoform detection, mRNA 

splicing deviation and differential gene expression. Subsequently, these SNPs are 
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mapped with both well-established and novel disease-associated genes, to a disease 

model encoded in BEL.  

Through the annotation of disease models with SNPs ranked according to the 

functional relevance-scoring scheme, we enable an enhanced interpretation of the 

functional consequences of SNPs in a mechanistic context. We can ask questions such 

as “if this SNP modifies the effect of an upstream controller identified by reverse 

causal reasoning, can this result in a stronger dysregulation event downstream of the 

chain of causation”? This approach will allow us to assess the functional 

consequences of entire SNP panels in a given mechanistic context and to estimate the 

contribution of complex SNP patterns to dysregulation processes at the systems level. 
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Chapter 3 
 
Systematic analysis of GWAS data to identify 
genomic hotspots for shared disease mechanisms  
 
 
Introduction 
 
 

 
 
Figure 22: Part –III: Workflow for the intelligent functional interpretation of genetic 
variance information in multi-scale biomedical cause-and-effect models 

 
Genome wide association studies (GWAS) have delivered a large set of genome loci 

inducing “risk loci” for many common diseases. Such association studies normally 

investigate one specific trait in a population in a discrete way without considering the 

potential genetic and phenotypic correlation between diseases. However, along with 

literature and clinical evidences, GWAS data can be resourcefully used to annotate 

overlapping loci with analogous or contrasting effects on different diseases. 
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I described here a systematic approach to interpret GWAS data and emphasised the 

analysis of shared genetic variants across these diseases. Moreover, I conducted a 

comprehensive literature search to identify shared genes and extract shared genomic 

loci from GWAS for disease pairs, to assess overlapping stretches of the genome 

shared between them.  

The observation revealed that a high fraction of the SNPs studied in this work are 

associated with related diseases, which provides suggestive evidence that the 

molecular mechanisms influencing aetiology and progression of selected 

neurodegenerative diseases are partly interrelated. Genetic overlap between these 

diseases also suggests the significance of the affected entities in the specific 

pathogenic pathways, these should be investigated experimentally. 
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ABSTRACT: 

Objective: Genome wide association studies (GWAS) have delivered a large set of 

genome loci inducing “risk loci” for many common diseases. Such association studies 

normally investigate one specific trait in a population in a discrete way without 

considering the potential genetic and phenotypic correlation between diseases. 

However, along with literature and clinical evidences, GWA data can be resourcefully 

used to annotate overlapping loci with analogous or contrasting effects on different 

diseases. 

Methods: In the work presented here, we describe a systematic approach to interpret 

GWA data and related Linkage Disequilibrium (LD) variants for neurodegenerative 

diseases. We emphasize on the analysis of shared genetic variants across these 

diseases. A comprehensive literature search was conducted to extract a list of shared 

genes for disease pairs; this list of shared genes was subsequently compared to a list 
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of genes identified by a systematic analysis of GWAS genetic variants, to identify 

overlaps between them. Overlapping genome stretches comprising “shared loci” of 

variants were used to create a candidate gene list for genes potentially involved in 

disease progression mechanisms. In the course of a “functional enrichment process”, 

we mapped that gene list from shared loci to pathway information to identify shared 

molecular level perturbation in the pathophysiology of related diseases. 

Results: The observation revealed that a high fraction of the SNPs studied in this 

work are associated interlacing with related diseases, which provides suggestive 

evidence that the molecular mechanisms influencing aetiology and progression of 

selective neurodegenerative diseases are at least partly interrelated.  

Conclusion: Genetic overlaps between these diseases suggest the significance of the 

affected entities in the specific shared pathogenic pathways. 

 

KEY WORDS: GWAS, LD (Linkage Disequilibrium), Shared Genetic Loci, Genetic 

Variants, Shared Pathology, Neurodegenerative Diseases 

 

BACKGROUND: 

Genome wide association studies have been very useful for the identification of 

genetic variants as disease risk markers; however, the impact of these genetic variants 

in disease aetiology remains largely unclear. In this study, we tried to unravel 

molecular mechanisms underlying “shared genetic variants” and developed a strategy 

to identify candidate mechanisms for shared aetiology of diseases that display similar 

patterns of genetic variation organized in shared genomic hotspots. We demonstrate, 

how this approach leads to new insights that help to uncover biological relationships 

between quantitative traits or related neurodegenerative diseases.  
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Many traits or diseases have been shown to share genetic architecture [1,2]. This 

phenomenon, that a genetic variant affects multiple phenotypes, is often called 

'pleiotropy' [3-5]. Such pleiotropic variants are particularly interesting, as the 

functional impact of a SNP on one or several genes may provide clues about the 

underlying molecular mechanism. For example, a significant overlap of shared 

genetic variants and pathways has been detected in immune-mediated diseases, 

suggesting extensive pleiotropic effects [6-8]. These shared genetics variants linked to 

pathways are ideally suited to identify candidate mechanisms underlying a “shared 

aetiology” of different diseases.  

 

So far, various studies have been implemented across the genome, mostly on those 

groups of diseases, which are already well recognized or hypothesized to be 

interconnected [6, 8-10] or by investigating influence of individual genetic variant on 

a wide range of diverse diseases [11-13].  

 

Biologically, a genetic variant can influence different traits fundamentally in two 

different ways; firstly, it can influence two distinct phenotypes through two 

independent physiological mechanisms, while secondly, its effect on the second trait 

can be mediated through its effect on the first one. 

 

Apparent genetic similarities in a pair of distinct diseases may be indicative for 

potential overlaps in the underlying disease mechanisms. Thus investigating common 

factors and network modules shared within a pair of distinct, but related diseases, may 

point at shared mechanisms. Rather than studying individual diseases separately, 
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investigation and analysis of common dysregulated pathways or dysfunctional 

proteins of a pair of related diseases can be expected to reveal deeper comprehensive 

knowledge about pathophysiological processes.  

 

Correspondingly, computing of shared molecular level mechanisms of related 

disorders can not only assist understanding of the etiology of a disease; but also such 

associations between shared pathways, and correlation with biological processes can 

accelerate drug discovery efforts by suggesting promising treatment candidates for 

already approved drugs (known as drug repositioning) [14].  

 

In the work presented here, we performed a systematic and comprehensive analysis of 

shared genomic loci likely to represent genomic hotspots with genes functionally 

involved in the aetiology of neurodegenerative diseases. We go way beyond classical 

meta-analysis of GWAS data by performing a ‘functional context enrichment’ that is 

tailored to embed candidate genes in these genomic hotspots in a mechanistic context. 

We demonstrate that this functional enrichment can lead to the identification of new 

candidate mechanisms for shared aetiology of Alzheimer´s Disease and Parkinsonism.  

RESULTS: 

In an initial step, we selected five different brain diseases including Alzheimer’s 

disease (AD), Parkinson disease (PD), Schizophrenia, Multiple sclerosis (MS) and 

Type 2 diabetes mellitus (T2DM).  

 

Spatial analysis, after mapping of GWAS disease-associated intronic SNPs to the 

genes, they belong to; and intergenic SNPs to the most likely, nearby genes; reveals 

that most of the GWAS SNPs are located around specific genome loci (“genomic 
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hotspots”). Our assumption is, that the genes existing in the vicinity of these genome 

loci may play a role in the dysregulation of disease-associated pathways. 

 

Moreover, we computed pair-wise analysis for shared genetic variants to see the 

relevancy between each pair of diseases. However, enumerating of pair-wise shared 

GWAS SNPs before LD SNPs enrichment revealed that only a very limited number 

of individual SNPs are shared in a pair of diseases, while after LD analysis, most of 

the disease pairs showed a substantial count of shared variants; which also signify the 

genetically linkage between SNPs located on these specific genomic loci around 

GWAS SNPs. Thus it can be explained that these pairs of disease may share disease-

associated genomic loci rather than individual genetic variants [Supplementary File]. 

 

Pair-wise analysis also revealed that AD and PD have the largest number of shared 

disease-associated loci. There is no doubt, that this is reflecting the bias that comes 

with the higher number of GWAS studies and available data around these two 

diseases. But it also may indicate an overlap of the genetics relevant for 

pathophysiology mechanisms shared between AD and PD. Other disease pairs, for 

instance the AD – T2DM pair, did also show a promising number of shared genetic 

markers and genomic loci. Successively, pairs of AD – Schizophrenia and AD – MS 

also presented a reasonable number of shared SNPs and genomic loci [Table 1]. 
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Shared SNPs and Genes Count for 10 pairs of 5 Diseases 
Disease Pair Shared SNP Count Shared Gene Count 
AD – PD 35958 1793 
AD – T2DM 2187 103 
AD – Schizophrenia 867 46 
AD – MS 771 62 
PD – Schizophrenia 701 24 
PD – T2DM 463 21 
MS – Schizophrenia 421 28 
T2DM – MS 250 17 
PD – MS 246 19 
T2DM – Schizophrenia 223 18 

 

Table 1: List of disease pairs with GWAS associated shared genetic variants and 

genes count. 

The analysis of specific overlapping genome stretches between ‘loci identified for 

shared GWAS-LD genetic variants’ and ‘loci of already established disease-

associated genes in the literature’ revealed that there was a quite significant overlap 

between GWAS loci and literature based disease-associated gene loci [Supplementary 

File], which provides suggestive evidence for an association between genetic variants 

and disease pathology.  

 

Analysis of putative shared pathways was done by mapping genes in genomic 

hotspots to pathways using MsigDB. Shared pathways – as a functional layer on top 

of shared genetics -  are indicative for putative pathology mechanisms shared between 

pairs of diseases. The analysis workflow thus identifies disease pairs that do display a 

high number of shared genomic hotspots, a significant number of putative shared 

pathways and – as a consequence - may have significantly shared molecular level 

mechanisms, that – when perturbed - may contribute to disease etiology. 

 

To explore the pathophysiology of putative shared mechanisms in detail, we selected 

the pair of AD and PD for a mechanistic case study. Amongst their shared genomic 
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loci, we selected the well-known Tau locus, located on chromosome 17, to explore 

further detailed molecular mechanisms, as it showed top ranked “functional 

consequences” scores, based on ENCODE data, the Roadmap Epigenome Consortium 

data, DNase footprinting analysis, and DNA Methylation data. Apparently, selecting 

the tau locus seems to add nothing new and novel, as the tau locus is already well 

known and has been studied in detail. However, this locus has never been studied in a 

comprehensive way by “embedding” all the affected genes in that locus into a 

functional context. In our analysis, we expand the mechanistic context associated with 

the genes in the tau locus, by collecting and assembling all genetic, molecular and 

statistical evidences from the literature, from patents, from gene expression studies 

and from knock-out experiments in one comprehensive mechanistic model. In the 

following, we are presenting this locus in a very novel and unique perspective of 

stress induced shared pathology of AD and PD.    

 

This genomic hotspot around tau is highlighted in many association studies for 

multiple statistically significant SNPs (references).  The hotspot covers approximately 

1 MB of a chromosomal region characterized by linkage disequilibrium region, that 

contains a large number of genetic variants. 

	 

Three genes are prominent in this locus: MAPT (Microtubule-Associated Protein 

Tau), the CRHR1 receptor-1 (Corticotropin Releasing Hormone Receptor 1) and the 

CRHR1-IT1 gene (CRHR1 Intronic Transcript 1). These genes are linked to several 

disease-associated genetic markers mapping to both, coding and non-coding regions. 

Moreover, disease-associated intergenic and intronic SNPs of this locus have several 

eQTL links with neighboring genes [Supplementary File].	 
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In the course of our investigation of this shared genomic locus, we identified that, 

other than AD and PD, it also has well-established associations with Stress and 

Depression phenotypes. We searched for potential genetic, molecular and statistical 

evidences from the scientific literature and collected additional evidences from 

patents, gene expression studies and knock-out experiments, that all support the 

notion of a shared molecular mechanism linking Stress, AD and PD [Figure 3]. 

 

To enrich the genetics-driven identification of candidate genes with functional context 

and to identify potential mechanisms that bear explanatory potential for the presumed 

shared etiology linked to this particular locus on chromosome 17, we performed a 

systematic literature analysis using our literature mining environment SCAIView 

[15]. Contextual information relevant to the previously identified, disease-associated 

tau locus and being specific for the context of AD and PD was systematically 

identified and harvested. The extracted information comprises cause-and-effect 

relationships representing protein-protein interactions, protein inhibitory and 

activating patterns, protein-complex formation, insights from disease animal model 

studies, patterns from knockout and gene expression studies, other genetic 

associations; from gene mapping (fine-mapping) and GWAS meta-analysis studies, 

and from drug effects; all with high specificity for either AD or PD or both. The vast 

amount of information extracted was subsequently encoded using the OpenBEL 

(Open Biological Expression Language) syntax to construct a cause-and-effect 

computable model [16]. Models were developed separately for human and mouse. 

The resulting, comprehensive BEL models represent the state of published knowledge 

in the context of the genes under investigation in the context of AD and PD; the 

models are then visualized by Cytoscape_v2.8.3 [17], and queried for disease 
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associated molecular mechanisms to unravel mechanistic context that link molecular 

level perturbation with the disease etiology.  

 

The mouse model reveals that repeated stress induces the expression of the wild-type 

CRH (Corticotropin Releasing Hormone) gene, while inactivation of the CRHR1 

gene, which is the receptor of CRH, not only inhibits the complex of CRH+CRHR1 

but also causes a reduction of MAPT phosphorylation and a reduction of Amyloid 

beta (Aβ) peptide concentration [18]. CRHR2, which is another receptor of CRH, 

inhibits MAPT phosphorylation; moreover, it has been shown to down-regulate the 

expression of CDK5, ERK, GRK and JNK genes [19]. As further supportive evidence 

for the functional antagonism between CRHR1 and CRHR2, the CRHR1 inhibitor 

‘Antalarmin’ blocks CRHR1 and its complex with CRH; the inhibitor also causes a 

reduction of MAPT phosphorylation [19] [Figure 1]. 

 

Figure 1: Experimental evidences for CRH gene and its receptors CRHR1 and 

CRHR2 and CRHR1 antagonist ‘Antalarmin’: Experimental evidences for CRH 

gene and its receptors CRHR1 and CRHR2 and CRHR1 antagonist ‘Antalarmin’, 
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collected from mouse model knock-out experiments to identify their role in the stress 

induced mice Hippocampus: Repeated stress induces the expression of the wild-type 

CRH gene, while inactivation of the CRHR1 gene, which is the receptor of CRH, not 

only inhibits the complex of CRH+CRHR1 but also causes a reduction of MAPT 

phosphorylation and a reduction of Amyloid beta (Aβ) peptide concentration. 

CRHR2, which is another receptor of CRH, inhibits MAPT phosphorylation; 

moreover, it has been shown to down-regulate the expression of CDK5, ERK, GRK 

and JNK genes. As further supportive evidence for the functional antagonism between 

CRHR1 and CRHR2, the CRHR1 inhibitor ‘Antalarmin’ blocks CRHR1 and its 

complex with CRH; the inhibitor also causes a reduction of MAPT phosphorylation. 

 

The contextual BEL model specific for human pathophysiology demonstrates that a 

genetic variant rs1800547, located on the intron region of the MAPT gene, is 

positioned on the Haplotype-1 region of chromosome 17, which is associated with PD 

[20, 21]. Its ‘A’ allele is associated with ‘Dementia in PD patients’ and its ‘G’ allele 

with ‘familial FTD’ [22]. This genetic variant is linked with the expression of host 

gene MAPT and also expression of a neighboring gene CRHR1; thus, its ‘A’ allele is 

associated with an up-regulation of MAPT and a concomitant down-regulation of the 

CRHR1 gene, while the ‘G’ allele is associated with an up-regulation of the CRHR1 

gene [22]. In addition, the ‘A’ allele containing SNP rs1800547 is linked to a neuro-

imaging readout, the reduction of gray matter volume [22]. Likewise, the ‘A’ allele of 

another SNP named rs393152, which is located near the CRHR1 gene, is associated 

with the up-regulation of the MAPT gene [23]. Moreover, the rs393152-A allele has 

been associated with AD and PD, and seems to be linked to a reduction of gray matter 

volume as well as atrophy of the hippocampus and entorhinal cortex [23][Figure 2]. 
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Figure 2: Experimental evidences for AD/PD pleiotropic variants, to identify the 

functional consequences for these variants: A genetic variant rs1800547, located 

on the intron region of the MAPT gene, is positioned on the Haplotype-1 region of 

chromosome 17, which is associated with PD. Its ‘A’ allele is associated with 

‘Dementia in PD patients’ and its ‘G’ allele with ‘familial FTD’. This genetic variant 

is linked with the expression of host gene MAPT and also expression of a neighboring 

gene CRHR1; thus, its ‘A’ allele is associated with an up-regulation of the MAPT and 

a down-regulation of the CRHR1 gene, while the ‘G’ allele is associated with an up-

regulation of the CRHR1 gene. Moreover, the ‘A’ allele containing SNP rs1800547 is 

also linked to a neuro-imaging readout, the reduction of gray matter volume. 

Likewise, the ‘A’ allele of another SNP named rs393152, which is located near the 

CRHR1 gene, is associated with the up-regulation of the MAPT gene. Moreover, the 

rs393152-A allele is associated with AD and PD, and also linked with a reduction of 

gray matter volume as well as atrophy of the hippocampus and entorhinal cortex. 
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BEL models are excellent tools to represent complex physiology; the representation in 

BEL bears great explanatory potential on how complex physiology works across 

scales. Our contextual BEL models representing complex physiology of genes in the 

Tau locus provide a mechanistic explanation, how excessive and repeated stress may 

modulate pathophysiology.  Repeated stress induces the expression of the CRH gene 

in the hippocampal area [24], while under AD conditions, reduced CRH immune-

reactivity is observed [25]. CRH interacts with its receptor, the CRHR1 protein; the 

CRHR1 gene is highly expressed in hippocampus and the complex between the 

hormone and its receptor (CRH+CRHR1) can be detected in that brain region [26]. In 

addition, the CRHR1 protein also interacts with γ-secretase, which is associated with 

Aβ accumulation, one of the hallmarks of AD pathophysiology [27].  

 

The hormone receptor protein complex (CRH+CRHR1) is further linked to the up-

regulation of GSK3β and the phosphorylation of essential elements of the 

ERK1/2/MAPK pathway [19, 28]. Up-regulation of GSK3β is associated with MAPT 

hyper-phosphorylation [28, 29]; in addition, phosphorylated MAPT and 

ERK1/2/MAPK pathway up-regulate Neurofilament phosphorylation, which has been 

associated with AD [19, 28]. The complex physiology is even increased through the 

interaction of the ‘CRH+CRHR1’ protein complex with the BDNF protein; this 

interaction has already been associated with AD pathology [30]. The complex also 

enhances neuronal activity by interacting with adenylate cyclase, cAMP, act(PAK), 

Ca2 signaling pathways [30]. The resulting enhanced neuronal activity has been 

shown to further accumulate interstitial fluid amyloid beta (ISF Aβ), while this 

accumulation of ISF Aβ is also linked with up-regulation of CRH gene expression 

[31], effectively establishing a feedback loop that can enhance negative dysregulation 
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events. MAPT hyper-phosphorylation also increases its dissociation from 

microtubules, a process that has been linked to lewy-bodies and Parkinsonism, in the 

PD context [32]. 

 

Finally, the CRHR1 antagonist ‘Antalarmin’, which is used in response of chronic 

stress, has been shown to reduce Aβ accumulation in brain [33][Figure 3], adding 

further meaningful, supportive evidence in context. 

 

 

Figure 3: Stress induced comorbidity association of AD and PD by genetic 

variants of Tau locus genes: Stress up regulate CRH gene expression, which 

interacts with its receptor, the CRHR1 protein; the CRHR1 gene is highly expressed 

in hippocampus and the complex between the hormone and its receptor 

(CRH+CRHR1) can be detected in that brain region. In addition, the CRHR1 protein 

also interacts with γ-secretase, which is associated with Aβ accumulation, one of the 

hallmarks of AD pathophysiology. The hormone receptor protein complex 
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(CRH+CRHR1) is further linked to the up-regulation of GSK3β and the 

phosphorylation of essential elements of the ERK1/2/MAPK pathway. Up-regulation 

of GSK3β is associated with MAPT hyper-phosphorylation; in addition, 

phosphorylated MAPT and ERK1/2/MAPK pathway up-regulate Neurofilament 

phosphorylation, which has been associated with AD. The complex physiology is even 

increased through the interaction of the ‘CRH+CRHR1’ protein complex with the 

BDNF protein; this interaction has already been associated with AD pathology. The 

complex also enhances neuronal activity by interacting with adenylate cyclase, 

cAMP, act(PAK), Ca2 signaling pathways. The resulting enhanced neuronal activity 

has been shown to further accumulate interstitial fluid amyloid beta (ISF Aβ), while 

this accumulation of ISF Aβ is also linked with up-regulation of CRH gene 

expression, effectively establishing a feedback loop that can enhance negative 

dysregulation events. MAPT hyper-phosphorylation also increases its dissociation 

from microtubules, a process that has been linked to lewy-bodies and Parkinsonism, 

in the PD context. Finally, the CRHR1 antagonist ‘Antalarmin’, which is used in 

response of chronic stress, has been shown to reduce Aβ accumulation in brain, 

adding further meaningful, supportive evidence in context. 

 

Additionally, exhaustive analysis of relevant patent literature revealed that an 

antagonist against the CRH receptor is effective as a prophylactic or therapeutic agent 

for diseases, like, anxiety, depression, AD and PD [34]. Patents also describe multiple 

lines of evidence that suggest the significant role of CRHR1 on neuropsychiatric 

disorders, and MAPT gene as a well-studied candidate gene for neuropsychiatric 

disorders [35]. Moreover, it is also patented that although the two receptors CRHR1 

and CRHR2 share 70% sequence identity, they differ substantially in ligand binding 
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affinity, and the CRH gene itself has a much higher affinity for CRHR1 rather than 

CRHR2 [36]. Another patent describes that the accumulation of hyperphosphorylated 

tau protein in the central nervous system, may be reduced through the administration 

of CRHR1 selective antagonists and/or CRHR2 selective agonists. Patent 

[EP2522351 A1] indeed describes methods for the prevention of the onset of 

Alzheimer's disease by the administration of CRHR1 selective antagonists [37] 

[Supplementary File].	

 

DISCUSSION: 

 

In the work presented here, we established an integrative approach that starts with a 

data-driven approach, identifies signals in GWAS data, and gains explanatory 

potential and allows for new insights into putative complex mechanisms through 

knowledge-driven context enrichment. Our approach goes way beyond classical 

“pathway enrichment” approaches, as it takes multimodal information into account 

and integrates heterogeneous information and knowledge in biologically meaningful, 

computable graph models. Data, a priori knowledge and inferred insights are 

combined in a seamless fashion. Meaningful cause-and-effect relationships are 

established and the signals originally identified are made interpretable in a rational 

modeling and mining approach.   

 

Our workflow is tailored towards the identification of novel shared mechanisms. It 

starts with comparative GWAS analysis tailored to identify shared genetic variants; 

puts the enriched SNPs in contigs (based on linkage disequilibrium); identifies those 

genes belonging to the “shared” LD loci, and establishes compelling evidence for 
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shared molecular mechanisms and biological pathways associated with those genes, 

for a given pair of disease. The workflow was applied to a comprehensive set of 

related diseases and allowed us to investigate shared molecular level mechanisms 

between a pair of diseases, based on both, data driven and knowledge driven 

strategies. 

 

We would like to emphasize that genomic loci (genomic hotspots) should be 

considered to investigate the effects of GWAS variants rather than individual genetic 

variants, particularly to investigate shared pathology. Whereas the biological impact 

of single SNPs is often hard to predict, the association of several SNPs in a disease-

associated LD block provides evidence for a much stronger association that may 

affect an entire locus with several genes. As a consequence, a set of SNPs in a 

genomic hotspot may contribute to dysregulation events involving several genes. 

 

Modeling the functional context of these genes in computable cause-and-effect 

models can be very helpful to identify possible molecular level perturbation 

mechanisms that contribute to disease pathology. As such, computable mechanistic 

models are essential to integrate diverse types of data as well as relationships between 

the nodes; they can help to discover unknown links to illustrate the possible 

mechanism of dysregulation.  

 

At this point we would like to stress that we are not talking about pathways when we 

talk about mechanisms. Although pathways are abstractions of biological functional 

context that is shared by many cell types and often conserved across species 

boundaries, the pathway concept as it was established over the last 30 years is not 
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taking into account genetic variation information and is not well-suited to take into 

account the specifics of cell-cell-interactions. “Chains of causation” as we find them 

in the BEL model graphs may as well exist in pathways, but in pathways they are 

confined to one type (one “mode” or “level”) of information. Integrative models 

based on causal relationships, however, span over multiple levels and scales and 

establish links e.g. from SNPs to imaging features in one single, computable graph 

model. We would encourage the community to clearly distinguish between pathways 

(representing canonical information) and mechanisms (representing causes and effects 

associated with a disease context). Mechanistic modeling allows us to be highly 

specific with respect to the available knowledge in a given context, without restricting 

us to make use of canonical knowledge if we wish to include that type of common 

information.    

 

The mechanistic hypothesis generated from our ‘tau locus BEL model’ establishes a 

rational, how stress could cause deficits in memory [38-43]. We may actually have 

established a functional context that puts a “sensor” for environmental and life style 

into a pathophysiology mechanism that could play a significant role in the etiology of 

Alzheimer’s disease. Our model provides also mechanistic clue, how hippocampal 

atrophy may be linked to the pathophysiology of stress [38, 40-43]. The stress-related 

HPA axis activation (linked to the CRH-CRHR1 complex) may thus represent a 

pathophysiological initiation of memory loss [41]. Likewise, it is reported that the 

decline in CRH Immuno-Reactivity (CRH-IR) in AD is due to the reciprocal 

accumulation of CRH receptors in affected cortical areas [26]. The alteration in pre- 

and postsynaptic indicators for CRH is significantly correlated with decline in ChAT 

(choline acetyltransferase) activity [26]. 
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The H1 haplotype of MAPT extends towards the 5′ region and includes the 

contiguous gene CRHR1. Linkage Disequilibrium (LD) of this region is substantially 

associated with PD patients [44]. Strikingly, the oldest and most extensively case-

control studies for PD demonstrated the greatest evidence for MAPT and H1 

haplotype association. By genotyping H1 haplotype SNPs within the CRHR1-MAPT 

interval, we can hypothesize that the CRHR1 gene may be responsible for at least part 

of the disease association of this locus due to the genetic variability and could become 

a good biomarker candidate, since it is significantly involved in both, immune and 

nervous systems physiology [44]. Missense and splicing genetic variants in MAPT 

were first uncovered in ‘frontotemporal dementia with parkinsonism’ associated with 

chromosome 17 (FTDP-17) [20]. 

 

Thus, forgoing studies have already specified associative links between stress, CRH-

CRHR1, and tau pathology mediated by CRH-CRHR1 dependent activation of tau 

kinases induced by stress [19,30,45]. On the other side, the H1 haplotype is associated 

with the accumulation of hyperphosphorylated Tau in neuronal cell bodies, which has 

always been associated with neurodegenerative diseases [46, 47] 

 

Though AD and PD are likely to have different mechanisms underlying their etiology, 

and may affect different brain regions, and display different clinical features, still they 

have a significant overlap in the progression of neurodegenerative processes. A recent 

study has been investigating AD and PD GWAS SNPs to identify AD-PD pleiotropic 

genetic variants/loci. They found, that the ‘A’ allele of rs393152, within the CRHR1 

and CRHR1-IT1 region (MAPT locus) on chromosome 17, with a MAF (minor allele 
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frequency) value of 23.1%, significantly increased AD and PD risk, additionally, that 

allele is linked to the up-regulation of MAPT expression [23]. With APOE-stratified 

GWAS, another study revealed that genetic variants in the chromosome 17q21.31 

region are associated with AD [48]. 

 

Besides all the genetic evidences that support our mechanistic model, there is also 

evidence from pharmacology that adds to the plausibility of the pathophysiological 

context we have established. Rissman et. al. described that the selective CRHR1 

blocker “antalarmin” blocks stress-induced escalations in tau phosphorylation. This 

points at a direct function for CRF-dependent signaling in the stress response [19]. 

Fully in line with this observation is the finding, that CRHR1 antagonist antalarmin is 

able to suppress amyloid beta accumulation associated with AD pathology, in mice 

[49]. 

 

It is also notable that CRHR1 has a vital role in inflammation [50, 51], and the 

CRHR1 antagonists that are used to treat depression [52, 53], also control peripheral 

inflammation [54-56]. Similarly, those antidepressants, which are known to modulate 

inflammatory responses, also confer protection against cytokine-induced depressive-

like behavioral and biological modifications [57-61].  

 

In a clinical study with MCI (Mild Cognitive Impairment), AD and control groups, 

Arsenault-Lapierre et al. [62] couldn’t find group differences in cortisol levels. This 

contradicts several previous studies that found different cortisol levels between 

normal and AD [63-67], and between normal and MCI groups [67, 68]. Contrarily, it 

supports the literature that found no correlation between cortisol level and perceived 



	170	

stress in different populations [69-71]. Whereas, in this study more MCIs were 

diabetic, and diabetic patients have been found to secrete higher cortisol levels [72-

74], likewise more AD patients were on sedatives or antidepressants. These 

medications may affect levels of cortisol and perceived stress measured in the patients 

[62]. However, these findings support our hypotheses that with the mechanism 

introduced here and the link between HPA axis, genetics and major determinants of 

AD and PD pathophysiology, we see a source for the highly stochastic nature of 

sporadic NDDs. 

 

Repetitively, in a recent publication, Park HJ stated that stress response meditated by 

CRH-CRHR1 mechanism could also contribute to AD pathogenesis [27]. But he also 

described that under some circumstances, CRHR1 antagonism does not achieve 

required results against acute stress-induced Aβ production, rather he suggested that 

either direct targeting of CRH or G protein-biased CRHR1 agonist that could suppress 

β-arrestin recruitment to CRHR1 might be required to effectively target associated 

pathway for therapeutic benefit in AD. [27] 

 

METHODS:  

GWAS disease-associated variants are identified throughout the entire genome. In 

order to reveal shared genomic hotspots, that could have been comprised candidate 

genes for shared molecular mechanisms between two or multiple neurodegenerative 

and related diseases, genetic variants were collected from GWAS catalog [75] with 

the threshold of p-values < 1.0 x 10-5 for five diseases; including Alzheimer’s disease, 

Parkinson disease, Schizophrenia, Multiple sclerosis and Type 2 diabetes mellitus. 

These collected genetic variants were belonged to multiple disease association studies 
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and each association study was conducted with different sample sizes. Thus according 

to basic principle of meta-analysis, we combined the evidence for association from 

individual studies, with the implementation of appropriate weights, by using a whole 

genome association analysis toolset Metal [76], and normalized them for their 

different sample sizes. 

 

Afterwards, Linkage Disequilibrium (LD) analysis was conducted separately for each 

disease by using Haploreg DB V.4.0 [77]. Next, shared genetic variants were queried 

by pair-wise analysis for ten pairs of disease of these five diseases.  

  

Subsequently, we made use of the ENSEMBL variant database [78-80] as a reference 

database to map the SNPs with their relevant chromosome, location, gene, allele and 

potential functional features (intergenic SNPs were mapped to the nearest gene on the 

chromosome). Additionally, these shared SNPs were interpreted with the 

characteristics of predicted functional consequences by using RegulomeDB V.1.1 

[81] to get annotation from current ENCODE data (updated with recent ENCODE 

releases: [82, 83]), Chromatin States data from the Roadmap Epigenome Consortium 

and updated data for DNase footprinting, PWMs, and DNA Methylation, and finally 

ranked the variant lists according to predicted functional consequences attributes. 

 

Most of the GWAS identified genetic variants are located on the non-coding regions 

of the genome. In order to investigate, whether there are any overlapping genome 

stretches between the ‘loci of shared GWAS and LD genetic variants’ and ‘loci of the 

well-established disease-associated genes in the literature’; in addition to the data-

driven approaches described above, a comprehensive knowledge driven approach was 
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also conduction, by searching systematically from literature with the help of a 

literature mining environment – SCAIView. [84].  

 

To extract shared genes for a pair of disease from literature, we were queried via 

SCAIView for those genes, which were studied for both diseases comprised in a pair 

(i.e. for AD and T2DM disease pair: {(([MeSH Disease:"Alzheimer Disease"]) AND 

[MeSH Disease:"Diabetes Mellitus Type 2"]) AND [Human Genes / Proteins]}). This 

literature search was conducted in a pair-wise analysis of genes for all of the ten pairs 

of diseases. The extracted list of “shared genes for a pair of disease from literature” 

(represented in the workflow as ‘List: A’) from SCAIView, was then used to pinpoint 

overlaps by comparing it with the list of “genes mapped with shared GWAS-LD 

genetic variants for a pair of disease” (represented in the workflow as ‘List: B’); and 

resulting file had ‘shared genes for a pair of disease’ common in GWAS-LD and 

Literature [Figure 4].  

 

Figure 4:  Flowchart for data analysis steps: Flowchart for data analysis steps 

starting from GWAS Data collection to integration, mapping, annotation, filtering, 
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Modeling and finalizing by Hypothesis generation. 

 

Afterwards, we mapped these shared genes list to biological pathways by using 

MsigDB [85], to identify common pathways for each pair of disease. To demonstrate 

the potential of the approach, we did an exploratory study on one putative shared 

mechanism relevant for AD and PD. The genomics locus investigated maps to 

chromosome 17; to a region that displays highest scores for functional consequences 

in RegulomeDB, and one of high ranked shared pathway between AD and PD from 

MsigDB result table, that is ‘KEGG_LONG_TERM_DEPRESSION’ [Supplementary 

File]. The high-resolution analysis of that shared genomic locus for its potential role 

in the aetiology of the disease pair AD and PD includes  – besides the identification of 

the candidate locus and the candidate genes within - the collection of evidences from 

gene expression studies, patents, knock-out studies and other literature, ultimately 

resulting in a comprehensive knowledge-driven approach towards the enrichment 

with supportive evidence. 
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Summary 

In this work, I have tried to identify shared mechanisms underlying neurodegenerative 

diseases by a “shared genetics” approach. This paradigm is not novel however, the 

route I have taken to map and integrate biomarkers by means of cause-and-effect 

modelling approaches, is really new. It holds great potential for the mechanistic 

interpretation of the biological impact of genetic variation.  

I have systematically analysed data from GWAS experiments in various neurological 

conditions related to neurodegeneration. “Shared SNPs” identified “shared loci” and I 

came up with significant “genomic hotspots” enriched for genetic variation with 

relevance for two major neurodegenerative diseases, Alzheimer´s Disease (AD) and 

Parkinsonism (PD). 

Evading the established route of performing “gene set enrichment” or any other 

“pathway association” method usually applied to signals in omics-data. I rather tried 

to reconstruct the putative pathophysiology processes associated with genes in 

“genomic hotspots” by integrating them in cause-and-effect models. The resulting 

systems pathophysiology models have great explanatory potential for the biological 

impact of the “shared genetics”. Moreover, they permit the integration of other 

evidences supporting the notion of a pathophysiology mechanism. The methodology I 

have developed has led us to a very interesting new “shared mechanism” that has 

relevance to both AD and PD. It also explains how environmental factors and stress 

can influence neurodegenerative disease risk and pathophysiology at a mechanistic 

level.  
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Chapter 4 

Discussion and Future outlook 
 

Discussion 

A major challenge in the translation of GWAS evidences into disease mechanism is to 

reveal which gene or set of genes at or near disease-associated genetic loci is makes 

etiological contributions to disease. GWASs are expected to continue to bear fruit 

performing GWAS keep. Carefully designed meta-analyses of GWAS can detect 

novel small-effect genomic regions associated with disease, and fine-mapping 

approaches, as well as studies in ethnic subgroups, can refine existing ones. In 

parallel, there is a demanding need to translate genetic markers of complex traits and 

diseases into molecular mechanisms, through both global meta-analysis of multiple 

GWAS intervals and in-depth mechanistic studies of transcription, chromatin 

structure and DNA methylation at individual GWAS intervals. This functional 

translation is crucial for the identification of novel “druggable” components and 

pathogenic pathways. This in turn has the potential to empower clinical care through, 

for example, improved risk prediction, biomarker identification, disease sub-

classification, drug development and dosing. 

Network analysis can play an increasingly important role in prioritizing candidate 

causal variants for further experimental validation. Ultimately, the combination of 

computational and experimental approaches will yield mechanistic insights into the 

process by which a genetic variant, or a combination of variants, affect a complex 

phenotype. Given the complexity of neurodegenerative diseases and the limited 
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accessibility to experimental tissues of brain, we need new strategies to integrate data 

driven and knowledge driven approaches to reveal the mechanism behind these 

complex diseases. Disease networks based on systems biology models, comprising 

various interacting molecules and bioprocesses, were successful in integrating most of 

the available data. This methodology demonstrates how genetic and genome wide 

association data can be systematically analysed to gain knowledge and finally how 

knowledge can be quantified to guide decisions that improve success for target and 

biomarker discovery. 

In the work presented here, I established an integrative approach that starts with a 

data-driven approach, identifies risk variants in GWAS data, and allows for better 

understanding of putative complex mechanisms through knowledge-driven context 

enrichment. This approach goes far beyond classical “pathway enrichment” 

approaches, as it takes multiscale and multimodal information into account and 

integrates heterogeneous information and knowledge in biologically meaningful, 

computable graph models. Data, a priori knowledge and inferred insights are 

combined in a seamless fashion. Meaningful cause-and-effect relationships are 

established and the signals originally identified are made interpretable in a rational 

modelling and mining approach.   

Modelling the functional context of genes associated with genetic variants in 

computable cause-and-effect models can be very helpful to identify possible 

molecular level perturbation mechanisms that contribute to disease pathology. 

Mechanistic modelling allows us to be highly specific with respect to the available 

knowledge in a given context.    

The proposed extension for genetic variance information into computable modelling 
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is a valuable contribution to the genetic research community. It can be further 

extended, and can be adopted for analysis using different algorithms. The developed 

protocol served as one of the keystones for the IMI funded European project; 

AETIONOMY [https://www.aetionomy.eu]. The construction and simulation of 

computable cause-and-effect models of disease pathology may therefore be able to 

predict the response to a drug or improve the design of clinical experiments. 

The mechanistic hypothesis generated in the work, from ‘tau locus BEL model’ 

establishes a rationale, how stress could cause deficits in memory. It may actually 

have established a functional context that puts a “sensor” for environmental and life 

style into a pathophysiology mechanism that could play a significant role in the 

aetiology of Alzheimer’s disease. Comprehensive genetic knowledge related to 

aetiology and treatment of neurodegenerative diseases is of paramount importance, as 

this field has always been enigmatic for scientists and clinicians. In that regard, this 

study shows how systems biology modelling can be used to link data from disparate 

domains, which can allow crosswalking through them and hence could be used to 

map diagnostic and treatment options.  

However, validation of the established mechanisms or hypotheses in wet labs still 

remains to be done. In the future, it is also needed to connect the mechanistic model 

with available clinical data to do more advanced analysis and ensure the completeness 

of the model. More research is needed in these areas to bridge the gap between the 

molecular and genomic level data to generate the mechanistic knowledge. Lastly, 

there is an immense need to continue to facilitate automatic updating and enrichment 

of the knowledge model as new insights are gathered in the research field. 
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Future outlook 

The genetic research will benefit from this effort, as the approach developed in the 

course of this work has led to the discovery of novel knowledge in the genetic and 

biomedical domain and can be further applied to topics beyond the scope of this work. 

In the future, mechanistic modelling could be further used for extraction of common 

pathways and mechanisms shared by different diseases existing in the knowledge 

space. This protocol can be adapted to other scientific domains apart from genetics. It 

can also be used to systematically identify and rank new hypotheses for different 

diseases.  

The study confers enhanced interpretation power for screening and prioritization of 

the most suitable genetic candidates with the aim of advancing genetic and drug 

discovery and development efforts. Hence, the predicted genes and genetic candidates 

enriched with supporting evidences may guide future validation efforts in 

experimental clinical research and molecular biology laboratories. 

In view of the rapid pace of genome studies, this thesis proposes a strategy that 

facilitates mining and prioritization of interesting candidates in a way that could shift 

research new and rewarding directions. Taken together, the work presented here 

demonstrates the development of new knowledge discovery techniques that enable the 

collection, curation, annotation, interpretation and discovery of a broad spectrum of 

knowledge needed for efficient and systematic biomedicine research. 

In the future, by using such longitudinal data, integrated networks could be generated 

and the inter-connectivity of such networks can divulge both known and novel 

candidate biomarkers. Moreover, analysis of such longitudinal data can identify 
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network perturbations associated with common diseases. Recently a wellness study 

(Price ND, et al. 2017 1) has been conducted by collecting dynamic, dense, and 

personal data for 108 persons over 9 months, including clinical tests, whole genome 

sequence, proteomes, metabolomes, and microbiomes at three different time points. 

However, the design of such diagnostics to reveal early disease transitions, and other 

interventions to reverse the disease process, is still at its very earliest state. 

Nevertheless, such dynamic and diversified personal data integration will take place 

at a crossroads for the emerging arena of scientific wellness, which may initiate the 

preventative, predictive, personalized and participatory (P4) medicine (like Precision 

Medicine) of the 21st century. 
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