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Abstract 
 

Piglet survival determines the success of piglet production. Decreased piglet survivability 

raises animal welfare concerns and increasing litter sizes intensified this situation. In the 

recent work, the prospects to select for improved piglet survival were analysed. Therefore, the 

complex determinants of survivability were evaluated with respect to the immune system. In 

addition, traits representing piglet survival were analysed genetically in Landrace and Large 

White.  

The complex relationships between piglet survival and the immune system were reviewed in 

the chapter 3. The aim was to discuss potential selection strategies and especially the missing 

conditions that have to be created in order to include survival traits and immune parameters 

into reasonable breeding programs for improved survivability and immunocompetence.  

In chapter 4, the piglet traits stillbirth (SB), pre-weaning loss (PWL) and birth weight (BW) 

as well as litter traits were investigated using univariate and bivariate generalized linear mixed 

models. For this purpose, comprehensive data sets including 168,823 piglets and 4,642 sows 

of a German breeding organization were available. The analysis focused especially on the 

binary character of SB and PWL applying threshold models and a logit link function. Due to 

the large data sets available and accurate records of cross-fostering (CF) the maternal genetic 

effect of the CF dam was investigated.   

In conclusion, the consideration of piglet survival and the immune system in selection indexes 

is complex and should be designed population specific. Immune traits revealed profound 

genetic variability. However, it remains unclear how they should be included into a breeding 

program. Piglet survival and BW traits show low heritabilities, except for the mean BW 

within litter, and unfavourable genetic correlations (rg) to LS. In addition, the rg estimated for 

SB, PWL and BW revealed distinct relationships between the traits indicating that uniform 

individual BW are required to reduce the odds for a piglet to be stillborn and to ensure the 

vitality needed to survive until weaning. Breeding for piglet survival is possible and can be 

even more efficient if genotypic information is included in the analyses via genome-wide 

association studies (GWAS) and genomic selection (GS).  



 

 

 

Kurzfassung 

Die Überlebensfähigkeit (ÜFK) von Ferkeln ist ausschlaggebend für den Erfolg der 

Ferkelproduktion. Verminderte ÜFK ist vor allem unter Tierwohlaspekten kritisch zu 

betrachten. Gesteigerte Wurfgrößen (WG) verstärkten diese Situation noch zusätzlich. Das 

Ziel dieser Arbeit war es, die Möglichkeiten einer Selektion auf eine verbesserte ÜFK zu 

untersuchen. In diesem Rahmen wurden die komplexen Einflussfaktoren auf die ÜFK auch 

unter Einbeziehung des Immunsystems (IS) evaluiert. Zusätzlich wurden Merkmale der ÜFK 

in Landrasse und Edelschwein genetisch untersucht.  

Die komplexen Zusammenhänge zwischen der ÜFK von Ferkeln und dem IS wurden in 

Kapitel 3 untersucht. Das Ziel war es, mögliche Selektionsstrategien zu diskutieren, aber 

besonders die fehlenden Voraussetzungen zu benennen, die geschaffen werden müssen, um 

die Merkmale der ÜFK sowie die Immunparameter in ein umsetzbares Zuchtziel für 

verbesserte Überlebensraten und Immunkompetenz zu übersetzen. 

In Kapitel 4 wurden die ferkelindividuellen Merkmale Totgeburt (TG), Saugferkelverlust 

(SFV) und das Geburtsgewicht (GG) sowie Wurfmerkmale mittels uni- und bivariaten 

gemischten Modellen untersucht. Dafür standen umfangreiche Datensätze eines deutschen 

Schweinezuchtunternehmens für 168,823 Ferkel und 4,642 Sauen zur Verfügung. Der Fokus 

lag hier besonders auf der Berücksichtigung des binären Charakters der Merkmale TG und 

SFV durch den Einsatz von Schwellenwert-Modellen und Logit-Link-Funktionen. Die 

umfangreiche Datengrundlage sowie die Erfassung des Wurfausgleiches ermöglichte 

zusätzlich die Untersuchung des maternal genetischen Effektes der Amme. 

Generell ist die Einbeziehung der ÜFK und des IS in einen Selektionsindex komplex und 

sollte für jede Population spezifisch konzipiert werden. Immunmerkmale weisen eine 

ausgeprägte genetische Variabilität auf. Allerdings bleibt unklar, wie diese in einem 

Zuchtprogramm berücksichtigt werden sollten. Die Merkmale der ÜFK und des GG zeigten, 

bis auf das mittlere GG im Wurf, niedrige Heritabilitäten und unvorteilhafte genetische 

Korrelationen (rg) zur WG. Zusätzlich wiesen die rg zwischen TG, SFV und GG 

unterschiedliche Beziehungen zueinander auf. Diese Ergebnisse zeigen, dass uniforme GG die 

Voraussetzung sind, um die Chancen eines Ferkels, tot geboren zu werden, zu verringern und 

gleichzeitig die Vitalität für das Überleben der Saugferkelphase sicher zu stellen. Eine Zucht 

auf eine verbesserte ÜFK ist möglich und kann durch genomweite Assoziationsstudien 

(GWAS) und genomische Selektion (GS) noch effizienter umgesetzt werden.  
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1.1. Relevance of piglet mortality 

The intensification of agricultural production caused an increase in pig productivity in the last 

decades. In 2016, 1.917 million breeding sows were kept and 59.391 million pigs were 

slaughtered in Germany (AHDB Pork, 2017). However, the monetary value of each animal 

decreased (Winter et al., 1998). Therefore, to realize an increase in the number of marketable 

animals per sow, the number of piglets weaned per year is the main determinant for the 

economic success of piglet producers (Spoetter and Distl, 2006; Rutherford et al., 2013; 

Edwards and Baxter, 2015). As a consequence, breeding organizations have focused 

successfully on the genetic improvement of reproduction traits by introducing hyperprolific 

dam lines that caused a substantial increase of litter size (LS) and the number born alive 

(NBA) in the last decades (Beaulieu et al., 2010). According to Rutherford et al. (2013), LS is 

defined as the sum of piglets born dead and alive excluding mummies, malformed piglets and 

piglets that died before expulsion. Improvement of management strategies including nutrition, 

housing (e.g. farrowing crates) and health monitoring resulted in an European average of 13.9 

piglets born per litter in 2016 (Beaulieu et al., 2010; Prunier et al., 2010; AHDB Pork, 2017). 

One reason for this success is the low phenotyping effort in breeding herds of NBA. 

According to Prunier et al. (2010), French data bases showed an increase in LS of 25 % 

between 1986 and 2006. Van Engen et al. (2010) reported a progress of one additional piglet 

per litter within three years.  

However, Prunier et al. (2010) specified that the number of weaned piglets has only increased 

by 15 % because of higher numbers of piglet losses between farrowing and weaning. In 2016, 

the mean share of pre-weaning losses was 13.4 % in the EU (AHDB Pork, 2017) and in 

Germany the latest piglet pre-weaning mortality rate was 14.87 % (erzeugerring.info, 2018). 

Considering the development of overall reproduction performance, the proportion of 

pre-weaning losses did not change whereas the NBA still keeps increasing (Welp, 2014; 

erzeugerring.info, 2018). The results of Rocadembosch et al. (2016) confirmed this 
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observation. The authors revealed that even though sow prolificacy increased, the pre-

weaning mortality stabilized between 2010 and 2014. 

Although pigs naturally overproduce offspring (Edwards and Baxter, 2015), it was observed 

that increasing LS decreased individual birth weights and raised piglet mortality rates (Roehe 

and Kalm, 2000; Milligan et al., 2002a; Damgaard et al., 2003; Rutherford et al., 2013). 

According to the definition of Rutherford et al. (2013), piglet mortality is usually recorded by 

counting the piglets in a litter that are stillborn and those died until weaning excluding any 

losses occurred before the start of the farrowing process. Piglet losses during and after 

farrowing are caused by an unfavourable interaction between the piglet, the sow and the 

environment (Alonso-Spilsbury et al., 2007). According to Pandolfi et al. (2017), total piglet 

mortality in French pig farms makes an average share of 19.9 % whereas of these 21.4 % died 

because of missing viability due to underweight. Furthermore, Rootwelt et al. (2013) and Fix 

et al. (2010) described that breeding for important production traits has resulted in piglets 

with reduced physiological maturity at birth as well as poor vigour. Knol (2001), who 

reported moderate positive genetic correlations between survivability and finishing traits, 

confirmed this unfavourable relationship.  

Kirkden et al. (2013) stated that the amount of piglet losses pre- and post-weaning depend, 

apart from the genotype and the dam, on housing conditions, management and nutrition. For 

the piglet producer an increased amount of management tasks and difficulties (e.g. colostrum 

supply, cross-fostering and delayed slaughter age) result from less viable piglets. These are 

labour and cost intensive (Crooks, 1993; Fix et al., 2010). However, to prevent piglet losses 

during farrowing and pre-weaning, these preliminaries are the key to realize the number of 

weaned piglets required (Rootwelt et al., 2013).     

Apart from the economic detriments, piglet mortality and increased LS were described and 

discussed to influence animal welfare in pigs negatively (e.g. Mellor and Stafford, 2004; 

Rutherford et al., 2013). Societal concerns towards animal welfare in pig production have 
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increased in recent years (Kanis et al., 2003). According to Harper and Henson (2001), some 

consumers even use animal welfare as an indicator for food quality and safety. Media reports 

and protests by animal welfare organisations have intensified this situation (Franz et al., 

2012). 

Due to an on-going unfavourable production and market logic, farmers have to deliver high 

quality meat at low production costs (Bourlakis et al., 2007). This implies that pigs should 

possess a low management effort and a low susceptibility for diseases to realize a low need 

for medication (e.g. antibiotics) and meeting consumer protection simultaneously (Kanis et 

al., 2004; Merks et al., 2012). As a consequence, this complex set of demands and challenges 

calls for breeding strategies producing vital, robust, unelaborate animals originating from 

large and uniform litters (Knol, 2001; Knap, 2005; Merks et al., 2012).  

In this context, this thesis aims to investigate the possibilities to select for improved piglet 

survivability based on quantitative genetic and genomic selection measures.
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1.2. Aim of this thesis 

The aim of this thesis is to analyse and discuss the prospects to select for improved piglet 

survivability. This evaluation is based on quantitative genetic methods. In addition, the 

biological relationships and potential selection traits are incorporated to assess adequate 

selection strategies for improved piglet survival. 

 

To achieve this, chapter 2 introduces the determinants of piglet survival at sow and piglet 

level between conception and weaning. The complex interactions between piglet, sow and 

environment are elucidated to understand the biological background and appropriately choose 

for possible selection traits. 

 

Chapter 3 aims to discuss piglet survival and its relationship to the immune system. 

Furthermore, the objective is to determine the gap of knowledge to characterize this 

relationship. Especially the potential selection of immune parameters and the most favourable 

direction of an immune response are discussed in this context. 

 

In chapter 4, the quantitative genetic background of stillbirth (SB), pre-weaning losses 

(PWL) and the individual birth weight (BW) is investigated at piglet and sow level to 

characterize the possibilities of breeding for improved piglet survival. Furthermore, the 

genetic relationships of the piglet traits and the reproduction traits of the sows are estimated, 

respectively. We hypothesize that especially piglets with low birth weights underlie a higher 

probability to die at farrowing and before weaning. Furthermore, we investigate if 

cross-fostering does influence the adequacy of the model for the estimation of variance 

components for PWL. 
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The general discussion included in chapter 5 aims to debate how and to what extend the traits 

of interest can be improved by selection and how these can be implemented into realizable 

breeding programs. In addition, the appropriateness of the genetic models applied as well as 

the relationship between survival and robustness are examined
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2.1. Causes for piglet mortality 

Genetic effects 

In general, piglet survivability is chronologically defined as the period between conception 

and weaning (figure 1). Roehe et al. (2009) described direct genetic effects for survivability 

as the genetic potential of the piglet to survive including e.g. vitality, growth and resistance. 

Moreover, maternal genetic effects being the genetic potential of the sow to prevent piglet 

losses including mothering abilities during and after farrowing, uterus quality (blood flow, 

nutrients, efficiency), and colostrum production (amount and composition) (Knol et al., 

2002a; Roehe et al., 2009; Edwards and Baxter, 2015). Already Edwards (2002) stressed to 

understand the “multifaceted nature of piglet mortality” to decrease piglet losses by 

coordination of genetic, nutritional, management and stockpersons intervention. Genetically, 

the complex relationship between direct or additive genetic, maternal genetic (m2) and 

common litter (c2) effects determine individual piglet survival (figure 1) (Knol, 2001; Roehe 

et al., 2010). 

 

Figure 1: Complex interactions between the genetic effects determining piglet survival. 

Modified according to Roehe et al. (2009) 
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Common litter effects incorporate the impact of LS, the sows’ constitution, management stressors and 

health condition which can influence the development of piglets between conception and weaning 

(Roehe et al., 2009; Edwards and Baxter, 2015).  

Cross-fostering is a prevailing strategy in piglet production to either standardize litters 

according to number of piglets nursed and to their individual BW. However, when it comes to 

genetic analyses of survival traits the separation of dam and nurse sow effects may be 

complicated and only possible if enough piglets are cross-fostered (Knol et al., 2002a). In 

order to define traits that are suitable to breed for improved piglet survival and to understand 

reduced survivability the causes for piglet mortality are described in the following sections.  

Causes for piglet mortality 

The various causes for piglet mortality including their respective frequencies are described in 

figure 2. Prenatal mortality mainly occurs around the implantation of the embryo and less in 

late gestation (Prunier et al., 2010). The highest proportion of post-partum piglet losses 

occurs within the first three to five days of the neonatal period (Su et al., 2007). Dyck and 

Swiersta (1987) found three main causes for piglet mortality, (1) stillbirth, (2) crushing by the 

sow and (3) starvation that are still consistently found in literature (Dyck and Swiersta, 1987; 

Edwards and Baxter, 2015). However, Pandolfi et al. (2017) recently described stillbirth 

(23.0 %), missing viability of the piglets (21.4 %) and early sepsis (17.6 %) as the three main 

causes for piglet losses. Early sepsis occurs within the first three days after farrowing caused 

by a maternal transfer of invasive microorganisms (Nguyen et al., 2016). In humans, it is a 

typical infection of premature infants that are underweight, miss colostrum intake and show 

an underdeveloped immune system (Simonsen et al., 2014). Mummification (11.0 %) was 

followed by starvation (5.58 %) and crushing by the sow (7.83 %). The authors discussed, 

however, that crushing and starvation are most likely a result of low vitality and therefore part 

of a cascade initiated by poor vigour as described by Edwards and Baxter (2015) (figure 2).  
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Figure 2: Complex interactions between the factors causing piglet mortality. Individual piglet 

factors in green and maternal factors in red. Modified according to Edwards and Baxter 

(2015), 1 Pandolfi et al. (2017), 2ADHB Pork (2017), 3 Dyck and Swiersta (1987) 

 

 

A detailed explanation of potential factors influencing piglet survival, which are described in 

figure 2, is given in the following subsections. 

 

2.2. Sow level 

Uterine effects and litter size 

After successful conception, uterine effects have an eminent effect on piglet survival. 

According to the review of Edwards and Baxter (2015), the main intrauterine effects essential 

for foetal survival are the blood flow to uterus, the supply of maternal nutrients and the 

effectiveness of placental transfer. The placental development is limited if the number of 
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foetuses implanted exceeds the uterine capacity (Rutherford et al., 2013). Père and Etienne 

(2000) described that even though the blood flow to the uterus increases with LS, the blood 

flow per foetus declines. Subsequently, nutrient transfer and viability at birth and pre-weaning 

decrease. Therefore, large litters can cause intrauterine crowding influencing the placental 

development and piglet development negatively resulting in decreased individual piglet 

vitality and IUGR (Intrauterine Growth Restriction and Retardation) (Prunier et al., 2010; 

Matheson et al., 2018). Moreover, Foxcroft et al. (2006) described that losses in utero during 

the embryo elongation phase can increase post-implantation losses under crowded uterine 

conditions. Vallet et al. (2011) found that the placental area is limited by the uterine size, 

especially in commercial pig breeds. However, there are only few and contradictory results 

about the relationship between placental area and pre-weaning mortality (Baxter et al., 2009; 

Rootwelt et al., 2013). Due to the disproportionate allocation of resources for the litter, an 

intense rivalry exists during and after gestation (Edwards, 2002; Geisert and Schmitt, 2002; 

Rutherford et al., 2013). This unfavourable situation continues, especially if the number of 

piglets born exceeds the number of functional teats. The resulting competition between 

littermates can be fatal for weak piglets (Rootwelt et al., 2013).  

Constitution and nutrition 

The constitution and weight of the sow can affect pre- and post-farrowing losses. Prunier et 

al. (2010) discussed an increased risk for nutritional deficiency, and subsequent mobilization 

of fat and protein body reserves with increased LS (e.g. Noblet and Etienne, 1986; Eissen et 

al., 2000). This may have negative consequences on the following fertility rate. For instance, 

insemination post-weaning may be delayed if a sow undergoes a catabolic status during 

lactation. Milk production is demanding in minerals and vitamins and this demand increases 

with LS (Prunier et al., 2010). However, Leenhouwers et al. (2001) reported that the 

farrowing ability can be aggravated in obese sows. In addition, overfeeding can cause big 

piglets increasing the inter-birth interval, umbilical cord occlusion and SB. Additionally, a 
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rapid live weight increase during pregnancy caused by an increased feed level can result in leg 

weakness and osteochondrosis (OCD) with severe impact on reproductive performance and 

replacement of the breeding animals. Hence, the energy intake has to be balanced to reduce 

excessive weight gain on the one hand but hunger as well as behavioral disorders on the other 

hand (Prunier et al., 2010). Cross-fostering may reduce the demand for milk and therefore 

balance the catabolic status of the sow.  

Parity 

Several studies showed that the parity of the sow has a significant effect on the amount of 

stillborn piglets and pre-weaning losses. Li et al. (2012), Koketsu et al. (2006) and Muns et al. 

(2015) found negative relationships between parity and pre-weaning mortality rates and 

therefore reduced pre-weaning mortality in multiparous sows. Carney-Hinkle et al. (2013) 

reported reduced body weights and serum concentrations of immunoglobulins in gilts 

compared to sows in higher parities. Hoshino and Koketsu (2009) showed that sows with 

higher number of mummified and stillborn piglets had also low milk yields. Devillers et al. 

(2007) found highest colostrum yields in second and third parity sows. Furthermore, Eissen et 

al. (2000) revealed that milk production decreases after the fourth parity and Ferrari et al. 

(2014) described that piglets show better development if reared by multiparous sows. 

Moreover, lower experience and increased stress levels in gilts affected piglet survival 

negatively (Marchant et al., 2000; Ruediger and Schulze, 2012). In contrast, Knol et al. 

(2002a) found, however, no effect of parity on the amount of piglet losses.  

Colostrum production and quality 

Colostrum and sows milk is composed by nutritional (e.g. lactose, proteins, lipids) and non-

nutritional (e.g. immunoglobulin A (IgA), immunoglobulin G (IgG), macrophages, 

lactoferrin, lysozyme) components (Tizard, 2013). The non-nutritional products regulate 

intestinal physiology and health in piglets, especially when it comes to the protection of the 

digestive tract against pathogens (Prunier et al., 2010). However, the composition of the sows 
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milk changes strongly until weaning, especially regarding the concentration of 

immunoglobulins (Tizard, 2013).  

Le Dividich et al. (2005) reviewed that the amount of colostrum ingested does not only 

depend on the piglets’ ability to suckle, but also on the amount of colostrum the sow 

produces. Theil et al. (2006) reported that regular suckling is crucial to maintain colostrum 

and milk production. Prolific sows do have an increased milk yield (Etienne et al., 2000) even 

though the increase is not proportional, resulting in a lower intake per piglet in larger litters 

(Prunier et al., 2010). Colostrum production on the other hand declines with every additional 

piglets (Prunier et al., 2010) and as a result “piglets from larger litters have less colostrum 

available on an individual basis” (Devillers et al., 2007). With every additional piglet in the 

litter colostrum intake decreases by 20g (Prunier et al., 2010). Le Dividich et al. (2005) 

named especially diseases, feed restriction during gestation, reproductive hormone cascades 

and possible genetic components responsible for the individual colostrum yield. Furthermore, 

Quesnel (2011) estimated a negative correlation between colostrum yield and the number of 

stillborn piglets, indicating that the hormone status in late gestation might have an 

unfavourable effect on farrowing and lactogenesis.  

Stress 

Stress is a biological response of an animal to an event disturbing its homeostasis (Moberg, 

1997). The close relationship between the cascades of stress reactions, hormone production, 

immune response and the nervous system, do have an impact on the reproduction 

performance of sows (Segerstrom and Miller, 2004). High temperatures, weaning, relocation, 

group size and aggression within a group can cause stressful situations in sows. Stress reduces 

reproduction performance in the form of hampered implantation, embryo development, 

puberty, weaning to first service interval and oestrus activity (Veru et al., 2014).  

Asphyxia is one risk factor for stillbirth caused by difficult farrowing conditions resulting in 

fatigue or stress of the sow, particularly in larger litters (Edwards and Baxter, 2015). Hence, 
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as recommended by English and Edwards (1996), the supervision of farrowing and decrease 

of intra-birth intervals are the keys to reduce the amount of stillbirths. Tuchscherer et al. 

(2002) analysed the effect of stress on pregnant sows and on the reactivity immune system of 

their offspring. Maternal stress in late gestation does impair the humoral and the cellular 

immune function of piglets pre-weaning with negative consequences for disease susceptibility 

and immune responsiveness in the offspring. Otten et al. (2001) found lower litter weights, 

increased morbidity and mortality rates due to lowered piglet vitality after their dams 

experienced gestational stress. Therefore, Segerstrom and Miller (2004) and Veru et al. 

(2014) conclude that the reduction of stress during gestation in livestock will decrease the 

susceptibility to subsequent diseases post-farrowing. 

Maternal and farrowing behaviour 

The trait complex of maternal behaviour is complicate to characterize because of 

non-standardized tests, high environmental impacts and elaborate phenotyping (Appel, 2016). 

Appel (2016) summarized good maternal behaviour as the combination of good farrowing and 

rearing behaviour. This means no complications, low extra work per sow and post-parturient 

disorders (Appel, 2016). Duration of farrowing and the behavior of the sow during birth are 

determined by LS, individual conditions of the sow, management and inter-birth intervals 

(Van Dijk et al., 2005). According to Grandison et al. (2003), maternal behavior is 

characterized by bonding, nursing, responsiveness, attentiveness as well as protectiveness. To 

access the udder safe and easy the sow must lie laterally and be reasonably passive.  

If a sow is restless or aggressive, the risk for crushing is increased and the chances for early 

colostrum intake are decreased (Edwards and Baxter, 2015). The highest proportion of piglet 

losses is caused by the sow due to crushing or not preventing starvation (Weary et al., 1998; 

Hellbrügge et al., 2008; Appel et al., 2016). In the first three days post-partum especially 

weak and non-vital piglets are vulnerable to crushing (Hellbrügge et al., 2008). As mentioned 

before, crushing was named by Edwards and Baxter (2015) the “ultimate cause of the 
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majority of neonatal deaths” and a part of the “hypothermia-starvation-crushing-complex”. 

Crushing is characterized firstly by a lack of attentive pre-lying behavior and subsequently by 

a missing response of rising in case a piglet is trapped (Andersen et al., 2005; Thodberg et al., 

2002; Edwards and Baxter 2015). According to Grandinson et al. (2002), individual 

differences exist when it comes to the reaction to a screaming piglet or other stimuli. Muns et 

al. (2013) reported that not the screaming of the piglet prevented crushing, but the sow’s 

response did. The responsiveness is therefore a trait of the sow and matches the trait complex 

of maternal behaviour. Other reasons for crushing are body condition, parity and housing 

conditions (Edwards and Baxter, 2015). Moreover, fearfulness may limit productivity due to 

increased piglet losses via crushing (Lensik et al. 2009).  

 

2.3. Piglet level  

Vitality  

Vitality is an eclectic trait complex in pig production based on miscellaneous physiological 

and visual phenotypes. Muns et al. (2016) described piglet vitality as “physical strength or 

vigour”. In contrast, Merks et al. (2012) defined piglet vitality as “survival until slaughter”, 

which is rather focused on viability.  

Pigs develop an epitheliochorial placenta, which prevents the transfer of immunoglobulins to 

the foetus. Subsequently, newborn piglets are immunologically underdeveloped at farrowing 

because they lack an exposure to antigens (Rooke and Bland, 2002). This exposure to the new 

environment is crucial for the development of the immune system and antigens. Therefore, 

the piglet depends on the transfer of passive immunity via the colostrum within the first hours 

(hrs) after birth (Tizard, 2013). A comprehensive review on piglet immunity as well as its 

relationship to piglet survival and vitality is given in chapter 3 (page 26 ff). This situation is 

intensified, because colostrum is only provided within the first 12 to 24 hrs after farrowing in 

most sows (Quesnel et al., 2012). In addition, the period between farrowing and gut closure is 
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the only possibility during which intact immunoglobulins can be absorbed (Rooke and Bland, 

2002). Yet, according to Rooke and Bland (2002) the mechanism of gut closure are still not 

clear. Speer et al. (1959) already observed the decline of antibody absorption after 24 hrs after 

farrowing. Alexopoulos et al. (2018) recommend in their review to maintain the piglets at 

least 12 hrs with the birth sow, because Tuboly et al. (1988) found improved immune cell 

absorption through the intestinal barrier from birth sow colostrum. Furthermore, Bandrick et 

al. (2011) observed cell mediated immune parameters only if they were kept with their birth 

sow for a minimum of 12 hrs. 

Apart from immunoglobulins, colostrum is rich in protein as well as fat. Piglets are born with 

low energy reserves and a high demand of their metabolism post-partum. Therefore, 

colostrum is crucial for the provision of energy for activity, growth and thermoregulation in 

newborn piglets (Le Dividich et al., 2005). Quesnel et al. (2012) concluded in their review: 

“From these findings, we estimate that 200 g of colostrum per piglet during the first 24 hrs 

after birth is the minimum consumption to significantly reduce the risk of mortality before 

weaning, provide passive immunity and allow a slight weight gain. A consumption of 250 g 

could be recommended to achieve good health and pre- and post-weaning growth.”  

As a consequence, Trujillo-Ortega et al. (2007) summarized that piglet vitality determines the 

ability of a newborn piglet to find a teat, compete for it and to suckle as soon after farrowing 

as possible. As described before, the causes of increasing piglet mortality are diverse and 

often interact with each other. Missing piglet vitality can be caused by e.g. IUGR, low or 

variable BW (see section The individual birth weight (page 16 ff.)), or difficulties/delays 

during farrowing (see section Birth order and farrowing length (page 17 ff.)). Increased 

susceptibility to diseases, starvation, reduced mobility and hypothermia are the main reasons 

why the lack of vigour often ultimately causes in piglet mortality (Edwards, 2002). 
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The individual birth weight  

Roehe and Kalm (2000) found that the BW is the main predisposing factor decreasing the 

piglets vitality and survivability. Consecutively, various studies have shown that piglets with 

a low BW have a lower chance to survive and have discussed if BW would be a reasonable 

substitution trait to breed for improved survival (Milligan et al., 2002a; Arango et al., 2006; 

Fix et al., 2010; Roehe et al., 2010). Lightweight piglets are less vital, show decreased 

colostrum intake and missing thermoregulatory abilities (Theil et al., 2014). Especially piglets 

with low BW have to consume more colostrum per kg birth weight compared to their heavier 

littermates (Curtis, 1970). Curtis (1970) described that the increased surface area per unit 

body weight in low birth weight piglets needs more energy to maintain the homeothermic 

balance. In addition, decreased litter uniformity was observed to increase piglet mortality 

(Milligan et al., 2002b). This holds especially in litters with low mean BW (Milligan et al., 

2002a). Therefore, delayed colostrum intake does intensify their disadvantage in competing 

with heavier littermates at the udder (Quesnel et al., 2008; Baxter et al., 2009). The resilience 

of lightweight piglets to diseases, their development and future weight gain is decreased 

whilst the impact of postnatal environmental factors cannot be compensated adequately 

(Edwards, 2002; Le Dividich et al., 2005; Fix, 2010). Rootwelt et al. (2013) showed that a 

BW-threshold of 1 kg for post-partum survival has to be crossed. Furthermore, van der Lende 

and de Jager (1991) reported that piglets below this threshold have an increased risk to die 

before weaning, independently of the within-litter variability. Pre-weaning mortality rates 

were 25 % of piglets weighting less than 1 kg and for piglets weighting more than 1.6 kg 

mortality rates decreased to 5 % (Roehe and Kalm, 2000; Quiniou et al., 2002; Prunier et al., 

2010). Hence, management strategies for low BW piglets include colostrum supplementation 

and cross-fostering for live-born piglets based on their respective BW (Muns et al. 2003). 

Muns et al. (2013) and Milligan (2001) found that the variation of BW within litters was 

consistent until recording the weaning weight. Furthermore, piglets with a low BW and 



18                                                                                                                 Chapter 2. Literature review   

  

 

 
 

viability at birth show a slower growth until and after weaning as well as a compromised 

carcass quality (Knol, 2001; Gondret et al., 2006; Beaulieu et al., 2010; Fix et al., 2010). 

Even though a low BW is associated with a reduced potential for future growth the 

relationship between BW and future weight is not linear per se (Fix, 2010). The author has 

shown that a decrease in BW below the mean cause a higher decrease of the future weight. As 

a result, light BW result in lighter pigs at harvest or a longer fattening period (Fix, 2010).  

Birth order and farrowing length 

According to Randall (1972), birth order has a huge impact on the number of stillborn piglets. 

Baxter et al. (2009) found that an increased number in the birth order has an unfavourable 

association with piglet mortality. This situation was confirmed by Rootwelt et al. (2012) and 

by Le Dividich et al. (2017) who observed that 43 % of the stillbirths of their study were born 

in the last quarter of the relative birth order. According to Rootwelt et al. (2013) and Stanton 

and Carroll (1974), the piglets born later have a cranial location in the uterus and are heavier. 

Trujillo-Ortega et al. (2007) stated that heavy piglets prolong the farrowing process resulting 

in an increased risk of asphyxia and subsequent stillbirth for themselves as well as the 

following littermates. However, on the association between BW and birth order also 

contradictory results exist (Motsi et al., 2006; Beaulieu et al., 2010).  

Herpin et al. (1996) explained that hypoxia at farrowing mainly occurs in late-born piglets 

with the consequence that these piglets are weaker and less competitive for colostrum which 

is essential for the piglet to gain passive immunity. The umbilical cord is primarily 

responsible for oxygen and nutrient delivery in the fetus, which can influence especially the 

survivability at birth. A ruptured umbilical cord therefore increases the susceptibility to die 

before weaning (Rootwelt et al., 2013). Alonso-Spilsbury et al. (2005) reported that if the 

umbilical cord is ruptured, irreversible brain damage can occur due to hypoxia and 

compromised blood-flow between dam and foetus (Curtis, 1974; Mota-Rojas et al., 2012). In 

utero hypoxia can also result in meconium staining, which is characterized by a yellow 
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discoloration. It is the result of the relaxed anal sphincter tone and the expulsion of meconium 

into the amniotic fluid after hypoxia (Mota-Rojas et al., 2012). In the study of Rootwelt et al. 

(2013), the time between the expulsion of the first piglet and subsequent births was associated 

unfavourably with a decreased Respiration, Meconium Staining and Activity (RMA) score. 

These piglets showed a lowered vitality. For RMA the lowest value describes no respiration 

or activity and gross meconium staining whereas the highest value stands for normal 

respiration and activity and no meconium staining (Rootwelt et al., 2013). However, pre-

weaning losses were found independent of the birth order in other studies (Cabrera et al., 

2012; Le Dividich et al., 2017).  

Intrauterine growth retardation 

The studies of Baxter et al. (2009) and Rootwelt et al. (2012) showed that piglet survival and 

vitality during gestation, farrowing and post-partum are linked to IUGR. IUGR can not only 

result in an increased number of stillborn piglets, but as well in subsequent constrained vigour 

and postnatal survival due to an insufficient physiological development (Bauer et al., 1998). 

Pardo et al. (2013) investigated differences in uterine space of sows had either crowded or not 

crowded uterine conditions. The authors found IUGR phenotypes (reduction of BW, organ 

and muscle weights, brain sparing effects, delayed myofibril maturity) in litters under 

crowded uterus conditions caused by placental insufficiency. Hales et al. (2013) and Amdi et 

al. (2013) have investigated visual scores of piglets head morphology and found that 

especially dolphin-like head shapes indicate IUGR. These piglets had an insufficient 

colostrum intake, lower glucose levels at 24 hrs post-partum and unfavourable organ ratios 

(Amdi et al., 2013). 

 Other traits 

Further traits to investigate piglet vitality post farrowing are, apart from the BW (Hales et al. 

2013, Baxter et al. 2008): (1) body temperature and (2) behavioural characteristics like e.g. 

mobility, (3) udder stimulation and (4) screaming (Muns et al., 2013). Muns et al. (2013) 
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found that udder stimulation and the piglet’s mobility within a given enclosure are suitable 

traits for the on-farm application to identify the piglets’ individual vitality. Rootwelt et al. 

(2013) stated that the analysis of the Body Mass Index (BMI), described as the BW divided 

by the squared length of the piglet, showed that not only smaller but also thinner piglets are 

more prone to die before weaning. Therefore, as reported by Leenhouwers et al. (1999) and 

Rootwelt et al. (2012), small (lightweight) does not equal less vital. Baxter et al. (2009) found 

stillborn neonates were disproportionately long and thin compared to their live born 

littermates. The authors concluded that not only the BMI, but also the Ponderal Index (PI) 

would be a reasonable indicator of piglet loss. This index additionally includes the cubed 

crown-to-rump length of the piglet. Furthermore, Baxter et al. (2012) observed that the gender 

of the piglet has an influence on piglet survival. Even though male piglets were heavier than 

their female littermates their thermoregulatory capacities after birth were impaired, resulting 

in higher piglet losses in male piglets.  

 

2.4. Breeding for piglet survival  

Livestock breeding made vast progress after the implementation of best linear unbiased 

prediction (BLUP) based on phenotypic records (Boichard et al., 2016; Meuwissen et al., 

2016). This method allows for the estimation of breeding values (EBV) and variance 

components by estimating the random effects in a mixed model (Piepho et al., 2008). 

Thereby, the genetic merit of an animal is estimated using the pedigree-based relationship 

between the individuals and correcting the phenotypic records for environmental effects, 

simultaneously. Selection decisions are based on the EBVs that are usually combined into a 

selection index (SI) with weighting factors. These weighting factors are made according to the 

marginal economic value (MEV) of each trait (Schneeberger et al., 1992; Knap, 2014). 

Furthermore, mature progeny is needed to provide the phenotypes for the basis of the next 

selection decision (Hill). The application of single nucleotide polymorphisms (SNP) for the 



Chapter 2. Literature review  21 

 

 
 

statistical investigation of the genetic background of a trait using quantitative trait loci (QTL) 

indicated possible genotype-phenotype associations (Meuwissen et al., 2001). Based on these 

structures genome-wide association studies (GWAS) were implemented to gain in-depth 

knowledge about potential candidate genes and therewith the genetic background of 

production traits as well as low heritable phenotypes of interest (Visscher et al., 2017). To 

improve selection decisions SNP were used firstly in marker assisted selection (MAS) and 

subsequently in genomic BLUP (GBLUP) methods (Meuwissen et al., 2016). GBLUP 

methods are favourable because the show higher accuracies in the prediction of the breeding 

values and therewith allow a selection before the individual is born or tested (Hayes et al., 

2009; Meuwissen et al., 2016). Traits influencing piglet survival at piglet and sow level can 

be considered in breeding and were already implemented in breeding goals (Knol, 2001; 

Rydhmer, 2005; Nielsen et al., 2013; Knap, 2014).  

The investigation of the genetic background of a trait is crucial to evaluate the potential for a 

breeding-based improvement of a population. Thereby, the distinct genetic variability of a 

trait is a critical prerequisite to be heritable (Hill; Ibanez-Escriche et al., 2009). Furthermore, 

the relationships to important production traits have to be investigated to evaluate potential 

side effects if the trait of interest is included into the breeding scheme. For example Rydhmer 

(2000) stressed that the breeding goal has to be balanced if the focus lies on increased LS and 

therefore not only maternal and piglet performance traits, but traits of maternal behaviour 

have to be included. The traits that are associated with piglet survival were analysed as traits 

of the litter and at individual piglet level (Su et al., 2007; Ibanez-Escriche et al., 2009). 

 

2.5. Genetic background of piglet survival 

Litter and sow traits 

Breeding for increased LS was very successful although this trait shows a low heritability 

0.11-0.16 (Kapell et al., 2011). However, as mentioned before, LS has influenced piglet 
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survival negatively (Rutherford et al., 2013). Therefore, alternative litter-based traits were 

investigated in various studies to potentially improve piglet survival and result in large, 

uniform litters at the same time (Damgaard et al., 2003; Täubert and Henne, 2003; e.g. 

Hellbrügge et al., 2008; Wittenburg et al., 2011). Most piglet losses occur within the first five 

days after farrowing. As an example, LS at day five (LS5) was introduced into the breeding 

goal in Denmark (Su et al., 2007; Nielsen et al., 2013). An in-depth review of the results of 

these studies is given in chapters 3 and 4. Typical traits that are recorded at litter level to 

improve survivability are NBA, the number of stillborn piglets, the number of pre-weaning 

losses, the average birth weight within litter or the variance of birth weights within litter. 

Besides, records of maternal behaviour traits, colostrum production, teat number and IUGR 

proportions, represent mothering abilities and uterine capacity. For example, the necessity of 

birth assistance was investigated by Pedersen and Jensen (2008), Holm et al. (2004) and 

Canario et al. (2006) who reported low h2 between 0.03-0.05. Hellbrügge et al. (2008) 

estimated h2 of 0.09 for the trait responsiveness towards separating the piglet 24 hrs after birth 

and Grandinson et al. (2003) found h2 of 0.08 for fear measured as avoidance of stockpersons. 

Matheson et al. (2018) studied the potential of selection against IUGR at maternal level. The 

authors concluded that the within-litter proportion of IUGR piglets should be included 

additionally to increase piglet survival and remain current LS. Moreover, colostrum 

production can be improved with the help of genetic selection, however, the difficulties in 

phenotyping limit the amount of research available in this area (Farmer and Quesnel, 2009). 

Recently, Rohrer and Nonneman (2017) reported that the number of teats shows a h2 of 0.49 

and found genetic markers for this trait. Moreover, various studies investigated the genetic 

background of litter traits associated with piglet survival (see also chapter 3) using linkage 

studies, GWAS and genomic selection (GS) approaches (Schneider et al., 2015; Sell-Kubiak 

et al., 2015b; e.g. Guo et al., 2016; Verardo et al., 2016). The results show potential QTL 
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especially for survival traits. Birth weight related traits usually appear to be under increased 

polygenic influence. 

Individual piglet survival and birth weight 

Individual piglet survival pre- and post-farrowing is classically a binary coded trait (Knol et 

al., 2002a). It is recorded at farrowing (SB) or pre-weaning (PWL) and can be even further 

divided into survival between birth and day five and survival between day six and weaning 

(Roehe and Kalm, 2000; Su et al., 2008; Roehe et al., 2010). Su et al. (2008) reported that SB 

and PWL are different traits because they show low genetic correlations (rg). Early analyses of 

these binary traits assumed linear models ignoring the categorical nature of these traits 

(Ibanez-Escriche et al., 2009). These evaluations usually underestimated the variance 

components, and therefore, the h2 of these traits (Roehe et al., 2010). The use of threshold 

models is elaborate and complex, especially if maternal genetic and litter effects are included 

in the respective models (Gianola, 1982; Knol et al., 2002a; Su et al., 2008). Furthermore, an 

extensive and precisely recorded data basis is needed with a vast number of piglet losses 

(Gianola, 1982; Knol et al., 2002a; Su et al., 2008). Roehe et al. (2010) reported that if a 

common litter effect (c2) is modelled, this accounts for the effect of LS, which does not have 

to be incorporated into the model as fixed effect. The individual BW was analysed as 

continuous trait (Arango et al., 2006; Roehe et al., 2010). The h2 for traits associated with the 

individual piglet survival and the individual BW were low in pure-bred pig populations and 

variance components showed that maternal genetic (m2) and c2 have a major impact on these 

traits (Arango et al., 2006; Su et al., 2008; Ibanez-Escriche et al., 2009; Roehe et al., 2010). 

However, if cross-fostering was included in the statistical model it was only considered as a 

fixed effect (Roehe et al., 2009). An in-depth review on the results of these studies is given in 

chapters 3 and 4. The genomic analysis and selection of individual piglet survival and the 

individual BW were not realized up to now. Case-control studies would be the adequate 

model for the analysis of categorical individual piglet survival traits.  
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2.6. Breed differences in piglet survivability 

Differences in the breeding goals can be found between dam (reproduction) and sire 

(production) lines, which resulted in differences in reproduction performance (e.g. Ibanez-

Escriche et al., 2009; Kapell et al., 2011). Within dam lines the differences in variance 

components for piglet survival and the individual BW were only marginally different (Täubert 

and Henne, 2003; Su et al., 2008; Nielsen et al., 2013). Ibanez-Escriche et al. (2009) reported 

very similar h2 and m2 for farrowing mortality for Landrace (LR), Large White (LW) and 

Piétrain (Pi). However, direct and m2 effects are negatively correlated in LR and PI, but 

positively in LW. Therefore, the authors concluded that direct and m2 effects have to be 

modelled in LR and Pi. In LW, however, farrowing mortality should be considered as trait of 

the sow. Kapell et al. (2011) investigated three dam and two sire lines for individual piglet 

survival and traits associated with the individual BW. All lines showed considerable genetic 

variation; however, the authors recommended that breeding strategies should be designed line 

specific because the relationships between the traits differed in direction and magnitude. 

Breed specific (occidental versus oriental) differences in reproduction traits were reported by 

Canario et al. (2006). Especially, the Chinese Meishan (MS) breed is a positive example for 

high prolificacy and survival rates. Canario et al. (2006) compared MS, LW and other 

occidental cross-bred sows and found that MS produce larger litters with an increased number 

of viable piglets and significantly decreased number of stillborn. The reason is the enhanced 

placental efficiency MS dams possess as described by Biensen et al. (1998). Canario et al. 

(2007) found that LW sows produced larger heterogenous litters and heavier, faster growing 

piglets. Herpin et al. (1993) described that MS piglets are physiologically more mature, even 

though they are smaller, show higher percentage of carcass fat and larger adipose tissue 

adipocytes compared to piglets from occidental breeds. Recently, Ma et al. (2018) reported 

genomic regions affecting LS and candidate genes for uterine horn length in Chinese Erhulian 
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(ER) pigs that are also known to be high prolific that could also be favourable for larger litters 

in European pig breeds.  

Survivability in crossbred piglets was analysed by Roehe et al. (2010; 2009) and Dufrasne et 

al. (2013). Dufrasne et al. (2013) found low h2 for pre-weaning mortality and the individual 

BW in crossbred pigs. Roehe et al. (2010; 2009) reported higher h2 for survival traits and the 

individual BW. The authors created a population of crossbred piglets from three lines 

selecting for piglet survival that was reared under outdoor conditions. Heritabilities estimated 

the second generation were already doubled for individual piglet survival and the individual 

BW even though an additional m2 effect was modelled. 
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Abstract  

Piglet mortality has a negative impact on animal welfare and public acceptance. Moreover, 

the number of weaned piglets per sow mainly determines the profitability of piglet 

production. Increased litter sizes are associated with lower birth weights and piglet survival. 

Decreased survival rates and performance of piglets make the control of diseases and 

infections within pig production even more crucial. Consequently, selection for 

immunocompetence becomes an important key aspect within modern breeding programs. 

However, the phenotypic recording of immune traits is difficult and expensive to realize 

within farm routines. Even though immune traits show genetic variability, only few examples 

exist on their respective suitability within a breeding program and their relationships to 

economically important production traits. The analysis of immune traits for an evaluation of 

immunocompetence to gain a generally improved immune response is promising. Generally, 

in-depth knowledge of the genetic background of the immune system is needed to gain 

helpful insights about its possible incorporation into breeding programs. Possible 

physiological drawbacks for enhanced immunocompetence must be considered with regards 

to the allocation theory and possible trade-offs between the immune system and performance. 

This review aims to discuss the relationships between the immunocompetence of the pig, 

piglet survival as well as the potential of these traits to be included into a breeding strategy for 

improved robustness.  

 

Implications  

Piglet mortality fuels critical discussions regarding animal welfare concerns. Furthermore, the 

number of weaned piglets per sow determines the economic success of piglet production. 

Robustness and a well-performing immune system are a prerequisite for piglet survivability, 

which is determined by the complex relationships between direct and maternal genetic effects, 
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common litter and management driven environmental effects. This review aims to summarize 

mechanisms and relationships between immunity, robustness and piglet vitality.  

Keywords  

Pig immunity, robustness, piglet survivability, piglet vitality, animal welfare 
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3.1.  Introduction  

General implications 

The number of weaned piglets per sow is the main determiner of the profitability of piglet 

production. Therefore, breeding organizations have focused on the genetic improvement of 

litter size, leading to a substantial increase of the number of piglets born alive (NBA). It is 

well known that increasing NBA leads to lower birth weights and increased piglet mortality 

(e.g. Knol, 2001). Piglet mortality has a negative impact on animal welfare, public acceptance 

and decreases the subsequent viability of pig performance (Rutherford et al., 2013). However, 

the causes of piglet mortality are diverse and often interact with each other. Besides birth 

weight, the immune system also has a strong impact on pig performance, but parameters of 

immune response and general health have seldom been considered on a large scale in modern 

breeding programs so far (Clapperton et al., 2008b). However, animals should have low 

medication needs, whilst meeting consumer protection requirements. This situation was 

intensified by an extensive use of antimicrobials in livestock production causing resistances 

and consequences for human health (Merks et al., 2012). The customer expects farm animals 

to be kept under ethologically optimized animal welfare standards, requiring robust livestock 

needing little management effort and resistant to disease (Kanis et al., 2004; Merks et al., 

2012). 

The basic relationships of the immune system, robustness and resilience, survival and vitality 

of piglets were recently studied as well as reviewed in a comprehensive manner (e.g. Edwards 

and Baxter, 2015; Colditz and Hine, 2016). Until now, a common consideration of these three 

complexes has not been performed. Therefore, we aim to focus on the relationship between 

pig immunity and robustness as well as the possibilities of implementing these traits in 

breeding programs to improve piglet survivability. 
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3.2.  Immune system 

The immune system is a highly interactive system composed of integrated, genetically and 

environmentally regulated sets of cells and molecules. Classically, immunity itself is 

separated in two pillars, innate and adaptive host defence mechanisms (Tizard, 2013).  

The innate immune response is the first line of defence and provides an effective protection. 

This system is involved in first detection, recognition, killing and delivery of antigens to the 

next lymphoid tissue and enables the pig to respond rapidly to an infectious agent (Chase and 

Lunney, 2012). It consists of physical barriers, phagocytic cells and the production of various 

mediators with the task to protect, recruit cells through an inflammatory process and activate 

the adaptive immune system (Tizard, 2013). However, these defence mechanisms are not 

antigen-specific (Chase and Lunney, 2012). 

The adaptive immune system is antigen-specific. It consists of an immunological memory and 

takes about two to three weeks to operate properly after birth and antigen exposure. Mounting 

an immune response takes longer at first antigen exposure compared to the following 

encounters with the same antigen. This can result in protection (e.g. vaccination) even if there 

is no prevailing burden by antigens (Chase and Lunney, 2012).  

Influences on the immune system 

Blood performs a wide variety of tasks in the body, including the transport of nutrients, 

hormones and neurotransmitters, as well as protection against infections (Watson, 2015). The 

easiest way to get a first insight into the state of the immune system is to analyse the 

differential blood count (Zhang et al., 2014a). However, the evaluation of blood values should 

always be considered in connection to the respective environment, because the variation in 

host response to pathogens and diseases are influenced through genotype by environmental 

(G×E) interactions (Mallard and Wilkie, 2007; Rashidi et al., 2014). This means that animals 

with advantageous immune phenotypes according to their blood values, should express those 

in a broad range of environments and not only in the environment they are selected in 
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(Mallard and Wilkie, 2007). In this context, it is important to understand the immune response 

during various life conditions and phases including stress, infection pressure, changing 

environmental effects, parturition, post-partum, growth and development (Henryon et al., 

2006). For example, Schalm et al. (1975) and Seutter (1995) established relevant blood values 

for various pig production cycles, but an actualization for modern pig populations and 

environments is needed. The crucial factors influencing the differential blood count are 

psychological and physical stress, even during blood collection, as well as sex. Furthermore, 

species differences in the composition of blood have been known for a while (Schalm et al., 

1975), but breed-specific differences have only been considered recently (e.g. Seutter, 1995; 

Henryon et al., 2006). Going forward, this should be studied intensively with current breeds, 

crossbreds as well as with current and changing housing conditions. 

In recent years, various authors (Clapperton et al., 2009; Flori et al., 2011a) have reported on 

the porcine immune system, giving us a deeper understanding of the reticulation of the 

immune system. The question “What is a good immune system?” is not answered completely. 

To answer this question and achieve breeding progress, detailed insights into the immune 

system of pigs during their developmental stages are necessary.  

 

3.3.  Immunocompetence 

The immunocompetence of a host is determined by the sum of tolerance and resistance 

(Rauw, 2012). In livestock, tolerance is described as the ability of an individual to limit the 

impact of a given pathogen burden on performance (Mulder and Rashidi, 2017). Resistance, 

however, is characterized by the ability of an individual to reduce the probability of infection 

or growth of the pathogen by limiting the pathogen burden within itself (Hermesch, 2014). 

Based on the definition by Knap (2005), robustness was defined by Colditz and Hine (2016), 

as the consistency of the phenotype of an animal independent of the persistent characteristics 

of the environment it is kept in. Resilience, however, was defined as the “capacity of the 
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animal to return rapidly to its pre-challenge state following short-term exposure to a 

challenging situation" (Colditz and Hine, 2016).   

Tolerance and resistance can be abstracted mathematically using reaction norm models (e.g. 

Raberg et al., 2009) describing the dynamics of these traits regarding host health and infection 

intensity (Rauw, 2012). The gap between promising genotypes and their effective 

performance due to an insufficient provision of resources can be described as unfavourable 

G×E interactions (Knap, 2005). Thereby, reaction norm models quantify G×E interactions by 

ranking the sensitivity of an individual towards its environment. Tolerance is defined by 

Simms (2000) as the regression of the relationship between fitness and infection intensity or 

by Raberg et al. (2009) as “the rate of change in fitness as parasite burden increases”. 

Resistance is typically defined as the amount of pathogens in a host or as the inverse of 

infection intensity (Raberg et al., 2009).  

Generally, tolerance, resistance and resilience are characterized by the need for (re)allocation 

of resources (Rauw, 2012). According to the allocation theory, an individual possesses a set 

of resources which are limited and have to be invested amongst the systemic functional areas 

(Friggens et al., 2017). These include growth, metabolism, reproduction, maintenance, 

retention of energy and nutrition for future use. In this zero-sum system, each unit of resource 

is only directed to one function, resulting in trade-offs between these systemic functions 

(Rauw, 2012; Friggens et al., 2017). If an immune response is activated, the transformation 

rate of energy and nutrients is expected to be considerably increased. These resources are then 

needed and allocated to the immune system; conversely, these mechanisms also work vice 

versa (Guy et al., 2012; Rauw, 2012). If an individual passes through life conditions and 

phases (e.g. extensive growth, reproduction), nutrients and energy are allocated to those 

somatic functions and immune responses are decreased due to limited physiological resources 

(Rauw, 2012). It cannot be totally dismissed, that in the situation of a specific immune 

reaction, deficiencies in, for example, growth and reproduction performance appear. These 
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‘costs’ for the organism are determined by the environment, the availability of needed 

resources, and the host’s genotype; however, they cannot be assessed completely (Colditz, 

2009).  

3.4.  Evaluation of tolerance, resistance and resilience 

Guy et al. (2012) indicated the importance of analysing the immune response critically before 

attempting to measure tolerance and resistance. Thus, tolerance has to be measured under 

different environments to detect the fitness of an individual facing various stressors (Friggens 

et al., 2017), which makes phenotyping very difficult and detailed (Wilkie and Mallard, 1999; 

Doeschl-Wilson et al., 2012). The same effort has to be applied to characterize resistance, 

because it requires quantifying the pathogen load in the individual under a given pathogen 

challenge (Kause, 2011). However, Mulder and Rashidi (2017) reported that selecting for 

resilience via performance measures only is an efficient way to improve disease resistance 

and tolerance sparing the need to evaluate the pathogen burden. But the authors found the 

selection responses to be higher if the pathogen challenge is recorded (Mulder and Rashidi, 

2017). 

3.5.  Piglet vitality and survival 

Piglet vitality is the “ability of a piglet to survive based on its survival at birth and till 

weaning” (Merks et al., 2012). Vitality and survival traits are influenced by additive genetic 

(e.g. behaviour, vigour, immunity), maternal genetic (e.g. behaviour, milk quality and 

quantity, uterus quality) (figure 1), common litter (e.g. litter size) and various environmental 

effects (e.g. temperature, stress and difficulties during farrowing, help with colostrum intake) 

which are difficult to disentangle mathematically (Knol, 2001; Roehe et al., 2010).  
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The connection between piglet survival and immunity 

  

Figure 3: This figure captures the questions and knowledge gaps behind the relationships of 

the immunocompetence and piglet survival described in this review. Piglet survival is 

considered within the timeframe between conception and weaning. Thereby, direct genetic 

and maternal genetic effects influence survivability. The relationship between piglet 

survivability and immunity and their genetic factors are rarely investigated. However, it is 

clear that a functioning immune system is a necessary prerequisite for the newborn to survive. 

(Modified according to Roehe et al., 2009). 

 

 

In Germany, the current piglet pre-weaning mortality rate is 14.87 % (erzeugerring.info, 

2018). The proportion of pre-weaning losses, however, remained stable whereas the number 

of piglets born alive kept increasing (erzeugerring.info, 2018). This development confirms 

that breeding for important production traits and larger litters resulted in higher amounts of 

piglet losses caused by an increased risk for less developed piglets and low individual birth 

weights (e.g. Edwards, 2002; Grandinson et al., 2002; Alonso-Spilsbury et al., 2007; 

Hellbrügge et al., 2008; Fix, 2010; Baxter et al., 2013; Rutherford et al., 2013). The rivalry in 

large litters starts in utero, resulting in within-litter variation of birth weights (Rutherford et 
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al., 2013) and continues post-farrowing if the number of piglets born exceeds the number of 

functional teats on the sow (Rootwelt et al., 2013).  

The main causes for piglet losses are stillbirth, crushing by the sow and starvation and can 

still be consistently found in literature (Dyck and Swiersta, 1987; Edwards, 2002; Edwards 

and Baxter, 2015). However, these causes were discussed to be effectively the result of low 

vitality and therefore part of a cascade initiated by poor vigour on the one hand (Edwards and 

Baxter, 2015) and missing mothering abilities on the other (Grandinson et al., 2002). Dyck 

and Swiersta (1987) concluded that the main cause for a piglet loss is inadequate colostrum 

and milk intake in the first days of life. The complex interactions between genetic 

prerequisites and the environment make it difficult to determine a single reason or rather the 

real cause for a loss between conception and weaning (Edwards, 2002; Grandinson et al., 

2002).  

Birth weight was described to be the main factor influencing piglet survival (Roehe and 

Kalm, 2000) and to be a suitable substitute trait to breed for increased piglet survivability due 

to its higher heritability (Grandinson et al., 2002; Roehe et al., 2010). The increase in litter 

size did not only enhance the risk of lower individual birth weight, but also for a decreased 

uniformity of birth weights within litters (e.g. Knol, 2001). Piglets with a low birth weight 

and viability at birth show a slower growth and compromised carcass quality (Knol, 2001; 

Fix, 2010). However, breeding for higher birth weights does not solve the problem single-

handedly (Knol, 2001). Heavy piglets prolong the farrowing process for themselves as well as 

for the following littermates resulting in an increased risk of asphyxia (Grandinson et al., 

2002; Trujillo-Ortega et al., 2007). This non-linear relationship between birth weight and 

stillbirth was also described by, for example, Roehe and Kalm (2000).  

Baxter et al. (2008) found stillborn piglets were disproportionately long and thin compared to 

their live born littermates. The authors concluded that not only the Body Mass Index (BMI) 

but also the Ponderal Index (PI) would be reasonable indicators of piglet loss. Fay et al. 
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(1991) studied human infants and found that the PI is a more reliable indicator for intrauterine 

growth problems than the birth weight. The PI additionally includes the cubed crown-to-rump 

length of the piglet (Baxter et al., 2008) and reflects the change in relative weight for length 

during gestation (Gluckman and Hanson, 2005). van der Lende and de Jager (1991) and 

Rootwelt et al. (2013) showed that a threshold of 1 kg for postpartum survival is needed. 

Piglets with a birth weight lower than 1 kg have an increased mortality risk, independent of 

their status in the within-litter variation in birth weight (van der Lende and de Jager, 1991). 

Low birth weight piglets are less vital, with decreased colostrum intake, a lack of 

immunoglobulins, and a higher risk of pre-weaning mortality due to missing energy reserves, 

causing hypothermia, crushing and starvation related deaths (Edwards, 2002). Their resilience 

to disease, development and future weight gain is decreased whilst the impact of postnatal 

environmental factors is increased (Edwards, 2002; Le Dividich et al., 2005; Fix, 2010).  

 

3.6.  Relationship between immunity and piglet survival  

The primary immune response of the piglet needs seven to ten days to develop (Chase and 

Lunney, 2012). It is well known that piglet survivability and performance of the immune 

system are associated via colostrum intake. Newborn piglets are characterized by a lack of 

immunoglobulins, due to the missing antibody supply from the placenta (Chase and Lunney, 

2012) and missing energy reserves (Theil et al., 2014). Piglets are immediately exposed to 

microorganisms and pathogens, resulting in a complex microbial flora on its surfaces and in 

its gastrointestinal tract within hours post-partum. The intestinal microflora is crucial for the 

development of the immune system. Antibodies are concentrated in the colostrum in the last 

days of gestation and transferred intact via the gut of the piglet. The intestinal absorption of 

immunoglobulins from colostrum decreases after one to four days post-partum. Generally, the 

concentration of colostrum components changes substantially and rapidly after birth (Theil et 

al., 2014). The provision of colostrum is crucial for the piglet’s survival, its thermoregulation 
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and growth after birth (Le Dividich et al., 2005). Reasons for reduced colostrum intake lie e.g. 

in the vitality of the piglet, the competition at the udder, and the quantity of colostrum 

produced by the sow (Tizard, 2013). Le Dividich et al. (2017) showed that the level of 

passive immunity acquired through colostrum determines the level of systemic immunity at 

weaning. Further, they found that piglets with a lower birth weight who survived, needed 

more colostrum than their heavier littermates. The colostrum production of the sow was 

independent of litter size and weight. Generally, the birth order was not associated with 

colostrum intake but with lower immunoglobulin G (IgG) concentrations in piglets that were 

born later (Le Dividich et al., 2017). 

 

3.7.  Genetic aspects of piglet survival and immunity  

Immunity 

Phenotypes representing the immune system usually include subtypes of leukocytes, as well 

as T/B lymphocytes (Mangino et al., 2017). To select pigs for improved health, suitable traits 

have to be heritable and preferably associated with enhanced performance (Clapperton et al., 

2008b). The homeostatic control of the various cell types within the immune system are under 

genetic and environmental control to a varying extent (Mangino et al., 2017). Mangino et al. 

(2017) estimated variance components and heritabilities (h2) in human twins and found that 

adaptive immune traits are more influenced by genetics, whereas innate immune traits 

underlie a higher environmental influence.  

Table 1 shows a reasonable genetic foundation for most immune parameters from quantitative 

genetic studies in pigs. Estimations of h2 are highly variable between the studies. These 

different results could be caused by the number of animals (~200 to 4000), breed and line 

analysed (Clapperton et al., 2005) as well as the age or life phase of the animals phenotyped. 

The fact that challenge studies were conducted (on-farm health status, vaccination reactions, 

targeted infection) could cause differences in h2. Furthermore, the statistical models used as 
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well as the fixed effects considered (e.g. weight, age, farm, breed) influence h2 estimations. 

These characteristics make it difficult to compare the findings due to diverse study 

approaches. For a meaningful estimation of h2 and genetic correlations (rg), large numbers of 

phenotyped animals are needed. However, this prerequisite is difficult to realize because 

taking blood samples is time consuming and the analysis relatively expensive. Furthermore, 

the impact of the immune system of the sow on the colostrum supply for the piglets and the 

development of the respective piglets remains uncertain.  

The relationships between the innate and adaptive immune response were estimated by Flori 

et al. (2011a) and demonstrated the complementarity of innate and adaptive immunity. 

However, the analyses did not provide any clusters of immune parameters or significant 

correlations between cell subsets (Flori et al., 2011a). The relationships between innate and 

adaptive immunity were described by Seutter (1995) with the help of the haematological traits 

neutrophil and lymphocyte concentration. Neutrophil concentrations are expected to have an 

antagonistic relationship to lymphocyte concentrations, because of the activation of the 

adaptive immune response (Tizard, 2013). However, this relationship can also be determined 

by the challenges or the state of development the pig is experiencing. Seutter (1995) described 

that sows show a neutrophil dominated blood count after farrowing due to the physical strain 

of birth. In contrast, piglets express a blood count dominated by lymphocytes indicating that 

their immune system is responding to their new environment
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Table 1: Heritabilities (h² ± SEM) in blood parameters of the porcine immune system (Full table in Appendix (table S3)) 

Parameters 
Henryon et al. 

(2006) 

Clapperton et al. 

(2008b) 

Clapperton et al. 

(2009) 

Flori et al. 

(2011a) 

Mpetile et al. 

(2015) 

Ponsuksili et al. 

(2016) 

Breed 
Duroc, Landrace, 

Yorkshire 
Large White 

Large White, 

Landrace 
Large White Yorkshire Landrace 

n 4 204 500 606 443 518 591 

Leukocytes 0.25 (0.05) 0.24 (0.15) 0.28 (0.11) 0.73 (0.20) 0.23 (0.19) 0.23 

Neutrophiles 0.22 (0.04)   0.61 (0.20) 0.31 (0.21)  

Lymphocytes 0.24 (0.05)   0.72 (0.21) 0.15 (0.19) 0.49 

Monocytes 0.22 (0.04) 0.52 (0.17) 0.26 (0.13) 0.38 (0.20) 0.36 (0.20)  

Eosinophils 0.30 (0.05)   0.80 (0.21) 0.58 (0.12)  

Basophils     0.12 (0.19)  

Thrombocytes    0.56 (0.19) 0.11 (0.23) 0.39 

Erythrocytes    0.43 (0.20) 0.62 (0.25) 0.41 

Haemoglobin     0.56 (0.13) 0.40 

Hematocrit    

 

 

 

 

 

 

 

 

0.57 (0.03) 0.06 (0.14) 0.34 
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To our knowledge, only Clapperton et al. (2008b, 2009) investigated the relationships 

between immune parameters and growth performance. The authors found negative 

correlations between some of the investigated leukocyte blood cells and daily gain and also 

estimated negative genetic correlations between CD11R1+ cells and average daily gain under 

lower health status. Against this background, we can postulate that a major knowledge gap 

exists about the genetic impact of the porcine immune system, especially with regards to 

performance traits and piglet survivability. Furthermore, no studies were conducted to 

investigate the complex interactions between the dam and her litter or maternal genetic effects 

(figure 1). The immune system of the dam could affect phenotypes expressing maternal 

genetic effects like colostrum quality and quantity as well as uterus and birth conditions. This, 

however, would influence the ability of the piglet to survive pre and post-farrowing. The 

maternal effects are possibly decreasing with time whilst the challenges for the direct genetic 

effects are increasing until weaning. Besides, the immune system of the piglet affects 

phenotypes such as vitality, robustness as well as growth and therefore the overall 

survivability of the piglet. In summary, there is a lack of knowledge about how the various 

parts of the immune system influence the genetic potential of the piglet to survive and the 

ability of the sow to rear her litter.  

Piglet survival 

Piglet survival can be recorded as survival at farrowing as well as pre-weaning survival at the 

piglet or sow level (Roehe and Kalm, 2000; Hellbrügge et al., 2008). The individual birth 

weight or weight traits at the litter level were discussed to be suitable substitution traits. At 

the piglet level, direct genetic effects can be described as the genetic potential of piglet 

survival (Roehe et al., 2009). As mentioned above, the genetic capability of the dam to rear 

piglets is included in the maternal genetic effects (Knol et al., 2002b; Roehe et al., 2009). 

Quantitative genetic studies of piglet survival traits (table 2) at the sow or piglet level showed 

mostly low h2 and considerable environmental influence (e.g. farm management). 
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Heritabilities for the individual birth weight are usually marginally higher at the piglet level. 

Maternal genetic effects are of a similar magnitude as h2 for piglet survival traits and higher 

for individual birth weight. Traits like mean birth weight per litter showed moderate h2.  

Genetic correlations between individual survival traits and individual birth weights showed 

contradictory results. Various studies found negative correlations, indicating that low birth 

weight is associated with higher numbers of stillborn piglets (e.g. Arango et al., 2006; Roehe 

et al., 2010). However, Grandinson et al. (2002) found a positive rg. Canario et al. (2006) as 

well as Mulder et al. (2015) confirmed the hypothesis that these traits exhibit a quadratic 

relationship. This indicates that an ideal birth weight exists (Mulder et al., 2015). However, 

the correlation between pre-weaning survival and individual birth weight was distinctly 

negative whenever studied (e.g. Arango et al., 2006; Roehe et al., 2010). Therefore, piglets 

with higher individual birth weights have a higher probability of survival until weaning.  

At the sow level, larger litters show higher mortality rates before weaning (Damgaard et al., 

2003; Hellbrügge et al., 2008). Unfavourable correlations between the mean within-litter birth 

weight and litter size were found by Kapell et al. (2011). Damgaard et al. (2003) and Sell-

Kubiak et al. (2015b) reported that the within-litter variation of birth weights is under genetic 

control. However, Sell-Kubiak et al. (2015b) stress that this trait should be included into a 

selection index to limit the decreasing impact on the individual birth weight when the 

selection focuses on reduced within-litter variance. In rabbits and mice, Blasco et al. (2017) 

and Gutiérrez et al. (2006), concluded that although the within-litter trait variation showed 

low h2, a genetic foundation exists and consequently selection for a reduced phenotypic 

variability is possible. 
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Table 2: Heritabilities (h² ± SEM) for survival traits in pigs (dam lines and crossbreds) (full 

table in appendix (table S4)) 

Parameter ht
2 hd

2 hm
2 Breed 

Number of piglets 

born alive 

0.12 (0.04)1 

0.08 (0.02)3 

0.10 (0.03)4 

 

 

 

 

Yorkshire1 

Large White3 

Landrace4 

Number of stillborn 

piglets 

0.19 (0.02)3 

0.05 (0.03)4 
  

Large White3 

Landrace4 

Proportion of 

stillborn piglets 
0.13 (0.04)1   Yorkshire1 

Stillbirth  0.042a 0.102a Large White2 

Individual survival at 

birth 
0.01-0.046 

0.00-0.026 

0.215 

0.04-0.126 

0.155 

Dam lines6 

Crossbreds5 

Total pre-weaning 

mortality 
 0.032b 0.092b Large White2 

Pre-weaning survival  0.245 0.145 Crossbreds5 

Individual birth 

weight 

 

 

0.042b 

0.365 

0.152b 

0.285 

Large White2b 

Crossbreds5 

Mean birth weight 0.39 (0.05)1   Yorkshire1 

ht
2=total heritability; hd

2=direct heritability; hm
2=maternal heritability; 1Damgaard et al. (2003); 2Arango et al. 

(2006) (2aModel 3, 2bModel 1); 3Canario et al. (2006), 4Hellbrügge et al. (2008); 5Roehe et al. (2010); 6Kapell et 

al. (2011) 

 

 

The estimation of direct and maternal genetic effects is difficult, because the quantity and 

quality of recorded phenotypes is limited. Modelling the litter effect (modelled as the id of the 

dam and parity) often hampers convergence because there is a considerable drop in 

observations after first parity caused by selection. Generally, the litter effect represents the 

same influences for the piglets in a litter (e.g. litter size, uniformity). However, imbalances in 

parity classes bias the estimations of these effects. The application of cross-fostering 

complicates the genetic evaluation further, due to the uncertainty whether or not the biological 

dam or the foster dam actually determines breeding values (Jonas and Rydhmer, 2018). 
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3.8.  Quantitative trait loci, linkage studies and candidate genes  

The application of single nucleotide polymorphism (SNP) information in genome-wide 

association studies (GWAS) give important information on quantitative trait loci (QTL), 

elucidating the genetic background of the traits of interest (Knol et al., 2016). PigQTLdb (Hu 

et al., 2016) shows the current state of research of identified QTL. GWAS for domestic 

animals largely focused on economically important growth and production factors such as 

fertility, meat quality and susceptibility to specific infections (e.g. Boddicker et al., 2012; 

Onteru et al., 2012). A search of the recent publications in this field shows that the amount of 

genomic analyses of immune and robustness traits increased in the last decade (Appendix 

Table S1). 

Immunity  

Few publications focusing on immunity deal with haematological traits to unravel the genetic 

mechanism and architecture of immune traits in swine (e.g. Lu et al., 2011; Ponsuksili et al., 

2016) (appendix table S1). Lu et al. (2011) found promising QTL regions and candidate genes 

for T lymphocyte subpopulations, parts of innate immunity and interleukins. Ponsuksili et al. 

(2016) reported 24 overlapping QTL regions resulting from a single-marker and a Bayesian 

multi-marker approach applied to 12 haematological traits. The authors found potential 

candidate genes that influence the physiology of cells and the hemopoietic system. 

Interestingly, Rohrer et al. (2014) measured the colostrum intake of 5 312 piglets via the 

amount of immunocrit in serum and detected 7 QTL for the ability of the piglet to ingest and 

absorb γ-immunoglobulins. The study revealed promising candidate genes that control 

appetite and growth. However, no QTL were found associated with the passive transfer of 

immunity.  

The study designs show clear differences in breed and number of animals as well as specific 

immune challenges limiting the comparability and applicability of the results. Targeted 
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immune stimulation is not always feasible and necessary in order to get a comprehensive 

overview of the immune system (Hermesch and Luxford, 2018). It is a challenge to determine 

the genetic architecture of immunocompetence because haematological traits are complex and 

influenced by multiple genes. This was confirmed by Lu et al. (2011) who indicated that the 

genes controlling traits related to immunity in pigs act in tight linkage and tend to cluster in 

the same chromosomal regions or the same genes having pleiotropic effects. 

Piglet survival  

Traits associated with piglet survivability as well as birth weight have rarely been investigated 

using GWAS approaches, as mainly litter traits were analysed. This may be due to the high 

effort associated with extensive genotyping as well as the phenotyping of hard to measure 

traits like stillbirth and birth weight on individual piglet level (Knap, 2014; Knol et al., 2016).  

GWAS on traits related to piglet survival (appendix table S2) were conducted for e.g. the 

number of stillborn piglets (e.g. Onteru et al., 2012; Schneider et al., 2012), the number of 

mummies (Onteru et al., 2012; Schneider et al., 2012), and litter size at day 5 (LS5) (Guo et 

al., 2016). Schneider et al. (2012), and Wang et al. (2018) conducted GWAS for the average 

birth weight, whereas Wang et al. (2017) analysed piglet uniformity or birth weight 

variability. Furthermore, Sell-Kubiak et al. (2015a) reported novel QTLs for litter size and its 

variability in Large White. The results of the mentioned studies above ranged from one to 65 

associations comprising breed specific QTLs and revealed overlapping QTLs or SNPs 

between traits that are associated with candidate genes known to be responsible for 

reproductive performance (e.g. placental quality) or physical development (e.g. embryonic 

development). Jonas and Rydhmer (2018) recently published a candidate gene analysis on e.g. 

the number of stillborn piglets and the average birth weight to analyse whether genes for 

maternal ability are potential markers to select for increased piglet survival. 

The various results for purebred lines (e.g. Jonas and Rydhmer, 2018; Wang et al., 2018) 

under investigation showed that birth weight on a litter basis seems to be under polygenetic 
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control, whereas various peaks were observed by survival traits. However, Schneider et al. 

(2012) found no QTL for the number of stillborn and the number of mummified, but most 

putative QTL regions were found for the average birth weights in crossbred pigs. 

Investigations in dam lines revealed partly overlapping QTL (Guo et al., 2016). Furthermore, 

results for genetic associations apparently depend on the parity number, indicating temporal 

gene effects in different parities (Onteru et al., 2012; Wang et al., 2017; Jonas and Rydhmer, 

2018). To achieve sufficient statistical power for such poorly heritable traits, large numbers of 

animals have to be recorded, especially for stillbirth and pre-weaning loss which show low 

incident rates (Knol et al., 2016). 

 

3.9.  Breeding strategies 

Pig breeding programs classically apply selection indexes based on estimated breeding values 

(EBVs) and the marginal economic value of each trait using multivariate BLUP (best linear 

unbiased prediction) models (Knap, 2014). The use of genotypic information in the form of 

SNP and applying various statistical methods revolutionized the potential of breeding value 

information concerning improved reliabilities as well as reduced generation intervals (Knol et 

al., 2016). The superiority of applying genotypic information into pig breeding programs 

(genomic BLUP) has also been reported (e.g. Guo et al., 2015).  

Selection of robust individuals is important because animal welfare concerns can be reduced, 

whereas the profitability of pig production is increased. The potential implementation of 

immune and piglet survival traits in a breeding goal for improved robustness is of particular 

interest and performance tests for selection candidates have to be conceptualized, accordingly. 

However, various authors (e.g. Onteru et al., 2012; Schneider et al., 2012; Guo et al., 2016) 

stress the importance of substantial reference populations to estimate genomic breeding 

values and the importance of clean phenotyping of the traits of interest. 
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Breeding for piglet survival was applied in several breeding programs using different 

approaches in northern Europe. However, most breeding strategies focused on the inclusion of 

litter traits and not individual piglet survival. In Denmark, for example, the trait LS5 was 

introduced (Nielsen et al., 2013). Norwegian and Swedish pig breeders included the NBA and 

the litter weight at week three (Rydhmer, 2005). In the Netherlands, however, it was 

discussed to tackle this trait complex by including individual piglet survival into the selection 

index even though it has a low h2 (Knol et al., 2002b). The advantages of selecting for higher 

birth weights were regarded critically (Knol et al., 2002b). Roehe et al.; Roehe et al. (2009; 

2010) investigated genetic parameters for survival traits in a crossbreeding experiment under 

outdoor conditions. Sires were selected according to their direct and maternal genetic effects 

on postnatal piglet survival and a considerable potential to improve individual piglet survival 

was found. Sell-Kubiak et al. (2015b) reported promising results for selecting for reduced 

within-litter variation of birth weights using pedigree and genomic information. Although, 

phenotypes for piglet survival are labour intensive to record, it has to be recognized that these 

traits have a high value, especially for breeding organizations (Knap, 2014).  

Piglets require a well performing innate immune response directly after birth and sufficient 

colostrum supply is crucial, especially for weak and small piglets directly after birth. The 

piglet has no energy resources or adaptive immunity after farrowing. Hence, the quality of the 

dam’s immune system and its influence on the immunity of the respective offspring are of 

particular interest (Collins, 2014). Especially, the crucial immune reactions for survivability 

and robustness have to be studied and specified, preferably under different environments. 

Furthermore, the question if the colostrum quality and production of the sow or the vitality of 

the piglet is primarily responsible for an increased colostrum intake must be answered. 

Important traits of the sow like teat number, farrowing behaviour and mothering abilities 

should be considered in a selection index as well, especially if the focus in the breeding goal 

lies on litter size (Rydhmer, 2000).  
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Immunocompetence, characterized by specific immune parameters, has not been included in 

any selection index or breeding value yet. Selection for health traits is mainly concentrated on 

conformation scores and/or specific disease resistances (e.g. Escherichia coli) (Rydhmer, 

2005). As described above, limited studies exist on determining the genetic variability of 

immune traits and the genomic background of the key players in immunity. It is difficult to 

determine one or two immune parameters to be reasonable traits for incorporation into a 

breeding program for improved robustness and survivability.  

Challenge studies helped to improve pre-weaning survival in the offspring of boars, which 

were selected for higher cell-mediated immune response post vaccination (Harper et al., 

2018). Mallard et al. (1992) selected pigs with high and low immune response to study the 

performance and immune response of the animals post challenge (e.g. Magnusson et al., 

1998; Wilkie and Mallard, 1999). Stear et al. (2001) concluded that breeding for a specific 

immune response does result in higher susceptibility for other diseases.  

Promising genetic resistance against the porcine reproductive and respiratory syndrome 

(PRRS) was reviewed by Reiner (2016) and Dekkers et al. (2017). However, Dekkers et al. 

(2017) stress that due to the variability of PRRS a resistance is not feasible, but a reduced 

susceptibility is. Furthermore, the need for a closer inspection of the complete function of 

potential candidate genes (e.g. receptors) was emphasized by Reiner (2016). This was 

confirmed by Popescu et al. (2017) who reported that genetically edited pigs lacking the virus 

receptor CD163 for African swine fever died post virus infection.  

In order to characterize and breed for immunocompetence, specific immune responses 

towards challenges are not suitable as a basis for selection decisions. Otherwise, selection for 

a specific immune response cannot be calibrated without challenging the pigs immune system 

(Hermesch, 2014). Hence, what is crucially missing is the identification of traits or trait 

complexes to breed for improved immunity.  
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Breeding goals for immunocompetence and health traits changed in their specificity 

(tolerance, resistance, robustness, and resilience), definitions, context and requirements over 

the last two decades (Kanis et al., 2004; Hermesch, 2014). Robust pigs should achieve high 

performance under all possible and even in non-optimised housing conditions and challenge 

situations (Knap, 2005). Accordingly, Knap (2009) defined sustainable breeding and 

increasing robustness as selection for animals combining a high production potential with 

resilience to external stressors (psychological, physical, or microbial). Studies on resilience 

focused on immunity, performance (Wilkie and Mallard, 1999; Mulder and Rashidi, 2017), 

animal behaviour (Kanis et al., 2004), and stress reactions on endocrinological levels (e.g. 

Mormede and Terenina, 2012). In this context, the increased uniformity of livestock as well 

as G×E interactions (Mulder, 2016) are often discussed with the help of conceptual 

frameworks (e.g. the thermoregulation model in Kanis et al. (2004)) to discuss if the traits of 

interests can be translated into an applicable breeding goal (Hermesch, 2014).  

Nevertheless, breeding for disease resistance can be seen critically. If resistance towards 

specific pathogens and viruses is established, the question arises whether or not this leads to 

breeding animals less flexible to different environmental conditions. Guy et al. (2012) and 

Flori et al. (2011a) discussed that selection for response to a specific pathogens may result in 

unpredictable responses to other pathogens. Therefore, Guy et al. (2012) recommend a careful 

evaluation of selection traits and criteria with regards to their consequences, before their 

incorporation into a breeding program. Mulder et al. (2015) described trade-offs between the 

flexibility of an animal to react to various environmental challenges on the one hand, and a 

lowered plasticity, resulting in high performance, on the other. This was already shown by a 

higher prevalence of reproductive and health related problems in livestock under non-

optimized production premises (Knap and Su, 2008). Therefore, breeding for tolerance would 

be more beneficial to increasing robustness if it increases the genetic variability of pigs to 
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react to environmental challenges without harming the limited variability of pig performance 

accepted by the following actors of the value chain.  

Concerning the improvement of piglet survivability, the role of immunocompetence needs to 

be further investigated. Whether the immune reaction must be high or low to be vital and 

resilient is not defined yet. It is not clear if an optimized immune response is a substitute for 

piglet survival or could be included into a selection index for improved survivability. 

Moreover, the economic value of immunocompetence is intricate to evaluate. 

3.10. Conclusion 

The use of hyperprolific dam lines successfully increased the NBA in the last decades. 

However, piglet mortality rates remain constant, decreasing the profitability of piglet 

production. Furthermore, the growing critical attitude of the consumer resulted in increasing 

animal welfare concerns. The intensification of animal production included increased hygiene 

standards and application of antibiotics for disease prevention. Moreover, selection for 

enhanced productivity resulted in potential trade-offs in robustness especially in challenging 

environments according to the allocation theory. Consequently, breeding for improved 

immunocompetence and robustness is a major priority in pig breeding.   

The immune system of pigs, survivability and robustness of piglets are intricate trait 

complexes of increasing priority for successful pig production. Moreover, all three trait 

complexes are involved with each other. The analysis of immune traits for an evaluation of a 

generally enhanced immune response is promising to gain improved survivability and 

robustness. This stresses the need to investigate the relationship between survivability, 

robustness and immune parameters extensively.  

In addition, appropriate immune parameters or networks that favour an improved 

immunocompetence are neither identified nor evaluated considering their mode and direction 

of effectiveness. Even current reference values for the characterization of the pig populations 
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are missing. Furthermore, the determination of these trait complexes is expensive and 

elaborate. Hence, on-farm phenotyping is difficult to realize as a routine. Available 

quantitative genetic and genomic studies on general immunocompetence in pigs are difficult 

to compare due to massive differences between study designs. Especially for the selection for 

genotypes with improved immunocompetence G×E interactions must be considered, because 

offspring from animals selected in high hygiene environments might not perform as expected 

in challenging environments. Therefore, fundamental research and characterization of the 

relationships between the immune parameters, networks causing immunocompetence, 

robustness, survivability and performance is needed. 
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Abstract  

Piglet mortality at birth and before weaning has a negative impact on animal welfare and 

decreases the profitability of piglet production. The aim of this study was to investigate the 

quantitative genetic parameters of piglet survival and their relationship to birth weight in 

Landrace (LR) and Large White (LW) pigs. Therefore, individual piglet information (74’543 

(LR), 94’280 (LW)) and reproduction performance of sows (2’200 (LR) and 2’442 (LW)) 

were collected. Variance components were estimated for the binary distributed traits stillbirth 

(SB), pre-weaning loss (PWL) and the individual birth weight (BW) of piglets using ASReml 

4.0. A best model fit was tested for each trait using different appropriate approaches in a 

series of single-trait and subsequently multi-trait analyses. In addition, heritabilities (h2) for 

reproduction performance of dams were investigated for traits which were the number of 

piglets born alive, number of piglets born dead, pre-weaning mortality, average birth weight 

within litter and the variance of birth weights per litter. SB and PWL were analysed with a 

threshold using a generalized linear mixed model (GLMM) and a logit link function in a 

bivariate animal model with BW, respectively. The h2 estimated univariately for SB and PWL 

ranged in the LR breed between 0.014 and 0.019 (SB) and 0.016 and 0.022 (PWL). 

Corresponding parameters within the LW breed were slightly lower between 0.000 and 0.009 

(SB) and 0.009 and 0.013 (PWL). For BW estimates from single-trait analyses were 0.037 

(±0.009) and 0.057 (±0.009) for LR and LW, respectively. Maternal genetic correlations (m2) 

and litter effects (c²) were found and comprised a major part of the genetic variation in SB, 

PWL, and BW of both populations. SB and BW exhibited positive genetic (rg) (0.221 

(±0.300) (LR), 0.000 (±0.000) (LW)) and negative phenotypic (rp) (-0.204 for LR and -0.215 

for LW) correlations. The results for PWL and BW showed a rg of -0.497 (±0.156) for LR 

and -0.700 (±0.120) for LW, as well as an rp of -0.381 (LR) and -0.356 (LW). The positive 

genetic association between SB and BW shows that heavier piglets have a higher probability 

to be stillborn in LR. However, low BW piglets show a higher probability to die before 
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weaning. At the litter level an increased number of born piglets was associated with higher 

numbers of stillbirths and pre-weaning mortality. An increased average birth weight within 

smaller litters led to lower rates of number born dead in LR and pre-weaning mortality in both 

populations.  

Keywords: piglet mortality, reproduction, mixed models, binary traits 

  



54                                                        Chapter 4: Genetic analyses of piglet survivability and litter traits 

 

 

 
 

4.1.  Introduction 

The profitability of piglet production is mainly determined by the number of weaned piglets 

per sow (Täubert and Henne, 2003; Rutherford et al., 2013). As a consequence, most 

commercial breeding organizations have focused on the genetic improvement of litter size 

which led to a substantial increase of the number of piglets born in total (Webb, 1998; 

Spoetter and Distl, 2006; Rutherford et al., 2013). This trait is defined as the sum of piglets 

born dead and alive excluding mummies, malformed piglets and piglets that died before 

expulsion (Rutherford et al., 2013). However, it has been shown in many studies (Rutherford 

et al., 2013; Edwards and Baxter, 2015) that increasing litter sizes result in lower and more 

variable birth weights, which are directly linked to decreased piglet survival rates (Roehe and 

Kalm, 2000; Edwards, 2002; Damgaard et al., 2003). Besides direct economic disadvantages 

for piglet producers, increased piglet mortality has a negative impact on animal welfare and 

public acceptance of pig production (Fix et al., 2010; Prunier et al., 2010). 

In most breeding herds, specific causes for piglet losses between birth and weaning are mostly 

unknown and only rarely registered (Edwards and Baxter, 2015). Moreover, recording of the 

individual birth weight, which is the most important risk factor for piglet losses (Roehe and 

Kalm, 2000; e.g. Baxter et al., 2009), is very labor-intensive and rarely implemented in farms. 

Piglet mortality is highly influenced by environmental factors. The most important risk 

factors for neonates are poor placenta quality and difficulties during birth, increasing the 

number of stillborn piglets. Causes of mortality during the suckling period are mainly 

crushing and hypothermia. However, weakness or poor piglet vitality pre and post farrowing 

remain the main reasons for piglet losses (Leenhouwers et al., 1999; Edwards, 2002; Knol et 

al., 2002b).  

From a genetic point of view, piglet mortality at birth and before weaning is influenced by 

direct as well as maternal genetic effects (Roehe et al., 2010), such as the piglet’s potential to 

survive (e.g. vitality and resilience) and as the sow’s mothering abilities (e.g. milk yield). The 
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genetic and environmental effects thereby interact in a complex manner (Arango et al., 2006; 

Su et al., 2008; Roehe et al., 2010; Baxter et al., 2013). As stillbirth (SB), most direct and 

indirect (individual birth weight (BW)) indicators for piglet mortality traits exhibit low h2 in a 

range of 0.02-0.21 and 0.03-0.36, respectively (Arango et al., 2006; Ibanez-Escriche et al., 

2009; Roehe et al., 2010; Kapell et al., 2011). However, as postulated by Kapell et al. (2011) 

and Knol et al. (2002a), the impact of the low h² can be compensated by the large amount of 

individual piglet information, so that selection for individual piglet survival is promising. 

Because of the binary distribution of SB and pre-weaning loss (PWL), variance components 

of these traits cannot be efficiently estimated by standard linear models with an underlying 

normal distribution of the traits (Gianola, 1982; Knol et al., 2002a). As a consequence, (e.g. 

Roehe et al., 2010) suggested to use logistic regression and liability threshold models to 

analyze these traits. However, these methods are computationally demanding, particularly in 

bivariate analyses of binary and continuously distributed traits with a distinct number of 

relevant fixed and random effects.  

In light of this, the present study aims to estimate (co)variance components for piglet survival 

traits, including individual BW in German Landrace (LR) and Large White (LW) pigs. 

Distinct statistical models were fitted and analysed to cover the best distribution 

characteristics of all traits and relevant direct (piglet) and indirect (dam) genetic effects best. 

In addition, the importance of the biological dam (B) and the cross-foster dam (CF) for PWL 

was analysed and discussed.  

 

4.2.  Material and Methods  

Data 

Data sets were provided by the German breeding organization BHZP GmbH 

(Bundeshybridzuchtprogramm GmbH). Records of their LR and LW nucleus populations 

from January 2010 until December 2017 were provided by four nucleus farms. In total, the 



56                                                        Chapter 4: Genetic analyses of piglet survivability and litter traits 

 

 

 
 

data of 74,543 LR and 94,280 LW piglets were available and originated from 2,200 LR and 

2,442 LW sows. Details on the number of investigated animals are reported in table 3.  

The sows were artificially inseminated. Directly after birth, the piglets were registered as 

stillborn or alive. Stillborn piglets were defined as fully developed but missing any vital signs 

and without any possibility of revitalization. Based on this definition, the litter traits number 

of piglets born alive (NBA), number of stillborn piglets (NBD) and number of born piglets 

(NBT = NBA + NBD) were recorded. 

In all herds, each piglet born alive was weighted individually. Additionally, stillborn piglets 

were weighted consistently in only one farm of each line (farms A and D in table 1). To 

record the individual BW most accurately for live born and stillborn piglets, the BHZP GmbH 

developed an automated weighting scale system. Weight information of all piglets born alive 

was aggregated into the litter based variance of birth weights (VBW) and the mean birth 

weight (MBW). Piglet survival during the weaning period (PWL) was individually recorded 

as a binary trait. For each litter pre-weaning mortality (PWM) was recorded as the number of 

piglets died before weaning.  

Immediately after birth, piglets were cross-fostered and corresponding information of the B 

and CF dam was registered. However, the piglets that were cross-fostered to foster dams of 

another line were excluded from the analysis. 

Animal care within all herds followed the general guidelines outlined in the European animal 

welfare regulations. All datasets were analysed with R© (R Core Team, 2016) and ASReml 

4.0 (Gilmour et al., 2015). The LR and LW datasets were analysed separately and the 

pedigrees were traced back up to 17 generations. 
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Table 3: Structure of datasets analysed 

Trait 
Landrace Large White 

NFarm A NFarm B NFarm C NFarm D 

NBA 60,792 9,581 51,739 39,822 

SB with BW 5,207 - (853) * 2,718 

PWL 7,987 903 5,590  4,290  

Sows 1,834 366 1,140 1,302 

Litters 4,381 246 2,292 2,923 

NBA=Number born alive, SB=Stillbirth, PWL=Pre-weaning loss, BW=Individual birth weight, NBT=Number 

born total, SB=Stillbirth, PWL=Pre-weaning loss, BW=Individual birth weight, *=Due to the missing 

phenotypes for stillborn piglets and their respective birth weights in farms B and C, analyses of SB were 

conducted only including farms A and D. Sows and litters analysed included only litters with the respective birth 

weight records available. 

 

 

Statistical analysis of individual piglet traits – single-trait analysis 

SB, PWL and BW were analysed testing different univariate models. The analysis of BW 

based on a normal distribution. SB and PWL were investigated using a logit link function. 

Thereby, the continuous liability to the binary observations of SB and PWL is linked through 

a threshold, which is crossed if the trait is expressed (Falconer and Mackay, 1996). According 

to Gilmour et al. (2015) the residual variance on the underlying scale was fixed to 𝜋
2

3⁄ ~ 3.29 

in all SB and PWL (co)variance analyses. The results for the variance components for SB and 

PWL are given on the underlying liability scale. The general structure of the applied models is 

given in the following equation 1: 

y = Xβ + Za + Zm + Zc + e,    (1) 

where y contains the underlying continuous variable for SB and PWL or the observed 

phenotypic observations of BW for each piglet. The vector β includes the fixed effects parity 

(1-5, >5), sex (♂,♀,unknown) and (herd-)year-season in LR (HYS: 1-226) and LW (HYS: 1-

333).  

It is well known, that BW has an important influence on SB and PWL (Roehe and Kalm, 

2000). In order to determine the importance of BW as an environmental effect, the genetic 
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variances of PWL and SB were analysed including and excluding BW as fixed covariate in 

the model, respectively. All analyses were carried out within line. In addition, as has been 

shown in table 3, BW of stillborn piglets are only recorded consistently in one herd within the 

LR (farm A) or LW (farm D) population. Because of this limitation all univariate as well as 

multivariate analysis within the LR or LW population which include SB as dependent trait are 

based on the data of farm A or D only. 

All models comprised following random effects: additive genetic (a), m2 and c2 effects. The 

vector e  contains the residual effects. X  and Z are the incidence matrices linking the fixed and 

random effects with the observations in y.  

The (co)variance structure presumed was as follows: 

𝑉 [

𝑎
𝑚
𝑐
𝑒

] =  

[
 
 
 

      𝐴𝑎 ⊗ 𝜎𝑎
2     𝐴𝑎𝑚 ⊗ 𝐺𝑎𝑚           0               0

   𝐴𝑚𝑎 ⊗ 𝐺𝑚𝑎    𝐴𝑚 ⊗ 𝜎𝑚
2              0               0

               0                      0                𝐼 ⊗ 𝐶           0  
                  0                      0                    0            𝐼 ⊗ 𝑅

   

]
 
 
 
   (2) 

Where 𝐴 is the numerator relationship matrix of the piglets (𝐴𝑎), their respective dams (𝐴𝑚), 

or of the piglets and their respective dams (𝐴𝑚𝑎, 𝐴𝑎𝑚). The additive genetic and maternal 

genetic variances are 𝜎𝑎
2 and 𝜎𝑚

2 . G is the (co)variance matrix of the random additive genetic 

(a) and maternal genetic (m) effects, which allows the estimation of the genetic correlations 

between the maternal and the additive genetic effect (rAM). The random common environment 

effects litter (c) and residual (e) were assumed to be independently distributed with the 

(co)variance structures 𝐼 ⊗ 𝐶 and 𝐼 ⊗ 𝑅. Litter effects were defined by a concatenation of 

dam and parity information. For SB and BW, the biological dam and the biological litter were 

appropriate to model the litter effect. 

For PWL m2 and c2 can be defined as the effect of the B or CF dam, which is different in case 

of cross-fostering. Theoretically, both effects can be modeled, but due to the low proportion 

of cross-fostered piglets a clear separation of both effects is not possible. In order to obtain at 
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least some information of the consequences, alternative models with the different litter effect 

definitions were applied and the results were compared.  

In order to identify the best fitting model, likelihood-ratio test statistics (LRT) were used to 

test log-likelihood differences between the complete model and models, which were reduced 

by one random effect. Although the logit models reflect the binary distribution of SB and 

PWL best, this LRT approach cannot be used. Hence, the likelihoods of the standard normal 

models were used to find the most appropriate model for all traits. 

Multi-trait analysis of individual piglet traits 

Variances and covariances of the piglet based traits SB and BW as well as PWL and BW 

were estimated simultaneously by a bivariate generalized linear mixed model (GLMM). This 

model contains a liability threshold submodel for the binary traits SB or PWL and a standard 

linear submodel for BW. The general structure of the models followed equation 1. For PWL, 

the B dam and CF litter were considered as random effects based on the results of the single-

trait analysis. For PWL and SB, BW was not modeled as a covariate. As mentioned above, the 

multi-trait analysis of SB and BW was conducted only for one farm due to missing BW 

records for piglets born dead. For the bivariate analysis of PWL and BW, the litter effect of 

the CF dam and the B litter were considered, respectively. The (co)variance structure 

presumed was as follows: 

𝑉 [

𝑎
𝑚
𝑐
𝑒

] =  [

𝐴𝑎 ⊗ 𝐺𝑎             0            0           0
        0            𝐴𝑚 ⊗ 𝐺𝑚    0           0 
         0                    0        𝐼 ⊗ 𝐶       0  

           0                    0            0       𝐼 ⊗ 𝑅

   ]   (3) 

where 𝐴 is the numerator relationship matrix and 𝐺 is the (co)variance matrix of the random 

additive genetic (𝑎) and maternal (𝑚) effects. The random environmental effects litter (c) and 

residual (e) were assumed to be independently distributed with a (co)variance structures 𝐼 ⊗

𝐶 and 𝐼 ⊗ 𝑅. Because of the different litter effect definition of PWL (CF dam) and SB or BW 
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(B dam) the covariance component in C was set to 0. The rAM correlations were not estimated 

in the bivariate models due to their missing significances for the univariate models. 

Statistical analysis of litter based reproduction traits 

(Co)variance components for the litter based traits NBT, NBA, NBD, PWM, MBW and VBW 

were analysed using first a single-trait analysis and subsequently a series of multi-trait 

analyses with the following underlying linear model (equation 4):  

y = Xβ + Za + Zpe + e ,  (4) 

where y contains the observations for the traits named above for each litter of a sow. The 

vector β includes the fixed effects parity (1-5, >5) and HYS (1-132 (LR), 1-121 (LW)). In 

addition the fixed covariates age at first conception or days between conceptions were 

considered as nested effects in the submodels for first or later parities, respectively. As 

(co)variance structure for the random effects genetic (a), permanent environment of the sow 

(pe) and residual (e) was modeled. The following co(variance) structure was assumed: 

𝑉 [
𝑎
𝑝𝑒
𝑒

] =  [
𝐴𝑎 ⊗ 𝐺𝑎             0              0  

           0               𝐼 ⊗ 𝑃𝐸       0      
            0                   0          𝐼 ⊗ 𝑅   

]   (5) 

The 𝐴𝑎, 𝐺𝑎 and I, PE and R matrices are designed as described above. Significance of the 

random environmental effects (pe2) were tested via LRT based on previously conducted 

single-trait analyses. VBW and MBW include the aggregated birth weights of piglets born 

alive and therefore only sows were included in the analyses where the respective BW were 

available. Significance of the estimated genetic correlations (rg) was determined by the extent 

of the respective standard error (SE). 

 

4.3.  Results 

The descriptive statistics of phenotypic measurements of the investigated pigs is given in 

tables 4 and 5. The proportion of stillborn piglets was 7.8 % in the LR and 6.4 % in the LW 

population. However, stillborn piglets were weighted consistently only in farms A (LR) and D 
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(LW). Pre-weaning losses had a prevalence of 13.1 % in LR and of 10.9 % in LW. Levels of 

cross-fostering (including non-nucleus dams) were 31 % and 6 % in the LR and 8 % and 23 % 

in the LW population. The mean BW was higher in LR (1.33 kg) compared to the LW 

population (1.28 kg).  

 

Table 4: Descriptive statistics of the traits analysed (individual piglet traits) 

Trait 
Landrace Large White 

Frequency  Frequency   

SB* (%) 7.8 6.4 

PWL (%) 13.1 10.9 

 Mean SD Mean SD 

BW (kg) 1.33 0.37 1.28 0.35 

SB=Stillbirth, PWL=Pre-weaning loss, BW=Individual birth weight (the mean includes the 

birth weights of complete litters including stillborn piglets), *=Due to the missing 

phenotypes and birth weights of stillborn piglets in farms B and C, analyses of SB were 

conducted only including farms A and D. 

 

 

Table 5: Descriptive statistics of the traits of the sows analysed 

Trait 
Landrace Large White 

Mean SD Mean SD 

NBT 15.03 3.51 15.02 3.73 

NBA 13.91 3.23 14.35 3.50 

NBD 1.13 1.55 0.67 1.15 

PWM 1.75 1.83 1.48 1.79 

VBW (kg)* 0.28 0.08 0.27 0.08 

MBW (kg)* 1.38 0.25 1.32 0.23 

NBT=Number of piglets born total per litter, NBA=Number of piglets born alive per litter, NBD=Number 

piglets born dead per litter, PWM=Pre-weaning mortality per litter, MBW=Medium birth weight within litter, 

VBW=Variance of birth weights within litter. *VBW and MBW are the aggregated birth weights of piglets born 

alive per litter. 
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Table 5 contains the descriptive statistics for all litter traits investigated here. The average 

NBT was similar in both populations (15.03 (±3.51) (LR), 15.02 (±3.73) (LW)). The NBA 

was somewhat lower in LW (13.91 (±3.23)) compared to LR (14.35 (±3.50)) population. In 

LR, the NBD and PWM were on average higher (NBD 1.13 (±1.55), PWM 1.75 (±1.83)) than 

in LW (NBD 0.67 (±1.15), PWM 1.48 (±1.79)). However, the mean values of VBW were at a 

comparable level in both populations. The MBW per litter was also higher in LR compared to 

LW. 

Variance components for piglet survival traits 

Table 6 presents the results of the variance components as well as the rAM for the survival 

traits and BW obtained by the single-trait analyses. As has been described in the material and 

methods part, different definition of the maternal and common environmental litter effects can 

be used. However, the estimated parameter of these alternative model definitions were very 

similar. Therefore, table 6 contains only the parameter estimates of models including maternal 

and litter effects of the B dams, except for PWL, where c2 are defined on basis of the CF dam.  

For SB, low h2 of 0.014 to 0.019 were estimated for LR, whereas for LW, h2 was close to 

zero. For PWL, the estimated h2 were lower for LW (0.009 - 0.015) compared to those for LR 

(0.016 - 0.027). For both traits, the BW modeled as covariate increased the genetic variance 

(𝜎𝑎
2) and h2, especially for LW. For PWL, h² were higher when the litter effect was modeled 

as the litter of the foster dam. Similar observations were made when the genetic effect of the 

CF dam was modeled. In both populations, low h² were observed with 0.037 (±0.009) for LW 

and 0.057 (±0.009) for LR.  

Maternal genetic effects (m2) for SB and PWL ranged from 0.020 to 0.077 and were a little 

higher for LR compared to LW. Stronger m2 effects were observed for BW which reached 

0.191 (±0.009) in the LR and was marginally lower than for the LW (0.175 (±0.009)) 

population.  
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The c2 revealed the highest variance ratio for SB and PWL with 0.059 up to 0.125. The 

highest c2-values were found in LR for SB as well as for the CF-dam/CF-litter model for 

PWL. These estimates are indicators of the relatively high environmental influence of the 

litter environment (e.g. litter size) on piglet survival traits. Estimates for c2-effects for BW 

were lower than the corresponding m²-effects (0.128 and 0.132 for LR and LW, respectively). 

However, it should be mentioned that the separation of m2 and c2-effects is problematic, 

because the datasets comprise many sows (605 (LR), 897 (LW)) with only one litter. The rAM 

were widely ranging for the two lines when performing the single-trait analyses  

(-0.444 to 0.044 for LR and -0.603 to 0.205 for LW). The correlations between the additive 

and the maternal genetic effect were not significant using LRT on a linear model basis for 

testing). Hence, there are no clear indicators that m2 of these traits would be negatively 

influenced by a direct selection on piglet survival or BW. Therefore, the rAM was not modeled 

in the bivariate models. In addition, the models containing rAM showed convergence 

problems. 

In table 7, the results of the bivariate analyses considering the binary expression of SB and 

PWL are presented. SB and BW exhibited a positive genetic (rg) (0.221 (±0.0300) for LR) and 

negative phenotypic correlations (rp) (-0.204 for LR and -0.215 for LW). In LW, no rg was 

estimable due to the missing direct genetic variance for SB. However, PWL showed a clear 

antagonistic relationship to BW with a genetic rg of -0.497 (±0.156) (LR) and -0.700 (±0.120) 

(LW). Phenotypic correlations were -0.381 and -0.356 for LR and LW, respectively. These 

relationships indicate that higher BW increases the probability for the piglet to be stillborn. 

However, if the piglet is born alive, the odds to survive until weaning are increased by a 

higher BW.  
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Table 6: Estimated variance components for piglet traits - Univariate models  

Breed 
BW 

(y/n) 
Dam Litter 𝜎𝑝

2 h2±SE m2±SE1) c2±SE2) rAM±SE3) 

SB 

LR 

yes B B 
4.097 

(±0.049) 

0.019 

(±0.009) 

0.074 

(±0.001) 

0.104 

(±0.009) 

0.044 

(±0.264) 

no B B 
3.980 

(±0.041) 

0.014 

(±0.008) 

0.043 

(±0.008) 

0.116 

(±0.009) 

-0.293 

(±0.253) 

LW 

yes B B 
3.912 

(±0.056) 

0.009 

(±0.009) 

0.059 

(±0.010) 

0.108 

(±0.011) 

-0.383 

(±0.278) 

no B B 
3.795 

(±0.043) 

0.000 

(±0.000) 

0.042 

(±0.010) 

0.091 

(±0.097) 

-0.603 

(±0.669) 

PWL 

LR 
yes 

 

CF CF 
3.893 

(±0.036) 

0.027 

(±0.007) 

0.046 

(±0.007) 

0.082 

(±0.007) 

-0.218 

(±0.156) 

B CF 
3.861 

(±0.033) 

0.022 

(±0.006) 

0.041 

(±0.006) 

0.085 

(±0.006) 

-0.325 

(±0.141) 

B B 
3.753 

(±0.031) 

0.023 

(±0.007) 

0.042 

(±0.007) 

0.057 

(±0.006) 

-0.289 

(±0.155) 

LW yes 

CF CF 
3.921 

(±0.032) 

0.015 

(±0.006) 

0.042 

(±0.007) 

0.100 

(±0.007) 

0.091 

(±0.199) 

B CF 
4.002 

(±0.036) 

0.011 

(±0.005) 

0.077 

(±0.008) 

0.090 

(±0.006) 

0.103 

(±0.176) 

B B 
3.927 

(±0.033) 

0.009 

(±0.005) 

0.062 

(±0.008) 

0.091 

(±0.007) 

0.205 

(±0.213) 

LR 
no 

 

CF CF 
4.011 

(±0.034) 

0.016 

(±0.006) 

0.039 

(±0.006) 

0.125 

(±0.007) 

-0.123 

(±0.209) 

B CF 
3.802 

(±0.028) 

0.018 

(±0.005) 

0.020 

(±0.004) 

0.097 

(±0.005) 

-0.444 

(±0.150) 

B B 
3.674 

(±0.026) 

0.020 

(±0.006) 

0.026 

(±0.005) 

0.059 

(±0.006) 

-0.431 

(±0.160) 

LW no 

CF CF 
3.776 

(±0.028) 

0.013 

(±0.005) 

0.020 

(±0.005) 

0.119 

(±0.006) 

-0.422 

(±0.194) 

B CF 
3.851 

(±0.028) 

0.013 

(±0.005) 

0.038 

(±0.005) 

0.095 

(±0.005) 

-0.055 

(±0.206) 

B B 
3.780 

(±0.026) 

0.012 

(±0.005) 

0.031 

(±0.005) 

0.087 

(±0.006) 

-0.083 

(±0.243) 

BW 

LR no B B 
0.132 

(±0.001) 

0.037 

(±0.009) 

0.191 

(±0.009) 

0.128 

(±0.005) 

-0.280 

(±0.113) 

LW no B B 
0.127 

(±0.001) 

0.057 

(±0.009) 

0.175 

(±0.009) 

0.132 

(±0.004) 

-0.232 

(±0.010) 
BW=Individual birth weight, PWL=Pre-weaning loss, SB=Stillbirth,  
𝜎𝑝

2=Total phenotypic variance, h2=Heritability, m2=Maternal genetic effects, c2=Common environment effects. 

CF=Cross-foster dam/litter, B=Biological dam/litter. LRT significance test: LogL complete model (CM) vs. 

LogL-reduced model=CM minus factor: 1) CM vs. CM-dam and rAM, 2) CM vs. CM-litter, 3) CM vs CM-rAM. m2 

and c2 effects were significant in all models tested and rAM not significant in all CM models tested. *P< 0.05. 

Results for SB and BW are given for farms A and C due to missing phenotypes and birth weights for stillborn 

piglets in farms B and D.  
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Table 7: Estimated (co)variance components for individual piglet traits – Bivariate models 

Landrace Correlations with BW 

Trait h2 m2 c2 rg rp 

5SB 0.015(±0.008) 0.045(±0.008) 0.120(±0.009) 0.221(±0.300) -0.204 

BW 0.026(±0.007) 0.200(±0.010) 0.123(±0.005)   

PWL 0.022(±0.006) -0.002(±0.001) 0.074(±0.005) -0.497(±0.156) -0.381 

BW 0.024(±0.007) 0.240(±0.010) 0.128(±0.006)   

Large White 

SB 0.000(±0.000) 0.042(±0.008) 0.095(±0.009) n.e. -0.215 

BW 0.038(±0.005) 0.092(±0.010) 0.151(±0.005)   

PWL 0.019(±0.004) -0.003(±0.001) 0.081(±0.005) -0.700(±0.120) -0.356 

BW 0.036(±0.006) 0.223(±0.009) 0.138(±0.005)   

BW= Individual birth weight, PWL= Pre-weaning loss, SB = Stillbirth, h2=Heritability, m2=Maternal 

genetic effects, c2=Common environment effects (biological litter in SB and BW and foster litter in PWL), 

rg=Genetic correlation, rp=Phenotypic correlation. Results for SB and BW are given for farms A and C due 

to missing phenotypes and birth weights for stillborn piglets in farms B and D. n.e.=not estimable. Results 

for SB and PWL are presented on the underlying liability scale.  

 

 

(Co)variance components reproduction traits 

The h2 for reproduction and litter related traits (table 8) were in a low range of 0.035 to 0.168 

for both populations except for the MBW with 0.443 (±0.035) and 0.381 (±0.034) for LR and 

LW, respectively. In LW, all h2 estimates were slightly lower compared to those estimated for 

LR. The pe2-effects for the reproduction traits ranged for LR between 0.008 (±0.021) for 

VBW and 0.096 (±0.025) for NBA. In LW, the pe2 ranged in a comparable magnitude. 

Permanent environment effects were estimated for both breeds. Table 9 presents the rg and rp 

estimates using a multivariate model. As expected, a strong rg was expressed for LR and LW 

for the traits NBT and NBA (0.965 (±0.014) in LR and 0.986 (±0.006) in LW). Generally, the 

rg of NBT to NBD and PWM was unfavorably high, ranging from 0.249 to 0.641 for both 



66                                                        Chapter 4: Genetic analyses of piglet survivability and litter traits 

 

 

 
 

breeds. The corresponding rg between NBA and NBD or PWM were in the same direction, 

but slightly less distinct in a range of 0.223 to 0.444. However, these results indicate that 

breeding for more piglets will automatically increase the number of stillbirths as well as 

PWM in a substantial manner. In addition, for LR litter size (NBA, NBT) had a negative 

genetic impact on the MBW of the same magnitude (rg: -0.289) in comparison to the LW 

breed (rg: -0.241 (NBT) and -0.231 (NBA)). 

 

Table 8: Variance components for the reproduction traits in Landrace and Large White 

Breed Trait 𝜎𝑝
2 h2±SE pe2±SE 

LR 

NBT 11.483(±0.276) 0.151(±0.028) 0.084(±0.026) 

NBA 10.097(±0.236) 0.128(±0.026) 0.096(±0.025) 

NBD 2.256(±0.049) 0.082(±0.034) 0.061(±0.021) 

PWM 3.103(±0.068) 0.072(±0.020) 0.077(±0.022) 

VBW 0.006(±0.001) 0.169(±0.024) 0.008(±0.021) 

MBW 0.051(±0.001) 0.443(±0.035) 0.069(±0.027) 

LW 

NBT 12.758(±0.283) 0.137(±0.026) 0.069(±0.024) 

NBA 11.706(±0.255) 0.124(±0.024) 0.052(±0.024) 

NBD 1.152(±0.023) 0.104(±0.047) 0.051(±0.019) 

PWM 3.029(±0.061) 0.035(±0.014) 0.042(±0.021) 

VBW 0.006(±0.001) 0.107(±0.021) 0.042(±0.021) 

MBW 0.051(±0.001) 0.381(±0.034) 0.089(±0.027) 

NBA=Number of piglets born alive per litter, NBD=Number of piglets born dead per litter, PWM=Pre-

weaning mortality per litter, VBW=variance of birth weight within litter, MBW=Mean birth weight 

within litter. 𝜎𝑝
2=Total phenotypic variance, h2=Heritability, pe2=permanent environment effects of the 

sows. VBW and MBW do only include the birth weights of piglets born alive. 

 

 

The estimated rg between NBT or NBA and VBW were considerably different between LR 

and LW. While the correlations were higher (rg: 0.327/0.351) for the LW breed, the rg 

estimates for LR were 0.195 and 0.243. Furthermore, the strong genetic relationships between 

PWM and MBW for LR (rg: -0.650(±0.095)) and LW (rg: -0.488 (±0.137)) indicates the clear 
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antagonistic impact of MBW on piglet mortality in both breeds. Additionally, the rg showed a 

lower impact of lower MBW on the NBD (rg: -0.155 (±0.122) for LR and LW. The rg between 

NBD and VBW showed a higher rg for LR (rg: 0.272 (±0.148) compared to LW (rg: 0.043 

(±0.181). However, both indicate a low negative effect of varying birth weights within litter 

on NBD. The relationship between PWL and VBW showed diverse results. For the LR breed, 

a negative correlation was observed (rg: -0.135 (±0.152)), whereas for the LW population this 

relationship was positive but negligible (0.067 (±0.202)). Furthermore, the genetic 

relationship between NBD and PWM was expressed substantially higher for LW (rg: 0.562 

(±0.222)), compared to the results for the LR breed (rg: 0.211 (±0.193).   
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Table 9: Genetic and phenotypic correlations for the reproduction traits in Landrace (1st line) and Large White (2nd line) 

Trait NBT NBA NBD PWM VBW MBW Breed 

NBT 
- 0.965(±0.014)* 0.641(±0.121)* 0.249(±0.151) 0.243(±0.116) -0.289(±0.087)* LR 

- 0.986(±0.006)* 0.557(±0.144)* 0.507(±0.171)* 0.327(±0.131) -0.241(±0.096)* LW 

NBA 
0.897 - 0.419(±0.173)* 0.223(±0.163) 0.195(±0.125) -0.289(±0.094)* LR 

0.954 - 0.411(±0.175)* 0.444(±0.184)* 0.351(±0.133) -0.231(±0.099)* LW 

NBD 
0.358 -0.091 - 0.211(±0.193) 0.272(±0.148) -0.155(±0.122) LR 

0.287 -0.014 - 0.562(±0.222)* 0.043(±0.181) -0.166(±0.136) LW 

PWM 
0.334 0.175 0.129 - -0.135(±0.152) -0.650(±0.095)* LR 

0.254 0.142 0.123 - 0.067(±0.202) -0.488(±0.137)* LW 

VBW 
0.151 0.156 0.010 0.121 - 0.412(±0.085)* LR 

0.238 0.240 0.026 0.161 - 0.402(±0.107)* LW 

MBW 
-0.500 -0.452 -0.171 -0.385 0.016 - LR 

-0.510 -0.480 -0.167 -0.289 -0.128 - LW 

rp (=Phenotypic correlation) under the diagonal, rg (=Genetic correlation) above the diagonal, NBA=Number of piglets born alive per litter, NBD=Number of piglets born dead per 

litter, PWM=Pre-weaning mortality per litter, VBW=variance of birth weight within litter, MBW=Mean birth weight within litter. *P< 0.05. The significance was determined using 

the height of the SE of the respective rg. 
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4.4.  Discussion 

The observed phenotypes 

All data analysed here, originated from two intensively managed nucleus populations kept on 

four farms of the breeding company BHZP GmbH. Datasets were recorded by specialized 

technicians and adequate recording equipment so that the available datasets provide detailed 

and accurate information about all common reproduction traits including the binary traits SB 

and PWL as well as individual BW of all born piglets (NBA and SB (only in farms A and D)). 

It has been stated by Arango et al. (2006) and Knol et al. (2002b), that analyses of binomial 

distributed traits require large datasets and benefit from a high level of accurate recording. All 

pigs investigated in this study were housed under nucleus breeding farm conditions. These 

farms provided high levels of supervision on their animals, especially around birth. The 

observed rates of SB and PWL here are at a comparable level as described in literature, where 

Ibanez-Escriche et al. (2009) reported similar rates of losses in LR (9.9 %) and LW (14.3 %). 

This result is remarkable, because the mean values for NBT in LR (15.03) and in LW (15.02) 

are higher in the present study compared to the results of Ibanez-Escriche et al. (2009) with 

13.29 and 11.58 piglets in both breeds. One major reason for the differences in mortality rates 

between both studies could be attributed to the genetic and environmental variability between 

the populations investigated or the different recording schemes for stillborn piglets and those 

died in the first hours after birth (Ibanez-Escriche et al., 2009). 

In the analysed LR and LW populations, average BWs differ up to 6 g, which is in accordance 

with the study of Kapell et al. (2011), where average BWs of different dam lines range from 

1.39 to 1.45 kg. However, for LW the average BWs (1.28kg) were lower in comparison to 

results of previous studies. For example, Arango et al. (2006) and Roehe and Kalm (2000) 

reported average BWs of about 1.40 kg in a LW population. Similar to PWL, it can be 

assumed that the differences in the average BWs of specific breeds are caused by selection 

processes within the breeding programs influenced by changing breeding objectives.  
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Significance testing of binary models based on the log-likelihood in ASReml 

The selection of the best fitting model for the traits under investigation was conducted using a 

LRT. To our knowledge, applying ASReml, which uses the penalized quasi-likelihood (PQL), 

a comparison of log-likelihoods, based on a logistic regression while analysing a binary trait, 

is not feasible (Gilmour et al., 2015; Mulder et al., 2015). We therefore conducted the LRT 

based on the not logistically transformed traits and chose the model to be significant if the 

distance between the different models exceeded three. Significance tests analysing genetic 

correlations at a continuous level were not possible, because the bivariate analysis, SB or 

PWL being defined as continuous traits, did not converge. However, due to the use of these 

approximated values and the low stringency about the performance of PQL, significances 

have to be considered carefully when it comes to hypothesis testing for binary traits.  

 

4.4.1  Heritabilities of piglet survival traits and individual birth weight 

Stillbirth and PWL 

The h2 estimates for SB found in literature (Arango et al., 2006; Ibanez-Escriche et al., 2009; 

Roehe et al., 2010) spanned a high range from 0.02 to 0.21. This variation was not found in 

the present study applying single-trait and multi-trait analyses (0.014 to 0.019 in LR and 0.00 

to 0.009 in LW).  

Similar to our approach, all h2 were estimated on the liability scale. Arango et al. (2006) 

applied a threshold-linear model using a Markov Chain Monte Carlo (MCMC) algorithm. 

These authors have found direct and maternal h2 of 0.04 and 0.14, respectively. In comparison 

to our results, the direct h2 and m2 effects in this study are substantially higher. Arango et al. 

(2006) have not included the random litter effect in the statistical model, which might serve as 

an explanation for the higher m2 estimates. Roehe et al. (2010) have reported higher h2 of 

0.21 for SB in crossbred piglets born and weaned under outdoor conditions. These authors 

applied a multivariate linear-threshold model using a Bayesian approach. The m2-effects were 
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higher (0.15) compared to the present study, although additionally c2-effects (0.13) were 

considered here. These litter effects will presumably withdraw considerable variance from the 

maternal genetic variance resulting in lower m2-effects. Ibanez-Escriche et al. (2009) have 

found higher h2 for piglet survival at birth for a LR population (0.08 (±0.02)) and lower 

estimates for a LW population (0.02 (±0.01)). Based on these results, the authors 

recommended to align a selection strategy for SB to the respective populations (Ibanez-

Escriche et al., 2009). Hence, Ibanez-Escriche et al. (2009) have concluded that in LR and 

Piétrain populations, farrowing survival is a trait of the piglet, whereas in LW farrowing 

survival should be seen as a trait of the sow. Maternal genetic and c2-effects within the LR 

and LW ranging from 0.02 to 0.05 and 0.06 to 0.11, respectively, which corresponds to our 

results. The missing genetic variance for SB in the LW population appears to be caused by the 

high effect of the litter. Reasons for the low h2 of SB is according to Ibanez-Escriche et al. 

(2009) is the high prolificacy of maternal lines.  

In the present study, low h² were observed for the single-trait analyses of PWL ranging from 

0.016 to 0.027 for LR and 0.009 to 0.013 for LW. Similar observations have been made by 

Knol et al. (2002a), who reported h2 for pre-weaning survival of 0.02 (±0.01) for dam lines. 

Roehe and Kalm (2000) have found a h2 for pre-weaning mortality of 0.018 (±0.028) on the 

underlying liability scale applying a sire model for crossbred piglets under the condition of an 

experimental testing station. Maternal genetic effects (0.077 (±0.038)) on the logit scale were 

similar (Roehe and Kalm, 2000) compared to the results of the present study, where m2-

effects of 0.020 up to 0.077 were estimated for LR and LW. The estimated c2-effects with 

0.059 to 0.119 were in the same range as reported by Roehe and Kalm (2000), who found c2 

of 0.119 (±0.43). 

In comparison to our analyses and the above mentioned studies of Knol et al. (2002a) and 

Roehe and Kalm (2000), PWL analysed by Arango et al. (2006) and Su et al. (2008) covered 

different parts of the suckling period. Arango et al. (2006) have observed h2 for early pre-
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weaning mortality (until day 5 after birth) of 0.05 (±0.02) and maternal genetic effects of 0.08 

(±0.01) for LW. In the study of Su et al. (2008), piglet survival has been analysed following 

the national Danish pig breeding program, where the traits were defined as follows: (1) 

survival from birth to day 5 and (2) from day five until weaning. The data sets of a Danish 

Landrace and a Danish Yorkshire population have been analysed using a liability threshold 

model and a Bayesian approach. h2 of 0.056 (±0.010) for survival up to day five and of 0.027 

(±0.011) for survival until weaning have been reported for the Danish Landrace. In the Danish 

Yorkshire, the estimates were slightly lower with 0.030 (±0.009) and 0.025 (±0.011) for 

survival to day 5 and from day 5 until weaning, respectively (Su et al. 2008).  

Piglet mortality at farrowing and until weaning is highly influenced by maternal genetic as 

well as environmental factors. Under the condition of cross-fostering, these effects are 

difficult to consider in the statistical model. The m2-effect of the biological dam affects the 

piglets during pregnancy due to uterine effects and the influence during the expulsion phase 

during farrowing Knol et al. (2002b). Nurse dams affects the piglet before weaning with their 

mothering ability based on milk quality and quantity as well as behavioral characteristics 

(Knol et al., 2002b; Rydhmer et al., 2008). However, Su et al. (2007) have shown that the 

nursing sow has only a small effect on the piglet during the first days after birth, which are 

crucial, since the highest colostrum doses are taken by piglets in this period from the 

biological dam. The rates of cross-fostering in the present study (6-31 % (LR); 8-23 % (LW)) 

are higher in farms A and D compared to the levels described in the studies of Knol et al. 

(2002a), Arango et al. (2006) and Roehe et al. (2010). Cross-fostering ranging from 4.9 % to 

18 % in different dam lines were classified as low rates by all authors. Knol et al. (2002a) 

evaluated the thresholds for the number of foster dams per population and reported 

proportions about 10 to 15 % to be significant. Lower amounts of cross-fostering make a 

precise fractionation and distinction of the maternal and cross-fostering dam effects as well as 

the respective litter effects for PWL difficult (Knol et al., 2002a). Arango et al. (2006) have 
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also described the difficulties in separating these random effects. These authors have also 

postulated that for assessing PWM, using the nursing litter seems to be more appropriate. 

Based on this suggestion, we have tested here the effect of cross-fostering on PWL by 

comparing the effect of the biological or CF dam as the maternal (m2) and/or litter effect (c2) 

results of two alternative models. The LRT statistic (tested on a linear scale) of the m2 and 

c2-effects in the model showed that the CF dam and the respective litter affect PWL 

significantly (P<0.05). The results of these analyses only showed marginal differences in 

variance ratios for h2, m2 and c2-effects (table 6). From this, we conclude that even if the CF 

litter effect shows the best model fit, it does not have a substantial influence on the results of 

the estimated variance components. However, an impeccable bivariate analysis of PWL and 

BW would not be possible due to the differentially analysed maternal genetic component 

which would be based on separated pedigree information. 

In the present study, the binary character of SB and PWL was investigated with a liability 

threshold model. Several previous studies have analysed piglet survival as a continuous trait 

(Högberg and Rydhmer, 2000; Grandinson et al., 2002; Knol et al., 2002a; Knol et al., 2002b) 

where maternal genetic effects were not modeled (Roehe and Kalm, 2000; Grandinson et al., 

2002). According to Knol et al. (2002b) and Roehe et al. (2010), it is important to take the 

binary character of SB and PWL into account to have a more precise analysis, even though 

the additive genetic variance will remain the same. Linear models tend to underestimate the 

heritability of binary traits, especially for low frequencies in one of the two categories (Knol 

et al., 2002b; Roehe et al., 2010). This was not observed consistently in the present study 

while finding an appropriate model for variance component estimation. The results ranged in 

general in a similar parameter space. Other studies have applied Bayesian and MCMC based 

methods to analyze mortality traits as a binary trait on the liability scale (Arango et al., 2006; 

Ibanez-Escriche et al., 2009).  
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The traits SB and PWL were not analysed within a bivariate analysis here. It is known from 

previous studies that both traits should be analysed separately (Knol et al., 2002b; Roehe et 

al., 2010) due to strong negative rAM correlations. Furthermore, this fact stresses that the 

maternal genetic effects should be included in a model to analyze these traits (Arango et al., 

2006; Ibanez-Escriche et al., 2009). In most of the previous studies, it has been shown that 

direct-maternal-models fit best (Arango et al., 2006; Su et al., 2008; Roehe et al., 2010). 

Arango et al. (2006) analysed SB and PWL with a bivariate model and found a rg of 0.45 

(±0.02) for LW. This result can also be found in this study with a rg between NBD and PWM 

at sow level for LW (rg: 0.562 (±0.222)). The proportion of environmental variance was at the 

same level as reported by Roehe et al. (2010) and Su et al. (2008). Roehe et al. (2010) 

concluded that associations of a common environment among traits can be found at the 

individual piglet level rather than at the litter level. In accordance with the studies of Ibanez-

Escriche et al. (2009) and Roehe et al. (2010), the c2-effect was fitted as the identity matrix of 

the dam with the corresponding parity. Analysing the LW population, the additive genetic 

variance was taken in by the c2.  

Individual BW 

For individual BW, heritability estimates (single-trait analysis) were 0.037 (±0.009) for LR 

and 0.057 (±0.009) for LW. These results are low but in accordance with earlier studies, 

where h2 did not exceed 0.10 (Roehe and Kalm, 2000; Knol et al., 2002b; Arango et al., 2006; 

Rosendo et al., 2007). Higher h2 have been estimated in LW by Kerr and Cameron (1995) of 

0.16 (±0.02), by Roehe et al. (2010) of up to 0.36 (±0.31 to 0.41) for crossbred piglets and by 

Kapell et al. (2011) up to 0.19 (±0.09 to 0.30) in dam lines. According to Fix (2010), the h2 

for BW in populations kept under conventional conditions is low and therefore breeding via a 

direct selection for birth weight is expected to be difficult. Maternal h2 for BW of the present 

study were in accordance with previous studies (Roehe and Kalm, 2000; Knol et al., 2002a; 
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Arango et al., 2006). Common environment effects were in the same range (0.13 (±0.01)) for 

both populations and with the study of (Roehe et al., 2010) (0.15). 

Correlations between additive genetic and maternal genetic effects 

The rAM were widely ranging for the two lines while performing single-trait analyses (-0.444 

to 0.044 for LR and -0.603 to 0.205 for LW). Positive rg were estimated for SB in LR as well 

as for PWL in LW when BW was considered, respectively. Ibanez-Escriche et al. (2009) have 

found rAM for farrowing survival of -0.56 (±0.13) for LR and 0.15 (±0.12) for LW using 

univariate models without BW as covariate. Their results are partly in accordance with our 

estimated rAM, which were moderate and negative in LR. However, our results showed strong 

negative rAM also in LW. The low standard errors (SE) of the rAM for BW and PWL (table 6: B 

CF, B B in LR with and without BW as covariate and CF CF in LW without BW as covariate) 

indicate a significant relationship. However, the estimated rAM were not significant (tested 

using the LRT) in the complete models or not estimable like in LW due to the missing genetic 

variance for SB. In addition, rAM models showed convergence problems. Hence, the rAM was 

not modeled for the bivariate models. According to Roehe et al. (2010), a weak relationship 

between additive and maternal genetic effects has shown that a direct selection for survival 

traits does not influence the maternal response for these traits. Reasons for strong and 

negative estimates of rAM could be explained by environmental covariances between dam and 

offspring records or due to misidentification of the systematic effects structure (Bijma, 2006). 

However, Bijma (2006) stated that (co)variances of direct and maternal genetic effects are not 

feasible to estimate in a population including multiple litters and multiple offspring per litter. 

Genetic and phenotypic correlations for piglet survival and birth weight 

For the investigated LR population, a positive rg of 0.221 (±0.300) and a negative rp of -0.204 

were found between BW and SB (table 3). However, in the LW population no rg was 

estimable due to the missing genetic variance for the trait SB. Our results for rg contradict 

most previous studies showing antagonistic relationships between SB and BW (Roehe and 
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Kalm, 2000; Quiniou et al., 2002; Arango et al., 2006). This antagonistic relationship was 

found in previous explorative analyses of the datasets, when the c2-effect was modeled 

considering only the dam (without the corresponding parity) as an identity matrix into the 

model. These results support the observations made by Zaleski and Hacker (1993), showing 

that lower average BWs within litter increase the risk of a piglet being stillborn. Knol et al. 

(2002a) also reported that BW has a negative effect on SB. The weak positive rg between SB 

and BW in this study indicates that piglets with a higher birth weight have a higher 

probability to be stillborn. Edwards and Baxter (2015) explained that heavy piglets can 

prolongate the farrowing process by being too heavy and clog the parturient canal resulting in 

a higher risk of asphyxia for themselves and their littermates. The increasing risk of piglets 

with higher BW being more susceptible to being stillborn was already described by 

Grandinson et al. (2002) who identified a positive genetic correlation between SB and the 

individual BW.  

However, the expected antagonistic relationship was found at a genetic level between PWL 

and BW for both populations. Strong negative rg of -0.497 (±0.156) for LR and -0.700 

(±0.120) for LW were found. Phenotypic correlations were negative and higher compared to 

the results for SB and PWL (-0.381 for LR; -0.356 for LW). These associations show clearly 

that low birth weight piglets are more prone to die before weaning and are in accordance with 

literature (Roehe and Kalm, 2000; Quiniou et al., 2002; Arango et al., 2006). 

In general, individual BW has been discussed to supply substantially more information in a 

bivariate analysis due to its continuous character and it has been stated that even a low 

correlation will improve survival traits leading to more accurate genetic parameters from a 

threshold-continuous trait model (Roehe et al., 2010). Roehe and Kalm (2000) have suggested 

that BW would be an appropriate trait to improve piglet survival traits, because they observed 

positive rg between individual BW and survival traits. Arango et al. (2006) have found rg 

between BW and SB of -0.43 (±0.01) for LW. In addition, they estimated a rg for early piglet 
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mortality of -0.41 (±0.01) and their results have shown that the probability of piglet mortality 

decreases if the individual BW is higher. However, Knol et al. (2002a) have indicated that a 

selection for higher BWs will not or only to a limited extend improve the survivability. 

Therefore, uniform piglets are favourable for increased survivability. In addition, Roehe et al. 

(2010) have shown not only that survival during farrowing and before weaning are under 

different genetic control, but also that piglet survival is only slightly positively influenced by 

the individual BW. In the present study, the results showed that increasing BWs increase the 

probability of a piglet to be stillborn. Increasing litter sizes result in reduced BW due to the 

uterine capacity possibly limiting the total litter weight (Fix et al., 2010). According to 

Alonso-Spilsbury et al. (2007), the main way BW is influencing piglet survival is the higher 

risk of asphyxia during farrowing. Mulder et al. (2015) have reported that this risk increases 

as well if the piglet is very heavy and not only if the piglet is light weighted. On the other 

hand, low BW piglets are less vital, resulting in less colostrum intake and a higher risk of pre-

weaning mortality (Edwards, 2002). Even though a light BW is associated with a reduced 

potential for future growth, the relationship between BW and future weight is not linear per se 

(Fix, 2010). Fix (2010) has shown that this non-linear relationship arises because a decrease 

in BW below the mean value leads to a higher decrease of the future weight. Piglets with low 

BWs do not only suffer from reduced vitality, but their development and future weight gain is 

decreased whilst the impact of postnatal environmental factors increases (Le Dividich et al., 

2005; Fix, 2010). Light BWs result in lighter pigs at harvest or longer fattening periods (Fix et 

al., 2010). Similar results have been shown by Knol (2001) who has reported moderate 

positive rg between survivability and finishing traits indicating that a selection on survival 

traits will affect finishing traits, such as leanness, negatively and vice versa. 

 



78                                                      Chapter 4: Genetic analyses of piglet survivability and litter traits 

  

 

 
 

4.4.2.  Heritabilities of reproduction traits 

Heritabilities estimated for reproduction traits were within expectations and low for NBT, 

NBA, NBD, PWM and VBW for both populations. Furthermore, h2 for MBW were higher 

with 0.443 (±0.035) and 0.381 (±0.034) for LR and LW, respectively. Overall, the results for 

all traits investigated are in accordance with literature (Hermesch et al., 2001). For NBT, the 

h2 Kapell et al. (2011) estimated a mean h2 of 0.16 (±0.06 to 0.26) and Täubert and Henne 

(2003) estimated a mean h2 of 0.119 (±0.011) and 0.114 (±0.010) for LR and LW. For NBA, 

Hellbrügge et al. (2008) have found a h2 of 0.10 which are lower than in the present study. 

The h2 for NBD ranged between 0.03 (±0.03) and 0.08 (±0.008) for different LR lines 

(Hanenberg et al., 2001; Hellbrügge et al., 2008; Bidanel, 2011), which is comparable to the 

present study, where h² of 0.082 (±0.034) for LR and 0.104 (±0.047) for LW were found. The 

results for VBW here are mainly in accordance with h2 estimations from previous studies in 

LW populations (Damgaard et al., 2003; Täubert and Henne, 2003), but higher for the LR 

population analysed (0.169 (±0.024)). For MBW, Täubert and Henne (2003) found h2 of 

0.354 (±0.024) and 0.276 (±0.019) for LR and LW which is supported by our findings. Kapell 

et al. (2011) have estimated pe2 of 0.09 (±0.01 to 0.18) for NBT which were somewhat higher 

than found in the present study, with 0.084 (±0.026) for LR and 0.069 (±0.024) for LW. Pe2-

effects were lower for MBW (0.069 (±0.027) for LR and 0.089 (±0.027) for LW) compared to 

those estimated by Täubert and Henne (2003) (0.106 (±0.023)). Hanenberg et al. (2001) have 

found permanent environment effects for Dutch Landrace pigs for NBA of 0.085 (±0.005) and 

NBD of 0.055 (±0.004) and were only marginally lower than those estimated in the present 

study of 0.096 (±0.025) for LR and 0.052 (±0.024) for LW for NBA and 0.061 (±0.021) for 

LR and 0.051 (±0.019) for LW) for NBD. In summary, estimations of h2 and pe2-effects were 

of comparable magnitude as reported in previous studies. 
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Genetic correlations among reproduction traits 

In the present study, NBT showed a strong antagonistic relationship to NBD and PWM, 

especially for LR. In LW, the rg between NBT and NBD was similar as for LR and higher for 

NBT and PWM. Furthermore, the rg of NBT and NBD was significant for LR (according to 

the low SE of the correlation). In the study of Lund et al. (2002), a correlation of -0.39 

(±0.069) for LR between the maternal genetic effects of litter size and the proportion of 

piglets surviving for three weeks after birth was found. Also, Damgaard et al. (2003) have 

reported a positive correlation between litter size and the proportion of dead piglets pre-

weaning. The relationship between the survival rate and NBA has been investigated by 

Hellbrügge et al. (2008) and a direct correlation of -0.60 (±0.19) was estimated. Kapell et al. 

(2011) and Täubert and Henne (2003) have estimated negative direct correlations between 

NBT and the MBW of -0.254 (±0.072) for LR and -0.661 (±0.057) for the LW population. 

The results for rg between NBT and MBW showed here were -0.289 (±0.087) and -0.241 

(±0.096) for LR and LW, respectively, which is contrary to their findings. However, the direct 

correlation between PWM and the MBW was strongly significant in both populations (-0.650 

(±0.095) in LR and -0.488 (±0.137) in LW). This result confirmed the strong relationship 

between PWL and BW at the piglet level. In addition, Edwards and Baxter (2015) have 

described that low BW piglets are less vital and thereby more likely to be crushed or die due 

to hypothermia before weaning. The high rg for NBD and PWM for LW (0.562 (±0.222)) here 

was not observed for LR (0.211 (±0.193)). However, Su et al. (2008) have found strong 

positive correlations for LR and LW, showing that in litters including stillborn piglets, a 

higher pre-weaning mortality may occur, especially for LR. The rg between the NBT (0.243 

(±0.116)), NBA (0.195 (±0.125)) and NBD (0.272 (±0.148)) with regards to VBW were of 

low magnitude for LR. However, for the LW population, opposing results were observed, 

where genetic correlations were higher for the relationships between VBW and NBT (0.327 

(±0.131)) and NBA (0.351 (±0.133)), but not for NBD (0.043 (±0.181)) and VBW. Hence, the 
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influence of NBT and NBA on VBW was stronger for LW. Furthermore, the rg between 

PWM and VBW showed opposing results in the two populations. The weak negative 

relationship for LR (-0.135 (±0.152)) revealed that PWM decreases with a higher VBW. 

However, for LW this relationship was weaker and positive (0.067 (±0.202)). The negative 

effect of the VBW on PWM has been described by several authors (Roehe and Kalm, 2000; 

Milligan et al., 2002b; Wolf et al., 2008), whereas other studies have not found a strong 

relationship between the individual BW and its variation within litter and mortality traits 

(Leenhouwers et al., 1999; Knol et al., 2002b). Comparing the results for the rg between 

MBW and the reproduction traits a contrary picture was shown for the investigated 

populations here. Apparently, the MBW was not influenced that strongly by NBT (-0.241 

(±0.096)) and NBA (-0.231 (±0.099)) for LW, except for PWM (-0.488 (±0.137)) and we 

found a weak influence of MBW on NBD (-0.166 (±0.136)) for LW. For the LR population, 

similar results were observed and showed that larger litters (NBT and MBW -0.289 (±0.187)) 

decreased the MBW. Furthermore, PWM (-0.650 (±0.095)) was influenced unfavorably by 

lower MBW. These results oppose the results for rg between BW and SB, but emphasized the 

relationship between BW and PWL at the individual piglet level, estimated in the present 

study.  

4.4.3.  Implementability of piglet survival and birth weight in breeding programs  

The integration of piglet survival traits into breeding programs is of special interest for pig 

breeding organizations worldwide. The feasibility of using the BW related traits has been 

discussed by Roehe and Kalm (2000) as well as Knol et al. (2002b) due to the rg between BW 

and piglet survival. Following Knol and Bergsma (2003), a selection index of piglet survival 

and litter size would be the most appropriate tool to gain an increased level of litter size, 

survival, more uniform litters of light weight piglets and an increased level of weaned piglets. 

Ibanez-Escriche et al. (2009) have concluded that a selection strategy has to be implemented 
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population specific based on the (co)variance structure given in line under investigation. Su et 

al. (2007) have investigated Danish Landrace and Yorkshire populations and described that 

most losses can be observed at birth and during the first five days after farrowing. Therefore, 

Danish breeding organizations have introduced the breeding goal of litter size at day 5 (LS5) 

after birth to decrease the amount of stillbirths and the mortality of piglets in the first days 

after birth (Nielsen et al., 2013). This trait is a combination of litter size and mortality at day 5 

after birth. Due to the unavailable dates for the weaning losses in our data set, a more 

fractionated division of mortality was not possible. These authors have reported in their study 

the success of finding genetic gain in the litter size and LS5 and a simultaneous decrease in 

mortality regardless of the litter size category.  

 

4.5.  Conclusion 

Based on data collected in LR and LW populations here, (co)variance components were 

investigated for traits of piglet survival, individual BW for piglets and selected reproduction 

and litter traits in their respective dams. Heritability estimates for the investigated mortality 

traits and BW were low, within expectations and mostly similar for both populations 

analysed. The application of the ASReml software for the analysis of binary distributed traits 

especially in a bivariate model with the individual birth weight was discussed critically in 

previous studies. However, the present results are in accordance with biological relationships, 

previous study results and expectations. Genetic correlations between SB and BW were weak, 

but positive in LR, whereas negative rp was observed between these traits. The rp and rg 

showed antagonist associations PWL and BW. The results for litter traits were as expected 

and showed unfavourable relationships between litter size and piglet mortality as well as the 

average BW within litter and pre-weaning mortality, especially in the LR population. The 

implementation of piglet survival traits within breeding programs is crucial in order to reduce 

the number of early piglet losses and help to decrease ethical criticisms. However, it is 
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questionable that breeding for higher BWs is only feasible to decrease SB or PWL. Further 

steps based on genomic studies, like genome-wide association studies are needed to clarify 

the genetic background of these traits.  
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5.1  Modelling genetic and environmental effects in the analysis of piglet  

survival traits  

The key to maximizing the productivity of piglet producers is to increase the number of 

healthy piglets weaned per litter (Högberg and Rydhmer, 2000). The complexity of piglet 

survival is presented thoroughly in chapters 1 and 2. The number of piglets weaned depends 

on the ovulation rate as well as embryonic, foetal, farrowing and weaning survival (Lund et 

al., 2002). This shows that survivability is an intricate trait complex influenced by direct and 

maternal genetic effects as well as the common environment (figure 1, page 8) (Högberg and 

Rydhmer, 2000; Roehe et al., 2009). The possibilities to improve farm management measures 

for increased survivability are exhausted (Baxter and Edwards, 2018). Thereby, the emphasis 

lies on finding breeding-based solutions to improve piglet survivability. 

Genetic modelling: linearity vs. non-linearity for quantitative genetic analyses of 

individual piglet survival 
 

Analysing individual piglet survival traits is demanding because of the large amount of data 

needed and the binary character of the trait. Moreover, the quality of the data may be impaired 

if recorded under production conditions. Against this background, the data used in our study 

presented a high level of accuracy due to the sophisticated standards of the technical 

equipment applied in routine data recording, processing and storage. Nevertheless, piglet 

mortality traits in nucleus populations are usually lower due to the high level of management 

applied on these farms.  

As described in chapter 4, the survival traits SB and PWL were analysed using univariate 

threshold models (table 6, page 62). In addition, their respective relationship to the 

continuously distributed BW was investigated applying a bivariate GLMM, which models a 

threshold for SB and PWL (table 7, page 63). This is in accordance with Knol et al. (2002a) 

who ascertained that binary distributed survival traits should be analysed with adequate 

models such as the threshold model. Apart from the inefficient use of information 
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incorporated in the data, convergence problems occurred if binary traits were analysed 

assuming a continuous distribution. This observation was already reported by Knol et al. 

(2002a).  

In our study, h2 were ranged in a similar parameter space whether SB and PWL were analysed 

assuming a continuous distribution or estimated on the underlying scale (table 6, page 62 and 

appendix table S7). However, Dempster and Lerner (1950) and Roehe et al. (2010) reported 

higher h2 estimated on the underlying scale than on the observed scale. Various authors 

described that the amount of overestimation on the underlying scale or underestimation on the 

linear scale depend on the relationships between the animals, the selection pressure, the trait 

and the correlations between the residual variances (Dempster and Lerner, 1950; Gianola, 

1982; Sorensen et al., 1995). Knol et al. (2002b) discussed that the exploitable genetic 

variance remains the same. The results for our study showed that the additive genetic variance 

is higher in all threshold models compared to the continuous models for SB and PWL. Apart 

from a theoretically more efficient exploitation of the information incorporated in the data, 

univariate and bivariate threshold models showed a much better convergence and all results 

remain in a biologically reasonable parameter space. These aspects are discussed in chapter 4 

in more detail. 

Genetic modelling: Variance components for piglet survival traits 

In our study, m2 and c2 effects for the binary traits PWL and SB exceed the estimated h2 in all 

model variants applied (table 6, page 62). Knol et al. (2002a) reported accordingly that in the 

genetic analysis of piglet survival traits it is essential to differentiate between the quality of 

the piglet and the mothering ability of the sow. The authors emphasized that apart from 

general mothering ability the random litter effect additionally accounts for infectious diseases 

in piglets or udder infections of the dam. Thereby, this effect includes potential influences 

affecting all piglets in a litter because it represents their common environment. According to 

Knol et al. (2002a), it is feasible to adequately estimate the different random effects if large 
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and well-defined data sets are available. In order to verify the consequences of the different 

model approaches, various reasonable model runs were carried out and the parameter 

estimates as well as the resulting Log-Likelihoods were compared and tested via a LRT using 

the linear models (appendix table S5 and S6). For all traits, the results clearly showed the 

necessity of modelling the m2 and c2 effects due to their main share that is redistributed 

among the estimated variance components if these random effects are fitted (table 6, page 62). 

Furthermore, convergence problems occurred if they were not modelled. Based on the 

findings presented in chapter 4, it is essential for the traits of individual piglet survival and 

BW to model m2 and c2 effects to define their determinants, appropriately. 

Genetic modelling: Correlations between direct and maternal genetic effects?   

Moreover, it was possible to include a covariance between maternal and direct genetic effects 

into the univariate models for SB, PWL and BW. Direct-maternal correlations (rAM) show 

whether and how strong m2 effects would be influenced if direct selection would be 

performed within a trait or between traits (Grandinson et al., 2002; Roehe et al., 2010). The 

results of the study presented in chapter 4, showed that rAM caused convergence problems, 

were not significant and ranged massively between testing the various full univariate models 

for SB, PWL and BW (table 6, page 64). Thereby, rAM were not modelled in the bivariate 

models. This was in accordance with the study of Roehe et al. (2010) in which only weak rAM 

were found within traits. According to Bijma (2006), an estimation of (co)variances between 

direct and maternal effects is not feasible in populations with multiple litters and multiple 

offspring per litter. Considering the rAM between traits, the results of Knol et al. (2002a) 

showed a positive correlation between the direct component of BW and the maternal 

component of SB, indicating a negative influence on SB if selection on the direct component 

of the individual BW occurs. In addition, Knol et al. (2001) reported decreased litter BW if 

selecting directly for individual piglet survival. These findings show that rAM can be 
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indicatory when it comes to designing a model to breed for improved piglet survival, 

especially between traits. 

Genetic modelling: Biological and/or cross-fostering dam as random maternal or 

litter effect? 
 

In our study, all statistical models used to analyse SB and BW included the m2 of the 

biological dam (B), reflecting the quality of the uterus of the sow, and the common 

environment of the piglets during gestation defined as c2 effects. Because of the availability of 

cross-fostering information in our data sets, m2 and c2 effects can be modelled for PWL on the 

basis of the B or the cross-fostering dam (CF). Even though both effects (B and CF) are 

characterized by mothering abilities, those effects differ in case of cross-fostering. The B 

effect incorporates uterus qualities during gestation, colostrum production, farrowing and 

mothering abilities. The CF effect represents mostly the milk production capacity of a sow 

and mothering abilities (Knol et al., 2002a; Roehe et al., 2009). However, these effects 

become indistinct depending on the amount of cross-fostering applied in the population and 

the time range considered in the analysis. Thereby, for PWL the integration of m2, c2 and 

cross-fostering effects into the statistical model would be reasonable because it would 

represent the actual contributing effects on survivability for a substantial proportion of piglets 

in most nucleus populations. However, because of the relatively small amount of cross-

fostered piglets in two of the four farms analysed (6-31 % (LR); 8-23 % (LW)) the 

simultaneous inclusion of all these effects could possibly make precise fractionation and 

distinction between the B and the CF effects difficult (Knol et al., 2002a).  

However, even though the model fit was best for the nurse dam effect (m2 and c2) according 

to the LRT (appendix table S5 and S6), estimations of variance components showed no 

relevant differences between models (table 6, page 64). Arango et al. (2006) described the 

difficulties emerging from the confounding due to the B and the CF dam existing 

pre-weaning. Thereby, as described thoroughly in chapter 4, such effects can be accurately 
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considered only if the amount of cross-fostering is sufficient (Knol et al., 2002a; Arango et 

al., 2006). In summary, if individual pre-weaning survival is incorporated into a breeding 

goal, the CF dam should be recorded and taken into account for the accurate consideration of 

this trait. However, if the cross-fostering rate is similar as in our data set, practical 

consequences of ignoring the cross-fostering effects seem to be low.  

Genetic modelling: Birth weight as covariate in models for survival traits? 

The consideration of the individual BW as covariate for PWL and SB was investigated in the 

study presented in chapter 4. BW had a significant effect and influenced the magnitude of the 

variance components in SB by slightly increasing the additive genetic variance in both lines 

(table 6, page 62). Considering the non-linear relationship with BW, Knol et al. (2002a) 

reported that BW indirectly covers the impact of intrauterine crowding if modelled as a fixed 

effect for survival traits in 100 g classes. Knol and Bergsma (2004) analysed PWL as a binary 

trait. Their statistical model includes BW as a correcting covariate. Consequently, the authors 

reported that the inclusion of the covariate BW may have an undesirable genetic impact on 

BW itself. A genetic reduction of BW can be expected because the piglet with the smallest 

BW that survived had the highest EBV for survival. In order to avoid this negative 

consequence, the authors suggested using a sire and dam model rather than an animal model 

including a direct genetic effect. Against this background, it should be critically analysed how 

the inclusion of BW as a fixed effect influences the genetic progress of individual BW and 

LS. The possibilities to consider survivability and BW in breeding programs are discussed in 

chapter 5.2.  

 

5.2  Integration of piglet survival into breeding programs 

Considering the different approaches found in literature it seems to be very challenging to 

find the appropriate breeding strategy to improve piglet survival. The main reasons are (1) 

this trait complex is determined by maternal and direct genetic effects with mostly low 
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variance proportions (h2, m2, c2), and (2) the genetic relationships between piglet survival and 

production traits are mostly unfavourable (Knol, 2001; Roehe et al., 2009; Fix, 2010). 

Furthermore, the breeding goal should be balanced and include important production traits as 

well as animal welfare aspects (Rydhmer, 2000). However, causes for piglet mortality are 

complex and their exact individual recording is mostly not applicable in farm routines. In 

order to separate genetic from environmental effects and to achieve sustainable genetic 

progress in piglet survivability, technical improvements in on-farm data recording (e.g. 

mortality reasons, BW) are targeted and rewarding investments. The following sections 

describe various approaches to integrate piglet survivability into a breeding program and 

summarize existing approaches applied in pig breeding. 

Piglet survival: Trait of the piglet or a trait of the dam? 

In the study presented in chapter 4, analysing piglet survival (SB, PWL and BW) as a trait of 

the piglet itself resulted in h2 estimates ranging between 0.00 and 0.04. There have been few 

studies, which have analysed piglet survival as a trait of the piglet itself. But the results 

published are mostly in accordance with our findings (e.g. Arango et al., 2006; Ibanez-

Escriche et al., 2009; Roehe et al., 2010). Clearly, under the conditions of low h2 or m2 

estimates, sufficient genetic progress is hard to achieve. However, the large amount of data 

can compensate the deferring effect of low genetic variances, because the different effects can 

be estimated with enhanced accuracy. Nevertheless, in case of h2 not exceeding 0.00 - as has 

been shown in LW for SB - this aspect can be neglected because it does not provide any 

advantage if direct genetic variance is missing. It is advantageous when modelling survival at 

the piglet level to include individual BW and mortality reasons, if recorded. Based on our 

results, the question if PWL, SB and BW should be modelled as separate traits or if BW 

should be a covariate of survival traits cannot be answered clearly.   

Furthermore, h2 for reproduction traits defined as a trait of the dam were low, except for 

MBW (table 9, page 68). This is in accordance with the results presented in literature (e.g. 



90                                                                                                              Chapter 5. General discussion  

 

 

 
 

Högberg and Rydhmer, 2000; Täubert and Henne, 2003; Kapell et al., 2009). However, the 

example for the trait NBA showed that improvement is possible apart from its low h2, because 

a genetic variation existed (Bergfelder-Drueing et al., 2015). In chapter 4, SB did not show 

any or low genetic variability in LW, but at sow level it did (table 6, page 64). In LR, direct 

genetic variation was found at piglet and dam level. This indicates breed or population 

differences affecting the degree of direct genetic effects on piglet mortality (Grandinson et al., 

2002; Lund et al., 2002). Selection for direct and m2 effects of piglet survival was very 

successful in a cross-breeding experiment under outdoor conditions reported by Roehe et al. 

(2009) and Roehe et al. (2010) with increased genetic variation and h2. As previously 

described by Ibanez-Escriche et al. (2009), differences exist between lines when it comes to 

the determining genetic effects on piglet survival. According to the correlations between 

direct and m2 effects, Ibanez-Escriche et al. (2009) reported that survivability is a trait of the 

piglet in LR and Piétrain, but a trait of the sow in LW. Knol et al. (2002a) found that the 

direct components for PWL are stronger in the dam line, whereas m2 effects dominate in the 

sire line. Grandinson et al. (2002) reported a negligible genetic variation for total piglet 

mortality in Yorkshire piglets and Su et al. (2008) found lower h2 for LW. These results 

indicate that the selection strategy has to be designed line specific (Ibanez-Escriche et al., 

2009; Kapell et al., 2011). Kapell et al. (2009) underlined this proposition after investigating 

a sire and a dam line originated from one LW population selected for production and 

reproduction traits, respectively. In the sire line, survival was required to be included into a SI 

whereas in the dam line reproduction traits were improved without an additional focus on 

production traits. The findings presented here and from literature reveal that a direct selection 

against SB would be feasible in LR. Due to the missing additive genetic variability for SB in 

the LW population the improvement of this trait should be considered at litter level when 

designing a breeding goal. 
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Piglet survival: Direct or indirect indicators? 

SB and PWL are two genetically separate traits and their relationship with BW is 

contradictory (table 7, page 65, chapter 4). Already Knol et al. (2002a) found a negative 

impact of BW on farrowing survival and a positive effect on pre-weaning survival. The 

individual BW is a crucial determinant for piglet survival (Roehe and Kalm, 2000). To only 

breed for increased BW to improve direct piglet survival is complex, especially if large LS 

should be maintained (Knol, 2001). Fix (2010) reported that an incremental decrease in BW 

results in a greater increase of the likelihood to die, especially during the pre-weaning phase. 

Several studies show that simply increasing the individual BW raises the probability for SB 

because the relationship of these traits is not linear (Roehe and Kalm, 2000; Knol et al., 

2002a). Hellbrügge et al. (2008) also found a high negative correlation (rg = -0.57) between 

NBD and underweight at litter level, showing that light piglets are actually favourable for 

parturition. Nevertheless, a minimum BW of 1 kg has to be realized for the vitality of the 

piglet whilst keep LS stable (Roehe and Kalm, 2000; Knol et al., 2002a). Grandinson et al. 

(2003) and Hellbrügge et al. (2008) found that heavier piglets have improved chances to 

survive pre-weaning and a lower risk to be crushed. Therefore, a balancing act has to be 

realized when it comes to using BW to increase piglet survival indicating a uniform and ideal 

BW as suggested by Mulder et al. (2015). 

Piglet survival: Correlation to other traits 

NBT and NBA showed unfavourable correlations to NBD and PWM at litter level (table 9, 

page 68) in both breeds indicating that mortality rates increase in larger litters. This 

relationship was already described in the literature (Högberg and Rydhmer, 2000; Grandinson 

et al., 2003). In addition, Sorensen et al. (2000) concluded that the individual piglet BW and 

viability as well as reproduction traits should be monitored to prevent unfavourable genetic 

changes when breeding for NBT. Lund et al. (2002) stated that a selection for NBT alone 

would cause a deterioration of maternal abilities of sows and other components due to 
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unfavourable direct-maternal correlations within and between reproduction traits. The 

quadratic relationship of piglet survival and LS shows that piglets from intermediate litter 

sizes have a higher chance of survival compared to those from extreme small or large litters 

(Li et al., 2018). The findings presented in chapter 4 and from literature, show that a breeding 

goal has to be well balanced if the focus remains on high LS. The negative influence of large 

litters on piglet survival and especially uniformity raises the question if medium sized litters 

are more favourable if LS remains mostly the same until weaning. Management efforts would 

be reduced and uniformity increased. 

Here, NBT and NBA showed unfavourable correlations in both breeds with the MBW. 

Furthermore, the VBW was positively correlated to NBT and NBA for both populations (table 

9, page 68). Quesnel et al. (2008) reported 1.8 piglet extra per litter in LW dams and a 

reduction of the mean BW per litter by 180 g within ten years. Moreover, the authors found 

an increased variability in BW with increased LS as already described by Milligan et al. 

(2002b). Hellbrügge et al. (2008) found high correlations between underweight, runting and 

NBD and NBT, respectively. These results emphasize the negative impact of LS on prenatal 

growth due to rivalry in the uterus and again emphasizes the need for a balanced breeding 

goal if large LS should be maintained. Therefore, including traits related to BW into a SI for 

improved survivability should be considered. 

Piglet survival: Existing approaches for selection indexes 

To develop a SI, it is crucial to consider which traits are measurable within given performance 

testing conditions, the costs of their recording and their marginal economic value (Täubert 

and Henne, 2003; Knap, 2014). According to Knol et al. (2002b), PWL is the easiest and 

most economical trait to record to be included into breeding programs. The number of weaned 

piglets (NWP) is the essential trait to improve due to its economic relevance for piglet 

production (chapter 1). However, cross-fostering methods complicate the selection process 
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because the trait will not be recorded with the needed accuracy in most breeding programs 

(Täubert and Henne, 2003). This problem potentially holds also for PWL, as presented in 

chapter 4. Nevertheless, in our study it showed a higher genetic variability for both breeds 

compared to SB (table 6, page 64). Various approaches to include piglet survival into 

breeding goals are presented in table 10.  

Dutch pig breeders have mainly investigated breeding for the direct component of piglet 

survival and various approaches to integrate BW into the SI. However, the direct selection for 

BW result in negative effects for LS and meat quality traits. Using BW as a correcting 

covariate BW may have an undesirable genetic impact on BW itself (chapter 5.1: Birth weight 

as covariate in models for survival traits?). An improved uniformity can be expected from 

breeding for the direct component of piglet survival alone, however, runts or giants will still 

occur and cause pre-weaning losses or farrowing difficulties (Knol, 2001; van der Lende et 

al., 2001). A selection experiment in the Netherlands showed high potential if underlying 

mechanisms responsible for the remarkable reproductive performance of the Meishan breed 

are considered as traits in a LW line. Their SI showed that even though BW is expensive and 

elaborate to record, it is essential for a balanced breeding program for improved survivability 

(Knap, 2014). In addition, the results showed that breeding for increased LS is successful if 

survival traits and BW are included in the SI as well. Swedish pig breeders have compiled 

considerable research in the holistic treatment at litter level and considered that uniformity of 

BW would result in improved piglet survival (Damgaard et al., 2003). In France, selection for 

absolute BW resulted in increased proportions of small piglets and the proportion of heavier 

piglets increased when selecting for the categorized BW in combination with LS (Quesnel et 

al., 2008). German pig breeders created a SI for a simulated breeding structure, with the help 

of using NBA versus including NBA, MBW and VBW simultaneously. The authors found 

that with the inclusion of MBW and VBW, the NBA decreases but the NWP increases due to 

lower amounts of piglet losses. In addition, the MBW increased the accuracy of the SI by at 
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least 17 %. If only NBA was considered piglet losses increased by 0.1 piglets, MBW was 

reduced and VBW enhanced. Therefore, additional information on MBW and VBW reduced 

the losses (Täubert and Henne, 2003). 

 

Table 10: Approaches to include piglet survival into breeding programs 

Trait Covariate Consequence Reference 

PS (direct)      VBW      uniformity Knol (2001) 

PS (direct)      VBW (runts/giants occur)         

     uniformity 

van der Lende et 

al. (2001) 

PS (direct),  

NBT 
      survivability,      uniformity,      

     NPW 

Knol (2003) 

PS (direct) BW in 100g classes      intrauterine crowding Knol et al. 

(2002a) 

PS (direct) BW      BW Knol and 

Bergsma (2004) 

LS,PS, BW,  

VBW, GL 
      NBA (+2),      PS (+8),  

     MBW (-400 g),     LW (-2.9 g),   

     BW (-71 g) 

Knol et al. 

(2002b) 

BW       meat quality  Knol (2001) 

BW      proportions of small piglets Quesnel et al. 

(2008) 

VBW      PS Damgaard et al. 

(2003) 

MBW,VBW      uniformity Sell-Kubiak et 

al. (2015b) 

NBD, MA      LS Hanenberg et al. 

(2001) 

NBA MBW,VBW      NBA,    NWP,     PS,       

     accuracy of SI 

Täubert and 

Henne (2003) 

LS5       NBT,     MORT Nielsen et al. 

(2013) 

PS=Piglet survival, NBT=Number of piglets born total, VBW=Variance of birth weights within litter, 

NPW=Number of weaned piglets, BW=Birth weight, LS=Litter size, GL=Gestation length, MBW=Mean birth 

weight within litter, NBD=Number of piglets born dead, MA=Mothering abilities, LS5=Litter size at day 5 after 

farrowing, MORT=Piglet mortality rate until day 5 after farrowing 
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In Denmark, breeding organizations worked with the trait LS5 and achieved a successful 

increase in the NBT and piglet survival rates until day five after farrowing in Danish LR and 

LW nucleus herds (Nielsen et al., 2013). These examples show that selection for improved 

survivability and uniformity is possible while remaining LS if the SI is balanced according to 

the genetic prerequisites the population provides. However, breeding organizations have to 

invest into accurate and large-scale phenotyping, which has to be justified by the economic 

values it returns. 

Piglet survival: Benefit of the immunocompetence 

Although the analyses presented in chapter 4 only cover survival traits as well as BW, 

immunocompetence is discussed to be a crucial and rarely considered determinant for piglet 

survivability. Based on chapter 3, in which this relationship is reviewed thoroughly, the 

following section aims to resume important points of this debate. Restricted performance or 

piglet losses due to impaired health create economic damage for piglet producers. Clinical 

disease is observable, whereas, health or immunocompetence is difficult to quantify (Wilkie 

et al., 1998), also economically. As described in chapter 2, the sow rarely influences the 

immune system of the piglets during gestation. The epitheliochorial placenta results in the 

naı̈ve immune system of new-born piglets, which is challenged immensely after birth (Tizard, 

2013). Colostrum, rich in immunoglobulins, is therefore essential for the passive 

immunization of the piglet (Klobasa et al., 1987). Moreover, the nutritional components of 

colostrum are crucial for the thermoregulation and energy supply of the piglet, because piglets 

do not possess brown fat tissue or any other energy reserves (Quesnel et al., 2012; Theil et al., 

2014). Thereby, sows have to produce an appropriate amount of high quality colostrum for 

their litter, recover quickly from birth and stay healthy until weaning as well as for the next 

conception. Piglets have to be vital, quickly stand, move to the udder of the sow and take in 

colostrum (Edwards and Baxter, 2015). Hypoxia, reduced physiological development and low 

BW are the main causes for missing vitality (Edwards, 2002). Thereby, the critical period 
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after birth is influenced by complex relationships between the sow and the piglet, which can 

only be addressed by a balanced breeding goal (Rydhmer, 2000). However, it is crucial to 

investigate the actual decisive relationships between survival, immunocompetence and 

robustness. Piglet vitality and its complex causes, mothering abilities as well as colostrum 

production play a role in this sensitive interaction of trait complexes. In addition, the quality 

of the dams’ immune system, and how it influences the piglets’ immunity, has to be 

investigated.  

As described in chapter 3, general immunocompetence does also represent robustness. For 

piglets and growing pigs, this would suggest that the immune system of the piglet has to react 

rapidly and to an appropriate extent to various environments as well as pathogens. 

Furthermore, the piglet should show unrestricted growth and performance (Knap, 2005; 

Colditz and Hine, 2016). That means that no resources intended for growth should be 

allocated to the immune reaction because it utilizes resources that would be available for 

performance (Rauw, 2012). But as described by Kvidera et al. (2017) an accurate 

quantification of the energetic requirements of the immune system is difficult because, during 

its activation, immune cells are found in every tissue and leukocyte distribution as well as flux 

changes dynamically. Huntley et al. (2017) estimated that an immunoactivation increases 

maintenance demands by approximately 25 % in growing pigs. Kvidera et al. (2017) 

quantified that the amount of the activated immune system uses “approximately 116 g of 

glucose within 480 min” in growing pigs and stated that this is underestimated because it was 

not possible to estimate all utilization or contribution processes. Hence, immune reactions like 

inflammatory responses claim nutrients that are not available for productive purposes 

anymore (Kvidera et al., 2017). Therefore, the burden of an immune activation or response is 

dangerous for a piglet around birth and until weaning because of its very limited resources. 

Especially inflammatory processes, fever and acute-phase-protein reactions incur metabolic 
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costs. High immune responses might be too expensive when it comes to the physiological 

costs for the body (Rauw, 2012).  

SI for increased porcine immunocompetence were mostly conducted via categorizing animals 

into high (HIR) or low immune response groups (LIR) (Mallard et al., 1992). Subsequent 

studies on these selected animals showed that selection for “multiple immune response traits 

representing both antibody and cell-mediated immune response” (Magnusson et al., 1998) 

resulted in high and low response lines which differed significantly in their response to 

antigens they were bred for but also to other antigens (Magnusson et al., 1999). However, 

Stear et al. (2001) questioned this approach, because animals which are bred for a specific 

immune response are more prone for other diseases. Pluske et al. (2018a), who found that the 

capacity for an animal to mount a substantial immune response is crucial, confirmed this. 

However, the negative effects of pro-inflammatory cytokines have to be minimized because 

they substantially reduce animal health and performance (Pluske et al., 2018a). According to 

Black and Pluske (2011), both, under- and over-responsiveness of the immune system will 

influence animal health and productivity negatively. Clapperton et al. (2009) measured 

parameters of the immune system after challenging pigs in two different environmental 

categories according to the hygiene status of the farms. Results from these studies and from 

Flori et al. (2011), as presented in chapter 3 (table 1, page 37), showed that immune 

parameters show distinct genetic variation and could be bred for. However, immune traits 

underlie huge GxE interactions indicating that the SI has to be created population specific 

(Black and Pluske, 2011). In addition, uniformity should be considered critically when it 

comes to the immune system. Fundamental knowledge on the relationships within the 

immune system is missing. The genetic variation of immune traits is very susceptible to age, 

infection pressure, life phase and number of animals analysed. Furthermore, the relationships 

to important production traits were only rarely investigated (Clapperton et al., 2008a; 

Clapperton et al., 2008b). Due to the high expenses that are related to the measurement of 
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immune traits and the missing knowledge about the appropriate direction to select for, it is 

difficult to include these traits into a useful SI at this point. 

5.3 Perspectives 

The findings presented in chapters 3 and 4 as well as the results from literature show that a 

selection for improved survivability is feasible via individual piglet and litter traits. However, 

these observations raise the question whether or not it might be more useful to accept smaller 

litters with uniform piglets if the consequence is that LS stay the same until weaning and the 

management effort will be reduced. Furthermore, it would be interesting to further investigate 

the respective causes of PWL and the relationships between them. Even though those traits 

are of high importance, they are difficult to record accurately in on-farm routines. Thereby, it 

is important to determine phenotypes that represent various positive individual features for 

survivability at piglet and dam level. Li et al. (2018) used a single trait threshold model for 

ten different traits representing pre-weaning survival. The results of the h2 estimation doubled 

when the authors used not only the pedigree information but additional genotypic information 

as well. The genomic analysis of the phenotypes discussed with regards to survivability, BW, 

growth and the immune system would be of particular interest. GWAS of the respective traits 

would have to be conducted in order to identify potential candidate genes that can be included 

into a breeding program. GS is promising because it provides a more accurate way of 

selection (Knol et al., 2016). However, genomic analyses must also be modelled according to 

the binomial character of piglet individual survival traits with the help of case-control studies. 

When it comes to immunocompetence, the question arises whether individual immune 

parameters are a proxy for survival or if breeding for survival directly includes the genetic 

potential for a general robustness. This is particularly interesting because phenotyping of 

immune parameters are extremely costly and survival traits as well as the individual BW 

would be easier to record in on-farm routines. In addition, fundamental research has to be 
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pursued when it comes to the useful inclusion of immune parameters into breeding programs. 

Although uniformity appears to be crucial for the improvement of piglet survivability, it may 

create problems if applied on the immune system. The role of colostral immunity (e.g. 

Bandrick et al., 2011; Bandrick et al., 2014) as well as the gut of the piglet (e.g. Pluske et al., 

2018b) on the development of the immune system need to be investigated. In addition, the 

influence of maternal genetic effects (e.g. Salmon et al., 2009) on piglet immunocompetence 

are important fields that have to be studied thoroughly, if we consider the influence of 

maternal stress on the immune system of the piglet as described in chapter 1.



100  Chapter 6. Conclusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6. Conclusion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6. Conclusion  101 

 

 

Uniform low piglet birth weights appear to be the key to help to improve piglet survival. 

Piglets from uniform litters create less problems during farrowing, are well developed and 

more vital. According to literature, piglets with an adequate individual BW also show good 

growth rates. Survival, BW and LS can be simultaneously included into a SI as individual 

piglet or litter traits, considering the relationships to performance traits and fitted for the 

respective breed. Regarding the results presented above, which indicate the need for line 

specific inclusion of survival traits, the question arises if MBW and VBW should be included 

in a SI for LW, but for LR individual piglet traits would favourably be included in form of 

PWL and VBW. Apart from litter uniformity and optimum BW, mothering abilities, 

parturition performance scores and colostrum amount may be potential solutions to improve 

piglet survival at all levels. However, the costs for phenotyping these traits have to be 

evaluated towards their actual profit and on-farm applicability. Breeding for piglet survival is 

possible and can be even more efficient if genotypic information is included in the analyses 

via GWAS and GS.  

Immunocompetence is another intricate trait complex that is only rarely defined, especially 

when it comes to measurable traits representing it. Even though various studies found 

considerable genetic foundations for immune parameters, a substantial knowledge gap exists 

on their impact on survivability and robustness. Selection traits have to be carefully evaluated 

considering their consequences for all (re)production traits and the immune system before 

incorporating them into a breeding program. The specificity of immune parameter 

concentrations under various life conditions, GxE interactions and missing reference values 

complicate this situation. Furthermore, it has to be carefully evaluated if breeding for a 

specific immune reaction with the help of challenge tests is the right step towards a general 

immunocompetence requiring a flexible reaction pattern towards pathogens and diseases.
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Piglet survival determines the success of piglet production because it majorly influences the 

number of piglets weaned. Moreover, restricted performance or piglet losses due to impaired 

health create economic impacts for piglet producers. Apart from financial losses, decreased 

piglet survivability raises animal welfare concerns. This situation was intensified by 

increasing LS in the last decades, because they resulted in lower BW and increased VBW in 

occidental pig breeds. In addition, light BW piglets show decreased growth rates. Piglet 

survivability is an intricate trait complex influenced by additive genetic, m2 and 

environmental effects. However, it was reported that management strategies are exhausted. 

Various studies of immune traits revealed profound genetic variability, but it remains unclear 

which traits represent a robust immune system. Furthermore, the consequences for survival 

and performance remains unclear if immune traits are included into a breeding program. In 

this context, it would be beneficial to establish a SI to additionally select for improved piglet 

survival and general immunocompetence.  

The aim of this thesis was to analyse the prospects to select for improved piglet survival. 

Therefore, the complex determinants of survivability were also evaluated with respect to the 

immune system. In addition, traits representing piglet survival were analysed genetically in 

the maternal lines LR and LW. For this purpose, comprehensive data sets including 168,823 

piglets and their respective 4,642 dams were provided by a German breeding organization. 

Apart from individual BW for stillborn as well as live born piglets, the data sets included 

accurately recorded cross-fostering information. 

In chapter 3, the intricate trait complexes piglet survival and immunocompetence that are 

highly influenced by G×E interactions were summarized. Thereby, knowledge gaps and 

potential selection strategies to improve survivability and robustness were discussed. In order 

to design reasonable breeding programs for improved survivability and robustness, 

appropriate immune parameters have to be evaluated considering their mode and direction of 
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effectiveness. This holds especially for reference values that need to be updated for an 

adequate characterization of current pig populations as well as the critically discussed 

selection for specific immune responses. Moreover, it is important to keep in mind that while 

clinical disease is observable, health or immunocompetence is difficult to quantify. Thereby, 

the relationships between survivability, immune parameters and production parameters have 

to be investigated to actually improve robustness. Due to the high costs of phenotyping 

immune parameters it would be interesting to investigate whether or not survival would be a 

proxy for immunocompetence. 

In the second study (chapter 4), the piglet traits SB, PWL and BW as well as their 

representative litter traits were investigated using univariate, bivariate and multivariate 

generalized linear mixed models. The analysis focused especially on the binary character of 

SB and PWL applying threshold models and a logit link function. Due to the large data sets 

available and high levels of cross-fostering the m2 effect of the CF dam could be investigated. 

Piglet survival and BW traits showed low h2 at piglet and litter level, except for the mean BW 

within litter. In addition, the genetic rg between SB, PWL and BW revealed distinct 

relationships between the traits indicating that uniform individual BW are required to reduce 

the odds for a piglet to be stillborn but to ensure the vitality needed to survive until weaning. 

Moreover, the litter traits representing survival and BW revealed unfavourable rg to LS. Breed 

differences were found at the individual piglet and litter level. Considering the CF dam 

showed the best model fit for PWL but had no considerable effect on the magnitude of the 

variance components. 

In conclusion, the consideration of piglet survival and the immune system in a SI is possible 

but complex. Furthermore, it should generally be designed population specific. Considering 

piglet survival as well as growth, uniform individual BW appear to be ideal for farrowing and 

pre-weaning survival. However, when it comes to the immune system, uniformity and 
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specific immune responses are discussed critically. Furthermore, the costs for phenotyping 

these traits have to be evaluated towards their actual profit and on-farm applicability. 

Breeding for piglet survival is possible and can be even more efficient if genotypic 

information is included in the analyses via GWAS and GS.  
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Table S1: Genomic analyses for haemopoetic traits in pigs  

Method Traits Breed Reference 

Transcriptome analysis Total white blood cells, lymphocyte counts, proportions 

of various leucocyte subsets, cells harbouring IgM, 

γδTCR, CD4/CD8, CD16/CD2 and 

CD16/CD172a/MHCII, phagocytosis & in vitro 

production of IL1B, IL6, IL8, TNF, IL12 and IFNα after 

blood stimulation, lymphocyte proliferation, in vitro 

production of IL2, IL4, IL10 and IFNγ after blood 

stimulation, total IgG, IgA, IgM, specific IgG levels, C-

reactive protein, haploglobin 

French Large White Flori et al. (2011b) 

GWAS & LONG-

GWAS 

Hematocrit, hemoglobin, HBE, MCHC, MCV, 

erythrocytes, RDW, granulocytes (%), amount of 

granulocytes, monocytes (%), amount of monocytes, 

lymphocytes (%), amount of lymphocytes, leucocytes, 

thrombocytes, PCT, PDW, MPV 

White Duroc × 

Erhulian F2 

Zhang et al. (2013) 

GWAS of DNA pools γ-Immunokrit Landrace x (Duroc x 

Yorkshire) 

Rohrer et al. (2014) 

GWAS & 

haplotype analysis 

Hematocrit, hemoglobin, HBE, MCHC, MCV, 

erythrocytes, RDW-SD, lymphocytes (%), amount of 

lymphocytes, leucocytes, thrombocytes, PDW, MPV, P-

LCR 

Chinese Sutai Zhang et al. 

(2014a) 

GWAS &  

multi-marker analysis 

Leucocytes, lymphocytes, erythrocytes, hemoglobin, 

hematocrit, MCV, HBE, MCHC, thrombocytes, RDW, 

MPV, PCT 

German Landrace Ponsuksili et al. 

(2016) 
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Method Traits Breed Reference 

GWAS & LDA & 

PCA 

Leucocytes, neutrophils, neutrophils (%), lymphocytes, 

lymphocytes (%), monocytes, monocytes (%), 

erythrocytes, MCV, hemoglobin, hematocrit, HBE, 

MCHC, RDW, thrombocytes, MPV, PDW, PCT 

Landrace, 

Large White, 

Songliao Black 

Wang et al. (2013) 

GWAS Hematocrit, hemoglobin, HBE, MCHC, MCV, 

erythrocytes, RDW 

Large White × 

Minzhu F2 

Luo et al. (2012) 

GWAS & LDA IFNγ, IL 10, IFNγ-IL10-ratio, IgG Landrace, Yorkshire, Songliao 

Black 

Lu et al. (2013) 

Linkage analysis/QTL 

mapping with 

microsatelites 

T lymphocyte subpopulations: proportions of CD4+, 

CD8+, CD4+CD8+, CD4+CD8-, CD4-CD8+, and CD4-

CD8- T cells and the ratio of CD4+:CD8+ T cells 

Landrace, Large White, 

Songalio Black pig 

Lu et al. (2011) 

GWAS=Genome-wide association studies, QTL=Quantitative trait loci, LONG-GWAS=longitudinal GWAS, LDA=Linkage disequilibrium analysis, PCA=Principle 

component analysis, HBE=Hemoglobin concentration in blood, MCHC=Mean corpuscular hemoglobin concentration, MCV=Mean corpuscular volume, RDW=Red 

cell distribution width, RDW-SD= Red cell distribution width – standard deviation, PCT=Volume occupied by platelets, PDW=Platelet distribution width, 

MPV=Mean platelet volume, P-LCR=Platelet large cell ratio, IFN=Interferone, IL=Interleukin, IgG=Immunoglobulin G, TNF=Tumor necrosis factor. 
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Table S2: Genome-wide association studies (GWAS), candidate gene and linkage analyses for traits associated with piglet survival 

Method Traits Breed Reference 

Candidate gene analysis TNB, NBA Meishan Rothschild et al. (1996) 

QTL mapping via microsatellites TNB, NSB, NBA Large White, Yorkshire Tribout et al. (2008) 

Candidate gene analysis TNB, NSB, PM 
American Large White, 

Landrace 
Sironen et al. (2010) 

GWAS (BM) 
TNB, NBD, NSB, MUM, 

LBW, ABW 
Crossbreds Schneider et al. (2012) 

Whole-genome association study TNB, NSB, PM Finnish Landrace Uimari et al. (2011) 

Whole-genome association study TNB, NBA, NSB, MUM Large White x Landrace Onteru et al. (2012) 

Genome-wide linkage analysis TNB, NBA, PS 
Large White x Meishan 

F2 
Hernandez et al. (2014) 

GWAS  
HEBV and LEBV for 

IBW 
Crossbreds Zhang et al. (2014b) 

GWAS NSBIL, NSBL, PCSPIL Crossbreds Schneider et al., 2015 

GWAS NBA Landrace, Large White 
Bergfelder-Drueing et al. 

(2015) 

GWAS TNB, varTNB Large White Sell-Kubiak et al. (2015a) 

GWAS (BM) TNB, LS 5, MORT Danish Landrace Guo et al. (2016) 

GWAS (BM) & generation of gene-

transcription factor networks 
NSB, NT Large White Verardo et al. (2016) 
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Method Traits Breed Reference 

Candidate SNP analysis TNB, NBA, ABW, PM Large White Sato et al. (2016) 

GWAS PU Large White Wang et al. (2017) 

GWAS  NBT, NBA Erhualian Ma et al. (2018) 

GWAS  NBT, NBA, LBW, ABW Large White Wang et al. (2018) 

Candidate gene analysis 
NBT, NPD, NSB, NBDA, 

ABW 
Yorkshire Jonas and Rydhmer (2018) 

GWAS=Genome-wide association studies, SNP=Single nucleotide polymorphism, QTL=Quantitative trait loci, BM=Bayesian models, TNB=Total number of piglets 

born, NSB=Number of stillborn piglets, NBA=Number of piglets born alive, NBD=Number of piglets born dead, MUM=Number of mummies, LBW=Total litter 

birth weight, ABW=Average birth weight, PM=Piglet mortality between birth and weaning, PS=Prenatal survival, HEBV=High estimated breeding values for the 

individual birth weight, LEBV=Low estimated breeding values for the individual birth weight, IBW=Individual birth weight, NSBIL=Number of stillborn piglets 

ignoring the last piglet born per litter, NSBL=Number of stillbotn in the last birth position, PCSBIL=Percent stillborn ignoring the last piglet, LS 5=Litter size at day 

5, MORT=Mortality rate before day 5, PU=Piglet uniformity, NPD=Dead piglets of total born, NBDA=Dead piglets of live born, varTNB=Variability of TNB, 

NT=Number of teats, NBT=Number of piglets born total. 
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Table S3: Heritabilities (h² ± SEM) in blood parameters of the porcine immune system (full table) 

Parameters 

Edfors-Lilja et 

al. (1994) 

Henryon et al. 

(2006) 

Clapperton et 

al. (2008b) 

Clapperton et al. 

(2009) 

Flori et al. 

(2011a) 

Mpetile et al. 

(2015) 

Ponsuksili 

et al. 

(2016) 

n 220 4204 500 606 443 518 591 

Breed 
Swedish 

Yorkshire 

Duroc, 

Landrace, 

Yorkshire 

Large White 
Large White, 

Landrace 
Large White Yorkshire Landrace 

Leukocytes 0.44 (0.29) 0.25 (0.05) 0.24 (0.15) 0.28 (0.11) 0.73 (0.20) 0.23 (0.19) 0.23 

Neutrophiles  0.22 (0.04)   0.61 (0.20) 0.31 (0.21)  

Lymphocytes 0.24 (0.21) 0.24 (0.05)   0.72 (0.21) 0.15 (0.19) 0.49 

Monocytes  0.22 (0.04) 0.52 (0.17) 0.26 (0.13) 0.38 (0.20) 0.36 (0.20)  

Eosinophils  0.30 (0.05)   0.80 (0.21) 0.58 (0.12)  

Basophils      0.12 (0.19)  

Thrombocytes     0.56 (0.19) 0.11 (0.23) 0.39 

Erythrocytes     0.43 (0.20) 0.62 (0.25) 0.41 

Haemoglobin      0.56 (0.13) 0.40 

Hematocrit     0.57 (0.03) 0.06 (0.14) 0.34 

MCV      0.47 (0.24) 0.69 

HBE      0.37 (0.24) 0.67 

MCHC      0.04 (0.16) 0.67 

IFNγ     0.00 (0.17)   

IL10     0.35 (0.19)   

IL12     0.51 (0.20)   

IL1beta     0.12 (0.19)   

IL4     0.15 (0.18)   

IL6     0.11 (0.19)   

IL8     0.00 (0.17)   
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Parameters 

Edfors-Lilja et 

al. (1994) 

Henryon et al. 

(2006) 

Clapperton et 

al. (2008b) 

Clapperton et al. 

(2009) 

Flori et al. 

(2011a) 

Mpetile et al. 

(2015) 

Ponsuksili 

et al. 

(2016) 

n 220 4204 500 606 443 518 591 

Breed 
Swedish 

Yorkshire 

Duroc, 

Landrace, 

Yorkshire 

Large White 
Large White, 

Landrace 
Large White Yorkshire Landrace 

TNFalpha     0.00 (0.19)   

Haptoglobin  0.14 (0.07)  0.20 (0.11) 0.55 (0.21)   

MCV=Mean corpuscular volume, HBE=Hemoglobin concentration in blood, MCHC=Mean corpuscular hemoglobin concentration, IFN=Interferone, IL=Interleukin, 

TNF=Tumor necrosis factor
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Table S4: Heritabilities (h² ± SEM) for survival traits in pigs (dam lines and crossbreds) 

Parameter ht
2 hd

2 hm
2 Breed 

Number of piglets 

born alive 

0.12 (0.04)2 

0.08 (0.02)4 

0.10 (0.03)5 

 

 

0.11 (0.02)8 

 Yorkshire2, 

Large White4, 

Landrace5 8 

Number of stillborn 

piglets 

0.05 (0.03)1 

0.19 (0.02)4 

0.05 (0.03)5 

  3 dam lines1 

Large White4 

Landrace5 

Proportion of 

stillborn piglets 

0.13 (0.04)2   Yorkshire2 

Stillbirth  0.043a 0.103a Large White3 

Individual survival at 

birth 

0.042 (0.009)6 

0.01-0.0410  

0.035 (0.006)6 

0.00-0.0210 

0.219 

0.057 (0.009)6 

0.04-0.1210 

0.159 

Landrace6 

Dam lines10 

Crossbreds9 

Total pre-weaning 

mortality 

 0.033b 0.093b Large White3 

Pre-weaning survival  0.249 0.149 Crossbreds9 

Survivability to day 5 0.093 (0.012)6 0.056 (0.010)6 0.04 (0.008)6 Landrace6 

Survivability from 

day 6 to weaning 

0.015 (0.007)6 0.027 (0.011)6 0.03 (0.011)6 Landrace6 

Individual birth 

weight 

 

 

0.147 (0.016)6 

 

0.090 (0.012)6 

0.043b 

0.369 

0.160 (0.016)6 

0.153b 

0.289 

Landrace6 

Large White3b 

Crossbreds9 

Mean birth weigth 0.31 (0.05)1 

0.39 (0.05)2 

0.32 (0.06)8  3 dam lines1 

Yorkshire2 

Mean body weight at 

3 weaks of age 

0.19 (0.04)2  

0.17 (0.02)8 

 Yorkshire2 

Landrace8 

Piglet mortality  0.02 (0.02)7 

0.06 (0.01)7 

0.05 (0.01)7 

0.13 (0.02)7 

Large White7 

Landrace7 

ht
2=total heritability; hd

2=direct heritability; hm
2=maternal heritability; 1Hermesch et al. (2001); 2Damgaard et al. 

(2003); 3Arango et al. (2006) (3aModel 3, 3bModel 1); 4Canario et al. (2006); 5Hellbrügge et al. (2008); 6Su et al. 

(2008); 7Ibanez-Escriche et al. (2009); 8Canario et al. (2010); 9Roehe et al. (2010); 10Kapell et al. (2011)  



Appendix                      131 

 

 

 

Table S5: Complete models tested for the single-trait analysis of piglet traits (linear results – for Landrace) 

 PWL   SB BW 

Model 1 2 3 4 5 6 1 2 1 

 B B CF CF B CF    

Fixed 

effects 

Parity x x     x x x 

Parity of foster dam   x x x x    

HYSa/Seasonb xa xa xa xa xa xa xb xb xab 

Sex* only in LR x x x x x x x* x* x 

BW x  x  x  x   

Random 

effects 

Animal h2 
x 

4918.56 

x 

1097.45 

x 

2230.66 

x 

6396.64 

x 

4918.56 

x 

1097.45 

x 

4692.42 

x 

3609.36 

x 

5632.87 

Dam m2 
x 

4998.06 

x 

1155.50 
  

x 

4998.06 

x 

1155.50 

x 

4794.88 

x 

3701.49 

x 

6953.16 

Foster dam cfm2   
x 

6499.14 

x 

2347.56 

  
   

Litter c2 
x 

5053.11 

x 

1249.67 
  

  x 

4977.98 

x 

3947.48 

x 

8021.67 

Foster litter cfc2   
x 

6625.86 

x 

2448.59 

x 

6625.86 

x 

2448.59 
   

Random 

effects 

Full models (h2, m2, c2) 
x 

5088.51 

x 

1264.94 

x 

6724.26 

x 

2684.27 

x 

5237.62 

x 

1476.85 
x 

5013.10 

x 

3965.35 

x 

8362.95 

Animal – Dam correlation 

(rAM) 

x 

5089.56 

x 

1266.78 

x 

6724.89 

x 

2684.36 

x 

5239.07 

x 

1478.94 
5013.03 

x 

3965.82 

x 

8365.11 

LRT (∆LogL > 3  p<0.05) 1.05 1.84 0.63 0.09 1.47 2.09 0.02 0.47 2.16 

All models for SB and PWL were tested at logit link and linear level. Results on log-likelihoods presented here are given at linear level. Each model was tested for the 

significance (p<0.05) of rAM by applying a likelihood-ratio test (LRT) in the full models applied. B B=Model in which biological dam and biological litter were fitted, CF 

CF=Model in which foster dam and foster litter were fitted, B CF= Model in which biological dam and foster litter were fitted, x=effect was included in the respective model, 

digits given under x are the respective log-likelihoods which were used to test for ∆LogL = difference between log-likelihoods. *Sex was only used in LR for SB because in LW 

no sex was recorded for stillborn piglets. aPhenotypes were recorded in both farms for each line and a herd-year-season effect was modeled (HYS). bRecords of stillborn piglets 

were only available in one farm, hence a seasonal effect was modeled. 
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Table S6: Complete models tested for the single-trait analysis of piglet traits (linear results – for Large White) 

 PWL   SB BW 

Model 1 2 3 4 5 6 1 2 1 

 B B CF CF B CF    

Fixed 

effects 

Parity x x     x x x 

Parity of foster dam   x x x x    

HYSa/Seasonb xa xa xa xa xa xa xb xb xab 

Sex* only in LR x x x x x x x* x* x 

BW x  x  x  x   

Random 

effects 

Animal h2 
x 

387.25 

x 

4933.82 

x 

647.09 

x 

5656.77 

x 

4918.56 

x 

1097.45 

x 

9213.99 

x 

8490.07 

x 

4988.63 

Dam m2 
x 

5094.32 

x 

504.64 
  

x 

4998.06 

x 

1155.50 

x 

9265.44 

x 

8527.66 

x 

1425.47 

Foster dam cfm2   
x 

5588.89 

x 

746.12 

  
   

Litter c2 
x 

5223.39 

x 

708.64 
  

  x 

9332.21 

x 

8615.49 

x 

3032.72 

Foster litter cfc2   
x 

5802.14 

x 

1010.04 

x 

6625.86 

x 

2448.59 
   

Random 

effects 

Full models (h2, m2, c2) 
x 

5277.71 

x 

729.73 

x 

5844.07 

x 

1094.83 

x 

5347.89 

x 

827.77 
x 

9535.24 

x 

8625.95 

x 

3364.12 

Animal – Dam correlation 

(rAM) 

x 

5278.08 

x 

729.77 

x 

5844.16 

x 

1095.97 

x 

5348.10 

x 

827.79 
x 

9535.88 

x 

8626.12 

x 

3365.87 

LRT (∆LogL > 3  p<0.05) 0.37 0.04 0.09 1.14 0.21 0.02 0.64 0.17 1.75 

All models for SB and PWL were tested at logit link and linear level. Results on log-likelihoods presented here are given at linear level. Each model was tested for the 

significance (p<0.05) of rAM by applying a likelihood-ratio test (LRT) in the full models applied. B B=Model in which biological dam and biological litter were fitted, CF 

CF=Model in which foster dam and foster litter were fitted, B CF= Model in which biological dam and foster litter were fitted, x=effect was included in the respective model, 

digits given under x are the respective log-likelihoods which were used to test for ∆LogL = difference between log-likelihoods. *Sex was only used in LR for SB because in LW 

no sex was recorded for stillborn piglets. aPhenotypes were recorded in both farms for each line and a herd-year-season effect was modeled (HYS). bRecords of stillborn piglets 

were only available in one farm, hence a seasonal effect was modeled. 
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Table S7: Estimated variance components for piglet traits - Univariate models without logit 

link for survival traits  

Breed 
BW 

(y/n) 
Dam Litter 𝜎𝑝

2 h2±SE m2±SE1) c2±SE2) rAM±SE3) 

SB 

LR 

yes B B 
0.075 

(±0.001) 

0.0094   

(±0.003) 

0.0210 

(±0.001) 

0.046 

(±0.003) 

0.044 

(±0.264) 

no B B 
0.072 

(±0.001) 

0.007 

(±0.003) 

0.012 

(±0.003) 

0.051 

(±0.003) 

-0.293 

(±0.253) 

LW 

yes B B 
0.058 

(±0.001) 

0.003 

(±0.003) 

0.016 

(±0.003) 

0.036 

(±0.003) 

-0.383 

(±0.278) 

no B B 
0.060 

(±0.001) 

0.001 

(±0.003) 

0.009 

(±0.003) 

0.038 

(±0.003) 

-0.603 

(±0.669) 

PWL 

LR 
yes 

 

CF CF 
0.010 

(±0.001) 

0.024 

(±0.004) 

0.017 

(±0.003) 

0.050 

(±0.03) 

-0.218 

(±0.156) 

B CF 
0.101 

(±0.001) 

0.023 

(±0.004) 

0.020 

(±0.003) 

0.045 

(±0.003) 

-0.325 

(±0.141) 

B B 
0.100 

(±0.001) 

0.021 

(±0.004) 

0.018 

(±0.003) 

0.029 

(±0.003) 

-0.289 

(±0.155) 

LW yes 

CF CF 
0.087 

(±0.001) 

0.017 

(±0.004) 

0.018 

(±0.003) 

0.050 

(±0.003) 

0.091 

(±0.199) 

B CF 
0.088 

(±0.001) 

0.013 

(±0.003) 

0.040 

(±0.003) 

0.042 

(±0.002) 

0.103 

(±0.176) 

B B 
0.088 

(±0.001) 

0.011 

(±0.003) 

0.028 

(±0.003) 

0.042 

(±0.003) 

0.205 

(±0.213) 

LR 
no 

 

CF CF 
0.111 

(±0.001) 

0.017 

(±0.004) 

0.015 

(±0.003) 

0.063 

(±0.003) 

-0.123 

(±0.209) 

B CF 
0.111 

(±0.001) 

0.016 

(±0.004) 

0.008 

(±0.002) 

0.051 

(±0.003) 

-0.444 

(±0.150) 

B B 
0.111 

(±0.001) 

0.015 

(±0.004) 

0.009 

(±0.002) 

0.032 

(±0.003) 

-0.431 

(±0.160) 

LW no 

CF CF 
0.095 

(±0.001) 

0.011 

(±0.003) 

0.006 

(±0.002) 

0.058 

(±0.003) 

-0.422 

(±0.194) 

B CF 
0.096 

(±0.001) 

0.010 

(±0.003) 

0.019 

(±0.003) 

0.047 

(±0.002) 

-0.055 

(±0.206) 

B B 
0.096 

(±0.001) 

0.008 

(±0.003) 

0.012 

(±0.002) 

0.046 

(±0.003) 

-0.083 

(±0.243) 
BW=Individual birth weight, PWL=Pre-weaning loss, SB=Stillbirth,  
𝜎𝑝

2=Total phenotypic variance, h2=Heritability, m2=Maternal genetic effects, c2=Common environment effects. 

CF=Cross-foster dam/litter, B=Biological dam/litter. LRT significance test: LogL complete model (CM) vs. 

LogL-reduced model=CM minus factor: 1) CM vs. CM-dam and rAM, 2) CM vs. CM-litter, 3) CM vs CM-rAM. m2 

and c2 effects were significant in all models tested and rAM not significant in all CM models tested. *P< 0.05. 

Results for SB and BW are given for farms A and C due to missing phenotypes and birth weights for stillborn 

piglets in farms B and D.  
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