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Abstract

In this thesis, we consider gradient models on the lattice Zd. These models serve
as effective models for interfaces and are also known as continuous Ising models.
The height of the interface is modelled by a random field ϕ : Λ → R, where Λ is
a finite subset of Zd. The energy of a configuration ϕ is given by a Hamiltonian
HΛ(ϕ) =

∑
x∈Λ

∑d
i=1W (∇iϕ(x)) with a potential W and finite difference quotient

∇iϕ(x) = ϕ(x+ei)−ϕ(x). We impose a tilt u ∈ Rd on the interface by equipping Λ
with periodic boundary conditions and considering the Hamiltonian Hu

Λ with shifted
potential W (· + ui). We are interested in the Gibbs measure at tilt u and inverse
temperature β of this model,

γuΛ,β(dϕ) =
1

ZuΛ,β
e−βH

u
Λ(ϕ)λΛ(dϕ), where ZuΛ,β =

∫
R/{constants}

e−βH
u
Λ(ϕ)λΛ(dϕ),

and λΛ(dϕ) is an a priori measure on R/{constants}. For the potential W being a
small non-convex perturbation of the quadratic interaction we prove scaling of the
model to the Gaussian free field, strict convexity of the surface tension and algebraic
decay of the covariance. The method of the proof is a rigorous implementation of
the renormalisation group method.
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1

1 Introduction

In the following introduction we will outline the motivation and goal for this thesis
and briefly explain the mathematical tools and concepts we utilize. No originality
is claimed and, to give an informative exposition, we sketch out a number of ideas
from some references mentioned, but without explicit reference to the origin of each
single idea.

1.1 Statistical mechanics

Motivation Statistical mechanics attempts to explain the macroscopic behaviour
of large systems in equilibrium on the basis of their microscopic structure. The
starting point for the development of statistical mechanics by Maxwell, Boltzmann,
and Gibbs was the idea of a microscopic justification of thermodynamic laws.

Thermodynamics is the study of bulk matter. The state of a system, for example a
gas, is specified by a few macroscopic quantities, for example by pressure and volume.
A system is in thermal equilibrium if the state does not change with time. Thermo-
dynamic laws and equations relating the thermodynamic quantities are viewed as
hypotheses.

Statistical mechanics aims to derive these thermodynamic quantities and their re-
lations, starting with the microscopic system of many interacting particles on the
basis of microscopic forces between the components of the system. The microscopic
state could be described by the equations of motion as done in classical mechanics.
However, the microscopic structure is enormously complex, and any measurement
of microscopic quantities is subject to statistical fluctuations.

The difficulty one has to overcome for providing a connection between macroscopic
and microscopic levels is the contrast between an experimentally based description
of a few quantities on the one hand and precise, but not amenable information of the
behaviour of many variables on the other. The basic idea of statistical mechanics is
to replace a perfect description at microscopic scale by a statistical description, i.e.
by a probability measure on the state space. Of course the behaviour of the system
of particles is not random, but it may be sufficiently complex that it is reasonable
to view it as such. By this statistical approach the microscopic complexity may be
overcome and the macroscopic determinism then may be regarded as a consequence
of a suitable law of large numbers. A nice historical introduction into statistical
mechanics can be found in the book by Thompson [Tho72].

Gibbs distribution Although the foundations of statistical mechanics were already
laid in the nineteenth century, the mathematically rigorous study of systems only
began in the late 1960s with the work of Dobrushin, Lanford and Ruelle who intro-
duced the basic concept of a Gibbs measure.

The mathematical idealisation of the equilibrium distribution of a system is pos-
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tulated to be given by the Gibbs distribution or Gibbs measure. Let S be a large
(but finite) set which labels the components of the system (the particles), the set
space. The possible states of each component are described by elements in a set E.
A particular state of the system is specified by an element (a field) ϕ = (ϕ(x))x∈S of
the product space Ω = ES , the configuration space. Let H be a Hamiltonian which
assigns to each possible configuration a potential energy.
For a given boundary condition ψ, the finite-volume Gibbs distribution is given by

the Boltzmann weight e−βH
ψ
S (the parameter β is physically associated to the inverse

temperature) times an a priori measure λS on the configuration space Ω,

γψβ,S(dϕ) =
1

Zψβ,S
e−βH

ψ
S (ϕ)λS(dϕ),

where Zψβ,S is the normalisation of the measure, called partition function. The parti-
tion function is of major importance because all physically interesting macroscopic
quantities can be expressed in terms of the partition function, usually in the form
of logarithmic derivatives.

Since the number of particles in many-particle systems is extremely large, the in-
trinsic properties of the system can be made manifest by performing suitable limiting
procedures. It is therefore a common practice in statistical mechanics to pass to the
thermodynamic limit |S| → ∞. Unfortunately, the Gibbs measure does not admit a
direct extension to infinite systems. To overcome this obstacle, one characterises the
Gibbs distribution by a property which can be formulated also on the infinite lattice.
This property is given in terms of DLR-equations (named after Dobrushin, Lanford
and Ruelle). We refer to the book by Georgii [Geo11] for a detailed introduction to
Gibbs measures.

Questions The major aim is to determine the behaviour of the system at non-
vanishing temperature in the thermodynamic limit.
From the probabilistic viewpoint the question of universality arises: Which Hamilto-
nians lead to similar behaviour? On appropriate limits, very different systems can
have essentially identical properties.
More precisely, one can ask the following questions.

• Does the infinite-volume Gibbs measure exist, and, if yes, is it unique? Non-
uniqueness of the Gibbs measure characterises the physical phenomenon of a
phase transition (abrupt change in the physical properties of a system).

• What is the long-distance structure of the model, the scaling limit? We can
study the measure in terms of a transform, for example its Laplace transform∫

e(f,ϕ)ν(dϕ).

To analyse the behaviour of the model when looking at it from further and
further away, the class of test functions f should be insensitive to fluctuations
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at short distances. The scaling limit would be determined by increasingly
smooth f ε given by f ε(x) = εαf(εx), x ∈ Zd, for some exponent α 6= 0 and
f ∈ C∞c (Rd), in the limit ε → 0. If a limiting distribution exists, the result
leads to a central limit theorem for strongly correlated fields.

• Define the free energy or surface tension by

σβ(ψ) = lim
|S|→∞

− 1

β|S|
lnZψβ,S .

Which smoothness properties are satisfied by σ in dependence on the para-
meter β and the boundary condition ψ? This question is also related to the
existence of phase transitions.

• How does the covariance

Cov (ϕ(a), ϕ(b))

= lim
|S|→∞

(∫
ϕ(a)ϕ(b)γψβ,S(dϕ)−

∫
ϕ(a)γψβ,S(dϕ)

∫
ϕ(b)γψβ,S(dϕ)

)
fall off with distance? The covariance expresses how strongly the fluctuations
in the values of the fields are correlated.

1.2 Gradient models

Gradient models serve as effective models for interfaces (based on the idealisation
that the interface can be described microscopically by a function, i.e., there are no
overhangs or bubbles). We give a short introduction to the setting as it is used in
this thesis. A more detailed description can be found in Section 2.1. Subsequently
we give an overview of mathematical contributions to this model.

Setting Let Λ ⊂ Zd be a finite subset of the lattice. We consider fields ϕ : Λ→ R
which can be interpreted as height variables of the interface. The Hamiltonian is
given by a potential W : R→ R that only depends on discrete gradients of the field,

HΛ(ϕ) =
∑
x∈Λ

d∑
i=1

W (∇iϕ(x)),

where ∇iϕ(x) = ϕ(x+ ei)− ϕ(x) is the finite difference quotient on the lattice. We
impose tilted boundary conditions, namely

ϕ(x) = ψu(x) for x ∈ ∂Λ, ψu(x) = u · x for u ∈ Rd.

The finite-volume Gibbs measure with boundary condition ψu at inverse temperature
β > 0 is then

γψ
u

β,Λ(dϕ) =
1

Zψ
u

β,Λ

e−βHΛ(ϕ)
∏
x∈Λ

dϕ(x)
∏
x∈∂Λ

δψu(x)(dϕ(x)),
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where

Zψ
u

β,Λ =

∫
RΛ

e−βHΛ(ϕ)
∏
x∈Λ

dϕ(x)
∏
x∈∂Λ

δψu(x)(dϕ(x))

is the partition function which normalises the measure.
The goal is to construct the infinite-volume limit Λ ↑ Zd of the Gibbs distribution. To
realise this limiting procedure one has to find a way to define both an infinite-volume
Gibbs state for a formal sum in the Hamiltonian and an infinite-dimensional a priori
measure. This can be achieved by using the characterisation of finite-volume Gibbs
measures in terms of DLR-equations which allow an extension to infinite volume.
One is then particularly interested in shift-invariant, ergodic infinite-volume gradient
Gibbs measures with mean u. In the case of strictly convex potentials W Funaki and
Spohn ([FS97]) observed that these properties are generated by considering fields
on a torus and a shifted potential W (· + ui).

Let Λ ⊂ Zd be a box, equip it with periodic boundary conditions, and consider the
shifted Hamiltonian

Hu
Λ(ϕ) =

∑
x∈Λ

d∑
i=1

W (∇iϕ(x) + ui).

In order to obtain a well-defined partition function in any dimension d we restrict the
configuration space to RΛ/{constants}. Let λΛ(dϕ) be the unique (up to scalar mul-

tipliers) translation invariant measure on RΛ/{constants}. We analyse the following
finite-volume gradient Gibbs measure:

γuβ,Λ(dϕ) =
1

Zuβ,Λ
e−βH

u
Λ(ϕ)λΛ(dϕ)

with partition function

Zuβ,Λ =

∫
RΛ/{constants}

e−βH
u
Λ(ϕ)λΛ(dϕ).

The surface tension is

σβ(u) = lim
|Λ|→∞

− 1

β|Λ|
lnZuβ,Λ.

The smoothness property of interest here is strict convexity of σβ in u, since this is
connected to the question of phase transition: In the region where entropy wins, the
free energy is strictly convex. The opposite is true in the region where energy wins
(strict convexity of the free energy rules out phase coexistence which corresponds to
flat parts in the free energy).
A nice and detailed introduction into gradient models and gradient Gibbs measures
can be found in [Fun05].

Known results For the case of the quadratic potential, W (s) = 1
2s

2 (the so-called
massless free field), the Gibbs measure is the Gaussian free field on the lattice,
allowing many of the desired characteristics to be computed explicitly (see, e.g.,
[Fun05]):
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• For any tilt u there is a unique infinite-volume gradient Gibbs measure which
coincides with the Gaussian free field with mean u and covariance given by
CZd = (−∆Zd)

−1 (with kernel CZd), where −∆Zd =
∑d

i,j=1 δij∇∗j∇i is the

discrete Laplacian on Zd.

• The scaling limit (when the lattice spacing tends to zero) of the model is the
Gaussian free field on the continuum torus Td with covariance CTd = (−∆Td)

−1,
where −∆Td = −

∑d
i,j=1 δij∂i∂j is the Laplacian on the continuum torus.

• The surface tension is σ(u) = 1
2 |u|

2 + σ(0) and thus strictly convex in u.

• The gradient-gradient covariance decays algebraically, namely

|Cov (∇iϕ(a),∇jϕ(b))| = |∇∗j∇iCZd(a, b)| ≤ C
1

|a− b|d
.

From the viewpoint of probability the challenge is to develop an equivalent under-
standing for non-quadratic W ’s. How far can we enlarge the class of Hamiltonians
such that the model behaves similar to the Gaussian free field? In the case of strictly
convex potentials the picture is quite satisfactory:

• In [FS97] it is shown that for any tilt u there is an infinite-volume gradient
Gibbs measure which is tempered, ergodic and shift invariant.

• The scaling limit is the Gaussian free field on the torus with covariance C where
C−1 = −

∑d
i,j=1 aij∂i∂j for a constant positive definite matrix a, see [NS97] for

u = 0 and in [GOS01] for arbitrary tilt u.

• The surface tension is strictly convex in u, see [FS97].

• In [DD05] it is shown that the covariance decays algebraically,

|Cov (∇iϕ(a),∇jϕ(b))| ≤ C 1

|a− b|d
.

In summary, we observe similar behaviour to the case of quadratic potentials.

The proofs of the above results rely heavily on the strict convexity of the potentials.
What about the non-convex case? Only partial results are available.

A special class of gradient fields with non-convex potentials (log-mixture of centered
Gaussians) is considered in [BK07]. At tilt u = 0, a phase transition is shown to
happen at some critical value of the inverse temperature βc. This result demonstrates
that one can expect neither the uniqueness of gradient Gibbs measures corresponding
to a fixed tilt u nor strict convexity of the surface tension σ(u). However, the scaling
limit in this case is still the Gaussian free field, as shown in [BS11].

For a class of gradient models where the potential is a small non-convex perturbation
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of a strictly convex one, [CDM09] shows strict convexity of the surface tension at
high temperature. For the same class in the same temperature regime in [CD12] it
is shown that for any u there exists a unique ergodic, shift-invariant gradient Gibbs
measure. Moreover, the measure scales to the Gaussian free field and the decay of
the covariance is algebraic as above.

The complementary temperature regime is considered in [AKM16]. The authors
consider potentials which are small perturbations of the quadratic one, the perturb-
ation chosen such that it does not disturb the convexity at the minimum of the
potential. For small tilt u and large inverse temperature β they prove strict convex-
ity of the surface tension obtained as a limit of a subsequence of (Nl)l∈N, where LN

is the side length of the box Λ, and relying on a quite restrictive lower bound on W ,
namely

W (s) ≥ (1− ε)s2

for a small ε.

In the same setting the paper [Hil16] shows that there is q ∈ Rd×dsym small, such that

the scaling limit is the Gaussian free field on Td with covariance CqTd , where

(
CqTd
)−1

= −
d∑

i,j=1

(δij + qij) ∂i∂j ,

and that a ”smoothed” covariance decays algebraically. The convergences are on a
subsequence.

In the PhD thesis of Simon Buchholz [Buc19] the class of potentials is widened to
such which satisfy less restrictive bounds on the potential, namely

W (s) ≥ εs2,

and to vector-valued fields and finite-range instead of only nearest-neighbour inter-
action. The last two improvements are of interest for the application in nonlinear
elasticity, see the motivation in Subsection 1.4. The authors show that the surface
tension is strictly convex and that the scaling limit is the Gaussian free field on the
torus. Unfortunately, all convergences are still on a subsequence.

New results The setting in this thesis is similar to the one from [Buc19]: We
restrict to small tilts and large inverse temperature and use the same smallness
condition on the potential. For the sake of simplicity we formulate our results and
proofs for scalar-valued fields and nearest-neighbour interaction. We show that the
necessity for the subsequence in the statements about the surface tension and the
scaling limit can be removed. Moreover, refined covariance estimates are shown,
namely

|Cov(∇iϕ(a),∇jϕ(b))| ≤ C 1

|a− b|d
.
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More precisely, it is shown that to first order in |a− b| the Gaussian covariance CqZd

appears, where CqZd is the kernel of CqZd with
(
CqZd
)−1

=
∑d

i,j=1(δij + qij)∇∗j∇i:

Cov(∇iϕ(a),∇jϕ(b)) = ∇∗j∇iCq(a, b) +Rab, |Rab| ≤ C
1

|a− b|d+ν
, ν > 0.

The proof builds on a rigorous renormalisation group approach for the partition
function. This approach is developed for the model at hand in [AKM16] and im-
proved in [Buc19]. We augment the technique in two directions. On the one hand,
we extend the finite-volume flow apparent in the renormalisation group method to
infinite volume. This enables us to get rid of the restriction on the subsequence. On
the other hand, the renormalisation group analysis is enlarged from the bulk flow
(which determines the partition function) to observables. This allows us to prove
fine estimates for the covariance.

1.3 Renormalisation group method

We give a rough motivation for the renormalisation group method used in the proofs
of our results.

For massless Gaussian models the gradient-gradient covariance decay like the second
derivative of the Greens function for the discrete Laplacian, i.e., like |x|−d in d
dimensions. As the decay is not absolutely integrable, the models are outside the
range of powerful techniques such as, for instance, the cluster expansion (at least in
its original form).

The renormalisation group (RG) method is an elaborate technique originally inven-
ted to understand critical phenomena in quantum field theory and statistical physics.
It has led to an understanding of universality of models in the critical regime. The
method has provided a non-perturbative calculational framework as well as the basis
for a rigorous mathematical understanding of these theories. However, even outside
the realm of critical phenomena, the philosophy is useful and applicable, when other
methods, like cluster expansion, fail.

The basic idea of renormalisation is to study the large-distance behaviour of a model
by reducing the degrees of freedom. This is achieved by a version of coarse graining,
i.e., by disregarding information about the behaviour at small distances.

The fundamental hypothesis of the renormalisation idea is that, after coarse graining
and rescaling, the model should be similar to the original model with modified
parameters. The combination of the two operations is called a renormalisation
group transformation. The RG transformation can be viewed as a discrete, infinite-
dimensional dynamical system and the model is identified with a point on its finite-
dimensional stable manifold.

The philosophy of the RG method plays a key role in several rigorous investig-
ations. The implementation in this thesis is based on Wilson’s formulation of
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the RG (see [WK74]). A rigorous version of the method has been developed by
Bauerschmidt, Brydges and Slade in a series of papers ([BS15a],[BS15b], [BBS15b],
[BS15c], [BS15d]). Adams, Kotecký and Müller [AKM16] adapted the method to
the setting of gradient models with non-convex interaction.

The method applies to measures which are a perturbation of a Gaussian measure
and relies on the fact that when the Gaussian measure is chosen correctly, then
the perturbation vanishes in some limit. By decomposing the Gaussian measure
one can integrate out the degrees of freedom at different length scales present in
the covariance of the Gaussian measure. In each step, expanding and contracting
directions are carefully separated so that one obtains a discrete dynamical system
where the stable manifold theorem can be applied.

More precisely (but still very sketchy), the problem is to study measures of the form

γ(dϕ) = F (ϕ)µ(dϕ),

where µ is a Gaussian measure and F is local and satisfies F ≈ 1 in some sense. In
principle, the measure Fµ can be studied in terms of

∫
OFdµ for field functionals

O which we call observables. For instance, with O = 1 it expresses the partition
function, with O(ϕ) = ∇iϕ(a)∇jϕ(b) it gives the gradient-gradient covariance. A
measure can also be studied in terms of transformations, e.g., its Laplace transform

Z(f) =

∫
e−(ϕ,f)F (ϕ)µ(dϕ).

The starting point is to decompose ϕ as ϕ =
∑

k ϕk such that the fields ϕk are Gaus-
sian, independent, and live on increasing scales but become smoother and smaller
as k increases.
The decomposition of the fields corresponds to a decomposition µ = µ1 ∗µ2 ∗µ3 ∗ . . .
of the Gaussian measure, which allows to rewrite Z as a series of integrations,∫

F (ϕ)µ(dϕ) =

∫
F (ϕ1 + ϕ2 + ϕ3 + . . .)µ1(dϕ1)µ2(dϕ2)µ3(dϕ3) . . .

=

∫
F1(ϕ2 + ϕ3 + . . .)µ2(dϕ2)µ3(dϕ3) . . .

= . . . ,

where Fk(φ) =

∫
Fk−1(ϕk + φ)µk(dϕk).

Then ∫
F (ϕ)µ(dϕ) = F∞(0) = lim

k→∞
Fk(0),

if the limit exists, and (C being the covariance of the Gaussian measure µ),

Z(f) = e(f,Cf)

∫
F (ϕ+ Cf)µ(dϕ) = F∞(Cf).
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The map Fk−1 7→ Fk (the RG-flow) is a very complicated dynamical system. The
hope is to find appropriate coordinates on a finite-dimensional space which determine
the behaviour of the transformation.

At each step, local parts Hk are collected in eHk and traced explicitly, contributing
to the relevant behaviour of the RG flow. On a perturbative level, this is enough.
In the rigorous version we implement we also keep track of the error part Kk which
is shown to be contractive (irrelevant). The flow (Hk,Kk) is then considered as a
discrete dynamical system with an expanding and a contracting direction and with
the fixed point F̄ = 1 corresponding to H̄ = K̄ = 0. If the initial data of the flow
are chosen as elements in the stable manifold of the dynamical system, the sequence
converges to its fixed point. The method is explained in detail in [AKM16], [Buc19]
and in Section 3 below.

1.4 Statistical mechanics of elastic materials

Since the work [Buc19] intends to describe statistical mechanics of elastic materials,
we give a short introduction to this application.

A unifying feature of elasticity is that the materials withstand (small) shear force.
A basic hypothesis used in the mathematical formulation of solid mechanics is the
so-called Cauchy-Born rule: The energy minimizer under affine boundary conditions
is the affine function itself. The challenge is to obtain a microscopic justification of
the Cauchy-Born rule.

Statistical mechanics is one possible tool to provide microscopic verification of mac-
roscopic hypotheses. It applies to systems in equilibrium position. However, elasti-
city is not an equilibrium phenomenon – no material can withstand shear forever.
Elastically deformed states are in general only local minimizers of the energy, not
global ones. Fractured states, where the lattice is reordered, have less energy than
the elastically deformed states.

Nevertheless, one can try to construct a lattice model where the equilibrium state is
mimicking a metastable state at a short time scale. In the gradient model with vector
valued fields ϕ : Rd → Rd (fields of displacement), local neighbourhood relations are
fixed to rule out complete reordering.

In [Buc19] it is shown that the Cauchy-Born rule holds at large inverse temperature
β and small tilt u.

1.5 Structure of the thesis and notations

Structure of the thesis In Section 2, gradient models are introduced and the
main results concerning the scaling limit (Theorem 2.1), strict convexity of the
surface tension (Theorem 2.2) and a fine estimate on the covariance (Theorem 2.3)
are stated. Furthermore, two technical theorems on which the proofs of these results
are based are formulated (Theorems 2.7 and 2.11). They contain representations of
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the generating partition function and provide straightforward proofs of the main
results.
Section 3 contains the proof of the first technical result, Theorem 2.7. The proof is
by RG analysis which closely follows [Buc19]. To improve the convergence results in
[Buc19], the method is extended from finite-volume to infinite-volume flows. This
extension is explained in [BS15d] for the ϕ4-model and adapted to gradient models
in this thesis.
Section 4 deals with the proof of the second technical result, Theorem 2.11. We
extend the RG analysis from Section 3 to observables, as developed in [BS15a,
BS15b, BBS15b, BS15c, BS15d] for the ϕ4-model ([BBS15a]). We adapt the method
to the setting of gradient models.
Finally, in Section 5, details for certain extensions and intermediate steps are provided.
The presentation follows closely the one in [Buc19] in order to facilitate the under-
standing of the extensions. Proofs are only provided if they differ from the ones in
[Buc19].

Notations Throughout the whole thesis we will use the following notations.

• C∞c will denote the set of smooth, compactly supported functions.

• Partial derivatives will be denoted by ∂s instead of ∂
∂s .

• The symbol ∂i will be used for usual derivatives, in contrast to ∇i for discrete
finite differences.

• Cr denotes the set of r-times differential functions.

• Rd×dsym denotes the set of d× d symmetric matrices.

• The Kronecker-delta δij is 1 if i = j and 0 else.

• The indicator function 1z is given by 1z = 1 if condition z is satisfied and
1z = 0 otherwise.

• We use the big O notation f(x) = O(g(x)) as x→∞ to describe the limiting
behaviour of the function f in terms of the function g. It means that for all
sufficiently large values of x, the absolute value of f(x) is at most a positive
constant multiple of g(x).

• For x ∈ R let (x)+ be x if x ≥ 0 and 0 else.

• For x, y ∈ R let (x ∧ y) denote the minimum of x and y.

• The symbol C will mostly denote a positive constant whose value is allowed
to change in a chain of inequalities from line to line.
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2 Setting and results

We start by describing gradient models and their finite-volume Gibbs distributions
and stating the main results, namely the scaling limit of the measure in Theorem 2.1,
strict convexity of the surface tension in Theorem 2.2, and decay of correlations in
Theorem 2.3.
Then we state two technical key theorems (Theorem 2.7 and Theorem 2.11), which
are the main components of the proofs of the main results. They contain powerful
representations of the normalisation constant of the Gibbs measure. From these
representations the proofs of the main results can be deduced straightforwardly.

2.1 Gradient models

Fix an odd integer L ≥ 3 and a dimension d ≥ 2. Let TN =
(
Z/LNZ

)d
be the

d-dimensional discrete torus of side length LN where N is a positive integer. We
equip TN with the quotient distances | · | and | · |∞ induced by the Euclidean and
maximum norm respectively. The torus can be represented by the cube

ΛN =

{
x ∈ Zd : |x|∞ ≤

1

2

(
LN − 1

)}
of side length LN once it is equipped with the metric

|x− y|per = inf
{
|x− y + k|∞ : k ∈

(
LNZ

)d}
.

Define the space of fields on ΛN as

VN = {ϕ : ΛN → R} = RΛN .

Since we will consider shift invariant energies, we are only interested in gradient
fields on VN . Gradient fields can be described by elements in VN/{constants}, or,
equivalently, by usual fields with vanishing average

χN =

{
ϕ ∈ VN :

∑
x∈ΛN

ϕ(x) = 0

}
.

We equip χN with a scalar product via

(ϕ,ψ) =
∑
x∈ΛN

ϕ(x)ψ(x).

Let λN be the
(
LNd − 1

)
-dimensional Hausdorff measure on χN . Let ei, i = 1, . . . , d,

be the standard unit vectors in Zd. Then the discrete forward and backward deriv-
atives are defined by

∇iϕ(x) = ϕ(x+ ei)− ϕ(x), i ∈ {1, . . . , d},
∇∗iϕ(x) = ϕ(x− ei)− ϕ(x), i ∈ {1, . . . , d}.
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Let W : R→ R be a potential which is a perturbation of a quadratic potential,

W (s) =
1

2
s2 + V (s), V : R→ R.

We study a class of random gradient fields defined in terms of a Hamiltonian

HN (ϕ) =
∑
x∈ΛN

d∑
i=1

W (∇iϕ(x)) =
∑
x∈ΛN

d∑
i=1

(
1

2
|∇iϕ(x)|2 + V (∇iϕ(x))

)
.

We equip the space χN with the σ-algebra BχN induced by the Borel-σ-algebra with
respect to the product topology, and use M1(χN ) = M1(χN ,BχN ) to denote the
set of probability measures on χN .
The finite-volume gradient Gibbs measure γN,β ∈ M1(χN ) at inverse temperature
β is defined as

γN,β(dϕ) =
1

ZN,β
e−βHN (ϕ)λN (dϕ)

with partition function

ZN,β =

∫
χN

e−βHN (ϕ)λN (dϕ).

The model describes the behaviour of a random microscopic interface. A microscopic
tilt applied to the discrete interface can be implemented by the Funaki-Spohn trick
introduced in [FS97]. Given u ∈ Rd, we define the Hamiltonian Hu

N on the torus TN
with tilt u by

Hu
N (ϕ) =

∑
x∈ΛN

d∑
i=1

W (∇iϕ(x) + ui).

Consequently, the finite-volume gradient Gibbs measure γuN,β with tilt u is defined as

γuN,β(dϕ) =
1

ZN,β(u)
e−βH

u
N (ϕ)λN (dϕ),

where ZN,β(u) is the normalisation constant. A useful generalisation of the partition
function with a source term f ∈ VN is given by the generating functional

ZN,β(u, f) =

∫
χN

e−βH
u
N (ϕ)+(f,ϕ)λN (dϕ). (1)

2.2 Main results

On the one hand we give improved versions of Theorem 3.2.9 in [Buc19] (which
was firstly proven in [Hil16] with stronger assumptions on the potential W ) and
Theorem 3.2.6 in [Buc19]. The improvement consists in the removal of the need for
a subsequence (Nl)l.
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On the other hand we assert an asymptotic expression for the gradient-gradient
covariance of the Gibbs measure.

We impose the following assumptions on the potential W :
Let r0 ≥ 3, r1 ≥ 2, V ∈ Cr0+r1 , V ′(0) = V ′′(0) = 0.

Let 0 < ω < 1
16 and suppose that

∑d
i=1W (zi) ≥ ω|z|2 and

limt→∞ t
−2 ln Ψ(t) = 0

where Ψ(t) = sup|z|≤t
∑

3≤|α|≤r0+r1
1
α! |∂

α
∑d

i=1W (zi)|.

(?)

Let Td = (R/Z)d be the continuum torus, q ∈ Rd×dsym and CqTd be the inverse of the
elliptic partial differential operator AqTd ,

CqTd =
(
AqTd

)−1
, AqTd = −

d∑
i,j=1

(δij + qij) ∂j∂i,

which acts on the space of all functions f ∈W 1,2(Td) with mean zero.

The following theorem states that the Laplace transform of γuN,β converges to the
Laplace transform of the Gaussian free field µCq

Td
on the continuum torus with co-

variance CqTd as the lattice spacing tends to zero in a suitably scaled way.

Theorem 2.1 (Scaling limit). Let W satisfy (?). Then there is L0 such that for all
odd integers L ≥ L0 there is δ > 0 and β0 > 0 with the following property. For all
u ∈ Bδ(0) and β ≥ β0 there is q = q(u, β, V ) ∈ Rd×dsym such that for any f ∈ C∞c

(
Td
)

satisfying
∫
f = 0 and fN (x) = L−N

d−2
2 f

(
L−Nx

)
for x ∈ ΛN ,

lim
N→∞

EγuN,β (e(fN ,·)) = lim
N→∞

ZN,β(u, fN )

ZN,β(u, 0)
= e

1
2β

(
f,Cq

Td
f
)
.

Let us denote

σN,β(u) = − 1

βLNd
lnZN,β(u, 0). (2)

The free energy or surface tension can be written as

σβ(u) = lim
N→∞

σN,β(u). (3)

The next theorem is concerned with smoothness properties of the free energy.

Theorem 2.2 (Strict convexity of surface tension). Let W satisfy (?). Then there
is L0 such that for all odd integers L ≥ L0 there is δ > 0 and β0 with the following
property. For all u ∈ Bδ(0) and β ≥ β0 there is q = q(u, β, V ) ∈ Rd×dsym such that for
any N the free energy σN,β : Bδ(0)→ R is in Cr1 and uniformly convex. Moreover,
the limit σβ(u) is uniformly convex in Bδ(0).
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Furthermore, we give a formula for the gradient-gradient covariance. Given a, b ∈ ΛN
and directions ma,mb ∈ {1, . . . , d}, define

CovγuN,β (∇maϕ(a),∇mbϕ(b))

=

∫
χN

∇maϕ(a)∇mbϕ(b)γuN,β(dϕ)−
∫
χN

∇maϕ(a)γuN,β(dϕ)

∫
χN

∇mbϕ(b)γuN,β(dϕ).

For q ∈ Rd×dsym , let CqZd be the inverse of the differential operator on gradient fields

on Zd,

CqZd =
(
AqZd

)−1
, AqZd =

d∑
i,j=1

(δij + qij)∇∗j∇i

(see [Fun05] for details on gradient fields on Zd and existence of CqZd). Let CqZd be
the kernel corresponding to the operator CqZd .

The following theorem states that in the thermodynamic limit ΛN → Zd the gradient-
gradient covariance is dominated by the covariance CqZd of the discrete Gaussian free

field on Zd.

Theorem 2.3 (Decay of the covariance). Let W satisfy (?). There is L1 such that
for all odd integers L ≥ L1 there is δ > 0 and β0 with the following property. For
all u ∈ Bδ(0) and β ≥ β0 there is q = q(u, β, V ) ∈ Rd×dsym such that

lim
N→∞

CovγuN,β (∇maϕ(a),∇mbϕ(b)) =
1

β

(
∇∗mb∇maC

q
Zd(a, b) +Rab

)
.

Here, Rab can be estimated as follows. There is ν > 0 and a constant C1 = C1(L)
such that for a 6= b

|Rab| ≤ C1
1

|a− b|d+ν
.

Remark 2.4. Theorem 2.1 and Theorem 2.2 both follow from the same repres-
entation of the generating functional ZN,β(u, f) in Theorem 2.7. There and in
Lemma 2.9 the parameters L0, δ and β0 are fixed, and the existence of q is stated.
Therefore, these paramters coincide in Theorem 2.1 and 2.2.

Theorem 2.3 follows from an extended representation in Theorem 2.11. The para-
meter L1 has to be chosen larger than L0 in Theorem 2.7. Accordingly, δ is smaller
and β0 larger. Aside from that, q is the same as before.

Let us mention a straightforward consequence of Theorem 2.3.

Corollary 2.5 (Algebraic decay of the covariance). Under the assumptions of The-
orem 2.3 there is a constant C such that the following estimate holds:∣∣∣∣ lim

N→∞
CovγuN,β (∇maϕ(a),∇mbϕ(b))

∣∣∣∣ ≤ C 1

|a− b|d
.
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Proof. We apply Theorem 2.3 and use that the Gaussian covariance CqZd satisfies

∣∣∇αCqZd(x)
∣∣ ≤ C 1

|x|d−2+|α| ,

see, e.g., Proposition 2.6.14 in [Run14] for a proof of this estimate.

Remark 2.6. 1. One can state the assumptions (?) on the potential W in a more
general form allowing a bigger class of perturbations V . We will comment on
this again in the next section, see Lemma 2.9 and Remark 2.10. For the sake
of simplicity we decided to state the main results with assumptions (?).

2. Theorems 2.1, 2.2 and 2.3 can also be formulated for m-component fields
on TN ,

ϕ : Λ→ Rm.

Discrete derivatives are understood component-wise,

(∇iϕ)s(x) = ϕs(x+ ei)− ϕs(x), s ∈ {1, . . . ,m}, i ∈ {1, . . . , d}.

The potential W and the perturbation V are maps from Rm to R and the
tilted boundary condition u ∈ Rd is replaced by a deformation F ∈ Rm×d.
See [Buc19] for more details on the set-up. This extension shows up in the
notation but does not change the arguments in the proofs.

3. The statements in Theorems 2.1, 2.2 and 2.3 can also be extended to more
general finite-range interaction (not only nearest-neighbour). Let A ⊂ Zd be a
finite set. Consider the potential

W : (Rm)A → R.

Then one can define the Hamiltonian with finite-range interaction and external
deformation F ∈ Rd×m as

HF
N (ϕ) =

∑
x∈TN

W
(
(ϕ+ F )τx(A)

)
,

where for any ϕ ∈ χN and B ⊂ Zd we use ϕB to denote the restriction of ϕ
to B, and τx(A) denotes the set A translated by x.

For m = d, this is the setting for microscopic models of nonlinear elasticity
with F representing an affine deformation applied to a solid. See [Buc19] for
more details on the set-up and the application to elasticity.

2.3 Two key theorems and proofs of the main results

The goal of this section is the formulation of two technical key theorems, which state
powerful representations of the generating functional of the model. The proofs of
these theorems are obtained by a subtle renormalisation group analysis which will
be carefully introduced in Sections 3 and 4.
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2.3.1 Reformulation of ZN,β(u, f)

Let V (z, u) be the remainder of the linear Taylor expansion of V (z + u) around u,

V (z, u) = V (z + u)− V (u)− V ′(u)z.

We can write the generating functional ZN,β(u, f) from (1) in the form

ZN,β(u, f) = e
−βLNd

(
|u|2

2
+
∑d
i=1 V (ui)

)

×
∫
χN

e(f,ϕ)e
−β
∑
x∈ΛN

∑d
i=1(V (∇iϕ(x),ui)+

1
2
|∇iϕ(x)|2)λN (dϕ).

Let

µβ(dϕ) =
1

Z
(0)
N,β

e
−β

2

∑
x∈ΛN

∑d
i=1 |∇iϕ(x)|2

λN (dϕ) (4)

be the Gaussian measure at inverse temperature β with corresponding normalisation

Z
(0)
N,β =

∫
χN

e
−β

2

∑
x∈ΛN

∑d
i=1 |∇iϕ(x)|2

λN (dϕ). (5)

Consequently,

ZN,β(u, f) = e−βL
Nd
∑d
i=1 W (ui)Z

(0)
N,β

∫
χN

e(f,ϕ)e
−β
∑
x∈ΛN

∑d
i=1 V (∇iϕ(x),ui)µβ(dϕ).

Now we rescale the field by
√
β and introduce the Mayer function Ku,β,V : Rd → R,

Ku,β,V (z) = e
−β
∑d
i=1 V (

zi√
β
,ui) − 1. (6)

We can express the partition function ZN,β(u, f) in terms of the polymer expansion:

ZN,β(u, f) = e−βL
Nd
∑d
i=1 W (ui)Z

(0)
N,β

∫
χN

e

(
f, ϕ√

β

)
e
−β
∑
x∈ΛN

∑d
i=1 V

(
∇iϕ(x)√

β
,ui

)
µ1(dϕ)

= e−βL
Nd
∑d
i=1 W (ui)Z

(0)
N,β

∫
χN

e

(
f, ϕ√

β

) ∏
x∈ΛN

(1 +Ku,β,V (∇ϕ(x)))µ1(dϕ)

= e−βL
Nd
∑d
i=1 W (ui)Z

(0)
N,β

∫
χN

e

(
f, ϕ√

β

) ∑
X⊂ΛN

∏
x∈X
Ku,β,V (∇ϕ(x))µ1(dϕ).

The integral in the last expression gives the perturbative contribution

ZN,β
(
u,

f√
β

)
=

∫
χN

e

(
f√
β
,ϕ
) ∑
X⊂ΛN

∏
x∈X
Ku,β,V (∇ϕ(x))µ1(dϕ). (7)

In summary, we obtain the representation

ZN,β(u, f) = e−βL
Nd
∑d
i=1 W (ui)Z

(0)
N,β ZN,β

(
u,

f√
β

)
.
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We introduce a space for the perturbation Ku,β,V . Let ζ ∈ (0, 1). For r0 ≥ 3
we define the Banach space Eζ consisting of functions K : Rd → R such that the
following norm is finite

‖K‖ζ = sup
z∈Rd

∑
|α|≤r0

1

α!
|∂αK(z)|e−

1
2

(1−ζ)|z|2 .

Let us generalise the expression for the perturbative part to arbitrary K ∈ Eζ from
the rather explicit Ku,β,V in (6). Namely, let

ZN (K, f) =

∫
χN

e(f,ϕ)
∑

X⊂ΛN

∏
x∈X
K(∇ϕ(x))µ1(dϕ). (8)

Theorem 2.7 will give a useful representation of this perturbative part of the partition
function.

2.3.2 Representations of ZN,β(u, f) and conclusions

Let us introduce CqΛN =
(
AqΛN

)−1
for q ∈ Rd×dsym , where

AqΛN : χN → χN , AqΛN =
d∑

i,j=1

(δij + qij)∇∗j∇i.

We use ‖q‖ to denote the operator norm of q viewed as an operator on Rd equipped
with the l2 metric. If q is small, ‖q‖ ≤ 1

2 , we can define a Gaussian measure µCqΛN
on χN with covariance CqΛN ,

µCqΛN
(dϕ) =

1

Z
(q)
N

e
− 1

2

(
ϕ,AqΛNϕ

)
dλN (ϕ).

Observe that we changed notation from Z
(0)
N,β=1 in (5) to Z

(0)
N .

The following theorem states that the perturbative contribution ZN (u, f) in (8) can
be written as the product of a rather explicit term and a term which is almost 1, the
error being exponentially decreasing in N if K is small enough. This result is the key
ingredient for the proofs of Theorem 2.1 and Theorem 2.2 and also the basis for the
extended version in Theorem 2.11. The proof is a subtle renormalisation group (RG)
analysis established in [AKM16] and reviewed and extended in Section 3.

Theorem 2.7 (Representation of the partition function). Fix ζ, η ∈ (0, 1). There is
L0 such that for all odd integers L ≥ L0 there is ε0 > 0 with the following properties.
There exist smooth maps (with bounds on the derivatives which are independent
of N)

λ : Bε0(0) ⊂ Eζ → R, q : Bε0(0) ⊂ Eζ → Rd×dsym ,
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and, for any N ∈ N, a smooth map (with bounds on the derivatives which are
independent of N) Z∅N : Bε0(0)×χN → R such that for any f ∈ χN and K ∈ Bε0(0)
the following representation holds:

ZN (K, f) = e
1
2

(
f,Cq(K)

ΛN
f
)
Z

(q(K))
N

Z
(0)
N

e−L
Ndλ(K)Z∅N

(
K, Cq(K)

ΛN
f
)
.

If f(x) = gN (x) − cN , gN (x) = L−N
d+2

2 g(L−Nx) for g ∈ C∞c (Td) with
∫
g = 0, cN

such that
∑

x∈TN f(x) = 0, then there is a constant C which is independent of N

such that the remainder Z∅N (K) satisfies the estimate∣∣∣Z∅N (K, Cq(K)
ΛN

f
)
− 1
∣∣∣ ≤ CηN .

Notice that the condition on f includes the case f ≡ 0.

Remark 2.8. This statement is similar to Theorem 4.9.1 in [Buc19] with the key
difference that in [Buc19] the quantities λ(K) and q(K) depend on the size of the
torus, i.e., on N , and here they are independent of N . This improvement is ob-
tained by introducing a global flow (see Section 3.2). As a consequence, there is no
subsequence needed in Theorems 2.1 and 2.2.

Proposition 3.2.4 in [Buc19] provides conditions on V such that K ∈ Bρ(0) ⊂ Eζ for
any ρ > 0 is satisfied. We cite the proposition in the following lemma.

Lemma 2.9. Let W satisfy (?). Then there exist ζ̃, δ0 > 0, C1 and Θ > 0 such
that for all δ ∈ (0, δ0] and for all β ≥ 1 the map

Bδ(0) 3 u 7→ Ku,β,V ∈ Eζ̃

is Cr1 and satisfies

‖Ku,β,V ‖ζ̃ ≤ C1

(
δ + β−

1
2

)
and

∑
|γ|≤r1

1

γ!
‖∂γuKu,β,V ‖ζ̃ ≤ Θ. (9)

In particular, given ρ > 0, there exist δ > 0 and β0 ≥ 1 such that for all β ≥ β0 and
all u ∈ Bδ(0) we have

‖Ku,β,V ‖ζ̃ ≤ ρ

and the bound on the derivatives in (9) holds.

Remark 2.10. As noted in the previous section we can state more general assump-
tions on the potential W than (?). Namely, it is enough to assume the smallness
condition on the Mayer function K, ‖Ku,β,V ‖ζ̃ ≤ ρ. Then the main theorems can be
applied for every V such that its Mayer function satisfies the bound.

The proofs of Theorems 2.1 and 2.2 are straightforward consequences of the repres-
entation of the partition function in Theorem 2.7.
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Proof of Theorem 2.1. The proof may be handled in the very same way as in [Hil16]
or [Buc19] but without the need for taking a subsequence. We review the main
arguments.

Let ζ̃ be the parameter from Lemma 2.9, and let L0 and ε0 the corresponding
parameters from Theorem 2.7. Then, by Lemma 2.9, there is δ > 0 and β0 ≥ 1 such
that for all β ≥ β0 and u ∈ Bδ(0) we have Ku,β,V ∈ Bε0(0) ⊂ Eζ̃ . Fix f ∈ χN .
By Theorem 2.7, the function ZN,β(u, f) in (7) can be written as an explicit term

multiplied by a perturbation Z∅N (Ku,β,V , C
q(Ku,β,V )
ΛN

f).

Let fN be as in the assumptions of the theorem. Define

f̃N = fN − cN , cN such that
∑
x∈TN

f̃N (x) = 0.

Then f̃N ∈ χN . Since (cN , ϕ) = 0 for all ϕ ∈ χN ,

EγuN,β
(
e(fN ,ϕ)

)
= EγuN,β

(
e(f̃N ,ϕ)

)
,

and we can use Theorem 2.7 to rewrite, using q = q(Ku,β,V ),

EγuN,β
(
e(fN ,ϕ)

)
=
ZN,β(u, f̃N )

ZN,β(u, 0)
=
ZN,β

(
u, f̃N√

β

)
ZN,β(u, 0)

= e
1

2β (f̃N ,Cq f̃N)
Z∅N

(
Ku,β,V , CqΛN

f̃N√
β

)
Z∅N (Ku,β,V , 0)

.

A standard argument (see Proposition 4.7 in [Hil16] or the proof of Theorem 3.2.7
in [Buc19]) shows that(

f̃N , CqΛN f̃N
)
→
(
f, CqTdf

)
L2(Td)

, as N →∞,

and from Theorem 2.7 it follows that∣∣∣Z∅N (Ku,β,V , 0)− 1
∣∣∣ , ∣∣∣∣Z∅N (Ku,β,V , CqΛN fN√β

)
− 1

∣∣∣∣→ 0 as N →∞.

This concludes the proof.

Proof of Theorem 2.2. The proof is similar to the one in [Buc19] but without the
need for taking a subsequence. We sketch the main steps here.

Let ζ̃ be the parameter from Lemma 2.9, and let L0 and ε0 be as in Theorem 2.7.
Then, by Lemma 2.9, there is δ0 > 0 and β0 ≥ 1 such that for all β ≥ β0 and
u ∈ Bδ0(0) we have Ku,β,V ∈ Bε0(0) ⊂ Eζ̃ . Hence we can apply the representation of
the perturbative partition function (see (7)) in Theorem 2.7 and we can rewrite the



20 2 SETTING AND RESULTS

finite-volume surface tension as follows (using λ = λ(Ku,β,V ) and q = q(Ku,β,V )):

σN,β(u) = − 1

βLNd
lnZN,β(u, 0)

=
d∑
i=1

W (ui)−
1

βLNd
lnZ

(0)
N,β −

1

βLNd
lnZN,β(u, 0)

=

d∑
i=1

W (ui)−
1

βLNd
lnZ

(0)
N,β +

λ

β
− 1

βLNd
ln
Z

(q)
N

Z
(0)
N

− 1

βLNd
lnZ∅N (Ku,β,V , 0).

The assumptions (?) on the potential W in Theorem 2.2 imply that there is δ1 > 0
such that for u ∈ Bδ1(0)

D2

(
d∑
i=1

W (ui)

)
(z, z) ≥ ω

2
|z|2.

The second term 1
βLNd

lnZ
(0)
N,β is independent of u.

Our next concern is to show that

WN,β(u) =
λ(K)

β
− 1

βLNd
ln
Z

(q)
N

Z
(0)
N

− 1

βLNd
lnZ∅N (Ku,β,V , 0)

is Cr1 uniformly inN . The map u 7→ λ(Ku,β,V ) is Cr1 uniformly inN by Theorem 2.7
and then chain rule. Similar arguments apply to the second term (see Lemma 4.9.2
in [Buc19]). The third term is Cr1 by smoothness of Z∅N (K) in K with uniform
bounds in N as stated in Theorem 2.7. Thus there is a constant Ξ > 0 independent
of β and δ such that ∣∣D2WN,1(u)(z, z)

∣∣ ≤ Ξ|z|2.

In summary, with the choice β1 = 4Ξ
ω for β ≥ max{β0, β1}, δ ≤ min{δ0, δ1} and

u ∈ Bδ(0), we get

D2σN,β(u)(z, z) = D2

(
d∑
i=1

W (ui)

)
(z, z) +D2WN,β(u)(z, z)

≥ ω

2
|z|2 − Ξ

β
|z|2 ≥ ω

4
|z|2.

The uniform convexity of σβ(u) follows by using the fact that the pointwise limit of
uniformly convex functions is uniformly convex.

For the proof of Theorem 2.3 we want to proceed similarly. As is often the case in
statistical mechanics we compute correlation functions as derivatives with respect
to an external field, which we refer to as an observable field. Namely, we express the
gradient-gradient covariance in terms of the perturbed generating partition function:

CovγuN,β (∇maϕ(a),∇mbϕ(b)) = ∂s∂t

∣∣∣
s=t=0

lnZN,β (u, fab(s, t))

= ∂s∂t

∣∣∣
s=t=0

lnZN,β
(
u,
fab(s, t)√

β

)
, (10)
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where

fab(s, t) = s∇∗ma1a + t∇∗mb1b (11)

is the observable. The observable fields s and t are constant external fields which
couple to the field ϕ only at the points a and b due to the indicator functions. An
external field is also employed to analyse the scaling limit, but there the macroscopic
regularity of this test function is important. The application of the representation

in Theorem 2.7 does not give a good estimate on Z∅N

(
K, C(q(K))

ΛN
fab

)
since fab is too

rough. If we smooth out fab, we can get a decay for the ”smoothed covariance” by
exploiting the decay ηN . This is done in [Hil16].

Instead we use a finer analysis based on the RG method for the bulk flow but exten-
ded to observables and obtain a refined representation of the generating partition
function in Theorem 2.11.

In view of (10), we are only interested in the behaviour of ZN,β
(
u, fab(s,t)√

β

)
up to

first order in s, t and st. To make this precise, one considers the quotient algebra in
which two maps of s, t become equivalent if their formal power series in s, t agree to
order 1, s, t, st, see Section 4 for the details.

Theorem 2.11 (Representation of the extended partition function). Fix a, b ∈ ΛN ,
ζ ∈ (0, 1) and η ∈ (0, 1

4). There is L1 such that for all odd integers L ≥ L1 there
is ε1 > 0 with the following properties. For any N ∈ N there is a smooth map
Zext
N : Bε1(0)× χN → R such that (up to first order in s and t)

ZN (K, fab) =
Z

(q(K))
N

Z
(0)
N

e−L
Nd|λ(K)|estq

ab
N +sλaN+tλbNZext

N (K, 0), (12)

where λ(K) and q(K) are given in Theorem 2.7. There is a constant C1 = C1(L),
such that

qabN = ∇∗mb∇maC
q(K)
ΛN

(a, b) +Rab, |Rab| ≤ C1
1

|a− b|d+ν
,

where 0 < ν ≤ − ln(4η)
lnL , and λaN and λbN are uniformly bounded in N .

Moreover, the remainder Zext
N (K, 0) can be expressed (up to first order in s and t) in

terms of the error term Z∅N (K, 0) from Theorem 2.7 and parts that are small in N :

Zext
N (K, 0) = Z∅N (K, 0) + sKa

N + tKb
N + stKab

N ,

Ka
N ,K

b
N = O

(
2−N

)
, Kab

N = O
(
ηN4−N

)
.

As before this representation can be used for a straightforward proof of Theorem 2.3.

Proof of Theorem 2.3. Let ζ̃ be the parameter from Lemma 2.9, fix η ∈ (0, 1/4) and
let L1 and ε1 be the corresponding parameters from Theorem 2.7. Then, for β large
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enough and δ small enough, Ku,β,V ∈ Bε1(0) ⊂ Eζ̃ is satisfied. Therefore we can
apply the representation (12) from Theorem 2.11 with

fab(s̃, t̃) = fab

(
s√
β
,
t√
β

)
in the computation of the correlations as follows:

CovγuN,β (∇maϕ(a),∇mbϕ(b)) = ∂s∂t

∣∣∣
s=t=0

lnZN,β
(
u,
fab(s, t)√

β

)
= ∂s∂t

∣∣∣
s=t=0

lnZN,β
(
u, fab(s̃, t̃)

)
= ∂s∂t

∣∣∣
s=t=0

ln

[
e
st
qabN
β

+s
λaN√
β

+t
λbN√
β Zext

N (Ku,β,V , 0)

]

=
1

β
qabN +

Kab
N

βZ∅N (Ku,β,V , 0)
−

Ka
NK

b
N

βZ∅N (Ku,β,V , 0)

=
1

β

(
∇∗mb∇maC

q(K)
ΛN

(a, b) +Rab +O
(
2−N

))
.

Since C
q(K)
ΛN
→ C

q(K)

Zd as N →∞ (see [Fun05] for details), the theorem is proven.



23

3 RG analysis for the bulk flow

The proofs of Theorem 2.7 and Theorem 2.11 are carried out by renormalisation
group analysis. This is an iterative averaging process over different scales. We will
introduce the multiscale method in this section and prove Theorem 2.7, the bulk
case. We start by motivating the idea of RG.

We aim to get an expression for

ZN (K, f) =

∫
χN

e(f,ϕ)
∑

X⊂ΛN

∏
x∈X
K(∇ϕ(x))µ1(dϕ),

where f ∈ χN , K ∈ Eζ , and ζ ∈ (0, 1) fixed. Remember that

CqΛN =
(
AqΛN

)−1
, AqΛN =

d∑
i,j=1

(δij + qij)∇∗j∇i,

is the covariance of the Gaussian free field on ΛN . For ease of notation, we will drop
the subscript ΛN from now on.

To sketch the rough idea of the method, set f = 0 and let us denote

F (ϕ) =
∑

X⊂ΛN

∏
x∈X
K(∇ϕ(x)).

The starting point is to put an additional parameter q into the measure,

ZN (K, 0) =

∫
χN

F (ϕ)µ1(dϕ) =
Z(q)

Z(0)

∫
χN

F q(ϕ)µCq(dϕ),

where F q(ϕ) = e
1
2

∑d
i,j=1(∇iϕ,qij∇jϕ)F (ϕ).

With the help of the implicit function theorem we ”tune” q to find the ”correct”
Gaussian measure producing a useful formula for the partition function.

A finite-range decomposition of µCq = µC1 ∗ . . . ∗ µCN enables us to integrate out
iteratively scale by scale,∫

χN

F q(ϕ+ φ)µCq(dϕ) =

∫
χN

F q(ξ1 + . . .+ ξN + φ)µC1(dξ1) . . . µCN (dξN )

=

∫
χN

F q1 (ξ2 + . . .+ ξN + φ)µC2(dξ2) . . . µCN (dξN )

= . . .

=

∫
χN

F qN−1(ξN + φ)µCN (dξN ) = F qN (φ).
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F q can be written by polymer expansion as,

F q =
∑
X⊂Λ

eH0(X)K0(Λ \X) =
(
eH0 ◦K0

)
(Λ),

where H0(ϕ)(X) =
∑
x∈X

d∑
i,j=1

∇iϕ(x)qij∇jϕ(x),

and K0(ϕ)(Y ) = e
∑
x∈Y

∑d
i,j=1∇iϕ(x)qij∇jϕ(x)

∏
x∈Y
K (∇ϕ(x)) .

This decomposition can be maintained on each scale k ∈ {1, . . . , N}, that is there
are maps (Hq

k ,K
q
k) such that F qk = eH

q
k ◦ Kq

k . This so-called circ product acts on
scale k with polymers consisting of k-blocks, which are cubes of side length Lk (a
precise definition can be found in (16) in Subsection 3.1.2). At the last scale N there
is only one block left, namely the whole set ΛN , and the circ product is just a sum

of two terms,
(
eH

q
N +Kq

N

)
(Λ).

The maps Hq
k are the relevant (more precisely: relevant and marginal) directions

which collect all increasing (and constant) parts in the procedure F 7→ µk+1 ∗F and
they will live in finite dimensional spaces. The flow (H,K) 7→ H+ = AqH + BqK
will be defined in such a way that (H,K) 7→ K+ is a contraction (by a suitable
choice of the map Bq). Moreover, the linear part of H should remain relevant, so
that H appears in K+ to second order (by a suitable choice of the map Aq). Then
the implicit function theorem can be applied to the flow to find the stable manifold
for the initial condition (H0,K0) so that the flow converges to its fixed point (0, 0).

This method is described and performed in detail in [BS15a], [BS15b], [BBS15b],
[BS15c] and [BS15d] and adapted to gradient models in [AKM16] and [Buc19]. For
the convenience of the reader we review the relevant material from [Buc19] without
proofs, see Subsection 3.1.

For the asserted improvement in Theorem 2.7, namely the N -independence of the
maps λ(K) and q(K), we will need some additional properties which we will state
explicitly as extensions from [Buc19]. These are the restriction property and Zd-
property as stated in Propositions 3.7 and 3.9, an improved bound on the first
derivative of the irrelevant part in Lemma 3.11, and the single step estimate in
Proposition 3.14.

In Subsection 3.2 the flow in [Buc19] will be extended to an infinite-volume flow and
the stable manifold theorem will be applied to this flow instead on the finite-volume
flow as in [Buc19].

Finally, estimates on the finite-volume flow and the proof of Theorem 2.7 will be
deduced (see Subsection 3.3).

3.1 Finite-volume bulk flow and single step estimates

We start by describing the finite-range decomposition of the measure µCq . This
decomposition is the starting point for the iterative procedure.
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3.1.1 Finite-range decomposition

The operator Aq : χN → χN commutes with translations and so does its inverse Cq.
Thus there exists a unique kernel Cq : ΛN → R with

∑
x∈ΛN

Cq(x) = 0 such that

Cqϕ(x) =
∑
y∈ΛN

Cq(x− y)ϕ(y).

The next proposition is Theorem 2.3 in [Buc18].

Proposition 3.1 (Finite-range decomposition). Fix q ∈ Rd×dsym such that Cq is pos-
itive definite. Let L > 3 be an odd integer and N ≥ 1. Then there exist positive,
translation invariant operators Cqk such that

Cq =

N+1∑
k=1

Cqk,

Cqk(x) = −Mk for |x|∞ ≥
Lk

2
, k ∈ {1, . . . , N},

where Mk ≥ 0 is a constant that is independent of q. The following bounds hold for
any positive integer l and any multiindex α:

sup
x∈ΛN

sup
‖q̇‖≤ 1

2

∣∣∣∇αDl
qC

q
k(x)(q̇, . . . , q̇)

∣∣∣ ≤ {Cα,lL−(k−1)(d−2+|α|) for d+ |α| > 2

Cα,l ln(L)L−(k−1)(d−2+|α|) for d+ |α| = 2.

Here, Cα,l denotes a constant that does not depend on L, N , and k.

In [Buc18] further bounds in Fourier space are stated. For the sake of simplicity
they are omitted here.

In contrast to [Buc19] we combine the last two covariances to a single one:

CqN,N = CqN + CqN+1. (13)

We will use the following decomposition:

Cq =

N−1∑
k=1

Cqk + CqN,N , (14)

where the last term is different from [Buc19]. The reason for this change is that we
extend the [Buc19] flow to infinite volume. In order to have good estimates for the
finite-volume covariance we have to perform the last step of integration in the RG
flow instead of dealing with a remaining integral in

∫
eHN + KNdµN+1 at the last

step.
Let us denote by µk the Gaussian measure with covariance Cqk.
For the sake of completeness we state the following property of Gaussian measures.
A proof can be found, e.g., in [Bry09].
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Lemma 3.2. Let Ck be a family of positive definite operators such that C =
∑

k Ck.
Then a field ϕ which is distributed according to µC can be written as ϕ =

∑
k ξk

where ξk is distributed according to µCk .

Another property of the finite range decomposition is independence of N , which is
stated in Remark 2.4 in [Buc18]. We need this property in order to expand the flow
in [Buc19] to infinite volume.

Remark 3.3 (Independence of N). Let N < N ′ and ΛN ⊂ ΛN ′ be the corresponding
tori. Let us denote by CNk and CN

′
k the kernels of the decomposition depending on

the torus size LN , and MN
k , MN ′

k be the corresponding constants from Proposition
3.1. It can be shown that for k < N ≤ N ′ and x ∈ ΛN the decomposition satisfies

CNk (x)− CN ′k (x) = −
(
MN
k −MN ′

k

)
, (15)

hence the kernels agree up to a constant shift locally, and they are constant for
|x|∞ ≥ Lk/2. We define Λ′N = {x ∈ Zd : |x|∞ < (LN − 1)/4}. Then we have
x− y ∈ ΛN for x, y ∈ Λ′N . Let x, y ∈ Λ′N such that x+ ei, y + ej ∈ Λ′N . Then (15)
implies that

EµNk ∇iϕ(x)∇jϕ(y) = ∇∗j∇iCNk (x− y) = ∇∗j∇iCN
′

k (x− y)

= E
µN
′

k
∇iϕ(x)∇jϕ(y).

This means that the covariance structures of µNk and µN
′

k agree locally. In particular
we can conclude that for any set X ⊂ Λ′N satisfying X + ei ⊂ Λ′N for 1 ≤ i ≤ d, any
1 ≤ k ≤ N , and any measurable functional F : RX → R∫

χN

F (∇ϕ|X)µNk (dϕ) =

∫
χN′

F (∇ϕ|X)µN
′

k (dϕ).

3.1.2 Polymers, functionals and norms

As mentioned in the preface to Section 3, we apply an iterative averaging process
over various scales. In this subsection, we discuss several key notions and introduce
the setting of the scales and spaces for functionals. We follow closely the presentation
in [Buc19].

At each scale k we pave the torus with blocks of side length Lk. These so-called

k-blocks are translations by (LkZ)d of the block B0 =
{
z ∈ Zd : |zi| ≤ Lk−1

2

}
. To-

gether, they form the set of k-blocks denoted by

Bk = {B : B is a k-block}.

Unions of blocks are called polymers. For X ⊂ Λ let Pk(X) be the set of all k-
polymers in X at scale k.

Furthermore we need the following notations:
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• A polymer X is connected if for any x, y ∈ X there is a path x1 = x, x2, . . .,
xn = y in X such that |xi+1 − xi|∞ = 1 for i = 1, . . . , n − 1. The set of
all connected k-polymers in X is denoted by Pck(X). The set of connected
components of a polymer X is denoted by Ck(X).

• Let Bk(X) be the set of k-blocks contained in X and |X|k = |Bk(X)| be the
number of k-blocks in X.

• The closure X̄ ∈ Pk+1 of X ∈ Pk is the smallest (k+1)-polymer containing X.

• The set of small polymers Sk is given by all polymers X ∈ Pck such that
|X|k ≤ 2d. The other polymers in Pk \ Sk are large.

• For any block B ∈ Bk let B̂ ∈ Pk be the cube of side length (2d+1 + 1)Lk

centered at B.

• The small set neighbourhood X∗ ∈ Pk−1 of X ∈ Pk is defined by

X∗ =
⋃

B∈Bk−1(X)

B̂.

• The large neighbourhood X+ of X ∈ Pk is defined by

X+ =
⋃

B∈Bk:
B touches X

B ∪X.

Additionally, we introduce a class of functionals.

• Let M(VN ) be the set of measurable real functions on VN with respect to the
Borel-σ-algebra.

• Let N ∅ be the space of real-valued functions of ϕ which are in Cr0 .

• A map F : Pk → N ∅ is called translation invariant if for every y ∈ (LkZ)d we
have F (τy(X), τy(ϕ)) = F (X,ϕ) where τy(B) = B+ y and τyϕ(x) = ϕ(x− y).

• A map F : Pk → N ∅ is called local if ϕ
∣∣
X∗

= ψ
∣∣
X∗

implies F (X,ϕ) = F (X,ψ).

• A map F : Pk → N ∅ is called shift invariant if F (X,ϕ+ ψ) = F (X,ϕ) for ψ
such that ψ(x) = c, x ∈ X∗ on each connected component of X∗.

We set

M(Pk,VN ) = {F : Pk → N ∅
∣∣F (X) ∈M(VN ), F translation inv., shift inv., local}.

Notice that we included Cr0-smoothness in the definition of the space M(Pk,VN )
which is not done in [Buc19].
Generalisations of M(Pk,VN ) are given by M(Pck,VN ), M(Sk,VN ) and M(Bk,VN )
where the first component is changed appropriately. We will write M(Pk), M(Pck),
M(Sk) and M(Bk) for short.
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The circ product of two functionals F,G ∈M(Pk) is defined by

(F ◦G)(X) =
∑

Y ∈Pk(X)

F (Y )G(X \ Y ). (16)

The space of relevant Hamiltonians M0(Bk), a subspace of M(Bk), is given by all
functionals of the form

H(B,ϕ) =
∑
x∈B
H ({x}, ϕ)

where H({x}, ϕ) is a linear combination of the following relevant monomials:

• The constant monomial M({x})∅(ϕ) = 1;

• the linear monomials M({x})β(ϕ) = ∇βϕ(x) for 1 ≤ |β| ≤ bd2c+ 1;

• the quadratic monomials M({x})β,γ(ϕ) = ∇βϕ(x)∇γϕ(x) for 1 = |β| = |γ|.

Next we introduce norms on the space of functionals. Fix r0 ∈ N, r0 ≥ 3.

• Define

∞⊕
r=0

V⊗rN

=
{
g =

(
g(0), g(1), . . .

) ∣∣∣ g(r) ∈ V(r)
N , only finitely many non-zero elements

}
.

The space of test function is given by

Φ = Φr0 =

{
g ∈

∞⊕
r=0

V⊗rN : g(r) = 0 ∀r ≥ r0

}
.

A norm on Φ is given as follows: On V⊗0
N = R we take the usual absolute value

on R. For ϕ ∈ VN we define

|ϕ|j,X = sup
x∈X∗

sup
1≤|α|≤pΦ

wj(α)−1
∣∣∇α(ϕ)(x)

∣∣
where wj(α) = hjL

−j|α|L−j
d−2

2 , hj = 2jh and pΦ =
⌊
d
2

⌋
+ 2. For g(r) ∈ V⊗rN

we define∣∣∣g(r)
∣∣∣
j,X

= sup
x1,...,xr∈X∗

sup
1≤|α1|,...,|αr|≤pΦ

(
r∏
l=1

wj(αl)
−1

)
∇α1 ⊗ . . .⊗∇αrg(r)(x1, . . . , xr).

Then set |g|j,X = supr≤r0
∣∣g(r)

∣∣
j,X

.
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• A homogeneos polynomial P (r) of degree r on VN can be uniquely identified
with a symmetric r-linear form and hence with an element P (r) in the dual of
V⊗rN . So we can define the pairing

〈P, g〉 =

∞∑
r=0

〈
P (r), g(r)

〉
and a norm

|P |j,X = sup {〈P, g〉 : g ∈ Φ, |g|j,X ≤ 1} .
For F ∈ Cr0(VN ) = N ∅ the pairing is given by 〈F, g〉ϕ = 〈TayϕF, g〉 which
defines a norm

|F |j,X,Tϕ = |TayϕF |j,X = sup {〈F, g〉ϕ : g ∈ Φ, |g|j,X ≤ 1} .

Here, TayϕF denotes the Taylor polynomial of order r0 of F at ϕ.

• Let F ∈ M(Pck). In [Buc19] weights WX
k , w

X
k , w

X
k:k+1 ∈ M(Pk) are defined.

Useful properties are summarized in Lemma 5.1. Weighted norms are given by

|||F (X)|||k,X = sup
ϕ
|F (X)|k,X,TϕWX

k (ϕ)−1,

‖F (X)‖k,X = sup
ϕ
|F (X)|k,X,TϕwXk (ϕ)−1,

‖F (X)‖k:k+1,X = sup
ϕ
|F (X)|k,X,TϕwXk:k+1(ϕ)−1.

Observe that the last scale weight (k = N) is defined via a new covariance
(see (13)) in contrast to [Buc19]. We will comment on this modification in
Section 5.1.1.

• The global weak norm for F ∈M(Pck) for A ≥ 1 is given by

‖F‖(A)
k = sup

X∈Pck
‖F (X)‖k,XA|X|k .

• A norm on relevant Hamiltonians is given as follows. For H ∈M0(Bk) we can
write

H(B,ϕ) =
∑
x∈B

a∅ +
∑
β∈v1

aβ∇βϕ(x) +
∑
x∈B

∑
β,γ∈v2

aβ,γ∇βϕ(x)∇γϕ(x)

 .

Here

v1 =

{
β ∈ NU0 , 1 ≤ |β| ≤

⌊
d

2

⌋
+ 1

}
,

v2 =
{

(β, γ) ∈ NU0 × NU0 , |β| = |γ| = 1, β < γ
}
,

where U = {e1, . . . , ed} and the expression β < γ refers to any ordering of
{e1, . . . , ed}. With these preparations we define a norm on M0(Bk) as follows:

‖H‖k,0 = Ldk |a∅|+
∑
β∈v1

hkL
kdL−k

d−2
2 L−k|β| |aβ|+

∑
(β,γ)∈v2

h2
k

∣∣a(β,γ)

∣∣ .
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Remark 3.4. Aside from the parameter L two parameters appear above in the
definition of the norms: h and A.

The parameter h is determined by desired properties for the weights Wk, wk, wk:k+1,
see Theorem 4.5.1 in [Buc19] (cited here in Lemma 5.1), dependent on the choice
of L. We will use the weights without explaining the construction and thus we will
always choose h large enough as required, depending on L.

The parameter A (also dependent on L) will be fixed in Proposition 3.21. It will be
chosen larger than in [Buc19].

Finally, there will be a small parameter κ = κ(L). It constrains the parameter
q ∈ Rd×dsym which determines the Gaussian covariance Cq. The constraint will be that
q ∈ Bκ(0) for κ small. The parameter κ is determined by desired properties for the
weights, Wk, wk, wk:k+1, see Theorem 4.5.1 in [Buc19] (cited here in Lemma 5.1).

3.1.3 The renormalisation map

We use the finite-range decomposition of Cq into covariances Cq1 , . . . , C
q
N−1, C

q
N,N

defined in Subsection 3.1.1 (see (14)). The decomposition implies that a field ϕ
distributed according to µC(q) can be decomposed into fields ξk distributed accord-
ing to µCqk

=: µqk,

ϕ
D
=

N∑
k=1

ξk,

and that µC(q) = µq1 ∗ · · · ∗ µ
q
N−1 ∗ µ

q
N,N (see Lemma 3.2).

Let us define the renormalisation map

RkF (ϕ) =

∫
χN

F (ϕ+ ξ)µk(dξ).

Then ∫
χN

F (ϕ)µC(q)(dϕ) = RN,NRN−1 . . .R1(F )(0).

The flow under Rk will be described by two sequences of functionals Hk ∈ M0(Bk)
and Kk ∈M(Pck). In the following we define those sequences and state properties as
far as it is needed for our purpose of proving Theorem 2.7 and for the understanding
of the extension to observables.

The flow is given by

Tk : M0(Bk)×M(Pck)× Rd×dsym → M0(Bk+1)×M(Pck+1),

(H,K, q) 7→ (H+,K+).

Note that we sometimes omit the scale k from the notation; if doing so, the +
indicates the change of scale from k to k + 1. The maps H+ ∈ M0(Bk+1) and
K+ ∈M(Pk+1) are chosen such that

R+(eH ◦K)(ΛN ) = (eH+ ◦K+)(ΛN ).
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Let us introduce a projection Π2 : M(Bk) → M0(Bk) on the space of relevant
Hamiltonians. For F ∈M(Bk), Π2F is attained as homogenisation of the second or-
der Taylor expansion of F (B) given by ϕ̇ 7→ F (B, 0)+DF (B, 0)ϕ̇+1

2D
2F (B, 0)(ϕ̇, ϕ̇).

More precisely, Π2F is the relevant Hamiltonian F (B, 0) + l(ϕ̇) + Q(ϕ̇, ϕ̇) where l
is the unique linear relevant Hamiltonian that satisfies l(ϕ̇) = DF (B, 0)ϕ̇ for all ϕ̇
who are polynomials of order

⌊
d
2 + 1

⌋
on B+, and Q is the unique quadratic relevant

Hamiltonian that agrees with 1
2D

2F (B, 0)(ϕ̇, ϕ̇) on all ϕ̇ which are affine on B+.
These heuristics are made precise in [Buc19], Section 4.6.4.

The relevant part of the flow on the next scale, the map H+, is defined as follows:
For B+ ∈ Bk+1

H+(B+) = Aq
kH(B+) + Bq

kK(B+)

=
∑

B∈Bk+1(B+)

Π2Rk+1H(B) +
∑

B∈Bk+1(B+)

Π2Rk+1K(B).

Remark 3.5. We comment again on the motivation for the decomposition into H
and K (see also at the beginning of this section). Aq

kH is a linear order perturbation
which results in the fact that H appears to second order in K+, see Proposition 3.14.
Moreover, Bq

kK is defined in such a way that (H,K) 7→ K+ is a contraction, see
Proposition 3.12.

For the definition of the irrelevant part K+ of the flow at the next scale, set

H̃(B) = Π2Rk+1H(B) + Π2Rk+1K(B),

and for X ∈ Pk and U ∈ Pk+1,

χ(X,U) = 1π(x)=U , where

π(X) =
⋃

Y ∈C(X)

π̃(Y ) and

π̃(Y ) =


X̄ if X ∈ Pc \ S,
B+ where B+ ∈ B+ with B+ ∩X 6= ∅ for X ∈ S \ {∅},
∅ if X = ∅.

Then

K+(U,ϕ) = Sqk(H+,K+)(U,ϕ)

=
∑
X∈P

χ(X,U)
(
eH̃(ϕ)

)U\X (
eH̃(ϕ)

)−X\U
×
∫ [(

1− eH̃(ϕ)
)
◦
(
eH(ϕ+ξ) − 1

)
◦K(ϕ+ ξ)

]
(X)µ+(dξ). (17)

If the dependence of Sqk on q is not of direct importance we omit it from the notation.

We review the following properties of the map (H,K) 7→ K+ from Lemma 4.4.4
in [Buc19].
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Lemma 3.6. For H ∈ M0(Bk) the functional K+ defined above has the following
properties.

1. If K ∈M(Pk), then K+ ∈M(P+).

2. If K ∈M(Pk) factors on scale k, then K+ factors on scale k + 1.

The construction on K+ gives it a local dependence on K, as formulated in the next
proposition.

Proposition 3.7. The map (H,K) 7→ K+ satisfies the restriction property, that is
for U ∈ Pk+1 the value of K+(U) depends on U only via the restriction K

∣∣
U∗

of K
to polymers in P(U∗).

Proof. This follows from the definition of K+ and from the fact that Rk+1 preserves
locality.

For the construction of the infinite-volume flow later we consider the family (KΛ)Λ

in dependence on the torus Λ. More precisely, we consider tori ΛN with increasing
side length LN , N ∈ N. Let Pk(Zd) be the set of finite unions of k-blocks in Zd. We
need the following compatibility condition.

Definition 3.8. We say that a family of maps (KΛ)Λ satisfies the (Zd)-property if
for any X ∈ Pk(Zd) and for Λ ⊂ Λ′ satisfying diam(X) ≤ 1

2diam(Λ) it holds that

KΛ(X) = KΛ′(X).

Given (H,KΛ), we note the dependence on Λ also in the map SΛ. By the definition
of the map (H,K) 7→ SΛ

k (H,K) we directly get the following property.

Proposition 3.9. Let (KΛ)Λ satisfy the (Zd)-property and let H ∈ M0(B). Then
(SΛ(H,K, q))Λ also satisfies the (Zd)-property.

Proof. Let U ∈ P+(Zd) such that diam(U) ≤ 1
2diam(Λ). Let Λ′ be a torus larger

than Λ. Then
KΛ′

+ (U) = S(H,KΛ′)(U).

We use the restriction property in Proposition 3.7 to see that S(H,KΛ′)(U) only
depends on KΛ′ through KΛ′

∣∣
U∗

. In fact, no polymers that are larger than U
can appear in the formula for Sk due to the definition of χ(X,U). Thus for any
X ∈ P(U∗) that appears in S it holds that diam(X) ≤ 1

2diam(Λ), and we can apply
the assumption that (KΛ)Λ satisfies the (Zd)-property.

3.1.4 Properties of the renormalisation map

Here we state important properties of the renormalisation map Tk, namely smooth-
ness of the irrelevant part (Proposition 3.10), an improved bound on the first de-
rivative of the irrelevant part (Lemma 3.11), contractivity of the linearisation of
the irrelevant part (Proposition 3.12), and a single step estimate (Proposition 3.14).
Smoothness and contractivity are proven in [Buc19], but we add restriction and
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(Zd)-property in the statements which will be useful to perform the extension to
infinite volume in the next section.
We explicitly analyse the dependence of Sk on q in the next statement, so we consider
Sk as a map from M0(Bk) ×M(Pck) × Rd×dsym to M(Pk+1). This proposition is an
extension of Theorem 4.4.7 in [Buc19].

Proposition 3.10 (Smoothness of the bulk flow). Let

Uρ,κ = {(H,K, q) ∈M0(Bk)×M(Pck)× Rd×dsym : ‖H‖k,0 < ρ, ‖K‖(A)
k < ρ, ‖q‖ < κ}.

There is L0 such that for all odd integers L ≥ L0 there are A0, h0 and κ with the
following property. For all A ≥ A0 and h ≥ h0 there exists ρ = ρ(A) such that for
all k ≤ N

Sk ∈ C∞
(
Uρ,κ,M(Pck+1)

)
.

For any j1, j2, j3 ∈ N there are constants Cj1,j2,j3 independent of N such that for
any (H,K, q) ∈ Uρ,κ∥∥∥Dj1

1 D
j2
2 D

j3
3 Sk(H,K, q)(Ḣ

j1 , K̇j2 , q̇j3)
∥∥∥(A)

k+1
≤ Cj1,j2,j3‖Ḣ‖

j1
k,0

(
‖K̇‖(A)

k

)j2
‖q̇‖j3 .

Moreover, Sk(H,K, q)(U) satisfies the restriction property and preserves the (Zd)-
property.

Proof. The restriction property is stated in Proposition 3.7. The (Zd)-property is
preserved by Proposition 3.9. The smoothness and bounds are part of Theorem 4.4.7
in [Buc19].

For the transfer of smoothness properties from the global flow back to the finite-
volume flow in Proposition 3.21 we need the following improved bound on the first
derivative of Sk on long polymers.

Lemma 3.11. Assume that Proposition 3.10 holds. Let P2
k+1(Λ) be the set of poly-

mers U ∈ Pk+1(Λ) such that diam(U) > 1
2diam(Λ). Then, for any x ∈ (0, 2α),

where α =
[
(1 + 2d)(1 + 6d)

]−1
, and for any (H,K) ∈ Uρ,∥∥∥DHDKDqSk(H,K, q)(Ḣ, K̇, q̇)
∣∣
P2
k+1(Λ)

∥∥∥(A)

k+1
≤ C1A

−x
2
LN−(k+1)

A4‖Ḣ‖k,0‖K̇‖
(A)
k ‖q̇‖.

Proof. In Remark 5.23 we show that

A|U |k+1

∥∥∥DHDKDqSk(H,K, q)(Ḣ, K̇q̇)(U)
∥∥∥
k+1,U

≤ C1A
−x|U |k+1A4‖Ḣ‖k,0‖K̇‖

(A)
k ‖q̇‖.

Since
diam(Λ) =

√
2LN and diam(U) ≤ |U |k

√
2Lk+1

we get for U ∈ Pc,2k+1(Λ)

|U |k+1 >
1

2
LN−(k+1).

Thus the claim follows.
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The following proposition is Theorem 4.4.8 in [Buc19] except for the minor difference
that θ is kept arbitrarily instead of the choice 3

4η.

Proposition 3.12 (Contractivity of the bulk flow). The first derivative of Tk at
H = 0 and K = 0 has the triangular form

DTk(0, 0, q)

(
Ḣ

K̇

)
=

(
Aq
k Bq

k

0 Cq
k

)(
Ḣ

K̇

)
where

Cq
kK̇(U) =

∑
B:B̄=U

(1−Π2)R+K̇(B) +
∑

X∈Pck\B(X)
π(X)=U

R+K̇(X).

For any θ ∈ (0, 1) there is L0 such that for all odd integers L ≥ L0 there exist A0,
h0 and κ with the following property. For all A ≥ A0, h ≥ h0 and for ‖q‖ < κ the
following bounds hold independent of k and N :

‖Cq
k‖ ≤ θ, ‖

(
Aq
k

)−1 ‖ ≤ 3

4
, ‖Bq

k‖ ≤
1

3
.

Moreover, the derivatives of the operators with respect to q are bounded.

Remark 3.13. In [Buc19] θ is fixed to be 3
4η, where η is the parameter that controls

the contraction rate of the renormalisation flow. For the single step estimates in
Proposition 3.14 and Proposition 4.10 we have to choose θ smaller than 3

4η. Thus
we formulated the Proposition with this additional flexibility. Inspection of the proof
of the bound on ‖Cq

k‖ in [Buc19] shows that a smaller θ can be obtained by choosing
larger L0 and A0.

Proposition 3.10 and Proposition 3.12 can be combined to prove a single step estim-
ate of the irrelevant part of the flow. This bound can not be found in [Buc19]. The
estimate will help us deduce estimates on the finite-volume flow given the infinite-
volume flow, see Proposition 3.21.

Let us introduce the space

Dk(ρ0, η,Λ)

=
{

(H,K) ∈M0(Bk)×M(Pk(Λ)) : H ∈ Bρ0ηk(0),K ∈ Bρ0η2k(0)
}
. (18)

Proposition 3.14 (Single step estimate for the bulk flow). Fix η ∈ (0, 1). There
is L0 such that for all odd integers L ≥ L0 there are A0, h0, κ with the following
property. For all A ≥ A0, h ≥ h0 and q ∈ Bκ(0) there is ρ∅0 > 0 such that if
(H,K) ∈ Dk(ρ∅0, η,Λ) then

‖Sqk(H,K)‖(A)
k+1 ≤ ρ

∅
0η

2(k+1).
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As the proof will show this estimate reflects the fact that we use first order perturb-
ation: Heuristically, up to first order in H,

R+(eH) ≈ eR+H

since R+(eH) ≈ R+(1 +H) = 1 +R+H ≈ eR+H .

Proof. Fix θ < η2. Let L0 be large enough such that Proposition 3.12 and Proposi-
tion 3.10 can be applied. Define

C2 = max{C2,0,0, C1,1,0, C0,2,0}

where Cj1,j2,j3 are the constants from Proposition 3.10. Choose ρ∅0 small enough
that

ρ∅0 ≤ ρ(A) and θ + 2C2ρ
∅
0 ≤ η2.

Then (H,K) ∈ Dk(ρ∅0, η,Λ) implies (H,K) ∈ Uρ(A) so we can apply Proposition 3.10
to estimate as follows.

We Taylor-expand S(H,K) up to first order with second order integral remainder
around (0, 0):

S(H,K) = S(0, 0) +DS(0, 0)(H,K) +

∫ 1

0
D2S(tH, tK)(H,K)(H,K)(1− t)dt

= CqK +

∫ 1

0
D2S(tH, tK)(H,K)(H,K)(1− t)dt.

Then we estimate

‖S(H,K)‖(A)
k+1 ≤ ‖C

q‖‖K‖(A)
k +

1

2
C2

(
‖H‖2k,0 + 2‖H‖k,0‖K‖

(A)
k +

(
‖K‖(A)

k

)2
)

≤ ρ∅0η2k

(
θ +

1

2
C24ρ∅0

)
≤ ρ∅0η2(k+1).

The last inequality follows by the assumption on ρ∅0. This finishes the proof.

3.2 Infinite-volume flow: definition and existence

3.2.1 Definition of the infinite-volume flow

In our context, the renormalisation map Tk is most naturally defined to be a map
in finite volume, since a defining property is that is should preserve the circ product
under expectation. There is no analogue of this property for infinite volume. Never-
theless, there is a natural definition of a map (H,K) 7→ (H+,K+) which lives on Zd
rather than on a torus Λ, as an appropriate inductive limit of the corresponding
maps on the family of all tori. The infinite-volume map has the advantage that it is
defined for all scales k ∈ N, with no restriction due to finite volume. In particular
we can study the limit k →∞ which we use to apply an implicit function theorem
to the dynamical system defined by the RG.
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Let Bk(Zd) be the set of all k-blocks in Zd and Pk(Zd) be the set of all finite unions
of k-blocks. Since we are dealing with boxes Λ of varying side length LN let us
introduce the notation N(Λ) for the exponent describing the side length of the
box Λ.

A relevant functional H ∈M0(Bk) can easily be thought of as an element dependent
on a block living in Zd instead of Λ due to translation invariance. More precisely,
given H ∈ M0(Bk(Λ)), we define HZd on a block B ∈ M0(Zd) as H(B) for a
translation of B to the fundamental domain of Λ and suppress the index Zd as well
as the translation of the block in the notation.

The irrelevant part is extended as follows.

Definition 3.15. Let (KΛ)Λ be a family of maps which satisfy the (Zd)-property.
For X ∈ Pk(Zd) choose Λ large enough such that k < N(Λ) and diam(X) ≤
1
2diam(Λ). Then we define

KZd(X) = KΛ(X).

Here we use that X ∈ Pk(Zd) has a straight-forward analogon in Pk(Λ) if Λ is large
enough which we do not record in the notation.
The definition does not depend on the choice of Λ owing to the (Zd)-property re-
quired for the family (KΛ)Λ.

Given (H,KZd) and the finite-volume maps
(
SΛ
)

Λ
, we define KZd

+ as follows.

Definition 3.16. For U ∈ Pk+1(Zd) choose Λ large enough such that k+ 1 < N(Λ)
and diam(U) ≤ 1

2diam(Λ). Then

KZd
+

(
H,KZd

)
(U) = SΛ

(
H,KΛ|U∗

)
.

As it is claimed in Proposition 3.10 the map SΛ satisfies the restriction property
and preserves the (Zd)-property. Moreover, the map SΛ involves integration with
respect to µk+1 of functionals which again only depend on U∗ and thus, referring
to Remark 3.3, the covariance is also independent of the choice of Λ. So KZd

+ is
well-defined.

Defining the relevant flow in infinite volume is straightforward: Fix B ∈ Bk+1(Zd)
and (H,KZd). Define

HZd
+ (B) = AqH(B) + BqKZd(B).

As before we can skip the index Zd on H due to the following reasoning: Let
k < N(Λ) and B ∈ Bk+1(Zd). Then B ∈ Bk+1(Λ) and for all b ∈ Bk(B) it

holds that KZd(b) = KΛ(b). Thus HZd
k+1(B) =

∑
b∈Bk(b)R+H(b) + Π2R+K

Zd(b) =∑
b∈Bk(b)R+H(b) + Π2R+K

Λ(b) = HΛ
+(B).



3.2 Infinite-volume flow: definition and existence 37

We just defined the infinite-volume renormalisation map

TZd
k (Hk,K

Zd
k , q) = (Hk+1,K

Zd
k+1).

Now we extend the norms.

There is no need to change the norm for the relevant variable since it does not
depend at all on the size of the torus.

For the irrelevant variable let X ∈ Pck(Zd) and choose Λ large enough such that

diam(X) ≤ 1
2diam(Λ). Then KZd(X) = KΛ(X) and we can use the same definition

as in [Buc19] for∥∥∥KZd(X)
∥∥∥
k

=
∥∥KΛ(X)

∥∥
k

= sup
ϕ∈V(X∗)

w−Xk (ϕ)|K(X,ϕ)|k,X,Tϕ

(the weights wk, wk:k+1 and Wk do not depend on the size of the torus as long as
X is small enough compared to the torus, see Remark 5.2).

3.2.2 Properties of the infinite-volume renormalisation map

Due to the definition the single step estimates for the map (H,KΛ) 7→ (H+,K
Λ
+)

can be transferred to the infinite-volume flow.

Proposition 3.17 (Smoothness and contractivity in infinite volume). For any
θ ∈ (0, 1) there is L0 such that for all odd integers L ≥ L0 (and corresponding
A, h, κ) the following bounds hold independently of k and N for each q ∈ Bκ(0):

‖Cq
k‖ ≤ θ, ‖

(
Aq
k

)−1 ‖ ≤ 3

4
, ‖Bq

k‖ ≤
1

3
.

The derivatives with respect to q are bounded. Moreover, there is ρ(A) such that

Sk ∈ C∞
(
Uρ,κ,M(Pck+1)

)
and

‖Dj1
1 D

j2
2 D

j3
3 Sk(H,K, q)(Ḣ

j1 , K̇j2 , q̇j3)‖(A)
k+1 ≤ Cj1,j2,j3‖Ḣ‖

j1
k,0

(
‖K̇‖(A)

k

)j2
‖q̇‖j3 .

3.2.3 Global flow

Proposition 3.18 (Existence of the global flow). Fix ζ, η ∈ (0, 1). There is L0 such
that for all odd integers L ≥ L0 there is A0, h0 and κ with the following property.
Given ε > 0 there exist ε1 > 0 and ε2 > 0 such that for each (K,H, q) ∈ Bε1(0) ×
Bε2(0)×Bκ(0) ⊂ E×M0(B0)×Rd×dsym there exists a unique global flow

(
Hk,K

Zd
k

)
k∈N

such that

‖Hk‖k,0,
∥∥∥KZd

k

∥∥∥(A)

k
≤ εηk for all k ∈ N0,
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with initial condition given by

KZd
0 (X,ϕ) = eH(X,ϕ)

∏
x∈X
K(∇ϕ(x))

and (
Hk+1,K

Zd
k+1

)
= TZd

k

(
Hk,K

Zd
k , q

)
.

Moreover, the flow is smooth in (K,H, q).

Proposition 3.18 implies that for any (K,H) ∈ Bε1×Bε2 there is H0(K,H) such that
the flow (using the parameter q(H) in the measures) converges to the fixed point of
the RG. In our application we require the q-component of H0 to correspond to the
parameter q(H) in the measure.

Proposition 3.19 (Global flow with renormalised initial condition). Let(
Hk,K

Zd
k

)
k

=
(
Hk(K,H),KZd

k (K,H)
)
k

be the global flow from Proposition 3.18. There is 0 < δ ≤ ε1 and a smooth map

Ĥ : Bδ(0) ⊂ E→ Bε2(0) ⊂M0(B0)

such that
H0(Ĥ(K),K) = Ĥ(K)

and q( ˆH(K)) ⊂ Bκ(0) for all K ∈ Bδ(0). Moreover, the derivatives of Ĥ can be
bounded uniformly in N .

In what follows we will prove Proposition 3.18 and Proposition 3.19. The proofs are
very similar to the corresponding proofs in [Buc19]. In fact, here the arguments are
slightly easier since we do not have to care about last scale maps due to the change
of the finite-range decomposition, see (14). For the sake of completeness we review
most of the steps.
The main ingredient is the application of the implicit function theorem. For the
convenience of the reader, we state the implicit function theorem as we will use it
in the following.

Theorem 3.20 (Implicit function theorem). Let X,Y, Z be Banachspaces, and for
U ⊂ X,V ⊂ Y open subsets, let f be a Cp Frechet differentiable map f : U×V → Z.
If (x0, y0) ∈ U × V , f(x0, y0) = 0, and y 7→ D2f(x0, y0)y isomorphism, then there
exist a neighbourhood U0 of x0 in U and a Frechet differentiable Cp map g : U0 → V
such that g(x0) = y0 and f(x, g(x)) = f(x0, y0) for all x ∈ U0.

We give definitions which prepare the proof of Proposition 3.18. Let us set

Z∞ =
{
Z = (H0, H1,K1, H2,K2, . . .), Hk ∈M0(Bk),Kk ∈M(Pck),

‖Z‖Z∞ <∞
}
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where

‖Z‖Z∞ = max

(
sup
k≥0

1

ηk
‖Hk‖k,0, sup

k≥1

1

ηk
‖Kk‖

(A)
k

)
.

Clearly, ‖ · ‖Z∞ is a norm on Z∞. We define a dynamical system on Z∞ as follows:

T : E×M(B0)×Z∞ → Z∞, T (K,H, Z) = Z̃,

where

H̃0(K,H, Z) =
(
A
q(H)
0

)−1 (
H1 −B

q(H)
0 K̂0(K,H)

)
,

H̃k(K,H, Z) =
(
A
q(H)
k

)−1 (
Hk+1 −B

q(H)
k Kk

)
, k ≥ 1,

K̃k+1(K,H, Z) = Sk (Hk,Kk, q(H)) , k ≥ 1,

K̃1(K,H, Z) = S0

(
H0, K̂0(K,H)q(H)

)
,

with fixed initial condition

K̂0(K,H)(X,ϕ) = eH(X,ϕ)
∏
x∈X
K(∇ϕ(x)),

and q(H) is the projection on the coefficients of the quadratic part of H.

One easily sees that

T (K,H, Z) = Z

is satisfied if and only if

Tk(Hk,Kk, q(H)) = (Hk+1,Kk+1)

with K0 = K̂0(K,H).

Proposition 3.18 is equivalent to the statement that for sufficiently small (K,H)
there is a unique fixed point Ẑ(K,H) which depends smoothly on (K,H).

Proof of Proposition 3.18. Let L0 (and A0, h0, κ) and ρ(A) be as in Proposition 3.17.

Let f : E×M(B0)×Z∞ → Z∞ be the map

f(K,H, Z) = T (K,H, Z)− Z.

We apply the implicit function theorem on f . The required assumptions on f are
checked below.

It holds that f(0, 0, 0) = 0. To show that f is smooth we have to check that T is
smooth.

Claim: For every triple (L, h,A) which satisfies L ≥ L0, h ≥ h0(L), A ≥ A0(L)
there exist constants ρ1 > 0, ρ2 > 0 such that T is smooth in

Bρ1(0)×Bρ2(0)×Bρ(A)(0) ⊂ E×M(B0)×Z∞,
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i.e., for all (K,H, Z) ∈ Bρ1(0)×Bρ2(0)×Bρ(A)(0),

1

j1!j2!j3!
‖Dj1
KD

j2
HD

j3
Z T (K,H, Z)(K̇, . . . , Ḣ, . . . , Ż)‖Z∞

≤ Cj1,j2,j3(L, h,A)‖K̇‖j1ζ ‖Ḣ‖
j2
0,0‖Ż‖

j3
Z∞ .

Furthermore q(H) ∈ Bκ(0) for all H ∈ Bρ2(0).
Proof of the claim: We establish smoothness of the coordinate maps for H̃k and
K̃k in a neighbourhood of the origin. Let Z ∈ Bρ(A)(0).

• Since K̃k+1(K,H, Z) = Sk(Hk,Kk, q(H)) for k ≥ 1, smoothness follows from
the smoothness of Sk in Proposition 3.17. The proposition can be applied if

(Hk,Kk, q(H)) ∈ Uρ(A),κ.

Since Z ∈ Bρ(A)(0) is assumed, (Hk,Kk) ∈ Uρ(A) is satisfied. Moreover, the
map H 7→ q(H) is linear and satisfies

|q(H)| ≤ C

h2
‖H‖0,0.

For ρ2 small enough we thus have q(H) ∈ Bκ. Bounds on the derivatives of
K̃k+1 are obtained as follows. Note that for k ≥ 1 the function K̃k+1 does not
depend on K.

1

j2!j3!

1

ηk+1
‖Dj2
HD

j3
Z K̃k+1(K,H, Z)(Ḣ, . . . , Ż)‖(A)

k+1

≤ Cj2,j3
1

ηk+1

(
‖Ḣk‖k,0 + ‖K̇k‖

(A)
k

)j3
Cj2‖Ḣ‖

j2
0,0

≤ Cj2,j3
1

η
‖Ż‖j3k Cj2‖Ḣ‖

j2
0,0.

• The smoothness of H̃k follows similarly with the help of Proposition 3.17.

• The smoothness of the map K̃1(K,H, Z) = S0(K̂0(K,H), H0, q(H)) and bounds
on the derivatives are done in detail in [Buc19]. Smoothness for K̂0 is proven
in Lemma 4.10.2 in [Buc19], and then we apply Proposition 3.17 and chain
rule.

Now we show that Z 7→ DZf(0, 0)Z is an isomorphism. Since

DZf(0, 0)Z = DZT (0, 0, 0)Z − Z

one needs Z 7→ T (K,H, Z) to be a contraction at the origin. From the definition of
the maps H̃k and K̃k and from Proposition 3.12 it follows that

dH̃k

dHk+1
=
(
A0
k

)−1
for k ≥ 0,

dH̃k

dKk
= −

(
A0
k

)−1
B0
k for k ≥ 1,

dK̃k+1

dKk
= C0

k for k ≥ 1,
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and all other derivatives vanish. Let Z ∈ Z∞ satisfy ‖Z‖Z∞ ≤ 1. Let us denote by

Z ′ =
∂T (0, 0, Z)

∂Z

∣∣∣∣
Z=0

Z,

and denote the coordinates of Z ′ by H ′k and K ′k. The bounds on the operators(
Aq
k

)−1
, Bq

k and Cq
k from Proposition 3.12 and ‖Z‖Z∞ imply that

‖H ′0‖0,0 ≤
∥∥∥(A0

0

)−1
∥∥∥ η ≤ 3

4
η,

η−k‖H ′k‖k,0 ≤ η−k
∥∥∥(A0

k

)−1
∥∥∥ ηk+1 + η−k

∥∥∥(A0
k

)−1
∥∥∥ ‖B0

k‖ηk ≤
3

4

(
η +

1

3

)
, 1 ≤ k,

η−1‖K ′1‖ = 0,

η−k‖K ′k‖ ≤ η−k‖C0
k−1‖ηk−1 ≤ θ

η
, k ≥ 2.

For η < 1 this implies that ∥∥∥∥∂T (0, 0, Z)

∂Z

∣∣∣∣
Z=0

∥∥∥∥ ≤ % < 1.

Thus we can apply the implicit function theorem. It follows that there exist ε1
and ε2 and a smooth function Ẑ : Bε1(E) × Bε2(M0(B0)) → Bρ(A)(Z∞) such that

Ẑ(0, 0) = 0 and T (K,H, Ẑ(K,H)) = Ẑ(K,H) for all (K,H) ∈ Bε1(0)×Bε2(0).

It remains to show that the bounds mentioned in Proposition 3.18 are satisfied.

The fixed point map satisfies

‖Ẑ(K,H)‖Z∞ ≤ ρ(A)

uniformly in (K,H) ∈ Bε1(0) × Bε2(0). The connections between the parameters
ε1, ε2 and ε is clearly explained in [Buc19], Theorem 4.10.1.

From this it follows that

‖Ĥk‖k,0 and ‖K̂k‖
(A)
k ≤ εηk.

Proof of Proposition 3.19. Let Ẑ : Bε1(0)× Bε2(0)→ Bε(0) be the fixed point map
from Proposition 3.18. Denote by ΠH0 : Z∞ → M0(B0) the bounded linear map
that extracts the coordinate H0 form Z.

Define

f(K,H) = ΠH0Ẑ(K,H)−H

as a map from Bε1(0)×Bε2(0)→M0(B0). f is surely smooth. The equality

f(0, 0) = ΠH0Ẑ(0, 0) = 0
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holds since Ẑ(0, 0) = 0. Our next concern is to show that

D2f(0, 0)H = −H.

By definition, T (0,H, 0) = 0 for all H ∈ Bε2(0). Due to the uniqueness of the fixed
point, Ẑ(0,H) = 0 for all H ∈ Bε2(0). It follows that D2Ẑ(0, 0) = 0 and thus
D2ΠH0Ẑ(0, 0)H = 0 for all H ∈ Bε2(0).
In summary we obtain that D2f(0, 0)H is an isomorphism. By the implicit function
theorem it follows that there is δ and a smooth function Ĥ : Bδ(0) ⊂ E→ Bε2(0) ⊂
M0(B0) such that ΠH0Ẑ(K, Ĥ(K)) = Ĥ(K).

3.3 Back to finite volume and proof of Theorem 2.7

In the last section we constructed the global flow (Hk,K
Zd
k )k∈N and proved useful

estimates. Now we transfer the properties to the finite-volume flow and deduce the
proof of Theorem 2.7.
The relevant part of the flow is the same in finite and infinite volume,

HZd
k = HΛ

k for k ≤ N(Λ),

so the estimates of the global flow are also valid in finite volume. The irrelevant
parts coincide only for polymers X with diam(X) ≤ 1

2diam(Λ). However, we can
use the improved bound on DSk in Lemma 3.11 and the single step estimate in
Proposition 3.14 to prove inductively that KΛ

k also satisfies the desired estimates.

Proposition 3.21 (Existence of the finite-volume bulk flow). Fix ζ, η ∈ (0, 1).
There is L0 such that for all odd integers L ≥ L0 there is A0, h0, κ with the following
property. There is δ̄ and ε̄ such that for a fixed Λ the finite-volume flow

(Hk,K
Λ
k ) 7→ (Hk+1,K

Λ
k+1)

exists for all k < N(Λ), is smooth in K ∈ Bδ̄(0) with bounds on the derivatives which
are uniform in N(Λ) and satisfies (Hk,K

Λ
k ) ∈ Dk(ε̄, η,Λ) for all k ≤ N(Λ).

Moreover,
Π2(H0(K)) = q(K)

and
K0(ϕ,X) = K0(K, H0)(ϕ,X) = eH0(ϕ,X)

∏
x∈X
K(∇ϕ(x)).

Proof. Let (L0, A0, h0, κ) be as in Proposition 3.18 and let (Hk,K
Zd
k )k∈N be the

global flow with renormalised initial condition from Proposition 3.19. Let ε̄ =
min{ρ∅0, ε}, where ρ∅0 is the quantity from Proposition 3.14 and ε is as in Proposition
3.18. From the infinite-volume flow we already know that ‖Hk‖k,0 ∈ Bεηk(0) for any
k ≤ N where ε can be made arbitrarily small by decreasing ε1, in particular we can
presume that ‖Hk‖k,0 ∈ Bε̄ηk(0) for K ∈ Bδ̄(0) for sufficiently small δ̄. Thus we just

have to show that KΛ
k ∈ Bε̄η2k(0) for δ̄ small enough, for any k ≤ N(Λ).

We proceed by induction. For k = 0 it holds by definition that KΛ
0 = KZd

0 and thus
KΛ

0 ∈ Bε̄(0) is satisfied.
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Now let KΛ
k ∈ Bε̄η2k(0) for K ∈ Bδ̄(0). To advance the induction, we apply Propos-

ition 3.14 and obtain that also KΛ
k+1 satisfies the desired estimate.

Smoothness in K with bounds on the derivatives which are uniform in N can be
proven as follows. Let P1

k(Λ) be the set of polymers X ∈ Pk(Λ) such that

diam(X) ≤ 1
2diam(Λ). Since KΛ

k = KZd
k on P1

k(Λ)for any k ≤ N(Λ) and since

the global flow (Hk,K
Zd
k )k∈N is smooth in K, we know that for all r ∈ N there is

C̃r > 0 such that for all k ≤ N(Λ)∥∥∥Dr
KHk(K̇, . . . , K̇)

∥∥∥
k,0
≤ C̃r‖K̇‖rζ , (19)∥∥∥Dr

KK
Λ
k

∣∣
P1
k(Λ)

(K̇, . . . , K̇)
∥∥∥
k,0
≤ C̃r‖K̇‖rζ . (20)

We will prove inductively (induction on k and r) that also Dr
KK

Λ
k

∣∣
P2
k(Λ)

satisfies a

bound with a constant C̄r that is uniform in k and N ,∥∥∥Dr
KK

Λ
k

∣∣
P2
k(Λ)

(K̇, . . . , K̇)
∥∥∥
k,0
≤ C̄r‖K̇‖rζ . (21)

For all scales k ∈ {0, 1, . . . , N − 2 we can use Lemma 3.11 to prevent accumulation
of large constants. Then only two scales remain, where large constants are allowed
to appear.

By Lemma 3.11 it holds∥∥∥DHDKDqSk
∣∣
P2
k+1(Λ)

(Ḣ, K̇)
∥∥∥(A)

k+1
≤ C1A

4−x
2
LN−(k+1)‖Ḣ‖k,0‖K̇‖

(A)
k ‖q̇‖.

Fix ϑ ∈ (0, 1). Choose L0 large enough such that

4− x

2
L ≤ −ϑ.

Then, for all k ≤ N − 2,

4− x

2
LN−(k+1) ≤ 4− x

2
L ≤ −ϑ.

Now fix % ∈ (0, 1) and choose A0 large enough such that

C1A
4−x

2
LN−(k+1) ≤ C1A

−ϑ ≤ % < 1.

Then ∥∥∥DHDKDqSk(H,K, q)(Ḣ, K̇)
∣∣
P2
k+1(Λ)

∥∥∥(A)

k+1
≤ %‖Ḣ‖k,0‖K̇‖

(A)
k ‖q̇‖ (22)

This estimate will be the main point in the argument to advance the induction. For
the remaining scales k = N − 1 and k = N we will use∥∥∥DHDKDqSk(H,K, q)(Ḣ, K̇)

∣∣
P2
k+1(Λ)

∥∥∥(A)

k+1
≤ C1‖Ḣ‖k,0‖K̇‖

(A)
k ‖q̇‖ (23)
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where C1 is the constant that appears in Proposition 3.10.

We start with the case r = 1. We use induction on k until scale k = N − 2. Choose

C̄1 ≥ max

{
C̃1,

%

(1− %)
3C̃1

}
.

For k = 0 nothing is to show since both H0 and KΛ
0 coincide with the corresponding

maps in the global flow. To advance the induction, let us assume that∥∥∥DKKΛ
k

∣∣
P2
k(Λ)
K̇
∥∥∥(A)

k
≤ C̄1‖K̇‖ζ .

Then, as long as k < N − 2, by (22), (19), (20) and induction hypothesis,∥∥∥DKKΛ
k+1

∣∣
P2
k+1(Λ)

K̇
∥∥∥(A)

k+1
=
∥∥∥DSk(Hk,Kk, q)

∣∣
P2
k+1(Λ)

DK(Hk,Kk, q)K̇
∥∥∥(A)

k+1

≤ %
(∥∥∥DKHkK̇

∥∥∥
k,0

+
∥∥∥DKKk

∣∣
P1
k(Λ)
K̇
∥∥∥(A)

k
+
∥∥∥DKKk

∣∣
P2
k(Λ)
K̇
∥∥∥(A)

k
+
∥∥∥DKqK̇∥∥∥)

≤ %
(
C̃1 + C̃1 + C̄1 + C̃1

)
‖K̇‖ζ .

Our choice of C̄1 and % < 1 implies that %
(
C̃1 + C̃1 + C̄1

)
≤ C̄1 and the induction

step is proven.
If k = N − 1 and k = N , then we accept accumulation of constants, and we get
by (23) ∥∥∥DKKΛ

N−1

∣∣
P2
N−1(Λ)

K̇
∥∥∥(A)

N−1
≤ C1

(
3C̃1 + C̄1

)
‖K̇‖ζ ,

and ∥∥∥DKKΛ
N

∣∣
P2
N (Λ)
K̇
∥∥∥(A)

N
≤ C1

(
3C̃1 + C1

(
3C̃1 + C̄1

))
‖K̇‖ζ .

Next we consider the case r = 2. Again we use induction on k until scale k = N − 2
to show ∥∥∥D2

KK
Λ
k

∣∣
P2
k(Λ)
K̇2
∥∥∥(A)

k
≤ C̄2‖K̇‖2ζ ,

whith

C̄2 ≥ max

{
C̃2,

1

1− %

(
C2(3C̃1 + C̄1)2 + %3C̃2

)}
,

where C2 is the constant which appears in the estimate
∥∥D2Sk(H,K)

∥∥ ≤ C2 in
Proposition 3.10.
For k = 0 nothing is to show.
Let us assume that the bound holds for k < N − 2. By chain rule we have

D2
KK

Λ
k+1

∣∣
P2
k+1(Λ)

(
K̇, K̇

)
= D2Sk(Hk,Kk, q)

∣∣
P2
k+1(Λ)

(
DK(Hk,Kk, q)K̇

)2

+DSk(Hk,Kk, q)
∣∣
P2
k+1(Λ)

D2
K(Hk,Kk, q)

(
K̇, K̇

)



3.3 Back to finite volume and proof of Theorem 2.7 45

and thus we can estimate with (22), (19), (20) and induction hypothesis,∥∥∥D2
KK

Λ
k+1

∣∣
P2
k+1(Λ)

(
K̇, K̇

)∥∥∥(A)

k+1

≤ C2

(
C̃1 + C̃1 + C̄1 + C̃1

)2
+ %

(
C̃2 + C̃2 + C̄2 + C̃2

)
‖K̇‖2ζ .

The desired bound is satisfied by our choice of C̄2 and since % < 1. The key point
here is, that the ”dangerous” bound C̄2 (the application of the induction hypothesis)
comes with the occurrence of %.
As before the scales k = N −1 and k = N can be handled by allowing the constants
to accumulate.

By a second induction in r we show that (21) holds for any r.
From the chain rule we deduce inductively that

Dr
KK

Λ
k+1

∣∣
P2
k+1(Λ)

(
K̇, . . . , K̇

)
is a linear combination of terms(

DiSk(Hk,Kk, q)
) (
Dj1
K (Hk,Kk, q)K̇j1

)
. . .
(
Djk
K (Hk,Kk, q)K̇jk

)
,

where 1 ≤ i ≤ r, js ≥ 1 and
∑i

s=1 js = r. For i > 1 this term is estimated as follows:∥∥∥(DiSk(Hk,Kk, q)
) (
Dj1
K (Hk,Kk, q)K̇j1

)
. . .
(
Djs
K (Hk,Kk, q)K̇js

)∥∥∥(A)

k+1

≤ Ci
i∏

s=1

(
3C̃js + C̄js

)
‖K̇‖jsζ ,

where we used that ‖DiSk(H,K)‖ ≤ Ci, (19), (20) and induction hypothesis. Note
that for i > 1 it holds that js < r so that only constants C̄l for l < r appear. The
term with i = 1 is

(DSk(Hk,Kk, q))D
r
K(Hk,Kk, q)K̇r,

which can be bounded for scales k ≤ N − 2 with the help of (22) by∥∥∥(DSk(Hk,Kk, q))D
r
K(Hk,Kk, q)K̇r

∥∥∥(A)

k+1
≤ %

(
3C̃r + C̄r

)
.

Again the ”dangerous” term C̄r appears with % in front, so that in summary we get∥∥∥Dr
KK

Λ
k+1

∣∣
P2
k+1(Λ)

K̇r
∥∥∥(A)

k+1
≤ D + %

(
3C̃r + C̄r

)
for a constant D which depends on Ci for 1 < i ≤ r and C̃js for 1 ≤ js < r. By the
choice

C̄r ≥
1

1− %

(
D + %3C̃r

)
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we obtain (21).
Constants are allowed to accumulate for scales k = N − 1 and k = N .

This finishes the proof of smoothness of the finite-volume flow in K.

Proof of Theorem 2.7. Let L0 and ε0 = δ̄ be as in Proposition 3.21. Let f ∈ χN .
The starting point is the identity

ZN (K, f) =

∫
e(f,ϕ)

∑
X⊂TN

∏
x∈X
K (∇ϕ(x))µ1(dϕ).

Let us denote
F (Λ, ϕ) =

∑
X⊂TN

∏
x∈X
K (∇ϕ(x)) .

For K ∈ Bε0(0) let q = q(K) be the quadratic part in H0(K) from Proposition 3.21.
Then

ZN (K, f) =

∫
e(f,ϕ)F (Λ, ϕ)µ1(dϕ) =

Z
(q)
N

Z
(0)
N

∫
e(f,ϕ)F q(Λ, ϕ)µCq(dϕ)

=
Z

(q)
N

Z
(0)
N

e
1
2

(f,Cqf)

∫
F q(Λ, ϕ+ Cqf)µCq(dϕ)

with
F q(Λ, ϕ) = e

1
2

∑d
i,j=1(∇iϕ,qij∇jϕ)F (Λ, ϕ).

Now let λ = λ(K) be the constant part and l(K)(ϕ) the linear part of H0(K)(ϕ).
Since

∑
x∈Λ l(K)(ϕ)(x) = 0, and since K0 satisfies the correct initial data, it holds

that
F q(Λ, ϕ) = e−λL

Nd
eH0 ◦K0(Λ, ϕ),

and thus, by Proposition 3.21,

ZN (K, f) =
Z

(q)
N

Z
(0)
N

e
1
2

(f,Cqf)e−λL
Nd

∫ (
eH0 ◦K0

)
(Λ, ϕ+ Cqf)µCq(dϕ)

=
Z

(q)
N

Z
(0)
N

e
1
2

(f,Cqf)e−λL
Nd (

eHN +KN

)
(Λ, Cqf).

Let
Z∅N (K, Cqf) =

(
eHN (K) +KN (K)

)
(Cqf).

By Proposition 3.21 the map Z∅N is smooth in K. We shall have established the

proof of the theorem if we show that there is a constant C such that Z∅N (K, Cqf)

satisfies the estimate
∣∣∣Z∅N (K, Cqf)− 1

∣∣∣ ≤ CηN for special choices of f . First we get∣∣∣Z∅N (K, Cqf)− 1
∣∣∣ ≤ ∣∣∣eHN (Cqf) − 1

∣∣∣+ |KN (Cqf)|

≤ ‖KN‖(A)
N wΛN

N (Cqf)A−1 +
∣∣∣∣∣∣eHN − 1

∣∣∣∣∣∣
N
WΛN
N (Cqf).
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For f = gN − cN as given in the assumptions of the theorem it holds that f ∈ χN .
Then one can show (see Lemma 5.1 in [Hil16] or the proof of Theorem 3.2.7 in
[Buc19]) that

wΛN
N (Cqf),WΛN

N (Cqf) ≤ C

for a constant which is independent of N . Moreover, by Lemma 4.7.3 in [Buc19],
one can estimate ∣∣∣∣∣∣eHN − 1

∣∣∣∣∣∣
N
≤ 8‖HN‖N,0

and since (HN ,KN ) ∈ DN (ε̄, η,Λ) by Proposition 3.21 we finally get∣∣∣Z∅N (K, Cqf)− 1
∣∣∣ ≤ CηN

for a constant C which is independent of N .
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49

4 RG analysis for the observable flow

This section is dedicated to the proof of Theorem 2.11. The theorem contains
a representation of the partition function with inserted observables s∇maϕ(a) and
t∇mbϕ(b). In order to work with such a singular external field we extend the analysis
of Section 3. This will truly be an extension in the sense that the bulk flow needs no
modification. We will show how observables can be incorporated into the analysis
to obtain the pointwise asymptotic formula in Theorem 2.11.
We will follow the flow of these observables in detail and study the corresponding
properties. First we extend spaces and norms in Subsection 4.1. In Subsection 4.2
the RG map is defined. We have to provide a good definition for the flow such that
we can extract the Gaussian covariance Cq. This is achieved by using second order
perturbation in the map A instead of a first order expansion as before.
The proof of Theorem 2.11 consists of two steps. A first estimate on the covariance
is proven in Subsection 4.3, a refined one in Subsection 4.4. The proof of Theorem
2.11 is then immediate from these estimates (see Subsection 4.5).

Remember that we aim to obtain a representation of

ZN (K, fab) from (8), where fab = s∇∗ma1a + t∇∗mb1b.

Let (Hk,Kk) be the bulk flow of the last section. We can rewrite ZN (K, fab) as
follows:

ZN (K, fab) =

∫
e(ϕ,fab)

∑
X⊂ΛN

∏
x∈X
K(∇ϕ(x))µ1(dϕ)

=
Z

(q(K))
N

Z
(0)
N

e−L
Ndλ(K)

∫
e(ϕ,fab)

(
eH0 ◦K0

)
(ΛN , ϕ)µCq(K)(dϕ).

We include (ϕ, fab) into the circ product and extend the maps H0 and K0 to

Hext
0 (ϕ) = H0(ϕ) + s∇maϕ(a)1a + t∇mbϕ(b)1b,

Kext
0 (ϕ) = K0(ϕ)es∇maϕ(a)1a+t∇mbϕ(b)1b .

Then

ZN (K, fab) =
Z

(q(K))
N

Z
(0)
N

e−L
Ndλ(K)

∫
eH

ext
0 ◦Kext

0 (ΛN , ϕ)µCq(K)(dϕ).

We want to follow the relevant observable flow explicitly in order to extract the
Gaussian covariance Cq(K)(a, b). For this purpose we extend the space of functionals
of the bulk flow to these observables. We introduce extended norms, where the
observable part is weighted by a carefully chosen weight lobs,k, see Definition 4.1 and
the motivation in Remark 4.11. In order to gain the factor ∇∗∇Cq(K)(a, b) in every
step we define the flow

(Hext,Kext) 7→ Hext
+ = AHext + BKext
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such that second order perturbation is reflected in the observable part of the map A.
Then the observable part of Hext appears in Kext

+ only to third order (see Propos-
ition 4.6) which leads to a refined single step estimate (Proposition 4.10). For the
contractivity property of the extended map (Hext,Kext) 7→ Kext

+ in Proposition 4.8
the operator B also has to be adjusted.

Roughly speaking, the flow then satisfies estimates which result in a leading term

(1 + Sa)(1 + Sb)∇∗mb∇maC
q(K)(a, b)

in the covariance, see Proposition 4.13.

In order to show that Sa, Sb do not contribute to the leading order but only at
order 1

|a−b|d+ν we will have to perform an additional step: we consider the flow

with just one observable in infinite volume and compare a smoothed version to the
result on the scaling limit (Proposition 4.14). Finally Proposition 4.14 together with
Proposition 4.13 will result in the proof of Theorem 2.11.

From this point on we use the following change of notation: quantities which
belong to the bulk flow will get an superscript ∅. Consequently, the bulk flow

becomes
(
H∅k ,K

∅
k

)
. The superscript ”ext” which was used in the motivation above

will disappear in most cases, so (Hk,Kk) will denote the extended flow.

4.1 Extension of functionals, spaces and norms

4.1.1 Extended spaces

As before, let N ∅ = Cr0(χN ,R) be the space of real-valued functions of fields having
at least r0 continuous derivatives. We are interested in functions not only of ϕ ∈ χN
but also of s and t, but only in the dependence up to terms of the form 1, s, t, st.
We formalise this via the introduction of a quotient space, in which two functions
of ϕ, s, t become equivalent if their formal power series in the observable fields agree
to order 1, s, t, st, as follows.

Let Ñ be the space of real-valued functions of ϕ, s, t which are Cr0 in ϕ and C∞

in s, t. Consider the elements of Ñ whose formal power series expansion to second-
order in the external fields s, t is zero. These elements form an ideal I in Ñ , and
the quotient algebra N = Ñ/I has a direct sum decomposition

N = N ∅ ⊕N a ⊕N b ⊕N ab.

The elements ofN a,N b,N ab are given by elements ofN ∅ multiplied by s, by t and by
st respectively. As functions of the observable field, elements of N are then identified
with polynomials of degree at most 2. For example, we identify es∇ϕ(a)+t∇ϕ(b) and
1 + s∇ϕ(a) + t∇ϕ(b) + st∇ϕ(a)∇ϕ(b), as both are elements of the same equivalence
class in the quotient space. An element F ∈ N can be written as

F = F ∅ + sF a + tF b + stF ab,
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where Fα ∈ N ∅ for each α ∈ {∅, a, b, ab}. We define projections πα : N → Nα by
π∅F = F ∅, πaF = sF a, πbF = tF b and πabF = stF ab.
Furthermore, let π∗F = πaF +πbF +πabF be the projection to the observable part.

The class of functionals we are going to work with is

M ext(Pk,VN ) =
{
F : Pk → N

∣∣Fα(X) ∈M(VN ) for all X ∈ Pk and α ∈ {∅, a, b, ab},

π∅F ∈M(Pk), π∗F shift invariant and local
}
.

Note that π∗F is not required to be translation invariant.
As in the case of bulk functionals we have immediate generalisations to M ext(Pck),
M ext(Sk) and M ext(Bk).

We define the coalescence scale

jab =
⌊

logL(2|a− b|)
⌋
. (24)

Since by definition
Lk

2
≤ |a− b| for all k ≤ jab,

it holds that

∇∗j∇iCk(a, b) = 0 for all k ≤ jab, i, j ∈ {1, . . . , d}, (25)

due to the finite-range property of the covariance decomposition.

The extended space of relevant Hamiltonians M ext
0 (Bk) ⊂ M ext(Bk) consists of all

functionals of the form

H(B,ϕ) = H∅(B,ϕ) + sHa(B,ϕ) + tHb(B,ϕ) + stHab(B,ϕ)

where

Hα(B,ϕ) = 1α∈B

(
λα +

d∑
i=1

nαi ∇iϕ(α)

)
, λα ∈ R, nα ∈ Rd, α ∈ {a, b},

Hab(B,ϕ) = 1a,b∈B q
ab, qab ∈ R.

We also define a subspace where no constants appear in the observable part: Let

V(0)
k = {H ∈M ext

0 (Bk) : λa = λb = qab = 0},

so H ∈ V(0)
k is of the form

H(ϕ) = H∅(ϕ) + sna∇ϕ(a)1a + tnb∇ϕ(b)1b, na, nb ∈ Rd.

Here the scalar product on Rd is hidden in the notation,

nα∇ϕ(α) =

d∑
i=1

nαi ∇iϕ(α).
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4.1.2 Extended norms

Definition 4.1. Let hk = 2kh and lk = L−
d
2
khk. For a fixed η ∈ (0, 1) set gk = ηk.

Fix ρ0 > 0. We define the observable weight lobs,k by

lobs,k = ρ0gk2
−k4(k−jab)+L

d
2

(k∧jab).

The parameter ρ0 will be determined a-posteriori in Proposition 4.12.

In the following we provide a brief motivation for the choice of lobs,k. A more detailed
discussion can be found in Remark 4.11.

• The sequence hk is a scaling factor in the norm for the fields, see Subsec-
tion 3.1.2. It has the effect that in norm s∇ϕ(a) ≈ lobs,klk, where the growing
factor 2k appears on the right hand side in lk. This term is eliminated by 2−k

in lobs,k.

• 4(k−jab)+ makes a sum converging at the end of the analysis;

• L
d
2

(k∧jab) gives the desired decay since
(
L
d
2
jab
)2

=
(
Ljab

)d ≈ 1
|a−b|d ;

• gk makes sure that the observables live in decreasing balls.

Note that

lobs,k+1

lobs,k
=

{
η
2L

d/2 if k ≤ jab − 1,

2η else .
(26)

We set, for F ∈M ext(Pk),∣∣F (X,ϕ)
∣∣ext

k,X,Tϕ
=

∑
α∈{∅,a,b,ab}

∣∣Fα(X,ϕ)
∣∣
k,X,Tϕ

l
|α|
obs,k

where, with a slight abuse of notation, |∅| = 0, |a| = |b| = 1 and |ab| = 2. The norms

‖ · ‖ext
k,X , ‖ · ‖ext

k:k+1,X , |||·|||ext
k,X and ‖ · ‖(A),ext

k on functionals F ∈M ext(Pck) are defined
as before in Section 3.1.2.
The norm on M0(Bk) is extended to M ext

0 (Bk) as follows. Recall that we defined
elements of M ext

0 (Bk) to be functionals of the form

H(ϕ) = H∅(ϕ) + s1a

(
λa +

∑
i

nai∇iϕ(a)
)

+ t1b

(
λb +

∑
i

nbi∇iϕ(b)
)

+ st1a,b q
ab.

Then

‖H‖ext
k,0 =

∥∥∥H∅∥∥∥
k,0

+ lobs,k

(
|λa|+ lk

d∑
i=1

|nai |+
∣∣∣λb∣∣∣+ lk

d∑
i=1

∣∣∣nbi ∣∣∣
)

+ l2obs,k

∣∣∣qab∣∣∣ .
We will use the following notation:

‖Hα‖αk,0 = lobs,k

(
|λα|+ lk

d∑
i=1

|nαi |

)
for α ∈ {a, b},

∥∥∥Hab
∥∥∥ab
k,0

= l2obs,k

∣∣∣qab∣∣∣ .
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4.2 Extension of the renormalisation map

4.2.1 Definition of the extended map

The goal of this section is the definition and preliminary study of the extended
renormalisation map

Text
k : R3 × V(0)

k ×M
ext(Pck) → R3 × V(0)

k+1 ×M
ext(Pck+1),

(λa, λb, qab, H,K) 7→ (λa+, λ
b
+, q

ab
+ , H+,K+).

Initially, we extend the operator Bk:

Bk : M ext (Pck)→M ext
0 (Bk+1) , BkK(B+) =

∑
B∈Bk(B+)

ΠkRk+1K(B)

where Πk is the scale-dependent localisation operator

Πk : M ext(Bk)→M ext
0 (Bk), ΠkF = Π2F

∅ + 1aΠ
a
kF

a + 1bΠ
b
kF

b + 1abΠ0F
ab,

Πα
k defined explicitly below in Section 5.1.5. Roughly speaking, for α ∈ {a, b},

Πα
k =

{
Π1 if k < jab,

Π0 if k ≥ jab.

Similar to the definition of Π2 in the bulk flow case (see Section 3.1.3),

Π0F (ϕ) = F (0), and Πα
1F (ϕ) = F (0) + lα(ϕ)

where lα(ϕ) is the unique map of the form lα(ϕ) =
∑

j n
α
j∇jϕ(α) which coincides

with DF (0)(ϕ) for all functions ϕ which are on (B∗α)∗ of the form

ϕ(x) =
∑
i

mi(xi − αi), m ∈ Rd.

This implies that in (BkK)ab only the zeroth order polynomial remains after projec-
tion whereas in the a- and b-part of BkK we follow the linear flow up to the scale jab
but not further.

Note that Bk is a linear operator, so (BkK)α = Bk (Kα).

Let us introduce the following notation: For α ∈ {a, b}, we denote the constant and
linear coefficients of BkK

α by

BkK
α = (BkK

α)0 +
d∑
i=1

(BkK
α)1
i ∇iϕ(α).

Now we can give a definition of the map

Text
k : (λa, λb, qab, H,K) 7→ (λa+, λ

b
+, q

ab
+ , H+,K+).
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Namely,

λα+ = λα + (BkK
α)0 , α ∈ {a, b},

qab+ = qab + BkK
ab +

∫
HaHbdµk+1,

(H+)∅ =
(
H∅
)

+
, Hα

+ = Hα + (BkK
α)1∇ϕ(α), α ∈ {a, b},

and the irrelevant K+ is defined by

K+ = e−s(BkK
a)0−t(BkKb)

0−st(
∫
HaHbdµk+1+BkK

ab)Sk(H,K),

where Sk is the map from the bulk flow, defined in (17). Let us denote

Sext
k (H,K) = e−s(BkK

a)0−t(BkKb))
0−st(

∫
HaHbdµk+1+BkK

ab)Sk(H,K).

Moreover, let us combine the definitions above into the map Ak,

Ak : V(0)
k →M ext

0 (Bk+1), AkH = AkH
∅ + AkH

obs,

AkH
∅(B+) =

∑
B∈Bk(B+)

Π2Rk+1H
∅(B),

AkH
obs = sHa + tHb + st

∫
HaHbdµk+1.

Remark 4.2. We are no longer interested in the dependence of the maps on the
parameter q since we will fix the bulk flow obtained in the last section - with the
caveat that the choice of κ in q ∈ Bκ(0) depends on the choice of L which will be
chosen larger than in [Buc19].

In the next lemma we show that the map Tk is well-defined, and we state first
properties. A motivation for the definition of Tk follows afterwards in Remark 4.4.

Let K ∈ M ext(Pk) satisfy field locality if for α ∈ {a, b, ab} and for any X ∈ Pk,
Kα(X) = 0 unless α ∈ X. Here we use the notation ab ∈ X which means a ∈ X
and b ∈ X.

Lemma 4.3. Fix (λa, λb, qab, H,K) ∈ R3 × V(0)
k ×M ext(Pck). Then the map Text

k

defined above satisfies the following properties.

1. K+ ∈ M ext(Pck+1), and the map Sext
k satisfies the restriction property and

preserves the (Zd)-property as well as field locality.

2. If K satisfies field locality, then H+ ∈ V(0)
k+1, i.e., there are na+, n

b
+ ∈ Rd such

that
H+(ϕ) = H∅+(ϕ) + sna+∇ϕ(a)1a + tnb+∇ϕ(b)1b.

3. Let us denote ζ = sλa + tλb + stqab and ζ+sλ
a
+ + tλb+ + stqab+ . Then

eζRk+1

(
eH ◦K

)
= eζ+

(
eH+ ◦K+

)
. (27)
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4. If K satisfies field locality, then Ha
+ is independent of Hb, Kb and Kab, and

the same holds for a, b interchanged.

5. The observable flow leaves the bulk flow unchanged, i.e.,

(H+)∅ =
(
H∅
)

+
, (K+)∅ = S(H∅,K∅).

Proof. 1. The definition immediately implies that K+ ∈ M ext(Pck+1) and that

Sext satisfies the restriction property and preserves the (Zd)-property, since
the map S fulfils the desired properties. The preservation of field locality can
be verified by inspection of the definition.

2. Since K satisfies field locality, it holds that BkK
α = BkK

α
1α. Thus we can

set

nα+ = nα + (BkK
α)1

and so H+ ∈ V(0)
k+1.

3. The definition of the map Sext is specifically designed so that this integration
property holds. Namely, use that in the bulk flow case the maps Ak,Bk and
Sk are made such that

e(AkH+BkK) ◦ Sk(H,K) = Rk+1(eH ◦K).

Then

eζRk+1(eH ◦K)

= eζ
[
e(Ak+Bk) ◦ Sk(H,K)

]
= eζ+s(BkK

a)0+t(BkKb)
0
+st(

∫
HaHbdµk+1+BkK

ab)

×
[
eH+ ◦

(
e−s(BkK

a)0−t(BkKb)
0−st(

∫
HaHbdµk+1+BkK

ab)Sk(H,K)
)]

= eζ+
[
eH+ ◦ Sext

k (H,K)
]
.

4. Since Ha
+ = Ha + (BKa)1∇ϕ(a) the statement follows straightforwardly by

field locality.

5. Due to the definition of Ak and Bk, for H = H∅ + π∗H and K = K∅ + π∗K,
it holds that H∅+ = AkH

∅ + BkK
∅.

Remark 4.4. We try to motivate the definition of the map Text
k .

In principle we want to define H+ = AkH + BkK as before in the bulk flow case
through extended maps Ak and Bk. We perform some changes in the definition of
Ak and Bk.
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On the one hand, we want to extract not only to linear but also to quadratic order
in H, so that we can observe the Gaussian covariance. Heuristically, up to second
order in H,

R+

(
eH
)
≈ 1 +R+H +

1

2
R+

(
H2
)

since

R+

(
eH
)
≈ R+

(
1 +H +

1

2
H2

)
= 1 +R+H +

1

2
R+

(
H2
)

and

eR+H+ 1
2
R+(H2)− 1

2
(R+H)2 ≈ 1 +R+H +

1

2
R+

(
H2
)
− 1

2
(R+H)2 +

1

2
(R+H)2

= 1 +R+H +
1

2
R+

(
H2
)
.

Given H ∈ V(0)
k with

Hobs = sHa + tHb,

Ha(ϕ) = na∇ϕ(a)1a, Hb(ϕ) = nb∇ϕ(b)1b, na, nb ∈ Rd,

then, up to first order in s, t and st,

Rk+1H
obs +

1

2
Rk+1

(
(Hobs)2

)
− 1

2

(
Rk+1(Hobs)

)2

= sHa + tHb + st

∫
HaHbdµk+1.

Since ∫
HaHbdµk+1 = nanb∇∗∇Ck+1(a, b),

we explicitly observe a part of the Gaussian covariance. This motivates the definition
of the map Ak given above. Note that the map is no longer linear, unlike in the bulk
flow case.
On the other hand, the map Bk extracts as much from R+K as is needed in order
to have a contraction in the irrelevant part. In the case of observables it is enough
to extract the linear order up to coalescence scale jab and only the constant order
above.
In a last step in the definition of the map (H,K) 7→ H+ we extract constant observ-
able parts which arise by the application of the maps Ak and Bk. We put them out
of the circ product into ζ+.
The irrelevant part K+ is defined such that (27) holds.

Let us denote by Ba ∈ Bk and Bb ∈ Bk the block at scale k which contains a and b,
respectively. By definition of the coalescence scale jab,

Ljab−1

2
<
Ljab

2
≤ |a− b| < Ljab+1

2
.
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For simplicity let us assume that there is B ∈ Bjab such that a, b ∈ B, but Ba, Bb ∈
Bjab−1 are disjoint as in the following picture. All other cases can be done similarly.

Ljab

b

a

Ljab−1

Lemma 4.5. For initial coupling constants λa0 = λb0 = qab = 0, na0, n
b
0 ∈ Rd we

obtain the following formulas for the coupling constants:

1. λαk =
∑k−1

l=0 (BlK
α
l )0,

2. qabk = 0 for k ≤ jab and

qabk =
k−1∑
l=jab

(
BlK

ab
l +

∫
Ha
l H

b
l dµl+1

)
, for k > jab,

3. nαk = nα0 +
∑(k−1)∧(jab−1)

l=0 (BlK
a
l )1.

Proof. These formulas follow iteratively by definition of the flow and Lemma 4.3.

In the next statement we will deliver a precise formulation of what was described
heuristically in Remark 4.4 when we motivated the definition of the map Ak, namely
that the relevant flow absorbs the irrelevant part up to second order.

Proposition 4.6. The st-part of the second derivative in direction H of Sext is zero:[
D2
HSext(0, 0)(Ḣ, Ḣ)

]ab
= 0.

The proof can be found in Lemma 5.29.

At this point, we have obtained that∫
eH0 ◦K0 dµCq = eζN

(
eHN (ϕ=0) +KN (ϕ = 0)

)
, ζN = stqabN + sλaN + tλbN .
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Since
N∑

k=jab

Ck(a, b) =

N∑
k=0

Ck(a, b) = Cq(a, b),

it holds that

qabN =
(
na0 + Sajab

) (
nb0 + Sbjab

)
∇∗mb∇maC

q(a, b) + R̃ab,

Sαjab =

jab−1∑
l=0

(BlK
α
l )1 , R̃ab =

N−1∑
l=jab

BlK
ab
l ,

λαN =
N−1∑
l=0

(BlK
α
l )0 .

In the following section we develop estimates on the involved quantities which lead
to a first bound on the covariance in Proposition 4.13. In order to get rid of the
Sαjab in the leading term, an additional argument is needed. We implement this by
considering the flow of a single observable. The refined bound on the covariance can
be found in Proposition 4.14.

4.2.2 Estimates on the extended map

The separation of the bulk flow into relevant and irrelevant directions with corres-
ponding estimates can be extended to the observable flow.

Let Uρ ⊂ V(0)
k ×M

ext(Pck) be the subset

Uρ = {(H,K) ∈ V(0)
k ×M

ext(Pck) : ‖H‖ext
k,0 < ρ, ‖K‖(A),ext

k < ρ}.

Proposition 4.7 (Smoothness of the extended flow). There exists a constant L0

such that for all odd integers L ≥ L0 there is A0 and h0 with the following property.
For all A ≥ A0 and h ≥ h0 there exists ρ∗ = ρ∗(A) such that the map Sext

k satisfies

Sext
k ∈ C∞

(
Uρ∗ ,M

ext(Pck+1)
)
.

For any j1, j2 ∈ N there is a constant C∗j1,j2 = C∗j1,j2(L, h,A) such that for any
(H,K) ∈ Uρ∗∥∥∥Dj1

HD
j2
KSext

k (H,K)(Ḣj1 , K̇j2)
∥∥∥(A),ext

k+1
≤ C∗j1,j2

(
‖Ḣ‖ext

k,0

)j1 (
‖K̇‖(A),ext

k

)j2
.

The proof of this proposition can be found in Section 5.2.

The extended flow also satisfies contraction estimates for the derivative of Sext
k at

zero.

Proposition 4.8 (Contractivity of the extended flow). The first derivative of Sext
k

at (H,K) = (0, 0) satisfies

DSext
k (0, 0)(Ḣ, K̇) = CkK̇,
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where

CkK̇(U,ϕ) =
∑
B∈Bk:
B̄=U

(1−Π)Rk+1K̇(B,ϕ) +
∑

X∈Pck\Bk
π(X)=U

Rk+1K̇(X,ϕ).

For any θ ∈ (0, 1) there is L0 such that for all odd integers L ≥ L0 there is A0 and
h0 with the following property. For all A ≥ A0, h ≥ h0 the following estimate holds
independent of k and N ,

‖Ck‖ ≤ θ.

The norm on the left hand side denotes the operator norm for the map(
M ext(Pck), ‖ · ‖

(A),ext
k

)
→
(
M ext(Pck+1), ‖ · ‖(A),ext

k+1

)
.

Proof. Here we only show the validity of the expression for Ck. The contractivity
is shown in Section 5.3.1, see Lemma 5.24.

We claim that

DSext
k (0, 0)(Ḣ, K̇) = DSk(0, 0)(Ḣ, K̇).

Then the expression for Ck follows just as in the case of the bulk flow, see Proposi-
tion 3.12. The above equation holds with product rule since Sk(0, 0) = 0:

DSext(0, 0)(Ḣ, K̇)

= DHS(0, 0)Ḣ +DH

(
e−s(BK

a)0−t(BKb)0−st(
∫
HaHbdµ++BKab)

)
Ḣ
∣∣∣
H=K=0

S(0, 0)

+DK

(
e−s(BK

a)0−t(BKb)0−st(
∫
HaHbdµ++BKab)

)
K̇
∣∣∣
H=K=0

S(0, 0)

+ e0DKS(0, 0)K̇.

We also state bounds on the map Bk. They are proven in Lemma 5.27.

Proposition 4.9 (Bounds on Bk). The following bounds on the observable part of
the map Bk hold:

∣∣(BkK
α
k )1
∣∣ ≤ l−1

k l−1
obs,k

AB
2
‖Kk‖

(A),ext
k , α ∈ {a, b}∣∣(BkK

α
k )0
∣∣ ≤ l−1

obs,k

AB
2
‖Kk‖

(A),ext
k , α ∈ {a, b}∣∣BkK

ab
k

∣∣ ≤ l−2
obs,k

AB
2
‖Kab

k ‖
(A),ext
k .

As in the case of the bulk flow (see Proposition 3.14) we can combine Proposition 4.7
and 4.8 and additionally Proposition 4.6 to get a refined single step estimate.
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To state it, we extend the space Dk(ρ0, η,Λ) (defined in (18)) to observables. In
the following definition, CD is fixed, determined a posteriori in the proof of Propos-
ition 4.12. Let

Dext
k (ρ0, gk,Λ)

=
{

(H,K) ∈ V(0)
k ×M

ext(Pck)(Λ) : H ∈ BCDρ0gk ,K ∈ Bρ0g2
k
,Kab ∈ Bρ0g3

k

}
.

Proposition 4.10 (Single step estimate for the extended flow). Fix η ∈ (0, 1) and
CD > 1. There is L0 such that for all odd integers L ≥ L0 there are A0 and h0

with the following property. For A ≥ A0 and h ≥ h0 there is ρ0 > 0 such that if
(H,K) ∈ Dext

k (ρ0, gk,Λ) then

‖Sext(H,K, q)‖(A),ext
k+1 ≤ ρ0g

2
k+1 and Kab

k+1 ∈ Bρ0g3
k+1

.

Proof. Fix θ < η3. Let L0 be large enough such that Proposition 4.7 and 4.8 can
be applied. Define C∗2 = max(C∗2,0, C

∗
1,1, C

∗
0,2) where C∗j1,j2 are the constants from

Proposition 4.7. Choose ρ0 small enough that

CDρ0 ≤ ρ∗(A) and θ +
1

2
C∗2ρ0 (CD + 1)2 ≤ η2.

Then (H,K) ∈ Dext
k (ρ0, gk,Λ) implies (H,K) ∈ Uρ∗(A) so we can apply Proposi-

tion 4.7 to estimate as follows.

As in the proof of Proposition 3.14 we expand Sext around (0, 0) up to linear order,

Sext(H,K) = CK +

∫ 1

0
D2Sext(tH, tK)(H,K)2(1− t)dt.

Then

‖Sext(H,K)‖(A),ext
k+1

≤ θ‖K‖(A),ext
k +

1

2
C∗2

((
‖H‖ext

k,0

)2
+ 2‖H‖ext

k,0‖K‖
(A),ext
k +

(
‖K‖(A),ext

k

)2
)

≤ ρ0g
2
k+1

1

η2

(
θ +

1

2
C∗2ρ0(CD + 1)2

)
≤ ρ0g

2
k+1.

The last inequality follows by the assumption on ρ0.

For the improved estimate on the ab-part we expand Sext up to second order and
exploit the fact that we used second order perturbation in the observable flow. With
Lemma 4.6 we obtain

Kab
+ = CKab + 2

[
DHDKSext(0, 0)(H,K)

]ab
+
[
D2
KSext(0, 0)K2

]ab
+

[
1

2

∫ 1

0
D3Sext(tH, tK)(H,K)3(1− t)2dt

]ab
.
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Now let C∗3 = max(C∗3,0, C
∗
2,1, C

∗
1,2, C

∗
0,3) and choose ρ0 such that additionally

θ + C∗2ρ0(2CD + 1) +
1

6
C∗3ρ

2
0(CD + 1)3 ≤ η3

is satisfied. Then

‖Kab
+ ‖

(A),ext
k+1 ≤ θ‖Kab‖(A),ext

k + 2C∗2‖H‖ext
k,0‖K‖

(A),ext
k + C∗2

(
‖K‖(A),ext

k

)2

+
1

2

1

3
C∗3

((
‖H‖ext

k,0

)3
+ 3

(
‖H‖ext

k,0

)2 ‖K‖(A),ext
k

+3‖H‖ext
k,0

(
‖K‖(A),ext

k

)2
+
(
‖K‖(A),ext

k

)3
)

≤ ρ0g
3
k+1

1

η3

(
θ + C∗2ρ0(2CD + 1) +

1

6
C∗3ρ

2
0(CD + 1)3

)
≤ ρ0g

3
k+1

and the proof is finished.

Remark 4.11. Here we give some motivation for the choice of the weight for the
extended norms and the choice of the extended localisation operator.
The relevant part of the flow at scale k = 0 is

H0(ϕ) = H∅0 (ϕ) + sna0∇ϕ(a)1a + tnb0∇ϕ(b)1b.

So at least on that scale one has a linear part in the observable flow. The norm of
the linear part creates the factor lobs,kll which has to satisfy lobs,klk ≤ ρ∗(A) for the
smoothness statement on Sext and lobs,klk ≤ ρ0η

k for the single step estimate. Thus
lobs,k has to include ρ0η

k for ρ0 small enough.
To get a contraction we have to put at least the constant part of the integrated
irrelevant flow into the relevant flow. We aim to get an estimate

N∑
k=jab

BKab
k ≤ C

1

|a− b|d+ν

Since
N∑

k=jab

|BKab
k | ≤

N∑
k=jab

l−2
obs,k‖K

ab
k ‖

(A),ext
k ≤

N∑
k=jab

l−2
obs,kρ0η

3k

we need L
d
2
jab in lobs,k for k ≥ jab.

We cannot just put the constant L
d
2
jab in each lobs,k for any k since then lobs,klk ≤

ρ∗(A) cannot be satisfied for the scales where the linear part exists (at least at scale

0). So we insert L
d
2

(k∧jab) into the weight, until scale jab. Then we have to extract
the linear part out of the irrelevant flow until coalescence to get a contraction since
lobs,k+1

lobs,k
contains Ld/2 up to scale jab which has to be extinguished for contraction by

pulling out the linear part.

Another consequence of the inserted factor L
d
2
k into the weight is, that now we have

to kill the growing sequence hk in lk so that the factor 2−k appears in the weight.
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4.3 A first estimate on the covariance

Propositions 4.8, 4.9 and 4.10 provide us with the following intermediate result: If
(Hk,Kk) ∈ Dext

k (ρ0, gk,Λ), then we have good control of the differences qab+ − qab,
λα+ − λα, nα+ − nα and also of the observable part of K+ (whose bulk part had been
controlled along with the bulk coupling constants already in Proposition 3.21). The
following proposition links scales together via an inductive argument to conclude that
(Hk,Kk) remains in Dext

k for all k ≤ N . It establishes a choice for the parameters
ρ0 and CD as we had indicated above Proposition 4.10.

Proposition 4.12 (Existence of the observable flow). Fix η ∈ (0, 1). There is L0

such that for all odd integers L ≥ L0 there are A0, h0 with the following property. For
all A ≥ A0 and h ≥ h0 there is ε̃ and ρ0 (and CD) such that the flow (ζk, Hk,Kk)k≤N
satisfies

(Hk,Kk) ∈ Dext
k (ρ0, gk,Λ) (28)

for any k ≤ N .

Proof. Let L0 be large enough such that Propositions 4.7, 4.8 and 4.10 hold.
The proof of (28) is by induction on k with the induction hypothesis

(IH)k : for all l ≤ k, (Hl,Kl) ∈ Dext
l (ρ0, gl,Λ).

Note that by Proposition 3.21 the bulk flow satisfies(
H∅k ,K

∅
k

)
∈ Bε̄ηk(0)×Bε̄η2k(0)

if K ∈ Bδ̄. Furthermore, ε̄ can be made arbitrarily small by decreasing δ̄.

• Base clause k = 0: We show that H0 ∈ BCDρ0 and K0 ∈ Bρ0 . First, we have
that, for α ∈ {a, b},

‖Hα
0 ‖0,0 = lobs,0l0|nα0 | = ρ0h

and thus

‖H0‖ext
0,0 = ‖H∅0‖0,0 + ‖Ha

0 ‖0,0 + ‖Hb
0‖0,0 ≤ ‖H∅0‖0,0 + 2ρ0h.

Choose ε̃ sufficiently small such that K ∈ Bε̃(0) implies H∅0 ∈ Bρ0(0). Let
CD ≥ 1 + 2h. Then

‖H0‖ext
0,0 ≤ CDρ0.

To estimate K0, note that

K0(ϕ) = es∇maϕ(a)1a+t∇mbϕ(b)1bK∅0 (ϕ) = es∇maϕ(a)1a+t∇mbϕ(b)1beH
∅
0 (ϕ)K(ϕ)

= eH
∅
0 +s∇maϕ(a)1a+t∇mbϕ(b)1bK

= K∅0 (K,H+ s∇maϕ(a)1a + t∇mbϕ(b)1b) .
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Choose ε̃ small enough such that K ∈ Bε̃(0) implies that H + s∇maϕ(a)1a +
t∇mbϕ(b)1b in turn is small enough such that

K∅0 (K,H+ s∇maϕ(a)1a + t∇mbϕ(b)1b) ∈ Bρ0(0)

(use Lemma 4.10.2 in [Buc19] for verification).

• Induction hypothesis:

∀ 0 ≤ l ≤ k (IH)l holds.

• Induction step:

For α ∈ {a, b}, the following formula for the relevant observable flow holds:

Hα
k+1 =

d∑
i=1

δmα(i) +

k∧(jab−1)∑
l=0

(BlK
α
l )1
i

∇iϕ(α).

We use Proposition 4.9 and the induction hypothesis to estimate

‖Hα
k+1‖αk+1,0 ≤ lobs,k+1lk+1

d∑
i=1

δmα(i) +

k∧(jab−1)∑
l=0

∣∣(BKα
l )1
i

∣∣
≤ ρ0gk+1h

1 +
AB
2
d

k∧(jab−1)∑
l=0

l−1
obs,ll

−1
l ‖Kl‖

(A),ext
l


≤ ρ0gk+1h

1 +
AB
2
h−1d

k∧(jab−1)∑
l=0

(ρ0gl)
−1ρ0g

2
l


≤ ρ0gk+1h

(
1 +

AB
2
h−1d

∞∑
l=0

ηl

)
.

Let CD ≥ 1 + 2h + ABd
1

1−η and choose ε̃ small enough such that K ∈ Bε̃(0)

implies H∅k ∈ Bρ0ηk . Then

‖Hk+1‖ext
k+1,0 ≤ ρ0η

k+1 + 2ρ0gk+1h

(
1 +

AB
2
dh−1 1

1− η

)
≤ ρ0gk+1

(
1 + 2h+ABd

1

1− η

)
≤ CDρ0gk+1.

For the estimate on Kk+1 we use Proposition 4.10. We can apply it by induc-
tion hypothesis and we obtain exactly what we want.

From this result we can conclude a first estimate on the covariance.
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Proposition 4.13. Fix η ∈
(
0, 1

4

)
. Then there is L1 such that for all odd integers

L ≥ L1 and the corresponding A0, h0 there is ε̃ > 0 with the following property. For
all K ∈ Bε̃ ⊂ Eζ∫

eH0(ϕ) ◦K0(ϕ)µCq(dϕ) = eζN
(
eHN (0) +KN (0)

)
, (29)

with ζN = stqabN + sλaN + tλbN

where (ζk, Hk,Kk) is the flow from Proposition 4.12. The term qabN can be written
as follows:

qabN =
(
δma + Sajab

)(
δmb + Sbjab

)
∇∗∇Cq(a, b) + R̃ab, (30)

with Sαjab =

jab−1∑
k=0

(BKα
k )1 , (31)

and there is C̃1 such that for 0 < ν ≤ − ln(4η)
lnL∣∣∣R̃ab∣∣∣ ≤ C̃1

1

|a− b|d+ν
.

Moreover, λαN is uniformly bounded in N .

Proof. The formulas (29), (30) and (31) follow from Proposition 4.12 and Lemma 4.5
with

R̃ab =

N−1∑
k=jab

∫
Kab
k (ξ)µk+1(dξ).

Fix η < 1
4 . Choose L1 large enough such that θ < η3, and that Proposition 4.12 can

be applied. Then there is ε̃ > 0 such that for all K ∈ Bε̃(0) we can estimate:∣∣∣R̃ab∣∣∣ ≤ N∑
l=jab

∣∣∣∣∫ Kab
l dµl+1

∣∣∣∣ ≤ AB
2

N∑
l=jab

l−2
obs,l

∥∥∥Kab
l

∥∥∥(A),ext

l

≤ AB
2
ρ−1

0 L−djab
N∑

l=jab

4−2(l−jab)4lgl ≤
AB
2
ρ−1

0 L−djab(4η)jab
N∑

k=jab

16−(l−jab)

≤ AB
2
ρ−1

0 L−djab(4η)jab
∞∑
k=0

16−k =
AB
2
ρ−1

0 L−djab(4η)jab
1

1− 1/16
.

If η < 1
4 there is additional decay on terms of |a− b| due to (4η)jab :

(4η)jab ≤ (4η)logL(2|a−b|) = (2|a− b|)
ln(4η)
lnL

and so (
L−d4η

)jab
≤ (2|a− b|)−(d− ln(4η)

lnL
) ≤ (2|a− b|)−(d+ν)

for 0 < ν ≤ − ln(4η)
lnL . This gives ∣∣∣R̃ab∣∣∣ ≤ C 1

|a− b|d+ν
.

The uniform bound on λαN follows similarly.
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4.4 A refined estimate on the covariance

Proposition 4.13 can be used to show that

CovγuN,β (∇maϕ(a),∇mbϕ(b)) = qabN +O
(
2N
)

=
(
δma + Sajab

) (
δmb + Sbjab

)
∇∗∇Cq(a, b) + R̃ab +O

(
2N
)
.

The goal of this subsection is to establish an improved formula for qabN , namely

qabN = ∇∗mb∇maC
q(a, b) +Rab, with |Rab| ≤ C

1

|a− b|d+ν
.

This estimate follows from formula (30) if we can show that∣∣Sαjab∇∗∇Cq(a, b)∣∣ ≤ C 1

|a− b|d+ν
.

We analyse the dependence of Sαjab on jab as jab →∞ in order to obtain the desired
bound. Precisely, we prove the following.

Proposition 4.14. Under the assumptions of Proposition 4.13 there is a constant C
which depends on AB, h, and η such that

Sajab , S
b
jab
≤ Cηjab .

We start by motivating the ideas of the proof in the following section. Afterwards,
the rigorous proof follows.

4.4.1 Motivation for the proof of Proposition 4.14

Using the results in Subsection 4.3 we can construct sequences (nak, n
b
k)k≤jab and

(qabk )k≤N with a coalescence scale jab and

nαk = nα0 +

k−1∑
l=0

(BlK
α
l )1 = nα0 + Sαk .

The goal is to analyse the dependence of nαjab on jab as jab → ∞. The key steps in
the proofs are:

• Single observable flow: From 4. in Lemma 4.3 we can deduce that nak is in-
dependent of (nbl )l≤k. In particular we can choose nb0 = 0 without changing
the flow nak. In this case we regard the observable at b as being absent, so
the concept of coalescence becomes vacuous. We use the convention that in
this case jab = ∞. If nb0 = 0 then no b-term or ab-term arise in the flow.
Nevertheless, the estimates on BKa and Ka hold as before.

• Extension to an infinite sequence: We show that (nak)k≤jab∧N is independent
of the size of the torus Λ. This allows us to extend the flow to an infinite
sequence na,Z

d

k which can be written as

na,Z
d

k = na0 +
k−1∑
l=0

(
BlK

a,Zd
l

)1
.
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• Convergence of the sequence: A subtle argument shows that na,Z
d

k → na0 and
from this convergence we can deduce that

∞∑
k=0

(
BlK

a,Zd
l

)1
= 0, and thus

m−1∑
k=0

(
BlK

a,Zd
l

)1
= O (ηm) .

• Back to finite volume: If BkK
a,Zd
k = BkK

a,Λ
k holds for any k ≤ jab − 1, then

jab−1∑
k=0

(
BkK

a,Λ
k

)1
= O

(
ηjab

)
.

The computation of the limit of na,Z
d

k can be motivated as follows.

From the result on the scaling limit in Theorem 2.1 we know that the Gaussian
covariance Cq arises without any correction term. We try to establish a connection
to this result by smoothing the observable flow. Namely we will consider∫

na0(∇(ϕ+ ξ), gN )F ∅0 (ϕ+ ξ)µCq(dξ)

for a suitable chosen gN (as in Theorem 2.1). Here, we denote F ∅0 = eH
∅
0 ◦K∅0 the

bulk flow.

On the one hand we can write this expression as∑
x

gN (x)

∫
na0∇(ϕ+ ξ)(x)F ∅0 (ϕ+ ξ)µCq(dξ),

which can be related to the observable flow if we show that the flow of coefficients
nak is independent of the placing of the observable a ∈ Λ. Let us include the choice
of a placing a ∈ Λ in the notation as ZN (ϕ; a). Then∫

na0(∇(ϕ+ ξ), gN )F ∅0 (ϕ+ ξ)µCq(dξ)

=
∑
x

gN (x)∂s
∣∣
s=0

ln

∫
esn

a
0∇(ϕ+ξ)(x)F ∅0 (ϕ+ ξ)µCq(dξ)

=
∑
x

gN (x)∂s
∣∣
s=0

lnZN (ϕ;x).

On the other hand we can relate the original expression to the bulk flow and the
scaling limit as follows:∫

na0(∇(ϕ+ ξ), gN )F ∅0 (ϕ+ ξ)µCq(dξ)

= na0∂f

[∫
e(ϕ+ξ,f)F ∅0 (ϕ+ ξ)µCq(dξ)

]
f=0

(∇∗gN ).
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4.4.2 Proof of Proposition 4.14

The procedure described above will be implemented here.

Single observable flow Let (Hk,Kk)k≤N be the flow from Section 4.3 with initial
data na0 = δma and nb0 = δmb which satisfies (Hk,Kk) ∈ Dext

k (ρ0, gk,Λ). Remember
from Lemma 4.3 that na+ is independent of nb, Kb and Kab. Thus we can consider
the initial datum nb0 = 0 without changing the nak-flow. Moreover, no b- and ab-term
will ever arise. We summarize the properties in the following lemma.

Lemma 4.15. 1. Let nα0 ∈ {0, δm}. For any k ≤ jab ∧ N , the term nak is inde-
pendent of (nbl )l≤k.

2. If nα0 = 0 then Hα
k = 0 = Kα

k for all k ≤ N .

Proof. The claims follows inductively from 4. in Lemma 4.3.

Since Propositions 4.6, 4.7, 4.8 and 4.9 hold as before also in the case nb0 = 0, the fol-
lowing proposition can be proven by induction in the same way as Proposition 4.12.

Proposition 4.16. Let na0 = δma and nb0 = 0. By the same assumptions as in
Proposition 4.13 the flow (ζk, Hk,Kk)k≤N exists with

ζk = λak =
k−1∑
l=0

(BlK
a
l )1 ,

Hk(ϕ) = H∅k(ϕ) + snak∇ϕ(a)1a, where nak = na0 +
k−1∑
l=0

(BlK
a
l )1 ,

and
(Hk,Kk) ∈ Dext

k (ρ0, gk,Λ).

Extension to an infinite sequence Now we extend nak to an infinite sequence.
This is possible in view of the following independence property.

Lemma 4.17. Let us denote the dependence on the torus Λ by writing nak = na,Λk .
Let Λ′ be a larger torus. Then

na,Λk = na,Λ
′

k for all k ≤ N(Λ).

Proof. From the N -independence of the map B and the (Zd)-property for K we can
conclude that for k < N and B ∈ Pk+1

BKa,Λ
k (B) =

∑
b∈Bk(B)

Πa
kRk+1K

a,Λ
k (b) =

∑
b∈Bk(B)

Πa
kRk+1K

a,Λ′

k (b) = BKa,Λ′

k (B)

since for b ∈ Bk(B) and k < N it holds that diam(b) ≤ 1
2diam(Λ). For k ≤ N we

thus get

na,Λk = na0 +

k−1∑
l=0

(
BKa,Λ

l

)1
= na0 +

k−1∑
l=0

(
BKa,Λ′

l

)1
= na,Λ

′

k .
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For k ∈ N define

na,Z
d

k = na,Λk , Λ large enough such that k ≤ N(Λ).

The sequence is well-defined by Lemma 4.17. By definition, it holds that

na,Z
d

k = na0 +

k−1∑
l=0

(
BKa,Zd

l

)1
.

Convergence of the sequence First of all we need another generalisation. Namely,
we start with an arbitrary position x ∈ Λ of the observable instead of a fixed a.

Let

H0(ϕ;x) = H∅0 (ϕ) + sn0∇ϕ(x)1x, n0 = δm for m ∈ 1, . . . , d, K0 = eH0K∅0 .

Lemma 4.18. The sequence (nxk)k is independent of the choice of the position x.
More precisely, fix x, a ∈ Λ and n0 and consider two flows with initial condition
Hx

0 (ϕ;x) = n0∇ϕ(x)1x and Ha
0 (ϕ; a) = n0∇ϕ(a)1a and the corresponding K0. Then

nxk = nak for all k ≤ N .

We can drop the superscript x from the notation by this property.

Proof. Fix x, a ∈ Λ. We need the following ”translation property” of Ka:

at any scale k, for any X and ϕ, Ka(ϕ,X) = Kx(τx−aϕ, τx−aX). (32)

We will prove (32) subsequently. This property and translation invariance of the
measure imply that the coefficients of BkK

a
k equal the coefficients of BkK

x
k :

(BKa)0 =

∫
Ka(ϕ,Ba)µ+(dϕ) =

∫
Kx(τx−aϕ,B

x)µ+(dϕ)

=

∫
Kx(ψ,Bx)µ+(dψ) = (BKx)0.

and, since (by (35))

(BKa)1
i = 〈R+K

a, bai 〉0 = D(R+K
a)(0)(ϕai ), ϕai (x) = xi − ai,

we similarly get

(BKa)1 =

∫
DKa(ϕ,Ba)ϕai µ+(dϕ) =

∫
D (Kx(τx−aϕ, τx−aB

a))ϕai µ+(dϕ)

=

∫
DKx(τx−aϕ,B

x)(τx−aϕ
a
i )µ+(dϕ) =

∫
DKx(ψ,Bx)(τx−aϕ

a
i )µ+(dψ)

=

∫
DKx(ψ,Bx)(ϕxi )µ+(dϕ) = (BKx)1.

By induction we verify that nak = nxk for any k.
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It remains to prove (32). We again argue by induction. The induction hypothesis is

For all l ≤ k and X ∈ Pl, Ka
l (ϕ,X) = Kx

l (τx−aϕ, τx−aX). (33)

The case k = 0 is immediate:

Kx
0 (τx−aϕ, τx−aX) = n0∇(τx−aϕ)(x)1x(τx−aX)K∅0 (τx−aϕ, τx−aX)

= n0∇ϕ(a)1a(X)K∅0 (ϕ,X) = Ka
0 (ϕ,X).

For the induction step we have to show that for all U ∈ Pk+1[
Sext(H,K)

]a
(ϕ,U) =

[
Sext(H,K)

]x
(τx−aϕ, τx−aU).

From the definition of Sext it holds that[
Sext(H,K)

]a
(ϕ,U) = (BKa)0S∅(H,K)(ϕ,U) + [S(H,K)]a (ϕ,U).

We already showed that (BKa)0 = (BKx)0 and that the bulk part satisfies transla-
tion invariance, so the first term becomes

(BKa)0S∅(H,K)(ϕ,U) = (BKx)0S∅(H,K)(τx−aϕ, τx−aU).

For the second term, from the definition of S, there is always one a−part falling on
either eH̃(U \X) or e−H̃(X\U) or (1 − eH̃) or (eH − 1) or K. The others form the
bulk part. The bulk part always satisfies translation invariance, so we just have to
check if the a-part translates correctly.
If the a-part falls on K, we use the induction hypothesis and translation invari-
ance of the measure, and translate the sum over polymers

∑
X∈Pk χ(X,U) into∑

X∈Pk χ(X, τx−aU). The input field is then τx−aϕ.

If the a-part falls on eH̃ , we have

H̃a(Ba)(ϕ) = Ha(Ba, ϕ) + BKa(Ba, ϕ) = Hx(Bx, τx−aϕ) + BKx(Bx, τx−aϕ).

Now we can prove the convergence result.

Proposition 4.19. Given the assumptions of Proposition 4.13, the sequence(
na,Z

d

k

)
k∈N

converges to the limit n∞ = na0.

Proof. Convergence of the sequence is clear since by Proposition 4.9 and Proposi-
tion 4.16 we can bound the sum uniformly in N :

k−1∑
l=0

∣∣∣∣(BKa,Zd
l

)1
∣∣∣∣ ≤ k−1∑

l=0

AB
2
h−1ηk <∞.
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Let us denote the limit by n∞.
We show n∞ = na0 by a limiting procedure involving the result on the scaling limit
in Theorem 2.1. Let

ZN (ϕ;x) = eζN
(
eHN (ϕ;x) +KN (ϕ)

)
be the generating partition function at scale N , with one observable at position x.

Let gN (x) = L−N
d
2 g
(
L−Nx

)
for g ∈ C∞c (Td) satisfying

∫
g = 0 as in the assumptions

of Theorem 2.1 and hN = Cq∇jgN , h = Cq∂jg for a fixed direction j ∈ {1, . . . , d}.
We will show that

D

[∫
na0 (∇(ϕ+ ξ), gN )F ∅0 (ϕ+ ξ)µCq(dϕ)

]
ϕ=0

(hN )
N→∞−−−−→ n∞(∂h, g)L2(Td) (A)

by the statements on the observable flow. Here, the left hand side denotes the
directional derivative of the term in brackets of ϕ in direction hN .
On the other hand, by transforming the term into derivatives of the bulk partition
function and using results there, we will show that

D

[∫
na0 (∇(ϕ+ ξ), gN )F ∅0 (ϕ+ ξ)µCq(dϕ)

]
ϕ=0

(hN )
N→∞−−−−→ na0(h, ∂∗g)L2(Td). (B)

By uniqueness of the limit we can conclude that n∞ = na0.

We start by proving (A). We can transform

D

[∫
na0 (∇(ϕ+ ξ), gN )F ∅0 (ϕ+ ξ)µCq(dϕ)

]
ϕ=0

(hN )

=
∑
x

gN (x)D
[
∂s
∣∣
s=0

lnZN (ϕ;x)
]
ϕ=0

(hN )

= naN (∇hN , gN )
eH
∅
N (0)

Z∅N (0)

+
1

Z∅N (0)

∑
x

gN (x)DKx
N (0)(hN ) +

DZ∅N (0)(hN )(
Z∅N (0)

)2

∑
x

gN (x)Kx
N (0).

By Lemma 5.16 we can estimate∣∣∣eH∅N (0) − 1
∣∣∣ ≤ C∣∣∣∣∣∣∣∣∣eH∅N (0) − 1

∣∣∣∣∣∣∣∣∣
N
≤ C‖H∅N‖N,0,

and, since (H∅N ,K
∅
N ) ∈ Dk(ρ0, gk,Λ), we conclude that∣∣∣eH∅N (0) − 1

∣∣∣ , ∣∣∣Z∅N (0)− 1
∣∣∣→ 0.

Together with the convergence result of Proposition 4.7 in [Hil16] we obtain

naN (∇hN , gN )
eH
∅
N (0)

Z∅N (0)
→ n∞(∂h, g)L2(Td) as N →∞.
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Furthermore,∣∣∣∣∣∑
x

gN (x)

∣∣∣∣∣ = LNd/2L−Nd

∣∣∣∣∣∑
x

g(L−Nx)

∣∣∣∣∣ ≤ CLNd/2
∣∣∣∣∫ g(x)dx

∣∣∣∣ ,
but

|DKa
N (0)(hN )| ≤ l−1

obs,N‖KN‖(A),ext
N |Cq∇∗gN |N,ΛN ≤ CL

−Nd/2ηN2N

for a constant independent of N , such that∣∣∣∣∣∑
x

gN (x)DKx
N (0)(hN )

∣∣∣∣∣ ≤ C(2η)N → 0.

We estimate DZ∅N (0)(hN ) as in the proof of Theorem 2.7. Namely,∣∣∣DZ∅N (0)(hN )
∣∣∣ =

∣∣∣D (Z∅N − 1
)

(0)(hN )
∣∣∣

≤
∣∣∣D (eH∅N − 1

)
(0)(hN )

∣∣∣+
∣∣∣DK∅N (0)(hN )

∣∣∣
≤ C

(∣∣∣∣∣∣∣∣∣eH∅N − 1
∣∣∣∣∣∣∣∣∣
N
|hN |N,ΛN +

∥∥∥K∅N∥∥∥(A)

N
|hN |N,ΛN

)
.

By Lemma 5.16 it holds that∣∣∣∣∣∣∣∣∣eH∅N − 1
∣∣∣∣∣∣∣∣∣
N
≤ 8

∥∥∥H∅N∥∥∥
N,0

.

Moreover, similar to Lemma 5.2 from [Hil16] one can show that

|hN |N,ΛN = |Cq∇∗gN |N,ΛN ≤ C

for a constant C which is independent of N . With (H∅N ,K
∅
N ) ∈ D(ρ0, gk,Λ) it follows

that ∣∣∣DZ∅N (0)(hN )
∣∣∣ ≤ C (‖H∅N‖N,0 + ‖K∅N‖

(A)
N

)
≤ CηN .

Thus ∣∣∣DZ∅N (0)(hN )
∣∣∣∣∣∣Z∅N (0)

∣∣∣2 → 0,

and ∣∣∣∣∣∑
x

gN (x)Kx
N (0)

∣∣∣∣∣ ≤ CLNd/2L−Nd/2(2η)N → 0.
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Now we prove (B). We start with the following transformations:

D

[∫
na0 (∇(ϕ+ ξ), gN )F ∅0 (ϕ+ ξ)µCq(dϕ)

]
ϕ=0

(hN )

= na0∂f

[
D

[∫
e(ϕ+ξ,f)F ∅0 (ϕ+ ξ)µCq(dξ)

]
ϕ=0

(hN )

]
f=0

(∇∗gN )

= na0∂f

[
e

1
2

(f,Cqf)D
[
e(ϕ,f)Z∅N (Cqf + ϕ)

]
ϕ=0

(hN )

]
f=0

(∇∗gN )

= na0∂f

[
e

1
2

(f,Cqf)(hN , f)Z∅N (Cqf) +DZ∅N (Cqf)(hN )
]
f=0

(∇∗gN )

= na0

[
(hN ,∇∗gN )Z∅N (0) +D2Z∅N (0)(hN )(Cq∇∗gN )

]
.

The first term converges

(hN ,∇∗gN )Z∅N (0)→ (h, ∂∗g)L2(Td)

as N → ∞, due to
∣∣∣Z∅N (0)− 1

∣∣∣ → 0 and the convergence result of Proposition 4.7

from [Hil16]. The second term tends to zero by the following considerations which
resemble the arguments in the proof of Theorem 2.7 and (A). It holds that

D2Z∅N (0)(hN , Cq∇∗gN ) = D2
(
Z∅N − 1

)
(0)(hN , Cq∇∗gN ),

and thus ∣∣∣D2Z∅N (0)(hN , Cq∇∗gN )
∣∣∣

≤
∣∣∣D2

(
eH
∅
N − 1

)
(0)(hN , Cq∇∗gN )

∣∣∣+
∣∣∣D2K∅N (0)(hN , Cq∇∗gN )

∣∣∣
≤ C

(∣∣∣∣∣∣∣∣∣eH∅N − 1
∣∣∣∣∣∣∣∣∣
N

+
∥∥∥K∅N∥∥∥(A)

N

)
|hN |N,ΛN |C

q∇∗gN |N,ΛN .

As before it holds that

|Cq∇∗gN |N,ΛN , |hN |N,ΛN ≤ C

for a constant C which is independent of N , and∣∣∣∣∣∣∣∣∣eH∅N − 1
∣∣∣∣∣∣∣∣∣
N
≤ C

∥∥∥H∅N∥∥∥
N,0

.

Together with (H∅N ,K
∅
N ) ∈ Dk(ρ0, gk,Λ) we conclude that∣∣∣D2Z∅N (0)(hN , Cq∇∗gN )

∣∣∣ ≤ Cηk → 0.

This proves the claim.
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Back to finite volume Now we can prove Proposition 4.14.

Proof of Proposition 4.14. We conclude from Proposition 4.19 and the construction
of the flow that

n∞ = na0 +

∞∑
k=0

(
BkK

a,Zd
k

)1
= na0 ⇒

∞∑
k=0

(
BkK

a,Zd
k

)1
= 0.

Using Proposition 4.16 we can estimate∣∣∣∣∣
m−1∑
k=0

(
BkK

a,Zd
k

)1
∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=m

(
BkK

a,Zd
k

)1
∣∣∣∣∣ ≤

∞∑
k=m

AB
2
h−1ηk =

AB
2
h−1 1

1− η
ηm.

By definition of the infinite sequence, the (Zd)-property and the local dependence
of the relevant flow it holds that for all k ≤ jab − 1

BkK
a,Zd
k = BkK

a,Λ
k .

Thus

Sajab =

jab−1∑
k=0

(BkK
a
k )1 = O

(
ηjab

)
.

4.5 Proof of Theorem 2.11

The proof of Theorem 2.11 consists of two steps. By direct observation of the flow
we get the estimate for qabN in Proposition 4.13. In a second step Proposition 4.14 is
used to get a refined leading term.

Proof of Theorem 2.11. Let L1 and ε1 be as in Proposition 4.12 with η < 1
4 . Then,

by Proposition 4.13, (12) holds with the estimates on Zext
N (K, 0) and on λαN and with

qabN =
(
δma + Sajab

)(
δmb + Sbjab

)
∇∗∇Cq(K)(a, b) + R̃ab.

Proposition 4.14 gives the improved estimate as can be found in the statement of
Theorem 2.11.
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5 Proofs of extensions and intermediate steps

Note that in this section any dependencies on q are omitted since q ∈ Bκ(0) is fixed
with κ depending on ζ, η and L in Proposition 3.21. As an exception we note the
dependency explicitely in Lemma 5.1 since this is the place where the parameter κ
is determined in dependence on L.
In this whole section R is a parameter which depends only on d.

5.1 Properties of the norms

In this subsection we follow closely the presentation in [Buc19], Section 4.6. Ar-
guments from [Buc19] which can be applied without any change to the extended
setting will be omitted in proofs.

5.1.1 Properties of the weights

For the sake of completeness we review Proposition 4.5.1 from [Buc19]. The last
scale weights (k = N) differ from [Buc19] due to the modified definition of the last
scale covariance (see (13)). However, this does not change the properties of the
weights as stated in the following lemma.

Lemma 5.1. Let L ≥ 2d+3 + 16R. The weight functions wk, wk:k+1 and Wk are
well-defined and satisfy the following properties:

1. For any Y ⊂ X ∈ Pk, 0 ≤ k ≤ N , and ϕ ∈ VN

wYk (ϕ) ≤ wXk (ϕ) and wYk:k+1(ϕ) ≤ wXk:k+1(ϕ).

2. For any strictly disjoint polymers X,Y ∈ Pk, 0 ≤ k ≤ N , and ϕ ∈ VN

wX∪Yk (ϕ) = wXk (ϕ)wYk (ϕ).

3. For any polymers X,Y ∈ Pk such that dist(X,Y ) ≥ 3
4L

k+1, 0 ≤ k ≤ N , and
ϕ ∈ VN

wX∪Yk:k+1(ϕ) = wXk:k+1(ϕ)wYk:k+1(ϕ).

4. For any disjoint polymers X,Y ∈ Pk, 0 ≤ k ≤ N , and ϕ ∈ VN

WX∪Y
k (ϕ) = WX

k (ϕ)W Y
k (ϕ).

Moreover, there is a constant h0 = h0(L, ζ) such that for all h ≥ h0 the weight
functions satisfy the following properties:

5. For any disjoint polymers X,Y ∈ Pk and U = π(X) ∈ Pk+1, 0 ≤ k ≤ N − 1,
and ϕ ∈ VN

wUk+1(ϕ) ≥ wXk:k+1(ϕ)
(
WU+

k (ϕ)
)2
.
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6. For all 0 ≤ k ≤ N − 1, X ∈ Pk+1 and ϕ ∈ VN ,

e
|ϕ|2k+1,X

2 wXk:k+1(ϕ) ≤ wXk+1(ϕ).

Lastly, there exists a constant κ = κ(L, ζ) with the following properties:

7. There is a constant AP such that for q ∈ Bκ(0), ρ = (1 + ζ
4)1/3 − 1, Y ∈ Pk,

0 ≤ k ≤ N , and ϕ ∈ VN(∫
χN

(
wXk (ϕ+ ξ)

)1+ρ
µk+1(dξ)

) 1
1+ρ

≤
(
AP
2

)|X|k
wXk:k+1(ϕ).

8. There is a constant AB independent of L such that for q ∈ Bκ, ρ = (1+ ζ
4)1/3−

1, B ∈ Bk, 0 ≤ k ≤ N , and ϕ ∈ VN(∫
χN

(
wBk (ϕ+ ξ)

)1+ρ
µk+1(dξ)

) 1
1+ρ

≤ AB
2
wBk:k+1(ϕ).

Remark 5.2. The weights wk and wk:k+1 are independent of the size of the torus
as long as the input polymer is small enough. This can be seen when examining the
construction of the weights. The weights essentially arise as follows: Take the local
quadratic form from [AKM16], integrate against the covariance of the finite-range
decomposition (which is independent of the size of the torus by Remark 3.3) and add
explicit local perturbing terms. These steps are independent of the size of the torus
as long as the input-polymer is small enough compared to the torus.
The weights Wk are given explicitly and obviously local.

5.1.2 Pointwise properties of the norms

The following lemma is an extension to observables of Lemma 4.6.1 from [Buc19].

Lemma 5.3. Assume that F,G ∈ N , X ∈ Pk and F (ϕ) and G(ϕ) depend only
on ϕ|X∗. Assume furthermore that F (ϕ + ψ) = F (ϕ), G(ϕ + ψ) = G(ϕ) if ψ|X∗ is
constant. Then

|FG|ext
k,X,Tϕ ≤ |F |

ext
k,X,Tϕ |G|

ext
k,X,Tϕ

and, for X ∈ Pk and α ∈ {∅, a, b, ab},

|Fα|k+1,X,Tϕ ≤ (1 + |ϕ|k+1,X)3

(
|Fα|k+1,X,T0 + 16L−

3
2
d sup

0≤t≤1
|Fα|k,X,Ttϕ

)
.

Proof. We write the extended norm as sum |K|ext
k,X,Tϕ

=
∑

α l
|α|
obs,k|K

α|k,X,Tϕ and

apply Lemma 4.6.1. from [Buc19] on each (bulk) norm |FαGβ|k,X,Tϕ . This yields
that

l
|α|+|β|
obs,k

∣∣∣FαGβ∣∣∣
k,X,Tϕ

≤
(
l
|α|
obs,k|F

α|k,X,Tϕ
)(

l
|β|
obs,k|G

β|k,X,Tϕ
)
.
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Thus

|FG|k,X,Tϕ =
∑
α

lαobs|(FG)α|k,X,Tϕ ≤

(∑
α

l
|α|
obs,k|F

α|Tϕ

)(∑
α

l
|α|
obs,k|G

α|Tϕ

)

since

FG = F ∅G∅ + s
(
F aG∅ + F ∅Ga

)
+ t
(
F bG∅ + F ∅Gb

)
+ st

(
F ∅Gab + F abG∅ + F aGb + F bGa

)
.

This proves the first inequality. The second inequality is the same as in [Buc19].

The following statement is an extension to observables of Lemma 4.6.2 from [Buc19].

Lemma 5.4. Let ϕ ∈ χN . Then

1. for any F1, F2 ∈M ext(Pk) and any X1, X2 ∈ Pk we have

|F1(X1)F2(X2)|ext
k,X1∪X2,Tϕ ≤ |F1(X1)|ext

k,X1,Tϕ |F2(X2)|ext
k,X2,Tϕ ;

2. for any F ∈M ext(Pk) and any polymer X ∈ Pk the bound

|F (X)|k+1,π(X),Tϕ ≤ max

{
1,
η2

4
Ld
}
|F (X)|k,X∪π(X),Tϕ

≤ max

{
1,
η2

4
Ld
}
|F (X)|k,X,Tϕ

holds if L ≥ 2d +R.

In 2., the factor η2

4 L
d is new in comparison to [Buc19].

Proof. The first inequality follows from Lemma 5.3 and the estimate

|F (X)|k,X∪Y,Tϕ ≤ |F (X)|k,X,Tϕ .

as in [Buc19].

For the second inequality note that due to the change of scale we have an additional
factor

l
|α|
obs,k+1

l
|α|
obs,k

≤ η2

4
Ld

for |α| = 1, 2, which appears in the stated inequality. The remaining steps are as in
[Buc19].



78 5 PROOFS OF EXTENSIONS AND INTERMEDIATE STEPS

5.1.3 Submultiplicativity of the norms

The following claim is based on Lemma 4.6.3 in [Buc19], extended to observables.

Lemma 5.5. Let L ≥ 2d+3 + 16R be an odd integer and h ≥ h0(L), where h0 is
fixed in Lemma 5.1. For k ∈ {0, . . . , N − 1}, let K ∈M ext(Pk) factor at scale k and
let F, F1, F2, F3 ∈M(Bk). Then the following bounds hold:

1. ‖K(X)‖ext
k,X ≤

∏
Y ∈C(X) ‖K(Y )‖ext

k,Y and

‖K(X)‖ext
k:k+1,X ≤

∏
Y ∈C(X) ‖K(Y )‖ext

k:k+1,Y

and more generally the same bounds hold for any decomposition X =
⋃
Yi

such that the Yi are strictly disjoint.

2. ‖FXK(Y )‖k,X∪Y ≤ ‖K(Y )‖k,Y |||F |||
|X|k
k for X,Y ∈ Pk with X and Y disjoint.

3. For any polymers X,Y, Z1, Z2 ∈ Pk such that X ∩ Y = ∅, Z1 ∩ Z2 = ∅, and
Z1, Z2 ⊂ π(X ∪ Y ) ∪X ∪ Y ,

‖FZ1
1 FZ2

2 FX3 K(Y )‖k+1,π(X∪Y )

≤ max

{
1,
η2

4
Ld
}
‖K(Y )‖k:k+1,Y |||F1||||Z1|k

k |||F2||||Z2|k
k |||F1||||X|kk .

4. |||1(B)|||k,B = 1 for B ∈ Bk.

In 3., the factor η2

4 L
d is new in comparison to[Buc19].

Proof. Ingredients for the proof are the submultiplicativity of the Tϕ-seminorm in
Lemma 5.4 and properties of the weights. Since the submultiplicativity also holds
for extended functionals the proof is exactly the same as in [Buc19]. The new factor
η2

4 L
d appears in the transition from one scale to the next one using (26).

5.1.4 Regularity of the integration map

We extend Lemma 4.6.4 from [Buc19] to observables.

Lemma 5.6. Let L ≥ 2d+3 + 16R and let AP be the constant from Lemma 5.1.
Then

‖Rk+1K(X)‖ext
k:k+1,X ≤

(
AP
2

)|X|k
‖K(X)‖ext

k,X .

If X is a block the constant is AB which is independent of L.

Proof. The proof in [Buc19] does not use any special property of the Tϕ-seminorm,
so it works exactly as in [Buc19].

For later reference we state the following inequality which appears in the proof of
Lemma 4.6.4 from [Buc19].
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Lemma 5.7. Assume that Lemma 5.6 holds. Then

|Rk+1K(X)|ext
k,X,Tϕ ≤ ‖K(X)‖ext

k,X

(
AP
2

)|X|k
wXk:k+1(ϕ). (34)

If X is a block the constant is AB which is independent of L.

5.1.5 The extended projection Πk to relevant Hamiltonians

We extend the space of relevant Hamiltonians to observables.

Let U = {e1, . . . , ed}. The monomials which appear in [Buc19] are

M∅({x})(ϕ) = 1,

Mβ({x})(ϕ) = ∇βϕ(x),

Mβ,γ({x})(ϕ) = ∇βϕ(x)∇γϕ(x).

Then the corresponding index sets are

v0 = {∅},
v1 = {β : β ∈ NU0 , 1 ≤ |β| ≤ bd/2c+ 1},
v2 = {(β, γ) : β, γ ∈ NU0 , |β| = |γ| = 1, β < γ}.

Here, β < γ refers to any ordering of U . We additionally define

vα0 = {∅}, α ∈ {a, b, ab},
vα1 = {β ∈ NU0 : |β| = 1}, α ∈ {a, b}.

We set

vext = v0 ∪ v1 ∪ v2 ∪ va0 ∪ va1 ∪ vb0 ∪ vb1 ∪ vab0 .

A monomial on a block B for m ∈ vext can then be written as

Mm(B)(ϕ) =
∑
x∈B

Mm({x})(ϕ).

The space of relevant Hamiltonians is given by

Vext = V0 ⊕ V1 ⊕ V2 ⊕ Va0 ⊕ Va1 ⊕ Vb0 ⊕ Vb1 ⊕ Vab0

where

V0 = R,
V1 = span{Mm(B) : m ∈ v1},
V2 = span{Mm(B) : m ∈ v2},
Vα0 = R, α ∈ {a, b, ab},
Vα1 = span{Mm({α}) : m ∈ vα1 }, α ∈ {a, b}.
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As in [Buc19], we set

bβ(z) =

(
z1

β1

)
· · ·
(
zd
βd

)
, z ∈ Zd, β ∈ N{1,...,d}0 .

We extend the basis for polynomials on Zd for α ∈ {a, b} by

bαβ(z) =

(
z1 − α1

β1

)
. . .

(
zd − αd
βd

)
.

Using these functions we can extend the space P in [Buc19] to observables by defining

Pα0 = R, α ∈ {a, b, ab},
Pα1 = span{bαβ : β ∈ vα1 }, α ∈ {a, b},

and setting

Pext = P ⊕ Pa0 ⊕ Pa1 ⊕ Pb0 ⊕ Pb1 ⊕ Pab0 .

Now we can formulate the extension of Lemma 4.6.5 from [Buc19]. The notation
〈F, g〉ϕ = 〈TayϕF, g〉 is used as in [Buc19].

Lemma 5.8. Let K ∈ M ext(Pck, χN ) and let B ∈ Bk. Then there exists one and
only one H ∈ Vext such that

〈H, g〉0 = 〈K(B), g〉0 for all g ∈ Pext.

More precisely, for α ∈ {a, b},

Hα(ϕ) = Kα(0) + nα∇ϕ(α),

where

nαγ = 〈Kα(B), bαγ 〉0 for all γ ∈ vα1 (35)

and

qab = Kab(0).

Definition 5.9. We define ΠK(B) = H where H is given by Lemma 5.8.

Proof of Lemma 5.8. The bulk part of K is handled in [Buc19]. The constant ob-
servable part of H ∈ Vext is given by

λa = Ka(B, 0), λb = Kb(B, 0), qab = Kab(B, 0).

We turn to the linear observable part of H. We claim that for α ∈ {a, b} there is a
unique H1,α ∈ Vα1 such that

〈H1,α, g〉0 = 〈Kα(B), g〉0 for all g ∈ Pα1 .
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An element H1,α ∈ Vα1 is of the form
∑

β∈vα1
nαβMβ({α}) for some nαβ yet to be

determined.

Testing against the basis {bαβ : β ∈ vα1 } of Pα1 we have to show that there is a family(
nαβ

)
β∈vα1

such that

∑
β∈vα1

nαβ〈Mβ({α}), bαγ 〉0 = 〈Kα(B), bαβ〉0 for all γ ∈ vα1 .

The last equality is equivalent to∑
β∈vα1

nαβBβγ = 〈Kα(B), bαβ〉0 for all γ ∈ vα1

with

Bβγ = 〈∇βϕ(α), bαγ 〉0 = 〈Tay0∇βϕ(α), bαγ 〉 = ∇βbαγ (α) = bαγ−β(α).

For β, γ ∈ vα1 we get that Bβ,γ = 1β=γ and thus

nαγ = 〈Kα(B), bαγ 〉0 for all γ ∈ vα1 .

The following statement is an extension to observables of Lemma 4.6.7 from [Buc19].

Lemma 5.10. There exists a constant C such that for L ≥ 2d+R and 0 ≤ k ≤ N−1

‖ΠkK(B)‖ext
k,0 ≤ C|K(B)|ext

k,B,T0
.

Proof. The bulk part of the estimate is done in [Buc19]. What remains to prove is

‖Πα
kK

α(B)‖αk,0 ≤ Cl
|α|
obs,k|K

α(B)|k,B,T0 .

Since for the constant part of the projection we have λα = Kα(B, 0) for α ∈ {a, b}
and qab = Kab(B, 0) we just have to estimate the coefficients nα of the linear part
of the projection.

Since nα = 〈Kα(B), bα〉0 (see (35) in Lemma 5.8) we have to show that

lobs,klk|〈Kα(B), bα〉0| ≤ Clobs,k|Kα(B)|k,B,T0 .

However, this follows directly from the definition of the Tϕ-seminorm and since
|bα|k,B = l−1

k :

〈Kα(B), bα〉0 ≤ |bα|k,B sup
|g|k,B≤1

〈Kα(B), g〉0 ≤ l−1
k |K

α(B)|k,B,T0 .

We extend Lemma 4.6.8 from [Buc19] to observables.
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Lemma 5.11. For H ∈M ext
0 , L ≥ 3, and 0 ≤ k ≤ N we have

|H|ext
Tϕ ≤ (1 + |ϕ|k,B)2‖H‖ext

k,0 ≤ 2(1 + |ϕ|2k,B)‖H‖ext
k,0.

Proof. The only difference to [Buc19] is that additional terms in |H|ext
Tϕ

and ‖H‖ext
k,0

exist:

|H|ext
Tϕ = |H∅|Tϕ + lobs,k

(
|λa|+ |na∇ϕ(a)1a|Tϕ

)
+ lobs,k

(
|λb|+ |nb∇ϕ(b)1b|Tϕ

)
+ l2obs,k|qab|,

‖H‖ext
k,0 = ‖H∅‖k,0 + lobs,k (|λa|+ lk|na|) + lobs,k

(
|λb|+ lk|nb|

)
+ l2obs,k|qab|.

Thus the proof is finished if we show that, for α ∈ {a, b},

lobs,k|nα∇ϕ(α)1α(B)|Tϕ ≤ (1 + |ϕ|k,B)2lobs,klk|nα|.

This follows straightforwardly since

|∇ϕ(α)1α(B)|Tϕ = (|∇ϕ(a)|+ lk)1α(B) ≤ lk|ϕ|k,B + lk ≤ lk
(
1 + |ϕ|2k,B

)
.

The following lemma is an extension of Lemma 4.6.9 from [Buc19].

Lemma 5.12. Let A(α, k) = 0 when k ≥ jab, α ∈ {a, b, ab}, and A(α, k) = 1
when k < jab, α ∈ {a, b}. There exists a constant C such that for L ≥ 2d + R, for
α ∈ {a, b, ab},

|(1−Πα
k )Kα(B)|k+1,B,T0 ≤ CL−(d/2+A(α,k))|Kα|k,B,T0 .

Proof. We start with α ∈ {a, b, ab} and k ≥ jab, i.e. Πα
k = Π0. Note that

|(1−Π0)Kα(B)|k+1,B,T0
= sup {〈(1−Π0)Kα, g〉0 : g ∈ Φ, |g|k+1,B ≤ 1} .

For g ∈ χ⊗r, r ≥ 1, it holds that

〈(1−Π0)Kα, g〉0 = 〈Kα, g〉0

since Π0K
α depends only on the first order Taylor polynomial. For g ∈ χ⊗r, r ≥ 1,

we can use the estimate

|g|k,B ≤ 8L−
1
2
d|g|k+1,B

as in [Buc19]. Thus

|〈(1−Π0)Kα, g〉0| ≤ |K
α|k,B,T0 |g|k,B ≤ 8L−

1
2
d|g|k+1,B|Kα|k,B,T0 .

For g ∈ χ⊗0 = R = Pα0 it holds that

〈Π0K
α, g〉0 = 〈Kα, g〉0
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and thus
〈(1−Π0)Kα, g〉0 = 0 for all g ∈ R.

This argument finishes the case k ≥ jab.
Now let α ∈ {a, b} and k < jab, i.e., Πα

k = Π1. As above we can use for all g ∈ χ⊗r
and r ≥ 2

|〈(1−Π1)Kα, g〉0| = |〈K
α, g〉0| ≤ 8L−

1
2
d|Kα|k,B,T0 |g|k+1,B.

Again,
〈(1−Π0)Kα, g〉0 = 0 for all g ∈ R = Pα0 .

Let ϕ ∈ χ. For all P ∈ Pα1 we have 〈Π1K
α, P 〉0 = 〈Kα, P 〉0. Using additionally

boundedness of Π, we can estimate

|〈(1−Π1)Kα, ϕ〉0| = min
P∈Pα1

|〈(1−Π1)Kα, ϕ− P 〉0|

≤ |(1−Π1)Kα|k,B,T0 min
P∈Pα1

|ϕ− P |k,B

≤ C|Kα|k,B,T0 min
P∈Pα1

|ϕ− P |k,B.

With Lemma 5.13 below the proof is finished.

Lemma 5.13. There exists a constant C such that for L ≥ 2d+R and for all ϕ ∈ χ

min
P∈Pα1

|ϕ− P |k,B ≤ CL−( d
2

+1)|ϕ|k+1,B.

Proof. The statement is an extension of Lemma 4.6.10 from [Buc19]. The proof is as
in [Buc19] with the only difference being the choice of parameter s = 1, which origin-

ally was s =
⌊
d
2

⌋
+ 1. The reason for this change is that Pα1 = span

{
bαβ : |β| = 1

}
,

whereas in the bulk flow higher derivatives are also allowed. Then P = Taysaϕ
provides the minimizer.

5.2 Smoothness of the extended renormalisation map

In this section we prove Proposition 4.7 which claims that there is L0 and corres-
ponding A0 and h0 and a parameter ρ∗(A) such that Sext

k ∈ Uρ∗(A) with bounds on
derivatives which are uniformly in N .

Remember that

Sext(H,K) = e−s(BK
a)0−t(BKb)

0−st(
∫
HaHbdµ++BKab)S(H,K)

where we drop the subscript k and k + 1 in the notation. To nevertheless note the
change of scale, we abbreviate k + 1 by +.
Let us denote

F = sF a + tF b + stF ab := −s(BKa)0 − t(BKb)0 − st
(∫

HaHbdµ+ + BKab

)
.

We divide the proof of Proposition 4.7 into two steps. The first step is the analysis
of S.
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Lemma 5.14. There is L0 such that for all odd integers L ≥ L0 there is A0, h0 with
the following property. For all A ≥ A0, h ≥ h0 there is ρ∗ = ρ∗(A) such that

S ∈ C∞
(
Uρ∗ ,M

ext(Pck+1)
)

and for any p, q ∈ N there is a constant Cp,q = Cp,q(L, h,A) such that for any
(H,K) ∈ Uρ∗∥∥∥Dp

HD
q
KS(H,K)(Ḣp, K̇q)

∥∥∥(A),ext

k+1
≤ Cp,q

(
‖Ḣ‖ext

k,0

)p (
‖K̇‖(A),ext

k

)q
.

The second step includes the analysis of the prefactor eF .

Lemma 5.15. Assume that Lemma 5.14 holds. Then

Sext ∈ C∞
(
Uρ∗ ,M

ext(Pck+1)
)

and for each p, q ∈ N there is a constant C∗p,q such that for any (H,K) ∈ Uρ∗,∥∥∥Dp
HD

q
KSext(H,K)(Ḣp, K̇q)

∥∥∥(A),ext

k+1
≤ C∗p,q

(
‖Ḣ‖ext

k,0

)p (
‖K̇‖(A),ext

k

)q
.

Proposition 4.7 follows from Lemma 5.15 with the assumptions of Lemma 5.14.

We first prove Lemma 5.15.

Proof of Lemma 5.15. We show smoothness via bounds on the derivatives.
Since F is a constant in ϕ, we can estimate∥∥∥Dp

HD
q
KSext(H,K)(Ḣp, K̇q)

∥∥∥(A),ext

k+1
=
∥∥∥Dp

HD
q
K

[
eFS(H,K)

]
(Ḣp, K̇q)

∥∥∥(A),ext

k+1

≤ Cp,q
∑

p1+p2=p
q1+q2=q

∥∥∥Dp1

HD
q1
K

[
eF
]

(Ḣp1 , K̇q1)Dp2

HD
q2
KS(H,K)(Ḣp2 , K̇q2)

∥∥∥(A),ext

k+1

≤ Cp,q
∑

p1+p2=p
q1+q2=q

sup
U

{
A|U |k+1

∣∣∣Dp1

HD
q1
K

[
eF (U)

]
(Ḣp1 , K̇q1)

∣∣∣ext

k+1,U,T0

∥∥∥Dp2

HD
q2
KS(H,K)(U)(Ḣp2 , K̇q2)

∥∥∥ext

k+1,U

}
.

By assumption S is smooth with the desired bounds, so it is enough to show that∣∣∣Dp1

HD
q1
K

(
eF (U)

)
(Ḣp1 , K̇q1)

∣∣∣ext

k+1,U,T0

≤ C
(
‖Ḣ‖ext

k,0

)p1
(
‖K̇‖(A),ext

k

)q1
.

Note that if a, b /∈ U then eF (U) = 1 such that any derivative Dp1

H or Dq1
K gives just

zero which is not optimal for the supremum. Thus either a, b /∈ U and p1 = q1 = 0
or α ∈ U for α ∈ {a, b, ab}. In the first case we are done – the constant we get is 1.
In the second case we go through all possible cases. Let (H,K) ∈ Uρ∗ .
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• p1 = 0, q1 = 0:

We use Lemma 5.27, Lemma 5.28 and estimate (26) to get∣∣eF (U)
∣∣ext

k+1,U,T0
= 1 + |F a(U)|+ |F b(U)|+ |F ab(U)|+ |F a(U)F b(U)|

= 1 + lobs,k+1

(∣∣(BKa)0
∣∣+
∣∣(BKb)0

∣∣)
+ l2obs,k+1

(∣∣∣BKab
∣∣∣+

∣∣∣∣∫ HaHbdµ+

∣∣∣∣+
∣∣∣(BKa)0(BKb)0

∣∣∣)
≤ 1 +

AB
2
Ld/2

η

2
ρ∗ + Ld

η2

4
ρ∗
(
AB
2

+
A2
B

4
ρ∗ + CFRDh

−2ρ∗
)

which is bounded by a constant.

• p1 = 0, q1 = 1: By Lemma 5.27 and estimate (26) we get∣∣∣DKe
F (U)K̇

∣∣∣ext

k+1,U,T0

= lobs,k+1

(∣∣(BK̇a)0
∣∣+
∣∣(BK̇b)0

∣∣)
+ l2obs,k+1

(∣∣(BK̇ab)0
∣∣+ |(BKa)0|

∣∣(BK̇b)0
∣∣+ |(BKb)0|

∣∣(BK̇a)0
∣∣)

≤ lobs,k+1l
−1
obs,kAB‖K̇‖

(A),ext
k + l2obs,k+1l

−2
obs,k

(
AB
2

+ 2

(
AB
2

)2

ρ∗

)
‖K̇‖(A),ext

k

≤ C‖K̇‖(A),ext
k .

• p1 = 0, q1 = 2: By Lemma 5.27 and estimate (26) we get∣∣∣D2
K

(
eF (U)

)
(K̇, K̇)

∣∣∣ext

k+1,U,T0

= l2obs,k+12
∣∣(BK̇a)0

∣∣∣∣(BK̇b)0
∣∣

≤ 2l2obs,k+1l
−2
obs,k+1

(
AB
2

)2 (
‖K̇‖(A),ext

k

)2

≤ C
(
‖K̇‖(A),ext

k

)2
.

• p1 = 0, q1 > 2: The derivative is zero.

• p1 = 1, q1 = 0: By Lemma 5.28 we get∣∣∣DHe
F (U)Ḣ

∣∣∣ext

k+1,U,T0

= l2obs,k+1

∣∣∣∣∫ ḢaHbdµ+ +

∫
HaḢbdµ+

∣∣∣∣
≤ 2CFRDl

2
obs,k+1l

−2
obs,kh

−2
k ρ∗‖Ḣ‖ext

k,0

≤ C‖Ḣ‖ext
k,0.

• p1 = 1, q1 > 0: The derivative is zero.
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• p1 = 2, q1 = 0: By Lemma 5.28 we get∣∣∣D2
He

F Ḣ2
∣∣∣ext

k+1,U,T0

= l2obs,k+12
∣∣∣ ∫ ḢaḢbdµ+

∣∣∣
≤ 2CFRDl

2
obs,k+1l

−2
obs,kh

−2
k

(
‖Ḣ‖ext

k,0

)2
≤ C

(
‖Ḣ‖ext

k,0

)2
.

• p1 = 2, q1 > 0: The derivative is zero.

In summary we get∥∥∥Dp
HD

q
KSext(H,K)(Ḣp, K̇q)

∥∥∥(A),ext

k+1

≤ Cp,q
∑

p1+p2=p
q1+q2=q

(
‖Ḣ‖ext

k,0

)p1
(
‖K̇‖(A),ext

k

)q1 ∥∥∥Dp2

HD
q2
KS(H,K)(Ḣp2 , K̇q2)

∥∥∥(A),ext

k+1
.

Now we turn to the analysis of S and the proof of Lemma 5.14.

As in [Buc19], the strategy is to write the map Sext as a composition of simpler maps
and show smoothness for those maps. We follow closely the presentation in [Buc19]
and do not repeat arguments in proofs which can be applied without change to the
extended setting here.

We consider the following spaces:

M(A) =
(
M ext(Pck), ‖ · ‖

(A),ext
k

)
,

M′(A) =
(
M ext(Pck+1), ‖ · ‖(A),ext

k+1

)
,

M0 =
(
M ext(Bk), ‖ · ‖ext

k,0

)
,

M||| =
(
M ext(Bk), |||·|||ext

k

)
.

We need a slight modification of M(A). Define Pc′k ⊂ Pk as

Pc′k = {X ∈ Pk : π(X) ∈ Pck+1}.

The space M ext(Pc′k ) of functionals is defined similarly to M ext(Pck) except that Pck
is replaced by Pc′k in the definition.

A norm on M ext(Pc′k ) with parameters A,B > 1 is given by

‖K‖(A,B),ext
k = sup

X∈Pc′k

A|X|kB|C(X)|‖K(X)‖ext
k,X .

We also use the norm ‖ · ‖(A,B),ext
k:k+1 where we replace the ‖ · ‖ext

k,X norm by the norm

‖ · ‖ext
k:k+1,X on the right hand side.
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As in [Buc19], we introduce short hand notations for the corresponding normed
spaces

M̂A,B =
{
M(Pc′k ), ‖ · ‖(A,B),ext

k

}
, M̂A,B

: =
{
M(Pc′k ), ‖ · ‖(A,B),ext

k:k+1

}
.

The map S is, as in [Buc19], rewritten in terms of the following maps. Observe

the use of the subspace V(0)
k of M0 here in the definition of R2 in comparison to

[Buc19]. However, on the bulk flow part, this subspace coincides with the whole
space. Another difference to [Buc19] is the definition of the map R2, since the
second order perturbation in the observable part appears.

E : M0 →M|||, E(H) = eH ,

P1 : M||| ×M||| ×M||| × M̂(A/(2AP ),B)
: →M′(A),

P1(I1, I2, J,K)(U) =
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)I
U\(X1∪X2)
1 I

(X1∪X2)\U
2 JX1K(X2)

P2 : M||| ×M(A) →M(A/2), P2(I,K) = (I − 1) ◦K,

P3 : M(A/2) → M̂(A/2,B), P3K(X,ϕ) =
∏

y∈C(X)

K(Y, ϕ),

R1 : M̂(A/2,B) → M̂(A/(2AP ),B)
: , R1(P ) = R+P,

R2 : V(0)
k ×M(A) →M0, R2(H,K) = R+H + st

∫
HaHbdµ+ + ΠR+K.

Then

S(H,K) =

P1 (E(R2(H,K)), E(−R2(H,K)), 1− E(R2(H,K)), R1(P3(P2(E(H),K)))) .

In the following we extend estimates on these maps to observables.

5.2.1 The immersion E

The following statement is an extension of Lemma 4.7.3 from [Buc19] to observables.

Lemma 5.16. Let L ≥ 3. The map

E : B 1
8
(0) ⊂M0 →M|||, E(H) = eH ,

is smooth and for any r ∈ N there is a constant Cr (which is independent or A) such
that for all H ∈ B 1

8
(0)∣∣∣∣∣∣∣∣∣DrE(H)(Ḣ1, . . . , Ḣr)

∣∣∣∣∣∣∣∣∣ext

k
=
∣∣∣∣∣∣∣∣∣eHḢ1 . . . Ḣr

∣∣∣∣∣∣∣∣∣ext

k
≤ Cr‖Ḣ1‖ext

k,0 · · · ‖Ḣr‖ext
k,0.

Moreover, for all H ∈ B 1
8
(0),∣∣∣∣∣∣eH − 1

∣∣∣∣∣∣ext

k
≤ 8‖H‖ext

k,0.
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Proof. The difference to [Buc19] is that H ∈M0 is of the following form:

H = H∅ + s

(
λa +

∑
i

nai∇iϕ(a)

)
1a + t

(
λb +

∑
i

nbi∇iϕ(b)

)
1b + stqab.

In Lemma 5.11 it is shown that for the extended relevant variable H ∈M0

|H|ext
k,B,Tϕ ≤ 2(1 + |ϕ|2k,B)‖H‖ext

k,0.

This is the only ingredient for the proof where the observables play a role; for
‖H‖ext

k,0 ≤
1
8 the remaining proof follows as in [Buc19].

5.2.2 The map P2

We extend Lemma 4.7.4 from [Buc19] to the setting with observables. Here, h0(L)
is fixed in Lemma 5.1.

Lemma 5.17. Let L ≥ 2d+3 + 16R and h ≥ h0(L). Consider the map

P2 : M||| ×M(A) →M(A/2), P2(I,K) = (I − 1) ◦K.

Restricted to Bρ1(1) × Bρ2(0) with ρ1 < (2A)−1 and ρ2 <
1
2 , the map P2 is smooth

for any A ≥ 2 and satisfies

1

j1!j2!
‖(Dj1

I D
j2
KP2)(I,K)(İ , . . . İ, K̇, . . . , K̇)‖(A/2),ext

k

≤
(

2A
∣∣∣∣∣∣∣∣∣İ∣∣∣∣∣∣∣∣∣ext

k

)j1 (
2‖K̇‖(A),ext

k

)j2
.

This implies in particular for I ∈ Bρ1(1) and K ∈ Bρ2(0) that

‖P2(I,K)‖(A/2),ext
k ≤ 2A|||I − 1|||ext

k + 2‖K‖(A),ext
k .

Proof. Ingredients here are the norm estimates in Lemma 5.5 which also hold for
the extended norms. Thus the claim follows as in [Buc19].

5.2.3 The map P3

The following lemma is based on Lemma 4.7.5 in [Buc19] and extended to observ-
ables. Here, h0(L) is fixed in Lemma 5.1.

Lemma 5.18. Assume L ≥ 2d+3 + 16R and h ≥ h0(L). Let A ≥ 2 and B ≥ 1.
Consider the map

P3 : M(A/2) → M̂(A/2,B), P3K(X) =
∏

Y ∈C(X)

K(Y ).

Its restriction to Bρ(0) is smooth for any ρ such that ρ ≤ (2B)−1 and it satisfies the
following bound for j ≥ 0,

1

j!

∥∥∥(DjP3K)(K̇, . . . , K̇)
∥∥∥(A/2,B),ext

k
≤
(

2B‖K̇‖(A/2),ext
k,r

)j
.

Proof. The proof follows as in [Buc19] by using 1. from Lemma 5.5.
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5.2.4 The map R2

The following statement is an extension of Lemma 4.7.8 in [Buc19]. The estimates
look different from those in [Buc19] due to the second order perturbation in the
observable flow.

Lemma 5.19. Assume L ≥ 2d+3 + 16R. Consider

R2 : V(0)
k ×M(A) →M0, R2(H,K) = R+H + st

∫
HaHbdµ+ + ΠR+K.

For any h ≥ 1 and A ≥ 1 the map R2 is smooth and there is a constant C which is
independent of A such that

‖Dj1
HD

j2
KR2(H,K)(Ḣ, . . . , Ḣ, K̇, . . . , K̇)‖ext

k,0

≤ C


‖H‖ext

k,0 + ‖Ha‖ak,0‖Hb‖bk,0 + ‖K‖(A),ext
k if j1 = j2 = 0(

‖Ḣ‖ext
k,0 + ‖Ḣa‖ak,0‖Hb‖bk,0 + ‖Ha‖ak,0‖Ḣb‖bk,0

)
if j1 = 1, j2 = 0

‖K̇‖(A),ext
k if j1 = 0, j2 = 1

‖Ḣa‖ak,0‖Ḣb‖bk,0 if j1 = 2, j2 = 0

and Dj1
HD

j2
k R2(H,K)(Ḣ, . . . , Ḣ, K̇, . . . , K̇) = 0 else.

Proof. The extended norm consists of the following terms:

‖R2(H,K)‖ext
k,0 =

∑
α∈{∅,a,b,ab}

‖(R2(H,K))α‖αk,0

= ‖R+H
∅‖k,0 + ‖Ha‖ak,0 + ‖Hb‖bk,0 +

∥∥∥∥∫ HaHbdµ+

∥∥∥∥ab
k,0

+
∑

α∈{∅,a,b,ab}

‖ΠαR+K
α‖αk,0 .

The first four terms can be estimated, using Lemma 5.28, as follows:∥∥∥R+H
∅
∥∥∥
k,0

+ ‖Ha‖ak,0 + ‖Hb‖bk,0 +

∥∥∥∥∫ HaHbdµ+

∥∥∥∥ab
k,0

≤ C‖H‖ext
k,0 + CFRDh

−1‖Ha‖ak,0‖Hb‖bk,0.

Derivatives with respect to H are bounded similarly since[
DHR2(H,K)Ḣ

]obs
= sḢa + tḢb + st

(∫
ḢaHbdµ+ +

∫
HaḢbdµ+

)
and [

D2
HR2(H,K)(Ḣ)2

]obs
= 2st

∫
ḢaḢbdµ+.

It remains to show that, for α ∈ {a, b, ab},

‖ΠαR+K
α‖αk,0 ≤ C‖K‖

(A)
k .
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To show this inequality, we use Lemma 5.10 to obtain

‖ΠαR+K
α‖αk,0 ≤ C|R+K|ext

k,B,T0
.

For the extended seminorm it holds as in [Buc19] that

‖F (B)‖ext
k:k+1,B = sup

ϕ
w−Bk:k+1(ϕ)|F (B)|ext

k,B,Tϕ ≥ |F (B)|ext
k,B,T0

.

Thus
‖ΠαR+K

α‖αk,0 ≤ C‖R+K(B)‖ext
k:k+1,B.

Now we can proceed as in [Buc19], using Lemma 5.6.
Due to the linearity with respect to K the bounds for the derivatives with respect
to K follow from the case without derivatives.

5.2.5 The map R1

We extend Lemma 4.7.7 from [Buc19] to our setting.

Lemma 5.20. Assume L ≥ 2d+3 + 16R. Consider the map

R1 : M̂(A/2,B) → M̂(A/(2AP ),B)
: , R1(P ) = R+P.

For B ≥ 1 and any A ≥ 4AP the map R1 is smooth and satisfies

‖Dj
PR1(P )(Ṗ , . . . , Ṗ )‖(A/(2AP ),B),ext

k:k+1 ≤
(
‖Ṗ‖(A/2),ext

k

)j (
‖P‖(A/2),ext

k

)1−j

for j ∈ {0, 1}. The derivatives vanish for j > 1.

Proof. The statement for j = 0 follows directly from Lemma 5.6. Note that the map
R1 is linear in P so that the statement for j > 0 is trivial.

5.2.6 The map P1

In the following we extend Lemma 4.7.6 from [Buc19] to observables. Here, h0(L)
is fixed in Lemma 5.1.

Lemma 5.21. Assume L ≥ max
{

2d+3 + 16R, 4d(2d +R)
}

, and h ≥ h0(L). Con-
sider the map

P1 : M||| ×M||| ×M||| × M̂(A/(2AP ),B)
: →M′(A),

P1(I1, I2, J,K)(U) =
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)I
U\(X1∪X2)
1 I

(X1∪X2)\U
2 JX1K(X2).

Let A0(L, d) = (48AP)
Ld

α with α = (1 + 2d)−1(1 + 6d)−1. If A ≥ A0, B = A and if
ρ1, ρ2, ρ3 satisfy

ρ1 ≤
1

2
, ρ2 ≤ A−2, ρ3 ≤ 1,
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then the map P1 restricted to U = Bρ1(1)×Bρ1(1)×Bρ2(0)×Bρ3(0) is smooth and
satisfies

1

i1!i2!j1!j2!∥∥∥Di1
I1
Di2
I2
Dj1
J D

j2
KP1(I1, I2, J,K)(İ1, . . . , İ1, İ2, . . . , İ2, J̇ , . . . , J̇ , K̇, . . . , K̇)

∥∥∥(A),ext

k+1,r

≤ η2

4
Ld
(∣∣∣∣∣∣∣∣∣İ1

∣∣∣∣∣∣∣∣∣ext
)i1 (∣∣∣∣∣∣∣∣∣İ2

∣∣∣∣∣∣∣∣∣ext
)i2 (

A2
∣∣∣∣∣∣∣∣∣J̇∣∣∣∣∣∣∣∣∣ext

)j1 (∥∥∥K̇∥∥∥(A/(2AP ),B),ext

k:k+1

)j2
.

Proof. The difference to [Buc19] is the additional factor η2

4 L
d here which appears in

Lemma 5.5. Apart from that the proof is the same as in [Buc19].

Remark 5.22. Consider the case of the bulk flow, i.e., set s = t = 0. When
inspecting the proof of Lemma 4.7.6 in [Buc19], we get

A|U |k+1

∥∥∥DI1DI2DJDKP1(I1, I2, J,K)(U)(İ1, İ2, J̇ , K̇)
∥∥∥

≤ A−x|U |k+1A2
∣∣∣∣∣∣∣∣∣İ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣İ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣J̇∣∣∣∣∣∣∣∣∣ ∥∥∥K̇∥∥∥(A/(2AP ),B)

k:k+1

for x ∈ (0, 2α). Namely, we have that

A|U |k+1

∥∥∥DI1DI2DJDKP1(I1, I2, J,K)(U)(İ1, DI2 , DJ , DK)
∥∥∥

≤

(
(48AP)2Ld

A2α

)|U |k+1

A2
∣∣∣∣∣∣∣∣∣İ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣İ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣J̇∣∣∣∣∣∣∣∣∣ ∥∥∥K̇∥∥∥(A/(2AP ),B)

k:k+1

≤ A−x|U |k+1A2
∣∣∣∣∣∣∣∣∣İ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣İ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣J̇∣∣∣∣∣∣∣∣∣ ∥∥∥K̇∥∥∥(A/(2AP ),B)

k:k+1

if we choose

A ≥ (48AP)
2Ld

2α−x .

5.2.7 Proof of Lemma 5.14

For the sake of completeness we review the proof as it is done in [Buc19].

Proof of Lemma 5.14. The assertion follows from the smoothness of the individual
maps E,P1, P2, P3, R1 and R2 and the chain rule.

Let A0 be as in Lemma 5.21 and set B = A. By Lemma 5.21 there exists a neigh-
bourhood

O1 = Bρ1(1)×Bρ1(1)×Bρ2(0)×Bρ3(0)

such that P1 is smooth in O1. By Lemma 5.16 there is a neighbourhood

O2 = Bρ4(0) ⊂ B 1
8
(0)
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such that E is smooth in O2 and E(O2) ⊂ Bρ1(1) and 1 − E(O2) ⊂ Bρ2(0). By
Lemma 5.19 there is a neighbourhood

O3 = Bρ5(0)×Bρ6(0)

such that R2 is smooth in O3 and R2(O3) ⊂ O2. This defines the first restriction on
Uρ∗ , namely

Uρ∗ ⊂ Bρ5(0)×Bρ6(0)

The second restriction comes from the condition

R1 (P3 (P2 (E(H),K))) ∈ Bρ3(0).

By Lemma 5.20 there is a neighbourhood

O4 = Bρ7(0)

such that R1 is smooth in O4 and R1(O4) ⊂ Bρ3(0). By Lemma 5.18 there is a
neighbourhood

O5 ⊂ Bρ(0)

such that P3 is smooth in O5 and P3(O5) ⊂ O4. By Lemma 5.17 there is a neigh-
bourhood

O6 = Bρ8(1)×Bρ9(0)

such that P2 is smooth in O6 and P2(O6) ⊂ O5. Finally, by Lemma 5.16 there is a
neighbourhood

O7 = Bρ10(0) ⊂ Bρ4(0)

such that E(O7) ⊂ Bρ8(1). We obtain the second restriction:

Uρ∗ ⊂ Bρ10(0)×Bρ9(0).

The combination of both constraints yields that S is C∞ in the set

Uρ∗ ⊂ Bρ10∧ρ5(0)×Bρ9∧ρ6(0).

The chain rule implies the bounds on the derivatives.

Remark 5.23. Remark 5.22 and chain rule implies that in the case of the bulk flow
there is a constant C1 such that for any x ∈ (0, 2α) and (H,K) ∈ Uρ

A|U |k+1

∥∥∥DHDKDqSk(H,K, q)(Ḣ, K̇, q̇)(U)
∥∥∥
k+1,U

≤ C1A
−x|U |k+1A4‖Ḣ‖k,0‖K̇‖

(A)
k ‖q̇‖,

where the factors A come from the estimates on DJP1, DP3, and DIP2.

5.3 Derivatives of the extended renormalisation map at (0, 0)

In this section we prove the bounds on C stated in Proposition 4.8, the bounds on
B stated in Proposition 4.9, a bound on the second order part in A as used in the
proof of Lemma 5.15, and we compute the ab-part of the second derivative of Sext

at (0, 0) as stated in Proposition 4.6.
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5.3.1 Bound on the extended operator C

Let K ∈ M ext(Pck), U ∈ Pck, and ϕ ∈ χN . Then CK can be decomposed into two
parts,

CK(U,ϕ) = F (U,ϕ) +G(U,ϕ). (36)

The large-polymer part F ∈M ext(Pck+1) is defined by

F (U,ϕ) =
∑

X∈Pck\Bk
π(X)=U

R+K(X,ϕ),

and G satisfies G(U,ϕ) = 0 for all U ∈ Pck+1 \ Bk+1, otherwise, for U = B+ ∈ Bk+1,

G(B+, ϕ) =
∑

B∈Bk(B+)

G(B,ϕ) with G(B,ϕ) = (1−Π)R+K(B,ϕ).

We restate the key bound from Proposition 4.8 as Lemma 5.24 below.

Lemma 5.24. For any θ ∈ (0, 1) there exists an L0 such that for all odd integers
L ≥ L0 there is A0 and h0 with the following property. For all A ≥ A0 and for all
h ≥ h0,

‖C‖(A),ext
k+1 ≤ θ

independently of k and N .

The proof is very similar to the proof in [Buc19]. For the argument of the large-

polymer part F we have to deal with the additional factor η2

4 L
d arising in the

transformation of scales from the factor
l
|α|
obs,k+1

l
|α|
obs,k

, see 2. in Lemma 5.4.

The following lemma extends Lemma 4.8.2. from [Buc19] to observables.

Lemma 5.25. Let L ≥ 2d+3 + 16R. There is A0 such that for all A ≥ A0

‖F‖(A),ext
k+1 ≤ θ

2
‖K‖(A),ext

k .

Proof. Lemma 5.4 states that for U = π(X)∣∣∣R+K(X,ϕ)
∣∣∣ext

k+1,U,Tϕ
≤ η2

4
Ld
∣∣∣R+K(X,ϕ)

∣∣∣ext

k,X,Tϕ
.

By Lemma 5.1 it follows that

wXk:k+1(ϕ) ≤ wUk+1(ϕ).

We conclude that

‖R+K(X,ϕ)‖ext
k+1,U ≤

η2

4
Ld‖R+K(X,ϕ)‖ext

k:k+1,X .
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By this inequality we can estimate

A|U |k+1‖F (U)‖ext
k+1,U

≤ A|U |k+1
η2

4
Ld

 ∑
X∈Pck\Sk
π(X)=U

‖R+K(X)‖ext
k:k+1,X +

∑
X∈Sk\Bk
π(X)=U

‖R+K(X)‖ext
k:k+1,X

 .

(37)

We bound the two summands in (37) seperately. The first term can be estimated
similar to [Buc19], with a change in the choice of A:

A|U |k+1
η2

4
Ld

∑
X∈Pck\Sk
π(X)=U

‖R+K(X)‖ext
k:k+1,X

≤ ‖K‖(A),ext
k

η2

4
Ld

∑
X∈Pck\Sk
X̄=U

(
APA

− 2α
1+2α

)|X|k
,

where α =
[
(1 + 2d)(1 + 6d)

]−1
. Let

A ≥
(
AP
δ̄

4

θ

η2

4
Ld
) 1+2α

2α

where δ̄ is the constant from Lemma C.2 in [Buc19]. Then∑
X∈Pck\Sk
π(X)=U

‖R+K(X)‖ext
k:k+1,X ≤

θ

4
‖K‖(A),ext

k .

For a bound on the second contribution in (37) we again follow closely the proof in
[Buc19], with a change in the choice of A. For U ∈ Bk+1 we have

A|U |k+1
η2

4
Ld

∑
X∈Sk\Bk
π(X)=U

‖R+K(X)‖ext
k:k+1,X ≤ A‖K‖

(A),ext
k Ld(2d+1 + 1)d2dA

2
P
A2

η2

4
Ld.

If

A ≥ 4

θ
A2
PL

d(2d+1 + 1)d2d η
2

4
Ld,

then

A|U |k+1
η2

4
Ld

∑
X∈Pck\Sk
π(X)=U

‖R+K(X)‖ext
k:k+1,X ≤

θ

4
‖K‖(A),ext

k .

For A large enough this finishes the claim.



5.3 Derivatives of the extended renormalisation map at (0, 0) 95

Next we consider the contribution from single blocks. We extend Lemma 4.8.4 from
[Buc19] to observables.

Lemma 5.26. There is L0 such that for all L ≥ L0, h ≥ h0(L) and for all A ≥ 1

‖G‖(A),ext
k+1 ≤ θ

2
‖K‖(A),ext

k .

Proof. Remember that G(U) = 0 for U /∈ Bk+1 and

G(B+) =
∑

B∈Bk(B+)

G(B) =
∑

B∈Bk(B+)

(1−Π)R+K(B)

for B+ ∈ Bk+1. Thus

‖G‖(A),ext
k+1 ≤ A sup

ϕ
w−B

′

k+1 (ϕ)
∑

B∈Bk(B+)

|G(B)|ext
k+1,B,Tϕ

≤ A sup
ϕ
w−B

′

k+1 (ϕ)
∑

B∈Bk(B+)

∑
α∈{∅,a,b,ab}

1α∈Bl
|α|
obs,k+1|G

α(B)|k+1,B,Tϕ .

Fix α ∈ {a, b, ab}. We use the second inequality in Lemma 5.3 to get

|Gα(B)|k+1,B,Tϕ ≤ (1 + |ϕ|k+1,B)3
(
|(1−Πα

k )R+K
α(B)|k+1,B,T0

+ 16L−
3
2
d sup

0≤t≤1
|(1−Πα

k )R+K
α(B)|k,B,Ttϕ

)
.

By Lemma 5.12 we proceed the estimate as follows

|Gα(B)|k+1,B,Tϕ ≤ (1 + |ϕ|k+1,B)3
(
CL−(d/2+A(α,k))|R+K

α|k,B,T0

+ 16L−
3
2
d sup

0≤t≤1
|(1−Πα

k )R+K
α(B)|k,B,Ttϕ

)
.

We continue as in [Buc19] with the estimates

|R+K
α(B)|k,B,T0 ≤ l

−|α|
obs,kAB‖K‖k,B,

|Πα
kR+K

α(B)|k,B,Ttϕ ≤ C(1 + |ϕ|k,B)2ABl
−|α|
obs,k‖K‖k,B, and

|R+K
α(B)|k,B,Ttϕ ≤ ABwBk:k+1(ϕ)l

−|α|
obs,k‖K(B)‖k,B,

where we have the additional factor l
−|α|
obs,k on the right hand sides in contrast to

[Buc19]. We obtain

|Gα(B)|k+1,B,Tϕ

≤ l−|α|obs,k (1 + |ϕ|k+1,B)3
(
CL−(d/2+A(α,k))AB‖K‖k,B

+16L−
3
2
dABw

B
k:k+1(ϕ)‖K‖k,B + 16L−

3
2
dC(1 + |ϕ|k,B)2AB‖K‖k,B

)
≤ ABCl−|α|obs,k (1 + |ϕ|k+1,B)5 ‖K‖k,B

(
L−(d/2+A(α,k)) + L−

3
2
dwBk:k+1(ϕ)

)
≤ C ′l−|α|obs,kw

B′
k+1(ϕ)‖K‖k,B

(
L−(d/2+A(α,k)) + L−

3
2
d
)
.
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For α = ∅ we use the result from [Buc19], namely that

|G∅(B)|k+1,B,Tϕ ≤ C ′wB
′

k+1(ϕ)‖K‖k,B
(
L−d

′
+ L−

3
2
d
)

with d′ = d
2 + bd/2c+ 1 > d.

Let d′(α, k) = d′ for α = ∅ and d′(α, k) = d/2 + A(α, k) else. We combine the
estimates obtained so far and obtain

‖G‖(A),ext
k+1 ≤ C ′

∑
α∈{∅,a,b,ab}

∑
B∈Bk(B+)

1α∈Bl
|α|
obs,k+1l

−|α|
obs,kA

|B|k‖K‖k,B
(
L−d

′(α,k) + L−
3
2
d
)
.

In the case α = ∅, the sum over all B ∈ Bk(B+) gives an additional factor Ld. In
contrast, for α ∈ {a, b, ab}, the sum reduces to one term so this factor does not arise.
However, we have(

lobs,k+1

lobs,k

)|α|
=

{
(2η)|α| if α ∈ {a, b, ab}, k ≥ jab,(η

2L
d/2
)|α|

if α ∈ {a, b}, k < jab

which is canceled by L−d
′(α,k). In summary we thus get

‖G‖(A),ext
k+1 ≤ C‖K‖(A),ext

k

(
Ld−d

′
+ L−

1
2
d + L−1 + L−d + L−

d
2 + L−

3
2
d
)
.

Now choose L large enough such that

‖G‖(A),ext
k+1 ≤ θ

2
‖K‖(A),ext

k .

5.3.2 Bounds on the extended operator B

Here we prove Proposition 4.9. We restate the result in the following lemma.

Lemma 5.27. For α ∈ {a, b}, with the constant AB from Lemma 5.1 which is
independent of L, the following estimates hold:∣∣(BKα

k )1
∣∣ ≤ l−1

k l−1
obs,k

AB
2
‖Kk‖

(A),ext
k ,∣∣(BKα

k )0
∣∣ ≤ l−1

obs,k

AB
2
‖Kk‖

(A),ext
k ,∣∣BKab

k

∣∣ ≤ l−2
obs,k

AB
2
‖Kk‖

(A),ext
k .

Proof. The proof is similar to the one of Lemma 5.10. First, by Lemma 5.8,∣∣(BKα
k )1
∣∣ =

∣∣〈R+K
α
l , b

α〉0
∣∣ ≤ |bα|k,B∣∣R+K

α
k (B)

∣∣
k,B,T0

≤ l−1
k l−1

obs,k

AB
2
‖Kk‖

(A),ext
k .

Furthermore,∣∣(BKα
k )0
∣∣ ≤ ∫ ∣∣Kα

k (B, ξ)
∣∣µk+1(dξ) ≤ l−1

obs,k

AB
2
‖Kk‖

(A),ext
k

and similarly,∣∣BKab
k

∣∣ ≤ ∫ ∣∣Kab
k (B, ξ)

∣∣µk+1(dξ) ≤ l−2
obs,k

AB
2
‖Kk‖

(A),ext
k .
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5.3.3 Bound on the extended operator A

Lemma 5.28. Let Ha = na∇ϕ(b), Hb = nb∇ϕ(b), k ≥ jab. Then∣∣∣ ∫ HaHbdµk+1

∣∣∣ ≤ CFRDl−2
obs,kh

−2
k ‖H

a‖ak,0‖Hb‖bk,0.

Proof. Note that ∫
∇ϕ(a)∇ϕ(b)µk+1(dϕ) = ∇∗∇Ck+1(a, b)

and
|na| ≤ l−1

obs,kl
−1
k ‖H

a‖ak,0.

By the properties of the finite-range decomposition the proof follows straightfor-
wardly.

5.3.4 Second derivative of Sext at (0, 0)

Here we prove Proposition 4.6. We restate the result in the following lemma.

Lemma 5.29. The st-part of the second derivative in direction H of Sext is zero:[
D2
HSext(0, 0)(Ḣ, Ḣ)

]ab
= 0.

Proof. Note that

D2
HSext(0, 0)(Ḣ, Ḣ) = D2

HS(0, 0)(Ḣ, Ḣ)

since S(0, 0) = 0 and

DH

(
e−s(BK

a)0−t(BKb)
0−st(

∫
HaHbdµ++BKab)

) ∣∣∣
H=K=0

Ḣ = 0.

By the product rule we get a sum of the following three terms:

D2
HSext(0, 0)(Ḣ, Ḣ)

= 2
∑
X∈Pk

χ(X,U)DH

((
eH̃
)U\X)

Ḣ
∣∣∣
H=K=0

×

∫
DH

((
eH − eH̃

)X)
Ḣ
∣∣∣
H=K=0

dµ+

+ 2
∑
X∈Pk

χ(X,U)DH

((
eH̃
)−X\U)

Ḣ
∣∣∣
H=K=0

×

∫
DH

((
eH − eH̃

)X)
Ḣ
∣∣∣
H=K=0

dµ+

+
∑
X∈Pk

χ(X,U)

∫
D2
H

((
eH − eH̃

)X)
(Ḣ, Ḣ)dµ+.
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Let us consider the second term in the right hand side above. We compute

DH

((
eH − eH̃

)X)
Ḣ
∣∣
H=K=0

= 1X=B

(
Ḣ(B)−DHH̃(B)Ḣ

∣∣
H=K=0

)
.

The constraint X = B for any B ∈ Bk implies that X \ U = ∅ for any U satisfying
χ(X,U) 6= 0. Thus the second term is zero.

The ab-part of the first term is zero as well. We compute

DH

((
eH̃
)U\X)

Ḣ
∣∣∣
H=K=0

=
∑

B∈Bk(U\X)

(
ÃḢ∅ + sḢa + tḢb

)
(B)

and ∫
DH

((
eH − eH̃

)X)
Ḣ
∣∣∣
H=K=0

dµ+

= 1X=B

∫
Ḣ∅(B,ϕ+ ξ) + sḢa(B,ϕ+ ξ) + tḢb(B,ϕ+ ξ)

− ÃḢ∅(B,ϕ)− sḢa(B,ϕ)− tḢb(B,ϕ)dµ+

= 1X=B

∫
Ḣ∅(B,ϕ+ ξ)− ÃḢ∅(B,ϕ)dµ+.

The last equality holds since

Ḣa(B,ϕ+ ξ) = Ḣa(B,ϕ) + Ḣa(B, ξ)

and ∫
Ḣa(B, ξ)dµ+ = 0

due to linearity. Thus the first term has bulk parts and a- and b-parts, but the
projection to the ab-part is zero.

For the third term we distinguish the case that X = B for B ∈ Bk and X = B ∪B′
for B,B′ ∈ Bk, B 6= B′. In the case X = B we compute∫

D2
H

((
eH − eH̃

)B)
(Ḣ, Ḣ)dµ+

=

∫ (
Ḣ(B,ϕ+ ξ)

)2
− 2st

∫
Ḣa(B)Ḣb(B)dµ+

−
(
ÃḢ∅(B,ϕ) + sḢa(B,ϕ) + tḢb(B,ϕ)

)2
dµ+

= 2

∫
Ḣa(B,ϕ+ ξ)Ḣb(B,ϕ+ ξ)dµ+ − 2

∫
Ḣa(B, ξ)Ḣb(B, ξ)dµ+

− 2

∫
Ḣa(B,ϕ)Ḣb(B,ϕ)dµ+ = 0.
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In the other case we compute∫
DH

((
eH − eH̃

)B)
ḢDH

((
eH − eH̃

)B′)
Ḣdµ+

=

∫ (
Ḣ(B,ϕ+ ξ)− ÃḢ∅(B,ϕ)− sḢa(B,ϕ)− tḢb(B,ϕ)

)
(
Ḣ(B′, ϕ+ ξ)− ÃḢ∅(B′, ϕ)− sḢa(B′, ϕ)− tḢb(B′, ϕ)

)
dµ+.

We project this term to the ab-part and obtain:∫ (
Ḣa(B,ϕ+ ξ)− Ḣa(B,ϕ)

)(
Ḣb(B′, ϕ+ ξ)− Ḣb(B′, ϕ)

)
dµ+

+

∫ (
Ḣb(B,ϕ+ ξ)− Ḣb(B,ϕ)

)(
Ḣa(B′, ϕ+ ξ)− Ḣa(B′, ϕ)

)
dµ+

=

∫
Ḣa(B, ξ)Ḣb(B′, ξ)dµ+ +

∫
Ḣb(B, ξ)Ḣa(B′, ξ)dµ+.

Now we distinguish the scales k ≥ jab and the scales k < jab. If k ≥ jab, then
a, b ∈ Bab ∈ Bk, and either B = Bab and the B′-term is zero, or vice versa. If
k < jab only the choices B ∪B′ = Ba ∪Bb and B ∪B′ = Bb ∪Ba are relevant. Then
we get ∫

Ḣa(B, ξ)Ḣb(B′, ξ)dµ+ +

∫
Ḣb(B, ξ)Ḣa(B′, ξ)dµ+

= 2nanb

∫
∇ϕ(a)∇ϕ(b)dµk+1 = 2nanb∇∗∇Ck+1(ab).

Due to the definition of the scale jab and the finite-range property of the covariances
we have

∇∗∇Ck+1(a, b) = 0 for all k < jab.

This finishes the claim.
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