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Abstract

In this thesis, we consider gradient models on the lattice Z?. These models serve
as effective models for interfaces and are also known as continuous Ising models.
The height of the interface is modelled by a random field ¢ : A — R, where A is
a finite subset of Z?. The energy of a configuration ¢ is given by a Hamiltonian
Ha(@) =D ,en Zgzl W(V;p(z)) with a potential W and finite difference quotient
Vip(z) = p(z+e;) — p(x). We impose a tilt u € R? on the interface by equipping A
with periodic boundary conditions and considering the Hamiltonian H} with shifted
potential W (- 4+ u;). We are interested in the Gibbs measure at tilt u and inverse
temperature 8 of this model,

1 u u
Vh g(dp) = ——e PHA@IN\ (dp), where Z} 5 = / / e PHR@I )\, (dy),
R {constants}

and Ap(dy) is an a priori measure on R/(congstants}- For the potential W being a
small non-convex perturbation of the quadratic interaction we prove scaling of the
model to the Gaussian free field, strict convexity of the surface tension and algebraic
decay of the covariance. The method of the proof is a rigorous implementation of
the renormalisation group method.
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1 Introduction

In the following introduction we will outline the motivation and goal for this thesis
and briefly explain the mathematical tools and concepts we utilize. No originality
is claimed and, to give an informative exposition, we sketch out a number of ideas
from some references mentioned, but without explicit reference to the origin of each
single idea.

1.1 Statistical mechanics

Motivation Statistical mechanics attempts to explain the macroscopic behaviour
of large systems in equilibrium on the basis of their microscopic structure. The
starting point for the development of statistical mechanics by Maxwell, Boltzmann,
and Gibbs was the idea of a microscopic justification of thermodynamic laws.

Thermodynamics is the study of bulk matter. The state of a system, for example a
gas, is specified by a few macroscopic quantities, for example by pressure and volume.
A system is in thermal equilibrium if the state does not change with time. Thermo-
dynamic laws and equations relating the thermodynamic quantities are viewed as
hypotheses.

Statistical mechanics aims to derive these thermodynamic quantities and their re-
lations, starting with the microscopic system of many interacting particles on the
basis of microscopic forces between the components of the system. The microscopic
state could be described by the equations of motion as done in classical mechanics.
However, the microscopic structure is enormously complex, and any measurement
of microscopic quantities is subject to statistical fluctuations.

The difficulty one has to overcome for providing a connection between macroscopic
and microscopic levels is the contrast between an experimentally based description
of a few quantities on the one hand and precise, but not amenable information of the
behaviour of many variables on the other. The basic idea of statistical mechanics is
to replace a perfect description at microscopic scale by a statistical description, i.e.
by a probability measure on the state space. Of course the behaviour of the system
of particles is not random, but it may be sufficiently complex that it is reasonable
to view it as such. By this statistical approach the microscopic complexity may be
overcome and the macroscopic determinism then may be regarded as a consequence
of a suitable law of large numbers. A nice historical introduction into statistical
mechanics can be found in the book by Thompson [Tho72].

Gibbs distribution Although the foundations of statistical mechanics were already
laid in the nineteenth century, the mathematically rigorous study of systems only
began in the late 1960s with the work of Dobrushin, Lanford and Ruelle who intro-
duced the basic concept of a Gibbs measure.

The mathematical idealisation of the equilibrium distribution of a system is pos-
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tulated to be given by the Gibbs distribution or Gibbs measure. Let S be a large
(but finite) set which labels the components of the system (the particles), the set
space. The possible states of each component are described by elements in a set E.
A particular state of the system is specified by an element (a field) ¢ = (¢(2))zes of
the product space Q = ES, the configuration space. Let H be a Hamiltonian which
assigns to each possible configuration a potential energy.
For a given boundary condition %, the finite-volume Gibbs distribution is given by
the Boltzmann weight e BH (the parameter f3 is physically associated to the inverse
temperature) times an a priori measure Ag on the configuration space €2,
L i) A

e s(de),

'Yép,s(dso) =
2%

where ZT; g is the normalisation of the measure, called partition function. The parti-
tion function is of major importance because all physically interesting macroscopic
quantities can be expressed in terms of the partition function, usually in the form
of logarithmic derivatives.

Since the number of particles in many-particle systems is extremely large, the in-
trinsic properties of the system can be made manifest by performing suitable limiting
procedures. It is therefore a common practice in statistical mechanics to pass to the
thermodynamic limit |S| — co. Unfortunately, the Gibbs measure does not admit a
direct extension to infinite systems. To overcome this obstacle, one characterises the
Gibbs distribution by a property which can be formulated also on the infinite lattice.
This property is given in terms of DLR-equations (named after Dobrushin, Lanford
and Ruelle). We refer to the book by Georgii [Geoll] for a detailed introduction to
Gibbs measures.

Questions The major aim is to determine the behaviour of the system at non-
vanishing temperature in the thermodynamic limit.

From the probabilistic viewpoint the question of universality arises: Which Hamilto-
nians lead to similar behaviour? On appropriate limits, very different systems can
have essentially identical properties.

More precisely, one can ask the following questions.

e Does the infinite-volume Gibbs measure exist, and, if yes, is it unique? Non-
uniqueness of the Gibbs measure characterises the physical phenomenon of a
phase transition (abrupt change in the physical properties of a system).

e What is the long-distance structure of the model, the scaling limit? We can
study the measure in terms of a transform, for example its Laplace transform

/e(fw)y(dgp)'

To analyse the behaviour of the model when looking at it from further and
further away, the class of test functions f should be insensitive to fluctuations
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at short distances. The scaling limit would be determined by increasingly
smooth f€ given by f¢(z) = €“f(ex), x € Z¢, for some exponent o # 0 and
f € C=(RY), in the limit ¢ — 0. If a limiting distribution exists, the result
leads to a central limit theorem for strongly correlated fields.

e Define the free energy or surface tension by

1
os(¥) = lim ———InZY..
P T Issee IS TS
Which smoothness properties are satisfied by o in dependence on the para-
meter S and the boundary condition 1?7 This question is also related to the
existence of phase transitions.

e How does the covariance

Cov ((a), (1)
= dim_ ([ el@w®ntsian) - [ olntsae [obngsn)

|S|—o0
fall off with distance? The covariance expresses how strongly the fluctuations
in the values of the fields are correlated.

1.2 Gradient models

Gradient models serve as effective models for interfaces (based on the idealisation
that the interface can be described microscopically by a function, i.e., there are no
overhangs or bubbles). We give a short introduction to the setting as it is used in
this thesis. A more detailed description can be found in Section 2.1. Subsequently
we give an overview of mathematical contributions to this model.

Setting Let A C Z? be a finite subset of the lattice. We consider fields ¢ : A — R
which can be interpreted as height variables of the interface. The Hamiltonian is
given by a potential W : R — R that only depends on discrete gradients of the field,

d
Ha(o) =) ) W (Vip()),

zeN i=1

where V() = p(z + e;) — p(z) is the finite difference quotient on the lattice. We
impose tilted boundary conditions, namely

o(x) =" (x) forx €A, ¢"(x)=u-x foruc R
The finite-volume Gibbs measure with boundary condition ¥ at inverse temperature
B > 0 is then
1

Vo) = — s e PO T dg(@) [T Oy (de()),
Zﬂ,A zEA €A
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where

2= [ e TLdpta) T dunier (o)

€A EISIONN

is the partition function which normalises the measure.

The goal is to construct the infinite-volume limit A 1 Z? of the Gibbs distribution. To
realise this limiting procedure one has to find a way to define both an infinite-volume
Gibbs state for a formal sum in the Hamiltonian and an infinite-dimensional a priori
measure. This can be achieved by using the characterisation of finite-volume Gibbs
measures in terms of DLR-equations which allow an extension to infinite volume.
One is then particularly interested in shift-invariant, ergodic infinite-volume gradient
Gibbs measures with mean u. In the case of strictly convex potentials W Funaki and
Spohn ([FS97]) observed that these properties are generated by considering fields
on a torus and a shifted potential W (- + wu;).

Let A C Z% be a box, equip it with periodic boundary conditions, and consider the
shifted Hamiltonian

d
Hi(p) = > W(Vip(x) + u).
z€eA i=1
In order to obtain a well-defined partition function in any dimension d we restrict the
configuration space to R/ {constants}- Let Ax(dp) be the unique (up to scalar mul-
tipliers) translation invariant measure on R*/ {constants}- e analyse the following
finite-volume gradient Gibbs measure:

. 1 ape
Ya.a(dp) = Tu ¢ BHA(w)AA(d@)
BA

with partition function
Zhp = / e PHE@ X\, (dp).
RA/{constants}

The surface tension is
u

) 1

og(u) = |A1\1£>noo BIA] InZj \.
The smoothness property of interest here is strict convexity of oz in u, since this is
connected to the question of phase transition: In the region where entropy wins, the
free energy is strictly convex. The opposite is true in the region where energy wins
(strict convexity of the free energy rules out phase coexistence which corresponds to
flat parts in the free energy).
A nice and detailed introduction into gradient models and gradient Gibbs measures
can be found in [Fun05].

Known results For the case of the quadratic potential, W (s) = £s? (the so-called
massless free field), the Gibbs measure is the Gaussian free field on the lattice,
allowing many of the desired characteristics to be computed explicitly (see, e.g.,
[Fun05]):
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e For any tilt u there is a unique infinite-volume gradient Gibbs measure which
coincides with the Gaussian free field with mean u and covariance given by
Cpa = (—Aya)~t (with kernel Cyq), where —Aga = Zgjzl 6ijV;V; is the
discrete Laplacian on Z¢.

e The scaling limit (when the lattice spacing tends to zero) of the model is the
Gaussian free field on the continuum torus T¢ with covariance Cpa = (—Aga) ™7,
where —Aqas = — Z‘j =1 0;;0;0; is the Laplacian on the continuum torus.

e The surface tension is o(u) = $|u|? + ¢(0) and thus strictly convex in w.

e The gradient-gradient covariance decays algebraically, namely

§ 1
|Cov (Vip(a), V(b)) = |vjviCZd(a’ b)| = Cm'

From the viewpoint of probability the challenge is to develop an equivalent under-
standing for non-quadratic W’s. How far can we enlarge the class of Hamiltonians
such that the model behaves similar to the Gaussian free field? In the case of strictly
convex potentials the picture is quite satisfactory:

e In [FS97] it is shown that for any tilt w there is an infinite-volume gradient
Gibbs measure which is tempered, ergodic and shift invariant.

e The scaling limit is the Gaussian free field on the torus with covariance C where
Cl=— Zf =1 a;j0;0; for a constant positive definite matrix a, see [NS97] for
u =0 and in [GOS01] for arbitrary tilt u.

e The surface tension is strictly convex in u, see [FS97].

e In [DDO05] it is shown that the covariance decays algebraically,

1
|Cov (Vip(a), Vjp(b))] < Cm-

In summary, we observe similar behaviour to the case of quadratic potentials.

The proofs of the above results rely heavily on the strict convexity of the potentials.
What about the non-convex case? Only partial results are available.

A special class of gradient fields with non-convex potentials (log-mixture of centered
Gaussians) is considered in [BKO07]. At tilt v = 0, a phase transition is shown to
happen at some critical value of the inverse temperature .. This result demonstrates
that one can expect neither the uniqueness of gradient Gibbs measures corresponding
to a fixed tilt w nor strict convexity of the surface tension o(u). However, the scaling
limit in this case is still the Gaussian free field, as shown in [BS11].

For a class of gradient models where the potential is a small non-convex perturbation
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of a strictly convex one, [CDMO09] shows strict convexity of the surface tension at
high temperature. For the same class in the same temperature regime in [CD12] it
is shown that for any u there exists a unique ergodic, shift-invariant gradient Gibbs
measure. Moreover, the measure scales to the Gaussian free field and the decay of
the covariance is algebraic as above.

The complementary temperature regime is considered in [AKM16]. The authors
consider potentials which are small perturbations of the quadratic one, the perturb-
ation chosen such that it does not disturb the convexity at the minimum of the
potential. For small tilt v and large inverse temperature § they prove strict convex-
ity of the surface tension obtained as a limit of a subsequence of (N;);en, where LY
is the side length of the box A, and relying on a quite restrictive lower bound on W,
namely

W(s) > (1—¢€)s?

for a small e.

In the same setting the paper [Hill6] shows that there is ¢ € RZX?

sym small, such that

the scaling limit is the Gaussian free field on T¢ with covariance CZ,, where

Td»

d
Z (0i5 + qij) 050,

and that a ”smoothed” covariance decays algebraically. The convergences are on a
subsequence.

In the PhD thesis of Simon Buchholz [Bucl9] the class of potentials is widened to
such which satisfy less restrictive bounds on the potential, namely

W(s) > es?,
and to vector-valued fields and finite-range instead of only nearest-neighbour inter-
action. The last two improvements are of interest for the application in nonlinear
elasticity, see the motivation in Subsection 1.4. The authors show that the surface

tension is strictly convex and that the scaling limit is the Gaussian free field on the
torus. Unfortunately, all convergences are still on a subsequence.

New results The setting in this thesis is similar to the one from [Bucl9]: We
restrict to small tilts and large inverse temperature and use the same smallness
condition on the potential. For the sake of simplicity we formulate our results and
proofs for scalar-valued fields and nearest-neighbour interaction. We show that the
necessity for the subsequence in the statements about the surface tension and the
scaling limit can be removed. Moreover, refined covariance estimates are shown,

namely
1

|Cov(Vip(a), Vip(b))] < Cm'
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More precisely, it is shown that to first order in |a — b| the Gaussian covariance C’%d
appears, where C7, is the kernel of C7, with (C%d)_l = Z?J:l((sij +4ij)V;iVi:

Cov(Vip(a), V;p(b)) = ViViC9(a,b) + Rap,  |Rup| < o‘a_lbw, v >0.
The proof builds on a rigorous renormalisation group approach for the partition
function. This approach is developed for the model at hand in [AKM16] and im-
proved in [Bucl9]. We augment the technique in two directions. On the one hand,
we extend the finite-volume flow apparent in the renormalisation group method to
infinite volume. This enables us to get rid of the restriction on the subsequence. On
the other hand, the renormalisation group analysis is enlarged from the bulk flow
(which determines the partition function) to observables. This allows us to prove
fine estimates for the covariance.

1.3 Renormalisation group method

We give a rough motivation for the renormalisation group method used in the proofs
of our results.

For massless Gaussian models the gradient-gradient covariance decay like the second
derivative of the Greens function for the discrete Laplacian, i.e., like |2|~¢ in d
dimensions. As the decay is not absolutely integrable, the models are outside the
range of powerful techniques such as, for instance, the cluster expansion (at least in
its original form).

The renormalisation group (RG) method is an elaborate technique originally inven-
ted to understand critical phenomena in quantum field theory and statistical physics.
It has led to an understanding of universality of models in the critical regime. The
method has provided a non-perturbative calculational framework as well as the basis
for a rigorous mathematical understanding of these theories. However, even outside
the realm of critical phenomena, the philosophy is useful and applicable, when other
methods, like cluster expansion, fail.

The basic idea of renormalisation is to study the large-distance behaviour of a model
by reducing the degrees of freedom. This is achieved by a version of coarse graining,
i.e., by disregarding information about the behaviour at small distances.

The fundamental hypothesis of the renormalisation idea is that, after coarse graining
and rescaling, the model should be similar to the original model with modified
parameters. The combination of the two operations is called a renormalisation
group transformation. The RG transformation can be viewed as a discrete, infinite-
dimensional dynamical system and the model is identified with a point on its finite-
dimensional stable manifold.

The philosophy of the RG method plays a key role in several rigorous investig-
ations. The implementation in this thesis is based on Wilson’s formulation of
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the RG (see [WKT74]). A rigorous version of the method has been developed by
Bauerschmidt, Brydges and Slade in a series of papers ([BS15al,[BS15b], [BBS15b],
[BS15¢], [BS15d]). Adams, Kotecky and Miiller [AKM16] adapted the method to
the setting of gradient models with non-convex interaction.

The method applies to measures which are a perturbation of a Gaussian measure
and relies on the fact that when the Gaussian measure is chosen correctly, then
the perturbation vanishes in some limit. By decomposing the Gaussian measure
one can integrate out the degrees of freedom at different length scales present in
the covariance of the Gaussian measure. In each step, expanding and contracting
directions are carefully separated so that one obtains a discrete dynamical system
where the stable manifold theorem can be applied.

More precisely (but still very sketchy), the problem is to study measures of the form

v(de) = F(p)u(dep),

where p is a Gaussian measure and F' is local and satisfies F' =~ 1 in some sense. In
principle, the measure Fp can be studied in terms of [ OFdyu for field functionals
O which we call observables. For instance, with O = 1 it expresses the partition
function, with O(p) = V;p(a)V;@(b) it gives the gradient-gradient covariance. A
measure can also be studied in terms of transformations, e.g., its Laplace transform

Z(f) = /e‘w)F(sO)u(dw)-

The starting point is to decompose ¢ as ¢ = >, ¢ such that the fields ¢y, are Gaus-
sian, independent, and live on increasing scales but become smoother and smaller
as k increases.

The decomposition of the fields corresponds to a decomposition p = puq * g * i3 *. . .
of the Gaussian measure, which allows to rewrite Z as a series of integrations,

/ F(e)u(dp) = / Flor+ on+ o5+ - (Ao ia(don)pis(dgs) ..

= /F1(802 + @3+ .. Jpa(dp)us(des) . ..

ey

where Fj(¢) = /Fk—1(80k + &) (deg)-

Then
[ Flolas) = Fu0) = tim Fi(0),

if the limit exists, and (C' being the covariance of the Gaussian measure (),

Z(f) = e / Flp + CHu(dy) = Fu(CF).
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The map Fj_1 — Fj (the RG-flow) is a very complicated dynamical system. The
hope is to find appropriate coordinates on a finite-dimensional space which determine
the behaviour of the transformation.

At each step, local parts Hj, are collected in e+ and traced explicitly, contributing
to the relevant behaviour of the RG flow. On a perturbative level, this is enough.
In the rigorous version we implement we also keep track of the error part K} which
is shown to be contractive (irrelevant). The flow (Hy, K}) is then considered as a
discrete dynamical system with an expanding and a contracting direction and with
the fixed point F' = 1 corresponding to H = K = 0. If the initial data of the flow
are chosen as elements in the stable manifold of the dynamical system, the sequence
converges to its fixed point. The method is explained in detail in [AKM16], [Buc19]
and in Section 3 below.

1.4 Statistical mechanics of elastic materials

Since the work [Bucl9] intends to describe statistical mechanics of elastic materials,
we give a short introduction to this application.

A unifying feature of elasticity is that the materials withstand (small) shear force.
A basic hypothesis used in the mathematical formulation of solid mechanics is the
so-called Cauchy-Born rule: The energy minimizer under affine boundary conditions
is the affine function itself. The challenge is to obtain a microscopic justification of
the Cauchy-Born rule.

Statistical mechanics is one possible tool to provide microscopic verification of mac-
roscopic hypotheses. It applies to systems in equilibrium position. However, elasti-
city is not an equilibrium phenomenon — no material can withstand shear forever.
Elastically deformed states are in general only local minimizers of the energy, not
global ones. Fractured states, where the lattice is reordered, have less energy than
the elastically deformed states.

Nevertheless, one can try to construct a lattice model where the equilibrium state is
mimicking a metastable state at a short time scale. In the gradient model with vector
valued fields ¢ : R? — R? (fields of displacement), local neighbourhood relations are
fixed to rule out complete reordering.

In [Bucl9] it is shown that the Cauchy-Born rule holds at large inverse temperature
£ and small tilt u.

1.5 Structure of the thesis and notations

Structure of the thesis In Section 2, gradient models are introduced and the
main results concerning the scaling limit (Theorem 2.1), strict convexity of the
surface tension (Theorem 2.2) and a fine estimate on the covariance (Theorem 2.3)
are stated. Furthermore, two technical theorems on which the proofs of these results
are based are formulated (Theorems 2.7 and 2.11). They contain representations of
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the generating partition function and provide straightforward proofs of the main
results.

Section 3 contains the proof of the first technical result, Theorem 2.7. The proof is
by RG analysis which closely follows [Bucl9]. To improve the convergence results in
[Bucl9], the method is extended from finite-volume to infinite-volume flows. This
extension is explained in [BS15d] for the p*-model and adapted to gradient models
in this thesis.

Section 4 deals with the proof of the second technical result, Theorem 2.11. We
extend the RG analysis from Section 3 to observables, as developed in [BS15a,
BS15b, BBS15b, BS15¢c, BS15d] for the ¢*-model ([BBS15a]). We adapt the method
to the setting of gradient models.

Finally, in Section 5, details for certain extensions and intermediate steps are provided.
The presentation follows closely the one in [Bucl9] in order to facilitate the under-
standing of the extensions. Proofs are only provided if they differ from the ones in
[Buc19].

Notations Throughout the whole thesis we will use the following notations.
o (2 will denote the set of smooth, compactly supported functions.
e Partial derivatives will be denoted by 0, instead of %.

e The symbol 9; will be used for usual derivatives, in contrast to V; for discrete
finite differences.

e (" denotes the set of r-times differential functions.
. ngxnﬁl denotes the set of d x d symmetric matrices.

e The Kronecker-delta d;; is 1 if ¢ = j and 0 else.

e The indicator function 1, is given by 1, = 1 if condition z is satisfied and
1., = 0 otherwise.

o We use the big O notation f(x) = O(g(z)) as x — oo to describe the limiting
behaviour of the function f in terms of the function g. It means that for all
sufficiently large values of x, the absolute value of f(x) is at most a positive
constant multiple of g(x).

e For z € R let (z)4 be z if > 0 and 0 else.
e For z,y € R let (z A y) denote the minimum of z and y.

e The symbol C will mostly denote a positive constant whose value is allowed
to change in a chain of inequalities from line to line.
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2 Setting and results

We start by describing gradient models and their finite-volume Gibbs distributions
and stating the main results, namely the scaling limit of the measure in Theorem 2.1,
strict convexity of the surface tension in Theorem 2.2, and decay of correlations in
Theorem 2.3.

Then we state two technical key theorems (Theorem 2.7 and Theorem 2.11), which
are the main components of the proofs of the main results. They contain powerful
representations of the normalisation constant of the Gibbs measure. From these
representations the proofs of the main results can be deduced straightforwardly.

2.1 Gradient models

Fix an odd integer L > 3 and a dimension d > 2. Let Ty = (Z/LNZ)d be the
d-dimensional discrete torus of side length LY where N is a positive integer. We
equip Tx with the quotient distances |- | and |- |« induced by the Euclidean and
maximum norm respectively. The torus can be represented by the cube

1
AN:{xEZd:\xL}oSQ(LN—l)}
of side length LY once it is equipped with the metric
. N d
|2 = Ylper =1nf{]:c—y+k|oo ke (LVZ) }
Define the space of fields on Ay as
Vy ={o: Ay = R} =RV,

Since we will consider shift invariant energies, we are only interested in gradient
fields on Vy. Gradient fields can be described by elements in Vi /{constants}s OTs
equivalently, by usual fields with vanishing average

XN = {SOE VN:Ig\:Nso(az) = }

We equip xny with a scalar product via

(0.10) = Y pla)v().

zEAN

Let Ay be the (LNd — 1)—dimensional Hausdorff measure on xny. Lete;, i =1,...,d,
be the standard unit vectors in Z%. Then the discrete forward and backward deriv-
atives are defined by

Vip(z) = p(z+e) —p(z), i€{l,...,d},
Vip(z) = oz —e) —p(x), i€{l,....d}.
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Let W : R — R be a potential which is a perturbation of a quadratic potential,

1 2

W(s) = 55

+V(s), V:R-R

We study a class of random gradient fields defined in terms of a Hamiltonian

Y S W) = Y Z( Vi) +V(Tiplo))).

z€AN =1 z€AN =1

We equip the space xy with the o-algebra 5, induced by the Borel-o-algebra with
respect to the product topology, and use M;(xn) = Mi(xn,Byy) to denote the
set of probability measures on .

The finite-volume gradient Gibbs measure vy € M;i(xn) at inverse temperature
[ is defined as

/BHN(SO))\N(d(p)

Yn,a(dyp) = ZNB

with partition function

ZN’ﬁ:/ e PHN(R) )\ (o).
XN

The model describes the behaviour of a random microscopic interface. A microscopic
tilt applied to the discrete interface can be implemented by the Funaki-Spohn trick
introduced in [FS97]. Given u € R?, we define the Hamiltonian H% on the torus Ty
with tilt u by

d
= > D W(Vip(x) + ).

zeAy i=1
Consequently, the finite-volume gradient Gibbs measure vy ; with tilt u is defined as

1
Zn,5(u)

where Zy g(u) is the normalisation constant. A useful generalisation of the partition
function with a source term f € Vy is given by the generating functional

Vi 5(de) = e PHN )\ v (dy),

Zn s, f) = / e PHOHIR) )y (doo). (1)
XN

2.2 Main results

On the one hand we give improved versions of Theorem 3.2.9 in [Bucl9] (which
was firstly proven in [Hill6] with stronger assumptions on the potential W) and
Theorem 3.2.6 in [Bucl9]. The improvement consists in the removal of the need for
a subsequence (N});.
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On the other hand we assert an asymptotic expression for the gradient-gradient
covariance of the Gibbs measure.

We impose the following assumptions on the potential W:

Let 79 > 3, 7"1>2 Ve crotr v/(0) =V"(0) =0.
Let 0 < w < 1= and suppose that Zl L W(zi) > w|z|? and
limg oot 2InW(t) =0

d
where \Il(t) = SUpP|;|<¢ Z3§|a\§r0+r1 %‘8a Zz’:l W(Zl)‘

(*)

Let T¢ = (R/Z)? be the continuum torus, ¢ € RE%4 and Ci4 be the inverse of the

Sym
elliptic partial differential operator ATd’
) d
']I‘d - (Aq ) 9 ATd - Z (5” ‘I’q’Lj) aja’”
3,j=1

which acts on the space of all functions f € W2(T%) with mean zero.

The following theorem states that the Laplace transform of vy 5 converges to the

Laplace transform of the Gaussian free field fica, on the continuum torus with co-
T

variance C%d as the lattice spacing tends to zero in a suitably scaled way.

Theorem 2.1 (Scaling limit). Let W satisfy (x). Then there is Lo such that for all
odd integers L > Lqg there is § > 0 and (o > 0 with the following property. For all
u € Bs(0) and B > By there is ¢ = q(u, B,V) € R4 such that for any f € C° (Td)

Sym

satisfying [ f =0 and fn(z) = L_N%f (L™Nz) for xz € A,

lim Eyu (eU¥)) = lim 25 IN) = e%U’C;df).
N—oco N8 N—oo Zn(u,0)

Let us denote

(TN”B(U) lngNd anNﬁ(u 0) (2)

The free energy or surface tension can be written as
u) = lim u). 3
op(u) = lim ong(u) (3)
The next theorem is concerned with smoothness properties of the free energy.

Theorem 2.2 (Strict convexity of surface tension). Let W satisfy (x). Then there
18 Lo such that for all odd integers L > Lg there is 6 > 0 and By with the following
property. For all u € Bs(0) and 8 > By there is ¢ = q(u,5,V) € Rgl;n‘f such that for
any N the free energy on g : B5(0) = R is in C™ and uniformly convex. Moreover,

the limit og(u) is uniformly convex in Bs(0).
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Furthermore, we give a formula for the gradient-gradient covariance. Given a,b € Ay
and directions mq, mp € {1,...,d}, define

COV»)/]%ﬁ (Vma@(a)y Vmb SD(b))

= [ Vbl Vo028 5000 - |

XN XN

Vonap(@h 5(de) / Vom0 5(de).

XN

For q € ngxnﬁl, let C%d be the inverse of the differential operator on gradient fields
on Z4,
) d
C%d = (qud) ) A%d = Z (51']' + Qij) v;vi
ij=1
(see [Fun05] for details on gradient fields on Z? and existence of Cja)- Let CJ,; be
the kernel corresponding to the operator C%d.

The following theorem states that in the thermodynamic limit Ay — Z¢ the gradient-
gradient covariance is dominated by the covariance C%d of the discrete Gaussian free
field on Z%.

Theorem 2.3 (Decay of the covariance). Let W satisfy (x). There is L1 such that
for all odd integers L > Ly there is § > 0 and By with the following property. For
all u € Bs(0) and B> By there is ¢ = q(u, 3,V) € R4 such that

Sym
1
s

Here, Ry, can be estimated as follows. There is v > 0 and a constant C; = C1(L)
such that for a £ b

lim Covyy  (Vin,¢(a), Vin, (b))

N—oo

(v:nmeaC%d(aa b) + Rab) .

|Rab| < Clm-
Remark 2.4. Theorem 2.1 and Theorem 2.2 both follow from the same repres-
entation of the generating functional Zy g(u, f) in Theorem 2.7. There and in
Lemma 2.9 the parameters Lg, § and By are fixed, and the existence of q is stated.
Therefore, these paramters coincide in Theorem 2.1 and 2.2.

Theorem 2.3 follows from an extended representation in Theorem 2.11. The para-
meter L1 has to be chosen larger than Lo in Theorem 2.7. Accordingly, 6 is smaller
and By larger. Aside from that, q is the same as before.

Let us mention a straightforward consequence of Theorem 2.3.

Corollary 2.5 (Algebraic decay of the covariance). Under the assumptions of The-
orem 2.8 there is a constant C such that the following estimate holds:

' 1
Jim Covag s (Vima (@) Viny 0(D))| < CW-
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Proof. We apply Theorem 2.3 and use that the Gaussian covariance C’%d satisfies

1
a g
V@) < O
see, e.g., Proposition 2.6.14 in [Runl4] for a proof of this estimate. O
Remark 2.6. 1. One can state the assumptions (x) on the potential W in a more

general form allowing a bigger class of perturbations V.. We will comment on
this again in the next section, see Lemma 2.9 and Remark 2.10. For the sake
of simplicity we decided to state the main results with assumptions (*).

2. Theorems 2.1, 2.2 and 2.8 can also be formulated for m-component fields
on Ty,
p: A —R™

Discrete derivatives are understood component-wise,

(Vip)s(z) = os(x + e;) — ps(x), se{l,....m},ie{l,...,d}.

The potential W and the perturbation V are maps from R™ to R and the
tilted boundary condition v € R? is replaced by a deformation F € R™*<,
See [Bucl9] for more details on the set-up. This extension shows up in the
notation but does not change the arguments in the proofs.

3. The statements in Theorems 2.1, 2.2 and 2.3 can also be extended to more
general finite-range interaction (not only nearest-neighbour). Let A C Z¢ be a
finite set. Consider the potential

W (R™)A - R.

Then one can define the Hamiltonian with finite-range interaction and external
deformation F € R&>™ qas

Hi(p)= > W+ F)ra)

z€T N

where for any ¢ € xy and B C Z¢ we use ¢p to denote the restriction of ¢
to B, and 1,(A) denotes the set A translated by x.

For m = d, this is the setting for microscopic models of nonlinear elasticity
with F representing an affine deformation applied to a solid. See [Bucl19] for
more details on the set-up and the application to elasticity.

2.3 Two key theorems and proofs of the main results

The goal of this section is the formulation of two technical key theorems, which state
powerful representations of the generating functional of the model. The proofs of
these theorems are obtained by a subtle renormalisation group analysis which will
be carefully introduced in Sections 3 and 4.
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2.3.1 Reformulation of Zy g(u, f)

Let V(z,u) be the remainder of the linear Taylor expansion of V(2 + u) around wu,
V(z,u) =V(z+u)—V(u) —V'(u)z.

We can write the generating functional Zy g(u, f) from (1) in the form
_prNd( ¢ V(u
R A
" / oU:9) =8 aeny Tina (VVip@ui)+31Vi0@)) 5 g
XN

Let

1 _s d ()2
naldp) = e Sremw S T Ay (dg) ()

N.B

be the Gaussian measure at inverse temperature 8 with corresponding normalisation

Zz(\(f),)ﬁ - / e~ 3 Taery i Vie@F )y (dg). (5)
XN

Consequently,

ZN,B (’LL, f) — efﬂLNd Z?=1 W(ul)Z](\(f))ﬁ / e(f#’)e_ﬁ Z:ceAN Z?:l V(Vﬂp(m):“i)uﬂ (d(p)
XN

Now we rescale the field by v/3 and introduce the Mayer function K, gy : R? - R,

d (2L 4.
Kupy(z) = P2mVmm) g, (6)

We can express the partition function Zy g(u, f) in terms of the polymer expansion:

1) P Tneny T T () 40)

sk

ZN,,B(% f) — 67’8LNd Z?:l W(uZ)Z](\[[{)ﬁ/ e(fa

XN

S

= NS W) 700) / o7
XN

)

) TT (14 K (Vo)) s ()

TEAN

d ] _p_
:e—ﬁmdzizlwml)zj(gy)ﬁ / e<f»¢3> Z H/cmv(v(p(x))m(dgo).

XN XCAN zeX

The integral in the last expression gives the perturbative contribution

Zns (u jB)z / Ne(fﬁ’“"> S ] Ko (Ve (o). (@)

XCAN zeX

In summary, we obtain the representation

ZNyﬁ(“’ f) - e_ﬁLNd Z?ZI W(Ul)Z](\(/),)ﬁ ZNvB < ’\./fB) .
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We introduce a space for the perturbation KC,5yv. Let ¢ € (0,1). For ro > 3
we define the Banach space E¢ consisting of functions K : R? — R such that the
following norm is finite

1Kl = sup > |aa/c e~ 310112,

|a\<r0

Let us generalise the expression for the perturbative part to arbitrary K € E; from
the rather explicit K, g in (6). Namely, let

N (. f) = / U9 S T K(Vela)m(de). (8)
XN

XCAN zeX

Theorem 2.7 will give a useful representation of this perturbative part of the partition
function.

2.3.2 Representations of Zy 3(u, f) and conclusions

Sym ?

~1
Let us introduce C?\N = (AiN> for ¢ € R¥4 where

d
.A IXN — XN, .A?\N = Z (5@' —l—qij) V;VZ‘.

ij=1

We use ||¢|| to denote the operator norm of g viewed as an operator on R% equipped
with the Iy metric. If ¢ is small, ||g|| < 1, we can define a Gaussian measure fica
N

on yn with covariance C% A

1 1 ,Aq
per (dg) = —— e (P2 ann ).
AN Z](\?)

Observe that we changed notation from Z](\%:l in (5) to Z](\?).

The following theorem states that the perturbative contribution Zy (u, f) in (8) can
be written as the product of a rather explicit term and a term which is almost 1, the
error being exponentially decreasing in NV if K is small enough. This result is the key
ingredient for the proofs of Theorem 2.1 and Theorem 2.2 and also the basis for the
extended version in Theorem 2.11. The proof is a subtle renormalisation group (RG)
analysis established in [AKM16] and reviewed and extended in Section 3.

Theorem 2.7 (Representation of the partition function). Fiz (,n € (0,1). There is
Lo such that for all odd integers L > Ly there is g > 0 with the following properties.
There ezist smooth maps (with bounds on the derivatives which are independent
of N)

A: By (0) CE; = R, q:B(0) C Ef — R

Sym?
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and, for any N € N, a smooth map (with bounds on the derivatives which are
independent of N ) Z?\, : B¢, (0) x xny — R such that for any f € xn and K € B¢, (0)
the following representation holds:

(q(K))

1 oK)\ 7

ZN(K, f) = eé(f,CAN f) N - e—LNd)\(IC)Z?V (’C,C?\(’C)f> '
70 N

If f(2) = gn(x) — e, gn(z) = LN g(LNa) for g € C(T%) with [ g =0, cy
such that 3, cp f(x) = 0, then there is a constant C' which is independent of N

such that the remainder ZR,(IC) satisfies the estimate
’Z?V (ic,cgg’f)f) . 1‘ <o,
Notice that the condition on f includes the case f = 0.

Remark 2.8. This statement is similar to Theorem 4.9.1 in [Buc19] with the key
difference that in [Buc19] the quantities A\(K) and q(KC) depend on the size of the
torus, i.e., on N, and here they are independent of N. This improvement is ob-
tained by introducing a global flow (see Section 3.2). As a consequence, there is no
subsequence needed in Theorems 2.1 and 2.2.

Proposition 3.2.4 in [Bucl9] provides conditions on V such that K € B,(0) C E¢ for
any p > 0 is satisfied. We cite the proposition in the following lemma.

Lemma 2.9. Let W satisfy (x). Then there exist , 6o > 0, C; and © > 0 such
that for all § € (0,60] and for all B > 1 the map

Bs(0) 5 u Kupyv € EZ

is C™ and satisfies

_1 1
IKusle <C(5+57%) and > —|0iKusvll <©. (9)
yl<r

In particular, given p > 0, there exist 6 > 0 and By > 1 such that for all 8 > By and
all u € Bs(0) we have

IKupvle<p
and the bound on the derivatives in (9) holds.

Remark 2.10. As noted in the previous section we can state more general assump-
tions on the potential W than (). Namely, it is enough to assume the smallness
condition on the Mayer function K, H’Cu,ﬁ,VHE < p. Then the main theorems can be
applied for every V such that its Mayer function satisfies the bound.

The proofs of Theorems 2.1 and 2.2 are straightforward consequences of the repres-
entation of the partition function in Theorem 2.7.
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Proof of Theorem 2.1. The proof may be handled in the very same way as in [Hil16]
or [Bucl9] but without the need for taking a subsequence. We review the main
arguments.

Let C~ be the parameter from Lemma 2.9, and let Ly and ¢y the corresponding
parameters from Theorem 2.7. Then, by Lemma 2.9, there is § > 0 and Sy > 1 such
that for all 8 > fp and u € B;s(0) we have K, g v € B¢, (0) C E<~. Fix f € xn.
By Theorem 2.7, the function Zy g(u, f) in (7) can be written as an explicit term
multiplied by a perturbation Z%,(Kuﬂ,v, Cf\(]:,C“’B’V)f).

Let fn be as in the assumptions of the theorem. Define

fN = fy —cn, cn such that Z fN($) = 0.

zeTn

Then fy € xn. Since (en,p) =0 for all p € xn,

EVKI,B (e(fN#’)) — E'Y}ff,ﬁ (e(fzv#ﬂ)> 7

and we can use Theorem 2.7 to rewrite, using ¢ = ¢(Ky g.v),

_ Iy
E.u <€(fN7<P)) = Zn 5, ) - 2 <U7 \/NB>
N8 ZN”3 (u, 0) ZN,B (u, 0)

0 q fn
= e%(vacqu) Zn (]CU’B’V7CAN \/B>
Z% (Kupv,0)

A standard argument (see Proposition 4.7 in [Hil16] or the proof of Theorem 3.2.7
in [Bucl9]) shows that

(JFN,CXNJFN) — (f,C%df)p(Td) , as N — oo,
and from Theorem 2.7 it follows that

¢ In
AN\/B

This concludes the proof. ]

‘Z?{,(IC%B,V,O)—I‘,‘Z% <]Cu”3’v,c ) —1‘ —0as N — oc.

Proof of Theorem 2.2. The proof is similar to the one in [Bucl9] but without the
need for taking a subsequence. We sketch the main steps here.

Let 5 be the parameter from Lemma 2.9, and let Ly and €y be as in Theorem 2.7.
Then, by Lemma 2.9, there is dg > 0 and By > 1 such that for all 5 > [y and
u € B;,(0) we have K,, gy € B, (0) C E;. Hence we can apply the representation of
the perturbative partition function (see (7)) in Theorem 2.7 and we can rewrite the
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finite-volume surface tension as follows (using A = A(KC,, g,v) and ¢ = q(Ky 8,v)):

1

aNﬁ(u) 5LNd anNg(u 0)

1 0
W (u;) — Wlnzﬁw)ﬁ ﬁLNd In Zy 5(u,0)

|
AM&

1

)

Lo 0 A1 Z](g)_ 1
BLNd N, 8 BLNd Z](\(,)) BLNd

n Z% (Ky.v,0).

Il
AM&

W(u;) —
1

)

The assumptions (x) on the potential W in Theorem 2.2 imply that there is 6; > 0
such that for u € By, (0)

d
’ (Zj W(un) (2,2) > 2|2

(0)

The second term 3 LlNd InZ N8 is independent of u.
Our next concern is to show that

AK) 1 ACHE
3 BLNd nZ](\(,)) T BLNd

Wi g(u) = In Z% (K. .1, 0)
is C™ uniformly in N. The map u — A(KC,, g,v) is C™ uniformly in N by Theorem 2.7
and then chain rule. Similar arguments apply to the second term (see Lemma 4.9.2
n [Bucl9]). The third term is C™* by smoothness of Z% () in K with uniform
bounds in NV as stated in Theorem 2.7. Thus there is a constant = > 0 independent
of 8 and ¢ such that

’D2WN,1(u)(z,z)’ < E|z)?.

In summary, with the choice 81 = % for > max{By, 1}, § < min{dy,d;} and
u € B;s(0), we get

Do 5(u) <ZWU1> 2,2) + D*Wy 5(u) (2, 2)
—rzﬁ—grzﬁ R

The uniform convexity of og(u) follows by using the fact that the pointwise limit of
uniformly convex functions is uniformly convex. O

For the proof of Theorem 2.3 we want to proceed similarly. As is often the case in
statistical mechanics we compute correlation functions as derivatives with respect
to an external field, which we refer to as an observable field. Namely, we express the
gradient-gradient covariance in terms of the perturbed generating partition function:

CoVog, , (Vg 9(@), Vim0 (1)) = Ok 10 Ziv (us fun(s,1))

In Zn.4 <u f“”(s’t)> . (10)

= 0,0
' VB

s=t=0
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where
Jan(s,t) = sVy, 1a+ tV:nb 1, (11)

is the observable. The observable fields s and ¢ are constant external fields which
couple to the field ¢ only at the points a and b due to the indicator functions. An
external field is also employed to analyse the scaling limit, but there the macroscopic

regularity of this test function is important. The application of the representation

in Theorem 2.7 does not give a good estimate on Z% (IC, C/(\ql\(,}c)) fab

rough. If we smooth out f,;, we can get a decay for the ”smoothed covariance” by
exploiting the decay nV. This is done in [Hil16].

Instead we use a finer analysis based on the RG method for the bulk flow but exten-
ded to observables and obtain a refined representation of the generating partition
function in Theorem 2.11.

) since fq is too

In view of (10), we are only interested in the behaviour of Zy g <u, w\/%t)) up to

first order in s,t and st. To make this precise, one considers the quotient algebra in
which two maps of s,t become equivalent if their formal power series in s, t agree to
order 1, s,t, st, see Section 4 for the details.

Theorem 2.11 (Representation of the extended partition function). Fiz a,b € Ay,

¢ €(0,1) andnp € (0,%). There is Ly such that for all odd integers L > Ly there

is €1 > 0 with the following properties. For any N € N there is a smooth map
Z$: Be, (0) x xn — R such that (up to first order in s and t)

Z](\(TJ(’C)) —LNAN(K)| ,stq3P+sA% +tAE; rext
ZN(K, fan) = We e INTINTIAN Z5 (K, 0), (12)
N

where A(K) and q(K) are given in Theorem 2.7. There is a constant Cy = Cy(L),
such that

1

ab __ 7 q(K) ~
aqN — VmemaCAN (CL, b) + Rab7 ‘Rab‘ < Cl ’a — b’d—"'/’

where 0 < v < —11115142) , and \§; and )‘?\/ are uniformly bounded in N.

Moreover, the remainder Z5¥(K,0) can be expressed (up to first order in s and t) in
terms of the error term Z%(/C, 0) from Theorem 2.7 and parts that are small in N:

ZHK,0) = Z(K,0) + sK& + tKY + stK%,
Ky Ky =0(2"), Kf=0(@n"4").

As before this representation can be used for a straightforward proof of Theorem 2.3.

Proof of Theorem 2.3. Let ¢ be the parameter from Lemma 2.9, fix n € (0,1/4) and
let L1 and €1 be the corresponding parameters from Theorem 2.7. Then, for 3 large
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enough and § small enough, KC, v € B¢, (0) C E; is satisfied. Therefore we can
apply the representation (12) from Theorem 2.11 with

Fun5:5) = fun <¢B jB>

in the computation of the correlations as follows:

fan(s, t

= 0.0 __ W Zns (u, fur(5.)

= 858t In

ab a b
aN N AN
st—-+s—=+t—= ext
m|e 7 TRV (’Cu,ﬁ,wo)]
s=t=

L ab Ky K§y K}y
p BZ%(Kupy,0)  BZ%(Kupy,0)
(V;‘%Vmacg(j’f) (a,b) + Rap + O (2—N)) )

_!
B

Since C/q\(;]c) — C%gc) as N — oo (see [Fun05] for details), the theorem is proven. [J
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3 RG analysis for the bulk flow

The proofs of Theorem 2.7 and Theorem 2.11 are carried out by renormalisation
group analysis. This is an iterative averaging process over different scales. We will
introduce the multiscale method in this section and prove Theorem 2.7, the bulk
case. We start by motivating the idea of RG.

We aim to get an expression for

Zy(K. ) = / 09 S T K(Ve(a)m (dg),

XN XCApN z€X
where f € xn, K € E¢, and ¢ € (0,1) fixed. Remember that
CRy = (AiN) . AL = D (6 +ay) ViV,
ij=1

is the covariance of the Gaussian free field on Ay . For ease of notation, we will drop
the subscript Ay from now on.

To sketch the rough idea of the method, set f = 0 and let us denote

Fe)= Y ] K£(Ve(a)).

XCAN zeX
The starting point is to put an additional parameter ¢ into the measure,

(9)
2n(k,0) = | F()mde) = 5 [ P mer(de),
XN XN

where F(p) = e Z?«Fl(vw’%vj‘p)F(@).

With the help of the implicit function theorem we ”tune” ¢ to find the ”correct”
Gaussian measure producing a useful formula for the partition function.

A finite-range decomposition of puce = pe, * ... * puc, enables us to integrate out
iteratively scale by scale,

F(p+ ¢)uca(dyp) = / FU& + ... +En + d)uc, (d&r) . . . pey (déN)

XN XN

= [ B+ + O (08 s (dE)
XN

_ / F& 1 (En + Sicy (dén) = FL(9).
XN
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F'? can be written by polymer expansion as,

F1="Y" PR AN\ X) = (e 0 Ko) (A),

XCA
where S Y Vipleda Ve
zeX i,j=1
and KO(SO)(Y) = eZZGY Z’L] 1 Vie(2)qi; Vip(x H ’C VQO
€Y
This decomposition can be maintained on each scale k € {1,..., N}, that is there

are maps (H{, K}!) such that F} = efli o K. This so-called circ product acts on
scale k with polymers consisting of k-blocks, which are cubes of side length L* (a
precise definition can be found in (16) in Subsection 3.1.2). At the last scale N there
is only one block left, namely the whole set Ay, and the circ product is just a sum
of two terms, (eHJq\’ + KJqV) (A).

The maps H}! are the relevant (more precisely: relevant and marginal) directions
which collect all increasing (and constant) parts in the procedure F +— pp4q * F and
they will live in finite dimensional spaces. The flow (H,K) — H, = AYH + B1K
will be defined in such a way that (H,K) — Ky is a contraction (by a suitable
choice of the map B?). Moreover, the linear part of H should remain relevant, so
that H appears in K to second order (by a suitable choice of the map A%). Then
the implicit function theorem can be applied to the flow to find the stable manifold
for the initial condition (Hyp, Ky) so that the flow converges to its fixed point (0, 0).

This method is described and performed in detail in [BS15a], [BS15b], [BBS15b],
[BS15¢| and [BS15d] and adapted to gradient models in [AKM16] and [Bucl9]. For
the convenience of the reader we review the relevant material from [Bucl9] without
proofs, see Subsection 3.1.

For the asserted improvement in Theorem 2.7, namely the N-independence of the
maps A\(K) and ¢(K), we will need some additional properties which we will state
explicitly as extensions from [Bucl9]. These are the restriction property and Z?-
property as stated in Propositions 3.7 and 3.9, an improved bound on the first
derivative of the irrelevant part in Lemma 3.11, and the single step estimate in
Proposition 3.14.

In Subsection 3.2 the flow in [Bucl9] will be extended to an infinite-volume flow and
the stable manifold theorem will be applied to this flow instead on the finite-volume
flow as in [Bucl9).

Finally, estimates on the finite-volume flow and the proof of Theorem 2.7 will be
deduced (see Subsection 3.3).

3.1 Finite-volume bulk flow and single step estimates

We start by describing the finite-range decomposition of the measure pcq. This
decomposition is the starting point for the iterative procedure.
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3.1.1 Finite-range decomposition

The operator A? : xy — xn commutes with translations and so does its inverse CY.
Thus there exists a unique kernel C¥ : Ay — R with 3 ., = C%(x) = 0 such that

Clp(z) = Y CUx —y)p(y).

yeAN

The next proposition is Theorem 2.3 in [Bucl8].

Proposition 3.1 (Finite-range decomposition). Fiz g € Rf;,g such that C9 is pos-

itive definite. Let L > 3 be an odd integer and N > 1. Then there exist positive,
translation invariant operators Cg such that

N+1
— q
cr=> ¢,
k=1
k

L
Cilz) = =My, for |zl > =, ke{l,...,N},
where My > 0 is a constant that is independent of q. The following bounds hold for

any positive integer | and any multiindex a:

C,, L~ (k=1)(d=2+]al) ford+|a| > 2
sup sup |VeDLCY(x q,...,q)g '
TEAN [lg <3 LN ) CoyIn(L)L=k=D=2+aD)  for d + |a| = 2.

Here, C,; denotes a constant that does not depend on L, N, and k.

In [Bucl8] further bounds in Fourier space are stated. For the sake of simplicity
they are omitted here.

In contrast to [Bucl9] we combine the last two covariances to a single one:
a  _ 4 q
Cyn =Cx +Chpa- (13)

We will use the following decomposition:
N-1

Cl'=>Y cl+Cl (14)
k=1

where the last term is different from [Bucl9]. The reason for this change is that we
extend the [Bucl9] flow to infinite volume. In order to have good estimates for the
finite-volume covariance we have to perform the last step of integration in the RG
flow instead of dealing with a remaining integral in [ efIN + Kndpnyy at the last
step.

Let us denote by py, the Gaussian measure with covariance C{.

For the sake of completeness we state the following property of Gaussian measures.
A proof can be found, e.g., in [Bry09].
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Lemma 3.2. Let Cj, be a family of positive definite operators such that C =, Cj.
Then a field ¢ which is distributed according to pc can be written as ¢ = Y, &
where &, is distributed according to pc,,.

Another property of the finite range decomposition is independence of N, which is
stated in Remark 2.4 in [Bucl8]. We need this property in order to expand the flow
in [Bucl9] to infinite volume.

Remark 3.3 (Independence of N). Let N < N’ and Ay C Ap+ be the corresponding
tori. Let us denote by C’,iv and CY' the kernels of the decomposition depending on
the torus size LV, and M,ﬁv, M,ﬁv be the corresponding constants from Proposition
3.1. It can be shown that for k < N < N’ and x € Ay the decomposition satisfies

(@) = Y (@) = — (M = YY), (15)

hence the kernels agree up to a constant shift locally, and they are constant for
1Z]oo > L¥/2. We define Ny = {z € Z : |z|o < (LN —1)/4}. Then we have
r—ye Ay forz,y e Ny. Let z,y € Ny such that x + e;,y +ej € Ay. Then (15)
implies that

E'uksz'QD(fU)ijD(y) = Vjviciiv($ —y) = V;‘VZ-C,?[/(% )

This means that the covariance structures of uiy and ,uév / agree locally. In particular
we can conclude that for any set X C Ay satisfying X +e; C Ny for1 <i<d, any
1 <k < N, and any measurable functional F : RX — R

/ F(Vel el (o) = [ F(Volx)ul¥ (de).

XN/

3.1.2 Polymers, functionals and norms

As mentioned in the preface to Section 3, we apply an iterative averaging process
over various scales. In this subsection, we discuss several key notions and introduce
the setting of the scales and spaces for functionals. We follow closely the presentation
in [Bucl9].

At each scale k we pave the torus with blocks of side length L*. These so-called
k-blocks are translations by (LFZ)? of the block By = {z €Z%: || < %} To-
gether, they form the set of k-blocks denoted by

Bi = {B: B is a k-block}.

Unions of blocks are called polymers. For X C A let Pr(X) be the set of all k-
polymers in X at scale k.
Furthermore we need the following notations:
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A polymer X is connected if for any =,y € X there is a path z1 = x,xo,.. .,
Zn, = y in X such that |zj41 — zileo = 1 for ¢ = 1,...,n — 1. The set of
all connected k-polymers in X is denoted by P7(X). The set of connected
components of a polymer X is denoted by Ci(X).

Let Bi(X) be the set of k-blocks contained in X and |X|; = |Br(X)| be the
number of k-blocks in X.

The closure X € Py, 1 of X € Py, is the smallest (k+ 1)-polymer containing X.

The set of small polymers S, is given by all polymers X € Py such that
| X | < 2% The other polymers in Py, \ Sy, are large.

For any block B € By, let B € Py be the cube of side length (2%+! + 1)L*
centered at B.

The small set neighbourhood X* € Pr_1 of X € Py is defined by

X* = U B.

BeB,_1(X)
The large neighbourhood X+ of X € Py, is defined by
xt= |J Bux
BeBy:
B touches X

Additionally, we introduce a class of functionals.

o Let M (Vn) be the set of measurable real functions on Vy with respect to the
Borel-o-algebra.

e Let N be the space of real-valued functions of ¢ which are in €.

e Amap F: P, — N is called translation invariant if for every y € (L*Z)% we
have F(1y(X), 7y(¢)) = F(X, ¢) where 7,(B) = B+y and 1,0(x) = ¢(z —y).

e Amap F : P, — N is called local ifgp’X* = d}}X* implies FI(X,¢) = F(X,1).

e Amap F: P, — NV is called shift invariant if F(X,¢ + 1) = F(X,¢) for 1
such that ¢ (z) = ¢, x € X* on each connected component of X*.

We set

M(Py,Vn) ={F : Pr — /\/'@}F(X) € M(Vy), F translation inv., shift inv., local}.

Notice that we included C"°-smoothness in the definition of the space M (P, Vn)
which is not done in [Bucl9].
Generalisations of M (Py, V) are given by M (Pg,Vn), M(Sk,Vn) and M (B, Vn)
where the first component is changed appropriately. We will write M (Py), M (Py),
M (Sy) and M (By) for short.
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The circ product of two functionals F, G € M (Py) is defined by

(FoG)(X)= > FY)GX\Y) (16)

YePL(X)

The space of relevant Hamiltonians My(By), a subspace of M (By), is given by all
functionals of the form

H(B.p) =Y H{z}, )

z€eB

where H({z}, ) is a linear combination of the following relevant monomials:
e The constant monomial M ({z})y(¢) = 1;
e the linear monomials M ({z})s(p) = VPp(z) for 1 < |B| < 4] + 1;

e the quadratic monomials M({x})s(¢) = Vﬁga(x)VWp(x) for 1 =8| = |v|.

Next we introduce norms on the space of functionals. Fix rqg € N, rog > 3.

e Define
i
r=0
= {g = (g(o),g(l), . ) ‘ g(r) € V](\T,q), only finitely many non-zero elements} .

The space of test function is given by
oo
=By, = {ge@vﬁ’”:g“):owzro}.
r=0

A norm on @ is given as follows: On V5° = R we take the usual absolute value
on R. For ¢ € Vy we define

ljx = sup  sup  w;(a) TV (p)(2)]
zeX* 1<|a|<pe

d—

where 10;(a) = hjL*ﬂa‘L_jTQ, hj = 27h and pp = |4] + 2. For g") € VY"

we define
(r)
s«
T
= sup sup Hmj(al)_l v ®...®V0‘Tg(r)(ac1,...,xr).
T1yeyTp €EX* 1§|a1|,...7\ar\§p¢ =1

Then set Iglj,X = SUPr<p ’9(T)|j,X'
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e A homogeneos polynomial P(") of degree r on Vy can be uniquely identified
with a symmetric 7-linear form and hence with an element P(") in the dual of
VY. So we can define the pairing

Pg)=3 (PO,

r=0
and a norm
[Pljx =sup{(P,g):g€®glx <1}.
For F' € C™(Vy) = NP the pairing is given by (F,g), = (Tay,F, g) which
defines a norm
|Fljxr, = |Tay Flj x =sup{(F,g), : g € ®,|gl;x < 1}.
Here, Tay ,F' denotes the Taylor polynomial of order rg of F" at ¢.

o Let F € M(P§). In [Bucl9] weights WX, w;l, wiy; € M(Py) are defined.
Useful properties are summarized in Lemma 5.1. Weighted norms are given by

IE )l xc = sup | F(X) |k xz, Wik (9)
)

kX, 1,0 (9) 7

[E(X) |k, x = Sl;plF(X)

| F(X)|| k:ket1,x = sup |F(X)
©

X 1
k:,X,Tq;wk:kH(‘P) .

Observe that the last scale weight (k = N) is defined via a new covariance
(see (13)) in contrast to [Bucl9]. We will comment on this modification in
Section 5.1.1.

e The global weak norm for F' € M(Pf) for A > 1 is given by

A
1P| = sup | F(X)||x AN,
XePg

e A norm on relevant Hamiltonians is given as follows. For H € My(By) we can
write

HB,p)=> |ag+ > agVip@)+ > > as,Vie(x)Ve(z)

zeB BEvL zEB B,v€v2
Here
U d
b= 8€eNg, 1Bl < |5 +1p,
v = {(8,7) € N x N, 8] = Iy| = 1,8 <},
where U = {ey,...,eq} and the expression 8 < v refers to any ordering of
{e1,...,eq}. With these preparations we define a norm on My(By,) as follows:

_pd=2 _
1H ko = L™ |ag| + > hL*L7FZ LM ag| + > hi|as,)-
Bevy (B,7)€v2
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Remark 3.4. Aside from the parameter L two parameters appear above in the
definition of the norms: h and A.

The parameter h is determined by desired properties for the weights Wi, wy, Wg.g11,
see Theorem 4.5.1 in [Bucl9] (cited here in Lemma 5.1), dependent on the choice
of L. We will use the weights without explaining the construction and thus we will
always choose h large enough as required, depending on L.

The parameter A (also dependent on L) will be fized in Proposition 3.21. It will be
chosen larger than in [Buc19].

Finally, there will be a small parameter k = k(L). It constrains the parameter
q e Rﬁ;;f which determines the Gaussian covariance C4. The constraint will be that
q € Bi(0) for k small. The parameter k is determined by desired properties for the
weights, Wi, Wi, Wg.k+1, see Theorem 4.5.1 in [Bucl9] (cited here in Lemma 5.1).

3.1.3 The renormalisation map

We use the finite-range decomposition of C? into covariances C{,...,C%_1,Ch v
defined in Subsection 3.1.1 (see (14)). The decomposition implies that a field ¢
distributed according to fi,() can be decomposed into fields §;, distributed accord-

ing to pies =1
N
D
p= &,
k=1

and that peq) = pf % -+« p_; * ph v (see Lemma 3.2).
Let us define the renormalisation map

RiF'(p) = [ Flp+&ur(ds).

XN

Then
/ F(p)pcw (dp) = RNNRN-1-.-R1(F)(0).
XN

The flow under Ry, will be described by two sequences of functionals Hy € My(By)
and Kj, € M(Py). In the following we define those sequences and state properties as
far as it is needed for our purpose of proving Theorem 2.7 and for the understanding
of the extension to observables.

The flow is given by

Ty : Mo(Bi) x M(Pg) x R — My(Biy1) x M(PEL),

Sym

(H7K7q) = (H+7K+)'

Note that we sometimes omit the scale k from the notation; if doing so, the +
indicates the change of scale from k to k + 1. The maps Hy € My(Bk41) and
Ky € M(Pyy1) are chosen such that

R(e o K)(An) = (e o Ky )(An).
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Let us introduce a projection Iy : M(B) — My(Bg) on the space of relevant
Hamiltonians. For F' € M (By), IIoF is attained as homogenisation of the second or-
der Taylor expansion of F|(B) given by ¢ — F(B,0)+DF(B,0)p+3D*F(B,0)(, ¢).
More precisely, IIoF' is the relevant Hamiltonian F'(B,0) 4+ I(¢) + Q(¢, ¢) where [
is the unique linear relevant Hamiltonian that satisfies [(¢) = DF(B,0)¢ for all ¢
who are polynomials of order L% + 1J on BT, and Q is the unique quadratic relevant
Hamiltonian that agrees with $D?F(B,0)(¢, %) on all ¢ which are affine on BY.
These heuristics are made precise in [Bucl9], Section 4.6.4.

The relevant part of the flow on the next scale, the map H, is defined as follows:
For By € Bk+1

H.(B.) = ALH(B,) + BLK(B.)

= Y LRy HB)+ ). LRy K(B).
BEBk+1(B+) BEBk+1(B+)

Remark 3.5. We comment again on the motivation for the decomposition into H
and K (see also at the beginning of this section). AiH s a linear order perturbation
which results in the fact that H appears to second order in K, see Proposition 3.14.
Moreover, BZK is defined in such a way that (H,K) — K is a contraction, see
Proposition 3.12.

For the definition of the irrelevant part K of the flow at the next scale, set
H(B) = Ry H(B) + Iy Ry 41 K (B),
and for X € P, and U € Py,
X(X,U) = lp(g)=y, Wwhere
mX)= |J #() and

YeC(X)
X ifXePe\S,
7(Y) =14 By where By € By with By NX # 0 for X € S\ {0},
P X =0

Then
K+(U7 90) = SZ(H-H K—i-)(Ua ()0)

= Z x(X,U) (ef{r(@)>U\X (eﬁ(¢)>_X\U

XeP
X / [(1 —efl <w>) o (6H<<P+€> - 1) o K(p+ 5)} (X)) (d).  (17)
If the dependence of SZ on q is not of direct importance we omit it from the notation.

We review the following properties of the map (H, K) — K, from Lemma 4.4.4
in [Bucl9].
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Lemma 3.6. For H € My(By) the functional K, defined above has the following
properties.

1. If K € M(Py), then K4 € M(Ps).
2. If K € M(Py) factors on scale k, then K factors on scale k + 1.

The construction on K gives it a local dependence on K, as formulated in the next
proposition.

Proposition 3.7. The map (H, K) — K satisfies the restriction property, that is
for U € Pyyq the value of K (U) depends on U only via the restriction K|,,, of K
to polymers in P(U*).

U*

Proof. This follows from the definition of K and from the fact that Ry, preserves
locality. O

For the construction of the infinite-volume flow later we consider the family (K™),
in dependence on the torus A. More precisely, we consider tori Ay with increasing
side length LY, N € N. Let P.(Z%) be the set of finite unions of k-blocks in Z¢. We
need the following compatibility condition.

Definition 3.8. We say that a family of maps (K™)a satisfies the (Z%)-property if
for any X € Px(Z?) and for A C A’ satisfying diam(X) < Ldiam(A) it holds that

KMX) = KN (X).

Given (H, K™), we note the dependence on A also in the map S*. By the definition
of the map (H, K) — SQ(H , K) we directly get the following property.

Proposition 3.9. Let (K™, satisfy the (Z%)-property and let H € My(B). Then
(SMH, K, q))a also satisfies the (Z4)-property.

Proof. Let U € P4(Z%) such that diam(U) < fdiam(A). Let A’ be a torus larger
than A. Then
KY(U) =S(H,KY)(U).

We use the restriction property in Proposition 3.7 to see that S(H, KA)(U) only
depends on K* through K%' y+- In fact, no polymers that are larger than U
can appear in the formula for Si due to the definition of x(X,U). Thus for any
X € P(U*) that appears in S it holds that diam(X) < jdiam(A), and we can apply
the assumption that (K*), satisfies the (Z%)-property. O

3.1.4 Properties of the renormalisation map

Here we state important properties of the renormalisation map T}, namely smooth-
ness of the irrelevant part (Proposition 3.10), an improved bound on the first de-
rivative of the irrelevant part (Lemma 3.11), contractivity of the linearisation of
the irrelevant part (Proposition 3.12), and a single step estimate (Proposition 3.14).
Smoothness and contractivity are proven in [Bucl9], but we add restriction and
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(Z%)-property in the statements which will be useful to perform the extension to
infinite volume in the next section.

We explicitly analyse the dependence of S; on ¢ in the next statement, so we consider
Sk as a map from Mo(By) x M(Pg) x RE to M(Pjq1). This proposition is an
extension of Theorem 4.4.7 in [Bucl9].

Proposition 3.10 (Smoothness of the bulk flow). Let
c A
Uy = {(H, K, q) € Mo(By) x M(P§) x Rl + || Hl|1o < p, | KIS < p, llg]l < x}.

There is Lo such that for all odd integers L > Lo there are Ag, hy and k with the
following property. For all A > Ay and h > hy there exists p = p(A) such that for
allk < N

Sk € C*® (Up e, M(Piyy)) -

For any j1,j2,j3 € N there are constants Cj, j, j; independent of N such that for
any (Ha Ka q) € Up,fi

(A) .
‘ < Cjy jajs |1 H |

”D{1D§2D§3Sk(ﬂ, K, q)(Hjl,Kj2, q'js) bt S

; (AN
2o (IENED )™ Nl

Moreover, S, (H, K, q)(U) satisfies the restriction property and preserves the (Z4)-
property.

Proof. The restriction property is stated in Proposition 3.7. The (Z¢)-property is
preserved by Proposition 3.9. The smoothness and bounds are part of Theorem 4.4.7
in [Bucl9]. O

For the transfer of smoothness properties from the global flow back to the finite-
volume flow in Proposition 3.21 we need the following improved bound on the first
derivative of Sg on long polymers.

Lemma 3.11. Assume that Proposition 3.10 holds. Let P,?Jrl(A) be the set of poly-
mers U € Pgy1(A) such that diam(U) > idiam(A). Then, for any = € (0,2q),
where o = [(1+2%)(1 + 6d)]71, and for any (H,K) € U,

(A) %LNf(kﬁ»l

. . . _ ) . . A .
| DxDSHH K ) ) e )] < €14 A E ol K1 ldll-

Proof. In Remark 5.23 we show that

AlUlk+1

. . —x . . A .
Dy Di DSK(H, K, o (H KQU) | < Cra= e At Ao | K1V

Since

diam(A) = V2LY and diam(U) < |U|pV2L!
we get for U € P,?’_El(A)
1
[Ulk+1 > iLN_(kH)-

Thus the claim follows.
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The following proposition is Theorem 4.4.8 in [Buc19] except for the minor difference
that 0 is kept arbitrarily instead of the choice %n.

Proposition 3.12 (Contractivity of the bulk flow). The first derivative of Ty at
H =0 and K = 0 has the triangular form

o (2)- (5 5)(4

where

CIKWU)= Y (I-TL)R.KB)+ Y  RyK(X).
B:B=U XePg\B(X)
m(X)=U

For any 0 € (0,1) there is Ly such that for all odd integers L > Lg there exist Ay,
ho and k with the following property. For all A > Ao, h > hg and for ||q|| < k the
following bounds hold independent of k and N :

1,3
ICkl <o, I(AY) " 1<7 0 IBil<

Wl

Moreover, the derivatives of the operators with respect to q are bounded.

Remark 3.13. In [Buc19] 0 is fized to be %n, where n is the parameter that controls
the contraction rate of the remormalisation flow. For the single step estimates in
Proposition 3.14 and Proposition 4.10 we have to choose 8 smaller than %77. Thus
we formulated the Proposition with this additional flexibility. Inspection of the proof
of the bound on ||C{|| in [Buc19] shows that a smaller § can be obtained by choosing
larger Ly and Ay.

Proposition 3.10 and Proposition 3.12 can be combined to prove a single step estim-
ate of the irrelevant part of the flow. This bound can not be found in [Bucl9]. The
estimate will help us deduce estimates on the finite-volume flow given the infinite-
volume flow, see Proposition 3.21.

Let us introduce the space

Dk(ﬂO? 7, A)

= {(H,K) € My(Bg) x M(Pi(A)) : H € B, ,1(0), K € B, ,2:(0)} . (18)

pon®
Proposition 3.14 (Single step estimate for the bulk flow). Fiz n € (0,1). There
is Lo such that for all odd integers L > Lg there are Ag, ho, k with the following
property. For all A > Ag,h > ho and q € B, (0) there is pg > 0 such that if
(H,K) € Dy(ph,n, A) then

A
ISE(, K, < o).
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As the proof will show this estimate reflects the fact that we use first order perturb-
ation: Heuristically, up to first order in H,

R (e) m Rt
since Ry () =Ry (1+ H) =1+ R H ~ R+,

Proof. Fix 6 < n?. Let Lo be large enough such that Proposition 3.12 and Proposi-
tion 3.10 can be applied. Define

Cy = max{C50,0,C1,1,0,Co2,0}

where Cj, j, j; are the constants from Proposition 3.10. Choose pg small enough
that
pg <p(A) and 6+ 202/)?) <7’

Then (H,K) € ]D)k(pg, n,A) implies (H, K) € U,(4) so we can apply Proposition 3.10
to estimate as follows.

We Taylor-expand S(H, K) up to first order with second order integral remainder
around (0, 0):

S(H, K) = S(0,0) + DS(0,0)(H, K) + /1 D?S(tH,tK)(H, K)(H, K)(1 — t)dt
0
= CIK + / 1 D?*S(tH,tK)(H, K)(H, K)(1 — t)dt.
0
Then we estimate

A a 1
ISC, Bl < IS + 5C <||H||%,o + 2| Hlxol

A A)\?
K1+ (1))
1
< ph* («9 + 2024pg> < phnP ),
The last inequality follows by the assumption on pg. This finishes the proof. O

3.2 Infinite-volume flow: definition and existence
3.2.1 Definition of the infinite-volume flow

In our context, the renormalisation map T}, is most naturally defined to be a map
in finite volume, since a defining property is that is should preserve the circ product
under expectation. There is no analogue of this property for infinite volume. Never-
theless, there is a natural definition of a map (H, K) + (H,, K, ) which lives on Z%
rather than on a torus A, as an appropriate inductive limit of the corresponding
maps on the family of all tori. The infinite-volume map has the advantage that it is
defined for all scales k € N, with no restriction due to finite volume. In particular
we can study the limit k& — oo which we use to apply an implicit function theorem
to the dynamical system defined by the RG.
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Let By(Z%) be the set of all k-blocks in Z¢ and Py (Z?) be the set of all finite unions
of k-blocks. Since we are dealing with boxes A of varying side length LY let us

introduce the notation N (A) for the exponent describing the side length of the
box A.

A relevant functional H € My(By) can easily be thought of as an element dependent
on a block living in Z¢ instead of A due to translation invariance. More precisely,
given H € My(Bk(A)), we define H” on a block B € Mo(Z%) as H(B) for a
translation of B to the fundamental domain of A and suppress the index Z? as well
as the translation of the block in the notation.

The irrelevant part is extended as follows.

Definition 3.15. Let (K™ be a family of maps which satisfy the (Z%)-property.
For X € Pp(Z) choose A large enough such that k < N(A) and diam(X) <
sdiam(A). Then we define

K2(X) = KMNX).

Here we use that X € Py(Z%) has a straight-forward analogon in Py (A) if A is large
enough which we do not record in the notation.

The definition does not depend on the choice of A owing to the (Z%)-property re-
quired for the family (K%),.

Given (H, K Zd) and the finite-volume maps (SA) A» e define K _%d as follows.

Definition 3.16. For U € Pyy1(Z%) choose A large enough such that k+1 < N(A)
and diam(U) < 3diam(A). Then

K% (H sz) (U) = SM (H, KMy) .

As it is claimed in Proposition 3.10 the map S" satisfies the restriction property
and preserves the (Zd)—property. Moreover, the map S? involves integration with
respect to pp41 of functionals which again only depend on U* and thus, referring
to Remark 3.3, the covariance is also independent of the choice of A. So K %d is
well-defined.

Defining the relevant flow in infinite volume is straightforward: Fix B € By,1(Z%)
and (H, KZd). Define

H”'(B) = A“H(B) + B'K”"(B).

As before we can skip the index Z% on H due to the following reasoning: Let
k < N(A) and B € Bip1(Z%. Then B € Bjy1(A) and for all b € By(B) it
holds that KZ'(b) = K™(b). Thus HE!|(B) = Ypep, iy R+ H(b) + IRy K2(b) =
> ben ) R+ H(D) + Ry KA (b) = HY(B).
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We just defined the infinite-volume renormalisation map
zd 7 zd
Ty (Hy, Ky, q) = (Hiy1, Kiy)-

Now we extend the norms.

There is no need to change the norm for the relevant variable since it does not
depend at all on the size of the torus.

For the irrelevant variable let X € P¢(Z%) and choose A large enough such that

diam(X) < %diam(A). Then K% (X) = K*(X) and we can use the same definition
as in [Bucl9] for

| @), = 150l = swp w X @IKX Qe
PEV(X™)

(the weights wg, wg.x+1 and Wy do not depend on the size of the torus as long as
X is small enough compared to the torus, see Remark 5.2).

3.2.2 Properties of the infinite-volume renormalisation map

Due to the definition the single step estimates for the map (H, K*) — (Hy, K%)
can be transferred to the infinite-volume flow.

Proposition 3.17 (Smoothness and contractivity in infinite volume). For any
0 € (0,1) there is Lo such that for all odd integers L > Lo (and corresponding
A, h, k) the following bounds hold independently of k and N for each q € B(0):

1 3 1
Icii<e, 1(ADTI<3, IBll< g
The derivatives with respect to q are bounded. Moreover, there is p(A) such that
Sk € C® (Ups M(PE41))

and

(A - (N2
| D} D DES(H, K, ) (17 K72, ) | < Cio o sl (IKEY)™ Nl

3.2.3 Global flow

Proposition 3.18 (Existence of the global flow). Fiz (,n € (0,1). There is Ly such
that for all odd integers L > Lg there is Ag, hg and k with the following property.
Given € > 0 there exist €1 > 0 and e > 0 such that for each (IC,H,q) € B¢, (0) X
Be,(0) x Bx(0) C E x My(Bo) x REX4 there exists a unique global flow (Hk, K%d>

syrm keN
such that

“w

d
| Hg ko, || K2 L Sen

for all k € Ny,
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with 1nitial condition given by

KF (X, 9) = '59) T K(Ve(x))
rxeX

and ; . ]
(Hk+1aK%+1) =T} (Hk’vKl% ‘I) :
Moreover, the flow is smooth in (IC,H, q).

Proposition 3.18 implies that for any (K, H) € B, x B, there is Ho(KC, H) such that
the flow (using the parameter () in the measures) converges to the fixed point of
the RG. In our application we require the g-component of Hy to correspond to the
parameter ¢(H) in the measure.

Proposition 3.19 (Global flow with renormalised initial condition). Let
(e KEY) | = (e, 31, KE (6, 1))
be the global flow from Proposition 3.18. There is 0 < 6 < €1 and a smooth map
# : B5(0) C E = B.,(0) C My(Bo)

such that

Hy(H(K),K) = H(K)
and q(’HOC)) C B,(0) for all K € Bjs(0). Moreover, the derivatives of H can be
bounded uniformly in N.

In what follows we will prove Proposition 3.18 and Proposition 3.19. The proofs are
very similar to the corresponding proofs in [Bucl9]. In fact, here the arguments are
slightly easier since we do not have to care about last scale maps due to the change
of the finite-range decomposition, see (14). For the sake of completeness we review
most of the steps.

The main ingredient is the application of the implicit function theorem. For the
convenience of the reader, we state the implicit function theorem as we will use it
in the following.

Theorem 3.20 (Implicit function theorem). Let X,Y, Z be Banachspaces, and for
U C X,V CY open subsets, let f be a CP Frechet differentiable map f : U XV — Z.
If (xo,y0) € U XV, f(xo,y0) = 0, and y — Daf(xo,y0)y isomorphism, then there
exist a neighbourhood Uy of xg in U and a Frechet differentiable C? map g : Uy — V'
such that g(xo) = yo and f(x,g(z)) = f(xo,y0) for all z € Uy.

We give definitions which prepare the proof of Proposition 3.18. Let us set
Zoo = {7 = (Ho, Hy, Ko, Hy, Ko, ..), Hy € My(By), Ky, €M(P),

122 < oo}
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where
12]z.. = max (supi\|Hk||k,o, supiuKknEf)) .
k>0 1] E>11
Clearly, || - ||z, is a norm on Z.,. We define a dynamical system on Z, as follows:
T:Ex M(By) X Zoo = 200, TK,H,Z)=2Z,
where
Ao M. 2) = (85%) 7 (1~ B Ko(ic, 1))
Hu(K,H, Z) = (AZ(H))A (Hk+1 - Bg("’"Kk) L k>,

Kk—‘rl(,CvHv Z) = Sk (Hk,Kk,(](H)) ) k> 1,
KA, H, Z) = So (Ho, Ko(K, H)a(H))

with fixed initial condition

Ko(K, H)(X, ) = "9 T K(Vep(a)),
reX

and ¢(H) is the projection on the coefficients of the quadratic part of H.
One easily sees that

TIK,H, Z)=2Z
is satisfied if and only if

Ty (Hy, Ki, q(H)) = (Hgy1, Kiy1)

with Ky = K()UC,H)
Proposition 3.18 is equivalent to the statement that for sufficiently small (K, H)
there is a unique fixed point Z(K,H) which depends smoothly on (K, H).

Proof of Proposition 3.18. Let Lo (and Ay, hg, k) and p(A) be as in Proposition 3.17.
Let f: E x M(By) X Zo0 = Z5 be the map

fICH, Z)=T(K,H, Z) — Z.

We apply the implicit function theorem on f. The required assumptions on f are
checked below.

It holds that f(0,0,0) = 0. To show that f is smooth we have to check that T is
smooth.

Claim: For every triple (L, h, A) which satisfies L > Lg,h > ho(L), A > Ay(L)
there exist constants p; > 0, p2 > 0 such that 7 is smooth in

By, (0) x By, (0) x B,4)(0) C E x M(Bp) X Zw,



40 3 RG ANALYSIS FOR THE BULK FLOW

Le., for all (KC,H,Z) € B,,(0) x By, (0) x B,4(0),
1

WHD%DQD?T(’QHvZ)("C, N A A1

< Cjy s (L 1, A KL HNE N 2115

Furthermore ¢(H) € By (0) for all H € B,,(0). )
Proof of the claim: We establish smoothness of the coordinate maps for Hj and

K}, in a neighbourhood of the origin. Let Z € B 4)(0).

e Since Kyy1(K,H,Z) = Sp(Hy, Ky, q(H)) for k > 1, smoothness follows from
the smoothness of Sy in Proposition 3.17. The proposition can be applied if

(Hi, K, q(H)) € Up(ay -

Since Z € B,4)(0) is assumed, (Hy, Ky) € Up,4) is satisfied. Moreover, the
map H — q(H) is linear and satisfies

c
laH)] < 751 Hoo-

For po small enough we thus have ¢(H) € Bi. Bounds on the derivatives of
K k+1 are obtained as follows. Note that for £ > 1 the function K, k11 does not

depend on K.
1 J2 13 7\ 11 (4)
j2']3 nk+1HD D Kk+1(lc H Z)(H 7Z>Hk+1

1 .
< CszsW (|

A)\J3 Lo
N Crliui,
< Chai 1218 Crl I

e The smoothness of Hj, follows similarly with the help of Proposition 3.17.

e The smoothness of the map K, (K, H, Z) = So(Ko(K,H), Ho, q(H)) and bounds
on the derivatives are done in detail in [Bucl19]. Smoothness for K| is proven
in Lemma 4.10.2 in [Bucl9], and then we apply Proposition 3.17 and chain
rule.

Now we show that Z — Dz f(0,0)Z is an isomorphism. Since
Dz£(0,0)Z = DT(0,0,0)Z — Z

one needs Z — T (K, H, Z) to be a contraction at the origin. From the definition of
the maps Hy and K} and from Proposition 3.12 it follows that

dﬁk 0\—1
— (A for k > 0,
dHj41 (A%) N
dI:Ik 1
dKg11

K, =CY) fork>1,
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and all other derivatives vanish. Let Z € Z, satisfy ||Z]|z,, < 1. Let us denote by

8T (0,0, 2)

A
07z 70

Z,

and denote the coordinates of Z’ by H; and Kj. The bounds on the operators
(AZ)A, B and C{ from Proposition 3.12 and || Z|| z,, imply that

—1 3
|Hglloo < || (A8)~"||n < Sm.

_ _ -1 - —1 3 1
Mo < 07" || (AD) 7| 0| (A 7| 1B < <n+3> 1<k,

KL =0,

_ _ _ 0
I < 0GR It < o kz2
For n < 1 this implies that

0z

Z=0
Thus we can apply the implicitA function theorem. It follows that there exist €
and e and a smooth function Z : B, (E) x Be,(Mo(Bo)) — B,(a)(Zc) such that
Z(0,0) =0 and T(K,H, Z(K,H)) = Z(K,H) for all (K,H) € B, (0) x Be,(0).

It remains to show that the bounds mentioned in Proposition 3.18 are satisfied.
The fixed point map satisfies

12, H)l 2. < p(A)

uniformly in (KC,H) € B¢ (0) X Bc,(0). The connections between the parameters
€1, €2 and e is clearly explained in [Bucl9], Theorem 4.10.1.
From this it follows that

: oA
1Ak llo and K5l < enf.
OJ

Proof of Proposition 3.19. Let Z : B.,(0) X Be,(0) = Bc(0) be the fixed point map
from Proposition 3.18. Denote by Ilg, : Zo — My(Bp) the bounded linear map
that extracts the coordinate Hy form Z.

Define

FUCH) =Ty, Z(K, H) — H
as a map from By, (0) X Be,(0) — My(By). f is surely smooth. The equality

£(0,0) = T, 2(0,0) = 0
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holds since Z(0,0) = 0. Our next concern is to show that
Do f(0,00H = —H.

By definition, 7(0,H,0) = 0 for all H € Be,(0). Due to the uniqueness of the fixed
point, Z(0,H) = 0 for all H € B, (0). It follows that D2Z(0,0) = 0 and thus
DyIly, Z(0,0)H = 0 for all H € B, (0).

In summary we obtain that Dy f(0,0)H is an isomorphism. By the implicit function
theorem it follows that there is § and a smooth function H : Bs(0) C E — B, (0) C

My(By) such that Iy, Z (K, H(K)) = H(K). O

3.3 Back to finite volume and proof of Theorem 2.7

In the last section we constructed the global flow (Hy, K %d)keN and proved useful
estimates. Now we transfer the properties to the finite-volume flow and deduce the
proof of Theorem 2.7.

The relevant part of the flow is the same in finite and infinite volume,

HEY' = HY for k < N(A),

so the estimates of the global flow are also valid in finite volume. The irrelevant
parts coincide only for polymers X with diam(X) < 1diam(A). However, we can
use the improved bound on DS in Lemma 3.11 and the single step estimate in
Proposition 3.14 to prove inductively that K ,f also satisfies the desired estimates.

Proposition 3.21 (Existence of the finite-volume bulk flow). Fiz ¢,n € (0,1).
There is Lo such that for all odd integers L > L there is Ag, ho, k with the following
property. There is § and € such that for a fized A the finite-volume flow

(Hi, K¥) = (Hipy1, Kity)

exists for all k < N(A), is smooth in K € B;(0) with bounds on the derivatives which
are uniform in N(A) and satisfies (Hg, Ki*) € Dg(€,n,A) for all k < N(A).
Moreover,

Iy (Ho(K)) = 4¢(K)

and
Ko(¢, X) = Ko(K, Ho) (g, X) = @0 TT K(Ve(x)).
reX

Proof. Let (Lo, Ao, ho, k) be as in Proposition 3.18 and let (Hk,K%d)keN be the
global flow with renormalised initial condition from Proposition 3.19. Let € =
min{pg, €}, where pg is the quantity from Proposition 3.14 and € is as in Proposition
3.18. From the infinite-volume flow we already know that || Hg||x,0 € B,k (0) for any
k < N where € can be made arbitrarily small by decreasing €1, in particular we can
presume that || H||x,0 € Bg,(0) for K € B;(0) for sufficiently small §. Thus we just
have to show that Ki* € B2k (0) for § small enough, for any k < N(A).

We proceed by induction. For k = 0 it holds by definition that Ké\ = Kgd and thus
K € Be(0) is satisfied.
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Now let K ,/c\ € Bg,2x(0) for K € Bs(0). To advance the induction, we apply Propos-
ition 3.14 and obtain that also K lf}H satisfies the desired estimate.

Smoothness in K with bounds on the derivatives which are uniform in N can be
proven as follows. Let Pj(A) be the set of polymers X € Py(A) such that

diam(X) < idiam(A). Since K} = K%d on Pi(A)for any k < N(A) and since
the global flow (Hk,K%d)keN is smooth in K, we know that for all r € N there is
C, > 0 such that for all £ < N(A)

| DRk, )| < Gk, (19)
| PEER gy K- O, < CHIRIE (20)
We will prove inductively (induction on &k and r) that also Dj-K ,?‘PQ ) satisfies a
_ k
bound with a constant C, that is uniform in k£ and N,
| PkER i (K K|, < CIKIE (21)
For all scales k € {0,1,..., N — 2 we can use Lemma 3.11 to prevent accumulation

of large constants. Then only two scales remain, where large constants are allowed
to appear.

By Lemma 3.11 it holds

oA _zN—(k+1) | ¢ (A
| DuDKD Sy (LK) < a5 o K V1)
1 (M) kt1
Fix 9 € (0,1). Choose Lg large enough such that
4-2L< 9.
2
Then, for all k < N — 2,
A-TpN-0) <y Tp <y,
2 2
Now fix ¢ € (0,1) and choose Ag large enough such that
CLAY YT oA < g < 1.
Then
o (A) . (A
| D1 DD S, K ) K)o 7 < ol H kol KIE 1A (22)
CESLC] | Pt

This estimate will be the main point in the argument to advance the induction. For
the remaining scales k = N — 1 and kK = N we will use

o (A4) : : ‘
| Da D DS, K, ) (1, K) < CulHol KNP (23)

ol
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where (7 is the constant that appears in Proposition 3.10.

We start with the case r = 1. We use induction on k until scale kK = N — 2. Choose
C_'l Z max {C’l, 0361} .
(1-0)
For k£ = 0 nothing is to show since both Hy and Ké\ coincide with the corresponding
maps in the global flow. To advance the induction, let us assume that

e

. [|(A) _ .
2K, < CaliKlc.

Then, as long as k < N — 2, by (22), (19), (20) and induction hypothesis,
(A)

HDICKIZC\—H}PQ (A)K“k+l

k+1

11(A)
| DS (Hy, s, Drc(Hy, Ky a)K | "

Dlpz,

: - [1(A) 1(A4) )
<0 (HDKHUCHM + HD;ch’p,i(A)’CHk + HD/ch’PIE(A)ICHk + HD,quc‘D
Sd@+&+a+awmk

Our choice of Cy and p < 1 implies that o ((:H +Cy + C_’l) < C; and the induction
step is proven.
If k=N —1and k£ = N, then we accept accumulation of constants, and we get

by (23) »

HD’CKJAV—JP%,1<A>"CHN_1

<y (3C~'1 + Cl) ||K||c,
and

"D,CK]’\\,|P]2V(A)IC“§:) < (301 +C (301 + 61)> K.

Next we consider the case r = 2. Again we use induction on k until scale k = N —2
to show

.o 11(A4) _ .
[PRRR a2, < CallE
whith
Cy > max{é’g, (02(301 +C1)2+Q3C'2)};
1—op

where C5 is the constant which appears in the estimate HDZSk(H, K)H < (9 in
Proposition 3.10.

For k£ = 0 nothing is to show.

Let us assume that the bound holds for k¥ < N — 2. By chain rule we have

DKalpy,, i (:K)
N\ 2
= D*Sy(Hi, K@)l e ) (Dic(His K, 0K

+ DS (Hy, Ko@) ) DR (Hi Ko 0) (K. K)
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and thus we can estimate with (22), (19), (20) and induction hypothesis,

[Pt ()]
< O (01 +C1+Cr+ 01)2 +o (02 +Cy+Co+ 02) 1K

The desired bound is satisfied by our choice of Cy and since o < 1. The key point
here is, that the ”dangerous” bound Cs (the application of the induction hypothesis)
comes with the occurrence of o.

As before the scales k = N —1 and & = N can be handled by allowing the constants
to accumulate.

By a second induction in r we show that (21) holds for any 7.
From the chain rule we deduce inductively that

A : .
DiKalps ) (/c, . ,ic)
is a linear combination of terms
(D'Sy(Hy, Koy 0)) (DR (Hi K, )K" ) ... (DRE(Hs Ky )
where 1 < i <r, js > 1and Zizl js = r. For ¢ > 1 this term is estimated as follows:
. . iy A oA
| (D'Sut, K 0) (DR (B K )7 .. (DR (s Ko K ) |
i
< G [T (365 + C5.) IKIE,
s=1
where we used that || D'Sy(H, K)|| < C;, (19), (20) and induction hypothesis. Note

that for ¢ > 1 it holds that js < r so that only constants C; for [ < r appear. The
term with ¢ =1 is

(Dsk(Hk’7 Kk7 Q>) DITC(Hk:v Kk‘a Q)K:T?
which can be bounded for scales k < N — 2 with the help of (22) by

. 11(A) ~ _
| (DSk(Hy, K 0)) D (i K K| < 0 (365 + G ).
Again the ”dangerous” term C, appears with o in front, so that in summary we get

DL KA Kr “
H K k+1‘P£+1<A> bl

§D+9<3@T+Cr>

for a constant D which depends on C; for 1 < ¢ < r and C~'j5 for 1 < js < r. By the
choice

c, > 1ig (D + gsér)
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we obtain (21).
Constants are allowed to accumulate for scales k = N — 1 and k£ = N.

This finishes the proof of smoothness of the finite-volume flow in K.

Proof of Theorem 2.7. Let Ly and €y = 0 be as in Proposition 3.21. Let f € yn.
The starting point is the identity

N = [0 30 T K (Vela)) mde)
XCTN zeX

Let us denote

Aoy= Y JIKVe)

XCTN zeX

For K € B, (0) let ¢ = ¢(K) be the quadratic part in Hy(K) from Proposition 3.21.
Then

()

Z

2. 1) = [ OF epn(ag) = 75 [ VORI e
N

Z(‘Z)
Z(O)

(AL / FI(A, o+ C7f)pea(do)

with
FI(A, SO)_eQZ” (Ve Vi®) p( A ).

Now let A = A(K) be the constant part and [(K)(y) the linear part of Ho(K)(p).
Since Y o l(K)(¢)(x) = 0, and since Ky satisfies the correct initial data, it holds
that

FI(A, @) = e 0 KA, ),

and thus, by Proposition 3.21,

(9)
Zy
Zy(K, f) = o )€%<f7cqf>e—ALNd / (e 0 Ko) (A, ¢ + CUf ) piea(dp)

1 _ Nd
Z<> UL (N 4 Koy) (A,C7F).
N

Let
2K,y = (M0 4 Ky (1)) (C2).

By Proposition 3.21 the map ZR[ is smooth in . We shall have established the
proof of the theorem if we show that there is a constant C' such that Z?\,(IC,C‘I f)

satisfies the estimate }Z%(K,qu) — 1‘ < CnN for special choices of f. First we get

Zy (K, cf) = 1| < [PV ] | Kn(et )

< 1B n ||y (0 ) AT 4 ||| — 1| WAV (o).
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For f = gy — ¢y as given in the assumptions of the theorem it holds that f € yn.
Then one can show (see Lemma 5.1 in [Hill6] or the proof of Theorem 3.2.7 in
[Bucl9]) that

Wy (C1), WM (C1f) < ©

for a constant which is independent of N. Moreover, by Lemma 4.7.3 in [Bucl9],
one can estimate
H
lle™ =1l < 8llHnlvo

and since (Hy, Kn) € Dy (€,17,A) by Proposition 3.21 we finally get
|24 k,crp) 1] < o

for a constant C' which is independent of N. ]
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4 RG analysis for the observable flow

This section is dedicated to the proof of Theorem 2.11. The theorem contains
a representation of the partition function with inserted observables sV,,, ¢(a) and
tVim, ¢ (b). In order to work with such a singular external field we extend the analysis
of Section 3. This will truly be an extension in the sense that the bulk flow needs no
modification. We will show how observables can be incorporated into the analysis
to obtain the pointwise asymptotic formula in Theorem 2.11.

We will follow the flow of these observables in detail and study the corresponding
properties. First we extend spaces and norms in Subsection 4.1. In Subsection 4.2
the RG map is defined. We have to provide a good definition for the flow such that
we can extract the Gaussian covariance C4. This is achieved by using second order
perturbation in the map A instead of a first order expansion as before.

The proof of Theorem 2.11 consists of two steps. A first estimate on the covariance
is proven in Subsection 4.3, a refined one in Subsection 4.4. The proof of Theorem
2.11 is then immediate from these estimates (see Subsection 4.5).

Remember that we aim to obtain a representation of
ZN(K, fap) from (8), where fop = sVy, 1o +1Vy, 1p.

Let (Hg, Kx) be the bulk flow of the last section. We can rewrite Zxn (K, fup) as
follows:

Zn (K, fur) = / ) ™ T K(Vpa))m (dg)

XCAN reX
(a(K))
VA _Nd
SR LNaA(K) / e(#:far) (M0 o 1) (A, @) ieace (dp).
N

We include (¢, fq) into the circ product and extend the maps Hy and Kj to

HE(p) = Ho(¢) + sV, p(a)1a + tVim, (D) Ls,
KSXt((P) _ KO((p)esvmago(a)]la+tvmbcp(b)]lb.

Then

Z](\?(’C)) LNdA K Fjext t
ZN(K, fab) = 20 ¢ ( )/e 0" o K™ (An, ) tcaw) (de).
N

We want to follow the relevant observable flow explicitly in order to extract the
Gaussian covariance C'7(K) (a,b). For this purpose we extend the space of functionals
of the bulk flow to these observables. We introduce extended norms, where the
observable part is weighted by a carefully chosen weight o1 %, see Definition 4.1 and
the motivation in Remark 4.11. In order to gain the factor V*VCX) (g, b) in every
step we define the flow

(Hext Kext) — Hixt — AHext 4 BKext
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such that second order perturbation is reflected in the observable part of the map A.
Then the observable part of H®*' appears in Kﬁr"t only to third order (see Propos-
ition 4.6) which leads to a refined single step estimate (Proposition 4.10). For the
contractivity property of the extended map (H***, K') — K¢ in Proposition 4.8
the operator B also has to be adjusted.

Roughly speaking, the flow then satisfies estimates which result in a leading term
(14 51+ 8°) Vi, Vin, 7" (a, b)

in the covariance, see Proposition 4.13.

In order to show that S% S® do not contribute to the leading order but only at
order W we will have to perform an additional step: we consider the flow
with just one observable in infinite volume and compare a smoothed version to the
result on the scaling limit (Proposition 4.14). Finally Proposition 4.14 together with
Proposition 4.13 will result in the proof of Theorem 2.11.

From this point on we use the following change of notation: quantities which
belong to the bulk flow will get an superscript (). Consequently, the bulk flow

becomes <H£, Kg) The superscript ”ext” which was used in the motivation above

will disappear in most cases, so (Hy, Ki) will denote the extended flow.

4.1 Extension of functionals, spaces and norms
4.1.1 Extended spaces

As before, let NP = C70 (x~,R) be the space of real-valued functions of fields having
at least rg continuous derivatives. We are interested in functions not only of ¢ € xn
but also of s and ¢, but only in the dependence up to terms of the form 1, s,t, st.
We formalise this via the introduction of a quotient space, in which two functions
of p, s,t become equivalent if their formal power series in the observable fields agree
to order 1, s, t, st, as follows.

Let A be the space of real-valued functions of ¢, s,¢ which are C™ in ¢ and C™
in s,¢. Consider the elements of N whose formal power series expansion to second-
order in the external fields s,¢ is zero. These elements form an ideal Z in N, and
the quotient algebra N = N /Z has a direct sum decomposition

N=NoN oN o N?.

The elements of N, N, A% are given by elements of N? multiplied by s, by ¢ and by
st respectively. As functions of the observable field, elements of A are then identified
with polynomials of degree at most 2. For example, we identify esVe(@)+1Ve(b) and
14+ sV(a)+tVe(b) + stVe(a)Ve(b), as both are elements of the same equivalence
class in the quotient space. An element F' € N can be written as

F=F"4 sF* 4 tF® + stFe,
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where F® € N? for each o € {0, a,b,ab}. We define projections 7@ : N' — N by

mF = F% 7oF = sFo, 7% F = tFb and 7®F = stF®.

Furthermore, let 7*F = 7%F + 7°F + 1% F be the projection to the observable part.

The class of functionals we are going to work with is

MNPy, Vn) ={F : Py = N | F*(X) € M(Vy) for all X € P}, and a € {0, a,b, ab},
™ F € M(P},), 7*F shift invariant and local} .

Note that 7*F' is not required to be translation invariant.
As in the case of bulk functionals we have immediate generalisations to M®*(Pg),

M™Y(Sy,) and M(By).

We define the coalescence scale
oo = | Jog(2la — b)) |. (24)

Since by definition
k

L
- <|a—0b| forall k< ju,
it holds that
V;ViCk(a, b) =0 forall k <ju, 14,5€{1,...,d}, (25)

due to the finite-range property of the covariance decomposition.

The extended space of relevant Hamiltonians M§**(By,) C M*(By) consists of all
functionals of the form

H(B, ) = H*(B, ) + sH(B, ) + tH*(B, ¢) + stH®(B, ¢)

where

d
HY(B,p) = laen ()\O‘ + an‘vigo(a)> ., AN eRn*eRY ac {a,b},
i=1
H(B,¢) = lapenq™, ¢ €R.
We also define a subspace where no constants appear in the observable part: Let
VIEO) _ {H c ngt(Bk) - Ab — qab _ 0}7
so H € V}go) is of the form
H(p) = H' () + sn*Vp(a)l, + tn®Ve(b) 1y, n% nb e R%

Here the scalar product on R? is hidden in the notation,

d
n*Vo(a) = an‘vi@(a).
i=1
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4.1.2 Extended norms
Definition 4.1. Let hy, = 2Fh and |, = L‘gkhk. For a fized n € (0,1) set gp = n".
Fiz pg > 0. We define the observable weight lops 1 by

lObS = pogk2_k4(k_jab)+L%(k/\jab).

The parameter pg will be determined a-posteriori in Proposition 4.12.

In the following we provide a brief motivation for the choice of Iy ;. A more detailed
discussion can be found in Remark 4.11.

e The sequence hy is a scaling factor in the norm for the fields, see Subsec-
tion 3.1.2. It has the effect that in norm sVy(a) = lobs kli, where the growing
factor 2% appears on the right hand side in l;;. This term is eliminated by 2%

in lobs,k-

o 4(F—jabt)+ makes a sum converging at the end of the analysis;

. .\ 2 .
o L5 (FNjav) gives the desired decay since (L%J“b) = (Ljab)d ~ \ajb\d;

e g, makes sure that the observables live in decreasing balls.

Note that

lobs,k—H ng/Q if b < jap—1,
fobat1 _ (26)
Lobs,k 2n else .
We set, for F' € M (Py),
ext _ ||
‘F(Xv 90){]{’_)(7720 - Z |Fa(X7 (p)‘k7X7T¢lobs,k
ac{d,a,b,ab}
where, with a slight abuse of notation, || = 0, |a] = |b] = 1 and |ab| = 2. The norms
1 85 - 58 IS and |- [ on functionals F' e Me<(Pg) are defined

as before in Section 3.1.2.
The norm on My(Bg) is extended to M&*'(By,) as follows. Recall that we defined
elements of M§**(By,) to be functionals of the form

H(p) = H'(¢) + 1 (X" + Y niVip(a)) + 11, (N + D niVip(t)) + stlap g™

Then

qab )

d d
VIS = | B+ lober (M SESERSY n§?> + o
’ 1=1 =1

We will use the following notation:

=1

d
1H |50 = lobs,k (!)\O‘] + lkz \nf‘\) for a € {a,b},

12 ab
— Yobs,k .

HHab

ab
q
k,0
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4.2 Extension of the renormalisation map
4.2.1 Definition of the extended map

The goal of this section is the definition and preliminary study of the extended
renormalisation map

TP RS x VY x MU PE) = R x VY, x MY(PE ),
AN ¢ H K)o (MM, g Hy K ).
Initially, we extend the operator By:

By, : M™ (Pf) = M§™ (Brs1), BieK(By)= >  ILReq1K(B)
BeB(B+)

where IIj, is the scale-dependent localisation operator
I, - MOY(By) — MSY(By), IIhF = I F? + 1,11 F® + 1,11 F + 1,11 F°°,

I defined explicitly below in Section 5.1.5. Roughly speaking, for o € {a, b},

k=

o T iR <
Iy it k> jop.

Similar to the definition of Iy in the bulk flow case (see Section 3.1.3),
IIyF(p) = F(0), and TI{F(p)=F(0)+1%p)

where [%() is the unique map of the form (*(p) = >_, n$V, p(a) which coincides
with DF'(0)(¢) for all functions ¢ which are on (B})* of the form

p(r) = Zmz(xz —a;), meRY

This implies that in (B /&) only the zeroth order polynomial remains after projec-
tion whereas in the a- and b-part of By K we follow the linear flow up to the scale ju;
but not further.

Note that By is a linear operator, so (BxK)® = By (K%).

Let us introduce the following notation: For a € {a, b}, we denote the constant and
linear coefficients of B K by

d
BLK® = (BLK®)’ + ) (BK®); Vigp(a).
i=1

Now we can give a definition of the map

T (AN ¢ H K) = (A%, 0, g% Hy K ).
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Namely,

AL =\ 4+ (BeK)?, < {a,b},

qib — % 4 B K +/H“Hbd,uk+1,

(H)' = (H) . HY=H"+ (BK*) Vi(a), ac {ab),
and the irrelevant K, is defined by

K, — o—5(BEEK®) —t(BK®) —st( [ HOH 1 +BR K ) g (T [
where Sy, is the map from the bulk flow, defined in (17). Let us denote
SO (H, K) = o—s(BLK") —t(BLK?)) st ([ H"Hbduk+1+BkKab)Sk(H’ K).

Moreover, let us combine the definitions above into the map Ay,

LVE Vigo) — Mg (Bit1), ApH = ApH" + A H™,

AHY(By) = Y IRy HY(B),
BeBy(B4)

ALHP = sH® + tH® + St/ HOH dps

Remark 4.2. We are no longer interested in the dependence of the maps on the
parameter q since we will fix the bulk flow obtained in the last section - with the
caveat that the choice of k in q € B, (0) depends on the choice of L which will be
chosen larger than in [Buc19].

In the next lemma we show that the map T} is well-defined, and we state first
properties. A motivation for the definition of T}, follows afterwards in Remark 4.4.

Let K € M®(Py) satisfy field locality if for o € {a,b,ab} and for any X € Py,
K*(X) = 0 unless o € X. Here we use the notation ab € X which means a € X
and b € X.

Lemma 4.3. Fiz (A% \°, ¢ H, K) € R3 x V,S,O) X M (Pg). Then the map T
defined above satisfies the following properties.

1. Ky € MeXt(PgH), and the map S§*' satisfies the restriction property and
preserves the (Z3)-property as well as field locality.

0)

2. If K satisfies field locality, then Hy € V,S,H,

that

i.e., there are n‘j_,nl_"_ € R4 such
Hi () = HL(p) + 50 Vip(a) Lo + tn, Vio(b) L.
3. Let us denote ¢ = sA% + t\b + stq® and C4sAY + t)\i + stqib. Then

e Riy1 (e o K) = et (et oK) . (27)
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4. If K satisfies field locality, then H¢ is independent of HY, Kb and K%,

the same holds for a,b interchanged.

5. The observable flow leaves the bulk flow unchanged, i.e.,

(1)) = (H) . (K)" =S(H", K.

95

and

Proof. 1. The definition immediately implies that K, € Mt (P +1) and that
St satisfies the restriction property and preserves the (Zd)—property, since
the map S fulfils the desired properties. The preservation of field locality can

be verified by inspection of the definition.

2. Since K satisfies field locality, it holds that By K% = B K“1,. Thus we can

set
ng =n®+ (BLK®)!

and so H, € V,g(_)gl.

3. The definition of the map S®** is specifically designed so that this integration
property holds. Namely, use that in the bulk flow case the maps Ay, Bx and

S, are made such that
eAHABLE) o g (H K) = Ryyp1 (e o K).
Then

€CR]€+1(€H o K)
= € [eAtBY o 8, (1, )|

_ eC+s(BkKa)O+t(Bka)0+st(f HOH dpj11+BrK)

x et o (ema Bk -t (BR!) st HeH st B, (11 1))

— e<+ [6H+ o SZXt(H, K)] )

4. Since H} = H* + (BK ! V(a) the statement follows straightforwardly by

field locality.

5. Due to the definition of Ay and By, for H = H + 7*H and K = K” + m*K,

it holds that H? = A,H? + BK?.

Remark 4.4. We try to motivate the definition of the map T

O]

In principle we want to define Hy = AprH + BiK as before in the bulk flow case
through extended maps Ay and Bi. We perform some changes in the definition of

A and By.
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On the one hand, we want to extract not only to linear but also to quadratic order
in H, so that we can observe the Gaussian covariance. Heuristically, up to second
order in H,

Ry (")~ 1+ RLH+ %7@ (H?)

since
Ry ()~ Ry <1 +H+ ;H2> =1+RyH+ %7@ (H?)
and

1 1
GRAHFIRAI) =5 (ReH) o 1 L R H + §R+ (H?) (RyH)? + . (R H)?

1
2
1
=1+ ReH+ SRy (H?).
Given H € V,S,O) with

H» = sH" 4+ tH",
H%(p) =nVe(a)l,, H’)=nVp(b)l,, n®n’eR?

then, up to first order in s, t and st,
1 2
! (Rt

=sH®+tH" + st/HaHbd,ukH.

1
Rk—i-lHObS + iRk—i—l ((Hob5)2) .

Since
/H“HbdukH = n"nPV*VCigs1(a,b),

we explicitly observe a part of the Gaussian covariance. This motivates the definition
of the map Ay given above. Note that the map is no longer linear, unlike in the bulk
flow case.

On the other hand, the map By extracts as much from Ry K as is needed in order
to have a contraction in the irrelevant part. In the case of observables it is enough
to extract the linear order up to coalescence scale jqup and only the constant order
above.

In a last step in the definition of the map (H, K) — H, we extract constant observ-
able parts which arise by the application of the maps Ay and Bi. We put them out
of the circ product into (.

The irrelevant part K4 is defined such that (27) holds.

Let us denote by B, € By and By € B, the block at scale k which contains a and b,
respectively. By definition of the coalescence scale jqp,
L.jabil Lja,b Ljab+1

<la—b
5 < g Sle-btl<—
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For simplicity let us assume that there is B € B;,, such that a,b € B, but B,, By, €
B;,,—1 are disjoint as in the following picture. All other cases can be done similarly.

Ljab_l
—

Ljab

Lemma 4.5. For initial coupling constants \§ = )\8 = q% =0, ng,ng € RY we
obtain the following formulas for the coupling constants:

LA =05y (BIKP)”,
2. q,‘c‘b =0 for k < jqp and

k—1
gt = Z <B1Kﬁb + /HfodMHl) , Jor k> jap,
l:jab
3. nf = ng + ik Ve (B )L
Proof. These formulas follow iteratively by definition of the flow and Lemma 4.3. [

In the next statement we will deliver a precise formulation of what was described
heuristically in Remark 4.4 when we motivated the definition of the map Ay, namely
that the relevant flow absorbs the irrelevant part up to second order.

Proposition 4.6. The st-part of the second derivative in direction H of S is zero:
9 . .. 7ab
[DHsext(o, 0)(H, H)} = 0.
The proof can be found in Lemma 5.29.
At this point, we have obtained that

/eHO o Kodpea = e~ (eHN(Sp:O) + Kn(p = 0)) L (v = stqi 4 s\y + AR
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Since

Z Ci(a,b) ch(a, b) = Ca,b),
k=0

it holds that

= (o + 53, (nS 1) i I €7 ) + P

jab_l
$5,= 3 B = Y B
=0 —jab
N-1
My =D Bk’
=0

In the following section we develop estimates on the involved quantities which lead
to a first bound on the covariance in Proposition 4.13. In order to get rid of the
S;?‘b in the leading term, an additional argument is needed. We implement this by
considering the flow of a single observable. The refined bound on the covariance can
be found in Proposition 4.14.

4.2.2 Estimates on the extended map

The separation of the bulk flow into relevant and irrelevant directions with corres-
ponding estimates can be extended to the observable flow.

Let U, C Vlgo) x M(Pg) be the subset
U ={(H K V(O) pext P - | H ext K (A),ext
p={(H,K) eV~ x (Pe) < 1HIZ0 < ps K[l < p}-

Proposition 4.7 (Smoothness of the extended flow). There exists a constant Lo
such that for all odd integers L > Lg there is Ag and hg with the following property.
For all A> Ag and h > hg there exists p* = p*(A) such that the map ST satisfies

St e C® (Up*aMeXt(Pl§+1)) .

For any ji,j2 € N there is a constant C}, ;= Cj ; (L, h, A) such that for any
(H,K) € Uy

e X n 11 (A),ext J2
‘k-i—l < Gl (HHHe t) <||K”](C )ex) '

The proof of this proposition can be found in Section 5.2.

| Dy DS, )1 K2)

The extended flow also satisfies contraction estimates for the derivative of Sz"t at
Z€ero.

Proposition 4.8 (Contractivity of the extended flow). The first derivative of S¢**
at (H,K) = (0,0) satisfies

DS$Y0,0)(H, K) = CiK,
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where

BeBy: XeP\By
B=U m(X)=U

For any 0 € (0,1) there is Lo such that for all odd integers L > Lg there is Ay and
ho with the following property. For all A > Ag, h > hg the following estimate holds
independent of k and N,

ICkll < 0.

The norm on the left hand side denotes the operator norm for the map

(Mext(P;(é)7 | - HI(CA)7ext> <Mext< Dl H;ﬁ_)l,ext> .

Proof. Here we only show the validity of the expression for Cg. The contractivity
is shown in Section 5.3.1, see Lemma 5.24.
We claim that
DSZXt(()’O)(Ha K) = Dsk(070)(H7 K)

Then the expression for Cy follows just as in the case of the bulk flow, see Proposi-
tion 3.12. The above equation holds with product rule since S (0,0) = 0:

DS*™(0,0)(H, K)

— DyS(0,0)H + Dy (efs(BK“)Oft(BKb)Ofst(fHaHbd,u++BKab)) H‘ S(0,0)

H=K=0

+ Dy (e—s(BK“)O—t(BKb)O—st(fH“Hbdu++BK“b)) K‘ S(0,0)
H=K=0

+e®DgS(0,0) K

We also state bounds on the map Bj. They are proven in Lemma 5.27.

Proposition 4.9 (Bounds on By). The following bounds on the observable part of
the map By hold:

(A),ext

|(Bk‘Kk’ ‘ <l 1lobs]f 2 HKk‘H ’ ac {(I, b}
t
|(BrK}) \<lobbk 2 S| Ellf . o€ {a,b)
(A xt
BRK| < 12 a0

As in the case of the bulk flow (see Proposition 3.14) we can combine Proposition 4.7
and 4.8 and additionally Proposition 4.6 to get a refined single step estimate.
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To state it, we extend the space Dg(po,n, A) (defined in (18)) to observables. In
the following definition, Cp is fixed, determined a posteriori in the proof of Propos-
ition 4.12. Let

DS (po, gr, A)

_ {(H, K) € VO x MY PEYA) : H € Boppog. K € B, 2, K € Bpogz} .

png7
Proposition 4.10 (Single step estimate for the extended flow). Fiz n € (0,1) and
Cp > 1. There is Lo such that for all odd integers L > Lg there are Ay and hg
with the following property. For A > Ay and h > hg there is pg > 0 such that if
(H,K) € D¢ (po, gk, A) then
SeXt H K (A)7eXt < 2 d Kab B
IS (H, K, q)| S PoYi+1 AN k+1 €

k+1 90924_1 :

Proof. Fix § < n®. Let Ly be large enough such that Proposition 4.7 and 4.8 can
be applied. Define C5 = maX(Cﬁ“’O,C’il,C’S’Q) where C7, . are the constants from
Proposition 4.7. Choose pg small enough that

1
Cppo < p*(A) and 0+ §Cékp0 (Cp+1)° <.

Then (H,K) € D7*(po, gx,A) implies (H,K) € Up,«(a) so we can apply Proposi-
tion 4.7 to estimate as follows.
As in the proof of Proposition 3.14 we expand S™* around (0,0) up to linear order,

1
S™'(H,K) = CK + / D?S*™(tH, tK)(H, K)*(1 — t)dt.
0

Then

(A),ext

IS (H, K}

A)ext | 1 2 A),ext A)ext) 2
< ORI + 505 ((HHIED + 2RI + (110 )
2 1 1 . 2 2
< PngJrl? 0+ 502:00(017 +1)% ) < pogiet1-
The last inequality follows by the assumption on pg.

For the improved estimate on the ab-part we expand S*' up to second order and
exploit the fact that we used second order perturbation in the observable flow. With
Lemma 4.6 we obtain

K% = CK®™ + 2 [DyDiS™(0,0)(H, K)]™ + [D%S7(0,0) K] *
1 1 ab
- [2 / D38 (tH tK)(H, K)3(1 — t)%dt
0



4.2 Extension of the renormalisation map 61

Now let Cf = max(C3, C3 1, CF 5, Cj 5) and choose pg such that additionally

1
0+ C3p0(2Cp +1) + gcgpg(cp +1)° <0’

is satisfied. Then
(A),ext xt e xt (A),ext 2
Lt < oI 20s | HES IR + o5 (1K)

11 ex
+ 5305 ((IHIES) +3 (IHIES) 120

IS (1K) + (”K”I(CA)’M)?

1 1
< Pogg+1$ (9 + C5p0(2Cp + 1) + ECS:P(%(C’D + 1)3> < pogii1

(e

and the proof is finished. O

Remark 4.11. Here we give some motivation for the choice of the weight for the
extended norms and the choice of the extended localisation operator.
The relevant part of the flow at scale k =0 is

Holp) = HY() + sngVp(a)L, + tnh V() 1,

So at least on that scale one has a linear part in the observable flow. The norm of
the linear part creates the factor lops li which has to satisfy lops kli, < p*(A) for the
smoothness statement on S™* and lobs kel < pgnk for the single step estimate. Thus
lobs,i has to include ponk for po small enough.

To get a contraction we have to put at least the constant part of the integrated
wrrelevant flow into the relevant flow. We aim to get an estimate

N 1

ab
Z BE® < O —aw
k:]ab

Since

N
A),ext —
Z IBK{"| < Z 2 IR < ST 152 pon™
k= ]ab _.]ab k:jab

we need L3I in, lobs i for k> jap.
We cannot just put the constant L53ab i, each lobs i for any k since then lops il <
p*(A) cannot be satisfied for the scales where the linear part exists (at least at scale

0). So we insert L5kNw) into the weight, until scale jop. Then we have to extract

the linear part out of the irrelevant flow until coalescence to get a contraction since
lobs,k+1
lobs,k

pulling out the linear part.

contains LY? up to scale ju which has to be extinguished for contraction by

Another consequence of the inserted factor L5* into the weight is, that now we have
to kill the growing sequence hy, in lj, so that the factor 27% appears in the weight.
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4.3 A first estimate on the covariance

Propositions 4.8, 4.9 and 4.10 provide us with the following intermediate result: If

(Hy, Ky) € D$*(po, gk, A), then we have good control of the differences qﬁ‘rb — ¢,

AY — A%, ng —n® and also of the observable part of K (whose bulk part had been
controlled along with the bulk coupling constants already in Proposition 3.21). The
following proposition links scales together via an inductive argument to conclude that
(Hy, K)) remains in D¢ for all k£ < N. It establishes a choice for the parameters
po and Cp as we had indicated above Proposition 4.10.

Proposition 4.12 (Existence of the observable flow). Fiz n € (0,1). There is Lo
such that for all odd integers L > Lg there are Ag, hg with the following property. For
all A> Ay and h > hg there is € and py (and Cp) such that the flow (Cx, Hy, Ki)r<n
satisfies

(Hi, Kx) € D (po, g, A) (28)
for any k < N.

Proof. Let Lg be large enough such that Propositions 4.7, 4.8 and 4.10 hold.
The proof of (28) is by induction on k with the induction hypothesis

(IH), : for all 1 <k, (H;, K;) € D (po, g1, A).
Note that by Proposition 3.21 the bulk flow satisfies
(H,Z’, Kg) € By (0) x By (0)

if K € Bs. Furthermore, € can be made arbitrarily small by decreasing 4.

e Base clause k = 0: We show that Hy € B¢y, and Ko € B,,. First, we have
that, for « € {a, b},

15|

0,0 = lobs,0lo|ng | = poh
and thus

IHolI5S = 1Hllo.0 + |1 He lloo + 1 Hlloo < [1HYl00 + 2p0h.

Choose ¢ sufficiently small such that K € B:(0) implies HY € B,,(0). Let
Cp > 1+ 2h. Then
1Ho|I55 < Cppo.

To estimate K, note that

Ko(p) = esvmw(a)ﬂﬁtvmbw(b)ﬂb}(’g(90) _ esvmasa(a)lla+tvmb<p(b)11beH3(so);c((p)

_ eHg—i-sta<p(a)]la+tvmbga(b)]lblc

= K8 (K, H + sV, 0(a) T + tV0,0(0) 1) -
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Choose € small enough such that IC € B¢(0) implies that H + sV, p(a)l, +
tVim,@(b)1y in turn is small enough such that

K (K, H + 5V, 0(a) 1a + 1V, 0(0)13) € B,y (0)
(use Lemma 4.10.2 in [Bucl9] for verification).

e Induction hypothesis:

VO<i<k (IH), holds.

e Induction step:

For a € {a, b}, the following formula for the relevant observable flow holds:

d k/\(jabfl)
Hi = |ome@+ D BEP)] | Vie(a).
=1 =0

We use Proposition 4.9 and the induction hypothesis to estimate

d kA(jab—1)
”H]?+1H%+170 < lobs,k+1lk+1 Z 5m°‘ (’L) + Z ‘(BKIOC)H
i=1 =0
kA (Jap—1)
< pogr+1h | 1+ TBd > lo_bls,llz_lHKle(A)’eXt
=0
EA(jap—1)

Ap . _ _
< pogr+1h 1+7h d ZZ; (pogr) " pogi

A, 4 = l
Spogk+1h<1+2h dZU ~

1=0
Let Cp > 1+ 2h + Agdﬁ and choose € small enough such that K € B¢(0)
implies H,? € B, v Then

A 4 1
1115510 < por™ ! + 2poge-ah (1 +ydh 11—77>

< pPogr+1 (1 +2h + Apd ) < Cppogi+1-

I—n

For the estimate on Ky 1 we use Proposition 4.10. We can apply it by induc-
tion hypothesis and we obtain exactly what we want.

O]

From this result we can conclude a first estimate on the covariance.
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Proposition 4.13. Fix n € ((), %) Then there is L1 such that for all odd integers
L > L1 and the corresponding Ag, ho there is € > 0 with the following property. For
all K € B: C E¢

/6H0(<p) o Ko()pica(dp) = €N <€HN(0) " KN(O)> , (29)

with  (n = stq® + s\% + b

where (C, H, Ki) is the flow from Proposition 4.12. The term q%’ can be written
as follows:

(J?\? - (57"“ + qu,ab) <5mb + Sjbab)v*ch(aa b) + Roaba (30)
Jab—1
with S%, =Y (BE)', (31)
k=0
and there is Cy such that for 0 < v < —%
‘Rab < él

|CL _ b|d+1/ :
Moreover, \}; is uniformly bounded in N .

Proof. The formulas (29), (30) and (31) follow from Proposition 4.12 and Lemma 4.5
with

N-1
Fu= Y [ K @nn o).
k=jap
Fix n < i. Choose L; large enough such that § < n3, and that Proposition 4.12 can
be applied. Then there is € > 0 such that for all K € B:(0) we can estimate:

N A N
B _
< E : /Klabd:ul-f—l < 7 § lonSJ
l=Fap 1=Fab
N N
< 5 P 17 —djap E 420 ]ab)4lgl < 5 0 17, d]ab<477).7ab E 16~ (I=Jab)
l:jab k:jab

1
1-1/16°

~ (A),ext
‘ Rap

e

l

< AB 1 i g N 16F — BT —dia g i

<m0 (4n)Per Y 167" = =Zp; (4n)
k=0

If n < % there is additional decay on terms of |a — b| due to (4n)Jat:

In(4n)

(4ot < (a)/oss 2ia=t) — (2)a — b)) 7

{ Jab { In(4n

) < (2la - b~

for0<v < —%. This gives

1

<C—--—.
= la — bldtV

‘ Rab

The uniform bound on A% follows similarly. O
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4.4 A refined estimate on the covariance

Proposition 4.13 can be used to show that
COV’Y}(,’B (VmQQO(CL), vmbSO(b)) = QN + O (2N)
= (Oma + 53,) (m, + 52, V' VCIa,) + Ry + O (2V).
The goal of this subsection is to establish an improved formula for q%’, namely

ab __ yo* 1
4N = Vi, Vi, C?(a,b) + Rap,  with  [Rep| < Cm~

This estimate follows from formula (30) if we can show that

1

We analyse the dependence of Sﬁ‘lb on Jgp as Jap — 00 in order to obtain the desired
bound. Precisely, we prove the following.

Proposition 4.14. Under the assumptions of Proposition 4.13 there is a constant C
which depends on Ag, h, and n such that

a b jab
S] b’ Sjab S 077 :

We start by motivating the ideas of the proof in the following section. Afterwards,
the rigorous proof follows.

4.4.1 Motivation for the proof of Proposition 4.14

Using the results in Subsection 4.3 we can construct sequences (nz,nZ)ijab and
(ng) k<N Wwith a coalescence scale jq, and

k—1
ng =ng + Y (BIKM)' =nf + Sp.
=0

The goal is to analyse the dependence of n%

G, O Jab As jab — OO. The key steps in
the proofs are:

e Single observable flow: From 4. in Lemma 4.3 we can deduce that njf is in-
dependent of (n?)lgk. In particular we can choose nf = 0 without changing
the flow nf. In this case we regard the observable at b as being absent, so
the concept of coalescence becomes vacuous. We use the convention that in
this case ju = oo. If ng = 0 then no b-term or ab-term arise in the flow.
Nevertheless, the estimates on BK® and K hold as before.

o Extension to an infinite sequence: We show that (n{)r<j A~ is independent
of the size ofdthe torus A. This allows us to extend the flow to an infinite
sequence ni’z which can be written as

aZd a a,Zd 1
nk no + (BlKl )
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VA

e Conwvergence of the sequence: A subtle argument shows that na — ng and
from this convergence we can deduce that
00 m—1
a,Z4 1 a,Z m
Z (BlKl ’ ) =0, and thus ( K" ) =0nm).
k=0 k=0

e Back to finite volume: If BkKZ’Zd = Bng’A holds for any k < ju, — 1, then

.ja,b_1

3 (BkKZ,A>1 = O (1)

k=0

The computation of the limit of nZ’Zd can be motivated as follows.

From the result on the scaling limit in Theorem 2.1 we know that the Gaussian
covariance C? arises without any correction term. We try to establish a connection
to this result by smoothing the observable flow. Namely we will consider

[ 790 +9).93Fo + Opcs (08

for a suitable chosen gy (as in Theorem 2.1). Here, we denote Fg) = el o Kg) the
bulk flow.
On the one hand we can write this expression as

S on(a) / n8V (i + €)(2) F( + E)pica (d€),

which can be related to the observable flow if we show that the flow of coeflicients
n§ is independent of the placing of the observable a € A. Let us include the choice
of a placing a € A in the notation as Zy(¢;a). Then

[ 890+ ©.9mF6 + enta)
=" gn(@)0]_yn / VO (1 4 €)uca(de)
= Z gN(x)(‘)S!s:O In Zn(p;x).

On the other hand we can relate the original expression to the bulk flow and the
scaling limit as follows:

[+ .0 B+ pen(a)

= ngoy [ / PTED Y (o + €)pea(dE)|  (VFgn).
f=0
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4.4.2 Proof of Proposition 4.14

The procedure described above will be implemented here.

Single observable flow Let (Hy, Kj)r<n be the flow from Section 4.3 with initial
data ng = 6, and nd = &,,, which satisfies (Hy, Kx) € D*(po, gk, A). Remember
from Lemma 4.3 that n is independent of n?, K® and K. Thus we can consider
the initial datum ng = 0 without changing the nf-flow. Moreover, no b- and ab-term
will ever arise. We summarize the properties in the following lemma.

Lemma 4.15. 1. Let n§ € {0,0,}. For any k < jup A N, the term ny s inde-
pendent of (n?)i<y.
2. If ng =0 then H = 0= K}} for allk < N.
Proof. The claims follows inductively from 4. in Lemma 4.3. 0
Since Propositions 4.6, 4.7, 4.8 and 4.9 hold as before also in the case ng = 0, the fol-
lowing proposition can be proven by induction in the same way as Proposition 4.12.

Proposition 4.16. Let ng = 6,,, and n$ = 0. By the same assumptions as in
Proposition 4.13 the flow ((k, Hy, K)k<n exists with

k—1

=M= (B,

=0

e
—

Hi(p) = HY (@) + sniVp(a)ly, where nf=ng+ Y (BKM)',
l

I
o

and
(Hk;) Kk;) € ]D)ZXt(p07gkv A)

Extension to an infinite sequence Now we extend nj to an infinite sequence.
This is possible in view of the following independence property.

Lemma 4.17. Let us denote the dependence on the torus A by writing nj, = nZ’A.

Let A’ be a larger torus. Then
nZ’A = nZ’A/ for all k < N(A).
Proof. From the N-independence of the map B and the (Z%)-property for K we can
conclude that for kK < N and B € Py
BEPMB) = Y MRea kP ()= Y MR K™ (b) = BEPY (B)
beB(B) beBy(B)

since for b € By(B) and k < N it holds that diam(b) < 1diam(A). For k < N we
thus get

?lr'
—
x
—

1 1
aN _  a aA\" _ a a,\’ _a,N
et =g+ > (BEY) =g+ Y (BEMY) = np?
=0 l

Il
=)
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For k € N define
nZ’Zd _ ”Z’Av A large enough such that & < N(A).

The sequence is well-defined by Lemma 4.17. By definition, it holds that

a,Z% g a,2% 1

Convergence of the sequence First of all we need another generalisation. Namely,
we start with an arbitrary position x € A of the observable instead of a fixed a.
Let

Hy(p;x) = Hg)(gp) + snoVe(z)ly, ng=0pformel,....d, Ky = eHOKg).

Lemma 4.18. The sequence (ny)y is independent of the choice of the position x.
More precisely, fix x,a € A and ng and consider two flows with initial condition
Hi(p;2) =noVe(x)l, and Hf(p; a) = noVe(a)l, and the corresponding Ko. Then
ny = nj for allk < N.
We can drop the superscript « from the notation by this property.
Proof. Fix xz,a € A. We need the following ”translation property” of K%:

at any scale k, for any X and ¢, K%(¢, X) = K*(Tp—a®, Tz—aX ). (32)

We will prove (32) subsequently. This property and translation invariance of the
measure imply that the coefficients of B, K} equal the coefficients of B, K} :

BE = [ Ko, B (de) = [ Ko (ramaip. B d)
— [ K B (av) = (BE*Y.
and, since (by (35))
(BE™)! = (RyK", 1) = DR K)(O)(),  ¢i(x) = 2, — as
we similarly get
(BE! = [ Do, B)etiur(de) = [ D (oo maaB) ol ()
— [ DK (i ap B)(raais (9) = [ DE (0, B)(raai s (d0)
— [ DR, B) e ) = (BE?)'

By induction we verify that n{ = nj, for any k.
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It remains to prove (32). We again argue by induction. The induction hypothesis is
Forall [ < kand X € P, K (p,X)=K'(To—ap, To—aX). (33)
The case k = 0 is immediate:

Kg (Tx—aQ07 Tx—aX) = nOv(Tx—aSD) (IL’) ]]-w(T:c—aX)Kg (Tx—asoa Tx—aX)
= ngV(a)La(X) K (p, X) = K§ (g, X).

For the induction step we have to show that for all U € Py
[89U(H, K)]" (. U) = [$™(H, K)]" (T2-ap, Ta—al)-
From the definition of S* it holds that
(S (H, K)]" (p,U) = (BK")’S"(H, K)(¢,U) + [S(H, K)|* (¢, V).

We already showed that (BK?%)? = (BK?®)" and that the bulk part satisfies transla-
tion invariance, so the first term becomes

(BK*)SY(H, K)(p,U) = (BK®)’SY(H, K)(y—a, To—al).

For the second term, from the definition of S, there is always one a—part falling on
either e (U \ X) or e HN\U) or (1 —eH) or (e — 1) or K. The others form the
bulk part. The bulk part always satisfies translation invariance, so we just have to
check if the a-part translates correctly.

If the a-part falls on K, we use the induction hypothesis and translation invari-
ance of the measure, and translate the sum over polymers } v p x(X,U) into
ZXePk X(X, 7z—qU). The input field is then 7,_qp.

H

If the a-part falls on e, we have

Ha(Ba)(SO) = Ha(Baa ‘P) + BKQ(Baa ‘P) = HI(BxaTxfaSD) + BKx(Bza Tmfa%@)-

Now we can prove the convergence result.

Proposition 4.19. Given the assumptions of Proposition 4.13, the sequence

(™)
k' Jken

converges to the limit no, = ng.

Proof. Convergence of the sequence is clear since by Proposition 4.9 and Proposi-
tion 4.16 we can bound the sum uniformly in N:

k-1

>

=

az4\ 1! — Ap -1 _k
=0
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Let us denote the limit by nq.
We show n., = ng by a limiting procedure involving the result on the scaling limit
in Theorem 2.1. Let

Zn(p;z) = SN (eHN(w;:v) + KN(SO))

be the generating partition function at scale N, with one observable at position x.
Let gn(z) = LfN%g (L_Nx) for g € C°(T?) satisfying J g = 0 as in the assumptions
of Theorem 2.1 and hy = C4Vgn, h = C%0;g for a fixed direction j € {1,...,d}.
We will show that

N
D | [0V +9).0x) il + Oner(@p)] () S @l ghrogesy (4)
=0
by the statements on the observable flow. Here, the left hand side denotes the
directional derivative of the term in brackets of ¢ in direction hy.
On the other hand, by transforming the term into derivatives of the bulk partition
function and using results there, we will show that

D [/HS (V(90+§),9N)F(?(<P+€)ucq(d90)] O(hN) 222 g (h, 0°9) racray- (B)
o=

By uniqueness of the limit we can conclude that n., = ng.

We start by proving (A). We can transform

D [ [ 6o+ 0.3 Elli + O <dso>] (hx)

=0
= ZQN(SC)D 0s] o In Zn (¢ x)]@zo (hn)
' eHR(0)
=nxN(Vhn,gnN) Z50)
+ 20 zx:gN(ﬂf)DKﬂ(o)(hN) + W Zx:gN(x)Kf/(U)-

By Lemma 5.16 we can estimate

80 o] < ff 1 |, <
and, since (H]Q,, KJQ,) € D(po, gk, A), we conclude that

)

’eH?f(O) _ 1

Z%.(0) — 1) 0.
Together with the convergence result of Proposition 4.7 in [Hill6] we obtain
N (0)

n% (Vhn, gn) i = Noo(Oh, g)2(rey as N — o0.
Z0.(0
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Furthermore,

) — LNd/ZLde < CLNd/2

Y

> gL Na)

/g(x)da:

IDE3(0)(h)| < Lo BN CIV g way < CL™N42y NN

but

for a constant independent of IV, such that

ZQN z)DE3%(0)(hy)| < C2n)Y — 0.

We estimate DZ;’{,(O)(hN) as in the proof of Theorem 2.7. Namely,

0 (4)
<0 ([Jer =] vty + 3],

By Lemma 5.16 it holds that

Jle =], <2
N N,0

Moreover, similar to Lemma 5.2 from [Hil16] one can show that
|hN‘N,AN = ‘CqV*gN‘N,AN <cC

for a constant C' which is independent of N. With (HR,, KR,) € D(po, gx, A) it follows
that

A
DZY(0)(hn)| < C (I o + IKGIS) < O™,

Thus

D23, (0)(h)|
—— — 0,

20

and

<CLNd/2L Nd/2(27,’) 0.
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Now we prove (B). We start with the following transformations:

D [ [ (96 +.9.9) B + e (dw)] ()

»=0

— ngoy |D [ [N R o + e <ds>]

(hN)] (V*gn)

=0 f=0

)| (o
= nioy (20D (. N ZY(CF) + DZAC ()] (Faw)

= [ (b, V*9n) 28 (0) + D24, (0) (k) €1V gw) |
The first term converges

(hn, V*gn) Z8:(0) = (h, 0 g) 12(10)

as N — oo, due to ‘ZJQ{,(O) — 1‘ — 0 and the convergence result of Proposition 4.7

from [Hil16]. The second term tends to zero by the following considerations which
resemble the arguments in the proof of Theorem 2.7 and (A). It holds that

D2Z%(0)(hy, CTV* gx) = D? (Zj"V - 1) (0)(h, CTV*gn),
and thus
‘D2Zj°v(0)(hN,cqv*gN))
< (D2 (eH?’v - 1) (0)(hN,CqV*gN)‘ n ’D2K?V(O)(hN,CqV*gN)

sc(\

As before it holds that

p (4) "
‘GHN B 1‘”1\/ + HKR]HN > IAN [N AN ICIVTgN N A -

|CqV*gN|N7AN ) ‘hN|N,AN <C

for a constant C which is independent of N, and
Jle =1l = e k],
N N,0
Together with (HR,, KJQ,) € Dg(po, gk, A) we conclude that
|D2Z8,(0) (. €7V gw)| < O — 0.

This proves the claim.
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Back to finite volume Now we can prove Proposition 4.14.

Proof of Proposition 4.14. We conclude from Proposition 4.19 and the construction
of the flow that

o0

1 s 1
Noo = Ng + (BkKZ’Zd> =nyg = Z (BkKZ’Zd) =0.
k=0 k=0

Using Proposition 4.16 we can estimate

= a,z4\ 1 = 0,74\ ! Ag, 1. As,., 1
> (Berp™) | = |30 (Bur™) | < 30 PnTl =
k=0 k=m k=m

By definition of the infinite sequence, the (Z%)-property and the local dependence
of the relevant flow it holds that for all £ < j,; — 1

B, K% = B Ko,

Thus )
jabil

S, =Y (BrKp)' =0 ().
k=0

4.5 Proof of Theorem 2.11

The proof of Theorem 2.11 consists of two steps. By direct observation of the flow
we get the estimate for q%’ in Proposition 4.13. In a second step Proposition 4.14 is
used to get a refined leading term.

Proof of Theorem 2.11. Let Ly and €1 be as in Proposition 4.12 with n < %. Then,
by Proposition 4.13, (12) holds with the estimates on Z§*(K,0) and on A% and with

a8 = (0ma + 82, ) (8my + S5, ) VI CIN) (0,) + B

Proposition 4.14 gives the improved estimate as can be found in the statement of
Theorem 2.11. O
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5 Proofs of extensions and intermediate steps

Note that in this section any dependencies on ¢ are omitted since g € B, (0) is fixed
with xk depending on (, n and L in Proposition 3.21. As an exception we note the
dependency explicitely in Lemma 5.1 since this is the place where the parameter k
is determined in dependence on L.

In this whole section R is a parameter which depends only on d.

5.1 Properties of the norms

In this subsection we follow closely the presentation in [Bucl9], Section 4.6. Ar-
guments from [Bucl9] which can be applied without any change to the extended
setting will be omitted in proofs.

5.1.1 Properties of the weights

For the sake of completeness we review Proposition 4.5.1 from [Bucl9]. The last
scale weights (k = N) differ from [Bucl9] due to the modified definition of the last
scale covariance (see (13)). However, this does not change the properties of the
weights as stated in the following lemma.

Lemma 5.1. Let L > 293 4 16R. The weight functions wg, Wr.k+1 and Wy are
well-defined and satisfy the following properties:

1. ForanyY C X € Py, 0 < k<N, and p € VN

wp (@) < wp (@) and w1 (9) < wikggr (9)-

2. For any strictly disjoint polymers X, Y € P, 0 <k < N, and ¢ € Vy

wp Y () = wil ()w), ().

3. For any polymers X,Y € Py such that dist(X,Y) > %Lk‘ﬂ, 0< k<N, and
Y €VN

XUy X Y
wk;chJﬂ(‘P) = wk:k+1(<ﬂ)wk:k+1(<ﬂ)-

4. For any disjoint polymers X, Y € P, 0 <k < N, and p € Vy
Wit () = Wi (@)W (9)-

Moreover, there is a constant hg = ho(L,() such that for all h > hgy the weight
functions satisfy the following properties:
5. For any disjoint polymers X, Y € P, and U = 7(X) € Pry11, 0 <k <N —1,
and p € Vy

wa(9) 2 @) (W (9)
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6. Forall0 < k<N -1, X € Pyy1 and p € Vy,

‘4P|i+1 X
ZhtLX X
e 2 Wi (P) S wigq ().

Lastly, there exists a constant k = k(L, () with the following properties:

7. There is a constant Ap such that for ¢ € B.(0), p = (1 + )1/3 1,Y € Py,
0<k<N, and p € Vy

</XN (wit (v + 5))1+p Mk+1(d€)) i < <A2P> - Wik (9)-

8. There is a constant Ag independent of L such that for ¢ € By, p = (1—1—%)1/3—
1, BeB, 0<k<N, and p € Vy

([ wke+9) " mn@e)™ < Zoufio

Remark 5.2. The weights wy and wy.k11 are independent of the size of the torus
as long as the input polymer is small enough. This can be seen when examining the
construction of the weights. The weights essentially arise as follows: Take the local
quadratic form from [AKM16], integrate against the covariance of the finite-range
decomposition (which is independent of the size of the torus by Remark 3.3) and add
explicit local perturbing terms. These steps are independent of the size of the torus
as long as the input-polymer is small enough compared to the torus.

The weights Wy, are given explicitly and obviously local.

5.1.2 Pointwise properties of the norms

The following lemma is an extension to observables of Lemma 4.6.1 from [Bucl9].

Lemma 5.3. Assume that F,G € N, X € P and F(p) and G(p) depend only

on p|x+. Assume furthermore that F(p + ) = F(¢),G(¢ +v) = G(p) if P|x* is
constant. Then

IFGIx 1, < |Flikr,|GlRx n,

and, for X € Py and « € {0, a,b,ab},

_3
|Fkv1,x1, < (14 [@lkt1, X) <|Fa|k+1,X,To + 16.L Qdoiligl |Fa|k:,X7Tw> .

: ext — o] «
Proof. We write the extended norm as sum |K]k7X,T¢ = o lobs ik K%k, x,1, and

apply Lemma 4.6.1. from [Bucl9] on each (bulk) norm |FaG6|k7x,T¢. This yields
that jlel+B] 7o 1181

o+ a

obsk ’FQG'B)kXTLP — ( obs k‘Fa|kXTLp> (Obb k;|GB|kXTv)
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Thus

[FGlxn, =D Ll (FG) luxr, < (Z ZL%s,krFarn) (Z lL%s,krGa\Tw)
o o o
since
FG=F'GY + s (F°G" + F'G°) + ¢ (F'GY 4 FOG)
+ st (FOG + P60 4 oGP+ F'G).
This proves the first inequality. The second inequality is the same as in [Bucl9]. 0O

The following statement is an extension to observables of Lemma 4.6.2 from [Buc19].
Lemma 5.4. Let ¢ € xn. Then
1. for any Py, Fo € M™Y(Py) and any X1, X2 € Py we have

|FL(X0) Fa(X2) [R5 uxer, < F(XDIES, 7, [P (X2) 8%, 7,5
2. for any F € M®*(Py) and any polymer X € Py, the bound

2
n
|F'(X) k41,7(x),7, < max {1, 4Ld} | F(X) |k, x U ()T,

2
< max {1, ZLd} |F(X) |k, x.1,

holds if L > 2% + R.

In 2., the factor %Ld is new in comparison to [Bucl9].

Proof. The first inequality follows from Lemma 5.3 and the estimate

|F'(X) |k xovr, < F(X)|kx1,-

as in [Bucl9].
For the second inequality note that due to the change of scale we have an additional

factor
l|04|
obs,k+1
||
obs,k

2
<y
— 4

for |a| = 1,2, which appears in the stated inequality. The remaining steps are as in
[Buc19]. O
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5.1.3 Submultiplicativity of the norms

The following claim is based on Lemma 4.6.3 in [Bucl9], extended to observables.

Lemma 5.5. Let L > 293 + 16R be an odd integer and h > ho(L), where hq is
fized in Lemma 5.1. For k € {0,...,N —1}, let K € M®*(Py,) factor at scale k and
let F, Fy, Fy, F3 € M(Bg). Then the following bounds hold:

LAEX)EX < Myee) IKOIRS and

(X551, —HYGC ) Y551,y
and more generally the same bounds hold for any decomposition X = |JY;
such that the Y; are strictly disjoint.

2. |FXK(Y)|kxuy < HK(Y)Hky\HFH]IkX'k for X, Y € Py, with X andY disjoint.

3. For any polymers X,Y,Z1,Zy € Py such that X NY =0, Zy N Zy =0, and
Z1,Zy Cm(XUY)UXUY,

1 2 P K (Y )lg1,7(x0v)

2
Ui Z Z X
< max {17 x Ld} K (V) srry IELIZ* B 22 1

4- IL(B)lly,p =1 for B € Bg.

In 3., the factor %Ld is new in comparison to[Bucl9].

Proof. Ingredients for the proof are the submultiplicativity of the T,-seminorm in
Lemma 5.4 and properties of the weights. Since the submultiplicativity also holds
for extended functionals the proof is exactly the same as in [Buc19]. The new factor

%Ld appears in the transition from one scale to the next one using (26). O

5.1.4 Regularity of the integration map

We extend Lemma 4.6.4 from [Bucl9] to observables.
Lemma 5.6. Let L > 29%3 + 16R and let Ap be the constant from Lemma 5.1.
Then

. Ap X [ .
Riak(Oletax < (7)) IKCOIE

If X is a block the constant is Ag which is independent of L.

Proof. The proof in [Bucl9] does not use any special property of the T;,-seminorm,
so it works exactly as in [Bucl19]. O

For later reference we state the following inequality which appears in the proof of
Lemma 4.6.4 from [Bucl9].
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Lemma 5.7. Assume that Lemma 5.6 holds. Then

. « [ Ap X |
Ren KOO, <IKOIEK () ulien (o)

If X is a block the constant is A which is independent of L.

5.1.5 The extended projection II; to relevant Hamiltonians

We extend the space of relevant Hamiltonians to observables.
Let U = {e1,...,eq}. The monomials which appear in [Bucl9] are

Then the corresponding index sets are
by = {@}7
o1 ={f:8eN;,1<[p| <[d/2] +1},
vy = {(8,7): 8,7 NG, 1Bl = vl = 1,8 <~}
Here, 8 < «y refers to any ordering of U/. We additionally define
of = {0}, o€ {a,bab},
of ={BeNy: |8 =1}, «ae{ab}.

We set
0™ = pg U Uby Ubd Upd Ul Uo? Ul

A monomial on a block B for m € v can then be written as

Mu(B)(p) = Y Mu({z})(¢)-

zeB
The space of relevant Hamiltonians is given by
VYoV eVedViaVia VeV e VP
where
Vo =R,
Vi = span{ My (B) : m € vy},
Vo = span{ My (B) : m € vs},

Vi =R, «ac€{a,b,ab},
Vi =span{Mn({a}) :me v}, « € {a,b}.
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As in [Bucl9], we set

= 1 e ~d d {17“'7d}
bg(z)—<ﬂ1> (5(1)7 z€Z% pBeN; )

We extend the basis for polynomials on Z? for o € {a, b} by

b3(2) = (zl ﬂ_1a1> - <Zd gdo‘d)

Using these functions we can extend the space P in [Buc19] to observables by defining

Py =R, «ac€{a,b,ab},
Py = span{bj : B € 0T}, a € {a,b},

and setting
P =PoPioPloP @ Pl e P

Now we can formulate the extension of Lemma 4.6.5 from [Bucl9]. The notation
(F,9), = (Tay,F, g) is used as in [Bucl9].

Lemma 5.8. Let K € M®™*(Pg,xn) and let B € By. Then there exists one and
only one H € V™' such that

(H,9)o = (K(B),g)o for all g € P,
More precisely, for a € {a,b},
H%(p) = K%(0) + n*Ve(a),
where

ny = (K%B),b5)o for all v € of (35)

and
qab — Kab (0) )

Definition 5.9. We define IIK(B) = H where H is given by Lemma 5.8.

Proof of Lemma 5.8. The bulk part of K is handled in [Bucl9]. The constant ob-
servable part of H € VX is given by

2\ = K%B,0), A\ =K%B,0), ¢°=K™"B,0).

We turn to the linear observable part of H. We claim that for a € {a, b} there is a
unique H® € V¢ such that

(H", g)o = (K*(B),g)o for all g € P{.
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An element HM® € V¢ is of the form Z,Ben‘f ngMpg({a}) for some ng yet to be
determined.
Testing against the basis {bg : B € v{'} of Pf we have to show that there is a family

(n%)ﬁen? such that
> ng(Mp({a}), b3)o = (K%(B),b3)o  for all v € vf.
Bevf

The last equality is equivalent to

> ngBg, = (K*(B),03)o for all y € v}
Bevg

with
By = (VP(a), b2)o = (TaygVPp(a), bS) = VA2 (a) = b2_4(a).

For 3,v € v{ we get that Bg, = 13—, and thus
ng = (K%(B),b5)o for all v € vf.
O

The following statement is an extension to observables of Lemma 4.6.7 from [Bucl9].

Lemma 5.10. There exists a constant C' such that for L > 294 R and0 < k< N—1
I K (B)|IF5 < CIK(B)$B 1, -
Proof. The bulk part of the estimate is done in [Bucl9]. What remains to prove is
IR (B) [0 < Cligk, (| K (B)|x.5.70-

Since for the constant part of the projection we have \* = K*(B,0) for a € {a, b}
and ¢® = K%(B,0) we just have to estimate the coefficients n® of the linear part
of the projection.

Since n® = (K*(B),b%)o (see (35) in Lemma 5.8) we have to show that

Lobs,klk| (K*(B), b%)o| < Clops k| K*(B)|k,B,1,-

However, this follows directly from the definition of the T,-seminorm and since
6k = U

(K*(B),b%)o < \bo‘\k,B‘ lsup (K“(B),g)o < I 1K*(B)|1.B,10-
9lk,B<1

We extend Lemma 4.6.8 from [Bucl9] to observables.
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Lemma 5.11. For H € M, L >3, and 0 < k < N we have
[HIZ < (14 [@le)?IHIES < 201+ |l p) I HIFS-

Proof. The only difference to [Buc19] is that additional terms in |H |§3;t and | H||$X¢
exist:

[HIF = [HO 7, + lons i (1] + [n°Vip(a) 1|7,
+ Lovsk (IX]+ [0V o (D) Lol ) + s la™
LB = NN + Lo (X)) + Lo (1] k1) + o la™
Thus the proof is finished if we show that, for a € {a, b},
lobs,k V(@) Lo (B)|1, < (14 |¢lk,B) lobsklk|n®|.

This follows straightforwardly since

IVo(a)La(B)|r, = (IVe(a)| + i) 1a(B) < lleles + b < b (L+ |¢lF 5) -

The following lemma is an extension of Lemma 4.6.9 from [Bucl9).

Lemma 5.12. Let A(a, k) = 0 when k > ju, o € {a,b,ab}, and A(a, k) = 1
when k < jab, a € {a,b}. There exists a constant C such that for L > 2¢ L R, for
a € {a,b,ab},

(1 = 1) K*(B) gs1,5,1, < CL™W/2HACR) o

k,B,To-
Proof. We start with o € {a,b,ab} and k > jg, i.e. II = Ily. Note that
(1 = o) K*(B)lgs1,81, = sup {{(1 —IIo) K, g)y : g € P, |glr41,8 < 1}
For g € x®", r > 1, it holds that
(1 =1Ilo) K%, g)g = (K%, g)o

since I[p K depends only on the first order Taylor polynomial. For g € x®", r > 1,
we can use the estimate

1
\9lk,5 < 8L™2%glki1,8
as in [Bucl9]. Thus

1
(1= TIo)K®, g)o| < [K[k81|9lk,B < 8L 2 glrs1,BI K|k 5.1,
For g € x\®* =R = P it holds that

(oK, g)o = (K%, g)g
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and thus
(1-TIIg)K“ g)y =0 forall geR.

This argument finishes the case k > jqp.
Now let o € {a,b} and k < jgp, Le., II¢ = II;. As above we can use for all g € x®"
and r > 2

_1
(1 = TL) K, g)o| = [(K®, g)| < 8LT2K"

k,B, Ty \g|k+1,B-

Again,
(e HO)KQ,9>0 =0 forall g eR="Pg.

Let ¢ € x. For all P € P we have (II; K¢, P)y = (K, P)o. Using additionally
boundedness of II, we can estimate

(1 =T K, )| = zgrelglg (1 —=TI1) K%, 0 — P)|
< |[(1 - M) K*x,B1 1—5217?3 l — Plx,B
< C|K“ i — P .
< C|K®|k,B10 ggglla 1% kB

With Lemma 5.13 below the proof is finished. O
Lemma 5.13. There exists a constant C' such that for L > 2%+ R and for all ¢ € x

i — Pl n<CL- (5D .
Igrelg%\w kB < [@lrt1,B

Proof. The statement is an extension of Lemma 4.6.10 from [Buc19]. The proof is as
in [Buc19] with the only difference being the choice of parameter s = 1, which origin-
ally was s = L%J + 1. The reason for this change is that P{* = span {bg Bl = 1},

whereas in the bulk flow higher derivatives are also allowed. Then P = Tay’p
provides the minimizer. ]

5.2 Smoothness of the extended renormalisation map

In this section we prove Proposition 4.7 which claims that there is Ly and corres-
ponding A and hg and a parameter p*(A) such that S§** € Up«(a) with bounds on
derivatives which are uniformly in V.

Remember that

SeXt(H, K) _ e—S(BKG)O_t(BKb)O_st(fHaHbd;u.-‘rBKab)S(H’ K)

where we drop the subscript k£ and k£ + 1 in the notation. To nevertheless note the
change of scale, we abbreviate k + 1 by +.
Let us denote

F =5sF* 4+ tF° 4 stF® .= —s(BK%)" — t(BK®)" — st < / HH dp, + BK“”) .

We divide the proof of Proposition 4.7 into two steps. The first step is the analysis
of S.
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Lemma 5.14. There is Ly such that for all odd integers L > Lg there is Ay, hg with
the following property. For all A > Agy, h > hg there is p* = p*(A) such that

S € C® (Uy, M™*(P;,))

and for any p,q € N there is a constant Cpq = Cp4(L, h, A) such that for any
(H,K) € Uy

(A),ext

. . . ex P . A ex q
| DaDies ) e K| < G (11RS)” (1K)

The second step includes the analysis of the prefactor e’

k+1

Lemma 5.15. Assume that Lemma 5.14 holds. Then
Sext c > (Up*7 MEXt(Pg+1))
and for each p,q € N there is a constant Cp , such that for any (H,K) € Uy,

(A),ex

|t Do, ) (e, K|
+

t * irext \ P 11 (A),ext q
< Gy (I1E8)" (N
Proposition 4.7 follows from Lemma 5.15 with the assumptions of Lemma 5.14.

We first prove Lemma 5.15.

Proof of Lemma 5.15. We show smoothness via bounds on the derivatives.
Since F' is a constant in ¢, we can estimate

. . (A),ext o . . (A),ext
|\ Dy D s= (i, ) (1, K| = || Dy D [ S 1)) (o, K|
+ +
L . (A)ext
<Cpo Y |[DHDE (") (7 K™ Dy DES(H, K)(H™, K|
P1+p2=p b
q1+92=q
\U| D q F(U) . g ext
< 3 spp{ate ik [ um sl
P1t+p2=p
q1+q2=q
DY DES(H, K)(U)(H72, Ko™
|z pgsi @ &7 L

By assumption S is smooth with the desired bounds, so it is enough to show that

ext . D1 . A)ext q1
<c ()" (IEI=)"

DPL DN ( F(U)> Hp1 K(h
‘ oYK \© (H, ) k+1,UTy

Note that if a,b ¢ U then e’ (U) = 1 such that any derivative DY or DI gives just
zero which is not optimal for the supremum. Thus either a,b ¢ U and p1 = ¢; =0
or « € U for a € {a,b,ab}. In the first case we are done — the constant we get is 1.
In the second case we go through all possible cases. Let (H, K) € Up-.



5.2 Smoothness of the extended renormalisation map 85

e p1=0,q =0
We use Lemma 5.27, Lemma 5.28 and estimate (26) to get
Xt a a a
"D v, = L IFCO)] + [F(U)| + [FU)| + [F*(U)F(U))
= 1+ oo (JBE™)°| + [ (BK")])

+ ’ / HYH

F (‘BK“” n ’(BK“)O(BK”)OD

A 2 A A2
<1+ de/QgP* + Ld%p* (28 + TBP* + CFRDh_2P*>

which is bounded by a constant.

e p1 =0, g1 = 1: By Lemma 5.27 and estimate (26) we get

‘ DreP O | ™

k+1,U,Ty
= lobs,k—H (}(BKa } + ‘(BKb)OD

B (|BE™)| + [(BE®)|(BE")| + [(BK")||(BK)°)
< Lobs, el g ABIK I + B a2 (‘;B +2 (Af) p*> [
< O
e p; =0, g1 =2: By Lemma 5.27 and estimate (26) we get

D (7)) (R, ) >

= [bs 12| BK)|[(BK®)’|

AB (A),ext 2
< 2lobsk+1lobsk+1( 5 ) (HKH ) >

<o (Ik1P=)"

k+1,U,To

e p; =0, ¢1 > 2: The derivative is zero.

e p1 =1, ¢t =0: By Lemma 5.28 we get

‘DHe

l2
k+1,U.Th obs,k+1

/HaHbdu++/HaHbd,u+‘
< 2CFRD s i1l 2P IIH (IS

< O||HII;5-

e p1 =1, g1 > 0: The derivative is zero.
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e p1 =2, ¢ =0: By Lemma 5.28 we get

‘DQ FH2

= lgbs,k+12‘ / HHdpuy ‘

2 2
< 20w rpls el i (1HIES) < € (1E158)

k+1,U,Ty

e p1 =2, g1 > 0: The derivative is zero.

In summary we get

. . (A),ext
HD%D%S‘M(H,K)(HP,K‘?)Hk
+1

1 o (A)ext\ 4 . . (A),ext

<Cu Y. (I1S)" (1EIE)" |05 DS ) o) |
p1+p2=p
q1+92=q

O

Now we turn to the analysis of S and the proof of Lemma 5.14.

As in [Buc19), the strategy is to write the map S®* as a composition of simpler maps
and show smoothness for those maps. We follow closely the presentation in [Bucl9]
and do not repeat arguments in proofs which can be applied without change to the
extended setting here.

We consider the following spaces:

_ (Mext( ‘ )ext) :
= (MG“(PM - I
— (Mext(B ext)

M||| = (M (By), ||| 7<) -

We need a slight modification of M(4). Define 73,‘;/ C Py as
Pf ={X € Py : m(X) € Pi ).

The space M (Pg') of functionals is defined similarly to M (Pf) except that Pg
is replaced by 735 in the definition.
A norm on M (P¢') with parameters A, B > 1 is given by

A,B),ex X
1K) = sup AR BICCOT) K (X0) 9%
XePC

We also use the norm || - H,(Jl’fi’em where we replace the || - |

|- 1% 1 x on the right hand side.

|eXt norm by the norm
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As in [Bucl9], we introduce short hand notations for the corresponding normed
spaces

—~ o A,B),ex NA c A,B),ex
s = {app), | P} A = (e, | I8

The map S is, as in [Bucl9], rewritten in terms of the following maps. Observe

(0)

the use of the subspace V,” of My here in the definition of Ry in comparison to
[Bucl9]. However, on the bulk flow part, this subspace coincides with the whole
space. Another difference to [Bucl9] is the definition of the map Ra, since the
second order perturbation in the observable part appears.

E:M0—>MH|, E(H)Z@H,

P Mm X Mm X MlH X ﬁ:(A/(QAP)’B) — M/(A),

P, L, LE)U) = > x(X1U Xy, U)X [0 i g (x,)

X1,X2€Py
X1NXo=0

Py M x MW - MW Py, K)=(I-1)0K,

Py MW 5 MW2E) - piK (X, 0)= [[ K(Y.e),
yeC(X)
Ry : MA/2B) _ NiA/@AR)LE) R (P) =R, P,

Ry : V,S;O) x MW — Mo, Ry(H,K)=RiH+ St/HaHbd:“Jr + IR K.

Then

S(H,K) =
Py (E(RQ(Ha K))aE(_R2<H7 K))71 - E(R2(H7K))vRI(P3(P2(E(H)aK)))) :

In the following we extend estimates on these maps to observables.

5.2.1 The immersion F
The following statement is an extension of Lemma 4.7.3 from [Buc19] to observables.

Lemma 5.16. Let L > 3. The map

E:B.1(0)C My — M, E(H)=e",

1
8

is smooth and for any r € N there is a constant C, (which is independent or A) such

that for all H € B% (0)

ext

. . ext . .
D'EH)(Hy,....H)||  =|[e"Hi. . H|| < ClFES - |1 HISS.
k

Moreover, for all H € B1(0),
8

ext

lle™ =1l < SIHIES.
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Proof. The difference to [Bucl9] is that H € My is of the following form:
H=H"+5 (A“ + anviw(a)) Iy +t (Ab + Zn?%gp(@) 1y + stq®
i i
In Lemma 5.11 it is shown that for the extended relevant variable H € M
[HIE,r, <200+ |l p) |1 HITS-

This is the only ingredient for the proof where the observables play a role; for
IHI55 < 1 the remaining proof follows as in [Buc19).
O

5.2.2 The map P,

We extend Lemma 4.7.4 from [Bucl9] to the setting with observables. Here, hg(L)
is fixed in Lemma 5.1.

Lemma 5.17. Let L > 2943 + 16R and h > ho(L). Consider the map
Py My x MW - MW Py(I,K)=(I—-1)0K.

Restricted to By, (1) x B, (0) with p1 < (24)~" and py < %, the map P, is smooth
for any A > 2 and satisfies

1 o o | .
] (Dle}?PQ)(I,K)(I,...I,K,.__’K>HI(CA/2), t

J1lg2!
£\ J1
< ( i Zx) <2||KH (A), ext)

This implies in particular for I € B, (1) and K € B,,(0) that

(A/2),ex ex A),ex
1P (I, K |20 < 24T — 18t + 2| ]|V

Proof. Ingredients here are the norm estimates in Lemma 5.5 which also hold for
the extended norms. Thus the claim follows as in [Bucl9]. O

5.2.3 The map P;

The following lemma is based on Lemma 4.7.5 in [Bucl9] and extended to observ-
ables. Here, ho(L) is fixed in Lemma 5.1.

Lemma 5.18. Assume L > 2973 4 16R and h > ho(L). Let A > 2 and B > 1.

Consider the map
Py MW 5 MW2E) - pir(x)= ] K(®).
Yee(x)
Its restriction to B,(0) is smooth for any p such that p < (2B)™' and it satisfies the
following bound for j > 0,

1 . . . (A/Q,B),ext «t\J
F ([C22CY ST o 9} < (2BIK)P )

Proof. The proof follows as in [Bucl9] by using 1. from Lemma 5.5. O
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5.2.4 The map Ry

The following statement is an extension of Lemma 4.7.8 in [Bucl9]. The estimates
look different from those in [Bucl9] due to the second order perturbation in the
observable flow.

Lemma 5.19. Assume L > 2913 + 16R. Consider
Ry: VY x MW — My, Ry(H,K)=RyH+ st/HaHbdu+ + IR, K.

For any h > 1 and A > 1 the map Rs is smooth and there is a constant C which is
independent of A such that

||]_)ED%?R2(H,K)(H,---,HaK»-~'aK)”Z),(8

EZIZS + NG o PG o + 5[ if j1=ja=0
oV CVEIRS + NEe g o g + IO N g) i 1 =12 =0
I if j1=0,jy =1

IH 2 oI 12 if 1 =2,j2 =0

and Dy DPRy(H,K)(H,...,H,K,...,K) =0 else.

Proof. The extended norm consists of the following terms:

IR(H, K) s = D (Ro(H, K) g
ac{d,a,b,ab}
ab
+ ) IRLKR,

— IR g + o + N o + | [ 100
k,0 ae{0,a,b,ab}

The first four terms can be estimated, using Lemma 5.28, as follows:

ab
Rt 1+ 1 + | [ 1o |
< CIHIES + Crnoh™ [H ol L

Derivatives with respect to H are bounded similarly since
. 70b . . . .
[DHRQ(H, K)Hr T GHO 4 tHP 4 st </H“Hbd;¢+ + /H“Hbdmr)

and
9 -9 obs a0 Trb
[DHRQ(H, K)(H) } = 2st | HOHbdpu,.

It remains to show that, for o € {a, b, ab},

A
TR K[ < C|I KISV,
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To show this inequality, we use Lemma 5.10 to obtain
IRy K2 < CIR K% 7,
For the extended seminorm it holds as in [Bucl9] that

1E(B) 5% 41,8 = supwii o (P F(B) 5.1, > |F(B) X5 m,-
®

Thus
MR K50 < CIRLK(B)||$%41.5-

Now we can proceed as in [Bucl9], using Lemma 5.6.
Due to the linearity with respect to K the bounds for the derivatives with respect
to K follow from the case without derivatives.

O

5.2.5 The map R;
We extend Lemma 4.7.7 from [Bucl9] to our setting.
Lemma 5.20. Assume L > 293 4+ 16R. Consider the map
Ry : MW/2B) _, N[(4/(2A»).B) R (P)=TR,P.

For B> 1 and any A > 4Ap the map Ry is smooth and satisfies

; : o\ 1[(A/(2A5),B) ex 1 (A/2)ext) 7 A/2)ext) 1 I

IDLRI(P)(P, .., PG/ ™2t < (1P ) (1pg2 )
or 3 €10,1}. e deriwatives vanish for 7 > 1.

f 0 The d h f 1

Proof. The statement for j = 0 follows directly from Lemma 5.6. Note that the map
Rj is linear in P so that the statement for j > 0 is trivial. O

5.2.6 The map P,

In the following we extend Lemma 4.7.6 from [Bucl9] to observables. Here, ho(L)
is fixed in Lemma 5.1.

Lemma 5.21. Assume L > max {2973 + 16R,4d(2¢ + R)}, and h > ho(L). Con-
sider the map

P Mm X Mm X M||| X ﬁ:(A/(QAP)’B) — M/(A),
Pl L, LE)U) = Y x(X1U Xy, U)X [UXN g e (x)

X1,X2€P
X1NXa=0

d
Let Ao(L,d) = (484p) s with a = (142911 +64)~L. If A > Ag, B = A and if
P1; P2, P3 satisfy

1 _
p1§§7 PZSAQ, p3§17
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then the map Py restricted to U = B, (1) x By, (1) x B,,(0) x B,,(0) is smooth and
satisfies

_
i1lia!71!72!

i1 Pyi2 Il HJ2 : T . J (e
HDIIDIQDJDKP1(I1,I2,J,K)(IL-~-7117127"'7[2"]"‘ Hk+1r

2

T m
<=L 1
=7 < 1

ext>i1 <‘HI2 ext>i2 <A2)Hj ext) <H H;/leP ext)”l

Proof. The difference to [Bucl9] is the additional factor %Ld here which appears in
Lemma 5.5. Apart from that the proof is the same as in [Bucl9]. O

Remark 5.22. Consider the case of the bulk flow, i.e., set s =t = 0. When
inspecting the proof of Lemma 4.7.6 in [Bucl9], we get

AV || Dy Dy, DDy Py, I, J, KU (I, I, j,f()”
(A/(2Ap),B
< a1 ) 1 ™

k:k+1

for z € (0,2a). Namely, we have that

AVl \\ Dy D DD Py (14, I, J, K)(U)(fl,DIZ,DLDK)H
< (1)l o 1
< a0 ]

if we choose
d

A> (48Ap)Tas .
5.2.7 Proof of Lemma 5.14

For the sake of completeness we review the proof as it is done in [Bucl9].

Proof of Lemma 5.14. The assertion follows from the smoothness of the individual
maps F, P, P>, P3, Ry and Ry and the chain rule.
Let Ap be as in Lemma 5.21 and set B = A. By Lemma 5.21 there exists a neigh-
bourhood

O, = BPl(l) X BPl(l) X By, (0) x BP3(O)

such that P; is smooth in O;. By Lemma 5.16 there is a neighbourhood

02 = B,,(0) € B (0
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such that E is smooth in Oy and E(O2) C B, (1) and 1 — E(O2) C B,,(0). By
Lemma 5.19 there is a neighbourhood

O3 = BP5 (0) X BPG (0)

such that Rp is smooth in O3 and Ry(O3) C Os. This defines the first restriction on
U,+, namely
Ups C By (0) x Byg(0)

The second restriction comes from the condition
Ry (P3 (P (E(H), K))) € B, (0).
By Lemma 5.20 there is a neighbourhood
Oy = By, (0)

such that Ry is smooth in O4 and R1(04) C B,,(0). By Lemma 5.18 there is a
neighbourhood
Os5 C B,;(O)

such that Ps is smooth in Os and P3(Os) C O4. By Lemma 5.17 there is a neigh-
bourhood
Og = Bps(l) X BP9 (0)

such that P, is smooth in Og and P»(Og) C Os. Finally, by Lemma 5.16 there is a
neighbourhood
07 = Bpl() (O) C BP4 (0)

such that E(O7) C Byg(1). We obtain the second restriction:
Up. C Bpyy(0) X By, (0).
The combination of both constraints yields that S is C°° in the set
Up. C Bpionps(0) X Bpgppe (0)-
The chain rule implies the bounds on the derivatives. O

Remark 5.23. Remark 5.22 and chain rule implies that in the case of the bulk flow
there is a constant Cy such that for any x € (0,2a) and (H,K) € U,

AlUlk+1

Dy DicDySi(H. K.q)(H.K,))U)|

_ . . A .
< CL AT Ul A4 E | o1 S 4

where the factors A come from the estimates on DjyPy, DPs, and DiPs.

5.3 Derivatives of the extended renormalisation map at (0,0)

In this section we prove the bounds on C stated in Proposition 4.8, the bounds on
B stated in Proposition 4.9, a bound on the second order part in A as used in the
proof of Lemma, 5.15, and we compute the ab-part of the second derivative of S
at (0,0) as stated in Proposition 4.6.
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5.3.1 Bound on the extended operator C

Let K € M*™*(P§), U € Pg, and ¢ € xn. Then CK can be decomposed into two
parts,

CK(U,p) =F(U,p)+ GU,p). (36)

The large-polymer part F' € M*(Ps 41) is defined by

F(Ua SD) = E R+K(X> so)a
XePp\By
w(X)=U

and G satisfies G(U, ) = 0 for all U € Py, \ Bi11, otherwise, for U = By € By,

G(By,p)= Y, G(B,p) with G(B,p)=(1-RK(B,¢).
BeB(B4+)

We restate the key bound from Proposition 4.8 as Lemma 5.24 below.

Lemma 5.24. For any 6 € (0,1) there exists an Ly such that for all odd integers
L > Ly there is Ag and hg with the following property. For all A > Ay and for all
h > hO’

A),ext
ICl™ <0

independently of k and N.

The proof is very similar to the proof in [Bucl9]. For the argument of the large-
2
polymer part F' we have to deal with the additional factor %Ld arising in the

l‘al
obs,k+1
la]
obs,k

The following lemma extends Lemma 4.8.2. from [Bucl9] to observables.

transformation of scales from the factor , see 2. in Lemma 5.4.

Lemma 5.25. Let L > 2913 4+ 16R. There is Ag such that for all A > Ag
Aext 0 A) ext
IFIE < SRS

Proof. Lemma 5.4 states that for U = w(X)

ext ext

2
RLK(X,¢) < TLRLK(X, )

k+1,U,T, kXT,

By Lemma 5.1 it follows that

We conclude that

2
n
IR+ K (X, )10 < ZLdHRJrK(X, Ok 1,x-
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By this inequality we can estimate

A FU) IR 0

2
n X by
< A‘U|k+1ZLd Z ||R+K(X)||z:};+17x + Z IR+ K (X)[[e41,x
XGP;\SIC XESk\Bk
n(X)=U m(X)=U

(37)

We bound the two summands in (37) seperately. The first term can be estimated
similar to [Bucl9], with a change in the choice of A:

2
77 ex
A|U|k+1ZLd Z IR+ K (X)[|55%11,x
XeP\Sk
m(X)=U
2 a \ X
< ||K||](€A)76Xt%Ld Z (APA*LQma)' Ik ’

XEPE\S,
X=U

where v = [(1+2%)(1 + 6d)]71. Let

+2a

1
AZ i?éde 2c
5 64

where § is the constant from Lemma C.2 in [Bucl9]. Then

X 0 A),ext

> IRAE R x < JIEI
XeP\Sk
w(X)=U

For a bound on the second contribution in (37) we again follow closely the proof in

[Bucl9], with a change in the choice of A. For U € Bj,1 we have

A\Ulkﬂde Z IR K (X))ot <AHKH(A),extLd(QdJrl+1)d2dA7%7ﬁLd
4 + kk+1,X = k A2 4 .
XESk\Bk
w(X)=U

If
4 d/od a2 4
Ang%L (2+1+1)2ZL,
then

A|U\k+1i2Ld R.OK(X)|ext <€ K (A),ext
Prt S R K e < IR

XEP\Sk
w(X)=U

For A large enough this finishes the claim. O
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Next we consider the contribution from single blocks. We extend Lemma 4.8.4 from
[Bucl9] to observables.

Lemma 5.26. There is Ly such that for all L > Lo, h > ho(L) and for all A > 1
A),ex 0 A),ex
IGIE™ < SR
Proof. Remember that G(U) = 0 for U ¢ By and
cBo= Y am= Y (-MR.K(®B)

BeBy(By) BeBy(By)

for By € Bi+1. Thus

A),ext _B X
IGIE™ < AswpwiBe) ST GBS s,
4 BeB(By)

SAsupw,;fl(cp) Z Z ﬂaeBl|bsk+1|G (B)|k+1,B,1, -
14 BeB(B+) ac{d,a,b,ab}

Fix a € {a,b,ab}. We use the second inequality in Lemma 5.3 to get

G (Bl mr, < (1+1¢lesn,m)® (101 = TR K (B)lsnp,

3
+16L73¢ sup |(1 - H%)R+K“(B)|R,B’Ttv>‘
0<t<1

By Lemma 5.12 we proceed the estimate as follows
GY(B)|ks1,8,1, < 1+ |¢lkt1,8)° (CLf(d/ﬂA(a’k))’R+Ka|k,B,To

F16L73 sup |(1 - IR K*(B)lp.m, )-
0<t<1

We continue as in [Bucl9] with the estimates
R+ K (B)lk,B,10 < lobs Al K|k 5,
IIOR KB
IRy K*(B

and

kB < COL+ loli)*Agly)
68,1, < ABWE K1 (D)l oyt 1K (B) |k,
|

\al
where we have the additional factor l ok On the right hand sides in contrast to
[Bucl9]. We obtain

~— ~—

G (B)lesr i,
< lob‘glk 1+ |elet1,8)° (CL*(d/”A( )

_3 _3
F16L 3 Agufy ()| K s + 161 34C (1 + [l )2 As | K 1, 5)

< AgCl (14 |l n)” 1K (L @2HA@R) 4 [=300f,  (p))

«a _ a 3
< Ol ()1 g, (L @/2A@R) 4 -3¢
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For o = () we use the result from [Bucl9], namely that
’ o 3
G (B)lis1nr, < Cuby (@)K ls (177 +L73)

with d' = ¢ + [d/2] + 1 > d.
Let d'(a,k) = d for a = 0 and d'(a, k) = d/2 + A(a, k) else. We combine the
estimates obtained so far and obtain
A),ex a —d'(« _3
GG < 3 Y TaesllilenlalhAPEIK s (L 4 L34).
aE{@,a,b,ab} BeBy(B+)

In the case a = ), the sum over all B € By(B,) gives an additional factor L¢. In
contrast, for « € {a, b, ab}, the sum reduces to one term so this factor does not arise.
However, we have

<lobs,k+1>|a _ (277)|a‘ if « € {a,b,ab}, k > ju,
Lobs. (2242 it o € {a,b}, k < juy

which is canceled by L=¢(@k) In summary we thus get
IGIEY™ < RV (L4 4 L7304 L7 Lt L8 4 L3

Now choose L large enough such that

A,xt 0 Xt
(el I

\)

5.3.2 Bounds on the extended operator B

Here we prove Proposition 4.9. We restate the result in the following lemma.

Lemma 5.27. For o € {a,b}, with the constant Ap from Lemma 5.1 which is
independent of L, the following estimates hold:

(BED)'| <1, 1zobsk I,
Xt
BREY| < 15L, 28 S
Xt
‘BKgb‘ <l0bsk 92 ||Kk||k o

Proof. The proof is similar to the one of Lemma 5.10. First, by Lemma 5.8,

|(BE)| = [(RLK[,b%)o| < |b%|k,8|R+K{ (B < gL EE e

}kBT obsk 9

Furthermore,

A ex’
B < [ [0 00) < bk S Il

and similarly,

BEY| < [ KB, Oln (@) < 152 21wl (O
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5.3.3 Bound on the extended operator A
Lemma 5.28. Let H* = n®V(b), H® = n®Vp(b), k > jap. Then
| [ | < ol i H o1

Proof. Note that

/ V(@) Vip(B) ke (dp) = V¥V Cipi(a,b)

and
| < o ol TH R o

By the properties of the finite-range decomposition the proof follows straightfor-
wardly. O

5.3.4 Second derivative of S™' at (0,0)

Here we prove Proposition 4.6. We restate the result in the following lemma.
Lemma 5.29. The st-part of the second derivative in direction H of S is zero:
[Dgsm(o, oy, i)™ = o.
Proof. Note that
D?8%(0,0)(H, H) = D%S(0,0)(H, H)
since S(0,0) = 0 and

Dy (e—s(BKa)O—t(BKb)O—st(fH“Hbdﬂ++BKab)> ‘ H=0
H=K=0 '

By the product rule we get a sum of the following three terms:

D%8%(0,0)(H, H)

-\ U\ .
_ 2)%;6 X(X,U)Dyr <(eH)U X) H‘H:Kzox
fou{(- )
+2 3 X(X,U)Dy <( H)X\U> Al x

XePy
/DH< — >X> H‘H:K:OGW+
+ Y x(X,U) /DH< - )X> (L, H)dpu.

XEPy,
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Let us consider the second term in the right hand side above. We compute

Dy ((eH - 6H>X> |y ge—g = Lx=p (H(B) = DpH(B)H|;_y._, ) -

The constraint X = B for any B € By, implies that X \ U = () for any U satisfying
X(X,U) # 0. Thus the second term is zero.

The ab-part of the first term is zero as well. We compute

Dy ((Jf)’“) Al - BGB%\X) (A0 + sfi® 4 e7) (B)

and
fou (-l e

= ILX:B/H@(B,@+§)+3H“(B,¢+§)+tHb(B,<p+§)
— AH"(B, ) — sH*(B, ) — tH"(B, )du;
—Lyon [ BB.g+ ) - A (BLo)dns.
The last equality holds since
HY(B,p+&) = H*(B,¢) + H(B,¢)

and

[ BB = 0

due to linearity. Thus the first term has bulk parts and a- and b-parts, but the
projection to the ab-part is zero.

For the third term we distinguish the case that X = B for B € By and X = BU B’
for B, B’ € By, B # B’. In the case X = B we compute

/D%{ ((eH - eff)B> (H, H)dpsy
- / (F (B¢ +§)>2 - 25t/H“(B)Hb(B)d,u+
- (AH@(B, ) + sH(B, o) + tH(B, @)2 dpiy
—2 [ H B+ QH'(Bop+ Ods —2 [ (B, OB, dus

- 2/Ha(B,sO)Hb(B,<p)du+ =0.
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In the other case we compute

/DH ((eH — eﬁ)B> HDy <<eH — eg>Bl> Hdp,

— [ (fBp+ ) - A (B.p) - sl (B.o) — (B,
(B¢ +&) - AH"(B',¢) = sH"(B'.¢) = tH"(B',¢)) dus.
We project this term to the ab-part and obtain:
[ (eBo+ o - oB.0)) (BB o+ - BB 0) ds
+ / (1B, +€) - H'(B,g)) (H (B o+ &) — H*(B',9)) dus

— [ G+ [ HB.OR B ..
Now we distinguish the scales k& > j, and the scales & < ju. If k > jgp, then
a,b € By, € By, and either B = B, and the B’-term is zero, or vice versa. If

k < jup only the choices BU B’ = B, U By, and BU B’ = B, U B, are relevant. Then
we get

[ BB . + [ H(EBOH B au.
= 2nanb/Vg0(a)Vgo(b)d,uk+1 = 2n,nyV*VCjy1(ab).
Due to the definition of the scale j,; and the finite-range property of the covariances

we have
V*VCii1(a,b) =0 for all k& < jgp.

This finishes the claim. O
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