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Preface

Please note that as part of this cumulative doctoral thesis and with the help of my
co-authors, I was able to publish three studies in peer-reviewed journals. The first
one, entitled “Goal or gold: Overlapping reward processes in soccer players upon
scoring and winning money”’, was published in April 2015 in the journal PLOS
ONE and is referred to as “study one” (Héausler et al., 2015). The second study,
entitled “Gain- and loss-related brain activation are associated with information
search differences in risky gambles: An fMRI and eye-tracking study”, was
published in September 2016 in the journal eNeuro and is referred to as “study two”
(H&usler et al., 2016). The third study, entitled “Preferences and beliefs about
financial risk taking mediate the association between anterior insula activation and
self-reported real-life stock trading” was published in July 2018 in the journal
Scientific Reports and is referred to as “study three” (Hausler et al., 2018).

Additionally, please note that the materials and methods described in chapter two
only include the ones used in these three studies and not the ones used in the other
four that I additionally worked on during the time of my doctoral studies (chapters
8.1.2 and 8.1.3).
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Summary

Together with neuroscientific inventions such as functional magnetic resonance
imaging (fMRI), economic and psychological developments in the study of human
decision making have led to the formation of neuroeconomics. As part of this
research, several aspects of reward, loss, and risk processing have been related to
(sometimes irrational) human decision making. The three studies that form the
foundation of this doctoral thesis integrated techniques from neuroscience,

psychology, and economics to answer specific questions about this relationship.

The first study provides evidence for a common neural currency of reward
processing and shows that it exists in the context of money and soccer. The second
study implemented fMRI and eye-tracking in two separate experiments to show that
reward- and loss-related brain activation is associated with attention distribution
(e.g. winning amount vs. winning probability) in risky gambles. The third study
presents the neuroeconomic (i.e. neuroscientific, psychological, and economic)
associations of real-life stock purchase and extends previous findings of financial
risk taking from the laboratory to real life. Using the framework of reward, loss,
and risk processing to answer detailed research questions about human decision
making, all three studies show the strength of the neuroeconomic approach and add

valuable information to our understanding of human behavior.

In the first chapter, the thesis provides background information on the field of
neuroeconomics and describes the benefits of the neuroeconomic approach. The
second chapter describes the materials and methods used in the three studies. It is
followed by chapter three, which summarizes and links the three main publications
that [ worked on during my doctoral studies. Finally, chapter four consists of a con-

clusion, as well as an outlook and possible applications of the research findings.
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Zusammenfassung

Zusammen mit neurowissenschaftlichen Erfindungen wie der funktionellen
Magnetresonanztomographie (fMRT) haben 6konomische und psychologische Ent-
wicklungen bei der Untersuchung von menschlichem Verhalten zu der Entstehung
der Neurodkonomie gefiihrt. Als Teil dieser Untersuchungen wurden Aspekte der
Belohnungs-, Verlust- und Risikoverarbeitung in Relation zu (teilweise irrationa-
lem) menschlichem Verhalten gesetzt. Die drei Studien, welche Teil dieser Doktor-
arbeit sind, haben Techniken der Neurowissenschaften, Psychologie und Okonomie

verwendet, um bestimmte Fragen iiber diese Zusammenhinge zu beantworten.

Die erste Studie zeigt, dass eine gemeinsame neuronale Wéhrung bei der Beloh-
nungsverarbeitung im Kontext von Geld und FuBlball verwendet wird. In der zwei-
ten Studie wurden in jeweils unterschiedlichen Experimenten Daten mit Hilfe von
entweder fMRT oder Blickregistrierungstechniken gesammelt, um einen Zusam-
menhang zwischen der Belohnungs- und Verlustverarbeitung und der Aufmerksam-
keitsallokation (e.g. Gewinnbetrag vs. Gewinnwahrscheinlichkeit) in risikobehaf-
teten Lotterien festzustellen. Die dritte Studie stellt die neuro6konomischen (i.e.
neurowissenschaftlichen, psychologischen und 6konomischen) Zusammenhénge
des Aktienkaufs (im echten Leben) fest und iibertrdgt bisherige laborbasierte Un-
tersuchungen auf das echte Leben. Alle drei Studien verwendeten das Gertist der
Belohnungs-, Verlust-, und Risikoverarbeitung, um die Stirke des neurodkonomi-
schen Ansatzes zu veranschaulichen. Dadurch konnten wertvolle Informationen zu

unserem Verstindnis des menschlichen Verhaltens gewonnen werden.

Das erste Kapitel dieser Doktorarbeit komprimiert unser Hintergrundwissen der
Neurodkonomie und erldutert die Bedeutung des neuro6konomischen Ansatzes.
Das zweite Kapitel beschreibt die Techniken, welche in den drei Studien verwendet
wurden. Im dritten Kapitel werden die drei Veroffentlichungen, an denen ich wéh-
rend meiner Promotion gearbeitet habe, zusammengefasst und verkniipft. Das ab-
schlieBende vierte Kapitel besteht aus einem Fazit, Ansdtzen zu méglichen Folge-

studien sowie denkbaren Anwendungen der Studienergebnisse.
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1. Introduction

Humans make thousands of decisions every day. These can range from small deci-
sions (e.g. what to order in a restaurant) to larger, more life-changing ones (e.g.
what career to pursue after graduating high school). In simple terms, making a de-
cision can be defined as choosing one option over another or several others. Hence-
forth, “decision making” research studies the processes associated with making a

certain choice and the response to its subsequent outcomes.

As far as we know, Blaise Pascal (1623-1662) was the first researcher to express
theories on the processes of decision making (Pascal, 1941). What followed were
approximately 200 years of neoclassical economic research that produced ideas
ranging from marginal value to expected utility theory. During this time, humans
were seen as rational agents who constantly aim to maximize their overall utility
(also referred to as satisfaction or personal happiness). However, the Nobel Prize
winners Daniel Kahneman and Amos Tversky provided several examples that chal-
lenged the belief that humans are completely rational decision makers (Kahneman
and Tversky, 1979). Their revolutionary findings are seen as one of the cornerstones
of behavioral economics and sparked off a great wealth of studies investigating dif-
ferent aspects of human decision making. Additionally, it brought the fields of eco-
nomics and psychology closer together. Then, after a decade of mostly behavioral
research, functional magnetic resonance imaging (fMRI) was invented and intro-
duced into the study of human decision making (Ogawa et al., 1990; Blamire et al.,
1992; Frahm et al., 1992; Kwong et al., 1992).

This made it possible for researchers to use an interdisciplinary approach to study
the underlying brain activation patterns of human decision making. This new re-
search field, now consisting of theories and methods from economics, psychology,
and neuroscience, was named neuroeconomics. Since 1990, the number of studies
in the field of neuroeconomics (here defined as studies using the terms “brain” and
“decision making”) has greatly increased (Figure 1). In the course of this endeavor,
it has become clear that reward, loss, and risk processing play an essential part in

human decision making.
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Figure 1. Timeline of the number of publications in the PubMed database from 1990 to
2017, including the terms ‘“brain” and “decision making” (data obtained via
www.pubmed.gov, accessed on June 28", 2018).

The first part of this introduction starts off by providing a brief history of neoclas-
sical economic theories. It continues with a description of prospect theory and
shows how it led to the establishment of neuroeconomics. This is then followed by
a summary of findings in reward, loss, and risk processing research, which shows
why understanding these processes is essential for our comprehension of human
decision making. The chapter ends with an explanation of why further neuroeco-
nomic research is necessary in order to improve our understanding of human deci-

sion making.
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1.1 Economic Theories of Human Decision Making

1.1.1 Neoclassical Economic Theories

The first theories regarding choice behavior can be traced back to the middle of the
17" century, when Blaise Pascal suggested that decision makers should choose the
option with the highest expected value (EV; Pascal, 1941). Since the EV is made
up of the probability of winning multiplied by the amount to be won, decision mak-
ers are considered risk neutral if they are indifferent between two options with the
same EV, risk-seeking if they choose a risky option over a sure payment with the
same or higher EV, and risk averse if they choose a sure payment over a risky pay-
ment with an equal or higher EV. In this context, it is important to define risk and
distinguish it from the associated concept of uncertainty. While in decisions under
risk, decision makers know the probability distributions of the possible outcomes
(e.g. 50/50 in a coin flip), they have no such information in decisions under uncer-

tainty (Knight, 1921).

Almost two centuries after Pascal, David Ricardo (1772-1823) worked on the de-
termination of prices and suggested a “labor theory of value” (Ricardo, 1817). This
theory states that a good’s value is determined by the hours of labor put into the
creation of the product. Even though several flaws were attached to that theory (put
into modern terms: It is just as hard to barbecue a perfect rump steak from American
beef as it is from Kobe beef, even though the latter is almost five times as expensive),
a solution was only suggested during the marginal revolution (middle and late 19t
century). There, it was emphasized that a second quantity of a product is of higher
value to an individual than a 10,000" quantity of the same product (Glimcher and
Fehr, 2014). The economists during that time reasoned that this is the case, because
the 10,000 quantity does not elicit as much utility (or satisfaction) as the second
quantity. A commonly used example for such an argument is (e.g. 500ml) bottled
water, in which, especially when an individual is thirsty, the 10,000% bottle does not
elicit as much utility as its second counterpart. Then, Daniel Bernoulli (1700-1782)
went one step further and introduced the total wealth of an individual into the EV

formula (Bernoulli, 1954). This implied that individuals should make choices that
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maximize the expected utility (EU), and the associated concave logarithmic func-
tion showed that the wealth of an individual was an important factor in decision

making (Figure 2).

*
Smallincrease in total utility

Total satisfaction/utility
possessed by decision maker

Large increase in total utility

—~ —~
$1 Increment $1 Increment
Total wealth level of the decision maker

Figure 2. The logarithmic expected utility function by Daniel Bernoulli, which shows how
the increments in utility decrease with each additional quantity of a product (here in US $,
adapted from Glimcher and Fehr, 2014).

In 1906, Vilfredo Pareto (1848-1923) started the ordinal revolution by arguing that
the exact absolute numbers or values of different options cannot be exactly quanti-
fied and that the preference of choices can thus only be ordered (Aspers, 2001). In
line with Pareto’s suggestion that choices should be used to study preferences, Paul
Samuelson (1915-2009) established the revealed preference approach. Using this
empirical (and for the first time non-normative) approach, he established the Weak
Axiom of Revealed Preference (WARP). Importantly, Samuelson and his col-
leagues pointed out that while choices can be used to assume utilities, it is the
choices that are directly observed, not the utilities (Samuelson, 1938). Hendrik
Houthakker (1924-2008) subsequently suggested a Generalized Axiom of Revealed
Preference (GARP), which was seen as an advanced version of the WARP. It states

that decision makers who constantly follow a similar ordering of preference can be
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called transitive (Houthakker, 1950). Only then can an ordinal ranking of prefer-
ences for goods be made, and the conclusion drawn that a decision maker is max-
imizing utility. Otherwise, the decision maker is said to be irrational (in an eco-

nomic sense).

Considered as the final part of neoclassical economics, John von Neumann (1903-
1957) and Oskar Morgenstern (1902-1977) established EU theory (von Neumann
and Morgenstern, 1953). As part of this theory, they introduced four axioms that
made it possible to test whether or not an individual is a rational decision maker.
First, the completeness axiom assumes that the individual has predefined prefer-
ences and can always decide between two options (either A over B or B over A
(leaving the issue of indifference between the options aside)). Next, the transitivity
axiom states that a rational individual makes consistent decisions (if A over B and
B over C, then A over C). Third, the continuity axiom assumes that there must be a
lottery between two of the products that has the same subjective value as the third
product. Finally, the independency axiom states that when the same factor is added
to two gambles, then a rational decision maker will maintain the same preference

order as when the two gambles are presented without the additional factor.

1.1.2 From Prospect Theory to Neuroeconomics

In 1979, Daniel Kahneman and Amos Tversky presented empirical evidence that
led to the discredit of EU theory and the establishment of prospect theory (PT;
Kahneman and Tversky, 1979). Using choice problems and thus data from behav-
ioral economics, they showed that humans violate the axioms described in EU the-
ory and show irrational (i.e. not utility maximizing) decision making behavior. As
one of these choice problems, the Allais paradox was used to counter the independ-
ency axiom (Allais, 1953). In the Allais paradox, individuals are asked to make
choices between two gambles in two separate experiments (Table 1). In these ex-
periments, it was found that individuals tend to choose gambles A and D, which is
in stark contrast with the independency axiom of EU theory. This becomes clear
when the paradox is depicted in a different manner (Table 2), which specifically
shows that in each experiment a third factor (1000€ in experiment 1 and O€ in ex-

periment 2, depicted in bold, italicized letters in Table 2) is added to each gamble.
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Table 1. First depiction of the Allais paradox.

Experiment 1 Experiment 2
Gamble A Gamble B Gamble C Gamble D
Amount Chance | Amount | Chance | Amount Chance | Amount Chance
1000€ 100% 1000€ 89% 0€ 89% 0€ 90%
0€ 1% 1000€ 11%
5000€ 10% 5000€ 10%

According to EU theory, the individual should choose either A and C or B and D,
since they can be seen as the same choice. However, empirical data showed that
human decision makers consistently violate the independency axiom of EU theory,

thus showing irrational human behavior.

Table 2. Second depiction of the Allais paradox. The third factors are depicted in bold,
italicized letters and the gamble amounts and chances are colored to emphasize their simi-
larities.

Experiment 1 Experiment 2
Gamble A Gamble B Gamble C Gamble D
Amount Chance | Amount | Chance | Amount Chance | Amount Chance
1000€ 89% 1000€ 89% 0€ 89% 0€ 89%
1000€ 11% 0€ 1% 1000€ 11% 0€ 1%
5000€ 10% 5000€ 10%

As one of the main pillars, PT replaced the utility function with a value function.
This value function showed that individuals have a reference point relative to gains
and losses and that individuals exhibit loss aversion (Kahneman and Tversky,
1979). This becomes particularly clear when the steep convex shape in the loss do-
main is compared to the more gradual concave shape in the gain domain (Figure
3A). It emphasizes that “losses loom larger than gains”, because a loss is related to
a more negative value when compared to its relative gain and the associated positive
value. Besides the value function, Kahneman and Tversky used PT to additionally
provide evidence that individuals overweight low probabilities and underweight
large probabilities, thus resulting in an inverse-S shaped weighting function (Figure
3B).
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Losses P Gains e
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Figure 3. Functions of prospect theory (adapted from Glimcher and Fehr, 2014).
A. Value function, showing a steeper and convex shape for losses. B. Weighting function
(inverse “S” shape), depicting an individual’s tendency to overweight low and underweight
high probabilities.

Therefore, by incorporating the idea of subjective weighting during the decision
process, PT provided researchers with a more accurate model of human decision
making (Civai and Hawes, 2016). Ever since, several phenomena in psychology,
such as the endowment effect (people value things more if they own them) or the
framing effect (behavioral differences when the same question is asked in terms of
losses or gains), have been explained using PT. With respect to individual stock
market behavior, the disposition effect (holding losing stocks too long while selling
winners too early) and the equity premium (irrational risk and loss aversion leading
to a high premium demand for buying stocks instead of bonds), have both been
shown to be consistent with PT and not EU theory (Camerer, 2004). Additionally,
research using real-life financial data has shown that PT can explain systematic
trading biases and loss aversion of individual investors (Benartzi and Thaler, 1995;

Barberis, 2013; Barberis et al., 2016).

The idea of humans as irrational decision makers was so revolutionary that it
brought the fields of economics and psychology closer together and, collectively
with the invention of fMRI in the beginning of the 1990’s (Ogawa et al., 1990;
Blamire et al., 1992; Frahm et al., 1992; Kwong et al., 1992), led to the formation
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of neuroeconomics. Nowadays, almost all research that includes economics, psy-
chology, and neuroscience to study the processes of human decision making can be

considered neuroeconomic research.

1.2 The Neuroscience of Reward, Loss, and Risk Processing

1.2.1 Processing of Rewards, Losses, and Subjective Value

Based on a great wealth of neuropsychological decision making research, several
frameworks have recently been suggested to explain voluntary economic decision
making (O’Doherty, 2011; Padoa-Schioppa, 2011; Schultz, 2015). These frame-
works agree on four major steps (listed here chronologically): choice perception
(sensory detection), choice comparison and decision (including valuation, value
comparison, and action choice), decision implementation (action), and a final learn-

ing step.

In this context, reward-based learning mechanisms have been identified as a crucial
component for the survival of a species (Schultz, 2015). Without rewards, no or-
ganism would survive, since the inherent beneficial properties of a reward (such as
obtaining a nutrient-rich fruit or successful sexual reproduction) are essential for
survival. In a meta-analysis involving 206 fMRI studies, two regions (among others
not mentioned for sake of simplicity) were identified as playing a major role in
reward processing (Bartra et al., 2013); namely, the ventromedial prefrontal cortex
(vimPFC, Figure 4A) and the ventral striatum (VS, also termed nucleus accumbens,
Figure 4B). In line with these findings, neurochemical studies have shown that the
neurotransmitter dopamine, produced in neuronal cell bodies of the ventral tegmen-
tal area (VTA) and the substantia nigra (SN, also seen in Figure 4B), is released in
the vimPFC and the VS (excellent overviews can be found in Haber and Knutson,
2010 and in Schultz, 2015). Here, the reward prediction error (RPE) has been es-
tablished as an explanation of learning processes (Glimcher, 2011; Schultz, 2016,
2017). The RPE is implemented via dopamine and makes it possible for humans to
learn from correct and incorrect choices by comparing the outcome of a decision to

its previous reward prediction (further explanations and a detailed implementation
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can be found in section 2.1.4). A long line of research has identified the VS as the

main center for RPE computations (Schultz et al., 1997; Schultz and Dickinson,
2000; Hare et al., 2008; Fliessbach et al., 2010; Rohe et al., 2012; Schultz, 2015,
2016, 2017).

Figure 4. Visualization of the two most important brain regions related to reward and value
processing (underlined in red). A. The ventromedial prefrontal cortex (vimPFC), here
labeled as the “Medial Prefrontal Cortex”. B. The ventral striatum (VS), here labeled as the
“Nucleus Accumbens”. Both images were adapted from 3D Brain.

Besides rewards, loss avoidance plays an important role in decision making. Since
a loss entails a negative impact on the organism’s state, its natural goal must be to
avoid it. Both the vmPFC and the VS have been shown to be involved in loss pro-
cessing (Seymour et al., 2007; Tom et al., 2007; Cooper and Knutson, 2008), but
the brain region that has primarily been linked (again, amongst others that are not
mentioned here for sake of simplicity) to both the processing and avoidance of
losses has been the anterior insula (Al, Figure 5; Samanez-Larkin et al., 2008;

Fukunaga et al., 2012).

In the light of evolution, the human decision making process is thus based on pur-
suing rewards and avoiding losses. Amongst other factors (e.g. motivation, delay,
and risk, last of which is discussed in the next section; Padoa-Schioppa, 2011), these
two aspects are weighted against each other to assign a value to each option. Im-

portantly, in the valuation and outcome phase of a decision, all three regions (i.e.
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the Al, VS, and especially the vmPFC) have been shown to be active (Bartra et al.,
2013; Clithero and Rangel, 2014).

Anterior Insula (Al)
Figure 5. Neuroanatomy of the anterior insula (AI), A. Illustration of the insula cortex
(adapted from Singer et al., 2009). B. Photograph of a human left insular cortex, with both
ac (anterior long insular gyrus) and as (anterior short insular gyrus) being part of the
anterior insula (adapted from Craig, 2009).

1.2.2 Risk Processing

In decisions under risk, the probability distributions of the possible outcomes are
known. Notably, all three previously mentioned regions (i.e. the Al, VS, and the
vmPFC) have been shown to play important roles in risky decision making (Figure
6). Especially the risk seeking signals in the VS and risk aversion signals in the Al
have been the focus of a great line of previous laboratory-based studies (Kuhnen
and Knutson, 2005; Knutson and Greer, 2008; Preuschoff et al., 2008; Bossaerts,
2010; Rudorf et al., 2012; Smith et al., 2014; Knutson and Huettel, 2015; Leong et
al., 2016). In a recent seminal study investigating brain activation in market bubbles,
VS activation (in the region of interest shown in Figure 6B) was linked to a higher
propensity to buy risky assets, while Al activation (in the region of interest shown
in Figure 6C) was associated with selling such assets in time before the market
crashed (Smith et al., 2014). Henceforth, the Al activation acted as a warning signal
and individuals with more Al activation and less VS activation earned more money

in the experiment (Smith et al., 2014).
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ventromedial Prefrontal Ventral Striatum (VS) Anterior Insula (AI)
Cortex (vimPFC)

Figure 6. Three brain regions of interest from the literature that are known to be involved
in risky decision making. A. The modality-independent subjective value signal in the
ventromedial prefrontal cortex (vmPFC; adapted from Bartra et al., 2013). B. The 6 mm-
radius sphere centered on the ventral striatum (VS; adapted from Smith et al., 2014).
C. The 6 mm-radius sphere centered on the right anterior insula (Al; adapted from Smith
et al., 2014, who created it by taking the peak coordinates from the peak “risk prediction”
signal from Preuschoff et al., 2008).

1.3 Benefits of the Neuroeconomic Approach

Since its inception in the 1990s, the field of neuroeconomics has significantly ad-
vanced. The inclusion of neuroscientific techniques made it possible for economists
to understand the neural processes of certain economic decisions. Neural processes
from prospect theory, such as loss aversion (Tom et al., 2007) and framing effects
(Gonzalez et al., 2005), were mostly investigated in the beginning of the 21% cen-
tury. On top of the basic and exploratory research, each neuroeconomic subfield
(e.g. risky choices or intertemporal discounting) now integrates additional scientific
tools (e.g. personality tests) and includes studies with more applied questions. In
this process, more accurate and comprehensive models of human decision making
have been developed, and some analyses that include brain activation have even
gone so far as to predict real-life outcomes, such as the cultural success of music
(Berns and Moore, 2012) or the success of public health campaigns (Falk et al.,
2015c¢). Both basic and applied neuroeconomic research is important for the field,

as one can drive the other and strengthens the collaboration between science and
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funding agencies (especially from the industry). This thesis contains aspects from
both basic and applied research. Study one describes the basic research of a com-
mon neural currency in context with two applied topics: soccer and money. Study
two is a basic research study that analyses the correlation between attention distri-
bution in risky gambles and reward- and loss-related brain activation. Study three
is the most applied study and presents the first neuroeconomic model of real-life

stock trading.

Avenues of both basic and applied research are necessary to improve and build
newer and better models of human behavior, which in turn reveal previously hidden
gaps of knowledge. This precept guided the studies included in this thesis. In par-
ticular, study three demonstrates that a combined neuroeconomic (neuroscience,
psychology, and economics) approach is better at filling one of many knowledge
gaps found in relation to real-life household financial behavior (Frydman and

Camerer, 2016), namely real-life financial risk taking.
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2. Materials and Methods

This chapter describes the materials and methods that [ used throughout my doctoral
studies. It gives an overview of how brain activation can be measured using func-
tional magnetic resonance imaging (fMRI) and how risk-, reward-, and loss-related
brain activation can be analyzed. This is then followed by a description of further
neuroeconomic techniques, including risk assessments (behavioral and self-assess-
ments), eye-tracking, personality measurements, as well as the assessment of house-

hold and cognitive characteristics.

2.1 Functional Magnetic Resonance Imaging

2.1.1 From Atomic Flips to Whole-brain Analysis

First published in the early 1990s, fMRI is a neuroimaging technique that provides
researchers with the ability to create brain activation images based on the metabolic
changes found in relation to brain activity (Ogawa et al., 1990; Blamire et al., 1992;
Frahm et al., 1992; Kwong et al., 1992). In fMRI, a very strong and static magnetic
field (quantified in Tesla (T)) is used to align atoms along the axis of the magnetic
field (Huettel et al., 2014). A specialized electrical coil then uses radio waves to
deliver pulses of energy to these atoms, which causes them to jump from a low- to
a high-energy state and back, thus resulting in a measurable energy release (the
magnetic resonance signal (MR signal; Huettel et al., 2014)). Red blood cells con-
tain the molecule hemoglobin (Hb), for which the degree of oxygenation varies.
Oxygenated Hb is diamagnetic, whereas deoxygenated Hb is paramagnetic. The

MR signal reflects this ratio.

In this context, it is important to understand the blood-oxygen-level dependent
(BOLD, or hemodynamic) response (Figure 7), seen as the physiological response

to neuronal activation (Siero et al., 2013).

28



Neuroeconomic Foundations of Reward, Loss, and Risk Processing

signal 5 4,
intensity /°\ (11y main BOLD response
. 12-30s time

(1) initial dip (1) post stimulus undershoot

Figure 7. A typical blood-oxygen-level dependent (BOLD) response, divided up into three
phases (adapted from Siero et al., 2013).

In a typical BOLD response, a firing of neurons in a certain brain area leads to local
oxygen extraction and increase of deoxygenated blood concentration, represented
as the “initial dip” (Siero et al., 2013, Figure 7). This is then followed by the main
BOLD response, which is a major boost in cerebral blood flow and results in an
oversupply of oxygenated blood to the area associated with the neuronal activity
(Siero et al., 2013, Figure 7). The change in the ratio of oxygenated to deoxygenated
blood is used to create parametric maps of the brain, thus indicating brain activation
associated with a specific task. Since the brain is reconstructed using three-dimen-
sional 3 x 3 x 3 mm cubic spatial units called “voxels”, the BOLD time course of
each voxel can be investigated (Markett, 2016). However, before any investigations
can take place, artifacts are removed in a series of computational procedures, called
preprocessing. These usually include slice time correction, motion correction, spa-
tial normalization, reslicing, and a final smoothing step. After preprocessing, a gen-
eral linear model (GLM) is used to predict the BOLD time course variation of each
voxel using a combination of several regressors (Penny et al., 2011). A basic GLM

formula is as follows:

Equation 1:

y=x*B+n
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Here, y stands for the dependent variable (in our case the observed BOLD signal),
x for the regressor, B for the weight attached to the regressor (B-value), and n for
the intercept, which is a constant value added to the equation (Penny et al., 2011).
The regressors are defined by the researcher and according to the experimental par-
adigm used in the fMRI task.

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225
Paradigm timeline (s)
T LI T B B B BN L T T - "l\
0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225

Paradigm timeline (s)

Figure 8. Two types of fMRI paradigm designs. A. Example of a block-related design,
showing the stimuli of conditions A (light blue) and B (light orange) as part of three
predefined alternating blocks each. B. Event-related design, randomly showing stimuli
from condition A (light blue) and condition B (light orange).

The design of an fMRI paradigm that is shown to the participant can be either block-
or event-related!. In a block-related design, two or more different conditions are
variantly shown to the participant in a pre-defined sequence (Figure 8A). This is
done to study the brain activation differences between the conditions. However, due
to the limitations of block-related designs (e.g. habituation effects), researchers de-
veloped the event-related design (Figure 8B; Josephs et al., 1997). In event-related

fMRI tasks, the presentation of certain stimuli is not collectively shown as part of a

' Or a mixture of the two (mixed design). Its description is omitted here for the sake
of simplicity.
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block. Instead, the presentation of trials belonging to a certain condition (e.g. con-
dition A vs. B in Figure 8B) is randomized. Even though an event-related design
needs more trials per condition than a block-related design, it is better at estimating
the shape of the hemodynamic response function and allowing the estimation of
brain activation in response to single events (D’Esposito et al., 1999). The invention
of event-related designs led to a whole new genre of fMRI experiments, because
researchers could from thereon use fMRI to study the brain activation patterns as-
sociated with more complex tasks (Josephs et al., 1997; D’Esposito et al., 1999). In
the studies presented as part of my dissertation, we exclusively used event-related
fMRI designs.

An example of a regressor (x in Equation 1) that my colleagues and I defined in one
of our event-related fMRI tasks is the choice of stock or bond in the gain domain in
the stock learning task of study three (for all regressors of each fMRI study please
see pages 6 and 7 in study one, Table 1 in study two, and Supplementary Tables S1
and S2 in study three). Depending on the research question, a duration (e.g. the
reaction time until stock or bond selection in study three) and parametric modula-
tors (e.g. the reward prediction in Table 2 of study two, further explained in chapter
3.14) can be defined for each regressor, as well. Once the regressors (x) are defined
and used to estimate the B-values (B), t-tests can be calculated to look for differences
between two experimental conditions (e.g. stock > bond choice, study three) or be-
tween a regressor and baseline activation (e.g. parametrically modulated reward
prediction error > 0, all three studies). To look at such differences, contrasts are
established (e.g. B1 > B2) at the individual subject level (first-level, also later used
in the weighted B-value extraction). The specific contrasts of all participants can
then be combined at a group-level to make statistical inferences across participants.
This is usually referred to as the second-level analysis. However, since one fMRI
volume consists of more than 10,000 voxels, the whole-brain activation cannot
simply be looked at without a statistical threshold and should be corrected for mul-
tiple comparisons. In our studies, we attempted to minimize the alpha (false-posi-
tive) error by using a conservative family wise error (FWE) rate correction using
the Bonferroni procedure. Additionally, we used a cluster correction of larger than

ten voxels (k > 10) to eliminate isolated voxels that exceeded the FWE-threshold.
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2.1.2 Further Brain Analysis

On top of the now-standard whole-brain analysis, we used three additional tech-
niques in our studies: covariate and region of interests? analysis, as well as weighted
-value extraction. In covariate analysis, a variable (e.g. a personality trait score
such as egoism in study one) is included as a covariate in a certain contrast (e.g.
scoring a goal after a shot > scoring after a pass, study one) to test for the association
between the variable and the estimated brain activation. In region of interest analy-
sis, masks can be taken from established previous studies to test for locally specific
brain activation. Alternatively, researchers can create their own regions of interest
using their own contrasts (considered the least acknowledged option since the re-
gions of interest are created from and analyzed with the same data set) or by creating
spheres around coordinates taken from the literature or a reverse-inference database
(e.g. Neurosynth). For each participant, mean weighted B-values can then be ex-
tracted for each mask. Importantly, these values can be used for further statistical
procedures, such as correlation analysis with eye-tracking fixations (study two) or
as independent variables in regression analysis of real-life financial risk taking out-

comes (study three).

2.1.3 Measuring Financial Risk-related Brain Activation

Financial risk-related brain activation can be measured in several different ways
(Hausler and Weber, 2017). While paradigms such as the Balloon Analogue Risk
Task (BART, Lejuez et al., 2002) and the certainty equivalent (CE) task
(Christopoulos et al., 2009) represent more abstract paradigms, we used an estab-
lished (Kuhnen, 2015) and more applied stock learning paradigm that specifically
asked participants to decide between a stock (risky) and a bond (riskless). More
specifically, participants were asked to make 96 choices between a stock (risky) and
a bond (riskless) option in a gain or a loss context (Figure 1 in study three) and we
used this task to compare brain activation during a risk seeking versus a risk aver-

sive choice (stock > bond). Additionally, we extracted B-values from these choice

2 Please note that the usual abbreviation for region of interest (i.e. ROI) is not used through-
out this thesis, because of possible confusion with the Risk Optimism Index (ROI, see
chapter 2.2.1 for details)
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contrasts using regions of interest taken from the neuroeconomic literature (study

three) and subsequently associated them with real-life financial risk taking.

2.1.4 Measuring the Components of Reward and Loss Processing

In 1997, researchers used single dopamine neuron recordings in monkeys to find
the neural basis of reward processing (Schultz et al., 1997). Since then, many stud-
ies have investigated reward processing (for an excellent review see Schultz, 2016)
and have identified its main components, namely reward prediction (RP), reward
reception (RR), and reward prediction error (RPE). The RP represents the probabil-
ity of obtaining a reward (e.g. 33.33% for selecting the correct symbol out of three
(Figure 2B in study one)). Since the RR can either be a win (represented as a “1”’)
or no win (represented as a “0”), the RPE can be calculated as the difference be-
tween the RR and the RP (RPE = RR — RP). In this context, paradigms with finan-
cial incentives can be very useful, because the specific values of the above-named
components can be introduced as parametric modulators in the first-level analysis.
Our research group has therefore developed several such paradigms to investigate
the neural activations of each reward processing component (Fliessbach et al., 2010;

Rohe et al., 2012).

We chose one of the previously established paradigms to be part of our research
(studies one and two). In this monetary guessing paradigm, the participant is asked
to make a choice between either one, two, three, or four symbols. A correct choice
results in a win of 10€ cents, while a wrong choice results in no monetary gain. In
study one, we used the exact same version of the paradigm as in a previous study
(Rohe et al., 2012). This paradigm contained 150 trials, since in fMRI research mul-
tiple trials of the same manipulation are necessary to improve the functional signal-
to-noise ratio (signal averaging; Huettel et al., 2014). Before the second study, we
performed a small (n = 20) fMRI pre-testing study in which we used modified ver-
sions (with fewer trials) of the monetary guessing paradigm to identify the number
of trials necessary to elicit robust reward-related brain activation. As a result, we
were able to decrease the trial number down to 48 (while keeping an appropriate
signal-to-noise ratio and reliable reward processing activation), thus making the

paradigm less time-consuming. Importantly, this modification made it possible to

33



Neuroeconomic Foundations of Reward, Loss, and Risk Processing

additionally include a loss and a neutral domain. In the loss domain, we introduced
the processing components of loss prediction (LP: the probability of obtaining a
loss), loss reception (LR: either no loss (represented as 0) or loss (represented as -
1)), and loss prediction error (LPE = LR — LP). By using each of these components
as parametric modulators during either the choice or the feedback phase of the par-
adigm (see Table 2 in study two for an overview), we were able to study both reward

and loss activation using a single paradigm.

In addition to investigating monetary reward and loss processing, we applied the
reward processing logic to a social context, namely two-versus-one situations in
front of a soccer goal (soccer paradigm, Figure 1 and 2 in study one). By pre-testing
these situations via the online survey tool, we were able to obtain the average like-
lihood of scoring a goal (with 38.6 £3.44 ratings per situation). We then imple-
mented this probability as the RP modulation. Since the result was either scoring a
goal (represented as 1) or not (represented as 0), the RPE could be calculated. These
three parametric modulators where then included in the first-level analysis and
made it possible to compare money- and soccer-related reward activation (study

one).

In study three, we used the stock payoff feedback phase of the stock learning task
to compare good with bad outcomes (i.e. high stock payoff feedback after stock
choice > low stock payoff feedback after stock choice) and to study reward and loss
reception in a risk-related context (Supplementary Tables S3 and S4 in study three,
see chapter 2.2.2 for further details).

2.2 Risk Taking and Further Risk-related Assessments

2.2.1 Self-assessments of Financial Risk Taking

In study three, several self-assessment scales from financial institutions and from
the German Socio-Economic Panel (SOEP; Wagner et al., 2007) were used to meas-
ure self-ratings pertaining to either risk tolerance or risk optimism (please see Sup-

plementary Table S5 in study three for a full overview). Additionally, risk taking in
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a hypothetical lottery question was assessed by asking how much of 100,000€ (pre-
viously won in a lottery) a participant would re-invest into a 50:50 chance of an-
other lottery. Here, the amount invested was taken as another measure of financial
risk taking. Importantly, all the behavioral (except for the stock estimation error)
and self-assessments were grouped into either the risk tolerance or risk optimism
category. Each category then underwent a principal component analysis (PCA),
which resulted in two indices representing risk optimism (ROI) and risk tolerance
(RTI). Notably, the creation of more general risk factors using both behavioral and
self-assessment measures has recently been shown to be appropriate, since behav-
ioral and propensity measures assess specific risk components and correlate only

weakly (Mamerow et al., 2016; Frey et al., 2017).

2.2.2 Behavioral Measurements

In the stock learning task of study three (Figure 1 in study three), participants were
asked in 96 trials to decide between a risky (stock) and a riskless (bond) choice.
The 96 trials were split up into 16 blocks containing either a good or a bad stock. A
good stock was programmed to present a good outcome in 70% of the trials, while
a bad stock was programmed to present a good outcome in only 30% of the trials.
Over the course of a block (containing six trials each), subjects used the stock pay-
off feedback to learn about a stock being either good or bad. To exclude a learning-
effect on the risk-related choice, we calculated the ratio of risky (stock) to riskless
(bond) choices, but only using the choice of the first trial out of every block. Besides
this behavioral measure of financial risk taking, we used the stock estimation after
each stock payoff feedback to obtain two measurements relating to risk learning.
As one of these, the stock assessment error was taken as the absolute difference
between the objective and subjective probability of the stock being good, while be-

havioral risk optimism was measured as the same, but non-absolute difference.

Another behavioral paradigm assessing financial risk taking was the stock alloca-
tion task, used in study three (Supplementary Figure S4 in study three). Here, par-
ticipants were asked to make ten independent decisions, in which they had to split
up 23€ into either a risky (stock) or riskless (bond) asset. The average amount of

money allocated to the stock was taken as a measurement of financial risk taking.
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2.2.3 Eye-tracking

In eye-tracking research, a participant’s eye is illuminated with an infrared light
source (Holmqvist et al., 2011). Together with a corneal reflection, the pupil posi-
tion is tracked and the point of regard is thus calculated (Holmgqvist et al., 2011).
Being the most popular eye-tracking method since the early 1990s, the pupil-cor-
neal reflection system is used to track the eye while compensating for small head
movements (Holmgqvist et al., 2011). Several types of eye movement events (sac-
cades, smooth pursuits, microsaccades etc.) can be measured this way. We were
specifically interested in fixation numbers (i.e. gaze stability > 50 ms in prespeci-
fied areas of interest (AOI); study two), since these were previously used in finan-
cial risk-related research (Brandstétter and K6rner, 2014) and are known to repre-

sent attention.

To measure attention patterns in a gambling task (Figure 2 in study two), two col-
leagues and I designed and set-up a laboratory with an eye-tracking and behavioral
testing area (Figure 9). On the participant table (Table #1 in Figure 9) of the eye-
tracking area, a chinrest, a display, and a keyboard were used to fixate the partici-
pant’s head, show the paradigm, and let the participant make decisions. Together
with an adjacent infrared light illuminator, an Eyelink 1000 (SR Research) eye-

tracker was positioned below the display.
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Figure 9. Setup scheme of the laboratory, which included an eye-tracking area (light
orange) and a behavioral area (light blue).

Using the pupil and corneal reflection of the infrared illumination to reconstruct a
point of regard, we measured the number of fixations in predefined AOIs (Figure
2C in study two). We used these to calculate attentional differences between mon-
etary values (f(v)) and their respective probabilities (f(p)) in risky gambles in the
win (Df win = f(v) — f(p)) and in the loss (Df loss = f(v) — f(p)) domain (Figure 2
and Table 7 in study two). These attentional differences (Df win and Df loss) were
then associated with the reward and loss-related brain activation measured in a sep-
arate paradigm (Figure 1 in study two). Since a choice between a high- and a low-
risk gamble (A and B, Figure 1B in study two) had to be made additionally, we used
the percentage of high-risk choices in each domain as a behavioral measurement of

financial risk taking.

2.3 Personality

During my PhD, I used four questionnaires to assess personality traits: the NEO
Five Factor Inventory (NEO-FFI, study three), the HEXACO Personality Inventory
- Revised (HEXACO-PI-R, study one), the social value orientation (SVO, study
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one) questionnaire, and Reuter and Montag’s revised Reinforcement Sensitivity
Theory Questionnaire (rRST-Q, study three). In study one, we used to the
HEXACO-PI-R and the SVO questionnaire due to their relevance to our research
question concerning egoism, while the widely employed NEO-FFI and rRST-Q

were used in study three to study the correlates of financial risk taking.

The NEO-FFI is a 60-item inventory that is based on the Five-Factor Model (FFM)
of personality and was developed to measure the personality traits of “Neuroticism”
(NEO-N), “Agreeableness” (NEO-A), “Extraversion” (NEO-E), “Conscientious-
ness” (NEO-C), and “Openness to Experience” (NEO-O, (Costa and McCrae,
1992). A decade later, the HEXACO model was developed to measure six person-
ality scales: “Honesty-Humility”, “Emotionality”, “eXtraversion”, “Agreeable-
ness”, “Conscientiousness”, and “Openness to Experience” (Lee and Ashton, 2004,
2006). Even though the HEXACO model is based on the Five-Factor model, it im-
portantly contains the additional HH scale, which has been shown to lie beyond the
Big Five and measure egoism (Ashton and Lee, 2005; de Vries et al., 2009; Hilbig
and Zettler, 2009; Lee and Ashton, 2012; Ashton, 2013). In study one, we thus used
the HH score to study the association between brain activation in soccer situations
and egoism. We furthermore used the SVO questionnaire, which uses financial de-
cisions in a social context to distinguish between prosocial and proself choices (van
Lange et al., 1997).

While the FFM was developed using a lexical approach (Cattell, 1947; Tupes and
Christal, 1992; Ashton, 2013), the first RST was developed on the basis of brain
structures (Gray, 1981, 1987; Ashton, 2013). It was initially designed to measure
the mesolimbic behavioral activation system (BAS: formerly the “go” system),
septo-hippocampal behavioral inhibition system (BIS: formerly the “stop” system),
and the Fight-or-Flight system. Later, it was first revised by the original authors
(Gray and McNaughton, 2000) and then also recently (Reuter et al., 2015) to in-
clude revised versions of the BAS and BIS, as well as a new Fight Flight Freeze

System (FFFS). We used the most recent version (i.e. the rRST-Q in study three) to
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assess approach and goal-directed behavior (BAS), responses to situations of un-
certainty (or wary behavior, BIS), as well as defensive responses (low fight, high

flight and high freezing behavior, FFFS) in relation to financial risk taking.

2.4 Sociodemographic Characteristics

We used several scales and questions from the German Socio-Economic Panel
(SOEP) study (Wagner et al., 2007) and the Munich Center for the Economics of
Aging (MEA) to assess household characteristics (Table 1 in study three) pertaining
to the personal (e.g. age and years of education) and family situation (e.g. marital
status and number of people in household). Questions regarding financial matters
(e.g. income and having financial liabilities) and financial knowledge (financial lit-
eracy, numeracy, and debt literacy) were assessed (Christelis et al., 2006; Lusardi
and Tufano, 2009; Mitchell and Lusardi, 2011), as well. Importantly, the dependent
variable of study three (“Do you trade stocks yourself?””) was specifically created

to study financial risk taking in a real-life context.

Since the measurement time of each participant in the experiment of study three
was already approximately three to four hours, we decided to include only three
sub-scales of the Intelligence-Structure-Test 2000 Revised (IST 2000R). These cog-
nitive measures assessed verbal, numerical, and figural intelligence (Liepmann et

al., 2007).
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3. Summary of Research Findings

3.1 Study One: Comparing Reward Processing upon Winning
Money and Scoring a Soccer Goal

Hausler AN, Becker B, Bartling M, Weber B (2015) Goal or gold: overlapping
reward processes in soccer players upon scoring and winning money. PLOS

ONE ¢0122798:1-16.

The idea of a “common neural currency” was first introduced in 2002 and defined
as a necessity in reward-guided behavior “to value diverse behavioral acts and sen-
sory stimuli” (Montague and Berns, 2002). To enable a comparison between diverse
goods (e.g. 2€ (money) and 100g of blueberries (food)), neuroeconomists deemed
it crucial for the brain to transform the values of goods into one neural currency.
Ever since, many studies have shown similarities in neural processing of dissimilar
goods (Chib et al., 2009; Hare et al., 2010; Bartra et al., 2013; McNamee et al.,
2013; Clithero and Rangel, 2014). In relation to social rewards and in line with
social exchange theory (Homans, 1958), only two studies had previously investi-
gated common reward processing upon positive monetary and social outcomes.
Izuma et al. (2008) studied brain activation in response to monetary gains and good
reputation, while Lin et al. (2012) examined brain activation in relation to monetary
gains and positive social feedback. However, no study had examined, whether a
common reward-related brain activation would also be found in situations of posi-
tive social reward in the context of sports. For this purpose, we used arguably one
of the most common reward-related sport situations, i.e. scoring a goal in the
world’s most popular team sport: soccer (in 2006, 270 million people were active
in soccer (FIFA, 2007)).

We invited 33 soccer players (24.4 £3.2 years, all male) to the study and used the
three components of reward prediction error (RPE) processing (reward prediction
(RP), reward reception (RR), and RPE, see chapter 2.1.4 for details) to compare

brain activation upon winning (or not winning) money and scoring (or not scoring)
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a soccer goal (Figure 2 in study one). We found that reward-related structures (spe-
cifically the ventromedial prefrontal cortex (vmPFC) and the ventral striatum (VS))
were activated during RR and RPE processing of both reward types (Table 1 and
Figure 3 in study one). These major findings supplied a possible reward-guided
explanation for the popularity of playing soccer and team sports in general. They
provided further evidence for a common neural currency, which has recently been
additionally extended using another neuroscientific method, namely electroenceph-
alography (EEG) (Distefano et al., 2018).

We additionally studied egoism, because it is seen as a motive for allegedly selfish
behavior in sport situations. We used the ratio of shooting versus passing in a newly
invented soccer paradigm (Figure 2A in study one) and two personality scales (the
Honesty-Humility (HH) scale of the HEXACO-PI-R, as well as the social value
orientation questionnaire (SVO); see chapter 2.3 for details) as indices of egoism.
We hypothesized that more egoistic individuals would have higher reward-related
activation upon scoring after having decided to shoot the ball versus scoring after
having decided to pass it to a teammate. This would then indicate a reward-guided
motivation for seemingly egoistic behavior on the soccer pitch. We did not find
evidence supporting this theory, but discovered that activation in the left middle
frontal gyrus (MFG) upon scoring after a pass versus a shot is positively correlated
with egoism (Figure 4 in study one). We were therefore able to draw two additional
minor conclusions. In soccer, more egoistic individuals do not act egoistically due
to a reward-related motive. Furthermore, they require more self-reflective spatial
and reasoning neural effort upon observing success after a selfless act (Belger et al.,
1998; Goel et al., 1998; Taylor et al., 1998; Prohovnik et al., 2004; Addis et al.,
2007).
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3.2 Study Two: Correlating Reward- and Loss-related Brain
Activation to Attention in Risky Gambles

Hausler AN, Artigas SO, Trautner P, Weber B (2016) Gain- and loss-related brain
activation are associated with information search differences in risky gambles:

An fMRI and eye-tracking study. eNeuro 3:1-13.

After having completed study one and while collecting the data for study three, I
reviewed the literature to find out whether individuals — when confronted with a
lottery — pay more attention to the probability of winning or to the associated mon-
etary amount. Additionally, I was interested in whether such differences had previ-
ously been associated with brain regions responsible for reward, loss, and risk pro-
cessing. I found that studies had demonstrated individual differences in attention
(Fiedler and Glockner, 2012; Brandstitter and Korner, 2014) and risk-related brain
activation (Samanez-Larkin et al., 2008; Rudorf et al., 2012; Smith et al., 2014).
Additionally, in the context of human decisions involving rewards, losses, and risks,
an “affect-integration-motivation” (AIM) framework had been suggested, thus
providing a framework for the study of brain activation and attention (Samanez-
Larkin and Knutson, 2015). Along with the AIM framework, many previous studies
involving reward, loss, and risk processing (Schultz et al., 1997; Knutson et al.,
2000; Kuhnen and Knutson, 2005; Tom et al., 2007; Seymour et al., 2007; Cooper
and Knutson, 2008; Samanez-Larkin et al., 2008; Fliessbach et al., 2010; Fukunaga
et al., 2012; Bartra et al., 2013; Clithero and Rangel, 2014) led to our hypothesis
that gain- and loss-related brain activation in the ventromedial prefrontal cortex
(vmPFC), the ventral striatum (VS), and the anterior insula (AI) would be associ-
ated with attention (measured via number of fixations; see chapter 2.2.3 for details)
to probabilities or their respective monetary outcomes in an eye-tracking task in-

volving risky gambles.

We used a similar fMRI paradigm to the monetary paradigm in study one, but ad-
ditionally included a loss domain (Figure 1 in study two; see chapter 2.1.4 for de-
tails). Even though eye-tracking had been used in relation to event-related fMRI
paradigms and inside the fMRI scanning environment before (Ettinger et al., 2008;

Lim et al., 2011; Meyhofer et al., 2015; Kasparbauer et al., 2016), we collected the
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eye-tracking data outside of the fMRI environment. For this purpose, we created an
eye-tracking task with risky gambles (Figure 2 in study two) based on a previously
established binary lottery choice task (Fiedler and Glockner, 2012; Glockner et al.,
2012; Fiedler et al., 2013).

We invited 50 healthy adult males (25.9 +4.6 years, all male) to participate in both
experiments and found that individual differences in vmPFC activation during RPE
processing were associated with paying more attention to the monetary outcomes
compared to the respective probabilities in the gain domain (Figure 4A and B in
study two). Additionally, individual differences in the VS and the posterior cingu-
late cortex (PCC) during loss prediction error (LPE) processing (see chapter 2.1.4
for details) were associated with paying more attention to the probabilities of risky
gambles in the loss domain (Figure 4C and D in study two). This study therefore
provided evidence that individual differences in monetary reward and loss pro-
cessing are associated with individual differences in risk-related attention to either
probabilities or their respective outcomes. Additionally, this study was the first to
show a correlation between fMRI brain activation and eye-tracking data, as meas-
ured via two independent experiments using either method. Our RPE and LPE find-
ings have recently been strengthened by the inclusion in an fMRI meta-analysis on
prediction error valence and surprise (Fouragnan et al., 2018), in which similar
brain regions were found to be responsible for each processing type (e.g. vmPFC in
reward domain and insula in the loss domain). Furthermore, a recent study on the
brain activation mechanisms of risky vs. secure e-payments (Casado-Aranda et al.,
2018) has extended our brain activation findings to a more applied context. Here,
the researchers linked the brain activation, which was found in our study in relation
to reward prediction (e.g. the middle frontal gyrus), to brain activation in response

to secure e-payments (Casado-Aranda et al., 2018).

3.3 Study Three: Neuroeconomic Correlates of Real-life
Financial Risk Taking

Héausler AN, Kuhnen C, Rudorf S, Weber B (2018) Preferences and beliefs about

financial risk taking mediate the association between anterior insula activation
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and self-reported real-life stock trading. Scientific Reports 8:1-13.

In Germany, ownership of direct shares amongst private households amounts to an
estimated 158 billion Euros (Deutsche Bundesbank (German National Bank),
2016). However, in comparison to other countries, the German population is finan-
cially risk averse and invests fewer of its assets into stocks (von Liide, 2013;
Campbell, 2016; OECD, 2017). Since this behavior can be costly for households
(Calvet et al., 2007) and the neuroscientific correlates of real-life financial risk tak-
ing are unknown, we invited 210 participants (39.0 £6.7 years, all male) to partake
in a 3.5h long neuroeconomic experiment. Participants underwent extensive neuro-
scientific, psychological, and economic measurements to find the correlates of in-

dividual differences in financial risk taking.

We used the real-life financial risk taking question of active stock trading (“Do you
trade stocks yourself?”’) to group individuals into active stock traders and non-active
stock traders. We then adapted a previously established stock paradigm (Kuhnen,
2015) to a functional magnetic resonance imaging (fMRI) setting. By extracting
brain activation during risky (stock) versus safe (bond) choice from regions of in-
terest (taken from three seminal neuroeconomic studies (Preuschoff et al., 2008;
Bartra et al., 2013; Smith et al., 2014)), we examined whether the previously found
association between financial risk taking and the ventral striatum, ventromedial pre-
frontal cortex, and the anterior insula (Al; Kuhnen and Knutson, 2005; Singer et al.,
2009; Mohr et al., 2010; Wu et al., 2011; Rudorfet al., 2012; Bartra et al., 2013; De
Martino et al., 2013; Clithero and Rangel, 2014; Smith et al., 2014; Knutson and
Huettel, 2015; Leong et al., 2016) would transfer to financial risk taking in real life.

We found that individuals who trade stocks in real life show a lower risk aversion
signal in the Al when choosing the stock versus the bond in the fMRI task. The
study therefore advanced the neuroeconomic research agenda by discovering the
brain activation correlates of real-life stock trading. Because evidence of the asso-
ciation between household variables and neuroscience had been scarce (Frydman
and Camerer, 2016), the study was able to fill this important gap in the field of
neuroeconomics (i.e. relating laboratory measures to real-life behavior). Addition-

ally, we showed that not economic variables (i.e. financial constraints, education,
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the understanding of financial matters, and cognitive abilities), but two separate
indices of risk tolerance and risk optimism explain the association between brain
activation and real-life financial risk taking behavior. To formally test this, we used
mediation analysis and found that the association between the risk aversion signal
in the Al and real-life financial risk taking was mediated through both indices of

risk tolerance and risk optimism.
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3.4 Linking the Three Studies

The three studies presented in this thesis all used fMRI to provide new scientific
evidence on the neuroeconomic foundations of reward, loss, and risk processing
(Figure 10). Study one compared brain activation from a monetary and a social
(sports) context, but only in the reward domain. Study two built on these findings
by using a similar paradigm that additionally included a loss domain. This made it
possible to further analyze loss-related brain activation. Finally, study three inves-
tigated the brain activation when participants were in both the reward and loss do-
main, and were asked to make risk-related decisions ((risky) stock vs. (safe) bond).
The extracted reward-, loss-, and risk-related brain activation (VS, vmPFC, and Al)

was then associated with financial risk taking behavior.

Study one (PLOS ONE)

* Brain activation: Reward-related
(VS and vmPFC)

* Variables: fMRI and personality

* Research type: Basic and applied

Study two (eNeuro)

* Brain activation: Reward- and loss-related
(VS, vmPFC, and Al)

* Variables: fMRI and eye-tracking

* Research type: Basic

Study three (Scientific Reports)

* Brain activation: Reward-, loss-, and risk-
Ls related (VS, vmPFC, and Al) <«
* Variables: fMRI and economic/psychological
* Research type: Applied

Figure 10. Diagram depicting the relation between the three studies presented in this thesis.
This overall scheme shows the use of neuroeconomic (neuroscientific, economic, and
psychological) methods to investigate both basic and applied research questions.
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All three studies show the benefit of the neuroeconomic approach to answer both
basic and applied research questions about individual and group differences in hu-
man decision making (Figure 10). Studies one and two both unveiled individual
differences in brain activation and found the respective associations with personal-
ity traits (egoism in study one) and behavioral outcomes (attention in study two).
Study one investigated the basic research question of a common neural currency in
monetary and social contexts. It additionally combined fMRI with personality ques-
tionnaires to answer a more applied research question that investigated egoism in
sports. The analysis of the monetary-relevant brain activation in study one was then
extended in study two. Here, the reward- and loss-related brain activation was
placed into context with attention (eye-tracking) patterns to answer the basic re-
search question of whether these two measures are significantly correlated. Finally,
study three investigated the applied research question of stock trading in real life.
To fully show the benefit of the neuroeconomic approach, it included a comprehen-
sive methodology that combined fMRI with research methods from economics and
psychology. This extensive approach unveiled the group differences between indi-

viduals who trade stocks in real life and those who do not.
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4. Conclusion, Outlook, and Applications

In this thesis, 1 presented three major findings. First, reward activation in social
activities such as sports and reward activation elicited via financial wins share a
common neural currency. Second, individual differences in attention distribution to
either the values or the associated probabilities of risky gambles are related to indi-
vidual differences in monetary reward and loss processing. Third, differences in
neural activation patterns of regions associated with risk aversion help to explain

real-life financial risk taking.

As an outlook for study one, decision making in other sports (e.g. basketball) and
sport contexts (e.g. risky (dribble) vs. safe (pass) choices) could be investigated.
This would clarify whether or not there is a general common neural currency across
different sports and sport situations that could pose as an explanation for its world-
wide success. The brain activation in these decision making processes could addi-
tionally be compared to financial decision making (e.g. the stock exchange para-
digm from study three that also includes risky (stock) versus safe (bond) choices)
to investigate whether the common neural currency can likewise be seen in relation
to risk-, and not only reward-related decision making. From an application point of
view, the egoism findings should find their way into the training books of soccer
coaches to help them understand that individuals do not decide to shoot the ball
themselves due to a reward-related motive, which is often seen as the driver for the

seemingly greedy and egoistic behavior of shooting the ball yourself.

Since the study design in study two prohibits any interpretation regarding causality,
future studies could try to investigate the fundamental question of whether the iden-
tified brain activation differences observed during reward and loss processing lead
to individual differences in attention distribution, or vice versa. Taking it one step
further, it could be explored whether fMRI and eye-tracking measures can be used
as early indicators of excessive financial risk taking and gambling addiction. Better
understanding the causal dynamics of decision making processes behind lottery
choices could lead to the development of appropriate measures and policies to pro-

tect potential gambling addicts from financial ruin.
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As an outlook for study three, follow-up studies could include assessments of the
financial choices of family and friends, genetic information, and structural brain
data (e.g. diffusion tensor imaging (DTI), which we are currently investigating, see
chapter 8.1.3). Such variables are likely to improve the model of active stock trad-
ing and lead to an even better understanding of this real-life human behavior. On a
more global scale and considering recent evidence of risk taking dissimilarities be-
tween different parts of the world (Falk et al., 2015b, 2015a; Becker et al., 2016),
the same study could be performed in other countries (e.g. USA) to unveil the neu-
roeconomic foundations of this internationally heterogeneous behavior (OECD,
2017). Such an approach could uncover why German citizens are more financially
risk averse than their US counterparts (Campbell, 2016; OECD, 2017). Additionally,
the two risk indices developed in study three could be used to assess two important
features that relate to financial risk taking. These measures of risk tolerance and
risk optimism (RTI and ROI) could then help policy makers and financial institu-
tions. Policies could be established to protect individuals with low financial means
(but very high RTI and ROI scores) from taking too many financial risks. Further-
more, individuals with a very low RTI score could be protected from a significant
decrease in quality of life as a consequence of taking too many financial risks. From
a financial institution point of view, individuals with a very low ROI score could be
educated from a third party on the financial market and its associated products, thus

possibly encouraging more financial risk taking.

The findings from all three studies advance our understanding of reward, loss, and
risk processing and bring us closer to comprehending the complex processes asso-
ciated with human decision making. Methods from neuroscience (neuroimaging),
psychology (behavioral data, personality, and eye-tracking), and economics (lotter-
ies and household assessments) were used in all three studies and demonstrate the
success of the interdisciplinary neuroeconomic approach. The prime example of
this is study three, in which we compare separate and combined models to show
that combining measurements from all three fields is essential for an apt analysis of
real-life human decision making. Since human behavior is usually determined by
many different variables, the goal of future neuroeconomists should be to identify

these variables to create more comprehensive models of human behavior. With this

49



Neuroeconomic Foundations of Reward, Loss, and Risk Processing

interdisciplinary approach, the independent findings of each field can be connected
and complex human behavior can be better understood. Finally, these more com-
prehensive models of human behavior can be used to improve individual choices

by creating policies that steer individuals away from irrational decisions.
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Abstract

Social rewards are important incentives for human behavior. This is especially true in team
sports such as the most popular one worldwide: soccer. We investigated reward processing
upan scoring a soccer geal in a standard two-versus-one situation and in comparison to
winning in a monetary incentive task. The results show a strong overlap in brain activity be-
tween the two conditions in established reward regions of the mesolimbic dopaminergic
system, including the ventral striatum and ventromedial pre-frontal cortex. The three main
components of reward-associated leaming i.e. reward probability (RP), reward reception
(RR) and reward prediction errors (RPE) showed highly similar activation in both con-texts,
with only the RR and RPE components displaying overlapping reward activity. Passing and
shooting behavior did not correlate with individual egoism scores, but we observe a positive
correlation be-tween egoism and activity in the left middle frontal gyrus upon scoring after a
pass versus a direct shot. Our findings suggest that rewards in the context of soccer and
monetary incentives are based on similar neural processes.

Introduction

Seen as a driving force of human behavior and decision making, reward has previously been de-
scribed as an operational concept for the positive value animals, including humans, ascribe to a
behavioral act, object, or internal physical state | 1]. While a lot of previous research has been
dedicated to processing of primary rewards such as food, liquid, and sexual stimuli [2-1], sec-
ondary rewards of monetary and social nature are also very important motivators for human be-

havior [5-7], Only two studies compared monetary and social reward processing in the form of
positive social feedback and good reputation [8, 9]. In these studies, reward-related areas, i.e. the
ventral striatum (VS) as well as the ventromedial prefrontal cortex (vmPFC), showed overlap-
ping brain activity in response to monetary and social rewards [8, 9]. Results of these studies
concurred with social exchange theory [10}, which states that in social interactions not only

PLOS ONE | DOI:10.1371/journal pone.0122798  April 15,2015
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materialistic goods such as money, but also non-materialistic goods such as social help are traded
for other social goods as e.g. improved reputation.

Three major components are important in reward processing and reward-based learning: the
probability, i.e. expectation of reward size and magnitude, the actual reward reception, and their
difference: the reward prediction error |11, 12]. Previous studies comparing reward processing
in a social and monetary context failed to investigate these different components in an active de-
cision-making paradigm. We therefore developed a paradigm which allowed di gling these
different components in a social sport context by using reward in the form of goal-scoring in the
most popular sport worldwide: soccer, which is played by about 265 million people around the
globe (FIFA Communications Division (2007)—FIFA Big Count 2006: 270 million people active
in football).

Our paradigm presents standard two-versus-one (2v1) situations in front of a goal in which
subjects decide to either shoot to the goal directly or pass the ball to a team mate. By varying
the situations and having them pre-rated by soccer experts, we manipulated the perceived
probabilities of scoring the goal. The participant has a choice between a socially modest choice
(pass) and a socially self-serving choice (shoot). The choice to pass 1o a teammate implies a
more social, possibly team-oriented decision, while the decision to directly aim at the goal may
add a personal on top of the social benefit. This is explained by pointing out that scoring a goal
directly has an additional benefit to the goal scorer: while the team benefits from the goal, the
scorer’s social reputation increases as well by directly becoming the focus point for celebration
and social approval. This emphasizes that the decision to either pass or shoot is not solely influ-
enced by the perceived probability of scoring the goal—but also by personality factors such as
egoism, that determine whether social (prosocial) or personal (proself) benefits will be given
greater weighting.

‘Two types of egoism have been previously identified: a hostile and derogatory kind, as well
as a narcissistic and self-enhancement kind [13]. The Dutch Personality Questionnaire (DPQ)
and Supernumerary Personality [nventory (SPI) egoism tests measure these two different kinds
of egoism, which have been shown to converge on the Honesty-Humility (HH) scale of the
HEXACO Personality Inventory—Revised (PI-R) [13]. The abbreviation HEXACO stands for
the six dimensions of the PI-R: “Honesty Humility”, “Emotionality”, “eXtraversion”, “Agree-

bl ", “Conscienti ", and "Op to Experience”, with the test being freely acces-
sible online (hexaco.org). It is based on the Five Factor Model and it is the HH scale which has
been established as a sixth dimension which lies beyond “the Big Five” [13]. Specifically, the
HH assesses egoism on a behavioral dimension ranging from sincere, modest, and fair {(when
scoring low) to insincere, greedy, and boastful (when scoring high) [13-17]. Tt might therefore
be ideally suited to assess the personality trait egoism in the context of the present research
question. Another well-established measure to explain social behavior by distinguishing be-
tween prosocial and proself orientations is the social value orientation (SVO) questionnaire
[18]. Using this questionnaire, previous studies were able to identify a correlation between it
and the HH scale of the HEXACO PI-R [15].

By means of an active decision making soccer paradigm and a well-established monetary in-
centive task, we examined overlapping brain activation during monetary and soccer-specific
social reward processing, including reward probability, reward reception and reward predic-
tion errors. Additionally, we hypothesize egoism to correlate with stronger reward related sig-
nals upon scoring a goal after a direct shot versus after a pass to a leammate. On the behavioral
level we expect to find more egoistic players to shoot the ball significantly more than to pass it.

PLOS ONE | DOI:10.1371/journal pone.0122798  April 15,2015 2/186
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Materials and Methods
Pre-testing

Pre-testing stimuli for the soccer paradigm were created by taking screenshots (1400x1050 pix-
els, 4:3 format, window mode, rendering quality: high, MSAA option: off, frame rate: no limit)
of 200 different 2v1 situations from the soccer simulation FIFA 13 (Electronic Arts Inc., Red-
wood City, CA, USA). Screenshots displayed standardized 2v1 situations involving two attack-
ing players with ball possession and a defending goalkeeper from the opposing team (Fig 1 and
S1 Supporting Information). Pre-testing was performed using the online survey tool Qualtrics

Fig 1. Soccer situations. Six exempiary images of the different soccer situations presented in the scccer
paradigm. The player in ball possession approaches the goal from either the left or the right side of the
penalty spot. A. Clear situation (pass). B. Clear situation {shoot). C. Unclear situation.

doi:10.1371foumal pene 0122728, g001
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(Provo, UT, USA). For each image, participants were asked three randomly presented

questions:

1. How likely is it that you shoot the ball yourself, rather than passing it to your teammate, in
order Lo score?

2. How likely is it for you to score upon shooting the ball?

3. How likely is it for your teammate Lo score afier having received a pass?

377 German soccer players rated the situations. These soccer players were recruited by dis-
tributing the Qualtrics online link via Email to all of the 262 German regional soccer associa-
tions, while the Berlin and Hamburg soccer clubs were written to individually, Only teams and
officials from the Middle Rhine soccer association were not contacled to keep this pool of par-
ticipants for the fMRI part of the experiment. Furthermore, the link was posted online in local
soccer blogs and social platforms. Each situation was rated an average of 38.63 (+ 3.44) times.
Question one ratings were used to categorize the situations into the 40 most unclear and 20
clearest situations (10 for shot and pass, respectively) and question two and three ratings were
used Lo determine the scoring probabilities.

Soccer Paradigm

The fMRI paradigm was programmed using in-house software. Upon being confronted with
the situation, participants decided to either pass or shoot the ball via button press (Fig 2A).
Each situation was randomly shown twice and half of the feedbacks were preset to be positive
(GOAL!) and the other half negative (MISS!), thus leading to 60 goals and 60 misses, respec-
tively. The stimuli had an interstimulus interval (ISI) and intertrial interval (I'T1) of 30006000
ms programmed for randomization using the “randint” function of Python 2.7 (Python Soft-
ware Foundation, Beaverton, OR, USA). The feedbacks were preset in reference to the ratings
of pre-lesting questions two and three, thus making the feedback as realistic as possible,

Monetary Paradigm

In the previously published monetary incentive paradigm [19, 20}, participants guessed under
which out of one to four randomly shown boxes a circle was hidden, leading to winning proba-
bilities ranging from 25% to 100% (Fig 2B). In each of the 150 trials, a correct guess led to a
positive monetary feedback (win) of 10 euro cents and a wrong guess to no monetary win (no
win), while no guess led to a monetary loss of 10 euro cents. The ISI and I'TI were also pro-

gr d for a randomization of 1500-4500 ms using Python 2.7,

Participants

33 male (age: 24.39 + 3.20 years) participants were recruited from local soccer teams via inler-
net advertisements, flyers, word of mouth, and personal recruitment sessions at local soccer
clubs. Exclusion criteria were a history of neurological or psychiatric disorders, involvement in
the online pre-testing questionnaire, as well as conditions prohibiting the participation in an
MRI setting. Additionally, participants had to be right-footed and actively playing at a soccer
club. The participants received a show-up fee of 10 euro as well as additional monetary com-
pensation depending on the results of the monetary paradigm and the monetary incentivized
SVO test. All participants gave written informed consent according to the Declaration of Hel-
sinki (BM] 1991; 302; 1194) and the experiment was approved by the ethics committee of the
University of Bonn.

PLOS ONE | DOI:10.1371/journal pone.0122798  April 15,2015 4/186
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Fig 2. The soccer and monetary paradigm. Timeline for an exemplary tnal out of the 120 rals shown in the

t0i:10.137 1foumal pane 0122798.g002

Experimental Procedure

Personality Questionnaires. Each participant handed in the completed personality ques-
tionnaires (HEXACO PI-R 200 and SVO, previously distributed) at the scanning appointment.
Additionally, a questionnaire regarding personal data and soccer experience was filled out by
the participants on site (S1 Table). They subsequently received detailed instructions about the
experimental procedure as well as ethical and medical implications. As part of an oral briefing
procedure taking place directly ahead of entering the scanning room, each subject was in-
structed to not view the scenes as being from a video game, but rather as real-life situations
with the teammate and opposing goalkeeper possessing real-life flaws.

fMRI Experiment. In total the experiment took two hours, consisting of three pa
chological questionnaire (~30 minultes), scanning preparation (-
sion (max. 90 minutes). The scanning session consisted of the soccer paradigm (max. 34 minutes),

psy-

30 minutes), and scanning ses-

monetary paradigm (max. 32 minutes) and the final structural T1 measurement (~9 minutes).
Participants were scanned on a 1.5'I' Avanto Scanner (Siemens, Erlangen, Germany). [nstructions

PLOS ONE | DOK:10.1371/journal pone.0122798  April 15,2015 5/16
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were given regarding the emergency ball, the use of OHROPAX Classic ear protection (OHRO-
PAX GmbH, Wehrheim, Germany), and the correct button pressing via the respective response
grips (Nordic NeuroLab, Bergen, Norway). An 8-channel head coil was placed above the partici-
pant’s face and video goggles (Nordic NeuroLab, Bergen, Norway) used to present the stimuli
were installed on the head coil. Each paradigm was presented using Presentation v14.9 (NeuroBe-
havioural Systems Inc,, Albany, CA, USA). Following the scanning sessions, participants were de-
briefed with regard to the preset soccer feedbacks and the study objective concerning egoism.

Imaging Protocol

Acquisition of the functional data was done using EPI-sequences with a repetition time (TR) of
2.5 5, echo time (TE) of 45 ms, and a flip angle of 90 degrees. The image resolution was 64 x 64
pixels and the field of view 192 x 192 mm. 31 slices covering the brain from the superior part of
the cerebellum to the top of the cerebrum including the midbrain were obtained in an axial
fashion and an interslice gap of 0.3 mm. This resulted in a voxel size of 3 x 3 x 3.3 mm.

fMRI Analyses

Data sets of five participants were excluded due to one participant not fully understanding the
monetary paradigm, one scanning session being cancelled because of technical problems, one
participant having a metal plate inside his knee, and data sets of two participants showing ex-
cess head motion (translational: >3 mm, rotational: >2.5 degrees). Statistical Parametric Map-
ping 8 (SPM8, Wellcome Department of Imaging Neuroscience, London, UK) was used to
analyze the data sets of the remaining 28 participants (age: 24.57 + 3.21 years).

Pre-processing steps included slice time correction, motion correction, spatial normaliza-
tion to the T1 image of each participant, reslicing to a 3 x 3 x 3 mm voxel size, and a final
smoothing step using a Gaussian kernel with full-width at half-maximum (FWHM) of 8 mm.
Creating an identical GLM for both paradigms was technically not possible due to the necessity
of combining the positive and negative feedback as well as the combined parametrically modu-
lated (via the reward prediction error (RPE)) feedback in one regressor each. Therefore, brain
activation was estimated using a total of four general linear models (GLM): two soccer and two
monetary GLMs with GLM-specific regressor combinations.

GLM1 (soccer paradigm):

1. Choice
2. Choice (parametrically modulated via reward probability (RP))
3. Positive feedback (goal) after a pass
4. Positive feedback (goal) after a shot
5. Negative feedback (miss)
6. Missed response
7.-12.: Movement regressors
GLM2 (monetary paradigm):
1. Choice
2. Choice (parametrically modulated via RP)
3. Positive feedback (win)

PLOS ONE | DOI:10.1371/journal pone.0122798  April 15,2015 6/16
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4. Negative feedback (no win)
5. Missed response
6.-11.: Movement regressors
GLM3 (soccer paradigm) and GLM4 (monetary paradigm}:
1. Choice
2. Feedback
3. Feedback (parametrically modulated via reward prediction error (RPE))
4. Missed response
5.-10.: Movement regressors

‘The RP parameler in the soccer paradigm was calculated based on the scoring probabilities
assessed in the pretest; the reward probabilities in the monetary paradigm were directly related
to the number of boxes shown in each trial (i.e. 0.25,0.33, 0.5 or 1). The RPE parameter was
computed as the difference between the outcome (i.e. 1 or 0) and the given RP. All of the re-
gressors were convolved with the canonical hemodynamic response function (HRF} as imple-
mented in SPMS8. First-level contrasts were then established for each of the four GLMs and
used for the second-level random effects analyses (p<0.001, uncorrected), These included one
sample t-tests for the “RP versus zero’ (one for each paradigm), ‘goal versus miss’/'win versus
no win’ (reward reception), ‘goal after a shot versus goal after a pass’, ‘goal after a pass versus
goal after a shot’, as well as ‘RPE versus zero’ (one for each paradigm) contrasts. A whole brain
search was performed for each contrast and activities were listed accordingly (S4 and S5 Ta-
bles). The coordinates and T values of the peak voxels were determined in SPM8 and the rele-
vanl regions were then resolved using the automatic anatomic labeling (aal) atlas [21], as
implemented in the xjView toolbox {available via hitp://www.alivelearn.net/xjview). By using
this atlas, brain regions were inspected individually and labeled according to the terms used in
the literature. The exact procedural description and an abbreviation overview can be found in
the supplementary information (S8 Table). All of the beta and contrast images for each of the
28 subjects are freely accessible via the Harvard Dataverse Network website at “http://thedata.
harvard.edu/dvn/dv/ANH",

‘The differential activation was statistically compared using the second-level specification
feature of SPMS, For this purpose, each of the three specific reward contrast images (RP versus
0, RR, and RPE versus () were compared via paired t-tests. After subsequent estimation, the
contrasts of soccer versus monetary reward activity were compared on a whole-brain level
(k =10, df = 27, 56 Table).

The egoism analysis was performed by using the egoism values from the Honesty-Humility
scale of the HEXACO 200 PI-R as covariates in the contrasts “scoring afler a shot versus a pass”
and “scoring afler a pass versus scoring after a shot”. Additionally, behavioral egoism values
were calculated by taking the proportion of shots in the clear situations normalized by the num-
ber of total shots and integrating them as covariates in the same contrasts described above. All
behavioral data was analyzed using IBM SPSS Statistics 21 (IBM Corp., Armonk, NY, USA).

ROl Analyses

In line with a previous study investigating overlapping brain activation [8], regions of interest
(ROI) masks were created from the monetary reward contrasts ‘RP versus (', ‘win versus no
win’, and ‘RPE versus 0’ using the xjView toolbox (p<0,001, k>10, Fig 3 (yellow color}). More
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Fig 3. Masks of the reward processing regions activated in each and both paradigms (k >~ 10, df = 27).
A. Reward Probability (RP) versus 0. B. Reward Reception (RR): Win/Goal > NoWin'Miss. C. Reward
Prediction Error (RPE) versus 0. Yellow. monetary, p<0.001, uncorrected, Red. soccer, p<0.001,
uncorrected. Green: areas activated in both paradigms, p=0.001, uncorrected. Turquoise: areas activated in
both paradigms, p<0.05, FWE- d. Abbreviations: dlPFC. d | I prefrontal cortex, PCC:
posterior cingulate cortex, TPJ: temporal panetal junction, viPFC: ventrolateral prefrontal cortex, vmPFC:
ventromedial prefrontal cortex, VS: ventral stratum.

cioi:10 137 thoumal pone (122798 g003

details of the regions included in the monetary ROI masks and the results of the whole brain
search for each of paradigms can be found in the supporting information (84 and 55 lables, as
well as S2 Supporting Information). The monetary masks were then applied to the respective
soccer brain activation contrasts (p<0.001, k> 10, relevant masks can be seen in Fig 3 (red
color) and S2 Supporting Information), The results were small volume corrected (p<0.05,
familywise error (FWE)-corrected) and checked for significantly overlapping active regions
(Table 1), Additionally, four ROl masks were obtained from the authors of the previously pub-
lished paper involving the monetary paradigm [20]. These were based on the Oxford-Harvard
cortical and subcortical atlases and included the bilateral ventral striatum, the ventral mid-
brain, and the medial orbitofrontal cortex. These ROI masks were however only used to check
for the independent activation robustness of the monetary paradigm and are considered irrele-
vant for the main part of the analysis
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72



Neuroeconomic Foundations of Reward, Loss, and Risk Processing

@ PLOS | one

Social Soccerand M y Reward P;

Results
Participants and Personality Test Results

The most competitive player was active in the 5th German league (Mittelrheinliga), while most
participants (n = 10) played in the 9th German league (Kreisliga B; S1 Table). The HEXACO
PI-R 200 was analyzed on each domain and facet-level scale (S2 Table), resulting in only four
participants being categorized as egoistic, Using the data from the SVO questionnaire, 21 pro-
socials, five proselfs, and no competitors were identified (mean = 1.19, SD = 0.40), while two
were not classified due to inconsistent responses. Only one participant was characterized as
egoistic and proself. Subsequent analysis using the SVO scores was refrained from due to lack
of statistical power.

Behavioral Results

Behavioral data from the soccer paradigm was grouped into four categories. For each of the
clear and unclear calegories, pass and shoot choices were analyzed (53 Table). Out of the 3360
situations, only five situations were not responded to. Overall, soccer players did not decide to
shoot significantly more or less than to pass the ball (S3 Table). In order to identify individual
soccer players that chose to cither shoot or pass more than others, one SD above/below the av-
erage ratio was used as a threshold. This resulted in five participants having chosen to shoot di-
rectly significantly more than the rest.

fMRI Results

Reward Probability. Overlap analysis using inclusive masking revealed overlapping brain
activity modulated by reward probability in the bilateral temporal parietal junction (TPJ), bilater-
al dorsolateral prefrontal cortex (dIPFC), and right postcentral gyrus (POG) (Table 1 and Fig 3A,
green color). No differential activation was observed.

Reward Reception. The very medial posterior cingulate cortex (PCC), bilateral ventral stri-
atum (VS), left dIPFC, left ventrolateral prefrontal cortex (vIPFC) and left vimPFC were all found
to be significantly active in both types of reward reception (Table 1 and Fig 3B, green color). The
vmPFC activation was found to extend into the subgenual and rostral anterior cingulate cortex
(sgACC and rACC, respectively), as well as into the medial orbitofrontal cortex (mOFC). Only
scoring a goal versus missing led to additional significant brain activity (S6 Table). This was
found in the bilateral TP], as well as in areas of the left vIPFC.

Reward Prediction Error. Overlapping activation during reward prediction error process-
ing was observed in the bilateral VS (Table 1 and Fig 3C, green color) and no differential activa-
tion was observed.

Correlation to Egoism. Contrasting scoring a goal after a shot versus a pass and vice versa
led to no significant activation. Furthermore, the behavioral egoism covariate analyses did not
show significant brain activation. No correlating brain activalion was observed between egoism
scores (Honesty-Humility scale of the HEXACO PI-R 200) and brain activation due to “scoring
after a shot versus scoring after a pass”. However, a negative correlation was found between the
Honesty-Humility scale of the HEXACO PI-R 200 and brain activation (i.e. positive correlation
of egoism) upon “scoring after a pass versus scoring after a shot” (57 Table and Fig 4A) in the
left middle frontal gyrus (MFG; p(FWE-corr.) = 0.002; 57 Table and Fig 4B).

Discussion

Using the combination of a standard monetary incentive and a newly developed soccer-related
task, we were able to investigate different computational aspects in reward-based learning in a
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Table 1. Overlapping activity in both tasks: Small volume corrected brain activation upon soccer and monetary reward probability (RP), reward re-
ception (RR), and reward prediction error (RPE) (k =10, df =27),

Contrast Region Laterality MNI coordinates Cluster size T:
X y z

Reward probability TRy2e* L -51 70 34 192 6.28
dIPFC* L -15 50 37 65 553
TRJ* R 60 52 43 37 536
POG* R 45 -25 64 55 501
TRy** L -60 -49 43 48 470
diPFC* R 18 50 40 25 4.54

Reward reception vPFEC*** L -3 47 -8 310 6.57
Voee R 24 5 -1 61 6.13
' hid L -12 11 -5 42 569
PCC*** UR 0 46 28 189 5.54
dIPFC** L -18 32 52 52 5.09
vIPFC* & -36 38 -8 20 473

Reward prediction error VS*ee R 21 2 -1 58 720
Vs L 18 2 N 5 533

ROI masks were created from the monetary contrasts ‘RA versus 0', 'win versus no win', and ‘RPE versus 0, respectively. The activity dunng soccer
reward procassing was then corrected for by small volume using the masks. dIPFC (ck p cortex), PCC
{posterior cingulate corlex}, POG (postcentral gyrus), TPJ (temporal parietal junction), VIPFC (ventrolateral prefrontal cortex), vimPFC (ventromedial
prefrontal cortex), VS (ventral siatum),

“¥+ p(FWE-corr.) 0,001,

** p{FWE-corr.)<0.01,

* p(FWE-corr.)=0.05.

doi:10.1371fjournal pone 01227981001

soccer-specific social in comparison to a monetary context, i.e. reward probability, reward re-
ception, and reward prediction errors. Our data does not only show a strong overlap of the
neural substrates involved in monetary and soccer-specific social feedback in different aspects
of reward processing, bul also differential activation during reward reception.

A left MFG
20 -
15 L *
g% .0 1
=& *s >
Ea 05 - s
H B I 2
205 % & %
g0 o
2E -
€ast

"
o

Honesty-Humiity score

Fig 4. Positive correlational activity between egoism and scoring after a pass versus a shot at the left
middle frontal gyrus (MFG, k 10, df = 27). The negalive correlation of brain activty and Honesty-Humility

depicts a positive correlation with egoism. A. Correlational analysis of Honesty-Humility scores and contrast

values at the left MFG cluster. B. left MFG (green circle) activation in correlation to egoism upon scoring after
a pass versus a shol.

doi:10.1371houmal pone. (1227489004
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Reward Probability

The bilateral dorsolateral prefrontal cortex (dIPFC), temporal parietal junction (TPJ), and right
posteentral gyrus (POG) were shown to be active during anticipation of both reward types. The
dIPFC has been associated with social judgment and decision making, specifically in relation to
behavioral control of social strategic behavior [22], implementation of fairness-related behavior
|23], and social norm compliance |24, 25]. The TP] has been shown to be involved in spatial
working memory tasks [26] as well as social contexts such as apology and forgiveness [27], as
well as attention and social cognition [28, 29]. Additionally, right POG activation was observed
during the reward anticipation in both paradigms, a region that has identified as the primary
somatosensory cortex [30].

Reward Reception

The ventromedial prefrontal cortex (vmPFC), bilateral ventral striatum (VS), posterior cingu-
late cortex (PCC), as well as the left dorsolateral prefrontal cortex (dIPFC) and left ventrolateral
prefrontal cortex (VIPFC) were involved in reward reception in both paradigms. The largest
cluster peaking in the vmPFC and extending into the subgenual and rostral anterior cingulate
cortex (sgACC and rACC, respectively), and medial orbitofrontal cortex (mOFC), as well as
the activation of the VS have been associated with social and monetary reward processing in
other previously mentioned studies comparing social and monetary reward [8, 9]. Besides the
ventral parts of the striatum having long been known to be part of the reward circuit [31-33],
the sgACC and rACC could have played a role in the altention circuit regulating cognitive and
emotional processing [34, 35. This is also relevant in pointing out that similar activation in
these two regions was observed in another soccer reward processing study that contrasted goal
and miss, as well as goal versus open play [36]. To our knowledge this is the first study showing
evidence for a direct overlap in the vmPFC and VS with respect to monetary and soccer-specif-
ic social rewards, even though other studies have shown involvement in social reward process-
ingas well [5, 8,9, 37, 38]. The PCC has been previously shown to be linked to value
association in connection with reward processing [39], as well as episodic memory retrieval
|40], and visuospatial attention [41, 42]. It is therefore difficult to interpret the exact role in our
paradigm. Specifically, activations of the left dIPFC have been linked to behavioral control of
strategic social behavior [22] and attention control during task preparation [43], while left
vIPFC activation has been related to cognitive control of current relevant memory [44], and se-
lection between compeling active representations as used in goal-selection [45, 46].

The direct comparison of reward-related activity in both tasks revealed more activation in
the soccer as compared to the monetary paradigm. Of these, the TP] has been associated with
spatial working memory tasks [26], suggesting a stronger involvement possibly occurring due
to expertise of the soccer players with these standard situations and therefore implicit spatial
memory retrieval. Additionally, the TPJ has been associated with social contexts, such as social
cognition in relevance to attention [28], apology and forgiveness [27], and parochial punish-
ment [29]. The differential activation of the TPJ only existing in relevance to the soccer para-
digm could therefore be suggested to represent the sport’s implicit social context as shown in
the form of 2v1 situations. Additionally, activation only found upon scoring a goal was also lo-
cated in the left vIPFC. As mentioned before, this region is especially activated during cognitive
control of current relevant memory [44] and selection between competing active representa-
tions as used in goal selection [45, 46]. It can henceforth be suggested that processing these fea-
tures of the soccer situations require greater neural effort than simpler guessing situations such
as shown in the monetary paradigm. It is important to note however that such a suggestion can
only be finalized following a same study procedure involving “non-experts”.
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Reward Prediction Error

The bilateral VS was significantly activated during reward prediction error processing in the
soccer game as well as in the monetary domain. Tt is well known for its role in reward predic-
tion error processing [19, 20, 37, 47-49], but this is the first time a sport-related context has
been shown to elicit this type of activity.

Egoism

The whole HEXACO test was handed out Lo the participants to prevent the soccer players from
recognizing the egoism component of the study and thus influencing the decision making pro-
cess of the individuals. This was especially important since egoism is known to be associated
with negative personal features such as antisocial behavior [13]. Even though no correlation be-
tween egoism and brain activation upon scoring a goal after an own shot and scoring after a
pass was observed, we did find a positive correlation between egoism and activation in the mid-
dle frontal gyrus (MFG) in response Lo scoring a goal after a pass versus alter a shot, This re-
gion has been linked to many different higher cognitive processes such as image recognition
[50], spatial working memory tasks [26], emotional processing of happiness [51], reasoning
[52], as well as future event construction and elaboration |53], but has not been shown to be in-
volved in reward processing, specifically. This rather counterintuitive finding might be ex-
plained by suggesting that more egoistic soccer players do not require any neural effort 1o
process scoring a goal after a shot since these individuals value this as a rather normal situation,
while scoring after passing the ball toa requires self-reflective spatial and reasoning
neural effort in regions such as the MIG. By not finding significant activation in the previously
mentioned reward areas, our data does not support the hypothesis of egoism correlating with
stronger reward related signals upon scoring a goal after a direct shot versus after a pass toa
teammate. Additionally, our behavioral observations do not show a correlation between pass-
ing and shooting behavior in 2v1 situations in front of goal and egoism. These results can be
seen as a first step towards dealing with individuals in team sports who thus far have been Ja-
beled by the public and media as ‘egoistic’. Even though we did not find any correlation be-
tween egoism scores and passing versus shooting behavior, it is too far-fetched to suggest the
personality trait egoism to not guide the oftentimes labeled selfish decisions on a soccer pitch.
Future studies involving other in-game soccer situations {e.g. in the middle of the pitch deci-
sions: ‘dribble versus pass’) and other team sport decision making paradigms should therefore
be done in order to determine the personality and social aspects guiding such behavior. Deter-
mining these aspects could be crucial in developing guidelines for coaches and teammates to
deal with mistakenly labeled 'egoistic’ individuals in social activities such as team sports.

Limitations

Even though we think that a soccer-related task such as the one implemented in the experiment
has an inherent social context, it is important to point out that there are several possibilities for
improving the social aspect of the experimental setup. Since the participant in the scanner does
not interact with other participants directly, creating an avatar of the participant and one of his
teammates could serve as an idea for a future study. With the participant then lying in the scan-
ner, the teammate could observe the decisions made by the participant from the scanner oper-
ating room and respond accordingly, thus giving social feedback, or two players could directly
interact in a hyperscanning experiment. As recently published in relation to social feedback
processing, another idea would be to implement a camera in the scanner in order to emphasize
the social aspect of the soccer-specific social experimental procedure even further [54].
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Conclusion

Our results suggest strong overlapping neural processes underlying reward probability, reward
reception, and reward prediction error processing during highly motivating team sport situa-
tions and monetary incentives. While reward reception and reward prediction error processes
overlap in reward related regions, reward probability processing requires higher cognitive effort
in both domains. Besides extending this research to other reward-related sport activities and to
different levels of sport expertise, future research could investigate the differences and similari-
ties of reward paradigms in order to decipher the exact processing components of decision mak-
ing during reward anticipation and probability. Our results furthermore suggest thal the role of
the term egoism in team sports should be further researched on in order to possibly support the
finding of egoism failing to be shown as a driving force of on-pitch soccer behavior.
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Abstract

People differ in the way they approach and handle choices with unsure outcomes. In this study, we demonstrate that
individual differences in the neural processing of gains and losses relates to attentional differences in the way individuals
search for information in gambies. Fifty subjects participated in two independent experiments. Participants first completed
an fMRI experiment involving financial gains and losses. Subsequently, they performed an eye-tracking experiment on
binary choices between risky gambles, each displaying monetary outcomes and their respective probabilities. We find that
individual differences in gain and loss processing relate to attention distribution. Individuals with a stronger reaction to gains
in the ventromedial prefrontal cortex paid more attention to monetary amounts, while a stronger reaction in the ventral
striatum to losses was correlated with an increased attention to probabilities. Reaction in the posterior cingulate cortex to
losses was also found to correlate with an increased attention to probabilities. Our data show that individual differences in
brain activity and differences in Information search processes are closely linked.

Key words: decision-making; eye-tracking; fMRI; information search; reward

Significance Statement

The processing of gains and losses has been thoroughly investigated in the field of decision-making using
different methods, such as eye tracking and neurcimaging. Even though previous studies have combined
both of these methods in single tasks before, this is the first study that correlates the results from two
separate tasks using either method. Using this approach, we show for the first time that individual
differences in neural gain and loss processing relate to individual differences in the information search
phase of risky gambles. These results emphasize the functional interplay between attention and the neural
circuits of reward and loss processing.

Introduction

When individuals are confronted with risky decisions,
they have to choose between options that entail different
outcomes with known probabilities of realization. Risk-
averse individuals prefer a safe over a risky gamble of
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equal expected value (EV), with the opposite being true for
risk-seeking individuals. Even though risk preferences are
mostly investigated using self-assessments or behavioral
tasks in an experimental setting, they have been shown to
relate to important real-life soclal and economic out-
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comes. Risk-seeking individuals are, for example, more
likely to migrate (Jaeger et al., 2010) and to have higher-
earning occupations (Bonin et al., 2007). Since attention
differences measured via eye tracking (Brandstatter and
Korner, 2014} and individual differences in nesural pro-
cessing of risk (Rudorf et al., 2012) have both been shown
to relate to risk preferences, the investigation of the rela-
tion between attention and neural processing is an impor-
tant and necessary step to enhance our understanding of
human decision-making under risk.

Functional magnetic resonance imaging (fMRI) and eye
tracking have widely been used to investigate the neural
correlates and behavioral aspects of decision-making
under risk. Recently, an “affect-integration-motivation”
framework has been presented as a model thatintegrates
the affect, integration, and motivational aspects of deci-
sions that involve gains, losses, and risks (Samanez-
Larkin and Knutson, 2015). This cognitive-processing
framework is based on several studies that unveil the
neural circuits involved in the processing of rewards,
losses. and risks. One of these brain areas is the ventral
striatum (VS), which has loeng been known as a key region
in reward and risk processing (Schultz et al,, 1997; Knut-
son et al., 2000; Kuhnen and Knutson, 2005; Fliessbach
et al., 2010; Bartra et al., 2013; Clithero and Rangel, 2014;
Samanez-Larkin and Knutson, 2015). The ventromedial
prefrontal cortex (vmPFC) is another region that has been
found to play a role in reward processing through its role
in valuation (Fliessbach et al., 2010; Bartra et al., 2013;
Clithero and Rangel, 2014). Both regions have also been
related to processing losses (Seymour et al., 2007; Tom
et al., 2007; Cooper and Knutson, 2008}, which has bsen
interpreted as a representation of a gain-loss continuum
(Tom et al., 2007). Besides these two areas, the anterior
insula (Al) has been shown to play a major role in loss
processing (Samanez-Larkin et al., 2008; Fukunaga et al.,
2012), with its activation also preceding risk-averse
choices (Kuhnen and Knutson, 2005). Even though it has
been shown that many different cortical and subcortical
regions are involved in processing positive and negative
outcomes (Vickery et al., 2011), we are focusing on the
three mentioned brain regions, because the individual
activation differences in the VS and Al have been related
to risk preferences and even to financial success in a
stock market experiment (Samanez-Larkin et al., 2008;
Rudorf et al., 2012; Smith et al., 2014) and the vymPFC has
been robustly linked to valuation (Bartra et al., 2013;
Clithero and Rangel, 2014).
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Behavioral results have noted for a long time the ten-
dency of individuals to place more weight on outcomes
compared with probabilities {Daston, 1985; Arnauld and
Nicole, 1996; Loewenstein et al., 2001; Sunstein, 2003).
More recently, studies involving eys tracking have been
aiming to dig deeper into the underlying causes of such
tendencies by measuring information search processes In
risky gambles. Information search processss are behav-
iorally expressed through eye movements that can be
traced and recorded. Especially attention, measured
through the number of fixations, has been studied in this
context, and attention differences to values and probabil-
ities of risky choices in both the gain and loss domain
have been found (Brandstatter and Korner, 2014). Even
though individual differences in attention have been
shown (Fiedler and Gléckner, 2012), it is unclear up te
now whether and how they relate to individual differences
in neural gain and loss processing.

Taking into account the findings from each of these
studies using different techniques, we propose that infor-
mation search in risky choices is related to the neural
processing of gains and losses. Using two independent
experiments that invelve fMRI and eye tracking, we de-
scribe the link between individual attention differences
and activation during reward and loss processing In the
VS, vmPFC, and Al.

Materials and Methods

Over the course of 2 months, 50 healthy adult males
(25.9 * 4.55 years) participated In a study consisting of
two independent parts measured on the same day: an
fMRI and an eye-tracking session. Exclusion criteria were
a history of neurological or psychiatric disorders, condi-
tions prohibiting the participation in an MRI setting, and
imperfect eyesight. Upon arrival and prior to the tasks, a
thorough instruction was handed out, explained, and dis-
cussed. The study was approved by the Ethics Commit-
tee of the University of Bonn, and all subjects gave written
informed consent according to the Declaration of Helsinki
(World Medical Association, 2004).

fMRI acquisition and paradigm

Participants underwent a structural T1 measurement
{160 slices; voxel size, 1 1 > 1 mm; repetition time (TR),
1660 ms; echo time (TE), 3.09 ms; and flip angle, 15%in a
1.5 T Avanto Magnetom scanner (Siemens) using a stan-
dard eight-channel matrix head coil. Afterward, partici-
pants completed an fMRI paradigm (Fig. 1), which was an
extended version of a previously established choice task
(Flisssbach et al., 2010; Rohe et al., 2012; Hausler et al.,
2015). In this task, participants were asked to guess under
which of one, two, three, or four symbols a ball was
hidden (Fig. 1). Our task was thus related to the popular
shell game, with the difference being that ours was a pure
guessing task excluding deception and including varying
probabilities of guessing correctly due to the varying num-
ber of symbols (e.g., 100% in case of one symbol, 50%
for two symbols). The nondeception aspect was made
especially clear to the participants to avoid inconsistent
brain responses due to possible biases coming from de-
ception experienced during observation of the real-life

aNeuro.org
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Figure 1. The fMRI paradigm timeline and symbol explanation for each of the three domains. Each subject completed 48 win, 48 loss,
and 24 neutral trials, and the symbol-domain relationship was counterbalanced.

shell game, in which participants are often deceived. Fur-
thermore, whereas the original paradigm used in previous
studies was composed of situations with different proba-
bilities in only the win domain, the new paradigm was
adapted to also involve monetary loss and neutral situa-
tions. The paradigm consisted of 120 total trials: 48 in the
win, 48 in the loss, and 24 in the neutral domain. Each of
the three domains (win, loss, and neutral) was repre-
sented by a different symbol, namely squares, triangles,
and circles (Fig. 1). The mapping between a domain and
its specific cue symbol was counterbalanced across sub-
jects. The sequence of trials was randomized with the
condition in order for a trial of a specific domain to not be
followed by a trial of the same domain. The paradigm was
programmed using in-house software based on Python
(version 3.4; RRID:SCR_008394). Images were displayed
via video goggles, and participants made decisions via
response grips (both from Nordic NeurolLab) using the
index fingers and thumbs of both hands.

First, a fixation cross was shown with a randomized
duration between 1500 and 4500 ms. In the second phase
(the cue phase), each participant saw one, two, three, or
four symbols, all from the same domain (either win, loss,
or neutral). Subjects were told that selecting one specific
symbol would lead to a win, a loss, or hothing, depending
on the domain. Subjects had up to 2000 ms to choose the
respective target symbol. The number of items {one, two,
three, or four) were shown next to each other and repre-
sented the chances of winning (reward probability: 100%,
50%, 33%, and 25%) or losing (loss probability: 0%,
50%, 66%, and 75%) 10 € cents. Guessing incorrectly in
the win domain led to no win, and guessing incorrectly in
the loss domain led to a loss of 10 € cents. The partici-
pants did not win or lose any money in the neutral domain.

After pressing one of the four buttons, the selected
option was highlighted for a randomized time between
1500 and 4500 ms. Last, the result was presented in an
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outcome feedback phase during which the participants
found out whether they won or lost 10 € cents, or did not
win or lose any money. Functional data were acquired
using a TR of 2.5 5, a TE of 45 ms, and a flip angle of 90°.

Each volume contained 31 slices with a voxel size of 3
X 3 X 3 mm, covering the whole brain, including midbrain
but sparing part of the cerebellum. A total of 800 scans
were acquired. At the end of the scanning session, each
subject was informed about the total amount of money
won (outcome of each task plus a 15 € participation fee)
during the first part and that this monetary win was inde-
pendent of subsequent results in the eye-tracking ses-
sion.

Eye-tracking acquisition and paradigm

The participants took a 5-10 min break between both
experiments in the non-laboratory-related waiting room of
our institute. They were then accompanied to the eye-
tracking laboratory and asked to sit comfortably while
resting the head on a chinrest. They were instructed to
make a total of 80 decisions while undergoing eye-
tracking recordings from the left eye at 1000 Hz using an
Eyelink 1000 eye-tracker (SR Research;, RRID:SCR_
009602). The eye-tracking experiment was programmed
using in-house software based on Python 3.4, and each
participant completed a nine-point calibration and a prac-
tice phase before starting with the experimental trials.

Each trial consisted of a blank screen (3000 ms) to rest
the eye, a fixation cross (500 ms), and a decision phase
with no time limit showing two lotteries (Fig. 2A). The
participants were asked to opt for |ottery A or B during the
decision phase, as indicated by the respective letters "A”
and “B" positioned next to the two lotteries (Fig. 28).
White horizontal and vertical lines were used to divide the
lottery options in order to make the decision process
more intuitive for the participants. The participants were
then able to press one of two keyboard letters to enter

eNeuro.org
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Figure 2. The eye-tracking experiment. A, Paradigm timeline. B, Exact display of the eye-tracking stimulus shown during the decision
phase. C, The sight areas of interest used fo extract the number of fixations.

their decisions for options A or B, respectively. In each
lottery (Fig. 2B, lottery A), two different monetary amounts
were presented as possible outcomes to the subject.
Both amounts of money were associated with respective
probabilities, and the number of digits was identical for
both amounts and percentages. The stimull were shown
as white writing on gray background, a color schems
used in a previous eye-tracking study (Fiedler et al., 2013},
The areas of interest (AOIls; size, 200 < 150 pixels) centers
were positioned at the same distance from the total image
center (Fig. 2C).

A script in MATLAB R2014a (MathWorks; RRID:
SCR_001622) was used to create gambles in which the
domain, winning/losing probabilities, and winning/losing
values were pseudo-randomized. Different ranges of val-
ues (Vs; Fig. 2) and probabilities (Ps) were used to create
a high-risk and a low-risk lottery. The EVs for both the
high-risk and the low-risk options in our experiment were
chosen to be within a range of 3-5 € and always similar
between the two lotteries. This was done because a
previous study by Fiedler and Gléckner (2012) found the
decision time and the number of fixations to increase with
mean EV. The riskiness of a lottery was defined as the
difference between the two monetary amounts (.e. the
possible variance of the outcomes). In Figure 2, the high-
risk lottery would therefore be “A” and the low-risk lottery
would be “B,” even though the EV of both gambles is 3.94
€. The locations of the two lotteries were randomized
between left and right, and the locations of the values and
probabilities (upper or lower) varied between subjects and
were counterbalancad.

For each domain, 30 value and probabiity combina-
tions were pseudorandomly chosen from a list of 175,000
generated combinations containing all of the mentioned

September/October 2016, 3(5) 0189-16.2016

parameters. None of the probabilities were used more
than once. Additionally, 10 distractors for each domain
{random values and prababilities with the same amount of
digits) were generated in order to mix up the paradigm
and thus require each subject to concentrate in every trial.
Hence, each domain (win and loss) contained 30 experi-
mental and 10 distractor trials, summing up to the total of
80 trials. At the end of the expariment, one trial from each
domain was randemly selected and paid to the participant
on top of the participation fee (15 €). This amount was
added to the amount won in the first part of the experi-
ment and transferred to the participant’s bank account.

fMRI analysis

Datasets of two participants were excluded due to both
participants not having understood the fMRI task cor-
rectly. None of the participants exceeded head maotion
limits {translational, =3 mm; rotational, =2.5°), thus lead-
ing to an MRI analysis of 48 participants. The IMRI anal-
ysis was performed using Statistical Parametric Mapping
software version 12 (SPM12, Wellcome Department of
Imaging Neuroscience; RRID:SCR_007037) through
scripts written in MATLAB. Preprocessing included slice
time correction, motion correction, spatial normalization
to the canonical template from the Montreal Neurological
Institute (MNI), reslicing to a 3 < 3 < 3 mm voxel size, and
spatial smoothing using a Gaussian kernel with full-width
at half-maximum of 8 mm. In the first-level analysis, a
general linear model (GLM) was created (Table 1) with the
aim of analyzing the prediction and prediction eror in
both the raward and loss demain [reward pradiction (RP).
loss prediction (LP), reward prediction errer (RPE), and
loss prediction error (LPE); Table 2). The following four
parametrical contrasts were defined: “RP = 0" and “LP =
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Table 1: Overview of the GLM used for estimating brain 1

Regressor Parametrical modulation Contrasts of Interest
Onset of choice, win domain Yes: RP RP =0

Onset of cholice, loss domain Yes: LP LP =0

Onset of choice, neutral domain Yes: RP

Onset of result, win domain Yes: RPE RPE = 0

Onset of result, loss domain Yes: LPE LPE >0

Onset of result, neutral domain Yes: RPE

Six movement regressors NA

NA, not applcable.

0" (both at anticipation phase, Table 1), as well as “RPE =
0" and “LPE = 0" (hoth at feedback phase, Table 1). The
first-level contrasts were used for the second-ievel anal-
ysis.

In order to investigate individual differences and relate
brain activity to behavioral and eye-tracking measures,
activations from three independent and previously de-
fined 6 mm spherical regions of interest {ROls) were used.
These included the VS and Al using coordinates from a
recent study by Smith et al. [2014; MNI coordinates (x, y,
z): Al, =36, 24, 2; VS, =12, 8, —8). Additionally, vmPFC
coordinates were obtained in a manner similar to that of
Smith et al. (2014) by entering the brain term (“ventrome-
dial prefrontal”) into the “Neurosynth.org” database (ac-
cessed on February 17, 2016} and obtaining the peak MNI
coordinates [of 250 studies (x, y, 2: =4, 42, —8]. We
additionally included the oral area of the somatosensory
cortex (OSS; x, y, z: =64, —13, 14; Miyamoto et al., 2008).

The AFNI {Analysis of Functional Neurcimages; RRID:
SCR_005927) program 3dClustSim, which is based on
Monte Carlo simulations, was used to obtain cluster-size
threshold information to correct for multiple comparisons
(http://afni.nimh.nih.gov/pub/dist/doc/program_help/
3dClustSim.html). After observing that the posterior ¢in-
gulate cortex {PCC) was also associated with reward
processing in our experiment, we decided to include this
activation cluster in an explorative analysis. An ROl mask
of the PCC was created using the second-level contrast
“RPE = 0" at a cluster size FWE-corrected p value of 0.05
(MNI coordinates x, y, z. 0, —186, 44). Beta values from all
of the ROIs were extracted using the MarsBaR (MARSeille
Boite A Région d'Intérét, RRID:SCR_009605) ROI toolbox
for SPM (Brett et al., 2002).

Eye-tracking analysis
Datasets of six participants had to be excluded. These
exclusions arose dus to the loss of one datasst, unfeasi-

Table 2: Overview of the parametric modulator calculations used for esti

ble calibrations of four participants, and one participant
having fixated only cne of the options in toe many trials
{2 SDs outside of the mean). Eye-tracking fixations of
the remaining 44 participants were furthermore checked
for a gaze stability of at least 50 ms, with fixations <50 ms
subsequently being excluded. Data viewing, and the cor-
responding fixation extraction for each of the AOIs was
performed using the Eyelink Data Viewer version 1.10 (SR
Research), while reaction times and choice results were
extracted using In-house software based on Python ver-
sion 3.4. Descriptive ovarviews were performed using IBM
SPSS Statistics 22 (IBM; RRID:SCR_002865). Correlation
analysis of only the eye-tracking data was performed
using Pearson correlations in STATA version 13 (Stata-
Corp LP; RRID:SCR_012763).

Correlation analysis of fMRI and eye-tracking data
After previous exclusions of both eye-tracking and IMRI
data, analyses of the remaining 43 datassts were per-
formed using STATA version 13. To test our initial hypoth-
eses of brain activation correlating with attention patterns,
we created the two variables “Df win" [difference in fixa-
tions between values {fiv]) and probabilities (f[p]) in the win
domain] and “Df loss™ [difference in fixations between
values (flv]) and probabilities (f[p]) in the loss comain).
Both are defined as the difference of fixations between
values and probabilities in such a way that a positive value
reflects more fixations on values compared with proba-
bilities. Additionally, the variable “Df high risk” for both the
win and the loss domain represent the difference in fixa-
tions between the high-risk [f{f)] and low-risk [f{}] lotteries,
with a positive value reflecting more fixations on the high-
risk versus the low-risk gambles. After creating these
variables, all extracted fMRI 3 values from the gain and
loss domain were cormelated with Df win and Df loss,
respectively. These estimated Pearson corrslations were

ting brain 1

Number of symbols shown RP

RPE In case of win {(1}: RPE = 1 — RP RPE In case of no win {0): RPE = 0 — RP

Win domain 1 1 1-1=0 0-1=-1
172 1 -1/2=1R 0—1/2=-1/2

3 173 1-1/3=273 0—13=-1/3

4 174 1 —1/4 =314 0—1/4=-14

Number of symbols shown LP  LPE incase of loss: LPE = -1 — P LPE in case of no loss: LPE =0 — LP
Loss domain 1 0 -1-0=-1 0-0=0

2 -1/2 -1 —(-1r)=—-1/2 0 —(—12) =12

3 -2/3 -1 — (-2/3) = —1/3 0—(-2/3) =23

4 -3/4 —1 — (—3/) = —1/4 0—{-34)=314
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Contrast Region Laterality MNI coordinaies
x y

RP =0 MTG R 66 -49
OMFG L -57 29
VIMPFC L -9 38
MTG L -63 —55
PCUN L 3 =52
POG R 39 -19

RPE =0 Vs L -12 5
Vs R 12 5
VIPFC L -6 44
VITPFC R 3 47
MTG L -80 -45
VIS L -3 76
MCC R 0 -16

Cluster
Cluster size t P (FWE carrected)
z

2 1368 7.01 <0.001
-10 2017 6.70 =0.001
-7 2017 5.64 <0.001
29 1337 6.17 <0.001
20 671 6.07 <0.001

56 175 5.05 0.011
-10 1805 7.85 =0.001
-10 1805 7.84 <0.001
-1 1094 6.87 =0.001
-1 1094 6.35 <0.001

5 189 4.35 0.004

2 235 4.33 0.001
44 317 426 <0.001

Cluster size FWE-carrected, voxd threshold = 0.005; df = 47, L, Left; R, nght.

subsequently bootstrapped (seed set at 10; repetitions,
10,000} and reported.

Results

Whole-brain fMRI

Brain regions cormesponding to the reward and loss
processing cluster peaks shown in Tables 3 and 4 are
reported in the following two paragraphs and can also be
sean in Figure 3. The reported activations are thresholded
at a cluster size FWE-corrected p value of 0.05.

Reward domain

The bilateral middle temporal gyrus (MTG}, orbital
part of the left middle frontal gyrus (oMFG), vmPFC as
well as the left precuneus (PCUN), and right postcentral
gyrus {POG}) were all activated during the reward antic-
ipation phase with increasing reward prediction {(RP =
0; Table 3; Fig. 3, magenta, first row). The PCUN cluster
also included activation in the midcingulate cortex
(MCC) and the PCC. The reward prediction error pa-
rameter (RPE = 0) correlated, among others, with ac-
tivity in the bilateral VS, vmPFC, and MCC (Table 3; Fig.
3, green, first row). Notably, a large portion of the MCC
cluster was located in the PCC.

Loss domain
During the loss anticipation phase (LP = 0), the tempo-
ral parietal junction (TPJ). MTG, and vmPFC were all

Table 4: Whole-brain activity related to LP and LPE

activated bilaterally (Table 4; Fig. 3. blue, third row). Ad-
ditionally, the right PCUN and dorsomedial prefrontal cor-
tex (dmPFC) were activated as well. Brain areas
corrslating with the less prediction error parameter (LPE
= 0} included the visual cortex (VIS) and the Al {Table 4;
Fig. 3, yeliow, third row).

ROI fMRI

In the following paragraph, we report brain activation in
three a priori determined ROls: the vmPFC, VS, and Al
The activations sustained a whole-brain correction of 0.05
and custom 3dClustSim thresholds (Tables 5, 6). Activa-
tion in these regions is also shown as part of the whole-
brain fMRI activation depicted in Figure 3. The reward
prediction parameter “RP = 0" correlated with activity in
the vmPFC (Table 5), while the opposite contrast only
showed activation of the left Al (Table 5). Investigating
activity correlating with the RPE during the outcome
phase resulted in bilateral activation in all of the ROIls
(Table 5), while the opposite contrast showed no signifi-
cant activation (Table 5). Contrasting loss prediction to
baseline, we observed the bilateral vmPFC to be activated
(Table 6}, while the opposite contrast resulted in activation
of the left Al and the bilateral VS (Table 6). Only the
bilateral Al was correlated positively with the LPE param-
eter (Table 6), while the bilateral yvmPFC and VS correlated
negatively (Table 6).

Contrast Region Laterality MNI coordinates
X y
LP >0 dmPFC R 3 50
TPJ L —-57. -67
MTG R 80 —43
PCUN R 6 —-55
MTG L -63 45
TPJ R 57 —-58
vmPFC LR 0 26
LPE =0 VIS R 9 -79
Al R 42 20

Cluster size t Cluster p (FWE corrected)

356 392 6.06 =0.001
29 547 576 =0.001

5 159 5.68 0.015
35 139 5.19 0.028
-1 174 4.90 0.001
35 447 458 <0.001
16 158 449 0.015
-1 4845 14.54 <0.001
-1 129 5.47 0.038

Cluster size FWE-camected, voxe threshold = 0.003, df = 47. L, Left; R, right.
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Ventromedial
Prefrontal Cortex
(vmPFC: -4,42,-8)

Reward: pos.
(Magenta: RP > 0;
Green: RPE > 0)

Reward: neg.
(Magenta: RP < 0;
Green; RPE < 0)

Loss: pos.
(Blue: LP>0;
Yellow: LPE > 0)

Loss: neg.
(Blue: LP < 0;
Yellow: LPE <0)

Ventral Striatum
(VS:-12,8,-8)

New Research 7of13

Anterior Insula
(Al: -36,24,2)

Tvalue

Tvalue

7 value Tvalue

Figure 3. Whole-brain activation during the different parts of reward and loss processing (whole-brain corrected p < 0.05, based on
3dClustSim correction [k = 33, p < 0.005], df = 47) and obtained using the fMRI paradigm. Color coding: magenta, RP; green, RPE;
blue, LP; yellow, LPE. The first and the third row represent the positive contrasts vs baseline (=0), and the second and fourth row
represent the negative contrasts vs baseline (<<0) in the reward and loss domains, respectively. Respective t value color bars are

shown on the right side.

Eye tracking

Analysis of the eye-tracking data revealed that subjects
differed neither in the number of total fixations in both do-
mains, nor in fixation differences between values and prob-
abilities (Table 7). However, subjects paid slightly more
attention to values compared with probabilities in both the
win (one-sample t test; mean, 2.51 * 4,959, p = 0.002; df =
43) and the loss domain (one-sample t test; mean, 2.73 =
4.521; p < 0.001; df = 43). The two variables Df win and Df
loss were highly correlated (Table 8), and the participants did
not show differences in fixations on high-risk and low-risk
gambles between the gain and loss domains (Table 7). The
behavioral results of the eye-tracking task revealed that in

September/October 2016, 3(5) e0189-16.2016
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both domains subjects made high-risk choices slightly more
often than low-risk choices, and that the average reaction
time did not differ with regard to domain or choice type
(Table 7).

In both domains, higher reaction times correlated with
more fixations on probabilities compared with values
(Table 8). Additionally, more fixations on high-risk gambles
compared with low-risk gambles correlated with more high-
risk gamble decisions, but only in the win domain (Table 8).

Correlation of fMRI and eye tracking
Bootstrapping the resuits of the fMRI and eye-tracking
data correlations showed that higher activation in the bilat-
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Table 5: ROI analysis results for the win domain {df = 47)

New Research 8of 13

Contrast  k threshold+  Contrast direction  Region
RP =0 24 Positive Al
vmPFC
Vs
Negative Al
vmPFC
V8
RPE>0 32 Positive Al
vmPFC
Vs
Negative Al
vmPFC
Vs

Laterality  Peak MNI coordinates Cluster size (k) Peakt
x y z

Left ns. ns. n.s.

Right

Left -9 47 -13 556 460

Right 6 50 -10 556 4.80

Left ns. ns. n.s.

Right

Left -33 23 5 105 5.26

Right ns. ns. n.s.

Left ns. ns. n.s.

Right

Left ns. ns. ns.

Right

Left -33 17 o 3n 529

Right 30 20 -7 697 7.37

Left -3 47 5 583 6.34

Right 3 47 -1 583 6.35

Left -12 5 -10 37 7.95

Right 12 5 -10 597 7.84

Left ns. ns. ns.

Right

Left ns. ns. ns.

Right

Left ns. ns. ns.

Right

«Whalebrain corracted, p = 0,05 (ased on 3ACsSIm correction: k> 33, p < 0.005). ns., Not significant.

eral vimPFC during reward prediction error (RPE = 0) pro-  error (LPE == 0) processing correlated with more fixations on
cessing correlated with a higher number of fixations on
values versus probabillities in the eye-tracking task (Table 8).
In the loss domain, left VS activation during loss prediction

Table 6: ROI analysis results for the loss domain (df = 47)

probabilities versus values (Table 9).
Additionally, PCC activation during LPE processing was
found to correlate with decreased Df loss (i.e. increased

Contrast & threshold+  Contrast direction  Ragion
LP>=0 34 Positve Al
VmPFCG
Vs
Negative Al
vmPFG
ve
LPE=0 33 Positive Al
vImMPEC
Vs
Negative Al
vmPFC

Vs

Lateralty  Peak MNI coordinates Cluster size (k)  Peak T
X y z

Left ns. ns. n.s.

Right

Left -5 29 -10 52 443

Right 0 26 —-16 52 449

Left ns. n.s. n.s.

Right

Left -30 26 —4 114 377

Right ns. n.s. n.s.

Left ns. n.s. n.s.

Right

Left -18 11 -1 114 660

Right 12 8 5 95 526

Left -30 26 2 47 461

Right 33 29 -1 74 426

Left ns. n.s. n.s.

Right

Left ns. n.s. n.s.

Right

Left ns. ns. n.s.

Right

Left -12 a7 —4 390 3.86

Right 6 41 -13 390 558

Left -15 " -10 733 7.95

Right 24 -1 -13 178 526

+Whale-brain comrected p < 0.05 (based on 3dChustSim correction: & = 33, p < 0.005).
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Table 7: Descriptive overview of the eye-tracking task variables

Variable N Minimum Maximum Mean s
Total fixations, win domain 44 7.90 6523 29.32 12.726
Total fixations, loss domain 44 750 61.17 28.94 11.720
Df win domain: [f(y) — fip)] 44 -9.13 1220 2.51 4959
Df loss domain: [fiv) — fip)] 44 -7.77 11.07 2.73 4521
Df high risk, win domain: [f{5) — fif) 44 -5.00 207 -0.35 1.395
Df high risk, loss domain: [fif) — ()] 44 -3.97 437 0.34 1.495
Percentage of high-risk choices, win domain 44 2667 100.00 66.59 20.486
Percentage of high-risk choicaes, loss domain 44 30.00 100.00 7727 18.584
Average reaction time, all frials 44 3.02 17.99 851 3.544
Average reaction time, win domain 44 292 2153 8.68 3935
Average reaction time, win domain, high-risk choices 44 292 2258 8.74 3.958
Average reaction time, win domain, low-risk choices N 3.23 19.76 8.96 4.058
Average reaction time, loss domain a4 312 16.38 8.56 3471
Average reaction time, loss domain, high-risk choices 44 312 15.59 8.37 3.363
Averagas reaction time, loss domain, low-risk choicas 44 357 3820 10.33 6,309

attention toward probabilities [f(p)] compared with values
[f{¥)] In the loss domain (Table 9). Neither the Al nor the
control region OSS correlated significantly with fixation
differences in any of the two domains (Table 9). Plotting
the correlations revealed individual differences in atten-
tion and brain activation (Fig. 4).

Discussion

We show that individual differences in neural reactions
to gains and losses relate significantly to differences in
information search over risky gambles. Activity in the
vmPFC during gain precessing correlated positively with
attention to the monetary amounts of risky gambles in the
gain domain, while activity in the VS and PCC during loss
processing correlated positively with subjects’ attention
to the probabilities of gambles in the loss domain. Our
resuits concur with previous findings in the reward do-
main, in which the vmPFC, VS, and PCC were identified
as regions involved in reward and loss processing, and
crucially important for value computations and salience
(Fliessbach et al., 2007; Seymour et al., 2007; Tom et al.,
2007, Bartra et al., 2013; Clithero and Rangel, 2014).

There are a number of studies with a wide array of
topics that have previously successfully combined eye
tracking and fMRI (Kang et al., 2012; Paschke et al., 2012;
Tylén et al., 2012; Meyhoter et al., 2015). The study of
highest relevance for this experiment investigated the
relation of attention to value signals (Lim et al., 2011}. In
the experiment, participants first performed a liking-rating
task, which was followed by a binary choice task, during
which the subjects were instructed to fixate on the food

item and were then asked to make a selection for one of
the two food items shown (Lim et al,, 2011}, During both
tasks, fMRI and eye-tracking data were simultaneously
recorded, and the researchers found out that activation in
the vmPFC and the VS represented a relative value code
between the items, which was in tum guided by visual
attention measured via eye tracking {Lim et al., 2011). It is
impertant to note here that despite the fact that these
findings somewhat overlap with our results, there has
been neither a study that has combined eye-tracking and
fMRI data collected in two separate experiments, nor a
study that has investigated the neural relations of atten-
tion patterns in a monetary gambling task. We henceforth
add to previous studies by relating individual differences
in neural reactions to gains and losses to differences in
information search processes, as measured by an inde-
pendent eye-tracking experiment using risky gambles.
Individual brain activation differences have previously
been shown to correlate with behavioral risk preferences.
Specifically, risk averters were shown to exhibit higher VS
and Al activation during high-risk gamble anticipation
{Rudorf et al.,, 2012). Further correlations of individual
brain activation differences using two separate assess-
ment technigues have been described using the behav-
ioral inhibition scale (BIS) and behaviorial activation scale
(BAS), and an fMRI task invelving menetary gains and
losses (Kim et al., 2015). People with higher BIS scores
exhibited higher activation of the left striatum during
avoidance anticipation, while individuals with higher BAS
scores showed higher activation of the bilateral striatum

Table 8: Additional significant Pearson correlations (uncorrected) of the variables from the eye-tracking task

Varfable 1 Variable 2 r P N
Df win Df loss 0.94 <0.001 44
Average reaction time, win domain -0.39 0.009 44
Average reaction time, win domain, high-risk choices -0.38 0.011 44
Average reaction time, win domain, low-risk choices -0.38 0.016 a1
Df loss Average reaction time, loss domain —-0.46 0.002 44
Average reaction time, loss domain, high-risk choices -0.48 0.001 44
Average reaction time, loss demain, low-risk choices -0.36 0.023 44
Df high risk win Percentage of high-risk choices, win domain 0.31 0.039 44
September/October 2016, 3(5) €0189-16.2018 aNeuro.org
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Table 9: Main bootstrapped Pearson correlation results (un-
corrected, seed set at 10 with 10,000 repetitions) of the fMRI
and eye-tracking data (df = 42)

Eye-tracking
variable ROI fMRI contrast variable
RP =0 RPE =0

Of win Left Al ~0.05 (0.169)  0.14 (0.142)
Right Al 0.11{0.122) -0.02 (0.145)
Left 0SS -0.,03 (0.18%)  0.01 (0.125)
Right 0SS -0.08 (0.210)  0.02 (0.148)
PCC 0.11 {0.151) 0.10 {0.128)
Left vmPFC 022 (0.156)  0.31 (0.150)*
Right vimPFC 018 (0.150)  0.40 (0.138)»
Left VS 008 (0.135)  0.23 (0.140)
Right VS 017 {0.140)  0.02{0.131)

LP =0 LPE =0

Df loss Left Al 0.10 {0.144) —-0.20 (0.127)
Right Al 0.13 {0.116) —-0.12 (0.151)
Left OSS 0.17 {0.129) —0.12 [0.145)
Right 0SS 0.03 {0.157) —~0.21 (0.142)
PCC -0.02 (0.128)  —0.28 [0.134}+
Left vmPFC ~0.16 (0.1589)  —0.17 (0.143)
Right vmPFC ~ 0.01 {0.158) —0.15 (0.152)
Left VS -0.01 (0.162) —0.32 {0.162)+
Right VS -0.08 (0.163) <0.01 (0.138)

wp =005

during reward reception. In the eye-tracking domain, in-
dividual differences of attention were previously shown in
a study involving similar financial gambles {Fiedler and
Gléckner, 2012). With these individual differences having
previously been found using fMRI or eye tracking, our
study is the first to show their relation In a financial
decision-making context and is thus able to add an im-
portant piece to how attenticn and value computations
are linked.

We have to note obviously that the exclusion of a
controlled intervention in our study design inherently limits
causal conclusions. Hence, one interpretation Is that pay-
ing moare attention to either monetary amounts or proba-
bilities may cause differences in activation in the vmPFC,
VS, and PCC. This hypothesis is supported by previous
studies, which showed that exogenous manipulation of
attention can successfully change brain activation pat-
terns and ultimately influence behavioral choices, as
shown, for example, using cues in the context of food
choices (Hare et al., 2011a; Milosavijevic et al., 2012). In
an eye-tracking experiment implementing everyday su-
permarket decisions, manipulation of praduct salience led
te participants making incchersnt, “wrong,” product
choices, with individuals displaying a visual saliency bias
and thereby depicting the strong influence of attention
manipulation on decision-making (Milosavljevic et al.,
2012). Furthermore, results from a behavioral binary-
choice experiment using electroencephalography showed
that the additional presentation of a value-associated dis-
tractor was associated with making more incorrect deci-
sions and differences in the P300 brain activation
amplitude (Itthipuripat et al., 2015).

Another interpretation of the detected correlation is that
the vmPFC acts as a driver and guides attention during
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the information search in risky gambles. This can be
placed into the context of a very recent model by Schultz
(2016). He describes reward as having inherent sensory
and value components, thus leading from object detec-
tion to its identification; from there to its valuation; and
finally to the decision, action, and reinforcement. Placing
our results into the context of this model, the vmPFC can
be described as a possible modulator guiding object
detection, identification, and valuation. The VS has previ-
ously been identified to play a role in risk and prediction
error computation, thus leading to the Idea that already
during the information search phase, the VS could be
involved in the perception of risks by guiding information
search processes. The laterality of only the left VS being
significantly associated with attention patterns is surpris-
ing, considering that Lim et al. (2011} found the bilateral
VS to be associated with attention, Smith et al. (2014
associated activation from a bilateral VS mask with suc-
cess in a stock exchange paradigm, and both the left and
the right VS have been associated in & meta-analysis
investigating the neural basis of subjective value {Clithero
and Rangel, 2014). Since reward and loss processing in
our study was found in the bilateral VS as well, we are not
able to systematically determine why this laterality oc-
curred. Previous studies have investigated such laterality
differences in the dopamine response to reward in the VS
{Martin-Soeich et al., 2011), but the decision-making field
is lacking a comprehensive meta-analysis of especially VS
laterality in reward and loss processing, which would
greatly help the understanding of such incidental findings.

We did not expect a priori that the PCC would also be
associated with attention patterns during risky choices.
Finding this correlation, however, points toward the PCC
playing an important role in guiding attention more toward
the probabilities of risky gambles compared with their
values in the loss condition. Notably, the PCC cluster
used in our analysis included the location of the PCC
previously shown to be associated with attention toward
relative value (Lim et al., 2011}, Additionally, a meta-
analysis by Clithero and Rangel {2014) found that both
ventral and dorsal areas of the PCC (both included in the
cluster used here) were assoclated with processing value
during the decision phase. A review article by Leech and
Sharp (2014), investigating the role of the PCC in relation
to disease and cognition, sheds even more light onto our
findings. Besides showing the role of the PCC in regulat-
ing the focus of attention that concurred with our findings,
the authors also introduce an “Arousal, Balance, and
Breadth of Attention” (ABBA) model pertaining to the
PCC. This model highlights the sensitivity of the PCC to
arousal, internal/external thought, as well as attentional
focus. In light of this maodel, the individual differences
seen in our PCC results can be interpreted as brain acti-
vation related to these dimensions. Another study on the
PCC (Studer et al., 2015) presented evidence that lesions
in the PCC are detrimental to optimal risky decision-
making. Importantly, PCC damage was inversaly related
to risk adjustment, thus showing the importance of the
PCC in risky decision-making. Taking our findings and the
previous literature into account, we believe that the role of
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Figure 4. Correlation of IMRI and eye-tracking data, showing Individual data points and the respective ROIs used for the contrast
value extraction. A, Contrast values of the left VMPFC during RPE processing correlaie with higher values of Df win [i.e., increased
attention toward values (fivl) compared with probabilities {f[p]} In the win domain; r = 0.308, p = 0.045, df = 42). B, Contrast values
of the right VMPFC duwing RPE processing correfate with an increased attention foward values [fivj] compared with probabilities [fip)]
in the win domain r = 0.397, p = 0.008, df = 42). C, Contrast values of the PCC during LPE processing correlate with an increased
attention toward probabilities [f{p)] comparad with values [f{v)] inthe loss domain (r = —0.284, p= 0.065, df = 42). D, Contrast values
of the left VS during LPE processing correlate with an increased attention toward probabilities [fip)] compared with values [fv)] In the

toss domain (r = —0.316, p = 0.039, af = 42).

the PCC in financial decision-making has been somewhat
underestimated in the past and should be further investi-
gated in future studies of financial decision-making.
Despite our data not being able to determine causality,
we believe that our results are essential to advance the
knowledge of decision-making processes, and to lay the
basis for future decision-making studies that are aiming te
combine fMRI and eye-tracking data in a behavioral eco-
nomic context. Leaving the causality discussion aside, the
correlation depicted by our data can also be seen as
evidence for the previously noted bidirectional relation-
ship of eye movements and decisicn-making {(Gottliek
et al., 2014). This relationship is described as values of
different envirenmental stimuli influencing eye move-
ments, with eye movements in turn influencing decision-
making due to selecting the sensory input that impacts a
person's decision. In this context, our results provide
evidence that the bilateral vmPFC, left VS, and PCC

September/October 2016, 3(5) 0189-16.2016

represent three regions respensible for this interaction,
henceforth playing a very important role in financial
decision-making involving risks. Despite finding these re-
sults, a lack of a significant correlation between activation
in the Al and attention patterns was noted as well. A
reason for this might be that the fMRI paradigm did not
specifically elicit brain activation related to risk, but in
relation to reward and loss processing. It could therefore
be of interest in future studies to check whether the Al
activation is related to attention patterns in a risk-specific
fMRI paradigm.

Peak activation in the VS was highly correlated to the
RPE parameter, a finding that concurs well with previous
discoveries (Schultz and Dickinson, 2000; Hare et al.,
2008, 2011b; Fliessbach et al., 2010; Glimcher, 2011,
Rohe et al., 2012; Hausler et al., 2015). As hypothesized
based on the findings of previous studies (Kuhnen and
Knutson, 2005; lzuma et al., 2008; Lin et al., 2012), acti-

aNeuro.org

91



Neuroeconomic Foundations of Reward, Loss, and Risk Processing

eMeuro

vation of the vmPFC during all parts of reward processing
was observed. Besides the vmPFC, other areas were
found to be activated during both reward prediction and
reward prediction error processing. This could have been
the case because the reward prediction phase can also
be seen as a time point of reward prediction error pro-
cessing. The cue shown during reward prediction can
elicit a prediction error response in that the probability of
possible wins or losses may deviate from previous pre-
dictions.

With regard to the eye-tracking findings, the high cor-
relation of the fixation differences in both domains (Df win
and Df loss) shows the attention consistency of individu-
als during the information search phase, irespective of
being in a win or loss context. We observe a rather
risk-seeking behavior in our experiment, possibly due te
the fact that the gambles were performed with money that
was additionally eamed on top of the “safe” participation
fee. It could be of interest to run the same experiment
again without such a participation fee, thus having the
subjects complete the eye-tracking experiment without a
safe payment in the back of their mind. Finally, more
fixations on high-risk compared with low-risk gambles
correlated with more high-risk gamble decisions. This
concurs with previous findings identifying choice as a
function of attention (Brandstatter and Kémer, 2014).

By combining fMRI with eye tracking using two sepa-
rate tasks, our study shows that information search in
risky gambles is related to neural reward and loss pro-
cessing in the vmPFC, VS, and PCC. Higher reward pro-
cessing activity in the vmPFC was correlated to paying
more attention to the monetary values compared with
their respective probabilities in risky gambles. Addition-
ally, higher loss processing activity in the left VS and the
PCC was corrslated to paying more attention to the prob-
abilities compared with the monetary values of risky gam-
bles. Future studies will need to dig deeper into the
causality of this link.
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OPEN  Preferences and beliefs about
financial risk taking mediate the
association between anterior insula

et 170y 2018 activation and self-reported real-
mmmmEE - life stock trading

Alexander N. Hausler(®'23, Camelia M. Kuhnen*, Sarah Rudorf(®° & Bernd Weber %3

People differ greatly in their financial risk taking behaviour. This heterogeneity has been associated with
differences in brain activity, but only in laboratory settings using constrained behaviours. However, it

is important to understand how these measures transfer to real life conditions, because the willingness
toinvest in riskier assets has a direct and considerable effect on long-term wealth accumulation. Ina
large fMRI study of 157 working age men (39.0 1= 6.4 SD years), we first show that activity in the anterior
insula during the assessment of risky vs. safe choices in an investing task is associated with self-reported
real-life active stock trading. We then show that this association remains intact when we control for
financial constraints, education, the understanding of financial matters, and cognitive abilities. Finally,
we use comprehensive measures of preferences and beliefs about risk taking to show that these two
channels mediate the association between brain activation in the anterior insula and real-life active
stock trading.

Functional magnetic resonance imaging (fMRI) has been used extensively to study financial risk taking in the
laboratory, but less work has connected brain activation to financial risk taking choices in real life'~°. Here, we
use data from a non-student sample to study a self-reported real-life indicator of financial risk taking that has a
significant impact on wealth accumulation, namely, whether people trade stocks. In addition, we measure brain
activation during an investing task and study the differences in the estimated mean activation of these brain
regions between active stock traders and non-active stock traders (our binary dependent variable “active stock
trading” was assessed using question 21 in the Supplementary Document “Do you trade stocks yourself?”, see
Supplementary Information). Previous studies have consistently linked the neural implementation of decisions
under risk and, more broadly, value based choices to activity in brain regions such as the ventral striatum (VS),
the anterior insula (Al), and the ventromedial prefrontal cortex (vmPFC)'~'. Even though these studies have
greatly improved our knowledge of the neural mechanisms underlying risky choices'?, it is unknown how the
observed heterogeneity in individual brain activity and behaviour in laboratory tasks transfers to financial risk
taking in real life!2!,

More specifically, studies of financial decision making under risk have linked risk seeking behaviour to VS
activation, while risk averse choices have been shown to relate to increased activation in the AI'>*, Recent
efforts have additionally shown that the interaction between these two regions plays a role in making financial
choices under risk'"'2. In our investing task, participants are repeatedly asked to choose between a risky option
(stock) and a safe option (bond) while being in either a gain or loss domain. We expect that individuals who trade
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Figure 1. The investing paradigm and regions of interest. There were eight blocks in each domain (gain

and loss), consisting of eight trials each (thus 96 total trials, one trial of each domain is shown here). In the
beginning of a block, participants were shown in which domain they were. They chose between a risky (stock)
or non-risky (bond) option and the choice implementation (button press) was highlighted with a green frame.
Next, participants saw the stock payoff feedback, regardless of the previous choice. The participants then
estimated the probability of the stock being good and finally, a balance feedback was shown.

stocks in real life show higher VS and lower AT activation during a risky versus a safe option. Furthermore, we
believe that the chance to find these differences in VS and Al activation between active and non-active stock trad-
ers is higher in the gain domain, due to this part of the investing paradigm being more similar to stock trading in
real life (in the gain domain of the investing task participants try to win money, while in the loss domain they try
to avoid losses). With regard to the established role of the vmPFC in subjective value and reward processing>*!%!>,
we hypothesize that individuals who trade stocks show higher vmPFC activation upon choosing the stock versus
the bond and receive higher reward-related vimPFC activation upon getting the feedback to have made the correct
choice after having chosen the risky versus the safe option. In a sample of 157 working age men, we find that, out
of the three candidate regions (VS, Al and vmPFC), only activation in the AI when choosing a risky over a safe
option in the gain domain of an investing task is significantly lower in participants who actively trade stocks in
real life, compared with those who do not.

Next, we investigate possible economic mechanisms by which the Al activation may influence real-life finan-
cial risk taking. Due to the fact that stock market participation has been associated with financial constraints'®!7,
we assess whether higher Al activation in people who do not trade stocks may simply reflect these individuals’
financial constraints and their interest to avoid further financial risk. We do not find this to be the case, because Al
activation continues to be associated with real-life stock trading, even after we control for participants’ household
income and financial liabilities. We then inquire whether Al activation could be a proxy for education, as well as
a general understanding of financial matters and cognitive abilities, because all these factors have been found to
relate to stock market participation'®>2. We do not find that these individual characteristics influence the asso-
ciation between the Al activation and real-life active stock trading. Next, we assess whether people’s preferences
and beliefs about risk taking'***** are captured by the Al activation differences between active and non-active
stock traders. We use a combination of self-assessment questions and behavioural data from decisions under risk
to create two comprehensive characteristics that evaluate people’s beliefs regarding the outcomes of risky choices
(risk optimism index (ROI)) and the willingness to bear risk (risk tolerance index (RTI)). Here, we find that the
association between real-life active stock trading and Al activation is mediated by both of these channels.

Our paper contributes to the neuroeconomics literature by showing that brain activation measured in the
laboratory is associated with financial risk taking in real life, thus lending external validity to previous laboratory
studies. We show this by using brain regions of interest from previous neuroeconomic landmark studies"*? to
identify differences in brain activation between groups of active stock traders and non-active stock traders during
a stock investing task. Our paper then additionally contributes to the field of neuroeconomics by showing that
differences in brain activation do not capture differences in terms of financial or cognitive constraints between
these two groups of individuals, but that the association between real-life financial risk taking and Al activation
is significantly mediated by comprehensive, independent measures of people’s beliefs about risk taking, as well as
their risk tolerance. Hence, our results provide novel evidence that this specific brain area shown previously to
relate to financial taking risk in the laboratory plays a central role for risk taking in real-life by aggregating indi-
viduals’ optimism and risk preferences.

Results

The fMRI paradigm is reliable from both a neuroscientific and behavioural point of view. To
measure heterogeneity in brain activity across 157 working age participants (39.0 + 6.7 SD years), we adapted a
recently established investing paradigm® to a functional magnetic resonance imaging (fMRI) setting (Fig. 1).
In this paradigm, we asked participants repeatedly to choose between a risky option (stock) and a safe option
(bond) while being in either the gain or the loss domain (please see Experimental Design in the Methods section
for more details). After each choice and regardless of the chosen option, the payoff of the stock was shown. To
assess the reliability of this fMRI stock investing paradigm in relation to previous literature®*!*>26-3%, we first
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Figure 2. Group-level brain activation and regions of interest. (a) Whole-brain reward prediction error (RPE)
activation (whole-brain corrected p(FWE) <0.05, k> 10, n = 165). (b) Regions of interest used to extract
weighted beta estimates (see Figs 2—4, as well as Supplementary Figs S1, S2, and Supplementary Table S4). The
right (turquoise) and left (pink) anterior insula (AI) masks, as well as bilateral ventral striatum (VS, magenta)
masks were obtained from previous neuroeconomic studies on risk processing'¢. The ventromedial prefrontal
cortex (vmPFC) mask (yellow) and the fusiform face area (FFA) mask (blue, used as a control region) were
obtained from meta-analyses of valuation’ and emotional face processing®!, respectively.

created a general linear model (GLM) that specifically included a parametric reward prediction error (RPE)
analysis (see Supplementary Table S1). Here, we found RPE-related brain activation in the VS and the vmPFC
(Fig. 2a). We then grouped participants into active stock traders and non-active stock traders according to their
self-reports (see question 21 in the Supplementary Document “Do you trade stocks yourself?”, see Supplementary
Information) and found that active stock traders chose the stock in the task significantly more often than non-ac-
tive stock traders (first trial of each block, two-sample t-test, p =0.029, mean choice of stock versus bond, active
stock traders: 63.0 +27.1% SD, non-active stock traders: 53.0 +25.7% SD, n = 157).

Brain activation is associated with real-life active stock trading. ~ We then investigated whether the
risk-related brain activation would help to explain real-life stock trading. Extending prior literature! 1214, we
discovered that activation in an area that was previously linked to risk averse behaviour in the lab"® - namely, the
anterior insula (AI) - is a strong and significantly associated explanatory variable of people’s reluctance to trade
stocks in real life. To study this association, we created a GLM (see Supplementary Table S2) that was designed
to assess individual brain activation during the decision process and payoff feedback in the gain and the loss
domain, separately (an overview of the whole-brain analysis is given in Supplementary Table $3). Using this GLM,
we extracted the individual mean brain activation (beta estimates) in the brain regions of interest (AI, VS, and
vmPFC) with masks from previous landmark studies on risk processing and valuation (Fig. 2b"%?). Additionally,
we included another area with no obvious relation to valuation or risk taking (fusiform face area (FFA; Fig. 2b))
to control for specificity of effects’. The weighted beta estimates from these regions of interest were henceforth
extracted from brain contrasts in both the choice and the payoff feedback phase (e.g., stock vs. bond choice in the
gain domain, see Supplementary Table S4; distribution plots are shown in Fig. 3 and Supplementary Figs S1 and
$2). Two-sample t-tests were then performed to test for brain activation differences between active and non-active
stock traders. We found that activity in the VS, vmPFC, and FFA in the choice and the payoff feedback phases
were not significantly different between the two groups. However, activity in the bilateral AT when participants
opted for the stock vs. the bond in the gain domain was significantly associated with real-life financial risk taking
(for the right AI: p=0.0264; for the left Al: p=0.0072; see Supplementary Table S4). Specifically, when partic-
ipants opted for the stock vs. the bond in the gain domain, the AI showed lower activity in real-life active stock
traders compared with non-active stock traders, consistent with the notion of a lower risk signal"*~".

Economic variables do not explain the link between Al activation and real-life stock trading.
Next, we assessed whether previous aspects that have been related to stock market participation, namely, finan-
cial constraints'®"7, education'®!7?2, the understanding of financial matters**?!, and cognitive abilities'*'*, would
explain the association between the Al activation and real-life stock trading (Tables 1 to 3; distribution plots are
shown in Fig. 3). We did not find evidence for this. We first tested whether economic financial adversity would
impact the association between Al activation and real-life stock trading (Tables 2 and 3), because previous studies
have suggested a link between adversity*>** and neural activation. When we included the value of participants’
household income and an indicator for whether they have financial liabilities (e.g. outstanding credit card debt
or a mortgage) as additional explanatory variables of active stock trading, we found that this did not influence
the association between Al and real-life stock trading (Tables 2 and 3). Next, we assessed whether participants’
education, understanding of financial matters, as well as their cognitive abilities could explain the link between AT
activation and active stock trading. We therefore added measures of participants’ education level, as well as their
financial literacy, debt literacy, numeracy, and intelligence to our model (Tables 1 to 3). To assess intelligence, we
used a measure of fluid intelligence* that included questions on analogies (verbal intelligence), numerical series
(numerical intelligence), and matrices (figural intelligence). When we included all these measures as possible
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Numeracy Verbal intelligence Numerical intelligence Figural intelligence
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Number of correct answers Intelligence score Intelligence score Intelligence score
Risk optimism index Risk tolerance index
— All participants
Only stock traders
4 2 0 2 4 4 2 [ 2 4 — Only non-stock traders
Principal component score Principal component score
Figure 3. Data distribution of all variables used in the analysis (all n= 157, Tables 1-3). Kernel density graphs
are shown for continuous variables, histograms for ordinal and interval variables, and bar graphs for binary
variables. 'During stock versus bond choice (gain domain). ?Bins: 1 (<500€), 2 (500€-1000€), 3 (1000€-2000€),
4 (2000€-3000€), 5 (3000€-4000€), 6 (4000€-5000€), 7 (S000€-6000€), 8 (>6000€).
Active stock trading 03 |0 05 [157 |21
Household income (after taxes) 5.0 5 1.7 |157 |14
Having financial liabilities 07 |1 05 |157 |23
Years of education 159 (17 25 157 |56
Financial literacy 28 3 04 | 157 |39,40,41
Debt literacy 09 |1 05 | 157 |42,43
Numeracy 29 |3 03 | 157 |45,46,47
Verbal intelligence 109.8 110 7.8 157 |na.
Numerical intelligence 1103|111 100 157 |na
Figural intelligence 1068 | 109 87 |157 |na
Risk Optimism Index (ROI) | —0.009 | —0.1 14 [157 |na.
Risk Tolerance Index (RTI) —0.003 | —0.3 1.5 [ 157 |na.
Table 1. Descriptive statistics of the variables included in the regression analysis. Q" = number in financial,
risk preference, and personality questionnaire, provided as the Supplementary Document, see Supplementary
Information. n.a. = not applicable.
explanatory variables, we did not find that they explained the association between Al activation and real-life
trading.

To rule out a lack of significant results due to measurement issues, we additionally tested group differences
within each economic variable and found that in concurrence with previous literature'®'7?2, participants’
household income (two-sample t-test, p < 0.001, active stock traders: 5.9 & 1.7 SD, non-active stock traders:
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Figure 4. The association between the activation in the anterior insula (Al, independent variable, when
choosing between a stock and a bond) and active stock trading (dependent variable) is mediated through

risk tolerance and risk optimism (mediator variable, see Supplementary Table S10). The Sobel-Goodman

(SG) Mediation test was used with subsequent bootstrapping of the effect (all n =157, seed set at 10, 10,000
repetitions). Observed coefficients are shown with 95% (bias-corrected and accelerated) confidence intervals in
parentheses. An effect is considered significant if the confidence interval does not include the null hypothesis
(i.e. zero is not included) and is visualized in bold. (a) Mediation of left Al activation and active stock trading
through risk tolerance (at least 17.7%). (b) Mediation of left Al activation and active stock trading through risk
optimism (at least 22.9%). (c) Mediation of right Al activation and active stock trading through risk tolerance
(at least 25.0%).

4.6+ 1.6SD, n=157) and the years of education (two-sample t-test, p=0.014, active stock traders: 16.7 £ 2.2 SD,
non-active stock traders: 15.6 2.5 SD, n = 157) were significantly different between the two groups.

Beliefs (risk optimism) and preferences (risk tolerance) explain the association between Al
activation and real-life stock trading.  Previous studies have found that experimentally-elicited beliefs
and preferences about risk taking influence financial choices in laboratory settings?***. Additionally, single meas-
ures of beliefs and preferences have been linked to real-life outcomes® and specifically portfolio decisions®*”.
However, recent evidence suggests that risk preference reflects the structure of a multifaceted psychological trait
and should henceforth be studied with a more comprehensive approach?®. We therefore created two independent,
aggregate measures related to beliefs regarding the outcomes of risky choices (risk optimism index (ROI)) and
to the willingness to bear risks (risk tolerance index (RTI)). Here, we found that that the association of the AT
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Table 2. Linear probability models with possible explanatory variables of real-life active stock trading. Left
Al activation is included as an independent variable of interest. Coefficients are shown with t-statistics in
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Financial literacy 0.39) (~0.93) (—0.62)

) ~0.01 ~0.07 ~0.08
Debt literacy (~0.12) (—1.04) (—1.34)
Numerac ~0.08 —0.04 —0.04

¥ (~0.69) (~0.39) (~0.40)

Verbal intelligence torey oty Gy
Numerical intelligence oy i o5

R ~0.01 ~0.01 ~0.01
Figural intelligence 196 | (2500 | (aanye
Risk Optimism Index (ROI) ?él;s)'"‘" ?5132)«*"
Risk Tolerance Index (RTI) ?3Ogo)f,w
N 157 157 157 157 157
Adjusted R? 0.04 017 0.19 034 0.39

Table 3. Linear probability models with possible explanatory variables of real-life active stock trading. Right
Al activation is included as an independent variable of interest. Coefficients are shown with t—statistics in
parentheses. Significance levels: *p < 0.1, **p < 0.05, ***
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Risk Optimism Index | —0.10 —0.06 —0.05 0.01
(ROI) (—2.83)%* —1.56) (=1.31) (0.12)
Risk Tolerance Index —0.11 —0.08 —0.12 —0.12
(RTI) (=3.23)%* (—2.18)%* (=3.20)% (=2.90)%*
N 157 157 157 157 157 157
Adjusted R* 0.04 0.06 0.07 0.005 0.06 0.05

Table 4. Linear regression models showing the effects of risk tolerance and risk optimism on activation in the
left and right anterior insula. Coefficients are shown with t-statistics in parentheses. Significance levels: *p <0.1,
#54p < 0,05, “p < 0.001.

activity with active stock trading is mediated through both ROI and RTI. For the creation of ROI and RTI, we first
classified all self-assessment and behavioural measures into either the risk optimism or the risk tolerance category
(see Supplementary Table S5) and then used regression analyses of active stock trading to assess which variables
should be used for a subsequent Principal Component Analysis (PCA; see Supplementary Tables S6 and 7). With
PCA, we then computed a primary factor for each category, which we labeled as ROI and RTI (see Supplementary
Tables S8 and S9). When we added these primary factors to the model that controlled for the previous factors (i.e.,
financial and cognitive constraints) we found that both ROI and RTI impacted the association between the left AI
and real-life stock trading (Table 2) and that RTT influenced the association between the right Al and real-life stock
trading (Table 3). We formally tested the association between Al activation and ROI and RTT in a linear regres-
sion framework (Table 4), and then conducted a mediation analysis with subsequent bootstrapping of the effects
(see Fig. 4 and Supplementary Table $10). Our evidence indicates that the association between Al activation and
real-life stock trading is mediated by individuals’ ROI and RTI, rather than by financial or cognitive constraints.

Additional self-reported and behavioural results. We found significant associations between our
a priori determined self-reported active stock trading variable and two independent self-reported real-life
financial outcome variables. These were the binary variables of having financial investments (Pearson’s
Chi-squared = 20.14, p < 0.001, Cramér’s V =0.32, n = 198) and stock market participation (having a fraction
of financial investments invested into stocks and/or mutual funds; Pearson’s Chi-squared = 63.01, p < 0.001,
Cramér’s V =0.56, n=198). Additionally, we found that the mean self-assessment of financial risk taking was
significantly lower in active stock traders compared with non-active stock traders (p < 0.001, active stock traders:
4.63 +1.27 SD, non-active stock traders: 2.96 + 1.05SD, n = 194). For the self-assessment of financial risk taking,
we also found that when considered separately (rather than as part of the RTI), the self-assessment of finan-
cial risk taking was significantly correlated with the extracted bilateral AI brain activation (left AL r=—0.21,
p=0.007; right AL: r=—0.25, p=0.002, both n =163). In the investing paradigm, we found that the reaction
time for choosing the stock vs. bond did not differ between the two groups (first trial of each block, p = 0.483,
active stock traders: 1.89 s 4 0.97 SD, non-active stock traders: 1.93 s+ 0.98 SD, n = 157) and that the reaction
time of participants in both groups decreased throughout the experiment (both p < 0.001, active stock traders:
r=—0.17, non-active stock traders: r = —0.22, n = 157). Furthermore, participants were asked to estimate the
probability of the stock being good in each trial (Fig. 1). This allowed us to obtain the participants” average stock
assessment error (i.e. the difference between objective and subjective estimation), which was negatively correlated
with measures of fluid intelligence (see Supplementary Table S11). Additionally, we found a significant correlation
between ROI and RTI (see Supplementary Fig. $3).

Outcomes of a data-driven approach. To address the concern that our hypothesis-driven creation of
ROI and RTI might have influenced the results, we performed a purely data-driven approach. To this end, we
combined all individually significant variables (see Supplementary Tables S8 and $9) into one PCA and used
the primary factor as an index of financial risk seeking and preference (RSPI, see Supplementary Table $12). We
then performed the same analysis as previously done with ROI and RTI. For both the left and right Al, the RSPI
significantly influenced the association between brain activation and real-life stock trading (see Supplementary
Tables S13 and S14). Furthermore, it also mediated this association (see Supplementary Table S10). However,
a comparison with the ROI and RTI results revealed that the data-driven approach resulted in a loss of qual-
itative information due to concealing differences in the mediation of the neural data (left and right AT differ-
ences with respect to ROI and RTT). We therefore refrained from using RSPI, and instead decided to use the two
hypothesis-driven'* indices RTI and ROIL

Discussion

In our study, we do not only extend the association between brain activation and active stock trading to behaviour
in the real world, but additionally identify the mechanisms that underlie this association. We first show that brain
activation in the AI during financial decision making under risk is associated with financial risk taking in real life.
‘We then find that this association is not explained by individual differences in financial constraints, education, the
understanding of financial matters, or cognitive abilities. However, we find evidence that the association between
Al activation and real-life stock trading is explained by comprehensive measures of individuals’ risk tolerance and
beliefs about financial risk taking.
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We examine the connection between activation in several brain areas (VS, Al, and vimPFC) previously asso-
ciated with financial risk taking in the laboratory. We find that only one of these brain areas, namely, the Al is
associated with real-life financial risk taking as measured by a self-reported question of directly trading individual
stocks. Our results extend previous research by demonstrating that activation in exactly those Al regions that
have been associated with risk prediction® and a higher propensity to sell risky assets' in laboratory tasks transfers
to financial risk taking in real life. Participants who show a stronger Al signal when choosing a risky over a safe
asset in the gain domain are less likely to trade stocks in real life. In conjunction with the previously demonstrated
role of the Al in risk aversion®*”%11, as well as its function as a warning signal that differentiates high from low
earners in a stock market bubble experiment', our findings indicate that these signals are decisive for behaviour
in real life as well. From a clinical perspective, studies with insular-lesioned patients have unveiled an association
with atypical financial risk taking behaviour**’. Additionally, insula dysfunction has previously been shown to
be part of the pathology of several neurological disorders*'~**. This suggests that future research could investigate
the financial decision-making behaviour of different clinical populations and find out whether atypical financial
decision-making of such populations translates to similar behaviour in real life.

Notably, we find an association between real-life financial risk taking behaviour and Al activation in only
the gain and not the loss domain. In our investing paradigm (Fig. 1), the motivation in the gain domain is to
win money, while in the loss domain it is to avoid losses. In real life, investments in equities are characterized by
positive expected returns. It is therefore possible that investing in stocks in real life is more similar to investing in
the “stock” that is available during our lab experiment in the gain condition, where that asset promises positive
outcomes. The “stock” in the loss condition is not a natural equivalent of real-life equity markets during normal
economic conditions, in that during such times investors expect a positive return - not a loss, which is what our
experimental condition promises.

In spite of our results being in line with previous studies of risk aversion signals in the Al, the findings
could additionally be interpreted the other way around, thus implying that active stock traders who choose the
safe (bond) over the risky (stock) option show higher AI activation in comparison to non-active stock trad-
ers. Although this interpretation could tentatively be placed in context with previous findings of regret*, in our
investing paradigm (Fig. 1) the stock outcome is not known at the time of making the choice (the participant does
not know whether he made the right or wrong choice) and we therefore abstain from any further interpretations
in this context. Even though we do not find evidence that activation in the VS and vinPFC explains real-life stock
trading, it is possible that activation in these regions relates to other aspects of financial choices, for example, how
individuals respond to new information about investment options****. Although beyond the scope of this article,
it would be interesting to incorporate additional regions of interest from studies that used different approaches to
quantify risk and uncertainty®-** and to investigate the exact neural mechanisms underlying stock trading from a
computational perspective. Lastly, whereas our design included only male participants, future work should study
female participants, as well.

We do not find that financial constraints, education, the understanding of financial matters, or cognitive
abilities explain the interaction between active stock trading and Al activation. However, our comprehensive
measures of preferences and beliefs about risk taking explain this interaction. Importantly, we included both
self-assessments and behavioural data in the creation of these two aggregate measures, because it was previously
demonstrated that behavioural and self-report measures of risk taking are weakly correlated, which suggested that
they assess specific features of a complex construct®®*. The role of risk tolerance and risk optimism as mediators
between brain activation and real-life financial behaviour leaves the question of whether the understanding of
the mechanisms behind other real-life financial decisions such as stock market participation or portfolio choices
in general®"** could likewise be better understood with a combination of self-assessment, behavioural, and espe-
cially neuroscientific analysis.

Although economic indicators of real-life stock trading have previously been identified, self-assessment,
behavioural, and neuroscientific research on individual investors has been scarce and mostly confined to the
laboratory'®. This is remarkable considering that individual differences in risk preferences have important con-
sequences for many life domains'**"*2, Additionally, understanding the characteristics of real-life stock traders
is crucial considering the large number of individuals participating in asset markets and their impact on trading
volume and prices. In Organisation for Economic Co-operation and Development (OECD) countries, roughly
23% of households hold shares and other equities®. In Germany alone, private households directly own stocks
with an estimated total net worth of 158 billion Euros™. Here, we provide several explanatory variables of stock
trading, which may help policy makers assess why certain households participate in equity markets, as well as
help providers of financial services to tailor their advice and products to individuals in accordance with these
investors’ characteristics. Furthermore, stock market non-participation can imply welfare losses for households™
and understanding the underlying mechanisms of this behaviour might therefore help to support individuals in
more efficient ways. For example, consumers who are unduly pessimistic about stock investments, and thus have
a weak risk optimism as measured by the ROI, could be educated with respect to the historical performance of
equity markets worldwide. Also, consumers could be offered products by financial institutions that have appro-
priate risk-return profiles given these individuals’ risk preferences, as captured by their RTI.

Concurring with recent suggestions regarding the study of individual brain activation differences™®, we use
fMRI data from a large sample and base our analysis on strong prior hypotheses. Brain activation correlates have
been previously documented in the context of economic decisions such as consumer choices and monetary dona-
tions”~*, but not in the context of financial risk taking. This study extends our knowledge of financial risk taking
from the laboratory to the real world, which is an important next step in understanding individual heterogeneity
in real-life financial decisions and in helping individuals to make better financial choices.
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Methods

Experimental Design. 210 men were invited to the Life & Brain Center at the University Clinic in Bonn
(Germany) to participate in an experiment investigating the underpinnings of financial risk taking. Before
coming to the appointment, participants underwent screening for the absence of neurologic, psychiatric, and
cardiovascular diseases. Other exclusion criteria were ages below 29 and above 50, having a student status, unem-
ployment longer than three months, very bad eyesight (more than +5 diopters), excessive smoking (more than
ten cigarettes per day), as well as large tattoos above the waist. We asked only men to participate in the exper-
iment, because previous studies have shown that the menstrual cycle impacts both financial risk seeking®' and
reward-related brain activation® in women. The experiment involved no deception and was approved by the
ethics committee of the University of Bonn. Each participant gave informed written consent according to the
Declaration of Helsinki®® and the participants were made aware of the nature and consequences of the study. The
experimental session consisted of the following parts: introduction and training, structural magnetic resonance
imaging (MRI) with a concurrent behavioural task (stock allocation task, see Supplementary Fig. $4), functional
MRI (fMRI) with an investing paradigm (Fig. 1), diffusion tensor imaging (DTI), intelligence tests, a financial
questionnaire (Supplementary Document, see Supplementary Information), two personality tests (NEO-FFI**
and rRST-Q%), and blood collection. Compensation consisted of a basic payment of 20 Euro per hour, with pos-
sible addition or subtraction depending on the results of the behavioural and fMRI task. Participants were always
paid a minimum of 70 Euros for their average attendance of three and a half hours. The personality, DTI, and
blood-related results will be reported in other publications.

After the initial introduction and training session (both the practice and the full fMRI task are deposited
in the Supplementary Database, see Supplementary Information), participants were asked to lie in a Siemens
Trio 3.0 T scanner (Siemens, Erlangen, Germany) and were accustomed to special response grips (Nordic
NeuroLab, Bergen, Norway). The subjects viewed the experimental screen via video goggles (Nordic NeuroLab,
Bergen, Norway) that were fixated on a head coil. A system update of the MRI scanner at the end of 2013 led
to a mandatory adjustment of the T1 protocols, thus resulting in two ways of structural imaging data collec-
tion. Before the scanner update, participants underwent measurements with a standard 8-channel head coil. The
scans commenced with a localizer scan that was followed by a structural scan containing T1-weighted images
(TR=1570 ms; TE = 3.42 ms; flip angle = 15). After the scanner update, a standard 12-channel head coil was
used and the scans also started with a localizer scan, followed by a structural scan containing T1-weighted images
(TR =1660 ms; TE = 2.75 ms; flip angle =9). During the T1 measurement, participants completed a behavioural
paradigm investigating financial risk taking. This was a stock allocation task® (see Supplementary Fig. $4),
which was implemented in Presentation v14 (the paradigm is deposited in the Supplementary Database, see
Supplementary Information; Neurobehavioral Systems, Berkeley, California, USA). In the stock allocation task,
each subject was asked to make ten independent investment decisions by splitting up a fixed maximum invest-
ment amount of 23 Euro to either a risky (stock) or a riskless (bond) asset. Each subject saw two equally likely
stock return rates, the bond return rate, and a reminder of the maximum investment amount. These return rates
varied in each trial, during which subjects were asked to enter the amount that they would like to invest in the
stock, with the remaining funds automatically being invested in the bond. The average amount allocated to the
stock was taken as an estimate of individual risk preference, thus meaning that a higher investment represented
higher levels of financial risk taking. The return rate was only revealed at the end of the experiment, at which
point one trial was randomly selected by the program and integrated in the total compensation.

The investing task (Fig. 1, the paradigm is deposited in the Supplementary Database, see Supplementary
Information) was adapted from a previously established behavioural paradigm® to an fMRI setting to measure
the blood-oxygenated-level dependent (BOLD) signal during financial investment decisions. It was implemented
in Presentation v14 (Neurobehavioral Systems, Berkeley, California, USA). While subjects completed the par-
adigm, T2*-weighted echoplanar images (EPIs) were collected using a standard 8-channel (before the scanner
update) or 12-channel (after the scanner update) head coil. The scanning parameters were similar both before and
after the scanner update (TR = 2500 ms; TE = 30 ms; flip angle = 90; 37 3 mm slices in ascending order; field of
view = 192 mm; approx. 840 volumes) except for a change in voxel size (before the scanner update: 3 x 3 x 3 mm;
after the scanner update =2 x 3 x 3mm). Each participant started with an initial endowment of 25 Euros and
had to choose between a risky (stock) and a non-risky (bond) financial option in 96 total trials. Before each set
of six trials, which made up one of the 16 blocks, it was shown to the subject for 2's whether he was in the loss
or the gain condition. Each participant completed 16 blocks (eight gain and eight loss), shown in random order.
An initial screen of a block was followed by a jittered interstimulus interval (IS, 1 to 3s). The participants then
had maximally 3s to decide between a stock and a bond. Two risk levels seen via possible stock outcomes were
implemented and remained consistent throughout each block: high risk (0 vs. 12 Euro or —12 vs. 0 Euro) and
low risk (2 vs. 10 or —2 vs. —10 Euro). Each subject completed each of the four conditions (gain — high risk;
gain — low risk; loss - high risk; loss - low risk) in a pseudo-randomized fashion four times. The bond always
remained the same (6 or —6 Euros) in each condition. The chosen option was highlighted with a green frame for
0.75s. After another jittered ISI of 3.5 to 7s and independent of the choice, the outcome of the stock was shown
for 3s. Each block was randomly assigned to contain either a good or a bad stock. Due to the thorough instruc-
tions and practice trials given before entering the MRI scanner, subjects knew that a good stock had a higher
outcome probability of 70% and a lower outcome probability of 30%. A bad stock had the opposite probabilities.
An objective Bayesian probability of the stock being either good or bad was estimated using the previous out-
comes within the same block. This estimate was not presented to the participants. The subjects then had up to 3s
to enter a subjective probability estimate of the stock being good each time after having seen the stock outcome.
Participants received an incentive of 10 Euro cents for each answer within 5% of the objective estimation. This
amount was then added to the final balance. At the end of each trial, the subjects saw the updated balance for 3s.
A behavioural variable from the investing paradigm that was included in the analysis was the ratio of stock to
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bond choices, but only in the first trial of each block (used as a measure of behavioural risk taking). This was done
to avoid any bias by the learned stocks” outcome probabilities. Two additional behavioural variables were obtained
via the investing paradigm. The average absolute value of the difference between the objective and the subjective
estimate of the stock being a good stock was taken as a measure of risk learning and was termed stock estimation
error. Its non-absolute variant was taken as a behavioural measure of risk optimism.

After the scanning session, participants completed three subscales of the Intelligence-Structure-Test (IST)
2000R: verbal, numerical, and figural intelligence®. These subscales included questions concerning analogies
(verbal intelligence), numerical series (numerical intelligence), and matrices (figural intelligence). The subscale
scores were normalized to the respective age groups (26 to 30, 31 to 40, and 41 and older) and resulted in three
variables of interest: verbal, numerical, and figural intelligence (Table 1).

After the intelligence test, participants were asked to fill in a questionnaire consisting of demographic, risk
preference, as well as financial knowledge questions (Supplementary Document, see Supplementary Information).
These questions were mainly taken from two sources: the German Socio-Economic Panel (SOEP) study devel-
oped by the German Institute for Economic Research (Deutsches Institut fiir Wirtschaftsforschung (DIW))%, as
well as from a questionnaire created by the Munich Center for the Economics of Aging (MEA). The MEA ques-
tions aimed at assessing financial knowledge and real-life financial decisions. These questions investigated debt
literacy®®, financial literacy®’, and numeracy’® and were previously used in other surveys such as the Survey of
Health, Ageing and Retirement in Europe (SHARE). Additional demographic financial questions were specifically
created for this study. An example of this was our binary dependent variable asking about active stock trading
(“Do you trade stocks yourself?”, question 21 in the Supplementary Document, see Supplementary Information).
In total, 9 variables from the handout were chosen for our analysis (Table 1). Most of these variables were repre-
sented by one question, except for years of education, financial literacy, debt literacy, and numeracy. The years of
education were the sum of the following fixed years in the German school system: main school/Hauptschule (9
years), secondary school/Mittlere Reife (10 years), ten-class general educational polytechnic secondary school/
Polytechnische Oberschule (10 years), university of applied sciences entrance qualification/Fachhochschulreife
(12 years), high-school diploma/Abitur (13 years); the higher education years were set as follows: none (0 years),
university degree/Hochschulabschluss (5 years (average diploma time)), Apprenticeship/Lehre & Meisterschule
(1.5 years), training for civil servants/Beamtenausbildung (2 Jahre), college/Fachhochschule (4 years (average
diploma time)), others (1 year). Regarding financial literacy (questions 39, 40, and 41 in the Supplementary
Document, see Supplementary Information), debt literacy (questions 42 and 43), and numeracy (questions 45,
46, and 47), the amount of correct answers was calculated to represent each variable. The numbers of the rele-
vant questions taken from the handout (Supplementary Document, see Supplementary Information) are listed in
Table 1. After completing the handout, participants completed two personality questionnaires (NEO-FFI*! and
rRST-Q%), blood was collected, and the participants got to know their final payout, which was delivered to the
participants via money transfer.

Exclusions. Out of the invited 210 participants, twelve participants had to be fully excluded due to claustro-
phobia, neurological diseases or psychological disorders, and failing to return the consent form. Furthermore,
33 participants were excluded from the analysis that included fMRI data due to technical issues during data
acquisition and excessive movements of participants during the fMRI task (>2.5°, >5mm). The remaining 165
participants were on average 38.9 4 6.7 SD years old. Of these 165 participants, 43 were measured before a man-
datory scanner update and 122 afterwards.

Statistical Analysis. Functional magnetic resonance imaging (fMRI) analysis. Functional magnetic reso-
nance imaging (fMRI) datasets from 165 participants were used for the fMRI second-level analysis. Preprocessing
of the functional images was done using Statistical Parametric Mapping 12 (SPM12, Wellcome Department of
Imaging Neuroscience, London, UK) implemented in MATLAB R2014 (MathWorks, Natick, Massachusetts,
USA). Preprocessing included realignment, slice-time correction, spatial normalization to the Montreal
Neurological Institute (MNI) space using the anatomical T1 image of each participant, and a final smoothing step
using a Gaussian kernel with full-width at half-maximum (FWHM) of 8 mm.

One GLM was specifically designed to estimate brain activation during reward prediction error (RPE) pro-
cessing (GLM described in Supplementary Table S1) and another GLM was used to estimate brain activation
during the choice and feedback phase (see Supplementary Table S2, this script can be found in the Supplementary
Database, see Supplementary Information). Both models included the canonical hemodynamic response func-
tion (HRF) implemented in SPM12. They also included a high-pass filter of 128 Hz as well as a correction for
autocorrelations. The onset regressors of the first GLM were the onset of the choice screen, stock payoff feedback,
stock estimation, and balance feedback, which were all further split into trials when the subject chose the stock
and trials when the subject chose the bond (see Supplementary Table S1). Additionally, the stock payoff feedback
onset had three parametric modulators, consisting of the RPE, the reward prediction (RP), and the trial payoff
(see Supplementary Table S1). All parametric modulators were orthogonalised in ascending order. The RP was
calculated as the objective probability of the stock being good. The RPE was calculated as the difference between
the updated objective probability of the stock being good at the time of the newly presented payoff feedback and
the objective probability of the stock being good at the time before the new payoff feedback was presented. The
activation that correlated positively with the RPE at the onset of the payoff feedback after having chosen the stock
was used to assess the reliability of the paradigm (Fig. 1) in relation to previous literature, which consistently
found RPE-related activation in the VS and the vmPFC?®10:15:26-30,

The onset regressors used in the second GLM were the onset of choice screen, stock payoff feedback, stock
estimation, and balance feedback (see Supplementary Table S2). Each of these regressors were divided into the
gain and loss domain, as well as having chosen the stock or the bond. The stock payoff feedback regressors were
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additionally split into a good or a bad outcome (see Supplementary Table S2). The onset of the choice screen
was given the duration of the time until button press and the other regressors were modeled as stick functions.
The only parametric modulator was the trial payoff, which was used during the payoff feedback. Following the
estimation of this GLM, 14 contrasts of interest were defined and analyzed on the group level (a sample script of
this GLM and all contrast results for the group-level analysis can be found in the Supplementary Database, see
Supplementary Information).

Weighted beta value extraction and their association with active stock trading. ~Next, five regions of interest were
used to extract weighted beta estimates from the choice and stock payoff feedback contrasts (Fig. 2b, all regions
of interest masks are deposited in the Supplementary Database, see Supplementary Information). The first region
of interest was the vmPFC (MNI coordinates at around 0, 46, —8), obtained from a meta-analysis concerning
the valuation system (see vmPFC mask in Fig. 9 of°). The second and third regions of interest were 6 mm radius
spheres in the bilateral VS (MNI coordinates: £12, 8, —8) and the right anterior insula (AI, MNI coordinates:
36, 24, 2), obtained from the authors of a recent neuroeconomic study investigating reward and loss activation
during a stock market experiment'. The fourth region of interest was made using the MARSeille Boite A Région
d’Intérét (MarsBaR) toolbox implemented in Matlab and creating a 6 mm radius sphere at the location of the left
AI (MNI coordinates: —32, 25, 3). This location was taken from Table S3 of a previous study assessing risk® and
was the same “risk prediction signal” table that was previously used for the creation of the right Al in a study that
investigated trading behaviour under risk in a stock market experiment'. Due to the fact that the coordinates
were in Talairach space (—31, 22, 7.7), we contacted the authors of the previous neuroeconomic publication' in
order to use the same MNI to Talairach converter”’. As a control variable and fifth region of interest, we created
a 6 mm radius sphere in the right fusiform face area (FFA, MNI coordinates: 40, —50, —18) as described in a
meta-analysis of 105 functional MRI studies assessing emotional face processing®'. Using these regions of inter-
ests, weighted beta estimates were extracted for all contrasts (see Supplementary Table $4), except for the FFA
mask, which was only used to extract weighted beta estimates for the first contrast. Kernel density plots were then
made for each weighted beta estimate (see Fig. 3 and Supplementary Figs S1 and S2).

The analysis was done using STATA version 13 (Stata-Corp LP, College Station, Texas, USA). The data set and
script can be found in the Suppl; base, see Suppl y Information. Before continuing with the
analysis, it was established that 157 complete datasets could be used to study active stock trading. At first, two
sample t-tests (uncorrected) were performed to see which weighted beta estimates were significantly associated
with the self-reported measures of real-life stock trading (see Supplementary Table $4). Because only the left
and right Al revealed significant activation for the contrast stock choice vs. bond choice in the gain domain, we
focused on the bilateral AI for the subsequent analysis.

Investigation of the possible mechanisms behind the association between Al activation and real-life stock trading.
We first selected variables that were previously related to stock market participation and that could influence
the association between the AT activation and real-life stock trading (Tables 1 to 3; distribution plots are shown
in Fig. 3). These included variables that assessed financial constraints'®”, education'®'7?2, the understanding of
financial matters?*?!, and cognitive abilities'®!* (Table 1). Next, we tested their influence on the Al and real-life
stock trading association using multiple regression analysis (Tables 2 and 3).

In line with previous financial risk taking literature that used the concept of beliefs and preferences'®, we then
grouped all risk-related behavioural and self-assessment measures into categories of risk tolerance and optimism.
The risk optimism category included variables that related to beliefs regarding the outcomes of risky choices
and the risk tolerance category included variables relating to the willingness to bear risks (see Supplementary
Table S5). Guided by economic theory, logistic regressions using active stock trading as the dependent variable
(DV) were calculated for each of the variables individually (see Supplementary Tables S6 and S7). The signifi-
cantly associated variables from the risk optimism and risk tolerance categories were then used for principal com-
ponent analysis (PCA, see Supplementary Tables S8 and $9). This PCA approach was already successfully used in
risk taking research before, specifically to determine whether a single principal component was able to determine
risk taking in several contexts®. The primary components found in the two PCAs (see Supplementary Tables S8
and $9) were labeled risk optimism index (ROI) and risk tolerance index (RTI). These indices of preferences
and beliefs about risk taking (their distribution is shown in Fig. 3) were then added to the previous regression
models to test their influence on the association of the Al activation and real-life stock trading (Tables 2 and 3).
‘We ex-ante expected that Al activation, ROI and RTI would have independent contributions to real-life stock
trading. However, we found that the connection between Al and real-life stock trading became insignificant once
ROI and RTI were included as possible explanatory variables of active stock trading (Tables 2 and 3). As a result,
we conducted ex-post regression analyses with the left and right Al activation as the dependent variables and
either ROI or RTI, or both indices, as the independent variables (Table 4). To then formally test the mechanism
behind the association of Al activation and real-life stock trading, we performed a mediation analysis using the
Sobel-Goodman (SG) mediation test with subsequent bootstrapping of the effect, in which we used the ROI and
RTI as mediator variables (see Fig. 4 and Supplementary Table $10). A mediation was considered significant if
the indirect effect (a*b), but not the direct effect (c) were significant (see Fig. 4 and Supplementary Table S10).

Data and code availability. The relevant data, code, and materials are deposited in the Harvard Dataverse.
They can be accessed via this link, which contains a “zip” file with the questionnaire (Supplementary Document, see
Supplementary Information), as well as the Matlab scripts and regions of interests used in the study. Additionally,
all the group-level SPM “mat” files described in the fMRI contrast overview table (see Supplementary Tables S2
and S3) are included in the “zip” file. Finally, both the behavioural experiments (stock allocation task and investing
paradigm) are included, as well as the final data set and scripts used for the analysis (programmed in Stata v13.1).
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