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Summary 
 

The aim of this Ph.D. thesis was to investigate the phenomenon of chloroplast incorporation 

or ‘kleptoplasty’ in sacoglossan sea slugs (Sacoglossa, Heterobranchia, Mollusca) and related 

adaptations – concerning aspects of photobiology, cell biology, ecology and behavior.  

The phenomenon of retention of functional chloroplasts from their food algae in sacoglossan 

sea slugs is a challenge for research, still leaving many questions unsolved, e. g. concerning 

differences between various sacoglossan species in their capacities of retention of functional 

chloroplasts. To investigate these differences and potential influencing factors in more detail, 

this thesis combined photobiological investigations with cell biological, ecological and 

behavioral analyses. Photosynthetic activity, i. e. the ongoing functioning of incorporated 

chloroplasts within the slug cells, was analyzed with a Pulse Amplitude Modulated 

Fluorometer (PAM), an established method to investigate photosynthetic activity in sea slugs.  

The analyses included several chloroplast-incorporating sea slug species, especially most of 

the few which are known as “top-performers” of long-term functional retention of 

chloroplasts: Elysia timida, Elysia crispata (mangrove type and reef type), Elysia viridis and 

Plakobranchus ocellatus. As further comparative species, Bosellia mimetica, Thuridilla hopei 

and Placida dendritica were included.  

Overall, relevant differences between species-specific spectra of photosynthetic capacities in 

various sacoglossan sea slug species could be confirmed and also considerable variation 

within. For P. ocellatus, PAM measurements of functional chloroplast retention for over 

seven months were reported, the longest time period documented up to now. Also, variations 

in capacities of long-term kleptoplast retention between the two eco-morphotypes E. crispata 

mangrove type and reef type could be found. Capacities of kleptoplast retention in E. viridis 

were shorter than expected in relation to former reports and varied strongly in different 

populations with varying habitats and substrates. Feeding experiments indicated that in 

addition to its known food algae Codium fragile, E. viridis also fed on and could incorporate 

chloroplasts from Flabellia petiolata, with even partly better capacities of chloroplast 

retention than with C. fragile/vermilara. Furthermore, several algal chloroplast donors could 

be confirmed for several sacoglossan species, and be documented with regard to the 

connected photosynthetic activity and capacity of long-term retention. For B. mimetica, better 

long-term kleptoplast retention capabilities than expected could be documented. 

Also within the frame of species-specific spectra, the photosynthetic capacities of integrated 

chloroplasts displayed variations, which in free-living sea slugs can potentially be influenced 
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by various factors as season, temperature, food availability, light conditions and further 

environmental parameters as well as age, size and overall condition of the individuals. 

Photobehavioral analyses, testing a former hypothesis that chloroplast-retention potentially 

implies stronger phototactic behavior in sea slugs, in which the non-sacoglossan sea slug 

species Cratena peregrina and Flabellina affinis were additionally included as comparison 

without incorporation of chloroplasts, indicated a different coherence of photobehavior, as 

some sea slug species without chloroplasts or with rather fast digestion of chloroplasts reacted 

stronger positively phototactic than species with long-term kleptoplast retention. For 

E. timida, nevertheless a positive phototactic behavior could be observed, which might be 

connected to special adaptations in this species. With PAM-measurements could be 

demonstrated e. g. the efficiency to regulate fluorescence F emission of incorporated 

chloroplasts by varying opening and closing positions of the parapodial lobes in E. timida. 

Furthermore, effects of temperature on capacities of long-term photosynthetic activity were 

indicated by experimental trials under controlled laboratory conditions. The advantages of the 

laboratory culture system with E. timida as a model organism that could be successfully 

established could be revealed. In trials within the laboratory culture system, the capacity of 

E. timida to acquire kleptoplasts from another chloroplast donor – the alga Acetabularia 

peniculus – with similar retention capacities compared to their food alga Acetabularia 

acetabulum, could be demonstrated. On a cell biological level, indices for factors concerning 

special adaptations in relation to incorporation of chloroplasts were elucidated with 

transmission electron microscopy (TEM). The very first uptake of chloroplasts from the food 

alga A. acetabulum in juvenile E. timida could be illustrated with TEM. Furthermore, 

ecological parameters in the natural environment, especially concerning light conditions, 

could be demonstrated to affect photosynthetic activity of incorporated chloroplasts, which 

constituted the first demonstration of this kind. Two sea slug species, E. timida and 

E. crispata mangrove type, were investigated underwater with a Diving PAM Fluorometer in 

their natural habitat in France and in Florida, respectively, concerning kleptoplast 

photosynthetic activity and combined environmental and behavioral parameters. Distinct 

differences between the two sea slug species were found concerning habitat, environmental 

parameters and photosynthetic activities. Photosynthetic activities in both sea slug species and 

in the food algae of E. timida, A. acetabulum, varied in relation to natural light conditions in 

the sea. These represent to the current knowledge the first photosynthetic measurements of 

incorporated chloroplasts in sacoglossan sea slugs in their natural environment published so 

far.  
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Preface 
 
“The known is finite, the unknown infinite; intellectually we stand on an islet in the midst of 
an illimitable ocean of inexplicability. Our business in every generation is to reclaim a little 
more land. “ 

T. H. Huxley 1887 (cited from Carl Sagan’s book “Cosmos” (1980), First Ballantine Books edition 1985, p.1 
(Sagan 1980)) 

 
The quest of this Ph.D. thesis was to contribute to the knowledge about the fascinating, yet still 
enigmatic, phenomenon of functional chloroplast incorporation in ‘photosynthetic sea slugs’. 
 
Ever since I first encountered sea slugs I was fascinated by these wonderful living beings and the same 
accounts to the fascination about endosymbiosis since I first learned about it, and which grew 
especially with the getting to know organisms in which ‘animal’ and ‘plant’ characters are combined, 
like e. g. Euglena. As I experienced that in sacoglossan sea slugs, these fascinating subjects merge 
together, I could combine these interests in this Ph.D. thesis, and I would have liked to go more deeply 
into the research of these fascinating subjects, but limitations were posed mainly by the constraints 
due to most of the time working in parallel to earn my living. 
 
As this Ph.D. thesis was in large part carried out in parallel to working to earn my living, this meant a 
permanent double challenge during many years. But I am grateful for all that this Ph.D. thesis and the 
support and grants I received temporarily have given me – so many fascinating impressions and 
experiences during my work, while diving in the sea and meeting all those fascinating sea creatures, 
while looking with a stereomicroscope at these splendid sea slugs, observing their different states 
during their life circles from eggs to whirling veliger larvae to juveniles and adults, fascinating 
insights into their cells with incorporated chloroplasts, and along with it the people I had the pleasure 
to meet in connection with my work, in international science projects in Banyuls-sur-Mer, France, and 
Florida Keys, USA, and of course also in Germany – all these were precious and wonderful 
experiences for me that I am deeply grateful for, and to many of these people and institutions I am still 
connected in gratefulness. (Please see also Acknowledgements.) 
 
One thing I regret is the death of every little sea slug dying in the course of the experiments – though 
they have in general short natural life spans which might in some cases even be shorter in nature as in 
the laboratory. As far as I could regulate it, I tried to take care to keep the losses as low as possible, 
e. g. always collect only a small part of individuals of a species that I spotted at a collection place. 
When I came back to those sites later I always was happy seeing still the same sea slug species 
crawling around. 
 
Sea slugs are to my mind among the most fascinating living beings and research objects on this planet. 
These “butterflies of the sea” or “leaves that crawl” seem to be magic, like little elves of the ocean 
while at the same time representing scientific phenomena.  
 
For me they symbolize in small the beauty, magic and vulnerability of all nature. Thus I hope that 
contributing to exploring these fascinating creatures and gaining more understanding of their complex 
and astonishing nature may also enhance the understanding of nature as a whole and the consciousness 
of the preciousness of our wonderful planet and the need to preserve it. 
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1 Introduction 
 

“We are symbionts on a symbiotic planet, and if we care to, we can find symbiosis 

everywhere.” 
Lynn Margulis in “Symbiotic Planet – A new look at evolution” (1998), Science Masters Series, Basic Books, 

Sciencewriters, Amherst, Massachusetts, p. 5 (Margulis 1998) 

 

 

1.1 The phenomenon of chloroplast incorporation in sea slugs and the aims 

of this Ph.D. thesis 
 

Among the splendid diversity of various forms and colors developed in sea slugs, a special 

enigmatic phenomenon has evolved in the group of Sacoglossa (Heterobranchia, Mollusca). 

This phenomenon of ‘chloroplast endosymbiosis’ or ‘kleptoplasty’ is the retention of intact 

and functional chloroplasts from food algae with ongoing photosynthesis inside the slugs’ 

cells and is among metazoans uniquely known from sacoglossan sea slugs (while otherwise 

known in some marine protists) (Wägele and Johnsen 2001, Händeler, Grzymbowski et al. 

2009, Pelletreau, Bhattacharya et al. 2011, Wägele and Martin 2013, Christa, Händeler et al. 

2014, Wade and Sherwood 2018). As Rumpho et al. summarize it accurately, some other 

metazoans in the phyla Mollusca (giant clams, nudibranchs), Porifera (sponges), Cnidaria 

(corals, anemones and hydra), Acoelomorpha (flatworms) and Chordata (ascidians) are 

known to have evolved photosynthetic endosymbiosis, but they form symbiotic associations 

with whole intact unicellular algae or cyanobacteria (Rumpho, Pelletreau et al. 2011) (and 

references therein). In contrast to this, sacoglossan sea slugs preserve instead of whole 

organisms only the single organelles, the chloroplasts, out of the algal content that they ingest 

by their name-giving, characteristic, sucking way of feeding, and incorporate these ‘selected’ 

chloroplasts intact and functional into their body and cells (Wägele and Johnsen 2001, 

Händeler, Grzymbowski et al. 2009, Pelletreau, Bhattacharya et al. 2011, Rumpho, Pelletreau 

et al. 2011, Wägele and Martin 2013, Christa, Händeler et al. 2014, Christa, Händeler et al. 

2015, Laetz, Moris et al. 2017, Laetz and Wägele 2018a). Thus, it is not exactly a real 

symbiosis after the classic traditional definition of symbiosis, e. g. as “system in which 

members of different species live in physical contact” or “the living together of differently 

named organisms” like Lynn Margulis cites it in her book ‘Symbiotic Planet’ (the second 

after the definition by Anton deBary who she describes to have coined the term ‘symbiosis’ in 
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1873) (Margulis 1998). But it could potentially be regarded as having parallels to the original 

endosymbiotic process of chloroplasts described also by her. Viera et al. refer to the 

nomenclature of the term 'kleptoplasty’ by Clark et al. that denotes specifically the ability of 

sacoglossans to ‘‘borrow’’ or ‘‘steal’’ chloroplasts (Vieira, Calado et al. 2009) (reference 

therein: (Clark, Jensen et al. 1990)). This phenomenon of incorporation of functional 

chloroplasts in sacoglossan sea slugs is a fascinating and challenging research topic with 

many questions still unsolved – especially due to the evolution of this specific phenomenon, 

underlying functioning mechanisms and differences between various sea slugs species in their 

capabilities for chloroplast retention (Wägele and Martin 2013, Cruz, Cartaxana et al. 2015, 

Chan, Vaysberg et al. 2018, Melo Clavijo, Donath et al. 2018).  

The capability for chloroplast retention varies enormously between different species within 

the sacoglossan sea slugs, from fast digestion over retention for weeks up to several months, 

and only a few species are known to retain functional chloroplasts over longer periods 

(Evertsen, Burghardt et al. 2007, Händeler, Grzymbowski et al. 2009, Pelletreau, 

Bhattacharya et al. 2011, Rumpho, Pelletreau et al. 2011, Wägele and Martin 2013, Christa, 

Händeler et al. 2015). With the aim to investigate these differences and potential influencing 

factors in more detail, this Ph.D. thesis explores several aspects concerning photobiology, cell 

biology, ecology and behavior, with a focus on sacoglossan species with high potential of 

functional chloroplast retention. Among the few sacoglossan species known to be capable of 

extended periods of functional chloroplast retention, one species with the longest known 

durations of kleptoplast retention is Elysia chlorotica Gould, 1870 (Gould 1870), which has 

already been intensively studied by Rumpho, Pelletreau et al., also in a laboratory culture 

system (Rumpho, Pelletreau et al. 2011, Pelletreau, Worful et al. 2012). Plakobranchus 

ocellatus van Hasselt, 1824 (Hasselt 1824) is another sacoglossan species that was found to 

be able to store chloroplasts functional for extended durations and thus was estimated in the 

comprehensive categorization by Händeler et al. as a long-term retention form (Händeler, 

Grzymbowski et al. 2009). Reports on P. ocellatus were limited, however, thus it was 

included in several investigations in this thesis as one example for a sacoglossan species with 

longest durations of functional chloroplast retention (Figure 1.1.1), with the aim to explore 

and document its full retention potential and as comparison to species with lower capacities of 

kleptoplasty. In the same categorization, out of several sacoglossan species (including 

members of Oxynoacea and Plakobranchacea), only two other species were classified as long-

term retention species, Elysia timida Risso 1818 (Risso 1818) (Figure 1.1.2) and Elysia 
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crispata, Mörch 1963 (MolluscaBase 2019c) (Figure 1.1.3), both also from the same group as 

P. ocellatus, the Plakobranchoidea (Händeler, Grzymbowski et al. 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.1.1: Sacoglossan sea slug species with one of the longest durations of long-term retention of 
kleptoplasts: Plakobranchus ocellatus. Inside the wing-like parapodial lobes folded together over the body, 
green lamella are visible, indicating with their green color the storing of chloroplasts. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
Figure 1.1.2: Sacoglossan sea slug species with long-term retention of kleptoplasts: Elysia timida. This 
individual is touching the round rim of its food alga Acetabularia acetabulum (left) with the mouth part of its 
head to suck in the algal sap. Its wing-like parapodia are spread out like a leaf, exposing the incorporated 
chloroplasts. 
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Even if E. timida had been in the focus of research already since many years, as e. g. revised 

for three decades of research by Giménez-Casalduero et al. (Giménez-Casalduero, Muniain et 

al. 2011), it remained still an interesting research object due to many open questions 

concerning potential adaptations in relation to long-term kleptoplasty, e. g. concerning 

photobehavior and several further aspects, due to which it was included in several 

investigations in this thesis as explained in more detail below. Furthermore, it is a common 

Mediterranean species and was described to have a specific feeding preference for its food 

alga Acetabularia acetabulum Silva 1952 (Silva 1952) by Marin and Ros (Marín and Ros 

1992, Marín and Ros 1993). E. crispata, on the contrary, was described to acquire 

kleptoplasts from several algal species (Curtis, Massey et al. 2005). Thus, with its inclusion, 

polyphagous feeding habits could be compared to a more narrow food spectrum in this thesis. 

Two differentiated morphotypes of E. crispata – a mangrove type and a reef type (Figure 

1.1.3) corresponding to the description by Krug et al. (Krug, Vendetti et al. 2016) – were 

included in these investigations to examine potential differences. 

 

 

 

 

 

 

 

 

 

 
Figure 1.1.3: Elysia crispata mangrove type (left) and reef type (right). The darker morphotype on the left 
stemmed from shallow sand/mud grounds near mangroves with low currents, the brighter morphotype on the 
right stemmed from offshore reefs. 
 

In contrast to the classification by Händeler et al. of Elysia viridis Montagu 1804 (updated 

from (MolluscaBase 2019e), reference therein as description of Laplysia viridis: (Montagu 

1804)) as a short-term retention species (Händeler, Grzymbowski et al. 2009), Evertsen and 

Johnsen reported that in their observations, E. viridis was capable of long-term retention of 

chloroplasts from Codium fragile (Suringar) Hariot, 1889 (Hariot 1889) while Placida 

dendritica Alder und Hancock 1843 (Alder and Hancock 1843) digested those chloroplasts 
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rapidly (Evertsen and Johnsen 2009), thus the two species were also included in comparative 

analyses in this thesis (Figure 1.1.4). 

 

 

 

 

 

 

 

 

 
 

Figure 1.1.4: Elysia viridis (left) and Placida dendritica (right). Despite found on and feeding on the same 
food algae, E. viridis has longer chloroplast retention capability in contrast to P. dendritica with fast chloroplast 
digestion. 
 

Also included were two further species which were classified as short-term retention forms by 

Händeler et al. (Händeler, Grzymbowski et al. 2009): Boselllia mimetica Trinchese 1890 

((MolluscaBase 2019a), reference therein: (Trinchese 1890)) and Thuridilla hopei Vérany 

1853 ((MolluscaBase 2019g), reference therein: (Vérany 1853)) (Figures 1.1.5 and 1.1.6). 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 1.1.5: Bosellia mimetica (center) on its food algae Halimeda tuna. The round and flat body of the sea 
slug is hardly distinguishable from its algal underground, only by its different pattern emerging from the regular 
algal structure – representing clearly the perfectly camouflaging effect by the incorporation of green chloroplasts 
on green algal ground.   
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These two species were also included as comparison in the investigations of this thesis, 

concerning B. mimetica with the hypothesis that this species could reveal potentially longer 

chloroplast retention than expected (chapters 3.3 and 3.4) and concerning T. hopei as an 

exemplary species for fast digestion or short-term retention of chloroplasts (chapters 3.1, 3.3 

and 3.4).  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 1.1.6: Thuridilla hopei. In the case of this species, the differing coloration mirrors the rather fast 
digestion of incorporated chloroplasts in contrast to long-term retention species.   
 

 

Furthermore, an additional species which was found together with E. viridis in a small habitat 

of a tidal pool, Ercolania viridis  (A. Costa, 1866) ((MolluscaBase 2019f), reference therein: 

(Costa 1866-1869)), was investigated concerning its potential of chloroplast incorporation in 

this thesis in a comparison of the two species living sympatrically (chapter 3.4) (Figure 1.1.7). 

As for Er. viridis the algal nutrition preferences were not known, this species was examined 

in feeding experiments, like also other included species, in combination with photobiological 

investigations and cell biological investigations with the aim to analyze various algal 

chloroplast donors and potential differences concerning incorporation of chloroplasts and 

connected photosynthetic capacities (chapter 3.4). 
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Figure 1.1.7: Ercolania viridis. Individuals of this small species were analyzed concerning their potential algal 
food source and comparatively analyzed with Elysia viridis living sympatrically in the same tidal pool.   
 

 

Despite general extensive investigations of the phenomenon of incorporation of chloroplasts 

in sacoglossan seas slugs since its discovery (reviewed e. g. in (Wägele and Martin 2013)), 

many questions remain open, e. g. on a cell biological level, about the exact incorporation of 

chloroplasts into the slugs’ body and cells and potential recognizable differences between 

various sea slugs species with different capacities of functional chloroplast retention. To 

address these questions, several investigations with transmission electron microscopy (TEM) 

were carried out in this thesis – among other investigations one aim was to document the very 

first uptake and incorporation of chloroplasts from its food algae A. acetabulum in juvenile 

E. timida (Schmitt, Händeler et al. 2014) (chapter 3.2 and further results 3.4). 

For photobiological investigations in this thesis, analyses of photosynthetic activity of 

incorporated chloroplasts in the various investigated sea slug and algae species were 

performed with a Pulse Amplitude Modulated (PAM) Fluorometer. PAM-measurements of 

chlorophyll a fluorescence of photosystem II represent an established non-invasive method to 

measure in vivo photosynthetic activities of short- and long-term functionality of incorporated 

chloroplasts in sea slugs (Wägele and Johnsen 2001, Evertsen, Burghardt et al. 2007, Evertsen 

and Johnsen 2009, Händeler, Grzymbowski et al. 2009, Vieira, Calado et al. 2009, Jesus, 
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Ventura et al. 2010). Thus, analyses of photobiology were performed on short-term and long-

term scales and combined in this thesis with cell biological analyses as well as behavioral and 

ecological analyses as explained in more detail in the following. 

 

 

1.2 Photobehavior / behavioral adaptations 
 

The behavior in sea slugs seems to be not as simple as could possibly be assumed – former 

own studies (diploma thesis) revealed an astonishingly complex behavior of E. timida in 

relation to mating (Schmitt, Anthes et al. 2007). The assumption seems probable, that in 

connection with the evolution of kleptoplasty also special behavioral adaptations are 

developed.   

Specialized photobehavior in sea slugs was first reported by Fraenkel with a description of 

photomenotaxis in E. viridis (Fraenkel 1927). He described that he chose E. viridis out of 

many tested opisthobranch species to investigate photomenotaxis due to its fastest and 

clearest reaction, but did not name the other compared species.  

Nearly 50 years later, during which research and knowledge about the phenomenon of 

incorporated chloroplasts in sacoglossan sea slugs had considerably increased, yet not 

concerning behavioral adaptations, Weaver and Clark compared five sacoglossan species with 

or without ‘endosymbiotic’ chloroplasts (Weaver and Clark 1981). Three ‘chloroplast 

symbiotic’ species with incorporated chloroplasts (Elysia tuca Marcus and Marcus 1967 

(=Elysia velutinus Pruvot-Fol, 1947 after (MolluscaBase 2019d), reference therein: (Marcus 

and Marcus 1967)), Costasiella lilianae (=Costasiella ocellifera after Clark (Clark 1984)), 

and (Tridachia/)E. crispata) were compared versus the two ‘aposymbiotic’ species without 

chloroplasts Oxynoe antillarum Mörch and Berthelinia carribbea Edmunds with regard to 

photobehavior (Weaver and Clark 1981). Weaver and Clark reported orientation to the light 

source in the ‘chloroplast symbiotic’ species opposed to light avoidance of the ‘aposymbiotic’ 

species (Weaver and Clark 1981). From this, the assumption could be inferred that phototaxis 

would be potentially enhanced by the possession of incorporated chloroplasts. 

To investigate this hypothesis more profoundly and also with taking the factor of longevity of 

incorporated chloroplasts into account, further analyses of phototactic behavior were 

performed in this Ph.D. thesis. In a first study, two sacoglossan species, E. timida with long-

term retention of incorporated chloroplasts and T. hopei with only short-term retention or fast 
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digestion of chloroplasts, were compared concerning phototaxis and other potential 

behavioral adaptations (Schmitt and Wägele 2011) (chapter 3.1).  

The results of that study seemed first to point into the same direction of the assumption 

indicated by the former studies (Weaver and Clark 1981), but up to that time point, only few 

species had been observed, and a broad overview over different species was still generally 

lacking. Thus, to gain an overview over a wider range of species, the investigations on 

phototaxis were extended with the inclusion of a broader spectrum of species comprising 

different forms of chloroplast retention. This included the above already described species 

with very long lasting chloroplast retention (P. ocellatus) over long-term or mediate 

chloroplast retention (E. timida, E. crispata (mangrove type and a reef type), E. viridis, 

B. mimetica) to short-term retention or fast digestion of chloroplasts (T. hopei, P. dendritica) 

plus two non-sacoglossan sea slug species, carnivore nudibranchs feeding on hydrozoans and 

correspondingly without sequestration of chloroplasts (Cratena peregrina and Flabellina 

affinis) (chapter 3.3).  

Furthermore, interesting specialized behavioral adaptations are reported for E. timida in form 

of modifying the position of its parapodial lobes from closed to spread, opened leaf-like in 

relation to different light conditions, first described by Rahat and Monselise (Rahat and 

Monselise 1979, Monselise and Rahat 1980). Only few reports about this specialized behavior 

were available so far however. Thus, to investigate this behavior in more detail, behavioral 

observations of E. timida were performed in a semi-natural laboratory setting. The special 

photobehavior of E. timida was analyzed in relation to its capability for long-term retention of 

chloroplasts in comparison to T. hopei, as both are common Mediterranean species that live 

sympatrically, with a similar body size and structure with movable parapodia, and as the latter 

is a species with short-term retention or fast digestion of chloroplasts (Marin and Ros 1989, 

Händeler, Grzymbowski et al. 2009). The two species were comparatively analyzed 

concerning the behavior in form of the varying positions of the parapodia in relation to light 

conditions and photosynthetic activity, including e. g. fluorescence (Schmitt and Wägele 

2011) (chapter 3.1). E. timida was additionally observed concerning its specialized behavior 

of regulating the exposure of incorporated chloroplasts by varying opening of the parapodia in 

its natural environment in the sea along with other investigations described in more detail 

below under ‘Investigations in near-natural and natural settings’ (chapter 3.3). 
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1.3 Laboratory culture system investigations – Elysia timida as a model 

organism  
 

To investigate E. timida also under specialized controlled conditions, a laboratory culture 

system was established as described in chapter 3.2 (Schmitt, Händeler et al. 2014).  

By the time we built up the laboratory culturing system of E. timida, most previous studies of 

sacoglossan sea slugs had been performed on individuals collected from the sea, implying an 

unknown history of the individuals before collection, concerning e. g. their age, the spectrum 

of algae they have fed or light conditions they have been exposed to (Schmitt, Händeler et al. 

2014). One successful laboratory culture system had been established by Rumpho and 

coworkers, in which they kept E. chlorotica – another of the sacoglossan species with the 

longest durations of functional kleptoplasty as listed already above – and analyzed the 

complete life cycle of about ten months in detail (Rumpho, Pelletreau et al. 2011). By the 

investigations within their laboratory culture, they were also able to document an obligatory 

primary phase in juvenile E. chlorotica to feed on the food algae Vaucheria litorea for at least 

seven days to establish kleptoplasty (Pelletreau, Worful et al. 2012). In another study, Curtis 

and coworkers kept slugs hatched from egg masses laid in the laboratory by sea slugs of the 

formerly called sacoglossan species Elysia clarki Pierce, Curtis, Massey, Bass, Karl & 

Finney, 2006 (=Elysia crispata Mörch 1863 after (MolluscaBase 2019b), reference therein: 

(Pierce, Curtis et al. 2006)) (which should probably correspond to E. crispata mangrove type 

in this thesis as explained above), but only for some observations, not to establish a culture 

system (Curtis, Pierce et al. 2007). 

We tested the possibility to establish a laboratory culture system with the sacoglossan species 

E. timida, which is especially suitable as a model organism for investigations of kleptoplasty 

due to several reasons. As a common Mediterranean species, it was described by Marin and 

Ros to live in a close relation to its food alga A. acetabulum from which it gains its 

kleptoplasts (Marín and Ros 1992, Marín and Ros 1993). As explained above, it is also one of 

the few species capable of long-term retention of chloroplasts with up to approximately three 

months of retaining kleptoplasts functional during starvation (Evertsen, Burghardt et al. 2007, 

Giménez Casalduero and Muniain 2008, Händeler, Grzymbowski et al. 2009). Furthermore, 

as described already above concerning photobehavior, E. timida reveals several potential 

specific adaptations to long-term functional kleptoplasty as positive phototaxis and the 

specialized regulation of the opening degree of the parapodia resulting in more or less 

exposure of the incorporated chloroplasts (Rahat and Monselise 1979, Monselise and Rahat 
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1980, Jesus, Ventura et al. 2010, Schmitt and Wägele 2011). An additional combination of the 

behavioral photo-regulation mechanism of opening or closing the parapodia with a 

physiological photo-regulation mechanism (xanthophyll cycle) is described to enhance 

maintenance of photosynthetic capacity for longer durations in E. timida (Jesus, Ventura et al. 

2010). In all, in several regards E. timida provided an interesting potential for investigations 

as a laboratory model to examine long-term kleptoplasty. Furthermore, former own studies 

had given first preliminary hints of several characteristics of E. timida which could possibly 

be advantageous for culturing (Schmitt, Anthes et al. 2007). Thus, based on those former 

studies on the reproduction in E. timida (Schmitt, Anthes et al. 2007) and preliminary 

investigations, we built up a laboratory culture system with E. timida as a model organism for 

investigations concerning long-term kleptoplast retention and related parameters throughout 

the slugs’ entire life cycle (Schmitt, Händeler et al. 2014) (chapter 3.2). 

 

 

1.4 Investigations in near-natural and natural settings 

 
In addition to investigations of sea slugs in the laboratory or in specialized laboratory cultures 

like described above, investigations on site in the sea and under near-natural conditions are 

essential, however, to gain knowledge about conditions of the sea slugs in their natural 

environment and ecological relations. Thus, this was in the focus of other investigations in 

this thesis that aimed especially at exploring real life parameters of photosynthetic sea slugs in 

their natural environment and under near-natural conditions. The intention was to gain data on 

the chloroplast retention from individuals directly after being collected from the sea, held in 

near-natural or semi-natural conditions, for longest durations possible, and combine those 

with behavioral (described above) and ecological investigations. As a part of these 

investigations, also P. ocellatus with one of the longest chloroplast retention potentials as 

described above was investigated. Even if the high potential for long-term chloroplast 

retention in P. ocellatus had been discovered before, actual observations and PAM-

measurements had only been performed for restricted time periods and the full potential was 

only estimated (Evertsen, Burghardt et al. 2007, Händeler, Grzymbowski et al. 2009, 

Yamamoto, Hirano et al. 2013, Wade and Sherwood 2017). Thus, the investigations in the 

frame of this thesis aimed to present the longest time period of PAM-measurements of the 

photosynthetic activity of incorporated chloroplasts in P. ocellatus possible, potentially the 

whole retention duration or life span (without food supply) (chapter 3.3). Furthermore, as 
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depicted above, individuals of the species E. crispata were included in these investigations 

corresponding to the two differentiated morphotypes mangrove type and reef type described 

by Krug et al. (Krug, Vendetti et al. 2016). Individuals of the two types were compared 

concerning potential differences in photosynthetic activity of incorporated chloroplasts and 

other parameters, partly described also in the section with further, unpublished results 

(chapter 3.4). In all, a spectrum of sea slug species with different degrees of chloroplast 

retention from fast digestion to long-term retention were included in these investigations, 

among them most up to now described species with longest durations of long-term chloroplast 

retention as depicted above. The aim of these investigations was to gain an overview analysis 

concerning potential differences between different sea slug species with various capacities of 

chloroplast retention, including several parameters (chapters 3.3 and 3.4). As different algal 

diets and corresponding possible differences in chloroplast robustness could be affecting 

capacities of functional maintenance of incorporated chloroplasts in sea slugs, feeding 

experiments were carried out to achieve more fundamental information concerning feeding in 

the investigated species, for which some information was available but some still lacking or 

unclear (chapter 3.4). For E. viridis and E. crispata, different chloroplast donors as well as 

different natural habitats were analyzed comparatively. 

Though photobiological analyses of sacoglossan sea slugs have been carried out extensively 

in laboratories as described above, observations in their natural environment are scarce. 

Monselise and Rahat reported observations concerning the photobiology – especially 

photobehavior – of E. timida in the sea (Monselise and Rahat 1980), but did not document 

photosynthetic activity of kleptoplasts by PAM, and in general photobiological observations 

on sacoglossan sea slugs in their natural environment are lacking. Thus, two sea slug species, 

E. timida and E. crispata (mangrove type), were investigated concerning photobiology, 

including ecological and behavioral parameters, underwater directly in the natural setting in 

their habitats in France and Florida, respectively, by diving with a Diving PAM Fluorometer. 

These investigations were performed with the aim to provide the first PAM-measurements of 

photosynthetic sea slugs in their natural environment (results chapter 3.3). 
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1.5 Aim and structure of this Ph.D. thesis in summary 
 

The aim of this thesis was to investigate special aspects of adaptations in relation to the 

phenomenon of long-term chloroplast retention or kleptoplasty in sacoglossan sea slugs 

(Sacoglossa, Heterobranchia, Mollusca) – concerning aspects of photobiology, cell biology, 

ecology and behavior – especially with regard to differences between various sacoglossan 

species in capabilities of functional chloroplast retention and factors potentially influencing 

this capability. The introductive sections above explained the respective focus of the different 

investigations that are presented in form of two already published studies (chapters 3.1 and 

3.2) (Schmitt and Wägele 2011, Schmitt, Händeler et al. 2014) and one further yet 

unpublished publication manuscript draft (chapter 3.3), all presented in the results sections 

and all performed as first author. The section “further results” (chapter 3.4) presents several 

further, until now unpublished, own investigations, including in the first part feeding 

experiments and long-term photobiological investigations by PAM-monitoring to analyze 

different single algal chloroplast donors and related photosynthetic activities in various 

sacoglossan sea slug species, and in the second part analyses with TEM that were performed 

in combination with the photobiological investigations. Two further publications as co-author, 

with participation by contribution of photobiological and cell biological investigations 

conducted in the frame of this Ph.D. thesis, are presented only as citations here (Wägele, 

Deusch et al. 2011, Martin, Hazkani-Covo et al. 2012); the Ph.D. thesis focusses exclusively 

on own investigations as first author. 
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2 Methods 
 
2.1 General methods 
 
Taxonomy nomenclature of sea slugs and algae species that were included in the analyses was 

checked with “WORMS – World Register Of Marine Species” (www.marinespecies.org) and 

the connected “MolluscaBase”, e. g. concerning species acceptance status, taxonomic citation 

and original description references, as well as with literature and partly depicted with 

correction remarks, respectively. Sacoglossan sea slugs species included in the analyses are 

depicted with author and year of description for taxonomic reference. 

The sea slugs investigated in this Ph.D. thesis were in large part collected by the author during 

research stays at the Observatoire Océanologique at Banyuls-sur-Mer (OOB), France, and the 

Marine Mote Lab (MML), field station Summerland Key, Florida, USA, while diving or from 

algae samples in the laboratory. Furthermore, individuals of the Elysia crispata reef type were 

kindly provided by a professional collector from a reef offshore Key West, Florida, USA. 

Individuals of Plakobranchus ocellatus were provided by an aquarium specialist (Frank 

Richter Meerwasseraquaristik, Chemnitz, Germany) from collections near Cebu, Philippines, 

and then kept at the Institute for Molecular Evolution (IME), Heinrich-Heine-University of 

Düsseldorf, Germany, where also the laboratory culture of Elysia timida was established.  

Photobiological investigations were performed after the methods established for sea slugs by 

Wägele and Johnsen (Wägele and Johnsen 2001) with a Pulse Amplitude Modulated 

Fluorometer (Diving PAM Fluorometer or Photosynthesis Yield Analyzer Mini PAM, version 

2.0, both WALZ, Germany) (Heinz Walz GmbH 1998) in the laboratory and in the sea 

(Figure 2.1.1).  

  
Figure 2.1.1: Underwater investigations of sea slugs in their natural environment with a Diving PAM. 
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These included measurements of light conditions with an integrated light sensor of the Diving 

PAM Fluorometer or with a light sensor connected to the Mini-PAM (US-SQS/L, Walz, 

Germany), measured in PAR (quantum flux density of photosynthetically active radiation, 

[μmol quanta m-2 s-1]) (Heinz Walz GmbH 1998).  

 

Investigations with transmission electron microscopy (TEM) were performed in the first part 

in collaboration with Rainer Martin at the University of Ulm and in the following at the OOB 

in the frame of the ASSEMBLE program in collaboration with the technical assistant Marie-

Line Escande. 

 

Statistical background to ‘choose and use statistics’ was based on Dytham’s guide (Dytham 

2003).  

 

For details, see the methods section in the respective publication / manuscript; in the 

following, additional methodical notes concerning the further results section are depicted.  

 

 

2.2 Additional method notes concerning the further results section 
 

2.2.1 Collections and maintenance of sea slugs  

 

Additional method notes on chapter 3.4 are depicted here, as concerning the yet unpublished 

results presented in this doctoral thesis, a part is presented in form of a publication manuscript 

with an included method description in chapter 3.3 and another part is presented separately as 

further unpublished results in chapter 3.4. The chapters 3.3 and 3.4 present both selections of 

investigations performed during several years, thus the methods are in big part overlapping. 

The Mediterranean sea slug species included in the investigations in chapter 3.4, Elysia 

timida, Elysia viridis, Ercolania viridis, Placida dendritica, Bosellia mimetica and Thuridilla 

hopei, were investigated at the OOB at Banyuls-sur-Mer, France, in April-September 2010, 

June-September 2011 and August-October 2012, in major part in the frame of the 

ASSEMBLE program. Collections were performed either directly by diving or indirectly from 

collected predefined algae species in the laboratory, in part kindly provided by the divers of 

the laboratory. Single individuals of E. viridis and Er. viridis were additionally collected from 

the special small habitat of a tidal pool in the rocks close to the OOB in April/May 2010 for a 
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comparative analysis. The individuals of the different species and habitats which were 

included in the various analyses during the several research stays are displayed in the results 

in chapter 3.4, respectively, and the inclusion criteria are described in the method section of 

the publication manuscript draft in chapter 3.3 and below in the data analyses section. 

Collected algae (mainly Codium fragile/vermilara, Flabellia petiolata and Halimeda tuna) 

were separated according to algae species and collection event in flat basins in the laboratory, 

where they were thoroughly examined for the presence of sea slugs. As C. fragile and 

C. vermilara can potentially be growing together and are difficult to distinguish (Bergbauer 

and Humberg 1999, Hofrichter 2003), they are considered together in the analyses. Similar as 

in investigations in chapter 3.3, the sea slugs were kept in near-natural conditions in the 

laboratory, in basins of about 160 cm x 60 cm with running seawater from the laboratory 

circulation system which draws water from the nearby sea in shallow depths (corresponding 

sea temperature in 5 m depths, kindly provided by the Réserve Naturelle Cerbère-Banyuls: 

2010: April: 12-16 °C, May: 14-18 °C, June: 16-20 °C, July: 17-24 °C, August: 18-23 °C, 

September: 18-22 °C; 2011: June: 18-21 °C, July: 18-22 °C, August: 19-24 °C, September: 

21-23 °C; 2012: August: 17-25 °C, September: 17-23 °C, October: 17-20 °C), or individually 

in petri dishes with regular water exchange from the laboratory system with highest measured 

water temperature in petri dishes reaching up to a maximum of 26 °C (measured 28th August 

2012). Likewise, the sea slugs were exposed to natural (but not direct sun-) light through a 

window (orientated to the west) with light intensities between 4-5 μmol quanta m-2 s-1 up to 

around 123 μmol quanta m-2 s-1 during the day (highest values measured end of August 2012 

in patches of sunlight falling in with distance to the sea slugs up to 345 μmol quanta m-2 s-1). 

The investigations in chapter 3.4.1 included also 47 individuals of Elysia crispata mangrove 

type after Krug et al. (Krug, Vendetti et al. 2016) which were collected in February 2012 at 

the MML, field station Summerland Key, Florida, USA, directly under a dock in depths of 

about 0.40-2 m in calm water on shady sandy/muddy ground with several algae, including the 

genera Halimeda, Caulerpa, and Penicillus. These individuals were kept in tanks (40.5 x 92.5 

inches) or individually in smaller basins or petri dishes in the outdoor laboratory facilities at 

the MML, under a roof of a transparent black net to reproduce a slight shady effect imitating 

natural sunlight transmission in the sea, and an additional material upon the roof to protect 

from the strong midday solar irradiation, and with supply of running seawater through the 

laboratory circulation system from the nearby canal in which temperatures measured during 

observations in the sea ranged around 23-24 °C in March and April 2012. Light conditions 

measured in proximity to the sea slugs ranged overall between 4-6 μmol quanta m-2 s-1 in very 
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shady points up to around 110 μmol quanta m-2 s-1 in light patches (highest values measured 

above the tanks in light patches ranged to 575 μmol quanta m-2 s-1). 

 

 

2.2.2 Feeding experiments, PAM-measurements and TEM-investigations 

 

Of 47 Elysia crispata mangrove type individuals collected at the MML, Florida, seven 

individuals were measured as representatives for the first curve of starvation after being 

collected until values of photosynthetic yield started to drop down. The further 40 individuals 

were then included into the continuing measurements until all photosynthetic yield values 

approached zero, respectively, to ensure that approximately all intact embedded chloroplasts 

had been digested or degraded before starting to feed the individuals with the tested algae in 

feeding experiments, thus measured photosynthetic activity would stem from newly 

incorporated chloroplasts of the test algae. For the feeding experiment with E. crispata 

mangrove type, fresh algae of the abundant species Caulerpa verticillata, Penicillus capitatus, 

Penicillus lamourouxii, Halimeda incrassata and Halimeda monile from the environment of 

the slugs were collected every few days from the same collection site where the slugs had 

been collected, and provided to five starved slug individuals, respectively. For P. capitatus, an 

additional individual was fed as some individuals showed rising of photosynthetic yield and 

fluorescence values while others did not. The individuals were provided with regularly 

renewed algae of the respective tested species during the experimental feeding period. If they 

were in good condition then with raised photosynthetic yield and fluorescence values, algae 

supply was stopped and PAM-measurements were continued during a second starving period. 

Feeding trials in the Mediterranean species were performed in an analogous way, with a 

preceding phase without food supply until photosynthetic yields fell to approach zero, 

indicating depletion of incorporated chloroplasts, then renewed feeding with chosen algae 

species collected in the natural environment of the individuals and observation of 

photosynthetic performances of newly incorporated chloroplasts. 

Concerning starving phases in the examined species in general, PAM fluorescence and yield 

values decreased during the course of starving periods, thus the sensitivity of the PAM was 

accordingly adapted by adjusting the parameter ‘outgain’ from level 2 (default) to higher 

levels, up to level 8. Despite of sensitivity adaptation, in single cases false high yield values 

can potentially be displayed in combination with very low fluorescence values when 
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fluorescence values are falling to approach zero, which was in single cases respectively left 

out or replaced by zero for further analysis.  

Like in other PAM-investigations in this thesis, PAM-measurements were performed in series 

of 1-3 measurements with individuals being dark-adapted for 10 minutes before each 

measurement and with the fibre optic held above the individual with a distance of 0,5-1 cm in 

the central region of the body part with the parapodia or other body appendixes, depending on 

the examined species. 

The TEM-investigations presented in the further results section 3.4.2 were carried out along 

with the other investigations at the OOB in the frame of the ASSEMBLE program in 

collaboration with the technical assistant Marie-Line Escande with methods correspondingly 

as published in Schmitt et al. (Schmitt, Händeler et al. 2014) (chapter 3.2). 

 

 

2.2.3 Data analysis 

 

Data analyses presented in chapter 3.4 were performed along with the analyses described in 

chapter 3.3, with Excel and with data presentation mostly in the form of mean, standard 

deviation and range. Corresponding with chapter 3.3, the analyses of the PAM-measurements 

included 1-3 consecutive measurements per individual and measurement day, and the 

parameter ‘days’ was partly adapted, e. g. to merge different measurement series together. 

Also similar as in chapter 3.3, for analyses of long-term PAM-series, single individuals, that 

were separated from the collection population and fixed for separate transmission electron 

microscopy investigations after only one PAM-measurement, were excluded. As described 

also in chapter 3.3, other single individuals which were additionally included in other 

investigations but at a later time point when photosynthetic yield values had already fallen 

were included in the analyses. Also corresponding with chapter 3.3, individuals were 

excluded in rare cases from the analyses, as they were displaying already yield values 

approaching 0 or very pale color (not green anymore) right from the beginning after collection 

or if measured too shortly for inclusion into long-term analyses for other reasons. 

Concerning data selection for special analyses, for E. viridis, a population collected from its 

known food algae C. fragile (Evertsen and Johnsen 2009) – here considered together with 

C. vermilara as explained above – was chosen for the long-term retention analysis displayed 

in chapter 3.3 and individuals collected from other substrates were analyzed comparatively in 

separate analyses as described in the further results section. 
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3 Results 
 

3.1 Publication: Behavioral adaptations in relation to long-term retention of 

endosymbiotic chloroplasts in the sea slug Elysia timida (Opisthobranchia, 

Sacoglossa) 

 
This chapter provides a publication (Schmitt and Wägele 2011) which has been published as: 

Valérie Schmitt & Heike Wägele (2011). "Behavioral adaptations in relation to long-term 

retention of endosymbiotic chloroplasts in the sea slug Elysia timida (Opisthobranchia, 

Sacoglossa)." Thalassas 27(2): 225–238.  

 

Introductive and summarizing information on the publication: The publication presents 

behavioral and photobiological investigations comparing the two sacoglossan species Elysia 

timida with long-term retention and Thuridilla hopei with short-term retention of chloroplasts. 

There had been few first reports on specialized photobehavior in sacoglossan sea slugs with 

assumptions of possible connections between behavior and retention of chloroplasts (as 

described already in the general introduction of this thesis). Thus, the present investigations 

aimed at analyzing these two sacoglossan species in more detail with special regard to 

photobehavior and taking the character of long- or short-term retention of chloroplasts into 

account. One major finding was that both sacoglossan species showed phototactic behavior, 

with an overall more prominent phototactic behavior in E. timida than in T. hopei. Also, 

phototactic behavior could be observed in juvenile E. timida before the first incorporation of 

chloroplasts, indicating phototaxis as a more basic evolution, not a direct influence of 

chloroplasts. Moreover, a formerly described specialized photobehavior with light-adapted 

opening and closing of the parapodial lobes could be confirmed in E. timida – in contrast to 

T. hopei. Furthermore, the efficiency of this behavior could be demonstrated with a significant 

relation between parapodia positioning and fluorescence of incorporated chloroplasts, 

measured with a Pulse Amplitude Modulated Fluorometer. In summary, this publication 

indicates specialized behavioral adaptations in relation to long-term kleptoplasty in E. timida. 

The project was mainly performed at the Observatoire Océanologique Banyuls-sur-Mer, 

France, supported by the European Community with an ASSEMBLE grant agreement no. 

227799 to Valérie Schmitt and partly by funding of the German Science Foundation 

(Wa618/12) to Heike Wägele.  
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BEHAVIORAL ADAPTATIONS IN RELATION TO LONG-TERM 
RETENTION OF ENDOSYMBIOTIC CHLOROPLASTS

IN THE SEA SLUG Elysia timida
(OPISTHOBRANCHIA, SACOGLOSSA)

ABSTRACT

A comparative study was performed to analyze 
differences in evolutionary adaptations in two sea 
slug species, Elysia timida with long-term retention of 
endosymbiotic chloroplasts and Thuridilla hopei with 
short-term retention of endosymbiotic chloroplasts. 
Both sacoglossan species stem from the same habitat 
and show similar body sizes and structures with 
parapodial lobes whose position can be actively 
varied by the slugs. Ethological analyses were carried 
out concerning the positioning of parapodia and 
other photobehavioral parameters like phototaxis. In 
parallel, photosynthetic activity was measured with 
a Pulse Amplitude Modulated Fluorometer (PAM). 
In total, 252 E. timida individuals and 63 T. hopei 
individuals were included in the analysis. Slugs 
were collected diving in shallow depths up to 5 m in 
Banyuls sur mer, France, and kept in the laboratory 

in basins with running seawater and natural light 
through a glass window. Behavioral observations 
and PAM-measurements were performed in 4 time 
intervals in the course of an observation day in 
daylight and dark-adapted conditions. Phototactic 
behavior was found to be present in both compared 
species, although the phototactic reaction was 
more pronounced in E. timida. Phototaxis was also 
observed in juvenile E. timida before sequestration 
of first Acetabularia-chloroplasts, which indicates 
no direct current influence of the endosymbiotic 
chloroplasts. Other parameters, however, like the 
positioning of the parapodia, were observed to 
be significantly different between the long-term 
and short-term storing species. While an adapted 
changing of the parapodia’s position in reaction to 
light conditions was not observed in T. hopei, the 
typical specialized photobehavior of E. timida with 
active variation of parapodial positions including 
exposure and protection of integrated chloroplasts 
could be confirmed and analyzed in this study. 
Positioning of the parapodia in E. timida showed 
a significant relation to fluorescence values from 
PAM-measurements demonstrating the efficiency of 
exposure and protection of embedded chloroplasts. 
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Adenauerallee 160. 53113 Bonn. Germany 
Tel:  +49 (0)228 9122 241
Fax: +49 (0)228 9122 202 
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The specific photobehavior of E. timida with 
controlled exposure of parapodial lobes represents a 
highly specialized evolutionary adaptation in relation 
to long-term integration of chloroplasts and - state of 
the art - is only recorded for this species. 

INTRODUCTION

Our knowledge on biology and evolution of 
functional kleptoplasty in various sacoglossan 
sea slugs has increased lately to a considerable 
extent (see e.g., Giménez Casalduero and Muniain, 
2008; Händeler et al., 2009; Jesus et al., 2010 and 
literature herein). But when it comes to behavior, 

our knowledge is still limited. Sacoglossans reveal a 
variety of evolutionary adaptations when it comes to 
retain endosymbiotic chloroplasts – especially with 
regard to behavior. First descriptions of specialized 
photobehavior in sea slugs were done by Fraenkel 
(1927) when he examined photomenotaxis in Elysia 
viridis. In a later study comparing five sacoglossan 
species, the focus was laid on the presence or absence 
of endosymbiotic chloroplasts in the sea slugs. Three 
symbiotic species with integrated chloroplasts (Elysia 
tuca, Costasiella lilianae (= Costasiella ocellifera 
after Clark (1984)), and Elysia crispata) and two 
aposymbiotic species (Oxynoe antillarum and 
Berthelinia carribea) were analyzed concerning their 

Figure 1:
a Thuridilla hopei on Dictyota (not a food organism of this species). b Elysia timida on its natural food alga Acetabularia acetabulum. 

c Elysia timida, parapodial opening level 2. d Elysia timida, parapodial opening level 3. e Three juveniles attached to a young Acetabularia: on the 
left two specimens before feeding, on the right one specimen after feeding

24



227

BEHAVIORAL ADAPTATIONS IN RELATION TO LONG-TERM RETENTION OF ENDOSYMBIOTIC CHLOROPLASTS
IN THE SEA SLUG Elysia Timida (OPISTHOBRANCHIA, SACOGLOSSA)

photobehavior (Weaver and Clark, 1981). As one 
result, the symbiotic species oriented towards light 
while the aposymbiotic species avoided light which 
points to a possible relationship between symbiotic 
chloroplasts and phototaxis. 

The chloroplast-hosting sacoglossan Elysia timida 
has a specially notable photobehavior, changing the 
position of its parapodial lobes from a contracted, 
closed posture to a spread, opened leaf-like posture 
(Rahat and Monselise, 1979). As E. timida varies 
the position of the parapodia as a reaction to light 
conditions, a possible nearby conclusion is that this 
photobehavior could have evolved in relation to the 
chloroplast-endosymbiosis. E. timida is a common 
Mediterranean species that lives in a close relationship 
to its food alga Acetabularia acetabulum from which 
it retains its endosymbiotic chloroplasts (Marin and 
Ros, 1992; Marin and Ros, 1993). With an extensive 
duration of approximately three months of retaining 
the endosymbiotic chloroplasts functional during 
starvation, E. timida belongs to the few species with 
the most extended capability of long-term retention 
of chloroplasts (Evertsen et al., 2007; Giménez 
Casalduero and Muniain, 2008; Händeler et al., 2009; 
Wägele et al., 2010). Recent literature defines long-
term retention as lasting functionality of chloroplasts 
of more than a month opposed to short-term retention 
lasting about one week (Händeler et al., 2009). 

As the special photobehavior of E. timida 
should be analyzed in more detail in this study with 
regard to its relation to the long-term integration 
of endosymbiotic chloroplasts, it was compared to 
a similar Mediterranean species with short-term 
retention of chloroplasts. The sacoglossan Thuridilla 
hopei is a species with short-term chloroplast 
endosymbiosis (Marin and Ros, 1989; Händeler et al., 
2009) and was chosen as the most suitable comparative 
species, as both E. timida and T. hopei are common 
Mediterranean species that live sympatrically and 
have about the same body size and structure with 
parapodial lobes that can be actively closed and 
opened by the slugs - the basis for the comparison of 

this behavior. During our studies we analyzed these 
varying positions in relation to irradiance and tested 
both species for the presence of phototaxis.

MATERIAL AND METHODS

In total, 252 Elysia timida and 63 Thuridilla 
hopei (Fig. 1a and b) were collected in the same 
habitat in Banyuls sur mer, France, by diving in 
shallow depths down to about 5 m, in July 2009 
and September 2010. Individuals were kept in the 
laboratory (Observatoire Océanologique, Banyuls 
sur mer, France) in basins of about 160 cm x 60 cm 
with running seawater from the laboratory circulation 
system (21.2 ± 1.0 °C in July 2009 and 19.6 ± 0.9 °C 
in September 2010). It was attempted to provide the 
animals semi-natural conditions with exposure to 
natural (but not direct sun-) light through a window 
(orientated to the west) with a light intensity of up to 
47 and 37 μmol quanta m-2 s-1 (PAR: photosynthetic 
active radiation, highest single values measured 
in July 2009 and September 2010, respectively). 
Free access to an assortment of various algae from 
their natural environment, including the preferred 
food algae Acetabularia acetabulum (E. timida) 
and Cladophora cf. vagabunda (T. hopei) (Marin 
and Ros, 1989) collected from the same collection 
sites as the animals, was provided. For the various 
photobehavioral experiments, algae were removed 
from the basins and running sea water supply was 
stopped in order to exclude any additional influencing 
factors. Clutches laid by E. timida individuals in the 
laboratory were kept in petri dishes with artificial 
sea water and regular water exchange until hatching. 
Until experiments started, the juveniles were kept in 
artificial seawater with no food provided. In this state, 
juveniles are transparent (Fig. 1 e).

First phototaxis study: Elysia timida
The first observations on phototactic behavior 

included two groups of 50 individuals each in two 
separate basins. The two basins were both orientated 
parallel to the window side and for the trial were 
covered each half with black board. As a result, each 
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half of the basins was shaded while the other half 
was illuminated by natural light through the window 
in the same angle. The first trial was started with 
covering the right half of the left basin and the left 
half of the right basin (Fig. 2 a). After 3.5 hours the 
cover was changed to the respective other side of the 
basin and observations were continued for another 3.5 
hours. On the second day, the same procedure was 

performed in the reversed way starting with covering 
the outer sides of the basins first, then changing after 
3.5 hours. Thus, in total four trials were performed 
in two days. This experimental design was chosen 
in order to equalize any influence from different 
angles of light incidence or potential other influences 
from position conditions. The basins were covered at 
11 a.m. at each observation day. Before starting the 

a Day 1

Trial 1 Trial 2

a

Natural light

Window

Cover

Basins

Natural light

Cover

Window

Basins

Starting point of 
individuals 
under the cover

Day 2

Natural light

Window

Trial 3 Trial 4
Natural light

Window

Cover

Basins

Cover

Basins

b
Trial 1 Trial 2

Natural light

Window

Petri-dish

Natural light

Window

Petri-dish

Figure 2:
Schemata of phototaxis experiments. a First and second phototaxis study. 

The first phototaxis study with 100 Elysia timida was started by covering the inner sides of the basins and putting 50 individuals each in the middle 
of the dark covered side of the respective basin (indicated with a grey dot). Cover was changed after 3.5 h to the other side of the basin for the 
second trial. The next day the experiment was repeated with reversed sides. For the second phototaxis experiment with E. timida and Thuridilla 

hopei, the procedure of the first day of the first experiment was performed again in the same way.
b Phototaxis experiment with juvenile E. timida.

20 juvenile E. timida were put into one half of a petri-dish which was covered with black paper leaving only a gap of about 1cm for light incidence of 
natural light through a glass window. The cover was first put on the one side for the first trial, and then changed to the other side for the second trial. 

26



229

BEHAVIORAL ADAPTATIONS IN RELATION TO LONG-TERM RETENTION OF ENDOSYMBIOTIC CHLOROPLASTS
IN THE SEA SLUG Elysia Timida (OPISTHOBRANCHIA, SACOGLOSSA)

experiment, the 50 individuals were placed each in 
the middle of the shaded half of the basin. Starting 
with 30 minutes after the basins were covered, 
individuals that had crawled into the illuminated side 
were counted. The census was repeated every 30 
minutes for 3.5 hours for each trial – in total 7 counts. 

Second phototaxis study: Elysia timida – Thuridilla 
hopei

The same trial was performed another day to 
compare the phototactic behavior in E. timida and 
T. hopei. For this, 77 E. timida and 48 T. hopei were
allocated into a group of 40 E. timida and 15 T. hopei
in one basin and a group of 37 E. timida and 33 T. 
hopei in the other basin. The basins were covered
with black board in the same way as in the first
phototaxis trial and the trial was also started at 11 a.m. 
Again individuals were placed in the middle of the
shaded half of the basin. Observation intervals were
shortened to 15 minutes and the cover was changed to
the other side already after 90 minutes in adaptation
to the results of the first phototaxis trial, which had
shown that the examination of the phototactic reaction 
is possible in a short observation period.

Third phototaxis study: juvenile Elysia timida
Six days after hatching of veliger larvae had 

started in the clutch, 20 juveniles which had turned 
into the crawling juvenile state were put into a small 
petri-dish and observed through a stereomicroscope. 
The petri-dish was covered on the sides and from 
upside with black paper so that only a small gap of 
approximately 1 cm was left open to natural light 
through a glass window (Fig. 2 b). In correspondence 
with the former phototaxis studies, the juveniles 
were put under the cover on the dark side and after 
30 minutes it was counted how many individuals had 
moved to the light-exposed area. The cover was then 
changed to the other side without moving the petri-
dish to repeat the trial in the reverse way. Again, the 
number of individuals which had moved into the light 
after 30 minutes was evaluated.   

Studies on specialized photobehavior
Two trials were performed to analyze the 

correlation of the parapodial opening and the ground 
fluorescence: the first contained 25 adult specimens of 
E. timida together with 15 adult specimens of T. hopei,
the second trial was performed with 50 individuals
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Phototaxis in Elysia timida.
Two 160 x 60 cm basins were each covered half with black board and 50 Elysia timida individuals were placed under the cover on the dark side of 
each basin. Every 30 min. until 210 min. locations of specimens were recorded (trial 1). Then the cover was put to the other half of the basin and 

location recorded until after 210 min. (trial 2). Trial 3 and 4 were performed in the same way.
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of E. timida by measuring with a higher sensitivity 
of the PAM (see below). For the trials, individuals 
were kept in the basins separated individually in 
conform containers made out of transparent plastic 
bottles. Wholes were pierced equally into three rims 
of each bottle in distances of about 1 cm, permitting 
exchange of water from the running seawater (mean 
temperature during the hours of observation 21.5 ± 
0.4 °C in July 2009 and 19.8 ± 0.1 °C in September 
2010). Each container was stabilized with a stone, 
which also provided an opportunity for the slugs 
to hide underneath. Behavioral observations were 
performed along with PAM-measurements 4 times 
during an observation day during the time spans 9 a.m. 
– 12, 12 – 3 p.m., 3 p.m. – 6 p.m. and 6 p.m. – 9 p.m..
Opening level of the parapodial lobes was defined in
the following 6 levels and documented in correlation of
light intensity (measured in μmol quanta m-2 s-1):

0 – parapodia completely closed, the inside of 
the parapodia is totally covered, slug may be 
contracted

1 – parapodia are mainly closed with rims of both 
parapodia coming together over the body for the 
most part, but opened only a small part so that a 
little area of the dorsal body can be seen (Fig. 1a)

2 – parapodia are mainly opened, but still the rims of 
the opposing parapodia touch at least at one, often 
at two areas, the usual position while crawling 
(Fig. 1c)

3 – parapodia are opened, the rims of the opposing 
parapodia do not touch, but still the angle of the 
parapodia is more upward than sideward (<45°), 
hence the insides of the parapodia are only partly 
exposed (Fig. 1d)

4 – parapodia are fully opened, the angle of the 
parapodia is more sideward than upward (>45°), 
the rims of the parapodia are still either a little 
upward or undulated (in contrast to 5)

5 – parapodia are fully opened and absolutely 
outstretched and flat, angle is totally sideward 
(90°), the rims of the parapodia are smooth 
and fully expanded, sometimes even pointing 
downwards (>90°)

In parallel, fluorescence was measured with the 
help of a PAM to examine the relation between 
opening level of parapodia and efficiency of exposure 
of the chloroplasts. 

PAM-measurements
The maximum quantum yield of fluorescence 

for Photosytem II and ground fluorescence was 
measured with a Pulse Amplitude Modulated 
Fluorometer (Diving PAM, WALZ, Germany) during 
the experiments for the observation of specialized 
photobehavior. Measurements were performed 4 
times per observation day (during the 4 time spans 
9 a.m. – 12, 12 – 3 p.m., 3 p.m. – 6 p.m. and 6 
p.m – 9 p.m.). Animals were not dark acclimated
before measurements in order to obtain the actual
fluorescence with regard to actual light intensity
and parapodia positions. The maximum quantum
yield of fluorescence for PSII in ambient light can
be defined as (Fm’ – F0’)/Fm’ (Wägele and Johnsen,
2001; Jesus et al., 2010) and shows the photosynthetic
activity in the actual light regime as a relative value.
During measurement, the maximum fluorescence
(Fm) is induced by a saturation light pulse triggered
by the PAM. The ground fluorescence (F0) measured
directly before the saturation pulse reflects the actual
fluorescence under the given light regime. Both
values depend on quality and quantity of chloroplasts.
But it has to be kept in mind that accurate estimations
of fluorescence values may be difficult to obtain
and are influenced by other factors (see Wägele and
Johnson, 2001). Only two measurements after 6 p.m.
in the second study were performed dark-acclimated
for comparison.

The fibre optic was held above the animal with a 
distance of 1 cm in the region of the body part with the 
parapodia. Since the size of the measured animals was 
around 10 mm and the head has not to be included in 
the measurements, the sensor with a cross section of 
5 mm covered the body area with the parapodia well.

The second study on the relation of parapodial 
opening was performed with increased sensitivity 
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of the PAM by putting the parameters ‘outgain’ and 
‘measure-int’ from level 2 (default) to level 8 during 
the whole study.  

Ambient light conditions were measured with the 
light sensor of the PAM.

Statistical analysis
Statistical analysis was performed using Excel 

and SPSS.

RESULTS

Phototaxis
The first four observational trials to investigate 

phototaxis in 100 E. timida individuals revealed 
a very distinct and fast phototactic reaction for E. 
timida (Fig. 3). In the first census, 30 minutes after 
the slugs had been put under the cover in the basin, the 
majority of individuals (ranging from 59-75% in the 
four trials) had already moved from the dark covered 
side of the basin into the light.

The slugs then stayed in the light-exposed areas 
while the remaining individuals from the dark 
followed subsequently. When the cover was changed 
to the other side of the basin, the same fast movement 
into the light was observed again. Repeating the trial 
with reversed sides in trial 3 and 4, the reaction was 
identical. After 3.5 hours of observation in each of the 
four trials, nearly all of the individuals (ranging from 
91-95% in the four trials) were positioned in the light-
exposed area of the basin. Only a small percentage did 
not enter the light side or moved back under the cover.
Those individuals were found to be in the border area
directly under the rim of the cover where a small
amount of light was falling in.

As in this first phototaxis study it became obvious 
that the phototactic reaction is performed fast and 
can be examined in a short observation period, the 
time spans of the second phototaxis study were 
adapted and shortened to observation intervals of 15 
minutes and an overall duration of 90 minutes per 
trial. In this second phototaxis study with the aim 

to compare phototactic reactions in E. timida and T. 
hopei, phototactic behavior was also seen in T. hopei 
although it was obviously more pronounced in E. 
timida (Fig. 4 a and b). 

While after 30 minutes the phototactic reaction 
of E. timida was similar as in the first phototaxis 
study (mean value of 63% in the two trials compared 
to 68% in the four trials of the first study), it was 
slightly lower in T. hopei with 50% of individuals 
counted on the light-exposed side. After 90 minutes, 
E. timida revealed again a comparable result to that
in the first study with 81% of the individuals located
on average in the light area compared to 86% in the
first four trials. In T. hopei, however, the phototactic
reaction was clearly less pronounced with only 59%
of individuals positioned on the light side. Similar as
in the first study with exclusively E. timida, also in
this experiment remaining individuals of E. timida
and T. hopei were found to be in the partly illuminated
border area directly under the rim of the cover. Thus
T. hopei showed a stronger tendency to prefer this
border area with only a small amount of light falling
in while E. timida showed a stronger tendency to
prefer the area which was fully illuminated with
moderate natural light.

Juvenile E. timida, which had reached a crawling 
state, but had no possibility yet to feed on Acetabularia 
acetabulum, also revealed a distinct phototactic 
behavior. In both trials with changing the cover from 
one side to the other like in the studies before, 90% 
and 95% (respectively) of the 20 juveniles had moved 
into light after 30 minutes which reflects a very fast 
and distinct phototactic reaction.

Specialized photobehavior

The individuals of E. timida varied their 
parapodial positions from a nearly closed condition 
to fully spread leaf-like positions ranging from 
parapodial opening level 1-5 (Fig. 5 a and b). A 
complete closure (level 0) was not observed during 
the trials, but during night and extreme light exposure 
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(not figured here). T. hopei, however, did not show 
a higher parapodial opening level than 1 (Fig. 1a) 
during the observations irrespective of irradiance 
(Fig. 5 a). In the majority of cases (112 out of 120 
observational cases), the parapodia were closed (level 
0). To examine the ability to open the parapodia, T. 
hopei was also observed in dark conditions, where the 
slugs sometimes showed an opening level of 3 to 4. 
Additionally, opening was observed as a reaction to a 
tactile stimulus by carefully touching the slug’s body.

E. timida revealed a tendency of broader exposure
of the chloroplasts (parapodia opening levels 3-5) 
with higher light irradiances, but in the frame of the 
moderate lux values of the natural light spectrum 
(and in accordance the reduced photosynthetic active 
radiation PAR) through a window in the laboratory 
and the short momentous recordings of behavior, a 
clear significant correlation between current light 
intensity measurements and parapodial position in E. 
timida could not be inferred. 
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Figure 4:
Phototactic reaction in Elysia timida and Thuridilla hopei. 

The experiments were performed with 77 Elysia timida and 48 Thuridilla hopei in two basins. a First trial with cover on the inner side. b Change of 
cover to the outer side (after 90 min). Observation intervals were shortened to 15 minutes and duration of one series was limited to 90 minutes. 
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The momentary fluorescence values in the PAM-
measurements (F0’), however, increased in strong 
correspondence with increasing parapodial opening 
level of E. timida individuals which constituted a 
significant correlation (p<0.01 in both of the studies, 
Spearman rank-order correlation test) (Fig. 6a and b). 
While with a low parapodial opening level of 1, the 
momentary fluorescence measured in E. timida was 
similar to that in T. hopei, the fluorescence values 
rose with every higher level of parapodial opening 
in E. timida, reflecting the higher exposure of the 
imbedded chloroplasts. In contrast, corresponding 
yield values, which represent relative values, stayed 
constant irrespective of parapodia position (Fig. 
7a and b). This can probably be explained by the 
increasing measurable maximum fluorescence (Fm) 
when parapodia show a higher level of opening. No 
remarkable variances in the ground fluorescence were 
observed in the measured T. hopei individuals (Fig. 6a) 
and yield values were lower than in E. timida (Fig. 7a). 

DISCUSSION

In our analyses of phototaxis we observed 
phototactic behavior in E. timida with long-term 
integration of functional chloroplasts as well as in 
T. hopei with short-term chloroplast integration. In
the first phototaxis study with 100 individuals of
E. timida, approximately all individuals had moved
from the dark into the light-exposed area at the end
of each of the four trials. The remaining individuals
were located in the border area under the rim of the
cover where some light was falling in. Thus it can be
concluded that E. timida in general has an automatic
strong and direct phototactic behavior. The second
phototaxis study revealed phototactic behavior also
in T. hopei, but the reaction was less pronounced
than in E. timida. In comparison, individuals of
T. hopei showed a stronger tendency to stay in the
border area under the rim of the cover with only a
slight light incidence or crawl back into this area
while individuals of E. timida showed a stronger
preference of the light-exposed area. With still the
majority of slugs choosing the light-exposed area and

most remaining individuals staying in the border area 
with some light incidence, we consider T. hopei as a 
phototactic species, but with a gradual difference of 
stronger tendency to more shaded areas in contrast 
to E. timida. This corresponds to observations of 
localities in the sea when collecting the animals. 
While E. timida was found mainly on horizontal, 
light-exposed rocks, T. hopei was found mainly on 
vertical, half-shaded rocks, often even in little holes 
in the rock surface. Future experiments with regard to 
phototaxis may help to elucidate the distinct behavior 
concerning sensitivity in various light regimes.

Fraenkel (1927) wrote that he chose Elysia viridis 
for his observations on photomenotaxis out of many 
tested opisthobranch species as E. viridis showed the 
fastest and clearest reaction. Unfortunately he did not 
describe which other species exactly he compared and 
in which way. Weaver and Clark (1981) compared the 
three sacoglossan species Elysia tuca, Elysia crispata 
and Costasiella lilianae (= Costasiella ocellifera 
after Clark (1984)) with endosymbiotic chloroplasts 
and the two sacoglassan species Oxynoe antillarum 
and Berthelinia carribea without endosymbiotic 
chloroplasts concerning their photobehavior. They 
found that the symbiotic species oriented towards 
light while the aposymbiotic species avoided light. 
This indicates a possible correlation of chloroplasts’ 
sequestration and phototaxis. The results of our 
phototaxis analyses correspond in so far that both 
investigated species are symbiotic and both show 
phototactic behavior. As furthermore the phototactic 
behavior was stronger in E. timida with long-term 
chloroplast retention as in T. hopei with short-term 
retention, the question arises, if species with long-
term functional chloroplast retention reveal stronger 
evolutionary adaptations in relation to endosymbiotic 
chloroplasts. The phototactic behavior is more 
probably to be regarded as such an evolutionary 
adaptation, not as an immediate, direct influence 
of the chloroplasts on their host. The finding of our 
study that juvenile E. timida already revealed strong 
phototaxis before the first integration of chloroplasts 
from A. acetabulum supports this assumption.
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Importance of photosynthesis of the endosymbiotic 
chloroplasts as source of nutrients for E. timida was 
shown in experiments, in which E. timida was kept 
in the dark and thus deprived of the photosynthetic 
products of their chloroplast. These individuals had 
lower survival rates and stronger size decreases 
opposed to those kept in light (Giménez Casalduero 
and Muniain, 2008). The need of exposure to light 
for the function of the photosynthetic endosymbionts 
stands in conflict with potential dangers connected 
to exposure, e.g. bigger vulnerability through greater 
exposure to predators, waves and currents and 
especially damage of photosynthetic endosymbionts 
through exposure to irradiances higher than a well 
tolerated maximum (Monselise and Rahat, 1980). The 
predator problem can be reduced by mechanisms like 
producing toxic or irritating secretions and cryptic 

colorations in sacoglossan sea slugs (Cimino and 
Ghiselin, 1998; Marin and Ros, 2004), even if not fully 
eliminated. The potential damage of photosynthetic 
functions through extreme light intensities still 
poses a difficult problem (Jesus et al., 2010). It 
seems evident that E. timida has evolved an efficient 
protection mechanism against this photodamage 
problem with the specialized photobehavior. By 
closing the parapodia, E. timida can react directly 
to threatening light intensities and form a natural 
protection shield for the embedded chloroplast in the 
inside of the parapodia. This mechanism enables E. 
timida to be located permanently in shallow light-
exposed areas and adapt to current light irradiances. 
Opening of the parapodia exposes the chloroplasts 
to higher irradiation, whereas the closure reduces 
light penetration. This specialized photobehavior of 
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Figure 5:
Current irradiance [PAR: μmol quanta m-2 s-1 ] in relation to opening level of parapodial lobes. 

a First trial with 25 Elysia timida and 15 Thuridilla hopei measured 4 times on 2 days respectively in July 2009. b Second trial with 50 E. timida, 
measured 4 times on 2 days, respectively, in September 2010. Due to seasonal effects, light incidence in the laboratory reached higher values in 

the measurements in July than in September. T. hopei was not observed to open the parapodia more than level 1 (only if touched) and therefore not 
included in the second analysis. N displays the number of incidences this parapodial opening level was counted in the behavioral observations. Boxes 
represent interquartile ranges divided at median values. Lines are drawn from the top of the box to the largest value within 1.5 interquartile ranges of 

the top and the same from the bottom. Symbols display outliers outside this range.
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E. timida first described by Rahat and Monselise
(1979) could be confirmed as a general mechanism by
our observations and analyzed in more detail. In our
experiments, we used the emission of the fluorescence 
through the parapodia as a factor to indirectly
measure the exposure of the chloroplasts. The closure
of the parapodia unambiguously shows that less light
penetrates the parapodia and therefore protects the
underlying chloroplasts of higher irradiances. With
increasing parapodial opening level the momentary
ground fluorescence values (F0’)  in individuals
of E. timida increase in strong correspondence,
which constituted a significant correlation in our
measurements. This reflects the efficiency of the
behavior to expose the inlaying chloroplasts to
light by opening the parapodia and thus enhancing
photosynthetic activity in the integrated chloroplasts.

We assume that the maximum fluorescence (Fm’) rises 
also with higher parapodial opening levels, which 
equalizes the higher values of ground fluorescence. 
As the overall effective yield value of photosynthetic 
activity is calculated from (Fm’ – F0’)/Fm’, the effective 
yield therefore stayed relatively constant with the 
varying parapodial opening levels. 

Concerning the specialized photobehavior of E. 
timida with light-adapted changing of the position 
of the parapodial lobes, the examined behavioral 
reactions were very different in the two compared 
species. The light-adapted gradual opening of the 
parapodia as in E. timida is apparently not present in 
T. hopei. Although T. hopei individuals were observed 
to actively open their parapodia in reaction to touch or
sometimes in darkness, they did not open them wider
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Ground fluorescence (F0’) in relation to opening level of parapodial lobes. 

a First trial with 25 Elysia timida and 15 Thuridilla hopei measured 4 times on 2 days respectively. b Second trial with 50 E. timida, measured 4 
times on 2 days, respectively; PAM-settings were increased to high sensitivity (consequently values of momentary fluorescence are higher). N displays 
the number of times this parapodial opening level was counted in the behavioral observations. Boxes represent interquartile ranges divided at median 
values. Lines are drawn from the top of the box to the largest value within 1.5 interquartile ranges of the top and the same from the bottom. Symbols 

display outliers outside this range.
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than level 1 in the moderate natural light conditions 
in the laboratory. The special photobehavior of E. 
timida is also related to the characteristic structure of 
integrating the chloroplasts into the body. In E. timida, 
the embedded chloroplasts can well be seen as a green 
area covering the inside of the parapodia while the 
outsides of the parapodia and the rest of the body are 
full of white pigment with only another small green 
stripe on the lower sides of the slug. In contrast T. hopei, 
which exhibits a similar arrangement of branched 
digestive gland and incorporated chloroplasts, seems 
to prevent photosynthesis of chloroplasts by shading 
them permanently with the help of the parapodia. 
Additionally, the rather dark body coloration may 
enhance this shielding of sunlight. 

E. timida revealed a tendency of increasing
exposure of the chloroplasts with higher light 
irradiances, but in the frame of the moderate lux 

values of natural light through a window in the 
laboratory and the short momentous recordings of 
behavior, a clear significant correlation between 
current light intensity measurements and parapodial 
position in E. timida could not be inferred. The 
parapodial position is always connected to the current 
active state of the individual. Individuals usually 
start to open their parapodia to higher parapodial 
opening levels only while sitting in one position for 
a while. The opening level 2, which was observed 
in the majority of cases in both experiments, is the 
characteristic position while crawling. Thus more 
observations are necessary for detailed results on the 
relation between light conditions and behavior.

It is not explained so far how exactly the specialized 
photobehavior of E. timida functions. In general, the 
slug’s behavior is in discrepancy anyway: When it 
exposes itself to higher irradiances, then chloroplasts 
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BEHAVIORAL ADAPTATIONS IN RELATION TO LONG-TERM RETENTION OF ENDOSYMBIOTIC CHLOROPLASTS
IN THE SEA SLUG Elysia Timida (OPISTHOBRANCHIA, SACOGLOSSA)

suffer from photodamage and can not be repaired, due 
to lack of genomic equipment (Wägele et al., 2010). 
When it hides from sunlight, photosynthesis is reduced 
and contribution to live maintenance is probably 
minor. Jesus et al. (2010) described that E. timida is 
capable of combining the behavioral photo-regulation 
mechanism (opening/closing the parapodia) with a 
functional physiological photo-regulation mechanism 
(xanthophyll cycle) increasing their photo-regulation 
capacity as a mechanism to keep their maximum 
photosynthetic capacity for longer periods. The exact 
mechanisms of the specialized photobehavior in E. 
timida, however, remain unclear. According to our 
observations until now, this specialized photobehavior 
is rather specific for E. timida. It represents a highly 
specialized evolutionary adaptation in relation to 
long-term retention of chloroplasts with efficient 
exposure of endosymbiotic chloroplast for high 
photosynthetic benefit as well as efficient protection 
of endosymbiotic chloroplasts from photo-damage, 
enabling functionality of chloroplast endosymbiosis 
in E. timida for one of the most extended durations 
known so far. 
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3.2 Publication: Chloroplast incorporation and long-term photosynthetic 

performance through the life cycle in laboratory cultures of Elysia timida 

(Sacoglossa, Heterobranchia) 

 
This chapter provides a further publication (Schmitt, Händeler et al. 2014) which has been 

published as: 

Valerie Schmitt, Katharina Händeler, Susanne Gunkel, Marie-Line Escande, Diedrik Menzel, 

Sven B. Gould, William F. Martin and Heike Wägele (2014). "Chloroplast incorporation and 

long-term photosynthetic performance through the life cycle in laboratory cultures of Elysia 

timida (Sacoglossa, Heterobranchia)." Frontiers in Zoology 11(1): 5. 

 

Introductive and summarizing information on the publication: The publication comprises 

a description of the laboratory culture system established with the aim to investigate the 

sacoglossan sea slug Elysia timida as a model organism for long-term retention of functional 

chloroplasts, plus reports of investigations performed within the system. Laboratory culture 

systems can potentially provide advantages for investigating sea slugs, as e. g. specialized 

controlled conditions, known life history of individuals and continuous observations of life 

cycles. The present publication demonstrates that several characteristics of E. timida proved 

to be advantageous for culturing. As one central finding, juvenile E. timida fed directly on 

their adult diet Acetabularia acetabulum – in contrast to the previous notion that they first 

require Cladophora dalmatica. The very first intake of chloroplasts from A. acetabulum by 

juvenile E. timida could be documented by transmission electron microscopy. Consequently, 

one algal food source was sufficient for the culture system. In trials within the system, 

E. timida was able to incorporate chloroplasts from Acetabularia peniculus – though not 

abundant in its natural environment – with comparable retention capabilities to chloroplasts 

from A. acetabulum. Furthermore, indications for potential influences of temperature on 

kleptoplasts’ photosynthetic activity could be found in trials with E. timida within the 

controlled system. Also, retention with chloroplasts of defined origin and for longer periods 

than before could be documented. The project was performed at the Institut für Molekulare 

Evolution, Heinrich-Heine-Universität Düsseldorf, Germany, and at the Observatoire 

Océanologique Banyuls-sur-Mer, France, supported by the European Community with an 

ASSEMBLE grant agreement no. 227799 to Valérie Schmitt and partly by funding of the 

German Science Foundation (Wa618/12) to Heike Wägele and an ERC advanced grant no. 

232975 to William F. Martin.  



Chloroplast incorporation and long-term
photosynthetic performance through the life
cycle in laboratory cultures of Elysia timida
(Sacoglossa, Heterobranchia)
Schmitt et al.

Schmitt et al. Frontiers in Zoology 2014, 11:5
http://www.frontiersinzoology.com/content/11/1/5
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Chloroplast incorporation and long-term
photosynthetic performance through the life
cycle in laboratory cultures of Elysia timida
(Sacoglossa, Heterobranchia)
Valerie Schmitt1,2, Katharina Händeler2, Susanne Gunkel2, Marie-Line Escande3, Diedrik Menzel4, Sven B Gould2,
William F Martin2 and Heike Wägele1*
Abstract

Introduction: The Mediterranean sacoglossan Elysia timida is one of the few sea slug species with the ability to
sequester chloroplasts from its food algae and to subsequently store them in a functional state in the digestive
gland cells for more than a month, during which time the plastids retain high photosynthetic activity (= long-term
retention). Adult E. timida have been described to feed on the unicellular alga Acetabularia acetabulum in their
natural environment. The suitability of E. timida as a laboratory model culture system including its food source was
studied.

Results: In contrast to the literature reporting that juvenile E. timida feed on Cladophora dalmatica first, and later
on switch to the adult diet A. acetabulum, the juveniles in this study fed directly on A. acetabulum (young,
non-calcified stalks); they did not feed on the various Cladophora spp. (collected from the sea or laboratory culture)
offered. This could possibly hint to cryptic speciation with no clear morphological differences, but incipient
ecological differentiation. Transmission electron microscopy of chloroplasts from A. acetabulum after initial intake by
juvenile E. timida showed different states of degradation — in conglomerations or singularly — and fragments of
phagosome membranes, but differed from kleptoplast images of C. dalmatica in juvenile E. timida from the
literature. Based on the finding that the whole life cycle of E. timida can be completed with A. acetabulum as the
sole food source, a laboratory culture system was established. An experiment with PAM-fluorometry showed that
cultured E. timida are also able to store chloroplasts in long-term retention from Acetabularia peniculus, which stems
from the Indo-Pacific and is not abundant in the natural environment of E. timida. Variations between three
experiment groups indicated potential influences of temperature on photosynthetic capacities.

Conclusions: E. timida is a viable laboratory model system to study photosynthesis in incorporated chloroplasts
(kleptoplasts). Capacities of chloroplast incorporation in E. timida were investigated in a closed laboratory culture
system with two different chloroplast donors and over extended time periods about threefold longer than
previously reported.

Keywords: Endosymbiosis, Chloroplasts, Kleptoplasty, Photosynthetic sea slug, Solar powered sea slug, Sacoglossa,
Elysia, Model organism
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Table 1 Reproduction under laboratory conditions

Tank group 1 2

N° individuals 92 87

Captivity period [days] 44 28

N° clutches 218 207

Average of clutches per day 4.95 7.39

Average of clutches per individual 2.37 2.38

Number of clutches in two different groups of adult Elysia timida kept at the
marine laboratory OOB (Observatoire Océanologique Banyuls-sur-mer, France).
The sea slugs were collected freshly from the sea and kept in two 5 1 tanks
with aerated seawater and constant supply of Acetabularia acetabulum
food algae.

Schmitt et al. Frontiers in Zoology 2014, 11:5 Page 2 of 13
http://www.frontiersinzoology.com/content/11/1/5
Introduction
The phenomenon of “long-term retention” of functional
chloroplasts from food algae with ongoing photosynthesis
inside the slugs’ cells over longer time periods than a month
only occurs in very few sea slug species [1-5]. Among
animals, such kleptoplasty is only known for sacoglos-
san sea slugs [4-6]. Thus, these plastid bearing marine
slugs are interesting in their own right, but they can fur-
ther act as model organisms to study a special kind of
‘‘symbiosis’’. With few exceptions that we discuss below,
most sacoglossan studies were performed on individuals
collected from the sea, which implies that the history of
the animals before collection, that is for example their
age, repertoire of algae they have fed on or light condi-
tions they have experienced is unknown. Transmission
electron microscopy (TEM) and, more recently, molecular
analyses provided insights into their food spectrum
[4,7-15], but overall data is still sparse. Rumpho and co-
workers kept the long-term retention species Elysia
chlorotica Gould, 1870 [16] successfully in a laboratory
culture system and characterized the entire life span of ap-
proximately ten months for the first time [3]. In a new study
they report lab-reared cultures of regularly fed individuals
they kept for more than two years, and without observing
‘annual mortality’ that earlier reports had documented [17].
Within their laboratory culture system they found that
juveniles needed to feed on Vaucheria litorea (Agardh,
1823) [18] for at least seven days to establish kleptoplasty
[17]. Curtis and coworkers [12] raised slugs hatched from
egg masses laid in the laboratory by adult sea slugs, which
were originally collected from the sea and fed the offspring
after metamorphosis, but only for a limited period of time
for subsequent experiments.
The laboratory culture of sea slugs permits long-term

studies under controlled conditions und with animals
of known individual history. It allows developmental
investigations and reduces the burden on natural sea
slug populations [3,17]. Laboratory culture can foster
research progress on kleptoplast maintenance in slugs,
which is still poorly understood [1-4,19-27]. Several in-
teresting evolutionary adaptations in relation to long-
term retention of chloroplasts are described for Elysia
timida (Risso, 1818) [28], including positive phototaxis
and closing or opening their parapodial lobes to modulate
light flux [29-32]. Further, a physiological photo-regulation
mechanism in form of the xanthophyll cycle to increase
the maintenance of its photosynthetic capacities was
also postulated [30].
Here we report the captive breeding and culturing

of E. timida, which provides the opportunity to use
this slug as a novel model organism to study feeding
behavior, chloroplast sequestration, long-term kleptoplast
retention and kleptoplast photosynthesis throughout the
slugs’ entire life cycle.
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Results
Elysia timida individuals collected from the sea mated
frequently under laboratory conditions and produced
considerable amounts of egg masses (Table 1). The sta-
bility and orange coloration proved to be advantageous
for culturing, as clutches could be recognized easily in
the aquaria, removed and handled separately in petri
dishes. Within short development periods of up to three
weeks, the offspring developed in their egg capsules and
hatched as free-swimming veliger or as crawling juveniles,
with the larval shell still attached (Table 2). Final meta-
morphosis into shell-less, crawling juveniles took place
within three to four days and without the presence of
any algae. The whole development of freshly laid clutches
into metamorphosed juveniles was completed within
24.8 ± 3.0 days on average in the example group of ob-
served clutches in the marine laboratory Observatoire
Océanologique Banyuls-sur-mer, and 20.0 ± 2.6 days in
the example group of observed clutches later in the labora-
tory culturing system in Düsseldorf (Table 2). More than
100 eggs on average per single clutch were counted in an
example group of 45 clutches in the laboratory culturing
system (Table 3). In an exemplary clutch containing 215
eggs, the entire life cycle (Figure 1) was observed. After 106
days 122 individuals were still alive, translating into a
survival rate of 57%. At this time point two new clutches
were found in the glass bowl, indicating sexual maturity
of the reared offspring.
Juvenile E. timida fed directly on the diet usually

consumed by adult slugs, A. acetabulum, when young
non-calcified stalks collected from the sea in the environ-
ment of adult slug populations were presented. In contrast
to this, none of the hatched juveniles from more than 20
observed clutches fed on any Cladophora spp. sampled at
the collection sites. This was confirmed through laboratory
feeding trials with juveniles, which fed exclusively on
A. acetabulum and not C. dalmatica or any of the other
algae offered (Table 4). Based on these findings a closed
laboratory culture system of E. timida, and which included
simultaneous cultivation of A. acetabulum, was established
(Figure 1). As plastids are not inherited by the offspring



Table 2 Development under laboratory conditions

Marine laboratory
(OOB) n = 37, 16–22°C

Laboratory culturing system
(IME) n = 17, 20–23°C

Metamorphosis state Mean SD Mean SD

Period since clutch deposition until hatching as veliger or juvenile with shell [days] 20.9 2.4 16.7 2.7

Metamorphosis from hatching into shell-less crawling juvenile [days] 3.8 1.0 3.3 1.9

Total development time from clutch deposition to shell-less crawling juvenile [days] 24.8 3.0 20.0 2.6

Time periods from egg laying to development of shell-less crawling juveniles of Elysia timida at the OOB (Oberservatoire Océanologique Banyuls-sur-mer, France)
and IME (Institute for Molecular Evolution, Düsseldorf, Germany). SD standard deviation.
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from the adult slugs, juveniles are transparent after hatch-
ing. Upon initial feeding on A. acetabulum, juveniles take
up the green chloroplasts into the digestive gland reveal-
ing its bilateral structure (Figure 2; Additional file 1). The
uptake of chloroplasts into the digestive glandular cells
was documented by TEM (Figure 3) at two different time
points: (1) juveniles were fixed 2–3 hours after feeding
on A. acetabulum had commenced, and (2) a second
group was preserved two days after permanent supply
of A. acetabulum. In both cases chloroplasts in various
states were found, in single and as aggregates. Juveniles
that had been fixed 2–3 hours after their first chloroplasts
meal and had been continuously feeding before fixation
showed more single chloroplasts that still appeared intact
than in a juvenile fixed two days after the beginning of feed-
ing and constant food supply, in which more pronounced
degradation was observed. Aggregates of chloroplasts sur-
rounded by a phagosome membrane and with first signs of
degradation were also visible in individuals fixed 2–3 hours
after initiation of feeding (Figure 3C). While intact chloro-
plasts appeared to be embedded directly in the cytoplasm,
chloroplasts in the process of degradation showed pro-
nounced gaps between them and their surroundings
and partially fragmented phagosome membranes. These
gaps were more pronounced around aggregates of several
chloroplasts (Figure 3A-F).
In order to examine if adult E. timida feed on other algae

species and incorporate their chloroplasts, we designed
a three-phased experiment (see material and methods
for details). In total, 50 individuals from the laboratory
culture kept on A. acetabulum were first starved until
the photosynthetic yield values of Pulse Amplitude
Modulated fluorometry (PAM)-measurements approached
Fv/Fm values of zero (Phase 1, Figure 4A). Three different
Table 3 Reproductive output under laboratory conditions

N° eggs per clutch

Mean 108.36

SD 52.75

Minimum 19

Maximum 249

Average, minimum and maximum numbers of eggs in spawn of Elysia timida
(counted in an example group of 45 clutches).
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groups with different temperature background were used
(for details see below). Subsequently, a set of different algae
was offered in individual feeding trials lasting one month
(Phase 2). These individuals were then again subjected to
starvation and photosynthetic activity documented through
PAM measurements (Phase 3). For the total group of
50 individuals, yield values remained on a high level of
photosynthetic activity of about 0.8 during more than a
month of starvation, reflecting high levels of intact chloro-
plasts (Figure 4A). PAM values then slowly decreased indi-
cating gradual degradation of more and more chloroplasts,
until the green coloration of the slugs bleached after about
90 days (88,56 ± 22,64 days; range: 42–135 days; n = 46 sur-
viving until bleached and approaching zero). Fv/Fm values
at this point approached zero on average.
The 50 individuals were investigated in three subse-

quent series during phase 1, with the first starting in
winter, the second in spring and the third in summer
(end of January, middle of March 2012 and end of June,
respectively; Figure 4B). The first group of E. timida
individuals (winter group; blue) was exposed to the
overall coldest temperatures and revealed the best photo-
synthetic performance with yield values staying at high
levels the longest. The spring series (Figure 4B; green) had
the same maximum ambient temperature of 21.6°C mea-
sured as the first group, but was exposed on average to a
slightly higher temperature. This group showed a slightly
lower long-term photosynthetic activity than the winter
group. The summer group (Figure 4B; red), which was
exposed to the overall highest temperatures – especially
during the first phase of the experiment – with highest
measured values reaching 24.0°C, showed a faster decrease
of photosynthetic activity (Figure 4B).
In total, 39 of the 50 specimens survived the first star-

vation period (Phase 1) and thus could be included into
phase 2 of the experiment. Of these, nine specimens
were fed on A. acetabulum and nine on A. peniculus, which
led to an increase of photosynthetic yield values measured
(Table 5). During the re-feeding phase (phase 2), individuals
fed with A. acetabulum showed overall only slightly higher
photosynthetic yield values of 0.76 ± 0.11 (range: 0.31-0.86),
than those fed with A. peniculus (0.72 ± 0.09; range:
0.44-0.82). Like juveniles, the adults (15 individuals tested)
did neither feed on C. dalmatica nor on other potential



Figure 1 Life cycle of Elysia timida. The whole life cycle of E. timida can be completed by feeding on the food alga Acetabularia acetabulum
shown in the centre.

Table 4 Algae consumption in juvenile Elysia timida

Consumed
by juveniles

N° positive/total in
two trial series

Acetabularia acetabulum yes 6/25 (n = 10 + 15)

Acetabularia peniculus no 0/25 (n = 10 + 15)

Cladophora dalmatica no 0/25 (n = 10 + 15)

Cladophora rupestris no 0/25 (n = 10 + 15)

Feeding acceptance of juvenile E. timida in the laboratory culture system was
tested. Two series with juveniles from two different clutches (40 individuals
from the first clutch and 60 individuals from the second clutch) were
performed and observed during 3 weeks. Feeding was determined by the
green coloration through uptake of algal sap into the transparent juveniles.
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plastid donors (V. litorea and C. verticillata), the food of
other long-term retention sea slugs species (E. chlorotica
and E. clarki, respectively; Table 5). These individuals did
not show a photosynthetic yield recovery and often quickly
died despite of being supplied with the test algae.
All surviving individuals from phase 2 with a feeding

phase of one month were subjected to a second starvation
period. Out of the nine individuals from each alga, five
(on A. acetabulum) and four (on A. peniculus) com-
pleted this second starvation phase (phase 3) until yield
values again approached zero. Also the course of the



Figure 2 Juvenile Elysia timida after the first uptake of
Acetabularia acetabulum cytosol. When transparent juveniles feed
for the very first time on A. acetabulum, the cytosol of the algae
including the plastids, fill up the digestive gland, thereby revealing
its bilobed structure. The individual was fixed 2–3 hours after the
first A. acetabulum meal, and about 5–6 days after hatching. The
individual is oriented with its head to the left side, the digestive
gland can be seen in the middle with the two balloon-like protrusions
that are filled up and colored greenish by the plastids.
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photosynthetic capacities during the subsequent starvation
phase (phase 3) revealed similar retention characteristics.
Yield values started to decrease slightly sooner in chlo-
roplasts from A. peniculus on average, but individuals
from both algal donor groups revealed high photosyn-
thetic activity throughout approximately one month and
subsequent parallel degradation (Figure 5A).
One individual lived for so long that after a first

starving phase (phase 1) and new feeding of A. peniculus
(phase 2 and subsequent phase 3), it could go through an
additional feeding phase with A. acetabulum (Figure 5B).
As it survived more than 8 months in the experiment —
and had also grown up for some time previously in the la-
boratory system — it had reached an age of approximately
ten months and was thus the individual of E. timida
with the longest recorded life span in the laboratory so
far. Comparing the two curves of photosynthetic activity
during and after re-feeding with each algal plastid
donor, demonstrates that photosynthetic capacities were
very similar for chloroplasts of the two different algae
species within the same individual (Figure 5B). PAM
Yield values during the feeding phase were slightly
higher after the second re-feeding with A. acetabulum
with 0.78 ± 0.04 compared to 0.70 ± 0.07 after the first
re-feeding with A. peniculus. The duration of chloro-
plast retention after the stop of feeding was very simi-
lar for the two different algal donors in this particular
individual: Yield values approached zero after 47 days
and 49 days of starvation after being fed with A. peniculus
and A. acetabulum, respectively.
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Discussion
Elysia timida individuals kept together in basins were
observed to mate in their species-specific mating habit
as previously described [33]. Furthermore, the typical
orange coloration that egg masses of E. timida display
due to extra-capsular yolk [15], as well as the size and
relative stability of egg masses, is advantageous for cultur-
ing. Egg masses can be recognized easily in the basins and
deposited and handled in separate containers, such as glass
bowls. Marín and Ros [15] reported two seasonally varying
development types for E. timida with intracapsular devel-
opment into crawling juveniles during a short winter
period, and lecithotrophic development with a short veliger
phase of 3–4 days between hatching and metamorphosis in
spring and autumn (with June to August missing) from
Mazarrón Bay, Spain. Our observations from the first col-
lections in Banyuls-sur-mer, France, in May/June 2010 also
showed lecithotropic development with hatching of free-
swimming veliger and crawling juveniles with a shell, which
is cast off within 3–4 days. Single juveniles without a shell
were rarely observed.
The development period from clutch deposition until

hatching was longer in Banyuls-sur-mer (21 days) than
in laboratory culture (17 days), which corresponded to
the 16–18 days described by Marín and Ros [15]. This
might have been influenced by temperature differences
during clutch maturation, which was lower in Banyuls-
sur-mer (16–22°C) than in the laboratory (20–23°C),
again corresponding to the 20–24°C from Marín and
Ros [15]. The lecithotrophic or intracapsular development
with a metamorphosis induced without an external (algal)
trigger is advantageous for culturing, since planktotrophic
development imposes many more problems. It complicates
water exchange due to free-swimming larvae and plank-
tonic algae have to be provided, which implies add-
itional effort and further possible difficulties. This was
shown by Trowbridge [34] for E. viridis, and by Rumpho
and coworkers [3,17] for E. chlorotica. In the latter species
metamorphosis depends on the presence of filaments of
the food algae for adult E. chlorotica, the heterokontophyte
Vaucheria litorea.
The number of eggs in individual clutches in the la-

boratory culture system showed a slightly wider range
(minimum of 19 to a maximum of 249) than reported
by Marín & Ros [15] with 34–168 eggs per clutch, but
ranges around a similar level. They counted 140 eggs per
clutch on average, versus 108 in our laboratory system.
The close relationship between adult E. timida and its

food algae A. acetabulum (Linnaeus) Silva, 1952 [35]
was described recently [36]. Consistently, E. timida in
laboratory culture accepted A. acetabulum and in our
hands, juvenile E. timida were not observed to feed on
C. dalmatica and C. rupestris purchased from a commer-
cial supplier or other Cladophora spp. collected from the



Figure 3 Ultrastructural investigations. Chloroplasts in digestive glandular cells in two different juvenile Elysia timida specimens fixed 2–3 h
after the beginning of the very first feeding on Acetabularia acetabulum (A,B,C). Chloroplasts in different states of degradation in juvenile E. timida
fixed 2 days after the beginning of the very first feeding on A. acetabulum and free food supply until fixation (D,E,F). Around some degrading
chloroplasts gaps are evident and some are enclosed in conglomerations. Fragments of phagosome membranes are highlighted by arrows.
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slugs’ natural habitat. Instead, juvenile E. timida fed directly
on A. acetabulum, if young non-calcified stalks of the algae
were provided. By contrast, Marín and Ros reported that
juvenile E. timida fed on C. dalmatica before switching to
A. acetabulum as an adult diet [15]. Giménez-Casalduero
44
et al. [37] reported several cases of variations in E. timida,
differing in morphological, reproductive or other features,
including genetic differentiations. Molecular markers will
be needed to analyze whether feeding differences suggest
incipient speciation in E. timida or not.



Figure 4 Photosynthetic long-term performance of Acetabularia acetabulum plastids in Elysia timida during starvation.
A) Photosynthetic yields of PAM-measurements of all the 50 E. timida individuals included in the experiment. B) Photosynthetic yields of
PAM-measurements, divided into the three different serial trial groups of E. timida individuals [Group1: start January 31st 2012, n = 24,
temperature range: 19(or lower)-22°C; group 2: start March 13th 2012, n = 16, temperature range 20-22°C; group 3: start June 25th 2012,
n = 10, temperature range: 20-24°C]. Regular interval temperature measurements started end of March to avoid overheating due to rising
temperatures in spring and summer.
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As can be seen in the video of juvenile E. timida feeding
on young stalks of A. acetabulum (Additional file 1),
the juveniles are first transparent and only become
green upon incorporation of the first chloroplasts from
A. acetabulum. The chloroplasts integrated into the di-
gestive gland cells differed clearly from those of Cladophora
dalmatica (Kützing 1843) [38] chloroplasts documented in
the literature for juvenile E. timida, which had a distinct
pyrenoid [15]. Only 2–3 hours after the first initiation
of feeding, plastid degradation had already commenced
as shown by our tissue fixed 2-3 hours after feeding
start. This shows that chloroplasts ingested intact, are
Table 5 Algae consumption in adult Elysia timida

Fed on by adult E. timida N° trials n = 39

Acetabularia acetabulum yes Positive: 9

Negative: 2

Unsure:1

Acetabularia peniculus yes Positive: 9

Negative: 2

Unsure:1

Cladophora dalmatica no 3 (all negative)

Vaucheria litorea no 8 (all negative)

Caulerpa verticillata no 4 (all negative)

Feeding acceptance of E. timida for different alga as potential chloroplast
donors was tested. Feeding success was determined by the increase of
photosynthetic yield in PAM-measurements.
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then quickly digested; most likely, as juveniles need a
large and rapid nutrient supply for their growth and
development. Marín and Ros [15] reported that “host
membranes of the phagocytic vacuole” (p. 98) surrounded
chloroplasts from C. dalmatica in juvenile E. timida. A dis-
tinct, complete phagocytic membrane around chloroplasts
from A. acetabulum could not be clearly defined in our
electron micrographs of juvenile E. timida, but fragments
resembling phagosome membranes were recognizable. In
some cases, chloroplasts seem to lie freely in the cytoplasm
with direct contact to the cytosol, in others, however, a dis-
tant gap between chloroplast and cytoplasm was observed,
resembling the gap around chloroplasts of C. dalmatica
in juvenile E. timida displayed by Marín and Ros [15].
Around those gaps, and especially around aggregations
of several chloroplasts, parts of an enclosing phagocytic
membrane can be seen in our electron micrographs, point-
ing to a possible correlation between degradation (diges-
tion) and the presence of a phagocytic membrane – which
however has to be backed up by more investigations.
Evertsen et al. [11] described phagosome membranes

around chloroplasts in the sea slug Placida dendritica
(Alder und Hancock, 1843) [39], which underwent
degradation, while intact chloroplasts in Elysia viridis
(Montagu, 1804) [40] lie directly in the cytoplasm. This
corresponds to the report from Marín and Ros [15] of
phagocytic membranes around the chloroplasts that were
probably about to be degraded in juvenile E. timida, in



Figure 5 Photosynthetic long-term capacities of Acetabularia acetabulum and A. peniculus chloroplasts in Elysia timida during
starvation. A) Long-term retention of chloroplasts from A. acetabulum and A. peniculus in E. timida during the second starvation phase. E. timida
individuals had gone through a first starvation phase until depletion of former chloroplasts, than fed again for a month with either A. acetabulum
or A. peniculus and consecutively measured for long-term retention during a second starvation phase with PAM fluorometry. Measurement days
have been grouped. B) Long-term retention of chloroplasts from A. acetabulum and A. peniculus in an E. timida individual, which completed three
starvation phases. First starvation reflects yields of chloroplasts from A. acetabulum, the second starvation phase those from A. peniculus and the
third starvation phase again those from plastids of A. acetabulum. The curves of the second and third phase include the respective re-feeding
phase of a month and the consecutive starvation phase. Means and standard deviations are calculated for three consecutive measurements per
measurement day.
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contrast to intact chloroplasts without an additional layer
of phagocytic membranes in adult E. timida. Our as-
sumption that chloroplasts of A. acetabulum in juven-
ile E. timida are first digested after their initial intake
is also in accordance with new findings of Pelletrau
et al. [17]: chloroplasts in juvenile E. chlorotica are first
degraded and an initial feeding phase of a week was
needed until degradation decreased and chloroplast in-
corporation was established. Juvenile E. timida in our
laboratory culture system died within 2–3 weeks after
metamorphosis, when no feeding occurred. As kleptoplasts
in photosynthetic sea slugs are not inherited through
the eggs, a new repertoire of kleptoplasts needs to be
established by every generation [3,17].
PAM fluorometry is an established method to measure

photosynthetic capacities of long-term functionality of
incorporated chloroplasts in sea slugs [4-6,11,30,41-43].
The data presented here indicate that E. timida main-
tains chloroplasts from A. acetabulum as well as from
A. peniculus (R. Brown ex Turner) Solms-Laubach 1895
[44] in a functional state under laboratory conditions.
Giménez-Casalduero and coworkers reported that E.
timida fed on other algal species during laboratory trials,
but unfortunately they did not specify on which [37].
Measurements of photosynthetic activity during the first

phase of laboratory culture correspond well to earlier data
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from E. timida specimens that were measured for three
weeks after collection from the natural habitat [4]. How-
ever, our data indicate better long-term capacities when
compared to other published PAM-data of E. timida
[5,30]. Jesus and coworkers [30] showed data for complete
starvation phases until approaching Fv/Fm values of zero
for E. timida from Mar Menor and Mazarrón (Spain), but
these individuals approached Fv/Fm values of zero after
about 40 days of starvation in contrast to the roughly 90
days on average in our experiments. They kept the slugs
under lower light conditions of 40 μmol quanta m-2 s-1 in
10 hours light per day in contrast to our 86 μmol quanta
m-2 s-1 light for 12 hours a day in the experimental setting.
The three serial trial groups showed differences in

photosynthetic capacities indicating a potential influence
of the different temperature conditions the individuals
were exposed to, and which reflected seasonal influences.
The instantaneous temperature optimum for carbon fix-
ation in E. timida from Mar Menor, Spain, is described to
be 25°C [45]. However, differences in the temperature
optimum can be attributed to geographic variation. Clark
et al. [46] also reported a temperature optimum of 25°C
for carbon fixation in the chloroplasts of the sea slug
Costasiella ocellifera (Simroth, 1895) [47]. This species
is exposed to higher temperatures in its natural habitat
in Florida than E. timida from the coldest part of the
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Mediterranean, namely Southern France. In contrast,
Stirts and Clark stated an optimum of 15°C for max-
imum photosynthesis-based carbon fixation for Elysia
tuca (Marcus and Marcus, 1967) [48], another chloroplast-
equipped sea slug from Florida [49]. Further experiments
focusing on the effect of temperature differences on
long-term photosynthetic activity are however required
to better understand the influence.
We were able to compare photosynthetic capacities of

chloroplasts from two different algal donors in one and
the same sea slug species. Long-term retention capacities
with chloroplasts from both algal donors were very simi-
lar, showing that E. timida is able to store chloroplasts
from an algal species that is – to our knowledge – not
present in its natural habitat. How kleptoplasts stay
photosynthetically active and are maintained in sea slugs
over prolonged periods of time is still unresolved and re-
mains the most intriguing aspect of the slug-kleptoplast
association. Characteristics of the plastids alone cannot
be the determining factor, as chloroplasts of the same food
alga show different fates in different sea slug species. Such
is the case for the alga Codium fragile (Hariot, 1889) [50],
which serves as a food source for Placida dendritica that
digests directly, as well as for Elysia viridis with short- to
long-term retention of the kleptoplasts [11]. Christa et al.
[7] showed that in the long-term retention sea slug
Plakobranchus ocellatus van Hasselt, 1824 [51] only
chloroplasts from one algal species (out of the originally 6
present) were likely contributing to photosynthesis after
64 days of starvation. This indicates differences in plastid
characteristics across different algae. Retention of functional
kleptoplasts of both algal donors in our study was shorter
in the phases after renewed feeding than in the first starving
phase after being taken from the culture system with con-
stant feeding, possibly due to the advanced age of these ani-
mals and/or due to exhaustion from a complete depletion
of plastids in the first phase of our experiments.

Conclusions
We have been able to maintain populations of Elysia
timida in continuous culture since June 2010. The finding
that juvenile E. timida fed directly on the adult diet
A. acetabulum is eminent in the light of future analyses,
since only a single food source system has to be provided
during complete life cycles. We also demonstrated for
the first time that E. timida is able to perform long-term
retention in culture with an alternative algal chloroplast
donor. Transmission electron microscopy on juvenile
E. timida showed that chloroplasts from A. acetabulum
are first taken up intact while feeding for the first time,
but degradation processes already commence 2–3 hours
after initial uptake of algal material. This is clear evidence
that juveniles need to feed and digest, before long term
incorporation is possible. Intact chloroplasts appeared
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to reside directly in the cytoplasm, whereas gaps and
membranous fragments, maybe of phagosomal origin,
were observed around single or conglomerations of
chloroplasts in various states of degradation. In conclusion,
Elysia timida proved to be a tractable laboratory culture
model system, which opens up new possibilities to in-
vestigate long-term plastid retention.

Materials and methods
Preliminary investigations for the suitability of the model
organism
Initial investigations were performed at the marine bio-
logical institute Observatoire Océanologique at Banyuls-
sur-mer (OOB), France, from April to June 2010. The first
generation of E. timida individuals (n = 179) for the la-
boratory culture was collected in depths of up to 2 m
in proximity to the OOB, along with different algae from
their natural environment, including A. acetabulum. Slugs
and algae were kept in 5 1 tanks with supply of seawater
from the institutional circulation system of the OOB. The
aquaria were regularly checked for freshly laid clutches,
which were carefully removed and transferred into petri
dishes. As soon as veliger larvae had metamorphosed into
crawling juveniles, feeding trials were performed including
young non-calcified stalks of A. acetabularia as well as
Cladophora spp. collected in the direct environment of
the slugs, as C. dalmatica was formerly reported as a
food source for juvenile E. timida [15].

Laboratory culture system
At the Institute for Molecular Evolution (IME), Heinrich-
Heine-University of Düsseldorf, Germany, adult E. timida
individuals were kept in 12 1 tanks in aerated artificial
seawater (37–38 g/l, hw_Marinemix professional, hw-
Wiegandt GmbH) in a climate chamber at 14–16°C.
The water was partly renewed once a week, and in the
meantime, evaporating water was replaced with demi-
neralized freshwater from the laboratory system in
order to keep a constant salinity level. Each tank was
equipped with an aquarium pump to have a consistent
water circulation and aeration. The influx area of the
pumps was covered with filter cartridges to prevent
slugs from streaming in and net barriers were installed
to avoid getting slugs close to the pump. To provide
free access to food algae, A. acetabulum was offered in
the tanks in glass bowls covered by nets through which
E. timida individuals could easily enter and exit but
algae were kept in and prevented from floating. A.
acetabulum was renewed when sucked out or looking
old. The slugs were held under a light regime of 12 h
to 12 h light/dark photoperiod in relatively low light
intensities (tanks half-shaded with paper) of about 20–
50 μmol quanta m-2 s-1 (PAR: photosynthetic active
radiation, measured in water above bottom of tanks
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where individuals were located) (neon tubes Osram L
58 W/840 LumiLux cool white). This resembles holding
conditions recently reported by Pelletreau et al. [17] for
their cultivation of E. chlorotica at 12:12 L:D cycle at
40 μmol quanta m-2 s-1 (measured at light-water interface).
As they stated for E. chlorotica – and as is as well accurate
for E. timida – optimal light intensities for maintenance of
specimens have not yet been experimentally verified. The
applied light regime for E. timida in our culture system
ranged around the value of 31.33 μmol quanta m-2 s-1 re-
ported by Giménez-Casalduero and Muniain [52] for rapid
saturation of the photosynthetic apparatus of E. timida
from the Mar Menor lagoon. In our laboratory conditions,
E. timida individuals appeared to be in good condition and
did not reveal signs of light stress.
Freshly laid clutches were carefully removed and

transferred into glass bowls and kept either in the cli-
mate chamber (14–16°C) or at room temperature
(~19-24°C according to season) and under a light intensity
of about 20–30 μmol quanta m-2 s-1 (PAR, measured above
the containers). The artificial seawater for the cultivation of
the clutches was filtered with a sterile-filtering-apparatus
(142 mm Edelstahl-Druckfiltrationsgerät, Sartorius Stedim
Biotech GmbH, Germany). The water in the glass bowls
was regularly exchanged in part until veliger larvae or
juveniles hatched. When hatchlings had reached a
crawling juvenile state, they were provided with young
stalks of A. acetabulum and kept in the small containers
until they had grown to an adult state and could be
placed into a 12 1 tank.
The algae were also cultivated in the climate chamber

(14–16°C) or in the laboratory room at room temperature
(~19-24°C according to season) and additionally in climate
boxes at 21°C, all with 12 h to 12 h day/light regime (neon
cultivation tubes, approximately 130–200 quanta m-2 s-1).
For the medium of the algae, the artificial seawater
(37–38 g/l, Tropic Marine Pro Reef, Zoo Zajac, Duisburg,
or equivalent) was first filtered with a sterile-filtering-
apparatus (142 mm Edelstahl-Druckfiltrationsgerät,
Sartorius Stedim Biotech GmbH, Germany) and than
enriched with f/2 medium (Guillards F/2 Marine
Water, Sigma, 20 ml/l). Stock cultures of A. acetabulum
(Mediterranean) and A. peniculus (Indopacific) were main-
tained according to Berger & Kaever [53].

Feeding experiments with juvenile E. timida
In preliminary feeding experiments with juvenile E. timida
at the marine laboratory OOB, the selected algae were
added to petri dishes with clutches from which juveniles
were hatching and the direct reaction of the juveniles was
observed through a stereomicroscope (n ≥ 20 clutches).
A. acetabulum and different Cladophora spp. that had
been freshly collected from the sea in the surrounding
area of E. timida populations were tested.
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The feeding experiment with juvenile E. timida in the
laboratory culture at the IME was performed in two
series with offspring of two different clutches from the
culture. Juveniles that had completed metamorphosis into
the shell-less crawling juvenile form were carefully pipet-
ted with a glass pipette (sterilized in boiling water) into
four separate small glass bowls – 10 individuals per bowl
from the first trial clutch, 15 individuals per bowl from the
second trial clutch, respectively. In each of the four glass
bowls one test algal species was added: A. acetabulum,
A. peniculus, C. dalmatica or C. rupestris. The immediate
reaction of the juveniles to the offered algae was observed
through a stereomicroscope for more than 30 minutes per
bowl. At this transparent state of the juveniles, feeding
can clearly be determined by the intake of the green algal
sap. Potential feeding progress was subsequently con-
trolled every 2–3 days by recording green-colored versus
transparent individuals for a period of 3 weeks. The feeding
response to the laboratory-cultured A. acetabulum and
A. peniculus was tested, and furthermore to C. dalmatica,
which is described as a food source for juvenile E. timida
in the literature [15]. C. rupestris was included as an add-
itional Cladophora-species.

Long-term retention PAM fluorometry experiment
The experiment to observe capacities of long-term re-
tention of chloroplasts from different algae in E. timida
was performed in the laboratory culture system at the
Institute for Molecular Evolution, from January 2012 to
October 2012. In total, 50 individuals of E. timida from
the laboratory culture were included (one additional in-
dividual had been excluded directly from the analysis as
it died after only 7 days of observation). The overall 50
individuals were divided into three serial groups, the first
starting January 31th 2012 (n = 24, temperature range:
19(or lower)-22°C), the second starting March 13th 2012
(n = 16, temperature range: 20–22°C) and the third starting
June 25th 2012 (n = 10, temperature range: 19–24°C).
Regular interval temperature measurements started end of
March to avoid overheating due to rising temperatures in
spring and summer.
During the experiment, the slugs were kept individually

in petri dishes under a 12 h to 12 h dark/light regime with
light intensities of 86 μmol quanta m-2 s-1 (PAR, measured
in air above petri dishes) provided by full spectrum lamps
(Androv Medicals, Germany). Photosynthetic activity was
measured as maximum quantum yield of fluorescence
for photosystem II with a Pulse Amplitude Modulated
Fluorometer (Photosynthesis Yield Analyzer Mini PAM,
version 2.0, WALZ, Germany) following the methods after
Wägele and Johnsen [43]. For the measurement, the fibre
optic was held above the slug with a distance of 0,5 – 1 cm
covering the body region with the parapodia well with the
sensor of a cross section of 5 mm. Three consecutive
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measurements with the possibility to acclimate again in be-
tween were taken of each individual. As Fv/Fm values de-
creased considerably during the course of starving periods,
the sensitivity of the Mini-PAM was individually adapted
by putting the parameter ‘outgain’ from level 2 (default) to
higher levels, up to level 8. Ambient light conditions were
measured with a light sensor connected to the Mini-PAM
(US-SQS/L, Walz, Germany).
The experiment was performed in the following 3 phases:
Phase 1: Individuals grown on A. acetabulum were held

separately without any further food supply until yield values
approached 0, assuming that incorporated chloroplasts
were degraded to a non-functional state. Phase 2: Individ-
uals were than allowed to feed on the different newly pro-
vided test algae for a month in order to assure that they
recovered completely from the starving period and could
fully replenish with new chloroplasts to a state of storing.
A. acetabulum and A. peniculus from the culture system
were provided to compare two related species of which
one is not the natural food due to separate geographic
distribution. Cladophora dalmatica, described as a food
source for juvenile E. timida [15], was also comparatively
provided. Furthermore, Vaucheria litorea was offered
as a comparative food alga (V. litorea K-0379, SCCAP
(Scandinavian Culture Collection of Algae and Protozoa)),
as it is described as chloroplast donor of E. chlorotica with
extensive durations of long-term retention of chloroplasts
[3,25-27]. Furthermore, Caulerpa verticillata (collected at
the Mote Laboratory, Florida Keys, USA) was included be-
cause it was observed to be a potential chloroplast donor
for long-term retention in Elysia clarki (unpublished results
VS and HW). Feeding on the various algae was supervised
by measuring photosynthetic activity. Phase 3: After the
feeding phase of one month, the food algae were removed
and the long-term retention photosynthetic performance of
the individuals with the newly incorporated chloroplasts
was surveyed by regular PAM fluorometry measurements.
For the evaluation of PAM fluorometry data, means and
standard deviations were calculated first for the three
consecutive measurements per individual per day and
then grouped for the respective group analyses.

Transmission electron microscopy
For electron microscopic examinations of the very first
incorporation of chloroplasts, juvenile E. timida were
fixed in a mix of 2% glutaraldehyde and 2% paraformalde-
hyde in 0.1 M Cacodylate buffer after observed feeding on
A. acetabulum in two time series: the first after 2–3 hours
since the beginning of feeding and continued feeding until
fixation; the second after 2 days since the beginning of
feeding and continued free access to the food alga. The
samples were post-fixed with 1% OsO4 and dehydrated in
an ethanol series and finally embedded in Epon. Ultrathin
sections were stained with uranyl acetate and lead citrate
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and observed at 80KV in the transmission electron micro-
scope (Hitachi H7500) at the OOB.

Availability of supporting data
The data sets supporting the results of this article are
available by the responsible author (HW).

Additional file

Additional file 1: Video 1. Juvenile Elysia timida feeding.
Metamorphosed into the shell-less juvenile state, young transparent
E. timida feed for the first time – on young stalks of Acetabularia
acetabulum – and turn green through the incorporated chloroplasts.
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3.3 Unpublished results: Kleptoplast photosynthetic activity and 

photobehavior in different sacoglossan sea slugs (Heterobranchia, 

Mollusca) in near-natural and natural settings (manuscript draft) 

 
This chapter presents yet unpublished results in form of a manuscript draft as first author with 

the following major contributions: Valérie Schmitt performed all investigations and analyses 

and drafted the manuscript as first author in the frame of the Ph.D. thesis. Heike Wägele is 

supervisor of the Ph.D. thesis and supported investigations, analyses and manuscript drafting 

and made comments on the manuscript. One part of the investigations was performed at the 

Mote Marine Laboratory, field station Summerland Key, Florida, USA, where Gregor Christa 

participated in a part of the measurements and afterwards with comments on the manuscript. 

A part of the investigations was performed in the frame of a collaboration project under 

additional supervision of William F. Martin at the Institut für Molekulare Evolution, 

Heinrich-Heine-Universität Düsseldorf, Germany. There, Margarete Stracke participated in a 

part of the measurements and is acknowledged for excellent co-work as a technical assistant. 

The major part of investigations was carried out in the frame of the ASSEMBLE program 

(grant agreement no. 227799 to Valérie Schmitt) at the Observatoire Océanologique at 

Banyuls-sur-Mer, France. (For complete acknowledgements, see the general entire 

acknowledgements of this thesis in chapter 6.)   

The manuscript comprises an extract of results of investigations during several years, 

focusing on investigations in natural and near-natural or semi-natural settings. Several further 

selected results connected to these investigations are presented in the further result section in 

chapter 3.4. 
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Abstract 
 
 
Retention of functional chloroplasts from their food algae in sacoglossan sea slugs – which is 

also named kleptoplasty – is still a challenge for research, with many questions unsolved. One  

question concerns differences between sacoglossan species in their capacities of retention of 

functional chloroplasts. This study presents data on the ongoing functioning of incorporated 

chloroplasts within the slug cells, in relation to behavioral and ecological aspects in several 

chloroplast-incorporating sea slugs, including species which are known as the “top-

performers” of long-term functional retention of chloroplasts: Elysia timida, Elysia crispata 

(mangrove type and reef type), Elysia viridis and Plakobranchus ocellatus. For comparison, 

Bosellia mimetica, Thuridilla hopei and Placida dendritica were included. For P. ocellatus, 

we report measurements (PAM, Pulse Amplitude Modulated Fluorometer) of functional 

chloroplast retention for over seven months, the longest time period documented up to now. 

We can confirm extreme differences between the various sea slug species with regard to 

capacities of retention of functional chloroplasts, including variations between the two eco-

morphotypes E. crispata mangrove type and reef type. Capacities of kleptoplast retention in 

E. viridis were shorter than expected from former reports. We conducted an analysis testing a 

former hypothesis that chloroplast-retention implies stronger phototactic behavior in sea 

slugs, in which the non-sacoglossan sea slug species Cratena peregrina and Flabellina affinis 

were additionally included as comparison without incorporation of chloroplasts. As one 

result, some sea slug species without chloroplasts or with rather fast digestion of chloroplasts 

reacted more positively phototactic than some species with long-term kleptoplast retention. 

E. timida and E. crispata mangrove type were investigated underwater with a Diving PAM 

Fluorometer in their natural habitat in France and in Florida, respectively. We found distinct 

differences between the two sea slug species concerning environmental parameters and 

photosynthetic activities. Photosynthetic activities of chloroplasts in both sea slug species and 

in the food algae of E. timida, Acetabularia acetabulum, varied depending on natural light 

conditions in the sea. These represent to our knowledge the first photosynthetic measurements 

of sea slugs in their natural environment published so far. 
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Introduction 

 
Retention of functional chloroplasts, also called ‘kleptoplasty’, is within metazoans only 

known from sacoglossan sea slugs (Wägele and Johnsen 2001, Händeler, Grzymbowski et al. 

2009, Pelletreau, Bhattacharya et al. 2011, Wägele and Martin 2013, Christa, Händeler et al. 

2014). Despite an increase of investigations on this phenomenon, many questions are still 

unsolved – especially with regard to underlying mechanisms as well as differences in the 

ability to maintain functional chloroplasts (Wägele and Martin 2013, Cruz, Cartaxana et al. 

2015, Chan, Vaysberg et al. 2018, Melo Clavijo, Donath et al. 2018). These differences range 

between different sacoglossan species from fast digestion of chloroplasts over retention for 

weeks up to several months or possibly a life span (Evertsen, Burghardt et al. 2007, Händeler, 

Grzymbowski et al. 2009, Pelletreau, Bhattacharya et al. 2011, Wägele, Deusch et al. 2011, 

Wägele and Martin 2013, Christa, Händeler et al. 2015). To examine these differences and 

potential influencing factors, we performed comparative investigations on photosynthetic 

activity, behavior and ecology of species with different capacities of chloroplast retention, 

including most of the few species which are known as “top-performers” of long-term 

functional retention of chloroplasts: Elysia timida, Elysia crispata, Elysia viridis and 

Plakobranchus ocellatus. Of E. crispata, we compared two different types – a mangrove type 

and a reef type, according to the identification by Krug et al. of E. crispata as one species 

with various differentiated morphotypes (Krug, Vendetti et al. 2016). To compare 

photosynthetic activities between the various species, we conducted analyses with a Pulse 

Amplitude Modulated Fluorometer (PAM), an established method to explore photosynthetic 

activity in sea slugs (Wägele and Johnsen 2001, Evertsen, Burghardt et al. 2007, Evertsen and 

Johnsen 2009, Händeler, Grzymbowski et al. 2009, Vieira, Calado et al. 2009, Jesus, Ventura 

et al. 2010).  

In general, intensive investigations of sea slugs have already been carried out in the laboratory 

or even in specialized laboratory cultures with the advantages of controlled conditions 

(Rumpho, Pelletreau et al. 2011, Pelletreau, Worful et al. 2012, Bhattacharya, Pelletreau et al. 

2013, Pelletreau, Weber et al. 2014, Schmitt, Händeler et al. 2014, Laetz and Wägele 2017, 

Chan, Vaysberg et al. 2018). To gain knowledge about conditions of the sea slugs in their 

natural environment and ecological relations, however, investigations on site and under near-

natural conditions are essential. Thus, investigations of real life parameters of photosynthetic 

sea slugs in their natural environment and under near-natural conditions are in a special focus 

in this present study. As one factor, behavioral adaptations of the sea slugs are assumed to 
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have developed and play a potential role for the functionality of chloroplasts, e. g. in the 

species E. timida with a modulation of opening posture of the parapodial lobes as a potential 

regulation mechanism toward light (Rahat and Monselise 1979, Monselise and Rahat 1980, 

Jesus, Ventura et al. 2010, Schmitt and Wägele 2011) or also including more species and 

further photobehavioral parameters, e. g. phototaxis (Weaver and Clark 1981, Schmitt and 

Wägele 2011). A recent study described aspects of photobehavior in E. viridis and Placida 

dendritica, including acclimation to different light regimes (Cartaxana, Morelli et al. 2018). A 

broad overview of several sea slugs species regarding phototaxis is lacking up to now, 

however. To test the assumption that chloroplast-retention possibly implies stronger 

phototactic behavior in sea slugs, we performed a photobehavior trial in parallel to the 

analyses of photosynthetic activity profiles with the same spectrum of sea slug species in 

focus. Additionally, the non-sacoglossan sea slug species Cratena peregrina and Flabellina 

affinis, carnivore nudibranchs feeding on hydrozoans, were included in this experiment as 

comparison without sequestration of chloroplasts. 

Observations concerning the photobiology – especially photobehavior – of E. timida in the 

sea are described by Monselise and Rahat (Monselise and Rahat 1980), but otherwise reports 

on photobiological observations on sacoglossan sea slugs in their natural environment are 

scarce. Consequently, we performed underwater investigations of two sea slug species, 

E. timida and E. crispata (mangrove type), concerning photobiology including ecological and 

behavioral parameters directly in their natural habitats by diving with a Diving PAM 

Fluorometer, and report to our knowledge the first PAM-measurements of sea slugs in their 

natural environment published so far.    

 

 

Methods 
 

Collections and maintenance of sea slugs 

 

Seven sacoglossan species with different capacities of functional chloroplast retention were 

investigated in this study, including the two different types mangrove type and reef type of 

Elysia crispata, after Krug et al. (Krug, Vendetti et al. 2016) and individuals of the species 

complex Plakobranchus ocellatus after Krug et al. (Krug, Vendetti et al. 2013) (Figure 3.3.1). 
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Figure 3.3.1: The sacoglossan sea slug species in the focus of this study (from up to down, left to right): 
Plakobranchus ocellatus (Cebu, Philippines), Elysia crispata mangrove type and Elysia crispata reef type 
(Florida Keys, USA), and Elysia timida, Elysia viridis, Bosellia mimetica, Placida dendritica and Thuridilla 
hopei (Banyuls-sur-mer, France). 
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The two nudibranch species Cratena peregrina and Flabellina affinis without incorporation 

of chloroplasts were additionally included as a comparison in the photobehavior analyses (see 

below). 

The 32 examined individuals of P. ocellatus were provided by an aquarium specialist (Frank 

Richter Meerwasseraquaristik, Chemnitz, Germany) from collections near Cebu, Philippines, 

end of November 2011. Specimens were kept at the Institute for Molecular Evolution (IME), 

Heinrich-Heine-University of Düsseldorf, Germany, in 25 1 tanks in aerated artificial 

seawater under a light regime of 12 h / 12 h light / dark photoperiod in relatively low light 

intensities (tanks half-shaded with paper) of about 20–50 μmol quanta m-2 s-1 (PAR: 

photosynthetic active radiation) (neon tubes Osram L 58 W/840 LumiLux cool white) in a 

climate chamber at temperatures ranging around 14–22 °C in the course of the period of 

several months until June 2012, attempting to keep temperature mostly constant above 20 °C 

with installations of aquarium heaters set at 22 °C, thus attempting to adapt temperature to the 

origin environment, as well as salinity (around 35 g/l). This is approximately similar to 

conditions described by Pelletreau et al. (Pelletreau, Worful et al. 2012) for culturing Elysia 

chlorotica and also those applied for P. ocellatus in other investigations (Christa, Wescott et 

al. 2013) – with our temperature spectrum ranging between the lower and higher temperatures 

applied in these investigations, respectively. For further details on conditions in the laboratory 

system at the IME see Schmitt et al. (Schmitt, Händeler et al. 2014). For phototactic trials and 

PAM-measurements, P. ocellatus individuals were temporarily taken out of the basins and 

transferred into an observatory basin or individually in petri-dishes, respectively, at room 

temperature (range: ~19-22 °C) and replaced back into the holding basins thereafter. 

Elysia timida, Elysia viridis, Placida dendritica, Bosellia mimetica, Thuridilla hopei, Cratena 

peregrina and Flabellina affinis were investigated at the Oberservatoire Océanologique at 

Banyuls-sur-mer (OOB), France, in April-September 2010, June-September 2011 and 

August-October 2012. They were collected either by diving or from collected predefined 

algae species in the laboratory, partly provided by the divers of the laboratory. The numbers 

of individuals included in the analyses are displayed in the results, respectively, and the 

inclusion criteria are described below in the data analyses section. 

The sea slugs were kept – depending on the respective experimental design – either in basins 

of about 160 cm x 60 cm with running seawater from the laboratory circulation system or 

individually in petri dishes with regular water exchange from the laboratory system. The 

system draws water from the nearby sea in shallow depths (corresponding sea temperature in 

5 m depths, kindly provided by the Réserve Naturelle Cerbère-Banyuls: 2010: April: 12-
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16 °C, May: 14-18 °C, June: 16-20 °C, July: 17-24 °C, August: 18-23 °C, September: 18-

22 °C; 2011: June: 18-21 °C, July: 18-22 °C, August: 19-24 °C, September: 21-23 °C; 2012: 

August: 17-25 °C, September: 17-23 °C, October: 17-20 °C). Temperatures measured in 

shallow depths above 5 m during the own underwater investigations in the nearby sea in 

September and October 2012 varied correspondingly between 19-21 °C. In the laboratory, 

water temperature in petri dishes reached up to a maximum of 26 °C (measured 28th August 

2012). Light conditions in the laboratory were near-natural with exposure to natural but not 

direct sunlight through a window (orientated to the west), light intensities ranging between 4-

5 μmol quanta m-2 s-1 up to around 123 μmol quanta m-2 s-1 during the day (highest values 

measured end of August 2012 in patches of sunlight falling in with distance to the sea slugs 

up to 345 μmol quanta m-2 s-1).  

Collected E. crispata (Florida, USA) corresponded in habitat and morphology to two 

morphotypes described by Krug et al. (Krug, Vendetti et al. 2016): 47 individuals of 

E. crispata mangrove type were collected in February 2012 at the Marine Mote Lab (MML), 

field station Summerland Key, Florida, USA, directly under a dock in depths of about 0.40-

2 m in calm water on shady sandy/muddy ground with several algae, including the genera 

Halimeda, Caulerpa, and Penicillus, while 30 individuals of the E. crispata reef type were 

kindly provided by a professional collector, collected from a reef overgrown with fine algae 

offshore Key West in March 2012. All E. crispata individuals were kept in tanks (40.5 x 92.5 

inches) or individually in smaller basins or petri dishes in the tanks of the outdoor laboratory 

facilities at the MML, under a transparent black net reproducing a slight shady effect 

imitating natural sunlight transmission in the sea, and an additional material upon the roof to 

protect from the strong midday solar irradiation. The tanks received running seawater from 

the laboratory circulation system with supply from the nearby canal in which temperatures 

measured during observations in the sea ranged around 23-24 °C in March and April 2012. 

Measured light intensities where the sea slugs were positioned ranged overall between 4-6 

μmol quanta m-2 s-1 in very shady points up to around 110 μmol quanta m-2 s-1 in light patches 

(highest values measured above the tanks in light patches ranged to 575 μmol quanta m-2 s-1). 

 

 

Phototaxis trials 

 

Phototaxis trials were performed with methods after Schmitt and Wägele (Schmitt and 

Wägele 2011), from which also data of E. timida and T. hopei were included for comparison.  
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For each trial, one half of the basin was covered with a black cover to darken this half while 

the other was left uncovered. Individuals were placed in the middle of the darkened side and 

observed for 90 minutes for each trial. The trials were performed two to four times with 

changing the cover from one side to the other and starting with different sides to focus on the 

phototactic effect only and exclude other factors as far as possible under the given 

field/laboratory conditions. The new trials with E. viridis, P. dendritica, B. mimetica, 

C. peregrina and F. affinis were performed in the same laboratory room at the OOB as in 

Schmitt and Wägele (Schmitt and Wägele 2011), with light intensities varying between 11-19 

μmol quanta m-2 s-1. The trials with E. crispata were performed at the MML in one of the 

outdoor tanks as described above with black plastic bag film as cover and with light 

intensities varying between 6-26 μmol quanta m-2 s-1 (reef type) and 10-112 μmol quanta m-2 

s-1 (highest values in single light patches) (mangrove type). The trial with P. ocellatus was 

performed in a plastic tank-box in a laboratory room at the IME under full-spectrum lamps 

(Androv, Germany) under a light intensity of 27 μmol quanta m-2 s-1 and with the same 

shadowing procedures as in the other trials, using black paper for covering. For all 

investigated species, light conditions were overall attempted to be kept low to moderate, in 

order to exclude photo-damage of chloroplasts and potential light-avoidance due to high light 

intensities, as well as approximately similar in the different trials as far as possible under the 

given field/laboratory conditions, under which variations could not be completely excluded. 

Phototaxis trials were performed in general with individuals soon after collection from the sea 

or been fed in the laboratory, thus the individuals should be in a relatively saturated state with 

incorporated chloroplasts depending on the specific capacity for chloroplast retention.  

 

 

PAM measurements in the laboratory and in the sea 

 

The photosynthetic activity of incorporated chloroplasts was monitored with a Pulse 

Amplitude Modulated Fluorometer (Diving PAM Fluorometer or Photosynthesis Yield 

Analyzer Mini PAM, version 2.0, both WALZ, Germany). The measured maximum quantum 

yield of fluorescence for PSII is defined as (Fm – F0)/Fm = Fv/Fm (with a dark-adapted sample) 

which is measured routinely with PAM in sea slugs (Wägele and Johnsen 2001, Evertsen, 

Burghardt et al. 2007, Evertsen and Johnsen 2009, Händeler, Grzymbowski et al. 2009, 

Vieira, Calado et al. 2009, Jesus, Ventura et al. 2010, Schmitt and Wägele 2011, Schmitt, 

Händeler et al. 2014). The individual sea slugs were investigated in series of 1-3 consecutive 
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measurements per measurement day for various periods depending on the respective 

experiment and the capacity of the analyzed sea slug species for long-term retention of 

chloroplasts. For measurement series in the laboratory (OOB, IME and MML), individuals 

were dark-adapted for 10 minutes before each measurement. For each single measurement, 

the fibre optic was held above the individual with a distance of 0,5-1 cm in the central region 

of the body part with the parapodia or other body appendixes, depending on the examined 

species. Since fluorescence and yield values decreased considerably during the course of 

starving periods, the sensitivity of the PAM was accordingly adapted by putting the parameter 

‘outgain’ from level 2 (default) to higher levels, up to level 8. Even with adaptation of the 

sensitivity of measurements, in single cases false high yield values can potentially be 

displayed in combination with very low fluorescence values when fluorescence values are 

falling to approach zero, which was in single cases respectively left out or replaced by zero 

for further analysis.  

Ambient light conditions in the laboratory and field were measured with an integrated light 

sensor of the Diving PAM Fluorometer or with a light sensor connected to the Mini-PAM 

(US-SQS/L, Walz, Germany) in PAR (quantum flux density of photosynthetically active 

radiation, [μmol quanta m-2 s-1]) (Heinz Walz GmbH 1998). 

To determine the photosynthetic yield under natural conditions, two species, E. timida and 

E. crispata mangrove type, were measured with the Diving PAM Fluorometer in their 

respective underwater environment. Underwater measurements of E. timida at Banyuls-sur-

Mer, France, were performed in two different depth levels, one between the water surface and 

a maximum depth of around 1.5 m and one around 5 m depth. For the investigations of 

E. crispata mangrove type, a population that was found under a shallow dock close to the 

MML, field station Summerland Key, Florida, was observed and measured in maximum 

around 1.5 m depth. PAM-measurements were performed at the place where the respective 

individual was spotted, in the natural light conditions (effective quantum yield (ΔF/Fm’ = 

(Fm’- F 0’)/Fm’) (‘ meaning light-acclimated here) under ambient light conditions, equivalent 

to (or counterpart of) the maximum quantum yield under dark-adaptation described above). 

Relative rate of electron transport (ETR) as measured with the Diving-PAM results from 

calculation by the formula: ETR=E=YIELD x PAR x 0.5 x ETR-factor, as depicted by the 

Diving-PAM operational handbook (Heinz Walz GmbH 1998). 

As individuals had to be measured on a neutral background to ensure precise measurement of 

their photosynthetic performance and exclude adulterations from algae etc., a glass bowl with 

a gray-white cement ground was used as background for the measurement and for background 
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calibration of the Diving-PAM Fluorometer. For the single measurement, the glass bowl was 

put beneath the spotted individual and the individual was carefully put in it. Measurements 

were performed directly in the natural light conditions without dark-adaptation and in some 

cases additionally in a second measurement with preceding dark-adaptation for comparison, 

for which a black plastic film bag was used to cover the glass bowl with the respective 

individual inside. For the analysis of the photobehavior in the natural habitat, the parapodia 

opening degree was analyzed for the first moment in which the respective individual was 

spotted. The parapodia opening degree was determined after the categories of opening levels 

defined in Schmitt and Wägele from zero – completely closed to ascending increasing 

opening degrees (Schmitt and Wägele 2011).  

 

 

Data analysis 

 

Data were analyzed with Excel and presented mostly with mean, standard deviation and 

range. For the analyses of the PAM-measurements, 1-3 consecutive measurements per 

individual and measurement day were included. For the analysis and presentation, the 

parameter ‘days’ was partly adapted, e. g. to merge different measurement series together. To 

determine one representative population per species for the analysis of long-term 

photosynthetic performance (in Figure 3.3.2), inclusion criteria were: one exemplary group 

per species was chosen, which included the highest number of individuals for ideally one 

collection or alternatively from collections within the same timeframe of only 1-3 days 

distance and from the same region/habitat or substrate/algae with being in the laboratory 

either without food supply after collection or on the algae for no more than 1-3 days and with 

exclusion of feeding experiments in the analyzed period to display long-term conditions 

without food supply. Only for P. dendritica a further individual was included from another 

collection of the same algae with a bigger time distance of 18 days between collections and 

being on the algae for 5 days previous to the experiment in order to obtain a population of at 

least 5 exemplary individuals for the analysis. For E. viridis, individuals collected from its 

known food algae Codium fragile (Evertsen and Johnsen 2009) – which is considered 

together with Codium vermilara here as the two species can potentially grow together and be 

difficult to distinguish – were chosen (in contrast to E. viridis found on other substrates). For 

all species, single individuals, that were separated from the collection population and fixed for 

separate transmission electron microscopy investigations after only one PAM-measurement, 
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were excluded from the long-term analyses. Other single individuals which were additionally 

included in other investigations but at a later time point when photosynthetic yield values had 

already fallen were included in the long-term analyses. In rare cases, individuals were 

excluded from the long-term analyses, as they were displaying already yield values 

approaching 0 or very pale color (not green anymore) right from the beginning after collection 

or if measured too shortly for inclusion into long-term analyses for other reasons.  

 

 

Results 

 
Photosynthetic activity of incorporated chloroplasts in different sacoglossan species 

 

The photosynthetic activity of incorporated chloroplasts differed extremely in the various 

sacoglossan sea slug species during periods without food supply (Figure 3.3.2). By far the 

longest duration of high kleptoplast photosynthetic activity was observed in individuals of the 

P. ocellatus species complex with maximum quantum yield Fv/Fm remaining on a high level 

during several months with only a minimal decline. In the course of this long period, 

individuals of P. ocellatus died even if kleptoplasts still showed residual photosynthetic 

activity in the last measurements. On day 148, 17 of the 32 individuals were still alive, on day 

203 still six individuals and two on day 210. 

With high photosynthetic activity for around three weeks, followed by a slow decline during 

the course of a further month, E. timida revealed distinctively shorter chloroplast retention 

capacities than P. ocellatus but still longer lasting high yields than the other observed species 

(Figure 3.3.2). In E. viridis, E. crispata mangrove type and reef type as well as B. mimetica, a 

spectrum of intermediate photosynthetic capacities was observed (Figure 3.3.2). 

E. crispata mangrove type and reef type revealed different photosynthetic activities with the 

decline of activity being more rapid in the mangrove type than the reef type (Figure 3.3.2). In 

T. hopei, photosynthetic values were at a high level when collected freshly from the sea, but 

decreased very fast within a few days (Figure 3.3.2). In P. dendritica, photosynthetic values 

were low right from the beginning (Figure 3.3.2). Yield measurements of the non-sacoglossan 

hydrozoan-feeding nudibranchs C. peregrina (n=10) and F. affinis (n=3) always displayed 

zero when measured with the PAM-Fluorometer directly after collections. These individuals 

were consequently not included in PAM-measurement series, but only in the phototaxis 

experiment as comparison species without incorporation of chloroplasts. 
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Figure 3.3.2: Photosynthetic maximum quantum yield Fv/Fm (dark-adapted) during periods without food 
supply in different sacoglossan sea slug species with various capacities of retention of incorporated 
chloroplasts after collection from the sea.  
Plakobranchus ocellatus (Cebu, Philippines, n=32, start (of measurements) 20th December 2011, IME, 
temperature range: ca. 14-22 °C) 
Elysia timida (Banyuls-sur-Mer, France, n=22, start April 13th 2010, OOB, ca. 13-18 °C) 
Elysia crispata reef type (Florida Keys, USA, n=10, start 26th March 2012, MML, ca. 23-24 °C) 
Elysia crispata mangrove type (Florida Keys, USA, n=1+6 start 7/10th February 2012, MML, ca. 23-24 °C) 
Elysia viridis (Banyuls-sur-Mer, France, n=8, start 30th June 2011, OOB, ca. 19-22 °C) 
Bosellia mimetica (Banyuls-sur-Mer, France, n=5+3+2, start 7/9/11th August 2012, OOB, ca. 17-25 °C)  
Thuridilla hopei (Banyuls-sur-Mer, France, n=10, start 8th July 2011, OOB, ca. 18-22 °C) 
Placida dendritica (Banyuls-sur-Mer, France, n=1+4, start 13th/31st August 2012, OOB, ca. 17-25 /ca. 19-23 °C) 
IME – Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany; MML – Marine 
Mote Lab, field station Summerland Key, Florida, USA; OOB – Oberservatoire Océanologique Banyuls- sur-
mer, France  
 

 

Phototactic behavior 

 

The same sacoglossan species investigated concerning photosynthetic capacities of 

incorporated chloroplasts were correspondingly investigated concerning phototactic behavior 

(Figure 3.3.3) to investigate potential correlations between long-term chloroplast retention 

capacities and behavior.  

The nudibranchs C. peregrina and F. affinis, which were included as comparative sea slug 

species without incorporated chloroplasts as described above, as well as P. dendritica with 

fast digestion of chloroplasts, showed the most positive phototactic reactions in this trials. 
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E. timida individuals revealed slightly less prominent but also overall mostly positively 

phototactic behavior. In contrast, the long-term retention species P. ocellatus showed more 

rather avoiding of direct light than exposure. All other species showed intermediate 

phototactic behavior (Figure 3.3.3). 
 

 
Figure 3.3.3: Phototactic reaction in various sea slug species with and without incorporated chloroplasts 
and with different degrees of chloroplast retention (for comparison see Figure 3.3.2). Data represent the 
percentage of sea slug individuals that had moved into the light after being placed on the dark side of a basin 
under a cover at the beginning of the respective trial. Each data row displays a summary of two to four trials in 
which the side of the dark cover was changed to exclude influences from other factors than light. All 
experiments were performed in a laboratory room at the OOB with natural sunlight after the methods applied 
already in former trials from which data of E. timida and T. hopei were included, except the trials with 
E. crispata which were performed under shaded natural sunlight in outside basins at the MML and the trials with 
P. ocellatus which were performed with artificial sunlight at the IME (see methods). Species with long-term to 
intermediate retention of chloroplasts: Plakobranchus ocellatus (n=30), Elysia timida (n=177), Elysia viridis 
(n=50), Elysia crispata reef type (n=20), Elysia crispata mangrove type (n=40), Bosellia mimetica (n=50). 
Species with fast decrease of chloroplasts: Thuridilla hopei (n=48), Placida dendritica (n=8). Species without 
chloroplasts: Cratena peregrina (n=10), Flabellina affinis (n=3).  
 
 

Underwater studies 

 

The underwater investigations of the two species E. crispata mangrove type and E. timida in 

their natural habitats in Florida and France, respectively, revealed remarkable differences 

concerning light conditions and kleptoplast photosynthetic activity. The site where E. crispata 

mangrove type was observed was a shady, shallow (~ 1 m depth), sandy area under a dock, 

where stronger sunlight was only entering for a short time period in the late afternoon (Figure 

3.3.4A). 
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Figure 3.3.4A: Full day curve of light conditions in the course of an exemplary day (24th April 2012) at the 
investigated site of Elysia crispata mangrove type in their natural habitat in a shallow (< 1 m depth) sandy 
area under a dock (Florida Keys, USA). Each measurement point represents the mean of a series of 
measurements in the investigated habitat of individuals of E. crispata mangrove type during diving at the 
respective timepoint of the day. The curve mirrors the special light conditions in this habitat under a dock with 
shading until the afternoon when sunlight fell under the dock provoking an irradiation peak. (Summerland Key, 
Florida, USA, 24th April 2012, ca. 23-24 °C).  
 
 
 

 
Figure 3.3.4B: Effective quantum yield of photosystem II (ΔF/Fm') measured in individuals of Elysia 
crispata mangrove type in the course of the day in their natural habitat in a shallow (< 1 m depth) sandy 
area under a dock (Florida Keys, USA) during 3 dives at around 11 o’clock, 14 o’clock and 17 o’clock on 5 
days. Each measurement point represents a mean of consecutive measurements in 5-9 different individuals of 
Elysia crispata mangrove type that could be found and measured during diving at the respective timepoint of the 
respective day. Elysia crispata mangrove type (Summerland Key, Florida, USA, n=7+9+7, 29th February 2012, 
n=5+5+5, 30th March 2012, n=5+5+5, 19th April 2012, n=5+5+5, 24th April 2012, n=5+5+5, 25th April 2012, ca. 
23-24 °C).  
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Corresponding to the special light conditions with a solar irradiation peak in the afternoon, the 

kleptoplast effective quantum yields ΔF/Fm’ in the examined individuals of E. crispata 

mangrove type were always higher during the time of the day with low solar irradiation and 

fell remarkably with the stronger solar irradiation in the afternoon (Figure 3.3.4B). The 

difference was less prominent on the 19th April with a rather cloudy, rainy weather in the 

course of the day which diminished the solar irradiation peak in the afternoon. Combining the 

results of all five investigation days, the difference was statistically significant with the 

overall mean effective quantum yield ΔF/Fm’ of 0.585 ± 0.061 (range: 0.502 – 0.655) at 17 

o’clock being significantly lower compared to both the overall mean of 0.689 ± 0.027 (range: 

0.668 – 0.728) at 14 o’clock and 0.716 ± 0.013 (range: 0.696 – 0.732) at 11 o’clock (paired t-

test: p=0.01, respectively). 

 

In the habitat of the investigated individuals of E. timida, on the contrary, the shallow open 

Mediterranean bays were exposed to sunlight already in the morning, reaching normally a 

peak in the midday sun and falling in the course of the afternoon with lower sun stand and 

less solar irradiation reaching the bay ground, all naturally varying with weather conditions 

(Figure 3.3.4C). During morning and midday, the solar irradiation varied strongly depending 

on the degree of clouds, as e. g. on 17th September 2012, when it was more cloudy around 14 

o’clock than in the measurements before, and punctual measurements of solar irradiation 

during midday outside the water varied already between around 1420 μmol quanta m-2 s-1 

with more sunlight and 723 μmol quanta m-2 s-1 with more clouds. Inside the water, an 

additional potentially influencing factor was shadow from rocks, which probably was the 

major reason for the lower solar irradiation on the sites where the measurements were taken in 

the morning on 7th September 2012, when the measurement of solar irradiation outside the 

water before diving (1015 μmol quanta m-2 s-1) was only slightly lower than on the other days 

(1122 μmol quanta m-2 s-1, 1135 μmol quanta m-2 s-1, 1076 μmol quanta m-2 s-1, 1120 μmol 

quanta m-2 s-1, respectively). The same correlation described for E. crispata mangrove type 

above also applied for the observations in E. timida in reversed sequence during the day 

(Figure 3.3.4D). While there was no significant difference between the lower mean effective 

quantum yields ΔF/Fm’ of 0.459 ± 0.068 (range: 0.371 – 0.562) measured during diving at 11 

o’clock and 0.505 ± 0.083 (range: 0.427 – 0.608) at 14 o’clock in stronger solar irradiation, 

the overall mean effective quantum yield ΔF/Fm’ of 0.654 ± 0.017 (range: 0.627 – 0.672) at 

17 o’clock with lower solar irradiation was significantly higher compared to both (paired t-

test: p=0.002 and p=0.01, respectively) (overall means for all samples taken together).  
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Figure 3.3.4C: Natural light conditions measured along with the photosynthetic yield of Elysia timida in 
the course of a day in depths of < 1 m in their natural habitat in a Mediterranean bay (Banyuls-sur-Mer, 
France) during 3 dives at around 11 o’clock, 14 o’clock and 17 o’clock on 5 days. Each measurement point 
represents the mean of a series of measurements in the investigated habitat of individuals of Elysia timida during 
diving at the respective timepoint of the respective day. Higher standard deviations mirror stronger variations 
due to weather and shadows from rocks underwater during morning and midday. (Banyuls-sur-Mer, France, 
n=4+4+4, 7th September 2012, n=5+5+5, 9th September 2012, n=5+5+5, 10th September 2012, n=5+5+4, 11th 
September 2012, n=5+5+5, 17th September 2012, ca. 20-21 °C).  
 
 

 
Figure 3.3.4D: Effective quantum yield of photosystem II (ΔF/Fm') measured in individuals of Elysia 
timida in the course of the day in their natural habitat in shallow depths (< 1 m) in a Mediterranean bay 
(Banyuls-sur-Mer, France) during 3 dives at around 11 o’clock, 14 o’clock and 17 o’clock on 5 days. Each 
measurement point represents a mean of consecutive measurements in 4-5 different individuals of E. timida that 
could be found and measured during diving at the respective timepoint of the respective day. E. timida (Banyuls-
sur-Mer, France, n=4+4+4, 7th September 2012, n=5+5+5, 9th September 2012, n=5+5+5, 10th September 2012, 
n=5+5+4, 11th September 2012, n=5+5+5, 17th September 2012, ca. 20-21 °C).  
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Figure 3.3.4E: Relative rate of electron transport (ETR) measured in individuals of Elysia timida in the 
course of the day in their natural habitat in shallow depths (< 1 m) in a Mediterranean bay (Banyuls-sur-
Mer, France) during 3 dives at around 11 o’clock, 14 o’clock and 17 o’clock on 5 days. Each measurement 
point represents a mean of consecutive measurements in 4-5 different individuals of E. timida that could be 
found and measured during diving at the respective timepoint of the respective day. E. timida (Banyuls-sur-Mer, 
France, n=4+4+4, 7th September 2012, n=5+5+5, 9th September 2012, n=5+5+5, 10th September 2012, n=5+5+4, 
11th September 2012, n=5+5+5, 17th September 2012, ca. 20-21 °C).  
 

Photosynthetic relative rate of electron transport (ETR) (Figure 3.3.4E) measured in E. timida 

with the Diving-PAM as calculated with a formula including a multiplication of the yield and 

PAR-parameter of the ambient light conditions (see methods) corresponded coherently as 

means per dive with the respective irradiation conditions displayed above. On the three days 

with the typical irradiation curves with a midday peak (7th, 10th and 11th September), the ETR 

showed the same tendency in the course of the day with higher ETR during high midday 

irradiation. On the other two days, when the respective irradiation around midday was lower, 

correspondingly also the ETR was lower. 

In addition to the investigations in shallow depths, individuals of E. timida were also 

examined in deeper dives around 5 m depth at around 12 o’clock and 15 o’clock on 3 

different days. Light intensities in depths of around 5 m were overall lower than observed in 

the shallower depths and showed less variation (Figure 3.3.4F). In accordance with that and 

with the correlation of lower solar irradiation and higher effective quantum yields described 

above, the overall mean effective quantum yield ΔF/Fm’ in individuals of E. timida in 5 m 

depths was with 0.634 ± 0.016 (range: 0.623 – 0.652) at 12 o’clock and 0.625 ± 0.063 (range: 

0.575 – 0.695) at 15 o’clock comparatively high (Figure 3.3.4G) and only slightly lower than 

in shallower depths at 17 o’clock described above (overall means for all samples taken 

together).  
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Figure 3.3.4F: Natural light conditions measured along with the yield for Elysia timida in depths of around 
5 m in their natural habitat in a Mediterranean bay (Banyuls-sur-Mer, France) during 2 dives at around 
12 o’clock and 15 o’clock on 3 days. Each measurement point represents the mean of a series of measurements 
in the investigated habitat of individuals of Elysia timida during diving at the respective timepoint of the 
respective day. Y-axis adapted for comparison with figure 4C of light intensities in shallower depths. (Banyuls-
sur-Mer, France, n=10+14, 28th September 2012, n=12+17, 1st October 2012, n=12+14, 3rd October 2012, ca. 
19 °C).  
 
 

 
Figure 3.3.4G: Effective quantum yield of photosystem II (ΔF/Fm') measured in individuals of Elysia 
timida in the course of the day in their natural habitat in depths of around 5 m in a Mediterranean bay 
(Banyuls-sur-Mer, France) during 2 dives at around 12 o’clock and 15 o’clock on 3 days. Each 
measurement point represents a mean of consecutive measurements in different individuals of E. timida that 
could be found and measured during diving at the respective timepoint of the respective day. Elysia timida 
(Banyuls-sur-Mer, France, n=10+14, 28th September 2012, n=12+17, 1st October 2012, n=12+14, 3rd October 
2012, ca. 19 °C).  
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Figure 3.3.4H: Relative rate of electron transport (ETR) measured in individuals of Elysia timida in the 
course of the day in their natural habitat in depths of around 5 m in a Mediterranean bay (Banyuls-sur-
Mer, France) during 2 dives at around 12 o’clock and 15 o’clock on 3 days. Each measurement point 
represents a mean of consecutive measurements in different individuals of E. timida that could be found and 
measured during diving at the respective timepoint of the respective day. Y-axis adapted for comparison with 
figure 4E of ETR in shallower depths. Elysia timida (Banyuls-sur-Mer, France, n=10+14, 28th September 2012, 
n=12+17, 1st October 2012, n=6+14, 3rd October 2012, ca. 19 °C).  
 

 

As in the lower depths described above, also in E. timida in deeper depths around 5 m the 

relative rate of electron transport (ETR) (Figure 3.3.4H) measured with the Diving-PAM 

corresponded coherently as means per respective dive in relation to the respective irradiation 

conditions displayed above. Overall, the ETR in E. timida in these deeper depths were 

distinctively lower compared to the ETR in shallower depths.  

 

Individuals of A. acetabulum, close to where individuals of E. timida were spotted, emitted 

higher fluorescence F (about double) and slightly lower or higher photosynthetic yield ΔF/Fm’ 

values than the individuals of E. timida measured during the same dive with the respective 

similar light conditions, revealing overall the same correlation of lower effective quantum 

yield ΔF/Fm’ with higher solar irradiation as well as higher effective quantum yield ΔF/Fm’ 

with lower solar irradiation (Table 3.3.1).  
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Table 3.3.1: Fluorescence, effective quantum yield of photosystem II (ΔF/Fm') and natural light conditions 
measured in individuals of Elysia timida and their food algae Acetabularia acetabulum in their natural 
habitat in shallow depths  of < 1 m and 5 m in Mediterranean bays (Banyuls-sur-Mer, France). Each 
measurement point represents a mean of consecutive measurements in the respective indicated number of 
individuals of E. timida and A. acetabulum found and measured during diving per each respective dive. 
(Banyuls-sur-Mer, France, 7th September 2012, 11th September 2012, 1st October 2012, ca. 19-21 °C). 
 

 

When aligning all mean effective quantum yield ΔF/Fm’ values per dive with the respecting 

mean solar irradiation of the respective dive, for shallow and deep dives for E. timida and 

A. acetabulum, respectively, the described correlation of higher yields with lower irradiation 

and vice versa was more prominent in A. acetabulum than in E. timida (Standard pearson 

product-moment correlation: A. acetabulum r=-0,982, E. timida r=-0,698) (Figure 3.3.5A).  

Relative rate of electron transport (ETR) (Figure 3.3.5B) measured in E. timida plotted in the 

same way, revealed the corresponding correlation of higher ETR with higher solar irradiation, 

which in this case was more pronounced in E. timida. 

As the ETR is in strong correlation with the respective irradiance which can show fluctuations 

between local, punctual measurements, the single values of ETR were also analyzed with 

their respectively corresponding single irradiance values, illustrating clearly the strong 

correlation of ETR in E. timida and A. acetabulum with the current ambient solar irradiation 

(Figure 5C). Concerning behavioral observations, a tendency was observed that individuals of 

E. timida held their parapodia more closed in higher light intensities (Standard pearson 

product-moment correlation: parapodia E. timida r=-0,682 (Figure 3.3.6). 
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Figure 3.3.5A: Effective quantum yield of photosystem II (ΔF/Fm') and natural light conditions for Elysia 
timida and their food algae Acetabularia acetabulum in depths of < 1 m and 5 m in their natural habitat 
(Banyuls-sur-Mer, France). Each point represents a mean of measurements in different individuals of E. timida 
and A. acetabulum which could be found and measured per each respective dive. E. timida (Banyuls-sur-Mer, 
France, n=4+4+4, 7th September 2012, 11/14/17 o’clock dive, n=5+5+5, 9th September 2012, 11/14/17 o’clock 
dive, n=5+5+5, 10th September 2012, 11/14/17 o’clock dive, n=5+5+4, 11th September 2012, 11/14/17 o’clock 
dive, n=5+5+5, 17th September 2012, 11/14/17 o’clock dive, n=10+14, 28th September 2012, 12 and 15 o’clock 
dive,  n=12+17, 1st October 2012, 12 and 15 o’clock dive, n=12+14, 3rd October 2012, 12 and 15 o’clock dive, 
ca. 19-21 °C), A. acetabulum (Banyuls-sur-Mer, France, n=4, 7th September 2012, 11 o’clock dive, n=2, 11th 
September 2012, 14 o’clock dive, n=4+3, 1st October 2012, 12 and 15 o’clock dive, ca. 19-21 °C).   
 
 

 
Figure 3.3.5B: Relative rate of electron transport (ETR) and natural light conditions for Elysia timida and 
their food algae Acetabularia acetabulum in depths of < 1 m and 5 m in their natural habitat (Banyuls-sur-
Mer, France). Each point represents a mean of measurements in different individuals of E. timida and A. 
acetabulum which could be found and measured per each respective dive. E. timida (Banyuls-sur-Mer, France, 
n=4+4+4, 7th September 2012, 11/14/17 o’clock dive, n=5+5+5, 9th September 2012, 11/14/17 o’clock dive, 
n=5+5+5, 10th September 2012, 11/14/17 o’clock dive, n=5+5+4, 11th September 2012, 11/14/17 o’clock dive, 
n=5+5+5, 17th September 2012, 11/14/17 o’clock dive, n=10+14, 28th September 2012, 12 and 15 o’clock dive,  
n=12+17, 1st October 2012, 12 and 15 o’clock dive, n=6+14, 3rd October 2012, 12 and 15 o’clock dive, ca. 19-
21 °C), A. acetabulum (Banyuls-sur-Mer, France, n=4, 7th September 2012, 11 o’clock dive, n=2, 11th September 
2012, 14 o’clock dive, n=4+3, 1st October 2012, 12 and 15 o’clock dive, ca. 19-21 °C).   
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Figure 3.3.5C: Relative rate of electron transport (ETR) in relation to the respective punctual natural 
light irradiation for Elysia timida and their food algae Acetabularia acetabulum in depths of < 1 m and 5 m 
in their natural habitat (Banyuls-sur-Mer, France). Each point represents a single PAM-measurement 
including ETR and PAR in different individuals of E. timida and A. acetabulum. E. timida (Banyuls-sur-Mer, 
France, n=4+4+4, 7th September 2012, 11/14/17 o’clock dive, n=5+5+5, 9th September 2012, 11/14/17 o’clock 
dive, n=5+5+5, 10th September 2012, 11/14/17 o’clock dive, n=5+5+4, 11th September 2012, 11/14/17 o’clock 
dive, n=5+5+5, 17th September 2012, 11/14/17 o’clock dive, n=10+14, 28th September 2012, 12 and 15 o’clock 
dive,  n=12+17, 1st October 2012, 12 and 15 o’clock dive, n=6+14, 3rd October 2012, 12 and 15 o’clock dive, ca. 
19-21 °C), A. acetabulum (Banyuls-sur-Mer, France, n=4, 7th September 2012, 11 o’clock dive, n=2, 11th 
September 2012, 14 o’clock dive, n=4+3, 1st October 2012, 12 and 15 o’clock dive, ca. 19-21 °C).   
 

 
Figure 3.3.6: Parapodia opening degree and natural light conditions measured in individuals of Elysia 
timida in shallow depths  of < 1 m and 5 m in their natural habitat (Banyuls-sur-mer, France). Each 
measurement point represents a mean of observations in individuals of E. timida which could be found and 
measured per each respective dive. Documented was the parapodia opening degree observed in the moment the 
respective individual was spotted. Parapodia opening degree from 0 – totally closed, over 1 – parapodia mainly 
closed, to further ascending degrees of opening (see methods). Elysia timida (Banyuls-sur-Mer, France, 
n=4+4+4, 7th September 2012, 11/14/17 o’clock dive, n=5+5+5, 9th September 2012, 11/14/17 o’clock dive, 
n=5+5+5, 10th September 2012, 11/14/17 o’clock dive, n=5+5+4, 11th September 2012, 11/14/17 o’clock dive, 
n=5+5+5, 17th September 2012, 11/14/17 o’clock dive, n=10+14, 28th September 2012, 12 and 15 o’clock dive,  
n=12+17, 1st October 2012, 12 and 15 o’clock dive, n=12+14, 3rd October 2012, 12 and 15 o’clock dive, ca. 19-
21 °C).   
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Discussion  
 

Photosynthetic activity of incorporated chloroplasts in different sacoglossan species 

 

Concerning differences in photosynthetic capacities between and within different sea slug 

species, various factors can have possible influences. The potential effect of temperature on 

photosynthetic performance in E. timida was indicated in previous studies (Schmitt, Händeler 

et al. 2014, Laetz and Wägele 2018b). Also, different food algae and with that different 

characteristics of chloroplasts from various donors as potential cause for variations in 

retention of chloroplasts have been reported, e. g. in E. viridis (Baumgartner, Pavia et al. 

2015, Rauch, Tielens et al. 2018) and also in a broad overview comprising investigations of 

26 sacoglossan species (Christa, Händeler et al. 2014). In our results, individuals of E. viridis 

collected from C. fragile/vermilara showed with only about 14 days a much shorter retention 

duration than expected, as e. g. Evertsen and Johnsen reported long high photosynthetic 

capacities of functional chloroplasts in E. viridis from the Trondheim fjord in Norway, which 

after 73 days of observed starvation they estimated to last photosynthetic for about 5-9 

months (Evertsen and Johnsen 2009). In contrast to this, Viera et al. reported retention of 

functional chloroplasts in individuals of E. viridis of the west coast of Portugal, held in low 

light conditions of 30 µmol photons m-2 s-1, to last for 15 up to 57 days (Vieira, Calado et al. 

2009) which resembled more to our results in the present study but was also overall longer. 

The results in our present study of only about two weeks of retention of functional 

chloroplasts in E. viridis also applied to further collection populations throughout different 

research stays with some variations, but could also differ considerably with different habitats 

and substrates (own observations). E. viridis seems to be an example for a species with strong 

intraspecific variations in chloroplast retention in different habitats and geographical regions 

and also potentially in relation to different algal food sources, which might indicate a high 

degree of adaptation or even differentiation into a species complex with various ecological 

types (Evertsen and Johnsen 2009, Rauch, Tielens et al. 2018).        

Concerning the fast degradation of chloroplasts from Codium algae in P. dendritica in 

contrast to E. viridis, we could confirm the former results of Evertsen and Johnsen (Evertsen 

and Johnsen 2009) as overall low photosynthetic yield values measured in P. dendritica even 

with saturate food algae supply directly after collection clearly reflected, that despite uptake 

of chloroplasts the degradation of chloroplasts was so strong, that photosynthetic yield was far 
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below species with retention of chloroplasts, e. g. E. viridis, collected from the same food 

algae.   

We also found differences in kleptoplast photosynthetic performance between the populations 

of E. crispata reef type and mangrove type, which confirms the ecological differentiation, 

probably with different diets and with that different chloroplast donors, as described by Krug 

et al. (Krug, Vendetti et al. 2016).  

With our PAM-measurements of over seven months, P. ocellatus is the species with the 

longest measured duration of chloroplast retention so far. Until now, only distinctively shorter 

periods were measured for this species and the total duration of long-term-retention of 

chloroplasts was only estimated, e. g. with a coefficient of 11 month calculated by Evertsen at 

al. (Evertsen, Burghardt et al. 2007). Händeler et al. presented measurements for 75 days with 

still relatively prominent photosynthetic activity (Händeler, Grzymbowski et al. 2009). Some 

studies present distinctively shorter durations (Christa, Wescott et al. 2013, Yamamoto, 

Hirano et al. 2013, Wade and Sherwood 2017). Intraspecific differences in photosynthetic 

capacities in P. ocellatus might be caused by widely diverse food spectra and ecological 

differentiation. In a recent study for Plakobranchus cf. ianthobapsus from 10 sites across the 

Main Hawaiian Islands during winter and summer seasons, Wade and Sherwood reported an 

extremely diverse food spectrum with sequestration of chloroplasts from 23 algal species 

from across the siphonous green algal order Bryopsidales (Wade and Sherwood 2018). A 

former study from specific Hawaian individuals of P. ocellatus reported sequestration of 

chloroplasts from up to 11 bryopsidalean algal species (Wade and Sherwood 2017). Maeda et 

al. reported also a broad spectrum of green algal species as food and chloroplast sources for 

P. ocellatus from Japan (Maeda, Hirose et al. 2012). High diversity occurring in P. ocellatus 

lead to the current definition as a species complex with probably 10 species varying in 

distribution and nutrition preferences (Krug, Vendetti et al. 2013, Wade and Sherwood 2017). 

For P. ocellatus from the Philippines, like the individuals in our present study, a former study 

described also a broad food spectrum including members of the genera Halimeda, Caulerpa, 

Udotea, Acetabularia and further unidentified algae, with an emphasis on H. macroloba 

(Christa, Wescott et al. 2013).  

In a further study, the algal species that seem to be essential for long-term-functional retention 

in general were defined to belong to the taxa Halimeda, Caulerpa, Penicillus, Avrainvillea, 

Acetabularia and Vaucheria, while none of these were found in Thuridilla, the only 

plakobranchoidean genus without long-term retention forms (Christa, Händeler et al. 2014). 

Ventura et al. investigated especially kleptoplasts and short-term retention in T. hopei 
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(Ventura, Calado et al. 2013). Our results confirmed formerly reported short-term retention in 

T. hopei (also e. g. (Händeler, Grzymbowski et al. 2009), with interestingly potential high 

photosynthetic yields directly after collection which resemble those of species with long-term 

retention of chloroplasts, but consecutively fast complete degradation of chloroplasts within 

about a week.  

Concerning the various sacoglossan species analyzed in the present study, we could confirm 

distinct differences between species-specific spectra of photosynthetic capacities, which in 

free-living sea slugs can potentially be influenced by various factors as season, temperature, 

food availability, light conditions and further environmental parameters as well as age, size 

and overall condition of the individuals. Viera et al. reported e. g. influence of light on 

photosynthetic activity in E. viridis (Vieira, Calado et al. 2009) and Cruz et al. reported 

photoprotection in sequestered plastids of sea slugs and respective algal sources (Cruz, 

Cartaxana et al. 2015). Underlying mechanisms and factors for longevity of incorporated 

chloroplasts are still unclear and potentially diverse (Cruz, Cartaxana et al. 2015, Chan, 

Vaysberg et al. 2018). Pelletreau et al. published a study indicating that Elysia chlorotica can 

profit from the incorporated chloroplasts to gain potentially its life-time-energy (Pelletreau, 

Worful et al. 2012). With the results for P. ocellatus of this study with a similar extremely 

long potential to live without food supply while retaining high levels of photosynthetic yields 

ΔF/Fm we can partly confirm this with the restriction that the observed individuals showed 

falling yield values during the course of observations accumulating before dying, indicating 

degradation of chloroplasts. In all, research remains highly interesting concerning this 

enigmatic phenomenon of functional chloroplast incorporation which different Sacoglossa 

species have evolved in varying perfection and which can potentially be further influenced by 

various ecological and behavioral parameters – like light conditions in the natural 

environment. 

 

 

Photobehavior 

 

Behavioral adaptations of the sea slugs in relation to functional kleptoplasty are assumed to 

have developed and play a potential role for the functionality of chloroplasts, e. g. in the 

species E. timida with a special modulation of more or less opening posture of the parapodial 

lobes resulting in more or less light reaching the incorporated chloroplasts (Rahat and 

Monselise 1979, Monselise and Rahat 1980, Jesus, Ventura et al. 2010, Schmitt and Wägele 
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2011). In a study comparing three sacoglossan species with incorporated chloroplasts (Elysia 

tuca, Costasiella lilianae (= Costasiella ocellifera after Clark (Clark 1984)), and Elysia 

crispata) versus two without chloroplast retention (Oxynoe antillarum and Berthelinia 

carribea), Weaver and Clark reported that the ‘chloroplast-symbiotic’ species oriented 

towards light while the ‘aposymbiotic’ species avoided light and supposed a possible 

relationship between incorporated chloroplasts and phototaxis (Weaver and Clark 1981). 

Results from our previous study, comparing E. timida with long-term retention versus 

T. hopei with fast degradation of chloroplasts, seemed partly to confirm the hypothesis that 

chloroplast-retention might imply stronger phototactic behavior, as E. timida revealed 

stronger positive phototaxis movement than T. hopei (Schmitt and Wägele 2011). The 

phototaxis trial in the present study was performed in parallel to the analyses of 

photosynthetic profiles with the same sea slug species in focus to test the hypothesis in more 

detail, that chloroplast-retention possibly implies stronger phototactic behavior in sea slugs. 

With an overview including more species in the present study, however, the hypothesis 

cannot be confirmed in this simple way. In our present study, the non-sacoglossan species 

C. peregrina and F. affinis without chloroplasts and the sacoglossan P. dendritica with fast 

digestion of chloroplasts showed a highly positive phototactic reaction while several species 

with either long chloroplast retention as P. ocellatus or mediate retention profiles rather 

reacted with caution or avoidance versus direct light exposure, even in these comparatively 

low light intensities. The rather light-shy reaction revealed by P. ocellatus can consequently 

also not really be explained by different light-conditions in the laboratory as the light intensity 

of 27 μmol quanta m-2 s-1 was relatively low and in a similar intensity spectrum to the light 

conditions in the other trials. Furthermore, as a side observation, individuals of P. ocellatus 

that were exposed to the sunlight-lamp in the laboratory in boxes with sand, started to burry 

themselves partly in the sand. As a species with long-term retention of chloroplasts, Elysia 

timida revealed nevertheless increasing movement into direct light exposure in our trials. This 

might potentially be connected to the adaptations that are described for this species, e. g. as 

the modulation of the wing-like parapodial lobes to close and cover the inner lying 

chloroplasts (Rahat and Monselise 1979, Monselise and Rahat 1980, Jesus, Ventura et al. 

2010, Schmitt and Wägele 2011). However, interpretation of photobehavior in sacoglossans 

still requires caution, with potential photodamage of chloroplasts by high irradiation taken 

carefully into account. Viera et al. investigated the effect of light exposure on the 

photosynthetic activity of kleptoplasts in E. viridis by comparing two different experimental 

treatments of keeping the individuals either in ‘high’ light conditions of 140 µmol photons  



 78 

m-2 s-1 or low light conditions of 30 µmol photons m-2 s-1, and reported a distinctly more rapid 

decrease of photosynthetic activity with high light conditions of retention, lasting only 6 to 15 

days, opposed to the much slower decrease in low light conditions with retention lasting from 

15 to 57 days (Vieira, Calado et al. 2009). In their recent study investigating aspects of 

photobehavior in E. viridis and Placida dendritica, Cartaxana et al. included the factor of 

acclimation to different light regimes, which they inferred to have modulating influences on 

photobehavior (Cartaxana, Morelli et al. 2018). Overall, various potential regulation 

mechanisms and additional further factors could possibly influence photobehavior, a complex 

phenomenon, with positive phototaxis being probably a more basic evolution, as sea slug 

species without chloroplasts and also juvenile E. timida before integration of chloroplasts 

showed positive phototactic behavior (Schmitt and Wägele 2011).   

 

 

Underwater studies 

 

Despite extensive investigations of photosynthetic sea slugs under laboratory conditions, 

reports of investigations of photosynthetic activities in their natural environment are not 

known to us. The present study is the first that performed PAM-investigations of the 

photosynthetic yield ΔF/Fm’ of kleptoplasts of two sacoglossan species underwater in their 

natural habitat in relation to environmental light conditions. We found variations in 

kleptoplast photosynthetic activity during the course of the day in the species E. timida and 

E. crispata mangrove type with a correlation to light conditions in the natural environment 

which are varying depending on habitat, weather and other environmental conditions. In both 

species, there was overall the same correlation of lower effective quantum yield ΔF/Fm’ with 

higher solar irradiation as well as higher effective quantum yield ΔF/Fm’ with lower solar 

irradiation, which was even more prominent in the food algae A. acetabulum of E. timida. For 

the interpretation of photosynthetic activity in natural environments in general, several 

potential influencing factors have to be considered, as e. g. specific photosynthetic optima or 

other intrinsic (e. g. state of the chloroplasts, state of the sea slug) and extrinsic (e. g. light 

conditions, temperature) parameters. Concerning the correlation between lower irradiances 

with higher effective quantum yield ΔF/Fm’, the special character of the PAM-fluorometry in 

relation to the complex photosynthetic mechanisms has to be considered: in contrast to the 

maximum quantum yield of PS II which is measured after dark acclimation with ‘maximal 

number of open reaction (oxidized) centers in photosystem II available to process photons’ 
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(Wägele and Johnsen 2001), here, in the natural environment conditions, we measure the 

effective quantum yield ΔF/Fm’ under ambient light conditions, which decreased with 

increasing irradiation. As a measure of photosynthetic rate, the relative rate of electron 

transport (ETR), however, which includes the quantum flux density of photosynthetically 

active radiation of the ambient light as a multiplication factor, revealed the corresponding 

positive correlation of higher ETR with higher solar irradiation, which in this case was more 

pronounced in E. timida than in A. acetabulum. In coherence with the ambient light 

conditions, the ETR was overall distinctively higher in the E. timida individuals in the 

shallower depths close to the surface than in the deeper depths of around 5 m. 

Fluorescence F in individuals of E. timida measured underwater was always distinctively 

lower (about half as much) than in their food algae A. acetabulum. This might be a result of 

higher density of chloroplasts in the algae and/or partly influenced by the shading effect of the 

parapodia, also diminishing emission of fluorescence, as described before (Schmitt and 

Wägele 2011). Observations revealed a tendency that parapodia of individuals of E. timida 

were more closed in stronger light intensities pointing to the parapodial covering effect, 

corresponding to former descriptions (Rahat and Monselise 1979, Monselise and Rahat 1980, 

Jesus, Ventura et al. 2010, Schmitt and Wägele 2011). Casalduero and Muniain supposed that 

opening and closing of parapodia seems to modulate excess light in connection with a rapid 

saturation of the photosynthetic apparatus which they inferred from estimates and models in 

an analysis of photosynthetic activity in E. timida (Casalduero and Muniain 2006). During 

observations of E. crispata mangrove type, we saw indices for a movement of parapodia with 

light modulation but it was not directly recognizable in a clear way, probably also due to the 

more undulated structure of the parapodia and different distribution of chloroplasts 

throughout the body, which impeded a clear distinction of parapodial opening levels similar to 

those in E. timida. A recent study reported observations of parapodia modulation in relation to 

irradiance in E. viridis, with increasing light levels leading to a closure of parapodia 

(Cartaxana, Morelli et al. 2018). Parapodia modulation and photobehavior overall remain 

interesting research topics with potential clarification with further investigations.  
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3.4 Further unpublished results 
 
 
3.4.1 Feeding experiments and inter- and intraspecific differences within species-specific 

spectra of photosynthetic capacities in various sacoglossan sea slug species 

 

This section depicts further yet unpublished results in the frame of the investigations in near-

natural or semi-natural settings presented in chapter 3.3. As described in the introduction, 

feeding experiments were carried out to gain more fundamental information about algal 

chloroplast donors and their potential implications on various capabilities of chloroplast 

retention in the different investigated sea slug species. These investigations were combined 

with TEM-investigations which are described below in chapter 3.4.2. in more detail. As the 

investigations presented here in chapter 3.4 were performed along with those in chapter 3.3, 

the methods overlap in major part as explained and completed with additional method notes in 

the overall method section (chapter 2). Here, the further results including feeding experiments 

and PAM-investigations are reported, with an overview of different investigation years.  

 

In the feeding experiments, specific algae could be confirmed as chloroplast donors by using 

PAM-measurements, resulting in an overview of investigated sacoglossan species and their 

algal chloroplast donor with respective PAM-values (Table 3.4.1). The different sacoglossan 

species were analyzed concerning their species-specific photosynthetic yield (Fv/Fm, maximal 

yield after dark adaptation) after collection and thus in a natural, normally saturated and 

chloroplast-replenished state (column 1). This was compared to the photosynthetic yield 

Fv/Fm of the associated algae in a freshly collected, natural state. Furthermore, individuals of 

the sacoglossan species were kept without food supply and monitored with PAM-

measurements until photosynthetic yields fell down and approached zero, indicating depletion 

of incorporated chloroplasts (column 3). These individuals were then supplied anew with the 

respective algae species in focus and observed with following PAM-measurement-series. 

Rising values of measured photosynthetic yield Fv/Fm in sea slugs after renewed feeding with 

the respective algae species were considered as evidence for the incorporation of the algal 

chloroplasts by the sea slugs and documented (column 4). Similar to individuals of Bosellia 

mimetica and Elysia viridis, an individual of Elysia timida revealed the highest photosynthetic 

yield after renewed feeding and could apparently well replenish with chloroplasts from 

Acetabularia acetabulum already within three to four hours of feeding.  
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Overall, photosynthetic yields measured in sea slugs after renewed feeding corresponded well 

to those after collection and those of the respective algae, except for Placida dendritica and 

Ercolania viridis with distinctively lower photosynthetic yields than those of the respective 

food algae (Table 3.4.1). 

 
Sea Slug species with 

exemplary photosynthetic 

yield [Fv/Fm] after 

collection  

Algae species with exemplary 

photosynthetic yield [Fv/Fm]  

Last photosynthetic 

yield [Fv/Fm] in sea slug 

before renewed feeding 

Best relevant 

photosynthetic yield 

[Fv/Fm] in sea slug 

after renewed feeding 

with respective algae °  

Bosellia mimetica, (n=10), 

0.679 ± 0.061 (0.568-0.774) 

(Figure 3.3.2, chapter 3.3) 

Halimeda tuna, (n=12), 0.695 ± 0.049 

(0.589-0.762) § 

0.186 ± 0.136 (0.029 to 

0.272) (n=3) 

0.703 ± 0.043 (0.658 to 

0.743) (n=3) (2d n=2 #, 

4d n=1) 

Placida dendritica 

(n=5), 0.247 ± 0.037 

(0.190-0.278) (Figure 3.3.2) 

Codium fragile/vermilara 

(n=8), 0.768 ± 0.032 (0.727-0.806) § 

0.146 ± 0.090 (0.042 to 

0.203) (n=1)  

0.257 ± 0.042 (0.215 to 

0.300) (n=1) (3d) * 

 

Ercolania viridis (n=5), 

0.126 ± 0.078 (0.019 to 

0.198) (Figure 3.4.4) 

Chaetomorpha aerea/linum, (n=2), 

0.659 ± 0.038 (0.632-0.685) § 

0.000 ± 0.000 (0.000 to 

0.000) (n=2)  

0.224 ± 0.048 (0.019 to 

0.258) (n=2) (2d) 

 

Elysia viridis 

(n=8), 0.673 ± 0.043 

(0.601-0.732) (Figure 3.3.2) 

Codium fragile/vermilara 

(n=8), 0.768 ± 0.032 (0.727-0.806) § 

0.373 ± 0.018 (0.360 to 

0.385) (n=1) * 

0.669 ± 0.046 (0.618 to 

0.706) (n=1) (5d) * 

 Flabellia petiolata (originally on 

Codium fragile/vermilara) 

(n=4), 0.725 ± 0.036 (0.682-0.761) § 

0.201 ± 0.189 (0.000 to 

0.376) 

0.690 ± 0.115 (0.559 to 

0.777) (n=3) 

 Flabellia petiolata (originally on 

Flabellia petiolata) 

(n=4), 0.725 ± 0.036 (0.682-0.761) § 

0.000 

± 0.000 (0.000 to 0.000) 

0.641 ± 0.019 (0.627 to 

0.654) 

(n=2) (5d+13d) 

Elysia timida 

(n=22), 0.725 ± 0.045 

(0.610-0.816) (Figure 3.3.2) 

Acetabularia acetabulum 

(n=11), 0.748 ± 0.042 (0.675-0.805) § 

0.000 

± 0.000 (0.000 to 0.000) 

(n=1) * 

0.703 

± 0.025 (0.675 to 0.723) 

(n=1#) (0d, 3-4 hrs) * 

Elysia crispata mangrove 

type 

(n=7), 0.612 ± 0.081 

(0.523-0.774) (Figure 3.3.2)  

Caulerpa verticillata  

(n=6), 0.662 ± 0.066 (0.575-0.738) $ 

0.000 ± 0.000 (0.000 to 

0.000) (n=3) 

0.666 ± 0.015 (0.653 to 

0.687) 

(n=3) (7d n=2, 8d n=1) 

 Penicillus capitatus  

(n=4), 0.645 ± 0.180 (0.392-0.788) $ 

0.000 ± 0.000 (0.000 to 

0.000) (n=1) * 

0.667 ± 0.066 (0.601 to 

0.733) (n=1) * 

 
Table 3.4.1:  Photosynthetic yield Fv/Fm measured with PAM in algae and sacoglossan species in feeding experiments. 
Data are displayed with n= number of individuals, mean ± SD (range). All samples dark adapted before PAM-measurement 
of maximum yield [Fv/Fm], except the two algal species measured in the sea as indicated. ° Best relevant photosynthetic yield 
reached during phase of renewed feeding (duration of renewed feeding until measurement time point [days]); * When n=1 
mean calculated of consecutive measurements of one measurement time point in this individual; # Individual(s) fixed for 
TEM, values could have risen higher with longer feeding; § after collection; $ in the sea   
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Thuridilla hopei 

 

In T. hopei, collected in July 2011, photosynthetic yield values were at a relatively high level 

when collected freshly from the sea, but decreased very fast within a few days (Figure 3.3.2 in 

chapter 3.3). This corresponded to another collection population of T. hopei found during 

another summer season (n=4, August 2012) revealing relatively similar photosynthetic yields 

in the course of the measurements: directly after collection, the mean photosynthetic yield 

Fv/Fm was 0.566 ± 0.234 (range: 0.222 to 0.744) and declined fast until day 5 to 0.222 ± 0.262 

(range: 0 to 0.512) and approached zero already on day 9 in all investigated individuals of 

T. hopei of both collection populations with comparable seasonal and temperature conditions. 

 

 

Placida dendritica 

 

In P. dendritica, collected from C. fragile/vermilara in August 2012, photosynthetic values 

were low right from the beginning, Fv/Fm ranging from only 0.190 to 0.278 (Figure 3.3.2 in 

chapter 3.3). Another collection population (n=6, June 2011) displayed even lower yield 

values directly after collection from C. fragile/vermilara with a mean Fv/Fm of 0.048 ± 0.029 

(range: 0.02 to 0.103), hardly above zero, and thus was excluded from the analysis. Overall, 

low photosynthetic yield values measured in P. dendritica even directly after collection 

clearly reflected that despite uptake of chloroplasts the level of degradation of chloroplasts is 

so high that photosynthetic yield is far below species with retention of chloroplasts, e. g. 

E. viridis, collected from the same food algae (Figure 3.3.2 in chapter 3.3). 

 

 

Bosellia mimetica 

 

Individuals of B. mimetica were always collected from the chlorophyte Halimeda tuna, but 

nevertheless displayed slight differences between different collection populations. Compared 

to the exemplary population of August 2012 displayed in Figure 3.3.2 (Figure 3.3.2 in chapter 

3.3), other collection populations of July and August 2010 (n=5 and n=5) showed lower yield 

values right after collection with mean Fv/Fm 0.612 ± 0,066 (range: 0.503 to 0.665) and 0.542 

± 0.104 (range: 0.378 to 0.626), respectively, and approaching zero in about 20 days. In 

summer 2011, however, some individuals showed overall slightly higher starting values with 
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e. g. 0.699 ± 0.033 (range: 0.643 to 0.733) in June/July 2011 (n=8) and 0.686 ± 0.007 (range: 

0.681 to 0.691) in August 2011 (n=2) and longer lasting photosynthetic performance up to 

even still a mean yield of 0.195 ± 0.090 (range: 0.131 to 0.258) after 34 days without food 

supply in September 2011 (n=2). One single individual in July 2011, which was collected 

from H. tuna four days after collection from the sea, even displayed a starting yield of 0.764, 

survived a period of more than 30 days without food and could successfully be fed anew with 

supply of H. tuna (Figure 3.4.1, Table 3.4.1).  

 

 
Figure 3.4.1: Photosynthetic yield and successful renewed feeding of an individuum of Bosellia mimetica 
with the algae Halimeda tuna after more than 30 days without food supply. On day 32 of the first period 
without food supply after collecting the sea slug from H. tuna, the feeding phase of eight days was started until 
day 40. Then the food supply was stopped again and a second period without food supply observed. (Last value 
replaced with 0 as correction for false high value.) Bosellia mimetica (Banyuls-sur-Mer, France, n=1, start 12th 
July 2011, OOB, ca. 18-24 °C). 
 

 

After eight days of renewed feeding, it had retained its green color and high yield values and 

could be observed during a second staving period, during which high yield values lasted for 

about a week (Figure 3.4.1). The three described individuals with longer retention durations 

(one July 2011, two September 2011) were also comparatively large with sizes of 7, 8 and 11 

millimeters (mm), in contrast to e. g. an overall mean size of 4.5 ± 1 mm (range: 3.5 to 7 mm) 

in the exemplary collection population of August 2012 displayed in Figure 3.3.2 in chapter 

3.3. On the basis of the available data, an overall clear correlation between size of the 

individual slugs and retention duration was not evident, however. 
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Elysia viridis 

 

Feeding experiments showed that E. viridis – in addition to its known food alga C. fragile – 

also fed on another alga, Flabellia petiolata, with subsequent chloroplast retention. In a 

comparative feeding trial, eight individuals of E. viridis collected from C. fragile/vermilara 

were at first held without food supply until photosynthetic yield values had fallen, indicating 

depletion of incorporated chloroplasts, and then supplied with C. fragile/vermilara (n=4) or 

F. petiolata (n=4) during 10 days. Interestingly, three of the four individuals supplied with 

F. petiolata showed distinct rising of photosynthetic yield Fv/Fm, indicating that they had fed 

on the algae and incorporated chloroplasts, with even higher photosynthetic yields and better 

chloroplast retention than before when collected from C. fragile/vermilara (Figure 3.4.2, 

Table 3.4.1).  

 

 
Figure 3.4.2: Photosynthetic yield Fv/Fm and successful renewed feeding of individuals of Elysia viridis 
which had originally been collected from Codium fragile/vermilara and after a first period without food 
supply fed with either Flabellia petiolata (group A) or Codium fragile/vermilara (group B). After collection 
from C. fragile/vermilara, individuals of E. viridis were first held without food supply until photosynthetic yield 
was approaching zero on day 6 in group A (n=4) and day 8 in group B (n=4) and both groups were then fed on 
the following day with F. petiolata (group A) or C. fragile/vermilara (group B), respectively. Three of four 
individuals in group A and one of four individuals in group B could be successfully fed mirrored by distinct 
rising of photosynthetic yield Fv/Fm. Supply of the respective algae was stopped in both groups after 10 days on 
day 16 (group A) and day 18 (group B) and photosynthetic yield was observed in the following period without 
food supply. Elysia viridis (Banyuls-sur-Mer, France, group A n=3(/4), start 5th August 2011, OOB, group B 
n=1(/4), start 3rd August 2011, ca. 19-24 °C), both groups from the same collection of Codium fragile/vermilara 
(2nd August 2011). 
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These individuals supplied with F. petiolata visibly retained their green color and held 

relatively high levels of photosynthetic yield during two further weeks without algae supply. 

Only one of the four regained just little green color and lower photosynthetic yields, leaving 

the proof of chloroplast uptake in this individual unclear. Of the four individuals supplied 

with C. fragile/vermilara, three showed only low, unclear rising of photosynthetic yield and 

died despite of algae supply. Only one survived longer than the renewed feeding period and 

could apparently well replenish with chloroplasts from C. fragile/vermilara, retaining a 

saturated green color and high photosynthetic yields but those fell within a week to approach 

zero (Figure 3.4.2, Table 3.4.1).        

In further reversed trials, individuals of E. viridis found originally on F. petiolata were after a 

starving period attempted to be fed anew with C. fragile/vermilara (n=4) or F. petiolata 

(n=4). While these individuals did not show clear proofs of chloroplast uptake and retention 

with C. fragile/vermilara, two of the four individuals newly fed with F. petiolata showed 

clear rising of photosynthetic yields, indicating incorporation and functional retention of 

chloroplasts to approach zero after about two further weeks without food supply (Figure 

3.4.2B, Table 3.4.1).  

 

 
 

Figure 3.4.2B: Photosynthetic yield Fv/Fm and successful renewed feeding of individuals of Elysia viridis 
which had originally been collected from Flabellia petiolata and after a first period without food supply 
fed successfully with F. petiolata. After collection from F. petiolata, individuals of E. viridis had been first held 
without food supply until photosynthetic yield was approaching zero on day 11 in one individual and day 19 in 
another. Both were then fed successfully with F. petiolata (day 21) mirrored by distinct rising of photosynthetic 
yields. Supply of the algae was stopped after 10 days on day 31 and photosynthetic yield observed in the 
following period without food supply. Elysia viridis (Mediterranean, Banyuls-sur-Mer, France, start 13th August 
2012, OOB, n=2, ca. 17-25 °C,), both from the same collection of F. petiolata (13th August 2012). 
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In an overview of long-term retention of chloroplasts in assembled different collections 

populations of E. viridis from either F. petiolata or C. fragile/vermilara, respectively, the 

individuals from F. petiolata showed overall higher mean photosynthetic yield Fv/Fm after 

collection with 0.710 ± 0.059 (range: 0.627 to 0.845) compared to those from 

C. fragile/vermilara with 0.555 ± 0.120 (range: 0.333 to 0.732) (Figure 3.4.3).  

 

 
Figure 3.4.3: Photosynthetic yield Fv/Fm without algae supply after collection of Elysia viridis from either 
Flabellia petiolata or Codium fragile/vermilara in several collection populations assembled together. Elysia 
viridis from Flabellia periolata (Banyuls-sur-Mer, France, n=4+1, start 9th/11th August 2012, OOB, ca. 17-
25 °C, n=7 start 13th August 2012, ca. 17-25 °C). Elysia viridis from Codium fragile/vermilara (Banyuls-sur-
Mer, France, n=8, start 30th June 2011, OOB, ca. 19-22 °C, n=4+4, start 3rd/5th August 2011, ca. 19-22 °C,  n=7 
start 31st August 2011, ca. 21-23 °C, n= 5, start 9th August 2012, ca. 17-25 °C). 
 

Within the E. viridis populations from F. petiolata, there was a tendency for longer 

chloroplast retention duration with bigger size as most individuals with longer retention were 

bigger with 8, 8 ,9 and 10 mm as the average 6.6 ± 1.9 mm (range: 4 to 10 mm) of these 

assembled populations, but one other individual with the second longest chloroplast retention 

measured only 4 mm. Also, the mean size of the assembled populations from 

C. fragile/vermilara was slightly bigger with 7.2 ± 1.3 mm (range: 5 to 9 mm). Thus, again a 

clear correlation of body size with chloroplast retention duration was not evident and the 

difference in photosynthetic capacities between individuals from F. petiolata or 

C. fragile/vermilara could not be explained by size.      

In another trial as control, in which individuals which had been found on F. petiolata (n=2) or 

C. fragile/vermilara (n=4) were provided with the same respective algae during a period of at 

least two to three weeks after collection, the photosynthetic yield of the individuals stayed on 

similar high levels during the whole time with supply of both either F. petiolata or 
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C. fragile/vermilara and also stayed on relatively high levels for about further two weeks 

without food supply (Figure 3.4.3B).  

 

 
Figure 3.4.3B: Photosynthetic yield Fv/Fm during a phase with algae supply after collection of Elysia viridis 
collected from and provided with either Flabellia petiolata or Codium fragile/vermilara and a phase 
without algae supply in the following. Individuals of E. viridis were collected from either F. petiolata or 
C. fragile/vermilara and provided with the same respective algae for two to three weeks until day 27. On day 27, 
algae supply was stopped in both groups and the following two weeks without algae supply observed (day 28-
40). Elysia viridis from Flabellia petiolata (Banyuls-sur-Mer, France, n=2, start 18th August 2012, OOB, ca. 17-
25 °C). Elysia viridis from Codium fragile/vermilara (Banyuls-sur-Mer, France, n=2+1+1, start 23rd/25th/29th 
August 2012, OOB, ca. 17-25 °C).  
 
 

Overall, F. petiolata, could be confirmed as a potential food algae and chloroplast donor for 

E. viridis in addition to C. fragile/vermilara, with the relevant proving photosynthetic yield 

Fv/Fm after successful renewed feeding being quite similar with both food algae (Table 3.4.1) 

and with even a tendency for better photosynthetic performance with longer retention of 

chloroplasts with F. petiolata in the investigated individuals. 

 

In a comparison of different populations of E. viridis from different habitats, a population 

from a special habitat of a small seasonal tidal pool in the rocks, filled with a mix of algae 

including Acetabularia acetabulum, Cladophora sp., Chaetomorpha sp., and Enteromorpha 

sp., was compared to a collection population from offshore. In the protected, calm 

environment of the temporarily constant tidal pool, found individuals had big sizes of 12, 13, 

14 and even to 18 mm, appeared to be in very good condition with strong green coloring and 

high photosynthetic mean yield Fv/Fm of 0.747 ± 0.021 (range: 0.720 to 0.767) after 
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collection, lasting on high levels without food supply for about two weeks than declining 

slowly to approach zero after more than a month in total (Figure 3.4.4).  

 

 
Figure 3.4.4: Photosynthetic yield Fv/Fm during periods without food supply after collection of Elysia 
viridis and Ercolania viridis from the small habitat of a tidal pool and Elysia viridis from offshore 
collections during the same time period. Tidal pool: Ercolania viridis (Banyuls-sur-Mer, France, n=3+2, start 
21st April and 21st May 2010, OOB, ca. 13-15 °C and 15-16 °C), Elysia viridis (Banyuls-sur-Mer, France, n=4, 
start 21st April 2010, OOB, ca. 13-18 °C). Offshore boat collection: Elysia viridis (Banyuls-sur-Mer, France, 
n=2(1+1)+3, start 15th/20st April and 20st May 2010, OOB, ca. 13-16 °C and 15-18 °C). 
 

 

Individuals of E. viridis obtained from offshore collections from mixed substrates (including 

e. g. Posidonia sp. and Halimeda tuna) during the same time period, were visibly smaller in 

size with 9.4 ± 2.2 mm (range: 6 to 12 mm) and revealed overall lower photosynthetic yields 

with 0.646 ± 0.084 (range: 0.507 to 0.712) after collection, falling distinctly faster to 

approach zero (Figure 3.4.4). The latter corresponded in photosynthetic yield and retention 

duration to the exemplary collection of Figure 3.3.2 in chapter 3.3, obtained from 

C. fragile/vermilara, which was even smaller in size with 7.6 ± 1.1 mm (range: 6 to 9 mm) 

and showed only slightly higher photosynthetic yield Fv/Fm with 0.673 ± 0.043 (range: 0.601 

to 0.732), also falling to approach zero in about two weeks. Similar as described in the results 

above, again there are hints to a tendential influence of size on photosynthetic yield, but no 

evident correlation on the base of this data.  
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Elysia viridis and Ercolania viridis in the same habitat              

 

Individuals of a population of Ercolania viridis – a small species of only some millimeters 

size with cerata like Placida dendritica – living in the same small habitat of the tidal pool as 

the E. viridis individuals described above, showed very low photosynthetic yield values 

directly after collection with a mean of 0.126 ± 0.078 (range: 0.019 to 0.198) which 

approached zero already after 2 days without food supply (Figure 3.4.4), resembling results of 

P. dendritica depicted above. Of the algae Acetabularia acetabulum, Cladophora sp., 

Chaetomorpha sp., and Enteromorpha sp. found in the habitat and offered to the individuals 

of Er. viridis, only Chaetomorpha linum/aerea could be confirmed as food algae (Table 3.4.1, 

also confirmed in video recordings). The photosynthetic yield values measured in two 

individuals who could be successfully fed anew with these algae were similar to those 

measured directly after collection and similarly had approached zero already on day 3 without 

food supply (Table 3.4.1).With that, Er. viridis represents another example of a cerata-bearing 

sacoglossan species that shows fast digestion of chloroplasts in contrast to the parapodia-

bearing E. viridis, in the same habitat with the same presence of food algae in the 

environment – similar to the cerata-bearing P. dendritica which feeds on C. fragile/vermilara 

alike as E. viridis (Table 3.4.1, Figure 3.3.2 in chapter 3.3). 

 

 

Elysia crispata mangrove type and reef type – two differentiated morphotypes from 

different habitats 

 

Of Elysia crispata, a comparison of two different populations of Elysia crispata 

corresponding to Elysia crispata mangrove type and reef type with regard to their habitat 

origin was performed. As depicted in chapter 3.3, the two eco-morphotypes Elysia crispata 

mangrove type and reef type, revealed different photosynthetic performances in these two 

collection populations that stemmed from a flat, calm, sandy-muddy mangrove-near 

environment and an off-shore reef, with a more rapid decline of photosynthetic activity in the 

mangrove type than the reef type (Figure 3.3.2 in chapter 3.3). 

For E. crispata mangrove type, two algal chloroplast donors could be confirmed (Table 3.4.1). 

Of the five provided algae species which were found to be abundant in the direct environment 

of the collection site where E. crispata mangrove type individuals were collected and that had 

been provided to the starved individuals, only Caulerpa verticillata and Penicillus capitatus 



 92 

were found to evoke a distinct rising of photosynthetic yield in the examined individuals 

(Table 3.4.1) (negative feeding trials (see discussion): Penicillus lamourouxii, n=5, Halimeda 

incrassata n=5, Halimeda monile n=5). In individuals that survived a second starving period, 

the course of photosynthetic yields with replenished depots from the two different chloroplast 

donor algae was relatively similar with slightly better photosynthetic performance with 

chloroplasts from C. verticillata (Figure 3.4.5). 

 

 

 
Figure 3.4.5: Photosynthetic yield Fv/Fm of incorporated chloroplasts from two different algal donors in 
renewed feeding of individuals of Elysia crispata mangrove type which after a first period without food 
supply and chloroplast depletion were fed with either Caulerpa verticillata (group A) or Penicillus 
capitatus (group B). After collection, individuals of E. crispata mangrove type had first been held without food 
supply until photosynthetic yield had approached zero after 40 days (group A) and 54 days in (group B) and both 
groups were then fed on the following day with either Caulerpa verticillata (group A) or Penicillus capitatus 
(group B), respectively. Supply of the respective algae was stopped after 14 days and photosynthetic yield was 
observed in the following period without food supply. Elysia crispata mangrove type (Florida Keys, USA, 
n=2+1, start 20th March / 4th April 2012, MML, ca. 23-24 °C).  
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3.4.2  Transmission electron microscopy investigations 

 

Investigations with TEM were carried out to examine the incorporation of chloroplasts in 

several sacoglossan species with different capabilities of chloroplast retention as explained in 

the introduction and methods (chapters 1 and 2). The very first incorporation of chloroplasts 

of A. acetabulum in juvenile E. timida could be documented and published as displayed in 

chapter 3.2. This section here presents yet unpublished results from TEM-investigations 

performed during research stays in parallel to photobiological, behavioral and ecological 

analyses in the frame of the ASSEMBLE program with the technical assistance of Marie-Line 

Escande at the Observatoire Océanologique in Banyuls-sur-Mer, France, and along with the 

investigations described in chapters 3.2, 3.3 and 3.4.1. These TEM-investigations included 

E. timida as an exemplary species for long-term retention of chloroplasts, two exemplary 

species for intermediate, potential short- or long-term retention, E. viridis and B. mimetica, 

and two species with short-term retention or fast digestion, T. hopei and P. dendritica. In 

addition, the respective food algae were analyzed comparatively, as far as known and 

available. These comprised the food algae A. acetabulum (of E. timida), H. tuna (of 

B. mimetica), and C. fragile/vermilara (of P. dendritica and E. viridis). In coherence with the 

detection of F. petiolata as food algae and chloroplast donor for E. viridis (chapter 3.4.1), this 

algae was additionally analyzed. Of several TEM-investigations, a selection of results is 

presented here. 

 

Sea slug species with intermediate to long-term chloroplast retention 

 
Bosellia mimetica  

 

B. mimetica collected from H. tuna, were fixed with the algae for TEM on the same day (28th 

June 2011) as representatives for the natural state. In that natural state, some chloroplasts lie 

apparently intact in the cytoplasm while others appear to be in degradation states (Fig. 3.4.6). 

In some cases, several chloroplasts seem to be enclosed and digested together in a digestive 

conglomerate vessel/vacuole, where in this case, also a starch grain seems to be included (Fig. 

3.4.6). This individual was fixed for TEM directly after collection from H. tuna collected that 

day and PAM-measurements (Fv/Fm: 0.714, 0.675, 0.728), representing the natural state. Also 

in another individual representing the natural state, chloroplasts in different states were 

observed, some with dark conglomerates/droplets and some with bright conglomerates, 

apparently starch grains/granules, some with both (PAM: Fv/Fm: 0.693, 0.706, 0.649). 
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Figure 3.4.6: TEM micrographs of chloroplasts in B. mimetica, collected on 28th June 2011 from H. tuna and 
fixed on the same day, thus presenting a natural state in summer. Bright conglomerates – probably starch 
granules. Dark conglomerates or droplets – probably plastoglobuli/lipids. 
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Figure 3.4.7: TEM micrographs of chloroplasts in B. mimetica, collected on 8th/9th August 2012 from H. tuna 
and starved for 11/12 days until fixation on 21st August 2012. Bright conglomerates – probably starch granules. 
Dark conglomerates or droplets – probably plastoglobuli/lipids. 



 96 

In B. mimetica, the difference between the natural and the control state of a fed individual in 

contrast to the condition starved for 11 days was visible with more recognizable degradation 

of chloroplasts in the starved state (Fig. 3.4.7) (see above). Still, some single chloroplasts still 

appeared quite intact (Fig. 3.4.7). 

In individuals of B. mimetica that were first starved for nine or 11 days, respectively, and then 

provided with H. tuna for two days or two hours, respectively, chloroplasts in different states, 

from apparently intact to remnants could be observed as expected (Fig. 3.4.8 and 3.4.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3.4.8: TEM micrographs of chloroplasts in B. mimetica, taken on 8th July 2011 from H. tuna and starved 
for nine days with accompanying PAM-measurements until an observed feeding experiment with H. tuna on 17th 
July and continuous supply of H. tuna for two days until fixation on 19th July 2011. Bright conglomerates – 
probably starch granules. Dark conglomerates or droplets – probably plastoglobuli/lipids. 
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Figure 3.4.9: TEM micrographs of chloroplasts in B. mimetica, taken on 8th July 2011 from H. tuna and starved 
for 11 days with accompanying PAM-measurements until an observed feeding experiment with H. tuna on 19th 
July and continuous supply of H. tuna for about two hours until fixation on 19th July 2011. Bright conglomerates 
– probably starch granules. Dark conglomerates or droplets – probably plastoglobuli/lipids. 
 
 

In all states observed in individuals of B. mimetica, chloroplasts often contained many dark 

droplets (probably e. g. plastoglobuli/lipids) sometimes appearing in rows in thylakoids, 

similar as observed also in H. tuna, though chloroplasts appear in general rounder when 

incorporated in the sea slugs (Fig. 3.4.8 and 3.4.9). 
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A control individual of B. mimetica, which was collected on 16th August 2012 and kept in the 

laboratory for 13 days with supply of H. tuna before fixation, however, showed also indices 

of degradation of chloroplasts (Fig. 3.4.10), but as far as could be observed, much less than 

the starved individuals and similar to the natural state as depicted above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4.10: TEM micrographs of chloroplasts in B. mimetica, control individual of B. mimetica, which was 
collected on 16th August 2012 and kept in the laboratory for 13 days with supply of H. tuna before fixation. 
Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
 

 

Food algae of Bosellia mimetica: Halimeda tuna 

 

In H. tuna, collected on 28th June 2011 and fixed on the same day as a representative for the 

natural state, round to very elongated chloroplasts were seen, some of them with bright 

(elongated) grains, also dark droplets in rows between thylakoids (Fig. 3.4.11). The bright 

conglomerates or grains, that are depicted already for chloroplasts in B. mimetica above and 

in further algae and sacoglossan species in the following are probably starch grains/granules 

and thus considered in the following as such. The extremely elongated forms of chloroplasts 

were only observed in algae, chloroplasts incorporated in sacoglossan individuals were only 

observed with in general rounder forms as depicted above. 

 

 



 99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3.4.11: TEM micrographs of chloroplasts in H. tuna, collected in late summer on 28th June 2011 and 
fixed on the same day, thus presenting a natural state in summer. Bright conglomerates – probably starch 
granules. Dark conglomerates or droplets – probably plastoglobuli/lipids. 
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Elysia timida 

 

In a control individual of long-term retention species E. timida, that was supplied with its 

food algae A. acetabulum for about two weeks after collection, the cytoplasm of some cells 

was apparently filled with round and slightly differently patterned appearing chloroplasts 

(Fig. 3.4.12). The same was observed in another individual kept as a control or example for 

the saturated state two weeks after collection in the laboratory with supply of A. acetabulum. 

Some single chloroplasts were also observed to contain starch granules (Fig. 3.4.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.12: TEM micrographs of chloroplasts in a control individual of E. timida, which was collected on 
16th August 2012 and kept in the laboratory for 13 days with supply of A. acetabulum before fixation on 29th 
August 2012. Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
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Figure 3.4.13: TEM micrographs of chloroplasts in another control individual of E. timida, which was collected 
on 16th August 2012 and kept in the laboratory for 13 days with supply of A. acetabulum before fixation on 29th 
August 2012. Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
 
 
An individual of E. timida collected and investigated in the year ago, directly fixed after 

collection on the same day, representing the natural state, also showed incorporated 

chloroplasts in different states, some apparently containing starch granules (Fig. 3.4.14). 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.14: TEM micrographs of chloroplasts in an individual of E. timida, which was collected on 28th June 
2011 and fixed directly on the same day for TEM after PAM measurements as a representative for the natural 
state. Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
 
In an E. timida individual starved for 12 days, among different states of chloroplasts some 

apparently still intact chloroplasts were seen, some few chloroplasts seemed to contain starch 

granules (Fig. 3.4.15). Also another E. timida individual starved for 12 days showed 
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chloroplasts in different states and differently looking patterns, some appearing close to nuclei 

(Fig. 3.4.16).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4.15: TEM micrographs of chloroplasts in an individual of E. timida, which was collected on 9th 
August 2012 and kept in the laboratory for 12 days without food supply until fixation on 21st August 2012. 
Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
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Figure 3.4.16: TEM micrographs of chloroplasts in another individual of E. timida which was collected on 9th 
August 2012 and kept in the laboratory for 12 days without food supply until fixation on 21st August 2012. 
Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
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Figure 3.4.17: TEM micrographs of chloroplasts in two individuals of E. timida, which were kept in the 
laboratory without food supply for 18 or 20 days, respectively, from 30th June 2011 to 17th and 19th July 2011 
until being supplied with A. acetabulum in a feeding experiment for two days (individual figures 1-4) or about 
two hours (individual figures 5-6), respectively, until fixation on 19th July 2011. Bright conglomerates – 
probably starch granules. Dark conglomerates or droplets – probably plastoglobuli/lipids. 
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In two E. timida individuals that were kept without food supply for 18 or 20 days, 

respectively, and then supplied with A. acetabulum for two days or two hours, respectively, in 

a feeding experiment to investigate incorporation of chloroplasts, different states of 

chloroplasts were observed, sometimes in proximity to nuclei (Fig. 3.4.17), similar as 

observed also in other individuals and displayed already above. 

 

 

Food algae of Elysia timida: Acetabularia acetabulum 

 

TEM-analyses of A. acetabulum displayed round to elongated shaped chloroplasts of which 

some were observed to contain starch granules and dark conglomerates or droplets (probably 

e. g. plastoglobuli/lipids), in some cases both (Fig. 3.4.18 and 3.4.19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.18: TEM micrographs of chloroplasts in A. acetabulum, collected in late summer on 28th August 
2012 on a stone, on which they continued to grow in intact condition for three days in the laboratory where they 
were separated from their natural underground just before fixation, thus presenting a natural state in late summer 
of the annual cycle of A. acetabulum. Bright conglomerates – probably starch granules. Dark conglomerates or 
droplets – probably plastoglobuli/lipids. 
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Figure 3.4.19: A further sample of TEM micrographs of chloroplasts in A. acetabulum, collected in late summer 
on 28th August 2012 on a stone, continued to grow in intact condition for three days in the laboratory and 
separated from their natural underground just before fixation, representing a natural state in late summer of the 
annual cycle of A. acetabulum. Bright conglomerates – probably starch granules. Dark conglomerates or droplets 
– probably plastoglobuli/lipids. 
 
 

These samples of A. acetabulum had been collected in late summer on 28th August 2012 on a 

stone, on which they continued to grow in intact condition for three days in the laboratory 

where they were separated from their natural underground just before fixation, thus presenting 

a natural state in late summer of the annual cycle of A. acetabulum. In another individual 

investigated in the end of June the year before (28th June 2011), freshly collected and directly 

fixed, a similar picture was observed with chloroplasts looking very similar, some containing 

starch granules or dark droplets or both.  
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Elysia viridis  

 

In an individual of E. viridis investigated in 2011, fixed directly after collection from 

C. fragile/vermilara on the same day, thus representing the natural state, chloroplasts in 

different states of degradation were observed and some apparently containing starch granules 

(Fig. 3.4.20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.20: TEM micrographs of chloroplasts in an individual of E. viridis, which was collected on 28th June 
2011 from C. fragile/vermilara and fixed directly on the same day for TEM after PAM measurements as a 
representative for the natural state. Bright conglomerates – probably starch granules. Dark conglomerates or 
droplets – probably plastoglobuli/lipids. 
 
 
In a control individual of E. viridis, collected from C. fragile/vermilara and kept in the 

laboratory for 12 days with supply of C. fragile/vermilara, also chloroplasts in different states 

could be observed, often appearing in proximity to nuclei, though partly appearing enclosed 

in membranes (Fig. 3.4.21). 
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Figure 3.4.21: TEM micrographs of chloroplasts in an individual of E. viridis, which was collected on 19th 
August 2012 from C. fragile/vermilara and was kept in the laboratory with further supply of C. fragile/vermilara 
during 12 days until fixation on 31st August 2012. Bright conglomerates – probably starch granules. Dark 
conglomerates or droplets – probably plastoglobuli/lipids. 
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In E. viridis originally collected from C. fragile/vermilara and then kept in the laboratory the 

first three days on the algae and then seven days without food supply, some chloroplasts 

appeared still quite intact and different states of degradation were recognizable (Fig. 3.4.22).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.22: TEM micrographs of chloroplasts in an individual of E. viridis, which stemmed from 
C. fragile/vermilara collected on 22nd August 2012 and was kept in the laboratory first for three days on 
C. fragile/vermilara until 25th August 2012, then about a week without food supply until fixation on 31st August 
2012. Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
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In E. viridis collected from F. petiolata and kept for further two weeks in a petri dish with 

supply of F. petiolata as control representative for a saturated state, round and intact 

appearing chloroplasts were observed among different states (Fig. 3.4.23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.23: TEM micrographs of chloroplasts in an individual of E. viridis, which was collected on 17th 
August 2012 from F. petiolata (collected on 13th August 2012) and was kept in the laboratory with further 
supply of F. petiolata until fixation on 29th August 2012. Bright conglomerates – probably starch granules. Dark 
conglomerates or droplets – probably plastoglobuli/lipids. 
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In E. viridis collected from F. petiolata and starved for 12 days, still many chloroplasts 

seemed to lie intact in the cytoplasm and some contained starch granules (Fig. 3.4.24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.4.24: TEM micrographs of chloroplasts in an individual of E. viridis, which was collected on 9th 
August 2012 from F. petiolata (collected on 8th August 2012) and was kept in the laboratory without food supply 
until fixation on 21st August 2012. Bright conglomerates – probably starch granules. Dark conglomerates or 
droplets – probably plastoglobuli/lipids. 
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In a parallel feeding trial to compare the incorporation of chloroplasts from 

C. fragile/vermilara and F. petiolata, individuals of E. viridis that had been either collected 

from C. fragile/vermilara or F. petiolata were kept without food supply for two days in the 

laboratory and then provided with the same algae species they had been collected from, 

respectively, for about two hours of observed feeding. In the E. viridis individuals from 

C. fragile/vermilara, chloroplasts in different states were observed, several appearing to 

contain starch granules (Fig. 3.4.25). In the E. viridis individuals from F. petiolata, also 

different states of chloroplasts were seen, many appearing intact and with the characteristic 

pattern already detected in other individuals from F. petiolata as depicted above (Fig. 3.4.26).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.4.25: TEM micrographs of chloroplasts in two individuals of E. viridis: one (picture 1-2) was collected 
on 28th June 2011 from C. fragile/vermilara and was kept in the laboratory two days without food supply, then 
supplied with C. fragile/vermilara and observed to feed on C. fragile/vermilara for about an hour until fixation 
on 1st July 2011; the second (picture 3-4) was taken from C. fragile/vermilara (collected on 31st August 2011) on 
5th September 2011 and was kept in the laboratory two days without food supply, then supplied with 
C. fragile/vermilara and observed to feed on C. fragile/vermilara for about two hours until fixation on 7th 
September 2011. Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
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Figure 3.4.26: TEM micrographs of chloroplasts in two individuals of E. viridis that were both collected from 
F. petiolata (collected on 31st August 2011) on 5th September 2011, then kept in the laboratory two days without 
food supply, then supplied with F. petiolata and observed to feed on F. petiolata for about two hours until 
fixation on 7th September 2011. Bright conglomerates – probably starch granules. Dark conglomerates or 
droplets – probably plastoglobuli/lipids. 
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Food algae of Elysia viridis: Flabellia petiolata 

 

In F. petiolata, round to partly extremely elongated chloroplasts densely packed with 

thylakoids and indices for starch granules were observed (Fig. 3.4.27 and 3.4.28).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.27: TEM micrographs of chloroplasts in F. petiolata, collected on 31st August 2011 and kept several 
days in fluent sea water in the laboratory until a piece being separated/cut for fixation on 7th September 2011. 
Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
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Figure 3.4.28: TEM micrographs of chloroplasts in F. petiolata, collected on 24th August 2012 and kept several 
days in fluent sea water in the laboratory until a piece being separated/cut for fixation on 31st August 2012. 
Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
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Food algae of Elysia viridis and Placida dendritica: Codium fragile/vermilara 

 

In TEM-micrographs of C. fragile/vermilara, chloroplasts appeared also as round to 

elongated, often narrowing to the two opposite ends in tips. Many prominent bright 

conglomerates as starch granules were recognizable. In this sample, collected on 28th August 

2012 and kept three days in fluent sea water in the laboratory until fixation, thylakoids often 

appear to be relatively ‘loosely packed’. (Fig. 3.4.29). Also a sample investigated in the year 

before, freshly collected and fixed on the same day, 28th June 2011, revealed elongated 

chloroplasts with similar forms and both starch granules and dark droplets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.29: TEM micrographs of chloroplasts in C. fragile/vermilara, collected in late summer on 28th 
August 2012 and kept three days in fluent sea water in the laboratory until fixation. Bright conglomerates – 
probably starch granules. Dark conglomerates or droplets – probably plastoglobuli/lipids. 
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Sea slug species with short-term retention or fast digestion of chloroplasts 

 

Placida dendritica  

 

In P. dendritica, different fixation states could be observed, all after collection from 

C. fragile/vermilara: Taken from C. fragile/vermilara and kept without food supply for 3 

days (natural state and starved 3 days) and for 11 days (long starvation), collected and kept 

with supply of C. fragile/vermilara for 3 days (fresh/natural state and fed), and control 

individual held for two weeks in the laboratory with supply of C. fragile/vermilara (control, 

saturated state). In the individuals with supply of C. fragile/vermilara, digestive gland cells 

were apparently filled with chloroplasts and especially with numerous prominent starch 

granules as observed also in the chloroplasts in C. fragile/vermilara described above. Also, 

chloroplasts in different degradation states and without starch granules could be seen, as well 

as appearing in proximity to nuclei (Fig. 3.4.30 and 3.4.31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.30: TEM micrographs of chloroplasts in an individual of P. dendritica, which was collected on 28th 
August 2012 from C. fragile/vermilara and was kept in the laboratory with further supply of C. fragile/vermilara 
for three days until fixation on 31st August 2012. Bright conglomerates – probably starch granules. Dark 
conglomerates or droplets – probably plastoglobuli/lipids. 
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Figure 3.4.31: TEM micrographs of chloroplasts in a control individual of P. dendritica, which was collected on 
17th August 2012 from C. fragile/vermilara (collected on 16th August 2012) and was kept in the laboratory with 
further supply of C. fragile/vermilara for 13 days until fixation on 29th August 2012. Bright conglomerates – 
probably starch granules. Dark conglomerates or droplets – probably plastoglobuli/lipids. 
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In an individual fixed in the year ago, as representing the natural state directly after fresh 

collection of C. fragile/vermilara on that day, also many chloroplasts appeared to contain 

starch grain inclusions (Fig. 3.4.32). 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.4.32: TEM micrographs of chloroplasts in an individual of P. dendritica, which was collected on 28th 
June 2011 with and from C. fragile/vermilara and was directly fixed on the same day as representative for the 
natural state. Bright conglomerates – probably starch granules. Dark conglomerates or droplets – probably 
plastoglobuli/lipids. 
 

 

In the starved individuals, only degradation states or remnants of chloroplasts were seen (and 

no starch anymore) (Fig. 3.4.33 and 3.4.34). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.33: TEM micrographs of degradation of chloroplasts in an individual of P. dendritica, which was 
collected on 28th August 2012 from C. fragile/vermilara (collected on 22nd August 2012) and then was kept for 
three days without food supply until fixation on 31st August 2012. Bright conglomerates – probably starch 
granules. Dark conglomerates or droplets – probably plastoglobuli/lipids. 
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Figure 3.4.34: TEM micrographs of degradation of chloroplasts in an individual of P. dendritica, which was 
collected on 13th August 2012 from C. fragile/vermilara (collected on 8th August 2012) and then was kept 
without food supply for 11 days until fixation on 24th August 2012. Bright conglomerates – probably starch 
granules. Dark conglomerates or droplets – probably plastoglobuli/lipids. 
 

 

 

 

Thuridilla hopei 

 

In individuals of T. hopei freshly collected and directly fixed on the same day, thus 

representing the natural state, chloroplasts in different states of degradation were observed, 

also some chloroplasts with starch granules (Fig. 3.4.35). Yield values in PAM-measurements 

before fixation were relatively high with Fv/Fm 0.614, 0.515, 0.605 (Th11-1) and 0.442, 0.510, 

0.603 (Th11-2), respectively.  

 

 

 

 

 

 



 121 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4.35: TEM micrographs of chloroplasts in two individuals of T. hopei, which were collected on 28th 
June 2011 and fixed directly on the same day as representative for the natural state (picture 1-2: Th11-1, PAM 
Fv/Fm 0.614, 0.515, 0.605; picture 3-4: Th11-2, PAM Fv/Fm 0.442, 0.510, 0.603). Bright conglomerates – 
probably starch granules. Dark conglomerates or droplets – probably plastoglobuli/lipids. 
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4 Discussion 
 
 
4.1 Photobehavior / behavioral analyses 
 
 
The results of the first study examining phototaxis in chapter 3.1 corresponded in part to the 

former results by Weaver and Clark who reported that the three ‘chloroplast symbiotic’ 

sacoglossan species Elysia tuca Marcus and Marcus 1967 (=Elysia velutinus Pruvot-Fol, 1947 

after (MolluscaBase 2019d), reference therein: (Marcus and Marcus 1967)), Elysia crispata 

and Costasiella lilianae (=Costasiella ocellifera after Clark (Clark 1984)) oriented towards 

light while the two ‘aposymbiotic’ sacoglossan species Oxynoe antillarum and Berthelinia 

carribea without chloroplasts avoided light, which could point to a possible correlation of 

chloroplasts retention and phototaxis (Weaver and Clark 1981). Investigating the two 

Mediterranean sacoglossan species Elysia timida and Thuridilla hopei, the results in chapter 

3.1 correspond in so far to the former hypothesis of Weaver and Clark depicted above, that 

both investigated species incorporate chloroplasts and both showed phototactic behavior to a 

certain degree (Schmitt and Wägele 2011). As an additional parameter, the longevity of 

functional retention of chloroplasts was taken into account in the analysis, leading to the 

result that the phototactic behavior was stronger in Elysia timida with long-term chloroplast 

retention than in Thuridilla hopei with short-term retention. Thus, the question arose, if 

species with long-term functional chloroplast retention reveal stronger evolutionary 

adaptations in relation to kleptoplasty concerning their phototactic behavior (Schmitt and 

Wägele 2011). It was inferred that the phototactic behavior is more probably to be regarded as 

an evolutionary adaptation, not as an immediate, direct influence of the chloroplasts on their 

host, which was supported by the finding of the study that juvenile Elysia timida already 

revealed strong phototaxis before the first uptake of chloroplasts (Schmitt and Wägele 2011) 

(chapter 3.1). 

Thus, further analyses on phototaxis were performed including more species with different 

capacities of chloroplast retention and correspondingly taking the factor of longevity of 

functional chloroplast retention more into account (chapter 3.3). Included were several 

species with different capacities of chloroplast retention which were in parallel examined with 

long-term photobiological analyses. These included most of the few sacoglossan species 

which are known as the “top-performers” of long-term functional retention of chloroplasts: 

Elysia timida, Elysia crispata (mangrove type and reef type), Elysia viridis and 

Plakobranchus ocellatus. Furthermore Bosellia mimetica, Thuridilla hopei and Placida 
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dendritica were included as further comparative sacoglossan species, and additionally the 

non-sacoglossan nudibranchs Cratena peregrina and Flabellina affinis as comparison without 

incorporation of chloroplasts. The more extended analyses in chapter 3.3 with an overview 

including more species revealed that the background of photobehavior turns out to be more 

complex than formerly assumed and the former hypothesis cannot be confirmed in this simple 

way. On the contrary, in this study, the non-sacoglossan species C. peregrina and F. affinis 

without chloroplasts and the sacoglossan P. dendritica with fast digestion of chloroplasts 

revealed a highly positive phototactic reaction while several species with either long 

chloroplast retention capacities as P. ocellatus or mediate retention profiles rather reacted 

with caution or avoidance versus direct light exposure, even in the comparatively low light 

intensities (chapter 3.3). 

Concerning phototactic behavior in chloroplast-carrying sacoglossan sea slugs there is a 

potential conflict between exposure of chloroplasts to light for functioning of photosynthesis 

on one hand, and on the other hand the danger of photodamage of chloroplasts due to high 

solar irradiance. Giménez Casalduero and Muniain reported a benefit of exposure of the 

chloroplasts for nutritional profits from photosynthesis in experiments, in which E. timida 

kept in the dark and thus deprived of the photosynthetic products of their chloroplasts had 

lower survival rates and stronger size decreases opposed to those kept in light (Giménez 

Casalduero and Muniain 2008). Recently, also Cartaxana et al. report experiments with the 

conclusion that photosynthesis of its kleptoplasts is nutritionally relevant in E. viridis 

(Cartaxana, Trampe et al. 2017). The exposure to light for the photosynthetic function of the 

kleptoplasts might imply also exposure to predators and currents, however, and irradiances 

higher than a well-tolerated maximum might damage the kleptoplasts (Monselise and Rahat 

1980). While the threat of predators might be potentially decreased by self-defense with toxic 

or irritating secretions and/or camouflaging colorations in sacoglossans (Cimino and Ghiselin 

1998, Marin and Ros 2004), the impairment of kleptoplasts through too high irradiation 

remains a danger (Jesus, Ventura et al. 2010). Also Viera et al. reported a negative effect of 

strong light exposure on the photosynthetic activity of kleptoplasts in E. viridis as individuals 

kept in “high” light conditions of 140 µmol photons m-2 s-1 showed a distinctly more rapid 

decrease of photosynthetic activity with retention lasting only 6 to 15 days opposed to the 

much slower decrease of photosynthetic activity in low light conditions of 30 µmol photons 

m-2 s-1 with retention lasting from 15 to 57 days (Vieira, Calado et al. 2009). Thus, the 

potentially balancing behavior concerning phototaxis observed in the various sacoglossan 

species in chapter 3.3 could possibly make sense as evolutionary adaptations in relation to 



 124 

functional chloroplast retention. A recent study assumes also specific adaptations with reports 

that kleptoplast photoacclimation state to different light conditions modulated the 

photobehavior of the sea slug E. viridis (Cartaxana, Morelli et al. 2018). 

For E. timida, further specialized protection mechanism against the photodamage problem are 

described and were analyzed in more detail in this Ph.D. thesis. Opening or closing the 

parapodia to different degrees in E. timida in different surrounding light intensities 

automatically either forms a natural protection shield for the embedded chloroplasts in the 

inside of the parapodia or exposes them like a leaf. First described by Rahat and Monselise 

(Rahat and Monselise 1979, Monselise and Rahat 1980), this specialized photobehavior of 

E. timida could be confirmed by the results in this thesis and analyzed in more detail (Schmitt 

and Wägele 2011) (chapters 3.1 and 3. 3). In the analyses in chapter 3.1, the emission of the 

fluorescence through the parapodia in individuals of E. timida was used as a factor to 

indirectly measure the exposure of the chloroplasts. The momentary ground fluorescence 

values (F0’) increased in strong correspondence with increasing parapodial opening level, 

resulting in a significant correlation. This clearly reflected the efficiency of the behavior to 

either opening of the parapodia and exposing the incorporated chloroplasts to light or closing 

the parapodia leading to less light entering the parapodia and therefore protection of the 

underlying chloroplasts (Schmitt and Wägele 2011). This constitutes a highly specific 

adaptation enabling E. timida to reside in shallow light-exposed areas with potential flexible 

adaptation to current light conditions as could also be confirmed by the observations of 

E. timida in the natural environment in chapter 3.3. 

Jesus et al. reported furthermore a capability in E. timida of combining the behavioral photo-

regulation mechanism (opening/closing the parapodia) with a functional physiological photo-

regulation mechanism (xanthophyll cycle) for longer conservation of maximal photosynthetic 

capacity (Jesus, Ventura et al. 2010). Probably further photoprotection mechanisms exist, also 

in other species. Cartaxana et al. described in their recent publication modulation of parapodia 

in reaction to light irradiance in E. viridis (Cartaxana, Morelli et al. 2018). In investigations of 

this thesis, individuals of the E. crispata mangrove type were also observed with hints 

pointing to that behavior, but the opening and closure of parapodia could not (yet) be 

distinguished so clear. Within all the observations in the frame of this thesis, E. timida was 

the only species observed to reveal this behavior in this special distinct form, which might 

possibly be also connected to its characteristic natural body structure, with a distinct division 

of certain locations of chloroplast incorporation mainly in the inside of the parapodia, and 

white parapodial outsides as potential protection shields. These specific body structures and 
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behavior in E. timida could potentially represent specialized adaptations in relation to long-

term retention of functional chloroplasts with a flexible potential of exposure of kleptoplasts 

for photosynthetic benefit as well as protection from damage through too high irradiations, 

enabling functionality of incorporated chloroplasts for among the most extended durations 

known so far (Schmitt and Wägele 2011) (chapters 3.1 and 3.3).  

 

 

4.2 Laboratory culture system investigations – Elysia timida as a model 

organism  
 

The laboratory culture system with E. timida could successfully be established and several 

investigations with the advantages of the controlled conditions could be performed (Schmitt, 

Händeler et al. 2014) (chapter 3.2). Several characteristics of the species E. timida were 

shown to be advantageous for laboratory culturing. For example, specific traits concerning 

reproduction turned out to be beneficial, like mating habits, as well as size, stability and 

coloration of egg masses and a mainly intracapsular development with only a potential short 

free-swimming veliger phase of three days, as in parts previously described (Marín and Ros 

1993, Schmitt, Anthes et al. 2007, Schmitt, Händeler et al. 2014). Furthermore, in contrast to 

former reports of juvenile E. timida feeding first on Cladophora dalmatica Kützing 1843 

(Kützing 1843) before starting to feed on Acetabularia acetabulum as preferred food algae in 

adults observed by Marin and Ros (Marín and Ros 1993), our juvenile E. timida individuals 

fed directly on young, non-calcified, stalks of A. acetabulum and rejected all samples of 

different Cladophora species offered in our investigations (Schmitt, Händeler et al. 2014). 

This could possibly indicate incipient speciation – several cases of variations in E. timida, 

differing in morphological, reproductive or other features, including genetic differentiations 

were reported (Giménez-Casalduero, Muniain et al. 2011), but further analyses would be 

needed to clarify this. For the culturing, our finding that juveniles fed directly on 

A. acetabulum was advantageous, as the laboratory culture system could be established with 

only one food algae for the whole life cycle of E. timida (Schmitt, Händeler et al. 2014).   

In the frame of the laboratory culture system, several trials could be performed with 

respective controlled conditions and the focus of the analyses on specific factors. Data on 

long-term photosynthetic activity of incorporated chloroplasts in E. timida individuals in the 

laboratory culture during periods without food supply corresponded to those or were longer 

lasting than in reports in the literature (Händeler, Grzymbowski et al. 2009, Jesus, Ventura et 
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al. 2010, Wägele, Deusch et al. 2011). A three-phase analysis of the long-term photosynthetic 

activity of incorporated chloroplasts in E. timida individuals in the laboratory culture with 

three trial groups with different starting points (winter, spring, summer) indicated a potential 

influence of the different temperature conditions (reflecting seasonal influences) the 

individuals were exposed to, on durability and effectivity of long-term photosynthetic activity 

of incorporated chloroplasts (Schmitt, Händeler et al. 2014). Based on this, further 

investigations by Laetz et al. also indicated an influence of temperature on photosynthetic 

activity in kleptoplasts in E. timida (Laetz and Wägele 2018b). In another study, Laetz et al. 

also supposed temperature as a potential influencing factor on photosynthetic starch 

production in kleptoplasts in E. timida (Laetz, Moris et al. 2017). An influence of temperature 

of the photosynthetic activity of incorporated chloroplasts seems likely. In this context, 

several different optimal temperatures for carbon fixation are described for the kleptoplasts in 

some sacoglossan sea slugs, e. g. 25 °C for E. timida from Mar Menor, Spain (Marin and Ros 

1989) and astoundingly two very different temperatures from two species from Florida, 

Costasiella ocellifera and Elysia tuca Marcus and Marcus 1967 (=Elysia velutinus Pruvot-

Fol, 1947 after (MolluscaBase 2019d), reference therein: (Marcus and Marcus 1967)) with 

also 25 °C (Clark, Jensen et al. 1981) and 15 °C (Stirts and Clark 1980), respectively. 

Within the controlled laboratory culture conditions, we could also demonstrate for the first 

time the capability of E. timida to incorporate chloroplasts from another algal donor, namely 

Acetabularia peniculus (R. Brown ex Turner) Solms-Laubach 1895 (Solms-Laubach 1895) – 

which is not abundant in its natural environment (as far as stand of knowledge) – and to 

perform long-term retention with it (Schmitt, Händeler et al. 2014). Previously, the stand of 

reporting was a rather specific food preference of adult E. timida for A. acetabulum (Marín 

and Ros 1992), plus the primary juvenile diet on C. dalmatica (Marín and Ros 1993). One 

publication stated feeding of E. timida on other algae in laboratory trials, but did not specify 

the respective algal species (Giménez-Casalduero, Muniain et al. 2011). Comparing the 

photosynthetic activity of chloroplasts from the two different algal donors in E. timida 

individuals, a long-term experiment in the laboratory culture system revealed a very similar 

outcome concerning durability and effectivity of photosynthetic capacities of kleptoplasts 

from A. acetabulum and A. peniculus – showing that chloroplasts from two different (even if 

related) algal donors can result in similar photosynthetic long-term capacities in one sea slug 

species (Schmitt, Händeler et al. 2014). In all, the experiments performed in the laboratory 

culture system could profit from the controlled defined conditions and the advantage of 

known history of individuals, e. g. the clear definition that measured photosynthetic activities 
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stemmed only from clearly determined chloroplasts of A. acetabulum and A. peniculus. Thus, 

advantages of laboratory systems to study kleptoplasty in sea slugs could be confirmed. 

Analyses of sea slugs in controlled laboratory settings or even in specialized laboratory 

cultures provide advantages as e. g. permitting long-term studies under controlled conditions 

and with individuals of known individual history, as well as the opportunity of developmental 

investigations (Rumpho, Pelletreau et al. 2011, Pelletreau, Worful et al. 2012, Bhattacharya, 

Pelletreau et al. 2013, Pelletreau, Weber et al. 2014, Schmitt, Händeler et al. 2014, Laetz and 

Wägele 2017, Chan, Vaysberg et al. 2018). 

 

 

4.3 Cell biological investigations by TEM  

 
In the ultrastructural investigations of evolutionary adaptations in relation to kleptoplasty, 

juvenile E. timida could be analyzed with TEM concerning the very first intake of 

chloroplasts in their life feeding the first time on A. acetabulum (Schmitt, Händeler et al. 

2014) (chapter 3.2). These TEM micrographs revealed clear differences of the chloroplasts 

from A. acetabulum integrated into the juveniles’ digestive gland cells compared to those of 

C. dalmatica documented in the literature for juvenile E. timida (Marín and Ros 1993). Also, 

the process of first uptake and degradation of chloroplasts could be documented in our 

electron micrographs; degradation had already begun only two to three hours after the first 

initiation of feeding as shown by tissues fixed two to three hours after feeding start (Schmitt, 

Händeler et al. 2014). Most probably, the first chloroplasts are ingested intact, but then 

rapidly digested for the high initial nutrient need of juveniles for their growth and 

development. In their reports of chloroplasts from C. dalmatica in juvenile E. timida, Marín 

and Ros describe that those chloroplasts were surrounded by “host membranes of the 

phagocytic vacuole” (p. 98) (Marín and Ros 1993). In our electron micrographs of juvenile 

E. timida, some chloroplasts seem to be embedded intact in the cytoplasm with direct contact 

to the cytosol, while around others a distinct gap between chloroplast and cytoplasm was 

observed, similar to the gap around chloroplasts of C. dalmatica in juvenile Elysia timida 

shown by Marín and Ros (Marín and Ros 1993). Around those gaps, and especially around 

aggregations of several chloroplasts, fragments resembling an enclosing phagocytic 

membrane were recognizable in our electron micrographs (Schmitt, Händeler et al. 2014). 

The results point to a possible correlation between degradation (digestion) and the presence of 

a phagocytic membrane – which however would have to be examined in more detail by 
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further investigations. In accordance to this assumed relation would be the description of 

Marín and Ros of phagocytic membranes around the chloroplasts in juvenile E. timida 

probably being about to be degraded in contrast to intact chloroplasts without an additional 

layer of phagocytic membranes in adult E. timida (Marín and Ros 1993). Also corresponding 

to this assumed relation, Evertsen et al. described phagosome membranes around chloroplasts 

in P. dendritica in relation to fast degradation in contrast to intact chloroplasts lying directly 

in the cytoplasm in E. viridis with long-term functional retention (Evertsen and Johnsen 

2009). Martin et al. depicted observations of differences in the way chloroplasts are 

enveloped in different sacoglossan species with various capacities of chloroplast retention that 

point into the same direction that in sea slugs’ cells, chloroplasts surrounded by membranes or 

‘envelopes’ are digested more rapidly, and chloroplasts without those ‘envelopes’ can be 

maintained longer (Martin, Walther et al. 2015). 

The assumption that chloroplasts of A. acetabulum in juvenile E. timida are primarily digested 

in the first time after their initial intake is also in accordance with findings of Laetz et al. that 

functional kleptoplasty was not established until after at least 15 days (of feeding) post 

metamorphosis in juvenile E. timida (Laetz and Wägele 2017). For juvenile Elysia chlorotica, 

Pelletrau et al. also reported that chloroplasts are degraded in the first time and an initial 

feeding phase of a week was needed until degradation decreased and kleptoplasty was 

established (Pelletreau, Worful et al. 2012).  

Further TEM-investigations presented with a selection of results in the further results section, 

provided a comparative overview over several sea slug species with different chloroplast 

retention and their respective food algae. In general, chloroplasts appeared more round when 

incorporated in the sea slugs than in the algae where they displayed more elongated shapes, 

which indicates a special incorporation in the sea slugs. Corresponding to the feeding 

experiments in the further results section, indicating good long-term retention capacities for 

chloroplasts from F. petiolata in E. viridis, many chloroplasts were observed in E. viridis 

from F. petiolata with round and intact appearance and a characteristic pattern, also after a 

certain time of starving. Incorporated chloroplasts in E. timida revealed a very special 

diversity of patterns which confirmed former own TEM results (Wägele, Deusch et al. 2011, 

Schmitt, Händeler et al. 2014). These special diverse patterns could point to a specialized way 

of chloroplast incorporation in E. timida in connection with its good capabilities for long-term 

chloroplast retention, which however would have to be clarified by further investigations. 

Different states of chloroplast degradation were observed also in freshly collected and control 

individuals and have to be interpreted carefully due to a limited knowledge concerning history 
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of collected individuals and factors in the process of retention and digestion. The same 

accounts to the appearance or presence of starch granules which should be interpreted 

carefully due to the general complex, flowing, nature of the physiological processes and the 

general difficulties of clear determination with TEM. The TEM overview of insights into 

incorporation of chloroplasts in various sea slugs in this thesis provided a general spectrum 

picture of different states of chloroplast incorporation from apparently intact, containing 

photosynthesis products as e. g. starch grains, and different states of degradation – and 

represents basis findings for further investigations. Laetz et al. described quantified starch 

accumulation by kleptoplast photosynthesis during starving periods in E. timida – serving as 

potential nutrient reserves being digested gradually as needed, as subsequent degradation was 

observed in the later course of starving (Laetz, Moris et al. 2017). In a comparative study, 

Laetz and Wägele did not find the same starch accumulation in Elysia cornigera, however, it 

has to be taken into account, that E. cornigera was fed with A. acetabulum for comparison 

equality with E. timida, but this is another Acetabularia-species than E. cornigera feds on 

naturally (Laetz and Wägele 2018a). Laetz and Wägele found a certain amount of starch 

grains also in A. acetabulum and in unstarved individuals of E. timida and E. cornigera (Laetz 

and Wägele 2018a), which could of course also be a product of photosynthesis while 

chloroplasts were still in the algae. With these results, the findings in this present thesis are 

thus overall in coherence, as here starch grains were observed to a certain degree in different 

states in the various species, also in natural, presumably saturated states of sea slugs and in 

algae. With investigations on retention of functional kleptoplasts and digestive activity in 

E. timida, E. viridis and T. hopei, Laetz et al. found furthermore that in digestive processes the 

number of chloroplasts and lysosomes was indirectly proportional, with decreasing plastid 

density when starvation begins (Laetz, Rühr et al. 2016). This described progressive 

degradation of chloroplasts, as also illustrated by Laetz and Wägele (Laetz and Wägele 

2018a) with vacuoles containing fluid and/or fragments of chloroplasts, is also in coherence 

with the TEM-investigations in this thesis. 

 

 

4.4 Investigations in near-natural and natural settings 

 
With the underwater investigations in form of PAM-measurements of photosynthetic activity 

in E. timida and E. crispata mangrove type in combination with environmental factors on site 

in their natural habitats, presented in chapter 3.3, this Ph.D. thesis provides the first data of 



 130 

the photosynthetic yield ΔF/Fm’ of kleptoplasts of two sacoglossan species underwater in 

their natural habitat in relation to environmental light conditions. Photosynthetic sea slugs 

have been extensively investigated under laboratory conditions as described above, but 

reports of investigations in their natural environment are lacking up to now. 

The underwater studies showed distinct differences between the two sacoglossan species 

E. timida and E. crispata mangrove type concerning their habitats and environmental 

conditions and photosynthetic activities in relation to environmental conditions. Kleptoplast 

photosynthetic activity revealed variations during the course of the day in both species 

E. timida and E. crispata mangrove type in correlation to light conditions in the natural 

environment which are varying depending on habitat, weather, etc. This resulted overall in the 

same correlation of lower photosynthetic yield ΔF/Fm’ with higher solar irradiation as well as 

higher photosynthetic yield ΔF/Fm’ with lower solar irradiation, which was even more 

prominent in the food algae A. acetabulum of E. timida. As discussed in more detail in 

chapter 3.3, concerning this correlation, the special character of the PAM-measurements in 

relation to the complex photosynthetic mechanisms has to be taken into consideration for the 

interpretation of the results, as in contrast to the maximum quantum yield of PS II, the 

effective quantum yield ΔF/Fm’ under ambient light conditions is measured here, which 

decreased with increasing irradiation. The relative rate of electron transport (ETR), however, 

including the quantum flux density of photosynthetically active radiation of the ambient light 

as a multiplication factor, provided measurements of photosynthetic rate here, revealing the 

corresponding positive correlation of higher ETR with higher solar irradiation (chapter 3.3). 

Interestingly, fluorescence F in individuals of E. timida measured underwater in their natural 

habitat was always distinctively lower (about half as much) than in their food algae 

A. acetabulum, which might be caused by the shading effect of the parapodia, diminishing 

emission of fluorescence, that was investigated in this Ph.D. thesis also under semi-natural 

laboratory conditions in the first study (Schmitt and Wägele 2011) (chapter 3.1). 

The results of investigations of long-term capacities of retention of functional chloroplasts in 

the various sacoglossan species in chapter 3.3 could partly confirm former results but also 

showed new results as described in chapter 3.3. The profiles of capacities of functional 

chloroplast retention differed extremely in the various investigated species with P. ocellatus 

revealing outstanding capacities of long-term chloroplast retention compared to the other 

species. Thus, the results of observations of long-term kleptoplast retention in P. ocellatus 

over seven months could confirm P. ocellatus as one of the few species with extremely long 

durations of chloroplast retention and provided the longest period measured so far (chapter 
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3.3). As depicted in more detail in the discussion in chapter 3.3, reports about chloroplast 

retention in P. ocellatus were until now only restricted to shorter periods of actual observation 

and partly subsequent estimations of the total potential duration (Evertsen, Burghardt et al. 

2007, Händeler, Grzymbowski et al. 2009, Christa, Wescott et al. 2013, Yamamoto, Hirano et 

al. 2013, Wade and Sherwood 2017). An explanation for observed differences in kleptoplast 

retention capacities in P. ocellatus could be ecological differentiation and varying chloroplast 

donors, as broad and diverse food spectra have been described for P. ocellatus from different 

regions (Maeda, Hirose et al. 2012, Christa, Wescott et al. 2013, Wade and Sherwood 2017). 

Due to its high intraspecific diversity, P. ocellatus is also defined as species complex of 

possibly ten species with diverse distribution and nutrition profiles (Krug, Vendetti et al. 

2013, Wade and Sherwood 2017). The individuals of P. ocellatus investigated in this Ph.D. 

thesis stemmed from the Philippines, for which origin Christa et al. described a broad food 

spectrum in P. ocellatus, comprising species of the genera Halimeda, Caulerpa, Udotea, 

Acetabularia and further unidentified algae – with emphasizing especially Halimeda 

macroloba with regard to its potential implication for long-term retention (Christa, Wescott et 

al. 2013), which is discussed also below in context to the overall observed inter- and 

intraspecific variation in retention capacities in this thesis. 

Also, differences in photosynthetic performance were demonstrated in chapter 3.3 between 

the populations of E. crispata reef type and mangrove type, which might indicate ecological 

differentiation and different algal chloroplast donors, as Krug et al. described ecological 

differentiation of the two different morphotypes of E. crispata reef type and mangrove type 

(Krug, Vendetti et al. 2016). As a contrasting result of investigation of species-specific long-

term retention profiles in chapter 3.3, individuals of E. viridis collected from its known food 

algae C. fragile/vermilara showed shorter retention duration than expected due to former 

reports of Evertsen and Johnsen of very long high photosynthetic capacities of functional 

chloroplasts in E. viridis (Evertsen and Johnsen 2009). Thus, the results in chapter 3.3 

revealed E. viridis as a species with rather intermediate than long-lasting chloroplast 

retention. They corresponded more to shorter retention duration in E. viridis reported by e. g. 

Viera et al. (Vieira, Calado et al. 2009) and thus potentially confirms E. viridis as an example 

for a species with strong intraspecific variations in capacities of chloroplast retention in 

different habitats and geographical regions and also in relation to different algal food sources, 

which possibly indicates a high degree of adaptation and differentiation into a species 

complex with various ecological types (Evertsen and Johnsen 2009, Rauch, Tielens et al. 

2018). Baumgartner et al. described distinct differences in photosynthetic capabilities and 
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resulting parameters like growth efficiency in E. viridis due to whether they acquired ‘highly 

functional kleptoplasts’ from C. fragile or kleptoplasts ‘of limited functionality’ from 

Cladophora rupestris (Baumgartner, Pavia et al. 2015). Results from feeding experiments 

presented in the further results section 3.4 also revealed distinct differences between various 

collection populations of E. viridis, e. g. from different habitats and different food sources, 

and thus pointed to the same direction, as explained in more detail below in section 4.5. 

 

 

4.5 Feeding experiments and inter- and intra-specific differences 

 
Besides potential influences on photobehavior like described above in E. timida, the special 

parapodia-bearing body form could also have some potential implications for the capacity of 

chloroplast retention, as the pattern was described that sea slug species known with the 

highest durations of long-term retention of functional chloroplasts are species with wing-like 

parapodial lobes (Händeler, Grzymbowski et al. 2009, Rumpho, Pelletreau et al. 2011). As an 

exception, the cerata-bearing Limapontioidea Costasiella ocellifera is described with 

functional kleptoplasty with durations of several weeks and some other species of the genus 

with short-term chloroplast retention – thus the origin of functional kleptoplasty is assumed to 

have evolved earlier than at the base of the Plakobranchoidea, but at the base of the more 

basal Plakobranchacea or with potential multiple origins (Christa, Händeler et al. 2015). 

Further analyses comprising more species and details will potentially show clearer relations. 

Up to now, the known sea slug species with the longest durations of long-term retention of 

functional chloroplasts during several months are parapodia-bearing forms. This former 

general pattern could be confirmed in this study, concerning the distinct differences between 

the parapodia-bearing E. viridis and the cerata-bearing P. dendritica collected from the same 

food algae Codium fragile/vermilara which have formerly already been described by Evertsen 

et al. (Evertsen and Johnsen 2009). 

In addition, we found E. viridis and the cerata-bearing Ercolania viridis living sympatrically 

in a tidal pool, showing the same difference, with the photosynthetic performance of 

Er. viridis strongly corresponding to those of P. dendritica, as described in the further results 

section 3.4. Interestingly, even in a saturated state, the two cerata-bearing sea slug species 

P. dendritica and Er. viridis always had photosynthetic yields far below those of their 

respective food algae, while E. viridis and the other observed sea slug species with longer 
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retention of chloroplasts showed photosynthetic yields resembling those of their food algae 

(chapter 3.4, Table 3.4.1). 

Individuals of the tidal-pool-population of E. viridis were remarkably bigger in size and 

revealed distinctively higher longer-lasting retention of chloroplasts than the other collection 

populations from the sea during the three years of investigations. This might have been 

caused by the different habitat conditions and/or different nutrition sources. As explained 

above, e. g. Baumgartner et al. described better retention capacities and increased growth 

rates in E. viridis feeding on C. fragile compared to E. viridis feeding on C. rupestris 

(Baumgartner, Pavia et al. 2015). In addition to the formerly described food algae 

C. fragile/vermilara, the results in chapter 3.4 could detect F. petiolata as algal food and 

chloroplast donor in E. viridis, with even a tendency for better retention capacities with 

chloroplasts from F. petiolata. When both algal donors were supplied to E. viridis individuals 

in a further additional trial, photosynthetic yields remained high with supply of the one or the 

other algae. This could possibly imply that either the incorporated chloroplasts depots are 

maintained untouched and newly uptaken chloroplasts are digested or that degrading 

chloroplast depots are refilled by newly uptaken chloroplasts. Evertsen et al. reported in 

relation to a former study by Gallop et al. that feeding individuals replaced 75% of their 

chloroplasts during a nine-day period, while starving individuals only lost 15% in the same 

period (Evertsen and Johnsen 2009).      

The reversed trial of trying to feed E. viridis individuals originally collected from F. petiolata 

after a starvation period with C. fragile/vermilara, did not function, which could possibly hint 

to individual food preference and adaptation, finally leading to ecological differentiation. If 

eggs of sea slugs are deposited on or close to colonies of specific potential food algae and 

juveniles grow up on these colonies, they might adapt to the respective algae.  

In our feeding experiment with individuals of E. crispata mangrove type, we could identify 

out of an assortment of algae abundant in the environment the two algal species Caulerpa 

verticillata and Penicillus capitatus as chloroplast donors, which resulted in only slightly 

different photosynthetic profiles of chloroplast retention (chapter 3.4). Curtis et al. described 

E. clarki – which probably corresponds to the E. crispata mangrove type as explained in the 

introduction – to feed on different algae, with nutrition preferences of juveniles differing from 

those of adults (Curtis, Pierce et al. 2007).  

For some sacoglossan species, very specialized food preferences are described, e. g. E. timida 

with a close relationship to A. acetabulum despite of other algae species present in the 

environment which serve other sacoglossan species as food algae and chloroplast donor, e. g. 
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C. fragile/vermilara (Marín and Ros 1992). Our previous laboratory trials, however, revealed 

that E. timida also accepted A. peniculus, which is not abundant in its natural environment, as 

a food algae and chloroplast donor resulting in similar photosynthetic capacities (Schmitt, 

Händeler et al. 2014) (chapter 3.2). Also in the present study, E. viridis individuals originally 

stemming from C. fragile/vermilara could successfully replenish with chloroplasts from 

F. petiolata and reach even better photosynthetic capacities than before (chapter 3.4). In 

conclusion, there are specialized food preferences developed in sacoglossan sea slugs, but 

apparently also a certain potential flexibility for adaptation to other algal sources. In an 

overview about various sacoglossan species with their food sources analyzed by barcoding 

and in relation to chloroplast retention, Christa et al. report that long-term retention forms can 

as well be specialized as E. timida feeding on A. acetabulum, but also polyphagous as 

P. ocellatus feeding on several algae species, and all in all determined the algal species 

apparently essential for long-term chloroplast retention to belong to the genera Halimeda, 

Caulerpa, Penicillus, Avrainvillea, Acetabularia and Vaucheria (Christa, Händeler et al. 

2014). In a former study, as cited also above, Christa et al. already reported barcoding 

analyses identifying a broad food spectrum in P. ocellatus, comprising species of the genera 

Halimeda, Caulerpa, Udotea, Acetabularia and further unidentified algae – with an emphasis 

on Halimeda macroloba, especially concerning contribution to long-term retention (Christa, 

Wescott et al. 2013). 

Simple observational feeding trials as in the present investigations can in general only serve in 

limited way as positive evidence, as negative reactions in feeding trials can be caused by 

multiple factors, e. g. individuals not being in good condition anymore due to preceding 

starving, local or temporary feeding preferences or avoidances due to various factors etc. For 

example, feeding trials with Halimeda incrassata (n=5) in E. crispata mangrove type 

individuals in chapter 3.4 were negative, though H. incrassata was reported as a potential 

food source by barcoding analyses in formerly named “E. clarki“ (Christa, Händeler et al. 

2015) which should correspond to the E. crispata mangrove type. Christa et al. criticized that 

their analyses applying the marker rbcL might not have been able to detect Caulerpa species 

as potential food sources as they could identify several Caulerpa species analyzing Elysia 

tomentosa, Volvatella viridis and P. ocellatus with the application of tufA as barcoding 

marker (Christa, Händeler et al. 2015). In the present feeding observations in chapter 3.4, 

C. verticillata could be confirmed as potential chloroplast donor in individuals of the 

E. crispata mangrove type with following chloroplast retention of at least about a week 

without food supply in individuals that had been starved before and then supplied newly with 
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C. verticillata (chapter 3.4). The advantage of a methodical procedure like this, is that 

chloroplasts from special single algal donors can be analyzed. However, this does not 

represent the natural state in which sea slugs have potential access to various algal species and 

has further methodical limitations, e. g. clear differentiation of the algal species. Nevertheless, 

the present feeding analyses in chapter 3.4 can provide useful fundamental results which can 

also provide a basis for further analyses. 

The parameter of size of the investigated individuals should also be taken carefully into 

account in future analyses of long-term photosynthetic capacities of integrated chloroplasts. 

The results here pointed to e. g. a tendency in individuals of E. viridis and B. mimetica of 

better or longer retention of functional chloroplasts with bigger size. It is obvious that within a 

sea slug species, individuals of bigger size have most probably better or more capacities to 

store chloroplasts and with more chloroplast deposit capacities also longer-lasting residue to 

degrade time-after-time. Even more as smaller individuals if still in the process of growing 

will probably digest more chloroplasts to obtain energy for their growth, as e. g. Laetz and 

Wägele described that juveniles primarily digest first meals of chloroplasts and that functional 

kleptoplasty is not developed in E. timida until after at least 15 days post-metamorphosis, 

with individuals even after 25 days post-metamorphosis not surviving starvation to a similar 

extent as adults, but rather in a still uncomplete, transient form of kleptoplasty (Laetz and 

Wägele 2017). On the other hand, the possible advantages from bigger size and with that 

bigger chloroplast deposit capacity are probably limited by various factors as e. g. age, 

condition and death of the individuals and a mixture of other factors which play a role in the 

life of the free-living individuals whose life-histories before collection are unknown. 

Concerning the different sea slug species, the species with higher durations of long-term 

retention of chloroplasts are mostly also species which are slightly bigger in sizes, more in a 

centimeter-scale than in a millimeter scale, however, more has to be known to have a clearer 

overview over these potential relations and factors. Only several sacoglossan species have 

been investigated while others not yet and even for the species under investigations still a lot 

of questions remain open up to now in the exploration of this fascinating, yet still enigmatic 

phenomenon.  
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5 Conclusions 
 

In conclusion, the following summarized major findings could be achieved: 

On a cell biological level, a comparative overview of different species could be provided and 

indices for special adaptations in relation to incorporation of chloroplasts were found. As one 

major finding, the very first uptake of chloroplasts from their food alga Acetabularia 

acetabulum could be revealed by transmission electron microscopy in juvenile Elysia timida. 

Based on this finding, that the whole life cycle of Elysia timida can be completed with only 

one food alga, a laboratory culture system could be successfully established. The advantages 

of the laboratory culture system with E. timida as a model organism could be demonstrated. 

In a trial within the culture system, it could be revealed that E. timida can use also 

chloroplasts from another chloroplast donor – Acetabularia peniculus – to establish 

kleptoplasty with similar retention capabilities as with Acetabularia acetabulum. 

Furthermore, effects of temperature on capacities of long-term photosynthetic activity were 

indicated by experimental trials under the controlled laboratory conditions.  

With the measurements of over seven months of long-term retention in Plakobranchus 

ocellatus, the longest period so far could be documented. The results of the feeding 

experiments presented in the further results section provide basic findings; several algal 

chloroplast donors could be confirmed and it could be revealed that Elysia viridis also fed on 

and incorporated chloroplasts from Flabellia petiolata, with even partly better capacities of 

chloroplast retention than with Codium fragile/vermilara. Overall, differences between 

species-specific spectra of photosynthetic capacities in various sacoglossan seas slug species 

could be confirmed and also considerable variation within. Variations within the frame of the 

species-specific spectra of the photosynthetic capacities of integrated chloroplasts can in free-

living sea slugs potentially be influenced by various factors as e. g. season, temperature, food 

availability, light conditions and further environmental parameters, as well as age, size and 

overall condition of the individuals. Ecological parameters in the natural environment, 

especially concerning light conditions, could be demonstrated to affect photosynthetic activity 

of kleptoplasts, which constituted the first demonstration of this kind. Photobehavior was 

found to be more complex than assumed in former hypotheses and could be confirmed as 

forming specific adaptations in relation to incorporation of chloroplasts. In E. timida, the 

efficiency of the specialized photobehavior of parapodia modulation could be demonstrated 

by the effect of the emission of fluorescence F and the specialized photobehavior could also 

be confirmed in underwater investigations. All in all, the complete explanations of the 
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specialized phenomenon of chloroplast incorporation in sacoglossan sea slugs rest enigmatic 

– this thesis contributed with some aspects to the knowledge of this fascinating phenomenon. 
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