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Das gilt natürlich auch für meine Familie. Wenn ich mit dem Kopf nicht zuhause,

sondern bei der Arbeit war, ist sie es gewesen, die mich wachgerüttelt hat und mich
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1 Introduction

1.1 Multidrug resistance

Cancer is one of the main causes of death in economically developed countries [1].

According to the data reported by the International Agency for Research on Cancer

(IARC) for 2008, 12.7 million patients were affected by cancer and 7.6 million cancer

deaths were registered worldwide [1, 2]. Those statistics makes cancer the second cause

of death after cardiovascular diseases, which are accountable of 17.5 million deaths in

2005 [3].

The multidrug resistance (MDR) is defined as the ability of cells and organisms to

resist treatment by structurally unrelated drugs [4] and it represents a critical problem

in cancer therapy, especially in acute leukemias [5]. MDR is divided into two forms: the

intrinsic drug resistance and the acquired drug resistance. The intrinsic drug resistance

is related to the capacity of a tumor to show resistance against chemotherapeutic drugs

already from beginning of the therapy. In acquired drug resistance, tumors respond

to initial therapy, but later appear to be strongly resistant to the original treatment.

The consequence of MDR is the failure of therapy and the intractability of the tumor

with chemotherapeutic drugs [6].

Multidrug resistance is related to overexpression of certain ATP binding cassette

(ABC) transporter proteins, a family of membrane transport proteins widely expressed

in all living organisms. These membrane transporters are characterized by the combi-

nation of one or more transmembrane domains and cytoplasmic ATP binding domains

[7].
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1 Introduction

1.2 ATP-binding cassette (ABC) transporters

ABC transporters are membrane proteins which are able to transport several kind

of substrates, ranging from ions to small molecules, across the plasma membrane

or other intracellular membranes [8]. The physiological roles of these transporters

include the transport of metabolites and the protection of the organism from toxic

compounds [9]. ABC transporters are also widely distributed in the organism and

are expressed in a wide variety of tissues and organs. The tissue localizations of the

major human ABC transporters involved in MDR are reported in table 1.1. Several

diseases are associated with ABC transporters: The cystic fibrosis (ABCC7) and the

Dubin-Johnson syndrome (ABCC2) are only two examples of them [9, 6].

Table 1.1: Distribution of the major human ABC transporters involved in MDR.

ABC transporter Tissue localization

P-gp / ABCB1 kidney proximal tubule, placenta, adrenal
cortex, testis, uterus, lymphocytes,
hematopoietic cells [4]

MRP1 / ABCC1 lung, testis, kidney, placenta, skeletal and
cardiac muscles [10]

BCRP / ABCG2 brain (BBB), liver, kidney, lactating breast,
placenta, testis, small intestine, colon,
haematopoietic compartment [11]

At the moment, 48 members of the ABC transporter family are known in humans

[5] and are divided into seven subfamiles from ABCA to ABCG, according to their

gene structure, sequence similarity and phylogenetic analysis [8, 12, 13]. Among these

48 known humans members of the ABC transporter family, P-glycoprotein (P-gp /

ABCB1), the multidrug resistance associated protein 1 (MRP1 / ABCC1) and the

breast cancer resistance protein (BCRP / ABCG2) have been recognized to play an

important role in MDR [7, 14].

A functional ABC transporter requires the presence of at least two nucleotide bind-

ing domains (NBDs) and two transmembrane domains (TMDs) [15]. The nucleotide

binding domain of ABC transporters is highly conserved for all members of this family.

In particular, four conserved sequence elements and three highly conserved residues

are present with minimal variations in all members of the family. The conserved se-

quence elements consist of the Walker A, the Walker B, the ABC signature sequence,

and the D-Loop, while the highly conserved residues are the Q-loop, the A-loop and

the H-loop. [16, 17, 18].
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1.2 ATP-binding cassette (ABC) transporters

(a) (b)

Figure 1.1: (a) Representation of the two NBDs of Sav1866 (PDB-entry 2ONJ). The highly
conserved motifs are colored in green (Walker A), red (Walker B), orange (Q-
loop), cyano (D-loop) and yellow (signature sequence). The molecular structure
of AMP-PNP is colored in black. (b) The interaction of AMP-PNP with the A-
loop (Tyr349) the H-loop(His534), the Q-loop (Gln422), the Walker B (Glu503)
and the Walker A motif (Lys380) of the bacterial transporter Sav1866. Figures
are adopted from the work of Seeger et al. [16].

The Walker A and the signature sequence are in contact with the γ-phosphate moiety

of the nucleotide, while the A-loop contacts its adenine; the Walker B contains a highly

conserved glutamate residue, which is probably involved in the nucleophilic attack on

ATP through a water molecule; the Q-loop interacts with the γ-phosphate of the

nucleotide via a water molecule and is also involved in the interaction between NBD

and TMD; the D-loop could play a role in the communication between the two NBDs

and the H-loop has a direct interaction with the γ-phosphate of the nucleotide and is

directly involved in the catalytic hydrolysis of the nucleotide [16, 18]. In figure 1.1a are

shown the two nucleotide binding domains of the bacterial ABC transporter Sav1866

[19], where the Walker A, the Walker B, the signature sequence, the D-loop and the

Q-loop are highlighted in different colors. The 5’-adenylylimidodiphosphate (AMP-

PNP), a synthetically prepared non-hydrolyzable analog of adenosine 5’-triphosphate

that was co-crystallized with the protein, is presented in black. In figure 1.1b are

presented the principal amino acids that interact with the AMP-PNP in Sav1866. In

this figure, it is possible to recognize the interaction of the A-loop (Tyr349) with the

adenine of the nucleotide and the interactions of the H-loop (His534), of the Q-loop

(Gln422), of the Walker B (Glu503) and of the Walker A (Lys380) with the γ-phosphate

of the nucleotide.

In contrast to the NBDs, the transmembrane domains of ABC transporters show a

low degree of homology. The ABC exporters normally feature two membrane span-

ning domains (MSDs) with similar amino acid sequences interacting together to form a
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dimer interface. Each membrane spanning domain generally consists of six transmem-

brane spanning helices (TMHs), with a total of 12 transmembrane spanning helices

[16]. An important exception is the human ABC transporter BCRP, which consists

of two monomers with 655 amino acids each containing only one MSD and one NBD.

These two identical monomers interact together probably through disulfide bonds [20]

to form the complete BCRP structure [21].

1.2.1 P-glycoprotein (P-gp / ABCB1)

NH2	
  
COOH	
  NBD	
  1	
   NBD	
  2	
  

TMD	
  1	
   TMD	
  2	
  

Extracellular	
  	
  

Intracellular	
  	
  

Ce
ll	
  

m
em

br
an
e	
  

Figure 1.2: Topological model of P-glycoprotein.

P-glycoprotein (P-gp / ABCB1) also known as MDR1 is a member of the ABCB

subfamily. It was discovered in 1974 by Juliano and Ling in Chinese hamster ovary cells

mutants [22, 23]. Human P-gp is a 1280 amino acids protein, codified by a gene located

on the chromosome 7q21 [7]. The molecular weight of human P-gp is about 170 kDa in

fully glycosylated form [24]. As illustrated in figure 1.2, P-gp is characterized by two

membrane spanning domains (MSDs) and two nucleotide binding domains (NBDs)

both on the same amino acidic sequence. Observing the primary sequence from NH2

to -COOH-termini, the domains appear following the pattern MSD1-NBD1-MSD2-

NBD2. The -NH2 and -COOH-termini as well as the nucleotide binding domains are

located in the intracellular space. The first extracellular loop is N-glycosylated [25].
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1.2 ATP-binding cassette (ABC) transporters

The first information about the threedimensional structure of P-gp was obtained

using electron cryomicroscopy. This preliminary investigation provided evidence for a

dimeric association of P-gp in the reconstituted lipid bilayer [26]. Homology models of

P-gp, first based on the structure of MsbA [27] and later based on Sav1866 [28] were

generated in order to identify and analyze the structure of this transporter and in

particular its drug-binding site(s). The X-ray structure of mouse P-gp, that shares 87

% of identity with the human P-gp, was finally obtained at 3.8 Å resolution in 2009 by

Aller et al. [29]. This structure proofed to be wrong and was successively corrected by

Jin et al. [30, 31]. The obtained structure seems to confirm the hypothesis that this

transporter possesses at least two drug-binding sites located in the transmembrane

region. This hypothesis was already suggested by Shapiro and Ling more than ten

years before [32].

Transport mechanism of P-gp

Extracellular	
  	
  

Intracellular	
  	
  

Ce
ll	
  

m
em

br
an
e	
  

Classical	
  
pump	
  	
  

Vacuum	
  
cleaner	
  

Flippase	
  

Figure 1.3: The classical pump, vacuum cleaner, and flippase models for substrate transport
by P-gp, modified from [33].

The efflux mechanism of P-gp and, in more general, of ABC transporters is not yet

clearly explained. Until now, three different models of substrate transport mediated

by P-gp were suggested. The first and the most accepted hypothesis about substrate
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transport mediated by P-gp was suggested by Gottesman et al.. The results suggested

that P-gp works as a vacuum cleaner for hydrophobic molecules, which are embedded

in the membrane [34]. Two years later Higgins and Gottesman formulated another

theory how substrate transport is mediated by P-gp: They considered P-gp working

as a flippase. In this transport model the substrate interacts with the lipid bilayer

and enters into the core of the membrane-associated transporter in contact with the

inner leaflet of the membrane and either is pumped directly from the inner leaflet of

the bilayer to the extracellular space or is flipped from the inner leaflet to the outer

leaflet of the membrane. In this second case, the substrate successively diffuses from

the outer leaflet to the extracellular space [35]. The third proposed model of transport

was suggested in 1994 by Altenberg et al. on the basis of data obtained by observations

of the transport of rhodamine 123 mediated by P-gp. Altenberg et al. hypotesized

that P-gp extracts the substrate not from the membrane, as postulated by the flippase

and by the vacuum cleaner theories, but directly from the cytosol [36]. The three

proposed transport models are summarized in figure 1.3.

P-gp substrates

P-gp substrates vary enormously in size and structure, ranging from small organic

cations to large molecules, like actinomycin D [37]. The first pharmacophore model

that describes the P-gp substrates was proposed by Seelig et al. [38]. In this work

was reported that many P-gp substrates have two or three electron-donor groups in

their structure, separated by 2.5 Å from each other and separated by 4.6 Å from the

other electron-donor group pair. Cianchetta et al. [39] suggested a pharmacophore

model with two hydrophobic groups 16.5 Å apart and two hydrogen-bond-acceptor

groups 11.5 Å apart. The molecular dimension was also found to play an important

role in recognition as P-gp substrate. Support Vector Machine was used by Huang et

al. to discriminate between P-gp substrates and non-substrates, with an accuracy of

higher than 90 % [40]. Other studies reported that some chemical characteristics are

important but not essential to be a P-gp substrate. Those characteristics include a logP

value higher than 2.92, a molecular axis longer than 18 atoms, a high value of Ehomo, the

presence of at least one tertiary basic nitrogen atom, and molecular weight lower than

800 Dalton [25]. Today, many drugs are recognized to be P-gp substrates and belong to

several drug classes such anticancers, cardiacs, antimicrobials, immunosuppressants,

gastrointestinal agents, HIV proteases, and neurologic agents [41]. A short list of

well-known P-gp substrates is given in table 1.2.
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1.2 ATP-binding cassette (ABC) transporters

Table 1.2: P-gp substrates.

Drug class P-gp substrates

Anticancers actinomycin D, colchicine, daunorubicin,
doxorubicin, etoposide, imatinib, irinotecan,
lapatinib, mitomycin C, nilotinib, paclitaxel,
taxol, topotecan, vinblastine, vincristine

Cardiacs antiarrhythmic agents (digoxin and vera-
pamil), Anticoagulant agents (warfarin), An-
tihypertensive agents (diltiazem, losartan,
propranolol), Antiplatelet agents (clopido-
grel, ticagrelor), Statins (atorvastatin, lovas-
tatin)

Antimicrobials erythromycin, ivermectin, posaconazol,
quinolones, rifampicin

Immunosoppressants cyclosporine A, everolimus, tacrolimus
Gastrointestinal agents cimetidine, domperidone, loperamide, on-

dansetron
Fluorescent dyes calcein AM, BCECF AM, rhodamine 123,

Hoechst 33342

P-gp inhibitors

P-gp inhibitors are able to reverse MDR mediated by P-gp. Like substrates, they

are structurally diverse. However, the majority of them are weakly amphipathic and

hydrophobic and often they contain a tertiary nitrogen atom. Many P-gp inhibitors

are also themselves transported by P-gp [42]. Inhibitors of P-gp are classified into

three generations according to their specificity, affinity, and toxicity. First generation

inhibitors are drugs normally used in pharmacological therapies that are also able to

inhibit P-gp. The usage of these compounds as P-gp inhibitors is limited due to their

low potency and high toxicity. Second generation inhibitors increase the inhibitory

potency against P-gp, and lack the pharmacological activities against other targets.

PSC 833 (a non-immunosuppressive analogue of cyclosporine A) and dexverapamil

are two members of this inhibitor generation. These compounds, however, are also

inhibitors and substrates of CYP3A4 enzyme and other ABC transporters. These

additional pharmacological effects complicate the pharmacokinetic of the administered

cytostatics. Third generation P-gp inhibitors are potent and selective P-gp inhibitors

with low toxicity, developed using structure activity relationship methods. XR 9576

also know as tariquidar is a member of this inhibitors generation [43]. A list of P-gp

inhibitors divided on the base of their generation is given in table 1.3.
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Table 1.3: Pg-p inhibitors categorized on the basis of their generation. The table is
based on Amin et al. [43].

Generation Inhibitors Specificity and limitations

First genera-
tion

verapamil, cyclosporine A, re-
serpine, quinidine, yohimbine,
tamoxifen, toremifena

Non-selective, partially also P-
gp substrates, pharmacologi-
cally active

Second gener-
ation

dexverapamil, dexniguldip-
ine, valspodar (PSC833),
dofequidar fumarate (MS-209)

Increased specificity with re-
spect to first generation in-
hibitors, also substrates and
inhibitors of CYP3A4 enzyme
and other ABC transporters

Third genera-
tion

zosuquidar (LY335979), ian-
iquidar (R101933), mitotane
(NSC-38721), biricodar (VX-
710), elacridar (GF 120918),
ONT-093, tariquidar (XR
9576), and HM30181

Potent and selective P-gp in-
hibitors, no limitations

1.2.2 Multidrug Resistance associated Protein 1 (MRP1 /

ABCC1)

Multidrug Resistance associated Protein 1 (MRP1) is the first member of the ABCC

family. MRP1 is expressed in most tissues throughout the body, especially in lung,

testis, kidneys, skeletal muscle, and peripheral blood mononuclear cells [44]. Also

MRP1 is involved in multidrug resistance and is overexpressed in many solid tumors

such hepatocellular carcinoma and breast cancer [45]. MRP1 was discovered in H69AR

cells, obtained from the lung cancer cell line H69 by stepwise selection in media con-

taining doxorubicin [10]. The human MRP1 gene is localized on the gene 16p13.1

[46]. This transporter consists of 1,531 amino acids, with a molecular weight of about

190 kDa, and contains three membrane spanning domains and two nucleotide binding

domains (MSD0-MSD1-NBD1-MSD2-NBD2). The first membrane spanning domain

contains only five transmembrane helices, while each of the other two membrane span-

ning domains contain six transmembrane helices as all the other ABC transporters

[44]. Unlike P-gp and BCRP, the -NH2 terminus is extracellular. MRP1 presents

two sites of N-glycosilation, localized near to the -NH2 terminus and on the MSD2,

involving the residues Asn19, Asn23 (-NH2 terminus) and Asn1006 (MSD2) [47]. The

topology of MRP1 is shown in figure 1.4.
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Figure 1.4: Topological model of Multidrug Resistance associated Protein 1.

MRP1 substrates

MRP1 substrates include a wide variety of anticancer drugs like doxorubicin, dauno-

mycin, epirubicin, menogaril, colchicine, vincristine, vinblastine, etoposide, gramicidin

D, idarubicin and heavy metal ions, such as arsenite, arsenate and antimonite [10].

Other xenobiotics transported by MRP1 are antivirals like saquinavir and ritonavir,

and antibiotics like difloxacin and grepafloxacin [48]. In contrast to P-gp, MRP1 is able

to actively transport GSH-, glucuronate-, and sulfate-conjugated organic anions. This

active efflux prevents the accumulation of conjugated toxic compounds, which could

react back to the parental compound ether spontaneously or by enzymatic reaction

[44]. Fluorescent substrates transported by MRP1 include calcein AM and BCECF

AM. Concerning a common pharmacophore for MRP1 substrates, it is only known

that the majority of them contain an hydrophilic and an hydrophobic portion [10].

Some MRP1 substrates are listed in table 1.4.
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Table 1.4: MRP1 substrates.

Drug class Substrates

Folate-based antimetabolites methotrexate
Anthracyclines doxorubicin
Plant alkaloids etoposide, vincristine, vinblastine, pacli-

taxel, irinotecan
Antiandrogens flutamide, hydroxyflutamide
Antivirals saquinavir, ritonavir
Antibiotics difloxacin, grepafloxacin
Metalloids arsenate, antimoniate
Toxicants aflatoxin B1, methoxychlor
GSH- Glucuronide- and
sulphate- conjugates

etoposide-gluc, SN-38-gluc, 2,4-
Dinitrophenyl-SG, doxorubicin-SG,
cyclophosphamide-SG, atraxine-SG,
aflatoxin B1-epoxide-SG, 4-nitroquinoline
1-oxide-SG, 14β-estradiol-17-β-D-gluc,
glucuronosylbilirubin, leucotriene-C4,
prostaglandin A2-SG, 15-Deoxy-∆12−14

prostaglandin J2-SG, estrone 3-sulphate,
sulphatolithocholate

Folates folic acid, L-leucovorin
Other metabolites GSSG, GSH, bilirubin
Fluorescent substrates calcein AM, BCECF AM

MRP1 inhibitors

MRP1 inhibitors could be divided into non-specific MRP1 inhibitors and specific

MRP1 inhibitors. The non-specific inhibitors include indomethacin, probenecid, P-

gp inhibitors like verapamil and cyclosporine A, tricyclic isoxazoles like LY402913 and

LY465806, and several flavonoids [49]. Until today, the only specific MRP1 inhibitors

discovered are the leukotriene receptor antagonists MK571, ONO-1078 [50, 51], and

the 2-thioureidobenzo[b]thiophene-3-carboxylic acid derivates synthesized and evalu-

ated by Häcker et al. [52]. The pharmacophore model for MRP1 inhibitors proposed

by Pajeva and Wiese [53] consists of at least one hydrogen bond acceptor group of

limited flexibility, an additional hydrophobic center in a flexible side chain, which is

connected to a planar hydrophobic ring, and a tertiary protonated nitrogen. Those

features have to be at a distance of about 5 Å.
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Figure 1.5: Topological model of Breast Cancer Resistance Protein.

Breast Cancer Resistance Protein (BCRP / ABCG2) is the second member of the

ABCG family. This transporter was discovered by Doyle et al. in 1998 from highly

doxorubicin resistant cells MCF-7/AdrVp [54]. The name breast cancer resistant pro-

tein was given due to the origin of the MCF-7 cell line (breast cancer cells) [55]. The

human BCRP gene is located on chromosome 4q22 and codifies a 655 amino acid

protein with molecular weight of about 72 kDa [54, 55]. In contrast to other ABC

transporters, the primary sequence of BCRP and of all members of the ABCG family

contains only one N-terminal NBD and one C-terminal TMD. The most accepted hy-

pothesis suggested that BCRP could work as an homodimer, with two single BCRP

monomers connected each other with disulfide bridges that involve the cysteine 603

residue [56, 20]. An intramolecular disulfide bridge seems to be formed between the

two cysteine residues Cys-592 and Cys-608., located in the third extracellular loop

[57]. The transmembrane domain (residues ∼ 394 - 655) seems to consists of six

transmembrane spanning helices, according to the hydropathy analysis of the primary

sequence, with predictions based on the Hidden Markov Model algorithm (HMM), and

immunofluorescence experiments [21]. In the third extracellular loop are also located

two asparagines at positions 557 and 596, which are possible sites of N-glycosilation
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[58]. The topology of the breast cancer resistance protein is shown in figure 1.5. To

date, there are not crystal structures of BCRP available, therefore its detailed struc-

ture remains unknown. The 3D structural analysis of BCRP was performed for the

first time in 2006 by McDevitt et al. [59]. His research group obtained the 3D struc-

tures of the transporter at a resolution of about 18 Å using cryonegative stain electron

microscopy. They interpreted the observed tetrameric complex to be comprised of four

homodimeric BCRP complexes. Unfortunately, homology modeling is also not helpful

to understand the three-dimensional structure of BCRP, due to the very low identity

values between the primary sequence of this transporter and that of the other ABC

transporters for which crystal structures are available [60].

Localization of BCRP in human tissues

BCRP is present in a wide variety of human tissues where it plays an important role

in protection against xenobiotics. It has been identified in the apical membrane of

placental syncytiotrophoblasts, in the bile canalicular membrane of hepatocytes, in

the luminal membranes of villous epithelial cells in the small intestine and colon, in

cardiac muscle, in the endocrine cells of the pancreas, in sebaceous glands, in the

endothelium of the nervous system, in the zona reticularis of the adrenal gland, in the

Sertoli cells of the testis, and in the venous and capillary endothelial cells of almost all

tissues [61, 62]. Expression of BCRP was also observed in stem cells. Its role in stem

cells differentiation and protection against xenobiotics is object of investigations [63].

Physiological role of BCRP

BCRP is recognized to be important for protection against xenobiotics and in reg-

ulation of oral bioavailability. This transporter seems to be also involved in other

physiological roles, as the extrusion of porphyrins (conjugated and non-conjugated)

from hematopoietic cells or liver and the harderian gland, and the secretion of vita-

mins into breast milk [64]. BCRP is believed to protect the fetus from toxins as well

as to remove toxins from the fetal space. Presence of BCRP in intestine limits the oral

bioavailability of xenobiotics. The role of BCRP in kidney is supposed to be related

to renal drug excretion [62]. The physiological roles of BCRP in human tissues are

summarized in table 1.5.
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Table 1.5: Physiological role of BCRP in human tissues [61].

Tissue Physiological role

Placenta Protection of the fetus
Liver Hepato-biliary excretion
Stem cells SP-phenotype and protection against hy-

poxia
Intestine Reduction of xenobiotics absorption
Brain Protection against xenobiotics
Breast Transport of vitamins into breast milk [64]
Kidney Urinary excretion of drugs

BCRP substrates

Due to its protective role in human organism, BCRP is able to transport a wide

variety of substrates with very different structures. Most cell lines over expressing

BCRP are highly resistant against mitoxantrone, even if they were never treated with

mitoxantrone. Furthermore, the accumulation of mitoxantrone in cells transfected

with BCRP cDNA is significantly lower than in cells transfected with empty vectors.

These data suggest that BCRP is able to transport mitoxantrone with high efficiency

[65, 55].

Derivatives including topotecan, irinotecan and SN-38 (the active metabolite of

irinotecan) are also important substrates of BCRP. The accumulation of camptothecin

derivatives is also low in cells not previously selected with topotecan and in cells

transfected with BCRP cDNA [66].

Flavopiridol is a cyclin-dependent kinase inhibitor under clinical trials. Robey et al.

[67] exposed the human breast cancer cell line MCF-7 with incrementally increasing

concentrations of flavopiridol. The resulting resistant cell line MCF-7 FLV1000 re-

sulted to be resistant not only against flavopiridol, but also against mitoxantrone and

topotecan.

BCRP-overexpressing cell lines MCF-7/AdrVp3000 and S1-M1-80 are reported to

be highly resistant against anthracyclines, while the other BCRP-overexpressing cell

lines are not [68]. Further investigations reveled that these two cell lines express two

different mutants of BCRP, the mutant R482T (Thr at position 482) in the MCF-

7/AdrVp3000 cell line and the mutant R482G (Gly at position 482) in the S1-M1-80

cell line. BCRP with Arg at position 482 is considered as wild-type.

The antifolate drug methotrexate seems to be transported by the wild-type BCRP,

while it is not a substrate of BCRP mutants. Chen et al. [69] reported that methotrex-

ate and methotrexate polyglutamates are transported by wild-type BCRP and also

that this transporter has a high-capacity but low-affinity for these substrates.

Several fluorescent dyes like Hoechst33342, BODIPY-prazosine, BCECF-AM and
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pheophorbide A has been reported to be BCRP substrates [55, 70, 71, 72].

The BCRP substrates are summarized in table 1.6. In figure 1.6 the structures of

selected BCRP substrates are given.

Table 1.6: BCRP substrates (Based on Mao et al. [65]).

Drug class Substrate

Anthracyclines a daunorubicin, doxorubicin
Anthracenes mitoxantrone, bisantrene, aza-

anthrapyrazole
Camptothecin derivates topotecan, SN-38, 9-amino-campothecin,

irinotecan, diflomotecan
Antifolate b methotrexate, methotrexate polyglutamate
Nucleoside analogs AZT, AZT 5’-monophosphate, lamivudine
Conjugates estrone-3-sulfate, 4-MUS, E3040S, TLC-S, 4-

MUG, E3040G, E217βG, DNP-SG
Other drugs prazosin, indolocarbazole, popoisomerase I

inhibitors (NB-506, J-107088), flavopiridol,
ErbB1 tyrosine kinase inhibitor (CI1033),
imatinib mesylate (STI1571), pantoprazole

Fluorescent dyes Hoechst 33342, BODIPY-prazosine,
BCECF-AM, pheophorbide A

aSubstrate only of the BCRP mutants R482T and R482G.
bSubstrate only of the wild-type BCRP.

BCRP inhibitors

BCRP inhibitors are of interest as chemosensitizers for clinical drug resistance and

for improving the pharmacokinetics of chemotherapeutic drugs [73]. Today, several

BCRP inhibitors are known and they may be classified into four categories [74]:

• BCRP specific inhibitors

• Broad spectrum inhibitors

• Flavonoids and derivatives

• Inhibitors of other targets that are also BCRP-inhibitors (e.g. tyrosine kinase

inhibitors (TKIs) and HIV protease inhibitors)

Fumitremorgin C, a toxin extracted from Aspergillus fumigatus, is the first identified

specific BCRP inhibitor [66]. Due to its high neurotoxicity in mice, the use in vivo

is not practicable. Tryprostatine A, a further A. fumigatus secondary metabolite

was also recognized to be a selective BCRP inhibitor. Contrary to fumitremorgin
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Figure 1.6: Structures of selected BCRP substrates.

C, tryprostatin A does not show any cytotoxicity at effective concentrations but its

low inhibitory potency limits the possibilities of application in clinical therapy [75].

The new BCRP selective inhibitor Ko143, a synthetic fumitremorgin C analogue,

was developed in order to decrease the cytotoxicity of fumitremorgin C conserving

its inhibitory activity and selectivity for BCRP [73]. Novobiocin, a coumermycin

antibiotic, was also recognized to be a non-toxic and selective BCRP inhibitor. Its

inhibitory potency is however very low: indeed, novobiocin has an IC50 value of only

about 50 µM [76].

The broad spectrum BCRP inhibitors include the high affinity third generation P-gp

inhibitors elacridar (GF 120918) and tariquidar (XR 9576) [77, 78]. Both compounds

are able to reverse the BCRP mediated resistance in MCF-7 MX cells with IC50 values

barely lower than 1 µM. An other broad spectrum BCRP inhibitor is the pipecolinate

derivative VX-710 (biricodar), which is able to inhibit only the wild-type BCRP, but

not the mutant R482T. Its inhibitory activity is however lower than of fumitremorgin C

[79]. Calcium antagonists like nicardipine and nifedipine are also able to non-selectively

inhibit BCRP. The best BCRP inhibitor among them, nicardipine, is able to inhibit

BCRP with an IC50 value of 5 µM in HeLa/SN100 cells [80].

Flavonoids have been found to be also non-selective BCRP inhibitors. Morris et al.
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[81] evaluated the effect of 20 flavonoids on the cellular accumulation and cytotoxicity

in the resistant MCF-7 MX cell line and in the parental MCF-7 cell line. They have

reported that the two most potent tested compounds, chrysin and biochanin A were

able to increase in MCF-7 MX cells the mitoxantrone accumulation at concentrations

of 0.5 and 1.0 µM and the mitoxantrone toxicity at a concentration of 2.5 µM. Phytoe-

strogens like genistein, naringenin, acacetin, and kaempferol were reported as BCRP

inhibitors by Imai et al. [82]. In this work it has been also reported that genistein is

also a substrate of BCRP and its transport mediated by BCRP in BCRP-transduced

LLC-PK1 cells is abolished by fumitremorgin C. In the last years, several studies re-

garding the interaction of natural flavonoids, synthetic flavonoids derivates, and other

compounds with structures derived from the flavonoid structure with BCRP were per-

formed [83, 84, 85, 86]. The structure-activity relationship of flavonoids as BCRP

inhibitors [87] has reveled the important contribution of some structural features to

BCRP inhibition. Finally, Juvale et al. [88] have synthesized a 7,8-benzoflavone

derivative able to selectively inhibit BCRP, presenting also low cytotoxicity at higher

concentrations.

Canetinib (CI-1033, PD 183805) was the first Tyrosine Kinase Inhibitor (TKI) re-

ported to reverse the resistance against SN-38 of BCRP expressing cells [89]. Since

this discovery, other tyrosine kinase inhibitors like gefitinib [90] and imatinib mesylate

[91] were reported to be also BCRP inhibitors. Further investigations reveled also

that imatinib mesylate is not only inhibitor but also substrate of BCRP and its trans-

port mediated by this transporter could be blocked by addition of the specific BCRP

inhibitor Ko143 [92].

HIV protease inhibitors were also reported to be BCRP inhibitors by Gupta et

al. [93]. In particular, ritonavir, saquinavir, and nelfinavir inhibit wild-type BCRP

(R482) with IC50 values between about 4 and 20 µM. They are also able to inhibit the

two mutants R482T and R482G with IC50 values about 2-times greater than for the

wild-type BCRP. However, HIV protease inhibitors are not specific BCRP inhibitors,

but they are also able to inhibit other ABC transporters involved in MDR [94]. The

structures of selected BCRP inhibitors are given in figure 1.7.

The first pharmacophore model for BCRP inhibitors was proposed by Chang et al.

[95]. It was built using four potent BCRP inhibitors (GF120918, Ko143, nelfinavir,

and nicardipine) and consists of three hydrogen bond acceptors and three hydrophobic

features. Another pharmacophore model was more recently proposed by Matsson et

al. [96]. It consists of only two hydrophobic centers and one hydrogen bond acceptor

feature. The two hydrophobic centers are separated by a distance of 6.75 Å and they

are separated from the hydrogen bond acceptor feature by 9.84 Å and 3.47 Å.
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2 Materials and Methods (Molecular

Modelling)

2.1 Descriptors

The purpose of QSAR descriptors is to represent physical properties of molecules by

numerical values. These numbers can be successively used in mathematical models to

predict chemical or biological properties of codified molecules. In the present work,

several molecular descriptors were calculated using the software Molecular Operating

Environment (MOE). The descriptors treated in this chapter are divided into classes,

according to their calculation and physical meaning. The following classification and

description of the used molecular descriptors is based on the manual of the software

MOE [97] and on the book Molecular Descriptors for Chemoinformatics by Todeschini

and Consonni [98].

2.1.1 1D and 2D MOE descriptors

Partial Charge Descriptors

Partial charge descriptors are calculated using partial charges of each atom of the

molecule. This class of descriptors is divided into two subgroups, according to the

method used to calculate the partial charges. The first subgroup includes descrip-

tors that are calculated using the partial equalization of orbital electronegativities

(PEOE) method. This method was developed by Gasteiger in 1979 [99]. It consists

of calculating the amount of charge transferred (q<α>) between two bonded atoms

(with χB > χA) until equilibrium. The convergence is guaranteed by an exponentially

decreasing scale factor, that damps down the amount of charge transferred at each

iteration. The amount of charge transferred at each iteration is calculated as:

q<α> =
χA − χB
χ+
A

0.5α

where χ+
A is the electronegativity of the positive ion of atom A, χA is the elec-

tronegativity of atom A, that dependents quadratically on partial charge, χB is the
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electronegativity of atom B and α (with α = 1,2,3, ..., ∞) is the number of iteration

steps. The use of a damping factor assures the reaching of convergence. The total

charge of an atom is calculated as the sum of the single charge transfers [99].

Descriptors using the PEOE charges are indicated in MOE as PEOE x charge de-

scriptors. Descriptors using charges calculated by an external program are indicated

as Q x charge descriptors.

Physical properties

Table 2.1: Physical properties.

Code Descriptor name

apol Sum of the atomic polarizabilities

bpol Sum of the absolute value of the difference between atomic polarizabil-

ities of all bonded atoms in the molecule. This descriptor is calculated

as follows:
∑

i |pi − pj |, where pi and pj are the polarizabilities of two

bonded atoms of a molecule

FCharge Total charge of the molecule

mr Molecular refractivity calculated from a 11 descriptors linear model [97]

SMR Molecular refractivity calculated as described in Scott et al. [100]

Weight Molecular weight

logP (o/w) Log of the octanol/water partition coefficient. This descriptor is calcu-

lated from a linear atom type model [97]

SLogP Log of the octanol/water partition coefficient calculated as described in

Scott et al. [100]

vdw vol van der Waals volume

density Molecular mass density

vdw area Area of van der Waals surface

In table 2.1 are reported the molecular descriptors describing simple physical prop-

erties. Their calculation does not require knowledge of molecular conformations and

only the connections of the atoms within the molecule are important. The first two

descriptors, apol and bpol use the atomic polarizability for their calculation, as re-

ported in the Handbook of Chemistry and Physics (1994). FCharge is the total charge

of the molecule, obtained as the sum of each atomic formal charge. This descriptor

takes values equal to 0, ± 1, ± 2, ... ± ∞ only. mr is the molecular refractivity

calculated from a linear model obtained by 1,947 small molecules. SMR is the molecu-

lar refractivity obtained from an atomic contribution model. Weight is the molecular
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weight. logP(o/w) is the octanol/water partition coefficient calculated from a linear

model obtained by 1,847 molecules. SlogP is the octanol/water partition coefficient

obtained from an atomic contribution model. vdw vol is the van der Waals volume

calculated using a connection table approximation: it means that for calculation of

the descriptor is considered only how the atoms in the molecule are connected, not

the molecular conformation. density is the ratio of Weight to vdw vol. vdw area is the

area of van der Waals surface calculated using a connection table approximation.

VSA-Type descriptors

The nature and calculation of van der Waals surface area (VSA) descriptors is well

described by Paul Labute, the author of this set of descriptors [101]. The VSA-type

descriptors are based on the van der Waals surface area (VSA). The VSA for each

atom in a molecule is obtained from the surface area of the atom, approximated as a

sphere with radius equal to the van der Waals radius, which is not contained in any

other atom of the molecule. The molecular VSA is then calculated as the sum of each

single VSAs in the molecule. The calculation of the descriptors occurs in two steps:

Firstly, the VSA for each atom of a molecule is calculated. The calculated atomic

VSAs are successively combined with physicochemical properties as molar refractivity

(MR), lipophilicity (logP) (both calculated using the Wildman and Crippen’s method)

and atomic partial charges (calculated using the Gasteiger method) taken only in a

certain range, as described in the following equation:

P V SA(u, v) =
∑
i

Viδ(Pi ∈ [u, v])

where Vi is the atomic VSA, and P is the calculated atomic property in the predefined

range. The result is a set of 10 descriptors for logP, 8 descriptors for MR and 14

descriptors for the atomic partial charges. The interval boundaries for logP are: −∞,

-0.4, -0.2, 0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, ∞. The interval boundaries for MR are: 0,

0.11, 0.26, 0.35, 0.39, 0.44, 0.485, 0.56, ∞. The interval boundaries for the atomic

partial charges are: −∞, -0.3, -0.20, -0.15, -0.10, -0.05, 0, 0.10, 0.15, 0.20, 0.25, 0.30,

∞. Together, the VSA-Type descriptors describe a 10 + 8 + 14 = 32 dimensional

chemistry space.
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Atom Counts and Bond Counts

Table 2.2: atom counts and bound counts descriptors.

Code Descriptor name

a aro Number of aromatic atoms

a count Number of atoms

a heavy Number of heavy atoms

a ICM Atom information content (mean)

a IC Atom information content (total)

a nH Number of hydrogen atoms

a nB Number of boron atoms

a nC Number of carbon atoms

a nN Number of nitrogen atoms

a nO Number of oxygen atoms

a nF Number of fluorine atoms

a nP Number of phosphorus atoms

a nS Number of sulfur atoms

a nCl Number of chlorine atoms

a nBr Number of bromine atoms

a nI Number of iodine atoms

b 1rotN Number of rotatable single bonds

b 1rotR Fraction of totale single bonds

b ar Number of aromatic bonds

b count Number of bonds

b double Number of double bonds

b heavy Number of bonds between heavy atoms

b rotN Number of rotatable bonds

b rotR Fraction of rotatable bonds

b single Number of single bonds

b triple Number of triple bonds

VAdjMa Vertex adjacency informations (magnitude)

VAdjEq Vertex adjacency informations (equality)

The atom counts and bond count descriptors describe the number of particular atom

type and bound type in a molecule or properties directly connected with them. The

atom counts and bond count descriptors calculated with MOE are reported in table

2.2.
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Kier and Hall Connectivity and Kappa Shape Indices

The Kier-Hall connectivity indices calculated with MOE are divided in:

• Atomic connectivity indices (order 0 and 1)

• Carbon connectivity indices (order 0 and 1)

• Atomic valence connectivity indices (order 0 and 1)

• Carbon valence connectivity indices (order 0 and 1)

They consider each heavy atom (or only carbon atoms, in the case of carbon connec-

tivity indices) of a molecule as a vertex. The connectivity δ for each vertex represents

the number of direct connections of this vertex with the others. The connectivity index

is then defined as:

0χ =
∑
i

δ
−1/2
i

For connectivity indices of zero order and:

1χ =
∑
i

(δi · δj)−1/2

For connectivity indices of first order. In the second case, δi and δj are connectivity

values of vertices with topological distance equal to 1. The atomic (or carbon) valence

connectivity indices are obtained by replacing the vertex degree δ with the valence

vertex degree δv in the formulas reported above. The valence vertex degree is defined

as:

δv =
pi − hi

zi − pi − 1

where pi is the number of valence electrons in the i atom, hi is the number of hydro-

gens attached to the i heavy atom and zi is the total number of electrons in the i atom.

The Kappa shape indices compare the molecular graph with the minimal and max-

imal molecular graphs that are possible to be obtained with the same atoms number.

The first, second and third order κ shape indices are calculated as:

1κ = 2 ·
1Pmax ·1 Pmin

(1P )2
=
A(A− 1)2

(1P )2

2κ = 2 ·
2Pmax ·2 Pmin

(2P )2
=

(A− 1)(A− 2)2

(2P )2
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3κ = 4 ·
3Pmax ·3 Pmin

(3P )2
=


(A−3)(A−2)2

(3P )2
if A is even

(A−1)(A−3)2

(3P )2
if A is odd

where Pmin and Pmax are the minimal and maximal molecular graphs and A is the

number of atoms in the molecule. The Kier alpha-modified shape indices take also the

covalent radius of atoms and their hybridization state into account. It can be insert

into the original calculation a value α defined as:

α =
ri
rC
− 1

where ri is the covalent radius of atom i and rC is the covalent radius of a carbon

atom. The first, second and third order of Kier alpha-modified shape indices are

calculated as:

1κ =
(A+ α)(A+ α− 1)2

(1P + α)2

2κ =
(A+ α− 1)(A+ α− 2)2

(2P + α)2

3κ =


(A+α−3)(A+α−2)2

(3P+α)2
if A is even

(A+α−1)(A+α−3)2

(3P+α)2
if A is odd

The Kier molecular flexibility index KierFlex is calculated as:

KierF lex =
(KierA1)(KierA2)

n

where n is the number of atoms in the molecule. The Zagreb index is defined as the

sum of the vertex degrees for all the heavy atoms of the molecule.

Adjacency and Distance Matrix Descriptors

The adjacency and distance matrix descriptors are based on the adjacency matrix and

the distance matrix of a chemical structure. If a molecule is represented as a graph,

the adjacency matrix shows which vertices (atoms) are adjacent (directly connected)

to each other. The distance matrix shows on the other hand the topological distance

between vertices in the graph representation of a molecule. The adjacency and distance

matrix descriptors are summarized in table 2.3.

BCUT and GCUT descriptors

The BCUT and GCUT descriptors [102] are two particular kinds of adjacency matrix

descriptors. Their calculation is based on a modified adjacency matrix, called Burden
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Table 2.3: Adjacency and distance matrix descriptors.

Code Descriptor name

balabanJ Balaban’s connectivity topological index
diameter Topological diameter
petitjean Graph-theoretical shape coefficient
radius Topological radius
VDistEq Vertex distance equality index
VDistMa Vertex distance magnitude index
wienerPath Wiener path number
wienerPol Wiener polarity number

matrix.[103] For BCUT descriptors, the Burden matrix is defined as an adjacency ma-

trix where the diagonal elements are selected atomic properties and the off-diagonal

elements Bij, only for adjacent atoms, take the value of π−1/2, where π is the conven-

tional bond order. Remaining elements take the arbitrary value of 0.001. The matrix

eigenvalues are calculated and the smallest, second, third, and largest eigenvalues are

used as descriptors. The GCUT descriptors differ to BCUT descriptors only for the

definition of the used matrix. For calculation of GCUT descriptors, the values of off-

diagonal entries are calculated as d−1/2, where d is the graph distance between the

two atoms. MOE uses as atomic properties for the matrix diagonal the PEOE partial

charges, the atomic contribution to logP and the molar refractivity (both calculated

using the Wildman and Crippen SlogP/SMR methods).

Pharmacophore Feature Descriptors

The pharmacophore feature descriptors calculated with MOE can be divided into two

subgroups: Descriptors that simply count the number of atoms included in predefined

pharmacophoric groups in the molecule and descriptors calculated as the sum of the

van der Waals areas of atoms included in the considered pharmacophoric groups. The

feature sets used for descriptors calculation are:

• Number of hydrogen bond acceptor atoms

• Number of acid atoms

• Number of basic atoms

• Number of hydrogen bond donor atoms

• Number of hydrophobic atoms
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2.1.2 3D MOE descriptors

Potential Energy Descriptors

The potential energy descriptors are calculated using each single component of the

potential energy value of a molecular conformation. This class of descriptors com-

prises the value of the potential energy, descriptors based on bonded forces, and on

non-bonded forces. The value of the potential energy is the sum of all single energy

components of the force field. Descriptors based on bonded forces calculate the po-

tential energy component of atoms connected by covalent ligands only. They comprise

the bond stretching energy, the angle bending energy, the stretch-bend interaction

energy, the out-of-plane bending energy, and the torsion energy. Descriptors based on

non-bonded forces are the van der Waals energy and the electrostatic energy. [104]

Surface Area and Volume Descriptors

Table 2.4: Surface area and Volume descriptors.

Code Descriptor name

ASA Water accessible surface area
dens Mass density
glob Globularity
pmi Principal moment of inertia
pmi(XYZ) x,y,z components of the principal moment of inertia
rgyr Molecular weight
std dim1 Standard dimension1
std dim2 Standard dimension2
std dim3 Standard dimension3
vol van der Waals volume
VSA van der Waals surface area

These descriptors are correlated with the molecular conformation and are useful to

describe dimensional parameters (like volume and surface) of molecules. The water

accessible surface area (ASA) and the van der Waals surface area (VSA) quantify

the molecular surface using different approaches. The water accessible surface area

is calculated using a sphere with diameter of 1.4 Å that simulates a water molecule.

The van der Waals surface area is calculated as the sum of the atomic van der Waals

surface areas not included in other atoms. Analogously, the van der Waals volume

is calculated as the volume included in the van der Waals surface area. The mass

density is defined as the molecular weight divided by the van der Waals volume. The

value of globularity indicates how is the molecule in the bulk extended. [105] A value
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of globularity tending to 1 means that the molecule has a globular form while a value

of globularity tending to 0 is associated with linear structures. This descriptor is

obviously highly dependent on the molecular conformation. The principal moment of

inertia is defined as:

pmi =
A∑
i=1

mi · r2i

where A is the atom number, mi is the atomic mass and ri is the perpendicular

distance from the axis of the atom i. The three x, y, z components of the principal

moment of inertia are defined as:

pmiX =
A∑
i=1

mi · (y2i + z2i ) pmiY =
A∑
i=1

mi · (x2i + z2i ) pmiZ =
A∑
i=1

mi · (x2i + y2i )

where x, y and z are the atom coordinates.[98] The three standard dimensions

(std dim1, std dim2 and std dim3) calculated by MOE are the largest, second largest

and third largest eigenvalues of the covariance matrix of the atomic coordinates.

Conformation Dependent Charge Descriptors

These conformation dependent descriptors are calculated using the stored partial

charges of molecules. This class includes the dipole moment and its three separated

components, as well as several descriptors calculated combining the partial charges

with the water accessible surface area of the molecule.

Vsurf Descriptors

The Vsurf descriptors are the MOE implementation of the VolSurf descriptors devel-

oped by Cruciani et. al. [106]. These conformation dependent descriptors are able

to numerically represent molecular interaction field (MIFs) informations about the

molecular size, the molecular shape, the distribution of hydrophobic and hydrophilic

regions and their balance [98]. Interactions fields are calculated using a water probe,

a hydrophobic probe or other probes, like ionic probes [106].

MOPAC Descriptors

The MOPAC descriptors are conformation dependent descriptors calculated using the

MOPAC package implemented in MOE. The semiempirical Hamiltonians PM3, MNDO

or AM1 are used in the calculation to obtain the dipole moment (kcal/mol), the total

energy (kcal/mol), the electronic energy (kcal/mol), the heat of formation (kcal/mol),
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the ionization potential (kcal/mol), the energy (eV) of the Lowest Unoccupied Molec-

ular Orbital (LUMO), and the energy (eV) of the Highest Occupied Molecular Orbital

(HOMO).

2.1.3 RECON/TAE descriptors

Molecular electron density can be represented by quantum chemically derived descrip-

tors. These descriptors are useable with a wide kind of molecules and are easily ob-

tained by ab-initio calculations. However, an inconvenience of these descriptors is the

considerable computational effort expended to calculate them using quantum chemical

methods [107]. This problem can be bypassed using Transferable Atom Equivalents

(TAEs). TAEs are electron density fragments containing a charged nucleus and are

delimited by discrete boundaries. It is possible to assembly TAE fragments to repre-

sent molecular electron densities. The RECON algorithm firstly combines TAE atoms

together to generate the electron density distribution of molecules. The following step

is the adjustment of surface electronic properties used for generating QSAR descrip-

tors [107]. Finally, the light reflection algorithm is used to generate the TAE/Shape

descriptors [108].

2.1.4 RDF descriptors

Formally, the Radial Distribution Function (RDF) of an ensemble of N atoms can be

interpreted as the probability distribution to find an atom in a spherical volume of

radius r [109]. The general form of the radial distribution function is given in the

following equation:

g(r) = f

N−1∑
i

N∑
j>i

AiAje
−B(r−rij)2

where f is a scalar vector, A are atomic properties of the atoms i and j, rij is the

interatomic distance between the atoms i and j, and B is a smoothing parameter that

could be interpreted as a temperature factor that defines the movement of atoms.

The RDF descriptors calculated with MOE are divided into two groups, according

to the used distance: the 3D-RDF descriptors are calculated using the geometrical

distance, while the 2D-RDF descriptors are calculated using the topological distance.

Each molecule is codified by either an RDF vector of 30 values (if 3D-RDF descriptors

are used) or by a RDF vector of 15 values (if 2D-RDF descriptors are used). The step

size of r is equal to 0.5 Å for 3D-RDF descriptors, while the 2D-RDF descriptors use

a step size for r equal to 1 Å. The B value is fixed to 100 Å−2.

The used atom properties for the calculation of RDF descriptors are the electroneg-

ativity (e), the atomic mass (m), the refractivity (p), and the atomic volume (v). RDF
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descriptors were also calculated without the use of atomic properties (unweighted, u).

2.1.5 Inductive descriptors

Inductive descriptors basically quantify inductive and steric interactions between sub-

stituents and reaction centers. Other parameters that can be quantified with the

same mathematical apparatus are the partial atomic charges, analogues of chemical

hardness-softness and electronegativity [110].

2.1.6 Dragon descriptors

The Dragon descriptors used in this work were calculated using the free version of the

program (E-Dragon), available at the internet address http://www.vcclab.org/lab/edra-

gon.

Autocorrelation descriptors (DRAGON)

The Autocorrelation of a Topological Structure (ATS) also known as Moreau-Broto

autocorrelation [111] is the most famous spatial autocorrelation, defined as:

ATSk =
1

2

A∑
i=1

A∑
j=1

wi · wj · δ(dij; k)

where w are atomic properties, A is the number of atoms of the molecule, k is the

lag, and dij is distance (geometrical or topological) between the atoms i and j. δ(dij; k)

is the Kronecker delta function: it is equal to 1 if dij = k, while it is equal to 0 if

dij 6= k.

The ATS descriptors are divided into topological and geometrical ATS descriptors

based on the used distance matrix (topological or geometrical, respectively). The δ

values range from 1 to 15 for the topological ATS descriptors, while the geometrical

ATS descriptors use δ values between 1.5 and 15.5 Å, with a step size of 0.5 Å. The

atomic properties used for the calculation of the ATS descriptors are the VSA values

(a), the electronegativity (e), the hydrogen bond acceptors (ha), the hydrogen bond

donors (hb), the SLogP increments (L), the atomic mass (m), the SMR increments

(s), and the atomic volume (v). Like the RDF descriptors, also the ATS descriptors

were calculated without the use of atomic properties (unweighted, u).

3D-MoRSE descriptors (DRAGON)

The 3d-MORSE (3d-MOlecule Representation of Structures based on Electron diffrac-

tion) descriptors represent the 3D structure of a molecule by a fixed number of variables

independed on the number of atoms of the molecule [112]. 3D-MoRSE descriptors
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are calculated using different atomic properties such as atomic mass, atomic volume,

atomic electronegativity, and atomic polarizability [113].

WHIM descriptors (DRAGON)

The WHIM (Weighted Holistic Invariant Molecular) descriptors codify important molec-

ular 3D informations regarding molecular size, shape, symmetry, and atom distribution

[114]. The algorithm performs a principal component analysis on the cartesian coordi-

nates of the molecule by using a weighted covariant matrix [98]. The atomic properties

used to calculate WHIM descriptors are atomic mass, the van der Waals volume, the

atomic electronegativity (e), the atomic polarizability and the electrotopological state

indices of Kier and Hall [113].

GETAWAY descriptors (DRAGON)

The GETAWAY descriptors are calculated from the Molecular Influence Matrix (MIM)

defined as:

H = M · (MT ·M)−1 ·MT

where H is the MIM and M is the molecular matrix (the centered cartesian coordi-

nates of the atoms in the molecule). The superscript T refers to the transposed matrix

[98, 115].

2.2 Machine learning methods

2.2.1 Self-Organizing Maps (SOMs)

Self-organizing Maps (SOMs), discovered by Teuvo Kohonen 30 years ago, are un-

supervised neural networks able to project a multidimensional chemical space to a

one- or two-dimensional layer of neurons [116, 117]. Self-organizing Maps are able to

solve a wide variety of classification problems as such as speech recognition (Kohonen,

1990) or can be used in rational Drug Design [118]. Basically, a SOM consists of a

group of neurons arranged in a one-dimensional array of neurons or, more frequently, a

two-dimensional plane. Each neuron is in relationship with a defined number of other

neurons of the SOM, named neighbors [117]. According to the topological distance

between a neighbor and the considered neuron, the neighbor will be classified as near-

est neighbor, second-nearest neighbor, etc. The arrangement of the neighborhood of

a neuron is normally squared, rectangular or hexagonal [119]. These three kinds of

two-dimensional arrangement have the problem that neurons on the border of the map

have fewer neighbors as compared to neurons on the center of the map. This problem
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has been solved using a toroidal topology [120]. This solution has been used in the

present work. In case of a square SOM, each neuron is codified as a vector:

mi = (mi1,mi2,mi3, . . . ,min)

Each neuron of a SOM is initialized with a random vector. The input information

(in this work, a chemical compound) is also codified as a vector:

xi = (xi1,xi2,xi3, . . . ,xin)

Where vector elements consist of molecular descriptors. Now the task of the SOM

now is to find the Best-Matching Cell or, in other words, the most similar neuron to

the chosen input vector. The similarity between the input vector and the neurons of

a SOM is based on the Euclidian distance:

d(p,q) =

√√√√ n∑
i=l

(qi − pi)2

The neuron with minimal distance to the input vector is defined as the winning

neuron. Once that the winning neuron has been found, the algorithm modifies the

neuron vector according to the equation:

mi(t+ 1) = mi(t) + hci(t)[x(t)–mi(t)]

Where mi represent the winning neuron, x is the input vector, t is the training

iteration and hci(t) is the Gaussian kernel, that defines the neighborhood of the winning

neuron and how these neurons must be modified. Mathematically, hci(t) is defined as:

hci = α(t)exp

(
−||rc − ri||

2

2σ2(t)

)
Where α(t) is the scalar-valued adaptation gain, that monotonically decreases from 1

to 0, ||ri−rc|| is the Euclidian distance between the winning neuron and the neighboring

neuron and σ(t) is the radius of the neighborhood. The self-organizing maps calculated

with the Kohonen package implemented in R, start as default with a value of radius

that covers 2/3 of all unit-to-unit distances. Thus, in the early iteration steps the

SOM is globally modified. Modifications will be more restricted with progressing of

the training and, nearly to the end of the training, they will affect only the winning

neurons [119, 121]. On the end of the training process, objects with similar input

vectors (molecular descriptors, in our case) will be mapped into the same neuron or in

closely adjacent neurons [120]. Finally, the algorithm assigns the class of the neurons

in the SOM by looking which element in the training set has the closest Euclidian
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distance to the considered neuron. If more than one element is associated with the

same neuron, the class is calculated by the amount of the training elements of the

two classes: the most represented class, in term of training elements on the neuron,

also will become the class associated to that neuron. A trained SOM can be used

to classify an external (test) dataset. The test dataset has to be projected to the

map. The best matching neuron assigns the class label to the object, according to the

Euclidian distance between the input vector and the vector associated to the neuron.

2.2.2 Support vector Machine (SVM)

Support vector machines (SVMs) are kernel-based classification methods, proposed by

Vapnik in the beginning of 80s and improved in 1995 [122, 123]. SVMs are widely used

to solve classification problems in many research fields as computational biology and

drug discovery [124, 125, 126, 127]. Like other classification methods, SVMs separate

two or more classes of objects with different labels in a multidimensional space through

a hyperplane. What distinguishes a SVM from other classification methods is how it

choses the hyperplane. As shown in figure 2.1a, more lines (or hyperplanes) are able to

separate two populations of vectors in the training set, but which one will generalize

well? The problem to find optimal hyperplanes for separating classes of vectors has

been solved using support vectors: If two vector populations are separated without

errors by a hyperplane, it is possible to take into account only the nearest training

vectors to the hyperplane and to maximize the distance between the hyperplane and

these vectors. The hyperplane with the maximized margins is also the hyperplane that

provides the best classifier (figure 2.1b) [122, 128]. If we assume that the class labels

are 1 and -1, xi is the ith vector in a dataset and yi is the label of xi. The dataset

is linearly separable if there exists a vector w (called weight vector) and a scalar b

(called bias) such that the inequities

w · xi + b ≥ 1 if yi = 1

w · xi + b ≤ −1 if yi = 0

are valid for all dataset elements. The optimal hyperplane, which minimizes the

margins, is defined as [122]:

w0 · x+ b = 0

Unfortunately, data coming from biological assays are not ideal, they contain er-

rors. In this case it is impossible to cleanly separate two clusters using a line or a

hyperplane. The SVM algorithm has to be modified to consider this problem and to
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(a) Two classes of points in a two-
dimensional plane

(b) The maximum-margin decision
boundary implemented by the
SVMs

Figure 2.1: Linear separation with hyperplanes (reproduced from Tarca et. al., 2007)

be able to separate the dataset with the minimal number of errors. The presence of

errors can be allowed by introduction of a positive variable ξ called slack variable that

permits to exclude the elements in the training dataset that seem to be experimental

errors. In other words, the hard margin in the original form of the algorithm has been

substituted with a soft margin. This idea can be expressed in mathematical form as

the minimization of the function:

1

2
w2 + CF

(
l∑

i=1

ξi

)

where C is a constant parameter which sets the weight of the slack variables and

F is a monotonic convex function. Large values of C mean that a large penalty is

assigned to errors [124].

In many practical cases, nonlinear classifiers generate better accuracy than linear

classifiers. It is possible to extend the linear SVMs to nonlinear SVMs, if it is required

by the analyzed problem. This extension is provided by using a kernel transformation,

which adds an additional dimension to the dataset. In the transformed feature space,

the kernel transformation enables to linearly separate a dataset that was not separable

in the original feature space [129]. Two examples of kernels, implemented in R and

used in the present work are the polynomial:

k(x,z) = (xzT + 1)d

And the radial basis function (RBF):
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k(x,z) = exp(−γ||x− z||2)

2.2.3 k-Nearest Neinghbors (k-NN)

k-Nearest Neighbors (k-NN) is a simple and fast algorithm that assigns the class label

of an input vector according to the majority class of its closest k-nearest neighbors.

The distance between the input vector and the neighborhood is generally the Euclidian

distance, defined as:

d(p,q) =

√√√√ n∑
i=l

(qi − pi)2

The parameter k is the number of neighbors considered for assigning the class label.

Normally this value is odd, to avoid undecideds.

2.3 Analysis of data

In the two class case with classes 1 (positive) or 0 (negative), the single prediction has

four different outcomes. The true positive (TP) and true negative (TN) are the two

cases of correct classification, while the false positive (FP) and the false negative (FN)

are not. The false positive occurs when the outcome is predicted as positive but it is

actually negative. Otherwise, the false negative occurs when the positive outcome is

incorrectly predicted as negative. The true positive rate is given by [130]:

TP rate =
TP

TP + TN

The true negative rate is otherwise given by:

TN rate =
TN

TP + TN

The overall quality of the prediction is given by the accuracy, expressed as follows:

ACC =
TP + TN

TP + FP + TN + FN

The confusion matrix, an easy representation of the results of a two classes predic-

tion, is given as shown below:
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Positive

predicted

Negative

predicted

Positive observed

(active)
TP FN

Negative observed

(inactive)
FP TN

2.4 3D QSAR

While the classical QSAR methods relate the biological activity of compounds to

their physicochemical parameters, the 3D QSAR methods, particularly comparative

molecular field analysis, take in to consideration also the three-dimensional structures

and the binding modes of protein ligands [131]. One of the first developed 3D QSAR

methods is the Comparative Molecular Field Analysis (CoMFA). This method was

described for the first time by Cramer et. al [132].

The compounds used for CoMFA should be structurally related and should have the

same kind of interaction with the target protein. In contrast to classical QSAR, it is

sufficient that they conserve a common pharmacophore and not necessarily the same

skeleton, as required for classical QSAR.

The first step on performing a CoMFA analysis consists to generate the low energy

3D structure of the most active compound in the chosen molecules set. In the next

step, the other molecules of the dataset are superimposed on to the template structure,

according to the common pharmacophore. The superimposed molecules are finally

placed into a three-dimensional box that is several Å larger than the combined volumes

of all molecules. The box is then divided into a regular lattice with a default distance

of 2 Å between the grid points (Figure 2.2).

The neutral carbon atom, charged atoms or hydrogen bond donor or acceptors are

used as probe atoms to measure the interaction energies at each grid point (the van

der Waals, the Coulomb and the hydrogen bond interactions, respectively). The van

der Waals interactions are calculated using the Lennard-Jones potential equation:

EvdW =
n∑
i=1

(Aijr
−12
ij − Cijr−6

ij )

where EvdW is the sum of the van der Waals interaction energies, rij is the distance

between the atom i and the grid point j, where the probe atom is localized, and Aij

and Cij are constants related to the van der Waals radii of the corresponding atoms.

The Coulomb interactions are calculated using the Coulomb potential equation:
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Figure 2.2: Schematic representation of the CoMFA grid. For clearer representation, only
one molecule is shown and only the outer lines of the grid are drawn.

Ec =
n∑
i=1

qiqj
Erij

where Ec is the Coulomb interaction energy, qi is the partial charge of the atom i, qj

is the charge of the probe atom j, E is the dielectric constant, and rij is the distance

between the atom i and the grid point j, where the positive charge is localized.

As shown in figure 2.3, the Lennard-Jones and the Coulomb potentials can change

their values from very small to very large numbers within an Ångstrom fraction. In

order to prevent the presence of too small and too large values in the CoMFA fields,

cut-off values were defined. However, small changes of the molecule orientation could

result in very different results of the CoMFA analysis [134].

In contrast to CoMFA, the comparative molecular similarity indices analysis (CoM-

SIA) [135] does not calculate interaction energies but ’similarity indices’ to probe

atoms. These similarity indices are calculated at the intersections of a regular lattice

[136]. The similarity indices are calculated using the following equation:

AqF,k(j) =
n∑
i=1

Wprobe,kwike
−αr2iq

where AF,k is the similarity index between the molecule and a probe atom placed

at the intersections of the lattice, i is the summation index over all atoms of the

investigated molecule j, wprobe,k is the probe atom with charge +1, radius equal to

1 Å, and hydrophobicity equal of +1, wik is the actual value of the physicochemical

property k of atom i, α is the attenuation factor, and riq is the mutual distance between
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Figure 2.3: The Lennard-Jones and Coulomb functions used in CoMFA studies compared
to the Gaussian approximation used in CoMSIA studies [131, 133].

the probe atom at the grid point q and the atom i of the molecule.

The use of the Gaussian potential instead of the Lennard-Jones and the Coulomb

potentials leads also to limited energy values also short distances between the atom

and the probe. For this reason, cut-off values are not needed in CoMSIA analysis

(Figure 2.3). The better uniformity of the potential values in the CoMSIA analysis

with respect to the CoMFA analysis allows the calculation of interactions inside the

molecule as well as on the molecular surface. Furthermore, the CoMSIA analysis is not

highly influenced by the orientation of the molecule in the lattice as in CoMFA analysis.

These advantages of the CoMSIA analysis lead generally to better predictivity values

in comparison to the CoMFA analysis.

2.4.1 PLS analysis

The matrix obtained from a CoMFA or a CoMSIA analysis consists of several thousand

columns, while the number of rows (given by the number of molecules in the analysis) is

generally lower than one hundred. For this reason, a normal multiple linear regression

is not possible. The Partial Least Squares (PLS) analysis is the method of choice

for deriving a linear relationship between the activity column (the Y vector) and the

field variables (the X matrix) of CoMSIA and CoMFA analysis. Analogously to PCA,

in the PLS analysis the X matrix (the CoMFA and CoMSIA fields) is decomposed
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into the product of a score matrix and a loading matrix. The columns of the score

matrix are called latent vectors. The latent variables can be considered as linear

combination of the original field variables. The number of components to use for the

analysis is chosen in order to find the maximal correlation between the X and Y values.

The sequential extraction of the components is performed by trying to maximize the

variance of the independent variables an the correlation with the Y vector. The next

extracted component is orthogonal to the previous one and explains a part of the

remaining variance. The extraction of the components is performed until reaching a

maximal number of component or until complete explanation of the variance. The use

of high numbers of components leads to overfitting by the model: In order to prevent

this, the generated 3D QSAR models must be statistically validated.

2.4.2 Validation of 3D QSAR models

The quality of 3D QSAR models is mainly evaluated by using two parameters: the r2

value (the fraction of explained variance) and the q2 value (the cross-validated r2). R2

measures the ability of the 3D QSAR model to describe the variance of the data, or

rather it estimates the fit’s quality of the regression model obtained from the training

set. R2 is calculated as:

r2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2

where yi is the actual value, ŷi is the value predicted by the model and ȳ is the mean

of the y values.

The q2 value expresses the robustness of the 3D-QSAR model. It is calculated

according to the following equation:

q2 = 1− PRESS

SD
= 1−

n∑
i=1

(Ya − Yp)2

n∑
i=1

(Ya − Ym)2

where PRESS is the predictive sum of squares, SD is the sum of squared deviations,

and Yp is a predictive value. The values of q2 can be between −∞ and 1. If the

value of q2 is equal to 1, the model is perfect and each point of the model can be

calculated without errors. A value of q2 equal to 0 means that the model is not more

predictive than a model where to each element of the dataset was assigned the average

of the observed activity values as predicted value. A negative q2 value means that the

predicted values are worse than the average of the activity values of the dataset.
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3 Materials and Methods (Biological

testing)

3.1 Materials

3.1.1 Chemicals

Table 3.1: Chemicals used in this work.

Chemicals Manufacturer Article number

Calcein AM Sigma 17783

Calcium chloride dihydrate Merck P 4901

Cyclosporine A Sigma C 3662

D-glucosemonohydrate Merck 1040740500

Dimethylsulfoxide (DMSO) Acros AC 19773

Disodium hydrogenphosphate Applichem A 4732

HEPES (free acid) Appluchem A 3707

Hoechst 33342 Sigma B 2261

Hydrochloric acid (0.5 M) Grüssing 24204

Ko143 Tocris 3241

Magnesium sulfate heptahydrate Applichem A 4101

Melsept SF Braun 18907

Methanol Merck 107018

Mitoxantrone Sigma M 6545

Potassium chloride Merck 104936

Potassium dihydrogenphosphate Applichem A 3095

SN-38 TCI Europe N.V. E 0748

Sodium bicarbonate Merck 106329

Sodium chloride Merck 106404

Sodium hydroxide solution (1 M) Grüssing 22195
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3 Materials and Methods (Biological testing)

3.1.2 Materials

Table 3.2: Materials for assays and cell culture.

Material Manufacturer Article number

1.0-5.0 mL Bulk, Natural pipette

tips

Starlab 11009-5000

1.5 mL Amber microtubes with

attached pp cap

Sarstedt 72690004

1.5 mL Neutral microtubes with

attached pp cap

Sarstedt 72690001

2.0 mL MaxyClear microtubes Axygen scientific MCT-200-C

96 Well, clear PS microplate, flat

bottom

Greiner bio-one 655098

96F untreated black micro well

SH plate

Nunc 237108

96-Well tissue culture plate, flat

bottom with lid, sterile

Sarstedt 831835

CASYton solution Schärfe System 43001

Conical test tube PP 15 mL, ster-

ile

Nerbeplus GmbH 25027001

Conical test tube PP 50 mL, ster-

ile

Nerbeplus GmbH 25007001

Cryos PP with screw cap, sterile Greiner bio-one 123263

Fetal bovine serum Sigma F 7524

Glas pasteur pipettes (230 mm) VWR international 612-1702

Growth medium D-MEM 5671 Sigma M 5650

Growth medium RPMI-1640 PAN Biotech GmbH P 0416500

Membrane filter 0.2 µm, sterile Whatman 10462200

Norm-Ject 10 mL syringe Henke Sass Wolf 4100-000V0

Norm-Ject 20 mL syringe Henke Sass Wolf 4200-000V0

Penicillin-Streptomycin solution Sigma P 0781

Serological pipette 10 mL, sterile Sarstedt 86.1254.001

Serological pipette 25 mL, sterile Sarstedt 86.1685.001

TipOne 0.1-10.0 µL natural

pipette tips

Starlab S 1111-3000

TipOne 1-200 µL yellow pipette

tips

Starlab S 1111-0006

TipOne 101-1000 µL natural

pipette tips

Starlab S 1111-2020
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3.1 Materials

Table 3.2: Materials for assays and cell culture.

Material Manufacturer Article number

Tissue culture flasks, 25 cm2,

sterile, filter cap

Greiner bio-one 690175

Tissue culture flasks, 75 cm2,

sterile, filter cap

Greiner bio-one 658175

Tissue culture flasks, 175 cm2,

sterile, filter cap

Greiner bio-one 660175

Trypsin-EDTA solution PAN Biotech GmgH P100231SP

3.1.3 Instruments

Table 3.3: Instruments used in this work.

Instruments Manufacturer Serial number

Accu-Jet suction pump Brand 441938

Avanti centrifuge J-25 Beckman JHY97G35

Axiovert 25 microscope Zeiss 660197

CASY1 model TT Schärfe System SC1 TT

CO2 cell MMM Group -

CO2 water jacket incubator Forma scientific -

FLUOstar Optima fluorescence

plate reader

BMG Lab Technolo-

gies

4131164, 4132279

Laminar flow cabinet (model:

Antares 48)

Steril S.p.A. 10155/1996

pH-Meter 744 Metrohm 20506

Pipette 0.1-2.5 µL Eppendorf 3638475

Pipette 2-20 µL Eppendorf 33407866

Pipette 20-200 µL Eppendorf 3534296

Pipette 100-1000 µL Eppendorf 4741196

Pipette 500-5000 µL Eppendorf 3615095

POLARstar Galaxy fluorescence

plate reader

BMG Lab Technolo-

gies

4030639

RH basic magnetic stirrer IKA Labortechnik 3061661

Vacuum pump BVC21 Brand 08E12592

Vortex stirrer Minishaker Vacuubrand 2.88069E+13
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3 Materials and Methods (Biological testing)

Table 3.3: Instruments used in this work.

Instruments Manufacturer Serial number

Waterbad type 1083 GFL 11530203

3.2 Cell culture

In this work, cells were aseptically cultivated in T75 flasks (or T175 flasks in case of

cultures used for a backup) and conserved in humidified atmosphere containing 5%

CO2 at 37 ◦C. The used culture medium is specific for each cell line. The composition

of each used culture medium will be described in chapter 3.3. To prevent cell stress,

the culture medium was preventively warmed up in warm water at 37 ◦C. The culture

medium contained phenol red, a pH indicator. If the color of the medium (due to

phenol red) changes from red to yellow, the culture medium has to be changed. If the

culture medium had to be changed, the old medium was drawn, using a vacuum pump.

After removing the old culture medium, 15-20 mL of fresh medium was added to a T75

flask and 25-30 mL to a T175 flask. When the cell culture reaches a confluence value

of about 90 %, the cells must be harvested. If cell harvesting was required, first the old

culture medium was removed. In order to detach the cells from the flask surface, 3 mL

of trypsin-EDTA (0.05-% trypsin/0.02-% EDTA) were added to the culture. After 3-5

minutes of incubation at 37 ◦C (15 minutes at 37 ◦C for MDCK cells), 7 mL of fresh

culture medium were added to the culture and the suspension was centrifuged (266 xg,

4 ◦C, 4 min). The supernatant was removed and the cell pellet was then resuspended

in 4-5 mL of fresh culture medium.

3.2.1 Thawing of cells

The vial containing frozen cells was taken from the liquid nitrogen tank and put in

warm water (37 ◦C) under moderate agitation, until ice was no longer visible. The

suspension was transferred under sterile conditions into a T75 flask containing 15-20

mL culture medium and incubated in humidified atmosphere containing 5-% CO2 at

37 ◦C. After 6 h the old medium was removed and new warm (37 ◦C) medium was

added.
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3.3 Cell lines

3.2.2 Freezing of cells

Cells were cultivated in a T175 flask until reaching a confluence of about 90 %. When

the ideal confluence was reached, cells were harvested as described in chapter 3.2. The

obtained cell pellet was suspended in 2.7 mL fresh medium. Each vial was then filled

with about 900 µL of the obtained cell suspension and 100 µL of DMSO. The vials

were firstly stored at a temperature of -80 ◦C and than in liquid nitrogen.

3.3 Cell lines

3.3.1 MCF-7 and MCF-7 MX cell lines

The human breast cancer cell line MCF-7 (ECACC No. 86012803) and the mitox-

antrone resistant cell line MCF-7 MX, kindly provided by Dr. E. Schneider (Wadsworth

Center, Albany, NY, USA), were cultivated in RPMI-1640 medium supplemented with

20-% fetal bovine serum, 50 µg/mL streptomycin and 50 U/mL penicillin G. The cells

were incubated in a humidified atmosphere containing 5-% CO2 at 37 ◦C.

3.3.2 A2780 and A2780 Adr cell lines

The A2780 and A2780 Adr cell lines were purchased from the European collection of

animal cell cultures (ECACC, Salisbury, Wiltshire, UK). The A2780 cell line (ECACC,

No.93112519, UK) was obtained from a human epithelial ovarian carcinoma. The

A2780 Adr cell line (ECACC, No.93112520, UK) was selected by treating the A2780

cell line with doxorubicine several times. The A2780 and A2780 Adr cell lines were

cultivated in RPMI-1640 medium supplemented with 10-% fetal bovine serum, 50

µg/mL streptomycin and 50 U/mL penicillin G. Cells were incubated in a humidified

atmosphere containing 5-% CO2 at 37 ◦C.

3.3.3 MDCK II and MDCK II-BCRP cell lines

The canine kidney cell line MDCK was purchased from the European collection of

animal cell cultures (ECACC No. 84121903). The cell line MDCK II-BCRP was a

kind gif from Dr. A. Schinkel (The Netherlands Cancer Institute, Amsterdam, The

Netherlands). Both cell lines were cultivated in DMEM medium supplemented with

10 % fetal bovine serum and 50 µg/mL streptomycin and 50 U/mL penicillin G.
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3 Materials and Methods (Biological testing)

3.4 Preparation of the buffer solutions

3.4.1 Preparation of a 5x concentrated Krebs HEPES buffer

Table 3.4: Composition of the Krebs HEPES buffer.

Chemical name Chemical

formula

Molecular

weight (g/mol)

Taken weight

(g)

Sodium chloride NaCl 58.4 17.330

Potassium chloride KCl 74.6 0.876

Potassium dihydrogen

phosphate KH2PO4 136.1 0.408

Sodium hydrogen

carbonate NaHCO3 84.0 0.882

D-glucose monohydrate C6H12O6 · H2O 198.2 5.796

HEPES (free acid) C8H18N2O4S 238.3 5.958

The 5x stock Krebs HEPES buffer was prepared by mixing the substances indicated

in table 3.4 into a 500 mL volumetric flask. The used mass of each substance is

reported on the last column of the table. Distilled water was added to reach a volume

of 450 mL and the pH of the solution was adjusted to 7.4 using 1 M sodium hydroxide.

Finally, distilled water was added until the final volume of 500 mL was reached. The

5x stock Krebs HERPES buffer solution was stored at a temperature of -20 ◦C. The

1x Krebs HEPES buffer was prepared using 100 mL of the 5x stock solution. This

solution was diluted to a volume of 400 mL with distilled water. 650 µL of 1 M calcium

chloride solution and 600 µL of 1 M magnesium sulfate solution were added to the

buffer solution. The final volume of 500 mL was reached adding distilled water. The

1x Krebs HERPES buffer solution was stored at a temperature of -20 ◦C.

3.4.2 Preparation a the PBS buffer

Table 3.5: Composition of the phosphate buffered saline (PBS) buffer.

Chemical name Chemical

formula

Molecular

weight (g/mol)

Taken weight

(g)

Sodium chloride NaCl 58.4 8.0
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3.5 Cell counting using the CASY R© model TT

Table 3.5: Composition of the phosphate buffered saline (PBS) buffer.

Chemical name Chemical

formula

Molecular

weight (g/mol)

Taken weight

(g)

Potassium chloride KCl 74.6 0.2

Potassium dihydrogen

phosphate KH2PO4 136.1 0.2

Disodium hydrogen

phosphate Na2HPO4 141.9 1.44

The phosphate buffered saline (PBS) buffer was prepared by mixing in a flask the

substances indicated in table 3.5 with about 900 mL distilled water. Afterwards, the

pH was adjusted to 7.4. Finally, the volume of 1000 mL was reached, adding distilled

water. This solution was sterilized by autoclaving (20 min, 121 ◦C, liquid cycle) and

stored at a temperature of 4 ◦C.

3.5 Cell counting using the CASY R© model TT

In order to count the cell number in a cell suspension and to test their viability, 20 µL

of the suspension of cells and culture medium were taken and put into 10 mL of sterile

CASY R©ton solution, an isotonic and iso-osmotic electrolyte (Schaerfe System Ltd.).

The obtained diluted suspension was measured using a CASY R© 1 Modell TT. This

instrument uses two methods: the Electrical Current Exclusion (ECE) and the Pulse

Area Analysis. The Electrical Current Exclusion method is based on the principle

that viable and dead cells suspended in CASY R©ton have different permeability to the

electrical current: Viable cells have an intact membrane that is an electrical insulator,

whereas dead cells posses pores in the membrane that allow the current passage. The

cells in the suspension are drawn one by one trough a capillary with defined diameter

(150 µm). The suspension is than exposed to a low and cycled electrical current.

A decreasing of the electrical signal is correlated with the passage of a cell and is

proportional to the cell volume. Each cell is measured several hundred times by the

machine. The results related to each cell were analyzed by Pulse Area Analysis, a

digital pulse processing technique developed by Schaerfe System Ltd [137]. In the

present work, the dimension limits for viable cells were set between 8 or 10 µm and 40

µm. Particles with diameter bigger than 40 µm were associated with cell agglomerates.
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3 Materials and Methods (Biological testing)

3.6 Accumulation Assays

3.6.1 Hoechst 33342 assay

NBD NBD

TMD TMD

BCRP

Intracellular

Extracellular

Hoechst Inhibitor

Hoechst

Hoechst

Hoechst 33342

Hoechst 33342

Hoechst 33342

Figure 3.1: Hoechst Assay

Principles of the method

The Hoechst 33342 assay is based on two main aspects: First, the bisbenzimidazole

Hoechst 33342, used in this assay, is a well-known BCRP and P-gp substrate [55].

Second, Hoechst 33342 forms strong and non-covalent complexes with DNA, binding

to the minor groove of DNA [138]. Both, binding to DNA and a lipophilic environ-

ment, like the cell membrane, lead to a several hundred fold increase of the intrinsic

fluorescence of the dye. [139, 140]. In cells not expressing BCRP or P-gp, Hoechst

33342 accumulation gives increasing fluorescence, while in cells expressing one of these

two transporters the Hoechst 33342 accumulation is decreased, due to active efflux of

the dye. In cells expressing BCRP or P-gp ,accumulation of Hoechst 33342 is increased

if a modulator is added. In this case, the accumulation of Hoechst 33342 depends to

the concentration of the modulator and its potency.

Assay execution

Cells were harvested after reaching a confluence of 80-90-% with trypsin-EDTA (0.05-

% trypsin/0.02-% EDTA), centrifuged (266 g, 4 ◦C, 4 min) and than resuspended in

fresh culture medium. The cell density was measured using the Casy I Modell TT cell
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3.6 Accumulation Assays

counter device. Later, cells were again centrifuged and the medium eliminated. The

pellet was than resuspended in Krebs-Hepes buffer. 90 µL of this final suspension,

containing 27,000 cells, were seeded into each well of a black 96-well plate and 10

µL of different inhibitor concentrations was added. Finally, the prepared plates were

incubated under 5-% CO2 atmosphere and 37 ◦C for 30 minutes. 20 µL of a 6 µM

Hoechst 33342 solution was added to each well. The fluorescence of each well was

measured at constant intervals of 60 seconds, at excitation wavelength of 355 nm

and an emission wavelength of 460 nm, using a BMG POLARstar microplate reader

tempered at 37 ◦C. The data was analyzed considering the fluorescence kinetic as not

linear. With the use of the program Graph Pad Prism (version 5.1) R© it was possible

to fit the kinetic curve as a one-phase exponential association function. For each

modulator concentration, the top of this function was used to build the dose response

curve.

3.6.2 Calcein AM assay

NBD NBD

TMD TMD

P-gp

Intracellular

Extracellular

Calcein Inhibitor

Calcein-AM

Calcein-AM

Esterase

Calcein

Figure 3.2: Calcein Assay

Principles of the method

Calcein acetoxymethyl ester (AM) is a non-fluorescent lipophilic P-gp substrate. Cal-

cein AM is rapidly hydrolyzed by intracellular esterases to the free acid calcein, which

is not a P-gp substrate. Calcein is a fluorescent non-cytotoxic compound with a high

molar emission coefficient. The fluorescence excitation maximum of calcein is 496

nm and its emission maximum is at 517 nm. If calcein AM is administered to P-gp
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3 Materials and Methods (Biological testing)

expressing cells, the intracellular concentration of calcein AM remains low and conse-

quentially also the total amount of calcein, resulting in low fluorescence. In presence of

P-gp modulators the transport of calcein AM to outside the cells is inhibited, causing

accumulation of calcein in the cells and increasing fluorescence.[141, 142]

Assay execution

The doxorubicin resistant cell line A2780 Adr and the parental cell line A2780 were

grown in RPMI-1640 medium supplemented with 10-% fetal bovine serum, 50 µg/mL

streptomycin, and 50 U/mL penicillin G, in a 5-% CO2 atmosphere at 37 ◦C. After

reaching a confluence of about 90-%, the cells were harvested using trypsin-EDTA

solution (0.05-% trypsin/0.02-% EDTA). The cells were centrifuged (266 g, 4 ◦C, 4

min) and than resuspended in fresh culture medium. The cell density was measured

with the Casy I Modell TT cell counter device. Cells were again centrifuged and

the medium eliminated. The pellet was than resuspended in Krebs-Hepes buffer. 90

µL of this final suspension, containing 30,000 cells, were seeded into each well of a

black 96-well plate and 10 µL of different inhibitor concentrations were added. The

prepared plates were than incubated under 5-% CO2 atmosphere and 37 ◦C for 30

minutes. Finally, 33 µL of a 1.25 µM calcein-AM solution were added to each well.

The fluorescence of each well was detected at constant intervals of 60 seconds up to 60

min using an excitation wavelength of 485 nm and an emission wavelength of 520 nm

at a temperature of 37 ◦C in a BMG POLARstar microplate reader. The slope of the

initial linear part of each fluorescence-time curve was calculated by linear regression.

Concentration-response curves were generated from the slopes by nonlinear regression

using the 3- or 4-parameter logistic equation (with or without variable Hill slope)

implemented in GraphPad Prism R©.

3.7 MTT assay

N N
NN N

S

CH3

CH3

Br Dehydrogenase
+2e-, +2H+ N

NS

H3C
CH3

NH

N N
+ HBr

Figure 3.3: Reduction of the yellow compound MTT to the violet compound Formazan
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3.7 MTT assay

Principles of the method

The toxicity of cytotoxic drugs or new substances against several cell lines can be mea-

sured using MTT assay, as described for the first time by Mosmann et. al. [143]. The

method is based on the reduction of the yellow substance 3-(4,5-dimethylthiazole-2-

yl)-2,5-diphenyl tetrazolium bromide, MTT, Thiazolylblau) to violet-colored formazan

precipitate. This reaction is catalyzed by mitochondrial dehydrogenases and it is pos-

sible only in living cells. The absorption of the formazan solution is linearly correlated

with cell viability.

Shift of the dose-response curve of cytotoxic drugs

Cells were seeded into a 96-well tissue culture plates with a density of 10,000 cells

per well (for MCF-7 and MCF-7 MX cells) or 1,250 cells per well (for MDCK cells)

in a total volume of 160 µL and kept at 37 ◦C under 5-% CO2 for 6 h. After the

cells had attached to the well bottom, 20 µL of test compound and 20 µL of cy-

tostatic solution were added. Cells were than incubated for 72 hours and then the

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reagent (40 µL

of a 5mg/mL solution) was added to each well. After 90 minutes of incubation with

MTT, the supernatant was removed and cells were lysed with 100 µL DMSO per well.

Viability of the cells was measured with spectrophotometry by absorbance at 544 nm

and background corrected at 710 nm using a BMG POLARstar microplate reader.

Determination of cytotoxicity of the studied compounds

MCF-7 and MCF-7 MX cells were seeded into 96-well tissue culture plates with density

of 10,000 cells per well in a total volume of 90 µL and kept at 37 ◦C under 5 % CO2

for 6 h. After the cells had attached to the bottom of the well, 10 µL of test com-

pound at four different concentrations was added. 10 µL of PBS and 10 µL of DMSO

were used as negative and positive controls respectively. Cells were incubated for 72

h and then the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)

reagent (40 µL of a 5mg/mL solution) was added. After 90 minutes of incubation with

MTT, the supernatant was removed and cells were lysed with 100 µL DMSO per well.

Viability of the cells was measured with spectrophotometry by absorbance at 544 nm

and background corrected at 710 nm using a BMG POLARstar microplate reader.

3.7.1 Analysis of the data using GraphPad Prism R©

In this work, the potency of the studied compounds against BCRP and P-gp was

reported as IC50 ± SD values. The fluorescence values obtained by Hoechst 33342

assay and calcein-AM assay were analyzed using the statistics software GraphPad
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3 Materials and Methods (Biological testing)

Prism R© (version 5.1). In order to calculate the IC50 value of each single dose-response

curve, both the 4-parametric logistic equation and the 3-parametric logistic equation

(with Hillslop equal to 1) were calculated and compared. In case of not complete

inhibition of the transporters at the highest used compound concentrations, the top

values of the test compounds were fixed to the top value of the standard compound.

All assays were performed at least three times and the reported IC50 values are the

reported as mean ± SD.
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4 Investigation of the inhibitory

activity of a new class of tariquidar

analogues.

4.1 Optimization of the Hoechst 33342-assay

The fluorescent compound Hoechst 33342 has been recognized to be a P-gp [32] and

BCRP [144, 145] substrate. Therefore, Hoechst 33342 can be used to investigate

the inhibitory activity of small molecules against those two ABC-transporters. The

Hoechst 33342-assay has been developed by Dr. Henrik Mueller and was used as HTS

(High Throughput Screenig) assay [146].

A goal of this work is the determination of the BCRP inhibitory potency of a new

class of BCRP inhibitors. The determination of the potency of these compounds was

determined using the Hoechst-assay in MCF-7 MX cells. In order to optimize the

quality of the results, parameters of the Hoechst 33342-assay in MCF-7 MX cells, like

the Hoechst 33342 concentration and the used cells number, were optimized.

4.1.1 Optimization of the used Hoechst 33342 concentration

To date, only a relatively small number of BCRP-inhibitors are known. One of these

compounds is the potent P-gp inhibitor XR9577, used in this work as reference com-

pound for the validation of the Hoechst-Assay. The standard protocol developed in

our laboratory by Dr. Henrik Mueller used an Hoechst 33342 final concentration of 5

µM and 27,000 cells in each vial. The relationship between fluorescence and Hoechst

33342 was investigated in MCF-7 cells, MCF-7 MX cells and MCF-7 MX cells to which

the modulator XR9577 was added at a final concentration of 10 µM. The fluorescence

values reported are the difference of the fluorescence measured in the vials containing

buffer, cells and fluorescent substate minus the fluorescence of the vials containing

only buffer and fluorescent substrate.

As shown in figure 4.1, the fluorescence of a 5 µM Hoechst 33342 solution is not in the

linear region of the concentration-fluorescence relationship and is already in a plateau

region. This deviation from linearity is observed in MCF-7 cells and in MCF-7 MX

cells with and without modulator. In all these three cases, the fluorescence increases
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Figure 4.1: Fluorescence of Hoechst 33342 by increasing the substrate concentration (MCF-
7 and MCF-7 MX cells).

with the substrate concentration only until a substrate concentration of about 2 µM.

However, the relationship is linear only until a Hoechst 33342 concentration of about

1.5 µM.

The plateau in the fluorescence of Hoechst 33342 could be due to saturation of the

binding of Hoechst 33342 to the membrane or to the DNA. Another explanation could

be that the relatively high concentration of fluorescent substrate causes quenching

effects. In figure 4.2, the concentration-fluorescence relationship for lower concentra-

tion of Hoechst 33342 up to 1 µM is shown. In this interval of concentrations, the

fluorescence of the cells increases linearly with the concentration of Hoechst 33342.
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4.1 Optimization of the Hoechst 33342-assay
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Figure 4.2: Fluorescence of Hoechst 33342 versus substrate concentration. The concentra-
tions of Hoechst 33342 were between 0.1 and 1.0 µM(MCF-7 cells at 27,000
cells/well.).

In order to investigate which concentration of Hoechst 33342 should be used to

obtain good quality dose response curves and, several dose response curves for the

modulator XR9577 at different concentrations of Hoechst 33342 were determined. In

figure 4.3a is shown that for concentrations of Hoechst 33342 between 1 and 5 µM,

there is no difference in the span of the obtained dose response curves. The curves

obtained with concentrations of Hoechst 33342 of 3 µM and 5 µM also show very

similar bottom and top values, in agreement with the findings presented in fig 4.1.

The dose response curves obtained using an Hoechst 33342 concentration of 1 µM has

a similar span value as the other two curves, but has lower bottom and top values. The

dose response curves obtained using an Hoechst 33342 concentration of 0.5 µM showed

a further decrease of its bottom and top values and also a considerable reduction of

the span.

As shown in figure 4.3b, all the dose response curves of the modulator XR9577

obtained with Hoechst 33342 concentration between 0.2 and 1 µM gradually present

lower values of bottom, top and span. Those results are consistent with the experiment

on the linearity of the relationship between fluorescence and concentration of Hoechst

33342. Considering the results of the experiments, it was decided to set the Hoechst

33342 concentration for the Hoechst 33342 assay to the value of 1 µM.
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(a) Dose-response curves obtained using
concentrations of XR9577 between
0.5 and 5 µM.
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(b) Dose-response curves obtained using
concentrations of XR9577 between
0.2 and 1 µM.

Figure 4.3: Dependence of the Dose response curve of the modulator XR9577 on the con-
centration of Hoechst 33342 .

4.1.2 Optimization of the cell number.

In order to find the optimal number of cells for each well, the influence of the cell num-

ber on the fluorescence was investigated. The experiment was performed on the same

96-well plate, using MCF-7 cells from the same culture and different concentration of

Hoechst 33342. The results reported in figure 4.4 show that for concentrations lower

than 1 µM the correlation between the Hoechst 33342 concentration and the fluores-

cence remains linear for all used cell numbers. The quality of the linear correlation

also increases with the number of cells, reaching a linear correlation for values higher

than 20,000 cells/well. Also in figure 4.4 it is shown that for values of a cell number up

to 40,000 the fluorescence increases for each Hoechst 33342 concentration with the cell

number. Increasing the cell number in the well to 50,000 cells/well does not increase

the fluorescence further. In figure 4.5 the correlation between the fluorescence and the

number of MCF-7 and MCF-7 MX cells is represented. The relationship was inves-

tigated using cell suspensions with different concentrations of cells and with 10 µM

final concentration of the modulator XR9755 and MCF-7 MX cells without modulator.

In this experiment, the fluorescence of the buffer solution containing Hoechst 33342

at the same concentration was subtracted from the fluorescence in presence of cells.

The results show that the fluorescence increases linearly for cells with and without

modulator.
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(a) 10,000 cells.
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(b) 20,000 cells.
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(c) 40,000 cells.
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(d) 50,000 cells.

Figure 4.4: Linearity of the fluorescence for Hoechst 33342 in relation with the number of
cells in each vial (MCF-7 cells).
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Figure 4.5: Dependence of cell number on the fluorescence in presence or absence of the
modulator XR9577 at a concentration of 10 µM (MCF-7 MX cells). The
Hoechst 33342 concentration is equal to 1 µM.
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Figure 4.6: Dependence of the dose-response curve of the modulator XR9577 on the number
of cells (MCF-7 MX cells). The used Hoechst 33342 concentration is equal to
1 µM.

For cells numbers higher than 36,000 cells/well the fluorescence of the MCF-7 MX

cells treated with Hoechst 33342 at a final concentration of 10 µM does not increase

anymore with the cell number, but reaches a plateau. In figure 4.6 is shown how the

cell number influences the dose response curve parameters. If the concentration of cells

is higher than 36,000 cells/well, the top of the dose response curve does not change

anymore with the cell number. A notable decrease of the top value of the dose response

curve with respect to the curves obtained using 45,000 and 36,000 cells/well is seen for

27,000 cells/well. A further decrease of the span of the dose response curve is observed

if only 18,000 cells/well are used. In conclusion, the use of a cell concentration higher

than 36,000 cells/well leads to the saturation of the fluorescence values of the curve. In

figure 4.5 is also shown that the quality of the curve obtained using 27,000 cells/well is

better than that obtained using higher cells numbers. The use of cells concentrations

lower than 36,000 cells/well is also to prefer considering the cost that the use of high

cells concentrations implies in terms of laboratory materials.

On the other hand, cell concentrations lower than 20,000 cells/well lead to dose

response curves with lower span, what complicates the use of this assay. For those two

reasons, it was decided to use for the next assays a cell concentrations equal to 27,000

cells/well.

60



4.1 Optimization of the Hoechst 33342-assay

4.1.3 Analysis of the raw data obtained from the Hoechst 33342

assay
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Figure 4.7: (a) Fluorescence against time curves for different concentrations of the modu-
lator Hoechst 33342, generated with the Hoechst 33342 assay in MCF-7 MX
cells. The fluorescence-time curves were analyzed using the one-phase associa-
tion model. (b) Dose-response curve of XR9577 (WK-X-24) in MCF-7 MX cells
obtained from the plateau values of the one-phase association model (pIC50 =
6.30, Hill Slope = 1.24).

In order to determinate if XR9577 (WK-X-24) is able to increase the intracellular

fluorescence of Hoechst 33342, different concentrations of this modulator were added

to MCF-7 MX cells at a concentration of 27,000 cells/well. Afterwards, Hoechst 33342

was added to obtain a final concentration of 1 µM in each well. The fluorescence-

time diagram was registered and analyzed. In figure 4.7a a typical fluorescence-time

curves are shown, obtained with XR9577 as modulator and MCF-7 MX cells. In-

creasing concentrations of the modulator XR9577 also increase the fluorescence and

the fluorescence reaches a maximum after 5000 seconds. The fluorescence-time curves

were approximated by one-phase association functions. Their plateau values were

plotted against the corresponding logarithmic concentrations in order to obtain the

dose-response curve of the modulator. Alternatively, the last fluorescence values of

the fluorescence-time curve (7200 s) can be used and plotted against the logarithmic

concentration of the modulator. In figure 4.7b the obtained sigmoidal dose-response

curve is reported.
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4 Investigation of the inhibitory activity of a new class of tariquidar analogues.

4.2 Determination of the activity of a new class of

BCRP-inhibitors.

4.2.1 Tariquidar analogues with modified anthranilic acid partial

structure

Tariquidar (XR9576) is a potent third generation P-gp inhibitor and also a BCRP-

inhibitor [147, 148]. Several Tariquidar analogues were synthesized in our laboratory

by Dr. Werner Klinkhammer [149]. The structure of Tariquidar can be divided in six

substructures, as illustrated in figure 4.8:

• The tetrahydroisoquinoline residue

• The first aromatic ring

• The first linker

• The second aromatic ring

• The second linker

• The third aromatic ring

N
H

NH

N

O

NO
O

O

O

O

First linker 

Tetrahydroisoquinoline 
residue 

Second linker 

First aromatic 
ring 

Second aromatic 
ring 

Third aromatic 
ring 

Figure 4.8: Elements of the Tariquidar structure.
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N
H

NH

RO

OH
O

Figure 4.9: General structure of the selective BCRP-inhibitors synthesized by Werner
Klinkhammer. R = phenyl (WK-X-7), R = 3-chinolinyl (WK-X-8), R =
2-nitrophenyl (WK-X-9), R = 2-aminophenyl (WK-X-20), R= 4-nitrophenyl
(WK-X-27, also known as KS-176), R = 4-methylphenyl (WK-X-28).

Dr. Werner Klinkhammer synthesized six compounds without the tetrahydroiso-

quinolin residue, that was replaced by a hydroxyl group. The biological results showed

that these compounds were BCRP-inhibitors but not P-gp or MRP inhibitors [150].

The loss of P-pg inhibitory activity is probably due to the absence of the basic ni-

trogen of the tetrahydroisoquinoline moiety in these compounds. That seems to be

important for the P-gp inhibitory activity of different classes of compounds [151]. At

a later stage, Dr. Kerstin Steggeman synthesized more compounds of this new class of

anthranile amide derivates, with modifications of the above named substructures into

which the structure of Tariquidar can be divided.

A goal of this work was the characterization of the BCRP-inhibitory activity of

these compounds, using the Hoechst 33342 assay. The inhibitory activity against P-gp

was also measured using the calcein-AM assay, in order to determinate the selectivity

of the compounds for BCRP. For selected compounds the capacity to reverse the

resistance against cytostatic compounds of cells expressing BCRP was evaluated using

the MTT assay. The MTT assay was also used to determinate the cytotoxicity of

selected compounds.

4.2.2 Characterization of the inhibitory activity of the compound

WK-X-27

Between the selective inhibitors synthesized by Werner Klinkhammer, the most active

is the compound WK-X-27 (KS-176). It shows an IC50 value of 1.58 µM and does not

has an inhibitory effect on P-gp.

The inhibitory activity against BCRP of compound KS-176 was tested using the

Hoechst 33342 assay, while the the inhibitory activity for P-gp was tested using the

calcein AM assay. As shown in figure 4.10, KS-176 is able to increase the accumulation

of Hoechst 33342 in MCF-7 MX cells with increasing concentrations.
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Figure 4.10: Dose-response curve of WK-X-27 (KS-176). The BCRP inhibitory activity
was tested using the Hoechst 33342 assay and MCF-7 MX cells.

To investigate the reversal of BCRP-mediated resistance by KS-176, the toxicity of

mitoxantrone and Hoechst 33342 were determined in the presence and absence of this

compound. Cell viability was determined by the MTT assay. The cytotoxicity of mi-

toxantrone was determined in parenteral MCF-7 and resistant MCF-7 MX cells, while

the cytotoxicity of Hoechst 33342 was determined in parenteral MDCK and resistant

MDCK BCRP cells. MDCK BCRP cells were included because in this transfected cell

line the resistance can be solely attributed to the presence of BCRP. The IC50 values

of mitoxantrone were determined for parenteral MCF-7 cells and resistant MCF-7 MX

cells without the addition of inhibitor and in the presence of two different inhibitor

concentrations. Figure 4.11a shows the effect of compound KS-176 on the EC50 value

of mitoxantrone in MCF-7 cells. In the presence of an inhibitor concentration of 5 µM,

a significant decrease in resistance is observed, and in presence of compound KS-176

at 10 µM the resistance is fully reversed and the cytotoxicity of mitoxantrone is re-

stored, leading to a sensitivity of the MCF-7 MX cell line almost identical to that of

the parental MCF-7 cells. This result shows that this compound is able to reverse the

resistance of MCF-7 MX cells against mitoxantrone completely. Figure 4.11b shows

the dose-response curve of Hoechst 33342 in the presence of compound KS-176. The

shift in the dose-response curves of MDCK BCRP cells caused by progressively higher

inhibitor concentrations of compound KS-176 indicates that this compound also dose-

dependently inhibits BCRP-mediated resistance to Hoechst 33342. The results prove

the conclusions that the inhibitory effect of compound KS-176 is not substrate depen-

dent.
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Figure 4.11: (a) The effect of compound KS-176 on the EC50 value of mitoxantrone in
MCF-7 cells (green) and MCF-7 MX cells (red) investigated at a concentra-
tion of 5 and 10 µM. Cells in absence of the inhibitor were used as control.
Data is the average ±SD from three independent experiments. (b) Shift of
the dose-response curve of Hoechst 33342 caused by increasing inhibitor con-
centration. MDCK BCRP cells (empty square), MDCK BCRP cells + 5 µM
KS-176 (black square), MDCK BCRP cells + 10 µM KS-176 (empty triangle),
parental MDCK cells (red down triangle)

4.2.3 Variations of the first linker

The first linker of the structure of this new class of BCRP inhibitors was modified

in order to understand and clarify the structure activity relationship for this class

of compounds. Compound KS-176 is used as reference. As reported in table 4.1, the

variations of the first linker generally lead to low active or inactive compounds and only

in one case enhancement of activity is observed. All compounds having modifications

of the first linker, with exception of the compound KS-311, have also exclusion or

substitution of the carboxylic group in the anthranilic acid substructure or insertion

of one or more atoms between the carboxylc group and the aromatic ring. The direct

binding of carbonyl group of the amide to the aromatic ring seems to be important

for the activity of these compounds, probably because of the hydrogen bridge that

forms between the nitrogen of the anthranile amide substructure and the oxygen of

the carbonyl group. This intramolecular interaction could be important to maintain

the correct conformation of the molecule in the binding site of the protein. The results

showed also that for the modified compounds, the presence of rotatable linkers leads to

active compounds, in respect to the not rotatable homologue. For example, compound

KS-360, with the insertion of an ethenyl group between the second aromatic ring and

the carboxylic group does not show any inhibitory activity at a concentration up to 10

µM. KS-366 is structurally similar to KS-360, but it possesses an ethyl group instead
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4 Investigation of the inhibitory activity of a new class of tariquidar analogues.

of the ethenyl group. The cellular testing revealed that compound KS-366 is a BCRP

inhibitor with an IC50 value of 7.58 µM. An other example involves the compounds KS-

364 and KS-357, which differ only by the presence of an amide nitrogen in the linker

(compound KS-357). The presence of this amide nitrogen leads to loss of activity, with

respect to compound KS-364 (IC50 = 9.69 µM). This amide nitrogen probably confers

a higher rigidity to the linker as compared to compound KS-364 due to the mesomeric

effect of the urea linker. The length of the linker also influences the activity of the

compounds. Comparing compounds KS-366 and KS-364, which have an alkyl linker

between the central aromatic ring and the carbonyl group of the amide, the inhibitory

activity against BCRP increases with the length of the linker (IC50 = 7.58 µM for KS-

366 and IC50 = 9.69 µM for KS-364). The presence of heteroatoms directly connected

to the second aromatic ring, as for example in compounds KS-351 and KS-392 leads to

a loss of activity. The best compound with a modified first linker is compound KS-311,

with an ethyl group between the amide and the first aromatic group. This compound

shows an IC50 value of 0.64 µM, also lower than compound KS-176. In conclusion, the

carbonyl group of the first linker is important for the activity of this class of compounds

and must be directly connected to the second aromatic ring. The inhibitory activity

against BCRP is also increased by insertion of an alkyl linker between the amide linker

and the first aromatic ring, as in compound KS-311.

Figure 4.12: Summary of structural features of the investigated compounds influencing
BCRP inhibitory activity.The symbols + and - are used to indicate if the
considered feature plays a favorable or an unfavorable role for the activity of
the compounds.

Additionally, the inhibitory activity against P-gp was investigated for those com-
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pounds. The results showed that the insertion of the alkyl group after (compound

KS-311) or before (compound KS-366) the amide group of the linker leads to a weak

P-gp inhibition. In case of compound KS-366, the IC50 is 14.5 µM, slightly lower than

of compound KS-311, that has an IC50 value of 25.4 µM. Also compound KS-392, with

sulfonamide group as first linker is a weak P-gp inhibitor, with an IC50 value of 20.8

µM.

Table 4.1: Inhibitory activity of compounds with variations of the first linker. Activ-
ities were measured using Hoechst 33342 assay and MCF-7 MX cells for
BCRP (reference substance WK-X-24: IC50 = 0.90± 0.07 µM) and calcein
AM assay and A2780 Adr cells for P-gp (reference substance WK-X-24:
IC50 = 0.41± 0.08 µM). n.a. = no activity for concentration up to 10 µM.

Formula Compound
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

NO2

O

KS-176 1.58 ± 0.36 n.a.

NH

O

NO2

N
H

O
OH

KS-360 n.a. n.a.

NH

O

NO2

N
H

O
OH

KS-366 7.58 ± 1.20 14.5 ± 3.9

O

NH

O

CF3

N
H

O
OH

KS-351 n.a. n.a.

NH

O

NO2

H
NO

OH

KS-364 9.69 ± 2.65 n.a.
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

NH

NH

O

NO2

H
NO

OH

KS-357 n.a. n.a.

N
H

O2

S

NH

O

OH

NO2

KS-392 n.a. 20.8 ± 5.9

N
H

NH

O

NO2

O
OH

KS-311 0.644 ± 0.149 25.4 ± 7.7
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4.2.4 Variations of the second linker

The modification of the second linker of this class of compounds does not strongly

decrease their activity, as observed with the modification of the first linker. As shown

in table 4.2, the insertion of an alkyl group between the amide and the third aromatic

ring leads to loss of activity (compound KS-181). The structurally related compound

KS-094, with an urea linker instead of the amide group, is a BCRP inhibitor with a

IC50 value equal of 4.04 µM. Compound KS-367 differs from compound KS-094 only by

the presence of a trifluoromethyl group instead of the nitro group on the third aromatic

ring. Its BCRP inhibitory activity is slightly lower than of compound KS-094 (IC50

= 7.21 µM). The difference of the activity between compounds KS-181 and KS-094

could be explained with the different orientation which the nitrogen of the urea linker

confers to the third aromatic group.

Figure 4.13: Superposition of the compound KS-176 (reference compound) with com-
pounds KS-181 and KS-094. The orange substructure belongs to compound
KS-181, while the green substructure belongs to compound KS-094.

To explain the remarkable difference in the activity of these three compounds, the

three molecular structures of compounds KS-176, KS-181 and KS-094 were aligned

first. Then, the common parts of the three compounds (the first aromatic ring, the

first linker and the second aromatic ring) were fixed. Next, the unfixed parts of the

structures (the second linker and the third aromatic ring) were minimized using PM3

(MOPAC) calculation. The flexible alignment, and the structure minimizations were

performed using the program MOE [97]. The results of this calculation showed that
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the compounds KS-176 and KS-094 have the same orientation of the third aromatic

ring, while the orientation of the third aromatic ring for compound KS-181 is rotated

by about 45◦ with respect to the axis of the other two compounds. This difference

of orientation is due to the tetrahedral geometry of the alkyl linker, while the ge-

ometry of the amide and urea linkers is quite planar. This different ring orientation

for compound KS-181 could cause loss of important non-covalent interactions of the

compound with the binding site and consequently loss of the inhibitory activity. In

support of this assumption, the introduction of an oxygen between the alkyl linker and

the third aromatic ring, as in case of compound KS-187, restores the inhibitory po-

tency against BCRP and the IC50 value of this compound (7.69 µM) is comparable to

that of compound KS-094. The BCRP inhibitory activity of compound KS-187 could

be explained by the change of the orientation of the third aromatic ring with respect

to compound KS-181. This new orientation is similar to that of compound KS-094.

This hypothesis was confirmed by the superposition of the minimized structures of

compound KS-187 and compound KS-094.

The three compounds with an ethenyl group between the amide and the third aro-

matic ring were found to be BCRP inhibitors. Compound KS-186, with a nitro group

at para position on the third aromatic ring, is a good BCRP inhibitor, with an IC50

value equal of 2.93 µM. Compound KS-257, with a chlorine as substituent at para po-

sition on the third aromatic ring is slightly more active than compound KS-186, with

an IC50 value of 1.85 µM, comparable to that of the reference compound KS-176. The

last compound of this series with an ethenyl group in the second linker, compound

KS-246, possesses an IC50 value of 0.52 µM and is the most active compound in this

group. This high inhibitory activity could be explained by the electronic effect of the

two chlorine substituents at ortho positions on the third aromatic ring. This effect

could modify the electronic density of the aromatic ring and the interactions of this

ring with the binding site of BCRP.

The last compound of this series is KS-290, has an amino group as linker between

the second and the third aromatic ring. This compounds is not a BCRP inhibitor,

probably due to the disadvantageous orientation of the third aromatic ring or to the

too low distance between the two aromatic rings.

Regarding the inhibitory activity of these compounds against P-gp, only two of them

have a detectable capacity to inhibit this protein. Both of these compounds have an

ethenyl group in the second linker, between the amide and the third aromatic ring.

The best P-gp inhibitor in this series is compound KS-186, with an IC50 value equal

of 6.62 µM. Compound KS-246 is also able to inhibit P-gp, but with an IC50 value

of only 11.0 µM. The third compound with an ethenyl group in the linker does not

inhibit the transport mediated by P-gp.
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Table 4.2: Activity of compounds with variations in the first linker. Activities were
measured using Hoechst 33342 assay and MCF-7 MX cells for BCRP (refer-
ence substance WK-X-24: IC50 = 0.90±0.07 µM) and calcein AM assay and
A2780 Adr cells for P-gp (reference substance WK-X-24: IC50 = 0.41±0.08
µM). n.a. = no activity for concentration up to 10 µM.

Formula Compound
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

NO2

O

KS-176 1.58 ± 0.36 n.a.

N
H

NH

O

OH
O

NO2

KS-181 n.a. n.a.

N
H

NH

NHO

OH
O

NO2

KS-094 4.04 ± 0.48 n.a.

N
H

NH

NHO

OH
O

CF3

KS-367 7.21 ± 4.88 n.a.

N
H

NH

O
O

OH
O

NO2

KS-187 7.69 ± 0.55 n.a.

N
H

NH

O

OH
O

NO2

KS-186 2.93 ± 0.59 6.62 ± 0.98
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH
O

Cl

KS-257 1.85 ± 0.75 n.a.

N
H

NH

O

OH
O

Cl

Cl

KS-246 0.52 ± 0.10 11.03 ± 4.24

N
H

NH

OH
O

KS-290 n.a. n.a.
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4.2.5 Reduction of the scaffold size

Figure 4.14: Diagram of the scaffold reduction for the antranile amide derivates.

In order to verify if is possible to further reduce the size of the scaffold of this class of

BCRP inhibitors, a series of compounds without the first or third aromatic ring or with

other substituents instead of the aromatic rings were synthesized by Dr. Steggemann.

The reduction process could be summarized in three phases and it is shown in figure

4.14. In the first phase the substituent on the first aromatic ring (highlighted in blue)

was replaced by a hydroxy group directly bound to the aromatic ring. In the second

phase the first and third aromatic rings (the green points in the figure) were replaced

by aliphatic rings, in order to test if aromaticity at this position is really necessary for

activity. In the third phase the first or third aromatic ring was deleted (highlighted in

orange).

As shown in table 4.3, the cellular testing results showed that the replacement of

hydroxyethyl group by a phenolic hydroxy group (compound KS-251) leads to high

BCRP inhibitory activity, with an IC50 value for this compound equal of 1.76 µM. This

result suggests that the hydroxyethyl group is not necessary for the BCRP inhibitory

activity of these compounds and could be simplified.

The deletion of the third aromatic ring or its replacement by an aliphatic cyclohexyl

ring leads to loss of the inhibitory activity against BCRP. In particular, the complete

deletion of the second linker with deletion of the third aromatic ring, as for compound

KS-092, leads to loss of the BCRP inhibitory activity. The replacement of the third

aromatic ring by a methyl group (compound KS-293) as well as by a cyclohexyl ring

(compound KS-170) leads also to loss of the inhibitory activity for BCRP. In the light

of these results, the third aromatic ring seems to be essential for the BCRP inhibitory

activity of this class of compounds.

When the first aromatic ring is replaced by a 4-hydroxycyclohexyl group, the BCRP

inhibitory activity decreases but does not disappear. This is the case for compounds
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KS-305 and KS-304, with IC50 values of 6.11 µM and 3.35 µM respectively. Otherwise,

the complete deletion and its replacement by an ethyl group, as for compound KS-

328, leads to a loss of BCRP inhibitory activity. These results indicate that the first

aromatic ring increases the BCRP inhibitory activity of this class of compounds but

is not inherently essential for the activity of these inhibitors as it can be changed to a

cyclic aliphatic group.

The calcein-AM assay results show that the last three compounds KS-305, KS-304

and KS-251 are also weak inhibitors of P-gp with IC50 values higher than 20 µM. This

result suggests that probably the hydroxyl group directly bound to the ring system

leads to an increase of the P-gp inhibitory activity.

Table 4.3: Activity of compounds with reduction of the scaffold. Activities were mea-
sured using Hoechst 33342 assay and MCF-7 MX cells for BCRP (reference
substance WK-X-24: IC50 = 0.90 ± 0.07 µM) and calcein AM assay and
A2780 Adr cells for P-gp (reference substance WK-X-24: IC50 = 0.41±0.08
µM). n.a. = no activity for concentration up to 10 µM.

Formula Compound
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

NO2

O

KS-176 1.58 ± 0.36 n.a.

N
H

NH2

OH
O

KS-092 n.a. n.a.

N
H

NH

CH3O

OH
O

KS-293 n.a. n.a.

N
H

NH

O

OH
O

KS-170 n.a. n.a.

N
H

NH

O

NO2

O

CH3

KS-328 n.a. n.a.
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

NO2

O

KS-305 6.11 ± 2.58 51.8 ± 12.1

N
H

NH

O

OH

CF3

O

KS-304 3.35 ± 1.06 20.8 ± 4.4

N
H

NH

O

OH

NO2

O

KS-251 1.76 ± 0.18 27.5 ± 1.9
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4.2.6 Variations on the second aromatic ring

The variations on the second aromatic ring involved the positions 4 (R1) and 5 (R2) of

the ring, with insertion of substituents such as chlorine, methyl and methoxyl groups on

those positions. The third aromatic ring is substituted with 4-nitro, 4-trifluoromethyl

or chlorine groups. Compound KS-274 has a naphthyl group instead.

N
H

NH

O

OH

X

O
R1

R2

Figure 4.15: Positions of the substituents on the second aromatic ring.

As reported in table 4.4, in compounds with a 4-nitro substituent on the third aro-

matic ring, the presence of any substituent on the second ring decreases the inhibitory

potency of these compounds relative to that of the reference compound, KS-176. The

substitution at position R2 causes a slight decrease in activity (compounds KS-191,

KS-401, and KS-282), whereas substitution at R1 leads to a more remarkable decrease

in activity (compounds KS-206, KS-399, and KS-249).

The presence of a methoxy group at position R2 (compound KS-191) results in a

slight decrease in activity (IC50 = 3.93 µM), but at position R1 the presence of the

same substituent (in KS-206) decreases the inhibitory activity by about 5 fold (IC50

= 8.43 µM).

The same trend is observed with methyl substituents: A methyl group at position

R2 (compound KS-401) decreases the activity (with respect to compound KS-176) to

an IC50 value of 2.69 µM, whereas the same substitution at position R1 (compound

KS-399) gives an even less active compound, with an IC50 of 4.08 µM. Compounds with

chlorine substituents at positions R1 (KS-249) or R2 (KS-282) have similar inhibitory

effects against BCRP (IC50 values of 3.09 and 2.59 µM, respectively).

As shown in figure 4.16 the activity of the substituted compounds decreases linearly

with increasing van der Waals volume of the substituted aromatic ring, as calculated

with the software MOE [97]. This unfavorable steric effect is more evident at position

R1 than at position R2.

Compound KS-196, which has methyl groups at both positions and compound KS-

274 with a naphthol group instead are slightly more active than expected. In case of
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Figure 4.16: Plot of the van der Waals volumes of the substituted second aromatic ring
versus pIC50 values for compounds with a substituent on the second aromatic
ring at position R1 (circles) and with substitution at position R2 (triangles).

compound KS-196, this effect could be explained by the predominance of the steric

effect at position R1 over the effect at position R2 or by additional interaction of the

compound with the protein. The activity of compound KS-274 could be explained with

an extra interaction of the additional aromatic ring with the binding site. Compounds

KS-308, and KS-294 and KS-255 possess IC50 values lower than expected and they do

not follow the QSAR observed for the nitro series of compounds. These exceptions

could be explained from the plot of the three principal components of the 2D and

3D molecular descriptors calculated for the compounds containing substituents on the

second aromatic ring. It is seen that the compounds included in the QSAR are grouped

into a cluster, while the molecules that do not follow the QSAR, including compounds

KS-196 and KS-274, are outside the cluster.

Regarding the principal component analysis, the first component is high correlated

with the van der Waals surface area, while the second component is high correlated

with the lipophily. For the other compounds, the relevant modification of those two

parameters in respect to the reference compound could lead to a different kind of

interaction with the transporter or with the membrane and resulting to a consequential

effect on the IC50 values.

All together, the SAR of the second aromatic ring may be explained by a disad-

vantageous steric interaction of the substituents with the binding site of the protein.

This explanation of the activity differences is possible only for compounds with similar

global dimension and lipophily values.

The only two compounds of this group possessing an inhibitory activity against P-
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Figure 4.17: The chemical space of the compounds with a substituent on the second aro-
matic ring, obtained by plotting the three principal components of the 2D
and 3D molecular descriptors calculated using MOE. The green spheres are
associated with the compounds included in the QSAR, while the red spheres
are associated with the compounds not included in the QSAR.

gp are the compounds KS-294 and KS-255, with IC50 values of 18.1 µM and 2.54 µM

respectively. This effect could be related to the high lipophily of the compounds.

Table 4.4: Activity of compounds with variations on the second aromatic ring. Ac-
tivities were measured using Hoechst 33342 assay and MCF-7 MX cells for
BCRP (reference substance WK-X-24: IC50 = 0.90± 0.07 µM) and calcein
AM assay and A2780 Adr cells for P-gp (reference substance WK-X-24:
IC50 = 0.41± 0.08 µM). n.a. = no activity for concentration up to 10 µM.

Formula Compound
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

NO2

O

KS-176 1.58 ± 0.36 n.a.

N
H

NH

O

OH

NO2

O

H3CO

H3CO
KS-196 6.96 ± 2.20 n.a.
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

NO2

O

H3CO

KS-206 8.43 ± 1.63 n.a.

N
H

NH

O

OH

CF3

O

H3CO

KS-308 0.928 ± 0.308 n.a.

N
H

NH

O

OH

NO2

O

H3CO
KS-191 3.93 ± 0.11 n.a.

N
H

NH

O

OH

CF3

O

H3CO
KS-294 4.02 ± 1.48 18.1 ± 3.1

N
H

NH

O

OH

NO2

O

H3C

KS-399 4.08 ± 0.48 n.a.

N
H

NH

O

OH

NO2

O

H3C
KS-401 2.69 ± 0.86 n.a.

N
H

NH

O

OH

NO2

O

Cl

KS-249 3.09 ± 0.22 n.a.

N
H

NH

O

OH

Cl

O

Cl

KS-255 1.54 ± 0.22 2.54 ± 0.29
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

NO2

O

Cl
KS-282 2.59 ± 0.87 n.a.

N
H

NH

O

OH

NO2

O

KS-274 4.58 ± 0.35 n.a.

4.2.7 Variations on the third aromatic ring

The activity of the compounds with modifications on the third aromatic ring (reported

in table 4.5) is correlated with the electronic effect of the substituents present on this

ring and with the lipophilicity of the aromatic system. The best correlation uses the σ-

Hammet parameter and the hydrophobic surface area of the substituted ring (equation

4.1). The σ values were selected with the amide group as reference position. Vsurf S

is the interaction surface area of the substituted aromatic ring calculated with MOE

[97]. The relative importance of the two descriptors is 1 for σ and 0.963 for Vsurf S.

Figure 4.18 shows the plot of observed versus calculated pIC50 values.

pIC50 = 0.503× σp+m + 0.00932× Vsurf S + 3.010 (4.1)

n = 13, r2 = 0.81, s = 0.156, F = 45.9

A possible explanation for this trend could be given by the interaction of the aro-

matic ring system at position R2 with aromatic residues of the protein binding site and

the consequential π-π stacking. Furthermore, the presence of bulky substituents with

a large contact surface area on this ring increases the affinity of the ligands and hence

the inhibitory activity. However, two compounds were excluded from the correlation.

The first of these excluded compounds, KS-405, is less active than calculated from the

equation. A hypothesis suggested by the similar activity values of compounds KS-405

and KS-406 is the possible hydrolysis of the ester group to a phenolic hydroxy group

under the assay conditions. To test this hypothesis, TLC was performed with com-

pound KS-405 after various incubation times in assay buffer at 37◦C. After 10 minutes
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Figure 4.18: Plot of measured versus calculated potencies for inhibition of BCRP in MCF-7
MX cells according to equation 6.1 for compounds with variation on the third
aromatic ring.

incubation, the original spot disappeared and a new spot was observed with the same

Rf value as that of compound KS-406. Thus it can be concluded that compound KS-

405 is not stable under the assay conditions. The second outlier from the correlation is

compound KS-237, with a chlorine group in ortho position of the third aromatic ring.

This compound was found to be not active against BCRP. A possible explanation

could be an interaction (steric and electrostatic) of the chlorine group with the oxygen

of the amide of the second linker. This interaction would changes the orientation of

the aromatic ring.

Regarding the selectivity of these compounds, most of them were not able to inhibit

P-gp. However, some exceptions were observed. The highest inhibitory activity against

P-gp was measured for compound KS-157, which contains a dimethoxy substituent.

This is in agreement with P-gp inhibitors from different structural classes, for which

this substitution pattern was found to be advantageous [152].

The presence of a voluminous lipophilic group on the third aromatic ring, as in

compounds KS-162 and KS-407, results in a weak inhibitory activity against P-gp.

The amino derivates KS-159 and KS-371 also show some inhibition of P-gp, while

from the corresponding nitro compounds only the 3-nitro derivative showed some,

albeit low inhibitory activity against P-gp. Very low inhibitory activity against P-gp

was also observed for compound KS-237 (IC50 = 18.8).
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Table 4.5: Activity of compounds with variations on the third aromatic ring. Activities
were measured using Hoechst 33342 assay and MCF-7 MX cells for BCRP
(reference substance WK-X-24: IC50 = 0.90 ± 0.07 µM) and calcein AM
assay and A2780 Adr cells for P-gp (reference substance WK-X-24: IC50 =
0.41± 0.08 µM). n.a. = no activity for concentration up to 10 µM.

Formula Compound
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

NO2

O

KS-176 1.58 ± 0.36 n.a.

N
H

NH

O

OH
O

NO2

KS-150 1.31 ± 0.25 21.28 ± 0.29

N
H

NH

O

OH
O

NH2

KS-159 8.65 ± 2.37 14.0 ± 4.2

N
H

NH

O

OH

CN

O

KS-144 2.54 ± 0.20 n.a.

N
H

NH

O

OH

Cl

O

KS-169 3.09 ± 1.32 n.a.

N
H

NH

O

OH
O

Cl

KS-238 3.48 ± 0.54 n.a.

N
H

NH

O

OH
O

Cl

KS-237 n.a. 18.8 ± 1.3
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

CF3

O

KS-242 2.20 ± 0.57 n.a.

N
H

NH

O

OH
O

KS-190 4.59 ± 0.57 n.a.

N
H

NH

O

OH
O

OH

KS-406 21.2 ± 3.7 n.a.

N
H

NH

O

OH
O

NH2

KS-371 8.12 ± 1.00 15.5 ± 2.1

N
H

NH

O

OH
O

C(CH3)3

KS-162 2.95 ± 0.83 11.7 ± 3.9

N
H

NH

O

OH

O

O

CH3

CH3

KS-407 1.16 ± 0.29 8.42 ± 2.45

N
H

NH

O

OH
O

O CH3

O

KS-405 12.8 ± 2.1 n.a.

N
H

NH

O

OH
O

OCH3

OCH3

KS-157 3.61 ± 0.96 7.75 ± 1.19
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4.2.8 Variations on the first aromatic ring

The ethyl alcohol on the first aromatic ring was modified especially for compounds

possessing 4-nitro, 4-trifluoromethyl and chlorine groups on the third aromatic ring.

The results are reported in table 4.6. The cellular test results showed that the substi-

tution of the hydroxyethyl group with a phenolic hydroxy group does not significantly

change the activity of the compound with respect to the reference compound KS-176

(compound KS-251, IC50 = 1.76 µM). The same effect was observed for the pair of

compounds containing a 4-trifluoromethyl substituent on the third aromatic ring. The

inhibitory activity of compound KS-342 (IC50 = 1.80 µM), with a hydroxy group on

the first aromatic ring is very similar to that of compound KS-242 (IC50 = 2.20 µM),

its homologue with the hydroxyethyl group at the same position. The same trend is

also observed for compounds possessing a chlorine group at position 4 on the third

aromatic ring: The inhibitory activity of the phenolic compound KS-252 (IC50 = 2.91

µM) is very similar to that of its homologue KS-169, with the hydroxyethyl group

(IC50 = 3.09 µM). Exceptions from this trend are compounds with 3,4-dimethoxy sub-

stituents on the third aromatic ring. For this subclass of compounds, the exchange

of the hydroxyethyl group by a phenolic hydroxy group leads to an increase of the

inhibitory activity against BCRP, as observed for compound KS-265 (IC50 = 1.16 µM,

three fold more potent than compound KS-157).

The methylation of the penolic hydroxy group in para position on the first aromatic

ring reduces the BCRP inhibitory activity to an IC50 value of 3.56 µM (compound

KS-267). For compounds with 3,4-dimethoxy substitution on the third aromatic ring,

the introduction of a methoxy group also on the first aromatic ring does not change the

inhibitory activity against BCRP (IC50 = 3.34 µM for compound KS-266 against IC50

= 3.61 µM for compound KS-157. The structure and activity of compound KS-157

are reported in table 4.1.). If the third aromatic ring is substituted with a 4-chlorine

group, the introduction of a methoxyl group on the first aromatic ring leads to loss of

activity.

The methylation of the hydroxyethyl group leads to opposite results for compounds

possessing 4-nitro and 4-trifluoromethyl groups. Indeed, compound KS-292 has an IC50

value of 1.23 µM, a bit lower than the reference compound, while compound KS-322

has an IC50 value of 5.11 µM, two fold higher than that the homologue KS-242.

The acetylation of the hydroxyethyl group was investigated for the compound with

a 4-nitro group on the third aromatic ring (compound KS-194). This compound has

an IC50 value of 1.32 µM, slightly lower than the reference compound KS-176.

The increase of inhibitory activity was obtained with the replacement of the hy-

droxyethyl group by a benzoyl group. The two compounds with this substitution on

the first aromatic ring, KS-174 and KS-184, contain a 4-nitro and a methyl group
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Figure 4.19: 3D plot of the SlogP, PM3 HOMO and VSA descriptors of the substituted
first aromatic ring. The red points are associated to substituted aromatic
rings present in compounds without inhibitory activity against BCRP, if the
substituent on the third aromatic ring is a 4-nitro group. The green points are
related to substituted aromatic rings of active BCRP inhibitors, if the third
aromatic ring has a 4-nitro group, and correspond to the compounds: (A)
KS-174, (B) KS-385, (C) KS-292, (D), KS-267, (E) KS-176, (F) KS-251, (G)
KS-194.

respectively on the third aromatic ring. The IC50 value for compound KS-174 is equal

to 1.63 µM, slightly lower than the reference compound KS-176, while the IC50 value

for compound KS-184 is equal to 0.56 µM, about 8-folds lower than the corresponding

compound with the hydroxyethyl group at the same position (KS-190, IC50 = 4.59

µM).

The absence of substituents on the first aromatic ring leads almost always to not ac-

tive compounds or to compounds with very low inhibitory activity. The exceptions are

the compound KS-166, with two methoxy groups on the third aromatic ring compound

KS-173, with an acetamide at position 4 of the third aromatic ring. The IC50-values

of these compounds against BCRP are 1.76 µM and to 2.09 µM, respectively.

Further compounds with a 4-nitro group on the third aromatic ring and bromine,

sulfonamide, dimethylamino and amide groups on the first aromatic ring were syn-

thesized by Dr. Steggemann. For these compounds no inhibitory activity against

BCRP was found. The structure-activity relashionship of the first aromatic ring can

be explained by the 3D plot of SlogP, PM3 HOMO and VSA descriptors (figure 4.19).
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These three molecular descriptors are not correlated with each other.

The most active compounds have groups, on the first aromatic ring, characterized

by high values of SlogP. The increase of the lipophilicity must be also accompanied

by an increase of the van der Waals surface area. As illustrated in figure 4.19, these

compounds must also have values of PM3 HOMO (a descriptor high correlated with

σ-Hammett) for the first aromatic ring between values of -9 eV and -10 eV. The two

compounds (KS-383 and KS-374) out of this range are not active against BCRP. It

can be concluded that for obtaining compounds with high inhibitory activity against

BCRP, the first aromatic ring must be substituted by a lipophilic group with high van

der Waals surface area. This conclusion is valid for compounds with 4-nitro substituent

on the third aromatic group and can be extended also to compounds possessing other

substituents on this position as trifluoromethyl and chloro.

As already mentioned, other compounds with the third aromatic ring substituted

by a 3,4-dimethoxy group or by acetamide are an exception to this trend. A possible

explanation of the exceptional activity of these compounds can be found observing

the van der Waals surface (VSA) of the third aromatic ring for compounds with no

substitution or with only a methyl group on the first aromatic ring. Compounds with

IC50 values higher than 10 µM or no activity against BCRP have low values of van

der Waals surface areas of between 126.79 (the aniline of compound KS-172) and

142.19 (the trifluoromethyl benzene of compound KS-358). The van der Waal surface

area value of the third aromatic ring of compound KS-173 is equal to 167.09. This

compound is a BCRP inhibitor with an IC50 value of 2.09 µM. The value of van der

Waals surface area for compound KS-166 is equal to 171.26 and its IC50 value is equal to

1.76 µM. The importance of the surface area of the third aromatic ring for compounds

without substituents on the first aromatic ring can be explained by the increase of

the importance of the interaction in which the third aromatic ring is involved after

disappearance of the interaction of the substituent on the first aromatic ring with the

binding site. Indeed, it was already demonstrated, that a bulky substituent on the

third aromatic ring contributes to an increase in the inhibitory activity against BCRP

for this class of inhibitors.

Regarding the inhibitory activity against P-gp, the absence of substituents on the

first aromatic ring leads to compound KS-166, with an IC50 value equal to 3.98 µM.

The introduction of an hydroxy or methoxy substituent on the first aromatic ring does

not really change the inhibitory activity against P-gp with respect to the compounds

without substituents at the same position. Indeed, the IC50 value of compound KS-266,

with a methoxy group on the first aromatic ring and the IC50 of compound KS-265,

with hydroxy group at the same position are respectively equal to 4.09 µM and 4.47

µM, respectively.

A severe reduction of the inhibitory activity against P-gp was measured for com-
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pound KS-277, with a methyl group on the first aromatic ring. This compound has

an IC50 value of 13.5 µM. The presence of a chlorine group at the same position (com-

pound KS-272) leads to a loss of activity. For compounds with a nitro group or with

a trifluoromethyl group on the third aromatic ring, the only active compounds are

those with a hydroxy group on the first aromatic ring. These compounds possess low

inhibitory activity against P-gp, with IC50 values of 27.5 µM and 14.0 µM for com-

pounds KS-251 and KS-342 respectively. The presence of a benzoyl group on the first

aromatic ring leads to compounds with moderate inhibitory activity against P-gp: In-

deed, the IC50 values of compounds KS-174 and KS-184 are respectively equal to 5.18

and 6.07 µM, respectively. This result was expected, according to what was already

observed by Chiba et. al. [153].

Table 4.6: Activity of compounds with variations on the first aromatic ring. Activities
were measured using Hoechst 33342 assay and MCF-7 MX cells for BCRP
(reference substance WK-X-24: IC50 = 0.90 ± 0.07 µM) and calcein AM
assay and A2780 Adr cells for P-gp (reference substance WK-X-24: IC50 =
0.41± 0.08 µM). n.a. = no activity for concentration up to 10 µM.

Formula Compound
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

NO2

O

KS-176 1.58 ± 0.36 n.a.

N
H

NH

O

O

NO2

O

O

KS-194 1.32 ± 0.28 n.a.

N
H

NH

O

OCH3

NO2

O

KS-292 1.23 ± 0.40 n.a.

N
H

NH

O

OCH3

CF3

O

KS-322 5.11 ± 0.87 n.a.
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

CH3

NO2

O

KS-385 0.94 ± 0.33 n.a.

N
H

NH

O

OCH3

NO2

O

KS-267 3.56 ± 0.84 n.a.

N
H

NH

O

OCH3

Cl

O

KS-268 n.a. n.a.

N
H

NH

O

OCH3

OCH3

O

OCH3

KS-266 3.34 ± 0.25 4.09 ± 0.50

N
H

NH

O

OH

NO2

O

KS-251 1.76 ± 0.18 27.5 ± 1.9

N
H

NH

O

OH

Cl

O

KS-252 2.91 ± 0.88 n.a.

N
H

NH

O

OH

OCH3

O

OCH3

KS-265 1.16 ± 0.21 4.47 ± 1.00

N
H

NH

O

OH

CF3

O

KS-342 1.80 ± 0.43 14.0 ± 3.5
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

O

Cl

KS-231 n.a. n.a.

N
H

NH

O

O

KS-228 n.a. n.a.

N
H

NH

O

O

OCH3

OCH3

KS-277 22.8 ± 2.8 13.5 ± 2.6

N
H

NH

O

Cl

OCH3

O

OCH3

KS-272 8.29 ± 3.10 n.a.

N
H

NH

O

Cl

CF3

O

KS-375 n.a. n.a.

N
H

NH

O

Br

NO2

O

KS-382 n.a. n.a.

N
H

NH

O

NO2

O NH2

O

KS-381 n.a. n.a.

N
H

NH

O

SO2NH2

NO2

O

KS-383 n.a. n.a.
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

N(CH3)2

NO2

O

KS-374 n.a. n.a.

N
H

NH

O

NO2

O

KS-168 13.4 ± 4.2 n.a.

N
H

NH

O

CF3

O

KS-358 n.a. n.a.

N
H

NH

O

OCH3

O

OCH3

KS-166 1.76 ± 0.64 3.98 ± 0.84

N
H

NH

O

O

NH2

KS-172 23.3 ± 8.9 n.a.

N
H

NH

O

O

NH

O

KS-173 2.09 ± 0.20 n.a.

N
H

NH

O

O

NO2

O

KS-174 1.63 ± 0.33 5.18 ± 0.28

N
H

NH

O

O

O

KS-184 0.56 ± 0.24 6.07 ± 1.48
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4.2.9 Variations of the linker position

None the compounds with meta or para substitutions on the second ring show any

activity against BCRP in the Hoechst 33342 assay, as shown in table 4.7. Therefore,

the relative position of the two amide groups seems to be crucial. Only the ortho-

substituted compounds can establish a hydrogen bond between the NH and the C=O

of the amide groups on the second ring. As already presumed analyzing the activity

of compounds with modifications in the first linker, this interaction may be important

for the active conformation of this class of compounds.

Table 4.7: Activity of compounds with variations of the linker position. Activities
were measured using Hoechst 33342 assay and MCF-7 MX cells for BCRP
(reference substance WK-X-24: IC50 = 0.90 ± 0.07 µM) and calcein AM
assay and A2780 Adr cells for P-gp (reference substance WK-X-24: IC50 =
0.41± 0.08 µM). n.a. = no activity for concentration up to 10 µM.

Formula Compound
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

O

OH

NO2

O

KS-176 1.58 ± 0.36 n.a.

N
H

OH
O

HN O

NO2

KS-279 n.a. n.a.

N
H

OH
O

HN O

CF3

KS-280 n.a. n.a.
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

O

NH

NH

O

O2N

OH

KS-090 n.a. n.a.

N
H

O

NH

NH

O KS-129 n.a. n.a.

N
H

O

NH

NH

O

O2N

KS-108 n.a. n.a.

N
H

O

NH

NH

O KS-109 n.a. n.a.

N
H

OH
O

HN

O

O2N

KS-091 n.a. n.a.

4.2.10 Compounds containing a tetrahydroisoquinoline moiety

The compounds reported in table 4.8 contain a tetrahydroisoquinoline group in their

structure. The first compound reported in this table is compound WK-X-24 (XR9577)

that was used as reference compound in this work. As reported in the table below, the

substitution of the amide in the second linker with an urea group leads to compounds

with a high inhibitory potency against BCRP, as compound KS-105 (IC50 = 0.35

µM). The substitution of the nitro group with a methyl group leads to a decreasing
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BCRP inhibitory activity by about 3-folds (compound KS-216). A further decreasing

of the inhibitory activity is caused by substitution of the third aromatic ring with a

naphthalene (compound KS-220, IC50 = 5.17 µM). This result suggests that a slightly

hydrophobic and strong electron acceptor group as the nitro group increases the activ-

ity, as already observed for compounds without the tetrahydroisoquinoline group. The

introduction of two methoxy groups at position 4 and 5 of the tetrahydroisoquinoline

group leads to a decrease of the BCRP inhibitory activity by about 9-folds with respect

to its homologue compound KS-216 (compound KS-226, IC50 = 9.30 µM). This result

is in accordance with the Free-Wilson analysis proposed by Pick et. al. [148]. The sub-

stitution of the amide group in the first linker with an urea group (KS-136) increases

the IC50 to a value of 10.35 µM, that is about 30 folds higher. Also the inhibitory

activity of six compounds with a tetrahydroisoquinoline group but without the third

aromatic ring was tested. Between them, the only two compounds that resulted to

be BCRP inhibitors are the compounds KS-221 and KS-122. As shown on table 4.8,

the first one (IC50 = 3.47 µM) has as first linker an urea group, two methoxyl groups

on the tetrahydroisoquinoline rest and a bromine at para position on the aromatic

ring. Normally, the presence of methoxyl groups on the tetrahydroisoquinoline group

decreases the inhibitory activity of compounds against BCRP, therefore the bromine

group could be responsible of the inhibitory activity of this compound. Unfortunately,

no compounds with similar structure but without the bromine group were synthesized

to confirm this hypothesis. The other active BCRP inhibitor, KS-122, has a moderate

inhibitory activity against BCRP, with an IC50 value of 6.70 µM. Its structure has

an amide group as first linker and the terminal phenyl group is substituted at para

position with a cyano group. The analogue compound KS-210, with a methyl group

in place of the cyano group has no effects against BCRP at concentrations up to 10

µM. Four compounds with the tetrahydroisoquinoline group in their structure have

an ortho substitution on the second aromatic ring. Only one of them (KS-075, IC50

= 4.68 µM) is able to inhibit BCRP. This compound differs from the other three by

the presence of two methoxyl groups on the tetrahydroisoquinoline rest and by the

presence of an urea as first linker.

Regarding the inhibitory activity of these compounds against P-gp, the comparison

between the results of the calcein-AM assay of compounds KS-105 and KS-216 with

the results of compounds WK-X-36 and WK-X-29 [154] showed that the introduction

of an urea as second linker decreases the inhibitory activity against P-gp. A slight

improvement of the inhibitory activity against P-gp is obtained by the introduction

of two methoxy groups on the tetrahydroisoquinoline group. The introduction of a

second urea group as first linker leads to loss of inhibitory activity against P-gp (KS-

136). Between compounds without the third aromatic group, only the compounds

KS-221 and KS-122 showed to be able to inhibit P-gp, with IC50 values of 3.47 and
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6.70 µM, respectively. The compounds KS-075 and KS-098, with the two linkers on

meta position, are weak inhibitors of P-gp, with IC50 values of 21.75 and 20.50 µM,

respectively. The analogue compound KS-101 does not inhibit P-gp. It is interesting

that the presence of the urea group on the first or on the second linker does not

significantly change the inhibitory activity against P-gp. Finally, the compound KS-

132, with two amides as linkers, has an IC50 value of 4.87 µM only about 3-folds higher

than of its ortho analogue WK-X-36 (IC50 = 1.45 µM) [154].

Table 4.8: Activity of compounds presenting a tetrahedronsoquinoline group. Activ-
ities were measured using Hoechst 33342 assay and MCF-7 MX cells for
BCRP and calcein AM assay and A2780 Adr cells for P-gp. n.a. = no
activity for concentration up to 10 µM.

Formula Compound
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

N

O

N
O

WK-X-24 0.901 ± 0.066 0.415 ± 0.080

N
H

NH

NHO

N
O

NO2

KS-105 0.35 ± 0.05 2.55 ± 0.71

N
H

NH

NHO

N
O

KS-216 1.10 ± 0.09 3.49 ± 0.36

N
H

NH

NHO

N
O

KS-220 5.17 ± 1.33 3.68 ± 0.36
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

NH

NHO

N
O

OCH3

OCH3

KS-226 9.30 ± 1.84 2.01 ± 0.40

NH

NH

NHO

H
NO

N

NO2

KS-136 10.4 ± 4.44 n.a.

N
H

HN

N
O

Br

OCH3

OCH3

KS-221 3.47 ± 0.76 6.17 ± 0.84

N
H

N
O

HN
KS-224 n.a. 9.12 ± 3.85

N
H

HN

N
O

N

KS-117 n.a. n.a.

N
H

HN

N
O

H3CO

OCH3

KS-115 n.a. n.a.

N
H

N
O

NC

KS-122 6.70 ± 1.82 17.6 ± 1.5

N
H

N
O KS-210 n.a. 10.6 ± 5.7

N
H

HN

N
O

OCH3

OCH3

NH

O

NO2

KS-075 4.68 ± 1.55 21.8 ± 2.7
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Formula Compounds
IC50 BCRP µM ±

SD

IC50 P-gp µM ±
SD

N
H

O

NH

NH

O

N

KS-101 n.a. n.a.

N
H

O

NH

NH

O

O2N

N

KS-098 n.a. 20.5 ± 5.4

N
H

N
O

HN O

NO2

KS-132 n.a. 4.87 ± 0.58
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4.2.11 The effect of selected compounds on the cytotoxicity of

mitoxantrone, SN-38 and Hoechst 33342

In order to investigate the influence of this new class of BCRP inhibitors on the anti-

proliferative effect of cytotoxic drugs in presence or absence of BCRP, the cytotoxicity

of SN-38 and Hoechst 33342 was tested in MDCK BCRP cells. The results of these

tests further confirm the validity of the activity data collected with the Hoechst 33342

assay. In the experiments presented in this section, different BCRP inhibitors were

added at concentrations of 5 and 10 µM to MDCK BCRP cells that were stuck on

the bottom of a Greiner 96-well plate. As control, a PBS buffer solution administered

to MDCK BCRP cells and to MDCK cells was used. The cytotoxic agent was then

added at different concentrations.

The choice of using MDCK and the MDCK BCRP cells lines instead of the MCF-

7 and MCF-7 MX cells lines was taken considering the low quality of the curves

obtained using these second cells lines. In figure 4.20 is shown the effect gives by

increasing concentrations of the inhibitor KS-407 on the dose-response curves of the

cytotoxic compound SN-38. The curves on the left side of the figure (4.20a) are

obtained using MCF-7 and MCF-7 MX cell lines, while the curves on the right side

(4.20b) are obtained using MDCK and MDCK BCRP cell lines. The MTT assay in

which MCF-7 and MCF-7 MX cell lines were used, showed a lower span between the

curve corresponding to the resistance cells and that corresponding to the parenteral

cell lines (pEC50 of 7.19 and 6.55, respectively) in respect with the MTT assay using

MDCK and MDCK BCRP cell lines (pEC50 of 6.87 and 5.93, respectively).
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Figure 4.20: The shifts of the dose-response curves caused by increasing inhibitor concen-
trations using the compound KS-407 as inhibitor in (a) MCF-7 and MCF-
7 MX cells or (b) MDCK and MDCK BCRP cells. Resistant cells (empty
square), resistant cells + 5 µM inhibitor (black square), resistant cells + 10
µM inhibitor (empty triangle), parental cells (red down triangle).
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Furthermore, the goodness of fit is higher for the curves obtained using MDCK

and MDCK BCRP cell lines in respect with the curves obtained using MCF-7 and

MCF7-MX cell lines.

In order to exclude possible artefacts, the cytotoxic effects of selected compounds

at concentrations of 5 and 10 µM on the MDCK BCRP cells also were analyzed. The

results reported in figure 4.21 showed that at the studied concentrations, no cytotoxic

effects in MDCK BCRP cells were observed.

In the light of the above observations and considerations, it was decided to use the

MDCK and MDCK BCRP cell lines for the next assays.
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Figure 4.21: Cytotoxic effects of compounds (a) KS-407, (b) KS-251, (c) KS-166, and (d)
KS-174 in MDCK BCRP cells at concentrations of 5 and 10 µM.
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The importance of the ortho connection on the second aromatic ring
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Figure 4.22: The shift of the dose-response curve of Hoechst 33342 caused by increasing
inhibitor concentrations in MCDK cells. The shifts of the dose-response curves
due (a) to compound KS-279 and (b) to compound KS-091. MDCK BCRP
cells (empty square), MDCK BCRP cells + 5 µM inhibitor (black square),
MDCK BCRP cells + 10 µM inhibitor (empty triangle), parental MDCK
cells (red down triangle).

The results of the Hoechst 33342 assay showed that only compounds with the two

linkers in ortho position on the second aromatic ring are able to effectively inhibit

BCRP. This observation was confirmed by the MTT assay. As seen in figure 4.22,

compound KS-279, that contains the two linkers in meta position and compound KS-

091, that has the two linkers in para position are both not able to resistance towards

Hoechst 33342 of MDCK BCRP cells.

Substitutions on the first aromatic ring

Figure 4.23 shows the effect on the dose-response curves of Hoechst 33342 caused by

selected BCRP inhibitors with modifications on the first aromatic ring. The results

of the MTT assays confirm that the hydroxyethyl group on the first aromatic ring

is not essential for the activity and can be replaced by other groups. In particular,

the substitutions of the hydroxyethyl group by benzoyl (compound KS-174), propyl

(compound KS-385), hydroxyl (compound KS-251) and methoxy ethyl group (com-

pound KS-292) lead to compounds that are able to completely reverse the resistance

of MDCK BCRP cells against Hoechst 33342.
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Figure 4.23: The shifts of the dose-response curves of Hoechst 33342 caused by increasing
inhibitor concentrations in MCDK cells. The used inhibitors are (a) KS-174,
(b) KS-385, (c) KS-251 and (d) KS-292. MDCK BCRP cells (empty square),
MDCK BCRP cells + 5 µM inhibitor (black square), MDCK BCRP cells +
10 µM inhibitor (empty triangle), parental MDCK cells (red down triangle)

The influence on the activity of methoxy groups on the third aromatic ring on

the activity of compounds without substituents on the first aromatic ring

The results of the Hoechst 33342 assay showed important differences of activity

between compounds without any substituent on the first aromatic ring and with dif-

ferent substituents on the third aromatic ring. Mostly compounds do not showed any

inhibitory activity or only low inhibitory activity against BCRP, with the exceptions of

compounds KS-166 (IC50 = 1.16 µM) and KS-173 (IC50 = 2.09 µM). In order to con-

firm the results obtained with Hoechst 33342 assay, the MTT assay was also performed

using low active compound KS-168 (IC50 = 13.4 µM) and the most active compound

without substituents on the first aromatic ring, KS-166. The aim of this test was to

determine if the large difference in activity between these two compounds, differing
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Figure 4.24: The shift of the dose-response curve of Hoechst 33342 caused by increasing
inhibitor concentrations in MCDK cells.(a) The shift of the dose-response
curve caused by compound KS-168. (b) The shift of the dose-response curve
caused by compound KS-166. MDCK BCRP cells (empty square), MDCK
BCRP cells + 5 µM inhibitor (black square), MDCK BCRP cells + 10 µM
inhibitor (empty triangle), parental MDCK cells (red down triangle

by only one chemical group (3,4-dimethoxy on the third aromatic ring in compound

KS-166 instead of 4-nitro in compound KS-168), is also seen with this assay. In fig-

ure 4.24, the shift of the dose-response curve of Hoechst 33342 caused by compound

KS-168 is reported on the left, and the shift of the dose-response curve of Hoechst

33342 caused by compound KS-166 is reported on the right. It is possible to see that

the shift of the dose-response curve caused by compound KS-168 is only partial and

also for an inhibitor concentration equal to 10 µM the resistance of the MDCK BCRP

cells against Hoechst 33342 is not completely reversed. In contrast, the presence of

compound KS-166 at concentration equal to 10 µM is able to completely reverse the

BCRP mediated resistance against Hoechst 33342, as shown in figure 4.24b. In con-

clusion, the results of the MTT assays for compounds without substituents on the first

aromatic ring confirmed the data obtained from the Hoechst 33342 assay.

The influence of the substituents on the third aromatic ring

The results of the Hoechst 33342 assay for compounds with modifications on the

third aromatic ring have shown that the introduction of an isopropoxy group at po-

sition para of the ring (compound KS-407) increases the inhibitory activity of the

molecule with respect to the reference compound KS-176. In order to confirm the

result of the Hoechst 33342 assay, the MTT assay was performed for two different

cytotoxic compounds, namely Hoechst 33342 and SN-38. The results, illustrated in

figure 4.25, show that compound KS-407 is able to reverse the resistance of MDCK

101



4 Investigation of the inhibitory activity of a new class of tariquidar analogues.

-7.0 -6.5 -6.0 -5.5 -5.0
0

50

100

conc. Hoechst 33342

vi
ab

lili
ty

 c
el

ls
 (%

)

(a)

-8 -7 -6 -5 -4
0

50

100

conc. SN-38

vi
ab

lili
ty

 c
el

ls
 (%

)

(b)

Figure 4.25: The shift of the dose-response curve of cytotoxic agents caused by increasing
inhibitor concentration in MCDK cells.(a) The shift of the dose-response curve
of Hoechst 33342 caused by compound KS-407. (b) The shift of the dose-
response curve of SN-38 caused by compound KS-407. MDCK BCRP cells
(empty square), MDCK BCRP cells + 5 µM inhibitor (black square), MDCK
BCRP cells + 10 µM inhibitor (empty triangle), parental MDCK cells (red
down triangle

BCRP cells against both cytotoxic compounds. This result confirms the data obtained

from the Hoechst 33342 assay and allows to consider compound KS-407 as a potent

BCRP inhibitor.
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4.2.12 Determination of the cytotoxicity of selected BCRP

inhibitors

In order to measure the toxicity of the studied anthranile amide derivates, MTT vi-

ability assays with selected compounds were performed. In order to determinate the

toxicity in the same organisms that were also used for the determination of the BCRP

inhibitory activity, the MCF-7 and the resistant MCF-7 MX cell lines were chosen for

the assays.

Cells were seeded in sterile 96-well plates with density of 10,000 cells per well. After 6

h incubation, the studied compounds were added at 4 different concentrations ranging

between 1 and 31,6 µM. After 72 h incubation, the MTT solution, prepared following

the standard procedure, was added to each vial. Finally, the suspension was removed

from each vial and the cells were lysed using DMSO. The absorbance of each vial was

measured using a BMG POLARstar microplate reader. Two vials were added with

DMSO and other two vials were added only with PBS. The means of the absorbance

values of those samples were used as positive and negative references and results were

expressed as mean ± SD of 3 independent experiments.

Toxicity of selected compounds with modifications on the third aromatic ring

The cytotoxicity of seven selected compounds with modifications on the third aromatic

ring was measured. The results are illustrated in figure 4.26. The results of the

cytotoxicity assays show that generally the parenteral cell line MCF-7 is more resistant

against the cytotoxic effect of the studied compounds in respect to the MCF-7 MX

cell line.

The results of these experiments show that compound KS-176 does not show cyto-

toxicity in parenteral MCF-7 cells at concentration lower than 10 µM, while its cytotox-

icity in MCF-7 MX cells at concentration up to 10 µM. At a compound concentration

equal to 31.6 µM, the decrease of the viability in both cell lines was significant. The

decrease of the viability for compound KS-176 was also observed in other compounds.

A possible explanation can be offered by the low solubility of these compounds in PBS:

They could give precipitates, at concentrations up to 10 µM, with consequent reduc-

tion of the compound concentration in the solution. Similar results were observed also

for compound KS-150, that differs from compound KS-176 only in the position of the

nitro group on the third aromatic ring (at position meta instead of para in respect to

the second linker). The same trend was also observed for compound KS-144.

Compounds containing halogens on the aromatic ring, like KS-169 (4-chlorine) and

KS-242 (4-trifluoromethyl) are not cytotoxic for the parenteral cell line MCF-7 but

show already at low concentrations high cytotoxicity in the MCF-7 MX cell line. On

the other hand, compounds KS-407 and KS-157 do not show relevant cytotoxicity in
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Figure 4.26: Cytotoxicity of compounds with substitutions on the third aromatic ring.
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both cells lines also at concentrations up to 10 µM. The low value of IC50 of compound

KS-407 and its low cytotoxicity make this compound a good candidate for further

pharmacological studies.

Toxicity of selected compounds with modifications on the second aromatic ring
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Figure 4.27: Cytotoxicity of compounds with substitutions on the second aromatic ring.

The data for the cytotoxicity of compounds with modifications on the second aro-

matic ring reported in figure 4.27 show that these compounds are cytotoxic for both

MCF-7 and MCF-7 MX cell lines. In particular, also the viability of the MCF-7 cell

line is reduced by increasing concentrations of the three investigated compounds. Re-

garding the resistant cell line MCF-7 MX, at all used compound concentrations, the

cell viability was compromised, remaining at values of about 50 % with respect to

the control. Considering the low inhibitory activity of these compounds combined

with their high cytotoxicity, it can be concluded that these compounds are not good

candidates for further investigations.
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Toxicity of selected compounds with modifications on the first aromatic ring

Six compounds with modifications of the substituent group at para position on the

first aromatic ring were selected to investigate their cytotoxicity. The result of the

cytotoxicity assay of compound KS-176 is also reported in the figure 4.28 for com-

parison. It can be seen that the methylation of the hydroxyethyl group leads to an

increase of the cytotoxicity of compound KS-292 for the MCF-7 MX cell line, while

this compound is not cytotoxic for the MCF-7 cell line, also at high concentrations.

The introduction of a methoxy group directly connected with the aromatic ring (com-

pound KS-267) leads to high cytotoxicity for the MCF-7 MX cell line and a moderate

cytotoxicity for the parental MCF-7 cell line. The presence of a hydroxy group directly

connected with the ring, as in compound KS-251, leads to complete absence of cyto-

toxicity for the MCF-7 cell line and to reduction of the cell viability in MCF-7 MX

cells only at high concentrations. The absence of substituents on the first aromatic

ring (compound KS-166) leads to appearance of cytotoxic effects in MCF-7 cells only

at concentrations higher than 10 µM, while the cell viability of the MCF-7 MX cell

line is compromised already at low compound concentrations. An analogues effect was

observed for compound KS-385, possessing a propyl group on the ring at position 4.

Finally, compound KS-174, with a benzoyl group at para position on the ring, is not

cytotoxic for the MCF-7 cell line at all the studied concentrations and shows only low

cytotoxicity for the MCF-7 MX cell line at a concentration of 31.6 µM.
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Figure 4.28: Cytotoxicity of compounds with substitutions on the first aromatic ring.
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Toxicity of compounds presenting an hydroxyl group at position 4 on the first

aromatic ring
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Figure 4.29: Cytotoxicity of compounds with 4-hydroxy group on the first aromatic ring
and 4-nitro (KS-251) or 3,4-dimethoxy (KS-265) on the third aromatic ring.

The results from the Hoechst 33342 assay showed that compounds with an hydroxy

group at para position on the first aromatic ring are potent BCRP inhibitors with

similar IC50 values. Regarding the cytotoxicity of these compounds, the results of

the MTT assays showed that they have only low cytotoxicity in the MCF-7 cell line

at high concentrations (higher than 10 µM). In MCF-7 MX cells, the cytotoxicity is

relevant, for compound KS-251 at concentrations higher than 3 µM. Compound KS-

256, with two methoxy groups at position 3 and 4 of the third aromatic ring, reduces

considerably the viability of the MCF-7 MX cells considerably only at concentrations

of 10 µM and higher. This last observation confirms that the presence of two methoxy

groups on the third aromatic ring generally reduces the cytotoxicity of the compounds,

as already observed for compound KS-157.
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5 Development of binary QSAR

models for classification of BCRP

inhibitors.

5.1 Aim of this work

The results of the Hoechst 33342 assay showed that a wide number of the tested

compounds are weak inhibitors of BCRP or do not have any inhibitory activity at this

transporter.

The presence of numerous inactive compounds in a dataset is a problem for two

principal reasons: the first reason is that we are interested to obtain active inhibitors

(if possible, highly active) for the studied protein target and the presence of many

inactive compounds is an indication that drastic modification of the molecular scaffold

is required or that some basic feature of the molecular structure must be modified. The

second reason is that for these compounds is not possible to determine IC50 values,

with the result that we lose information for the building of standard linear QSAR

models.

In order to understand the reasons of such consistent presence of inactive compounds

and to orient the synthesis of new BCRP inhibitors to active compounds, three machine

learning algorithms were used to classify the training dataset constituted by the newly

synthesized tariquidar analogues.

The three chosen methods are the Self-Organizing Maps (SOM), an Artificial Neu-

ral Network that uses unsupervised learning, the Support Vector Machine (SVM), a

supervised learning algorithm, and the k-Nearest Neighbor (k-NN) algorithm, a lazy-

learning algorithm.

The parameters of each used machine learning algorithm were optimized to increase

its predictivity. Finally, an external dataset of compounds with a different scaffold

was used as test set to estimate the predictivity of the best models.

The results show that the generated models could be used as filter for designing new

compounds with increased chances to be active BCRP inhibitors.
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5 Development of binary QSAR models for classification of BCRP inhibitors.

5.2 Preparation of the molecular structures and

descriptor calculation

5.2.1 Description of the used training dataset

The compounds used for the training dataset were synthesized by Dr. Kerstin Stegge-

man, a former PhD student of our research group in order to obtain a new class of

selective BCRP-inhibitors [155].

The compounds included in the dataset are chemically derived from tariquidar and

are structurally highly similar. In the dataset are included also structures containing

the tetrahydroisoquinoline rest as present structure of tariquidar as well as compounds

without this chemical group. All compounds of this dataset have been tested in the

Hoechst 33342 assay, to evaluate their inhibitory activity against BCRP, and in the

calcein AM assay to evaluate the P-gp inhibitory activity.

In conclusion, 99 compounds were tested and classified. The dataset was divided

into two subgroups: 59 compounds with IC50 values for BCRP equal or lower than

10 µM were classified as BCRP inhibitors (class-code equal to 1). The remaining 40

compounds with an IC50 value higher than 10 µM were classified as non-inhibitors

(class-code equal to 0). The compounds used for classification and their class-codes

are reported in table 5.1.

5.2.2 Structure optimization

All the compounds mentioned in this work were drawn using the software MOE [97].

The molecular structures were optimized before calculating molecular descriptors, in

order to find the optimal conformation and to calculate the partial charges of the

atoms. The optimization consists of three different steps: the calculation of force field

partial charges, the conformational search and the recalculation of partial charges using

a quantum mechanic method.

In the first step the partial charges were calculated using the force field MMFF94x

[156]. Afterwards, a stochastic conformational search was performed using a root mean

square (RMS) gradient equal to 0.005 Å and an iteration limit of 10000.

Due to high flexibility of the molecular structures and the calculations performed

in vacuo, the conformation associated to the lowest potential energy was frequently

an unnaturally bent structure. The problem was solved taking the conformation with

lowest globularity instead of the conformation with lowest potential energy.

Finally, the charges of the chosen conformation were than recalculated using the

PM3 quantum mechanic method included in MOPAC and the structure minimized to

the local minimum energy.
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5.2 Preparation of the molecular structures and descriptor calculation

Table 5.1: The compounds used in the Dataset and their activity class.

Compound Class

WK-X-24 1
KS-072 1
KS-075 1
KS-094 1
KS-105 1
KS-122 1
KS-226 1
KS-136 1
KS-144 1
KS-150 1
KS-157 1
KS-159 1
KS-162 1
KS-166 1
KS-169 1
KS-174 1
KS-176 1
KS-184 1
KS-186 1
KS-187 1
KS-190 1
KS-191 1
KS-194 1
KS-196 1
KS-206 1
KS-216 1
KS-220 1
KS-221 1
KS-238 1
KS-242 1
KS-246 1
KS-249 1
KS-251 1
KS-252 1

Compound Class

KS-255 1
KS-257 1
KS-265 1
KS-266 1
KS-267 1
KS-272 1
KS-274 1
KS-282 1
KS-292 1
KS-294 1
KS-304 1
KS-305 1
KS-308 1
KS-311 1
KS-322 1
KS-342 1
KS-364 1
KS-366 1
KS-367 1
KS-371 1
KS-385 1
KS-399 1
KS-401 1
KS-173 1
KS-407 1
KS-090 0
KS-091 0
KS-092 0
KS-098 0
KS-101 0
KS-108 0
KS-109 0
KS-115 0
KS-117 0

Compound Class

KS-129 0
KS-132 0
KS-168 0
KS-170 0
KS-172 0
KS-181 0
KS-199 0
KS-210 0
KS-224 0
KS-228 0
KS-231 0
KS-237 0
KS-268 0
KS-277 0
KS-279 0
KS-280 0
KS-290 0
KS-293 0
KS-328 0
KS-348 0
KS-351 0
KS-357 0
KS-358 0
KS-360 0
KS-374 0
KS-375 0
KS-381 0
KS-382 0
KS-383 0
KS-405 0
KS-406 0
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5 Development of binary QSAR models for classification of BCRP inhibitors.

(a) Structure with lower globularity (b) Structure with lower energy

Figure 5.1: Comparison of two different conformation of compound KS-181. The first con-
formation shows the lowest globularity (glob = 0.16) and a potential energy
value equal to 92.68 kcal/mol. The second structure has the lowest potential
energy (87.48 kcal/mol) but an high globularity value (0.36).

5.2.3 Calculation of molecular descriptors

The molecular descriptors used in this work can be divided into zero-dimensional

descriptors (0D), one-dimensional descriptors (1D), two-dimensional descriptors (2D),

and three-dimensional descriptors.

0D descriptors are simply derived from the chemical formulas of compounds. 1D

descriptors report the count of functional groups and substructures in the molecule.

2D descriptors are calculated using information deriving from the connectivity and

distance matrix of structures. For calculation of these last descriptors no informa-

tion about the molecular conformation are needed. Finally, 3D descriptors use atoms

coordinates to be calculated.

The same class of descriptors, e.g. ATS descriptors, can be 2D or 3D descriptors

according to the used kind of distance (topological or geometrical respectively). The

calculation of molecular descriptors was performed using the software MOE [97] and

the on-line version of the software DRAGON. For each molecule, 2164 descriptors

were calculated and divided into 13 classes. Those 13 classes were used separately or

in different combinations e.g. 2D and 3D RDF descriptors together or 0D, 1D, 2D,

and 3D descriptors. Descriptors with only zero values were removed. The kind of

descriptors used, the dimensionality and the number of descriptors calculated for each

class are summarized in table 5.2.
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5.3 Use of SOMs to discriminate between BCRP-inhibitors and non-inhibitors

Table 5.2: Classes and number of molecular descriptors calculated

Classes Dimensionality Number of descriptors calculated

0D, 1D and 2D MOE descriptors 0D, 1D, 2D 174
3D MOE descriptors 3D 124
Inductive descriptors MOE 3D 50
2D RDF descriptors 2D 75
3D RDF descriptors 3D 150
2D RECON descriptors 2D 143
3D RECON descriptors 3D 143
TAE RECON descriptors 3D 257
3dMORSE descriptors 3D 160
gATS descriptors 3D 260
tATS descriptors 2D 135
WHIM descriptors 3D 99
GETAWAY descriptors 3D 197
Total number 2164

5.3 Use of SOMs to discriminate between

BCRP-inhibitors and non-inhibitors

5.3.1 Identification of the optimal parameters of the SOM

In order to increase the predictivity of the model based on SOMs, the parameters of the

map were changed to find the best setting. The optimized parameters are the number

of iterations, the topology of the SOM and the dimension of the SOM. The number of

iterations refers to the number of times that the complete dataset is presented to the

SOM. The number of iterations must be enough to guarantee reaching of convergence.

The optimal number of iterations was found using the largest descriptor set of this

study (the combination of 2D, 3D and TAE RECON descriptors, in total 543 descrip-

tors) in a 9 x 9 SOM. The results show that after 4000 iterations the mean distance

between input vectors and the corresponding winning neuron appears to be constant

(fig. 5.2).

Regarding the topology of SOMs, the major problem is to ensure that all neurons

of the SOM have the same number of first-, second- and third- neighbors. This is not

possible using a classical topology, as the rectangular and hexagonal topologies. Neu-

rons at the edges of a rectangular or hexagonal SOM have incomplete neighborhood.

This problem was solved using toroidal topologies.

The optimal dimension of the SOM was determined using a grid approach, for each

used set of descriptors. Several SOMs were generated with increasing dimensions from

5 x 5 to 9 x 9 neurons. The dimension limit of 9 x 9 neurons is due to the number of

115



5 Development of binary QSAR models for classification of BCRP inhibitors.

0 2000 4000 6000 8000 10000

0
.0

2
0
.0

4
0
.0

6
0

.0
8

0
.1

0

Training progress

Iteration

M
e
a
n
 d

is
ta

n
c
e
 t

o
 c

lo
s
e
s
t 

u
n
it

Figure 5.2: Example of training progress for a 9 x 9 SOM using 2D, 3D and TAE RECON
descriptors.

molecules in the dataset that must be higher than the number of neurons of the SOM.

The predictivity was evaluated for each generated SOM and the results are reported

successively in this thesis.

5.3.2 Analysis of results

The package ’kohonen’ implemented in R (version 2.15.0) [157] is used in this work to

calculate self-organizing maps. Several models were generated using different sets of

descriptors. For each set, molecular descriptors with variance equal to 0 were removed.

Before training of the SOM, each column of the input matrix was normalized, sub-

tracting the mean of all values in the column and dividing by the standard deviation.

Normalization of features is necessary in this work because the ranges of the used

descriptors are widely different.

In order to obtain better prediction of the less represented class (weak active in-

hibitors), a down-sampling of the dataset was performed. In machine learning algo-

rithms unbalanced datasets can cause problems when predicting the smaller class. An

approach to solve this problem consists in taking, for training of the SOM, only as

many elements from the larger class as elements in the smaller class, obtaining in this

way a down-sampled dataset where the amount of elements of the two classes is 1:1.

The elements taken from the larger class to obtain the down-sampled database were
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5.3 Use of SOMs to discriminate between BCRP-inhibitors and non-inhibitors

randomly selected. For each training cycle, different elements were randomly selected

for the down-sampled database. This down-sampled training set was used to build the

SOM model. The SOM was trained using a learning rate decreasing linearly from 0.05

to 0.01. The initial weights were randomly generated.

The predictivity of the trained SOM was finally evaluated using the leave-one-out

(LOO) cross validation (CV). The down-sampling, and the calculation of the SOM

model were performed 100 times giving each time small difference in the accuracy

values, due to different elements in the down-sampled dataset and to different initial

weights of SOMs neurons. The predictivity of the best models was finally tested using

an external dataset (test set). The overall process is shown in figure 5.3.

The accuracy of the prediction is expressed using the parameter ”accuracy value”,

”true positive rate” (TP rate) and ”true negative rate” (TN rate). These parameters

were already explained in section 2.3.

Figure 5.3: Framework for the generation of SOM models.

0D, 1D, 2D and 3D MOE descriptors

In his 2012 publication [158], Kohonen suggests to use self-organizing maps with a

number of neurons between about 25 and 2000. Additionally, he assets that it is not

possible to know the exact dimension of the SOM array beforehand, but it has to be

determined trying several sizes and evaluating the errors. The number of neurons in

the SOM is also determined by the possible number of clusters in the dataset. Small

SOMs are enough to map datasets with few clusters, whereas datasets with more than

two clusters or with interesting fine structures need a higher resolution.

The 0D, 1D, 2D and 3D descriptors calculated with MOE were used to generate
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(b) 3D MOE descriptors
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(c) 0D, 1D, 2D and 3D MOE
descriptors

Figure 5.4: The Box plots report the accuracies calculated for different SOM dimensions
using combinations of 2D and 3D MOE descriptors.

SOMs of the training dataset. As shown in figure 5.4, the accuracy for SOMs generated

using 0D, 1D and 2D descriptors decreases with the size of the array. Indeed, the

highest value of accuracy was obtained using SOM dimensions of 5x5 and 6x6 neurons

(with accuracies equal to 0.73 and 0.72 respectively). The accuracy of SOMs generated

using 3D descriptors remains almost constant with the increase of the size. The best

accuracy value obtained using this set of descriptors is comparable with the best

accuracy obtained with the non-3D descriptors and is associated with a SOM size

of 8x8 neurons (accuracy equal to 0.73).

The use of both descriptors sets results in SOMs with accuracy decreasing with the

size of the array, as already observed for SOMs calculated using non-3D descriptors.

This similar trend might be due to the higher amount of non-3D descriptors with

respect to the 3D (174 descriptors against 124 descriptors respectively). The best

accuracy obtained using both the descriptors set together is equal to 0.71 for a SOM
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5.3 Use of SOMs to discriminate between BCRP-inhibitors and non-inhibitors

with size 5x5. This value is lower than the best values obtained using the separate

datasets. This result suggests that a descriptors selection could play a role in increasing

of accuracy.

Inductive descriptors
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(a) Inductive descriptors.
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(b) 2D MOE and inductive de-
scriptors.
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(c) 3D MOE and inductive de-
scriptors.
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(d) 2D, 3D and inductive de-
scriptors.

Figure 5.5: Accuracies calculated for different SOM dimensions using combinations of in-
ductive, 2D and 3D MOE descriptors.

The use of inductive descriptors leads to accuracy values strongly dependent on the

size of the array. The best accuracy is obtained with an array size of 5x5 neurons

(accuracy equal to 0.74). The combination of 0D, 1D, 2D and inductive descriptors

leads also decreasing accuracy with the size of SOM. The best model obtained with

this set of descriptors has also an accuracy of 0.74 for an array size of 5x5 neurons.

The use of 3D and inductive descriptors together for the calculation of the SOM leads

to models with accuracy values independent of the size of the array. The accuracy for
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5 Development of binary QSAR models for classification of BCRP inhibitors.

these models is between 0.71 and 0.69. The best model (accuracy equal to 0.71) is

obtained using an array size of 6x6 neurons. The model obtained by the combination

of 0D, 1D, 2D, 3D and inductive descriptors is also independent of the size of the array

and has the same trend as already observed for models generated using only 0D, 1D,

2D and 3D descriptors. This result suggests that the chemical information provided

by the inductive descriptors is probably hidden by the other descriptors.

RDF descriptors
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(a) 2D RDF descriptors

SOM dimension

A
cc

ur
ac

y

5x5 6x6 7x7 8x8 9x9

0.
70

0.
75

0.
80

0.
85

(b) 3D RDF descriptors
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(c) 2D and 3D RDF descrip-
tors

Figure 5.6: Accuracies calculated for different SOM dimensions using combinations of 2D
and 3D RDF descriptors.

The accuracy of SOM models calculated using 2D RDF descriptors decreases with

the size of the array. The highest accuracy is obtained by a SOM with a size of 5x5

neurons and it is equal to 0.76. The use of 3D RDF descriptors for SOMs calculation

gives higher values of accuracy and they do not depend to the size of the array. The

best model obtained using 3D RDF descriptors has an accuracy value equal to 0.79,
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5.3 Use of SOMs to discriminate between BCRP-inhibitors and non-inhibitors

associated to a SOM with an array of 9x9 neurons. The use of 2D and 3D RDF

descriptors together leads to models with accuracy that is not dependent on the array

size but with lower accuracy with respect to models generated using only 3D RDF

descriptors. This result could be explained considering the higher amount of 3D RDF

descriptors (150 descriptors) respect to 2D RDF descriptors (only 75 descriptors).

RECON descriptors

Generally, the use of RECON descriptors for calculation of SOMs leads to predictive

models with low or no dependency on the size of the array. The model generated

using 2D RECON descriptors showed the best accuracy values with respect to models

generated using 3D RECON and TAE RECON descriptors. The accuracy of SOM

models calculated using 2D RECON descriptors moderately increases with the size of

the array from 0.72 for a 5x5 neurons SOM to a value of 0.76 for an 8x8 neuron SOM.

The largest SOM generated using this set of descriptors (9x9 neurons) has a similar

accuracy, equal to 0.75. The SOM models generated using 3D RECON descriptors, in

contrast to what observed in the previous descriptor sets, has an accuracy lower than

models calculated using 2D RECON descriptors. Indeed, all the models calculated

using 3D RECON descriptors have an accuracy lower than 0.70, without dependency

on the size of the array. The combination of 2D and 3D RECON descriptors leads

to models with an accuracy slightly under what obtained using only 2D RECON

descriptors. The worsening of the accuracy value could be due to the presence of

descriptors uncorrelated with the biological activity of compounds, as already observed

for other descriptors sets. The SOM models calculated using TAE RECON descriptors

show low predictivity, with accuracy value of about 0.60 and no dependency on the

size of the array. The use of TAE descriptors in combination with the other RECON

descriptors also leads to models with lower predictivity with respect to the models

calculated only with 2D and 3D RECON descriptors.
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(b) 3D RECON descriptors
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descriptors

Figure 5.7: Accuracies calculated for different SOM dimensions using combinations of 2D,
3D and TAE RECON descriptors.
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ATS descriptors
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(b) Geometrical ATS descrip-
tors

Figure 5.8: Accuracies calculated for different SOM dimensions using combinations of topo-
logical and geometrical ATS descriptors.

The SOMs generated using ATS descriptors have high accuracy values. The use of

topological ATS descriptors leads to models with accuracy between 0.74 (5x5 neurons)

and 0.71 (7x7 neurons). The accuracies observed for those models are not correlated

with the size of the array. The models generated using geometrical ATS descriptors

have values of accuracy higher than the models generated with topological ATS de-

scriptors. The better quality of these models can be explained by the nature of the

geometrical ATS descriptors: These descriptors consider the three-dimensional struc-

ture of the compounds and not only the connection matrix, as for the topological ATS

descriptors. The best accuracy obtained for SOMs calculated with geometrical ATS

descriptors is associated with an array size of 5x5 neurons and is equal to 0.79.

Dragon descriptors

The accuracies of SOMs generated using dragon descriptors are generally low. The

models generated using 3d-MORSE and GETAWAY descriptors are not able to dis-

criminate between BRCP inhibitors and non-inhibitors, with accuracy values lower

than 0.70. Only the models based on WHIM descriptors have fair values of accuracy,

increasing with the size of the array. The best value of accuracy obtained by a SOM

calculated with the WHIM descriptors is equal to 0.73, and it is associated to an array

of 9x9 neurons.
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(b) GETAWAY descriptors
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(c) WHIM descriptors

Figure 5.9: Accuracies calculated for different SOM dimensions using dragon descriptors.

Discussion of results

The results summarized in fig 5.10 shown that the best values of accuracy are obtained

using RDF and geometrical ATS descriptors. In particular (table 5.3), the accuracy

of the models generated using 3D RDF descriptors in a 5x5 neurons SOM is equal to

0.79, with a true positive precision equal to 0.91 and a true negative precision equal

to 0.68. The accuracy of the model generated using gATS descriptors is comparable

to the accuracy obtained by the model calculated using 3D RDF descriptors. Also in

this case the accuracy is equal to 0.79, but the precisions of true positive and true

negative are 0.90 and 0.67, respectively.

Several chemical-physical descriptors for the compounds in the database were also

analyzed, in order to observe possible differences in the distribution of these descriptors

between active and weakly active compounds. The best statistically relevant separa-

tion is based on descriptors codifying the volume of the molecules and the molecular

surface. In particular, the difference of the mean values of van der Waals surface area
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Figure 5.10: Accuracy values of the best models for each descriptor set.

between high and low active BCRP inhibitors is well rendered (Figure 5.11a). The

Welch Two Sample t-test was used to evaluate the statistical significance. The result of

the t-test showed a p value <0.005 and t = 3.685, confirming that the two population

of values are statistically separated.

The van der Waals surface area values were also correlated with the first component

of 3D RDF and gATS descriptors (Figure 5.11c). As expected, the values are highly

correlated: the correlation between the first component of the 3D RDF descriptors

and VSA has r2 equal to 0.97 and the correlation between the first component of the

gATS descriptors and VSA has an r2 value equal to 0.98.

In order to investigate the role of logP on the activity of this class of compounds,

the mean values of logP for the two populations were compared (Figure 5.11b). The

result of the Welch Two sample t-test showed that the two mean values are not sig-

nificantly different (p value = 0.13, t = 1.52). In conclusion, the capacity of this class

of compounds to inhibit BCRP depends on the surface area of the molecule but not

on the lipophilicity. A higher value of surface area gives higher probability that the

compound is a BCRP-inhibitor.

In Fig. 5.13 is shown the distribution of active and weakly active BCRP inhibitors in

the SOM. Red areas are neurons associated with weakly active BCRP-inhibitors, while

beige areas are neurons associated with active BCRP inhibitors. For both SOMs, gen-

erated using 3D RDF and gATS descriptors, it is possible to distinguish well-separated

clusters of neurons associated with active and weakly active inhibitors. The separation

of the two clusters is already recognizable observing the principal component analysis

of the 3D RDF and gATS descriptors. As illustrated in figure 5.13a, it is possible to
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5 Development of binary QSAR models for classification of BCRP inhibitors.

Table 5.3: Summary of BCRP classification powers by SOM approach.

Descriptors set Size Accuracy TP rate TN rate

3D-RDF 5x5 0.79 0.91 0.68
gATS 5x5 0.79 0.90 0.67
2D-3D-RDF 5x5 0.77 0.89 0.66
2D-RECON 8x8 0.76 0.87 0.65
2D-RDF 5x5 0.76 0.87 0.64
2D-IND-MOE 5x5 0.74 0.85 0.63
2D-3D-RECON 7x7 0.74 0.84 0.63
tATS 5x5 0.74 0.84 0.63
IND-MOE 5x5 0.74 0.84 0.63
2D-MOE 5x5 0.73 0.85 0.62
3D-MOE 8x8 0.73 0.83 0.63
2D-3D-IND-MOE 5x5 0.73 0.83 0.63
WHIM 9x9 0.73 0.82 0.63
2D-3D-MOE 5x5 0.72 0.82 0.62
2D-3D-TAE-RECON 8x8 0.72 0.81 0.62
3D-IND-MOE 6x6 0.71 0.81 0.61
GETAWAY 9x9 0.68 0.76 0.60
3D-RECON 8x8 0.68 0.76 0.60
3d-MORSE 5x5 0.61 0.67 0.56
TAE-RECON 6x6 0.61 0.67 0.55

distinguish the separation of the two clusters in the principal component analysis of

3D RDF descriptors. The first two components explain 64.4% of the variance. Figure

5.13c shows the 3D plot of the first 3 principal components of the 3D RDF descriptors:

in this figure the separation of the two clusters is more evident. In this last case, the

first three components explain 72.1% of the variance.

Similar results are obtained with the principal component analysis of the gATS

descriptors (Figure 5.13b and 5.13d). Also using these descriptors the separation of

the clusters in the 2D and 3D plot is clear. In this case, the first two components

explain 65,6% of the variance and the first three components 74,5% of the variance.
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Figure 5.11: (a) Differences between inhibitors (class 1) and weak inhibitors (class 0) based
on the van der Waals surface area (VSA), and (b) the logP. (c) Correlation
between the 1st principal component of the 3D-RDF descriptors and the van
der Waals surface area.
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Figure 5.12: SOMs generated using the two best descriptors sets. The color of each neuron
indicates the rate of association of the neuron to active (value = 1) or inactive
(value = 0) compounds.
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Figure 5.13: (a) Plot of the two principal components of the 3D RDF descriptors and
(b) topological ATS descriptors. (c) 3D plot representing the three principal
components of the 3D RDF descriptors and (d) topological ATS descriptors.
The blue points and spheres are associated to active BCRP inhibitors, while
red points and spheres are associated to weakly active BCRP inhibitors.

Use of an external testset

The predictivity of the developed SOM was tested using an external testset. The ex-

ternal dataset consists of 16 compounds synthesized and tested by Dr. Lars Möllmann

[159]. 9 compounds have IC50 values lower than 10 µM and were classified as BCRP-

inhibitors (class 1), while 7 compounds have IC50 values higher than 10 µM or show

no activity against BCRP. These compounds were classified as non-inhibitors (class

0). The three-dimensional alignment of the active compound LM-221 with the BCRP-
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5.3 Use of SOMs to discriminate between BCRP-inhibitors and non-inhibitors

inhibitor KS-176 (figure 5.14) shows that three of the four aromatic rings of compound

LM-221 can be superposed with the three aromatic rings of compound KS-176. The

result of the three-dimensional alignment suggests that the two classes of compounds

share similar pharmacophore patterns and consequentially also a similar interaction

with the protein binding site. If we assume that compounds of two different chemical

classes, bind to the protein in the same binding site should have similar chemical fea-

tures to be active, than we can also expect that they occupy similar positions in the

chemical space and, consequentially, the same region of the SOM.

Figure 5.14: Superposition of KS-176 and LM-221.

In order to use the LM dataset as an external test set, the KS dataset and the LM

dataset were joined together. The combined descriptor matrix obtained by joining the

two separate descriptor matrices was normalized using the software R. The normalized

matrix was split again into training set and test set (the KS compounds are used as

training set and the LM compounds as test set). The normalized descriptor values

were used for training of the SOM and the test compounds were successively projected

on the SOM model. The accuracy of the prediction was calculated according to the

amount of correct predictions for the two classes.

The SOM model generated using 3D RDF descriptors is able to predict the activity of

the test set with an accuracy of 0.88. All the active compounds were correctly predicted

and 5 of 7 inactive compounds were also correctly predicted. The two false positive

compounds are LM-234 and LM-233. Both compounds have a chemical structure very

similar to the active compounds. LM-234 is an analog of compounds LM-235 but it

has a thiourea as linker instead of the urea of compound LM-235. The other false

positive compound, LM-233 is similar to compound LM-221, but its structure has a

cyclohexane instead of a phenyl ring. The active compounds of the test set are grouped

in a cluster localized in the region of the SOM corresponding to active compounds. The

correct predicted inactive compounds are localized in regions of the SOM associated
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5 Development of binary QSAR models for classification of BCRP inhibitors.

with inactive compounds.

Table 5.4: Activity of compounds used as test set. The structures and activity of
these substances were extracted from the PhD thesis of Lars Mollmann
[159]. Activities were measured using Hoechst 33342-assay in MCF-7 MX
cells for BCRP (reference substance WK-X-24: pIC50 = 6.047± 0.032).

Structures Compounds
pIC50 BCRP µM

± SD
Class

N

N

HN

N
H

O

LM-221 (1) 5.816 ± 0.032 1

N

N

HN

N
H

O
O

O

LM-222 (2) 5.527 ± 0.067 1

N

N

HN

N
H

O

NO2

LM-223 (3) 6.204 ± 0.048 1

N

N

HN

N
H

O

NH2

LM-229 (4) 5.163 ± 0.101 1

N

N

N
H

NHO

O

O

LM-224 (5) 5.790 ± 0.056 1

N

N

HN

N
H

O
O

O

LM-228 (6) 5.432 ± 0.058 1

130



5.3 Use of SOMs to discriminate between BCRP-inhibitors and non-inhibitors

Structures Compounds
pIC50 BCRP µM

± SD
Class

N

N

HN

N
H

O

O

LM-236 (7) 5.989 ± 0.055 1

N

N

HN

N
H

HN O

LM-235 (8) 5.923 ± 0.022 1

N

N

HN

O
O

O

LM-209 (9) 5.801 ± 0.020 1

N

N

HN

NH2

O
O

O

LM-75 (10) 4.387 ± 0.116 0

N

N

NH

LM-219 (11) n.a. 0

N

N

NH

HN

O

LM-220 (12) n.a. 0

N

N

NH

HN

O

Cl

LM-225 (13) n.a. 0
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5 Development of binary QSAR models for classification of BCRP inhibitors.

Structures Compounds
pIC50 BCRP µM

± SD
Class

N

N

NH

HN

O
O

O

LM-226 (14) 4.522 ± 0.029 0

N

N

HN

N
H

HN S

LM-234 (15) n.a. 0

N

N

HN

N
H

O

LM-233 (16) n.a. 0

The SOM model generated using gATS descriptors is able to correctly predict the

activity of the test set with an accuracy value equal to 0.81. This model, as well as

the model generated using 3D RDF descriptors, is able to correctly classify all the

active compounds of the dataset. The active compounds are all localized in a cluster

corresponding to the area of the SOM associated with active compounds. Three of

the seven inactive compounds are not correctly predicted. Two of them, LM-234

and LM-233 were not correctly predicted also by the model generated using 3D RDF

descriptors. The third un-correct predicted compound, LM-220 is localized on an

ambiguously classified neuron.

In conclusion, self-organizing maps are able to discriminate between inhibitors and

non-inhibitors in the KS-dataset. The trained SOM generated using 3D RDF and

gATS descriptors can be used to predict the BCRP-inhibitory activity of other com-

pounds not structurally directly correlated to KS compounds.
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Figure 5.15: Use of externe dataset for validation. The numbers in these two illustrations
are referred to the compounds in table 5.4.

5.4 Use of SVM to discriminate between

BCRP-inhibitors and non-inhibitors

5.4.1 Generation of the models

In order to distinguish the BCRP-inhibitors and non-inhibitors in the KS dataset, the

SVM algorithm was also applied, analogously to the SOM algorithm. The SVM models

were built using the same descriptor sets previously used for the SOM models. For each

SVM model based on the RBF kernel, it is necessary to find the optimal combination

of the two parameters C and γ. In order to define the optimal combination of these

two parameters, a grid search was performed. Several SVM models were generated,

using several combinations of C and γ for values of C between 2−1 and 212 and for

values of γ between 2−12 and 1. The quality of each model was evaluated by 10-fold

cross-validation. For each descriptor set, the combination of C and γ that generates

the model with the lowest 10-fold cross-validated error was chosen to generate the final

SVM model.

The workflow used to generate and evaluate the SVM models is similar to that

used to generate the SOM models. First, all the descriptors with variance equal to 0

were deleted from the descriptor matrix. Then the descriptor values were normalized.

Similarly to SOM models, also in SVM a down-sampling step was performed, due to
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5 Development of binary QSAR models for classification of BCRP inhibitors.

the different amount of compounds in the two classes. The SVM models were generated

using the package e1071 [160] implemented in R. The downsampling and the model

generation were performed 1000 times and the average of the accuracy is reported.

Small differences of accuracy for each single cycle are due to the different elements

randomly selected in the downsampling. For each descriptor set, the best model was

evaluated not only with cross-validation, but also using an external testset, as for the

SOM models. Also in this case the external testset is the LM dataset.

5.4.2 Evaluation of the results

Table 5.5: Summary of BCRP classification powers by SVM approach.

Descriptors set C γ Accuracy TP rate TN rate

3D-RDF 16 2−12 0.75 0.89 0.62
gATS 2 2−10 0.77 0.93 0.60
2D-3D-RDF 2 2−7 0.77 0.90 0.64
2D-RECON 4 2−12 0.67 0.95 0.38
2D-RDF 1 2−5 0.76 0.91 0.60
2D-IND-MOE 0.5 2−9 0.70 0.90 0.50
2D-3D-RECON 64 2−11 0.74 0.82 0.66
tATS 32 2−12 0.75 0.91 0.59
IND-MOE 2 2−8 0.75 0.90 0.60
2D-MOE 16 2−12 0.72 0.90 0.55
3D-MOE 16 2−12 0.71 0.88 0.54
2D-3D-IND-MOE 1 2−10 0.71 0.91 0.50
WHIM 1 2−9 0.70 0.93 0.48
2D-3D-MOE 8 2−11 0.71 0.85 0.58
2D-3D-TAE-RECON 4 2−11 0.72 0.90 0.55
3D-IND-MOE 8 2−11 0.73 0.89 0.56
GETAWAY 16 2−8 0.64 0.74 0.53
3D-RECON 32 2−12 0.70 0.85 0.55
3d-MORSE 16 2−11 0.70 0.80 0.60
TAE-RECON 8 2−12 0.70 0.90 0.50

For each descriptor set, the accuracy values and the percentage of true predicted

compounds for each class are reported in table 5.5. The best accuracy values were

obtained using 2D and 3D RDF descriptors (and their combination), gATS, tATS and

inductive descriptors. The accuracy values of the SVM models are generally lower than

the accuracy values of the corresponding SOM models. The SVM model generated

using 3D RDF descriptors leads to an accuracy equal to 0.75, lower than the accuracy

found for the SOM model with the same descriptors set (the accuracy is equal to 0.79

for the SOM model). The SVM model generated using gATS descriptors has also a

lower value of accuracy (0.77) with respect to that obtained by the SOM model (0.79).
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5.4 Use of SVM to discriminate between BCRP-inhibitors and non-inhibitors

However, in this case, the difference between the two accuracy values is rather low. The

use of tATS descriptors (0.75), inductive descriptors (0.75) and the combination of 2D

and 3D RDF descriptors (0.71) leads to SVM models with accuracy values comparable

to the corresponding SOM models (0.74, 0.74, and 0.72, respectively). The difference

between the accuracy of the SVM model obtained using 2D RECON descriptors and

the accuracy of the SOM model obtained using the same descriptor set is considerable:

their values are equals to 0.67 for the SVM model and 0.76 for the SOM model. The

loss of predictivity of the SVM model is principally due to its very low predictivity for

the non-inhibitors compounds, compared to the SOM model.

The low predictivity for the non-inhibitors is observed for almost all the SVM mod-

els (but also for SOMs models), although the downsampling step before building of

the models. The low predictivity of inactive compounds can be explained by the use

of a too low threshold (equal to 10 µM) that discriminate between active and inactive

compounds. As a result of this, the inactive compounds share a large part of their

chemical space with the active compounds. On the other hand many active compounds

occupy a region of the chemical space where almost no inactive compounds are local-

ized. It is also possible to observe the unbalanced intersection of the two clusters in

the 2D and 3D representation of the chemical space for 3D RDF and gATS descriptors

(Figures 5.13a, 5.13b, 5.13c, and 5.13d). For this particular case of unbalanced clus-

ters intersection, the down-sampling is not enough to generate models with a balanced

prediction for active and inactive compounds.

5.4.3 Use of an external testset

The predictivity of the generated SVM model was investigated using an external test-

set. Analogously to the SOM models, the LM dataset was used as test set to test the

predictivity of the generated models. The SVM models used to predict the activity

of the LM dataset were chosen according to the accuracy values associated with the

models. The best two SVM models were generated using a combination of 2D and 3D

RDF descriptors and gATS descriptors.

In contrast to what was observed for the SOM models, SVM models are not able to

effectivelly discriminate between active and inactive compounds of the LM dataset. All

the active compounds of the test set were correctly predicted, but only 2 compounds

(LM-219 and LM-225) belonging to the inactive compounds are correctly predicted.

The predictivity of the SVM model generated using gATS descriptors is slightly better

than the model generated using 2D and 3D RDF descriptors. This model is able to

correctly predict all the active compounds of the test set but only 3 of the inactive

compounds (LM-219, LM-220, LM-225).
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5 Development of binary QSAR models for classification of BCRP inhibitors.

5.5 Use of k-NN to discriminate between

BCRP-inhibitors and non-inhibitors

5.5.1 Generation of the models

The k-NN is the fastest and simplest classification algorithm used in this work [161].

The only parameter that needs to be optimized is the k value. It indicates the number

of neighbors around an element, for which its class has to be determined. The best

value of k was systematically searched generating several models using values between

1 and 9. Only odd values of k were used, in order to avoid cases of draws (where the

number of neighbors of the two classes are the equal: in this case, it is not possible to

determinate the class of the query element). The best value of k for each descriptor set

is reported in table 5.6. The workflow used to generate and evaluate the k-NN models

is analogous to that used to generate the SOM and the SVM models. The descriptors

with variance equal to 0 were deleted from the descriptor matrix. Then, the matrix

values were normalized. The following step is the downsampling of the elements in

the majority class (active substances). The downsampling and the generation of the

model were performed 1000 times and the average of the accuracy were reported. The

best models were used to predict the activity of an external dataset.

5.5.2 Evaluation of the results

The best k-NN models were obtained, as already observed for SOM and SVM, using

RDF and ATS descriptors. In particular, the use of 3D RDF descriptors, the combi-

nation of 2D and 3D RDF descriptors and gATS descriptors leads to the best models.

The accuracy value of the k-NN model generated using 3D RDF descriptors and of

the model obtained using 2D and 3D RDF descriptors together are 0.74 and 0.75,

respectively. Although the second model has the best accuracy, its capacity to predict

inactive compounds is lower than in the model based on only 3D RDF descriptors.

The model built using gATS descriptors has an accuracy equal to 0.73. This result

confirms that the gATS descriptors, as well as RDF are a good choice for building ma-

chine learning models useful to discriminate between active and inactive compounds

of a dataset.

5.5.3 Use of an external testset

The best k-NN models were used to predict the activity of the LM test set. The three

best model based on the k-NN algorithm are obtained using 3D RDF descriptors,

2D and 3D RDF descriptors together and gATS descriptors, the same descriptor sets
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5.6 Comparison of the results

Table 5.6: Summary of BCRP classification powers by kNN approach.

Descriptors set k Accuracy TP rate TN rate

3D-RDF 7 0.74 0.85 0.63
gATS 5 0.73 0.87 0.58
2D-3D-RDF 5 0.75 0.92 0.58
2D-RECON 3 0.70 0.85 0.54
2D-RDF 5 0.71 0.88 0.53
2D-IND-MOE 3 0.69 0.91 0.46
2D-3D-RECON 3 0.63 0.74 0.52
tATS 7 0.67 0.87 0.47
IND-MOE 3 0.66 0.82 0.50
2D-MOE 3 0.63 0.79 0.47
3D-MOE 7 0.62 0.80 0.44
2D-3D-IND-MOE 3 0.63 0.77 0.49
WHIM 3 0.66 0.84 0.47
2D-3D-MOE 3 0.63 0.72 0.54
2D-3D-TAE-RECON 7 0.59 0.85 0.33
3D-IND-MOE 3 0.62 0.80 0.45
GETAWAY 7 0.55 0.74 0.36
3D-RECON 5 0.67 0.85 0.49
3d-MORSE 5 0.55 0.65 0.46
TAE-RECON 5 0.58 0.86 0.31

as in case of SOM and SVM models. The results show that, analogously to the

SOM algorithm, the k-NN based models are mostly able to predict the activity of

the compounds in the external testset. In particular, the model generated using 3D

RDF descriptors and the model generated using gATS descriptors are both able to

correctly predict the active compounds of the LM testset. The inactive compounds

are only partially correctly predicted: The compounds LM-226, LM-234 and LM-

233 are wrongly predicted as active compounds. The k-NN model generated using

a combination of 2D and 3D RDF descriptors showed better results with respect to

the other two models: The active compounds of the LM dataset were all correctly

predicted, while only two compounds (LM-234 and LM-233) of the inactive class were

wrongly predicted. These compounds are also predicted as active compounds by the

SOM and SVM algorithms.

5.6 Comparison of the results

The comparison of the results obtained with the three machine learning algorithms

shows that all three algorithms are able to discriminate between inhibitors and non-

inhibitors of BRCP in a dataset of structurally highly similar compounds. The results

show that the most predictive classification algorithms between the three tested in this
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Figure 5.16: Summary of results.

work are the SOM and SVM algorithms. The best results obtained with these three

algorithms were given using RDF descriptors (3D or the combination of 2D and 3D

descriptors) and gATS descriptors. As shown in figure 5.16, the use of RDF descriptors

and gATS descriptors leads to high values of accuracy for the training set, as well as

comparable values of accuracy between the SOM and SVM classification algorithms,

while the k-NN classification algorithm is slightly worse than the other two. This

results suggest that the used descriptor sets are able to separate the two classes of the

dataset almost independently to the used algorithm.

The use of an external testset shows that the most predictive models generated using

the KS dataset are able to correctly classify also other BCRP-inhibitor candidates,

with less structural similarity. The best results are obtained using the SOM algorithm

and the k-NN algorithm, while the SVM algorithm gives the worst results in terms of
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5.6 Comparison of the results

Table 5.7: Summary of the predictions of the test set.

3D RDF 2D and 3D RDF gATS
Method TP TN FP FN TP TN FP FN TP TN FP FN

SOM 9 5 2 0 9 4 3 0 9 4 3 0
SVM 9 3 4 0 9 2 5 0 9 3 4 0
k-NN 9 4 3 0 9 5 2 0 9 4 3 0

predictivity. As reported in table 5.7, the correct number of predictions is higher for

SOM and k-NN, independent of the used descriptor sets. The absolutely best values

are obtained using the SOM algorithm and 3D RDF descriptors or the k-NN algorithm

with the combination of 2D and 3D RDF descriptors. As shown in table 5.8, all the

used training set and algorithm are able to correctly recognize the BCRP-inhibitors

of the test set. Between the non-inhibitors, only two compounds are never correctly

predicted: LM-234 and LM-233. This limit of the prediction capacity could due to the

extremely high structurally correlation between these two compounds and the majority

of the active compounds of the test set.

Table 5.8: Prediction of the class of the substances in the test set. A value of ”1”
indicates active compounds (BCRP inhibitors) while ”0” indicates inactive
compounds.

3D RDF 2D and 3D RDF gATS

Compound Class SOM SVM k-NN SOM SVM k-NN SOM SVM k-NN

LM-221 1 1 1 1 1 1 1 1 1 1

LM-222 1 1 1 1 1 1 1 1 1 1

LM-223 1 1 1 1 1 1 1 1 1 1

LM-229 1 1 1 1 1 1 1 1 1 1

LM-224 1 1 1 1 1 1 1 1 1 1

LM-228 1 1 1 1 1 1 1 1 1 1

LM-236 1 1 1 1 1 1 1 1 1 1

LM-235 1 1 1 1 1 1 1 1 1 1

LM-209 1 1 1 1 1 1 1 1 1 1

LM-75 0 0 1 0 0 1 0 0 1 0

LM-219 0 0 0 0 0 0 0 0 0 0

LM-220 0 0 0 0 0 1 0 1 0 0

LM-225 0 0 0 0 0 0 0 0 0 0

LM-226 0 0 1 1 0 1 0 0 1 1

LM-234 0 1 1 1 1 1 1 1 1 1

LM-233 0 1 1 1 1 1 1 1 1 1
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5 Development of binary QSAR models for classification of BCRP inhibitors.

In conclusion, it is possible to discriminate between inhibitors and non-inhibitors in

a dataset of BCRP-inhibitors, also if the compounds are structurally highly similar,

as in the case of the KS dataset. In this case, the best results are obtained using the

SOM algorithm with the RDF and gATS descriptors calculated for the compounds

in the dataset. The generated models could be used to predict the binary activity of

other classes of substances.
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6 Structure-activity relationships of

quinazolines derivates as inhibitors

of BCRP.

6.1 Structural and activity data

The 36 quinazolines included in this work were synthesized by Dr. Kapil Juvale and

were taken from his PhD Thesis [162]. The activity data were also measured by Kapil

Juvale using the Hoechst 33342 assay at a final concentration of 1 µM in MDCK BCRP

cells. In figure 6.1 the general structure of the quinazolines included in this work is

reported and in table 6.1 the activities (pIC50) of the compounds are reported.

N

N

HN

R2

R1

6

7

5

8

4

1

3

2

Figure 6.1: The general structure of the quinazolines used in this work. The aniline sub-
structure is highlighted in green.
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6 Structure-activity relationships of quinazolines derivates as inhibitors of BCRP.

Table 6.1: The compounds included in the analysis..

Compound pIC50 R1 Positions 6 and 7 R2

KJ-98 5.59 H H Phenyl

KJ-99 5.43 2-Br H Phenyl

KJ-100 6.24 3-Br H Phenyl

KJ-101 5.17 4-Br H Phenyl

KJ-102 5.72 3-Cl H Phenyl

KJ-103 5.78 3-Cl,4-F H Phenyl

KJ-104 5.65 2-OCH3 H Phenyl

KJ-105 5.88 3-OCH3 H Phenyl

KJ-106 5.72 4-OCH3 H Phenyl

KJ-109 6.90 3-NO2 H Phenyl

KJ-110 6.01 4-NO2 H Phenyl

KJ-112 6.85 3-CN H Phenyl

KJ-113 6.60 3-CF3 H Phenyl

KJ-114 5.82 4-CF3 H Phenyl

KJ-115 6.83 3-OH H Phenyl

KJ-116 5.70 H H 3,4-Dimethoxyphenyl

KJ-117 6.54 3-Br H 3,4-Dimethoxyphenyl

KJ-118 6.38 3,4-OCH3 H 3,4-Dimethoxyphenyl

KJ-119 6.20 2-NO2 H 3,4-Dimethoxyphenyl

KJ-120 7.13 3-NO2 H 3,4-Dimethoxyphenyl

KJ-121 6.53 4-NO2 H 3,4-Dimethoxyphenyl

KJ-122 6.53 3-CF3 H 3,4-Dimethoxyphenyl

KJ-123 6.72 3-CN H 3,4-Dimethoxyphenyl

KJ-124 6.60 2-OH H 3,4-Dimethoxyphenyl

KJ-125 6.87 3-OH H 3,4-Dimethoxyphenyl

KJ-126 6.33 4-OH H 3,4-Dimethoxyphenyl

KJ-127 5.98 3-Br H H

KJ-128 5.93 3-CN H H

KJ-129 5.96 3-NO2 H H

KJ-131 5.32 3,4-OCH3 H H

KJ-132 5.76 3-Br 6,7-Dimethoxy H

KJ-133 5.64 3-CF3 6,7-Dimethoxy H

KJ-134 5.98 3-CN 6,7-Dimethoxy H

KJ-135 5.42 2-NO2 6,7-Dimethoxy H

KJ-136 6.09 3-NO2 6,7-Dimethoxy H
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6.2 Free-Wilson analysis

Compound pIC50 R1 Positions 6 and 7 R2

KJ-137 5.54 4-NO2 6,7-Dimethoxy H

6.2 Free-Wilson analysis

The Free-Wilson analysis directly correlates structural features of the molecules with

the activity of the compounds [163]. In this work, the Free-Wilson analysis was used to

characterize and quantify the contribution of different substituents in the structure of

quinazolines to the BCRP inhibitory activity. Furthermore, the Free-Wilson analysis

can be used to verify the quality of the biological data and find possible errors in the

biological data.

The first Free-Willson analysis was obtained using all the compounds of table 6.1.

The used matrix is shown in table 6.2. The principal substitutions of these compounds

involve the anilin substructure (R1). This aromatic ring is substituted at position 2,

3, and 4 by several groups. Altogether, 17 features of the matrix used for the Free-

Wilson analysis describe the variations at position R1. The R2 position, in the reference

compound KJ-98 is occupied by a phenyl group. This group is either replaced by an

hydrogen (code name: R2 (H)) or by a 3,4-dimethoxyphenyl group (code name: R2

(3,4-OCH3-Ph). For six compounds included in the analysis, the positions 6 and 7 are

also substituted by two methoxy groups.
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Table 6.2: The Free-Wilson matrix. Compound KJ-98 is used as reference compound.

Compound R1 R2

2-Br 2-OCH3 2-NO2 2-OH 3-Br 3-OCH3 3-NO2 3-OH 4-Br 4-OCH3 4-NO2 4-OH 3-Cl 4-F 3-CN 3-CF3 4-CF3 H 3,4-OCH3-Ph 6,7-OCH3

KJ-98

KJ-99 1

KJ-100 1

KJ-101 1

KJ-102 1

KJ-103 1 1

KJ-104 1

KJ-105 1

KJ-106 1

KJ-109 1

KJ-110 1

KJ-112 1

KJ-113 1

KJ-114 1

KJ-115 1

KJ-116 1

KJ-117 1 1

KJ-118 1 1 1

KJ-119 1 1

KJ-120 1 1

KJ-121 1 1

KJ-122 1 1

KJ-123 1 1

KJ-124 1 1

KJ-125 1 1

KJ-126 1 1

KJ-127 1 1

KJ-128 1 1

KJ-129 1 1

KJ-131 1 1 1

KJ-132 1 1 1

KJ-133 1 1 1

KJ-134 1 1 1

KJ-135 1 1 1

KJ-136 1 1 1

KJ-137 1 1 1
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6.2 Free-Wilson analysis

Table 6.3: Result of the Free-Wilson analysis. In the table the used features, the
coefficients ± SD and the p values are reported.

Features Coefficients ± SD p values

Intercept 5.5480 ± 0.0995 < 0.001
2-Br -0.1220 ± 0.1802 0.5088
2-OCH3 0.1008 ± 0.1802 0.5843
2-NO2 0.5403 ± 0.1537 < 0.001
2-OH 0.8923 ± 0.1863 < 0.001
3-Br 0.9038 ± 0.1299 < 0.001
3-OCH3 0.3674 ± 0.1324 0.014
3-NO2 1.2931 ± 0.1299 < 0.001
3-OH 1.2218 ± 0.1448 < 0.001
4-Br -0.3825 ± 0.1801 0.051
4-OCH3 0.2014 ± 0.1324 0.1491
4-NO2 0.6656 ± 0.1342 < 0.001
4-OH 0.6223 ± 0.1863 0.004
3-Cl 0.1721 ± 0.1802 0.3547
4-F 0.0600 ± 0.2124 0.7814
3-CN 1.1431 ± 0.1299 < 0.001
3-CF3 0.8943 ± 0.1342 < 0.001
4-CF3 0.2720 ± 0.1802 0.1518
R2 (H) -0.7277 ± 0.0994 < 0.001
R2 (3,4-OCH3-Ph) 0.1597 ± 0.0728 0.0445
6,7-OCH3 0.0114 ± 0.1054 0.9157

The QSAR model obtained by this first analysis has an r2 value of 0.964 (s = 0.150, F

= 19.79 for n = 36). The coefficients reported in table 6.3 highlight the negative effect

of the substitution with bromine at position 2 and 4 of the aniline. The substitution

of the phenyl group at position R2 with an hydrogen decreases the inhibitory activity

of these compounds: this effect is also described by a negative coefficient in the Free-

Wilson analysis. The low coefficient associated with the substitutions at positions 6

and 7 evidences that the substitution with methoxy groups at these positions does not

influence the activity of these compounds.
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Table 6.4: The Free-Wilson matrix for 19 compounds. Compound KJ-98 is used as reference compound.

Compound 2-Br 2-OCH3 2-NO2 2-OH 3-Br 3-OCH3 3-NO2 3-OH 4-Br 4-OCH3 4-NO2 4-OH 3,4-OCH3-Ph

KJ-98

KJ-99 1

KJ-100 1

KJ-101 1

KJ-104 1

KJ-105 1

KJ-106 1

KJ-109 1

KJ-110 1

KJ-115 1

KJ-116 1

KJ-117 1 1

KJ-118 1 1 1

KJ-119 1 1

KJ-120 1 1

KJ-121 1 1

KJ-124 1 1

KJ-125 1 1

KJ-126 1 1
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6.2 Free-Wilson analysis

Another Free-Wilson analysis was performed including only compounds chosen ac-

cording to the presence or absence of the chosen substituents at all three positions of

the aniline substructure. The 19 compounds with these substituents were included in

the analysis. The chosen substituents are:

• Br, NO2, OH and OCH3 at positions ortho, meta and para to the aniline (Code

names of the features: Br, OCH3, NO2, OH).

• OCH3 at positions 3 and 4 of the aromatic ring at position R2 (Code name of

the feature: 3,4-OCH3-Ph).

Table 6.5 reports the features used in the Free-Wilson analysis. Compound KJ-98,

with hydrogen atoms at all positions, is used as reference. The final model consists

of ten significant variables. The obtained QSAR model shows a very good fit (r2 =

0.988, s = 0.1177, F = 30.74 for n = 19). Furthermore, the model is able to explain the

contribution of the substituents to the activity of the compounds: as already observed

also in the first Free-Wilson model, the only two negative coefficients are associated

to the presence of bromine at position 2 and 4 of the aniline.

Table 6.5: Result of the Free-Wilson analysis. In the table the used features, the
coefficients ± SD and the p values are reported.

Features Coefficients ± SD p values

Intercept 5.513 ± 0.079 < 0.001
2-Br -0.087 ± 0.142 0.568
2-OCH3 0.136 ± 0.142 0.382
2-NO2 0.439 ± 0.148 0.032
2-OH 0.839 ± 0.148 0.002
3-Br 0.754 ± 0.114 0.001
3-OCH3 0.384 ± 0.109 0.017
3-NO2 1.378 ± 0.114 < 0.001
3-OH 1.213 ± 0.114 < 0.001
4-Br -0.347 ± 0.114 0.058
4-OCH3 0.218 ± 0.109 0.102
4-NO2 0.635 ± 0.114 0.003
4-OH 0.569 ± 0.148 0.012
3,4-OCH3-Ph 0.248 ± 0.066 0.013

This substitution decreases the BCRP-inhibitory activity of the compounds KJ-

99 and KJ-101 with respect to the reference compound. The other coefficients, all

positive, indicate that substitutions on the aniline lead to an increase of the BCRP-

inhibitory activity. The higher coefficients are associated with OH and NO2 groups, in

particular at position 3 (meta) of the aniline. These numerical values are confirmed by

149



6 Structure-activity relationships of quinazolines derivates as inhibitors of BCRP.

the high inhibitory activity of compounds KJ-115 (pIC50 = 6.83) and KJ-120 (pIC50

= 7.13).
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Figure 6.2: Correlation of observed versus predicted BCRP inhibition potencies using the
Free-Wilson model (n = 19).

The presence of two methoxy groups on the aromatic ring at position R2 does not

influence the activity of this class of compounds. This observation is also confirmed

by the low value of the coefficient associated with this feature (equal to 0.248). The

predicted versus observed activity values calculated by the Free-Wilson model, using

only 19 compounds are shown in figure 6.2.

6.3 Preparation of the dataset

The compounds presented in this work were built using the software MOE [97]. The

general procedure for preparation of molecular structures used in 2D-QSAR requires

the minimization of each molecule in the dataset. However, considering the low flex-

ibility and high similarity of the compounds used in this work, it was decided to

minimize only the most active compound of the dataset and to use it as template for

the superposition of the other molecules. The molecular structure of compound KJ-

120 was chosen to be minimized and then used as template. Firstly, a conformational

search was performed in order to obtain a structure as close as possible to the absolute
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6.4 Chemical descriptor based QSAR model

energy minimum. In this first step, the charges were calculated using the MMFF94x

force field [156]. A stochastic search was performed using an iteration limit value of

1000 and RMS gradient equal to 0.005. The rejection limit was fixed at a value of

100 and the RMSD limit to a value of 0.25. Finally, the structure with lower energy

was chosen. At a later stage, new charges were assigned using the PM3 semi-empirical

method implemented in the MOPAC 6 package [164]. Finally, the other molecular

structures were superimposed on the template to obtain the final dataset.

6.4 Chemical descriptor based QSAR model

The biological activities (expressed as pIC50) of the 36 compounds included in this

analysis are uniformly distributed in a range between 5.17 and 7.13, as displaied in

table 6.1. The range of about two logarithmic units is an important prerequisite to

obtain a predictive model. The predictivity of the model was demonstrated by leave-

one-out (LOO) cross validation.

The best model developed using 2D and 3D descriptors calculated with the software

MOE uses only three descriptors: the fractional negative van der Waals surface area

(Q VSA FNEG), the critical packing parameter (vsurf CP) and the polar volume at

-1.0 (vsurf Wp3). The last two descriptors are VSURF descriptors. These descriptors

were selected from the original pool of 2D and 3D included in the software MOE

2013.08. The descriptors used in the model were selected using the genetic algorithm

based svl code ”QuaSAR-Evolution” [165]. The multiple linear regression (MLR)

analysis was performed using the software R [166], as well as the statistical analysis

of the generated QSAR model. The model generated using MLR analysis is shown

below:

pIC50 = 4.902(±0.407) + 2.148(±0.465)Q V SA FNEG

−2.178(±0.420)vsurf CP + 0.028(±0.003)vsurf Wp3
(6.1)

n = 36, r2 = 0.777, s = 0.254, F = 37.18, p < 0.00001, r2cv = 0.712

The plot of the observed versus predicted pIC50 values is reported in figure 6.3. The

relative importance of the used descriptors is equal to 0.565 for the fractional negative

van der Waals surface area, 0.633 for the critical packing parameter and 1.000 for the

polar volume at -1.0. These three descriptors are not correlated with each other.

The results shown above indicate the high quality of the model and its high predictiv-
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Figure 6.3: Correlation of observed versus predicted BCRP inhibition potencies using the
multiparametric QSAR model.

ity. The positive sign of the coefficient for the Q VSA FNEG descriptor indicates that

a increase of the molecular surface area characterized by negative charges increases the

BCRP inhibitory activity of these compounds. The critical packing parameter is the

ratio between the volumes of the hydrophobic regions and the surface of the hydrophilic

regions times the length of the hydrophobic regions [98]. This parameter is correlated

with the lipophilicity (SLogP, calculated using MOE) of the molecule. An increase of

the critical packing parameter leads to decrease of the BCRP inhibitory activity of

these compounds. The positive sign of the coefficient for the polar volume suggests

that the activity of the compounds is directly correlated with the polar area of the

molecule, as already indicated by the first parameter of the equation (Q VSA FNEG).

6.5 3D-QSAR analysis

The molecular alignment is an essential step for CoMFA and CoMSIA studies. The

minimized structure of the most active compound of this series, compound KJ-120,

which was obtained by stochastic search and consecutive geometrical optimization, was

used as a template for the molecular alignment. After the alignment of the remain-

ing compounds, the charges were recalculated using the PM3 semi-empirical method,

without a fresh optimization of the molecular geometry. The 3D-QSAR was performed
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6.5 3D-QSAR analysis

using the software SYBYL-X 1.2 (TRIPOS) [167].

For the CoMFA calculations, the standard settings were used: The grid size was

extended 4 Å beyond every molecule in the three dimensions, with a spacing value of 2

Å. The probe atom was a sp3 carbon probe with +1 charge. The steric (s), electrostatic

(e), both (b), and hydrogen bond (h+b) CoMFA fields were calculated. The PM3

charges, calculated with MOPAC, were used for the calculation of the electrostatic

fields. The steric and electrostatic cutoff values were both fixed to the standard value

of 30.0 kcal/mol.

The steric (s), electrostatic (e), hydrophobic (h), hydrogen bond donor (d), and

hydrogen bond acceptor (a) CoMSIA fields were also calculated. The grid box for

the CoMSIA calculation was generated analogously to that of the CoMFA calculation.

The probe atom with a radius of 1 Å, hydrophobicity equal to +1, and hydrogen bond

donor-acceptor properties also equal to +1 were used.

The QSAR models for the CoMFA and CoMSIA analysis were calculated using

the Partial Least Square (PLS) method. The internal predictivity of the models was

evaluated using the Leave-One-Out (LOO) cross-validation. The quality of the non-

cross-validated model was quantified by the squared correlation coefficient (r2) and the

standard error of estimation (s).

The produced CoMFA and CoMSIA models and the statistical parameters are sum-

marized in table 6.6. The best models are reported in bold. The best values of squared

correlation coefficient and cross-validated squared correlation coefficients (q2) are ob-

tained for the CoMSIA models. In CoMSIA analysis, the electrostatic field gives the

best q2 value (equal to 0.497, nopt = 5) among the single field models. On the other

hand, the best single field model obtained by CoMFA analysis uses the hydrogen bond

field (q2 = 0.517, nopt = 3). The other fields alone are not able to generate predictive

CoMSIA models. The combined CoMSIA models with highest q2 values are a combi-

nation of hydrogen bond donor and electrostatic fields (q2 = 0.750, nopt = 6), steric,

electrostatic and hydrogen bond donor fields (q2 = 0.731, nopt = 6), and hydrogen

bond donor-acceptor, electrostatic and hydrophobic fields (q2 = 0.723, nopt = 7).

Due to the inability of the LOO-cross-validation to estimate the model capacity

to predict the activity of completely new compounds [168], further validations of the

generated models are needed. In the leave-many-out (LMO) cross-validation a number

of compounds greater than one is left out for the validation. Different authors suggest

that this cross-validation variant could give more realistic results with respect to the

leave-one-out cross-validation[168][169]. The number of groups in which the dataset

has to be divided depends on the number of compounds in the dataset. Gramatica

[168] suggests that if the number of compounds in the dataset is lower than 50, that

the number of groups must be greater than two, otherwise the predictivity of the

generated model is underestimated. In this work 10-, 5-, and 3- folds cross-validation
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6 Structure-activity relationships of quinazolines derivates as inhibitors of BCRP.

Table 6.6: 3D-QSAR models using CoMFA and CoMSIA analysis and their statistical
characteristics. The best models are reported in bold.

q2 s nopt r2 s F

CoMFA
Both 0.565 0.361 4 0.768 0.263 5.651
s 0.455 0.404 4 0.658 0.320 14.915
e 0.490 0.397 5 0.744 0.281 17.451
hb 0.517 0.374 3 0.703 0.293 25.220
s+e+hb 0.640 0.345 7 0.926 0.157 49.895
CoMSIA
a -0.023 0.528 1 0.137 0.485 5.391
d 0.129 0.487 1 0.194 0.469 8.163
d+a 0.122 0.504 3 0.405 0.415 7.264
e 0.497 0.394 5 0.733 0.287 16.437
e+a 0.691 0.320 7 0.915 0.167 43.287
e+d 0.750 0.283 6 0.912 0.167 50.362
e+h 0.480 0.408 6 0.731 0.293 13.113
e+h+a 0.719 0.305 7 0.931 0.151 54.213
e+h+d 0.703 0.313 7 0.914 0.169 42.496
e+h+d+a 0.723 0.303 7 0.940 0.141 62.509
h 0.461 0.422 7 0.728 0.300 10.699
h+a 0.596 0.366 7 0.845 0.227 21.743
h+d 0.390 0.450 7 0.751 0.287 12.082
h+d+a 0.591 0.368 7 0.841 0.229 21.149
s 0.460 0.408 5 0.628 0.339 10.133
s+a 0.513 0.376 3 0.629 0.328 18.055
s+d 0.462 0.422 7 0.726 0.301 10.575
s+e 0.512 0.388 5 0.751 0.278 18.068
s+e+a 0.685 0.323 7 0.901 0.181 36.479
s+e+d 0.731 0.293 6 0.906 0.174 46.320
s+e+h 0.476 0.403 5 0.721 0.293 15.528
s+e+h+a 0.715 0.307 7 0.928 0.154 51.741
s+e+h+a+d 0.724 0.302 7 0.936 0.145 58.768
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6.5 3D-QSAR analysis

of the best models obtained by LOO-cross-validation was performed, in order to verify

their predictivity. In the case of the LMO-cross-validation the population of each

group is randomly selected, therefore the q2 values obtained are always different. For

this reason, each LMO-cross-validation was repeated 10 times and the means of the

obtained q2 ± SD are reported in table 6.7. The e+d model, that shows the highest

q2 value with the LOO-cross-validation (q2 = 0.750), shows a decrease of predictivity

already for the 10-folds cross-validation (q2 = 0.694). A reduction of the predictivity

is also observed for the e+h+d+a model (from q2 = 0.723 to q2 = 0.658). A slight

decrease of the q2 value is observed also for the s+e+d model.

Table 6.7: The results of the leave-many-out (LMO) cross-validation for the best 3D-
QSAR models. The average q2 and the SD are based on 10 repetitions of
the LMO protocol.

CoMSIA fields
Number of

groups
e+d s+e+d e+h+d+a

q2 ± SD q2 ± SD q2 ± SD

LOO 0.750 0.731 0.723
10 0.694 ± 0.069 0.725 ± 0.016 0.658 ± 0.121
5 0.674 ± 0.069 0.715 ± 0.053 0.645 ± 0.150
3 0.648 ± 0.087 0.624 ± 0.062 0.485 ± 0.199

A further validation method, called Y-randomization test, was applied for the best

models. It consists of randomly shuffling the activity values of the compounds and

then calculating new q2 values, obtained by LOO cross-validation [170]. The aim of

this test is to show if a correlation between the activities and the descriptors really

exists, or if the q2 values are obtained by chance. The results of this test are reported

in table 6.8. It is seen that all the best generated models have mean q2 values lower

than 0, suggesting that the predictivites obtained by LOO cross-validation are not

obtained by chance.

Table 6.8: The results of the Y-scrambling analysis. The q2 values and the SD values
are obtained from 10 repetitions of the analysis.

CoMSIA fields q2 ± SD

e+d -0.244 ± 0.133
s+e+d -0.220 ± 0.134
e+h+d+a -0.198 ± 0.163

In the light of these results the e+d and the ”s+e+d” models were chosen to explain

the activity of this class of compounds. Finally, figure 6.4 shows the correlations be-

tween observed and predicted pIC50 models for the studied compounds. The predicted
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6 Structure-activity relationships of quinazolines derivates as inhibitors of BCRP.

activity values are obtained using the Òe+dÓ CoMSIA model (r2 = 0.912) and the

”s+e+d” CoMSIA model (r2 = 0.906). The plots show that for all the compounds the

predicted values are well correlated with the observed values.
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Figure 6.4: Correlation of observed versus predicted BCRP inhibition potencies using the
3D-QSAR model based on (a) the ”e+d” fields and on (b) the ”s+e+d” fields.
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6.6 Contour plot

6.6 Contour plot

The contour (STDEV*COEFF) plots of the ”e+d” CoMSIA model and of the ”s+e+d”

CoMSIA model are illustrated in figure 6.5. In particular, the figures 6.5a and 6.5b

show the contour (STDEV*COEFF) plots of the ”e+d” CoMSIA model drawn to-

gether with the most active compound of the series, compounds KJ-120 (pIC50 =

7.13) and with the low active compound KJ-131 (pIC50 = 5.32), respectively. The fig-

ures 6.5c and 6.5d show the contour (STDEV*COEFF) plots of the ”s+e+d” CoMSIA

model drawn together with the compounds KJ-120 and KJ-131, respectively. These

plots describe the contribution of the fields to the compounds activity. The green con-

tour areas mark the favorable influences of the steric field, while the yellow areas are

associated with regions where the steric field is unfavorable. It can be seen in figure

6.5c that this contour area is occupied by a phenyl rest of compound KJ-120, while

this phenyl residue is absent in the structure of compound KJ-131. An unfavorable

area for the steric field is also reported at position 4 of the aniline. This position is

not occupied by any substituent in compound KJ-120, while compound KJ-131 has a

methoxy group at the same position. Regarding the electrostatic field, blue contour

areas indicate favorable electrostatic interactions, while red contour areas unfavorable

electrostatic interactions.

The contour plot indicates that generally, the presence of polar substituents increases

the activity of the compounds if they are localized at position 4 of the aniline, while

these substituents slightly decrease the inhibitory activity if localized at position 3

of the same aromatic ring. The favorable influence of hydrogen bond donor groups

is indicated by turquoise areas and the unfavorable influence by purple areas. The

most important contribution of this field, as it is possible to observe in the contour

plot, is given by substituents at position 3 of the aniline: The presence of hydrogen-

bond donor groups at this position leads to an increase of the inhibitory activity of

the compounds. Two examples are represented by the hydroxy group of compounds

KJ-115 (pIC50 = 6.83) and KJ-125 (pIC50 = 6.87).
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6 Structure-activity relationships of quinazolines derivates as inhibitors of BCRP.

(a) (b)

(c) (d)

Figure 6.5: CoMSIA contour plot (STDEV*COEFF) of the 3D-QSAR model generated
using (a) the ”e+d” fields and the most active compound KJ-120, (b) the
”e+d” fields and the low active compound KJ-131, (c) the ”s+e+d” fields
and the most active compound KJ-120, and (d) the ”s+e+d” fields and the
low active compound KJ-131. The steric bulk is favored at green (60 %) and
disfavored at yellow (10 %) regions. Polar groups are favored at blue (90 %)
and disfavored at red (15 %). H-bond donor groups are favored at turquoise
(75 %) and disfavored at purple (45 %) regions.
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7 Conclusions

The first aim of this work was the characterization of a new class of BCRP inhibitors,

structurally derived from tariquidar. Furthermore, the Hoechst 33342-assay was opti-

mized and validated and then used to determine the inhibitory activity values (IC50)

of the studied compounds. The optimization of the assay and the subsequent biolog-

ical tests were performed using MCF-7 MX cells. Considering WK-X-27 (KS-176) as

reference and starting point, several compounds with variations of the two linkers and

of the three aromatic rings were synthesized by Dr. Steggemann.

The results of the biological tests confirmed that the deletion of the tetrahydroiso-

quinoline moiety, originally included in the tariquidar structure, generally leads to loss

of inhibitory activity against P-gp, while the inhibitory activity against BCRP is not

compromised. The relative position of the two linkers in the central aromatic ring

was also found to be essential for the inhibitory activity of these compounds: Indeed,

only the ortho substituted compounds are BCRP inhibitors. The modifications of the

first linker leads to active and selective compounds only in case of KS-311 (IC50 =

0.644 µM), where the length of the linker is increased by one single carbon atom. Also

variations of the second linker generally lead to worsening of the inhibitory BCRP

activity except in case of compound KS-246, with an IC50 value of 0.52 µM.

The variations on the third aromatic ring can be explained using 2D-QSAR. The

obtained correlation shows the importance of the σ values of the substituents and their

interaction surface area for the BCRP inhibitory activity of these compounds. The

most active compound with a modification of the third aromatic ring is KS-407 (IC50

= 1.16 µM) and its activity is well predicted by the 2D-QSAR model. The substitution

of the second aromatic ring generally leads to worsening of BCRP inhibitory activity.

This effect is stronger if the substituent is at position R1 of the ring, it is weaker if the

substituent is at position R2. The inhibitory activity also decreases with increasing

van der Waals volume of the substituent. The substitution of the hydroxyethyl group

in the first aromatic ring with an hydroxy group directly connected to the ring (KS-

251) leads to a potent (IC50 BCRP = 1.76 µM) and selective (IC50 P-gp = 27.5 µM)

BCRP inhibitor, suggesting that the geometrical dimension of the pharmacophore of

this compounds class can be reduced.

Several members of this new class of BCRP inhibitors, like the potent and selective

BCRP inhibitors KS-407 and KS-251 were shown to be able to reverse the resistance

against several cytotoxic compounds like Hoechst 3342, mitoxantrone, and SN-38 in
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7 Conclusions

BCRP overexpressing cells.

Three classification algorithms, the Self-Organizing Maps (SOM), the Support Vec-

tor Machine (SVM) and the k-Nearest Neighbor (k-NN) were used to understand the

reason why several compounds do not shown any inhibitory activity against BCRP.

The best results were obtained using the 3D RDF and gATS descriptors and building

the model using the SOM algorithm. These molecular descriptors codify properties

like the molecular surface or the molecular dimension. It was also shown that the

lipophilicity does not play a major role to discriminate between active or inactive

BCRP inhibitors. Using the combination of the SOM algorithm and 3D RDF or gATS

descriptors, it is possible to discriminate between active and inactive BCRP inhibitors

with an accuracy of 0.79 using either the descriptors. The 3D RDF and gATS descrip-

tors were also successfully used in combination with the SVM and k-NN algorithms.

The SVM algorithm was able to discriminate between the two classes with an accuracy

of 0.75 for the 3D RDF descriptors and of 0.77 for the gATS descriptors. The use of

the k-NN algorithm leads to lower accuracy values: an accuracy of 0.74 was obtained

using the 3D-RDF descriptors and of 0.73 using the gATS descriptors. The trained

model was also used to predict the activity of an external test set, consisting of 16

compounds not structurally similar with the compounds included in the training set.

The results show that the classified activity data of the test set was predicted with an

accuracy of 0.88 using the SOM algorithm and 3D RDF descriptors. This result sug-

gests that this model can be used to predict classified activity values of newly designed

BCRP inhibitor candidates.

In the last project the 2D- and 3D- quantitative structure activity relationship

(QSAR) models of 36 quinazoline derivates were generated. The Free-Wilson model

highlighted the importance of hydroxy and nitro groups at position meta of the aniline

for the activity of these compounds. The chemical descriptor based QSAR model, that

was built using only three molecular descriptors has a r2 value of 0.777 and suggests

that the inhibitory activity is correlated with the distribution of the partial charges

on the molecular surface and with the lipophilicity of the molecules. Furthermore,

CoMFA and CoMSIA models were also generated. The best models are the CoMSIA

models that use the combination of electrostatic and hydrogen bond donor CoMSIA

fields (e+d model, q2 = 0.750), steric, electrostatic and hydrogen bond donor CoMSIA

fields (s+e+d model, q2 = 0.713) and electrostatic, hydrophobic, hydrogen bond donor,

and hydrogen bond acceptor CoMSIA fields (e+h+d+a model, q2 = 0.723). The gen-

erated models are stable also for 10- 5- and 3- folds cross-validation, in particular the

e+d and s+e+d models. Furthermore, the Y-randomization test demonstrated that

the obtainend q2 values of these models are not obtained by chance. In conclusion,

these 2D- and the 3D- QSAR models are highly predictive, able to explain the in-

hibitory activity of the studied compounds, and can be used for later design of new
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BCRP inhibitors.
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[52] Häcker, H.-G.; Leyers, S.; Wiendlocha, J.; Gütschow, M.; Wiese, M. Aro-
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