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ABSTRACT

The current work presents calculations of the elastic scattering length a0 for systems of two
Kaons and one pion and one Kaon, respectively. The values for a0 have been obtained from
lattice QCD simulations with N f = 2 + 1 + 1 dynamical flavors in the sea. The gauge config-
urations used in this work have been generated by the European twisted mass collaboration
(ETMC) and comprise pion masses in the range 230 to 450 MeV at 3 distinct lattice spacings.
The gauge configurations are realized in a maximally twisted mass setup. For the valence
sector we adopt a mixed action approach with one doublet of mass degenerate light quarks
and one Osterwalder-Seiler valence strange quark at different values of the strange quark mass.
Within the framework of stochastic Laplacian-Heaviside (sLapH) quark field smearing we
calculate the two point correlation functions of the K+ and π+, respectively and the four point
correlation function of the π+-K+ and the K+-K+ system. Thermal pollution is handled via
a ratio of shifted correlation functions (K+-K+) and two variants of weighting-and-shifting
the correlation functions. The energies extracted from the four and two point functions are
used to calculate the scattering length a0 for each system via Lüscher’s method. Because of the
unphysical quark masses, necessary for stable simulations, chiral inter- and extrapolations of
the data are in order. We employ two procedures to fix the strange quark mass to its physical
value, the Kaon mass at leading order chiral perturbation theory and its next to leading order
form. For K+-K+ we resort to a combined chiral and continuum extrapolation, linear in the
light quark mass, to arrive at the physical light quark mass. Thus we find

MKa0 = −0.385(16)stat(
+0
−12)ms

(+0
−5)ZP

(4)r f
, (1)

with systematic uncertainties stemming from the quark mass fixing (ms), the renormalization
procedure (ZP) and the neglect of higher order terms in the expansion of the energy shift in
terms of the a0 and the inverse lattice volume. In the extrapolation the lattice artifact is found to
be negligible. In the case of π+-K+ we extrapolate to the physical pion mass following the next
to leading order for the scattering length in SU(3) ChPT. Here we find at the physical point

µπK a3/2
0 = −0.0463(17) . (2)

In this analysis we are not able to resolve possible lattice artifacts.
A further result of this study is that Chiral perturbation theory works well for the systems

under considerations. For maximal isospin scattering lengths higher order terms of ChPT
contribute only mildly to the leading order behavior.

The chapters Chapters 5 and 6 of this cumulative thesis have been published in [1, 2], please
cf. next page.
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C H A P T E R 1

INTRODUCTION

The Standard Model of particle physics has been successful in describing how matter is built
from quarks and leptons. The nonet of pseudoscalar mesons as depicted in Figure 1.1, can be
described via group theory regarding the 3 lightest quark flavors up (u), down (d) and strange
(s). As will be detailed later the 3 lightest flavors of quarks and antiquarks can be ordered into

Q = 0 Q = +1Q = −1

S = −1

S = 0

S = +1

K̄0K−

π−

K0 K+

π+

η′

η π0

Figure 1.1: The pseudoscalar meson nonet with lines of constant electrical charge Q and constant
strangeness S.

a triplet (3) of SU(3) and its complex conjugate representation (3̄). The tensor product of the
two representations can be decomposed into the direct sum of one octet 8 and one singlet 1

3⊗ 3̄ = 8⊕ 1 . (1.1)
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CHAPTER 1 INTRODUCTION

The members of this nonet are called mesons and are composed of one quark and one antiquark.
As will be detailed in Section 2.1 the octet states are of particular interest because they are
assumed to play the role of the Goldstone bosons of the spontaneously broken chiral symmetry.
This is supported by the mass gap between the pseudoscalar and vector octet states. Due
to this circumstance it is mandatory to understand the dynamical behavior of the members
of the pseudoscalar octet. The main goal of this thesis is to shed some light on the elastic
interaction of π- and K-mesons. Because these interactions happen at low energies lattice
QCD is a formidable tool to tackle this matter. It is an ab-initio approach which does not need
further assumptions on the interactions than a formulation of the strong interaction, quantum
chromodynamics (QCD). This is accomplished by simulating QCD on a hybercubic space-time
via Monte Carlo methods on high performance computers. Despite the nice feature of only a
few assumptions current simulations are just beginning to reach the realm of physical quark
masses. Thus one needs an extrapolation procedure to arrive at physical conditions. In order
to do so we will employ Chiral Perturbation Theory (ChPT). It is an effective theory relying
on the expansion around light meson masses and momenta. During the expansion process
unknown unphysical constants appear which need to be fixed via further input data. In this
framework quark mass dependent formulae are derived allowing for an extrapolation in the
quark masses. The unknown constants alluded to above can then be fixed via fits to simulated
lattice data. Because of the discretization procedure needed for the simulation process also
continuum limits need to be taken in the end.

Experimentally π-K-interactions are not easily accessible because pions and kaons only
form as intermediate states in high energy collisions. Owing to this it is difficult to determine
scattering parameters like the scattering length or the effective range, experimentally. At the
same time such low energy interactions could play an important role inside neutron stars where
low energy mesons can be generated easily. Currently the DIRAC collaboration is measuring the
lifetime of the bound π-K system. Its lifetime depends, among others, on a precise knowledge
of the π-K scattering length, a0. Besides lattice QCD determinations only purely theoretical
estimates using Roy-Steiner equations or Chiral Perturbation Theory for a0 are available. The
present work adds to this circumstance by providing the first continuum extrapolated value of
the scattering length. As we will see we improve significantly on the statistical uncertainty of
a0. This is possible by employing a novel quark field smearing scheme introduced in Ref. [3]
combined with the N f = 2 + 1 + 1 gauge field configurations of the European Twisted Mass
Collaboration (ETMC) at three distinct values of the lattice spacing.

This thesis is organized as follows. Chapter 2 shortly recaptures the theoretical fundamentals
of QCD, Chiral Perturbation Theory and the discretization of the strong interaction via lattice
QCD in the twisted mass formalism. We then proceed to introduce the correlation functions
for the processes under investigation and necessary spectroscopy in Chapter 3. In Chapter 4
we shortly present the Hybrid Monte Carlo algorithm and improvement methods for gauge
configurations and correlation functions. Chapters 5 and 6 comprise the main results of this
thesis, namely an investigation of the kaon-kaon and the pion-kaon scattering length at maximal
isospin, respectively. The thesis is concluded by Chapter 7 where a final discussion and outlook
to possible future applications is given.
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C H A P T E R 2

THEORETICAL BACKGROUND

Similar to the electric charge in Quantum Electrodynamics the so called color charge is used
to describe strong interactions in the formalism of Quantum Chromodynamics (QCD). We
introduce the Lagrangian density and discuss its respective symmetries in Section 2.1. In
addition we give an overview on the quantization of QCD in the path integral formalism and
parametrize scattering processes. Furthermore we give an effective perturbative description
of low energy phenomena in form of Chiral Perturbation Theory (ChPT), cf. Section 2.2. As a
non-perturbative approach to QCD we translate the continuum formulations of Section 2.1 to
euclidean space-time in Section 2.3 and discretize space-time in Section 2.4. This leads us to
the formulation of lattice QCD (lQCD) which enables the numerical simulations of the strong
interaction.

2.1 FUNDAMENTALS OF CONTINUUM QCD

2.1.1 THE LAGRANGIAN DENSITY OF QCD

QCD is a quantized field theory with infinite degrees of freedom. It is best described within the
Lagrange formalism where a Lagrangian density L can be formulated. Since a full treatment of
L is out of the scope of this work we will only state its mathematical form and shortly explain
its features. A more thorough introduction can be found e.g. in Refs. [4, 5]. The fundamental
building blocks of strongly interacting matter are quarks and gluons. Quarks have a rest mass
and are believed to be fundamental fermions like electrons whereas gluons are massless vector
bosons which play the role of exchange particles of the strong interaction. Quarks differ from
electrons in their mass and electric charge, which comes in multiplicities of 1/3. They exist in
six flavors (up, down, strange, charm, bottom, top) ordered into three doublets

(
u
d

)
,
(

c
s

)
,
(

t
b

)
. (2.1)

In addition to the mediation of the strong interaction each gluon carries one color charge and
one anti-color charge. From a field-theoretical point of view this behavior is described by QCD
being a non-abelian local gauge theory, described by SU(3)C, where C stands for color. During
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CHAPTER 2 THEORETICAL BACKGROUND

strong interactions color charges are exchanged between the participating particles. One of
the most striking features of strongly interacting particles is the display of confinement, i.e.
any observable object needs to be color neutral. Expressed differently, single quarks cannot be
observed directly.

The Lagrangian density of QCD, LQCD, reads

LQCD(ψ̄, ψ, A) = −1
4

Fa,µν(x)Fa
µν(x) + ∑

f
ψ̄ f (x)

(
i /D−M f f

)
ψ(x) f , (2.2)

where ψ f denotes a vector made out of three Dirac spinors ψ f = (ψa, f , ψb, f , ψc, f )
T of a single

quark flavor f , with color degrees of freedom, labeled a,b and c, ψ̄ f its adjoint representation
and M f f the corresponding entry of the mass matrix. The three components of ψ f denote three
color degrees of freedom. The covariant derivative /D reads

/Dµ = γµ(∂µ + igAa
µ

λc
a

2
) , (2.3)

with the Dirac matrices γµ given in appendix A.1 and the gluon fields Aa
µ(x). It is a modification

of the free Lagrangian density implementing local gauge invariance with respect to non-abelian
local SU(3) transformations. The representation of these transformations U(g(x)) read

U(g(x)) = exp

(
−i

8

∑
a=1

λa

2
θa(x)

)
, (2.4)

with the eight real valued functions θa(x), a = 1, . . . , 8 and λa denoting the Gell-Mann matrices
acting in color space. Based on local invariance the fields Aa

µ have to transform under U(g(x))
like

Aµ =
8

∑
a=1

λa

2
Aa

µ → U(g(x))AµU†(g(x)) +
i
g

∂µU(g(x))†U(g(x)) . (2.5)

The transformations act on ψ f via ψ f (x)→ U(g(x))ψ f (x). As a last ingredient the term

Lkin = −1
4

Fa,µν(x)Fa
µν(x) , (2.6)

encodes the dynamical behavior of the gluons. The important difference is that the gluons
themselves carry charge and thus have self-interactions. Owing to that the eight field strength
tensors Fa

µν read

Fa
µν(x) = ∂µ Aa

ν(x)− ∂ν Aa
µ(x)− g fabc Ab

µ(x)Ac
ν(x) , (2.7)

with fabc denoting the structure constants of the Lie-algebra underlying SU(3). The field

4



2.1 FUNDAMENTALS OF CONTINUUM QCD

strength tensors transform like

Fµν =
8

∑
a=1

λa

2
Fa

µν → U(g(x))FµνU†(g(x)) . (2.8)

With the gauge covariant derivative given by Equation (2.3) the Lagrangian density of Equa-
tion (2.2) is symmetric under SU(3)C. Color charge is confined inside hadrons, such that no free
color charged particles can be observed. Further exact symmetries are spatial reflections, time
reversal and parity. As a consequence Equation (2.2) is also invariant under their combined
action. Furthermore Equation (2.2) is Lorentz invariant. In addition to these exact symmet-
ries Equation (2.2) exhibits a few approximate symmetries. In comparison to the heavy quarks
(c, t, b), the masses of the three lighter quarks (u, d, s) can be neglected. Further going to the
chiral limit mu = md = ms = 0 the Lagrangian density would be invariant under global SU(3)V
vector transformations of the form

ψ =




u
d
s


→ exp(−iθλ)ψ , (2.9)

where the Gell-Mann matrices λ now act in flavor space and θ is an arbitrary eight-vector.
Since the strange quark is much heavier than the u and d quark, a better choice is the isospin
symmetry SU(2) of the doublet (u, d)T

ψ =

(
u
d

)
→ exp(−iθτ)ψ , (2.10)

where the generators τ are now given by the Pauli matrices acting in flavor space and θ is
an arbitrary three vector parametrizing the rotation. The symmetry under the transforma-
tion Equation (2.10) is broken by the quark mass difference of the u and d quark mass

∆m = mu −md . (2.11)

Returning to the chiral limit of 3 vanishing light quark masses the Lagrangian density of
QCD also exhibits a hidden symmetry which is sponataneously broken. In the case of three
flavors (u, d, s) and vanishing quark masses (mu = md = ms = 0) Equation (2.2) exhibits an
exact U(3)×U(3) = SU(3)L × SU(3)R ×U(1)V ×U(1)A symmetry, where the indices L and R
denote left and right handed quarks, respectively and V and A vector and axial, respectively.
The axial symmetry is anomalously broken by quantum effects during the quantization of the
theory, see Refs. [6, 7], whereas the vector symmetry remains exact. The Noether currents of
the left and right handed symmetries SU(3)L × SU(3)R can be linearly combined into eight
Vector and eight Axial currents, denoted by Va and Aa, respectively. Because the vacuum is
not invariant under the Noether charge QAa belonging to Aa, there have to exist 8 massless
Goldstone bosons, which is the dimension of the left and right handed groups. The vector
and axial currents, as well as the non singlet scalar density and pseudoscalar density can be

5



CHAPTER 2 THEORETICAL BACKGROUND

expressed (for SU(3)V) as

Vµ
a = ψ̄γµλaψ Aµ

a = ψ̄γµγ5λaψ (2.12)

S = ψ̄ψ Pa = iψ̄γ5λaψ , (2.13)

2.1.2 QCD IN THE PATH INTEGRAL FORMALISM

The action S which is the integral of the Lagrangian density over the four dimensional space-
time,

S =
∫

d4xL = SF + SG , (2.14)

can be used to quantize QCD in the path integral formalism. Splitting the action into a
fermionic (SF) and a gauge (SG) contribution will prove useful when discretizing the action.
Matrix elements are given by the path integral

〈Ω|T (ψ1, . . . , ψn)|Ω〉 =
1
Z

∫
Dψ Dψ̄ DA ψ1(x) . . . ψn(x) exp (iS[ψ̄, ψ, A]) , (2.15)

where Ω is the vacuum state of the theory, T denotes time ordering and the ψi(x) are quantum
fields. Because spinor fields obey anti-commutation relations, as opposed to commutation
relations for classical fields, the fields ψ(x) are anti-commuting Grassmann fields. Their
algebraic properties and their differentiation and integration rules can be found in Ref. [8].
The integration measure used in Equation (2.15) is a product of integration measures over all
possible paths

∫
Dψ =

∞

∏
i=1

∫
dψ(xi) . (2.16)

The product in Equation (2.16) means a product over all possible paths. For a numerical
treatment the product needs to be finite and thus discrete. In addition we have introduced the
partition function Z in Equation (2.15). For QCD it reads

Z =
∫

Dψ Dψ̄ DA exp (iS[ψ̄, ψ, A]) . (2.17)

In Equation (2.14) we have split up the action in contributions stemming from the fermionic
(SF) and the gluonic (SG) part of Equation (2.2). Instead of evaluating the path integral of the
n-point function Equation (2.15) the generating functional can be used to calculate n-point
functions as detailed, for example, in Ref. [9]. Introducing an external spinor valued field J(x)
the generating functional is defined as

Z [J] =
∫

Dψ Dψ̄ DA exp
(

i
∫

d4x (L(ψ̄, ψ, A) + J̄(x)ψ(x) + ψ̄(x)J(x))
)

, (2.18)

where we have suppressed the color and Dirac indices for legibility. A given n-point func-
tion Equation (2.15) can then be calculated using the functional derivative with respect to each

6



2.1 FUNDAMENTALS OF CONTINUUM QCD

coordinate

〈Ω|T (ψ1(x), . . . , ψn(x))|Ω〉 = 1
Z [0]

(
−i

δ

δJ(x1)

)
. . .
(
−i

δ

δJ(xn)

)
Z [J]|J=0 . (2.19)

2.1.3 PARAMETRIZATION OF SCATTERING PROCESSES

The processes under investigation in this thesis take place at low interaction energies. Therefore
a non-relativistic description is sufficient. In addition the interactions are elastic and happen
below their respective 4-particle energy threshold. The scattering particles furthermore are
spinless, such that the wave functions of these bosonic systems need to be symmetric. For two
particles with masses (momenta) m1 (~p) and m2 (~q), respectively, their total non-interacting
energy E0 is given via the superposition principle

E0 = E1(~p) + E2(~q) (2.20)

Ei(k) =
~k2

2mi
(2.21)

Hadronic scattering processes at low interaction energies are conveniently described by the
S-matrix in a non-relativistic manner. Since the form of the interaction often is not known
exactly, in the S-matrix approach we examine asymptotic states of particles at t = ±∞ where
the interaction takes place at t = 0. Let ψ = |~pi,~qi〉 denote the incoming wave function at
t = −∞ and ϕ = 〈~p f ,~q f | be the outgoing wave function at t = +∞. The elements of the
S-matrix are then defined via,

S f i = 〈~p f ,~q f |S|~pi,~qi〉 . (2.22)

The S-matrix is unitary, S†S = 1. Because the product S†S amounts to a sum of probabilities
over all possible transitions they have to add up to 1. Furthermore it is Lorentz invariant.
Owing to the probability property of matrix elements there is always the possibility that ψ goes
to ϕ without interaction. Therefore separating the non-interacting part of the S-matrix from its
interacting part we rewrite

S = 1 + iT , (2.23)

defining the T-matrix. It is related to the QCD scattering amplitude T (~p f ,~q f |~pi,~qi) by

〈~p f ,~q f |iT|~pi,~qi〉 = (2π)4δ(Ei − E f )δ
3(~Pi − ~Pf )T (~p f ,~q f |~pi,~qi) . (2.24)

Here the δ-distributions define total energy and momentum conservation.

The scattering amplitude T (~p f ,~q f |~pi,~qi) in turn can also be obtained using the The Lehmann-
Symanzik-Zimmermann (LSZ) reduction formula, see e.g. Ref. [9]. It relates S-matrix elements

7



CHAPTER 2 THEORETICAL BACKGROUND

to n-point functions. In the case of bosons as interacting particles it reads

S f i = disconnected parts

+ (iN1/2)n+l
∫

d4y1 . . . d4xl exp

(
i

n

∑
k=1

pkyk −
l

∑
r=1

qrxr

)

× (�y1
+ m2) . . . (�xl

+ m2) 〈Ω|T [φ(y1) . . . φ(xl)]|Ω〉 , (2.25)

where the inverse Klein-Gordon propagators ensure that the particles are all on-shell, N is the
normalization of each state and we evaluate everything in momentum space. A more thorough
treatment of this reduction technique can be found in Ref. [9] The T-matrix element 〈ϕ f |iT|ψi〉
is given by the second summand in Equation (2.25) which features the full time ordered n-point
function. The n-point function can be calculated using functional derivatives of the generating
functional as in eq. (2.19). The T-matrix, and hence the scattering amplitude can be expressed
via a Born series

T (~p′,~p) = V̂(~p′,~p)

+
∞

∑
n=0

(−1)n

2n

∫ d3k1

(2π)3 . . .
∫ d3kn

(2π)3 V̂(~p′,~k1)GE(~k1)V̂(~k1,~k2)GE(~k2) . . . V̂(~kn,~p) . (2.26)

Here GE denotes the retarded Green’s function

GE(~k) = (ε(~k)− E + iε)−1 , (2.27)

and V̂(~k) the Fourier transformed spherical potential of the interaction.

V̂(~k′,~k) =
∫

d3z
(

exp(−i(~k′ −~k)z) + exp(−i(~k−~k′)z)
)

V(z) . (2.28)

The scattering amplitude depends on the relative momenta of the two particles only. Hence the
arguments ~p′ and ~p of Equation (2.26) are ~p′ = ~p f −~q f and ~p = ~pi −~qi. In the center of mass
frame, defined by ~Pi = ~pi +~qi = 0, the non-relativistic scattering amplitude of Equation (2.24)
can be expanded into partial waves

T = − 4π

µ12

∞

∑
`=0

(2`+ 1)P`(cos ϑ)t` , (2.29)

with the reduced mass

µ12 =
m1m2

m1 + m2
. (2.30)

Now t`(k) are the partial wave amplitudes, P`(cos ϑ) the Legendre polynomials of first
kind and the factor (2`+ 1) accounts for the degeneracy of each partial wave. Allowing for
inelasticity of the interaction and invoking the optical theorem leads to the general form of the

8



2.1 FUNDAMENTALS OF CONTINUUM QCD

partial wave amplitudes,

t`(k) =
1

2ik
[η`(k) exp(2iδ`(k))− 1] , (2.31)

where we have introduced the momentum dependent scattering phase shift δ`(k), and a
parameter for the inelasticity of the scattering

η`(k) 6 1 , (2.32)

which for our case of elastic scattering is η`(k) = 1. Since we are dealing with short ranged
potentials, matching the wave function inside and outside the potential leads to the effective
range approximation for s-wave scattering (` = 0),

k cot δ0(k) = −
1
a0

+
1
2

r0k2 . (2.33)

This defines the scattering length a0 and the effective range r0 which are completely sufficient to
describe elastic scattering processes because terms of order O

(
k4
)

and higher can be ignored.
The sign of the scattering length changes depending on the behavior of the scattering

sgn(a0) =

{
+1 , repulsive

−1 , attractive
. (2.34)
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CHAPTER 2 THEORETICAL BACKGROUND

2.2 FUNDAMENTALS OF CHIRAL PERTURBATION THEORY

The scattering processes under investigation in this thesis occur at low energies compared
to the QCD scale ΛQCD ≈ 1 GeV. The large value of the strong coupling constant, αs, at low
energies prevents the application of ordinary Perturbation Theory to these processes. One
way to proceed is the application of Chiral Perturbation Theory (ChPT) to make statements
about low energy phenomena. A more detailed introduction can be found in Ref. [10]. After
transforming the Lagrangian density into an effective form and inspecting its Noether currents
we end up with a description of the interaction processes at hand in terms of the light degrees
of freedom. The effective Lagrangian density Leff is only known up to low energy constants
(LECs), as explained below. As mentioned in Chapter 1 lattice QCD simulations are run at
non-physical values of quark masses. In the end we will combine the data obtained from lQCD
calculations and the description of the data’s chiral behavior in terms of ChPT to extrapolate
our findings to physical values of the input parameters (physical meson masses and decay
constants).

This section shortly defines what constitutes an effective field theory. After that we state the
effective Lagrangian density to obtain predictions from and conclude with the expressions for
the scattering lengths in the maximum isospin channels of K-K and π-K interactions.

2.2.1 EFFECTIVE FIELD THEORIES

ChPT is based on the assumption that for certain processes only low energy degrees of freedom
are relevant whereas high energy degrees of freedom do not play a role in the interactions at
hand such that they can be integrated out [10]. Effective field theories rely on the fact that scales,
like for instance hadron masses, are intrinsically separated. In fact the pseudoscalar masses of
the pions, the kaons and the η-meson are well separated from heavier hadron masses like for
instance baryons. This separation can be expressed via

M` � Λ ≈ Mh , (2.35)

where ` and h stand for light and heavy, respectively. It follows that the hadrons with masses
around Λ do not take part at low energy processes and therefore are not important for the
dynamics of these processes. An effective theory aims at replacing the underlying Lagrangian
density by an effective form with different degrees of freedom. Neglecting the heavy degrees of
freedom results in an unrenormalized theory with unknown coupling constants. These low
energy constants (LEC) are unknown a priori and have to be determined either by calculation,
by input from experiments or by fits to simulated data. The effective Lagrangian density needs
to respect the same symmetries as the underlying theory because its interaction terms are also
determined from the symmetries of the underlying theory. In total a successful construction of
an effective Lagrangian is based on a low energy expansion from terms invariant under the
symmetries of the underlying theory.

10



2.2 FUNDAMENTALS OF CHIRAL PERTURBATION THEORY

2.2.2 EFFECTIVE LAGRANGIAN DENSITY

Chiral Perturbation Theory is based on a conjecture made by Weinberg in Ref. [11]. This
conjecture relates the S-matrix of a quantum field theory with a perturbative expansion of
the most general effective Lagrangian density describing that quantum field theory. For this
to work the expansion of Leff has to be compatible with the underlying symmetries of the
quantum field theory under inspection to all orders. Therefore one is left with two tasks:

1. Organization of the effective Lagrangian

2. Assessment of the importance of diagrams stemming from interaction terms

Item 1 can be taken care of by using Weinberg’s power counting scheme. This scheme is
based on an expansion of the effective Lagrangian in terms of momenta. Four derivatives
(∂µ) generate four momenta (pµ), whereas squared meson masses are associated with squares
of four momenta, when on-shell. In this sense the effective Lagrangian density, Leff, can be
expanded in powers of momenta and masses

Leff = L(2) + L(4) + L(6) + . . . , (2.36)

denoted by the superscripts in Equation (2.36). The occurrence of only even terms is explained
by Lorentz invariance of the QCD Lagrangian density and the absence of L(0) by the fact
that it just adds an irrelevant constant. To construct an effective Lagrangian density one first
decides up to which order the expansion of Equation (2.36) should be carried out. Then one
collects for each power all possible terms obeying the symmetries of the theory one is interested
in. For QCD we want Leff to be invariant under SU(3)L × SU(3)R ×U(1)V in the chiral limit.
Switching on quark masses should induce chiral symmetry breaking as described in Section 2.1.
As an example we outline the expansion at leading order, first in the chiral limit and then
incorporating quark masses. The low energy regime of QCD is dominated by the Goldstone
bosons. In the chiral limit the quark masses vanish, M = diag(mu, md, ms) = 0, and Leff
should be invariant under the isospin SU(3) group such that the eight Goldstone bosons Φa(x)
associated with the eight generators λa of fields are the degrees of freedom. Following Ref. [10]
the dynamical variables thus are given by U(x) ∈ SU(3),

U(x) = exp
(

i
Φ(x)

F0

)
,

Φ(x) =
8

∑
a=1

λaΦa(x) =




π0 + η/
√

3
√

2π+ √
2K+

√
2π− −π0 + η/

√
3
√

2K0

√
2K−

√
2 K0 2η/

√
3


 . (2.37)

The constant F0 is associated with the weak pion decay π+ −→ `ν` in the chiral limit. It
determines the coupling strength of a Goldstone boson to the axial vector current, cf. [10]

〈
Ω
∣∣∣ Jµ,a

L (0)
∣∣∣ φb(p)

〉
= −ipµ

F0

2
δab , (2.38)

11



CHAPTER 2 THEORETICAL BACKGROUND

where we have made use of the expansion of the left handed axial current Jµ,a
L (x) up to order

O
(

φ2
)

as shown in Ref. [10]

Jµ,a
L (0) = i

F2
0

4
tr
(

λa∂µU†U
)

. (2.39)

Its numerical value has to be determined via phenomenological input. It is given by F0 ≈
93 MeV. Depending on the normalization of the Φ-field, the experimental value of the charged
pion decay constant fπ differs by a factor of

√
2. In what follows we will work with fπ =√

2F0 = 131.52 MeV. The matrix U(x) transforms under R ∈ SU(3)R and L ∈ SU(3)L like

U(x)→ U(x)′ = RU(x)L† (2.40)

The most general Leff at leading order with the minimal number of derivatives and a global
SU(3)L × SU(3)R invariance is then given by

L(2) =
F0

2
tr(∂µU∂µU†) (2.41)

In the physical Lagrangian density the quark masses explicitly break the global SU(3)L ×
SU(3)R symmetry, leading to massive Goldstone bosons. The quark mass matrix M is inserted
into Leff via the assumption that it transforms like

M→ M′ = RML† , (2.42)

and expands the Lagrange density L(U, M). At leading order this results in

L(2) =
F0

2
tr(∂µU∂µU†) +

F2
0 B0

2
tr(MU† + UM†) , (2.43)

where the second term is invariant under Equation (2.42) and Equation (2.40). An important
result of ChPT at leading order are the Gell-Mann-Oakes-Renner (GMOR) relations, as obtained
from developing the second term in Equation (2.43) to second order in the momentum p and
taking the isospin symmetric limit mu = md = m`, as done in Ref. [10]. Thus the masses of the
Goldstone bosons π, K and η are obtained as

M2
π = 2B0m`

M2
K = B0(m` + ms) (2.44)

M2
η =

2
3

B0(m` + 2ms) .

The GMOR relations imply the Gell-Mann-Okubo formula

M2
η =

1
3
(4M2

K −M2
π) (2.45)

12



2.2 FUNDAMENTALS OF CHIRAL PERTURBATION THEORY

2.2.3 SCATTERING LENGTHS AT NEXT TO LEADING ORDER

The up and down quark form an isospin doublet I = (1/2,−1/2)T, reflecting SU(2) flavor
symmetry. This leads to the decomposition

2⊗ 2 = 3⊕ 1 , (2.46)

with total isospin I = 1 for the triplet and I = 0 for the singlet. The triplet states 〈I, I3〉 are the
pions




π+

π0

π−


 =



|1,+1〉
|1, 0〉
|1,−1〉


 (2.47)

The strange quark has isospin I = 0 such that the Kaon’s isospin configuration is completly
determined by the light quark:

K+ =

∣∣∣∣
1
2

,
1
2

〉
, K− =

∣∣∣∣
1
2

,−1
2

〉
(2.48)

K0 =

∣∣∣∣
1
2

,−1
2

〉
, K̄0 =

∣∣∣∣
1
2

,
1
2

〉
. (2.49)

The kinematics of interactions of 2 hadrons are described by the Mandelstam variables for four
momenta pi, i = 1, . . . , 4

s = (p1 + p2)
2 = (p3 + p4)

2 , (2.50)

t = (p2 − p4)
2 = (p1 − p3)

2 , (2.51)

u = (p2 − p3)
2 = (p1 − p4)

2 , (2.52)

s + t + u = ∑
i

p2
i , p2

i = m2
i . (2.53)

The elastic process π+K+ → π+K+ has isospin I3 = 3/2, wehreas, for instance, the isospin
of π− and K+ can couple to |I, I3〉 = |3/2,−1/2〉 and |I, I3〉 = |1/2,−1/2〉, respectively. With
the amplitudes of isospin I3 = 1 and I3 = 0 it is possible to construct amplitudes whose
diagrams are even/odd under exchange of the Mandelstam variables s and u. In Ref. [12] these
amplitudes have been defined as

T + =
1√
6
T 0(ππ → KK̄) =

1
3
(T 1/2 + 2T 3/2) , (2.54)

T − =
1
2
T 1(ππ → KK̄) =

1
3
(T 1/2 − T 3/2) . (2.55)

With a Lagrangian density at given order it is possible to calculate T-matrix elements and
scattering amplitudes T for specific scattering processes using the formulae in Section 2.1.3. The
general procedure which also allows to calculate off-shell matrix elements has been developed
in Ref. [13]. The starting point is the S-matrix element of the interaction depicted in Figure 2.1.
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In our case it is given by

π+

K+

π+

K+

p1

p2

p3

p4

Figure 2.1: Diagram for elastig π-K scattering the arrows denote propagators with their respective 4
momenta pi. The dashed shaded area depicts the elastic interaction of the two particles.

S f i = 〈π+(p3)K
+(p4), out | S |π+(p1)K

+(p2), in〉 . (2.56)

Employing the LSZ reduction formula Equation (2.25) and the generating functional Equa-
tion (2.19) the scattering amplitude T 3/2 for the process π+K+ → π+K+ has been calculated in
Ref. [14]. From the amplitude T 3/2 the scattering length can be calculated using the effective
range expansion as explained in section 2.1.3. In the basis of the even/odd amplitudes the
scattering lengths are given at next-to-leading order in SU(3) ChPT in Equations (12) and (13) in
Ref. [15]. For convenience they are listed in the appendix of Chapter 6. From these the isospin
1/2 and isospin 3/2 scattering lengths can be constructed equivalent to the combinations of the
amplitudes, cf. Ref. [15]

a3/2
0 = a+0 − a−0 (2.57)

a1/2
0 = a+0 + 2a−0 (2.58)

Furthermore multiplying Equation (2.57) by the reduced mass of the π-K system following
Equation (2.30) and plugging in the expressions for a± one arrives at

µπK a3/2
0 = −0.0463(17) =

µ2
πK

4π f 2
π

[
32Mπ MK

f 2
π

LπK(Λχ)− 1− 16M2
π

f 2
π

L5(Λχ)

+
1

16π2 f 2
π

χ3/2
NLO(Λχ, Mπ, MK, Mη)

]
. (2.59)

In Equation (2.59) the LECs L5 and LπK occur, with LπK being a combination of several other
LECs:

LπK = 2L1 + 2L2 + L3 − 2L4 −
L5

2
+ 2L6 + L8 . (2.60)

The functions χNLO3/2 and χNLO1/2 summarize next to leading order corrections to the scattering
length. They can be constructed from the corrections χ±NLO given in the appendix of the
publication in Chapter 6. The LECs appearing in Equation (2.59) stem from the NLO form of
the chiral Lagrangian density, stated in Ref. [14].
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2.3 QCD AND SCATTERING IN HYPERCUBIC SPACE-TIME

In this section we reformulate the methods of Chapter 2 in a way such that numerical calcula-
tions become feasible. This non perturbative ab-initio approach to QCD is called lattice QCD
(lQCD). The reformulation involves rotating the time dimension of Minkowski space to the
imaginary axis. The Euclidean space time obtained by this rotation is then discretized into a
four dimensional hypercube. We discuss the discretization With Lüscher’s method, introduced
in Section 2.3.2, we describe a way to access scattering observables in our lattice formulation. of
the QCD gauge field first in Section 2.3.1. The discretization of fermions is presented in greater
detail in Section 2.4.

2.3.1 THE LATTICE AS A REGULATOR

The oscillatory behavior of the weight function exp iS in the n-point function Equation (2.15),
known as sign problem prevents a numerical evaluation. Another problem are ultraviolet
divergences when trying to calculate the path integral. To address the oscillations we now
change from Minkowski to Euclidean space-time by a Wick rotation of the time axis t→ −iτ, τ

is called Euclidean time. This change of variables transforms the metric of space-time from the
Minkowski formulation (gµν) to the Euclidean one (δµν):

gµν = diag(1,−1,−1,−1) t→−iτ−→ δµν = diag(−1,−1,−1,−1) . (2.61)

The rotation transforms the oscillatory exponential in Equation (2.15) like

exp
(

i
∫

dtLM

)
→ exp

(
−
∫

dtLE

)
, (2.62)

provided the Dirac matrices, cf. Appendix A.1, the integration measure and the spinor valued
fields are adjusted accordingly. Thus the n-point function of Equation (2.15) is changed to

〈Ω|T (ψ1, . . . , ψn)|Ω〉 =
1
Z

∫
Dψ Dψ̄ DA ψ1 · · ·ψn exp(−SE[ψ̄, ψ, A]) , (2.63)

with according changes in Z as well. The Euclidean action SE now reads

SE = SF + SG =
∫ (

d4x ∑
f

ψ̄ f (x)(γµDµ + m f )ψ f (x)− 1
4

Fa,µν(x)Fa
µν(x)

)
. (2.64)

Splitting up the action into a fermionic (SF) and a gluonic (SG) part carries over from Minkowski
space to the Euclidean space. Since we inserted fermions as Grassmann numbers their calculus
would complicate a numerical sampling of the path integral. A way forward is to perform the
integrals over the Grassmann-valued fields ψ̄ and ψ analytically. The Gaussian integral over
Grassmann variables,

∫
Dψ̄ Dψ exp

(
−
∫

d4x ψ̄Dψ

)
= det D , (2.65)

15



CHAPTER 2 THEORETICAL BACKGROUND

for an operator D, yields for the expectation value

〈O〉 = 1
Z

∫
DA det(D)O(A, D−1(A)) exp(−SG[A]) , (2.66)

where D is the Dirac operator of the action SE and D−1 denotes fermionic propagators. With
O(A, D−1) we denote the time ordered product of fermionic fields ψ(x) which depends on the
fermionic propagator and the gauge field. The determinant can be incorporated into Equa-
tion (2.66), again, this time as an integral over complex numbers φ† and φ which obey bosonic
statistics

〈O〉 = 1
Z

∫
Dφ† Dφ DAO(A, D−1(A)) exp(−SG[A]− φ†D−1φ) . (2.67)

In this way we avoid the combinatorics stemming from the Grassmann integrals and still
determine the fermionic determinant. What is left to do is to invert the Dirac Matrix D which
still is demanding numerically but no principal problem. Thus we can now treat the exponential
factor in Equation (2.63) as a probability distribution.

When evaluating the estimator Equation (2.67) we will encounter ultraviolet divergences
in the integration over the different degrees of freedom (ψ) for high momenta. To cure this
we introduce a sharp high momentum cutoff by discretizing Euclidean space-time on a 4
dimensional hypercubic lattice

Λ =
{

n = νa
∣∣∣ ν ∈ Z4

}
. (2.68)

In this discretization prescription a is the lattice spacing. We here assume equal spacing for the
temporal and all spatial directions. For completness we denote the basis of Z4 by

B = { µ | µ = 1, . . . , 4 } . (2.69)

The discretization necessitates a reformulation of the Euclidean action SE. For the time being
we note that in principle any discretization of SE is allowed as long as the continuum action is
recovered when sending a→ 0.

The discretization of space-time given in Equation (2.68) entails a redefinition of the gauge
field Aµ introduced in section 2.1. On the lattice the gauge field is represented by gauge link
matrices Uµ(n) via

Uµ(n) = exp(iaAµ(n)) , (2.70)

These SU(3) matrices are the elementary gauge transporters [8] on the lattice. A set of gauge
link matrices

Υ =
{

Uµ(n)
∣∣∣ n ∈ Λ

}
(2.71)

is called a gauge field configuration. The gauge links transport color charge along a given
direction µ as depicted in fig. 2.2. At the lattice boundaries we adopt periodic boundary

16
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n n + µUµ(n)

(a) Forward gauge transporter

n n + µUµ(n)
†

(b) Backward gauge transporter

Figure 2.2: Gauge links transporting color charge in the forward and backward direction, labeled Uµ(n)

and U†
µ(n), respectively.

conditions for the gauge fields such that

Uµ(n + Lµi) = Uµ(n) . (2.72)

In the context of the four-dimensional Euclidean lattice defined in Equation (2.68) the definition
of the spinor quark fields change as well. Instead of being continuous spinors the quark fields
are now defined on the lattice sites only. Furthermore each quark field carries indices for color
charge, Dirac component and flavor. For legibility reasons we will suppress these indices in the
following, assuming that they become clear from the context.

2.3.2 SCATTERING IN A FINITE BOX

When evaluated inside a box of finite volume L3 the energy spectrum of hadrons becomes
discrete. This is in contrast to the infinite volume case where the energy spectrum is continuous.
In addition, if the box is small enough, it will squeeze the cloud of particles around the
hadron stemming from its polarization of the vacuum. This squeezing causes a shift in the
measured energies of the hadronic system. In the following we will concentrate on systems of
two interacting mesons at rest inside such a finite box and impose periodic spatial boundary
conditions, such that wave functions of particles read

ψ(x0,~x) = ψ(x0,~x +~nL) , ~n ∈ Z
3 . (2.73)

In Refs. [16, 17] M. Lüscher derived the volume dependence of these energy shifts and connected
them to infinite volume scattering parameters, like the scattering length and the scattering
phase shift. The total energy E of two interacting particles inside the box is given by their
energies and a shift δE:

E =

√
m2

i + ~p2
i +

√
m2

j + ~p2
j + δE , (2.74)

where the subscripts i and j denote different particles with masses mi and mj, respectively, ~pi,j
are the discrete three momenta of the particles

~pi =
2π

L
~ni ,~ni ∈ Z

3 (2.75)

and δE denotes the energy shift due to interactions of the particles involved. For completeness
we note that here the center of mass of the system is at rest which implies ~pi = −~pj such that
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the total energy is given by

E = m1 + m2 + δE . (2.76)

Extensions to this formalism in direction to moving particles with different momenta have been
developed in Ref. [18]. The energy shift happens for two reasons as detailed in Ref. [17]. On the
one hand periodicity of the volume induces particle propagation around the lattice, an effect
which decays exponentially with L [16]. On the other hand the direct interaction of the mesons
at hand entails corrections to the free energy in powers of 1/L.

To see this we sketch Lüscher’s line of argument in the non-relativistic case and its generaliz-
ation to the relativistic case of quantum field theory as was done in Ref. [17]. The argument is
based on the Born series approximation [19] of the non-relativistic scattering amplitude of two
particles with masses mi and mj and the expansion of the Eigenvalue of the full Hamiltonian of
the system.

To this end let H = H0 +V denote the full Hamilton operator of the interacting meson system
in a finite volume L3. H0 is the free Hamilton operator acting on the bosonic wave function
ψ(x, y) of the two particle system

H0 = −
∆̃x + ∆̃y

2m
. (2.77)

The interaction potential V acts on ψ(x, y) via

Vψ(x, y) = V(x− y)ψ(x, y) . (2.78)

The eigenfunctions ψ0 to H0 can be labeled by the meson momenta ~p and~q

H0 |~p,~q〉 = E0 |~p,~q〉 . (2.79)

The total energy E of the interacting system can be expanded in an infinite power series with
parameters ε taken to ε = 1 afterwards

E = E0 + εr(E) , (2.80)

E =
∞

∑
ν=0

ενEν . (2.81)

The function r(z) is the non-degenerate perturbative expansion of the full Hamiltonian H in
terms of the free two particle wave function and the poles at z = E0 removed by

Q0 = 1− |ψ0〉 〈ψ0| . (2.82)

It is then defined via

r(z) =

〈
ψ0

∣∣∣∣∣V
∞

∑
n=0

(
Q0

z− H0
V
)n
∣∣∣∣∣ψ0

〉
. (2.83)
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Equation (2.81) leads to a recursion relation for E in ν. Setting ε = 1 the recursion relation
becomes

E = E0 +
∞

∑
ν=1

Eν

Eν =
ν

∑
j1

. . .
ν

∑
jν

C(j1, . . . , jν)rj1rj2 . . . rjν , (2.84)

where the rj are the summands of the Taylor series of r(E0)

rj =
1
j!

∂j

∂zj r(z)|z=E0
(2.85)

The first energy correction is given by E1 = r0 and is just r(z) evaluated at z = E0. Evaluation
of the series in finite volume yields

r0 =
1

2L3

(
V̂(0, 0) +

∞

∑
n=1

(−1

2L3

)n

∑
k1 6=0

. . . ∑
kn 6=0

V̂(0, ~k1)
m
k2

1
V̂(k1, k2)

m
k2

2
. . . V̂(kn, 0)

)
, (2.86)

where the sums do not include the poles of the intermediate propagators. The operator valued
potential V̂ is the Fourier transform of the spatial potential

V̂(k1, k2) =
∫

d3z {exp [−i(k1 − k2)z] + exp [−i(k2 − k1)z]}V(z) . (2.87)

This series resembles the Born series of the scattering amplitude Equation (2.26) with the
difference of integrals being replaced by sums. In Ref. [17] a generalized momentum sum,
accounting for the mismatch between the infinite volume integral and the 3-dimensional finite
volume sum was derived. Sums of the type occuring in Equation (2.86) can be evaluated with
the help of the generalized momentum sum [17] which yields an expansion of the energy
corrections Eν in powers of the potential V and inverse box size L−1. So far the matching has
been established for the quantum mechanical Born series only and a generalization to Quantum
field theories is still to be made. M. Lüscher establishes this generalization in Ref. [17]. The
main point here is the replacement of the Born series by a geometric series of the four point
function using the Bethe-Salpeter kernel. Further differences are alleviated as well, cf. Ref [17].

Using the connection whose derivation was sketched above yields the relation between the
energy shift, the elastic s-wave scattering length a0 and the effective range r f

δE12 = − 2πa0

µ12L3

(
1 + c1

a0

L
+ c2

a2
0

L2 + c3
a3

0

L3

)
− 4π2a3

0

µ12L6 r f +O(L−7) . (2.88)

The coefficients c1 , . . . , c3 stem from the numerical evaluation of Lüscher’s Zeta function, given
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in Ref. [17] as

c1 = −2.837297 , c2 = 6.375183 , c3 = −8.311951 . (2.89)
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2.4 DISCRETIZATION SCHEMES OF QCD

We still need to specify a discretization scheme for the fermionic and gluonic actions SF and
SG, respectively. To this end we here discuss different discretizations of the fermionic part of
Equation (2.64), namely Wilson fermions, Wilson twisted mass fermions and Osterwalder-Seiler
fermions. For the gauge part of Equation (2.64) we will focus on the Iwasaki gauge action as
introduced in Ref. [20].

2.4.1 WILSON QUARKS

One of many discretization schemes is to discretize fermions like Wilson proposed in Ref. [].
The Wilson Dirac operator reads

DW =
3

∑
µ=0

1
2

(
γµ(∇µ +∇∗µ)− ar∇µ∇∗µ

)
, (2.90)

with the gauge covariant lattice derivative for one flavor f

∇µψ f (x) =
1
a

(
Uµ(x)ψ f (x + aµ̂)− ψ f (x)

)
(2.91)

∇∗µψ f (x) =
1
a

(
ψ f (x)−Uµ(x− aµ̂)ψ f (x− aµ̂)

)
. (2.92)

The matrices Uµ(x) are the link variables introduced in Section 2.3.1. In Equation (2.90) the
term proportional to a is called Wilson term. In the current work the Wilson parameter r is
set to r = 1. The Wilson term decouples excess fermions, stemming from the discretization
procedure of the naive Dirac propagator in momentum space, by assigning them a heavier
effective mass, as shown in detail in Ref. [8]. The corresponding action now reads

SW
F = ∑

x∈Λ
ψ̄(x)(DW + m0)ψ(x) . (2.93)

Apart from removing doublers from the eigenvalue spectrum of the Dirac propagator this
action respects parity, charge conjugation unitarity and has an exact U(N f ) symmetry, with N f
being the number of quark flavors under consideration. In addition it displays γ5-hermiticity:

γ5D†
Wγ5 = DW . (2.94)

Nevertheless there are also a few drawbacks. At finite lattice spacing the presence of the Wilson
term breaks all axial symmetries, for example chiral symmetry. Furthermore the bare mass m0
receives a linearly divergent contribution via mcrit ∝ 1/a. Thus the renormalized quark mass
mR is given by

mR = Zm(m0 −mcrit) , (2.95)

with Zm being a multiplicative renormalization constant. As a last disadvantage we mention
that discretization effects with the Wilson Fermion action are of order O(a).
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The additive renormalization of the quark mass can pose a problem in numerical simulations
because typically a physical quark mass corresponds to a negative bare quark mass m0. A
missing lower bound on the eigenvalue spectrum of the bare quark mass can complicate things
further, as shown in Refs. [21, 22]. To see this we define the hermitian operator

Q = γ5(DW + m0) , Q = Q† (2.96)

and its eigenfunctions and eigenvalues via

Qφi(x) = λiφi(x) . (2.97)

Now we evaluate a pseudoscalar correlation function [21, 22] with the help of Equation (2.66):

CPS(x− y) =
〈

ψ̄(x)γ5
τ1

2
ψ(x)ψ̄(y)γ5

τ1

2
ψ(y)

〉

=
1

2Z

∫
DU det(Q2)tr(Q−1(y, x)Q−1(x, y)) exp(−SG[U])

=
1

2Z

∫
DU ∏

i
λ2

i ∑
k,`

1
λkλ`

φk(x)φ∗k (x)φ`(y)φ
∗
` (y) . (2.98)

Gauge configurations with small eigenvalues λi are called “exceptional configurations”. In
nowadays numerical simulations the determinant in Equation (2.98) cancels potentially small
eigenvalues stemming from the trace over the quark propagators and thus avoids the problem
of exceptional configurations. Nevertheless in earlier days it was common to simulate in the
quenched approximation, i.e. det(Q2) = 1, in order to save computing time. There exceptional
configurations posed a severe problem in the evaluation of correlation functions.

2.4.2 TWISTED MASS FORMALISM

A cure to exceptional configurations came in form of the twisted mass (tm) formulation of
lQCD, as we will describe in the following. Nowadays twisted mass fermions mainly are used
because they automatically improve a class of quantities up to order O (a) in lattice artifacts
such that the remaining lattice artifacts of these operators are of order O

(
a2
)

or higher.

LIGHT SECTOR

In the continuum the twisted mass action SF,tm for a mass degenerate doublet of quarks
χ` = (χu, χd)

T is given by

Scont
F,tm =

∫
d4x χ̄`(x)( /D + mq + iµqγ5τ3)χ`(x) , (2.99)

where µq is the bare twisted mass and τ3 the third Pauli matrix acting in flavor space. The
standard and twisted mass continuum action can be related via a chiral transformation of the
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quark fields

ψ̄(x) = χ̄(x)R(ω) , ψ(x) = R(ω)χ(x) , R(ω) = exp
(

iωγ5
τ3

2

)
, (2.100)

the fermionic continuum action Equation (2.14) is recovered, provided

tan ω =
µq

mq
, (2.101)

holds. The mass then is given by

M =
√

m2
q + µ2

q . (2.102)

In the continuum case twisted QCD and standard QCD are exactly related by the chiral
transformation Equation (2.100) and all symmetries of QCD carry over. This relation can be
seen by replacing the mass terms of Equation (2.99) as

mq + iµqγ5τ3 = M (cos(ω) + i sin(ω)γ5τ3) = M exp(iγ5ωτ3) , (2.103)

and using the chiral rotations of Equation (2.100) to obtain the continuum action of QCD. As a
consequence of this exact relation also correlation functions of standard QCD and twisted mass
QCD are related via the same transformation. The currents in the twisted basis are obtained
by transforming the multiplets in Equation (2.13) to the twisted basis using Equation (2.100).
Following Ref. [21], these relations read

A′µ1 = cos(α)Aµ
1 + sin(α)Vµ

2 , V ′µ1 = cos(α)Vµ
1 + sin(α)Aµ

2 ,

A′µ2 = cos(α)Aµ
2 − sin(α)Vµ

1 , V ′µ2 = cos(α)Vµ
2 − sin(α)Aµ

1 , (2.104)

A′µ3 = Aµ
3 , V ′µ3 = Vµ

3 ,

P′a = Pa , (a = 1, 2) , S′0 = cos(α)S0 + 2iP3 ,

P′3 = cos(α)P3 + is
1
2

S0 . (2.105)

When regularizing twisted mass QCD with Wilson quarks the action reads

SF,tm = ∑
x

χ̄(x)(DW + m0 + iµqγ5τ3)χ(x) , (2.106)

and the axial symmetry of Equation (2.99) is broken by the Wilson term. The pure Wilson action
and the twisted mass Wilson action only coincide again in the continuum limit.

Owing to the flavor structure of the twisted mass term the Dirac operator changes flavor on
application of γ5 from left and right:

Dd = γ5D†
uγ5

Du = γ5D†
dγ5 .

(2.107)
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Here the subscripts u and d denote the upper and lower part of the twisted mass Dirac operator,
respectively.

With the twisted mass Dirac operator

Q + iµqγ5τ3 , (2.108)

the 2 flavor determinant now reads

det(Q + iµqγ5τ3) = det

(
Q + iµq 0

0 Q− iµq

)
= det(Q2 + µ2

q) > 0 . (2.109)

Thus the twisted mass term ensures a positive real determinant, necessary for calculating quark
propagators, provided µq 6= 0.

AUTOMATIC ORDER O (a) IMPROVEMENT

Observables evaluated with standard Wilson fermions have contributions which are linear in
the lattice spacing. These contributions are called order O (a) lattice artifacts and necessitate a
continuum extrapolation of these observables. Using Symanzik improvement, as described in
Ref. [21] and references therein, the Sheikoleslami-Wohlert counterterm added to the Wilson
action cancels order O (a) artifacts of the spectrum of particle energies. This is in contrast to the
case when matrix elements are the observables of interest. Then for each operator entering the
observable one needs to separately tune one set of counterterms for each observable.

In the case of twisted mass fermions at “full” or “maximal” twist it can be shown that all
parity even operators possess lattice artifacts which are at least of order O(a2).

Tuning the action to maximal twist amounts to setting the twist angle to ω = π/2, as
described in detail in Ref. [22]. This can be achieved by setting the renormalized quark mass
mR to zero as can be seen from

tan ω =
µR
mR

. (2.110)

Following the argumentation in Ref. [22], since mR is given by Equation (2.95) it is enough to
set the untwisted mass m0 to its critical value m0 = mcrit. One possible way to achieve this is to
tune the untwisted mass to the value where the PCAC mass mPCAC vanishes

mPCAC =
〈∂0Aa

0(x)Pa(0)〉
2 〈Pa(x)Pa(0)〉 =

ZP
ZA

mR , a = 1, 2 . (2.111)

Here Pa and Aa
0 refer to the multiplet currents of Equation (2.105) and ZP and ZA are the pseudo-

scalar and axial vector renormalization constants. Note that no renormalization constants need
to be determined when tuning to mcrit.
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HEAVY SECTOR

So far we only considered one doublet of mass degenerate light quarks. Compared to the
second generation of quarks (s, c), treating the first generation as mass degenerate is a valid
approximation because the masses of the u and d quark are much smaller compared to the
masses of s and c quark. Too maintain the structure of the fermionic determinant additional
flavors can only be inserted in doublets. Mass non degenerate quarks, like the charm and
strange quarks can be introduced in a twisted mass way by using the action

Sh = ∑
x

χ̄h(x)(DW + mq + iµσγ5τ1 + µδτ3)χh(x) , (2.112)

where χh(x) now describes a mass non-degenerate doublet of quarks χh = (χc, χs)
T. The choice

of Pauli matrices in Equation (2.112) is such that the desirable properties already discussed in
the light case carry over completely at maximal twist. Calculating the fermionic determinant
analogous to the case of the light sector yields

det(Q + iµσγ5τ1 + µδτ3) = det
(

Q + µσ iµσγ5
iµσγ5 Q− µσ

)
= det(Q2 − µ2

δ + µ2
σ) . (2.113)

Thus the fermionic determinant of the non-degenerate doublet stays positive provided
√

m2
q + µ2

σ > µδ

holds. The connection between the chiral and the physical basis for the heavy quark doublet
reads

ψ̄h(x) = χ̄h(x)Rh(ωh) , ψh(x) = Rh(ωh)χh(x) , Rh(ωh) = exp
(

iωhγ5
τ1

2

)
, (2.114)

where the doublets χ̄h and χh are in the twisted basis and ψ̄h and ψh are the corresponding
doublets in the physical basis. The difference to Equation (2.100) lies in the choice of τ1, as
opposed to τ3, and a different twist angle ωh, instead of ω. Analogously to the light sector the
bare quark masses of the strange quark and the charm quark, ms and mc, respectively, are now
given by

mc/s = M± µδ , (2.115)

with M being the polar mass

M =
√

m2
q + µ2

σ . (2.116)

Again in the case of full twist the bare quark masses are completely determined by the paramet-
ers µσ and µδ, provided mcrit is tuned to cancel mq. As has been worked out in Ref. [23], the
heavy quark masses are then renormalized with the Pseudoscalar and Scalar renormalization
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constants, ZP and ZS, respectively,

mR
c/s =

1
ZP

(
µσ ±

ZP
ZS

µδ

)
. (2.117)

When a non-degenerate doublet is introduced into the action operators with strange and charm
quarks receive flavor mixing contributions. This happens because at finite lattice spacing with
Wilson twisted mass (Wtm) non-degenerate quarks K and D meson states do exist in a mixed
flavor-parity sector (s/c,−/+) as opposed to the continuum case. As a consequence K and D
meson states mix during the calculation of correlation functions. A more detailed discussion of
this issue and possible solutions can be found in Ref. [24].

2.4.3 OSTERWALDER-SEILER QUARKS

The problem of flavor and parity mixing can be solved by regularizing the non-degenerate
valence sector in a different way than the sea sector. Such a mixed action setup can be realized
with so called Osterwalder-Seiler quarks. Thus we are able to implement valence strange
quarks by using a different Dirac operator of the form

Ds = DW + m0 + iµsγ5τ3 , (2.118)

with an additional degenerate doublet of quarks qs = (q+s , q−s )
T. Automatic order O (a)

improvement only stays valid at maximal twist. Therefore the additional flavor is inserted as a
degenerate doublet. Thus at maximal twist the upper and lower quark mass are of the same
modulus, |µs|, but possess opposite signs. As a consequence lattice quantities using different
components of the doublet qs will differ by lattice artifacts of order O(a2) and only coincide in
the continuum. This approach avoids complications stemming from the mass splitting term in
Equation (2.112). In addition it renders the valence strange quark mass tunable by allowing
for different bare quark parameters µs. Furthermore, as was shown in Ref. [23] automatic
order O(a) improvement stays valid when taking m0 to be the same mcrit as for the light sector.
Nevertheless all these nice features come at a price: The usage of OS-valence quarks explicitly
breaks unitarity between the sea and the valence quarks such that one would have to take into
account the mismatching between valence and sea strange quark mass when interpolating in
µs.

Realizing the heavy sector via OS-quarks would introduce the unphysical doublet mem-
bers already at the level of the gauge configuration. As a consequence the resulting fermion
determinant would need to be treated in order to cancel the unwanted contributions.

2.4.4 GAUGE ACTION

The gauge action SG used in the simulations for this work is the Iwasaki gauge action, intro-
duced in [20]. Because the generation of gauge configurations is not in the focus of this thesis
we will only briefly state the mathematical form of the gauge action and discuss the choice of
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n n + µ

n + ν n + µ + ν

Uµ(n)

Uν(n) Uν(n + µ)

Uµ(n + ν)

(a) Gauge link plaquette U1×1
µν

n n + 2µ

n + ν n + 2µ + ν

Uµ(n) Uµ(n + µ)

Uν(n + 2µ)Uν(n)

Uµ(n + ν) Uµ(n + ν + µ)

(b) Wilson loop U1×2
µν

Figure 2.3: The closed path objects Um×n
µν entering the Iwasaki gauge action.

parameters. The Iwasaki gauge action reads

SG(U) =
β

6 ∑
n

∑
µ 6=ν

{
b0

[
1− Re tr

(
U1×1

µν (n)
)]

+ 2b1

[
1− Re tr

(
U1×2

µν (n)
)]}

, (2.119)

β =
6

g2 ,

where β is the inverse bare coupling constant of the theory. The quantities inside the traces are
the gauge invariant plaquette and the 1× 2 Wilson loop depicted in Figure 2.3

Those quantities are 2 dimensional gauge invariant products of link variables along closed
paths L (m, n) with m , n ∈ Z labeling the extension to two dimensions.

Um×n
µν (n) = ∏

(x,η)∈L (m,n)
Uη(x) . (2.120)

With the choices b1 = 0 , b0 = 2 Wilson’s gauge action, cf. Ref. [25], is recovered. In the
continuum limit a → 0 both formulations of the gauge action transform into the continuum
gauge action. In Ref. [26] it has been shown that simulations employing Wilson’s gauge action
exhibit a first order phase transition for certain values of the gauge coupling parameter β and
the critical mass mcrit. To ameliorate this behavior the parameters values

b0 = 1− 8b1, b1 = −0.331 , (2.121)

smooth the behavior of the phase transition, as was shown in Ref. [27]
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C H A P T E R 3

CORRELATION FUNCTIONS AND HADRON

SPECTROSCOPY

The overall goal of any lattice simulation is the numerical evaluation of matrix elements or
n-point functions as introduced in Section 2.1.2. Ultimately, we are interested in the scattering
length a0 and the effective range r f of the K+-K+ and the π+-K+ system. As shown in Sec-
tion 2.3.2, these two physical quantities are connected to the finite volume energy of the system.
In the following we present the formalism how to obtain these energy values from simulated
lattice data.

3.1 CALCULATING CORRELATION FUNCTIONS

Quantum field theoretical correlation functions are composed of creation and annihilation
operators. The correlation we are interested in is the excitation of a two meson system from the
vacuum at time t and its annihilation at some time t′. For mesons, made out of one quark and
one antiquark, the creation/annihilation operators are quark bilinears. In the context of lattice
QCD they are also referred to as interpolating fields. The creation operators of the pion (O†

π)

and the kaon (O†
K), for instance, read

O†
p,π(t) = ∑

x
eipxd̄(x, t)iγ5u(x, t) , (3.1)

O†
p,K(t) = ∑

x
eipx s̄+(x, t)iγ5u(x, t) , (3.2)

where we have made the assumption of choosing the OS strange quark with positive sign in its
mass value and introduced the projection to a possible momentum p via the discretized Fourier
transform. The corresponding annihilation operators are obtained by adjoining the creation
operators. In the remainder we restrict ourselves to the case of vanishing momentum p = 0. A
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correlation function creating a pion at euclidean time t′ and annihilating it at t can be written as

Cπ(t− t′) =
〈
Oπ(t)O†

π(t
′)
〉

=
〈
ū(x, t)iγ5d(x, t)d̄(x′, t′)iγ5u(x′, t′)

〉

= −tr
(

iγ5D−1
u (x|x′)iγ5D−1

d (x′|x)
)

. (3.3)

Here we have Wick-contracted the correlation function to arrive at a trace involving color
and 3-dimensional space. The objects D−1

f (x|x′) are the Dirac propagators for quark flavor f ,
encoding the propagation of a quark of flavor f from x′ to x.

3.1.1 CORRELATOR DIAGRAMS

Wick contractions like Equation (3.3) can also be represented diagrammatically. The last line
in Equation (3.3) features one Dirac propagator for each of the quark flavors. A graphical
representation of Cπ(t− t′) is given in Figure 3.1. The quarks propagate from the π+ vertices
(white circle) at x′ to x. Using Equation (2.107) the d quark propagator is calculated from the u
quark propagator. When regarding two meson systems the decomposition into diagrams gets

x′
γ5

x
γ5

u

u

Figure 3.1: Connected diagram of Cπ(t− t′). White circles denote the pion at initial (left) and final time
(right). In addition the vertex factor from the meson interpolator is given. Quark propagation occurs
along the lines.

more involved. For the case of maximal isospin scattering the Correlation function decomposes
into a direct part and a cross correlated part, as depicted in Figure 3.2, for the case of π+-
K+-scattering. Time runs from left to right for each diagram. The gray circles denote a K+

whereas the white circles depict the π+ with the according vertex factors stemming from the
interpolators. The propagators resulting from the Wick contraction are shown as labeled arrows.
The Correlation function of a single Kaon is constructed in full analogy to the single pion
case. To calculate the full correlation functions each diagram first gets calculated individually.
This process is called contraction. After the contractions have been done the full diagram is
calculated according to the decomposition just discussed.

In the case of K+-K+-scattering the same types of diagrams come into play. The only differ-
ences are the flavor structure at the vertices and the fact that two strange quark propagators are
needed compared to only one in the case of π+-K+.

As a remark we note that sometimes traces over a single quark flavor can occur, as for
instance when doing Wick contractions of the π0. Because of a worse signal-to-noise ratio
compared to fully connected contributions, their analysis is more involved. These disconnected
contributions do not occur for the interpolators used in this work.
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x′
γ5

x′
γ5

x
γ5

s

u

x
γ5

u

u −

x′
γ5

x′
γ5

x
γ5

s

u

x
γ5

u

u

Figure 3.2: Diagram decomposition of CπK(t− t′) into a direct and a cross correlated part. Kaons are
denoted as gray circles, pions as white circles. In addition the arrows depict the quark propagation for
each diagram.

3.2 TRANSFER MATRIX FORMALISM

In Section 2.1.2 we have seen that correlation functions can be expressed in the path integral
formalism. Another possibility is the formulation in terms of the spectral decomposition. In
the Heisenberg picture the euclidean correlation function for two interpolating operators O is
given by

〈
O(t f , x f )O†(ti, xi)

〉
T
= lim

T→∞

1
Z

tr
(

e−(T−(t f−ti))ĤO†(x f )e
−(t f−ti)ĤO(xi)

)
, (3.4)

with normalization

Z = tr
(

e−TĤ
)

. (3.5)

In this notation the trace is the trace of a statistical density operator and is meant as a sum over
all possible eigenstates of Ĥ. The operator Ĥ is the Hamilton operator of the interaction in the
Heisenberg picture, the subscripts i and f denote initial and final state, respectively and T is
the total time extent of the lattice. Using completeness and restricting oneself to finite times T
one obtains

〈O
(

t f , x f

)
O†(ti, xi)〉T =

1
Z ∑

m,n
e−(T−(t f−ti))Em 〈m|O(x f )|n〉 e−(t f−ti)En 〈n|O(xi)|m〉 , (3.6)

where Em,n are eigenstate energies of Ĥ. When taking the limit T → ∞ only terms with Em = 0
survive and one arrives at

〈
O(t f , x f )O†(ti, xi)

〉
=

1
Z ∑

n
〈Ω|O(x f )|n〉 〈n|O(xi)|Ω〉 e−tEn . (3.7)

For finite times T higher energy states contribute to the spectral decomposition Equation (3.6).
These contributions are larger at early times t and wash out towards later times. This happens
because the interpolators O do not couple only to their continuum counterparts but also to
all lattice interpolators with the same quantum numbers. To extract the ground state energy
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nevertheless, one usually inspects the data for C(t) at late enough times. In the course of this
inspection it is useful to define the effective mass meff(t) as

meff(t + 0.5) = ln
C(t)

C(t + 1)
. (3.8)

The region where excited states have decayed away sufficiently can then be identified as a
plateau in a plot of meff vs. t′ and the ground state energy of the correlation function can then
be extracted via a fit of the form

C(t) ∝ A2
0

(
e−tE0 ± e−(T−t)E0

)
(3.9)

to the data. The ground state of a two point correlation function then shows a cosh-like (+) or
sinh-like (−) behavior.

3.3 THERMAL POLLUTION OF CORRELATION FUNCTIONS

As mentioned in Section 3.2 the interpolators O overlap with all states 〈n| having the same
quantum numbers as the state one is interested in. In the case of more than two mesons
appearing in the correlation function states with the same quantum numbers as the ground
state affect the late time behavior of correlation functions. In effective mass plots states like this
usually show up as downward bends towards late times. These states can be constant in time
or time dependent. Both kind of states are discussed for the case of two pions at isospin I3 = 2
and nonzero momentum in Ref. [28]. In the following we will present examples for both kinds
of pollution and possible means to overcome these obstacles.

3.3.1 TIME INDEPENDENT POLLUTION

An example of a thermal state shows up when inspecting the 4-point correlation function of
two kaons with t′ = 0

CKK(t) =
〈

OKK(t)O
†
KK(0)

〉
, (3.10)

OKK(t) = ∑
x,x′

s̄+(x, t) iγ5 d(x, t) s̄+(x′, t) iγ5 d(x′, t) .

The spectral decomposition at finite T of this correlation function reads (cf. Equation (3.6))

CKK(t) =
1
Z ∑

n,m
e−TEm e−t(En−Em) 〈m|OKK|n〉 〈n|O†

KK|m〉 . (3.11)

The ground state we are interested in shows up when En = EKK and Em = 0, which contributes

C0
KK(t) ∝ e−t(EKK) 〈Ω|OKK|KK〉 〈KK|O†

KK|Ω〉 (3.12)
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to Equation (3.11). Another contribution that is also possible is

C1
KK(t) ∝ e−TEK 〈K̄|OKK|K〉 〈K̄|O†

KK|K〉 , (3.13)

where the time dependent exponential cancels due to the energy difference ∆E = Em − En,
when taking m = n = K. One way to remove such states is to shift the correlation function by
a certain amount of time slices. Redefining t̃ = t− t′ and defining δt > 0 a new correlation
function C′KK(t) is obtained by calculating

C′KK(t̃) = CKK(t)− CKK(t + δt) , (3.14)

which cancels the thermal contribution Equation (3.13) exactly and modifies the amplitudes of
Equation (3.12) by a constant factor.

For the present work we take a different approach, first presented in Ref. [29] and also used
in Ref. [30]. Instead of calculating the total energy EKK from Equation (3.14) it is possible to
obtain the energy shift δE directly from the ratio of shifted correlation functions

R(t + a/2) =
CKK(t)− CKK(t + 1)

C2
K(t)− C2

K(t + 1)
, (3.15)

which behaves like

R(t + a/2) = A
(
cosh

(
δEKKt′

)
+ sinh

(
δEKKt′

)
coth

(
2EKt′

))
, (3.16)

t′ = t + a/2− T/2 .

Thus instead of determining δE from separate fits to CKK(t) and CK(T) we can directly fit
Equation (3.16) to the ratio Equation (3.15) to circumvent the pollution and obtain δE.

3.3.2 TIME DEPENDENT POLLUTION

In the case of multi particle operators with different single meson operators the pollution gets
time dependent which is demonstrated in the following for the interpolator OπK(t):

OπK(t) = ∑
x,x

ū(x, t) iγ5 d(x, t) s̄+(x, t) iγ5 d(x, t) . (3.17)

In the spectral decomposition Equation (3.6) the main contribution is given by the states
〈n| = 〈πK| and 〈m| = 〈Ω| and vice versa. Another contribution with non-zero overlap to the
composite particle operator comes from setting 〈n| = 〈π| and 〈m| = 〈K| and vice versa. The
correlation function

CπK(t) =
〈
OπK(t)O†

πK(0)
〉

(3.18)
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then has contributions

C0
πK(t) ∝

∣∣∣
〈

πK
∣∣∣O†

∣∣∣Ω
〉∣∣∣

2 (
e−EπK(T−t) + e−EπKt

)
(3.19)

C1
πK(t) ∝

∣∣∣〈π|O†|K〉
∣∣∣
2 (

e−Eπ te−EK(T−t) + e−EKte−Eπ(T−t)
)

. (3.20)

In what follows we will neglect other contributions to the spectral decomposition and work
with the sum

CπK(t) ≈ C0
πK(t) + C1

πK(t)

= A2
0

(
eEπK(t−T/2) + e−EπK(t−T/2)

)
+ A2

1

(
e(EK−Eπ)te−EK T + e−(EK−Eπ)te−Eπ T

)
, (3.21)

with the amplitudes

A2
0 =

1
Z

∣∣∣
〈

πK
∣∣∣O†

∣∣∣Ω
〉∣∣∣

2
e−EπK T/2 , A2

1 =
1
Z

∣∣∣
〈

π
∣∣∣O†

∣∣∣K
〉∣∣∣

2
. (3.22)

Apart from time independent states in the second term, Equation (3.21) features terms which are
time dependent. These time dependent contributions cannot be removed by only shifting the
correlation function about a certain amount of timeslices. To extract the wanted contributions
EπK we may use an ansatz described in Ref. [28]. We first diminish the influence of the
pollution by weighting the correlation function with a factor exp(∆Et), where ∆E is either a)
∆E = EK − Eπ or b) ∆E = Eπ − EK. For the argument we will choose option a). The weighted
correlation function Cw

πK(t) is given by

Cw
πK(t) = e∆EtCπK(t)

= A2
0e∆Et

(
e−EπK(t−T/2) + eEπK(t−T/2)

)
+ A2

1

(
e2∆Ete−EK T + e−Eπ T

)
. (3.23)

We already see the removal of one time dependent pollutional term. The second step consists
of shifting Cw

πK(t) about a fixed number of time slices δt that removes the temporally constant
contribution:

Cws
πK(t

′) = Cw
πK(t + δt)− Cw

πK(t)

= A2
0e∆Et

(
eEπK(t−T/2)B0 + e−EπK(t−T/2)B1

)
+ Ã2

1

(
e2∆Ete−EKT

)
. (3.24)

The constants B0, B1 and Ã2
1 collect contributions which are constant in time. They are given by

Ã2
1 = A2

1(e
2∆Eδt − 1) , (3.25)

B0 = e∆EδteEπKδt − 1 , (3.26)

B1 = e∆Eδte−EπKδt − 1 . (3.27)
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ensemble β aµ` aµσ aµδ (L/a)3 × T/a

A30.32 1.90 0.0030 0.150 0.190 323 × 64
A40.20 1.90 0.0040 0.150 0.190 203 × 48
A40.24 1.90 0.0040 0.150 0.190 243 × 48
A40.32 1.90 0.0040 0.150 0.190 323 × 64
A60.24 1.90 0.0060 0.150 0.190 243 × 48
A80.24 1.90 0.0080 0.150 0.190 243 × 48
A100.24 1.90 0.0100 0.150 0.190 243 × 48
B35.32 1.95 0.0035 0.135 0.170 323 × 64
B55.32 1.95 0.0055 0.135 0.170 323 × 64
B85.24 1.95 0.0085 0.135 0.170 323 × 64
D30.48 2.10 0.0030 0.120 0.1385 483 × 96
D45.32sc 2.10 0.0045 0.0937 0.1077 323 × 64

Table 3.1: The gauge ensembles used in this thesis. For the labeling of the ensembles we adopted the
notation in Ref. [32]. In addition to the relevant input parameters we give the lattice volume.

Finally the multiplication with the inverse weight factor exp(−∆Et) reverses the first multiplic-
ation with exp(∆Et):

C̃(t) = e−∆EtCws
πK(t

′)

= A2
0

(
eEπK(t−T/2)B0 + e−EπK(t−T/2)B1

)
+ Ã2

1

(
e∆Ete−EKT

)
. (3.28)

The desired total energy now can be obtained by fitting Equation (3.28) to the weighted and
shifted data of the 4-point correlation function. Applying the weighting and shifting procedure
a second time, now with choice b) for ∆E, in principle removes the other contribution to the
pollution as well. For the correlation functions under inspection this does not work, because
numerical noise spoils the reliable extraction of the energy EπK for our statistics.

3.4 DATA ANALYSIS TOOLS

This section is devoted to the tools used in the data analysis of the present work. For our analysis
we use the ensembles of gauge configurations generated by the ETMC, cf. Ref. [24, 31, 32], which
are listed in Table 3.1. Each ensemble in turn encompasses several thousand measurements
of gauge configurations from which we use a subset of about Nconf ≈ 300 configurations. In
the course of the data analysis a thorough statistical treatment of the data is vital for extracting
meaningful results from the computations of the various correlation functions. We therefore
discuss how to obtain valid functional descriptions of the data using χ2-minimization in the
case of correlated data. Because the gauge configurations for one ensemble were generated
following a Markov chain, we also have to take care of possible correlation in the simulation
time, so called autocorrelation. In the last part of this section two variants of the Bootstrap
method are presented as a means to estimate the standard deviation of observables, the naive
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and the stationary bootstrap.

3.4.1 OBSERVABLE ESTIMATION VIA χ
2-MINIMIZATION

A reliable way to obtain estimators of observable values is the minimization of the χ2-function
with respect to the parameters of the fit function. Given a set of N measurements of an
observable Y = {~yi | i = 1, . . . , N } depending on an explanatory variable ~x and a function ~f
describing this dependency via ~y = ~f (~x,~β) the objective is to minimize the function

χ2 =
(
~y− ~f (~x,~β)

)
C−1

(
~y− ~f (~x,~β)

)
, (3.29)

with respect to the vector of parameters ~β. In the ideal case the weight matrix C−1 is the exact
inverse of the variance-covariance matrix. If the full variance-covariance matrix is used during
the minimization of Equation (3.29) the fit is fully correlated, whereas on usage of solely the
diagonal entries C−1

ii the fit is uncorrelated. A measurement of the goodness of a fit is the
χ2 value divided by the degrees of freedom of the fit denoted by χ2/dof. According to this
a fit is said to optimally describe the data when χ2/dof = 1, as discussed in Ref. [33]. In an
uncorrelated fit the reduced χ2 is not as reliable because possible correlation in the data is not
taken into account properly.

To incorporate prior knowledge into a χ2-minimization the vectors ~y and ~f , and the matrix
C−1 get extended. This prior knowledge often is a subset of the parameters ~β whose values are
known a priori, for example from a preceding fit. To this end let ~p denote the part of ~β whose
values are known to be ~pmeas. The vector of data points now gets augmented ~y ′ = (~y,~pmeas)

while the vector of function values is changed to ~f ′(~x,~β,~p) = (~f (~x,~β),~p). The new variance-
covariance matrix C′ then is estimated accordingly to incorporate the new datapoints ~pmeas..
The χ2 function to minimize now is then given by

χ2 =
(
~y ′ − f ′(~x,~β,~p)

)
C′−1

(
~y′ − f ′(~x,~β,~p)

)
. (3.30)

3.4.2 AUTOCORRELATION

The data used in this work stem from Markov Chain simulations as will be detailed in Chapter 4.
Consequently statistical errors of observables estimated from these data are affected by autocor-
relation. As stated in Ref. [34] this distortion can lead to underestimation of the statistical error.
For a better understanding of how to assess the autocorrelation of data from Markov Chain
simulations we follow the line of argument in Ref. [34]. The method is called Γ-method. All
our data analysis is based on one replicum of a Monte Carlo run for each ensemble of gauge
configurations. Thus we have N measurements available. The key quantity for error estimation
is the autocorrelation function defined as

Γαβ(n) =
〈
(ai

α − Aα)(ai+n
β − Aβ)

〉
, (3.31)

which correlates the deviation of the i-th measurement ai
α from the true value Aα of the ob-

servable with the deviation of the i + n-th measurement ai
β from the true value of another
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observable Aβ. An example for primary observables Aγ are the values of correlation functions
whereas the effective mass is an observable derived from the values of correlation functions.
Derived quantities are functions of primary observables f (Aα). The true value of a derived
quantity is given by the evaluation of a function f at the true observable values Aα:

F = f (A1, A2, . . .) = f (Aα) . (3.32)

An estimator for Aα is given by

âα =
1
N

N

∑
i=1

aα,i , (3.33)

which deviates from the true value:

δ̂α = âα − Aα . (3.34)

The derived observable F can be estimated by evaluating the function f at the estimators âα:

F̂ = f (âα) . (3.35)

Expanding f (âα) in a Taylor series leads to

F̂ = F + ∑
α

fαδ̂α +
1
2 ∑

αβ

fαβδ̂αδ̂β + . . . , (3.36)

where the coefficients fα are given by the partial derivatives of f with respect to the true mean
values Aα at Aα

fα =
∂ f

∂Aα

∣∣∣∣
Aα

, fαβ =
∂2 f

∂Aα∂Aβ

∣∣∣∣∣
Aα,Aβ

. (3.37)

For the estimator F̂ of a derived observable the error σF is approximately given by

σ2
F =

〈
(F̂− F)2

〉
≈ CF

N
, (3.38)

with

CF = ∑
αβ

∞

∑
t=−∞

fα fβΓαβ(t) , (3.39)

defining the projection of the integrated autocorrelation function onto the derived function.
The naive variance is recovered when evaluating Γαβ(t) at t = 0. Separating the naive variance
vF = ∑α,β fα fβΓαβ(0) from Equation (3.38) leads to

σ2
F =

2τint,F

N
vF . (3.40)
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Here the integrated autocorrelation time τint,F

τint,F =
1

2vF
∑
αβ

∞

∑
t=−∞

fα fβΓαβ(t) , (3.41)

has been introduced. From Equation (3.40) it can be seen that the true error σ2
F is enhanced by a

factor 2τint,F in comparison to the simple variance vF.
In what follows we will introduce estimators of τint,F as was done in Ref. [34] and present

the procedure [34] with which we check the analysis data for autocorrelation. To this end
estimators for the autocorrelation function Γαβ(t), the variance vF, and the partial derivatives
fα are needed. The first estimator reads

Γ̂αβ(t) =
1

N − t

N−t

∑
i=1

(ai
α − âα)(ai

β − âβ) . (3.42)

With an estimator of the gradients fα

f̂α =
∂ f
∂âα

, (3.43)

an estimator for the autocorrelation function of a derived quantity reads

Γ̂F(t) = ∑
αβ

f̂α f̂βΓ̂αβ(t) (3.44)

Numerically the integrated projected autocorrelation function CF can be estimated via

ĈF(W) =

(
Γ̂F(0) + 2

W

∑
t=1

Γ̂F(t)

)
, (3.45)

with W being an integer cutoff and the factor 2 takes into account the symmetry of the auto-
correlation function. In the current notation an estimator for the variance is simply given by
evaluating Equation (3.44) at t = 0. Thus τint,F can be estimated with

τ̂int,F(W) =
ĈF(W)

2v̂F
. (3.46)

In practical analyses of the autocorrelation the width W of the window in which the autocor-
relation function is estimated plays a crucial role. As detailed in Ref. [34] the error of ĈF(W)

receives a systematic contribution due to the truncation at W and a statistical one. Hence
an optimal value for W is given when the total relative error of the final error σ̂F estimate is
minimal

δtot(σ̂F)

σ̂F
≈ 1

2
min

W

(
exp(−W/τ) + 2

√
W/N

)
. (3.47)

Thus the integrated autocorrelation time can be estimated in dependence of the width W
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and τ̂int,F(W) reaches a plateau at optimal W. In this way the integrated autocorrelation
time can reliably be assessed, revealing whether the data under consideration suffers from
autocorrelation.

3.4.3 BOOTSTRAPPING

The statistical bootstrap, introduced in Ref. [35], is a method to infer properties of the true
distribution of an observable from a finite number of measurements. The bootstrap is built on
resampling the data randomly with replacement. The underlying probability density function
(pdf) f of an observable x often is unknown such that variances of estimators of x cannot
be determined by conventional statistical methods. A cure comes with approximating f by
its empirical estimator f̂ . If f̂ ≈ f the estimated distribution of estimators x̂ allows to infer
properties, such as the standard deviation, of the true distribution from the distribution of x̂.
One of the big advantages of the bootstrap is its applicability to any statistical observable. We
start with a set of N measurements of an observable x denoted

X = { x1, x2 . . . , xN } . (3.48)

In order to generate R bootstrap samples we take the following steps:

1. Calculate the estimator x̂ of the original measurements X which defines the 1st bootstrap
sample

2. From the original dataset X randomly draw N measurements xi with replacement

3. Compute estimator x̂

4. Repeat Items 2 and 3 R− 1 times

For this thesis we apply the bootstrap with x̂ being the sample mean. The sample mean
of the original sample is quoted as the central value and its variance is calculated from the
bootstrap sample estimates with the central value as mean value. Another advantage of using
the statistical bootstrap is that it automatically maintains correlation in the data. By keeping the
bootstrap samples throughout the analysis until the end the error is propagated automatically.
There exist different varieties of bootstrap resampling of which we shortly discuss its stationary
and parametric form in the following.

PARAMETERIC BOOTSTRAP When no measurements of an observable are available but only
the mean µ and standard deviation σ, e.g. from a previous analysis, are known it is not
straightforward to incorporate these observables in a bootstrap analysis. One possibility is the
parametric bootstrap. A parametric bootstrap starts from the assumption that values of the
measurements follow a certain, unknown distribution. In our cases we assume that the input
observable has Gaussian distributed values. We thus sample from the Gaussian distribution
with mean µ and width σ R times in order to generate our bootstrap samples as before. In
this work this variant of the bootstrap is used for physical input data like for example meson
masses or decay constants.
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DATA BLOCKING AND STATIONARY BOOTSTRAP As described above, autocorrelation in
Monte Carlo time enhances the true variance of an estimator. In the naive bootstrap the
autocorrelation is destroyed by randomly resampling the data of Correlation functions. For data
with measurable autocorrelation this leads to an underestimation of the standard deviation. A
possible way out is to bin the measurements into blocks of size of the estimated autocorrelation
time and then bootstrap the per bin means of the data. Unfortunately this blocking reduces the
size of the original sample and sometimes the autocorrelation times are so large that proper
statistical inference is no longer possible. In this work instead we take care of autocorrelation
by using the stationary bootstrap described in Ref. [36].

In contrast to blocking the data the stationary bootstrap has a variable block-length and
allows for the same samplesize as the ordinary bootstrap. The resampling starts from the set
of original measurements X = Xi, i ∈ [1, N] and is implemented by constructing blocks of
measurement indices. The resampling amounts to a 5-step procedure

1. Generate same length arrays of start values I and block-lengths L. Elements of I are taken
from the uniform distribution over the interval [1, N]. The block-lengths L are drawn
from the geometric distribution with mean 1/l, where b is the average block-length.

2. Build blocks of indices from pairs of (i, l) ∈ (I, L) according to

Bi = { i mod N, (i + 1) mod N, . . . , (i + l − 1) mod N } .

3. Concatenate the blocks Bi to form an index array n = { B1, B2, . . . , Bm }. If necessary Bm
is truncated such that n has N entries. joining the m blocks, where the number of entries
in n is N.

4. From the original measurements construct a new sample Xr by choosing measurements
with indices n from the original measurements and calculate the estimator x̂ on Xr.

5. Repeat Items 1 to 4 R− 1 times

After this resampling procedure one ends up with R samples of the data, as in the naive
bootstrap. This variant of the bootstrap takes care of autocorrelation in the same way as
blocking but allows for the same sample size.
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SIMULATING LATTICE QCD

With the theoretical grounds prepared in the previous chapters we are now ready to describe
how to simulate Lattice QCD gauge fields and propagators. To this end we here give an
overview of the algorithms used for the generation of gauge fields and propagators. The
Markov chain Monte Carlo algorithm most commonly used today is the Hybrid Monte Carlo
(HMC) algorithm or variants thereof. The HMC algorithm was initially introduced in Ref. [37].
In addition we present methods to improve the short range behavior of gauge fields and
propagators, which go by the names of Hypercubic (HYP) blocking and stochastic Laplacian-
Heaviside (sLapH) smearing.

4.1 HYBRID MONTE CARLO ALGORITHM

To evaluate n-point functions we need a numerical evaluation of their path integral repres-
entation, given in Equation (2.15). Following Equation (2.67) we can generate N gauge field
configurations Υ, provided the gauge degrees of freedom follow the distribution

P(Υ) =
1
Z

det(D) exp(−SG[Υ]) , (4.1)

where Z is the partition function and det(D) denotes the fermion determinant after integrating
out the Grassmann valued fermion fields ψ. With the N realizations of Υ at hand the expect-
ation value 〈O〉 of an observable O is given by the statistical average over the gauge field
configurations as

〈O〉 =
N

∑
i=1

O[Υi] +O
(

1√
N

)
, (4.2)

where the observable still needs to be evaluated on the background of each configuration and
the statistical error of O scales with the inverse of

√
N. The sampling method used for the

Υ used in this thesis is the Hybrid Monte Carlo algorithm. Details of its implementation are
written up in Ref. [38]. We briefly demonstrate the basic steps of the algorithm for the case of
a mass degenerate doublet of two twisted mass fermions. The extension to non degenerate
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doublets is a bit more involved but follows the same principles. It is detailed in Ref. [38].
Regarding two mass degenerate fermions in a doublet we can rewrite the fermion determinant

det(Q†Q) as an integral over pseudofermionic fields φ† and φ, with bosonic statistics.

det(Q†Q) ∝
∫

Dφ Dφ† exp
(
−(Q−1φ, Q−1φ)

)
, (4.3)

with the scalar product (a, b) and the one flavor operator

Q = γ5(DW + m0) + iµ` . (4.4)

The integral to sample then takes the form

I =
∫

Dφ† Dφ DU exp(−SG[U]− φ†(Q†Q)−1φ)

=
∫

Dφ† Dφ DU exp(−Seff[φ
†, φ, U]) . (4.5)

The HMC algorithm is based on guiding the sampling process through the configuration space
via integrating the equations of motion of a Hamilton operatorH

H[P, U, φ†, φ] =
1
2 ∑

x,µ
tr
(

P2
x,µ

)
+ Seff[φ

†, φ, U] . (4.6)

The kinetic part consists of the traceless momenta P(x, µ) which are conjugate to U, and
generated in an initial heat-bath step, alongside the initial pseudofermionic fields φ† and φ.
They are generated as

φ = Qr ,
〈

r†r
〉
= 1 , (4.7)

with complex random numbers r following a Gaussian distribution. One then proceeds to
suggest a new configuration (U′, P′) via integrating the equations of motion of Equation (4.6)
along a fictitious computer time τMC.

To account for numerical errors in the molecular dynamics integration the new proposal
(U′, P′) is accepted with the probability

p = min
{

1, exp(H[P′, U′, φ†, φ]−H[P, U, φ†, φ])
}

(4.8)

Summarizing, one step of the HMC algorithm is composed of three different parts:

1. Choose conjugate momenta and pseudofermion fields φ

2. Integrate Hamiltonian equations of motion (U, P)→ (U′, P′) along a fictitious computer
time τMC.

3. Accept (U′, P′) with probability min(1, exp(−∆H))

The HMC can be shown to fulfill the detailed balance condition. The algorithm can be acceler-
ated substantially by several methods as mass and even-odd preconditioning or integration on
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multiple scales of the computer time τ′. Since these topics are out of scope for this work we
refer to Ref. [38, 39], which also serve as a reference to the implementation used for the gauge
configurations in this work: tmLQCD.

4.2 SMEARING METHODS

This section is devoted to the description of improvements that can be applied to gauge
fields and propagators stemming from QCD simulations in order to improve on the signal of
correlation functions obtained from contractions. The methods go by the name of smearing
and affect either the gauge fields, generated in Monte Carlo simulations, or the quark fields,
constructed for the evaluation of correlation functions. Smearing the gauge field corresponds
to averaging out short distance fluctuations in the SU(3) color matrices. Thus the influence
of the long distance behavior of the gauge field on the correlation functions is increased. As
explained before the lattice wave functions only have a certain overlap with the continuum
wave functions. Smearing out the lattice wave functions results in a spatial extension of the
wave function. Thus the overlap with the continuum wave functions can be increased. In the
remainder of this section we introduce the smearing schemes used in this work for the gauge
fields and the quark propagators. We start with hypercubic blocking or HYP-smearing of the
quark fields and then move on to Distillation or Laplacian-Heaviside (LapH) smearing. A
description of how to improve LapH with diluted stochastic sources concludes this section.

4.2.1 SMOOTHING THE GAUGE FIELD USING HYPERCUBIC BLOCKING

Hypercubic blocking is one of several ways to average gauge link matrices. It was first described
in Ref. [40] and is an extension of APE-smearing [41]. In our analysis we will only use a three-
dimensional version of HYP-smearing which makes it a two step procedure. The process is
depicted in Figure 4.1. Each original link variable is decorated with its surrounding staples
(dashed lines in Figure 4.1(a)) in the same plane as the original link to produce the solid
decorated links Vµ(x). Staples of Vµ(x) are then used to obtain the blocked links Wµ(x) (thick
central line in Figure 4.1(b)). Mathematically the procedure is expressed in Equations (4.9)
and (4.10)

Vµ(x) = PSU(3)

(
(1− α2)Uµ(x) +

α2

2 ∑
±η 6=ρ,µ

Uη(x)Uµ(x + η)U−η(x + η + µ)

)
(4.9)

Wµ(x) = PSU(3)

(
(1− α1)Vµ(x) +

α1

4 ∑
±η 6=µ

Vη(x)Vµ(x + η)V−η(x + µ + η)

)
. (4.10)

the parameters αi i = 1, 2 control the strength of the smearing with αi = 0 meaning no smearing
at all. The operators PSU(3) project the smeared object back to elements of SU(3). Their
application to 3× 3 color gauge matrices U is defined in the following way

PSU(3) (U) =
M

3√
det M

, M =
U√
U†U

.
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(a) Decorating the links Uκ(x) (b) APE-smearing the decorated links Vµ(x)

Figure 4.1: The two steps of one application of hypercubic blocking. Figure 4.1(a) depicts the staples
involved in the decoration process as dashed lines. Each solid line link variable is constructed by the
dashed staples lying in the same plane as the original link. Figure 4.1(b) shows the staples used for
constructing the central hypercubic blocked link as solid lines.

The procedure of hypercubic blocking can be repeated to successively smear the gauge field.
This introduces the number of iterations niter as an additional parameter.

4.2.2 SMEARING QUARK FIELDS WITH DISTILLATION

Laplacian-Heaviside smearing is one possibility of improving the overlap of lattice operators
with physical operators. Morningstar et al. described it in Ref. [3]. The main advantages of
this approach are reduced excited states contamination in correlation functions and efficient
storage of quark propagators. Thanks to a certain decomposition of the quark propagators they
can be reused in calculations involving different operator quantum numbers without redoing
costly inversions of the Dirac operator. The smearing of the quark fields is done by applying a
smearing kernel S to the original quark fields ψ to get the resulting smeared quark fields as a
matrix-vector product ψiβ(x):

ψ̃aα(x) = Sab(x, y)ψbα(y).

Here Greek indices are indices in Dirac-space whereas Latin indices correspond to color. The
Arguments x and y are taken to denote spatial lattice sites. The smearing kernel, as defined in
Ref. [42], is composed of a real cutoff parameter σs for the eigenvalue spectrum of the discrete
3-dimensional gauge covariant Laplace operator ∆̃, and the Heaviside step function Θ:

S = Θ(σ2
s + ∆̃) . (4.11)

The Laplace operator is defined in terms of the gauge field links Uab
k (x) in the following way:

∆̃ab(x, y; U) =
3

∑
k=1

{
Uab

k (x)δ(y, x + k) + Uba
k (y)∗δ(x, y− k)− 2δ(x, y)δab

}
. (4.12)
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The Laplace operator is block diagonal in time and Dirac space. As before the index k
indicates the direction in which the link variable is to be taken. The operator of Equation (4.12)
is gauge covariant and preserves all relevant symmetries of the lattice.

It can be decomposed into a diagonal matrix Λ∆ of eigenvalues and a matrix V∆ containing
the eigenvectors of the Laplace operator as columns. Using the decomposition

∆̃ = V∆Λ∆V∆
† (4.13)

we can realize this cutoff implied by the Heaviside function in Equation (4.11) by taking only
the N lowest eigenvalues into account. The eigenvalue of the N-th eigenvector then is the cutoff
σs. Having available V∆ the distillation operator � can be defined for every time slice t as the
matrix product

�(t) = VN(t)V
†
N(t)

which is a projection operator (�2 = �) onto the subspace of all calculated eigenvectors. The
matrix VN can be ordered by increasing eigenvalues in its columns where N is the number of
eigenvectors taken into account. Considering all eigenvectors NE of ∆̃ causes � to become the
identity and so no smearing takes place at all when acting on quark fields. If v(k)x describes the
element x of the k-th eigenvector of the time slice then �(t) can be expressed by its elements

�x,y(t) =
N

∑
k=1

(
v(k)x v(k)†y

)
. (4.14)

correlation functions constructed with help of this operator retain their symmetries because of
the symmetry preserving property of Equation (4.12) By construction the projector�(t) and the
operator ∆̃(t) share the same transformation behavior under local SU(3) gauge transformations
G

∆→ ∆′ = G∆G† (4.15)

�→ �′ = G�G† . (4.16)

Thus�(t) is the numerical representation of the smearing operator S defined in Equation (4.11).

4.2.3 PROPAGATORS WITH DISTILLATION

A closer look at hadron correlation functions expressed in terms of so called quark lines reveals
the reusability of the propagators. A usual correlation function C(t) can be expressed by the
trace over quark propagators D−1 multiplied with according gamma structures Γa, as discussed
in Section 3.1. On the application of quark field smearing the quark fields are multiplied by the
smearing matrix S and the correlation function now reads

C(t) =
〈

ψ̄ f (n, t)S†ΓaSψ f ′(n, t)ψ̄ f ′(m, t′)S†ΓbSψ f (m, t′)
〉

= −tr
(

ΓaSD−1(n|m) fSΓbSD−1(m|n) f ′S
)

, (4.17)
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where we have used the hermiticity of the LapH-smearing operator S . The quark line Q is the
object SD−1

f S which in our case can be also written as

Q = Vs(V
†
s D−1

f Vs)V
†
s = VsτVs . (4.18)

The propagator is a square matrix connecting every 2 sites of the lattice thus being of size
(L3 · T · Nc · Nd)

2. The object in parentheses, called perambulator τ, is much smaller in size than
the original propagator D−1

f . such that inverting and storing it is more efficient than storing the
original propagator.

4.2.4 IMPROVING DISTILLATION WITH DILUTED STOCHASTIC SOURCES

When applying Laplacian-Heaviside smearing to calculate quark propagators an exact treat-
ment of those propagators, even with only few eigenvectors, still is prohibitively costly. Typical
lattices in the present work have dimensions NT × N3

S = 64× 323 and need NEV = 220 eigen-
vectors for a proper sampling of the eigenspectrum of ∆̃. The number of inversions needed for
an exact solution of τ is NI = NEV · NT · ND > 50000 which is not feasible for the number of
configurations and ensembles we are dealing with. The number of inversions needed can be de-
creased by not looking at the exact solution but instead estimate the perambulator stochastically.
To this end we introduce complex random noise vectors η with properties

〈ηi〉 = 0 ,

〈ηiη
∗
j 〉 = δij .

Specifically we employed Z2 noise for the perambulator generation in this thesis. The smeared
propagator is then given by solving

DXr = ηr (4.19)

for X or equivalently by calculating

D−1
ij ≈

1
NR

NR

∑
r=1

Xr
i ηr∗

j ,

where NR is the total number of employed random vectors. According to Ref.[43], the variance
var(D−1

ij ) can be decomposed into

var
(

D−1
ij

)
=

1
NR

([
D−1

ij

]2
K2 + ∑

k 6=j

[
D−1

ik

]2
)

=
1

NR

(
∑
k 6=j

[
D−1

ik

]2
)

.

Despite we still have off-diagonal elements in ηη† which are non-zero and thus spoil the
behavior of the correlation function’s variance. A cure for that was introduced by C. Morning-
star et al. in Ref. [3]. First the random vectors ηi are full vectors in the spin, spatial, and color
space. Due to the application of S it is sufficient to calculate on the LapH-subspace, which
is comprised of the spin, color and eigenvector space. We denote the Z2 random vectors on
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this subspace by ρ. They get diluted such that some of the off-diagonal elements in ρρ† vanish
completely. The dilution is realized by introducing complete sets of projection operators { P(b) }.
Each element P(b) is then a matrix in the LapH-subspace. The multi-index b denotes a certain
scheme of cancelling entries of each ρi. The quark line from Equation (4.18) now changes to :

Q = VsV
†
s D−1VsV

†
s

= ∑
b

〈
VsV

†
s D−1VsP(b)ρ

(
VsP(b)ρ

)†
〉

, (4.20)

where we have used the projector property 〈ρρ†〉 = 1. The error of correlation functions
calculated with diluted quark lines now behaves like

∆C(t) ∝
1√
NR

. (4.21)

The original perambulator now gets altered to its diluted form τd

τ → τd = V†
s D−1VsP(b)ρ . (4.22)

This quantity is even smaller in disk space usage than τ but in order to regenerate quark lines
also the initial random vectors ρ and their seeds have to be stored. A further observation is that
neither τd nor ρ depend on the Γ structures, necessary for Correlation functions. Their only
dependency is the quark flavor such that interpolators with different quantum numbers can be
composed easily from the stored quantities, as long as the eigenvectors Vs are still available.
Thus the sLapH approach allows to calculate reusable all-to-all propagators with an acceptable
number of inversions and reduced variance compared to the stochastic case.
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C H A P T E R 5

I3 = 1 KAON KAON SCATTERING LENGTH

5.1 INTRODUCTION

In this chapter we present our analysis of the elastic scattering process K+K+ → K+K+ in the
s-wave at maximal isospin. This work was published in Ref. [1].

The calculation is carried out in a mixed action approach. The quark sea is discretized with
the N f = 2 + 1 + 1 Wilson twisted mass (Wtm) action, whereas the light valence quarks are
implemented as a doublet of N f = 2 Wtm quarks. The strange valence quarks are implemented
using unitarity breaking Osterwalder-Seiler fermions. In total we use 12 ensembles of gauge
configurations with different pion masses, denoted by the bare light quark mass aµ`. For
the bare valence strange quark mass aµs we have three values available on each of the three
lattice spacings β. We calculate the two-point function CK of a single meson and the four-point
function CKK for a system of two kaons.

As has already been done in Ref. [30], we strive to improve the behavior of our correlation
functions with the sLapH method. It is worthwhile noting that we here reuse the light quark
perambulators which originally were calculated in Ref. [30]. In order to determine the energy
shift δE = EKK − 2MK of the interacting system in comparison to the non-interacting case, we
make use of a ratio of shifted correlation functions, also used in Refs. [29, 44] which allows
us to determine δE directly. Time independent states distorting the late time behavior of CKK
and C2

K are removed by the shift occurring in this ratio. We then proceed to solve Lüscher’s
finite size formula, cf. eq. (2.88), relating the energy shift and the elastic scattering length, for
the scattering length a0. To fix the strange quark mass we employ 2 methods. The first one is
based on the leading order GMOR relations of the pseudoscalar masses in Chiral Perturbation
Theory (ChPT), whereas the second uses the physical value of the Kaon mass, described by
ChPT. Within these two approaches the aµs dependent values of MK and MKa0 are fixed to
the physical strange quark mass dictated by the two aforementioned methods. As a last step
the chiral and continuum extrapolations of MKa0 are carried out as a combined fit. MKa0 is
assumed to behave linearly as a function of the light quark mass m` and quadratically as a
function of the squared lattice spacing a2.

In addition we investigate the volume dependence of δE via the ensemble A40 at 3 different
lattice volumes and give an estimate of the effective range of the interaction K+K+ → K+K+.
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5.2 SUMMARY

The main result of this chapter is the continuum and chirally extrapolated value of the scattering
length, which we quote to be

MKa0 = −0.385(16)stat(
+0
−12)ms

(+0
−5)ZP

(4)r f
. (5.1)

Systematic effects include the fixing procedure of the strange quark mass, ms, two different
values of renormalization constants, ZP and neglect of higher order terms in the extraction of
the scattering length. When using a linear dependence on the light quark mass only, we observe
a roughly 20% discrepancy between the coarsest lattice spacing and the value extrapolated
to the continuum. We therefore conclude that taking the continuum limit is important when
treating the data as linearly dependent on the light quark mass. Along the chiral and continuum
extrapolation we found out that a proper interpolation of the kaon decay constant to the physical
strange quark mass is important when extrapolating MKa0 with its appropriate ChPT formula.

Another finding of this study is that the scattering length is only weakly depending on the
valence strange quark mass. Regarding the volume dependence of δE, we conclude that box
sizes of L ≤ 2 fm at a pion mass of Mπ ≈ 330 MeV are too small for a reliable extraction of the
energy shift.
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Hadron-Hadron Interactions from Nf = 2 + 1 + 1 lattice QCD:
Isospin-1 KK scattering length
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We present results for the interaction of two kaons at maximal isospin. The calculation is based on
Nf ¼ 2þ 1þ 1 flavor gauge configurations generated by the European Twisted Mass Collaboration with
pion masses ranging from about 230 MeV to 450 MeV at three values of the lattice spacing. The elastic
scattering length aI¼1

0 is calculated at several values of the bare strange and light quark masses. We find
MKa0 ¼ −0.385ð16Þstatð þ0

−12Þms
ðþ0
−5ÞZP

ð4Þrf as the result of a combined extrapolation to the continuum and

to the physical point, where the first error is statistical, and the three following are systematical. This
translates to a0 ¼ −0.154ð6Þstatðþ0

−5 Þms
ðþ0
−2 ÞZP

ð2Þrf fm.

DOI: 10.1103/PhysRevD.96.034510

I. INTRODUCTION

Shortly after the big bang, the Universe is believed to
have been in a quark-gluon plasma state of matter. Apart
from the inside of neutron stars, the only places where this
state of matter appears and can be studied are detectors
investigating heavy ion or proton-proton collisions like
the STAR detector at the Relativistic Heavy Ion Collider
(RHIC) at BNL [1] or the ALICE experiment at the LHC at
CERN [2]. The collisions taking place at such sites yield
in their final states numerous light hadrons like pions and
kaons. Due to the mass difference between kaons and
pions, the produced kaons carry much lower momenta than
the pions, therefore being much more likely to interact
elastically. The interaction of two kaons is determined by
quantum chromodynamics (QCD), which is nonperturba-
tive at low energies. The understanding and interpretation
of the results of the aforementioned experiments make a
nonperturbative investigation of kaon-kaon interactions
highly desirable. While this can be formulated in chiral
perturbation theory (ChPT), it is theoretically interesting to
check if the effective approach is able to properly describe
kaon-kaon scattering. Lattice QCD provides a nonpertur-
bative ab initio method to perform such a study.
Hadron-hadron scattering has become more and more

accessible to lattice QCD simulations over the last several
years. This is on the one hand due to Lüscher’s finite-
volume formalism, and on the other hand due to lattice
QCD ensembles becoming ever more realistic. For kaon-
kaon scattering in the isospin-1 channel, only a few lattice
QCD calculations have been performed [3,4], where the
result of the former calculation has been used in Ref. [2] for

the ALICE results. In the maximal isospin channel, kaon-
kaon scattering resembles the well-studied pion-pion case
[4–10]: there are no fermionic disconnected diagrams, and
only one light quark is replaced by a strange quark. Since
we already investigated pion-pion scattering in the isospin-
2 channel [11], a lot of our analysis tools can be carried
over to the present investigation.
In this paper we present the first study ofKþKþ scattering

from lattice QCD based on Nf ¼ 2þ 1þ 1 ensembles of
the European Twisted Mass Collaboration (ETMC) [12,13]
covering three values of the lattice spacing. These ensem-
bles, which employ up to five values of the light quark mass
per lattice-spacing value, allow us to perform reliable chiral
and continuum extrapolations of our results.
For the strange quark, we employ a mixed action

approach with so-called Osterwalder-Seiler valence quarks
on the Wilson twisted mass sea [14]. This allows us to tune
the valence strange quark mass value to its physical value
without spoiling the automatic OðaÞ improvement guar-
anteed by Wilson twisted mass lattice QCD at maximal
twist [15]. However, while unitarity-breaking effects vanish
in the continuum limit, this ansatz also introduces partial
quenching effects, which we cannot control in the present
calculation. However, in previous calculations with this
setup, no sizable effects were found; see e.g. Refs. [16,17].
The mixed-action approach for the strange quark also
allows us to avoid the parity-flavor mixing present in the
1þ 1 (strange-charm) sea sector of Wilson twisted mass
lattice QCD at maximal twist with Nf ¼ 2þ 1þ 1 flavors.
Our final result differs by about 2σ from the determi-

nations by NPLQCD [3] and about 4σ from the determi-
nation of PACS-CS [4]. This deviation can likely be
attributed to lattice artifacts: NPLQCD works mainly at
a single lattice spacing, with the exception of one ensemble
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at a second lattice-spacing value. PACS-CS works at a
single lattice spacing only. However, we can also not
exclude residual unitarity-breaking effects in our calcula-
tion. Interestingly, our result is actually equal to the
leading-order ChPT prediction for MKa0.

II. LATTICE ACTION

We use gauge configurations generated by the ETM
Collaboration with Nf ¼ 2þ 1þ 1 dynamical quark fla-
vors [12]. The Iwasaki gauge action [18] is used in
combination with the Wilson twisted mass fermion dis-
cretization. There are three values of the lattice spacing
available, with β ¼ 1.90, β ¼ 1.95, and β ¼ 2.10 corre-
sponding to a∼0.089 fm, a∼0.082 fm, and a ¼ 0.062 fm,
respectively. The lattice scale for the ensembles has been
determined in Ref. [17] using fπ . Also in Ref. [17], the
pseudoscalar renormalization constant ZP, the inverse of
which is the quark mass renormalization constant in the
twisted mass approach, has been determined for each lattice
spacing and then converted to the M̄S scheme at a scale
of 2 GeV.
The computation of ZP employs the RI-MOM renorm-

alization scheme and further makes use of two different
methods, which are labeled M1 and M2 by the authors.
The two methods M1 and M2 give results which differ
by lattice artifacts. As an intermediate length scale, we use
the Sommer parameter r0=a determined in Ref. [12] for
each value of the light quark mass ml and extrapolate to
the chiral limit in Ref. [17], assuming either a linear or
quadratic dependence on the light quark mass. The value
of r0 in fm was determined in Ref. [17] using chiral
perturbation theory (ChPT) employing methods M1 and
M2 for ZP, reading

r0 ¼ 0.470ð12Þ fm ðM1Þ;
r0 ¼ 0.471ð11Þ fm ðM2Þ: ð1Þ

We keep the two values separate here, because we will use
them to estimate systematic uncertainties. The values
for ZP, the lattice spacing a, and r0=a are summarized
in Table I for the three β values. For details, we refer to
Ref. [17]. Note that μσ and μδ are kept fixed for all μl values
at β ¼ 1.90 and β ¼ 1.95. Between the two ensembles
D30.48 and D45.32sc, they differ slightly.

In order to set the strange quark mass, we use MK in
physical units as input. We use Mphys

K ¼ 494.2ð3Þ MeV,
corrected for electromagnetic and isospin breaking
effects [19].
As further inputs, we use the average up/down quark

mass, mphys
l ¼ 3.70ð17Þ MeV, from Ref. [17], as well as

the neutral pion mass, Mphys
π0

¼ 134.98 MeV [20].
In more detail, for the sea quarks we use the Wilson

twisted mass action with Nf ¼ 2þ 1þ 1 dynamical quark
flavors. The Dirac operator for the light quark doublet
reads [21]

Dl ¼ DW þm0 þ iμlγ5τ3; ð2Þ

where DW denotes the standard Wilson Dirac operator
and μl is the bare light twisted mass parameter. τ3 and in
general τi, i ¼ 1, 2, 3 represent the Pauli matrices acting in
flavor space. Dl acts on a spinor χl ¼ ðu; dÞT, and hence,
the u (d) quark has twisted mass þμl (−μl).
For the heavy doublet of c and s quarks [14], the Dirac

operator is given by

Dh ¼ DW þm0 þ iμσγ5τ1 þ μδτ
3: ð3Þ

The bare Wilson quark massm0 has been tuned to its critical
value mcrit [12,22]. This guarantees automatic order-OðaÞ
improvement [15], which is one of the main advantages of
the Wilson twisted mass formulation of lattice QCD. For a
discussion on how to tune to mcrit, we refer to Refs. [12,22].
The splitting term in the heavy doublet [Eq. (3)] intro-

duces parity and flavor mixing between strange and charm
quarks which would render the present analysis very
complicated. For this reason, we rely in this paper on a
mixed-action approach for the strange quark: in the valence
sector, we use the so-called Osterwalder-Seiler (OS) dis-
cretization [23] with the Dirac operator

D�
s ¼ DW þm0 � iμsγ5; ð4Þ

with bare strange quark mass μs. Formally, this introduces
two valence strange quarks with �μs as the bare quark
mass. We will denote these two as s�, and they will
coincide in the continuum limit. Hence, observables com-
puted using one or the other will differ by Oða2Þ lattice
artifacts. It was shown in Ref. [23] that OðaÞ improvement
stays intact whenm0 is set to the same valuemcrit as used in
the unitary sector. For each β value, we choose a set of three
bare strange quark masses aμs, as listed in Table II. The
mass values are chosen such as to bracket the physical
strange quark mass independently of the light quark mass.
We remark here that in twisted mass lattice QCD, the

quark masses renormalize multiplicatively with 1=ZP [21].
Since OS and unitary actions agree in the chiral limit, the

TABLE I. Compilation of values for the Sommer parameter
r0=a, the lattice spacing a, and ZP at 2 GeV in the MS scheme
determined with methods M1 and M2 for three values of the
lattice spacing. See Ref. [17] for details.

β ZP (M1) ZP (M2) a [fm] r0=a

1.90 0.529(07) 0.574(04) 0.0885(36) 5.31(8)
1.95 0.509(04) 0.546(02) 0.0815(30) 5.77(6)
2.10 0.516(02) 0.545(02) 0.0619(18) 7.60(8)
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OS strange quark mass also renormalizes multiplicatively
with 1=ZP.

A. Lattice operators and correlation functions

For the charged pion, we use the interpolating operator

OπðtÞ ¼
X
x

ūðx; tÞiγ5dðx; tÞ ð5Þ

projected to zero momentum. As an interpolating operator
with the quantum numbers of the kaon, we use

OKðtÞ ¼
X
x

s̄þðx; tÞiγ5dðx; tÞ ð6Þ

projected to zero momentum. We use the combination of a
strange quark with þjμsj and the down quark with −jμlj,
because it is known that observables employing this
combination are subject to milder lattice artifacts compared
to the combination with same signs. The corresponding
two-point function reads

CKðt − t0Þ ¼ hOKðtÞO†
Kðt0Þi; ð7Þ

and likewise the pseudoscalar two-point function Cπ , with
OK replaced by Oπ. From the behavior of CK (Cπ) at large
Euclidean time

CK ∝
1

2
ðe−MKt þ e−MKðT−tÞÞ; ð8Þ

the kaon mass aMK (aMπ) can be extracted. In order to
compute the finite-volume energy shift δE ¼ EKK − 2MK ,
needed in Lüscher’s formula to obtain the scattering length
a0, we have to determine the energy of the two-kaon system
in the interacting case. Using the isospin I ¼ 1 operator

OKKðtÞ ¼
X
x;x0

s̄þðx; tÞiγ5dðx; tÞs̄þðx0; tÞiγ5dðx0; tÞ; ð9Þ

one defines the correlation function

CKKðt − t0Þ ¼ hOKKðtÞO†
KKðt0Þi: ð10Þ

It shows a dependence on Euclidean time similar to CK
with the addition of a time-independent piece, the so-called
thermal pollution:

CKK ∝
1

2
ðe−EKKt þ e−EKKðT−tÞÞ þ const: ð11Þ

To determine δE from CKK , we use a method which was
devised in Ref. [8] for the ππ system with I ¼ 2. In this
method, we consider the ratio

Rðtþ 1=2Þ ¼ CKKðtÞ − CKKðtþ 1Þ
C2
KðtÞ − C2

Kðtþ 1Þ ; ð12Þ

which can be shown to have the large Euclidean time
dependence

Rðtþ 1=2Þ ¼ AðcoshðδEt0Þ þ sinhðδEt0Þ cothð2EKt0ÞÞ;
ð13Þ

with t0 ¼ tþ 1=2 − T=2 and amplitude A.
The kaon and pion masses are affected by (exponen-

tially suppressed) finite size effects. The corresponding
ChPT corrections KMπ

¼ MπðLÞ=MπðL ¼ ∞Þ and KMK
¼

MKðLÞ=MKðL ¼ ∞Þ were determined from the data in
Ref. [17], and we reuse these values, which are collected in
Table IX. From here on, we only work with finite-size-
corrected hadron masses:

aM�
H ≔

aMH

KMH

;

forH ¼ π, K, and we drop the asterisk to ease the notation.

B. Stochastic LapH

As a smearing scheme, we employ the so-called sto-
chastic Laplacian-Heaviside (sLapH) method [24,25].
In this approach, the quark field under consideration is
smeared with the so-called smearing matrix

S ¼ VSV
†
S:

The matrices VS are matrices obtained by stacking the
eigenvectors of the lattice Laplacian,

~Δabðx; y;UÞ ¼
X3
k¼1

f ~Uab
k ðxÞδðy; xþ k̂Þ

þ ~Uba
k ðyÞ†δðy; x − k̂Þ − 2δðx; yÞδabg; ð14Þ

columnwise. The complete set of eigenvectors spans the
so-called LapH space. The indices a,b denote different
colors; the variables x,y space-time points; and ~U (possibly
smeared) SUð3Þ gauge link matrices. The index S on VS

denotes a truncation of the eigenspectrum of ~Δ such that
excited-state contaminations of the quark field are max-
imally suppressed. In addition, we smear the gauge fields
appearing in Eq. (14) with three iterations of two-level

TABLE II. Values of the bare strange quark mass aμs used for
the three β values. The lightest strange quark mass on the
ensemble D30.48 is aμs ¼ 0.0115 instead of aμs ¼ 0.013.

β 1.90 1.95 2.10

aμs 0.0185 0.0160 0.013=0.0115
0.0225 0.0186 0.015
0.0246 0.0210 0.018
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HYP smearing [26], with parameters α1 ¼ α2 ¼ 0.62. To
build correlation functions, we denote quark lines connect-
ing the source and sink time slices with

Q ¼ SΩ−1S ¼ VsðV†
sΩ−1VsÞV†

s ; ð15Þ

where Ω−1 denotes the quark propagator and P ¼
ðV†

sΩ−1VsÞ is called the perambulator. We use all-to-all
propagators to calculate the correlation functions, which can
get prohibitively expensive when done exactly. Therefore,
we employ a stochastic method with random vectors diluted
in time, Dirac space, and LapH subspace. Using the same
notation as in Ref. [11], the all-to-all propagator then reads

Ω−1 ≈
1

NR

XNR

r¼1

X
b

Xr½b�ρr½b�†; ð16Þ

with the number of random vectors NR and the compound
index r½b�, counting the total number of random vectors and
the total number of dilution vectors ND. For the kaon
correlation functions, we reuse the light quark propagators
already calculated for the ππ paper, Ref. [11]. The number of
dilution vectors for the light quark propagators, therefore, is
the same. An exception is ensemble D30.48, which was not
included in the ππ paper. For this volume of L=a ¼ 48, the
values for the several ND are collected in Table III together
with the values of ND for the other lattice sizes. Concerning
the newly calculated strange quark propagators, we adopted
the same dilution scheme.
An investigation of the number of random vectors NR

yielded no further error reduction for the energy shift δE
when increasing NR from four to five random vectors for
each strange quark perambulator. Thus, we decided to take
four random vectors per strange quark perambulator into
account for the current analysis.

III. ANALYSIS METHODS

A. Lüscher method

We are interested in the limit of small scattering
momenta for the kaon-kaon system with I ¼ 1 below
the inelastic threshold. Very much like in the case of ππ
scattering with I ¼ 2, the scattering length a0 can be related
in the finite range expansion to the energy shift δE by an
expansion in 1=L as follows [27]:

δE ¼ −
4πa0
MKL3

�
1þ c1

a0
L

þ c2
a20
L2

þ c3
a30
L3

�

−
8π2a30
MKL6

rf þOðL−7Þ; ð17Þ

with coefficients [27,28]

c1¼−2.837297; c2¼6.375183; c3¼−8.311951:

Here, rf is the effective range parameter. Equation (17) can
be solved for the scattering length a0=a given L=a, aδE,
and aMK if the terms up toOð1=L5Þ are taken into account.
This approach is valid only if the residual exponentially
suppressed finite-volume effects are negligible compared to
the ones related for δE. Moreover, by truncating Eq. (17)
at Oð1=L5Þ, one assumes that the effective range has no
sizable contribution. We estimate the effect of this trunca-
tion in Appendix A and find it to be negligible.

B. Chiral and continuum extrapolations

The values of δE and a0 are calculated for each combi-
nation of aμs and aμl. In order to arrive at our final values for
the scattering length, we need to perform interpolations in the
strange quark mass, extrapolations in the light quark mass,
and the continuum extrapolation. We adopt the following
strategy: we will first tune the renormalized strange quark to
its physical value for all β values and light quark masses.
Next, we interpolate MKa0 in the strange quark mass for all
ensembles to this value. The value for MKa0 obtained from
this interpolation is finally extrapolated to the physical point
and the continuum limit in a combined fit.
We use two different strategies, from here on denoted by

A and B, to tune the renormalized strange quark mass to its
physical value.
(A) As a strange quark mass proxy, we use

M2
s ¼ M2

K −M2
π=2; ð18Þ

which is directly proportional to the strange quark
mass at leading order in ChPT. We interpolate MKa0
linearly in ðaMsÞ2 to the value where M2

s assumes its
physical value for each ensemble separately. This
requires the physical value of MK and Mπ and the
lattice spacing as an input. The bare strange quark
mass is not explicitly used in this case.

(B) Here, we use the bare strange quark mass parameter
μs explicitly. To determine the renormalized, physical
value of the strange quark mass, we first perform a
global fit of the NLO SUð2Þ ChPT prediction forM2

K

ðaMKÞ2¼
P0

PrPZ
ðaμlþaμsÞ

�
1þP1

Pr

PZ
aμlþ

P2

P2
r

�
a

ð19Þ

TABLE III. Summary of the number of dilution vectors, ND,
used in each index. We use a block scheme in time and an
interlace scheme in eigenvector space.

ðL=aÞ3 × T=a ND (time) ND (Dirac) ND (LapH)

243 × 48 24 4 6
323 × 64 32 4 4
483 × 96 32 4 4

C. HELMES et al. PHYSICAL REVIEW D 96, 034510 (2017)

034510-4



to all our data for aMK simultaneously. Note that in
SUð2Þ ChPT, there are no chiral logarithms in M2

K
predicted at NLO. Here we have three global fit
parameters P0, P1, and P2. In addition, we have
β-dependent fit parameters PrðβÞ and PZðβÞ for
r0=a and ZP, respectively, which we constrain using
Gaussian priors based on the determinations of these
from Ref. [17].

Hence, we have in total nine fit parameters, for which
we define the augmented χ2 function:

χ2aug ¼ χ2 þ
X
β

��ðr0=aÞðβÞ − PrðβÞ
Δr0=aðβÞ

�
2

þ
�
ZPðβÞ − PZðβÞ

ΔZPðβÞ
�

2
�
: ð20Þ

Using the best-fit parameters, aμrefs can be determined
from

aμrefs ¼ ðr0Mphys
K Þ2PZ

PrP0½1þ P1r0m
phys
l þ P2P−2

r � −
PZ

Pr
ðr0mphys

l Þ

ð21Þ

using the input values specified before.
This allows us to interpolate MKa0 in aμs to the

reference value aμrefs for each ensemble separately.
In the continuum limit, the physical value of the
renormalized strange quark mass, r0m

phys
s , is then

given by

r0m
phys
s ¼ ðr0Mphys

K Þ2
P0½1þ P1r0m

phys
l � − ðr0mphys

l Þ: ð22Þ

In the following, we will denote the combination of
M1 with strategy A as M1A and likewise M1B, M2A,
and M2B.
The values of MKa0 interpolated as explained above are

now to be understood at fixed renormalized strange quark
mass. The quark mass dependence ofMKa0 is known from
ChPT and is given at NLO [29–31] by

MKa0 ¼
M2

K

8πf2K

�
−1þ 16

f2K

�
M2

KL
0 −

M2
K

2
L5 þ ζ

��
: ð23Þ

Here, L5 is a low-energy constant (LEC) and L0 is a
combination of LECs. ζ is a known function with chiral
logarithms, which can be found in the references above. We
can rewrite Eq. (23) in terms of the quark masses by
replacing M2

K and fK with their corresponding LO ChPT
expressions. Note that we use the convention with
fπ ¼ 130 MeV.

As we will see later, our data for MKa0 are not
sufficiently precise to resolve terms beyond leading order,
in contrast to M2

K. Including lattice artifacts of order a2,
we therefore resort to the following effective fit ansatz for
MKa0 linear in μl and a2:

MKa0 ¼ Q0

Pr

PZ
aμl þQ1

1

P2
r
þQ2; ð24Þ

with three free fit parameters Q0, Q1, and Q2. The
continuum and chiral limit for MKa0 is then given by

ðMKa0Þphys ¼ Q0r0m
phys
l þQ2:

For the fit, we use again an augmented χ2 like in Eq. (20) to
take the errors on r0=a and ZP into account.
All errors are computed using the (chained) bootstrap

with 1500 bootstrap samples. Values not determined by
ourselves—e.g., for r0=a or ZP—are included in the boot-
strap analysis using the parametric bootstrap. Where rel-
evant, fits are fully correlated. The configurations used are
well separated in HMC trajectories, and we have checked
explicitly for autocorrelation using a blocked bootstrap.

IV. RESULTS

In this section, we present the results for the energy shift
δE, the scattering length a0, and the chiral and continuum
extrapolations of MKa0. From the four approaches M1A,
M1B, M2A, and M1B we obtain four values for
MKa0, which we combine into our final result. The spread
between the four values is used to estimate the systematic
uncertainty.

A. Energy shift δE

The energy shift is calculated by fitting Eq. (13) to the
data of the ratio defined in Eq. (12). Because of the cosh-
like behavior of CK and CKK , we symmetrize the corre-
lation functions. For the kaon masses we use the results of
fully correlated fits to the two-point correlation function
[Eq. (8)]. We repeat our fits for multiple fit ranges for each
correlation function. The systematic uncertainties of the
fitting procedures are then estimated using the approach
introduced in Ref. [11]. The energy value is determined as
the median of the weighted distribution over the fit ranges.
The weight assigned to each fit reads

wX ¼ ½ð1 − 2jpX − 0.5j2Þ · minðΔXÞ=ΔX�2; ð25Þ

where X ¼ EK; δE. pX is the p value of the fit and ΔX
denotes the statistical uncertainty of the considered
quantity hXi. An estimate of the systematic uncertainty
is then calculated from the 68.54% confidence interval of
the weighted distribution of X. The statistical error comes
from bootstrapping this procedure.
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In order to choose the fit ranges for obtainingMK fromCK
and δE from R, we require several criteria to be fulfilled.
Concerning the initial time slice ti,wedemand that the excited
states in bothCK andR be sufficiently decayed away. ForCK,
we visually inspect the effective mass. Since CK does not
suffer from exponential error growth at late times, we set
tf ¼ T=2. Thus, we vary ti and tf within the constraints
above. In the case of the ratio, tf is set to the time slicewhereR
starts to deviate significantly from the behavior suggested by
Eq. (13). The minimal number of time slices for a fit range is
chosen with the same criterion as forCK. The values of ti, tf,
and tmin forCK and R are compiled in Tables X–XII for each
value of aμs in Appendix B.
In Fig. 1, we show exemplary fits of the ratio in Eq. (13)

to the data for several ensembles and selected fit ranges. At

least for the ensembles with L ¼ 24, the tendency of an
upward bend of the data at late times can be seen clearly.
As mentioned before, for Eq. (17) to be valid, residual

exponentially suppressed finite-volume effects must be
negligible. Moreover, the terms in Eq. (17) of order 1=L6

and higher must be negligible. We can test the latter for
ensembles A40.20, A40.24, and A40.32, which differ
only in volume. In Fig. 2, we plot δE as a function of 1=L
for these three ensembles and aμs ¼ 0.0185. The other
two μs values give similar results. We have solved
Eq. (17) including all terms up to order 1=L6 for a0
and rf using A40.24 and A40.32 only, the result of which
is shown as the solid line with error band in the left panel
of the figure. It leads to MKa0 ¼ −0.292ð20Þ. Including
also A40.20, we perform a two-parameter fit with three
data points, finding MKa0 ¼ −0.318ð9Þ. The correspond-
ing fit is shown in the right panel of the figure. Leaving
out the effective range term at order 1=L6 results in
unreasonably large χ2 values.
Noting that solving Eq. (17) up to order 1=L5 for a0 for

ensemble A40.32 gives MKa0 ¼ −0.315ð11Þ, which
agrees within error with the two estimates from above,
we conclude that L=a ¼ 32 is sufficiently large, while
L=a ¼ 24 is at the border. L=a ¼ 20 is certainly too small
to extract MKa0 from a single volume neglecting the
effective range term.
We check the impact of the inclusion of rf on the

extraction of MKa0 in Appendix A. With a LO ChPT
estimation of rf included in the extraction of a0, the values
for MKa0 vary by about 1 standard deviation. The central
values for the L=a ¼ 24 lattices change by about 1% on
the inclusion of the order-1=L6 terms (cf. Table VIII). Thus,
we quote as our chiral and continuum extrapolated result
MKa0 at Oð1=L5Þ and attribute to it a conservatively
estimated systematic uncertainty of 1%.

FIG. 1. Representative fits of Eq. (13) to the ratio data for
different ensembles at the lowest value of aμs.

FIG. 2. δE as a function of 1=L for ensemble A40.32 with aμs ¼ 0.0185. In the left panel, we show as the solid line the solution of
Eq. (17) for a0 and rf given the two data points with the largest L. In the right panel, the solid line represents a fit of Eq. (17) to all three
data points.
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B. Scattering length

Given the values of aδE and aMK , the scattering length
a0 is determined using Eq. (17).
The number of fit ranges for extracting aδE is low,

compared to the ππ case of Ref. [11]. Thus, an estimate of
the systematic effects stemming from the fitting procedure
is likely to be incorrect. Therefore, instead of estimating the
systematic uncertainty introduced by the fitting procedure
after the chiral extrapolations, we consider the p-value
weighted median over the fit ranges. This procedure is
further supported by the fact that the statistical uncertainties
of MKa0 do not essentially differ from the uncertainties
obtained by adding statistical and systematic uncertainties
in quadrature. The final results for aMK, aδE, a0=a, and
MKa0 are compiled in Tables XV–XVII for all ensembles.
The chiral and continuum extrapolations are carried out
using only the largest of the A40 ensembles, A40.32,
because it has the smallest finite-volume effects.

C. Strategies M1A and M2A: MKa0 from fixed M2
s

To evaluateMKa0 at the physical strange quark mass, we
convertM2

s to lattice units using r0=a listed in Table I. First,
we expressM2

s in units of r0 using the estimates in Eq. (1),
which gives ðrM1

0 Mphys
s Þ2 ¼ 1.33ð7Þ with ZP from M1 and

ðrM2
0 Mphys

s Þ2 ¼ 1.34ð6Þwith ZP fromM2. In lattice units at
our three lattice spacings, these correspond to the values
given in Table IV.
For each ensemble, we then interpolate MKa0 by

performing a correlated linear fit to the data at the three
values of aμs (the independent variable being a2M2

s). An
example of this is given in Fig. 6 in Appendix B.
Having interpolated MKa0 on all ensembles, the data is

extrapolated to the physical point and to the continuum in a
global fit using Eq. (24). In Fig. 3, the dimensionless
productMKa0 is shown as a function of r0ml together with
the global fit for each value of β for M1A in the left panel
and for M2B in the right panel. Note that we take into
account all correlation between data which enters through
the procedure for fixing the strange quark mass at each
value of the lattice spacing. The results of the fits can be
found in Table V.

D. Strategies M1B and M2B: MKa0 from fixed mR
s

Analysis B involves as a first step a global fit of Eq. (19)
to the values of aMK . As an example, the fits to the data of
the A ensembles are shown in Appendix B in Fig. 7 for ZP
from M1 (left panel) and M2 (right panel).
The fit takes into account the correlation between data at

different values of aμs but the same aμl value. The results
of the global fits are compiled in Tables XIII and XIV. The
fitted parameters allow us to calculate the renormalized
strange quark mass, mphys

s , from Eq. (22). As input, we use
r0 from Eq. (1), ZP from Table I, mphys

l , and Mphys
K .

For the physical values of the strange quark mass at
2 GeV in the MS scheme, we find

mphys
s ¼ 101.3ð4.7Þ MeV3 ðM1BÞ;

mphys
s ¼ 99.4ð4.4Þ MeV ðM2BÞ: ð26Þ

TABLE IV. Physical values of M2
s for the three β values. The

stated values correspond to the continuum values of ðr0Mphys
s Þ2

equal to 1.33(7) and 1.34(6) for ZP from M1 and M2,
respectively.

β ðaMphys
s Þ2 (M1) ðaMphys

s Þ2 (M2)

1.90 0.0473(28) 0.0475(26)
1.95 0.0400(22) 0.0402(20)
2.10 0.0231(12) 0.0232(11)

FIG. 3. Chiral and continuum extrapolation of MKa0 to the physical point as a function of the light quark mass for M1A in the left
panel andM2A in the right panel. The three lattice spacings and the best-fit curves are color-encoded. The black dashed line shows the
continuum curve with the physical point result indicated by the diamond.
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These values compare well to the corresponding results
from Ref. [17]:

mETMC
s ¼ 101.6ð4.4Þ MeV ðM1Þ;

mETMC
s ¼ 99.0ð4.4Þ MeV ðM2Þ:

We can convert the values from Eq. (26) to lattice units
for the three β values, which we compiled in Table VI.
Next, we interpolate MKa0 in aμs to these values for all
ensembles. As an example, we show the linear correlated fit
for ensemble B55.32 in Appendix B in Fig. 8 for M1B in
the left panel and for M2B in the right panel.
Interpolated to the reference strange quarkmass, the values

of MKa0 are shown as a function of the renormalized light
quark mass in Fig. 4 in units of r0. We also show the best-fit

function for each β value and the continuum extrapolation.
The continuum-extrapolated values at the physical point
ðMKa0Þphys are indicated by the diamonds. Note again that
due to the strange quarkmass fixing procedure, all points for a
single lattice spacing are correlated.
In Table V, we give our final results for ðMKa0Þphys for

the four different approaches M1A, M2A, M1B, and
M2B together with the best-fit parameters Q1;2;3, the
χ2=d:o:f:, and the p value of the fit.
As the final result, we quote the p-value weighted

median over the four determinations:

MKa0 ¼ −0.385ð16Þstat
�þ0

−12

�
ms

�þ0

−5

�
ZP

ð4Þrf : ð27Þ

The statistical uncertainty comes from the bootstrap pro-
cedure. The systematic uncertainty coming from the two
methods to estimate ZP is estimated as follows: we first
compute the weighted average of onlyM1A andM1B, and
also that of only M2A and M2B. The systematic uncer-
tainty is then taken as the deviation between these two
weighted averages and the final result, Eq. (27). For the
systematic uncertainty from setting the strange quark mass
we proceed in the same way, except that we first compute
the weighted average of onlyM1A andM2A, and also that
of only M1B and M2B. As the last error, we quote the
systematic uncertainty from neglecting higher-order terms
in the calculation of the scattering length. Using Mphys

K , we
obtain for the scattering length

a0 ¼ −0.154ð6Þstat
�þ0

−5

�
ms

�þ0

−2

�
ZP

ð2Þrf fm: ð28Þ

V. DISCUSSION

We have used four methods to determine MKa0 at the
physical light and strange quark mass value in the con-
tinuum limit. The differences between these methods are

TABLE V. Physical values for MKa0 obtained from the global
fit of Eq. (24) to the data from the different approaches. We also
give the χ2 and p values of the fit together with the best-fit
parameters Q0–Q2.

M1A M2A M1B M2B

ðMKa0Þphys −0.398ð18Þ −0.397ð18Þ −0.389ð18Þ −0.384ð16Þ
χ2=d:o:f: 2.23=7 2.43=7 3.07=7 4.94=7

p value 0.95 0.93 0.88 0.67
Q0 −0.69ð12Þ −0.74ð12Þ −0.67ð12Þ −0.70ð12Þ
Q1 2.4(6) 2.3(7) 2.0(6) 1.7(6)
Q2 −0.39ð2Þ −0.39ð2Þ −0.38ð2Þ −0.38ð2Þ

TABLE VI. Values of aμs corresponding to the renormalized
physical strange quark mass in lattice units for the three values of
β calculated from Eq. (21).

β aμrefs (M1) aμrefs (M2)

1.90 0.0202(12) 0.0204(11)
1.95 0.0182(10) 0.0181(9)
2.10 0.0150(8) 0.0151(8)

FIG. 4. Same as Fig. 3, but for M1B (left panel) and M2B (right panel).

C. HELMES et al. PHYSICAL REVIEW D 96, 034510 (2017)

034510-8



lattice artifacts. From Table V, it becomes clear that all
four methods give results which are well compatible within
statistical uncertainties. This gives us confidence in our
procedure and in our final result [Eq. (27)]. The four
different estimates can still serve as an estimate of sys-
tematic effects, which are, however, smaller than the
statistical uncertainty of about 4%. The largest fraction
of this statistical uncertainty stems from the uncertainty in
the scale.
It turns out that lattice artifacts are not negligible in

MKa0: from β ¼ 1.90 to the continuum, a roughly 20%
relative change in the result is observed. From our finest
lattice spacing we still see a change of about 8%. It is
interesting to note that our central value equals, within
errors, the LO ChPT estimate

ðMKa0ÞLOChPT ¼ −
M2

K

8πf2K
¼ −0.385:

A possibly still uncontrolled systematic uncertainty
could come from our chiral and continuum extrapolation.
In lattice ChPT, usually the a2 term is taken to be of higher
order than the term linear in μl. For this we would need to
include higher orders in the quark mass as well. However,
the precision in our data is not sufficient to resolve such
terms. But the need for the a2 term is evident. Therefore,
we decided to stick to a power counting with a2 ∝ μl.
An alternative and probably better chiral representation of
MKa0 in terms of MK=fK was used in Ref. [3]. This
representation turned out to be not feasible for us, because
we have only very little spread in MK=fK . Smaller
uncertainties on MKa0 might enable the investigation of
the light and strange quark mass dependence using mixed-
action ChPT at NLO.
We also cannot estimate the effects from partial quench-

ing of the strange quark. However, it should be noted that
the kaon masses that we obtain in the OS valence sector at
the physical strange quark mass, as set via either method A
orB, deviate from those of the unitary kaon mass published
in Ref. [32] by a few percent at most. Partial quenching
effects in analyses using OS valence fermions on a Nf ¼
2þ 1þ 1 twisted mass sea have been shown to be small for
other observables in the past. Moreover, we would like to
remark that the dependence of MKa0 on μs is not very
pronounced. Finally, our estimate in Appendix A indicates
that theOðL−6Þ terms in the Lüscher formula [Eq. (17)] are
indeed negligible for our case. Nevertheless, we do not
have a sufficient number of volumes available to determine
it from the data.
Two other lattice calculations of MKa0 are available.

The NPLQCD Collaboration used three-flavor mixed
action ChPT to obtainMKa0 ¼ −0.352ð16Þ, with statistical
and systematic uncertainties combined in quadrature [3].
They worked with domain-wall valence quarks on a sea of
Nf ¼ 2þ 1 asqtad-improved rooted staggered quarks. A

second calculation was performed by the authors of Ref. [4]
with Nf ¼ 2þ 1 dynamical flavors of nonperturbatively
OðaÞ-improved Wilson quarks. Their result reads MKa0 ¼
−0.310ð17Þð32Þ. The discrepancy between these determi-
nations and our final result, Eq. (27), is quite substantial. In
the NPLQCD determination, predominantly one lattice
spacing of a ¼ 0.125 fm was considered in the chiral
extrapolation. One ensemble with a finer lattice spacing
was included in the analysis to attempt a quantification of
discretization errors, but it should be noted that the
uncertainty on this point was about a factor of 3 larger
than on all other points in the analysis. The PACS-CS
Collaboration used only one lattice spacing value with
a ∼ 0.09 fm, very close to our coarsest lattice spacing
value. PACS-CS included one ensemble with Mπ ¼
170 MeV in their analysis, which is, however, giving very
noisy results. Both collaborations use one strange quark
mass value which was tuned to be close to physical.
In Fig. 5, we compare our result at the coarsest lattice

spacing—i.e., the A ensembles, interpolated to the physical
strange quark mass with method M1A—to the results of
the other two collaborations. There is no obvious con-
clusion from this comparison. But the errors of the PACS-
CS results appear to be large enough to explain the
observed differences, given the fact that the PACS-CS
result is at one lattice spacing value only. The comparison
to the NPLQCD data points is more difficult, in particular
since the one NPLQCD point with a finer lattice spacing
points towards an even smaller absolute value for MKa0,
though with a large statistical uncertainty. This can only be
resolved with continuum extrapolations for the other
formulations. However, the NPLQCD and our result agree
within 2 standard deviations.

FIG. 5. MKa0 as a function of M2
π . We show our results at the

coarsest lattice spacing value for method M1A together with the
results of NPLQCD [3] and PACS-CS [4], with the orange circle
and square indicating the respective final results. The orange
triangle shows our final result.
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VI. SUMMARY

We investigated the scattering length of the Kþ − Kþ
system by means of finite-volume methods for lattice QCD
devised by M. Lüscher. The lattice formulation is Wilson
twisted mass lattice QCD at maximal twist and Nf ¼
2þ 1þ 1 dynamical quark flavors. The gauge configura-
tions, involving 11 pion masses at three different lattice
spacings, were generated by the ETMC. To the author’s
knowledge, our result represents the first study of the
Kþ − Kþ system controlling lattice artifacts using three
lattice spacing values and up/down, strange, and charm
dynamical quarks. For the strange quark, we used a mixed
action approach with so-called Osterwalder-Seiler valence
strange quarks to be able to correct for a slight mistuning of
the sea strange quark mass value.
In total, we followed four different strategies to arrive

at the continuum-extrapolated value for MKa0 at physical
light and strange quark masses. All four show very
good agreement, indicating that the corresponding extrap-
olations are well controlled. Our final result for the
scattering length is

MKa0 ¼ −0.385ð16Þstat
�þ0

−12

�
ms

�þ0

−5

�
ZP

ð4Þrf

from the weighted median over the four strategies. In our
calculation, we find that the continuum extrapolation is
vital in obtaining the final number: from the coarsest to the
continuum result, we observe a roughly 20% difference.
We think that this is also the reason for the discrepancy
we observe when comparing to the two previous lattice
calculations of MKa0, because for the other two results a
continuum extrapolation could not be performed.
In the near future, we will extend the analysis performed

here to the pion-kaon case.
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APPENDIX A: EFFECTIVE RANGE FROM CHPT

We start from the partial wave expansion for the
scattering amplitude TIðs; t; uÞ [43]:

TIðs; t; uÞ ¼ 32π
X∞
l¼0

ð2lþ 1ÞPlðcosϑÞtIlðsÞ; ðA1Þ

which depends on the Legendre polynomials Plðcos ϑÞ and
the partial wave amplitudes tIlðsÞ. The amplitudes tIlðsÞ can
be expanded in terms of the scattering momentum q and the
slope parameters:

RetIl ¼ q2lðaIl þ q2bIl þOðq4ÞÞ: ðA2Þ
Since we are interested in maximal isospin and the s wave,
we take I ¼ 1 and l ¼ 0. This yields

t10ðsÞ ¼
T1ðs; t; uÞ

32π
: ðA3Þ

In Ref. [43], Tðs; t; uÞ for KþK− → KþK− is given to
leading order by

Tðs; t; uÞ ¼ 2M2
K − u
f2π

: ðA4Þ

To turn this into an amplitude valid for KþKþ scattering,
we employ crossing symmetry, which interchanges the
Mandelstam variables s and u. With that, the partial wave
amplitude becomes

tI0ðsÞ ¼
1

32π

2M2
K − s
f2π

¼ 1

32π

−2M2
K − 4q2

f2π
; ðA5Þ

where we express s with the momentum transfer
q: s ¼ 4ðM2

K þ q2Þ. Expanding Eq. (A5) in a Taylor series
gives

Ret10ðqÞ ¼ −
M2

K

16πf2π
−

q2

8πf2π
: ðA6Þ

Comparing Eq. (A6) with Eq. (A2), we can extract b10 and
use rf ¼ −2MKb10 to get

rf ¼ MK

4πf2π
: ðA7Þ

To estimate the effective range, we use the physical
value of the kaon mass MK ¼ 494.2 MeV and the ChPT
value fπ ¼ 94.2 MeV. Converting to a length unit with
ℏc ¼ 197.37 MeV fm gives

rf ¼ 0.91 fm:

We can use this to estimate the influence of the OðL−6Þ
terms on the determination of the scattering length a0
from Lüscher’s formula. To this end, we compare the
results for the scattering length up to order OðL−5Þ to the
ones of up to order OðL−6Þ with and without the term
involving the effective range. Table VII gives an overview
of these differences. For converting rf back to lattice units,
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we use parametric bootstrap samples of the lattice spacing
a. In Table VIII, the results for MKa0 for a0 up to OðL−6Þ
and a0 truncated at OðL−5Þ are compared. As is visible

from the table, the inclusion of the terms to orderOðL−6Þ in
the determination of the scattering length does not change
the values of MKa0 beyond 1 standard deviation.

APPENDIX B: DATA TABLES AND PLOTS

TABLE VII. Comparison of the scattering lengths of ensembles
with different volumes and light quark masses determined from
Lüscher’s formula to OðL−7Þ and OðL−6Þ without the effective
range term, at the lowest value of aμs.

Ensemble a0 at OðL−6Þ a0 at OðL−5Þ
A60.24 −1.405ð18Þ −1.393ð18Þ
A80.24 −1.412ð14Þ −1.400ð14Þ
A100.24 −1.390ð12Þ −1.379ð12Þ
B85.24 −1.592ð20Þ −1.572ð19Þ
A40.32 −1.350ð46Þ −1.346ð46Þ
D30.48 −2.143ð13Þ −2.130ð12Þ

TABLE VIII. Comparison of MKa0 with different orders of L
taken into account for determining a0. The data shown are the p-
value weighted medians over all fit ranges for δE at the lowest
value of aμs.

Ensemble MKa0 to OðL−6Þ MKa0 to OðL−5Þ
A60.24 −0.344ð5Þ −0.341ð4Þ
A80.24 −0.360ð4Þ −0.357ð3Þ
A100.24 −0.367ð3Þ −0.364ð3Þ
B85.24 −0.368ð5Þ −0.363ð4Þ
A40.32 −0.316ð11Þ −0.315ð11Þ
D30.48 −0.322ð19Þ −0.320ð18Þ

FIG. 7. M2
K as a function of aμl forM1B (left panel) andM2B (right panel) for all ensembles at β ¼ 1.90. The lines represent the best

fit of Eq. (19) to the data. The three lines in each plot correspond to the three values of aμs.

FIG. 6. MKa0 as a function ofM2
s for ensemble B55.32 forM1A in the left andM2A in the right panel. The data are shown as crosses.

The dashed line with the error band represents the linear fit. The interpolated value is indicated by the diamond.
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TABLE IX. Single-pion energy levels from Refs. [12,13] and
the finite size correction factors KMπ

and KMK
computed in

Ref. [17] forMπ andMK , respectively. The statistical uncertainty
of KMK

is only estimated. Where not given, KMK
is set to 1.

Ensemble aMπ KMπ
KMK

A30.32 0.12395(36)(14) 1.0081(52) 0.9954(1)
A40.32 0.14142(27)(42) 1.0039(28) 0.9974(1)
A60.24 0.17275(45)(23) 1.0099(49) 0.9907(1)
A80.24 0.19875(41)(35) 1.0057(29) 0.9950(1)
A100.24 0.22293(35)(38) 1.0037(19) 0.9970(1)
B35.32 0.12602(30)(30) 1.0069(32) 0.9951(1)
B55.32 0.15518(21)(33) 1.0027(14) 0.9982(1)
B85.24 0.19396(38)(54) 1.0083(28) 0.9937(1)
D30.48 0.09780(16)(32) 1.0021(7) 0.9986(1)
D45.32 0.12070(30)(10) 1.0047(14) 1.0000(1)

TABLE X. Fit ranges for the lowest value of aμs for the kaon
correlation function CK and the ratio R. The interval ½ti; tf�
denotes the lowest and largest time slice considered in the fits;
tmin is the minimal extent of each fit range.

CK R

Ensemble aμs ½ti; tf� tmin ½ti; tf� tmin

A30.32 0.0185 [12, 32] 7 [12, 32] 10
A40.24 0.0185 [12, 24] 5 [11, 24] 7
A40.32 0.0185 [15, 32] 7 [12, 32] 10
A60.24 0.0185 [12, 24] 5 [11, 24] 7
A80.24 0.0185 [12, 24] 5 [11, 24] 7
A100.24 0.0185 [12, 24] 5 [11, 24] 7
B35.32 0.0160 [15, 32] 7 [12, 32] 10
B55.32 0.0160 [15, 32] 7 [14, 32] 10
B85.24 0.0160 [12, 24] 5 [11, 24] 7
D30.48 0.0115 [16, 48] 15 [8, 41] 15
D45.32 0.0130 [15, 32] 7 [12, 32] 10

TABLE XI. Same as Table X, but for the medium value of aμs.

CK R

Ensemble aμs ½ti; tf� tmin ½ti; tf� tmin

A30.32 0.0225 [12, 32] 5 [12, 29] 10
A40.24 0.0225 [12, 24] 5 [11, 24] 7
A40.32 0.0225 [15, 32] 7 [12, 32] 10
A60.24 0.0225 [12, 24] 5 [11, 24] 7
A80.24 0.0225 [12, 24] 5 [11, 24] 7
A100.24 0.0225 [12, 24] 5 [11, 24] 7
B35.32 0.0186 [15, 32] 7 [12, 32] 10
B55.32 0.0186 [15, 32] 7 [14, 32] 10
B85.24 0.0186 [12, 24] 5 [11, 24] 7
D30.48 0.0150 [16, 48] 15 [8, 41] 15
D45.32 0.0150 [15, 32] 7 [12, 32] 10

TABLE XII. Same as Table X, but for the highest value of aμs.

CK R

Ensemble aμs ½ti; tf� tmin ½ti; tf� tmin

A30.32 0.02464 [12, 32] 5 [12, 32] 10
A40.24 0.02464 [12, 24] 5 [11, 24] 7
A40.32 0.02464 [15, 32] 7 [12, 32] 10
A60.24 0.02464 [12, 24] 5 [11, 24] 7
A80.24 0.02464 [12, 24] 5 [11, 24] 7
A100.24 0.02464 [12, 24] 5 [11, 24] 7
B35.32 0.0210 [15, 32] 7 [12, 32] 10
B55.32 0.0210 [15, 32] 7 [14, 32] 10
B85.24 0.0210 [12, 24] 5 [11, 24] 7
D30.48 0.0180 [16, 48] 15 [8, 41] 15
D45.32 0.0180 [15, 32] 7 [12, 32] 10

FIG. 8. MKa0 as a function of aμs for ensemble B55.32 for M1B in the left and M2B in the right panel. The line with the error band
represents the best fit, and the interpolated result is indicated by the diamond.
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TABLE XIII. Parameters from the global fit of Eq. (19) to aM2
K with parameters from M1.

β PZ Pr P̄0 P1 P2 χ2=d:o:f:

1.90 0.524(7) 5.22(6)
5.53(20) 0.14(3) 5.21(1.61) 6.821.95 0.512(4) 5.84(5)

2.10 0.516(2) 7.57(8)

TABLE XIV. Parameters from the global fit of Eq. (19) to aM2
K with parameters from M2.

β PZ Pr P̄0 P1 P2 χ2=d:o:f:

1.90 0.572(4) 5.19(6)
5.65(20) 0.16(3) 7.27(1.67) 6.851.95 0.547(2) 5.87(5)

2.10 0.545(2) 7.56(8)

TABLE XV. Lattice results for aMK, δE, a0, andMKa0 for the smallest value of aμs on all ensembles used in this
study. The first parentheses states the statistical uncertainty estimated from the bootstrap samples of the quantity, and
the second one states the systematic uncertainty estimated from the different fit ranges used for the correlation
functions.

Ens aμs aMK aδE a0 ðMKa0Þ
A30.32 0.0185 0.2292ð2Þðþ0

−0Þ 0.0025ð1Þðþ1
−0Þ −1.306ð82Þðþ29

−15Þ −0.299ð19Þðþ7
−3Þ

A40.20 0.0185 0.2385ð5Þðþ0
−0Þ 0.0126ð2Þðþ2

−1Þ −1.523ð19Þðþ19
−15Þ −0.363ð5Þðþ5

−3Þ
A40.24 0.0185 0.2364ð3Þðþ0

−0Þ 0.0065ð1Þðþ1
−0Þ −1.423ð17Þðþ20

−3 Þ −0.336ð4Þðþ5
−1Þ

A40.32 0.0185 0.2342ð2Þðþ0
−0Þ 0.0025ð1Þðþ0

−0Þ −1.346ð46Þð þ9
−14Þ −0.315ð11Þðþ2

−3Þ
A60.24 0.0185 0.2449ð3Þðþ0

−0Þ 0.0061ð1Þðþ1
−0Þ −1.393ð18Þðþ18

−7 Þ −0.341ð4Þðþ4
−2Þ

A80.24 0.0185 0.2548ð2Þðþ1
−1Þ 0.0059ð1Þðþ1

−0Þ −1.400ð14Þðþ16
−7 Þ −0.357ð3Þðþ4

−2Þ
A100.24 0.0185 0.2642ð2Þðþ1

−1Þ 0.0056ð1Þðþ0
−0Þ −1.379ð12Þðþ2

−2Þ −0.364ð3Þðþ1
−1Þ

B35.32 0.0160 0.2053ð2Þðþ0
−0Þ 0.0035ð1Þðþ0

−0Þ −1.606ð58Þðþ20
−16Þ −0.330ð12Þðþ4

−3Þ
B55.32 0.0160 0.2153ð2Þðþ0

−0Þ 0.0030ð1Þðþ0
−0Þ −1.491ð47Þðþ18

−21Þ −0.321ð10Þðþ4
−4Þ

B85.24 0.0160 0.2312ð3Þðþ0
−0Þ 0.0075ð1Þðþ1

−1Þ −1.572ð19Þðþ16
−17Þ −0.363ð4Þðþ4

−4Þ
D30.48 0.0115 0.1504ð1Þðþ0

−0Þ 0.0018ð1Þðþ1
−1Þ −2.130ð123Þðþ94

−97Þ −0.320ð18Þðþ14
−15Þ

D45.32 0.0130 0.1657ð3Þðþ0
−0Þ 0.0066ð2Þðþ0

−2Þ −2.307ð51Þðþ12
−51Þ −0.382ð9Þðþ2

−9Þ

TABLE XVI. Same as Table XV, but for the medium value of aμs.

Ens aμs aMK aδE a0 ðMKa0Þ
A30.32 0.0225 0.2491ð3Þðþ2

−2Þ 0.0025ð2Þðþ1
−2Þ −1.436ð97Þð þ45

−104Þ −0.358ð24Þðþ11
−26Þ

A40.20 0.0225 0.2577ð5Þðþ0
−0Þ 0.0120ð2Þðþ0

−1Þ −1.565ð19Þð þ4
−11Þ −0.403ð5Þðþ1

−3Þ
A40.24 0.0225 0.2560ð3Þðþ0

−0Þ 0.0062ð1Þðþ0
−1Þ −1.454ð18Þð þ9

−21Þ −0.372ð5Þðþ2
−5Þ

A40.32 0.0225 0.2538ð2Þðþ0
−0Þ 0.0024ð2Þðþ1

−0Þ −1.391ð86Þðþ46
−23Þ −0.353ð22Þðþ12

−6 Þ
A60.24 0.0225 0.2638ð3Þðþ1

−1Þ 0.0060ð1Þðþ1
−1Þ −1.459ð16Þðþ14

−28Þ −0.385ð4Þðþ4
−7Þ

A80.24 0.0225 0.2732ð2Þðþ1
−1Þ 0.0057ð1Þðþ1

−0Þ −1.435ð14Þðþ13
−7 Þ −0.392ð4Þðþ4

−2Þ
A100.24 0.0225 0.2823ð2Þðþ0

−0Þ 0.0054ð1Þðþ0
−0Þ −1.412ð12Þð þ8

−10Þ −0.398ð3Þðþ2
−3Þ

B35.32 0.0186 0.2185ð2Þðþ1
−1Þ 0.0032ð1Þðþ1

−1Þ −1.589ð62Þðþ37
−47Þ −0.347ð14Þð þ8

−10Þ
B55.32 0.0186 0.2281ð2Þðþ0

−0Þ 0.0031ð1Þðþ0
−0Þ −1.578ð51Þðþ12

−9 Þ −0.360ð12Þðþ3
−2Þ

B85.24 0.0186 0.2429ð3Þðþ1
−1Þ 0.0074ð1Þðþ1

−0Þ −1.619ð14Þðþ13
−9 Þ −0.393ð3Þðþ3

−2Þ
D30.48 0.0150 0.1674ð1Þðþ0

−0Þ 0.0018ð1Þðþ1
−1Þ −2.318ð135Þðþ126

−59 Þ −0.388ð23Þðþ21
−10Þ

D45.32 0.0150 0.1748ð2Þðþ3
−3Þ 0.0061ð2Þðþ3

−3Þ −2.250ð49Þðþ80
−77Þ −0.393ð9Þðþ14

−13Þ
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C H A P T E R 6

I3 = 3/2 PION KAON SCATTERING

6.1 INTRODUCTION

The elastic scattering process π+K+ → π+K+ completes our investigation program of maximal
isospin scattering including light and strange quarks. This work is in press [2]. Due to the
different Mesons interacting with each other it is less straightforward than the case of equal
meson scattering and additional thought needs to be put in the analysis procedure, when e.g.
removing pollutional states. The computational setup is the same as in chapter 5 we start with a
suitable choice of interpolating operators, in this case being the pseudoscalars K+, π+ and their
composite operator, π+K+. The set of these interpolators leads to the three correlation functions
CK, Cπ and CπK. Because of the different mesons participating in the interaction the pollutional
states are now time dependent in contrast to the case of same meson scattering. We investigate
two different methods to cancel these pollutional states. The first method, weighting and
shifting (E1), is an established method, cf. Ref. [28], to remove one time dependent pollution
with a slight modification. It is described in detail in section 3.3.2. The second method (E2)
aims at a complete removal of both contributions to the pollution. The determination of the
energy shift now involves the reduced mass of the π-K system in the determination of the
scattering length. As in chapter 5 we fix the strange quark mass to its physical value via the
GMOR-relations. Other than in chapter 5 we use continuum SU(3) ChPT via 2 approaches to
extrapolate the data to the physical point. Again, having available values at 3 lattice spacings
allows for a thorough investigation of possible lattice spacing dependencies of the scattering
length. The first approach fits the continuum SU(3) formula for the dimensionless product
µπK a0 directly, whereas the second one uses an intermediate observable Γ to enable a straight
line fit, as was already done in Ref. [45].
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CHAPTER 6 I3 = 3/2 PION KAON SCATTERING

6.2 SUMMARY

The final result of the elastic s-wave scattering length in the Isospin channel I3 = 3/2 is given
by

µπK a3/2,phys
0 = −0.0463(17) . (6.1)

This translates to

Mπ a3/2,phys
0 = −0.059(2) , Mπ a1/2,phys

0 = 0.163(3) . (6.2)

The error is a combination of statistical and systematic uncertainties as detailed below. Com-
paring the two methods to remove thermal states (E1 and E2) reveals that our approach
(E2) performs better in terms of the estimated statistical error on the energy shift. The
mixed action approach used in this publication has significant influence on the evaluation
of µπK a3/2

0 = −0.0463(17). The sea strange quark mass calculated from the twisted mass
parameters does not exactly match the physical strange quark mass owing to the a priori
unknown renormalization constants ZP and ZS appearing in Equation (2.117). In general it is
desirable to simulate as close to the physical situation as possible. This involves tuning the
twisted mass parameters µσ and µδ such that the resulting renormalized sea strange quark
mass msea

s assumes its physical value. In the tuning procedure several assumptions have to be
made. Firstly the renormalization constants ZP and ZS are not known a priori such that a direct
calculation of msea

s is not feasible. Secondly the tuning procedure depends on the observable
used as a proxy for mphys

s and assumptions on parameters entering this proxy, as for instance
the lattice spacing. Thus msea

s turns out different from the mphys
s for the different ensembles in

this work. In an ongoing investigation we observed that varying msea
s has significant influence

on the dimensionless scattering length µπK a3/2
0 = −0.0463(17). Fitting NLO ChPT to our data

suggests that no order O
(

M2
Xa2
)

lattice artifacts, where MX denotes a pseudoscalar meson
mass, are resolvable with the current precision of our data. Here we only investigated the direct
fit of NLO ChPT for a possible lattice artifact because a plot of Γ vs. MK/Mπ did not suggest
any lattice spacing dependence at all. Because the fitted values of the LECs, L5 and LπK, vary a
lot when varying the fit ranges in our chiral extrapolations, we fix L5 with a prior stemming
from the most recent calculation available, cf. Ref. [46].
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I. INTRODUCTION

For understanding the strong interaction sector of the standard model (SM) it is not
sufficient to compute masses of stable particles. Gaining insight into interactions of two or
more hadrons and resonances is a must. Due to the non-perturbative nature of low energy
quantum chromodynamics (QCD), computations of interaction properties from lattice QCD
are highly desirable. While ultimately the phase shift in a given partial wave is to be
computed, also the scattering length is in many cases a useful quantity, in particular when
the two-particle interaction is weak.

Due to the importance of chiral symmetry in QCD the investigation of systems with
two pseudoscalar mesons is of particular interest. Here, chiral perturbation theory (ChPT)
is able to provide a description of the pion mass dependence. And any non-perturbative
computation in turn allows to check this dependence. Naturally, ChPT works best for two
pion systems, while convergence is unclear for pion-kaon or two kaon systems.

The two pion system is studied well experimentally, also in the different isospin channels.
However, as soon as one or both pions are replaced by kaons, experimental results become
sparse. On the other hand, this gap starts to be filled by lattice QCD calculations. For
the pion-kaon system with isospin I = 3/2 there are by now a few lattice results available
focusing on the scattering length [1–5]. The most recent computation in Ref. [4] uses one
lattice at physical pion and kaon masses and lattice spacing a ≈ 0.114 fm. For the sea
and valence sector they use Nf = 2 + 1 Möbius domain wall fermions and an Iwasaki
gauge action. In Ref. [2] a systematic study of the elastic scattering lengths for the light
pseudoscalar mesons was carried out with Nf = 2+1 O (a)-improved Wilson quarks at pion
masses ranging from 170 MeV to 710 MeV and a lattice spacing a ≈ 0.09 fm. Furthermore
Refs. [1, 3] use Nf = 2 + 1 flavors on the MILC configurations with a rooted staggered
sea quark action. Whereas Ref. [3] calculates the scattering length at a lattice spacing
a ≈ 0.15 fm, a slightly smaller lattice spacing a ≈ 0.125 fm has been used in Ref. [1]. The pion
masses in Ref. [1] range from 290 MeV to 600 MeV using domain wall valence quarks with a
chiral extrapolation done in mixed-action chiral perturbation theory (MAChPT) [6, 7]. The
range of pion masses, 330 MeV to 466 MeV, for the Asqtad improved staggered fermions
of Ref. [3] is a bit smaller compared to Ref. [1]. In Ref. [5] the phaseshifts and scattering
lengths for π-K-scattering in I = 3/2 and I = 1/2 in the s-wave and the p-wave has been
determined. The gauge action is a Nf = 2 tree level improved Wilson-Clover action. The
authors include the strange quark as a valence quark only which then corresponds to pion
and kaon masses of Mπ = 266 MeV and MK = 522 MeV, respectively.

In this paper we are going to present results for the s-wave scattering length of the
pion-kaon system in the elastic region with isospin I = 3/2. The investigation is based
on gauge configurations produced by the European Twisted Mass Collaboration (ETMC)
with Nf = 2 + 1 + 1 dynamical quark flavors [8]. In contrast to previous computations,
we are able to investigate discretization effects and to extrapolate to physical quark masses
owing to 11 ensembles withMπ ranging from 230 MeV to 450 MeV distributed over 3 different
lattice spacing values. We employ in total 4 different extrapolation methods to also estimate
systematic uncertainties associated with our computation.

Finally, since this paper is the fourth in a series of publications [9–11] concerning elastic
scattering of two pions in different channels and kaon-kaon with I = 1, we are able to
compare results of two pseudoscalar mesons at maximal isospin involving different amounts
of strangeness. The leading order ChPT predictions for the dependence on the reduced mass
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ensemble β aµ` aµσ aµδ (L/a)3 × T/a Nconf

A30.32 1.90 0.0030 0.150 0.190 323 × 64 259

A40.24 1.90 0.0040 0.150 0.190 243 × 48 376

A40.32 1.90 0.0040 0.150 0.190 323 × 64 246

A60.24 1.90 0.0060 0.150 0.190 243 × 48 303

A80.24 1.90 0.0080 0.150 0.190 243 × 48 300

A100.24 1.90 0.0100 0.150 0.190 243 × 48 304

B35.32 1.95 0.0035 0.135 0.170 323 × 64 241

B55.32 1.95 0.0055 0.135 0.170 323 × 64 251

B85.24 1.95 0.0085 0.135 0.170 323 × 64 288

D30.48 2.10 0.0030 0.120 0.1385 483 × 96 364

D45.32sc 2.10 0.0045 0.0937 0.1077 323 × 64 289

Table I: The gauge ensembles used in this study. For the labeling of the ensembles we
adopted the notation in Ref. [13]. In addition to the relevant input parameters we give the

lattice volume and the number of evaluated configurations, Nconf .

divided by the relevant decay constant are identical for the three systems and differences
appear only at NLO.

This paper is organized as follows: We first introduce the lattice details of our calculation.
After the discussion of the analysis methods we present the main result, followed by a detailed
discussion of the analysis details. We close with a discussion and summary. Technical details
can be found in the appendix.

II. LATTICE ACTION AND OPERATORS

A. Action

The lattice details for the investigation presented here are very similar to the ones we
used to study the kaon-kaon scattering length [11]. We use Nf = 2 + 1 + 1 flavor lattice
QCD ensembles generated by the ETM Collaboration, for which details can be found in
Refs. [8, 12, 13]. The parameters relevant for this paper are compiled in Table I: we give
for each ensemble the inverse gauge coupling β = 6/g2

0, the bare quark mass parameters
µ`, µσ and µδ, the lattice volume and the number of configurations on which we estimated
the relevant quantities.

The ensembles were generated using the Iwasaki gauge action and employ the Nf =
2 + 1 + 1 twisted mass fermion action [14–16]. For orientation, the β-values 1.90, 1.95 and
2.10 correspond to lattice spacing values of a ∼ 0.089 fm, 0.082 fm and 0.062 fm, respectively,
see also Table II.

The ensembles were generated at so-called maximal twist, which guarantees automatic
O (a) improvement for almost all physical quantities [14]. The renormalized light quark
mass m` is directly proportional to the light twisted quark mass via

m` =
1

ZP
µ` , (1)
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β a [fm] r0/a

1.90 0.0885(36) 5.31(8)

1.95 0.0815(30) 5.77(6)

2.10 0.0619(18) 7.60(8)

Table II: Values of the Sommer parameter r0/a and the lattice spacing a at the three
values of β. See Ref. [17] for details.

β 1.90 1.95 2.10

aµs 0.0185 0.0160 0.013/0.0115

0.0225 0.0186 0.015

0.0246 0.0210 0.018

Table III: Values of the bare strange quark mass aµs used for the three β-values. The
lightest strange quark mass on the ensemble D30.48 is aµs = 0.0115 instead of aµs = 0.013.

with ZP the pseudoscalar renormalization constant. The relation of the bare parameters µσ
and µδ to the renormalized charm and strange quark masses reads

mc,s =
1

ZP
µσ ±

1

ZS
µδ , (2)

with ZS the non-singlet scalar renormalization constant.
As noted in Refs. [13, 17], the renormalized sea strange quark masses across the “A”,

“B” and “D” ensembles vary by up to about 20% and in a few cases differ from the physical
strange quark mass to the same extent. For D30.48 and D45.32sc at the finest lattice spacing,
the sea strange quark mass on the former ensemble overshoots the physical strange quark
mass while it is consistent on the latter ensemble. In order to correct for these mis-tunings
and to avoid the complicated flavor-parity mixing in the unitary non-degenerate strange-
charm sector [8], we adopt a mixed action ansatz with so-called Osterwalder-Seiler (OS) [16]
valence quarks, while keeping O (a) improvement intact. We denote the OS bare strange
quark parameter with µs. It is related to the renormalized strange quark mass by

ms =
1

ZP
µs . (3)

For each ensemble we investigate three values of µs which are compiled in Table III. More
details on the mixed action approach can be found in Ref. [11].

As a smearing and contraction scheme we employ the stochastic Laplacian-Heaviside
approach, described in Ref. [18]. Details of our parameter choices can be found in Refs. [9,
11].

B. Lattice Operators and Correlation Functions

For reasons which will become clear later we need to estimate the masses of the pion, the
kaon and the η meson on our ensembles. The masses for the pion and kaon are obtained
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from the large Euclidean time dependence of two point functions of the form

CX(t− t′) = 〈O(X)(t)O(X)†(t′)〉 , (4)

where X ∈ {π,K}. The operators for the charged pion and kaon projected to zero momen-
tum read

O(X)(t) =
∑

x

OX(x, t) (5)

with

Oπ(x, t) = id̄(x, t) γ5 u(x, t) , (6)

OK(x, t) = is̄(x, t) γ5 u(x, t) . (7)

For the η (and η′) meson we use the two operators

O`(x, t) =
i√
2

(ū(x, t) γ5 u(x, t) + d̄(x, t) γ5 d(x, t)) , (8)

Os(x, t) = is̄(x, t) γ5 s(x, t) . (9)

From these we build a two-by-two correlator matrix by taking the disconnected diagrams
into account. The η (principal) correlator is determined by solving a generalized eigenvalue
problem as described in detail in Ref. [19]. A complete discussion of the analysis of the η
(and η′) meson is beyond the scope of this paper and the full analysis will be presented in
a future publication [20]. In addition to the aforementioned meson masses, we also need to
estimate the energy EπK of the interacting pion-kaon two particle system. For the case of
maximal isospin, i.e. I = 3/2, the corresponding two particle operator reads

O(πK)(t) = −
∑

x,x′

d̄(x, t) γ5 u(x, t)s̄(x′, t) γ5 u(x′, t) . (10)

It is used to construct the two-particle correlation function

CπK(t− t′) = 〈O(πK)(t)O(πK)†(t′)〉 . (11)

EπK can then be determined from the large Euclidean time dependence of CπK .

III. ANALYSIS METHODS

We focus in this work on pion-kaon scattering in the elastic region. For small enough
squared scattering momentum p2 one can perform the effective range expansion for partial
wave `:

p2`+1 cot(δ`) = − 1

a`
+O(p2) , (12)

with phase shift δ` and scattering length a`. For the pion-kaon system it is, to a very good
approximation, sufficient to study the s-wave, i.e. ` = 0.

In lattice QCD the phase shift or the scattering length can only be computed from finite
volume induced energy shifts. The relevant energy shift here is given by

δE = EπK −Mπ −MK . (13)
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Using again the effective range expansion, one arrives at the Lüscher formula [21]

δE = − 2πa0

µπKL3

(
1 + c1

a0

L
+ c2

a2
0

L2

)
+O(L−6) , (14)

relating δE directly to the scattering length a0, the reduced mass of the pion-kaon system

µπK =
MπMK

Mπ +MK

, (15)

and the spatial extent of the finite volume L. The coefficients read [21]

c1 = −2.837297 , c2 = 6.375183 .

Given δE, µπK and L, Lüscher’s formula allows one to determine the scattering length a0 by
solving Equation (14) for a0. In what follows, we will describe how we extract δE and the
other relevant bare quantities from correlation functions. Then we will give details on our
approach to inter- or extrapolate the results to physical conditions and the investigation of
discretization artifacts.

In order to gain some understanding of systematic uncertainties, we perform the analysis
in two different ways once the bare data has been extracted. Combined chiral and continuum
extrapolations are performed at fixed strange quark mass using next to leading order ChPT
(NLO ChPT) and a variant thereof referred to as the Γ method, as described in Ref. [1]. In
addition we explore possible discretization effects of O (a2).

A. Physical Inputs

For the analysis presented below, we require physical inputs for the pion, the kaon and
η-meson masses as well as the pion decay constant. To this end, we employ the values in
the isospin symmetric limit, Mπ and MK , as determined in chiral perturbation theory [22]
and given in Ref. [23] as

Mπ = 134.8(3) MeV ,

MK = 494.2(3) MeV .
(16)

For the η meson mass we use the average obtained by the Particle Data Group [24]:

Mη = 547.86(2) MeV . (17)

For the decay constant, we use the phenomenological average determined by the Particle
Data Group given in Ref. [25] as

f
(PDG)

π− = 130.50(13) MeV . (18)

As an intermediate lattice scale, we employ the Sommer parameter r0 [26]. It was deter-
mined in Ref. [17] from the ensembles we use here to be

r0 = 0.474(11) fm . (19)

In the parts of the analysis which require r0, we use parametric bootstrap samples with
central value and width given in Equation (19). Where r0/a values enter as fit parameters,
we constrain the corresponding fit parameters using Gaussian priors in the augmented χ2

function given as

χ2
aug = χ2 +

∑

β

(
(r0/a)(β)− Pr(β)

∆r0/a(β)

)2

. (20)
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B. Energy Values from Correlation Functions

The energies of the two point correlation functions as given in Equation (4) are extracted
from fits of the form

CX(t) = A2
0(e−EX t + e−EX(T−t)) , (21)

to the data. While for MK and Mπ the signal extends up to T/2, for the η we have to face
more noise . We deal with this by applying the excited state subtraction method used and
described in Refs. [19, 27].

In the determination of the energy shift δE, the total energy EπK of the interacting π-
K system must be computed. However, in the spectral decomposition of the two-particle
correlation function, unwanted time dependent contributions, so-called thermal pollution,
appear. Taking into account that our π-K correlation function is symmetric around the T/2
point, the leading contributions in the spectral decomposition can be cast into the form

CπK(t) = A2
0

(
e−EπKt + e−EπK(T−t))

+ A1

(
e−EπT e(Eπ−EK)t + e−EKT e(EK−Eπ)t

)
,

(22)

where

A2
0 = 〈Ω|π+K+|πK〉 〈πK|(π+K+)†|Ω〉 , (23)

is the overlap of the two particle operator O(πK) of Equation (10) with the vacuum Ω
and only the first line corresponds to the energy level we are interested in. However, at
finite T -values, the second contribution might be sizable, in particular at times close to T/2.
Moreover, the thermal pollution cannot be separated easily from the signal we are interested
in. We have studied two different methods, labeled E1 and E2, to extract EπK from CπK(t),
where E1 has already been discussed in Ref. [28].

• E1: weighting and shifting:
To render one of the polluting terms in Equation (22) time independent, the correlation
function first gets weighted by a factor exp((EK−Eπ)t). We chose this factor, because
exp(−EπT ) is significantly larger than exp(−EKT ). The resulting constant term can
then be removed by the shifting procedure, which thus replaces CπK(t) by

Cw
πK(t) = e(EK−Eπ)tCπK(t) ,

C̃w
πK(t) = Cw

πK(t)− Cw
πK(t+ δt) ,

(24)

where δt is a fixed number of time slices.

Subsequently, we multiply C̃w
πK(t) by exp(−(EK −Eπ)t), which (mostly) recovers the

original time dependence in the contribution of interest

CE1
πK(t) = e−(EK−Eπ)tC̃w

πK(t) . (25)

We now extract the total energy of the π-K system, EπK . To this end we apply
Equations (24) and (25) to the data at hand and then fit

CE1
πK(t) = A2

0

(
e−EπKt + e−EπK(T−t) − e(EK−Eπ)δt

(
e−EπK(t+δt) + e−EπK(T−(t+δt))

))

+ Ã1e
(EK−Eπ)t .

(26)
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Note that in contrast to Ref. [28], where correlator matrices with various sources of
thermal pollution are considered, we are able to take Ã1 as an additional fit parameter
in order to account for this sub-leading term.

• E2: dividing out the pollution:
To improve on method E1, we assume that the decomposition given in Equation (22)
allows one to neglect any further thermal pollution. This leads to dividing out the
time dependent part

p(t) = e(EK−Eπ)te−EKT + e−(EK−Eπ)te−EπT , (27)

explicitly. With

C ′πK(t) =
CπK(t)

p(t)
(28)

we then proceed to calculate

C̃πK(t) = C ′πK(t)− C ′πK(t+ δt) , (29)

CE2
πK(t) = p(t)C̃πK(t) , (30)

from which we extract EπK through fitting

CE2
πK (t) = A2

0

(
e−EπKt + e−EπK(T−t) − p (t)

p (t+ 1)
·
(
e−EπK(t+1) + e−EπK(T−(t+1))

))
.

(31)

We remark that for both methods E1 and E2 the energies Eπ and EK , i.e. Mπ and MK

for zero momentum, are required as an input. They are determined from the corresponding
two-point correlation functions. Please note that in method E2 we need to fit one amplitude,

A0, while method E1 requires to take care of two amplitudes, A0 and Ã1. For the error
analysis bootstrap samples are used to fully preserve all correlations.

After solving Equation (14) for a0 up to O (L−5) on every ensemble for each strange quark
mass of Table III, we have three parameters in which we want to extra- or interpolate: the
lattice spacing a, the strange quark mass ms and the light quark mass m`. To evaluate a0 at
the physical point we follow a two step procedure. We first fix the strange quark mass to its
physical value and subsequently perform a combined chiral and continuum extrapolation,
investigating different possible types of discretization artifacts.

C. Fixing the strange quark mass

In order to fix the strange quark mass we adopt the following procedure: we match the
quantity

M2
s = M2

K − 0.5M2
π , (32)

which is proportional to the strange quark mass at the leading order of ChPT, to its physical
value

(Mphys
s )2 = M

2

K − 0.5M
2

π , (33)

using our determinations of M2
K at three valence strange quark masses on a per-ensemble

basis. For each ensemble, we then interpolate all valence strange quark mass dependent

observables, i.e. µπK a
3/2
0 , MK , Mη and µπK , in M2

s to this reference value.
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D. Chiral extrapolation

With the strange quark mass fixed, the extrapolation to the physical point can be carried
out using ChPT. The first NLO calculation of the scattering amplitude and scattering lengths
was done in Ref. [29]. From the continuum ChPT formulae for the isospin even (odd)
scattering lengths a+ (a−) in Ref. [30], the NLO ChPT formulae for µπK a

I
0 , I ∈ { 1/2, 3/2 },

can be derived as sketched in Appendix A, giving

µπK a
3/2
0 =

µ2
πK

4πf 2
π

[
32MπMK

f 2
π

LπK(Λχ)− 1− 16M2
π

f 2
π

L5(Λχ)

+
1

16π2f 2
π

χ
3/2
NLO(Λχ,Mπ,MK ,Mη)

]
+ c · f(a2) .

(34)

Equation (34) depends on the masses of the pion and the kaon, their reduced mass as
defined in Equation (15), the η mass and the pion decay constant. In addition, the equation

depends on the low energy constants (LECs) L5 and LπK while χ
3/2
NLO is a known function,

see Appendix A 2.
We express Equation (34) in terms of the meson masses and decay constants as they are

determined on the lattice, which has the benefit that their ratios can be computed with
high statistical precision without the need for explicit factors of the lattice scale. Hence
we fit all lattice data simultaneously. Formally we fix the scale-dependent LECs at the

renormalization scale Λχ = f
(PDG)

π− . However, in practice we employ aΛχ = afπ(β, µ`)/K
FSE
fπ

in all chiral logarithms, where the values for the finite-size correction factor KFSE
fπ

are given
in Section V B. Doing so should only induce higher order corrections in the chiral expansion.

Automatic O (a) improvement of Wilson twisted mass fermions at maximal twist guaran-
tees that the leading lattice artifacts are of O (a2) or better. For instance, for the I = 2 ππ
s-wave scattering length, discretization effects start only at O (a2M2

π) [31]. A corresponding
theoretical result for πK is missing so far. However, our numerical data suggest that also for
πK lattice artefacts are very small. Still, we include a term c · f(a2) accounting for possible
discretization effects, with fit parameter c and f(a2) either equal to a2/r2

0 or to a2M2
X , with

M2
X one of the masses or mass combinations M2

π , M
2
K ,M

2
K + 0.5M2

π , µ
2
πK . In the following

analysis we will include the term c · f(a2) into our fit for every choice of f(a2) and thus
investigate a possible dependence of our data on the lattice spacing.

To summarize, our fit parameters are the LECs L5 and LπK , and c, where LπK is the
combination of renormalized LECs

LπK = 2L1 + 2L2 + L3 − 2L4 −
L5

2
+ 2L6 + L8 . (35)

Let us mention already here that the fits to the data described in the next section turn out
to be not sensitive to L5. Therefore, we include it as a prior in the fit with the value taken
from Ref. [23]. In slight abuse of language we will denote this extrapolation method as NLO
ChPT.

E. Extrapolations Using the Γ Method at Fixed ms

Next, we describe an alternative way to extrapolate our data, first applied in Ref. [1].
In what follows we just shortly introduce the derivation of the fit formula and refer to
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Appendix A 2 for a more detailed discussion. To derive the relevant formulae we first plug
the expressions for a+ and a− (cf. Appendix A 2) into eq. (A4) and reorder such that LECs
appear on one side of the equation. The result reads

L5 − 2
MK

Mπ

LπK =
f 2
π

16M2
π

(
4πf 2

π

µ2
πK

[µπK a
3/2
0 ] + 1 + χ−NLO(Λχ,Mπ,MK ,Mη)

−2
MKMπ

f 2
π

χ+
NLO(Λχ,Mπ,MK ,Mη)

)
, (36)

with χ±NLO(Λχ,Mπ,MK ,Mη) given in Appendix A 2. We label the right hand side of Equa-
tion (36) Γ (Mπ/fπ, MK/fπ) which comprises only measurable quantities:

Γ

(
Mπ

fπ
,
MK

fπ

)
= L5 − 2

MK

Mπ

LπK . (37)

Having calculated Γ (Mπ/fπ, MK/fπ) using the interpolated data of µπK a
3/2
0 , MK , Mη and

µπK , and the data of Mπ and fπ we fit Equation (37) via L5 and LπK to the data obtained
in this way. Please note that also Γ is still dimensionless which enables a fit to all lattice

data simultaneously. Given L5 and LπK from the fit one can compute µπK a
3/2
0 at the

physical point using Equation (34). Again, it turns out we are not sensitive to L5 in our
fits. Therefore, we use a prior as discussed before. This extrapolation method we denote as
Γ method.

IV. RESULTS

In this section we present our main result for µπK a
3/2
0 extrapolated to the physical point.

We use two thermal state pollution removal methods, E1 and E2, for EπK . Next we
employ the two (related) ChPT extrapolations, Γ method and NLO ChPT, as discussed
before. For reasons that will be detailed on in Section V D 1, we state the NLO ChPT
results with c = 0. For each of the two ChPT extrapolation methods we use three fit ranges
as compiled in Table IV. Hence, we have twelve estimates for each quantity at the physical
point available, which we use to estimate systematic uncertainties. We remark that the fit
for the Γ method is in terms of MK/Mπ and for NLO ChPT in terms of µπK/fπ. Thus, we
vary the fit range at the lower end for the Γ method and at the upper end for NLO ChPT.

For µπK a
3/2
0 the twelve estimates are shown in Figure 1. The final result is obtained as

the weighted average over all of these, as shown in the figure as the horizontal bold line.
The weight is computed according to

w =
(1− 2 · |p− 1/2|)2

∆2
(38)

with p the p-value of the corresponding ChPT fit and ∆ the statistical uncertainty obtained
from the fit.

The statistical uncertainty of the final results is determined from the bootstrap procedure.

For µπK a
3/2
0 this is shown in Figure 1 as the inner error band. In addition, we determine

three systematic uncertainties: The first is obtained from the difference between using only
E1 or only E2 results. The second from the difference between using only the Γ method
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fit range index

−0.049

−0.048

−0.047

−0.046

−0.045

−0.044

µ
π
K
a
3
/
2

0
Γ, E1 Γ, E2 NLO ChPT, E1 NLO ChPT, E2

Figure 1: Comparison of values for µπK a
3/2
0 at the physical point obtained with the

different methods used in this paper. The fit ranges decrease with increasing index as
described in Table IV. The inner error band represents the statistical error only, while the

outer error band represents the statistical and systematic errors added in quadrature.

Method index Begin End

Γ

1 1.2 2.0

2 1.4 2.0

3 1.5 2.0

NLO

1 1.2 1.6

2 1.2 1.41

3 1.2 1.35

Table IV: Fit ranges used for extrapolations Γ and NLO ChPT. The index column refers
to Figure 1.

or only NLO ChPT. Finally, we use the maximal difference of the weighted average to the
twelve estimates as a systematic uncertainty coming from the choice of fit ranges.

The results of all twelve fits can be found in Table VIII for the Γ method and Table VII
for NLO ChPT fits. The fit range indices used in Figure 1 are resolved in Table IV. The
results for all approaches after averaging over the fit ranges are listed in Table XIV.

With this procedure and all errors added in quadrature we quote

µπK a
3/2,phys
0 = −0.0463(17) , LπK = 0.0038(3) . (39)

This translates to

Mπ a
3/2,phys
0 = −0.059(2) , Mπ a

1/2,phys
0 = 0.163(3) (40)

as our final results. The error budget is compiled in Table V. While the dominating contri-

bution to the error for both µπK a
3/2
0 and LπK summed in quadrature is coming from the fit
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range and the statistical uncertainty, also the choice of the thermal state removal method
contributes significantly. The contribution from the different chiral extrapolation methods
is negligible. If the errors were added (not in quadrature), the total error would become a
factor ∼ 1.7 larger.

We remark that these results have been obtained with L5 as an input, because the fits
are not sufficiently sensitive to determine L5 directly. We use the most recent determination
from a Nf = 2 + 1 + 1 lattice calculation by HPQCD [23], which is extrapolated to the
continuum limit. At our renormalization scale it reads

L5 = 5.4(3)× 10−3 . (41)

µπK a
3/2
0 · 105 LπK · 105

statistical 82 (28%) 15 (32%)

fit range 139 (47%) 19 (41%)

E1 vs. E2 64 (22%) 12 (24%)

NLO ChPT v. Γ 9 (3%) 1 (3%)∑
294 (100%) 47 (100%)

sqrt
∑

in quadrature 173 27

Table V: Error budget for the final results of µπK a
3/2
0 and LπK .

V. ANALYSIS DETAILS AND DISCUSSION

A. Error Analysis, Thermal Pollution and Choice of Fit Ranges

The error analysis is performed using the stationary blocked bootstrap procedure [32].
In order to determine an appropriate average block length, we compute the integrated auto-
correlation time τint for the correlation functions CX(t) at all source-sink separations, with
X being π, K, η or πK. In the case of πK, CX(t) is of course first suitably transformed
for the extraction of the interaction energy as discussed in section III B. The computation
of τint is detailed in Ref. [33]. The average block length is then chosen to be the ceiling of
the maximum integrated autocorrelation time observed over all correlation functions at all
source-sink separations

b = dmax
X,t

(
τ

(X,t)
int

)
e

on a per-ensemble basis. We have confirmed explicitly that this method produces a block
length at which the estimate of the statistical error plateaus and are thus confident that
we properly take into account the effect of autocorrelations on our quoted statistical errors.
Using the so-determined block length on a per-ensemble basis, we generateN = 1500 samples
from which we estimate statistical errors throughout our analysis.

As discussed in Section III B, we employ methods E1 and E2 to remove unwanted thermal
pollution from the πK two particle correlation function. Both methods allow us to describe
the data rather well, but the choice of best fit range depends on the method used to remove
the thermal pollution. This in turn affects the value of the extracted EπK and, subsequently,

the value of µπK a
3/2
0 obtained from the energy difference.
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Figure 2: Plot of Equation (42) for ensembles A40.24 and A40.32 for the lightest strange
quark mass for the fit ranges used for the analysis, comparing the quality of the data

description by methods E1 and E2.

To demonstrate the quality of our fits, we look at the ratio

C
[E1,E2]
πK (t)

f [E1,E2](t)
, (42)

where C [E1,E2] are defined in Equations (25) and (30), respectively, and the fit functions
f [E1,E2](t) are given in Equations (26) and (31), respectively. The ratio is shown in Figure 2
for the two ensembles A40.24 and A40.32 for two fit ranges for which both methods describe
the data well.

The choice of the fit ranges to determine energy levels is always difficult. In the past,
we have used many fit ranges and weighted them according to their fit qualities [9, 11].
However, this procedure relies on properly estimated variance-covariance matrices, which is
notoriously difficult. For the pion-kaon correlation functions needed in this paper we have
observed several cases where the fit including the variance-covariance matrix did not properly
describe the data after visual inspection. Therefore, we use fits here assuming independent
data points with the correlation still taken into account by the bootstrap procedure.

As a consequence, we cannot apply the weighting procedure used in Refs. [9, 11] any
longer and have to choose fit ranges. The procedure is as follows: Due to exponential error
growth of CπK we fix tf = T/2−4a and vary ti, beginning from a region where excited states
do not contribute significantly anymore. From these fits we choose one fit range where the
ratio of Equation (42) is best compatible with 1. The statistical error is calculated from the
bootstrap samples as discussed before. We then estimate the systematic uncertainty from
the remaining fit ranges. To this end we determine the difference of the mean value to the
upper and lower bound of values for EπK . This procedure results in an asymmetric estimate
of the systematic uncertainty of EπK . The results are compiled in Table XI. Since CK and

13



aMπ aMK aEπK
Ensemble ti tf ti tf ti tf
A30.32 13 32 13 32 21 28

A40.24 11 24 11 24 14 20

A40.32 13 32 13 32 20 28

A60.24 11 24 11 24 16 20

A80.24 11 24 11 24 16 20

A100.24 11 24 11 24 15 20

B35.32 13 32 13 32 22 28

B55.32 13 32 13 32 19 28

B85.24 11 24 11 24 15 20

D45.32sc 14 32 14 32 22 28

D30.48 22 48 22 48 35 44

Table VI: Typical minimal and maximal values of the starting and end points of fit ranges
for the Correlation functions under investigation.

Cπ do not suffer from exponential error growth at late times we set tf = T/2. Table VI
gives an overview of our chosen values of ti and tf for all ensembles.

It is always difficult to include systematic uncertainties in the analysis chain. Since we
see systematic uncertainties on extracted energies on the same level as the statistical one,

we adopt the following procedure to include this uncertainty: Because µπK a
3/2
0 is derived

from EπK we chose to scale the statistical error for µπK a
3/2
0 on each ensemble after the data

have been interpolated in the strange quark mass. To this end we define a scaling factor s
via the standard error ∆X and the average of the systematic uncertainties QX over the 3
strange quark masses for each ensemble:

s =

√
(∆X)2 +Q

2

X

(∆X)2
, (43)

where the average QX is the simple mean over the six systematic errors.

B. Meson Masses, Energy Shift δE and Scattering Length µπK a
3/2
0

In order to extract δE we first determine MK and Mπ from fitting Equation (21) to our
data for Cπ(t) and CK(t). We then calculate the reduced mass µπK via Equation (15) for
all combinations of fit ranges. Mπ, MK and µπK are listed in Table X.

The two methods E1 and E2 give us two estimates of EπK as outlined in Section III B,
from which we determine δE and hence the scattering length using Equation (14). The
values for EπK and δE are collected in Tables XI and XII.

We introduce factors KFSE
X for X ∈ {MK , Mπ, fπ} to correct our lattice data for finite

size effects. They have already been calculated in Ref. [17] and are listed in Table IX. We
apply these factors for e.g. Mπ like

M∗
π =

Mπ

KFSE
Mπ

.

14



We correct every quantity of the set named above and drop the asterisk in what follows
to improve legibility. For Mη statistical uncertainties are too big to resolve finite volume
effects, see also Ref. [34].

For the two methods E1 and E2 we solve Equation (14) for a0 up to O(L−5) numerically.

The values for a0 and its product with the reduced mass, µπK a
3/2
0 are collected in Table XIII.

Since the finite size behavior of the scattering length is unknown, we do not apply finite size

corrections to the reduced mass appearing in µπK a
3/2
0 , either.

C. Strange quark mass fixing

Before we perform a combined continuum and chiral extrapolation, we interpolate all
data to reference strange quark masses as discussed before. The data for the three strange
quark masses are strongly correlated because the same stochastic light perambulators were
used for all light-strange observables. As a consequence, the variance-covariance matrix was
sometimes not sufficiently well estimated such that its inverse was unreliable. As a result,
we resort to performing these fits using uncorrelated χ2 which results in best fit parameters
which describe the data much better. It should be noted that all statistical covariance is
still fully taken into account by the bootstrap procedure and our final statistical errors on
all fit parameters are correctly estimated.

As an example, we show in Figure 3 the interpolation of µπK a
3/2
0 in M2

K − 0.5M2
π for

ensemble B55.32 comparing methods E1 and E2. The large uncertainty in the interpolation
variable stems mainly from the uncertainty in the scaling quantity r0. Furthermore the errors
of the three data points are highly correlated. The interpolation to the reference point is

shown as a red diamond. In general, the strange quark mass dependence of µπK a
3/2
0 is mild

and stems mainly from the reduced mass µπK . The values thus determined are compiled in
Table XV. They serve as input data for the subsequent chiral extrapolations.

0.035 0.040 0.045

a2(M 2
K − 0.5M 2

π)

−0.16

−0.14

−0.12

−0.10

µ
π
K
a

0

lin. fit
data
a2(M 2

K − 0.5M 2
π) = (aM ref

s )2

(a) B55.32 for E1
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a2(M 2
K − 0.5M 2
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−0.16

−0.14

−0.12

−0.10

µ
π
K
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0
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data
a2(M 2

K − 0.5M 2
π) = (aM ref

s )2

(b) B55.32 for E2

Figure 3: Interpolations of µπK a
3/2
0 for the two different methods E1 and E2.
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D. Chiral Extrapolations and Discretization Effects

Having interpolated all our lattice data to a fixed reference strange quark mass corre-
sponding to the physical strange quark mass at leading chiral order, we will describe below
the results and possible systematic errors in our chiral extrapolations.

1. Chiral Perturbation Theory at NLO

To investigate possible discretization effects we first let c in Equation (34) vary freely and
fit Equation (34) for the different choices of f(a2). We are neither able to obtain a statistically
significant result for the fit parameter c, nor do we see significant differences in the extracted

values of LπK and µπK a
3/2
0 . We conclude that within our statistical uncertainties we are

not able to resolve lattice artifacts in this quantity. Consequently we are justfied to fit all
of our data simultaneously with the continuum ChPT formula Equation (34) and to claim
that at this order in the chiral expansion, our results correspond to the physical point in the
continuum limit.

In the right column of plots in figure Figure 4, we show the lattice data for µπK a
3/2
0

interpolated to the reference strange quark mass as a function of µπK/fπ for the two thermal
pollution removal methods E1 and E2. The solid line corresponds to the leading order,
parameter free ChPT prediction. Plotting our best fit curve with NLO ChPT together with

the data is difficult, because µπK a
3/2
0 depends on meson masses and fπ besides µπK/fπ.

Therefore, in order to demonstrate that the fit is able to describe our data, we indicate the

relative deviation δr(µπK a
3/2
0 ) between the fitted points and the original data

δr(µπK a
3/2
0 ) =

(µπK a
3/2
0 )meas − (µπK a

3/2
0 )fit

(µπK a
3/2
0 )meas

, (44)

in Figures 4b and 4d. The indicated error bars are statistical only and it is clear that within
these uncertainties, our data is reasonably well described by the fit.

As in Section V D 2, to investigate the validity of Equation (34) across our entire range
of pion masses, we studied three different fit intervals for µπK/fπ, namely

µπK
fπ
∈ { (0; 1.35), (0; 1.41), (0; 1.60) } , (45)

where now the first range corresponds to only using our lightest pion masses and the third
range includes all of our ensembles. The resulting trend in the extracted values of LπK and

µπK a
3/2
0 is shown in Table VII. Just as in the study of the Γ method, including heavier pion

masses leads to smaller values of LπK and correspondingly smaller values of µπK a
3/2
0 .

2. Γ Method

In this section we present results employing the determination of LπK using the linear fit
introduced in Section III E. Figure 5 shows the chiral extrapolations in terms of MK/Mπ for
pollution removal E1 and E2. Since we work at fixed strange quark mass, the light quark

16



0.8 1.0 1.2 1.4 1.6

µπK/fπ

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

µ
π
K
a
3
/
2

0

β =1.90

β =1.95

β =2.10

LO-χPT

physical point

(a) E1:µπK a
3/2
0 in terms of µπK/fπ together

with LO ChPT formula.

−0.4 −0.2 0.0 0.2 0.4

δr(µπK a
3/2
0 )

A40.24

A60.24

A80.24

A100.24

A30.32

A40.32

B85.24

B35.32

B55.32

D45.32

D30.48

(b) E1:Relative deviation between the

measured and the fitted values of µπK a
3/2
0 .

0.8 1.0 1.2 1.4 1.6

µπK/fπ

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

µ
π
K
a
3
/
2

0

β =1.90

β =1.95

β =2.10

LO-χPT

physical point

(c) E2:µπK a
3/2
0 in terms of µπK/fπ together

with LO ChPT formula.

−0.4 −0.2 0.0 0.2 0.4

δr(µπK a
3/2
0 )

A40.24

A60.24

A80.24

A100.24

A30.32

A40.32

B85.24

B35.32

B55.32

D45.32

D30.48

(d) E2:Relative deviation between the

measured and the fitted values of µπK a
3/2
0 .

Figure 4: Chiral extrapolation of µπK a
3/2
0 for E1 and E2. Different colors and symbols

denote different values of β. In black we plot the LO ChPT formula. The golden diamond
gives our final result using the given method at the physical point.

mass decreases from left to right in the figure. In order to check how our extraction of LπK
is affected by the range of included pion masses we employ three different fit ranges

MK

Mπ

∈ { (0; 2.0), (1.5; 2.0), (1.4; 2.0) } . (46)

In Table VIII we compile the results for the fits corresponding to the data points of Figure 5
for all 3 fit ranges. As the fit range is restricted to our lightest ensembles, the value extracted
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Removal Fit range p-value LπK × 103 µπK a
3/2
0 × 102

E1

0.0 to 1.35 0.6 3.6(3) −4.7(2)

0.0 to 1.41 0.7 3.6(2) −4.7(1)

0.0 to 1.60 0.7 3.7(2) −4.7(1)

E2

0.0 to 1.35 0.5 3.9(2) −4.5(1)

0.0 to 1.41 0.5 3.8(2) −4.6(1)

0.0 to 1.60 0.4 3.7(1) −4.64(7)

Table VII: Fit results for the NLO ChPT fit. The fits shown in Figure 4 correspond to the
largest fit range in the table.
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(a) Pollution Removal E1
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β =1.90
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β =2.10

linear fit

(b) Pollution Removal E2

Figure 5: Chiral extrapolation using the Γ method with data interpolated to the reference
strange quark mass. The data for different lattice spacings are color encoded. In addition

we show the linear fit (solid curve, gray error band)

for LπK tends up, while the absolute value of the extracted µπK a
3/2
0 decreases. It is worth

noting that this behavior is only observed for the pollution removal E2, whereas for E1 the

values for LπK and µπK a
3/2
0 stay constant within their statistical errors.

VI. DISCUSSION

Let us first discuss the main systematics of our computation: In contrast to the pion-pion
or kaon-kaon systems, there is time dependent thermal pollution in the correlation functions
relevant for the extraction of the pion-kaon s-wave scattering length. This very fact turns
out to represent one of the major systematic uncertainties in the present computation. We
have investigated two methods to remove the leading thermal pollution, denoted as E1 and
E2. With both we are able to describe the data for the correlation functions. However, there
is uncertainty left, because we remove only the leading pollution and the removal procedure
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Removal Fit range p-value LπK × 103 µπK a
3/2
0 × 102

E1

0.0 to 2.0 0.8 3.7(2) −4.68(9)

1.4 to 2.0 0.7 3.7(2) −4.7(1)

1.5 to 2.0 0.6 3.6(3) −4.7(2)

E2

0.0 to 2.0 0.3 3.7(1) −4.65(7)

1.4 to 2.0 0.5 3.8(2) −4.57(9)

1.5 to 2.0 0.4 4.0(2) −4.5(1)

Table VIII: Fit results of the chiral exptrapolation using the Γ method. The fits shown in
Figure 5 correspond to the largest fit range in the table.

requires input estimated from other two point functions. Thus, we eventually decided to use
both methods E1 and E2 and include the differences in the systematic uncertainty.

Secondly, we perform a mixed action simulation for the strange quark. We use this
to correct for small mis-tuning in the sea strange quark mass value used for the gauge
configuration generation. This leads — at least in principle — to a small mismatch in the
renormalization condition used for the continuum extrapolation. We cannot resolve the
corresponding effect on our results quantitatively given our statistical uncertainties. But,
since we study quantities which mainly depend on the valence quark properties we expect
them to be small.

Thirdly, in the ChPT determination of LπK the remaining LEC, L5, entered as a prior
to numerically stabilize our fits. The HPQCD value of Ref. [35] stems from an independent
lattice simulation, but is extrapolated to the continuum limit. In Ref. [35] L5 is given at
scale Mη, which we translated to our renormalization scale given by the pion decay constant.

In addition, the extrapolation from our data to the physical point is quite long. Here, a
computation directly with physical pion mass would improve our confidence in the result.
The final error on our determination is only as small as it is due to the highly constraining

ChPT description of µπK a
3/2
0 .

Finally, although we are not able to resolve lattice artefacts in our determination of

µπK a
3/2
0 our statistical errors and limited set of gauge ensembles especially at the finest

lattice spacing might make us unable to resolve possible lattice artefacts.

VII. SUMMARY

In this paper we have presented a first lattice computation of the pion-kaon s-wave scat-
tering length for isospin I = 3/2 extrapolated to the continuum limit. By varying our
methodology we estimate the systematic uncertainties in our results. Our errors cover sta-
tistical uncertainties, continuum and chiral extrapolations as well as the removal of thermal
pollution.

In the left panel of Figure 6 we compare the results presented in this paper with previous
lattice determinations. The inner (darker) error bars show the purely statistical errors
whereas the outer (lighter) ones correspond to the statistical and systematic errors added
in quadrature. Even though the four other determinations lack the extrapolation to the
continuum limit, overall agreement within errors is observed. However, concerning the final
uncertainty, our determination improves significantly on the previous determinations by
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Figure 6: Left: Comparison of physical results for Mπa
I=3/2
0 from various lattice

computations [1–5]. The unfilled point denotes the LO extrapolation to the physical point
using the data of Ref. [5]. Right: s-wave scattering lengths for the pion-pion, pion-kaon

and kaon-kaon maximum isospin channels as a function of the squared reduced mass µ2 of
the system divided by f 2

π for pion-pion and pion-kaon and by f 2
K for kaon-kaon.

controlling more sources of uncertainty.
As mentioned in the introduction, the three two particle systems pion-pion, pion-kaon

and kaon-kaon are very similar. Therefore, it is interesting to compare the data for pion-
pion [9], kaon-kaon [11] and pion-kaon in a single plot. This is done in the right panel of
Figure 6 where we show µ · a0 as a function of (µ/f)2. Here µ is the reduced mass of the
corresponding two particle system and f is the pion decay constant fπ for the pion-pion and
pion-kaon and fK for the kaon-kaon system. The dashed line in the right panel of Figure 6
is the leading order, parameter-free ChPT prediction all three systems share. The three
symbols (and colors) represent our data for the three different systems, respectively.

It can be seen that for all three systems, the deviations from LO ChPT are small. For the
pion-kaon system, a parametrization in terms of fK · fπ would bring the points even closer
to the LO line, while increasing the deviation of the final result from the LO estimate. For
the kaon-kaon system, instead, a parametrization in terms of fπ rather than fK (which is
perfectly valid at this order of ChPT) would render the deviation from the LO line more
severe.

It is somewhat surprising that ChPT appears to work so well for all three systems,
especially for the heavier points in our simulations and even more for the kaon-kaon system,
where the expansion parameter becomes large. A possible reason for this finding might be
the fact that all three systems are only weakly interacting.
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Appendix A: π-K Scattering in ChPT

1. Isospin even/odd Scattering Amplitudes

For completeness, we reproduce here the derivation of the Γ method [1] described in
Section III E. The scattering amplitudes for all isospin channels of π-K scattering can be
noted down using basis elements that are even (odd) under exchange of the Mandelstam
variables s and u

A+ =
1

3

(
A1/2(s, t, u) + 2A3/2(s, t, u)

)

A− =
1

3

(
A1/2(s, t, u)−A3/2(s, t, u)

)
. (A1)

From Equation (A1) it follows that

A1/2 = A+ + 2A− (A2)

A3/2 = A+ −A− , (A3)
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which immediately carries over to the scattering lengths a1/2 and a3/2 yielding

µπK a
1/2
0 = µπK(a+ + 2a−) (A4)

µπK a
3/2
0 = µπK(a+ − a−) . (A5)

The scattering lengths a+ and a− can be derived from the amplitudes of Equation (A1), as
was done in Ref. [30]. For convenience we reproduce them here:

a− =
µπK
8πf 2

π

{
1 +

M2
π

f 2
π

[
8L5 −

1

2
χ−NLO(Λχ,Mπ,MK ,Mη)

]}
(A6)

a+ =
µπKMKMπ

8πf 4
π

[
16LπK + χ+

NLO(Λχ,Mπ,MK ,Mη)
]
, (A7)

with the renormalization scale Λχ and the abbreviations χ±(Λχ,Mπ,MK ,Mη) denoted in
Appendix A 2. Please note that a+ only depends on L5 while a− only depends on LπK .
Inserting the ChPT formulae for a+ and a− into Equation (A4) one arrives at Equation (36).

2. Next to Leading Order Functions

For convenience we list the chiral functions χ±NLO derived in Ref. [30]

χ+
NLO(Λχ,Mπ,MK ,Mη) =

1

16π2

[
νπ ln

Mπ

Λχ

+ νK ln
MK

Λχ

+ νη ln
Mη

Λχ

+νtan arctan

(
2(MK +Mπ)

MK − 2Mπ

√
MK −Mπ

2MK +Mπ

)

+ν ′tan arctan

(
2(MK −Mπ)

MK + 2Mπ

√
MK +Mπ

2MK −Mπ

)
+

43

9

]
,

(A8)

χ−NLO(Λχ,Mπ,MK ,Mη) =
M2

π

8f 2
ππ

2

[
ν ′π ln

Mπ

Λχ

+ ν ′K ln
MK

Λχ

+ ν ′η ln
Mη

Λχ

+
MK

Mπ

ν ′tan arctan

(
2(MK −Mπ)

MK + 2Mπ

√
MK +Mπ

2MK −Mπ

)]
.

(A9)
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The functions ν
(′)
X are given by

νπ =
11M2

π

2(M2
K −M2

π)
(A10)

νK = −67M2
K − 8M2

π

9(M2
K −M2

π)
(A11)

νη = +
24M2

K − 5M2
π

18(M2
K −M2

π)
(A12)

νtan = −4

9

√
2M2

K −MKMπ −M2
π

MK +Mπ

(A13)

ν ′π = − 8M2
π − 5M2

π

2(M2
K −M2

π)
(A14)

ν ′K =
23M2

K

9(M2
K −M2

π)
(A15)

ν ′η =
28M2

K − 9M2
π

18(M2
K −M2

π)
(A16)

ν ′tan = −4

9

√
2M2

K −MKMπ −M2
π

MK +Mπ

. (A17)

From these isospin even/odd functions the definite isospin functions χ
3/2
NLO and χ

1/2
NLO can be

derived in the same way as the scattering lengths of Equations (A4) and (A5)

χ
3/2
NLO(Λχ,Mπ,MK) =κπ ln

M2
π

Λ2
χ

+ κK ln
M2

K

Λ2
χ

+ κη ln
M2

η

Λ2
χ

+
86

9
MKMπ

+ κtan arctan

(
2(MK −Mπ)

MK + 2Mπ

√
MK +Mπ

2MK −Mπ

)
, (A18)

χ
1/2
NLO(Λχ,Mπ,MK) =κ′π ln

M2
π

Λ2
χ

+ κ′K ln
M2

K

Λ2
χ

+ κ′η ln
M2

η

Λ2
χ

+
86

9
MKMπ

+
3

2
κtan arctan

(
2(MK −Mπ)

MK + 2Mπ

√
MK +Mπ

2MK −Mπ

)

+ κ′tan arctan

(
2(MK +Mπ)

MK − 2Mπ

√
MK −Mπ

2MK +Mπ

)
. (A19)
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Ensemble fπ KFSE
fπ

KFSE
Mπ

KFSE
MK

A30.32 0.064 52(21) 0.9757(61) 1.0081(52) 1.002 327(1)

A40.24 0.065 77(24) 0.9406(84) 1.0206(95) 1.009 874(1)

A40.32 0.068 39(18) 0.9874(24) 1.0039(28) 1.001 299(1)

A60.24 0.072 09(20) 0.9716(37) 1.0099(49) 1.004 681(1)

A80.24 0.075 81(13) 0.9839(22) 1.0057(29) 1.002 518(1)

A100.24 0.079 36(14) 0.9900(15) 1.0037(19) 1.001 480(1)

B35.32 0.061 05(17) 0.9794(27) 1.0069(32) 1.002 466(1)

B55.32 0.065 45(11) 0.9920(10) 1.0027(14) 1.000 879(1)

B85.24 0.070 39(26) 0.9795(24) 1.0083(28) 1.003 178(1)

D30.48 0.047 35(15) 0.9938(5) 1.0021(7) 1.000 714(1)

D45.32 0.048 25(14) 0.9860(13) 1.0047(14) 1.000 000(1)

Table IX: External data used via parametric bootstrapping. The error on KFSE
MK

is only
estimated

Here the functions κ
(′)
X are given by

κπ =
11MKM

3
π + 8M2

πM
2
K − 5M4

π

2(M2
K −M2

π)
(A20)

κK = −67M3
KMπ − 8M3

πMK + 23M2
KM

2
π

9(M2
K −M2

π)
(A21)

κη =
24MπM

3
K − 5MKM

3
π + 28M2

KM
2
π − 9M4

π

18(M2
K −M2

π)
(A22)

κtan = −16MKMπ

9

√
2M2

K +MKMπ −M2
π

MK −Mπ

(A23)

κ
′
π =

11MKM
3
π − 16M2

KM
2
π + 10M4

π

2(M2
K −M2

π)
(A24)

κ
′
K = −67M3

KMπ − 8M3
πMK − 46M2

KM
2
π

9(M2
K −M2

π)
(A25)

κ
′
η =

24MπM
3
K − 5MKM

3
π − 56M2

KM
2
π + 18M4

π

18(M2
K −M2

π)
(A26)

κ
′
tan =

8MKMπ

9

√
2M2

K −MKMπ −M2
π

MK +Mπ

. (A27)

Appendix B: Datatables

1. Interpolated Data
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Ensemble aµs aMK aMπ aµπK

A30.32

0.0185 0.2294(3)(+0
−0) 0.1239(2)(+1

−0) 0.08046(12)(+0
−0)

0.0225 0.2495(2)(+1
−0) 0.1239(2)(+1

−0) 0.08280(12)(+0
−0)

0.0246 0.2597(2)(+1
−0) 0.1239(2)(+1

−0) 0.08388(12)(+0
−0)

A40.24

0.0185 0.2365(5)(+2
−1) 0.1453(5)(+2

−1) 0.08999(22)(+0
−0)

0.0225 0.2561(4)(+4
−1) 0.1453(5)(+2

−1) 0.09269(22)(+0
−0)

0.0246 0.2662(5)(+1
−2) 0.1453(5)(+2

−1) 0.09398(22)(+0
−0)

A40.32

0.0185 0.2343(2)(+0
−0) 0.1415(2)(+1

−0) 0.08822(10)(+0
−0)

0.0225 0.2538(2)(+1
−0) 0.1415(2)(+1

−0) 0.09086(11)(+0
−0)

0.0246 0.2638(2)(+1
−1) 0.1415(2)(+1

−0) 0.09210(11)(+0
−0)

A60.24

0.0185 0.2448(3)(+1
−0) 0.1729(3)(+4

−1) 0.10134(16)(+0
−0)

0.0225 0.2637(3)(+1
−0) 0.1729(3)(+4

−1) 0.10445(16)(+0
−0)

0.0246 0.2735(3)(+1
−0) 0.1729(3)(+4

−1) 0.10594(17)(+0
−0)

A80.24

0.0185 0.2548(2)(+0
−1) 0.1993(2)(+0

−1) 0.11184(11)(+0
−0)

0.0225 0.2731(2)(+1
−1) 0.1993(2)(+0

−1) 0.11523(11)(+0
−0)

0.0246 0.2824(2)(+2
−2) 0.1993(2)(+0

−1) 0.11685(11)(+0
−0)

A100.24

0.0185 0.2642(2)(+0
−1) 0.2223(2)(+1

−1) 0.12073(11)(+0
−0)

0.0225 0.2822(2)(+0
−0) 0.2223(2)(+1

−1) 0.12436(11)(+0
−0)

0.0246 0.2913(2)(+1
−1) 0.2223(2)(+1

−1) 0.12609(11)(+0
−0)

B35.32

0.0160 0.2053(2)(+1
−1) 0.1249(2)(+1

−1) 0.07765(11)(+0
−0)

0.0186 0.2186(2)(+2
−1) 0.1249(2)(+1

−1) 0.07948(12)(+0
−0)

0.0210 0.2298(2)(+0
−1) 0.1249(2)(+1

−1) 0.08091(12)(+0
−0)

B55.32

0.0160 0.2155(2)(+1
−2) 0.1554(2)(+0

−0) 0.09030(10)(+0
−0)

0.0186 0.2282(2)(+1
−2) 0.1554(2)(+0

−0) 0.09245(10)(+0
−0)

0.0210 0.2390(2)(+1
−2) 0.1554(2)(+0

−0) 0.09418(10)(+0
−0)

B85.24

0.0160 0.2313(3)(+0
−3) 0.1933(3)(+1

−0) 0.10530(15)(+0
−0)

0.0186 0.2429(3)(+0
−0) 0.1933(3)(+1

−0) 0.10763(16)(+0
−0)

0.0210 0.2535(3)(+2
−0) 0.1933(3)(+1

−0) 0.10967(15)(+0
−0)

D45.32

0.0130 0.1658(3)(+1
−1) 0.1205(4)(+1

−1) 0.06979(17)(+0
−0)

0.0150 0.1747(4)(+4
−1) 0.1205(4)(+1

−1) 0.07132(17)(+0
−0)

0.0180 0.1876(3)(+0
−1) 0.1205(4)(+1

−1) 0.07339(17)(+0
−0)

D30.48

0.0115 0.1503(1)(+0
−0) 0.0976(1)(+0

−0) 0.05917(6)(+0
−0)

0.0150 0.1673(1)(+0
−1) 0.0976(1)(+0

−0) 0.06163(6)(+0
−0)

0.0180 0.1807(1)(+1
−1) 0.0976(1)(+0

−0) 0.06336(6)(+0
−0)

Table X: Comparison of the meson masses, Mπ and MK together with the reduced mass
µπK . The systematic uncertainties for µπK turn out to be negligible and thus are not

shown.
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Ensemble aµs aEπK(E1) aEπK(E2)

A30.32

0.0185 0.3558(9)(+7
−2) 0.3558(7)(+5

−1)

0.0225 0.3758(9)(+8
−2) 0.3758(7)(+6

−1)

0.0246 0.3870(9)(+9
−5) 0.3867(6)(+2

−2)

A40.24

0.0185 0.3892(12)(+6
−0) 0.3887(11)(+4

−2)

0.0225 0.4081(12)(+10
−2 ) 0.4082(11)(+5

−0)

0.0246 0.4184(12)(+7
−0) 0.4182(11)(+5

−0)

A40.32

0.0185 0.3793(6)(+3
−8) 0.3789(5)(+0

−4)

0.0225 0.3988(6)(+9
−7) 0.3983(5)(+1

−3)

0.0246 0.4081(6)(+2
−4) 0.4083(5)(+1

−4)

A60.24

0.0185 0.4250(9)(+11
−0 ) 0.4247(7)(+8

−0)

0.0225 0.4447(7)(+2
−0) 0.4440(6)(+3

−4)

0.0246 0.4537(7)(+8
−4) 0.4536(6)(+5

−1)

A80.24

0.0185 0.4613(6)(+0
−2) 0.4606(5)(+3

−0)

0.0225 0.4789(6)(+5
−0) 0.4787(5)(+4

−0)

0.0246 0.4894(6)(+0
−6) 0.4882(5)(+3

−0)

A100.24

0.0185 0.4921(5)(+6
−3) 0.4922(4)(+3

−0)

0.0225 0.5102(5)(+5
−0) 0.5102(4)(+3

−0)

0.0246 0.5193(5)(+3
−3) 0.5193(4)(+2

−1)

B35.32

0.0160 0.3333(9)(+11
−0 ) 0.3336(6)(+6

−0)

0.0186 0.3474(7)(+2
−1) 0.3472(6)(+3

−1)

0.0210 0.3595(9)(+0
−3) 0.3584(7)(+5

−0)

B55.32

0.0160 0.3743(5)(+4
−1) 0.3747(4)(+3

−0)

0.0186 0.3866(5)(+6
−7) 0.3869(4)(+3

−1)

0.0210 0.3977(5)(+4
−1) 0.3981(4)(+3

−0)

B85.24

0.0160 0.4322(7)(+15
−2 ) 0.4325(6)(+7

−0)

0.0186 0.4442(7)(+15
−1 ) 0.4441(6)(+8

−1)

0.0210 0.4548(7)(+13
−0 ) 0.4544(6)(+8

−1)

D45.32

0.0130 0.2925(12)(+23
−0 ) 0.2922(9)(+18

−0 )

0.0150 0.3028(11)(+5
−1) 0.3010(9)(+14

−0 )

0.0180 0.3145(10)(+16
−0 ) 0.3142(8)(+12

−0 )

D30.48

0.0115 0.2506(8)(+3
−5) 0.2508(5)(+1

−5)

0.0150 0.2677(8)(+3
−6) 0.2679(6)(+1

−6)

0.0180 0.2811(8)(+3
−6) 0.2814(6)(+1

−7)

Table XI: Comparison of EπK for methods E1 and E2
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Ensemble aµs aδE(E1)× 103 aδE(E2)× 103

A30.32

0.0185 2.48(96)(+68
−20) 2.44(81)(+51

−8 )

0.0225 2.41(97)(+81
−17) 2.34(77)(+57

−8 )

0.0246 3.45(93)(+89
−49) 3.14(74)(+19

−22)

A40.24

0.0185 7.46(84)(+56
−0 ) 6.93(56)(+43

−20)

0.0225 6.70(85)(+97
−19) 6.84(67)(+47

−1 )

0.0246 6.94(88)(+74
−0 ) 6.69(61)(+50

−1 )

A40.32

0.0185 3.52(47)(+34
−83) 3.15(32)(+0

−38)

0.0225 3.42(45)(+85
−73) 2.96(29)(+8

−27)

0.0246 2.79(44)(+15
−42) 2.99(31)(+13

−39)

A60.24

0.0185 7.25(69)(+111
−0 ) 7.02(39)(+80

−0 )

0.0225 8.05(46)(+24
−3 ) 7.37(35)(+34

−36)

0.0246 7.28(45)(+78
−43) 7.22(30)(+46

−12)

A80.24

0.0185 7.19(48)(+3
−22) 6.45(21)(+30

−0 )

0.0225 6.47(47)(+48
−0 ) 6.19(23)(+39

−0 )

0.0246 7.61(48)(+0
−57) 6.40(21)(+34

−0 )

A100.24

0.0185 5.58(32)(+61
−30) 5.70(17)(+27

−3 )

0.0225 5.68(32)(+48
−0 ) 5.67(17)(+26

−0 )

0.0246 5.74(24)(+34
−30) 5.69(14)(+19

−7 )

B35.32

0.0160 3.12(85)(+109
−0 ) 3.38(45)(+62

−0 )

0.0186 3.94(54)(+23
−8 ) 3.67(34)(+30

−13)

0.0210 4.79(85)(+0
−33) 3.72(56)(+53

−0 )

B55.32

0.0160 3.33(42)(+44
−12) 3.71(30)(+28

−2 )

0.0186 3.02(45)(+64
−74) 3.27(33)(+30

−8 )

0.0210 3.28(41)(+43
−12) 3.65(30)(+27

−1 )

B85.24

0.0160 7.61(41)(+153
−16 ) 7.88(23)(+66

−0 )

0.0186 8.05(36)(+150
−14 ) 7.97(23)(+81

−5 )

0.0210 7.99(38)(+127
−3 ) 7.64(25)(+81

−9 )

D45.32

0.0130 6.18(88)(+232
−0 ) 5.87(53)(+177

−0 )

0.0150 7.62(86)(+54
−12) 5.82(43)(+143

−0 )

0.0180 6.38(71)(+158
−0 ) 6.05(45)(+120

−0 )

D30.48

0.0115 2.70(77)(+26
−53) 2.90(50)(+10

−53)

0.0150 2.79(79)(+26
−60) 3.05(51)(+9

−63)

0.0180 2.86(82)(+25
−65) 3.17(54)(+9

−69)

Table XII: Comparison of δEπK for methods E1 and E2
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Ensemble aµs a0/a(E1) a0/a(E2) µπK a
3/2
0 (E1) µπK a

3/2
0 (E2)

A30.32

0.0185 −0.96(34)(+7
−24) −0.94(29)(+3

−18) −0.077(27)(+6
−19) −0.076(23)(+2

−14)

0.0225 −0.95(35)(+6
−29) −0.93(28)(+3

−20) −0.079(29)(+5
−24) −0.077(23)(+2

−17)

0.0246 −1.33(32)(+17
−30) −1.23(26)(+8

−7) −0.112(27)(+14
−25) −0.103(22)(+6

−6)

A40.24

0.0185 −1.27(12)(+0
−8) −1.19(8)(+3

−6) −0.114(11)(+0
−7) −0.107(8)(+3

−6)

0.0225 −1.18(13)(+3
−15) −1.20(10)(+0

−7) −0.110(12)(+3
−14) −0.112(9)(+0

−7)

0.0246 −1.23(14)(+0
−11) −1.20(10)(+0

−8) −0.116(13)(+0
−11) −0.112(9)(+0

−7)

A40.32

0.0185 −1.42(17)(+31
−12) −1.29(12)(+14

−0 ) −0.126(15)(+27
−11) −0.114(10)(+12

−0 )

0.0225 −1.42(17)(+27
−31) −1.25(11)(+10

−3 ) −0.129(15)(+25
−28) −0.114(10)(+9

−3)

0.0246 −1.20(17)(+17
−6 ) −1.28(12)(+15

−5 ) −0.111(16)(+15
−5 ) −0.118(11)(+14

−5 )

A60.24

0.0185 −1.37(11)(+0
−18) −1.33(6)(+0

−13) −0.139(11)(+0
−18) −0.135(6)(+0

−13)

0.0225 −1.53(7)(+1
−4) −1.42(6)(+6

−6) −0.160(8)(+1
−4) −0.149(6)(+6

−6)

0.0246 −1.43(7)(+7
−13) −1.41(5)(+2

−8) −0.151(8)(+8
−13) −0.150(5)(+2

−8)

A80.24

0.0185 −1.48(8)(+4
−1) −1.35(4)(+0

−5) −0.165(9)(+4
−1) −0.150(4)(+0

−6)

0.0225 −1.39(9)(+0
−9) −1.33(4)(+0

−7) −0.160(10)(+0
−10) −0.154(5)(+0

−8)

0.0246 −1.61(8)(+10
−0 ) −1.39(4)(+0

−6) −0.188(10)(+12
−0 ) −0.162(5)(+0

−7)

A100.24

0.0185 −1.27(6)(+6
−12) −1.29(3)(+1

−5) −0.153(8)(+7
−14) −0.156(4)(+1

−6)

0.0225 −1.32(6)(+0
−9) −1.32(3)(+0

−5) −0.165(8)(+0
−12) −0.164(4)(+0

−7)

0.0246 −1.35(5)(+6
−7) −1.34(3)(+1

−4) −0.170(6)(+8
−9) −0.169(4)(+2

−5)

B35.32

0.0160 −1.14(28)(+0
−35) −1.22(15)(+0

−20) −0.088(22)(+0
−27) −0.095(11)(+0

−15)

0.0186 −1.43(17)(+3
−7) −1.34(11)(+4

−10) −0.114(14)(+2
−6) −0.107(9)(+3

−8)

0.0210 −1.73(26)(+10
−0 ) −1.38(19)(+0

−17) −0.140(21)(+8
−0) −0.112(15)(+0

−14)

B55.32

0.0160 −1.38(15)(+4
−16) −1.52(11)(+1

−10) −0.125(14)(+4
−15) −0.137(10)(+1

−9)

0.0186 −1.29(17)(+29
−24) −1.39(12)(+3

−11) −0.120(16)(+27
−22) −0.128(11)(+3

−10)

0.0210 −1.42(16)(+5
−16) −1.55(11)(+0

−10) −0.133(15)(+4
−15) −0.146(10)(+0

−9)

B85.24

0.0160 −1.47(7)(+3
−24) −1.52(4)(+0

−11) −0.155(7)(+3
−26) −0.160(4)(+0

−11)

0.0186 −1.57(6)(+2
−24) −1.56(4)(+1

−13) −0.169(6)(+3
−26) −0.168(4)(+1

−14)

0.0210 −1.59(6)(+1
−21) −1.53(4)(+2

−13) −0.174(7)(+1
−23) −0.167(5)(+2

−15)

D45.32

0.0130 −1.89(23)(+0
−57) −1.81(14)(+0

−45) −0.132(16)(+0
−40) −0.126(10)(+0

−31)

0.0150 −2.29(21)(+3
−13) −1.83(12)(+0

−37) −0.163(15)(+2
−9) −0.130(8)(+0

−26)

0.0180 −2.02(19)(+0
−41) −1.94(12)(+0

−32) −0.149(14)(+0
−30) −0.142(9)(+0

−23)

D30.48

0.0115 −2.43(60)(+43
−20) −2.58(38)(+42

−8 ) −0.144(36)(+25
−12) −0.152(23)(+25

−5 )

0.0150 −2.59(63)(+49
−20) −2.79(40)(+50

−7 ) −0.159(39)(+30
−12) −0.172(25)(+31

−4 )

0.0180 −2.71(66)(+54
−20) −2.95(42)(+56

−7 ) −0.171(42)(+34
−13) −0.187(27)(+36

−4 )

Table XIII: Comparison of a0 and µπK a
3/2
0 for methods E1 and E2

ChPT EπK µπK a
3/2
0 × 102 LπK × 103 µπK a

1/2
0 Mπa

3/2
0 × 102 Mπa

1/2
0

Γ
E1 −4.7(1) 3.7(2) 0.128(2) −6.0(1) 0.162(2)

E2 −4.59(8) 3.8(1) 0.129(2) −5.8(1) 0.164(2)

NLO
E1 −4.7(1) 3.6(2) 0.127(2) −6.0(1) 0.162(2)

E2 −4.61(9) 3.8(2) 0.129(2) −5.9(1) 0.164(2)

Table XIV: Physical values of the scattering length and LπK after averaging over the fit
ranges
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Ensemble µπK/fπ aMK aMη µπK a
3/2
0 (E1) µπK a

3/2
0 (E2)

A40.24 1.28(2) 0.241(6) 0.317(6) −0.12(1) −0.106(8)

A60.24 1.37(1) 0.251(6) 0.323(6) −0.15(1) −0.139(9)

A80.24 1.46(1) 0.260(6) 0.327(5) −0.16(1) −0.153(6)

A100.24 1.52(1) 0.269(6) 0.332(4) −0.15(1) −0.158(6)

A30.32 1.22(1) 0.236(6) 0.314(9) −0.08(3) −0.08(2)

A40.32 1.28(1) 0.241(6) 0.314(9) −0.14(2) −0.11(1)

B85.24 1.49(1) 0.243(5) 0.296(5) −0.17(2) −0.178(9)

B35.32 1.27(1) 0.220(6) 0.284(8) −0.12(2) −0.11(1)

B55.32 1.40(1) 0.230(5) 0.283(5) −0.12(3) −0.14(1)

D45.32 1.45(1) 0.175(4) 0.200(4) −0.15(2) −0.15(2)

D30.48 1.29(1) 0.168(4) 0.196(4) −0.15(3) −0.15(2)

Table XV: Input Data for for the chiral analysis
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C H A P T E R 7

SUMMARY AND OUTLOOK

The present thesis comprises a study of elastic scattering involving pseudoscalar mesons with
strangeness S up to S = 1 at maximal isospin. The gauge configurations employed in this study
were generated using the N f = 2 + 1 + 1 Wilson twisted mass formulation of lattice QCD at
maximal twist. A range of pion masses from 230 to 450 MeV was used to simulate at three
different values of the lattice spacing. For the valence sector we follow a mixed action approach
with a light Wilson twisted mass doublet and Osterwalder-Seiler valence strange quarks at
three different strange quark masses.

For the systems in question, K-K and π-K, we successfully use stochastic Laplacian-Heaviside
smearing of the valence quark fields to obtain all-to-all propagators for the two and four point
correlation functions. This allows us to reuse the propagators for different interpolating
operators once they are generated. In both cases we have to remove thermal contributions
to the two meson correlation functions, which we achieve via (weighting and) shifting of
the corresponding data. To characterize the elastic interactions taking place in both cases
we extract the lattice value of the s-wave scattering length a0 from Lüscher’s formula [17].
Subsequently we inter-/extrapolate our lattice data to the physical point and the continuum.
For the K-K-system we are not able to use the SU(3) ChPT formula of Ref. [47] for the chiral
extrapolation. The reason for that is an insufficient range of Kaon masses for a reliable fit of
the ChPT formula to the data. Instead we resorted to a ChPT extrapolation in the light quark
mass at leading order taking into account lattice artifacts of order O

(
a2
)

. Matters are different
for the π-K-system. There we employ SU(3) ChPT in the chiral extrapolation. Owing to the
large range of pion mass values at three distinct values of the lattice spacing the work described
in this thesis adds substantially to the existing determinations of the K-K [48, 49], and π-K
scattering length [45, 49–52]. Taking into account the elastic π-π scattering length [30] as well,
we investigate the validity of ChPT when increasing the strangeness content of the pseudoscalar
mesons participating in the interaction. As already demonstrated in the conclusion of Chapter 6,
for the π-π and π-K scattering length the corrections to leading order ChPT turn out to be
nearly negligible. For the K-K system the corrections still are surprisingly small. Another
result of the current investigation is that lattice artifacts do not seem to play a role in chiral
extrapolations at NLO as long as they are done in the following form: The dimensionless
product µ · a0 is extrapolated in the dimensionless variable µ/ f . Here µ labels the (reduced)

99



CHAPTER 7 SUMMARY AND OUTLOOK

mass of the system and f the corresponding decay constant. In Wilson twisted mass lattice
ChPT lattice artifacts are shown to cancel through NLO for the I = 2 π-π-system, Ref. [53]. We
confirm this behavior for the interacting π-π and π-K system but cannot make a statement
about the case of K-K scattering since we did not employ full ChPT for the extrapolation to the
physical point. The data we extract proves to be in good agreement within errors with other
lattice determinations, cf. Refs. [45, 49–52] for π-K and Refs. [48, 49] for K-K. In the case of
K-K scattering we compare two methods to fix the valence strange quark mass, both giving
comparable results.

Besides all the benefits mentioned before there is still room for improvement. Our lowest pion
mass corresponds to Mπ = 230 MeV. This is roughly a factor of 1.6 larger than the physical pion
mass. As a consequence the chiral extrapolations still could be not reliable. Furthermore there
exist no experimental determination of a0, neither for K-K, nor for π-K. Thus a determination
of a0 directly at physical pion masses would be beneficial to confirm the chiral extrapolations
done in this thesis. The chiral extrapolation of the π-K scattering length involves knowledge
of the LEC L5. In order to stabilize the ChPT fits to our data we have to use this unphysical
quantity as an input. Unfortunately we do not have an own determination at our disposal such
that we resort to a determination done by HPQCD, cf. Ref. [46]. Albeit L5 has been extrapolated
to the continuum, it has been calculated at a different renormalization scale. To diminish
the corresponding uncertainty in the chiral extrapolation a calculation of L5 in terms of our
lattice formulation would be advantageous. The miss-tuning of the sea strange quark mass,
described in Chapter 6, can be improved on as well. In order to do so two approaches are
possible. The first one involves a detailed knowledge of how the observables of interest, i.e. the
meson masses Mπ, MK and Mη , the decay constant fπ, and the dimensionless scattering length

µπK a3/2
0 = −0.0463(17) depend on msea

s . The observables of interest can then be corrected for
the miss-tuning by using the derivative of the observables with respect to msea

s . The second
approach works via taking into account the miss-tuning in setting up ChPT in the correct
manner. For this one would have to re-derive the relevant chiral extrapolation formulae in a
partially quenched mixed action twisted mass ChPT setup and fit the unmatched observables,
stated above, in a global fit. Lattice artifacts then have to be taken into account simultaneously.
As a last step of improvement a different scaling variable as the Sommer parameter r0 could
be used to interpolate our data to the physical strange quark mass. At the moment the large
statistical uncertainty on r0 contributes significantly to the interpolated values of the kaon and
eta masses, entering the chiral extrapolation.

A possible extension of this work consists of investigating scattering processes of pions and
kaons with a more complicated chiral structure. Of particular interest would be the resonant
channel of I = 1/2 where the κ(892) resonance could be characterized by its phaseshift.
Complications arise in form of diagrammatically more complex correlation functions including
singly disconnected diagrams, partial wave mixing which calls for a coupled channel analysis
and the subduction of involved 3 momenta to the lattice octahedral group. At the moment the
first and the latter issue are addressed in a study on the rho resonance such that experience of
this investigation can be carried over to such a study.

To summarize, we have shown in this thesis that it is possible to extract scattering parameters
for interactions involving strangeness from Wilson twisted mass lattice QCD. The reusability of
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the sLapH perambulators for the correlator construction helped to save simulation time.
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A P P E N D I X A

APPENDIX

A.1 DIRAC AND PAULI MATRICES

The Dirac matrices are defined via their anti-commutator

{γµ , γν} = 2gµν , (A.1)

where gµν is the Minkowski metric of 4-dimensional space time gµν = diag(1,−1,−1,−1). In
Dirac representation the four matrices read

γ0 =

(
0 1

1 0

)
, γk =

(
0 −iτk

iτk 0

)
, (A.2)

with τk , k ∈ { 1, 2, 3 } the Pauli matrices

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (A.3)

In addition one defines

γ5 = γ0γ1γ2γ3 , γ2
5 = 1 . (A.4)

In Euclidean space time the anti-commutation relation Equation (A.1) changes to accommodate
the euclidean metric:

{γ(E)
µ , γ(E)

ν } = 2δµν1 . (A.5)

The Dirac matrices in Euclidean space (E) are obtained from their Minkowski space (M) coun-
terparts by

γ
(E)
1,2,3 = −iγ(M)

1,2,3 (A.6)

γ
(
4E) = γ

(
0M) . (A.7)
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