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Abstract

To understand and model the distribution of and the relation between baryonic and dark
matter in the Universe is one of the key challenges in contemporary astrophysics. A
well-established theoretical description is given by the semi-analytical halo model, which
combines the dark matter halo model and the halo occupation distribution (HOD). Whereas
the former reduces the complex distribution of dark matter to the clustering of dark matter
halos on large scales and the radial distribution of dark matter within these halos on small
scales, the latter incorporates galaxies based on the assumption that galaxies can only
form and live within dark matter halos. The validity of the halo model is determined by
how well its predictions match ever-newer observations.

A unique tool to map the matter distribution in the Universe is the gravitational lens-
ing e↵ect, the phenomenon that light rays emitted from distant objects get di↵erentially
deflected by the gravitational potential of the intervening matter distribution, visible or
dark. As statistical applications of the weak gravitational lensing e↵ect, galaxy-galaxy
lensing (G2L) and galaxy-galaxy-galaxy lensing (G3L) probe the average matter density
profile about galaxies and pairs of galaxies, respectively, thereby revealing the relation
between galaxies and their dark host halos. The halo model is known to provide a good
description of second-order statistics as G2L, but so far neither a quantitative comparison
of halo model predictions for G3L to observations nor direct model fits to observations of
G3L are available.

The main goal of this doctoral thesis is to test whether the halo model can describe
measurements of G2L and G3L consistently. To this end halo model fits are performed
to the G2L signal measured from the Canada-France Hawaii Telescope Lensing Survey
(CFHTLenS) for 29 galaxy samples of stellar mass (5 ⇥ 109M�  M⇤  2 ⇥ 1011M�),
luminosity (�23  Mr  �18) and galaxy-type, further di↵erentiating between low (0.2 
zph < 0.44) and high redshift (0.44  zph < 0.6) samples. Based on the best-fit models,
predictions of G3L in terms of the aperture statistics hN 2Mapi(✓) are generated, which
are confronted with their observational counterparts from CFHTLenS. The comparison
shows that the halo model can successfully describe G3L at a level of accuracy that is
on par with that of dark matter simulations into which baryonic physics is incorporated
using semi-analytical models (SAMs).

Moreover, first-time halo model predictions of the more intuitive representation of
G3L as excess mass maps are presented. Trends of excess mass with lens-lens separation,
galaxy properties, and redshift are studied and are discussed together with the respective
predictions for the aperture statistics hN 2Mapi(✓). The results suggest that excess mass
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increases with stellar mass and luminosity, and decreases with redshift. The results confirm
the observation of excess mass to increases with decreasing lens-lens separation, and to
be more than one order of magnitude higher around pairs of early-type compared to late-
type galaxies. Additionally, the dependence of excess mass on halo model properties is
explored; i.e. the contributions of the one-, two-, and three-halo terms are quantified. For
a projected lens-lens separation of 1 arcmin the one-halo term is found to be suppressed
for late-type galaxies as a consequence of them being typically field galaxies. The results
for hN 2Mapi(✓) show that for all other samples the one-halo term clearly dominates up to
aperture scales of 10 arcmin. A sensitivity analysis regarding the dependence of G3L on
individual HOD parameters shows that, first, changes are maximal in the range probed
by CFHTLenS (1 � 10 arcmin). Second, changes in G3L exceed 20% for four out of five
parameters when varied individually by ±20% around their best-fit values, indicating that
simultaneous model fits to G2L and G3L will help to constrain the HOD. Finally, it is
tested whether the halo model can describe map features observed with CFHTLenS, in
particular a vertical bulge-like feature that is absent in predictions of SAMs. Although the
halo model cannot reproduce the feature, the predictions match the observations regarding
the amplitude of the signal around the lenses and the rate of drop-o↵ of the signal towards
the outer regions of the map.
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Preface

The overwhelming wealth of galaxies observed on the sky (Fig. 1) motivates the science
of the Universe as a whole, cosmology. The aim is to explain the origin, the evolution,
the variety and the large-scale distribution of galaxies. The earliest information available
regarding the distribution of matter in the Universe comes from a snapshot of the Uni-
verse when it was only 380 000 years old. At this time the initially infinitely dense and
hot Universe had su�ciently expanded and its temperature had su�ciently dropped for
neutral atoms to form and for photons to stream freely. This relic Cosmic Microwave
Background (CMB) radiation carries information about the spatial temperature distribu-
tion, and thereby on the distribution of matter at that time. Latest CMB measurements
confirmed that this distribution is highly isotropic and homogeneous with only tiny fluc-
tuations at a level of 10�5 (Planck Collaboration et al. 2016b). These are the seeds of
today’s structures. The question is how these tiny initial perturbations evolved to the
massive structures observed today in form of planets, stars, galaxies, galaxy clusters, and
the large-scale structure.

Figure 1: Hubble Space Telescope image of the Pegasus constellation. Aside from a couple of foreground
stars, each visible object in this photo is a galaxy. [Source: http://hubblesite.org/images/gallery]
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According to the standard model of cosmology, the Lambda Cold Dark Matter (⇤CDM)
model (Chapter 1), dark matter plays a crucial role in the formation of structures by
forming the first overdensities in the Universe. Freed from the constant photon pressure
after the release of the CMB, the baryons fell into these dark matter overdensities, grav-
itationally collapsed and hierarchically evolved to the structures observed today. Due to
this coupled - however, not identical - evolution, a relation between todays galaxies and
their dark matter environment is expected. To infer this relation is, however, challenging.
First, dark matter is by its very nature dark and can only be detected indirectly through its
gravitational interactions (e.g. Bertone et al. 2005). Second, the complex hydrodynamical
interactions baryons undergo from the beginning of time until today can only be described
with limitations analytically and numerically, although recently great improvements have
been achieved (Vogelsberger et al. 2014 , Schaye et al. 2015).

By combining the findings from perturbation theory, numerical dark matter N -body
simulations, and observations, the halo model provides a well established description of the
distributions of dark matter and galaxies, and of their relation (Cooray & Sheth 2002). The
model consists of the dark matter halo model and the halo occupation distribution (HOD)
(Chapter 2). Whereas the former replaces the complex spatial distribution of dark
matter by the distribution of distinct dark matter halos, the latter includes galaxies into
this framework based on the physical assumption that galaxies can only form and live in
dark matter halos, because baryonic matter needs the gravitational potential of the dark
matter overdensities to cool and form stars.

The halo model allows for an analytical description of the statistical properties of the
matter and galaxy field. Emphasis being on statistical properties, because no theory is or
ever will be able to predict the exact realisation of the Universe down to individual galaxies,
i.e. no theory can predict the Andromeda galaxy to be a neighbouring galaxy of the Milky
Way at a distance of 2.5 million light years. However, one can predict the probability
to find a galaxy with the same properties as the Andromeda galaxy at a distance of 2.5
million light years from a galaxy with the same properties as the Milky Way by using the
concept of n-point correlation functions, or their Fourier space analogues: the spectra.
The relation between galaxies and dark matter would be fully determined, if all n-point
correlation functions are known. However, state of the art are the measurement of the two-
and the three-point correlation function. Halo model predictions successfully describe the
measured two-point cross-correlation of galaxies and dark matter (Leauthaud et al. 2012,
Velander et al. 2014, Coupon et al. 2015, Clampitt et al. 2017). However, the validity of
the halo model predictions with regard to third-order cross-correlations has not yet been
tested.

Ideal measurements to confront the halo model are those exploiting the gravitational
lensing e↵ect (Schneider 2006), i.e. the phenomenon that light rays emitted by distant
‘sources’ get on their path to earth di↵erentially deflected by the gravitational potential of
the intervening matter distribution. The gravitational lensing e↵ect distorts the intrinsic
shapes of the source images, thereby imprinting information about the (dark) matter
environment of the lensing objects into the sheared images. While the lensing e↵ect can
lead to strong distortions resulting in arc-like shaped images, this work is concerned with
subtle distortions attributed to the weak lensing e↵ect (Chapter 3), particularly with one
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of its statistical applications: galaxy-galaxy lensing (G2L). G2L correlates the sheared
image of a background galaxy with the position of a lens galaxy, and probes by that the
average (dark) matter environment around a typical lens. Thus, G2L provides not only a
possibility to map dark matter, but also to infer the statistical properties of the galaxy-
halo connection (e.g. Zheng et al. 2007, Zehavi et al. 2011, Leauthaud et al. 2011, Coupon
et al. 2012, Velander et al. 2014).

The newest tool in the field of galaxy-galaxy lensing is galaxy-galaxy-galaxy lens-
ing (G3L), which extends the concept of G2L to third-order (Schneider & Watts 2005).
By considering the cross-correlation between the sheared image of a source galaxy with the
positions of two lens galaxies, G3L probes the average (dark) matter environment around
pairs of galaxies. Thus, G3L is a promising tool to study the dark matter environment of
small gravitationally bound systems (Simon et al. 2008, Simon et al. 2013, Simon et al.
2019), and contains valuable information about the relationship between galaxies and their
dark host that G2L cannot provide. An intuitive visualisation of G3L is provided in terms
of excess mass maps (Simon et al. 2008), which map the projected average mass around
pairs of lenses in excess of the mass measured around the individual lenses with G2L. This
means that there is more (dark) matter associated with two galaxies that are physically
close compared to two galaxies that are isolated.

The aim of this doctoral thesis is to test the ability of the halo model to consistently
describe the second- and third-order cross-correlation of galaxies and (dark) matter, as
probed by G2L and G3L. To this end, the halo model introduced in Chapter 2 is in a first
step fitted to G2L measured from the Canada-France Hawaii Telescope Lensing Survey
(CFHTLenS) (Chapter 4). The best-fit models are in a second step used to generate
halo model predictions for G3L, which are confronted with their measured counterparts
from CFHTLenS (Chapter 6). This confrontation constitutes the next level test for the
halo model and the assumptions it is based on.

Moreover, first-time halo model predictions of G3L in terms of excess mass maps are
presented in Chapter 5. The dependence of excess mass on galaxy and halo model
properties is studied in order to build up a knowledge base on which to interpret present
and future measurements of G3L. Additionally, it is investigated whether the halo model
can reproduce the map features found in recent measurements from CFHTLenS and from
the Millennium Simulation (Simon et al. 2019).
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Chapter 1

The standard model of Cosmology –
A brief review

Cosmology deals with the Universe as a whole and its evolution over the course of time.
The aim is a thorough, mathematical description of all physical processes taking place in
it with regard to its constituents and the acting forces. This includes a theory for the
distribution and evolution of structures in the Universe. The halo model formalism is one
branch of this theory and is described in detail in Chapter 2. In this chapter the aspects of
the standard model of cosmology, the Lambda Cold Dark Matter (⇤CDM) model, which
are essential for the comprehension of the halo model are briefly reviewed. This review
is large based on cosmological standard literature, e.g. Peacock (1999), Dodelson (2003)
and Schneider (2014). If topics or derivations are not covered by this literature, specific
references are given.

1.1 From General Relativity to a homogeneous & isotropic
world model

1.1.1 Theory of General Relativity

The mathematical framework for the ⇤CDM model was laid when Einstein published the
theory of General Relativity (GR) in 1915 (Einstein 1915). GR unifies Special Relativity
(Einstein 1905) and Newtons law of gravitation (Newton 1687) and extends them for the
case of large-scales, making GR the description of gravitation in modern physics.

In this theory gravity is interpreted as a geometric property of spacetime: Not only
does mass act as a source of gravity, but mass must be seen as a part of a more general
quantity of energy and momentum. The energy-momentum tensor Tµ⌫ is then the source
of the gravitational field, which in turn determines the geometry of spacetime described
by the Einstein tensor Gµ⌫ . This concept is comprised in Einstein’s field equations:

Gµ⌫ = �8⇡GN

c4
Tµ⌫ � ⇤gµ⌫ , (1.1)

where the factor 8⇡GN
c4

is called Einstein’s gravitational constant with GN being Newton’s
gravitational constant and c being the speed of light (see Table A.1 in Appendix A for
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6 CHAPTER 1. THE STANDARD MODEL OF COSMOLOGY

the values of natural and cosmological constants). The field equations are generalised by
adding the constant term ⇤gµ⌫ , either to include the possibility of a static universe or to
quantify the accelerated expansion of the Universe (Riess et al. 1998, Perlmutter et al.
1999) in terms of the cosmological constant ⇤. The latter is associated with dark energy
and can be interpreted as a vacuum energy density (Frieman et al. 2008). The metric
gµ⌫ defines on one hand spatial and temporal distances in spacetime, and on the other
hand the geodesics on which free particles and light rays travel. Accordingly, the metric
tensor determines the gravitational potential and builds a bridge between the geometry of
spacetime and gravity.

1.1.2 The pillars of the ⇤CDM model

The large-scale distribution of galaxies (Colless 1999) and the temperature distribution of
the Cosmic Microwave Background (CMB) radiation (Planck Collaboration et al. 2016b)
indicate that the Universe is nearly isotropic. If the position of Earth in the Universe is
not particular, isotropy results directly in the homogeneity of the Universe when averaging
over scales > 200Mpc. The assumption of isotropy and homogeneity is formulated as the
Cosmological Principle, which is one pillar of the ⇤CDM model.

The second pillar is the observation, made initially by Hubble in 1928 (Hubble 1929),
that most galaxies move away from Earth with a radial velocity v proportional to their
distance D

v = H0D , (1.2)

with the Hubble constant

H0 := 100h km s�1Mpc�1 . (1.3)

The actual value of H0 is parametrised by the dimensionless constant h, which is of order
unity (Table A.1). The Hubble law can be interpreted as the expansion of space itself,
rather than the movement of galaxies away from Earth. This expansion is parametrised
by the scale factor a(t), which relates the actual position r(t) of an object on an expanding
sphere with the position x of the comoving observer

r(t) = a(t)x . (1.4)

Conventionally, the scale factor is normalised to unity today, a(t0) = 1. One can then
define the expansion rate by

H(t) =
ȧ(t)

a(t)
, (1.5)

which reduces to the Hubble constant for t = t0.
As a consequence of the expansion, a light ray emitted from a distant object travelling

through the expanding Universe towards an observer experiences a decrease in the energy
of its photons; the photons get redshifted. If peculiar velocities can be neglected, the ratio

z :=
�� �0
�0

, (1.6)
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with � being the observed wavelength of a spectral line and �0 the corresponding one in
restframe, called redshift, can be used as a proxy for the radial velocity and the distance
of the object. The redshift and the scale factor correspond to each other via

a =
1

1 + z
. (1.7)

1.1.3 Friedmann-Robertson-Walker models

To wed the mathematical framework for gravity represented by GR with the observa-
tion of a homogeneous, isotropic, expanding and infinite Universe, was the challenge for
cosmologists in the 20th century.

In 1936 Robertson and Walker (Robertson 1935, 1936a,b; Walker 1937) showed that
a homogeneous, isotropic and expanding (or contracting) universe can be realised in the
framework of GR by assuming a metric of the form

ds2 = c2dt2 � a2(t)[d�2 + f2
K(�)(d✓2 + sin2(✓)d'2)] , (1.8)

where s is the separation of two neighbouring events in spacetime, t the cosmic time, a(t)
the cosmic scale factor, ✓ and ' the angular coordinates, � the comoving radial distance
and fK(�) the comoving angular diameter distance. The latter depends on the curvature
of space K in the following way:

fK(�) =

8
><

>:

K�1/2 sin(K1/2 �) for K > 0 ,

� for K = 0 ,

(�K)�1/2 sinh
⇥
(�K)1/2 �

⇤
for K < 0 ,

(1.9)

which in turn depends on the content of the Universe (see Sect. 1.1.4).
The Robertson-Walker metric is an exact solution to Einstein’s field equations for

which the latter reduce to two independent dynamical equations describing the behaviour
of the scale factor, the Friedmann equations,

H2 =

✓
ȧ

a

◆2

=
8⇡GN

3
⇢� Kc2

a2
, (1.10)

ä

a
= �4⇡GN

3

✓
⇢+

3p

c2

◆
, (1.11)

with density ⇢(t) and pressure p(t).

1.1.4 The content of our Universe

According to the Friedmann equations, the dynamics of the Universe depend on the density
and pressure of its content. Generally, every constituent needs to obey the first law
of thermodynamics, which states that the inner energy U of a system depends on the
interplay of its pressure P and its volume V . In comoving coordinates the first law of
thermodynamics reads

d
�
⇢c2a3

�
= �p d

�
a3
�
, (1.12)
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where according to Special Relativity ⇢c2 is the energy density of ordinary matter. In
cosmology one distinguishes between three types of matter: pressureless matter, radiation,
and vacuum energy. The constituents of pressureless matter have a random velocity much
smaller than the speed of light, pm ⌧ ⇢mc

2, so that pressure can be neglected, pm = 0.
Applying the first law of thermodynamics leads to the following expression for the matter
density

⇢m(t) = ⇢m,0 a
�3(t) , (1.13)

where ⇢m,0 is today’s density. In the case of radiation the random velocity of the con-
stituents is comparable to the speed of light and pressure can be described by pr = ⇢rc

2/3.
Then the radiation density is given by

⇢r(t) = ⇢r,0 a
�4(t) , (1.14)

with ⇢r,0 being the current radiation density. Due to cosmic expansion the particles get
redshifted, which results in the additional factor of a�1. It is assumed that in the last
case of vacuum energy the density does not vary with time and is characterised by the
cosmological constant ⇤,

⇢⇤ =
⇤

8⇡GN
. (1.15)

As a consequence the pressure is negative, p⇤ = �⇢⇤c2. In summary, the total density
and pressure of the Universe are given by

⇢(a) = ⇢m + ⇢r + ⇢⇤ = ⇢m,0 a
�3 + ⇢r,0 a

�4 +
⇤

8⇡GN
,

p(a) =
⇢rc

2

3
� ⇢⇤c

2 =
⇢r,0c

2

3a4
� ⇢⇤c

2 . (1.16)

Going back to the Friedmann equations, one can now focus on the limiting case where
the curvature of spacetime K is zero, which corresponds to a flat universe, and define the
critical density as

⇢crit(a) :=
3H2(a)

8⇡GN
, (1.17)

which is the density of the Universe required to maintain a flat cosmology. This char-
acteristic density is used to normalise the densities and define the density parameters by

⌦i(a) :=
⇢i(a)

⇢crit(a)
, (1.18)

which results in

⌦m(a) =
⇢m(a)

⇢crit(a)
=

8⇡GN

3H2(a)
⇢m,0 a

�3 =
⌦m

a+ ⌦m(1 � a) + ⌦⇤(a3 � a)
, (1.19)

for the matter density (neglecting contributions from ⌦r). Analogously, the time dependent
density parameter for dark energy can be derived,

⌦⇤(a) =
⇤

3H2(a)
=

⌦⇤ a3

a+ ⌦m(1 � a) + ⌦⇤(a3 � a)
. (1.20)
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In this work ⌦m and ⌦⇤ represent the current values, obeying the general definition for
the current density parameters

⌦i =
⇢i,0
⇢crit,0

. (1.21)

The critical density for today is given by

⇢crit,0 =
3H2

0

8⇡GN
⇡ 1.88 ⇥ 10�29 h2 g cm�3 ⇡ 2.77485 ⇥ 1011 h2

M�
Mpc3

, (1.22)

corresponding to six hydrogen atoms per cubic meter for h = 0.73.
The first Friedmann Eq. (1.10), also known as the expansion equation, can now be

rewritten in terms of the density parameters

H2(a) = H2
0

✓
⌦ra

�4 + ⌦ma
�3 � Kc2

a2H2
0

+ ⌦⇤

◆
, (1.23)

where the curvature of spacetime depends on the total density parameter ⌦0 = ⌦r+⌦m+
⌦⇤,

K =
H2

0

c2
(⌦0 � 1) . (1.24)

The physical interpretation of the expansion equation, written in this form, is that at the
very beginning (a ⌧ 1) the Universe was dominated by radiation. For a flat Universe, the
solution to the Friedmann equation is

a(t) =
⇣
2H0

p
⌦r t

⌘1/2
. (1.25)

With growing scale factor a, matter takes over at radiation-matter equality,

aeq =
⌦r

⌦m
= 4.2 ⇥ 10�5 (⌦mh

2)�1 , (1.26)

corresponding to z ⇡ 3000. This transition is particularly for structure formation an im-
portant milestone, as in the matter-dominated era the solution to the expansion equation
is given by

a(t) =

✓
3

2
H0

p
⌦m t

◆2/3

, (1.27)

which implies a slow down in the expansion of the Universe compared to the radiation-
dominated era. Today, the Universe is dominated by the cosmological constant, or dark
energy, with

a(t) = eH0
p
⌦⇤ t , (1.28)

corresponding to an accelerated expansion.
The set of density parameters measured by e.g. Hinshaw et al. (2013) for our Universe

(Table A.1) indicates that it belongs to the class of nearly flat universes which expand
forever (Fig. 1.1). Consequently, the size of the Universe must - at least formally - have
been zero in the past, leading to an infinitely dense and hot state called Big Bang, which
is defined as the origin of time, t = 0.
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Figure 1.1: Classification of cosmological models with di↵erent combinations of ⌦m and ⌦⇤. The density
parameters for our Universe are given by ⌦m = 0.279 and ⌦⇤ = 0.721 [Source: Peacock (1999)].

1.1.5 Distance measures

In an expanding Universe with curved spacetime the definition of distance is not unique
and results in a list of di↵erent measures. Three of them - the scale factor a, the redshift
z and the radial comoving distance � - have already been introduced. They are all related
to each other. For example, the comoving distance can be expressed in terms of the scale
factor as

�(a) =
c

H0

Z 1

a
da0

⇥
a0⌦m + a02 (1 � ⌦m � ⌦⇤) + a04⌦⇤

⇤�1/2
, (1.29)

and as a function of redshift

�(z) =
c

H0

Z z

0
dz0

⇥
(1 + z0)3⌦m + (1 + z0)2 (1 � ⌦m � ⌦⇤) + ⌦⇤

⇤�1/2
. (1.30)

Furthermore, the angular diameter distance is defined as the ratio of the physical
diameter 2R of an object and the observed angular diameter �,

Dang(z) :=
2R

�
= a(z)fK(�) , (1.31)

where the second step follows from setting d✓ = � and ds = 2R in the metric.

1.2 The formation of structures

The expansion of the Universe is mathematically encapsulated in the scale factor a, which
relates to temperature as T / a�1. Since the scale factor increases with time from zero
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to one, the temperature drops from formally infinity at the epoch of the Big Bang to
the current value of 2.73K (Fixsen 2009). The functional dependence of temperature
with respect to time determines sensitively the formation history of the first structures
in the Universe. The temperature determines which particle species are still in thermal
equilibrium and which ones have already dropped out, being free to propagate through
the Universe or gravitationally collapse to the structures observed today: stars, galaxies,
dark matter halos, galaxy clusters and the large-scale structure.

1.2.1 The origin of structure

Heisenberg’s uncertainty principle implies that the conservation of energy can be ‘violated’
for a short period of time �t, if a virtual particle-antiparticle pair of energy �E is instan-
taneously created and destroyed again (Heisenberg 1927). These quantum fluctuations are
believed to have existed also at the very beginning of the Universe, at the time of Grand
Unification, when energies of T ⇡ 1014GeV1 were governing physical processes and matter
was in the state known in quantum field theory as vacuum (Sakharov 1966).

These vacuum quantum fluctuations were amplified during a postulated phase of ex-
ponential expansion of the Universe, which took place approximately 10�34 s after the
Big Bang and was driven by the negative-pressure vacuum energy density. Although this
phase of inflation lasted only a fraction of a second, the space expanded by a factor of 1040,
inflating the quantum fluctuations to macroscopic structures, which became the seeds of
the large-scale structures one observes today. The theory of inflation is an extension to
the standard model of cosmology introduced by Guth (1981) to explain, besides the spec-
trum of primordial fluctuations, the flatness -, the horizon - and the magnetic monopole
problem. A review on inflation can be found in Martin et al. (2014).

The most promising tool to verify inflation is the measurement of the CMB radiation,
which is a relic from the epoch of recombination and the oldest snapshot of the Universe
observable today. When the Universe and thus the plasma of nucleons, electrons and
photons cooled down to a temperature of T ⇡ 0.3 eV at z ⇡ 1100, the energy of the photons
was no longer su�cient to reionise freshly build atoms. The nucleons and electrons could
finally combine and form neutral atoms. From this time of freeze-out about 380 000 years
after the Big Bang onwards, the CMB photons typically do not interact with baryons
anymore, but propagates freely through the Universe until today.

The CMB photons, as a result, still carry information about the distribution of the
primordial structures of matter at the time of freeze-out, which is invaluable information
with regard to structure formation theories. For example, if a photon resides at the time
of freeze-out in an overdense region, it first needs to climb out of the gravitational well of
the overdensity, resulting in a redshift of its energy and thus a lower observed temperature
compared to an underdense region. This phenomenon is called the Sachs-Wolf e↵ect (Sachs
& Wolfe 1967). This radiation from recombination era was first detected by Penzias &
Wilson (1965) and measured with an unprecedented precision most recently by the Planck
Collaboration et al. (2016a). These measurements confirmed the flatness of the Universe,
the existence of fluctuations on scales larger than light could have travelled with the

1Temperature and energy can be converted into each other with the conversion 1eV = 1.1605⇥104 kBK.
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speed of light until recombination sets in, the existence of adiabatic fluctuations resulting
from the thermal equilibrium before recombination, and the Gaussianity of the primordial
fluctuations with a slight deviation from a scale-invariant Harrison-Zel’dovich spectrum
(Harrison 1970, Zeldovich 1972). All of these observations are in excellent agreement
with the ⇤CDM model and the theory of inflation. Still, one prediction of the theory of
inflation has not yet been confirmed: The existence of primordial gravitational waves that
should be observable in the B-mode polarisation of the CMB radiation (BICEP2/Keck
and Planck Collaborations et al. 2015, Kovac 2018).

1.2.2 Evolution of the density fluctuations

The homogeneous and isotropic world model introduced in Sect. 1.1 considers so far only
a Universe with mean density ⇢̄(t), where the value of the latter determines the expansion
behaviour of the Universe. The presence and evolution of density fluctuations can, how-
ever, be integrated into the ⇤CDM model by treating them as a perturbation to the mean
density.

Using comoving coordinates to express the deviation from the otherwise homogeneous
expansion, and denoting the density at the spatial comoving coordinate x at time t by
⇢̂(x, t), a density perturbation is defined by the density contrast,

�(x, t) :=
⇢̂(x, t) � ⇢̄(t)

⇢̄(t)
, (1.32)

which is a measure for the relative amplitude of the perturbation. Ideally, one could derive
an accurate analytical description of the density field in terms of the density contrast
�(x, t) over the course of time, explaining the growth of the primordial structures to
today’s massive perturbations, e.g. in form of galaxies. This is, however, not possible due
to the range of scales and the non-linearity of physics involved, so that one needs to rely
on approximate methods: perturbation theory, numerical simulations and the halo model.

Although perturbation theory o↵ers the preferred analytical description of the evolution
of density perturbations, it is limited to the linear (|�| ⌧ 1), maximally mildly non-linear
regime (for a review see Bernardeau et al. 2002). Considering small scales or objects like
galaxies or galaxy clusters, one enters the non-linear regime (|�| & 1) and numerical sim-
ulations need to be performed to describe the growth of structures. Simulations, however,
have the drawback of being expensive with respect to computing time and limited in res-
olution. Further, although dark matter simulations are a standard tool today (Springel
et al. 2005), comparable hydrodynamical simulations are just starting to become available
(Vogelsberger et al. 2014 , Schaye et al. 2015).

Built on the findings of perturbation theory, dark matter simulations and observa-
tions, the halo model provides not only an analytical description, but as well a physical
interpretation of the distribution and evolution of dark and luminous structures in the
Universe on all scales. This work explores the limitations of the halo model, which will be
introduced in Chapter 2, therefore a short introduction over equations from perturbation
theory entering the halo model is given in the next paragraphs.
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Linear perturbation theory

In this subsection the equations governing the evolution of density fluctuations in the linear
regime are introduced. To this end, several assumptions are made. Firstly, although in
general structure formation needs to be treated in the framework of GR, the restriction
of the analysis to scales smaller than the comoving horizon size,

dH(a) =

Z a

0

c da0

a02H(a0)
, (1.33)

allows the application of Newtonian physics instead. Secondly, for now the era of matter-
domination is considered where pressure is negligible and dark matter can be treated as a
perfect fluid2 with density ⇢̂(x, t) and peculiar velocity v(x, t).

The density field can then be described by a triplet of equations: the continuity equa-
tion, which expresses the conservation of mass, the Euler equation, which accounts for the
conservation of momentum, and the Poisson equation, which relates the density contrast
to the gravitational potential �(x, t). This triplet of non-linear, coupled partial di↵erential
equations can in general not be solved analytically, but only numerically. An analytical
solution can be found if one assumes the perturbations in � and |v| to be small (� ⌧ 1).
Then the fluid equations can be linearised in these quantities resulting in the linearised
continuity, Euler and Poisson equation:

@�(x, t)

@t
+

1

a
rx · v(x, t) = 0 ,

@v(x, t)

@t
+

ȧ

a
v(x, t) = �1

a
rx�(x, t) ,

r2
x�(x, t) =

3H2
0 ⌦m

2a
�(x, t) . (1.34)

The three equations can be combined into a single second-order di↵erential equation
for the density contrast,

@2�(x, t)

@t2
+

2ȧ

a

@�(x, t)

@t
� 3H2

0 ⌦m

2a3
�(x, t) = 0 , (1.35)

which no longer explicitly contains the spatial coordinate x or derivatives of x. Conse-
quently, the shape of a given perturbation is preserved in the linear regime and only the
density contrast changes. Therefore, the solution can be split into a temporal part D(t)
and a spatial part �(x),

�(x, t) = D�(t)��(x) +D+(t)�+(x) , (1.36)

with one decaying (�) and one growing (+) solution. For an Einstein-de Sitter model
(⌦m = 1, ⌦⇤ = 0) it turns out that D�(t) / a�3/2(t) is monotonically decreasing with
time and is thus less relevant for the formation of structures. However, D+(t) is in this case

2Dark matter is collisionless so that multi-streams can occur. Although important on small scales, on
large-scale this e↵ect can be neglected and the assumption of a perfect fluid is justified.
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Table 1.1: Growth behaviour of density perturbations within linear perturbation theory before matter-
radiation equality, between matter-radiation equality and recombination, and after recombination. See
text for details.

Epoch Perturbation size Dark matter Radiation Baryons

a < aeq � > dH �dm / a2 �r / a2 �b / a2

� < dH constant oscillating oscillating
aeq < a < arec all � �dm / a oscillating oscillating

arec < a all � �dm / a oscillating �b / a

proportional to the scale factor a(t) and describes the evolution of growing perturbations
as a function of time, resulting in the name linear growth factor.

For a general cosmology the functional dependencies on the scale factor are more
complex but the general behaviour is preserved. It can be shown that the linear growth
factor is given by

D+(a) / D+(a) =
5⌦m

2

H(a)

H0

Z a

0

da0

[⌦m/a0 + ⌦⇤a02 � (⌦m + ⌦⇤ � 1)]3/2
. (1.37)

The constant of proportionality is set by normalising D+(a) to unity for today, such that

D+(a) =
D+(a)

D+(a = 1)
. (1.38)

For a general ⇤CDM cosmology the integral can not be solved analytically. However, in
this work the fitting function by Carroll et al. (1992),

D+(a) =
5

2
a⌦m(a)


⌦4/7
m (a) � ⌦⇤(a) +

✓
1 +

⌦m(a)

2

◆✓
1 +

⌦⇤(a)

70

◆��1

, (1.39)

is used. Note that the density parameters ⌦m(a) and ⌦⇤(a) are explicitly scale-factor
dependent (Eqs. 1.19 and 1.20) and that the growth factor D+(a) is dimensionless.

The growth of other density perturbations in the linear regime, as summarised in Table
1.1, is now discussed in a qualitative way. For the radiation-dominated era (a < aeq) GR
can not be neglected and the continuity, Euler and Poisson equation need to be written in
their relativistic form. Radiation rules the expansion behaviour of the Universe according
to Eq. (1.25) and has to be accounted for in the Poisson equation. Perturbations can be
either larger than the horizon or smaller. In the former case physical interactions are not
possible and, thus, pressure does not play a significant role compared to gravity. From the
fluid equations it follows that all three species of perturbations (radiation, baryonic matter
and dark matter) behave the same and grow like � / a2. However, if a perturbation is
smaller than the horizon, or enters the horizon during the radiation-dominated phase, the
competition between gravity and pressure gives rise to oscillations in the coupled photon-
baryon fluid. In the case of sub-horizon dark matter perturbations, the dark matter
overdensities are independent of the particle pressure, but their growth is nevertheless
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suppressed due to the strong expansion behaviour of the Universe during the radiation-
dominated era, which counteracts the e↵ect of gravity. The dark matter structure growth
is suppressed until matter-radiation equality is reached at aeq, corresponding to a horizon
size of dH(aeq) ⇡ 16(⌦mh)�2Mpc. All perturbations smaller than this threshold size are
suppressed.

After matter-radiation equality the expansion behaviour of the Universe changes to
that of Eq. (1.27). Although oscillations continue in the still relativistic photon-baryon
fluid, dark matter perturbations feel the decrease in the expansion rate of the Universe
and resume growing with � / a. Only at recombination, baryons are released from the
photon pressure and can grow in the same way as dark matter with � / a, marking the
start of a correlated evolution.

It is convenient to formulate the scale-dependent e↵ects that density perturbations un-
dergo during horizon crossing and matter-radiation transition in Fourier-space and sum-
marise them in the transfer function T (k). With the Fourier-space analogue of the length
� being given by the length k = 2⇡/� of the comoving wave vector k, the Fourier transform
of the real space density �(x, t) is defined as

�̃(k, t) =

Z

R3

d3x �(x, t) e�ix·k . (1.40)

Let ai denote the scale factor at a time ti in the radiation-dominated phase. Further,
let �̃(ks, ai) be a small-scale perturbation that enters the horizon at ai, and �̃(kl, ai) a
large-scale perturbation that enters the horizon only later in the matter-dominated era.
Under the assumption that both perturbations evolved linearly until today to �̃(ks, a0) and
�̃(kl, a0), respectively, the suppression of the former compared to the latter is captured by
the transfer function T (k), which is defined as

�̃(ks, a0)

�̃(kl, a0)
⌘ T (k)

�̃(ks, ai)

�̃(kl, ai)
. (1.41)

By construction T (k) �! 1 for k �! 0, resembling the observed qualitative behaviour.
Fitting functions have been derived by, e.g. Bardeen et al. (1986) and Eisenstein & Hu
(1998). In this work the one of Eisenstein & Hu (1998) is adopted, which describes the
growth of cold dark matter perturbations in the presence of baryons and vice versa,

T (k) =
⌦c

⌦m
Tc(k) +

⌦b

⌦m
Tb(k) . (1.42)

Here ⌦m is the sum of the baryonic matter density ⌦b and the cold dark matter density
⌦c. A summary of all the equations necessary for the numerical implementation of the
transfer function by Eisenstein & Hu (1998) is given in Appendix B.

Dark matter

In the preceding discussion of linear structure growth the existence of dark matter was
simply assumed. In this subsection the evidence for its existence as well as its influence
on structure formation is briefly reviewed.
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The evidence for the existence of dark matter is manifold: the flat rotation curves
of spiral galaxies (Sofue & Rubin 2001), the velocity dispersions of elliptical galaxies
(Saglia et al. 1993), the kinematics of galaxies in galaxy clusters (Zwicky 1933), the hot
X-ray gas in galaxy clusters (Allen et al. 2011), the Baryonic Acoustic Oscillations (BAO)
(Eisenstein et al. 2005), and the gravitational lensing e↵ect (Schneider 2006). However, its
nature remains unknown (Roszkowski et al. 2018), although a purely baryonic explanation
in the form of MAssive Compact Halo Objects (MACHOs) has already been excluded
(Tisserand et al. 2007). Assuming GR is the correct theory of gravity, one is left with
elementary particles as candidates, where the options are diverse but none have so far been
detected (for a review see Bertone et al. 2005). A scenario based on exclusively Hot Dark
Matter (HDM) particles, which were still relativistic at the time of their decoupling, can
be ruled out, because it fails to reproduce the assumed bottom-up formation of structures.
Cold Dark Matter (CDM) particles on the other hand do support hierarchical structure
formation. They have a low number density, but large particle mass - the last characteristic
captured in the term for the most probable dark matter candidate, the Weakly Interacting
Massive Particle (WIMP).

Cold dark matter could also explain why the observed temperature fluctuations in the
CMB are of the order of 10�5 (Planck Collaboration et al. 2016a), although according
to linear perturbation theory the fluctuations at the time of recombination must have
been of the order of 10�3 to obtain the structures we observe today (Wilson & Silk 1981,
Wilson 1983, Bond & Efstathiou 1984). Interacting only gravitationally and weakly, cold
dark matter decoupled early from thermal equilibrium and gravitationally collapsed before
the release of the CMB radiation, which allowed dark matter overdensities to grow to an
amplitude of the order of 10�3 until recombination. Although the baryons get attracted
by this gravitational potential, the radiation pressure of the photons prevents them from
falling in. This counterplay of gravity and pressure is today still visible as the baryonic
acoustic oscillation features in the CMB power spectrum and the large-scale galaxy dis-
tribution. Only after recombination is the photon pressure removed and the baryons fall
into the potential wells of the dark matter overdensities. The perturbations in the CMB
with an amplitude of 10�5 must therefore be evaluated as the density contrast of baryons
at recombination, which is the last information the photons received and carried to us.

The importance of dark matter in our Universe regarding structure formation extends
beyond the possibility to explain the amplitude of the CMB temperature fluctuations.
Dark matter is assumed to also play an important role in the formation of stars and
galaxies at later times. The halo model, e.g. is based on the assumption that galaxies can
only form and live inside a dark matter environment, as will be discussed in Chapter 2.

1.3 The Universe – a random field

Perturbation theory can describes the evolution of linear density perturbations in an ex-
panding Universe and predict the density field at a certain time, if knowledge on the initial
conditions is given. However, the specific conditions of the initial density field right after
inflation can neither be measured nor theoretically predicted. Inflationary models can only
predict the statistical properties of the initial density field based on the assumption that
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the seeds of the perturbations in the primordial density field, the quantum fluctuations,
are generated in a random process. Then the density field in our Universe can be treated
as one possible realisation g(x) of a random field. The statistical properties of a random
field are characterised by a formally infinite series of moments, the n-point correlation
functions or their Fourier space analoga, the spectra.

Since this work deals with two- and three-point correlation functions of gravitational
lensing, relevant definitions regarding correlation functions and spectra are given in Sects.
1.3.1 and 1.3.2, respectively. This summary is based on the review on statistical measures
related to random fields by Bernardeau et al. (2002).

1.3.1 Correlation functions

The infinitesimal joint probability of one particular realisation of a random field to occur,
i.e. that the random field takes at the n considered positions in the field the values g(xn)
within the intervals dg(xn), is given by

dP = P [g(x1), ... , g(xn)] dg(x1) ... dg(xn) . (1.43)

The statistical properties of the underlying random field are then fully specified by all k
moments (k ! 1) of the random field, which are defined by the average over the ensemble:

hg(x1) ... g(xk)i =
Z

dg(x1) ... dg(xk) g(x1)g(x2) ... g(xk)P [g(x1), ... , g(xk)] . (1.44)

In practice, neither the whole ensemble of stochastic realisations can be accessed, since
there is only our Universe to observe. Nor can the formally infinite number of moments k
be computed, but currently because of computational limitations more realistically k  4.
For the former problem the principle of ergodic fields can be applied, where the ensemble
average is replaced by a volume average over di↵erent fields on the sky. The latter limi-
tation is less dramatic for early times, since the central limit theorem states that a large
number of random processes results in a Gaussian field. The latest measurement of the
CMB radiation confirmed that the temperature distribution at the time of recombination
is nearly Gaussian (Planck Collaboration et al. 2016c). Then the probability distribution
can be described by a multi-variate Gaussian:

P [g(x1), ... , g(xk)] =
1p

(2⇡)n det(C)
exp

0

@�1

2

nX

i,j=1

g(xi)C�1
ij g(xj)

1

A , (1.45)

with Cij = hg(xi) g(xj)i being the covariance matrix. An advantage of a Gaussian random
field is, that it is completely determined by the second moment, the two-point correlation
function:

⇠(x1,x2) = hg(x1) g
⇤(x2)i . (1.46)

Deviations from Gaussianity can only be detected by higher-order correlation functions.
The lowest-order probe of non-Gaussianities is the three-point correlation function,

⇣(x1,x2,x3) = hg(x1) g(x2) g(x3)i . (1.47)
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However, the computation of the three-point correlation function from observations or
simulations is computationally expensive. Therefore, the four-point correlation function:

⌘(x1,x2,x3,x4) = hg(x1) g(x2) g(x3) g(x4)i , (1.48)

is just becoming state of the art in cosmology. For homogeneous random fields the two-
point correlation function depends only on the separation |x1 �x2|, the three-point corre-
lation function on two vectors representing two sides of the spanned triangle x12 = x1�x2

and x13 = x1 � x3, and the four-point correlation function on three vectors x12,x23,x34

forming the quadrangle.

1.3.2 Spectra

For many cosmological analyses it is convenient to work in Fourier space. In Chapter 3
it will be demonstrated how an analytical expression for galaxy-galaxy(-galaxy) lensing
can be obtained from the Fourier transform of the second- and third-order correlation
function: the power spectrum and bispectrum, respectively, which shall be introduced in
this subsection.

With the Fourier transform of a random realisation g(x) being defined by

g(k) =

Z
dnx e�ix·k g(x) , (1.49)

the transformation of the two-point correlation function (Eq. 1.46) to Fourier space gives

hg(k) g⇤(k0)i =

Z
dnx e�ix·k

Z
dnx0 eix

0·k0 hg(x) g⇤(x0)i

= (2⇡)n �D(k � k

0)

Z
dny eiy·k ⇠(|y|)

= (2⇡)n �D(k � k

0)P (|k|) , (1.50)

where in the second step the substitution x

0 = x+ y is made. The quantity P (|k|) is the
Fourier transform of the two-point correlation function, the power spectrum

P (|k|) =
Z

dny e�iy·k ⇠(|y|) , (1.51)

which is a statistical measure for the power on the length scale 2⇡/k.
Analogously, the Fourier transform of the three-point correlation function (Eq. 1.47) is

defined by the relation

hg(k1) g(k2) g(k3)i = (2⇡)n �D(k1 + k2 + k3)B(k1,k2,k3) , (1.52)

with k1 + k2 + k3 = 0 defining a triangle. The bispectrum is then given by

B(k1,k2,k3) =

Z
dny

Z
dnz e�iy·k1 e�iz·k2 ⇣(y, z) . (1.53)
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1.3.3 Dark matter spectra from perturbation theory

For dark matter, the linear power spectrum and bispectrum can be derived analytically
using linear perturbation theory. The two are ingredients of the halo model (Chapter 2),
which allows for a derivation of analytical expressions for the power spectra and bispec-
tra in the non-linear regime, exceeding the scope of perturbation theory covered in this
chapter.

The power spectrum for a matter perturbation at scale factor a that linearly evolved
through time can be obtained from the primordial power spectrum Pprim(k). To that end,
the growth factor is applied to account for the expansion of the Universe, and the transfer
function to incorporate the scale-dependent e↵ects that density perturbations undergo
during horizon crossing and matter-radiation transition:

Plin(k, a) = AD2
+(a)T

2
k Pprim(k) , (1.54)

where A is a constant of normalisation. The derivation of an analytical expression for
the normalisation A can be found in Appendix C. The primordial power spectrum is set
by inflation. It is assumed that right after inflation all perturbations have been larger
than the horizon, meaning that no interactions occur. Thus, there is no preferred length
scale in the Universe at that time and the primordial spectrum must be of the form of a
power-law Pprim / kns , where the constant ns . 1 is the spectral index (Table A.1). For
ns = 1 one speaks of a Harrison-Zel’dovich spectrum (Harrison 1970, Zeldovich 1972).

For a derivation of the lowest order non-vanishing bispectrum term from perturbation
theory see, e.g. Cooray & Sheth (2002). Here only the result is given:

Blin(k1,k2,k3) = 2F2(k1,k2)P1P2 + 2F2(k1,k3)P1P3 + 2F2(k2,k3)P2P3 , (1.55)

with Pi = Plin(ki) and the second-order coupling function being defined by Jain &
Bertschinger (1994) as

F2(k1,k2) =
5

7
+

2

7

(k1 · k2)
2

k21k
2
2

+
1

2

k1 · k2

k1k2

✓
k1
k2

+
k2
k1

◆
, (1.56)

and F2(k,�k) = 0.
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Chapter 2

The halo model

In the ’50s Newman & Scott proposed to describe galaxy clustering by the clustering of
discrete matter clumps with an universal radial profile (Neyman & Scott 1952; Neyman
et al. 1953). Without being aware of it, they laid the foundation for the halo model
description of the at the time unknown dark matter distribution. As shown in Fig. 2.1,
the complex filamentary distribution of dark matter can be simplified by assuming that
all dark matter in the Universe is bound in dark matter halos. This ansatz discretises the
problem and splits it in a natural way into the clustering of dark matter halos on large-
scales and the distribution of mass within the halos on small scales. Further, it allows an
analytical description of all n-point correlations from small to large-scales, from the linear
to the non-linear regime, and for dark and visible matter. For a general review see Cooray
& Sheth (2002).

Figure 2.1: The complex distribution of dark matter can be discretised within the framework of the halo
model and is then fully described by the number of halos of a certain mass, the density profile of the halos
and their clustering. [Source: Cooray & Sheth (2002)]
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Twenty five years after the work by Newman & Scott, White & Rees (1978) extended
the theory by include galaxies in the dark matter halo model framework based on the
physical assumption that galaxies can only form in dark matter halos, because baryonic
matter needs the gravitational potential of the dark matter overdensities for radiative gas
cooling and star formation. In the halo model picture this translates to the halo occupation
distribution (HOD): once a dark matter halo has virialised and crossed a certain threshold
mass, it can host a first (central) galaxy. While if the dark matter halo is massive enough,
more (satellite) galaxies will populate the halo, where the number of galaxies per halo
depends solely on the halo mass.

Although this simplified analytical description neglects the potential influence of the
halo environment and the halo history (‘assembly bias’; e.g. Gao & White 2007, Zentner
et al. 2014, Montero-Dorta et al. 2017, Mao et al. 2018), its predictions fit the results
obtained from dark matter N -body simulations of cosmological structure formation on
second-order level remarkably well (Kravtsov et al. 2004, Zheng et al. 2005). More notably,
it also explains the observed distribution of galaxies on the same statistical level (Zheng
et al. 2007, Zehavi et al. 2011, Coupon et al. 2012), as well as the cross-correlation of
galaxies and dark matter (Leauthaud et al. 2012, Velander et al. 2014, Coupon et al.
2015, Clampitt et al. 2017). The HOD formalism – being based on a physical motivation
– o↵ers a unique opportunity to learn about the coupled, but not identical evolution of
baryonic and dark matter overdensities, without the need to take all the highly non-trivial
hydrodynamical processes into account.

However, at third-order level and beyond, the validity of the halo model in combination
with the HOD formalism is not that clear anymore. Although, Scoccimarro et al. (2001)
and Wang et al. (2004) have shown a reasonable match between dark matter halo model
predictions and results obtained from dark matter N -body simulations, Lazanu et al.
(2017) found that although the halo model description delivers satisfying results in the
highly non-linear regime, it underestimates the power on intermediate scales, particularly
at higher redshifts, when compared to dark matter simulations. The search for optimised
halo models has thus started (Mead et al. 2015, Lazanu et al. 2017).

This work is the first of its kind to investigate the scope of the halo model to describe
the galaxy-dark matter cross-correlation on second- and third-order level consistently. It
is not the aim of this work to test the most advanced halo models (e.g. Leauthaud et al.
2011), but rather a ‘standard’ one (e.g. Kravtsov et al. 2004, Zheng et al. 2007, Coupon
et al. 2012). Besides some modifications, the halo model employed in this work is largely
motivated by and based on the work of Rödiger (2009).

In this chapter the employed halo model is introduced and analytical expressions for the
three-dimensional halo model galaxy-matter power spectrum and bispectrum are given. It
is shown how these quantities are projected to their two-dimensional analogues, which are
ultimately transformed into galaxy-galaxy lensing (G2L) and galaxy-galaxy-galaxy lensing
(G3L) as described in Chapter 3. All equations given in this chapter are implemented into
a numerical code which was written as part of this work to generate halo model predictions
for the two-dimensional galaxy-matter power spectrum and bispectrum.
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2.1 The dark matter halo model

A dark matter halo is defined by the criterion for a spherical overdense region of dark
matter to collapse and virialise, namely that its density reaches 178 times the critical
density of the universe ⇢crit(z) (Eq. 1.17) at the time of virialisation (Gunn & Gott 1972,
Press & Schechter 1974). This threshold value is typically translated into the density
contrast � (Eq. 1.32) of the region at the time of virialisation, assuming that the initial

overdensity had evolved according to linear theory, i.e. �(EdS)lin = 1.686. Both values are
derived for the case of an Einstein-de-Sitter universe but generally depend on cosmology
and redshift. Here the fitting formula by Henry (2000) is used as a correction to the
Einstein-de-Sitter values, providing expressions for the density ratio �c(z) and the linear
density contrast �c(z) at virialisation:

�c(z) = �(EdS)
�
1 + 0.4093 x2.71572

�
,

�c(z) = �
(EdS)
lin

⇥
1 � 0.0123 ln(1 + x3)

⇤
, (2.1)

with x =
�
⌦�1
m � 1

�1/3
/(1 + z). Given the definition of a halo, the overall distribution of

dark matter is fully described by the comoving number density n(Mh, z) of dark matter
halos of mass Mh at redshift z, by the radial distribution of dark matter within the halos
⇢(r|Mh), and by the clustering of the halos given by the dark matter halo bias bh(Mh).

2.1.1 Halo mass function

Acting like a census, the halo mass function n(Mh, z) gives the comoving number density
of halos with masses in the range Mh and Mh + dMh at redshift z (Bond et al. 1991):

n(Mh, z) =
⇢̄

M2
h

⌫f(⌫)
d ln ⌫

d lnMh
, (2.2)

with ⇢̄ = ⇢m,0 denoting the current mean background density. The so-called multiplicity
function ⌫f(⌫) accounts for the finding from numerical dark matter simulations that the
halo mass function has a universal shape. The dimensionless variable ⌫ is defined as

⌫ =
�c(z)

D+(z)�(Mh, z)
, (2.3)

where the growth factor D+(z) is defined by Eq. (1.38) and the variance �(Mh, z) by
Eq. (C.1). Assuming an ellipsoidal mass collapse, Sheth & Tormen (1999) found that
⌫f(⌫) can be expressed as,

⌫f(⌫) = A

r
2

⇡

⇥
1 + (q⌫2)�p

⇤ p
q⌫2 exp

✓
�q⌫2

2

◆
, (2.4)

with the amplitude

A =


1 + 2�p �

✓
1

2
� p

◆
/
p
⇡

��1

. (2.5)



24 CHAPTER 2. THE HALO MODEL

Here � is the gamma function. The parameters q = 0.707 and p = 0.3 fit the results of
N -body simulations best. The amplitude A is fixed by the restriction that

1

⇢̄

Z 1

0
n(Mh, z)Mh dMh =

Z 1

0
f(⌫) d⌫ = 1 . (2.6)

In practice the integrations over mass cannot be performed over the whole mass range
up to infinity, but reasonable assumptions on the integration limits can be made. In this
work the mass of dark matter halos is assumed to lie within the range of 0� 1016 h�1M�,
with the upper limit exceeding the highest measured cluster masses (Buddendiek et al.
2015, and references therein) and the highest halo masses from dark matter only and
hydrodynamical simulations (Warren et al. 2006, Tinker et al. 2008, Vogelsberger et al.
2014). All integrals describing dark matter, or the mixed case of galaxies and dark matter,
are computed with these limits. In contrast, integrals which are concerned with the mass
of galaxies only, are computed for the range 1010 � 1015 h�1M�, because the threshold
mass for halos to host a first galaxy is approximately 1011 h�1M� (e.g. Zheng et al. 2005).
An analytical derivation of d ln ⌫

d lnMh
appearing in Eq. (2.2) is given in Appendix D.

2.1.2 Halo density profile

In this work the density profile of dark matter halos is assumed to follow a Navarro-Frenk-
White (NFW) profile (Navarro et al. 1996),

⇢(r|Mh) =
⇢s

(r/rs)[1 + (r/rs)]2
, (2.7)

where ⇢s is the central density parameter and rs the scale radius. Integrating ⇢(r|Mh) up
to the radius where the halo is in virial equilibrium, i.e. the virial radius

rvir(z) =


3Mh

4⇡�c(z) ⇢̄

�1/3
, (2.8)

gives the total mass of a halo (e.g. Takada & Jain 2003):

Mh =

Z rvir

0
dr 4⇡r2⇢(r|Mh) =

4⇡⇢sr3vir
c3


ln(1 + c) � c

1 + c

�
, (2.9)

with the concentration parameter c = rvir/rs. Bullock et al. (2001) found from dark matter
simulations the following fitting formula for c for NFW halos:

c(Mh, z) =
c0

1 + z


Mh

m?(z = 0)

��↵

, (2.10)

with the parameters c0 = 9 and ↵ = 0.13. The mass m? is defined by �2(m?) := �2c (z = 0),
with the variance given by Eq. (C.1), and the linear density contrast in Eq. (2.1).

For what follows, it is convenient to define the dimensionless normalised dark matter
halo density profile in Fourier space,

ũ(k,Mh) =

R
d3r ⇢(r,Mh) eik·rR
d3r ⇢(r,Mh)

, (2.11)
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which can be expressed as (Scoccimarro et al. 2001)

ũ(k,Mh) = f(c) (sin(⌘) [Si (⌘(1 + c)) � Si(⌘)])

+ f(c) (cos(⌘) [Ci (⌘(1 + c)) � Ci(⌘)])

� f(c)


sin(⌘ c)

⌘(1 + c)

�
, (2.12)

with the dimensionless quantity ⌘ = (k rvir)/c and the dimensionless function for a NFW
profile

f(c) =


ln(1 + c) � c

1 + c

��1

. (2.13)

The sine- and cosine-integral are defined as

Si(x) =

Z x

0
dt

sin t

t
and Ci(x) = �

Z 1

x
dt

cos t

t
. (2.14)

2.1.3 Dark matter halo bias

The clustering of dark matter halos is di↵erent from the clustering of the general dark
matter density field as a consequence of the existence of a threshold density contrast �c to
form a halo (e.g. Mo & White 1996). The scale-dependent di↵erence is described by the
halo bias functions bhi (Mh), which are defined as the coe�cients of a power-series expansion
of the density contrast of halos �h(x;Mh) as a function of the dark matter density contrast
�(x) (e.g. Mo et al. 1997):

�h(x;Mh) = bh1(Mh)�(x) +
bh2(Mh)

2
�2(x) +

bh3(Mh)

6
�3(x) + ... . (2.15)

For this work only the first order bias factor is considered, which is for a Sheth-Tormen
mass function given by (Scoccimarro et al. 2001)

bh1(Mh) = 1 + ✏1 + E1 , (2.16)

with

✏1 =
q⌫2 � 1

�c
and E1 =

2p

1 + (q⌫2)p
1

�c
. (2.17)

2.2 The halo occupation distribution

The HOD provides an analytical extension to the dark matter halo model with respect to
a description for the distribution of galaxies within dark matter halos (Cooray & Sheth
2002). The combination of the dark matter halo model and the HOD formalism, re-
ferred to as the halo model, is one among several approaches to modelling the galaxy-halo
connection; for a general review see Wechsler & Tinker (2018).
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2.2.1 Modelling the relation between dark matter halos and galaxies

The HOD is fully specified by, first, the probability distribution P (N |Mh) that a dark
matter halo of mass Mh contains N galaxies, second, by the radial distribution of these
N galaxies within the host halo, and, third, by the velocity dispersion of these N galaxies
(Berlind & Weinberg 2002).

It is commonly assumed that the normalised distribution of galaxies in Fourier space
follows the one of dark matter, i.e. ũg(k,Mh) = ũdm(k,Mh) ⌘ ũ(k,Mh) given by Eq. (2.12).
However, since deviations and a dependence on redshift have been found (e.g. Budzynski
et al. 2012; Muzzin et al. 2007; van der Burg et al. 2014), in this work an additional free
parameter was introduced to allow a deviation of the galaxy density profile from the one
of dark matter. Nevertheless, the model fits to the CFHTLenS G2L indicate a preference
for the standard assumption of identical profiles (Sect. 4.3.2).

Another standard assumption made in this work is that the number of galaxies N
hosted by a halo of mass Mh depends solely on the halo mass, albeit in reality P (N |Mh)
depends on the environment and formation history as well (Gao & White 2007, Zentner
et al. 2014, Montero-Dorta et al. 2017, Mao et al. 2018). Following Zehavi et al. (2011) (and
references therein, e.g. Kravtsov et al. (2004), Zheng et al. (2005) and Zheng et al. (2007))
the mean number of galaxies hN(Mh)i is here expressed as the sum of the contribution
of central galaxies hNcen(Mh)i and the contribution of satellite galaxies hNsat(Mh)i. The
former is parametrised by a step function with a soft cut-o↵ profile to account for the
scatter �log(Mh) in the luminosity-halo mass (or stellar mass-halo mass) relation:

hNcen(Mh)i = ↵cen ⇥ 1

2


1 + erfc

✓
log10(Mh) � log10(Mth)

�log(Mh)

◆�
. (2.18)

Usually, Mth is defined as the mass scale at which 50% of the halos host a central galaxy,
i.e. hNcen(Mth)i = 0.5. However, in this work the galaxy samples in stellar mass and
luminosity are defined within bins (rather than by lower thresholds), so that not necessarily
every halo hosts a central galaxy. Thus, an additional parameter ↵cen is introduced to allow
for halos without a central galaxy (Clampitt et al. 2017). This changes the meaning of the
parameter Mth in the sense that Mth is the minimum halo mass crucial to potentially host
in every second case a first central galaxy, i.e. hNcen(Mth)i = 0.5⇥ ↵cen. The distribution
of satellites is expressed by a power-law at the high halo mass end with the normalisation
M1 and a slope parameter �,

hNsat(Mh)i =
✓
Mh

M1

◆�

⇥ 1

2


1 + erfc

✓
log10(Mh) � log10(Mth)

�log(Mh)

◆�
. (2.19)

The complete HOD,

hN(Mh)i = hNcen(Mh)i + hNsat(Mh)i (2.20)

=
1

2


1 + erfc

✓
log10(Mh) � log10(Mth)

�log(Mh)

◆�
⇥
"
↵cen +

✓
Mh

M1

◆�
#
,

thus depends on a total of five model parameters �log(Mh),Mth,M1,�, and ↵cen.
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2.2.2 Derived parameters

From the HOD properties of the galaxy sample can be derived. The mean number density
of galaxies for a given sample is determined by the completeness relation,

n̄g(z) =

Z
dMh hN(Mh)in(Mh, z) , (2.21)

with the halo mass function n(Mh, z) defined by Eq. (2.2). The fraction of central galaxies
per sample is given by

fcen(z) =

R
dMh hNcen(Mh)in(Mh, z)

n̄g(z)
, (2.22)

and the mean halo mass per sample by

hMh(z)i =
Z

dMhMh n(Mh, z)
hN(Mh)i
n̄g(z)

. (2.23)

All three quantities depend on redshift. Usually, they are computed for the mean redshift
z̄ of the considered galaxy sample, which is also done for the mean halo mass hM z̄

hi in this
work. However, it is more accurate to calculate the number of galaxies in the sample by
integrating over the redshift interval [zmin; zmax] (Coupon et al. 2012):

NV = ⌦

Z zmax

zmin

f2
K(�(z))

d�

dz
n̄g(z) dz . (2.24)

Here ⌦ is the survey area in units of square degrees, and f2
K(�(z)) d�/dz is the volume

element. While Eq. (2.24) is strictly only valid for spectroscopic redshifts, in this work the
assumption is made that the photometric redshift distribution can be approximated by a
top-hat function for the interval [zmin; zmax]. The respective mean number density in the
redshift bin is then given by:

n̄V
g = NV


⌦

Z zmax

zmin

f2
K(�(z))

d�

dz
dz

��1

. (2.25)

Finally, the fraction of centrals for the redshift bin can be written as

fV
cen =

n̄V
g,cen

n̄V
g

. (2.26)

2.2.3 Conversion to the ratio of stellar to halo mass

In Chapter 4 halo model fits are performed to the CFHTLenS G2L signal and the number
of galaxies for seven galaxy samples binned by stellar mass M⇤. The resulting best-fit
parameter set for each stellar mass sample determines the HOD hN(Mh)|M⇤ii, which is
the mean number of galaxies of stellar mass M⇤ hosted by halos of mass Mh in the mass
bin i.
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For comparison to other works, hN(Mh)|M⇤ii can be converted to the ratio of stellar
mass to halo mass M⇤(Mh)/Mh as follows (Patrick Simon, priv. comm.). The average ratio
of stellar to halo mass in halos of mass Mh is given by M⇤/Mh ⇥ hN(Mh)|M⇤ii. Given N⇤
number of mass bins, the total fraction of stellar to halo mass across the full stellar mass
range is given by

M⇤
Mh

(Mh) =
N⇤X

i=1

Z
dM⇤M⇤

Mh
pi(M⇤)hN(Mh)|M⇤ii , (2.27)

where pi(M⇤) is the probability to find a galaxies of stellar mass M⇤ inside the ith bin. To
estimate the total stellar mass in galaxies it is common to simultaneously fit a model of
the stellar mass function to the data (Leauthaud et al. 2011). However, in this work M⇤
is assumed to be on average provided by galaxies of the considered stellar mass samples.
This is, however, only a lower limit on the total stellar mass inside a halo because of the
incompleteness of the galaxy selection in the CFHTLenS .

A Monte-Carlo algorithm is used to estimate the statistical error on the result. For
each bin i with halo model parameters pi, j random realisations are drawn from the
model parameter probability distributions to give new model parameter sets {pi}j . These
correspond to a new set of HODs: {hN(Mh)|M⇤ii}j , which give j estimates ofM⇤(Mh)/Mh.
The mean and variance of these estimates at a given Mh is adopted as the 1� uncertainty
of M⇤(Mh)/Mh.

2.3 Halo model galaxy-matter power- and bispectrum

The strength of the halo model is that it can be used to derive analytical expressions for the
n-point (cross-)correlation functions of galaxies and dark matter. For this work the two-
and three-point galaxy-matter (cross-)correlation functions are relevant, to be precise their
Fourier space analogues, the galaxy-matter power spectrum and bispectrum, as they are
probed by galaxy-galaxy(-galaxy) lensing. Conversely, the galaxy-matter power spectrum
and bispectrum can be transformed into halo model predictions for G2L and G3L as
described in Chapter 3. In the following the definitions for the halo model galaxy-matter
power and bispectrum are given. For a derivation of theses equations see Rödiger (2009).

2.3.1 Halo model galaxy-dark matter power spectrum

The three-dimensional galaxy-dark matter power spectrum P �g(k) is defined according to
Eq. (1.50) by the two-point correlator of the dark matter density contrast �(k) and the
galaxy density contrast �g(k):

h�(k)�g(k0)i = (2⇡)3 �D(k + k

0)P �g(k) . (2.28)

The power spectrum consists of two terms, one accounting for contributions of correlations
originating from the same halo, and the other for contributions originating from two
di↵erent halos:

P �g(k) = P �g
1h (k) + P �g

2h (k) , (2.29)
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with

P �g
1h (k) =

Z
dMh n(Mh)

✓
Mh

⇢̄

◆
ũdm(k,Mh)


N̄cen + N̄satũg(k,Mh)

n̄g

�
,

P �g
2h (k) =

Z
dMh n(Mh)

✓
Mh

⇢̄

◆
ũdm(k,Mh) b

h
1(Mh)

�

⇥
"Z

dMh n(Mh)

⇥
N̄cen + N̄satũg(k,Mh)

⇤

n̄g
bh1(Mh)

#
⇥ Plin(k) . (2.30)

Here n(Mh) is the halo mass function (Eq. 2.2), ⇢̄ the mean density of the universe
(Eq. 1.22), n̄g the mean number density of galaxies (Eq. 2.21), and N̄cen and N̄sat the
central and satellite parts of the HOD (Eqs. 2.18 and 2.19). Moreover, ũg(k,Mh) is the
normalised galaxy density profile, which is assumed to be identical with the one of dark
matter ũdm(k,Mh) (Eq. 2.12) in this work. Finally, the power spectrum depends on the
dark matter halo bias bh1(Mh) (Eq. 2.16) and on the linear dark matter power spectrum
from perturbation theory Plin(k) (Eq. 1.54).

2.3.2 Halo model galaxy-dark matter bispectrum

The three-dimensional galaxy-dark matter bispectrum Bgg�(k1,k2;k3) is defined according
to Eq. (1.52) by the three-point correlator of the dark matter and galaxy density contrast:

h�g(k1)�g(k2)�(k3)i = (2⇡)3 �D(k1 + k2 + k3)B
gg�(k1,k2;k3) . (2.31)

Assuming a statistically homogeneous and isotropic Universe, the bispectrum can be
parametrised by the length of the three k-vectors that build a triangle in Fourier space.
The bispectrum consists of three terms: the first one accounting for contributions of corre-
lations originating from the same halo, the second one accounting for contributions origi-
nating from two di↵erent halos, and the third one accounting for contributions originating
from three di↵erent halos:

Bgg�(k1, k2; k3) = Bgg�
1h (k1, k2; k3) +Bgg�

2h (k1, k2; k3) +Bgg�
3h (k1, k2; k3) , (2.32)

with

Bgg�
1h =

Z
dMh n(Mh)

1

n̄2
g


N̄2

sat + N̄cenN̄sat

✓
1

ũg(k1,Mh)
+

1

ũg(k2,Mh)

◆�

⇥
✓
Mh

⇢̄

◆
ũg(k1,Mh)ũg(k2,Mh)ũdm(k3,Mh) ,

Bgg�
2h = G11(k1)Gg�

12(k2; k3)Plin(k1) + I11(k3)G12(k2, k1)Plin(k3)

+ G11(k2)Gg�
12(k1; k3)Plin(k2) ,

Bgg�
3h = G11(k1)G11(k2) I11(k3)Blin(k1, k2, k3) . (2.33)
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Here Blin(k1, k2, k3) is the underlying dark matter bispectrum from perturbation theory

(Eq. 1.55). The functions G11(k), G12(k1, k2), Gg�
12(k1; k2), and I11(k) are given by

G11(k) =

Z
dMh n(Mh)


N̄cen + N̄satũg(k,Mh)

n̄g

�
bh1(Mh) ,
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◆
ũdm(k,Mh)b

h
1(Mh) . (2.34)

2.3.3 Projecting the spectra from 3D to 2D - Limber’s Equation

The power spectrum P �g(k) and the bispectrum Bgg�(k1,k2;k3) are three-dimensional
quantities. However, what is measured on the sky are estimates for the projected versions
of these three-dimensional quantities. To be able to compare the halo model predictions
for G2L and G3L to the measurements from CFHTLenS, the three-dimensional spectra
are transformed into two-dimensional spectra using Limber’s approximation (Limber 1953,
Kaiser 1998).

The basic idea is that for every modulus ` of the two-dimensional Fourier vector `

or the vector itself, the integral over the comoving distance � is performed by using the
following weighting function:

G(�) =
3

2
⌦m

✓
H0

c

◆2

a�1(�)

Z �H

�
d�s ps(z)

dz

d�s

fK(�s � �)

fK(�s)
. (2.35)

Here ⌦m is the matter density parameter, H0 the Hubble constant (Eq. 1.3), a(�) the scale
factor (Eq. 1.4), and fK(�) the comoving angular diameter distance (Eq. 1.9). To compute
this function the redshift distribution of source galaxies ps(z) needs to be known. In this
work it is assumed that all source galaxies have approximately the same redshift, which
simplifies Eq. (2.35) as the integral does not need to be performed. For the cross-spectra
considered in this work, the two-dimensional expressions are then given by:

P g(`) =

Z �H

0
d�

G(�)pf(�)

fK(�)
P �g

✓
k =

`

fK(�)
;�

◆
, (2.36)

Bgg(`1, `2; `3) =

Z �H

0
d�

G(�)p2f (�)

�3
Bgg�

✓
k1 =

`1

�
,k2 =

`2

�
;k3 =

`3

�
;�

◆
,

where for the redshift distribution of lens galaxies pf(�) the distribution measured from
CFHTLenS (normalised to unity) is used.
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2.3.4 Reduced bispectrum

In the numerical implementation of the transformation of the galaxy-matter bispectrum
to G3L, the Bgg(`1, `2; `3)-function is called very often. To save computation time, the
bispectrum is therefore numerically interpolated. However, Bgg(`1, `2; `3) shows a cusp
feature for squeezed triangles (`1=`2, `3=0 or '=⇡) as also found by, e.g. Jeong & Komatsu
(2009), which originates from the second-order coupling function F2(k1,k2) (Eq. 1.56) and
the linear power spectrum from perturbation theory Plin(k) (Eq. 1.54) vanishing for k3 = 0.
This feature is tricky to interpolate. The reduced bispectrum, defined as (Cooray & Sheth
2002)

Qgg(`1, `2; `3) =
Bgg(`1, `2; `3)

P g(`1)P g(`2) + P gg(`1)P g(`3) + P gg(`2)P g(`3)
, (2.37)

contains the same information as Bgg(`1, `2; `3), but shows a less pronounced cusp fea-
ture. Therefore, numerically Bgg(`1, `2; `3) is transformed to Qgg(`1, `2; `3), for which
the interpolation grid is constructed. When Bgg(`1, `2; `3) is called in the code it is com-
puted from the interpolation values of Qgg(`1, `2; `3).

The computation of Qgg(`1, `2; `3) requires the two-dimensional galaxy power spec-
trum:

P gg(`) =

Z �H

0
d�

G(�)pf(�)

fK(�)
P gg

✓
k =

`

fK(�)
;�

◆
, (2.38)

which is obtained by projecting the three-dimensional galaxy power spectrum given by

P gg(k) = P gg
1h (k) + P gg

2h (k) ,
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⇥ Plin(k) . (2.39)
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Chapter 3

Galaxy-galaxy(-galaxy) lensing

Light rays emitted by background objects (‘sources’) are di↵erentially deflected by the
gravitational potential of the intervening matter distribution (‘lenses’) on their path to
Earth. This so-called gravitational lensing e↵ect distorts the intrinsic shapes of the source
images, thereby encoding information about the matter environment of the lenses in the
sheared source images. This work is concerned with subtle distortions attributed to the
weak lensing e↵ect, where a significant lensing signal can only be obtained by statistically
superposing the signals of many source-lens pairs using correlation functions. For general
reviews on weak gravitational lensing see Bartelmann & Schneider (2001) and Schneider
(2006).

One application of weak gravitational lensing is galaxy-galaxy lensing (G2L), which
considers the cross-correlation between the position of a lens galaxy and the shear of a
source galaxy, thereby probing the radial profile of the surface mass density around an
average lens (e.g. Mandelbaum et al. 2006a, van Uitert et al. 2011, Clampitt et al. 2017).
Thus, G2L provides not only a possibility to map dark matter, but also to infer the
statistical properties of the galaxy-halo connection (e.g. Zheng et al. 2007, Zehavi et al.
2011, Leauthaud et al. 2011, Coupon et al. 2012, Velander et al. 2014). The extension of
the concept of G2L to third-order is galaxy-galaxy-galaxy lensing (G3L), particularly the
lens-lens-shear correlator G which cross-correlates the positions of two lens galaxies with
the shear of a source galaxy. This G3L correlator thus probes the dark matter environment
about pairs of galaxies (Schneider & Watts 2005).

Two ways to express G are excess mass maps and the aperture statistics hN 2Mapi(✓).
Excess mass maps depict, for a fixed separation of lenses on the sky, the average distribu-
tion of surface mass around lens pairs in excess of the average surface mass around two
individual lenses as measured with G2L (Simon et al. 2008, Simon et al. 2012, Simon et al.
2013, Simon et al. 2019). Thus, excess mass maps provide an intuitive visualisation of
the information contained in G. An alternative way of representing G is via the aperture
statistics hN 2Mapi(✓), which provides a localised measurement of the projected galaxy-
galaxy-matter bispectrum (Schneider et al. 1998, Simon et al. 2013). Aperture statistics
are useful in weak lensing as they are comparatively easy to measure, while containing
all the information in their related correlation function or spectrum (Schneider & Watts
2005).

33
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Over the last decade successful G3L measurements have demonstrated a correlation
between the properties of the lens galaxies and their matter environment (Simon et al.
2008, Simon et al. 2013, Simon et al. 2019). By confronting halo model predictions with
these measurements, the ability of the halo model to consistently describe second- and
third-order statistics, as probed by G2L and G3L, is tested in this work. On the other hand,
the halo model is used to study dependencies of G3L on galaxy and model properties in
order to build up a knowledge base on which to interpret present and future measurements
of G3L.

To facilitate these two investigations in the following chapters, this chapter summarises
the theory of G2L and G3L. First, in Sect. 3.1 the observables of weak lensing are intro-
duced and the G2L and G3L correlation functions are defined, including estimators for
the excess mass maps and the aperture statistics hN 2Mapi(✓). Second, Sect. 3.2 outlines
how G2L and G3L, again in terms of excess mass maps and aperture statistics, are pre-
dicted based on the halo model formalism introduced in Chapter 2. This chapter is based
on Schneider & Watts (2005), Simon et al. (2013), Simon et al. (2019), notes by Patrick
Simon (priv. comm.), and the doctoral thesis by Rödiger (2009).

3.1 Definitions

Galaxy-galaxy(-galaxy) lensing probes the distribution of matter around galaxies (pairs
of galaxies) by considering the cross-correlation of the projected total matter distribution
and the projected lens galaxy distribution.

The three-dimensional matter distribution in the Universe is described by the density
contrast �(x) (Eq. 1.32), which is projected along the line-of-sight by applying the lensing
e�ciency,

G(�) =
3H2

0⌦m

2c2
a(�)�1

Z �h

�
d�0 ps(�

0)
fK(�0 � �)

fK(�0)
, (3.1)

which is the weight function introduced in Eq. (2.35). Furthermore, positions x are pro-
jected into angular positions ✓ by defining the transverse, comoving separation of a light
ray from a reference line-of-sight by fK(�)✓ with ✓ = 0 in the direction of the reference
line-of-sight. The outcome is the two-dimensional analogue to �(x), the lensing conver-
gence (see e.g. Bartelmann & Schneider 2001)

(✓) =

Z �h

0
d� fK(�)G(�) � (fK(�)✓,�) . (3.2)

The actual observable in weak lensing surveys is not (✓) itself, but the Cartesian
shear �c(✓), for which a noisy estimator is given by the ellipticities ✏(✓) of the lensed
source images:

✏(✓) ⇡ �c(✓) + ✏s . (3.3)

Here ✏s accounts for the intrinsic, that means unlensed, unknown shapes of the source
galaxies. Galaxies are assumed to have a random intrinsic orientation, so that the ensemble
average over the intrinsic ellipticities vanishes and the ellipticity is an unbiased estimator
of the shear, that means h✏(✓)i = h�c(✓)i. As each measured elliptical source image is the
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result of the numerous di↵erential deflections the corresponding light bundle experiences
by being exposed to various gravitational potentials along the path from its source to the
observer, the resulting shear field �c(✓) contains the valuable information on the projected
mass distribution. Using the Kaiser & Squires relation (1993) the shear �c(✓) can be
converted into the lensing convergence (✓) up to a constant 0:

(✓) � 0 =
1

⇡

Z
d2✓0 D⇤(✓ � ✓

0)�c(✓
0) , (3.4)

with the kernel

D⇤(✓) =
✓22 � ✓21 + 2i✓1✓2

|✓|4 . (3.5)

In this context ✓1 and ✓2 are the real and imaginary parts of the direction ✓, which are
expressed as complex number in a Cartesian frame. In Fourier space this convolution
simplifies to

�̃c(`) = e2i�̃(`) , (3.6)

where e2i� = (`1 + i`2)2/`2. Here the representation of the two-dimensional vector ` as
complex number is used, with the corresponding polar angle �.

The shear at position ✓ has two independent components, which can be expressed as
tangential shear �t and cross shear �⇥ relative to an orientation '. These components
are defined as the real and the imaginary part of the cartesian shear �c(✓) rotated by the
polar angle ':

�(✓;') = �e�2i' �c(✓) = �t(✓;') + i�⇥(✓;') . (3.7)

Similar to the lensing convergence, the number density contrast of lenses on the sky
g(✓) is obtained by projecting the three-dimensional number density contrast of galaxies
�g(x) along the line-of-sight (e.g. Hoekstra et al. 2002),

g(✓) =

Z �h

0
d� pd(�) �g (fK(�)✓,�) , (3.8)

where the probability density d� pd(�) of lens distances is estimated from the probability
density function dz pz(z) of lens redshifts. With the number density of lens galaxies on
the sky denoted by Ng(✓), and the mean number density of lens galaxies by Ng, g(✓) is
alternatively given by

g(✓) =
Ng(✓) � Ng

Ng

. (3.9)

3.1.1 Galaxy-galaxy lensing

G2L probes the the average (surface-)matter density around galaxies by considering the
second-order cross-correlation between the projected number density contrast of lens galax-
ies g(✓) and the shear �(✓ + #;'). Here the observed position of the source relative to
the lens at ✓ is denoted by # = #ei'. The geometry of G2L is shown in Fig. 3.1. The G2L



36 CHAPTER 3. GALAXY-GALAXY(-GALAXY) LENSING

Figure 3.1: Left: Illustration of the parametrisation of the G2L correlator h�ti(#). Right: Illustration of
the parametrisation of the G3L galaxy-galaxy-shear correlator G(#1,#2,�3) with one lens at ✓1, the other
lens at ✓2, and the source at ✓3. [Source: Schneider & Watts (2005)]

correlator is defined by the average of the tangential shear over many lens-source pairs,
formally the ensemble average

h�ti(#) = hg(✓)�(✓ + #;')i , (3.10)

(e.g. Hoekstra et al. 2002, Schneider &Watts 2005). Note that �⇥ vanishes in the statistical
average due to parity invariance (Schneider 2003). Due to statistical homogeneity and
isotropy the correlator depends only on the separation #. The physical interpretation of
G2L is that of stacking the convergences around individual lens galaxies, thereby probing
the average convergence profile (#) = hg(✓)(✓+#)i around lens galaxies (Kaiser 1995):

h�ti(#) =
✓

2

#2

Z #

0
d#0 #0 (#0)

◆
� (#) . (3.11)

In practice h�ti(#) is estimated by averaging the tangential shear, for a selected population
of lenses, over many lens-source pairs in bins of #.

3.1.2 Galaxy-galaxy-galaxy lensing

Schneider & Watts (2005) extended the concept of G2L to third-order and introduced
two new classes of galaxy-shear correlation functions. Whereas the first class considers
the cross-correlation of the shear of two background galaxies and the position of one
foreground galaxy, the second class considers the cross-correlation of the positions of two
lenses at ✓1 and ✓2, and the shear at position ✓3. This work is concerned with the latter
case, for which the lens-lens-shear correlator G is defined as:

G(#1,#2) = G(#1,#2,�3) =

⌧
g(✓1)g(✓2)�

✓
✓3;

'1 + '2

2

◆�
(3.12)

= �e�i('1+'2) hg(✓1)g(✓2)�c(✓3)i .

In this configuration the rotated shear is defined with respect to the line that bisects the
angle �3 = '2 �'1 spanned by the two separation vectors #1 = ✓1 �✓3 and #2 = ✓2 �✓3
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Figure 3.2: Illustration of the coordinate frame for the excess mass maps. [Source: Simon et al. (2019)]

describing the lens positions relative to the source position (see Fig. 3.1). The correlator G
contains no contributions from correlators smaller than third-order, depends only on the
galaxy-matter bispectrum und thus vanishes for Gaussian random fields (e.g. Mo et al.
2010).

Excess mass maps

As previously mentioned, the G2L correlator h�ti(#) stacks the convergence measured
around individual lenses and thereby relates to the average convergence profile about an
average lens (Eq. 3.11). Similarly, the G3L correlator G stacks the convergence measured
around individual lens pairs, providing a measure of the average convergence profile about
lens pairs, which can be expressed by the excess mass map (Saghiha 2017, Simon et al.
2019):

�emm(#; ✓12) = hg(✓1)g(✓2)(#)i (3.13)

=
⇣
1 + wgg(✓12)

⌘
pair(#; ✓12) � indiv(|# � ✓1|) � indiv(|# � ✓2|) + 0 .

A new coordinate system has been introduced for the excess mass maps, where the lenses
are located at ✓1 = �✓12ex/2 and at ✓2 = +✓12ex/2 (see Fig. 3.2). The first term in
Eq. (3.13) originates from the convergence stacking,

pair(#; ✓12) =
hNg(✓1)Ng(✓2)(#)i

hNg(✓1)Ng(✓2)i
, (3.14)

which is weighted by the angular clustering correlation function of galaxies,

1 + wgg(✓12) =
hNg(✓1)Ng(✓2)i

N
2
g

. (3.15)

The average convergence around individual lenses as measured by G2L is captured in the
terms indiv(|# � ✓i|) with i = 1, 2:

indiv(|# � ✓i|) =
hNg(✓i)(# � ✓i)i

Ng

. (3.16)



38 CHAPTER 3. GALAXY-GALAXY(-GALAXY) LENSING

The relation between the excess mass maps �emm(#; ✓12) and the correlator G is only
defined up to the constant 0 (see Eq. 3.4). Therefore, all maps in this work are o↵set
such that the average excess-convergence over the map vanishes.

Aperture statistics

Another way of expressing the lens-lens-shear correlations is by the third-order moment
of the aperture statistics (Schneider & Watts 2005). Aperture statistics quantify the
moments of fluctuations in the projected matter density field (✓) and in the projected
galaxy number density field g(✓) within apertures of angular scale ✓ and for a specific
radial filter function. Here the filter function from Crittenden et al. (2002),

U✓(|#|) = 1

✓2
u

✓
|#|
✓

◆
, (3.17)

with

u(x) =
1

2⇡

�
1 � x2/2

�
e�x2/2 , (3.18)

is used, which peaks in Fourier space at the angular wave number ` =
p
2/✓. The filter is

compensated such that Z 1

0
d##U✓(#) = 0 . (3.19)

The aperture mass is given by

Map(✓) =

Z 1

0
d2# U✓(|#|)(#) , (3.20)

and the aperture number count by

N (✓) =

Z 1

0
d2# U✓(|#|)g(#) . (3.21)

Assuming that the apertures are centred on ✓c = 0, the aperture statistics is defined as:

hN 2Mapi(✓1; ✓2; ✓3) = hN (✓1)N (✓2)Map(✓3)i

=

Z
d2#1 U✓1(#1)

Z
d2#2 U✓2(#2)

Z
d2#3 U✓3(#3)

⇥ hg(#1)g(#2)(#3)i . (3.22)

In this work, only case with ✓1 = ✓2 = ✓3 are considered and for convenience the shorthand
notation hN 2Mapi(✓) = hN 2Mapi(✓; ✓; ✓) is used.

3.2 Halo model interpretation

To predict G2L and G3L using the halo model formalism introduced in Chapter 2, the
relation between the observables h�ti(#), �emm(#; ✓12), and hN 2Mapi(✓1; ✓2; ✓3) and the
galaxy-matter cross-spectra of second- and third-order is explored in the following two
subsections.
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3.2.1 Modelling galaxy-galaxy lensing

The real-space observable h�ti(#) can be related to the statistics of the underlying galaxy
and dark matter density fields, in particular to the projected galaxy-matter power spec-
trum P g(`) (Eq. 2.36) derived in the halo model framework in Chapter 2. Since the galaxy
distribution is a homogeneous random field, Eq. (3.10) can be rewritten as

h�ti(#) = hg(0)�(#;')i . (3.23)

Applying Eq. (3.7) allows one to separate the '-dependence, and to transform g(0) and
�c(#) into Fourier space:

h�ti(#) = �e�2i'hg(0)�c(#)i

= �e�2i'

Z
d2`

(2⇡)2

Z
d2`0

(2⇡)2
e�i#·`0 h̃g(`)�̃c(`0)i

= �
Z

d2`

(2⇡)2

Z
d2`0

(2⇡)2
e�i#·`0 e2i(��') h̃g(`)̃(`0)i . (3.24)

In the last step, the shear was transformed into the convergence applying the Kaiser-
Squires relation �̃c(`0) = e2i�̃(`0). Identifying the ensemble average h̃g(`)̃(`0)i with the
angular cross-power spectrum P g(`),

h̃g(`)̃(`0)i = (2⇡)2 �D(`+ `

0)P g(`) , (3.25)

Eq. (3.24) can be written as

h�ti(#) = �
Z

d2`

(2⇡)2
ei#·` e2i(��') P g(`)

= � 1

(2⇡)2

Z 1

0
d` `

Z 2⇡

0
d'0ei#`cos'

0
e2i'

0
P g(`)

=
1

(2⇡)

Z 1

0
d` `P g(`)J2(`#) . (3.26)

Here J2(`#) is the second-order Bessel function of first kind,

J2(z) = � 1

2⇡

Z 2⇡

0
d� eizcos(�) e2i� . (3.27)

By applying Eq. (3.26), the halo model predictions for P g(`) can be transformed into the
mean tangential shear around lenses. For this work, this step is realised using a numerical
code written by Patrick Simon (priv. comm.).

3.2.2 Modelling galaxy-galaxy-galaxy lensing

Similarly, the observables of G3L, the excess mass maps �emm(#; ✓12) and the apertures
statistics hN 2Mapi(✓1; ✓2; ✓3), can be related to the angular galaxy-matter bispectrum
Bgg(`1, `2; `3) defined in Eq. (2.36).
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Excess mass maps

The excess mass defined in Eq. (3.13) is related to the bispectrum Bgg(`1, `2; `3) through

�emm(#; ✓12) = hg(✓1)g(✓2)(#)i

=

Z
d2`1
(2⇡)2

Z
d2`2
(2⇡)2

Z
d2`3
(2⇡)2

e�i✓1·`1 e�i✓2·`2 e�i#·`3 h̃g(`1)̃g(`2)̃(`3)i

=
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d2`1 d2`2 d2`3

(2⇡)4
e�i✓1·`1�i✓2·`2�i#·`3 �D(`1 + `2 + `3)B

gg(`1, `2; `3)

=
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d2`1 d2`2
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e�i`1·(✓1�#)�i`2·(✓2�#)Bgg(`1, `2;�`1 � `2) , (3.28)

with

h̃g(`1)̃g(`2)̃(`3)i = (2⇡)2 �D(`1 + `2 + `3)B
gg(`1, `2;�`1 � `2) . (3.29)

The integral transformation of Bgg(`1, `2;�`1 � `2) to �emm(#; ✓12) is, for this work,
done numerically by using an approximate multipole expansion of the bispectrum to save
computation time. This approach is based on a numerical code and on notes by Patrick
Simon (priv. comm.), which are reproduced with his permission in Appendix E.

Aperture statistics

The aperture statistics defined in Eq. (3.22) is related to Bgg(`1, `2;�`1 � `2) through

hN 2Mapi(✓1; ✓2; ✓3) = hN (✓1)N (✓2)Map(✓3)i (3.30)

=
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Z
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ũ(`1✓1)ũ(`2✓2)ũ(|`1 + `2|✓3)Bgg(`1, `2;�`1 � `2) ,

where |`1 + `2| =
p
`21 + `22 + 2`1`2 cos� is the modulus of `3. In this derivation the

following relation has been used:
Z

d2#U✓(#) e
�i`·# =

1

✓2

Z
d2#u(#/✓) e�i`·# =

Z
d2xu(x) e�i✓`·x = ũ(`✓) . (3.31)

Similar to the numerical transformation of Bgg(`1, `2;�`1 �`2) to the excess mass maps,
the transformation to the aperture statistics (Eq. 3.30) is performed using a multipole
expansion of the bispectrum (Appendix E). The transformation is realised using the men-
tioned numerical code by Patrick Simon (priv. comm.).
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3.2.3 Galaxy-galaxy-galaxy lensing for a Gaussian bispectrum

To test the numerical implementation of the integral transformations (Eqs. 3.28 and 3.30),
a multivariate Gaussian bispectrum of the form

B(`1, `2; `3) =
⌘4

2⇡

✓
e�

⌘2`21
2

� ⌘2`22
2 + e�

⌘2`21
2

� ⌘2`23
2 + e�

⌘2`22
2

� ⌘2`23
2

◆
, (3.32)

is assumed for Bgg(`1, `2; `3). The parameter ⌘ (in arcmin) defines the angular scale
of the bispectrum. For this particular bispectrum Eqs. (3.28) and (3.30) can be solved
analytically. A lengthy analytical derivation results in:

�emm(#; ✓12) =
1

(2⇡)3


e

�(✓1�#)2�(✓2�#)2

2⌘2 + e
�(✓1�✓2)

2�(✓2�#)2

2⌘2 + e
�(✓1�✓2)

2�(✓1�#)2

2⌘2

�
,

(3.33)
and

hN 2Mapi(✓1; ✓2; ✓3) = P ⇥
h
h1(✓1, ✓2, ✓3) + h1(✓2, ✓1, ✓3) + h1(✓1, ✓3, ✓2) (3.34)

+ h1(✓3, ✓1, ✓2) + h1(✓2, ✓3, ✓1) + h1(✓3, ✓2, ✓1)

� h2(✓1, ✓2, ✓3) � h2(✓1, ✓3, ✓2) � h2(✓2, ✓3, ✓1)
i
,

with the prefactor P = ⌘4

(2⇡)4
✓21✓

2
2✓

2
3

8 . The two auxiliary functions h1 and h2 are defined as,

h1(x, y, z) =
128⇡

⇣
y2+⌘2+z2

2

⌘ h
2
⇣
x2+⌘2+z2

2

⌘⇣
y2+⌘2+z2

2

⌘
+ z4

i

h
�4

⇣
x2+⌘2+z2

2

⌘⇣
y2+⌘2+z2

2

⌘
+ z4

i4 , (3.35)

and

h2(x, y, z) =
64⇡z2

h
8
⇣
x2+⌘2+z2

2

⌘⇣
y2+⌘2+z2

2

⌘
+ z4

i

h
�4

⇣
x2+⌘2+z2

2

⌘⇣
y2+⌘2+z2

2

⌘
+ z4

i4 . (3.36)

The transformation code is tested by comparing the numerical results for �emm(#; ✓12)
and hN 2Mapi(✓1; ✓2; ✓3) to the analytically computed results.
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Chapter 4

Halo model fits to the Millennium
Simulation & the CFHTLenS G2L

To test whether a ‘standard’ halo model, as introduced in Chapter 2, can describe the
observed second- and third-order galaxy-galaxy lensing signal consistently, the model is in
a first step fitted to the galaxy-galaxy lensing (G2L) signal measured with the Canada-
France Hawaii Telescope Lensing Survey (CFHTLenS) published in Saghiha et al. (2017;
hereafter Saghiha+17). In this chapter the best-fit results for 29 lens galaxy samples in
stellar mass, luminosity, and galaxy-type, further di↵erentiating between low- and high-
z samples, are presented. The best-fit parameters for the di↵erent galaxy samples are
then used in Chapter 6 to predict the corresponding galaxy-galaxy-galaxy lensing (G3L),
which is in a final step compared to the CFHTLenS G3L measurements by Simon et al.
(2013; hereafter Simon+13). Additionally, the best-fit parameters for the di↵erent galaxy
samples are used to derive the mean parent halo mass hMhi, the fraction of central galaxies
fcen, the first moment of the halo occupation distribution (HOD) hN(Mh)i, and the ratio
of stellar to halo mass M⇤(Mh)/Mh. From the results conclusions are drawn about the
distribution of stellar mass among halos.

Before testing the capability of the halo model to describe the clustering of dark matter
and galaxies as probed by the CFHTLenS G2L and G3L, it is necessary to determine
limitations of the model and the fitting procedure independently of the CFHTLenS data.
To this end, in the first part of this chapter the accuracy of the model predictions is
explored using mock data. More specifically, the model is fitted to the G2L signal measured
by Saghiha+17 from the Millennium Simulation (Springel et al. 2005) in which galaxies
have been included using the semi-analytical model (SAM) from Henriques et al. (2015;
hereafter Henriques+15). For the mock data the mean parent halo mass, the fraction
of central galaxies as well as the HOD are known for each stellar mass sample. The
accuracy of the model and the fitting routine can thus be quantified by comparing the
model predictions for these quantities to their ‘true’ values.

The content of this chapter is being prepared for submission to Astronomy & Astro-
physics.
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Table 4.1: Selection criteria of the lens samples for the G2L and G3L analysis adopted in this work
(based on Simon+13). The stellar mass bins (smx), luminosity bins (Lx) and galaxy-type bins (ETG: early-
type galaxies; LTG: late-type galaxies) are further subdivided into ‘low-z’ (0.2  zph < 0.44) and ‘high-z’
(0.44  zph < 0.6) samples. For the stellar mass and the luminosity estimates h = 0.73 is assumed.

Sample Selection criteria Sample Selection criteria Sample Selection criteria

sm1 0.5  M⇤/1010M� < 1.0 L1 �18  Mr < �17 ETG 0 T B< 2 | � 23  Mr < �21
sm2 1.0  M⇤/1010M� < 2.0 L2 �19  Mr < �18 LTG 2 T B< 6 | � 23  Mr < �21
sm3 2.0  M⇤/1010M� < 4.0 L3 �20  Mr < �19
sm4 4.0  M⇤/1010M� < 8.0 L4 �21  Mr < �20
sm5 8.0  M⇤/1010M� < 16.0 L5 �22  Mr < �21
sm6 16.0  M⇤/1010M� < 32.0 L6 �23  Mr < �22
sm7 32.0  M⇤/1010M� < 64.0

4.1 Data

4.1.1 CFHTLenS

The CFHTLenS is a 154 deg2 multi-colour (u⇤g0r0i0z0) optical survey performed with the
MegaPrime/MegaCam of the Canada-France Hawaii Telescope at Mauna Kea, optimised
for weak lensing analyses (Heymans et al. 2012, Erben et al. 2013). The CFHTLenS
data comprises publicly available shear and photometric redshift catalogues, allowing the
computation of the G2L and the G3L signal for di↵erent lens galaxy samples (Simon+13,
Velander et al. 2014, Fu et al. 2014, Hudson et al. 2015, Coupon et al. 2015).

The G2L signal of the CFHTLenS data used in this work was measured and provided
by Patrick Simon (priv. comm.) and is identical with the one published in Saghiha+17.
Following Simon+13, 129 of 171 pointings appropriate for a weak lensing analysis are used
(Heymans et al. 2012), where the survey area is further reduced by masking, leading to
an e↵ective area of 94.5 deg2. Source and lens galaxies are selected by their brightness,
i0source  24.7 and i0lens  22.5, and by their photometric redshift zph. Source galaxies
cover the redshift interval 0.65  zph < 1.2. Lens galaxies are subdivided into a low (‘low-
z’, 0.2  zph < 0.44) and a high photometric redshift sample (‘high-z’, 0.44  zph < 0.6).
With respect to their physical properties, galaxies are subdivided into stellar mass (smx),
luminosity (Lx) as well as an early-type (ETG) and a late-type galaxy (LTG) sample as
given in Table 4.1. Estimates for the stellar masses are obtained from fitting a galaxy
spectral energy distribution (SED) model to the galaxy photometry as described in Ve-
lander et al. (2014). The same is done for the classification of galaxy-types, for which
an additional cut in luminosity (�23  Mr < �21) is made to obtain a volume-limited
sample. The classification of galaxies as early- or late-type galaxies is based on the value
of the T B parameter in Bayesian photometric redshift (BPZ) estimation, which provides
the most likely galaxy SED (for details see Beńıtez 2000). The galaxy luminosities are
estimated from the absolute r0-band magnitudes. Due to very faint limits the L1 high-z
sample contains too few lenses for G2L and G3L measurements. The L2 high-z sample
is a↵ected by incompleteness. The G2L signal is measured for b = 13 logarithmic bins of
the lens-source separation ✓, ranging from 0.5 arcmin to 20 arcmin. To fit the CFHTLenS
data, the WMAP9 cosmology (Hinshaw et al. 2013) is adopted (Table A.1).



4.2. METHOD 45

4.1.2 Mock data – Millennium Simulation & Semi-Analytical Model

The Millennium Simulation is a cosmologicalN -body simulation of the dark matter density
field (Springel et al. 2005). Assuming a ⇤CDM cosmology based on the first-year WMAP
data (⌦⇤ = 0.75, ⌦b = 0.045, ⌦m = 0.25, �8 = 0.9, ns = 1 and H0 = 73 km s�1Mpc�1;
Spergel et al. 2003) the simulation traces the evolution of 21603 dark matter particles from
redshift z = 127 to today in a comoving volume of 500h�1Mpc side length. The spatial
comoving resolution of the simulation is 5h�1kpc, allowing the resolution of individual
dark matter halos. To implement galaxies into the dark matter simulation, a SAM is
used (e.g. Bower et al. 2006, Guo et al. 2011, Henriques+15). For the resulting simulated
realisation of the Universe, the lensing distortions are obtained by tracing light-rays from
source galaxies on their path through the large-scale dark matter distribution associated
with lens galaxies using a multiple-lens-plane approach (Hilbert et al. 2009). The output
are convergence and shear maps for 64 fields of view of 4⇥ 4 deg2 each, along with galaxy
redshifts, positions and additional properties, such as parent halo mass, stellar mass, and
specifications on whether a galaxy is a central or a satellite galaxy.

The mock G2L data, used for the analysis in this work, is based on the Millennium
Simulation employing the SAM by Henriques+15 and is published in Saghiha+17 for the
stellar mass samples sm1 to sm6 defined in Table 4.1. To ensure that the galaxy samples
have the same lensing e�ciency as those of CFHTLenS, Saghiha+17 apply a rejection
method to reproduce the redshift distributions of galaxies in CFHTLenS. Specifically,
mock galaxies are randomly discarded to match the number density distribution of galaxies
dnCFHTLenS/dz. Contrary to CFHTLenS, the mock G2L signal does not contain shape
noise, so that the errors result solely from the cosmic variance of the 64 fields.

For the accuracy test of the halo model using mock data, the total number of galaxies
Ngal, and the fraction of centrals fcen are computed for each stellar mass sample defined in
Table 4.1. Errors on Ngal and fcen are estimated from the cosmic variance of the 64 fields.
The estimate for the mean halo mass per sample hMhi is taken from Saghiha+17. The
reference mock HODs for the di↵erent samples hN(Mh)i were kindly computed by Stefan
Hilbert (2016; priv. comm.). The HODs are for two mean redshifts of z̄ph = 0.3, 0.5 by
counting the number of galaxies per parent halo mass Mh in bins of 0.1 dex in log10(M200)
for the stellar mass samples given in Table 4.1. A statistical error of 0.3 dex in stellar mass
is assumed to be consistent with the selection in CFHTLenS (Velander et al. 2014).

4.2 Method

Halo model fits are performed to each of the mock and CFHTLenS G2L signals �t(✓)
measured for the 29 galaxy samples. In addition to the G2L signal, the total number of
galaxies per sample Ngal is used for the fitting. The data vector is therefore given by d =
(�obst,1 , ..., �

obs
t,b , N

obs
gal )

T with b = 13 being the number of bins in angular separation ✓. Follow-

ing the same notation, the model vector readsm(p) = (�model
t,1 (p), ..., �model

t,b (p), Nmodel
gal (p))T

with the vector of model parameters p = (�log(Mh),�, log10M1, log10Mth,↵cen)T . The best-
fit model parameters and their uncertainties are obtained using the maximum-likelihood
method (e.g. Barlow 1989).
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4.2.1 Fitting procedure

The model fits to the CFHTLenS data are performed using the MINUIT package1, an anal-
ysis tool for function minimisation developed at the Conseil Européen pour la Recherche
Nucléaire (James & Roos 1975). Given the data vector d, the fitting routine aims for find-
ing the maximum likelihood (ML) point by minimising the negative of the log-likelihood
function L(d|p) := �2lnL(d|p), which in the Gaussian case is up to a constant normali-
sation given by:

�2(d|p) = (d � m(p))T
⇣
Cobs

⌘�1
(d � m(p)) (4.1)

=
bX

i,j

h
�obst,i � �model

t,i (p)
i

·
⇣

C

obs
�t

⌘�1
�

ij

·
h
�obst,j � �model

t,j (p)
iT

+

h
Nobs

gal � Nmodel
gal (p)

i2

h
�obsNgal

i2 .

The 14⇥14 covariance matrix of the measurement Cobs is built up of the covariance matrix
of the G2L measurement Cobs

�t and of the variance in the total number of galaxies �obsNgal
:

Cobs =

0

BBBB@

0

C

obs
�t

...
0

0 . . . 0
⇣
�obsNgal

⌘2

1

CCCCA
. (4.2)

Both, Cobs
�t and �obsNgal

, are obtained by Jackknifing (e.g. Efron & Stein 1981, Knight 1999,

Shirasaki et al. 2017), which ideally accounts for source shape noise, sampling noise and
cosmic variance (Simon+13).

Jackknifing is a resampling technique according to which an estimate of the statistical
error on a parameter X is determined by splitting the data into S subsamples, and then
leaving out the ↵-th subsample for an estimate XJK

(↵) of X. With the mean of the S

resampled estimators XJK
(↵),

X̄JK =
1

S

SX

↵=1

XJK
(↵) , (4.3)

the estimator of the Jackknife error of X given by

�JKX =

vuutS � 1

S

SX

↵=1

⇣
XJK

(↵) � X̄JK
⌘2

. (4.4)

1
http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/

http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/
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In the case of CFHTLenS S = 129 pointings are used for Jackknifing, whereas in the case
of the simulations S = 64 fields are employed.

Applying the Jackknifing method to the total number of galaxies gives

�obsNgal
=

vuutS � 1

S

SX

↵=1

⇣
NJK

gal,(↵) � N̄JK
gal

⌘2
. (4.5)

This expression follows from the assumption that each subsample (pointing/field) contains
on average the same number of galaxies, so that an estimator for the total number of
galaxies is given by

NJK
gal,(↵) =

S

S � 1

SX

j 6=↵

Ngal,j ⇡
SX

j 6=↵

Ngal,j , (4.6)

if the number of subsamples S is large. The error of neglecting the prefactor in the last
step is less than 1% for CFHTLenS and less than 2% for the mock data.

The Jackknife estimate for the covariance matrix of the G2L observation C

obs
�t is anal-

ogously given by the matrix elements

Cobs
�t,ij =

S � 1

S

SX

↵=1

h
�JKt,(↵)(✓i) � �̄JKt (✓i)

i h
�JKt,(↵)(✓j) � �̄JKt (✓j)

i
. (4.7)

For the mock data, however, the covariance matrix C

obs
�t is estimated by the sample co-

variance of the S subsamples, with elements

Cobs
�t,ij =

1

S � 1

SX

↵=1

[�t,↵(✓i) � �̄t(✓i)] [�t,↵(✓j) � �̄t(✓j)] , (4.8)

where �t,↵(✓i) is the G2L measurement of the i-th bin in separation ✓ in the ↵-th simulated
field and �̄t(✓i) the sample mean of the S realisations in the i-th bin in ✓. In order to obtain
an unbiased estimate for the inverse of the covariance matrix C

obs
�t , as needed for Eq. (4.1),

the inverse of Eq. (4.7) and (4.8) need to be rescaled by the factor (S � 2� b)/(S � 1) for
Gaussian statistics, such as assumed here (Hartlap et al. 2007).

By minimising the �2-function (Eq. 4.1) the best estimate for the model parameter

values at the maximum likelihood point pML =
�
�log(Mh),�, log10M1, log10Mth,↵cen

�T
is

determined. For the fitting, restrictions on the parameter space are set in reference to
Coupon et al. (2012) and Clampitt et al. (2017) with �log(Mh) 2 [0.01; 0.6], � 2 [0.6; 2],
log10M1 2 [11; 16], log10Mth 2 [10; 15], ↵cen 2 [0; 1].

4.2.2 Error estimates on best-fit parameters and model predictions

The error on the best-fit parameters is set by the width of the probability distribution
function of the model parameters p around the ML point given the data vector d. The
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so-called posterior distribution post(p|d) describes the posterior parameter uncertainty
and is according to the Bayes’ theorem given by

post(p|d) / e�
1
2
L(d|p) · e�

1
2
P(p) , (4.9)

with the log-likelihood L(d|p) and the logarithmic prior distribution P(p). The posterior
distribution is here first approximated by a Gaussian, the importance function imp(p|d),
and then resampled to its ‘true’ distribution using importance sampling (Barlow 1989).

The exact method is as follows. For a Gaussian approximation, Eq. (4.1) can be written
in terms of the Fisher information matrix of the model parameters Fmodel,

L(d|p) = (d � m(p))T
⇣
Cobs

⌘�1
(d � m(p)) ⇡ (pML � p)T Fmodel (pML � p) , (4.10)

for which

Fmodel
ij :=

✓
@m(p)

@pi

◆T h
Cobs

i�1
✓
@m(p)

@pj

◆
, (4.11)

(Cramér 1946, Rao 1965, Tegmark et al. 1997) where Cobs is defined in Eq. (4.2). The
prior distribution also uses a Gaussian model,

P(p) = (pML � p)T Fprior (pML � p) . (4.12)

Assuming that the priors are uncorrelated, Fprior contains on the diagonal ��2
ii , where

�ii = �pi/
p
12 and �pi is the allowed parameter range. The priors are centred on the

ML point pML. Then the importance function reads

imp(p|d) / e�
1
2
(pML�p)T (Fmodel+Fprior) (pML�p) =: e�

1
2
I(p|d) . (4.13)

To account for deviations of the posterior distribution from the Gaussian approxi-
mation, importance sampling is applied. Following Press et al. (2007) for each best-fit
parameter set S random realisations p

r=1,...,S
ML are drawn from the importance function

imp(p|d) with mean pML, representing the best-fit result, and with covariance Cmodel,
introducing the errors on the parameters. An estimate for Cmodel is given by the inverse

of the Fisher matrix
�
Fmodel

��1
(Cramér 1946, Rao 1965). A random realisation is then

given by p

r
ML = pML + Az

r, with Cmodel = AA

T . The matrix A can be obtained by
Cholesky decomposition as Cmodel is hermitian positive-definite. Through the vector z

r,
which contains five independent standard normal variates components, the Gaussian ran-
dom process enters the procedure (Box-Mueller method). Then every realisation r of the
importance function is resampled to the posterior distribution by giving it a weight,

wr :=
post(pr|d)
imp(pr|d) / e�

1
2
[L(d|pr)+P(pr)� I(pr|d) ] . (4.14)

The weights wr are normalised, such that
PS

r=1w
r = 1.

The weights wr are used to weight every of the S realisations pr
ML with respect to their

importance. Likewise, the realisations of the predicted quantities, e.g. derived halo quan-
tities, G2L, and G3L are weighted with wr. The uncertainty on the model parameters and
all derived quantities is then given by the variance of the S weighted random realisations.
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4.3 Limitations of the model and the fitting procedure

There are two major di�culties that the proposed method – to predict G3L based on the
best-fit HOD parameters obtained from halo model fits to G2L of CFHTLenS – could run
into: limitations of the fitting routine to converge towards the global minimum of �2 and
the inability of the model to describe the observables. This section explores these potential
problems by fitting the model to mock G2L data from the Millennium Simulation. Since
the mean parent halo mass, the fraction of central galaxies as well as the HOD are known
for the mock data, their comparison to the values obtained from the best-fits allows one
to determine the accuracy of the fitting routine and the ability of the model to describe
G2L, independently of the CFHTLenS data.

4.3.1 Model fits to G2L mock data

The G2L signal in the Millennium Simulation as a function of separation ✓ is shown
together with the best-fit model in Fig. 4.1 for the di↵erent stellar mass samples, for low
redshifts in the left column and high redshifts in the right column. The 1� error bars
of the Millennium Simulation G2L signal are smaller than the data points as they only
account for cosmic variance and not for shape noise. An expanded version of this figure
with the 1� uncertainties on the G2L best-fits is shown in the appendix in Figs. F.1 and
F.2. A summary of the best-fit HOD parameters and the respective best-fit �2 values is
given in Table 4.2. The best-fit parameters determine the best-fit HODs (Eq. 2.21) for the
di↵erent galaxy samples. Therefore, the best-fits parameters and the HODs are discussed
simultaneously in the following. The HODs are shown in Fig. 4.2, with the colour coding
and line style as in Fig. 4.1.

10−4

10−3

10−2

1 10

γ t

θ [ arcmin ]

:: low−z :: :: high−z ::

1 10

θ [ arcmin ]

:: low−z :: :: high−z ::

sm1
sm2
sm3
sm4
sm5
sm6
sm7

Figure 4.1: Best-fit models (lines) to the G2L signals from the Millennium Simulation (symbols) using
the SAM by Henriques+15 for all stellar mass samples for low-z (0.2  zph < 0.44; left) and high-z
(0.44  zph < 0.6; right).
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Table 4.2: Best-fit HOD parameters obtained from model fits to G2L from the Millennium Simulation
using the SAM by Henriques+15 with �

2
/d.o.f. for each stellar mass sample for low-z (top) and for high-z

(bottom). The parameters characterising the halo mass M1 and Mth are given in h

�1 M�. Bold values for
�

2
/d.o.f. indicate a tension between best-fit model and measurement at the 95% confidence level.

low-z

Sample �log(Mh) � M1 Mth ↵cen �2/d.o.f.

sm1 0.27 ± 0.07 1.06 ± 0.02 (2.75 ± 0.26) ⇥1013 (6.07 ± 0.36) ⇥1010 0.07 ± 0.01 0.86
sm2 0.27 ± 0.05 1.00 ± 0.01 (2.83 ± 0.27) ⇥1013 (1.24 ± 0.06) ⇥1011 0.10 ± 0.01 0.84
sm3 0.28 ± 0.04 0.99 ± 0.01 (2.96 ± 0.42) ⇥1013 (2.64 ± 0.10) ⇥1011 0.16 ± 0.02 2.02
sm4 0.29 ± 0.03 1.02 ± 0.02 (4.90 ± 0.44) ⇥1013 (5.74 ± 0.24) ⇥1011 0.21 ± 0.02 4.96
sm5 0.20 ± 0.06 1.11 ± 0.02 (1.12 ± 0.10) ⇥1014 (1.07 ± 0.05) ⇥1012 0.17 ± 0.02 2.48
sm6 0.19 ± 0.08 1.28 ± 0.04 (2.59 ± 0.22) ⇥1014 (2.16 ± 0.15) ⇥1012 0.12 ± 0.01 2.17
sm7 0.10 ± 0.06 1.37 ± 0.07 (1.18 ± 0.22) ⇥1015 (4.51 ± 0.23) ⇥1012 0.03 ± 0.01 1.56

high-z

Sample �log(Mh) � M1 Mth ↵cen �2/d.o.f.

sm1 0.29 ± 0.07 1.09 ± 0.02 (5.05 ± 0.71) ⇥1013 (5.74 ± 0.39) ⇥1010 0.05 ± 0.01 1.68
sm2 0.33 ± 0.08 0.98 ± 0.02 (3.32 ± 0.24) ⇥1013 (1.18 ± 0.09) ⇥1011 0.09 ± 0.00 2.14
sm3 0.25 ± 0.05 0.96 ± 0.02 (3.08 ± 0.34) ⇥1013 (2.47 ± 0.10) ⇥1011 0.15 ± 0.02 2.05
sm4 0.24 ± 0.06 0.95 ± 0.02 (3.26 ± 0.37) ⇥1013 (5.46 ± 0.28) ⇥1011 0.25 ± 0.02 3.49
sm5 0.40 ± 0.03 1.02 ± 0.01 (6.21 ± 0.47) ⇥1013 (1.32 ± 0.07) ⇥1012 0.31 ± 0.03 7.15
sm6 0.25 ± 0.04 1.10 ± 0.05 (2.49 ± 0.18) ⇥1014 (2.25 ± 0.10) ⇥1012 0.13 ± 0.01 3.68
sm7 0.17 ± 0.10 1.37 ± 0.12 (1.12 ± 0.18) ⇥1015 (4.57 ± 0.42) ⇥1012 0.03 ± 0.00 1.72
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Figure 4.2: Best-fit HODs obtained from model fits to G2L from the Millennium Simulation using the
SAM by Henriques+15. Shown is the mean number of galaxies per dark matter halo hN(Mh)i as a function
of halo mass Mh for all stellar mass samples for low-z (left) and high-z (right).

The goodness of the fits is quantified by the reduced chi-squared �2/d.o.f. where the
number of degrees of freedom is nine, since 13 G2L data points plus the number of galaxies
are fit using a five parameter model. A tension between the model and the measurement
at the 95% confidence level is indicated by �2/9 > 1.88, which is the case for most of the
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stellar mass samples (marked boldface in Table 4.2). The high �2 values are, however, not
a consequence of the fitting routine failing to converge towards the global minimum of the
�2 function, but as can be seen in Figs. F.1 and F.2 a consequence of the small error bars
of the data without shape noise.

In general all HOD parameters are constrained by the data within an uncertainty of
20% with the exception of the scatter in the mean number of central galaxies at a fixed
halo mass �log(Mh). The best-fit values for �log(Mh) appear to be largely independent of
stellar mass (up to sm4 for low-z), having a mean value of 0.23 for low-z and around 0.28
for high-z. Regarding the halo masses Mth and M1, the former is always smaller than
the latter in agreement with their definition (see Sect. 2.2.1). Both increase with stellar
mass, which results in a shift of hN(Mh)i towards higher halo masses for higher stellar
masses M⇤, as can be seen in Fig. 4.2. There is no trend with redshift found for the
two mass-related HOD parameters. The parameter �, the slope of the satellite power-law
hNsat(Mh)i, shows a slight increase with increasing stellar mass. Finally, the parameter
↵cen, which was introduced in this work to allow for halos without a central galaxy, reaches
a maximum for medium stellar masses, and decreases towards low and high stellar masses.

4.3.2 Accuracy of predicting the mean halo mass and fraction of centrals

The advantage of the mock data is that the ‘true’ values for the mean parent halo mass
hMhi, and for the fraction of centrals fcen are known. Thus, the comparison of the predicted
values from the best-fit models with the ‘true’ reference values serves as a crucial test for
the model. The ‘true’ values of hMhi are taken from Saghiha+17 (Table 7 therein). The
‘true’ fcen values are computed from the mock data as the ratio of the number of central

Table 4.3: Derived quantities from the best-fit parameter sets for the mock lensing data in comparison
to the ‘true’ reference values. The results are given for all stellar mass samples for low-z (top) and high-z
(bottom). The comoving galaxy number density is given in h

3 Mpc�3 and the mean halo mass in h

�1M�.

low-z

Sample N true
tot Ntot f true

cen fV
cen hMhitrue hM z̄

hi

sm1 791888 ± 98216 819985 ± 71801 0.66 ± 0.01 0.79 ± 0.01 (3.8 ± 0.4)⇥1013 (2.37 ± 0.09)⇥1013

sm2 627542 ± 77832 671508 ± 58481 0.65 ± 0.01 0.74 ± 0.01 (4.2 ± 0.4)⇥1013 (2.42 ± 0.06)⇥1013

sm3 492654 ± 61110 552861 ± 65290 0.65 ± 0.01 0.72 ± 0.01 (4.8 ± 0.4)⇥1013 (2.77 ± 0.06)⇥1013

sm4 330867 ± 41054 330543 ± 27222 0.66 ± 0.02 0.75 ± 0.01 (5.5 ± 0.4)⇥1013 (3.06 ± 0.13)⇥1013

sm5 154859 ± 19219 134341 ± 14517 0.69 ± 0.02 0.80 ± 0.01 (6.4 ± 0.4)⇥1013 (3.76 ± 0.13)⇥1013

sm6 45909 ± 5700 47298 ± 4811 0.72 ± 0.02 0.85 ± 0.01 (7.7 ± 0.4)⇥1013 (4.86 ± 0.24)⇥1013

sm7 5510 ± 686 5350 ± 1086 0.77 ± 0.04 0.86 ± 0.01 no data (6.23 ± 0.65)⇥1013

high-z

Sample N true
tot Ntot f true

cen fV
cen hMhitrue hM z̄

hi

sm1 714827 ± 88655 749046 ± 98256 0.70 ± 0.01 0.85 ± 0.01 (2.8 ± 0.4)⇥1013 (2.26 ± 0.10)⇥1013

sm2 844574 ± 104746 844577 ± 50244 0.68 ± 0.01 0.76 ± 0.01 (3.3 ± 0.4)⇥1013 (2.41 ± 0.08)⇥1013

sm3 822437 ± 102015 735547 ± 89614 0.67 ± 0.01 0.72 ± 0.01 (3.8 ± 0.4)⇥1013 (2.78 ± 0.09)⇥1013

sm4 561931 ± 69722 603726 ± 55102 0.67 ± 0.01 0.71 ± 0.01 (4.6 ± 0.4)⇥1013 (3.16 ± 0.10)⇥1013

sm5 270062 ± 33513 326059 ± 22989 0.70 ± 0.01 0.78 ± 0.00 (5.4 ± 0.4)⇥1013 (3.75 ± 0.09)⇥1013

sm6 72471 ± 8990 70904 ± 4407 0.73 ± 0.02 0.82 ± 0.01 (6.3 ± 0.4)⇥1013 (4.49 ± 0.32)⇥1013

sm7 8102 ± 1007 8074 ± 1061 0.77 ± 0.04 0.89 ± 0.01 no data (6.38 ± 0.83)⇥1013
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Figure 4.3: Predicted mean halo mass hM z̄
h i (open triangles) as a function of stellar mass for the mock

data. The ‘true’ values are represented by the filled triangles with the solid line. The error bars represent
the standard deviation. For the stellar mass h = 0.73 is assumed. There is no ‘true’ hMhitrue value
available for sm7.
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Figure 4.4: Predicted fraction of centrals f

V
cen (green stars) as a function of stellar mass obtained for

the mock data. The ‘true’ values f

true
cen are represented by the gray stars with solid line. Also shown are

the predictions for the centrals-only scenario (fcen = 1, pluses) and the satellites-only scenario (fcen = 0,
crosses). The error bars represent the standard deviation. For the stellar mass h = 0.73 is assumed.

galaxies to the total number of galaxies per sample. As described in Sect. 2.2.2, the model
prediction for the mean halo mass hM z̄

hi is estimated for the mean redshift z̄ of the galaxy
sample, whereas the prediction for the fraction of centrals fV

cen is obtained by integrating
over the volume of the respective redshift bin.

The results are presented in Table 4.3, where the reference values from the mock data
are listed as ‘true’. Figure 4.3 shows the model prediction for the mean halo mass as a
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function of stellar mass in comparison to its ‘true’ reference with 1� error bars given for
both. The model significantly underestimates the halo mass for all stellar masses. The
relative deviation is 20 � 45%. Figure 4.4 shows the comparison of the model predictions
to the ‘true’ values for the fraction of centrals. The model overpredicts the fraction of
centrals, with the relative deviation varying between 5% and 20%.

To clarify the origin of the discrepancies a further test is applied. The model is fitted
to the mock G2L for a hypothetical scenario where only centrals exist (f true

cen = 1), and for
a scenario where only satellites exist (f true

cen = 0). The resulting best-fit fcen are shown in
Fig. 4.4. For the centrals-only scenario only a slight deviation of approximately 5% from
fcen = 1 exists for M⇤ & 1011. In the case of the satellites-only scenario the discrepancy
is much larger reaching up to 55%. This finding is particularly interesting, as it indicates
that the description of satellite galaxies in the model is not su�cient to reproduce the
mock data.

Ultimately, the relevance of the satellite problem for this work is minor, as the fraction
of satellites in simulations and observations is found to be 10% � 50% depending on
galaxy-type, stellar mass, and luminosity (Mandelbaum et al. 2006b, 2005). On average
this corresponds to the mixed case in Fig. 4.4 for which the deviation of the best-fit from
the ‘true’ values is around 15%. However, the inability of the employed halo model to
describe satellites correctly opens up opportunities for testing how the halo model needs
to be modified in order to represent the galaxy- dark matter connection correctly. Thus,
further investigations have been undertaken, which are presented in the following.

Treatment of satellite galaxies in the halo model

Two assumptions underpin the treatment of satellite galaxies in the halo model used in
this work. First, the distribution of satellite galaxies in the halo is assumed to follow that
of dark matter, i.e. ũg(k,Mh) = ũdm(k,Mh). Second, the model assumes that satellite
galaxies do not have subhalos. Whether a violation of these assumptions could explain
the inability of the model to adequately describe satellites is tested as follows.

The first assumption is relaxed by introducing an additional free model parameter
c, such that [ũg(k,Mh)]

c = ũdm(k,Mh). This allows satellites to have a more or less
concentrated distribution inside the halo than dark matter. The fit results, however, show
that the concentration parameter c is consistent with unity, implying that the description
of the satellites distribution is not the source of the discrepancy.

To test the second assumption, the model is again fitted to mock G2L data for a
satellites-only scenario, this time inferring the fraction of centrals in a scenario where all
satellite galaxies have a subhalo, versus a scenario where none of the satellite galaxies have
a subhalo. The mock G2L data for these two scenarios was kindly generated and provided
by Hananeh Saghiha (priv. comm.). As the halo model used in this work ignores subhalos,
the model is expected to perform better in the latter scenario. However, this is not the
case; the best-fit fraction of centrals with fcen ⇡ 0.2 is closer to zero for the scenario with
subhalos compared to fcen ⇡ 0.5 for the scenario without subhalos. It seems that the
reason why the model counterintuitively describes the scenario with subhalos better is
that in this case the G2L signal has a lower amplitude on small scales than in the scenario
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Figure 4.5: Best-fit G2L for all galaxies, satellites-only, satellites-only with subhalos, and satellites-only
without subhalos using mock data.

without subhalos (Fig. 4.5). To produce the large central amplitude of the G2L signal
found for the scenario without subhalos, the model presumably compensates for the lack
of the subhalos by placing a central galaxy in the halo. That might also explain why the
model overestimates the fraction of centrals, as seen in Fig. 4.4.

Why the amplitude of G2L for small scales is higher in the scenario without subhalos
is not clear. Maybe the satellites with subhalo feel only the potential of the subhalo but
not of the parent halo, whereas the satellites without subhalo feel the significantly larger
potential of the parent halo. Additionally, satellites without subhalo can be much closer
to the centre of the main halo. Rödiger (2009) also studied the G2L signal of satellites-
only and found a decrease of the signal for separations smaller than 1 arcmin, which is
not observed in this work (Fig. 4.5). The di↵erence might be explained by Rödiger (2009)
making only qualitative model predictions and not fitting the model to mock or real data.

4.3.3 Accuracy of the HOD model prediction

Figure 4.6 shows a comparison between hN(Mh)i derived from the best-fits and the ‘true’
ones for the stellar mass samples sm1 to sm6 for low-z. The high-z results are presented in
the appendix in Fig. F.3. Note that the ‘true’ hN(Mh)i are calculated for a single redshift
slice of z̄ = 0.32 for low-z, and z̄ = 0.51 for high-z (S. Hilbert, priv. comm.).

There are three characteristic di↵erences. First, the amplitude of hN(Mh)i is always
underestimated by the model for Mh & 1012 h�1M�. This reflects the finding that the
fraction of centrals is always overestimated or, equivalently, that the fraction of satellites
is always underestimated by the model (Fig. 4.4). Moreover, the model fits are based on
the mock data from Saghiha+17 who apply a selection method to match the observed
redshift distributions and thereby the amplitude of hN(Mh)i of Simon+13. The ‘true’
hN(Mh)i by Stefan Hilbert are, however, given for a single redshift slice resulting in a
higher number density and, thus, in a higher number of galaxies. In consequence the
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Figure 4.6: Best-fit HODs obtained from the model fits to G2L from the Millennium Simulation using
the SAM of Henriques+15 (dashed line with shaded 1� uncertainty region) in comparison to the ‘true’
HODs (symbols). The results are shown for the various stellar mass samples for low-z.

amplitude of hN(Mh)i is higher for the ‘true’ HODs. Second, the best-fit threshold mass
Mth in the stellar mass samples sm1 to sm4 is found to be smaller than for the ‘true’
HODs. The o↵set is largest for the smallest stellar mass sample, and the shift of the
HOD towards higher halo masses with stellar mass is less pronounced for the ‘true’ HOD
compared to the best-fit HOD. Third, the ‘true’ HOD shows a ‘bump’ feature at the
position of the threshold mass for sm1 and sm2, which can not be reproduced by the



56 CHAPTER 4. MODEL FITS TO THE MOCK & CFHTLENS G2L

model, because hN(Mh)i is by definition always monotonically increasing in the model.
Zheng et al. (2005) study HODs obtained from SAMs and find a bump feature, too, when
considering low stellar mass samples defined by bins. They argue that a HOD as the one
used in this work does not allow an upper cut-o↵ in hNceni, and is thus not suited to
describe samples binned in mass or luminosity.

4.3.4 Conclusions on the limitations of the fitting routine and the model

In this section, possible limitations of the fitting routine and the halo model were inves-
tigated using mock G2L data from the Millennium Simulation in combination with the
SAM by Henriques+15. In particular, the mean halo mass hMhi, the fraction of central
galaxies fcen, and the HOD were derived from the best-fit parameter sets. For the mock
data these quantities are known, allowing for accuracy tests of the employed halo model.

Tensions between the G2L model predictions and the measurements from the mock
data are found for nine out of 14 samples at a confidence level of 95%. Albeit these tensions
are a consequence of very small errors on the mock data, the accuracy tests hint at an
inability of the halo model to accurately reproduce the mock data: the comparison of the
model predictions to the ‘true’ values of hMhi and fcen shows that for some samples the
former deviates from the latter by about 45% and 20%, respectively. Because of this large
inaccuracy in the hMhi prediction, caution needs to be exercised when characterising halos
by their mean halo mass. It is shown that the discrepancy concerning fcen is related to the
treatment of satellites in the halo model as the deviations increase for the hypothetical
scenario of halos being populated exclusively by satellites. Follow-up investigations on
whether the absence of subhalos in the model causes these discrepancies could reveal
new insights in the physics of subhalos and satellites. Such investigations are deferred
to future work as the satellite-only case is for this work of little relevance: the actual
fraction of satellites is around 30%, which leads to an inaccuracy of predicting fcen of on
average 15%. Finally, although the model successfully reproduces the overall behaviour of
the mock HOD, it overestimates the amplitude of the HOD for smaller halo masses and
underestimates the amplitude for larger halo masses.

In conclusion, Fig. 4.1 shows that the model fits are successful and that the model as
well as the fitting routine can be applied to fit the CFHTLenS G2L. The discrepancies
explored with the accuracy tests indicate where caution needs to be taken when interpret-
ing quantities derived from the best-fit models, as well as promising follow-up research
regarding the description of satellites in the model.

4.4 Constraining HODs with CFHTLenS data

In this section, the model fits to the CFHTLenS G2L are presented and discussed for var-
ious galaxy samples of stellar mass, luminosity, and galaxy-type. The best-fit parameter
sets are used to predict the HOD, the mean halo mass hMhi, and the fraction of centrals
fcen for each sample. The results are compared to the findings for the Millennium Simu-
lation data presented in Sect. 4.3. Finally, the ratio of stellar to halo mass M⇤(Mh)/Mh,
as derived from the model predictions, is presented.
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4.4.1 Model fits to G2L CFHTLenS data

The CFHTLenS G2L signal as a function of separation ✓ together with the best-fit model
predictions is shown in Fig. 4.7 for low-z in the left column and high-z in the right column.
The first row shows the results for the stellar mass samples, the second row for the lumi-
nosity samples, and the third row for the early- and late-type galaxy samples. The error
bars are the 1� errors obtained from Jackknifing over 129 realisations. The 1� confidence
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Figure 4.7: Best-fit models (lines) to the CFHTLenS G2L signals (symbols) for the stellar mass (top),
the luminosity (middle), and the galaxy-type samples (bottom) for low-z (left) and high-z (right).
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regions around the best-fit G2L signals are omitted here for clarity but can be found in
separate figures in the appendix (Figs. F.4 - F.9). A summary of the best-fit HOD param-
eters and the respective �2/d.o.f. is given in Table 4.4. The HODs are shown in Fig. 4.8,
where the colour coding and line styles are identical to Fig. 4.7 and the respective figures
showing the Millennium Simulation results (Figs. 4.1 and 4.2).

For the majority of galaxy samples a good model fit can be stated. In a third of
the cases, however, the tension between the model and the observations is at the 95%

Table 4.4: Best-fit HOD parameters obtained from the model fits to the CFHTLenS G2L for low-z (top)
and high-z (bottom). Bold values for �

2
/d.o.f. indicate a tension between prediction and observations at

the 95% confidence level for nine degrees of freedom. The parameters characterising the halo masses M1

and Mth are given in h

�1 M�.

low-z

Sample �log(Mh) � M1 Mth ↵cen �2/d.o.f.

sm1 0.26 ± 0.15 1.08 ± 0.13 (2.05 ± 0.45) ⇥1013 (3.20 ± 1.53) ⇥1010 0.03 ± 0.01 1.84
sm2 0.22 ± 0.16 0.92 ± 0.23 (2.48 ± 0.70) ⇥1013 (3.24 ± 0.41) ⇥1011 0.21 ± 0.04 1.48
sm3 0.30 ± 0.16 0.94 ± 0.20 (2.72 ± 0.67) ⇥1013 (4.28 ± 1.18) ⇥1011 0.18 ± 0.05 3.77
sm4 0.25 ± 0.16 0.99 ± 0.24 (3.71 ± 0.96) ⇥1013 (5.43 ± 1.64) ⇥1011 0.16 ± 0.05 1.31
sm5 0.22 ± 0.14 0.83 ± 0.17 (4.92 ± 1.21) ⇥1013 (1.90 ± 4.28) ⇥1012 0.20 ± 0.06 2.67
sm6 0.22 ± 0.14 0.81 ± 0.17 (2.58 ± 2.11) ⇥1014 (3.61 ± 0.99) ⇥1012 0.15 ± 0.05 1.67
sm7 0.16 ± 0.16 1.01 ± 0.20 (8.02 ± 3.90) ⇥1014 (1.04 ± 0.48) ⇥1013 0.05 ± 0.02 1.91

L1 0.35 ± 0.14 1.40 ± 0.28 (8.44 ± 1.84) ⇥1013 (4.29 ± 1.90) ⇥1010 0.02 ± 0.01 2.96
L2 0.34 ± 0.15 1.19 ± 0.24 (2.38 ± 0.93) ⇥1013 (5.15 ± 1.54) ⇥1010 0.11 ± 0.03 1.07
L3 0.33 ± 0.16 1.24 ± 0.22 (1.75 ± 0.58) ⇥1013 (4.55 ± 1.46) ⇥1010 0.14 ± 0.04 1.20
L4 0.21 ± 0.16 1.08 ± 0.18 (1.56 ± 0.46) ⇥1013 (9.07 ± 3.36) ⇥1010 0.17 ± 0.07 1.24
L5 0.32 ± 0.17 0.85 ± 0.12 (1.47 ± 0.40) ⇥1013 (1.65 ± 0.54) ⇥1011 0.11 ± 0.04 1.14
L6 0.22 ± 0.13 0.88 ± 0.08 (4.69 ± 0.51) ⇥1013 (9.01 ± 1.25) ⇥1011 0.27 ± 0.04 2.64

ETG 0.23 ± 0.15 1.09 ± 0.14 (3.36 ± 0.61) ⇥1013 (4.04 ± 0.83) ⇥1011 0.18 ± 0.05 2.31
LTG 0.31 ± 0.14 0.77 ± 0.26 (1.96 ± 1.02) ⇥1014 (1.56 ± 0.53) ⇥1011 0.17 ± 0.05 1.75

high-z

Sample �log(Mh) � M1 Mth ↵cen �2/d.o.f.

sm1 0.23 ± 0.19 1.45 ± 0.25 (5.86 ± 1.43) ⇥1013 (1.18 ± 0.44) ⇥1011 0.09 ± 0.03 1.29
sm2 0.25 ± 0.17 1.02 ± 0.13 (2.53 ± 0.58) ⇥1013 (3.16 ± 0.68) ⇥1011 0.21 ± 0.05 2.58
sm3 0.23 ± 0.12 0.97 ± 0.07 (2.18 ± 0.22) ⇥1013 (3.56 ± 0.64) ⇥1011 0.21 ± 0.03 0.93
sm4 0.25 ± 0.13 0.91 ± 0.21 (3.37 ± 0.86) ⇥1013 (5.50 ± 1.36) ⇥1011 0.22 ± 0.07 1.52
sm5 0.20 ± 0.11 0.99 ± 0.26 (4.44 ± 2.10) ⇥1013 (1.12 ± 0.25) ⇥1012 0.18 ± 0.07 1.67
sm6 0.21 ± 0.15 0.91 ± 0.21 (8.77 ± 2.47) ⇥1013 (4.07 ± 1.38) ⇥1012 0.13 ± 0.07 1.35
sm7 0.19 ± 0.14 1.01 ± 0.22 (6.16 ± 5.07) ⇥1014 (9.72 ± 4.37) ⇥1012 0.05 ± 0.03 1.32

L1 - - - - - -
L2 0.22 ± 0.17 0.94 ± 0.12 (3.59 ± 2.06) ⇥1015 (2.77 ± 1.38) ⇥1012 0.01 ± 0.00 2.31
L3 0.30 ± 0.17 1.14 ± 0.26 (7.03 ± 2.18) ⇥1013 (1.39 ± 0.42) ⇥1011 0.10 ± 0.03 1.16
L4 0.16 ± 0.08 1.48 ± 0.14 (2.89 ± 0.51) ⇥1013 (6.84 ± 1.59) ⇥1010 0.13 ± 0.02 2.26
L5 0.24 ± 0.15 0.83 ± 0.20 (1.72 ± 0.76) ⇥1013 (2.88 ± 1.12) ⇥1011 0.27 ± 0.14 0.45
L6 0.23 ± 0.16 0.98 ± 0.20 (3.96 ± 0.99) ⇥1013 (6.62 ± 1.82) ⇥1011 0.27 ± 0.08 1.58

ETG 0.22 ± 0.16 0.99 ± 0.20 (2.93 ± 0.75) ⇥1013 (5.47 ± 1.42) ⇥1011 0.23 ± 0.07 0.50
LTG 0.21 ± 0.16 1.47 ± 0.33 (1.22 ± 1.81) ⇥1014 (8.38 ± 3.74) ⇥1010 0.12 ± 0.04 0.55



4.4. CONSTRAINING HODS WITH CFHTLENS DATA 59

confidence level, indicated by �2/9 > 1.88 (bold values in Table 4.4). Similar to the
fits to the Millennium Simulation data (Sect. 4.3.1), no significant trend of �log(Mh) with
stellar mass, luminosity, or galaxy-type is found. This is to be expected with respect
to stellar mass, as G2L is sensitive to �log(Mh) only for very high stellar masses with
M⇤ > 1010.5M� (Leauthaud et al. 2012) corresponding to galaxies from sm3 upwards.
With respect to luminosity, Coupon et al. (2012) find a rather constant value of ⇠ 0.3
for red galaxies, which agrees within the errors with the best-fit value found in this work.
In contrast, Zheng et al. (2007) and Zehavi et al. (2011) find a decrease of �log(Mh) with
luminosity (�22 < Mr < �18) by more than a factor of two. The quantitative di↵erences
possibly result from the di↵erent sample selection criteria as Zheng et al. (2007), Zehavi
et al. (2011), and Coupon et al. (2012) use luminosity threshold samples. In general, all
of the cited works mention di�culties constraining �log(Mh).

In contrast, the halo masses Mth and M1 are well constrained by the data. Both
increase with stellar mass in agreement with the results obtained from the fits to the mock
data (Fig. 4.9). As a consequence, with higher stellar mass the HOD hN(Mh)i shifts
towards higher halo mass, as can be seen in Fig. 4.8. As shown in Fig. 4.10, Mth shows
a clear increase with respect to increasing luminosity for low-z, and for Mr < �20 for
high-z, which is in agreement with Zheng et al. (2007), Zehavi et al. (2011), and Coupon
et al. (2012). The apparent increase of the halo masses with decreasing luminosity for
Mr > �20 in the high-z sample cannot be trusted as the data for L1 is not available
and the L2 sample is incomplete. In agreement with Coupon et al. (2012), the results
of this work indicate that in order to host a first galaxy, a dark matter halo needs to be
more massive if the first galaxy is an early-type galaxy (higher Mth) instead of a late-type
galaxy (lower Mth). At the same time, the threshold mass for satellites M1 is higher for
the late-type sample than for the early-type one.

The parameter �, which is the satellite power-law slope, is well constrained to � ⇡ 1,
in agreement with Zheng et al. (2007), Zehavi et al. (2011) and Coupon et al. (2012).

The amplitude ↵cen of the ‘step function’ of the HOD for CFHTLenS shows the same
behaviour as for the mock data: it peaks for intermediate stellar mass bins. Again no
clear trend with luminosity or galaxy-type can be seen for ↵cen.

4.4.2 Mean halo mass and fraction of centrals

From the best-fit parameters the mean halo mass hM z̄
hi, and the fraction of centrals fV

cen

are predicted for all galaxy samples as described in Sect. 2.2.2. A summary of the results
is presented in Table 4.5.

The derived mean halo masses for CFHTLenS and the mock data are shown as a
function of stellar mass in Fig. 4.9. The mean halo mass increases with stellar mass and,
as in the case of M1 and Mth, a good agreement between the results for the observations
and the simulations is found. This is not too surprising, because the G2L of the SAM is
close to the one from CFHTLenS, as shown in Saghiha+17. Since Saghiha+17 use stellar
mass samples only, a similar comparison with respect to galaxy luminosity is not possible.
Nevertheless, the CFHTLenS results for the halo masses as a function of luminosity are
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Figure 4.8: Best-fit HODs for CFHTLenS. Shown is the mean number of galaxies per dark matter halo
hN(Mh)i as a function of halo mass Mh for all stellar mass (top), luminosity (middle), and galaxy-type
samples (bottom) for low-z (left) and high-z (right).

shown in Fig. 4.10.
The mean halo mass hM z̄

hi for early-type galaxies is found to be about an order of
magnitude higher than that of late-type galaxies (Table 4.5). This di↵erence is more
pronounced for the high-z sample. This reflects that early-type galaxies are more likely to
inhabit galaxy groups and clusters than late-type galaxies (Dressler 1980). This is further
supported by the finding that the fraction of centrals is found to be higher for late-type
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Table 4.5: Derived quantities from the best-fit parameter sets for the CFHTLenS data. The results are
given for all stellar mass, luminosity and galaxy-type samples for low-z (top) and high-z (bottom). The
galaxy number density is given in h

3Mpc�3 and the mean halo mass in h

�1M�.

low-z

Sample Nobs N n̄V
g fV

cen hM z̄
hi

sm1 59272 ± 5264 60902 ± 5006 (4.24 ± 0.35)⇥10�3 0.70 ± 0.11 (2.52 ± 0.51)⇥1013

sm2 46609 ± 4157 49125 ± 4025 (3.42 ± 0.28)⇥10�3 0.70 ± 0.19 (1.88 ± 0.68)⇥1013

sm3 36688 ± 3278 36698 ± 3012 (2.56 ± 0.21)⇥10�3 0.65 ± 0.17 (2.34 ± 0.68)⇥1013

sm4 25068 ± 2252 24692 ± 1954 (1.72 ± 0.14)⇥10�3 0.66 ± 0.17 (2.86 ± 0.85)⇥1013

sm5 11908 ± 1078 12104 ± 1002 (8.43 ± 0.70)⇥10�4 0.50 ± 0.15 (3.49 ± 1.24)⇥1013

sm6 3498 ± 328 3616 ± 294 (2.52 ± 0.20)⇥10�4 0.65 ± 0.12 (3.48 ± 1.00)⇥1013

sm7 403 ± 54 412 ± 45 (2.87 ± 0.31)⇥10�5 0.56 ± 0.16 (8.19 ± 1.73)⇥1013

L1 27674 ± 2463 27559 ± 2313 (1.92 ± 0.16)⇥10�3 0.92 ± 0.20 (2.03 ± 0.63)⇥1013

L2 119491 ± 10618 114541 ± 10387 (7.98 ± 0.72)⇥10�3 0.88 ± 0.07 (1.60 ± 0.56)⇥1013

L3 166448 ± 14779 168220 ± 14748 (1.17 ± 0.10)⇥10�2 0.89 ± 0.10 (1.80 ± 0.51)⇥1013

L4 112975 ± 10045 111846 ± 9724 (7.79 ± 0.68)⇥10�3 0.79 ± 0.17 (1.90 ± 0.44)⇥1013

L5 67115 ± 5990 67236 ± 9077 (4.68 ± 0.63)⇥10�3 0.55 ± 0.14 (1.74 ± 0.31)⇥1013

L6 23863 ± 2148 24456 ± 1599 (1.70 ± 0.11)⇥10�3 0.70 ± 0.04 (2.10 ± 0.26)⇥1013

ETG 30261 ± 2733 32891 ± 2340 (2.29 ± 0.16)⇥10�3 0.73 ± 0.11 (2.89 ± 0.52)⇥1013

LTG 60714 ± 5434 60997 ± 5331 (4.25 ± 0.37)⇥10�3 0.92 ± 0.09 (3.26 ± 0.23)⇥1012

high-z

Sample Nobs N n̄V
g fV

cen hM z̄
hi

sm1 52662 ± 4696 54452 ± 3602 (2.71 ± 0.18)⇥10�3 0.93 ± 0.10 (3.00 ± 0.85)⇥1013

sm2 62124 ± 5523 67042 ± 8124 (3.33 ± 0.40)⇥10�3 0.76 ± 0.14 (2.47 ± 0.53)⇥1013

sm3 61210 ± 5445 63989 ± 1727 (3.18 ± 0.09)⇥10�3 0.69 ± 0.05 (2.60 ± 0.31)⇥1013

sm4 42788 ± 3831 43965 ± 3646 (2.19 ± 0.18)⇥10�3 0.70 ± 0.16 (2.25 ± 0.96)⇥1013

sm5 20806 ± 1886 20339 ± 1458 (1.01 ± 0.07)⇥10�3 0.62 ± 0.14 (4.01 ± 1.11)⇥1013

sm6 5426 ± 511 5473 ± 466 (2.72 ± 0.23)⇥10�4 0.43 ± 0.20 (6.29 ± 1.53)⇥1013

sm7 606 ± 70 588 ± 79 (2.93 ± 0.39)⇥10�5 0.53 ± 0.20 (8.95 ± 2.33)⇥1013

L1 - - - - -
L2 269 ± 33 304 ± 23 (1.51 ± 0.11)⇥10�5 0.66 ± 0.19 (4.22 ± 0.99)⇥1013

L3 57558 ± 5147 57796 ± 4600 (2.87 ± 0.23)⇥10�3 0.92 ± 0.10 (1.30 ± 0.57)⇥1012

L4 139604 ± 12426 136501 ± 13089 (6.79 ± 0.65)⇥10�3 0.92 ± 0.03 (3.60 ± 0.73)⇥1013

L5 101054 ± 8994 100183 ± 9479 (4.98 ± 0.47)⇥10�3 0.69 ± 0.22 (1.54 ± 0.48)⇥1013

L6 41590 ± 3745 41451 ± 3266 (2.06 ± 0.16)⇥10�3 0.76 ± 0.13 (2.41 ± 0.71)⇥1013

ETG 46387 ± 4182 46228 ± 3663 (2.30 ± 0.18)⇥10�3 0.71 ± 0.12 (2.80 ± 0.88)⇥1013

LTG 96247 ± 8592 93770 ± 8018 (4.66 ± 0.40)⇥10�3 0.99 ± 0.03 (7.06 ± 0.48)⇥1012

galaxies with approximately 95%, compared to only 72% for early-types. Whereas late-
type galaxies are more likely to be isolated field galaxies, early-type galaxies share the
parent halo with other galaxies, only one of which can be the central galaxy.

The derived fraction of centrals for CFHTLenS as a function of stellar mass is shown in
Fig. 4.11 together with the values obtained from the model fits to the mock G2L data. A
good agreement is seen for stellar masses smaller than 1011M�. For higher stellar masses,
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an increasing discrepancy between the two is found, as fcen for CFHTLenS decreases with
stellar mass in contrast to the mock data. The disagreement can possibly be explained by
the bias explored in Fig. 4.4.

Velander et al. (2014) also fit a halo model to the CFHTLenS G2L signal. Only
for the largest and smallest stellar masses considered, however, their results are found to
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agree within uncertainties with the results of this work. Moreover, application of the same
stellar mass bin scatter correction as in their work only increases the disagreement. This
disagreement is most likely due to the di↵erent halo models employed, as Velander et al.
(2014) use a halo model which includes subhalos. Figure 4.12 shows the best-fit fcen as a
function of luminosity, again in comparison to Velander et al. (2014). In the overlapping
luminosity range (�22.5 < Mr < �20.5) the results disagree.
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4.4.3 Ratio of stellar to halo mass

An important quantity in the halo model context is the stellar to halo mass fraction
M⇤(Mh)/Mh as it not only carries information about the physical relation of stellar and
dark matter, but also about the history of star formation in halos (e.g. Coupon et al.
2015; Leauthaud et al. 2011). The HOD hN(Mh)i = hN(Mh)|M⇤i, derived from the best-
fits to the CFHTLenS data, can be converted to the ratio of stellar mass to halo mass
M⇤(Mh)/Mh as described in Sect. 2.2.3. The results for CFHTLenS are presented together
with the best-fit results to the mock data in Fig. 4.13. In general a good agreement is
seen, particularly around the peak at Mh ⇡ 1012 h�1M�. However, the SAM over-predicts
(under-predicts) the amount of stellar mass for lower (higher) halo masses. This reflects
that the best-fit model for the mock data overestimates the amplitude of the HOD for
small halo masses and underestimates the amplitude for large halo masses compared to
the ‘true’ HOD (see Fig. 4.6).

Coupon et al. (2015) infer the M⇤(Mh)/Mh ratio from a joint lensing, clustering, and
abundance analysis using CFHTLenS and VIPERS data. A comparison of their results
with this work is interesting, because the CFHTLenS data are the basis of the analysis in
both cases. The results of Coupon et al. (2015) are shown in the right panel of Fig. 4.13,
although note that their results are for a mean redshift of z̄ = 0.8, which falls outside of
the high-z sample used in this work. A good agreement with the findings of this work can
be seen for Mh . 3 ⇥ 1013 h�1M�. For more massive halos, the model employed in this
work underestimates the fraction of stellar mass compared to the results of Coupon et al.
(2015). This lack of stellar mass is most likely due to the incompleteness of the galaxy
selection in this analysis.

Besides obtaining the best-fit parameter sets needed for the G3L predictions, this result
for the M⇤(Mh)/Mh relationship is the main physical results of this chapter and the best
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verification that the method, model and fitting routine successfully keep up with state of
the art methods in describing the galaxy-dark matter relation.

4.4.4 Conclusions on the model fits to G2L from CFHTLenS

This section is concerned with the halo model fits to G2L measured with CFHTLenS for
29 galaxy samples. The resulting best-fit HOD parameter sets are the basis to generate
G3L predictions which are ultimately confronted with their measured counterparts from
CFHTLenS (Chapter 6). The results of the G2L model fits are presented and discussed
in this section. For two thirds of the 29 galaxy samples a good model fit at a confidence
level of 95% can be stated, and the obtained best-fit values for the HOD parameters are
in an overall agreement with the literature.

Moreover, for each galaxy sample the mean halo mass hM z̄
hi, and the fraction of centrals

fV
cen are derived from the best-fit parameter set. The results are compared to the results
obtained from the model fits to the mock data (presented in Sect. 4.3). In concordance
with the latter the mean halo mass is found to increase with stellar mass. Furthermore,
the halo model predicts the mean halo mass to be more than a magnitude higher for early-
type compared to late-type galaxies, with the di↵erence increasing with redshift. This can
be interpreted as early-types residing typically in galaxy groups or clusters, whereas late-
types are usually found to be field galaxies. The results for the fraction of centrals fit this
scenario: the fraction of centrals for late-types is 95% compared to 72% for early-types.
Whereas the model predictions for fV

cen agree with the ones from the mock data for stellar
masses below 1011M�, an increasing discrepancy is found for higher stellar masses.

Finally, the HOD hN(Mh)i = hN(Mh)|M⇤i is converted to the ratio of stellar mass to
halo mass M⇤(Mh)/Mh. The results are compared on the one hand to the corresponding
prediction obtained from the best-fits for the mock data, and on the other hand to results
of another G2L analysis for CFHTLenS by Coupon et al. (2015). For Mh . 1013 h�1M�
the results for M⇤(Mh)/Mh are in qualitative agreement with the ones obtained from the
mock data, and in quantitative agreement with the ones by Coupon et al. (2015). However,
for higher halo masses the ratio of stellar mass to halo mass is found to be lower for the
mock data and higher for Coupon et al. (2015) than predicted here. The di↵erence to the
findings by Coupon et al. (2015) is due to the incompleteness of the galaxy selection in
the present analysis.
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Chapter 5

First-time prediction of excess mass maps
using the halo model – dependence of G3L
on galaxy & model properties

This chapter presents excess mass maps as predicted for the first time using a halo model.
Excess mass maps were first measured a decade ago in the Red-Sequence Cluster Survey
(RCS) (Simon et al. 2008), and subsequently in CFHTLenS (Simon+13, Simon et al. 2019;
hereafter Simon+19). These measurements revealed that, first, excess mass can only be
found if the two lens galaxies are physically close. Second, excess mass is sensitive to
galaxy-type: for a given lens-lens separation a ‘cross-shaped’ structure of excess mass
envelops pairs of early-type galaxies, whereas a trough of excess mass is centred between
pairs of late-type galaxies. Recently, Simon+19 published a comparison of excess mass
maps measured for a combined sm1-sm6 sample of CFHTLenS galaxies to predictions
from the SAM of Henriques+15 implanted within the Millennium Simulation. Simon+19
report generally good agreement with some discrepancies, e.g. they find a vertical bulge-
like structure in the CFHTLenS maps, which is absent in the SAM maps.

In this chapter it is examined, first, whether a ‘standard’ halo model as introduced
in Chapter 2 predicts the same trends with lens-lens separation and galaxy-type for the
excess mass as measured by Simon et al. (2008), Simon+13 and Simon+19. The results
are presented in Sect. 5.2. Second, to check whether the halo model predicts the map fea-
tures measured by Simon+19 for CFHTLenS galaxy pairs, halo model predictions for the
combined sm1-sm6 sample are confronted with their observational counterpart (Sect. 5.5).

Furthermore, the dependence of excess mass on stellar mass, luminosity, and redshift
is explored. These dependencies will eventually be measured in future surveys, and their
study is crucial to illuminate the galaxy-halo connection. All predictions are generated
based on the best-fit parameter sets obtained from model fits to G2L for the 29 galaxy
samples of CFHTLenS. This approach not only allows to investigate how the amplitude
and map features depend on galaxy properties but also to quantify what is to be expected
for future observations. The results are presented in Sect. 5.2 and are discussed hand
in hand with the corresponding predictions of the halo model for the aperture statistic
hN 2Mapi(✓). Although excess mass maps and hN 2Mapi(✓) are both representations of
the galaxy-galaxy-shear correlator G, and thus contain the same information, each has

67
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particular advantages. Whereas excess mass maps provide a visualisation of the matter
environment around galaxy pairs, and display the information contained in non-equilateral
triangle configurations, each map contains by definition only information for a specific pro-
jected lens-lens separation. Aperture mass statistics are more convenient for investigating
the scale-dependence of the third-order galaxy-mass correlation.

The rest of the chapter is dedicated to study the dependence of G3L on halo model
properties. In Sect. 5.3 the contributions of the one-halo, two-halo and three-halo term of
the halo model to the excess mass maps and hN 2Mapi(✓) are studied, and it is determined
which term dominates the total signal on which scales. This knowledge is important for
the interpretation of the measurements and for future approximations to the halo model
formalism to make the costly computation of model predictions faster and direct model
fits to G3L feasible.

To explore the sensitivity of G3L with respect to the HOD parameters, in Sect. 5.4
excess mass maps and hN 2Mapi(✓) are predicted for the five model parameters being
varied individually by ±20% around their best-fit value, while keeping the other four
fixed. Particular focus is set on whether map features show changes that are identifiable
with specific HOD parameters. This part of the analysis shows which HOD parameters
can be constrained with G3L in future surveys, and which galaxy samples are better suited
for this purpose.

The content of this chapter is being prepared for submission to Astronomy & Astro-
physics.

5.1 Method

5.1.1 Predicting G3L

The G3L model predictions are based on the model fits to the CFHTLenS G2L for the
galaxy samples defined in Table 4.1. Specifically, the best-fit parameter set for each of the
29 samples is used as input for the halo model. The model predicts the excess mass maps
and hN 2Mapi(✓) for a given parameter set by numerically implementing the analytical
formalism described in Sect. 3.2. Since no G2L measurement is available for the L1 high-z
sample, there are also no G3L model predictions possible for this sample. Except for the
five HOD parameters, all other parameters of the model are fixed.

The model predictions can in principle be produced for all lens-lens separations and
aperture scale radii. For conciseness, only seven lens-lens separations between 0.5 and
3 arcmin are considered for the excess mass maps, which corresponds roughly to a projected
physical separation of 250h�1kpc to 1h�1Mpc, thereby focussing on pairs of galaxies inside
groups and clusters. The hN 2Mapi(✓) predictions are for aperture scale radii between 0.1
and 40 arcmin, which covers the range probed by CFHTLenS (1 � 10 arcmin).

5.1.2 Uncertainties in predicting G3L

Uncertainties in the G3L predictions arise from uncertainties in the measured CFHTLenS
G2L signal, to which the model is fit to obtain the best-fit parameters. The treatment of
these errors, discussed in Sects. 4.2.2 and 6.2.2, is relevant for the quantitative comparison
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Figure 5.1: Relative deviation of the aperture statistics (left) and excess mass map (right) model predic-
tions from the exact result using a Gaussian test bispectrum. The size of the map is 4⇥ 4 arcmin2.

of the aperture statistics predictions with the CFHTLenS measurements in Chapter 6. For
the analysis of G3L presented in this chapter, however, these uncertainties are neglected.
Furthermore, errors introduced by uncertainties in the values of adopted fixed model
parameters, e.g. the cosmological parameters, are neglected throughout this work.

Additional errors arise from the numerical treatment of the problem. To make the
numerically expensive computation of higher-order correlation functions feasible, numeri-
cal interpolations have to be used. The relative error from employing interpolations is in
general negligible in this work, with one exception: the accuracy of the interpolation of the
two-dimensional bispectrum Bgg(`1, `2; `3) is only 50% for particular triangle configura-
tions. This interpolation is, however, unavoidable as the computation of the bispectrum is
expensive but needs to be repeated many times for the transformation to the excess mass
maps and hN 2Mapi(✓) using a multipole expansion (see Sect. 3.2.2). The high inaccuracy
of the interpolation is due to the bispectrum showing a cusp feature for squeezed triangles
(`1=`2, `3=0 or '=⇡) as also found by, e.g. Jeong & Komatsu (2009), which originates
from the second-order coupling function F2(k1,k2) (Eq. 1.56) and the linear power spec-
trum from perturbation theory Plin(k) (Eq. 1.54) vanishing for k3 = 0. The accuracy of
interpolating the bispectrum is therefore mainly determined by how well the cusp feature
can be interpolated. By comparing the interpolated bispectrum to the original one, the
accuracy of the interpolation is found to be 50% for ' = ⇡. The resulting inaccuracy in
the excess mass maps and hN 2Mapi(✓) is determined using the following two tests.

The general accuracy of the G3L predictions is tested using the Gaussian test bispec-
trum defined in Eq. (3.32), for which on one hand an excess mass map and hN 2Mapi(✓)
can be calculated exactly (Eqs. 3.33 and 3.34). The Gaussian bispectrum is on the other
hand also used as input to the transformation code to compute the G3L predictions. The
comparison of the model predictions to the exact results in Fig. 5.1 shows that the relative
error of employing the interpolation for the Gaussian two-dimensional bispectrum is below
7% in the range of 1 � 10 arcmin.
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Figure 5.2: Relative error of the model prediction from the exact result for G3L. In the latter case, the
bispectrum is interpolated over the whole range but close to the cusp feature (' = ⇡). The size of the map
is 4⇥ 4 arcmin2.

As the Gaussian test bispectrum has no cusp feature, a second test is performed with
the real bispectrum where the bispectrum is interpolated for '  0.998⇡ and ' � 1.002⇡
(i.e. away from the cusp), and computed without interpolation in the range 0.998⇡ < ' <
1.002⇡ (i.e. around the cusp). This is computationally feasible for testing purposes, but
not for predicting G3L generally. For hN 2Mapi the relative error reaches 15% for aperture
scales around 0.1 arcmin (Fig. 5.2) but is negligible in the range relevant for this work
(1� 10 arcmin). In contrast, the relative error found for the excess mass map peaks right
between the lenses with a value of 20%, but is typically below 5% outside the centre. This
is relevant for future quantitative comparisons. The vertical artefacts in the map appear
in most of the presented maps and are a consequence of the bispectrum cusp at ' = ⇡.

5.2 Dependence of excess mass on galaxy properties

In this section it is investigated whether the halo model can describe the qualitative
trends found for the observed excess mass maps (Simon et al. 2008, Simon+13, Simon+19)
regarding lens-lens separation and lens galaxy-types. Moreover, the dependence of excess
mass on stellar mass, luminosity, and redshift is studied. The predictions are presented
for seven di↵erent lens-lens separations ranging from 0.5 arcmin to 3 arcmin for each of the
29 galaxy samples defined in Table 4.1. Figure 5.3 shows the predictions for the stellar
mass samples, Fig. 5.4 for the luminosity samples, and Fig. 5.5 for the early- and late-type
galaxy samples, all for low-z.

Overall, a clear dependence of the amplitude of the excess mass on the separation of
the lens pair is found for all samples. In agreement with the observations, the amplitude
of the signal increases with decreasing lens-lens separation. This behaviour relates to
the increase of the three-point matter correlation function with decreasing physical scale
arguing that galaxies largely trace the dark matter field (Simon+19).
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Figure 5.3: Excess mass map predictions for seven stellar mass samples (top to bottom) and lens-lens
separations ranging from 0.5 arcmin to 3 arcmin (left to right). Shown are the low-z results. The lens
positions are indicated by stars. The size of each map is 4⇥ 4 arcmin2.

Regarding the dependence of excess mass on the stellar mass and the luminosity of
the lens pairs, the excess mass amplitude generally increases with both, indicating that
brighter and more massive galaxies inhabit more massive halos. In contrast to this general
trend, the excess mass also increases for the lightest (sm1) and the faintest galaxies (L1,
L2) considered. Notably, the HODs for the sm1 and L1 samples (Fig. 4.8), show a distinct
behaviour compared to most other samples, i.e. a comparatively low (small ↵cen) but
extended plateau for small halo masses and a steep slope for high halo masses (large �).
Also the fraction of centrals is comparatively high for these samples (Table 4.5).
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Figure 5.4: Excess mass map predictions for six luminosity samples (top to bottom) and various lens-lens
separations. Shown are the low-z results. The lens positions are indicated by stars. The size of each map
is 4⇥ 4 arcmin2.

Whether the high amplitude of excess mass found for the sm1, L1, and L2 samples
is physical can not be stated as particularly the L1 and L2 samples have a very di↵erent
redshift distribution p(z) compared to all other samples and therefore di↵erent lensing
e�ciencies (see Simon+13, Fig. 5 therein). Accounting for the di↵erent lensing e�ciencies,
the observed galaxy-galaxy-matter bispectrum still shows an increase for the L1 and L2
samples, however, not for the sm1 sample (Simon+13). Still, the results have to be treated
with caution: given that the galaxy samples are flux-limited, the samples with the highest
fraction of faint galaxies, i.e. L1 and L2, are most a↵ected by incompleteness e↵ects.
Additionally, all samples below ✓ap ⇠ 1 arcmin are a↵ected by the transformation bias,
which is evident for the L1 sample (Simon+13). Finally, also only a relatively poor model
fit to G2L is given for the L1 sample (Table 4.4).
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Figure 5.5: Excess mass map predictions for early-type (top) and late-type galaxies (bottom) and various
lens-lens separations. Shown are the low-z results. The lens positions are indicated by stars. The size of
each map is 4⇥ 4 arcmin2.

With regard to its mean stellar mass and mean r-band luminosity, the early-type
galaxy sample is basically a combined sample of the stellar mass samples sm3 to sm5
or of the luminosity samples L5 and L6 (Simon+13). It is therefore not surprising, that
the model predictions for the early-type sample resemble the results for a typical stellar
mass sample, i.e. sm3 or sm4. For example an envelope of excess mass, in the following
referred to as ‘common’ halo, becomes increasingly apparent around the lens pair with
decreasing lens-lens separation. This is also true for the late-type sample, although the
amplitude of the late-type maps is more than a factor of ⇠ 10 lower than for the early-
type maps, which is in agreement with the CFHTLenS observations (Simon+13) and SAM
predictions (Saghiha et al. 2012). These results indicate that early-type galaxies inhabit
a denser matter environment compared to late-types, which is in concordance with the
observation that early-type galaxies constitute about 90% of satellites in galaxy clusters,
whereas late-types account for 70% of field galaxies (e.g. Dressler 1980; Mandelbaum et al.
2006c). This also indicates that late-types have a suppressed one-halo term.

The results for the high-z samples are presented in the appendix in Figs. G.1 - G.3.
For all galaxy samples, except for the high-z L2, L4 (high �2 for the G2L fitting; Table
4.4) and sm6 sample, the amplitude decreases compared to the low-z sample, but the
general trends found for the low-z sample are also valid in the high-z case. Again, this
is to some extent because the lensing e�ciency changes with redshift. Additionally, for
the same angular lens-lens separation at low- and high-z, the actual physical separation
increases with redshift, which results in a decrease of excess mass, too. In future work
one can account for these e↵ects, and possibly find for normalised excess mass maps
what Simon+13 found for the normalised galaxy-galaxy-matter bispectrum for stellar
masses below ⇠ 1011M�: a physical increase of the amplitude with redshift, which may
be attributed to structure growth in a ⇤CDM universe.

Figure 5.6 shows the hN 2Mapi(✓) model predictions for all stellar mass, luminosity
and galaxy-type samples for low-z and high-z. For the di↵erent stellar mass samples one
can clearly see the trend already found in the excess mass maps: the amplitude of the
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Figure 5.6: hN 2
Mapi predictions for the stellar mass (top), luminosity (middle), and galaxy-type (bottom)

samples as a function of aperture scale radius ✓. The low-z results are shown on the left, the high-z results
on the right. The vertical lines indicate the range considered in the quantitative analysis in Chapter 6.

signal increases with increasing stellar mass or decreasing aperture scale. As in the case
of the excess mass maps, the sm1 sample shows a higher amplitude than the sm2 and
sm3 samples, albeit only for aperture scales larger than approximately 1 arcmin. Towards
smaller aperture scales the signal becomes relatively flat and is found to follow the general
trend again. Regarding the luminosity samples, for the excess mass maps only a weak
trend with luminosity was found. However, ignoring the L1 low-z as well as the L2 and
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L4 high-z samples in Fig. 5.6, an increase of the amplitude with luminosity is visible,
particularly for small aperture scales and high-z.

The hN 2Mapi(✓) signal of the early-type sample dominates over that of the late-types
on all scales and for both redshift samples. The deviation reaches up to two orders of
magnitude, for low-z around ✓ ⇠ 3 arcmin and for high-z on the smallest scales considered
of ✓ ⇠ 0.1 arcmin. In contrast to the late-type sample, the early-type sample is found
to resemble the signal of a typical stellar mass or luminosity sample, i.e. sm3/sm4 and
L5/L6, in terms of amplitude and shape.

The preceding discussion suggests that the stellar mass and luminosity samples show a
similar qualitative behaviour. Therefore, the following discussion of the excess mass maps
is restricted to the stellar mass samples sm1 to sm6 and the galaxy-type samples. Addi-
tionally, for conciseness only excess mass maps for a lens-lens separation of 1 arcmin are
presented, which corresponds roughly to the separation explored in the CFHTLenS excess
mass maps. With respect to the aperture statistics, the discussion will focus exemplarily
on the early- and late-type samples, as the former resembles a typical stellar mass sample
and the latter is found to behave uniquely compared to all other samples.

5.3 One-halo, two-halo, and three-halo term contributions

In this section the halo model is used to split the predicted excess mass and hN 2Mapi(✓)
signals into contributions of the one-halo, the two-halo, and the three-halo term (see
Eq. 2.32), which are due to correlations in a single halo, in two di↵erent halos, and in
three di↵erent halos, respectively. The regimes of dominance of the individual halo model
terms are determined, which is crucial to interpret the measurements.

Figure 5.7 shows the relative contributions of the one-, two- and three-halo term to
the full excess mass signal for the stellar mass and galaxy-type samples for a lens-lens
separation of 1 arcmin. For low-z, the three-halo term contributes at most 15% to the full
signal for all samples other than the late-type sample. For all stellar mass samples and
the early-type sample the one-halo term dominates with a relative contribution of about
60� 90%. The excess mass associated with the one-halo term is distributed in a common
halo around the lens pair. For the two-halo term a contribution of 15 � 40% is found.
Whereas the relative contribution of the one-halo term is highest around the lens pair, the
relative contribution of the two- and three-halo terms decrease towards the lens pair. This
is expected as the these terms typically become important on intermediate to large scales
(Rödiger 2009), i.e. on scales displayed towards the corners of the maps and beyond.

A completely di↵erent behaviour is found for the low-z late-type sample. First, the two-
and the three-halo terms clearly dominate, comprising 20�90% and 0�70% of the signal,
respectively, compared to 5� 30% of the one-halo term. Second, the relative contribution
of the two-halo term peaks around the individual lens positions. Third, the gradient in
the relative contribution is higher compared to the other samples. These findings support
the assertion that the low amplitude of excess mass found around pairs of late-types (this
work Fig. 5.5, Simon+13) is a consequence of late-types being typically field galaxies
(Dressler 1980; Mandelbaum et al. 2006c). Namely, for field galaxies correlations stemming
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Figure 5.7: Relative contributions of the one-, two- and three-halo term (left to right) in the excess mass
maps in percent for the stellar mass and galaxy-type samples (top to bottom). In the left plot the low-z
results are shown, in the right plot the high-z results. All maps are for a lens-lens separation of 1 arcmin.
The lens positions are indicated by stars. The size of each map is 4⇥ 4 arcmin2.
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from the same halo are suppressed, but correlations originating from di↵erent halos are
enhanced.

Regarding redshift, a slight shift in contribution from the two-halo to the one-halo
term is found for the late-type sample. In contrast, for the stellar mass and the early-type
samples the relative contribution of the one-halo term decreases slightly with redshift,
whereas the relative contributions of the two- and three-halo term increase. This could
indicate that the excess mass of the common halo about pairs of galaxies from the sm1
to sm6, and the early-type samples increases with time, and vice versa for the late-type
sample. Whether this finding reflects a physical trend can only be answered by comparing
the maps at a fixed physical instead of angular separation.

The trends found for the early- and late-type galaxies become even clearer when ex-
amining the aperture statistics predictions (Fig. 5.8). First of all, the crossover between
the dominance of the one-halo term and the dominance of the two/three-halo terms hap-
pens for the early-type low-z sample only at an aperture scale of approximately 10 arcmin,
whereas for the late-type low-z sample the three-halo term starts to dominate already
around 4 arcmin. Being typically cluster galaxies, early-type galaxies live in more ex-
tended halos, which allows to find pairs of early-types sharing the same halo even at
comparably large lens-lens separations. Therefore, the one-halo term contributes to much
larger radii than in the case of late-types. Second, the crossover point shifts for early-
types towards smaller aperture scales with increasing redshift. The observed increase of
the influence of the one-halo term towards larger scales with time is partially due to ob-
jects getting smaller with redshift. Partially, it may also reflect the bottom-up scenario of
structure formation in a ⇤CDM universe, where large structures are assumed to form by
mergers of smaller structures. For the late-type sample the crossover point between one-
and three-halo term stays roughly at the same aperture radius with changing redshift,
but the two-halo term dominates over the one-halo term only at larger aperture scales for
high-z. Third, the total amplitude increases with time: for the early-type sample partic-
ularly on scales larger than 1 arcmin and for the late-type sample on scales smaller than
4 arcmin. This is to some extent due to the e↵ect of the samples having di↵erent redshift
distributions. Additionally, this may reflect the accretion of mass with time in a cold dark
matter model. Finally, Fig. 5.8 shows that, although the two-halo term adds a significant
contribution to the signal particularly in the range tested by CFHTLenS, it is actually
never the dominant term among the three halo terms.

As a final note, the computation of the full G3L signal is computationally very expen-
sive. This is also why in this work it is refrained from fitting the model simultaneously to
G2L and G3L to constrain the HOD. A possible approximation of hN 2Mapi(✓) by the sum
of the one-halo term and the large-scale limit of the three-halo term is discussed in Rödiger
(2009). The results presented here are in agreement with Rödiger (2009): the one-halo
term is generally a good approximation up to scales of 2 � 3 arcmin. However, care must
be taking for the late-type sample. Whereas the signal for the early-type and stellar mass
samples is with a maximal deviation of 10% well approximated by the one-halo term up
to scales of 3 arcmin, for late-types deviations of 10% occur already for 0.1 arcmin in the
high-z case due to the suppression of the one-halo term.
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Figure 5.8: Contributions of the one-, two- and three-halo term to hN 2
Mapi(✓) for the early-type (left)

and the late-type (right) samples as a function of aperture scale radius ✓. Shown are the low-z (top), and
the high-z results (bottom). The vertical lines indicate the range considered in the analysis in Chapter 6.

5.4 Sensitivity of G3L with respect to HOD parameters

In this section the sensitivity of excess mass and hN 2Mapi(✓) on the employed parametrisa-
tion of the HOD (Sect. 2.2) is studied by varying the five model parameters �log(Mh), �, M1,
Mth, and ↵cen individually by ±20%. As reference the best-fit model to the CFHTLenS
G2L for each sample of lenses is used (Table 4.4). It is investigated which HOD parameters
can potentially be constrained, e.g. by fitting the model directly to G3L measurements,
and which galaxy samples serve this purpose best. The focus is particularly on the excess
mass map representation of G3L, as the maps o↵er the opportunity to study whether map
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features change in an identifiable manner when varying HOD parameters.

The resulting maps are shown in the appendix in Figs. G.4 - G.7. Figures 5.9 and 5.10
show the relative change from the best-fit reference map in percent for the stellar mass and
galaxy-type samples for low- and high-z. As in the case of G2L, the parameter �log(Mh),
which quantifies the dispersion of the mean number of central galaxies at a fixed halo mass,
has little influence on the signal. Specifically, when varying �log(Mh) by ±20% around its
best-fit value, a change of the respective excess mass maps from the reference map of at
most 10% is found for either redshift sample. Since the uncertainty in determining �log(Mh)

from the G2L model fits is larger than 50% (Table 4.4), varying �log(Mh) by ±20% is hardly
meaningful, which should be taken into account in future analyses.

Variations in the parameter � lead to the strongest changes in the excess mass maps
where deviations of up to at least ±50% are found. This is not surprising as � is the
parameter that controls the satellite power-law slope, and small changes in � lead to
large changes in the mean number of satellites hNsat(Mh)i. For all samples but the low-z
late-type sample, a higher value for � increases the excess mass, whereas a lower value
for � decreases the excess mass; the e↵ect is more pronounced for the smallest stellar
mass samples and less pronounced for the highest stellar mass samples. The e↵ect of
varying � can be explained from the definition of the galaxy-galaxy-matter bispectrum
Bgg� (Eq. 2.32): a higher value of � gives more weight to massive halos, and consequently
the one-halo term contributes to larger scales, compensating the exponential decrease of
the halo mass function for massive halos. The increase of Bgg� translates into the increase
of G (Eq. 3.28). The e↵ect is strongest for the samples containing galaxies of the lowest
stellar masses because the best-fit reference value for � is the highest for these samples
(Table 4.4). Interestingly, for the low-z late-type galaxy sample the change is less than
15% and opposite to what has been found for all other samples: an increase of � leads
to a lower amplitude of the excess mass, a decrease to a higher amplitude. This point is
picked up later when discussing the sensitivity analysis for the aperture statistics.

For the remaining three HOD parameters M1, Mth, and ↵cen all galaxy samples show
basically the same trends, although the size of the relative change depends on the sample.
A lower satellite threshold mass M1 enhances the amplitude of hNsat(Mh)i, and thereby
the amplitude of the excess mass by 10% for, e.g. the low-z sm6 and late-type sample, and
by more than 50% for, e.g. the high-z sm1 sample. However, a reduced threshold mass for
central galaxies Mth results in a decrease of the amplitude of hNsat(Mh)i, and thus in a
decrease of the excess mass by 15% (late-type sample) to 50% (low-z sm6 and early-type
sample, and high-z sm1 sample). Reducing the parameter ↵cen increases the number of
halos with only satellites. This is similar to lowering the mass threshold M1, populating
small halos with one satellite only, and accordingly the same trends are found: the excess
mass increases by 10% to 40% with reduced ↵cen.

In summary, although for four out of five HOD parameters variations cause significant
changes in the maps, the changes do not have a clear characteristic of a specific parameter.
Moreover, for simplicity, correlations between the HOD parameters have not been taken
into account in this analysis, but realistically every change in the signal is a superposition
of multiple parameters changing at the same time, which has to be taken into account in
future analyses.
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Figure 5.10: As
Fig. 5.9 but for high-z.
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Now the sensitivity of hN 2Mapi(✓) with respect to the HOD parameters is considered.
The results for the stellar mass samples are presented in Fig. 5.11 for low-z and in Fig. G.8
for high-z. The results for the galaxy-type samples are shown in Fig. 5.12 for low- and
high-z. The large panels show the aperture statistics prediction for the +20% and �20%
variation of the individual model parameters, and the small panels the relative deviation
of the predicted signal from the best-fit reference. These plots reveal several aspects that
are not, or not easily, detectable in the excess mass results.

First of all, with the exception of the low-z late-type sample, the relative deviation from
the best-fit reference model for all parameters is greatest in the angular range observed by
CFHTLenS. This indicates that these measurements are well-suited to constrain the HOD
parameters. Nevertheless, depending on the parameter and the galaxy sample, also scales
smaller and larger than 1 � 10 arcmin are promising to determine the HOD parameters,
e.g. changes of around 20% are apparent for Mth on scales smaller than 1 arcmin and for
� up to scales of 30 arcmin.

Second, the changes for hN 2Mapi(✓) converge towards the reference model for small
and large aperture radii. This depends in detail on the considered HOD parameter and
sample, but the behaviour is generally expected for the following reasons. On small scales
the one-halo term is dominated by correlations of centrals, and thus depends only weakly
on hNsat(Mh)i. Thus the curves for �, M1 and ↵cen, a↵ecting satellites, converge. On large
scales the three-halo term is dominant, which depends only on the first-order moment of
the HOD and all curves are converging.

Third, the relative deviation depends on stellar mass. For �, M1 and ↵cen the relative
deviation clearly decreases from more than 30% to less than 20% with higher stellar mass.
For � this is due to the trend the best-fit reference parameter show with changing stellar
mass (Table 4.4). As a result the low stellar mass samples are better suited to constrain
these three HOD parameters than the high stellar mass samples.

Fourth, for the parameter � there is a crossover at a certain aperture scale radius:
whether the aperture signal is enhanced or lowered by changing � depends on the consid-
ered scale. This crossover scale shifts with increasing stellar mass towards larger aperture
radii. The behaviour is most extreme for the late-type low-z sample, where the crossover
happens at the upper end of the range tested with CFHTLenS, and is less a crossover and
more a convergence. Note that for high-z the behaviour of the late-type sample resembles
the general one of the other samples. This sheds light on why the excess mass prediction
for the late-type low-z sample shows an opposite behaviour compared to the predictions
for all other samples when varying � by ±20%.

Last, the distinct behaviour found for the late-type sample makes the galaxy-type
samples particularly suited for future attempts to constrain the HOD parameters by direct
model fits to G3L. On one hand, Fig. 5.12 suggests that the sensitivity regarding changes
of the model parameters is comparable to the one of a low stellar mass sample. On the
other hand, the maximal deviation from the reference model happens for distinct aperture
radii, for the early-types between 1 and 10 arcmin, for the late-types around 1 arcmin.
Furthermore, the behaviour for the late-type sample changes with redshift regarding the
shape of hN 2Mapi(✓) and the sensitivity to the model parameters.
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Figure 5.11: Sensitivity of hN 2
Mapi(✓) on variations in the five HOD parameters by ±20% with respect

to the best-fit reference model. The large panels show the predictions for the six stellar mass samples sm1
to sm6 as a function of aperture scale radius, the small panels the relative deviation from the reference
model in percent. Shown are the predictions for low-z.
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Figure 5.12: As Fig. 5.11 but for the early- and late-type samples for low- (top) and high-z (bottom).

5.5 Excess mass maps – model predictions versus observations

Observations of CFHTLenS indicate a vertical bulge-like distribution of excess mass be-
tween pairs of galaxies in the early-type or combined sm1-sm6 sample, which can not be
reproduced with the recent SAM by Henriques+15 (Simon+13, Simon+19). In this sec-
tion the halo model is used to specifically predict excess mass maps based on the best-fits
to G2L from CFHTLenS for the combined sm1-sm6 sample, to see whether the halo model
predicts the observed structures.
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Figure 5.13: Comparison of halo model predictions for the excess mass (panels A, D) to the CFHTLenS
measurements (B, E) and to predictions from a SAM (C, F). The results are presented for the combined
low-z sm1-sm6 sample, considering a ‘close-✓’ (top) and a ‘wide-✓’ (bottom) lens-lens separation. The size
of each ‘close-✓’ map is 2.8⇥ 2.8 arcmin2, the size of each ‘wide-✓’ map is 3.8⇥ 3.8 arcmin2. The contours
give the 3�- and 5�-significance of the measurement. The lens positions are indicated by stars.

The CFHTLenS maps published in Simon+19 probe the excess mass about pairs of
lenses with a ‘close-✓’ angular separation of 40� 60 arcsec with an average of ⇠ 50 arcsec,
and a ‘wide-✓’ separation of 60 � 80 arcsec with an average of ⇠ 70 arcsec. Therefore, the
halo model maps are computed for angular lens-lens separations of 50 and 70 arcsec, similar
to the SAM ones. All maps are smoothed and normalised, i.e. by applying a Gaussian
smoothing with a kernel size of �rms ⇡ 4 arcsec and by o↵setting the map such that the
mean lensing convergence  is zero over the map area.

The results are shown in Figs. 5.13 and 5.14 for low- and high-z, respectively. In agree-
ment with the CFHTLenS measurements and SAM predictions the halo model predicts
the excess mass to peak around the individual lens positions, and to decrease from the
centre towards the outer regions of the map by about ⇠ 4⇥10�3, corresponding to a drop
in the excess surface mass density of ⇠ 17hM�pc�2 (Simon+19). In contrast to the two
other methods, the halo model predicts, first, a slightly lower maximal amplitude at the
positions of the lenses and, second, for the close-✓ case the excess mass to extend to larger
distances from the lens pair.

The vertical bulge of excess mass found for the CFHTLenS maps (Fig. 5.13 panel
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Figure 5.14: As Fig. 5.13, but for high-z.

E, Fig. 5.14 panel B) is not reproduced by the halo model. This is not surprising, as
the halo model predictions are expected to resemble the SAM predictions. Simon+19
discuss the possibility that the vertical structure found in the observations originates from
a misalignment between the distribution of the intra-cluster medium and of the dark
matter, or between the orientation of lens pairs and of the parent halos. Both hypotheses
could be tested using the halo model by including misaligned mass distributions and non-
spherical halos.

Future surveys such as the Kilo-Degree (KIDS)1 and the Dark Energy Survey (DES)2

will allow the measurement of excess mass maps with a higher signal-to-noise, possibly
even for distinct stellar mass samples. In that case, the halo model predictions presented
in Sect. 5.2 will help interpret the measurements.

5.6 Conclusions

In this chapter first-time predictions of excess mass maps using the halo model are pre-
sented. Trends of excess mass and hN 2Mapi(✓) with angular separation, galaxy properties,
and redshift are explored by predicting G3L for 29 galaxy samples based on the model

1
http://kids.strw.leidenuniv.nl/index.php

2
https://www.darkenergysurvey.org

http://kids.strw.leidenuniv.nl/index.php
https://www.darkenergysurvey.org
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fits to the CFHTLenS G2L. The halo model reproduces the trends found in observations
(Simon et al. 2008, Simon+13, Simon+19), i.e. the amplitude of excess mass increases
with decreasing lens-lens separation and the signal around pairs of early-type galaxies is
more than a factor of ten higher than around late-types. Furthermore, a dependence of
G3L on stellar mass and luminosity is found: the amplitude is higher for pairs of more
massive and luminous galaxies, indicating that brighter and more massive galaxies inhabit
more massive halos. The results indicate that this may also be the case for the least
massive and luminous galaxies considered (sm1, L1 and L2), but to establish this finding
one would need to account for the e↵ect of di↵erent redshift distributions causing di↵erent
lensing e�ciencies. The same applies to the increase of G3L with time predicted by the
halo model, which may reflect the accretion of matter expected in a ⇤CDM universe.

Concerning the contributions of the one-, two- and three-halo terms to the full signal,
the model predicts that the one-halo term dominates from the smallest aperture scales
up to 10 arcmin, which covers the range tested with CFHTLenS. This is the case for all
samples other than the late-type sample, for which the two- and three-halo terms dominate
already starting from ⇠ 4 arcmin. The accuracy of approximating hN 2Mapi(✓) by the one-
halo term depends on the considered galaxy sample. The deviation is less than 10% up to
scales of 3 arcmin for all but the late-type sample. The excess mass map representation
reveals that for all samples but the late-type sample the dominance of the one-halo term
at a lens-lens separation of 1 arcmin results in the distribution of excess mass in a common
halo around the lens pair. For the late-type sample the dominance of the two-halo term
results in two peaks of excess mass around the individual lens positions. The one-halo
term is suppressed for late-types, which is a consequence of late-types being typically field
galaxies, and inhabiting less massive halos for which the probability to find two lenses in
one halo is comparatively low.

The sensitivity of G3L relative to ±20% variations of the HOD parameters is explored.
For the satellite parameter � deviations of more than 50% are predicted. For the threshold
masses M1 and Mth, and the parameter ↵cen changes of around 10 � 50% occur depend-
ing on the galaxy sample. The changes decrease with stellar mass, which suggests that
the low stellar mass samples are better suited to constrain the HOD. Furthermore, the
change is largest in the angular range tested by CFHTLenS, except for the late-type sam-
ple where the change is largest on scales smaller than 1 arcmin. This could help break
parameter degeneracies if future measurements of G3L become reliable on scales smaller
than 1 arcmin. Recent work by Laila Linke (priv. comm.) suggests that this will soon
be possible. Unfortunately, no identifiable changes in the map features when varying the
individual HOD parameters are found.

Excess mass map predictions for a combined sm1-sm6 sample are compared to their
observational counterpart to see whether the halo model can explain the map features
found with CFHTLenS that the recent SAM by Henriques+15 cannot. A generally good
agreement is found: the excess mass peaks around the individual lens positions, and
decreases from the centre towards the outer regions of the map by a value of ⇠ 4 ⇥ 10�3,
corresponding to a drop in the excess surface mass density of ⇠ 17hM�pc�2. Like the
SAM, the halo model can not reproduce the vertical bulge found in the observations.
However, the halo model could help test the genuineness of this feature by predicting G3L
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for the scenarios Simon+19 name as possible physical sources: a misalignment between the
distribution of the intra-cluster medium and of the dark matter, or between the orientation
of lens pairs and of the parent halos.

As a final note, the most interesting results in terms of studying galaxy evolution can
be expected from the galaxy-type samples. For all questions pursued in this chapter, the
signal for the late-type sample shows a unique behaviour compared to the other samples at
low redshifts, which becomes more similar to the ones of the other samples when studying
high redshifts.



Chapter 6

Testing G3L halo model predictions against
CFHTLenS observations

The central question to be answered by this doctoral thesis is whether a ‘standard’ halo
model can consistently describe second- and third-order galaxy-dark matter correlations as
probed by G2L and G3L. To answer this question, the best-fit models to the CFHTLenS
G2L (Chapter 4) are used to predict G3L in terms of the aperture statistics hN 2Mapi(✓) for
28 galaxy samples of stellar mass, luminosity, and galaxy-type at two redshifts. The halo
model predictions for hN 2Mapi(✓) are then confronted with their observational counterpart
from CFHTLenS (Simon+13). The results of this quantitative comparison are presented
and discussed in this chapter. This work constitutes the next level test for the halo model
and thereby puts to test our current understanding of the distribution of galaxies and dark
matter in the Universe.

In Chapter 4 the halo model is also fitted to the G2L signal measured by Saghiha+17
in the Millennium Simulation into which galaxies have been included using the SAM by
Henriques+15. In addition to predictions for G2L, Saghiha+17 also published predictions
of the G3L aperture statistics for the same stellar mass samples used in this work and
compared them to the CFHTLenS G3L observations. The halo model predictions for
hN 2Mapi(✓) are compared to these SAM predictions, and it is discussed whether the
accuracy of the halo model predictions is comparable to the one of the SAM.

The content of this chapter is being prepared for submission to Astronomy & Astro-
physics.

6.1 Data

The model predictions are confronted with measurements of hN 2Mapi(✓) from CFHTLenS
for the galaxy samples described in Sect. 4.1.1. However, because of very faint limits not
only the L1, but also the L2 high-z sample contains too few lenses for a G3L analysis
(Simon+13). This reduces the total number of samples from 29 to 28. For the analysis b =
8 data points of hN 2Mapi(✓) are used for a range of aperture radii ✓ between 1�10 arcmin.
Within this range the signal is not dominated by the transformation bias, which stems
from galaxy blending and the finite size of the observed field, and which limits the number

89
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of triplets of galaxies at particularly small and large separations (Simon et al. 2008). The
same data is also used in the G3L study by Saghiha+17.

6.2 Method

6.2.1 Predicting the G3L aperture statistics

As explained in Sect. 4.2, the halo model with five free HOD parameters is in a first step
fitted to the measured CFHTLenS G2L signal, �t(✓), and the total number of galaxies per
sample, Ngal, for 29 di↵erent galaxy samples. These 29 best-fit parameter sets are then
in a second step used as inputs to predict G3L in terms of hN 2Mapi(✓) for each sample
using the analytical model introduced in Sect. 3.2. A key strength of this approach is that
the G3L predictions are directly comparable to the CFHTLenS G3L observations because
they are based on the best-fits to the CFHTLenS G2L signal for the same galaxy samples.

6.2.2 Uncertainties of the model predictions

Given noisy CFHTLenS G2L data and inherent limitations to the precision of the fit-
ting routine, the best-fit parameters are estimates for the ‘true’ model parameters at the
maximum likelihood point. This uncertainty transforms into an uncertainty of the G3L
predictions, which is quantified using the same error analysis as applied to all quantities
that are derived from the best-fit parameter sets as, e.g. the mean halo mass and G2L. In
short (see Sect. 4.2 for details), the covariance of the model parameters at the best-fit is
obtained for each galaxy sample from a Fisher analysis (Eq. 4.11). Based on this knowl-
edge, 129 random realisations of the model parameters around their maximum likelihood
points are generated, accounting for a non-Gaussian parameter posterior by weighting the
parameter realisations with importance sampling. Then, for each realisation the ‘derived
quantities’, as e.g. the excess mass maps and aperture statistics, are computed. The errors
on the best-fit parameter estimates and the derived quantities are then given by the sam-
ple variance of these 129 realisations. This way also the covariance matrix C

model
hN 2Mapi of

the model prediction for hN 2Mapi(✓) is obtained, which contains on the diagonal the error
variance in the hN 2Mapi(✓) prediction for the eight aperture radii. This error estimate is
here adopted as the uncertainty of the best-fit hN 2Mapi(✓) prediction, although formally
it is the uncertainty of the mean of the random realisations.

The deviation of the model prediction from the measured CFHTLenS signal is quan-
tified using a �2-test, where �2 is defined in analogy to Eq. (4.1) as

�2 =
⇣
dmodel � d

⌘T
C

�1
⇣
dmodel � d

⌘
. (6.1)

The vector dmodel contains the best-fit model prediction for hN 2Mapi(✓) for the eight
considered aperture scale radii ✓, and the vector d the observed CFHTLenS G3L signal
for the same aperture radii. The covariance matrix C is assumed to be the sum of the
error covariances of the G3L measurement and the model prediction,

C = C

obs
hN 2Mapi +C

model
hN 2Mapi , (6.2)
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which is valid if the measurement and model errors are uncorrelated. As the uncertainties
in the model are partly due to the noise in the G2L signal the model is fitted to, the
assumption of uncorrelated errors is not exactly true but still made. Here C

obs
hN 2Mapi is

obtained by Jackknife resampling the 129 CFHTLenS pointings (Simon+13). Because
both, Cobs

hN 2Mapi and C

model
hN 2Mapi, are computed from 129 pointings/realisations, their sum

C can be inverted in Eq. (6.1) using the estimator by Hartlap et al. (2007).

6.3 hN 2Mapi – model predictions versus observations

The model predictions for hN 2Mapi(✓) are shown and compared to the CFHTLenS mea-
surements in Figs. 6.1 and 6.2 for the stellar mass samples, in Figs. 6.3 and 6.4 for the
luminosity samples, and in Fig. 6.5 for the galaxy-type samples. In each figure the dashed
line displays the best-fit prediction with the gray shaded error band giving the 1-� uncer-
tainty of the prediction. Since the best-fit prediction itself does not contain importance
sampling, also the mean over the 129 random realisations for hN 2Mapi(✓) per bin in aper-
ture scale radius ✓ is shown as dotted line. The predictions are compared to the observed
CFHTLenS signal, which is given by the data points with the error bars representing the
1-� uncertainty. A log-log version of the figures is presented in the appendix (Figs. H.1 -
H.5).

The resulting reduced �2-values of the model test are presented in Table 6.1, where
boldface values indicate a tension between model prediction and measurement at a 95%
confidence level for eight degrees of freedom (�2/8 > 1.94). In general a good agreement
between model predictions and CFHTLenS data can be stated as the reduced �2 exceeds
1.94 only for one sample, which is what one expects as false positive rate.

However, for this particular sample, the sm2 low-z sample, the deviation of the best-
fit curve from the observed signal is a result of the best-fit prediction for hN 2Mapi(✓)
not accounting for a non-Gaussian parameter posterior, in contrast to the mean over the
importance-sampled random realisations, which agrees reasonably well with the observa-
tions. That the mean is outside the confidence region of the best-fit (also in case of L6
low-z) is also a consequence of the skewed parameter posterior distribution for this sample.

For some samples significant discrepancies between the best-fit prediction and the
measurement data appear to be evident in the figures (e.g. for sm7 low-z, sm4 high-z, as
well as for L3, L4 and L5 high-z), albeit the �2-test indicates no tension. It seems that
generally the data points for larger ✓ are better fit than those for smaller ✓. However,
the log-log versions of the figures reveal that the CFHTLenS data point for the largest
considered ✓ is for many samples (e.g. for sm2 low-z, sm3 high-z, sm5 high-z) above and

Table 6.1: �

2-test for hN 2
Mapi(✓) best-fit predictions and CFHTLenS measurements for all galaxy and

redshift samples. Given are the reduced �

2
/d.o.f. values with eight degrees of freedom. Bold values indicate

a tension between prediction and measurement at a 95% confidence level.

Sample sm1 sm2 sm3 sm4 sm5 sm6 sm7 L1 L2 L3 L4 L5 L6 ETG LTG

low-z 0.79 3.78 0.30 0.50 0.96 0.75 0.86 1.12 0.18 0.61 1.67 0.79 0.82 0.39 1.91
high-z 1.09 1.10 1.12 1.50 1.41 1.56 0.75 - - 0.95 0.90 1.15 0.96 0.84 0.59
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Figure 6.1: Comparison of the hN 2
Mapi(✓) halo model predictions (dashed line) to the CFHTLenS

measurements (bar symbols) as a function of aperture scale radius ✓. Shown are the results for the stellar
mass samples and low-z. The error bars and the error bands give the 1-� uncertainty of the measurement
and model, respectively. The mean over the random realisations is given by the dotted line. In addition,
the SAM predictions by Saghiha+17 are shown (cross symbols). Note the di↵erent scales across the panels.
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Figure 6.2: As Fig. 6.1 but for high-z.
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Figure 6.3: Comparison of the hN 2
Mapi(✓) halo model predictions (dashed line) to the CFHTLenS mea-

surements (bar symbols) as a function of aperture scale radius ✓. Shown are the results for the luminosity
samples and low-z. The error bars and the error bands give the 1-� uncertainty of the measurement and
the model, respectively. The mean over the random realisations is given by the dotted line.

outside the confidence region of the halo model predictions.
The reduced �2 values presented in Table 6.1 are relatively small compared to the

ones of the G2L model fits (0.5 . �2/9 . 3.8, Table 4.4), although the G3L predictions
are based on the G2L model fits. However, for the model fits only uncertainties in the
measurements have been taken into account (see Eq. 4.1). By contrast, for the calculation
of the �2 values for the G3L analysis, errors stemming from both the measurements and
the model are taken into account (Eq. 6.1).

Figures 6.1 and 6.2 also show the SAM predictions of hN 2Mapi(✓) by Saghiha+17 for



6.3. G3L APERTURE STATISTICS – PREDICTIONS VERSUS OBSERVATIONS 95

0

0.0001

0.0002

:: high−z ::

L2

<
N

2
M

a
p
>

best−fit
mean
CFHTLS

0

0.0001

0.0002

0

0.0001

0.0002

:: high−z ::

L2

L3

<
N

2
M

a
p
>

0

0.0001

0.0002

:: high−z ::

L2

L3 L4

0

0.0001

0.0002

1 10

:: high−z ::

L2

L3 L4

L5

<
N

2
M

a
p
>

θ [ arcmin ]

0

0.0001

0.0002

1 10 1 10

:: high−z ::

L2

L3 L4

L5 L6

θ [ arcmin ]

1 10

Figure 6.4: As Fig. 6.3 but for high-z. No CFHTLenS measurement for the L2 sample is available.

the stellar mass samples. Whereas for low-z a good agreement between halo model and
SAM predictions is seen for all samples other than the sm1 sample, discrepancies between
the two models occur for high-z (sm1, sm4, and sm6). There does not seem to be any
relationship between the two predictions, as e.g. that one model generally underpredicts
the other, so the reason for these discrepancies is unclear.

Regarding the accuracy of predicting the CFHTLenS hN 2Mapi(✓), Saghiha+17 quan-
tify the deviation between the SAM predictions and the CFHTLenS observations in the
same way as this work, using the �2-test defined in Eq. (6.1). Their reduced �2 values are
in the range 0.29 . �2/d.o.f. . 4.13, which is comparable to the range found in this work
(Table 6.1). However, note that the SAM predictions have a much smaller uncertainty
compared to the halo model predictions. To conclude, the combination of the information
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Figure 6.5: Comparison of the hN 2
Mapi(✓) halo model predictions (dashed line) to the CFHTLenS

measurements (bar symbols) as a function of aperture scale radius ✓. Shown are the results for the galaxy-
type samples, for low-z (top) and for high-z (bottom). The error bars and the error bands give the 1-�
uncertainty of the measurement and the model, respectively. The mean over the random realisations is
given by the dotted line.

contained in Figs. 6.1 and 6.2, and the �2-test indicates that the halo model employed in
this work can compete with SAMs with respect to the accuracy of predicting third-order
galaxy-dark matter clustering in terms of hN 2Mapi(✓).

6.4 Conclusions

This chapter is concerned with the question whether a ‘standard’ halo model can con-
sistently describe second- and third-order galaxy-matter correlations in the Universe as
probed by G2L and G3L. The comparison of the halo model prediction for the G3L
aperture statistics hN 2Mapi(✓) to its observational counterpart from CFHTLenS in this
chapter shows that the employed halo model can successfully predict G3L, based on the
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model fits to the CFHTLenS G2L presented in Chapter 4. Only for one out of 28 galaxy
samples a tension between the best-fit model prediction and the measurement at the 95%
confidence level is found, which is expected as false positive rate. This can be seen as a
confirmation of the model itself and its assumptions on the distribution of dark matter
and galaxies. But at the same time this also suggests that fitting the halo model to G2L
and G3L simultaneously would only add constraining power because of the availability of
more data points, but not because G3L has more discriminating power than G2L.

This is in contradiction to the findings by Saghiha+17, who obtain for their compar-
ison of SAM predictions to CFHTLenS measurements larger reduced �2-values for G3L
compared to G2L, which they interpret as G3L having more discriminating power than
G2L. However, Saghiha+17 consider for the �2-tests solely the error covariance of the
measurements and not of the model. In the approach used in this work – to predict G3L
based on model fits to G2L – uncertainties in the predictions, however, do arise due to
uncertainties in the CFHTLenS G2L measurements, and need to be accounted for in the
�2-test for G3L.

Although it depends on the application whether the halo model or a SAM is better
suited for describing the distribution of matter in the Universe, it is a major success
for the halo model to largely reproduce the predictions of the SAM for hN 2Mapi(✓),
and to achieve the same level of accuracy in predicting hN 2Mapi(✓) as measured from
CFHTLenS. Yet, it should be noted that despite these good agreements, the accuracy
tests using mock data (Sect. 4.3.1) showed that the halo model fails to reproduce the
mean halo mass hMhi, and fraction of central galaxies fcen, with an inaccuracy of up to
45% and 20%, respectively. That the CFHTLenS G3L observations are nevertheless well
matched, thus indicates that galaxy-galaxy-(galaxy) lensing is largely independent of the
identified inadequate description of satellite galaxies in the halo model. On the other hand,
the sensitivity analysis (Sect. 5.4) revealed that G3L shows the strongest dependence on
those HOD parameters that describe the behaviour of satellite galaxies in the halo. A
sensitivity analysis that accounts for correlations between the model parameters, as well
as investigations using a halo model that includes a prescription for subhalo physics, are
the next crucial steps to resolve this contradiction.
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Conclusions & Outlook

This doctoral thesis answers the question whether a ‘standard’ halo model can consistently
describe second- and third-order cross-correlations of the galaxy density and matter den-
sity field as probed by applications of the weak gravitational lensing e↵ect: galaxy-galaxy
lensing (G2L) and galaxy-galaxy-galaxy lensing (G3L). Moreover, this work presents
first-time halo model predictions of excess mass maps, and quantifies their dependence
on galaxy and halo model properties, providing key insights in the functional form of the
predicted and measured G3L signal. This chapter summarises the performed research,
singling out the main results and highlighting their significance in the field of research.

This work builds up on a complex mathematical framework which connects the standard
model of Cosmology, the ⇤CDM model, with a model for the galaxy-matter connection,
the halo model, and with the description of the physical phenomenon that illuminates this
galaxy-matter connection, weak gravitational lensing. All aspects of modern cosmology,
the halo model and weak gravitational lensing crucial for this doctoral thesis are introduced
in Chapters 1 - 3. This mathematical framework is implemented into a numerical code
that was written as part of this work to, first, fit the halo model to measurements of G2L
and, second, to generate halo model predictions for G3L based on the obtained best-fit
model parameters.

The foundation for this work is laid in Chapter 4, where the results from the halo
model fits to G2L measured from the Canada-France Hawaii Telescope Lensing Survey
(CFHTLenS) for 29 galaxy samples are presented. These best-fit models are necessary
for generating halo model predictions of G3L. Possible limitations of the halo model and
the employed fitting routine are investigated independently of the CFHTLenS data by
performing halo model fits to mock G2L data from the Millennium Simulation, in which
galaxies are implemented using a semi-analytical model (SAM). The main conclusions of
this chapter are:

• The halo model test using mock data reveals that the model has di�culties correctly
predicting the mean halo mass hM z̄

hi and the fraction of central galaxies fV
cen, with the

inaccuracies reaching up to 45% and 20%, respectively. The discrepancy is connected
to the treatment of satellite galaxies in the employed halo model and appears to be
related to the absence of subhalos in the model. Follow-up research using a model
that includes subhalos promises insights into the physics of subhalos and satellites.

• The best-fit parameters to the CFHTLenS data are generally in good agreement
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with the literature. The ratio of stellar-to-halo mass M⇤(Mh)/Mh derived from the
best-fit parameters is also in good overall agreement with the literature, particularly
around the peak of M⇤(Mh)/Mh at Mh ⇡ 1012 h�1M�. For lower halo masses, the
halo model somewhat overestimates the fraction of stellar mass compared to Coupon
et al. (2015), whereas for larger halo masses the model underestimates the fraction of
stellar mass due to an incompleteness of the galaxy selection in CFHTLenS. These
results confirm that the used halo model can keep up with state of the art methods
to describe the galaxy-halo connection.

Chapter 5 presents first-time predictions of excess mass maps from the halo model.
The predictions are based on the halo model fits to the CFHTLenS G2L for 29 galaxy
samples, which allows to study not only the dependence of excess mass on halo model but
also on galaxy properties. The map predictions are discussed together with predictions
for the aperture statistics hN 2Mapi(✓). The main conclusions of this chapter are:

• The halo model can reproduce observed trends (Simon et al. 2008, Simon et al.
2013, Simon et al. 2019), i.e. the amplitude of excess mass increases with decreasing
lens-lens separation and the signal around pairs of early-type galaxies is more than
a factor of ten higher than around late-types.

• The halo model predicts an increase of G3L for pairs of more massive and luminous
galaxies, indicating that these galaxies inhabit more massive halos. Due to the
low signal-to-noise of the CFHTLenS excess mass map measurements, these trends
can currently only be measured for hN 2Mapi(✓). By the time of their completion,
surveys such as the Kilo-Degree (KIDS)1 and Dark Energy Survey (DES)2 will cover
approximately 40 times the area of the sky probed by CFHTLenS (154 deg2) and
have improved redshift and shear estimates. This data should allow the measurement
of excess mass maps for distinct stellar mass and luminosity samples.

• A recent measurement of excess mass maps for a combined sample of CFHTLenS
galaxies reveals a vertical bulge-like feature (Simon et al. 2019). The comparison of
halo model predictions of excess mass maps to these measurements shows that the
mode cannot explain this feature. However, a generally good agreement is found
regarding the central amplitude of excess mass and its drop-o↵ towards the outer
regions of the map as well as with the predictions of the SAM by Henriques et al.
(2015). The halo model could be used in a follow-up study to test whether, e.g. a
misalignment between the distribution of the intra-cluster medium and of the dark
matter, or between the orientation of lens pairs and of the parent halos, could cause
the observed feature.

• To be able to interpret measurements of G3L, it is crucial to know the relative impor-
tance of the one-, two- and three-halo terms, i.e. the contributions from correlations
stemming from a single halo, from two halos, and from three halos, respectively.
According to the halo model, the one-halo term dominates below aperture scales of

1
http://kids.strw.leidenuniv.nl/index.php

2
https://www.darkenergysurvey.org

http://kids.strw.leidenuniv.nl/index.php
https://www.darkenergysurvey.org
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10 arcmin, which corresponds the range probed by CFHTLenS (1�10 arcmin). This
is the case for all samples other than the late-type sample, for which the one-halo
term is suppressed as a consequence of late-types typically being field galaxies.

• Predicting G3L with the halo model is a computationally costly endeavour, and
accurate approximations are desirable. For samples dominated by the one-halo term
(here all other than the late-type sample), hN 2Mapi(✓) can be approximated by the
one-halo term with an accuracy better than 10% up to scales of 3 arcmin.

• To explore the sensitivity of G3L to the HOD parameters, the parameters are varied
individually by ±20% around their best-fit values. For four out of five parameters,
changes in the predicted excess mass of more than 20% occur. The strongest changes
are found for the lowest stellar mass samples, suggesting that these samples are better
suited to constrain the HOD. The changes are largest in the angular range tested
by CFHTLenS. Again the exception is the late-type sample, for which the change is
largest on scales smaller than 1 arcmin. With future measurements of G3L becoming
reliable on scales smaller than 1 arcmin (Laila Linke; priv. comm.), this could help
break parameter degeneracies.

• The most interesting results with regard to galaxy evolution are to be expected from
the galaxy-type samples: the late-type sample shows a unique behaviour compared
to all other samples at low redshifts, but adapts to the one of the other samples at
high redshifts.

This work takes only the first steps in exploring G3L with a halo model. Among the
possible avenues for future research are accounting for model parameter correlations in
the sensitivity analysis, considering non-equilateral triangle configurations for the aperture
statistics hN 2Mapi(✓1, ✓2, ✓3), and probing the cross-correlation for galaxy pairs made up
of distinct galaxy types.

The ability of the halo model to describe G2L and G3L consistently is tested in Chap-
ter 6 by confronting the halo model predictions of G3L in terms of hN 2Mapi(✓) with
measurements from CFHTLenS. The results are also compared to findings by Saghiha
et al. (2017), who measure hN 2Mapi(✓) from the Millennium Simulation where galaxies
have been implanted using a SAM. The main conclusions of Chapter 6 are:

• With a tension at the 95% confidence level for only one out of 28 galaxy samples, an
excellent agreement between halo model predictions and CFHTLenS measurements
is found. The question whether the employed halo model can successfully predict
G3L, based on the best-fit models to the CFHTLenS G2L, can therefore be answered
with a resounding ‘yes’. This can be seen as a confirmation of the halo model itself
and its assumptions on the distribution of galaxies and dark matter.

• The halo model is able to describe the CFHTLenS measurement at the same level
of accuracy as the SAM by Henriques et al. (2015), which is a major success for the
halo model.
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• That the CFHTLenS G3L observations are well matched by the halo model pre-
dictions, despite the model’s inability to reproduce the mean halo mass hMhi and
fraction of central galaxies fcen in mock data, indicates that galaxy-galaxy-(galaxy)
lensing is largely independent of the description of satellite galaxies in the halo
model. On the other hand, the sensitivity analysis shows that G3L depends most
strongly on the HOD parameters describing the behaviour of satellite galaxies. To
resolve this contradiction, follow-up research should, first, redo the sensitivity anal-
ysis accounting for correlations between the model parameters. And second, extend
the employed halo model to include subhalos.

Besides the possible improvements mentioned throughout, the most straightforward exten-
sion of this work would be to optimise the halo model code in order to make simultaneous
model fits to G2L and G3L computationally feasible. With the upcoming measurements
of G3L with unprecedented accuracy from KIDS and DES, it will be possible to constrain
the halo model parameters better than ever before.
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Appendix A

Natural constants & model parameters

Natural and astrophysical constants Symbol Value Unit
Pi ⇡ 3.1415926535897 rad
Speed of light (in vacuum) c 299792.458 km/s
Gravitational constant GN 6.67384 ⇥ 10�11 m3/(kg s2)
Solar mass M� 1.98892 ⇥ 1030 kg
Parsec pc 3.0856775 ⇥ 1016 m

Cosmological parameters CFHTLenS (WMAP9; Hinshaw et al. 2013)
Dark energy density ⌦⇤ 0.721
Baryonic matter density ⌦b 0.0463
Dark matter density ⌦dm 0.233
Spectral index primordial spectrum ns 0.972
Hubble constant H0 100 h km/s/Mpc
Fluctuation amplitude at 8h�1Mpc �8 0.821

Cosmological parameters mock data (first-year WMAP; Spergel et al. 2003)
Dark energy density ⌦⇤ 0.75
Baryonic matter density ⌦b 0.045
Dark matter density ⌦m 0.25
Spectral index primordial spectrum ns 1
Hubble constant H0 73 km/s/Mpc
Fluctuation amplitude at 8h�1Mpc �8 0.9

Halo model parameters
Critical density ⇢crit(0) 2.775 ⇥ 1011 h2M�/Mpc3

Linear density contrast �EdSc (0) 1.686
Density ratio of a virialised halo �EdS

vir (0) 178
1st parameter Sheth & Tormen p 0.707
2nd parameter Sheth & Tormen q 0.3
1st parameter NFW density profile c0 9
2nd parameter NFW density profile ↵ 0.13

Halo occupation distribution parameters (default)
Scatter central galaxy �log(Mh) 0.1
Slope satellite power-law � 1
Threshold mass Mth 1012 M�/h
Amplitude satellite power-law M1 1013 M�/h
Central fraction ↵cen 0.1

Table A.1: Natural constants, astrophysical constants, cosmological parameters, halo model parameters
and halo occupation distribution parameters used in this work.
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Appendix B

Eisenstein & Hu transfer function

In this work the widely used fitting function by Eisenstein & Hu (1998) is numerically
implemented, a physically well-motivated expression to describe the growth of cold dark
matter perturbations accounting for the presence of baryons and vice versa,

T (k) =
⌦c

⌦m
Tc(k) +

⌦b

⌦m
Tb(k) . (B.1)

In this context ⌦m is the sum of the baryonic matter density ⌦b and the cold dark matter
density ⌦c.

If all particle species would be free of interactions, the matter transfer function would
only depend on the horizon size keq = 7.46 ⇥ 10�2⌦mh

2⇥�2
2.7Mpc�1 at radiation-matter

equality zeq = 2.50 ⇥ 104⌦mh
2⇥�4

2.7. The CMB temperature enters these expressions by
the term 2.7⇥2.7K, where TCMB = 2.728±0.004K based on Cosmic Background Explorer
(COBE) observations. The Hubble constant is defined by H0 = h 100 km s�1Mpc�1 with
h = 0.72. However, the wave vector k is assumed to have the dimension Mpc�1, treating
h as a unit.

The interaction of di↵erent species leads to further terms shaping the transfer function,
where recombination di↵erentiates between the era of a baryon-, electron- and photon-
plasma with perturbations propagating as acoustic waves and the era of neutral atoms and
free-streaming photons. Respectively, the size of the sound horizon s at recombination is
needed,

s =

Z t(zd)

0
cs (1 + z)dt =

2

3keq

s
6

Req
ln

p
1 +Rd +

p
Rd +Req

1 +
p
Req

, (B.2)

with the baryon to photon ratio at radiation-matter equality Req = R(zeq) and the one at
the drag epoch Rd = R(zd) given by

R(z) ⌘ 3⇢b/4⇢� = 31.5⌦bh
2⇥�4

2.7(z/10
3)�1 . (B.3)

Here the redshift at the drag epoch is defined as

zd = 1291
(⌦mh

2)0.251

1 + 0.659(⌦mh2)0.828
[1 + b1(⌦bh

2)b2 ] ,

b1 = 0.313(⌦mh
2)�0.419[1 + 0.607(⌦mh

2)0.674] ,

b2 = 0.238(⌦mh
2)0.223 . (B.4)
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Furthermore, the physical phenomena that the radiation pressure pushes the photons out
of the potential wells, dragging the electrons and protons with them, leads to a wash out
of the early density perturbations and, thus, defines the last length scale to be considered
in this discussion. This Silk damping scale is given by,

ksilk = 1.6(⌦bh
2)0.52(⌦mh

2)0.73
⇥
1 + (10.4⌦mh

2)�0.95
⇤
Mpc�1 . (B.5)

The analytical equivalent to the foregoing qualitative discussion is given by the fitting
function Eq. (B.1), where the first term is given by the following set of equations:

Tc(k) = f T̃0(k, 1,�c) + (1 � f) T̃0(k,↵c,�c) , (B.6)

with

f =
1

1 + (ks/5.4)4
. (B.7)

Further,

T̃0(k,↵c,�c) =
ln(e + 1.8�cq)

ln(e + 1.8�cq) + Cq2
, (B.8)

with

C =
14.2

↵c
+

386

1 + 69.9q1.08
, (B.9)

and the dimensionless parameter

q = (k/Mpc�1)⇥2
2.7(⌦mh

2)�1 =
k

13.41keq
. (B.10)

The parameters ↵c and �c are fit by

↵c = a
�⌦b/⌦m

1 a
�(⌦b/⌦m)3

2 ,

a1 = (46.9⌦mh
2)0.670[1 + (32.1⌦mh

2)�0.532] ,

a2 = (12.0⌦mh
2)0.424[1 + (45.0⌦mh

2)�0.582] ,

��1
c = 1 + b1[(⌦c/⌦m)

b2 � 1] ,

b1 = 0.944[1 + (458⌦mh
2)�0.708]�1,

b2 = (0.395⌦mh
2)�0.0266 . (B.11)

The second term in the fitting function can be expressed by,

Tb =

"
T̃0(k; 1, 1)

1 + (ks/5.2)2
+

↵b

1 + (�b/ks)
3 e

�(k/kSilk)
1.4

#
j0(ks̃) , (B.12)

where

↵b = 2.07keqs(1 +Rd)
�3/4G

✓
1 + zeq
1 + zd

◆
,

G(y) = y


�6

p
1 + y + (2 + 3y) ln

✓p
1 + y + 1p
1 + y � 1

◆�
, (B.13)
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and

�b = 0.5 +
⌦b

⌦m
+

✓
3 � 2

⌦b

⌦m

◆p
(17.2⌦mh2)2 + 1 . (B.14)

Finally, the spherical Bessel function j0(x) ⌘ sin(x)/x depends on a correction term for
small k,

s̃(k) =
s

[1 + (�node/ks)3]
1/3

, (B.15)

with
�node = 8.41(⌦mh

2)0.435 . (B.16)
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Appendix C

Normalisation of the linear power spectrum

The normalisation factor A of the linear power spectrum can be derived by assuming a
linear galaxy dark matter bias �28,gal ⌘ b2 �28 between the variance of number counts of

galaxies in a sphere of R = 8h�1Mpc, where �28,gal ⇡ 1, and the variance in the dark
matter distribution in the same sphere, �8 ⇡ 0.8 (see Table A.1). The variance in the
dark matter distribution is related to the amplitude A of the linear dark matter power
spectrum via the density field �R smoothed on the scale R = 8h�1Mpc,

�28 = �2(R = 8h�1Mpc) = h�2R(x)i =
Z

d3k

(2⇡)3
PR(k) , (C.1)

with

�R(x) =

Z
d3y �(y)WR(|x � y|) , (C.2)

and WR being a top-hat filter function, which is in Fourier space given by

WR(k) =
3

(kR)3
[sin(kR) � kR cos(kR)] . (C.3)

The power spectrum of the smoothed field is given by

PR(k) = Plin(k) |WR(k)|2 . (C.4)

Applying the transformation from cartesian coordinates to spherical coordinates
R
R3 d3x =R1

0 dr r2
R ⇡
0 d✓ sin(✓)

R 2⇡
0 d�, the variance can be rewritten using Eq. (C.4) and Eq. (1.54),

�28 =

Z
d3k

(2⇡)3
|W8(k)|2 Plin(k, a = 1) (C.5)

=

Z
d3k

(2⇡)3
|W8(k)|2Akns T 2(k)D2(a = 1)

=
A

(2⇡)3

Z 1

0
dk k2W8(k)

2 kns T 2(k)

Z ⇡

0
d✓ sin(✓)

Z 2⇡

0
d�

=
A

(2⇡)3

Z 1

0
dk k2W8(k)

2 kns T 2(k) ⇥ [�cos(⇡) + cos(0)] ⇥ [2⇡ � 0]

=
A

2⇡2

Z 1

0
dk k2W8(k)

2 kns T 2(k) .
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The amplitude A of the linear power spectrum from perturbation theory is finally given
by

A = �28


1

2⇡2

Z 1

0
dk k2W 2

8 (k)T
2(k) kns

��1

. (C.6)
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Derivative in the halo mass function

The derivative d ln ⌫
d lnm of the dimensionless variable ⌫, can be analytically calculated by

d ln ⌫

d lnm
=

d

d lnm
ln

✓
�c(z)

D(z)�(m)

◆
= � d

d lnm
ln�(m) = �m

�

d

dm
�(m) , (D.1)

using that d
dx ln(x) =

1
x . In a next step the derivation of d

dm �(m) is executed, using
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1

m

�
d
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�(m) . (D.3)

In a next step the derivative d
dR �(m) is calculated using Eq. (C.5),

d

dR
�(m) =

d

dR

Z
dk

2⇡2
k2 Plin(k, z = 0) |W 2

R(k)|
�1/2

(D.4)

=
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Z
dk

2⇡2
k2 Plin(k, z = 0)

d |W 2
R(k)|

dR
.

Here the derivative of
d |W 2

R(k)|
dR is calculated separately,

d |W 2
R(k)|
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dW 2
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✓
3
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The final result is then

d ln ⌫

d lnm
= � R

�2(m)

Z
dk

2⇡2
k2 Plin(k, 0)WR(k)


k2R sin(kR)

(kR)3
� WR(k)

R

�
, (D.6)

where the derivative of a dimensionless quantity is again dimensionless.



Appendix E

Numerical interfaces to the bispectrum

The numerical transformations of the projected galaxy-matter bispectrum Bgg(`1, `2; `3)
(defined in Eq. 2.36) to the excess mass maps and the aperture statistics are given by
Eqs. (3.28) and (3.30), respectively. For these integral transformations an approach using
a multipole expansion of the bispectrum is applied. This approach is based on notes by
Patrick Simon (priv. comm.), which are reproduced with his permission in the follow-
ing two sections. In these notes, the angular bispectrum Bgg(`1, `2; `3) is denoted by
bgg(`1, `2,�).

E.1 Excess mass maps

To tackle the numerical computation of the integral transformation (Eq. 3.28) of the bis-
pectrum, we found it useful to follow the recipe of Zheng (2004) and Szapudi (2004),
which is summarised in the following. For this purpose, we express the angular bispec-
trum bgg(`1, `2,�) by the moduli of `i = |`i| and the angle � between the vectors `1 and
`2. We perform a Fourier expansion of bgg with respect to � in terms of the multipoles
Bn(`1, `2):

bgg(`1, `2,�) = B0(`1, `2) + 2
1X

n=1

Bn(`1, `2) cosn� (E.1)

with

Bn(`1, `2) =
1

2⇡

Z 2⇡

0
d� bgg(`1, `2,�) cosn� , (E.2)

where the symmetries bgg(`1, `2,�) = bgg(`1, `2,��) and Bn(`1, `2) = B�n(`1, `2) are
used (parity invariance and real-valued correlation functions). Using this expansion, we
can recast Eq. (3.28) with the relation Fn(✓13, ✓23) = F�n(✓13, ✓23) into

hggi(✓13, ✓23, ) = F0(✓13, ✓23) + 2
1X

n=1

Fn(✓13, ✓23) cosn , (E.3)

where the function Fn(✓13, ✓23) of ✓13 ⌘ |✓1 � ✓3| and ✓23 ⌘ |✓2 � ✓3| is defined as

Fn(✓13, ✓23) =

Z 1

0

d`1d`2`1`2
(2⇡)2

(�1)nBn(`1, `2)Jn(`1✓13)Jn(`2✓23) . (E.4)
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The angle  denotes the angle spanned by ✓1 � ✓3 and ✓2 � ✓3.
The series Eq. (E.3) can be truncated after some n once an acceptable accuracy has

been achieved, usually of the order of n . 10 (here we choose n = 6). The Bn(`1, `2)
are computed once for all n in question on a fine logarithmic grid with Ng ⇥ Ng pixels,
spanning all scales of interest for the hgg�i map; we employ the limits 101  `  106

and Ng = 100 pixels. Furthermore, assuming that Bn(`1, `2) is constant within one grid
pixel, Eq. (E.4) simplifies to

Fn(✓13, ✓23) ⇡ (E.5)
NgX

i,j=1

Bn(`i, `j)

(✓13✓23)2

⇣
Jn([`i +�`i]✓13) � Jn(`i✓13)

⌘⇣
Jn([`j +�`j ]✓23) � Jn(`j✓23)

⌘
,

where �`i�`j is the area of pixel (i, j) in the 2-D `-grid of Bn(`1, `2). The integrated
Bessel function of first kind is defined by

Jn(x) ⌘
Z x

0
ds s Jn(s) , (E.6)

which we compute once as lookup-function for the needed range of x.

E.2 Aperture statistics

Similar to the excess mass maps, also for the aperture statistics hN (✓1)N (✓2)Map(✓3)i it
is convenient to compute Eq. (3.30) for a given bispectrum bgg by utilising the multipole
expansion of the bispectrum, Eq. (E.1):

hN (✓1)N (✓2)Map(✓3)i = (E.7)

1

4⇡2

1X

n=0

�
2 � �Kn0

� Z 1

0
d`1d`2`1`2Bn(`1, `2)û(`1✓1)û(`2✓2)un(`1✓3, `2✓3) ,

where the auxiliary function un is defined as

un(`1, `2) =

Z 2⇡

0

d�1d�2
(2⇡)2

û

✓q
`21 + `22 + 2`1`2 cos(�1 � �2)

◆
cos (n(�1 � �2)) , (E.8)

and �Kij is the Kronecker symbol. In this work un(`1, `2) is computed using a Riemann
sum.

Since the un are independent of the bispectrum, they can be computed once as lookup-
table on a logarithmic `-grid and be reused any time the aperture statistics are computed.
Specifically, we compute un(`1✓3, `2✓3) for a fiducial value ✓f3 = 0.5 arcmin on a logarithmic
(`1, `2)-grid. If ✓3 is changed relative to its fiducial value, one has to o↵set the grid indices,
both `1 and `2 direction, by log (✓3/✓f3)/� log `1/2, where � log ` is the size of a ` grid pixel;
the pixels are constructed such to be equally sized on a log-scale.

For given coe�cients Bn(`1, `2), the multipole expansion of the aperture statistics is
now approximated by (a) truncating the multipole series beyond some n, and (b) by
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assuming that Bn and un are essentially constant over the size of a `-grid pixel:

hN (✓1)N (✓2)Map(✓3)i ⇡ 1

4⇡2

1X

n=0

�
2 � �Kn0

�
(E.9)

⇥
NgX

i,j=1

Bn(`i, `j)

(✓1✓2)2
un(`i✓3, `j✓3) (U([`i +�`i]✓1) � U(`i✓1)) (U([`j +�`j ]✓2) � U(`j✓2)) .

Here, we integrated the aperture kernel over the grid pixel area:

U(`) =

Z `

0
ds s û(s) . (E.10)

For the exponential aperture kernel employed in Schneider & Watts (2005),

û(`) =
`2

2
e�`2/2 , (E.11)

we find
U(`) = �

�
1 + `2/2

�
e�`2/2 . (E.12)
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Figure F.1: Best-fit models (dashed line with shaded area representing the standard deviation) to the
G2L signals from the Millennium Simulation using the SAM by Henriques+15 (symbols) for all stellar
mass samples for low-z.
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Figure F.2: As Fig. F.1 but for high-z.
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Figure F.3: Best-fit HODs obtained from the models fits to the G2L from the Millennium Simulation
using the SAM by Henriques+15 (dashed line with shaded 1� uncertainty region) in comparison to the
‘true’ HODs (symbols). The results are shown for the various stellar mass samples for high-z.
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Figure F.4: Best-fit models (dashed line with shaded area representing the standard deviation) to the
G2L from CFHTLenS (symbols) for all stellar mass samples for low-z.
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Figure F.5: As Fig. F.4 but for high-z.
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Figure F.6: Best-fit models (dashed line with shaded area representing the standard deviation) to the
G2L from CFHTLenS (symbols) for all luminosity samples for low-z.



126 APPENDIX F. MODEL FITS TO THE MOCK & CFHTLENS G2L

10−4

10−3

10−2

:: high−z ::

L2

γ
t 

best−fit
CFHTLS

10−4

10−3

10−2

:: high−z ::

L2

L3

γ
t 

:: high−z ::

L2

L3 L4

10−4

10−3

10−2

1 10

:: high−z ::

L2

L3 L4

L5

γ
t 

θ [ arcmin ]

1 10

:: high−z ::

L2

L3 L4

L5 L6

θ [ arcmin ]

Figure F.7: As Fig. F.6 but for high-z.
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Figure F.8: Best-fit models (dashed line with shaded area representing the standard deviation) to the
G2L from CFHTLenS (symbols) for the galaxy-type samples for low-z.
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Figure F.9: As Fig. F.8 but for high-z.
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Figure G.1: Excess mass map predictions for seven stellar mass samples (top to bottom) for lens-lens
separations ranging from 0.5 arcmin to 3 arcmin (left to right). Shown are the high-z results. The lens
positions are indicated by stars. The size of each map is 4⇥ 4 arcmin2.
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Figure G.2: Excess mass map predictions for five luminosity samples (top to bottom) for various lens-lens
separations. Shown are the high-z results. The lens positions are indicated by stars. The size of each map
is 4⇥ 4 arcmin2.
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Figure G.3: Excess mass map predictions for the early-type (top) and the late-type galaxy (bottom)
sample for various lens-lens separations. Shown are the high-z results. The lens positions are indicated by
stars. The size of each map is 4⇥ 4 arcmin2.
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Figure G.4: Dependence of excess mass map predictions on varying the HOD parameters � and �log(Mh)

individually by ±20% with respect to their best-fit values. Shown are the results for di↵erent stellar mass
and galaxy-type samples (top to bottom) for a lens-lens separation of 1 arcmin and low-z. The size of each
map is 4⇥ 4 arcmin2.
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Figure G.5: Dependence of excess mass map predictions on varying the HOD parameters M1, Mth and
↵cen individually by ±20% with respect to their best-fit values. Shown are the results for di↵erent stellar
mass and galaxy-type samples (top to bottom) for a lens-lens separation of 1 arcmin and low-z. The size of
each map is 4⇥ 4 arcmin2.
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Figure G.6: As Fig. G.4 but for high-z.
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Figure G.7: As Fig. G.5 but for high-z.
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Figure G.8: Sensitivity of hN 2
Mapi(✓) on variations in the five HOD parameters by ±20% with respect

to their respective best-fit values. The main plots show the absolute predictions for the six stellar mass
samples as a function of aperture scale radius, the minor plots the relative deviation from the best-fit
reference in percent. Shown are the predictions for high-z.
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Figure H.1: Comparison of the hN 2
Mapi(✓) halo model predictions (dashed line) to the CFHTLenS

measurements (symbols) as a function of aperture scale radius ✓. Shown are the results for the stellar
mass samples and low-z. The error bars and the error bands give the 1-� uncertainty. The mean over the
random realisations is given by the dotted line.
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Figure H.2: As Fig. H.1 but for high-z.
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Figure H.3: Comparison of the hN 2
Mapi(✓) halo model predictions (dashed line) to the CFHTLenS

measurements (symbols) as a function of aperture scale radius ✓. Shown are the results for the luminosity
samples and low-z. The error bars and the error bands give the 1-� uncertainty. The mean over the
random realisations is given by the dotted line.
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Figure H.4: As Fig. H.3 but for high-z.
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Figure H.5: Comparison of the hN 2
Mapi(✓) halo model predictions (dashed line) to the CFHTLenS

measurements (symbols) as a function of aperture scale radius ✓. Shown are the results for the galaxy-
type samples, for low-z (top) and for high-z (bottom). The error bars and the error bands give the 1-�
uncertainty. The mean over the random realisations is given as dotted line.
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