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Abstract
by Martin Garbade

for the degree of

Doctor Rerum Naturalium

Semantic segmentation is one of the fundamental problems in computer vision. This thesis
addresses various tasks, all related to the fine-grained, i.e. pixel-wise or voxel-wise, seman-
tic understanding of a scene. In the recent years semantic segmentation by 2D convolutional
neural networks has become as much as a default pre-processing step for many other com-
puter vision tasks, since it outputs very rich spatially resolved feature maps and semantic
labels that are useful for many higher level recognition tasks. In this thesis, we make sev-
eral contributions to the field of semantic scene understanding using an image or a depth-
measurement, recorded by different types of laser sensors, as input.

Firstly, we propose a new approach to 2D semantic segmentation of images. It consists
of an adaptation of an existing approach for real time capability under constrained hardware
demands that are required by a real life drone. The approach is based on a highly optimized
implementation of random forests combined with a label propagation strategy.

Next, we shift our focus to what we believe is one of the important next forefronts in
computer vision: To give machines the ability to anticipate and extrapolate beyond what
is captured in a single frame by a camera or depth sensor. This anticipation capability is
what allows humans to efficiently interact with their environment. The need for this ability
is most prominently displayed in the behaviour of today’s autonomous cars. One of their
shortcomings is that they only interpret the current sensor state, which prevents them from
anticipating events which would require an adaptation of their driving policy. The result is
a lot of sudden breaks and non-human-like driving behaviour, which can provoke accidents
or negatively impact the traffic flow.

Therefore we first propose a task to spatially anticipate semantic labels outside the field
of view of an image. The task is based on the Cityscapes dataset, where each image has been
center cropped. The goal is to train an algorithm that predicts the semantic segmentation
map in the area outside the cropped input region. Along with the task itself, we propose an
efficient iterative approach based on 2D convolutional neural networks by designing a task
adapted loss function.

Afterwards, we switch to the 3D domain. In three dimensions the goal shifts from as-
signing pixel-wise labels towards the reconstruction of the full 3D scene using a grid of
labeled voxels. Thereby one has to anticipate the semantics and geometry in the space that
is occluded by the objects themselves from the viewpoint of an image or laser sensor. The
task is known as 3D semantic scene completion and has recently caught a lot of attention.
Here we propose two new approaches that advance the performance of existing 3D seman-
tic scene completion baselines. The first one is a two stream approach where we leverage
a multi-modal input consisting of images and Kinect depth measurements in an early fu-
sion scheme. Moreover we propose a more memory efficient input embedding. The second
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approach to semantic scene completion leverages the power of the recently introduced gen-
erative adversarial networks (GANs). Here we construct a network architecture that follows
the GAN principles and uses a discriminator network as an additional regularizer in the 3D-
CNN training. With our proposed approaches in semantic scene completion we achieve a
new state-of-the-art performance on two benchmark datasets.

Finally we observe that one of the shortcomings in semantic scene completion is the
lack of a realistic, large scale dataset. We therefore introduce the first real world dataset
for semantic scene completion based on the KITTI odometry benchmark. By semanti-
cally annotating alls scans of a 10 Hz Velodyne laser scanner, driving through urban and
countryside areas, we obtain data that is valuable for many tasks including semantic scene
completion. Along with the data we explore the performance of current semantic scene
completion models as well as models for semantic point cloud segmentation and motion
segmentation. The results show that there is still a lot of space for improvement for either
tasks so our dataset is a valuable contribution for future research into these directions.

Keywords: semantic segmentation, semantic scene completion
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»What is good?« Ye ask.
To teach a machine how to see is good.

NIETZSCHE, Thus spake Zarathustra. [loosely paraphrased]
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1.1 Motivation

1.1.1 Why Computer Vision?

One of the greatest achievements that humans might solve within our lifetime is construction of
intelligent, autonomous robots. The vision already caught Hollywood’s attention, although mostly
in a negative way. Movies like ‘Terminator’ or ‘The Matrix’ describe the future as a war between
intelligent machines and humans. We, on the contrary, will focus on the potential for good that lies
in this technology.

Along with the discovery of electricity and inventions like the steam engine and computers,
the invention of autonomous robots is another milestone in the people’s pursuit to replace harsh,
dangerous, and costly human labour by machines. It will be interesting to see, if we are the generation
to witness armies of robots, harvesting crops, farming land or perhaps even build entire cities at the
command of a single person. They could be used to rebuild cities destroyed by war or to restore
precious architectural artifacts like Notre-Dame of Paris which recently burned almost to the ground.
At least in case of Notre-Dame, 3D reconstruction with the help of computer vision techniques is
already likely to play a role in its restoration.

Just as the invention of engines and electricity helped to replace the human muscle by machines,
the goal of computer vision and its close relative artificial intelligence are bound to replace the human
eyes and brain. At the end of the day, all a man will need is a will and a machine to execute it. In a
society equipped with fully autonomous machines, most of the dangerous, laborious and undesired
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jobs might be done by machines. Even so much so that mainly creative, social and managing jobs
might be left, a vision that scares some people rather than it entertains them. However, history teaches
us, that people are very creative when it comes to inventing new jobs, which are likely to be more
comfortable than those taken over by machines.

The question is, why aren’t we already there? After all, we are able to construct robots in all
shapes and forms. The reason is that one final wall on our way there has not been conquered yet:
Perception. Though we are able to build robots and manually control them, the goal must be that
they interact autonomously with their environment such that all they need is a high level plan and
they themselves will figure out how to execute it in detail. This is the motivation for doing computer
vision. The goal is to teach machines to see the world, similar to how we humans see it. Thus they
can effectively interact with it, navigate through it, make predictions about its state, grasp things and
put them somewhere else, mow lawn, harvest crops or drive anyone safely from A to B. This thesis
is dedicated to one of the most important technological goals in society today: Bringing perception
to machines.

1.1.2 Applications of Computer Vision

Beyond the big dreams, computer vision has been an active field of research for the past 6 decades.
It already has reached some impressive goals. We are already surrounded by cleaning robots or cars
equipped with computer vision systems to increase the safety.

Since May 2012 Google followed by other companies like Uber and Tesla are already driving
with fully autonomous cars through cities of the United States. These cars still have a human pilot
that can take over the driving in case the system fails, but the amount of kilometers driven without
human interference increases steadily. The chase for the first fully autonomous cars has attracted
peoples attention and sparked their ambition in a truly Olympic spirit.

Though many of the first autonomous cars were equipped with a variety of sensors (radars, ultra
sound, Velodyne-laser-range scanners), currently most mass produced vehicles with computer vision
techniques involve a camera sensor. The advantage over the above mentioned sensors is clear. A
camera is extremely cheap („1 Eur vs „60 000 Eur for a Velodyne Laser currently) and has the
richest signal of all due to its storage of RGB information and it has by far the best resolution in the
far field. On a camera picture one can easily identify objects in a distance of up to 200m whereas
a laser range signal becomes rather uninterpretable after 50m distance. On the other hand, RGB
images are much harder to interpret and thus machine learning systems become potentially more
error prone as the variance in the data increases. In 2017 a Tesla car, equipped with a vision based
driving assistant mistook a white truck for the class ‘sky’ which made the inattentive driver the first
victim of a computer vision controlled car1.

All of the before-mentioned sensors only measure some distance value to an obstacle which is
good for collision avoidance, however often crucial parts of the scene, like the difference between
sidewalk and road only become obvious in a picture, which has color values. This thesis, therefore,
deals with the ‘king of the sensors’, the RGB camera.

1https://www.theverge.com/2016/6/30/12072408/tesla-autopilot-car-crash-death-autonomous-model-s
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1.1.3 History of Computer Vision

Computer vision is an extremely fast advancing field and in many ways fields like the Wild West
among the sciences. Today state-of-the-art algorithms are usually ‘dethroned’ after not much more
than half a year. The community is open in sharing data and models, so people can immediately
start from a state-of-the-art algorithm and improve on it. The usage of common benchmark datasets
and evaluation protocols ensures the fair comparison between algorithms. During my PhD a seismic
shift shook the entire research community: The successful rise of deep learning techniques above all
previous, sophisticated and highly engineered methods. Since then, the chase for better models was
partly overshadowed by a chase for more annotated data.

In the early 60s computer vision began as an engineering problem. Datasets were extremely
simple and people tried to come up with domain specific expert knowledge in order to recognize
objects in images. Apart from these early approaches the field was for the most time of its existence
ruled by the following paradigm: Engineer hand-crafted features that capture the important aspects of
the object you want to detect, then apply some intermediary processing to either quantize the features
or to aggregate them, finally use a classifier to determine which of the predefined classes you have
detected.

This paradigm shifted entirely after in 2012 the most successful approach winning the ImageNet
image recognition challenge used an entirely different approach: Deep learning2.

The concepts of deep learning were old. Already in the sixties people tried to emulate the learning
behaviour of the human brain by an algorithm3. This was the beginning of a new research field called
artificial intelligence (AI). Though people believed in the power of AI for some years, the algorithms
were lacking far behind other more engineered approaches. This lead to an era called AI winter4,
where the hype around AI burst like a bubble and high ranking conferences refused to accept papers
that claimed new advances in the field.

Luckily a small group of people clang on to the idea, such that over 4 decades later, when com-
puters had much more parallel computing power due to GPUs and the amount of annotated data was
orders of magnitudes larger, they could outperform all existing approaches with a simple end-to-end
system not much unlike one used in the 70s which could only recognize numbers between 0 and 9
on 28ˆ28 pixel images.

1.1.4 Why Semantic Segmentation?

After this short detour into the history of computer vision, we will now explain why we focus on
semantic segmentation and its related fields. Compared to one of the oldest computer vision tasks
(image classification), semantic segmentation is something like a ‘next step’. Since image classifica-
tion has made tremendous advances, the interest in the field declines. As people see it as ‘solved’ or
rely on non-academic research with their greater access to data and computational resources. Instead
people come up with new and more challenging problems. Compared to image classification, seman-
tic segmentation is the next harder step, though being still very basic in its goal: Assign a class label
to every pixel in an image. By trying to label every pixel the problem becomes harder, as one has to
deal with localization of objects, identifying their shape, boundaries between objects as well as very

2https://qz.com/1307091/the-inside-story-of-how-ai-got-good-enough-to-dominate-silicon-valley/
3https://towardsdatascience.com/rosenblatts-perceptron-the-very-first-neural-network-37a3ec09038a
4https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
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small objects that only cover a minuscule part of the image and often need context information in
order to be classified.

Again a traditional approach would use a bottom-up graph based segmentation algorithm to com-
pute superpixels, then use an object classifier on these superpixels and occasionally a conditional
random field (CRF) in a post-processing step to enforce more label consistence in the local neigh-
bourhood of pixels.

Today, virtually all state-of-the-art approaches rely on fully convolutional neural networks, which
are extremely powerful and flexible. There is no need for hand-crafting features anymore and almost
any parameter of the model itself is learned during the training of the network so the need for tuning
hyperparameters is minimal. Furthermore the same CNN architecture can be used for almost any
computer vision related problem with some slight domain specific adaptation. CRFs are still used in
some modern approaches to refine the segmentation results.

1.1.5 Open Problems in Semantic Segmentation

Similar to image recognition, semantic segmentation has made impressive advances in a couple of
years, so much that even in this field people start moving away in the search for harder problems to
be solved. On the other hand, fully convolutional CNNs pre-trained for semantic segmentation have
become ubiquitous as feature extractor and starting point for almost any algorithm of related fields
(pose estimation, action recognition, tracking, monocular depth estimation).

In this thesis we follow the same pattern. Our first approach which does classical semantic
segmentation stems from a time, when the entire field was transitioning towards CNN based methods.
It is a classic approach which is highly optimized to achieve real-time capabilities on a GPU-free
hardware device (drone). This approach is effective as our experiments show, though it is likely that
future drones will carry small GPUs in case the power consumption is not to high as compared to
CPUs.

After that we asked ourselves, what could be the next frontier in computer vision / semantic
scene understanding. One hint comes from the observation of autonomous cars: Apart from some
famous stories that made it to the news of fatal failure of computer vision algorithms: 1) Man crashes
his Tesla into a white truck, since the image recognition system mistakes the white truck for "sky"
(probably due to greyscale images as used by Mobileye having less color contrast) or 2) Car drives
over (seemingly drunken) person that crosses the road, pushing a bike while ignoring the giant Uber
SUV approaching him, again with fatal consequences. These accidents hint to the fact that current
systems are likely to perform reliably 99.9% of the time, but fail utterly in the occurrence of rare
events which are not part of the training data. The above listed examples are shocking as they are
easy to manage by a human driver

The latter story could be already related to our problem. The key observation comes from sim-
ple observation of the driving performance of current autonomous cars. It looks, like their driving
behaviour is very non-human-like, meaning they drive extremely cautiously, stop at every hard inter-
pretable situation and most importantly seem not to understand how the scene surrounding them will
evolve in the near future.

This is a new task we address with this thesis: The problem of anticipation. Humans automati-
cally can infer a lot of information in a top down process. They know from experience a lot about
the scene, objects in it and their likely behaviour.
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Figure 1.1: Example of an input and output pair for the task of semantic segmentation. Every pixel
of the input RGB image has to be assigned to a class label.

There are two types of anticipation that are of interest: Temporal anticipation and spatial antici-
pation. Temporal anticipation would deal with the dynamic of a given scene in the near future. This
is a topic closely related to action recognition which lies outside the focus of this thesis. The other
type of anticipation is spatial anticipation. This means given an input image we try to extrapolate
the scene to parts that are outside the field of view of a sensor or otherwise occluded. This is the
exact part that we focus on in this work. First we start in two dimensions. We ask ourselves: Given
a 2D input image of a scene, what is the most likely semantic extrapolation of the scene beyond the
image boundary. Thereby we effectively try to anticipate a scene and objects that are not yet visible
but likely to occur. This might for example cause an autonomous car to drive safely as it anticipates
pedestrians or playing children suddenly emerging from within a row of tightly parked cars. Just
as humans learn to drive carefully in such situations as they anticipate the sudden occurrence of a
person from experience, likewise we train a system that learns to anticipate similar events from data.

Next we extend the idea to the 3D domain. The reconstruction of a 3D scene from a single input
image or depth measurement (e.g. by a Kinect or Velodyne laser sensor) has naturally to deal with
uncertainties due to sensor occlusions. From every element that composes the 3D scene only the
surface that is visible to the sensor is detected. The backside of every element is occluded by the
objects themselves. Humans however are able to predict the geometry and semantics of objects even
in the occluded space. The field of 3D semantic scene completion tries to emulate this capability. In
this thesis we present two new efficient approaches for the task of 3D semantic scene completion as
well as a new benchmark suited to boost future research in the field.

1.2 Problem Formulations

We will now clarify for every task, addressed in this thesis, what is the exact input to each algorithm
and the respective output.

1.2.1 Semantic Segmentation

Semantic segmentation is the task of assigning a semantic class label to every pixel of a 2D repre-
sentation of a scene. Thereby elements composing the scene are simultaneously identified, localized
and their shape delineated. Therefore the output looks like a map of semantic segments that belong
to different class labels. Figure 1.1 shows an example.
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Figure 1.2: Visualization of input and output to the 2D spatial anticipation of semantic categories
task. We define two tasks. The first one (top right) requires to predict a pixel-wise semantic segmen-
tation map in the grey area where no sensory input is given. The second task (bottom right) requires
a cell wise prediction, where each cell contains a boolean indicator, highlighting which classes are
occurring in the respective cell.

Assigning semantic meaning to the world as it is perceived is what a child learns while growing
up. Thereby it develops a language which allows it to identify different objects as well as to com-
municate and consciously reason about objects, matter, etc. and their relation to one-another and
to itself. Thereby one has to take into account that words charged with a semantic meaning may
stand in intricate relation to one another: Words like object, vegetation, wood, tree for example are
in a hierarchical relationship where one word is either an abstraction of the other or includes it as
an element of which composes another element. In the definition of today’s semantic segmentation
benchmarks these hierarchical relations have to be taken into account. Most benchmarks propose a
fixed list of predefined semantic class labels that are clearly distinguishable for a human annotator
and do not have any semantic overlap with each other. In this thesis, we follow this pattern and only
deal with datasets that provide non-hierarchical and unambiguous label categories.

All future tasks that involve interpreting image content enabling an autonomous robot to perceive
its environment and to efficiently interact with it will either implicitly or explicitly have to solve the
task of semantic segmentation.

1.2.2 Spatial Semantic Anticipation

Another major concept we deal with in this thesis is the task of spatial semantic anticipation. This
task is defined as the prediction of semantic categories outside the field of view, i.e. without any
sensory input data. In practice we take as input a 2D image of a scene. An example is shown in
Figure 1.2. As output we generate a semantic segmentation map for the region surrounding the
field of view, captured by the image. The thereby inferred semantic segmentation map is what we
call “spatially anticipated”. It is an extrapolation of the scene as seen by the camera sensor. The
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Figure 1.3: Visualization of input and output to the 3D semantic scene completion task. Top left:
Input RGB image. Bottom left: Input depth map. Right: Target - a voxelized and semantically
labeled representation of the 3D scene.

fundamental idea behind this task is that humans also extrapolate the surroundings of a scene given a
single view. Even though the prediction might be ambiguous (since what is a valid extrapolation into
the unseen part of a scene is inherently non-deterministic) making plausible predictions of a scene
helps to efficiently navigate through it and to come up with an efficient path planning strategy. It also
could prevent a robot from the need of exhaustively exploring an entire scene. Moreover, potentially
dangerous events can be prevented. Without anticipation capabilities a ride in an autonomous car can
be an unintuitive experience. This could lead to unexpected breaks or extreme driving manoeuvres,
for example if a small child, initially occluded by cars parking along the edge of the road, suddenly
runs onto the road. The probability of such events has to be estimated and the driving policy adapted
accordingly.

1.2.3 Semantic Scene Completion

A natural extension of spatial 2D semantic label anticipation into the realm of 3D scene understand-
ing is called 3D scene completion. In this task the input is some kind of sensory input, e.g. from a
RGB-D camera or a RGB camera triggered by a Velodyne laser scanner mounted on a car. These
sensors only capture appearance and geometric information from surfaces visible to the position of
the sensor. As output however we generate a semantically labeled 3D voxel grid including those
parts of the scene which are occluded by the visible surfaces. See Figure 1.3 for an example. E.g.
if the camera captures the front and top of a bed or table, the output should contain a complete vox-
elized version of this bed or table. Therefore, like in the 2D case, the algorithm has to anticipate the
geometry and semantics of parts of the scene that are beyond what is recorded by the sensors. The
motivation for this task is the same as for 2D spatial anticipation of semantic categories. In the 3D
case however the geometry and proportionate object part sizes of the scene have to be reproduced as
well.
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1.3 Contributions

In this work we try to advance the field of semantic scene understanding on several fronts: On the
one hand we provide 2 works in the field of 2D semantic image segmentation.

• The first work is a 2D semantic segmentation algorithm with real time performance and com-
petitive accuracy tailored to run on a single threaded device. The idea came from a research
project, the goal of which was to equip a research drone (also called “Unmanned Aerial Vehi-
cle” - UAV) with on-device semantic segmentation capability to enable autonomous flight even
in case of lacking contact to a ground station server. We propose a new method which is based
on texton features and random forests and leverages quad-tree based label propagation as well
as spatial Gaussians to achieve a competitive semantic segmentation accuracy while operating
in real time („ 30ms) on a single threaded CPU. We further provide an extensive study on
feature and parameter design choices and their impact on computation time and accuracy.

• The second work is a seminal work in 2D spatial semantic label anticipation. To the best of
our knowledge we are the first to introduce this kind of task. We introduce two benchmarks
based on the Cityscapes dataset. The first one measures how good a proposed extrapolation of
a semantic segmentation matches with a pixel-wise segmentation map annotated by humans
which we consider as ground truth. The second benchmark relaxes for the need of exact pixel-
wise prediction in favour of a cell-wise prediction. In this case the area to predict is cut up
into a grid of larger cells. All labels occurring in the pixel-wise annotated ground-truth are
counted in a boolean histogram as being present or not present. The goal in this task is to
predict the histogram for every cell. In contrast to the pixel-wise accuracy metric, the cell-
wise prediction metric puts a less-hard constraint of the exact localization of a pixel which is
inherently non-deterministic in the case of scene extrapolation and therefore allows for more
practical predictions. Furthermore we propose CNN based models and a new loss function
designed to efficiently solve these new tasks.

On the other hand we provide contributions for the task of 3D semantic scene completion

• First we propose a new model in the recently emerged field of semantic scene completion
based on fully convolutional 3D-CNNs. We introduce a two stream architecture which fuses
data from an RGB and a depth sensor to infer a 3D semantic completion of a scene. Further-
more we show that inference time can be greatly improved while still achieving state-of-the-art
performance.

• Secondly, we introduce an approach that examines the potential of generative adversarial net-
works for the task of 3D semantic scene completion. Our best approach demonstrates that
using conditional GANs can greatly improve the performance of 3D CNN architectures mod-
elled for semantic scene completion. Furthermore, we identify that this performance is not
robust across all evaluated benchmarks. Given that the concerned dataset is very small and has
a high problem of misalignment between real world input data and synthetic annotated labels,
we infer that there is a need for a new dataset in semantic scene completion.

• Lastly we introduce a new dataset suitable for 3D scene completion. As hitherto all 3D scene
completion works either work on the very small NYUv2 benchmark or on synthetic data taken
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from the SUNCG dataset, there is an ardent need for a new large scale dataset in order to ef-
fectively train CNN architecture based models on this task. Along with the dataset we provide
a quantitative evaluation of common 3D scene completion models on this new dataset. More-
over, since the dataset consists of annotated laser scans from a point cloud dataset, we also
explore the performance of current state-of-the-art semantic segmentation algorithms for point
clouds as well as motion segmentation.

1.4 Thesis Structure

We begin by revising some theoretical concepts that underlay our models (Chapter 2). Then we give
an overview of the related work (Chapter 3). Next, we present a work on 2D semantic segmentation
(Chapter 4), followed by a work addressing the anticipation of semantic labels outside the field of
view of a 2D image (Chapter 5). Afterwards, we change our focus to 3D where we first propose
a new approach to 3D semantic scene completion based on a multi-modal input (Chapter 6) and
secondly address the potential of generative adversarial networks in the context of 3D scene com-
pletion (Chapter 7). Finally we introduce a new dataset that is the first large scale realistic dataset
for 3D semantic scene completion and apart from that is suitable for many other tasks, like semantic
segmentation on 3D point clouds (Chapter 8).





CHAPTER 2

Preliminaries

We will now describe the most important models that our works are based on. We begin by dis-
cussing random forests, a classifier, which is still of interest today in the context of devices with
limited hardware. They allow for quick inference times even without parallel computing hardware
like GPUs. Afterwards we focus on the major building block of nearly all computer vision related
fields today: Convolutional neural networks (CNNs). Their dominance has only been established
within the lifetime of this thesis and is still expanding. Another concept that is based on CNNs are
generative adversarial networks (GANs), which also quickly gained popularity from their inception
in 2014. One of our works explores the potential of GANs for the task of semantic scene completion.
Finally we discuss the conditional random field (CRF), which is a graphical model defined on pixel
class probabilities and is frequently used as a post processing step to increase segmentation accuracy
throughout this thesis.
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2.1 Random Forest

A random forest is a classifier consisting of an ensemble of binary decision trees. Though each indi-
vidual tree by itself has a weak classification performance, the combination of several independently
trained trees leads to a strong classifier. Random forests leverage the concept of stochastic discrim-
ination to prevent overfitting to a specific training set. We now describe the concept and training
procedure of random forests.

Criminisi and Shotton (2013) proposed a random forest for the task of semantic image segmenta-
tion. In their model each tree infers for an image pixel x the class probability ppc|x; θtq where c is a
semantic class and θt are the parameters of the tree t. The parameters θt are learned in a suboptimal



16 Contents

fashion by sampling from both the training data and the parameter space Θ. A robust estimator is
then obtained by averaging the predictors

ppc|xq “
1

T

ÿ

t

ppc|x; θtq, (2.1)

where T is the number of trees in the forest. A segmentation of an image can then be obtained by
taking the class with highest probability for each pixel.

To learn the parameters θt of a tree t, first, pixels from the training data are sampled which
provide a set of training pairs S “ tpx, cqu. The tree is then constructed recursively, where at each
node n a weak classifier is learned by maximizing the information gain

θn “ arg max
θPΘ̃

$

&

%

HpSnq ´
ÿ

iPt0,1u

|Sn,i|
|Sn|

HpSn,iq

,

.

-

. (2.2)

While Sn denotes the training data arriving at the node n, Θ̃ denotes the set of sampled parameters
and

HpSq “ ´
ÿ

c

ppc;Sq log ppc;Sq

where ppc;Sq is the empirical class distribution in the set S. Each node becomes a weak classifier
fθpxq with parameters θ that splits Sn into the two sets

Sn,i “ tpx, cq P Sn : fθpxq “ iu

with i P t0, 1u. After the best weak classifier θn is determined, Sn,0 and Sn,1 is forwarded to the
left or right child, respectively. The growing of the tree is terminated when a node becomes pure,
meaning it does only contain samples of a single class, or Sn becomes smaller than some threshold.
Finally, the empirical class distribution ppc;Slq is stored at each leaf node l. During inference, one
can compute ppc|x; θtq for every pixel x and tree t and infer the final class probability distribution
ppc|xq using Equation 2.1.

2.2 Convolutional Neural Network (CNN)

A major building block of nearly all our models are convolutional neural networks (CNNs). We will
briefly describe their history and neuroscientific motivation before explaining the architecture and
functionality of a typical modern CNN.

2.2.1 History

Frank Rosenblatt, a psychologist and computer scientist, in 1958 published the ‘perceptron’ model
consisting of a single layer of neurons, randomly connected to the input (Rosenblatt, 1958). The per-
ceptron was implemented as a hard-wired machine without software using as input a grid of 20ˆ 20

photocells which were randomly wired to neurons while using electric motors for updating weights
during learning. Nevertheless since the perceptron model consisted of a binary linear classifier it is
considered the basis of today’s artificial neural networks.
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The perceptron then developed into a multilayer perceptron (MLP) consisting of multiple layers
of perceptrons and capable of learning non-linear functions. Rumelhart et al. (1986) proposed the
backpropagation algorithm for training parameters of a multilayer-perceptron. LeCun et al. (1989)
applied backpropagation to a neural network recognizing digits in 2D images.

LeCun et al. (1998) introduced a convolutional neural network architecture, whose the basic func-
tionality is similar to that of today’s architectures: The input was processed by a sequence operations
consisting of convolutions, followed by the addition of a bias term, followed by a nonlinear transfor-
mation (e.g. hyperbolic tangent or logistic function). The shift from sigmoid activation function to
ReLU came due to the observation that sigmoid activations tend to saturate quickly and thus do not
contribute to the learning anymore.

Though the field existed for a long time, high expectations and the consequent failure to achieve
them, repeatedly led to phases of reduced interest into neural network based methods (phases called
‘AI winters’). The interest in the field was completely revived when Krizhevsky et al in 2012 fa-
mously won the 2012 ImageNet challenge by a large margin. This success was mainly driven by two
effects: The shift towards GPU based parallel processing and the availability of large scale datasets.
This can be seen from the fact that the architecture of the Krizhevsky’s CNN strongly resembles
LeNet-5 by LeCun et al. (1998), apart from being significantly deeper.

2.2.2 Neuroscientific Background

The idea for the construction of a neural network was inspired by the study of the functionality of
the human brain and perception. It is an attempt to emulate the process of visual perception by an
algorithm. We briefly outline the concepts that influenced the conception of CNNs.

The human eye projects a 2D image of the outside world through a lens onto the retina. The
retina consists of nerve cells which either register brightness or color. From the retina, the image is
transferred via the optic nerve and the lateral geniculate nucleus (LGN) to the primary visual cortex
(V1). Researchers have found that neurons in V1 perform operations resembling convolutions. V1
contains ‘simple cells’ which behave linearly with respect to a local neighborhood of the incoming
receptive field and ‘complex cells’, which are invariant to spatial transformations of the input signal.
V1 also shows a 2D spatial structure like the retina, i.e. light shined onto different parts of the retina
only activate specific regions in V1.

2.2.3 Architectures

CNNs consist of a repetitive pattern of functional blocks. Each functional block processes an input by
a sequence of operations to produce an output layer. The output layer is subsequently fed to another
functional block. Figure 2.1 gives an overview over some historically influential CNN architectures.
The most prominent architectural development, is that CNNs have become deeper over time. While
LeNet (1980) only has two convolutional layers, AlexNet (2012) has 5, followed by VGG (2014)
with 19 and ResNet (2016) with up to 100. As the networks become deeper, training becomes harder
since the problem of ‘vanishing gradients’ increases.

Some design choices of the presented models are designate as useful and used in most modern
architectures. AlexNet relied on Dropout to prevent overfitting, especially in the fully connected
layers. VGG, for example, restricted the spatial size of every convolution kernel to 3 ˆ 3, which
became the norm ever since. ResNet on the other hand introduced a new kind of functional block, the
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‘skip-connections’. AlexNet, VGG and ResNet all proved their efficiency by winning the ImageNet
challenge (ILSVRC). Afterwards they were quickly adapted and applied in many related fields of
computer vision.

For semantic segmentation the most important modification is the replacement of all fully con-
nected layers by a convolutional layer, as first proposed by Long et al. (2015). Thereby the last layer
becomes a pixel-wise classifier. These fully convolutional neural networks are extremely handy, as
they are able to consume inputs and produce outputs of any size. In the following we will explain the
behaviour of the individual components of CNNs as well as the training procedure.

2.2.4 Components

Convolutions

Convolutions are at the basis of the success of neural network based learning and image analysis.
In contrast to fully connected layers they offer a significant reduction in the number of parameters
per layer through weight sharing, i.e. that the same kernel is applied to multiple regions of the input
feature. The convolution of a two-dimensional image I by a kernel K is defined by

Spi, jq “ pK ˚ Iqpi, jq “
ÿ

m

ÿ

n

Ipi´m, j ´ nqKpm,nq. (2.3)

In current CNNs the actual implementation of a convolution slightly deviates from this mathematical
definition. First, to account for multiple channels of the input image or feature map, another dimen-
sion is added to the kernel. Secondly, in contrast to Equation 2.3, the kernel K is flipped, which
technically changes the convolution into a correlation, which is however irrelevant for the function-
ality of the CNN since the parameters of K are initialized randomly (Goodfellow et al., 2016). More
specifically, the computation of an element Zi,j,k of an output tensor Z from an input tensor V with
entries Vi,j,k where the indices i, j, k denote the channel, row and column dimension respectively, is
performed as follows: Zi,j,k is obtained by applying a convolution kernel K, then adding a bias b
followed by the transformation by some non-linear function σ

Zi,j,k “ σ
´

ÿ

l,m,n

Vl,j`m,k`nKi,l,m,n ` bi

¯

. (2.4)

where the non-linear function σ is typically the ‘rectified linear unit’ (ReLU) introduced by Glorot
et al. (2011)

fpxq “ maxp0, xq. (2.5)

Pooling

A pooling layer replaces every neuron of an input feature map by a summary statistic of its local
neighbourhood. A typical example is a 2 ˆ 2 max-pooling operation with stride 2. Thereby only
the maximum value of a rectangular 2 ˆ 2 region is copied to the output feature map, which is
downsampled by a factor of 2 with respect to the input feature map.
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Figure 2.2: Skip-Connection mechanism as proposed by (He et al., 2016).

The pooling operation has several motivations: Apart from reducing the memory consumption
of subsequent layers, it also leads to an increase of the receptive field of subsequent convolutions.
Moreover by integrating over the local neighbourhood information, the network becomes more robust
to small translations of the input features.

Skip-Connection

A skip-connection allows information to flow unmodified from earlier layers to later layers in the
network. Figure 2.2 illustrates the mechanism. The input to a convolutional block is forwarded
bypassing the block and added to its output layer. He et al. (2016) could show significant performance
improvements when adding the skip-connections to their CNN architecture. During the forward pass
the skip-connections allow deeper layers to use information not only from previous but also from
earlier layers. During the backward pass, the skip-connection allows gradients to flow unaltered to
early layers, which helps to reduce the problem of vanishing gradients.

Batch-Normalization

A batch-normalization layer transforms every neuron to have approximately 0-mean µ and a variance
σ of 1, with respect to the training data. To achieve this a moving average of both values is computed
along the batch-dimension during the network training. During inference µ and σ are kept fix.

Batch-normalization has been introduced by Ioffe and Szegedy (2015). They showed that batch-
normalization greatly speeds up the training time while at the same time making the training more
robust towards the choice of hyperparameters like the learning rate or the initial values of the model
parameters. However, batch-normalization can only be applied in cases, where the batch-size is
larger than 1 and performs poorly for small batch-sizes.

Dilated Convolutions

Dilated convolutions is a concept that is quite frequently used in the domain of semantic segmenta-
tion. They are convolutions with an increased kernel size but constant number of parameters. There-
fore the learnable parameters are evenly placed on a regular grid and the non-occupied cells are filled
up with zeros. These cells remain zero throughout the training. As one can see from Figure 2.3 this
has the effect of increasing the receptive field without the need for decreasing the image resolution
as in the case of pooling layers.

A strided convolution with stride s, a kernel K with elements Ki,j,k,l on an input V produces an
an element of the output tensor Zi,j,k computed as follows



2.2. Convolutional Neural Network (CNN) 21

Figure 2.3: Dilated convolution proposed by Chen et al. (2015). Input resolution is 7 ˆ 7 (bottom)
and the output resolution 3ˆ 3 (top). The output resolution can be increased to the same level as the
input by adding a 0 padding to the input layer of half the kernel size. a

aSource: https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

Zi,j,k “
ÿ

l,m,n

rVl,pj´1qˆs`m,pk´1qˆs`nKi,l,m,ns. (2.6)

Deconvolutions

A frequently used method to increase the resolution of feature maps are deconvolutions. In contrast
to convolutions they take as input a single neuron from the previous feature map, scalar multiply it
with a convolutional kernel and add the result in the subsequent feature map. The process is repeated
for all neurons in the input feature map and the results in the output feature map are aggregated via
addition. Figure 2.4 shows an example of the process. There is an equivalent perspective of the same
operation, which is what is actually implemented in most libraries. The aggregation of differently
weighted kernels in the output layer is equivalent to a strided convolution, where the input feature
map is first upsampled by placing the input on a higher resolution grid and setting all of the newly
introduced cells to 0 and furthermore adding a 0-padding of half the kernel size at every border. The
input is then convolved with the flipped version of the convolution kernel, hence the alternative name
’transpose-convolution’. Transpose convolutions and deconvolutions have different implementations,
but yield identical results. Therefore, their names are used exchangeable.

2.2.5 Training

The training of a CNN is modelled as an optimization problem. The goal is to find the parameters
θ of a neural network that minimize a cost function Jpθq, which measures the performance of the
network on a training set of size N

Jpθq “
N
ÿ

i“1

Lipx, yq. (2.7)
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Figure 2.4: Visualization of a 2ˆ 2 strided deconvolution with kernel size 3ˆ 3, input resolution is
2 ˆ 2 (bottom), input resolution is 5 ˆ 5 (top). In order to perform the deconvolution an automatic
0-padding is being added to the input, depending on the kernel size k, the size of the padding is
pk ` 1q{2. a

aSource: https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

where Lipx, yq is the loss function evaluated for a training sample i consisting of an input x and a
label y. The loss function measures the distance of the output prediction of the neural network to the
label in a task specific metric. For classification tasks like semantic segmentation one typically uses
a pixel-wise softmax cross-entropy loss

Li “ ´
ÿ

cPC
ŷic log

¨

˝

eyic
ř

c1PC
eyic1

˛

‚ (2.8)

where ŷic is the class probability of the ground truth label of pixel i, which is 1 for the true class
and 0 otherwise. yic denotes the unnormalized predictions of the network for pixel i and class c.
In order to tune the initially randomly chosen parameters of the CNN, one applies backpropagation.
During backpropagation one computes the gradient of every parameter in the network with respect
to the objective function J . Starting from the last layer fn, one can get the gradient of all earlier
layers fi by successive application of the chain rule, which for simplicity we show here for the
one-dimensional case

Jpxq “ fn ˝ ¨ ¨ ¨ ˝ f1pxq (2.9)

BJpxq

Bfi
“

Bfn
Bfn´1

¨
Bfn´1

Bfn´2
¨ . . . ¨

Bfi`1

Bfi
. (2.10)

With the help of the gradient with respect to the weights ∇WL on can update the trainable weights
such that they minimize the cost function J , for example via stochastic gradient descent (SGD):

W “W ´ λ∇WL (2.11)

Stochastic refers to the fact that L is not computed for the entire training data at once but instead
for a small randomly sampled batch of data, before updating the weights. In practice one uses more
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Figure 2.5: Architecture of the DCGAN proposed by (Radford et al., 2015). Both the generator and
the discriminator are fully convolutional neural networks. While the generators generates images
from a randomly sampled input vector, the discriminator classifies whether the input image he got
was real (sampled from the ground truth) or fake (generated by the generator). Image adapted from
Radford et al. (2015).

refined variants of SGD such as SGD with momentum or ADAM which gather some additional
statistics of the gradients in order to accelerate the training. The learning rate λ is one of the most
crucial parameters that has to be carefully chosen before every experiment.

2.3 Generative Adversarial Network

A generative adversarial network (GAN) is a generative model that can for example be trained to
produce naturally looking images sampled from a random vector. These images resemble but are
not identical to those of a training dataset. The training of a GAN has many interesting properties.
It learns a latent space, that is a compressed representation of an image. The training is done in an
self-supervised way, meaning that no human annotation is needed.

The GAN proposed by Radford et al. (2015) consisted of two convolutional neural networks, a
generator and a discriminator. The structure is visualized in Figure 2.5. The generator takes as input
a random vector z and outputs an image x “ gpzq. The discriminator gets as input either an image
from the training data or from the generator. It then outputs a probability dpxq to assess whether x
was ‘real’, i.e. drawn from the training data, or ‘fake’, i.e. it was generated by the generator. Both
networks are trained simultaneously thereby competing with each other. The training objective is
formulated as a minimax game. While the generator tries to minimize a value function v, it learns to
generate images that look similar to those of the training data. On the other hand, the discriminator
tries to maximize the value function v by getting better at discriminating between real and fake
samples. At convergence both the generator and discriminator will have learned parameters θ to
reduce their respective loss, which can be formulated as the following optimization problem

min
g

max
D

vpθg, θdq. (2.12)

with a value function v defined over the log-likelihood of the discriminator output

vpθg, θdq “ Ex„Pdata
log dpxq ` Ex„Pmodel

logp1´ dpxqq. (2.13)

In practice Goodfellow et al. (2014) observed that in the early learning phase, when the generator
produces very unrealistic images, the discriminator rejects them with high confidence which means
that the term logp1 ´ dpxqq saturates. Therefore, they instead propose an objective function which
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is modified such that the generator tries to increase the log probability that the discriminator makes
a mistake, instead of trying to decrease the log probability that the discriminator makes the correct
prediction:

vpθg, θdq “ Ex„Pdata
log dpxq ´ Ex„Pmodel

log dpxq. (2.14)

This trick ensures a stronger gradient signal in the early learning phase and the objective function
still results in the same fixed point.

2.4 Conditional Random Field

One problem of current CNN architectures deployed for semantic segmentation is the loss for reso-
lution with respect to the input. This is both due to the use of pooling operations in order to increase
the receptive field (which could be avoided using dilated convolutions) and secondly due to the need
for a reduction of the memory footprint of deep architectures. The results are often upsampled us-
ing bilinear interpolation in order to obtain the desired output resolution. The effect of this is that
especially sharp boarders of objects in an image are poorly detected. One way to resolve this issue
is a conditional random field (CRF). Thereby the pixels of an image are interpreted as the vertices
of a fully connected graph. Using the difference of RGB color values of two pixels and their respec-
tive probability of being assigned to the same or different class categories, one can refine semantic
segmentation maps to better align with object boundaries in the original resolution of the image.

We will now briefly discuss the fully connected CRF of Krähenbühl and Koltun (2011) that is
used regularly throughout this thesis in order to refine 2D semantic segmentation results.

A conditional random field is a graphical model characterized by a probability distribution P
over a pixel-wise semantic segmentation map y given an image I . This probability distribution is
given as a Gibbs distribution

P py|Iq “
1

ZpIq
exp

´

´
ÿ

cPCG

Φcpy|Iq
¯

(2.15)

where GpV, Eq is a graph on y, c is a clique in the set of cliques CG and Φc is a potential belonging
to that clique. For a labeling y P LN , where LN is the space of all possible labelings for an image
with N pixels, one can compute a Gibbs energy

Epy|Iq “
ÿ

cPCG

Φcpyc|Iq (2.16)

Given the Gibbs energy one can directly derive the maximum a posteriori label assignment for the
conditional random field, which corresponds to most likely semantic segmentation map:

y˚ “ arg max
yPLN

P py|Iq (2.17)

In the implementation of Krähenbühl and Koltun (2011) the conditional random field is a fully con-
nected pairwise graph over y. It has a Gibbs energy consisting of unary potentials Ψu and binary
potentials Ψp defined at each pixel

Epyq “
N
ÿ

i

Ψupyiq `
ÿ

iăj

Ψppyi, yjq (2.18)
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As unary potential they take the probability assigned to each pixel by a classifier (in our case
the softmax-probability assigned by a CNN) as pairwise potential they propose a contrast-sensitive
two-kernel potential

Ψppyi, yjq “ µpyi, yjq
K
ÿ

m“1

wmpfi, fjq (2.19)

with

kpfi, fjq “ w1 exp
´

´
|pi ´ pj |

2

2θ2
α

´
|Ii ´ Ij |

2

2θ2
β

¯

` w2 exp
´

´
|pi ´ pj |

2

2θ2
γ

¯

(2.20)

where Ii, Ij denote pixel intensities, and pi, pj are the spatial coordinates of pixel i and j. One
can see that the kernel measures the similarity of pixels |Ii ´ Ij | as well as the spatial distance
|pi ´ pj |. The parameters θα and θβ control the degree of similarity and distance that is enforced
between pixels. They are found through grid search as are the other parameters w1, w2 and θγ . The
factor µpyi, yjq in Equation 2.19 is the label compatibility function and is in our case given by the
Pott’s model

µpyi, yjq “

#

1 if yi ‰ yj

0 otherwise
(2.21)

The choice of the Pott’s model as compatibility function enforces that nearby pixels with the same
labeling but different appearance are penalized. The goal is now to find the best label assignment by
iteratively minimizing the energy E in Equation 2.18, by updating the potentials at every pixel via
message passing.

Therefore the implementation by Krähenbühl and Koltun (2011) makes the mean field approx-
imation which stipulates that an individual pixel sees a superposition of all the binary potentials of
itself with respect the other pixels. These new potentials are computed for every pixel first, before
they are all updated simultaneously.

Furthermore due to the choice of Gaussian edge potentials the message passing step can be imple-
mented very efficiently using convolutions by a truncated Gaussian. To do so they first downsample
the feature space using a sparsely stored permuhedral lattice. The Gaussian convolution filter can
be linearly separated into one-dimensional filters and be applied along the lattice dimensions of the
permuhedral lattice. This leads to inference times of fractions of a second for images with millions
of pixels using a single threaded device.





CHAPTER 3

Related Work

We review the body of research that influenced our work. Beginning with a selection of classical
works addressing the task of semantic segmentation in images, we continue by exploring what meth-
ods deal with the anticipation of semantic categories on the basis of 2D images. After that we move
to the 3D domain where we deal with semantic segmentation of point clouds on the one hand as well
as semantic scene completion on the other.
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3.1 Semantic Segmentation

The field of semantic segmentation has been addressed in countless works over the past two decades
and has been heavily shifted due to the transformation caused by deep learning which also impacted
the research trajectory of this thesis. While our first work is a classical approach to semantic seg-
mentation, all the consecutive works use deep learning at the core of every model. We will therefore
resume the development of 2D semantic segmentation in two parts. First we give an overview over
classical approaches, then we report on recent approaches based on deep learning.

3.1.1 Classical Approaches

A classical approach to semantic segmentation usually consists of a pipeline of several independent
components. Each component can be realized in several ways, which leads to a variety of possible
combinations between them which is reflected in various works. Each pipeline typically consists
of a bottom-up approach to compute coherent image regions or superpixels, hand-crafted feature
descriptors to describe individual pixels, a classifier to attribute a certain class label to each feature
descriptor and finally a postprocessing step to smoothen noisy semantic segmentation results.
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The superpixel computation can be performed by methods based on graph based image segmen-
tation (Shi and Malik, 2000; Felzenszwalb and Huttenlocher, 2004) or gradient ascent based methods
like mean shift (Comaniciu and Meer, 2002) or watersheds (Vincent and Soille, 1991). Modern
methods like SLIC (Achanta et al., 2012), SEEDS (Van den Bergh et al., 2012) rely on methods
like k-means or hill-climbing, which can also be combined with heuristics for an adaptive seeding to
improve the usually random initialization of the superpixel clustering (Wilms and Frintrop, 2017).

As features one can choose between a variety of different hand-engineered descriptors like his-
tograms of oriented gradients (HOG) (Dalal and Triggs, 2005), SIFT (Lowe, 2004), which are based
on orientations found in gradient images or texton (Leung and Malik, 2001) which are based on color
statistics.

As classifier, one can choose between non-parametric models like k-nearest neighbours or trained
classifiers like boosting (Freund and Schapire, 1996), a support vector machine (SVM) or random
forests (Breiman, 2001). Apart from applying the classifier directly to every pixel described by its
feature descriptor, one could also aggregate feature vectors over a certain region (e.g. a superpixel)
and classify the entire region at once. The aggregation can range from a simple max-, sum- or
average-pooling to more refined approaches like the bag-of-features (BoF) embedding. Inspired
by the bag-of-word (BoW) scheme applied earlier in speech recognition. The concept relies on
quantizing features using a codebook. Therefore one first extracts all feature descriptors from the
training set, then performs a clustering on the descriptors (e.g. k-means clustering) and uses the
obtained cluster-centers as codebook to encode an arbitrary number of feature descriptors. Thereby
one obtains a normalized frequency histogram, counting how many descriptors belonging to the
respective cluster-center can be found in the pooled region. BoF approach is a very effective approach
to aggregate feature descriptors and compare regions of varying size and shape.

Finally the resulting segmentation map can be post-processed to refine a noisy classifier result.
This can be achieved by enforcing local consistency within a superpixel or across neighbouring
superpixels using Markov random fields (MRFs) or conditional random fields (CRFs). This last step
is still relevant in today’s approaches as deep learning approaches traditionally suffer from low output
resolutions and therefore need to be upsampled.

We will now report a selection of classical approaches that were influential to this thesis and the
field of semantic segmentation. Shotton et al. (2008) and Brostow et al. (2008) proposed classical
approaches to semantic segmentation using classifiers like random forests or boosting. Sturgess et al.
(2009) and Ladickỳ et al. (2010) deployed CRFs to model the spatial relations of pixels and obtain a
smooth segmentation. Kontschieder et al. (2011) proposed a structured random forest that predicts
not a single label per pixel but the labels of the entire neighborhood. Merging the predicted neigh-
borhoods into a single semantic segmentation of an image, however, is costly. To speed up the seg-
mentation, learning and prediction of random forests, they have been implemented for GPUs (Schulz
et al., 2015). Approaches that combine random forests and neural networks have been proposed as
well (Bulo and Kontschieder, 2014), however, at the cost of increasing the runtime.

3.1.2 Deep Learning Approaches

In 2012 convolutional neural networks have revolutionized the domain of image classification. The
network architecture used in 2012, called ‘AlexNet’ (Krizhevsky et al.) was then continuously im-
proved by subsequent models, for example by VGG (Simonyan and Zisserman, 2015) and ResNet
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(He et al., 2016).
Similarly the field of semantic segmentation transformed towards end-to-end learnable ap-

proaches. Long et al. (2015) proposed fully convolutional neural network for semantic image seg-
mentation. The architecture of fully convolutional neural networks for image segmentation was
adapted in various ways in the following years. Some approaches leverage an encoder-decoder net-
work architecture (Pohlen et al., 2017; Lin et al., 2017). Ronneberger et al. (2015), for example,
concatenate the output of the encoder layers with the corresponding input feature layers in the de-
coder while Badrinarayanan et al. (2017) use the max-pooling indices stored in the encoder during
forward propagation to upsample the feature maps in the decoder. Other approaches focus on context
aggregation either through a pyramid pooling strategy (Zhao et al., 2017) or via dilated convolutions
(Chen et al., 2015, 2018; Wang et al., 2018a). For real-time applications like autonomous driving,
highly efficient approaches have been proposed (Paszke et al., 2016; Zhao et al., 2018a). Newer
approaches try to transfer the ‘attention mechanism’, which became particularly famous in machine
translation community (Vaswani et al., 2017)1, to the task of semantic segmentation (Zhao et al.,
2018b; Yu et al., 2018).

In this thesis, we frequently use the approach by Chen et al. (2015) as basis for our 2D seman-
tic image segmentation. It is based on the ResNet architecture and uses a couple of adaptations
to make it suitable for semantic image segmentation. The main adaptation is the introduction of
dilated-convolutions, which are convolutions with increased kernel sizes but with the same amount
of parameters. By varying the kernel size of the dilated-convolution one can compute responses from
the feature maps at different spatial resolutions which allows to control size of the receptive field. In
addition, we usually refine predictions by a conditional random field (Krähenbühl and Koltun, 2011).

3.2 Anticipation of Semantic Categories

The task of spatial anticipation of semantic categories, which we address in this thesis, has not been
previously studied. Hallucinating semantics has been addressed in very few works. Liu et al. (2016)
developed an approach to reconstruct 3D scenes by simultaneously predicting depth and semantic
labels from incomplete depth data. They propose a two-layer model representing both the visible and
the hidden or occluded information. The approach also has some relations to in-painting methods
like Pathak et al. (2016a), which fill holes inside an image. In-painting methods, however, cannot be
applied to anticipate semantics outside an image. For the task of proposal generation for an object
detector, Ristin et al. (2013) predict from large image patches potential bounding boxes that might
contain objects of a relevant object category. While the bounding boxes can be outside the image
patch, the approach aims at exploiting the local context within an image to reduce the inference time
of an object detector. Moreover our work is connected to those focused on exploiting context for
object detection. Torralba (2003) made a seminal contribution in this domain. There has been some
works that aim for temporal anticipation. Luc et al. (2017, 2018), for example, deploy an autore-
gressive convolutional neural network to iteratively predict semantic segmentations and instances of
future frames.

1Interestingly their approach does not rely on recurrent neural networks anymore, unlike typical approaches to machine
translation. This might indicate a paradigm shift.
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3.3 Semantic Scene Completion

Several works addressed the problem of semantic segmentation of RGB-D images (e.g. Ren et al.,
2012; Lai et al., 2014; Gupta et al., 2013; Silberman et al., 2012), but they infer semantic labels only
for the visible pixels of the image, which means that occluded voxels are not reconstructed.

A possible strategy for semantic scene completion is the generation of 3D object proposals and
subsequent 3D shape completion of the respective object. The problem of completing the 3D shape
has been addressed in several works (Rock et al., 2015; Thanh Nguyen et al., 2016; Varley et al.,
2017; Wu et al., 2015; Wang et al., 2017; Yang et al., 2017; Han et al., 2017; Dai et al., 2017b). In
the context of inferring a voxel-wise segmentation, holes between objects have to be filled. As long
as these missing parts are small, they can be filled using plane fitting (Monszpart et al., 2015) or
object symmetry (Kim et al., 2012; Mattausch et al., 2014). Objects that are not detected, however,
heavily disturb the 3D scene completion. Completing the scene geometry without predicting the
semantics has been addressed by Firman et al. (2016). Their model assumes that objects of seman-
tically dissimilar classes can still be represented by similar 3D shapes, i.e. it is possible to predict
the unobserved voxels from the frontal geometry. However, this approach fails for complex scenes
where these geometric constraints are violated.

An alternative is to use instances of 3D mesh models and fit them to the scene geometry (Geiger
and Wang, 2015; Gupta et al., 2015; Kim et al., 2012; Lai and Fox, 2010; Mattausch et al., 2014;
Nan et al., 2012; Song and Xiao, 2016; Shao et al., 2012; Li et al., 2015; Shi et al., 2016). The mesh
models, however, do not model shape variations of objects of the same category and increasing the
number of mesh models per category is not practical since the number of available CAD models is
limited and the shape retrieval becomes more expensive. The approaches by Jiang and Xiao (2013)
and Lin et al. (2013) even neglect fine-grained details and simply fit 3D primitives to the scene.

Various contextual cues proved to be helpful for semantic scene completion. While physical
reasoning is employed in Zheng et al. (2016), Kim et al. (2013) predict voxel labels with a CRF
whose unary potentials are determined by floor plans. The CRF, however, only models contextual
information within a short distance. In Blaha et al. (2016) and Häne et al. (2013), semantic scene
completion and multi-view reconstruction are jointly performed. The approaches do not rely on
end-to-end learning approaches, but they use predefined features and heuristics to integrate context
information.

The seminal approach in 3D semantic scene completion using an end-to-end approach, which
motivated our own research, was proposed by Song et al. (2017). They also proposed the SUNCG
dataset, a large scale synthetic dataset for semantic scene completion based on rendered depth im-
ages. Moreover they generate another training set for the NYUv2, which consists of realistic indoor
scenes, using CAD models provided by Rock et al. (2015). However the realistic NYUv2 datasets
only consists of 795 training samples which are badly aligned with the cluttered RGB-D images of
NYUv2. This is a strong limitation for end-to-end learning approaches.

In the following, many different works have addressed the problem of semantic scene completion
using CNN based approaches. Zhang et al. (2018) proposed a new network architecture which lever-
ages sparse feature map encodings and allows for much deeper network architectures and Dai et al.
(2018) propose a three-stage multi-resolution, autoregressive model. Parallel to our work, approaches
that follow related ideas have been released. Liu et al. (2018) also try to leverage a multimodal input
consisting of RGB and depth images for semantic scene completion, Wang et al. (2018c) propose a



3.4. Generative Adversarial Network 31

model based on an adversarial training scheme.
Although Dai et al. (2017a) and Chang et al. (2017) collected large scale, semantically annotated

datasets with real world data, they are not suitable for training semantic scene completion models.
Instead, Chang et al. focus on surface normal estimation while Dai et al. focus on tasks like 3D
object classification, voxel labeling and CAD model retrieval. Therefore there is still a need for
large, realistic datasets for semantic scene completion, which we address in this thesis.

3.4 Generative Adversarial Network

In 2014 Goodfellow et al. introduced the concept of generative adversarial networks (GANs). They
proposed an architecture consisting of 2 convolutional neural networks, a generator and a discrim-
inator. Their model was able to generate images that looked distinct yet still resembling those of a
training set. The idea quickly took off, not least since Yan LeCun, in an interview, called it ‘the most
interesting idea in the last 10 years’2 - thereby carelessly trashing the successes of convolutional neu-
ral networks in image classification two years earlier. The result was a plethora of works that tried to
extend the idea to almost all fields in computer vision and machine learning.

One year after the GAN concept was proposed, Radford et al. (2015) introduced a deep con-
volutional generative adversarial architecture (DCGAN) which became the standard architecture for
many of the subsequent works on GANs. The DCGAN architecture strongly resembles that of a
autoencoder, where the generator has the form a decoder and the discriminator that of an encoder.

In the following years, researchers were trying to either improve the notoriously difficult train-
ing, increase the output resolution of the generator (Karras et al., 2017; Shrivastava et al., 2017),
extend the model architecture or adapt it to a plethora of new tasks. Some influential conceptual
changes have been proposed by Dosovitskiy et al. (2015), who extended the GAN approach by using
conditioning variables and thereby making the image generation process more controllable.

Other works focussing on controlling the output of the generator involved conditioning on dis-
crete labels (Gauthier, 2014; Denton et al., 2015; Mirza and Osindero, 2014), conditioning on images
for tasks such as image generation from a normal map (Wang and Gupta, 2016) or image manipula-
tion guided by user constraints (Zhu et al., 2016).

Another new concept was the introduction of a new loss function based on the Wasserstein metric
by Arjovsky et al. (2017), which makes the training more robust towards the ‘mode collapse’ problem
as well as to the choice of the model parameters. However training GANs is still notoriously unstable,
which is why many people stick to architectures resembling that of Radford et al. (2015), while
following a collection of shared training heuristics (Karras et al., 2017; Salimans et al., 2016; Roth
et al., 2017).

Apart from generating images, GANs were applied in many different computer vision domains
such as style transfer (Li and Wand, 2016), superresolution (Ledig et al., 2017), inpainting (Pathak
et al., 2016b), and future state prediction (Zhou and Berg, 2016) to name a few. Luc et al. (2016)
were the first to apply GANs to 2D semantic segmentation by adding an adversarial network after a
segmentation network to discriminate segmentation maps coming from either the ground truth or the
segmentation network. Some other works applied GANs to the 3D space, focussing on either single
object reconstruction (Wu et al., 2016; Yang et al., 2018b) or dealing with a scene as a composition

2https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning
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of objects (Yang et al., 2018a).

3.5 Semantic Point Cloud Segmentation

Semantic segmentation or point-wise classification of point clouds is a long-standing topic (Anguelov
et al., 2005), which was traditionally solved using a feature extractor, such as Spin Images (Johnson
and Hebert, 1999), in combination with a traditional classifier, like support vector machines (Agrawal
et al., 2009) or even semantic hashing (Behley et al., 2010). Many approaches used Conditional
Random Fields (CRF) to enforce label consistency of neighboring points (Triebel et al., 2006; Munoz
et al., 2008, 2009a,b; Xiong et al., 2011).

With the advent of deep learning approaches in image-based classification, the whole pipeline of
feature extraction and classification has been replaced by end-to-end deep neural networks. Voxel-
based methods transforming the point cloud into a voxel-grid and then applying convolutional neural
networks (CNN) with 3D convolutions for object classification (Maturana and Scherer, 2015) and
semantic segmentation (Huang and You, 2016) were among the first investigated models, since they
allowed to exploit architectures and insights known for images.

To overcome the limitations of the voxel-based representation, such as the exploding memory
consumption when the resolution of the voxel grid increases, more recent approaches either upsample
voxel-predictions (Tchapmi et al., 2017) using a CRF or use different representations, like more
efficient spatial subdivisions (Klukov and Lempitsky, 2017; Riegler et al., 2017; Zeng and Gevers,
2017; Wang and Lu, 2018; Graham et al., 2018), rendered 2D image views (Boulch et al., 2017),
graphs (Landrieu and Simonovsky, 2018; Te et al., 2018), splats (Su et al., 2018), or even directly the
points (Qi et al., 2017b,a; Hua et al., 2018; Groh et al., 2018; Rethage et al., 2018; Jiang et al., 2018;
Engelmann et al., 2018).

3.6 Benchmarks

The progress of computer vision has always been driven by benchmarks and datasets (Torralba and
Efros, 2011), but the availability of especially large-scale datasets, such as ImageNet (Deng et al.,
2009), was even a crucial prerequisite for the rise of deep learning. As there are countless datasets,
related to the field of semantic scene understanding, we will now list a subjective subset of datasets
that we were most influential to our work.

3.6.1 2D Semantic Segmentation

For a long time, 2D semantic segmentation was driven by benchmarks, focussing on iconic images
of arbitrary objects, animals or humans. Over the years ever larger and more complex datasets were
published. Prominent examples are the PASCAL VOC 2012 challenge (Everingham et al., 2015)
comprising of „10,000 annotated images for 21 classes and Microsoft COCO (Lin et al., 2014)
providing „200,000 annotated images for 80 classes.

Task-specific datasets geared towards self-driving cars were also proposed. Brostow et al. (2008)
introduced the CamVid dataset, which comprises of a few hundred densely annotated training images
of street scenes. In comparison to CamVid, the Cityscapes dataset (Cordts et al., 2016) provides an
order of magnitude more of pixel-wise labeled images which makes it suitable for deep learning.
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The Mapillary Vistas dataset (Neuhold et al., 2017) surpasses the amount and diversity of labeled
data compared to Cityscapes.

3.6.2 3D Semantic Segmentation

Also in point cloud-based interpretation, e.g., semantic segmentation, RGB-D based datasets en-
abled tremendous progress. ShapeNet (Chang et al., 2015) is especially noteworthy for point clouds
showing a single object, but such data is not directly transferable to other domains. Specifically, Li-
DAR sensors usually do not cover objects as densely as an RGB-D sensor due to their lower angular
resolution, in particular in vertical direction.

For indoor environments, there are several datasets (Silberman et al., 2012; Ros et al., 2016; Hua
et al., 2016; Armeni et al., 2017; Dai et al., 2017a; McCormac et al., 2017; Li et al., 2018; Dai
et al., 2018) available, which are mainly recorded using RGB-D cameras or synthetically generated.
However, such data shows very different characteristics compared to outdoor environments, which is
also caused by the size of the environment, i.e. indoors, point clouds tend to be much denser due to
the range at which objects are scanned. Furthermore, the sensors have different properties regarding
sparsity and accuracy. While laser sensors are more precise than RGB-D sensors, they usually only
capture a sparse point cloud compared to the latter.

For outdoor environments, datasets were recently proposed that are recorded with a terrestrial
laser scanner (TLS), like the Semantic3d dataset (Hackel et al., 2017), or using automotive LiDARs,
like the Paris-Lille-3D dataset (Roynard et al., 2018). However, the Paris-Lille-3D provides only the
aggregated scans with point-wise annotations for 50 classes from which 9 are selected for evaluation.
A large dataset for autonomous driving (Wang et al., 2018b), but with fewer classes, is not publicly
available.

The Virtual KITTI dataset (Gaidon et al., 2016) provides synthetically generated sequential im-
ages with depth information and dense pixel-wise annotation. The depth information can also be
used to generate point clouds. However, these point clouds do not show the same characteristics as a
real rotating LiDAR, including defects like reflections and outliers.

In contrast to these datasets, our dataset combines a large amount of labeled points, a large variety
of classes, and sequential scans generated by a commonly employed sensor used in autonomous
driving, which is distinct from all publicly available datasets, also shown in Table 8.1.





CHAPTER 4

Real-Time Semantic Segmentation with
Label Propagation

Our first work addresses the classic task of semantic image segmentation, i.e. given an image, we
infer a class label for every pixel in the image. Despite of the success of convolutional neural net-
works for semantic image segmentation, CNNs cannot be used for some applications due to limited
computational resources. Efficient approaches based on random forests are not efficient enough for
real-time performance in some cases. In this Chapter, we propose an approach based on superpixels
and label propagation that reduces the runtime of a random forest by factor 192 compared to the
baseline while increasing the segmentation accuracy.
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4.1 Introduction

Although convolutional neural networks have shown a great success for semantic image segmentation
in the last years, fast inference can only be achieved by massive parallelism as offered by modern
GPUs. For many applications like mobile platforms or unmanned aerial vehicles, however, the power
consumption matters and GPUs are often not suitable. A server-client solution is not always an option
due to latency and limited bandwidth. Therefore there is a need for very efficient approaches that
segment images in real-time on single-threaded architectures.

In this Chapter, we analyze in-depth how design choices affect the accuracy and runtime of
random forests and propose an efficient superpixel-based approach with label propagation for videos.
As illustrated in Figure 4.1, we use a very efficient quadtree representation for superpixels. The
superpixels are then classified by random forests. For classification, we investigate two methods. For
the first method, we use the empirical class distribution and for the second method we model the
spatial distributions of class labels by Gaussians. For video data, we propose label propagation to
reduce the runtime without substantially decreasing the segmentation accuracy. An additional spatial
smoothing even improves the accuracy.
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Figure 4.1: For efficient segmentation, we use a quadtree to create superpixels and classify the
superpixels by a random forests.

We evaluate our approach on the CamVid dataset (Brostow et al., 2008). Compared to a standard
random forest, we reduce the runtime by factor 192 while increasing the global pixel accuracy by 4
percentage points. A comparison with state-of-the-art approaches in terms of accuracy shows that the
accuracy of our approach is competitive while achieving real-time performance on a single-threaded
architecture.

4.2 Semantic Segmentation

We already described a standard random forests for semantic image segmentation and the training
procedure in Section 2.1. In Section 4.2.1 we will specify the parameters and features used in our
implementation. In Section 4.2.2, we propose a superpixel approach that can be combined with label
propagation in the context of videos.

4.2.1 Random Forests for Semantic Segmentation

For 2D semantic segmentation we can use a forest as described in Chapter 2.1 in combination with
the following four types of weak classifiers fθpxq, that were proposed by Shotton et al. (2008):

Rpx` x1, w1, h1, kq ´Rpx` x2, w2, h2, kq ď τ (4.1)

Rpx` x1, w1, h1, kq `Rpx` x2, w2, h2, kq ď τ (4.2)

|Rpx` x1, w1, h1, kq ´Rpx` x2, w2, h2, kq| ď τ (4.3)

Rpx` x1, w1, h1, kq ď τ. (4.4)

The term Rpx`x1, w1, h1, kq denotes the average value of feature channel k in the rectangle region
centered at x` x1 with x1 P r´100, . . . , 100s, width w1 P r1, . . . , 24s, and height h1 P r1, . . . , 24s.
As feature channels, we use the CIELab color space and the x- and y-gradients extracted by a Sobel
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filter. To generate the set of parameters Θ̃, we randomly sample 500 weak classifiers without thresh-
old value τ and for each sampled weak classifier we sample τ 20 times, i.e., Θ̃ consists of 10,000
randomly sampled weak classifiers.

During training, we terminate the growing of a tree either when a node becomes pure, or the num-
ber of training samples Sn found in it becomes smaller than some 100 (found using cross-validation).

4.2.2 Superpixels with Label Propagation

A single tree as described in Section 4.2.1 requires on a modern single-threaded architecture 1,500
ms for segmenting an image with a resolution of 960x720. This is insufficient for real-time applica-
tions and we therefore propose to classify superpixels. In order to keep the overhead by computing
superpixels as small as possible, we use an efficient quadtree structure. As shown in Figure 4.1, the
regions are not quadratic but have the same aspect ratio as the original image. Up to depth 3, we
divide all cells. For deeper quadtrees, we divide a cell into four cells if the variance of the intensity,
which is in the range of 0 and 255, within a cell is larger than 49. Instead of classifying each pixel in
the image, we classify the center of each superpixel and assign the predicted class to all pixels in the
superpixel. For training, we sample 1000 superpixels per training image and assign the class label
that occurs most frequently in the superpixel.

While Equation (2.1) uses the empirical class distribution ppc;Slq stored in the leaves for clas-
sification, it discards the spatial distribution of the class labels within and between the superpixels
ending in a single leaf. Instead of reducing the pixel-wise labels of the training data to a single label
per superpixel, we model the spatial distribution by a Gaussian per class. To this end, we use the
pixel-wise annotations of the superpixels ending in a leaf denoted by Sl “ tpxl, clqu. From all pixels
xl with class label cl “ c, we estimate a spatial Gaussian distribution N py;µc,l,Σc,lq where y is a
vector pointing to a location in the image and µc,l,Σc,l are the mean and the covariance of the class
specific Gaussian. In our implementation, Σc,l is simplified to a diagonal matrix.

For inference, we convert a superpixel with width w, height h, and centered at x also into
a Gaussian distribution N py;µx,Σxq where µx “ x and Σx is a diagonal matrix with diagonal
ppw2 q

2, ph2 q
2q. The class probability for a single tree and a superpixel ending in leaf l is then given by

the integral

ppc|x; θtq “

ż

N py;µc,l,Σc,lqN py;µx,Σxqdy “ N pµx;µc,l,Σc,l ` Σxq (4.5)

9 exp

ˆ

´
1

2
pµx ´ µc,lq

T
pΣc,l ` Σxq

´1
pµx ´ µc,lq

˙

. (4.6)

In our implementation, we omit the normalization constant and use Equation (4.6). Several trees are
combined as in Equation (2.1). Instead of using only one Gaussian per class, a mixture of Gaussians
can be used as well.

The accuracy can be further improved by smoothing. Let Nx be the neighboring superpixels of
x including x itself. The class probability for the superpixel x is then estimated by

ppc|xq “
1

|Nx|

ÿ

yPNx

ppc|yq. (4.7)

To reduce the runtime for videos, the inferred class for a superpixel can be propagated to the next
frame. We propagate the label of a cell in the quadtree to the next frame, if the location and size
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Global Pixel Average Class Average
Accuracy Accuracy time (ms)

pixel stride 1 63.54 40.61 1549
pixel stride 15 64.92 41.21 277

superpixel (sp) 65.11 41.13 27.50
sp - RGB 62.25 36.42 26.47
sp - fix region (sp-fr) 65.29 42.48 28.11
sp - 1 Gaussian 65.16 41.36 29.64
sp - 2 Gaussians 66.41 42.29 26.58

sp-fr - 2 Gaussians (sp-fr-Gauss2) 67.13 43.19 26.25
sp-fr-Gauss2 + smoothing 75.76 47.93 45.24
sp-fr-Gauss2 + propagate 66.49 42.88 18.24
sp-fr-Gauss2 + sm. + prop. 75.03 47.45 37.10

sp-fr-Gauss2 (367 images) 67.06 43.47 23.26
sp-fr-Gauss2 + smoothing (367 images) 74.80 48.00 41.71
sp-fr-Gauss2 + propagate (367 images) 67.00 43.21 15.89
sp-fr-Gauss2 + sm. + prop. (367 images) 74.67 47.19 34.50

Table 4.1: Results for one tree trained on all 468 training images. The last 4 rows report the results
when only the sequences recorded with 30 Hz are used for training (367).

does not change and if the mean intensity of the pixels in the cell does not change by more than 5.
Otherwise, we classify the cell by the random forest.

4.3 Experiments

For the experimental evaluation, we use the CamVid dataset (Brostow et al., 2008). The images
in this dataset have a resolution of 960x720 pixels. The CamVid dataset consists of 468 training
images and 233 test images taken from video sequences. There is one sequence where frames are
extracted at 15Hz and 30Hz and both are included in the training set. Most approaches discard
the frames that were extracted at 15Hz resulting in 367 training images. We report results for both
settings. The dataset is annotated by 32 semantic classes, but most works use only 11 classes for
evaluation, namely road, building, sky, tree, sidewalk, car, column pole, fence, pedestrian, bicyclist,
sign symbol. We stick to the 11 class protocol and report the global pixel accuracy and the average
class accuracy (Badrinarayanan et al., 2017). The runtime is measured on a CPU with 3.3GHz
single-threaded.

Our implementation is based on the publicly available CURFIL library (Schulz et al., 2015),
which provides a GPU and CPU version for random forests. As baseline, we use a random forest as
described in Section 4.2.1. In Table 4.1, we report the accuracy and runtime for a single tree. The
baseline denoted by pixel stride 1 requires around 1500 ms for an image, which is insufficient for
real-time applications. The runtime can be reduced by downsampling the image or classifying only a
subset of pixels and interpolation. We achieved the best trade-off between accuracy and runtime for
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a stride of 15 pixels in x and y-direction. The final segmentation is then obtained by nearest-neighbor
interpolation. Larger strides decreased the accuracy substantially. While this reduces the runtime by
factor 5.6 without reducing the accuracy, the approach requires still 280 ms.

We now evaluate the superpixel based approach proposed in Section 4.2.2. We first evaluate
superpixel classification based on the empirical class distribution ppc;Slq, which is denoted by sp.
Compared to the baseline the runtime is reduced by factor 56 and compared to interpolation by
factor 10 without reducing the accuracy. The proposed approach achieves real-time performance
with a runtime of only 27.5 ms. Due to the efficient quadtree structure the computational overhead
of computing the superpixels is only 2 ms.

In the following, we evaluate a few design choices. Converting an RGB image into the CIELab
color space takes 1 ms. The comparison of sp (CIELab) with sp - RGB (RGB) in Table 4.1, however,
reveals that the RGB color space degrades the accuracy substantially. We also investigated what
happens if the number of parameters of the weak classifiers fθpxq Equation (4.1)-(4.4) are reduced
by setting x1 “ 0, which is denoted by sp-fr. It slightly increases the average class accuracy com-
pared to sp since one region R is fixed to the pixel location which improves the accuracy for small
semantic regions. Small regions, however, have a low impact on the global pixel accuracy. If we use
Equation (4.6) instead of the empirical class distribution to classify a superpixel, denoted by sp - 1
Gaussian, the accuracy does not improve but the runtime increases by 2 ms. If we use two Gaussians
per class, one for the left side of the image and one for the right side, the accuracy increases slightly.
Note that the runtime even decreases since Equation (4.6) becomes more often zero for 2 Gaussians
than for 1 Gaussian.

For the further experiments, we use the superpixel classification with fixed region and two Gaus-
sians, denoted by sp-fr-Gauss2. As mentioned in Section 4.2.2 the superpixel classification can be
improved by spatial smoothing, which is denoted by smoothing. This increases the accuracy sub-
stantially but also the runtime to 45 ms. The label propagation on the contrary reduces the runtime
to 18 ms without a substantial decrease in accuracy. The smoothing can also be combined with label
propagation. This gives nearly the same accuracy as sp-fr-Gauss2 + smoothing, but the runtime is
with 37 ms lower.

If we use only 367 images instead of 468 images for training, the accuracy is the same but the
runtime is reduced by around 3 ms. Since the larger set is based on sampling one sequence twice at
15 Hz and 30 Hz, the larger set does not contain additional information and the accuracy therefore
remains the same. The additional training data, however, increases the depth of the trees and thus the
runtime. The classification without feature computation takes around 4 ms for a tree of depth 20 and
8-10 ms for a tree of depth 100. For 1000 superpixels sampled from each of the 468 training images,
the trees can reach a depth of 100.

In Table 4.2, we report the accuracy and runtime for 10 trees. Increasing the number of trees
from one to ten increases the global pixel accuracy of the baseline by 11 percentage points and the
average class accuracy by 8 percentage points. We also evaluated the use of convolutional chan-
nel features (CCF) (Yang et al., 2015) which are obtained by the VGG-16 network (Simonyan and
Zisserman, 2015) trained on the ImageNet (ILSVRC-2012) dataset. As in the work of Iqbal et al.
(2017), the features are combined with axis-aligned split functions to build weak classifiers. With-
out finetuning the features do not perform better on this dataset. The extraction of CCF features is
furthermore very expensive without a GPU. Similar to the baseline, the global pixel accuracy and
average class accuracy is also increased for sp-fr-Gauss2 by 10 and 8 percentage points, respectively.
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Global Pixel Average Class Average
Accuracy Accuracy time (ms)

pixel stride 1 74.60 48.56 11288
pixel stride 15 74.58 48.69 301.7
CCF features 71.68 51.19 28476

sp-fr-Gauss2 77.49 51.29 105.3
sp-fr-Gauss2 + smoothing 79.62 51.77 131.5
sp-fr-Gauss2 + propagate 76.62 49.99 40.19
sp-fr-Gauss2 + sm. + prop. 78.56 50.79 58.75

sp-fr-Gauss2 (367 images) 77.43 51.22 102.5
sp-fr-Gauss2 + smoothing (367 images) 79.99 52.20 111.5
sp-fr-Gauss2 + propagate (367 images) 76.82 50.48 36.48
sp-fr-Gauss2 + sm. + prop. (367 images) 79.30 51.68 55.47

Table 4.2: Results for 10 trees trained on all 468 training images. The last 4 rows report the results
when only the sequences recorded with 30 Hz are used for training (367).
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Figure 4.2: Accuracy and average prediction time with respect to the number of trees.

Only if spatial smoothing is added the increase is only 4 percentage points, but it still improves the
accuracy. The runtime increases by factor 4, 2.9, 2.2, 1.6 for sp-fr-Gauss2, sp-fr-Gauss2 + smooth-
ing, sp-fr-Gauss2 + propagate, sp-fr-Gauss2 + sm. + prop., respectively. Compared to the baseline
pixel stride 1, the runtime is reduced by factor 192 while increasing the accuracy if label propagation
and smoothing are used. Figure 4.2 plots the accuracy and runtime of sp-fr-Gauss2 + propagate and
sp-fr-Gauss2 + sm. + prop. while varying the number of trees.

The impact of the depth of the quadtree is shown in Figure 4.3. The accuracy but also the runtime
increases with the depth of the quadtree since the cells get smaller the deeper the trees are. Limiting
the depth of the quadtrees to seven gives a good trade-off between accuracy and runtime. This setting
is also used in our experiments.

We finally compare our approach with the state-of-the-art in terms of accuracy in Table 4.3. The
first part of the table uses all training images for training. Our approach outperforms CURFIL (Schulz
et al., 2015) in terms of accuracy and runtime on a single-threaded CPU. Although the approach by
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Figure 4.3: Accuracy and average prediction time for one tree using different quadtree depths when
creating superpixels. The results are reported for sp-fr-Gauss2.

Tighe and Lazebnik (2013) achieves a higher global pixel accuracy, it is very expensive and requires
16.6 seconds for an image with resolution of 800x600 pixels. Our fastest setting requires only 40
milliseconds.

The second part of the table uses the evaluation protocol with 367 images. The numbers are taken
from Badrinarayanan et al. (2017). The convolutional neural network proposed in Badrinarayanan
et al. (2017) achieves the best accuracy and requires around 2 seconds per image on a GPU. The
methods based on CRFs (Sturgess et al., 2009) require 30 to 40 seconds for an image. The method
by Brostow et al. (2008) is based on random forests and structure-from-motion. It requires one second
per image if the point cloud is already computed by structure-from-motion. The methods by Bulo
and Kontschieder (2014) and Kontschieder et al. (2011) are also too slow for real-time applications.
In contrast, our approach segments an image not in the order of seconds but milliseconds while still
achieving competitive accuracy. A few qualitative results are shown in Figure 4.4.

4.4 Summary

In this Chapter, we proposed a real-time approach for semantic segmentation on a single-threaded ar-
chitecture. Compared to the baseline we reduced the runtime by factor 192 while increasing the accu-
racy. This has been achieved by combining an efficient superpixel representation based on quadtrees
with random forests and combining label propagation with spatial smoothing. Compared to the state-
of-the-art in terms of accuracy, our approach achieves useful results and runs in real-time without the
need of a GPU. This makes the approach ideal for applications with limited computational resources.

In the course of this thesis, large scale datasets like Cityscapes (Cordts et al., 2016) emerged
and helped CNN based approaches to increase the accuracy of semantic segmentation algorithms far
beyond what is possible with random forest based approaches. At the same time more power saving
GPUs for mobile devices have been released, which are capable to perform semantic segmentation
using CNNs in real-time. Our work is a contribution to a very specific problem. In fact the work
was part of a project to bring real-time semantic segmentation capability to an existing drone, which
simply did not feature a GPU. From now on, all our proposed models will be based on CNNs and
powered by GPUs.
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Global Pixel Average Class Average
Accuracy Accuracy time (ms)

Super Parsing (Tighe and Lazebnik, 2013) 83.3 51.2
CURFIL (Schulz et al., 2015) 65.9 49.8 34163
sp-fr-Gauss2 77.5 51.3 105.3
sp-fr-Gauss2 + smoothing 79.6 51.8 131.5
sp-fr-Gauss2 + propagate 76.6 50.0 40.2
sp-fr-Gauss2 + sm. + prop. 78.6 50.8 58.8

Appearance (Brostow et al., 2008) 66.5 52.3
SfM + Appearance (Brostow et al., 2008) 69.1 53.0
Boosting (Sturgess et al., 2009) 76.4 59.8
Dense Depth Maps (Zhang et al., 2010) 82.1 55.4
Structured Random Forests (Kontschieder et al., 2011) 72.5 51.4
Neural Decision Forests (Bulo and Kontschieder, 2014) 82.1 56.1
Local Label Descriptors (Yang et al., 2012) 73.6 36.3
SegNet - 4 layer (Badrinarayanan et al., 2017) 84.3 62.9 2000
Boosting + pairwise CRF (Sturgess et al., 2009) 79.8 59.9
Boosting + Higher order (Sturgess et al., 2009) 83.8 59.2
Boosting + Detectors + CRF (Ladickỳ et al., 2010) 83.8 62.5
sp-fr-Gauss2 (367 images) 77.4 51.2 102.5
sp-fr-Gauss2 + smoothing (367 images) 80.0 52.2 111.5
sp-fr-Gauss2 + propagate (367 images) 76.8 50.5 36.5
sp-fr-Gauss2 + sm. + prop. (367 images) 79.3 51.7 55.5

Table 4.3: Comparison with state-of-the-art approaches. The first six rows shows results for all 468
training images. The lower part report the results when only the sequences recorded with 30 Hz are
used for training (367).
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Figure 4.4: Examples of segmentation results. First row: original image. Second row: pixel stride
1. Third row: sp-fr. Fourth row: sp-fr-Gauss2 + propagate. Fifth row: sp-fr-Gauss2 + sm. + prop.
Sixth row: ground truth.





CHAPTER 5

Spatial Anticipation of Semantic
Categories

After providing a real-time approach to semantic segmentation tailored to GPU-free, low energy de-
vices, we now switch our focus to a new, but highly related field of research: The spatial anticipation
of semantic categories outside the field of view of the camera sensor, i.e., given an image we’d like to
predict the semantics that are likely to occur outside of it. For certain applications like autonomous
systems it is insufficient to interpret only the observed data. Instead, objects or other semantic cate-
gories, which are close but outside the field of view, need to be anticipated as well. In this Chapter,
we propose an approach for anticipating the semantic categories that surround the scene captured
by a camera sensor. This task goes beyond current semantic labeling tasks since it requires to ex-
trapolate a given semantic segmentation. Using the challenging Cityscapes dataset, we demonstrate
how current deep learning architectures are able to learn this extrapolation from data. Moreover, we
introduce a new loss function that prioritizes on predicting multiple labels that are likely to occur in
the near surrounding of an image.
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5.1 Introduction

One of the core capabilities of humans intelligence is to make predictions about the environment.
Humans are able to predict how the world around them will evolve in the near future and how their
actions will affect it. Even without observing an entire scene, they can anticipate objects or surfaces
that are close. This ability allows them to plan ahead and to efficiently interact with the world. Similar
anticipation capabilities are also required for autonomous systems. For instance, the presence of
semantic categories like pedestrians, bicyclists, cars, roads or sidewalks in the near surrounding of an
autonomous vehicle has implications for the driving policy and safety measurements. These object
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categories, however, are not always within the field of view of the sensors attached to the vehicle and
therefore need to be anticipated.

To the best of our knowledge, we are the first to propose an approach that anticipates semantic
categories outside the field of view of a camera. In order to evaluate this task, we propose a novel
protocol for the large-scale Cityscapes dataset (Cordts et al., 2016), which is the state-of-the-art
benchmark for semantic urban scene understanding. In contrast to semantic image segmentation,
which requires to infer the labels for each observed pixel, anticipation of semantic categories outside
the field of view requires to infer the semantic labels in regions that are not observed. The anticipa-
tion task is not only more difficult due to missing data, it is also inherently non-deterministic since
many solutions could be plausible. Since the true distribution of all plausible solutions for a single
image is unknown, we propose an evaluation metric that does not require a pixel-wise prediction
but measures if the occurrence of a semantic class within a predefined region outside the image is
correctly predicted.

Since the proposed task has not been addressed before, we introduce a baseline that infers the
pixel-wise semantic labels in the observed region and the unobserved region outside the image. The
baseline builds on a state-of-the-art convolutional neural network for image segmentation (Chen
et al., 2015). In addition, we propose a novel approach that consists of two networks. While the first
network infers semantic labels for each observed pixel, the second network gradually anticipates the
semantic categories outside the field of view from the previous output. For the second network, two
different loss functions are investigated. We evaluate the proposed approach on the Cityscapes dataset
using the new protocol for spatial anticipation of semantic categories. The experimental evaluation
shows that the proposed approach improves the baseline by a large margin.

5.2 Dataset for Anticipation of Semantic Categories

We propose the new task of spatial anticipation of semantic categories outside the field of view. The
task requires to predict for a given image the categories that are most likely to occur outside of it as
illustrated in Figure 5.3. For evaluation, we introduce a new protocol for the Cityscapes dataset. The
Cityscapes dataset is recorded by a RGB camera mounted at the front of a car driving through urban
scenes. We only use the images provided with fine-grained annotation. There are 2,975 images in
the training set, 500 in the validation set and 1,525 images in the test set. For evaluation, we take
the images from the validation set since the ground truth annotations for the test set are not publicly
available. Following Cordts et al. (2016), we evaluate the performance on 19 classes (road, sidewalk,
building, wall, fence, pole, traffic-light, traffic-sign, vegetation, terrain, sky, person, rider, car, truck,
bus, train, motorcycle and bicycle) ignoring the background class. The original images have the size
of 1024 ˆ 2048 pixels. For our task, we crop the validation images such that only the center region
of 642 ˆ 1282 pixels remains. The invisible region outside the cropped area is used to evaluate the
anticipation performance.

For the evaluation, we report the accuracy for two evaluation criteria. The first evaluation crite-
rion is a standard semantic image segmentation metric and compares the ground-truth segmentation
map for the invisible region with the inferred pixel-wise semantic segmentation. It assumes that ex-
actly one label is predicted for each pixel outside the cropping area of the original images. As for
standard semantic image segmentation, we use the Jaccard index, also referred to as intersection over
union (IoU), to measure the quality of the prediction. This evaluation approach has the weakness
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Figure 5.1: Training procedure for SASNet. The SASNet is trained on crops of masked images. The
mask marks the visible (Ω1) and the invisible regions (Ω2). A detailed description is given in Section
5.3.

that it assumes that the ground-truth is deterministic and can be predicted at a pixel level. However,
not even humans will be able anticipate semantic classes with such an accuracy. Moreover, an exact
localization of the anticipated labels is unnecessary in a practical context. To account for this fact, we
introduce an alternative evaluation metric. The unobserved area is subdivided into a grid of cells as
shown in Figure 5.2. All labels that occur in the same cell are collected. If a label occurs in the same
cell in both the ground-truth and the prediction map, it is counted as a true positive. Labels only oc-
curring in the prediction map are false positives and labels exclusively occurring in the ground-truth
map are considered as false negatives. We sum the true positives, false positives, true negatives, and
false negatives over all cells and images for each class and compute the F1 score, which is defined as
the harmonic mean of precision and recall:

F1 “ 2 ¨
precision ¨ recall

precision` recall
. (5.1)

The scores are then averaged over all classes.

5.3 SASNet: Network for Spatial Anticipation of Semantic Categories

To explore the task of spatial anticipation of semantic categories outside the field of view, we propose
an approach that is based on a convolutional neural network architecture that is common for state-
of-the-art approaches for semantic image segmentation. However, we modify the last layers and loss
function due to the new task at hand. Moreover, we train the model in a different way.

Figure 5.1 gives an overview of the proposed SASNet and the training procedure. The network
is trained by providing masks for the visible and invisible regions for each training image. The mask
divides the original image, which has a resolution of 1024ˆ 2048 pixels in our dataset, into an inner
region Ω1 of 642 ˆ 1282 pixels and an outer region Ω2 that is set to zero as shown in a). Then we
sample random crops from the images as shown in b). The crops of size 321 ˆ 321 pixels are taken



48 Contents

from the image, its ground-truth segmentation mask, and the visibility mask. Note that the ratio of
the visible and invisible area varies among the crops. The random crops are our training set T .

Figure 5.1 c) illustrates the first part of the network. As base architecture for the convolutional
neural network, we choose the DeepLab model (Chen et al., 2015) based on the ResNet 101 struc-
ture (He et al., 2016). We omit the conditional random field as well as the loss layer and instead
process the unnormalized network output y to compute the loss for the unobserved region Ω2. We
investigate two different loss functions L1 and L2. The first loss L1 is given by the softmax cross
entropy:

L1 “ ´
ÿ

tPT

ÿ

iPΩt
2

ÿ

cPC
ŷic log

¨

˝

eyic
ř

c1PC
eyic1

˛

‚ (5.2)

where ŷic is the class probability of the ground truth label of pixel i, which is one for the true class
and zero otherwise. yic denotes the unnormalized predictions of the network for pixel i and class c.

The second loss L2 measures the anticipation error in accordance with the proposed second
evaluation criterion described in Section 5.2, i.e.only the classes occurring in each cell in the region
Ω2 should be predicted. This can be efficiently realized as illustrated in Figure 5.1 d) by adding a
max pooling layer with kernel size and stride k:

ỹikc “ max
∆iPNik

tyik`∆i,cu (5.3)

where Nik is the k ˆ k neighborhood of pixel ik, i.e.ỹikc is the maximum value for each class c in
each cell ik. It is important to note that the kernel size does not need to be equal to the cell size used
for evaluation as we will show in Section 5.4.1. Due to the max pooling, Ω2 has been reduced to the
number of cells Ωk,2. We therefore also resize the mask to Ωk,2. For the cells of the invisible region,
we compute the second loss L2 using the sigmoid cross entropy:
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where ŷikc is one if the cell ik in the invisible region Ωt
2 of random crop t P T contains the label of

class c P C and it is zero otherwise.
For inference, the network processes an image with binary mask, which is one for the image

pixels (Ω1) and zero for the regions where the semantic categories should be anticipated (Ω2).
For the first loss function L1, the network predicts for each pixel i the semantic label given by
arg maxc

eyic
ř

c1 e
y
ic1

. For the second loss function L2, the network predicts for each cell ik the set of
labels

"

c P C :
1

1` e´ỹikc
ě 0.5

*

. (5.5)

Figure 5.2 shows an example of such a prediction.
In Section 5.4.1, we show that SASNet performs better when we first perform standard semantic

image segmentation on the visible region Ω1 and then use the inferred labels as input for SASNet
instead of the RGB values of the image. The accuracy can be further improved by performing the
anticipation in successive steps where the region Ω2 outside the image is gradually increased and the
intermediate results are used as input for the next step as shown in the last row of Figure 5.3.
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Figure 5.2: The F1 score is computed for cells outside the visible region and measures if for each
cell the same labels are predicted (right) as they occur in the ground-truth segmentation map (left).

5.4 Experimental Evaluation

5.4.1 Implementation and Evaluation Details

We augment the training data by random scaling between 0.5 and 1.5, as well as random mirroring
and random cropping. The batch size is set to 10 and the learning rate is set to 2.5 ¨ 10´4. The
learning rate of the batch normalization layer parameters are set to 0. This has shown to stabilize the
training process (Chen et al., 2015). The number of training iterations is 20,000. One training takes
about 15 hours.

As described in Section 5.2, we report intersection over union (IoU) and the F1 score computed
for four different cell sizes. As cell size c, we choose 16ˆ 16, 24ˆ 24, 40ˆ 40 and 80ˆ 80 pixels
with respect to the original resolution of the Cityscapes images. Both measures are only evaluated
on the unobserved region Ω2.

We evaluate the two loss functions L1 and L2 discussed in Section 5.3. For L2, we have to define
the kernel size k. In our experiments, we evaluate L2 with the four different kernel sizes 2ˆ2, 3ˆ3,
5 ˆ 5 and 10 ˆ 10. Since the previous layers of the network reduce the size of the input image by
factor 8, this corresponds to the cell sizes 16ˆ 16, 24ˆ 24, 40ˆ 40 and 80ˆ 80 pixels with respect
to the input resolution.

As mentioned in Section 5.3, SASNet can be used to anticipate semantic categories outside the
field of view from the raw RGB image data or from a pre-segmentation of the visible region Ω1.
We evaluate both cases and use the approach of Chen et al. (2015) for image segmentation in the
latter case. We denote the first version by ‘color-SASNet’ and the second version by ‘label-SASNet’.
In addition, the anticipation can be performed gradually. Depending on the number of steps, we
subdivide Ω2 into either 2, 3 or 4 enclosing regions as can be seen in Figure 5.3. For each step,
we use the prediction of the previous step as input and anticipate the semantic categories for the
next enclosing region until Ω2 is fully covered. For initialization, we use the inferred semantic
segmentation of the visible region Ω1.

The scripts, source code and models used for evaluation are publicly available.

5.4.2 Results

The quantitative results for the dataset described in Section 5.2 are summarized in Table 5.1. The first
six rows compare the two loss functions L1 and L2 if SASNet anticipates the semantic categories
from the RGB image (color-SASNet). For both, the intersection over union (IoU) and the F1 accuracy
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Figure 5.3: Qualitative results for the pixel-wise label prediction using L1 loss. The first row shows
an RGB image and the inferred semantic segmentation using the approach of Chen et al. (2015).
The second row shows the result for color-SASNet (left), which uses the RGB image of the first
row as input, and for label-SASNet (right), which uses the inferred labels as input. The inner white
rectangle marks the boundary between observed and unobserved regions Ω1 and Ω2. The label-
SASNet anticipates the semantic labels in Ω2 better than color-SASNet. The last row shows the
result of label-SASNet if the prediction is performed in two (left) or three steps (right). The additional
white rectangles mark the growing regions that are predicted in each step. Compared to the second
row, the labels are better anticipated at the border.
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L1 performs better than L2 in the case of prediction in a single step. For the prediction in two
consecutive steps L2 loss outperforms L1 in both metrics.

The F1 score increases for larger c values since this increases the cell size, which requires a
lower localization accuracy. If we compare different values of k for L2, we observe that IoU is
slightly higher for k “ 1 ˆ 1 since a smaller k enforces the network to learn a better localization of
the categories. The setting with k “ 1ˆ 1 is also the best for all c values of the F1 score.

We now compare the difference of having one network (color-SASNet) or two networks (label-
SASNet), one for semantic image segmentation and one for spatial anticipation. A qualitative com-
parison is also shown in Figure 5.3. If we compare the L1 loss, IoU increases from 26.1 to 30.7. For
the L2 loss with k “ 1, IoU increases from 22.0 to 26.6. The F1 scores also increase for both L1

and L2 by about 4 to 5% for all c values, except for L1 in the case c “ 80. We can conclude that
label-SASNet outperforms color-SASNet.

As illustrated in Figure 5.3, the anticipation accuracy decreases if the distance to the visible
image border becomes large. The anticipation can therefore performed gradually where the region
Ω2 grows in each step as described in Section 5.3. The qualitative results using 2, 3 or 4 steps are
reported in Table 5.1. We first compare the impact of the number of steps for label-SASNet with
L1 loss. The IoU increases from 30.7 to 33.5 if anticipation is performed in two steps. Further
steps increase the accuracy only slightly. The F1 scores are also slightly improved by estimating the
semantic categories outside the image region gradually. If the L2 loss is used, we observe a large
improvement for all values of k. The best results are achieved with two steps. For k “ 5 ˆ 5, the
F1 scores increase from 31.4, 31.8, 34.6, 36.3 to 42.7, 43.5, 44.9, 45.3, for c “ 16, 24, 40, 80

respectively. The IoU also increases from 26.6 to 35.0 for k “ 1 ˆ 1. It actually even achieves
a higher IoU than the best setting with L1 loss (33.9). We can conclude that anticipating semantic
categories with two steps improves the accuracy by a large margin. The proposed L2 loss performs
better than the L1 loss with respect to F1 score as well as IoU. Although the impact of k is very low,
k “ 1ˆ 1 is best if the accuracy is measured by IoU and k “ 5ˆ 5 works very well for any c value
of the F1 score. For the case of prediction in a single step L1 performs better with respect to IoU and
F1 score than L2. But as the number of iterations for the prediction and the size of the evaluation
cell is increasing L2 again outperforms L1. Finally we can compare our system to a simple border
replication of labels at the periphery of the cropped image. This results in 34.7 IoU and 16.8 F1-score
at c “ 80. We can see that a simple border replication baseline performs quite well on the task of
pixel-wise prediction (our best system yields 35.0 IoU), but loses strongly in performance in the task
of cell-wise prediction (our best system performed at 45.4 F1-score for c = 80).

5.5 Summary

We introduced a new task of anticipating semantic label information outside of an image. Therefore,
we investigated two evaluation metrics to asses the quality of the prediction. While the first metric
measures pixel-wise accuracy, the second metric relaxes the required localization accuracy and re-
quires only the prediction of categories occurring in cells. In addition, we have proposed a neural
network for spatial anticipation and investigated two different loss functions. From our experimental
evaluation, we conclude that the most effective configuration uses two networks. The first one infers
a pixel-wise segmentation within the visible area and the second one anticipates categories outside
of the image from the segmented image. If the second network is applied gradually, the anticipation
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Input L steps k % IoU c = 16 c = 24 c = 40 c = 80
RGB L1 26.1 34.7 35.5 37.5 38.9
RGB L2 1x1 22.0 26.6 27.2 29.6 32.7
RGB L2 2x2 21.2 25.6 26.2 28.4 31.8
RGB L2 3x3 21.2 25.8 26.4 28.5 32.0
RGB L2 5x5 21.4 26.4 26.9 29.0 32.4
RGB L2 10x10 20.3 25.2 25.6 27.5 30.7
Label L1 30.7 39.7 40.2 41.7 38.0
Label L1 2 33.5 41.3 42.3 43.2 44.0
Label L1 3 33.9 42.0 42.7 43.3 43.4
Label L1 4 33.9 42.3 43.0 43.6 43.9
Label L2 1x1 26.6 30.8 31.4 34.0 35.3
Label L2 2x2 26.3 30.3 30.9 33.4 35.3
Label L2 3x3 26.2 31.0 31.5 33.9 35.8
Label L2 5x5 26.7 31.4 31.8 34.6 36.3
Label L2 10x10 26.6 30.5 31.1 34.1 36.3
Label L2 2 1x1 35.0 42.3 43.0 44.1 43.7
Label L2 2 2x2 34.8 42.6 43.5 44.7 45.1
Label L2 2 3x3 34.8 42.5 43.4 44.6 44.9
Label L2 2 5x5 34.6 42.7 43.5 44.9 45.3
Label L2 2 10x10 34.6 42.3 43.3 44.6 45.4
Label L2 3 1x1 33.9 41.2 41.9 43.1 43.1
Label L2 3 2x2 33.7 41.4 42.1 43.6 44.1
Label L2 3 3x3 33.7 41.6 42.1 43.5 44.0
Label L2 3 5x5 33.7 41.7 42.3 43.8 44.3
Label L2 3 10x10 33.7 41.2 41.8 43.3 44.1
Label L2 4 1x1 32.8 40.1 40.6 42.0 42.5
Label L2 4 2x2 32.8 40.1 40.7 42.4 42.8
Label L2 4 3x3 32.7 40.4 40.9 42.5 43.0
Label L2 4 5x5 32.7 40.4 40.9 42.7 43.0
Label L2 4 10x10 32.8 39.8 40.3 42.3 43.4
Border Rep. 34.7 11.6 12.8 14.0 16.8

Table 5.1: Quantitative results for spatial anticipation on the Cityscapes dataset (Cordts et al., 2016).
RGB or Label denote if color-SASNet or label-SASNet are used. L1 stands for pixel-wise loss and
L2 for the cell-wise loss. k is the kernel size and stride used to compute the L2 loss during training.
The third column indicates if the SASNet was applied gradually using 2, 3 or 4 steps. The fifth
column is the pixel-wise evaluation using % IoU. The other columns are F1 scores expressed in %

computed for the cell-wise evaluation. The size of the cells is specified as c. The last line shows the
result for a simple border replication.
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accuracy increases by a large margin. In this configuration, training the second network using the
cell-wise loss performs for both evaluation metrics better than a pixel-wise loss. For the pixel-wise
metric, it is most effective to choose the smallest possible kernel size for the loss function. For the
cell-wise metric, the kernel size k “ 5ˆ 5 has shown to perform very well for any cell size used for
evaluation. The proposed protocol and evaluation measure allows to study the problem of anticipat-
ing semantic categories outside the field of view. We have demonstrated the anticipation capabilities
of the proposed approach. It will be a first step to address this problem in the future.





CHAPTER 6

Two Stream 3D Semantic Scene
Completion

After dealing with the semantic extrapolation of scenes in two dimensions, we now shift our focus to
the 3D domain. In 3D, the semantic and geometric extrapolation of a scene beyond what is captured
by sensor is addressed in an established field called 3D semantic scene completion. Inferring the
3D geometry and the semantic meaning of surfaces, which are occluded, is a very challenging task.
Recently, a first end-to-end learning approach has been proposed that completes a scene from a single
depth image. The approach voxelizes the scene and predicts for each voxel if it is occupied and, if
it is occupied, the semantic class label. In this Chapter, we propose a two stream approach that
leverages depth information and semantic information, which is inferred from the RGB image, for
this task. The approach constructs an incomplete 3D semantic tensor, which uses a compact three-
channel encoding for the inferred semantic information, and uses a 3D CNN to infer the complete
3D semantic tensor. In our experimental evaluation, we show that the proposed two stream approach
substantially outperforms the state-of-the-art for semantic scene completion.
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6.1 Introduction

Humans quickly infer the 3D semantics of a scene, i.e., an estimate of the 3D geometry and the se-
mantic meaning of the surfaces. While RGB-D sensors in combination with CNNs provide geometry
and semantic information, the resulting representation is very sparse since large parts of the 3D scene
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are occluded and not visible. The perception, however, is not limited to the visible part of the scene.
When looking at a mug on a table, a human can estimate the full geometry of both objects includ-
ing parts which are invisible since they are occluded by the objects themselves. This information is
obtained from semantic understanding of the scene which allows to estimate the spatial extent of the
objects from experience. Such an ability is highly desirable for autonomous agents, e.g., to navigate
or interact with objects. A robot that has an intuition about the geometry behind the surface it sees,
for example, could plan ahead given a single view instead of exhaustively explore the occluded parts
of a scene first.

In this work, we aim to estimate the semantics not only of the visible part, but of the entire
scene including the occluded space. To this end, we build on the work of Song et al. (2017). They
show that semantic scene understanding and 3D scene completion benefit from each other. On one
hand, recognizing a part of the object helps to estimate its location in the 3D space and the voxels it
occupies. On the other hand, knowing the occupancy in the 3D space gives information on form and
size of the object and thus facilitates semantic recognition. For estimating for each voxel in the scene
the occupancy and semantic label, they proposed an end-to-end trainable 3D convolutional neural
network (3D CNN) which incorporates context from a large field of view via dilated convolutions.
The approach, however, only uses depth as input and neglects the RGB image. This means that the
semantic label has to be inferred from the geometry alone and properties such as color, texture, or
reflectance are not taken into account.

We therefore extend the approach by keeping its beneficial context incorporation and end-to-end
trainability while modifying it to leverage semantic information inferred from the RGB image at the
input stage as well as at the loss. Given a single RGB-D image, we first use a 2D CNN to infer the
semantic labels from the RGB data and construct an incomplete 3D semantic tensor. To this end, we
map the inferred semantic labels to the 3D space and label each visible surface voxel by the inferred
class label. The 3D semantic tensor is incomplete since it only contains the labels of the visible
voxels but not of the occluded voxels. The 3D projection is performed using the depth image. The
tensor is then used as input for a 3D CNN that infers a complete 3D semantic tensor, which includes
the occupancy and semantic labels for all voxels.

Using the RGB images as input leads to a significant performance gain in scene completion and
semantic scene completion as our experiments show. We outperform Song et al. (2017) by a sub-
stantial margin of up to 9.4 % on NYU. This implies that RGB images provide a rich discriminative
signal.

6.2 Two Stream Semantic Scene Completion

6.2.1 Semantic Scene Completion

The goal of 3D semantic scene completion is to classify every voxel in the view frustum into one
of K ` 1 labels c “ c0, ..., cK where c0 represents an empty voxel and c1, ..., cK represents one
of K “ 11 class labels like ceiling, floor, wall, window, chair, bed, sofa, table, TV, furniture and
object. As illustrated in Figure 6.1, the camera observes only a part of the scene while other voxels
are occluded. The occluded voxels can either be empty (c0) or belong to one of the K classes.

To address the task of 3D semantic scene completion, we propose an approach that leverages
two input streams, namely RGB and depth. An overview of the approach is given in Figure 6.2 a).
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Table

Camera
3D Ground 

Truth Labels
outside view
outside room

occluded space
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Figure 6.1: Using the protocol of Song et al. (2017), ground truth labels are provided for all voxels of
a 3D volume. Voxels that are outside the intersection of the camera frustum and ground truth volume
are outside the room or outside the view and not taken into account. Within the intersection, there
are observed surface voxels (green) and observed non-occupied voxels (light gray), but other voxels
are not observed by the camera. These voxels are either non-occupied (blue) or belong to an object
(black).
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Figure 6.2: a) The proposed two stream approach for semantic scene completion transforms first
the depth data and RGB image into a volumetric representation, which represents the geometry and
semantic of the visible scene and then uses a 3D-CNN to infer a 3D semantic tensor for the entire
scene. b) Given 2D depth map and camera pose, a binary voxel mask is created by setting each voxel
that belongs to a depth pixel to one and all other voxels to zero (blue). c) Visualization of TSDF vs.
flipped TSDF. One can see the long ‘shadow’ caused by the observed surface which produces high
gradients at the occlusion boundary (between -1 and 1). In the flipped TSDF, this effect is suppressed.
The gradient is highest at the surface.
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While the depth data is converted into a volumetric representation, the RGB image is first processed
in a separate branch to infer 2D semantic segmentation maps and then transformed into a volumetric
representation referred to as color-volume (Section 6.2.3). The volumetric representation is then fed
to a 3D convolutional neural network (3D-CNN). The 3D-CNN infers a 3D semantic tensor where
every voxel is classified as either being empty or belonging to one of the K semantic classes. In the
following, each step will be discussed in detail.

6.2.2 Depth Input Stream

To obtain the volumetric input encoding, the depth map is projected into a regular voxel grid using
the camera pose, which is provided along with each image. The voxel grid is of size 240 x 144 x
240 voxels and encodes a scene of 4.80m horizontally, 2.88m vertically, and 4.80m in depth with
a resolution of 0.02m. For every pixel in the depth map, its corresponding voxel in the 3D input
volume is computed using the camera pose. The obtained binary voxel mask encodes the location of
surface points that are visible to the camera, see Figure 6.2 b).

As pre-processing, all 3D scenes are rotated such that the room orientations are aligned. For
indoor room scenes, one can assume that most of the observed surface normals are oriented either like
the normals of the walls, floor or ceiling, which are usually planar. Therefore a principal component
analysis of the surface normals is used to infer the room orientation, which is used to align the scene.

6.2.3 Color Input Stream

The input RGB image is first processed by a 2D-CNN (Chen et al., 2015), which is an adaptation of
the Resnet101 architecture (He et al., 2016) for semantic segmentation. While all but one pooling
layer are omitted, dilated convolutions are used to keep the output resolution high while simultane-
ously increasing the receptive field. The 2D-CNN predicts the softmax probabilities for every class
and pixel at a resolution which is four times smaller than the input image. The output is then up-
sampled to the original resolution of the image using bilinear interpolation. A densely connected
CRF (Krähenbühl and Koltun, 2011) is then used in combination with the inferred class probabilities
and the RGB image to refine the semantic segmentation map. For training, we use the same setting
as in Chen et al. (2015). As initialization, we use a model that is pre-trained on MSCOCO (Lin et al.,
2014) and fine-tune it on the dataset for 3D semantic scene completion. Furthermore, we present re-
sults using the more recent model Deeplab v3+(Chen et al., 2018) which is pretrained on ADE-20k
and finetune it on NYUv2 using an initial learning rate of 0.001. We also apply a CRF (Krähenbühl
and Koltun, 2011) on the resulting outputs.

As in Section 6.2.2, we convert the 2D segmentation map into a volumetric representation. Since
each pixel in the depth map corresponds to a pixel in the 2D semantic segmentation map, every class
pixel can be projected into the 3D volume at the location of its corresponding depth value. This
yields an incomplete 3D semantic tensor that assigns to every surface voxel its corresponding class
label. The class labels can be encoded by one-hot encoding, i.e., a channel for each class, or by
a single channel for the class label. In our experiments, however, we show that none of them is
optimal. Encoding semantic classes with only one channel implies a semantic proximity of classes
by the numerical proximity of their class values, which introduces undesirable artifacts based on the
class values. The one-hot encoding has the disadvantage that it is insufficient in terms of memory
consumption since it requires to store a K dimensional vector per voxel. We therefore represent the
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Figure 6.3: Architecture of the 3D-CNN. The parameters of the convolution kernels are denoted
as (number of filters, kernel size, stride, dilation). All but the last convolution layer have a ReLU
activation function assigned to it. Arrows indicate skip connections He et al. (2016) where the output
of one convolution layer is added to another output at a later stage. Pool denotes max pooling. The
output is a volume that is 4 fold downsampled with respect to the input of the 3D CNN and encodes
for every voxel the probability of it being empty (label 0) or to belong to one of K semantic classes.

semantic information by a lower dimensional vector. We use a three-dimensional vector and encode
the classes linearly from p0, 0, 1q over p0, 1, 1q, p0, 1, 0q, p1, 1, 0q to p1, 0, 0q.

6.2.4 3D-CNN

For the 3D-CNN, we adapt the architecture of Song et al. (2017) by increasing the number of input
channels of the first convolutional layer such that it fits to our input. The architecture is illustrated
in Figure 6.3. It is inspired by the 2D-CNN for semantic segmentation. The major difference apart
from using 3D instead of 2D convolutions is that the network only has a depth of 14 convolutional
layers. The network has therefore significantly less parameters than its two dimensional counter part.
Moreover, batch-normalization layers are omitted due to the small size of the batches.

We adapt the training protocol of Song et al. (2017) as follows. We train for 150,000 steps with a
learning rate of 0.01 that is reduced by a factor of 0.1 after 100,000 iterations. As optimizer, stochastic
gradient (SGD) with momentum is applied. As initialization, we chose a random initialization with
a Gaussian distribution with mean µ “ 0 and a standard deviation of σ “ 0.01.

The output of the 3D-CNN is a semantic tensor of size 60 x 36 x 60 x pK ` 1q, where K is the
number of object classes and an additional class is added for empty voxels. We compute a softmax
cross entropy loss on the unnormalized network outputs y:

L “ ´
ÿ

i,c

wicŷic log

¨

˝

eyic
ř

c1PC
eyic1

˛

‚ (6.1)

where ŷic are the binary ground truth vectors, i.e., ŷic “ 1 if voxel i is labeled by class c, and wic are
the loss weights. Since the ratio of empty vs. occupied voxels is 9:1, the empty space is randomly
subsampled. Therefore wic is chosen as binary mask such that only 2N empty voxels are selected for
loss calculation where N is the number of occupied voxels in the scene.
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6.3 Experimental Evaluation

6.3.1 Evaluation Metric

For evaluation, we follow the evaluation protocol of Song et al. (2017), which evaluates the accuracy
on a subset of voxels. The evaluation considers only voxels that are part of the occluded space
and within both the room and the field-of-view as shown in Figure 6.1. While generating the 3D
semantic labels from the annotated CAD models, every voxel in the input volume is marked as being
on surface, free space, occluded space, outside field of view, outside room or outside ceiling. For
semantic scene completion, a binary evaluation mask is computed such that the evaluation metric
is only computed for voxels which are either occluded, on surface or close to the surface (within
the range of the TSDF function defined by Song et al. (2017)). For scene completion another mask
is computed which comprises all voxels in the occluded space. To assess the quality of 3D scene
completion, several metrics are computed. First we compute the Jaccard index, which measures the
intersection over union (IoU) between ground truth and predicted voxel for every object category
c1, ..., cK . As an overall segmentation performance, we compute the average across all classes. For
scene completion all voxels are considered to belong to one of the two classes empty vs. non-empty.
All object categories c1, ..., cK are counted as ‘non-empty’. For completion, IoU as well as precision
and recall are computed.

Note that computing the average Jaccard index of all semantic classes is analogous to the evalu-
ation of the 2D semantic segmentation and anticipation approaches (Chapter 4 and 5). The cell-wise
prediction metric proposed in Chapter 5 is not used in the case of 3D semantic scene completion, as
one of its goals is to accurately reconstruct the 3D scene whereas in the 2D case an exact localization
of semantic labels was not necessary. Also the voxelized 3D scene is sparse especially requires the
prediction of empty voxels in the occluded space, a problem which does not exist in the 2D case and
would not be accounted for by the cell-wise metric.

6.3.2 Datasets

We evaluate our method on the NYUv2 dataset, which is in the following denoted as NYU. NYU
consists of indoor scenes that are captured via a Kinect sensor. For 3D semantic scene completion
labels, we use the annotated 3D labels provided by Rock et al. (2015). They provide 1449 scenes,
annotated with 11 classes, 795 of which are used for training and 654 for testing. These annotations
consist of CAD models that are fitted into the scene. Since the CAD models do not exactly fit
the shape of the annotated objects and neglect small objects such as clutter, there is a significant
mismatch between the Kinect input data and the output labels. To address this problem, depth maps
generated from the projections of the 3D annotations as in Rock et al. (2015) are used for training.
For evaluation, we consider two test sets. The first test set, which is denoted by NYU Kinect, consists
of the depth maps from the Kinect sensor and the second test set, which is denoted as NYU CAD,
uses the depth maps generated by projection.

6.3.3 Ablation Study

We conduct an ablation study on Kinect to analyze the design choices of our model.
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Scene Completion Semantic Scene Completion
semantic IoU ceil. floor wall win. chair bed sofa table TV furn. objs avg
DLv2 60.1 7.0 93.1 25.9 16.8 14.7 53.3 46.0 16.8 22.7 34.1 13.8 31.3
DLv3+ 60.0 6.7 93.2 26.2 20.6 17.8 56.9 49.2 16.5 29.4 37.6 18.3 33.8
GT 61.0 6.6 93.4 27.5 24.6 23.0 61.6 57.9 24.3 33.5 46.4 24.5 38.5
RGB image 58.2 4.2 93.4 19.3 4.4 10.8 34.9 20.2 11.8 4.9 17.2 10.3 21.0

Table 6.1: Impact of the quality of the semantic input. For the version ‘RGB image’, the 2D-CNN is
omitted and the color values of the pixels instead of the semantic information is stored in the semantic
volume.

ceil. floor wall win. chair bed sofa table TV furn. objs. avg.
Deeplab v2 58.1 85.7 76.6 62.9 58.5 65.8 62.8 37.9 56.8 56.5 54.7 61.5
Deeplab v3+ 71.1 89.8 82.8 72.8 65.8 72.4 66.1 50.7 63.0 64.7 62.9 69.3

Table 6.2: 2D semantic segmentation accuracies on the NYUv2 dataset (%IoU ). In both cases, a
CRF is used.

6.3.3.1 Effect of Semantic Input

As mentioned in Section 6.2.3, we compare two network architectures for the 2D-CNN, namely
Deeplab v2 (DLv2) by Chen et al. (2015) and Deeplab v3+ (DLv3+) by Chen et al. (2018). Table 6.1
shows that DLv3+ increases the accuracy for semantic scene completion from 31.3 % to 33.8 %. This
is expected since DLv3+ provides a better 2D segmentation accuracy compared to DLv2 as shown
in Table 6.2. For scene completion, IoU is slightly higher for DLv2 than for DLv3+.

We compare the results to a setting when we use ground truth semantic segmentation masks for
the RGB images as input to the 3D-CNN, which is denoted by GT in Table 6.1. This also serves as
an upper bound for our method when the used 2D-CNN provides perfect segmentation masks. As
expected, using ground truth segmentation masks improves the semantic scene completion compared
to DLv3+ by +4.7 %. For scene completion, the improvements compared to DLv3+ are +1.0 %.
This shows that the quality of the 2D-CNN has a strong impact on the accuracy of semantic scene
completion but only a minor impact on scene completion, which is also not the focus of this work.

As it is illustrated in Figure 6.2 a), the RGB images are processed by a 2D-CNN and the inferred
pixel-wise labels are used to construct the semantic volume. We also evaluate in Table 6.1 what
happens if the three-channel encoding is not based on the semantic labels but if the RGB values of
the pixels are directly used for the encoding, i.e., without inferring semantic information from the
visible part of the scene. This setting is denoted by ‘RGB image’ and performs as expected poorly.
Besides of the class ‘floor’, all categories are poorly estimated.

6.3.3.2 Input Encoding

As we discussed in Section 6.2.3, the encoding of the semantic information in the semantic volume
should provide a numerical equidistance between classes, which can be achieved by using one-hot
encoding. However, this approach has a high memory footprint. As an alternative, we evaluate a
one-channel and a three-channel input encoding. In the one-channel setup, the numeric class values
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Scene Completion Semantic Scene Completion
channels IoU ceil. floor wall win. chair bed sofa table TV furn. objs avg
1 59.3 8.3 93.3 25.0 13.4 11.5 43.0 31.8 11.2 2.4 26.5 16.8 25.8
3 60.0 6.7 93.2 26.2 20.6 17.8 56.9 49.2 16.5 29.4 37.6 18.3 33.8
12 (one-hot) 60.0 9.7 93.4 25.5 21.0 17.4 55.9 49.2 17.0 27.5 39.4 19.3 34.1

Table 6.3: Impact of the number of channels for the semantic volume. 12 channels refers to one-hot
encoding.

Scene Completion Semantic Scene Completion
input IoU ceil. floor wall win. chair bed sofa table TV furn. objs avg
proposed, no fTSDF 60.0 6.7 93.2 26.2 20.6 17.8 56.9 49.2 16.5 29.4 37.6 18.3 33.8
with fTSDF, early fusion 60.2 8.1 94.4 25.6 17.1 17.8 53.6 48.0 17.0 28.0 36.0 18.4 33.1
with fTSDF, fusion 1 60.0 4.8 94.1 25.5 21.5 16.6 56.9 47.2 16.7 27.5 37.3 18.1 33.3
with fTSDF, fusion 2 54.4 5.9 93.6 22.0 11.0 16.5 50.4 41.0 12.4 23.1 31.9 12.4 29.1
with fTSDF, fusion 5 59.1 5.1 92.9 23.0 19.4 15.1 53.9 46.7 16.3 28.2 34.6 15.0 31.8
with fTSDF, late fusion 60.4 5.7 93.9 25.7 20.3 15.9 55.7 44.8 17.0 28.1 34.9 16.0 32.5
RGB image 58.2 4.2 93.4 19.3 4.4 10.8 34.9 20.2 11.8 4.9 17.2 10.3 21.0

Table 6.4: Impact of the input for the 3D-CNN. The proposed architecture is shown in Figure 6.2 a).
The versions ‘with fTSDF’ refers to a version where not only the semantic volume but also the flipped
TSDF volume Song et al. (2017) are used.

are normalized to the range from 0 to 1. For the proposed 3-channel input encoding, every label is
mapped to a 3 dimensional vector as described in Section 6.2.3. Table 6.3 shows that using only one
channel performs poorly since it introduces undesirable artifacts based on the class values. While
some classes like ‘floor’ and ‘bed’ are well recognized, the accuracy for ‘window’ and ‘TV’ is very
low. Using one-hot encoding (12 channels) performs much better than 1 channel but it is expensive
in terms of memory consumption. The proposed three-channel encoding requires less memory while
it only slightly decreases the accuracy. Also the training time of the 3 channel setup is by a factor of
1.7 faster which reduces the training time from 4 to 2.5 days. Therefore we adopt the 3 channel setup
as it provides an efficient alternative to the one-hot encoding.

6.3.3.3 Fusion with flipped TSDF

Furthermore, we have conducted an experiment where we combine our input with the flipped trun-
cated signed distance function (fTSDF) proposed by Song et al. (2017) and evaluate different fusing
schemes.

The fTSDF is computed as follows: The previously computed binary voxel mask (Figure 6.2 b)
is used to first compute a truncated signed distance function (TSDF) encoding as illustrated in Figure
6.2 c). In the TSDF, every voxel contains as value the distance d to the next surface point. The sign
of the distance value indicates whether a voxel lies in the empty (1) or occluded space (-1). The
TSDF has the disadvantage of having high gradients at the occlusion boundary, i.e., the boundary
between observed and unobserved space behind a surface. Therefore in the TSDF encoding every
surface yields a shadow into the unobserved space as shown in Figure 6.2 c).

To provide a more meaningful input signal, the signed distance function is transformed into a



6.3. Experimental Evaluation 63

NYU CAD Scene
Completion

Semantic Scene Completion

method trained on IoU ceil. floor wall win. chair bed sofa table TV furn. objs avg
Zheng et al. (2016) NYU 34.6
Firman et al. (2016) NYU 50.8
SSCNet (Song et al., 2017) NYU 70.3
SSCNet (Song et al., 2017) SUNCG+NYU 73.2 32.5 92.6 49.2 8.9 33.9 57.0 59.5 28.3 8.1 44.8 25.1 40.0
Two-Stream (ours), 3ch NYU 76.1 28.3 94.0 48.6 33.0 33.4 67.9 54.7 31.1 33.8 50.8 30.6 46.0
Two-Stream (ours), one-hot NYU 76.1 25.9 93.8 48.9 33.4 31.2 66.1 56.4 31.6 38.5 51.4 30.8 46.2

NYU Kinect Scene
Completion

Semantic Scene Completion

Lin et al. (2013) NYU 36.4 0.0 11.7 13.3 14.1 9.4 29.0 24.0 6.0 7.0 16.2 1.1 12.0
Geiger and Wang (2015) NYU 44.4 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6
SSCNet (Song et al., 2017) NYU 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7
SSCNet (Song et al., 2017) SUNCG+NYU 56.6 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
ESSCN (Zhang et al., 2018) NYU 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0.0 33.4 11.8 26.7
Two-Stream (ours), 3ch NYU 60.0 6.7 93.2 26.2 20.6 17.8 56.9 49.2 16.5 29.4 37.6 18.3 33.8
Two-Stream (ours), one-hot NYU 60.0 9.7 93.4 25.5 21.0 17.4 55.9 49.2 17.0 27.5 39.4 19.3 34.1

Table 6.5: Comparison to the state-of-the-art.

flipped TSDF (Song et al., 2017), where every signed distance value d is converted into a distance df
which is 1 or -1 at a surface and linearly falls to 0 at a distance dmax from the surface:

df “ signpdqHpdmax ´ |d|q
dmax ´ |d|

dmax
(6.2)

where dmax is the maximum distance of 24 cm and H is the Heaviside function:

Hpxq “

#

1 if x ě 0

0 if x ă 0.
(6.3)

We perform different fusion experiments to evaluate whether the proposed fTSDF encoding can
give us a meaningful signal for semantic scene completion. As one can see from Figure 6.3 the 3D-
CNN consists of several blocks. We concatenate the fTSDF before block 1 (early fusion) and also
after block 1, 2 and 5 (fusion 1, 2 and 5). Before concatenation, both the color and the fTSDF input
stream are processed separately. In the case of “late fusion” we take the maximum of the softmax
probabilities of both streams.

As can be seen from Table 6.4, all fusion schemes perform slightly worse than our approach.
This indicates that fTSDF provides a superfluous signal for our approach. This is interesting since
computing the flipped TSDF volume is the most time-consuming part for inference and our approach
provides a substantial faster alternative while also increasing the accuracy.

6.3.4 Comparison to the State-of-the-Art

We evaluate our approach, in the following denoted as ‘Two-Stream’, on the two test sets NYU
CAD and NYU Kinect, which are in the following denoted as CAD and Kinect, and we compare our
approach to the state-of-the-art.The results for scene completion and semantic scene completion are
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reported in Table 6.5. Both of our approaches with 3-channel input encoding and one-hot encoding
perform comparably. Since one-hot encoding yields a slightly higher accuracy, we only discuss the
difference between the latter and other approaches from the literature.

Our approach sets the new state-of-the-art for semantic scene completion. We achieve 46.2 % on
CAD and 34.1 % on Kinect and outperform the baseline approach by Song et al. (2017) by +6.2 %

on CAD and +3.6 % on Kinect, although they use SUNCG as additional training data. If the same
training data, i.e. only NYU, is used, our approach outperforms Song et al. (2017) by +9.4 % on
Kinect. For scene completion, we outperform Song et al. (2017) by +5.8 % on CAD and +4.9 % on
Kinect if NYU is used as training data. However, even if Song et al. (2017) uses additional training
data from SUNCG, our approach still outperforms it by +2.9 % on CAD and +3.4 % on Kinect.

Compared to the recent ESSCN approach (Zhang et al., 2018), we perform better in both scene
completion (+3.8 %) and semantic scene completion (+7.4 %). Note also that pretraining on SUNCG
(Song et al., 2017) and using a stronger 3D-CNN architecture (Zhang et al., 2018) are orthogonal to
our proposed method. One can assume that our performance would further increase by incorporating
both ideas.

Table 6.5 also includes the results of other approaches that do not rely on end-to-end learn-
ing (Zheng et al., 2016; Firman et al., 2016; Lin et al., 2013; Geiger and Wang, 2015). Furthermore,
the approaches of Zheng et al. (2016) and Firman et al. (2016) only address scene completion but not
semantic scene completion. These methods perform substantially worse than the end-to-end learning
approaches.

6.4 Summary

In this work, we have proposed a two stream approach for 3D semantic scene completion. In contrast
to previous works, the proposed approach leverages depth and semantic information of the visible
part of the scene for this task. In our experiments, we have shown that the proposed three-channel
encoding for the semantic volume is not only memory efficient but it also results in higher accuracies
compared to a single-channel encoding and is competitive to a memory expensive one-hot encod-
ing. The proposed approach achieves state-of-the-art results for semantic scene completion on the
NYUv2 dataset while also providing much faster inference times than approaches based of TSDF
input features.
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ceil. floor wall wind. chair bed sofa table tv furn objs.

Figure 6.4: Qualitative results on NYUv2 Kinect. From left to right: Input RGB-D image, ground
truth, result obtained by Song et al. (2017), and result obtained by our approach. Overall, our com-
pleted semantic 3D scenes are less cluttered and show a higher voxel class accuracy compared to
Song et al. (2017).





CHAPTER 7

3D Semantic Scene Completion using
Adversarial Training

We continue with the exploration of the field of 3D semantic scene completion. In this Chapter we
explore the potential of the recently emerged generative adversarial networks for the task of semantic
scene completion. In contrast to our “Two Stream” approach (last Chapter) the GAN approach will
only use depth information as input, since preliminary experiments were showing that combining
both on the NYU dataset slightly hurts the performance as compared to the vanilla two stream setup.
We attribute this to the fact that NYU with its low number of training samples is not suitable to
explore the combination of both methods. As our experiments will show, the full potential of adver-
sarial training can only be seen on a the large scale, synthetic SUNCG dataset (Song et al., 2017),
which in turn is not suited for our Two Stream approach for its lack of RGB information. In light of
the recently introduced generative adversarial networks (GAN), our goal is to explore the potential of
this model and the efficiency of various important design choices. Our results show that using condi-
tional GANs outperforms the vanilla GAN setup. We evaluate these architecture designs on several
datasets. Based on our experiments, we demonstrate that GANs are able to outperform a baseline
3D CNN in case of clean annotations as provided in NYU CAD, but they suffer from poorly aligned
annotations as in NYU Kinect. We propose a conditional generative adversarial network (GAN) to
perform 3D semantic scene completion. We thoroughly evaluate the proposed approach and compare
it with a standard generative adversarial network as well as in combination with a local adversarial
loss. We observe that the conditional generative adversarial network performs best, but also that
generative adversarial networks struggle if the ground truth is not well aligned with the depth data as
in NYU Kinect.
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7.1 Semantic Scene Completion with GANs

Inspired by the successful application of GANs in other domains, we introduce a novel model to
perform semantic scene completion using GANs.

7.1.1 Network Architecture

Our model takes an encoded Truncated Signed Distance Function (TSDF) 3D scene from a depth
image as input and predicts the fully voxelized 3D scene by a generator network. In this work we
use the SSCNet (Song et al., 2017) network architecture as our generator network. The discriminator
network takes two kind of inputs, one is the generated 3D volume from the generator which should
be classified as 'fake'. The generator network contains a softmax layer in the final layer. Therefore,
it creates a probability map over C classes of size H ˆW ˆD, where H, W and D are the height,
width and depth of the 3D volume. The input volume for the discriminator is then C ˆH ˆW ˆD.
We transform the ground truth samples to have the same size using a one-hot encoding. Although
the discriminator network might easily distinguish the ground truth and the generated label maps
by detecting whether the map consists of zeros and ones (one-hot encoding) or values between zero
and one (output of semantic segmentation network), Luc et al. (2016) have shown that this encoding
mechanism does not strongly affect the performance of the discriminator network.

For the architecture of the discriminator network we follow the design of Wu et al. (2016) and
use several convolutional blocks which consist of a convolution layer with kernel size 4ˆ 4ˆ 4 and
stride 2ˆ 2ˆ 2, a normalization layer and a Leaky ReLU activation layer. Due to the different size
of the input dimension, we modified the kernel size accordingly. The output of the last convolutional
layer with the size of 5 ˆ 3 ˆ 5 ˆ 16 is reshaped to a vector of 1200 dimensions. After that, it is
processed by three fully-connected layers with output sizes of 256, 128 and 1 respectively. Hence,
the final output is a binary indicator to determine whether the predicted volumetric data is from the
ground truth samples or not. An overview of our proposed architecture is shown in Figure 7.1.

7.1.2 Loss Function

We propose to use a hybrid loss function that is a weighted sum of two terms. The first term is a
multi-class cross-entropy loss Lmce that is used for the generator to predict the right class label at
each voxel location independently. We use gpxq to denote the class probability map over C classes
of size C ˆH ˆW ˆD that is produced by the generator network.

The second loss term is based on the output of the discriminator network. This loss term is
large if the discriminator can differentiate between the output of the predicted data and ground truth
label maps. We use dpx, ŷq P r0, 1s to represent the scalar probability with which the discriminator
network predicts that ŷ is the ground truth label map of x, as opposed to being a label map produced
by the generator model gp¨q. Given a dataset ofN training images xn and a corresponding 3D ground
truth volume ŷn, we define the loss as:

LGAN pθg, θdq “
N
ÿ

n“1

Lmcepgpxnq, ŷnq

´ λrLbcepdpxn, ynq, 1q ` Lbcepdpxn, gpxnqq, 0qs

(7.1)
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Figure 7.1: Proposed network architecture. The generator network takes a depth image as input
and predicts a 3D volume. The discriminator network takes either the generated 3D volume or the
ground truth volume as input, then classifies them as real or fake. The parameters of each layer are
shown as (number of filters, kernel size, stride) in the case of convolutions and as (number of output
channels) in the case of fully connected layers.

where θg and θd denote the parameters of the generator and discriminator network respectively. The
multi-class cross-entropy loss for prediction y is given by:

Lmcepy, ŷq “ ´
HˆWˆD

ÿ

i“1

C
ÿ

c“1

ŷic log yic (7.2)

which equals the negative log-likelihood of the target ground truth volume ŷ in a one-hot encoding
representation. Similarly, the binary cross-entropy loss is denoted as:

Lbcepz, ẑq “ ´rẑ logpzq ` p1´ ẑq logp1´ zqs (7.3)

We then minimize the loss according to the parameters θg of the generator network, while maximizing
it with respect to the parameters θd of the discriminator network as explained in Chapter 2.3.

7.1.3 Conditional GANs

Conditional GANs have been recently proposed in the literature. Since these works deal with differ-
ent tasks (e.g. 2D image generation), it is helpful to examine their potential for 3D semantic scene
completion.

Using a conditional GAN, the output of the discriminator dpx, ŷq is conditioned on the input x
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which we denote as dpx, ŷ|xq. This leads to the following new objective function:

LcGAN pθg, θdq “
N
ÿ

n“1

Lmcepgpxnq, ŷnq

´ λrLbcepdpxn, ŷn|xnq, 1q ` Lbcepdpxn, gpxnq|xnq, 0qs

(7.4)

In practice, we achieve the conditioning by concatenating the input depth image xn with the two
kinds of inputs which are fed into the discriminator network respectively.

7.1.4 Local Adversarial Loss

A key observation for the discriminator network is that it should learn to model the input sample
features equally within the whole input space. When we train a single strong discriminator network,
the generator network tends to over-emphasize certain part of features to fool the current discrimi-
nator network. In other words, any local patch sampled from the input samples should have similar
statistics to a real ground truth patch. Therefore, the idea of a local adversarial loss was proposed to
overcome this problem in 2D images (Shrivastava et al., 2017). Here, however, we extend this trick
to the 3D domain. Rather than defining a global discriminator network, we can define a discrimi-
nator network that classifies each voxel separately. This division strategy can not only enhance the
capacity of the discriminator network, but also provides more samples per input volume for learning.
The generator network can also be improved by having multiple values per sample which gives more
feedback for the generator network to learn.

In practice, we design the discriminator network to be a fully convolutional network that outputs
the same dimension C ˆH ˆW ˆD as the input of discriminator. Instead of using fully connected
layers to reduce the output into a single binary indicator, we upsample the output to match the ground
truth dimensions. Since the discriminator has shrunk the input dimension within the middle three
layers by the factor of 12, we again upsample the dimension by the factor of 12 using trilinear
upsampling. We then calculate the loss term with binary cross-entropy.

7.2 Experiments

We implement our network architecture in PyTorch (Paszke et al., 2017) and use batch size of 4.
For our generator network, we use a SGD optimizer with weight decay of 0.0005 and learning rate
of 0.01. For the discriminator network, we use an Adam optimizer with a learning rate of 0.0001.
Besides, label smoothing is applied for improving the training process in all the experiments (Sali-
mans et al., 2016). We perform some experiments to determine the optimal value for the loss weight
parameter λ in Equation (7.1) and (7.4). It turns out that λ “ 1 performs the best.

We separate our evaluation results mainly in two parts: Semantic scene completion (SSC) and
scene completion (SC). While scene completion only considers whether a voxel is occupied or empty,
semantic scene completion also evaluates whether an occupied voxel is given the correct semantic
label. As in Song et al. (2017) we measure the precision, recall and Jaccard index (IoU) for scene
completion and the average (avg.) of the IoU across all categories for semantic scene completion.
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7.2.1 Evaluation on NYU Depth v2

We first evaluate our models on the NYU Depth v2 dataset (Silberman et al., 2012) and as in the
previous Chapter we differentiate between NYU Kinect consisting of depth images captured by the
Kinect sensor and NYU CAD consisting of rendered depth images generated by projection from the
annotated CAD models. Table 7.1 and 7.2 show the results for 4 different design choices. Firstly,
we examine using the standard GANs vs. using conditional GANs which we denote as 'GAN' and
'cGAN'. Secondly, the usage of global adversarial loss vs. local adversarial loss is examined, denoted
as 'GL' and 'LL' respectively.

Table 7.1 shows the results on the NYU Kinect test set. On the one hand, applying global ad-
versarial loss increases the accuracy from 20.6% to 22.7% when switching from GAN to conditional
GAN on semantic scene completion. On the other hand, applying local adversarial loss decreases
the accuracy by 1.2% for cGAN and by 0.7% for GAN. For scene completion, the IoU decreases by
around 1% by applying conditional GAN. Applying local adversarial loss decreases the performance
by less than 0.7%. Overall our model performs worse than the baseline (Song et al., 2017), which
achieves 24.7% on NYU Kinect, whereas our best model only achieves 22.7%. This suggests that
our model is less robust to noise in the test data of NYU Kinect than that of Song et al. (2017). Due to
the noisiness of the data in NYU Kinect in combination with the small amount of available training
data, we conclude that NYU Kinect is not suited to examine the potential of adversarial learning. We
therefore focus on the results on the NYU CAD test set.

Table 7.2 shows the results on the NYU CAD test set. Here the accuracy improves by around
+2% (from 39.8% to 42.0%) by the usage of conditional GANs and further increases slightly to
42.3% by applying the local adversarial loss. For scene completion the performance also increases
over the baseline of 70.3% when using adversarial loss and achieves maximum performance in the
SSC-cGAN-LL model with 74.9%. Overall, the conditional GAN outperforms the standard GAN
setup across both NYU test settings. Local and global adversarial loss, however perform differently
on different test settings. The usage of the local adversarial loss tends to lay more emphasis on the
finer local detail of each voxel. Since all networks are only trained on NYU CAD and the NYU
Kinect test data contains noisy data points, the use of a local loss further decreases the performance
on this test set. For scene completion, all of our network models provide higher precision with
lower recall. We observe that Song et al. (2017) achieve a very high recall but a low precision
for scene completion. In other words, this method tends to predict more occupied voxels than our
approaches which results in cluttered scene completions. Nevertheless, on NYU CAD, our models
outperform the baseline (Song et al., 2017) by a large margin for both scene completion and semantic
scene completion. As shown in Table 7.2, our model SSC-cGAN-LL achieves 42.3% accuracy and
outperforms the approach by Song et al. (2017) by +4.7% for semantic scene completion. For scene
completion, our model outperforms Song et al. (2017) with +4.6% IoU.

Apart from the quantitative results, we provide some qualitative results visualizing the effect
of applying different GAN models in Figure 7.2. We can observe that the model using the global
GAN loss (SSC-cGAN-GL) suffers from partial mode collapse, meaning it constantly generates fixed
voxels in parts of the scene (e.g ceilings, walls). Using a conditional GAN and the local adversarial
loss simultaneously seems to significantly reduce this problem. On the other hand, the predicted
scenes from SSC-cGAN-GL are visually more plausible since they display more fine structure of
the objects, tend to contain more empty voxels and therefore look less cluttered. Thus, we propose
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NYU Kinect SC SSC
method prec. recall IoU avg.
SSCNet (Song et al., 2017) 57.0 94.5 55.1 24.7
Zhang et al. (2018) 71.9 71.9 56.2 26.7
Two-Stream (ours) 65.6 87.2 60.0 34.1
Liu et al. (2018) * 67.3 85.8 60.6 34.4
SSCNet*, Song et al. (2017) 59.3 92.9 56.6 30.5
SSC-GAN-GL 65.3 84.8 58.2 20.6
SSC-GAN-LL 64.5 85.9 58.1 19.9
SSC-cGAN-GL 63.1 87.8 57.8 22.7
SSC-cGAN-LL 64.0 84.8 57.1 21.5

Table 7.1: Comparison of models for semantic scene completion results on the NYU Kinect. *

denotes that the network is trained on SUNCG and fine-tuned on NYU.

NYU CAD SC SSC
method prec. recall IoU avg.
SSCNet (Song et al., 2017) 75.0 92.3 70.3 37.6
SSCNet* (Song et al., 2017) 75.4 96.3 73.2 40.0
Two-Stream (ours) 81.6 92.4 76.1 46.2
SSC-GAN-GL 81.1 90.6 74.8 39.8
SSC-GAN-LL 80.6 91.3 73.9 40.6
SSC-cGAN-GL 80.7 91.1 74.8 42.0
SSC-cGAN-LL 81.0 91.0 74.9 42.3

Table 7.2: Comparison of models for semantic scene completion on the NYU CAD (Firman et al.,
2016). * denotes that the network is trained on SUNCG and fine-tuned on NYU.

SSC-cGAN-GL as the most effective model, due to the fact that it performs comparably to the model
with the highest accuracy (SSC-cGAN-LL), while being able to generate more realistic results.

Finally, we compare our approach to the state-of-the-art. On NYU Kinect we perform worse
than the baseline by Song et al. (2017), but the only approach that fairly outperforms the baseline is
that of Zhang et al. (2018). All the other approaches either use additional input information inferred
from RGB images (‘Two-Stream’), pretrain on SUNCG (Song et al., 2017) or both (Liu et al., 2018).
On NYU CAD, we outperform Song et al. (2017) even if they pretrain on SUNCG and perform
competitively with the Two-Stream approach. It is worth noting that the approach ‘Two-Stream’ is
the our approach which has been described in the previous Chapter.

7.2.2 Evaluation on SUNCG

The SUNCG dataset Song et al. (2017) is a synthetic dataset, which provides a large amount of
training data with rendered depth images and volumetric ground truth. It contains 45,622 different
scenes with realistic room and furniture layouts. However, due to the high computational cost (around
15 days for 10 epochs) of the training procedure, we only run our SSC-cGAN-GL model on SUNCG.
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Figure 7.2: Qualitative results on NYU CAD. The first three columns show the input depth image
with its corresponding color image, ground truth volume, and the results obtained by Song et al.
(2017). The fourth and fifth columns show the results obtained by our approaches.

The result is shown in Table 7.3. Our model SSC-cGAN-GL outperforms the baseline Song et al.
(2017) by a large margin of +10% on semantic scene completion. For scene completion the IoU
increases from 72.9% to 78.1% with both a higher precision and recall. As a result, we infer that the
GAN structure benefits from the large amount of training samples provided by SUNCG.

Compared to other recent approaches, the effect of using adversarial learning is smaller. How-
ever, since our approach is orthogonal to the approaches of Zhang et al. (2018) and Liu et al. (2018),
we expect that they could be combined and potentially benefit each other. Wang et al. (2018c) also
used an adversarial learning approach in combination with a encoder-decoder network. However they
do not follow the original evaluation protocol. Instead of reporting numbers on the SUNCG test set,
they perform a 10-fold cross validation using random splits. For comparison to the state-of-the-art,
we follow the standard evaluation protocol Song et al. (2017).

7.2.3 Loss Behaviour of the Discriminator

We design an experiment that allows us to assess whether the discriminators show the expected
behaviour of producing high losses for unrealistic scene inputs. Therefore, we gradually add noise to
the ground truth samples of the NYU CAD test data and feed it as input to the trained discriminator
networks. We simulate the noise by randomly changing voxel labels in the occluded space. While
increasing the percentage of noise, we calculate the binary cross-entropy loss value using Equation
(7.3). As one can see from Figure 7.3, the loss curve for SSC-GAN remains stable whereas for SSC-
cGAN it increases. This suggests that the conditional GAN model behaves in the expected way while
the standard GAN is not sensitive to the noise.
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SUNCG SC SSC
method prec. recall IoU avg.
SSCNet Song et al. (2017) 79.8 89.5 72.9 45.0
Wang et al. (2018c) * - - - 51.4
Zhang et al. (2018) 92.6 90.4 84.5 70.5
Liu et al. (2018) 80.7 96.5 78.5 64.3
SSC-cGAN-GL 83.4 92.4 78.1 55.6

Table 7.3: Comparison with the state-of-the-art networks on the SUNCG dataset. * denotes that the
model uses different training / testing splits and performs a 10-fold cross-validation (Wang et al.,
2018c)

Figure 7.3: Comparison of the loss behaviour of the discriminator networks.

7.3 Summary

We presented a novel GAN architecture to perform 3D semantic scene completion. Also, we eval-
uated two variations of the architecture design: conditional GANs and local adversarial loss. The
results show that the conditional GAN improves the network performance on both test sets, while
the local adversarial loss only improves the performance on NYU CAD but not on NYU Kinect.
In comparison to the baseline Song et al. (2017), our models yield a significant improvement on
NYU CAD. On SUNCG our models outperform the baseline by a large margin. Qualitatively, our
proposed model SSC-cGAN-GL produces significantly more realistic appearing results. For the ef-
fective combination of our ’Two-Stream’ approach explained in the previous Chapter and the GAN
setup introduced in this Chapter, we suggest that a much larger dataset than NYU is needed.



CHAPTER 8

A Dataset for Semantic Segmentation of
Point Cloud Sequences

We have seen in the previous two Chapters that deep learning approaches to 3D semantic scene com-
pletion suffer from the lack of data provided in the NYU dataset. The SUNCG dataset is purely
synthetic and does not provide RGB images along with the depth measurements. Therefore there is
a need for a realistic, large scale dataset to perform 3D semantic scene completion, which we ad-
dress in this Chapter. We introduce a large dataset, called ‘SemanticKITTI’, to propel research on
semantic scene completion as well as laser-based semantic segmentation. Therefore, we annotated
all sequences of the KITTI Vision Odometry Benchmark and provide dense point-wise annotations
for the complete 360o field-of-view of the employed automotive LiDAR. Based on this new dataset,
we propose three benchmark tasks : (i) semantic segmentation of point clouds using a single scan,
(ii) semantic segmentation using sequences comprising of multiple past scans, and (iii) semantic
scene completion, which, in our case, requires to anticipate the semantic scene in the future. We pro-
vide baseline experiments and show that there is a need for more sophisticated models to efficiently
tackle all of these tasks. Our dataset opens the door for the development of more advanced methods,
but also provides plentiful data to investigate new research directions.
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Figure 8.1: Our dataset provides dense annotations for each scan of all sequences from the KITTI
Odometry Benchmark (Geiger et al., 2012). Here, we show multiple scans aggregated using pose
information estimated by a SLAM approach. See also the videoa to get a better impression of the
consistency and quality of the provided annotation.

ahttp://www.ipb.uni-bonn.de/html/projects/semantic_kitti/videos/teaser.mp4

http://www.ipb.uni-bonn.de/html/projects/semantic_kitti/videos/teaser.mp4
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#scans1 #points2 #classes3 sensor annotation sequential

SemanticKITTI (Ours) 23201/20351 4549 25 (28) Velodyne HDL-64E point-wise 3

Oakland3d 17 1.6 5 (44) SICK LMS point-wise 7

Freiburg 77 1.1 4 (11) SICK LMS point-wise 7

Wachtberg 5 0.4 5 (5) Velodyne HDL-64E point-wise 7

Semantic3d 15/15 4009 8 (8) Terrestrial Laser Scanner point-wise 7

Paris-Lille-3D 3 143 9 (50) Velodyne HDL-32E point-wise 7

Zhang et al. 140/112 32 10 (10) Velodyne HDL-64E point-wise 7

KITTI 7481/7518 1799 3 Velodyne HDL-64E bounding box 7

Table 8.1: Overview of other point cloud datasets with semantic annotations. Ours is by far the
largest dataset with sequential information. 1Number of scans for train and test set, 2Number of
points is given in millions, 3Number of classes used for evaluation and number of classes annotated
in brackets.

8.1 Introduction

Semantic scene understanding is essential for many applications and an integral part of self-driving
cars. Particularly, fine-grained understanding provided by semantic segmentation is necessary to
distinguish drivable and non-drivable surfaces and to reason about functional properties, like parking
areas and sidewalks. Currently, such understanding, represented in so-called high definition maps,
is mainly generated in advance using surveying vehicles. However, self-driving cars should also be
able to drive in unmapped areas and adapt their behaviour if there are changes in the environment.

Most self-driving cars currently use multiple different sensors to perceive the environment. Com-
plementary sensor modalities enable to cope with deficits or failures of particular sensors. Besides
cameras, light detection and ranging (LiDAR) sensors are often used as they provide precise distance
measurements that are not affected by lighting.

Publicly available datasets and benchmarks are crucial for empirical evaluation of research. They
mainly fulfill three purposes: (i) they provide a basis to measure progress, since they allow to provide
results that are reproducible and comparable, (ii) they uncover shortcomings of the current state-of-
the-art and therefore pave the way for novel approaches and research directions, and (iii) they make
it possible to develop approaches without the need to first painstakingly collect and label data. While
multiple large datasets for image-based semantic segmentation exist (Cordts et al., 2016; Neuhold
et al., 2017), publicly available datasets with point-wise annotation of three-dimensional point clouds
are still comparably small, as shown in Table 8.1.

To close this gap we propose SemanticKITTI, a large dataset showing unprecedented detail in
point-wise annotation with 28 classes, which is suited for various tasks. In this paper, we mainly
focus on laser-based semantic segmentation, but also semantic scene completion. The dataset is
distinct from other laser datasets as we provide accurate scan-wise annotations of sequences. Overall,
we annotated all 22 sequences of the odometry benchmark of the KITTI Vision Benchmark (Geiger
et al., 2012) comprised of over 43 000 scans. Moreover, we labeled the complete horizontal 360˝

field-of-view of the rotating laser sensor. Figure 8.1 shows example scenes from the provided dataset.
In summary, our main contributions are:

• We present a point-wise annotated dataset of point cloud sequences with an unprecedented
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number of classes and unseen level-of-detail for each scan.

• We furthermore provide an evaluation of state-of-the-art methods for semantic segmentation
of point clouds.

• We investigate the usage of sequence information for semantic segmentation using multiple
scans.

• Based on the annotation of sequences of a moving car, we furthermore introduce a real-world
dataset for semantic scene completion and provide baseline results.

• Together with a benchmark website, we will also publish our point cloud labeling tool enabling
other researchers to generate other labeled datasets in future.

We believe that providing this large dataset to the research community will stimulate the develop-
ment of novel algorithms, make it possible to investigate new research directions, and puts evaluation
and comparison of these novel algorithms on a more solid ground.

8.2 The SemanticKITTI Dataset

Our dataset is based on the odometry dataset of the KITTI Vision Benchmark (Geiger et al., 2012)
showing inner city traffic, residential areas, but also highway scenes and countryside roads around
Karlsruhe, Germany. The original odometry dataset consists of 22 sequences, splitting sequences
00 to 10 as training set, and 11 to 21 as test set. For consistency with the original benchmark, we
adopt the same division for our training and test set. Moreover, we do not interfere with the original
odometry benchmark by providing labels only for the training data. Overall, we provide 23 201 full
3D scans for training and 20 351 for testing, which makes it, to the best of our knowledge, the largest
dataset publicly available by a wide margin.

We decided to use the KITTI dataset as a basis for our labeling effort, since it allowed us to exploit
one of the largest available collections of raw point cloud data captured with a car. We furthermore
expect that there are also potential synergies between our annotations and the existing benchmarks
and this will enable the investigation and evaluation of additional research directions, such as the
usage of semantics for laser-based odometry estimation.

Compared to other datasets (cf. Table 8.1), we provide labels for sequential point clouds gener-
ated with a commonly used laser range sensor in autonomous driving applications, i.e. the Velodyne
HDL-64E. Other publicly available datasets, like Paris-Lille-3D (Roynard et al., 2018) or Wachtberg
(Behley et al., 2012), also use such sensors, but only provide the aggregated point cloud of the whole
acquired sequence or some individual scans of the whole sequence, respectively. Since we provide
the individual scans of the whole sequence, one can also investigate how aggregating multiple con-
secutive scans influences the performance of the semantic segmentation and use the information to
recognize moving objects.

We annotated 28 classes, where we ensured a large overlap of classes with the Mapillary Vistas
dataset (Neuhold et al., 2017) and Cityscapes dataset (Cordts et al., 2016) and made modifications
where necessary to account for the sparsity and vertical field-of-view. More specifically, we do not
distinguish between persons riding a vehicle and the vehicle, but label the vehicle and the person as
either bicyclist or motorcyclist.
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road sidewalk car

buildingterrainvegetation

other-object

trunk

other-structure

parking pole

Figure 8.2: (Top) Single scan and (Bottom) multiple superimposed scans with labels. Also shown is
a moving car in the center of the image resulting in a trace of points.
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Figure 8.3: Label distribution. Number of labeled points per class. Also shown are the root cate-
gories for the classes. For movable classes, we also show the number of points on non-moving (solid
bars) and moving objects (hatched bars).

We furthermore distinguished between moving and non-moving vehicles and humans, i.e. a ve-
hicle or humans gets the corresponding moving class if they moved in some scan while observing
them, as shown in the lower part of Figure 8.2. All annotated classes are listed in Figure 8.3 and a
more detailed discussion and definition of the different classes can be found in the Section 8.6. In
summary, we have 28 classes, where 6 classes are assigned the attribute moving or non-moving, and
one outlier class is included for erroneous laser measurements caused by reflections or other effects.

We will make the dataset publicly available through a benchmark website, following common
best practices to provide only the training set with ground truth labels and perform the test set eval-
uation online. We furthermore will also limit the number of possible test set evaluations to prevent
overfitting to the test set (Torralba and Efros, 2011).

8.2.1 Labeling Process

To make the labeling of point cloud sequences practical, we superimpose multiple scans above each
other, which conversely allows us to label multiple scans consistently. To this end, we first register
and loop close the sequences using an off-the-shelf laser-based SLAM system (Behley and Stachniss,
2018). This step is needed as the provided information of the inertial navigation system (INS) often
results in map inconsistencies, i.e. streets that are revisited after some time have different height.
For three sequences, we had to manually add loop closure constraints to get correctly loop closed
trajectories, since this is essential to get consistent point clouds for annotation. The loop closed
poses allow us to load all overlapping point clouds for specific locations and visualize them together,
as depicted in Figure 8.2.

We subdivide the sequence of point clouds into tiles of 100 m by 100 m. For each tile, we only
load scans overlapping with the tile. This enables us to label all scans consistently even when we
encounter temporally distant loop closures. To ensure consistency for scans overlapping with more
than one tile, we show all points inside each tile and a small boundary overlapping with neighboring
tiles. Thus, it is possible to continue labels from a neighboring tile.

Following best practices, we compiled a labeling instruction and provided instructional videos on
how to label certain objects, such as cars and bicycles standing near a wall. Compared to image-based
annotation, the annotation process with point clouds is more complex, since the annotator often needs
to change the viewpoint. An annotator needs on average 4.5 hours per tile, when labeling residential
areas corresponding to the most complex encountered scenery, and needs on average 1.5 hours for
labeling a highway tile.

We explicitly did not use bounding boxes or other available annotations for the KITTI dataset,
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since we want to ensure that the labeling is consistent and the point-wise labels should only contain
the object itself.

We provided regular feedback to the annotators to improve the quality and accuracy of labels.
Nevertheless, a single annotator also verified the labels in a second pass, i.e. corrected inconsistencies
and added missing labels. In summary, the whole dataset comprises 518 tiles and over 1 400 hours
of labeling effort have been invested with additional 10´ 60 minutes verification and correction per
tile, resulting in a total of over 1 700 hours.

8.2.2 Dataset Statistics

Figure 8.3 shows the distribution of the different classes, where we also included the root categories
as labels on the x-axis. The ground classes, road, sidewalk, building, vegetation, and terrain are the
most frequent classes. The class motorcyclist only occurs rarely, but still more than 100 000 points
are annotated.

The unbalanced count of classes is common for datasets captured in natural environments and
some classes will be always under-represented, since they do not occur that often. Thus, an unbal-
anced class distribution is part of the problem that an approach has to master. Overall, the distribution
and relative differences between the classes is quite similar in other datasets, e.g. Cityscapes (Cordts
et al., 2016).

8.3 Semantic Point Cloud Segmentation

In this section, we provide the evaluation of several state-of-the-art methods for semantic segmenta-
tion of a single scan. We also provide experiments exploiting information provided by sequences of
multiple scans.

8.3.1 Single-Scan Input

Task and Metrics

In semantic segmentation of point clouds, we want to infer the label of each three-dimensional point.
Therefore, the input to all evaluated methods is a list of coordinates of the three-dimensional points
along with their remission, i.e. the strength of the reflected laser beam which depends on the prop-
erties of the surface that was hit and its distance. Each method should then output a label for each
point of a scan, i.e. one full turn of the rotating LiDAR sensor.

To assess the labeling performance, we rely on the commonly applied mean Jaccard Index or
mean intersection-over-union (mIoU) metric (Everingham et al., 2015) over all classes, given by

1

C

C
ÿ

c“1

TPc
TPc ` FPc ` FNc

, (8.1)

where TPc, FPc, and FNc correspond to the number of true positive, false positive, and false negative
predictions for class c, and C is the number of classes.

As the classes other-structure and other-object have either only a few points and are otherwise
too diverse with a high intra-class variation, we decided to not include these classes in the evaluation.
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Thus, we use 25 instead of 28 classes, ignoring outlier, other-structure, and other-object during
training and inference.

Furthermore, we cannot expect to distinguish moving from non-moving objects with a single
scan, since this Velodyne LiDAR cannot measure velocities like radars exploiting the Doppler effect.
We therefore combine the moving classes with the corresponding non-moving class resulting in a
total number of 19 classes for training and evaluation.

Baselines

We provide the results of six state-of-the-art architectures for the semantic segmentation of point
clouds in our dataset: PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), Tangent Convo-
lutions (Tatarchenko et al., 2018), SPLATNet (Su et al., 2018), Superpoint Graph (Landrieu and
Simonovsky, 2018), and SqueezeSeg (Wu et al., 2018). Furthermore, we investigate two extensions
of SqueezeSeg: Darknet21Seg and Darknet53Seg.

PointNet and PointNet++ use the raw un-ordered point cloud data as input. Core of these ap-
proaches is max pooling to get an order-invariant operator that works surprisingly well for semantic
segmentation of shapes and several other benchmarks. Due to this nature, however, PointNet fails
to capture the spatial relationships between the features. To alleviate this, PointNet++ applies indi-
vidual PointNets to local neighborhoods and uses a hierarchical approach to combine their outputs.
This enables it to build complex hierarchical features that capture both local fine-grained and global
contextual information.

Tangent Convolutions also handles unstructured point clouds by applying convolutional neural
networks directly on surfaces. This is achieved by assuming that the data is sampled from smooth
surfaces and defining a tangent convolution as a convolution applied to the projection of the local
surface at each point into the tangent plane.

SPLATNet takes an approach that is similar to the aforementioned voxelization methods and
represents the point clouds in a high-dimensional sparse lattice. As with voxel-based methods, this
scales poorly both in computation and in memory cost and therefore they exploit the sparsity of this
representation by using bilateral convolutions, which only operates on occupied lattice parts.

Similarly to PointNets, Superpoint Graph, captures the local relationships by summarizing geo-
metrically homogeneous groups of points into superpoints, which are later embedded by local Point-
Nets. The result is a superpoint graph representation that is more compact and rich than the original
point cloud exploiting contextual relationships between the superpoints.

SqueezeSeg also discretizes the point cloud in a way that makes it possible to apply 2D con-
volutions to the point cloud data exploiting the sensor geometry of a rotating LiDAR. In the case
of a rotating LiDAR, all points of a single turn can be projected to an image by using a spherical
projection. A fully convolutional neural network is applied and then finally filtered with a CRF to
smooth the results. Due to the promising results of SqueezeSeg and its fast training, we investigate
how the labeling performance is affected by the number of model parameters. To this end, we use a
different 2D CNN backbone based on the Darknet architecture (Redmon and Farhadi, 2018) with 21

and 53 layers, and 25 and 50 million parameters respectively. We furthermore eliminate the vertical
downsampling used in the architecture.

We modify the available implementations such that the methods can be trained and evaluated on
our large-scale dataset with very sparse point clouds due to the LIDAR sensor. Note that most of
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PointNet 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7 14.6
SPGraph 45.0 28.5 0.6 0.6 64.3 49.3 0.1 0.2 0.2 0.8 48.9 27.2 24.6 0.3 2.7 0.1 20.8 15.9 0.8 17.4
SPLATNet 64.6 39.1 0.4 0.0 58.3 58.2 0.0 0.0 0.0 0.0 71.1 9.9 19.3 0.0 0.0 0.0 23.1 5.6 0.0 18.4
PointNet++ 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9 20.1
SqueezeSeg 85.4 54.3 26.9 4.5 57.4 68.8 3.3 16.0 4.1 3.6 60.0 24.3 53.7 12.9 13.1 0.9 29.0 17.5 24.5 29.5
TangentConv 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5 40.9
DarkNet21Seg 91.4 74.0 57.0 26.4 81.9 85.4 18.6 26.2 26.5 15.6 77.6 48.4 63.6 31.8 33.6 4.0 52.3 36.0 50.0 47.4
DarkNet53Seg 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2 49.9

Table 8.2: Single scan results (19 classes) for all baselines on sequences 11 to 21 (test set). All
methods were trained on sequences 0 to 10, except for 8 which is left as validation.

these approaches have so far only been evaluated on small RGB-D indoor datasets.
We restrict the number of points within a single scan due to memory limitations on some ap-

proaches (PointNet, PointNet++) to 50,000 via random sampling.
For SPLATNet, we use the SPLATNet3D1 architecture. The input consists of the 3D position of

each point as well as its normal. The normals have been pre-estimated given 30 closest neighbors.
For TangentConv2 we use the existing configuration for Semantic3D. We speed up the training

and validation procedures by precomputing scan batches and add an asynchronous data loading.
Complete single scans are provided during training. In the multi scan experiment we fix the number
of points per batch to 500,000 due to memory constraints and start training from the single scan
weights.

For SqueezeSeg and its Darknet backbone equivalents, we use a spherical projection of the scans
in the same way as the original SqueezeSeg approach. The projection contains 64 lines in height
corresponding to the separate beams of the sensor, and extrapolating the configuration of SqueezeSeg
which only uses the front 90˝ and a horizontal resolution of 512, we use 2,048 for the entire scan.
Because some points are duplicated in this sampling process, we always keep the closest range value,
and during inference of each scan we iterate over the entire point list and check it’s semantic value
in the output grid.

An overview of the used parameters is given in Table 8.8. We furthermore provide the number
of trained epochs and if we could get a results which seems to be converged in the given amount of
time.

Results and Discussion

Table 8.2 shows the results of our baseline experiments for various approaches using either directly
the point cloud information (PointNet, PointNet++, SPGraph, TangentConv, SPLATNet) or a pro-
jection of the point cloud (SqueezeSeg, DarkNet21Seg, DarkNet53Seg). The results show that the
current state-of-the-art for point cloud semantic segmentation falls short for the size and complexity
of our dataset.

We believe that this is mainly caused by the limited complexity of the used architectures (see

1https://github.com/NVlabs/splatnet
2https://github.com/tatarchm/tangent_conv

https://github.com/NVlabs/splatnet
https://github.com/tatarchm/tangent_conv


84 Contents

10 15 20 25 30 35 40 45 50
Distance to sensor [m]

10

20

30

40

M
ea

n 
Io

U 
[%

]
PointNet
PointNet++
SPGraph

SPLATNet
TangentConv
SqueezeSeg

DarkNet21Seg
DarkNet53Seg

Figure 8.4: IoU vs. distance to the sensor.

Approach num. parameters train time inference time

(million)
´

GPU hours
epoch

¯ ´

seconds
point cloud

¯

PointNet 3 4 0.5

PointNet++ 6 16 5.9

SPGraph 0.25 6 5.2

TangentConv 0.4 6 3.0

SPLATNet 0.8 8 1.0

SqueezeSeg 1 0.5 0.015

DarkNet21Seg 25 2 0.055

DarkNet53Seg 50 3 0.1

Table 8.3: Approach statistics.

Table 8.3), because the number of parameters of these approaches is much lower than the number
of parameters used in leading image-based semantic segmentation networks. As mentioned above,
we add Darknet21Seg and DarkNet53Seg to test this hypothesis and the results show that this simple
modification improves the accuracy from 29.5 % for SqueezeSeg to 47.4 % for DarkNet21Seg to
49.9 % for Darknet53Seg.

Another reason is that the point clouds generated by LiDAR are relatively sparse, especially as
the distance to the sensor increases. This is partially solved in SqueezeSeg, which exploits the way
the rotating scanner captures the data to generate a dense range image, where each pixel corresponds
roughly to a point in the scan. Finally, occlusions may pose a problem for approaches that rely on
raw point clouds due to more discontinuities in the surface of occluded objects.

These effects are further analyzed in Figure 8.4, where the mIoU is plotted w.r.t the distance to
the sensor. It is clearly visible that all approaches show a correlation of distance and classification
performance, i.e. results get worse with increasing distance. This further confirms our hypothesis
that the sparsity is the main reason for worse results at large distances. However, the results also
show that some methods, like SPGraph, are less affected by the distance-dependent sparsity and this
might be a promising direction for future research to combine the strength of both paradigms.
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Approach Scans mIoU mAcc

TangentConv
1 35.9 83.3

5 39.8 84.9

Darknet53Seg
64 ˆ 2048

1 45.1 85.8

5 46.3 86.7

96 ˆ 2048 5 46.5 87.1

Table 8.4: Single scan vs. multiple scan results.

Finally, the best performing approach (Darknet53Seg) with 49.9% mIoU is still far from achiev-
ing results that are on par with image-based approaches, e.g. 80% on the Cityscapes benchmark
(Cordts et al., 2016). Figure 8.5 shows qualitative results from every used approach.

8.3.2 Effect of Sequential Information

Since we provide sequences of laser scans with locally consistent pose information, we can also use
an aggregated scan to increase the density of the cloud. With this aggregated information, we run
additional experiments with approaches capable of exploiting this information, i.e. approaches that
are not limited by memory constraints and can be easily adapted to larger point clouds. To this end,
we retrained Tangent Convolutions and our ablation of SqueezeSeg using the Darknet53 backbone,
both of which performed best in the single scan task and scale well to the number of points in the
scans.

In the interest of showing how more information can help the projective methods, Figure 8.6
shows the effect of increasing the number of scans used from 1 to 5. The figure illustrates the effect of
aggregating the point clouds to make a richer range image, which allows us to increase the resolution
of the input. Due to the nature of this projection, however, not all points of the aggregated scan can
be inferred, but only the ones that are visible by the sensor in the last scan. In order to achieve this,
we render the range images using Z-buffering and we only evaluate how the multi-scan inference
can help the current scan, and not the entire history. Another problem with this naive aggregation of
scans is that it does not deal properly with dynamic objects, and therefore they will generate blurred
clouds that may affect the inference quality.

Even though the approach taken for the aggregation of the scans was very simple, and didn’t deal
with the dynamic objects explicitly, Table 8.4 shows promising results when using multiple scans
vs. single scan inference. For the projective method, as Figure 8.6 suggests, the aggregation of the
scans allows us to generate richer and higher resolution range images, filling in the holes that hurt the
performance. In case of Tangent Convolutions, which also turns the point cloud into a representation
where planar convolutions can be locally applied, the multiple scans makes the data respect the
assumption of locally Euclidean surfaces more closely, increasing the performance. We expect that
our dataset will spawn a new category of methods that deals with this type of sequential information
to increase the performance of the semantic segmentation task.
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PointNet (Qi et al., 2017a)

SPGraph (Landrieu and Simonovsky, 2018)

SPLATNet (Su et al., 2018)

PointNet++ (Qi et al., 2017b)

SqueezeSeg (Wu et al., 2018)

TangentConv (Tatarchenko et al., 2018)

Darknet21Seg

Darknet53Seg

Ground Truth

road sidewalk car

buildingterrainvegetation other-objecttrunk

parking pole

unlabeled

motorcycle

Figure 8.5: Examples of inference for all methods. The point clouds were projected to 2D using a
spherical projection to make the comparison easier.
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TangentConv
84.9 21.1 18.5 1.6 0.0 0.0

34.1
40.3 42.2 30.1 6.4 1.1 1.9

DarkNet53Seg
84.1 20.0 20.7 7.5 0.0 0.0

41.6
61.5 37.8 28.9 15.2 14.1 0.2

Table 8.5: IoU results using a sequence of multiple past scans (in %). Shaded cells correspond to the
IoU of the moving classes, while unshaded entries are the non-moving classes.

8.3.3 Multi-Scan Input for Motion Segmentation

Task and Metrics

In this task, we allow methods to exploit information from a sequence of multiple past scans to
improve the segmentation of the current scan. We furthermore want the methods to distinguish
moving and non-moving classes, i.e. all 25 classes must be predicted, since this information should
be visible in the temporal information of multiple past scans. The evaluation metric for this task is
still the same as in the single scan case, i.e. we evaluate the mean IoU of the current scan no matter
how many past scans are used to compute the results.

Baselines

We exploit the sequential information by combining 5 scans into a single, large point cloud, i.e.
the current scan at timestamp t and the 4 scan before at timestamps t´ 1, . . . , t´ 4. We evaluate
DarkNet53Seg and TangentConv, since these approaches can deal with a larger number of points
without downsampling of the point clouds and could still be trained in a reasonable amount of time.

However, we expect that new approaches could explicitly exploit the sequential information by
using multiple input streams to the architecture or even recurrent neural networks to account for the
temporal information, which again might open a new line of research.

Results and Discussion

Table 8.5 shows the per-class results for the movable classes and the mean IoU (mIoU) over all
classes. For each method, we show in the upper part of the row the IoU for non-moving (unshaded)
and in the lower part of the row the IoU for moving objects (shaded). The performance of the
remaining static classes is similar to the single scan results. The full per class IoU results for the
multiple scans experiment are listed in Table 8.6.

The general trend that the projective methods perform better then the point-based methods is still
apparent, which can be also attributed to the larger amount of parameters as in the single scan case.
Both approaches show difficulties in separating moving and non-moving objects, which might be
caused by our design decision to aggregate multiple scans into a single large point cloud. The results
show that especially bicyclist and motorcyclist never get correctly assigned the non-moving class,
which is most likely a consequence from the generally sparser object point clouds.
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TangentConv 83.9 64.0 38.3 15.3 85.8 84.9 40.3 21.1 42.2 2.0 18.2 18.5 30.1 79.5 43.2 56.7 1.6 6.4 0.0 1.1 0.0 1.9 49.1 36.4 31.2 34.1
DarkNet53Seg 91.6 75.3 64.9 27.5 85.2 84.1 61.5 20.0 37.8 30.4 32.9 20.7 28.9 78.4 50.7 64.8 7.5 15.2 0.0 14.1 0.0 0.2 56.5 38.1 53.3 41.6

Table 8.6: IoU results using a sequence of multiple past scans (in %).

Figure 8.6: Example of using sequence information from SLAM poses to aggregate history. Top:
Original scan projected to a 64ˆ900 image. Middle: Same scan projected to a 128ˆ900 image. The
image becomes sparse because the laser scanner only has 64 beams. Bottom: Result of aggregating
the last 5 scans using the SLAM poses and projecting into to 128 ˆ 900 resolution. Projection
becomes densely populated again.
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Figure 8.7: Left: Visualization of the incomplete input for the semantic scene completion bench-
mark. Note that here we also show the labels for better visualization. However, the real input is a
single raw laser scan without any labels. Right: Corresponding target output representing the com-
pleted and fully labeled 3D scene.

8.4 Semantic Scene Completion

After leveraging a sequence of past scans for semantic point cloud segmentation, we now show a
scenario that makes use of future scans. Due to its sequential nature, our dataset provides the unique
opportunity to be extended for the task of 3D semantic scene completion. Note that this is the first
real world outdoor benchmark for this task. Existing point cloud datasets cannot be used to address
this task, as they do not allow for aggregating labeled point clouds that are sufficiently dense in both
space and time.

In semantic scene completion, one fundamental problem is to obtain ground truth labels for real
world datasets. In case of NYUv2 (Silberman et al., 2012) CAD models were fit into the scene (Rock
et al., 2015) using an RGB-D image captured by a Kinect sensor. New approaches often resort to
prove their effectiveness on the larger, but synthetic SUNCG dataset (Song et al., 2017). However, a
dataset combining the scale of a synthetic dataset and usage of real-world data is still missing.

In the case of our proposed dataset, the car carrying the LiDAR moves past 3D objects in the
scene and thereby records their backsides, which are hidden in the initial scan due to self-occlusion.
This is exactly the information needed for semantic scene completion as it contains the full 3D
geometry of all objects while their semantics are provided by our dense annotations.

Dataset Generation

By superimposing an exhaustive number of future laser scans in a predefined region in front of the
car, we can generate pairs of inputs and targets that correspond to the task of semantic scene com-
pletion. As proposed by Song et al. (2017), our dataset for the scene completion task is a voxelized
representation of the 3D scene.

We select a volume of 51.2 m ahead of the car, 25.6 m to every side and 6.4 m in height with a
voxel resolution of 0.2 m, which results in a volume of 256ˆ 256ˆ 32 voxels to predict. We assign
a single label to every voxel based on the majority vote over all labeled points inside a voxel. Voxels
that do not contain any points are labeled as empty.

To compute which voxels belong to the occluded space, we check for every pose of the car which
voxels are visible to the sensor by tracing a ray. Some of the voxels, e.g. those inside objects or
behind walls are never visible, so we ignore them during training and evaluation.

Overall, we extracted 19 130 pairs of input and target voxel grid for training, 815 for validation
and 3 992 for testing. To speed up the training process, we subsampled training data by taking every
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5th scan. For the test set, we only provide the unlabeled input and withhold the target voxel grids.
Figure 8.7 shows an example of a input and target pair.

Task and Metrics

In semantic scene completion, we are interested in predicting the complete scene inside a certain
volume from a single initial scan. More specifically, we use as input a voxel grid, where each voxel
is marked as empty or occupied, depending on whether or not it contains a laser measurement. For
semantic scene completion, one needs to predict whether a voxel is occupied and its semantic label
in the completed scene.

For evaluation, we follow the evaluation protocol as in Chapter 6 and 7 using the same 19 classes
that were used for the single scan semantic segmentation task (see Section 8.3 ).

Baselines

We report the results of three semantic scene completion approaches. First, we apply SSCNet (Song
et al., 2017) without the flipped TSDF as input feature. This has minimal impact on the performance,
but significantly speeds up the training time due to faster pre-processing as shown in Chapter 6.
Second, we use the Two-Stream approach, likewise described in Chapter 6, which makes use of the
additional information from the RGB image corresponding to the input laser scan. Therefore the
RGB image is first processed by a 2D semantic segmentation network, using the approach DeepLab
v2 based on ResNet-101 (Chen et al., 2015) and trained on Cityscapes to generate a semantic seg-
mentation. The depth information from the single laser scan and the labels inferred from the RGB
image are combined in an early fusion. Finally, we modify the Two-Stream approach by directly
using labels from the best LiDAR-based semantic segmentation approach (DarkNet53Seg).

Results and Discussion

Table 8.7 shows the class-wise results for semantic scene completion as well as precision and recall
for scene completion.
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SSCNet 31.71 83.40 29.83 27.55 16.99 15.60 6.04 20.88 10.35 1.79 0.0 0.0 0.11 25.77 11.88 18.16 0.0 0.0 0.0 14.40 7.90 3.67 9.53
Two-Stream 31.58 84.18 29.81 28.00 16.98 15.65 4.86 23.19 10.72 2.39 0.0 0.0 0.19 24.73 12.46 18.32 0.03 0.05 0.0 13.23 6.98 3.52 9.54
Two-Stream
+ DarkNet53Seg 25.85 88.25 24.99 27.53 18.51 18.89 6.58 22.05 8.04 2.19 0.08 0.02 3.96 19.48 12.85 20.22 2.33 0.61 0.01 15.79 7.57 6.99 10.19

Table 8.7: Results for scene completion and class-wise results for semantic scene completion (in %).

The Two-Stream network incorporating 2D semantic segmentation of the RGB image outper-
forms SSCNet which only uses depth information. However, the usage of the best semantic seg-
mentation directly working on the point cloud (Two-Stream + DarkNet53Seg) performs best in this
scenario. Nevertheless, the scene completion performance is still low, suggesting the need for further
research into more sophisticated models to address this task.
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One possible reason for the poor performance is the problem of dealing with the output resolu-
tion. SSCNet performs a 4 fold downsampling in a forward pass, followed by a trilinear upsampling
to match the target resolution, which renders it incapable of dealing with the details of the scene.
Approaches that produce higher output resolutions currently fail on our benchmark due to memory
limitations. These approaches need some significant adaptation to cope with the desired output reso-
lution and are not ready for off-the-shelf usage. Another challenge for current models is the sparsity
of the laser input signal in the far field as can be seen from Figure 8.7. To obtain a higher resolution
input signal in the far field, approaches would have to exploit more efficiently information from high
resolution RGB images provided along with each laser scan.

8.5 Consistent Labels for LiDAR Sequences

In this section, we explain more detailed the implementation of our point cloud labeling tool and
the rationale behind our decision to subdivide the sequences spatially, but not temporally for getting
consistently labeled point cloud sequences. The labeling tool itself was critical to the successful
completion of the endeavor to provide such amounts of data with such fine-grained labels.

Overall, we developed an OpenGL-based labeling tool, which exploits parallelization on the
GPU to determine which must be labeled. Figure 8.8 shows our point cloud annotation program
visualizing an aggregated point cloud of over 20 million points. We provide interactive tools like a
brush, a polygon tool, and different filtering methods to hide particular parts of the scene. Even with
that many points, we are still able to maintain interactive labeling capabilities. Changes to the label
of the points inside the aggregated point cloud are reflected in the individual scans.

Since we are labeling each point, we are able to annotate objects, even with complex occlusions,
more precisely than using bounding volumes (Xie et al., 2016). For instance, we ensured that ground
points below a car are labeled accordingly, which was enabled by our filtering capabilities of the
visualizer.

To accelerate the search for points that must be labeled, we used a projective approach to assign
labels. To this end, we determine for each point the two-dimensional projection on the screen and
then determine for the projection if the point is near to the clicked position (in case of the brush)
or inside the polygon. Therefore, annotators had to ensure that they did not choose a view that
essentially destroyed previously assigned points.

Usually, an annotator performed the following cycle to annotate points: (1) mark points with a
specific label and (2) filter points with the label. Due to the filtering of already labeled points, one
can resolve occlusions and furthermore ensure that the aforementioned projective labeling does not
destroy already labeled points.

8.5.0.1 Tile-based labeling

An important detail is the aforementioned spatial subdivision of the complete point cloud into tiles
(also shown on the left upper part of Figure 8.8). Initially, we simply rendered all scans in a range
of timestamps, say 100´ 150, and then moved on the next part, say 150´ 200. However, this leads
quickly to inconsistencies in the labels, since scans from such parts still overlap and therefore must
be relabeled to match labels from before. Since we, furthermore, encounter loop closures with a



92 Contents

Figure 8.8: Point cloud labeling tool. In the upper left corner the user sees the tile and the sensor’s
path indicated by the red trajectory.

considerable temporal distance, this overlap can even happen between parts of the sequences that are
not temporally close, which even more complicated the task.

It quickly was apparent that such an additional effort to ensure consistent labels would quickly
lead to unreasonable complicated and insufficient results. Therefore, we decided to subdivide the
sequence spatially into tiles, where each tile contains all points from scans overlapping with this tile.
Consistency at the boundaries between tiles was achieved by having a small overlap between the
tiles, which enabled to consistently continue the labels from one tile into another neighboring tile.

8.5.0.2 Moving objects

We annotated all moving objects, i.e., car, truck, person, bicyclist, and motorcyclist, and each moving
object is represented by a different class to distinguish it from its non-moving corresponding class.
In our case, we assigned an object the corresponding moving class when it moved at some point in
time while observing it with the sensor.

Since moving objects will appear at different places when aggregating scans captured from dif-
ferent sensor locations, we had to take special care to annotate moving objects. We annotated moving
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objects either by filtering ground points or by labeling each scan individually, which was often nec-
essary to label points of tires of a car and bicycles or the feet of persons. It often was the first step
when annotating a tile, since this allowed us to filter all moving points and then concentrate on the
static parts of the environment.

8.6 Class Definition

In the process of labeling such large amounts of data, we had to decide which classes we want to be
annotated at some point in time. In general, we followed the class definitions and selection of the
Mapillary Vistas dataset (Neuhold et al., 2017) and Cityscapes (Cordts et al., 2016) dataset, but did
some simplifications and adjustments for the data source used.

First, we do not explicitly consider a rider class for persons riding a motorcycle or a bicycle,
since the available point clouds do not provide the density for a single scan to distinguish the person
riding a vehicle. Furthermore, we get for such classes only moving examples and therefore cannot
easily aggregate the point clouds to increase the fidelity of the point cloud and make it easier to
distinguish the rider of a vehicle and the vehicle.

We furthermore had to keep the class selection fixed, even though we encountered while labeling
situation where we thought that adding a class would have been beneficial. In particular, the classes
other-structure, other-vehicle, and other-object are fallback classes of their respective root category
in unclear cases or missing classes, since this simplified the labeling process and might be used to
distinguish these categories further in future.

Annotators often annotated some object or part of the scene and then hide the labeled points to
avoid overwriting or removing the labels (the labeling tool is described more in the next paragraph.)
Thus, assigning the fallback class in ambiguous cases or cases where a specific class was missing
made it possible to simply hide that class to avoid overwriting it. If we had instructed the annotators
to label such parts as unlabeled, it would have caused problems to consistently label the point clouds.

For the vehicle category (except bicycle and motorcycle, since we assume that these cannot
move without a human) and human category, we additionally distinguished between non-moving
and moving, i.e. it moved while observing the object. We furthermore distinguished between moving
and non-moving vehicles and humans, i.e. a vehicle gets the moving vehicle class if it moved in some
scan while observing the vehicle.

Overall, we annotated 28 classes and all annotated classes with their respective definitions are
listed in Table 8.9.

class definition

G
ro

un
d-

re
la

te
d

road Drivable areas where cars are allowed to drive on including service lanes, bike
lanes, crossed areas on the street. Only the road surface is labeled excluding
the curb.

sidewalk Areas used mainly by pedestrians, bicycles, but not meant for driving with
a car. This includes curbs and spaces where you are not allowed to drive
faster than 5 km h´1. Private driveways are also labeled as sidewalk. Here cars
should also not drive with regular speeds (such as 30 or 5.0ˆ 101 km h´1).
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parking Areas meant explicitly for parking and that are clearly separated from sidewalk
and road by means of a small curb. If unclear then other-ground or sidewalk
can be selected. Garages are labeled as building and not as parking.

other-ground This label is chosen whenever a distinction between sidewalk and terrain is
unclear. It includes (paved/plastered) traffic islands which are not meant for
walking. Also the paved parts of a gas station are not meant for parking.

st
ru

ct
ur

e building The whole building including building walls, doors, windows, stairs, etc.
Garages count as building.

other-structure This includes other vertical structures, like tunnel walls, bridge posts, scaffold-
ing on a building from a construction site or bus stops with a roof.

ve
hi

cl
e

car Cars, jeeps, SUVs, vans with a continuous body shape (i.e. the driver cabin
and cargo compartment are one) are included.

truck Trucks, vans with a body that is separate from the driver cabin, pickup trucks,
as well as their attached trailers.

bicycle Bicycles without the cyclist or possibly other passengers. If the bicycle is
driven by a person or a person stands nearby the vehicle, we label it as bicyclist.

motorcycle Motorcycles, mopeds without the driver or other passengers. Includes also
motorcycles covered by a cover. If the motorcycle is driven by a person or a
person stands nearby the vehicle, we label it as motorcyclist.

other-vehicle Caravans, Trailers and fallback category for vehicles not explicitly defined oth-
erwise in the meta category vehicle. Included are buses intended for 9+ persons
for public or long-distance transport. This further includes all vehicles moving
on rails, e.g., trams, trains.

na
tu

re

vegetation Vegetation are all bushes, shrubs, foliage, and other clearly identifiable vege-
tation.

trunk The tree trunk is labeled as trunk separately from the treetop which gets the
label vegetation.

terrain Grass and all other types of horizontal spreading vegetation, including soil.

hu
m

an

person Humans moving by their own legs, sitting, or any unusual pose, but not meant
to drive a vehicle.

bicyclist Humans driving a bicycle or standing in close range to a bicycle ( within arm
reach). We do not distinguish between riders and bicyclist.

motorcyclist Humans driving a motorcycle or standing in close range to a motorcycle (
within arm reach).

ob
je

ct

fence Separators, like fences, small walls and crash barriers.
pole Lamp posts and the poles of traffic signs.
traffic sign Traffic sign excluding its mounting. Spurious points in a layer in front and

behind the traffic sign are also labeled as traffic sign and not as outlier.
other-object Fallback category that includes advertising columns.

ou
tli

er outlier Outlier are caused by reflections or inaccuracies in the deskewing of scans,
where it is unclear where the points came from.
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Table 8.9: Class definitions.

8.7 Dataset and Baseline Access API

Along with the annotations and the labeling tool, we also provide a public API implemented in
Python.

In contrast with our labeling tool which is intended at allowing users to easily extend this dataset,
and generate others for other purposes, this API is intended to be used to easily access the data,
calculate statistics, evaluate metrics, and access several implementations of different state-of-the-art
semantic segmentation approaches. We hope that this API will serve as a baseline to implement new
point cloud semantic segmentation approaches, and will provide a common framework to evaluate
them, and compare them more transparently with other methods. The choice of Python as the un-
derlying language for the API is that it is the current language of choice for the front end for deep
learning framework developers, and therefore, for deep learning practitioners.

8.8 Overview and Example scenes

To show the quality and the variety of Figure 8.9 gives an overview of the labeled sequences showing
the estimated trajectories and the aggregated point cloud over the whole sequence.

8.9 Summary and Outlook

In this Chapter, we have presented a large-scale dataset showing unprecedented scale in point-wise
annotation of point cloud sequences. We provide a range of different baseline experiments for three
tasks: (i) semantic segmentation using a single scan, (ii) semantic segmentation using multiple scans,
and (iii) semantic scene completion. These experimental results revealed limitations of the baselines,
which need to be addressed in the future.

The dataset will be provided along with instance-level annotations for vehicles and humans over
the whole sequence, which will enable future tasks that involve distinguishing distinct objects and
identifying the same object over time. Another potential future task enabled by our dataset, could be
the evaluation of semantic SLAM algorithms.

With respect to semantic scene completion, an obvious thing to try, would be to combine the
approaches proposed in Chapter 6 and 7 which unfortunately could not be explored within the time
frame of this thesis. Another interesting future task would be to try to get rid of the laser-scan as an
input to the model and only use the RGB image instead. In this scenario the laser sensor would only
provide the supervision signal during training during inference only a RGB camera is needed. A
similar problem is already addressed in a research field called ‘monocular depth estimation’. Apart
from the expected loss of localization accuracy, the big advantage of such an approach would be that
it becomes very cheap as mentioned in Chapter 1.1.2.
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Figure 8.9: Qualitative overview of labeled sequences and trajectories.
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Approach sc
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PointNet 50 000 - 3e´4
ˆ0.9epoch 33 3

PointNet++ 45 000 - 3e´3
ˆ0.9epoch 25 3

SPGraph 120 000 - 1e´2 40 3

TangentConv 120 000 - 1e´4 10 3

SPLATNet 50 000 - 1e´3 20 -
SqueezeSeg 64ˆ2 048 3 1e´2

ˆ0.99epoch 200 3

DarkNet21Seg 64ˆ2 048 3 1e´3
ˆ0.99epoch 40 3

DarkNet53Seg 64ˆ2 048 3 1e´3
ˆ0.99epoch 120 3

TangentConv 500 000 - 5˚ 3

DarkNet53Seg64 64ˆ2 048 3 1e´3
ˆ0.99epoch 40˚ 3

DarkNet53Seg96 96ˆ2 048 3 5e´4
ˆ0.99epoch 40˚ 3

Table 8.8: Approach statistics. ˚ in number of epochs means that it was started from the pretrained
weights of the single scan version.





CHAPTER 9

Conclusion

In this thesis we provided several contributions to the field of semantic segmentation as well as to its
new offsprings: The anticipation of semantic categories in two and three dimensions. We will now
quickly summarize the individual contributions of all our works in those fields.
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9.1 Summary

In our first work, we presented a real-time adaptation of a 2D semantic segmentation algorithm based
on texton features and random forests. The combination with a superpixel computation using quad-
trees as well as a label propagation strategy leads to reduction of the runtime by a factor of 192 over
the baseline while increasing the accuracy. The approach is capable of running in real-time on a
single threaded CPU. This makes it suitable for devices with limited hardware resources.

Next we introduced the new task of spatially anticipating 2D semantic labels outside an image.
We proposed two evaluation metrics. The first one focus on a pixel-wise segmentation map. The
second one relaxes the need for an exact localization of labels and instead requires the prediction
of labels within a coarse grid of cells. We proposed a CNN for spatial anticipation and evaluated
two different loss functions. We found through experiments that the most effective approach to
solve the tasks is a combination of 2 CNNs: The first one converts the visible pixels into a semantic
segmentation map, whereas the second one is used to iteratively extrapolate this segmentation map
into the unobserved region outside the image.

Afterwards we focused on the 3D domain by proposing two new efficient approaches to 3D se-
mantic scene completion. Our first approach is a two stream approach for 3D semantic scene comple-
tion which leverages a depth and a image input in an early fusion scheme. Moreover we propose an
effective 3-channel linear input embedding that outperforms the 1-channel embedding and performs
competitively to a memory expensive one-hot encoding. The approach achieves state-of-the-art re-
sults on the NYUv2 dataset while also featuring a much faster inference time than approaches using
a TSDF based input encoding. Our second approach uses the recently introduced concept of genera-
tive adversarial networks to improve the performance of 3D semantic scene completion. We evaluate
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several modifications of the classical GAN setup like using local adversarial loss and conditional
GANs. Our experiments show that conditional GANs give a robust performance improvement while
local adversarial loss only improves quantitative results on NYU CAD but not on NYU Kinect. On
SUNCG our model is able to outperform the baseline by a large margin and sets a new state-of-the-
art. Qualitatively the model using global adversarial loss and conditional GANs is giving significantly
more realistically looking results.

Our final contribution is SemanticKITTI, a new, large scale dataset with point-wise annotated
laser scans of the KITTI odometry benchmark. It has been evaluated in several settings using existing
approaches: (i) for semantic segmentation of single point clouds (ii) for semantic segmentation on
several aggregated scans and (iii) for 3D semantic scene completion. The experimental evaluation
shows that there is still a lot of room for improvement for either task, which needs to be addressed
by the research community.

9.2 Outlook

9.2.1 Semantic Segmentation and Completion

As the field of semantic segmentation progresses fast, it is hard to tell for how long the research
community will keep up its interest in the field, rather than moving towards new more challenging
tasks - which was also the trajectory of this thesis. For many problems including semantic segmen-
tation, anticipation of semantic labels and 3D semantic scene completion, it seems that increasing
the amount, quality and granularity of humanly annotated data will overcome some of the current
obstacles in training more robust models. However there seems to be a limit on how much current
CNN architectures can scale, when confronted with a vastly increased variance of training data as
well as a heavily increased number of labels to distinguish.

Apart from that, a typical problem for CNN based semantic segmentation algorithms is the loss of
resolution during forward propagation through the network. Although there exist many approaches
how to achieve higher output resolutions, like using dilated convolutions, decoder network architec-
tures with skip connections from earlier higher-resolution layers or post-processing of the segmenta-
tion map using a CRF, there is still a need for improvement.

As for 3D semantic scene completion an additional problem of current models is the high memory
demand and long training times of the involved 3D-CNN architectures. The memory demand of
a regular voxel grid grows cubically with its resolution. As the resolution grows the percentage
of occupied voxels decreases in the case the scene contains thin, hollow objects or surfaces. This
problem is termed ‘curse of dimensionality’. To save computational resources, one can use sparse
implementation of 3D convolutions (Engelcke et al., 2017). However, for a traditional convolution
the sparsity of subsequent feature maps decreases and therefore the memory demand increases. This
issue has been recently addressed by Zhang et al. (2018) using sparsely-implemented ‘submanifold
convolutions’. However, the submanifold convolutions suffer from a reduced receptive field and
reduce interactions between spatially proximate neurons. Riegler et al. (2017) also proposed a sparse
feature map encoding based on stacked, shallow octrees, but the growing of octrees to determine the
neighbourhood structure of the voxel grid, gives an additional computational overhead. Therefore
the need for memory has just been replaced by a need for more computation.

Another interesting direction for semantic scene completion would be to train models using
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purely image data as input and get rid of the need for a depth sensor. Such an approach could still use
the depth information as a supervision signal during training, e.g. by either implicitly or explicitly
performing monocular depth estimation. The general goal would be to extract as much information
from an RGB image as humans can, using different sensor modalities to provide a supervision signal.
There might even be a synergy for a neural network to perform depth estimation and semantic scene
completion simultaneously. In any case however, the resulting hardware setup would be intriguingly
cheap and simple.

9.2.2 How Robust are CNNs?

We know that, given a large dataset, CNNs are pretty effective in learning tasks like semantic segmen-
tation on them. When confronted with a new dataset, people usually take the pre-trained network,
add a new, randomly initialized classification layer and finetune the network for the new task (po-
tentially with a new number of classes). However, in doing so, the network becomes incapable of
solving the earlier task. A solution would be to only finetune the last layers and keep the bulk of
the earlier layers fixed. Though the method is working, it is seldom applied, since it results in a
poorer performance than finetuning the entire network. The effectiveness of the finetuning depends
on how different the new task or dataset is compared to the earlier one. The phenomenon is also
discussed under the term ‘catastrophic forgetting’, where unlike the human brain which is able to
learn new information without forgetting the older one, artificial neural networks still miss this ca-
pability. Goodfellow et al. (2013) suggest that training while heavily relying on dropout alleviates
the problem. However, since they only perform experiments on MNIST, there is still progress to be
made until CNNs reach a desired level of robustness and flexibility towards incremental learning on
current semantic segmentation benchmarks.

Another problem of CNNs is their notorious sensitivity to ‘adversarial examples’. These are
images that are transformed by some small amount of pixel noise, in fact so small that a human
cannot see a difference to the original input image. However this invisible noise is enough to fool
the network recognition pipeline entirely. This problem is inherent to CNNs. As CNNs process
RGB images raw without much pre-processing or feature normalization, the small amount of noise
is amplified during forward propagation, leading to misclassifications. Since the problem has already
been identified, researchers proposed several approaches to attenuate the problem. Concepts like
‘adversarial training’ or ‘defensive distillation’ are able to reduce the problem. However, we are
likely confronted with a new quality of vulnerability due to the usage of end-to-end trained systems
in contrast to hand-crafted features, which were less expressive but also more robust to this kind of
noise.

9.2.3 One CNN architecture for Different Problems?

So far it seems that CNN architectures found to perform strongly on one task (e.g. image classi-
fication) are also suitable for all other vision related tasks. However different tasks often require
different adaptations of existing architectures. For semantic segmentation, for example, the output
needs a high resolution, so the usage of pooling-layers, which decrease the feature map resolution,
is undesirable. Until now, it seems, that small adaptations are useful, when it comes to performing
different tasks. However, the example of the human brain, suggests that there should be one structure,
able to perform all of the tasks. It will be interesting to see, whether computer vision and artificial
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intelligence evolve into the same directions or whether the models and architectures stay different for
every individual field.

Another interesting observation comes from machine translation, where the same CNN archi-
tecture can be trained to take different languages as input and to generate sentences in different
languages as output. The result is a model that can translate from any source into any target language
although the model has never been trained with a single sentence pair in those two languages. This
hints into another interesting direction to unify CNN models while simultaneously addressing the
problem of data shortage.
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