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Abstract 

The important value and wide array of ecosystem services provided by wetlands are widely 

recognized by scientific and government institutions alike: they are highly productive, 

supporting directly many human communities; they provide pollution control, clean water 

and soil formation; they store larger amounts of Carbon than forests; they are a key habitat 

for 40% of the world’s species, and they provide protection against natural disasters, among 

many other services. However, they are still being degraded globally at fast rates by human 

activities. Agriculture and dam building are two of the main drivers of wetland degradation. 

Due to wetlands’ seasonality, their difficult access and ecotone character, determining their 

actual extension and trends over time is a complex task. Earth Observation systems are the 

most appropriate available tool to monitor their spatio-temporal patterns (seasonal changes 

and long term trends) at global scales, and to study the effects that human activities have in 

their physical and biological properties.  

I use time series of radar (Sentinel-1), multispectral (Sentinel-2) and thermal (MODIS) 

imagery to map the spatio-temporal patterns in 5 study areas with wetlands of different 

characteristics: 1) Fuente de Piedra, an endorheic small wetland in Spain; 2) Camargue, a 

complex of coastal marshes in the south of France; 3) Kerkini Lake, an artificial wetland in 

Greece; 4) Albania, a country that harbors one of the few remaining systems of undammed 

large rivers in Europe; 5) and the Kilombero Floodplain, a complex of swamps and 

seasonally inundated grasslands in Tanzania. 

First, I introduce in chapter 1 the problematic of wetlands’ definitions and their degradation 

trends. I continue with a brief introduction on remote sensing, time series analysis, and their 

applications on wetlands’ research and management. In chapters 2 and 3 I implement an 

algorithm for change detection of time series of Sentinel-1 images, and compare its 

performance with Landsat datasets and conventional change detection methods. In chapter 

2 I perform the analysis in a desktop computer, but in chapter 3 I make use of the cloud 

computing platform Google Earth Engine. I demonstrate the advantages of cloud 

computation for operational monitoring of seasonal patterns and other short-term changes. 

In chapters 4 and 5 I address two of the main causes of wetland degradation: dam building 

and agricultural expansion.  

Albania hosts one of the few remaining systems of large undammed rivers of Europe. While 

the authorities are planning to invest in hydropower, they are facing opposition from 
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conservation, local and scientific organizations. In chapter 4 I use dense time series of 

Sentinel-1 and Sentinel-2 images to compute multitemporal metrics and map all the wetlands 

of Albania. I evaluate the synergic advantages of fusing multispectral and radar imagery in 

combination with knowledge-based rules for classification of wetlands. 

In chapter 5 I present how the Kilombero Floodplain has been degraded during the last years 

due to uncontrolled farmland expansion. Due to weak management systems, the increasing 

pressure on the wetland has caused a loss in ecosystem services and social conflicts between 

the many stakeholders of the area. I use a time series of thermal imagery (MODIS) spanning 

from 2000 until 2017 and land use change maps to map the effect of the land use changes 

that the wetland has gone through during the last 18 years. I compare three models for time 

series analysis and reveal how farming practices have increased the land surface temperature 

of the farmed area, as well as in adjacent still natural wetlands. Lastly, I show how the land 

surface temperature can be used as an indicator to detect trends and changes in the water 

and energy fluxes of the Earth’s surface. 

 

Zusammenfassung 

Der hohe Wert und der Reichtum an Ökosystemdienstleistungen, die von Feuchtgebieten 

bereitgestellt werden, wecken die Aufmerksamkeit sowohl von Forschung als auch von 

staatlichen Institutionen. Feuchtgebiete sind bedeutende Ökosysteme, die zahlreichen 

Menschen als Lebensgrundlage dienen und regulierend auf den Boden- und Wasserhaushalt 

wirken. In Feuchtgebieten können größere Kohlenstoffmengen gespeichert werden als in 

Wäldern. Außerdem leben rund 40 % aller auf der Welt existierenden Tier- und 

Pflanzenarten in Feuchtgebieten. Feuchtgebiete sind vielfältige Lebensräume und bieten u.a. 

Schutz vor Naturgefahren. Allerdings werden sie weltweit und in zunehmender Intensität 

durch menschliche Aktivitäten zerstört. Zu den Hauptverursachern für den Verlust von 

Feuchtgebieten zählen u.a. die Landwirtschaft und der Bau von Staudämmen. 

Die Analyse der aktuellen räumlichen Verbreitung und der zeitlichen Entwicklung von 

Feuchtgebieten stellt eine äußerst komplexe Aufgabe dar, welche durch die Saisonalität, die 

schwierige Zugänglichkeit und die besonderen Eigenschaften als Ökoton bedingt ist. 

Erdbeobachtungssysteme sind somit das am besten geeignete Werkzeug, um zeitliche und 

räumliche Muster von Feuchtgebieten auf globaler Ebene zu beobachten (saisonale 

Veränderungen und Langzeit-Trends) und um den Einfluss der menschlichen Aktivitäten 

auf ihre physischen und biologischen Eigenschaften zu untersuchen. 
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Zur Kartierung von raum-zeitlichen Mustern wurden Zeitreihen von Radar- (Sentinel-1), 

Multispektral- (Sentinel-2) und Thermal-Satellitendaten (MODIS) in fünf 

Untersuchungsgebieten mit für Feuchtgebiete unterschiedlichen typischen Charakteristika 

untersucht: 1) Fuente de Piedra, ein kleines, endorheisches Feuchtgebiet in Spanien, 2) 

Camargue, ein komplexes Küstenmarschlandgebiet in Südfrankreich, 3) Kerkini, ein 

künstliches Feuchtgebiet in Griechenland, 4) Albanien, das eines der wenigen verbliebenen 

nicht regulierten Flusssysteme Europas beherbergt und 5) Kilombero, eine 

Überflutungsebene in Tansania mit einer Reihe von Sumpfgebieten und saisonal 

überschwemmten Graslandschaften. 

In Kapitel 1 werden die Problematik in Bezug auf die Definition von Feuchtgebieten 

erläutert und allgemeine Degradations-Trends beschrieben. Anschließend folgt eine 

Einführung in die Fernerkundung von Feuchtgebieten, die Zeitreihenanalyse und deren 

Anwendung auf Feuchtgebiete. Die Kapitel 2 und 3 beinhalten einen Algorithmus, um 

Veränderungen mithilfe von SAR-Zeitreihen festzustellen. Die Ergebnisse werden mit denen 

von multispektralen Datensätzen und konventionellen Methoden der 

Veränderungsdetektion verglichen. Die Analysen in Kapitel 2 basieren auf der Durchführung 

mit einem Desktop-Computer., In Kapitel 3 basiert die Analyse auf der Cloud-Computing-

Plattform Google Earth Engine (GEE). Hier werden die Vorteile des Cloud-Computings für 

das operationelle Monitoring saisonaler Muster und die Erkennung kurzfristig auftretender 

Veränderungen verdeutlicht. 

In den Kapiteln 4 und 5 werden die zwei Hauptursachen für den Verlust von Feuchtgebieten 

behandelt: der Staudammbau und die Ausdehnung landwirtschaftlicher Flächen. 

In Albanien befindet sich das letzte nicht regulierte Flusssystem Europas. Während die 

Behörden Investitionen in Wasserkraftanlagen planen, macht sich eine Opposition von 

Naturschützern und lokalen sowie internationalen wissenschaftlichen Organisationen gegen 

diese Pläne stark. In Kapitel 4 werden dichte Zeitreihen multispektraler (Sentinel-2) und 

SAR-Daten (Sentinel-1) verwendet, um multitemporale Metriken, d.h. Maße der deskriptiven 

Statistik, zu berechnen und die Feuchtgebiete Albaniens landesweit zu kartieren. Die 

synergetischen Vorteile, die sich durch die Fusionierung von multispektralen und SAR-

Daten für die Klassifikation ergeben, werden dabei herausgestellt. Das Endprodukt ist ein 

konsistentes Inventar der Feuchtgebiete Albaniens mit einer bislang einzigartigen räumlichen 

und thematischen Auflösung, das den Entscheidungsträgern sowie lokalen Behörden und 

Entscheidungsträgern dienen soll.  
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Kapitel 5 veranschaulicht, dass die Kilombero-Überschwemmungsebene in Tansania ein 

großes und bedeutendes Feuchtgebiet ist, das in den vergangenen Jahren infolge der 

weitgehend unkontrollierten Ausbreitung landwirtschaftlicher Flächen in seiner Ausdehnung 

und seiner Ökologie stark beeinträchtigt wurde. Ein schwaches Managementsystem sowie 

der steigende Bevölkerungs- und Nutzungsdruck, der auf den Feuchtgebietskomplex 

ausgeübt wird, haben zu Ökosystemdienstleistungsverlusten und zu Konflikten unter 

verschiedenen Interessensvertretern geführt. Um die Auswirkungen der 

Landnutzungsänderungen des Feuchtgebietes während der vergangenen 18 Jahre zu 

analysieren, wurden eine Zeitreihe (2000 bis 2017) thermaler Daten (MODIS) und 

Landnutzungsänderungskarten verwendet. Die drei für die Zeitreihenanalyse angewandten 

Modelle zeigen, wie landwirtschaftliche Praktiken die Landoberflächentemperatur in den 

landwirtschaftlich genutzten Gebieten sowie in den angrenzenden natürlichen 

Feuchtgebieten erhöht haben. Abschließend wird dargestellt, dass die 

Landoberflächentemperatur als Indikator für Tendenzen und Änderungen der Wasser- und 

Energieflüsse auf der Erdoberfläche infolge von Landnutzungsänderungen genutzt werden 

kann. 

 

Resumen 

La importancia de los humedales y los servicios ecosistémicos que proveen está ampliamente 

reconocida por gobiernos y organizaciones científicas: los humedales hacen posible la 

existencia de miles de comunidades de personas dada su alta productividad; regulan los ciclos 

de nutrientes y la contaminación, produciendo agua limpia y contribuyendo a la formación 

de suelo; son sumideros de carbono 3 veces más potentes que los bosques terrestres; también 

son un hábitat clave para un 40% de las especies de la tierra, y proveen protección contra 

determinados desastres naturales, entre otros muchos servicios. Sin embargo, sus tasas de 

desaparición y degradación debido a actividades humanas siguen siendo altas. La agricultura 

y la construcción de presas son dos de las principales causas de degradación de humedales. 

Debido a la estacionalidad de los humedales, su difícil acceso y sus características de ecotono, 

determinar su actual extensión y sus tendencias a lo largo del tiempo es una tarea compleja. 

Los sistemas de observación terrestres son la herramienta disponible más apropiada para 

monitorear sus patrones espacio-temporales (estacionalidad y tendencias a largo plazo) a 

escalas globales, y para estudiar los efectos que las actividades humanas causan en sus 

propiedades físicas y biológicas. 
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En esta tesis uso series temporales de imágenes radar (Sentinel-1), multiespectrales (Sentinel-

2) y termales (MODIS) para mapear los patrones espacio-temporales de 5 áreas de estudio 

con humedales de diferentes características: 1) Fuente de Piedra, una pequeña laguna 

endorreica en el sur de España; 2) Camargue, un complejo sistema de marismas costeras en 

el sur de Francia; 3) Kerkini, un lago artificial en Grecia; 4) Albania, un país que alberga uno 

de los pocos sistemas de grandes ríos sin represar de Europa; 5) y Kilombero, un complejo 

sistema de pantanos, lagunas y llanuras inundables en Tanzania. 

El en capítulo 1 describo los retos que derivan de las diferentes definiciones que existen de 

los humedales. También presento las tendencias globales de degradación que la mayoría de 

los humedales continúan experimentando en los últimos años. Continúo con una breve 

introducción de los sistemas de teledetección remota, análisis de series temporales, y sus 

aplicaciones a la investigación y gestión de los humedales. En los capítulos 2 y 3 implemento 

un algoritmo de detección de cambios para series temporales de imágenes radar, y comparo 

su efectividad con respecto a imágenes multiespectrales y métodos convencionales de 

detección de cambios. En el capítulo 2, los análisis se hacen en un ordenador local, pero en 

el capítulo 3 uso la plataforma Google Earth Engine, en la que los análisis se hacen en la 

nube. Con ello, muestro las ventajas de usar sistemas de computación en la nube para 

monitorear la estacionalidad de los humedales y otros cambios en la cobertura del suelo a 

corto plazo. 

En los capítulos 4 y 5 trato con dos de las causas más comunes de degradación de humedales: 

la construcción de presas y la expansión de la agricultura. 

Albania cuenta con uno de los pocos sistemas de ríos grandes sin represar que quedan en 

Europa. El país busca aumentar su capacidad para producir energía hidroeléctrica, pero 

organizaciones conservacionistas, científicas y locales se han posicionado en contra de 

algunos de estos proyectos. En el capítulo 4, uso series temporales de imágenes 

multiespectrales (Sentinel-2) y radar (Sentinel-1) en Google Earth Engine para generar 

métricas multitemporales y mapear todos los humedales del país. Primero, evalúo las ventajas 

sinérgicas de fusionar imágenes radar y multiespectrales en una clasificación supervisada. 

Finalmente, usando reglas lógicas genero un mapa de suficiente resolución espacial y temática 

para que pueda ser usado por sectores interesados y gestores. 

Las llanuras inundables de Kilombero, en Tanzania, son un extenso complejo de humedales 

que han sido degradados durante los últimos años debido a la expansión incontrolada de la 

agricultura. Los escasos sistemas de gestión existentes no fueron capaces de controlar la 
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presión ejercida sobre los humedales, lo que causó una degradación de sus servicios 

ecosistémicos y numerosos conflictos sociales entre los múltiples sectores presentes en el 

área. Usando series temporales de imágenes termales (MODIS) desde 2000 hasta 2017 y 

mapas de cambios de usos del suelo, determino los efectos que estos cambios han tenido en 

el humedal durante los últimos 18 años. Comparo 3 modelos diferentes de análisis de series 

temporales y muestro cómo la expansión de la agricultura ha incrementado la temperatura 

superficial terrestre, no solo de la zona cultivada, sino también de zonas adyacentes aún 

naturales. Por último, demuestro como la temperatura superficial terrestre puede ser usada 

como un indicador para detectar tendencias y cambios en los flujos de agua y energía en la 

superficie. 
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“Words have power. Words can light fires in the minds of men. Words can wring tears from the 

hardest hearts.”  

― Patrick Rothfuss, The Name of the Wind. 

1.1. The ontology of wetlands 

Wetlands are ecosystems at the interface between land and water systems. This transitional 

character is known as “ecotone” (Mitsch and Gosselink, 2000). Wetlands are also present in 

a very wide variety of biomes: from the coastline mangroves of the tropics to the boreal 

peatbogs that the retreating glaciers leave, through the ephemeral oases in deserts. This 

causes one of the main challenges that wetland practitioners encounter: a definition, which 

has, inevitably, spatial connotations. It is not enough to define an area as a wetland without 

specifically delineating its boundaries. Besides, wetlands cannot be classified apart from other 

ecosystems using a common land cover type the way forests are identified by their trees, or 

grasslands by grass (Gallant, 2015). Although wetlands are expected to have water, that is 

not always the case due to the high variability in the water dynamics of many of them. This 

makes them a “moving target” from a remote sensing perspective (Gallant et al 2015). Their 

different water fluctuations can also determine their species composition by controlling, for 

instance, the dispersion of the seeds (Pétillon et al., 2010; Tyler et al., 2018; Valk, 2005). On 

the other hand, although in some wetlands the water is always present (e.g. some mangroves), 

it remains under a thick layer of vegetation. The water is then, not visible from space unless 

using long wavelength radar sensors. 

Multiple definitions of wetlands have been developed. For Tiner (Tiner, 2015) wetlands are 

lands that are at least periodically wet during the growing season or the wet phase of the 

hydrological cycle in most years. This definition is very broad and incorporates very different 

types of ecosystems such as permanent water bodies, estuaries, peatlands, marshlands and 

mangroves, each with very different requirements, water regimes, species compositions and 

services provided. Other definitions require the presence of distinctive riparian vegetation to 

distinguish them from uplands and open ocean (Tiner, 2015). This, for example, excludes 

some ephemeral rivers -land forms of fluvial origin common in very arid regions (Scoones, 

1992). They contain water only during brief flashfloods periods that can occur every several 

years and they have very little to no vegetation. Figure 1.1 shows a Sentinel-2 image of the 

river banks of the Vjosa River, in Albania. The Vjosa River forms part of one of the last 

unregulated river systems of Europe. The recurrence of flooding in their floodplains can be 

of several years. 
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Figure 1.1: Natural color Sentinel-2 image (a) and multitemporal color composite (b) of the 

floodplains and riverbanks of the Vjosa River, in Albania. The RGB color composition of b 

is: bare soil index, vegetation index and water index. The red colors of b indicate lack of 

water during the period of image acquisition (2016-2018) 

There is also a fundamental distinction between natural and artificial wetlands. For instance, 

a dam that has been constructed over a peatland might not provide the same ecosystem 

services in terms of carbon storage nor biodiversity than the original peatland, despite both 

are wetlands. On the other hand, artificial wetlands such as flooded agriculture should still 

be considered wetlands since they serve as habitat for wetland fauna, especially when their 

natural habitats are temporarily dry (Czech and Parsons, 2002). Besides, for an integrated 

management that considers the water-food-and energy nexus it is important to include 

agricultural areas, whether they are in use or not. 

Definitions vary also between continents. In North America for instance, water bodies 

deeper than 2.5 m are not considered wetlands unless they host persistent self-supporting 

vegetation. On the other hand, the Ramsar convention considers as wetlands lakes that are 

up to 6 meters deep. These inconsistencies in definitions make global analyses challenging. 

Currently, there are 3 main classifications systems adapted to wetlands. In Europe, the 

Ramsar classification system is applied along with CORINE or MAES classification schemes 

(Fitoka et al., 2017). In African and Asian countries, the FAO classification system is more 

commonly used. The USA and part of Central and South America have adopted a 
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hierarchical classification based on Cowardin et al. (Cowardin et al., 1979). In this system, 

wetlands are divided into 5 major classes: marine, tidal, lacustrine, palustrine and riverine. 

They are further divided according to their vegetation cover and hydrologic regime. Some 

efforts to harmonize different classifications have been carried out using crosswalk tables 

between pairs of nomenclatures (Fitoka et al., 2017). Other efforts have been directed to 

build consistent data models that describe the Earth’s surface characteristics in a conceptual 

and transferrable way. Examples of such methods are the FAO Land Cover Meta-Language 

(Di Gregorio, 2016), and the EAGLE European model (Arnold et al., 2013). They are both 

frameworks of rules that reconcile nomenclatures at different scales and geographic 

locations.  

The classification of wetlands is sometimes a complex issue for which we need as much 

information as possible about their characteristics in terms of species and chemical 

compositions, but also about their inter- and intra-annual dynamics.  

1.2. Wetland trends 

The direct and indirect benefits that wetlands provide are well recognized by the scientific 

community and governmental institutions of most countries (Mitsch and Gosselink, 2000; 

Tiner, 2015, Ramsar, 2018;). For instance, wetland ecosystem services produce over 44.000 

US$ ha−1 year−1 (Maes et al., 2016) while they cover between 3% and 8% of the land surface. 

When we compare it to the 3.278 US$ ha−1 year−1 produced by forests (Maes et al., 2016) 

wetlands importance becomes clearer (Amler et al., 2015). The recognition of wetland’s value 

has materialized into policies and engineering works all over the world to try to compensate 

for their loss: from wetland restoration and rewetting campaigns to the creation of 

constructed wetlands and the proliferation of paludiculture –the sustainable use of peatlands 

for wet agriculture and forestry- (Joosten and Clarke, 2002). However, we keep losing 

wetland extent. Current global rates of wetland loss suggest that since the beginning of the 

20th century we have lost 64%-71% of our wetlands (Davidson, 2014), and 6% was lost only 

between 1993 and 2007 (Prigent et al., 2012). According to the Global Wetland Outlook 

report from Ramsar, wetland destruction rates have increased since 2000 (Ramsar, 2018). 

World population is increasing at rates of ~1% annually (UN, 2015), and the consumption 

of certain goods per capita such as meat has also grown in all 5 continents (Ritchie and Roser, 

2017). More people and higher consumption rates imply a need of increasing agricultural 

production. Due to war conflicts, land degradation and local declines of precipitation, 

populations are and will be pushed to occupy more productive areas (Scoones, 1992). As a 
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consequence, the world has experienced an expansion of subsistence and cash crops at the 

expense of forests, but also at the expense of wetlands (Figure 1.2) (Leemhuis et al., 2017; 

Ramsar, 2018). Most wetlands act as a sink of soil nutrients, making them very fertile. These 

land conversions have been more pronounced in Asia and Africa because of the fast increase 

in their populations and economic growth (FAO, 2003), but also because many European 

and North American wetlands are already cultivated, or were dried out in the past to fight 

vector-borne diseases. It is estimated that by 1985, over half of the European and North 

American wetlands were converted into intensive agriculture (Tiner, 2015). 

 

Figure 1.2 Natural wetlands and grasslands converted to agriculture over the Kilombero 

Floodplan, Tanzania. The image on the right shows the burn scars from slash and burn 

practices carried out to boost grass growth. Credits: right Javier Muro, left Ian Games. 

The case of peatland degradation is particularly notorious. Whereas they cover only 3% of 

the land surface, they store more carbon than forests, which cover 30% of the planet’s 

surface (FAO, 2018). When turned into arable land and harvested, peatlands release 

greenhouse gases. It is estimated that in Europe alone, 125.000 km2 of farmland extend over 

former peatlands (Joosten and Clarke, 2002). That is approximately 1/3 of the extension of 

Germany. 

Mangroves are another type of wetland very efficient in carbon sequestration that is also 

disappearing due to timber extraction and aquiculture, especially shrimp farming. By 2001, 

35% of the world mangroves had disappeared, and the current loss rate is around 1% per 

year (Valiela et al., 2001). As in peatlands, C stored below soil will be released if disturbed.  

The fast economic and demographic growth of low and middle income countries often takes 

place without the infrastructure or knowledge needed to do it sustainably. The substitution 
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of subsistence agriculture by cash crops has rapidly pushed the boundaries of the agricultural 

frontier to formerly natural or semi natural areas. The case of the Kilombero Ramsar site, in 

Tanzania is a good example. In a basin of 40.240 km2 and a Ramsar site of 8000 km2, 2000 

km2 of wetlands and natural grasslands were transformed to cropland only between 2004 and 

2014 (Leemhuis et al., 2017). Besides, another 1800 km2 were reported to be transformed 

from grasslands to bare soil. An increase in the number of herders that practice slash and 

burn techniques could be partly behind this last conversion (Leemhuis et al., 2017).  

Wetland degradation is not exclusive of tropical wetlands. Some emergent economies in 

western societies are looking to increase their electric energy production by increasing the 

number of hydropower plants (Vejnovic and Gallop, 2018). Although hydropower is often 

seen as a source of renewable energy and carbon sequestration, dams are often built at the 

expense of large extensions of natural wetlands. Dams also implement a physical barrier for 

aquatic species, barring catadromous (born in the sea, mature up the rivers) and anadromous 

(born in fresh waters, and mature in the sea) species from reaching their key reproductive 

habitats, and deprive coastal estuaries of sediments. Countries of the former Yugoslavia such 

as Albania, whose economy has been growing steadily for the last decade, are seeking to 

invest in small and large hydropower plants (EcoAlbania, 2017; Vejnovic and Gallop, 2018). 

Their rough orography makes them suitable for that. However, developers have found 

opposition from locals, scientists and Non-Governmental Organizations (NGOs). Some of 

the reasons argued against are: damage to their rich riverine and coastal ecosystems 

downstream, displacement of the population that live off those rivers and wetlands, finite 

lifespans of the dams because of sediment deposition, and the opacity with which sometimes 

these projects have been implemented (EcoAlbania, 2017; Vejnovic and Gallop, 2018). 

Hydropower supporters argue that it will boost national and local economies while 

complying with carbon emission commitments. Development institutions such as the World 

Bank finances hydropower projects with that purpose. Such macro-projects must be based 

on solid spatial and quantitative data. Else, the loss of ecosystem services that dam building 

often involves (including carbon sequestration) could out-weight the advantages it promises 

(Maavara et al., 2017). Unfortunately, the spatial information used is often limited to assess 

hydropower potentials according to discharge data, neglecting the loss of ecosystem services 

and not really assessing the life span of the dam (Condé et al., 2019; ECOWAS, 2017).  
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Accurate mapping products derived from Earth Observation Systems can help to determine 

the viability of such macro-projects by delivering information about: 

 the habitats that will be lost to the dam up and down stream, 

 the amount of population and agricultural surface that will be affected, 

 the lifespan of the dam before sediment deposition reduces the storage volume, 

 evapotranspiration rates throughout all the year. 

1.3. Remote sensing of wetlands 

National and local agencies need accurate spatial information to fulfill national and 

international reporting commitments such as the Ramsar convention, the Convention on 

Biological Diversity, the Sustainable Development Goals (SDGs), or the European Habitats 

or Water Framework Directives. Despite the wide availability of satellite data and the well 

acknowledged value of wetlands, many countries still lack a comprehensive inventory of 

wetlands at national level. One reason is the difficulty in accessing them, which makes 

fieldwork expensive. Another one is the difficult task of their definition that I explained in 

subchapter 1.1. But the greatest challenge that wetland practitioners have to deal with when 

mapping and monitoring wetlands is their spatio-temporal dynamics. As previously 

mentioned, from a remote sensing perspective wetlands are a “moving target” (Gallant, 

2015). Many present variable inter- and intra-annual dynamics, and sometimes even daily 

dynamics (e.g. intertidal mudflats) that cannot be captured using a single image. In some 

occasions, these dynamics are a criterion to distinguish their typology (e.g. again, intertidal 

mudflats). 

The last years have seen an increase in studies and projects that use mutitemporal imagery 

for wetland mapping (e.g. SWOS, GlobWetlands Africa, DeMo, GlobE). There are several 

events that have enabled the use of multitemporal imagery of optical, radar and thermal 

sensors. The first ones are the opening of the Landsats archive in 2008 and the launch of the 

Sentinel constellation in 2014. The release of huge amounts of spatial information has 

allowed scientists from all over the world to conduct landscape studies on a variety of 

ecosystems. The latest brake through has been the emergence of cloud computing platforms 

such as Google Earth Engine (GEE), the Amazon Web Services, or the Thematic 

Exploitation Platforms from the European Space Agency (ESA). All these events have given 

companies, researchers, NGOs or individuals free or affordable access to resources with 

which they could produce outputs used by policy makers, other researches or stakeholders. 
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This increase in mapping capabilities is showing perspectives that can change the way people 

see their surroundings, and broadens the audiences engaged by scientists through what is 

known now as viral cartography (Robinson, 2018). 

During the next 5 sub-chapters I give a very broad overview of key remote sensing concepts. 

I start with an introduction to multispectral and thermal sensors followed by radar sensors, 

the different types of resolutions (spatial, spectral, radiometric and temporal), time series 

analysis, and finalized with a brief introduction to cloud computing platforms before 

presenting the thesis structure. 

1.3.1. Multispectral and thermal sensors 

All the multispectral remote sensing science is based on the principle that a specific cover 

type reflects the sun’s energy with different intensities at different wavelengths of the 

electromagnetic spectrum. The variation of intensity reflected with the wavelength for that 

same cover type is called the spectral signature. The spectral signature allows classification 

algorithms to distinguish different cover types, the same way our own eyes can distinguish 

different colors and shades. Multispectral sensors divide the electromagnetic spectrum into 

portions often called “bands” that measure the intensity reflected by the Earth’s surface at 

specific wavelengths. Figure 1.3 shows the different parts of the electromagnetic spectrum 

that are measured by three of the most common multispectral sensors still in orbit: Landsat-

7 ETM, Landsat-8 OLI, and Sentinel-2 MSI. Figure 1.1 also shows three representative 

examples of spectral signatures for water (blue), vegetation (green) and bare soil (brown).  

Table 1 shows a list of satellites (sometimes referred as platform) and the sensors they carry 

to help the reader distinguish between them. 

Table 1.1 List of some of the most well-known satellites and the sensors they carry 

Platform Sensor 

Landsat-7 Enhance Thematic Mapper (ETM) 

Landsat-8 Operational Land Imager (OLI) 

Sentinel-2 Multispectral Scanner Instrument (MSI) 

Sentinel-1 Synthetic Aperture Radar (SAR) 

Sentinel-3 Ocean and Land Color Instrument (OLCI) 

Terra & Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) 

 

Bands 2, 3 and 4 of Sentinel-2 cover the same portion of the spectrum than our eyes (blue, 

green and red). Bands 5-8 cover the Near Infra-Red (NIR) portion, where healthy vegetation 
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reflects the radiation with higher intensities. Bands 11 and 12 are the Short Wave Infrared 

(SWIR), sometimes used in mineralogy studies or to identify roof types. The Thermal 

Infrared (TIRS) bands are capable of measuring the thermal properties of the terrain. They 

are not present in Sentinel-2, but we can find them in Landsat-7 (band 6) and Landsat-8 

(bands 10 and 11). They are also present in other sensors such as Sentinel-3 Ocean and Land 

Color Instrument (OLCI) and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument on board of the Terra and Aqua satellites. Information from these 

bands is not commonly used for classification, but rather for estimating soil moisture 

content, drought, risk of fire, or the urban heat island phenomena. Bands 1, 9 and 10 of 

Sentinel-2 are used for detecting and masking clouds and haze, as well as bands 1 and 9 of 

Landsat-8. 

 

Figure 1.3: Spectral bands of Sentinel-2 and Landsat 7 & 8. Spectral signatures of vegetation, 

soil, and water are depicted in green, brown and blue respectively. Modified from (USGS, 

2017). 

1.3.2. Radar sensors 

Radar sensors such as the Synthetic Aperture Radar (SAR) of Sentinel-1 work in a different 

way. Whereas multispectral sensors (passive) measure the sun’s radiation reflected by the 

Earth’s surface, SAR sensors (active) emit a signal of longer wavelength and measure the 

signal returned, also known as the backscatter. The intensity of the backscatter is dependent 

on the dielectric constant (function of the water content) and the geometry of the object. 

For example, water surfaces tend to have very low backscatter because they reflect away the 

SAR signal and nothing returns to the sensor. This is called specular behavior. Buildings tend 

to have high backscatter because the SAR signals bounces several times against horizontal 
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and vertical structures, and many return to the sensor. This is called double bounce behavior. 

But most surfaces do not exhibit specular nor double bounce behavior. Rather, the waves 

are often reflected in many different directions, some of which return back to the sensor and 

can be measured. This is called diffuse behavior. 

While it is often said that radar sensors are weather independent, that is inaccurate. SAR 

sensors can penetrate through clouds and most atmospheric sources of noise, but rain and 

strong winds over water surfaces will distort the signal. It is more accurate thus to say that 

they are independent on cloud and illumination conditions. Their penetration range allows 

them to get information from underneath the canopy or from below the first layers of soil. 

This has allowed for example, to find inundated forest in the Amazonia (Hess et al., 2015), 

or to spot paleo-rivers under the Sahara (Skonieczny et al., 2015). Although the information 

provided by this magnitude-only form is limited, SAR sensors have many useful applications 

on their own. Instruments such as the RADARSAT-2 from the Canadian Space Agency emit 

a signal with 4 polarizations that can be decomposed into specular scattering, volume 

scattering and double bounce scattering. This allows to identify flooded vegetation because 

of its high double bounce scattering (White et al., 2015).  

Change detection is a common application of multitemporal SAR data. Backscatter intensity 

data is sometimes used to measure significant changes in the land surface. However, it is 

difficult to control the rates of false positives and negatives, even if using histogram-based 

thresholding techniques such as the Otsu threshold method (Otsu, 1979) (Conradsen et al., 

2016; Muro et al., 2016; Nielsen et al., 2017). Change detection results are often better when 

using coherence-based methods. The coherence is a property of radar interferometric pairs 

of images that is often used in change detection for disaster monitoring; if the positional and 

physical conditions of a land cover type have not changed between two acquisitions, their 

signal returned is coherent. This means that waves oscillate at unison, i.e. their phases are 

correlated. But if there was a significant change between acquisitions, both waves would not 

be coherent and a change would be flagged (Figure 1.4).  
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Figure 1.4: SAR basic concepts. SAR intensity signal is function of the amplitude, wavelength 

and phase. Two signals with same amplitude and wavelength might have a different phase. 

(Massom and Lubin, 2006). 

Interpreting the change in coherence is itself a very challenging task because it is not directly 

transferable to increases or decreases of some biophysical parameter, like in a vegetation 

index. Besides, a change in coherence does not necessarily mean a change in the land cover. 

Many land covers types present an inherent low coherence, meaning that the coherence 

between two images close in time (e.g. 3 days) will be high, but it will progressively decrease 

in time due to phenomena other than land cover changes: phenological changes (leaf-off, 

leaf-on), or circumstantial events such as wind or rain that can temporarily increase the soil 

moisture. Although this seems to render coherence impractical for classification, some 

habitats can actually be distinguished by their coherence. Cities have very high coherence 

because their features remain static for long periods of time. Forests tend to have a lower 

coherence than cities, and crops the lowest coherence of the three because of all the different 

stages of the crop. For example, Brisco et al. (Brisco et al., 2017) extracted phase changes 

that are related to changes in water level in wetlands, and used it along with backscatter 

intensities to improve classification of marshes and swamps. Also, the ESA project 

SinCohmap (https://sincohmap.org/) aims at developing mapping methodologies that use 

coherences. Thus, the coherence represents additional temporal information that helps to 

classify different land cover types. 

 

 

https://sincohmap.org/


11 
 

1.3.3. Resolutions; the importance of temporal resolution in wetland 

mapping 

Spectral resolution refers to the pixel size. For example, one pixel of a Landsat image is 30 

m x 30 m. Temporal resolution is associated with the frequency of pass of the platform where 

the sensor is; i.e. how many times the sensor flies over the same place. Sentinel-2 A and B 

have together a temporal resolution of 6 days at the equator. Spectral resolution indicates the 

number of bands a sensor has. Landsat and Sentinel-2 are called multispectral sensor because 

they have 6-12 bands. Hyperspectral sensors count on up to thousands of bands to produce 

very detailed information on the spectral behavior of land surfaces. 

The remote sensing needs for monitoring environmental variables have often been focused 

on the spectral resolution to distinguish vegetation types with slightly different spectral 

signatures. In this regard, SAR and optical data are sometimes used together to generate 

additional information on the surface properties, increasing the spectral resolution of the 

information we work with. This is called data fusion. Efforts have also been directed towards 

improving the spatial resolution for capturing smaller features. Pan-sharpening is a technique 

that combines a higher resolution panchromatic band with a lower resolution multispectral 

image to produce a higher resolution color image. This technique is used by Google Maps, 

for instance.  

Less attention is often paid to the temporal resolution, except for improving the chances of 

getting a single cloud free image. For rather static land covers such as forests one can get 

often good enough classification results using a single image. In agricultural areas, images 

from winter and summer seasons are used to distinguish single or double cropping practices. 

The seasonality of agricultural areas and forests is often rather constant. On the other hand, 

wetlands tend to have very variable inter- and intra-annual dynamics that depend on less 

constant patterns such as precipitation. One image from the dry season and another one 

from the wet season is not enough to capture all their dynamics. Besides, if the interpreter 

uses climatic criteria (temperature or precipitation) to define the driest and wettest periods 

of the wetland, the selection of the images might be biased and will not correspond with the 

true driest and wettest stages of the wetland. For instance, in Mediterranean ecosystems of 

the northern hemisphere the highest temperatures (dies caniculares or dog days) take place 

from late July to late August. However, many artificial and natural wetlands retain water 

during this period acting as a refuge for fauna or water storage. The lowest water table levels 

can take place from September until even December (see chapter 3 for an example). Another 

example are intertidal flats. Although they have constant dynamics, these do not correspond 
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with seasonal patterns. Therefore, besides good spatial resolution and multiple spectral 

bands, we need a high cadence of images capable of capturing the different stages that 

wetlands go through. Several studies have demonstrated how the use of multitemporal 

imagery improves classification accuracies in a variety of landscapes (Blaes et al., 2005; Brisco 

and Brown, 1995; Waske and Braun, 2009). 

1.4. Time series analysis 

Time Series Analyses (TSA) are commonly employed in economy, social or meteorological 

applications. Many important variables present seasonal patterns, such as flourishing of 

vegetation during the growth season and leave shedding during fall. A variable can also 

present temporal trends; i.e. increase or decrease on the long term. It can also present break 

points; points in time when an event triggers a change in direction or intensity in the trend 

(e.g. an already decreasing trend starts decreasing even faster). TSA study a variable 

distributed through time, its seasonality, its interannual trends and its break points. Remote 

sensing imagery is a good source of data for performing TSA due to their consistency, 

distribution and repeatability (Verbesselt et al., 2010). The United States Geological Survey 

(USGS) has recently re-pre-processed all their Landsat archive into a new collection of 

images optimized for TSA (USGS, 2017), and new sensors launched are designed to be 

compatible with data taken by older sensors. The ESA Sentinel-2 covers at least the same 

regions of the spectra than the Landsat constellation (Figure 1.1) except for the thermal 

bands. Sentinel-3 has been designed to continue the data collection of ENVISAT-MERIS, 

and Sentinel-1 grants continuity to the ENVISAR-ASAR archive (Künzer et al., 2015). 

Remote sensing sensors can capture long term processes such as the seasonal patterns of the 

vegetation’s phenology (shifts on the start or end of growing seasons) or greening trends 

caused by vegetation regrowth. They can also detect abrupt changes caused by single events 

such as forest fires. Trends in biophysical parameters affect the water and energy balances of 

the Earth’s systems and the exchange of carbon, and sometimes, Earth Observation (EO) is 

the only reliable source of information we have to study the effects of climate change in our 

ecosystems (Wulder et al., 2012). 

The opening of the Landsat archive in 2008 spurred the analysis of long term trends 

(Banskota et al., 2014; Wulder et al., 2012). It granted researchers access to long records of 

imagery at finer spatial resolution (30 m) with which to perform reliable TSA. For instance, 

it has allowed researchers to identify greening trends at planetary scale (Liu et al., 2015; Zhu 

et al., 2016), or to correlate deforestation with social variables such as movement of people 
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from rural areas to cities (DeFries et al., 2010). TSA are thus, essential to have an accurate 

understanding of the long term effects and trends that ecosystems experience naturally and 

anthropogenically.  

Whether it is for classifications of land cover types or for TSA, it is necessary to account for 

the effect of the seasonality. Time series of data consists of three components; a seasonal 

pattern (e.g. greening in spring and browning in autumn), a long term directional trend (e.g. 

revegetation or degradation) and a remainder product of short term stochastic fluctuations 

(e.g. fires or clouds (Künzer et al., 2015)). Long term studies often look only at the directional 

trend, dismissing the short-term fluctuations. A convenient way of doing this is to summarize 

the stack of images into meaningful metrics such as the maximum, mean or minimum values 

and interpolate a linear or exponential trend (de Jong et al., 2011; Fensholt et al., 2015; Tian 

et al., 2016). These values are representative of the extreme or mean conditions of the 

ecosystem; i.e. fully vegetated or inundated, or bare and dry. There are other more complex 

methods that separate these time series components and can also identify break points within 

the time series. As mentioned earlier, break points are moments of sudden change within the 

time series triggered by some event. For instance, a forest fire will cause a break point in an 

Normalized Difference Vegetation Index (NDVI) time series and will trigger a greening 

trend afterwards due to forest regrowth. A popular tool to separate the time series 

components is the Breaks For Additive Season and Trend (BFAST) (Verbesselt et al., 2010). 

Figure 1.5 shows a time series of NDVI data of a forest over a period of 16 years. The result 

of the TSA shows a break point after the fourth year that was caused by a harvest, and is 

followed by a greening trend (Tt). 



14 
 

 

Figure 1.5 Decomposition of NDVI time series (Yt). St is the overall trend. Tt shows a 

breakpoint with greening trends before and after. The remainder is represented by et. 

LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery (Kennedy et 

al., 2010)) is another TSA algorithm. It performs a temporal segmentation of the data and 

extracts straight line segments to model the important features of the trajectory and eliminate 

the noise (Figure 1.6). LandTrend algorithm has been implemented in GEE and is used as 

frequently as BFAST (455 citations for LandTrendr against 469 of BFAST as of March 2019). 

In a context where humans are slowly changing the climate, the study of long term trends is 

especially important. Observed trends are meaningless without understanding their 

underlying causes. For example, the reported overall greening trends on the Earth’s surface 

(de Jong et al., 2011; Liu et al., 2015) are not exclusively indicative of reforestation patterns. 

Some of these greening trends are due to the use of fertilizers in agriculture and melting of 

snow cover at high latitudes (Zhu et al., 2016).  
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Figure 1.6 Extracted from (Kennedy et al., 2010). Black straight lines are segments that 

represent temporal trajectories. Colored lines are the spectral signals of SWIR, NIR and R 

from Landsat 5 and 3. Trajectories 1 and 3 show insect-related mortality. Trajectory 4 shows 

the insects’ effect followed by fire. Trajectory 2 is a clear-cut harvest, 5 is stability followed 

by fire, and 6 is recovery from prior fire.  

1.5. Cloud computing platforms 

Even at free cost, global scale analyses at finer spatial resolution or TSA of satellite imagery 

required the download, preprocessing and processing of several terabytes of information. 

This created an important cap in computation power and expertise (e.g. information 

technology skills). This cap has triggered the last breaking point in remote sensing science: 

easy to access and easy to use cloud computing platforms (Gorelick et al., 2017). These 

platforms such as GEE, Amazon Web Services or the Copernicus Thematic Exploitation 

Platforms are rapidly evolving the way we deal with data, and changing our perspective and 

insights. This has been called the Big Data paradigm shift, where instead of bringing the data 

to the algorithms, the algorithms are being taken to the data. For instance, Hansen et al. 

(Hansen et al., 2010) estimated global forest losses and gains using 30 years of Landsat 

imagery. Later on, the procedure was optimized and updated using GEE, creating a living 

map of forest cover dynamics (Global Forest Watch https://www.globalforestwatch.org/). 

Cloud computing platforms have open the possibility to establish operational monitoring 

systems not only for forests, but also for wetlands and other ecosystems (e.g. Global 

Mangrove Watch). 

https://www.globalforestwatch.org/
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Künzer et al. (Künzer et al., 2015) compiled a list of the greatest challenges for remote 

sensing based TSA. Cloud computing platforms help to address most of these (Table 1.2), 

sparing the analyst from downloading and preprocessing tasks. 

Table 1.2: Challenges for remote sensing based time series analysis and how cloud computing 

platforms have solved some of them. Modified from (Künzer et al., 2015). 

Challenge 

related to 

Possible manifestation Solved by cloud computing platforms 

Data 

policy 

Acquisition plan No 

 Restricted access to data Yes 

 Composite products Yes 

Sensor Orbital drift Partly; erroneous data can be filtered out 

 Erroneous sensor calibration Partly; erroneous data can be filtered out 

 Sensor degradation Partly; erroneous data can be filtered out 

 Geolocation errors Partly; erroneous data can be filtered out 

 BRDF effects Partly 

Location Cloud cover Yes, via composites 

 Water vapor and aerosols Yes, via composites 

 Polar night  

 Extreme terrain  

 Sunglint effects Yes, with filter operations 

 Anisotropy effects  

 Sudden, disconnected subsidence Very rare 

Processing Download and Storage Yes 

 Computing power Yes 

 IT skills Yes 

 Mathematical statistical skills Yes 

 Monthly or annual reprocessing Yes 

 Long term preservation Yes, now data is stored in additional 

places 

 

Most of the challenges solved are related to processing, but these are not the only ones. The 

ever present problem of cloud cover can be partly solved by creating composites i.e. taking 

the best pixel of each image and synthesize a cloudless image. Erroneous data can be filtered 

out more easily using the metadata, and most platforms are free or have affordable prices 

when compared to the price of individual images some years back (about 600 US$ per 

Landsat image). After the suggestion of the US government in April 2018 of start charging 

for popular EO data, researchers started to calculate how much their research would cost if 

they had to pay per image, a cost that would be paid through the cloud computing platform. 

With most of us using several thousands of images, prices in US$ could easily hit 9 digit 

numbers. Gärtner (Gärtner, 2018) even gives a GEE code to estimate how much your 

research would cost. 
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1.6.  Research questions 

Our society has never had before such large amounts of information about our planet and 

its dynamics, nor we have deteriorated its resources at such high rates. Despite the well 

acknowledged value of wetlands, they continue to disappear due to weak management 

systems and uninformed policy making. Decision makers need accurate, well-timed and 

ready-to-use data to understand the impact that human actions cause on Earth’s systems, to 

develop informed policies, and to justify decisions for sustainable development. The aim of 

this thesis is to implement and assess how new remote sensors and technologies can be used 

to understand wetland dynamics, and how to use them to support wetland management. 

My research uses 5 study areas covering a rather broad range of environments:  

 Three intensively managed wetlands in Europe (a coastal wetland and an endorheic 

wetland in chapter 2, and an artificial wetland in chapter 3),  

 A set of pristine and less regulated river systems in Albania with potential for 

hydropower (chapter 4), 

 A large system of swamps, rice fields, and floodplains in Tanzania that have been 

recently degraded. 

 Using these 5 sites I address the following research questions: 

1) How can we use the novel EO products and technologies to improve our 

understanding of wetland dynamics? 

2) How can we condense large amounts of spatiotemporal information into products 

meaningful and usable by wetland practitioners? 

3) Which methods are better to track the effect of human activities on wetlands? 

4) How can we apply them to solve societal issues created by a lack of spatial 

information? 
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1.7. Thesis structure 

To address the 4 research questions, I set the following 3 objectives: 

1.7.1. Objective 1: Evaluation of Sentinel-1 to monitor short-term dynamics in 

wetlands 

Sentinel-1 is the first SAR sensor of open access with the sufficient resolution and cadence 

to be used for systematic monitoring of wetlands’ complex dynamics. In chapter 2 and 3 I 

implement a novel algorithm for change detection of time series of SAR imagery in three 

wetlands of different characteristics. I test it against conventional methods that use 

multispectral imagery and determine its advantages and flaws. In chapter 4, I use 

multitemporal metrics of Sentinel-1 to generate a classification of wetlands at national scale. 

1.7.2. Objective 2: Develop and test cloud computing methodologies for 

wetland mapping and monitoring 

Wetland practitioners often hit two caps that hinder the applications of remote sensing in 

management; limitations in technical capacities and in computational capacities. Powerful 

computers and programming skills are often needed to process large amounts of images 

required to cover the complete dynamics of wetlands. In chapters 3 and 4 I use the Google 

Earth Engine platform to process year time series of Sentinel-1 and Sentinel-2 to produce 

maps representative of the seasonal dynamics of wetlands. 

1.7.3. Objective 3: Use time series of EO imagery to understand wetlands 

dynamics, the effects of human actions on them and support decision 

making 

For this objective I focus on the application of dense time series of EO data to support 

sustainable management of wetlands. I address this in chapter 4, but more thoroughly in 

chapter 5. Chapter 5 focuses on the use of longer time series to track the effects of human 

actions on the biophysical properties of a wetland. I use the results of the mapping products 

to show how lack of spatial information and weak land management systems can jeopardize 

wetlands’ status and ecosystem services. 
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“Shifting our focus and give the “when” the same weight as the “what” won’t cure all our ills, but it is a 

good beginning.” 

―Daniel. H Pink. WHEN, the scientific secrets of perfect timing. 

Abstract 

Automated monitoring systems that can capture wetlands’ high spatial and temporal 

variability are essential for their management. SAR-based change detection approaches offer 

a great opportunity to enhance our understanding of complex and dynamic ecosystems. We 

test a recently-developed time series change detection approach (S1-omnibus) using Sentinel-

1 imagery of two wetlands with different ecological characteristics; a seasonal endorheic 

wetland in southern Spain, and a coastal wetland in the south of France. We test the S1-

omnibus method against a commonly-used pairwise comparison of the same consecutive 

images to demonstrate its advantages of controlling the rate of errors of omission and 

commission. Additionally, we compare it with a pairwise change detection method using a 

subset of consecutive Landsat images for the same period of time. The results show how S1-

omnibus is capable of detecting in space and time changes produced by water surface 

dynamics and agricultural practices, whether these changes are sudden or gradual. When 

compared to the Landsat-based change detection method, both show an overall good 

agreement, although certain landscape changes are detected only by either the Landsat-based 

or the S1-omnibus method. The S1-omnibus method shows a great potential for an 

automated monitoring of short time changes and accurate delineation of areas of high 

variability and of slow and gradual changes. 

2.1. Introduction 

Wetlands are often described as ecotones, transitional habitats situated between dry land 

(upland) and water bodies (Mitsch and Gosselink, 2000). They are very diverse ecosystems, 

ranging from permanent water bodies to lands that remain completely dry over several 

months, or areas where water is below a dense vegetation cover, such as peat bogs or 

mangroves (Tiner, 2015). Besides their spatial variability, some wetlands present a high 

temporal variability (e.g., temporal water bodies and waterways or intertidal flats). Wetlands 

also deliver a wide and well-recognized array of ecosystem services: flooding, drought and 

erosion amelioration, habitat for many keystone species, food and water supply and CO2 

sequestration, among many others (Henderson and Lewis, 2008). Thus, automated 

monitoring systems of wetlands that can capture their high temporal and spatial variability 
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are essential for wetland management and for the quantification of the ecosystem services 

they provide (Brisco et al., 2013).  

Landscape spatial patterns, and especially those of wetlands, are rarely static due to intra-

annual changes in their ecosystem properties, whether they are caused by natural or by 

anthropogenic factors (Coppin et al., 2004). Mapping of ecosystems and of long-term Land 

Use and Land Cover Change (LULCC) patterns may be biased by such intra-annual changes 

in different surface properties (e.g., phenology, hydrology, agriculture, etc.). These surface 

dynamics sometimes produce transitional states and fine-scale mixtures of classes that may 

hinder classification and long-term change detection. Some approaches have used fuzzy 

classifiers and multitemporal optical data to produce fractional cover maps of different 

wetland classes, capturing these transitional states [6] (Reschke and Hüttich, 2014). 

Additionally, (Dronova et al., 2015) proposed the term “Dynamic Cover Types” (DCT) to 

refer to areas of frequent periodic or seasonal change. Examples of DCT in the context of 

wetlands would be seasonally-inundated floodplains and inland valleys, inter-tidal flats, 

temporal water bodies and waterways, fields of rice and reeds when harvested or slow 

regrowth of some vegetation covers after flooding or harvesting events. Many of these DCT 

often give rise to unique species assemblages and temporal shifting of species distributions 

and compositions (Parrott and Meyer, 2012; Watson et al., 2014). In turn, this may also affect 

other ecosystem functions through water and nutrient cycling.  

The availability of satellite images acquired repetitively over long periods of time has allowed 

the proliferation of numerous change detection studies in fields such as LULC change, forest 

monitoring (deforestation, regeneration, forest fires, insect defoliation), urban sprawl, 

landscape change and crop monitoring, among many others. Lu et al. (2004) provides a wide 

array of examples of applications in each mentioned field. Most of these techniques make 

use of spectral data from optical sensors to monitor long-term changes. Despite their widely-

spread use and the good results obtained, optical-based change detection methods have an 

important disadvantage; they are hampered by illumination effects and cloud conditions, a 

challenge that becomes very problematic in sub-humid to humid tropics, especially during 

rainy seasons or when the temporal resolution is not high.  

SAR-based change detection methods are cloud and illumination independent, but have 

however been much less used because of their limited temporal and spatial availability, higher 

costs and more intensive processing requirements (Hecheltjen et al., 2014). With the recent 

launch of ESA’s Sentinel-1 satellite and the free access to its products, SAR-based change 
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detection methods can now be more efficiently used to overcome some of the restrictions 

of optical-based methods. The high temporal resolution (six days considering Sentinel-1A 

and -1B at the Equator), high spatial resolution and wide swath allow for a much needed 

operational change detection system, cost-free, cloud-proof and illumination independent.  

SAR-based change detection methods can separate LULC classes that are especially difficult 

to distinguish, such as rice fields from wet grasslands. Some researchers have successfully 

used SAR data for rice mapping using time series (Bouvet and Le Toan, 2011; Nguyen et al., 

2015). Their success relies on the detection of the changes in plant morphology that take 

place during the three growing phases of rice per harvest, as opposed to the less frequent 

changes in other crops and other non-agricultural wetlands and grasslands (Nguyen et al., 

2015).  

The operational availability of change detection approaches will be a valuable addition to 

currently ongoing developments of operational wetland-monitoring services, e.g., in the 

European “Satellite-based Wetland Observation Service” (SWOS) Horizon 2020 project 

(www.swos-service.eu). Further, it is an important contribution to the development of the 

Global Wetland Observation Service that is currently carried out in the framework of the 

Group on Earth Observations together with the Ramsar Convention on Wetlands and other 

global stakeholders (https://www.earthobservations.org/index). 

In this paper, we apply a polarimetric SAR-based time series change detection technique in 

two highly dynamic natural and semi-natural landscapes. We use a new method published by 

Conradsen et al. (2016) where change detection is carried out by performing a simultaneous 

test of the hypothesis of homogeneity for a series of SAR images. Our research was 

conducted with three specific objectives in mind. First, we show the potential of using the 

time series change detection algorithm presented in Conradsen et al. (2016) (referred to as 

S1-omnibus) and Sentinel-1 time series to capture short-term changes in highly dynamic 

areas. Second, we evaluate the performance of S1-omnibus vs. a pairwise comparison of 

consecutive images. According to Conradsen et al. (2016), it is expected that a larger 

proportion of change will be detected using the whole time series as opposed to the 

commonly-used pairwise approach. Third, we compare the performance of S1-omnibus with 

a Landsat-based change detection approach. Since optical and SAR instruments detect 

different properties of objects, it cannot be considered as a validation process, but it is still 

relevant to compare the performance of the new S1-omnibus algorithm with more extended 

and common approaches. 

http://www.swos-service.eu/
https://www.earthobservations.org/index.php
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2.2. Study Areas 

Many wetlands experience several short-term changes mostly related to water surface 

dynamics (seasonal water bodies and water ways, intertidal flats, temporarily inundated 

forests, among others) or related to human activities, such as agriculture or salt production. 

To test the capacities of the S1-omnibus method we chose two highly dynamic wetlands with 

different characteristics.  

The first one is the Lake of Fuente de Piedra, in southern Spain: an endorheic salty water 

body of ~13 km2 and less than 1 m deep. Its catchment occupies around 150 km2, but we 

study all of the changes within a rectangular area of 490 km2 (Figure 2.1). The lake is fed by 

two streams, although the most important supply of water is ground water inputs and rains 

(Conde-Álvarez et al., 2012). Landscapes in the uplands are dominated by olive groves and 

herbaceous crops (e.g., wheat and barley), and the lake was used for salt extraction during 

the last century. Currently, it is a Ramsar site and a nature reserve. It usually dries out at the 

end of spring and fills up again with the first autumn rains. Despite its small size, it is a 

migratory stopover for many bird species and the second largest breeding ground in Europe 

for the European flamingo (Phoenicopterus roseus) (Geraci et al., 2012). 

The second study area is the largest flamingo breeding ground in Europe; the French 

Camargue. It is a coastal wetland of 130 km2 located in the south of France, between both 

arms of the Rhône River Delta. It belongs to a larger and complex system of coastal wetlands 

and lagoons that have been flooded, dredged, canaled and cultivated during many centuries. 

Currently, it is a Ramsar site and a national reserve, but water is still pumped in and out for 

salt production and for keeping some lagoons filled during summer in certain areas. The 

change detection method was applied to a rectangular area of 3500 km2 (Figure 2.1). 

Landscapes are dominated by large permanent water bodies, rice fields and other crops, salt 

flats and marshes near the coast and pastures for extensive cattle. The salinity of the water 

bodies varies depending on the rain, but it generally increases from north to south. The 

deepest water body, the Vaccarés lagoon, in the center of the wetland, has a maximum depth 

of 2 meters (Britton and Podlejski, 1981). Both study areas are test sites of the SWOS project, 

which allowed access to ground information, as well as to mapping products that were used 

for the interpretation of the results (e.g., LULC maps from Figure 2.1). In these as in many 

other wetlands over the world, the presence/absence and quality of their water is influenced 

by land uses (mainly agricultural) in their area of hydric influence. Thus, we analyze not only 

the areas designated as wetland in our two study sites, but also their surroundings.  
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Figure 2.1. LULC maps of the study areas (a,b). In Fuente de Piedra (a), the classification has 

been performed using photointerpretation and field inventories by the Spanish authorities 

(www.siose.es). The classification in Camargue (b) is a product of the project SWOS, 

elaborated by Tour du Valat using Landsat images for 2015 and field inventories 

(www.tourduvalat.org). In order to make both classification compatible and for the sake of 

simplification, some classes have been merged, e.g.: the class “wetlands” includes 

marshlands, temporal water bodies and salt marshes; “open spaces” includes areas with little 

vegetation, dunes and some pastures; “urban” includes all sorts of pavement or concrete; 

“forests” includes coniferous, as well as broad-leaved forests. 
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2.3. Materials and Methods  

2.3.1. Imagery and Preprocessing 

We used a set of several Sentinel-1 images from the ESA Scientific Data Hub acquired for 

2014/2015 at a monthly resolution and with the same orbit path (Table 2.1). Sentinel-1 

imagery is offered in four different swath modes, three product types and with different 

polarization options. The swath mode used here is the Interferometric Wide (IW) swath, and 

the product type is the Single Look Complex (SLC), which consists of focused SAR data that 

uses the full C signal bandwidth and preserves the phase information. In the other product 

type for land masses, the Ground Range Detected (GRD), the phase information is lost, and 

thus, it cannot be used to produce the covariance matrix needed during the change detection. 

We used dual polarimetric images (VV-VH), which allow the measurement of the 

polarization properties of the terrain in addition to the backscatter that could be measured 

from a single polarization. The raw images were preprocessed in the Sentinel Application 

Platform (SNAP). The sub-swaths of the SLC image were split and de-bursted separately, 

and then, a 2 × 2 polarimetric matrix image was calculated. To reduce the speckle noise 

inherent to SAR data, a multilook spatial averaging was applied with 8 range looks and 2 

azimuth looks. Finally, a terrain correction using 3 arcsec SRTM and bilinear interpolation 

was applied, resulting in an image with a nominal pixel size of 30 m × 30 m. The final 

polarimetric and multilooked matrix image that is used during the change detection has the 

form: 

𝑐2 = (
〈|𝑆𝑣𝑣|2〉 〈𝑆𝑣𝑣𝑆𝑣ℎ

∗ 〉

〈𝑆𝑣ℎ𝑆𝑣𝑣
∗ 〉 〈|𝑆𝑣ℎ|2〉

) 

where 𝑠𝑡𝑟is the scattering amplitude for transmitted polarization t and received polarization 

r, 〈…〉 denotes multilook averaging and v and h correspond to vertical and horizontal 

polarizations, respectively. When multiplied by the number of looks, the matrix c2 is known 

to follow a complex Wishart distribution parameterized by a covariance matrix ∑ (Conradsen 

et al., 2003). 
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Table 2.1 Sentinel-1 and Landsat 7, 8 datasets used. Images used for the S1-omnibus and 

Landsat-based CVA change detection comparison are highlighted. Landsat 7 images are 

marked with an asterisk (*). 

Fuente de Piedra (Spain) Camargue (France) 

Sentinel 1 Landsat Sentinel 1 Landsat 

  11-11-2014  
  02-12-2014  
  31-01-2015  
  24-02-2015  

15-03-2015 09-03-2015 * 08-03-2015  
20-04-2015 02-04-2015 01-04-2015 15-04-2015 
26-05-2015 12-05-2015 * 07-05-2015 17-05-2015 
19-06-2015 05-06-2015 12-06-2015 02-06-2015 
25-07-2015 07-07-2015 18-07-2015 20-07-2015 
18-08-2015 16-08-2015 * 18-08-2015 21-08-2015 
23-09-2015 25-09-2015 28-09-2015 06-09-2015 
17-10-2015    
22-11-2015 12-11-2015   
28-12-2015    
21-01-2016    
26-02-2016    

 

2.3.2. SAR-Based Change Detection 

The change detection algorithm applied in this research takes advantage of the known 

distributions of the observations c2. It detects changes within a series of k uncorrelated 

multilooked images by testing, pixel-wise, hypotheses on the values of the parameters ∑𝑖 , 𝑖 =

1 … 𝑘 characterizing the distributions. To test the null (no-change) hypothesis 

𝐻0 ∶ ∑1 = ∑2 =  …  = ∑𝑘 against all alternative (change) hypotheses, we use an omnibus test 

statistic: 

𝑄 = [𝑘2𝑘
∏ |𝑐2𝑖|𝑘

𝑖=1

|𝐶2|𝑘
]

𝑛

 

where n is the number of looks and where 𝐶2 =  ∑ 𝑐2𝑖
𝑘
𝑖=1 . In order to set the significance for 

the test, the distribution of Q must be known. Approximate values are given in Conradsen 

et al. (2016), the accuracy of which increases with the number of looks. We estimated the 

best equivalent number of looks to be 12, out of the total 16 (8 range × 2 azimuth). In 

addition, Conradsen et al. (2016) derive a factorization of the test statistic Q, which allows 

the determination of the interval in which changes occur within the time series. Thus, we 

test, for example, the null hypothesis that, given ∑1 = ∑2 =  …  = ∑𝑗−1, it is also true that 

∑1 = ∑𝑗−1,, against the alternative that ∑1 ≠ ∑𝑗−1. If the null hypothesis is rejected, the 
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sequential testing procedure is restarted at the next observation. In this way, all time intervals 

in which changes occur can be identified. 

To assess the capabilities of the omnibus time series change detection algorithm, we applied 

it to a series of consecutive Sentinel-1 images spanning one year (approximately one image 

per month; see Table 2.1). Using the same set of images, we compared the results of the S1-

omnibus approach against the standard pairwise change detection approach, also based on 

the Wishart distribution (Conradsen et al., 2003). All of the changes detected between pairs 

of consecutive images were summed up and compared. All changes are at the 1% significance 

level in the per pixel change hypothesis tests. 

The analysis was performed using an innovative open source software implementation 

available at http://mortcanty.github.io/SARDocker/. The python scripts for the change 

detection algorithms are encapsulated, together with all prerequisites, in a Docker container. 

No special software is required. The user interacts with the software in his or her browser in 

an Jupyter notebook served from within the Docker container.  

We used data from a limnograph and pluviometer placed towards the center-east of the lake 

in Fuente de Piedra to interpret the results of S1-omnibus. 

2.3.3. S1-Based and Landsat-Based Change Detection Comparison 

We used a smaller set of cloud-free Landsat 7 and 8 images acquired as closely as possible in 

time to the Sentinel-1 imagery for comparison purposes (Table 2.1). We performed an 

Iteratively Re-Weighted Multivariate Alteration Detection (IR-MAD) (Canty and Nielsen, 

2008) to radiometrically adapt all of the Landsat images to the last one. Using Change Vector 

Analysis (CVA) (Malila, 1980), we extracted the changes between each pair of consecutive 

images and sum them up to create a Landsat-based change mask. Since there was not always 

a cloud-free Landsat image per Sentinel-1 image, for this comparison we used only the 

Sentinel-1 images for which we had a corresponding cloudless Landsat image to create a 

Sentinel-1-based change mask and compare it to the Landsat-based change mask. This 

involved images from the period from March 2015–November 2015 for Fuente de Piedra, 

and from April 2015–November 2015 for Camargue. Table 2.1 shows detailed information 

about the images used for the different procedures. Due to the Scan Line Corrector failure 

in Landsat 7, images taken after June 2003 have no-data pixels along their edges, but the 

nadir of the scenes does not suffer such data loss. The test site of Fuente de Piedra is located 

https://mortcanty.github.io/SARDocker/
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at nadir, and thus, it was possible to use Landsat 7 images there. Only Landsat 8 images were 

used over the Camargue. 

2.4. Results 

2.4.1. S1-Omnibus Approach 

S1-omnibus allows one to identify in time the changes detected within the time series. The 

output is a raster with one band per time interval analyzed (i.e., number of images -1). Each 

band contains the changes detected in each time interval. Figure 2.2 shows the results 

obtained for Fuente de Piedra in a closer look at the lake. 

The changes detected in the outer part of the lake between March and April (Figure 2.2a) 

suggest that it starts drying there. Between April and May (Figure 2.2b), most of the lake 

dries out, which matches with the reduction in the water table recorded by the limnograph. 

No major changes are detected until October (Figure 2.2g), when the first autumn rains 

occur. These precipitations are not strong enough to raise the water table levels, but they 

seem to be enough to cause changes in the dry soils of the wetland. Note that the image from 

17 October 2016 was taken right before major precipitations during 18 October 2016 (28.5 

mm). Changes detected between October and November (Figure 2.2h), November and 

December (Figure 2.2i) and December and January (Figure 2.2j) match the records of the 

limnograph.  
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Figure 2.2 Month by month changes detected by S1-omnibus in the lake of Fuente de Piedra 

marked with letters a–k in the upper left corner of each image. Their corresponding water 

table and precipitation levels can be found in the chart. Water table and precipitations were 

recorded by a limnograph and pluviometer at the center of the lake, marked with a yellow 

circle in “a”. The same Landsat 8 band 4 image has been used as the background in a–k. 
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 A second output of S1-omnibus is the frequency of short-term change (Figure 2.3). It shows 

where multiple changes have been detected and how many.  

 

Figure 2.3 Frequency of change in Fuente de Piedra and Camargue. Colors indicate how 

many times a pixel has changed over the 12-month period. The charts aggregate the 

frequencies of change by area (Landsat 8 band 4 used as the background image) 

In Fuente de Piedra, the areas more prone to suffer changes are the herbaceous crops, as 

well as the wetland area. The northern part of the lake has experienced several changes (up 

to six), most of them during the rainy period (October–April), when the lake fills up and 

dries out several times, until it dries completely by June. Growth and harvest patterns of the 

different cereals grown are also detected, and the harvest frequency can be estimated. Crops 
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in the northwestern corner seem to be the most intensively used. Olive groves, forests and 

shrublands remain unchanged through the year, as well as urban settlements. Similar change 

patterns can be spotted in Camargue (Figure 2.4). The marshlands to the south of the 

Vaccarés Lagoon exhibit multiple changes, up to eight in some areas. Some crops exhibit 

also very high rates of change, as well as some areas classified as urban tissue. 

The rates of change found were grouped according to the LULC maps in both test sites 

(Figure 2.4). In Camargue, a large proportion of rice fields showed higher rates of change 

than other agricultural areas and also higher than wetlands. Forests, olive groves, shrublands 

and open spaces (areas with little or very sparse vegetation) showed the most static patterns. 

 

Figure 2.4 Frequencies of change aggregated in LULC classes in Fuente de Piedra (a) and 

Camargue (b). Each chart accounts for the proportion of pixels of each LULC class where a 

change was detected once, twice, three or four or more times. The gray portion of the bar 

corresponds to areas where no change was detected. 

 

2.4.2. Comparison of S1-Omnibus Time Series and Pairwise Change Detection 

Approaches 

The S1-omnibus method detects more changes than the pairwise approach. In Fuente de 

Piedra, the S1-omnibus method classified as change an area of 114 km2, compared to the 79 

km2 detected in the pairwise method (the whole analyzed area is a rectangular extension of 

490 km2; Figure 2.1).  
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Subsets A and B of Figure 2.5 show examples of the differences found between both 

approaches in areas of herbaceous crops in Fuente de Piedra. No changes were detected by 

the pairwise approach that were not also detected by S1-omnibus. 

  

Figure 2.5 Changes detected in Fuente de Piedra by the pairwise change detection approach 

(yellow) overlaid on top of the S1-omnibus change detection results (blue). Changes in water 

level and in most crops are well detected by both approaches. Subset A shows how the S1-

omnibus is capable of detecting changes in patches of crops matching the LULC map better 

(in the LULC map, orange is olive groves and beige herbaceous crops); Subset B shows how 

S1-omnibus can even detect whole patches of change that are missed with the pairwise 

approach (Landsat 8 band 4 used as the background image) 

In Camargue, the S1-omnibus method also detected a larger proportion of change than the 

pairwise approach, creating more solid patches of change that correspond more to the 

vegetated object, whether it was a rice plot or natural herbaceous vegetation of the wetland. 

Other small sparse areas were reported as changed within large extensions of grasslands, 

changes that were not identified with the pairwise approach. 

2.4.3. Landsat-Based and Sentinel-1-Based Change Detection Comparison 

The comparison of S1-omnibus with Landsat-CVA change detection methods shows to a 

certain extent a good agreement (Figure 2.6), considering that optical and SAR sensors look 

at different properties of objects. As expected, using Sentinel-1 time series, one can detect a 

wider array of changes. Changes in water levels in the lake of Fuente de Piedra are detected 
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equally well with Landsat and Sentinel-1. However, changes in certain areas of herbaceous 

crops are reported only by either Landsat or Sentinel-1 (Figure 2.6, Subsets A and B). In 

Fuente de Piedra, the total area reported as change by both Sentinel-1 and Landsat amounts 

to 56 km2. On the other hand, the area reported as change only by either Landsat or by 

Sentinel-1 is 28 km2 and 52 km2, respectively (bar chart in Figure 2.6). 

We performed the same S1-omnibus and Landsat-CVA comparison in Camargue, and the 

results were slightly different. S1-omnibus flagged as change an area of 424 km2, and the 

Landsat-CVA reported change in 557 km2. The area detected as change by both methods 

simultaneously has an extension of 250 km2. The total area covers a rectangular extension of 

3500 km2. 

 

 

Figure 2.6 Changes detected by S1-omnibus (blue), by Landsat-CVA (yellow) and by both 

methods (red). Subsets A and B show a closer look at the two areas of change indicated in 

the main image. In chart, light blue color represents the area detected as change by either 

method.  
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2.5. Discussion 

For effective land management and biodiversity conservation, it is essential to understand 

certain landscapes as mosaics of dynamic regimes rather than simplistic static cover types 

(Dronova et al., 2015; Parrott and Meyer, 2012; Watson et al., 2014). Temporarily-inundated 

wetlands belong to such category and require special approaches to assess their spatio-

temporal dynamics. The statistically powerful approach we present uses free data and open 

source tools, which allows land planners and scientists to establish an automated and accurate 

monitoring service for short-term LULC change detection. We use the powerful 

factorization of the omnibus test statistic to perform unsupervised change analysis in two 

wetlands and detect areas and LULC classes of high change rates.  

Locating the change patterns in space and time allows one to visualize change dynamics 

caused by variations in water flow or human activities. This enables us to estimate more 

precisely, for example, what areas dry out and when. Such estimations might be used in 

wetland wildlife management; breeding flamingos will abandon the single egg they lay if the 

wetland they are nesting in dries out too early or gets too flooded (Béchet et al., 2009). 

Limnographs and gauging stations have a very good temporal resolution, but poor spatial 

resolution. Combining these high cadence change maps with other in situ parameters, such 

as the ones given by limnographs, it is possible to improve hydrological models (Wdowinski 

and Hong, 2015).  

Maps depicting the frequency of change allow one to spot temporal and spatial patterns of 

short-term changes, as well as stable areas. For instance, the frequency of the change map in 

Fuente de Piedra shows high rates of change in the lake, as well as in some herbaceous crops, 

whereas olive groves, forest and natural shrublands remain mostly static throughout the year 

(Figure 2.3 and Figure 2.4). Most of the agricultural areas in Fuente de Piedra exhibit two 

changes, which suggest one harvest per year (one change from bare soil to crop and another 

one from crop to bare soil). Other areas of higher rates of change (three or more changes) 

can be spotted in agricultural areas northwest of the lake, suggesting several harvests per 

year.  

In Camargue, high rates of change can be observed in the wetland south of the Vaccarés 

Lagoon, probably due to the influence of tides. False changes in permanent water bodies 

(e.g., the Mediterranean Sea) were reported when using Sentinel-1 in both approaches (i.e., 

S1-omnibus and the Sentinel-1 pairwise approach). Since these were not a real change and 

for a better visualization of the results, sea and other permanent water bodies were masked 



36 
 

out in Figure 2.3 using a permanent water mask created out of a series of Landsat images for 

2015. The reasons why SAR data report changes in permanent water bodies have yet to be 

studied, but this might be due to variations in the water table because of the tides or due to 

strong winds creating waves (Bragg scattering). Such changes were not detected in the 

Landsat images. 

Change rates were grouped into LULC classes. This revealed two groups of classes: forests, 

olive groves and shrublands as more “static” classes and herbaceous crops, including rice 

fields and wetlands, as classes prone to suffer several changes throughout a year. This allows 

drawing estimations of land use. For example, during the period of study (one year), no 

changes were reported in around 70% of the area classified as herbaceous crops of both test 

sites. Although a field validation would be needed, this suggests that a large portion of the 

area destined to grow herbaceous crops other than rice may not be actually used, but remains 

fallow. 

The S1-omnibus method reports a larger proportion of changes in the landscape than the 

pairwise approach in both study areas and in both agricultural and natural landscapes. As 

Conradsen et al., (2016) suggested, detecting changes in consecutive pairs of images may 

leave undetected weak trends overtime, such as the slow growth of herbaceous vegetation 

after a disturbance, whether this is of anthropic origin, such as harvests, or of natural origin, 

like seasonal inundations. S1-omnibus seems to be able to detect these gradual changes. 

The comparison of S1-omnibus and Landsat-CVA showed generally good agreement in 

Fuente de Piedra, with changes in some patches of herbaceous crops missed by either of the 

methods (Figure 2.6). In Camargue, optical and SAR methods performed more differently. 

Landsat-CVA flagged as change a larger extent, mainly of herbaceous crops other than rice. 

This might be due to phenological changes in blooming vegetation that are difficult to detect 

with SAR imagery. 

The comparison between the water table and precipitation data and the sequence of changes 

detected by S1-omnibus (Figure 2.2) reveal how important it is to have a high cadence of 

imagery to capture all of the changes produced in such dynamic ecosystems. We limited our 

research to one Sentinel-1 image per month (every 24 or 36 days) for simplification purposes, 

but with the recent launch of Sentinel-1b, it is now possible to map these dynamics every six 

days. It would not be possible to reach even a similar cadence using optical data. Although 

both study areas are relatively cloud-free throughout the year, we could only find 6–8 cloud-

free Landsat scenes for our test sites, all restricted to the dry period. The lack of suitable 
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optical images is greater for larger areas (the larger the area is, the more probable it is to find 

clouds in it), during rainy seasons and especially in the sub-humid and humid tropics. Some 

events, like fast floods or flooding of certain creeks or ponds, may take place only during the 

rainy season. 

2.5.1. Potentials and Limitations of the Application 

Although S1-omnibus cannot directly provide information on the type of change, this 

approach can still be useful for land managers with local knowledge or in situ data that allow 

them to interpret the changes and change rates. Knowing the short-term change patterns of 

certain land covers may aid in their classification, especially when classifying different types 

of wetlands, since some of them are defined by their dynamics. For instance, wet meadows 

are defined by seasonally- or temporally-saturated soils and brief periods of inundation 

(Dronova et al., 2015). Such periods of inundation can be accurately mapped using Sentinel-

1 time series in order to define subclasses of wetlands and further describe the ecological 

status and condition of DCT. The increased temporal resolution of Sentinel-1 time series 

provides an information source for a better physically-based characterization of wetland 

types following a standardized nomenclature, e.g., Ramsar, or the Mapping and Assessment 

of Ecosystems and their Services (MAES). Integrating the S1-omnibus approach in 

operational wetland mapping activities fosters a more systematic monitoring of wetland 

dynamics. The broad change results thus provide a very flexible application for analyzing 

specific hydrological or plant phenology-driven analyses at very local scales.  

Dual pol SAR data have been used before to monitor grass cutting practices for biodiversity 

management and subsidy control purposes, but the number of studies available is limited 

(Voormansik et al., 2013). In fields of tall grass, meteorological conditions such as wind can 

influence the backscatter signal, reporting a change when there was actually none 

(Voormansik et al., 2013). In a pairwise comparison of consecutive images, it is difficult to 

remove such influence, but it may be possible to filter that noise out by applying S1-omnibus; 

if using time series with a high temporal resolution, (e.g., weekly), the algorithm could be 

modified so that if ∑1 ≠ ∑2, but ∑1 = ∑3, the change reported between ∑1 and ∑2 could be 

flagged as a false positive. 

The different changes recorded by Landsat-CVA and S1-omnibus show the potential of 

combining optical and SAR sensors for change detection. Sentinel-1-based change detection 

can also be combined with other sensors to determine the direction of change and to create 
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a change mask to reduce error propagation in the labeling phase of the production of long-

term LULCC maps (Hecheltjen et al., 2014).  

Sentinel-1 does not always acquire dual-pol images, and for certain parts of the globe during 

certain periods, only single polarization (VV) images are available. Information on the 

schedule of different acquisition modes can be found at 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario. We also 

tested the S1-omnibus approach with single-pol VV Sentinel-1 images, and the results looked 

promising, but the accuracy has yet to be evaluated. An important limitation is the inherent 

low vegetation canopy penetration of C-band. This hinders its application for wet forests 

and mangroves, for which an L-band sensor would be more suitable.  

It is still necessary to determine with more exactitude the change detection capabilities of S1-

omnibus; e.g., how tall/thick the vegetation must be for it to be detected when it is removed 

or grows. Additional work to validate this change detection methodology with time series is 

underway using a variety of test sites where we have a higher level of control. 

The open source character of our approach allows its incorporation with other tools where 

dense time series may be used such as GEE, which in turn may increase the number of 

applications of the S1-omnibus. 

2.6. Conclusions  

SAR-based change detection approaches offer a great opportunity to enhance our 

understanding of complex and dynamic ecosystems. S1-omnibus is capable of capturing 

accurately in space and time a wide array of LULC changes, and along with Sentinel-1 time 

series, it is possible to reach a six-day cadence at 30-m resolution. We demonstrate its 

potential for wetland monitoring by mapping change patterns caused by surface water 

dynamics and agricultural practices for a one-year period. Coupled with ground data like 

gauging stations, S1-omnibus and Sentinel-1 time series can be used to improve hydrological 

models (Wdowinski and Hong, 2015). Wetland managers can easily interpret the patterns of 

change and use them to locate and delineate areas of high rates of change, which are prone 

to have a high ecological value (Parrott and Meyer, 2012; Watson et al., 2014). Incorporating 

a temporal variable into the LULC classification procedures may allow the separation of land 

cover categories that, to this date, have proven difficult. The S1-omnibus’s statistical 

soundness, higher control of false negatives and false positives (Conradsen et al., 2016) and 

the fact that it does not require complex parameterization make it an ideal method for 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
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operational monitoring services. We also demonstrate its advantages against standard change 

detection approaches that use pair-wise comparisons of SAR and optical images. 
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“Big data isn’t about bits, it’s about talent.” 

 – Douglas Merrill 

Abstract 

Wetlands are often coupled with anthropogenic systems. This makes them highly dynamic 

and thus difficult to map and monitor from space. The Sentinel-1 constellation allows to 

monitor land changes regardless of cloud conditions and with a high frequency of pass. We 

use a time series of 33 Sentinel-1 dual polarized images from 2016 to map seasonal changes 

at the artificial Lake of Kerkini, in Greece. The images are accessed and processed in Google 

Earth Engine via a Flask web application. Points of change within the time series and 

frequency of change were determined according to an omnibus-test statistic. Results were 

compared to an optical-based land cover map and gauging measurements. Frequency of 

change patterns matched the different land cover types, indicating that frequency of change 

is related to the physical and structural properties of the land cover. This methodology can 

be used operationally to improve our understanding of ecosystems, enhance land cover 

maps, and to monitor wetland dynamics as well as cover changes caused by human activities. 

Index Terms—Wetland dynamics, SAR, change detection, seasonality  

3.1. Introduction  

Landscapes are seldom static, with many factors that modify their structures, compositions 

or even their functions sometimes in the matter of days. Wetlands are ecosystems at the 

interface between land and water and are often coupled with anthropogenic systems, which 

makes them particularly dynamic. Water dynamics and moisture contents are defining 

characteristics of many wetlands and depend on variable factors such as precipitation and 

evapotranspiration rates, or water discharge from dams, agricultural fields, river network, or 

on human interventions like filling and drainage. This renders single image classifications 

inefficient to produce accurate maps and to thoroughly assess dynamic classes (Dronova et 

al., 2015). The use of multitemporal optical images has improved classification results, but 

clouds and cloud shadows often cause data gaps that impede capturing the whole range of 

changes. Synthetic Aperture Radar (SAR) sensors are very adequate for monitoring water 

surface especially under cloudy conditions, and are also not subjected to sunglint effects 

(White et al., 2015). Besides, most wetland types, except for some raised peatbogs, are located 

in flat terrains. This minimizes the slant-range distortions inherent to SAR images (i.e. 

foreshortening, layover, and shadowing effect).  
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Classification of multitemporal SAR images is often outperformed by synergistic use of SAR 

and optical data. However, SAR imagery has proven useful for short term change detection 

based on dense time series of images (Dabboor et al., 2017; Muro et al., 2016). 

Incoherent SAR change detection methods measure significant changes in the backscatter 

intensity of one channel in pairs of images. Image rationing is a common method in which 

stable areas have values close to one and changed areas have either high or close to 0 values. 

Thresholding techniques can be applied to identify changes but the non-Gaussian 

distribution of the ratio image can distort the metrics and cause errors (Hecheltjen et al., 

2014), which makes them unsuitable for operational systems. On the other hand, coherence 

change detection methods measure the correlation between the phase of pairs of images 

taken at different times. Stable regions show high coherence, and, when changes occur, the 

phases are decorrelated showing low coherence. However, vegetation or water surfaces 

decorrelate quickly due to motion without necessarily changing their state or condition. 

Coherence-based methods are better at discriminating changes within the context of 

multitemporal features (Hecheltjen et al., 2014). When using a time series of images, it is 

difficult to control the rates of false positives and negatives between all the pairs of 

consecutive images. Conradsen et al. (Conradsen et al., 2016) developed an algorithm that 

allows a higher control of these errors and can determine the points of change within in the 

time series (Canty and Nielsen, 2017; Muro et al., 2016). 

Handling dense time series of SAR data requires high technical expertise and high 

computational power. Cloud processing based solutions have the capacity of overcoming 

these two challenges, making these applications feasible for operational use and non-

specialized users. We use a Flask web application 

(https://github.com/mortcanty/earthengine) (Canty and Nielsen, 2017) that accesses 

Google Earth Engine (GEE) (Gorelick et al., 2017) and all its Sentinel-1 archive to perform 

change detection over the Artificial Wetland of Kerkini, in Greece. The maps of frequency 

of change produced are used to visualize the effect of water level fluctuations every 12 days 

and to improve a land cover map based on multispectral imagery.  

3.2. Study area 

Kerkini Lake (23.1418 E, 41.2204 N) is an artificial lake and a Ramsar site in Greece. It was 

constructed with the purpose of regulating floods, trapping sediments and irrigating the 

surrounding plain. Its low depth, high productivity, periodic flooding with sediments and 

nutrients and its position in relation to bird migration corridors have contributed to the 

https://github.com/mortcanty/earthengine
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biological wealth of the area. Water levels are regulated by a dam since 1982 and have a 

seasonal variation of approximately 5 meters. This results in seasonal changes of the flooded 

surface from 5,000 ha up to 7,300 ha (Crivelli et al., 1995b). These seasonal changes have 

many effects on the wetland ecosystem such as shrinkage of feeding and nesting habitats like 

reed beds, wet grasslands and aquatic beds with water lilies, deterioration of riparian forests, 

or increase in slope erosion during dry season (Crivelli et al., 1995a). Monitoring of water 

fluctuation is one of the key elements in management and conservation of the Artificial Lake 

Kerkini. An animation showing the dynamics of the area can be found in the supplementary 

files. 

3.3. Material and Methods 

We used a set of 33 dual polarized (VV-VH) images in ascending orbit from the same orbit 

path. Images were taken usually every 12 days from 11.01.2016 to 24.12.2016. There are 3 

images missing creating 3 gaps of 24 days between acquisitions due to the irregular 

observation scenario of Sentinel-1 (ESA, 2012a). The change detection algorithm used 

determines the points of change using an omnibus test statistic (Conradsen et al., 2016). It 

performs a simultaneous test of homogeneity over the whole time series using the 

components of a covariance matrix (1): 

𝐶2 = (
〈|𝑆𝑣𝑣|2〉 〈𝑆𝑣𝑣𝑆𝑣ℎ

∗ 〉

〈𝑆𝑣ℎ𝑆𝑣𝑣
∗ 〉 〈|𝑆𝑣ℎ|2〉

) (1) 

where Str the scattering amplitude for transmitted polarization t and received polarization r. 

〈…〉 denotes multilook averaging and v and h correspond to vertical and horizontal 

polarizations respectively. When this covariance matrix formulation is used for multi-look 

polarimetric SAR data, the complex Wishart distribution applies. However, GEE stores the 

Sentinel-1 images as Ground Range Detected (GRD), in which the phase information is lost 

during the processing. Thus, the off-diagonal elements of the matrix are 0 but the complex 

Wishart distribution still applies using the diagonal elements of the covariance matrix (Canty 

and Nielsen, 2017). The change detection is performed with an associated p-value that was 

set to 0.01. Once every point of change has been determined, a map of frequency of change 

can be generated adding up all the changes detected throughout the time series. 

Open water bodies tend to present high variability in the backscatter coefficient over time 

due to ripples in the surface caused by wind. This effect, which is more pronounced in 

sensors of short wavelength such as the C-band of Sentinel-1 (Muro et al., 2016), returns 
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very high rates of false changes. To remove this noise, we created a permanent water mask 

using the percentile 95 of the VV (Figure 3.1), which corresponds to the minimum water 

extent (i.e. permanent water bodies). 

 

Figure 3.1 Percentile 95 of the VV backscatter signal for Kerkini Lake in 2016. Dark colors 

represent permanently inundated areas. 

3.4. Results and discussion 

The frequency of change map (Figure 3.2a) indicates how many times each pixel has changed 

during the period of study. The map shows a fringe of high values (i.e. frequent changes) 

along the shoreline, consequence of the fluctuations of the water table levels. This allows 

separating the area into regions of different frequencies of inundation, which is different 

from the number of days a pixel remains flooded. For instance, the intermediate area of red 

colors experiences changes in inundation more frequently than areas further or closer to the 

permanent water body, but it is not inundated as often as the areas closer to the permanent 

water body. 

The frequency of change was compared to the Land Use/Land Cover map of Figure 3.2b. 

This LULC map was created within the Satellite-based Wetland Observation Service (SWOS) 

project and it is available at the SWOS portal (http://portal.swos-service.eu). It was 

produced using a hierarchical object-based analysis based on spectral, spatial and contextual 

features of two Sentinel-2 images; one from the dry period 12.08.2017 and another one from 

the rainy period 30.03.2017. An object based approach and a maximum likelihood classifier 

were used. Training data was collected by visual interpretation of high resolution imagery. 

We used a nomenclature adapted from the Millennium Assessment of Ecosystem Services 

http://portal.swos-service.eu/


45 
 

(MAES) (Finlayson et al., 2005; Fitoka et al., 2017). The MAES nomenclature is commonly 

used to classify different types of wetlands for reporting purposes at EU level.  

Frequency of inundation drives species composition in seasonally flooded wetlands (Pétillon 

et al., 2010; Tyler et al., 2018; Valk, 2005). The patterns of frequency of change found 

corresponded with the boundaries between the classes Marshes, Seasonal water with aquatic 

bed, and Seasonal water of the LULC map. Thus, the frequency of change is related to the 

physical and structural properties of the land cover. However, the boundary between 

Permanent water and Seasonal water was not properly captured using only the two Sentinel-

2 images from the dry and rainy periods (Figure 3.2a and b). Many studies often use images 

from the peak leaf-on (maximum NDVI) and leaf-off (minimum NDVI) periods (e.g. Hill 

et al., (2010); Li et al., (2013); Rybakov et al., (2018); Xie et al., (2019)) , and can miss dynamics 

occurring in between. In Mediterranean ecosystems, the lowest water table levels of 

reservoirs often do not correspond with the driest or hottest period, such as in this case. 

Highest temperatures and lowest precipitation levels are usually during June-August, but 

lowest water levels are at the end of September or even in January (Figure 3.3). This makes 

it difficult to capture the whole seasonal cycle with few images from targeted periods. As 

demonstrated by Pekel et al. (2016), dense time series of optical imagery are also capable of 

assessing water seasonality. However, delineating waterbody boundaries from multiple 

individual optical images is often ambiguous. Reflection on water surfaces depends on 

suspended matter and chlorophyll content, and can be confused with different types of bare 

soils (Sun et al., 2012). Confusion between bare dry soil and water in single SAR images is 

also common because both have very low backscatter values (Schlaffer et al., 2015). The 

considerable short-term dynamics of many wetlands demand the use of denser time series 

than the ones that optical sensors can provide. Because SAR sensors are sensitive to changes 

in structural properties, the frequency of change is a powerful tool to map seasonal changes 

and improve classifications. 
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Figure 3.2 a) Frequency of change based on Sentinel-1. b) LULC map produced using 

multitemporal Sentinel-2 imagery and the MAES adapted nomenclature [14]. The dashed 

white line marks the actual boundary between permanent water and seasonal water according 

to the frequency of change. The gauging station is shown at the southernmost part of the 

wetland in Figure 3.2a. Points A-D mark the location of the plots used for the VV backscatter 

temporal profiles of Figure 3.3. 

To characterize the area of frequent changes we analyzed the VV backscatter response across 

time for four points along a transect, and plotted them along with water table data taken 

from a gauging station (Figure 3.3). Three of the plotted points were classified as permanent 

water according to the LULC map; “A”, “B” and “C”. Only “A” shows rather consistent 

low backscatter values product of specular reflection, typical of water bodies. “B” and “C” 

present much higher backscatter values at the end and beginning of the year, when water 

table levels are at their lowest. These alternating high-low backscatter patterns suggest moist 

soil conditions alternating with water-logging after rainfalls. Point “D” was classified as 

seasonal water and shows even higher backscatter values under non-flooded conditions, 

suggesting a mix of volume scattering and double-bounce scattering (Schlaffer et al., 2015). 
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Figure 3.3. VV backscatter temporal profiles and water table levels throughout the study 

period. The location of points A-D is shown in Figure 3.2. The location of the gauging station 

is shown inFigure 3.2a, at the southernmost part of the wetland. Water table data was 

collected every 12 days, corresponding with the image acquisition. 

Classifying optical images allows the generation of a detailed LULC map following the 

MAES nomenclature. Using images from dry and rainy season as input often enables to 

account for seasonal dynamics to some extent. However, it must be noted that these 

dynamics (for example water level fluctuations) cannot be specified in time with the 

limitations of optical data, such as reduced repetition rates due to clouds or ambiguous 

classification results at ecotone zones. The methodology we describe yields several 

advantages. It produces a clear picture of the spatio-temporal patterns of very dynamic areas. 

It is statistically sound, requires minimal parameterization and is computationally efficient so 

that it can be used in an operational way. It can be used as ancillary information to assess 

and improve land cover classifications, or to direct fieldwork efforts; for instance, one might 

want to distribute the sampling points across the gradient of change in this case. It also 

provides information about human actions on the landscape, such as agricultural activities. 

It requires, however, prior knowledge of the area to interpret the patterns of change. Unlike 

a standard land cover classification, the results are not thematic nor absolute, which impedes 

the transmission of information to unspecialized audience (e.g. decision makers). 
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3.5. Conclusion 

Temporal dynamics can actually be used to improve our understanding of ecosystems and 

to enhance classification results. In this case, the patterns of frequency of change matched 

with land cover types that tend to be difficult to distinguish. Additionally, different 

frequencies of inundation were shown in what was thought to be permanent water. Time 

series of SAR images processed via cloud computing services is a very efficient way to deliver 

statistically sound and finalized products that can be interpreted by intermediate users. They 

can be successfully applied especially in cases where due to cloud cover, optical imagery 

cannot capture the whole year dynamics. 
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“Maps are like campfires — everyone gathers around them, because they allow people to understand 

complex issues at a glance, and find agreement about how to help the land.” 

― Sonoma Ecology Center, GIS/IS Program Web Site 

Abstract 

Wetlands are highly dynamic, with many natural and anthropogenic drivers causing seasonal, 

periodic or permanent changes in their structure and composition. Thus, it is necessary to 

use time series of images for accurate classifications and monitoring. We used all available 

Sentinel-1 and Sentinel-2 images to produce a national wetlands map for Albania. We derived 

different indices and temporal metrics and investigated their impacts and synergies in terms 

of mapping accuracy. Best results were achieved when combining Sentinel-1 with Sentinel-2 

and its derived indices. We reduced systematic errors and increased the thematic resolution 

using morphometric characteristics and knowledge-based rules, achieving an overall accuracy 

of 82%. Results were also validated against field inventories. This methodology is 

reproducible to other countries and can be made operational for an integrated planning that 

considers the food, water, and energy nexus. 

4.1. Introduction 

The value of wetlands in terms of ecosystem services is widely recognized by the scientific 

community (Finlayson et al., 2005; Mitsch and Gosselink, 2000; Russi et al., 2012) and policy 

makers (e.g. playing important roles in the Paris Agreement, the Sendai Framework for 

Disaster Risk Reduction, or other multilateral biodiversity related agreements (Ramsar, 

2018)). However, wetlands are still being degraded at global scales, and degradation trends 

have increased since 2000 (Dixon et al., 2016; Ramsar, 2018). The main drivers of these 

trends are agricultural expansion, intensive wood, sand and gravel harvesting, dam building, 

agricultural and urban waste, drainage and salinization (Finlayson et al., 2005; Ramsar, 2018). 

This case study focuses on Albania, a country that hosts one of the few last systems of large 

and undammed rivers of Europe. Some segments of these rivers are biodiversity hotspots 

for fish and mollusks and harbor high rates of endemisms (Weiss et al., 2018). However, 

many other rivers in Albania are heavily dammed. Over 90% of its electricity is already 

provided by hydropower and authorities are planning to increase investment in it. Besides, 

another 3000 hydropower projects are planned in the Balkan region (Weiss et al., 2018). 

Some of these projects have been financed by European public banks (Sikorova and Gallop, 

2015), but they are facing strong social opposition from academic, conservation, and local 

organizations (Sikorova and Gallop, 2015; Vejnovic and Gallop, 2018; Weiss et al., 2018). 
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For instance, 37% of the planned projects are located in protected areas, and opponents 

argue lack of disclosure and negative environmental and social impacts caused by some of 

these projects (Vejnovic and Gallop, 2018). 

According to the Global Outlook on Wetlands (Ramsar, 2018), from the Ramsar Secretariat, 

properly managed wetlands can directly and indirectly contribute to most of the Sustainable 

Development Goals (SDGs). This puts wetlands in a central position in the debate about 

sustainable development. The Ramsar Convention as well as UN Environment are two major 

stakeholders when it comes to assessing the status and trends of wetland ecosystems and 

their changes over time. Within the framework of the SDGs, especially indicator 6.6.1 

“Change in the extent of water-related ecosystems over time” directly requires countries to 

report on their national wetlands regularly (“UN stats Metadata repository,” 2018). Earth 

Observation (EO) can generate the information that policy makers need to make and justify 

decisions, and can also support efficiently the implementation of the SDGs (Paganini et al., 

2018). The GEO-Wetlands Initiative is a collaborative partnership aiming to make this step 

as easy as possible for countries by providing methods, tools, guidelines, training and 

knowledge [www.geowetlands.org]. This case study is one example of how state-of-the-art 

EO technology can efficiently support wetland mapping and monitoring at national scale. 

The last official inventory of wetlands of Albania is from 2003 and it was part of the MedWet 

Inventory System initiative (Marieta et al., 2003; Perennou et al., 2012). Since then, the 

paradigm in EO has experienced a revolution with an increasing number of freely available 

data sets, fusion of Synthetic Aperture Radar (SAR) and optical sensors, general advances in 

algorithms for classification and modelling, and ultimately, the cloud computing platforms 

(Gorelick et al., 2017; Joshi et al., 2016; Stefanski et al., 2014; Waske and Benediktsson, 2007). 

Mapping large areas that include dynamic cover types such as wetlands, with sufficient 

thematic resolution and accuracy, requires the use of large numbers of images from different 

sensors. This poses a challenge in terms of available computing power and on technical 

capacity, both factors considered as bottlenecks that hinder development and the 

implementation of informed land management policies and plans of developing countries. 

Cloud computing platforms offer new opportunities to bypass these bottlenecks and to 

process large amounts of information on an operational basis. They have prompted a number 

of studies that use time series of images for classification of either specific land cover types 

classes (e.g. rice mapping (Dong et al., 2016), open water bodies (Hardy et al., 2019), cropland 

extent (Xiong et al., 2017) or settlements (Patel et al., 2015)), or more complex land cover 

maps at national (Mack et al., 2017) or even at continental scale (Pflugmacher et al., 2019). 

http://www.geowetlands.org/
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Mapping at national scales is a more practical approach, since monitoring and reporting tasks 

are often needed at national level. Time series of images can be processed using data fusion 

techniques (Gevaert and García-Haro, 2015), data interpolation (Inglada et al., 2017) best 

pixel selection (Griffiths et al., 2013), fitting time series functions (Zhu and Woodcock, 

2014), or aggregation of data into meaningful multitemporal metrics (Carrasco et al., 2019; 

Mack et al., 2017; Mahdianpari et al., 2018; Pflugmacher et al., 2019). These metrics (e.g. 

maximum, mean and minimum) can be applied to the bands directly or to indices derived 

from them. They are representative of the different seasonal stages of the land cover caused 

by phenological, land use, or inundation regimes. Time series of SAR imagery are 

instrumental in covering the complete seasonality of wetlands (Muro et al., 2019; White et 

al., 2015), especially in areas of persistent cloud cover where images from the dry period and 

rainy (and therefore cloudy) period are needed. Using both, SAR and multispectral imagery 

has proven to achieve higher classification accuracies (Joshi et al., 2016; Stefanski et al., 2014; 

Waske, 2014).  

Even when using the full spectral and temporal resolution, there are limitations to the 

classification power of EO. Coupling EO data with other spatial information can return 

higher accuracies and increase the thematic resolution (Manandhar et al., 2009; Stefanov et 

al., 2001; Van der Voorde et al., 2007). Examples of the use of ancillary spatial information 

in mapping tasks include: topographic information (Hird et al., 2017), spatial explicit metrics 

(size, shape, edge length) (Herold et al., 2003), precipitation distribution (Pflugmacher et al., 

2019) or distance to water bodies and elevation ranges (Long and Skewes, 1996) among many 

others. 

We use the cloud computing platform Google Earth Engine (GEE), to map the wetlands of 

Albania at national scale by using the whole archive of Sentinel-1 and Sentinel-2 imagery for 

the period June 2015 – June 2018, and a set of flexible knowledge-based rules. 

The purpose of this study is to: 

 Assess whether the combination of multispectral and SAR data enhances the 

classification of wetlands. 

 Apply the methodology and demonstrate how it can help to fulfill reporting 

commitments at national level. 

 Update the inventory of Albanian wetlands for the target year 2017. 
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4.2. Material and Methods 

4.2.1. Study area 

Albania (Figure 4.1) has an extension of 28.784 km2. It has a steep orography in the east, 

with most rivers flowing westwards across extensions of floodplains used for agriculture. 

Several segments of many rivers have been channelized and there are abundant small dams 

used to store water and produce hydropower scattered over the country. However, there are 

still several large rivers that remain in pristine conditions (Weiss et al., 2018). Agriculture, 

energy and tourism are three of its strongest economic sectors (EcoAlbania, 2017; FAO, 

2015).  

 

Figure 4.1 Location of Albania with its Digital Elevation Model and water bodies. 

4.2.2. Datasets 

We used all the Sentinel-1A and 2A images from June 2015 to June 2018. This implied 

imagery from around 100 overpasses for Sentinel-2, and 264 overpasses for Sentinel-1. Out 

of all the Sentinel-2 imagery acquired we created a median composite (dataset S2 henceforth). 

Clouds were masked using the quality band of the Level-1C products (ESA, 2012b), and 

cloud shadows were masked using azimuth and zenith angles to estimate the position of the 

shadow. Out of the same Sentinel-2 images we created another multitemporal composite 
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using the 90th and 50th percentiles of three indices; the normalized difference vegetation 

index (NDVI) (Tucker, 1979), the normalized difference water index (NDWI) (Mc Feeters, 

1996), and the normalized difference built-up index (NDBI) (Zha et al., 2003). The 90th and 

50th percentiles of these indices represent the maximum and median conditions of 

vegetation and water. Minimum metrics were not used because they were too affected by 

cloud and shadow noise, and the maxima of the NDBI already correspond to the minima of 

NDWI and NDVI. We refer to this dataset as NDIs (normalized difference indices).  

Out of the Sentinel-1A images accessed, we created another multitemporal composite 

(dataset S1 henceforth) using the 99th, 50th, and 5th percentiles of both polarizations and in 

ascending orbit. We used the 5th percentile instead of the 1st to eliminate outliers occurring 

in the seams between images. Currently, Sentinel-1 data from GEE is already clamped to the 

99th and 1st percentiles. The data is processed by GEE in the Sentinel Application Platform 

(SNAP) using the following steps: Apply orbit file, noise removal, thermal noise removal, 

radiometric calibration, terrain correction using SRTM 30, and conversion to dB via log 

scaling (GEE, 2018). All datasets, multispectral and SAR, were resampled to 20 meters. 

4.2.3. Classification 

We based our classification scheme on the Millenium Assessment of Ecosystem Services 

(MAES), modified to include Ramsar wetland types (Fitoka et al., 2017), mapping the 

following ten classes: Bare soil, Permanent water bodies, Intermittent water bodies, 

Marshlands, Cropland, Grassland, Heathland and scrubland, Deciduous forest, Coniferous 

forest and Built-up. “Intermittent water bodies” refer to areas that are bare when not 

inundated (e.g. intertidal mudflats and the water spread area of many water reservoirs). 

“Marshlands” are areas that have vegetation and water, at least temporarily. “Heathland and 

scrubland” are areas dominated by shrub-like vegetation. The other 7 classes are self-

explanatory. 

We applied a Random Forest (Breiman, 2001) classifier using 500 trees in GEE and collected 

a set of 300 polygons for training and validation. The polygons were delineated using aerial 

imagery of 2015 at 20 m and 8 m resolution, available at the portal of the State Authority for 

Geospatial Information (ASIG) (https://geoportal.asig.gov.al). Each class had circa 30 

polygons about the same size except for the class “Cropland” which were twice larger. This 

was necessary because it was the class with the largest extension and variability due to the 

different crops and rotation patterns. For each dataset and combination of datasets we 
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performed a cross-validation in which 2/3 of the polygons within each class were randomly 

selected for training and 1/3 for validation. 

4.2.4. Post-classification processing 

The different datasets used have their own inherent noise and errors. For example, SAR data 

is prone to slant-range distortions (foreshortening and layover) in areas with a complex relief 

(White et al., 2015). Thus, we used morphological constrains to create a Potential Wetlands 

Mask (PWM) to mask out these artifacts that would cause classification errors. Out of the 

SRTM digital elevation model we calculated a set of 3 derivatives: Topographic Wetness 

Index (TWI) (Böhner and Selige, 2006), a Multiresolution Index of Valley Bottom Flatness 

(MrVBF) (Gallant and Dowling, 2003), and a Terrain Surface Convexity Index (TSC) 

(Iwahashi and Pike, 2007). These datasets were combined with the Global Surface Water 

(GSW) product (Pekel et al., 2016) and then normalized to values from 0 to 1. The result was 

a map showing the likelihood of each pixel of being a wetland. A histogram-based threshold 

method (Otsu, 1979) was set to mask out areas unlikely to be a wetland, producing the PWM 

(Figure 4.2). Training, classification and validation was limited to areas within the PWM. This 

way, artifacts produced by the terrain on SAR (slant-range) and in optical data (illumination 

angles) were reduced. 

Statistical mapping (e.g. Random Forest) can seldom produce accurate results on its own. 

Knowledge-based criteria and ancillary information can be used to produce outputs with the 

thematic resolution and mapping accuracy needed (Connolly and Holden, 2009; Long and 

Skewes, 1996; Perennou et al., 2018; Van der Voorde et al., 2007). To that end, we applied 

an additional set of knowledge-based rules to further separate the land cover classes. These 

rules are based on theoretical considerations and observations, and are common practice to 

enhance the result of remote sensing-based classifications (Manandhar et al., 2009; Stefanov 

et al., 2001; Van der Voorde et al., 2007). To separate “Riverbanks” from other bare surfaces 

we applied a 120 m buffer to the river network. All “Heathland and scrubland” areas within 

this buffer were as well reclassified as “Riverine scrubs”. An additional class of “Beaches and 

coastal dunes” was created for all bare surfaces within 50 m from the shoreline. Figure 4.2 

shows the classification and post-classification workflow used. The final result is a 

classification of 6 wetlands classes (counting “Beaches and coastal dunes” as a wetlands) and 

7 non-wetland classes. 

For validating this dataset, we performed a stratified random sampling of 527 points using 

the platform Laco-wiki (See et al., 2017). The platform gives access to Google, Bing and 
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satellite imagery enabling a visual interpretation of the validation samples and generates 

accuracy reports. Additionally, we compared our results with the last inventory of wetlands, 

carried out in 2001-2003 (Marieta et al., 2003). Through visual inspection we discarded from 

the inventory the wetlands that were not visible in current high resolution imagery. 

 

Figure 4.2 Classification workflow. S1 and S2 are the Sentinel-1 and Sentinel-2 image 

collections, out of which the different multitemporal metrics are calculated. RF is the 

Random Forest classifier, and PWM is the Potential Wetlands Mask. During the post-

classification phase we removed systematic errors using the PWM and added 3 new wetland 

classes using knowledge-based rules. The PWM was generated out of the Global Surface 

Water (GSW) layer and SRTM digital elevation model derivatives. 

4.3. Results 

4.3.1. Impact of the different datasets on the mapping accuracy 

This analysis was carried out with the 10 initial land cover classes and the results of the cross-

validation; overall accuracy (OA), producers’ accuracy (PA) and users’ accuracy (UA). The 

classifications produced using the three datasets (S1, S2 and NDIs) or combining S1 and 

NDIs achieved the highest accuracies, followed by the combination of S1 and S2, and the 

combination of S2 and NDIs (Figure 4.3). When using each dataset separately, accuracies 

were significantly lower than any combination of multiple datasets.  
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Figure 4.3 Overall, and average producers’ and users’ accuracies of individual and combined 

datasets. Error bars indicate the standard deviation at 95% confidence interval. 

When using S1 and NDIs for classification, the class “Marshlands” occupied larger 

extensions at the expense of “Cropland” and “Heathland and scrubland” (Table 4.1). When 

using S1 and S2, the class “Intermittent water bodies” was overestimated at the expense of 

“Permanent water”, mostly at the sea. When using only the optical datasets (i.e. NDIs and 

S2) the class “Built-up” was greatly overestimated at the expense of “Bare soil” and 

“Heathland and scrubland” (UA of Built-up 69%, Appendix A). 

Table 4.1 Number of hectares per class with each combination of multiple predictors before 

post-classification processing 

 S1&S2&NDI (ha) S1 & S2 (ha) S2 & NDI (ha) S1 & NDI (ha) 

Bare soil 15,749 18,642 7,714 15,104 

Permanent Water 77,972 74,165 78,672 75,124 

Built-up 30,782 30,440 54,033 32,955 

Marshlands 30,803 22,848 25,732 41,794 

Intermittent water 7,636 15,980 11,563 6999 

Deciduous forest 32,144 33,859 30,388 30,364 

Coniferous forest 12,771 17,674 13,879 13,858 

Cropland 256,310 246,606 260,065 262,866 

Grassland 28,378 26,792 35,259 27,426 

Heathland and scrubland 105,883 111,420 81,121 91,935 

 

Areas of steep slope oriented towards the Sentinel-1 satellite returned very high backscatter 

values, which made them to be misclassified as “Built-up” regardless of their true class. 

Despite the PWM excluded most of these errors, some remained along small rivers and 

creeks between steep mountains. 
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The distinction between “Coniferous forest” and “Deciduous forest” was equally good 

regardless of the combination of datasets used, as long as more than one were used. The 

confusion between “Heathland and scrubland” and “Grassland” was high for all 

combinations of datasets (e.g. UA of “Heathland and scrubland” 52% and PA of 

“Grasslands” 41% when using the three datasets, Appendix A). 

The class “Cropland” occupied the largest extent, and thus had a larger number of 

inconsistencies. For instance, some croplands were classified as “Heathland and scrubland” 

and others as “Bare Soil”. Many of them correspond to rather dry areas with high content in 

salt that are not actively farmed (Figure 4.4 A and B).  

 

Figure 4.4 “Cropland” misclassified as “Bare soil” and “Heathland and Scrub” (A and B) and 

as “Marshlands” (C and D). “A” shows an RGB composite of NDBI, NDVI and NDWI. 

Red areas represent high NDBI values. “C” shows a Sentinel-1 RGB composite of 

percentiles 99, 50 and 05 of a former marshland, now used for agriculture. The brighter areas 

correspond to the extremely high backscatter values of slopes oriented towards the sensor. 

“B” and “D” shows the classification results of “A” and “C” respectively. 
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Other croplands showed higher frequencies of inundation and were thus misclassified as 

“Marshlands” (Figure 4.4 C and D). These were very localized cases easy to correct manually. 

The area shown in Figure 4.4 C and D actually corresponds to the former Maliqui freshwater 

marsh, recently drained and now used for agriculture. 

4.3.2. Post-processing classification 

Post-classification processing was applied only to the results of the combination of S1, S2 

and NDIs datasets. Using knowledge-based criteria we incorporated three classes: 

“Riverbanks”, “Riverine scrubs” and “Dunes” increasing the wetland-related classes from 3 

to 6 (Figure 4.5). This generated an inevitable trade-off between thematic resolution and 

classification accuracy, and some errors were introduced. For instance, a few bare soil areas 

of industrial use (e.g. ports or salt pans) were classified as “Dunes” or “Riverbanks”. 
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Figure 4.5 Map of potential wetlands (left) and post-classification map with the 13 final 

classes (right). The map of potential wetlands indicates the probability of each pixel of being 

a wetland according to morphological criteria. Only areas above a histogram-based threshold 

(Otsu, 1979) were mapped. 

The accuracy analysis with independent samples returned an overall accuracy of 82%. The 

detailed accuracy matrix (Appendix A) shows that most conflicting classes were “Bare soil” 

and “Riverine scrubs” that were often mixed up with “Heathland and scrub”. In addition, 

“Heathland and scrub” was sometimes misclassified as “Cropland”, and “Marshland” was 

sometimes confused with “Intermittent water bodies”. 

Because the aim of this study is to apply the methodology at national scale, we compared our 

results with the last inventory of Albanian wetlands (Marieta et al., 2003). It was carried out 
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in 2003 using field information and satellite and aerial image interpretation. Out of 694 

inventoried wetlands, we eliminated 18 that we couldn’t find through visual inspection of 

current imagery, and are assumed to have disappeared. Fourteen of them were artificial water 

reservoirs, 3 marshes and 1 lake. For the remaining 676 wetlands we analyzed their 

correspondence with our results. The PWM excluded 99 wetlands. Thirty-three of those were 

small artificial water reservoirs, and 54 were very small glacial lakes (circa 1 ha). 

4.4. Discussion 

4.4.1. Impact of the different datasets on the mapping accuracy 

Fusing the datasets from different sensors (Sentinel-1 and Sentinel-2) and the different 

indices (NDBI, NDVI, NDWI), provided the highest accuracies (Figure 4.3), in agreement 

with other studies (Blaes et al., 2005; Brisco and Brown, 1995; Chatziantoniou et al., 2017; 

Stefanski et al., 2014; Waske, 2014; White et al., 2017). SAR signals are sensitive to structure 

and biomass, dielectric properties of vegetation and soil (inundation patterns) and roughness 

(White et al., 2017, 2015). This makes SAR data essential to distinguish certain land cover 

classes such as “Built-up” and “Bare soil”, or classes with a different levels moisture and 

inundation such as “Intermittent water bodies” (Figure 4.6). Other studies using 

multitemporal metrics have reported high accuracies using only optical data (Inglada et al., 

2017; Mack et al., 2017; Pflugmacher et al., 2019), but they only have one or two classes for 

wetlands, and therefore very high accuracies in their class “water”. 

Despite the fact that the normalized difference indices were calculated from the same 

Sentinel-2 images, when combining both NDIs and S2 dataset, the accuracy increased 

significantly with respect to using only the S2 dataset. The NDIs dataset contains information 

on the temporal variation of physical and biological characteristics of the land cover (e.g. 

maximum inundation, vegetation peak, and minimum inundation and vegetation), while the 

S2 datasets contains only spectral information. The combination S2&NDIs even approached 

the performance accuracy levels of the combination S2&S1. This highlights the importance 

of the temporal dimension when mapping dynamic cover types. 

“Cropland” is also a very dynamic class due to management practices that are not constant 

across time nor space, making this class prone to errors. In our case, this caused a high rate 

of omission errors (i.e. “Cropland” classified as something else, Figure 4.4 C and D). For 

instance, some croplands are harvested once, others twice (e.g. winter wheat) or not at all 
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(i.e. fallow land and permanent crops), and other times are used for temporary grasslands, 

increasing the error rate (Mack et al., 2017; Stefanski et al., 2014).  

Systematic and standardized sampling campaigns such as the ones carried out at EU level 

within the LUCAS (Land Use-Cover Area frame Survey) project can be used to produce 

more accurate classifications including crop types (Mack et al., 2017; Pflugmacher et al., 

2019). Unfortunately, such datasets are currently not available for Albania. It would be 

possible to use cadastral information to leave out areas used for agriculture and eliminate 

these uncertainties. However, many agricultural areas act as habitat for wetland species when 

the natural wetlands are dried out or disturbed, and should be included in wetland mapping 

activities (Czech and Parsons, 2002). Besides, for an integrated management that considers 

the water-food-and energy nexus it is important to include agricultural areas, whether they 

are in use or not (fallow). 

Yearly water level fluctuations are common in artificial wetlands used as water reservoirs. 

These water bodies are often classified as one single class of permanent water, whereas they 

are composed of areas that are either permanently or temporarily inundated. The use of 

multitemporal statistics allowed us to separate these two categories (Figure 4.6). Mapping the 

intermittent water bodies is especially important in the case of water reservoirs. These areas 

are often steep and local mountainous vegetation cannot grow there due to the flood 

recurrence. This makes these areas prone to erosion, increasing the sediment deposition rate 

on the water reservoir and thus decreasing its life span. Mapping the water spread area (i.e. 

intermittent water) have been used before in sedimentation models to predict the life span 

of the dam (Foteh et al., 2018). 

 

Figure 4.6 From left to right, an example of the datasets S2, NDIs, S1 and result of 

classification. NDIs and the S1 metrics allow to separate the parts of the wetland that are 

permanently and temporarily flooded. 
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4.4.2. Post-classification processing 

Often, land managers need higher accuracies and thematic resolutions, especially for 

quantitative analyses (Chatziantoniou et al., 2017; Manandhar et al., 2009). Using knowledge-

based rules based on spatial, environmental, geomorphologic or ecological criteria can 

improve accuracies and the separability of classes that are spectrally similar but ecologically 

very different (Manandhar et al., 2009). For instance, the mapping exercise of Pflugmacher 

et al. (Pflugmacher et al., 2019) was carried out at continental scale. This implied mapping 

the same land cover types across climatic regions, where a same land cover type can display 

different spatiotemporal patterns (e.g. boreal coniferous forests vs. Mediterranean coniferous 

forests). To account for this, they implemented auxiliary variables that exploited the 

relationship between climate, topography and vegetation (precipitation, temperature, and 

latitude and longitude). The addition of these variables had the highest effect on model 

performance, higher even than adding other temporal metrics. Although they did not used 

knowledge-based rules, their results show the relevance of adding environmental information 

rather than just more remotely sensed data. The knowledge-based rules we set were based 

on theoretical considerations and observations. Their addition increased the thematic 

resolution, but also introduced some classification errors. This is something to be expected 

and good knowledge of the area is necessary to balance the trade-off between thematic 

resolution and classification accuracy (Knight et al., 2013). Knowledge-based rules require 

ecological rather than remote sensing expertise and are specific for each case study (Perennou 

et al., 2018). Thus, they should be modified according to the needs and conditions of other 

environments when replicating the methodology somewhere else. This, in turn, could pose 

an issue of lack of standardization. Regardless, our results provide supporting evidence of 

the benefits of including ancillary information based on logic and expert knowledge in 

mapping activities (Chatziantoniou et al., 2017; Long and Skewes, 1996; Manandhar et al., 

2009), so that mapping products can be better suited for decision making. 

The comparison of our final product with the 2003 inventory revealed that our workflow 

missed 99 of the 676 wetlands inventoried. Almost half of these were artificially created water 

reservoirs located in areas with a topography unsuitable to store water without building a 

dam, and therefore not regarded as potential wetland areas. However, there were 54 small 

glacial lakes (circa 1 ha) that were also masked out. Almost all of these omission errors were 

initially classified as some wetland type before the PWM was applied. Omission errors can 

be avoided by applying a more conservative manual threshold to the PWM, but that can 

increase the number of errors related to the terrain artifacts. Trade-offs between omission 
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and commission errors are often unavoidable and a histogram-based thresholding method is 

still recommended. Other types of wetlands such as raised peatbogs could be as well excluded 

when located on a slope. 

4.5. Conclusions 

Landscape temporal dynamics are traits that have often hampered mapping activities, and in 

consequence delayed spatially-based decisions. Using a combination of multitemporal SAR 

and optical metrics we can use such traits to distinguish spectrally similar but ecologically 

different cover types. Including additional knowledge-based rules can remove artifacts and 

increase the thematic resolution. Cloud computing platforms can facilitate the handling of 

large amounts of spatial data and allow to deliver ready to use products in an operational 

way. 

The demanding monitoring and reporting requirements of the Ramsar Convention on 

Wetlands and the Sustainable Development Goals create a need for countries to improve 

their capabilities for wetland mapping, inventorying, monitoring and assessment. Earth 

Observation plays a very important role in increasing these capabilities, and our results 

demonstrate the usefulness of multitemporal optical and radar metrics in combination with 

knowledge-based rules for wetland mapping at national level. 
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“Time is the only thing we truly have.” 

 – Anonymous 

Abstract 

The impacts of agricultural expansion on wetlands are diverse and complex. Land surface 

temperature (LST) has a great potential to act as a global indicator of the status of wetlands 

and changes in their hydrological and evapotranspiration regimes, which are often linked to 

land use and cover changes. We use the whole MODIS LST archive (2000–2017) to perform 

time series analysis in the Kilombero catchment, Tanzania; a large wetland that has 

experienced major land conversions to agriculture during the last two decades. We estimated 

pixel based trends using three models: a seasonal trend model, and aggregated time series 

using annual means and percentile 90. We characterized the trends found by using land cover 

change maps derived from Landsat imagery and a post-classification comparison. The 

relation between Normalized Difference Vegetation Index (NDVI) and LST trends was also 

studied (r =−0.56). The results given by the seasonal trend model and annual means were 

similar (r = 0.81). Fewer significant trends were found using the percentile 90, and these had 

larger magnitudes. Positive LST trends (i.e. increasing) corresponded to deforestation and 

farmland expansion into the floodplain, while forestation processes resulted in negative LST 

trends. Moderate increases of LST in natural wetlands suggest that the impacts of human 

activities extend also into non-cultivated areas. We provide evidence of how time series 

analysis of LST data can be successfully used to monitor and study changes in wetland 

ecosystems at regional and local scales. 

5.1. Introduction 

Wetlands are multiple value ecosystems, providing a wide variety of services (Tiner, 2015). 

In some cases, wetlands are almost the only source of natural resources sustaining rural 

economies. Their plant communities have widely varying vegetation type, density and water 

demand and availability. Their water requirements and impacts on streamflows are complex 

and uncertain, and agriculture practices have a large impact on their functioning. Remote 

sensing imagery has been widely used for monitoring wetlands and provide spatially 

distributed and temporally frequent information on their environmental state (Amler et al., 

2015; Guo et al., 2017; Jones et al., 2009). 

Most monitoring approaches are based on bi-temporal land use land cover (LULC) change 

techniques, or on mapping the water surface dynamics with optical (Díaz-Delgado et al., 
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2016) or radar time series (Betbeder et al., 2015). Thermal infra-red data has been less 

frequently used, but it can nonetheless be essential to understand the spatial distributions of 

evapotranspiration in ground water dependent ecosystems. Land surface temperature (LST) 

based evapotranspiration estimations using thermal data have proven useful in practical 

applications in water management and water rights conflict solving (Anderson et al., 2012; 

McVicar and Jupp, 1998). It has been suggested that it is also possible to use LST variations 

to detect changes in land management practices, even when they are not associated with any 

direct change in land cover types (Luyssaert et al., 2014), or to map wetlands under aquatic 

vegetation (Leblanc et al., 2011). An additional advantage is that LST reacts to drought 

conditions earlier than Normalized Difference Vegetation Index (NDVI) (McVicar and 

Jupp, 1998). 

A challenge encountered when using LST data is its high temporal variability; it greatly 

depends on climatic and illumination conditions, and measuring the change in LST between 

two single points in time is ecologically uninformative (McVicar and Jupp, 1998). Analyses 

of dense LST time series can reveal landscape change trends affecting water balances and 

energy fluxes. This is especially relevant in highly dynamic and water dependent ecosystems 

such as wetlands. Despite having a coarse resolution (1 km), the daily MODIS LST products 

are ideal for time series analysis, providing daily LST data at global scale since 2000 (Neteler, 

2010). 

A second challenge to overcome when analyzing LST time series is separating the seasonal, 

gradual, and abrupt changes that are combined in time series data (Ghazaryan et al., 2016; 

Verbesselt et al., 2010), in addition to the noise generated by atmospheric effects. Time series 

analysis can be performed by extracting and aggregating the data into statistical parameters 

(Forkel et al., 2013), performing harmonic analysis (Forkel et al., 2013; Verbesselt et al., 2010) 

or applying change detection algorithms and unsupervised classification of the changes 

(Hecheltjen et al., 2014). Methods such as Breaks For Additive Seasonal and Trend (BFAST) 

(Verbesselt et al., 2010), BFAST-monitor (Verbesselt et al., 2012), or greenbrown (Forkel et 

al., 2015, 2013) have been developed to deal with such challenges. They analyze data 

decomposing it into three components: the seasonal variation, trend, and a remainder 

(Verbesselt et al., 2010). Break points caused by sudden changes in the land cover properties 

are flagged. 

A third challenge is caused by the irregular time steps caused by gaps due to clouds and other 

effects that result in poor pixel quality and are flagged as such in the quality band. 
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The open source R package Greenbrown (Forkel et al., 2013) has been designed to analyze 

trends, trend changes, and phenology events in gridded time series of vegetation indices 

interpolating missing values. These indices are indicative of vegetation cover and health 

status, and widely used in time series analysis to assess changes in vegetation (Forkel et al., 

2013; Ghazaryan et al., 2016; Yengoh et al., 2015). However, due to the highly variable 

surface water dynamics of some wetlands, vegetation indices are less suited to study their 

long term trends. Decreases in NDVI can be a result of a loss of vegetation, or consequence 

of an increase in flooding. On the other hand, both decreases in vegetation cover and water 

content will produce increases in LST and vice versa. In spite of that, we find fewer examples 

of the use of LST to monitor long term changes. When LST is used for monitoring, it is 

often in combination with NDVI (Julien et al., 2011) or is mainly focused on climatology 

(Jiménez-Muñoz et al., 2016). The relationship between NDVI and LST has also been 

previously studied; when energy is the limiting factor NDVI and LST have a positive 

correlation, but when water is the limiting factor LST and NDVI are negatively correlated 

(Karnieli et al., 2010). To our knowledge, despite its well-recognized potentials, LST has not 

yet been thoroughly employed to analyze temporal trends in water based ecosystems. 

The objective of this research is to investigate the potential of LST as indicator of land use 

changes using the Kilombero Valley as a study area. The Kilombero Valley is a large complex 

of wetlands that has experienced major land conversions to agriculture during the last two 

decades, and the consequences of such conversions are not well understood. The spatio-

temporal variations of LST and NDVI in Kilombero were analyzed and assessed against 

these land conversions using the full MODIS archive (2000–2017) of LST and NDVI 

products and a set of Landsat-based LULC change maps. Three different time series models 

were compared (annual means, annual maxima and a seasonal trend model), and the 

existence of break points in the time series was explored. 

5.2. Materials and methods 

5.2.1. Study area 

The Kilombero valley is a pilot site of the European Horizon 2020 project Satellite-based 

Wetlands Observation Service (SWOS) and the largest seasonal wetland in East Africa. The 

basin covers an area of 4,023,025 ha and the floodplain of the main river covers about 

796,700 ha (Mombo et al., 2011). The elevation ranges between 200 and 2500 m.a.s.l. and the 

regional climate is sub-humid tropical with average daily temperatures around 22–23 °C, and 
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annual precipitation of about 1200–1400 mm. The bimodal rainy pattern comprises a short 

rainy season (November–January) and a long rainy season (March–May) with a distinct dry 

season from July until October (Koutsouris et al., 2016). The Kilombero River discharge is 

very variable (92–3044 m3/s) and regularly floods the floodplain during the long rainy season. 

The landscape consists of periodically inundated grasslands, swampy areas, Miombo 

woodlands, evergreen forest fragments, teak plantations, and an increasing farmed surface 

(Figure 5.1) (Leemhuis et al., 2017). Most of the agriculture is for subsistence and consists of 

maize and rice among other products. In the floodplain, there are two industrialized farms 

that produce sugar cane (Figure 5.1). The grasslands of the floodplain are periodically 

inundated, and during the dry season they are burnt to boost grass growth after the onset of 

the rainy season. Kilombero is a Ramsar site and home to several endangered and endemic 

species such as the puku antelope (Kobus vardonii), which inhabits these frequently flooded 

grasslands. The floodplain also acts as a vital natural corridor between the Udzungwa 

Mountains National Park to the northwest and the Selous Game reserve in the east, and two 

of these wildlife corridors have recently ceased to function (Figure 5.1) (Wilson et al., 2017). 

The floodplain is also an important source of clean water for the downstream area (Wilson 

et al., 2017). Despite its long history of human occupation, the rapid increase in human 

population over the last decades (TNBS, 2012) along with uncontrolled farming practices 

have led to intensive land use conversion, wildlife decline and habitat fragmentation. A recent 

game census confirmed a strong decrease of large mammal populations (TWRI, 2013), and 

anecdotal evidence suggests decline in productivity of fisheries (Wilson et al., 2017). 

Furthermore, the agricultural expansion is altering the hydrological regime of the rivers, 

decreasing evapotranspiration and baseflow and increasing runoff (Leemhuis et al., 2017). 

The western part of the basin has a higher altitude and its vegetation cover has been degraded 

through frequent anthropogenic caused fires. As compensatory action, a few sites are being 

subjected to reforestation for climate change mitigation (GLR, 2009). Human population 

and industrialized agriculture are expected to increase due to plans for large scale agricultural 

development within the frame of Southern Agricultural Growth Corridor of Tanzania 

(SAGCOT) (Leemhuis et al., 2017). 
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Figure 5.1 Kilombero catchment with its main LULC classes. Ifakara, is the main urban 

center. The map also shows the Nyanganje and Ruipa wildlife corridors, (modified from 

Wilson et al., (2017)) and the Selous Game reserve. 

 

5.2.2. Datasets 

We used the full archive (2000–2017) of the 8-day LST product (MOD11A2) from the Terra 

satellite. It is composed of the daily 1-kilometer LST product (MOD11A1) and stored on a 

1-kilometer grid as the average values of clear-sky LSTs during an 8-day period. It uses the 

generalized split-window algorithm, optimized to separate ranges of atmospheric column 

water vapor and lower boundary air surface temperatures into tractable sub-ranges. Surface 

emissivities are estimated from land cover types and clouds are masked with the MODIS 

Cloud Mask data product (MOD35 L2). LST products are validated through field campaigns 

and radiance-based validation studies and are ready to use in science applications and 

publications. Errors are within ±1 K in most cases, but larger errors may occur in desert 
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regions due to the presence of aerosols. Further details regarding the validation are available 

at Wan, (2014, 2008); Wan et al., (2004). 

The NASA Land Processes Distributed Active Archive Center provides mainly 2 versions 

of the LST MOD11A2 product: V005 and V006. V006 seems to offer better estimates for 

arid areas (Wan, 2014), but V005 has been suggested to offer good quality data for inland 

water pixels (Neteler, 2010). Since our study area is a wetland, we used V005. 

The NDVI dataset MOD13A1 from the Terra satellite is delivered every 16 days at 500 m 

resolution. It is retrieved from daily atmospherically corrected bidirectional surface 

reflectance products where low quality pixels are removed (Didan et al., 2017). The algorithm 

chooses the best available pixel value from all the acquisitions from the 16-day period. 

We acquired Landsat Surface Reflectance Level-2 Science Products from the USGS 

downloading platform Earth Explorer and performed cloud masking using the Fmask 

algorithm (Zhu et al., 2015). 

5.2.3. LULC change analysis 

Multi-temporal statistical metrics (Mack et al., 2017) were calculated for the tasseled cap 

components of Wetness, Greenness, and Brightness (Crist and Cicone, 1984) from all 

available Landsat scenes of two three-year time spans; (2003–2005 and 2014–2016). A Land 

Use Land Cover (LULC) classification for each of these two time spans was performed using 

a Random Forest classifier, the Tasseled Cap components and the SRTM DEM and 

derivatives (slope, surface roughness, and Topographic Wetness Index (Beven and Kirkby, 

1979)). Field observations and data from flight campaigns and Google Earth were used as 

reference for training and validation. Further information can be found in Leemhuis et al., 

(2017). The initial classification results were aggregated into coarser classes: Closed Forest, 

Open forest, Grasslands, Arable land and Water. A post classification comparison was 

performed between both LULC maps and error propagation was reduced by using a change-

no change mask. This mask was produced applying a threshold (Otsu, 1979) on the 

magnitude component of a Change Vector Analysis of the tasseled cap 85 percentiles. Pixels 

labeled as “no change” in the mask were discarded from the post classification comparison. 

These pixels are assumed to be unchanged as changing labels of those pixels can be attributed 

to errors of the individual classifications. Further, LULC changes were clustered into three 

categories to facilitate the analysis and interpretation of results: Farmland Expansion on 

Grasslands (from Grasslands and Water to Arable Land), Deforestation (from Forest and 
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Open Forest to Grasslands and Arable Land) and Forestation (from any class to Forest and 

Open Forest, and from Open Forest to Forest). We use the term “Forestation” to include 

“afforestation” (forest growth in previously non-forested areas) as well as “reforestation” 

(forest growth in previously vegetated areas). Changes in other directions were minimal and 

thus discarded. The overall accuracy of this LULC change map was estimated to be 60% 

(Table 5.1). It was evaluated using 200 points (of which only 158 were valid) randomly 

distributed and Google Earth, Bing, and Landsat imagery via Collect Earth (Bey et al., 2016). 

Table 5.1. Accuracies of the LULC change map derived from Landsat scenes of two three-

year time spans: 2003–2005 and 2014–2016. 

Accuracies Deforestation Forestation Farmland expansion No change Total 

Overall – – – – 60% 

Users 60% 31% 58% 95% 61% 

Producers 99% 100% 42% 13% 64% 

 

5.2.4. Time series analysis 

The trend estimation of satellite data is usually performed in three ways (Forkel et al., 2013; 

Frey and Kuenzer, 2015); aggregating the data using multitemporal metrics, using an additive 

decomposition model, or via de-seasonalization of the data. Different methods might be 

used depending on the circumstances. We used three methods provided within the 

greenbrown R package (Forkel et al., 2015, 2013): 

 Seasonal Trend Model (STM): Linear and harmonic terms are fitted to the original 

time series using ordinary least squares (OLS) regression. It is based on the classical 

additive decomposition model and follows the implementation of BFAST 

(Verbesselt et al., 2010) (Verbesselt et al., 2010). The significance of the trend is 

estimated using a t-test. 

 Annual Aggregated Trends by annual means (AATmean). It calculates trends on 

annual aggregated time series using the annual mean and an OLS regression. The 

significance of the trend is estimated using the Mann–Kendall test. 

 Annual Aggregated Trends using the percentile 90 (AAT90). It uses the annual 90 

percentile and performs an OLS regression. The significance of the trend is also 

estimated using the Mann–Kendall test. 
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Trends were divided on a pixel basis into positive, negative or non-significant at 90% 

confidence level. Pixels with no significant trends were masked out (Figure 5.2). Our focus 

was to study the variation of LST with farmland expansion rather than the number of break 

points. Thus, we assumed monotonic trends and set the number of break points to 0. 

Additionally, to explore the influence of the number of breaks in the analysis we re-run the 

STM model setting the maximum number of break points to 1 (Figure 5.3). The break point 

detection algorithm searches for structural changes in a regression and estimates their 

position by minimizing the residual sum of squares (Forkel et al., 2013). When a break point 

is detected, the trend is divided into two segments whose slope may or may not be significant. 

To better estimate the position of a break point it is necessary to specify a minimum length 

of the segments. We set it to 2.5 years which represents 15% of the study period.  

Records from complete years are needed when aggregating the data by annual means. Thus, 

data from 2000 and 2017 were excluded when comparing AATmean, AAT90 and STM 

models. However, further analyses were run using the STM and data from 2000 (from March 

2000) and 2017 (to March 2017). To facilitate interpretation, the slopes of the trends were 

rescaled into ΔLST in Kelvin (K) using a linear regression; 

∆𝐿𝑆𝑇 = 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑡 

where t is the length of the time period (or of each segment) in years. 

We extracted LST data for homogeneous subsets of pixels representative of the spatial and 

temporal patterns of the area marked in Figure 5.3a–g (industrial farmland expansion, swamp 

partially surrounded by agriculture, reforestation, subsistence farmland expansion, 

undisturbed wetland, seasonally inundated grassland and deforestation). To remove the 

influence of remaining unscreened clouds we eliminated the 5% of the lowest values, since 

clouds display lower LST. We plotted the LST data and calculated the times of break (Figure 

5.4). 

NDVI is widely used in time series analyses. However, LST is better suited to monitor 

changes in seasonally inundated areas since a drop in NDVI may be caused by an increase in 

surface water or by a decrease in vegetation. On the other hand, a drop in LST will be caused 

by a decrease of vegetation or water content (or both) and vice versa. To study the difference 

between NDVI and LST trends we compared the ΔLST map with a ΔNDVI map generated 

using the MODIS MOD13A1 product and the STM model. 
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5.3. Results 

5.3.1. Models’ performances 

We compared the three models using only data from the period 2001–2016 to exclude years 

of incomplete data. AATmean and STM returned similar results regarding direction and 

magnitude of ΔLST (correlation coefficient r = 0.81, Table 5.2). AAT90 reported fewer 

significant trends. These were generally in line with the other two models in terms of 

direction, but magnitude ranges had a greater amplitude (higher minimum and maximum 

values, Figure 5.2). 

 

Figure 5.2 Results of the comparison of the three trend models used: (a) seasonal trend model 

(STM), (b) aggregated time series by annual means (AATmean), and (c) by percentile 90 

(AAT90) at 90% confidence level. Monotonic trends were assumed for this analysis (i.e. 

break points were not searched for).  

Table 5.2 Comparison of the results of the three trend models and their correlation to each 

other. 

r STM AATmean AAT90 SD 

STM 1 0.81 0.52 1.17 

AATmean – 1 0.56 1.72 

AAT90 – – 1 4.1 

 

5.3.2. LST trends in Kilombero catchment 

We found average monotonic increases in LST of 2–3 K in the core of the Ramsar site 

(Figure 5.3A). Major increases of up to 6 K were found along the Ramsar boundary. The 

southern and northern parts of the Ramsar site showed lesser or no LST trends, as well as 

other areas further away from the Ramsar site. Mild decreases were found in a permanent 

swamp inside the Ramsar site (“b” in Figure 5.3, Figure 5.4), and stronger decreases in some 
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areas north-center and west of the basin that have been reforested with tree plantations 

during the study period (“c” in Figure 5.3, Figure 5.4). When a break point was detected it 

was usually placed close to the start and end of the time series, except for a few areas to the 

east of the basin (red colors in Figure 5.3B). 

We calculated and plotted the trend and break points for the points marked in Figure 5.3A 

as “a–g” and the results are shown in Figure 5.4. Point “a” corresponds to the expansion of 

a large scale farm of sugarcane on wetland area producing a break point. Point “b” is a 

permanent swamp that has not experienced land use changes during the study period, but it 

is surrounded by agriculture. Here LST decreases after a break point in 2013 whose cause is 

unknown. Point “c” has been reforested with plantations, which has caused a break point 

and a very significant decreasing trend afterward (p ≤ 0.001). Point “d” is an area where 

unorganized small scale farming has been developed during the study period. No break 

points are detected here, although the trend is increasing and very significant (p ≤ 0.001). 

Point “e” is an undisturbed swamp that shows a very mild increasing trend significant only 

at 90% confidence interval. Point “f” is a seasonally inundated grassland that shows a similar 

temporal pattern than “e”. Point “g” is an upland forest that has been partly and slowly 

converted to small scale agriculture. A break point is detected in 2008 followed by a very 

significant increasing trend (p ≤ 0.001). 
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Figure 5.3 Results of the trend analysis using the STM model for the period March 2000–

March 2017. In map A, monotonic trends are assumed (i.e. break points = 0). In maps B, C 

and D the maximum number of break points was set to 1. B indicates the time of break, and 

C and D show the ΔLST before and after the break point respectively (i.e. first and second 

segment). Letters “a–g” mark the location of the pixels plotted in Figure 5.4. 
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Figure 5.4 LST trends for the points marked in Figure 5.3A “a–g”. Number of stars indicate 

the p-values of each segment at which the trend is significant: *** (p ≤ 0.001), ** (p ≤ 0.01), 

* (p ≤ 0.05), and no symbol if p > 0.1.“a” is an industrial farm developed on the wetland 

during the study period; “b” is a swamp partially surrounded by agriculture; “c” is a reforested 

area; “d” is an area where small scale and unorganized farming has developed during the 

study period; “e” is a wetland up the river that is still mostly undisturbed; “f” is a seasonally 

inundated grassland; “g” was a forest upland area that has been converted to small scale 

agriculture. 
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5.3.3. LST, NDVI and LULC changes 

The correlation analysis between ΔLST and ΔNDVI returned a correlation coefficient of 

−0.56. Only pixels with significant trends in both data sets were used (p ≤ 0.1). Table 5.3 

shows the statistics of both parameters. The mean and standard deviation of ΔLST and 

ΔNDVI per LULC change class are shown in the charts of Figure 5.5. 

Table 5.3 Statistics of the ΔLST and ΔNDVI products 

 Min Max Mean SD 

ΔLST −5.3 6.9 1.68 1.12 

ΔNDVI −0.4061 0.4553 −0.0151 0.09 

 

Despite the differences in spatial resolution between datasets (1 km for ΔLST, 500 m for 

ΔNDVI and 30 m for the LULC maps) Deforestation and Farmland Expansion patterns 

were related to significant increases in LST (Figure 5.5 lower right chart). Overall, Farmland 

Expansion on grasslands was responsible for an increase of almost 3 K (±1), and 

Deforestation caused increases of more than 2 K (±1.5). Areas labeled as “No change” also 

experienced overall increases in LST. Pixels showing decreasing LST trends corresponded 

mostly to Forestation processes (Figure 5.3and Figure 5.4c). However, the overall patterns 

of Forestation found in the LULC change maps could not be associated with trends in LST 

(Figure 5.5). On the other hand, increases in NDVI were related to the change class 

Forestation, and decreases to Farmland Expansion. 

The results of the trend analysis using the MODIS NDVI product revealed spatial patterns 

similar to those shown by the LST (Figure 5.5). The largest increases in LST and decreases 

in NDVI took place inside or close to the Ramsar site. There were, however, some 

differences between ΔLST and ΔNDVI. For instance, there were no significant trends of 

NDVI in the core of the Ramsar site, whereas the LST trend analysis indicated positive and 

significant monotonic trends (“f” in Figure 5.3 and Figure 5.4) 
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Figure 5.5 Variation of LST and NDVI in Kilombero using the STM model at 90% 

confidence interval for the period 2000–2017. Lower left map shows the LULC change map. 

ΔLST and ΔNDVI are grouped into the LULC change classes in the lower right charts. 

 

5.4. Discussion 

5.4.1. Models’ performances 

The three models (STM, AATmean and AAT90) agree in the vast concentric area at the 

outer limits of the Kilombero river floodplain (Figure 5.2). There is also a common area of 

LST decrease in the northern central part of the catchment product of forestation projects. 

AATmean and STM produced similar results in terms of magnitude and direction of ΔLST 

(Figure 5.2 and Table 5.2), but the number of pixels with significant trends was larger using 
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the STM model. Aggregating time series data is a common way to account for the seasonality 

and it is resilient against overestimation of trends (Forkel et al., 2013). However, it reduces 

the number of observations which may result in an underestimation of the trend significance. 

It will also prevent us from studying intra-annual dynamics such as beginning, end or length 

of the season (Forkel et al., 2013; Frey and Kuenzer, 2015; Ghazaryan et al., 2016). 

The AAT90 model reported fewer pixels with significant trends but with much larger 

amplitudes (Table 5.2). The AAT90 method, by its definition, has a focus on the trend of the 

annual peak LST which is when changes in vegetation cover or water content are expected 

to have a more pronounced effect in the LST. STM and AATmean (directly or indirectly) 

account for the same time an area is left bare without vegetation (e.g. after a harvest). Hence, 

STM and AAT mean are more sensitive the LULC changes than AAT90. This does not 

necessarily mean that AAT90 is less accurate. Wetlands are crucial during the dry periods in 

many parts of the world serving as refuge and source of water in moments of scarcity. 

Mapping ΔLST only during the LST peak season can still have relevant applications for 

specific cases, such as inferring the availability of water or vegetation during breeding periods 

of fish, amphibians, or vectors of diseases (Metz et al., 2014), or during migrations of birds 

and other animals. These three time series analysis methods involve advantages and 

constraints that will be more or less relevant depending on the application (Forkel et al., 

2013). In general, we recommend the use of seasonal trend models rather than aggregation 

methods because the seasonal trend models allow using data for incomplete years and at full 

temporal resolution. 

Break points represent abrupt changes either due to conversion of one land cover type to 

another or due to changes in land management (Forkel et al., 2013; Verbesselt et al., 2010), 

e.g., through implementation or abandonment of irrigation systems (Hentze et al., 2017). 

However, land use changes often have long-term impacts on biophysical variables such as 

productivity or LST rather than abrupt ones. Hence, long-term monitoring and a 

combination of break point detection and trend estimation is required to characterize LULC 

changes and their impact on LST. Whether break points are detected or not, partly depends 

on the parameters set. For instance, the minimum length of a segment determines the 

shortest length of time necessary for a break point to be detected. If it is a large value (e.g. 

40% of the study period), break points towards the beginning or end of the time series will 

not be detected, or will be placed somewhere else in the time line. On the other hand, a small 

minimum length might return false break points at the beginning or end of the time series. 

The use of different trend models also had an effect on where a break point was set for some 
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of the sampling sites “a–g” (Figure 5.4). This is expected since we are measuring the trends 

of different properties (e.g. extreme or average values). Since the focus of the paper is to 

evaluate the effect of land changes on LST and due to the relatively short length of the study 

period, a thorough study of the break points was not carried out. 

5.4.2. LST trends in Kilombero catchment 

Disturbances like deforestation cause a break point in the time series, increasing the LST 

abruptly. It would be expected that LST showed a decreasing trend during the years after 

deforestation as vegetation begins to regrow. However, in cases of substitution of natural 

vegetation (whether it is forest or wetland) for agriculture, LST tended to keep increasing 

after the break point (Figure 5.4g and d). In our case, Farmland Expansion was also related 

to increases in LST, contributing to create an agricultural heat island (Raymond et al., 1994). 

Most of the trends found were monotonic, and most of the break points identified were 

close to the end or beginning of the time series (Figure 5.3B). 

The large increase in population in the area along with lack of property rights have caused 

uncontrolled farmland expansion as well as deforestation (Connors, 2015; Jones et al., 2009; 

Wilson et al., 2017). Most of the increases in LST and agricultural expansion patterns took 

place along the borders of the Ramsar area where many natural resources are found (mainly 

water, wood, and fertile lands). Areas of permanent swamps (Figure 2.3) and at the south of 

the Ramsar site are still not heavily used and showed no major increases in LST (nor 

decreases in NDVI). The seasonally inundated grasslands of the core of the Ramsar site have 

remained unoccupied, mostly because recurrent floods limit agricultural expansion. 

However, they present moderate increases in LST (although not in NDVI), which suggests 

that farming activities might be affecting the water balance in these seasonally inundated 

areas. This is in agreement with the results obtained in Leemhuis et al. (Leemhuis et al., 2017), 

where hydrological models determined that the land cover changes are decreasing 

evapotranspiration and baseflow and increasing runoff. This is also supported by the fact 

that the Selous Game Reserve (Figure 5.1) is the only larger region without a significant LST 

trend. As a game reserve it is not foreseen to host humans, limiting human impact compared 

to the regions outside protected areas. Climate change processes could also be affecting the 

evapotransporation regimes of the floodplain, but 17 years is too short time for such 

conclusions. 

When transforming the continuous patterns of the land surface into discrete classes, errors 

are bound to occur. In our case, the Forestation class was overestimated (Table 5.2). Because 
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of that and the large difference in spatial resolution between the LULC change map (30 m) 

and the LST data-set (1 km), overall changes in LST for the Forestation class were not 

conclusive. However, in areas where the ground truth data showed actual forestation of 

grasslands the LST decreased considerably (Figure 5.4c). For the other classes of land change 

the results were clearer: LST increased in areas of Deforestation and Farmland Expansion, 

and areas without LULC changes also reported significant increments in LST. 

It is to be noted that the recently released annual LULC products from the Climate Change 

Initiative still consider a large part of the floodplain as flooded grasslands, despite that it is 

rather heavily used for agriculture and its ecological functions have been degraded (Leemhuis 

et al., 2017) (Leemhuis et al., 2017). The concepts of “Ecological Character” and “Wise Use” 

of wetlands defined by the Ramsar Convention imply that wetland ecosystem services may 

be exploited to a certain extent, as long as the integrity and health of the wetland system 

remain uncompromised (Verhoeven and Setter, 2010). Our results, along with those of other 

researches (Connors, 2015; Leemhuis et al., 2017; Willcock et al., 2016; Wilson et al., 2017) 

indicate that agricultural expansion might be compromising the wetland's ecological 

character. The uncontrolled use of the wetland for agriculture might even have repercussions 

on areas that are still mostly natural, such as the core of the floodplain (Figure 5.5). 

The upcoming plans to modernize the agriculture in the area by SAGCOT should consider 

the water balance and the preservation of the ecosystem services that the wetland provides 

(Leemhuis et al., 2017). For instance, modernizing the energy sources that farmers use might 

stop or reduce the deforestation caused by the use of timber for fuel. One of the main 

ecological functions of the Kilombero floodplain was to serve as a corridor for wildlife 

between the Udzungwa Mountains National Park to the northwest, and the Selous Game 

reserve to the east (Figure 5.1). That function has been recently lost, leaving animal 

populations isolated (Wilson et al., 2017). Two of these now defunct corridors (Ruipa and 

Nyanganje, Figure 5.1) used to go through the areas where LST has increased. Restoring 

Ruipa and Nyanganje corridors would be a straight forward solution regarding the 

connectivity function. There are a few areas that show no increase in LST, suggesting that 

they are not yet heavily used by agriculture and could be subjected to some regime of 

protection. Evidence suggests that protection regimes in the area have succeeded in stopping 

deforestation and farmland expansion to some extent (Brink et al., 2016; Willcock et al., 

2016). However, if migration continues, different approaches might be needed to provide 

sustainable strategies for the wise use of the wetland. 
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5.4.3. Potentials and limitations of LST time series 

MODIS LST time series can be useful for local and regional scale applications despite its 

coarse spatial resolution. ΔLST maps would not be useful for wetlands smaller than 

1 km × 1 km, but single pixel trend analysis can still produce meaningful results. Besides, 

there is also room for improvements in spatial resolution. For instance, future efforts could 

be directed towards combining MODIS with Landsat (Weng et al., 2014) or ASTER data 

(Yang et al., 2016) for time series analysis at higher spatial resolution. 

Despite the MODIS cloud mask, intermittent cloudiness and low quality pixels might still 

affect the surface temperature. In this study area, high mountain ridges are almost always 

cloudy, and trends there are questionable. Using only the high quality pixels of MODIS might 

be advisable in very arid areas where the cloud mask tends to fail, although it might reduce 

the number of observations considerably. Recent studies also show that other cloud mask 

schemes perform better (Gomis-Cebolla et al., 2016). 

Trend analyses carry a risk of over- and underestimation, and quantitative results should be 

treated with care. STM models offer the possibility of using data from incomplete years, but 

are prone to overestimation. Aggregated time series are more resilient against overestimation, 

but the data used is reduced, generating a risk of underestimation. 

5.5. Conclusions 

The impacts of agricultural expansion and deforestation on wetlands are diverse and 

complex. Sometimes, certain impacts will not affect the classification of a land cover (e.g., 

wood extraction of single trees rather than stand replacing clear-cuts), but will have an impact 

on its biophysical variables (productivity, spectral indices or LST). The spatial and temporal 

distribution of such impacts in wetlands can be analyzed by using LST dense time series. 

These analyses can also be particularly useful in large areas with high rates of expansion and 

difficult access to field data, delivering quantitative information in a timely manner. 

Analyses based on annual means (AATmean) and the seasonal trend model (STM) 

performed similarly in our case, with the STM identifying more pixels with significant trends. 

The analysis based on peak temperatures (AAT90) detected areas of extreme change. Overall 

increases in LST matched farmland expansion and deforestation patterns, and LST and 

NDVI were negatively correlated. We observed increases of LST also in unoccupied areas 

of the Ramsar site, where agriculture and the number of cattle herders have rapidly increased 

during the last decade, suggesting that their impact extends into the still natural areas. 
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The time period studied here is too short to consider the influence of climate change. 

However, we do provide evidence on how the agricultural expansion on wetlands increases 

the surface temperature, which in turn determines the atmospheric temperature. 

Operational production of LST trend maps and time series charts can provide wetland 

managers with a quick and reliable single indicator of the effect of land processes on water 

and energy fluxes. 
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6.1. Objectives 

6.1.1. Objective 1: Evaluation of Sentinel-1 to monitor short-term wetland 

dynamics 

Sentinel-1 characteristics make it ideal to monitor changes in most types of wetlands. It is 

freely available, it rarely has positional errors, and it has a high spatial and temporal 

resolution. When positional errors occur, these are often solved a few weeks after acquisition 

when precise orbit files are accessible via https://qc.sentinel1.eo.esa.int/doc/api/. Sentinel-

1 is a C-band sensor, which means that it has a penetration range of 5 cm. This makes it 

sensitive to small changes in low laying vegetation such as wet grasslands or reeds, but unable 

to detect changes under the canopy. It doesn’t seem to be sensitive neither to phenological 

changes in deciduous trees (leaf-on, leaf-off). In chapters 2 and 3 I showed how using the 

S1-omnibus test, an algorithm for change detection in time series, Sentinel-1 data proved to 

be sensitive to changes in wetlands’ physical and structural properties. When compared to 

multispectral images (chapter 2), Sentinel-1 performed better; i.e. a larger proportion of 

changes were detected and false positives were reduced. False positives in multispectral 

images are often caused by atmospheric noise or changes in illumination conditions. Sentinel-

1 was also sensitive to changes in agricultural fields of annual crops, mainly cereals. The S1-

omnibus algorithm allows for a better control of the rates of false positives and negatives. 

This is a very important advantage when compared to commonly used image rationing 

methods with either multispectral or SAR imagery. Such thresholds can be biased by the 

subjectivity of the image interpreter. Although there are other histogram-based thresholding 

techniques like Otsu (Otsu, 1979), Coudrey (Coudray et al., 2010) or Rosin (Rosin, 2001), 

their application is image specific, and thus depend on factors like the histogram distribution 

or level of noise (Davier, 2012). 

I found evidence on how the patterns of frequency of change can match the typology of land 

cover classes (chapter 3). This happens because the different inundation regimes that are 

detected in the frequency of change determine the composition of vegetation (e.g. via seed 

dispersal). At the Kerkini Lake, I focused on 4 wetland classes: Permanent water bodies, 

Marshlands, Seasonal water bodies with aquatic bed, and Seasonal water bodies without 

aquatic bed. By aquatic bed it is meant plants that grow on or below the water’s surface 

during part of the growing season in most years. These 4 classes had significant different 

frequencies of change, consequence of different inundation regimes. On the other hand, 

certain wetland classes are often difficult to discriminate due to their spectral similarity and 

dynamics, and due to the continuous character of natural landscapes. This is, boundaries 

https://qc.sentinel1.eo.esa.int/doc/api/
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between classes are often not “hard”, but smooth, creating patches of mixed pixels (Foody, 

1997). Using the frequency of change one can estimate better the boundary between two 

fuzzy and dynamic classes, as demonstrated in chapter 3 at Lake Kerkini. These results also 

suggest that the frequency of change is inversely proportional to the coherence. The 

coherence measures how similar the phases are between consecutive pairs of SAR images. 

Leaving aside true land cover/use changes, urban areas have very high coherence and very 

low frequencies of change. Forests tend to have high coherence, but not as high as urban 

areas, and low frequencies of change. Other cover types such as grasslands, crops, or 

wetlands have lower coherence, and high frequencies of change due to harvesting or 

inundation regimes.  

Besides the frequency of change, the S1-omnibus method allows to identify when the change 

took place within the time series. This can be used to determine the nature of the change and 

even the land cover type. For instance, knowing that certain crops are harvested earlier or 

later in the season we can infer the crop type. An additional advantage of this method is that 

it can be used to plan fieldwork; for instance, by limiting the field visits to areas that show 

change, or distribute the training points across gradients of change.  

The major disadvantage of SAR-based change detection methods in general is that the results 

demand interpretation by the user. Land cover classifications offer a categorical and discrete 

result with which managers and non-experts in remote sensing can easily work, even though 

natural landscapes are often continuous (Foody, 1997). NDVI or NDWI maps are usually 

also well received by non-experts in remote sensing. Variations in these indices have 

straightforward physical meaning: increases or decreases in vegetation and water. On the 

other hand, the frequency of change and the coherence are properties with a temporal 

component that although they add relevant information, they require to think in more 

abstract terms; i.e. what does it mean that a change was flagged in place x at time y? What do 

variations in coherence throughout the year represent? What does a high frequency of change 

mean? We can find this interpretation challenge also in thresholding methods, especially in 

SAR imagery. Decreases in backscatter intensity can be due to inundation, loss of soil 

moisture, or deforestation. For all change detection methods, knowledge about the local 

dynamics and landscape composition is necessary for the interpretation of results. One 

advantage of the S1-omnibus methodology used in chapters 2 and 3 is that it can be applied 

systematically for monitoring without local knowledge. In other words, local knowledge 

would be necessary for the interpretation of the results, not for the implementation of the 

methodology. 
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In chapter 4 I fused Sentinel-1 temporal information along with Sentinel-2 derived metrics 

to map different cover types. The results showed the improvement in accuracy when using 

both with respect to using either. Cover types like built up and bare soil are often difficult to 

distinguish using multispectral imagery. In SAR, cities showed constant high backscatter 

values, whereas the bare soil of riverbanks showed relatively constant mid-low values. 

Marshlands had high maximum and low minimum. Seasonal water bodies without vegetation 

presented similar profiles to Marshlands, but with lower maximum (Figure 6.1). 

 

Figure 6.1 Representative temporal VV profiles of Marshes, City, Seasonal water body 

without vegetation, Riverbank and an annual Crop in Albania. 

Although a steep orography does not pose a problem for change detection, the Sentinel-1 

based multitemporal metrics presented artifacts in steep slopes, even after ortorectification. 

Those slopes oriented towards the sensor were over illuminated (very high max. and min. 

backscatter). Those slopes on the opposite direction were under-illuminated. Since we 

limited the study to flat areas (where most wetlands are) using geomorphological criteria, 

geometric distortions didn’t affect our classification. Slopes affect backscatter in complex 

ways depending on their aspect, polarization, steepness and land cover (Hoekman and 

Reiche, 2015). For SAR multitemporal metrics to be applied on rough terrain, very precise 

terrain correction and terrain flattening procedures are necessary. 
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6.1.2. Objective 2: Develop and test cloud computing methodologies for 

wetland mapping and monitoring 

Preprocessing of Sentinel-1 images can be challenging. Common errors I encountered and 

others reported in forums are: computational memory issues, errors in geo-registration, and 

border noise and topographic deformations that require complex corrections. Handling large 

amounts of multispectral imagery is also challenging. One single Sentinel-2 tile occupies 

around 900 Mb of memory, a size that grows exponentially if we need long temporal time 

series at the highest resolution (10 m) for a large area (resampling 20 m bands to 10 m bands, 

times more tiles times longer time series). Most wetland practitioners, even if they are proficient 

in remote sensing, do not have access to supercomputers. However, only internet is required 

to access cloud computing platforms. In chapter 3 I used the same algorithm than in chapter 

2, but within Google Earth Engine (GEE). Although the dataset it uses is slightly different, 

the same principles apply (coherence based, Wishart distribution and omnibus test) (Canty 

and Nielsen, 2017). I was spared from downloading and preprocessing Sentinel-1 images and 

could replicate the experiment with a few clicks. 

In chapter 4 I was able to preprocess and use several hundreds of Sentinel-1 and Sentinel-2 

images for classifying all the wetlands of Albania. Without GEE I would have had to 

download and process an estimated minimum of 1700 Gb of information (1636 Sentinel-2 

tiles times 0,8 Gb equals ~1300 Gb, plus 264 images for Sentinel-1 times 1,6 Gb equals ~420 

Gb). 

Wetland management requires accurate spatial and temporal information, which often 

involves high technical expertise and equipment (e.g. advanced programming skills, licensed 

software or computing power). Moreover, wetlands are disappearing faster in countries with 

lower management capacities. The community built around GEE (GEE forums, 

stackexchange, users summits) has made it possible for non-programmers (like me) to 

develop scripts capable of deriving accurate spatiotemporal statistics, representative models 

of the surface dynamics, and national scale inventories for any part of the world without 

hitting computational barriers. Cloud computing is also increasing the number of 

applications that use multisensory approaches, that although they were recognized to 

improve classification results, they were seldom applied until recently (Waske, 2014). 

Cloud computing platforms are also having repercussions on global policies for sustainable 

development, with several initiatives already relaying on GEE such as the Center for 

International Forest Research, Food and Agriculture Organization, or the Global Forest 
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Watch. More recently, the Group on Earth Observation and Amazon Web Services (AWS) 

have formed a partnership to promote the use of remote sensing for sustainable 

development, offering credits to government agencies and research institutions for using the 

AWS in sustainable development initiatives. 

6.1.3. Objective 3: Use time series of EO imagery to understand wetlands 

dynamics, the effects of human actions on them, and support decision 

making 

As previously mentioned, wetlands are disappearing faster in countries with lower 

management capacities (i.e. low and middle income countries), because they have still a larger 

proportion of natural areas, and because their populations and economies are growing faster. 

The most common causes for wetland degradation are agricultural expansion and dam 

building (Ramsar, 2018). Population and economic growth put pressure on authorities to 

secure their food and energy supply without relying on other nations. This pressure is then 

transferred to ecosystems. The study sites of chapter 4, Albania, and chapter 5, Kilombero, 

are good examples of this. In them, wetlands have been or are at immediate risk of being 

degraded by anthropogenic actions; dam building in the case of Albania, and farmland 

expansion in the case of Kilombero. Using dense time series of multispectral and SAR 

imagery, I created an inventory of wetlands at national scale for Albania (chapter 4). And 

with thermal imagery, I analyzed the trends and impacts of farmland expansion on the 

Kilombero wetland (chapter 5). These products are aimed to support wetland monitoring 

and decision making. In the following lines I develop both chapters in the context of 

objective 3. 

Albania is seeking to increase its energy production in order to supply its increasing demand 

of energy without depending on imports. Over 90% of its energy production already comes 

from hydropower, and many advocate for increasing it further. Promoters of hydropower 

have faced opposition from conservation organizations, scientists and local populations. 

Albania has one of the few remaining systems of unregulated (i.e. undammed) large rivers of 

Europe. These large wild rivers host a large number of endemisms and species that have only 

recently been discovered. Opponents of hydropower argue that these projects, even though 

financed by developing institutions such as the World Bank, they are sometimes executed 

without enough information about their environmental and social impacts (Sikorova and 

Gallop, 2015; Vejnovic and Gallop, 2018; Weiss et al., 2018). Chapter 4 was aimed at creating 

an accurate and updated inventory of wetlands for Albania as a contribution to the spatial 

information that any hydropower project should count on before it is implemented. The final 
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product was a land cover map of 13 classes, with 6 of those being wetland classes: Permanent 

water bodies, Intermittent water bodies (without aquatic bed), Marshlands, Riverbanks, 

Riverine scrubs and Coastal Dunes. Remote sensing has some limitations that can be partially 

overcome with other spatial analyses depending on the situation. Although the addition of 

SAR metrics to the multispectral metrics improved accuracies, it was still necessary to 

incorporate knowledge-based decision rules to further separate some wetland classes that 

cannot be distinguished accurately with only satellite imagery. Using distance to rivers and to 

the sea we separated Riverbanks and Coastal Dunes from other non-wetland bare surfaces. 

These are cover types that are spectrally very similar. We also separated Riverine from non-

riverine Scrublands using the same distance criteria. The results showed a distinct 

configuration of riverine ecosystems between East and West. To the East, undammed rivers 

flow through and create wide extensions of Riverbanks and Riverine scrubs. This changes 

drastically once rivers reach the western part of the country, where some have been 

channelized (Figure 6.2), and the Riverbanks and Riverine scrubs are substituted by 

croplands. 



92 
 

 

Figure 6.2: Murrizit reservoir in Albania. The blue arrow indicates the natural flow of the 

river. The black arrow indicates the deviation of water towards the reservoir. Upstream, 

(upper right corner) the river forms wide extensions of riverbanks and riverine scrubs. Once 

its flow is deviated towards the reservoir, it becomes narrower and the presence of riverbanks 

and riverine scrublands is reduced in favor of agricultural land. Background image is a 

Sentinel-1 VV. 

Currently, the indicator 6.3.2 for the SDG 6 (clean water and sanitation), is based on the 

proportion of water bodies, ignoring vegetated wetlands. Paradoxically, increasing the 

number dams in Albania would have a positive result for indicator 6.3.2 by increasing the 

proportion of water bodies, but at the expense of riverine forest, riverbanks, marshlands and 

other valuable ecosystems that harbor greater levels of biodiversity and contribute to clean 

water more than water reservoirs (Maavara et al., 2017). Therefore, wetland inventories of 

sufficient spatial and thematic resolution are needed in the development of national energy 

and environmental policies. 
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The case of the Kilombero wetland is somewhat different. In it, the weak land management 

systems could not cope with the increasing demand of resources. This prompted the 

destruction of several natural corridors, deforestation, soil erosion, and a decrease in fish 

stocks (Wilson et al., 2017), along with social conflicts between sugar companies, farmers 

and pastoralists (Chachange, 2010; Hakiardhi and LHRC, 2009; IWGIA, 2016). Its remote 

location, difficult access and large extension made it difficult for authorities to monitor the 

situation and act on time. In chapter 5 I used 3 different statistical methods to model the 

variation of the Land Surface Temperature (LST) in the wetland with the land cover changes. 

Two models performed Annual Aggregations of the Trends (AAT) using the maxima 

(AAT90) and the mean temperatures (AATmean). The third model (STM, Season Trend 

Model) used a detrending technique to remove the effect of seasonality. The three models 

differed to some extent, which does not necessarily mean that one is better than the others. 

The AAT90 model detected less changes, but of higher amplitude, which is expected. For 

instance, an area reforested during the study period will show a higher difference in 

temperature if we look at the maximum values (hottest period) than if we look at the average 

values. The same applies if an area is drained or deforested. It is generally acknowledged that 

aggregating time series (what AAT90 and AATmean do) is resilient to the overestimation of 

trends, but because aggregation reduces the number of observations the method is also prone 

to underestimate the significance of trends (Forkel et al., 2013). As expected, the STM 

reported more areas with positive trends (increase in LST) than the other two models. STM 

is a more statistically robust model, and thus recommended instead of aggregation methods.  

Agricultural expansion and deforestation proved to be major drivers for the increase in LST. 

Therefore, LST can be a good indicator to study the consequences of land cover changes in 

wetlands. NDVI is much more commonly used than LST for trend analysis. NDVI is a good 

parameter to study deforestation or vegetation degradation trends, but in wetlands, LST is 

more appropriate. While an increase in NDVI can be caused by an increase in vegetation 

(something usually desired, conservation wise) it can also be caused by a loss of water 

(something usually undesired). Similarly, a decrease in NDVI can be caused by a loss of 

vegetation, or by an increase in water extent. LST increases will always be related to the loss 

of vegetation and/or water, and decreases in LST will be related to gains in vegetation and/or 

water. 

The LST trend analysis also showed how the LST increased at the center of the Ramsar site, 

an area which is still not farmed. This suggests a low evapotranspiration, product of a 

decrease in water content. This is supported by the results of Näschen et al., (2018). 
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According to the authors, the land cover changes in Kilombero have decreased the baseflow 

(minimum stream flow during the dry season) while increasing the maximum flow during 

the flood season. When vegetation cover is removed, the soil loses retention capacity. As a 

consequence, more water leaves the basin during flood season, and less water is retained for 

the dry season. With less water retained during dry season, evapotranspiration decreases and 

temperature increases. 

After the partnership we formed with the projects GlobE and KILOWREMP and along 

with the Ramsar advisory mission, Tanzanian authorities have started to take measures. An 

integrated management plan based on an ecosystems-based approach was developed at the 

end of 2018 (Daconto et al., 2018). It depicts three scenarios:  

 a zero action scenario where wetland is seen only as a wildlife conservation area,  

 a short term scenario with no external funding and focused on coordination of 

existing resources (public awareness, local, regional and central government), 

 an extended scenario that counts on external investment and support for habitat 

restoration, sustainable agricultural development, and strengthening of coordination 

mechanisms between stakeholders. 

Other literature suggests that there is potential for improving the agricultural production in 

Kilombero without increasing the farmed extent. Such improvements would come from 

agricultural credits, new seeds, storage and planting methods, information on weather 

conditions and pest control (Bernd et al., 2014; Kalimang´asi et al., 2014). However, an 

increase in yield often implies an increase in water consumption, which might have still an 

effect on water availability in the wetland. The increasing demand in water could be met by 

building dams upstream, causing negative impacts in the wetlands downstream. 

Technological advances provide alternatives that can maintain the ecosystem services of the 

wetland while securing agriculture. Drought tolerant crops, fog harvesters or paludiculture 

are alternatives to be at least considered. Despite progress made with our partnership, the 

Ramsar advisory mission and the SAGCOT improvements, the future of Kilombero is still 

very uncertain. The president of Tanzania has recently signed a bill to revise the Stiegler’s 

Gorge dam project in the Selous Game reserve (BBC, 2018; Daconto et al., 2018). The dam 

might affect the water dynamics of the wetland, depending on the level of flooding (WWF, 

2017). Also, concessions for gas exploitation in the core of the wetland were under review 

in 2018 (Daconto et al., 2018). 
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6.2. Final remarks and outlook 

The wide array of imagery freely available from different sensors allows us to gather different 

types of land surface data: reflectance values, vegetation or water indices, temperature, 

backscatter, and their multitemporal metrics. These parameters are representative of the 

physical, structural and biological properties of the wetlands and their dynamics, and we can 

use them to create models that help us understand their functioning and the impacts of 

human activities on them. Cloud computing platforms are speeding up the development of 

methodologies, allowing us to create mapping products tailored to specific management 

needs. These mapping efforts should take place at national level, the same way that energy 

and food security policies are developed at national scale. Or, if possible, at an even coarser 

scale. For instance, the LST trend analyses carried out in chapter 5 took place at regional 

scale and were performed in a desktop computer. With many Sub-Saharan countries 

experiencing similar trends in agricultural expansion, deforestation, and land degradation, 

continental-level analyses are necessary. GEE does not allow the direct implementation of 

customized algorithms for time series analysis, but it is possible to perform an ordinary least 

squares linear regression across mean annual values, similar to the AATmean model of 

chapter 5. Figure 6.3 shows the result of this regression for the entire African continent. The 

southeastern part of the continent is experiencing increasing trends in LST, similar to the 

ones we saw in Kilombero. While the Congo Basin and the Sahara Desert remain mostly 

stable, the area between them that crosses the continent from East to West shows patterns 

of decreasing LST. This area matches the location of the African Great Green Wall; a massive 

reforestation effort by African nations aimed at reclaiming desert lands and stopping 

desertification. The greatest significant decreases found correspond to the Eastern part of 

South Sudan, an area that has seen multiple armed conflicts during the last years. It is possible 

that these decreases in LST are due to revegetation processes, consequence of land 

abandonment in the area. These and the other LST patterns shown should be studied on a 

case by case basis, but this map offers a general view of the trends in water and energy fluxes 

that have taken place in Africa during this century. 



96 
 

 

Figure 6.3 Land Surface Temperature trend in Africa between 2001 and 2018. Null values 

occur in areas of high root mean square error. 

Despite the dam building spree of the Balkan peninsula and other large hydro-projects in 

Africa and Asia, most of the European continent along with USA are slowly removing old 

dams (Schiermeier, 2018). Here, remote sensing will be once again crucial in monitoring the 

effects of human action on the landscape; whether and how the rivers will recover their 

natural flows. 

Preserving wetlands functionality can only be achieved with integrated resources 

management that can account for the needs of food security, energy supply and water 

resources. New EO technologies are contributing to lower the barrier between experts’ 
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knowledge and people’s needs. Wetland practitioners have now a much better access to 

Earth’s surface data with a global and systematic coverage, ready-to-use products, and 

statistically sound methodologies that can be reproduced in other areas, or even upscaled at 

continental or global levels. Time series mapping is giving us a picture of where we are, how 

we got here, and where are we going towards. 
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7. Apendices 

Appendix 4.1: Error matrix of the classification of Albanian wetlands using Sentinel-1, 

Sentinel-2 and Normalized Difference indices as input, and knowledge-based decision 

rules. 
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