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Abstract

Clustering is a fundamental tool in data mining. It partitions points into groups
(clusters) and may be used to make decisions for each point based on its group. We
study several clustering objectives. We begin with studying the Euclidean k-center
problem. The k-center problem is a classical combinatorial optimization problem which
asks to select k centers and assign each input point in a set P to one of the centers,
such that the maximum distance of any input point to its assigned center is minimized.
The Euclidean k-center problem assumes that the input set P is a subset of a Euclidean
space and that each location in the Euclidean space can be chosen as a center. We
focus on the special case with k = 1, the smallest enclosing ball problem: given a
set of points in m-dimensional Euclidean space, find the smallest sphere enclosing
all the points. We combine known results about convex optimization with structural
properties of the smallest enclosing ball to create a new algorithm. We show that on
instances with rational coefficients our new algorithm computes the exact center of the
optimal solutions and has a worst-case run time that is polynomial in the size of the
input. We use the new algorithm to show that we can solve the Euclidean k-center
problem in polynomial time for constant k and dimension m.

The general unconstrained clustering problems are mostly very well studied. The
k-center problem for example allows for elegant 2-approximation algorithms [47, 53].
However, the situation becomes significantly more difficult when constraints are added
to the problem. We first look at the fair clustering. The fairness constraint is motivated
by the fact that the general process of computing a clustering may harm protected
(minority) classes if the clustering algorithm does not adequately represent them in
desirable clusters – especially if the data is already biased.

At NIPS 2017, Chierichetti et al. [29] proposed a model for fair clustering requiring
the representation in each cluster to (approximately) preserve the global fraction of
each protected class. Restricting to two protected classes, they developed both a
4-approximation algorithm for the fair k-center problem and an O(t)-approximation
algorithm for the fair k-median problem, where t is a parameter for the fairness model.
For multiple protected classes, the best known result is a 14-approximation algorithm
for fair k-center [90].

We extend and improve the known results. Firstly, we give a 5-approximation algorithm
for the fair k-center problem with multiple protected classes. Secondly, we propose a
relaxed fairness notion under which we can give bicriteria constant-factor approximation
algorithms for the fair version of all of the classical clustering objectives (k-center, k-
supplier, k-median, k-means and facility location). The latter approximation algorithms
are achieved by a framework that takes an arbitrary existing unfair (integral) solution
and a fair (fractional) LP solution and combines them into an essentially fair clustering
with a weakly supervised rounding scheme. In this way, a fair clustering can be
established belatedly, in a situation where for example the centers are already fixed.



ii

The second clustering constraint we study is privacy: Here, we are asked to only open
a center when at least ` points will be assigned to it. We raise the question whether a
general method can be derived to turn an approximation algorithm for a clustering
problem with some constraints into an approximation algorithm that additionally
respects privacy. We show how to combine privacy with several other constraints and
obtain approximation algorithms for the k-center problem with several combinations
of constraints.

In this dissertation we also study parity games, a two player game played on a directed
graph. We study the case in which one of the two players controls only a small number k
of nodes and the other player controls the n− k other nodes of the game. Our main
result is a fixed-parameter-tractable algorithm that solves bipartite parity games in
time kO(

√
k) ·O(n3), and general parity games in time (p+ k)O(

√
k) ·O(pnm), where p

is the number of distinct priorities and m is the number of edges. For all games with
k = o(n) this improves the previously fastest algorithm by Jurdziński, Paterson, and
Zwick [64].

We also obtain novel kernelization results and an improved deterministic algorithm
for parity games on graphs with small average node-degree.



Zusammenfassung

Clustering ist ein grundlegendes Werkzeug im Data Mining. Es unterteilt Punkte in
Gruppen (Cluster) und kann verwendet werden, um Entscheidungen für jeden Punkt
basierend auf seiner Gruppe zu treffen. Wir untersuchen verschiedene Clustering
Modelle. Als erstes untersuchen wir das euklidische k-Center Problem. Das k-Center
Problem ist ein klassisches kombinatorisches Optimierungsproblem, bei dem wir k
Zentren auswählen und jeden Punkt aus der Eingabemenge P einem der Zentren
zuweisen sollen, sodass die maximale Entfernung eines Punktes zu seinem zugewiesenen
Zentrum minimiert wird. Das euklidische k-Center Problem geht davon aus, dass die
Eingabemenge P eine Teilmenge eines euklidischen Raums ist und dass jeder mögliche
Ort im euklidischen Raum als Zentrum gewählt werden darf.

Wir konzentrieren uns auf den Sonderfall mit k = 1, das Smallest Enclosing Ball
Problem: Gegeben sei eine Menge von Punkten im m-dimensionalen euklidischen
Raum, finde die kleinste Kugel, die alle diese Punkte enthält. Wir kombinieren
bekannte Ergebnisse der konvexen Optimierung mit strukturellen Eigenschaften des
Smallest Enclosing Balls, um einen neuen Algorithmus zu entwerfen. Wir zeigen,
dass unser neuer Algorithmus bei Instanzen mit rationalen Koeffizienten das exakte
Zentrum der optimalen Lösungen berechnet und eine Worst-Case-Laufzeit aufweist,
die polynomiell in der Eingabegröße ist. Wir verwenden den neuen Algorithmus, um
zu zeigen, dass wir das euklidische k-Center Problem in Polynomialzeit für konstante k
und Dimension m lösen können.

Ohne Nebenbedingungen sind die allgemeinen Clustering-Probleme zumeist sehr gut
untersucht. Für das k-Center Problem gibt es beispielsweise elegante 2-Approxima-
tionsalgorithmen [47, 53]. Die Situation wird jedoch erheblich schwieriger, wenn wir
fordern, dass zusätzliche Nebenbedingungen erfüllt werden. Als erstes betrachten wir
faires Clustering. Die Fairness-Nebenbedingung wird durch die Tatsache motiviert,
dass die allgemeine Berechnung guter Clusterings geschützte (Minderheits-) Klassen
schädigen kann, wenn das Ergebnis sie nicht in den bevorzugten Clustern angemessen
repräsentiert, insbesondere wenn die Daten bereits voreingenommen sind.

Auf der NIPS 2017 haben Chierichetti et al. [29] ein Modell für faires Clustering
vorgeschlagen, das einfordert, dass die Repräsentation jedes Clusters (ungefähr) den
globalen Anteil jeder geschützten Klasse widerspiegelt. Sie beschränkten sich auf zwei
geschützte Klassen und entwickelten sowohl einen 4-Approximationsalgorithmus für
das faire k-Center Problem als auch einen O(t)-Approximationsalgorithmus für das
faire k-Median Problem, wobei t ein Parameter des Fairness-Modells ist. Bei mehreren
geschützten Klassen ist das beste bekannte Ergebnis ein 14-Approximationsalgorithmus
für das faire k-Center Problem [90].

Wir erweitern und verbessern die bekannten Ergebnisse. Zum einen geben wir einen
5-Approximationsalgorithmus für das faire k-Center Problem mit mehreren geschützten
Klassen an. Zum anderen schlagen wir eine abgeschwächte Fairness Bedingung vor,
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unter der wir für die faire Version von allen klassischen Clustering-Problemen (k-
Center, k-Supplier, k-Median, k-Means und Facility Location) einen bikriteriellen
Approximationsalgorithmus mit konstantem Approximationsfaktor angeben können.
Die letzteren Approximationsalgorithmen werden durch ein Rahmenwerk erreicht, das
eine beliebige gegebene unfaire (ganzzahlige) Lösung und eine faire (fraktionelle) LP-
Lösung verwendet und diese mittels eines schwach überwachten Rundungsschema zu
einem im Wesentlichen fairen Clustering kombiniert. Auf diese Weise kann Fairness
nachträglich zu einem Clustering, bei dem zum Beispiel die Zentren bereits festgelegt
sind, hinzugefügt werden.

Die zweite untersuchte Nebenbedingung für Clustering-Probleme ist Privacy: Hier
werden wir aufgefordert, ein Zentrum nur dann zu öffnen, wenn ihm mindestens `
Punkte zugewiesen werden. Wir stellen die Frage, ob es eine allgemeine Methode
gibt, um einen Approximationsalgorithmus für ein Clustering Problem mit einigen
Nebenbedingungen in einen Approximationsalgorithmus umzuwandeln, der zusätzlich
Privacy erfüllt. Wir zeigen, wie man Privacy mit mehreren anderen Nebenbedingungen
kombinieren kann und erhalten Approximationsalgorithmen für das k-Center Problem
mit mehreren Kombinationen von Nebenbedingungen.

In dieser Dissertation untersuchen wir auch Paritätsspiele, ein 2-Spieler-Spiel auf
einem gerichteten Graph. Wir untersuchen die eingeschränkte Variante, bei der einer
der beiden Spieler nur eine kleine Anzahl k der Knoten kontrolliert und der andere
Spieler die n − k restlichen Knoten des Spiels kontrolliert. Unser Hauptergebnis ist
ein Fest-Parameter-Algorithmus, der bipartite Paritätsspiele in kO(

√
k) · O(n3) Zeit

und allgemeine Paritätsspiele in (p+ k)O(
√
k) ·O(pnm) Zeit löst, hierbei bezeichnet p

die Anzahl der unterschiedlichen Prioritäten und m die Anzahl der Kanten. Für alle
Spiele mit k = o(n) verbessert dies den zuvor schnellsten Algorithmus von Jurdziński,
Paterson und Zwick [64].

Wir erhalten auch ein neuartiges Kernelisierungsergebnis und einen verbesserten
deterministischen Algorithmus für Paritätsspiele in Graphen mit geringem durchschnitt-
lichen Knotengrad.
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Chapter 1
Introduction

A pivotal part of theoretical computer science is the development and analysis of
algorithms for different computational tasks. We categorize computational tasks
into three categories: decision problems, search problems, and optimization problems.
Decision problems are all problems that can be stated as a yes-no question. Problems
that require us to find one (of possibly multiple) feasible solutions for the input are
called search problems. Similar to search problems an optimization problem asks to
find a feasible solution for the input. In addition we assume that each possible feasible
solution has some value associated with it and the task is to find a feasible solution
with minimal (or maximal) value among all feasible solutions.

For a given computational task we would like to develop an algorithm which solves
the problem and is preferably fast. Here we say that an algorithm is fast, if it always
finishes in polynomial time, depending on the size of the input. Unfortunately for many
problems it is impossible or unknown, if they can be solved in polynomial time. To
deal with such cases there are several different approaches, including approximation
algorithms for optimization problems and parameterized algorithms. For optimization
problems we can relax the optimality requirement of the solution, as, instead of taking
a long time to find a solution with the best value, it can, in some cases, be better to
compute a solution with a good value in only a short amount of time. An approximation
algorithm for an optimization problem is exactly that, it is an algorithm that takes
polynomial time and computes a feasible solution, whose value is, in some sense, close
to the value of the optimal solution. Parameterized algorithms on the other hand are
not restricted to optimization problems. They are algorithms that still compute a
solution as originally required and might take a long time for some input instances. Yet
the run time of a parameterized algorithm does not only depend on the input size, but
also on some additional parameter of the input, and, in case this parameter is small,
the run time of the algorithm should be polynomial in the input size.

In this dissertation we take a look at different computational tasks for which we develop
and analyze polynomial time algorithms, approximation algorithms and parameterized
algorithms.

The computational tasks in this dissertation come from two different problem concepts.

1



2 1. Introduction

In the first part of this dissertation we deal with several clustering problems. A
clustering problem asks us to partition a set of objects into clusters, such that the
objects in each cluster are similar to each other. This is a very common task in
many different fields, which include machine learning, bio-informatics, and pattern
recognition. Computation of a clustering for a given set of objects has two major
aspects: How to quantify the similarity (or difference or distance) of two objects and
how to judge the quality of the partitioning of the original set into subsets, i.e., decide
how to compute the value of a clustering.

We will not deal with quantifying the similarity between objects, as it depends on the
specific type of objects and the context, with respect to which they are supposed to
be clustered. We will assume that the similarity of two objects is known and can be
quantified by a distance function on the set of objects. Given such a function, that
describes the similarity between pairs of objects, there are numerous ways to judge the
quality of a clustering, including, in particular, k-center/k-supplier , k-median, k-means,
and facility location. They all specify the clustering problem as a minimization problem
and either restrict the number of clusters or impose an additional cost for each cluster.

Specific clustering problems often require that the computed solution satisfies additional
constraints. We start with the fairness constraint. Requiring fairness in a clustering
can help to reduce a possible bias in the distance function or ensure that each cluster
has a beneficial composition of different types of objects. We study fair clustering
with respect to k-center/k-supplier, k-median, k-means, and facility location. Our
results include true and bicriteria approximation algorithms as well as hardness results.
We further consider private clustering, where each cluster must contain at least a
specified number of points. We study the private k-center/k-supplier problem and try
to combine privacy with other constraints, like outliers, capacities, and fairness. We
take an existing approximation algorithm for one of the other constraints and show
how we can use it and obtain an approximation algorithm, which satisfies privacy as
well as the other constraint.

In the second part of the dissertation we study parity games, a two player game of
perfect information played on a directed graph. Solving parity games has various
applications in, for example, the theory of formal languages and automata. Among
others the model-checking problem for the modal µ-calculus can be reduced to solving
parity games. We study parity games with respect to several parameters. These
parameters include the minimum number of nodes owned by one of the players, the
number of different priorities, as well as several parameters based on the out-degrees of
the nodes in the graph. Our first result looks at the combination of two parameters,
the number of different priorities and the minimum number of nodes owned by one of
the players. We obtain a kernelization result and a fixed-parameter-tractable parity
games solver for the combined parameter. For the out-degree based parameters, we
obtain a parity games solver, whose run time is polynomial if the parameter is bounded
by a fixed constant.
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1.1 Approximation Algorithms and Fixed Parame-
ter Tractability

Before we give a more detailed introduction to clustering and parity games, we give a
small excursion into different types of algorithms.
When developing algorithms for a computational task, we prefer algorithms with a
small run time. An algorithm is commonly considered fast, if its worst-case run time is
polynomial in the size of the input. Unfortunately there are a lot of computational
tasks, for which probably no algorithms with worst-case run time polynomial in the
input size exist.
There are several ways to deal with the fact that it might be impossible for a problem
to be solved in polynomial time. We will describe two concepts, which can help us to
create algorithms which are still relatively fast and find relatively good solutions. First
we take a look at approximations and after that we look at parameterized run times.
Given that the computational task at hand is an optimization problem we can, instead
of trying to find an optimal feasible solution, try to find any feasible solution, whose
value is close to the best possible value.
Definition 1. Given an optimization problem P and an instance I of P, let opt(I)
denote the value of an optimal feasible solution for I. We say that, for α ≥ 1, a feasible
solution S is an α-approximation for I, if val(S), the value of S, is within a factor α
to opt(I), i.e., if P is a minimization problem, we must have val(S) ≤ α · opt(I), and,
if P is a maximization problem, we must have val(S) ≥ opt(I)

α
.

Definition 2. Given an optimization problem P and α ≥ 1, an algorithm A is
considered an α-approximation algorithm for P, if for any given instance I, A returns
an α-approximation for I in time polynomial in the size of I. We say that algorithm A
has an approximation ratio of α.

In some cases it even seems hard to find an α-approximation algorithm for a problem P
and a reasonably small α. In such cases we might be able to try to relax the definition
of what we consider a feasible solution and also consider almost feasible solutions. In
that case we also need to extend the value function to almost feasible solutions. How
such a relaxation works depends on the specific problem. We call an algorithm that
returns, for any instance I, a feasible or almost feasible solution, whose value is within
a factor α of opt(I), a bicriteria α-approximation algorithm.
Another approach is to develop an algorithm that does not always have a run time
polynomial in the input size, but is fast, given that certain circumstances are met. One
way to use such an approach is to analyze the run time, not only with respect to the
input size, but also with respect to some other parameters of the instance.
Definition 3. A parameterized problem is a tuple (P , k). The first element of a
parameterized problem is a computational task P. Let Σ∗ denote the set of feasible input
instances for P, then the second element of the parameterized problem is a parameter
function k : Σ∗ → N, that assigns a parameter value to every instance of the problem
P.



4 1. Introduction

What kind of parameters are reasonable and useful will depend on the problem, a
parameter for problems on a graph could for example be the maximum or average
node degree. Given a parameterized problem (P , k) and an algorithm A for (P , k)
we analyze the worst-case run time of A with respect to both, the input size and the
parameter of the input instance, i.e., we want to show that for every feasible instance I
for P A has a run time of O(f(size(I), k(I))), where size(I) denotes the input size of
I. When f(size(I), k(I)) is a polynomial in case k(I) is bounded by a fixed constant,
we have found an algorithm which is fast on all instances with a small parameter. A
special class of such algorithms are the fixed-parameter-tractable algorithms whose
run time depends only polynomial on the size of the input and may depend super
polynomially only on the value of the parameter.

Definition 4. A parameterized problem (P , k) is called fixed-parameter-tractable,
if there exists an algorithm A, that solves any instance I of P in time O(f(k(I)) ·
g(size(I))), where f : N → N is an arbitrary function depending only on k(I) and
g : R→ R is a polynomial function. We call A a fixed-parameter-tractable algorithm
for (P , k).

1.2 Clustering

Clustering problems deal with the following fundamental task in, among others, unsu-
pervised learning: Given a set of objects, partition them into clusters, such that objects
within a cluster are well matched, while objects from different clusters have something
that clearly differentiates them.

The classical clustering objectives studied in combinatorial optimization are k-center/k-
supplier, k-median, k-means and facility location. Given a point set P , k-center/k-
supplier, k-median and k-means ask for a set of k centers and an assignment of the
points in P to the selected centers that minimize an objective. For k-center/k-supplier,
the objective is the maximum distance of any point to its assigned center. The difference
between k-center and k-supplier is that k-supplier distinguishes between the set of
points P and the set of possible center locations L, while classical k-center assumes
that P = L. For k-median, the objective is the sum of the distances of all points to
their assigned center (this is called connection cost) and for k-means, it is the sum
of the squared distances of all points to their assigned center. Facility location does
not restrict the number of centers. Instead, every center (here called facility) has an
opening cost. The goal is to find a set of centers such that the connection cost plus
the opening cost of all chosen facilities is minimized. In the general version it is an
NP-hard problem to find the best solution for any of these clustering problems. For
the unconstrained versions it is easy to find, for a given set of centers, an optimal
assignment of the points to the centers, as each point can be assigned to its closest
opened center.

With the addition of constraints simply assigning every point to its closest center will
often not be a feasible assignment and a different assignment is necessary in order to
satisfy the additional constraints. For several constraints, including capacities, lower
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bounds, and outliers, an optimal feasible assignment to a given set of centers can be
computed through a network flow computation. For the fairness constraint however,
we will show that it is NP-hard to compute an optimal assignment to a given set of
centers. A lot of research has been devoted to developing approximation algorithms for
these objectives. The earliest success story is that of k-center: Gonzalez [47] as well as
Hochbaum and Shmoys [53] gave a 2-approximation algorithm for the problem, while
Hsu and Nemhauser [54] showed that finding a better approximation is NP-hard. The
k-supplier problem can be 3-approximated [53], which is also tight [53].
Since then, much effort has been made to approximate the other objectives. Typically,
facility location will be first, and transferring new techniques to k-median poses
additional challenges. Significant techniques developed over the last decades are LP
rounding techniques [25, 93], greedy and primal dual methods [58, 59], local search
algorithms [10, 69], and, more recently, the use of pseudo-approximation [79]. The
currently best approximation ratio for facility location is 1.488 [76], while the best
lower bound is 1.463 [50]. For k-median, the currently best approximation algorithm
achieves a ratio of 2.675+ε [22], while the best lower bound is 1 + 2

e
≈ 1.736 [58].

A recent breakthrough gives a 6.357-approximation for k-means [5], but the newest
hardness result is marginally above 1 [11, 72].
While the basic approximability of the objectives is well studied, a lot less is known once
constraints are added to the picture. Constraints come naturally with many applications
of clustering, and since machine learning and unsupervised learning methods become
more and more popular, there is an increasing interest in this research topic. One of the
troubles with approximation algorithms is that often they cannot easily be adapted to
a different scenario. This task seems to be easier for simple heuristics for the problem,
which are easier to understand and implement in the first place. Indeed, it turns out
that adding constraints to clustering often requires fundamentally different techniques
for the design of approximation algorithms and is a new challenge altogether.
A good example is the capacity constraint: Each center c is now equipped with a
capacity u(c), and can only serve u(c) points, i.e., a feasible clustering must assign no
more than u(c) points to c. This natural constraint is notoriously difficult to cope with;
indeed, the standard LP formulations for the problems have an unbounded integrality
gap [30, 73, 9, 78]. Capacitated k-center was first approximated with uniform upper
bounds [14, 66]. Local search provides a way out for facility location, leading to 3-
and 5-approximation algorithms for uniform [2] and non-uniform capacities [13], and
preprocessing together with involved rounding proved sufficient for k-center to obtain
a 9-approximation [30, 8]. The algorithm in [8] can also be applied to the k-supplier
problem and yields an 11-approximation. However, the choice of techniques that turned
out to work for capacitated clustering problems is still very limited, and indeed no
constant-factor approximation algorithms are known to date for k-median and k-means.
And all the while, new constraints for clustering problems are proposed and studied.
The k-center problem allows for constant-factor approximation algorithms for many
useful constraints. In private clustering [3], we demand a lower bound on the number of
points assigned to a center. As stated in [4, 3] this ensures a certain anonymity and is
motivated through the need to obtain data privacy. The more general form where each
cluster has an individual lower bound is called clustering with lower bounds [7]. Fair
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clustering [29] assumes that points have a protected feature (like gender), modeled by a
color, and that we want clusters to be fair in the sense that the ratios between points of
different colors are similar in every cluster. Clustering with outliers [26, 31, 24] allows
us to ignore a fixed number of objects and searches for a solution where a prespecified
number of points may be excluded from the cost computation. Other constraints include
diversity [74], fault tolerance [65], matroid or knapsack constraints [27], must-link and
cannot-link constraints [98], diversity [74] and chromatic clustering constraints [33, 34].

Facility location also allows for constant-factor approximation algorithms with capaci-
ties [2, 9, 13], uniform lower bounds [6, 95], and outliers [26]. Much less is known for
k-median and k-means. True constant-factor approximation algorithms so far exist
only for the outlier constraint [28, 70]. A major problem for obtaining constant-factor
approximation algorithms is that the natural LP has an unbounded integrality gap,
which is mostly also true for the LP with additional constraints. Bicriteria approxima-
tion algorithms are known that either violate the capacity constraints [75, 77, 78] or
the cardinality constraint [1].

Relatively little is known about approximation algorithms for the combination of
constraints. Cygan and Kociumaka [31] give a 25-approximation algorithm for the
capacitated k-center problem with outliers. Aggarwal et al. [3] give a 4-approximation
algorithm for the private k-center problem with outliers. Ahmadian and Swamy [7]
consider the combination of k-supplier with outliers with (non-uniform) lower bounds
and derive a 5-approximation algorithm. The paper also studies the k-supplier problem
with outliers (without lower bounds), and the min-sum-of-radii problem with lower
bounds and outliers. Their algorithms are based on the Lagrangian multiplier preserving
primal dual method due to Jain and Vazirani [59].

Ding et al. [32] study the combination of capacities and lower bounds as well as
capacities, lower bounds and outliers by generalizing the LP algorithms from [8] and
[31] to handle lower bounds. They give results for several variations, including a
6-approximation algorithm for private capacitated k-center and a 9-approximation
algorithm for private capacitated k-supplier.

Friggstad, Rezapour, and Salavatipour [42] consider the combination of uniform capac-
ities and non-uniform lower bounds for facility location and obtain bicriteria approxi-
mation algorithms.

1.2.1 The Euclidean k-Center Problem

The Euclidean k-center problem assumes that the set of points is, for some m ∈ N,
given as a subset P of Rm, the m-dimensional Euclidean space. In contrast to the
classical k-center and k-supplier problems, the set of possible center locations is not
restricted to a finite set L, but instead each point j ∈ Rm can be chosen as a center.

With the infinite set of possible center locations, computing the optimal solution, even
with exponential time, is not a trivial task. The difficulty seams to strongly depend on
the dimension m. In the one dimensional case the problem is easy and can be solved
in O(n log n) time [82], but for all m ≥ 2 it is an NP-hard problem [84] to compute an
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optimal solution. For m = 2 Drezner showed that it is possible to compute an optimal
solution in time O(n2k+1 log n) [35]. Hwang, Lee and Chang [55] improved the run time
to O(nO(

√
k)).

As the general problem is difficult to solve we also look at the special case with k = 1.

The Euclidean 1-center Problem, is also known as the smallest enclosing ball (SEB)
problem or the minimum bounding sphere problem, as it reduces the k-center problem
to: Given a set of points P in m-dimensional Euclidean space, compute a ball of
minimum radius, which contains P and output its center.

The smallest enclosing ball problem

The SEB problem is a well-studied problem with applications in numerous clustering
problems [12, 15, 21] and nearest neighbor search [46].

There are algorithms for the SEB problem which for a fixed constant dimension
run in linear time [83, 40, 80]. For moderately high dimensions there exist exact
algorithms with good behavior in practice [41, 44, 45] as well as a (1+ε)-approximation
algorithm [12, 71] which needs a polynomial number of arithmetic operations.

The first exact algorithm is due to Megiddo [83]. Megiddo’s algorithm runs in time
polynomial in the number of points, but exponential in the dimension.

Welzl [99] proposed a simpler randomized algorithm based on the extension of Seidel’s
algorithm [92] for linear programming. Welzl’s algorithm has an expected subexpo-
nential run time. However, implementations based on Welzl’s algorithm can only
reasonably handle point sets with small dimension m [44].

The algorithm by Gärtner and Schönherr [45] is based on quadratic programming;
in practice it runs in time polynomial in m. However, it critically requires arbitrary-
precision linear algebra to avoid robustness issues, which limits the tractable dimensions.

In contrast, the algorithm by Fischer et al. [41] is a combinatorial algorithm. Their
algorithm does not have polynomial run time in the worst-case, but seems to perform
well in practice in moderately low dimensions and does not exhibit numerical stability
problems.

Badoiu et al. present an (1+ε)-approximation algorithm [12], which has been improved
by Kumar et al. [71]. These algorithms both use core sets and have a run time
polynomial in n, m and 1

ε
.

As of now, no exact algorithm with polynomial run time is known for the SEB problem.

Our results

We describe the SEB problem as an optimization problem over a convex body and use
known results about optimization over convex bodies [49] to show that we can obtain a
(1 + ε)-approximation in time and space polynomial in the encoding size of the instance
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and log 1
ε
. We then show structural properties of the SEB problem which, given a good

enough approximation, allow us to compute the exact center of the optimal solution.
Combining both results we show that, given all coefficients of the instance are rational
numbers, we can find the optimal solutions in time and space polynomial in the input
size.

Theorem 5. Instances of the SEB problem with rational coefficients can be solved in
time polynomial in the input size.

In the analysis we focus on instances with integral coefficients. Thereafter, we show
how to transform instances with rational coefficients into equivalent integral instances
with only a polynomial increase of the instance size.

Our focus is to show structural properties which instances of the SEB problem with
integral coefficients have. We show an upper bound on how far away the center of a
(1 + ε)-approximation can be from the center of the optimal solution. In addition we
show that on instances with integral coefficients each point in the input set either lies
on the boundary of the optimal solution or has a significant distance to it. With the
right choice of ε > 0 we combine these two properties. Then we can, given the distance
between the approximated center and a point j of the input set, decide if j lies on the
boundary of the optimal solution. Knowing the set of points on the boundary it is easy
to compute the exact center of the optimal solution.

Given that we can compute the optimal center for a fixed set of points, we can solve
the Euclidean k-center problem by finding the optimal partition of the points into
clusters and computing the optimal center for each of the partitions.

We show how to compute a set of O(nmk) partitionings, which contains an optimal
partitioning, where n is the number of points and m is the dimension. If we test all of
these partitionings and compute the optimal center for each partition we can solve the
Euclidean k-center problem. If k and the dimension m are constants this only takes
polynomial time.

Theorem 6. An optimal Euclidean k-center solution of a rational instance P ⊆ Qm

can be computed in O(n(m+1)kpoly(enc)) time, where n = |P | and enc denotes the input
size of the instance.

1.2.2 Fair Clustering

Suppose we are to reorganize school assignments in a big city. Given a long list of
children starting school next year and a short list of all available teachers, the goal is
to assign the students-to-be to (public) schools such that the maximum distance to the
school is small. The school capacity is given by the number of its teachers: For each
teacher, s students can be admitted.

This challenge is in fact an instance of the capacitated (metric) k-center problem. A
naïve solution may, however, result in some schools having an excess of boys while
others might have a surplus of girls. We would prefer an assignment where the classes
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are more balanced. Thus a new challenge arises: Assign the children such that the ratio
is (approximately) 1:1 between boys and girls, and minimize the maximum distance
under this condition.1 This can be modeled by the following combinatorial optimization
problem: Given a point set, half of the points are red, the other half is blue. Compute a
clustering where each cluster has an equal number of red and blue points, and minimize
the maximum radius.

In this form, our example is a special case of the fair k-center problem, as proposed by
Chierichetti et al. [29] in the context of maintaining fairness in unsupervised machine
learning tasks. Their model is based on the concept of disparate impact [89] (and the
p%-rule). The input points are assumed to have a binary sensitive attribute modeled by
two colors, and discrimination based on this attribute is to be avoided. Since preserving
exact balance in each cluster may be very costly or even be impossible2, the idea is to
ensure that at least 1/t of the points of each cluster are of the minority color, where t
is a parameter. A cluster with this property is called fair, and the fairness constraint
can now be added to any clustering problem, giving rise to fair k-center, fair k-median,
etc. Chierichetti et al. develop a 4-approximation algorithm for fair k-center and a
(t+ 1 +

√
3 + ε)-approximation algorithm for fair k-median.

The fair clustering model as proposed by Chierichetti et al. can also be used to
incorporate other aspects into our school assignment example: For example, we might
want to mitigate effects of gentrification or segregation. For these use cases, we need
multiple colors. Then, in each cluster, the ratio between the number of points with
one specific color and the total number of points shall be in some given range. If the
allowed range is [0.20, 0.25] for red points, we require that in each cluster, at least a
fifth and at most a fourth of the points are red. This models well established notions
of fairness (statistical parity, group fairness), which require that each cluster exhibits
similar compositional makeup as the overall data with respect to a given attribute.
One downside of this notion is that a malicious user could create an illusion of fairness
by including proxy points: If we wanted to create a boy-heavy school in our above
example, we could still achieve the desired parity by assigning only girls that are very
unlikely to attend. Thus, instead of enforcing equal representation in the above sense,
one could also ask for equal opportunity as proposed by Hardt et al. [52] for the case
where we take binary decisions (i.e., k = 2) and have access to a labeled training set.
This approach, however, raises the philosophical question if this equality of opportunity
is a sufficient condition for the absence of discrimination. Rather than delving into
this complex and much debated issue, we refer to the excellent surveys by Romei and
Ruggieri [89] and Z̆liobaitė et al. [96] that systematically discuss different forms of
discrimination and how they can be detected. We assume that it is the intent of the
user to achieve a truly fair solution.

Finding fair clusterings turns out to be an interesting challenge from the point of view of
combinatorial optimization. As other clustering problems with side constraints, it loses
the property that points can be assigned locally. But while many other constrained
problems at least allow polynomial algorithms that assign points to given centers

1Or, incorporating the capacities, ensure that the teacher:boys:girls ratio is 1: s
2 : s

2 .
2Imagine a point set with 49 red and 51 blue points: This cannot at all be divided into true subsets

with the exact same ratio.
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optimally, we show that even this restricted problem is NP-hard in the case of fair
k-center.

Chierichetti et al. tackle fair clustering problems by a two-step procedure: First, they
compute a micro clustering into so-called fairlets, which are groups of points that
are fair and cannot be split further into true subsets that are also fair. Secondly,
representative points of the fairlets are clustered by an approximation algorithm for
the unconstrained problem. Consider the special case of a point set with 1:1 ratio of
red and blue points. Then a fairlet is a pair of one red and one blue point, and a good
micro clustering can be found by computing a suitable bipartite matching between the
two color classes.

The problem of computing good fairlets gets increasingly difficult when considering
more general variants of the problem. For multiple colors and the special case of exact
ratio preservation (i.e., for all colors, the allowed range for its ratio is one specific
number), the fairlet computation problem can be reduced to a capacitated clustering
problem. This is used in [90] to obtain a 14(15)-approximation algorithm for fair
k-center(k-supplier) problem with multiple colors and exact ratio preservation.

In Section 2.2.1, we give an extensive overview of the existing results and further
the fairlet approach in order to explore its applicability for different variants of fair
clustering. Two major issues arise: Firstly, capacitated clustering is not solved for all
clustering objectives; indeed, finding a constant-factor approximation algorithm for
capacitated k-median is a long-standing open problem. Secondly, (even for k-center) it
is unclear how fairlets even look like when we have multiple colors and want to allow
ranges for the ratios. In this situation, subsets of very different size and composition
may satisfy the desired ratio.

Our main contribution with regards to fair clustering is a very different approach. We
start with a solution to the unconstrained problem. Based on the given solution, we
derive a fair clustering solution with the same centers. That is achieved by a technique
that we call weakly supervised LP rounding: We solve an LP for the fair clustering
problem and then combine it with the integral unfair solution by careful rounding. We
use this method to prove the following statements.

Theorem 7. There exists a 5(7)-approximation algorithm for the fair k-center(k-
supplier) problem with exact preservation of ratios.

Essentially fair refers to our notion of bicriteria approximation: A cluster C is essentially
fair if there exists a fractional fair cluster C ′, such that the mass of points in C ′ differs
from the number of points in C by at most 1 and for each color h the number of color
h points in C differs by at most 1 from the mass of color h points in C ′.

Theorem 8. Given any set of centers S, there exists an assignment φ′ which is essen-
tially fair, and which incurs a cost that is linear in the cost of S for the unconstrained
problem and the cost of an optimal fractional fair clustering of P , for all objectives
k-center, k-supplier, k-median, k-means, and facility location.

Corollary 9. There exist essentially fair approximation algorithms for fair clustering
problems with approximation ratios as stated in Table 1.1.
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Fair Clustering Problem Essentially fair approximation ratio
k-center 3
k-supplier 5
facility location 3.488
k-median 4.675
k-means 62.856

Table 1.1: Essentially fair approximation ratios for fair clustering problems.

An essentially fair cluster can be viewed as a cluster with a small additive fairness
violation. For large clusters, an additive violation of 1 will translate into a negligible
multiplicative violation. Of course if a cluster is very small or a color has a very small
ratio, then a violation of 1 is large in multiplicative terms. However, consider an
example with one majority color having 500 points and 50 colors having 10 point each.
Then our model means that in a cluster of 100 points, because the overall amount
of violation is at most one point, the majority color can at most have 51 points, and
at least 49 of the points belong to minority colors. Although it is possible that some
minorities will not be represented at all, no minority would be represented by more
than 2 points, which implies that at least half of the minorities are represented.

For the bicriteria approximation algorithms in Theorem 8 and Corollary 9, we can
start with any unconstrained starting solution. We thus say that our algorithm is a
black-box approximation algorithm. For Theorem 7, this is not the case; here we need
to use a specific starting solution. We prove Theorem 8 in Section 2.2.3 and Theorem 7
in Section 2.2.4.

Our results have two advantages. Firstly, we get results for a wide range of clus-
tering problems, and these results improve previous results. For example, we get a
5-approximation algorithm for the fair k-center problem with exact ratio preservation,
where the best known guarantee was 14. All our bicriteria results work for multiple
colors and approximate ratio preservation, a case for which no previous algorithm
was known. As for the quality of the guarantees, compare the 4.675-approximation
algorithm for essentially fair k-median clusterings with the best previously known Θ(t)-
approximation algorithm, which is only applicable to the case of two colors. Notice
that a similar result can not be achieved by using bicriteria approximation algorithms
for capacitated clustering. The reduction from capacitated clustering only works when
the capacities are not violated.

Secondly, the black-box approach has the advantage that fairness can be established
belatedly, in a situation where the centers are already given [36, 101]. Consider our
school example and notice that the location of the schools cannot be chosen. Our result
says that if we are alright with essentially fair clusterings, we get a clustering which is
not much more expensive than a fair clustering where the centers were chosen without
the fairness constraint at hand.
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1.2.3 Privacy Preserving Clustering

The abundance of constraints and the difficulty to adjust methods for all of them
individually asks for ways to add a constraint to an approximation algorithm in an
oblivious way. Instead of adjusting and reproving known algorithms, we would much
rather like to take an algorithm as a black-box and ensure that the solution satisfies one
more constraint in addition. This is a challenging request. We start the investigation
of such add-on algorithms by studying private clustering in more detail. Indeed,
we develop a method to add the privacy constraint to approximation algorithms for
constrained k-center problems. That means that we use an approximation algorithm as
a subroutine and ensure that the final solution will additionally respect a given lower
bound. The method has to be adjusted depending on the constraint, but it is oblivious
to the underlying approximation algorithm used for that constraint.

This works for the basic k-center problem (giving an algorithm for the private k-center
problem), but we also show how to use the method when the underlying approximation
algorithm is for the k-center problem with outliers, the fair k-center problem, the
capacitated k-center problem and the fair capacitated k-center problem. We also
demonstrate that our method suffices to approximate the strongly private k-center
problem, where we assume a protected feature like in fair clustering, but instead of
fairness, now demand that a minimum number of points of each color is assigned to
each open center to ensure anonymity for each class individually.

Our technique

The general structure of the algorithm is based on standard thresholding [53], i.e.,
the algorithm tests all possible thresholds and chooses the smallest for which it finds
a feasible solution. For each threshold, it starts with the underlying algorithm and
computes a non-private solution. Then it builds a suitable network to shift points
to satisfy the lower bounds. The approximation ratio of the method depends on the
underlying algorithm and on the structure of this network.

The shifting does not necessarily work right away. If it does not produce a feasible
solution, then using the max-flow min-cut theorem, we obtain a set of points for which
we can show that the clustering uses too many clusters (and can thus not satisfy the
lower bounds). We then recompute the solution in this part. Depending on the objective
function, we have to overcome different hurdles to ensure that the recomputation works
in the sense that it a) makes sufficient progress towards finding a feasible solution and
b) does not increase the approximation ratio. The process is then iterated until we
find a feasible solution.

Our results

We obtain the following results for multiple combinations of privacy with other con-
straints. Our reductions can handle the general case; whether the resulting algorithm
is then for k-center or k-supplier thus depends on the evoked underlying algorithm.
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• We obtain a 4-approximation algorithm for private k-center with outliers (5 for
the supplier version). This matches the best known bounds [3] ([7] for the supplier
version (this also holds for non-uniform lower bounds)).
• We obtain an 14-approximation algorithm for private and uniform capacitated
k-center (i.e., centers have a uniform lower bound and a uniform upper bound),
and an 8-approximation algorithm for the private capacitated k-center problem
with soft uniform capacities. The best known bounds for these two problems is
6 [32]. For the supplier version we obtain a 15-approximation algorithm (The
best known bound is 9 [32]).
• We achieve constant-factor approximation algorithms for private fair capaci-
tated/uncapacitated k-center/k-supplier clustering. The approximation ratio
depends on the balance of the input point set and the type of upper bounds, it
ranges between 8 in the uncapacitated case where for each color h the number of
points with color h is an integer multiple of the number of points with the rarest
color and 195 in the general supplier version with non-uniform upper bounds. To
the best of our knowledge, all these combinations have not been studied before.
• Finally, we propose the strongly private k-center problem. As in the fair clustering
problem, the input here has a protected feature like gender, modeled by colors.
Now instead of a fair clustering, we aim for anonymity for each color, meaning
that we have a lower bound for each color. Each open center needs to be assigned
this minimum number of points for each color. To the best of our knowledge,
this problem has not been studied before; we obtain a 4-approximation algorithm
as well as a 5-approximation algorithm for the supplier version.

Since our method does not require knowledge of the underlying approximation algorithm,
the approximation guarantees improve if better approximation algorithms for the
underlying problems are found. There is also hope that our method could be used for
new, not yet studied constraints, with not too much adjustment.

1.2.4 Preliminaries

Points and locations. Let (X, d) be a semi-metric space, i.e., X is a set and
d : X × X → R≥0 is a semi-metric. A semi metric is a non-negative function that
fulfills

d(x, y) = 0⇔ x = y,

d(x, y) = d(y, x) for all x, y ∈ X

and a β-relaxed triangle inequality

d(x, z) ≤ β(d(x, y) + d(y, z)) for all x, y, z ∈ X (1.1)

for some β ≥ 1. We use d(x, T ) = miny∈T d(x, y) for the smallest distance between
x ∈ X and a set T ⊆ X. For two sets S, T ⊆ X, we use d(S, T ) = minx∈S,y∈T d(x, y)
for the smallest distance between any pair x ∈ S, y ∈ T . We are given a set of n
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points P ⊆ X and a set of potential locations L ⊆ X. We allow L to be infinite when
X = Rm for some m ∈ N and L = Rm, otherwise we assume that L is a finite set. The
task is to open a subset S ⊆ L of the locations and to assign each point in P to an
open location via a mapping φ : P → S. We refer to the set of all points assigned
to a location i ∈ S by P (i) := φ−1(i). The assignment incurs a cost governed by the
semi-metric d : (P ∪ L)× (P ∪ L)→ R≥0

Additionally, we may have opening costs fi ≥ 0 for every potential location i ∈ L or a
maximum number of centers k ∈ N, i.e., we demand |S| ≤ k. We will use n to denote
the number of points |P |.

Objectives. We consider versions of several classical clustering problems. An instance
is given by I := (P,L, d, f, k), where P ⊆ X denotes a set of points, L ⊆ X denotes
the set of possible locations, d denotes the distance function on X, f : L→ R denotes
the opening cost, and k ∈ N denotes the maximum number of clusters allowed. Our
goal is to choose a solution (S, φ), with S ⊆ L, |S| ≤ k, and φ : P → S according to
one of the following objectives.

• k-center, k-supplier and Euclidean k-center: minimize the maximum dis-
tance between a point and its assigned location: Minimize maxj∈P d(j, φ(j)). In
these problems, we have f ≡ 0 and d is a metric. Furthermore, in k-center,
L = P , whereas in k-supplier, L 6= P is some finite set, and in Euclidean k-center,
X = Rm, L = Rm for some m ∈ N and d(x, y) = ||y − x|| =

√∑m
i=1(yi − xi)2 is

the Euclidean distance on Rm.
• k-median: minimize ∑j∈P d(j, φ(j)), f ≡ 0, d is a metric and L ⊆ P .
• k-means: minimize ∑j∈P d(j, φ(j)), f ≡ 0, where X = Rm for some m ∈ N,
L = Rm and d(x, y) = ||y − x||2, the squared Euclidean distance between x and
y, is a semi-metric for β = 2.
• facility location: minimize ∑j∈P d(j, φ(j))+∑i∈S fi, where k = n, d is a metric

and L is a finite set.

In constrained versions of the above mentioned clustering problems, an instance
additionally contains parameters describing the constraints, and a solution (S, φ) must
satisfy the corresponding property as described for each constraint.

Colors and fairness. In fair clustering we are additionally given a set of colors Col,
and a coloring col : P → Col that assigns a color to each point j ∈ P . For any set of
points P ′ ⊆ P and any color h ∈ Col we define colh(P ′) = {j ∈ P ′ | col(j) = h} to be
the set of points colored with h in P ′. We call rh(P ′) := |colh(P ′)|

|P ′| the ratio of h in P ′.
If an implicit assignment φ is clear from the context, we write colh(i) to denote the set
of all points of a color h ∈ Col assigned to an i ∈ S, i.e., colh(i) = colh(P (i)).

A set of points P ′ ⊆ P is exactly fair if P ′ has the same ratio for every color as P , i.e.,
for each h ∈ Col we have rh(P ′) = rh(P ). We say that P ′ is `, u-fair or just fair for
some ` = (`h | h ∈ Col) and u = (uh | h ∈ Col) if we have rh(P ′) ∈ [`h, uh] for every
color h ∈ Col.
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Additional constraints.

• Fairness: In fair clustering problems, we want to preserve the ratios of colors
found in P in our clusters. We distinguish two cases:
– exact fairness: For the exact preservation of ratios, we ask that all clusters

are exactly fair, i.e., P (i) is exactly fair for all i ∈ S.
– relaxed fairness: For the relaxed preservation of ratios, we are given lower

and upper bounds ` = {`h ∈ Q | h ∈ Col} and u = {uh ∈ Q | h ∈ Col}
on the required ratio of colors in each cluster and ask that all clusters are
`, u-fair.

The exact case is a special case of the relaxed case where we set `h = uh = rh(P )
for every color h ∈ Col. Essentially fair clusterings are defined in Section 2.2.2
(see Definition 36).
• Privacy: In private clustering we are given a lower bound ` ∈ N and demand
` ≤ |P (i)| for every selected center i ∈ S.
• Strong privacy: In strongly private clustering the input contains a coloring
col : P → Col of points as well as a lower bound `h ∈ N for each color h ∈ Col.
Now the assignment is restricted to ensure that it satisfies the lower bound for
the points of each color, i.e., `h ≤ |colh(i)| for each i ∈ S and h ∈ Col.
• Capacity: The capacity constraint comes with an upper bound function u : L→
N for which we demand |P (i)| ≤ u(i) for every selected center i ∈ S. When we
have u(x) = u for all x ∈ L and some u ∈ N, then we say that the capacities are
uniform, otherwise, we say they are non-uniform. The soft capacity constraint is
a version of the capacity constraint, which allows a clustering to open multiple
centers at the same location i ∈ L. The number of points assigned to each of
these centers can be at most u(i).
• Outlier: An instance of a clustering problem with outliers additionally contains
a parameter o ∈ N for the maximum number of outliers. A solution is then
allowed to ignore up to o points. Therefore the problem is to compute a set of
centers S ⊆ L and an assignment φ : P → S ∪ {out}, with |P (out)| ≤ o, which
assigns each point to a center in S or to be an outlier. In the computation of the
cost, we assume d(j, out) = 0 for all j ∈ P .

The fair assignment problem. For all the clustering objectives mentioned above,
we call the subproblem of computing a cost-minimal fair assignment of points to a
given set S ⊆ L of centers the fair assignment problem. We show the following theorem
in Section 2.2.5.

Theorem 10. Finding an α-approximation for the fair assignment problem for k-center
is NP-hard for any α < 3.

Previous results used as black-box algorithms We make use of known results
for several constraints. We state the best known bounds and their references in
Table 1.2.
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Vanilla
Capacities

Outlier
Fair

uniform non-uniform r
b
∈ N general

k-center 2 [53] 6 [66] 9 [8] 2 [24]
4 [29]

5 (Thm. 44)
k-supplier 3 [53] 11 [8] 3 [26] 7 (Thm. 45)

Table 1.2: An overview on the approximation results that we combine with privacy.

1.3 Parity Games

A parity game [37] is a two-player game of perfect information played on a directed
graph G by two players, even and odd, who move a token from node to node along
the edges of G so that an infinite path is formed. The nodes of G are partitioned into
two sets V0 and V1; the even player moves if the token is at a node in V0 and the odd
player moves if the token is at a node in V1. The nodes of G are labeled by a priority
function p : V → N0, and the players compete for the parity of the highest priority
occurring infinitely often on the infinite path v0, v1, v2 . . . describing a play: the even
player wins if lim supi→∞ p(vi) is even, and the odd player wins if it is odd.

The winner determination problem for parity games is the algorithmic problem to
determine for a given parity game G = (V0 ] V1, E, p) and an initial node v0 ∈ V0 ∪ V1,
whether the even player has a winning strategy in the game if the token is initially
placed on node v0. We say that an algorithm for this problem solves parity games.
Parity games have various applications in computer science and the theory of formal
languages and automata in particular. They are closely related to other games of
infinite duration, such as mean payoff games, discounted payoff games, and stochastic
games [61]. Solving parity games is linear-time equivalent to the model checking
problem for the modal µ-calculus [94]. Hence, any parity game solver is also a model
checker for the µ-calculus (and vice versa).

Many algorithms have been suggested for solving parity games [20, 64, 97, 103], yet
none of them is known to run in polynomial time. McNaughton [81] showed that the
winner determination problem belongs to the class NP ∩ coNP, and Jurdziński [61]
strengthened this to UP ∩ coUP. It is a long-standing open question whether parity
games can be solved in polynomial time. The first quasi-polynomial algorithm is
due to Calude et al. [23] and has a run time of O(nO(logn)). Later Jurdziński and
Lazić [63] showed a quasi-polynomial algorithm which reduced the space requirement
from quasi-polynomial to quasi-linear.

As a polynomial-time algorithm for solving parity games has remained elusive, re-
searchers have started to consider which restrictions on the game allow for polynomial-
time algorithms. One such well-studied restriction is the treewidth t of the underlying
undirected graph G of the game. Obdržálek [86] found an algorithm solving parity
games on n nodes in time nO(t2). Later, Fearnley and Lachish [38] gave an algorithm
solving parity games in time nO(t logn). Another well-studied parameter for parity
games is the number p of distinct priorities by which the nodes of the game are labeled.
The progress-measure lifting algorithm by Jurdziński [62] solves parity games in time
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O(pm(2n/p)p/2), where m denotes the number of edges of G. This run time has been
improved by Schewe [91] to O(m((2e)3/2n/p)p/3). The first fixed-parameter-tractable
algorithm for the parameter p is by Calude et al. [23] and has a run time of O(2pn4).
Fearnley and Schewe [39] presented an algorithm for solving parity games with run
time O(n(t+ 1)t+5(p+ 1)3t+5), assuming that a tree decomposition of G with width t
is given.

For a given parameter κ, one usually aims for fixed-parameter-tractable algorithm
algorithms, i.e., algorithms that run in time f(κ) · nc for some computable function f
and some constant c that is independent of κ. Such an algorithm can be practical for
large instances if f grows moderately and c is small. From the previously mentioned
algorithms only the algorithm by Fearnley and Schewe [39] is a fixed-parameter-tractable
algorithm for the combined parameter (t, p). It is not known if fixed-parameter-tractable
algorithms exist for the parameter t or the parameter p alone.

Further parameters for which polynomial-time algorithms for parity games have been
suggested include DAG-width [17], clique-width [87], and entanglement [19]; none of
these are fixed-parameter-tractable algorithms.

1.3.1 Our contributions

We study as parameter the number k of nodes that belong to the player who controls
the smaller number of nodes in the parity game. Our first result is a subexponential
fixed-parameter-tractable algorithm for solving general parity games for parameters p
and k and for parameter only k for bipartite parity games (where players alternate
between their moves).

Theorem 11. There exists a deterministic algorithm that solves any parity game G
on n nodes and m edges in time (p+ k)O(

√
k) ·O(pnm), where k denotes the minimum

number of nodes owned by one of the players and p denotes the number of distinct
priorities. If G is bipartite, the algorithm runs in time kO(

√
k) ·O(n3).

Thus, our algorithm is particularly efficient if the game is unbalanced, in the sense
that one player owns only k nodes and the other player owns the remaining n− k � k
nodes.

Let us remark that it is not very hard to show fixed-parameter-tractability for parameter
p+ k; indeed McNaughton’s algorithm [81] can be shown to run in time pk · nO(1), and
this was improved to plog k · 4k · nO(1) by Gajarský et al. [43]. Our key contribution here
is to reduce the dependence of k to a subexponential function. Indeed, this improvement
allows us to derive the following immediate corollary of Theorem 11 to expedite the
run time for solving general parity games.

Corollary 12. There exists a deterministic algorithm that solves parity games in time
nO(

√
k).

Our algorithm is asymptotically always at least as fast as the fastest known deterministic
parity game solver by Jurdziński, Paterson, and Zwick [64], which runs in time nO(

√
n).
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For the case k = o(n), our algorithm is asymptotically faster than theirs and constitutes
the fastest known deterministic solver for such games.

We also prove the existence of a small kernel, as our second result. For a parameterized
problem, a kernelization algorithm takes as input an instance x with parameter κ and
computes in time (|x|+ κ)O(1) an equivalent instance x′ with parameter κ′ (a kernel)
with size |x′| ≤ g(κ), for some computable function g; here, equivalent means that an
optimal solution for x can be derived in polynomial time from an optimal solution of
x′.

Theorem 13. Parity games can be kernelized in time O(pmn) to an instance with at
most (p+ 1)k + (p+ 1)k nodes, and bipartite parity games can be kernelized in time
O(n3) to an instance with at most k + 2k ·min{k, p} nodes and at most k2k ·min{k, p}
edges.

This kernelization result is not only interesting for its own sake, but it is also an
ingredient in the proof of Theorem 11.

As our third result, we generalize the algorithm by Jurdziński, Paterson, and Zwick [64]
for parity games with maximum out-degree 2 to arbitrary out-degree ∆.

Theorem 14. There is a deterministic algorithm that solves parity games on n nodes
out of which sj nodes have out-degree at most j in time

n
O

(
min1≤j≤n

{√
n−sj+

√
sj

logj sj

})
.

Corollary 15. There is a deterministic algorithm that solves parity games on n nodes
with maximum out-degree ∆max in time nO(

√
log(∆max)·n/ log(n)) and parity games on n

nodes with average out-degree ∆avg in time nO(
√

log(log(n)∆avg)·n/ log(n)).

1.3.2 Detailed comparison with previous work

Let us discuss in detail how our results compare to previous work. It is well-known
(cf. [68, Lemma 3.2]) and easy to prove that the treewidth of a complete bipartite
graph equals the size of the smaller side. Since the treewidth of a graph can only
decrease when deleting edges, the graph underlying a bipartite parity game in which
one player owns k nodes has a treewidth of at most k. However, as it is not known if
there exists a fixed-parameter-tractable algorithm for parameter treewidth, the result
in Theorem 11 for the bipartite case does not follow from previous work about parity
games with bounded treewidth. As a parity game in which one player owns k nodes
can have up to n different priorities, also the fixed-parameter-tractable algorithm for
the combined parameter (t, p) by Fearnley and Schewe [39] does not imply our result.
As the exponent of our run time does not depend on p the fixed-parameter-tractable
algorithm for parameter p by Calude et al. [23] also does not imply our result.

The algorithm of Jurdziński, Paterson, and Zwick [64] for parity games with maximum
out-degree two with run time nO(

√
n/ logn) can easily be generalized to arbitrary parity
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games at the expense of its run time. For this, one only needs to observe that every
parity game can be transformed into a game with maximum out-degree two by replacing
each node with a higher out-degree by an appropriate binary tree. This transformation
increases the number of nodes from n to Θ(m) where m denotes the number of
edges in the original parity game. Hence, the run time becomes mO(

√
m/ logm) =

nO(
√
m/ logn). For graphs with average out-degree ∆ = ω(log log n) the resulting run

time of nO(
√

∆n/ logn) is asymptotically worse than the run time we obtain in Corollary 15

For graphs in which the variance of the out-degrees is large, our algorithm can even
be better than stated in Corollary 15. If, for example, there are n1−ε nodes with an
arbitrary out-degree for some ε > 0 and all remaining nodes have constant out-degree
at most c then our algorithm has a run time of nO(

√
n

logn ) (the minimum in Theorem 14
is assumed for j = c). This matches the best known bound for randomized algorithms.

Gajarský et al. [43] present an algorithm that solves parity games in time wO(
√
w) ·nO(1),

where w denotes the modular width of G. Since the modular width of a bipartite graph
can be exponential in the size of the smaller side, Theorem 11 does not follow from
this result.

1.4 Outline and Bibliographical Notes

In the following chapters, we prove the results about clustering (Chapter 2) and parity
games (Chapter 3) stated in the introduction. In Chapter 4 we draw conclusions and
discuss open questions.

The results stated in this dissertation are based on the following work.

• The results shown in Section 2.1 are based on currently unpublished joint work
with Matthias Mnich and Heiko Röglin.
• The results shown in Section 2.2 are based on joint work with Ioana Bercea,
Martin Groß, Samir Khuller, Aounon Kumar, Daniel Schmidt, and Melanie
Schmidt [16].
• The results shown in Section 2.3 are based on joint work with Melanie Schmidt [90].
• The results in shown in Chapter 3 are based on joint work with Matthias Mnich

and Heiko Röglin [85].



Chapter 2
Clustering

In this chapter, we consider different types of clustering problems and discuss the
results stated in Section 1.2. The first problem is the Euclidean k-center problem in
Section 2.1. We specifically study its special case for k = 1, the smallest enclosing ball
problem. We continue with fair clustering in Section 2.2, where we discuss fairness
for several clustering objectives. We conclude the chapter with a discussion about
combining privacy with other constraints in Section 2.3.

2.1 The Euclidean k-Center Problem

Before we explain how we can solve the Euclidean k-center problem, we define the
smallest enclosing ball problem.

For c ∈ Rm and r ∈ R≥0 let B(c, r) = {x ∈ Rm | d(x, c) ≤ r} denote the m-dimensional
sphere with center c and radius r. Let δ(B(c, r)) := {x ∈ Rm | d(x, c) = r} denote the
boundary of B(c, r). For a finite and non-empty set P ⊆ Rm and a point c ∈ Rm, let
B(c, P ) denote the sphere B(c,maxj∈P d(j, c)), i.e., the smallest sphere with center c
that encloses the points in P . The smallest enclosing ball B(P ) of a finite and non-
empty point set P ⊆ Rm is defined as the sphere of minimal radius which contains the
points in P , i.e., the sphere B(c, P ) of smallest radius over all c ∈ Rm. The existence
and uniqueness of B(P ) are well-known [99].

We now formally define the smallest enclosing ball problem which is equivalent to the
Euclidean k-center problem for k = 1:

Smallest Enclosing Ball (SEB) Problem
Input: A finite and non-empty set P ⊆ Rm.
Task: Find B(P ), i.e., find c ∈ Rm such that B(P ) = B(c, P ).

Any feasible solution (S, φ) of the Euclidean k-center problem can be described as
a combination of a partitioning ⋃i∈S P (i) of P into |S| ≤ k subsets and the feasible
solution B(i, P (i)) of the SEB problem on P (i) for each i ∈ S. Since it cannot destroy

20
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the optimality of a solution, we assume that for each point j ∈ P φ(j) is the closest
point to j in S.

Also keeping the same partitioning ⋃i∈S P (i) and replacing every i ∈ S by the unique
i′ ∈ Rm with B(i′, P (i)) = B(P (i)) can only improve a given solution.

This implies that we can take any optimal solution (S, φ), look a the partitioning⋃
i∈S P (i) it induces and optimally solve the SEB problem on P (i) for every i ∈ S to

obtain another optimal solution (S ′, φ′).

As Theorem 5 states that we can solve the SEB problem optimally on rational in-
stances this reduces the Euclidean k-center problem on rational instances to finding a
partitioning of P , which is induced by an optimal solution.

As the number of possible ways to partition a set of n points into at most k sets is
O(kn) this implies the following statement.

Corollary 16. The optimal Euclidean k-center solution of a rational instance P ⊆ Qm

can be computed in O(knpoly(enc)) time, where enc denotes the input size of the
instance.

Fortunately we do not need to check all possible ways to partition P into k sets, as a
lot of the possible partitionings cannot be obtained by selecting up to k centers and
assigning every point in P to its closest center. To reduce the number of relevant
partitionings we take a look at Voronoi diagrams in Rm.

Definition 17. Let S ⊆ Rm be a finite set of points. For a point s ∈ S the Voronoi
region Rs associated with s is the set of all points in Rm whose distance to s is
not greater than their distance to any other point s′ ∈ S, i.e., Rs = {x ∈ Rm |
d(x, s) led(x, s′) for all s′ ∈ S}. We call s the center of Rs. The Voronoi diagram of
S is the tuple of the Voronoi regions (Rs)s∈S.

Notice that a point x ∈ Rm can only be part of more than one Voronoi region if it lies
on the boundary of each such region and has the same distance to each of their centers.
For each set S ⊂ Rm the Voronoi diagram naturally partitions P into at most |S| sets
(with points that are part of multiple Voronoi regions assigned arbitrarily). We call
such a partitioning a Voronoi partitioning of P by the Voronoi diagram (Rs)s∈S. By
definition each partitioning of P obtained by selecting up to k centers and assigning
every point in P to its closest center is a Voronoi partitioning of P by Voronoi diagram
of the set of selected centers. It is therefore enough to only look at partitionings of
P that are Voronoi partitionings of P by the Voronoi diagram of a set S ⊆ Rm with
|S| = k. Imai, Inaba, and Katoh showed that the number of Voronoi partitionings of n
points by the Voronoi diagram generated by k points in the m-dimensional Euclidean
space is O(nmk) [57] and Imai and Inaba showed that they can be enumerated in
O(n(m+1)k) time [56]. We therefore need to test a most O(nmk) different partitionings
and together with Theorem 5 proves Theorem 6.

It is now left to show how the SEB problem can be solved and prove Theorem 5 .
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2.1.1 The Smallest Enclosing Ball Problem

Before we explain the algorithm to solve the SEB problem, we introduce more notation.
Given a subset T ⊆ P of at most m+ 1 affine independent points, we denote by B∆(T )
the smallest sphere which has all points in T on its boundary, i.e., B∆(T ) := B(c, r) for

r = min{r′ ∈ R+ | ∃ c′ ∈ Rm : d(j, c′) = r′ for all j ∈ T},
c ∈ {c′ ∈ Rm | d(j, c′) = r for all j ∈ T} .

We will call the center of B∆(T ) the circumcenter of T and denote it by cc(T ). Note
that B∆(T ) will always be the unique sphere with center in the affine hull aff(T ) and T
on its boundary. A non-empty affinely independent set T ⊆ P will be called the support
set of B∆(T ).

The Algorithm

We now describe the algorithm for instances with integral coefficients and later explain
how we can transform instances with rational coefficients into instances with integral
coefficients without increasing the input size too much.

First, we design the SEB problem as an optimization problem over a convex body and
show that our description satisfies certain criteria stated in [49] which imply that a
version of the ellipsoid method can compute a (1+ε)-approximation in time polynomial
in the encoding size of the instance and log 1

ε
.

Proposition 18. There exists an algorithm sebapprox that, for any given ε > 0 and
point set P ∈ Zm, computes a (1 + ε)-approximation of B(P ) in time polynomial in
the encoding size of P and log 1

ε
.

The SEB problem has been described as an optimization problem over a convex body
before. Zhou, Toh, and Sun for example describe the SEB problem as a second-
order cone program [102], while Gärtner and Schönherr describe it as a quadratic
program [45]. As far as we know, for all previous descriptions of the SEB problem as
an optimization problem over a convex body, the analysis focused on the number of
arithmetic operations a solver would need in order to find a solution and did not go
into detail about the necessary precision and the encoding length needed during the
computations.

For a given set P ⊆ Zm, let cmax = max{|ji| | j ∈ P and 1 ≤ i ≤ m} denote the largest
absolute value over all coordinates of points in P , and let

εm,cmax = max
i∈N

{
1

22i+2 |
1

22i <
1

25m2(2cmax)8m+12

}
. (2.1)

Our extended algorithm, named seb+, takes the set P ⊆ Zm as input and computes
a (1 + εm,cmax)-approximation with sebapprox to obtain a sphere B with center c and
radius r′. We let r = mini∈N {i · εm,cmax | i · εm,cmax ≥ r′}. In all non-trivial integral
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instances we have ropt ≥ 1
2 . Therefore we can assume r ≤ (1 + 3εm,cmax)ropt. Given c,

and r, we then show that the support Topt of the optimal solution contains exactly
those points j ∈ P for which d(c, j) ≥ (1− 2√εm,cmax) r

1+εm,cmax
. Once we have Topt, we

can easily compute copt.

The pseudo-code of algorithm seb+ is given as Algorithm 1.

Algorithm 1 seb+(P )
Input: A finite, non-empty set P ⊆ Zm of points.
Output: A sphere with minimal radius containing P .

1: Set ε = εm,cmax ;
2: Compute B(c, r′) = sebapprox(P, ε);
3: Let r = mini∈N {iε | iε > r′}
4: Set T = {p ∈ P | d(p, c) ≥ (1− 2

√
ε) r

1+ε};
5: return B∆(T )

SEB as Optimization over a Convex Body

In order to apply previous results by Yudin and Nemirovskii [100] to prove Proposi-
tion 18, we now describe the SEB problem as an optimization problem over a convex
body

Let P ⊆ Zm be an instance of the SEB problem with cmax = max{|ji| | j ∈ P and 1 ≤
i ≤ m}. Every feasible ball of the SEB problem for P consists of a center c ∈ Rm and
a radius r ∈ R s.t. r ≥ ‖j − c‖ for all j ∈ P . The general set of feasible balls can
therefore be described as Sol(P ) = {(r, c) ∈ R× Rm | ∀j ∈ P : r ≥ ‖j − c‖}.

Corollary 19. Sol(P ) is an unbounded convex set.

Proof. For any (r, c) ∈ Sol(P ) and any r′ ≥ r we have r′ ≥ r ≥ ‖j − c‖ for all j ∈ P ,
which implies (r′, c) ∈ Sol(P ). Since Sol(P ) is obviously not empty it has to be
unbounded.

Let (r1, c1), (r2, c2) ∈ Sol(P ) and let λ ∈ [0, 1]. We need to show that (λr1 + (1 −
λ)r2, λc1 + (1− λ)c2) ∈ Sol(P ), i.e., for each point j ∈ P we have λr1 + (1− λ)r2 ≥
‖j − (λc1 + (1− λ)c2)‖.

Let v ∈ Rm be a vector orthogonal to c1− c2 with ‖v‖ = ‖c1− c2‖, such that the plane
E = c2 + µ(c1 − c2) + νv contains j. Let c = ‖c1 − c2‖ and j = c2 + a(c1 − c2) + bv for
some a, b ∈ R, then we have

r2 ≥ ‖j − c2‖ =
√
a2c2 + b2c2 = c

√
a2 + b2,

r1 ≥ ‖j − c1‖ =
√

(a− 1)2c2 + b2c2 = c
√

(a− 1)2 + b2 and

‖j − (λc1 + (1− λ)c2)‖ =
√

(a− λ)2c2 + b2c2 = c
√

(a− λ)2 + b2.
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It is left to show

c
√

(a− λ)2 + b2 ≤ λc
√

(a− 1)2 + b2 + (1− λ)c
√
a2 + b2

to conclude the proof. As we know c ≥ 0, it is enough to show√
(a− λ)2 + b2 ≤ λ

√
(a− 1)2 + b2 + (1− λ)

√
a2 + b2.

We have

0 ≤ b2

⇔a4 − 2a3 + 2a2b2 + a2 − 2ab2 + b4 ≤ a4 − 2a3 + 2a2b2 + a2 − 2ab2 + b4 + b2

⇔(a2 + b2 − a)2 ≤ (a2 + b2)((a− 1)2 + b2).

As (a2 + b2)((a− 1)2 + b2) is non-negative it follows

(a2 + b2 − a) ≤
√

(a2 + b2)((a− 1)2 + b2)

⇔2(λ− λ2)(a2 + b2 − a) ≤ 2(λ− λ2)
√

(a2 + b2)((a− 1)2 + b2)

⇔− 2λa ≤ −2aλ2 + (2λ2 − 2λ)(a2 + b2) + 2(λ− λ2)
√

(a2 + b2)((a− 1)2 + b2)
⇔a2 − 2λa+ λ2 + b2

≤ λ2(−2a+ 1) + (1− 2λ+ 2λ2)(a2 + b2) + 2(λ− λ2)
√

(a2 + b2)((a− 1)2 + b2)
⇔(a− λ)2 + b2

≤ λ2((a− 1)2 + b2) + (1− λ)2(a2 + b2) + 2λ(1− λ)
√

(a2 + b2)((a− 1)2 + b2)

⇔(a− λ)2 + b2 ≤
(
λ
√

(a− 1)2 + b2 + (1− λ)
√
a2 + b2

)2

⇔
√

(a− λ)2 + b2 ≤ λ
√

(a− 1)2 + b2 + (1− λ)
√
a2 + b2

⇔c
√

(a− λ)2 + b2 ≤ λc
√

(a− 1)2 + b2 + (1− λ)c
√
a2 + b2.

⇒c
√

(a− λ)2 + b2 ≤ λr1 + (1− λ)r2.

For every x ∈ R+ we define Solx(P ) := {(r, c) ∈ Sol(P ) | r ≤ x} as the set of feasible
balls with radius at most x. Solx(P ) obviously is a convex set. x ≥ ropt implies that
Solx(P ) contains the optimal solution (ropt, copt) and (ropt, copt) = arg min(r,c)∈Solx(P ) r.
Since, by definition of cmax we have P ⊆ B(0m,m · cmax), we know ropt ≤ m · cmax
and therefore Solm·cmax(P ) contains (ropt, copt). As Solm·cmax(P ) is a convex set we
can apply known results for convex optimization problems in order to obtain a good
approximation to the SEB problem.

Before we state the theorem that goes back to Yudin and Nemirovskii [100], which will
allow us to prove Proposition 18, we introduce the following definitions.
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Definition 20. A centered convex body is a quintuple (K;m,R, r′, a0), where K ⊆ Rm

is a compact and full dimensional convex set, m ∈ N, R, r′ ∈ Q and a0 ∈ Qm and we
have B(a0, r

′) ⊆ K ⊆ B(0, R).

Definition 21. For any set K ⊆ Rm and any real number δ > 0 let

• S(K, δ) := {x ∈ Rm | ‖x− y‖ ≤ δ for some y ∈ K} and
• S(K,−δ) := {x ∈ K | S({x}, δ) ⊆ K}.

Note for a sphere B we have S(B,−δ) = {q ∈ B | infp/∈B d(p, q) ≥ δ}.

The Weak Membership Problem (WMEM)
Input: A convex body K, a vector y ∈ Qm and a rational number γ > 0.
Task: Assert that y ∈ S(K, γ), or assert that y /∈ S(K,−γ).

We can now state the following theorem which goes back to Yudin and Nemirovskii [100].
For a more detailed description and proofs we refer to [49].

Theorem 22. Given a rational number ε′ > 0, a centered convex body (K;m,R, r′, a0)
given by an oracle for the weak membership problem, and a convex function f : Rm → R
given by an oracle that, for every x ∈ Qm and γ > 0, returns a rational number t such
that |f(x)− t| ≤ γ, we can compute a vector y ∈ S(K, ε′) such that f(y) ≤ f(x) + ε′

for all x ∈ S(K,−ε′) in oracle polynomial time.

Here oracle polynomial time means that the number of calls to the oracles as well as
the time needed for all additional computations is polynomial in the encoding sizes of
ε and (K;m,R, r′, a0).

With Theorem 22 we can now prove Proposition 18.

Proof (Proposition 18). Theorem 22 needs a centered convex body and we need to
be able to easily check for any point that is not close to its boundary if the point is
inside or outside the convex body. We create our centered convex body as follows.
Let K = Sol2m·cmax(P ), m′ = m + 1, R = 4m · cmax, r′ = 1

4m · cmax and a0 =
(1.5m · cmax, 0, . . . , 0). To show that (K;m′, R, r′, a0) is a centered convex body we need
to show B(a0, r

′) ⊆ K ⊆ B(0, R). Note that B(a0, r
′) and B(0, R) are spheres in Rm+1,

the solution space of the SEB problem, and not in Rm, the space of the original instance.
To make the distinction easier we will use B instead of B for spheres in Rm+1. Let
a = (ra, ca) ∈ R×Rm and r ∈ R then B(a, r) contains all points (r1, c1) ∈ R×Rm with
‖(r1−ra, c1−ca)‖ =

√
(r1 − ra)2 + ‖c1 − ca‖2 ≤ r. Given ra ≥ r ≥ 0 the sphere B(a, r)

is equivalent to the set of spheres in Rm, which contains a sphere B(c1, r1) if and only
if we have

√
(r1 − ra)2 + ‖c1 − ca‖2 ≤ r. We then abuse notation and say that B(a, r)

contains B(c1, r1) and also write B(c1, r1) ∈ B(a, r). We must have B((0, . . . , 0), 1.5m ·
cmax) ∈ K as 1.5m · cmax ≤ 2m · cmax and B((0, . . . , 0), 1.5m · cmax) contains P . Let
B(c1, r1) ∈ B(a0, r

′) then we know
√

(r1 − 1.5m · cmax)2 + ‖c1 − (0, . . . , 0)‖2 ≤ 1
4m·cmax.

This implies r1 ∈ [1.25m · cmax, 1.75m · cmax] and ‖c1‖ ≤ 1
4m · cmax. Since the distance
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between c1 and any point in P is no more than ‖c1‖+m · cmax ≤ 1.25m · cmax, we know
B(c1, r1) ∈ Sol2m·cmax(P ). As K contains exactly the spheres in Rm, which contain P
and have a radius of at most 2m · cmax, and we know that P is non-empty and contains
only points p ∈ Rm with ‖p‖ ≤ m · cmax, we know for any sphere B(c, r) ∈ K that we
must have ‖c‖ ≤ 3m · cmax. This implies

√
r2 + ‖c‖2 ≤

√
(2m · cmax)2 + (3m · cmax)2 =√

13m·cmax ≤ 4m·cmax. We then haveK ⊆ B(0, R) because B(0, R) contains all spheres
B(c, r) ∈ Rm with

√
(r − 0)2 + ‖c− (0, . . . , 0)‖2 =

√
r2 + ‖c‖2 ≤ 4m · cmax = R.

Therefore (K;m′, R, r′, a0) is a centered convex body that contains the optimal solutions
B(copt, ropt) = arg minB(c,r)∈Sol2m·cmax (P ) r.

In order to check for a given (r, c) ∈ Q × Qm if we have B(c, r) ∈ Sol2m·cmax(P ) we
need to check if we have r ≤ 2m · cmax and ‖pi− c‖ ≤ r for all i ∈ {1, . . . , n}. This can
obviously be done in time polynomial in n, m and the encoding size of r, c and cmax.

This gives us an oracle to the weak membership problem with polynomial run time.

Let f((r, c)) := r. For every x = (rx, cx) ∈ Qm+1 and γ > 0 it is easy to return t = rx
such that |f(x)− t| = 0 ≤ γ (Note that in order to minimize memory it would also be
sufficient to let α = maxi∈N{ 1

2i |
1
2i ≤ γ} and let f(x) be equal to rx rounded to the

nearest multiple of α).
The choice of (K;m′, R, r′, a0) ensures that for every B(c, r) ∈ S(K, ε′) we have
‖j − c‖ ≤ r + ε′ for all j ∈ P . Together with the choice of f and γ = ε′ it ensures
min{f(x) + ε′ | x ∈ S(K,−ε′)} ≤ ropt + 2ε′. Let B(c, r) ∈ S(K, ε′) be a sphere such
that r ≤ f(x) + ε′ for all x ∈ S(K,−ε′) then B(c, r′) = r+ ε′ is a feasible solution with
r′ ≤ ropt + 3ε′.
Given the fact that we have ropt ≥ 1

2 for every non-trivial integral instance B(c, r′) is a
(1 + 6ε′)-approximation. Setting ε′ = 1

6ε concludes the proof of Proposition 18.

Analysis of Algorithm 1

Overview of the analysis We start by showing for any P ⊆ Zm a lower bound on
the minimal non-zero distance γ > 0 between any point in j ∈ P and the boundary of
the sphere B∆(T ), for any affine set T ⊆ P . Then we show the following “separation
property”: for any point j ∈ P , its distance d(copt, j) to the center copt of the optimal
solution is either equal to the radius ropt of the optimal sphere, or is at most ropt − γ.

Next, we use algorithm sebapprox to obtain a feasible solution B(c, r) with radius
r ≤ (1 + ε)ropt and center c. We show ‖c− copt‖ ≤

√
3εropt, which in turn implies that

d(c, j) ∈ ((1−
√

3ε)ropt, r) ⊆ ((1− 2
√
ε) r

1 + ε
, r) for all j ∈ Topt;

d(c, j) ≤ (1 +
√

3ε)ropt − γ ≤ (1 + 2
√
ε)r − γ for all j ∈ P \ Topt .

Choosing ε according to (2.1), we obtain (1 + 2
√
ε)r − γ < (1− 2

√
ε) r

1+ε . This means
that all points j ∈ P with d(c, j) ≥ (1− 2

√
ε) r

1+ε must be in Topt. Finally, given Topt
one easily obtains B(P ) = B∆(Topt).
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Correctness of Algorithm 1 Let ε > 0, m ∈ N and r ∈ R+. Let B ⊆ Rm be a
m-dimensional sphere with radius r. We denote by X(B, ε) the set of points inside B
that are ε-close to the boundary of B, i.e.,

X(B, ε) = {q ∈ B \ δ(B) | inf
p∈δ(B)

d(p, q) ≤ ε} .

Definition 23. For γ > 0, a set P ⊆ Rm is γ-sphere-separated if for each affine
independent subset T ⊆ P , the sets P and X(B∆(T ), γ) are disjoint.

Lemma 24. Let P ⊆ Zm be a set of points and let cmax := maxj∈P,i∈{1,...,m} |ji| be the
maximum absolute value of any coordinate of a point in P . Then P is γ-sphere-separated
for γ = 1

2
√
m(2cmax)4m+5 .

Proof. At first we will show, that for any affine subset T ⊆ P of points the coordinates
of the circumcenter cc(T ) are rational numbers with a common denominator of at most
(2cmax)2m+2. This allows us to see that for any affine subset T ⊆ P there is some c ∈ N
with c ≤ (2cmax)2m+2 such that the finite grid

G = {(a1, . . . , am) | ai = bi/c for some bi ∈ Z with |bi/c| ≤ cmax} (2.2)

contains the circumcenter cc(T ) as well as P . We then show how to compute a lower
bound—depending on c and cmax—on the minimal non-zero difference in distance
between two pairs of points on the grid; that will conclude the proof.

Let us start by considering the circumcenter cc(T ). It is known that for any affine set
T ⊆ P , cc(T ) is the unique point in the affine hull of T which has the same distance
to all points in T . That is, cc(T ) = ∑

j∈T αjj for some α = (αj | j ∈ T ) ∈ R|T | with∑
j∈T αj = 1, and there exists some r ∈ R such that

d(cc(T ), j) = r for each j ∈ T. (2.3)

Condition (2.3) is equivalent to
m∑
i=1

(cc(T )2
i − 2jicc(T )i + j2

i ) = |cc(T )− j|2 = r2 for each j ∈ T. (2.4)

Since the terms cc(T )2
i appear in this equation for every j ∈ T , condition (2.4) is

equivalent to the existence of some r′ ∈ N such that
m∑
i=1

(−2jicc(T )i + j2
i ) = r′ for all j ∈ T .

Treating αi, i = 1, . . . , k and cc(T )j, j = 1, . . . ,m as variables, we obtain a set of
m+ k + 1 ≤ 2m+ 2 linear equations with integral coefficients of value at most 2cmax.
As cc(T ) is the unique point in the affine hull of T which has the same distance to all
points in T , this system of linear equations admits a unique solution. We can obtain
this solution via Gaussian elimination and therefore all variables in the solution have a
rational value with a common denominator c ≤ (2cmax)2m+2. Therefore, cc(T ) and P
are contained in the finite grid G defined by (2.2). The distance between two points of
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the grid is equal to the square root of an integer multiple of c−2, and thus equal
√
x
c

for
some integer x. The distances between two separate pairs of points are therefore either
the same or differ by at least

1
c

(√
x−
√
x− 1

)
(2.5)

with x ≤ m(2cmax)4m+6. As (
√
x + 1

2
√
x
)2 = x − 1 + 1

4x > x − 1 = (
√
x− 1)2 the

value of (2.5) is at least 1/(2c
√
x) ≥ 1/(2c

√
m(2cmax)4m+6) = 1/(2c

√
m(2cmax)2m+3) ≥

1/(2
√
m(2cmax)4m+5).

We will now show an upper bound for the distance between copt and the center c of any
(1 + ε)-approximation for the smallest enclosing ball of P . Combined with Lemma 24
this will allow us to determine the points in Topt through their distance to c.

We use the following fact, which goes back to an idea of Seidel and can be proved by
the Karush-Kuhn-Tucker optimality conditions for constrained optimization [88].

Proposition 25. Let T be a set of points on the boundary of some sphere B with
center c. Then B = B(T ) if and only if c ∈ conv(T ), where conv(T ) denotes the convex
hull of T .

Lemma 26. For any ε ∈ (0, 1] and any (1 + ε)-approximation B(c, r) of B(P ) =
B(copt, ropt), it holds d(c, copt) ≤

√
3εropt.

Proof. Let Topt be the support set of B(P ) and let c′ 6= copt ∈ Rm be a point with
r′ = maxj∈P d(c′, j) ≤ (1 + ε)ropt. By Proposition 25, copt is part of the convex hull of
Topt; therefore, there is some j ∈ Topt for which the angle ∠c′coptj has value at least
90◦. We thus have

r2
opt + d(c′, copt)2 = d(copt, j)2 + d(c′, copt)2

≤ d(c′, j)2

≤ ((1 + ε)ropt)2 .

Where the last inequality comes from the fact that B(c′, r′) is a (1 + ε)-approximation
of B(P ) and we must have maxj∈P d(c, j) ≤ (1 + ε)ropt. Therefore, d(c′, copt)2 ≤
(2ε+ ε2)r2

opt ≤ 3εr2
opt and hence d(c′, copt) ≤

√
3εropt.

Combining Lemma 26 with Lemma 24 we can show the following lemma:

Lemma 27. Let ε ∈ (0, 1] and let B = B(c, r) be a (1 + ε)-approximation of B(P ) =
B(copt, ropt). Let Topt be the support set of B(P ). Then d(c, j) ∈ ((1− 2

√
ε) r

1+ε , r) for
all j ∈ Topt and d(c, j) < (1 + 2

√
ε)r − 1

2
√
m(2cmax)4m+5 for any j ∈ P \ Topt.
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Proof. By Lemma 24 we know d(copt, j) < ropt − 1
2
√
m(2cmax)4m+5 for every j ∈ P \

Topt. With Lemma 26 we then have d(c, j) < d(c, copt) + d(copt, j) < (1 + 2
√
ε)ropt −

1
2
√
m(2cmax)4m+5 ≤ (1 + 2

√
ε)r − 1

2
√
m(2cmax)4m+5 .

For j ∈ Topt we know d(copt, j) = ropt which implies d(c, j) > d(copt, j) − d(c, copt) ≥
(1−

√
3ε)ropt. By definition of r we know r ≤ r′ + ε and since sebapprox is a (1 + ε)-

approximation algorithm we know r′ ≤ (1 + ε)ropt and therefore r ≤ (1 + ε)ropt + ε.
Since ropt ≥ 1/2 and ε < 1/4, we have

ε(1− 2
√
ε)

(2−
√

3)
√
ε(1 + ε)

<

√
ε

2−
√

3
≤ 1

2 ≤ ropt

⇔ ε

1 + ε
<

(2−
√

3)
√
ε

1− 2
√
ε

ropt

⇔ropt + ε

1 + ε
<

1−
√

3ε
1− 2

√
ε
ropt

⇔(1 + ε)ropt + ε < (1 + ε)1−
√

3ε
1− 2

√
ε
ropt

⇒(1− 2
√
ε) r

1 + ε
< (1−

√
3ε)ropt .

To show that Algorithm 1 returns the optimal solution, we want to ensure

(1 + 2
√
ε)r − 1

2
√
m(2cmax)4m+5 < (1− 2

√
ε) r

1 + ε
. (2.6)

In that case we have Topt = {j ∈ P | d(c, j) ∈ ((1 − 2
√
ε) r

1+ε , r)}. Thus, it suffices
to show that the choice of ε = εm,cmax in (2.1) is small enough. To this end, we first
observe that the relation r2 ≤ mc2

max yields

ε = εm,cmax <
1

25m2(2cmax)8m+12 <
1

100r2m(2cmax)8m+10 .

Together with the condition 0 < ε ≤ 1, we obtain

ε <
1

100r2m(2cmax)8m+10

⇔5
√
ε <

1
2r
√
m(2cmax)4m+5

⇒2
√
ε+ ε+ 2

√
ε

1 + ε
<

1
2r
√
m(2cmax)4m+5

⇔ε+ 2ε
√
ε+ 4

√
ε

1 + ε
<

1
2r
√
m(2cmax)4m+5

⇔1 + 2
√
ε− 1− 2

√
ε

1 + ε
<

1
2r
√
m(2cmax)4m+5
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⇔(1 + 2
√
ε)r − (1− 2

√
ε) r

1 + ε
<

1
2
√
m(2cmax)4m+5

⇔(1 + 2
√
ε)r − 1

2
√
m(2cmax)4m+5 < (1− 2

√
ε) r

1 + ε
.

Hence, we have shown the following:

Lemma 28. Algorithm 1 is correct and returns the smallest enclosing ball B(P ).

Next we will take a look at the encoding length of the objects used during Algorithm 1.
Together with Proposition 18 it will then be easy to see that all steps of Algorithm 1
can be performed with time and space polynomial in the encoding size of P .

Length of encoding the solution As shown in the proof of Lemma 24, the coordi-
nates of the circumcenter cc(T ) of any any affine subset T ⊆ P are rational numbers
with common denominator at most c2m+2

max . Since the absolute value of each coordinate
is at most cmax, the numerators have absolute value at most c2m+3

max . Both denominator
and numerator can thus be encoded using O(log(c2m+3

max )) = O(m log(cmax)) bits.

Note that in many cases the radius of the smallest enclosing ball is irrational. But
the proof of Lemma 24 showed it to be the square root of an integer multiple x · c−2

of some c−2, c ∈ N with c ≤ c2m+2
max and x ≤ 4mc2(2m+3)

max . Similarly, the radius of
the approximation obtained in line 3 is an integer multiple y · εm,cmax of εm,cmax with
y ≤ m2cmax

εm,cmax
. Instead of computing the actual radii, we can use their squares, which are

rational numbers, for all necessary computations. Finally, the values of x, y and c can
be encoded with O(m log(cmax)) bits.

Polynomial run time of Algorithm 1 The choice of ε = εm,cmax and Proposition 18
show that steps 1 and 2 of Algorithm 1 need time polynomial in the encoding size of P
and log 1

ε
, i.e., polynomial in n, m and log cmax.

By the choice of ε = εm,cmax and the choice of r in line 3 the value of (1−2
√
ε) r

1+ε in line
4 has to be rational number smaller than 2m · cmax. We now show that its denominator
is smaller than 2829m3(2cmax)12m+18. As r = jε and ε = 1

22i+2 for some i, j ∈ N we
know that r

1+ε = jε 1
1+ε = jε ε−1

1+ε−1 = j
ε−1+1 = j

22i+2+1 . We then have (1 − 2
√
ε) r

1+ε =
(1 − 2

2i+1 ) j
22i+2+1 = 2i+1−2

2i+1
j

22i+2+1 = (2i+1−2)j
23i+3+2i+1 . By the definition of εm,cmax we know

22i−1 ≤ 25m2(2cmax)8m+12 and therefore 23i+3 + 2i+1 ≤ 24.5 · 22i−1 · 2i−0.5 + 21.52i−0.5 ≤
24.5 · 25m2(2cmax)8m+12 · 5m(2cmax)4m+6 + 21.55m(2cmax)4m+6 ≤ 2829m3(2cmax)12m+18.
Therefore steps 3 and 4 can also be performed in time polynomial in n, m and log cmax.

Transformation of rational instances It is easy to retrieve the smallest enclosing
ball of a set of points from the smallest enclosing ball of a scaled version of the same
points. For a set P of points and a constant k > 0 let Pk = {k · j | j ∈ P} be the set
P scaled by k, where for any j ∈ Rm the point k · j has coordinates (k · j)i := k · ji.
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Lemma 29. Let P ⊆ Rm be a set of points and let B(c, r) be the smallest enclosing
ball of P . Then for any number k > 0, B(kc, kr) is the smallest enclosing ball of Pk.

Proof. We first show that B(kc, kr) is an enclosing ball for Pk. For every point j ∈ Pk we
have 1

k
j ∈ P . As B(c, r) is an enclosing ball for P , we have d(kc, j) = k ·d(c, 1

k
j) ≤ k · r.

Now suppose, for sake of contradiction, that there exists an enclosing ball B(c′, r′)
for Pk with r′ < kr. For every point j ∈ P we then have d( 1

k
c′, j) = 1

k
d(c′, kj) ≤ 1

k
r′ < r.

Thus, B( 1
k
c′, 1

k
r′) would be an enclosing ball for P smaller than B(c, r)—a contradiction.

Let P ⊆ Qm be a finite instance of the SEB problem where all coordinates have rational
values. Let cd(P ) denote the common denominator of coordinates of the points in P ,
i.e., the common denominator of the set ⋃j∈P{j1, . . . , jm}. Then Pcd(P ) is an instance
with integral coordinates. Let denommax be the largest denominator of any coordinate
of any point in P and let nominmax be the largest absolute value of any nominator of
any coordinate of any point in P :

denommax =

max{x | ∃j ∈ P, 1 ≤ i ≤ m s.t. ji = y

x
for some x, y ∈ Z with gcd(x, y) = 1},

nominmax =

max{y | ∃j ∈ P, 1 ≤ i ≤ m s.t. ji = y

x
for some x, y ∈ Z with gcd(x, y) = 1}.

Then cd(P ) ≤ denomnm
max, as there are at most nm different coordinates. Hence, the max-

imum absolute value of any coordinate in Pcd(P ) is at most nominmaxdenom
nm
max. Thus

the space needed to encode an integral equivalent to P is in O(nm(nm log(denommax)+
log(nominmax))).

This completes the proof of Theorem 5.

2.2 Fair Clustering

In this section we discuss several types of fair clustering. First we explain the fairlet
approach, which has been used for the fair k-center problem in previous work. We
extend the fairlet approach to more cases of fair clustering, discuss its advantages
and drawbacks, and show in which cases it already leads to approximation algorithms.
Then, in order to compute results in some of the cases, for which it is still unknown how
to compute good fairlets in polynomial time, and to improve the approximation ratio
for the fair k-center/k-supplier problem, we explain our LP-based approaches. We first
explain the approach for essentially fair clustering and then show our improved result
for the fair k-center/k-supplier problem. We conclude the section with some insight
into the difficulties of fair clustering. We show NP-hardness for the fair assignment
problem as well as the unbounded integrality gap of the clustering LP.
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Figure 2.1: A decomposition of a fair clustering into fairlets with two red points ( )
and one blue point ( ).

2.2.1 Computing Fair Clusterings via Fairlets

Fairlets and fairlet decompositions Chierichetti et al. [29] make an important
observation: Any cluster of a fair clustering is composed of atomic subclusters. For
instance, if we are to achieve a ratio of 2/1 of red to blue points, then a cluster with
two red and one blue point cannot be divided into fair subclusters. Moreover, any fair
cluster with an overall balance ratio of 2/1 consists of an integer number of atomic
subclusters – each having two red and one blue point. Figure 2.1 visualizes this concept.
We follow [29] and call these atomic microclusters fairlets. The concept naturally
generalizes to clusterings under relaxed fairness.

Definition 30. A set of points F ⊆ P is called a fairlet if F is fair and cannot
be partitioned into multiple, non-empty fair sets. Given ` = (`h | h ∈ Col) and
u = (uh | h ∈ Col) a set F ⊆ P is called an `, u-fairlet if F is `, u-fair and cannot be
partitioned into multiple, non-empty `, u-fair sets.

Note that, compared to [29], we use a different definition for fairlets. For the case
of exact fairness covered in [29] both definitions refer to the same objects and our
definition gives a natural generalization to relaxed fairness. When we refer to fair
clusters and fairlets we also mean `, u-fair and `, u-fairlets (unless stated otherwise)
as most of the proofs are analogous. As observed above, every fair cluster can be
partitioned into fairlets. The converse is also true: The union of disjoint fairlets is a
fair set of points.

Definition 31. Let P = ⋃
i∈I Fi be a partitioning of P such that Fi ⊆ P is a fairlet

(an `, u-fairlet) for each i ∈ I. Then we call F = {Fi | i ∈ I} a fairlet decomposition
(an `, u-fairlet decomposition).

An intuitive way to look at a fairlet decomposition F is to view it as a fair clustering
of P with k′ = |I| clusters (where the clusters have no centers). Before assigning a cost
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to F , we assign a center ci ∈ L to each fairlet Fi ∈ F . We then assign a cost to F in
the following way

cost(F) =

maxi∈I maxj∈Fi d(j, ci) k-center/k-supplier problem∑
i∈I
∑
j∈Fi d(j, ci) facility location, k-median, k-means problem.

We call the problem to find a fairlet decomposition of minimal cost the fairlet decompo-
sition problem. This assignment of costs is natural: The cost of F is exactly the cost of
the corresponding k′-clustering. Notice that assigning a center ci ∈ L to each fairlet is
part of the fairlet decomposition problem. It follows that the cost optfd of an optimum
fairlet decomposition – i.e., the cost of an optimum fair clustering of P with at most
k′ ≥ k centers – cannot be larger than the cost opt of an optimum fair clustering with
k centers. In other words, we have optfd ≤ opt for the fair k-center/k-supplier problem,
the fair k-median problem, the fair k-means problem, and the fair facility location
problem.

The general fairlet approach for different problems To see why fairlets help
us to compute fair clusterings let us first consider a simple example. Suppose we are
looking for an optimum fair k-center clustering of a point set P and denote the cost of
this clustering by opt. Also suppose that we know an optimum fairlet decomposition
F := {Fi | i ∈ I} of P with cost optfd that assigns a center ci to each Fi ∈ F . How can
we use this knowledge to find a good clustering of P ? Since the union of disjoint fairlets
yields a fair set of points, it seems a good idea to contract each fairlet to a single point
and to then compute a colorblind clustering. This idea works indeed and was first
proposed in [29]: We interpret ci as a representative of F and compute a β-approximate
colorblind k-center clustering C ′ = (S ′, φ′) of the representatives P ′ = {ci | i ∈ I}.
Then, we merge the fairlets, whose representatives φ assigns to the same center, into a
fair cluster: We obtain a fair clustering C by assigning the points j ∈ Fi of each fairlet
Fi ∈ F to φ′(ci). As a union of disjoint fairlets each cluster of C must be fair. Also, by
our previous observation that optfd ≤ opt, each fairlet must have a radius of at most
opt. Likewise, we can bound costs of the colorblind clustering C ′ by opt: An optimum
colorblind clustering cannot be more expensive than an optimum fair clustering. Thus,
the radius of each cluster in C can at most be (1 + β) · opt. Hence we have found a
(1 + β)-approximation!

In the remainder of this section, we explore what kind of approximation ratios we can
expect when we cluster fairlets with a colorblind algorithm. To do so, we formalize the
approach and generalize it to the k-supplier, the k-median, the facility location and
the k-means problem where we will need more advanced techniques for the analysis.

Using Fairlets to obtain Clusterings

As before, we look for clusterings of a point set P and denote the cost of an optimum
(exact or relaxed) fair k-clustering by opt (we rely on the context to make clear whether
this means k-center, k-median, facility location or k-means). We let optfd denote the
cost of an optimum decomposition of P into fairlets and we denote the cost of an
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optimum colorblind k-clustering of P by optcb. Since any fair k-clustering yields a valid
fairlet decomposition we have optfd ≤ opt. Likewise, any fair k-clustering is a valid
colorblind k-clustering and optcb ≤ opt follows as well; just as in the above example.

In the sequel, we suppose that we can compute an α-approximate fairlet decomposition
F = {Fi | i ∈ I} of P , i.e., we suppose that cost(F) ≤ α optfd ≤ α opt. We also
suppose that we can compute a β-approximate colorblind clustering C ′, i.e., we ask that
cost(C ′) ≤ β optcb ≤ β opt. The current state-of-the-art does not provide non-trivial
approximation algorithms in all cases, but we postpone this issue until the end of this
section. For now, let us assume that we have the necessary black-box algorithms and
explore the resulting guarantees of the fairlet approach.

k-center. We repeat the argument from the introductory example: Given an α-
approximate fairlet decomposition of P that assigns a center ci ∈ P to each Fi in F , we
compute a β-approximate colorblind k-center solution C ′ = (S ′, φ′) of P ′ := {ci | i ∈ I}.
We obtain a fair clustering C = (S ′, φ′′) of P by setting φ′′(j) = φ′(ci) for all j ∈ Fi. We
can now bound the distance of any point j ∈ Fi to its center φ′(ci) in C as d(j, φ′(ci)) ≤
d(j, ci) + d(ci, φ′(ci)) since d is a metric. Yet, we have d(j, ci) ≤ α optfd ≤ α opt and
d(ci, φ′(ci)) ≤ β optcb ≤ β opt. It follows that cost(C) ≤ (α + β) opt and our algorithm
is a (α + β)-approximation algorithm.

k-supplier. Given an α-approximate fairlet decomposition of P that assigns a center
ci to each Fi in F , we cannot just compute a β-approximate colorblind k-center solution
C ′ = (S ′, φ′) of P ′ := {ci | i ∈ I} as we might have P ′ ( P , which would make difficult
to compare the cost of a solution on P ′ to the cost of an optimal solution on P . Instead
of ci we choose an arbitrary point ji ∈ Fi as a representative for Fi and compute a
β-approximate colorblind k-center solution C ′ of P ′ := {ji | i ∈ I}. We obtain a fair
clustering C of P by assigning all j ∈ Fi to φ′(ji). We can now bound the distance of
any point j ∈ Fi to its center φ′(ji) in C as d(j, φ′(ji)) ≤ d(j, ji) + d(ji, φ′(ji)) since d is
a metric. Yet, we have d(j, ji) ≤ 2α optfd ≤ 2α opt and d(ji, φ′(ji)) ≤ β optcb ≤ β opt.
It follows that cost(C) ≤ (2α + β) opt and our algorithm is a (2α + β)-approximation
algorithm. Some of the algorithms for the fairlet decomposition problem will already
only assign one of the points in each fairlet as its center. In that case it follows that
cost(C) ≤ (α + β) opt and our algorithm is a (α + β)-approximation algorithm.

k-median. The k-median case is more difficult: Computing representatives and
repeating the above analysis yields an additive error of α opt for each point, and thus
at best a 2 · α · |P |-approximation. A different technique is needed here.

We start by computing a β-approximate colorblind clustering C ′ = (S ′, φ′) on P . For all
i ∈ I and purely for the analysis we choose the center ci of Fi in F as a representative
of Fi. We then look for the point

ji := arg min
j∈Fi

[
d(ci, j) + d(j, φ′(j))

]
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that among all j ∈ Fi minimizes the distance from ci to φ′(j) via j. We assign all
points j ∈ Fi to this center φ′(ji). In this way, we obtain a fair clustering C. Let us
first compute an upper bound on the cost of assigning a single point j ∈ Fi to its center
φ′(ji) in C. We have

d(j, φ′(ji)) ≤ d(j, ci) + d(ci, ji) + d(ji, φ′(ji)).

By our choice of ji, we have d(ci, ji) + d(ji, φ′(ji)) ≤ d(ci, j) + d(j, φ′(j)) and it follows
that

cost(C) =
∑
i∈I

∑
j∈Fi

d(j, φ′(ji))

≤
∑
i∈I

∑
j∈Fi

(
2d(ci, j) + d(j, φ′(j))

)
= 2 ·

∑
i∈I

∑
j∈Fi

(
d(j, ci) +

∑
j∈P

d(j, φ′(j))

≤ 2 · α optfd +β optcb .

Thus, our algorithm yields a (2α + β)-approximation.

Facility location. Observe that in the above algorithm, we only open the centers
from the colorblind solution; the fairlet decomposition does not incur facility opening
costs. By the same reasoning as before we get

cost(C) =
∑
i∈I

∑
j∈Fi

d(j, c(ji)) +
∑
l∈Scb

fl

≤ 2 ·
∑
i∈I

∑
j∈Fi

(
d(j, ci) +

∑
j∈P

d(j, c(j)) +
∑
l∈Scb

fl

≤ 2 · α optfd +β optcb .

where Scb denotes the set of facilities opened by the colorblind facility location solution.
We obtain a (2α + β)-approximation algorithm in this case as well.

k-means. For the k-means problem, we assume that P ⊆ Rm and that d is the
squared Euclidean distance measure. For each fairlet Fi let µ(Fi) be its centroid, i.e.,
µ(Fi) = 1

|Fi|
∑
j∈Fi j and let us look at a colorblind β-approximate clustering C ′ = (S ′, φ′)

on the instance which contains |Fi| copies of µ(Fi) for each i ∈ I. Without loss of
generality, we assume that for all i ∈ I all of the copies of µ(Fi) will be assigned to
the same center as otherwise assigning all copies of µ(Fi) to the nearest opened center
would only decrease the cost. We then obtain C from C ′ by assigning all points in Fi to
the center cFi to which the copies of µ(Fi) were assigned in C ′. The following extremely
useful observation, which is usually considered folklore, helps us to determine the cost
cost(C) of this assignment.

Observation 32. Given a point set P ⊆ Rm and a point c ∈ Rm, then the 1-means
cost of assigning P to c can be decomposed into∑

j∈P
‖j − c‖2 =

∑
j∈P
‖j − µ‖2 + |P | · ‖µ− c‖2
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where µ = 1
|P |
∑
j∈P j is known as the centroid of P .

Observation 32 implies that the cost to assign all points j ∈ Fi to cFi is equal to

cost(C) =
∑
i∈I

∑
j∈Fi
‖j − cFi‖2

=
∑
i∈I

[∑
j∈Fi
‖j − µ(Fi)]‖2 + |Fi| · ‖µ(Fi)− cFi‖2

]
=
∑
i∈I

∑
j∈Fi
‖j − µ(Fi)‖2

≤cost(F)

+
∑
i∈I
|Fi| · ‖µ(Fi)− cFi‖2

≤cost(C′)

.

In other words, the cost of C is at most the joint cost of F and C ′. Since we know that
cost(F) is bounded by α opt it remains to show an upper bound on cost(C ′), the cost
of the clustering on the centroids. To that aim, let us consider an optimum colorblind
clustering Ccb = (Scb, φcb) of P . For any fixed j ∈ Fi assigning all copies of µ(Fi) to
φcb(j) yields a cost of

|Fi| · ‖µ(Fi)− φcb(i)‖2 ≤ |Fi| · (2‖µ(Fi)− j‖2 + 2‖j − φcb(j)‖2)

by the 2-relaxed triangle inequality. In each fairlet Fi, we now look at those points
whose distance to µ(Fi) is at most the median of these distances across Fi. Formally,
we define for each Fi ∈ F :

Ni :=
{
j ∈ Fi

∣∣∣∣ ‖j − µ(Fi)‖2 ≤ ‖j′ − µ(Fi))‖2 for at least
⌊ |Fi|

2

⌋
points j′ 6= j ∈ Fi

}
and let ji := arg minj∈Ni‖j − φcb(j)‖2 be a point with minimum distance to its
center in Scb, among all points in Ni. With that we obtain |Fi| · ‖µ(Fi) − ji)‖2 ≤
2∑j∈Fi‖µ(Fi)− j‖2 and |Fi| · ‖ji − φ′(ji)‖2 ≤ 2∑j∈Fi‖j − φcb(j)‖2 for all i ∈ I. This
implies that there exists a clustering on the centroids with a cost of at most∑

i∈I

(
4 ·

∑
j∈Fi
‖µ(Fi)− j‖2

)
+
∑
i∈I

(
4 ·

∑
j∈Fi
‖j − φ′(j)‖2

)
.

The first sum is at most 4 times the cost of F and therefore bounded by 4α opt. The
second sum is at most 4 times the cost of an optimal (colorblind) clustering and is
therefore bounded by 4 opt. This shows that there exists a clustering on the centroids
with a cost of at most 4(α + 1) opt. The β-approximation therefore has a total cost
of at most β · 4(α + 1) opt and the computed clustering on P has cost of at most
(4β(α + 1) + α) opt. Hence, it is a (4β(α + 1) + α)-approximation.

Computing Fairlet Decompositions

Having reviewed fairlet based black-box approximation algorithms for the different
clustering objectives in the previous section, we now turn to approaches and problems
of computing fairlet decompositions. What concrete approximation ratios do we
obtain once we fill in the black-box algorithms with the state-of-the-art approximation
algorithms for the fairlet decomposition problem?
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The happy world of k-center For the happy world of k-center we review known
results, or at least algorithms that achieve the same guarantee as the known results.
The colorblind variant of the k-center problem has a 2-approximation algorithm [47, 53]
and thus, it remains to find an α-approximate fairlet decomposition: Together with the
results from the previous section, we then obtain a (2 + α)-approximation algorithm
for the fair k-center problem. The prominent feature of the k-center problem is the
threshold graph. Observe that for k-center, the optimum cost is a pairwise distance:
It is the maximum distance between a center (which is an input point itself) and the
furthest away point assigned to it. Thus, we can guess the optimum cost by iterating
through all Θ(n2) pairwise distances. ‘Guessing’ means that we try the Θ(n2) values,
assume in each run that our guess is the optimum and compute a solution based on
this assumption. Depending on the actual algorithm, some runs may fail (indicating
that we had the wrong value), and the other runs will give solutions of different quality;
we can then pick the best solution, which can only be better than the solution of the
run where we indeed had guessed the value correctly. This trick is used in many papers
on k-center. The usual way to make use of the guessed optimum value – which we
name τ – is to build a threshold graph Gτ where points are connected by an edge, if
they are at distance ≤ τ and then observe that two points can only be in the same
optimum cluster if they are connected by a path of length two in Gτ , i.e., if they are
connected in the 2-hop graph G2

τ of Gτ .

Two colors. Now let’s start with the case that is studied in [29], i.e., we assume that
|Col| = 2, say Col = {red, blue}. Instead of the ratios of each color Chierichetti et al.
define the balance of a set Q as

balance(Q) = min
{
|colred(Q)|
|colblue(Q)| ,

|colblue(Q)|
|colred(Q)|

}
∈ [0, 1],

and the balance of a clustering as the smallest balance of any cluster in it. Now the
main question is what balance we want to achieve. In [29], two cases are distinguished:
a) the input P has balance 1, and we want to compute a clustering which also has
exactly balance 1 and b) we want a clustering with balance at least 1/t, but we do
not know anything about the balance of P . If balance(P ) < 1/t, there is no feasible
solution, and if balance(P ) > 1/t, then we allow additional imbalance.

When considering the difficulty of the approximation problem, it makes sense to
distinguish different cases. For the purpose of later referencing, we state them in the
following definition.

Definition 33. For the two color case, we distinguish the following cases of a fair
clustering. These are the cases where we want a clustering

1. with exact fairness, and balance(P ) = 1,
2. with exact fairness, and balance(P ) = 1/t for an integer t,
3. with exact fairness, and balance(P ) = s/t for integers s ≤ t,
4. with balance b ≤ balance(P ), and b = 1/t for an integer t, or
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5. with balance b ≤ balance(P ) for any b ∈ [0, 1].

In cases 4 and 5, the target balance b may in particular be smaller than balance(P ).
Notice that for any finite point set, balance(P ) = s/t for some integers s, t, so the real
restriction in case 3 is that we want to match balance(P ) exactly. The cases 1, 2, 3
involve exact fair clustering. Notice that these models force us to exactly match the
proportion of red and blue points of P . Under this condition, it might not even be
possible to find k clusters; thus, the optimal solution may well just consist of a single
cluster which contains every point. This trivial clustering, however, is always a feasible
solution, so the problem is well-defined.

A first algorithm for case 1. In case 1, a good fairlet decomposition is particularly
easy to obtain: Chierichetti et al. [29] show that it consists of a perfect matching
between the red and the blue points. Assume that Copt = (Sopt, φopt) is the optimal
fair clustering of P with radius r. Then in particular for each i ∈ Sopt the cluster P (i)
consists of an equal number of red and blue points. Thus, there exists a bipartite
matching between the red and blue points where both endpoints of a matching edge
are always in the same optimum cluster.

Chierichetti et al. [29] tried to recover a good fairlet decomposition by computing a
perfect matching, in a bipartite graph between the red and the blue points. They
used the threshold idea and only connect a red point to a blue point if their pairwise
distance is at most the given threshold τ ′. Let Grb,τ ′ denote the bipartite threshold
graph that connects blue points and red points with a pairwise distance of at most τ .
They guess the optimum cost τ as described above from one of the pairwise distances.
As any two points in the same optimum cluster must share a location at distance at
most opt to both of them, their distance is at most 2 opt and there must be a threshold
τ ≤ 2 opt such that Grb,τ contains a perfect matching. If no perfect matching exists in
Grb,τ , then τ ≤ opt /2 follows. It suffices to find the smallest τ for which Grb,τ contains
a perfect matching. Let M be a perfect matching in Grb,τ . For every edge ei ∈ M
let ri and bi denote the red and the blue point ei connects. For each edge ei ∈ M
let the fairlet F = {ri, bi} with center ri be contained in the fairlet decomposition
corresponding to M . Since ei is part of Grb,τ , the distance between ri and bi – and
thus the radius of F – is at most τ . Testing all reasonable values for τ and taking the
best fairlet decomposition yields a 2-approximation since its cost is bounded by 2 opt.
In total this approach yields a 4-approximation algorithm for the fair k-center problem.
Chierichetti et al. [29] claim a 3-approximation algorithm for k-center. We will explain
in Appendix C the small mistake made in their analysis and give an example were the
analysis does not hold. We use a different way to compute the cost of a fairlet, where
we allow every point to be chosen as the center of a fairlet. We can then make a small
adjustment to the algorithm and obtain a 3-approximation algorithm for the special
case of the two color fair k-center problem, where each color appears equally often.

An improved algorithm for case 1. Again, partition the points into pairs of one
red and one blue point from the same optimal cluster. Let r, b be such a pair. Observe
that then there is a point c (a center in the optimum solution) such that d(r, c) ≤ opt
and d(b, c) ≤ opt. Thus, instead of looking at the pairwise distances between all red
and blue points, we do something else. For each pair r, b, we compute the point x =
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x(r, b) = arg minj∈P max{d(r, j), d(b, j)}. Also, we set c(r, b) = max{d(r, x), d(b, x)}.
Then we know that if r and b are in the same optimum clustering, then c(r, b) ≤ opt.
We build the slightly different threshold graph G′τ , where we use c instead of d as a
distance measure and include an edge for a pair r, b, if c(r, b) ≤ τ . A perfect matching
in this graph exists if τ ≥ opt. Thus, we search for the smallest τ such that we
find a perfect matching in G′τ and then know that in this matching, every point is
at distance ≤ τ from his x(r, b). We again create a fairlet F = {r, b} for each edge
e = {r, b} in the matching; this time, however, we assign x(r, b) as the center of F
in the decomposition. Since now every fairlet has a radius of at most τ = opt, the
decomposition is exact and we obtain a 3-approximation overall. We can apply the same
approach to the fair k-supplier problem when for each pair r, b, we compute the point
x = x(r, b) = arg minx∈L max{d(r, x), d(b, x)} and set c(r, b) = max{d(r, x), d(b, x)}.
Since the computed decomposition is then exact and there exist 3-approximation
algorithms for the standard k-supplier problem [53], we obtain a 5-approximation
algorithm.
Cases 2 and 4. In the happy k-center world, cases 2 and 4 of Definition 33 can both
be 4-approximated: Chierichetti et al. [29] give a 4-approximation algorithm by using
a minimum cost flow. We describe a slightly simpler algorithm which assumes that
we know the majority color (or compute it as a first step). Without loss of generality,
assume that blue is the majority color, i.e., at least half of the points are blue.
The difference to case 1 is that the input can no longer be broken into pairs of red and
blue points. However, we still know that the points can be partitioned into groups of
one red and ≤ t blue points. More precisely, we know: In any clustering satisfying the
fairness constraint, a cluster C with b(C) blue points must have at least db(C)/te red
points. Thus, we can take the optimum solution and partition each optimum cluster in
subgroups of one red point together with ≤ t blue points. Now these subgroups are
exactly the fairlets we want to find.
To obtain the partitioning, we set up a flow network built upon the threshold graph.
We start by adding all red points as well as all blue points as nodes. We add threshold
edges between red and blue points in the same manner as in the easy algorithm: For
every pair r, b, we add an edge if d(r, b) ≤ 2τ (i.e., if they are connected in G2

τ ). This
edge gets a capacity of one. Next, we add a source and a sink. The source is connected
to all red points with an edge of capacity t: This is the maximum number of points it
can facilitate. The blue points are connected to the sink by an edge of capacity 1. We
then compute a maximum flow in this graph. Let nb be the number of blue points. If
the flow has a value less than nb, we know that τ is wrong: For τ ≥ opt, we know by
the above argumentation that we can group the points accordingly and define a flow
where every blue point is facilitated by some red point. So we compute the smallest τ
for which the maximum flow has value nb (it cannot be higher since that is the capacity
of the edges going into the sink). Using the red points as centers, this step gives us
fairlets with radius ≤ 2 opt and we obtain a 4-approximation algorithm. For k-supplier
we can again use the same approach. As we already use some of the points as centers
we obtain a 5-approximation algorithm.
Case 3. If balance(P ) = s/t, then the above maximum flow idea fails since we lose
the anchor node that collects the points of each fairlet. However, in the happy world of
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k-center, we can use capacitated clustering to fill the gap. The general idea is simple
(use capacitated clustering to find fairlets), however, the execution is trickier than one
might expect. The following is a summary of the approximation algorithm given in
Section 4.2 in [90]. The algorithm in [90] works for multiple colors, but in this section,
we only discuss two color variants.

Again, we assume that blue is the majority color, which means that |colred(P )| = nf · s
and |colblue(P )| = nf · t for some integers nf , s, t with gcd(s, t) = 1. We consider an
optimal solution. Then each cluster in this solution has j · s red and j · t blue points
for some j ∈ N, and we can group it into fairlets with s red and t blue points. In
particular, this grouping induces a uniform capacitated clustering of the red points into
nf clusters with capacity s, and a uniform capacitated clustering of the blue points
into nf clusters with capacity t, and the radius of both these clusterings is at most opt.

There is one subtlety, though: the centers of these capacitated clusterings are not
necessarily of the same color. In the optimum fair clustering, the center of each cluster
may be different, sometimes red, sometimes blue. This means that the capacitated clus-
tering problems that are induced by the optimum solution are not uniform capacitated
k-center solutions, but they are uniform capacitated k-supplier solutions:

Thus, we know that the optimum solution to the following uniform capacitated k-
supplier problem costs at most opt: Let P be the red points, let L be the union of red
and blue points, and set the capacity of every center to s. We will use a subroutine for
this problem. In the following, we will be okay if the clustering uses soft capacities,
i.e., it may open centers multiple times. A solution for this problem can only be
cheaper, and we won’t be using the centers as centers in the final solution anyway, so
the relaxation does not hurt us.

Khuller and Sussmann [66] give a 5-approximation algorithm for the uniform soft
capacitated k-center problem. Unfortunately, we need the k-supplier version. Taking a
k-center solution for a k-supplier version can at most double the approximation ratio;
thus, we use Khuller and Sussmann’s algorithm, but it returns a 10-approximation for
us. The smarter way would be to adapt Khuller and Sussmann’s algorithm to work for
the k-supplier variant. We conjecture that this might return a 7-approximation instead
of the 10.

We apply the algorithm to the red points and obtain clusters of size s. Now we need
to assign t blue points to each red cluster. This, however, can be done by computing a
matching. We construct a bipartite graph. On the red side, it contains t copies of each
center, i.e., in total, it contains t · nf = b(P ) red nodes. The blue side just consists
of the blue points. For the edges, we again use thresholding and select our threshold
τ as one of the distances between a red and a blue point. For a threshold τ , we add
an edge between a blue point b and a center c if c represents at least one red point r
with d(b, r) ≤ 2τ . Now we compute the smallest τ for which the resulting graph has a
perfect matching. This matching assigns one blue point to every center-copy, resulting
in t blue points assigned to every red cluster.

What’s the quality of the resulting solution? We know that in the optimum solution,
there is some clustering of the red points which is coupled with a clustering of the blue
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points. Now if we had the correct red clustering, the distance between a blue point and
all red points in the same optimum cluster would be at most 2 ·opt, leading to an overall
approximation ratio of 12. We can still get a similar statement by using Hall’s theorem.
Let B be any subset of the red points. Since we made t copies for every red cluster B
has to contain points out of at least d |B|

t
e such clusters which represent at least sd |B|

t
e

red points. Therefore any optimal fairlet decomposition contains at least d |B|
t
e many

fairlets which contain at least one of the points represented by B. These fairlets in
the optimal decomposition then contain at least td |B|

t
e ≥ |B| many blue points. Each

of these blue points then has a distance of at most 2 opt to the represented red point
and therefore by the triangle inequality a distance of at most 12 opt to the represented
center. Therefore if we choose our threshold τ = opt we obtain a Graph in which the
neighborhood of any subset B of the red nodes contains at least |B| neighbors. Hall’s
theorem then shows that this graph must contain a perfect matching.

This finally gives us fairlets with s+ t points and a corresponding center. The radius
of each fairlet is at most 12 · opt and we obtain a 14-approximation in total. For the
k-supplier version we obtain a 15-approximation.

Case 5. Even in the happy k-center world no constant-factor approximation algorithm
is known for case 5; in particular, we do not know how to find a good fairlet decompo-
sition. The problem here is that we do not even know that the optimal clustering can
be partitioned into small balanced subsets.

Multiple colors Before going through the different cases let us make an observation
for exact fairness.

Observation 34. Let m = gcd(|colh(P )| | h ∈ Col) ∈ N be the greatest common
denominator of the different numbers of points of the different colors. Let bh = |colh(P )|

m

for each h ∈ Col. Then for each cluster P (i) in a fair clustering C of P with exact
preservation of ratios, there exists a positive integer i′ ∈ N≥1 such that P (i) contains
exactly i′ · bh points with color h for each color h ∈ Col and i′ · n

m
total points. Thus

every cluster must have at least bh points of color h for each color h ∈ Col.

Let h1 ∈ Col denote one of the rarest colors, i.e., |colh1(P )| ≤ |colh(P )| for all h ∈ Col.
Case 2 with two colors and balance(P ) = 1/t for an integer t can be generalized to
an arbitrary number of colors with |colh(P )|

|colh1 (P )| ∈ N for all h ∈ Col. By Observation 34
we know that the points in each optimal cluster can be partitioned into groups of one
point with color h1 and |colh(P )|

|colh1 (P )| points with color h. The idea is to assign points with
color h ∈ Col \ {h1}, independently of points with a different color, to the points with
color h1. In the end all points connected to the same point in colh1(P ) build a fairlet.
To do so we set up a flow network analogously to case 2: It is built upon the threshold
graph for each color h ∈ Col \ {h1} which contains all points with colors h1 and h.
They then choose the smallest threshold for which the corresponding networks for all
colors h ∈ Col \ {h1} are successful. This again results in a fairlet decomposition with
radius ≤ 2 opt and a 4-approximation algorithm for the fair k-center problem as well
as a 5-approximation algorithm for the fair k-supplier variant.
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The case 3 can similarly be generalized to instances with arbitrary many colors [90].
Let bh = |colh(P )|

gcd(|colh′ (P )||h′∈Col) for each h ∈ Col as in Observation 34, then we know that
the points in each optimal cluster can be partitioned into groups of bh points with
color h for every color h ∈ Col. Then again the approach is to compute a clustering on
the points with color h1 in which every cluster contains exactly bh1 points. Dealing
with the other colors independently of each other, the same approach as in case 3 can
be used to match bh points with color h to each of these sets of bh1 points with color
h1. Again, with the 5-approximation algorithm for the capacitated k-center problem
[66] this creates a fairlet decomposition with cost at most 12 opt and results in 14 and
15-approximation algorithms for the fair k-center and the fair k-supplier problem.

Theoretically, case 4 can also be generalized to a case where we require that |colh1 (P ′)|
|colh(P ′)| ≥

1/th for some integer th for all h ∈ Col. This way every cluster in the optimal solution
can be partitioned into fairlets out of which each contains exactly one point with
color h1 and at most th points of color h. The generalization of the approach is then
identical with the generalization of case 2. However, this generalization cannot be
described through our ratio based problem definition with l, u-balanced clusters, as in
the ratio based problem definition the points with different colors cannot be treated
independently of each other.

Fairlet decompositions for k-median, facility location and the k-means prob-
lem We now turn to computing fairlet decompositions for clustering objectives beside
k-center. We assume that we want to compute exact fairlets (i.e., not l, u-fairlets) in
this section.

Instances with two colors Let us first consider the simple case where we only have
two colors, i.e., Col = {red, blue}. In that case we have balance(P ) = r/b for two
integers r, b ∈ N and gcd(r, b) = 1.

The case r = b = 1. If the balance is 1, then each fairlet consists of exactly one blue
and one red point. We can therefore model the fairlet decomposition problem as a
matching problem as before: We construct a complete bipartite graph in which the red
and blue points make up one partition, respectively. The cost of an edge between a
red point p and a blue point q is the distance between p and q. For k-median/facility
location, this cost is equal to assigning both p and q to p. Assigning p and q to any
other center cannot yield lower costs by the triangle inequality. In the k-means case, we
know that the best possible center for p and q is the centroid µ({p, q}) = p+q

2 . We then
define the cost of {p, q} as the ‖p− µ({p, q})‖2 + ‖q − µ({p, q})‖2. We then compute
a minimum cost perfect matching to obtain a fairlet decomposition; the cost of the
matching is the cost of the decomposition. Unfortunately, this is the only case leading
to a constant-factor approximation algorithms so far.

The case r = 1, b > 1. If the balance is 1/b for an integer b, we can solve the fairlet
decomposition problem similarly: Analogously to the k-center case, we start with the
nb many blue points and cluster them into sets with exactly b points each. This, again,
could be done with an approximation algorithm for the uniform capacitated problem
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(i.e., k-median and k-means). Unfortunately, we are not aware of any such algorithm.
Still, if we set k to nb/b and the uniform capacity to b, then any β-approximation to
the capacitated problem has cost of at most β opt, as observed before. We can then
collect the center of each of the clusters of b blue points, and similarly to the case with
r = b = 1 compute a perfect matching between the red points and these centers. Hall’s
theorem then shows that it is possible to assign one red point r to every blue cluster
while guaranteeing that at least one of the blue points is in the same cluster with r
in the optimal fair solution. For k-median/facility location the cost incurred by r is
then at most its cost in the optimal solution, plus the cost incurred by its assigned
blue point in the optimal solution, plus the cost incurred by the assigned blue point in
the computed approximation. This gives us a total cost of at most (2α+ 1) opt. For
k-means the cost of the red point is then at most four times its cost in the optimal
solution, plus four times the cost of its assigned blue point in the optimal solution,
plus four times the cost of the assigned blue point in the computed approximation.
This yields a total cost of at most 4(2α + 1) opt. We could also try to make the
assignment the other way around and assign b blue points to each red point. This way
we would not have to compute a solution of the uniform capacitated problem. An
assignment of b blue points to each red point can easily be found with a network flow.
For k-median/facility location the cost incurred by each blue point b is then at most
its cost in the optimal solution, plus the cost incurred by its assigned red point in the
optimal solution. As this counts the cost of every red point b times, this gives us a
total cost of at most b opt. For k-means the cost of each blue point is at most four
times its cost in the optimal solution, plus four times the cost of its assigned red point
in the optimal solution. This yields a total cost of at most 4b opt. So for a constant
b ∈ N we obtain a constant-factor approximation.

The case r > 1, b > 1. We further extend the previous case. Without loss of generality
we assume b ≥ r, i.e., that blue is the majority color. Using an approximation algorithm
for capacitated colorblind clustering, we again cluster the blue points into sets of size b
and then create r copies of each center. We can then compute a minimum cost perfect
matching between the red points and the centers.

Similar to before Hall’s theorem shows that there exists an injective assignment of red
points to a blue point in the same optimal fair cluster such that exactly r red points
are assigned to the blue points in every blue cluster. For k-median/facility location the
cost of the red point is then at most their cost in the optimal solution plus the cost
of their assigned blue point in the optimal solution plus the cost of the assigned blue
point in the computed approximation. This gives us a total cost of at most (2α+ 1) opt.
For k-means the cost of the red point is then again at most four times this term, which
makes the total cost at most 4(2α + 1) opt.

Instances with arbitrary many colors Let bh := |colh(P )|
gcd(|colh′ (P )||h′∈Col) be the number

of points with color h each fairlet should have. We choose one color h ∈ Col and again
start by clustering the points into sets of size bh. For each other color h′ ∈ Col \ {h}
we then create bh′ copies of each center and compute a minimum cost perfect matching
between the points with color h′ and these centers. We do this for every color h ∈ Col
and then take the best solution that we obtained. Again Hall’s theorem shows that for
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each color h′ ∈ Col \ {h} there exists an assignment of the points with a color h′ to a
point with color h in the same optimal fair cluster with the following property: Exactly
bh′ points with color h′ are assigned to the points with color h in every cluster, and the
number of points assigned to a point with color h is either

⌊
n−|colh(P )|
|colh(P )|

⌋
or
⌈
n−|colh(P )|
|colh(P )|

⌉
.

For k-median/facility location the cost of a point with a color h′ ∈ Col \ {h} is then at
most its cost in the optimal solution, plus the cost of its assigned point with color h in
the optimal solution, plus the cost of the assigned point in the computed approximation.
Assuming that h is the color whose points have the smallest average cost in the optimal
fair clustering this implies that the total cost is at most (3α + 3) opt. For k-means
the cost of a point with a color h′ ∈ Col \ {h} is then at most four times its cost in
the optimal solution, plus four times the cost of its assigned point with color h in
the optimal solution, plus four times the cost of the assigned point in the computed
approximation. We again assume that h is the color whose points have the smallest
average cost in the optimal fair clustering which implies that the total cost is at most
4(3α + 3) opt.

As we have seen, when we can quickly compute a good fairlet decomposition, using these
fairlets to compute a fair clustering works well for all clustering objectives mentioned
above. For several cases we have shown that computing a good fairlet decomposition is
a relatively easy task. The problem is that in many other cases we do not know how to
compute a good fairlet decomposition. For all mentioned clustering objectives we are
mostly limited to the case of exact fairness. And, for k-median, facility location, and
k-means, even in the case of exact fairness, we currently only know how to compute
a good fairlet decomposition for very limited types of instances. In order to obtain
algorithms for more types of fair clustering problems, we will introduce an LP-based
approach and start by describing the different fair clustering problems as an integer
linear program.

2.2.2 (I)LP Formulations for Fair Clustering Problems

Let I = (P,L,Col, col, d, f, k, `, u) be a problem instance for a fair clustering problem,
where (P,L, d, f, k) denotes an instance of the unconstrained clustering problem, Col
denotes the set of colors, col : P → Col the coloring of the points, and ` and u
denote the ratio bounds required for fairness. Notice that for all clustering problems
defined in Section 1.2.4, P and L are finite except for k-means. However, for the
k-means problem, we can assume that L = P if we accept an additional factor of 2 in
the approximation guarantee (Lemma 116 in Appendix B). Thus, we assume in the
following that L and P are finite sets. Indeed, we even assume at least L ⊆ P for
all problems except k-supplier and facility location. We introduce a binary variable
yi ∈ {0, 1} for all i ∈ L that decides if i is part of the set S of opened locations in the
solution, i.e., yi = 1⇔ i ∈ S. Similarly, we introduce binary variables xij ∈ {0, 1} for
all i ∈ L, j ∈ P with xij = 1 if j is assigned to i, i.e., φ(j) = i. All ILP formulations
have the inequalities (2.7) ∑

i∈L
xij = 1 ∀j ∈ P saying that every point j is assigned to

a center, the inequalities (2.8) xij ≤ yi ∀i ∈ L, j ∈ P ensuring that if we assign j to i,
then i must be open, and the integrality constraints (2.9) yi, xij ∈ {0, 1} ∀i ∈ L, j ∈ P .
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We may restrict the number of open centers to k with (2.10) ∑
i∈L yi ≤ k. For

k-center and k-supplier, the objective is commonly encoded in the constraints of the
problem, and the (I)LP has no objective function. The idea is to guess the optimum
value τ . Since there is only a polynomial number of choices for τ , this is easily done.
Given τ , we construct a threshold graph Gτ = (P ∪ L,Eτ ) on the points and locations,
where a connection between i ∈ L and j ∈ P is added if i and j are close, i.e.,
{i, j} ∈ Eτ ⇔ d(i, j) ≤ τ . Then, we ensure that points are not assigned to centers
outside their range:

xij = 0 for all i ∈ L, j ∈ P, {i, j} /∈ Eτ (2.11)

For the remaining clustering problems, we pick the adequate objective function from
the following two (let dij := d(i, j)):

min
∑

i∈L,j∈P
xijdij (2.12) min

∑
i∈L,j∈P

xijdij +
∑
i∈L

yifi (2.13)

We now have all necessary constraints and objectives. For k-center and k-supplier, we
use inequalities (2.7)-(2.11), no objective, and define the optimum to be the smallest
τ for which the ILP has a solution. We get k-median and k-means by combining
inequalities (2.7)-(2.10) with (2.12) and we get facility location by combining (2.7)-
(2.9) with the objective (2.13). LP relaxations arise from all ILP formulations by
replacing (2.9) by yi, xij ∈ [0, 1] for all i ∈ L, j ∈ P . To create the fair variants of the
ILP formulations, we add fairness constraints modeling the upper and lower bound on
the balances.

`h
∑
j∈P

xij ≤
∑

j∈colh(P )
xij ≤ uh

∑
j∈P

xij for all i ∈ L, h ∈ Col (2.14)

Although very similar to the canonical clustering LPs, the resulting LPs become
much harder to round even for k-center with two colors. We show the following in
Section 2.2.6.

Lemma 35. There is a choice of non-trivial fairness intervals such that the integrality
gap of the LP-relaxation of the canonical fair clustering ILP is Ω(n) for the fair k-
center/k-supplier/k-median/facility location problem. The integrality gap is Ω(n2) for
the fair k-means problem.

Essential fairness. For a point set P ′, massh(P ′) = |colh(P ′)| is themass of color h in
P ′. For a possibly fractional LP solution (x, y), we extend this notion to massh(x, i) :=∑
j∈colh(P ) xij . We denote the total mass assigned to i in (x, y) by mass(x, i) = ∑

j∈P xij .
With this notation, we can now formalize our notion of essential fairness.

Definition 36 (Essential fairness). Let I be an instance of a fair clustering problem
and let (x, y) be an integral, but not necessarily fair solution to I. We say that (x, y) is
essentially fair if there exists a fractional fair solution (x′, y′) for I such that ∀i ∈ L:

bmassh(x′, i)c ≤ massh(x, i) ≤ dmassh(x′, i)e ∀h ∈ Col (2.15)
and bmass(x′, i)c ≤ mass(x, i) ≤ dmass(x′, i)e. (2.16)
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2.2.3 Black-Box Algorithms for Essentially Fair Clustering

For essentially fair clustering, we give a powerful framework that employs approxima-
tion algorithms for (unfair) clustering problems as a black-box and transforms their
output into an essentially fair solution. In this framework, we start by computing an
approximation for the standard variant of the clustering problem at hand. Next, we
solve the LP for the fair variant of the clustering problem. Now we have an integral
unfair solution, and a fractional fair solution. Our final and most important step is to
combine these two solutions into an integral and essentially fair solution. It consists of
two conceptual substeps: Firstly, we show that it is possible to find a fractional fair
assignment to the centers of the integral solution that is sufficiently cheap. Secondly,
we round the assignment. This last substep introduces the potential fairness violation
of one point per color per cluster. Algorithms 2 and 3 summarize this framework.

Algorithm 2 Black-box assignment with essentially fair solutions.
Input: An instance I of a clustering problem, and an integral solution (x̄, ȳ) to I.
Output: An essentially fair solution to I with a cost as specified in Theorem 39.

1: Compute an optimal solution to the LP-relaxation (xLP , yLP ) of I (see Section 2.2.2).
2: Combine (x̄, ȳ) and (xLP , yLP ) using Lemmas 37 and 38 into an essentially fair

solution to I.

Algorithm 3 Black-box approximation algorithm for essentially fair clustering.
Input: An instance I of a clustering problem.
Output: An essentially fair solution to I with a cost as specified in Theorem 39.

1: Compute an α-approximate, integral solution (x̄, ȳ) to I.
2: Use Algorithm 2 with I and (x̄, ȳ) as input to obtain an essentially fair solution to
I with a cost as specified in Theorem 39.

We show that this approach yields constant-factor approximations with fairness violation
for all mentioned clustering objectives. The description will be neutral whenever the
objective does not matter. Thus, descriptions like the LP mean the appropriate LP for
the desired clustering problem. When the problem gets relevant, we will specifically
discuss the distinctions.

Step 1: Combining a fair LP solution with an integral unfair solution In
the first step, we assume that we are given two solutions. Let (xLP , yLP ) be an optimal
solution to the LP. This solution has the property that the assignments to all centers are
fair, however, the centers may be fractionally open and the points may be fractionally
assigned to several centers. Let cLP be the objective value of this solution. For k-center
and k-supplier, it is the smallest τ for which the LP is feasible, for the other objectives,
it is the value of the LP. We denote the cost of the best integral solution to the LP by
c∗. We know that cLP ≤ c∗.

Let (x̄, ȳ) be any integral solution to the LP that may violate fairness, i.e., inequal-
ity (2.14), and let c̄ be the objective value of this solution. We think of (x̄, ȳ) as being a
solution of an α-approximation algorithm for the standard (unfair) clustering problem
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for some constant α. Since the unconstrained version can only have a lower optimum
cost, we then have c̄ ≤ α · c∗.

Our goal is now to combine (xLP , yLP ) and (x̄, ȳ) into a third solution, (x̂, ŷ), such
that the cost of (x̂, ŷ) is bounded by O(cLP + c̄) ⊆ O(c∗). Furthermore, the entries of
ŷ shall be integral. The entries of x̂ may still be fractional after step 1.

Let S be the set of centers that are open in (x̄, ȳ). For all j ∈ P , we use φ̄(j) to denote
the center in S closest to j, i.e., φ̄(j) = arg mini∈S d(j, i) (ties broken arbitrarily).
Notice that the objective value of using S with assignment φ̄ for all points in P is
at most c̄, since assigning to the closest center is always optimal for the standard
clustering problems without the fairness constraint.

Depending on the objective, L is a subset of P or not, i.e., φ̄ is not necessarily defined
for all locations in L. We then extend φ̄ in the following way. Let i ∈ L\P be any
center, and let j∗ be the closest point to it in P . Then we set φ̄(i) := φ̄(j∗), i.e., i
is assigned to the center in S which is closest to the point in P which is closest to i.
Finally, let C̄(i) = φ̄−1(i) be the set of all points and centers assigned to i by φ̄.

Lemma 37. Let (xLP , yLP ) and (x̄, ȳ) be two solutions to the LP, where (x̄, ȳ) may
violate inequality (2.14), but is integral. Then the solution defined by

ŷ := ȳ,

x̂ij :=
∑

i′∈C̄(i)
xLPi′j for all i ∈ L with ȳi = 1, j ∈ P,

x̂ij := 0 for all i ∈ L with ȳi = 0, j ∈ P.

satisfies inequality (2.14), ŷ is integral, and the cost ĉ of (x̂, ŷ) is bounded by cLP + c̄
for k-center, by 2 · cLP + c̄ for k-supplier, k-median, and facility location, and by
12 · cLP + 8 · c̄ for k-means.

Proof. Recall that for k-center and k-supplier, speaking of the cost of an LP solution
is a bit sloppy; we mean that (x̂, ŷ) is a feasible solution in the LP with threshold ĉ.

The definition of (x̂, ŷ) means the following. For every (fractional) assignment from a
point j to a center i′, we look at the cluster with center i = φ̄(i′) to which i′ is assigned
to by φ̄. We then transfer this assignment to i. So from the perspective of i, we collect
all fractional assignments to centers in C̄(i) and consolidate them at i. Notice that the
(fractional) number of points assigned to i after this process may be less than one since
(x̄, ȳ) may include centers that are very close together.

Since ŷ is simply ȳ, it is integral as well and has the same number of centers, thus
ŷ also satisfies (2.10) if the problem uses it. Next, we observe that (x̂, ŷ) satisfies
fairness, i.e., respects inequality (2.14). This is true because (xLP , yLP ) satisfies them,
and because we move all assignment from a center i′ to the same center φ̄(i′). This
transferring operation preserves the fairness. Inequality (2.8) is true because we only
move assignments to centers that are fully open in (x̄, ȳ), i.e., the inequality cannot
be violated as long as (2.7) is true (which it is for (xLP , yLP ) since it is a feasible LP
solution). Equality (2.7) is true for (x̂, ŷ) since all assignment of j is moved to some
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fully open center. Thus (x̂, ŷ) is a feasible solution for the LP. It remains to show that
ĉ is small enough, which depends on the objective.
k-median and k-means. We start by showing this for k-median (where the distances
are a metric, i.e., β = 1 in the β-triangle inequality (1.1)) and k-means (where the
distances are a semi-metric with β = 2). We observe that here, the cost of (x̂, ŷ) is

ĉ =
∑
j∈P

∑
i∈L

x̂ijd(i, j) =
∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

xLPi′j d(i, j).

Now fix i ∈ L, i′ ∈ C̄(i) and j ∈ P arbitrarily. By the β-relaxed triangle inequality,
d(i, j) ≤ β · d(i′, j) + β · d(i′, i). Furthermore, we know that i′ ∈ C̄(i), i.e., φ̄(i′) = i and
d(i′, i) ≤ d(i′, φ̄(j)). We can use this to relate d(i′, i) to the cost that j pays in (x̄, ȳ):

d(i′, i) ≤ d(i′, φ̄(j)) ≤ β · d(j, i′) + β · d(j, φ̄(j)).

Adding this up yields∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

xLPi′j d(i, j)

≤
∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

(β + β2)xLPi′j d(i′, j) +
∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

β2 · xLPi′j d(j, φ̄(j))

=(β + β2) · cLP + β2 · c̄.

For β = 1 (k-median), this is 2cLP + c̄, for β = 2 (k-means), we get 6cLP + 4c̄.
Facility location. For facility location, we have to include the facility opening costs.
We open the facilities that are open in (x̄, ȳ), which incurs a cost of ∑i∈L ȳifi. The
distance costs are the same as for k-median, so we get a total cost of∑

j∈P

∑
i∈L

∑
i′∈C̄(i)

2xLPi′j d(i′, j) +
∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

xLPi′j d(j, φ̄(j)) +
∑
i∈L

ȳifi ≤ 2cLP + c̄.

k-center and k-supplier. For the k-center and k-supplier proof, we again fix i ∈ L,
i′ ∈ C̄(i) and j ∈ P arbitrarily and use that d(i, j) ≤ d(i, i′) +d(i′, j). Now for k-center,
we know that d(i, i′) ≤ c̄ since i′ ∈ C̄(i), and we know that d(i′, j) ≤ cLP for all j where
xLPij is strictly positive. Thus, if x̂ij is strictly positive, then d(i, j) ≤ c̄ + cLP . For
k-supplier, we have no guarantee that d(i, i′) ≤ c̄ since i′ is not necessarily an input
point. Instead, i′ ∈ C̄(i) means that the point j′ in P which is closest to i′ is assigned
to i by x̄. Since j′ is the closest to i′ in P , we have d(i′, j′) ≤ d(i′, j). Furthermore,
since j′ ∈ C̄(i), d(i, j′) ≤ c̄. Thus, we get for k-supplier that

d(i, j) ≤ d(i, i′) + d(i′, j) ≤ d(i, j′) + d(i′, j′) + d(i′, j) ≤ c̄+ 2 · cLP .

Step 2: Rounding the x-variables For rounding the x-variables, we need to
distinguish between two cases of objectives. Let j ∈ P be a point that is fractionally
assigned to some centers Lj ⊆ L.
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First, we have objectives where we can transfer mass from an assignment of j to i′ ∈ Lj
to an assignment of j to i′′ ∈ Lj without modifying the objective. We say that such
objectives are reassignable (in the sense that we can reassign j to centers in Lj without
changing the cost). k-center and k-supplier have this property.
Second, we have objectives where the assignment cost is separable, i.e., where the
distances influence the cost via a term of the form ∑

i∈L,j∈P cij · xij for some cij ∈ R≥0.
We call such objectives separable. Facility location, k-median and k-means fall into
this category.
Lemma 38. Let (x, y) be an α-approximate fractional solution for a fair clustering
problem and the property that all yi, i ∈ L are integral. Then we can obtain an
essentially fair integral solution (x′, y) with at most the same cost as (x, y).

Proof. We create our rounded α-approximate integral solution (x′, y′) by min-cost
flow computations. We construct a min-cost flow instance which depends on our
starting solution (x, y) as well as on the objective of the problem we are studying. Let
S = {i ∈ L | yi = 1}. We define a min-cost flow instance (G = (V,A), c, b) (also see
Figure 2.2) with unit capacities, costs c on the edges and balances b on the nodes. We
begin by defining a graph Gh = (V h, Ah) for every color h ∈ Col with

V h := V h
S ∪ V h

P , V h
S :=

{
vhi | i ∈ S

}
, V h

P :=
{
vhj | j ∈ colh(P )

}
,

Ah :=
{

(vhj , vhi ) | i ∈ S, j ∈ colh(P ) : xij > 0
}
,

as well as costs ch by cha := cij for a = (vhj , vhi ) ∈ Ah, i ∈ S, j ∈ colh(P ) and balances bh
by bhv := 1 if v ∈ V h

P and bhv := −bmassh(x, i)c if v = vhi ∈ V h
S . We use the graphs Gh

to define G = (V,A) by

V :={t} ∪ VS ∪
⋃

h∈Col
V h, VS := {vi | i ∈ S}

A :=
⋃

h∈Col
Ah ∪

{
(vhi , vi) | i ∈ S, h ∈ Col : massh(x, i)− bmassh(x, i)c > 0

}
∪ {(vi, t) | i ∈ S : mass(x, i)− bmass(x, i)c > 0} ,

together with costs c of ca := cha for a ∈ Ah and 0 otherwise, and balances b of
bv := bhv if v ∈ V h, bv := −Bi if v = vi ∈ VS and bt := −B with Bi = bmass(x, i)c −∑
h∈Colbmassh(x, i)c and B := |P | −∑i∈Sbmass(x, i)c.

Separable objectives – k-median and k-means. We make the following obser-
vations.

1. B and Bi are integers for all i ∈ S, and so are all capacities, costs and balances.
Consequently, there are integral optimal solutions for the min-cost flow instance
(G, c, b),

2. (x, y) induces a feasible solution for (G, c, b), by defining a flow x in G as follows:

xa :=


xij if a = (vhj , vhi ) ∈ Ah, j ∈ P, i ∈ S,
massh(x, i)− bmassh(x, i)c if a = (vhi , vi) ∈ A, h ∈ Col, i ∈ S,
mass(x, i)− bmass(x, i)c if a = (vi, t) ∈ A, i ∈ S.
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Since (x, y) is a fractional solution, x satisfies capacity and non-negativity constraints
because xij ∈ [0, 1] for all i ∈ L, j ∈ P and massh(x, i)− bmassh(x, i)c,mass(x, i)−
bmass(x, i)c ∈ [0, 1] for all i ∈ S and h ∈ Col as well. We have flow conservation
since the fractional solution needs to assign all points, and the flow of the edges
(vhi , vi) and (vi, t) as well as the demand of vi and t are chosen in such a way that
flow conservation is preserved for all the other nodes as well.

3. Integral solutions x̄ to the min-cost flow instance (G, c, b) induce an integral solution
(x̄, y) to the original clustering problem by setting x̄ij := x̄a for a = (vhj , vhi ) ∈ Ah.
Since the flow x is integral, this gives us an integral assignment of all points to
centers in S.
The assignment is essentially fair, since every i ∈ S is guaranteed by our balances to
have at least bmassh(x, i)c points of color h ∈ Col and at least bmass(x, i)c points
in total assigned to it. Since there is at most one outgoing edge of unit capacity
(vhi , vi) for a node vhi , i ∈ S, h ∈ Col as well as only one outgoing edge (vi, t) for
a node vi, i ∈ S if massh(x, i) − bmassh(x, i)c > 0, we have at most dmassh(x, i)e
points of color h and dmass(x, i)e total points assigned to i.

Together, this yields that computing an integral min-cost flow x̂ for (G, c, b) followed
by applying the third observation to x̂ yields a solution (x̂, y) to the clustering with an
additive fairness violation of at most one.

Since (x, y) was inducing the fractional solution x with cost(x) = cost(x, y) to the
min-cost flow instances, and cost(x) ≥ cost(x̂) by construction we have cost(x̂, y) ≤
cost(x, y).

Reassignable objectives – k-center and k-supplier. In the case of reassignable
objectives, we do not have to care about costs, as long as the reassignments happen to
centers in Lj for all points j ∈ P . We essentially use the same strategy as before, but
instead of a min cost flow problem we solve the transshipment problem (G = (V,A), b)
with unit capacities on the edges and balances b on the nodes. Notice that the three
observations from the previous case apply here as well, and reassignability guarantees
that the cost does not increase.

Lemmas 37 and 38 then lead directly to Theorem 8, formulated in more detail in the
following theorem.

Theorem 39. Algorithm 3 for fair clustering problems returns essentially fair solutions
with a cost of cLP + c̄ for k-center, 2cLP + c̄ for k-supplier, k-median and facility location,
and 6cLP + 4c̄ for k-means where cLP is the cost of an optimal solution to the fair LP
relaxation and c̄ is the cost of the unfair clustering solution.

We know that for k-center, k-supplier, k-median and facility location cLP is at most as
expensive as an optimal solution to the fair clustering problem. For k-means we know
that cLP is at most twice as expensive as an optimal solution to the fair clustering
problem (Lemma 116). If we use an α-approximation algorithm to obtain the unfair
clustering solution, we have that c̄ is at most α times the cost of an optimal solution
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Nodes for:

P

c1 c2 c3
S, h

S

t t

b-values
−B

−Bi

−bmassh(x, i)c

1

Figure 2.2: Example for the graph G used in the rounding of the x-variables.
Bi = bmass(x, i)c −∑h∈Colbmassh(x, i)c and B = |P | −∑i∈Sbmass(x, i)c.

to the fair clustering problem. Currently, the best known approximation ratios are
2 for k-center [47, 53], 3 for k-supplier [53], 1.488 for facility location [76], 2.675 for
k-median [22, 79] and 6.357 for k-means [5], yielding the following theorem.

Theorem 40. Algorithm 3 for fair clustering problems returns essentially fair solutions
with an approximation ratio of 3 for k-center, 5 for k-supplier, 4.675 for k-median,
3.488 for facility location, and 37.428 for k-means.

2.2.4 True Approximation Algorithms for Fair k-Center and
k-Supplier

We now extend our weakly supervised rounding technique for k-center and k-supplier
in the case of the exact fairness model. We replace the black-box algorithm with a
specific approximation algorithm, and then achieve true approximation algorithms for
the fair clustering problems by informed rounding of the LP solution.

5-approximation algorithm for k-center In this section, we consider the fair
k-center problem with exact preservation of ratios and without any additive fairness
violation.

We give a 5-approximation algorithm for this variant. The algorithm begins by choosing
a set of centers. In contrast to Section 2.2.3 we do not use an arbitrary algorithm
for the standard k-center problem but specifically look for nodes in the threshold
graph Gτ = (P,Eτ ) where Eτ = {(i, j) | i 6= j ∈ P, d(i, j) ≤ τ} that form a maximal
independent set S in G2

τ . Here Gt
τ = (P,Et

τ ) denotes the graph on P that connects two
nodes j 6= j′ ∈ P if there exists a j − j′-path of length at most t in Gτ . As we use the
following procedure independent for each connected component of Gτ , we will in the
description and the following proofs of the procedure assume that Gτ is a connected
graph. The procedure uses the approach by Khuller and Sussmann [66] (procedure
AssignMonarchs) to find a set S ⊆ P which ensures the following property: There
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exists a tree T spanning all the nodes in S such that for any two adjacent nodes i, i′ in
T the shortest i− i′-path in Gτ has a length of 3. The procedure begins by choosing
an arbitrary node r ∈ P , called root, into S and marking every node within distance 2
of r (including itself). Until all the nodes in P are marked, it chooses an unmarked
node u that is adjacent to a marked node v and marks all nodes in the distance two
neighborhood of u. Observe that u is exactly at distance 3 from a node u′ ∈ S chosen
earlier that caused v to get marked. Thus the run of the procedure implicitly defines
the tree T over the nodes of S. In case Gτ is not a connected graph this procedure
is run on each connected component and the set S has the following property: There
exists a forest F such that F reduced to a connected component of Gτ is a tree T
spanning all the nodes of S inside of that connected component and two adjacent nodes
in T are exactly distance 3 apart in Gτ .

In the next phase we use Observation 34 and the fixed set of centers S to obtain the
following adjusted LP for the fractional fair k-center problem.∑

i∈S
xij = 1, ∀j ∈ P (2.17)∑

j∈colh(P )
xij = rh(P )

∑
j∈P

xij ∀i ∈ S (2.18)
∑

j∈colh(P )
(i,j)∈E2

τ

xij ≥ bh ∀i ∈ S,∀h ∈ Col (2.19)

xij = 0 ∀i ∈ S, j ∈ P with (i, j) /∈ E3
τ (2.20)

0 ≤ xij ≤ 1 ∀i ∈ S, j ∈ P (2.21)

Here inequality (2.19) ensures that each cluster contains at least bh points of color h.
Let Sopt be the set of centers in an optimal solution and let φopt : P → Sopt be an
optimal fair assignment. For τ = opt, every center i ∈ S has a distinct center in Sopt
which is in the neighborhood of i in Gτ . Therefore, there exists bh points of each color
h within distance two of i. This ensures that inequality (2.19) is satisfiable for τ = opt.
And since, every center in Sopt is within distance two of some i ∈ S, there exists a fair
assignment of points in P to centers in S within distance three. Thus the above LP is
feasible for the right τ .

Now for the final phase, the algorithm rounds a fractional solution for the above
assignment LP to an integral solution of cost at most 5τ in a procedure motivated by
the LP rounding approach used by Cygan et al. in [30] for the capacitated k-center
problem. Let β(i) denote the children of node i ∈ S in the tree T . Define quantities
Γ(i) and δ(i), ∀i ∈ S as follows:

Γ(i) =
⌊∑

j∈colh1 (P ) xij +∑
i′∈β(i) δ(i′)

bh1

⌋
bh1

δ(i) =
∑

j∈colh1 (P )
xij +

∑
i′∈β(i)

δ(i′)− Γ(i)

For a leaf node i in the tree T we have β(i) = ∅, then Γ(i) denotes the amount of color
h1 assigned to i rounded down to the nearest multiple of bh1 , while δ(i) denotes the
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remaining amount. The idea is to reassign the remainder to the parent of i. Then for
a node i′ that is not a leaf Γ(i′) denotes the amount of color h1 assigned to i′ plus the
remainder that all children of i′ want to reassign to i′. Again this amount is rounded
down to the nearest multiple of bh1 and δ(i′) again denotes the remainder. Since by
definition of bh1 the total number of points in colh1(P ) must be an integer multiple of
bh1 , Γ(r) also denotes the amount of color h1 points assigned to r plus the remainder
that all children of r want to reassign to r and δ(r) = 0.

Also note that Γ(i) is always a positive integer multiple of bh1 for any i, and δ(i) is
always non-negative and less than bh1 .

One can think of the xij variables as encoding flow from a node j to a node i ∈ S. We
call it a color h flow if j has color h. We will reroute these flows (maintaining the ratio
constraints) such that ∀i ∈ S, j ∈ colh1(P ) xij is equal to Γ(i) which is an integral
multiple of bh1 .

Lemma 41. There exists an integral assignment of all nodes with color h1 to centers
in S in G5

τ that assigns Γ(i) nodes with color h1 to each center i ∈ S.

Proof. Construct the following flow network: Take sets colh1(P ) and S to form a
bipartite graph with an edge of capacity one between a node j ∈ colh1(P ) and a center
i ∈ S if and only if (i, j) ∈ E5

τ . Connect a source s with unit capacity edges to all
nodes in colh1(P ) and each center i ∈ S with capacity Γ(i) to a sink t. We now show a
feasible fractional flow of value |colh1(P )| in this network. For each leaf node i in T
which is not the root, assign Γ(i) amount of color h1 flow from the total incoming color
h1 flow ∑

j∈colh1 (P ) xij from nodes that are at most distance three away from i in Gτ

and propagate the remaining δ(i) amount of color h1 flow, coming from distance two
nodes, upwards to be assigned to the parent of node i. This is always possible because
by definition δ(i) < bh1 and inequality (2.19) ensure that every center has at least bh1

amount of color h1 flow coming from distance two nodes. For every non-leaf node i,
assign Γ(i) amount of incoming color h1 flow from distance five nodes (including the
color h1 flows propagated upwards by its children) and propagate δ(i) amount of color
h1 flow from distance two nodes (possible due to inequality (2.19)). Thus every center
has Γ(i) amount of color h1 flow passing through it and it is easy to verify that the
value of the total flow in the network is |colh1(P )|. Since the network only has integral
capacities, there exists an integral max-flow of value |colh1(P )|.

Lemma 42. For any reassignment of a color h1 flow, there exists a reassignment of
color h-flow between the same centers for all h ∈ Col \ {h1}, such that the resulting
fractional assignment of the nodes satisfies the fairness constraints at each center.

Proof. Say fh1 amount of color h1 flow is reassigned from center i1 to another center
i2. Reassign fh = rh · fh1/rh1 amount of color h flow from i1 to i2 for each color
h ∈ Col \ {h1}. This is possible as inequality (2.18) implies that the amount of color h
points assigned to i1 must be equal to rh

r1
times the amount of color h1 points assigned

to i1 and fh1 must be less than the amount of color h1 points assigned to i1. It is easy
to verify that the ratios at i1 and i2 remain unchanged as by construction the ratio of
the reassigned flows is equal to the original ratio.
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From Lemmas 41 and 42 we can say that there is a fair fractional assignment within
distance 5τ such that all the color h1 assignments are integral and every center i has
Γ(i) color h1 nodes assigned to it. Since this assignment is fair the total incoming color
h flow at each center must be Γ(i) bh

bh1
which are integers for every center i ∈ S and

every color h ∈ Col.

Lemma 43. There exists an integral fair assignment in G5
τ .

Proof. Construct a flow network for color h nodes similar to the one in lemma 41: Take
sets colh(P ) and S to form a bipartite graph with an edge of capacity one between
a node j ∈ colh(P ) and a center i ∈ S if and only if (i, j) ∈ E5

τ . Connect a source s
with unit capacity edges to all nodes in colh(P ) and each center i ∈ S with capacity
Γ(i) bh

bh1
to a sink t. The fractional assignment in G5

τ due to Lemma 42 is a feasible
fractional flow for this network. Since the network only consists of integral demands
and capacities, there exists an integral flow which induces the assignment for the color
h nodes.

Lemmas 41, 42 and 43 imply the following theorem.

Theorem 44. There exists a 5-approximation algorithm for the fair k-center problem
with exact preservation of ratios.

7-approximation algorithm for k-suppliers We adapt the algorithm for the k-
suppliers model to obtain a 7-approximation algorithm. The procedure closely resembles
the k-center algorithm: construct a bipartite threshold graph Gτ = (P ∪ L,Eτ ) where
Eτ = {(i, j) | i ∈ L, j ∈ P, d(i, j) ≤ τ}. Choose an arbitrary root node r ∈ P , S = {r}
and mark r and all nodes in P that adjacent to r in G2

τ . Until all nodes in P are
marked, we choose an arbitrary unmarked node u ∈ P that is in G2

τ adjacent to a
marked node. We add u to S and mark u and all nodes adjacent to u in G2

τ . Note that,
since Gτ is bipartite, no two nodes in P are adjacent. The node u is exactly at distance
four from a node u′ ∈ S chosen earlier. This process of selecting nodes in S defines a
tree T over S with the property that adjacent nodes in T are exactly at distance four
of each other in Gτ . Since we apply the procedure separately for each of the connected
components of the threshold graph, we may safely assume that Gτ is connected.

Let us now temporarily open one center at each node in S and make the following
observations for the k-suppliers case:

1. Observation 34 still holds.
2. The corresponding LP is the same as the k-center LP, except it has E4

τ in place of
E3
τ in inequality (2.20). This ensures the feasibility of the LP since every location

in L is at most distance three away from some node in S. (Note that in case Gτ

is not connected, it can happen that some locations in L are not connected to
any point and therefore more than distance three away from some node in S,
but since they are not connected to any point we can safely ignore them, as they
cannot be part of the optimal solution.)
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Figure 2.3: Example for the reduction from Exact Cover by 3-sets to the fair assign-
ment problem for k-center, with U = {a, b, c, d, e, f} and F = {A = {a, b, c}, B =
{b, c, d}, C = {d, e, f}}.

3. Lemma 41 with G6
τ instead of G5

τ holds. The extra distance of one is introduced
because the distance between a child node and its parent node in T is four instead
of three.

4. Lemma 42 holds as it is and Lemma 43 holds when G5
τ is replaced with G6

τ .

Thus we have a distance six fair assignment to centers in S. However, this is not a
valid solution for k-suppliers as S ⊆ P and we are allowed to open centers only in L.
We move each of these temporary centers to the closest location in L and obtain the
following theorem.

Theorem 45. There exists a 7-approximation algorithm for the fair k-supplier problem
with exact preservation of ratios.

Together Theorem 44 and Theorem 45 imply Theorem 7.

2.2.5 NP-Hardness of the Fair Assignment Problem for k-
Center

We call the problem of computing a cost-minimal fair assignment of points to given
centers the fair assignment problem. It exists for every objective listed above. Even for
k-center, the fair assignment problem is NP-hard. This can be shown by a reduction
from Exact Cover by 3-sets, a variant of the set cover problem. The input is a ground
set U of elements and a family F of subsets such that each of the subsets in F has
exactly three elements from U . The objective is to find a set cover such that each
element is included in exactly one set. For example, let U = {a, b, c, d, e, f},F = {A =
{a, b, c}, B = {b, c, d}, C = {d, e, f}} be an instance. The set {A,C} is an exact cover.

For an instance U ,F of the Exact Cover by 3-sets problem, we construct an unweighted
graph, which then translates to an input for the fair assignment problem for k-center
by assigning distance 1 to each edge and using the resulting shortest path metric. The
nodes consist of U , F and two sets defined below, A and T . We start by adding an
edge between all e ∈ U and any A ∈ F if e ∈ A. We assign color red to the nodes from
F and blue to those from U . Then we construct a set A which contains three auxiliary
blue nodes for each node in F . These are exclusively connected to their corresponding
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node in F . Then we construct a set T of |U|/3 red nodes.1 and connect each node in
T to every node in F . Finally, we open a center at each node in F . The construction is
shown in Figure 2.3. Observe that the distance between an element e ∈ U and an open
center at A ∈ F in this construction is 1 if e ∈ A, and otherwise, it is 3: If e /∈ A, then
there is no edge between e and A, and since there are no direct connections between
the centers, the minimum distance between e and another open center is 3.

Lemma 46. If there exists an exact cover, there exists a fair assignment of cost 1
where the red:blue ratio is 1:3 for each cluster.

Proof. Assign each red node A ∈ F and the three auxiliary blue nodes connected to it
to the center at A. If A is in the exact cover, assign the three blue nodes representing
its elements and one red node from T to the center at A. It is straightforward to
verify that this assignment is fair and assigns every node to some center to which it is
connected via a direct edge.

Lemma 47. If there exists a fair assignment where red:blue ratio is 1 : 3 for each
clusters and the maximum radius of every cluster is less than 3, then there exists an
exact cover.

Proof. For A ∈ F , the red node at A and the three auxiliary blue nodes attached to it
must be assigned to the center at A as this is the only center within a distance of less
than 3. Also, no center can have more than two red nodes assigned to it because there
are only six blue nodes in distance less than 3 of any center. Therefore, each red node
in T must be assigned to a distinct center and each such center A will have exactly
three blue nodes from U assigned to it. These three blue nodes from U correspond to
the elements in the set that A represents. Thus, the sets corresponding to the centers
that have two red nodes assigned to them form an exact cover for U .

2.2.6 Integrality Gap of the Canonical Clustering LP

We show that any integral fair solution needs large clusters to implement awkward
ratios of the input points. This allows us to derive a non-constant integrality gap for
the canonical clustering LP.

Lemma 48. Let P be a point set with r red and r− 1 blue points and let k ≥ 1. If the
ratio of red points rred(Ci) is at most r−k+1

2r−2k+1 for each cluster Ci, then any fair solution
can have at most k clusters.

Proof. Consider a solution with k′ > k clusters. Since we have more red points there
must be at least one cluster Ci that contains more red points than blue points. The
ratio of red points rred(Ci) of this cluster is minimized if the other k′ − 1 clusters

1Note that if |U| is not a multiple of three, it cannot have an exact cover by 3-sets, so we can
assume that |U| is a multiple of three.
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contain only one blue and one red point, and Ci contains with the remaining r − k′
blue and r − k′ + 1 red points. However,

r − k′ + 1
2r − 2k′ + 1 >

r − k + 1
2r − 2k + 1

Since the highest ratio of red points in any other solution can only be higher, the claim
follows.

We remark that Lemma 48 is not true for essentially fair solutions.

The canonical fair clustering ILP consists of (2.7)–(2.11) and (2.14). In the k-
median/facility location case and in the k-means case, let write optF for the optimum
value of its LP relaxation and and let us call the value of an optimum integral solution
optI . We then define the integrality gap of the ILP as optI / optF . In the k-center case,
the ILP does not have an objective function, but we can define its integrality gap in the
following sense: If τI (τF ) is the smallest τ such that the LP-relaxation has a feasible
integral (fractional) solution, respectively, then we define the integrality gap as τI/τF .

Lemma 49. There is a choice of non-trivial fairness intervals such that the integrality
gap of the LP-relaxation of the canonical fair clustering ILP is Ω(n) for the fair k-
center/k-supplier/k-median/facility location problem. The integrality gap is Ω(n2) for
the fair k-means problem.

r1 b1 r2 bi−1 ri bi ri+1 br−1 rr

i−1
r−1

r−i
r−1

i
r−1

Figure 2.4: Integrality gap example for the fair clustering LP.

Proof. Consider the input points P lying on a line, as shown in Figure 2.4. Specifically,
we have r red points {r1, r2, . . . , rr} that alternate with r−1 blue points {b1, b2, . . . , br−1}.
Let the distance function d : P → N be defined as follows.

d(ri, rj) = 2(j − i) for all 1 ≤ i ≤ j ≤ r

d(bi, bj) = 2(j − i) for all 1 ≤ i ≤ j ≤ r − 1
d(ri, bj) = 2(j − i) + 1 for all 1 ≤ i ≤ j ≤ r

d(bi, rj) = 2(j − i)− 1 for all 1 ≤ i < j ≤ r

We require that the ratio of the red points of each cluster is between 0 and (r−1)/(2r−3)
and set k = r − 1. The input ratio r/(2r − 1) of the red points lies in the interior of
this interval as

r

2r − 1 <
r − 1
2r − 3 ⇐⇒ 2r2 − 3r < 2r2 − 3r + 1,
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and thus our input is well-defined and the fairness relaxation is non-trivial. We then
ask for a clustering of P with at most k centers that respects the fairness constraints.
Consider the following feasible solution for the LP-relaxation. The solution opens a
center at each of the r − 1 = k blue points and assigns the blue point to itself and
the red points on each side in the following way: for each 1 ≤ i ≤ r − 1, assign ri to
bi by a fraction of r−i

r−1 and assign ri+1 to bi by a fraction of i
r−1 . Each red point is

fully assigned in this way. We also get that in a cluster around some fixed bi, the total
assignment coming from red points is r

r−1 and the assignment coming from blue points
is 1; thus, each cluster has a ratio of red points of

r
r−1

1 + r
r−1

=
r
r−1
2r−1
r−1

= r

2r − 1 .

We therefore respect the balance requirements.
However, as (r− 1)/(2r− 3) = (r− k′ + 1)/(2r− 2k′ + 1) for k′ = 2, by Lemma 48 any
integral solution satisfying the ratio requirement can at most open two centers.

• In the k-center case, the fractional solution has a radius of 1 and the integral
solution has a radius of at least b(r − 1)/2c = Ω(n). The k-center problem is a
special case of the k-supplier problem; thus, the integrality gap for the k-supplier
problem can only be larger.
• In the k-median case, the fractional solution has a cost of O(n): The blue points

incur no cost and each red point ri contributes (r−i)/(r−1)·1+(i−1)/(r−1)·1 = 1
to the objective function. Since the optimum integral solution can have at most
two centers, it has to contain one cluster spanning at least br/2c consecutive
points. This incurs a cost of at least 2 ·∑br/4c−1

j=1 j = Ω(n2).
• In the facility location case, we observe that we can open at most two facilities

in a fair integral solution. Hence, the analysis for the k-median case carries over
(even if we set all opening costs to zero).
• In the k-means case, each red point ri incurs a cost of (r − i)/(r − 1) · 12 + (i−

1)/(r − 1) · 12 = 1 in the fractional solution; the blue points again incur no cost
as they are chosen as centers. However, the integral solution now has a cost of at
least 2 ·∑br/4c−1

j=1 j2 = Ω(n3).

This integrality gap yields a lower bound on the quality guarantee of any LP-rounding
approach for this ILP. Thus, Lemma 35 implies that no fair constant-factor approxima-
tion can be achieved by rounding the canonical fair clustering ILP. The counterexample
from breaks down in the essential fairness model.

2.3 Privacy Preserving Clustering

In this section we mostly discuss constrained k-center/k-supplier problems. In our
method we use an approximation algorithm for several constrained k-center/k-supplier
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problems as a black box algorithm and create an approximation algorithm for the k-
center/k-supplier problems which, in addition to the previous constraints, also satisfies
the privacy constraint. We start by showing how to add privacy to the k-center problem
with outliers. Then we show how to adjust the method to other constraints, which
include capacities and fairness, as well as the combination of capacities and fairness.
After that, we introduce the notion of strong privacy and show that our method can
easily be adjusted to that case as well. We conclude the section with a discussion of
the private facility location problem.

2.3.1 The Private k-Center Problem with Outliers

Theorem 50. Assume that there exists an α-approximation algorithm A for the k-
center problem with outliers. Then for instances P , L, k, `, o of the private k-center
problem with outliers, we can compute an (α + 2)-approximation in polynomial time.

Proof. Below, we describe an algorithm that uses a threshold graph with threshold τ .
We show that for any given τ ∈ R, the algorithm has polynomial run time and, if τ is
equal to opt, the value of the optimal solution, computes an (α + 2)-approximation.
Since we know that the value of every solution is equal to the distance between a point
and a location, we can test all O(|P ||L|) possible distances as τ and return the best
feasible clustering returned by any of them. The main proof is the proof of Lemma 51
below, which concludes this proof.

Let us start by explaining the general idea on how the algorithm works for a fixed
threshold τ . If τ < opt, then the algorithm could fail, in which case it returns τ < opt,
so assume that τ ≥ opt for now. We first use the approximation algorithm to obtain
a clustering which does not necessarily satisfy the privacy constraint. Then we try
to reassign points to establish the lower bounds. A point j may be reassigned to any
cluster which contains at least one point which is within distance 2τ of j. (Note that
any point in j’s optimum cluster is within distance 2τ of j). If it is possible to reassign
points like that and obtain a feasible clustering, we can compute such a reassignment
with a maximum flow algorithm. Otherwise we find a set of points P ′ for which we
can show that any clustering with radius at most τ must use fewer clusters to cover all
of them. We then use the approximation algorithm on P ′ to compute a new clustering
with outliers. The new clustering will contain fewer clusters or the same number of
clusters and fewer relevant outliers. We repeat the process until we find a feasible
solution.

Lemma 51. Assume that there exists an α-approximation algorithm A for the k-center
problem with outliers. Let P , L, k, `, o be an instance of the private k-center problem
with outliers, let τ > 0 and let opt denote the maximum radius in the optimal feasible
clustering for P , L, k, `, o. We can in polynomial time compute a feasible clustering
with a maximum radius of at most (α + 2)τ or determine τ < opt.

Proof. We first use A to compute a solution without the lower bound. Let C = (S, φ)
be an α-approximation for the k-center problem with outliers on P , L, k, o. Note
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that C may contain clusters with less than ` points. Let k′ = |S| (note that k′ < k is
possible). Finally, let r = maxx∈P d(x, φ(x)) be the largest distance of any point to its
center. Observe that an optimal solution to the k-center problem with outliers can
only have a lower objective value than the optimal solution to our problem because we
only dropped a condition. Therefore, τ ≥ opt implies that r ≤ α · opt ≤ α · τ . If we
have r > α · τ , we return τ < opt.

We use C and τ to create a threshold graph which we use to either reassign points
between the clusters to obtain a feasible solution or to find a set of points P ′ for
which we can show that every feasible clustering with maximum radius τ uses less
clusters than our current solution to cover it. In the latter case we compute another
α-approximation which uses fewer clusters to cover P ′ and repeat the process. Note
that for τ < opt such a clustering does not necessarily exist, but for τ ≥ opt the optimal
clustering provides a solution covering P ′ with fewer clusters. If we do not find such a
clustering with maximum radius at most α · τ , we return τ < opt.

We show that every iteration of the process reduces the number of clusters or the
number of relevant outliers, therefore the process stops after at most k · o iterations.
It may happen that our final solution contains much less clusters than the optimal
solution (but it will be an approximation for the optimal solution with up to k centers).

We will use a network flow computation to move points from clusters with more than
` points to clusters with less than ` points. Moving a point to another cluster can
increase the radius of the cluster. We only want to move points between clusters such
that the radius does not increase by too much. More precisely, we only allow a point j
to be reassigned to another center i ∈ S if the distance d(j, P (i)) between j and the
cluster assigned to i is at most 2τ . This is ensured by the structure of the network
described in the next paragraph. Unless stated otherwise, when we refer to distances
between a point j and a cluster P (i) in the following, we mean the distance between j
and P (i) in its original state before any points have been reassigned.

Given C and τ , we create the threshold graph Gτ as the directed flow network (Vτ , Eτ )
as follows. Vτ consists of a source s, a sink t, a node vi for each i ∈ S, a node vout for
the set of outliers and a node wj for each point j ∈ P . For all i ∈ S, we connect s to
vi if P (i) contains more than ` points and set the capacity of (s, vi) to |P (i)| − `. If
P (i) contains fewer than ` points, we connect vi with t and set the capacity of (vi, t)
to `− |P (i)|. Furthermore, we connect vi with wj for all j ∈ P (i) and set the capacity
of (vi, wj) to 1. We also connect s to vout with capacity o and vout with wj for all
j ∈ P (out) with capacity 1. Whenever a point j and a cluster P (i) with j /∈ P (i)
satisfy d(j, P (i)) ≤ 2τ (i.e., there is a point j′ ∈ P (i) that satisfies d(j, j′) ≤ 2τ), we
connect wj with vi with capacity 1.

Formally the graph Gτ = (Vτ , Eτ ) is defined by

Vτ ={vout} ∪ {vi | i ∈ S} ∪ {wj | j ∈ P} ∪ {s, t} and (2.22)
Eτ ={(vi, wj) | j ∈ P (i)} ∪ {(wj, vi) | j /∈ P (i) ∧ d(j, P (i)) ≤ 2τ} (2.23)
∪{(vout, wj) | j ∈ P (out)} (2.24)
∪{(s, vout)} ∪ {(s, vi) | |P (i)| − ` > 0} ∪ {(vi, t) | |P (i)| − ` < 0}. (2.25)
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We define the capacity function cap : Eτ → R by

cap(e) =


`− |P (i)|, if e = (vi, t)
|P (i)| − `, if e = (s, vi)
o, if e = (s, vout)
1 otherwise.

(2.26)

We use G = (V,E) to refer to Gτ as τ is clear from context. We now compute an
integral maximum s-t-flow f on G. According to f we can reassign points to different
clusters.

Lemma 52. Let f be an integral maximal s-t-flow on G. It is possible to reassign j to
i for all edges (wj, vi) with f((wj, vi)) = 1.

The resulting solution has a maximum radius of at most r+ 2τ . If f saturates all edges
of the form (vi, t), then the solution is feasible.

Proof. Let j ∈ P (i). The choice of capacity 1 on (vi, wj) and flow conservation ensure∑
(wj ,v)∈E f((wj, v)) ≤ 1. Therefore no point would have to be reassigned to multiple

new clusters. Note that for every point j ∈ P (i) that would be reassigned we must
have f((vi, wj)) = 1 and for every edge (vi, wj) with f((vi, wj)) = 1 the point j would
be reassigned.

For any i′ ∈ S, let j ∈ P (i) be any point which we want to reassign to i′. Then we must
have (wj, vi′) ∈ E and therefore there must be a point j′ ∈ P (i′) with d(j, j′) ≤ 2τ .
Thus we have

d(j, i′) ≤ d(j, j′) + d(j′, i′) ≤ 2τ + r = r + 2τ.

Now assume that f saturates all edges of the form (vi, t) for i ∈ S. If E contains the
edge (vi, t), then it cannot contain the edge (s, vi) and therefore all incoming edges of
vi are of the form (wj, vi). Flow conservation then implies that the number of points
reassigned to i minus the points from P (i) reassigned away is equal to f((vi, t)), which
increases the number of points in P (i) to `.

If E contains the edge (s, vi), then it cannot contain the edge (vi, t) and therefore all
outgoing edges of vi are of the form (vi, wj). Flow conservation then implies that the
number of points from P (i) reassigned away minus the points reassigned to i is equal
to f((s, vi)), which cannot reduce the number of points assigned to i to fewer than `
points.

If E contains neither (s, vi) nor (vi, t), then the number of points in P (i) is equal to `
and does not change (Which points are assigned to i might change, but the number of
points assigned to i does not).

In all three cases P (i) contains at least ` points after the reassignment.

If f saturates all edges of the form (vi, t) in G, then we reassign points according to
Lemma 52 and return the new clustering.
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Otherwise we look at the residual network Gf of f on G. Let V ′ be the set of
nodes in Gf which cannot be reached from s. V ′ contains, among possibly others, all
nodes representing clusters which would not satisfy the privacy constraint after the
reassignment. We say cluster P (i) belongs to V ′ if vi ∈ V ′, otherwise we say a cluster is
uncritical. We say a point j ∈ P (i) is adjacent to V ′ if wj ∈ V ′ and vi /∈ V ′. Let S(V ′)
denote the set containing the centers of the clusters belonging to V ′. Let k′′ = |S(V ′)|.
We say a point j belongs to V ′ if the cluster P (i) with j ∈ P (i) belongs to V ′. Let
P (V ′) and PA(V ′) denote the set of points that belong to V ′ and the set of points
adjacent to V ′.

Lemma 53. Any clustering on P with maximum radius at most τ that contains at
least ` points in every cluster uses fewer than k′′ clusters to cover all points in P (V ′).

Proof. We first observe that V ′ must have the following properties:

• vi ∈ V ′ and (wj, vi) ∈ E implies wj ∈ V ′.
• wj ∈ V ′, (wj, vi) ∈ E and f((wj, vi)) > 0 implies vi ∈ V ′.
• wj ∈ V ′ for some j ∈ P (i) and vi /∈ V ′ implies f((vi, wj)) = 1.

The first property follows from the fact that f can only saturate (wj, vi) if f also
saturates (vi′ , wj) for j ∈ P (i′) or (vout, wj) for j ∈ P (out). So, either (wj, vi) is not
saturated, which means that vi can be reached from any node that reaches wj, or
(wj, vi) is saturated, which means that the only incoming edge of wj in Gf is (vi, wj). In
both cases, if vi ∈ V ′, then wj ∈ V ′. The second property follows since f((wj, vi)) > 0
implies (vi, wj) ∈ E(Gf ). The third property is true since we defined cap((vi, wj)) = 1.

This implies that a reassignment due to Lemma 52 would reassign all points adjacent
to V ′ to centers in S(V ′) and moreover all reassignments from points in P (V ′)∪PA(V ′)
would be to centers in S(V ′). Let ni denote the number of points that would be
assigned to i after the reassignment. Then |P (V ′)|+ |PA(V ′)| = ∑

i∈S(V ′) ni.

Now we argue that this sum is smaller than k′′ · ` by observing that each ni ≤ ` and at
least one ni is strictly smaller than `.

Let P (i) be a cluster with more than ` points after the reassignment. Then (s, vi) is not
saturated by f and vi can be reached from s in Gf . Therefore after the reassignment
no cluster P (i), i ∈ S(V ′) contains more than ` points; in other words, ni > ` implies
i /∈ S(V ′).

Let P (i) be a cluster which would still contain fewer than ` points after the reassignment.
This implies that f does not saturate the edge (vi, t). Therefore t can be reached from
vi and since f is a maximum s-t-flow, vi cannot be reached from s. We must have
vi ∈ V ′.

Because we assumed that the reassignment does not satisfy all lower bounds, at least
one such cluster has to exist. This implies

|P (V ′)|+ |PA(V ′)| =
∑

P (i)∈S(V ′)
ni < k′′ · `.
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This means that the clusters assigned to the centers ins S(V ′) and the points in PA(V ′)
do not contain enough points to satisfy the lower bound in k′′ clusters.

By definition of G and V ′, for two points j1, j2 with j1 ∈ P (V ′) and d(j1, j2) ≤ 2τ we
must have j2 ∈ P (V ′) ∪ PA(V ′). Let C ′ be a clustering that abides the lower bounds
and has a maximal radius of at most τ . Then every cluster C ′ in C ′ that contains at
least one point from P (V ′) can only contain points from P (V ′) ∪ PA(V ′). Therefore C ′
must contain fewer than k′′ clusters which contain at least one point from P (V ′).

If we have τ ≥ opt, then Lemma 53 implies that the optimal solution covers all points
in P (V ′) with fewer than k′′ clusters. An α-approximation on the point set P (V ′) with
at most k′′ − 1 clusters, which contains at most o outliers, is then α-approximation for
P (V ′).

Unfortunately, we do not know how many outliers an optimal clustering has in P (V ′).
We therefore involve the outliers P (out) in our new computation as well. Let o′ =
|P (out)| denote the current number of outliers. We obtain the following Lemma through
a counting argument.
Lemma 54. We call a cluster special if it contains at least one point from P (V ′) or
only contains points from P (out). Let C ′ be a clustering on P with a maximum radius
of at most τ on all special clusters that respects the lower bounds on all special clusters,
has at most o outliers and consists of at most k clusters out of which at most k′′ are
special. If C ′ has exactly k′′ special clusters, then C ′ has at most o′ − 1 outliers in
P (V ′) ∪ P (out).

Proof. Assume the clustering contains exactly k′′ special clusters. Each of these clusters
has to contain at least ` points from P (V ′) ∪ PA(V ′) ∪ P (out). We know

|P (V ′) ∪ PA(V ′) ∪ P (out)| ≤ |P (V ′) ∪ PA(V ′)|+ o′ < k′′`+ o′.

So there remain at most o′ − 1 unclustered points in P (V ′) ∪ PA(V ′) ∪ P (out).

Now we need to show that such a clustering exists if τ ≥ opt is the case.
Lemma 55. If τ ≥ opt, then there exists a clustering C ′ on P with a maximum radius
at most τ on all special clusters that respects the lower bounds on all special clusters,
has at most o outliers and consists of at most k clusters out of which at most k′′ are
special.

Proof. We look at an optimal clustering Copt. The optimal clustering Copt has to have at
most o outlier, at most k clusters that all respect the lower bound, each with a radius
of at most τ . So the only way Copt can violate a condition is if it contains k′′′ > k′′

special clusters. Lemma 53 implies that in this case Copt must contain at least k′′′ − k′′
clusters that contain only points in P (out).

If all clusters in Copt are special this implies that all points in P \(PA(V ′)∪P (V ′)∪P (out))
must be outlier in Copt. We will add a new cluster that contains all these points with
an arbitrary center and arbitrarily select k′′′ − k′′ ≥ 1 clusters from Copt that contain
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only points in P (out). We declare all points in these clusters as outliers and close
the corresponding centers. This leaves us with k′′ + 1 ≤ k′′′ ≤ k clusters and k′′

special clusters which contain at least k′′ · ` points. This leaves at most o′ − 1 outliers.
Otherwise, if Copt contains at least one cluster C which is not special, we add all outlier
from P \ (PA(V ′) ∪ P (V ′) ∪ P (out)) to C. Again we arbitrarily select k′′′ − k′′ clusters
from Copt that contain only points in P (out). We declare all points in them as outliers
and close the corresponding centers. By creation there are no unclustered points in
P \ (PA(V ′) ∪ P (V ′) ∪ P (out)) and exactly k′′ special clusters with radius at most τ .
Therefore this clustering contains at most o′−1 outliers and has at most k clusters.

Note that in the clustering, obtained as explained above, clusters which are not special
only contain points in P \ (P (V ′) ∪ P (out)) and points in P (out) with a distance of at
most 2τ to at least one point in P \ (P (V ′)∪P (out)). Let out′ denote the set of points
in P (out) with a distance higher than 2τ to every point in P \ (P (V ′)∪P (out)). Then
all points in P (V ′) ∪ out′ must be part of a special cluster or be an outlier.

We now want to use A again to compute a new solution without the lower bound,
which uses fewer clusters to cover P (V ′). With outliers this creates the problem that
the optimal solution could declare some points in P (V ′) as outliers. As the number
of outliers is restricted, the optimal solution must compensate for these outliers by
assigning some points in P (out) to a cluster. There are two cases how these clusters
can look like.

• Case 1: The cluster contains only points in P (out) ∪ P (V ′).
• Case 2: The cluster contains at least one point in P \ (P (V ′) ∪ P (out)).

As Case 1 clusters are special, Lemmas 54 and 55 show that we can deal with them
by including them in the computation of a new clustering on P (V ′) ∪ P (out) (or on
P (V ′)∪out′) with at most k′′ clusters and at most o′−1 outliers or less than k′′ clusters
and at most o outliers. For any point j ∈ P (out) that is part of a Case 2 cluster in the
optimal solution, we know that there must exist an uncritical cluster P (i) ∈ C with
d(j, P (i)) ≤ 2 opt. Therefore all such points could be assigned to uncritical clusters
without increasing the radius of the uncritical clusters by too much. We can get rid of
all these points by removing all points in P (out) with distance at most 2τ to the next
uncritical cluster. We define the set NewP := P (V ′) ∪ out′.

We now use A again to compute new solutions without the lower bound: Let C ′1 =
(S ′1, φ′1) be an α-approximation for the k-center problem with outliers on NewP , L,
k′′ − 1, o and let C ′2 = (S ′2, φ′2) be an α-approximation for the k-center problem with
outliers on NewP , L, k′′, o′ − 1. Let r′i = maxj∈NewP d(j, φ′i(j)) for i ∈ {1, 2}.

Given that A is an α-approximation algorithm for the k-supplier problem with outliers
or works on instances with P ⊆ L we have no problem and can be sure that A actually
computes α-approximations.

The problem with approximation algorithms for the k-center problem with outliers,
that require P = L to ensure their approximation guarantee, is that in the optimal
solution on P some of the points in NewP might be part of a cluster, whose center
lies in P \NewP .
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In general we can just use a different approximation algorithm, which works for the
k-supplier version. Unfortunately in several cases the best known approximation
algorithms for k-supplier variants have worse approximation guarantees than the best
known counterparts for the k-center variant. We will now explain how we can get
around this problem by slightly altering the instance in case A requires P = L.

Adjustment for the case that A requires P = L Note that we assume that in
the optimal solution the distance between any point and its cluster center is at most τ .
Therefore we know that all points in NewP must have a center P (V ′)∪PA(V ′)∪P (out).
The idea is to alter the set NewP such that points in P (out) \ out′ as well as points in
PA(V ′) can be used as a center for a special clusters but do not need to be part of a
special cluster. We achieve this with a new structure, that allows us to declare these
points as outliers while they essentially will not be counted towards the total number
of outliers and can in that case be viewed as if they were assigned to an uncritical
cluster. We alter PA(V ′) ∪ P (V ′) ∪ P (out) as follows. Let m denote the number of
points in PA(V ′) ∪ P (out) \ out′. We then add m copies of every point in P (V ′) ∪ out′
to PA(V ′) ∪ P (V ′) ∪ P (out). We call this new set NewV . It is easy to see that every
clustering on NewP with centers in PA(V ′)∪ P (V ′)∪ P (out), k̄ clusters and ō outliers
can be translated into a clustering with the same maximal radius on NewV with k̄
clusters and at most (m+ 1)ō+m outliers by assigning all copies of points in NewP
analogous to the original point and declaring all remaining points as outliers. We can
also translate any clustering on NewV with k̄ clusters and ō outliers into a clustering
on NewP with at most the same maximal radius, centers in PA(V ′) ∪ P (V ′) ∪ P (out),
at most k̄ clusters and at most

⌊
ō

m+1

⌋
outliers. We do so as follows. First we merge

clusters whose centers are copies of the same original point. Every point, for which at
least one of its copies is assigned to a cluster will arbitrarily be assigned to a clusters
which contains at least one of its copies. Only points for which all their copies are
outliers in the clustering on NewV will be declared as outliers in the clustering on
NewP as well.
This implies that instead of looking for a clustering with k̄ clusters and at most ō
outliers in NewP with centers in PA(V ′)∪P (V ′)∪P (out), we can look for a clustering
on NewV with k̄ clusters and at most (m+ 1)ō+m outliers.
We now use A again to compute new solutions without the lower bound: Let C ′1 =
(S ′1, φ′1) be the translation to NewP of an α-approximation for the k-center problem
with outliers on NewV , L, k′′−1, (m+ 1)o+m and let C ′2 = (S ′2, φ′2) be the translation
to NewP of an α-approximation for the k-center problem with outliers on NewV , L,
k′′, (m+ 1)(o′ − 1) +m. Let r′i = maxj∈NewP d(j, φ′i(j)).
Note that in case τ < opt, it can happen that no such clustering exists or that we
obtain r′i > α · τ for both i = 1 and i = 2. We then return τ < opt. Otherwise C ′i must
exist together with r′i ≤ α · τ for at least one i ∈ {1, 2}.
If C ′2 exists and we have r′2 ≤ α · τ we replace S(V ′) by S ′2 in C and adjust φ accordingly
to obtain C1 = (S1, φ1) with S1 = (S \ S(V ′)) ∪ S ′2 and

φ1(p) =

φ′2(p) if p ∈ NewP
φ(p) otherwise.

(2.27)
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Otherwise, if C ′1 exists, we have r′1 ≤ α·τ and either C ′2 does not exist or we have r′2 > α·τ ,
we analogous replace S(V ′) by S ′1 to obtain C1 = (S1, φ1) with S1 = (S \ S(V ′)) ∪ S ′1
and

φ1(p) =

φ′1(p) if p ∈ NewP
φ(p) otherwise.

(2.28)

Notice that on points in PA(V ′) we use φ and not φ′i and that it could happen that
only points in PA(V ′) are assigned to some center in S ′1 or S ′2 . All such centers can be
ignored and we will delete them from C1.

Notice that in case we replaced S(V ′) by S ′2, C1 may contain more than o′ − 1 outlier
and in case we replaced S(V ′) by S ′1, C1 may contain more than o outlier. In both
cases, we can reduce the number of outliers below the required amount by assigning all
points in φ−1

1 (out) with a distance of at most 2τ to an uncritical cluster in C to the
closest uncritical cluster.

Instead of actually assigning these points we declare them as semi-outliers, which means
that we view them as outliers, when it comes to the creation of the flow network and
view them as assigned to their nearest cluster, when it comes to counting the number
of outliers.

We denote the version of C1, where all semi-outliers are assigned to their closest cluster
as C̄1. We then obtain the following lemma.
Lemma 56. In case we did not return τ < opt, then C̄1 is a solution for the k-center
problem with outliers on P , L, k, o and we have r1 = maxx∈P d(x, φ1(x)) ≤ α · τ .
(Notice that φ1(x) is the assignment in C1 and not the assignment in C̄1.)

We iterate the previous process with the new clustering C1 until we either determine
τ < opt or the reassignment of points according to Lemma 52 yields a feasible solution.
In case we find a feasible solution, we will as assign all semi-outliers, which are not
already assigned in this solution to the closest center. By definition of a semi-outlier
this cannot increase the maximal radius to more then (α + 2)τ . We will show that
each iteration reduces the number of clusters and has at most o outliers which are
not semi-outliers or keeps the same number of clusters and reduces the number of
outliers which are not semi-outliers. The process therefore terminates after at most
k · o iterations.

After each computation of a network flow there are two cases which can apply to a
semi-outlier j. In the first case there is at least one uncritical cluster with a distance
at most 2τ to j. In that case, when j stays an outlier it will again be declared as a
semi-outlier. In the second case all uncritical clusters have a distance more than 2τ to
j. This can only happen if every uncritical cluster from the previous iteration, that
was within distance at most 2τ of j became critical after the flow computation. In
that case the computed flow must assign j to a center in S(V ′). Since j has a distance
of more than 2τ to the next uncritical cluster and the computed flow assigns it to a
cluster in S(V ′) it analogous to before follows that the optimal solution has to use less
clusters to cover P (V ′)∪ {j}. In that case we assume that j is actually assigned as the
flow suggests and view it as one of the points in P (V ′). Since this case implies that we
use A to compute a new clustering this does not affect the maximum radius.
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As all semi-outlier either remain semi-outlier or enter the recomputation phase as a
point in P (V ′) we obtain the following lemma, which concludes the proof.

Lemma 57. Each iteration reduces the number of clusters and has at most o outlier
which are not semi-outlier or keeps the same number of clusters and reduces the number
of outliers which are not semi-outlier.

Corollary 58. We can compute a 4-approximation for instances of the private k-center
problem with outliers and a 5-approximation for instances of the private k-supplier
problem in polynomial time.

Proof. Follows from Theorem 50 together with the 2-approximation algorithm for
k-center with outliers in [24] and the 3-approximation algorithm for k-supplier with
outliers in [26].

2.3.2 Combining Privacy with other Constraints

We want to take the general idea from Section 2.3.1 and instead of outliers we want to
combine privacy with other restrictions on the clusters. Given a specific restriction R
and an α-approximation algorithm A for the k-center problem with restriction R we
ask: Can we similar to Section 2.3.1 combine A with the use of a threshold graph to
compute an O(α)-approximation for the private k-center problem with restriction R?

In Section 2.3.1 we made use of two properties of a clustering with outliers. In
Lemma 52 we used that reassigning points to another cluster never increases the
number of outliers and in Lemma 53 we used that outliers have the somewhat local
property that computing a new clustering on the points V ′ from a subset of the clusters
together with the set of outliers does not create more outliers on the remaining points.

In this section we now take a look at restriction properties which are similarly local,
and show how to combine them with privacy.

As we have seen in Section 2.3.1, when we use an approximation algorithm A to
recompute new clusters on a subset of the points, the optimal solution might cluster
these points to any center in the original set L of locations. In case A can only deal
with instances in which we have P = L, this might become a problem. We will therefore
deal with the general k-supplier versions and only state separate results for the k-center
versions, when the underlying approximation algorithms allow use to improve on the
supplier result.

The private and capacitated k-center problem

Theorem 59. Assume that there exists an α-approximation algorithm A for the soft
capacitated k-supplier problem. Then we can compute an α + 2-approximation for the
soft private capacitated k-supplier problem in polynomial time.
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Assume that there exists an α-approximation algorithm A for the soft uniform ca-
pacitated k-supplier problem. Then we can compute a 2α + 2-approximation for the
private uniform capacitated k-center problem and a 2α+3-approximation for the private
uniform capacitated k-supplier problem in polynomial time.

Proof. Let P , L, k, u, ` be an instance of the private capacitated k-supplier problem.

Analogous to Section 2.3.1 we use a threshold graph with threshold τ and show that for
any given τ ∈ R the algorithm has polynomial run time and, if τ is equal to opt, the
value of the optimal solution, computes a soft (α + 2)-approximation. Since we know
that the value of the optimal solution is equal to the distance between a point and
a location, we test all O(|P ||L|) possible distances for τ and return the best feasible
clustering returned by any of them.

The main proof is the proof of Lemma 60 below. The lemma then concludes the proof
for the private soft capacitated k-supplier problem. For the private uniform capacitated
k-center/k-supplier problem we might need to reassign some of the centers. Lemma 64
then concludes the proof.

We now describe the procedure for a fixed value of τ > 0.

Lemma 60. Assume that there exists an α-approximation algorithm A for the soft
capacitated k-supplier problem.

Let P , L, k, u, ` be an instance of the private soft capacitated k-supplier problem, let
τ > 0 and let opt denote the maximum radius in the optimal feasible clustering for P ,
L, k, u, `. We can in polynomial time compute a feasible clustering with a maximum
radius of at most (α + 2)τ or determine τ < opt.

Proof. The algorithm first uses A to compute a solution without the lower bound: Let
C = (S, φ) be an α-approximation for the capacitated k-supplier problem on P , L, k,
u.

Again let k′ = |S| and let r = maxj∈P d(j, φ(j)) be the largest distance of any point to
its assigned center. If we have r > α · τ , we return τ < opt.

Given C and τ , we create, similar to Section 2.3.1, the threshold graph Gτ as the
directed flow network (Vτ , Eτ ) by

Vτ ={vi | 1 ≤ i ≤ k′} ∪ {wj | j ∈ P} ∪ {s, t} and (2.29)
Eτ ={(vi, wj) | j ∈ P (i)} ∪ {(wj, vi) | j /∈ P (i) ∧ d(j, P (i)) ≤ 2τ} (2.30)
∪{(s, vi) | |P (i)| − ` > 0} ∪ {(vi, t) | |P (i)| − ` < 0}. (2.31)

We define the capacity function cap : Eτ → R by

cap(e) =


`− |P (i)|, if e = (vi, t)
|P (i)| − `, if e = (s, vi)
1 otherwise.

(2.32)
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The only difference to Section 2.3.1 is that we do not have any outliers. We use
G = (V,E) to refer to Gτ as τ is clear from context. We now compute an integral
maximum s-t-flow f on G. According to f we can reassign points to different clusters.
Analogous to Lemma 52 we obtain the following lemma.
Lemma 61. Let f be an integral maximal s-t-flow on G. It is possible to reassign j
to i for all edges (wj, vi) with f((wj, vi)) = 1. The resulting solution has a maximum
radius of at most r+ 2τ . If f saturates all edges of the form (vi, t), then the solution is
feasible.

In case f saturates all edges of the form (vi, t) we reassign points according to Lemma 61
and return the new clustering. Otherwise, we look at the residual network Gf of f on G.
We define V ′, S(V ′), k′′, P (V ′) and PA(V ′) as before, i.e., V ′ is the set of nodes in Gf

which cannot be reached from s, S(V ′) is the set containing the centers of the clusters
belonging to V ′, k′′ = |S(V ′)| and P (V ′) and PA(V ′) denote the set of points that
belong to V ′ and the set of points adjacent to V ′. As before, we obtain the following
lemma.
Lemma 62. Any clustering on P with maximum radius at most τ that respects the
lower bounds uses fewer than k′′ clusters to cover all points in P (V ′).

In case we have τ ≥ opt this implies that the optimal solution covers all points in P (V ′)
with fewer than k′′ clusters. An α-approximation on the point set P (V ′) with at most
k′′ − 1 clusters which abides only the upper bounds is then an α-approximation for
P (V ′). We now use A again to compute a new solution without the lower bound: Let
C ′ = (S ′, φ′) be an α-approximation for the capacitated k-supplier problem on P (V ′),
L, k′′ − 1, u. Let r′ = maxj∈P (V ′) d(j, φ′(j)). Note that in case τ < opt, it can happen
that no such clustering exists or that we obtain r′ > α · τ . We then return τ < opt.
Otherwise we replace replace S(V ′) by S ′ in C and adjust φ accordingly to obtain
C1 = (S1, φ1) with S1 = (S \ S(V ′)) ∪ S ′ and

φ1(p) =

φ′(p) if p ∈ P (V ′)
φ(p) otherwise.

(2.33)

Note that it is possible, that S ′ contains a center that already is part of S \ S(V ′).
Without capacities we could, in that case, simply combine the corresponding clusters.
Unfortunately it can happen that combining these clusters would create a cluster that
violates the upper bound. In that case we will assume that both centers are separate
points at the same location. As we assumed the capacities to be soft this does not
create a problem.
Lemma 63. In case we did not return τ < opt, C1 is a solution for the soft capacitated
k-supplier problem on P , L, k, u and we have r1 = maxj∈P d(j, φ1(j)) ≤ α · opt.

We iterate the previous process with new clustering C1 until we either determine τ < opt
or the reassignment of points according to Lemma 61 yields a feasible solution. Since
the number of clusters is reduced in each iteration, the process terminates after at most
k iterations.
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Lemma 64. Given the value of the optimal solution opt and an (α+ 2)-approximation
for the private soft uniform capacitated k-supplier problem, obtained through an α-
approximation for the soft uniform capacitated k-supplier problem and a flow-network
as described above, we can compute a (2α+ 2)-approximation for the private uniform
capacitated k-center problem and a (2α + 3)-approximation for the private uniform
capacitated k-supplier problem in polynomial time.

Proof. Let P (i), i ∈ S denote the computed clusters before we reassigned points based
on the computed network flow. We call them initial clusters. It can happen that some
i1 6= i2 ∈ S represent the same points i ∈ L. Without capacities we could simply merge
all initial clusters with the same center, but with capacities we might need to change
some of the centers in order to obtain a feasible solution. In the center variant we
choose a point ji ∈ P (i) for each i ∈ S and declare ji as the new center of P (i). As
for two points j1, j2 ∈ P (i) we have d(j1, j2) ≤ 2α opt, the maximal cluster radius after
reassigning points based on the network flow is at most 2α+ 2. In the supplier version
we want each initial cluster to have a center that is at most opt away from one of its
points, i.e., one of the centers to which one of its points can potentially be assigned to
in the optimal solution, such that no two initial clusters have the same center. In case
such an assignment exists we can compute it with a maximum matching algorithm
that tries to match the initial clusters to the allowed centers. It can happen that no
such assignment exists. In this case we compute a maximal matching which does not
match all initial clusters. For every matched cluster P (i) let li denote the location it
is matched with. Before we show that it is possible to distribute all points from the
unmatched clusters to close matched clusters without violating the capacity constraint,
we want to satisfy the lower bound for all matched clusters.

As we used the initial clusters it can still happen that some clusters contain less than `
points and we will now show that it is possible to reassign points in order to satisfy
the lower bounds.

Let G denote the last flow network used as shown in the proof of Lemma 60 and let F
denote its flow. As F is a feasible flow for G there also exists a feasible flow for the
reduced network, which ignores demands and incoming edges of all unmatched cluster.
Such a flow must satisfy the lower bounds for all matched clusters.

Let us first define the matching instance in detail. Let Vc = {vi | i ∈ S} contain a node
for every initial cluster and let VL = {wl | l ∈ L} contain a node for every feasible
location. Let E denote the set of edges, then we have (vi, wl) ∈ E if and only if there
exists a point j ∈ P (i) such that d(j, l) ≤ opt. Then for each point j ∈ P (i) the edge
between vi and wφopt(j) must be part of E. In case the graph Ḡ = (Vc ∪ VL, E) does not
contain a matching that matches all nodes in Vc there must exist V ′ ⊆ Vc such that the
neighborhood N(V ′) ⊆ VL contains less nodes than V ′, because N(V ′) must contain
wl for every l ∈ L for which there exists a point j ∈ ⋃vi∈V ′ P (i) with φopt(j) = l. This
implies that the optimal solution uses fewer clusters to covers all points in ⋃vi∈V ′ P (i).
We compute a maximal matching M in Ḡ. For each i ∈ S, for which vi is matched
in M we denote the corresponding location by li. For every unmatched vi ∈ Vc we
know that for all j ∈ P (i) the corresponding center in the optimal solution φopt(j)
must be matched to some other cluster, i.e., φopt(j) = li′ for some i′ 6= i ∈ S. As
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the matching we computed is maximal we know that G cannot contain a path which
alternates between matching and non-matching edges and contains a node belonging
to an unmatched cluster as well as an unmatched location. We allow each point j ∈ P
to be reassigned to any center i ∈ S if we have d(j, li) ≤ opt. We can model this with a
flow network G′ = ({s, t} ∪ Vc, E ′) which contains a directed edge (vi, vi′) in case P (i′)
is a matched cluster and there exists at least one point j ∈ P (i) with d(j, li′) ≤ opt. Let
the capacity of an edge (vi, vi′) be equal to |{j ∈ P (i) | d(j, li′) ≤ opt}|. Additionally
we connect s to every unmatched cluster P (i) with capacity |P (i)| and connect every
matched cluster P (i′) to t with capacity u− |P (i′)|. The capacities are chosen such
that we want to assign every point from every unmatched cluster and never increase
the number of points assigned to a matched cluster to more than u. We will now show
that a feasible reassignment exists. We start by assigning every point in an unmatched
cluster to the center i ∈ S with li = φopt(j). In case such a reassignment would violate
the capacity of a cluster, this cluster must contain at least one point which is assigned
to a different center in the optimal solution. The location of this center must be part
of our matching as we would otherwise have found an alternating path which contains
a node belonging to an unmatched cluster as well as an unmatched location. Therefore
we could iteratively reassign such a point to the cluster which is matched to the location
of its center in the optimal solution. As each such iterative step increases the number
of points assigned to the same center as in the optimal solution, this process must stop
after at most n iterations. This shows that there exists a feasible reassignment and we
can therefore find one by computing a maximum flow in G′. The radius in each cluster
is then at most (2α + 1) opt as the distance between two points in the same initial
cluster is at most 2α opt, the assigned center is at most opt away from one of the points
and all points reassigned at the end have a distance of at most opt to its center. As
this reassignment can only have increases the number of points in a cluster, a feasible
reassignment that enforces the lower bound for each cluster will still be possible. This
leads to a radius of at most (2α + 3) opt.

If we adjust the 5-approximation for the soft uniform capacitated k-center problem by
Khuller and Sussman[66] to the supplier variant, we obtain a 6-approximation. With
that we get the following result.

Corollary 65. We can compute a 14-approximation for instances of the private k-
center problem with uniform capacities in polynomial time and a 15-approximation for
the supplier variant.

If the capacities are soft, then we can compute an 8-approximation for both the center
and the supplier variant.

Fair and private k-center We consider exact fairness with an arbitrary number of
colors.

As in Observation 34 we let bh = |colh(P )|
gcd(|colh′ (P )||h′∈Col) for every h ∈ Col and use the fact

that in every feasible clustering every cluster contains a multiple of b := ∑
h∈Col bh

points and the same multiple of bh points with color h.
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We can therefore assume without loss of generality that in instances of the private and
fair k-center problem the lower bound is an integer multiple of b, i.e., ` = `′ · b for some
`′ ∈ N.

Recall that with exact fairness a subset F ⊆ P is a fairlet of P , exactly if for every
h ∈ Col F contains exactly bh points with color h, i.e., for all h ∈ Col we have
|colh(F )| = bh.

We look at private and fair clustering in two layers, the first layer consists of computing
a fairlet decomposition F = {Fi | i ∈ I} of P and the second layer consists of clustering
these fairlets. As we know that F must contain n

b
fairlets, we assume without loss of

generality I = {1, . . . , n
b
}.

We now show a couple useful properties.

Lemma 66. Let F = {Fi | i ∈ I} and G = {Gi | i ∈ I} be two fairlet decompositions
of P , then there exists a bijective mapping π : I → I such that for each i ∈ I we have
Fi ∩Gπ(i) 6= ∅.

Proof. Let G = (V ∪W,E) be a bipartite graph defined by V = {vi, i ∈ I}, W =
{wi, i ∈ I} and {vi, wj} ∈ E ⇔ Fi ∩Gj 6= ∅. Then the existence of a perfect matching
in G is equivalent to the existence of a mapping π as described. If we set costs c to the
edges by c({vi, wj}) = |Fi ∩Gj| we can see that for every subset of V ′ ⊆ V and every
subset W ′ ⊆ W the total cost of all edges adjacent to V ′ is equal to |V ′| · b and the
total cost of all edges adjacent to W ′ is equal to |W ′| · b. Therefore the neighborhood
of V ′ ⊆ V contains at least |V ′| nodes. Hall’s "‘Marriage Theorem"’ [51] then concludes
the proof.

Lemma 67. Let G = {Gi | i ∈ I} be an arbitrary fairlet decomposition of P with a
maximum diameter d = maxi∈I maxj,j′∈Gi d(j, j′) and assume that there exists a fair
and private clustering C ′ of P with radius c. Then there exists a fair and private
clustering C of P with a radius of at most c+ d which satisfies that for each i ∈ I all
points in Gi are part of the same cluster.

Proof. Let F = {Fi | i ∈ I} a fairlet decomposition such that each fairlet Fi ∈ F is
a subset of a cluster in C ′. Lemma 66 shows that there exists a bijective mapping
π : I → I} such that for each i ∈ I we have Fi ∩ Gπ(i) 6= ∅. For all i ∈ I we replace
Fi by Gπ(i) in its cluster in C ′ to create the new clustering C = {S, φ′}. Formally φ′ is
defined as follows. For all i ∈ I and j ∈ Gπ(i) we have φ′(j) = φ(j′) for some j′ ∈ Fi.
Note that φ′ is well defined since for all i ∈ I we have φ(j) = φ(j′) for all j, j′ ∈ Fi.

Since replacing a fairlet with a different fairlet does not change the number of points
in a cluster C is a fair and private clustering and by construction satisfies that for each
i ∈ I all points in Gi are part of the same cluster.

We know that for all i ∈ I we have Fi ∩ Gπ(i) 6= ∅. Let j′ ∈ Fi ∩ Gπ(i) then we
have d(j′, φ(j′)) ≤ c and d(j, j′) ≤ d for all j ∈ Gπ(i). By the triangle inequality we
immediately obtain d(j, φ′(j) = φ(j′)) ≤ c+ d.
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We use an approximation algorithm for the fair k-center problem to obtain a fairlet
decomposition. We use this fairlet decomposition as explained above in order to obtain
an approximation algorithm for the private and fair k-center problem and obtain the
following lemma.

Lemma 68. Assume that there exists an α-approximation algorithm A for the fair
k-center problem and a β-approximation algorithm B for the private k-center problem.
Then we can compute a (2βα+ 2β +α)-approximation for the private and fair k-center
problem, in polynomial time. In case algorithm B also works for the case P ⊆ L, the
approximation ratio improves to (βα + β + α)

Proof. We assume that the instance P , L, k, ` Col, col is solvable, i.e., n ≥ `. We
first use A to compute a solution without the lower bound: Let C = (S, φ) be an
α-approximation for the fair k-center problem on P , L, k, Col, col.

Again let k′ = |S| and let r = maxj∈P d(j, φ(j)) be the largest distance of any point to
its assigned center.

We use C to compute an arbitrary fairlet decomposition F = {Fi | i ∈ I} of P such that
each fairlet Fi is a subset of a cluster in C. By construction the maximum diameter of
any fairlet in F is at most 2α opt. Lemma 67 then tells us that there exists a clustering
with maximal radius at most (2α + 1) opt, which satisfies that for each i ∈ I all points
in Fi are part of the same cluster.

The idea is that we now want to compute a solution that satisfies the lower bound and
assigns all points in the same fairlet to the same cluster.

We assign a center to each of the fairlets. When we use the same center that has been
used in C we obtain that in each fairlet the distance of a point to the center is at most
α opt.

We declare the center of each fairlet as its representative and use algorithm B to
compute a solution that satisfies the lower bound `′ = `/b on the set of representatives.
We then replace each of the representatives by the points of the fairlet it represents and
return the result as our clustering. It is easy to see that satisfying a lower bound of `′
on the set of representatives and satisfying the lower bound of ` on the final cluster are
essentially the same for clusters composed as a union of these fairlets. Therefore this
approach returns a feasible clustering.

In order to find an upper bound on the maximal radius of the obtained clustering,
we at first find an upper bound on the maximal radius of the best private solution in
which every cluster is a union of our computed fairlets.

When reducing the points in each cluster to the fairlet representatives, the radius of
each cluster can be at most (α + 1) opt. In case B works with P ⊆ L, we can use B
to compute a β-approximation on the set of representatives as points and the set of
original locations L as possible centers to obtain a clustering on the representatives
with maximal radius at most β(α + 1) opt. Replacing each of the representatives
by the corresponding fairlet yields a clustering with a maximal radius of at most
β(α + 1) opt +α opt. In case B only works for instances with P = L, the maximal



74 2. Clustering

radius of the best solution on the set of representatives is at most 2(α + 1) opt and
obtain a final clustering with radius at most 2β(α + 1) opt +α opt.

Instead of using an approximation algorithm for the fair k-center problem in order to
obtain a fairlet decomposition we could also use an approximation algorithm for the
fairlet decomposition problem.

Lemma 69. Assume that there exists an α-approximation algorithm A for the fairlet
decomposition problem and a β-approximation algorithm B for the private k-center
problem. In case B works in the case P ⊆ L, then we can compute a (βα + β + α)-
approximation for the private fair k-center problem in polynomial time. For the supplier
version the approximation ratio increases by 1.

Proof. It is only left to show the supplier case, as everything else follows directly from
the previous discussion. As B works in case we have P ⊆ L, we use the explained
approach on the slightly changed instance, in which we use P ∪ L as the set of allowed
locations. As allowing more solutions cannot increase the maximum radius in the
optimal solution, the solution we compute on the altered instance can have a maximal
radius of at most (βα + β + α) opt. This solution might not be feasible as a computed
centers could potentially be in P \ L. We exchange all such centers by the closest
feasible location in L. This can increase the maximum radius by at most opt as the
distance between each point and its closest location is at most opt. It can happen that
now multiple clusters have the same center. If we merge all clusters with the same
center, we obtain a feasible solution.

Corollary 70. We can compute a 17-approximation for instances of the private and
fair k-center problem and a 23-approximation for instances of the private and fair
k-supplier problem in polynomial time.

If bh = 1 for at least one color h ∈ Col, the approximation ratios improve to 8 and 9.

Proof. All results follow from Lemma 68, Lemma 69 together with the 2-approximation
algorithm for the private k-center problem [3], which works in case we have P ⊆ L,
and an approximation algorithm for the fairlet decomposition problem. In case bh = 1
for some h ∈ Col we use the 2-approximation algorithm from Section 2.2.1 and for
the general case use the 5- and 7-approximation algorithms from Theorem 44 and
Theorem 45.

Privacy, fairness and capacities In this section we consider instances of the private
capacitated and fair k-center problem.

We let P , L, k, u, Col, col, ` be an instance of the private capacitated and fair k-center
problem.

As every fair cluster can be partitioned into fairlets, we again assume without loss of
generality that the lower bound ` as well as all upper bounds {u(j) | j ∈ P} are integer
multiples of b.
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We again look at fair clustering in two layers, the first layer consists of computing a
fairlet decomposition F = {Fi | i ∈ I} of P and the second layer consists of clustering
these fairlets.

Notice that Lemma 67 also works for fair, private and capacitated clustering with the
exact same proof.

The idea is again to compute a fairlet decomposition of F = {Fi | i ∈ I} with
small diameter and then use an approximation algorithm to compute a private and
capacitated clustering on a set of points {fi | i ∈ I} which represents the fairlets.

Through the construction we obtain the following lemma analogous to Lemma 68.

Lemma 71. Assume that there exists an α-approximation algorithm A for the private
capacitated k-center problem. Assume that there exists a β-approximation algorithm
B for the fairlet decomposition problem. Then we can compute an (2βα + 2β + α)-
approximation of the private capacitated and fair k-center problem in polynomial time.
In case algorithm B also works for the case P ⊆ L, the approximation ratio improves
to (βα + β + α).

Corollary 72. We can compute an O(1)-approximation for instances of the private
capacitated and fair k-center/k-supplier in polynomial time.

Proof. We use the 13-approximation algorithm by [32] for the k-supplier problem
with uniform lower bound and non-uniform upper bounds and the 9-approximation
algorithm by [32] for the k-supplier problem with uniform lower bound and uniform
upper bounds for both the k-center and k-supplier variant, as they work for the case
P ⊆ L.

Together with Lemma 71 and the 5-approximation algorithm from Theorem 44 this
yields an approximation ratio of 13 · 5 + 13 + 5 = 83. In case of a uniform upper bound
this reduces the approximation ratio to 59.

In case bh = 1 for some h ∈ Col the 2-approximation algorithm for the fairlet de-
composition problem from Section 2.2.1 improves the approximation ratio to 41 for
non-uniform upper bounds and 29 for uniform upper bounds.

Together with the 7-approximation algorithm from Theorem 45 we obtain the following
approximation ratios for the fair k-supplier problem with non-uniform upper bounds
and uniform lower bounds.

In the general case we obtain approximation ratios of 111 and 79 and in case bh = 1
for some h ∈ Col we obtain approximation ratios of 41 and 29.

2.3.3 Strongly Private k-Center

Similar to fairness we assume that instances of the strongly private k-center problem
contain, in addition to P , L and k, a set of colors Col and a function col : P → Col
which assigns a color to each of the points. In order to preserve the privacy although
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additional information about each point is know we demand that each cluster contains
enough representatives of each color.

Formally, the strongly private k-center problem consists of an instance of the k-center
problem together with a set of colors Col, a function col : P → Col and a lower bound
`h for each color h ∈ Col, where the problem is to compute a set of centers S ⊆ L
with |S| ≤ k and an assignment φ : P → S of the points to the selected centers that
satisfies `h ≤ |colh(P (i))| for all h ∈ Col and all i ∈ S and minimizes

max
j∈P

d(j, φ(j)).

We again adjust our method from Section 2.3.1 in order to apply it to the strongly
private k-center problem and obtain the following lemma.

Theorem 73. Assume that there exists an α-approximation algorithm A for the k-
supplier problem. Then we can compute an (α + 2)-approximation for the strongly
private k-center problem in polynomial time.

Proof. Let P , L, k, Col, col, {`h | h ∈ Col} be an instance of the strongly private
k-supplier problem.

Analogous to Section 2.3.1 we use threshold graphs with threshold τ and show that
for any given τ ∈ R, the algorithm has polynomial run time, and, if τ is equal to opt,
the value of the optimal solution, computes an (α + 2)-approximation. Since we know
that the value of the optimal solution is equal to the distance between a point and
a location, we test all O(|P ||L|) possible distances for τ and return the best feasible
clustering returned by any of them. The main proof is the proof of Lemma 74 below.
The lemma then concludes the proof.

We now describe the procedure for a fixed value of τ > 0.

Lemma 74. Assume that there exists an α-approximation algorithm A for the k-
supplier problem. Let P , L, k, Col, col, {`h | h ∈ Col} be an instance of the strongly
private k-supplier problem, let τ > 0 and let opt denote the maximum radius in the
optimal feasible clustering for P , L, k, Col, col, {`h | h ∈ Col}. We can in polynomial
time compute a feasible clustering with a maximum radius of at most (α + 2)τ or
determine τ < opt.

Proof. The algorithm first uses A to compute a solution without the lower bounds:
Let C = (S, φ) be an α-approximation for the k-supplier problem on P , L, k. Again
let k′ = |S| and let r = maxj∈P d(j, φ(j)) be the largest distance of any point to its
assigned center. If we have r > α · τ , we return τ < opt. Given C and τ , we create,
similar to Section 2.3.1, a threshold graph Gτ,h = (Vτ,h, Eτ,h) for every h ∈ Col by

Vτ,h ={vi | i ∈ S} ∪ {wj | j ∈ colh(P )} ∪ {s, t} and (2.34)
Eτ,h ={(vi, wj) | j ∈ colh(P (i))} ∪ {(wj, vi) | j ∈ colh(P ) \ P (i) ∧ d(j, P (i)) ≤ 2τ}

(2.35)



2.3. Privacy Preserving Clustering 77

∪{(s, vi) | |colh(P (i))| − `h > 0} ∪ {(vi, t) | |colh(P (i))| − `h < 0}. (2.36)

We define the capacity functions capi : Eτ,i → R by

cap(e) =


`h − |colh(P (i))|, if e = (vi, t)
|colh(P (i))| − `h, if e = (s, vi)
1 otherwise.

(2.37)

The only difference to Section 2.3.1 is that we do not have outliers and create a separate
threshold graph for every color.
We use Gh = (Vh, Eh) to refer to Gτ,h as τ is clear from context. We now compute
integral maximum s-t-flows fh on Gh. According to fh we can reassign points of color
h to different clusters.
Analogous to Lemma 52 we obtain the following lemma.
Lemma 75. Let fh be an integral maximal s-t-flow on Gh. It is possible to reassign j
to P (i) for all edges (wj, vi) with f((wj, vi)) = 1. The resulting solution has a maximum
radius of at most r + 2τ . If fh saturates all edges of the form (vi, t), then the solution
contains at least `h points of color h in every cluster.

If for all h ∈ Col, fh saturates all edges of the form (vi, t) in Gh, then we reassign points
according to Lemma 75 and return the new clustering. Note that for each h ∈ Col
fh would only suggest to reassigns points of color h. Therefore the reassignments
according to the flows computed for different colors do not interfere with each other.
Otherwise chose an arbitrary color h ∈ Col such that fh does not saturate all edges
of the form (vi, t) in Gh. We again look at the residual network Gfh of fh on Gh. We
define V ′, S(V ′), k′′, P (V ′) and PA(V ′) as before, i.e., V ′ is the set of nodes in Gfh

which cannot be reached from s, S(V ′) is the set containing the centers of the clusters
belonging to V ′, k′′ = |S(V ′)| and P (V ′) denotes the set of points that belong to V ′.
As before, we obtain the following lemma.
Lemma 76. Any clustering on P with maximum radius at most τ that contains at
least `h points of color h in every cluster uses fewer than k′′ clusters to cover all points
in P (V ′).

In case we have τ ≥ opt this implies that the optimal solution covers all points
in P (V ′) with fewer than k′′ clusters. An α-approximation on the point set P (V ′)
with at most k′′ − 1 clusters is therefore an α-approximation for P (V ′). We now
use A again to compute a new solution without the lower bounds: Let C ′ = (C ′, φ′)
be an α-approximation for the k-supplier problem on P (V ′), L, k′′ − 1. Let r′ =
maxj∈P (V ′) d(j, φ′(j)). Note that in case τ < opt, it can happen that no such clustering
exists or that we obtain r′ > α · τ . We then return τ < opt. Otherwise we replace S(V ′)
by S ′ in C and adjust φ accordingly to obtain C1 = (S1, φ1) with S1 = (S \ S(V ′)) ∪ S ′
and

φ1(j) =

φ′(j) if j ∈ P (V ′)
φ(j) otherwise.

(2.38)

Note that it can happen that S ′ and S \ S(V ′) share a center. In that case we simply
merge the corresponding clusters.
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Lemma 77. In case we did not return τ < opt, C1 is a solution for the k-supplier
problem P , L, k and we have r1 = maxj∈P d(j, φ1(j)) ≤ α · τ .

We iterate the previous process with the new clustering C1 until we either determine
τ < opt or the reassignment of points according to Lemma 75 yields a feasible solution.
Since each iteration reduces the number of clusters, the process terminates after at
most k iterations. Note that the color h ∈ Col, according to which we define the set
V ′ as the set of nodes in Gfh which cannot be reached from s, does not have to be the
same for every iteration, instead in each iteration the color can be chosen arbitrarily
among all colors h ∈ Col for which fh does not saturate all edges of the form (vi, t) in
Gh.

Corollary 78. We can compute a 5-approximation for instances of the strongly private
k-supplier problem in polynomial time.

Proof. Follows from Theorem 73 together with the 3-approximation algorithm for
k-supplier in [47].

Corollary 79. We can compute a 4-approximation for instances of the strong private
k-center problem in polynomial time.

Proof. Note that in the k-center variant we have P (V ′) ⊆ L every time we need to
recompute a clustering on a set P (V ′) ⊆ P . We will show that the 2-approximation
algorithm for the k-center problem in [47] also works on instances with P ⊆ L.
Theorem 73 then concludes the proof.

2.3.4 (Metric) Facility Location

Let P = L, f ∈ N, ` ∈ N, u ∈ N with 2` ≤ u be an instance of the private capacitated
facility location problem with uniform upper and uniform lower bounds and uniform
facility opening costs. Let C = (S, φ) be a γ-approximation for the private facility
location problem on P,L, f, `. We set k′ = |S|. We define an instance where all points
are translated to their centers. So we let P ′ contain |P (i)| copies of i for each i ∈ S.
More precisely, place a point pj at location φ(j) for all j ∈ P and call the resulting set
P ′. Note that we use P ′ in order to simplify the analysis and although it is not fully
supported by the definition, where P is a subset of X we will use the same terminology,
when we talk about clusterings on P ′.

Lemma 80. Let C ′ = (S ′, φ′) be any clustering for P ′. The clustering C ′′ = (S ′′, φ′′)
on P with S ′′ = S ′ and φ′′(j) = φ′(pj) for all j ∈ P . Then∑

j∈P
d(j, φ′′(j)) ≤

∑
j∈P

d(j, φ(j)) +
∑
j′∈P ′

d(j′, φ′(j′)).

Proof. Let j ∈ P be any point. Then

d(j, φ′′(j)) = d(j, φ′(pj)) ≤ d(j, pj) + d(pj, φ′(pj))
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by the triangle inequality. Summing this over all j ∈ P , we get that∑
j∈P

d(j, φ′′(j)) ≤
∑
j∈P

d(j, φ(j)) +
∑
j′∈P ′

d(j′, φ′(j′)).

Let P ′(i) denote the set {pj | j ∈ P (i)}. Assume that we have soft capacities, i.e.,
that we can open a center multiple times. Then we compute a solution to the upper
bounded facility location problem on P ′, L, f, u in the following way. Firstly, we open
a center at every location i ∈ S. This costs f · k′ opening cost. To the center i ∈ S,
we assign |P (i)| mod u points from P ′(i). After this step, the number of points in
P ′(i) that are not yet assigned is a multiple of u (this is true for all i ∈ S). We can
thus satisfy all their demand by opening at most n/u additional centers. Since any
feasible solution opens at least n/u centers, n/u ≤ kopt. Thus we additionally pay at
most f · kopt for opening the missing centers, where kopt denotes the number of centers
the optimal solution opens. Again, assigning the points costs nothing in P ′.

Corollary 81. There is a solution to the upper bounded facility location problem on
P,L, f, u with soft capacities which costs at most∑

j∈P
d(j, φ(j)) + f · (k′ + kopt).

Proof. Follows from the above discussion and Lemma 80.

We want to reconcile this solution with the lower bound solution. The facilities from
the second step are valid because they contain u ≥ ` points. The facilities from the
first step might be invalid. We will reassign some of the points to different centers at
the same location. This costs nothing.

For each i ∈ S there are two cases. In the first case we only opened one center at the
location i. In that case we have assigned |P (i)| ≥ ` points to that location. Otherwise
there exists at most one center at location i to which we assigned fewer than u points.
In case such a center exists we call it i1 and let b1 denote the number of points assigned
to i1. To every other centers at location i we must have assigned exactly u points.
Because we have opened at least two centers at location i, we can chose another center
i2 6= i1 at location i. In case we have b1 ≥ ` we do nothing. Otherwise we reassign u/2
points from i2 to i1, ensuring that we get two facilities which have at least u/2 ≥ ` and
at most u points; the rest of the facilities at this location will remain unchanged. Thus,
at no additional cost, we get a solution that respects both upper and lower bounds.

Corollary 82. There is a solution to the private soft capacitated facility location
problem on P,L, f, u, ` with 2` ≤ u which costs at most∑

j∈P
d(j, φ(j)) + f · (k′ + kopt).
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Now assume we do not have soft capacities. Then we consider the solution computed
by the above soft capacity algorithm; it partitions the points into k ≤ k′ + kopt clusters
{Ci | 1 ≤ i ≤ k}. For each cluster Ci, we let arg minj∈Ci

∑
j′∈Ci d(j′, j) be its center.

Say that the points in Ci were previously assigned to center c /∈ Ci and are now assigned
to c′. Furthermore, let c′′ be the point in Ci that is closest to c. Then we have∑

j∈Ci
d(j, c′) ≤

∑
j∈Ci

d(j, c′′),

and for each point j ∈ Ci,

d(j, c′′) ≤ d(j, c) + d(c′′, c) ≤ 2d(j, c)

because c′′ is the closest point to c in Ci. This implies∑
j∈Ci

d(j, c′) ≤ 2
∑
j∈Ci

d(j, c),

so the assignment cost goes up by a factor of at most two.

Corollary 83. There is a solution to the private capacitated facility location problem
on P,L, f, u, ` with 2` ≤ u which costs at most

2
∑
j∈P

d(j, φ(j)) + f · (k′ + kopt) ≤ 2γ optL + optU ≤ (2γ + 1) opt,

where optL is the cost of an optimal solution for the private facility location problem on
P,L, f, ` and optU is the cost of an optimal solution for the capacitated facility location
problem on P,L, f, u.



Chapter 3
Parity Games

This chapter is devoted to parity games. We prove the results discussed in Section 1.3
and describe the corresponding algorithms in full detail. We start by stating some
useful definitions and known fundamental properties of parity games. After that we
describe several kernelization methods for general and bipartite parity games. Then
we explain a very simple exponential time algorithm and explain how we use its overall
concept with some specific adjustments to obtain our new algorithms. We conclude
the chapter with the run time analysis of our new algorithms.

3.1 Fundamental Properties and Notation of Par-
ity Games

A parity game G = (V0 ] V1, E, p) consists of a directed graph (V0 ] V1, E), where V0
is the set of even nodes and V1 is the set of odd nodes, and a priority function
p : V0 ∪ V1 → N0. We often abuse notation and also refer to (V0 ] V1, E) as the graph
G. For each node v ∈ V (G), we denote by N+

G (v) = {w ∈ V0 ] V1 | (v, w) ∈ E} and
N−G (v) = {u ∈ V0 ] V1 | (u, v) ∈ E} the set of out-neighbors and in-neighbors of v in
G, respectively.

Two standard assumptions about parity games are (1) that G is bipartite with E ⊆
(V0 × V1) ∪ (V1 × V0), and (2) that each node u ∈ V has at least one outgoing edge
(u, v) ∈ E. The first assumption is often made because it is easy to transform a
non-bipartite instance into a bipartite instance. However, the usual transformation
increases the number of nodes in Vi by an amount of |{v ∈ V1−i | N−G (v) ∩ V1−i 6= ∅}|,
and can therefore increase the parameter k = min{|V0|, |V1|} significantly. We therefore
consider bipartite and non-bipartite instances separately in Theorem 11.

We write n = |V (G)|, m = |E| and p = |{p(v) | v ∈ V (G)}|. The game is played by
two players, the even player (or player 0) and the odd player (or player 1). The game
starts at some node v0 ∈ V (G). The players construct an infinite path (a play) as
follows. Let u be the last node added so far to the path. If u ∈ V0, then player 0 chooses

81
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an edge (u, v) ∈ E. Otherwise, if u ∈ V1, then player 1 chooses an edge (u, v) ∈ E.
In either case, node v is added to the path and a new edge is then chosen by either
player 0 or player 1. As each node has at least one outgoing edge, the path constructed
can always be continued. Let v0, v1, v2, . . . be the infinite path constructed by the two
players and let p(v0), p(v1), p(v2), . . . be the sequence of the priorities of the nodes on
the path. Player 0 wins the game if the largest priority seen infinitely often is even,
and player 1 wins if the largest priority seen infinitely often is odd.

We will define p1(v) as p(v) if p(v) is odd and as −p(v) if p(v) is even. This allows us
to say that, in case p1(v) > p1(u) for some v, u ∈ V , player 1 prefers p(v) over p(u).
Observe that removing an arbitrary finite prefix of a play in a parity game does not
change the winner; we refer to this property of parity games as prefix independence.

Definition 84. A strategy for player i ∈ {0, 1} in a game G, is a function si that maps
every finite walk v0, v1, . . . , vk in G that ends in a node vk ∈ Vi, an edge (vk, vk+1) ∈ E.
A strategy si is positional if the edge (vk, vk+1) ∈ E chosen depends only on the last
node vk visited and is independent of the prefix path v0, v1, . . . , vk−1.
A strategy si is winning (for player i) from a start node v0 if following this strategy
ensures that player i wins the game, regardless of which strategy is used by the other
player.

The fundamental determinacy theorem for parity games [37, 48] says that for every
parity game G and every start node v0, either player 0 has a winning strategy or player
1 has a winning strategy. Furthermore, if a player has a winning strategy from some
node in a parity game, then she also has a winning positional strategy from this node.
From now on we will therefore, unless stated differently, assume every strategy to be
positional. Given positional strategies s0 on V0 and s1 on V1 and a start node v0 ∈ V
the infinite path starting in v0 corresponding to these strategies consists of a finite
prefix and an infinite recurrence of a cycle C = C(s0, s1, v0). We call C the cycle
corresponding to s0, s1, v0 and say that s0 and s1 create C. The parity of the highest
priority p(u) of all nodes u ∈ V (C) in cycle C then determines the winner of the game.

Definition 85. The winning set of player i ∈ {0, 1} is the set wini(G) ⊆ V of nodes
of the game G from which player i has a winning strategy.

Definition 86. For i ∈ {0, 1}, an i-dominion is a set of nodes D ⊆ V so that player i
can win from every node of D, without leaving D and without allowing the other player
to leave D.

An example of an i-dominion is the set wini(G), but there may be smaller subsets of
wini(G) that are i-dominions as well. Although finding i-dominions can be just as hard
as finding wini(G), searching only for dominions with certain properties (e.g. small
dominions) can be easier. In our algorithm we will use the fact that once an i-dominion
is found, it can easily be removed from the graph, leaving a smaller game to be solved.

Next, we recall some well-known results about parity games that form the basis of
the algorithms for solving parity games by McNaughton [81] and Zielonka [103]. We
include them here as our algorithm relies on them as well; for a detailed exposition we
refer to Grädel et al. [48]. Fix a parity game G = (V0 ] V1, E, p).
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Definition 87. For i ∈ {0, 1}, a set B ⊆ V (G) is i-closed if for every u ∈ B the
following holds (we use the notation ¬i for the element 1− i ∈ {0, 1}):

• If u ∈ Vi, then there exists some (u, v) ∈ E such that v ∈ B; and
• if u ∈ V¬i, then for every (u, v) ∈ E, we have v ∈ B.

In other words, a set B is i-closed if player i can always choose to stay in B while
simultaneously player ¬i cannot escape from it, i.e., B is a “trap” for player ¬i.

Lemma 88. For each i ∈ {0, 1}, the set wini(G) is i-closed.

Let A ⊆ V (G) be a set of nodes and let i ∈ {0, 1}. The i-reachability set of A is the set
reachi(A) of nodes in A together with all nodes in V (G) \ A from which player i has a
strategy σ to enter A at least once (regardless of the strategy of the other player); we
call such a strategy σ an i-reachability strategy to A.

Lemma 89. For A ⊆ V (G) and i ∈ {0, 1}, the set V (G) \ reachi(A) is (¬i)-closed.

We will from now on assume that the graph of the parity game we operate on is encoded
as an adjacency list.

Lemma 90. For every set A ⊆ V (G) and i ∈ {0, 1}, the set reachi(A) can be computed
in O(m) time, where m = |E| is the number of edges in the game.

If B ⊆ V (G) is such that for each node u ∈ V (G) \ B there is an edge (u, v) with
v ∈ V (G) \B, then the subgame G−B is the game obtained from G by removing the
nodes of B. We will only be using B’s for which V (G) \B is an i-closed set for some i.
In this case every node in v ∈ V (G) \ B has at least one out-going edge (v, w) with
w ∈ V (G) \B and G−B will therefore be well-defined. The next lemmas show some
useful properties of subgames.

Lemma 91. Let G′ be a subgame of G and let i ∈ {0, 1}. If the node set of G′ is
i-closed in G, then wini(G′) ⊆ wini(G).

The next lemma shows that if we know some non-empty subset U of the winning set of
some player i in a game G, then computing the winning sets of both players in G can
be reduced to computing their winning sets in the smaller game G− reachi(U).

Lemma 92. For any parity game G and i ∈ {0, 1}, if U ⊆ wini(G) and U∗ = reachi(U),
then wini(G) = U∗ ∪ wini(G− U∗) and win¬i(G) = win¬i(G− U∗).

The next lemma complements Lemma 92 by providing a way to find a non-empty
subset of the winning set of player i in a parity game G or to conclude that player ¬i
can win from every node in G.

Lemma 93. Let G be a parity game with largest priority pmax and let Vpmax ⊆ V (G) be
the set of nodes with priority pmax. Let i = pmax (mod 2) and let G′ = G−reachi(Vpmax).
Then win¬i(G′) ⊆ win¬i(G). Also, if win¬i(G′) = ∅, then wini(G) = V , i.e., player i
wins from every node of G.
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3.2 Kernelization of Parity Games

We start by describing some reduction rules for parity games. Theses rules allow us
to efficiently compute the winning sets of the original parity game once we know the
winning sets of the reduced game.

3.2.1 General Parity Games

Lemma 94. Any parity game G = (V0 ] V1, E, p) can be transformed in time O(pmn)
into a parity game G′ = (V ′0 ] V ′1 , E ′, p′) with V ′1 ⊆ V1 such that

• E ′ does not contain edges that start and end in V ′1 , and
• for each node v ∈ V ′0 either N+

G (v) ⊆ V ′1 or N−G (v) ⊆ V ′1 , and
• |V ′0 | ≤ min{n+ pk, (p+ 1)k + pk}, where k = |V1|.

Moreover, G and G′ have the same winning sets on V ′1 and the winner of the remaining
nodes of G can be computed either during the transformation or from the winning sets
of G′ in linear time.

Proof. We will modify G in multiple steps. We will at first explain, what kind of
modifications we want to make and later explain how they can be computed.

We will slightly abuse notation and refer in every step to the parity game that we
obtained in the step before as G = (V0]V1, E, p). First we eliminate all edges inside V1.
This can easily be achieved by adding a new node ve with p′(ve) = p(w) to V0 for each
edge e = (v, w) ∈ E with v, w ∈ V1 and by replacing the edge e by the two edges (v, ve)
and (ve, w). Since the new node ve only has a single outgoing edge, this transformation
does neither change the winning sets nor the winning strategies.

Next, we remove certain cycles inside V0 from the game. Let W0 ⊆ V0 denote all nodes
in V0 that are part of at least one cycle that lies completely inside V0 and whose highest
priority is even. Clearly player 0 can win from all nodes in reach0(W0) by enforcing
that such a cycle is entered and never left again. Hence, we can remove reach0(W0)
from the game according to Lemma 92. Let W1 ⊆ V0 denote all nodes that are left
in V0 and from which player 0 cannot reach V1. Then all paths that start in some node
u ∈ W1 must end in some cycle that is completely contained in V0. Since we have
removed all cycles whose highest priority is even, the maximum priority of this cycle
must be odd. Thus, player 1 wins from all nodes in reach1(W1). Hence, we can also
remove reach1(W1) from the game according to Lemma 92.

We again use the notation G = (V0 ] V1, E, p) to refer to the parity game obtained
after the previously discussed steps. Since we have removed all cycles from V0 whose
highest priority is even, player 0 loses for sure if she does not leave V0. Hence, we
can assume without loss of generality that the play leaves V0 from every starting node
if player 0 plays an optimal strategy. Then for every node v ∈ V0 player 0 uses a
(possibly empty) path inside V0 followed by an edge that leads to some node w ∈ V1.
To determine the winning sets of a strategy of player 0 it is not important to know
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the exact paths player 0 chooses. Rather, it suffices to know for each v ∈ V0 which
node w ∈ V1 will be reached and what the highest priority on the chosen v-w-path is.
To get rid of long paths, we add p · |V1| new nodes to V0, one node v(p′, w) for each
pair of a priority p′ and a node w ∈ V1. Node v(p′, w) has a priority p′ and its only
out-neighbor is w. The winner does not change if player 0 goes from v ∈ V0 directly
to v(p′, w) and from there directly to w ∈ V1 instead of taking some other path from v
inside V0 with maximum priority p′, followed by an edge that leads to w. For all such
paths we add the corresponding edge (v, v(p′, w)). We and can then, without changing
the winning sets of the game, delete all edges inside V0, that do not end in one of
the new nodes v(p′, w). Observe that this ensures that all out-neighbors of the new
nodes v(p′, w) belong to V1 while all in-neighbors of the old nodes v ∈ V0 belong to V1.
It can be the case that for some pair (v, w) ∈ V0 × V1 there are multiple nodes v(p′, w)
that can be reached from v. We can assume without loss of generality that if player 0
decides to go from v to w via one of these nodes then she chooses the one that is best
for her, i.e., the one with lowest p1-value. All edges from v to other nodes v(p′, w) can
be removed.
|V ′0 | ≤ n+ min{m, k2}+ pk follows directly from the previously discussed construction:
initially V0 consists of n− k ≤ n nodes, there are at most min{m, k2} edges inside V1
for which we create a new node ve, and there are only pk new nodes v(p′, w). To
get rid of the term min{m, k2} we can identify each node ve, which derived from an
edge e = (v, w) inside V1, with the node v(p(w), w). This ensures that there are only pk
new nodes. To show that |V ′0 | ≤ (p+ 1)k + pk we can reduce the number of old nodes
in V1 to ensure that at most (p+ 1)k remain. At first we remove all nodes v ∈ V0 with
N−G (v) = ∅, because they obviously cannot be part of a cycle and we can compute in
linear time to which winning set they belong, once we know to which winning set their
out-neighbors belong. Now let v and v′ be two such nodes in V0 with N+

G (v) = N+
G (v′).

We then identify v and v′ without changing the winning sets in V1, since all nodes
in N+

G (v) must have a priority at least as high as max{p(v), p(v′)}. This is because
the priority of any node in N+

G (v) (N+
G (v′)) corresponds to the highest priority on a

path that starts in v (v′) and therefore must be at least p(v) (p(v′)). Afterward there
remains at most one node v ∈ V0 for each possible set N+

G (v).
Since N+

G (v) can contain at most one new node corresponding to w for each w ∈ V1 and
there are p different ones to choose from there are at most (p+ 1)k different possibilities
for N+

G (v).
It remains to analyze the run time of the transformation. We consider the different
steps of the reduction separately. The first step of removing all edges inside V1 can
be performed in O(m) because we only need to check for every edge e = (v, w) ∈ E
if v, w ∈ V1 and then remove one edge and add two edges and a node. The second step of
removing dominions completely inside V0 can be executed in time O(log(p)·m) as follows.
First, we solve the solitary game on V0 \ reach1(V1) and remove the 0-reachability-set of
its 0-winning set; this can be done in time O(log p ·m) [18]. Thereafter, we compute the
1-reachability set of V0 \ reach0(V1) and remove it; this can be done in time O(m) [64].
The third step of removing long paths inside V0 can be performed as follows. The
algorithm computes the best priority for player 0 that a path in V0 from a node v ∈ V0
to a node w ∈ V1 can have. To determine which nodes in v ∈ V0 can reach which
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nodes w ∈ V1 via a path in V0 whose highest priority has fixed value of p′, consider the
subgraph G≤p′ of G that is induced by the set V ≤p′ of nodes of priority at most p′ and
remove from it those edges that start in V1. We then consider the set of nodes with
priority exactly p′ and compute with a DFS in time O(m) all nodes in V1 reachable
from them. Then we compute with a DFS for each node in V0 which of the nodes with
priority p′ they can reach. This takes a total of at most 2n applications of DFS for
each priority and therefore in total O(pmn) time. In the last step, where we remove
and contract some of the nodes in V0, we can find all nodes without incoming edges
in time O(m) and we can order all remaining nodes by their outgoing edges in time
O(|V1| · (n+p+ 1)) using a version of radix-sort, where we view the set of out-neighbors
as an (p+ 1)-adic number with |V1| digits. Thereafter, in linear time we identify sets of
nodes with the same outgoing neighbors and identify them in total time O(n+m).

3.2.2 Bipartite Parity Games

In this section we give some reduction rules that efficiently reduce any bipartite game
G = (V0 ] V1, E, p) to a structurally simpler bipartite game G′ = (V ′0 ] V ′1 , E ′, p′), such
that the winning sets of G can be efficiently recovered from the winning sets of G′.
After exhaustive application of the reduction rules, the reduced game G′ will have size
bounded by some function of k and p only, independent of the size of G.

The digraphs of our underlying parity game may have self-loops and bidirected edges,
but (without loss of generality) no parallel edges between the same two nodes. Thus,
whenever parallel edges arise during the application of one of the reduction rules, we
remove one of them without explicit mention.

Lemma 95. Let G = (V0 ] V1, E, p) be a bipartite parity game, and let u, v ∈ V0 be
such that N+

G (v) ⊆ N+
G (u) and p1(v) ≥ p1(u). Let G′ be the parity game obtained from

G by deleting the edges {(w, u) ∈ E | (w, v) ∈ E}. Then the winning sets of G and G′
are equal.

Proof. We show that an edge (w′, u) ∈ {(w, u) ∈ E | (w, v) ∈ E} can only be part of a
winning strategy for player 1 on node w′ if the edge (w′, v) is part of a winning strategy
for player 1 on w′ as well. Therefore, after deleting (w′, u), player 1 wins from w′ in G′
if and only if he wins from w′ in G. Deleting the edges in {(w, u) ∈ E | (w, v) ∈ E}
does therefore not change the winning sets.

Assume that player 1 has a winning strategy s1 : V1 → V0 for w′ with s1(w′) = u. Let
s′1 : V1 → V0 be defined by s′1(w′) = v and s′1(w) = s1(w) for all w ∈ V1 \ {w′}. We
claim that s′1 is a winning strategy for player 1 on w′ as well. Assume that there exists
a counter strategy s′0 for s′1 such that player 0 wins the game with starting node w′.
We will define a strategy s0 for player 0 and show that s0 is a counter strategy for
s1. Note that s0 will not necessarily be a positional strategy. For all w ∈ V0 \ {u}, s0
chooses the same successor as s′0, but on u it might change its behavior. Each time
the play encounters u directly after encountering w′, strategy s0 chooses s′0(v) as the
successor of u. Every other time the play encounters u, strategy s0 chooses s′0(u) as
the successor of u.
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The play defined by s′0 and s′1 can then be transformed into the play defined by s0
and s1 by replacing every appearance of the sequence w′, v, s′0(v) with the sequence
w′, u, s′0(v). Let C ′ be the cycle created by s′0 and s′1; then C ′ is a winning cycle for
player 0. Then s0 and s1 will also create the cycle C ′ if C ′ does not contain the sequence
w′, v, s′0(v). Let us therefore assume that C ′ contains the sequence w′, v, s′0(v). Let C
be the closed walk obtained, when replacing v with u in C ′. Notice that C does not
have to be a cycle, as it could contain u twice. After a finite prefix the play defined
by s0 and s1 will consist of an infinite recurrence of C. Since we have p1(v) ≥ p1(u)
player 0 is wining the play defined by s0 and s1. This contradicts that s1 is a winning
strategy for player 1.

Lemma 96. Let G = (V0 ] V1, E, p) be a bipartite parity game, and let u, v ∈ V0 be
nodes with N+

G (u) = N+
G (v) and p(v) = p(u). Let G′ be the parity game obtained from G

by contracting u and v into a new node v′ with priority p(v). Then u and v belong to
the same winning set wini(G) in G and v′ belongs to the winning set wini(G′) of the
same player in G′. For all other nodes the winning sets of G and G′ coincide.

Proof. Note that u and v belong to the winning set of the same player i in G. We can
assume that player 0 chooses the same successor for u and v in her optimal strategy.
Then no cycle created by optimal strategies contains both u and v and, after the
contraction, each simple cycle that does not contain both u and v is again a simple
cycle with the same priorities. Also, each cycle in the contracted game either exists
in the original game (i.e., it does not contain v′) or an equivalent cycle, which can
be created by replacing v′ with v or u, exists in the original game. We can also map
winning strategies in the original game, where u and v have the same successor into
winning strategies in the resulting game and vice versa by simply identifying the
successors of v′ with the successor of u and v and vice versa, while keeping the rest
of the strategy. We again assume that in the winning strategies in the original game,
v and u have the same successor w. We then set the successor of v′ to w and set the
successor of any node w′ with successor v or u to v′. The other way around v and u
get the same successor as v′ and any node w′ with successor v′ gets either v or u as
its successor, depending on which of the edges (w′, v) and (w′, u) exists in the original
game. A pair of strategies and the pair of strategies, to which they are mapped to,
then create corresponding cycles and must therefore either both be winning for player 1
or both be winning for player 0.

Lemma 97. Let G = (V0 ] V1, E, p) be a bipartite parity game, and let v ∈ V (G) be
such that N−G (v) = ∅. Then for the parity game G′ = G − v and for i ∈ {0, 1}, any
node v′ 6= v is winning for player i in G if and only if it is winning for player i in G′.

Proof. The condition N−G (v) = ∅ implies that v cannot be part of any cycle. Let v ∈ Vi;
then v ∈ wini(G) is equivalent to the existence of some node w ∈ wini(G) ∩ N+

G (v).
Since all possible strategies for all nodes except v are also possible strategies in G−{v},
all nodes in V \ {v} belong to the same winning set in G and in G− v. (Notice that
G− {v} is again a parity game.) Once we computed the winning sets for G− {v}, we
can check in time O(n) whether v ∈ wini(G) or v ∈ win¬i(G).
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Lemma 98. Let G = (V0 ] V1, E, p) be a parity game with largest priority pmax =
max{p(v) | v ∈ V (G)}. If p−1(z) = ∅ for some z ∈ {1, . . . , pmax} then let G′ =
(V0 ] V1, E, p

′) be the parity game obtained from G by setting p′(v) = p(v) − 2 for
all v ∈ V with p(v) > z and p′(v) = p(v) for all v ∈ V with p(v) < z. Then the winning
sets of the games G and G′ coincide.

Proof. Let s0 and s1 be strategies for player 0 and player 1, respectively, and let C =
(v0, v1, . . . , v`) be the cycle created by these strategies when the game starts at some
node v. The parity i of the largest element in the set Q = {p(v0), . . . , p(v`)} determines
which player wins in G and the parity i′ of the largest element in the set Q′ =
{p′(v0), . . . , p′(v`)} determines which player wins in G′. It is easy to see that our
reduction ensures that i = i′. Since this is true for any cycle, the lemma follows.

Corollary 99. In any parity game with maximum priority pmax to which the reduction
rule described in Lemma 98 cannot be applied anymore, the set of priorities is either
{0, 1, . . . , pmax} or {1, . . . , pmax}.

Lemma 100. Let G = (V0 ] V1, E, p) be a bipartite parity game with |V1| = k that is
reduced according to Lemmas 95–97. Then |V0| ≤ 2k ·min{k, p}.

Proof. For each node v ∈ V0 there are 2k possible choices for N+
G (v). Lemma 95 yields

that for two nodes v 6= u ∈ V0 with N+
G (v) = N+

G (u) we must have N−G (v)∩N−G (u) = ∅.
Lemma 97 then yields that there can be at most k nodes in V0 for every possible choice
of N+

G (v). Also Lemma 96 yields that for each possible choice of (N+
G (v), p(v)) there

exists at most one node in V0.

Lemma 101. There exists a sequence of applications of the reduction rules described
in Lemmas 95–98 with a total run time of O(n3) that leads to a game which cannot be
reduced by any of the descried rules anymore.

Proof. We show for each reduction rule separately how to apply it exhaustively in time
O(n3). It can happen, that some reductions corresponding to one of the rules lead to
allowing some other reductions, which were not allowed before. Therefore we cannot
only apply all reductions corresponding to one rule after all reductions corresponding
to another rule.

Most of the run time will be necessary to test if Lemma 95 or Lemma 96 applies to an
ordered pair of nodes. We will argue how to apply the reductions such that we do not
have to test the same ordered pair of nodes more than once, yielding a total run time
of O(n3).

To apply all reductions of Lemma 98, we first sort the nodes in increasing order of
their priorities and create an order of subsets each containing all nodes with the same
priority; this can be done in O(n log(n)) time. We then save for each of the subsets
if its corresponding priority is odd or even and unite consecutive sets with the same
parity. If the parity of the priority in the first subset is even, all nodes in the i-th
subset get priority i− 1; otherwise all nodes in the i-th subset get priority i. Uniting
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sets can be done in linear time, and we cannot unite more than n times. The time for
applying Lemma 98 is thus O(n2).

To apply all reductions for Lemma 95, we need to check for each pair of nodes {u, v} ⊆ V0
with p1(v) ≥ p1(u) whether N+

G (v) ⊆ N+
G (u), and find all nodes w with (w, u) ∈ E

and (w, v) ∈ E. There are O(n2) node pairs {u, v} ∈ V0 with p1(v) ≥ p1(u), which
can easily be found using the order of subsets created for Lemma 98. Checking if
N+
G (v) ⊆ N+

G (u) and finding all nodes w with (w, u) ∈ E and (w, v) ∈ E can be done
in time O(n). The total run time for Lemma 95 therefore is O(n3).

To apply all reductions for Lemma 96 we need to check for each pair of nodes {u, v} ⊆ V0
with p(v) = p(u) whether N+

G (v) = N+
G (u). There are O(n2) such pairs {u, v} with

p(v) = p(u), which can easily be found using the order of subsets created for Lemma 98.
Testing whether N+

G (v) = N+
G (u) and identifying u and v can be done in time O(n).

The total run time for Lemma 96 therefore is O(n3).

To apply all reductions for Lemma 97, we only need to check for each node if it has
incoming edges and possibly delete it. Testing a node can be done in constant time,
and deleting a node takes at most linear time. The time for applying Lemma 97 is thus
O(n2).

We will first apply all feasible reductions for Lemma 98, then all feasible reductions
for Lemmas 95, 96 and 97. Any reduction that is now possible was not feasible in the
beginning.

Observe that some reductions can result in other reductions becoming feasible. Since
we do not change the out-neighborhood of any node in V0, reductions corresponding to
Lemmas 95 and 96 for a pair of nodes {u, v} ⊆ V0 can only become feasible when we
combine the two subsets containing v and u in a reduction corresponding to Lemma 98.
For each node pair {u, v} ⊆ V0 this can happen at most once. The total run time for
all reductions corresponding to Lemma 95 and 96 therefore is in O(n3). Reductions
corresponding to Lemma 97 and a node v ∈ V0 can only become feasible when we
remove incoming edges of v. This can happen at most n times for each node v ∈ V0,
before we remove it. The total run time for all reductions corresponding to Lemma 97
therefore is in O(n2). Reductions corresponding to Lemma 98 can only become feasible
when all nodes of one subset have been removed. This can happen at most n times;
hence any node will be moved to another subset at most n times. The total run time
for all reductions corresponding to Lemma 98 therefore is in O(n2).

We can now prove our main kernelization result.

Proof(Theorem 13). The part of the theorem for general instances follows directly
from Lemma 94. The part for bipartite instances follows from Lemma 100 and
Lemma 101 because the reduced bipartite parity game G′ = (V ′0 ] V ′1 , E ′, p′) satisfied
|V ′0 | ≤ 2k ·min{k, p} and |V ′1 | ≤ k. Since G′ is bipartite, this implies that it contains
at most k2k ·min{k, p} edges.
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3.3 A Simple Exponential-Time Algorithm

A simple algorithm with run time O(2n) for the solution of parity games originates from
the work of McNaughton [81] and was first presented for parity games by Zielonka [103];
see also Grädel et al. [48]. Algorithm win(G) receives a parity game G and returns
the pair of winning sets (win0(G) = W0,win1(G) = W1).
Algorithm win(G) is based on Lemmas 92 and 93. Let pmax be the largest priority in G
and let Vpmax be the set of nodes with priority pmax. Let i = pmax (mod 2) be the player
who owns the highest priority. The algorithm first finds the winning sets (W ′

0,W
′
1) of

the smaller game G′ = G− reachi(Vpmax) in a first recursive call. If W ′
¬i = ∅, then by

Lemma 93 player i wins from all nodes of G and we are done. Otherwise, again by
Lemma 93 we know that W ′

¬i ⊆ win¬i(G). The algorithm then finds the winning sets
(W ′′

0 ,W
′′
1 ) of the smaller game G′′ = G− reach¬i(W ′

¬i) by a second recursive call. By
Lemma 92, wini(G) = W ′′

i and win¬i(G) = reach¬i(W ′
¬i) ∪W ′′

¬i = V (G) \W ′′
i .

Algorithm 4 win(G)
Input: A parity game G = (V0 ] V1, E, p) with maximum priority pmax.
Output: (W0,W1), where Wi is the winning set of player i ∈ {0, 1}.

1: if V = ∅ then
2: return (∅, ∅)
3: i← pmax (mod 2); j ← ¬i
4: (W ′

0,W
′
1)← win(G− reachi(Vpmax))

5: if W ′
j = ∅ then

6: (Wi,Wj)← (V, ∅)
7: else
8: (W ′′

0 ,W
′′
1 )← win(G− reachj(W ′

j))
9: (Wi,Wj)← (W ′′

i , V \W ′′
i )

10: return (W0,W1)

Theorem 102. Algorithm win(G) finds the winning sets of any parity game on n
nodes in time O(2n).

Proof. The correctness of the algorithm follows from Lemmas 92 and 93, as argued
above. Let T ′(n) be the number of steps needed by algorithm win(G) to solve a game
G on n nodes. Algorithm win(G) makes two recursive calls win(G′) and win(G′′) on
games with at most n− 1 nodes. Other than that, it performs only O(n2) operations.
(The most time consuming operations are the computations of the sets reachi(Vpmax) and
reachj(W ′

j).) Therefore, T ′(n) ≤ 2T ′(n− 1) +O(n2), which implies T ′(n) = O(2n).

3.4 Overview of the New Algorithms

Before we describe our new algorithms that lead to Theorems 11 and 14 in detail
in Sect. 3.6 and Sect. 3.7, we present an overview of the main ideas. The algo-
rithm new-win(G) by Jurdziński, Paterson, and Zwick [64] with run time nO(

√
n) is a
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slight modification of the just described algorithm win(G). At the beginning of each
recursive call it tests in time O(n`) if the parity game contains a dominion D of size
at most ` = d

√
2ne. If this is the case then D is removed and the remaining game is

solved recursively. Else, the parity game is solved by the algorithm win(G), except
that the recursive calls in lines 4 and 8 are made to new-win(G). Since this happens
only when G does not contain a dominion of size at most `, the dominion reachj(W ′

j)
that is removed in line 8 has size greater than ` and hence, the second recursive call is
to a substantially smaller game. Overall, this leads to the improved run time of nO(

√
n).

Our new algorithms are based on a similar idea. Instead of simply searching for a
dominion of size at most `, our algorithm new-win1(G) that leads to Theorem 11
searches for a dominion that contains at most ` = b

√
2kc nodes of the odd player,

assuming without loss of generality that the odd player controls fewer nodes, i.e.,
k = |V1|. If such a dominion is found then we remove it from the game and solve
the remaining game recursively. Otherwise, we use the algorithm win(G) to solve the
parity game, except that the recursive calls in lines 4 and 8 are made to new-win1(G).
It can happen that in the game to which the first recursive call in line 4 is made, the
odd player controls again k nodes. We will show that in bipartite instances this cannot
happen in two consecutive calls. For general instances we use that the observation
that at least the number of different priorities decreases by one in the recursive call.
Searching efficiently for a dominion that contains at most ` = b

√
2kc nodes of the

odd player is more involved than simply searching for dominions whose total size is at
most `. We use multiple recursive calls of new-win1 to test if such a dominion exists,
which makes the recursion of our algorithm and its analysis more complicated.

Our second algorithm leading to Theorem 14 is based on the same approach and
inspired by the algorithm of Jurdziński, Paterson, and Zwick [64]. In this case we let sj ,
for some j ∈ N, equal the number of nodes with out-degree at most j. We separate
the nodes into sj nodes with out-degree at most j and n− sj nodes with out-degree
larger than j and, at the beginning of each iteration, search for and remove dominions
that contain at most ` = d

√
2(n− sj)e nodes with out-degree larger than j and at

most s = d
√
sj · logj sje nodes with out-degree at most j. This algorithm runs in time

n
O

(√
n−sj+

√
sj

logj sj

)
, which implies Theorem 14.

3.5 Finding Small Dominions

We now describe how dominions with the previously discussed properties can be found.
Let G = (V0 ] V1, E, p) be a parity game. Recall that for i ∈ {0, 1}, a set D ⊆ V is an
i-dominion if player i can win from every node of D without ever leaving D, regardless
of the strategy of player ¬i. Note that any i-dominion must be i-closed. A set D ⊆ V
is a dominion if it is either a 0-dominion or a 1-dominion. By prefix independence of
parity games, the winning set wini(G) of player i is an i-dominion.

For k, p ∈ N, let T (k) denote the maximum number of steps needed to solve a bipartite
parity game G = (V0 ] V1, E, p) and let T (k, p) denote the maximum number of
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steps needed to solve a general parity game G = (V0 ] V1, E, p) with |V1| = k and
p = |{p(v) | v ∈ V }| using some fixed algorithm. For k, p, ` ∈ N, let domk(`) denote
the maximum number of steps required to find a dominion D with |V1 ∩D| ≤ ` in a
bipartite parity game G = (V0 ] V1, E, p) with |V1| = k and let domk,p(`) denote the
maximum number of steps required to find a dominion D with |V1∩D| ≤ ` in a general
parity game G = (V0]V1, E, p) with |V1| = k and p = |{p(v) | v ∈ V }|, or to determine
that no such dominion exists.

We will in the analysis of run times make the assumption that computation and removal
of reachability sets as well as kernelization are elementary operation and can therefore
be performed in time O(1). To obtain the actual run times of our algorithms we will in
the end multiply the computed run times by a factor corresponding to the time needed
for these operations.

Lemma 103. For k ≥ 4, domk(`) = O(k` · T (`)) and domk,p(`) = O(k` · T (`, p)).

Proof. There are O(k`) sets VD ⊆ V1 with |VD| = `. We argue below that for each such
set VD, one can determine whether or not there exists a dominion D with D ∩ V1 ⊆ VD
by solving two parity games that are subgames of G, i.e., these games arise from G by
removing some of the nodes. This implies the lemma because each of these subgames
can be solved in time T (`) or T (`, p) for bipartite or general parity games, respectively.

Let VD ⊆ V1 be a set with |VD| = `. We will now show how to check if there exists an
i-dominion D with D ∩ V1 ⊆ VD. If such an i-dominion D exists, then it is i-closed.
Therefore, it does not contain any node v ∈ V from which player ¬i can reach a node
in V1 \ VD. Let V ′ = V (G) \ reach¬i(V1 \ VD) be the set of nodes from which player ¬i
cannot force to reach a node in V1 \ VD; the set V ′ can therefore be computed by
computing and removing a reachability set, which as we assumed is an elementary
operations. We then have D ⊆ V ′, and since no node in V1 \ VD can be part of V ′, it
holds that V ′∩V1 ⊆ VD. Since V ′ is an i-closed set, the game G−reach¬i(V1\VD) is well
defined. Let wini(V ′) be the winning set of player 1 in the game G− reach¬i(V1 \ VD).
Then wini(V ′) is an i-dominion that contains D.

This shows that for each set VD ⊆ V1 with |VD| = ` we only need to compute for each
i ∈ {0, 1} the sets V ′i = V \ reach¬i(V1 \VD) of nodes from which player ¬i cannot force
to enter V1 \ VD and compute the winning sets of the game G − reach¬i(V1 \ VD) to
determine whether or not there exists a dominion D with D ∩ V1 ⊆ VD.

With the algorithm described in Lemma 103 we can find a dominion D such that
|D ∩ V1| ≤ ` if such a dominion exists. We denote this algorithm by dominion1(G, `)
and assume that it returns either the pair (D, i) if an i-dominion D is found, or (∅,−1)
if not.

We will give the pseudocode for algorithm dominion(G, `, s). In the pseudocode,
let Um denote the set of marked nodes from U and let king(U, strategyi) denote an
execution of the algorithm by King et al. [67] that determines the winners of the
subgame G restricted to U with a given strategy for player i.
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Algorithm 5 dominion(G, `, s)
Input: A parity game G = (V0 ] V1, E, p) and `, s ∈ {0, . . . , |V (G)|}.
Output: An i-dominion (D, i) for i ∈ {0, 1} or (∅,−1) if no dominion is found.

1: Fix a total order ≺ on the nodes of G.
2: For each u ∈ V (G) sort the edges emanating from u by ≺ on their respective

endpoint.
3: for i ∈ {0, 1} do
4: for v ∈ Vi do
5: for 〈a1, . . . , a`, b1, . . . , bs〉 ∈ {1, . . . , |V (G)|}` × {1, . . . , j}s do
6: r1 = 1, r2 = 1, U = {v}, Um = ∅
7: while U 6= ∅, r1 ≤ ` and r2 ≤ s do
8: Choose u = min(U,≺).
9: U = U \ {u}, Um = Um ∪ {u}.

10: if u ∈ Vi then
11: if |δ+(u)| > j then
12: if |δ+(u)| ≤ r1 then
13: Let e = (u,w) be the ar1-th outgoing edge of u.
14: U = U ∪ ({w} \ Um), r1 = r1 + 1, strategyi(u) = w.
15: else
16: U = ∅, Um = ∅.
17: else
18: if |δ+(u)| ≤ r2 then
19: Let e = (u,w) be the br2-th outgoing edge of u.
20: U = U ∪ ({w} \ Um), r2 = r2 + 1, strategyi(u) = w.
21: else
22: U = ∅, Um = ∅.
23: else
24: U = U ∪ (N+(u) \ Um)
25: if Um 6= ∅ contains at most ` high out-degree nodes and at most s low

out-degree nodes then
26: (W0,W1) = king(U, strategyi).
27: if Wi = U then
28: return (U, i)
29: return (∅,−1).
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3.6 New Algorithms for Solving Parity Games

We present the algorithm new-win1(G) discussed in Sect. 3.4 in detail. Let G =
(V0 ] V1, E, p) with |V1| = k be a parity game with p distinct priorities.

The algorithm new-win1 starts by trying to find a “small” dominion D, where small
means |D ∩ V1| ≤ `, where ` = b

√
2kc is a parameter chosen to minimize the run time

of the algorithm. If such an i-dominion is found, then we remove it together with its
i-reachability set from the game and solve the remaining game recursively. If no small
dominion is found, then new-win1 simply calls algorithm old-win1, which is almost
identical to algorithm win. The only difference between old-win1 and win is that its
recursive calls are made to new-win1 and not to itself.

The recursion stops once the number of odd nodes is at most 4, in which case we will
test each of the at most ((p+ 1)4)4 (due to the size of our kernel) different strategies for
player 1 in constant time. We will call this brute force method solve(G). We will also
kernelize using the reduction rules described in Sect. 3.2. We will call the kernelization
subroutine kernel(G). The pseudocode of new-win1(G) can be found in Sect. 3.8.

The correctness of the algorithm follows analogously to the correctness of win(G). We
analyze the run time of new-win1(G) and prove Theorem 11 in Section 3.9.

3.7 Out-Degree based Algorithm

We now describe our second algorithm new-win2(G, j). In order to describe it, let j ∈ N
and let sj denote the number of nodes of out-degree at most j. new-win2(G, j)
is then almost identical to new-win1(G), but instead of dominions that contains
at most `′ = b

√
2kc nodes of the odd player, we search for and delete dominions

that contain at most ` = d
√

2(n− sj)e nodes with out-degree larger than j and at
most s = d

√
sj · logj sje nodes with out-degree at most j. This algorithm has a run

time of n
O

(√
n−sj+

√
sj

logj sj

)
, which implies Theorem 14.

In the following let us assume j = arg min1≤j′≤n

{√
n− sj′ +

√
sj′

logj′ sj′

}
. We say

that a node v has high out-degree if |N+
G (v)| > j and low out-degree otherwise. For

n, z, `, s ∈ N, let domn,z(`, s) denote the maximum number of steps required to find a
dominion D with at most ` high out-degree and at most s low out-degree nodes in a
parity game G = (V0 ] V1, E, p) with n nodes out of which z are high out-degree nodes,
or to determine that no such dominion exists.

Lemma 104. For all values of `, s ∈ {0, . . . , n}, it holds

domn,z(`, s) = O
(
n`+1js(`+ s)2 ·max{1, log(`+ s)}

)
= O

(
n`+4js

)
.

Proof. Fix an arbitrary total order ≺ on V (G). Let u ∈ V (G) be a node of G and
let (u, v1), . . . , (u, v|δ+(u)|) be the edges emanating from u, where vi ≺ vi+1 for all



3.7. Out-Degree based Algorithm 95

i ∈ {1, . . . |δ+(v)| − 1}; we call (u, vi) the i-th outgoing edge of u. The algorithm
generates at most O(n · n`js) 0-closed sets of nodes that contain at most ` nodes
with an out-degree greater than j and at most s nodes with an out-degree at most j,
which are candidates for being 0-dominions. For every node v ∈ V and every sequence
〈a1, . . . , a`, b1, . . . , bs〉 ∈ {1, . . . , n}` × {1, . . . , j}s construct a set U ⊆ V as follows.
Start with U = {v} and r1 = 1, r2 = 1. Nodes added to U are initially unmarked. As
long as there is still an unmarked node in U , pick the smallest such node u ∈ U with
respect to ≺ and mark it.

• If u ∈ V0 and u has high out-degree then add the endpoint of the ar1-th outgoing
edge of u to U (if it is not already present in U) and increment r1.
• If u ∈ V0 and u has low out-degree then add the endpoint of the br2-th outgoing

edge of u to U (if it is not already present in U) and increment r2.
• If u ∈ V1 then add the endpoints of all outgoing edges of u that are not yet part

of U to U .

If at some stage U contains either more than ` nodes with high out-degree or more
than s nodes with low out-degree, or the endpoint of the i-th outgoing edge of some
node v with out-degree |δ+(v)| < i should be added to U , then discard the set U and
restart the construction with the next sequence. If the process above ends without
discarding U , then a 0-closed set containing at most ` high out-degree and at most s
low out-degree nodes has been found. Furthermore, for every node u ∈ U ∩ V0, one
of the outgoing edges of u was selected. This corresponds to a suggested strategy for
player 0 in the game G restricted to the set U .

Our algorithm therefore considers by exhaustive search all 0-closed sets containing at
most ` high out-degree and at most s low out-degree nodes, and for each set considers
all possible positional strategies for player 0. Using an algorithm of King et al. [67] we
can check in time O((`+s)2 log(`+s)) time whether a given pair of set U and proposed
strategy is indeed a winning strategy for player 0 from all nodes of U . Thus, if there is
a 0-dominion containing at most ` high out-degree and at most s low out-degree nodes,
then the algorithm will find one. Finding 1-dominions can be done in an analogous
manner.

With the just described algorithm, we can find a dominion D with at most ` nodes
with high out-degree and at most s nodes with low out-degree if such a dominion exists.
We denote this algorithm by dominion2(G, `, s), and suppose that it returns either
the pair (D, i) if such an i-dominion D is found, or (∅,−1) if not.

The algorithm new-win2 starts by trying to find a “small” dominion D, where small
means that D contains at most ` nodes with out-degree greater than j and at most
s nodes with out-degree at most j, where ` = d

√
2(n− sj)e and s = d

√
sj · logj sje

are parameters chosen to minimize the run time of the whole algorithm. If such an
i-dominion is found, then we remove it together with its i-reachability set from the
game and solve the remaining game recursively. If no small dominion is found, then
new-win2 simply calls algorithm old-win2, which is almost identical to algorithm
win. The only difference between old-win2 and win is that its recursive calls are
made to new-win2 and not to itself.
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The recursion stops once the number of nodes with out-degree at most j and the
number of nodes with out-degree greater than j are both at most 3, in which case we
will test all of the at most constant different strategies for the two players in constant
time. We will call this brute force method solve(G). The pseudocode of new-win2
can be found in Sect. 3.8.

The correctness of new-win2 follows analogously to the correctness of the simple
algorithm win. We analyze the run time of new-win2 and prove Theorem 14 in
Sect. 3.9.

We can now prove Corollary 15.

Proof(Corollary 15). First consider a parity game on n nodes played on a graph with
maximum out-degree ∆. Then s∆ ≤ n and

√
n− s∆max +

√
s∆max

log∆max s∆max

≤
√

n

log∆max n
=
√

log(∆max)n
log n .

Now the first part of the corollary follows immediately from Theorem 14.

Let us now consider the case that the average out-degree is ∆avg and let z = log(n)∆avg.
Then Markov’s inequality implies sz ≥ (1− 1/ log(n))n. Hence,

√
n− sz +

√
sz

logz sz
≤
√

n

log(n) +
√

n

logz n
=
√

n

log(n) +
√

log(log(n)∆avg)n
log n .

Now the second part of the corollary follows immediately from Theorem 14.

3.8 Pseudocode for Algorithms new-win

We will now give the pseudocode for the algorithms new-win1(G) and new-win2(G, j)
together with their subroutines old-win1(G) and old-win2(G, j). In the pseudocodes,
we call a function solve(G). This function denotes a bruteforce method to solve parity
games and is only used on very small games.

Algorithm 6 new-win1(G)
Input: A parity game G = (V0 ] V1, E, p).
Output: A partition (W0,W1) of V , where Wi is the winning set of player i ∈ {0, 1}.

1: k ← |V1|; `←
⌊√

2k
⌋
; G = kernel(G)

2: if k ≤ 4 then return solve(G)
3: (D, i)← dominion1(G, `)
4: if D = ∅ then
5: (W0,W1)← old-win1(G)
6: else
7: (W ′

0,W
′
1)← new-win1(G− reachi(D))

8: (W¬i,Wi)← (W ′
¬i, V \W ′

¬i)
9: return (W0,W1)



3.8. Pseudocode for Algorithms new-win 97

Algorithm 7 old-win1(G)
Input: A parity game G = (V0 ] V1, E, p).
Output: A partition (W0,W1) of V , where Wi is the winning set of player i ∈ {0, 1}.

1: G = kernel(G)
2: i← pmax (mod 2)
3: (W ′

0,W
′
1)← new-win1(G− reachi(Vpmax))

4: if W ′
¬i = ∅ then

5: (Wi,W¬i)← (V, ∅)
6: else
7: (W ′′

0 ,W
′′
1 )← new-win1(G− reach¬i(W ′

¬i))
8: (Wi,W¬i)← (W ′′

i , V \W ′′
i )

9: return (W0,W1)

Algorithm 8 new-win2(G, j)
Input: A parity game G = (V0 ] V1, E, p) and j ∈ {1, . . . |V |}.
Output: A partition (W0,W1) of V , where Wi is the winning set of player i ∈ {0, 1}.

1: sj ← |{v ∈ V ||δ+(v)| ≤ j}|; `←
⌈√

2(n− sj)
⌉

; s←
⌈√

sj · logj sj
⌉

2: if sj ≤ 3 and n− sj ≤ 3 then return solve(G)
3: (D, i)← dominion2(G, `, s)
4: if D = ∅ then
5: (W0,W1)← old-win2(G, j)
6: else
7: (W ′

0,W
′
1)← new-win2(G− reachi(D), j)

8: (W¬i,Wi)← (W ′
¬i, V \W ′

¬i)
9: return (W0,W1)

Algorithm 9 old-win2(G, j)
Input: A parity game G = (V0 ] V1, E, p).
Output: A partition (W0,W1) of V , where Wi is the winning set of player i ∈ {0, 1}.

1: i← pmax (mod 2)
2: (W ′

0,W
′
1)← new-win2(G− reachi(Vpmax), j)

3: if W ′
¬i = ∅ then

4: (Wi,W¬i)← (V, ∅)
5: else
6: (W ′′

0 ,W
′′
1 )← new-win2(G− reach¬i(W ′

¬i), j)
7: (Wi,W¬i)← (W ′′

i , V \W ′′
i )

8: return (W0,W1)



98 3. Parity Games

3.9 Analysis of the Run Time

We will show that algorithm new-win(G) has a run time of O(p ·m · n) · (p+ k)O(
√
k)

on general instances and in time O(n3) · kO(
√
k) on bipartite instances. We will also

show that algorithm new-win(G, j) has a run time of n
O

(√
n−sj+

√
sj

logj sj

)
, where sj

the number of nodes in G with out-degree at most j.

Note that the part O(pmn) of the run time comes from the reduction of the instance
and the computation and removal of reachability sets of found dominions. Since we
do both of these often, we assume that they are be elementary computations with
computation time O(1) and show that the total remaining run time remaining is
(p + k)O(

√
k). In bipartite instances we need O(n3) time to reduce the instance and

to compute and remove reachability sets. We will show that the remaining run time
on bipartite instances is kO(

√
k), when computation and removal of reachability sets

and the reductions are viewed as an elementary operation. Let T (k, p) denote the
time required by algorithm new-win on a game G = (V0 ] V1, E, p) with |V1| = k and
p = |{p(v) | v ∈ V }|, when reduction of an instance and computation and removal of
reachability sets of found dominions are viewed as elementary computations and have
run time O(1).

Lemma 105. The following recurrence relation holds:

(a) T (k, p) ≤ max{T (k − 1, p), T (k, p− 1) + T (k − `, p)}+ domk,p(`) +O(1) .

Proof. Algorithm new-win(G) tries to find dominions D with |D ∩ V1| ≤ ` = b
√

2kc.
By definition this takes at most domk,p(`) time on general instances. If a (non-empty)
dominion is found, then the algorithm simply proceeds on the remaining game, which
has at most k − 1 odd nodes, and thus it solves this game in time bounded by
T (k − 1, p). Otherwise, a call to old-win(G) is made. This results in a call to
new-win(G − reachi(Vpmax)). In this case the call takes at most T (k, p − 1) time
because we removed all nodes with the highest priority. If the set W ′

j returned by
the call is empty, then we are done. Otherwise, W ′

j = winj(G − reachi(Vpmax)) and
W ′
j ⊆ winj(G) by Lemma 91. Therefore, W ′

j is a j-dominion of G. We are in the case
that there is no dominion D with |D ∩ V1| ≤ ` in G. Thus, |W ′

j ∩ V1| > `, and hence
the second recursive call new-win(G− reachj(W ′

j)) takes time at most T (k − d`e , p).
Consequently,

T (k, p) ≤ max{T (k − 1, p), T (k, p− 1) + T (k − d`e , p)}+ domk,p(`) +O(1).

Let T (k, even) and T (k, odd) denote the time required by algorithm new-win on a
bipartite game G = (V0 ] V1, E, p) with |V1| = k when the largest priority is even
respectively odd, when computation and removal of reachability sets of found dominions
and the reductions are viewed as elementary computations. We denote by T (k) the
time required by algorithm new-win on any bipartite game with |V1| = k; thus
T (k) ≤ max{T (k, even), T (k, odd)}.
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Lemma 106. The following recurrence relations hold:

(b1) T (k, odd) ≤ T (k − 1) + T (k − `) + domk(`) +O(1),
(b2) T (k, even) ≤ max{T (k, odd), T (k − 1)}+ T (k − `) + domk(`) +O(1)

≤ T (k − 1) + 2T (k − `) + 2domk(`) +O(1),
(b3) T (k) ≤ T (k − 1) + 2T (k − `) + 2domk(`) +O(1) .

Proof. From the definition it follows directly that T (k) ≤ max{T (k, even), T (k, odd)}.
Showing (b1) and (b2) therefore yields (b3). Algorithm new-win(G) tries to find
dominions D with |D∩V1| ≤ ` = d

√
2ke. By definition this takes at most domk(`) time

on bipartite instances. If a (non-empty) dominion is found, then the algorithm simply
proceeds on the remaining game, which has at most k−1 odd nodes, and the remaining
run time is therefore at most T (k− 1). Otherwise, a call to old-win(G) is made. This
results in a call to new-win(G− reachi(Vpmax)). Here we have to distinguish whether
the highest priority is odd or even.

If the highest priority is odd then, by Lemma 97, the set reach1(Vpmax)∩V1 is non-empty
and the call takes at most T (k − 1) time.

In case the highest priority is even, we either have reach0(Vpmax)∩V1 6= ∅ or reach0(Vpmax)
= Vpmax in which case Lemma 98 yields that in G− reachi(Vpmax) the highest priority
has to be odd. Therefore, this call needs time at most max{T (k, odd), T (k − 1)}.

If the set W ′
j returned by the call is empty, then we are done. Otherwise, W ′

j =
winj(G− reachi(Vpmax)) and this is part of winj(G) by Lemma 91. Therefore, W ′

j is a
j-dominion of G. We are in the case that there is no dominion D with |D ∩ V1| at
most ` in G, so we know that |W ′

j ∩ V1| > ` , and therefore the second recursive call
new-win(G− reachj(W ′

j)) takes at most T (k − `) time. Thus, we obtain

T (k, odd) ≤ T (k − 1) + T (k − `) + domk(`) +O(1)

and

T (k, even) ≤ max{T (k, odd), T (k − 1)}+ T (k − `) + domk(`) +O(1)
≤ T (k − 1) + 2T (k − `) + 2domk(`) +O(1),

which yields T (k) ≤ T (k − 1) + 2T (k − `) + 2domk(`) +O(1).

For j ∈ N0, let T ′(sj, n − sj) denote the time required by algorithm new-win on a
game G on n nodes of which sj nodes have out-degree at most j.

Lemma 107. The following recurrence relation holds:

(c) T ′(sj, n− sj) ≤ max{T ′(sj − 1, n− sj), T ′(sj, n− sj − 1)}
+ max{T ′(sj − s, n− sj), T ′(sj, n− sj − `)}
+ domn,n−sj(`, s) +O(1) .
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Proof. Algorithm new-win(G, j) tries to find dominions D containing at most s
nodes with out-degree at most j and at most ` nodes with out-degree greater than
j. By definition this takes at most domn,n−sj(`, s) time. If a (non-empty) dominion
is found, then the algorithm simply proceeds on the remaining game, which has at
most n − 1 nodes, and the remaining time is therefore at most max{T ′(sj − 1, n −
sj), T ′(sj, n− sj − 1)}. Otherwise, a call to old-win(G, j) is made. This results in a
call to new-win(G− reachi(Vpmax), j), this call is to a game with fewer nodes and can
be solved in time bounded by

max{T ′(sj − 1, n− sj), T ′(sj, n− sj − 1)} .

If the setW ′
k returned by the call is empty, then we are done. Otherwise,W ′

k = wink(G−
reachi(Vpmax)), and W ′

k ⊆ wink(G) by Lemma 91. Therefore, W ′
k is a k-dominion of

G. We are in the case that there is no dominion D containing at most s nodes with
out-degree at most j and at most ` nodes with out-degree greater than j, so W ′

k either
contains more than s nodes with out-degree at most j or more than ` nodes with out-
degree greater than j, and therefore the second recursive call new-win(G−reachk(W ′

k))
takes time bounded by max{T ′(sj − s, n− sj), T ′(sj, n− sj − `)}.

All other computations can be done in constant time. Thus, we obtain

T ′(sj, n− sj) ≤ max{T ′(sj − 1, n− sj), T ′(sj, n− sj − 1)}
+ max{T ′(sj − s, n− sj), T ′(sj, n− sj − `)}

+domn,n−sj(`, s) +O(1) .

We analyze recurrences (a) and (b) with ` = b
√

2kc in Theorem 108 in Sect. 3.9.1,
which eventually shows that T (k, p) ≤ (p+ k)O(

√
k) and T (k) ≤ kO(

√
k), and recurrence

(c) with ` =
⌈√

2(n− sj)
⌉
and s =

⌈√
sj

logj sj

⌉
in Theorem 112 in Sect. 3.9.1, which

eventually shows that T ′(sj, n− sj) ≤ n
O

(√
n−sj+

√
sj

logj sj

)
. This completes the analysis

of the run time of new-win(G) and new-win(G, j), and proves Theorem 11 and
Theorem 14.

3.9.1 Recurrence Relation Computations

In this section we analyze the recurrence relations used to bound the run time of new-
win.

Theorem 108. For k ∈ N and ` = b
√

2kc, we obtain

T (k, p) = (p+ k)O(
√
k),

T (k) = kO(
√
k).

To prove Theorem 108, we first establish some lemmas.
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Lemma 109. For k, p ∈ N and ` = b
√

2kc, it holds

T (k, p) ≤ 2(k + p)b
√

2kc · domk,p(
⌊√

2k
⌋
) and

T (k) ≤ 2(2k)b
√

2kc · domk(
⌈√

2k
⌉
) .

Proof. For every pair of integers k and p we construct binary trees Tk,p and Tk in the
following way. The root of Tk,p is labeled by k and k + p and the root of Tk is labeled
by k. A node labeled by a number k > 4 has two children: in Tk,p a left child labeled
by k and k + p− 1 and a right child labeled by k −

⌈√
2k
⌉
and p+ k −

⌈√
2k
⌉
. In Tk

a left child labeled by k′ and a right child labeled by k −
⌈√

2k
⌉
. A node labeled by

k′ in Tk has two children: a left child labeled by k − 1 and a right child labeled by
k −

⌈√
2k
⌉
. Nodes labeled by a number k ≤ 4 are leaves. A node labeled by k and

k + p has a cost of domk,p(
⌊√

2k
⌋
) associated with it and a node labeled by k or k′ has

a cost of domk(
⌈√

2k
⌉
)) associated with it. It follows from Lemma 105 and Lemma 106

that the sum of the costs of the nodes of Tk,p and Tk, is an upper bound on T (k, p)
and T (k), respectively. Clearly, the length of every path from the root to a leaf is at
most p+ k + 1 in Tk,p and 2k in Tk. We say that such a path makes a right turn when
it descends from a node to its right child. We next claim that each such path makes
at most

⌊√
2k
⌋
right turns. This follows immediately from the observation that the

function f(n) = n−
⌈√

2n
⌉
can be iterated on 2k at most

⌊√
2k
⌋
times before reaching

the value of 4 or less. This observation can be proved by induction, based on the fact
that if 1

2j
2 < n ≤ 1

2(j + 1)2, then n−
⌈√

2n
⌉
≤ 1

2j
2. (Initially we have j =

⌊√
2k
⌋
and

finally, with 1 ≤ n ≤ 4, we have j ≥ 1.) As each leaf of Tk,p and Tk is determined by
the positions of the right turns on the path leading to it from the root, we get that
the number of leaves is at most

(
k+p
b√2kc

)
in Tk,p and at most

(
2k
b√2kc

)
in Tk. The total

number of nodes is therefore at most at most 2
(

k+p
b√2kc

)
≤ 2(k + p)b

√
2kc in Tk,p and at

most 2
(

2k
b√2kc

)
≤ 2(2k)b

√
2kc in Tk. As the cost of each node is at most domk,p(

⌊√
2k
⌋
)

in Tk,p and at most domk(
⌈√

2k
⌉
) in Tk, we immediately get

T (k, p) ≤ 2(k + p)b
√

2kc · domk,p(
⌊√

2k
⌋
) and,

T (k) ≤ 2(2k)b
√

2kc · domk(
⌈√

2k
⌉
) .

We obtain together with Lemma 103 that

T (k, p) ≤ 2(k + p)b
√

2kc ·O
(
kb
√

2kc · T (
⌊√

2k
⌋
, p)
)
,

as well as

T (k) ≤ 2(2k)

⌊
√

2k

⌋
·O

(
kd
√

2keT (
⌈√

2k
⌉
)
)
.
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Lemma 110. Suppose that

T (k, p) ≤ 2(k + p)b
√

2kc ·O
(
kb
√

2kc · T (
⌊√

2k
⌋
, p)
)

and that T (`, q) ≤ c′ · (q + `)8b√2`c for some constant c′ ∈ R and for all pairs (`, q) ∈
{1, . . . , 4} × N. Then there exist constants c1 ≥ c′, c2 ≥ 8 such that for all k ∈ N,

T (k, p) ≤ c1 · (p+ k)c2b√2kc .

Proof. Since we have T (k, p) ≤ 2(k + p)b
√

2kc ·O
(
kb
√

2kc · T (
⌊√

2k
⌋
, p)
)
, there exists

a constant c′1 > 0 such that T (k, p) ≤ 2(k + p)b
√

2kc · c′1kb
√

2kc · T (
⌊√

2k
⌋
, p). Let

αk = b√2kc⌊√
2b√2kc

⌋ . Then for k ≥ 5, it holds αk ≥ 1.5 > 1. Let c1 = max{c′1, c′}, and let

c2 = 6+3 log (2c1). Suppose, for sake of contradiction, that the statement of the lemma
does not hold for this choice of (c1, c2). Then there exists a pair (k′, p′) ∈ N× N for
which T (k′, p′) > c1 ·(p′+k′)c2b√2k′c. Let k′ be the smallest integer for which such a pair
exists, and let p′ = p′(k′) be the smallest integer for which T (k′, p′) > c1 ·(p′+′k)c2b√2k′c.
Note that k′ ≥ 4 and T (`, q) ≤ c1 · q3 · (q + `)c2

√
` for all pairs (`, q) with ` ≤ k′, q ≤ p′

and `+ q < k′ + p′. Further, it holds c2 ≥ c2
αk

+ 2 + log (2c′1) for all k ≥ 4. For k ≥ 4
we also have

⌊√
2k
⌋
< k. This implies that

T (k′, p′) ≤ 2(k′ + p′)b
√

2k′c · c′1 · k
′b√2k′c · T (

⌊√
2k′
⌋
, p′))

≤ 2(k′ + p′)b
√

2k′c · c′1 · k
′b√2k′c · c1 · (p′ +

⌊√
2k′
⌋
)c2

⌊√
2b√2k′c

⌋

≤ 2(k′ + p′)b
√

2k′c · c′1 · k
′b√2k′c · c1 · (p′ +

⌊√
2k′
⌋
)c2

⌊√
2b√2k′c

⌋

≤ (2c′1c1)(k′ + p′)2b√2k′c+c2

⌊√
2b√2k′c

⌋
≤ c1(k′ + p′)2b√2k′c+ c2

ak′
b√2k′c+log (2c′1)

≤ c1(k′ + p′)(2+ c2
ak′

+log (2c′1))b√2k′c

≤ c1(k′ + p′)c2b√2k′c

This contradicts the existence of k′, and therefore concludes the proof.

Lemma 111. Suppose that

T (k) ≤ 2(2k)b
√

2kc ·O
(
kb
√

2kcT (
⌊√

2k
⌋
)
)

and that T (`) ≤ c′`b
√

2`c for some constant c′ ∈ R and for all ` ≤ 4. Then there exist
constants c1 ≥ c′, c2 ≥ 1 such that for all k ∈ N,

T (k) ≤ c1k
c2b√2kc .
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Proof. Since T (k) ≤ 2(2k)b
√

2kc ·O
(
kb
√

2kcT (
⌊√

2k
⌋
)
)
, there exists a constant c′1 > 0

such that T (k) ≤ 2(2k)b
√

2kc · c′1
(
kb
√

2kcT (
⌊√

2k
⌋
)
)
. Let αk = b√2kc⌊√

2b√2kc
⌋ . Then for

k ≥ 5 it holds that αk ≥ 1.5 > 1. Let c1 = max{c′1, c′} and let c2 = 12 + 3 log c1.
Suppose, for sake of contradiction, that the statement of the lemma does not holds for
this choice of (c1, c2). Then exists a k′ ∈ N such that T (k′) > c1k

′c2b√2k′c. Let k′ be
the smallest such integer. Note that we must have k′ ≥ 4 and T (`) ≤ c1`

c2b√2`c for all
` < k′. Further, it holds that c2 ≥ c2

α′
k

+ 4 + log c1 for all k ≥ 5. For k ≥ 4 we also have⌊√
2k
⌋
< k. This implies that

T (k′) ≤ 2(2k′)b
√

2k′c · c′1
(
k′b
√

2k′cT (
⌊√

2k′
⌋
)
)

≤ 2(2k′)b
√

2k′c · c1

2c1k
′b√2k′ck

′c2

⌊√
2b√2k′c

⌋
≤ 2c1(2k′)b

√
2k′ck

′( c2
α′
k

+1)b√2k′c+log c1

≤ 2c1k
′2b√2k′ck

′( c2
α′
k

+1)b√2k′c+log c1

≤ c1k
′b√2k′c( c2

α′
k

+3)+log c1+log 2

≤ c1k
′b√2k′c( c2

α′
k

+4+log c1)

≤ c1k
′c2b√2k′c .

This contradicts the existence of k′, and therefore concludes the proof.

Since T (k, p) ∈ O(p(k2)), it holds that O(p8b√2kc). Moreover, as T (k) = O(1) for k ≤ 4,
we conclude that T (k, p) = (p+ k)O(

√
k) and T (k) = kO(

√
k). This completes the proof

of Theorem 108.

Next, we will prove the following.

Lemma 112. For sj, j, n ∈ N, s =
⌈√

sj
logj sj

⌉
and ` =

⌈√
2(n− sj)

⌉
we obtain

T (sj, n− sj) = n
O

(√
n−sj+

√
sj

logj sj

)
.

To prove Lemma 112, we first establish another lemma.

Lemma 113. For sj, j, n ∈ N, s =
⌈√

sj
logj sj

⌉
and ` =

⌈√
2(n− sj)

⌉
, it holds

T (sj, n− sj) ≤ n
O

(√
n−sj+

√
sj

logj sj

)
·
(

domn,n−sj(`, s) +O(1)
)
.

Proof. For each parity game G on n nodes and sj = sj(G) we construct a binary tree
TG in the following way. The root of TG is labeled by (sj, n− sj). A node labeled by



104 3. Parity Games

(a, b) with a > 3 and b > 3 has up to two children: a left child labeled by (a− 1, b) or
(a, b− 1), and possibly a right child labeled by (a−

√
a · logj a, b) or (a, b−

√
b). Each

child of a node corresponds to one of the recursive calls. The choice on how we label the
children depends on the behavior of the algorithm. We label the children of a node by
(a′, b′) and (a′′, b′′) such that the recursive calls of the algorithm are to games containing
at most a′, respectively a′′ nodes of out-degree at most j and at most b′, respectively
b′′, nodes of out-degree greater than j. Nodes labeled by (a, b) with a, b ∈ {0, 1, 2, 3}
are leaves. A node labeled by (a, b) has a cost of

(
doma+b,b(

√
b,
√
a · logj a) +O(1)

)
associated with it.

It follows from Lemma 107 that the sum of the costs of the nodes of TG is an upper
bound on the run time of new-win(G, j). The worst possible sum of the costs of the
nodes of TG we can obtain for some instance G with sj = sj(G) and n = |V | therefore
is an upper bound of T (sj, n−sj). Clearly, the length of every path in TG from the root
to a leaf is at most n. We say that such a path makes a right turn when it descends
from a node to its right child. We next claim that each such path makes at most
O(√n− sj +

√
sj

logj sj
) right turns. This follows immediately from the observation that

the function f(x) = x−
⌈√

2x
⌉
can be iterated on n− sj at most O(√n− sj) times

before reaching the value of 3 or less and the function g(x) = x−
⌈√
x · logj x

⌉
can be

iterated on sj at most O(
√

sj
logj sj

) times before reaching the value of 3 or less. As each
leaf of TG is determined by the positions of the right turns on the path leading to it

from the root, we get that the number of leaves in TG is at most n
O

(√
n−sj+

√
sj

logj sj

)
.

The total number of nodes in TG is therefore at most n
O

(√
n−sj+

√
sj

logj sj

)
. As the cost

of each node is at most
(

domn,n−sj(`, s)
)

+O(1), we immediately have that

T (sj, n− sj) ≤ n
O

(√
n−sj+

√
sj

logj sj

)
·
(

domn,n−sj(`, s) +O(1)
)
.

Together with Lemma 104, we obtain

T (sj, n− sj) = n
O

(√
n−sj+

√
sj

logj sj

)
.

This completes the proof of Lemma 112.



Chapter 4
Conclusion and Open Problems

We have studied several clustering problems and parity games. We proposed and
analyzed new algorithms for the Euclidean k-center Problem, several constrained
clustering problems, and parameterized parity games.

Our algorithms make progress towards efficiently solving the mentioned problems, as we
showed that an optimal solution to the Euclidean k-center Problem can deterministically
be computed, proposed, among a bicriteria approximation algorithm for fair clustering,
several constant-factor approximation algorithms for constrained clustering problems,
and designed a fixed-parameter-tractable algorithm for parity games.

In the following we discuss open questions in regard to the problems discussed in this
dissertation.

4.1 Clustering

With the abundance of clustering problems that arise when one of the clustering
objectives is combined with any set of constraints, it is not hard to find open problems,
as only in very few cases, like the unconstrained k-center problem, approximation
algorithms with matching hardness results are known. In a lot of constrained cases,
especially for k-median and k-means it is still an open question to find any constant-
factor approximation algorithm at all.

We will specifically discuss open questions which are closely related to the clustering
problems discussed in this dissertation.

4.1.1 The Euclidean k-Center Problem

We showed that rational instances of the smallest enclosing ball problem can be solved
in weakly polynomial time. We used this knowledge to reduce the Euclidean k-center
problem to the problem of finding the correct partition. We also showed that we can
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find the correct partition with a run time that is, in case we have k = 1, or both k and
the dimension m are bounded by a fixed constant, polynomial in the size of the input.
This was done by showing that we can compute a set of candidate partitionings, which
contains an optimal partitioning and solving the problem for each of the candidate
partitionings. It has already been known that the Euclidean k-center problem is easy
for m = 1 and that it is an NP-hard problem for any m ≥ 2 (and general k). Therefore
an obvious open question is if we can find an algorithm for the Euclidean k-center
problem, whose run time does not exponentially depend on the dimension m and
is polynomial in case k is bounded by a fixed constant. Even for k = 2 this is an
interesting question. One way to address this question would be to find a smaller set of
candidate partitionings. It would also be interesting to find an algorithm that improves
the overall run time for the general Euclidean k-center problem and is possibly even
fixed-parameter-tractable for the combined parameters k and m.

4.1.2 Fair Clustering

We have studied several types of fair clustering problems for different clustering
objectives. We obtained essentially fair approximation algorithms for the fair k-center/k-
supplier/facility location/k-median/k-means problem and approximation algorithms
for the fair k-center/k-supplier problem with exact fairness, which improved on the
best previously known approximation ratio. Besides improving the approximation
guarantees and/or obtaining better hardness results for any of the fair clustering
problems, it is still an open task to find any true approximation algorithm for the fair
k-center/k-supplier/facility location/k-median/k-means problem with relaxed fairness.
For the fair facility location/k-median/k-means problem with exact fairness it is also
still an open question if true approximation algorithms exist. As we have shown
in Section 2.2.1, we could create an approximation algorithm for the fair facility
location/k-median/k-means problem with the help of an approximation algorithm
for the fairlet decomposition problem. We have also shown how we could, given
an approximation algorithm for the capacitated clustering problem with the same
objective, compute an approximation to the fairlet decomposition problem. This
directly ties the task to find an approximation algorithm for capacitated clustering
problems to finding approximation algorithms for fair clustering problems with exact
fairness and specifically makes finding approximation algorithms for the capacitated
facility location/k-median/k-means problem very interesting related problems.

4.1.3 Private Clustering

We have studied the k-center problem with capacities, fairness and outliers and have
coupled these constraints with privacy; in addition, we proposed the strongly private
k-center problem. An obvious open question is to improve the approximation guarantee
of the coupling process; this is in particular interesting when combining more than
two constraints as in the private capacitated and fair k-center problem. Another
straightforward direction would be to study the generalization of privacy to arbitrary
lower bounds, where each cluster has its individual lower bound on the number of
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necessary points to assign to it when opened. It would also be interesting to study
general methods to add other constraints to clustering problems. And of course,
extending our methods to other clustering objectives is open, too. Our algorithms
rely on the threshold graph; removing it seems difficult at first glance. However, in
Section 2.3.4, we demonstrated how to add privacy to capacitated facility location,
albeit under a restriction: The method only works if the lower bound ` and all upper
bounds u(c) satisfy ` ≤ u(c)/2. If this is not true, then it induces a capacity violation
(by a factor of at most 2). We raise the question whether adding privacy to facility
location can be done without this condition. The method in Section 2.3.4 does not
easily extend to variants with a restricted number of centers; so the next question then
would be whether it can be combined with the idea we developed for k-center, in order
to add privacy for an objective like k-median or k-means.

4.2 Parity Games

We have studied parity games and developed algorithms for two sets of parameters. A
fixed-parameter-tractable algorithm for the combined parameter the minimum number
of nodes owned by one of the players and the number of different priorities as well as
algorithms for several out-degree based parameters.

The problem of solving parity games belongs to the class NP ∩ coNP. It has been said
that such problems are well characterized [60] and that it seems very unlikely that they
are NP-complete. Yet it is still a major open question if parity games can be solved
in polynomial time. Other open questions include if non-bipartite parity games are
fixed-parameter-tractable for the parameter of the minimum number of nodes owned
by one of the players as well as finding fixed-parameter-tractable algorithms for other
reasonable parameters for parity games.



Appendix A
Approximation Algorithm for the k-Center
Problem [47]

We will show that the 2-approximation algorithm for the k-center problem by Gonza-
lez [47] also works in case we have P ⊆ L. We will start by stating how the algorithm
works.

The algorithms consists of an initialization followed by k − 1 expanding phases. In
the initialization the algorithm simply assigns all points to the same cluster with
one of the points arbitrary selected as the center c1. In every expanding phase the
algorithm creates one additional cluster and assigns some points from the existing
clusters to the new cluster. The creation of the additional cluster in the i-th expanding
phase starts by selecting its center ci+1. ci+1 is chosen as the point from the existing
clusters with the highest distance to its center, with ties broken arbitrarily, i.e.,
ci+1 = arg maxj∈P d(j, φi(j)), where φi denotes the cluster assignment function before
the i-th expanding phase. A point j ∈ P will then be assigned to ci+1 if d(j, ci+1) is
less than d(j, φi(j)).

Gonzalez showed that this procedure creates a partition of the points into k clusters
in polynomial time. We will repeat a slight alteration of the proof of the obtained
approximation ratio.

Let S denote the centers by the method described above. Let jmax =
arg maxj∈P d(j, φk(j)) be the point with the highest distance to its assigned center and
let r = d(jmax, φk(jmax)). Without loss of generality we can assume r > 0 and therefore
jmax is not one of the selected centers. As during the procedure every point is always
assigned to its closest open center and jmax was not selected as a center we know that
in every phase the selected center had a distance of at least r to its current center and
therefore to all previous centers. This implies that S together with jmax form a set of
k + 1 points with a pairwise distance between two of these points of at least r. As in
every cluster with at most k clusters at least 2 of these points must be part of the same
cluster, the optimal solution must contain a cluster which contains two points with a
distance of at least r two each other. Therefore the distance between the center of that
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cluster and one of the points must be at least r/2, which shows that our computed
solution is in fact a 2-approximation.



Appendix B
Facts about the k-Means Cost Function

We use some well-known facts about the k-means function when extending our results
for k-median to k-means. The first one is that squared distances satisfy a relaxed
triangle inequality:
Lemma 114. It holds for all x, y, z ∈ Rm that

||x− z||2 ≤ 2||x− z||2 + 2||z − y||2.

The next lemma is also a folklore statement which can be extremely useful. It implies
that the best 1-means is always the centroid of a point set, and has further conse-
quences, like Lemma 116 which we state below, a fact which is also commonly used in
approximation algorithms for the k-means problem.
Lemma 115. For any P ⊆ Rm, and z ∈ Rm,∑

j∈P
||j − z||2 =

∑
j∈P
||j − µ(P )||2 + |P | · ||µ(P )− z||2,

where µ(P ) = 1
|P |
∑
j∈P j is the centroid of P .

One corollary of Lemma 115 is that the optimum cost of the best discrete solution is
not much more expensive than the best choice of centers from Rm.
Lemma 116. Let P ⊆ Rm be a set of point in the Euclidean space, and let C∗ ⊆ Rm

be a set of k points that minimizes the k-means objective, i.e., it minimizes∑
j∈P

min
c∈C
||j − c||2

over all choices of C ⊆ Rm with |C| = k. Furthermore, let Ĉ be the set of centers that
minimizes the k-means objective over all choices of C ⊆ P with |C| = k, i.e., the best
choice of centers from P itself. Then it holds that∑

j∈P
min
c∈Ĉ
||j − c||2 ≤ 2

∑
j∈P

min
c∈C∗
||j − c||2.

Thus, restricting the set of centers to the input point set increases the cost of an optimal
solution by a factor of at most 2.
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Appendix C
Fair k-Center Analysis by Chierichetti et
al. [29]

We will briefly explain the method and analysis by Chierichetti et al. [29] for the
special case of the fair k-center problem, where the points are colored in two different
colors, with exactly half of the points being colored in each color. We will show a small
miscalculation in their analysis, wherefore instead of the claimed 3-approximation,
their analysis only yields a 4-approximation. As mentioned in Section 2.2.1 the general
method introduced by Chierichetti et al.[29] consists of two steps. In the first step
computes a fairlet decomposition and in the second step a clustering is computed on a
set containing a representative of each fairlet. After these two steps each representative
is replaced by its fairlet to obtain the final clustering. They correctly showed that the
maximal radius in this final clustering is bound by the maximal radius of the clustering
on the representatives and the cost of the fairlet decomposition. They also showed that
it is possible to compute a clustering on the representatives that has a radius of at
most 2 opt. n the case where each fairlet contains exactly 2 points, Chierichetti et al,
defined the cost of a fairlet as the distance between the two points and defined the cost
of a fairlet decomposition as the maximal cost of any of its fairlets. As mentioned in
Section 2.2.1, they then showed how to compute a minimum cost fairlet decomposition
by solving a minimum cost perfect matching problem.

Yet, because they defined the cost of a fairlet as the distance between the two points,
which is equivalent to restricting the center of a fairlet to one of the points, the cost of
their fairlets is only bound by the maximal diameter of a fair clustering. The following
example (see Figure C.1) shows that it can happen that this is twice the radius of the
optimal solution. Let P contain two red (r1 and r2) and two blue points (b1 and b2)
located in the 1-dimensional euclidean space. Let r1 and r2 be located at 0, b1 at 1
and b2 at 2 and let the pairwise distance between two of the points be the euclidean
distance of their locations. The optimal fair solution with 1 cluster then chooses b1 as
its center and has a radius of 1, but in every fairlet decomposition one of the fairlets
must contain only b2 and either r1 or r2. in both cases the cost of this fairlet ant
therefore the fairlet decomposition is 2 = 2 opt.
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P fairlet decomposition optimal clustering

Figure C.1: Example for the fairlet decomposition analysis by Chierichetti et al.[29]



Appendix D
Notation

Object Notation
A directed graph G = (V0 ] V1, E)
Number of nodes n = |V0 ] V1|
Number of edges m = |E|
Nodes in G belonging to player i ∈ {0, 1} Vi
minimum number of nodes
controlled by one player k = mini∈{0,1} |Vi|
Priority function p : V0 ] V1 → N0
A parity game G = (V0 ] V1, E, p)
Number of distinct priorities p
Largest priority pmax
Set of nodes with the largest priority Vpmax

Maximum out-degree ∆max
Average out-degree ∆avg
Number of nodes with out-degree at most j sj
Set of out-neighbors of v N+

G (v) = {w ∈ V0 ] V1 | (v, w) ∈ E}
Set of in-neighbors of v N−G (v) = {u ∈ V0 ] V1 | (u, v) ∈ E}
A strategy for player i si
Winning set of player i on G wini(G)
i-reachability set of a set A reachi(A)

Table D.2: Objects relevant for our Parity Games results and their notation
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Object Notation
Set of points P
Set of possible locations L
Distance function d : (P ∪ L)× (P ∪ L)→ R≥0
Opening costs fi
A point j or pj
A center i or ci
Number of points n
Number of allowed clusters k
Set of chosen locations/ set of centers S
Assignment of points to centers φ : P → S
A clustering C = (S, φ)
A cluster in a clustering P (i) = {p ∈ P | φ(p) = ci}
Value of the optimal clustering opt
Euclidean space Rm

Dimension of an Euclidean space m
Set of colors Col
A color h or colh
Color assignment col : P → Col
Points with color colh in P ′ colh(P ′) = {j ∈ P ′ | col(j) = colh}
Amount
-of points with color colh in P ′ massh(P ′) = |colh(P ′)|
-of color colh assigned to i by (x, y) massh(x, i) = ∑

j∈colh(P ) xij
-assigned to i by (x, y) mass(x, i) = ∑

j∈P xij
Ratio of points with color colh in a set P ′ rh(P ′) = |colh(P ′)|

|P ′|
Value of the optimal clustering opt
Relaxed boarders for the ratio `h = ph1

qh1
, uh = ph2

qh2
∈ Q≥0

A fairlet decomposition F
A fairlet Fi
Lower bound for points per cluster `
Upper bound for points per cluster u
Maximum number of outliers o
Threshold τ
Threshold graph with threshold τ on P Gτ = (P ∪ L,Eτ )
Edges in the threshold graph Eτ = {(i, j) | i ∈ L, j ∈ P, d(i, j) ≤ τ}
Sphere with radius r centered at c B(c, r) = {x ∈ Rm | dist(x, c) ≤ r}
Boundary of B(c, r) δ(B(c, r)) := {x ∈ Rm | dist(x, c) = r}
Smallest sphere
-centered at c containing S B(c, S) = B(c,maxp∈S dist(p, c))
-containing S ⊆ Rm B(S)
-containing T on its boundary B∆(T )
Circumcenter of a set T , cc(T ) (the center of B∆(T ))
Affine hull of a set T aff(T )

Table D.1: Objects relevant for our Clustering results and their notation
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[12] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via
core-sets. In Proc. STOC 2002, pages 250–257, 2002.

[13] Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for capac-
itated facility location. In Leah Epstein and Paolo Ferragina, editors, Algorithms –
ESA 2012, volume 7501 of Lecture Notes in Computer Science (LNCS), pages 133–
144. Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-33090-2_13.

[14] Judit Bar-Ilan, Guy Kortsarz, and David Peleg. How to allocate network centers.
Journal of Algorithms, 15:385–415, 1993. doi:10.1006/jagm.1993.1047.

[15] A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. Support vector clustering.
J. Machine Learning Res., 2:125–137, 2001.

[16] Ioana O. Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner,
Daniel R. Schmidt, and Melanie Schmidt. On the Cost of Essentially Fair Clus-
terings. In Dimitris Achlioptas and László A. Végh, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 18:1–18:22, Dagstuhl, Germany, 2019. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/
volltexte/2019/11233, doi:10.4230/LIPIcs.APPROX-RANDOM.2019.18.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.69
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.69
http://dx.doi.org/10.1007/s10107-014-0857-y
http://dx.doi.org/10.1137/151002320
http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.754
http://dx.doi.org/10.1007/978-3-642-33090-2_13
http://dx.doi.org/10.1006/jagm.1993.1047
http://drops.dagstuhl.de/opus/volltexte/2019/11233
http://drops.dagstuhl.de/opus/volltexte/2019/11233
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18


Bibliography 117

[17] Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. DAG-
width and parity games. Proc. STACS 2006, 3884:524–536, 2006. URL: http:
//dx.doi.org/10.1007/11672142_43, doi:10.1007/11672142_43.

[18] Dietmar Berwanger and Erich Grädel. Fixed-point logics and solitaire games.
Theory Comput. Syst., 37(6):675–694, 2004. URL: http://dx.doi.org/10.1007/
s00224-004-1147-5.

[19] Dietmar Berwanger, Erich Grädel, Łukasz Kaiser, and Roman Rabinovich. En-
tanglement and the complexity of directed graphs. Theoret. Comput. Sci.,
463:2–25, 2012. URL: http://dx.doi.org/10.1016/j.tcs.2012.07.010, doi:
10.1016/j.tcs.2012.07.010.

[20] Henrik Björklund, Sven Sandberg, and Sergei Vorobyov. A discrete subex-
ponential algorithm for parity games. Proc. STACS 2003, 2607:663–674,
2003. URL: http://dx.doi.org/10.1007/3-540-36494-3_58, doi:10.1007/
3-540-36494-3_58.

[21] Y. Bulatov, S. Jambawalikar, P. Kumar, and S Sethia. Hand recognition using
geometric classifiers. Abstract of presentation for the DIMACS Workshop on
Computational Geometry (Rutgers University), 2002.

[22] Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa
Trinh. An improved approximation for k-median and positive correlation in
budgeted optimization. ACM Transactions on Algorithms, 13:23:1–23:31, 2017.
doi:10.1145/2981561.

[23] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank
Stephan. Deciding parity games in quasipolynomial time. In STOC’17—
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 252–263. ACM, New York, 2017.

[24] Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The non-
uniform k-center problem. In Ioannis Chatzigiannakis, Michael Mitzenmacher,
Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), volume 55 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 67:1–67:15. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.
2016.67.

[25] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-
factor approximation algorithm for the k-median problem. Journal of Computer
and System Sciences, 65(1):129–149, 2002.

[26] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Al-
gorithms for facility location problems with outliers. In S. Rao Kosaraju, ed-
itor, Proceedings of the Twelfth Annual Symposium on Discrete Algorithms
(SODA 2001), pages 642–651, 2001. URL: http://dl.acm.org/citation.cfm?
id=365411.365555.

http://dx.doi.org/10.1007/11672142_43
http://dx.doi.org/10.1007/11672142_43
http://dx.doi.org/10.1007/11672142_43
http://dx.doi.org/10.1007/s00224-004-1147-5
http://dx.doi.org/10.1007/s00224-004-1147-5
http://dx.doi.org/10.1016/j.tcs.2012.07.010
http://dx.doi.org/10.1016/j.tcs.2012.07.010
http://dx.doi.org/10.1016/j.tcs.2012.07.010
http://dx.doi.org/10.1007/3-540-36494-3_58
http://dx.doi.org/10.1007/3-540-36494-3_58
http://dx.doi.org/10.1007/3-540-36494-3_58
http://dx.doi.org/10.1145/2981561
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.67
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.67
http://dl.acm.org/citation.cfm?id=365411.365555
http://dl.acm.org/citation.cfm?id=365411.365555


118 BIBLIOGRAPHY

[27] Danny Z. Chen, Jian Li, Hongyu Liang, and Haitao Wang. Matroid and knapsack
center problems. Algorithmica, 75(1):27–52, 2016.

[28] Ke Chen. A constant factor approximation algorithm for k-median clustering
with outliers. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pages 826–835.
SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347173.

[29] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii.
Fair clustering through fairlets. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems 2017
(NIPS 2017), pages 5036–5044, 2017. URL: http://papers.nips.cc/paper/
7088-fair-clustering-through-fairlets.

[30] Marek Cygan, Mohammad Taghi Hajiaghayi, and Samir Khuller. LP rounding
for k-centers with non-uniform hard capacities. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science—FOCS 2012, pages 273–282.
IEEE Computer Soc., Los Alamitos, CA, 2012.

[31] Marek Cygan and Tomasz Kociumaka. Constant factor approximation for
capacitated k-center with outliers. In Ernst W. Mayr and Natacha Portier,
editors, 31st International Symposium on Theoretical Aspects of Computer Science
(STACS 2014), Leibniz International Proceedings in Informatics (LIPIcs), pages
251–262. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014. doi:10.4230/
LIPIcs.STACS.2014.251.

[32] Hu Ding, Lunjia Hu, Lingxiao Huang, and Jian Li. Capacitated center problems
with two-sided bounds and outliers. In Proceedings of the 15th International
Symposium on Algorithms and Data Structures (WADS), pages 325–336, 2017.

[33] Hu Ding and Jinhui Xu. Solving the chromatic cone clustering problem via
minimum spanning sphere. In Proceedings of the 38th International Colloquium
on Automata, Languages and Programming (ICALP), pages 773–784, 2011.

[34] Hu Ding and Jinhui Xu. A unified framework for clustering constrained data
without locality property. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1471–1490, 2015.

[35] Zvi Drezner. The p-centre problem—heuristic and optimal algorithms. Journal
of The Operational Research Society - J OPER RES SOC, 35:741–748, 08 1984.
doi:10.1057/jors.1984.150.

[36] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S.
Zemel. Fairness through awareness. In Shafi Goldwasser, editor, Innovations in
Theoretical Computer Science 2012 (ITCS 2012), pages 214–226. ACM, 2012.
doi:10.1145/2090236.2090255.

http://dl.acm.org/citation.cfm?id=1347082.1347173
http://papers.nips.cc/paper/7088-fair-clustering-through-fairlets
http://papers.nips.cc/paper/7088-fair-clustering-through-fairlets
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.251
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.251
http://dx.doi.org/10.1057/jors.1984.150
http://dx.doi.org/10.1145/2090236.2090255


Bibliography 119

[37] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. FOCS 1991, pages 368–377, 1991. URL: http://dx.doi.org/10.1109/
SFCS.1991.185392, doi:10.1109/SFCS.1991.185392.

[38] John Fearnley and Oded Lachish. Parity games on graphs with medium tree-
width. Proc. MFCS 2011, 6907:303–314, 2011. URL: http://dx.doi.org/10.
1007/978-3-642-22993-0_29, doi:10.1007/978-3-642-22993-0_29.

[39] John Fearnley and Sven Schewe. Time and parallelizability results for
parity games with bounded treewidth. Proc. ICALP 2012, 7392:189–200,
2012. URL: http://dx.doi.org/10.1007/978-3-642-31585-5_20, doi:10.
1007/978-3-642-31585-5_20.

[40] Kaspar Fischer. The smallest enclosing ball of balls. Master’s thesis, Institute of
Theoretical Computer Schience, ETH Zürich, 2001.

[41] Kaspar Fischer, Bernd Gärtner, and Martin Kutz. Fast smallest-enclosing-ball
computation in high dimensions. Proc. ESA 2003, 2832:630–641, 2003.

[42] Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Approxi-
mating connected facility location with lower and upper bounds via LP rounding.
In 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT),
pages 1:1–1:14, 2016.

[43] Jakub Gajarský, Michael Lampis, Kazuhisa Makino, Valia Mitsou, and Sebastian
Ordyniak. Parameterized algorithms for parity games. In Proc. MFCS 2015,
Lecture Notes Comput. Sci., pages 336–347, 2015.

[44] Bernd Gärtner. Fast and robust smallest enclosing balls. In Proc. ESA 1999,
volume 1643 of Lecture Notes Comput. Sci., pages 325–338, 1999.

[45] Bernd Gärtner and Sven Schönherr. An efficient, exact, and generic quadratic
programming solver for geometric optimization. In Proc. SoCG 2000, pages
110–118 (electronic), 2000.

[46] Ashish Goel, Piotr Indyk, and Kasturi Varadarajan. Reductions among high
dimensional proximity problems. In Proc. SODA 2001, pages 769–778, 2001.

[47] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, 1985. doi:10.1016/0304-3975(85)
90224-5.

[48] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics,
and Infinite Games: A Guide to Current Research, volume 2500 of Lecture Notes
Comput. Sci. Springer, 2002.

[49] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms
and combinatorial optimization, volume 2 of Algorithms and Combinatorics:
Study and Research Texts. Springer-Verlag, Berlin, 1988. URL: http://dx.doi.
org/10.1007/978-3-642-97881-4, doi:10.1007/978-3-642-97881-4.

http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1007/978-3-642-22993-0_29
http://dx.doi.org/10.1007/978-3-642-22993-0_29
http://dx.doi.org/10.1007/978-3-642-22993-0_29
http://dx.doi.org/10.1007/978-3-642-31585-5_20
http://dx.doi.org/10.1007/978-3-642-31585-5_20
http://dx.doi.org/10.1007/978-3-642-31585-5_20
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1007/978-3-642-97881-4
http://dx.doi.org/10.1007/978-3-642-97881-4
http://dx.doi.org/10.1007/978-3-642-97881-4


120 BIBLIOGRAPHY

[50] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location
algorithms. Journal of Algorithms, 31:228–248, 1999. doi:10.1006/jagm.1998.
0993.

[51] P. Hall. On representatives of subsets. Journal of the London Mathematical
Society, s1-10(1):26–30, 1935. URL: http://dx.doi.org/10.1112/jlms/s1-10.
37.26, doi:10.1112/jlms/s1-10.37.26.

[52] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised
learning. In Advances in Neural Information Processing Systems 29 (NIPS 2016),
pages 3315–3323, 2016.

[53] Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation
algorithms for bottleneck problems. Journal of the ACM, 33(3):533–550, 1986.
doi:10.1145/5925.5933.

[54] Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck loca-
tion problems. Discrete Applied Mathematics, 1:209–215, 1979. doi:10.1016/
0166-218X(79)90044-1.

[55] R. Z. Hwang, R. C. T. Lee, and R. C. Chang. The slab dividing approach to
solve the Euclidean P -center problem. Algorithmica, 9(1):1–22, 1993. URL:
https://doi.org/10.1007/BF01185335, doi:10.1007/BF01185335.

[56] Hiroshi Imai and Mary Inaba. The number of partitions of n points induced
by the voronoi diagram via the conjugacy generated by k points. Proc. 1st
Japanese-Hungarian Symp. on Discrete Mathematics and Its Applications, page
83–90, 03 1999.

[57] Hiroshi Imai, Mary Inaba, and Naoki Katoh. Variance-based k-clustering al-
gorithms by voronoi diagrams and randomization. IEICE Transactions on
Information and Systems, E83D, 06 2000.

[58] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for
facility location problems. In John H. Reif, editor, Proceedings on 34th Annual
ACM Symposium on Theory of Computing (STOC 2002), pages 731–740. ACM,
2002. doi:10.1145/509907.510012.

[59] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and lagrangian
relaxation. Journal of the ACM, 48(2):274–296, 2001.

[60] David S. Johnson. The NP-completeness column: finding needles in haystacks.
ACM Trans. Algorithms, 3(2):Art. 24, 21, 2007. URL: https://doi.org/10.
1145/1240233.1240247, doi:10.1145/1240233.1240247.

[61] Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP.
Inform. Process. Lett., 68(3):119–124, 1998. URL: http://dx.doi.org/10.1016/
S0020-0190(98)00150-1, doi:10.1016/S0020-0190(98)00150-1.

http://dx.doi.org/10.1006/jagm.1998.0993
http://dx.doi.org/10.1006/jagm.1998.0993
http://dx.doi.org/10.1112/jlms/s1-10.37.26
http://dx.doi.org/10.1112/jlms/s1-10.37.26
http://dx.doi.org/10.1112/jlms/s1-10.37.26
http://dx.doi.org/10.1145/5925.5933
http://dx.doi.org/10.1016/0166-218X(79)90044-1
http://dx.doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.1007/BF01185335
http://dx.doi.org/10.1007/BF01185335
http://dx.doi.org/10.1145/509907.510012
https://doi.org/10.1145/1240233.1240247
https://doi.org/10.1145/1240233.1240247
http://dx.doi.org/10.1145/1240233.1240247
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1016/S0020-0190(98)00150-1


Bibliography 121

[62] Marcin Jurdziński. Small progress measures for solving parity games. Proc.
STACS 2000, 1770:290–301, 2000. URL: http://dx.doi.org/10.1007/
3-540-46541-3_24, doi:10.1007/3-540-46541-3_24.

[63] Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving parity
games. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), page 9. IEEE, [Piscataway], NJ, 2017.

[64] Marcin Jurdziński, Mike Paterson, and Uri Zwick. A deterministic subexponential
algorithm for solving parity games. SIAM J. Comput., 38(4):1519–1532, 2008.
URL: http://dx.doi.org/10.1137/070686652, doi:10.1137/070686652.

[65] Samir Khuller, Robert Pless, and Yoram J. Sussmann. Fault tolerant k-center
problems. Theoretical Computer Science, 242(1-2):237–245, 2000.

[66] Samir Khuller and Yoram J. Sussmann. The capacitated k-center problem.
SIAM Journal on Discrete Mathematics, 13:403–418, 2000. doi:10.1137/
S0895480197329776.

[67] Valerie King, Orna Kupferman, and Moshe Y. Vardi. On the complexity of parity
word automata. Proc. FOSSACS 2001, 2030:276–286, 2001.

[68] Ton Kloks and Hans L. Bodlaender. On the treewidth and pathwidth of permuta-
tion graphs, 1992. http://www.cs.uu.nl/research/techreps/repo/CS-1992/
1992-13.pdf.

[69] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis
of a local search heuristic for facility location problems. Journal of Algorithms,
37(1):146–188, 2000.

[70] Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for
k-median and k-means with outliers via iterative rounding. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing (STOC 2018), pages 646–659.
ACM, 2018. doi:10.1145/3188745.3188882.

[71] Piyush Kumar, Joseph S. B. Mitchell, and E. Alper Yıldırım. Approximate
minimum enclosing balls in high dimensions using core-sets. ACM J. Exp.
Algorithmics, 8:29 pp. (electronic), 2003.

[72] Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified
inapproximability for k-means. Information Processing Letters, 120:40–43, 2017.
doi:10.1016/j.ipl.2016.11.009.

[73] Retsef Levi, David B. Shmoys, and Chaitanya Swamy. LP-based approximation
algorithms for capacitated facility location. In Integer programming and combina-
torial optimization, volume 3064 of Lecture Notes in Comput. Sci., pages 206–218.
Springer, Berlin, 2004. URL: https://doi.org/10.1007/978-3-540-25960-2_
16, doi:10.1007/978-3-540-25960-2_16.

http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1137/070686652
http://dx.doi.org/10.1137/070686652
http://dx.doi.org/10.1137/S0895480197329776
http://dx.doi.org/10.1137/S0895480197329776
http://www.cs.uu.nl/research/techreps/repo/CS-1992/1992-13.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-1992/1992-13.pdf
http://dx.doi.org/10.1145/3188745.3188882
http://dx.doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1007/978-3-540-25960-2_16
https://doi.org/10.1007/978-3-540-25960-2_16
http://dx.doi.org/10.1007/978-3-540-25960-2_16


122 BIBLIOGRAPHY

[74] Jian Li, Ke Yi, and Qin Zhang. Clustering with diversity. In Automata, lan-
guages and programming. Part I, volume 6198 of Lecture Notes in Comput.
Sci., pages 188–200. Springer, Berlin, 2010. URL: https://doi.org/10.1007/
978-3-642-14165-2_17, doi:10.1007/978-3-642-14165-2_17.

[75] Shanfei Li. An improved approximation algorithm for the hard uniform ca-
pacitated k-median problem. In Klaus Jansen, José D. P. Rolim, Nikhil R.
Devanur, and Cristopher Moore, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2014), volume 28 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 325–338. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014. doi:
10.4230/LIPIcs.APPROX-RANDOM.2014.325.

[76] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location
problem. Information and Computation, 222:45–58, 2013. doi:10.1016/j.ic.
2012.01.007.

[77] Shi Li. Approximating capacitated k-median with (1 + ε)k open facilities. In
Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2016), pages 786–796. SIAM,
2016. doi:10.1137/1.9781611974331.ch56.

[78] Shi Li. On uniform capacitated k-median beyond the natural LP relaxation.
ACM Transactions on Algorithms, 13:22:1–22:18, 2017. doi:10.1145/2983633.

[79] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation.
SIAM Journal on Computing, 45:530–547, 2016. doi:10.1137/130938645.

[80] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear
programming. Algorithmica, 16(4-5):498–516, 1996.

[81] Robert McNaughton. Infinite games played on finite graphs. Ann. Pure Appl.
Logic, 65(2):149–184, 1993. URL: http://dx.doi.org/10.1016/0168-0072(93)
90036-D, doi:10.1016/0168-0072(93)90036-D.

[82] N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran. An O(n log2 n)
algorithm for the kth longest path in a tree with applications to location problems.
SIAM J. Comput., 10(2):328–337, 1981. URL: https://doi.org/10.1137/
0210023, doi:10.1137/0210023.

[83] Nimrod Megiddo. The weighted Euclidean 1-center problem. Math. Oper. Res.,
8(4):498–504, 1983. URL: https://doi.org/10.1287/moor.8.4.498.

[84] Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common
geometric location problems. SIAM J. Comput., 13(1):182–196, 1984. URL:
https://doi.org/10.1137/0213014, doi:10.1137/0213014.

[85] Matthias Mnich, Heiko Röglin, and Clemens Rösner. New deterministic algorithms
for solving parity games. Discrete Optim., 30:73–95, 2018. URL: https://doi.
org/10.1016/j.disopt.2018.06.001, doi:10.1016/j.disopt.2018.06.001.

https://doi.org/10.1007/978-3-642-14165-2_17
https://doi.org/10.1007/978-3-642-14165-2_17
http://dx.doi.org/10.1007/978-3-642-14165-2_17
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.325
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.325
http://dx.doi.org/10.1016/j.ic.2012.01.007
http://dx.doi.org/10.1016/j.ic.2012.01.007
http://dx.doi.org/10.1137/1.9781611974331.ch56
http://dx.doi.org/10.1145/2983633
http://dx.doi.org/10.1137/130938645
http://dx.doi.org/10.1016/0168-0072(93)90036-D
http://dx.doi.org/10.1016/0168-0072(93)90036-D
http://dx.doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1137/0210023
https://doi.org/10.1137/0210023
http://dx.doi.org/10.1137/0210023
https://doi.org/10.1287/moor.8.4.498
https://doi.org/10.1137/0213014
http://dx.doi.org/10.1137/0213014
https://doi.org/10.1016/j.disopt.2018.06.001
https://doi.org/10.1016/j.disopt.2018.06.001
http://dx.doi.org/10.1016/j.disopt.2018.06.001


Bibliography 123

[86] Jan Obdržálek. Fast µ-calculus model checking when tree-width is bounded.
Proc. CAV 2003, 2725:80–92, 2003. URL: http://dx.doi.org/10.1007/
978-3-540-45069-6_7, doi:10.1007/978-3-540-45069-6_7.

[87] Jan Obdržálek. Clique-width and parity games. Proc. CSL 2007, 4646:54–
68, 2007. URL: http://dx.doi.org/10.1007/978-3-540-74915-8_8, doi:10.
1007/978-3-540-74915-8_8.

[88] Anthony L. Peressini, Francis E. Sullivan, and J. J. Uhl, Jr. The mathematics of
nonlinear programming. Undergraduate Texts in Mathematics. Springer-Verlag,
New York, 1988.

[89] Andrea Romei and Salvatore Ruggieri. A multidisciplinary survey on dis-
crimination analysis. The Knowledge Engineering Review, 29:582–638, 2014.
doi:10.1017/S0269888913000039.

[90] Clemens Rösner and Melanie Schmidt. Privacy Preserving Clustering with
Constraints. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and
Donald Sannella, editors, 45th International Colloquium on Automata, Languages,
and Programming (ICALP 2018), volume 107 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 96:1–96:14. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.96.

[91] Sven Schewe. Solving parity games in big steps. Proc. FSTTCS 2007, 4855:449–
460, 2007. URL: http://dx.doi.org/10.1007/978-3-540-77050-3_37, doi:
10.1007/978-3-540-77050-3_37.

[92] Raimund Seidel. Linear programming and convex hulls made easy. In Proceedings
of the Sixth Annual Symposium on Computational Geometry, SCG ’90, pages
211–215, New York, NY, USA, 1990. ACM. URL: http://doi.acm.org/10.
1145/98524.98570, doi:10.1145/98524.98570.

[93] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms
for facility location problems. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing (STOC), pages 265–274, 1997.

[94] Colin Stirling. Local model checking games. Proc. CONCUR 1995, 962:1–11,
1995. URL: http://dx.doi.org/10.1007/3-540-60218-6_1, doi:10.1007/
3-540-60218-6_1.

[95] Zoya Svitkina. Lower-bounded facility location. ACM Transaction on Algorithms,
6:69:1–69:16, 2010. doi:10.1145/1824777.1824789.

[96] Indrė Z̆liobaitė, Faisal Kamiran, and Toon Calders. Handling Conditional Dis-
crimination. In Proceedings of the 2011 IEEE 11th International Conference
on Data Mining, ICDM ’11, pages 992–1001. IEEE Computer Society, 2011.
doi:10.1109/ICDM.2011.72.

[97] Jens Vöge and Marcin Jurdziński. A discrete strategy improvement algorithm
for solving parity games. Proc. CAV 2000, 1855:202–215, 2000. URL: http:
//dx.doi.org/10.1007/10722167_18, doi:10.1007/10722167_18.

http://dx.doi.org/10.1007/978-3-540-45069-6_7
http://dx.doi.org/10.1007/978-3-540-45069-6_7
http://dx.doi.org/10.1007/978-3-540-45069-6_7
http://dx.doi.org/10.1007/978-3-540-74915-8_8
http://dx.doi.org/10.1007/978-3-540-74915-8_8
http://dx.doi.org/10.1007/978-3-540-74915-8_8
http://dx.doi.org/10.1017/S0269888913000039
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.96
http://dx.doi.org/10.1007/978-3-540-77050-3_37
http://dx.doi.org/10.1007/978-3-540-77050-3_37
http://dx.doi.org/10.1007/978-3-540-77050-3_37
http://doi.acm.org/10.1145/98524.98570
http://doi.acm.org/10.1145/98524.98570
http://dx.doi.org/10.1145/98524.98570
http://dx.doi.org/10.1007/3-540-60218-6_1
http://dx.doi.org/10.1007/3-540-60218-6_1
http://dx.doi.org/10.1007/3-540-60218-6_1
http://dx.doi.org/10.1145/1824777.1824789
http://dx.doi.org/10.1109/ICDM.2011.72
http://dx.doi.org/10.1007/10722167_18
http://dx.doi.org/10.1007/10722167_18
http://dx.doi.org/10.1007/10722167_18


124 BIBLIOGRAPHY

[98] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained
k-means clustering with background knowledge. In Proceedings of the 18th
International Conference on Machine Learning (ICML), pages 577–584, 2001.

[99] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). New results and new
trends in computer science (Graz, 1991), 555:359–370, 1991.
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