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Abstract

With increasing global population, the resources for agriculture required to feed the growing
number of people are becoming scarce. Estimates expect that by 2050, 60 % more food
will be necessary. Nowadays, 70 % of fresh water is used by agriculture and experts see no
potential for new land to use for crop plants. This means that existing land has to be used
efficiently in a sustainable way. To support this, plant breeders aim at the improvement of
yield, quality, disease-resistance, and other important characteristics of the crops.
Reports show that grapevine cultivation uses more than three times of the amount of fungi-
cides than the cultivation of fruit trees or vegetables. This is caused by grapevine being prone
to various fungal diseases and pests that quickly spread over fields. A loose grape bunch
architecture is one of the most important physical barriers that make the establishment of a
fungal infection less likely.
The grape bunch architecture is mostly defined by the inner stem skeleton. The phenotyping
of grape bunches refers to the measurement of the phenotypes, i.e., the observable traits of a
plant, like the diameter of berries or the lengths of stems. Because of their perishable nature,
grape bunches have to be processed in a relatively short time. On the other hand, genetic
analyses require data from a large number of them. Manual phenotyping is error-prone and
highly labor- and time-intensive, yielding the need for automated, high-throughput methods.
The objective of this thesis is to develop a completely automated pipeline that gets as input a
3D pointcloud showing a grape bunch and computes a 3D reconstruction of the complete
grape bunch, including the inner stem skeleton. The result is a 3D estimation of the grape
bunch that represents not only dimensions (e.g. berry diameters) or statistics (e.g. the
number of berries), but the geometry and topology as well. All architectural (i.e., geometrical
and topological) traits can be derived from this complete 3D reconstruction. We aim at
high-throughput phenotyping by automatizing all steps and removing any requirement for
interaction with the user, while still providing an interface for a detailed visualization and
possible adjustments of the parameters.
There are several challenges to this task: ripe grape bunches are subject to a high amount
of self-occlusion, rendering a direct reconstruction of the stem skeleton impossible. The
stem skeleton structure is complex, thus, the manual creation of training data is hard. We
aim at a cross-cultivation approach and there is high variability between cultivars and even
between grape bunches of the same cultivar. Thus, we cannot rely on statistical distributions
for single plant organ dimensions.
We employ geometrical and topological constraints to meet the challenge of cross-cultivar
optimization and foster efficient sampling of infinitely large hypotheses spaces, resulting in
Pearson correlation coefficients between 0.7 and 0.9 for established traits traditionally used
by breeders. The active working time is reduced by a factor of 12.
We evaluate the pipeline for the application on scans taken in a lab environment and in the
field.
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Überblick

Angesichts einer zunehmenden Weltbevölkerung werden die landwirtschaftlichen Ressourcen
zur Ernährung der wachsenden Anzahl von Menschen knapp. Schätzungen gehen von einem
zusätzlichen Nahrungsbedarf von 60 % bis zum Jahr 2050 aus. Bereits heute werden 70 % des
Frischwasservorrats durch Agrikultur verbraucht und Experten sehen keine Verfügbarkeiten
für potentielle weitere Ackerflächen. Bereits existierende Felder müssen daher effizient
und nachhaltig genutzt werden. Pflanzenzüchter arbeiten an der Verbesserung von Er-
trag, Qualität, Resistenz gegen Krankheiten, sowie anderen wichtigen Charakteristiken von
Nutzpflanzen.
Untersuchungen zeigen, dass im Weinbau mehr als dreimal so viel Fungizide benutzt werden
wie im Anbau von Obstbäumen oder Gemüse. Der Grund dafür ist, dass Weintrauben anfällig
gegen verschiedene Pilzkrankheiten und Schädlinge sind, die sich auf Feldern rasch ausbrei-
ten können. Für Weintrauben ist eine lockere Architektur eine der wichtigsten physischen
Barrieren, die den Pilzbefall unwahrscheinlicher macht.
Die Weintraubenarchitektur wird hauptsächlich vom inneren Stielgerüst definiert. Die Phäno-
typisierung von Weintrauben bezieht sich dabei auf die Vermessung der Phänotypen, d.h.,
der beobachtbaren Merkmale einer Pflanze, wie z.B. den Durchmesser einer Beere, oder
die Länge von Stielen. Als verderbliche Ware müssen Weintrauben in relativ kurzer Zeit
verarbeitet werden, genetische Analysen erfordern aber Daten von einer großen Anzahl
verschiedener Trauben. Die manuelle Phänotypisierung ist fehleranfällig und erfordert einen
hohen Zeit- und Arbeitsaufwand, daher ist die Entwicklung einer automatisierten Methode,
die mit hohem Durchsatz betrieben werden kann, notwendig.
Das Ziel dieser Arbeit ist es, eine automatisierte Pipeline zu entwickeln, die eine Weintraube
aus einer 3D Punktwolke vollständig rekonstruiert, inklusive des inneren Stielgerüsts. Das
Resultat ist eine 3D Schätzung der Traube, die nicht nur die Dimensionen (z.B. Beeren-
durchmesser) oder Statistiken (z.B. die Anzahl der Beeren) repräsentiert, sondern auch die
Geometrie und Topologie. Alle strukturellen (d.h. geometrischen und topologischen) Merk-
male können aus dieser 3D Rekonstruktion abgeleitet werden. Um einen hohen Durchsatz zu
erreichen, automatisieren wir alle Schritte und verzichten auf Interaktionen mit dem Benutzer,
geben diesem aber über eine Schnittstelle die Möglichkeit, eine detaillierte Visualisierung zu
erhalten und, wenn nötig, Parameter anzupassen.
Die Aufgabe bietet mehrere Herausforderungen: Reife Weintrauben weisen einen hohen Grad
an Selbstverdeckung auf, daher kann das innere Stielgerüst nicht direkt aus der Punktwolke
rekonstruiert werden. Die Struktur des Stielgerüsts ist komplex, was das manuelle Erstellen
von Trainingsdaten erschwert. Der Ansatz soll für verschiedene Sorten geeignet sein. Zwis-
chen verschiedenen Sorten und sogar zwischen verschiedenen Trauben der gleichen Sorte
besteht eine hohe Variabilität. Daher können wir nicht auf statistische Verteilungen über die
Dimensionen einzelner Pflanzenorgane zurückgreifen.
Wir verwenden geometrische und topologische Constraints, um die Methode für verschiedene

iii



Sorten verwendbar zu machen und um effizientes Sampling für unendlich große Hypothe-
senräume zu erreichen, resultierend in Pearson Korrelationskoeffizienten zwischen 0.7 und
0.9 für traditionell von Züchtern benutzte Merkmale. Die aktive Arbeitszeit wird um den
Faktor 12 reduziert.
Wir evaluieren die Pipeline auf Labor- und Feldaufnahmen.
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53117 Bonn

mack@cs.uni-bonn.de

Education

since 2016 Rheinische Friedrich-Wilhelms-Universität Bonn,
PhD Student

2014 Rheinische Friedrich-Wilhelms-Universität Bonn,
Master in Computer Science

2011 Rheinische Friedrich-Wilhelms-Universität Bonn,
Bachelor in Computer Science

2008-2014 Rheinische Friedrich-Wilhelms-Universität Bonn,
Studies of Computer Science

2008 Nicolaus-Cusanus-Gymnasium Bonn, Abitur

v



vi



Acknowledgments

At first, I want to thank PD. Dr. Volker Steinhage, who gave me the chance to work on this
project, supporting me on every step and offering new insights whenever required.
Also, I would like to express my gratitude to the members of my promotion commission:
PD. Dr. Volker Steinhage, Prof. Dr. Jürgen Gall, Prof. Dr. Andreas Weber, and Prof. Dr.
Reinhard Töpfer.
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Chapter 1
Introduction

For a growing world population, more and more resources are required to provide a healthy
diet for all people. Estimates by the Food and Agricultural Organization of the United Na-
tions (UN FAO) expect the population to rise to 9.7 billion by 2050, leading to an increase in
the demand for food by 60 %. But resources for agriculture are already at their limits: 70 % of
fresh water are currently used by agriculture, meaning that in 2050, 120 % more water would
be required and 42 % more crop land, where there is not only no new land available today,
but it is likely that land area will shrink due to rising sea levels and urbanization (Bhunnoo,
2018). While pesticides can be used to lessen yield shrinkage, they have a strong impact
on the environment. Additionally, some species of fungi and weeds develop resistances,
rendering the pesticides useless.
The objectives of plant breeders in this context are to improve the yield, quality, disease-
resistance, drought and frost tolerance, and other important characteristics of the crops, to
make it possible to cultivate them in a more efficient, but at the same time sustainable way.
A report on the use of plant protection products in the European Union (Muthmann, 2007)
found that grapevine cultivation uses more than three times of the amount of fungicides
than the cultivation of fruit trees or vegetables. This is caused by grapevine being prone
to various fungal diseases and pests that spread quickly over fields. Especially bunch rot
(Botrytis infection) is considered a high-risk fungus, as it is adaptive and builds up resistances
against fungicides. A loose grape bunch architecture acts as a physical barrier that makes the
establishment of a Botrytis infection less likely, making the breeding of grape bunches such
that they show a loose architecture an important goal.
The architecture of a grape bunch is mostly defined by its inner stem skeleton. Depending on
its structure, the berries are pressed together during growth or hang loosely. This effect is
called the bunch compactness. Quantitative trait loci (QTLs) are sections of DNA correlating
with quantitative traits in phenotypes of a grape bunch. Several QTLs responsible for grape
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1 Introduction

bunch compactness were identified and have to be fine mapped based on phenotypes derived
from grape bunches (Töpfer et al., 2011).
In this context, phenotypes are defined as the observable morphological attributes of a
grape bunch, like the diameter of berries or the lengths of stems. Phenotyping is currently
done manually by visually estimating attributes in regards to the OIV list (Organisation
Internationale de la Vigne et du Vin, 2009). But QTL mapping requires data from a large
number of grape bunches, as statistics get more robust with increasing example quantity.
The manual phenotyping of grape bunches is highly labor- and time intensive (the so-called
phenotyping bottleneck, (Furbank and Tester, 2011)), and additionally, subjective. Results
can vary between different experts. Another problem is that grape bunches are a perishable
product, meaning they have to be processed in a relatively short time. This contradicts the
requirement of a large number of grape bunches, as only so many grape bunches can be
processed during that time frame. Automated, high-throughput methods provide a way to,
on the one hand, reduce the required processing time and, on the other hand, yield objective
measurements. This is the objective followed in the project ”Automated Evaluation and
Comparison of Grapevine Genotypes by means of Grape Cluster Architecture” funded by
the Deutsche Forschungsgemeinschaft (DFG) that this thesis is part of.
The development stages of grape bunches are described according to the Biologische Bun-
desanstalt, Bundesssortenamt and Chemische Industrie (BBCH) scale (Lorenz et al., 1994).
We work on grape bunches of development stages BBCH 87 to 89. At this point, the grape
bunches are ripe for harvest and all traits are fully developed.

Objectives: This thesis aims at the development of a completely automated pipeline that
is applicable in the practice of phenotyping in grapevine breeding. It gets as input a 3D
pointcloud derived by scanning a grape bunch from all sides. Based on this, a reconstruction
of the complete grape bunch, including the inner stem skeleton, is computed. The recon-
struction consists of geometric primitives approximating the plant organ shapes, like spheres,
ellipsoids, and cylinders, allowing the derivation of established phenotypes.

Challenges: The reconstruction of grape bunches from 3D pointclouds presents several
challenges.

1. The grape bunch stem skeleton has a complex structure, making it hard or even
impossible to manually create training data in 3D pointclouds. Therefore, self-learning
approaches are currently not applicable.

2. Grape bunches are subject to a high amount of self-occlusion, meaning that if grape
bunches are scanned from the outside, only the berries and the upper part of the main
stem (the peduncle) are visible. Therefore, the stem skeleton cannot be reconstructed
directly from the data.
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1.1 Contributions

3. A cross-cultivar optimization cannot rely on statistical distributions derived for single
plant organ dimensions or parameters, like, e.g., the diameters of berries, as there is
a high variability between cultivars and in some cases even for grape bunches of the
same cultivar. Additionally, the topology of the grape bunch and the relations between
different plant organs have to be taken into account.

4. Different grape bunch organs have to be represented by different geometric primitives,
e.g., the berries can be represented by spheres or ellipsoids, but the shape of stems
is more similar to cylinders. To foster automated and reliable estimation of these
primitives, it is important to use semantic labeling, i.e., to assign the points of the
pointcloud to the respective grape bunch organs.

1.1 Contributions

This thesis meets the challenges named before using the following approaches:

1. We employ a model-based approach that incorporates constraint-based knowledge
about the overall structure of the grape bunch.

2. Due to the massive occlusion of the inner stem skeleton, we use a Markov-Chain-
Monte-Carlo approach for the selection of the correct model and the estimation of the
parameters of the plant organs.

3. For the optimization, the structure of the grape bunch is represented by constraints that
encode geometrical and topological relations between grape bunch organs.

4. We present and evaluate supervised and unsupervised methods for semantic labeling
of dense high-precision pointclouds of grape bunches from different cultivars.

Like most parts of a plant, a grape bunch follows a regular growing structure. On this basis,
it is possible to develop an approach that derives a first guess for the model underlying a
given input and optimize it based on the constraints known to hold for the grape bunch. This
first guess will be called ”initial hypothesis” in the following.
The inner structure of the grape bunch is unknown as it is completely occluded at development
stages BBCH 87 to 89. The model dimension is, therefore, also unknown and has to be
optimized together with the parameters of the model parts. For this, we employ a Reversible-
Jump-Markov-Chain-Monte-Carlo (RJMCMC) optimization. In this thesis, we propose an
adaption of the algorithm dividing it into phases. Simulated Annealing is used to foster
efficient optimization. During approximately the first half of the optimization, measured in
regards to the temperature, jumps that change the dimension of the model are followed by
jumps optimizing the parameters involved in the jump. The second phase is restricted to a
parameter optimization.
To include information about the topology of grape bunches in the optimization, we employ
geometrical and topological constraints.
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1 Introduction

For semantic labeling, we derive a new RGB-D feature descriptor based on a combination of
the Fast-Point-Feature Histograms (FPFHs) and a histogram derived from the hue channel
of the HSI color space, representing shape and color features, respectively. We call this
the Hue-Fast-Point-Feature-Histograms (HFPFHs). Due to its definition, the hue channel
is well suited to applications where the classes contain objects with different shades of one
color. We evaluate our new descriptor combined with a Support Vector Machine (SVM)
for supervised learning and k-means for unsupervised learning and compare the results to
established variants like the Point-Feature Histograms with RGB (PFHRGB) (Rusu et al.,
2008) and Color-Signature of Histograms of Orientations (CSHOT) (Tombari et al., 2011) in
the context of plant phenotyping.
Methods for the semantic labeling of 3D pointclouds based on deep learning have become
an alternative to traditional descriptors during the last years, outperforming them in various
applications. We choose to use a multi-view approach, as they are able to deal with dense
pointclouds of objects with complex structures, like grape bunch stem skeletons. More
concretely, we adjusted and optimized the SnapNet (Boulch et al., 2018).

1.2 Related work

In this section, we introduce related work concerning the phenotyping of grape bunches. For
related work regarding the methods used in this thesis, please refer to sections 3.1 and 4.2 in
the respective chapters.
We divide the proposed approaches into those working with 3D data and those using images,
presenting the strengths and weaknesses of both approaches. Tello et al. (2016) compare
methods using either 2D or 3D image analysis methods and evaluate them with respect to
the morphological volume of grape bunches.

1.2.1 Phenotyping based on images

Grapevine berries: Many studies concentrate on the grapevine berries as important at-
tribute for yield estimation. The corresponding images are taken at night with special lighting
conditions (Font et al., 2014, Millan et al., 2018), in the field (Nuske et al., 2014, Roscher
et al., 2014), with a rebuilt harvesting machine called PHENObot (Kicherer et al., 2015),
or even with a smartphone (Aquino et al., 2017). Liu et al. (2015) take single images from
one side of a grape bunch, reconstruct the berries and extrapolate the number of berries of
the whole grape bunch from this value. Other studies derive the weight of berries (Cubero
et al., 2014) or grape bunches (Diago et al., 2015, Liu et al., 2013). Newer approaches
employ deep learning to detect grape bunches in images and count the berries with circular
Hough transform (Rudolph et al., 2018), or even end-to-end learning to detect young shoots,
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1.2 Related work

berries, or pedicles (Grimm et al., 2019). Another approach using traditional descriptors and
unsupervised learning to detect shoots in videos was introduced by Liu et al. (2017).

Yield estimation: Some studies aim at yield estimation at earlier development stages to
provide the information before the beginning of the harvest. Aquino et al. (2018a) present
a smartphone application to count young berries, using a black box as background, while
Aquino et al. (2018b) take images with an all-terrain vehicle in the field. The same group
(Aquino et al., 2015a) introduced a smartphone application that allows the user to take
images in the field and counts the number of grapevine flowers in this image. Another work
by Diago et al. (2014) does the same for images taken with a camera in the field, while
Aquino et al. (2015b) provide a method to segment grapevine inflorescences. Liu et al. (2018)
capture images in the field with a black backing board that is used to provide a controlled
background.

Compactness: A study by Cubero et al. (2015) directly derives the bunch compactness
by calculating the width of the bunch at different heights. A review over grape bunch
compactness and different methods to derive it is given by Tello and Ibáñez (2017). Those
methods compute indexes based on the visible outside of the grape bunch, using ratios
between volume estimations, convex hulls, and the number of berries. None of those methods
explicitly reconstructs the stem skeleton to include in the derivation of the compactness.

1.2.2 Phenotyping based on 3D data

There are comparatively few approaches for the phenotyping of grape bunches working on
3D data. Klodt et al. (2015) use RGB cameras and dense stereo reconstruction to derive traits
like the 3D leaf surface area, or the fruit-to-leave ratio for two grape bunch breeding lines.
Ivorra et al. (2015) derive a 3D model of a grape bunch based on stereo vision. This model
yields traits like the number of berries, their sizes, weight, and the grape bunch compactness.
Another study employs the Kinect to derive grape bunch volume and mass (Marinello et al.,
2016).
Rose et al. (2016) generate a pointcloud using a multi-view stereo approach based on images
with geotags. They classify the pointcloud and derive the berries with a Random Sample
Consensus (RANSAC)-based approach, yielding the number of grape bunches, the number
of berries, and the berry sizes.
A recent study by Milella et al. (2019) employs an Intel RealSense R200 sensor to detect and
count grape bunches and estimate their weight.
To the best of our knowledge, the only publication that yields a complete derivation of the
grape bunch, including the stem skeleton, is by Schöler and Steinhage (2015). They introduce
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1 Introduction

a prototypic approach that uses statistical constraints to optimize a model of the grape bunch
using RJMCMC optimization. As they test their method on only four grape bunches of the
same cultivar that were chosen to be rather similar to each other, statistical constraints work
well in their application. However, as mentioned before, even within the same cultivar grape
bunches show a high within-class-scatter, rendering statistical constraints unusable in this
application. Therefore, we use geometrical and topological constraints.

1.3 Conceptual design of the workflow

The pipeline, as depicted in Figure 1.1, consists of the following steps:

• Scanning and preprocessing: the grape bunch is scanned. The resulting dense high-
precision pointcloud is thinned and outlier are removed to prepare it for further
processing.
• Semantic labeling: each point of the pointcloud is assigned a label based on the

biological structure of the grape bunch. In this context we introduce the new HFPFH
descriptor combining FPFHs (Rusu et al., 2009) with a color descriptor (Mack et al.,
2018). The results are compared to those achieved with a deep learning approach,
more concretely, the so-called SnapNet (Boulch et al., 2018).
• Initial grape hypothesis: based on the semantic labeling, the berries of the grape

bunch and the peduncle are reconstructed directly from the pointcloud using a Random

Scanning
and Pre-
processing

Semantic
Labeling

Initial Grape
Hypothesis

Constraints

RJMCMC
optimization

Phenotypic
traits

pointcloud

pointcloud

pointcloud, grape hypothesis

grape hypothesis

Figure 1.1: The workflow of the proposed pipeline.
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1.4 Thesis structure

Sample Consensus (RANSAC)-based procedure (Mack et al. (2017a), Mack et al.
(2018), Rist et al. (2018)). Subsequently, an initial hypothesis for the complete grape
bunch is created based on geometrical and topological constraints.
• RJMCMC optimization: the initial hypothesis is refined, employing geometrical and

topological constraints to assess the quality of a new hypothesis compared to the
current one (Mack et al. (2019)). The process is divided into two phases: during the
first phase, each jump that changes the dimension of the model is followed by n jumps
that perform a local optimization on the parts involved in the jump. This leads to a
better adjustment of the parts and, thus, to a higher acceptance rate for topological
jumps. The second phase assumes that the correct model has been chosen during the
first phase. From this point on, only jumps are allowed that optimize the parameters of
the model, but the model dimension is not changed.
• Phenotypic traits: from the 3D reconstruction, phenotypic traits can be derived, like

berry diameters, or lengths of stems.

1.4 Thesis structure

The thesis is divided into seven chapters. Chapters 2 to 5 explain the algorithm on the basis
of scans taken in a lab environment, while Chapter 6 shows first results for the application
on field scans.
Chapter 2 describes the process of scanning the grape bunches, the preprocessing of the 3D
pointclouds, and the derivation of reference data.
Chapter 3 presents the first step of a semantic labeling of the pointcloud in regards to the part
of the grape bunch each point belongs to. For this, we evaluate the usage of the newly defined
HFPFHs combined with supervised and unsupervised classifiers, and a Convolutional Neural
Network (CNN) as well. The respective contributions were published in Mack et al. (2017a),
Mack et al. (2017b), Mack et al. (2018), and Japes et al. (2018).
Afterwards, Chapter 4 introduces the constraint-based 3D object reconstruction approach
we applied to automatically derive reconstructions from labeled 3D pointclouds of grape
bunches. The method relies on constraints to evaluate the quality of a new hypothesis in
comparison to the current hypothesis. A part of the method and its results was already
presented in Mack et al. (2017a), Rist et al. (2018) and Mack et al. (2019).
In Chapter 5 we evaluate the methods presented so far on scans taken in a lab environment
and discuss the results as well as the applicability to efficient phenotyping.
We apply the approach to field scans in Chapter 6, presenting first results and discussing
them in comparison to the scans created in a lab environment.
Finally, Chapter 7 concludes the thesis and discusses possible extensions and enhancements
of the developed methods.
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Chapter 2
Data

This chapter covers the data generation and preparation process as well as the derivation of
reference data to use for comparison in the evaluation. The first part presents the required
nomenclature from viticulture. Afterwards, we describe the scanning process used to create
dense high-precision 3D pointclouds that show the grape bunch from all sides. The next
section introduces the preprocessing we apply to the pointcloud, consisting of a thinning
procedure and a removal of outlier points. Finally, we describe the approach to derive
different kinds of reference data for comparing the 3D reconstructions achieved with our
optimization method with the original grape bunches. Both scanning and derivation of the
reference data were carried out at the Institute for Grapevine Breeding Geilweilerhof in
Siebeldingen.

2.1 Nomenclature from viticulture

We group the grape bunch organs according to the nomenclature commonly used in viticul-
ture, as shown in Figure 2.1:

Peduncle: The peduncle is the former connection between the rachis of the grape bunch
and the canopy.

Rachis: The rachis is the main stem of the grape bunch.
Twig: Twigs are the extensions of the rachis in the direction of the pedicles.
Subtwigs: Subtwigs are small twigs growing from twigs itself instead of the rachis. They

can also be called ”second-order twigs”.
Pedicle: Pedicles are stalks that connect a berry to a twig or subtwig.
Berry: Berries are the fruits of a grape bunch.

9



2 Data

Figure 2.1: The parts of a grape bunch including its stem skeleton labeled in different colors (the peduncle in
pink, the rachis in blue, the twigs in red, the subtwigs in darkgreen, the pedicles in green, and the berries in
turquoise). Additionally, the hook is shown with a brown color. To keep the image simple, berries are depicted
smaller than they would be at development stage BBCH 89. This figure is an adjusted version from Japes et al.
(2018).

During the scanning process, the grape bunch is attached to a hook that is depicted in Figure
2.1. While it is not part of the grape bunch itself, we have to include it in the semantic
labeling process to correctly recognize the respective points.
The transition from peduncle to rachis is not clearly defined in the literature. We choose to
name the part of the main stem visible above the berries peduncle and the main stem below
rachis. While the peduncle is usually visible in the scans of the grape bunch, as seen, e.g., in
Figures 2.6a to 2.6c, the rachis is mostly occluded.

2.2 Scanning process

For each grape bunch, the scanning process can be divided into the following steps:

1. scanning of the complete grape bunch,
2. removal of berries,
3. taking a reference photo of the stem skeleton,
4. second scanning of the stem skeleton.

In the following, we describe those steps in more detail. It has to be noted that not all steps
were performed on all grape bunches, as will be remarked in the description of the data
sets.
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2.2 Scanning process

Figure 2.2: During the scanning process, the Artec 3D Spider Scanner (Artec 3D, 2019a) is placed in front of a
grape bunch that is attached to a rotating hook. The grape bunch is scanned for slightly more than a full rotation
period, generating a pointcloud that shows the grape bunch from all sides.

(a) Calardis Blanc (b) Dornfelder (c) Pinot Noir (d) Riesling

Figure 2.3: Examples for the cultivar set used as data material.

In a lab environment, the grape bunch is attached to a hook that rotates automatically with a
relatively slow, uniform speed. The Artec 3D Spider Scanner (Artec 3D, 2019a) is placed in
front of the rotating grape bunch, as shown in Figure 2.2. The bunch is scanned for slightly
more than a full rotation period, generating a pointcloud that contains scans from all sides.
Those scan slices are aligned on the fly by the Artec Scanning Software, generating a 3D
pointcloud with a resolution of 0.1 mm and an accuracy of up to 0.05 mm.
After the first scanning, all berries are removed from the grape bunch. A photo of the
resulting stem skeleton is taken to provide a basis for the reference data, as explained in
Section 2.4. Then, it is attached to the hook again and scanned for a full rotation period,
generating 3D pointclouds showing only the stem structure.
Together with the Institue for Grapevine Breeding Geilweilerhof in Siebeldingen, a number
of 52 grape bunches of four cultivars (Calardis Blanc (9), Dornfelder (15), Pinot Noir (19),
and Riesling (9)) were chosen for the initial screening such that they cover different grape
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2 Data

(a) Sultana (b) Prime (c) Sugrathirteen (d) Ruby Seedless

Figure 2.4: Examples for the table grape set used as data material.

(a) Class 1 (b) Class 3 (c) Class 5 (d) Class 7 (e) Class 9

Figure 2.5: Examples for the variety set consisting of grape bunches from the five compactness classes.

bunch shapes, sizes, and berry colors. Examples can be seen in Figure 2.3 and the resulting
pointclouds in Figure 2.6. We call this the cultivar set.
To cover a variety of berry shapes and colors, steps 1 and 2 were done for 11 table grapes,
including 5 grape bunches with green berries (1 Sultana, 2 Sugraone, 2 Prime) and 6 grape
bunches from red table grape cultivars (3 Sugrathirteen, 3 Ruby Seedless). As can be seen
in Figure 2.4 the ellipticity of the berries varies strongly. We will further call this the table
grape set.
Finally, steps 1 to 4 were also applied to 10 grape bunches from a F1 progeny1 of the crossing
population of GF.GA-47-42 x ”Villard Blanc” that were chosen to represent the compactness
classes from very tight to very loose, as shown in Figure 2.5. This will be called the variety
set in the following.
All grape bunches are of development stages between BBCH 87 and 89, meaning that the
berries are fully grown and ripe for harvest. At these stages, the stem skeleton is visible only
in very loose grape bunches, as can be seen in Figure 2.5a, and even there parts of it are

1First generation of offspring
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2.3 Preprocessing of pointclouds: outlier removal and thinning

(a) Calardis Blanc (b) Dornfelder (c) Pinot Noir

(d) Calardis Blanc (e) Dornfelder (f) Pinot Noir

Figure 2.6: Example pointclouds from grape bunches and grape bunch stem skeletons after preprocessing with
outlier removal and thinning, as introduced in Section 2.3.

occluded.

2.3 Preprocessing of pointclouds: outlier removal and thinning

The current pointclouds contain noise resulting from erroneous measurements during the
scanning process, as can be seen in Figure 2.7a. To reduce this effect, we apply an approach
to remove statistical outliers from the data: for each point, the distance to its k nearest
neighbors is computed. Due to the nature of the scanning process, the resulting distribution
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(a) Original pointcloud (b) Pointcloud after outlier removal (c) Pointcloud after thinning

Figure 2.7: Example for the preprocessing of the Calardis Blanc grape bunch shown in Figure 2.3a.

can be assumed to be Gaussian. Based on these distributions, a global mean and standard
deviation for the distances can be computed. If the mean neighbor distance of a point lies
outside the interval made up of the global mean distance and the global standard deviation,
we consider it an outlier and remove it from the data.
After the outlier removal the pointclouds usually still have a size of between 300 K and 1
million points, often positioned very close to each other, as they originate from different scan
slices. Thinning the pointcloud leads to an even spreading of the points over the surfaces.
This increases the usability of a pointcloud, as reasonable values for parameters like the
number of inliers for RANSAC in Section 4.3.4 can be predicted. Additionally, the reduction
of the points leads to an overall speed-up of the process.
We apply a voxel-based thinning to the pointcloud that works as follows: the 3D pointcloud
is divided into a so-called voxelgrid, where the edge length of each voxel, represented by the
parameter v ∈ R, is fixed to 0.4 mm. For each voxel, the center of mass of all points inside
is computed and used to represent all points. This reduces the size of the pointclouds to
between 150 K and 300 K.
Figure 2.7 shows the process for an exemplary Calardis Blanc grape bunch: the original
pointcloud in Figure 2.7a shows outliers resulting from errors occurring during the scanning
process that are removed in Figure 2.7b. At this time, the pointcloud size has been reduced
from originally 350 K to 300 K. In the next step, the redundant points are removed, resulting
in the pointcloud shown in Figure 2.7c with 100 K points. Visually, there is almost no
difference between the pointclouds before and after thinning. The parameter v is chosen
empirically. It was shown in Mack et al. (2017a) that adjusting this value in a small range
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2.4 Reference data and gold standards

does not significantly change the result.
Figure 2.6 shows further examples for pointclouds after preprocessing.

2.4 Reference data and gold standards

We derive labeling gold standards and statistical reference data.
For the evaluation of the semantic labeling methods, labeling gold standards as shown in
Figure 2.8a are created by manually labeling all points in the pointcloud following the stem
skeleton structure introduced in Section 2.1, with subtwigs and pedicles summarized into one
class, as they are hard to distinguish in the data. All in all, we provide labeling gold standards
for 8 Calardis Blanc grape bunch scans, 10 Dornfelder scans, and 10 Pinot Noir Scans, each
split up evenly between scans of the grape bunch and of the stem skeleton. Additionally,
5 Riesling grape bunch scans were labeled. It was not possible to generate labeling gold
standards for the stem skeleton of the Riesling grape bunches, as those scans included a large

(a) Labeling gold standard (b) 2D image of the berries spread on
a perforated plate

(c) 2D image with marked lengths

Figure 2.8: Examples for the labeling gold standard (Figure2.8a) and the basis for the derivation of statistical
reference data for the berries (Figure 2.8b), the stem, and the pedicles (Figure 2.8c) derived for the Pinot Noir
grape bunch in Figure 2.3c. The colors of the labeling gold standard relate to those shown for the structure of the
grape bunch in Figure 2.1.
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number of small berries that would have been highly elaborate to remove, but cover large
parts of the stem skeleton.
We derive statistical reference data in the form of phenotypes known from the OIV list
(Organisation Internationale de la Vigne et du Vin, 2009), especially the number of berries,
their average diameter, the length of the stem, and the average length of the pedicles. Those
traits are established under grapevine breeders. At the Institute for Grapevine Breeding
Geilweilerhof, two methods are used for the derivation of those values: for the berry reference
data, the berries are removed from the grape bunch and spread on a perforated plate, such
that each berry lies in one of the holes, as shown in Figure 2.8b. The number and average
diameter of berries are derived from an image of the plate as shown by Kicherer et al. (2013).
The lengths of the stem and the pedicles are estimated by taking photographs of the stem
skeletons. The required lengths are then manually marked in each image, as can be seen
in Figure 2.8c. This is a tedious process that takes a proficient user on average about 12
minutes. Additionally, the approach uses a 2D image, which has several drawbacks: Only
a relatively small number of pedicles is completely visible. Parts of the stem can also
be occluded. Due to the curvature in the stem skeleton and pedicles growing in different
directions lengths are distorted. We try to compensate for this by choosing a good angle for
the photo and measuring as many pedicle lengths as possible to achieve a stable average,
still, some divergence cannot be avoided.
An alternative would be to directly measure the lengths in the stem skeleton with a ruler.
While this method would provide exact measurements, it has to be done with a fresh stem
skeleton, as the drying process leads to a shortening of the stems, introducing more errors.
As explained in Chapter 1, the grape bunches are perishable products and, as such, have to
be processed in a relatively small time frame. Therefore, a tedious process like this cannot
be included in the harvesting process.
As shown in Table 2.1, the cultivar set can be evaluated with respect to all kinds of labeling
and reference data.
During harvesting the staff is highly occupied with routine work, therefore, we reduced the
amount of reference data collected for the other data sets. For the table grape set we created

Special properties Labeling g.s. Berry ref. Stem ref.

cultivar set Four cultivars X X X

table grape set Elliptical berries partly X

variety set Compactness classes X

Table 2.1: The properties of the data sets. For the table grape set, the available labeling gold standard (labeling
G.S.) only differentiates between berries and stems, instead of berries, peduncle, rachis, twigs, subtwigs, and
hook. The shortcut ”Berry ref.” stands for berry reference, and ”Stem ref.” for stem reference, respectively.
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2.4 Reference data and gold standards

labeling gold standards for all 11 grape bunches, but only divided the points into two classes,
with the first class consisting of berry surface points, and the second of points on the surface
of stems or of the hook. There is no reference data available for the stems, as the focus of
this set is the elliptical shape and the different colors of the berries.
The variety set shows grape bunches from all compactness classes. As the compactness
mostly depends on the inner stem skeleton, we only provide reference data for the stems.
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Chapter 3
Semantic labeling of 3D pointclouds

The automated reconstruction of plant organs with geometric primitives requires assigning
the points of the pointcloud to the respective plant organs, as different plant organs have to
be represented by different primitives. E.g., berries can be represented by spheres, but stems
share more similarities with cylinders. This process of labeling points with respect to the
surface of the plant organ they belong to is called semantic labeling and is especially chal-
lenging in precision farming due to high within-class variances, high degrees of occlusions
and overlaps, self-similarities, and densely packed plant organs. E.g., the shape of berries
can differ depending on how much pressure is between them and the neighboring berries.
There are two approaches to the semantic labeling of 3D pointclouds: Using either descrip-
tors, or deep learning with a Convolutional Neural Network (CNN).
In the first case, descriptors are hand-crafted based on information derived from the point-
cloud for each point. Afterwards, either a supervised classifier is trained, or an unsupervised
classification is used to assign a label to each point depending on its descriptor. The two parts
(descriptor and classifier) can balance each other out, i.e., when using a powerful descriptor,
a simple classifier can be sufficient to provide a reliable division into the classes. On the
other hand, if the descriptor only covers basic features, a more sophisticated classifier might
still be able to provide robust results.
A CNN is a supervised classifier that automatically derives the required descriptive features
during training. This requires a large amount of training data and is computationally expen-
sive. Still, the high quality of results and applicability to a large number of classes make this
method extremely powerful and in many cases the de-facto state-of-the-art.
In the first part of this chapter we give an overview of the related work regarding traditional
descriptors on the one hand and CNN-based deep learning on the other hand. In Section
3.2 we introduce the Fast-Point-Feature Histogram (FPFH) descriptor that we use in this
application, its extension with color information, resulting in the Hue-Fast-Point-Feature

19



3 Semantic labeling of 3D pointclouds

Histogram (HFPFH) descriptor, and the different classifiers. Finally, in Section 3.3 we ex-
plain the architecture of the SnapNet and how it has to be adjusted to be used on pointclouds
of grape bunches.

3.1 Related work

We divide the related work into the two categories of approaches mentioned above, with the
first covering traditional descriptors, and the second one deep learning methods.

3.1.1 Descriptor-based semantic labeling

For different applications, descriptors have to be defined focusing on different, sometimes
even contradictory key aspects.
A traditional field is the so-called scan matching. A 3D scanner generates slices of points
at a fixed interval with resolution and range depending on the scanner itself. Those slices
have to be aligned to generate a pointcloud. While the position of the scanner can be used to
support this process, most localization methods are not exact enough to provide a perfect
positioning. Therefore, descriptors are used in the context of scan matching to yield a better
alignment. The Signature of Histograms of Orientations (SHOT, Tombari et al. (2010)) is an
example for this category. They match surfaces to each other based on histograms of normal
orientations computed in a local reference frame. The extension Color-SHOT (CSHOT,
Tombari et al. (2011)) additionally includes information about the texture around each point.
Nascimento et al. (2012) show that their Binary Robust Appearance and Normals Descriptor
(BRAND, Nascimento et al. (2012)) is able to outperform the CSHOT by encoding point
information as a binary string with fast performance and low memory consumption. Wu et al.
(2017b) introduce a specifically designed combination of a descriptor and keypoint detector
using texture and shape information. The Rotational Projection Statistics (RoPS) descriptor
(Guo et al., 2013) is based on a triangle mesh and computes statistical information about the
distribution of the points after projecting them onto normed planes. It was ranked on top for
some studies providing an overview over scan matching descriptors (Yang et al., 2016a,b).
Rusu et al. (2009) defined the Fast-Point-Feature Histograms (FPFHs) as an extension of
the Point-Feature Histograms (PFH, Rusu et al. (2008)). They represent the local surface
properties of a point based on the geometric relation between it and its neighbors.
While for scan matching it is important to distinguish parts of the data that are similar to
each other, but not equal, plant phenotyping requires assigning the same label to different
instances of parts of the plant, like different berries. Due to the natural growth, those parts
usually show variations in color and shape. PFHs were shown to be suitable in this context
by Paulus et al. (2013). They used PFHs to classify pointclouds of grape bunches and crop
plants into a combined class for leaves and stems, and fruits as the second part. With this
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semantic labeling, the result can be used to estimate the expected yield.
In an extension of the study, Wahabzada et al. (2015) clustered pointclouds into the plant
parts described above using k-means. With this unsupervised method, they still reached
robust results.
In Mack et al. (2017b), we compared the FPFHs, PFHs, SHOT, and RoPS descriptors as
well as Spin Images (Johnson and Hebert, 1999) on the application of plant phenotyping and
found FPFHs to be the most suitable choice. Similar to the CSHOT (Tombari et al., 2011)
or the PFHRGB (Rusu et al., 2008) we try to enrich the FPFHs using color information, as
explained in Section 3.2.2.

3.1.2 Deep learning-based semantic labeling

During the last years, deep learning approaches using convolutional neural networks out-
performed traditional descriptors in the context of object recognition and semantic labeling
(e.g., Girshick et al. (2014)). Following this development, a large number of studies have
proposed architectures to deal specifically with image segmentation. One example is the
SegNet (Badrinarayanan et al., 2017) that consists of an encoder and a decoder network,
followed by a layer providing a pixel-wise classification. The U-Net (Ronneberger et al.,
2015) was originally intended for biomedical image segmentation and is able to work with
relatively few training images.
For the semantic labeling of 3D pointclouds, there are three categories of approaches: point-
based methods, voxel-based methods, and multi-view methods.
Point-based methods work directly on the pointcloud. One prominent example is the Point-
Net (Qi et al., 2017a) using the point coordinates as well as local and global information
about the points in a fully-connected segmentation and classification network. In an extension
to their work, the Point-Net++ (Qi et al., 2017b) additionally uses a hierarchical network.
Voxel-based approaches build an occupancy grid to use as neighborhood structure (Maturana
and Scherer, 2015). The U-Net has been adapted to work on 3D data instead (Çiçek et al.,
2016), but it requires a high amount of parameters, making it infeasible for usage on large
pointclouds. The 3D Shape-Nets (Wu et al., 2015) learn 3D shapes from CAD-data for 3D
object recognition.
Multi-view approaches render images from 3D pointclouds and classify them with CNNs (Su
et al., 2015). Based on this, Boulch et al. (2018) introduced the SnapNet, that renders images
from randomly chosen views and uses the U-Net to classify the images, before applying
a backprojection to the 3D pointcloud. Guerry et al. (2017) optimize the SnapNet for the
application on RGB-D data in robotics.
Considering that point-based methods have difficulties dealing with complex objects, like
grape bunch stem skeletons, and voxel-based methods are highly computationally expen-
sive, making them less suitable for our high-precision data, we decide to use a multi-view
approach, more concretely, the SnapNet (Boulch et al., 2018).
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3.2 Semantic labeling using descriptors

We introduce a new so-called HFPFH descriptor, combining shape and color information.
The results presented in Mack et al. (2017b) show that the FPFH is the most promising
descriptor in the context of plant phenotyping. We add color information with the objective
to enhance its descriptive power. As second step, a classifier has to be chosen. We test
a Support Vector Machine (SVM, Vapnik (1995)) as supervised method and, additionally,
apply k-means++ (Arthur and Vassilvitskii, 2007) for an unsupervised clustering.

3.2.1 Fast-Point-Feature Histograms

Fast-Point-Feature Histograms (FPFHs) derive shape information for each point based on
the geometric relations between the point itself and its neighbors.
At first, the normal ni associated with each point pi is computed. This can be done, e.g.,
using a Principal Component Analysis (PCA) based on the neighboring points {p0, ..., pk} in
a radius rn. A local reference frame is needed to make the calculation rotation invariant. Here,
ps is the point with smaller angle between its associated normal ns and the line connecting it
to the other point, i.e., if it holds for points pi and p j with p ji = p j − pi and pi j = pi − p j

that
arccos(ni, p ji) ≤ arccos(n j, pi j), (3.1)

then ps = pi, ns = ni, pt = p j and nt = n j and the other way round. Based on this, the
Darboux frame (u, v,w) can be derived as local coordinate system:

u = ns (3.2)

v =

(
pt − ps

‖pt − ps‖2
× u

)
(3.3)

w = u × v (3.4)

To make u, v, and w an orthonormal basis, v and w have to be normalized.
Three angular features are used to express the difference between the two normals:

α = v · nt (3.5)

φ = u ·
pt − ps

‖pt − ps‖2
(3.6)

θ = arctan(w · nt, u · nt) (3.7)

Those angular features are computed for each point pq and its neighbors in a radius rh ∈ R.
The results are binned into a histogram with a number of bs ∈ N bins. This is called the
Simplified-Point-Feature Histogram (SPFH).

22



3.2 Semantic labeling using descriptors

To take into account the influence between the neighboring points in a radius rh, the SPFHs
are combined into the Fast-Point-Feature Histogram as follows:

FPFH(pq) = SPFH(pq) +
1
k

k∑
i=1

1
wi
· SPFH(pi), (3.8)

with k being the number of neighboring points and wi the distance between pq and its
neighbor pi. Thus, for each point pq the FPFH has an influence region with a radius of up to
2 · rh, taking into account the relationships between the point and its neighbors and between
their neighbors as well.

3.2.2 Hue-Fast-Point-Feature Histograms

The colors of berries of grape bunches vary depending on the cultivar, as seen for the different
data sets in figures 2.3, 2.4, and 2.5. For cultivars with green berries, the colors of berries
and stems can be almost identical, while for cultivars with red berries the difference in color
can be sufficient to distinguish the berries from the stems. Based on this observation, we
follow a method similar to Rusu et al. (2008) adjusted to FPFHs. The RGB channels are
binned into a second histogram and added to the FPFHs.
Compared to RGB the HSI (Hue, Saturation, Intensity) color model offers a representation
that is more similar to the human perception. Especially the hue channel is due to its
definition very suitable to distinguish between classes that contain objects with different
shading variants of the same color. Therefore, we derive the Hue, Saturation and Intensity
values for each pixel and add them to the extended histogram.
Each channel is divided into a number of bc ∈ N bins. The color histogram is then added to
the FPFH defined above, giving the final descriptor b = bs + bc bins.
As we assume that the hue channel has the most potential to achieve a robust classification, we
define our new RGB-D descriptor to be the hue channel combined with the FPFH descriptor,
and call this the Hue-Fast-Point-Feature Histogram (HFPFH) descriptor in the following.

3.2.3 Classification

After the creation of a descriptor, it is necessary to use a classifier to semantically label the
points. This can be done with supervised or unsupervised methods.

Support-Vector-Machines. As first approach, we use a Support Vector Machine (SVM,
Vapnik (1995)) with linear kernel. A binary SVM separates data from two classes by deriving
the hyperplane between them that has the largest margin to the closest training examples
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from each class. More formally, assume we are given n tuples of the form (xi, yi), with xi

denoting the feature vectors and yi the supposed outcome as teacher value and i = 0, . . . , n.
Now we can derive the hyperplane, with w representing its normal vector and b its offset
from the origin, by maximizing the margin while fulfilling the following set of inequalities
to classify all data points correctly:

yi(〈xi,w〉 + b) − 1 = 0 (3.9)

This can be combined in the primal form of the optimization problem using Lagrange
multipliers αi:

LP(w, b, α) =
1
2
||w||2 −

n∑
i=1

αi(yi(〈w, xi〉 + b) − 1) (3.10)

This function has to be minimized with respect to w and b and maximized with respect to all
αi ≥ 0 to find the desired optimal values w∗ and b∗. As the solution has to be at the same
time a minimum and a maximum, it is a saddle point and, therefore, for the first derivative it
must hold that L′(w∗, b∗, α) = 0. Using this, we finally get the dual form of the optimization
problem:

LD(α) =

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jyiy j〈xi, x j〉 (3.11)

This function now has to be maximized with respect to α and the resulting values can be
used to compute the optimal parameters w∗ and b∗:

w∗ =

n∑
i=1

αiyixi (3.12)

b∗ = −
1
2
〈w∗, xk + xl〉 (3.13)

where xk, xl are support vectors from one of the classes, i.e. yk = 1, yl = −1 and αk, αl > 0.
The decision function f computing the output for a new example z is then defined as
follows:

fα,b(z) = sign(
n∑

i=1

αiyi〈xi, z〉 + b) (3.14)

24



3.2 Semantic labeling using descriptors

The so-called kernel trick can be used on non-linear separable data. It projects the training
examples into a higher-dimensional space where the separation can be easier. In this thesis,
only linear SVMs will be employed.

k-means++. As unsupervised alternative, a k-means++ clustering (Arthur and Vassilvit-
skii, 2007) is introduced. As shown in Algorithm 1, the data points are repeatedly assigned
to the closest cluster center and the cluster center is updated as the center of mass of the
points assigned to it.
The distance measure used to assign points to cluster centers in line 3 plays an especially
important part. In most applications, the Euclidean distance can be used, but we showed in
Mack et al. (2017b) that for the histograms resulting from grape bunches, the χ2-distance
measure provides better results:

dχ2(x, y) =

m∑
i

(xi − yi)2

xi + yi
(3.15)

for x, y ∈ Rm. The reason for this is that the values in the histograms are normalized, and,
thus, tend to be very small, making the Euclidean distance prone to numerical errors.
The initialization of the cluster centers is usually done randomly. Instead, we follow the
approach introduced by Arthur and Vassilvitskii (2007): only the first cluster center is chosen
at random. Afterwards, all data points are weighted with their smallest distance to one
of the already chosen cluster centers. This makes it more likely that the cluster centers
are initialized as far spread over the points as possible, reducing the time required for the
clustering and at the same time increasing the robustness.
We can assume that the amount of berry surface points in a pointcloud of a grape bunch is
larger than the amount of stem surface points. Therefore, we set k = 2 and automatically
assign the label ”berry” to the larger of the two resulting clusters and ”stem” to the smaller
one, respectively.

Algorithm 1: k-means algorithm.

Input: n data points, k ∈ N
Output: k cluster centers

1 Initialize k clusters by using randomly chosen data points as cluster centers;
2 while the assignments of points to clusters changes do
3 Assign each point to the closest cluster center based on their distance;
4 Compute new cluster centers as center of mass of all points assigned to it;
5 end
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3 Semantic labeling of 3D pointclouds

Figure 3.1: The figure was adjusted from Japes et al. (2018). It shows the overall workflow of the SnapNet used
for semantic labeling. First, 2D images are generated from the original pointcloud. Then, the CNN assigns
semantic labels to the 2D images. Finally, the labels are transferred to the pointcloud using a 3D back projection.
The colors of the 2D labels assigned by the CNN are chosen randomly for the visualization: in this case, yellow
refers to the twigs, violet to the hook, grey to the rachis, and green to the subtwigs.

3.3 Semantic labeling using Convolutional Neural Networks

We rely on a multi-view approach as described by Boulch et al. (2018) consisting of the
following steps:

1. 2D images are generated from the pointcloud.
2. The SnapNet semantically labels those 2D images.
3. The labels are transferred to the pointcloud using a 3D back projection.

Figure 3.1 shows this workflow. We describe the steps in more detail in the following.
For the generation of 2D images, a RGB-mesh is derived from the pointcloud based on
the greedy surface triangulation algorithm described by Marton et al. (2009), yielding a
meaningful representation of the surfaces. To save some depth information even after the
reduction to 2D, additional views containing geometric features are created. An encoded
version of those views is shown in Figure 3.1 in the second image from the left. While the
left views show the RGB colors, the right views represent depth information, namely the
normal deviation (encoded on the green channel), local noise (encoded on the red channel),
and the distance to the camera (encoded on the blue channel).
The views itself are generated by randomly choosing a point of the scene and creating a line
through this point. Three points on the line in fixed distances from the point are used as
camera positions, facing always towards the point itself and covering multiple scales. While
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3.3 Semantic labeling using Convolutional Neural Networks

Figure 3.2: The figure was taken from Japes et al. (2018). It shows the architecture of the U-Net based fusion
network with residual correction making up the SnapNet, as introduced by Boulch et al. (2018).

this is a rather simple strategy, tests performed by Barmscheidt (2018) during his master’s
thesis showed that distributing the viewpoints uniformly on a sphere around the pointcloud
does not significantly improve the results.
The views created from the multiple camera positions are used as input for the CNN. Similar
to Boulch et al. (2018) we use an U-Net-based fusion network with residual correction, as
shown in Figure 3.2. The complete network consists of two U-Nets (Ronneberger et al.,
2015), one of which is trained on the composite images including the depth information,
and the other one on the RGB images. The U-Net architecture starts with a contracting part
(shown in orange and yellow in Figure 3.2) followed by an expansive part (green and blue in
Figure 3.2). The last feature maps of both networks are fed into a residual network (depicted
in red in Figure 3.2) that learns a corrective term that can be applied to the predictions. The
final result is then a pixel-wise score for each label.
In some more detail, the contracting part consists of multiple convolution layers (orange in
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3 Semantic labeling of 3D pointclouds

Figure 3.2). In each layer, two 3 × 3 unpadded convolutions are applied to the feature map,
followed by a Rectified Linear Unit (ReLU) that serves as activation function for the neuron.
Subsequently, a 2 × 2 max pooling operation (yellow layer in Figure 3.2) is performed as
downsampling step.
The expansive part starts with an upsampling layer using a 3 × 3 deconvolution (green in
Figure 3.2). The arrows in Figure 3.2 mark the copying of feature maps from the contracting
part to the expansive part. The information from the upsampled feature map and from the
one copied from the contracting part are concatenated and blended together using three 3 × 3
convolution layers (blue in Figure 3.2), each followed by a ReLU.
Finally, the fusion network consists of three 3 × 3 convolutions and a ReLU to learn the
corrective term. It outputs class scores for each pixel in the image. To project this information
back to 3D data, for each vertex of the mesh computed during image generation the score
vectors of the pixels of each surface it is part of are summed up. The vertex is then given the
label with highest class score. Based on this, the label for each point of the pointcloud can
be derived as the label of the nearest vertex.
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Chapter 4
Constraint-based 3D grape bunch
reconstruction

Following the semantic labeling introduced in Chapter 3, the grape bunch is reconstructed
based on a Reversible-Jump-Markov-Chain-Monte-Carlo (RJMCMC) optimization. We use
constraints to steer the process towards an optimum. Section 4.1 introduces constraints in
general, while Section 4.2 provides an overview over related work concerning 3D object
reconstruction using constraints. Finally, we present our variant of the RJMCMC algorithm
in Section 4.3.

4.1 Constraints

In general, constraints can be used to limit values that can be assigned to one or a combination
of several variables. In our case, the goal is to avoid the requirement of teacher values by
using an optimization procedure that relies on constraints to enforce restrictions on the target
object instead.
One advantage of constraints is that they can be described in natural language, making
them transparent and, thus, enabling discussions with experts from other application fields.
Constraint types vary highly ranging from simple equality and inequality constraints to
complex relations between objects. E.g., the positions of parts of the objects can be restricted
to lie in a fixed distance with respect to each other.
One classical example are statistical constraints as used, e.g., by Schöler and Steinhage
(2015). They can be easily derived from examples and often provide a good representation
of the object. But this approach fails for object classes with high within-class-scatter, like
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4 Constraint-based 3D grape bunch reconstruction

grape bunches. E.g., the lengths of twigs vary greatly, with upper twigs often having more
than double the length of lower twigs. Thus, their mean value and standard deviation can
not be used to restrict the length of a single twig. We introduce geometrical and topological
constraints as an alternative, with geometrical constraints restricting the lengths and angles
of parts of the model and topological constraints the whole topology of the grape bunch, e.g.,
allowing only connections between specific types of parts.

4.2 Related work

Constraints are employed in different contexts when it is necessary to restrict the hypotheses
space, but also allow a certain variation. One example is the sampling of different environ-
ments, e.g., coffee shops and golf courses (Yeh et al., 2012), or of an animation (Chenney
and Forsyth, 2000).
Another application field is the reconstruction of complex objects in 3D data. One class of
methods aims at the reconstruction of buildings, focusing on aspects like the reconstruction
of the building from airborne LiDAR data (Hu et al., 2018, Wu et al., 2017a), a detailed
facade reconstruction (Dehbi et al., 2016) or the derivation of the building model based
on pointclouds generated indoors (Ochmann et al., 2016). Dehbi et al. (2016) propose to
derive geometrical, topological, and semantic constraints from examples to generate a better
reconstruction. Hu et al. (2018) formulate constraints as descriptions of decompositions and
topological relations between primitives.
In the field of indoor scene reconstructions scene databases with manually segmented and
labeled mesh models are available and can be used to learn contextual relationships as
constraints between objects (Chen et al., 2014). Those constraints are then used to deal with
occlusion and a low-quality of the RGB-D data. Additionally, repetitive structures can be
detected to accelerate the identification of objects in low-quality data (Kim et al., 2012).
The reconstruction of plants in 3D data is often done using parametric L-Systems (Huang
et al., 2013, Xin et al., 2014). L-Systems are able to realistically simulate the growing process
of a plant and can be set to develop in such a way that the final shape of the simulated plant
comes close to the shape of a given real plant set by a user. Still, these methods do not
provide a one-to-one reconstruction of a plant.
A prominent field in 3D plant reconstruction is the reconstruction of trees. Aiteanu and Klein
(2014) introduce a hybrid method for sparse and dense pointclouds, fitting ellipses into cross
sections and deriving a spanning tree for each group of branches. Afterwards, the subtrees
are joined using a nearest neighbor approach. Similarly, Livny et al. (2010) and Preuksakarn
et al. (2010) use a global optimization fitting a skeleton into a sparse, incomplete and noisy
pointcloud. While those methods are suitable for unfoliated trees, they rely on the visibility
of the largest part of the skeleton in the data.
The 3D reconstruction of grape bunches proves to be a rather challenging problem: other than
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4.3 Reversible-Jump-Markov-Chain-Monte-Carlo optimization

in the other application fields, the visibility of the inner stem skeleton cannot be provided, as
in the development stage BBCH 89 with berries ripe for harvest it is in most cases completely
occluded by the outer berries. As already mentioned in Section 4.1, Schöler and Steinhage
(2015) use statistical constraints to validate samples of a grape bunch architecture drawn
by an RJMCMC algorithm. Compared to this, we aim to include more general constraints
similar to those derived by Dehbi et al. (2016) that allow us to work on a larger variety of
objects.
Several approaches exist to derive constraints automatically. Constraint programming has
been applied to different pattern mining and rule learning problems to lead to more robust and
flexible methods (De Raedt et al., 2010). Temple et al. (2016) infer constraints for product
lines from randomly created examples that are classified according to an oracle. Another
method using adversarial constraint learning is introduced by Ren et al. (2018).
Most current work focuses on the reconstruction of objects that are either mostly visible,
or can be reconstructed using a data base with training examples. We assume that our data
shows only the outside of the grape bunch, while the inner stem skeleton is completely
occluded. Training data cannot be easily derived, as the removal of berries changes the
topology of the stem skeleton, e.g., the angles of twigs can get distorted, as the weight of the
berries is missing, or pedicles can be accidentally removed with the berries. Even so, the
manual fitting of cylinders into the data would only be feasible for a low number of grape
bunches.

4.3 Reversible-Jump-Markov-Chain-Monte-Carlo optimization

As the inner stem skeleton is not visible in the data, an optimization process has to be used
that is able to do both, model selection and parameter estimation. The Reversible-Jump-
Markov-Chain-Monte-Carlo (RJMCMC) was first introduced by Green (2003). It extends
the Markov-Chain-Monte-Carlo algorithm to deal with hypotheses spaces for models that
require changing the model’s dimension and the model’s parameters as well. The method
uses jumps to switch between model states, converging to an optimum. Simulated Annealing
is used to support the convergence.
The approach is presented in Algorithm 2.
The reconstruction problem is translated to a Bayesian decision problem with

• D representing the sensor data, e.g. a 3D pointcloud,
• S as the hypotheses space and
• x ∈ S a hypothesis.

Each hypothesis x = (k, θk) consists of a model Mk ∈ {M1, ...,Mn) from an enumerable
set of models, defined using its index k, with dimension dmk and a set of parameters with
dimension dnk relating to the respective model. The algorithm then in each step proposes a
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4 Constraint-based 3D grape bunch reconstruction

Algorithm 2: Reversible-Jump-Markov-Chain-Monte-Carlo.

Input: initial hypothesis x0, constant annealing factor c, end temperature t f

Output: optimized hypothesis x∗

1 t0 = 1.0;
2 while ti ≤ t f do
3 m ∼ j(xx′);
4 u ∼ qm(u|x, k′);
5 (θ′k′ , u

′) = gkk′((θk, u));

6 A(x′|x) = min
(
1, π(x′ |D)

1
ti

π(x|D)
1
ti
·

j′(xx′)
j(x′x)

)
;

7 if a ∼ U(0, 1) ≤ A(x′|x) then
8 xi+1 = x′;
9 else

10 xi+1 = xi;
11 ti+1 = c · ti;
12 end
13 return xn−1.

switch from state x to a new state x′ with probability j(xx′). A random vector u is sampled
from a distribution qm(u|x, k′). To derive the new state x′, a jump gkk′(θk, u) is defined as a
bijection between (θk, u) and (θk′ , u′). The vectors u and u′ are used to match the dimension
between the vectors, such that dnk + dkk′ = dnk′ + dk′k. This is called the dimension matching
condition.
Assuming a current state x and a new state x′, we formulate the probability of accepting the
new stateA(x′|x) based on the posterior distribution π and the proposal probability j:

A(x′|x) = min
(
1,
π(x′|D)
π(x|D)

·
j′(xx′)
j(x′x)

)
(4.1)

For the posterior distribution π(x|D) it holds that

π(x|D) ∝ π(x) · L(D|x) (4.2)

with L(D|x) being the probability of observing sensor dataD given the hypothesis x.
Simulated Annealing is used to control the convergence, decreasing the acceptance prob-
ability over time. With the temperature ti the acceptance probability for jump proposals
decreases, depicted by the exponent 1/ti added to the acceptance probability in line 6 of
Algorithm 2. Line 11 shows the calculation of the new temperature following a geometric
annealing.
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4.3 Reversible-Jump-Markov-Chain-Monte-Carlo optimization

(a): pointcloud (b): berry detection (c): initial hypothesis (d): final reconstruction without/with berries

Figure 4.1: The step-by-step workflow of the RJMCMC optimization shown on a Pinot Noir grape bunch.
First, the visible grape bunch organs are derived from the pointcloud (a), namely berries and peduncle (b).
Based on them an initial hypothesis is created (c) and finally optimized with the RJMCMC algorithm described
in the following. The resulting grape bunch reconstruction is shown in (d). The right image shows the full
reconstruction and the left only the stem skeleton, to provide a better overview.

In the following, we give more details about the steps of the RJMCMC algorithm and how it
is adjusted for the application to grape bunches. First, we show the set of jumps that is used
to transform the current hypothesis to a new one in line 5 of Algorithm 2. Then, we explain
the chosen constraints and how they can be used to compute the prior (line 6 of Algorithm 2).
We explain our variant of an RJMCMC algorithm with locally optimized jumps in Section
4.3.3. Finally, section 4.3.4 presents the initial hypothesis and how it can be derived from the
data.
Figure 4.1 demonstrates the reconstruction process on an example.

4.3.1 Jumps

Following the notation introduced in Algorithm 2, jumps are bijective functions gkk′ that are
used to derive a new state proposal x′ from the former state x. The jumps presented here
were derived in collaboration with the experts from the Institute for Grapevine Breeding
Geilweilerhof in Siebeldingen. We divide the jumps into two classes: topological jumps
change the dimension of the model by removing or adding parts. Geometrical jumps are
applied to optimize the parameters, like lengths or angles of the model parts, but the model
dimension itself remains fixed. Based on those categories, we define the following jumps:

Topological jumps:

1. Combine twigs: Combine two twigs with small distance between their startpoints on
the rachis (less than 5 mm) into one.

2. Split twig: Split one twig into two new twigs. The endpoints of the twigs are chosen
at random on a circle with radius between two parameters dmin and dmax around the
old endpoint. We set those values to dmin = 1 mm and dmax = 20 mm.
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4 Constraint-based 3D grape bunch reconstruction

3. Reassign berry: Assign a berry to another twig.
4. Reassign subtwig: Assign a subtwig to another twig.
5. Attach twig as subtwig: Replace a twig with a subtwig starting from another twig in

the upper half of the grape bunch.
6. Detach subtwig as twig: Replace a subtwig with a twig.
7. Add subtwig: At a position with several pedicles with startpoint close to each other on

the corresponding twig, add a subtwig and reattach the closest pedicles to it.
8. Remove subtwig: Remove a subtwig and attach the pedicles to the twig the subtwig

was originally growing out of.

Geometrical jumps:

9. Move twig start/endpoint: Move the startpoint or, respectively, the endpoint of a twig.
10. Move subtwig start/endpoint: Move the startpoint or, respectively, the endpoint of a

subtwig.

Each jump needs to have a reverse jump for the corresponding function to be bijective. For
jumps 1 and 2 it holds that they are reverse jumps of each other, as are jumps 5 and 6, and 7
and 8. Jumps 3, 4, 9, and 10 are their own reverse jump.

4.3.2 Constraint processing

In Algorithm 2, an acceptance probability is computed in line 6, requiring the computation
of the posterior distribution. Following Equation (4.2) in Section 4.3, we have to define the
Likelihood of the data L(D|x) and the prior π(x).
The Likelihood L can be calculated as the distance between the surfaces of the cylinders
making up the bunch reconstruction hypothesis and the non-berry points in the pointcloud.
Berry points are ignored, as there is no jump to change the berries, thus there can be no
change in the Likelihood for those parts. For points that cannot be assigned to the surface of
a part of the hypothesis a penalty term is added.
The prior distribution π(x) evaluates the quality of the current hypothesis. For this, we define
constraints that have to be fulfilled.
For each instance of a constraint a probability Ci is computed. The prior π is then proportional
to the product of these probabilities:

π ∝

n∏
i=1

Ci (4.3)
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4.3 Reversible-Jump-Markov-Chain-Monte-Carlo optimization

Each probability Ci is expressed as a relation defined on a value πi computed on the hypothe-
sis.

Ci = relation(πi) (4.4)

This is either a unary or a binary relation and expresses in what way the constraint restricts
the involved variables. The following relations are used in this thesis:

similarσ(x, µ) = N(x, µ, σ) (4.5)

smallerσ(x, y) = N(x,min(x, y), σ) (4.6)

Equation (4.5) is used in constraints that restrict a value to be close to another given value µ.
The strictness of the constraint can be adjusted using the standard deviation σ.
Equation (4.6) is defined on two different hypotheses that are evaluated relative to each other,
i.e. x is the input computed on one of the hypotheses and y the input computed on the other
hypothesis. Equation (4.6) assigns a higher probability to the hypothesis with smaller value.
The definition of a relation that prefers larger values can be done analogously, but is not
required here.

Constraints derived for grape bunches

Similar to the jumps, the constraints used in this thesis were derived in collaboration with the
experts at the Institute for Grapevine Breeding Geilweilerhof in Siebeldingen. We categorize
them into geometrical constraints, referring to lengths or relations between grape bunch
organs, and topological constraints, concerning the topology of the whole grape bunch. In
the following, we present the list of constraints chosen for our application.

Geometrical constraints:

Angle constraint:
Angles have to be about 90◦.

G(k)
1 = similar

∑
(i, j)

angle(xi, x j), 90

 (4.7)

This constraint is applied between the rachis and twigs, and, additionally, to the
twigs/subtwigs and pedicles.
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4 Constraint-based 3D grape bunch reconstruction

Similarity constraint:
There should be no elements that are very similar to each other.

G(k)
2 = similar

∑
(i, j)

count similar elements(xi, x j), 0

 (4.8)

This constraint is applied to twigs, as very similar twigs can be combined. Here,
we define ”similar” to be a short distance on the rachis of less than dsim = 10 mm
and a difference in orientation of less than osim = 30◦.

Overlap constraint:
There can be no overlapping parts (with minimal distance between the parts
smaller than the radius of the primitive).

G(k)
3 = similar

∑
(i, j)

count overlapping parts(xi, x j), 0

 (4.9)

We apply this constraint to all parts of the grape bunch.

Length constraint:
The lengths have to be as small as possible.

G(k)
4 = smaller

 n∑
i=1

||xi||

 (4.10)

This constraint is applied to twigs, subtwigs and pedicles separately.

Deviation constraint:
The standard deviation has to be as small as possible.

G(k)
5 = smaller

1
n

n∑
i=1

||xi|| − x̄

 with x̄ =

1
n

n∑
i=1

||xi||

 (4.11)

This constraint is applied to pedicles.

Topological constraints:

Connection constraint:
Depending on the type of parts of the model, they have to be connected to each
other. The relation type of(x) returns the type of the grape organ x, e.g., rachis
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or pedicle.

T (k)
1 = connection between(type of(xi), type of(x j)) (4.12)

This holds for the peduncle and a part of the rachis, parts of the rachis and twigs,
twigs and subtwigs, and pedicles and berries. This constraint does not derive
a cost, but it is checked whether or not it is fulfilled. If not, the hypothesis is
invalid and has to be adjusted.

Potential connection constraint:
The parts of the skeleton involved in this constraint can be connected to each
other. Again, the relation type of(x) returns the type of the grape organ x.

T (k)
2 = potential connection between(type of(xi), ..., type of(xn)) (4.13)

This constraint is applied to twigs and subtwigs (a twig can be connected to
a subtwig, but there are twigs without subtwigs as well), and twigs/subtwigs
and pedicles (a pedicle can be either connected to a subtwig or to a twig).
All connections not covered by this constraint or in T (k)

1 are not allowed, e.g.,
connecting a pedicle to the rachis. Similar to the connection constraint, this
constraint does not derive a cost, but it is checked whether or not it is fulfilled.
If not, the hypothesis is invalid and has to be adjusted.

Decreasing length constraint:
Lengths of elements should decrease from the top of the stem skeleton to the
bottom.

T (k)
3 = smaller

∑
(i, j)

length shorter elements(xi, x j)

 (4.14)

This holds for the twigs, their length generally decreases.

Twig endpoint constraint:
There should be no twig endpoints outside the convex hull spanned by the
berries.

T (k)
4 = similar

 n∑
i=1

count if outside convex hull(xi), 0

 (4.15)

The exact definitions of the relations used in the similarity constraint, the overlap constraint,
the decreasing length constraint and the twig endpoint constraint are given in Appendix A.
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Figure 4.2: Example for a factor graph with random variables x1, ..., xk (spheres) and factors f (i)
1 , f (i)

2 , f (i)
3 (boxes).

Each factor encodes a constraint that is defined on one to k random variables, e.g. f (1)
1 is defined on x1, and a

second instance of the same constraint f (2)
1 on xk.
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Figure 4.3: Factor graph of the initial hypothesis including random variables (grey spheres), constraints (boxes,
red geometrical and green topological), and the relations between them. The random variables represent the
grape bunch organs (peduncle (Pu), rachis (R), twigs (T), subtwigs (S), pedicles (P), berries (B)). The constraints
show connection constraints T (k)

1 , the potential connection constraints T (k)
2 , and angle constraints G(k)

1 .

Factor graphs

We use a factor graph representation where the factors encode constraint instances and the
random variables parts of the hypothesis that make up the scope of the constraints. Figure
4.2 shows an example for such a factor graph. This representation provides an efficient way
to compute the prior from the joint probability of the factor graph due to offering a structured
overview over the dependencies between constraints and random variables.
The factor graphs used in the creation of the initial hypothesis and afterwards for the
optimization are shown in Figures 4.3 and 4.4. The types of random variables are the
grape bunch organs (peduncle (Pu), rachis (R), twigs (T), subtwigs (S), pedicles (P), berries
(B)). As mentioned before, we divide the constraints into two categories: geometrical and
topological. Geometrical constraints are depicted with red boxes in the figures and concern
lengths or relations of parts of the stem skeleton with each other and topological constraints
are depicted with green boxes and restrict the topology of the whole stem skeleton.

38



4.3 Reversible-Jump-Markov-Chain-Monte-Carlo optimization

Pu R T S P B

G
(1)
4 G

(2)
4 G

(3)
4 G

(1)
5

G
(1)
1 G

(2)
1G

(1)
2G

(1)
3

T
(1)
3 T

(1)
4

Figure 4.4: Factor graph of the optimization including random variables (grey spheres), constraints (boxes, red
geometrical and green topological), and the relations between them. The random variables represent the grape
bunch organs (peduncle (Pu), rachis (R), twigs (T), subtwigs (S), pedicles (P), berries (B)). The constraints
show angle constraints G(k)

1 , similarity constraints G(k)
2 , overlap constraints G(k)

3 , length constraints G(k)
4 , deviation

constraints G(k)
5 , decreasing length constraints T (k)

3 , and twig endpoint constraints T (k)
4 .

The set of constraints used during the generation of the initial hypothesis (Figure 4.3) and
the optimization (Figure 4.4) show several differences:

• Connection and potential connection constraints are only used during the creation of
the initial hypothesis. The reason for this is that we define the jumps in such a way
that the connection constraints are still fulfilled by their result. E.g., for the jump
”Remove subtwig” a subtwig is removed from the hypothesis. The connection between
the remaining parts of the hypothesis is kept by attaching the involved pedicles to the
parent twig of the subtwig. In this way, the new hypothesis is kept consistent with the
connection constraints, thus, as long as the initial hypothesis fulfils them, they do not
have to be evaluated again.
• Length, deviation, and decreasing length constraints are only used during the optimiza-

tion. The reason for this is that they are defined relative between two hypotheses. This
makes it more suitable to apply them during an optimization procedure.
• Only connection, potential connection, and angle constraints are used during the

creation of the initial hypothesis. While it would be possible to take into account all
constraints, this would greatly increase the complexity of the generation of the initial
hypothesis. We choose a middle path, where the generation is still rather simple, but
only some of the constraints have to be initially fulfilled.

4.3.3 Partitioning into phases

The topological jumps that are used to select the correct model change a number of parameters
that have to fit relatively well to yield a high acceptance probability. E.g., combining two
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twigs leads to the pedicles of both twigs being attached to the new twig, thus, potentially
increasing their lengths. If the new twig endpoint in the mid point between the old twigs
is not in a good position, this can lead to a rejection of the jump, even if moving it can
potentially reduce the pedicle lengths again.
To solve this problem, we suggest to divide the RJMCMC algorithm into two phases. The
first phase uses all jumps, but every jump that changes the dimension of the model, i.e., every
topological jump, is followed by n geometrical jumps that locally optimize the involved
parts of the model. A local optimization allows a better fitting of the involved object parts,
increasing the acceptance rate for those jumps. The n geometrical jumps are performed
taking the topological jump as basis. For the one topological and n geometrical jumps, an
acceptance probability is computed and only the jump with highest acceptance probability is
considered for acceptance.
In the second phase, only geometrical jumps are used. We assume that the model has been
optimized during the first phase that concentrates on the topological jumps. Now, all that
remains is a parameter optimization in the form of a fine-tuning of the positions of the
parts.

4.3.4 Derivation of initial hypothesis

To start the optimization with a hypothesis that fits the data, we reconstruct the visible parts
of the grape bunch with geometric primitives. The workflow is depicted in Figure 4.5. The
semantic labeling of the pointcloud with the SnapNet explained in Section 3.3 yields labels
classifying the points into the berries, peduncle, rachis, twigs, and the hook. The hook points
are directly removed, as they are not part of the grape bunch itself. In most grape bunch
scans, the only other visible parts are berries and the peduncle. The rachis and the twigs are

(a): pointcloud (b): semantic labeling (c): region growing (d): berry hypotheses

Figure 4.5: The step-by-step workflow of the berry detection on a Pinot Noir grape bunch. First, the pointcloud
(a) is semantically labeled with the SnapNet as described in Chapter 3, resulting in a labeled pointcloud (b).
Region growing is applied to divide the pointcloud into regions, optimally yielding one region per berry (c).
Finally, berry hypotheses are derived from the regions using a RANSAC-based approach (d).
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completely occluded by berries.
A well-known and robust method for the fitting of geometric primitives into pointclouds is
the Random Sample Consensus (RANSAC) algorithm that is introduced in the following.

RANSAC

This algorithm was introduced by Fischler and Bolles (1981) and adjusted for the usage on
pointclouds by Schnabel et al. (2007). The algorithm aims at fitting a geometric primitive (in
our application usually spheres or cylinders) into a pointcloud. This method is described in
Algorithm 3 and discussed in more detail in the following.
The algorithm requires as input the 3D pointcloud and, additionally, the primitive model
that has to be fitted in the form of the required parameters. The number of iterations nr the
algorithm is allowed to try has to be restricted to terminate the method in case of data that do
not fit to the model.
In a first step, kr points are chosen randomly from the pointcloud. On the basis of these
points, a model is calculated that represents a primitive that fits to this subset, where fitting is
defined as lying in a fixed distance ε to the surface of the primitive. Afterwards, for all points
it is tested whether they are part of the consensus set, again consisting of all points lying in a
distance ε to the surface of the model. In the end, the model with largest consensus set is
returned.
This method has been shown to run stable even on noisy data sets (Schnabel et al., 2007).

Algorithm 3: Random Sample Consensus.

Input: 3D pointcloud, model with kr parameters, number of iterations nr

Output: model hypothesis h, consensus set C

1 for i = 0; i < nr; i + + do
2 Randomly select kr points of the pointcloud and store them in a set K;
3 hypothesis hi = model with d(p, surface(hi)) < ε for every p ∈ K;
4 Create empty consensus set Ci;
5 for each point p of the pointcloud do
6 if d(p, surface(hi)) < ε then
7 Add p to consensus set Ci;
8 end
9 end

10 return Model hypothesis hi with largest consensus set Ci.
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Berry detection

As the pointcloud with berry surface points includes a large number of berries, we try to
make the detection more stable by dividing it into regions, aiming at providing one region
for each berry. This is a challenging task, as the berries often touch each other, thus, there is
a relatively smooth transition between them. As described in Mack et al. (2017a) and Rist
et al. (2018), we use a Region Growing approach introduced by Rabbani et al. (2006) to
separate the berries based on the smoothness of the curvature of the points. This curvature
can be computed from the eigenvalues of the covariance matrix. Each region r is constructed
starting from a seed point Ps that is chosen as the point with minimal curvature value that is
not part of any region. For each point p ∈ r, every point pn ∈ Nk(p) is added to the region
if the difference between its normal and the normal of p does not exceed a smoothness
threshold ts, with Nk(p) being the k-neighborhood of p. Also, it is checked if the curvature
value of such a neighborhood value is smaller than a curvature threshold tc. If this is the case,
it is added to the set of seed points Ps. After all seed points have been processed, the region
r is closed and a new region r′ started, again beginning with the point in Ps with minimal
curvature value.
The smoothness threshold ts has to be chosen such that it separates berries touching each other,
but on the other hand does not split the same berry into several regions due to deformations or
holes in the data. As these two requirements contradict each other, it is usually not possible
to find a perfect value for this parameter. Thus, we have to deal with both oversegmentation
(one berry divided into several regions) and undersegmentation (one region including several
berries).
The cultivar and the variety set both contain exclusively grape bunches with spherical berries.
Thus, their shape can be approximated by spheres. The table grape set includes grape
bunches with elliptical berries that require an extension of the method that is discussed in the
next section.
As explained in the previous section, RANSAC fits a parametric model into the data. In the
case of spheres this parametric model consists of a center point and a radius. The hypothesis
fitting the data best is derived as described in Algorithm 3. We use each region resulting
from the Region Growing approach as input for RANSAC. To cope with undersegmentation,
i.e., several berries in the same region, we use the following iterative strategy, yielding a set
of berry hypotheses H:

1. While the number of points in the current region R is still larger than a threshold ti ∈ N
and RANSAC is able to find a hypothesis in the data, perform the following steps,
otherwise, discard the region:

2. Apply RANSAC as described in Algorithm 3 to the region, yielding a berry hypothesis
h = (c, r) and the corresponding consensus set C.

3. Remove all points included in the consensus set from the region, i.e. R′ = R \C.
4. We apply constraints to the size of the consensus set (it has to be larger than a threshold
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ti ∈ R) and the radius r (it has to lie in a range rmin ≤ r ≤ rmax). If both constraints are
fulfilled, add the hypothesis to H, otherwise, discard it.

The constraint using the threshold ti is used to make sure that the region still contains a
sufficient number of points to yield a valid hypothesis in step 4. Additionally, the constraint
on the radius of the berry hypothesis ensures that it is in a range natural for grape bunches
and RANSAC does not fit a very large sphere into the data that covers many points, but does
not provide valid dimensions.
The points from the consensus set are removed from the region in step 3. This makes sure
that the next run of RANSAC uses points that were not covered by a berry hypothesis before.
Still, deformations and oversegmentation can yield multiple hypotheses for the same berry.
This is handled with a post-processing step. All hypotheses that overlap for more than
to = 25 % are compared with respect to the size of their consensus set. Only the hypothesis
with largest consensus set is kept.

Elliptical berries

While RANSAC works for all primitive shapes, and thus, for ellipses representing elliptical
berries as well, we pointed out in Mack et al. (2018) that the larger number of parameters
and the non-perfect shapes of berries lead to a very long running time. Therefore, we present
an alternative approach that uses least squares fitting (Li and Griffiths, 2004), as depicted in
Figure 4.6. First, the approach described in the previous section is used to obtain regions,
each containing exactly one berry. Then, an ellipsoid is fitted into each region following the
procedure described by Li and Griffiths (2004), where an ellipsoid is defined as the solution

(a): pointcloud (b): semantic labeling (c): region growing (d): detected spheres (e): elliptic berry hypotheses

Figure 4.6: The step-by-step workflow of the elliptical berry detection on a table grape. First, the points of
the pointcloud (a) are labeled as berry or stem surface points as described in Chapter 3 (b). Region growing is
applied to divide the pointcloud into regions, optimally yielding one region per berry (c). Berry hypotheses are
derived from the regions using a RANSAC-based approach (d). On the regions covered by those berries a least
squares fitting is applied to fit ellipses into the data (e).
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of:

(x − m)T A(x − m) = 1 with A =

a h g
h b f
g f c

 , (4.16)

with m being the center point of the ellipsoid and x = (x, y, z). A is positive definite. Solving
the equation leads to

F(x) = ax2 + by2 + cz2 + 2 f yz + 2gxz + 2hxy + 2px + 2qy + 2rz + d = 0. (4.17)

The following definitions are required:

I = a + b + c (4.18)

J = ab + bc + ac − f 2 − g2 − h2 (4.19)

To yield parameters describing an ellipsoid, it must hold that kJ > I2 with k = 4. With this,
it is possible to estimate half-axis vectors and half-axis lengths of the ellipsoid that covers
the largest number of points.

Peduncle detection

While the berries provide the endpoints of the pedicles, the peduncle represents the starting
point of the stem skeleton as uppermost part of the main stem. It can usually be detected
robustly by fitting a cylinder into the peduncle points with RANSAC. Again, constraints are
used to limit the range of the cylinder radius.
In some cases, the peduncle is not visible in the data. Then, we place a cylinder in the center
of mass of the upper layer of berries to simulate a peduncle in the most likely place.

Initial stem skeleton

Based on the detected berries and the peduncle, we create an initial stem skeleton to connect
all parts with each other. For this the following steps are performed:

• Sidebunch detection: a RANSAC-based cylinder detection is performed on the point-
cloud consisting of berry center points. To make up for the shape of sidebunches being
only approximately cylindrical, we set the distance ε for the allowed distance of a
point to the cylinder surface to a relatively large 10 mm and consider a cylinder a valid
candidate for a sidebunch if the consensus set includes more than tsb = 20 berries. We
remove sidebunch candidates if their endpoints are closer than their combined radii to
another sidebunch or the lowest point of the main bunch, as due to the volume of the
berries the endpoints of bunches are always at a certain distance to each other. The
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startpoint of the sidebunch is set heuristically to a point directly below the peduncle
and its endpoint to the center of mass of the berries in a radius of rsb = 15 mm around
the cylinder endpoint. If this point is inside a berry, it is moved upwards towards the
startpoint.
• Twig endpoint detection: k-means is applied to the berry centers to cluster them

with respect to their distance to each other. The retrieved cluster centers are used as
candidates for twig endpoints. To avoid twig endpoints inside of berries, we compute
a set of points inside the grape bunch, but with a certain distance to each berry. The
points closest to the twig endpoint candidates are finally chosen as twig endpoints.
• Rachis insertion: the endpoint of the peduncle is used as startpoint of the rachis. The

lowest twig endpoint detected in the step before defines the endpoint of the rachis. In
between start- and endpoint, the rachis is estimated at one third and two thirds of the
grape bunch length as the center point of the berries that lie inside a horizontal layer at
the given height.
• Twig insertion: a twig is inserted at each twig endpoint, leading straight to the point

at the same height on the rachis. If the distance between the twig endpoint and the
closest point on a side bunch would be shorter, the twig is inserted there as a subtwig,
instead.
• Pedicle insertion: a pedicle is inserted between each berry and the point on a twig or

subtwig with smallest distance to it. While the pedicle is attached to the center point
of the berry for the sake of simplicity, the radius of the berry is subtracted from its
length to provide correct lengths.
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Chapter 5
Experimental results

In this chapter, we present the results achieved applying our method to grape bunches. First,
we give details about the implementation and explain the methods we used for the evaluation.
Then, we show the results of the different approaches we used for semantic labeling: our
HFPFH descriptor either with SVM or k-means, and deep learning. The results were partly
published in Mack et al. (2018) and Japes et al. (2018). Afterwards, we present the results of
the grape bunch reconstruction, divided into the initial hypothesis, the final hypothesis, the
compactness, and the modification of the RJMCMC algorithm by partitioning it into phases.
These results were partly published in Rist et al. (2018) and Mack et al. (2019). Finally, we
discuss the results.

5.1 Implementation and evaluation methods

All methods were implemented in C++, using the Pointcloud Library (Rusu and Cousins,
2011) for Region Growing, Fast-Point-Feature Histograms, RANSAC, and for visualization
purposes.
As presented in Table 2.1 in Section 2.4, labeling gold standards are available for 19 grape
bunch scans (4 Calardis Blanc, 5 Dornfelder, 5 Pinot Noir, and 5 Riesling) and 14 stem
skeleton scans (4 Calardis Blanc, 5 Dornfelder, and 5 Pinot Noir) from the cultivar set for the
classes berries, peduncle, rachis, twigs, subtwigs, and hook. Additionally, the table grape set
provides labeling gold standards for all 11 grape bunch scans, but here we only differentiate
between berry and stem surface points.
As different stem types, like twigs or the rachis, are hard to distinguish based on their shape
and color alone, we evaluate the HFPFH descriptor only for the two classes ”berry surface
points” and ”stem surface points”. The stem skeleton scans show only different kinds of
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stems, thus, they are not used in the training of the HFPFH descriptor.
As deep learning approaches are deemed more powerful than traditional descriptors, we
apply the SnapNet to all scans with labeling gold standard from the cultivar set using the full
set of classes.
We evaluate all steps of the grape bunch reconstruction, i.e., berry detection, creation of
initial hypotheses, optimization, and dividing the algorithm into phases, on all 52 grape
bunch scans from the cultivar set.
The table grape set shows grape bunches with elliptical berries; therefore, we evaluate the
presented method for the reconstruction of elliptical berries on this data set in comparison to
the statistical reference data. For the stems, there is no reference data available.
The berries from the variety set are spherical and of similar sizes as those in the cultivar set,
thus, we assume that they are detected with similar quality. The 10 grape bunches in this set
are chosen such that the five compactness classes are covered by two grape bunches each.
The compactness is mostly defined by the grape bunch architecture, thus, we take the stem
reference data of this data set into account in the evaluation of the grape bunch reconstruction
method.
The RJMCMC algorithm chooses the jumps randomly, hence, we present the average results
from 10 runs for each grape bunch. Our variant of the RJMCMC algorithm using local
optimization for topological jumps is evaluated by comparing the acceptance rates for
topological jumps to the base version without local optimization. In the last step, we show
a new method for the derivation of the compactness and its robustness on the cultivar and
variety set.

5.2 Graphical User Interface

Figure 5.1 shows the build-up of the graphical user interface. On the left hand side, a viewport
provides the possibility to inspect the current status of the grape bunch reconstruction, i.e., the
pointcloud, the labeled pointcloud, the berries, the peduncle, or the complete stem skeleton.
In this figure, a pointcloud resulting from semantic labeling with the SnapNet is shown.
The right hand side gives the user access to parameters and the possibility to load pointclouds.
Instead of loading just single pointclouds, the application of the pipeline to all grape bunches
in a chosen directory is possible, which is important for the efficient phenotyping at the
Institute for Grapevine Breeding Geilweilerhof in Siebeldingen.
A checkbox in the lower right corner gives the user the possibility to remove parts of the
reconstructed grape bunch from view or add them again. This function is necessary to look
at, e.g., the grape bunch stem skeleton without having the berries blocking the view. Figure
5.2 shows how different grape bunch organs can be removed from view.
The shown view depicts the panel for pointcloud preprocessing on the right side. In the
upper right corner, other panels can be chosen for the detection of berries, the detection of

48



5.2 Graphical User Interface

Figure 5.1: The graphical user interface developed for the application.

(a) Pointcloud and reconstruction (b) Reconstruction (c) Reconstruction without berries

(d) Reconstructed rachis and twigs (e) Reconstructed rachis (f) The convex hull

Figure 5.2: Different grape bunch organs and the pointcloud can be removed from view if required. Figure 5.2a
shows a reconstruction together with the respective pointcloud. In Figure 5.2b, the pointcloud has been removed
from view. The following figures show the successive removal of other grape bunch organs from view: first the
berries (Figure 5.2c), then the pedicles (Figure 5.2d), and finally the twigs (Figure 5.2e). Figure 5.2f shows the
convex hull around the berries that is computed to estimate the volume of the complete grape bunch.
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the peduncle, and the bunch reconstruction, showing the respective parameters and statistical
values.

5.3 Semantic labeling

As explained in Section 2.4, the manual creation of labeling gold standards is tedious. For
the semantic labeling approaches introduced in Chapter 3, we present different variants of
training the HFPFH descriptor while reducing the amount of required training data:

• 60 % training data and 40 % validation data for an SVM,
• 20 % training data and 80 % validation data for an SVM,
• no training data by using k-means for unsupervised clustering.

For the deep learning approach, namely the SnapNet, we keep the division into 60 % training
data and 40 % test data. However, it offers the possibility to train more classes for the
different types of stems; therefore, it is trained on a set containing both grape bunch and stem
skeleton scans.

5.3.1 Hue-Fast-Point-Feature Histograms

The HFPFH descriptor is applied to the labeled grape bunch scans from the cultivar set and
the table grape set separately. We divide the points in the pointclouds into two classes: one
includes points that lie on the surfaces of the hook and the stems. The second contains points
lying on the surfaces of the berries. In the scans from the cultivar set, the stem system is
mostly occluded, thus, the number of berry points is significantly larger than the number of
stem and hook points. In the table grape set, the same effect is visible to a lesser extent. This
data set contains grape bunches with a wider range of berry colors and shapes. Additionally,
larger parts of the stem system are visible. Therefore, this data set is on the one hand more
challenging and on the other hand provides the possibility to test the effects of the color
component of the descriptor. We use an SVM on the cultivar set and the table grape set and
k-means only on the table grape set, as this set contains a larger number of stem points. The
results are presented in the following.

SVM

For the evaluation, we divide the set of labeled pointclouds randomly into a training and a
validation set. As mentioned in Section 2.4 we created labeling ground truths for 19 grape
bunches from the cultivar set.
The first training set contains 60 % of the grape bunches, corresponding to 11 scans (2
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Calardis Blanc, 3 Dornfelder, 3 Pinot Noir, and 3 Riesling). The remaining 8 grape bunches
(40 %) make up the validation set.
The parameters are chosen empirically based on observations made in Mack et al. (2017a)
and Mack et al. (2018). We set rn = 0.5 mm and rh = 4.5 mm for the normal calculation of
the FPFHs in the descriptor and the binsizes bs and bc both to 33, leading to a total binsize
of b = 66.
We use a linear SVM with standard parameters from the svm-light library (Joachims, 1999)
and achieve a F1-score of 99.12 %. While this shows that the semantic labeling achieves
almost perfect results, the creation of a labeling ground truth is time-intensive. Therefore,
we created an additional training set containing only 20 % of the scans, i.e., one randomly
chosen grape bunch of each cultivar. All 15 other grape bunches (80 %) were added to the
new validation set. This combination resulted in an only slightly lower F1-score of 99.10 %.
This shows that only a relatively small amount of training data is necessary to reach stable
results. Similar experiences were reported in Mack et al. (2017a) on pointclouds generated
with a 3D-laserscanner on grape bunches.
On the table grape set, we directly train on only one randomly chosen grape bunch per
cultivar, leading again to a division into a training set with about 20 % of the data and a
validation set with 80 %. As the berry shapes vary strongly and larger parts of the stem
skeleton are visible, this data set is more challenging. Still, we achieve a F1-score of
94.05 %.

k-means

On the table grape set we evaluate the results of a k-means classification with k = 2. As the
number of berry points is larger in all pointclouds, we assign the label ”berries” to the larger
resulting cluster.
To validate our assumption that the hue channel is suitable to distinguish between objects
of different colors, not different shades, we first evaluate the results achieved using only
the different color channels, as depicted in Figure 5.3. We show the combined results on
the whole data set and, additionally, the results on grape bunches with green berries and
those with red berries. On the grape bunches with green berries, the hue channel clearly
outperforms all other feature channels (88.10 ± 12.45 %), while the green channel leads to
slightly better results on grape bunches with red berries (78.25 ± 17.61 %). Grape bunches
with green berries often have a green stem system as well, making the hue channel the best
choice to distinguish between the stems and the berries. The color difference between stem
system and berries is usually larger for grape bunches with red berries; therefore, better
results can be achieved with the green channel. On the combined data set, the hue channel
performs best with 78.69 ± 17.75 %, followed by the green channel with 70.46 ± 18.37 %.
Based on these results, we combine the channels that showed the best results so far, namely
hue and green channels, with the FPFHs. Figure 5.4 presents the respective F1-values.
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Figure 5.3: The results achieved for the semantic labeling of the table grape set with k-means with only the
separated red, green, blue, hue, saturation, and intensity channel.

Figure 5.4: The results achieved for the semantic labeling of the table grape set with k-means with a combination
of the green or the hue channel and FPFHs.

Again, the best semantic labeling on grape bunches with red berries can be achieved with a
combination of the green channel and the FPFH descriptor (91.36 ± 6.27 %), but combining
the hue channel with the FPFHs delivers results of 85.30 ± 9.75 % as well. For grape
bunches with green berries, the green channel yields worse results than the FPFHs alone
(67.68 ± 20.93% to 77.95 ± 13.35 %). The HFPFH descriptor is stable on all grape bunches,
delivering a F1-value of 88.61 ± 8.54 % and is, thus, considered the best descriptor in this
context.
We compare the results of the HFPFH descriptor with those of the CSHOT (Tombari et al.,
2011), yielding a F1-value of 76.18±4.97 %, and the PFHRGB (Rusu et al., 2008), delivering
a F1-value of 80.84 ± 7.40 %, as shown in Figure 5.5. Our combination outperforms both
in all cases with the final result of 88.61 ± 8.54 %, confirming our assumption that the hue
channel is especially suitable if one class contains instances of objects with different shadings,
but the same underlying color.
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Figure 5.5: The results achieved for the semantic labeling of the table grape set with k-means combined with
the HFPFH descriptor compared to the PFHRGB and CSHOT descriptors.

5.3.2 Deep learning

To adjust the SnapNet to the application on grape bunches, we empirically evaluated the
respective parameters. As mentioned in Section 3.3, views are generated by randomly
choosing a point of the pointcloud and drawing a line through this point. On this line,
three points in fixed distances from the point are used as camera positions, facing always
towards the point itself. We set the three fixed distances to dv1 = 20 mm, dv2 = 40 mm, and
dv3 = 60 mm. The azimuth of the view is chosen uniformly at random between avmin = 0◦

and avmax = 360◦, and the elevation between evmin = −90◦ and evmax = 90◦, respectively.
The deep learning approach is applied to all scans of grape bunches and grape bunch stem
skeletons with labeling ground truth from the cultivar set. We use a similar division as for
the semantic labeling with the SVM: the training set contains all in all 11 labeled grape
bunch scans (2 Calardis Blanc, 3 Dornfelder, 3 Pinot Noir, and 3 Riesling) and 8 labeled
stem skeleton scans (2 Calardis Blanc, 3 Dornfelder, and 3 Pinot Noir). The validation set
contains the remaining 8 grape bunch scans (2 of each cultivar) and 6 stem skeleton scans (2
each of Calardis Blanc, Dornfelder, and Pinot Noir). The number of classes is extended to
berries, twigs (combining twigs, subtwigs, and pedicles), hook, and stem (combining the
peduncle and the rachis). As mentioned in Section 2.1, the separation of peduncle and rachis
is not clearly defined. While we train the classes separately, we evaluate them as one class.
Figure 5.6 shows the confusion matrix. As can be seen the approach yields results of more
than 93 % accuracy for all classes.
As shown in Section 2.1, the grape bunch structure usually shows a further division of the
twig class into twigs, subtwigs, and pedicles. While in grape bunch scans, the only visible
parts of the skeleton are usually the peduncle, sometimes parts of the rachis, and few twigs,
the stem skeleton scans provide the possibility of a further division into a class combining
subtwigs and pedicles and a twig class. We expect that distinguishing between subtwigs and
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(a) Relative accuracy (b) Absolute numbers

Figure 5.6: Results achieved for the semantic labeling of grape bunches and grape bunch stem skeletons from
the cultivar set, showing the absolute numbers of points assigned to each label (5.6b) and the relative accuracies
(5.6a).

(a) Relative results (b) Absolute results

Figure 5.7: Results achieved for the semantic labeling of grape bunches and grape bunch stem skeletons from
the cultivar set with division of the twig class into twigs and subtwigs, showing the absolute numbers of points
assigned to each label (5.7b) and the relative accuracies (5.7a). Twig points are often misclassified as subtwig
points, as the amount of training data is relatively low (214 K twig points). The peduncle is the uppermost part of
the rachis, thus, peduncle points are often assigned to the rachis class, instead.

pedicles is not feasible, as there are usually only very few short subtwigs visible and they are
hard to identify even for the human eye. Therefore, we did not further divide the classes.
Figure 5.7 shows the results for such a larger number of classes. For further information, we
also divide the stem class into peduncle and rachis. As can be seen, the true positive values
stay at more than 93 % for all classes beside the twigs and the peduncle. Only a relatively
small number of 35 % of twig points are correctly assigned to their class, the rest is labeled as
subtwig. We can trace this to the fact that twigs are often occluded by subtwigs and pedicles
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in the views, thus, they are not as well represented in the data. Figure 5.7b shows a number
of 214 K twig points, which is relatively low. While the number of hook points (240 K) and
stem points (345 K) is not significantly larger, those classes show clear features, e.g., the
stem is always oriented vertically and follows a relatively straight line, and the hook as an
artificial object always has the same shape in all scans. The twigs do not show such clearly
defined attributes, thus, more training data would be required to robustly distinguish them
from subtwigs.
The rachis points keep the same labeling quality as the combined stem class, but only 70 %
of the peduncle points are correctly labeled. 23 % of the missing points are assigned to the
rachis class instead. As mentioned before, this is due to the unclear definition. Still, this
does not lead to problems, as even if all peduncle points would be wrongly labeled as rachis
points, it would be possible to label the highest part of the rachis as peduncle points.
A discussion of the semantic labeling results and a comparison between the descriptor-based
and deep learning-based methods presented in this thesis will be given in Section 5.5.

5.4 Grape bunch reconstruction

We evaluate the steps of the bunch reconstruction divided into the berry detection, the initial
hypothesis, and the final reconstruction.

5.4.1 Parameters

If not noted differently, all parameters in this section were derived empirically.

Berry detection

For the detection of berries, several parameters are required, as mentioned in Section 4.3.4:

1. ts = 15◦: the smoothness threshold for region growing,
2. tc = 3.0: the curvature threshold for region growing,
3. ε = 0.05 mm: the maximal distance between a point and the surface of the model to be

counted as part of the consensus set by RANSAC,
4. nr = 500: the number of iterations that RANSAC is allowed to use,
5. ti = 70: the threshold on the number of points in the consensus set to consider a berry

hypotheses valid,
6. rmin = 1 cm, rmax = 9 cm: the minimal and maximal berry radii
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Some of these values can be derived from the data, as described in Mack et al. (2017a).
The minimal and maximal berry radii rmin and rmax are set very loosely, such that rmin is
smaller and rmax larger than any berry in the grape bunches in our data sets. The reason for
this is that some berries are deformed, making them seem almost flat in the data. Therefore,
RANSAC finds a basis for fitting a huge berry that covers the flat points very well, as the
curvature gets very small. As such a berry cannot occur, we prevent the creation of such
hypotheses.

Initial hypothesis

For the computation of the initial hypothesis, k-means is employed to cluster the berry centers.
The resulting cluster centroids are then used as potential twig endpoints. The parameter k
has to be derived such that it gives a good starting point for the number of twigs. For this, we
set it as follows:

k = nb/((Vb · Vc) · wt) (5.1)

with nb being the number of berries, Vb the summed up volume of all berries, and Vc the
volume of the convex hull around the grape bunch. wt = 2 is a weighting constant. To restrict
the number to a reasonable range, we make sure that the condition kmin = 20 ≤ k ≤ kmax = 35
holds.

RJMCMC optimization

The RJMCMC optimization requires the definition of the annealing factor c = 0.999 and the
end temperature t f = 10−5. The probability distribution j(xx′) is chosen such that each jump
is assigned the same probability.
Most constraints work with a normal distribution, requiring a standard deviation σ that is
used to set the strictness of the constraint. Table 5.1 shows the choice of those parameters.
We allow a 10◦ deviation for the angles between rachis and twigs (angle constraint G(1)

1 ), or

G(1)
1 G(2)

1 G(1)
2 G(1)

3 G(1)
4 G(2)

4 G(3)
4 G(1)

5 T (1)
3 T (1)

4

σ 10◦ 10◦ 1 5 10 mm 3 mm 3 mm 1 mm 10 mm 0.5

Table 5.1: The standard deviations derived empirically for the normal distributions of the angle constraint
between rachis and twigs G(1)

1 , the angle constraint between twigs, subtwigs and pedicles G(2)
1 , the similarity

constraint G(1)
2 , the overlap constraint G(1)

3 , the length constraints applied to twigs G(1)
4 , subtwigs G(2)

4 , and pedicles
G(3)

4 , the deviation constraint G(1)
5 , the decreasing length constraint T (1)

3 , and the twig endpoint constraint T (1)
4 .

The connection and potential connection constraints T (k)
1 and T (k)

2 control the connections between plant organs
and need no additional parameters.
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twigs, subtwigs, and pedicles (angle constraint G(2)
1 ). In some cases, especially the upper

twigs are drawn downwards by the weight of the berries. Therefore, we allow some deviation,
while still keeping the majority of the twigs at about 90◦ angle. The constraint responsible
for avoiding similar twigs G(1)

2 is set relatively strict to 1 to make sure that such twigs are
combined. The constraint on overlapping parts G(1)

3 is chosen less strict with 5. The reason
for this is that in some cases overlap appears by approximating curved twigs by straight
ones. While the algorithm should still reward hypotheses that avoid such overlap, setting
the standard deviation too strict might make this constraint useless, as a minimal probability
would be returned for all hypotheses, because the number of overlapping parts in the initial
hypothesis is too large.
For the length constraints, the different sizes of components have to be taken into account.
Setting the standard deviation for the constraint restricting twig lengths G(1)

4 to 10 mm
rewards smaller twig lengths, but still allows the algorithm to add a new twig where necessary.
Subtwigs and pedicles on the other hand (constraints G(2)

4 and G(3)
4 ) are comparably short;

therefore, the standard deviation has to be chosen stricter. Pedicle lengths usually show only
a small standard deviation, hence, we set the respective deviation constraint G(1)

5 rather strict
to 1.0 mm.
The topological constraints T1 and T2 control the connections between elements. They do
not require additional parameters. The decreasing length constraint T3 that makes sure that
twig lengths decrease from top to bottom could be implemented with a similar relation with
the mean value µ set to 0. However, this can be too strict, as in the initial hypotheses all
berries are attached to twigs and the missing subtwigs can lead to wrongly alternating twig
lengths. Therefore, we use the smaller relation instead, but still make sure that adjusting
twigs such that they decrease from top to bottom of the grape bunch is sufficiently rewarded
by setting the standard deviation to 10 mm. Finally, twig endpoints outside of the convex hull
can appear if twigs are elongated unnecessarily such that they are no longer inside the berries.
Such a hypotheses should be rejected by the constraint T4, therefore, we set it strictly to 0.5.
According to our modification of the RJMCMC algorithm, during the first phase each
topological jump is followed by n = 7 geometrical jumps.

5.4.2 Berry detection

We evaluate the berry detection approach, presented in Section 4.3.4, on the cultivar set by
comparing our results to reference data derived manually for the number of berries and their
average diameters, as described in Section 2.4. Additionally, we present qualitative results
for grape bunches chosen from the different cultivars.
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Qualitative evaluation

Figure 5.8 shows exemplary results for the berry detection method on grape bunches from
the different cultivars in the cultivar set. Visually, the result is in all cases very close to the
original pointcloud. In the case of the Dornfelder pointcloud (Figure 5.8c and 5.8d), it is
obvious that the upper left part of the grape bunch was not optimally scanned, resulting in
berries that are scanned incompletely. Although most of these berries were recovered, we
have to assume that some will be missing. Another factor that leads to missing berries is that
some of them grow inside the grape bunch, being completely or almost completely occluded.
For the examples shown in the figure, we detect 112 out of 151 berries for the Calardis Blanc
grape bunch, 100 out of 126 for the Dornfelder grape bunch, 97 out of 114 for the Pinot
Noir grape bunch, and 150 out of 196 for the Riesling grape bunch. For the Riesling grape
bunch, it is important to note that this cultivar grows a large number of very small berries

(a) Calardis Blanc pointcloud (b) Detected berries (c) Dornfelder pointcloud (d) Detected berries

(e) Pinot Noir pointcloud (f) Detected berries (g) Riesling pointcloud (h) Detected berries

Figure 5.8: Exemplary results achieved on grape bunches from the cultivar set for the berry detection.
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at the inside. Those berries were not included in the reference measurements, as they do
not provide the required genetic information, but they are also not visible in the scan, thus,
leading to no deviation of the results.
The average diameter of the berries shows only a small mean percentage error for all grape
bunches (3.9 % for Calardis Blanc, 3.56 % for Dornfelder, 0.63 % for Pinot Noir and 7.4 %
for Riesling). In all cases, the absolute error is less than 1 cm and for Pinot Noir even less
than 1 mm.

Quantitative evaluation

The results of the quantitative evaluation can be seen in Figure 5.9.
We achieve a Pearson correlation coefficient of 0.9 for the number of berries and 0.92 for
the average berry diameters. While this is a robust result, the plot shows that the number
of berries is constantly underestimated. As mentioned in the qualitative evaluation, this is
related to the structure of the grape bunch: while most berries are found on the outside, some
grow inside the grape bunch, being occluded by other berries. Thus, we cannot detect them
in the pointcloud. This effect gets stronger for larger grape bunches containing more berries,
which is the case mostly for grape bunches of the Calardis Blanc cultivar. Because of the
same reason, the average diameters are underestimated for Calardis Blanc grape bunches,
still, there is a high correlation.

(a) Average berry diameters (b) Number of berries

Figure 5.9: Results achieved on the cultivar set for the berry detection, covering the average berry diameters
(Pearson correlation coefficient 0.92) and the number of berries (Pearson correlation coefficient 0.9). The number
of berries is underestimated, as berries growing at the inside of the grape bunch are not visible in the pointcloud.
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Elliptical berries

For elliptical berries, we start with spherical berries and then apply a least square fitting, as
described in Section 4.3.4. While the spherical berries in the cultivar set are defined by one
diameter, the elliptical berries in the table grape set require two diameters. We name them
in Figure 5.10. The diameter relating to the furthest elongation of the berry starting at the
pedicles is called ”length”, and the diameter orthogonal to it ”width”. For the used data set
it always holds that the width diameter is smaller than the length diameter. We apply the
detection to the pointclouds after the semantic labeling with k-means introduced in Section
5.3.1.
Figure 5.11 shows exemplary results on the table grapes depicted in Figure 2.4. Especially
in the Ruby Seedless grape bunch in Figure 5.11d, few berries are not detected, as they are
only partially included in the pointcloud. Still, for Sultana 54 out of 55 berries are retrieved,
for Prime 76 out of 78, for Sugrathirteen 88 out of 90, and for Ruby 45 out of 48. The reason

Figure 5.10: This figure shows the lengths considered for the evaluation of elliptical berries: the width is depicted
by a green line and the length by a red line.

(a) Sultana (b) Prime (c) Sugrathirteen (d) Ruby Seedless

Figure 5.11: Results achieved on the table grape set when detecting the elliptical berries with least square fitting
on the pointclouds generated for the grape bunches in Figure 2.4. The pointclouds are left visible for a better
overview over the quality of the least square fitting.
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Figure 5.12: The results achieved for the number of detected berries on the table grape set (Pearson correlation
coefficient 0.99).

for this is that table grapes have a rather loose architecture with large berries, thus, most of
them are visible and can be detected.
The ellipticity of the berries in the pointcloud is usually represented well, with few deviations,
e.g., in the lower part of the Prime grape bunch (Figure 5.11b). The low mean percentage
error of the length diameters validates this: for Sultana, it is 4.40 %, for Prime 0.73 %, for
Sugrathirteen 8.61 %, and for Ruby 2.84 %.
The results for the number of berries on the table grape set can be found in Figure 5.12. The
Pearson correlation here is with 0.99 even better than on the cultivar set, which is mostly due
to the fact that the table grape bunches mostly have comparably few berries, ranging between
about 40 and about 110 instead of 80 and 370 on the cultivar set. Thus, the underestimation
effect on this data set is relatively small.
Figures 5.13a and 5.13b show the results achieved when representing the berries with spheres.
The spheres are fitted into the data such that they cover the largest amount of points possible.
Thus, the width is covered with a Person correlation coefficient of 0.9. The length of elliptical
berries differs from the width, leading to an underestimation of this diameter and showing
hardly any correlation with a coefficient of 0.04. This shows that elliptical berries cannot be
represented by spheres with a sufficient quality.
Extending the method with a least squares fitting yields the results presented in Figures 5.13c
and 5.13d. The length diameter is clearly improved with a Pearson correlation coefficient
of 0.8. The results for the width diameter on the other hand are slightly worse, showing a
Pearson correlation coefficient of 0.77. The shape of elliptical berries offers more points
that support the fitting of the length diameter and less for the width. Therefore, the fitting of
the width can be less exact. Still, this problem can be easily solved by combining the width
diameter achieved with the sphere detection with the length diameter from the least squares
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(a) Avg. width diameter for spheres (b) Avg. length diameter for spheres

(c) Avg. width diameter for ellipses (d) Avg. length diameter for ellipses

Figure 5.13: Results achieved on the table grape set when detecting the elliptical berries with spheres (Figures
5.13a and 5.13b) or ellipses (Figures 5.13c and 5.13d). For spheres, the width parameter results in a Pearson
correlation coefficient of 0.9 (Figure 5.13a) and 0.04 for the length (Figure 5.13b), as spheres can only cover one
diameter of the elliptical berries and the width is supported by a larger number of points. For ellipses, the width
parameter results in a Pearson correlation coefficient of 0.77 (Figure 5.13c) and 0.8 for the length (Figure 5.13d).
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fitting.

5.4.3 Reversible-Jump-Markov-Chain-Monte-Carlo optimization

In this section, we evaluate the RJMCMC optimization step as introduced in Section 4.3.

(a) Calardis Blanc initial hy-
pothesis (b) Final reconstruction (c) Final reconstruction with-

out berries (d) Stem skeleton

(e) Dornfelder initial hypothe-
sis (f) Final reconstruction (g) Final reconstruction with-

out berries (h) Stem skeleton

Figure 5.14: Exemplary results achieved on Calardis Blanc and Dornfelder grape bunches from the cultivar set
for the grape bunch reconstruction.
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(a) Pinot Noir initial hypothe-
sis (b) Final reconstruction (c) Final reconstruction with-

out berries (d) Stem skeleton

(e) Riesling initial hypothesis (f) Final reconstruction (g) Final reconstruction with-
out berries (h) Stem skeleton

Figure 5.15: Exemplary results achieved on Pinot Noir and Riesling grape bunches from the cultivar set for the
grape bunch reconstruction.

Qualitative evaluation

Figures 5.14 and 5.15 show the results achieved on different grape bunches from the cultivar
set. On all grape bunches it can be seen that the number of twigs is reduced from initial
to final hypothesis and the pedicles are more evenly spread over the twigs. This effect is
especially strong on the Pinot Noir grape bunch (Figures 5.15a to 5.15c) and also mirrored
in the numbers: for the initial hypothesis, the average pedicle lengths are underestimated
for all grape bunches, for Calardis Blanc by 13.73 %, for Dornfelder by 10.53 %, for Pinot
Noir by 21.95 %, and for Riesling by 37.77 %, leading to an absolute error between 7 and
22 mm. With the optimization, this error is reduced to 4.59 % for Calardis Blanc, 6.12 % for
Dornfelder, 1.47 % for Pinot Noir, and 2.79 % for Riesling, or an absolute error of less than
5 mm.
The length of the stem is not changed by jumps, thus, it remains almost stable during the
optimization. Both initial and final hypotheses show relative errors of 4.26 % for Calardis
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Blanc, 26.66 % for Dornfelder, 11.14 % for Pinot Noir, and 15.69 % for Riesling. The
absolute errors are 0.56 cm for Calardis Blanc, 3.87 cm for Dornfelder, 1.56 cm for Pinot
Noir, and 2.01 cm for Riesling. While this error seems high compared to the pedicle
lengths, there is one important factor that comes into play for the stem length: the reference
measurements are taken in images, meaning that distorted angles are an obvious source
for errors. While this holds for pedicle lengths as well, they are small and measurements
are taken for a large number of them, leading to a smoothing of the error. In the case of
Dornfelder, showing the largest error, the image of the stem skeleton in Figure 5.14h makes
it seem likely that the stem of the grape bunch has a relatively strong backwards curvature.
Additionally, the peduncle is crooked, pointing towards the camera, and is thus missing in
the measurement. Tests on the variety set showed that such distorted angles can lead to
deviations of up to 4 cm. Another problem that occurs for almost all grape bunches is that
the lower end of the rachis is usually completely occluded, making it impossible to see and
detect it in the data. Thus, we have to use heuristics. Finally, some grape bunches were not
optimally scanned at the lower end, as can be seen, e.g., for the Riesling grape bunch in
Figure 5.8g. When berries in this part of the pointcloud are missing, this has a critical effect
on the length of the rachis that can then be underestimated.
Because of these error sources, both over- and underestimation can occur for the length of
the stem.

Quantitative evaluation

We evaluate the RJMCMC optimization quantitatively by comparing the average results
from 10 independent runs on the cultivar and the variety set to those derived manually, as
described in Section 2.4. First, we show the results for the initial hypotheses, and then the
improvement for the final reconstructions.
Figure 5.16 depicts the results achieved with the initial hypotheses. While the stem length
shows a Pearson correlation coefficient of 0.76, the coefficient for the average pedicle lengths
is significantly lower with 0.59. This confirms the assumption made during the qualitative
evaluation that the initial hypotheses contain too many twigs, leading to very short pedicles.
As can be seen in Figure 5.17, this changes for the final reconstructions. The optimization
combines twigs where necessary and leads to longer pedicles during the first phase. During
the second phase, only the start and endpoints of twigs are moved, leading again to a slight
decrease of pedicle lengths. Finally, we achieve a Pearson correlation coefficient of 0.71 that
is still not optimal, but considered a stable result in this context.
As there is no jump that adjusts rachis or peduncle, the stem lengths remain stable with a
Pearson correlation coefficient of 0.76 for initial hypotheses and final reconstructions. The
plot shows that, as explained in the qualitative evaluation, both over- and underestimation of
the stem length occur because of the distortion of angles in the reference measurements and
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(a) Average pedicle lengths (b) Stem lengths

Figure 5.16: Results achieved on the cultivar and variety set for average pedicle length (Pearson correlation
coefficient 0.59) and stem length (Pearson correlation coefficient 0.76) of the initial hypothesis. Too many twigs
are inserted, leading to an underestimation of the pedicle lengths. This is corrected in the final reconstruction
(Figure 5.17).

(a) Average pedicle lengths (b) Stem lengths

Figure 5.17: Results achieved on the cultivar and variety set for average pedicle length (Pearson correlation
coefficient 0.71) and stem length (Pearson correlation coefficient 0.76) of the final hypothesis.

missing berries at the end of the grape bunch. Still, for most grape bunches the error remains
less than 1.5 cm.
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Partitioning into phases

The effects of the modification of the RJMCMC optimization introduced in Section 4.3.3 are
shown by comparing the results introduced in the section before using the modification with
the results of the original algorithm.
Figure 5.18 shows the results in comparison to the reference data. Again, the stem lengths
change only slightly as there is no explicit jump to adjust the rachis or peduncle. For the
pedicle lengths, the Pearson correlation coefficient decreases to 0.65. The effect is also
visible in the plot mainly for Riesling grape bunches. For this cultivar, the pedicle lengths are
underestimated, showing that without the local optimization, there are only few topological
jumps accepted. Thus, the underestimation of pedicle lengths visible for the initial hypothesis
(Figure 5.16a), especially for Riesling grape bunches, cannot be sufficiently compensated.
Figure 5.19 shows the acceptance rate of jumps for the optimization with partitioning into
phases and without it. For all topological jumps and over all cultivars, the acceptance rate
increases using the modified algorithm with the partitioning into phases. It can also be seen
that the jumps with highest acceptance rates are Combine jumps, Attach twig as subtwig, and
Reassign berry. This fits to the observation that the initial hypotheses usually show too many
similar twigs that have to be combined or transformed into subtwigs. If a twig is changed in
such a way, it influences the lengths of pedicles attached to it. In some cases, moving the
pedicle to another twig, i.e., reassigning the berry, decreases the pedicle length. Therefore,
the higher acceptance rate for combining twigs and attaching twigs as subtwigs leads to a
higher number of Reassign berry-jumps.

(a) Average pedicle lengths (b) Stem lengths

Figure 5.18: Results achieved on the cultivar and variety set for average pedicle length (Pearson correlation
coefficient 0.65) and stem length (Pearson correlation coefficient 0.76) of the final hypothesis using the unmodified
RJMCMC algorithm.
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Figure 5.19: Acceptance rates of jumps for the optimization with partitioning into phases and without it.

On average, using the modified RJMCMC optimization increases the acceptance rate for
topological jumps between 60 and 75 %.

Compactness

As mentioned in Chapter 1, the compactness is an important trait in the phenotyping of
grape bunches. In collaboration with with our project partners at the Institute for Grapevine
Breeding Geilweilerhof in Siebeldingen we developed a new formula to assign one of the
five classes defined in the OIV list (Organisation Internationale de la Vigne et du Vin, 2009)
to a grape bunch reconstruction x:

compactness(x) =
Vs(x) + Vb(x)

Vc(x)
. (5.2)

Here, Vs is a function that derives the summed up volume of all cylinders making up the
stem system, i.e, of peduncle, rachis, twigs, subtwigs, and pedicles. Vb sums up the volume
of all berries. Finally, Vc represents the volume of the convex hull around the grape bunch.
We compute this convex hull from the center points of the berries. As a first step, a k-means
clustering with k = 10 is applied to the center points. Then, a convex hull volume is computed
for each of the clusters. The reason for this partitioning is that because of sidebunches and
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(a) Initial compactness

(b) Final compactness

Figure 5.20: Results achieved on the cultivar and variety set for the compactness of the initial and final
hypothesis.

shoulders the convex hull of the complete grape bunch can stretch over empty spaces. This
effect is reduced with the clustering.
After computing the compactness value, we use thresholds to divide them into the 5 OIV
classes: compactness values between 0 and 2.0 are assigned to class 1, values between 2.0
and 3.5 to class 3, 3.5 to 4.5 to class 5, 4.5 to 4.8 to class 7, and everything above 4.8 to class
9. The ranges are non-linear, as is the relation between the volumes: for two grape bunches
with same volume of the convex hull, but different compactness, the more compact grape
bunch has a larger volume of berries and stems. But because of the nature of the grape bunch,
this development has to be less than linear, as the berries need sunlight for their growth, thus,
they have to be positioned on the outside of the grape bunch, limiting the possible volume.
Applying formula 5.2 to the initial and final hypotheses of the RJMCMC optimization leads
to the results depicted in Figure 5.20. As can be seen, for both initial and final hypotheses,
there is no deviation of more than one class from the expert opinion. For the final hypotheses,
50 % of the grape bunches (31 out of 62) are assigned the correct class, 37.10 % (23 grape
bunches) are assigned to one class below and 12.9 % (8 grape bunches) to one class above
the expert estimate. As this is a subjective measurement and deviations of one class happen
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regularly between experts as well, our estimation here is comparable to that of an expert.

5.5 Discussion

Grape bunches are a challenging application field as they vary strongly in shape and sizes.
The structure of a stem skeleton is complex, but subject to the rules imposed to them by their
biology.

Semantic labeling: We showed a semantic labeling of the pointclouds with a new RGB-D
descriptor on the one hand, and a deep learning method using the SnapNet on the other hand.
Even with only one grape bunch per cultivar as training data, an SVM trained on the features
derived with the HFPFH descriptor achieves F1-values of more than 99 % on the cultivar set,
more than 94 % on the table grape set, and of more than 88 % with k-means clustering on
the table grape set. While the results with k-means are slightly lower, this method offers the
advantage that no training data is required.
The SnapNet as a supervised method can be directly compared to the SVM by summing up
the results for the detection of stem, hook, and twigs, as they correspond to the stem class
used by the SVM. This leads to an F1-value of 99.68 %, thus, both methods are able to solve
this classification task very well. The similarity of different parts of the stem skeleton, like
the rachis or twigs, makes it hard to distinguish them with the HFPFH descriptor relying
on shape and color. It would be possible to train an additional SVM for the classes ”stems”
and ”hook”. As the surface of the hook is smooth and, thus, different from the stems,
this approach seems promising and the removal of hook points is important to achieve a
completely automatic pipeline with no manual input required from the user. However, the
SnapNet allows us to train those and even more classes in one go.
There are two new possible extensions of the approach based on the larger number of
classes that can be distinguished with the SnapNet: the semantic labeling of stem skeleton
scans could be used to develop a method for the automatic reconstruction of stem skeletons
(Hempel, 2019) that in turn could provide the basis for an automatic derivation of constraints,
e.g., by finding regularly appearing structures. Another possibility is the extension to grape
bunches in earlier development stages, e.g., to BBCH 73 with groat-sized berries, where most
of the stem skeleton is visible. Here, a semantic labeling of the parts of the stem provides a
robust starting point for the derivation of an initial hypothesis (Peters, 2018b).
The division of the combined twig class into one containing only twigs and another containing
subtwigs and pedicles yields results of lower quality compared to collecting all twig, subtwig,
and pedicle points into one class, as the twigs are often occluded in views and are, thus, not
as thoroughly trained as the other classes. Also, the comparatively low number of twig points
makes their recognition harder. While Barmscheidt (2018) showed that an equal distribution
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of the generated views around the grape bunch does not boost the results, a larger number of
training data might yield some improvement.

Berry detection: The evaluation of the berry detection shows very good results for both
number and average diameter of berries, even though the berry numbers are constantly
underestimated. This is due to berries being occluded and thus not detectable in the data.
Still, the shape of the pointcloud is visually close to that made up by the detected berries.
While it would be possible to define a jump that adds inner berries, it cannot be evaluated, as
the respective berries are not visible in the data.
It is possible to derive a statistical correction term for the number of berries. However,
experiments showed that this does not change the results for the QTL mapping, as the
correlation is already very high with more than 0.9.

Grape bunch reconstruction: While the average pedicle lengths are clearly improved
with the optimization, the stem lengths are not changed, as no jump is defined to do so. While
creating such a jump would be possible, the initial hypothesis already uses all visual clues to
fit the rachis into the data as good as possible. Fine changes to, e.g., the curvature, can not be
evaluated with the current set of constraints or the likelihood. While the achieved Pearson
correlation coefficient is still robust with 0.76, the absolute error can get rather large on few
grape bunches with up to 4 cm. However, the process of generating reference data shows
problems in this regard too: the reduction from 3D to 2D leads to a distortion of angles. Thus,
the curvature of the stem can lead to measurement errors of up to 4 cm. Further sources of
errors are the hidden lower end of the rachis, that can only be derived from the positions of
berries in this part, and lower berries not being detected because of a suboptimal scanning
process leading to holes (see, e.g., the Riesling pointcloud in Figure 5.8g). As the experts in
this application field ask for Pearson correlation coefficients of at least 0.7, all measurements
delivered by our approach can be considered sufficiently good.
While we estimate the rachis from several points at different heights, as described in Section
4.3.4, leading to a curvature where necessary, the twigs, subtwigs, and pedicles are all
represented as a single cylinder. As subtwigs and pedicles are relatively short, this approx-
imation is realistic. The longer twigs in the upper part of the grape bunches on the other
hand often show some curvature, as the weight of the berries pulls them downwards. It
would be easy to represent such a curvature using, e.g., B-Splines, but there is no clear
visual clue in the pointclouds how exactly a twig lies underneath the berries. This makes
the modelling approach complicated, as it has to take into account the weight of the berries,
their distribution, and the pressure of the berries against each other as well. As we do not
currently evaluate the twig lengths and they are so far not considered an important trait in
the phenotyping of grape bunches, we currently choose not to include such a model. The
missing curvature does have an effect on the lengths of pedicles attached to the twig, but we
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assume that it is usually balanced out, as pedicles on one side are longer than they should be,
but pedicles on the other side shorter. This leads to a larger standard deviation for pedicle
lengths, but the average can still be estimated reliably, as shown in Figure 5.17a.
While a one-to-one evaluation of the optimized stem skeleton to a ground truth would be
interesting, such an approach is not possible in the field of grape bunch reconstruction. The
reason for this is that with the removal of berries, the stem skeleton is often damaged. The
weight of the berries is missing and, additionally, stem skeletons dry out fast, leading to
a change in the curvature of twigs, reduced lengths, and a higher fragility, making further
damage likely. Another problem is visible in the stem skeleton images in Figures 5.14d,
5.14h, 5.15d, and 5.15h. When the berries are removed, some residue of the berries is left
at the end of the pedicles that cannot efficiently be removed. While in images it can be
recognized and ignored for the measurements, in 3D scans this is not possible. As the amount
of residue varies for each berry, it is also not possible to use a correction term. Thus, the
lengths of pedicles derived from stem skeleton scans would be distorted, highly reducing
their usefulness.
We used the same set of parameters, introduced in Section 5.4.1, for all grape bunches and
achieved stable results. This makes the system especially user-friendly, as the parameters are
either set automatically or chosen such that they work on a wide range of examples.

Partitioning into phases: The modification of the RJMCMC algorithm using locally
optimized topological jumps leads to an increase of the Pearson correlation coefficient for the
average pedicle lengths from 0.65 to 0.71. The reason for this is that the local optimization
of topological jumps during the first phase raises their acceptance rate. This effect can be
seen for all grape cultivars, but especially for Riesling grape bunches, as those grape bunches
show a rather complex stem skeleton with a large number of subtwigs. These subtwigs have
to be added using topological jumps, thus, a higher acceptance rate leads to better results on
such grape bunches.

Application to other fields: An application to other fields is possible, as long as the
underlying objects follow rules that can be formulated as constraints. One close example
is the reconstruction of foliated trees. Their growth structure shares similarities with grape
bunches, with obvious differences in the scale and growth direction. The challenge here
would be the derivation of suitable endpoints. For grape bunches, the berries can be derived
and for the initial hypothesis we use the knowledge that each berry has to be attached to a
twig by a pedicle. Transferring this idea to foliated trees would require the detection and
reconstruction of leaves, which is more challenging because of their often irregular shapes.
An alternative would be to start with a minimal hypothesis, e.g., the usually visible tree
stump, and derive the rest of the tree during the optimization using jumps. However, this
would significantly lengthen the optimization process.
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Other examples that allow a more similar approach are the application to apple trees, as
apples are attached to twigs similar to grapevine berries, or tomato plants, with tomato
panicles being comparable to grape bunches.

Efficiency: To compare the efficiency of our method to the one currently used at the
Institute for Grapevine Breeding Geilweilerhof in Siebeldingen, we consider the steps that
require manual labor: both approaches require that the grape bunch is harvested and brought
inside a lab environment. For our method, the grape bunch needs to be scanned from all sides.
This process takes about one minute on average. For the currently used manual method, as
described in Section 2.4, all berries have to be removed from the grape bunch. Then they are
distributed on a perforated plate, such that each of the berries lies in one of the holes, making
the automatic derivation of the berry number and diameter from an image possible. For
the stem measurements, an image is taken from the stem skeleton and the required lengths
are marked manually in this image. The whole process takes a skilled user on average 12
minutes. Thus, our approach reduces the active working time by a factor of 12.
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Chapter 6
Application of the grape bunch
reconstruction in the field

Scanning grape bunches in the field offers several advantages: on the one hand, this makes
the approach non-invasive, enabling the scanning of the same grape bunch at several points
during the development. On the other hand, the grape bunch no longer has to be harvested
and taken inside, further reducing the required active working time. Additionally, there is no
longer the risk of the grape bunch getting damaged on the way inside.
The Artec 3D Spider Scanner (Artec 3D, 2019a) is highly suitable for outdoor scanning as it
uses structured light that is not distorted by strong ambient light. It is also relatively small
with measurements of 190 × 140 × 130 mm and light-weight with 0.8 kg, making it easily
transportable. Using a battery makes the sensor independent from external power sources.
Tests in practice showed one additional challenge compared to the scanning in a lab environ-
ment: in the lab, the grape bunch is rotated by 360◦, allowing the generation of full scans.
While it would be possible in theory to move the scanner around the grape bunch in the field
as well, there is usually not enough space between grape bunch and canopy to actually do
this. In most cases, only scans from the front are possible.
Together with our project partners at the Institute for Grapevine Breeding Geilweilerhof in
Siebeldingen it was decided to currently require the user to attach a cardboard behind the
grape bunch during the scanning process, so that the background can be easily extracted
from the scan. This process can be seen in Figure 6.1.
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Figure 6.1: In the field, the grape bunch is scanned from the front, with a cardboard attached behind it as artificial,
easy-to-remove background.

6.1 Data material

Since the scans have to be taken during the harvest time when the staff is highly occupied
with routine work, field scans were done for a subset of the cultivar set introduced in Section
2.2. This set includes 2 Calardis Blanc, 7 Dornfelder, and 14 Pinot Noir grape bunches, i.e.,
23 scans total. Images taken from grape bunches in the field before scanning and screenshots
of scans achieved by scanning from the front are shown in Figure 6.2.
The Artec Spider scanner achieves optimal results only if the distance to the object is in a
range between 20 and 30 cm (Artec 3D, 2019a). For asymmetric grape bunches, possibly
with shoulders or side bunches, this makes the scanning process difficult. Most Dornfelder
grape bunches are almost cylindrical, with the grape bunch in Figure 6.2b being slightly more
conical than the others. Due to this property, the scanning of this cultivar is comparably easy.
Calardis Blanc and Pinot Noir both show irregularities concerning shoulders, side bunches
or a distinctly conical shape. In their case, the lower part of the grape bunch is frequently
hardly or not at all visible in the pointcloud, as can also be seen in Figures 6.2d and 6.2f.
We compare the results to the reference data derived for the complete grape bunch, as the
goal is to extrapolate this data from the part of the grape bunch visible in a front scan.

6.2 Reconstruction of front scans

For the reconstruction of grape bunches from front scans we extend an approach we explored
first in Peters (2018a). In the following, we describe only the changes to the method presented
in Section 4.3.
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6.2 Reconstruction of front scans

(a) Calardis Blanc (b) Dornfelder (c) Pinot Noir

(d) Calardis Blanc (e) Dornfelder (f) Pinot Noir

Figure 6.2: Pointclouds resulting from scanning in the field.

We refrain from semantic labeling, as almost all points in the pointclouds are part of the
surfaces of berries. Therefore, the detection of berries is applied to the whole pointcloud,
following the same RANSAC-based procedure introduced in Section 4.3.4. There are several
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6 Application of the grape bunch reconstruction in the field

scans that do not show the peduncle. As we need the peduncle as starting point of the stem
skeleton, we approximate it in these cases as the center of mass of the berries in the upper
layer. Otherwise, the points covered by berries are extracted from the pointcloud and the
peduncle inserted in the remaining part. If the peduncle is visible, but also the stem attaching
it to the canopy, the points belonging to the peduncle currently have to be marked manually.
At the border of the scan, only half or an even smaller parts of berries are visible. To detect
these berries, berry hypotheses with smaller consensus sets have to be taken into account.
Thus, we reduce the threshold on the size of the consensus set to count a detected sphere as
valid berry hypothesis ti = 50.
As only a part of the grape bunch is contained in the scan, the number of twigs that is inserted
in the initial hypothesis has to be reduced. For this, we adjust the parameter k from the
k-means clustering of berry centers to create potential twig endpoints: While equation 5.1
stays the same, we restrict kmin and kmax to a smaller range: kmin = 5 ≤ k ≤ kmax = 12.
The rachis is estimated by connecting the end of the peduncle directly with the lowest
potential twig endpoint. As the berries are only scanned from the front and, thus, do not give
a clear hint about the shape of the grape bunch, the approximation of rachis points as center
points of the berries at different levels is removed.
The RJMCMC optimization is only slightly adjusted: due to the shape of the grape bunches,
there is a tendency to insert twigs that point upwards, along the side of the grape bunch. To
restrict this, we weight the constraints. The angle constraint G(1)

1 (Equation 4.7) that restricts
the angles between rachis and twigs to about 90◦ is given the weight wh = 3

12 , while the other
9 constraints are assigned a weight of we = 1

12 .
The parameter σ that steers the strictness of the length constraint on pedicles G(3)

4 is set
empirically slightly larger to σ = 5 mm.
Otherwise, the method is applied as described before.

6.3 Evaluation

We evaluate the method analogously to Chapter 5.
Figure 6.3 shows the results of the application of the berry detection approach to the point-
clouds in Figure 6.2. The parts that are visible in the pointcloud are well reconstructed, but
the effect that berries are missing due to an incomplete scanning process is more significant
than for the lab scans. However, the number of berries could not be expected to be stable
anyway, as we scan only a part of the grape bunch. For the shown Calardis Blanc grape
bunch, only 74 of 132 berries are detected, for Dornfelder 57 of 148 and for Pinot Noir 60 of
193. All results highly underestimate the number of berries.
The average diameter of the berries on the other hand can be derived with sufficient robust-
ness even from the lower number of berries: for Calardis Blanc, the mean percentage error is
0.62 %, for Dornfelder 2.38 % and for Pinot Noir 4.05 %.
The results from the comparison with statistical reference data for the berry detection are
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(a) Calardis Blanc (b) Dornfelder (c) Pinot Noir

Figure 6.3: Exemplary results achieved on field scans of grape bunches for the berry detection.

(a) Average berry diameters (b) Number of berries

Figure 6.4: Results achieved on the field scans for the berry detection, covering the average berry diameters
(Pearson correlation coefficient 0.91) and the number of berries (Pearson correlation coefficient 0.25). As less
than half of the berries are contained in the pointclouds, it is not possible to detect all of them.

shown in Figure 6.4. Similar to the examples in Figure 6.3 the berry diameters remain
stable at almost the same quality with a Pearson correlation coefficient of 0.91. For the berry
numbers, the lower scan quality and lower visibility of berries in the data overall lead to a
Pearson correlation coefficient of only 0.25. As the percentage of the grape bunch that is
scanned is not the same for all grape bunches, no clear correlation can be found.

79



6 Application of the grape bunch reconstruction in the field

(a) Calardis Blanc initial hy-
pothesis (b) Final reconstruction (c) Final reconstruction with-

out berries (d) Stem skeleton

Figure 6.5: Exemplary results achieved on a field scan of a Calardis Blanc grape bunch for the grape bunch
reconstruction.

(a) Dornfelder initial hypothe-
sis (b) Final reconstruction (c) Final reconstruction with-

out berries (d) Stem skeleton

Figure 6.6: Exemplary results achieved on a field scan of a Dornfelder grape bunch for the grape bunch
reconstruction.

Exemplary results for the grape bunch reconstruction of field scans can be seen in Figures
6.5, 6.6, and 6.7. Again, there is no change between initial and final hypotheses regarding
the length of the stem, as there is no jump that adjusts it. The stem length estimated for the
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(a) Pinot Noir initial hypothe-
sis (b) Final reconstruction (c) Final reconstruction with-

out berries (d) Stem skeleton

Figure 6.7: Exemplary results achieved on a field scan of a Pinot Noir grape bunch for the grape bunch
reconstruction.

Dornfelder grape bunch shows a mean percentage error of 18.27 % or an underestimation
of 3.74 cm. This can be traced back to the heuristics used to insert the rachis that connects
the lower part of the peduncle with the lowest candidate for a twig endpoint. As those twig
endpoints are derived by clustering berry center points and the berries are only scanned from
the front the rachis endpoint is in this case set too far up and too close to the berries, leading
to an underestimation of the stem length.
For the Pinot Noir grape bunch shown in the figures, it is clearly visible that the lower part
of the grape bunch is missing. This is due to the fact that it cannot be seen in the pointcloud
(Figure 6.2f). This has a strong effect on the mean percentage error of the stem length, going
up to 32.30 % or an absolute error of 6.08 cm.
While the Calardis Blanc grape bunch shows similar holes in the lower part of the pointcloud,
some berries are still sufficiently well represented to be detected. But here, another source of
error can be seen: the peduncle is well visible in the pointcloud, but was cut such that the part
left of it in the image is shorter. As we calculate the stem as the sum of the lengths of rachis
and peduncle, this means that the calculated stem length is too long. The overestimation
of the peduncle and a slight undererstimation of the rachis balance each other out on this
grape bunch, leading all in all to a mean percantage error of 6.49 %, or an absolute error of
0.75 cm.
The average pedicle length shows the same tendency as for lab scans. The initial hypotheses
underestimate it with mean percentage errors of 13.85 % for Calardis Blanc, 13.48 % for
Dornfelder, and even 30.43 % for Pinot Noir due to showing too many twigs. The optimiza-
tion improves those results to 7.52 % for Calardis Blanc, 1.91 % for Dornfelder, and 8.90 %
for Pinot Noir.
As explained in Section 6.2, we assign a larger weight to the angle constraint between rachis
and twigs. As can be seen in Figure 6.5c the Calardis Blanc grape bunch still shows this
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6 Application of the grape bunch reconstruction in the field

(a) Average pedicle lengths (b) Stem lengths

Figure 6.8: Results achieved on the field scans for average pedicle length (Pearson correlation coefficient 0.47)
and stem length (Pearson correlation coefficient 0.67) of the initial hypothesis.

(a) Average pedicle lengths (b) Stem lengths

Figure 6.9: Results achieved on field scans for average pedicle length (Pearson correlation coefficient 0.71) and
stem length (Pearson correlation coefficient 0.67) of the final hypothesis. Due to the difficult scanning process,
the lower part of the grape bunch is often missing for Calardis Blanc and Pinot Noir. Therefore, the rachis cannot
be completely reconstructed and the Pearson correlation coefficient is comparably low.

effect. This is due to the shape of the front scan that makes it most efficient to cover berries
using such upwards pointing-twigs. While the larger weight on the respective constraint
makes this effect more unlikely, it is not completely prevented.
Figure 6.8 shows the results for the average length of pedicles and the length of the stem for
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the initial hypothesis and Figure 6.9 for the final reconstruction. The results for the average
pedicle length are slightly worse than for lab scans (Figure 5.16a) with a Pearson correlation
coefficient of 0.47 instead of 0.59. While the results for Calardis Blanc and Dornfelder
are still rather close to the reference values, for Pinot Noir, the lengths are underestimated.
This is again connected to the initial number of twigs that is too large for Dornfelder grape
bunches. The optimization corrects this and achieves a Pearson correlation coefficient of
0.71.
For the stem length, again there are only few changes due to the optimization, as there are no
explicit jumps to adjust it. Both, initial hypothesis and final reconstruction yield a Pearson
correlation coefficient of 0.67. This is lower than for the lab scans and the plots show that the
length is mostly underestimated. This is due to the fact that the field scans often do not show
the complete lower part of the grape bunch, thus, inserting the rachis between the peduncle
and the lowest twig endpoint candidate does not capture the full length of the grape bunch.
The compactness is computed similar as described in Section 5.4.3. Equation (5.2) is used to
derive a first estimation value. The division into classes is adjusted to mirror the new relation
between volumes: compactness values between 0 and 2.0 are assigned to class 1, 2.0 to 4.5
to class 3, 4.5 to 6.1 to class 5, 6.1 to 12.0 to class 7, and everything above this value to class
9. As can be seen, the distribution of classes is spread further for front scans, as the convex
hull is computed only for the front scan, making the difference between it and the summed
up volume of berries and stems smaller. This leads to larger compactness values.
As can be seen in Figure 6.10, again there is no deviation of more than one class.

(a) Final compactness

Figure 6.10: Results achieved on the field scans for the compactness. There is no difference between initial and
final hypotheses. As the compactness classes 1 and 9 are only covered by the variety set that is not used in this
experiment, and those classes are also never predicted, we removed them from the plot for clarity.
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6 Application of the grape bunch reconstruction in the field

6.4 Discussion

For average berry diameters and average pedicle lengths our method achieves results that are
comparable to those on lab scans (Pearson correlation coefficients 0.91 to 0.92 and 0.71 to
0.71). Due to their cylindrical shape, the derivation of the stem lengths for Dornfelder grape
bunches is also relatively stable, with an average mean percentage error of 11 %.
The derivation of berry numbers and stem lengths are strongly connected to the scanning
process. If the asymmetry of the grape bunches makes it difficult to cover the complete grape
bunch from top to bottom, the pointcloud is missing the necessary characteristics to provide
a robust estimate for the stem length. Additionally, the rachis endpoint is derived from the
berries in the lower part of the grape bunch, meaning if too many of them are missing, this
location is no longer chosen correctly.
The number of berries cannot be derived correctly if the whole grape bunch is not visible.
But it might be possible to achieve a better correlation if the scanned proportion of the grape
bunch is kept approximately equal.
Better estimations of the stem lengths for asymmetric grape bunches and the derivation
of a method to extrapolate the number of berries both require an easier scanning process.
This could be approached by using another scanner with larger working distance, e.g., the
Artec Leo (Artec 3D, 2019b). This 3D scanner works with structured light as well, but
optimal results can be achieved if the distance to the object is between 0.35 and 1.2 m,
clearly improving the working range between 0.2 and 0.3 m of the Artec Spider Scanner.
Additionally, scanning with the Artec Leo Scanner does not require a connected laptop,
making the process more flexible.
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Chapter 7
Conclusions

In viticulture, a loose grape bunch architecture is one of the most import physical barriers
that make the establishment of fungal diseases and pests less likely. The developed phe-
notyping pipeline delivers complete component-based 3D models of the observed grape
bunches, deriving their architecture objectively, accurately, and with high-throughput. Due
to easy-to-handle sensor technology and an intuitive graphical user interface the pipeline is
open to all kinds of users. No interaction is required, but we allow an easy adjustment of
parameters if necessary.
The employment of a flexible, constraint-based modelling and reliable semantic labeling of
the 3D pointclouds makes it possible to use the method across different cultivars and geno-
types. Efficiency and accuracy are improved using a two-phased version of the RJMCMC
optimization.
The phenotyping pipeline has been evaluated on scans taken in a lab environment and in the
field yielding Pearson correlation coefficients up to 0.9 and an efficiency improvement by the
factor of 12 compared to the manual phenotyping.
All in all, we meet the introduced challenges in the following ways:

• We use a model-based approach to deal with the lack of training data.
• As ripe grape bunches are subject to massive self-occlusion, the inner stem skeleton

cannot be inferred from the data. Thus, we use an RJMCMC optimization for model
selection and parameter estimation. We propose an adjusted version that divides the
optimization into phases, with one phase concentrating on the selection of the model
and the second on the optimization of the parameters. Our results show that this
enhances the reconstruction quality by increasing the acceptance rate for jumps that
change the model dimension by up to 75 %.
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7 Conclusions

• To achieve an approach suitable for cross-cultivar application, we define constraints
based on geometrical and topological relations between grape bunch organs, result-
ing in Pearson correlation coefficients between 0.7 and 0.9 on scans taken in a lab
environment.
• To robustly reconstruct the visible parts of the grape bunch, a semantic labeling is

applied to assign the points of the dense high-precision pointcloud to the surfaces of
their respective plant organs. We define the new HFPFH descriptor as a combination
of the hue channel of the HSI color space, and the Fast-Point-Feature histograms,
resulting in 99 % accuracy with supervised classification and 88 % with unsupervised
classification, outperforming the established descriptors PFHRGB and CSHOT. Addi-
tionally, we evaluate the SnapNet on pointclouds of grape bunches and of grape bunch
stem skeletons, yielding at least 93 % accuracy for each class for the more complicated
semantic labeling into surface points of the main stem, twigs, berries, and hook.

It is very important to enable scanning in the field, as this makes the method non-invasive and
applicable to the same grape bunch at different points in time during its development, making
comparisons possible. Also, the active working time is highly reduced if grape bunches do
not have to be harvested and brought inside a lab environment. In this context, we achieve
excellent results on symmetrical grape bunches. Grape bunches with strongly asymmetric
shapes require the introduction of best practices for scanning.

7.1 Future work

The graphical user interface introduced in this thesis can be improved by giving the user
more options to interact with the data. One example would be to introduce a selection tool,
allowing the user to select one or several parts of the grape bunch to automatically extract
the properties, like lengths, diameters, or angles between the parts.
So far, we refrained from modelling the exact twig curvatures, as they depend on the weight
of berries, their distribution on the twig, and the pressure of the berries against each other.
Still, this does lead to deviating lengths of the upper twigs in the grape bunch and to a larger
standard deviation for the pedicles attached to those twigs. To provide an exact reconstruction
of the whole grape bunch, it would be necessary to tackle this problem.
As explained in Section 5.5 the extension to other application fields is possible, as long as
the rules imposed on the structure of the target objects can be formulated as constraints. This
holds, e.g., for foliated trees, apple trees, or tomato plants.
The successful automated reconstruction of grape bunches, including the stem skeleton, from
3D scans offers new possibilities for larger projects, that are introduced in the following.
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7.1 Future work

Aggregation of physical barriers: Beside the bunch compactness, there are two other
physical barriers that protect grape bunches from fungal infections. One is the structure
of the canopy, and the other the properties of the berry skin in regards to thickness, the
hydrophobic characteristics of the berry cuticle, and its epicuticular wax layer. Especially
for the latter, there are approaches to derive its thickness manually (Herzog et al., 2015) or
from illumination-separated images using deep learning (Barré et al., 2019). Combining
these approaches with the pipeline presented in this thesis results in a 3D reconstruction with
attributed berries, including even more information about the grape bunch.

Growth analysis: Another interesting area of application is the reconstruction of grape
bunches at earlier development stages. We did first experiments regarding the application
of the full reconstruction approach to grape bunches of development stage BBCH 73, with
groat-sized berries, in (Peters, 2018b). In this context, larger weight has to be given to the
creation of the initial hypothesis. While pedicles are usually still occluded by berries, the
rachis and twigs are mostly visible. Thus, they can be reconstructed in more detail. It has
to be evaluated whether an optimization is even necessary, or if it is sufficient to derive the
structure of the grape bunch from the data.
The application of both the presented approach and a version adjusted for working on earlier
development stages in the field gives rise to the possibility to scan the same grape bunch
at different points in time during its development and analyse the resulting reconstructions
in regards to their differences. Further knowledge about the weather during the growing
process or the properties of the soil can be used to evaluate the cause of changes, especially
in regards to which abiotic factors benefit a loose grape bunch architecture.
Rose et al. (2016) introduced a method to extract the berries from grape bunches in point-
clouds generated using multi-view stereo vision with the PHENObot. As their method takes
pictures only from the side, the resulting extracted pointclouds are comparable to the front
scans described in Chapter 6. The phenotyping pipeline would, thus, be applicable to those
pointclouds as well. Using the PHENObot, it would be comparably easy to cover large parts
of the grapevine field even several times during the growth period.

Constraint learning: So far, expert knowledge is required for the definition of the con-
straints. On the one hand, this offers the possibility to the users to directly influence the
approach and take control in its application. On the other hand, it would be interesting to
introduce an automatic derivation of constraints, as mentioned in Section 5.5. One possibility
for this is the automatic extraction and analysis of frequently occurring substructures in the
grape bunch reconstructions. Constraints controlling the occurrence of such substructures
can be defined automatically. If applied to changing populations or a growing number of
genotypes, self-learning could be used by adding additional substructures as constraints
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whenever their occurrence exceeds a given threshold, or removing old ones if they no longer
appear.
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Appendix A
Constraint relations

During the introduction of the constraints in Section 4.3.2 we use several relations that are
computed on the grape organs. Those will be defined formally in the following.

Similarity constraint (Equation (4.8)): s(x) is a relation that returns the startpoint of the
cylinder representing a grape organ x, with the startpoint being the point that is closer to the
peduncle following the topology. E.g., for all pedicles the startpoint is the point attached
to the twig and the endpoint the one attached to a berry. Additionally, o(x) describes a
relations that computes the orientation of the cylinder corresponding to grape organ x in the
topological direction towards the berries.

count similar elements(xi, x j) =

1 if ||s(xi) − s(x j)|| < 10 mm and angle(o(xi), o(x j)) < 30◦

0 otherwise
(A.1)

Overlap constraint (Equation (4.9)): The function dist(x, y) computes the smallest Eu-
clidean distance between two grape organs x and y, each interpreted as line between their
respective start and endpoints. The relation r(x) retrieves the radius of a grape organ x.

count overlapping parts(xi, x j) =

1 if dist(xi, x j) < r(xi) + r(x j)
0 otherwise

(A.2)
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Decreasing length constraint (Equation (4.14)):

length shorter elements(xi, x j) =

||x j|| − ||xi|| if xi lies above x j and ||xi|| < ||x j||

0 otherwise
(A.3)

Twig endpoint constraint (Equation (4.15)): The relation outside(xi) returns true if xi

lies outside the convex hull calculated around the berry centers, and false otherwise.

count if outside convex hull(xi) =

1 if outside(xi) = true
0 otherwise

(A.4)
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Glossary

3D reconstruction is a three-dimensional estimation of the target object represented with
geometric primitives.

Angle constraint restricts the angles between the respective grape bunch organs to a fixed
range.

BBCH scale is a scale to measure the development stages of grape bunches. BBCH 87-89
corresponds to grape bunches with fully developed berries, ready for harvesting.
Berry is the fruit of a grape bunch; the berries serve as endpoints for the pedicles during the
reconstruction of the stem skeleton.

Complete grape bunch describes the grape bunch including berries and inner stem skeleton.
Connection constraint enforces a connection between the respective grape bunch organs.
Constraints are used to represent geometrical and topological information to restrict the
hypotheses space of the RJMCMC optimization.

Decreasing length constraint punishes if lengths of grape bunch organs do not decrease in
the specified way.
Deviation constraint restricts the standard deviation of the respective grape bunch organs.

Fast-Point-Feature Histograms are histograms representing shape information for each
point based on the geometrical relations between the point and its neighbours.

Geometrical constraints encode information about the dimensions and geometrical rela-
tions of the grape bunch organs.
Geometrical jumps are jumps that optimize parameters of the hypothesis.

Hue-Fast-Point-Feature Histograms are histograms combining the shape information
included in FPFHs with the hue channel from the HSI color model.
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Jumps encode how a hypothesis can be adjusted during the RJMCMC optimization.

k-means is an unsupervised clustering approach that can be used in combination with a
descriptor.

Length constraint restricts the lengths of the grape bunch organs.

Overlap constraint punishes overlapping grape bunch organs.

Pedicle is a stalk connecting a berry to a twig or subtwig.
Peduncle is the former connection between the rachis of the grape bunch and the canopy;
serves as startpoint for the reconstruction of the stem skeleton.
Potential connection constraint allows a connection between the respective grape bunch
organs.

Rachis is the main stem of the grape bunch below the peduncle.
Random Sample Consensus is a method that can be used to fit geometric primitives into
pointclouds.
Reversible-Jump-Markov-Chain-Monte-Carlo is an optimization algorithm that includes
model selection and parameter optimization.

Similarity constraint punishes the occurrence of very similar elements.
SnapNet is a multi-view deep learning approach that is used for the semantic labeling of
pointclouds.
Stem skeleton is the collection of stems and stalks inside the grape bunch, including
peduncle, rachis, twigs, subtwigs, and pedicles.
Subtwig is a twig of second order, i.e., a stalk connecting a twig with pedicles.
Support Vector Machine is a supervised learning approach that can be used in combination
with a descriptor.

Topological constraints encode information about the topology of the grape bunch stem
skeleton.
Topological jumps are jumps that change the topology of the hypothesis, thus, changing
the model dimension.
Twig connects the rachis to the pedicles and/or subtwigs.
Twig endpoint constraint punishes twig endpoints lying outside the convex hull spanned
by the berries.
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Acronyms

BBCH Biologische Bundesanstalt, Bundesssortenamt and Chemische Industrie.

CNN Convolutional Neural Network.

FPFH Fast-Point-Feature Histogram.

HFPFH Hue-Fast-Point-Feature Histogram.

RANSAC Random Sample Consensus.
RJMCMC Reversible-Jump-Markov-Chain-Monte-Carlo.

SVM Support Vector Machine.
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