
Temporal Segmentation of Human

Actions in Videos

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich�Wilhelms�Universität Bonn

vorgelegt von

Alexander Richard
aus

Schmallenberg, Deutschland

Bonn 2019

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Rheinischen Friedrich�Wilhelms�Universität Bonn

1. Gutachter: Advisor: Juergen Gall

2. Gutachter: Ivan Laptev

Tag der Promotion: 04.10.2019

Erscheinungsjahr: 2019

iv

v

Abstract
by Alexander Richard

for the degree of

Doctor rerum naturalium

Understanding human actions in videos is of great interest in various scenarios

ranging from surveillance over quality control in production processes to content-based

video search. Algorithms for automatic temporal action segmentation need to over-

come severe di�culties in order to be reliable and provide su�ciently good quality.

Not only can human actions occur in di�erent scenes and surroundings, the de�nition

on an action itself is also inherently fuzzy, leading to a signi�cant amount of inter-class

variations. Moreover, besides �nding the correct action label for a pre-de�ned tempo-

ral segment in a video, localizing an action in the �rst place is anything but trivial.

Di�erent actions not only vary in their appearance and duration but also can have

long-range temporal dependencies that span over the complete video. Further, getting

reliable annotations of large amounts of video data is time consuming and expensive.

The goal of this thesis is to advance current approaches to temporal action segmen-

tation. We therefore propose a generic framework that models the three components

of the task explicitly, i.e. long-range temporal dependencies are handled by a context

model, variations in segment durations are represented by a length model, and short-

term appearance and motion of actions are addressed with a visual model. While the

inspiration for the context model mainly comes from word sequence models in natural

language processing, the visual model builds upon recent advances in the classi�ca-

tion of pre-segmented action clips. Considering that long-range temporal context is

crucial, we avoid local segmentation decisions and �nd the globally optimal temporal

segmentation of a video under the explicit models.

Throughout the thesis, we provide explicit formulations and training strategies for

the proposed generic action segmentation framework under di�erent supervision con-

ditions. First, we address the task of fully supervised temporal action segmentation,

where frame-level annotations are available during training. We show that our ap-

proach can outperform early sliding window baselines and recent deep architectures

and that explicit length and context modeling leads to substantial improvements.

Considering that full frame-level annotation is expensive to obtain, we then for-

mulate a weakly supervised training algorithm that uses ordered sequences of actions

occurring in the video as only supervision. While a �rst approach reduces the weakly

supervised setup to a fully supervised setup by generating a pseudo ground-truth dur-

ing training, we propose a second approach that avoids this intermediate step and

allows to directly optimize a loss based on the weak supervision. Closing the gap be-

tween the fully and the weakly supervised setup, we moreover evaluate semi-supervised

learning, where video frames are sparsely annotated.

vi

With the motivation that the vast amount of video data on the Internet only

comes with meta-tags or content keywords that do not provide any temporal ordering

information, we �nally propose a method for action segmentation that learns from un-

ordered sets of actions only. All approaches are evaluated on several commonly used

benchmark datasets. With the proposed methods, we reach state-of-the-art perfor-

mance for both, fully and weakly supervised action segmentation.

Keywords: action segmentation, action detection, weakly supervised learning, Viterbi

decoding

Acknowledgements

I would like to thank Juergen Gall for his supervision throughout the last years. I am grateful
for his support, for his great ideas, and all the e�ort he spent on supervising me. I also want
to thank him for providing a unique work environment, giving his students all the freedom
they want and all advice and guidance they need.

Further, I want to thank Ivan Laptev, who kindly agreed to serve as an external reviewer
for my thesis. I also want to thank the other members of my thesis committee, Christian
Bauckhage and Jan Boerner.

Special thanks go to my colleagues in the Computer Vision Group at University of Bonn,
not only for their great work but also for making our lab such a joyful place. Particularly,
I am grateful for countless useful discussions and many valuable collaborations with Hilde
Kuehne. I also want to thank Umar Iqbal for great experiences and unique memories during
our conference trips, Ahsan Iqbal and Yazan Abu Fahra for believing in me as a supervisor
during their Master thesis and for continuing their work by joining the group as PhD students,
and Martin Garbade for taking care of all hardware issues. It has been an honor to be part
of this group.

Further, I would like to thank my former supervisors Simon Wiesler and Hermann Ney,
who let me get in touch with research early during my Bachelors and Masters and who have a
large share on my decision to start a PhD in the �rst place. I am also grateful for an amazing
time during my internship at FRL Pittsburgh. Many thanks to Yaser Sheikh, Colin Lea, and
all other members of the team who sustainably changed the way I approach new challenges.

I am especially grateful for my family and friends, who always were understanding and
considerate during deadlines and more stressful periods. Last but not least, I would like to
thank my parents for supporting my every decision and for giving me the opportunity to
pursue my dreams from my early childhood on.

Contents

List of Figures xii

List of Tables xiv

Nomenclature iii

Publications iv

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges . 3

1.2.1 The Hierarchical Nature of Actions . 4

1.2.2 Supervision . 4

1.3 Contributions . 6

1.3.1 A Generic Framework for Temporal Action Segmentation 6

1.3.2 Advancing Fully Supervised Action Segmentation 7

1.3.3 Weakly Supervised Action Segmentation using Action Transcripts . . . 7

1.3.4 Weakly Supervised Action Segmentation using Action Sets 7

1.4 Thesis Structure . 8

2 Related Work 11

2.1 Classical Action Recognition . 11

2.1.1 Early Approaches . 12

2.1.2 Deep Learning for Action Recognition 13

2.2 Temporal Action Segmentation . 15

2.2.1 Early Approaches . 15

2.2.2 Temporal Action Localization and Detection 16

2.2.3 Action Segmentation with Long-range Dependencies 17

2.2.4 Globally Optimal Segmentations . 18

2.2.5 Explicit Context Modeling and Stochastic Grammars 19

2.3 Weakly Supervised Learning . 19

2.3.1 Weakly Supervised Learning from Structured Sequences 20

2.3.2 Video-level Annotations . 21

2.3.3 Weakly Supervised Approaches in Other Domains 21

2.3.4 Length Modeling for Temporal Sequences 22

2.4 Datasets . 22

iv Contents

3 Preliminaries 27

3.1 Problem Description and Notation . 27
3.1.1 Action Recognition . 28
3.1.2 Temporal Action Segmentation . 29

3.2 Evaluation Metrics . 30
3.3 Improved Dense Trajectories . 32
3.4 Feature Quantization . 33

3.4.1 Bag-of-Words . 33
3.4.2 Fisher Vectors . 34
3.4.3 Bag-of-Words and Fisher Vectors for Action Recognition 35
3.4.4 Frame Features from IDTs with Fisher Vectors 36

3.5 Recurrent Neural Networks . 36
3.6 Closing the Gap: A BoW Equivalent Neural Network 38

3.6.1 Conversion of BoW into a Neural Network 38
3.6.2 Equivalence Results . 40
3.6.3 Encoding Kernels in the Neural Network 41

3.7 Deep Learning for Action Recognition . 43

4 A General Framework for Temporal Action Segmentation 47

4.1 Introduction . 47
4.2 A Generic Probabilistic Model . 49
4.3 Viterbi Decoding . 49

4.3.1 Computing the Score of the Viterbi Path 50
4.3.2 Backtracing the Viterbi Path . 52
4.3.3 Complexity . 53

5 Fully Supervised Action Segmentation 55

5.1 Introduction . 55
5.2 Temporal Action Detection . 56

5.2.1 Context Model . 57
5.2.2 Length Model . 58
5.2.3 Visual Model . 59
5.2.4 Inference . 60

5.3 Experiments . 64
5.3.1 Setup . 64
5.3.2 Evaluation of the Context Model . 66
5.3.3 Model Components . 67
5.3.4 Length Model . 69
5.3.5 Comparison to Early Sliding Window Based Approaches 71
5.3.6 Comparison to State-of-the-Art . 71

5.4 Summary . 74

Contents v

6 RNN-HMMs for Weakly Supervised Action Segmentation 75

6.1 Introduction . 76
6.2 Task Description . 77
6.3 Technical Details . 79

6.3.1 Visual Model . 80
6.3.2 Context Model . 83
6.3.3 Inference . 84
6.3.4 Length Regularization . 91
6.3.5 Training . 95

6.4 Experiments . 96
6.4.1 Setup . 96
6.4.2 Evaluation of the GRU-based Model 96
6.4.3 Analysis of the Subaction Modeling . 97
6.4.4 Analysis of Length Regularization . 99
6.4.5 Comparison to State-of-the-Art . 103

6.5 Summary . 105

7 NeuralNetwork-Viterbi 107

7.1 Introduction . 108
7.2 Technical Details . 109

7.2.1 NeuralNetwork-Viterbi . 110
7.2.2 Enhancing the Robustness . 111
7.2.3 The Model . 113
7.2.4 Inference . 114

7.3 Experiments . 118
7.3.1 Setup . 119
7.3.2 Robustness . 119
7.3.3 Impact of Direct Learning and Model 122
7.3.4 Incremental Learning . 124
7.3.5 Comparison to State-of-the-Art . 127
7.3.6 Action Alignment . 127

7.4 Semi-supervised Learning . 128
7.5 Going Back to Full Supervision . 130
7.6 Summary . 132

8 Action Sets 133

8.1 Introduction . 133
8.2 Technical Details . 135

8.2.1 Context Model . 136
8.2.2 Length Model . 138
8.2.3 Visual Model: Multi-task Learning of Action Frames 139
8.2.4 Inference . 140

8.3 Experiments . 140

vi Contents

8.3.1 Setup . 141
8.3.2 E�ect of the Grammar . 141
8.3.3 E�ect of the Length Model . 143
8.3.4 Impact of Model Components . 145
8.3.5 Remarks on the Runtime: Coarse Frame Sampling 146
8.3.6 Comparison to State-of-the-Art . 147
8.3.7 Inference given Action Sets . 149

8.4 Summary . 149

9 Conclusion 151

9.1 Overview . 151
9.2 Discussion and Contributions . 152
9.3 Outlook . 154

9.3.1 Limitations and Future Improvements 154
9.3.2 Self-supervised Multi-Modal Learning 155
9.3.3 Action Anticipation . 156

Bibliography 157

List of Figures

1.1 Methods for action recognition on pre-segmented clips already work well. Mov-
ing towards temporally untrimmed videos with multiple action instances, how-
ever, is not trivial as action boundaries are not known in advance and back-
ground frames can have similar appearance as action instances. 2

1.2 The relation between supervision and availability of training data. Fully su-
pervised approaches require precise frame-level annotations that are expensive
to obtain and therefore only a limited amount of training data can be provided.
Less supervision means lower annotation cost per video, increasing the actual
amount of data that can be provided for training. 5

3.1 Example of a video from the UCF-101 dataset. Each video is pre-segmented
and contains a single action instance from its �rst to its last frame, in this case
parallel bars. 28

3.2 Example segmentation of a video from the Breakfast dataset. The seg-
mentation is fully de�ned by the tuple (N, cN1 , l

N
1), with N = 4, class la-

bels cN1 = (take_bowl, pour_cereals, pour_milk, stir_cereals) and lengths
lN1 = (120, 278, 147, 130). 29

3.3 Extraction of dense trajectories from a video. Left: Dense sampling of points,
middle: tracking points through the temporal volume, right: computing de-
scriptors along a trajectory. Figure is taken from Wang et al. (2013). 32

3.4 Left: Schematic illustration of a vanilla RNN. Right: The same RNN unrolled
over time. 36

3.5 Neural network encoding the bag-of-words model. The output layer is dis-
carded after training and the histograms from the recurrent layer can be used
for classi�cation in combination with a support vector machine. 40

3.6 The BoW-equivalent neural network. The �rst softmax layer followed by the
recurrent averaging layer is a soft approximation of the kMeans feature quanti-
zation. The feature map layer and the second softmax layer replace the kernel
and SVM, respectively. 42

3.7 The two-stream architecture. The RGB frames of the video and stacked optical
�ow �elds are forwarded through two deep CNN networks and their results
are fused before the classi�cation layer. Figure is taken from Simonyan and
Zisserman (2014). 44

viii List of Figures

4.1 Top: Sliding windows are prone to over-segmentation as not all windows in
a long action might have a good score for that particular action. A length
prior can prevent or penalize such over-segmentation. Bottom: Sliding win-
dow approaches are not context aware which can lead to false classi�cations.
For instance, stir_cereals might look similar to stir_coffee and only the
context gives a clear hint which of the two options is more likely. 48

4.2 Computation of the recursive function Q via dynamic programming. At frame
t, either the current segment is continued or a new action segment with class c
starts. The best score at this position is the maximum of all scores at position
t−1 multiplied by the frame score at position t. If a new segment with another
class starts at frame t, the context model probability also needs to be multiplied. 50

4.3 Traceback of the Viterbi path. Starting at the best class at the last frame
(here: c3), the traceback array B(t, c) points to the best predecessor class at
the preceding frame. The resulting segmentation in this example is (N, cN1 , l

N
1)

with N = 3, cN1 = (c2, c5, c3) and lN1 = (2, 2, 1). 54

5.1 Illustration of the computation of the recursive equation Q(τ, c). For the com-
putation of the score of a segment ending at time t in class c3 (green dot),
all possible preceding classes and all possible segment lengths have to be con-
sidered. Thus, the optimization is not only over previous segment end points
t− 1 but also over t− 2, t− 3, etc. 62

5.2 Detection result on video_test_0001058 of Thumos. The video is 15 minutes
long and contains actions of the class Hammer Throw. The �rst row contains
the ground truth, the other rows show the detection results for the systems
(a)-(g) from Table 5.3. Di�erent classes have di�erent colors. 68

5.3 Detection result on rgb-03-1 of 50 Salads. Each class is encoded by another
color, background is white. The �rst row contains the ground truth, the other
rows show the detection results of our system with (a) a class-dependent Pois-
son model, (b) a class-independent Poisson model, and (c) the mean length
model. 69

5.4 Detection result on video_test_0000026 on Thumos. The video is 3:28 min-
utes long and contains actions of the class Tennis Swing. The top row shows
the ground truth, (a) is our approach with a linear segment classi�er and (b)
is our approach with the BoW-equivalent neural network as segment classi�er.
The latter produces a better segmentation and misses less action instances. . 74

6.1 The amount of supervision in (a) the fully supervised case and (b) the weakly
supervised case. While in the fully supervised case, frame-level annotation is
provided, in the weakly supervised case only an action transcript is given and
no explicit frame-level annotation is available. 78

List of Figures ix

6.2 Overview of the proposed weak learning system. Given a list of ordered actions
for each video, an initial segmentation is generated by uniform segmentation.
Based on this input information we iteratively train an RNN-based �ne-to-
coarse system to align the frames to the respective action. 79

6.3 0-1 HMM architecture for an action c. From a subaction state s(c)i , it is only

possible to either stay in the state or proceed to the successor state s(c)i+1. . . . 81
6.4 RNN using gated recurrent units with framewise video features as input. At

each frame, the network outputs a probability for each possible subaction while
considering the temporal context of the video by the preceding frames. 82

6.5 Generation of the right-regular grammar from the training transcripts. Left:
transcripts given during training. Middle: (stochastic) �nite automaton gen-
erated from the transcripts. Final states are indicated by a double line. Prob-
abilities on the arcs have been omitted since we assign equal probability to
each path in our grammar. Right: resulting rules of the right-regular gram-
mar. Note that for our datasets, very simple grammars that generate exactly
those transcripts that occur in the training data are su�cient. More complex
models that also assign some probability mass to paths not seen in training
can also be modeled with right-regular grammars; m-grams (cf. Chapter 5) are
an example for such models. 85

6.6 Example for the extractor function E . For a given state sequence sT1 , E maps
to the underlying segmentation (N, cN1 , l

N
1). 86

6.7 Viterbi decoding in the within segment case. For each state s(c)i that is not an

HMM start state, there are only two possible predecessor states, s(c)i itself and

s
(c)
i−1. 88

6.8 Viterbi decoding in the between segment case. A transition into an HMM start
state s(c)1 can be made from every HMM end state with context h̃ if there is
a rule h̃ → c h in the grammar. In case of a simple bigram, the contexts h̃1,
h̃2, and h̃3 are simply the classes c1, c2, and c3 of the preceding segments. For
grammars with a larger context, there may be multiple possible contexts for
each HMM end state. In that case, the decoding would go over an additional
third axis of nonterminal symbols which has been omitted in the plot. 89

6.9 Example of state alignment for two instances of the same action as they are
usually produced by the system without length regularization and of an in-
stance showing the intended state alignment. In the �rst two cases, the HMM
does not model the temporal progression but rather uses the subaction states
to distinguish between di�erent action appearances. 92

6.10 Training process of our model. Initially, each action is modeled with the same
number of subactions and the video is linearly aligned to these subactions.
Based on this alignment, the RNN is trained and used in combination with
the HMMs to realign the video frames to the subactions. Eventually, the
number of subactions per action is reestimated and the process is iterated
until convergence. 94

x List of Figures

6.11 Example of temporal action segmentation for two samples from the Break-
fast dataset showing the segmentation result for preparing cereals (top) and
preparing friedegg (bottom). Although the actions are not always correctly
detected, there is still a reasonable alignment of detected actions and ground
truth boundaries. 98

6.12 Evolution of the number of states for the model with state reestimation. The
number of states increases in the �rst �ve iterations and converges after ten
iterations. 99

6.13 Overview of evaluated length models showing a simple box function, a lin-
ear decay function, a half Poisson decay and a half Gaussian function for a
subaction with a mean length of 10 frames. 100

6.14 Results for temporal segmentation with di�erent length models on the Break-
fast dataset over 15 iterations. Solid lines show the results until the proposed
stop criterion is reached. Dashed lines show the results after the stop criterion. 101

7.1 The input video xT1 is forwarded through the network and the Viterbi decoding
is run on the output probabilities. The frame labels generated by the Viterbi
algorithm are then used to compute a framewise cross-entropy loss based on
which the network gradient is computed. 111

7.2 Illustration of the robustness enhancement. After each Viterbi alignment,
frame/label pairs are sampled and stored in the bu�er that already contains
frame/label pairs from previous iterations. The loss is then a sum of the
cross-entropy loss on the currently decoded sequence (NN-Viterbi loss) and
the framewise cross-entropy of samples drawn from the bu�er (robustness term).112

7.3 Viterbi decoding for the within segment case. The new score is the score of the
hypothesis at time t− 1 with length `− 1 that has the same class and context
multiplied by the probability of the visual model. In contrast to previous
approaches, there is an additional axis for the length to optimize over. 117

7.4 Viterbi decoding for the between segment case. In order to hypothesize a
new segment in frame t, the hypotheses at frame t − 1 have to be taken into
account for any length and class. Note that we omitted context symbol axis
for visualization purposes. 118

7.5 Impact of bu�ered data sampling. A sampling ratio of 1:K means that for
each frame of the current sequence, K bu�ered frames are sampled. The �rst
column shows the result for online learning, i.e., without a bu�er. Runtime is
measured on a K80. 121

7.6 Impact of the bu�er size for a bu�ered data sampling ratio of 1:25. Only a few
hundred bu�ered sequences are already su�cient for robust learning. 122

7.7 E�ect of the batch size. A small batch and frequent updates are bene�cial for
better accuracy. 123

7.8 Convergence behavior of our NN-Viterbi algorithm in both variants, online
(red) and with enhanced robustness (blue), over 10, 000 training iterations. . . 124

List of Figures xi

7.9 Example segmentations of two videos from the Breakfast dataset. The two-
step scheme with pseudo ground truth and length model has a bias towards
uniform lengths, which prevents short actions from being detected accurately.
The NN-Viterbi approach is much more robust. 125

7.10 Accuracy per coarse activity for randomly shu�ed training data and training
data sorted by coarse activities. Left activities have been seen early during
training, right activities later. 126

7.11 In the semi-supervised setting, the Viterbi path computed during training is
forced to go through the annotated frame/label pairs, (t3, c2) and (t7, c5) in
this example. This can be achieved by setting the probabilities of the visual
model to zero for all but the annotated classes. 129

7.12 Evaluation of semi-supervised learning on the Breakfast dataset. An increas-
ing amount of annotated frames leads to better frame accuracies. Both of
our systems, RNN/HMM and NeuralNetwork-Viterbi, outperform the ECTC
approach of Huang et al. (2016) by a large margin. 130

8.1 (a) Weak supervision with ordered action sequences as proposed in Chapter 6
and Chapter 7 and also used by Bojanowski et al. (2014); Kuehne et al. (2017);
Huang et al. (2016); Ding and Xu (2018). The number of actions and their
ordering is known. (b) Weak supervision with action sets. Neither action
orderings nor the number of occurrences per action are provided. 134

8.2 Example of valid and invalid action sequences generated by the naive grammar
Γnaive. Only sequences constructed from elements of a single action set are valid.136

8.3 The neural network used in the visual model. A single input frame is mapped to
binary output layers for each class. During training, the network is optimized
to predict the presence of all classes occurring in the complete video from the
single input frame, i.e. given the action set A of the video, p(c ∈ A|xt) is
optimized to be high if c ∈ A. On the contrary, if c /∈ A, the opposite outcome
p(c /∈ A|xt) is optimized to be high. 139

8.4 Three alternatives to the Poisson length model. Left: a Gaussian model with
mean µ and standard deviation σ. Middle: a box function of width 2σ around
the mean length µ. Right: A triangular model of width 2σ around the mean
length µ. 144

8.5 Example segmentation on a test video from Breakfast. Row one to four cor-
respond to row one to four from Table 8.5. The last row is the ground truth
segmentation. 146

8.6 Frame accuracy (left axis, red graph) vs. realtime factor of the decoding (right
axis, blue graph) for di�erent frame sampling rates on the �rst split of the
Breakfast dataset. Runtime can be greatly reduced by a coarse frame sampling
without losing much accuracy. 146

8.7 Example segmentation. All relevant ground truth actions are present. Note
that spoon_powder always occurs jointly with pour_milk, so it is hard for the
model to distinguish them. 148

xii List of Figures

9.1 Location of the proposed methods on the supervision graph. With the pro-
posed methods, we gradually decreased the required amount of supervision and
therefore developed methods that allow to use large amounts of data without
tremendous annotation cost. 153

List of Tables

2.1 Statistics of di�erent datasets used for temporal action segmentation. 22

5.1 Perplexities of di�erent m-gram context models on the Thumos validation set
(used for training) and test set (unseen data). 66

5.2 E�ect of the context model order on Thumos. Results are reported as mAP
for di�erent overlap ratios. 66

5.3 E�ect of the model components on Thumos. In the second column, the average
length of the detected action segments is given. The average length of actions
in the ground truth is 212.5 frames. 67

5.4 χ2-distance between the ground truth length distribution and the Poisson
model averaged over all classes. 69

5.5 Comparison of our method to early sliding window based approaches on the
three datasets Thumos, MPII Cooking, and 50 Salads. We use the evaluation
protocol proposed for Thumos for all three datasets here. 70

5.6 Multi-class precision and recall and single class mAP on MPII Cooking. We
used the evaluation protocol proposed by Rohrbach et al. (2012). 71

5.7 Segment accuracy on pre-segmented action clips of the 212 videos from the
Thumos test set. For training, pre-segmented action clips have been extracted
from the 200 videos of the Thumos validation set. 72

5.8 Comparison of recent deep learning based approaches on Thumos compared
to our method with I3D features. 73

6.1 Results for temporal action segmentation with the GRU-based model com-
pared to an MLP-based model and a GMM over �ve iterations. It shows that
the MLP and GMM are outperformed by the GRU-based model. Additionally
the MLP-based model quickly starts to over�t whereas the GRU oscillates at
a constantly higher level. 97

6.2 Results for temporal action segmentation on the Breakfast dataset comparing
accuracy of the proposed system (GRU + reestimation) to the accuracy of
the same architecture without subactions (GRU no subactions) and to the
architecture with subclasses but without reestimation. 97

6.3 Results of temporal action segmentation for di�erent length regularizers on
the Breakfast and the Hollywood Extended dataset. All results are based on
a stop criterion of 5% frame change rate during alignment or a maximum of
15 iterations. 102

6.4 Comparison of temporal action segmentation performance for GRU based weak
learning with other approaches. For the Breakfast dataset, we report perfor-
mance as frame accuracy, for Hollywood Extended, we measure the Jaccard
index as intersection over union for this task (*from Huang et al. (2016)). . . 103

xiv List of Tables

6.5 Results for temporal action alignment on the test set of the Breakfast and the
Hollywood Extended dataset reported as Jaccard index of intersection over
detection (IoD)(**results obtained from the authors). 104

6.6 Results for fully supervised temporal action segmentation on the Breakfast
dataset. 105

7.1 Impact of length modeling in combination with NN-Viterbi compared to dif-
ferent models using a pseudo ground truth. Training time is measured on a
TitanX. 123

7.2 Impact of the sequence input order on the robustness of the algorithm. The
videos are sorted (a) by the ten coarse activities of the Breakfast dataset, (b)
by the performing actor, and (c) randomly. 126

7.3 Comparison of our method to several state-of-the-art methods for the task of
temporal action segmentation. Results are reported as frame accuracy (%). . 127

7.4 Comparison of our method to several state-of-the-art methods for the task
of action alignment. Results are reported as a variant of the Jaccard Index
(intersection over detection). 128

7.5 Comparison of the fully supervised approach from Chapter 5 and the fully
supervised RNN/HMM on (a) the Breakfast dataset and (b) Thumos. 131

8.1 Evaluation of the proposed method on Breakfast using di�erent context-free
grammars. As length model, the loss-based approach is used. 142

8.2 Evaluation of the text-based grammar. For Cooking 2, where the text sources
are closely related to the content of the videos, an improvement can be observed.143

8.3 Evaluation of the proposed method on Breakfast using di�erent length models.
As grammar, the monte-carlo approach is used. 143

8.4 Evaluation of four di�erent length models on the Breakfast dataset. 145
8.5 The �rst four rows are a comparison of the impact of the grammar and the

length model on the Breakfast dataset, the last is the proposed system trained
on fully supervised, i.e. framewise annotated, data. It is an upper bound for
the weakly supervised setup. 145

8.6 Performance of the proposed method compared to state-of-the-art methods
for weakly supervised temporal segmentation. Note that the proposed method
uses action sets as weak supervision, whereas the other approaches rely on
stronger supervision with ordered action sequences. 147

8.7 Di�erent levels of video trimming for Cooking 2. More videos and less actions
per video result in better performance. 148

8.8 Results of the proposed method when the action sets are provided for inference.149

Nomenclature

Abbreviations

An alphabetically sorted list of abbreviations used in the thesis:

ASR automatic speech recognition
BPTT backpropagation through time
C3D convolutional 3D
CNN convolutional neural network
CTC connectionist temporal classi�cation
ECTC extended connectionist temporal classi�cation
GMM Gaussian mixture model
GRU gated recurrent unit
HMM hidden Markov model
HOF histograms of optical �ow
HOG histograms of oriented gradients
HTK hidden Markov model toolkit
I3D in�ated 3D convolutional neural network
IDT improved dense trajectory
IoD intersection over detection
IoU intersection over union
LSTM long short-term memory
mAP mean average precision
MBH motion boundary histograms
MLP multilayer perceptron
NMS non-maximum suppression
OCDC ordered constrained discriminative clustering
RNN recurrent neural network
STIP space-time interest points
SVM support vector machine
TCFPN temporal convolutional feature pyramid network
TCN temporal convolutional network
VLAD vectors of locally aggregated descriptors

Frequently Used Symbols

C the set of action classes
Γ a right-regular grammar
xT1 a sequence of T feature vectors x1, . . . , xT

ii List of Tables

cN1 a sequence of N class labels c1, . . . , cN
lN1 a sequence of N segment lengths `1, . . . , `N
hN1 a sequence of N non-terminal symbols of a grammar
sN1 a sequence of T HMM states
n(t) a function mapping from frame indices to segment indices
tn the index of the last frame of segment n

List of Publications

The thesis is based on the following publications:

A. Richard and J. Gall
Temporal Action Detection using a Statistical Language Model
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 (Spotlight)

A. Richard and J. Gall
A Bag-of-Words Equivalent Recurrent Neural Network for Action Recognition
Computer Vision and Image Understanding (CVIU), 2017

A. Richard, H. Kuehne, J. Gall
Weakly Supervised Action Learning with RNN based Fine-to-coarse Modeling
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (Oral)

A. Richard, H. Kuehne, J. Gall
Action Sets: Weakly Supervised Action Segmentation without Ordering Constraints
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (Spotlight)

A. Richard, H. Kuehne, A. Iqbal, J. Gall
NeuralNetwork-Viterbi: A Framework for Weakly Supervised Video Learning
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (Spotlight)

H. Kuehne*, A. Richard*, J. Gall
A Hybrid RNN-HMM Approach for Weakly Supervised Action Recognition
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019
(* indicates equal contribution)

Code and videos of presentations related to these publications can be found online at
https://alexanderrichard.github.io.

https://alexanderrichard.github.io

Chapter 1

Introduction

Contents

1.1 Motivation . 1

1.2 Challenges . 3

1.2.1 The Hierarchical Nature of Actions . 4

1.2.2 Supervision . 4

1.3 Contributions . 6

1.3.1 A Generic Framework for Temporal Action Segmentation 6

1.3.2 Advancing Fully Supervised Action Segmentation 7

1.3.3 Weakly Supervised Action Segmentation using Action Transcripts . . . 7

1.3.4 Weakly Supervised Action Segmentation using Action Sets 7

1.4 Thesis Structure . 8

1.1 Motivation

Until about �fteen years ago, research in computer vision was mainly focused on image pro-
cessing. Video data was treated somewhat negligently, partially due to the lack of resources
that would allow to process real world video data in reasonable time but also because its
impact on everyday life was much smaller than it is today.

With the availability of video platforms such as Vimeo or YouTube and with cameras
integrated in most smart phones, however, the situation changed. Today, user generated video
content can be shared on Facebook, YouTube, and other platforms by everyone with access to
an Internet connection. According to a keynote of YouTube CEO Susan Wojcicki from 2015,
more than 400 hours of video data are uploaded to YouTube every minute (VidCon, 2015).
In general, video streaming accounts for 22% of upstream tra�c on the Internet (Sandvine
Inc., 2018). Given this steadily increasing amount of video data, the interest in analyzing it
has grown signi�cantly.

Since videos often revolve around humans as protagonists, human actions are of special
importance. Particularly user generated data needs to be analyzed before sharing it publicly.
For example, videos showing violence, illegal activities, and adult content should be �ltered.
Given the sheer amount of data, manual �ltering of such content is impossible and algorithmic
solutions need to be applied. Another practical use case that requires detecting and classifying
of human actions in videos arises in surveillance. Suspicious and malicious behavior needs to

2 Chapter 1. Introduction

Open Door

Stand Up

Shake Hands

Background Stand Up Open Door Background Shake Hands

Figure 1.1: Methods for action recognition on pre-segmented clips already work well. Mov-
ing towards temporally untrimmed videos with multiple action instances, however, is not
trivial as action boundaries are not known in advance and background frames can have sim-
ilar appearance as action instances.

be detected and categorized ideally in realtime to allow for immediate reaction and to inhibit
such actions. Quality control in production processes can also be guided by temporal action
detection and recognition. If a process requires the completion of certain steps, algorithms for
video analytics can identify errors and trigger reminders or warnings, e�ectively decreasing the
amount of de�cient products. Moreover, analyzing human actions in videos is an important
element of human-machine interaction. The ability to recognize and anticipate actions and
human behavior is crucial for autonomous agents to plan their own actions. Driver assistance
systems, for instance, can leverage the information if the driver is yawning or distracted
by using his phone and trigger a warning. In autonomous driving, analyzing video streams
can help to anticipate dangerous situations like a child playing close to the street. Finding
actions in videos can also be used for content-based search. Video queries can be based
on the actions occurring within the video rather than on keywords in the title or meta-
tags. Similarly, recognizing actions in videos can also help to enhance automatic highlight
extraction and video summarization.

Considering the complexity of temporal action segmentation in videos, early works
mainly focused on a simpli�ed problem and addressed classi�cation of human actions in

1.2. Challenges 3

pre-segmented clips (Schuldt et al., 2004; Wang and Schmid, 2013). While recent advances
using deep neural networks (Simonyan and Zisserman, 2014; Wang et al., 2016; Carreira and
Zisserman, 2017) and the availability of large-scale datasets (Kay et al., 2017) have led to
outstanding improvements and current systems already reach accuracies far above 90%, clas-
si�cation of pre-segmented clips is an unrealistic scenario for most applications. Real-world
videos are temporally untrimmed and contain a variety of di�erent action instances as well
as background frames, see Figure 1.1. Therefore, the interest in �nding temporal segmen-
tations of such untrimmed videos greatly increased over the last years. First approaches of
applying the well studied methods for pre-segmented action recognition in combination with
sliding windows (Rohrbach et al., 2012; Oneata et al., 2014) quickly reached their limits.
Currently, temporal models that are purely data-driven and allow for end-to-end learning are
the dominating approach (Yeung et al., 2016; Lea et al., 2017; Chao et al., 2018).

One of the major challenges nowadays is to analyze growing amounts of video data. A
good approach for analyzing human actions needs to have certain properties. First, there
is a hierarchical structure and temporal long-range dependencies underlying human actions
the approach should be aware of. Second, given the vast amount of available video data,
algorithms need to be able to learn without or only with very little human guidance. We
discuss these challenges in the next section.

1.2 Challenges

Recognizing human actions in videos is a hard problem. On the one hand, actions can include
complex interactions with objects or other humans. On the other hand, the same action can
be performed in various environments and under di�erent conditions, leading to a high intra-
class variation. Furthermore, actions are inherently fuzzy in various ways. First, there are
smooth transitions between an action belonging to a class or not. For instance, consider the
action drinking. This may refer to a typical scenario of drinking from a cup or a bottle but it
can also refer to drinking from a river or lake. Second, temporal transitions between actions
are not well de�ned and humans usually disagree about the exact start and end time of an
action. While this can be an issue once action segmentation systems get extremely accurate,
at the current state it is found not to be critical (Alwassel et al., 2018). Finding actions in a
temporally untrimmed video also poses a combinatorical problem as the number of possible
action sequences and boundary positions grows exponentially in the number of action classes
and the video duration.

Moving towards temporal action segmentation systems that are good enough for a wide
variety of practical applications requires to address two major issues. First, since humans
perceive actions in a hierarchical way, action segmentation systems need to model di�erent
temporal granularities and allow for long-range dependencies between low-level actions. Sec-
ond, an increasing amount of video data that needs to be processed also leads to an increasing
number of relevant action classes and more intra- and inter-class variations. Therefore, a large
amount of training data is required to learn data-driven models. Manually annotating such
a vast amount of data, however, is expensive and frequently infeasible. Action segmentation

4 Chapter 1. Introduction

algorithms therefore need to be able to learn with very little supervision only. We discuss
the two issues in more detail in the following.

1.2.1 The Hierarchical Nature of Actions

A major problem in the �eld of action recognition is the de�nition of action classes and the
long-range dependencies between actions. An action does not only depend on a subjects body
motion or pure human-human or human-object interaction but also on other possibly non-
visual context in the scene. Early philosophical and psychological works on human actions
already identify actions to have a hierarchical structure (Barker and Wright, 1954) and that
there are basic and non-basic acts but without knowledge of the circumstances or context, one
can only recognize the basic acts (Danto and Morgenbesser, 1963; Danto, 1965). Vallacher
and Wegner (1987) �nd that actions are perceived on di�erent levels and that the perceived
level of an action depends on its context and di�culty. In general, humans tend to prefer
high-level actions. For instance, a sequence of tipping a �nger on a phone is rather identi�ed
as the action dial the phone or even call person X if such high-level identities can be deduced
from the context. Di�cult or unfamiliar actions, on the contrary, are more likely to be
perceived as multiple low-level identities.

Both, the de�nition of action classes and modeling high-level temporal dependencies, are
therefore a crucial issue in action recognition and segmentation. Most datasets for action
recognition on pre-segmented clips de�ne a set of high-level action instances such as perform-
ing a sport activity or playing an instrument (Soomro et al., 2012), or mid-level activities
such as hug, clap, or eat (Kuehne et al., 2011). Datasets with a focus on temporal action
segmentation oftentimes feature an implicit or explicit hierarchy. The Breakfast dataset
of Kuehne et al. (2014), for instance, has a video-level action describing a breakfast dish,
mid-level descriptions such as pour milk, and low-level actions such as open cap. The 50
Salads dataset of Stein and McKenna (2013) follows a similar approach and decomposes the
activity of making salad into mid- and low-level actions. In such datasets, there are explicit
temporal dependencies between low-level and mid-level actions that typically characterize a
high-level action, such as the sequence of pouring milk into a bowl, adding cereals, and stir-
ring them characterizes the high-level activity of preparing cereals. The recently published
AVA dataset (Gu et al., 2018) follows another principle and mainly relies on low-level actions
to reduce the in�uence of the context. Still, such low-level actions have implicit temporal
and hierarchical dependencies. For instance, pick up followed by hold and put down relates
to a more high-level human-object interaction. Either way, such dependencies need to be
modeled.

1.2.2 Supervision

In the era of deep learning, availability of training data is crucial. The current state-of-the-
art in action recognition relies on a deep neural network that is trained on 240, 000 video
clips (Carreira and Zisserman, 2017) and covers 400 di�erent action classes. Ideally, datasets
for temporal action segmentation should also be large-scale, comprising a few hundred thou-

1.2. Challenges 5

supervision

fully supervised weakly supervised unsupervised

a
v
a
il
a
b
le

tr
a
in
in
g
d
a
ta

Figure 1.2: The relation between supervision and availability of training data. Fully su-
pervised approaches require precise frame-level annotations that are expensive to obtain and
therefore only a limited amount of training data can be provided. Less supervision means
lower annotation cost per video, increasing the actual amount of data that can be provided
for training.

sand videos from di�erent domains and with di�erent appearance as well as a large amount
of action classes. A system for analyzing YouTube videos, for instance, must not only be
able to recognize actions in professional television broadcasts but also in amateur videos.
Moreover, only a few applications such as surveillance videos have static cameras or a small
amount of relevant classes. Mostly, videos have to be analyzed in changing locations with
di�erent lighting conditions and varying appearance, with moving cameras, and with a large
amount of possible action classes. Training data must capture all these di�erent aspects and
therefore, collecting large-scale datasets is inevitable.

Most current approaches for temporal action detection and segmentation require full
supervision, i.e. a per-frame labeling or an exact labeling of the action boundaries. Gathering
large-scale training data with a frame-level annotation of actions, however, is extremely costly.
Widely used benchmark datasets therefore are typically restricted in their domain and size.
The Breakfast dataset (Kuehne et al., 2014), 50 Salads (Stein and McKenna, 2013), and MPII
Cooking (Rohrbach et al., 2012), for instance, are restricted to kitchen environments and only
contain between few dozen and a few thousand videos. In general, the more supervision is
required, the less training data usually is available, see Figure 1.2. Therefore, the key to
enabling analysis of human actions on unconstrained large-scale data is the development
of algorithms that do not require full supervision but can learn from weak annotations or,
ideally, from unlabeled data in an unsupervised fashion.

Reducing the amount � and therefore also the cost � of annotation can be achieved in

6 Chapter 1. Introduction

various ways. For example, Gu et al. (2018) label only a single keyframe per second. While
this is e�ective for medium sized datasets, it still does not scale to arbitrarily large datasets.
A more scalable approach is to not provide any exact temporal annotations at all but only an
ordered sequence of actions that occur in the video. For some video sources such as movies or
documentaries, this information can be mined automatically (Laptev et al., 2008; Duchenne
et al., 2009). With the availability of high end speech recognition software, similar annotations
can also be extracted for arbitrary clips as long as there are semantic correspondences in the
visual and acoustic signal. In this context, the Epic Kitchen dataset (Damen et al., 2018)
is worth mentioning. The authors asked participants to record themselves in the kitchen
and to record a narrated description of their actions afterwards and therefore have semantic
audio-video correspondences in their dataset. These narrations have then been used to guide
the annotation of actions in the videos. Unfortunately, there is no segmentation task de�ned
for the dataset because not all action instances have been labeled.

Alternatively to subtitles or audio signals as a source of weak supervision, meta-tags can
be exploited to de�ne video-level action labels. Since most clips on YouTube or Facebook
are equipped with meta-tags, they provide a large source for high-level action annotations.
Scalable action segmentation methods have to be able to learn from such weakly annotated
data only.

1.3 Contributions

In this thesis, we address both problems, i.e. modeling temporal long-range dependencies and
hierarchical relations between actions as well as the development of weakly supervised meth-
ods that pave the way for learning from large amounts of video data. The main contributions
of the thesis are outlined in the following.

1.3.1 A Generic Framework for Temporal Action Segmentation

Most current approaches to temporal action segmentation are based on end-to-end trainable
neural networks and use either temporal segment proposals (Zhao et al., 2017) or temporal
convolutional networks with a limited receptive �eld for segment detection (Lea et al., 2017).
These approaches all have in common that they rely on local, possibly suboptimal decisions
for action segments.

Inspired by common practice in automatic speech recognition (ASR), where speech is
modeled using an acoustic model and a language model (see e.g. Trentin and Gori (2001)),
we propose a generic framework that allows for temporal action segmentation based on a
factorization into a visual model, a length model, and context model. The three models
can be seen as a hierarchical decomposition of the problem. Low-level temporal dependencies
within an action are modeled by the visual model. The length model guides the segmentation
algorithm on a mid-level by ensuring reasonable durations of actions. Long-range dependen-
cies are �nally addressed by the context model that combines low-level action instances over
the complete video and thereby captures high-level relations. The framework allows to inte-
grate a wide variety of recent action recognition models such as convolutional neural networks

1.3. Contributions 7

(CNNs) or recurrent neural networks (RNNs). At the same time, it allows for an e�cient and
e�ective decoding that �nds the globally optimal segmentation given the underlying mod-
els rather than relying on local suboptimal decisions. We apply the framework for di�erent
action segmentation related tasks and with di�erent levels of supervision.

1.3.2 Advancing Fully Supervised Action Segmentation

In a next step, we address the task of fully supervised action segmentation using the generic
framework. Therefore, we evaluate di�erent kinds of length models and propose to model
the context of actions by m-grams, which are widely used in language modeling. Deep neu-
ral networks that have pushed classical action recognition to new limits recently can easily
be integrated into the framework as visual models. Based on a modi�cation of the Viterbi
algorithm (Viterbi, 1967), we derive an e�cient algorithm that �nds the optimal segmenta-
tion. We evaluate our method with traditional hand-crafted features proposed by Wang and
Schmid (2013) and also provide results with deep features extracted from an I3D CNN (Car-
reira and Zisserman, 2017). We further enhance our approach by a bag-of-words equivalent
neural network as segment classi�er. For the latter, we achieve state-of-the-art performance
on Thumos, a challenging benchmark for fully supervised action detection.

1.3.3 Weakly Supervised Action Segmentation using Action Transcripts

As mentioned before, e�ectively learning from a huge amount of video data requires systems
that do not demand the availability of framewise labeled training data. We therefore address
the problem of weakly supervised action segmentation, where only action transcripts are
provided during training. Thus, in contrast to fully supervised approaches, no frame-level
annotation is used and the temporal order in which action classes occur is all that is known
for the training videos. While early methods approach weakly supervised action segmentation
with discriminative clustering (Bojanowski et al., 2014) or traditional ASR systems (Kuehne
et al., 2017), we rely on the proposed generic framework. In a �rst step, we propose a
�ne-to-coarse model that uses a recurrent neural network to model local changes in the
video and a coarser model that combines subactions to actions. The lack of frame-level
annotation during training is addressed by an iterative bootstrapping approach that alters
an inference and training step. In a second step, we simplify the initial model and propose a
training algorithm that resembles the typical steps of neural network training, i.e. forwarding,
loss computation, and backpropagation. Using the advanced model, related weak learning
approaches are outperformed by a huge margin.

1.3.4 Weakly Supervised Action Segmentation using Action Sets

Action transcripts require either manual annotation or some temporal information such as
subtitles to mine them. Most large video collections on the Internet, however, are only
equipped with meta-tags. These tags can be seen as an unordered set of actions or events
that occur in the video. Thus, aiming to further reduce the amount of supervision, we remove
the temporal ordering constraints. Instead of an ordered sequence of actions, now only the
set of action classes occurring in video is provided during training. While this may seem like

8 Chapter 1. Introduction

a minor change in the level of supervision, it actually increases the space of possible solutions
exponentially since every permutation of actions from the given set is possible. Moreover,
without ordering constraints and frame-level annotation, the length model and context model
need to be estimated heuristically. We propose a simple yet e�ective method to train the
generic framework using this kind of weak supervision.

1.4 Thesis Structure

The remainder of the thesis is structured as follows.
In Chapter 2, we discuss related work, starting from classical action recognition on pre-

segmented clips and advancing to recent approaches for temporal action segmentation. The
chapter also contains a detailed description of the datasets used in this thesis.

In Chapter 3, the problem of temporal action segmentation is formally de�ned and
preliminary work is discussed. Particularly, we introduce evaluation metrics used on the
various datasets and outline their di�erences. We also describe the most relevant feature
extraction methods that �nd application in our methods, give a brief introduction into re-
current neural networks, and show that a commonly used traditional feature quantization
method is essentially a special case of a recurrent neural network. The latter is based on the
publication (Richard and Gall, 2017).

Chapter 4 contains the description of the general framework including the decomposition
into context model, length model, and visual model. Moreover, a basic version of the Viterbi
algorithm including a pseudo-code implementation is derived. The algorithm is re�ned in
later chapters to �t the explicit models.

The task of fully supervised temporal action detection is covered in Chapter 5, build-
ing upon the previously introduced framework and instantiating explicit length and context
models. We evaluate di�erent length models and discuss the interdependencies of the three
model components. Chapter 4 and Chapter 5 are based on work published in (Richard and
Gall, 2016).

In Chapter 6, we propose a �rst method for weakly supervised action segmentation.
It features a �ne-to-coarse architecture that is based on recurrent neural networks and a
hidden Markov model. In order to further boost the performance, we also add a length
regularization that prevents subactions from being unreasonably long. This part of the thesis
in mainly based on the publications (Richard et al., 2017; Kuehne et al., 2019).

Simplifying that method, in Chapter 7, we replace the hidden Markov model by an
explicit length model. We further identify drawbacks in the training procedure and propose
a more stable learning approach. The approach does not only reach state-of-the-art perfor-
mance for weakly supervised action segmentation but also allows for incremental learning.
Additionally to the weak learning setup that is based on action transcripts, we also discuss
semi-supervised learning where video frames are sparsely annotated. The chapter is based
on work published in (Richard et al., 2018b).

In Chapter 8, we further reduce the amount of annotation and use unordered action
sets as only supervision. Due to the severe lack of annotated data, we propose heuristics

1.4. Thesis Structure 9

to learn the model components and evaluate how text sources can complement the learning
from unordered actions. The basis of this chapter is the publication (Richard et al., 2018a).

Chapter 9 concludes the thesis with a discussion of the generic framework and an outlook
on future research directions that potentially enable self-supervised learning and anticipation
of future actions.

Chapter 2

Related Work

In this chapter, we discuss the most relevant related work for this thesis. Being the foundation
for temporal action segmentation, we start with a review of classical action recognition on
pre-segmented clips. We then discuss di�erent approaches to temporal action segmentation in
both, fully and weakly supervised training setups, and introduce the datasets used throughout
the thesis.

Contents

2.1 Classical Action Recognition . 11

2.1.1 Early Approaches . 12

2.1.2 Deep Learning for Action Recognition 13

2.2 Temporal Action Segmentation . 15

2.2.1 Early Approaches . 15

2.2.2 Temporal Action Localization and Detection 16

2.2.3 Action Segmentation with Long-range Dependencies 17

2.2.4 Globally Optimal Segmentations . 18

2.2.5 Explicit Context Modeling and Stochastic Grammars 19

2.3 Weakly Supervised Learning . 19

2.3.1 Weakly Supervised Learning from Structured Sequences 20

2.3.2 Video-level Annotations . 21

2.3.3 Weakly Supervised Approaches in Other Domains 21

2.3.4 Length Modeling for Temporal Sequences 22

2.4 Datasets . 22

2.1 Classical Action Recognition

In classical action recognition, it is usually assumed that the video clips are already pre-
segmented and contain a single action instance only. The task then reduces to a pure clas-
si�cation task. Early works focus on hand-crafted feature extraction and �nd action classes
using nearest neighbor searches or bag-of-words models. More recent deep architectures, on
the contrary, solve the problem in a single neural network.

12 Chapter 2. Related Work

Action recognition of pre-segmented clips is the foundation of current action segmentation
approaches that can deal with temporally untrimmed videos. The approaches presented in
this thesis also rely on sophisticated frame-based or clip based action classi�ers, which we
therefore review in more detail in the following.

2.1.1 Early Approaches

While for image recognition, successful feature descriptors such as SIFT (Lowe, 1999) were
already available, action recognition requires feature extraction not only in the spatial domain
but also in the temporal domain. Early approaches to action recognition therefore focused
on either spatio-temporal feature extraction or temporal modeling of framewise features. For
the latter, some works refer to the success of hidden Markov models (HMMs) in speech
recognition and adapt the idea to video streams, see Weinland et al. (2011) for a survey. A
work by Brand et al. (1997), for instance, identi�es hand movements as driving components
for human actions and proposes to use a coupled HMM in order to model the movement
of both hands. They evaluate their approach on two-handed gestures and show that they
can recognize basic hand movements. Moving towards full body motion, Chen et al. (2006)
propose a star skeleton that is extracted for each frame based on the body shape which is
obtained by background subtraction. With an HMM for each action class, the authors then
model likelihoods of temporal sequences of star skeleton features.

Avoiding HMMs, some approaches apply template matching where templates for action
classes are based on spatio-temporal �lters (Rodriguez et al., 2008). Other approaches rely
on representing the video by a �xed size feature set and apply a nearest neighbor classi�er to
recognize action classes. Masoud and Papanikolopoulos (2003), for instance, sample a �xed
number of frames from a video and use recursive �ltering to extract framewise features. After
learning a PCA, test videos and train videos are compared in their respective eigenspaces and
the closest match from the training set is used to determine the action class. The approach
of �kizler et al. (2008) has a stronger focus on the human body. The authors propose to
extract line-based features that represent the contours of the human body and enhance the
representation with histograms of optical �ow. In order to address the problem that videos
are of di�erent temporal length, they score the frame features within a sliding window using a
support vector machine (SVM) and select the action detected in the window with the highest
response. Efros et al. (2003) state that videos are mostly �gure-centric and propose to use
tracking and video stabilization before a classi�cation step.

One of the most relevant general feature extractors for videos are space-time interest points
(STIP) that have been proposed by Laptev and Lindeberg (2003); Laptev (2005). Inspired
by the Harris detector for 2D interest points (Harris and Stephens, 1988), a similar method
is proposed to extract interest points in a spatio-temporal 3D volume. These features have
�rst been used for action recognition in combination with a bag-of-words (BoW) approach
and SVM classi�cation in Schuldt et al. (2004). This combination of BoW and SVM has led
to a huge leap forward in the �eld of action recognition thereafter. While previous works
mainly concentrated on videos that have been recorded under laboratory conditions, i.e. with
constant illumination, static background, and single persons only, more realistic videos could

2.1. Classical Action Recognition 13

be processed now. The �rst work to use unrestricted movie scenes rather than laboratory
scenarios was presented by Laptev and Pérez (2007).

Given the success of bag-of-words models and SVM classi�ers, there was a strong focus
on the development of spatio-temporal feature extraction algorithms. Building on basic low-
level image features, Niebles and Fei-Fei (2007) propose a high-level constellation of parts
to approach a more structured representation of a video. In a work by Wang et al. (2013),
trajectories of pixels through the spatio-temporal video volume are densely sampled and
appearance as well as motion descriptors are extracted along these trajectories. An improved
version of this work byWang and Schmid (2013) adds stabilization to the trajectory extraction
and replaces the bag-of-words pipeline with Fisher vectors (Perronnin and Dance, 2007), a
more advanced feature quantization approach. Building upon the success of improved dense
trajectories, Peng et al. (2014) propose stacked Fisher vectors, a hierarchical model that
�rst encodes large video subvolumes as Fisher vectors and in successive layers encodes the
resulting vectors again. Improved dense trajectories have been the de-facto state-of-the-art
in action recognition until deep neural networks �rst showed better performance.

2.1.2 Deep Learning for Action Recognition

Deep neural networks are responsible for a huge leap forward in image classi�cation and
object recognition (Krizhevsky et al., 2012). For action recognition, however, the success of
deep learning proceeded more slowly as capturing temporal dependencies and motion cues
with a convolutional neural network is a non-trivial task. The work of Bilen et al. (2016)
therefore aims at representing a video clip as a single dynamic image which encodes motion
and temporal cues in the video, such that well studied CNN architectures from image process-
ing can be applied for video classi�cation. In another approach to identify how deep learning
can help action recognition, Jain et al. (2015) successfully show that deep CNN features from
object classi�cation can lead to improvements on action recognition benchmarks. Identifying
the size of action datasets as a limiting factor for deep learning, Karpathy et al. (2014) collect
a large scale dataset with one million sports related clips and 487 classes. They show that
frame-based CNNs can learn strong features and that transfer learning between the large
scale video dataset and smaller action recognition benchmarks is possible.

In an attempt to incorporate temporal information into CNNs, some works focus on 3D
convolutions. Early approaches like the version of gated Boltzman machines (Memisevic and
Hinton, 2007) for unsupervised features learning proposed by Taylor et al. (2010) try to ex-
tract spatio-temporal patterns using 3D convolutions that can be used as features for any
classi�cation module. Ji et al. (2013) propose a �rst 3D convolutional neural network for
action recognition but do not outperform hand-crafted features. A succeeding work of Tran
et al. (2015) proposed an advanced convolutional 3D (C3D) architecture which generates fea-
tures that are complementary to improved dense trajectories and lead to better performance
when combined.

However, all those deep architectures could not consistently outperform improved dense
trajectories. Consequently, e�orts have been made to combine the bene�ts of deep learning
with the strengths of hand-crafted features. To this end, Lev et al. (2016) build upon Fisher

14 Chapter 2. Related Work

vectors of improved dense trajectories which have been a major improvement over the original
dense trajectories from Wang et al. (2013). Fisher vectors summarize a collection of feature
vectors based on the gradient of a Gaussian mixture model (GMM) but do not take temporal
orderings of these vectors into account. The authors therefore propose to train a recurrent
neural network on the set of feature vectors obtained by improved dense trajectories and
summarize the sequence using the gradient of the RNN instead of the gradient of the GMM.
Another hybrid approach is proposed by Wang et al. (2015), who �nd that CNNs extract
strong features but the strength of improved dense trajectories are the trajectories of pixels
moving through the spatio-temporal volume. Thus, they propose to aggregate features from
CNN feature maps along those trajectories rather than hand-crafted descriptors.

With the insight that optical �ow is crucial for deep architectures in action recognition,
CNNs could �nally outperform hand-crafted features. The �rst successful purely CNN based
approach that achieves similar performance as improved dense trajectories is the original two-
stream network from Simonyan and Zisserman (2014), who use two parallel CNN streams,
one working on RGB frames and the other on a stack of 10 consecutive optical �ow �elds.
Driven by the success of this architecture, a series of modi�cations and improvements emerged
in the subsequent years. While the original two-stream network relies on a simple temporal
averaging of the output scores to obtain a video-level class prediction, Ng et al. (2015) ex-
tend the architecture by a long-short-term-memory (LSTM) network to aggregate the scores
along the temporal axis and show promising results. Based on the success of vectors of lo-
cally aggregated descriptors (VLAD, Jégou et al. (2010)), Girdhar et al. (2017) propose a
fully di�erentiable layer that pools features from a two-stream network over space and time.
Temporal segment networks (Wang et al., 2016) build upon two-stream networks and process
multiple temporal snippets that are randomly chosen from uniformly sampled video segments
in order to process longer videos. The scores of each snippet are aggregated according to a
consensus function. On standard action recognition benchmarks, temporal segment networks
lead to a considerable improvement over the original two-stream architecture.

Other works that extend the two-stream architecture introduce motion gated appearance
streams (Feichtenhofer et al., 2017b). Therefore, multiplicative connections from the motion
stream to the appearance stream are established. Moreover, in Feichtenhofer et al. (2016),
the authors show that the size of the network can be reduced by an earlier fusion of the
two streams without loss of performance. In an attempt to model a larger temporal context,
Feichtenhofer et al. (2017a) build a two-stream net using the ResNet architecture (He et al.,
2016) with temporal residual convolutions and thereby expand the temporal receptive �eld
of the network. The currently best performing method for action recognition is an in�ated
3D convolutional neural network (I3D, Carreira and Zisserman (2017)) that combines 3D
convolutions with the idea of two streams for motion and appearance. The network is trained
on a large-scale dataset with 400 classes and 240, 000 videos and has proven well for transfer
learning and extracting generic video features.

In this thesis, we mainly rely on the recent I3D architecture for features on datasets with
a strong appearance bias and on Fisher vectors of improved dense trajectories as generic
features for weakly supervised approaches.

2.2. Temporal Action Segmentation 15

2.2 Temporal Action Segmentation

Temporal action segmentation is the task of �nding and labeling action instances in videos.
The task is the natural extension of classical action recognition and generally much harder
as it is not a pure classi�cation problem but also a detection problem. There is also work on
spatio-temporal action detection (Gkioxari and Malik, 2015; Kalogeiton et al., 2017; Singh
et al., 2017), localizing actions not only in the temporal but also in the spatial domain.
However, these approaches do not focus on long-range temporal context and dependencies
between actions but are mostly restricted to localizing a single or very few action instances in a
video. The works on spatio-temporal detection therefore focus more on the spatial detection of
actions and how these spatial locations change through time and are of subordinate relevance
for the temporal models presented in this thesis.

2.2.1 Early Approaches

Pioneering approaches for temporal action segmentation rely on thresholding of action scores
and sliding windows. In an early approach, for instance, Bobick and Davis (1996) propose to
compute motion history images to capture the temporal context of motion. They extract Hu
moments on those images and apply a nearest neighbor classi�er to �nd the best matching
action class. In order to �lter out frames that do not contain any action, a threshold on
the maximal distance to the nearest neighbor is used. The work has later been extended
to multiple views (Davis and Bobick, 1997). Ali and Aggarwal (2001) represent human
motion by angles between the torso, upper leg, and lower leg, and classify frames either as
a breakpoint or a non-breakpoint. A nearest neighbor classi�er is then used to label the
segments between two breakpoints.

Given the advances in action recognition on pre-segmented clips, sliding window ap-
proaches that have been successful in object detection (Viola and Jones, 2001) were soon
adopted to the temporal domain. Ke et al. (2005), for instance, use an action classi�er based
on volumetric features in combination with a spatio-temporal sliding window. Application of
a Gaussian �lter over the responses and a thresholding to �lter background frames then lead
to the �nal segmentation.

Addressing action detection in realistic videos, where actions can occur in di�erent spatio-
temporal regions, Laptev and Pérez (2007) propose keyframe priming as an e�cient ap-
proach. Training a detector for action keyframes, spatio-temporal volumes of di�erent tem-
poral lengths are evaluated around the keyframes, such that an exhaustive sliding window
search is not required.

With the availability of larger datasets speci�cally designed for temporal action segmen-
tation, the quality of such systems rapidly increased (Rohrbach et al., 2012; Oneata et al.,
2014; Wang et al., 2014; Karaman et al., 2014). However, all of these approaches have in com-
mon that they rely on sliding windows and non-maximum suppression to remove overlapping
and low scoring action segments. Works by Ni et al. (2014) and Lan et al. (2015) started to
incorporate hierarchical elements into the segmentation process. The �rst work, for instance,
identi�es interaction between hands and objects as a coarse indicator for actions and therefore

16 Chapter 2. Related Work

localizes objects that are being manipulated in the video and then uses this information to
re�ne action localization. In the second work, clustering of spatio-temporal action proposals
and discriminative clustering is applied to �nd mid-level action elements from higher-level
videos. These models, however, are still not exploiting the inherent contextual dependencies
between actions in videos.

2.2.2 Temporal Action Localization and Detection

Temporal action localization, also referred to as temporal action detection, is an instance
of action segmentation and is sometimes used interchangeably. Mostly, the term refers to
detecting sparse actions in a video. In contrast to other works on action segmentation, action
localization is mainly applied to datasets that have a huge background portion and only a sin-
gle or very few di�erent action classes per video. The number of action instances, however,
can be large. Standard benchmark datasets are Thumos (Idrees et al., 2017) and Activi-
tyNet (Caba Heilbron et al., 2015), which do not capture long-range contextual dependencies
between action instances.

While approaches for classical action recognition are typically designed to work on short
clips, methods for action localization face the problem of reliably detecting action boundaries
and separating background from action in the temporal domain. Therefore, some works
combine segments along the temporal axis using recurrent neural networks, see e.g. Yuan
et al. (2016). However, Singh et al. (2016) study LSTMs for temporal action localization and
�nd that they typically utilize not more than eight seconds of video, which is too short for
many applications.

Therefore, most approaches rely on a less generic yet e�ective paradigm. Instead of
analyzing the complete video at once, shorter video segments are analyzed independently
of each other and scored by a neural network. Frequently, post-processing in form of non-
maximum suppression (NMS) to remove overlapping segments is necessary. Zhao et al. (2017),
for instance, use segment proposals and propose structured segment networks, where the
proposal is divided into start, main, and ending stages. An activity classi�er then determines
the action class and a completeness classi�er determines if the segment covers all frames
of the action. In a multi-stage approach, Shou et al. (2016) process multiple segments per
video that are obtained by a sliding window. A proposal network scores these segments as
either action or background. In the next stage, a classi�cation and localization module is
then used for temporally locating actions. A similar approach has been proposed by Gao
et al. (2017a). They extract features on short video units, create a clip pyramid at di�erent
temporal scales, and a network then classi�es the actions in the segments and regresses exact
temporal boundaries. Gao et al. (2017b) extend the work by feeding clip proposals back into
the network for further re�nement. For these approaches, the �nal segmentation is obtained
after post-processing via NMS.

A common property of neural networks for video features such as C3D is that they com-
press not only the spatial but also the temporal domain. Shou et al. (2017) therefore propose
an integrated convolution-deconvolution architecture that simultaneously downsamples the
spatial domain and upsamples the temporal domain to obtain more precise localizations.

2.2. Temporal Action Segmentation 17

Addressing the problem of �nding consistent segments with reasonable start and end points,
Yuan et al. (2017) model start, middle, and end frames explicitly and use structured maximal
sums to �nd the best scoring segments in a video.

A major drawback of those methods is that evaluating all possible video segments is
expensive and easily inhibits realtime performance. Therefore, Caba Heilbron et al. (2017)
propose a cascade that prunes segments that are � based on object and scene context �
unlikely to contain an action. This pruning step does not need to process a spatio-temporal
volume but can operate on a frame basis and is therefore fast. Another solution to the runtime
problem is proposed by Buch et al. (2017), who output segment proposals with a single pass
over the video. In their approach, features are extracted on small temporal volumes and an
RNN outputs scores for segments with multiple �xed lengths that possibly end at that point.

In object detection, a series of works starting with RCNNs and going towards the popular
Faster-RCNN (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015) led to the proposal
generation process being integrated into the network that also classi�es the objects. Inspired
by this development, Xu et al. (2017) propose R-C3D, which is a combination of Faster-
RCNN and C3D. A 3D convolutional neural network extracts features and a proposal subnet
predicts for each temporal position a set of anchor segments. If an action is contained in those
anchor segments, the classi�cation subnet outputs the start and end times and action class.
Sticking even more to the original Faster-RCNN, Chao et al. (2018) transfer the idea into the
one-dimensional space of temporal action segmentation with a multi-scale architecture that
increases the receptive �eld and thus allows for huge variations in the action lengths.

Although the algorithms proposed in this thesis primarily address action segmentation
where long-range context between action classes is crucial, we compare to these rather local
approaches in Chapter 5. On a standard benchmark for action detection, we show state-
of-the-art results although the method is substantially di�erent from the above mentioned,
mostly proposal-based approaches.

2.2.3 Action Segmentation with Long-range Dependencies

Action segmentation on untrimmed videos with dense action segments requires to take context
into account and to model temporal relations of input frames that span a long period of
time. The previously discussed approaches that mainly focus on �nding action boundaries
and locating individual segments quickly reach their limits when long-range context and
interacting action segments of di�erent classes characterize the input videos.

Therefore, temporal convolutional networks (TCNs) with large receptive �elds recently
gained increased attention. Lin et al. (2017b), for example, use input features extracted
from a two-stream network and a 3D convolutional network and feed them into a TCN that
compresses the features in the temporal domain in each layer. Prediction anchors are then
returned at each level of temporal compression, such that short and precise segments can be
inferred from early, less downsampled temporal resolutions, as well as long segments based
on late layers with stronger compression. Dai et al. (2017) extract two-stream features and
generate proposals at di�erent scales by a sliding window approach. These are then forwarded
through a TCN to capture temporal patterns and rank the proposals.

18 Chapter 2. Related Work

Using TCNs in a hierarchically motivated context, Lea et al. (2016) capture mid-range mo-
tion with spatio-temporal convolutions that span a receptive �eld of ten seconds. High-level
temporal action segments and transitions between them are modeled by a semi-Markov model.
In Lea et al. (2017), two TCN architectures are analyzed that allow to model even high-level
dependencies directly in the network. Following the idea of WaveNet (Van Den Oord et al.,
2016), an extraordinary large receptive �eld allows to learn long-range context in the video.
This can be achieved by dilated temporal convolutions that keep the video resolution �xed in
each layer or by an encoder-decoder architecture that achieves a large receptive �eld by tem-
poral pooling and upsampling operations. In an empirical evaluation, the encoder-decoder
TCN is found to be the stronger model. Combining the bene�ts of both ideas, Lei and Todor-
ovic (2018) design a network with a residual stream that processes the video at full resolution
and a temporal pooling stream that uses deformable convolutions to incorporate context at
di�erent temporal scales. Both streams are combined to allow for precise segment boundaries
while still bene�tting from temporally compressed high-level context information.

The approaches proposed in this thesis also focus on cases where long-range context is
important. In contrast to the aforementioned methods, however, we use a di�erent approach
that allows for explicit context and length modeling and therefore is not bound to a pre-
de�ned receptive �eld as for TCNs but can model dependencies over an arbitrarily long
range.

2.2.4 Globally Optimal Segmentations

While most deep-learning based end-to-end models make greedy and possibly suboptimal
local decisions to infer action segments, �nding the globally optimal segmentation under the
given models is desirable.

An attempt towards �nding such segmentations has been made by Shi et al. (2008).
They use a semi-Markov model in combination with three di�erent feature types for segment
boundaries, segment content, and interaction between neighboring segments, respectively.
Action detection is formulated as a max-margin problem, which is solved by an SVM. For
inference, a Viterbi-like algorithm is used to �nd the optimal segmentation under the model.

Hoai et al. (2011) follow a similar approach and train a multi-class SVM as segment
classi�er. They also use dynamic programming to �nd the best segmentation, which in this
case, however, is not de�ned by maximal SVM scores of the segments. Instead, they propose
to optimize in a way that segments are maximally distinguishable from other classes, thus
not only optimizing for the best scoring class but also suppressing the other classes. A related
method with application on detecting actions of fruit-�ies (Eyjolfsdottir et al., 2014) �nds
that optimizing for the best segmentation � given their speci�c underlying action models �
is prone to over-segmentation and sliding window approaches can be preferable.

Similar to these approaches, we also use a dynamic programming based algorithm to infer
a globally optimal segmentation. The underlying model, however, is entirely di�erent from
the above approaches. In contrast to the SVM-based methods that rely on features capturing
boundary cues, we optimize over a probabilistic framework that explicitly models long-range
context and action lengths together with sophisticated visual frame or segment classi�ers.

2.3. Weakly Supervised Learning 19

2.2.5 Explicit Context Modeling and Stochastic Grammars

The previously discussed approaches to temporal action segmentation either ignore long-
range context between action instances completely or rely on TCNs to implicitly learn this
context. A drawback of the latter is that they have a limited receptive �eld and can not learn
any contextual dependencies that go beyond. Hence, for long videos with complex context
dependencies, TCNs fail to capture all necessary context information.

Therefore, explicit context modeling is desirable. In an early work, Bobick and Ivanov
(1998) propose to model atomic actions such as left-leg-back by an HMM and to manually
de�ne a context-free grammar that is used to assemble atomic actions to higher level actions.
The authors evaluate their approach on hand movements of a music conductor and can
successfully �nd bars, i.e. temporal boundaries of musical phrases, from the sequence of
conducted gestures. A similar approach is proposed in �kizler and Forsyth (2008), who
model atomic movements of body parts with HMMs and use regular expressions to model
sequences of such atomic movements. Pirsiavash and Ramanan (2014) also use a context-free
grammar to model hierarchical decompositions of actions. A parsing algorithm using �nite
state machines allows to e�ciently infer such hierarchical temporal structures. In a related
approach, Vo and Bobick (2014) propose to use a grammar that is restricted to AND and
OR rules. The grammar allows to decompose high-level activities into sequences of lower-
level actions and a message passing algorithm enables e�cient inference over all possible
decompositions. Hou et al. (2017) attempt to model context without an explicit grammar.
Therefore, the input sequence is clustered into temporally connected and spatially similar
subactions. Similar clusters are merged to avoid �nding the same subaction class twice.
The best sequence of subactions is then found by a shortest-path algorithm over the mined
subaction instances. Another clustering based approach to incorporating context has been
proposed by Cheng et al. (2014). In their work, a video is represented as a sequence of
visual words obtained by k-means clustering. A sequence memoizer (Wood et al., 2011) is
then used to learn temporal dependencies between the visual words. In terms of context
modeling, Kuehne et al. (2014, 2016) are closest to our work. They approach temporal
action segmentation with a classical speech recognition system. Video-frame probabilities
are represented with a Gaussian mixture model and a hidden Markov model is used for the
temporal progression of these features throughout a low-level action, which is the equivalent
to a word in speech recognition. A context-free grammar models interdependencies between
action classes and can be seen as the equivalent to a language model in speech recognition.

In our work, we also rely on context models like stochastic grammars to capture long-
range dependencies between action classes. However, we use di�erent kinds of grammars and
are the �rst to combine them with explicit length modeling and neural networks as action
models.

2.3 Weakly Supervised Learning

The need for large-scale annotated data is a limiting factor for current approaches to action
segmentation. While Caba Heilbron et al. (2018) propose active learning as a solution,

20 Chapter 2. Related Work

another way is to develop algorithms that can learn from weaker annotations. This can be
either ordered action sequences without exact temporal boundaries that are cheap to annotate
or labels that can be mined from subtitles and meta-tags. In the following, we discuss existing
strategies for weakly supervised learning for action segmentation.

2.3.1 Weakly Supervised Learning from Structured Sequences

Compared to classical action recognition, the problem of weakly supervised learning of actions
is a rather new topic. First works in this �eld, proposed by Laptev et al. (2008) and Marsza-
lek et al. (2009), focus on mining training samples from movie scripts. They extract class
samples based on the respective text passages and use those snippets for training without
applying a dedicated temporal alignment of the action within the extracted clips. Attempts
for learning action classes including temporal alignment on weakly annotated data are made
by Duchenne et al. (2009). Here, movie scripts are analyzed and matched to subtitles in
order to obtain temporal annotations. The task is then to temporally segment frames con-
taining the relevant action from the background activities. The temporal alignment is thus
interpreted as a clustering problem, separating temporal snippets containing the action class
from the background segments. The clustering problem is formulated as a minimization of
a discriminative cost function. This problem formulation is extended by Bojanowski et al.
(2014), who also introduce the Hollywood Extended dataset. In their work, weak learning is
formulated as a temporal assignment problem. Given a set of videos and the action order of
each video, the task is to assign the respective class to each frame, thus to infer the respective
action boundaries. The authors propose a discriminative clustering model using temporal or-
dering constraints to combine classi�cation of each action and their temporal localization in
each video clip. The Frank-Wolfe algorithm is used to solve the convex minimization problem.
This method has been adopted by Alayrac et al. (2016) for unsupervised learning of task and
story lines from instructional video. Another approach for weakly supervised learning from
temporally ordered action lists is introduced by Huang et al. (2016). Inspired by CTC mod-
els in speech recognition (Graves et al., 2006), they use connectionist temporal classi�cation
(CTC) and introduce a visual similarity measure to prevent the CTC framework from de-
generation and to enforce visually consistent segmentations. Lin et al. (2017a) use the CTC
approach in combination with a statistical language model for weakly supervised video learn-
ing. However, they only infer the sequence of actions occurring in the video but no segment
boundaries. A di�erent way, also lending on the concept of speech recognition, is proposed
by Kuehne et al. (2017). Here, actions are modeled by a GMM/HMM speech recognition
system. The training follows an iterative scheme of pseudo ground truth generation, starting
from a uniform alignment of actions to frames, and model optimization. An TCN-based
idea is proposed by Ding and Xu (2018), who use a temporal convolutional feature pyramid
network (TCFPN), an adaption of the encoder-decoder temporal convolutional neural net-
works from Lea et al. (2017), for frame-wise classi�cation in combination with an iterative
soft boundary assignment for the action sequence alignment. During training, the alignment
of the sequences to the transcripts is re�ned by an insertion strategy, which means that one
class instance is represented by multiple successive instances of the same class, allowing the

2.3. Weakly Supervised Learning 21

temporal receptive �eld of the TCN to extend in the temporal domain.

2.3.2 Video-level Annotations

Other works focus on a di�erent kind of weak supervision, where only a video-level class
label is given during training without any temporal annotation. The task is then to localize
all instances of this activity in the video. Here, usually pretrained networks are used to
detect unseen actions in an untrimmed training set and networks are �ne-tuned with respect
to the detected instances. Note that classes in the datasets used for pretraining, such as
UCF101 (Soomro et al., 2012), Sports1M (Karpathy et al., 2014), or Kinetics (Kay et al.,
2017), can overlap with the classes to search for in the untrimmed videos, e.g. in case of
the Thumos action detection task (Idrees et al., 2017). Further, the information is given
which classes appear in the untrimmed videos, but not when or how often they appear.
This task was �rst addressed by Wang et al. (2017), who select clip proposals from a set
of untrimmed training videos to learn actions without exact boundary annotation. Nguyen
et al. (2018) propose a combination of attention weights and temporal class activation maps
for the task. In Paul et al. (2018), two-stream features are extracted and localization and
classi�cation of action instances is achieved by a multiple-instance learning loss and a co-
similarity loss that encourages videos that share an action class to have similar features
in the respective temporal regions. Shou et al. (2018), in contrast, use two branches, a
classi�cation branch that generates a sequence of class activations for each short video snippet,
and a localization branch that predicts the segment center and width. In order to train the
model, they propose a contrastive loss between tight segment boundaries and extended outer
boundaries that enforces high activations in the tight boundaries and low activations in the
outer boundaries. The Hide-and-Seek method proposed by Singh and Lee (2017) follows the
simple idea of providing a video-level label and randomly occluding parts of the video during
training, forcing the network to concentrate on all discriminative regions of the desired action
class � rather than just on sparse most discriminative snippets � and therefore yielding high
activation scores at temporal locations that contain the action.

Note that this kind of supervision is related to providing an unordered set of occurring
actions, as we do in Chapter 8. However, the methods discussed in this section focus on
localizing instances of a single class in a video, whereas we address the problem of dense
action segmentation, where segments with a large number of di�erent classes and strong
long-range context dependencies need to be segmented.

2.3.3 Weakly Supervised Approaches in Other Domains

Besides the approaches focusing on weak learning of human actions, also other weak learning
scenarios have been explored. Naturally, a closely related approach comes from the �eld of
sign language recognition. Here, Koller et al. (2016) integrate CNNs with hidden Markov
models to learn sign language hand shapes based on a single frame CNN model from weakly
annotated data. They extend the proposed single frame model by including LSTMs for
temporal correlation in Koller et al. (2017). The task addressed by Malmaud et al. (2015) is

22 Chapter 2. Related Work

videos frames action classes action instances

Thumos 412 2, 565, 495 20 5, 902

Breakfast 1, 720 3, 590, 899 48 11, 267

Hollywood Extended 937 780, 222 16 2, 366

50 Salads 50 577, 595 17 966

MPII Cooking 44 881, 755 65 5, 609

MPII Cooking 2 273 2, 881, 616 67 14, 105

Table 2.1: Statistics of di�erent datasets used for temporal action segmentation.

more speech related, trying to align recipe steps to automatically generated speech transcripts
from cooking videos. They use a hybrid HMM model in combination with a CNN based
visual food detector to align a sequence of instructions, e.g. from textual recipes, to a video
of someone carrying out a task. Sun et al. (2015) and Gan et al. (2016) learn action classes
from web images and videos retrieved by speci�c search queries. Gan et al. (2016) match
images and video frames and use a regularization over the selected video frames to balance
the matching procedure. Sun et al. (2015) iteratively train classi�ers using video frames
with weak video labels and web images with noisy labels as input. Exploiting the di�erent
kinds of noise in video frames and web images, relevant action frames in videos can be
distinguished from background frames with similar appearance. Yan et al. (2017) use video-
level tags for weakly-supervised actor-action segmentation using a multi-task ranking model
to select representative supervoxels for actors and their respective actions. In the work
of Sener and Yao (2018), low-level actions are learned without the low-level classes being
provided as annotation. Given only a high-level activity for each video, a number of subactions
is obtained from an algorithm that alternates between learning an appearance representation
and a temporal subaction model. For evaluation, the obtained subaction clusters are then
matched to the ground truth subactions using the Hungarian method.

2.3.4 Length Modeling for Temporal Sequences

Length models are not so widely used in action classi�cation, but the idea has e.g. been used
by Bojanowski et al. (2015) who exploit a duration prior for weakly supervised video-to-text
alignment. The modeling of temporal duration has also a long tradition in the context of
speech processing and has been used e.g. in Vaseghi (1995). Since then it has been used in
di�erent contexts such as general modeling in case of explicit state duration HMMs (Dewar
et al., 2012) but also for speech synthesis (see e.g. Zen et al. (2007)) or the generation and
decoding of temporal sequences like music (Narimatsu and Kasai, 2017).

2.4 Datasets

In this section, we describe the relevant datasets used in this thesis. An overview of the
dataset statistics can be found in Table 2.1.

2.4. Datasets 23

Kinetics. The Kinetics dataset (Kay et al., 2017) is a large-scale dataset for action recog-
nition. It contains 400 di�erent action classes that are single person actions as well as
person-person and person-object interactions. Overall, there are 306, 245 video clips. For
comparison, the widely used benchmark datasets HMDB-51 (Kuehne et al., 2011) and UCF-
101 (Soomro et al., 2012) only have 6, 766 and 13, 320 clips, respectively. The clips in the
Kinetics dataset are about 10 seconds long and pre-segmented, i.e. they contain a single action
class each. The authors ensured that there are at least 400 clips for each action class. Being
one of the largest available action recognition datasets, it is frequently used in combination
with deep neural networks to extract features for other datasets.

Thumos. The Thumos dataset (Idrees et al., 2017) has become a widely used benchmark
for fully supervised action detection. Originally designed for a challenge1, it features two
tasks, a video classi�cation task and a temporal action detection task. For the �rst task, the
13, 320 videos and 101 action classes of UCF-101 are used as training set. Additionally, there
is a validation set with 1, 010 videos, a test set with 1, 574 videos, and an optional background
set with over 2, 500 videos that have been collected from YouTube. For the temporal action
detection task, a subset of these videos is used. The authors selected 20 sports-related action
classes out of the 101 total classes and provide temporal annotations of 200 videos from the
validation set and 212 videos from the test set. This corresponds to a validation set of about
1.2 million frames and a test set of about 1.3 million frames. In total, test and validation set
contain 5, 902 action instances and 6, 105 background segments. In our setups, we use the
200 temporally annotated validation videos for training and evaluate on the 212 test videos,
following the o�cial evaluation script.

In contrast to other datasets, Thumos has some special characteristics. First of all, 70.3%

of all frames are labeled as background. Moreover, most videos consist of multiple action
instances of a single action class. Out of the 412 videos, only 35 contain two di�erent action
classes and only one contains three di�erent action classes. The high background portion
makes it a challenging detection benchmark. Long-range context, on the other hand, is not
as important.

Breakfast. The Breakfast dataset (Kuehne et al., 2014) is one of the largest available
datasets for temporal action segmentation. It contains 1, 712 videos of 52 participants who
prepare 10 di�erent breakfast dishes in 18 di�erent kitchens. Overall, this accounts for 66.5h

of video data, corresponding to 3.6 million video frames. The authors de�ned a set of 48

action classes that are mostly shared among the 10 di�erent dishes. All videos are densely
annotated, i.e. there is background at the beginning and end of the video and in between,
action instances follow each other without gaps. Overall, there are more than 11, 000 action
instances in the dataset, with an average of 6.5 instances per video. For evaluation, a four-fold
cross-validation is used. Each of the four dataset splits separates the videos of 13 subjects as
test data, such that persons occurring in the train set do no re-occur in the test set.

The Breakfast dataset has become a standard benchmark for weakly supervised action

1http://crcv.ucf.edu/THUMOS14/

http://crcv.ucf.edu/THUMOS14/

24 Chapter 2. Related Work

segmentation (Huang et al., 2016; Kuehne et al., 2017; Ding and Xu, 2018). It is particularly
challenging because it is mainly motion driven. Many datasets have a strong appearance
bias: sport activities, for instance, are frequently on grass and feature a ball or a racket,
swimming is in water, and beach volleyball is on sand. Such an appearance bias can be used
to leverage the performance by using strong image classi�cation or object detection systems
as outlined in Jain et al. (2015). The scenes in the Breakfast dataset, however, are kitchens.
Cameras are static and objects are either small or present all the time. An investigation
in Kuehne et al. (2017) shows that weakly supervised approaches particularly on Breakfast
do not bene�t from appearance driven CNN features. Thus, Fisher vectors of improved dense
trajectories (Wang and Schmid, 2013) are still the features of choice for weakly supervised
approaches on this dataset. Further, the dataset contains actions that vary greatly in length,
ranging from a few seconds as for crack egg to several minutes as for fry pancake. Other
actions are strongly context dependent. For instance, stir co�ee, stir milk, and stir tea all
look much alike and might be indistinguishable depending on the camera angle. Therefore,
for a reliable temporal segmentation, context information is crucial.

Hollywood Extended. Hollywood Extended (Bojanowski et al., 2014) is an extension of
the Hollywood2 dataset from Marszalek et al. (2009). From 69 Hollywood movies, a total of
937 video clips have been annotated with 16 di�erent action classes. Overall, this corresponds
to about 780, 000 frames and 5.9 action instances per video on average. The background ratio
on this dataset is 61%. For evaluation, we use a ten-fold cross-validation where the test data
for the i-th split are all videos that end with the digit i − 1. In contrast to the Breakfast
dataset, this dataset features di�erent scenes, multiple actors, and camera motion. Although
there are many single-person actions and person-person interactions such as run or kiss, some
action classes are also strongly appearance driven as they include interactions with objects
such as answering phone or drive car.

50 Salads. 50 Salads (Stein and McKenna, 2013) is related to the Breakfast dataset in that
it contains videos of food preparation. In this case, 25 participants were asked to prepare a
mixed salad twice. In order to get su�cient variations, each preparation of a salad has been
done following a di�erent order of preparation steps. The videos have been recorded with
a Kinect RGB-D camera that provides a top-view on the preparation space. For additional
data, accelerometers have been attached to di�erent kitchen tools. However, in accordance
with other works such as Lea et al. (2017), we only use the RGB frames. In the dataset,
di�erent levels of annotation exist. On a high level, 9 action classes have been annotated.
On a more �ne-grained level, the task of preparing a salad is broken down into 17 action
classes each representing a preparation step such as cut tomato or add salt. We use this
kind of annotation for our experiments. Moreover, there is a more �ne-grained annotation
available, where each of the 17 actions are further subdivided into a pre-, core-, and post-
phase. Although only 50 videos have been recorded, they are quite long and the overall
number of frames in the dataset is 577, 595, corresponding to 4.8h of video data. Overall,
there are 966 annotated action instances in the dataset, leading to an average of 19.3 instances

2.4. Datasets 25

per video. For evaluation, the authors propose to use a �ve-fold cross-validation. In each
split of the dataset, �ve actors (ten videos) are separated for testing, the others are used for
training.

Although the dataset is rather small, the videos are long and contain a large amount of
action instances. Similar to Breakfast, the actions are densely annotated and background
frames only exist at the beginning and end of the video. Moreover, there is a strong context
dependency in the action order.

MPII Cooking. MPII Cooking (Rohrbach et al., 2012) is a database of cooking activities.
Although it only contains 44 videos, it has a considerable length of 881, 755 frames or 8h.
The videos in the dataset are of twelve participants who were asked to prepare between one
and six dishes out of a set of 14 dishes. The dataset has been annotated with �ne-grained
action labels such as pour or cut slices. In total, there are 65 action classes and 5, 609 action
instances. This is an average of 127 instances per video. Note that this includes a background
class that is used to �ll the gap between two actions. In contrast to the Breakfast dataset,
MPII Cooking has been recorded in a single kitchen. For evaluation, the authors propose to
use a seven-fold cross-validation, where each split separates a single person from the training
data.

MPII Cooking 2. MPII Cooking 2 (Rohrbach et al., 2016) is an extension of the MPII
Cooking dataset. The recording conditions were similar as for MPII Cooking but in this
dataset, there are 30 participants and a total of 273 videos with 2, 881, 616 frames. In the
videos, 67 di�erent �ne-grained action classes are annotated, leading to a total of 14, 105

action instances. This corresponds to 52 instances per video on average. Since more data
is available, the authors avoid a multi-fold cross-validation and de�ne a �xed training set
containing 201 videos, a validation set with 17 videos, and a test set with 42 videos. Each
person only occurs in one of the sets.

Chapter 3

Preliminaries

In this chapter, we formally de�ne the task of action recognition and temporal action seg-
mentation. Further, we introduce the evaluation metrics used throughout the thesis and
discuss the extraction of hand-crafted features that are still widely used in weakly supervised
action segmentation. Since many of our methods rely on recurrent neural networks, we give
a brief introduction into standard RNNs and gated recurrent units. We also show that classi-
cal pipelines based on hand-crafted features can be modeled using a simple recurrent neural
network. The chapter is concluded with a review of I3D, the currently most successful deep
neural network for action recognition.

Contents

3.1 Problem Description and Notation . 27

3.1.1 Action Recognition . 28

3.1.2 Temporal Action Segmentation . 29

3.2 Evaluation Metrics . 30

3.3 Improved Dense Trajectories . 32

3.4 Feature Quantization . 33

3.4.1 Bag-of-Words . 33

3.4.2 Fisher Vectors . 34

3.4.3 Bag-of-Words and Fisher Vectors for Action Recognition 35

3.4.4 Frame Features from IDTs with Fisher Vectors 36

3.5 Recurrent Neural Networks . 36

3.6 Closing the Gap: A BoW Equivalent Neural Network 38

3.6.1 Conversion of BoW into a Neural Network 38

3.6.2 Equivalence Results . 40

3.6.3 Encoding Kernels in the Neural Network 41

3.7 Deep Learning for Action Recognition 43

3.1 Problem Description and Notation

While the focus of this thesis is on temporal action segmentation, some methods rely on results
from classical action recognition. We therefore formally de�ne both tasks and illustrate the
di�erence between the two.

28 Chapter 3. Preliminaries

parallel bars

Figure 3.1: Example of a video from the UCF-101 dataset. Each video is pre-segmented
and contains a single action instance from its �rst to its last frame, in this case parallel

bars.

Throughout the thesis, we stick to some notation conventions. Since our methods rely
on precomputed features � either handcrafted features from traditional feature extraction
methods or deep features obtained from a CNN � we assume that a video is always given as
a sequence of feature vectors. A sequence is written as bold symbols with the start frame
as subscript and the end frame as superscript. For instance, a video sequence of T frames is
written as xT1 = (x1, . . . , xT), where each xt ∈ RD denotes the D-dimensional feature vector
extracted at frame t of the video. In order to denote a segment of a video that ranges from
frame t1 to t2, the notation is xt2t1 . Similarly, if we want to denote a sequence of N class
labels, it is written as cN1 = (c1, . . . , cN). The set of available classes is denoted as C and the
space of all videos is X .

3.1.1 Action Recognition

Action recognition is the task of assigning an action class to a pre-segmented video clip.
Pre-segmented in this context means that every video contains a single action instance only,
i.e. from its �rst to its last frame, it shows exactly one action, see Figure 3.1. Assume the
video is given as a sequence of T frames xT1 = (x1, . . . , xT). Every xt is either the RGB frame
itself, so that xt ∈ R3×w×h for a video with resolution w×h, or it is a D-dimensional feature
vector representation xt ∈ RD. Feature vectors can be obtained by various kinds of feature
extraction methods on the frames. We introduce the most relevant ones in Section 3.3 and
Section 3.7.

Further, a set of classes C is given, containing all possible action classes a video can be
classi�ed as. The task of action recognition can then be formalized as �nding a decision rule
that maps from the set X of all possible videos to the set of possible action classes,

R : X 7→ C. (3.1)

Most current systems assume that the set C is a �xed and closed vocabulary of action
classes, i.e. the set only contains action classes that occur in the training data. For inference,
it is assumed that no new classes can occur. The decision rule R is usually learned from data
in a fully supervised fashion: Assume a set of N training pairs that are video and class-label
tuples {(x1, c1), . . . , (xN , cN)} with xn ∈ X and cn ∈ C. Note that we omitted the subscript

3.1. Problem Description and Notation 29

c1 = take bowl

`1 = 120 frames

c2 = pour cereals

`2 = 278 frames

c3 = pour milk

`3 = 147 frames

c4 = stir cereals

`4 = 130 frames

Figure 3.2: Example segmentation of a video from the Breakfast dataset. The seg-
mentation is fully de�ned by the tuple (N, cN1 , l

N
1), with N = 4, class labels cN1 =

(take_bowl, pour_cereals, pour_milk, stir_cereals) and lengths lN1 = (120, 278, 147, 130).

and superscript •T1 for the sequence start and end frame in xn for simplicity. The decision
rule R is typically learned using the maximum likelihood criterion,

Rbest = arg max
R

{ N∑

n=1

log p
(
R(xn) = cn|xn

)}
. (3.2)

3.1.2 Temporal Action Segmentation

While videos in classical action recognition are assumed to be pre-segmented and contain
exactly one action instance ranging from its �rst to its last frame, most practical applications
require systems to be able to deal with temporally untrimmed videos. Therefore, consider a
video with T frames that can contain an arbitrary number of di�erent or repeating action
instances that may be separated by non-action or background frames. The problem of tem-
poral action segmentation is to assign an action label to every frame in the given video, where
we assume that all frames not showing an action are labeled as background. In other words,
the task is to generate a temporal segmentation of the video such that all frames within one
segment belong to the same action.

Formally, consider an input video xT1 = (x1, . . . , xT). We denote the unknown number of
action segments in the video as N , the action class for each of these segments as a sequence
cN1 = (c1, . . . , cN), and the length of each segment as a sequence lN1 = (`1, . . . , `N), where
1 ≤ `n ≤ T . The tuple (N, cN1 , l

N
1) then de�nes a full segmentation of the video: The �rst

segment consists of frames 1 to `1 and is labeled with c1, the second segment consists of
frames `1 + 1 to `1 + `2 and is labeled with c2, and so on, see Figure 3.2 for an example.

Action Alignment. Action alignment is closely related to action segmentation with the
only di�erence that the sequence of action instances cN1 = (c1, . . . , cN) is also given during
inference. While the training procedure is usually the same for both tasks, the inference for
action alignment reduces to �nding the segment lengths lN1 = (`1, . . . , `N) for each of the
action instances in cN1 .

30 Chapter 3. Preliminaries

3.2 Evaluation Metrics

We evaluate our models on test data that has not been used for training. For temporal action
segmentation, there are di�erent evaluation metrics that all try to capture the quality of the
resulting temporal segmentation but di�er in some details. In this section, we introduce the
metrics that are relevant for the datasets we use.

Frame Accuracy. Frame accuracy measures the fraction of frames that have been correctly
labeled. This metric is well suited to re�ect the global quality of the segmentation. However,
the metric is not sensitive to slight over-segmentations. Particularly, if a large action segment
is chopped into smaller segments by a small number of wrongly labeled frames, the frame
accuracy is hardly a�ected. On the other hand, frame accuracy is sensitive to the segment
length. Segments with more frames naturally have a higher impact on the frame accuracy
than short segments. The metric is the standard evaluation for the Breakfast dataset.

Mean Average Precision (mAP). Mean average precision (mAP) is the o�cial evalua-
tion metric for Thumos.1 Consider a detected segment of class c and a ground truth segment
of the same class. The overlap between the two segments is de�ned as intersection over union,

IoU =
detected segment ∩ ground truth segment
detected segment ∪ ground truth segment

. (3.3)

A segment is considered correct if its IoU with the most overlapping ground truth segment is
larger than a threshold. The average precision is then computed for each class independently.
Particularly, let there be K detected segments of class c. Further, assume there is a score
for each of the K segments such that the segments can be ranked by this score in decreasing
order. We denote the precision at cut-o� k as Prec(k). Thus, Prec(k) is the ratio of correct
segments in the �rst k top-ranked segments. Similarly, we de�ne relevant(k) as an indicator
function that is one if the segment ranked at position k is correct. The average precision for
class c is de�ned as

AP(c) =

∑K
k=1 Prec(k) · relevant(k)

number of ground truth segments of class c
. (3.4)

The overall reported score is then the average over all classes,

mAP(c) =
1

|C|

|C|∑

c=1

AP(c). (3.5)

Results are reported for di�erent IoU ratios, typically ranging from 0.1 to 0.5. In contrast to
frame accuracy, this metric is sensitive to over-segmentation and does not explicitly weight
segments by their lengths.

1Details on the evaluation protocol can be found online. http://crcv.ucf.edu/THUMOS14/download.html

http://crcv.ucf.edu/THUMOS14/download.html

3.3. Improved Dense Trajectories 31

Midpoint Hit. The midpoint hit criterion follows the same evaluation strategy as mAP

with the only di�erence that a segment is considered correct if the midpoint of the detected
segment lies within a ground truth segment of the same class. This way, it is not necessary
to de�ne an overlap threshold. However, the metric is insensitive to segment lengths. For
instance, a detected segment of 100 frames length that lies within a 1, 000 frames ground
truth segment is considered correct although 90% of the frames are not correct. Similarly, a
detected segment of 1, 000 frames length with its midpoint within a 100 frames ground truth
segment is also considered correct while again 90% of the frames are not correct. This metric
is the standard evaluation criterion on MPII-Cooking and MPII-Cooking 2, where segments
are dense and do not vary as much in their lengths as in other datasets like Thumos.

Jaccard Index/Intersection over Union (IoU). In this thesis, we follow the de�nition
of the Jaccard Index used in Kuehne et al. (2017) and de�ne it as intersection over union on
a frame level. It is de�ned for each class as

IoU(c) =
detected frames of class c ∩ ground truth frames of class c
detected frames of class c ∪ ground truth frames of class c

. (3.6)

The overall metric is the weighted sum over all classes, where the weight for each class is its
relative frequency,

JaccIdx =
∑

c

wc · IoU(c), (3.7)

where

wc =
ground truth frames of class c

total number of frames
. (3.8)

Consequently, frequent classes have a larger weight than rare ones. The IoU is zero if the
aligned segments do not overlap at all and one if they match the ground truth exactly. We
report action segmentation results on Hollywood Extended using this metric.

Intersection over Detection (IoD). A variant of intersection over union is intersection
over detection (IoD). This metric is only used for the task of action alignment when there is
a one-to-one mapping between ground truth segments and detected segments. Intersection
over detection is de�ned as

IoD(c) =
detected frames of class c ∩ ground truth frames of class c

detected frames of class c
. (3.9)

Same as for IoU, the overall metric is the weighted sum over all classes, where the weight
for each class is its relative frequency. The metric is used for action alignment on Hollywood
Extended, where the ordered action sequence is given and only the temporal segment bound-
aries need to be inferred. Note that an IoD of zero can not happen in practice since the �rst
frame is always part of the �rst segment and thus matches the ground truth and the same
holds for the last frame.

32 Chapter 3. Preliminaries

Figure 3.3: Extraction of dense trajectories from a video. Left: Dense sampling of points,
middle: tracking points through the temporal volume, right: computing descriptors along a
trajectory. Figure is taken from Wang et al. (2013).

3.3 Improved Dense Trajectories

Improved dense trajectories (IDTs) (Wang and Schmid, 2013) have been the de-facto state-
of-the-art features in action recognition for several years before �rst deep architectures could
outperform IDT-based systems. Nowadays, fully supervised action recognition usually works
much better with deep architectures. When it comes to weakly supervised action segmen-
tation, where no frame labels are available, however, deep architectures still fail to learn a
better representation than IDTs (Kuehne et al., 2017) and most state-of-the-art methods still
rely on IDTs (Huang et al., 2016; Ding and Xu, 2018). We therefore revisit improved dense
trajectories here and describe a strategy to extract them on a per-frame basis. The approach
basically follows three steps: �rst, dense sampling of points at di�erent spatial scales, sec-
ond, tracing these points through time, third, extracting feature descriptors along the found
trajectories. The whole pipeline is summarized in Figure 3.3.

Dense Sampling. Points are sampled uniformly distributed over the image using a grid
sampling with a space of 5 pixels between each sampled point at each spatial scale. The
authors propose to remove points from homogeneous image areas using a suppression crite-
rion proposed by Shi and Tomasi (1994) because such points are almost impossible to track
accurately.

Finding Dense Trajectories. Dense trajectories rely on tracking the densely extracted
points along L frames (usually L = 15) using the median-�ltered optical �ow �eld in its
original version from Wang et al. (2013). In the improved variant of Wang and Schmid
(2013), the optical �ow �eld is corrected for camera motion by estimating a homography
between two consecutive frames. Speci�cally, the points are tracked over L frames to form a
trajectory. If for any frame at any spatial position there is no tracked point in a neighborhood
of 5× 5 pixels, a new trajectory is started from a point in this neighborhood if such a point
exists. A trajectory starting at frame t is eventually represented as a sequence of image
coordinates

(
(xt, yt), . . . , (xt+L−1, yt+L−1)

)
.

3.4. Feature Quantization 33

Descriptors Along Trajectories. Dense trajectories cover four types of feature descrip-
tors along each trajectory. The �rst one is a description of the trajectory itself, where the
trajectory is represented as a normalized sequence of image coordinate displacements. The
second and third descriptors are histograms of oriented gradients (HOG) (Dalal and Triggs,
2005) and histograms of optical �ow (HOF) (Laptev et al., 2008). HOG relies on histograms
with eight bins each and HOF uses an additional bin for motion magnitudes close to zero.
Both descriptors are extracted along a volume of N × N × L pixels (usually N = 32) with
the trajectory going through its center. In order to have a more �ne grained resolution of the
descriptors, this volume is further subdivided into nσ × nσ × nτ subvolumes and descriptors
are computed over each of these subvolumes independently. The fourth descriptor type are
motion boundary histograms (MBH) (Dalal et al., 2006), i.e. derivatives of the optical �ow
�eld in x and y direction. It is computed over the same subvolumes as the HOG and HOF
descriptors. Overall, this results in a 426-dimensional feature vector for each trajectory.

3.4 Feature Quantization

Video features such as dense trajectories usually result in a huge amount of trajectories
starting at each frame. For practical applications, a single feature vector for each video frame
or a single feature vector per video is required. Quantization methods like bag-of-words are
therefore used to summarize a set of feature vectors in a single vector representation.

3.4.1 Bag-of-Words

Bag-of-Words (BoW) models, also referred to as bag-of-features, have a long tradition in
computer vision and are one of the most widely used approaches for feature quantization in
the pre deep learning era. In the context of action recognition, it has been the method of
choice on top of many hand-crafted feature extraction methods, see e.g. Schuldt et al. (2004);
Laptev et al. (2008); Ullah et al. (2010); Wang et al. (2013).

Let x = {x1, . . . , xK} be a set of D-dimensional feature vectors xk ∈ RD extracted from
some video. Each xk could for instance be a 426-dimensional trajectory feature vector as
described above. Note that we slightly change the notation here: Since x is an unordered
collection of video feature vectors that is not necessarily a temporal sequence over the frames,
we write x instead of xT1 throughout this section.

Now, assume such features are not only extracted from a single video but from a set of
videos {x1, . . . ,xN}. The amount of extracted feature vectors usually di�ers for di�erent
videos, i.e. for two videos xi and xj with Ki and Kj feature vectors, usually Ki 6= Kj .

The objective of a bag-of-words model is to quantize each observation x using a �xed
vocabulary of M visual words, V = {v1, . . . , vM} ⊂ RD. To this end, each set of features is
represented as a histogram of posterior probabilities p(v|x),

H(x) =
1

K

K∑

k=1

h(xk), h(xk) =




p(v1|xk)
...

p(vM |xk)


 . (3.10)

34 Chapter 3. Preliminaries

Frequently, kMeans is used to generate the visual vocabulary, i.e. the feature vectors from
all available videos {x1, . . . ,xN} are clustered into M clusters. The visual word vi is then
set to be the center of the i-th cluster. In this case, for each xk, h(xk) is a unit vector with
a one at position i = arg minm ‖vm − xk‖2 and zeros at all other positions. The quantized
representation of a set of features x is then the normalized histogram of closest visual words
H(x).

Given the success of the traditional bag-of-words model, various extensions and improve-
ments have been proposed over the years. These attempts range from the introduction of
class-dependent vocabularies (Perronnin et al., 2006) and weighted vocabularies (Cai et al.,
2010) to sparse coding (Yang et al., 2009; Wang et al., 2010) and supervised dictionary learn-
ing (Boureau et al., 2010), assuming the availability of class labels. In action recognition,
however, most approaches stick to the traditional BoW model.

3.4.2 Fisher Vectors

Fisher vectors (Perronnin and Dance, 2007) are a more sophisticated feature quantization
method that has been of special interest for action recognition (Wang et al., 2013; Peng
et al., 2014). The overall setting is similar to the bag-of-words setting. Again, each video
is given as a set of features x = {x1, . . . , xK}, where xk ∈ RD is a D-dimensional feature
vector. For quantization, instead of applying kMeans, consider a Gaussian mixture model of
the form

pλ(xk) =

M∑

m=1

wmN (xk|µm,Σm), (3.11)

whereM again denotes the number of clusters or, in this context, Gaussian mixtures, wm ∈ R
is a mixture weight for the m-th component, µm ∈ RD is the mean, and the covariance
matrices Σm are assumed to be diagonal, i.e. they can be written as a vector σ2m ∈ RD of
variances. Assuming that a large amount of feature vectors from di�erent videos is available,
e.g. as training set, the GMM is �tted to these data or a subset of the data, respectively.
Let the parameters of the Gaussian mixture model be denoted by λ = {wm, µm,Σm|m =

1, . . . ,M}.
The underlying idea of Fisher vectors is that the average gradient

Gλ(x) :=
1

K

K∑

k=1

∇λ log pλ(xk) (3.12)

represents the direction and magnitude by which the GMM parameters λ would need to be
changed in order to better describe the speci�c set x of video feature vectors and therefore is a
good vectorized description of the set x, regardless of the actual size of the set, i.e. regardless
of the number K of feature vectors in x.

Based on the �ndings of Jaakkola and Haussler (1999), Perronnin and Dance (2007)
propose to normalize this gradient vector using the Fisher information matrix. Using the

3.4. Feature Quantization 35

Gaussian posterior probabilities

γk(m) :=
wmN (xk|µm, σ2m)

∑M
m̃=1wm̃N (xk|µm̃, σ2m̃)

, (3.13)

the normalized gradient vector Gλ(x) of a set x of video feature vectors is then given as

Gλ(x) =
(
Gµm(x),Gσm(x)|m = 1, . . . ,M

)
, where (3.14)

Gµm(x) =
1

K
√
wm

K∑

k=1

γk(m)
(xk − µm

σm

)
, (3.15)

Gσm(x) =
1

K
√

2wm

K∑

k=1

γk(m)
((xk − µm)2

σ2m
− 1
)
, (3.16)

see Sanchez et al. (2013) for a more detailed description. Note that Gµm(x) ∈ RD and
Gσm(x) ∈ RD for feature vectors xk ∈ RD. Thus, the dimension of the Fisher vector Gλ(x) is
2 ·D ·M for a GMM with M mixture components.

Perronnin et al. (2010) argue that `2-normalization and power normalization further im-
prove the Fisher vector, so that the set of feature vectors x is eventually quantized as

FV (x) = sign
(
G̃λ(x)

)
· |G̃λ(x)|0.5, (3.17)

where G̃λ(x) is the `2-normalized version of the original Fisher vector Gλ(x),

G̃λ(x) =
Gλ(x)

‖Gλ(x)‖2
. (3.18)

3.4.3 Bag-of-Words and Fisher Vectors for Action Recognition

Both methods, bag-of-words and Fisher vectors, summarize a set x = {x1, . . . , xK} of K
video feature vectors into a single vector representation, either into a normalized histogram
H(x) or into the normalized Fisher vector FV (x). In order to classify a video clip as an
instance of an action class, these summarized vector representations can be fed into any
classi�er. Typically, a support vector machine is used. Since Fisher vectors are already
high dimensional and have an underlying Fisher kernel, classi�cation with a linear SVM is
usually su�cient (Wang and Schmid, 2013). Bag-of-words, on the contrary, are rather low
dimensional features and usually require the application of a kernel to improve classi�cation
performance. Given two BoW histograms H(xi) and H(xj), a kernel K

(
H(xi),H(xj)

)
is

de�ned as the inner product

K
(
H(xi),H(xj)

)
= 〈Ψ(H(xi)),Ψ(H(xj))〉, (3.19)

where Ψ is the feature map inducing the kernel. Note that it is not trivial to �nd an explicit
representation of Ψ. Therefore, for training the SVM, the kernel of all pairs of training
observations x1, . . . ,xN has to be computed. For large datasets, this can be expensive.
While there is a vast variety of kernels, existing work mostly relies on a multi-channel RBF-
χ2 kernel (Wang et al., 2013).

36 Chapter 3. Preliminaries

xT
1 = (x1, . . . , xT)

σ(x)

hT
1 = (h1, . . . , hT)

x1

h1

h1

x2

h2

h2

. . .

xT−1

hT−1

hT−1

xT

hT

hT

Figure 3.4: Left: Schematic illustration of a vanilla RNN. Right: The same RNN unrolled
over time.

3.4.4 Frame Features from IDTs with Fisher Vectors

For classical action recognition, a video level representation is su�cient. For temporal action
segmentation, however, a frame level representation of video features is required. In this
section, we describe how to obtain frame level features from IDTs. Assume all IDTs for a
video have been extracted and reduced from 426 to 64 dimensions using PCA. In order to get
frame level features for frame t, Fisher vectors are computed over all IDTs that start in the
range [t− 10, t+ 10]. For the computation of the Fisher vectors, a GMM with 64 mixtures is
used. The resulting Fisher vector representation for each frame is then again projected to 64

dimensions using PCA, resulting in a framewise video representation xT1 = (x1, . . . , xT) with
xt ∈ R64. This feature extraction is the same as proposed in Kuehne et al. (2016).

3.5 Recurrent Neural Networks

With the success of deep learning, not only convolutional neural networks but also recurrent
neural networks for sequence modeling experienced increased interest. When dealing with
temporal sequences of vectors as input data, neural networks need to incorporate temporal
information into their layers. Early approaches on acoustic models in speech recognition
therefore rely on temporal windows around each timeframe (Hinton et al., 2012; Mohamed
et al., 2012), i.e. features of multiple consecutive timeframes are concatenated and then for-
warded through a simple stack of fully connected layers. The drawback of such architectures
is twofold. First, they require a temporal window of �xed length and can not react to di�er-
ent temporal dynamics in the input data. Second, the amount of required parameters grows
linearly in the size of the temporal window.

Vanilla RNNs. Recurrent neural networks try to solve the problem by potentially encoding
the complete sequence, not being bound to a �xed window size, and by sharing the parameters
across di�erent timeframes. A simple recurrent layer consists of forward weights W that
map from the input dimension to the output dimension, recurrent weights U that realize
the recurrent connection from the previous output to the current output, and a bias b. As

3.5. Recurrent Neural Networks 37

non-linearities, frequently the sigmoid function

σ(x) =
1

1 + e−x
(3.20)

or the hyperbolic tangent are used. A recurrent layer then realizes the feature transformation

ht = σ(Wxt + Uht−1 + b), (3.21)

where xt is the input vector at time t, ht is the output of the hidden recurrent layer at time
t, and ht−1 is the output of the hidden layer at the previous time step. Figure 3.4 shows
an illustration of a RNN unrolled over time. Each vector ht of the output sequence of a
RNN can be seen as a high level description of the complete input sequence up to frame
t. Bidirectional recurrent neural networks (Schuster and Paliwal, 1997) process the given
sequence not only from beginning to end but simultaneously from end to beginning, so that
each resulting output ht is a representation of the complete input sequence with a focus on
the temporal behavior around time t. The recurrent neural networks used throughout this
thesis, however, are all unidirectional in order to maintain temporal causality.

Gated Recurrent Units. Vanilla RNNs tend to forget information from previous time
steps quickly due to a repeated multiplication with U, where the weights in the matrix are
typically smaller than one to obtain a meaningful output. Ideally, RNNs should be able to
learn when to focus on short range temporal dynamics and when to focus on long range
temporal dynamics based on the input data. Therefore, Hochreiter and Schmidhuber (1997)
propose long-short-term-memory, a recurrent network unit that is equipped with a memory
cell, a reset gate and a forget gate to control how quickly or slowly past information should
decay.

Here, we focus on a variant of LSTMs called gated recurrent units (GRUs) (Cho et al.,
2014) which has been shown to perform on par with LSTMs (Jozefowicz et al., 2015). A
GRU consists of three standard recurrent units, the update gate zt, the reset gate rt, and the
canditate activation h̃t. These three are then combined to the actual output activation ht:

zt = σ(Wzxt + Uzht−1 + bz), (3.22)

rt = σ(Wrxt + Urht−1 + br), (3.23)

h̃t = tanh(Whxt + rt ◦ (Uhht−1 + bh) + bh̃), (3.24)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t, (3.25)

where xt is the input at time t, ht is the output of the GRU at time t, and ◦ denotes an
element-wise multiplication. Essentially, rt determines how high the in�uence of the previous
activation ht−1 is in the new candidate activation. The update gate zt is then used to
obtain the output ht by interpolation between the previous activation and the new candidate
activation. Note that the old activation can be kept arbitrarily long if zt is one. On the
other hand, if zt is zero, only the new candidate activation is used. It has been shown that
such gating mechanisms provide quasi invariance to general time transformations (Tallec and
Ollivier, 2018).

38 Chapter 3. Preliminaries

Training RNNs. The loss functions for RNNs are essentially the same that are also used
for non-recurrent feed-forward networks. The widely used cross entropy loss maximizes the
posterior probabilities

L = −
N∑

n=1

log p(cn|xn), (3.26)

where n denotes the number of training samples and (xn, cn) is a tuple of a feature vector
xn and the corresponding class label cn. When the input data are temporal sequences, how-
ever, the probability of a class ct � or more generally the output ht of a RNN � at time t of
the sequence does not only depend on the feature vector xt at frame t but on all preceding
inputs, too, as can be seen in Figure 3.4 (right). Consequently, the posterior probability
that is actually to be maximized for each frame in each sequence is p(ct|xt1). While the
gradient for non-recurrent neural networks is computed on a per-frame basis using backprop-
agation (Rumelhart et al., 1986), for recurrent neural networks, the gradient computation not
only requires to backpropagate through all network layers but also through all time steps,
which is known as backpropagation through time (BPTT) (Werbos, 1988).

3.6 Closing the Gap: A BoW Equivalent Neural Network

Like classical models such as bag-of-words, recurrent neural networks can be used to summa-
rize a sequence of input vectors into a single vector representation. In this section, we show
how to convert the traditional BoW model into a recurrent neural network. We also show
that kernels that are frequently applied in combination with SVMs can be implemented as
neural network layers. As a result, the bag-of-words pipeline can be expressed as a simple
recurrent neural network with some minor approximations. We have �rst introduced this
BoW-equivalent neural network in Richard and Gall (2015) and extended it in Richard and
Gall (2017).

3.6.1 Conversion of BoW into a Neural Network

Bag-of-words models use kMeans clustering to quantize input features. The result of kMeans
can be seen as a mixture distribution describing the structure of the input space. Such
distributions can also be modeled with neural networks. In the following, we propose a
transformation of the bag-of-words model into a neural network.

The nearest visual word v̂ = arg minm ‖x− vm‖2 for a feature vector x can be seen as the
maximizing argument of the posterior form of a Gaussian distribution,

pKM(vm|x) =
p(vm)p(x|vm)∑
m̃ p(vm̃)p(x|vm̃)

(3.27)

=
exp

(
− 1

2(x− vm)ᵀ(x− vm)
)

∑
m̃ exp

(
− 1

2(x− vm̃)ᵀ(x− vm̃)
) , (3.28)

3.6. Closing the Gap: A BoW Equivalent Neural Network 39

assuming a uniform prior p(vm) and a normal distribution p(x|vm) = N (x|vm, I) with mean
vm and unit variance. Using maximum approximation, i.e. shifting all probability mass to
the most likely visual word, a probabilistic interpretation for kMeans can be obtained:

p̂KM(vm|x) =

{
1, if vm = arg maxm̃ pKM(vm̃|x),

0, otherwise.
(3.29)

Inserting p̂KM(vm|x) into the histogram equation (3.10) is equivalent to counting how often
each visual word vm is the nearest representative for the feature vectors x1, . . . , xT of a
sequence xT1 .

Now, consider a single-layer neural network with input x ∈ RD and M -dimensional
softmax output that de�nes the posterior distribution

pNN(vm|x) := softmaxm(Wx+ b) (3.30)

=
exp

(∑
dwm,dxd + bm

)
∑

m̃ exp
(∑

dwm̃,dxd + bm̃
) , (3.31)

where W ∈ RM×D is a weight matrix and b ∈ RM the bias. With the de�nition

W = (v1 . . . vM)ᵀ, (3.32)

b = −1

2
(vᵀ1 v1 . . . v

ᵀ
MvM)ᵀ, (3.33)

an expansion of Equation (3.28) reveals that

pNN(vm|x) =
exp

(
− 1

2v
ᵀ
mvm + vᵀmx

)
∑

m̃ exp
(
− 1

2v
ᵀ
m̃vm̃ + vᵀm̃x

) = pKM(vm|x). (3.34)

A recurrent layer without bias and with unit matrix as weights for both the incoming and
recurrent connection is added to realize the summation over the posteriors pNN(vm|x) for the
histogram computation, cf. Equation (3.10). The histogram normalization is achieved using
the activation function

σt(z) =

{
z if t < T,

1
T z if t = T.

(3.35)

Given an input sequence xT1 = (x1, . . . , xT) of length T , the output of the recurrent layer is

σT

(
h(xT) + σT−1

(
h(xT−1) + σT−2(h(xT−2) + . . .)

))

=
1

T

T∑

t=1

h(xt) = H(xT1), (3.36)

where h(xt) denotes the M -dimensional vector of posterior probabilities pNN(vm|xt).
So far, the neural network computes the histograms H(xT1) for given visual words

v1, . . . , vM . In order to train the visual words discriminatively and from scratch, an ad-
ditional softmax layer with |C| output units is added to model the class posterior distribution

p(c|H(xT1)) = softmaxc(W̃H(xT1) + b̃). (3.37)

40 Chapter 3. Preliminaries

input sequence

xT
1 = x1, . . . , xT

softmax 1

h(xt)

σt

H(xT
1)

softmax 1

p(c|H(xT
1))

W

b

I

I

W̃

b̃

Figure 3.5: Neural network encoding the bag-of-words model. The output layer is discarded
after training and the histograms from the recurrent layer can be used for classi�cation in
combination with a support vector machine.

It acts as a linear classi�er on the histograms and allows for the application of standard
neural network optimization methods for the joint estimation of the visual words and classi�er
weights. Once the network is trained, the softmax output layer can be discarded and the
output of the recurrent layer is used as histogram representation. The complete neural
network is depicted in Figure 3.5.

Note the di�erence of this method to other supervised learning methods like the restricted
Boltzman machine of Goh et al. (2012). Usually, each feature vector xt extracted from a video
gets assigned the class of the respective video. Then, the codebook is optimized to distinguish
the classes based on the representations h(xt). For the actual classi�cation, however, a global
video representation H(xT1) is used. In our approach, on the contrary, the codebook is
optimized to distinguish the classes based on the �nal representation H(xT1) directly rather
than on an intermediate quantity h(xt).

3.6.2 Equivalence Results

There is a close relation between single-layer neural networks and Gaussian models (Macherey
and Ney, 2003; Heigold et al., 2007). We consider the special case of kMeans here. Following
the derivation in the previous section, the kMeans model can be transformed into a single-layer
neural network. For the other direction, however, the constraint that the bias components
are inner products of the weight matrix columns (see Equations (3.32) and (3.33)) is not
met when optimizing the neural network parameters. In fact, the single-layer neural network
is equivalent to a kMeans model with non-uniform visual word priors p(vm). While the
transformation from a kMeans model to a neural network is de�ned by Equation (3.32) and
Equation (3.33), the transformation from the neural network model with weights W and bias

3.6. Closing the Gap: A BoW Equivalent Neural Network 41

b to a kMeans model is given by

vm = (wm,1 . . . wm,D)ᵀ, (3.38)

pNN(vm) =
exp (bm + 1

2v
ᵀ
mvm)∑

m̃ exp (bm̃ + 1
2v

ᵀ
m̃vm̃)

, (3.39)

where vm are the visual words or the codebook learned by the neural network and pNN(vm)

is a prior on the visual words that is implicitly learned rather than being assumed uniform as
for the case of kMeans. The neural network representation from Figure 3.5 is thus a slightly
more general model than the original BoW model.

3.6.3 Encoding Kernels in the Neural Network

So far, the recurrent neural network is capable of computing bag-of-words like histograms
that are then used in a support vector machine in combination with a kernel. In this section,
we show how to incorporate the kernel itself into the neural network.

Consider the histograms h1 and h2 of two input sequences x
Tx
1 and y

Ty
1 ,

h1 = H(xTx1), h2 = H(y
Ty
1), h1, h2 ∈ RM . (3.40)

The kernel K(h1, h2) induced by its underlying feature map Ψ is then the inner product

K(h1, h2) = 〈Ψ(h1),Ψ(h2)〉. (3.41)

In order to avoid the explicit computation of the kernel, we used the �ndings of Vedaldi
and Zisserman (2012), who provide an explicit (approximate) representation for additive
homogeneous kernels. A kernel is called additive if

K(h1, h2) =

M∑

m=1

k(h1,m, h2,m), (3.42)

where k : R+
0 × R+

0 7→ R+
0 is a subkernel induced by a feature map ψ. The subkernel k is

homogeneous if

k(αh1,m, αh2,m) = αk(h1,m, h2,m). (3.43)

Vedaldi and Zisserman (2012) analyze such kinds of kernels using their Fourier spectrum and
derive the feature map approximation ψ as

[ψ(x)]j =





√
κ(0)xL j = 0,√
2κ(j+1

2 L)xL cos(j+1
2 L log x) j odd,√

2κ(j2L)xL sin(j2L log x) j even,

(3.44)

where each j is a component of the vector valued function ψ, κ is a function dependent on the
kernel, L is a sampling period, and the number of samples is de�ned by n with 0 ≤ j ≤ 2n.

42 Chapter 3. Preliminaries

input sequence

xT
1 = x1, . . . , xT

softmax 1

h(xt)

σt

H(xT
1)

feature map layer

ψ(H(xT
1))

softmax 1

p
(
c|ψ(H(xT

1))
)

W

b

I

I

I

W̃

b̃

Figure 3.6: The BoW-equivalent neural network. The �rst softmax layer followed by the
recurrent averaging layer is a soft approximation of the kMeans feature quantization. The
feature map layer and the second softmax layer replace the kernel and SVM, respectively.

Recall that ψ(x) is the feature map of the one-dimensional subkernel k. The �nal approximate
feature map Ψ for a kernel as in Equation (3.42) therefore is a concatenation of the 2n + 1

elements of ψ for each of the M components of the given histogram.
The function [ψ(x)]j is continuously di�erentiable on the non-negative real numbers and

the derivative is given by

∂[ψ(x)]j
∂x

=





[ψ(x)]0γ(x) j = 0,

([ψ(x)]j+1(j + 1)L+ [ψ(x)]j)γ(x) j odd,

([ψ(x)]j−1jL+ [ψ(x)]j)γ(x) j even,

(3.45)

where

γ(x) =
κ(0)L

2[ψ(x)]20
. (3.46)

Since the widely used RBF-χ2 kernel is not additive and homogeneous, we replace it by a
version of the χ2 kernel that meets these requirements,

k(h1,m, h2,m) = 2 · h1,mh2,m
h1,m + h2,m

, (3.47)

which can be approximated using Equation (3.44) with the kernel-speci�c function

κχ(λ) = sech(πλ), (3.48)

3.7. Deep Learning for Action Recognition 43

where sech is the hyperbolic secant.
Considering that the histograms H(xT1) computed by the neural network are non-negative

and that Equation (3.44) is fully di�erentiable on non-negative inputs, ψ can be implemented
as a layer in a neural network. Adding such a feature map layer between the recurrent layer
and the softmax output allows to represent the bag-of-words pipeline including linear classi�er
and kernel computations completely in a single neural network, cf. Figure 3.6.

To illustrate that this modi�cation of the neural network is in fact su�cient to model a
support vector machine with a non-linear kernel, consider a simple two class problem. The
classi�cation rule for the support vector machine is then

rSVM(H(xT1)) = sign
(I∑

i=1

αiyiK(H([x(i)]Ti1),H(xT1)) + b
)

(3.49)

with I support vectors H([x(i)]Ti1) and coe�cients αi as well as labels yi ∈ {−1, 1}. De�ning

wc =

I∑

i=1

αiyiΨ(H([x(i)]Ti1)) (3.50)

allows to simplify the decision rule to

rSVM(H(xT1)) = sign
(
〈wc,Ψ(H(xT1))〉+ b

)
. (3.51)

As can be seen from this equation, the decision rule is an inner product of a weight vector
and the feature map ψ(H(xT1)). This is the same operation that is performed in the neural
network, with the exception that the softmax layer outputs normalized probabilities rather
than unnormalized scores. The class with the maximal probability or score, however, is the
same in both cases. So, the decision of the support vector machine and the decision of the
neural network are the same if the same weights and bias are used. Still, in contrast to the
support vector machine, the neural network is trained according to the cross-entropy criterion
using unconstrained optimization. Thus, due to di�erent loss functions, the neural network
usually di�ers from the model obtained with a support vector machine, but it is possible to
convert the SVM model to an equivalent neural network model.

Note that the approximate feature map increases the dimension and, thus, also the number
of parameters, depending on the number of samples. If the histograms are of dimension M ,
the output of the feature map layer is of dimension M · (2n+ 1). In practice, n = 2 already
works well (Vedaldi and Zisserman, 2012). We will use this neural network based version of
the bag-of-words model in Chapter 5 in the context of fully supervised action segmentation.

3.7 Deep Learning for Action Recognition

Deep learning has greatly pushed performance in action recognition in the recent years. The
most successful architectures are variants of the two-stream network from Simonyan and Zis-
serman (2014), which consist of two CNNs that are forwarded in parallel, see Figure 3.7. One

44 Chapter 3. Preliminaries

Figure 3.7: The two-stream architecture. The RGB frames of the video and stacked optical
�ow �elds are forwarded through two deep CNN networks and their results are fused before
the classi�cation layer. Figure is taken from Simonyan and Zisserman (2014).

stream processes single RGB frames in order to extract appearance features, the other pro-
cesses a stack of optical �ow frames around the current frame in order to model motion. The
output of both networks is fused in the end and a common classi�cation score is computed.
In general, any 2D convolutional network architecture can be used as a two-stream network.
While the original version is based on an architecture proposed by Chat�eld et al. (2014) for
image classi�cation, recent improvements such as the work of Feichtenhofer et al. (2017b) use
more sophisticated architectures like a ResNet (He et al., 2016).

The current state-of-the-art architecture is I3D (Carreira and Zisserman, 2017), a version
of two-stream networks in�ated to three dimensions, i.e. not only working in the spatial do-
main but also in the temporal domain. The underlying architecture of I3D is an Inception-v1
network (Szegedy et al., 2015). Starting from a network that is pretrained on the Imagenet
dataset (Russakovsky et al., 2015), all N ×N kernels are in�ated to N ×N ×N kernels by
copying the original 2D kernels N times and rescaling them with the factor 1/N . Since rea-
sonable pooling strides are di�erent between the spatial and the temporal domain, temporal
pooling is omitted in the �rst two max-pooling layers of Inception-v1. In the last average-
pooling layer, the temporal kernel size is 2 as opposed to 7 in the spatial domain. The other
max-pooling layers have the same spatial and temporal stride, see Carreira and Zisserman
(2017) for details.

Feature Extraction from I3D.

In some of our experiments, we extract video features using an I3D network that is trained
on the Kinetics dataset which has been proposed in Kay et al. (2017). In a �rst step, the
optical �ow of the input video is computed using the TV-L1 algorithm from Zach et al.
(2007). Then, the resulting optical �ow �elds and the RGB frames are scaled such that the
smaller side has a length of 256 pixels. In order to obtain a feature vector for each frame,
a spatio-temporal volume of size 21 × 224 × 224 is cropped such that the spatial 224 × 224

part completely lies within the video frame size and the frame we currently extract features

3.7. Deep Learning for Action Recognition 45

for is in the center of the temporal window. This spatio-temporal volume is then forwarded
through the pretrained I3D network. We discard the last convolutional layer and extract
the 1024-dimensional features for both RGB and optical �ow stream instead, resulting in a
2048-dimensional feature vector for each frame.

Chapter 4

A General Framework for Temporal

Action Segmentation

In this chapter, we introduce a general framework for temporal action segmentation. The
framework has a simple but sound mathematical motivation and allows to model visual in-
formation of the video frames, a length prior on the action classes, and a context model
independently. In contrast to existing approaches for temporal action segmentation, a glob-
ally optimal segmentation given the individual models is computed and no local or greedy
decisions are made during inference. Moreover, the framework can be applied to various tasks
related to temporal action modeling such as action segmentation and action alignment. It
is also applicable under varying training conditions. In the following chapters, the frame-
work is used for fully supervised training where full frame-level annotation is required, in
several weakly supervised approaches that do not need explicit temporal annotation, and in
semi-supervised learning where frames are annotated sparsely.

Contents

4.1 Introduction . 47

4.2 A Generic Probabilistic Model . 49

4.3 Viterbi Decoding . 49

4.3.1 Computing the Score of the Viterbi Path 50

4.3.2 Backtracing the Viterbi Path . 52

4.3.3 Complexity . 53

4.1 Introduction

Given the success of recent architectures for action recognition on pre-segmented video clips,
there is an increased interest in temporal action recognition over the recent years. Not
only action speci�c deep neural networks such as the two-stream network of Simonyan and
Zisserman (2014) and the temporal segment networks of Wang et al. (2016) have inspired
recent works on temporal action segmentation. Some methods also borrow ideas from the
�eld of object detection, relying on proposal networks (Lin et al., 2018) or similar multistage
approaches (Shou et al., 2016), or adapt object detection frameworks directly into the one-
dimensional domain of temporal action segmentation (Chao et al., 2018). Early works on
temporal action segmentation mostly apply sliding window approaches (Rohrbach et al., 2012;

48 Chapter 4. A General Framework for Temporal Action Segmentation

take bowl pour cereals pour milk stir cereals

good score bad score good score

take bowl pour cereals pour milk stir cereals

Figure 4.1: Top: Sliding windows are prone to over-segmentation as not all windows in a
long action might have a good score for that particular action. A length prior can prevent or
penalize such over-segmentation. Bottom: Sliding window approaches are not context aware
which can lead to false classi�cations. For instance, stir_cereals might look similar to
stir_coffee and only the context gives a clear hint which of the two options is more likely.

Oneata et al., 2014). Even recent deep learning based architectures such as the ones proposed
by Zhao et al. (2017) or Wang et al. (2017) are frequently based on segment proposals or clip
sampling, which are related to sliding windows. Both, sliding windows and other segment
proposal methods, however, have some considerable disadvantages. Long action segments,
for instance, are likely to be over-segmented since not all windows or proposals have a good
score throughout the duration of the action. Taking a length prior into account can improve
the results by avoiding typically long actions to be cut into multiple segments. Moreover,
sliding windows and segment proposals are usually context agnostic. When hypothesizing an
action class at some position in the video, only the frames in the current temporal region
are taken into account. Context of previously hypothesized classes is not used at all, see
Figure 4.1 for an illustration of these e�ects.

Furthermore, sliding windows are usually used with di�erent temporal lengths and moved
over the video with di�erent overlap ratios. This requires some postprocessing, e.g. a non-
maximum suppression to obtain a set of non-overlapping windows that form the �nal seg-
mentation. Such steps, however, only �nd local optima. The globally best segmentation of
the video may be di�erent due to length, context, and appearance dependencies within the
video.

4.2. A Generic Probabilistic Model 49

In this chapter, we propose a general framework for temporal action segmentation that
incorporates length, context, and video frame information. The framework allows to �nd a
globally optimal segmentation, i.e. the best possible segmentation of the complete video given
the explicit models. Moreover, in contrast to sliding window approaches, it is context aware
and features an explicit length modeling.

The proposed framework is used in di�erent approaches to temporal action segmentation
and detection throughout this thesis, ranging from fully supervised settings where frame-
level annotation is provided to weakly supervised settings where only the occurring actions
are known without any temporal annotation. On a variety of datasets with di�erent charac-
teristics and on various temporal segmentation tasks, we prove that this general framework
can yield considerable improvements over related methods.

4.2 A Generic Probabilistic Model

Following the notation introduced in Section 3.1.2, let xT1 denote a video with T frames,
cN1 a sequence of N actions, and lN1 a sequence of N lengths. In order to determine the
best value N̂ of unknown segments in the video, the optimal sequence of action labels ĉN̂1 ,
and the optimal sequence of lengths for each segment l̂N̂1 , the posterior probability of the
segmentation given the video is to be maximized,

(N̂ , ĉN̂1 , l̂
N̂
1) = arg max

N,cN1 ,l
N
1

{
p(cN1 , l

N
1 |xT1)

}
. (4.1)

Using Bayes rule, this probability can be factorized into three parts,

(N̂ , ĉN̂1 , l̂
N̂
1) = arg max

N,cN1 ,l
N
1

{
p(xT1 |cN1 , lN1) · p(lN1 |cN1) · p(cN1)

}
. (4.2)

Note that p(xT1) has been omitted in the factorization as it does not a�ect the maximizing
arguments.

The �rst term, p(xT1 |cN1 , lN1), is the probability of the frame representations x1, . . . , xT
being generated by the hypothesized segmentation (cN1 , l

N
1). We call it the visual model.

Since the second term p(lN1 |cN1) models the probabilities of the length of each segment, we
refer to it as length model. The likelihood of an action sequence c1, . . . , cN is given by p(cN1)

and we call it the context model.

4.3 Viterbi Decoding

In order to compute the arg max from Equation (4.2), we use variants of the Viterbi algo-
rithm (Viterbi, 1967). The Viterbi algorithm has a long tradition in natural language pro-
cessing, particularly in automatic speech recognition, see e.g. Jurafsky et al. (1995) or Ney
and Ortmanns (1999), and relies on dynamic programming to �nd the most likely sequence
of states � the Viterbi path � in a temporal sequence. We present a simple version of Viterbi
decoding here that serves as a basis for di�erent variations used throughout this thesis.

50 Chapter 4. A General Framework for Temporal Action Segmentation

. . . t− 1 t . . . T

c1

c2

c3

c4

c5

Q(t− 1, c1)

Q(t− 1, c2)

Q(t− 1, c3)

Q(t− 1, c4)

Q(t− 1, c5)

·p(c3|c1)

·p(c3|c2)

·p(c3|c4)

·p(c3|c5)

·p(xt|c3)

Figure 4.2: Computation of the recursive function Q via dynamic programming. At frame
t, either the current segment is continued or a new action segment with class c starts. The
best score at this position is the maximum of all scores at position t − 1 multiplied by the
frame score at position t. If a new segment with another class starts at frame t, the context
model probability also needs to be multiplied.

4.3.1 Computing the Score of the Viterbi Path

Consider a simpli�cation of the general model from Equation (4.2), where we omit the length
model and use a simpli�ed visual and context model. For the context model, assume that
the probability for observing an action label cn only depends on the previous label cn−1, i.e.

p(cN1) =
N∏

n=1

p(cn|cn−1). (4.3)

For the visual model, let n(t) denote the segment number n a frame t belongs to under the
segmentation (N, cN1 , l

N
1). Then, cn(t) denotes the action label assigned to frame t. Assuming

conditional independence of the frames and independence of the frames and segment lengths,
the simpli�ed visual model is

p(xT1 |cN1 , lN1) =
T∏

t=1

p(xt|cn(t)). (4.4)

4.3. Viterbi Decoding 51

Note that the lengths lN1 occur implicitly in n(t). Speci�cally,

n(t) = k if and only if
k−1∑

n=1

`n < t ≤
k∑

n=1

`n. (4.5)

We call the simpli�ed visual model a framewise visual model and the simpli�ed context model
a bigram context model.

The general model from Equation (4.2) then simpli�es to

(N̂ , ĉN̂1 , l̂
N̂
1) = arg max

N,cN1 ,l
N
1

{ T∏

t=1

p(xt|cn(t)) ·
N∏

n=1

p(cn|cn−1)
}
. (4.6)

With a slight abuse of notation, the segmentation (N, cN1 , l
N
1) can equivalently be written as

a sequence of T class labels cT1 , where ct is the label assigned to frame t. Equation (4.6) can
then be written as

ĉT1 = arg max
cT1

T∏

t=1

ψ(t, ct, ct−1) (4.7)

with the de�nition

ψ(t, c, c′) =

{
p(xt|c), if n(t− 1) = n(t),

p(xt|c) · p(c|c′), otherwise.
(4.8)

Note that the introduction of ψ(t) allows to formulate the term in the arg max of Equa-
tion (4.7) as a product over all timeframes. For now, let the task be to only �nd the probabil-
ity of the most likely sequence ĉT1 , so the arg max can be replaced with a max, providing the
maximal probability but not the maximizing segmentation. Considering the input sequence
only up to frame t, Equation (4.7) can be factorized as

max
ct1

t∏

τ=1

ψ(τ, cτ , cτ−1) = max
c,c′:
c=ct

[
max
ct−1
1 :

ct−1=c′

t−1∏

τ=1

ψ(τ, cτ , cτ−1)
]
· ψ(t, c, c′). (4.9)

De�ning

Q(t, c) = max
ct1
ct=c

t∏

τ=1

ψ(τ, cτ , cτ−1) (4.10)

and comparing Equation (4.10) with Equation (4.9) reveals the recursive nature of Q(t, c):
the left hand side of Equation (4.9) is maxct Q(t, ct) and on the right hand side, the term in
brackets is Q(t − 1, c′). Note that Q(t, c) is the score of the best path ending at frame t in
class c. The score of the best path over the complete video sequence is therefore given as
maxcQ(T, c), i.e. the score at the last frame T of the sequence ending the maximizing action
class c.

52 Chapter 4. A General Framework for Temporal Action Segmentation

In order to e�ciently compute the values of Q(t, c) for all time/label pairs (t, c), we exploit
its recursive nature and consider the two cases occurring within the function ψ separately.
In the �rst case, when n(t− 1) = n(t), the segment does not change between frame t− 1 and
frame t. Then, the class c is the same as in the previous frame and the maximization over
the preceding class c′ can be omitted. Using the factorization from Equation (4.9) together
with the �rst case in the function ψ, we have

Q(t, c) = max
ct1
ct=c

t∏

τ=1

ψ(τ, cτ , cτ−1) (4.11)

= max
c′

[
max
ct−1
1 :

ct−1=c′

t−1∏

τ=1

ψ(τ, cτ , cτ−1)
]
· ψ(t, c, c′) (4.12)

= max
c′

Q(t− 1, c) · p(xt|c) (4.13)

= Q(t− 1, c) · p(xt|c). (4.14)

In the second case, a new action segment starts at time t. Now, using the factorization from
Equation (4.9) together with the second case in the function ψ, we have

Q(t, c) = max
ct1
ct=c

t∏

τ=1

ψ(τ, cτ , cτ−1) (4.15)

= max
c′

[
max
ct−1
1 :

ct−1=c′

t−1∏

τ=1

ψ(τ, cτ , cτ−1)
]
· ψ(t, c, c′) (4.16)

= max
c′

{
Q(t− 1, c′) · p(xt|c) · p(c|c′)

}
. (4.17)

Hence, the score Q(t, c) can be computed from all possible scores Q(t − 1, c′) of segments
ending at frame t−1 in class c′. Since a new segment starts at frame t, the context probability
of transitioning from the old action class c′ to the new action class c has to be multiplied with
the old score Q(t − 1, c′) along with the framewise visual model probability. The recursive
computation of Q is illustrated in Figure 4.2. Note that for the case of staying in the same
class c, continuing the current segment (�rst case in ψ) always leads to a better score than
starting a new segment (second case in ψ) with the same class as this would require an
additional multiplication with p(c|c).

A pseudo code implementation of this simple version of the Viterbi algorithm is given in
Algorithm 4.1.

4.3.2 Backtracing the Viterbi Path

In order to reconstruct the sequence of action labels that build the best scoring path, for
each tuple (t, c) the best predecessor class needs to be stored. Therefore, a traceback array
B(t, c) is used. In the case that no new segment starts at time t, the best predecessor class

4.3. Viterbi Decoding 53

Algorithm 4.1 Viterbi Decoding
1: Q(0, :) = 1

2: for t = 1, . . . , T do

3: for c ∈ C do
4: Q(t, c) = Q(t− 1, c) · p(xt|c)
5: B(t, c) = c

6: for c′ = 1, . . . , |C| do
7: if Q(t, c) < Q(t− 1, c′) · p(xt|c) · p(c|c′) then
8: Q(t, c) = Q(t− 1, c′) · p(xt|c) · p(c|c′)
9: B(t, c) = c′

10: return Q,B

Algorithm 4.2 Backtracing the Viterbi Path
1: path := []

2: c := arg maxc Q(T, c)

3: for t = T, . . . , 1 do

4: path.append(c)

5: c := B(t, c)

6: return path.revert()

of the tuple (t, c) is simply the same class, i.e.

B(t, c) = c. (4.18)

When looking at segment start hypothesis, the preceding class needs to be stored in B(t, c).
Recall that in order to de�ne the Q function, we replaced the arg max from Equation (4.7)
with the max. In order to reconstruct the best sequence, the maximizing arguments are of
interest again, so the arg max needs to be used again,

B(t, c) = arg max
c′

{
Q(t− 1, c′) · p(xt|c) · p(c|c′)

}
. (4.19)

Starting from the best ending class at the end of the sequence, arg maxcQ(T, c), the traceback
array can be used to reconstruct the overall best path by traversing B(t, c) in reverse order
from T backwards following Algorithm 4.2. The traceback process is illustrated in Figure 4.3.

4.3.3 Complexity

This simple version of the Viterbi decoding allows to decode the best segmentation by means
of Equation (4.7) in linear time in the number of frames. In order to obtain the best path,
Q(t, c) has to be computed for all frames and for all possible classes at each frame. Moreover,
every value for Q(t, c) can possibly be the start of a new segment, so the maximization over
all predecessor classes in Equation (4.17) has to be carried out for each (t, c) tuple. Overall,

54 Chapter 4. A General Framework for Temporal Action Segmentation

B(t5, c3) = c5

B(t4, c5) = c5

B(t3, c5) = c2

B(t2, c2) = c2

t1 t2 t3 t4 t5

c1

c2

c3

c4

c5

Figure 4.3: Traceback of the Viterbi path. Starting at the best class at the last frame (here:
c3), the traceback array B(t, c) points to the best predecessor class at the preceding frame.
The resulting segmentation in this example is (N, cN1 , l

N
1) with N = 3, cN1 = (c2, c5, c3) and

lN1 = (2, 2, 1).

the complexity of the Viterbi decoding is O(T · |C|2). Backtracing the Viterbi path requires
to �nd the best class for the last frame and then go backwards over the frames once and
look up the respective entries in the traceback array B, see Algorithm 4.2. The complexity
is O(|C| · T).

Chapter 5

Fully Supervised Action Segmentation

Building upon the general framework introduced in the previous chapter, we propose a method
for temporal action segmentation given a frame-level annotation of the training videos. The
approach provides concrete instantiations of the visual model, the length model, and the
context model. While sophisticated methods from natural language processing are employed
for the context model, the visual model is based upon classical action recognition methods
that operate on a segment level, i.e. that are typically trained on pre-segmented video clips
containing a single action instance and no further background frames. We analyze the pro-
posed system and its components on several datasets and show state-of-the-art performance
on Thumos 14.

Contents

5.1 Introduction . 55

5.2 Temporal Action Detection . 56

5.2.1 Context Model . 57

5.2.2 Length Model . 58

5.2.3 Visual Model . 59

5.2.4 Inference . 60

5.3 Experiments . 64

5.3.1 Setup . 64

5.3.2 Evaluation of the Context Model . 66

5.3.3 Model Components . 67

5.3.4 Length Model . 69

5.3.5 Comparison to Early Sliding Window Based Approaches 71

5.3.6 Comparison to State-of-the-Art . 71

5.4 Summary . 74

5.1 Introduction

Comparing the task of classical action recognition on pre-segmented clips and temporal action
segmentation on untrimmed videos, there is a huge gap in terms of performance. The advances
in the classi�cation of pre-segmented clips made in the last years do not easily transfer to
action segmentation due to the di�culty of modeling action boundaries and temporal context,
cf. Chapter 1 and Figure 1.1.

56 Chapter 5. Fully Supervised Action Segmentation

One crucial issue in untrimmed videos is that an action class can be arbitrarily long,
e.g. a background class, but it can also be only a few frames long in a video. Without a
pre-segmentation of the video, the duration of the action classes needs to be well modeled.
Moreover, while video clips can already be well recognized by using only spatial information
such as appearance and presence of objects (Jain et al., 2015), the di�erences between the
frames where an activity occurs and background frames are more subtle.

The most successful methods for temporal action detection on a dataset like Thumos
follow a two step approach. They �rst extract segments from the video using a sliding
temporal window and classify each segment in a second step. The �nal segmentation is
then achieved by greedily selecting the segments with the highest scores (Oneata et al., 2014;
Rohrbach et al., 2012). More recent approaches combine these two steps into a single network
such as the Faster-RCNN variant for action segmentation proposed by Chao et al. (2018).
Still, these approaches perform a greedy segment selection and lack a sophisticated length
and context modeling.

In this chapter, we present an approach to temporal action detection that avoids a greedy
approximation and aims to �nd the globally most likely action sequence in a single step by
solving the segmentation and classi�cation task jointly using a variant of the Viterbi algorithm
introduced in the previous chapter. The proposed model incorporates information about the
duration of an action class by a length model and the temporal context by a context model.
The length and context model are combined with a discriminative model for recognizing
actions. The latter can be any typical action recognition system. We focus on a traditional
approach using a linear classi�er on top of Fisher vectors of improved dense trajectories as
well as on a model based on framewise I3D features.

In the experiments, we provide an extensive analysis of our approach on three datasets
where we evaluate the impact of the length and context model in detail. Our model achieves
state-of-the-art accuracy for temporal action detection on the challenging Thumos bench-
mark.

5.2 Temporal Action Detection

We use the general model proposed in Chapter 4 with explicit assumptions for all three
components, the length model, the context model, and the visual model. In the following, we
describe the single components of the model. Then, the Viterbi algorithm from Chapter 4 is
modi�ed such that it can be applied to the previously de�ned models.

Consider the model de�ned in Equation (4.2),

(N̂ , ĉN̂1 , l̂
N̂
1) = arg max

N,cN1 ,l
N
1

{
p(xT1 |cN1 , lN1) · p(lN1 |cN1) · p(cN1)

}
. (5.1)

The visual model, providing the actual probability of a feature sequence xT1 being generated
by the given segmentation (N, cN1 , l

N
1), is a segment-wise classi�er here, so that in principle

any action recognition model could be applied.
The length model, p(lN1 |cN1), determines the length of the segments. Recall that our

model does not allow gaps, i.e. a segment ending at a frame t requires the next segment to

5.2. Temporal Action Detection 57

start at frame t + 1. This is no restriction if background is also modeled as an action class.
The context model gets special attention here. We rely on concepts developed in natural
language processing and apply smoothed m-grams to model likelihoods of action sequences.
The models are described in detail in the following.

5.2.1 Context Model

We start with a detailed description of the context model. Sequences of actions cN1 can be
of arbitrary length. Exact inference would require to model the probability of the complete
sequence p(cN1) either directly or as a product

p(cN1) =
N∏

n=1

p(cn|cn−11), (5.2)

where the class cn at each position n depends on all preceding classes.
Based on �ndings from statistical language modeling, it shows that the most relevant

words in natural language sentences are those that immediately precede the current word.
We transfer these observations to action classes and assume that an action class is dependent
on a history of only m preceding classes,

p(cN1) =
N∏

n=1

p(cn|cn−11) (5.3)

=
N∏

n=1

p(cn|cn−1n−m). (5.4)

At the beginning of a sequence, the preceding classes are assumed to be virtual sequence
start classes, i.e. ck = c$ for k ≤ 0. This kind of model is known as an m-gram (language)
model.

The probabilities for each p(cn|cn−1n−m) can be estimated from the training data using the
maximum likelihood method and the result are relative frequencies over each action class c
for each history of m preceding classes:

p(c|h) =
N(h, c)

N(h, ·) , (5.5)

where h is a sequence of m preceding classes, e.g. h = cn−1n−m for c = cn, and N(h, c) is the
count of occurrences of class c with the history h in the training data.

Note that particularly for larger histories, N(h, c) may be zero and such a sequence of
action classes could never be detected. Common practice is to apply smoothing to the m-
grams in order to shift probability mass to unseen action sequences. In order to deal with
these unseen events, we use linear discounting with backing-o� (Ney et al., 1994), i.e.

p(c|h) =





(1− λ) · N(h,c)
N(h,·) , if N(h, c) > 0,

λ · p(c|h′)∑
c′:N(h,c′)=0 p(c

′|h′) , otherwise.
(5.6)

58 Chapter 5. Fully Supervised Action Segmentation

The parameter λ assigns a certain amount of probability mass to unseen events and is obtained
using maximum likelihood estimation in combination with leaving-one-out. Consider

Nr(h, ·) = |{c : N(h, c) = r}|, (5.7)

i.e. Nr is a counter that returns the number of action classes c that occur exactly r times
with history h. For r = 1, Nr(h, ·) denotes the number of singletons, i.e. action classes that
occur in combination with the history exactly one time. With N1(·, ·), we denote the total
number of singletons accumulated over all possible histories and Ntotal is the total number
of action instances in the training data. The resulting maximum likelihood estimate for λ is
then

λ =
N1(·, ·)
Ntotal

, (5.8)

see Ney et al. (1994) for details.
For unseen events, the back-o� model p(c|h′) is used in Equation (5.6). It is an m-gram

of lower order, e.g. a bigram (m = 1) if p(c|h) is a trigram (m = 2). Since we have a closed
vocabulary, meaning that during test time no new classes occur, the lowest required back-o�
model is a unigram (m = 0) that simply models the class prior p(c) without any context.
The renormalization in Equation (5.6) is required for a proper probability distribution.

5.2.2 Length Model

For the length model, we assume that the length of a segment only depends on its action
class but not on the preceding segment lengths or on the classes of any preceding segments.
The length model p(lN1 |cN1) can then be simpli�ed to

p(lN1 |cN1) =
N∏

n=1

p(`n|cN1 , ln−11) (5.9)

=
N∏

n=1

p(`n|cn). (5.10)

The distribution p(`|c) can be modeled with any discrete probability distribution de�ned
on the natural numbers. We investigate a class-dependent and class-independent Poisson
distribution as well as a class-independent length model based on the average length of all
actions.

For the class-independent Poisson model, the distribution is

p(`|c) =
λ`

`!
e−λ, (5.11)

where λ needs to be estimated from the training data. The optimal λ in the maximum
likelihood sense is the average length of all actions. In case of a class-dependent Poisson
model, there is a distinct parameter λc for each action class,

p(`|c) =
λ`c
`!
e−λc , (5.12)

5.2. Temporal Action Detection 59

and the ideal estimator is the one that assigns the mean length of action class c to λc.
For the third kind of length model, we de�ne

p(`|c) =

{
1, if ` ≤ µ,
α`−µ, otherwise,

(5.13)

where α is a decay factor and µ is the mean length all action segments occurring in the
training data. In the following, this model is referred to as mean length model. Note that the
model is not a proper probability distribution and only penalizes lengths that are larger than
µ. While the Poisson models favor segments with lengths that are more likely according to
the training data, this third length model version is a much less restrictive model that mainly
has the purpose to avoid unreasonably long segments. Without any restriction of the length,
the system would tend to hypothesize a small number of long segments in order to avoid the
penalty induced by the context model each time a new segment is hypothesized.

5.2.3 Visual Model

In action classi�cation, discriminative models such as support vector machines or convolu-
tional neural networks achieve good performance (Wang and Schmid, 2013; Simonyan and
Zisserman, 2014; Karpathy et al., 2014; Carreira and Zisserman, 2017). These kinds of mod-
els can be viewed as a class posterior distribution p(c|xT1), or p(c|xt2t1) for action segments
ranging from t1 to t2 in the domain of temporal action detection, respectively. Particularly
when using Fisher vectors of improved dense trajectories, a linear classi�er such as a support
vector machine performs well (Wang and Schmid, 2013), but also an averaging of deep fea-
tures such as I3D is a commonly used strategy (Carreira and Zisserman, 2017). We stick to
this �nding and use a log-linear model of the form

p(c|xt2t1) = softmax(Wf(xt2t1) + b) (5.14)

where W is a weight matrix, b the bias. For a detailed analysis of the method, we stick to
improved dense trajectories as input features and denote the Fisher vector composed of these
features on the video segment [t1, t2] as f(xt2t1). The log-linear model is also a linear classi�er
but in contrast to support vector machines, it directly models a class posterior distribution.
The parameters W and b can be estimated from the pre-segmented training data using
gradient based optimization.

In the following, we show how to incorporate such a segment-based posterior distribution
into our visual model. We start with a simple factorization of p(xT1 |cN1 , lN1).

Assuming that a video segment xtntn−1+1 depends on the given segmentation (cN1 , l
N
1) but

not on the features of the neighboring segments, we can factorize the visual model as a
product of action segments,

p(xT1 |cN1 , lN1) =
N∏

n=1

p(xtntn−1+1|cN1 , lN1), (5.15)

60 Chapter 5. Fully Supervised Action Segmentation

where a temporal position tn is de�ned as the ending time of segment n,

tn =

n∑

i=1

`n. (5.16)

Further assuming conditional independence of the video frames and assuming that a frame
only depends on its class and the length of the segment it is located in, Equation (5.15)
further simpli�es to

p(xT1 |cN1 , lN1) =
N∏

n=1

p(xtntn−1+1|cN1 , lN1) (5.17)

=
N∏

n=1

tn∏

t=tn−1+1

p(xt|cn, `n). (5.18)

Using Bayes' Theorem, Equation (5.18) can be transformed to contain a class posterior
distribution,

p(xT1 |cN1 , lN1) =
N∏

n=1

tn∏

t=tn−1+1

p(cn|xt, `n)
p(xt|`n)

p(cn|`n)
. (5.19)

Due to the dependence on the segment length, we assume that the class posterior has the
same probability for each frame within the segment, i.e.

tn∏

t=tn−1+1

p(cn|xt, `n) = p(cn|xtntn−1+1)
`n . (5.20)

Coming back to Equation (5.19), we further assume that neither the frame prior nor the class
prior depend on the segment lengths. Together with Equation (5.20), this leads to

p(xT1 |cN1 , lN1) =

N∏

n=1

(p(cn|xtntn−1+1)

p(cn)

)`n T∏

t=1

p(xt). (5.21)

In practice, we found that a uniform class prior p(c) works well, so that factor can be omit-
ted. Moreover, the product over the frame priors p(xt) is independent of the arguments we
maximize over and can thus also be omitted in the maximization.

5.2.4 Inference

Given explicit representations for the length model, the context model, and the visual model,
the combined model can be formulated by inserting all these results into Equation (5.1),

(N̂ , ĉN̂1 , l̂
N̂
1) = arg max

N,cN1 ,l
N
1

{ N∏

n=1

p(cn|cn−1n−m) · p(`n|cn) · p(cn|xtntn−1+1)
`n
}
. (5.22)

5.2. Temporal Action Detection 61

In order to e�ciently solve the maximization problem from Equation (5.22), we use a modi�-
cation of the Viterbi algorithm presented in Chapter 4. For simplicity, we derive the recursion
equations for a bigram context model (m = 1) only. The modi�cations that are required for
higher order context models are straightforward.

In order to enable dynamic programming over the time frames 1, . . . , T , we transform the
product from Equation (5.22) to run over the time rather than over the unknown number of
segments. To simplify notation, recall the de�nition of n(t) from Equation (4.5), a function
that returns the index of a segment frame t belongs to,

n(t) = k if and only if
k−1∑

n=1

`n < t ≤
k∑

n=1

`n. (5.23)

Using this notation and focusing on the maximization of Equation (5.22) for now, it can be
rewritten as

max
N,cN1 ,l

N
1

{ N∏

n=1

p(cn|cn−1n−m) · p(`n|cn) · p(cn|xtntn−1+1)
`n
}

(5.24)

= max
N,cN1 ,l

N
1

{ T∏

t=1

[
p(cn(t)|cn(t)−1) · p(`n(t)|cn(t)) · p(cn(t)|x

tn(t)
tn(t)−1+1)

`n(t)
]Jt==tn(t)K

}
, (5.25)

where J·K is an index function that returns one if its condition is true and zero otherwise. In
this case, t == tn(t) is true if t is the ending time of segment n(t). This way, the N factors
from Equation (5.22) are sustained and the factors for the times t that are not a segment end
time are one.

In order to be able to apply dynamic programming over Equation (5.25), we de�ne an
auxiliary function Q(τ, c) that speci�es the best segmentation of the video up to time τ into
n segments with the last segment being of class c and ending at frame τ ,

Q(τ, c) = max
n,cn1 ,l

n
1 :

cn=c,∑n
i=1 `i=τ

{ τ∏

t=1

[
p(cn(t)|cn(t)−1) · p(`n(t)|cn(t)) · p(cn(t)|x

tn(t)
tn(t)−1+1)

`n(t)
]Jt==tn(t)K

}
.

(5.26)

Note that we bind the equation to the conditions cn = c (last segment is of class c) and∑n
i=1 `i = τ (accumulated length is the number of frames, τ). In a next step, the factors of

the last segment can be isolated from the equation,

Q(τ, c) = max
n,cn1 ,l

n
1 :

cn=c,∑n
i=1 `i=τ

{
p(cn|cn−1) · p(`n|cn) · p(cn|xττ−`n+1)

`n ·

τ−`n∏

t=1

[
p(cn(t)|cn(t)−1) · p(`n(t)|cn(t)) · p(cn(t)|x

tn(t)
tn(t)−1+1)

`n(t)
]Jt==tn(t)K

}
.

(5.27)

62 Chapter 5. Fully Supervised Action Segmentation

. . . t− 2 t− 1 t . . .

c1

c2

c3

c4

c5

Q(t− 2, c1)

Q(t− 2, c2)

Q(t− 2, c3)

Q(t− 2, c4)

Q(t− 2, c5)

Q(t− 1, c1)

Q(t− 1, c2)

Q(t− 1, c3)

Q(t− 1, c4)

Q(t− 1, c5)

Figure 5.1: Illustration of the computation of the recursive equation Q(τ, c). For the compu-
tation of the score of a segment ending at time t in class c3 (green dot), all possible preceding
classes and all possible segment lengths have to be considered. Thus, the optimization is not
only over previous segment end points t− 1 but also over t− 2, t− 3, etc.

De�ning cn−1 = c̃ and `n = `, we can pull the isolated factors out of the maximization and
rewrite

Q(τ, c) = max
`,c̃

[
p(c|c̃) · p(`|c) · p(c|xττ−`+1)

`·

max
n−1,cn−1

1 ,ln−1
1 :

cn−1=c̃,∑n−1
i=1 `i=τ−`

{ τ−∏̀

t=1

[
p(cn(t)|cn(t)−1) · p(`n(t)|cn(t)) · p(cn(t)|x

tn(t)
tn(t)−1+1)

`n(t)
]Jt==tn(t)K

}]
.

(5.28)

Inspection of the second maximization reveals that it is Q(τ−`, c̃), which ends our derivation
of the recursive equation for Q(τ, c):

Q(τ, c) = max
`,c̃

{
p(c|c̃) · p(`|c) · p(c|xττ−`+1)

` ·Q(τ − `, c̃)
}
. (5.29)

A visual illustration of the decoding process is shown in Figure 5.1. In order to compute the
score of class c3 ending at time t (green dot), the hypothesis of all possible preceding classes
and all possible preceding lengths have to be looked at. If the preceding segment is assumed

5.2. Temporal Action Detection 63

Algorithm 5.1 Viterbi Decoding
1: Q(0, :) = 1

2: Q(1 : T, :) = 0

3: for t = 1, . . . , T do

4: for c ∈ C do
5: for c′ ∈ C do
6: for l = 1, . . . ,min(t, L) do

7: if Q(t, c) < p(c|c̃) · p(`|c) · p(c|xtt−`+1)
` ·Q(t− `, c̃) then

8: Q(t, c) = p(c|c̃) · p(`|c) · p(c|xtt−`+1)
` ·Q(t− `, c̃)

9: A(t, c) = l

10: B(t, c) = c′

11: return Q,A,B

to be ending at t− 1 (blue lines), the current segment has length one and the quantity being
computed for the arc from Q(t− 1, c̃) to Q(t, c3) is p(c3|c̃) · p(` = 1|c3) · p(c3|xtt)1 ·Q(t− 1, c̃).
If the preceding segment is assumed to be ending at t− 2 (orange lines), the current segment
has length two and the quantity being computed for the arc from Q(t − 2, c̃) to Q(t, c3) is
p(c3|c̃)·p(` = 2|c3)·p(c3|xtt−1)2 ·Q(t−2, c̃). For every (τ, c) tuple, this involves running over all
possible preceding classes and all possible segment lengths. A pseudo code implementation of
the modi�ed Viterbi decoding is provided in Algorithm 5.1. While Equation (5.29) originally
requires a maximization over all possible action lengths at each frame τ , this can be prohibitive
for long videos in practice as it leads to quadratic runtime in the number of frames T ,
considering that ` has to run from 1 to τ at frame τ . We therefore introduce a constant L
that limits the maximal length of an action. In practice, this is reasonable as the duration
of an action inherently depends on the action itself and not on the overall duration of the
video. The score of the best segmentation in the sense of Equation (5.22) is now given by
maxcQ(T, c). In order to reconstruct the best action segmentation, two additional traceback
arrays need to be stored:

A(τ, c) = arg max
`

{
max
c̃

{
p(c|c̃) · p(`|c) · p(c|xττ−`+1)

` ·Q(τ − `, c̃)
}}

(5.30)

is the best-scoring length of the segment with class c ending at time τ and

B(τ, c) = arg max
c̃

{
max
`

{
p(c|c̃) · p(`|c) · p(c|xττ−`+1)

` ·Q(τ − `, c̃)
}}

(5.31)

is the best predecessor class of the segment ranging from τ −A(τ, c) + 1 to τ that is hypothe-
sized with class c. The optimal segmentation can then be reconstructed using Algorithm 5.2.
Starting at the last frame T and the best ending class c at this frame, the best hypothesized
segment length is A(T, c) and the best class of the predecessor segment is B(T, c). In the
next step, the best ending segment at time T − A(T, c) is backtraced. This way, for a seg-
mentation with N segments, the algorithm returns a list of N label/length pairs that de�ne
the segmentation (N, cN1 , l

N
1).

64 Chapter 5. Fully Supervised Action Segmentation

Algorithm 5.2 Reconstruction of the best segmentation
1: segments = []

2: t = T

3: c = arg maxc̃Q(T, c̃)

4: while t > 0 do

5: ` = A(t, c)

6: c = B(t, c)

7: t = t− `
8: segments.append

(
(c, `)

)

9: return segments.revert()

Complexity

Since for each frame each possible action length needs to be evaluated, and for each class
each predecessor class has to be considered, inference is quadratic in the number of frames
and classes, i.e. O(|C|2T 2). With the upper limit L on allowed action lengths, however, it
can easily be reduced to O(|C|2LT), see Algorithm 5.1. For higher order context models,
predecessor classes also need to be stored. For a trigram context model, for instance, a
function Q(τ, c, c̃) needs to be computed, which increases the runtime to O(|C|3LT). In
practice, however, the runtime is dominated by the computation of the visual model, which
is not a�ected by an increased history in the context model. Thus, the di�erence of using a
bigram or a trigram context model only has a minor impact on the overall runtime.

The runtime of the traceback is � similar to the simpler case presented in Chapter 4 � still
O(T). Inspection of Algorithm 5.2, however, reveals that there are at most N traceback steps
and the worst case runtime only appears if N = T . While in principle N = T is possible, i.e.
in the best segmentation, each frame is its own segment, in practice, usually N � T . Note
that in contrast to the previously presented, simpler case in Algorithm 4.2, here we return a
segmentation directly rather than a framewise labeling.

5.3 Experiments

We provide an extensive evaluation of the framework for fully supervised temporal action
segmentation. In a �rst step, we discuss the context model, evaluate how the model com-
ponents work together, and provide a discussion on the choice of di�erent length models for
di�erent datasets. We then provide a comparison of our approach to early sliding window
based approaches using traditional, hand-crafted features. Eventually, we use recent deep
I3D features in combination with the proposed framework and compare our work to other
state-of-the-art approaches that are based on deep neural networks.

5.3.1 Setup

We brie�y summarize the setup of our experiments for the in-depth analysis. A detailed
analysis of the proposed approach is provided on Thumos. We use the 200 temporally anno-

5.3. Experiments 65

tated videos of the validation set to train the context model, length model, and visual model.
For testing, the 212 videos of the o�cial test set are used. In order to compare our method
to early approaches using sliding windows, we also report results on MPII Cooking and 50
Salads. Details on the datasets are outlined in Chapter 2.

The visual model is trained by segmenting the training data according to the ground
truth and computing a Fisher vector of improved dense trajectories as described in Wang
and Schmid (2013) for each segment. The ground truth annotation of the training data is
also used to estimate the length- and context model.

For detection, we extract unnormalized Fisher vectors of improved dense trajectories for
each video frame and store the result as a sequence of cumulatively summed vectors. Sum-
ming over the temporal dimension allows to e�ciently compute the averaged input features.
Particularly, let xT1 be the input sequence of framewise unnormalized Fisher vectors and x̂T1
be the result of summing xT1 over the temporal domain, i.e.

x̂t =
t∑

τ=1

xτ for each t ∈ {1, . . . , T}. (5.32)

The Fisher vector for an arbitrary hypothesized segment can now be computed e�ciently by
looking up the segment start and end time in x̂T1 and applying power- and `2-normalization.
The �nal Fisher vector representation of xt2t1 , for instance, is then given by

FV (xt2t1) = `2-norm
(

powernorm
(x̂t2 − x̂t1−1
t2 − t1 + 1

))
. (5.33)

We compare our method to a sliding window baseline similar to the one used in Rohrbach
et al. (2012). Starting with a window size of 30 frames and a step size of 10 frames, both
values are increased by a factor of

√
2 until the window size exceeds 1, 000 frames. Non-

maximum suppression is then applied to remove all overlapping windows. As classi�er, we
use the log-linear model from Equation (5.14) that is also used in our method.

For our approach, the maximal action length is limited to 1, 000 frames and we increment
τ by 10 instead of 1 for the computation of Q(τ, c) in Equation (5.29), i.e. we only evaluate
every 10th frame to reduce runtime. If not mentioned otherwise, we use the mean length
model from Equation (5.13). With these settings, our algorithm needs 7.5h on a CPU with
eight 1.2GHz cores for inference on Thumos.

For the evaluation on Thumos, we use the o�cial evaluation script provided by Idrees
et al. (2017). The script computes the mean average precision (mAP) over the detections. A
detection is marked as correct if its intersection over union ratio is larger than some overlap
threshold, cf. Section 3.2. Since we �nd this evaluation method very useful as it also gives
insight in how a method performs for various overlap ratios, we also apply it to MPII Cooking
and 50 Salads. For MPII Cooking, we additionally report precision and recall as well as single
mAP based on the midpoint hit criterion as proposed in Rohrbach et al. (2012) to be able to
compare to other methods using this dataset.

66 Chapter 5. Fully Supervised Action Segmentation

Perplexity

m-gram validation test

unigram (m = 0) 7.999 8.401

bigram (m = 1) 3.484 4.204

trigram (m = 2) 1.176 1.203

Table 5.1: Perplexities of di�erent m-gram context models on the Thumos validation set
(used for training) and test set (unseen data).

Overlap

m-gram 0.1 0.2 0.3 0.4 0.5

no context model 28.5 26.6 22.2 17.0 10.6

unigram (m = 0) 19.5 17.8 15.0 11.8 8.6

bigram (m = 1) 36.6 33.4 27.7 21.9 15.2

trigram (m = 2) 39.7 35.7 30.0 23.2 15.2

Table 5.2: E�ect of the context model order on Thumos. Results are reported as mAP for
di�erent overlap ratios.

5.3.2 Evaluation of the Context Model

In this section, we evaluate the e�ect of the context model on the performance of the sys-
tem. To this end, we trained di�erent kinds of context models on the temporally annotated
validation set and compared their strength and their e�ect on the detection.

The strength of a context model can be measured using the perplexity (Bahl et al., 1983;
Ney et al., 1994). For a single sequence with N action classes, it is de�ned as

PP =
(N∏

n=1

p(cn|cn−1n−m)
)− 1

N
. (5.34)

The perplexity for a dataset consisting of multiple sequences is the product of the context
model probabilities for each sequence where N is replaced by the total number of segments
in the dataset. Intuitively, the perplexity can be seen as the number of possible choices per
position. A small perplexity corresponds to a strong context model.

Table 5.1 shows the perplexities for di�erent m-gram context models on Thumos. Note
that the perplexities on the training data (i.e. the validation set) and on the test data are
very similar, indicating that the learned context model works well for the action context on
the test set. Further, the perplexity decreases with increasing m-gram order, making the
context model stronger.

Results of the complete system using di�erent context models are shown in Table 5.2. The
system with the unigram context model (no history, i.e. m = 0) performs clearly worse than
the system without a context model. Since 50% of the classes in Thumos are background,

5.3. Experiments 67

avg. length Overlap

0.1 0.2 0.3 0.4 0.5

(a) complete system (Eq. (5.22)) 182.1 39.7 35.7 30.0 23.2 15.2

Visual Model

(b) visual model with class prior 108.0 31.0 29.5 18.7 11.3 6.6

(c) visual model w/o length factor 117.3 33.4 29.8 23.7 16.6 10.8

Length- and Context Model

(d) w/o context model 147.4 28.5 26.6 22.2 17.0 10.6

(e) w/o length model 422.8 20.9 16.6 12.8 8.6 4.9

(f) w/o context and length model 543.8 13.5 11.1 8.6 6.5 4.1

(g) w/o context, length, and length factor 643.1 10.4 8.9 6.8 5.3 3.5

Table 5.3: E�ect of the model components on Thumos. In the second column, the average
length of the detected action segments is given. The average length of actions in the ground
truth is 212.5 frames.

the model has a strong bias towards background. Moreover, background usually gets a
high classi�cation score for any segment, so the model tends to predict multiple consecutive
background segments. This can be prevented by taking context into account. A bigram
(m = 1) already leads to a huge gain in performance. Using more context, e.g. a trigram
(m = 2), can still boost the performance, although the gain is not as intense as for the
bigram. For the remainder of the paper, we use a trigram context model as it produces the
best results. Note that higher order context models are not promising due to the already
extremely low perplexity of the trigram model. Even on the test set, the model only has the
choice of 1.2 di�erent action classes on average. The characteristics on Thumos make higher
order models unreasonable, particularly because the dataset mainly follows the structure
actionX, background, actionX, background, ... and a history of two action classes already
ensures that the alternating pattern between an action of a speci�c class and background is
kept.

5.3.3 Model Components

In Table 5.3, the impact of each component is analyzed. In addition to the results at each of
the �ve overlap ratios, we also report the average length of the detected segments in frames.
The detection result of a video from the Thumos test set in Figure 5.2 serves as an example
for the cases discussed in the table.

We start with an analysis of the visual model. In Section 5.2.3, we argue that a uniform
prior p(c) in Equation (5.21) works well in practice. If we use a non-uniform class prior (Ta-
ble 5.3 (b)), the performance is far below the performance of the uniform prior (Table 5.3 (a))
and the average segment length is shorter. This is due to the fact that the division by the
prior emphasizes infrequent classes. Hence, longer actions are more likely to be split into

68 Chapter 5. Fully Supervised Action Segmentation

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5.2: Detection result on video_test_0001058 of Thumos. The video is 15 minutes
long and contains actions of the class Hammer Throw. The �rst row contains the ground truth,
the other rows show the detection results for the systems (a)-(g) from Table 5.3. Di�erent
classes have di�erent colors.

multiple short segments of rare classes which are then sometimes falsely classi�ed, see Figure
5.2 (b).

Due to the interplay between the action, length, and context model, the impact of the
power factor is a little bit more complex. Without the length and context model, the power
factor `n penalizes long segments, cf. (f) and (g) in Table 5.3. However, when length and
context model are included, `n has another e�ect: It enhances the visual model compared
to the context- and length model. So, omitting `n increases the impact of the length model.
Thus, sequences that are longer than µ (see Equation (5.13)), typically background, are more
likely to be split. The context model strongly penalizes consecutive background segments,
which explains the short action artifacts in Figure 5.2(c).

Without length- and context model, long segments which include multiple short actions
are classi�ed as background since most of the frames are actually from the background.
Thus, performance drops and the average segment length increases, cf. (f) in Table 5.3 and
Figure 5.2.

When using a context model without length model, the performance is still not satisfying
and the average segment length is quite large, see (e) in Table 5.3 and Figure 5.2. The reason
is that each time a new segment is hypothesized, a context model probability is multiplied
to the probability score of the system. Thus, there is a clear tendency towards few, long
segments in order to avoid context model penalties. Adding a length model compensates
for this e�ect since unreasonably long segments are penalized. Note the interdependence of
both models. While the complete system which includes both performs well, the e�ect of
the length model is too strong if the context model is omitted, cf. (d) in Table 5.3. The
hypothesized segments are rather short in this case and the performance also drops again.
Moreover, false detections occur due to the loss of context information, see Figure 5.2 (d).

5.3. Experiments 69

(a)

(b)

(c)

Figure 5.3: Detection result on rgb-03-1 of 50 Salads. Each class is encoded by another
color, background is white. The �rst row contains the ground truth, the other rows show
the detection results of our system with (a) a class-dependent Poisson model, (b) a class-
independent Poisson model, and (c) the mean length model.

Thumos MPII Cooking 50 Salads

2.77 1.20 1.31

Table 5.4: χ2-distance between the ground truth length distribution and the Poisson model
averaged over all classes.

5.3.4 Length Model

We also evaluate our method on MPII Cooking and 50 Salads in addition to Thumos, starting
with an investigation of three di�erent kinds of length models. The choice of the length model
depends on the dataset and the characteristics of the action classes. A strong length model,
such as the class-dependent Poisson model, is superior on 50 Salads and MPII Cooking but
performs worse on Thumos, see Table 5.5. To analyze this e�ect, we compare the distribution
of the ground truth lengths of each class with the distribution generated by the Poisson
model. We discretize both distributions as a histogram with 20 bins with a width of 50

frames each. Then, we compute the χ2-distance between the ground truth distribution dgt
and the distribution dPoi generated by the Poisson model,

distχ2 =
B∑

b=1

(dgt(b)− dPoi(b))2
dgt(b) + dPoi(b)

, (5.35)

where b denotes the bin index. We report the mean distance over all classes in Table 5.4.
While the χ2-distances for MPII Cooking and 50 Salads are comparably small, the value for
Thumos is twice as large, indicating that the Poisson model is a worse representation of the
true length distribution on Thumos than on the other datasets.

The mean length model, which only compensates for the bias of the context model towards
long segments, performs best on Thumos where the Poisson distribution is a poor model of
the underlying distribution as shown in Table 5.4. Even on 50 Salads and MPII Cooking

70 Chapter 5. Fully Supervised Action Segmentation

Overlap

Method 0.1 0.2 0.3 0.4 0.5

Thumos

sliding window 32.5 27.9 20.6 15.0 8.6

Univ. of Florence (Karaman et al., 2014) 4.6 3.4 2.4 1.4 0.9

CHUK & SIAT (Wang et al., 2014) 18.2 17.0 14.0 11.7 8.3

INRIA (challenge winner) (Oneata et al., 2014) 36.7 33.4 27.0 20.8 14.4

ours w/ mean length model 39.7 35.7 30.0 23.2 15.2

ours w/ class-independent Poisson model 33.7 30.7 25.5 19.1 12.7

ours w/ class-dependent Poisson model 25.1 23.4 20.1 14.4 8.8

MPII Cooking

sliding window 22.2 19.7 15.8 12.6 7.9

ours w/ mean length model 22.0 20.9 18.0 13.5 10.4

ours w/ class-independent Poisson model 21.9 20.0 16.3 12.9 9.8

ours w/ class-dependent Poisson model 24.8 23.9 22.0 19.2 14.0

50 Salads

sliding window 20.1 15.8 12.6 10.0 8.0

ours w/ mean length model 30.5 29.5 26.0 20.8 15.3

ours w/ class-independent Poisson model 37.5 35.7 30.6 23.7 14.9

ours w/ class-dependent Poisson model 37.9 36.8 35.2 31.2 22.9

Table 5.5: Comparison of our method to early sliding window based approaches on the three
datasets Thumos, MPII Cooking, and 50 Salads. We use the evaluation protocol proposed
for Thumos for all three datasets here.

where explicit length modeling is superior, the mean length model outperforms the sliding
window baseline. We also investigate the decay factor α from Equation (5.13). For values
between 0.5 and 0.9, the results do not change substantially. Only if α is very close to one,
the e�ect of the length model vanishes since long segments are not anymore penalized. In
this case, the performance decreases towards the system without length model, cf. Table 5.3e.

The class-independent Poisson model is a model in between, not as strong as the class-
dependent model, but more explicit than the mean length model. Only on Thumos, where
the true length distribution is hard to �t, it performs better than the class-dependent model.
On the other datasets, the class-dependent model is still superior.

An example detection for each of the three length models on a video from 50 Salads is
illustrated in Figure 5.3. In contrast to the class-dependent model (Figure 5.3a), the class-
independent Poisson model (Figure 5.3b) tends to avoid short segments, particularly for the
background class. The mean length model (Figure 5.3c) prefers short segments, which results
in an over-segmentation of long actions.

A lower bound on the segment lengths is de�ned by the subsampling of frames. On 50

5.3. Experiments 71

Multi-class per class
Method prec recall mAP

sl. window, holistic (Rohrbach et al., 2012) 17.7 40.3 44.2

+ pose features (Rohrbach et al., 2012) 19.8 40.2 45.0

multiple granularity (Ni et al., 2014) 28.6 48.2 54.3

progressive interactional object parsing (Ni et al., 2016) 34.8 51.7 58.9

ours 45.0 25.9 58.3

Table 5.6: Multi-class precision and recall and single class mAP on MPII Cooking. We used
the evaluation protocol proposed by Rohrbach et al. (2012).

Salads, the 0.1 overlap mAP slightly decreases from 39.1% to 37.9% and 37.6% for 5, 10, and
20 frame subsampling. For e�ciency reasons, we stick to the 10 frame subsampling for all
experiments.

5.3.5 Comparison to Early Sliding Window Based Approaches

Our method outperforms the sliding window baseline consistently on all datasets, see Ta-
ble 5.5. On Thumos, our system achieves 3% higher mAP for overlap 0.1 to 0.4 and is still
1% better for overlap 0.5 compared to the winning submission from INRIA (Oneata et al.,
2014). Their approach is based on a sliding window and a model combination of their system
from the classi�cation challenge and a trajectory based classi�er trained on the data for the
detection task. Our system also outperforms the other challenge submissions of Karaman
et al. (2014) and Wang et al. (2014) which both use a sliding window. Wang et al. (2014) ad-
ditionally include CNN features in their classi�er. Table 5.6 shows multi-class precision/recall
and single class mAP on MPII Cooking. Rohrbach et al. (2012) use dense trajectories as fea-
tures (holistic) and additional pose features. Ni et al. (2014) use dense trajectory features
and detect hand-object interactions. In a follow up work Ni et al. (2016) use LSTMs to parse
interactional objects that help action detection. While the existing approaches achieve a high
recall at the cost of a comparably low precision, our approach achieves a higher precision at
the cost of lower recall. In terms of single class mAP, we are 14% better than Rohrbach et al.
(2012) and 4% better than Ni et al. (2014). The work of Ni et al. (2016) has comparable
performance to our approach but a lower precision.

5.3.6 Comparison to State-of-the-Art

In this section, we evaluate our model with recent deep I3D features (cf. Section 3.7) and
compare the results against the current state-of-the-art on Thumos. The used I3D features
are extracted from a network trained on Kinetics, the largest available action recognition
dataset so far. Most of the 20 Thumos classes are covered by the 400 classes of Kinetics
and the features have generally shown great performance when used on other datasets than
Kinetics, e.g. on UCF-101, see Carreira and Zisserman (2017) for details.

72 Chapter 5. Fully Supervised Action Segmentation

segment classi�cation accuracy (%)

I3D + linear 82.2
I3D + BoW-eq. NN 85.8

Table 5.7: Segment accuracy on pre-segmented action clips of the 212 videos from the Thumos
test set. For training, pre-segmented action clips have been extracted from the 200 videos of
the Thumos validation set.

We extract the features and train a classi�er for the 20 classes plus background on the
validation set of Thumos. Therefore, we segment the videos into clips covering exactly one
action instance or a background instance. This way, we obtain 5, 591 segments that can be
used to train the segment classi�er. The trained segment classi�er predicts class probabilities
p(c|xt2t1) for a segment ranging from t1 to t2. Note that this kind of model exactly matches
the required distribution in the visual model, see Equation (5.21), so it can be used in the
proposed action segmentation framework.

We investigate two architectures. For the �rst, the extracted framewise I3D features
are averaged for each action segment and a linear classi�er is trained on these averaged
features, which corresponds to a visual model similar to the one used before and described in
Section 5.2.3. The second architecture follows the BoW-equivalent neural network described
in Section 3.6. Following the network architecture shown in Figure 3.6, a softmax layer is used
for soft quantization, temporal averaging yields a vectorized representation of all frames of
the segment, and the explicit feature map replaces the kernel a SVM would typically use. We
use 4, 000 units in the �rst hidden softmax layer, corresponding to 4, 000 visual words, and
apply the χ2-feature map with sampling parameter n = 2, resulting in a 20, 000-dimensional
feature vector that is fed into the �nal classi�cation layer.

In Table 5.7, the segment classi�cation accuracy is shown for the linear model and the
BoW-equivalent neural network. The latter clearly outperforms the linear model and is thus
also a promising candidate to be used in the action segmentation framework.

Recent works on the Thumos temporal action detection task are mainly focusing on deep
end-to-end architectures. We provide an extensive comparison in Table 5.8 and run our
system with I3D features as a comparison. The most relevant works are the ones by Zhao
et al. (2017) and Chao et al. (2018). The �rst relies on segment proposals that are divided
into start, main, and end parts. Temporal pyramid pooling and a classi�cation module
then lead to a segment prediction. The second work is inspired by one of the most popular
architectures for object detection, Faster-RCNN (Ren et al., 2015), and models the task of
temporal action detection as the 1D equivalent to object detection. These two methods show
complementary results. If the overlap threshold is small, i.e. a segment is already considered
correct if it only overlaps with 10% or 20% with the ground truth, the method of Zhao et al.
(2017) performs best. For very tight overlap thresholds, the work of Chao et al. (2018) is
the most accurate. Note that a high overlap ratio is less forgiving for methods that tend to
generate an over-segmentation. Imagine a well located segment is cut in half in the middle
by a few falsely assigned background labels. At overlap 0.5, both the left and right half do

5.3. Experiments 73

Overlap

0.1 0.2 0.3 0.4 0.5

State-of-the-art approaches

Frame Glimpses (Yeung et al., 2016) 48.9 44.0 36.0 26.4 17.1

Multistage CNNs (Shou et al., 2016) 47.7 43.5 36.3 28.7 19.0

Structured Max Sums (Yuan et al., 2017) 51.0 45.2 36.5 27.8 17.8

Cascaded Boundary Regression (Gao et al., 2017b) 60.1 56.7 50.1 41.3 31.0

R-C3D (Xu et al., 2017) 54.5 51.5 44.8 35.6 28.9

BSN + UNet (Lin et al., 2018) − − 53.5 45.0 36.9

Structured Segment Networks (Zhao et al., 2017) 66.0 59.4 51.9 41.0 29.8

Re-thinking Faster-RCNN (Chao et al., 2018) 59.8 57.1 53.2 48.5 42.8

frame-level approaches (I3D features)

frame-level linear classi�er 61.2 56.6 48.0 35.1 25.1

frame-level BoW-eq. NN 65.2 60.0 52.7 42.1 29.7

full action segmentation framework (I3D features)

with linear segment classi�er as visual model 62.0 58.2 52.0 42.2 32.8

with BoW-eq. NN as visual model 63.8 60.3 55.7 47.2 35.8

Table 5.8: Comparison of recent deep learning based approaches on Thumos compared to
our method with I3D features.

not have su�cient overlap with the ground truth to be considered correct. At overlap 0.1,
on the contrary, one of the segments would still be counted as a correct detection.

In a �rst comparison, we evaluate the performance of deep I3D features against state-
of-the-art results. Therefore, we used the trained segment classi�er � the linear model and
the BoW-equivalent neural network � to output a prediction for every single frame. In order
to obtain framewise predictions, I3D features within a 10 frame window around the current
frame are passed to the respective network and the class with the highest score is assigned to
the frame. Note that no context model, length model, or Viterbi decoding is applied to the
output. Interestingly, this very simple baseline already achieves great results. Particularly
on high overlap ratios, the performance is close to the current state-of-the-art. The frame-
level BoW-equivalent neural network performs on par with the work of Zhao et al. (2017),
which is interesting since the approach is essentially a frame-level classi�er. This indicates
that recent advances on Thumos are much more attributed to strong deep features than to
actual segmentation networks. Moreover, since this approach is strong for low overlap ratios
but clearly worse than the approach of Chao et al. (2018) on higher overlap ratios, it is
questionable if complex approaches that only perform well on low overlap ratios should be
favored over simple frame-level approaches at all.

In a next step, we combine the two I3D based frame-level baselines with our framework,
i.e. we use the classi�ers in the visual model and apply the full pipeline including context

74 Chapter 5. Fully Supervised Action Segmentation

(a)

(b)

Figure 5.4: Detection result on video_test_0000026 on Thumos. The video is 3:28 minutes
long and contains actions of the class Tennis Swing. The top row shows the ground truth,
(a) is our approach with a linear segment classi�er and (b) is our approach with the BoW-
equivalent neural network as segment classi�er. The latter produces a better segmentation
and misses less action instances.

model, length model, and Viterbi decoding. Comparing the last four rows of Table 5.8, it
can be seen that incorporation of the context and length model as well as the sophisticated
Viterbi decoding results in signi�cant improvements for the higher and more di�cult overlap
ratios. Our results are somewhere in between the results of Zhao et al. (2017) and Chao
et al. (2018), producing good segmentations at all overlap ratios and outperforming other
state-of-the-art approaches at overlap ratios of 0.2 and 0.3.

Figure 5.4 shows an example segmentation of our method using (a) the linear segment
classi�er and (b) the BoW-equivalent neural network as segment classi�er. The linear segment
classi�er is less reliable than the BoW-equivalent neural network and does not �nd the action
instances as reliably.

5.4 Summary

In this chapter, we proposed a method for temporal action detection that jointly models the
segmentation and recognition of actions. The approach includes a length and context model
in addition to an action classi�er. Using dynamic programming, we can e�ciently infer the
globally optimal action segmentation and classi�cation.

An analysis of the impact of each model component revealed that the combination of
length and context model is crucial for good performance. An investigation of three di�erent
length models on each of the three datasets revealed that a strong length model, e.g. a class-
dependent Poisson model, is bene�cial if it represents the true distribution of the action
lengths. While a length model alone usually leads to over-segmentation if short segments
are penalized less than long segments, the context model has the opposite e�ect as for each
segment, a context model probability is multiplied and reduces the overall likelihood. Both
models combined counteract their respective weaknesses and lead to major improvements.
We have shown state-of-the-art results on multiple datasets, particularly on Thumos, where
we compared to recent end-to-end architectures.

Chapter 6

RNN-HMMs for Weakly Supervised

Action Segmentation

In the previous chapter, we discussed temporal action segmentation in a fully supervised
setting, i.e. when the labels of each frame of the training videos are known. For practical
applications, this is frequently an unreasonable setting. Obtaining full frame-level annotation
is expensive and time consuming. Thus, there is a need to reduce the amount of required
annotation. In this chapter, we propose a method for training an action segmentation system
using less supervision in form of action transcripts. Action transcripts are a complete, ordered
sequence of actions occurring in the video. In contrast to frame-level annotations, they do
not contain explicit temporal information or frame-to-label correspondences. Therefore, they
are much easier to obtain.

In order to e�ectively learn an action segmentation model, frame-to-label correspondences
have to be established either implicitly or explicitly during training. We describe a training
framework that allows for weakly supervised learning and is based on a modi�cation of the
general framework consisting of the visual, length, and context model that also built the
foundation for the fully supervised approach.

Contents

6.1 Introduction . 76

6.2 Task Description . 77

6.3 Technical Details . 79

6.3.1 Visual Model . 80

6.3.2 Context Model . 83

6.3.3 Inference . 84

6.3.4 Length Regularization . 91

6.3.5 Training . 95

6.4 Experiments . 96

6.4.1 Setup . 96

6.4.2 Evaluation of the GRU-based Model . 96

6.4.3 Analysis of the Subaction Modeling . 97

6.4.4 Analysis of Length Regularization . 99

6.4.5 Comparison to State-of-the-Art . 103

6.5 Summary . 105

76 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

6.1 Introduction

Hiring human annotators to generate a fully labeled video dataset is expensive and when it
comes to human actions in videos, transitions are frequently fuzzy and ambiguous, so that
inexperienced annotators do not always agree on temporal action boundaries. Moreover,
given a larger amount of action classes, frame-level annotation is challenging as each anno-
tator needs to know the appearance and characteristics of every relevant action class. This
problem is further aggravated by the need for large scale training data for most deep learning
approaches as shown by Carreira and Zisserman (2017). Additionally, the cost of training
data collection makes it hard to acquire enough data to advance concepts beyond short clips,
e.g. towards long term temporal models.

As pointed out in Section 1.2.2, one way to address this issue is to give up on the need
of frame-based annotation and to use only action labels and their ordering information to
learn the respective action classes. This information is much easier to generate for human
annotators, or can even be automatically derived from scripts (Laptev et al., 2008; Marszalek
et al., 2009) or subtitles (Alayrac et al., 2016). First attempts to address this kind of problem
have been made by Bojanowski et al. (2014); Alayrac et al. (2016); Huang et al. (2016)
and Kuehne et al. (2017).

In this context, we propose a hierarchical approach to address the problem of weakly
supervised learning of human actions from transcripts. The method combines recognition in
a coarse-to-�ne manner. On the �ne grained level, we use a discriminative representation of
subactions, modeled by a recurrent neural network as e.g. used by Donahue et al. (2015);
Ng et al. (2015); Singh et al. (2016), or Wu et al. (2015b). In our case, the RNN is used
as a basic recognition model as it provides robust classi�cation of small temporal chunks.
This allows to capture local temporal information. The RNN is supplemented by a hidden
Markov model that serves as a coarse probabilistic model to allow for temporal alignment
and inference over long sequences.

To bypass the di�culty of modeling long and complex action classes, we divide all ac-
tions into smaller building blocks. Those subactions are eventually modeled within the RNN
and later combined by the inference process. The usage of subactions allows to distribute
heterogeneous information of one action class over many subclasses and to capture charac-
teristics such as the length of the overall action class. We show that automatically learning
the number of subactions for each action class leads to a notably improved performance.

The obvious advantage of this kind of model is that it allows recognition of �ne grained
movements by still capturing mid and long temporal relations between frame responses. But
the model is also especially suitable for the task of weak learning because it enforces a modular
structure, as frame based responses are �rst modeled on subaction level and then combined
to action classes and eventually to action sequences. This allows for an iterative re�nement
of �ne-grained and coarse recognition as well as an alternating adaptation of both elements.

Our model is trained with an iterative procedure. Given the weakly supervised training
data, an initial segmentation is generated by uniformly distributing all actions among the
video. For each action segment, all subactions are uniformly distributed among the part
of the video belonging to the corresponding action. This way, an initial alignment between

6.2. Task Description 77

video frames and subactions is de�ned. In an iterative phase, the RNN is then trained on
this alignment and used in combination with the coarse model to infer new action segment
boundaries. From those boundaries, we recompute the number of subactions needed for each
action class, distribute them again among the frames aligned to the respective action, and
repeat the training process until convergence.

To further improve the performance in this context, we extend the standard HMM for-
mulation by the introduction of a state length regularizer during inference. The length reg-
ularization aims to balance the temporal dynamics of the system. The intuition underlying
this concept is that actions are usually not only characterized by their speci�c movements,
but also by the duration that is necessary to execute a certain task. One way to include this
characteristic in the proposed system is to model the length of an action by the number of
HMM states used to represent the action. But we found that depending on the observation
prior, a small number of states will aggregate all frames of an action during inference while
the other states are quickly skipped. This undermines the original idea of representing vari-
able length actions by adapting the number of states. The proposed length regularization
forces the model to stay in each HMM state for a limited, reasonable time only.

We evaluate the approach proposed in this chapter on two common benchmark datasets,
the Breakfast dataset (Kuehne et al., 2014) and Hollywood Extended (Bojanowski et al.,
2014) for the task of temporal action segmentation as well as for temporal action alignment.
While training for both tasks is the same, recall that for the latter action transcripts are given
during inference, whereas for temporal action segmentation only the video is given without
any information about the occurring labels.

The remainder of this chapter is organized as follows. In Section 6.2, the setting of weakly
supervised learning using action transcripts is described. In Section 6.3, the proposed system
is introduced in detail, addressing the hierarchical action model formulation in general, the
�ne-grained subaction classi�cation, the formulation of the length regularization, the inference
over video sequences, the alignment of action transcripts to video frames for weakly supervised
learning, the training of the system, and a discussion of the convergence behavior and the
respective stop criterion. An extensive experimental evaluation is provided in Section 6.4.

6.2 Task Description

We address the same action segmentation task that has been addressed by the previous fully
supervised approach and that is outlined in Section 3.1.2. In contrast to fully supervised
action detection or segmentation approaches, however, weakly supervised learning is based
on an ordered list of the actions occurring in the video rather than on frame-level annotation.
The di�erence between the previously addressed case of full, frame-level annotation and weak
annotations by action transcripts as proposed in this chapter is shown in Figure 6.1. A video
of the activity making cereals might consist of taking a bowl, pouring cereals in it, adding
milk, and stirring cereals and milk. In a fully supervised task a temporal annotation of each
action start and end time would be available for training, e.g. in form of

1 - 120: take_bowl

78 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

(a) Fully Supervised

take bowl

frame 1-120

pour cereals

frame 121-399

pour milk

frame 400-446

stir cereals

frame 447-577

(b) Weakly Supervised

take bowl, pour cereals, pour milk, stir cereals

Figure 6.1: The amount of supervision in (a) the fully supervised case and (b) the weakly
supervised case. While in the fully supervised case, frame-level annotation is provided, in
the weakly supervised case only an action transcript is given and no explicit frame-level
annotation is available.

121 - 399: pour_cereals

400 - 446: pour_milk

447 - 577: stir_cereals.

In the weakly supervised setup, all videos are just labeled with their ordered action
sequence given as

take_bowl, pour_cereals, pour_milk, stir_cereals.

Considering that the goal is to �nd a segmentation of the video that speci�es the number of
action instances N , their class labels cN1 , and the segment lengths lN1 , in the fully supervised
case all information that is to be inferred later is given during training, i.e. the full segmen-
tation (N, cN1 , l

N
1) is available for each training video. In the weakly supervised case, on the

contrary, the length information is not available during training and the annotation for each
training video only provides the number of segments and their labels (N, cN1).

As this information is available for each video and as long as all actions appear at least
once in di�erent contexts, it is possible to infer the related action boundaries without frame-
based ground truth information, in our case by choosing the related action representations in
a way that they maximize the probability that the sequences were generated by the respective
models.

Note that this also formulates the necessary preconditions of the overall system, namely
the fact that it needs the order of all actions as they appear in the sequences of the training
set and that all actions need to appear at least with two di�erent predecessors and successors.
This constraint is necessary as we want to maximize the probability that the sequences of

6.3. Technical Details 79

Figure 6.2: Overview of the proposed weak learning system. Given a list of ordered actions
for each video, an initial segmentation is generated by uniform segmentation. Based on this
input information we iteratively train an RNN-based �ne-to-coarse system to align the frames
to the respective action.

the training data are generated by models trained on a set of boundary assumptions. If e.g.
two actions always occur together and in the same order, the position of the boundary in
between the two actions can not be learned as there is no hint in the training data of how the
end of the �rst action or the start of the second action looks like. Only if one action appears
in a di�erent context, i.e. with di�erent predecessors and successors, we are able to learn a
reasonable visual model with respect to di�erent boundaries.

6.3 Technical Details

We again follow the general framework proposed in Chapter 4,

(N̂ , ĉN̂1 , l̂
N̂
1) = arg max

N,cN1 ,l
N
1

{
p(xT1 |cN1 , lN1) · p(lN1 |cN1) · p(cN1)

}
, (6.1)

but omit the length model p(lN1 |cN1), so the approach used in this chapter only features
a visual model and a context model. Instead, we propose a HMM-based visual model that
implicitly models length (a) via the number of HMM states and (b) via a length regularization
on the HMM states.

As sequential actions are naturally composed of hierarchical movements and actions at
di�erent levels of temporal granularity, we follow the idea of a hierarchical action model and

80 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

adapt it for the case of weak learning of human actions in video data.
At top level, we model each temporal sequence as a combination of basic actions. This

can be an activity, as e.g. making tea which would be made up of the actions take cup,
add teabag and pour water. Each of those actions is represented by a respective probabilistic
graph model, in this case an HMM, which models each action as a combination of subactions.
Intuitively, the idea of subactions is based on the fact that, e.g. an action such as take cup

consists of multiple movements like move hand towards cup, grab cup, move cup towards body
and release cup.

The proposed model captures those implicitly available but not explicitly annotated sub-
actions as latent variables by the states in the HMM. In order to build the state graph, it is
not necessary to know the true number or label of the possible subactions. Instead, we set
the number of subactions relative to the length of the corresponding action and update this
factor as part of the training. Thus subactions at the beginning of an action capture motion
patterns typical for that phase, as e.g. for take cup the �rst subactions comprise elements
such as move hand towards cup. To ensure the sequential peculiarity of human actions within
the HMM, we use a feed-forward topology, allowing only self-transition or transitions to the
next state. We also show that this characteristic can be further supported by introducing a
state speci�c length model to regularize the duration of each state during inference.

In the following, we describe the proposed framework in detail, starting with the formal
de�nition of the hierarchical action model. After that, we discuss the di�erent elements of
our model, the �ne-grained subaction classi�cation and the length regularizer in detail. Next,
we describe the inference and training procedure for the weakly supervised case and close
with a discussion of the chosen stop criterion.

6.3.1 Visual Model

For the fully supervised approach, we used a segment-level visual model, i.e. a model that
is already trained on trimmed action segments that can be obtained from the ground truth
annotation. For weakly supervised learning, such supervision is not available anymore. We
therefore introduce a visual model that operates on a per-frame basis and can be trained
given the transcripts only.

Formally, we can assume the training data is a set of tuples (xT1 , c
N
1), where xT1 =

(x1, . . . , xT) are framewise features of a video with T frames and cN1 is an ordered sequence
(c1, . . . , cN) of actions occurring in the video, as de�ned in the previous chapters. Note that
the goal is still to infer a complete segmentation (N, cN1 , l

N
1) but as supervision, only (N, cN1)

are given and the ground truth lengths of the segments are unknown during training. When
cN1 is known, a segmentation of the video is de�ned by the mapping

n(t) : {1, . . . , T} 7→ {1, . . . , N} (6.2)

that has been introduced in Equation (4.5) and assigns an action segment index to each frame.
While in the fully supervised case, this function has been given during training implicitly by
lN1 , in the current weakly supervised setting, it needs to be learned. Initially, n(t) can be
modeled by a linear segmentation of the provided actions, see Figure 6.10a. Assuming that

6.3. Technical Details 81

s
(c)
1 s

(c)
2

. . .

. . . s
(c)
Kc−1 s

(c)
Kc

Figure 6.3: 0-1 HMM architecture for an action c. From a subaction state s(c)i , it is only

possible to either stay in the state or proceed to the successor state s(c)i+1.

the frames are independent and only depend on their assigned action label cn(t) rather than on
the complete transcript cN1 , the likelihood of a video sequence x

T
1 given the action transcripts

cN1 is de�ned as

p(xT1 |cN1) :=
T∏

t=1

p
(
xt|cn(t)

)
, (6.3)

where p(xt|cn(t)) are probabilities of frame xt being generated by the action cn(t).
The action classes usually describe longer, task-oriented procedures that naturally consist

of more than one signi�cant movement and we want to e�ciently capture those characteristics.
We model each action as a sequential combination of subactions. For each action class c, a
set of subactions s(c)1 , . . . , s

(c)
Kc

is de�ned. The number Kc is initially estimated by a heuristic
and re�ned during the optimization process. Practically, this means that we subdivide the
original long action classes into a set of smaller subactions. As subactions are obviously
not de�ned by the given ordered action sequences, we treat them as latent variables that
need to be learned by the model. In the following system description, we assume that the
subaction frame boundaries are known, e.g. from previous iterations or from an initial uniform
segmentation (see Figure 6.10b), and discuss the inference of concrete boundaries in Section
6.3.3.

In order to combine the �ne grained subactions to action sequences, a hidden Markov
model for each action c is de�ned. The HMM ensures that subactions only occur in the
correct ordering, i.e. that s(c)i ≺ s

(c)
j for i ≤ j. More precisely, let

sT1 = (s1, . . . , sT), st ∈ S = {s(c1)1 , . . . , s
(cN)
KcN
} (6.4)

be an alignment from the set of possible subactions S to the time frames t. When going
from one frame to the next, we only allow to assign either the same subaction or the next
subaction, so if at frame t the assigned subaction is st = s

(c)
i , then at frame t + 1 either

st+1 = s
(c)
i or st+1 = s

(c)
i+1, see Figure 6.3.

While the transition probabilities p(s|s̃) are learned during training for all (s, s̃) pairs that
meet the 0-1-model condition, all other transition probabilities are set to zero. Exceptions
are the probabilities to transition from an HMM end state s(c̃)Kc̃ of some class c̃ to an HMM

start state s(c)1 of another class c. Since we do not want the HMM to constrain transitions
between action classes at all, we set such transition probabilities to one.

82 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

input: video xT
1 = (x1, . . . , xT)

x1 x2 . . . xT

GRU GRU . . . GRU

p(s|x1
1) p(s|x2

1) . . . p(s|xT
1)

targets: subaction labels

Figure 6.4: RNN using gated recurrent units with framewise video features as input. At
each frame, the network outputs a probability for each possible subaction while considering
the temporal context of the video by the preceding frames.

The likelihood of an action sequence xT1 given the action transcripts cN1 can then be
expressed in terms of the HMM state alignment sT1 as

p(xT1 |sT1) :=
T∏

t=1

p
(
xt|st

)
· p
(
st|st−1

)
, (6.5)

where p(xt|s) are probabilities computed by the �ne-grained subaction model and p(st|st−1)
is a HMM state transition probability. Equation (6.5) is the visual model in which the
�ne-grained subaction model still has to be de�ned.

Fine-grained Subaction Model

For the �ne-grained subaction model p(xt|st) from Equation (6.5), we use an RNN with a
single hidden layer of gated recurrent units which have been shown to work well in video
classi�cation (Ballas et al., 2016). The network is shown in Figure 6.4. For each frame, it
predicts a probability distribution over all subactions, while the recurrent structure of the
network allows to incorporate local temporal context. Since the RNN generates a posterior
distribution p(s|xt) but our coarse model deals with subaction-conditional probabilities, we
use Bayes' rule to transform the network output to

p(xt|s) = const · p(s|xt)
p(s)

, (6.6)

6.3. Technical Details 83

and thus allow for a direct usage of the distributions generated by the recurrent network in
Equation (6.5).

As recurrent neural networks are usually trained using back propagation through
time (Werbos, 1990), which requires to process the whole sequence in a forward and backward
pass and a video can be very long and may easily exceed 10, 000 frames, the computation
time per minibatch can be extremely high. We therefore adapt the training procedure by
using small chunks around each video frame. They can be e�ciently processed with a rea-
sonably large minibatch size in order to enable e�cient RNN training on long videos. For
each frame t, we create a chunk over xtt−20 and forward it through the RNN. While this
practically increases the amount of data that needs to be processed by a factor of 20, only
short sequences need to be forwarded at once and we bene�t from a high degree of parallelism
and a comparably large minibatch size.

6.3.2 Context Model

While we used an m-gram in the previous chapter, we resort to a more restrictive context
model here. Due to the dataset characteristics of Thumos, the de-facto benchmark for fully
supervised action detection and segmentation, a limited context in form of an m-gram is
su�cient. For many other datasets, however, context dependencies can be larger and span
the complete action transcript. Moreover, as the visual model is much weaker for weakly
supervised systems, a more restrictive context model can greatly help.

We present a context model here that is based on stochastic right-regular grammars. A
stochastic right-regular grammar is a �ve-tuple

Γ =
(
H, C,R, h$, p(c|h)

)
, (6.7)

where H is the set of non-terminal symbols that in our case encode the possible action class
histories and h$ is the start symbol. The set of terminal symbols is the set of action classes C.
The distribution p(c|h) denotes the probability of producing a label c ∈ C given the context
h ∈ H. A right-regular grammar further consists of a set of production rules R that are of
the form

h̃
p(c|h̃)−→ c h or (6.8)

h̃
p(c|h̃)−→ c, (6.9)

where h̃, h ∈ H are two non-terminal symbols, c ∈ C is an action class, and p(c|h̃) denotes
the probability of a transition from the context h̃ to the context h when hypothesizing an
action class c.

Note that every stochastic �nite automaton can be represented as a right-regular grammar
with the states being the non-terminal symbols H, the inputs being the action labels C and
the start state being h$. The transition probabilities for transitioning from a state h̃ to a state

h via class c correspond to the probabilities associated with the respective rule h̃
p(c|h̃)−→ c h

and rules of the form h̃
p(c|h̃)−→ c are transitions into a unique end state. This in mind, it is

84 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

worth mentioning that right-regular grammars can model arbitrary regular expressions and
the previously used m-grams are an instance of such a right-regular grammar.

In this work, we use a simple kind of right-regular grammar that can produce exactly the
action transcripts cN1 that occur in the training set. We assign equal probability to all of these
sequences. Figure 6.5 illustrates how the grammar is created from the training transcripts.
Transcripts that share a common pre�x can be represented by the same path in the resulting
tree-like automaton and branch at the �rst point at which they di�er. For each history of
action labels, there is a non-terminal symbol. Assigning equal probability to each possible
path is equivalent to setting all transition probabilities to 1.0. Note that a renormalization
of the resulting distribution p(c|h) is not necessary since the renormalization factor would
not a�ect the maximizing arguments. This simple kind of grammar proves to be e�cient for
the datasets used in this work, however, the framework allows for more complex stochastic
grammars in principle.

6.3.3 Inference

For inference, the goal is to �nd the best segmentation for a given video xT1 . To do so,
we use a Viterbi based inference method based on the hidden Markov model formulation
of our system. While previously, a Viterbi decoding over the action classes could be used,
we now need to maximize over a sequence of subaction classes that implicitly de�nes the
segmentation on action class level. The decoding is similar to the previously discussed simple
Viterbi version from Chapter 4 and the modi�ed version from Chapter 5 but requires some
adjustments in order to work on subaction level.

Recall that we omit the length model in our model formulation here as the HMMs in the
visual model implicitly model action lengths by the number of subactions or states per action
class. We are therefore interested in �nding the best segmentation as

(N̂ , ĉN̂1 , l̂
N̂
1) = arg max

N,cN1 ,l
N
1

{
p(xT1 |cN1 , lN1) · p(cN1)

}
. (6.10)

Before we can insert the actual models into the above equation, consider that the visual model
p(xT1 |sT1) is conditioned on a state sequence sT1 rather than on the class and length sequences
(cN1 , l

N
1). Since each HMM state st in the state sequence sT1 is associated with a concrete

subaction s(c)i for some action class c, the state sequence sT1 de�nes a unique segmentation
(N, cN1 , l

N
1). Let E : sT1 7→ (N, cN1 , l

N
1) be an extractor function that maps from the state

sequence to the underlying segmentation, see Figure 6.6 for an illustration.
The remaining obstacle is how to connect the context model p(c|h) with the state sequence

sT1 . Consider the segmentation (N, cN1 , l
N
1). This segmentation is only possible, if cN1 can be

generated by the grammar. Therefore, there must be a sequence hN1 of non-terminal symbols
such that for every n ∈ {1, . . . , N}, there is a production rule hn−1 → cn hn with probability
greater than zero in the set of rules R. According to the de�nition of our grammar, the
last rule in the generation process is always of the form h → c. For simplicity, we use an
equivalent notation where the last applied production rule is of the form hN−1 → cN hN with
a virtual end symbol hN = hend that only occurs on right-hand-sides of production rules and

6
.3
.
T
e
ch
n
ic
a
l
D
e
ta
ils

8
5

Transcripts:
(c1, c2, c3)
(c2, c4, c3)
(c1, c2, c4)

(c1, c3)
(c2, c4)

(c2, c1, c3)

Finite Automaton:

c1

c2

h$

c2

c3

c4

c1

hc1

hc2

c3

c4

c3

c3

hc1c2

hc2c4

hc2c1

Resulting Rules:

h$
1.0−→ c1 hc1

h$
1.0−→ c2 hc2

hc1
1.0−→ c2 hc1c2

hc1
1.0−→ c3

hc2
1.0−→ c4

hc2
1.0−→ c4 hc2c4

hc2
1.0−→ c1 hc2c1

hc1c2
1.0−→ c3

hc1c2
1.0−→ c4

hc2c4
1.0−→ c3

hc2c1
1.0−→ c3

Figure 6.5: Generation of the right-regular grammar from the training transcripts. Left: transcripts given during training.
Middle: (stochastic) �nite automaton generated from the transcripts. Final states are indicated by a double line. Probabilities
on the arcs have been omitted since we assign equal probability to each path in our grammar. Right: resulting rules of the
right-regular grammar. Note that for our datasets, very simple grammars that generate exactly those transcripts that occur in
the training data are su�cient. More complex models that also assign some probability mass to paths not seen in training can
also be modeled with right-regular grammars; m-grams (cf. Chapter 5) are an example for such models.

86 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

sT1

E
(N, cN1 , l

N
1)

s
(c1)
1 s

(c1)
2 s

(c2)
1 s

(c2)
1 s

(c2)
2 s

(c2)
2 s

(c2)
2 s

(c2)
2 s

(c2)
3 s

(c2)
4 s

(c2)
4 s

(c3)
1 s

(c3)
2 s

(c3)
2 s

(c3)
2

c1, `1 c2, `2 c3, `3

Figure 6.6: Example for the extractor function E . For a given state sequence sT1 , E maps
to the underlying segmentation (N, cN1 , l

N
1).

thus also does not allow for further production of new action classes. Inserting the visual
model and the context model, Equation (6.10) can then be rewritten as �nding the best state
alignment that meets the above-mentioned requirements,

ŝT1 = arg max
sT1 :

(N,cN1 ,l
N
1)=E(sT1),

∃hN1 ∀n: hn−1→cnhn∈R

{ T∏

t=1

p(xt|st) · p(st|st−1) ·
N∏

n=1

p(cn|hn−1)
}

(6.11)

and the optimal segmentation (N̂ , ĉN̂1 , l̂
N̂
1) is given by application of the extractor function E

to the best HMM state sequence ŝT1 .

In the following, we derive the recursive equations to e�ciently �nd the optimal HMM
state sequence ŝT1 . As a �rst step, we remove the product over the N segments and rewrite
Equation (6.11) as a product over the frames only,

ŝT1 = arg max
sT1 :

(N,cN1 ,l
N
1)=E(sT1),

∃hN1 ∀n: hn−1→cnhn∈R

{ T∏

t=1

p(xt|st) · p(st|st−1) ·
[
p(cn(t)|hn(t)−1)

]J∃c,c̃:st=s(c)1 ∧ st−1=s
(c̃)
Kc̃

K
}
,

(6.12)

where J·K is again the index function and the term inside the index function is true if st is the

�rst subaction s(c)1 for some action class c and at the previous frame, the state st−1 was the

last subaction state s(c̃)Kc̃ of a preceding class c̃. In other words, the index function evaluates
to true if t is the �rst time frame of a new action class, so the context model needs to be
multiplied. Note that the function n(t), which is used in the context model p(cn(t)|hn(t)), is
available since it only depends on the lengths lN1 which can be obtained by application of the
extractor function to the state sequence sT1 .

Similarly to the derivation in the previous chapter, we focus on �nding the probability of
the best sequence, i.e. the max instead of the arg max, and introduce an auxiliary function
Q(τ, s, h) that de�nes the best HMM state sequence up to time τ that ends in state s with

6.3. Technical Details 87

context h,

Q(τ, s, h) = max
sτ1 :sτ=s,

(η,cη1 ,l
η
1)=E(sτ1),

∃hη1∀n: hn−1→cnhn∈R,
hη=h

{ τ∏

t=1

p(xt|st) · p(st|st−1)

·
[
p(cn(t)|hn(t)−1)

]J∃c,c̃:st=s(c)1 ∧ st−1=s
(c̃)
Kc̃

K
}
. (6.13)

Also similar to the derivation in the previous chapter, we isolate the last factor for time τ in
the equation,

Q(τ, s, h) = max
sτ1 :sτ=s,sτ−1=s̃
(η,cη1 ,l

η
1)=E(sτ1),

∃hη1∀n: hn−1→cnhn∈R,
hη=h

{[τ−1∏

t=1

p(xt|st) · p(st|st−1)

·
[
p(cn(t)|hn(t)−1)

]J∃c,c̃:st=s(c)1 ∧ st−1=s
(c̃)
Kc̃

K
]

· p(xτ |s) · p(s|s̃) ·
[
p(cn(τ)|hn(τ)−1)

]J∃c,c̃:s=s(c)1 ∧ s̃=s
(c̃)
Kc̃

K
}
.

(6.14)

We now make a case distinction into the within segment case and the between segment case.
In the within segment case, there is no new segment starting at time τ , so the index function
in the last term of Equation (6.14) evaluates to zero and

Q(τ, s, h) = max
s̃∈{s,pred(s)}

max
sτ−1
1 :sτ−1=s̃

(η,cη1 ,l
η
1)=E(sτ−1

1),
∃hη1∀n: hn−1→cnhn∈R,

hη=h

{[τ−1∏

t=1

p(xt|st) · p(st|st−1)

·
[
p(cn(t)|hn(t)−1)

]J∃c,c̃:st=s(c)1 ∧ st−1=s
(c̃)
Kc̃

K
]

· p(xτ |s) · p(s|s̃)
}

= max
s̃∈{s,pred(s)}

{
Q(τ − 1, s̃, h) · p(xτ |s) · p(s|s̃)

}
, (6.15)

where we use that the inner maximization in the �rst line is Q(τ − 1, s̃, h) with the de�nition
from Equation (6.13). The function pred(s) denotes the preceding subaction of s, i.e. if s

is an instance of subaction s(c)i , pred(s) = sci−1. Recall that we use a 0-1 HMM, so within
a segment, it is either possible to transition from the same subaction (loop) or from the
preceding subaction, cf. Figure 6.3. In the within-segment case, s can not be an HMM start
state, so pred(s) is always de�ned.

For the between segment case, the index function evaluates to one and the situation is a
bit more involved. If a new segment starts at time τ , the extractor function returns di�erent
results for E(sτ1) and E(sτ−11). Therefore, it needs to be made sure that there is a rule from

88 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

. . . t− 1 t . . .

s
(c1)
1

s
(c1)
2

s
(c1)
3

c1

s
(c2)
1

s
(c2)
2

s
(c2)
3

c2

s
(c3)
1

s
(c3)
2

s
(c3)
3

c3

Q(t− 1, s
(c2)
1 , h) ·p(s(c2)2 |s(c2)1)

Q(t− 1, s
(c2)
2 , h) ·p(s(c2)2 |s(c2)2)

·p(xt|s(c2)2)

Figure 6.7: Viterbi decoding in the within segment case. For each state s(c)i that is not an

HMM start state, there are only two possible predecessor states, s(c)i itself and s(c)i−1.

the last context h̃ available in the maximization over sτ−11 that produces the class c and the
new context h, i.e. there must be a rule h̃→ c h. Further, in the between segment case, s is
always a start state of an subaction HMM, i.e. s = s

(c)
1 for some class c. Thus,

Q(τ, s = s
(c)
1 , h) = max

s̃,h̃:
h̃→c h∈R

max
sτ−1
1 :sτ−1=s̃

(η,cη1 ,l
η
1)=E(sτ−1

1),
∃hη1∀n: hn−1→cnhn∈R,

hη=h̃

{[τ−1∏

t=1

p(xt|st) · p(st|st−1)

·
[
p(cn(t)|hn(t)−1)

]J∃c,c̃:st=s(c)1 ∧ st−1=s
(c̃)
Kc̃

K
]

· p(xτ |s) · p(s|s̃) · p(c|h̃)
}

= max
s̃,h̃:

h̃→c h∈R

{
Q(τ − 1, s̃, h̃) · p(xτ |s) · p(s|s̃) · p(c|h̃)

}
. (6.16)

Equation (6.15) and (6.16) show that both, the within segment case and the between segment
case at time τ are again recursively de�ned by the function Q at the preceding time τ − 1.
Both cases of the Viterbi decoding are illustrated in Figure 6.7 and Figure 6.8, respectively.
Note that an HMM start state s(c)1 can be reached in two ways, either in the within segment

6.3. Technical Details 89

. . . t− 1 t . . .

s
(c1)
1

s
(c1)
2

s
(c1)
3

c1

s
(c2)
1

s
(c2)
2

s
(c2)
3

c2

s
(c3)
1

s
(c3)
2

s
(c3)
3

c3

Q(t− 1, s
(c1)
3 , h̃1) ·p(c2|h̃1)

Q(t− 1, s
(c2)
3 , h̃2)

·p(c2|h̃2)

Q(t− 1, s
(c3)
3 , h̃3)

·p(c2|h̃3)

·p(xt|s(c2)1)

Figure 6.8: Viterbi decoding in the between segment case. A transition into an HMM start
state s(c)1 can be made from every HMM end state with context h̃ if there is a rule h̃→ c h in
the grammar. In case of a simple bigram, the contexts h̃1, h̃2, and h̃3 are simply the classes
c1, c2, and c3 of the preceding segments. For grammars with a larger context, there may be
multiple possible contexts for each HMM end state. In that case, the decoding would go over
an additional third axis of nonterminal symbols which has been omitted in the plot.

case via a loop transition from itself, or in the between segment case via a transition from an
HMM end state.

The probability of the best state alignment is given as

max
s∈{s(c)Kc :c∈C}

Q(T, s, hend), (6.17)

where hend is the above mentioned virtual end symbol of the grammar that never occurs on a
left-hand-side of a rule. The maximization is carried out over all HMM states that are an end
state for an action class c. In order to reconstruct the best state alignment, two traceback
arrays A and B are used, indicating the best HMM state at the previous time and the best
context at the previous time. For the within segment case, those best predecessors are

A(τ, s, h) = arg max
s̃∈{s,pred(s)}

{
Q(τ − 1, s̃, h) · p(xτ |s) · p(s|s̃)

}
, (6.18)

B(τ, s, h) = h. (6.19)

90 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

Algorithm 6.1 Viterbi Decoding
1: Q(1 : T, :, :) = 0

2: Q(0, :, h$) = 1

3: for t = 1, . . . , T do

4: for s ∈ S do
5: for h : ∃c, h′ : c = class(s) ∧ h′ → c h ∈ R do

6: if ∃c : s = s
(c)
1 then

7: for h̃ : h̃→ c h ∈ R do

8: for s̃ : ∃c̃ : s̃ = s
(c̃)
Kc̃
∧ ∃h′ : h′ → c̃ h̃ do

9: if Q(t, s, h) < Q(t− 1, s̃, h̃) · p(xt|s) · p(c|h̃) then

10: Q(t, s, h) = Q(t− 1, s̃, h̃) · p(xt|s) · p(c|h̃)

11: A(t, s, h) = s̃

12: B(t, s, h) = h̃

13: else

14: for s̃ ∈ {s, pred(s)} do
15: if Q(t, s, h) < Q(t− 1, s̃, h) · p(xt|s) · p(s|s̃) then
16: Q(t, s, h) = Q(t− 1, s̃, h) · p(xt|s) · p(s|s̃)
17: A(t, s, h) = s̃

18: B(t, s, h) = h

19: return Q,A,B

For the between segment case, we have

A(τ, s = s
(c)
1 , h) = arg max

s̃

{
max
h̃:

h̃→c h∈R

{
Q(τ − 1, s̃, h̃) · p(xτ |s) · p(s|s̃) · p(c|h̃)

}}
, (6.20)

B(τ, s = s
(c)
1 , h) = arg max

h̃:
h̃→c h∈R

{
max
s̃

{
Q(τ − 1, s̃, h̃) · p(xτ |s) · p(s|s̃) · p(c|h̃)

}}
. (6.21)

Complexity

Algorithm 6.1 provides a pseudo code implementation of the Viterbi decoding. In order
to compute the entries of Q, a nested loop over all time frames and all possible HMM states
is necessary. For the third component, the history, only those non-terminals h need to be
considered that can be reached by producing a class c the subaction s belongs to, i.e. only
those h that occur together with c on the right-hand-side of some rule, see line �ve of the
algorithm. For the between segment case (line eight to thirteen), a further optimization is
not to maximize over all possible HMM states s̃ ∈ S but only over those that can actually be
a predecessor of s. In fact, if s is an HMM start state, s̃ can only be an end state of another
action class, else the transition probability is zero. Note that the transition probability
between all pairs of end and start states has been set to one, so the transition term p(s|s̃)
can be omitted in the between segment case. The for loop in the within segment case also
just requires to run over the two elements s and pred(s) due to the 0-1 HMM architecture.

6.3. Technical Details 91

Algorithm 6.2 Reconstruction of the best segmentation
1: states = []

2: s = arg max
s̃∈{s(c)Kc

:c∈C}
Q(T, s̃, hend)

3: h = hend
4: for t = T, . . . , 1 do

5: states.append(s)

6: s = A(t, s, h)

7: h = B(t, s, h)

8: states = states.revert()

9: (N, cN1 , l
N
1) = E(states)

10: return (N, cN1 , l
N
1)

Overall, the Viterbi decoding has an asymptotic runtime of O(T · |S| · |R|), i.e. it is linear
in the size of the number of rules in the grammar, the number of HMM states, and the length
of the video. The traceback of the best state alignment is straightforward and linear in the
video length T , see Algorithm 6.2. Note that also the extractor function E can be computed
in one pass over the state sequence and thus, can also be computed in linear time.

Inference for Action Alignment. We also apply our model to temporal action alignment,
cf. Section 3.1.2. For this task, the sequence of ordered actions is not only given during
training but also for inference. Thus, only the best alignment between video frames and
action transcript needs to be inferred. This task can be easily addressed using the proposed
inference method when the context model at inference time is a grammar that generates only
one sequence, i.e. the given action transcript for the video.

6.3.4 Length Regularization

In order to avoid degenerate solutions, we further add a state speci�c length regularizer as an
additional factor to our state model. The length regularizer serves in this case as a temporal
decay model that rewards the model at the beginning of a new state to stay in this state for
a certain amount of frames and punishes the model if it stays too long in the same state.
The idea is motivated by the observation that, without length regularizer, the system tends
to skip many states, only remaining in those states for one or two frames. An example of
this behavior is shown in Figure 6.9. It is clear to see that the HMMs in this case do not
model any temporal progression. To evaluate this behavior further, we counted the so called
skip states, i.e. states which are only assigned to one frame, for the case without and with
length regularizer. We observe that without length regularization, 74.6% of all processed
states can be counted as skip states whereas the introduction of the length regularizer, e.g.
for the best performing con�guration reported in Section 6.4.4, reduces the amount of skip
states to 61.9%.

Formally, the length regularizer is a function of the duration of a state s at position t in
the overall state-to-frame alignment, i.e. a function of the length `(st) that captures how long

92 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

Example for state-alignment
without length prior:

2 1 2 43 2

1 44 1 3 1

Example for desired
state-alignment:

12 3 15 19 1

Figure 6.9: Example of state alignment for two instances of the same action as they are
usually produced by the system without length regularization and of an instance showing
the intended state alignment. In the �rst two cases, the HMM does not model the tempo-
ral progression but rather uses the subaction states to distinguish between di�erent action
appearances.

the model already remained in one state at time t. The length function is de�ned recursively
as

`(st) =

{
`(st−1) + 1, if st = st−1,

1, otherwise.
(6.22)

The regularizer r(`(st)|st) models a decay factor based on the mean length len(st) of the
respective state. The mean length is given by the average length of each state computed as

len(s) =
number of frames aligned to s

number of s-instances
. (6.23)

In Section 6.4.4, we analyze four di�erent kinds of length regularizers, one with a strict
upper bound on the length, a linearly decaying model, and one-sided Poisson and Gaussian
distributions.

6.3. Technical Details 93

Decoding with Length Regularization

We incorporate the length regularizer r(`(st)|st) into the visual model, so that the length-
regularized visual model is

p(xT1 |sT1) =
T∏

t=1

p(xt|st) · p(st|st−1) · r(`(st)|st). (6.24)

The updated recursive equations for the Viterbi decoding are then

Q(t, s, h) = max
s̃∈{s,pred(s)}

{
Q(τ − 1, s̃, h) · p(xτ |s) · p(s|s̃) · r(`(st)|st)

}
(6.25)

for the within segment case and

Q(t, s = s
(c)
1 , h) = max

s̃,h̃:
h̃→c h∈R

{
Q(τ − 1, s̃, h̃) · p(xτ |s) · p(s|s̃) · r(`(st)|st) · p(c|h̃)

}
(6.26)

for the between segment case.
Due to the per-frame application of the length regularization, it needs to be a modi�cation

of a typical length distribution p(`|st). Speci�cally, if p(`|st) models the probability of st being
` frames long, the regularizer r(`(st)|st) needs to ful�ll

∏̀

i=1

r(`(st−i+1)|st−i+1) = p(`|st). (6.27)

In order to achieve this, the framewise length regularizer is de�ned as

r(`(st)|st) =

{
p(`(st)|st)

p(`(st−1)|st−1)
, if st = st−1,

p(` = 1|st), otherwise.
(6.28)

Particularly that means that the length model p(`(st−1)|st−1) used at time t− 1 is removed
and replaced with the length model p(`(st)|st) at time t if the HMM state did not change.

While the time complexity of the Viterbi decoding is maintained by the proposed length
regularization, the resulting Viterbi path does not necessarily yield the globally best segmen-
tation but only an approximation: while the regularizer is multiplied on a per-frame basis,
it still depends on the duration the HMM already stayed in a speci�c state. The Viterbi
decoding, however, only optimizes based on the results from the previous frame and does not
maximize over the duration of a state.

Moreover, the underlying length distribution p(`|st) must be monotonously deceasing.
To illustrate why, consider a path that, at time t, has just changed to state s. A non-
monotonous function such as a classical Poisson distribution would penalize such a path
strongly, although the path may turn out very good if it stays in state s in the future. Using
monotonous length models avoids this problem and only paths that are in a certain state s
for too long are penalized. An evaluation of possible monotonous length models can be found
in Section 6.4.4, where we analyze four di�erent models, namely a box function, a linear
decreasing function, a half Poisson, and a half Gaussian distribution.

9
4

C
h
a
p
te
r
6
.
R
N
N
-H
M
M
s
fo
r
W
e
a
k
ly

S
u
p
e
rv
is
e
d
A
c
ti
o
n
S
e
g
m
e
n
ta
ti
o
n

Action transcript:

action 1 action 2 action 3

(a) Linear Alignment to Actions

(b) Linear Alignment to HMM States
s•1 s•2 s•3 s•1 s•2 s•3 s•1 s•2 s•3

(c) Estimate p(xt|st) and p(st|st−1) train RNN train HMM

(d) argmax
sT1

{
p(xT

1 |sT1) · p(cN1)
}

s•1 s•2 s•3 s•1 s•2 s•3 s•1 s•2 s•3

(e) Re-distribute HMM states
s•1 s•2 s•1 s•2 s•3 s•4 s•5 s•1 s•2

(f) Estimate p(xt|st) and p(st|st−1) train RNN train HMM

Iterate until convergence

Figure 6.10: Training process of our model. Initially, each action is modeled with the same number of subactions and the video
is linearly aligned to these subactions. Based on this alignment, the RNN is trained and used in combination with the HMMs
to realign the video frames to the subactions. Eventually, the number of subactions per action is reestimated and the process is
iterated until convergence.

6.3. Technical Details 95

6.3.5 Training

The training of the model is done iteratively, altering between the recurrent neural network
and the hidden Markov model training, and the alignment of frames to subactions via the
hidden Markov model. The whole process is illustrated in Figure 6.10. We start with a
linear segmentation and alignment of all training videos, train the respective RNN and HMM
models and run an inference with the trained models which results in new frame boundaries
for each action. We then redistribute the HMM states according to the new segmentation and
repeat the training procedure several times until convergence is reached. In the following, we
describe the two relevant steps, the initialization as well as the iterative training procedure
in detail.

Initialization. Each video is divided into N segments of equal size, where N is the
number of action instances in the transcript (Figure 6.10a). Each action segment is further
subdivided equally across the subactions (Figure 6.10b). Note that this de�nes the alignment
sT1 between frames and subactions. Additionally, each subaction should cover m frames of
an action on average. We �x m to 10 frames per subaction. Thus, the initial number of
subactions for each action is

Kc =
total number of frames

total number of action instances ·m. (6.29)

Hence, initially each action is modeled with the same number of subactions. This can change
during the following iterative optimization.

Training. The �ne-grained RNN and the HMM are trained with the current alignment
sT1 as ground truth (Figure 6.10c). The RNN training follows the procedure outlined in
Section 3.5. For the HMM, the transition probabilities p(s|s̃) are estimated as relative fre-
quencies of the alignments sT1 of each training video. If a length regularizer is used, the mean
lengths for a state s are also estimated based on the alignments sT1 .

Using the updated RNN and HMM probabilities, the model from Equation (6.11) is
applied to the training videos and a new alignment of frames to subactions (Figure 6.10d) is
inferred using the inference algorithm described in Section 6.3.3. Note that during training,
a context model that generates the provided action transcript cN1 as the only possible path
is used.

Reestimation. Once the realignment is computed for all training videos, the new average
length of each action is computed and the number of subactions is re-estimated based on the
updated average action lengths, so that there are Kc = len(c)/m subactions for action c.
The new subactions are again uniformly distributed among the frames assigned to the action
(Figure 6.10e). This results in new state alignments sT1 for each training video and the
training process starts over from this point on. As the mapping for each iteration requires a
di�erent number of outputs for the RNN, we train a new RNN model for each iteration from
scratch, initialized with random weights.

Context Model. During training, a grammar that only generates the action transcript
of the video to be aligned is used. For inference, however, a general grammar that can
produce various action transcripts is required. We learn a grammar that can produce exactly

96 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

the sequences that occur during training. The probability for each rule in the grammar is set
to one, making each action transcript equally likely.

Stop Criterion. As the system iteratively approximates the optimal action segmentation
on the training data, we de�ne a stop criterion based on the overall amount of frame labels
changed from one iteration to the succeeding one. Overall, training is stopped if less than
5% of the frames are assigned a new label or a maximum of 15 iterations is reached.

6.4 Experiments

We �rst evaluate the performance of the di�erent components of our system, namely the
GRU based classi�cation, the subaction modeling, and the length regularizer. We evaluate
all tasks on the test set of the Breakfast dataset and report results as frame accuracy. The
system is iterated until the stop criterion as described in Section 6.3.5 is reached.

6.4.1 Setup

We evaluate the proposed approach on two di�erent datasets, Breakfast and Hollywood
Extended, see Chapter 2 for a detailed description. Both datasets are standard bench-
marks for weakly supervised action segmentation and are used in various other works on
the topic (Kuehne et al., 2017; Huang et al., 2016). Note that in contrast to Thumos, where
each video mainly consists of alternations between background and action instances of a
single class, on Breakfast and Hollywood Extended, more complex action transcripts occur,
requiring a grammar based context model rather than an m-gram that captures only short
range action context. For both datasets we use framewise Fisher vectors of improved dense
trajectories as described in Section 3.4.4. For the action model, we �x the number of hidden
units in the RNN to 64. During training, no frame-level ground truth is used at all. The only
annotation are the action transcripts cN1 for each video.

We address the tasks of temporal action segmentation and temporal action alignment.
For the temporal segmentation task, we report frame accuracy for Breakfast and the Jaccard
index as intersection over union (IoU), see Section 3.2 for details. For action alignment, we
follow the protocol of Bojanowski et al. (2014) and report intersection over detection (IoD).

6.4.2 Evaluation of the GRU-based Model

First, we evaluate the in�uence of the proposed �ne grained RNN modeling. In order to
analyze the capability of capturing temporal context with the recurrent network, we compare
it to a system where a multilayer perceptron (MLP) is used instead. The MLP only operates
on frame level and does not capture temporal context as there is no recurrent connection
involved. In order to provide a fair comparison to the recurrent model, we setup the MLP
with a single hidden layer of recti�ed units such that it has the same number of parameters
as the recurrent network. We also look at the performance of standard GMM models, as they
would be usually used in the context of HMMs. In this case, we follow the setup as described
by Kuehne et al. (2016), using a single Gaussian distribution for each state of the model.

6.4. Experiments 97

Breakfast Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

GMM w/o reest. 15.3 23.3 26.3 27.0 26.5

MLP w/o reest. 22.4 24.0 23.7 23.1 20.3

GRU w/o reest. 25.5 29.1 28.6 29.3 28.8

Table 6.1: Results for temporal action segmentation with the GRU-based model compared to
an MLP-based model and a GMM over �ve iterations. It shows that the MLP and GMM are
outperformed by the GRU-based model. Additionally the MLP-based model quickly starts
to over�t whereas the GRU oscillates at a constantly higher level.

Breakfast Accuracy (Mof)

GRU no subactions 22.4

GRU w/o reestimation 28.8

GRU + reestimation 33.3

GRU + GT length 51.3

Table 6.2: Results for temporal action segmentation on the Breakfast dataset comparing
accuracy of the proposed system (GRU + reestimation) to the accuracy of the same archi-
tecture without subactions (GRU no subactions) and to the architecture with subclasses but
without reestimation.

For this evaluation, we use a simpli�ed version of the system without subaction reesti-
mation or length regularization to achieve comparable results after each iteration. We show
results for the �rst �ve iterations in Table 6.1. It becomes clear that GRUs outperform MLPs
and GMMs, starting with 25.5% for the initial recognition, and reaching up to 29.3% after the
fourth iteration. The MLP baseline stays continuously below this performance. Thus, it can
be assumed that the additional information gained by recurrent connections in this context
supports classi�cation. One can further see that the MLP reaches its best performance after
the second iteration and then continuously decreases, whereas the GRU begins to oscillate
around 29%, hinting that the MLP also starts to over�t at an earlier stage compared to the
GRU. The GMMs are also performing better than the MLP but, with a maximum of 27.0%,
do not reach the performance of the GRU.

6.4.3 Analysis of the Subaction Modeling

Second, we investigate the properties of the proposed subaction modeling. We therefore
compare the proposed system with the results of the same setting without further subdividing
actions into subactions (GRU no subactions, Table 6.2). Additionally, we regard results of
the system without reestimation of subactions during optimization (GRU w/o reestimation,
Table 6.2). For the system without reestimation, we follow the initial steps as shown in Figure
6.10, thus, we linearly segment the videos according to the number of actions, generate an

98 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

GRU no subaction:

GRU w/o reest.:

GRU with reest.:

Ground truth:

sequence: take_bowl, pour_cereals, pour_milk, stir_cereals

GRU no subaction:

GRU w/o reest.:

GRU with reest.:

Ground truth:

sequence: pour_oil, crack_egg, fry_egg, add_saltnpepper, fry_egg, put_egg2plate

Figure 6.11: Example of temporal action segmentation for two samples from the Breakfast
dataset showing the segmentation result for preparing cereals (top) and preparing friedegg

(bottom). Although the actions are not always correctly detected, there is still a reasonable
alignment of detected actions and ground truth boundaries.

initial subaction alignment, train the respective subaction classes, and realign the sequence
based on the RNN output. But, opposed to the setup with reestimation, we omit the step of
reestimating the number of subclasses and the following alignment. Instead, we just use the
output of the realignment (see Figure 6.10d) to retrain the classi�er and iterate the process
of training, alignment, and re-training. Thus, the number of subclasses is constant and the
coarse model is not adapted to the overall estimated length of the action class.

Finally, we compare to an approach in which we use the ground truth boundaries to
compute the mean length of an action class and set the number of subactions based on the
mean ground truth length (GRU + GT length, Table 6.2). Here, all action classes are still
uniformly initialized, but longer action classes are divided into more subactions than shorter
ones. We include this scenario as it models the performance in case that the optimal number
of subaction classes would be found. We again use a simpli�ed version of the system without
length regularization to achieve comparable results.

Table 6.2 shows that the performance without subactions is signi�cantly below all other
con�gurations, supporting the idea that subaction modeling in general helps recognition in
this scenario. The model with subactions, but without reestimation, improves over the single
class model, but is still below the system with subaction reestimation. Compared to that, the

6.4. Experiments 99

0 2 4 6 8 10 12 14
1,400

1,500

1,600

1,700

1,800

1,900

2,000

2,100

2,200

Iteration

N
u
m
b
er

of
st
a
te
s

Figure 6.12: Evolution of the number of states for the model with state reestimation. The
number of states increases in the �rst �ve iterations and converges after ten iterations.

model with subaction reestimation performs 5% better. We ascribe the performance increase
of the reestimated model to the fact that a good performance is highly related to the correct
number of subactions, thus to a good length representation of the single actions. The impact
of the number of subactions becomes clear, when considering the results when the ground
truth action lengths are used. The performance of the same system, just with di�erent
numbers of subactions, increases by almost 20%. This e�ect becomes also visible in the
qualitative results as shown in Figure 6.11. Comparing the results of the three con�gurations
� without subactions, without reestimation, and with reestimation � to the ground truth
annotations, it shows that, although the overall sequence is not always correctly inferred by
the models, the system with reestimation �nds a good alignment compared to the ground
truth frame boundaries. We also investigate how the overall number of subactions changes
by reestimating after each iteration as shown in Figure 6.12. It becomes visible that the
number of subactions mainly increases in the beginning and starts to converge after �ve to
ten iterations.

6.4.4 Analysis of Length Regularization

In a next step, we analyze the impact of the length regularization on the overall system.
Recall the de�nition of the regularizer r from Equation (6.28),

r(`(st)|st) =

{
p(`(st)|st)

p(`(st−1)|st−1)
, if st = st−1,

p(` = 1|st), otherwise.
(6.30)

We examine four kinds of length distributions for p(`|st) here. Note that we abbreviate `(st)
by `t for better readability. Also note that each distribution is normalized in a way that

100 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

Box function

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Linear decay

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Half Poisson

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Half Gaussian

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Figure 6.13: Overview of evaluated length models showing a simple box function, a linear
decay function, a half Poisson decay and a half Gaussian function for a subaction with a
mean length of 10 frames.

max{p(`|s)} = 1, i.e. for each of the monotonically decreasing functions, the highest value is
one. Although the models are not a strict probability distribution anymore, the normalization
simpli�es the formulas and sums up to a constant in the Viterbi decoding, not a�ecting the
overall outcome.

The box model is de�ned as

p(`t|st) =

{
1, `t ≤ 2 · len(st),

ε, `t > 2 · len(st),
(6.31)

and is considered as the basic representation of a length model. In this case the length
regularizer does not in�uence the inference up to the point that twice the mean length of the
respective state is reached. After that, the overall probability is multiplied with a given ε, so
that the respective state is unlikely to be used any further.

6.4. Experiments 101

0 2 4 6 8 10 12 14
0.24

0.28

0.32

0.36

Iteration

S
eg
m
en
ta
ti
on

a
cc
ru
a
cy

(M
of
)

Length model on Breakfast

No length model
Box function
Linear decay
Half Poisson
Half Gaussian

Figure 6.14: Results for temporal segmentation with di�erent length models on the Break-
fast dataset over 15 iterations. Solid lines show the results until the proposed stop criterion
is reached. Dashed lines show the results after the stop criterion.

The linear decay model,

p(`t|st) =





1, `t ≤ len(st),

1− `t−len(st)
len(st)

, `t > len(st) ∧ `t < 2 · len(st),

ε, `t ≥ 2 · len(st),

(6.32)

can be seen as an extension of the box function. Here, the length model is �x up to the point
that the mean length of the respective state is reached. Then, the length model linearly
decreases, punishing longer states more than shorter ones. After twice the mean length is
reached, the probability is set to ε, so that the respective state is not used anymore.

The half Poisson model is constant on the left of the mode and a Poisson distribution
on the right of the mode,

p(`t|st) =

{
1, `t ≤ len(st),

const · len(st)`t`t!
e−len(st), `t > len(st).

(6.33)

The half Poisson model in the here proposed case also starts with a plateau and is �x up to
the point that the mean length of the respective state is reached. After that we consider the
right-half of the Poisson distribution of the respective state. We choose this combination as
we want to model the discrete distribution of state lengths, and at the same time, ensure a
monotonically decreasing function. For the half Poisson, const is a normalization factor such

102 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

Length model Breakfast Hollywood Extended
frame acc. Jacc. Idx

No length model 32.6 11.5

Box function 36.7 9.9

Linear decay 37.0 10.5

Half Poisson 35.7 11.1

Half Gaussian 36.7 12.3

Table 6.3: Results of temporal action segmentation for di�erent length regularizers on the
Breakfast and the Hollywood Extended dataset. All results are based on a stop criterion of
5% frame change rate during alignment or a maximum of 15 iterations.

that max`>len(st)

{
p(`|st)

}
= 1, so that the constant part to the left of len(st) and the right

part with the Poisson decay are continuous.
Closely related to the half Poisson model is the half Gaussian model

p(`t|st) = e−
(`t−µ)

2

σ2 . (6.34)

Here, the property of a monotonically decreasing function is implicitly ensured by setting
µ = 0 and σ = len(st).

We set a minimal probability ε = 0.001 for all length models. The models are illustrated
in Figure 6.13.

We now evaluate the overall performance of the di�erent functions on the system. For
all measures, we use the stop criterion as described in Section 6.3.5. As Table 6.3 shows, the
length regularizer mainly improves the results for the Breakfast dataset. All length models
are doing better than the original system without length regularization in this case, with a
best accuracy of 37.0% reached by the linear decay function. This is further supported by
the evaluation of the performance during training as the plot in Figure 6.14 shows. Here, the
solid line shows the segmentation accuracy of the models after each iteration until the stop
criterion is reached. After that, additional results are displayed by a dashed line. It shows
that all four functions signi�cantly outperform the system without length regularization with
best results at 36.7% for box and 35.7% and 36.7% for half Poisson and Gaussian.

The impact of the length models on the Hollywood Extended dataset is smaller than on
the Breakfast dataset as shown in Table 6.3. This behavior can be based on the fact that the
actions in the Hollywood Extended dataset are usually shorter and the action classes have
a lower temporal variance compared to the Breakfast dataset. On Hollywood Extended, all
action classes usually have a consistent mean frame length, whereas in case of Breakfast, the
mean lengths of action classes signi�cantly vary. Thus, the bene�t of using length models
increases with the heterogeneity of the target action classes. Therefore, it can be expected
that a length model has less impact in this case than for datasets with high temporal variance
among the action classes.

6.4. Experiments 103

Breakfast

Model Frame Accuracy

OCDC (Bojanowski et al., 2014)* 8.9

HTK (Kuehne et al., 2017) 25.9

ECTC (Huang et al., 2016) 27.7

TCFPN (Ding and Xu, 2018) 38.4

GRU-RNN 33.3

GRU + length regularization 36.7

Hollywood Extended

Model Jacc (IoU)

HTK (Kuehne et al., 2017) 8.6

TCFPN (Ding and Xu, 2018) 12.6

GRU-RNN 11.9

GRU + length regularization 12.3

Table 6.4: Comparison of temporal action segmentation performance for GRU based weak
learning with other approaches. For the Breakfast dataset, we report performance as frame
accuracy, for Hollywood Extended, we measure the Jaccard index as intersection over union
for this task (*from Huang et al. (2016)).

Overall, based on the numbers in Table 6.3, it can be stated that the half Gaussian
function gives the most consistent improvement for both datasets. We therefore use length
regularization with a half Gaussian function for the following experiments.

6.4.5 Comparison to State-of-the-Art

Temporal Action Segmentation. We compare our system to four di�erent approaches
published for this task: The �rst is the Ordered Constrained Discriminative Clustering
(OCDC) proposed by Bojanowski et al. (2014), which has been introduced on the Hollywood
Extended dataset. Second, we compare against the HTK system used by Kuehne et al. (2017),
third against the Extended Connectionist Temporal Classi�cation (ECTC) by Huang et al.
(2016) and fourth against the temporal convolutional feature pyramid network (TCFPN)
by Ding and Xu (2018).

Results are shown in Table 6.4. One can see that both GRU systems show a good
performance, and that both systems are only slightly worse than TCFPN.
Temporal Action Alignment. We also address the task of action alignment. We assume
that given a video and a sequence of temporally ordered actions, the task is to infer the

104 Chapter 6. RNN-HMMs for Weakly Supervised Action Segmentation

Breakfast

Model Jacc. (IoD)

OCDC (Bojanowski et al., 2014) 23.4

HTK (Kuehne et al., 2017) 42.4

TCFPN (Ding and Xu, 2018) 52.3

GRU-RNN 47.3

GRU + length regularizer 52.4

Hollywood Extended

Model Jacc. (IoD)

OCDC (Bojanowski et al., 2014)** 43.9

HTK (Kuehne et al., 2017)** 46.0

ECTC (Huang et al., 2016)** 41.0

TCFPN (Ding and Xu, 2018) 39.6

GRU-RNN 46.3

GRU + length regularizer 46.0

Table 6.5: Results for temporal action alignment on the test set of the Breakfast and
the Hollywood Extended dataset reported as Jaccard index of intersection over detection
(IoD)(**results obtained from the authors).

respective boundaries for the given action order. We report results for the test set of Breakfast
as well as for the Hollywood Extended dataset based on the Jaccard index (Jacc.) computed
as intersection over detection (IoD) as proposed by Bojanowski et al. (2014). The results are
shown in Table 6.5.

The proposed approach outperforms current state-of-the-art approaches. It also shows
that the system without length model performs slightly better than the system with length
model for the alignment in case of Hollywood Extended. As already discussed in Section 6.4.4,
the di�erences between the proposed approach with and without length model are marginal
on this dataset.
Fully supervised classi�cation. We �nally evaluate the approach in a fully supervised
setting and compare it to other proposed approaches. Here, we compute the mean length
from the training annotations directly and use it to determine the number of states as well
as the length model parameters of the regularizer function.

Table 6.6 shows that the system clearly outperforms previous approaches. Since the
approaches from Kuehne et al. (2014) and Kuehne et al. (2016) have a similar hierarchical
structure as the presented system and similar features, we can assume that the main improve-
ment can be attributed to the underlying GRU models. This is consistent with the �ndings

6.5. Summary 105

Breakfast

Model Frame Accuracy

HMM-BOW (Kuehne et al., 2014) 28.8

HMM-FV (Kuehne et al., 2016) 56.3

TCFPN (Ding and Xu, 2018) 52.0

GRU w/o length regularizer 60.2

GRU + length regularizer 61.3

Table 6.6: Results for fully supervised temporal action segmentation on the Breakfast dataset.

in Section 6.4.2, where it shows that the proposed GRUs improve �ne-grained frame-based
classi�cation compared to other approaches. Additionally, it shows that the length model also
improves the segmentation accuracy in case of fully supervised training. This is important
as in this case, we can assume that all other temporal factors, such as the number of states
are already optimal. Thus, even in this case, a temporal regularizer can improve the overall
recognition of the system.

6.5 Summary

We presented an approach for weakly supervised learning of human actions based on a combi-
nation of a discriminative representation of subactions modeled by a recurrent neural network
and a coarse probabilistic model to allow for a temporal alignment and inference over long
sequences. Although the system itself shows already good results, the performance is signif-
icantly improved by approximating the number of subactions for the di�erent action classes
and by adding a length regularization to the overall system. Accordingly, we combine the
length model with the adaptation of the number of subaction classes by iterating realignment
and reestimation during training. The resulting model shows a competitive performance on
various weak learning tasks such as temporal action segmentation and action alignment on
two standard benchmark datasets.

Chapter 7

NeuralNetwork-Viterbi

The possibility to train a system for temporal action segmentation in a weakly supervised
fashion is a huge step towards being able to process vast amounts of video data without exten-
sive annotation. Current methods, including our approach discussed in Chapter 6, however,
are still of poor quality. With a frame accuracy of only 33% on Breakfast, for instance, the
approach presented in the previous chapter is of limited use for practical applications and
there is need for stronger models that allow for higher accuracies.

In this chapter, we address the main weaknesses of the previously proposed method and
work towards an end-to-end trainable architecture by integrating the Viterbi re-alignment
directly into the loss computation for the visual model. We also close the gap between weak
supervision based on action transcripts and full supervision based on full frame annotations
by introducing a semi-supervised setup, where only a few frames per video are manually
annotated.

Contents

7.1 Introduction . 108

7.2 Technical Details . 109

7.2.1 NeuralNetwork-Viterbi . 110

7.2.2 Enhancing the Robustness . 111

7.2.3 The Model . 113

7.2.4 Inference . 114

7.3 Experiments . 118

7.3.1 Setup . 119

7.3.2 Robustness . 119

7.3.3 Impact of Direct Learning and Model 122

7.3.4 Incremental Learning . 124

7.3.5 Comparison to State-of-the-Art . 127

7.3.6 Action Alignment . 127

7.4 Semi-supervised Learning . 128

7.5 Going Back to Full Supervision . 130

7.6 Summary . 132

108 Chapter 7. NeuralNetwork-Viterbi

7.1 Introduction

While the method proposed in the previous chapter is a �rst step towards handling the
continuously growing amount of publicly available video data on YouTube or video streaming
services, its performance is not yet good enough for practical applications such as surveillance
or the analysis of continuous video streams e.g. in the domain of autonomous driving.

In the context of classical action recognition with pre-segmented clips, the best perform-
ing approaches are deep neural networks that can be trained in an end-to-end fashion, see
e.g. Simonyan and Zisserman (2014); Wang et al. (2016); Carreira and Zisserman (2017);
Feichtenhofer et al. (2017a). End-to-end learning is less straightforward for applications that
require the segmentation of temporally untrimmed videos which usually contain a large va-
riety of di�erent actions with di�erent lengths as current architectures like the one proposed
in the previous chapter usually contain non-di�erentiable iterative steps and operations such
as an arg max.

In this chapter, we revisit the task of temporal action segmentation with action transcripts
as weak supervision discussed in the previous chapter. In order to learn a model for temporal
action segmentation with such weak supervision, so far we relied on a �ne-to-coarse model
with an RNN as visual model, an explicit HMM for the intra-class temporal progression, and
the grammar as a model for inter-class context.

That approach, similar to related HMM-based methods by Koller et al. (2016); Kuehne
et al. (2017) and Koller et al. (2017), comes with the major problem that its training requires
some heuristic ground truth. HMM-based approaches typically rely on a two-step approach
that is iterated several times. It consists of �rst generating a segmentation for each training
video using the Viterbi algorithm and then training the neural network as in the fully su-
pervised case using the generated segmentation as pseudo ground truth. Consequently, the
two-step approach is sensitive to the initialization of the pseudo ground truth and the accu-
racy tends to oscillate between the iterations. Avoiding a two-step scheme, ECTC (Graves
et al., 2006) provides a framework for weakly supervised sequence learning. However, this
approach does not allow to include explicit models for the context between classes and their
temporal progression and therefore does not achieve state-of-the-art performance.

To overcome the aforementioned issues, we propose a novel learning algorithm that allows
for direct learning using the input video and ordered action transcript only. The approach
includes the Viterbi-decoding as part of the loss function to train the neural network and
has several practical advantages compared to the two-stage approach: it neither su�ers from
an oscillation e�ect nor requires a frame-wise labeling as initialization or any kind of pseudo
ground truth, models are learned incrementally, and the accuracy is improved due to direct
optimization of the loss function of interest.

As a second contribution, we also propose to use an explicit length model instead of the
HMMs used in the previous chapter, allowing to learn the action classes directly rather than
intermediate HMM states.

The remainder of this chapter is structured as follows. In Section 7.2, we discuss the
drawbacks of pseudo ground truth based methods and introduce a novel, direct learning
scheme. In Section 7.3, the proposed method is evaluated and empirically compared to the

7.2. Technical Details 109

previously proposed approach from Chapter 6. Finally, in Section 7.4, we also apply the
model to semi-supervised learning where frames are annotated sparsely.

7.2 Technical Details

In this section, we build upon the model introduced in Chapter 6 and simplify it such that
the HMM is obsolete. Therefore, we start from the same generic framework the preceding
approaches also built upon. Considering the general model that is introduced in Section 4.2,

(N̂ , ĉN̂1 , l̂
N̂
1) = arg max

N,cN1 ,l
N
1

{
p(cN1 , l

N
1 |xT1)

}

= arg max
N,cN1 ,l

N
1

{
p(xT1 |cN1 , lN1) · p(lN1 |cN1) · p(cN1)

}
, (7.1)

we discuss drawbacks in the training procedure of the approach introduced in Chapter 6.
The HMM-based approach, together with several state-of-the-art methods (Vo and Bo-

bick, 2014; Kuehne et al., 2017; Koller et al., 2016, 2017), formulates p(cN1 , l
N
1 |xT1) in such a

way such that the arg max can be e�ciently computed using a Viterbi-like algorithm at the
cost of having three model components � the visual model, the length model, and the context
model � that are typically trained separately. In fully supervised settings such as the one
presented in Chapter 5 or the approach of Vo and Bobick (2014) frame-wise labeling of the
training videos allows for a reliable and consistent training of the three model components
although they are not trained jointly.

In a weakly supervised setting like in the works of Kuehne et al. (2017); Koller et al.
(2016, 2017), or the approach introduced in Chapter 6, a frame-level ground truth is not
available during training and inconsistencies between the separately trained models can have
a larger e�ect.

In this Chapter, we revisit the problem of weakly supervised learning and propose two
improvements. The �rst one addresses the modeling of p(cN1 , l

N
1 |xT1). Instead of using a

hidden Markov model as in Kuehne et al. (2017); Koller et al. (2016, 2017), or Chapter 6,
we explicitly model the length of each action class. The model is described in Section 7.2.3
and in our experiments we show that the proposed length model outperforms an HMM. The
second novelty is a more principled approach for weakly supervised learning. This approach
is described in Section 7.2.1 and can be used to train any model that uses neural networks
and Viterbi decoding.

Before we describe the proposed learning approach, we brie�y discuss the connection
between training in a fully supervised setting and the training procedure that is used in
Chapter 6 for weakly supervised learning.

In a classical fully supervised training setup, frame-wise ground truth annotation is pro-
vided for the training data, i.e. each training video can be regarded as a triple (xT1 , c

N
1 , l

N
1).

Since lN1 and therefore the label cn(t) for each frame xt is known, the underlying visual
model for Equation (7.1), which is typically a neural network, is trained using the frame-level
annotations and, for instance, the cross-entropy loss.

110 Chapter 7. NeuralNetwork-Viterbi

If only the transcript of a training video, i.e. an ordered sequence of classes that occur in
the video, is given, lN1 is unknown and only (xT1 , c

N
1) is provided. In the previously discussed

HMM-RNN approach, the training is basically reduced to the problem of fully supervised
training by generating a pseudo ground truth cpseudon(t) for all training sequences based on either
the uniform alignment at the �rst training iteration or re-alignments in later iterations. A
neural network is then trained using a pseudo cross-entropy loss that is based on the pseudo
ground truth cpseudon(t) .

This approach comes with a major problem: The actual learning phase and the transcript
decoding (i.e. pseudo ground truth generation) are separated and the transcripts cN1 are only
used for the pseudo ground truth generation. In other words, the model learning does not
explicitly include the transcripts.

As a workaround, the two steps pseudo ground truth generation and model learning are
repeated several times, where the pseudo ground truth in the �rst iteration is a uniform
alignment of transcripts to sequence frames. In later repetitions, the pseudo ground truth is
generated using a Viterbi decoding on Equation (7.1) with the previously trained network.
From a practical point, this results in several major limitations. As Figure 6.14 reveals, the
approach is sensitive to the initialization of the pseudo ground truth and the accuracy tends
to oscillate between the iterations. Furthermore, the approach processes the entire dataset
in each step, which prevents its use for incremental learning.

7.2.1 NeuralNetwork-Viterbi

To overcome these issues, we propose a new framework that allows to learn directly from the
transcripts. Therefore, we de�ne a loss that can be computed solely based on the current
model and a single training example (xN1 , c

N
1). The loss is designed to be zero if

p(cN1 , l
N
1 |xT1) = p(cN1 , l

N
1 |xT1 , cN1), (7.2)

i.e. if the prediction without given transcripts (left hand side) is equal to the prediction with
given transcripts (right hand side). Particularly, our approach does not require a precomputed
pseudo ground truth and works directly on the weakly annotated data.

Our new training procedure is illustrated in Figure 7.1. The training algorithm randomly
draws a sequence xT1 and its annotation cN1 from the training set. The sequence is then
forwarded through a neural network. Note that there are no constraints on the network
architecture, all commonly used feed-forward networks, CNNs, and recurrent networks can be
used. The optimal segmentation by means of Equation (7.1) is then computed by application
of a Viterbi decoding on the network output, see Section 7.2.4 for details. Since cN1 is provided
as annotation, only lN1 needs to be inferred during training. We switch notation and write the
Viterbi segmentation (N, cN1 , l

N
1) as framewise labels cn(1), . . . , cn(T), with which the cross-

entropy loss over all aligned frames is accumulated:

L = −
T∑

t=1

log p(cn(t)|xt). (7.3)

7.2. Technical Details 111

(input video)

x1, . . . , xT

Neural Network

F
o
rw

a
rd

p(c|x1), . . . , p(c|xT)

c1 → . . .→ cN
(annotation)

Viterbi Decoding

c1, `1 · · · cN , `N

L = −∑T
t=1 log p(cn(t)|xt)
(loss)

B
ack

p
ro
p

Figure 7.1: The input video xT1 is forwarded through the network and the Viterbi decoding
is run on the output probabilities. The frame labels generated by the Viterbi algorithm are
then used to compute a framewise cross-entropy loss based on which the network gradient is
computed.

We chose the cross-entropy loss as it is most common in neural network optimization. How-
ever, our framework is not bound to a speci�c loss function. Once the Viterbi segmentation
of the input sequence is computed, any other loss such as squared-error can as well be used.

Based on the sequence loss L, the network parameters are updated using stochastic gradi-
ent descent with the gradient ∇L of the loss. We would like to emphasize that the algorithm
operates in an online fashion, i.e. in each iteration, the loss L is computed with respect to a
single randomly drawn training sequence (xT1 , c

N
1) only.

7.2.2 Enhancing the Robustness

In practice, a sequence xT1 can easily be a few thousand frames long. Backpropagating all
frames at once can thus raise problems with the limited GPU memory. Moreover, online learn-
ing algorithms generally bene�t from making a large number of model updates. Therefore, we
split the sequence into multiple mini-batches after the Viterbi segmentation cn(1), . . . , cn(T)
has been computed. These minibatches are then backpropagated one-by-one through the
network.

However, traditional online learning algorithms such as stochastic gradient descent rely
on the assumption that

L∗(w) = ExL(x,w) =

∫
L(x,w)dP(x), (7.4)

where w denotes the model parameters, L∗(w) is the true loss that is to be optimized, and
L(x,w) is the loss of a single observation x, see e.g. Bottou (1998). In each iteration, the

112 Chapter 7. NeuralNetwork-Viterbi

(input video)
x1, . . . , xT

Neural Network

Viterbi Decoding sample pairs

(c, x)

Buffer

(c, x)

(c, x)
(c, x)

(c, x)
(c, x)

(c, x) (c, x)

(c, x)

draw K samples

L =
[
−

T∑

t=1

log p(cn(t)|xt)
︸ ︷︷ ︸
NN-Viterbi loss

]
+

[
−

K∑

k=1

log p(ck|xk)
]

︸ ︷︷ ︸
robustness term

Figure 7.2: Illustration of the robustness enhancement. After each Viterbi alignment,
frame/label pairs are sampled and stored in the bu�er that already contains frame/label
pairs from previous iterations. The loss is then a sum of the cross-entropy loss on the cur-
rently decoded sequence (NN-Viterbi loss) and the framewise cross-entropy of samples drawn
from the bu�er (robustness term).

observations x are usually assumed to be drawn independently from the distribution P(x). In
our setting, on the contrary, all frames in an iteration belong to the same sequence xT1 , so they
are not independent. Further subdividing long sequences into smaller mini-batches enhances
the problem: multiple updates are made with a strong bias towards (a) the characteristics
of the sequence frames and (b) the limited amount of classes occurring in the sequence.

We therefore propose to use a bu�er B and store recently processed sequences and their
inferred frame labels. In order to make the gradient in each iteration more robust, K frames
from the bu�er are sampled and added to the loss function,

L = −
[T∑

t=1

log p(cn(t)|xt) +

K∑

k=1

log p(ck|xk)
]
. (7.5)

The process is illustrated in Figure 7.2. Since the neural network is updated gradually in
small steps, most of the frame/label pairs in the bu�er still agree with the current model.
However, sampling random frames from the bu�er lessens the above-mentioned sequence bias

7.2. Technical Details 113

from the loss function and increases the robustness of the optimization algorithm.

7.2.3 The Model

We now introduce the speci�c model used in this Chapter. Using the usual starting point
from Equation 4.2,

(N̂ , ĉN̂1 , l̂
N̂
1) = arg max

N,cN1 ,l
N
1

{
p(cN1 , l

N
1 |xT1)

}

= arg max
N,cN1 ,l

N
1

{
p(xT1 |cN1 , lN1) · p(lN1 |cN1) · p(cN1)

}
, (7.6)

we de�ne the three components.
For the visual model, we use the factorization

p(xT1 |cN1 , lN1) =
T∏

t=1

p(xt|xt−11 , cN1 , l
N
1). (7.7)

Dropping the dependence on the length and assuming conditional independence of the frames
and that they depend only on the class of the current segment, the visual model further
simpli�es to

p(xT1 |cN1 , lN1) =

T∏

t=1

p(xt|cn(t)). (7.8)

Similar to the previous approach, we use a neural network to model the visual probabilities
p(xt|cn(t)). We use a recurrent network with a single layer of 64 gated recurrent units and
a softmax output. A similar architecture has also been used in the previous chapter with
the only di�erence that the output of the network were HMM states and now the GRU
predicts action classes directly. The method of Huang et al. (2016) also uses a similar network
architecture. In contrast to previous approaches, however, we train the network with the
NeuralNetwork-Viterbi loss as described in Section 7.2.1. Since the outputs of the neural
network are posterior probabilities p(c|xt), we follow the hybrid approach (Bourlard and
Morgan, 2012) and refactor

p(xt|c) ∝
p(c|xt)
p(c)

, (7.9)

where p(c) is a class prior that also needs to be learned during training. Therefore, we use
a running estimate by counting the amount of frames that have been labeled with a class c
for all sequences that have been processed so far. Normalizing these counts to sum up to one
�nally results in the estimate of p(c). The prior is updated after every iteration, i.e. after
every new training sequence. If a sequence annotation cN1 contains a class that has not been
seen before, 1/|C| is used.

114 Chapter 7. NeuralNetwork-Viterbi

For the length model, we assume that lengths of di�erent segments are independent of
each other and only depend on the class label of the same segment,

p(lN1 |cN1) =

N∏

n=1

p(`n|cn), (7.10)

and we model the class-conditional length distribution with a class-dependent Poisson model,

p(`|c) =
λ`c
`!
e−λc . (7.11)

For training, we again rely on a running estimate. After each iteration, λc is updated, which
is the mean length of a segment for class c. If the training sample (xT1 , c

N
1) contains a class

that has not been seen before, we set λc = N/T . Note that such running estimates are also
used in other neural network layers such as batch-normalization (Io�e and Szegedy, 2015).

The context model is the same as proposed in Section 6.3.2, i.e. a right-regular grammar
that produces exactly the action transcripts that occur in the training set. Similar to the
HMM-based approach in Chapter 7, during training we ensure that the Viterbi decoding
generates a segmentation that matches the given action transcript by using a grammar that
can produce this transcript only.

Inserting these models into Equation 7.6, the overall model is

(N̂ , cN̂1 , l
N̂
1) = arg max

N,cN1 ,l
N
1 ,

∃hN1 : hn−1→cn hn∈R

{ T∏

t=1

p(xt|cn(t)) ·
N∏

n=1

p(`n|cn) · p(cn|hn−1)
}
. (7.12)

Note that we follow a similar trick as for the HMM based model to make sure the arg max

in only computed over action sequences cN1 that can be produced by the context model, a
constraint is added that requires the existence of a sequence hN1 of non-terminal symbols that
allows a decomposition into actions cN1 .

7.2.4 Inference

In order to solve the maximization in (7.12), we again rely on a variation of the Viterbi
algorithm. As outlined above, this algorithm is not only used for inference as in the fully
supervised case described in Chapter 5 but also during training.

Using the function n(t) from Equation (4.5) that maps from timeframes to segment indices
and the index function J·K, Equation (7.12) is rewritten as a product over all frames,

(N̂ , cN̂1 , l
N̂
1) = arg max

N,cN1 ,l
N
1 ,

∃hN1 : hn−1→cnhn∈R

{ T∏

t=1

p(xt|cn(t)) ·
[
p(`n(t)|cn(t)) · p(cn(t)|hn(t)−1)

]Jn(t)6=n(t−1)K}
,

(7.13)

where the index function evaluates to one if the segment index at time t is di�erent from the
segment index at time t− 1, i.e. if a new segment starts at time t. In this formulation, both

7.2. Technical Details 115

context model and length model are multiplied already at the �rst frame of the respective
segment. For the dynamic programming recursions, which run sequentially over the time axis,
this requires a look-ahead to the length of a segment when its �rst frame is hypothesized.
Since this would result in an ine�cient algorithm, we modify Equation (7.13) such that the
length model for segment n is multiplied at the �rst frame of segment n+ 1,

(N̂ , cN̂1 , l
N̂
1) = arg max

N,cN1 ,l
N
1 ,

∃hN1 : hn−1→cnhn∈R

{
p(`n(T)|cn(T)) ·

T∏

t=1

p(xt|cn(t)) ·
[
p(`n(t)−1|cn(t)−1)

· p(cn(t)|hn(t)−1)
]Jn(t)6=n(t−1)K}

. (7.14)

Note that we assume n(1) 6= n(0) evaluates to true and that p(`0|c0) = 1 for the unde�ned
case of n(t)−1 = 0. Moreover, the length model for the last segment is multiplied separately,
so that Equation (7.14) is equivalent to Equation (7.13).

Similar to the previous derivations of the recursive equations, we de�ne an auxiliary
function Q(τ, `, c, h) that yields the best probability score for a segmentation up to frame τ
meeting the following conditions:

1. the latest segment is ` frames long at time τ (but does not necessarily end here),
2. the class label of the latest segment is c,
3. the nonterminal symbol of the stochastic grammar is h,

such that the optimal segmentation score in terms of Equation (7.14) is

max
`,c

{
p(`|c) ·Q(T, `, c, hend)

}
(7.15)

with hend denoting a virtual end symbol of the grammar, as introduced in Section 6.3.3.
A comparison of Equation (7.14) and Equation (7.15) reveals the exact de�nition of the
auxiliary function Q,

Q(τ, `, c, h) = max
η,cη1 ,l

η
1 ,

∃hη1 : hn−1→cn hn∈R,
`η=`,cη=c,hη=h

{ τ∏

t=1

p(xt|cn(t)) ·
[
p(`n(t)−1|cn(t)−1)

·p(cn(t)|hn(t)−1)
]Jn(t) 6=n(t−1)K}

, (7.16)

where the condition on the last segment label cη, the last segment length `η, and the last
context hη ensures that the segmentation (η, cη1, l

η
1) ends in (`, c, h) as required by Q.

We again separate the last factor at time τ in a case distinction between the within
segment case and the between segment case.

For the within segment case, the segment index does not change between τ −1 and τ and
we have

Q(τ, `, c, h) = max
η,cη1 ,l

η
1 ,

∃hη1 : hn−1→cn hn∈R,
`η=`,cη=c,hη=h

{ τ−1∏

t=1

p(xt|cn(t)) ·
[
p(`n(t)−1|cn(t)−1)

· p(cn(t)|hn(t)−1)
]Jn(t) 6=n(t−1)K}

· p(xτ |c)
= Q(τ − 1, `− 1, c, h) · p(xτ |c). (7.17)

116 Chapter 7. NeuralNetwork-Viterbi

For the between segment case, it holds that n(τ) 6= n(τ − 1) and, as a new segment is
hypothesized, ` = 1. In this case, isolating the last frame τ requires to isolate the respective
length and context models, too,

Q(τ, ` = 1, c, h) = max
η,cη1 ,l

η
1 ,

∃hη1 : hn−1→cn hn∈R,
`η=`,cη=c,hη=h

{[τ−1∏

t=1

p(xt|cn(t)) ·
[
p(`n(t)−1|cn(t)−1)

· p(cn(t)|hn(t)−1)
]Jn(t) 6=n(t−1)K]

· p(xτ |cη) · p(`η−1|cη−1) · p(cη|hη−1)
}
.

(7.18)

Since the maximization over the isolated factors of the last segment does not a�ect the
product over the �rst τ − 1 frames, the maximization over the last segment can be separated
in order to obtain the recursive equation,

Q(τ, ` = 1, c, h) = max
˜̀,c̃,h̃:

h̃→c h∈R,
∃h′→c̃ h̃ ∈R

{
max
η̃,cη̃1 ,l

η̃
1 ,

∃hη̃1 : hn−1→cn hn∈R,
`η̃=˜̀,cη̃=c̃,hη̃=h̃

[τ−1∏

t=1

p(xt|cn(t)) ·
[
p(`n(t)−1|cn(t)−1)

· p(cn(t)|hn(t)−1)
]Jn(t) 6=n(t−1)K]

· p(xτ |c) · p(˜̀|c̃) · p(c|h̃)
}

= max
˜̀,c̃,h̃:

h̃→c h∈R,
∃h′→c̃ h̃ ∈R

{
Q(τ − 1, ˜̀, c̃, h̃) · p(xτ |c) · p(˜̀|c̃) · p(c|h̃)

}
. (7.19)

In order to reconstruct the best segmentation, traceback arrays are used similar to the
previous versions of Viterbi-style algorithms. Since Q optimizes not only over the action
classes and contexts, the length is also part of the traceback. For compactness of notation,
we store the required traceback triplet (˜̀, c̃, h̃) in a single array and de�ne

A(τ, `, c, h) = (`, c, h) (7.20)

for the within segment case and

A(τ, `, c, h) = arg max
˜̀,c̃,h̃:

h̃→c h∈R,
∃h′→c̃ h̃ ∈R

{
Q(τ − 1, ˜̀, c̃, h̃) · p(xτ |c) · p(˜̀|c̃) · p(c|h̃)

}
(7.21)

for the between segment case. Both cases, within segment and between segment, are illus-
trated in Figure 7.3 and Figure 7.4.

Complexity

Implementations of the Viterbi decoding and the traceback are provided as pseudo code
in Algorithm 7.1 and Algorithm 7.2.

7.2. Technical Details 117

`

. . . t− 1 t . . . T

c1

c2

c3

c4

1

2

3

Q(t− 1, 1, c2, h)

·p(xt|c2)

Figure 7.3: Viterbi decoding for the within segment case. The new score is the score of the
hypothesis at time t− 1 with length `− 1 that has the same class and context multiplied by
the probability of the visual model. In contrast to previous approaches, there is an additional
axis for the length to optimize over.

The Viterbi decoding is, compared to the algorithm from the previous chapter, explic-
itly depended on the lengths of action segments. In order to �ll the scores and tracebacks
Q(t, `, c, h) and A(t, `, c, h), the algorithm needs to run over all video frames and evaluate at
each frame each possible length and each possible class. The context h does not need to run
over all possible non-terminal symbols but only needs to account for those symbols that occur
together with class c on the right-hand-side of a rule. For the within segment case (` > 1),
the situation is simple: all Q(t, ` > 1, c, h) values can be computed in O(T ·L · |C| · |R|), where
L denotes the maximal action length.

For the between segment case (` = 1), the length of the current segment is �xed to one
but a maximization over all predecessor lengths is required, see Equation (7.19). Moreover,
there is a nested for-loop over the rules of the grammar (lines �ve, seven, and eight of
Algorithm 7.1). This can lead to a runtime being cubic in the number of rules in principle.
The kind of grammar we use, however, leads to a runtime linear in the number of rules: since
the grammar we use generates exactly the transcripts that occur in the training set, it has a
tree structure as illustrated in Figure 6.5, so that in line seven and eight of Algorithm 7.1,
only a single matching rule exists. The overall runtime of the Viterbi decoding is thus

118 Chapter 7. NeuralNetwork-Viterbi

`

. . . t− 1 t . . . T

c1

c2

c3

c4

1

2

3

Q(t− 1, 1, c1, h̃)

Q(t− 1, 2, c1, h̃)

Q(t− 1, 3, c1, h̃)

Q(t− 1, 1, c2, h̃)

Q(t− 1, 2, c2, h̃)

Q(t− 1, 3, c2, h̃)

Q(t− 1, 1, c3, h̃)

Q(t− 1, 2, c3, h̃)

Q(t− 1, 3, c3, h̃)

Q(t− 1, 1, c4, h̃)

Q(t− 1, 2, c4, h̃)

Q(t− 1, 3, c4, h̃)

·p(xt|c2) · p(˜̀|c̃) · p(c|h̃)

Figure 7.4: Viterbi decoding for the between segment case. In order to hypothesize a new
segment in frame t, the hypotheses at frame t−1 have to be taken into account for any length
and class. Note that we omitted context symbol axis for visualization purposes.

O(T · L · |C| · |R|). In practice, pruning of bad hypotheses can signi�cantly speed up the
decoding.

The reconstruction of the best segmentation (Algorithm 7.2) consists of two steps. The
�rst is �nding the best ending hypothesis at time T , which requires a search over all possible
lengths and classes. The second step is a backward pass through time to track the segment
start positions. New segment beginnings can be found by analyzing if the length keeps
decreasing. The runtime of the traceback is thus O

(
max(T, L · |C|)

)
.

7.3 Experiments

In the following, we analyze the components of the proposed NeuralNetwork-Viterbi algorithm
and evaluate the e�ect of explicit length modeling compared to implicit length modeling by
HMMs. Moreover, we show that the direct loss that immediately incorporates the action
transcripts without the need for an explicit pseudo ground truth also allows for incremental
learning. A comparison to existing approaches �nally shows huge improvements in accuracy.
We conclude the section with a discussion about semi-supervised learning, where sparse frame
labels are available.

7.3. Experiments 119

Algorithm 7.1 Viterbi Decoding
1: Q(1 : T, :, :, :) = 0

2: Q(0, :, :, h$) = 1

3: for t = 1, . . . , T do

4: for c ∈ C do
5: for h : ∃h̃→ c h ∈ R do

6: for ` = 1, . . . , L do

7: for h̃ : h̃→ c h ∈ R do

8: for c̃ : ∃h′ → c̃ h̃ ∈ R do

9: if Q(t, 1, c, h) < Q(t− 1, `, c̃, h̃) · p(xt|c) · p(`|c̃) · p(c|h̃) then

10: Q(t, 1, c, h) = Q(t− 1, `, c̃, h̃) · p(xt|c) · p(`|c̃) · p(c|h̃)

11: A(t, 1, c, h) = (`, c̃, h̃)

12: if ` > 1 then

13: Q(t, `, c, h) = Q(t− 1, `− 1, c, h) · p(xt|c)
14: A(t, `, c, h) = (`− 1, c, h)

15: return Q,A

7.3.1 Setup

We provide an in-depth analysis of the proposed method on the Breakfast dataset. For a
comparison to other state-of-the-art approaches in action segmentation, we provide results
on Breakfast and 50 Salads. For the task of action alignment, we provide an evaluation on
Hollywood Extended. Details on the datasets can be found in Chapter 2.

In accordance with the approach presented in the previous chapter and with Kuehne et al.
(2017) and Huang et al. (2016), we extract Fisher vectors of improved dense trajectories over
a temporal window of length 20 for each frame and reduce the result to 64 dimensions using
PCA as described in Section 3.4.4. The visual model is a recurrent network with 64 gated
recurrent units. In all experiments, the network is trained for 10, 000 iterations with a learning
rate of 0.01 for the �rst 2, 500 iterations and 0.001 afterwards. We use stochastic gradient
descent for optimization and set the minibatch size for backpropagation of the frames of a
training sequence (cf. Section 7.2.2) to 512.

7.3.2 Robustness

We start with an evaluation of our proposed end-to-end learning algorithm. As discussed
in Section 7.2.2, we enhance the loss function from Equation (7.5) by sampling additional
frames from a bu�er. In the following, we evaluate the impact of this enhancement and its
parameters, namely number of sampled frames and bu�er size.

Impact of Old Data Sampling. The �rst proposition to enhance the robustness of
our algorithm is to maintain some recently seen sequences and their inferred labeling in a
bu�er and to sample a certain amount K of additional frames from this bu�er. This way, we
want to ensure that in each iteration, the overall data and class distributions are su�ciently

120 Chapter 7. NeuralNetwork-Viterbi

Algorithm 7.2 Reconstruction of the best segmentation
1: (`, c) = arg max

`,c
p(`|c) ·Q(T, `, c, hend)

2: h = hend
3: classes = []

4: lengths = []

5: `old = 0

6: for t = T, . . . , 1 do

7: if `old ≤ ` then
8: classes.append(c)

9: lengths.append(0)

10: lengths.back() = lengths.back() + 1

11: `old = `

12: (`, c, h) = A(t, `, c, h)

13: return classes.revert(), lengths.revert()

well captured. For the purpose of analyzing which value for K is necessary, we assume an
unlimited bu�er size, i.e. all previously processed sequences are maintained in memory. The
results are illustrated in Figure 7.5. If we do not sample from previously seen sequences, the
model is learned online, i.e. the training sequences are directly processed and not stored in
a bu�er. In this case, our approach achieves a frame accuracy of 27.2%. If we use a bu�er
and sample frames from it, the accuracy is greatly increased. Without sampling from the
bu�er, the model learns a strong bias towards the characteristics and class distributions of
the current video only. This can be avoided by adding other frames from di�erent classes and
sequences to the loss function. While a 1:1 sampling, i.e. for each frame in the sequence one
bu�ered frame is sampled, already shows a huge improvement, we �nd the optimization to
stabilize at a sampling rate of 1:25. Thus, we stick to this value in all remaining experiments.

Impact of the Bu�er Size. For the above evaluation, we assumed an unlimited bu�er
size, i.e. every processed sequence could be stored. This may be undesirable in case of large
datasets for two reasons: �rst, depending on the amount of training data, it can be prohibitive
to maintain all videos in memory at the same time. Second, the underlying assumption when
using the bu�er is that the frame/label pairs that are sampled are still more or less consistent
with the current model. While this assumption is reasonable if all bu�ered sequences have
been processed only a few iterations ago, it will certainly be wrong if there are frame/label
pairs that have been generated by a model a few thousand iterations ago. Hence, we evaluate
the impact of the bu�er size on the performance, see Figure 7.6. Since we already �xed a
sampling ratio of 1:25, a bu�er size of less than 25 sequences is not reasonable. A too small
bu�er of less than 100 sequences does not re�ect the overall data and class distributions
well enough, resulting in a poor segmentation performance. With more than 200 bu�ered
sequences, however, the system stabilizes. Considering the size of the datasets we use (less
than 2, 000 sequences each), old frame/label pairs being inconsistent with the current model
are not an issue here. Hence, we leave the bu�er size unlimited for the remainder of this
chapter.

Batch Size. In all experiments, we use a batch size of one. Figure 7.7 shows that with

7.3. Experiments 121

0 1 5 10 25 50

30

35

40

45

buffered data sampling (1:K)

fr
a
m

e
a
cc

u
ra

cy
(%

)

10

20

30

ru
n
ti

m
e

(h
)

accuracy

runtime

ratio 1:K − 1:1 1:5 1:10 1:25 1:50

accuracy 27.2 35.8 41.8 41.2 43.0 42.5

runtime (h) 3:26 4:09 6:08 8:40 16:15 28:25

Figure 7.5: Impact of bu�ered data sampling. A sampling ratio of 1:K means that for each
frame of the current sequence, K bu�ered frames are sampled. The �rst column shows the
result for online learning, i.e., without a bu�er. Runtime is measured on a K80.

larger batch sizes the accuracy slowly drops. Our model is continuously updated, i.e. seg-
mentation information from previous iterations enters the parameter updates, via a running
length and prior estimate as well as through bu�ered data. Thus, a small batch size allows
for a rapid adaptation of the length model and prior.

Convergence Behavior. Figure 7.8 shows the convergence behavior of our algorithm
as a pure online learning approach (no bu�ered data sampling) and with the robustness
enhancements, i.e. with a 1:25 data sampling and an unlimited bu�er size. While both
variants of our algorithm start to converge after 2, 000 to 3, 000 iterations, the robustness
enhancement is particularly advantageous at the beginning of training, adding a huge margin
in terms of frame accuracy compared to the pure online variant. Note that the approach
presented in the previous chapter su�ers from oscillating accuracies over the iterations of the
two-step scheme, cf. Figure 6.14. The proposed NN-Viterbi, in contrast, has a smooth and
stable convergence behavior for both variants.

122 Chapter 7. NeuralNetwork-Viterbi

25 50 100 200 500 1000 ∞

20

25

30

35

40

45

buffer size (#sequences)

fr
a
m

e
a
cc

u
ra

cy
(%

)

bu�er size 25 50 100 200 500 1000 ∞
accuracy 18.9 22.6 31.0 38.8 41.2 40.1 43.0

Figure 7.6: Impact of the bu�er size for a bu�ered data sampling ratio of 1:25. Only a few
hundred bu�ered sequences are already su�cient for robust learning.

7.3.3 Impact of Direct Learning and Model

In this section, we evaluate the impact of our proposed algorithm compared to the state-of-
the-art methods for weakly supervised learning which generate pseudo ground truth instead
of using the transcript annotations directly for learning as discussed in Section 7.2.1, and
the advantages of temporal modeling using an explicit length model rather than an HMM as
discussed in Section 7.2.3. The results are shown in Table 7.1.

7.3.3.1 Temporal Modeling: HMM vs. Length Model

Since the approach presented in Chapter 6 and many other recent methods use a hidden
Markov model for the temporal progression throughout the sequence (Kuehne et al., 2017;
Koller et al., 2017), we �rst show the bene�ts of modeling the temporal progression directly
with a length model. Although the Viterbi decoding is more involved in this case, it allows
to train a model directly on the action classes rather than on hidden Markov model states.
First, note the impact of temporal modeling in general: if we neither use an HMM nor
an explicit length model, the accuracy drastically drops, see �rst row of Table 7.1. When
introducing an HMM as in Chapter 6, nearly +10% improvement can be observed. Using the

7.3. Experiments 123

1 50 100 200

38

40

42

44

batch size (#sequences)

fr
a
m
e
a
cc
u
ra
cy

(%
)

Figure 7.7: E�ect of the batch size. A small batch and frequent updates are bene�cial for
better accuracy.

factorization from Equation (7.12) with the explicit length model, however, a further gain of
+6% is achieved, see fourth row of Table 7.1. The reason for the latter is twofold. First, the
training data is aligned to the actual classes rather than to a huge number of HMM states,
so for each class more training examples are available. Second, the number of HMM states
is �x during network training, while the length model can dynamically adapt to the learned
model during training. Notably, using a length model on HMM states is not recommendable
since HMM states are typically of very short duration and the state-wise length model has
no major impact.

accuracy (%) runtime (h)

pseudo ground truth (Chapter 6) 23.9 03:45
pseudo gr.-tr. + HMM (Chapter 6) 33.3 08:12
pseudo gr.-tr. + HMM + length regularization (Chapter 6) 36.4 17:21
pseudo gr.-tr. + length model 39.1 06:04
NN-Viterbi + length model 43.0 22:43

Table 7.1: Impact of length modeling in combination with NN-Viterbi compared to di�erent
models using a pseudo ground truth. Training time is measured on a TitanX.

124 Chapter 7. NeuralNetwork-Viterbi

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0

10

20

30

40

iterations

fr
a
m
e
a
cc
u
ra
cy

(%
)

online

robust

Figure 7.8: Convergence behavior of our NN-Viterbi algorithm in both variants, online (red)
and with enhanced robustness (blue), over 10, 000 training iterations.

7.3.3.2 Pseudo Ground-Truth vs. Direct Learning

Note that so far, the model is still trained according to the two-step paradigm of repeat-
edly generating a pseudo ground truth and optimizing the network. Using the proposed
NeuralNetwork-Viterbi algorithm, on the contrary, leads to much better results of 43.0%

accuracy, which can be attributed to the direct loss, see Table 7.1. In case of the two-step
scheme, the model is encouraged to learn the errors that are present in the generated pseudo
ground truth. This can be avoided by including the transcripts directly into the model
learning.

In Figure 7.9, two example segmentations are shown. Recall that for the two-step scheme,
the initial pseudo ground truth is a uniform segmentation. Even after several iterations, a
bias towards uniform sequence lengths can be observed. This leads to inaccurate detections of
short segments (upper example segmentation) or even completely missed segments (lower ex-
ample segmentation). The proposed NN-Viterbi learning is much more accurate, speci�cally
when the segment lengths vary strongly.

7.3.4 Incremental Learning

In a classical learning setup, usually a �xed training set is provided. In this case, it is
convenient to process all data in random order. For algorithms working in an online or
incremental fashion, however, an interesting practical question is what happens if not all
training data is available right at the beginning. For instance, video data from di�erent
actors is added to the training data over time. Or, training data for some classes is only

7.3. Experiments 125

ps-gt + len

NN-Viterbi

ground truth

ps-gt + len

NN-Viterbi

ground truth

Figure 7.9: Example segmentations of two videos from the Breakfast dataset. The two-
step scheme with pseudo ground truth and length model has a bias towards uniform lengths,
which prevents short actions from being detected accurately. The NN-Viterbi approach is
much more robust.

available at a later point in time.

We therefore analyze our algorithm under such conditions. To this end, we sorted the
training set (a) by the ten coarse Breakfast activities1 and (b) by the actors, see Table 7.2.
In the �rst case, coarse activities that have been observed in the beginning, e.g. cereals
and co�ee, hardly lose any accuracy compared to training with randomly shu�ed data, see
Figure 7.10. Later coarse activities are usually not learned well and experience a relative drop
of about 50% compared to random shu�ing. The comparably small performance drop for
milk and tea is due to the fact that these activities share a lot of �ne-grained action classes
with cereals and co�ee, for instance take_cup or pour_milk.

Compared to the case where all data is available right at the beginning and random
shu�ing is possible, sorting the data by actor still results in a very good performance. Ap-
parently, learning the correct class distributions right at the beginning is very important,
while changes in appearance over time - such as changing actors - still allows to robustly

1Recall that each video in the Breakfast dataset belongs to one of ten coarse activities. The activities are

compositions of 48 �ne-grained action classes.

126 Chapter 7. NeuralNetwork-Viterbi

frame accuracy (%)

(a) sorted by activity 27.9

(b) sorted by actor 41.5

(c) randomly shu�ed 43.0

Table 7.2: Impact of the sequence input order on the robustness of the algorithm. The videos
are sorted (a) by the ten coarse activities of the Breakfast dataset, (b) by the performing
actor, and (c) randomly.

ce
re

al
s

co
ffe

e

fri
ed

-e
gg

ju
ic
e

m
ilk

pa
nc

ak
e

sa
la
d

sa
nd

w
ich

sc
ra

m
bl

ed
-e
gg te

a

10

20

30

40

50

60

fr
am

e
ac

cu
ra

cy
(%

)

random sorted

Figure 7.10: Accuracy per coarse activity for randomly shu�ed training data and training
data sorted by coarse activities. Left activities have been seen early during training, right
activities later.

7.3. Experiments 127

frame accuracy (%)
Breakfast 50 Salads

OCDC (Bojanowski et al., 2014) 8.9 −
CTC (Huang et al., 2016) 21.8 11.9

HTK (Kuehne et al., 2017) 25.9 24.7

ECTC (Huang et al., 2016) 27.7 −
pseudo gr.-tr + HMM (Chapter 6) 33.3 45.5

pseudo gr.-tr. + HMM + length regularization (Chapter 6) 36.4 −
TCFPN (Ding and Xu, 2018) 38.4 −
NN-Viterbi 43.0 49.4

Table 7.3: Comparison of our method to several state-of-the-art methods for the task of
temporal action segmentation. Results are reported as frame accuracy (%).

learn the underlying concepts of the classes.

7.3.5 Comparison to State-of-the-Art

In this section, we compare our approach to state-of-the-art methods for the same task, see
Table 7.3. While OCDC (Bojanowski et al., 2014) is based on a discriminative clustering,
the approach of Kuehne et al. (2017) and the method proposed in Chapter 6 rely on hidden
Markov models and train their systems with the classical repeated two-step scheme. The
model formulation is similar to the factorization from Equation (7.12). Still, NN-Viterbi
outperforms the methods by a large margin. CTC and ECTC allow to optimize the posterior
probabilities p(cN1 |xT1) directly. However, the criterion does not include explicit models such
as a stochastic grammar or a length model. The assumption is that the underlying recurrent
network can learn all temporal dependencies on its own. As also shown in Huang et al.
(2016), this can lead to degenerate segmentations particularly when videos are long, since
even LSTMs usually struggle to memorize context over multiple hundred frames. Particularly
if the temporal dynamics change quickly, LSTM based approaches su�er. A recent theoretical
analysis shows that only temporal data with limited dynamics can be modeled e�ectively
using LSTMs (Tallec and Ollivier, 2018). Human actions typically are rather long, hence
modeling context and length explicitly is very important and purely CTC based methods
struggle to achieve comparable performance. Lin et al. (2017a) also use a CTC based model
on Breakfast to infer the sequence of actions in a video. They evaluate the unit accuracy, i.e.
the edit distance between the inferred action transcript and the ground truth transcript, and
obtain 43.4% unit accuracy. With our approach, we obtain 55.5% unit accuracy.

7.3.6 Action Alignment

In contrast to the previous task, the ordered action sequences cN1 are now also given for
inference. Thus, only the alignment of actions to frames, or in other words, the lengths lN1

128 Chapter 7. NeuralNetwork-Viterbi

Hollywood Extended

frame accuracy (%)

OCDC (Bojanowski et al., 2014) 43.9

HTK (Kuehne et al., 2017) 46.0

ECTC (Huang et al., 2016) 41.0

pseudo gr.-tr. + HMM (Chapter 6) 46.3

pseudo gr.-tr. + HMM + length regularization (Chapter 6) 46.0

TCFPN (Ding and Xu, 2018) 39.6

NN-Viterbi 48.7

Table 7.4: Comparison of our method to several state-of-the-art methods for the task of
action alignment. Results are reported as a variant of the Jaccard Index (intersection over
detection).

of each segment, need to be inferred. The training procedure is exactly the same as before.
The results are shown in Table 7.4. Neither the method of Ding and Xu (2018) nor the

ECTC approach of Huang et al. (2016) yield competitive results on this task, albeit being
very strong on the segmentation task. Both of our approaches, the �ne-to-coarse model from
Chapter 6 as well as the here proposed NeuralNetwork-Viterbi, show good performance for
action alignment. Overall, NeuralNetwork-Viterbi outperforms the second best method on
this task � the pseudo ground truth based RNN/HMM from the previous chapter � by 2.4%.

7.4 Semi-supervised Learning

We discussed fully supervised learning in Chapter 5 and proposed two systems for weakly
supervised learning in Chapter 6 and in this chapter. The advantages and disadvantages of
each approach are easily summarized: while full supervision allows for stronger models, the
annotation is expensive to obtain. Weak annotations are easy to obtain but the quality of
the models is not as good.

A compromise between the two extremes is to provide more annotation than just action
transcripts but less than a full frame-level annotation. Therefore, we use sparse frame anno-
tations of the training videos. Such annotation is stronger than pure action transcripts but
still easy to obtain. Movie scripts and subtitles, for instance, can be used to automatically
obtain temporal annotations in videos (Duchenne et al., 2009). While it is di�cult to obtain
precise temporal frame-level labels from such data, sparse frame annotations in the video are
easier to get. Even for human annotators, labeling a single frame in a video by looking at
a short snippet around this frame as proposed in Gu et al. (2018) is easier and faster than
annotating precise temporal action boundaries.

We refer to the training of systems utilizing sparse frame-level annotations as semi-
supervised learning. Note that we still keep the action transcripts as supervision, such that
the semi-supervised setting provides strictly more supervision than action transcripts alone.

7.4. Semi-supervised Learning 129

t1 t2 t3 t4 t5 t6 t7 t8

c1

c2

c3

c4

c5

c6

c7

Figure 7.11: In the semi-supervised setting, the Viterbi path computed during training is
forced to go through the annotated frame/label pairs, (t3, c2) and (t7, c5) in this example.
This can be achieved by setting the probabilities of the visual model to zero for all but the
annotated classes.

If the action transcripts were excluded from training, the model could hypothesize an arbi-
trary amount of non-existing action instances between two frame annotations. In practice,
semi-supervised learning can be easily implemented in the NeuralNetwork-Viterbi algorithm
by forcing the Viterbi path to go through the annotated frame/label pairs at training time, i.e.
for an annotation pair (t, c), the path has to go through class c at time t, see Figure 7.11 for
an illustration. For the RNN/HMM approach from Chapter 6, given an annotation (t, c), the

Viterbi path is allowed to go through all HMM states associated with class c, i.e. s(c)1 , . . . , s
(c)
Kc

at time t. All other HMM states must not be used.

We compare the NeuralNetwork-Viterbi approach and the RNN/HMM with
ECTC (Huang et al., 2016), who used the same semi-supervised setting on the Breakfast
dataset. The original weakly supervised systems use no sparse frame annotation at all. The
results in Figure 7.12 show the e�ect of gradually increasing the amount of annotated frames.
A ratio of 0.25% annotated frames per video corresponds to a single annotated frame per
action instance on average and a ratio of 100% is a fully supervised setting. The frame an-
notations are uniformly distributed over each training video. It can be seen that even with
an average of one frame per action (0.25% annotation ratio), frame accuracy signi�cantly
increases. Moreover, both our approaches outperform the fully supervised ECTC algorithm
already with only 0.25% annotated frames.

Also note that NeuralNetwork-Viterbi performs much better than the RNN/HMM ap-
proach in the purely weakly supervised setting but does not bene�t as much from additional
supervision. One reason is that the explicit length model used for NeuralNetwork-Viterbi is
more robust than an HMM given the uncertainty in the weakly supervised setting. With an

130 Chapter 7. NeuralNetwork-Viterbi

0 0.25 1 10 100

30

40

50

60

fraction of annotated frames (%)

fr
a
m
e
a
cc
u
ra
cy

(%
)

ECTC

RNN/HMM

NN-Viterbi

annotated frames (%)
− 0.25% 1% 10% 100%

frame accuracy (%)
ECTC (Huang et al., 2016) 27.7 45.2 46.1 49.2 49.1

RNN/HMM (Chapter 6) 36.7 56.1 59.0 60.4 61.3

NN-Viterbi 43.0 56.5 57.4 57.4 57.0

Figure 7.12: Evaluation of semi-supervised learning on the Breakfast dataset. An increas-
ing amount of annotated frames leads to better frame accuracies. Both of our systems,
RNN/HMM and NeuralNetwork-Viterbi, outperform the ECTC approach of Huang et al.
(2016) by a large margin.

increasing amount of supervision, however, the HMMs allow for a more subtle modeling of
temporal progressions within an action.

When annotating only 1% of the frames, the RNN/HMM approach is the best among the
three and the frame accuracy is only 2.3% lower than in the fully supervised case. Thus, sparse
frame-level annotations prove to be e�ective to boost temporal segmentation performance
without the need for exhaustive manual annotation of each frame.

7.5 Going Back to Full Supervision

Taking the semi-supervised approach to its extreme by annotating every single frame even-
tually results in a fully supervised setup. Among the analyzed semi-supervised approaches,
the RNN/HMM introduced in Chapter 6 performs best when full frame-level annotation is

7.5. Going Back to Full Supervision 131

frame accuracy (%)

HTK (Kuehne et al., 2016) 56.3

TCFPN (Ding and Xu, 2018) 52.0

Approach from Chapter 5 55.8

fully supervised RNN/HMM 61.3

(a) Comparison of fully supervised methods on Breakfast. Results are reported as frame
accuracy.

Overlap

0.1 0.2 0.3 0.4 0.5

Structured Segment Networks (Zhao et al., 2017) 66.0 59.4 51.9 41.0 29.8

Re-thinking Faster-RCNN (Chao et al., 2018) 59.8 57.1 53.2 48.5 42.8

Approach from Chapter 5 63.8 60.3 55.7 47.2 35.8

fully supervised RNN/HMM 49.1 42.7 36.3 30.0 23.3

(b) Comparison of fully supervised methods on Thumos. Results are reported as mAP for
di�erent overlap ratios.

Table 7.5: Comparison of the fully supervised approach from Chapter 5 and the fully super-
vised RNN/HMM on (a) the Breakfast dataset and (b) Thumos.

used. In Chapter 5, we proposed another fully supervised approach that was not based on
an RNN/HMM visual model but used a segment classi�er instead.

In this section, we compare both approaches on Thumos and the Breakfast dataset. The
datasets have complementary properties, cf. Section 2.4. Thumos contains a large fraction
for background frames and a highly varying amount of action instances per video. Further,
in most cases the action instances in a video are all of the same class. Breakfast, on the
contrary, has dense action annotations and background frames only at the beginning and at
the end of the video. The action instances in a video are of di�erent classes and there are
long-range dependencies between them.

Table 7.5a shows the comparison of both methods on the Breakfast dataset. For com-
parison, the results of the best performing related work are also added to the table. Since
Breakfast has similar properties as 50 Salads and MPII Cooking, we use the length model that
performed best on these two datasets in the approach from Chapter 5, i.e. the class-dependent
Poisson distribution. Note that a trigram does not generate good results on Breakfast since
the long-range dependencies are not well captured. Recall the de�nition of the perplexity
from Equation (5.34), which can be interpreted as the average number of label choices the
context model has per position. A low value indicates a high likelihood of the data under the
given trigram model. While the perplexity for a trigram is only 1.203 on Thumos, it is 5.175

on Breakfast. Therefore, we use the same grammar as in Chapter 6 instead of a trigram
context model on the Breakfast dataset. The fully supervised version of the RNN/HMM

132 Chapter 7. NeuralNetwork-Viterbi

clearly outperforms the approach from Chapter 5. This is mainly due to the segment clas-
si�er that is used as visual model in Chapter 5. Breakfast is strongly motion driven and
requires a thorough temporal modeling, which is not provided by the segment classi�er due
to the temporal averaging over the segment features.

Table 7.5b shows the same comparison on Thumos. Again, we provide the results for
the best performing related approaches as a comparison. Note that we use a trigram as
context model, which is, given its low perplexity, a very strong context model on that dataset.
The situation in this set of experiments is di�erent than for Breakfast. The approach from
Chapter 5 clearly outperforms the fully supervised RNN/HMM. This can be attributed to
the characteristics of Thumos. The dataset is strongly appearance driven, so a �ne-grained
temporal modeling is not as important as on Breakfast. Moreover, the segment classi�er
as visual model is already extremely strong, see Table 5.7. The RNN/HMM, however, only
reaches a frame accuracy of 21% on Thumos.

7.6 Summary

We have proposed a direct learning algorithm that can handle weakly labeled video sequences.
The algorithm is generic and can be applied to any kind of model whose best segmentation
can be inferred using a Viterbi-like algorithm. Unlike the CTC criterion, our approach allows
to include multiple explicitly modeled terms such as a context model and a length model,
what has been proven crucial for good performance. Moreover, we showed that using an
explicit length model and optimizing the video classes directly leads to a huge improvement
over related HMM-based methods that use a pseudo ground truth. The proposed approach
is not bound to weak supervision but can also be trained in a semi-supervised manner with
sparsely labeled frames. Overall, the method outperforms other state-of-the-art approaches
by a large margin and shows a robust and stable convergence behavior.

Chapter 8

Action Sets

In Chapter 6 and Chapter 7, we introduced e�ective approaches for temporal action segmen-
tation that only require weak supervision in form of action transcripts. With the goal of
analyzing the vast amount of video data available on the Internet, however, there is need for
approaches that can learn with even less supervision. In this chapter, we propose a method
that learns from unordered action sets only instead of ordered action transcripts. While the
performance is clearly worse than for fully supervised approaches or approaches that use
action transcripts, we can still show remarkable accuracy considering the tremendous lack of
temporal or frame-level annotation.

Contents

8.1 Introduction . 133

8.2 Technical Details . 135

8.2.1 Context Model . 136

8.2.2 Length Model . 138

8.2.3 Visual Model: Multi-task Learning of Action Frames 139

8.2.4 Inference . 140

8.3 Experiments . 140

8.3.1 Setup . 141

8.3.2 E�ect of the Grammar . 141

8.3.3 E�ect of the Length Model . 143

8.3.4 Impact of Model Components . 145

8.3.5 Remarks on the Runtime: Coarse Frame Sampling 146

8.3.6 Comparison to State-of-the-Art . 147

8.3.7 Inference given Action Sets . 149

8.4 Summary . 149

8.1 Introduction

The previously introduced methods that are focusing on weakly supervised learning based
on action transcripts are a good step towards using annotations that are easy to obtain even
for a large amount of video data. Still, when it comes to automatic generation of actions,
such methods quickly reach their limits. Consider, two people discussing the weather while

134 Chapter 8. Action Sets

(a) weak supervision: ordered action sequences

action A action B action A action C

video to be segmented

(b) weak supervision: action sets

action A

action B

action C

video to be segmented

Figure 8.1: (a) Weak supervision with ordered action sequences as proposed in Chapter 6
and Chapter 7 and also used by Bojanowski et al. (2014); Kuehne et al. (2017); Huang et al.
(2016); Ding and Xu (2018). The number of actions and their ordering is known. (b) Weak
supervision with action sets. Neither action orderings nor the number of occurrences per
action are provided.

preparing a meal. In this case, the activities do not correspond to the acoustic signal contained
in the video. Using movie scripts, subtitles, or the output of an automatic speech recognition
system therefore is not a reliable source to mine action transcripts. The remaining option �
obtaining the action transcripts from human annotators � is infeasible if a vast amount of
video data is required for training. Thus, another source of annotation is needed in order
to process large amounts of video data that is posted on social networks or other video
streaming sites such as YouTube. One possible source of labeling is meta-tags. While the
acoustic content in a video can be semantically di�erent from the visual content, meta-tags
usually are assigned based on what is happening in the video, i.e. which actions are performed.

As a �rst step to learn from such unstructured information as meta-tags, we propose
a weakly supervised method that can learn to temporally segment actions in a video from
unordered action labels, which we refer to as action sets. In contrast to methods that rely
on action transcripts (cf. Figure 8.1a), we assume that neither ordering nor number of occur-
rences of actions is provided during training. Instead, only a set of actions occurring within

8.2. Technical Details 135

the video is given (cf. Figure 8.1b). This task is much more di�cult than the case where
ordered action transcripts are given. Consider, for instance, a video with T frames and a
transcript of C ordered actions. Then, there are (C+T)!

C!T ! possible labelings for the video. If the
actions are not ordered, there are already CT possible labelings. For a very short video of 100

frames and C = 5, this means that using unordered action sets as supervision already allows
for about 1060 times more possible labelings than when provided ordered action transcripts.

In order to deal with such an enormously large search space, we propose three model
components that aim at decomposing the search space on three di�erent levels of granularity.
The coarsest level is addressed by a context model that restricts the space of possible action
sequences. On a �ner level, a length model restricts the durations of actions to a reasonable
duration. On the lowest, most �ne-grained level, a frame model provides class probabilities
for each video frame.

We describe the technical details of the approach in Section 8.2. In an extensive evaluation
in Section 8.3, we investigate the impact of each component within the system. Moreover,
temporal segmentation and action labeling quality is evaluated on unseen videos alone and
on videos with action sets given at inference time as additional supervision.

8.2 Technical Details

In the previous chapters, either full frame-level annotation or weak annotation in the form of
action transcripts have been given for training. While action transcripts as supervision are
widely used, see e.g. Chapter 6, Chapter 7, or the works of Bojanowski et al. (2014); Huang
et al. (2016); Kuehne et al. (2017); Ding and Xu (2018), and doubtlessly easier to obtain
than frame-level annotation, there are still scenarios where such kind of annotation is not
available. Therefore, we reduce supervision further for such scenarios and rely on unordered
sets of actions occurring in the video, see Figure 8.1b for an illustration. Neither the order
of the actions nor the number of occurrences per action is known. Assuming the training set
consists of I videos, then the supervision available for the i-th video is a set Ai ⊆ C of actions
occurring in the video. Such sets can in practice be mined from textual descriptions of the
video or video tags.

During inference, no action sets are provided for the video and the model has to infer an
action labeling from the video frames only. However, in many scenarios it is reasonable to
assume that action sets can also be mined for unseen videos and thus, as an additional task,
we also discuss the case where action sets are given for inference, see Section 8.3.7.

In order to address the task of action segmentation with action sets, we rely on the same
general framework we used in the preceding chapters, i.e. a segmentation of a video is modeled
as

(N̂ , ĉN̂1 , l̂
N̂
1) = arg max

N,cN1 ,l
N
1

{
p(xT1 |cN1 , lN1) · p(lN1 |cN1) · p(cN1)

}
, (8.1)

where again p(xT1 |cN1 , lN1) is the visual model, p(lN1 |cN1) is a length model, and p(cN1) is the
context model. We describe the concrete models for the three components in the following.

136 Chapter 8. Action Sets

A1:

action A

action B

action C

A2:

action D

action E

action F

(action B, action C, action B, action A) ∈ L(Γnaive)

(action D, action F) ∈ L(Γnaive)

but
(action A, action D, action F) /∈ L(Γnaive)

Figure 8.2: Example of valid and invalid action sequences generated by the naive grammar
Γnaive. Only sequences constructed from elements of a single action set are valid.

8.2.1 Context Model

As mentioned before, the search space of possible segmentations is much larger when action
sets are the only supervision available since the ordering constraints of action transcripts are
not available. The �rst step to handle the huge search space is to restrict the possible action
orderings using a grammar Γ in order to model the context prior p(cN1).

We rely on the right-regular grammar proposed in Section 6.3.2 and propose di�erent
strategies to create a useful grammar. In the following, let L(Γ) denote the language of Γ,
i.e. the set of all action sequences that can be generated by Γ.

Naive Grammar

The most naive way of formulating a grammar that restricts the search space is to allow all
sequences of actions that can be created using elements from each action set in the training
data. Formally, this means

L(Γnaive) =

I⋃

i=1

A∗i , (8.2)

where i indicates the i-th training sample and A∗i is the Kleene closure of Ai. An action
sequence cN1 can be generated by Γnaive if and only if there is an action set Ai in the training
set such that all actions in cN1 are in Ai, see Figure 8.2.

Being a union of the Kleene closure of a �nite set, L(Γnaive) is a regular expression and
thus can be expressed by a right-regular grammar. Explicitly constructing the grammar is
straightforward. The set of non-terminals is a set of I symbols hi, one for each action set Ai.
The rules for each action set have to allow to produce each label c ∈ Ai as the �rst label,
i.e. from the start symbol, as last label, i.e. without a new context symbol, or somewhere in

8.2. Technical Details 137

between. Thus, for each class c from each action set Ai, the rules

h$
1.0→ c hi,

h$
1.0→ c,

hi
1.0→ c hi,

hi
1.0→ c

are added to the grammar.

Monte-Carlo Grammar

As a second choice, we provide a set of randomly sampled candidate action sequences. There-
fore, we randomly generate a large amount of k action sequences. Each sequence is generated
by randomly choosing a training sample i ∈ {1, . . . , I}. Then, actions are uniformly drawn
from the corresponding action set Ai until the accumulated estimated means λc of all drawn
actions exceed the video length Ti, i.e. new actions are drawn until for the sequence cN1 ,

N∑

n=1

λcn > Ti, (8.3)

where the mean lengths λc are estimated action class durations, see Section 8.2.2.
Once a set of randomly drawn action sequences is created, generation of the grammar

follows the same steps as the generation of the grammar from given action transcripts that
is illustrated in Figure 6.5.

Text-Based Grammar

Frequently, it is possible to obtain a grammar from external text sources, e.g. from web
recipes or books. Given some natural language texts, we enhance the monte-carlo grammar
by mining frequent word combinations related to the action classes. Consider two action
classes v and w, for instance butter_pan and crack_egg. If either of the words butter or
pan is preceding crack or egg in the textual source, we increase the count N(v, w) by one.
This way, word conditional probabilities

p(w|v) =
N(v, w)∑
w̃N(v, w̃)

(8.4)

are obtained that have a high value if v precedes w frequently and a low value otherwise. The
actual construction of the grammar follows the same protocol as the monte-carlo grammar
with the only di�erence that the actions are not drawn uniformly from the action set but
according to the distribution p(w|v), where v is the previously drawn action class.

138 Chapter 8. Action Sets

8.2.2 Length Model

While a grammar already introduces some ordering constraints, the search space is still
tremendously large, considering that actions can be of arbitrary and even practically unrea-
sonable durations. Therefore, as a second step, we estimate a length model out of the scarce
information we get from the training data. In order to model the length factor p(lN1 |cN1), we
assume conditional independence of each segment length and further drop the dependence
on all class labels but the one of the current segment, i.e.

p(lN1 |cN1) =
N∏

n=1

p(`n|cn). (8.5)

Each class-conditional p(`|c) is modeled with a Poisson distribution for class c.
For the estimation of the class-wise Poisson distributions, only the action sets Ai provided

in the training data can be used. Ideally, the free parameter of a Poisson distribution, λc,
should be set to the mean length of action class c. Since this can not be estimated from the
action sets, we propose two strategies to approximate the mean duration of each action class.

Naive Length Estimation

In the naive approach, the frames of each training video are assumed to be uniformly dis-
tributed among the actions in the respective action set. The average length per class can
then be computed as

λc =
1

|Ic|
∑

i∈Ic

Ti
|Ai|

, (8.6)

where Ic = {i : c ∈ Ai} and Ti is the length of the i-th video. Note that in this formulation,
it is assumed that each action from the action set occurs only once in the video. This is
usually not true in practice, so the estimated mean length is easily overestimated.

Loss-based Length Estimation

The drawback of the naive approach is that actions that are usually short are assumed to be
longer if the video is long. Instead, we propose to estimate the mean of all classes together.
This can be accomplished by minimizing a quadratic loss function,

I∑

i=1

∑

c∈Ai
(λc − Ti)2 subject to λc > `min, (8.7)

where `min is a minimal action length. For minimization, we use constrained optimization by
linear approximation (COBYLA Powell (1994)).

Again, λc can easily be overestimated since actions may occur multiple times in a video.
However, this can not be included into the length model since the action sets do not provide
such information.

8.2. Technical Details 139

frame xt

Neural Network

p
(c

1
/∈
A
|x

t
)

p
(c

1
∈
A
|x

t
)

p
(c

2
/∈
A
|x

t
)

p
(c

2
∈
A
|x

t
)

p
(c

3
/∈
A
|x

t
)

p
(c

3
∈
A
|x

t
)

. . .

p
(c

K
/∈
A
|x

t
)

p
(c

K
∈
A
|x

t
)

action set A (only given at training time)

c1
. . .

c3
cK

Figure 8.3: The neural network used in the visual model. A single input frame is mapped
to binary output layers for each class. During training, the network is optimized to predict
the presence of all classes occurring in the complete video from the single input frame, i.e.
given the action set A of the video, p(c ∈ A|xt) is optimized to be high if c ∈ A. On the
contrary, if c /∈ A, the opposite outcome p(c /∈ A|xt) is optimized to be high.

8.2.3 Visual Model: Multi-task Learning of Action Frames

Given the grammar and the length model that already strongly restrict the search space, the
last missing factor is the visual model providing a likelihood for each class to be present in a
given frame.

In order to model this last remaining factor from Equation (8.1), we train a network with
|C| many binary softmax outputs, see Figure 8.3. Each layer predicts if for a given frame xt
label c is among the actions occurring in the video or not. The idea behind it is similar to
multiple instance learning. Action classes usually occur in di�erent contexts. Particularly,
consider two action sets A1 and A2 with A1 ∩ A2 = {c}. When training the network, all
frames from the �rst video associated with A1 learn a strong response on the classes from A1.
A frame belonging to class c, however, does not contain information about the other classes,
so those responses are mainly based on artifacts and video speci�c appearance. The same
holds for classes from A2 and the associated video frames. For class c, however, the network
needs to learn a high response for video frames of both videos, so there is an incentive to
extract class speci�c features instead of video speci�c appearance. Overall, the network is
more likely to learn class-speci�c features for the true class of a frame and non-generalizing,

140 Chapter 8. Action Sets

video speci�c responses for all other classes.
As loss of our network, we use the accumulated cross-entropy loss of each binary classi�-

cation task. We de�ne a class-posterior distribution based on the scores of the positive units
of each binary output by renormalizing them,

p(c|xt) :=
p(c ∈ A|xt)∑
c̃ p(c̃ ∈ A|xt)

, (8.8)

and transform them into class-conditional probabilities

p(xt|c) ∝
p(c|xt)
p(c)

. (8.9)

Note that this requires an estimate of the class prior, which is not given by the annotation.
We therefore use a heuristic. Let

count(c) =
∑

i∈{1,...,I:c∈Ai}
Ti (8.10)

be the accumulated number of frames of videos containing class c. The heuristic class prior
is then

p(c) =
count(c)∑
c̃ count(c̃)

. (8.11)

The visual model is then obtained using Equation (8.9) assuming framewise independence,

p(xT1 |cN1 , lN1) =

T∏

t=1

p(xt|cn(t)). (8.12)

8.2.4 Inference

With the explicit models for each factor, the optimization problem from Equation (8.1)
reduces to

(N̂ , cN̂1 , l
N̂
1) = arg max

N,cN1 ,l
N
1 ,

∃hN1 : hn−1→cn hn∈R

{ T∏

t=1

p(xt|cn(t)) ·
N∏

n=1

p(`n|cn) · p(cn|hn−1)
}
, (8.13)

which is the same optimization problem as in Section 7.2.4. Therefore, the best segmentation
can be found with the same modi�cation of the Viterbi decoding presented in the previous
chapter.

8.3 Experiments

In this section, we analyze the components of our approach, starting with the grammar in
Section 8.3.2 and the length model in Section 8.3.3, before we compare our system to existing
methods that use more supervision in Section 8.3.6.

8.3. Experiments 141

8.3.1 Setup

We evaluate our approach on the Breakfast dataset, MPII Cooking 2, and Hollywood Ex-
tended, see Chapter 2 for a detailed description. Breakfast is the most widely used dataset
for weakly supervised action segmentation and allows to compare the here presented method
to approaches that use more supervision. Hollywood Extended has di�erent characteristics,
particularly a much higher background fraction. Moreover, action classes frequently occur
two or three times in a video. MPII Cooking 2, on the contrary, serves as an example for the
limitations of action sets. It contains only a small number of videos that are all comparably
long and contain a huge amount of action instances each. Following the common evaluation
protocols, we report frame accuracy on Breakfast, the IoU-based Jaccard Index on Hollywood
Extended, and mAP based on the midpoint hit criterion on MPII Cooking 2.

As video features, we use the same features as in the previous two chapters, i.e. 64-
dimensional framewise Fisher vectors of improved dense trajectories as described in Sec-
tion 3.4.4. If not mentioned otherwise, we use the monte-carlo grammar and the loss-based
length model. The in-depth evaluation of our approach is conducted on Breakfast, results on
other datasets are reported in Section 8.3.6.

While the motivation for action sets is the availability of meta-tags in web videos, for
our evaluation we simulate the existence of action sets by taking the set of all actions that
occur within a video as supervision. Mining action sets from meta-tags introduces noise and
labeling errors, whereas taking the true action sets ensures that all actions occurring in the
video are indeed present in the set and no other actions are mistakenly put into it. This
allows for a clean and unbiased evaluation of the method and a fair comparison to methods
that use stronger supervision as the same action classes are available.

For the neural network in the visual model we use a simple feed forward network with
a single hidden layer of 256 recti�ed linear units. We train the model for two epochs only,
�nding that it converges quickly. Experiments with deeper models could not generalize to
the test data (VGG-16: frame accuracy of 3.1% on Breakfast). We also evaluated the neural
network based multiple instance learning approach of Wu et al. (2015a), which also was not
able to make reliable predictions (accuracy 8.9% on Breakfast). We therefore found the
multi-task network as proposed in Section 8.2.3 to be a simple yet e�ective model.

During inference, we allow to hypothesize new segments only every 30 frames. This allows
for inference roughly in realtime without a�ecting the performance of the system compared to
a more �ne-grained segment hypothesis generation. An evaluation of di�erent frame sampling
rates is provided in Section 8.3.5.

8.3.2 E�ect of the Grammar

The main contribution of the grammar is to limit the search space and remove unrealistic
action sequences. We compare di�erent kinds of grammars and report the frame accuracy on
both, test and train set. Recall that due to weak supervision, our method does not necessarily
provide good results on the training videos, making it interesting to investigate both sets.
As shown in Table 8.1, the use of a sophisticated grammar is crucial for good performance.

142 Chapter 8. Action Sets

frame accuracy

Grammar train test

none 14.7 9.9

naive 19.4 13.4

monte-carlo 28.2 23.3

manually created 33.3 26.9

ground truth 36.7 29.4

Table 8.1: Evaluation of the proposed method on Breakfast using di�erent context-free gram-
mars. As length model, the loss-based approach is used.

The naive grammar is only slightly better than the system without any grammar. The
monte-carlo grammar boosts the frame accuracy by 10% on the test set. Note that we found
the number of k monte-carlo samples for the grammar not to be critical and chose 1, 000

randomly generated sequences for all experiments. Using a ground truth grammar, i.e. a
grammar learned from ordered action transcripts (which are not provided in our setting)
gives an upper bound on the performance that can be reached by improving the grammar
only. Notably, the monte-carlo grammar is only 6% below this upper bound.

As a further comparison, we asked a human annotator to manually create the grammar.
We gave all action sets contained in the training data to an annotator who did not see the
dataset before. The action sets have been provided in a text �le with one set per line, the
classes in each line being in alphabetical order. The annotator was instructed to generate
a reasonable ordered action sequence out of these action sets. He was allowed to use each
action multiple times and the only restriction we imposed was that all actions from the set
need to occur at least once in the generated sequence. On Breakfast, with action sets of one
to eleven elements, the annotator needed an average of one minute per set to generate an
ordered action sequence.

From the list of reasonable action sequences provided by the annotator, we then generated
a grammar as described in Section 6.3.2 and illustrated in Figure 6.5. This manually created
grammar serves as a comparison of the purely data driven monte-carlo grammar to human
knowledge. Although the manual grammar is better, the frame accuracy only di�ers by 3.6%.
Since the annotator on average only needed one minute per action set, a manual grammar
is also a cheap opportunity to add human knowledge without the need to actually annotate
videos.

Grammars from Written Texts

As proposed in Section 8.2.1, textual sources can be used to enhance the monte-carlo grammar
by restricting the transition between action classes to only the likely ones. We evaluate such
a text-based grammar for all three datasets.

For the Breakfast dataset, each video is annotated with one out of ten coarse breakfast

8.3. Experiments 143

Breakfast Cooking 2 Holl. Ext.
frame acc. midpoint hit jacc. idx

monte-carlo 23.3 9.8 9.3

text-based 23.2 10.6 9.2

Table 8.2: Evaluation of the text-based grammar. For Cooking 2, where the text sources are
closely related to the content of the videos, an improvement can be observed.

frame accuracy

Length model train test

naive 25.4 20.1

loss-based 28.2 23.3

ground truth 34.1 25.7

Table 8.3: Evaluation of the proposed method on Breakfast using di�erent length models.
As grammar, the monte-carlo approach is used.

activities such as bowl of cereals or fruit salad. We took those ten coarse activity classes as
search terms on two recipe web pages, www.allrecipes.com and www.foodnetwork.com. For
each search term and web page, we stored the �rst ten pages of retrieved recipes. In total,
textual sources with 120, 000 words have been obtained.

For Hollywood Extended, we downloaded ten movie scripts from the Internet Movie Script
Database www.imsdb.com. The ten movies have been selected by going through IMDBs top-
ranked movie list. If a script was not available for a movie, we skipped it and tried the next
movie. In the end, all ten downloaded scripts are taken from IMDB top-twenty movies. The
overall number of words in the scripts is 76, 000.

On MPII Cooking 2, the authors already provide a textual description linked to the videos.
More precisely, they used Amazon Mechanical Turk and asked people to give a tutorial-like
description of certain kitchen tasks. Each description was limited to at most 15 steps. In
total, the scripts contain 108, 000 words. More details on the creation of the scripts can be
found in the Cooking 2 dataset paper (Rohrbach et al., 2016).

The text sources used for Breakfast and Hollywood Extended are only loosely connected
to the datasets, whereas the textual source for Cooking 2 covers exactly the same domain as
the videos. Not surprisingly, we �nd that only for this case, the text-based grammar leads to
an improvement over the monte-carlo grammar, see Table 8.2. For the other datasets, neither
an improvement nor a degradation is observed.

8.3.3 E�ect of the Length Model

Besides the choice of the context-free grammar, the length model is a crucial component of the
system. The estimated mean action lengths in�uence the performance in two ways. First,

www.allrecipes.com
www.foodnetwork.com
www.imsdb.com

144 Chapter 8. Action Sets

µ− σ µ µ+ σ µ− σ µ µ+ σ µ− σ µ µ+ σ

Figure 8.4: Three alternatives to the Poisson length model. Left: a Gaussian model with
mean µ and standard deviation σ. Middle: a box function of width 2σ around the mean
length µ. Right: A triangular model of width 2σ around the mean length µ.

they de�ne the Poisson distribution that contributes to the actual length of hypothesized
action segments. Second, they have a huge impact on the number of action instances that
are generated for each action sequence in the monte-carlo grammar.

Mean Length Approximation

We compare the two proposed mean approximation strategies, naive and loss-based mean
approximation, with a ground truth model, i.e. the true action means estimated on a frame-
level ground truth annotation of the training data. The results are shown in Table 8.3. The
naive mean approximation su�ers from some conceptual drawbacks. Due to the uniform
distribution of video frames among all actions occurring in the video, short actions may be
assigned a reasonable length as long as the video is also short. If the video is long, however,
short actions get the same share of frames as long actions, resulting in an over-estimation
of the mean for short actions and an under-estimation of the mean for long actions. The
loss-based mean approximation, on the contrary, can provide more realistic estimates by
minimizing Equation (8.7). Note that the solution of the problem in principle would allow
for negative action means. Hence, setting the minimal action length `min > 0 is crucial.
In practice, we want to ensure a reasonable minimum length and set `min = 50 frames,
corresponding to roughly two seconds of video. The loss-based mean approximation performs
signi�cantly better than the naive approximation, increasing the frame accuracy by 3%.

Comparing these numbers to the ground truth length model reveals that particularly on
the train set, on which the ground truth lengths have been estimated, there is still room for
improvement. Considering the small amount of supervision that we can utilize to estimate
mean lengths, i.e. action sets only, and the small gap between the loss-based approach and
the ground truth model on the test set, on the other hand, we �nd that our loss-based method
already yields a good approximation.

Evaluating Di�erent Length Models

So far we modeled the length with a Poisson distribution. There is a variety of other possible
length models. In Figure 8.4, three additional models are illustrated, a Gaussian model, a box
model, and a triangular model. The probability outside [µ−σ, µ+σ] is zero for the box model

8.3. Experiments 145

Gaussian Box Triangle Poisson

frame accuracy 0.148 0.220 0.227 0.233

Table 8.4: Evaluation of four di�erent length models on the Breakfast dataset.

frame accuracy

grammar length model train test

7 7 0.118 0.080

7 3 0.147 0.099

3 7 0.208 0.154

3 3 0.282 0.233

fully supervised 0.774 0.556

Table 8.5: The �rst four rows are a comparison of the impact of the grammar and the length
model on the Breakfast dataset, the last is the proposed system trained on fully supervised,
i.e. framewise annotated, data. It is an upper bound for the weakly supervised setup.

and the triangular model whereas the Gaussian model has in�nite support. The standard
deviation σ of each action class is heuristically estimated by mapping actions according to
their mean length onto the possible segmentations generated by the monte-carlo grammar.
For instance, if µc is twice as large as µc̃ and there is a monte-carlo sequence containing both
c and c̃, the c segment will be twice as large as the c̃ segment. Applying this mapping to
all sampled monte-carlo sequences allows to estimate a heuristic standard deviation for each
action class.

The Gaussian model decays too fast around the mean lengths and leads to low accuracies,
see Table 8.4. Although the other models perform well, the Poisson distribution still yields
the best results.

8.3.4 Impact of Model Components

All three components, the grammar, the length model, and the visual model, contribute their
share to restricting the search space to reasonable segmentations. In this section, we evaluate
the impact of the grammar and length model on their own and in combination with each
other. We use the best-working grammar and length approximation, i.e. the monte-carlo
grammar and loss-based mean length approximation, and analyze the e�ect of omitting the
grammar and/or the length model from Equation (8.13) during inference. The results are
reported in Table 8.5. Not surprisingly, the performance without a grammar is poor, as the
model easily hypothesizes unreasonable action sequences. Adding a grammar alone already
boosts the performance, restricting the search space to more reasonable sequences. In order
to also get action segments of reasonable length, however, the combination of grammar and
length model is crucial. This e�ect can also be observed in a qualitative segmentation result,

146 Chapter 8. Action Sets

7, 7

7, 3

3, 7

3, 3

GT

Figure 8.5: Example segmentation on a test video from Breakfast. Row one to four corre-
spond to row one to four from Table 8.5. The last row is the ground truth segmentation.

10 20 30 50 100
16

17

18

19

20

inference sampling rate

fr
am

e
ac
cu
ra
cy

(r
ed
)

0

2

4

6

8

real time re
al
ti
m
e
fa
ct
or

(b
lu
e)

Figure 8.6: Frame accuracy (left axis, red graph) vs. realtime factor of the decoding (right
axis, blue graph) for di�erent frame sampling rates on the �rst split of the Breakfast dataset.
Runtime can be greatly reduced by a coarse frame sampling without losing much accuracy.

see Figure 8.5. Note the strong over-segmentation if neither grammar nor length model
is used. Introducing the length model partially improves the result but still the grammar
is crucial for a reasonable segmentation in terms of correct segment labeling and segment
lengths. The fully supervised model (last row of Table 8.5) is trained by assigning the ground
truth action label to each video frame. Apart from the labeling, the multi-task network
architecture remains unchanged. The full supervision de�nes an upper bound for the weakly
supervised method.

8.3.5 Remarks on the Runtime: Coarse Frame Sampling

As the previous analysis has shown, all three models are rather weak, compared to the
previously proposed systems that use more supervision. This raises the question if the Viterbi
decoding has to run over all time steps or if a coarse resolution is su�cient. If the models
are not accurate on a 10 to 30 frame resolution, Algorithm 7.1 does not need to be applied

8.3. Experiments 147

Breakfast Cooking 2 Holl. Ext.
frame acc. midpoint hit jacc. idx

Weak supervision: unordered action sets

monte-carlo 23.3 9.8 9.3

text-based 23.2 10.6 9.2

Stronger supervision: ordered action transcripts

HMM (Kuehne et al., 2017) 25.9 20.0 8.6

CTC (Huang et al., 2016) 21.8 − −
ECTC (Huang et al., 2016) 27.7 − −
HMM/RNN (Chapter 6) 33.3 − 11.9

TCFPN (Ding and Xu, 2018) 38.4 − 12.6

NN-Viterbi (Chapter 7) 43.0 − 12.6

Table 8.6: Performance of the proposed method compared to state-of-the-art methods for
weakly supervised temporal segmentation. Note that the proposed method uses action sets
as weak supervision, whereas the other approaches rely on stronger supervision with ordered
action sequences.

at a �ne-grained resolution and the time variable t can run over a coarser grid of frames.
In Figure 8.6, the frame accuracy on the �rst split of Breakfast is compared to the realtime
factor of the decoding. A realtime factor of one means video duration and decoding time
are equal, a realtime factor smaller than one means the decoding is faster than the video
duration. While allowing new segment hypotheses at a rate of 10, 20, or 30 frames results in
the best accuracy, coarser sampling rates still allow for similar results, given that the overall
model is weak enough that the errors induced by the model outweigh the error induced by the
coarse frame sampling. Note that realtime performance is already possible with evaluating
every 30th frame in the Viterbi decoding on an Intel Xeon with 2.0 GHz.

8.3.6 Comparison to State-of-the-Art

The task of weakly supervised learning of a model for temporal action segmentation given
only action sets has not been addressed before. Still, we can compare the proposed approach
to works on temporal action segmentation given ordered action sequences. In this section,
we compare the action set approach to the approach of Kuehne et al. (2017), who use hidden
Markov models and Gaussian mixture models, as well as the approach from Chapter 7. For
completeness, the systems of Huang et al. (2016) and Ding and Xu (2018) are also provided
in Table 8.6. All of these approaches use ordered action sequences, and thus a much stronger
supervision than the proposed method. Keeping the tremendously large search space for our
problem compared to the setting with action transcripts as weak supervision in mind (cf.
Section 8.1), our model achieves remarkable results on Breakfast and Hollywood Extended.
For a comparison, we also trained the HMM approach of Kuehne et al. (2017) without
ordering constraints as supervision. Therefore, we used the same monte-carlo grammar that

148 Chapter 8. Action Sets

ours

GT

spoon
powder

pour milk
spoon
powder

pour
milk stir milk

spoon powder pour milk stir milk

Figure 8.7: Example segmentation. All relevant ground truth actions are present. Note that
spoon_powder always occurs jointly with pour_milk, so it is hard for the model to distinguish
them.

cuts per video 4 2 -

avg. #actions per video 12.5 25 50

midpoint hit 17.4 12.1 9.8

Table 8.7: Di�erent levels of video trimming for Cooking 2. More videos and less actions per
video result in better performance.

is also used for our action set approach to generate possible ordered action sequences for each
training video. These sampled ordered action sequences have then been used for training.
This variant of the approach of Kuehne et al. (2017) yields an accuracy of 14.5% on Breakfast,
which is far less than our approach. An example segmentation of our approach is shown in
Figure 8.7. Falsely recognized actions are frequently those that only occur jointly, such as
spoon_powder and pour_milk. In these cases, the model typically fails to predict the correct
ordering.

Impact of Video Length and Amount of Training Data

While the action set approach works well on Breakfast and Hollywood Extended, the results
on Cooking 2 show its limitations. The dataset has many classes (67) but only a small amount
of training videos (220), which are very long and contain a huge amount of di�erent actions.
These characteristics make it di�cult for the multi-task learning to distinguish di�erent
classes, as many of them occur jointly in most training videos. We show the importance of
having enough videos by cutting each video of Cooking 2 into two/four parts (Table 8.7).
This increases the number of videos and reduces the number of actions per video. The more
videos and the less actions per video on average, the better are the results of our method.

8.4. Summary 149

Breakfast Cooking 2 Holl. Ext.
frame acc. midpoint hit jacc. idx

monte-carlo 28.4 10.2 23.0

text-based 28.0 10.6 24.2

Table 8.8: Results of the proposed method when the action sets are provided for inference.

8.3.7 Inference given Action Sets

So far, it has always been assumed that no weak supervision in form of action sets is provided
for inference. If the action sets for the videos are, for example, generated using meta-tags of
YouTube videos, however, they may as well be available during inference. In this section, we
evaluate the method under this assumption.

Let A be the given action set for a video. During inference, only action sequences that
are consistent with A need to be considered, i.e. for a grammar Γ, only sequences cN1 ∈
L(Γ) ∩ A∗ are possible. Since A∗ can be expressed by a right-regular grammar and right-
regular grammars are closed under intersection, cN1 ∈ L(Γ) ∩ A∗ can again be expressed by
a right-regular grammar. If L(Γ) ∩ A∗ is empty, we consider all sequences cN1 ∈ A∗. The
results are shown in Table 8.8. The above mentioned limitations on Cooking 2 again prevent
the method from generating a better segmentation. On Breakfast and Hollywood Extended,
a clear improvement of 5% and 15% compared to the inference without given action sets
(Table 8.6) can be observed.

In contrast to the results from Table 8.2, for this task the text-based grammar also gives a
slight improvement on Hollywood Extended. Still, the improvement is small. On Breakfast,
where the textual sources are more o�-domain than for Hollywood Extended, there is no
improvement at all.

8.4 Summary

We have introduced a system for weakly supervised temporal action segmentation given only
unordered action sets. In contrast to ordered action sequences that have been proposed as
weak supervision in the previous chapters, action sets are often publicly available in form of
meta-tags of videos and do not need to be annotated. Although action sets provide by far
less supervision than ordered action sequences and lead to a tremendously large search space,
our method still achieves good results. Providing the possibility to incorporate data-driven
grammars as well as text-based information or human knowledge, our method can be adapted
to speci�c requirements in di�erent video analysis tasks.

Chapter 9

Conclusion

Contents

9.1 Overview . 151

9.2 Discussion and Contributions . 152

9.3 Outlook . 154

9.3.1 Limitations and Future Improvements 154

9.3.2 Self-supervised Multi-Modal Learning 155

9.3.3 Action Anticipation . 156

9.1 Overview

In this thesis, we addressed the problem of temporal action segmentation with various levels
of supervision. The goal of the thesis was twofold: �rst, advancing the �eld of action seg-
mentation and detection by proposing a generic framework that is e�ective and applicable to
a wide variety of action modeling tasks and is capable of modeling temporal dependencies of
actions on di�erent hierarchical levels. Second, we aimed at providing algorithms that allow
for weakly supervised learning and thereby addressed the problem that annotation of vast
amounts of video data is expensive and therefore prohibitive for most practical applications.

Current works on temporal action segmentation mainly focus on fully supervised learning
and are therefore of limited practical applicability due to annotation cost for settings with
diverse video characteristics and many action classes. Moreover, these works typically rely
on local decisions and do not take long-range context into account. Our proposed generic
framework allows for application of the Viterbi algorithm to �nd the globally optimal segmen-
tation under the given models. Due to the context model, the temporal extend that in�uences
the recognition of action instances goes beyond local segment dependencies. In Chapter 5,
we showed that the framework can be combined with segment-based action classi�ers that
perform well in classical action recognition and achieved state-of-the-art performance on
Thumos. In an attempt to remove the need for full frame-level annotations, we then devel-
oped and discussed algorithms for weakly supervised learning from action transcripts and
unordered action sets, respectively. Again, the approaches built upon the generic framework.
We showed that the interaction of context, length, and visual model improve temporal action
segmentation systems and reached state-of-the-art performance on various benchmarks with
di�erent levels of supervision.

152 Chapter 9. Conclusion

9.2 Discussion and Contributions

We review the main contributions of this thesis in the following.

Modeling the Long-range Dependencies of Actions

As outlined in Section 1.2.1, humans tend to perceive actions in hierarchical structures.
More speci�cally, a sequence of low-level actions is oftentimes summarized in a high-level
concept. We addressed these temporal hierarchies with an explicit decomposition of the
segmentation task into a context model, a length model, and a visual model. Using right-
regular grammars for the context model, we successfully modeled long-range dependencies
between action classes. For the visual model, we mostly relied on RNNs which can model
short-term dependencies within an action class. An HMM has been proposed in Chapter 6 as
an additional hierarchical element. Modeling subactions as HMM states serves as a further
low-level temporal representation. The automatic re-estimation of the number of subactions
per action class allows for a decomposition of actions into arbitrarily small fragments.

Note that the quality of the visual model has a strong impact on the need for explicit
length modeling. Given a perfect visual model that outputs probability one for the true action
class and zero for all other classes at each frame, no length model is required. Imperfect
visual models, on the contrary, bene�t from explicit length models as they provide a prior
on the segment lengths and guide the visual model towards realistic segments. The same
holds for the context model. However, even with a perfect visual model, context models
can be advantageous in order to distinguish actions that look exactly the same, i.e. that
are indistinguishable for the visual model. An example are the actions stir milk and stir

co�ee from the Breakfast dataset. Assuming the mug is �lmed from the side, the color of
the liquid inside the mug is not visible in the frame and both actions can have exactly the
same visual appearance. Contextual knowledge, e.g. if milk or co�ee has been poured in the
mug before, can resolve such ambiguities. An extensive experimental evaluation in fully and
weakly supervised settings showed the importance of the high-level context model, the length
model, and the visual model.

Developing Algorithms for Weakly Supervised Learning

Addressing the need for algorithms that allow for an analysis of large-scale video data without
extensive manual annotation, we proposed di�erent training algorithms ranging from fully
supervised to weakly supervised learning. The location of the proposed methods on the
supervision graph is shown in Figure 9.1.

Given the availability of high quality speech recognition systems and the fact that there
are subtitles for a large amount of videos, action classes can be mined from this information
together with a temporal ordering. Even if temporally ordered action transcripts need to
be annotated manually, this is much easier than labeling every video frame or exact action
boundaries. Action transcripts are therefore an appealing kind of weak supervision. We pro-
posed two e�ective models and training algorithms in Chapter 6 and Chapter 7 that utilized
such annotation and showed considerable improvements over related methods. Closing the

9.2. Discussion and Contributions 153

supervision

fully supervised weakly supervised unsupervised

a
v
a
il
a
b
le

tr
a
in
in
g
d
a
ta

•

fully supervised
•

semi-supervised

•

RNN/HMM
and NN-Viterbi

•

action sets

Figure 9.1: Location of the proposed methods on the supervision graph. With the proposed
methods, we gradually decreased the required amount of supervision and therefore developed
methods that allow to use large amounts of data without tremendous annotation cost.

gap between fully supervised learning and weakly supervised learning, we discussed a semi-
supervised setup in Section 7.4. In this setup, sparse frame annotations have been provided
in addition to the ordered action transcript. Note that such sparse annotation is easy to ob-
tain by showing human annotators a short clip around the respective frame and asking them
which of the classes provided in the action transcript they observed. With only one percent of
frame annotations, the approach almost reaches the performance of fully supervised systems.
Finally, in Chapter 8, we proposed a method to learn from an unordered set of actions only.
This approach allows for a large amount of training data since action sets can be mined from
meta-tags or textual descriptions of the video and require very little or no human interference
at all.

Unifying Temporal Action Segmentation

Despite considerable improvements on various action detection and segmentation benchmarks
over the recent years, existing approaches are usually designed for datasets with speci�c
properties. More precisely, there are two main research streams. One is focusing on datasets
like Thumos, where the di�culty is to distinguish multiple instances of (mostly) the same
action from background and where the overall background ratio is high, typically above 50%.
Methods applied to datasets with such characteristics are closely related to ideas from object
detection (Zhao et al., 2017; Chao et al., 2018), i.e. they contain a proposal step to identify
possible action segment candidates and a classi�cation step to label these candidates and
discard proposals with low scores. The other research stream has a focus on datasets like
Breakfast or 50 Salads with a low background ratio but many actions of di�erent classes

154 Chapter 9. Conclusion

occurring in each video. Work on datasets with these characteristics is mostly focused on
modeling the temporal dependencies of frames within and around an action instance, for
example by using temporal convolutional networks with a su�ciently large receptive �eld (Lea
et al., 2016, 2017) or with recurrent neural networks (Huang et al., 2016) or classical temporal
models borrowed from automatic speech recognition (Kuehne et al., 2017).

The generic framework proposed in this thesis provides a uni�cation of both research
streams. Our fully supervised approaches from Chapter 5 and Section 7.5 have shown state-
of-the-art results on Thumos and Breakfast. The explicit length, context, and visual models
in the framework depend on the dataset characteristics but the overall approach relied on the
same factorization and Viterbi-based decoding scheme.

9.3 Outlook

As discussed in this thesis, algorithms to analyze videos are of importance for many practical
applications but the availability of training data is a limiting factor. While the proposed
methods for weakly supervised learning are an important step towards being able to gather
enough training data, it is desirable to go a step further and learn from video data without the
need for any manual interference. Another important research direction is to anticipate the
future. When a part of the video has been analyzed and temporally segmented, predicting how
the video evolves in the future is of great use to anticipate and plan actions for automated
systems that interact with humans. In this section, we brie�y discuss limitations of our
framework as well as the above-mentioned research directions.

9.3.1 Limitations and Future Improvements

Although the proposed framework and explicit training strategies result in a strong per-
formance on various datasets and in fully and weakly supervised settings, there are some
limitations in the current formulation that are worth being addressed in the future.

We could show that the context and length model lead to a signi�cant improvement.
However, both components are still constrained to explicit model assumptions. For the
length model, we assume a unimodal distribution like a class-dependent Poisson model. The
drawback of such models is that they can easily fail on actions with an underlying multimodal
length distribution. A more generic approach would be a neural network as length predictor,
which is di�cult to train given the limited size of current datasets. The context model
has similar weaknesses. Using right-regular grammars is a simple approach that is easy to
incorporate into the Viterbi decoding. On the other hand, these grammars only recognize
regular expressions. Recent advances in language modeling mostly rely on recurrent neural
networks (Sundermeyer et al., 2012). Due to the high capacity of language model RNNs,
they can represent more complex dependencies and are an interesting candidate for improved
context models. Incorporating them into the Viterbi decoding, however, is not trivial.

The training mechanisms used in the proposed methods also allow for further improve-
ments. In the current formulation, the likelihood of the ground truth segmentation is opti-
mized. Discriminative approaches that maximize the margin between the correct segmenta-

9.3. Outlook 155

tion at its competing segmentations are not yet included but have been successful in speech
recognition (Bahl et al., 1986; Macherey et al., 2005) and therefore also have great potential
for action segmentation. Moreover, in the fully supervised setup, the three model compo-
nents are optimized completely independently of each other. Future improvements therefore
include end-to-end formulations that allow to utilize interdependencies between the three
components already during training.

9.3.2 Self-supervised Multi-Modal Learning

Video data frequently comes along with audio. The acoustic information contained in videos,
however, is hardly exploited in current systems. Still, audio seems to be a major source
of information and allows for self-supervised learning, i.e. learning from the two modalities
without the need for any manual annotation at all. The straightforward way to utilize audio
is to extract speech using an ASR system and mine actions from this output. In this thesis,
we addressed two weakly supervised settings that are a step into the direction of using such
data. The approaches proposed in Chapter 6 and Chapter 7 do not rely on exact action
boundaries but only need temporal orderings. These orderings are frequently also present in
speech. Consider, for instance, instructional videos, where the actions performed in the video
signal are simultaneously narrated in the audio signal. For cases in which speech does not
follow the same temporal order as the video, action classes mined from the spoken sentences
can at least be used as unordered labels, such that the action set approach proposed in
Chapter 8 is applicable.

However, using speech data to automatically mine action classes is not trivial. Particu-
larly, there are two major problems that have to be faced. The �rst is a relevance problem.
Not everything that is being said is related to the visual signal. Consider, for instance, a
soccer match where the sportscaster talks about statistics or other background information
that is not directly related to what is happening on the �eld. The second problem is an
alignment problem. Speech is not always temporally aligned to the visual events. Again,
consider a soccer match. When there is a goal, the sportscaster will typically talk about
the goal after it happened. For documentaries, on the contrary, the narrator talks about
things that are shown in the video at that particular time. For tutorial videos, the action is
frequently described verbally and afterwards demonstrated visually. Thus, in order to utilize
audio signals, they need to be warped to the temporal locations in the video they correspond
to. Although being a novel research direction, some pioneering works exist. First approaches
by Arandjelovic and Zisserman (2017) and Korbar et al. (2018) learn audio-visual correspon-
dences, i.e. a network is trained to decide if an audio signal and a video signal are semantically
corresponding. Such methods can be leveraged to address the alignment problem. Further,
Chaudhuri et al. (2018) introduce AVA speech, extending the original AVA dataset from Gu
et al. (2018) by a labeled audio modality. In this dataset, the audio signal is equipped with
four labels indicating speech, speech plus music, speech plus noise, and no speech. The avail-
ability of a dataset with annotations for both modalities allows for an in-depth analysis and
a better understanding of the relations between video and audio.

156 Chapter 9. Conclusion

9.3.3 Action Anticipation

Many practical applications do not only require to analyze a complete video but to anticipate
what is happening in the future. In the �eld of autonomous driving, for instance, detecting
an action early helps to prevent dangerous situations when it comes to interactions between
cars and pedestrians. In an early work, Schindler and Van Gool (2008) already show that
very short snippets of one to seven frames can lead to good action recognition results. The
works of Ma et al. (2016) and Sadegh Aliakbarian et al. (2017) use LSTMs to anticipate
actions early after seeing a few frames only. They show good performance on large action
recognition benchmarks.

However, it is not only useful to anticipate the immediate future but a larger time horizon,
for example to plan actions of an autonomous agent. We address this problem in Abu Farha
et al. (2018), where up to �ve minutes of actions happening in the future are anticipated.
The work builds upon our RNN/HMM system from Chapter 6 to generate a temporal seg-
mentation of a smaller portion of already observed video data. Then, an RNN is trained to
predict the next action class and its length. The outcome is autoregressively fed back into
the network to predict further action segments. As an alternative approach, a CNN based
architecture is proposed. The input to the CNN is a one-hot encoding of the ground truth
segmentation normalized to a �xed temporal length. The output is a �xed length represen-
tation of the predicted future classes. While the RNN in principle can predict an arbitrary
duration of future actions, the CNN is limited to a �xed prediction range. An evaluation
on Breakfast and 50 Salads shows promising results for both architectures. Given the strong
context dependencies in the datasets, both methods can anticipate future actions for up to
�ve minutes with reasonable accuracy.

Despite of its huge potential for practical applications, action anticipation is still in its
early stage and needs further attention to develop algorithms that can deal with tremendous
uncertainty when predicting the future.

Bibliography

Yazan Abu Farha, Alexander Richard, and Juergen Gall. When will you do what? - Antic-
ipating temporal occurrences of activities. In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2018. 156

Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Ivan Laptev, Josef Sivic, and
Simon Lacoste-Julien. Unsupervised learning from narrated instruction videos. In IEEE

Int. Conf. on Computer Vision and Pattern Recognition, 2016. 20, 76

Anjum Ali and JK Aggarwal. Segmentation and recognition of continuous human activity.
In IEEE Workshop on Detection and Recognition of Events in Video, 2001. 15

Humam Alwassel, Fabian Caba Heilbron, Victor Escorcia, and Bernard Ghanem. Diagnosing
error in temporal action detectors. In European Conf. on Computer Vision, 2018. 3

Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In Int. Conf. on Computer

Vision, 2017. 155

Lalit Bahl, Frederick Jelinek, and Robert Mercer. A maximum likelihood approach to contin-
uous speech recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5:179�190, 1983. 66

Lalit Bahl, Peter Brown, Peter De Souza, and Robert Mercer. Maximum mutual information
estimation of hidden Markov model parameters for speech recognition. In IEEE Int. Conf.

on Acoustics, Speech and Signal Processing, 1986. 155

Nicolas Ballas, Li Yao, Pal Chris, and Aaron Courville. Delving deeper into convolutional
networks for learning video representations. In Int. Conf. on Learning Representations,
2016. 82

Roger Barker and Herbert Wright. Midwest and its children: The psychological ecology of an

American town. Row, Peterson and Company, 1954. 4

Hakan Bilen, Basura Fernando, Efstratios Gavves, Andrea Vedaldi, and Stephen Gould.
Dynamic image networks for action recognition. In IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2016. 13

Aaron Bobick and James Davis. Real-time recognition of activity using temporal templates.
In IEEE Winter Conf. on Applications of Computer Vision, 1996. 15

Aaron Bobick and Yuri Ivanov. Action recognition using probabilistic parsing. In IEEE Int.

Conf. on Computer Vision and Pattern Recognition, 1998. 19

158 Bibliography

Piotr Bojanowski, Rémi Lajugie, Francis Bach, Ivan Laptev, Jean Ponce, Cordelia Schmid,
and Josef Sivic. Weakly supervised action labeling in videos under ordering constraints.
In European Conf. on Computer Vision, 2014. xi, 7, 20, 24, 76, 77, 96, 103, 104, 127, 128,
134, 135

Piotr Bojanowski, Rémi Lajugie, Edouard Grave, Francis Bach, Ivan Laptev, Jean Ponce,
and Cordelia Schmid. Weakly-supervised alignment of video with text. In Int. Conf. on

Computer Vision, 2015. 22

Léon Bottou. Online learning and stochastic approximations. In Online learning and neural

networks. Cambridge University Press, 1998. 111

Y-Lan Boureau, Francis Bach, Yann LeCun, and Jean Ponce. Learning mid-level features for
recognition. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2010. 34

Herve Bourlard and Nelson Morgan. Connectionist speech recognition: a hybrid approach.
Springer Science & Business Media, 2012. 113

Matthew Brand, Nuria Oliver, and Alex Pentland. Coupled hidden Markov models for com-
plex action recognition. In IEEE Int. Conf. on Computer Vision and Pattern Recognition,
1997. 12

Shyamal Buch, Victor Escorcia, Chuanqi Shen, Bernard Ghanem, and Juan Carlos Niebles.
SST: Single-stream temporal action proposals. In IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2017. 17

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activ-
ityNet: A large-scale video benchmark for human activity understanding. In IEEE Int.

Conf. on Computer Vision and Pattern Recognition, 2015. 16

Fabian Caba Heilbron, Wayner Barrios, Victor Escorcia, and Bernard Ghanem. SCC: Seman-
tic context cascade for e�cient action detection. In IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2017. 17

Fabian Caba Heilbron, Joon-Young Lee, Hailin Jin, and Bernard Ghanem. What do I anno-
tate next? An empirical study of active learning for action localization. In European Conf.

on Computer Vision, 2018. 19

Hongping Cai, Fei Yan, and Krystian Mikolajczyk. Learning weights for codebook in image
classi�cation and retrieval. In IEEE Int. Conf. on Computer Vision and Pattern Recogni-

tion, 2010. 34

João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the
kinetics dataset. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2017.
3, 4, 7, 14, 44, 59, 71, 76, 108

Bibliography 159

Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A Ross, Jia Deng, and
Rahul Sukthankar. Rethinking the faster R-CNN architecture for temporal action local-
ization. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2018. 3, 17, 47,
56, 72, 73, 74, 131, 153

Ken Chat�eld, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of the devil
in the details: Delving deep into convolutional nets. In British Machine Vision Conference,
2014. 44

Sourish Chaudhuri, Joseph Roth, Daniel Ellis, Andrew Gallagher, Liat Kaver, Radhika
Marvin, Caroline Pantofaru, Nathan Reale, Loretta Guarino Reid, Kevin Wilson, and
Zhonghua Xi. AVA-Speech: A densely labeled dataset of speech activity in movies. In
Interspeech, 2018. 155

Hsuan-Sheng Chen, Hua-Tsung Chen, Yi-Wen Chen, and Suh-Yin Lee. Human action recog-
nition using star skeleton. In Proc. of the 4th ACM International Workshop on Video

Surveillance and Sensor Networks, 2006. 12

Yu Cheng, Quanfu Fan, Sharath Pankanti, and Alok Choudhary. Temporal sequence modeling
for video event detection. In IEEE Int. Conf. on Computer Vision and Pattern Recognition,
2014. 19

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
RNN encoder�decoder for statistical machine translation. In Conf. on Empirical Methods

in Natural Language Processing, 2014. 37

Xiyang Dai, Bharat Singh, Guyue Zhang, Larry S Davis, and Yan Qiu Chen. Temporal
context network for activity localization in videos. In Int. Conf. on Computer Vision,
2017. 17

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2005. 33

Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human detection using oriented histograms
of �ow and appearance. In European Conf. on Computer Vision, 2006. 33

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari,
Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and
Michael Wray. Scaling egocentric vision: The epic-kitchens dataset. In European Conf. on

Computer Vision, 2018. 6

Arthur Danto and Sidney Morgenbesser. What we can do. The Journal of Philosophy, 60
(15):435�445, 1963. 4

Arthur C Danto. Basic actions. American Philosophical Quarterly, 2(2):141�148, 1965. 4

160 Bibliography

James Davis and Aaron Bobick. The representation and recognition of human movement using
temporal templates. In IEEE Int. Conf. on Computer Vision and Pattern Recognition,
1997. 15

Michael Dewar, Chris Wiggins, and Frank Wood. Inference in hidden Markov models with
explicit state duration distributions. IEEE Signal Processing Letters, 19(4):235�238, 2012.
22

Li Ding and Chenliang Xu. Weakly-supervised action segmentation with iterative soft bound-
ary assignment. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2018.
xi, 20, 24, 32, 103, 104, 105, 127, 128, 131, 134, 135, 147

Je� Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for
visual recognition and description. In IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2015. 76

Olivier Duchenne, Ivan Laptev, Josef Sivic, Francis Bach, and Jean Ponce. Automatic anno-
tation of human actions in video. In Int. Conf. on Computer Vision, 2009. 6, 20, 128

Alexei A Efros, Alexander C Berg, Greg Mori, and Jitendra Malik. Recognizing action at a
distance. In Int. Conf. on Computer Vision, 2003. 12

Eyrun Eyjolfsdottir, Steve Branson, Xavier Burgos-Artizzu, Eric Hoopfer, Jonathan Schor,
David Anderson, and Pietro Perona. Detecting social actions of fruit �ies. In European

Conf. on Computer Vision, 2014. 18

Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream net-
work fusion for video action recognition. In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2016. 14

Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. Temporal residual networks for dy-
namic scene recognition. In IEEE Int. Conf. on Computer Vision and Pattern Recognition,
2017a. 14, 108

Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. Spatiotemporal multiplier net-
works for video action recognition. In IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2017b. 14, 44

Chuang Gan, Chen Sun, Lixin Duan, and Boqing Gong. Webly-supervised video recognition
by mutually voting for relevant web images and web video frames. In European Conf. on

Computer Vision, 2016. 22

Jiyang Gao, Zhenheng Yang, Kan Chen, Chen Sun, and Ram Nevatia. Turn tap: Temporal
unit regression network for temporal action proposals. In Int. Conf. on Computer Vision,
2017a. 16

Bibliography 161

Jiyang Gao, Zhenheng Yang, and Ram Nevatia. Cascaded boundary regression for temporal
action detection. In British Machine Vision Conference, 2017b. 16, 73

Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, and Bryan Russell. ActionVLAD:
Learning spatio-temporal aggregation for action classi�cation. In IEEE Int. Conf. on

Computer Vision and Pattern Recognition, 2017. 14

Ross Girshick. Fast R-CNN. In Int. Conf. on Computer Vision, 2015. 17

Ross Girshick, Je� Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 2014. 17

Georgia Gkioxari and Jitendra Malik. Finding action tubes. In IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 2015. 15

Hanlin Goh, Nicolas Thome, Matthieu Cord, and Joo-Hwee Lim. Unsupervised and super-
vised visual codes with restricted Boltzmann machines. In European Conf. on Computer

Vision, 2012. 40

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist
temporal classi�cation: labelling unsegmented sequence data with recurrent neural net-
works. In Int. Conf. on Machine Learning, 2006. 20, 108

Chunhui Gu, Chen Sun, David Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sud-
heendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia
Schmid, and Jitendra Malik. AVA: A video dataset of spatio-temporally localized atomic
visual actions. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2018. 4,
6, 128, 155

Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey Vision

Conference, 1988. 12

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2016. 14,
44

Georg Heigold, Ralf Schlüter, and Hermann Ney. On the equivalence of Gaussian HMM and
Gaussian HMM-like hidden conditional random �elds. In Interspeech, 2007. 40

Geo�rey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury.
Deep neural networks for acoustic modeling in speech recognition: The shared views of
four research groups. IEEE Signal Processing Magazine, 29(6):82�97, 2012. 36

Minh Hoai, Zhen-Zhong Lan, and Fernando De la Torre. Joint segmentation and classi�-
cation of human actions in video. In IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2011. 18

162 Bibliography

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735�1780, 1997. 37

Rui Hou, Rahul Sukthankar, and Mubarak Shah. Real-time temporal action localization in
untrimmed videos by sub-action discovery. In British Machine Vision Conference, 2017.
19

De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Connectionist temporal modeling for
weakly supervised action labeling. In European Conf. on Computer Vision, 2016. xi, xiii,
20, 24, 32, 76, 96, 103, 104, 113, 119, 127, 128, 129, 130, 134, 135, 147, 154

Haroon Idrees, Amir Zamir, Yu-Gang Jiang, Alex Gorban, Ivan Laptev, Rahul Sukthankar,
and Mubarak Shah. The THUMOS challenge on action recognition for videos �in the wild�.
Computer Vision and Image Understanding, 155:1�23, 2017. 16, 21, 23, 65

Nazl� �kizler and David Forsyth. Searching for complex human activities with no visual
examples. International Journal on Computer Vision, 80(3):337�357, 2008. 19

Nazl� �kizler, Gokberk Cinbis, and Pinar Duygulu. Human action recognition with line and
�ow histograms. In Int. Conf. on Pattern Recognition, 2008. 12

Sergey Io�e and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Int. Conf. on Machine Learning, 2015. 114

Tommi Jaakkola and David Haussler. Exploiting generative models in discriminative classi-
�ers. In Advances in Neural Information Processing Systems, 1999. 34

Mihir Jain, Jan C van Gemert, and Cees G Snoek. What do 15,000 object categories tell
us about classifying and localizing actions? In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2015. 13, 24, 56

Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating local de-
scriptors into a compact image representation. In IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2010. 14

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human
action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35
(1):221�231, 2013. 13

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recur-
rent network architectures. In Int. Conf. on Machine Learning, 2015. 37

Daniel Jurafsky, Chuck Wooters, Jonathan Segal, Andreas Stolcke, Eric Fosler, Gary
Tajchaman, and Nelson Morgan. Using a stochastic context-free grammar as a language
model for speech recognition. In IEEE Int. Conf. on Acoustics, Speech and Signal Process-

ing, 1995. 49

Bibliography 163

Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari, and Cordelia Schmid. Action
tubelet detector for spatio-temporal action localization. In Int. Conf. on Computer Vi-

sion, 2017. 15

Svebor Karaman, Lorenzo Seidenari, and Alberto Del Bimbo. Fast saliency based pooling of
Fisher encoded dense trajectories. Technical report, University of Florence, 2014. 15, 70,
71

Andrej Karpathy, George Toderici, Sachin Shetty, Tommy Leung, Rahul Sukthankar, and
Li Fei-Fei. Large-scale video classi�cation with convolutional neural networks. In IEEE

Int. Conf. on Computer Vision and Pattern Recognition, 2014. 13, 21, 59

Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and
Andrew Zisserman. The kinetics human action video dataset. CoRR, abs/1705.06950,
2017. 3, 21, 23, 44

Yan Ke, Rahul Sukthankar, and Martial Hebert. E�cient visual event detection using volu-
metric features. In Int. Conf. on Computer Vision, 2005. 15

Oscar Koller, Hermann Ney, and Richard Bowden. Deep hand: How to train a CNN on 1
million hand images when your data is continuous and weakly labelled. In IEEE Int. Conf.

on Computer Vision and Pattern Recognition, 2016. 21, 108, 109

Oscar Koller, Sepehr Zargaran, and Hermann Ney. Re-sign: Re-aligned end-to-end sequence
modelling with deep recurrent CNN-HMMs. In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2017. 21, 108, 109, 122

Bruno Korbar, Du Tran, and Lorenzo Torresani. Cooperative learning of audio and video
models from self-supervised synchronization. In Advances in Neural Information Processing

Systems, 2018. 155

Alex Krizhevsky, Ilya Sutskever, and Geo�rey Hinton. Imagenet classi�cation with deep
convolutional neural networks. In Advances in Neural Information Processing Systems,
2012. 13

Hilde Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre.
HMDB: A large video database for human motion recognition. In Int. Conf. on Com-

puter Vision, 2011. 4, 23

Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax
and semantics of goal-directed human activities. In IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2014. 4, 5, 19, 23, 77, 104, 105

Hilde Kuehne, Juergen Gall, and Thomas Serre. An end-to-end generative framework for
video segmentation and recognition. In IEEE Winter Conf. on Applications of Computer

Vision, 2016. 19, 36, 96, 104, 105, 131

164 Bibliography

Hilde Kuehne, Alexander Richard, and Juergen Gall. Weakly supervised learning of actions
from transcripts. Computer Vision and Image Understanding, 2017. xi, 7, 20, 24, 31, 32,
76, 96, 103, 104, 108, 109, 119, 122, 127, 128, 134, 135, 147, 148, 154

Hilde Kuehne, Alexander Richard, and Juergen Gall. A hybrid RNN-HMM approach for
weakly supervised temporal action segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2019. 8

Tian Lan, Yuke Zhu, Amir Roshan Zamir, and Silvio Savarese. Action recognition by hierar-
chical mid-level action elements. In Int. Conf. on Computer Vision, 2015. 15

Ivan Laptev. On space-time interest points. International Journal on Computer Vision, 64
(2-3):107�123, 2005. 12

Ivan Laptev and Tony Lindeberg. Space-time interest points. In Int. Conf. on Computer

Vision, 2003. 12

Ivan Laptev and Patrick Pérez. Retrieving actions in movies. In Int. Conf. on Computer

Vision, 2007. 13, 15

Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld. Learning real-
istic human actions from movies. In IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2008. 6, 20, 33, 76

Colin Lea, Austin Reiter, René Vidal, and Gregory Hager. Segmental spatiotemporal CNNs
for �ne-grained action segmentation. In European Conf. on Computer Vision, 2016. 18,
154

Colin Lea, Michael Flynn, René Vidal, Austin Reiter, and Gregory Hager. Temporal convo-
lutional networks for action segmentation and detection. In IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 2017. 3, 6, 18, 20, 24, 154

Peng Lei and Sinisa Todorovic. Temporal deformable residual networks for action segmen-
tation in videos. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2018.
18

Guy Lev, Gil Sadeh, Benjamin Klein, and Lior Wolf. RNN Fisher vectors for action recogni-
tion and image annotation. In European Conf. on Computer Vision, 2016. 13

Mengxi Lin, Nakamasa Inoue, and Koichi Shinoda. CTC network with statistical language
modeling for action sequence recognition in videos. In Proceedings of the Thematic Work-

shops of the ACM Conf. on Multimedia, 2017a. 20, 127

Tianwei Lin, Xu Zhao, and Zheng Shou. Single shot temporal action detection. In ACM

Conf. on Multimedia, 2017b. 17

Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang, and Ming Yang. BSN: Boundary
sensitive network for temporal action proposal generation. In European Conf. on Computer

Vision, 2018. 47, 73

Bibliography 165

David Lowe. Object recognition from local scale-invariant features. In Int. Conf. on Computer

Vision, 1999. 12

Shugao Ma, Leonid Sigal, and Stan Sclaro�. Learning activity progression in LSTMs for
activity detection and early detection. In IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2016. 156

Wolfgang Macherey and Hermann Ney. A comparative study on maximum entropy and dis-
criminative training for acoustic modeling in automatic speech recognition. In Interspeech,
2003. 40

Wolfgang Macherey, Lars Haferkamp, Ralf Schlüter, and Hermann Ney. Investigations on er-
ror minimizing training criteria for discriminative training in automatic speech recognition.
In Interspeech, 2005. 155

Jonathan Malmaud, Jonathan Huang, Vivek Rathod, Nick Johnston, Andrew Rabinovich,
and Kevin Murphy. What's cookin'? Interpreting cooking videos using text, speech and
vision. In Conf. of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, 2015. 21

Marcin Marszalek, Ivan Laptev, and Cordelia Schmid. Actions in context. In IEEE Int. Conf.

on Computer Vision and Pattern Recognition, 2009. 20, 24, 76

Osama Masoud and Nikos Papanikolopoulos. A method for human action recognition. Image
and Vision Computing, 21(8):729�743, 2003. 12

Roland Memisevic and Geo�rey Hinton. Unsupervised learning of image transformations. In
IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2007. 13

Abdel-rahman Mohamed, George Dahl, and Geo�rey Hinton. Acoustic modeling using deep
belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1):
14�22, 2012. 36

Hiromi Narimatsu and Hiroyuki Kasai. State duration and interval modeling in hidden
semi-Markov model for sequential data analysis. Annals of Mathematics and Arti�cial

Intelligence, 81(3-4):377�403, 2017. 22

Hermann Ney and Stefan Ortmanns. Dynamic programming search for continuous speech
recognition. IEEE Signal Processing Magazine, 16(5):64�83, 1999. 49

Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic dependences
in stochastic language modelling. Computer Speech & Language, 8:1�38, 1994. 57, 58, 66

Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat
Monga, and George Toderici. Beyond short snippets: Deep networks for video classi�cation.
In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2015. 14, 76

166 Bibliography

Phuc Nguyen, Ting Liu, Gautam Prasad, and Bohyung Han. Weakly supervised action
localization by sparse temporal pooling network. In IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2018. 21

Bingbing Ni, Vignesh Paramathayalan, and Philippe Moulin. Multiple granularity analysis
for �ne-grained action detection. In IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2014. 15, 71

Bingbing Ni, Xiaokang Yang, and Shenghua Gao. Progressively parsing interactional objects
for �ne grained action detection. In IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2016. 71

Juan Carlos Niebles and Li Fei-Fei. A hierarchical model of shape and appearance for human
action classi�cation. In IEEE Int. Conf. on Computer Vision and Pattern Recognition,
2007. 13

Dan Oneata, Jakob Verbeek, and Cordelia Schmid. The LEAR submission at Thumos 2014.
Technical report, Inria, 2014. 3, 15, 48, 56, 70, 71

Sujoy Paul, Sourya Roy, and Amit Roy-Chowdhury. W-TALC: Weakly-supervised temporal
activity localization and classi�cation. In European Conf. on Computer Vision, 2018. 21

Xiaojiang Peng, Changqing Zou, Yu Qiao, and Qiang Peng. Action recognition with stacked
Fisher vectors. In European Conf. on Computer Vision, 2014. 13, 34

Florent Perronnin and Christopher Dance. Fisher kernels on visual vocabularies for image
categorization. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2007.
13, 34

Florent Perronnin, Christopher Dance, Gabriela Csurka, and Marco Bressan. Adapted vo-
cabularies for generic visual categorization. In European Conf. on Computer Vision, 2006.
34

Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the Fisher kernel for
large-scale image classi�cation. In European Conf. on Computer Vision, 2010. 35

Hamed Pirsiavash and Deva Ramanan. Parsing videos of actions with segmental grammars.
In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2014. 19

Michael Powell. A direct search optimization method that models the objective and constraint
functions by linear interpolation. In Advances in Optimization and Numerical Analysis,
1994. 138

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-
time object detection with region proposal networks. In Advances in Neural Information

Processing Systems, 2015. 17, 72

Bibliography 167

Alexander Richard and Juergen Gall. A BoW-equivalent recurrent neural network for action
recognition. In British Machine Vision Conference, 2015. 38

Alexander Richard and Juergen Gall. Temporal action detection using a statistical language
model. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2016. 8

Alexander Richard and Juergen Gall. A bag-of-words equivalent recurrent neural network for
action recognition. Computer Vision and Image Understanding, 156:79�91, 2017. 8, 38

Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly supervised action learning with
RNN based �ne-to-coarse modeling. In IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2017. 8

Alexander Richard, Hilde Kuehne, and Juergen Gall. Action Sets: Weakly supervised action
segmentation without ordering constraints. In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2018a. 9

Alexander Richard, Hilde Kuehne, Ahsan Iqbal, and Juergen Gall. NeuralNetwork-Viterbi:
A framework for weakly supervised video learning. In IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2018b. 8

Mikel Rodriguez, Javed Ahmed, and Mubarak Shah. Action MACH: A spatio-temporal
maximum average correlation height �lter for action recognition. In IEEE Int. Conf. on

Computer Vision and Pattern Recognition, 2008. 12

Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka, and Bernt Schiele. A database for
�ne grained activity detection of cooking activities. In IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2012. xiii, 3, 5, 15, 25, 47, 56, 65, 71

Marcus Rohrbach, Anna Rohrbach, Michaela Regneri, Sikandar Amin, Mykhaylo Andriluka,
Manfred Pinkal, and Bernt Schiele. Recognizing �ne-grained and composite activities using
hand-centric features and script data. International Journal on Computer Vision, 119(3):
346�373, 2016. 25, 143

David Rumelhart, Geo�rey Hinton, and Ronald Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533�536, 1986. 38

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander Berg, and Li Fei-
Fei. ImageNet large scale visual recognition challenge. International Journal on Computer

Vision, 115(3):211�252, 2015. 44

Mohammad Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu Salzmann, Basura Fernando,
Lars Petersson, and Lars Andersson. Encouraging LSTMs to anticipate actions very early.
In Int. Conf. on Computer Vision, 2017. 156

168 Bibliography

Jorge Sanchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek. Image classi�cation
with the Fisher vector: Theory and practice. International Journal on Computer Vision,
105(3):222�245, December 2013. 35

Sandvine Inc. Global internet phenomena report, 2018. URL https://www.sandvine.com/

hubfs/downloads/phenomena/2018-phenomena-report.pdf. 1

Konrad Schindler and Luc Van Gool. Action snippets: How many frames does human action
recognition require? In IEEE Int. Conf. on Computer Vision and Pattern Recognition,
2008. 156

Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a local
SVM approach. In Int. Conf. on Pattern Recognition, 2004. 3, 12, 33

Mike Schuster and Kuldip Paliwal. Bidirectional recurrent neural networks. IEEE Transac-

tions on Signal Processing, 45(11):2673�2681, 1997. 37

Fadime Sener and Angela Yao. Unsupervised learning and segmentation of complex activities
from video. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2018. 22

Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 1994. 32

Qinfeng Shi, Li Wang, Li Cheng, and Alex Smola. Discriminative human action segmentation
and recognition using semi-Markov model. In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2008. 18

Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal action localization in untrimmed
videos via multi-stage CNNs. In IEEE Int. Conf. on Computer Vision and Pattern Recog-

nition, 2016. 16, 47, 73

Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki Miyazawa, and Shih-Fu Chang.
CDC: Convolutional-de-convolutional networks for precise temporal action localization in
untrimmed videos. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2017.
16

Zheng Shou, Hang Gao, Lei Zhang, Kazuyuki Miyazawa, and Shih-Fu Chang. Autoloc:
weakly-supervised temporal action localization in untrimmed videos. In European Conf.

on Computer Vision, 2018. 21

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recog-
nition in videos. In Advances in Neural Information Processing Systems, 2014. vii, 3, 14,
43, 44, 47, 59, 108

Bharat Singh, Tim Marks, Michael Jones, Oncel Tuzel, and Ming Shao. A multi-stream bi-
directional recurrent neural network for �ne-grained action detection. In IEEE Int. Conf.

on Computer Vision and Pattern Recognition, 2016. 16, 76

https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf

Bibliography 169

Gurkirt Singh, Suman Saha, Michael Sapienza, Philip Torr, and Fabio Cuzzolin. Online real-
time multiple spatiotemporal action localisation and prediction. In Int. Conf. on Computer

Vision, 2017. 15

Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek: Forcing a network to be meticulous
for weakly-supervised object and action localization. In Int. Conf. on Computer Vision,
2017. 21

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012. 4, 21, 23

Sebastian Stein and Stephen McKenna. Combining embedded accelerometers with computer
vision for recognizing food preparation activities. In ACM Int. Joint Conf. on Pervasive

and Ubiquitous Computing, 2013. 4, 5, 24

Chen Sun, Sanketh Shetty, Rahul Sukthankar, and Ram Nevatia. Temporal localization of
�ne-grained actions in videos by domain transfer from web images. In ACM Conf. on

Multimedia, 2015. 22

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for language
modeling. In Interspeech, 2012. 154

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convo-
lutions. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2015. 44

Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? In Int. Conf.

on Learning Representations, 2018. 37, 127

Graham Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler. Convolutional learning of
spatio-temporal features. In European Conf. on Computer Vision, 2010. 13

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning
spatiotemporal features with 3d convolutional networks. In Int. Conf. on Computer Vision,
2015. 13

Edmondo Trentin and Marco Gori. A survey of hybrid ANN/HMM models for automatic
speech recognition. Neurocomputing, 37:91�126, 2001. 6

Muhammad Muneeb Ullah, Sobhan Naderi Parizi, and Ivan Laptev. Improving bag-of-
features action recognition with non-local cues. In British Machine Vision Conference,
2010. 33

Robin Vallacher and Daniel Wegner. What do people think they're doing? Action identi�ca-
tion and human behavior. Psychological Review, 94(1):3�15, 1987. 4

Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A genera-
tive model for raw audio. In ISCA Speech Synthesis Workshop, 2016. 18

170 Bibliography

Saeed Vaseghi. State duration modelling in hidden Markov models. Signal Processing, 41(1):
31�41, 1995. 22

Andrea Vedaldi and Andrew Zisserman. E�cient additive kernels via explicit feature maps.
IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 480�492, 2012.
41, 43

VidCon. Industry Keynote with YouTube CEO Susan Wojcicki, 2015. URL https://www.

youtube.com/watch?v=O6JPxCBlBh8. 1

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2001. 15

Andrew Viterbi. Error bounds for convolutional codes and an asymptotically optimum de-
coding algorithm. IEEE Transactions on Information Theory, 13(2):260�269, 1967. 7,
49

Nam Vo and Aaron Bobick. From stochastic grammar to Bayes network: Probabilistic parsing
of complex activity. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2014.
19, 109

Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In Int.

Conf. on Computer Vision, 2013. 3, 7, 13, 24, 32, 35, 59, 65

Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense trajectories and
motion boundary descriptors for action recognition. International Journal on Computer

Vision, 103(1):60�79, 2013. vii, 13, 14, 32, 33, 34, 35

Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong Gong.
Locality-constrained linear coding for image classi�cation. In IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 2010. 34

Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition and detection by combining
motion and appearance features. Technical report, The Chinese University of Hong Kong
and Shenzhen Institutes of Advanced Technology, 2014. 15, 70, 71

Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-pooled deep-
convolutional descriptors. In IEEE Int. Conf. on Computer Vision and Pattern Recognition,
2015. 14

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc
Van Gool. Temporal segment networks: Towards good practices for deep action recog-
nition. In European Conf. on Computer Vision, 2016. 3, 14, 47, 108

Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc van Gool. Untrimmednets for weakly
supervised action recognition and detection. In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2017. 21, 48

https://www.youtube.com/watch?v=O6JPxCBlBh8
https://www.youtube.com/watch?v=O6JPxCBlBh8

Bibliography 171

Daniel Weinland, Remi Ronfard, and Edmond Boyer. A survey of vision-based methods for
action representation, segmentation and recognition. Computer Vision and Image Under-

standing, 115:224�241, 2011. 12

Paul Werbos. Generalization of backpropagation with application to a recurrent gas market
model. Neural Networks, 1(4):339�356, 1988. 38

Paul Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78:1550�1560, 1990. 83

Frank Wood, Jan Gasthaus, Cédric Archambeau, Lancelot James, and Yee Whye Teh. The
sequence memoizer. Communications of the ACM, 54(2):91�98, 2011. 19

Jiajun Wu, Yinan Yu, Chang Huang, and Kai Yu. Deep multiple instance learning for image
classi�cation and auto-annotation. In IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2015a. 141

Zuxuan Wu, Xi Wang, Yu-Gang Jiang, Hao Ye, and Xiangyang Xue. Modeling spatial-
temporal clues in a hybrid deep learning framework for video classi�cation. In ACM Conf.

on Multimedia, 2015b. 76

Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: region convolutional 3d network for tem-
poral activity detection. In Int. Conf. on Computer Vision, 2017. 17, 73

Yan Yan, Chenliang Xu, Dawen Cai, and Jason Corso. Weakly supervised actor-action
segmentation via robust multi-task ranking. In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2017. 22

Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid matching
using sparse coding for image classi�cation. In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2009. 34

Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei. End-to-end learning of action
detection from frame glimpses in videos. In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2016. 3, 73

Jun Yuan, Bingbing Ni, Xiaokang Yang, and Ashraf Kassim. Temporal action localization
with pyramid of score distribution features. In IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2016. 16

Zehuan Yuan, Jonathan Stroud, Tong Lu, and Jia Deng. Temporal action localization by
structured maximal sums. In IEEE Int. Conf. on Computer Vision and Pattern Recogni-

tion, 2017. 17, 73

Christopher Zach, Thomas Pock, and Horst Bischof. A duality based approach for realtime
TV-L1 optical �ow. In Joint Pattern Recognition Symposium, 2007. 44

172 Bibliography

Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao Kobayasih, and Tadashi Kitamura. A
hidden semi-Markov model-based speech synthesis system. IEICE Transactions on Infor-

mation and Systems, 90(5):825�834, 2007. 22

Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaoou Tang, and Dahua Lin. Temporal
action detection with structured segment networks. In Int. Conf. on Computer Vision,
2017. 6, 16, 48, 72, 73, 74, 131, 153

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die be-
nutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit einschlielich
Tabellen und Abbildungen �, die anderen Werken im Wortlaut oder dem Sinn nach entnom-
men sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation
noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie noch
nicht verö�entlicht worden ist sowie, dass ich eine solche Verö�entlichung vor Abschluss des
Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung
sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Juergen Gall betreut
worden.

Unterschift:
�����������������������-
Datum:
�����������������������-

	List of Figures
	List of Tables
	Nomenclature
	Publications
	Introduction
	Motivation
	Challenges
	The Hierarchical Nature of Actions
	Supervision

	Contributions
	A Generic Framework for Temporal Action Segmentation
	Advancing Fully Supervised Action Segmentation
	Weakly Supervised Action Segmentation using Action Transcripts
	Weakly Supervised Action Segmentation using Action Sets

	Thesis Structure

	Related Work
	Classical Action Recognition
	Early Approaches
	Deep Learning for Action Recognition

	Temporal Action Segmentation
	Early Approaches
	Temporal Action Localization and Detection
	Action Segmentation with Long-range Dependencies
	Globally Optimal Segmentations
	Explicit Context Modeling and Stochastic Grammars

	Weakly Supervised Learning
	Weakly Supervised Learning from Structured Sequences
	Video-level Annotations
	Weakly Supervised Approaches in Other Domains
	Length Modeling for Temporal Sequences

	Datasets

	Preliminaries
	Problem Description and Notation
	Action Recognition
	Temporal Action Segmentation

	Evaluation Metrics
	Improved Dense Trajectories
	Feature Quantization
	Bag-of-Words
	Fisher Vectors
	Bag-of-Words and Fisher Vectors for Action Recognition
	Frame Features from IDTs with Fisher Vectors

	Recurrent Neural Networks
	Closing the Gap: A BoW Equivalent Neural Network
	Conversion of BoW into a Neural Network
	Equivalence Results
	Encoding Kernels in the Neural Network

	Deep Learning for Action Recognition

	A General Framework for Temporal Action Segmentation
	Introduction
	A Generic Probabilistic Model
	Viterbi Decoding
	Computing the Score of the Viterbi Path
	Backtracing the Viterbi Path
	Complexity

	Fully Supervised Action Segmentation
	Introduction
	Temporal Action Detection
	Context Model
	Length Model
	Visual Model
	Inference

	Experiments
	Setup
	Evaluation of the Context Model
	Model Components
	Length Model
	Comparison to Early Sliding Window Based Approaches
	Comparison to State-of-the-Art

	Summary

	RNN-HMMs for Weakly Supervised Action Segmentation
	Introduction
	Task Description
	Technical Details
	Visual Model
	Context Model
	Inference
	Length Regularization
	Training

	Experiments
	Setup
	Evaluation of the GRU-based Model
	Analysis of the Subaction Modeling
	Analysis of Length Regularization
	Comparison to State-of-the-Art

	Summary

	NeuralNetwork-Viterbi
	Introduction
	Technical Details
	NeuralNetwork-Viterbi
	Enhancing the Robustness
	The Model
	Inference

	Experiments
	Setup
	Robustness
	Impact of Direct Learning and Model
	Incremental Learning
	Comparison to State-of-the-Art
	Action Alignment

	Semi-supervised Learning
	Going Back to Full Supervision
	Summary

	Action Sets
	Introduction
	Technical Details
	Context Model
	Length Model
	Visual Model: Multi-task Learning of Action Frames
	Inference

	Experiments
	Setup
	Effect of the Grammar
	Effect of the Length Model
	Impact of Model Components
	Remarks on the Runtime: Coarse Frame Sampling
	Comparison to State-of-the-Art
	Inference given Action Sets

	Summary

	Conclusion
	Overview
	Discussion and Contributions
	Outlook
	Limitations and Future Improvements
	Self-supervised Multi-Modal Learning
	Action Anticipation

	Bibliography

