
P L A N N I N G H Y B R I D D R I V I N G - S T E P P I N G L O C O M O T I O N F O R
G R O U N D R O B O T S I N C H A L L E N G I N G E N V I R O N M E N T S

D I S S E RTAT I O N

zur Erlangung des Doktorgrades (Dr. rer. nat.)

der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

T O B I A S K L A M T

aus Hannover

Bonn, Juni 2019

Angefertigt mit Genehmigung der Mathematisch-Naturwisenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erster Gutachter: Prof. Dr. Sven Behnke

Zweiter Gutachter: Prof. Dr. Maren Bennewitz

Tag der Promotion: 23. Januar 2020

Erscheinungsjahr: 2020

A B S T R A C T

Ground robots capable of navigating a wide range of terrains are
needed in several domains such as disaster response or planetary ex-
ploration. Hybrid driving-stepping locomotion is promising since it
combines the complementary strengths of the two locomotion modes.
However, suitable platforms require complex kinematic capabilities
which need to be considered in corresponding locomotion planning
methods. High terrain complexities induce further challenges for the
planning problem.

We present a search-based hybrid driving-stepping locomotion
planning approach for robots which possess a quadrupedal base with
legs ending in steerable wheels allowing for omnidirectional driving
and stepping. Driving is preferred on sufficiently flat terrain while
stepping is considered in the vicinity of obstacles. Steps are han-
dled in a hierarchical manner: while only the connection between
suitable footholds is considered during planning, those steps in the
resulting path are expanded to detailed motion sequences consider-
ing the robot stability. To enable precise locomotion in challenging
terrain, the planner takes the individual robot footprint into account.
The method is evaluated in simulation and in real-world applications
with the robots Momaro and Centauro. The results indicate that the
planner provides bounded sub-optimal paths in feasible time. How-
ever, the required fine resolution and high-dimensional robot repre-
sentation result in too large state spaces for more complex scenarios
exceeding computation time and memory constraints.

To enable the planner to be applicable in those scenarios, the
method is extended to incorporate three levels of representation. In
the vicinity of the robot, the detailed representation is used to ob-
tain reliable paths for the near future. With increasing distance from
the robot, the resolution gets coarser and the degrees of freedom of
the robot representation decrease. To compensate this loss of infor-
mation, those representations are enriched with additional semantics
increasing the scene understanding. We further present how the most
abstract representation can be used to generate an informed heuris-
tic. Evaluation shows that planning is accelerated by multiple orders
of magnitude with comparable result quality. However, manually de-
signing the additional representations and tuning the corresponding
cost functions requires a high effort.

Therefore, we present a method to support the generation of an ab-
stract representation through a convolutional neural network (CNN).
While a low-dimensional, coarse robot representation and correspond-
ing action set can be easily defined, a CNN is trained on artificially

generated data to represent the abstract cost function. Subsequently,
the abstract representation can be used to generate a similar informed
heuristic, as described above. The CNN evaluation on multiple data
sets indicates that the learned cost function generalizes well to real-
world scenes and that the abstraction quality outperforms the man-
ually tuned approach. Applied to hybrid driving-stepping locomo-
tion planning, the heuristic achieves similar performance while de-
sign and tuning efforts are minimized.

Since a learning-based method turned out to be beneficial to sup-
port the search-based planner, we finally investigate if the whole plan-
ning problem can be solved by a learning-based approach.
Value Iteration Networks (VINs) are known to show good generaliz-
ability and goal-directed behavior, while being limited to small state
spaces. Inspired by the above-described results, we extend VINs to
incorporate multiple levels of abstraction to represent larger plan-
ning problems with suitable state space sizes. Experiments in 2D
grid worlds show that this extension enables VINs to solve signifi-
cantly larger planning tasks. We further apply the method to omni-
directional driving of the Centauro robot in cluttered environments
which indicates limitations but also emphasizes the future potential
of learning-based planning methods.

Z U S A M M E N FA S S U N G

Bodenroboter, welche eine Vielzahl von Untergründen überwinden
können, werden in vielen Anwendungsgebieten benötigt. Beispiel-
szenarien sind die Katastrophenhilfe oder Erkundungsmissionen auf
fremden Planeten. In diesem Kontext ist hybride Fahr-/Lauf-Fort-
bewegung vielversprechend, da sie die sich ergänzenden Stärken der
beiden Fortbewegungsarten miteinander vereint. Um dies zu realisie-
ren benötigen entsprechende Roboter allerdings komplexe kinema-
tische Fähigkeiten, welche auch in adäquaten Ansätzen für die Pla-
nung dieser Fortbewegung berücksichtigt werden müssen. Anspruchs-
volle Umgebungen mit komplexen Untergründen erhöhen dabei zu-
sätzlich die Anforderungen an die Bewegungsplanung.

In dieser Arbeit wird ein suchbasierter Ansatz für kombinierte
Fahr-/Lauf-Fortbewegungsplanung vorgestellt. Die adressierten Ziel-
plattformen sind vierbeinige Roboter, deren Beine in lenkbaren Rä-
dern enden, so dass sie omnidirektional fahren und laufen können.
Auf ausreichend ebenem Untergrund wird generell Fahren bevorzugt,
während der Planer Laufmanöver in der Nähe von Hindernissen in
Erwägung zieht. Schritte werden dabei in einer hierarchischen Art
und Weise realisiert: Während des Planens werden nur Verbindungen
zwischen geeigneten Auftrittsflächen gesucht. Nur solche Schritte,
die im Ergebnispfad enthalten sind, werden anschließend zu detail-
lierten Bewegungsabläufen verfeinert, welche die Balance des Robo-
ters sicherstellen. Um präzise Fortbewegung in anspruchsvollen Um-
gebungen zu ermöglichen, betrachtet der Planer die spezifischen Auf-
standsflächen der vier Füße. Der Ansatz wurde sowohl in simulierten
als auch in realen Tests mit den Robotern Momaro und Centauro eva-
luiert, wobei der Planer in der Lage war, Lösungspfade von ausrei-
chender Qualität in zulässiger Zeit zu generieren. Allerdings ergeben
die benötigte feine Planungsauflösung und die hochdimensionale Ro-
boterrepräsentation große Zustandsräumen. Diese würden für kom-
plexere oder größere Planungsprobleme die zulässige Rechenzeit und
den verfügbaren Speicher überschreiten.

Damit der Planer auch eben diese komplexeren oder größeren Pla-
nungsprobleme handhaben kann, wird eine Erweiterung des Ansat-
zes beschrieben, welche mehrere Repräsentationslevel mit einbezieht.
In unmittelbarer Umgebung des Roboters wird die zuvor beschrie-
bene detaillierte Repräsentation genutzt, um hochwertige Pfade für
die nahe Zukunft zu erzeugen. Mit zunehmendem Abstand vom Ro-
boter wird die Auflösung gröber und die Anzahl der Freiheitsgrade
in der Roboterrepräsentation sinkt. Um den mit dieser Vergröberung
einhergehenden Informationsverlust zu kompensieren, werden diese
Repräsentationen mit zusätzlicher Semantik ausgestattet, welche das

Szenenverständnis erhöht. Darüber hinaus wird beschrieben, wie die
Repräsentation mit dem höchsten Abstraktionsgrad zur Berechnung
einer effektiven Heuristik genutzt werden kann. Die Evaluation in Si-
mulationsumgebungen zeigt, dass der Planungsprozess um mehrere
Größenordnungen beschleunigt werden kann, während die Ergebnis-
qualität vergleichbar bleibt. Allerdings sind das manuelle Gestalten
der zusätzlichen Repräsentationen und das dazugehörige Parametri-
sieren der Kostenfunktionen sehr arbeitsintensiv.

Um diesen Aufwand zu reduzieren, wird daher eine Methode be-
schrieben, welche die Gestaltung einer abstrakten Repräsentation
durch ein Convolutional Neural Network (CNN) unterstützt. Während
eine grobe, niedrigdimensionale Roboterrepräsentation und ein dazu-
gehöriges Aktionsset einfach definiert werden können, wird ein CNN
auf künstlich erzeugten Daten trainiert, um die abstrakte Kostenfunk-
tion zu lernen. Anschließend kann die so erzeugte abstrakte Reprä-
sentation genutzt werden, um die bereits zuvor erwähnte effektive
Heuristik zu berechnen. In der Evaluation des CNNs auf verschie-
denen Datensätzen zeigt sich, dass die gelernte Kostenfunktion auch
mit Daten aus realen Umgebungen funktioniert und dass die gene-
relle Ergebnisqualität oberhalb der Ergebnisse mit manuell erzeugten
Repräsentationen liegt. Die Anwendnung der Methode zur Planung
hybrider Fahr-/Lauf-Fortbewegung zeigt, dass die so erzeugte Heu-
ristik gleichwertige Ergebnisse wie die Heuristik auf Basis manuell
erzeugter Repräsentation liefert, während der Aufwand zur Gestal-
tung und Parametrisierung deutlich verringert wurde.

Da sich gezeigt hat, dass eine lernbasierte Methode den klassi-
schen suchbasierten Ansatz effektiv unterstützen kann, wird in die-
ser Arbeit abschließend untersucht, ob das gesamte Planungsproblem
durch eine lernbasierte Methode gelöst werden kann. Value Iteration
Networks (VINs) sind in diesem Zusammenhang ein vielversprechen-
der Ansatz, da sie bekanntlich ein gutes zielorientiertes Planungsver-
halten lernen und das Gelernte auf unbekannte Situationen verallge-
meinern können. Allerdings ist ihre bisherige Anwendung auf kleine
Zustandsräume begrenzt. Durch die zuvor beschriebenen Ergebnisse
motiviert, wird eine Erweiterung von VINs beschrieben, so dass diese
auf verschiedenen Abstraktionsleveln planen, um größere Planungs-
probleme in Zustandsräumen entsprechender Größe darzustellen. Ex-
perimente in 2D-Rasterumgebungen zeigen, dass die beschriebene
Methode VINs in die Lage versetzt, deutlich größere Planungsproble-
me zu lösen. Darüber hinaus wird die beschriebene Methode benutzt,
um omnidirektionale Fahrmanöver für den Centauro-Roboter in an-
spruchsvollen Umgebungen zu planen. Gleichzeitig werden hier aber
auch die momentanen, hardware-bedingten Grenzen rein lernbasier-
ter Ansätze sowie ihr zukünftiges Potential aufgezeigt.

A C K N O W L E D G M E N T S

First of all, I would like to give special thanks to Prof. Dr. Sven Behnke
for his advice, inspiring research ideas, fruitful discussions, and for
providing me the space that I needed to develop my research and
write this thesis.

I would like to thank all members of the Autonomous Intelligent
Systems group for the great time I had in Bonn. I enjoyed the very
friendly and loyal, but also productive atmosphere and I will gladly
think back to many eventful conference and project trips.

My special gratitude goes to Max Schwarz and Diego Rodriguez
who showed extensive helpfulness and patience to support me with
my—especially in the beginning—limited programming skills. Fur-
thermore, I would like to thank Michael Schreiber for his assistance
in innumerable technical and logistical problems. I would also like
to thank the students that I supervised for their contributions to my
research.

Deepest thanks belong to my wife Ann-Ki and my family who al-
ways supported me along my way to finalize this thesis.

This work was partially funded by the European Union’s Horizon
2020 Programme under Grant Agreement 644839 (CENTAURO).

Für Ann-Ki

C O N T E N T S

1 introduction 1

1.1 List of Contributions . 3

1.2 Publications . 5

1.3 Outline . 6

2 related work 9

2.1 Hybrid Driving-Stepping Locomotion Robots 9

2.2 Robot Motion Planning Method Overview 12

2.2.1 Search-based Planning 13

2.2.2 Sampling-based Planning 14

2.2.3 Optimization- and Potential Field-based Planning 15

2.2.4 Learning-based Planning 16

2.3 Planning on Multiple Representation 18

2.4 Robot Locomotion Planning Approaches 21

3 a search-based approach to hybrid driving-stepping

locomotion planning 25

3.1 System Overview . 26

3.2 Map Generator . 28

3.3 Path Planner . 33

3.3.1 Robot Representation 33

3.3.2 Planning Method 37

3.3.3 Action Set and Cost Function 42

3.3.4 Heuristic . 48

3.3.5 Implementation 49

3.4 Path Expander . 51

3.4.1 Step Expansion 51

3.4.2 Vertical Foot Positions 53

3.5 Controller . 54

3.6 Evaluation . 55

3.6.1 Robot Orientation Cost Factor 55

3.6.2 Heuristic Weight Comparison 58

3.6.3 Cluttered Staircase Scenario 59

3.6.4 Real Robot Application 61

3.7 Conclusion . 64

4 planning hybrid driving-stepping locomotion on

multiple levels of abstraction 67

4.1 System Overview . 69

4.2 Environment and Robot Representation 72

4.2.1 Level 1 Representation 72

4.2.2 Level 2 Representation 74

xii contents

4.2.3 Level 3 Representation 75

4.3 Action Set, and Cost Function 78

4.3.1 Level 1 . 78

4.3.2 Level 2 . 79

4.3.3 Level 3 . 81

4.3.4 Level Transition 81

4.4 Abstract Representation-based Heuristic 82

4.5 Continuous Path Refinement 83

4.6 Evaluation . 85

4.6.1 Representation Level Performance 85

4.6.2 Heuristic Comparison 86

4.6.3 Start State Influence 89

4.7 Conclusion . 90

5 towards learning abstract representations for

locomotion planning in high-dimensional state

spaces 93

5.1 System Overview . 94

5.2 Problem Statement . 96

5.3 Planning Representations 96

5.3.1 Detailed Representation 97

5.3.2 Abstract Representation 98

5.4 Abstract Cost Network 99

5.4.1 Network Architecture 99

5.4.2 Training . 101

5.4.3 Abstract Representation-based Heuristic 102

5.5 Evaluation . 103

5.5.1 Abstraction Quality 104

5.5.2 Application to Planning 105

5.6 Conclusion . 108

6 value iteration networks on multiple levels of

abstraction 109

6.1 System Overview . 110

6.2 Method . 111

6.2.1 Network Architecture 112

6.2.2 Application . 116

6.2.3 Training . 120

6.3 Evaluation . 122

6.3.1 Path Planning in 2D Random Obstacle Grid Worlds123

6.3.2 Path Planning in 2D Maze Grid Worlds 125

6.3.3 Planning Omnidirectional Robot Driving Loco-
motion with Footprint Consideration 127

6.4 Conclusion . 130

7 discussion 133

contents xiii

lists of figures , tables , and acronyms 137

bibliography 144

1
I N T R O D U C T I O N

Robots find their way into more and more areas of our lives. For
well-defined tasks in known environments, robots are often employed
since they are faster, stronger, more precise, or less costly than hu-
mans. Today, one of the main challenges in robotic development is
to extend their applicability to complex, unstructured, and unknown
real-world environments. Solving this challenge will enable robots to
solve tasks in numerous new domains.

Many of these domains require ground robots to move over a va-
riety of terrains. Examples are delivery services, disaster response,
planetary exploration, as well as domestic application. In general,
ground robots either possess a wheeled/tracked or legged locomo-
tion architecture. Driving locomotion is advantageous to overcome
large, sufficiently flat terrains since it is fast, safe, and energy effi-
cient. On the other hand, stepping locomotion is more suitable for
considerably more challenging terrains, since only isolated footholds
are needed. To acquire the ability of overcoming a large variety of ter-
rains, hybrid driving-stepping locomotion is promising since it com-
bines the advantages of both locomotion types.

However, robotic platforms with hybrid driving-stepping locomo-
tion capabilities exhibit complex kinematics with many degrees of
freedom (DoF) posing challenges to the control. Teleoperation of such
systems is usually slow and puts a high cognitive load on the opera-
tor which increases the risk of mistakes. Hence, autonomous locomo-
tion planning and execution is needed. However, the combination of
well-studied, isolated planning approaches for driving and stepping
locomotion is not sufficient. Hybrid locomotion platforms, as consid-
ered in this thesis, possess unique motion capabilities, such as driving
individual feet on the ground relative to the robot base while being
under load, which need to be considered in the planning to exploit
all kinematic capabilities.

In this thesis, a hybrid driving-stepping locomotion planning ap-
proach is presented, which describes all kinematic capabilities in a
holistic motion planning problem. The method addresses the navi-
gation of quadrupedal ground robots in challenging environments
including rough surfaces, debris, and staircases. The planner prefers
omnidirectional driving and considers stepping maneuvers in envi-
ronments which potentially cannot be overcome through driving. It
furthermore considers individual robot foot configurations to enable
precise navigation planning. Different motion planning approaches

2 introduction

are discussed, and a graph search algorithm is chosen to solve the
planning problem.

One of the main challenges of motion planning for systems with
multiple and complex kinematic capabilities is computational effi-
ciency. The high number of DoF usually results in rapidly grow-
ing state spaces, which become infeasibly large for longer planning
queries such that path generation cannot be performed in reasonable
time - an effect that is also observed for the presented planning prob-
lem. To overcome this limitation, several works propose the utiliza-
tion of additional coarser planning representations. By choosing
coarser resolutions or robot representations with fewer DoF, the same
problem can be described with smaller state spaces while the original
detailed representation is only employed in certain situations. How-
ever, such coarsening bears the risk of discarding valuable informa-
tion resulting in bad or false planning decisions.

In this thesis, it is described how multiple representations with dif-
ferent levels of abstraction enable efficient planning for large and com-
plex problems while minimizing the above-described risks caused by
information loss. Motivated by the manner how humans plan their
locomotion, a high degree of detail is only given in the vicinity of
the current position. With increasing distance from that position, the
plan becomes coarser but with additional semantics increasing the
“understanding” of the situation. It is further shown, how an abstract
representation can be used to generate an informed heuristic which
has knowledge about the robot capabilities and the environment, and
efficiently guides the planner towards the goal. Those applications re-
quire the different representations to provide similar situation assess-
ments which can be obtained through similar cost functions. While
a method to manually tune these cost functions is presented first, it
is subsequently described how machine learning can be employed
to minimize manual tuning efforts: a CNN is trained on generated
artificial data and learns to estimate costs for given planning tasks.

It is finally investigated if machine learning methods can be used
to solve the whole planning problem. In the last years, hardware de-
velopments have enabled the implementation of neural network ar-
chitectures with increasing complexity. This provided the foundation
for a variety of learning-based motion planning approaches. How-
ever, those planners are only applicable to small planning problems
of certain complexity to obtain manageable state space sizes. Inspired
by the results of planning with multiple representations with differ-
ent levels of abstraction, this idea is transferred to learning-based
planning. A learning-based planner is presented which employs such
multiple representations and is capable of solving significantly larger
and more complex planning problems compared to its original imple-
mentation without these multiple representations. This increases its
applicability to real-world planning problems

1.1 list of contributions 3

1.1 list of contributions

Planning omnidirectional driving in challenging environments: Challeng-
ing environments, which are, e.g., cluttered with obstacles, in-
duce several challenges to locomotion planning: precise plan-
ning and collision checking are required despite the high com-
putational effort. Moreover, a desirable robot behavior should
consider available safety margins to obstacles, the knowledge
about different collision properties of different robot parts, and
the preference of certain driving orientations to enable safe and
effective locomotion strategies.

In this thesis, cost representations for individual robot feet and
the robot base are developed. Foot costs are designed to cause
the robot to pass obstacles considering available safety margins.
Base costs consider the underlying terrain. Cost computation
is based on 2D height maps to provide high computational ef-
ficiency. A search-based locomotion planner is presented that
considers individual foot and base costs and enables precise
omnidirectional driving in challenging environments.

Stepping locomotion near obstacles: Most mobile robots either possess
a wheeled or legged locomotion approach. Only few platforms
provide hybrid driving-stepping capabilities coming along with
a high number of DoF. This induces challenges to correspond-
ing locomotion planning since planning representations feature
rapidly growing state spaces. So far, only few works have ad-
dressed the problem of hybrid driving-stepping locomotion
planning, and, to the best of our knowledge, no previous works
proposed such locomotion planning for challenging environ-
ments, which includes, e.g., stair climbing.

In this thesis, the developed driving planner is extended to con-
sider stepping in the vicinity of obstacles. This includes steps
themselves, as well as stepping-related motions of individual
feet and the robot base which provide a reliable robot stability.
Steps are represented in a hierarchical manner: while only sim-
plified steps are considered during planning, steps in the result-
ing path are expanded to detailed motion sequences. The plan-
ner is extended with anytime characteristics to provide paths in
feasible time.

A complete hybrid locomotion planning and execution pipeline: The devel-
oped locomotion planner is embedded in a planning pipeline
which contains an environment perception module processing
laser scanner and optionally other sensor data, the planner it-
self, and a controller capable of executing the generated paths.
The pipeline is demonstrated in simulation environments and
with the real Momaro and Centauro robots.

4 introduction

Planning on multiple levels of abstraction: While the developed hybrid
locomotion planner is applicable to environments of limited
size, larger queries result in infeasible long computation times
and infeasibly large memory requirements. This observation
can be generalized to most high-dimensional motion planning
problems in challenging environments. The required state space
sizes are too large to be efficiently handled by traditional plan-
ning approaches. In the literature, this is usually addressed
through additional planning representations with coarser res-
olutions or lower-dimensional robot representations which re-
duce the state space size but might discard valuable informa-
tion.

In this thesis, the hybrid driving-stepping locomotion planner
is extended to incorporate multiple representations with differ-
ent levels of abstraction. A detailed representation is chosen in
the vicinity of the robot. With increasing distance from the robot
position, the representation gets coarser and lower-dimensional
but semantically enriched. Hence, while spatial precision de-
creases, scene “understanding” increases. All representations
are integrated in a single planning problem in order to avoid
undesired effects of coarse-to-fine planning approaches.

Informed heuristics from abstract representations: Several planning ap-
proaches incorporate a heuristic function to guide the search to-
wards the goal. An effective heuristic has considerable influence
on the planner performance. However, most popular heuristic
functions are purely geometry-based and do not include knowl-
edge about the environment or the robot capabilities. This leads
to poor planning performances in cases where the optimal path
significantly differs from a free space solution, such as in chal-
lenging environments.

In this thesis, methods which generate heuristics from abstract
representations are presented. Those heuristics have knowledge
about the environment and the robot capabilities and provide
an informed guidance for the planner accelerating path gener-
ation by multiple orders of magnitude compared to popular
heuristics. A first presented method relies on manual parametri-
zation of the abstract representation which achieves good re-
sults but requires high effort. A second method represents all
tuning intensive components as a Convolutional Neural Net-
work (CNN) which is trained on generated artificial data. This
achieves an even better abstraction performance while tuning
efforts are minimized.

Increased real-world applicability of learning-based planners: Learning-
based planners are promising to efficiently solve challenging
planning problems since they can learn a certain scene “under-

1.2 publications 5

standing” while exploiting the effects of massive parallelization
through implementations on a graphics processing unit (GPU).
Value Iteration Networks (VINs) have shown interesting results
with goal-directed behavior and generalization capabilities to
unseen domains. However, similar to other learning-based plan-
ners, their application is restricted by currently available hard-
ware to small, low-dimensional planning domains with limited
state space sizes.

In this thesis, an extension for VINs that incorporates multiple
levels of abstraction is presented. Again, while regions close to
the current robot position are presented in high detail, the rep-
resentation gets coarser but semantically enriched with increas-
ing distance from the robot. The extension is fully differentiable
and is integrated in the network architecture such that it can
be learned without considerable further parametrization. It en-
ables the method to plan paths on significantly larger maps and
solve planning queries for more complex planning tasks, such
as omnidirectional driving in challenging environments, which
considerably increases the method’s real-world applicability.

1.2 publications

Parts of this thesis have been published in journals and conference
proceedings. The publications are listed in chronological order:

T. Klamt and S. Behnke:

Anytime Hybrid Driving-Stepping Locomotion Planning

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, Canada, September 2017
Finalist for Best Paper Award on Safety Security and Rescue Robotics

M. Schwarz, M. Beul, D. Droeschel, T. Klamt, C. Lenz, D. Pavlichenko,
T. Rodehutskors, M. Schreiber, N. Araslanov, I. Ivanov, J. Razlaw, S. Schüller,
D. Schwarz, A. Topalidou-Kyniazopoulou, and S. Behnke:

DRC Team NimbRo Rescue: Perception and Control for Centaur-like
Mobile Manipulation Robot Momaro

The Darpa Robotics Challenge Finals: Humanoid Robots To The Rescue,
Springer Tracts in Advanced Robotics (STAR), vol. 121, pp. 145-190, April 2018

T. Klamt and S. Behnke:

Planning Hybrid Driving-Stepping Locomotion on Multiple Levels of
Abstraction

IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, May 2018

6 introduction

T. Klamt and S. Behnke:

Towards Learning Abstract Representations for Locomotion Planning
in High-dimensional State Spaces

IEEE International Conference on Robotics and Automation (ICRA),
Montreal, Canada, May 2019

D. Schleich, T. Klamt, and S. Behnke:

Value Iteration Networks on Multiple Levels of Abstraction

Robotics: Science and Systems (RSS),
Freiburg, Germany, June 2019

T. Klamt, M. Schwarz, C. Lenz, L. Baccelliere, D. Buongiorno, T. Cichon,
A. Di Guardo, D. Droeschel, M. Gabardi, M. Kamedula, N. Kashiri, A. Laurenzi,
D. Leonardis, L. Muratore, D. Pavlichenko, A. Selvam Periyasamy, D. Rodriguez,
M. Solazzi, A. Frisoli, M. Gustmann, J. Roßmann, U. Süss, N. G. Tsagarakis,
and S. Behnke:

Remote Mobile Manipulation with the Centauro Robot:
Full-body Telepresence and Autonomous Operator Assistance

Accepted for Journal of Field Robotics (JFR), Wiley, 2019

T. Klamt, D. Rodriguez, L. Baccelliere, X. Chen, D. Chiaradia, T. Cichon,
M. Gabardi, P. Guria, K. Holmquist, M. Kamedula, H. Karaoguz, N. Kashiri,
A. Laurenzi, C. Lenz, D. Leonardis, E. Mingo Hoffman, L. Muratore,
D. Pavlichenko, F. Porcini, Z. Ren, F. Schilling, M. Schwarz, M. Solazzi,
M. Felsberg, A. Frisoli, M. Gustmann, P. Jensfelt, K. Nordberg, J. Roßmann,
U. Süss, N. G. Tsagarakis, and S. Behnke:

Flexible Disaster Response of Tomorrow
Final Presentation and Evaluation of the CENTAURO System

IEEE Robotics and Automation Magazine, Special Issue on Humanoid Robot
Applications in Real World Scenarios, vol. 26(4), pp. 59-72, December 2019

The following publication is closely related to the presented con-
tent in this thesis and has been written during the time in which the
presented research has been conducted:

T. Klamt, D. Rodriguez, M. Schwarz, C. Lenz, D. Pavlichenko, D. Droeschel,
and S. Behnke:

Supervised Autonomous Locomotion and Manipulation for Disaster
Response with a Centaur-like Robot

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, October 2018

1.3 outline

This thesis consists of seven chapters of which Chapter 3 to Chapter 6

describe the scientific contributions. Each of these chapters contains

1.3 outline 7

an individual evaluation and discussion of the presented method. Pre-
sented approaches usually build upon the content of previous chap-
ters. Nevertheless, chapters are written self-contained such that they
can be read individually. Figure 1.1 gives an overview of the thesis
and the relation between chapters.

Chapter 2 gives a comprehensive overview of related work in the
fields of hybrid driving-stepping robotic platforms, robot motion plan-
ning methods, and their extension to incorporate multiple represen-
tations. It further describes relevant applications of those methods
to plan robot locomotion in a variety of domains. This related work
builds the basis for the scientific contributions described in this
document.

Section 1: Introduction

Section 2: Related Work

Section 3: A Search-
based Approach to

Hybrid Driving-
stepping Locomotion

Planning

Section 4: Planning
Hybrid Driving-

stepping Locomotion
on Multiple Levels of

Abstraction

Section 5: Towards
Learning Abstract

Representations for
Locomotion Planning
in High-dimensional

State Spaces

Section 6: Value
Iteration Networks on

Multiple Levels of
Abstraction

Section 7: Discussion

Figure 1.1: Overview of the document structure. Blue background color
indicates search-based planning approaches, green indicates
learning-based planning approaches. Continuous lines indicate
that chapters build on each other. Dashed lines visualize if a
chapter is motivated by results from another chapter. All chap-
ters are self-contained and can be read isolated.

8 introduction

In Chapter 3, a search-based approach to hybrid driving-stepping
locomotion planning in challenging environments is presented. It is
described how the employed planning method and the correspond-
ing planning representation are derived from the characteristics of
the robot platforms and the target environments. The planner is capa-
ble of generating sub-optimal paths for environments of limited size
and complexity in feasible time.

Chapter 4 extends the planner described in Chapter 3 to incorpo-
rate multiple planning representations with different degrees of ab-
stractions. While the environment and robot are described in high
detail in the vicinity of the robot, the representation gets coarser
and semantically enriched with increasing distance from the robot.
It is described how the different representations are jointly incorpo-
rated by the planner or used to generate an informed heuristic. The
parametrization of the different representations is manually tuned.
This enables the planner to provide paths for significantly larger and
more complex queries, compared to the planner in Chapter 3, in fea-
sible time.

Chapter 5 describes a further extension to the planner presented
in Chapter 3. Inspired by the results of Chapter 4, an abstract rep-
resentation is developed to generate an informed heuristic for the
planner. However, the tuning intensive environment representation
and cost function are replaced by a CNN which is trained on gener-
ated artificial data. This shows similar planning performance to the
planner described in Chapter 4, while the abstraction quality is even
improved, and manual tuning efforts are minimized.

Chapter 6 goes a step further. While Chapter 5 demonstrates that
a learning-based approach can support a traditional planning ap-
proach, this chapter investigates if the whole planning problem can be
solved by a learning-based planner. Value Iteration Networks (VINs)
are a promising approach in this context but are limited to small state
spaces. Inspired by the results of Chapter 4 and Chapter 5, VINs are
extended to incorporate multiple levels of abstraction. This increases
their applicability to more complex and larger planning problems.

Chapter 7 finally concludes the document. Achieved results are
discussed, suitable applications are described, and potential future
works are proposed.

2
R E L AT E D W O R K

In this chapter, we give an overview of the state of the art which
forms the basis for the work described in this thesis. Hybrid driving-
stepping locomotion requires robots which can perform both locomo-
tion strategies, but which may vary in their implementation details.
Section 2.1 gives an overview of respective platforms. For planning
corresponding locomotion, we give an overview of motion planning
algorithms in Section 2.2. Planning performance can be improved
by employing multiple representations. Section 2.3 describes exist-
ing works which address this topic. Finally, Section 2.4 summarizes
relevant examples of motion planning algorithms applied to robot
locomotion planning.

2.1 hybrid driving-stepping locomotion robots

Driving locomotion and stepping locomotion possess complementary
advantages. Driving is well suited to traverse sufficiently flat terrains
in a fast, energy efficient, and stable manner. However, it is limited
to suitable terrains with limited slopes and height differences, and
obstacle-free paths. Stepping locomotion is usually slower, less sta-
ble, and has higher energy consumption, but enables robots to over-
come much more challenging terrains, since it only requires adequate
footholds. Hence, combining these two locomotion modes is a promis-
ing idea for application domains in which a wide variety of terrains
has to be traversed. Example domains are disaster response, search
and rescue scenarios, delivery service, or planetary exploration. Cor-
responding platforms vary in their complexity and kinematic capabil-
ities.

A simple method to enable robust locomotion in rough terrain is to
attach active wheels to passive limbs which function as a suspension
system. Siegwart et al. (2002) proposed the Shrimp platform with
six motorized wheels in a rhombus configuration attached to pas-
sive spring suspension arms (see Figure 2.1 a). Takahashi et al. (2006)
proposed a quadruped robot where each axis can passively rotate
(yaw) and can be actively shifted in the longitudinal direction (see
Figure 2.1 b). Although these passive leg designs do not allow for lift-
ing individual feet, they enable the proposed platforms to overcome
rough terrain such as climbing stairs.

In 2015, the DARPA Robotics Challenge (DRC) pushed research
teams to develop robots which are capable of mobile manipulation
including navigation in terrain with variable complexity. Four of the

10 related work

a) b) c)

d) e) f)

g) h) i)

j) k) l)

m) n) o)

Figure 2.1: Examples of hybrid driving-stepping robot platforms. Refer-
ences refer to image sources. a) Shrimp (Siegwart et al., 2002),
b) Platform by Takahashi et al. (Takahashi et al., 2006), c) Ro-
boSimian (Hebert et al., 2015), d) DRC-HUBO (Zucker et al.,
2015), e) WorkPartner (Halme et al., 2001), f) ANYmal on Wheels
(Bjelonic et al., 2019), g) BoniRob (Biber et al., 2012), h) MAM-
MOTH (Reid et al., 2016a), i) CHIMP (Fontaine, 2016), j) Momaro
(Schwarz et al., 2017), k) Centauro (Klamt et al., 2019b), l) Robo-
Mantis (Motiv Robotics, 2019), m) Hyundai Cradle Walking Car
Concept (The Wheel Network, 2019), n) WS2/WL16 (Hashimoto
et al., 2005), o) Handle (Boston Dynamics, 2019).

2.1 hybrid driving-stepping locomotion robots 11

five best teams chose a hybrid driving-stepping platform with active
limbs and active wheels which is an indication for the comprehen-
sive flexibility of this locomotion strategy. Two of these platforms
possessed a kinematic structure which requires posture changes to
switch between driving and stepping locomotion: RoboSimian is a
quadrupedal robot with four 7-DoF generalized limbs which can be
used for walking and for manipulation (Hebert et al., 2015). It further
has two active wheels at its trunk and two caster wheels at two of the
limbs allowing for driving locomotion (see Figure 2.1 c). To switch
between stepping and driving locomotion, the robot has to lower it-
self to a predefined sitting configuration. The DRC winner platform
DRC-HUBO (Zucker et al., 2015) is a humanoid robot, which, in addi-
tion to walking, is able to lower itself to a kneeing configuration and
perform driving locomotion over flat terrain. This is possible due to
four small wheels at its knees and ankles (see Figure 2.1 d).

Robot Footprint

The footprint of a
robot configuration
is the individual set
of ground contacts
relative to the robot

base center.

Although RoboSimian and DRC-HUBO provide isolated driving
and stepping locomotion capabilities, the necessity for posture changes
to switch between them prohibits additional valuable locomotion fea-
tures. Platforms which have wheels attached to the end of their limbs,
such that those wheels also function as feet during walking can switch
between the two locomotion modes in any configuration. Further-
more, this design allows to change the configuration of ground con-
tact points (which we refer to as the robot footprint) while under
load.

Drive a Foot

The maneuver of
driving a robot foot
describes the motion
of an individual foot
relative to the robot
base while keeping
ground contact and

while being under load.
This maneuver is only

feasible for robots
possessing legs ending

in wheels.

In other words, those robots can drive individual feet relative to
the robot base while under load. This is helpful for, e.g., obtaining
stable configurations for stepping. Hence, most hybrid-driving step-
ping robots follow this design approach.

An early example is the WorkPartner platform (Halme et al., 2001,
2003), a quadrupedal robot designed to work interactively with hu-
mans in outdoor environments (see Figure 2.1 e). It possesses four ac-
tive 3-DoF legs ending in active wheels. Steering is realized through
a yaw joint between the front and rear joint of the base. Halme et al.
proposed rolking, a mix between driving and walking to navigate chal-
lenging terrain. A similar kinematic structure is featured by the ANY-
mal robot with attached wheels (Bjelonic et al., 2019) (see Figure 2.1 f).
In contrast to WorkPartner, it is missing the yaw joint in its base. In-
stead, steering is realized through leg motions or walking.

Examples from other domains are the agricultural robot BoniRob
(Ruckelshausen et al., 2009) (see Figure 2.1 g) and the planetary rovers
MAMMOTH (Reid et al., 2014) (see Figure 2.1 h) and Sherpa (Cordes
et al., 2014). All three systems feature four 3-DoF legs with parallel
kinematics ending in actively driven wheels enabling omnidirectional
driving. A significantly more complex planetary rover is the NASA
ATHLETE possessing six legs with six DoF each, ending in wheels
(Wilcox et al., 2007).

12 related work

A to some extend unique robot is CHIMP (Stentz et al., 2015), an-
other DRC participant. It has a roughly anthropomorphic body plan
and powered tracks at each of its feet and wrists (see Figure 2.1 i).
Hence, it is able to perform statically stable bipedal and quadrupedal
driving and walking locomotion.

The fourth hybrid locomotion DRC participant was Momaro with
its centaur-like body plan (Schwarz et al., 2017). It possesses a com-
plex kinematic structure to address a wide range of mobile manipu-
lation tasks (see Figure 2.1 j). Regarding locomotion, its quadrupedal
lower body consists of four 4-DoF legs ending a an actively driven,
360° steerable pair of wheels each. Hence, posture changes are not
needed to switch between locomotion modes. This enables Momaro
to effectively navigate a wide range of terrains. The centaur-like plat-
form Centauro (Klamt et al., 2019b) can be seen as a successor of
Momaro. It has a similar body plan which is extended by an addi-
tional hip yaw joint for each leg and improved, compliant actuation
(see Figure 2.1 k).

A similar lower body design with four 5-DoF legs and omnidi-
rectional driving was chosen for RoboMantis (Motiv Robotics, 2019)
(see Figure 2.1 l). Interestingly, RoboMantis is the predecessor of Ro-
boSimian and one of the main kinematic differences is that posture
changes are no longer required to switch between driving and step-
ping locomotion. The same lower body design was chosen for the re-
cently presented Hyundai Cradle Walking Car Concept (The Wheel
Network, 2019) (see Figure 2.1 m).

State vs. Configuration

In this document, a
robot state contains

the set of parameters
completely describing
how a robot is posi-

tioned in the environ-
ment. In contrast, the

robot configuration only
describes the position
of the limbs relative to
the base (e.g., the leg
configuration) while

neglecting the absolute
robot position and

orientation.

Finally, few platforms address the idea of bipedal hybrid driving-
stepping locomotion. Hashimoto et al. (2005) extended the bipedal
robot WL-16 which is capable of carrying a human is extended by
WS-2, a shoe with attached wheels (see Figure 2.1 n). In 2016, Boston
Dynamics introduced its bipedal robot Handle (Boston Dynamics,
2019) which shows impressive dynamic locomotion, including jump-
ing, with its two 2-DoF legs and attached wheels (see Figure 2.1 o).

2.2 robot motion planning method overview

Motion planning is one of the major challenges in robot development.
Given a robot start state and a desired goal state, a motion planning
algorithm shall output a path or trajectory (if temporal information
is also included) to reach the goal state while staying in the space of
feasible states, and frustrating self-collisions and collisions with the
environment. The path shall be optimal or sub-optimal with respect
to a given cost function. Furthermore, computation time and hard-
ware requirements are limited, since planning algorithms usually run
on the robot hardware during missions. Over the years, many meth-
ods have been proposed to solve robot motion planning problems.
They can be categorized according to their basic principles which

2.2 robot motion planning method overview 13

are either search-based planning (Section 2.2.1), sampling-based plan-
ning (Section 2.2.2), optimization-based planning (Section 2.2.3), or
learning-based planning (Section 2.2.4). This section gives a theoreti-
cal overview of those methods.

2.2.1 Search-based Planning

Search-based motion planning algorithms discretize the state space
to a mathematical graph. Nodes represent states while edges repre-
sent actions and their specific weights represent the corresponding
costs. The discretization resolution has to be chosen carefully and is
a trade-off between the result quality and computation time. A fine,
uniform resolution is required to represent robot states with suffi-
cient precision while resulting in large state spaces which are costly
to be searched. A coarse resolution leads to smaller state spaces and
accelerates planning while coming along with the risk that important
states are discarded during discretization leading to wrong results or
results which are far away from an optimal solution.

Subsequently, graph search is performed on this generated graph.
A basic algorithm is the Dijkstra algorithm (Dijkstra, 1959) which per-
forms a deterministic, greedy search starting from the start state. For
each node n, its shortest distance from the start node g(n) and its pre-
decessor p(n) on this path are saved. At initialization, the distance
for the start node is assigned zero g(s) = 0 and g(ni) = ∞ for all
other nodes. The algorithm then iteratively visits the unvisited node
with the shortest known distance value. It computes the distance for
each of its neighboring nodes mj as the sum of the distance of the cur-
rent node and the costs of the respective action to the neighbor node
g(n) + c(n, mj). If this distance is lower than the saved neighbor node
distance g(mj), its distance value is updated, and the current node is
saved as the neighbor’s predecessor p(mj) = n. The algorithm stops if
either no unvisited nodes are left or if the goal node is visited. In the
latter case, the reversed resulting path can be generated by starting
at the goal node and following the predecessor entries until reach-
ing the start node. By reversing this path, the optimal solution with
respect to the chosen discretization is obtained.

The Dijkstra algorithm is extended by the A* algorithm (Hart et al.,
1968). It uses a heuristic function h(n, g) estimating the distance from
a given node n to the goal node g. The sum of the distance from the
start node to the current node and the heuristic value from the cur-
rent node to the goal node f (n) = g(n) + h(n, g) can be used as an
estimate for the path length from the start node, through the current
node, and to the goal node. Instead of visiting the node with the short-
est distance from the start node, the A* algorithm visits those nodes
with the lowest f -value—the shortest estimated resulting path length.
Obviously, the performance of this algorithm is very dependent on

14 related work

the used heuristic function. To guarantee optimality, it always has to
underestimate the real shortest path length. An often-used heuristic
for motion planning is the Euclidean distance since it is easy to im-
plement and can be computed efficiently.

To speed up planning, the heuristic function can be weighted with
a factor ε > 1 increasing the attraction of the search front towards
the goal. This results in bounded sub-optimal results which are at
maximum ε times more expensive than the optimal solution.

Anytime Repairing A* (ARA*) (Likhachev et al., 2004) uses this
effect to quickly generate a first sub-optimal solution with a large ε

and iteratively approach the optimal solution by decreasing ε and per-
forming additional searches while processing results from previous
searches.

Further extensions of A* consider dynamic environments (Stentz,
1995), bi-directional planning (Nannicini et al., 2008), incorporation
of multiple heuristics (Aine et al., 2016), or parallelization on GPUs
(Zhou and Zeng, 2015), to only name a few.

2.2.2 Sampling-based Planning

Sampling-based planning algorithms randomly draw samples from
the state space and try to find connections between these samples to
obtain paths from the start to the goal state.

An established method is the Rapidly-exploring Random Tree (RRT)
algorithm (Lavalle, 1998). It builds a space-filling tree, rooted at the
start state, to efficiently search high-dimensional, non-convex state
spaces. For each drawn sample, the nearest state in the existing tree
is searched. If the connection from the sample to this nearest state
is collision-free and obeys all constraints, the sample is added to the
tree. However, the length of this connection is limited by a growth
factor. If the connection is longer, an intermediate state with the maxi-
mum allowed distance to the nearest state is interpolated between the
two and is used instead of the originally sampled state. Due to the
random sampling character, tree expansion is biased towards large,
unsearched areas. Furthermore, the algorithm can be biased towards
the goal or other specific areas by introducing a certain probability
to draw samples from theses desired states. After finding an initial
solution, further samples improve the result quality. RRT converges
towards the optimal solution with infinite samples and can be catego-
rized as a single-query algorithm.

The Probabilistic Roadmap (PRM) algorithm (Kavraki et al., 1996)
is a second widely used sampling-based method. In contrast to RRT,
it can be categorized as a multi-query algorithm. The planner consists
of two phases, a learning phase and a query phase. In the learning
phase, a roadmap, represented as a graph, is built. This is done by it-
eratively sampling states from the state space. If a sampled state is fea-

2.2 robot motion planning method overview 15

sible, it is added to the graph. Subsequently, a local planner is used to
find connections to neighbor states. Typically, this search is restricted
to all neighbors within a given distance or the k nearest neighbors.
Feasible connections are added to the graph. This is repeated until a
desired roadmap density is obtained. In the query phase, for a given
start and goal state, both are connected to the roadmap and a graph
search algorithm, such as the Dijkstra algorithm, is used to find the
shortest path in this graph. Similar to RRT, PRMs are probabilistically
complete.

Several works proposed extension to RRT and PRM. The well-
established RRT* (Karaman and Frazzoli, 2011) extends the standard
RRT algorithm by two features improving the search for nearest neigh-
bors and introducing local tree rewiring. Similarly, PRM* (Karaman
and Frazzoli, 2011) improves PRM. Further extensions for RRT ad-
dress the weakness of planning through narrow passages (Zhang
and Manocha, 2008), improve sampling after an initial solution has
been found (Gammell et al., 2014), or combine this with bi-directional
searches (Burget et al., 2016), to only name a few examples. Similarly,
PRM’s capabilities to handle narrow passages are improved in (Hsu
et al., 2003). An overview over PRM extensions is given in (Geraerts
and Overmars, 2004).

A sampling-based method which combines the ideas of RRT and
PRM is the Fast Marching Tree (FMT*) algorithm (Janson et al., 2015).
A set of samples is drawn from the state space at first. In a second
step, a tree which is routed at the start state is grown through this
set.

In many cases, output paths of sampling-based planners need a suc-
cessive optimization to, e.g., remove redundant, unfeasible, or jerky
motions and to obtain a path which can be executed by the robot
(Ratliff et al., 2009).

2.2.3 Optimization- and Potential Field-based Planning

The initial idea of optimization-based methods is to improve the path
quality of an input path which is already feasible. While for RRT and
PRM, after an initial solution has been found, further sampling also
can be seen as an optimization. The employment of an explicit op-
timization method allows to introduce additional constraints which
were not present during the initial path generation to limit its com-
plexity. Examples are the Elastic Bands (Quinlan and Khatib, 1993)
and Elastic Strips (Brock and Khatib, 2002) algorithms.

While the input trajectory for the above-mentioned algorithms has
to be collision-free, this requirement was dropped for more recent
methods. Hence, a naïve input trajectory, such as the linear connec-
tion between the start and goal state, is sufficient, which extends those
optimizers to stand-alone planning algorithms. Covariant Hamiltoian

16 related work

Optimization for Motion Planning (CHOMP) (Ratliff et al., 2009) uses
covariant gradient techniques for the cost function and is able to plan
paths including higher-order dynamics. Since it relies on a gradient
of the cost function, it is vulnerable to getting stuck in local minima.
The Stochastic Trajectory Optimization for Motion Planning (STOMP)
algorithm (Kalakrishnan et al., 2011b) overcomes this issue by us-
ing stochastic optimization. Iteratively, noisy trajectories are sampled
around the best currently known trajectory, their quality is assessed
with respect to the given cost function, and the best known trajec-
tory is shifted accordingly. In (Pavlichenko and Behnke, 2017) this
has been extended to assign costs not to the keyframes of a trajectory
but to the transitions between them. Nevertheless, for complex plan-
ning problems and infeasible initial trajectories, those methods might
have problems to generate feasible solutions due to the lack of en-
vironment understanding. Their strength is the optimization within
feasible trajectory spaces and not the generation of an initial feasible
solution.

Similar to the Elastic Bands and Elastic Strips method, which in-
ternally use potential field-like computation, Potential Fields (Khatib,
1986) themselves are another approach to motion planning. Inspired
from the concept of electrical charges, the environment is represented
with attractive and repulsive potentials (e.g., obstacles have a repelling
force while the goal has an attractive force). The robot behaves in this
environment like an electrical charge would do, finding a way to the
bottom of the potential sum. However, this method is vulnerable to
local minima and oscillations which limits its application to environ-
ments with limited complexity.

2.2.4 Learning-based Planning

In recent years, intensive research has been performed on learning-
based motion planning which uses machine learning approaches to
solve navigation tasks without performing extensive searches. In gen-
eral, one can distinguish between supervised learning methods and
reinforcement learning (RL) methods. In supervised learning, each
training example comes with a desired solution. This is not the case
for RL, where the agent explores the state space by itself, receives
rewards for its actions, and learns from its experience. However, the
boundaries between the two are not exactly defined, some of the pro-
posed methods can be used for both, and since we are mainly in-
terested in the requirements, capabilities, and limitations of learning-
based planners in general, they are not further distinguished.

Levine et al. (2016), trained a CNN to directly map camera images
to motor commands to solve manipulation tasks. The same was done
in (Bojarski et al., 2016) for steering commands of a self-driving car.

2.2 robot motion planning method overview 17

Figure 2.2: Value Iteration Networks (VINs). Left) General structure of the
method. Right) The Value Iteration module. From Tamar et al.
(2016).

Those systems learn how to act in a given situation, but they are
lacking a long-term goal-directed behavior.

This has been addressed by VINs (Tamar et al., 2016): most plan-
ning problems can be described as a Markov Decision Process (MDP),
a discrete mathematical framework describing decision problems as a
state and action space, transition probabilities, and a reward for each
state-action pair (Bellman, 1957). The goal is to find a policy which
results in high long-term rewards. A common method to find an op-
timal policy is Value Iteration (VI) which calculates for each state the
expected long-term reward by iteratively applying the Bellman equa-
tion (Bellman, 2013 [1957]). The optimal policy is obtained by always
moving the agent to the state with the highest expected long-term re-
ward. VINs approximate the VI algorithm by rewriting it as a CNN,
as depicted in Figure 2.2. Since this planning module is fully differ-
entiable, standard backpropagation can be used to learn parameters
of the model such as the reward function or transition probabilities.
In contrast to the above mentioned end-to-end CNNs which directly
map camera images to motor commands in a strict feed-forward way,
VINs realize multiple iterations in an inner loop within the CNN
architecture to propagate values through the representation. This en-
ables VINs to “understand” the desired goal-directed behavior and
to generalize well to unseen domains. VINs have been evaluated on
small 2D grid world tasks.

VINs have been extended in several works. Niu et al. (2018) pro-
posed Generalized Value Iteration Networks which work on arbitrary
graph structures and can be applied to real-world data like street
maps. QMDP-Nets (Karkus et al., 2017) handle partially observable
environments and express VI through a CNN. Similar to original
VINs, they are also trained on small 2D occupancy maps. During eval-
uation, it is shown that QMDP-Nets can generalize to solve larger 2D
grid world tasks.

Finally, Universal Planning Networks (UPNs) (Srinivas et al., 2018)
learn useful latent space representations from images of the current
scene and the desired goal scene. Gradient descent planning and

18 related work

the iteration over action sequences in the learned internal represen-
tation are used to obtain motion trajectories. In contrast to VINs and
QMDP-Nets, UPNs show good performance for planning problems
with more than two dimensions. Since the gradient descent planner is
time consuming, planning is limited to small environments. Impres-
sively, UPNs are capable of generalizing to modified robot morpholo-
gies.

For all learning-based planning approaches mentioned, it is true
that the necessary amount of training data and the required network
complexity strongly depend on the size of the considered maps and
the number of dimensions of the state space. Thus, those planners are
restricted to small maps or low-dimensional planning problems.

In addition, learning-based methods are often used to handle sub-
problems of the navigation task such as solving local planning tasks
which require limited goal-directed behavior but focus on the genera-
tion of feasible motions while the generation of an initial global path
is not addressed. In (Holden et al., 2017), human-like bipedal locomo-
tion over rough terrain towards very local goals was learned. In (Peng
et al., 2017), a learned hierarchical planner for bipedal locomotion on
flat surfaces with obstacle avoidance was learned. A high-level plan-
ner generated local goals to reach a global goal while considering
obstacles. A low-level planner provided robust bipedal motions to
reach these local goals.

It applies to all of the presented learning-based planners that more
complex planning tasks require larger amounts of training data which
usually cannot be generated from real-world demonstration. Hence,
besides the method itself, it is necessary to provide methods to gen-
erate the required amount of artificial training data and to ensure
applicability of the trained behaviors to real world problems.

2.3 planning on multiple representation

While 2D and 3D planning problems of moderate size can be seen as
solved with traditional search-based and sampling-based planning
methods, motion planning for larger and higher-dimensional tasks
is one of the main research topics in robotics. The state space grows
linearly with the covered area and exponentially with the considered
planning dimensions which pushes those planning methods quickly
to their limits. Large state spaces lead to extensive searches result-
ing in long planning times. Memory requirements increase simulta-
neously.

To solve this problem, a logical extension of the aforementioned
planning methods is the introduction of multiple planning representa-
tions. An additional, coarser representation describes the same prob-
lem in a smaller state space and can be used, e.g., for coarse-to-fine
planning: an initial path is quickly planned in the coarse represen-

2.3 planning on multiple representation 19

tation. In a second planning step, this plan is refined, meaning that
a second planner, which is restricted to those states covered by the
coarse path, plans a detailed solution in the fine representation. How-
ever, if the coarse representation assesses a scene incorrectly, this
causes problems for the detailed planner. A second method to utilize
an additional representation which avoids this problem is the incor-
poration of all representations in one planning step. While, ideally, a
large part of the scene can be represented in the coarse representation,
regions of special interest are represented in the fine representation.
Depending on the region, the planner incorporates the correspond-
ing representation. Finally, a coarse representation can also be used
to generate a heuristic. Since planning times are short in this repre-
sentation, it can be used to quickly provide estimates for the short-
est path length between two states in the detailed representation. All
three methods can be iteratively extended to incorporate more than
two representations.

To generate such a coarse representation, one can either decrease
the planning resolution or introduce a lower-dimensional robot or
action representation. Behnke (2003) proposed a general concept for
A*-based multiresolution planning with a decreasing resolution with
increasing distance from the robot. The KPIECE algorithm (Şucan and
Kavraki, 2009) introduces multiple levels of environment discretiza-
tion to dynamically feasible sampling-based planning. González-Sieira
et al. (2016) applied high resolution in areas of high environment com-
plexity. Resolution decreased with increasing distance from these ar-
eas. Similarly, Pivtoraiko and Kelly (2008) applied different sets of
state transitions to different areas of the environment. Bohlin (2001)
generated an initial plan in a coarse resolution first and refined this
plan into a finer resolution. High-resolution planning was only ap-
plied to parts of the map. Hence, the state space decreased, and plan-
ning performance increased, compared to pure high-resolution plan-
ning. Botea et al. (2004) generated a coarse representation by separat-
ing the map into clusters with defined entry points and precomputed
paths within these clusters. During search queries, it was sufficient
to plan in this coarse representation and search for connections to
the start and goal state in the respective clusters. Multiple levels with
decreasing resolution are also utilizes in the learning-based planning
domain. Hierarchical Value Iteration Networks (HVINs) (Tamar et al.,
2016) extend VINs to start computation on coarser maps and subse-
quently locally refine them (see Figure 2.3) which enables the algo-
rithm to solve significantly larger tasks.

Similar to multiresolution planning, several approaches utilize mul-
tiple representations with different planning dimensionalities to de-
crease planning complexity. Kohrt et al. (2012) generated an initial
plan in a low-dimensional search space and re-planned in the high-
dimensional search space by only considering those states that are

20 related work

Figure 2.3: Hierarchical Value Iteration Networks (HVINs) with two levels.
From Tamar et al. (2016).

part of the low-dimensional plan. Gochev et al. (2011) planned paths
in a low-dimensional state space and only switched to high-dimensio-
nal planning in those areas where low-dimensional planning could
not find a solution. Similarly, Zhang et al. (2012) planned in 2D and
only switched to high-dimensional planning in the robot vicinity and
at key points.

To achieve further planning acceleration, it is an obvious idea to
combine multiresolution and multidimensional planning. However,
only few works, such as Petereit et al. (2013) have addressed this.
Different planning dimensionalities and resolutions were utilized by
using different sets of motion primitives. A fine resolution was only
considered close to the start and goal state and close to obstacles. A
high planning dimensionality was considered for states which would
be reached within a given time interval. This allowed the planner to
provide detailed plans close to the robot while planning times stayed
feasible.

All the presented methods have in common, that a coarser repre-
sentation is obtained by purposely discarding information. This infor-
mation loss is limited before it leads to wrong situation assessments
resulting in wrong paths. An example is a 2D height map represen-
tation including a flight of stairs and a ramp: two obstacles which
require different locomotion strategies. With decreasing resolution,
those two objects become indistinguishable which demonstrates that
essential information is discarded. This problem has been addressed
by abstraction: instead of only discarding information, coarser repre-
sentations are enriched with additional descriptive features. Hence,
while spatial preciseness or dimensionality is decreased, the seman-
tics are increased. Li et al. (2006) have formulated a unified theory
of state abstraction for MDPs in general and Holte et al. (1995) have
given a theoretical foundation for abstraction for search-based plan-
ning.

2.4 robot locomotion planning approaches 21

One of the main challenges in planning with multiple representa-
tions (with or without abstraction) is the definition of effective rep-
resentations which preserve all important information for the respec-
tive planning domain. In addition, feasible transitions between the
different representations are required. This is challenging and requires
a lot of manual tuning efforts, which is a motivation to employ ma-
chine learning for this task. Kurutach et al. (2018) recently proposed
the InfoGAN architecture which learns an efficient abstract represen-
tation and uses, e.g., the Dijkstra algorithm to plan in this abstract
representation. Subsequently, plans are projected back to the original
representation.

2.4 robot locomotion planning approaches

The choice of a suitable planning approach is dependent on the robot
platform, considered environments, and further constraints (e.g., en-
ergy efficiency or acceleration minimization). This section presents a
collection of relevant robot locomotion planning approaches in the
literature to provide an understanding of established methods.

Since most mobile ground robots provide pure driving with wheels
or tracks, or pure legged locomotion, their exist several works that
address pure driving locomotion or pure legged locomotion planning
in unstructured terrain.

Planning of drivable paths in unstructured environments is depen-
dent on the DoF of the platform. Simple robot designs with a con-
stant shape offer longitudinal and rotational movements. Gerkey and
Konolige (2008) used a gradient technique to plan globally optimal
paths in a variety of outdoor environments for a differentially driven
robot with four wheels. In a recent work, Faust et al. (2018) solved
long-range navigation tasks for a differentially driven robot by com-
bining Probabilistic Roadmaps(PRMs) with Reinforcement Learning
(RL): a PRM containing waypoints was precomputed for a given map.
During path planning, a coarse path was searched in this PRM. Subse-
quently, a RL-based planner generated dynamically feasible connec-
tions between the corresponding waypoints. For search and rescue
scenarios, some tracked robots have been extended by tracked flip-
pers. These allow the robots to climb stairs and thus increase capa-
bilities but also planning complexity due to additional shape shifting
DoFs. Colas et al. (2013) and Menna et al. (2014) proposed a search-
based planning approaches to plan paths for the robot base. Flipper
positions were derived from the resulting path and the environment
representation in a second hierarchical planning step. A coarse-to-
fine approach was proposed by Brunner et al. (2012). At first, a low-
dimensional search generated a path for the robot base while neglect-
ing its flippers. A second search in the high-dimensional state space,
which included flipper positions, was restricted to the area around

22 related work

the low-dimensional path. Platforms which offer omnidirectional lo-
comotion increase the state space by another dimension. Ziaei et al.
(2014) proposed a potential field-based approach for this problem.
However, driving is generally restricted by terrain characteristics such
as height differences and slopes which makes it not suitable for very
rough terrain and for overcoming obstacles.

Legged locomotion is capable of traversing more difficult terrain
because it only requires isolated footholds. The drawback of this lo-
comotion mode is, that motion planning is more complex. Since legs
are lifted from the ground repeatedly, the robot has to constantly
ensure that it remains stable. Due to the high motion complexity of
stepping, path planning is often performed in at least two hierarchical
levels. We focus on quadrupedal robots here due to the many similar-
ities to the platforms considered in this work. An approach for dex-
terous quadruped locomotion planning with RoboSimian (Hebert et
al., 2015) was proposed by (Satzinger et al., 2016). Feasible footholds
were connected to a foothold plan by graph search. Subsequently,
body states were generated from these footholds and connect by RRT-
Connect. Kolter et al. (2008) proposed a hierarchical Apprenticeship
Learning approach to plan quadrupedal locomotion over small
patches of rough terrain for the LittleDog robot (Murphy et al., 2011).
Planning was split into body path planning and footstep planning
along this path. Both levels were realized through Apprenticeship
Learning approaches in which the operator could input the desired
behavior. LittleDog was also used by Kalakrishnan et al. (2011a) to
demonstrate their quadrupedal locomotion planner. In this work, an
approximate body plan was generated by a Dijkstra algorithm and op-
timized during preprocessing. A footstep planner, which was trained
on expert demonstrations, generated feasible trajectories along this
approximate body path during queries. A suitable state path was
derived from those footholds. Again, considered environments were
small terrain patches. Wermelinger et al. (2016) proposed a navigation
planning approach for the quadrupedal robot StarlETH. The robot
footprint was simplified to either a circle or a rectangle, depending
on the situation complexity. An RRT* planner was used to plan path
with these footprints on traversability maps. Footstep planning was
not performed but a predefined statically stable walking gate was in-
corporated. This method allowed Wermelinger et al. to plan for maps
of considerable size while the missing footstep planning limited the
complexity of manageable situations. Perrin et al. (2016) transformed
the discrete problem of stepping motion planning into a continuous
planning problem by continuously moving disks with the shape of
the robot leg reachability through the environment and checking for
collisions for each of these disks. RRT or PRM were used to solve
the 3D path planning problem. The detailed search for individual
footholds and planning of the corresponding motions to reach them

2.4 robot locomotion planning approaches 23

were done in additional planning steps. The method was applied to
a biped and a hexapod robot and hence, can easily be transferred to
quadruped platforms. Experiments demonstrated planning for small
areas of challenging terrain.

In the last years, multiple wheeled-legged robot platforms have
been proposed (see Section 2.1). Those platforms are promising since
they combine the advantages of both locomotion modes. This comes
at the price of an increasing complexity which also has to be repre-
sented in the planning of corresponding locomotion. Thus, only few
works addressed locomotion planning for such platforms. Flecken-
stein et al. (2017) proposed a planning approach for the agricultural
BoniRob platform (Biber et al., 2012). The method incorporated om-
nidirectional driving as well as an additional DoF for each wheel
describing its rotational configuration around the hip yaw joint. How-
ever, the capability of changing the leg height was not addressed in
this work and driving was restricted to flat terrain. A feasible state
space size was obtained by introducing a set of motion primitives
and by merging multiple wheel positions to configuration classes. A
search-based Anytime Repairing A* (ARA*) approach was utilized
for path generation. It was evaluated in combination with different
heuristics. Especially the incorporation of a heuristic which quickly
precomputes shortest path for individual wheels significantly in-
creased the performance. Chen et al. (2018) proposed a RL method
to plan short-distance driving locomotion on flat terrain for the Cen-
tauro robot. Besides omnidirectional driving, the planner considered
changes to the base height and footprint width. Stepping was not
considered. In contrast, de Viragh et al. (2019) proposed a controller
which includes driving and stepping for ANYmal on Wheels (Bjelonic
et al., 2019). The method was only evaluated for short queries on flat,
obstacle-free terrain but it is the only method incorporating the sys-
tem dynamics. A work which addressed wheeled-legged locomotion
planning including obstacles was done by Reid et al. (2016b) for the
MAMMOTH robot (Reid et al., 2014). They proposed a hierarchical
version of the Fast Marching Tree* (FMT*) algorithm: the full state
space is decomposed into a lower-dimensional sub-space for which
the decomposition method must be manually defined. Subsequently,
the method finds a set of paths in this sub-space. Those results are
used to bias sampling in the full state space. The method incorporates
individual foot positions in the transversal plane, but foot heights are
not considered during planning. Hence, steps are not discovered nat-
urally but are inserted as discrete actions into the search tree, if static
stability is given. Finally, Dornbush et al. (2018) proposed a search-
based approach for multi-modal locomotion planning of a humanoid
robot. Although this work did not include driving locomotion, it in-
corporated different locomotion strategies—namely bipedal walking,
crawling, and climbing—into the planning process. A representation

24 related work

with adaptive dimensionality was utilized and searched by the Multi-
heuristic A* algorithm which solved planning tasks of considerable
size.

To draw a conclusion from these works in the literature, it can be
summarized that their exists only very few works which addressed
the problem of hybrid driving-stepping locomotion planning. It can
be further seen that works which focus on locomotion planning for
complex robot platforms usually use multiple hierarchical planning
representations to handle the large state spaces. However, a clear
trend how to design and incorporate such representations is not dis-
cernible. The literature contains approaches for coarse-to-fine plan-
ning, the incorporation of multiple planning representations by a sin-
gle planner, as well as the generation of an informed heuristic which
was based on an additional representation. There is also no clear pref-
erence for a certain underlying planning method discernible. The
presented works used advanced methods of both search-based and
sampling-based planners. Learning-based planners were rarely used
and if they were, they were only applied to local sub-problems of
limited complexity.

3
A S E A R C H - B A S E D A P P R O A C H T O H Y B R I D
D R I V I N G - S T E P P I N G L O C O M O T I O N P L A N N I N G

This chapter describes an approach to the problem of hybrid driving-
stepping locomotion planning. As pointed out in Section 2.4, only few
works addressed this topic so far. The proposed methods differ in
their underlying algorithms depending on the problem specifications
such that no preference for a specific approach is observable. In this
work, we address planning for the platforms Momaro and Centauro
which are depicted in Figure 3.1. Nevertheless, the method is eas-
ily adaptable to similar platforms. Both robots possess a quadruped
lower body with legs ending in 360° steerable, actively driven wheels
allowing for omnidirectional driving as well as stepping motions.
Since no posture change is needed to switch between the two loco-
motion types, those robots are in addition capable of performing ac-
tions which neither pure driving robots, nor pure stepping robots can
perform. One example is the motion of individual feet relative to the
robot body while maintaining ground contact and being under load.
This is an important feature for, e.g., modifying the support polygon
shape to facilitate robot stabilization which should be included in the
planning. Hence, it is not sufficient to combine isolated driving and
stepping locomotion planners.

We consider environments which are typical for disaster response
missions. Those include mostly, but not exclusively, human-made
structures such as corridors, ramps, staircases, or doors. Due to the
disaster, environments might be affected by partially collapsed struc-
tures, objects lying around, and other forms of debris. The charac-
teristics of such terrains have many similarities with other domains

Figure 3.1: Hybrid driving-stepping robots employed with the described ap-
proach. Left: Momaro. Right: Centauro.

26 a search-based approach to hybrid locomotion planning

of robotic application such as urban delivery services or planetary
exploration, which enlarges the potential application width of the de-
veloped method.

Section 3.1 gives an overview of the developed method. Section 3.2
to Section 3.5 explain the individual components in detail. The eval-
uation of the method is described in Section 3.6 while Section 3.7
discusses the results and draws a conclusion.

3.1 system overview

The system architecture possesses multiple components, as depicted
in Figure 3.2. Multiple inputs are given to the system at different
frequencies. The goal state input only needs to be set once and de-
scribes the desired 3-DoF (x, y, θ) state to which the robot base shall
move. In this work, the goal state is intuitively defined by an oper-
ator using RViz1 but in other contexts it can also be set from, e.g.,
a higher-level task planner. A second input to the system are aggre-
gated point clouds which represent the environment. The employed
robot platforms Momaro and Centauro are both equipped with a ro-
tating Velodyne Puck 3D laser scanner with spherical field-of-view
at their robot head. We use the Simultaneous Localization and Map-
ping (SLAM) method of Droeschel et al. (2017) who employ multires-
olution surfel grids to generate a dense 3D map of the environment
from laser scanner range measurements. In the used setting, one full
3D scan is acquired every five seconds while inertial measurement
unit (IMU) measurements and wheel odometry are incorporated to
compensate for sensor motion. The employed SLAM method is also
capable of handling other laser scanner setups but the chosen design
of a 3D rotating laser scanner is beneficial since it provides informa-
tion about the ground structure at areas close to the robot, especially
at the robot front and sides, facilitating precise locomotion. Finally, in-
formation about the current robot state is input to the system. Those
include a 6-DoF state of the robot base with respect to a global frame,
which is also output by the aforementioned SLAM method, and indi-
vidual foot configurations relative to the robot base computed from
joint states. This information arrives at a high frequency of 50 Hz. All
inputs as well as internal communication between modules and the
system outputs are realized by messages in the Robot Operating Sys-
tem (ROS) (Quigley et al., 2009).

The system itself is split into four modules. The Map Generator
(see Section 3.2) processes aggregated point clouds to suitable map
representations for the planning. This is done for each incoming point
cloud. The Path Planner (see Section 3.3) generates a path from the
current robot state to the desired goal state. It is sufficient to gener-
ate a path once. However, path planning can be repeated after an

1http://wiki.ros.org/rviz

http://wiki.ros.org/rviz
http://wiki.ros.org/rviz

3.1 system overview 27

Map Generator ~ 0.2 Hz

• Process point clouds to height maps
• Generate height difference maps
• Generate cost maps

Path Planner 1× – 0.2 Hz

• Plan path from current robot state to
goal state
• Incorporate cost maps
• Consider driving and stepping
• Represent steps as abstract steps

Path Expander 1× – 0.2 Hz

• Obtain stable stepping configurations
• Expand abstract steps to detailed

motion sequences
• Compute foot heights

Controller 20 Hz

• Execute detailed path

Point clouds
(~ 0.2 Hz)

Height maps
Height difference maps
Cost maps

Abstract path

Detailed path

Robot control commands

Goal state
(1× per planner run)

Robot state
(50 Hz)

Low-level Controller

Figure 3.2: Overview of the system architecture. Intermediate modules are
executed either once or up to 0.2 Hz.

arbitrary time interval, which is longer than the planning time it-
self, to incorporate updated environment information in the planning.
Each generated path is expanded to an executable motion sequence
in the Path Expander (see Section 3.4). Finally, the Controller (see Sec-
tion 3.5) executes these motion sequences. It runs at a frequency of
20 Hz.

Outputs of the proposed system are robot control commands. For
omnidirectional driving, those consist of a 3-DoF (vx, vy, vθ) vector for
the desired velocity of the base. The utilized robot control interface by

28 a search-based approach to hybrid locomotion planning

Schwarz et al. (2017) is capable of computing individual wheel orien-
tations and velocities from these vectors. For foot motions, desired
Cartesian 3D foot positions relative to the robot base frame are out-
put for each individual foot. The same robot control interface solves
the corresponding inverse kinematics (IK) task and sends joint com-
mands.

3.2 map generator

Map Generator

Path Planner

Path Expander

Controller

Point
clouds

Maps

Abstract
path

Detailed
path

Control
commands

Goal
state

Robot
state

The Map Generator produces a suitable environment representation
for the Path Planner. Such a representation has to incorporate all infor-
mation which is required to solve the planning problem in a sufficient
quality while it needs to allow for efficient computation to obtain fast
planning times. The type and resolution of required information is
very dependent on the characteristics of the planning domain.

We present 2-dimensional state cost maps as a suitable planning
representation. State costs combine individual costs for each robot
foot and for the robot base. While this is sophisticated in compar-
ison to often used circular or rectangular robot representations, it
considerably extends locomotion capabilities in complex, demand-
ing environments, where precise navigation between obstacles is re-
quired. The developed representation allows robots to, e.g., take ob-
stacles between their legs. While the environment has 3-dimensional
characteristics, we choose a 2-dimensional representation due to com-
putational efficiency reasons. Other representation methods, such as
OctoMaps by Hornung et al. (2013), offer extended capabilities to de-
scribe 3-dimensional structures but due to the fact that we only focus
on ground heights, their advantages could not be fully exploited. The
detailed computation procedure of these cost maps is described in
the remainder of this section.

Input to the Map Generator are dense, aggregated point clouds
which are generated from laser scanner range measurements. In a
first step, those are processed to 2D height maps describing the ground
height profile with a resolution of 2.5 cm. This is detailed enough
to precisely position feet on obstacles or steps while the representa-
tion size still allows for efficient computation. Next, height difference
maps are derived from height maps by searching for the maximum
unsigned height difference 4h(ci) of each map cell ci to one of the
eight adjacent neighbor cells.

Foot costs are derived from unsigned height differences. For a foot
position ~f which is in the map cell c~f , the foot costs

CF(~f) = CF(c~f) = 1 + kCF,1 ·∑ci∈map4h(ci) · w(ci) (3.1)

3.2 map generator 29

are computed, where kCF,1 = 100 and

w(ci) =


∞ if

∥∥∥ci − c~f
∥∥∥ < rF ∧4h(ci) > 0.05 m,

1−
∥∥∥ci−c~f

∥∥∥
rN

if
∥∥∥ci − c~f

∥∥∥ < rSA,

0 otherwise,

(3.2)

with the foot radius rF and a safety area radius rSA. Foot costs are as-
signed an infinite value if height differences > 0.05 m occur under the
foot, such that it cannot establish reliable ground contact at that po-
sition. A foot is assumed to have a circular ground contact area with
the radius rF (rF,Momaro = 0.12 m, rF,Centauro = 0.078 m). A hard safety
margin to obstacles, which is never entered by a foot, can be incor-
porated by increasing rF. However, a large safety margin restricts the
applicability in cluttered areas where precise locomotion is required.
Hence, in a safety area of radius rSA, height differences are accumu-
lated weighted by their distance to c~f . This results in increasing foot
costs close to obstacle such that those areas are avoided if possible,
but still can be entered if necessary. We set rSA = 0.3 m. To summa-
rize, CF describes the terrain traversability under a robot foot and in
its surrounding. It is 1 on flat grounds, increases for uneven terrain
and in the vicinity of obstacles, and is infinite if safe foot positioning
is not possible. Since foot costs are computed for a 2D foot position,
a 2D foot cost map can be quickly precomputed which accelerates
planning at run-time. An example is visualized in Figure 3.3.

In addition to foot costs, base costs are computed. For a robot state
~r, the base costs

CB(~r) = 1+ kCB,1 ·max
(
−4hB,env(~r), 0

)
+ kCB,2 · 4hF,max(~r), (3.3)

where kCB,1 = 1 and kCB,2 = 0.5, and with

4hB,env(~r) = huB,max(~r)− hF,min(~r)−4hclear,min (3.4)

and

4hF,max(~r) = hF,max(~r)− hF,min(~r), (3.5)

combine two weighted cost terms: in the first term, the height dif-
ference 4hB,env(~r) between the robot base and the environment un-
der it is considered. If this height difference is negative, the robot
needs to lift its base to overcome the obstacle, and additional costs
are induced for this lifting action. 4hB,env(~r) is computed by tak-
ing the maximum height under the robot base huB,max(~r) and sub-
tracting the terrain height of the lowest of the four feet hF,min(~r). If
this height difference is smaller than the minimum driving clearance
4hclear,min (4hclear,min,Momaro = 0.225 m, 4hclear,min, Centauro = 0.5 m),
the robot needs to lift its base. The second term induces costs if the

30 a search-based approach to hybrid locomotion planning

Scene Heights Height differences

Foot costs Base costs State Costs

Figure 3.3: Driving cost computation for a simulated scenario in which Mo-
maro stands in front of a ramp, a small, and a tall pole. Yellow
areas are not traversable by driving, olive areas are unknown. It
can be seen in the base costs visualization that the robot can take
the small pole between its legs while the tall pole generates costs
for lifting the robot body. Base costs are shown for the current
robot orientation. State costs combine base costs and foot costs
at the four corresponding positions.

robot stands on uneven terrain, such as height differences or slopes.
It considers the maximum height difference between the four feet
4hF,max(~r), which is computed by subtracting the terrain height un-
der the lowest foot hF,min(~r) from the terrain height under the highest
foot hF,max(~r). To summarize, base costs are 1 in even terrain and in-
crease if the robot needs to lift its base to overcome an obstacle or
if the robot stands on uneven terrain. In contrast to foot costs, base
costs do not only depend on the 2D base position but the orientation
of the noncircular-shaped base has to be considered and individual
foot positions have to be known. This makes the precomputation of
all base costs infeasible. Instead, we approximate the base shape by
two disks of radius rB as depicted in Figure 3.4. A 2D map for huB,max

can be easily precomputed by inflating the 2D height map with rB.
Similarly, a 2D map for hF is precomputed by inflating the 2D height
map with rF. To obtain an efficient architecture, those maps are the
outputs of the Map Generator while the remaining cost computation
is performed at run-time. For the sake of a complete description, this

3.2 map generator 31

Figure 3.4: Approximation of the base shape. The image shows a model of
Momaro in top view. The base shape is approximated by two
disks (yellow) to facilitate base costs precomputation.

further computation is described in this section, as well. At run-time,
for a given robot state ~r, the center positions of the two disks are
computed from the robot base center position and orientation, and
the two corresponding huB,max-values are extracted from the precom-
puted map. Next, the four absolute foot positions are computed from
~r, the corresponding hF-values are extracted, and CB(~r) can be com-
puted.

Finally, for a robot state~r with its four absolute foot positions ~f0...~f3,
foot costs and base costs are concatenated to state costs

C(~r) = kC,1 · CB(~r) + kC,2 ·
3

∑
i=0

CF(~fi) + kC,3 ·max
j

(CF(~fj)), (3.6)

where kC,1 = 0.5 and kC,2 = kC,3 = 0.1. Foot costs are added in two
terms. The first foot cost term computes the average over all four foot
cost values. However, this does not distinguish a situation in which
all four feet experience slightly increased costs, e.g., when standing
on a ramp, from a situation in which three feet are on flat terrain and
one foot is at a very challenging and expensive position, although the
first situation is preferable. The second foot cost term only considers
the most expensive foot costs but neglects costs of the three remaining
feet which is neither desirable. A combination of both foot cost terms
achieves the desired situation assessment. In summary, C(~r) is 1 on
perfectly even terrain and describes the costs to place a robot in the
given state ~r on the map. Again, this computation is too expensive
to be precomputed, but it is performed during run-time only for the
required robot states.

Although the robot has to navigate on three-dimensional ground
contours, a 2D environment representation has been chosen on pur-
pose as it is considerably more computational efficient. Since the
robot always has ground contact and the considered disaster response
environments have mostly vertical walls, the chosen 2D representa-
tion suffices to include all required features. If the ceiling contour
needs to be incorporated, a second height map describing the ceiling

32 a search-based approach to hybrid locomotion planning

height could be extracted from the input point clouds and a corre-
sponding cost term could be added to the base cost computation.

Finally, this environment representation allows for modular incor-
poration of additional information sources. This could include fur-
ther processing of the sensor measurements, such as planar region
segmentation which is, e.g., presented by Karkowski and Bennewitz
(2016). Moreover, measurements from additional sensor modalities
could be included. In the CENTAURO project2, this pipeline has been,
e.g., extended to incorporate terrain classification information which
is generated from laser scanner point clouds and RGB camera im-
ages. Multiple features are extracted and processed to a traversability
classification of the terrain (Schilling et al., 2017). This traversability
information has been added as another weighted cost term to CF, as
depicted in Figure 3.5. One can think about many other possibilities
to enrich this representation with information. Examples are the in-
corporation of existing maps, experienced costs from previous runs,
or measurements from additional sensors providing, e.g., tempera-
ture or radiation information.

Stair
detection

Appearance-based
feature extraction

Geometry-based
feature extraction

Random
forest

classifier

safe risky obstacle stair

Registered point clouds Height maps Foot cost maps

RGB images Classified images

Terrain class maps

Figure 3.5: Enriching height map-based foot cost map generation with ter-
rain class information. Multiple features are extracted from
RGB images and registered point clouds, and are processed to
traversability classification of the terrain. Those are included
into the original pipeline during foot cost map computation.
From Klamt et al. (2019a).

2https://centauro-project.eu

https://centauro-project.eu
https://centauro-project.eu

3.3 path planner 33

3.3 path planner

Map Generator

Path Planner

Path Expander

Controller

Point
clouds

Maps

Abstract
path

Detailed
path

Control
commands

Goal
state

Robot
state

The Path Planner generates a path from the current robot state to a
desired goal state which is defined by the operator. It incorporates
an environment representation which is provided by the Map Gen-
erator, a robot representation, an action set to connect individual
robot states, and a cost function which assigns costs to each action
and, thus, makes path alternatives assessable and comparable. In the
context of hybrid driving-stepping locomotion planning, the planner
must consider both locomotion types.

While the generation of the environment representation is described
in Section 3.2, an adequate robot representation is described in Sec-
tion 3.3.1. In Section 3.3.2, a suitable planning method is derived from
the state-of-the-art and its implementation is described in detail. Fi-
nally, an action set which takes the planner characteristics into ac-
count is proposed in Section 3.3.3.

3.3.1 Robot Representation

The Path Planner considers robot platforms which allow for driving
locomotion as well as stepping locomotion. Since pure driving or
pure stepping locomotion planning is a subset of the described plan-
ning problem, the planner is also capable of generating respective
plans. However, the focus of this work is on hybrid driving-stepping
locomotion.

We consider quadruped robot platforms whose articulated legs end
in actively steerable, powered wheels such that omnidirectional driv-
ing is possible. Furthermore, wheels as end-effectors allow for imme-
diate switching between the two locomotion types and even enable
unique motions such as moving individual feet relative to the robot
base while keeping ground contact and being under load. In contrast,
robots like RoboSimian (see Section 2.1) require posture changes to
switch between the two locomotion types which inhibits such mo-
tions and allows for handling driving and stepping locomotion plan-
ning isolated. However, driving locomotion in disaster response en-
vironments is only feasible with a certain wheel diameter enabling
driving over small gravel and ground irregularities. On the other
hand, when wheels represent end-effectors, large wheel diameters
result in large footholds limiting stepping locomotion in challenging
environments. This trade-off has to be faced for the robot hardware
design.

The proposed method addresses the two mobile manipulation
robots Momaro and Centauro, as depicted in Figure 3.1. Both robots
possess a centaur-like body plan with four legs. However, the robots
differ in their kinematic details. Momaro’s leg design incorporates
three pitch joints—allowing for leg motions in the sagittal plane—

34 a search-based approach to hybrid locomotion planning

followed by the ankle yaw joint controlling the wheel orientation. The
legs show compliant behavior due to their elastic carbon composite
links, which work as a passive suspension system on rough terrain.
Each foot ends in a pair of steerable wheels with a wheel diame-
ter of 0.163 m and an overall foot width of 0.179 m. Hence, the foot
orientation can be modified through both the ankle yaw joint and dif-
ferential drive of the two wheels. Centauro’s leg design incorporates
an additional hip yaw joint resulting in a spider-like configuration
(yaw-pitch-pitch) of the upper joints, followed by the ankle pitch and
ankle yaw joints (Kashiri et al., 2016). This additional hip yaw joint
allows for 3-dimensional leg motions. Centauro possesses a single,
torus-shaped wheel with a diameter of 0.156 m at the end of each
leg. Given the constraint that the wheel steering axes are always per-
pendicular to the ground to allow for omnidirectional driving in any
configuration, 18 DoF are required to sufficiently describe an arbi-
trary robot locomotion state for these two platforms. This includes
the 6 DoF of the robot base (bx, by, bz, broll, bpitch, byaw) and 3 DoF for
the position of each foot relative to the base (fj,x,rel, fj,y,rel, fj,z,rel). The
two kinematic leg structures can be compared in Figure 3.6.

Both kinematic structures allow for inward (see Figure 3.7 left) as
well as outward (see Figure 3.7 right) knee configurations. While a
desired initial knee configuration can be chosen, switching between
knee configuration during operations is challenging and should be
avoided. This would either require the robot to completely stand
up until legs are fully extended or to completely relieve load from
the respective foot, lift it and switch to the other knee configura-
tion in a folding maneuver. In the case of Momaro, the kinematic
design provides a considerably larger reachability of all legs for an
inward knee configuration. In the case of Centauro, both knee con-
figurations provide a large reachability. However, for the front legs,
an outward knee configuration bears the risk of collisions with the
environment in front of the robot, e.g., when climbing stairs or ap-
proaching workspaces for manipulation. Hence, an inward knee con-
figuration is chosen. While Momaro’s design allows for an inward

Figure 3.6: Kinematic leg structures. Joint axes are marked with colored
lines. For clarity, only one leg is depicted per robot. Proportions
are not to scale. Left: Momaro. Right: Centauro. CAD visualiza-
tions from (Schwarz et al., 2017) and (Klamt et al., 2019b).

3.3 path planner 35

Figure 3.7: Different possible knee configurations for the front left leg of
Centauro. Left: Inward knee configuration. Right: Outward knee
configuration.

configuration for both, the front and rear knees without collisions be-
tween them, this is not the case for Centauro. Thus, to avoid collisions
between knees and limitations to foot reachability, an outward knee
configuration is chosen for Centauro’s rear legs.

Given the chosen constraints, the foot reachability can be analyzed.
Figure 3.8 shows foot reachability maps for both robots.

The reachability maps in the x-y-plane underline the additional ca-
pabilities Centauro obtains through its hip yaw joint in comparison
to Momaro. While the lateral foot position is fixed for Momaro, Cen-
tauro possesses a large lateral reachability. However, this reachability
is not equally distributed over the overall reachable area. It rather
consists of two circle sectors which are connected under the hip yaw
joint through a narrow section. The foot reachability maps further
show that Momaro’s reachability in the x-z-plane is larger due to
longer legs. Due to a symmetrical design, right feet have a symmetric
reachability. For Momaro, the rear feet reachability is slightly larger
due to longer legs while Centauro uses identical leg kinematics for
front and rear feet.

We choose a robot representation with fixed lateral foot positions
such that only foot motions in the sagittal plane are considered be-
cause of the following reasons:

1. both robot platforms can be described with the same robot rep-
resentation,

2. in case of Centauro, a dependency between the longitudinal
foot position and feasible lateral foot positions is avoided, and

3. in case of Centauro, the planning problem is reduced by four
DoF which significantly improves planning efficiency.

For Momaro, this fixed relative lateral foot position is defined to be
the only kinematically feasible value of −0.25 m (0.25 m for the right
side, respectively). For Centauro this value is defined to be −0.225 m

36 a search-based approach to hybrid locomotion planning

y

0.2

-0.0

-0.2

-0.4

-0.6
0.8 0.6 0.4 0.2 0.0 -0.2 x

z=-0.275

y

0.2

-0.0

-0.2

-0.4

-0.6
0.8 0.6 0.4 0.2 0.0 -0.2 x

z=-0.55

z

0.0

-0.2

-0.4

-0.6

-0.8
0.8 0.6 0.4 0.2 0.0 -0.2 x

y=-0.25

z

0.0

-0.2

-0.4

-0.6

-0.8
0.8 0.6 0.4 0.2 0.0 -0.2 x

y=-0.225

free self collision symmetry collision

Figure 3.8: Foot reachability maps for Momaro (left) and Centauro (right).
Front legs have an inward knee configuration. Symmetry col-
lisions describe configurations which would result in self colli-
sions if both front legs have a symmetric configuration.

(0.225 m, respectively) which is the only lateral value that connects
the two circle sectors in the x-y-plane and provides maximum lateral
reachability. Moreover, we neglect the z-dimension during planning,
which includes foot and base heights as well as base roll and pitch
information, because of the following reasons:

1. except for stepping motions, feet are required to have ground
contact and foot heights are dependent on the occurring terrain
heights,

2. the base height, roll and pitch orientation are mostly dependent
on individual foot heights and cannot be chosen freely, and

3. the planning problem is reduced by another seven DoF.

All of these seven DoF which are neglected during planning are com-
puted for the resulting path during path expansion from occurring
terrain heights. This considerably increases planning performance
since these DoF are only considered for few robot states instead of
being included in every state which is expanded during planning.

3.3 path planner 37

by

bx

bθ

f0,x,rel

f1,x,rel

f2,x,rel

f3,x,rel

Figure 3.9: Robot representation for locomotion planning. The blue rectan-
gle represents the robot base, red squares represent individual
feet, and the red circle represents the robot CoM.

The resulting robot state representation which is employed in the
planner~r = (bx, by, bθ , f

0,x,rel, f
1,x,rel, f

2,x,rel, f
3,x,rel) includes seven DoF

to describe an arbitrary robot state and is visualized in Figure 3.9.
The representation does not describe robot dynamics. Momaro’s

flexible leg design bears the risk of unpredictable dynamic behaviors.
Hence, motions are chosen to be sufficiently slow, such that dynamic
effects can be neglected for this first approach. However, a later ex-
tension to include dynamics in the representation would be desirable
to increase operations speed and real-world applicability.

3.3.2 Planning Method

The planner generates a sequence of robot states to move the robot
from its current state to a desired goal state, which we call a path.
Input to the planner are environment maps from the Map Generator
(see Section 3.2), the desired goal state which is defined by the oper-
ator, and information about the current robot state which is used to
generate the start state for the planning problem. In this section, plan-
ning methods are compared, and one particular method is chosen for
the problem of hybrid driving-stepping locomotion planning.

In a first step, the application is analyzed in detail to derive re-
quirements to the employed method. The whole planning pipeline
shall address the operation of hybrid driving-stepping robots in chal-
lenging environments, e.g., in the disaster response domain. First, the
operator defines a locomotion goal state which might be in a consid-
erable distance to the current robot position. To get there, the robot
might need to omnidirectionally drive on flat and slightly rough ter-
rain, climb obstacles and stairs, take detours to avoid obstacles and
challenging regions, or move to other rooms. The planner shall be ca-
pable of comparing different path alternatives and prefer those which
require less execution effort. Hence, the planner should, e.g., prefer
a detour over flat terrain to a shorter path alternative on challeng-
ing terrain. Due to the characteristics of disaster response missions,
environments are only traversed once or at most a few times. Plan-

38 a search-based approach to hybrid locomotion planning

ning times are desired to be in the range of a few seconds. Longer
planning times would imply waiting times during robot missions re-
sulting in longer mission times and restricting mission goals since
on-board power supply is limited. Short planning times increase the
possibility of frequent re-planning which allows the robot to quickly
react to dynamic environment changes. Since a stable and fast data
link between the robot and the operator station cannot be assumed,
the planner needs to be executed on-board the robot hardware.

Given these requirements, the existing robot motion planning ap-
proaches described in Section 2.2 are assessed in terms of their appli-
cability to the described planning problem.

Optimization- and Potential Field-based Planning

The applicability of optimization- and potential field-based planners
to the described planning problem is limited. While these methods
are suitable to plan in high-dimensional state spaces, those spaces
usually include dynamic DoF such as velocity or acceleration. How-
ever, potential fields are vulnerable to local minima which may def-
initely occur in challenging cluttered environments. Optimization-
based methods, if used as a stand-alone planner, are dependent to an
initial feasible solution which can be optimized. If such an initial so-
lution is already challenging to find, the strengths of these methods
cannot be fully exploited (see Section 2.2.3). Kamedula et al. (2018)
and de Viragh et al. (2019) used optimization-based methods to con-
trol short sequences of hybrid driving-stepping locomotion. However,
those methods were only demonstrated on obstacle-free, flat terrain.

Learning-based Planning

Applying learning-based methods to the described planning prob-
lem is also difficult. At the current state-of-the-art, learning-based
methods are suitable to solve potentially high-dimensional local sub-
problems of a planning task. However, the described problem with
its large, complex environments and high-dimensional robot repre-
sentation results in a state space whose size is significantly larger
than what has been solved with such planners so far and goes be-
yond the current limitations regarding network complexity, training
time, and required amounts of training data. One example is the re-
inforcement learning approach by Chen et al. (2018) which generates
short-distance omnidirectional driving commands for the Centauro
robot on flat terrain. The method considers obstacles, and besides
driving, the robot is capable of changing its base height and footprint
width. Nevertheless, since we are convinced that this family of plan-
ning methods has a high potential of evolving with further research
on network architecture and continuous improvements in correspond-
ing hardware, a stand-alone learning-based planner is developed as

3.3 path planner 39

part of this thesis and detailed in Chapter 6 to investigate the current
limitations of such approaches.

Sampling-based Planning

Regarding sampling-based planners, it has to be distinguished be-
tween single-query algorithms such as RRT and multi-query algo-
rithms such as PRM. Since in the considered domains, most envi-
ronments only have to be traversed once or few times as elaborated
before, the strength of multi-query algorithms to costly generate a
roadmap of the whole environment once which can be quickly ac-
cessed in multiple queries cannot be exploited. This roadmap gener-
ation is rather inefficient since many states are included which are
not required to solve the current planning problem. This is different
for sampling-based single-query algorithms. It is a general paradigm
in the planning community that such algorithms can efficiently solve
high-dimensional planning problems.

An example is the work by Reid et al. (2016b) who developed a
FMT*-based hierarchical planner for the quadruped omnidirectional-
driving MAMMOTH robot with actuated limbs which is also capable
of climbing over obstacles. The planner provides paths for queries in
challenging environments of up to 15 m length in less than 20 seconds
with a success rate of 80 to 90%. Environments represent flat grounds
with multiple smaller isolated obstacles as well as walls with gaps
in them. Complex stepping maneuvers such as stair climbing are not
considered. State transition costs are based on the estimated mechan-
ical work which is required for the transition. This is calculated from
state differences and masses of the robot base and legs. Stepping mo-
tions are not directly included in the planning method but are derived
from terrain heights under the individual feet.

However, the hybrid driving-stepping locomotion planning prob-
lem addressed in this work imposes multiple challenges to the appli-
cation of sampling-based single-query planners as explained in the
following.

1. A generally known weakness of sampling-based planners is plan-
ning through narrow passages. There exist approaches which fo-
cus the sampling strategy on such areas (e.g., Zhang and Manocha
(2008)) but those require analysis of the environment and come
along with considerable computational effort. In the addressed en-
vironments, stair climbing is a frequently occurring example for
narrow passages in the 7-dimensional state space. Since feet have
to be positioned on individual steps precisely and leg length lim-
itations have to be considered, only a few action sequences with
low variance—forming a high-dimensional narrow passage—are
feasible to solve such a task and maintain robot stability. Reid et
al. (2016b) only consider the overcoming of small isolated obsta-
cles such that this effect is limited in their planning domain.

40 a search-based approach to hybrid locomotion planning

2. Sampling-based planners require methods to determine the costs
between two arbitrary states. Those methods are frequently used
to, e.g., determine nearest neighbor states and, consequently, need
to be computationally efficient. In many cases, costs are assumed
to be proportional or equal with path lengths such that the Eu-
clidean distance can be used as an efficient method. Reid et al.
(2016b) formulate a cost function describing mechanical work. As
stated above, this is only dependent on the robot states and not
on the terrain that needs to be traversed. In our planning domain,
it should be, e.g., considerably more expensive to climb a stair
instead of driving up a ramp since the latter is faster, safer, and
requires less energy. It should also be cheaper to drive over flat
terrain instead of gravel. Both examples illustrate that a pure com-
parison of two states is not sufficient to reliably estimate transition
costs between them, but the respective environment has to be an-
alyzed. However, this requires considerable computational effort
and reduces the efficiency of the planner.

3. Sampling-based planners interpolate between states and assume
that a direct connection is possible. An example is the computa-
tion of action costs where multiple states are sampled between the
action start and action goal state to determine the individual costs
for these sampled states and generate accumulated action costs.
Another example is the generation of a new state which shall be
added to the state tree of RRT. First, a random state is sampled. If
the distance to its nearest neighbor in the tree exceeds a specified
maximum distance, an intermediate state is interpolated between
the nearest neighbor and the sampled state at this specified dis-
tance to the nearest neighbor. This is feasible for omnidirectional
motions but imposes challenges to, e.g., stepping motions where
the feasibility of intermediate states cannot be guaranteed. Positive
and negative examples are depicted in Figure 3.10.

Search-based Planning

In contrast to sampling-based planners, many of the described dis-
advantages do not occur for search-based planners. The main ad-
vantages of search-based planners, in the context of hybrid driving-
stepping locomotion planning, are described in the following.

1. The definition of an explicit set of feasible actions is supported
by search-based planners. In contrast to sampling-based planners,
where a direct connection between different states is assumed, this
is helpful to address the kinematic capabilities and limitations of
the considered platforms. It is, e.g., no problem to consider that
foot motions are only feasible in the longitudinal direction and
that steps need to be added to the paths as explicit maneuvers.

3.3 path planner 41

State 1 Interpolated Pose State 2

Omnidirectional driving

Stepping 1

Stepping 2

Figure 3.10: State interpolation as used in sampling-based planning meth-
ods. Top: State interpolation is feasible for omnidirectional driv-
ing. Middle: For stepping, the depicted interpolated state is un-
desired, since the robot would approach the platform with an
already extended leg and the leg length limitation would pro-
hibit further longitudinal extension which is required for the
step. Bottom: Since the robot representation does not allow for
sideways stepping maneuvers, the interpolated state is not on
the path between the two states. Instead, the robot would have
to turn, longitudinally climb the step and turn again.

This was also exploited in other works (see Section 2.4 for details).
Fleckenstein et al. (2017) defined a set of explicit leg motions and
omnidirectional driving maneuvers for an ARA*-based planner for
the agricultural BoniRob platform. Particular emphasis was placed
on multiple driving forward-actions, which is the preferred driv-
ing direction. Dornbush et al. (2018) defined different action sets
for different locomotion modes for a humanoid platform. Depend-
ing on the surrounding environment requirements, only certain
action sets were considered for respective regions.

42 a search-based approach to hybrid locomotion planning

2. The utilization of customized cost functions does not impose chal-
lenges. While for sampling-based methods, costs have to be fre-
quently computed between arbitrary states, in search-based plan-
ning, costs are only computed once for each expanded action.

However, search-based planners do also introduce some challenges
when applied to high-dimensional planning problems.

1. Planning problems which require detailed planning (e.g., to pre-
cisely navigate around obstacles or precisely step on them) need
a fine planning representation which comes along with large state
spaces to be searched. The utilization of multiresolution approaches
is promising to diminish this effect (see Section 2.3).

2. In situations in which the path to the goal state requires actions car-
rying high costs, the planner would first search large areas around
the already explored regions before considering such actions. Us-
ing sophisticated methods, such as ARA* or the employment of an
informed heuristic, can minimize these extensive searches but the
design of such a heuristic is challenging. As an example,
Fleckenstein et al. (2017) proposed a combination of a free-space
heuristic—assessing the robot motion capabilities—and a wheel
Dijkstra heuristic—incorporating environment information while
only considering for individual wheels.

While both, sampling- and search-based planners, have weaknesses
and strengths in the context of hybrid driving-stepping locomotion
planning, we choose a search-based approach for the problem of hy-
brid driving-stepping locomotion planning since many of the gen-
eral domain characteristics can be easily addressed in search-based
methods while they would require costly adaptations or extension
for sampling-based methods. In particular, we employ the Anytime
Repairing A* (ARA*) algorithm since the considered problem yields
a large state space increasing the risk for the planner to get stuck in
extensive searches. By initially searching with large heuristic weights,
sub-optimal paths can be found quickly and are subsequently refined.
This is desirable since it is preferred to obtain a sub-optimal solution
within a given time interval—which is called the anytime property—
instead of waiting for an optimal solution.

3.3.3 Action Set and Cost Function

The search-based planner employs an action set which is based on
the robot representation described in Section 3.3.1 and which con-
tains state transitions representing the kinematic capabilities of the
considered robots. Actions need to respect the state discretization in-
troduced by the planning method.

3.3 path planner 43

Driving Actions

Omnidirectional driving actions include driving with fixed orienta-
tion to one of 20 neighbor states, as depicted in Figure 3.11 (a). Eight
of these states are in the direct state grid vicinity (Moore neighbor-
hood) of the robot. Eight additional states can be reached by mov-
ing two longitudinal resolution steps and one lateral resolution step
or vice versa to mitigate the angular discretization effects. However,
employing these 16 actions in combination with the ARA* planner
results in an undesired effect: When planning with high heuristic
weights, the planner prefers those actions which bring the robot closer
to the goal state. Since the maximum traversable distance in a single
action is achieved through those eight actions which do not end in
the direct vicinity of the action start state, those are preferred by the
planner. However, as depicted in Figure 3.11 (c), this can result in zig-
zag-shaped paths. Adding four additional actions to the action set,
which move the robot by either two longitudinal or two lateral reso-
lution steps (see Figure 3.11 a), prevents this undesired behavior. In
addition to translational movements, omnidirectional driving actions
include turning to the next discrete orientation with fixed position, as
depicted in Figure 3.11 (b).

The omnidirectional driving action costs are computed from the
given state costs along the edge. For driving with fixed orientation, in-
termediate robot states are sampled along each action edge such that
the distance between two successive sampled states does not exceed
halve of the action resolution. This fine sampling enables precise colli-
sion checking in challenging environments. Robot states are sampled
using interpolation. As explained in Section 3.3.2 and depicted in Fig-
ure 3.10, sampling through interpolation is feasible for continuous
actions such as omnidirectional driving. Subsequently, state costs are
computed for each sampled state. Action costs are computed by av-
eraging over those state costs and multiplying with the action length.
Since state costs are defined to be 1 in flat terrain, driving action costs

a) b) c)

Figure 3.11: Omnidirectional driving action set. a) Driving to a neighbor
state with fixed orientation. b) Turning to the next discrete ori-
entation with fixed position. c) ARA* outputs for large heuristic
weights results in a zig-zag-shape. To obtain the desired behav-
ior (dashed blue line), four additional actions are added to the
action set (green arrows in a)). Grid and orientation resolution
are enlarged for illustrative purposes.

44 a search-based approach to hybrid locomotion planning

are equal to the covered distance in flat terrain and increase for ac-
tions in more challenging terrain.

For turning to the next discrete orientation, an intermediate state
is sampled too, such that the maximum distance between two states
is halve of the rotation resolution. This allows for precise collision
checking in challenging environments. Subsequently, state costs are
computed and averaged, and multiplied with the covered distance.
In this case, the distance is computed from the average distance each
foot covers during the turning motion. To facilitate faster computa-
tion, we assume that all feet are in standard configuration, as depicted
in Figure 3.11 (a) and (b).

Stepping Actions

Besides omnidirectional driving, the planner considers stepping mo-
tions. However, since those are only feasible in certain situations, a
set of criteria is checked before generating a stepping motion for a
foot at the position ~fj. This criteria set is visualized in Figure 3.12.

• ~fj is close to an obstacle, i.e. ,

∃ c ∈ map with CF(c) = ∞ ∧
∥∥∥c− ~f j

∥∥∥ ≤ dobst,max,
with foot costs CF and the maximum obstacle distance dobst,max.
Checking of this condition is realized computationally efficient
through precomputed inflated foot cost maps.

• A feasible foothold in the map cell ch with CF(ch) < ∞ can be
found in front of the foot in its sagittal plane that respects a
maximum leg length.

• The height difference to the foothold 4hstep is feasible, i.e. ,
4hstep = |h(~f j)− h(ch)| ≤ 4hstep,max.

• The distance between the two feet on the “non-stepping” robot
side is ≥ 4 fx,min,ns to facilitate a safe stand while stepping.

dobst,max is chosen to be 0.1 m, 4hstep,max is 0.3 m and 4 fx,min,ns is
0.5 m for Momaro and 0.3 m for Centauro. While the two robots seem
similar in their kinematic capabilities, Momaro’s foot reachability is
larger resulting in different thresholds.

Abstract Step

An abstract step is
the direct transition
from a pre-step to a

post-step state.
Neither the robot stabi-

lity nor the detailed
motion sequence to
perform the step are

considered.

It is important to understand that the step which is added to the
search is an abstract step. We define an abstract step to be the direct
transition from a pre-step state to a post-step state. Neither a guaran-
teed robot stability nor the detailed motion sequence to perform the
step are considered during the search. This is obtained during path
expansion after the search.

Each step with the target foothold in the map cell ch is assigned the
corresponding costs

Cstep = kCstep,1 · lstep + kCstep,2 · 4hstep + kCstep,3 · (CF(ch)− 1), (3.7)

3.3 path planner 45

dobst,max ≤ 4hstep,max

≥ 4 fx,min,ns

a) b) c) d)

Figure 3.12: Step criteria to be considered by the planner. Figures visualize
criteria for a step with the front left foot. a) The foot is close
to an obstacle. b) A feasible foothold exists in front of the foot.
c) The height difference to overcome is feasible. d) The distance
between the two feet on the non-stepping robot side exceeds a
threshold to facilitate sufficient stability.

where kCstep,1 = 0.5, kCstep,2 = 2.3, and kCstep,3 = 0.1 including the step
length lstep, the stepping height difference 4hstep, and a terrain diffi-
culty assessment for the target foothold. Since foot costs are defined
to be 1 on perfectly flat terrain and increase for more difficult terrain,
a terrain difficulty assessment is obtained by subtracting 1 from the
foot costs in ch. If multiple feasible target footholds for a step exist,
only the cheapest solution is added to the search.

The locally cheapest step is not necessarily part of the globally
cheapest path. However, the consideration of multiple feasible steps
during the search leads to significantly larger state spaces—especially
if multiple successive steps are required. We are aware of this
trade-off between computational efficiency and result optimality and
opt for computational efficiency since several sources for
sub-optimality are present anyway and efficiency has a high priority.

Neutral Foot
Configuration

The neutral foot confi-
guration describes the
depicted configuration.
It provides a low CoM,

a compact but stable
footprint, and is the

preferred configuration
for driving.

Besides the step itself, further maneuvers are required to perform
stepping locomotion and to navigate in cluttered terrain (see Fig-
ure 3.13). For this, we define a neutral foot configuration describing
the configuration which is depicted in the info box. It provides a low
CoM, a compact but stable footprint which is desirable to, e.g., move
through doors, and is the preferred foot configuration for driving.

If both front feet are positioned in front of their neutral position,
the robot may perform a longitudinal base shift. The base is shifted
forward relative to the feet while the feet keep their position relative
to the ground. The shifting length is limited by either rear legs which
reach their maximum length or front feet which reach their neutral
configuration (see Figure 3.13 b). Longitudinal base shifts of length
lbs are assigned the costs

Cbs = kCbs · lbs · CB,avg, (3.8)

where kbs = 0.5 and CB,avg describes the average discovered base costs
during the shift.

46 a search-based approach to hybrid locomotion planning

a) b) c) d)

Figure 3.13: Stepping related planning maneuvers. a) Step. b) Longitudinal
base shift. c) Driving an individual front foot forward. d) Driv-
ing any foot back towards its neutral configuration.

If a rear foot is close to an obstacle, the front feet may be driven
forward (see Figure 3.13 c). This enables a subsequent base shift ma-
neuver and is the preparation for a rear foot step.

Finally, whenever an individual foot is not in its neutral configura-
tion, the robot is given the possibility to drive this foot towards this
configuration (see Figure 3.13 d). If an obstacle hinders the complete
execution until the neutral foot configuration is obtained, the foot is
only moved towards the neutral configuration until reaching the ob-
stacle. Driving a foot relative to the robot base with a motion length
of ldf is assigned the costs

Cdf = kCdf · ldf · CF,avg, (3.9)

where kCdf = 0.125 and CF,avg describes the average foot costs discov-
ered during the motion.

Additional Cost Terms

Since driving is faster, safer, and more energy efficient compared to
stepping, we want the planner to prefer driving locomotion whenever
feasible and consider drivable detours of an acceptable length instead
of including steps in the resulting plan. This can be addressed by a
corresponding cost parametrization. We define that if the robot stands
in front of an elevated platform of 0.2 m height, it should just prefer
an 1.5 m long detour over a ramp instead of stepping up to this plat-
form, as visualized in Figure 3.14. All cost terms of stepping-related
maneuvers are weighted by an additional factor such that the desired
behavior is obtained.

Although the considered robots are capable of omnidirectional driv-
ing, there are multiple reasons to prefer driving forward.

1. The sensor setup is designed to provide the best measurement
quality for the area in front of the robot since it is also used for
manipulation. This results in the most reliable and detailed envi-
ronment representation in front of the robot. The rotating laser

3.3 path planner 47

Figure 3.14: Stepping-related maneuver costs are weighted such that the
planner just prefers taking a 1.5 m detour over a ramp (blue
path) instead of choosing stepping (red path) to achieve a goal
state (green arrow) on an elevated platform.

scanner is, e.g., mounted such that it can measure the terrain di-
rectly in front of the feet. This is not the case for the robot sides
and back.

2. The required width clearance is minimal when driving in the lon-
gitudinal direction which facilitates navigation in narrow sections
such as doors.

3. The kinematic leg design and the chosen robot representation re-
strict stepping motions to the sagittal plane. Thus, approaching
corresponding situations in the right orientation without the ne-
cessity for turning maneuvers is desirable.

We express this desire of preferring certain orientations by adding
an orientation cost factor k4θ to the costs for driving actions. k4θ is
dependent on the orientation difference between the robot orientation
and the base motion orientation and follows the scheme depicted in
Figure 3.15. The factor is minimal for driving forward (k4θ = 0 plus a
margin of one orientation step) and linearly increases to a maximum
value. When driving sideways, k4θ is assigned this maximum value.
Driving backward (k4θ = π) is assigned a lower value, since the
required width clearance is also minimal when driving backwards.
The parametrization of k4θ is evaluated in Section 3.6.1.

Finally, as stated above, the planner shall prefer driving in the neu-
tral configuration. Path search is motivated to find respective paths
in the state space by weighing action costs for driving in a non-
neutral configuration by the factor knon-neutral,fp = 1.1, which was
parametrized through experiments.

48 a search-based approach to hybrid locomotion planning

4θ

Driving
direction

0 2
64 π 1

4 π 3
4 π π

orientation difference |4θ| [rad]

1

3
4 k4θ,max

k4θ,max

cost
factor
k4θ

Figure 3.15: Orientation difference cost factor for driving actions. For an ori-
entation difference 4θ between the robot orientation and the
driving direction, a corresponding action cost factor is deter-
mined following the depicted scheme.

3.3.4 Heuristic

The performance of A*-based planners strongly depends on the em-
ployed heuristic. It is used to estimate costs from an arbitrary state to
the goal state. The heuristic should steer the search towards the goal
while needing as few node expansions as possible but expanding as
many nodes as necessary to find a solution of the desired quality. To
obtain solutions which are optimal with respect to the chosen state
space discretization, the heuristic always has to underestimate the
costs for the cheapest path between the two states. This is called an
admissible heuristic. Furthermore, good cost estimates, which are as
close to the cheapest path costs as possible, minimize the number of
state expansions. Since heuristic values are frequently required dur-
ing path search, its computation needs to be efficient.

We combine the often-used Euclidean distance with a heuristic
term for the orientation difference and call this the geometric heuristic.
The value between the arbitrary robot states ~r1 and ~r2 is computed as
follows:

h(~r1, ~r2) = kh,1 ·
∥∥∥∥∥
(

bx,1

by,1

)
−
(

bx,2

by,2

)∥∥∥∥∥+ kh,2 ·∅d f ,neut. · 4bθ , (3.10)

where ∅d f ,neut. describes the average distance from the robot base cen-
ter to a foot in neutral configuration and4bθ describes the minimum
orientation difference between ~r1 and ~r2. Hence, the product describes
the minimum required distance feet have to move to turn the robot
on the spot for the required rotational difference. kh,1 and kh,2 are
weighting factors. As stated in Section 3.2, the Euclidean distance is
weighted with kh,1 = 1 since, to underestimate costs, it assumes driv-
ing in neutral configuration on perfectly flat terrain. The orientation
difference cost term is weighted with kh,2 = 0.5 since it describes a
turning motion with fixed base position such that only the driving
costs of the feet but not of the base are considered.

3.3 path planner 49

Since we employ the ARA* algorithm, the whole heuristic term is
weighted with a factorW ≥ 1.0 such that result optimality cannot be
immediately guaranteed but bounded sub-optimal results are gener-
ated quickly.

3.3.5 Implementation

The described planner is implemented using C++ and ROS Kinetic
Kame. We employ a fine action resolution of 2.5 cm to enable the
planner to position the robot precisely in challenging environments.
In addition, we choose an orientation resolution of 5.625° which re-
sults in 64 discrete orientations.

Efficient implementations for the priority queue and the data struc-
ture storing node information are crucial as both are frequently used
by the planner. These are described in the remainder of this section.

Priority Queue

The priority queue is used by the planner to handle all discovered
nodes and to determine the order of node expansions. In this plan-
ning context, nodes represent robot states. The ARA* planner uses
the f -value (see Section 2.2.1) to compare individual nodes with each
other and compute their priority. The lower the f -value, the higher
the states priority. The following priority queue operations are re-
quired:

push: Pushes a node with a given f -value into the queue with
the correct position with respect to the f -value. During planning,
each newly discovered feasible node is pushed into the queue.

top: Returns the node with the highest priority. This is used to
determine the next node to expand.

pop: Deletes the node with the highest priority from the queue.
After a node is expanded, it is deleted from the priority queue
using this function.

increase: Increases the priority of an already included node ac-
cording to a new, lower f -value. During path expansion, if for an
already known node an f -value is computed which is lower than
the previously known f -value, its position in the priority queue
is updated..

The complexity of these operations is compared in Table 3.1 for a set
of widely-used, heap-based implementations.

A Fibonacci heap-based priority queue is chosen due to the lowest
overall complexity. We employ the boost open-source implementa-
tion3.

3www.boost.org/doc/libs/1_54_0/doc/html/heap/data_structures.html

www.boost.org/doc/libs/1_54_0/doc/html/heap/data_structures.html
www.boost.org/doc/libs/1_54_0/doc/html/heap/data_structures.html

50 a search-based approach to hybrid locomotion planning

Table 3.1: Complexity comparison of priority queue implementations (Cor-
man et al., 1990).
† amortized

Data structure push top pop increase

Binary heap O(log(N)) O(1) O(log(N)) O(log(N))

Binominal heap O(1)† O(log(N)) O(log(N)) O(log(N))

Fibonacci heap O(1) O(1) O(log(N)) O(1)†

Node Data Storage

During the search, the following data has to be stored for each dis-
covered node:

• g-cost,

• f -cost,

• pointer to predecessor node,

• a flag if the node is in the open list of the search,

• a flag if the node is in the closed list of the search, and

• a handle to the nodes position in the priority queue which is
required by the increase function of the priority queue (see Sec-
tion 3.3.5).

Since node data is accessed and updated frequently during the search,
an efficient data structure is required.

For constant data access time, a multidimensional array with unique
indices would be required for every possible 7-DoF robot state
~r = (bx, by, bθ , f0,x,rel, f1,x,rel, f2,x,rel, f3,x,rel). This would allow direct ac-
cess to the corresponding data without the need for any search within
the data structure. However, this would require memory prealloca-
tion for each index. A 10 × 10 m map, with the chosen resolution
and foot reachability, contains approximately 6.7 · 1011 robot states.
Assuming that not the whole data but only a pointer is preallocated
for each state and assuming a pointer size of 64 bit, this would result
in approximately 4.8 TB of required memory, which is obviously far
above the capabilities of current hardware on-board mobile robots.

We chose a method in which a unique index is assigned to each
robot base state (bx, by, bθ) and allocate memory for a pointer for each
index, resulting in approximately 80 MB of required memory for the
above stated example. Each pointer points to a vector storing data for
all discovered foot configurations for this base state. Data of newly
discovered states is added to the vector with the corresponding in-
dex. When accessing node data, the corresponding vector needs to be
searched. Since mostly only few foot configurations are discovered for
individual base states, this search can be performed in short times.

3.4 path expander 51

Depending on the available memory size, arbitrary foot configura-
tions can be included in the index increasing the size of preallocated
memory but decreasing the time to access node data. We include the
configuration of the front left foot f0,x,rel in the index computation.
For the above stated example, this results in approximately 1.25 GB
of required memory for preallocation.

However, we experienced that the sizes of the resulting vectors con-
taining pointers are unbalanced. While these vectors often only con-
tain a single entry for regions of sufficiently flat terrain, which can
be overcome by driving, vector are considerably longer for regions
of complex terrains, such as staircases, where numerous foot config-
urations are considered. One could think about mapping the data to
an abstract state space which can be searched more efficiently, as e.g.,
proposed by Klein (2005).

3.4 path expander

Map Generator

Path Planner

Path Expander

Controller

Point
clouds

Maps

Abstract
path

Detailed
path

Control
commands

Goal
state

Robot
state

The output of the Path Planner is an abstract path which is a sequence
of robot states to navigate the robot from its current state to the goal
state. However, if steps are included in this path, they are represented
as abstract steps assuming a direct transition between a pre-step to
a post-step state and lacking robot stability consideration. The Path
Expander expands abstract steps to detailed motion sequences (see
Section 3.4.1). Moreover, the abstract path lacks information about
vertical foot positions, which we refer to as foot heights. The Path Ex-
pander derives foot heights from the required motions and the terrain
characteristics (see Section 3.4.2). Outputs of the Path Expander are
detailed motion sequences which can be executed by the Controller.

3.4.1 Step Expansion

Abstract steps are expanded to detailed motion sequences which guar-
antee robot stability at all times. In the case of Momaro, its compliant
leg design hinders knowledge about the exact foot positions. Those
have to be estimated from joint states. Since actuator speeds are rather
slow, dynamic effects are neglected. Hence, we limit stability consid-
eration to static stability, meaning that the robot can stop its motion
in every configuration while staying stable. Stability assessment is
done through the support polygon which is spanned between the
horizontal positions of all feet with ground contact (see Figure 3.16).
During stepping, this polygon changes its shape from a quadrangle
to a triangle. If the horizontal robot CoM projection is inside the sup-
port polygon, the robot state is statically stable. The closer the CoM
is to the support triangle centroid (STC), the higher is the static robot
stability.

52 a search-based approach to hybrid locomotion planning

lateral longitudinal

foot motion base shift

Figure 3.16: Obtaining a statically stable stepping configuration for a step
with the front left foot. The support triangle spanned by the
feet which maintain ground contact and its STC are depicted in
black. The robot CoM is depicted as a red dot. Lateral alignment
is realized through base roll motions. Longitudinal alignment is
either done by driving the remaining foot on the stepping side
towards the robot center or through a longitudinal base shift.

Since lateral foot movement is not support by Momaro’s kinematics
and the lateral foot movement range of Centauro strongly depends on
the longitudinal foot position (see Figure 3.8), those motions are not
employed during path expansion. Instead, we use base roll motions
for lateral alignment of the CoM and STC, as depicted in Figure 3.16.
Those rotations around the longitudinal robot axis can be realized
by changing the leg lengths on one side of the robot. In the case of
Momaro, the resulting angle between the wheel axes and the ground
plane is compensated by the compliant legs and the soft-foam filled
wheels. In the case of Centauro, its torus-shaped wheels facilitate base
roll motions. Roll motion parametrization is described in the next
section.

Longitudinal alignment of the CoM and STC is realized by driving
the remaining foot on the stepping side (e.g., the rear left foot when
stepping with the front left foot) towards the robot center. If this does
not suffice—considering foot reachability limitations and obstacles
hindering the motion—, the remaining longitudinal alignment is re-
alized through longitudinal base shift maneuvers. Both maneuvers
are depicted in Figure 3.16. In the case of Centauro, due to a smaller
foot reachability, additional arm motions are introduced facilitating
balancing. Arms are moved to the robot back when stepping with the
front feet while they are moved to a front configuration for rear foot
steps. The longitudinal CoM position is also dependent on the robot
base pitch angle described in the next section. The developed motions
generate a stable robot configuration to perform the planned step. If
no stable configuration can be obtained, path expansion is aborted.
However, due to sufficient flexibility, this behavior was not observed
in our experiments. After stepping, base shift, foot displacement, and
base roll maneuvers are reverted to retrieve the initial configuration.

3.4 path expander 53

3.4.2 Vertical Foot Positions

Abstract paths as output by the Path Planner do only contain informa-
tion about the longitudinal foot position for each robot state. While,
as explained in Section 3.3.1, lateral foot positions are defined to be
constant, vertical foot positions (foot heights), are required for a path
to be executable by the Controller. Foot height computation needs
to realize base roll motions, to provide adaptation to the ground, to
avoid collisions between the robot base and the underlying terrain,
and to avoid self-collisions as well as collisions between the feet and
the terrain during stepping.

When driving with neutral footprint, a low foot height is estab-
lished providing a low CoM and, hence, a high stability. The terrain
heights under the robot base are checked to determine when the robot
needs to lift its base to overcome obstacles between its legs. For ma-
neuvers other than driving a higher base height is chosen providing
sufficient clearance for individual foot motions. The terrain height
under each foot is looked up in the terrain height map to determine
the highest foot which is determining for the chosen base height. For
each stepping-related motion it is checked for the motion goal state,
if the current foot height is sufficient. It is also checked, if none of
the legs exceeds its maximum leg length. If adaptations are required,
an intermediate motion is inserted lifting the robot to a sufficient
height before executing this motion or lowering the robot base after
executing the motion. Steps itself are expanded to a foot-lift motion,
are foot-extend motion, and a foot-lowering motion considering the
corresponding terrain height and a small safety margin.

On terrain with sufficient slope, the robot base is pitched to an
angle which provides a good trade-off between ground clearance for
leg motions and a good CoM position. Since the CoM is close to
the base center for both robots, pitching has only small influence on
the CoM position and the corresponding robot stability. Due to the
different kinematics, the base pitch angle for Momaro is chosen to be
70% of the ground slope while Centauro’s base is pitched to 100% of
the ground slope.

Base roll motions are realized by changing the foot heights on one
robot side resulting in a lateral CoM motion. Given a desired lateral
CoM position, the required foot height change is computed as follows:
We assume the center of rotation R(y′rot, z′rot) to be at a fixed position.
In case of Momaro, this position is chosen to be between the two
wheels of a foot, as depicted in Figure 3.17. Due to the soft-foam filled
wheels, this assumption is sufficiently close to the real robot behavior.
For Centauro, the center of rotation is determined to be at the bottom
center point of the wheel while slight lateral shifts on the torus shape

54 a search-based approach to hybrid locomotion planning

R

CCdes

α

αdes

y′
z′

g

b

α− αdes

4hfoot

Figure 3.17: Base roll computation. Momaro’s lower body with footprint
width b in back view. Lateral CoM shifts are achieved through
foot height changes4hfoot on one side of the robot.R describes
the assumed center of rotation. C and Cdes describe the current
and the desired CoM position. α and αdes describe the according
angles to the vertical plane.

are neglected. In addition, the CoM position C(y′CoM, z′CoM), the angle

α = arctan
(

y′rot − y′CoM
z′CoM − z′rot

)
(3.11)

between
»RC and the vertical axis, and the desired lateral CoM posi-

tion y′CoM,des are given.

Using
∥∥∥ # »RC

∥∥∥ =
∥∥∥ # »RCdes

∥∥∥, we compute the desired angle between
»RCdes and the vertical axis

αdes = arcsin

y′rot − y′CoM,des∥∥∥ # »RCdes

∥∥∥
 . (3.12)

With a given footprint width b, we compute the desired foot height
difference

4hfoot = b · tan(α− αdes). (3.13)

This height difference is added to both legs on the corresponding
robot side inducing the desired base roll motion.

3.5 controller

We developed a hybrid driving-stepping controller. Input are detailed
paths represented as sequences of robot states. Using the current
robot position and orientation, and its foot configuration, the next
robot state ~ri+1 on the path is searched. Running at a frequency of
20 Hz, the controller determines whether omnidirectional driving or
limb motions are required to obtain this next state.

3.6 evaluation 55

Map Generator

Path Planner

Path Expander

Controller

Point
clouds

Maps

Abstract
path

Detailed
path

Control
commands

Goal
state

Robot
state

If omnidirectional driving is required, we employ the following
method to smooth the robot behavior: A B-Spline (Prautzsch et al.,
2013) is computed through the robot base states (bx,i, by,i, bθ,i),
(bx,i+1, by,i+1, bθ,i+1),..., (bx,i+n, by,i+n, bθ,i+n). Depending on how many
of the next states require omnidirectional driving, up to five base
states are included in the B-Spline. We define a controller goal state
in a given distance in front of the current robot base state on this
B-Spline. Given a desired driving velocity and the base state differ-
ence between the controller goal state and the current robot state, we
compute a velocity command ~w = (vx′ , vy′ , ω) with horizontal linear
velocities vx′ and vy′ in robot coordinates and a rotational velocity
ω around the vertical robot axis. We set the desired driving velocity
to 0.2 m/s. If the robot is closer to the B-Spline goal than 0.2 m, the
desired driving velocity decreases to 0.05 m/s. This enables precise
approaching of desired states for subsequent stepping maneuvers or
of the overall goal. The velocity command is handled by the low-level
driving controller described in Schwarz et al. (2017). Considering the
current foot configuration, it computes rotational velocities and orien-
tations for each individual foot. It further considers waiting times to
steer individual wheels and obeys joint specific velocity and accelera-
tion limits.

If leg motions are required to obtain the next robot state in the
path, those are directly executed. Foot motions are sent to the motion
player which is also described in Schwarz et al. (2017). It solves the
inverse kinematic and outputs individual joint velocity commands.

3.6 evaluation

The developed method was evaluated in several experiments describ-
ing the parametrization of the orientation cost factor (Section 3.6.1),
the investigation of the heuristic weight influence (Section 3.6.2), and
a demonstration of the method’s capabilities and limitations (Sec-
tion 3.6.3). While these experiments were performed in the Gazebo
simulation environment (Koenig and Howard, 2004), additional ex-
periments demonstrated the application to the real Momaro and Cen-
tauro platforms (Section 3.6.4). A video explaining the method and
including additional footage of the experiments is available online4.

3.6.1 Robot Orientation Cost Factor

In a first experiment, we evaluated the parametrization of the robot
orientation cost factor, which weights driving maneuver costs de-
pending on the occurring angle between robot orientation and driv-
ing direction (Section 3.3.3). In particular, the influence of the max-

4https://doi.org/10.5281/zenodo.3628732

https://doi.org/10.5281/zenodo.3628732
https://doi.org/10.5281/zenodo.3628732

56 a search-based approach to hybrid locomotion planning

imum value k4θ,max was evaluated. We employed a simulated envi-
ronment in which Momaro stood in a corridor in front of an elevated
platform with some cluttered obstacles, as depicted in Figure 3.18.
The planner was to find a path to a goal state on top of this plat-
form. We compared the planner performance for different values for
k4θ,max.

Experiments were performed on one core of a 2.6 GHz Intel i7-
6700HQ processor using 16 GB of RAM. Instead of ARA*, we em-
ployed a standard A* planner with heuristic weight W = 1 gener-
ating optimal results. Hence, as explained in Section 3.3.3, using a
set of 16 instead of 20 driving actions was sufficient. The results are
given in Figure 3.19. To keep path costs comparable, we explicitly do
not include the orientation cost weighting factor in the stated out-
put costs of the planner. Instead, stated path costs are those costs the
resulting path would induce without the orientation cost factor. Re-
sulting paths for different k4θ,max are visualized in Figure 3.20 (top)
and (middle).

It can be seen that an increasing value for k4θ,max results in a de-
creasing difference between the robot orientation and driving direc-
tion, which is the expected behavior. It can be further seen that val-
ues of k4θ,max > 2 have no considerable influence on the orientation
difference compared to k4θ,max = 2. Regarding path costs, higher
values for k4θ,max lead to slightly increased path costs. Comparing
k4θ,max = 1 with k4θ,max = 5, path costs increase by ~9%. A possible
explanation for this behavior is that a higher value for k4θ,max intro-
duced a higher priority for some states over others to the path search.
This led to fewer expanded nodes while some of the discarded nodes

Figure 3.18: Gazebo scenario for planner evaluation. Momaro stands in front
of an elevated platform cluttered with obstacles. The goal state
is on top of this platform (green arrow).

3.6 evaluation 57

1.0 1.5 2.0 3.0 5.0
100

101

102

103

k4θ,max

P
la

nn
in

g
tim

e
[s

]

1.0 1.5 2.0 3.0 5.0
0

2

4

6

8

k4θ,max

P
at

h
co

st
s

[-]

1.0 1.5 2.0 3.0 5.0
0

0.1

0.2

0.3

0.4

0.5

k4θ,max

∅
|4

θ |
[ra

d]

Figure 3.19: Planner performance for different maximum orientation cost
factors k4θ,max. To enable comparability, stated path costs are
those costs the resulting path would induce without weighing
through the orientation cost factor. The stated orientation differ-
ence |4θ| is averaged over all states in the resulting path.

Figure 3.20: Resulting paths on foot cost maps. Yellow areas are not
traversable by driving. Blue paths show the robot center posi-
tion, arrows show the orientation. Blue rectangles show used
footholds. Red lines represent front foot steps, green lines rep-
resent rear foot steps. Top: Result of the plain A* algorithm
(W = 1) without orientation cost factor. Middle: Optimal so-
lution (W = 1) for k4θ,max = 2. Bottom: First sub-optimal result
of the ARA* algorithm withW = 3 and k4θ,max = 2.

58 a search-based approach to hybrid locomotion planning

might have been part of the optimal solution. The same effect can
be observed when comparing planning times. An increasing value
for k4θ,max resulted in considerably shorter planning times. This is
especially the case for k4θ,max > 2 for which planning was roughly
one order of magnitude faster compared to k4θ,max = 1.5. Interest-
ingly, when comparing k4θ,max = 1 with k4θ,max = 1.5, planning took
longer for a higher orientation cost factor. This might be explained by
the fact that the higher k4θ,max value resulted in wrong search priori-
ties in some cases leading to more extensive searches in this region.

3.6.2 Heuristic Weight Comparison

In a second experiment, we evaluated the ARA* performance. Again,
the simulated planning task from the previous experiment was em-
ployed and the same computational hardware was used. We chose
exponentially decaying heuristic weights, starting at W = 3. For this
experiment, k4θ,max was set to 2. The planner performance is shown
in Figure 3.21. Please note that the stated planning times are accu-
mulated due to the nature of the algorithm: It quickly generates an
initial, bounded sub-optimal path with a high heuristic weight. Sub-

3.0 2.0 1.5 1.25 1.125 1.0625 1.0
10−2

10−1

100

101

102

103

W

A
cc

.p
la

nn
in

g
tim

e
[s

]

3.0 2.0 1.5 1.25 1.125 1.0625 1.0
0

2

4

6

8

10

P
at

h
co

st
s

[-]

3.0 2.0 1.5 1.25 1.125 1.0625 1.0
0

0.1

0.2

0.3

0.4

0.5

W

∅
|4

θ |
[ra

d]

Figure 3.21: ARA* performance for the employed heuristic weights W with
k4θ,max = 2.0. Planning times are accumulated. To enable com-
parability, stated path costs are those costs the resulting path
would induce without the orientation cost factor. The stated ori-
entation difference |4θ| is averaged over all states in the result-
ing path.

3.6 evaluation 59

sequently, the heuristic weight iteratively decreases, and the planner
generates results of better quality while utilizing previously gener-
ated solutions. Hence, the stated accumulated planning time for, e.g.,
W = 1.5 includes consecutive planning runs for W = 3, W = 2, and
W = 1.5.

ARA* provided the first result with W = 3.0, which is 31% more
expensive than the optimal solution withW = 1.0, in 32 ms. A result
with only 2% higher costs was generated in ~10 s for W = 1.25. This
is sufficiently fast compared to the required time for path execution.
Waiting for the planner to provide the optimal solution (W = 1.0)
took > 100 s, which is undesirable long for timely mission execution.
In comparison to the previous experiment, finding a solution with
k4θ,max = 2 andW = 1 took longer. This is due to the fact that ARA*
first generates sub-optimal solutions. In addition, in this experiment
a set of 20 driving actions was employed instead of only 16 actions
as used in the previous experiment (see explanation in Section 3.3.3).
Moreover, it can be seen that the effect of the robot orientation cost
factor increases with decreasing heuristic weights. A possible expla-
nation for this behavior is that both, the orientation cost factor as well
as the higher heuristic weight, introduce a preference for state expan-
sion to the planner. While for large heuristic weights, their preference
dominates, the influence of the orientation cost factor emerges for
smaller heuristic weights. A comparison of two paths with different
heuristic weights can be seen in Figure 3.20 (middle) and (bottom).

3.6.3 Cluttered Staircase Scenario

A second simulated scenario was generated to demonstrate the capa-
bilities of the developed method. Momaro stood in front of a stair-
case with five steps which was partly blocked by obstacles, as shown
in Figure 3.22. The robot was to reach a goal state on top of this
staircase. Tracked vehicles would experience difficulties in such situ-
ations. Walls were used to limit the area in front of the staircase and,
thus, limit the corresponding number of states the planner would po-
tentially visit before considering expensive stair climbing. Scenarios
with large free areas in front of the staircase led to unfeasible long
planning times. An initial solution with k4θ,max = 2 and W = 3 was
generated in 1.02 s while solutions with lower heuristic weights re-
quired unfeasible long planning times.

As depicted in Figure 3.23, Momaro approached the staircase and
climbed the first steps. It subsequently drove sideways while tak-
ing the obstacle on the staircase between its legs. The robot finally
climbed the remaining steps. Figure 3.24 shows, how the base pitch
angle adapts to the ground slope while executing this task.

60 a search-based approach to hybrid locomotion planning

Figure 3.22: Challenging Gazebo scenario to demonstrate the planner capa-
bilities. Momaro has to climb a staircase to reach the goal state
(green arrow). Obstacles in front, behind and on the stairs hin-
der straight climbing but require a combination of stepping and
driving maneuvers.

Figure 3.23: Generated path for the staircase scenario on a foot cost map
withW = 3 and k4θ,max = 2. The blue path shows the robot cen-
ter position. Arrows show the robot orientation. Blue squares
show used footholds. Red lines represent front foot steps; green
lines represent rear foot steps. The center obstacle is taken be-
tween the robot legs when driving sideways.

3.6 evaluation 61

Figure 3.24: Momaro climbing the staircase. The base is rolled to the right
to perform a step with the rear left foot. The robot base pitch
angle adapts to 70% of the terrain slope.

3.6.4 Real Robot Application

The developed method was applied to the real Momaro and Centauro
robots in different experiments.

In a first experiment, Momaro was positioned in some distance to a
patch of grass, a patch of gravel, and an elevated platform which was
built from concrete blocks and was 13.5 cm high. Figure 3.25 shows
the scenario. We employed the environment representation depicted
in Figure 3.5, which included additional terrain classification infor-
mation obtained through the method by Schilling et al. (2017). This
made the robot avoid the gravel and grass sections since those were
assigned higher costs. Figure 3.26 shows the path execution.

We investigated that the chosen leg design with elastic carbon fiber
links induces challenges to the autonomous navigation. Since foot
positions were computed from joint angles, the real positions varied
considerably from the estimated positions depending on the foot load.
This effect was not present in the simulated experiments since links
were represented rigidly. Two modifications allowed the method to
cope with that behavior. First, a large safety margin was introduced to
the stability assessment. Second, detailed step motions were modified
by lifting the respective foot higher by a constant value and lowering
the foot by this value during the stepping down phase. This avoided
feet from getting stuck at stair edges when not lifted high enough.

In another experiment, the method was applied to Centauro. The
robot was positioned in front of a patch of debris and some obstacles.
A staircase consisting of two steps and ending in an elevated platform
was positioned behind the debris. Stairs were 20 cm high and 30 cm
long, which is similar to typical staircases in human-made environ-

62 a search-based approach to hybrid locomotion planning

Figure 3.25: Scenario for the real robot experiment with Momaro including
a field of gravel, a patch of grass, and an elevated platform. The
shown robot state is its start state.

a) b) c)

d) e) f)

g) h) i)

Figure 3.26: Momaro stepping up an elevated platform. a) It approaches the
platform using omnidirectional driving, b) stands up, c) rolls
its base to the left and drives its back right foot forward to
establish a stable configuration, and d) performs a front right
step. e) It then reverts the base roll and foot shift and repeats the
procedure for a front left step. f) Subsequently, it drives forward
g) performs a longitudinal base shift, and h) performs the two
rear steps i) to reach the goal state.

3.6 evaluation 63

ments. The goal state was defined to be on the elevated platform.
Again, the above-mentioned environment representation including
terrain classification was employed (see Figure 3.5). The developed
method was extended to output two paths giving the operator al-
ternatives to choose from. The scenario, the corresponding foot cost
map, and the two generated path alternatives are depicted in Fig-
ure 3.27. Map generation, robot localization, goal state definition, and
planning took around 30 s on the internal robot hardware (Intel Core
i5-7500T with 2.7GHz, 32 GB RAM). Figure 3.28 shows the execution.

The above-mentioned modifications to cope with the flexible leg
design of Momaro were not required in this case since Centauro’s
leg links were rigid. However, since Centauro’s foot reachability is
smaller compared to Momaro’s, and since its CoM is higher, addi-
tional arm motions were introduced to facilitate balancing (see Sec-
tion 3.4.1). After climbing the two steps with the front feet and when
attempting to perform the second step with the rear foot, the robot
lost balance for a short moment and required a slight push from a
person at location to regain balance. The reason was that the stability
assessment used a robot model with a wrong CoM. Recent hardware
modifications, such as the integration of the battery and a different
position for some PCs and the router, were not included in this model
leading to wrong stability assessments. This underlines the impor-
tance of a well-organized integration pipeline and just is an example
for the many dependencies to other system components.

Figure 3.27: Left: Scenario for Centauro including a field of gravel, some ob-
stacles and a flight of stairs ending in an elevated platform. The
shown robot state is the start state. The goal state is on top of the
platform. Right: Foot cost map of the scenario. The start state is
depicted as a red arrow, the goal state is a green arrow. Two path
alternatives are visualized for different terrain classification in-
fluences. The red path (low influence) includes driving over the
patch of gravel which is feasible but challenging. The blue path
(higher influence) contains a detour to avoid the gravel.

64 a search-based approach to hybrid locomotion planning

a) b) c)

d) e) f)

g) h) i)

Figure 3.28: Centauro executing the real-world task. a) It approaches the
field of gravel, b) omnidirectionally drives around it, and c) po-
sitions itself in front of the stairs. d) It uses base roll motions,
longitudinal base shifts, and footprint changes to establish a
stable configuration for a front left step. e) The same is done for
a front right step and f) two more subsequent front foot steps.
g,h) For rear foot steps, the arms are moved to a front configura-
tion for a better CoM position. The robot alternately performs
left and right rear foot steps to i) finally reach the goal state.

3.7 conclusion

In this chapter, a search-based navigation planning approach for hy-
brid driving-stepping locomotion was presented. It describes all robot
capabilities in a holistic planning problem including unique locomo-
tion features such driving individual feet relative to the base while
keeping ground contact and being under load. A suitable environ-
ment representation was developed addressing the challenges the
considered environments induce. Costs for the robot base and indi-
vidual feet are computed and enable precise locomotion planning in
challenging scenarios. The 7-DoF robot representation was developed
under consideration of the trade-off between representing the high
platform flexibility and limiting the state space size to be suitable for
efficient planning. It is applicable to multiple robots, such as Momaro
and Centauro. Multiple relevant planning algorithms were discussed
and the choice for a search-based planning approach was justified. A

3.7 conclusion 65

corresponding action set, cost function, and heuristic were presented.
The planner prefers omnidirectional driving and considers stepping
maneuvers in the vicinity of obstacles. Multiple cost function modifi-
cations were introduced to adapt the robot behavior.

The approach follows a hierarchical architecture. Vertical foot posi-
tions and detailed step motion sequences are not considered during
planning and are only generated for those robot states contained in
the resulting path. This results in state space sizes which are small
enough to be handled by the planner in feasible time. Path expansion
strategies to establish stable robot configurations and to compute ver-
tical foot positions were presented. A controller to execute the gener-
ated paths was presented as well.

The method was evaluated in simulation and real robot experi-
ments with two different robot platforms. Simulation experiments
provided the assessment of the planner capabilities, its performance,
and the influence of selected parameters. The planner generated paths
with bounded sub-optimality in feasible time and was capable of
path planning in challenging environments, for which pure driving or
pure walking robots would experience problems. Robot experiments
demonstrated the applicability to real world planning problems. The
challenges occurring during the transfer from the simulation to the
real world and corresponding solutions were presented. The experi-
ments also gave an assessment of the planner’s limitations regarding
manageable state space sizes and the role of the planner in a complex
robotic software architecture.

4
P L A N N I N G H Y B R I D D R I V I N G - S T E P P I N G
L O C O M O T I O N O N M U LT I P L E L E V E L S O F
A B S T R A C T I O N

In Chapter 3, we presented a search-based approach to plan hybrid
driving-stepping locomotion paths for the robots Momaro and Cen-
tauro, even for challenging terrain such as staircases with additional
obstacles on it. The cost function has been designed such that the
planner prefers omnidirectional driving whenever possible and con-
siders stepping maneuvers in the vicinity of obstacles. The robot foot-
print is considered at any time enabling precise locomotion in chal-
lenging environments. While path search does not include informa-
tion about foot heights, robot stability, and detailed stepping motion
sequences, resulting paths are expanded to include this information
and to be executable by the controller. Furthermore, the influence of
a heuristic weightW > 1 has been investigated. It considerably accel-
erates planning while decreasing the result quality to bounded sub-
optimality. Experiments show that this method generates high quality
paths for small but challenging environments in feasible time.

However, it is only applicable to environments of limited size. The
many DoF of the robot representation and the fine planning reso-
lution result in a large state space which grows rapidly for larger
scenarios and makes planning expensive. This is even intensified by
the nature of the cost function. Since steps are slower, less stable, and
less energy efficient compared to driving, the planner is designed to
prefers driving detours of a certain length before considering steps.
Consequently, in situations where steps are required to reach the goal,
the planner still evaluates many possibilities for detours before con-
sidering these steps which leads to long planning times. This effect
even increases if multiple steps are required, such as it is the case
when climbing staircases. Nevertheless, to ensure the applicability in
a wide range of realistic tasks, the method has to be capable of han-
dling such scenes.

This effect is not unique for hybrid driving-stepping locomotion
but affects high-dimensional planning in many applications such as
locomotion planning for robots with tracked flippers or manipulation
planning. As described in Section 2.3, an effective solution is the uti-
lization of multiple planning representations. Those can provide pre-
cise planning—accompanied by a large state space—in challenging
map regions while planning is done in a coarser way in regions where
this is sufficient. This results in considerably smaller state spaces and,
hence, in considerably faster planning times enabling the planner

68 planning locomotion on multiple levels of abstraction

to cope with larger maps. Many works achieve these multiple plan-
ning representations either through multiresolution planning or by
employing robot representations with varying dimensionality. Few
works combine both ideas. However, all these approaches only dis-
card information in their coarser representations. This bears the risk
of wrong situation assessment resulting in wrong paths if valuable
information is neglected. Therefore, instead of only discarding infor-
mation, it is a promising idea to enrich coarser representation with
additional semantics increasing the scene “understanding”—which
is called abstraction. While abstraction is widely used in e.g., CNN
architectures for perception tasks, it is rarely applied to locomotion
planning representations.

We developed multiple planning representations with different level
of abstraction for both the environment and the robot representation.
This approach is motivated by the manner how humans efficiently
plan their locomotion (see Figure 4.1). If a human would be e.g.,
asked to leave a room, to subsequently traverse a corridor, and to
finally climb a staircase, it would only generate a precise plan for the
next few actions. To leave the room, the human would only plan its
next few steps towards the door. In a medium planning horizon, it
would e.g., consider a path around a table blocking the direct way to
the door without thinking about the exact footholds to use. Finally, in

Room Corridor Staircase

Ta
bl

e

Path

”Right
step
to

x1 , y1“

”Left
step
to

x2 , y2“

”Right
step
to

x3 , y3“

”Left
step
to

x4 , y4“
”Walk around

table“ ”Traverse corridor“ ”Climb staircase“

Resolution
Semantics

Figure 4.1: Example of a human efficiently planning a path from its current
state (red) to a goal state (green). With increasing distance from
the current position, the plan becomes coarser but semantics in-
crease.

4.1 system overview 69

a large planning horizon, the human would only think about travers-
ing the corridor and climbing the staircase. At this point, it would not
plan its paths through the corridor and would not even consider its
detailed length. Regarding the environment representation, the hu-
man would only notice ”there is a corridor“ and ”there is a staircase“
without considering further spatial details. Regarding the considered
actions, its plan would be as coarse as ”traverse the corridor“ or ”climb
the staircase“, while being confident that it is able to perform these
actions. When approaching these areas, the human would refine the
respective path segments. This approach allows humans to efficiently
plan their locomotion over long horizons and for challenging environ-
ments. Section 4.1 gives a method overview and explains the structure
of the rest of this chapter.

4.1 system overview

We present a method which plans hybrid driving-stepping locomo-
tion on three different levels of representation, namely Level 1, Level 2,
and Level 3. A representation with a high planning resolution and a
high number of DoF is employed in the vicinity of the current robot
position. This is similar to the representation described in Chapter 3

and is defined to be the Level 1 representation. With increasing dis-
tance from the robot, both the environment and the robot representa-
tion become more abstract resulting in the robot-centered, medium-
sized Level 2 representation and the most abstract Level 3 representa-
tion covering the whole map. More abstract path segments are situ-
ated further in the future which comes along with a higher degree
of uncertainty and less accurate sensor measurements. We compen-
sate this less precise information for higher levels of representation
by enriching the representation with additional semantics. Regard-
ing the environment representation, its resolution gets coarser while
the number of features describing each map cell increases. Regarding
the robot representation, it is represented with less DoF and the ac-
tion resolution gets coarser. The robot representation adapts to this
lower-dimensional description by e.g., describing areas of potential
foot positions instead of discrete foot positions. In addition, the action
set and cost function follow the abstraction approach considering the
coarser robot representation while utilizing the additional semantics
of the environment representation. Figure 4.2 visualizes the different
representations and Figure 4.3 depicts the corresponding areas of uti-
lization.

All three levels are unified in a single planner. This is superior
to coarse-to-fine planning approaches, as utilized in many works in
the literature, for the following reason: In the vicinity of the robot,
precise sensor measurements are available. In challenging situations,
this precise information might be required to find the correct next

70 planning locomotion on multiple levels of abstraction

Level

1

2

3

Map Resolution
• 2.5 cm
• 64 orientations

• 5.0 cm
• 32 orientations

• 10 cm
• 16 orientations

Map Features
• Height

• Height
• Height Difference

• Height
• Height Difference
• Terrain Class

Level

1

2

3

Robot Representation Action Semantics
• Individual

Foot Actions

• Foot Pair
Actions

• Whole Robot
Actions

Figure 4.2: Representation level overview. Top: The environment is repre-
sented in three levels or representation with increasing abstrac-
tion: while the resolution gets coarser this information loss is
compensated by an increasing number of map features. Bottom:
The robot is represented with less DoF with increasing abstrac-
tion while the corresponding actions make use of additional en-
vironment semantics.

1

2
3

Map

Robot State

Figure 4.3: Size and position of the different levels of representation. Level 1
covers the vicinity of the robot. Level 2 is also robot centered and
medium sized. Level 3 covers the whole map.

actions for the robot to execute. However, coarse-to-fine planning ap-
proaches only utilize a coarse representation for the entire map in
a first planning step. This coarse representation is obtained by dis-
carding information bearing the risk of losing some of the required
precise measurements. Hence, wrong decisions might be made which
would result in sub-optimal or wrong paths and which would be sub-
sequently refined without considering alternating decisions the more
detailed representations would have made. By directly employing the
detailed representation in the vicinity of the robot, where detailed
measurements are available, this risk of information loss is overcome.

The developed method is integrated into the overall planning pipe-
line developed in Chapter 3 and depicted in Figure 3.2. It only af-

4.1 system overview 71

Extension to

multiple levels

of representation

Map Generator

Lvl. 1 Lvl. 2 Lvl. 3

Path Planner

Lvl. 1 Lvl. 2 Lvl. 3

Path Expander

Controller

Point
clouds

Maps

Abstract
path

Detailed
path

Control
commands

Goal
state

Robot
state

Figure 4.4: Extending the planning pipeline to employ multiple levels of rep-
resentation. Only the Map Generator and the Path Planner are
affected while all other components are identical to Chapter 3.

fects the Map Generator and the Path Planner, while other compo-
nents of the pipeline do not require changes (see Figure 4.4). The
input still consists of point clouds, the current robot state, and the
desired goal state. Map generation is extended to generate three en-
vironment representations instead of one. Planning is still realized
through the A*-based approach with a weighted heuristic and works
on state costs. Suitable methods are presented to compute state costs
from each environment representation. The resulting path consists
of segments represented with different levels of abstractions depend-
ing on the distance from the current robot position. As described in
Chapter 3, planner outputs need to be expanded to detailed motion
sequences to be executable by the Controller. In this approach, path
expansion is only applied to those path segments which include the
next actions in the vicinity of the robot and, hence, are represented
in Level 1. Since this representation is similar to the representation in
the previous chapter, the same Path Expander component and sub-
sequently the same Controller can be used. During path execution,
continuous map updates, and refining or replanning procedures are
used to ensure that the next actions are always represented in Level 1
and can be expanded.

The rest of this chapter is structured as follows. Section 4.2 and
Section 4.3 explain the planning representations in detail. We fur-
ther developed an informed heuristic based on the most abstract rep-
resentation, which is explained in Section 4.4. Moreover, a method
was developed which continuously refines coarse plan segments to
more detailed representations during path execution (see Section 4.5).
This decreases the number of necessary replanning steps. However,

72 planning locomotion on multiple levels of abstraction

to avoid the above-described problem of wrongly assessed scenes
in more abstract representations, replanning is triggered as soon as
costs indicate that a situation might be assessed wrongly. Experi-
ments show that the presented method enables the planner, com-
pared to the method in Chapter 3, to solve path queries for signifi-
cantly larger maps in feasible time while the path quality stays com-
parable. Details on the experiments can be found in Section 4.6 while
a conclusion is drawn in Section 4.7.

4.2 environment and robot representation

The environment representation is extended to three levels of repre-
sentation with increasing abstraction. While the map resolution gets
coarser for more abstract representations, the information loss is com-
pensated by additional map features increasing the semantics. Fig-
ure 4.2 (top) gives an overview of the characteristics of the different
environment representations.

Similarly, the robot representation is extended to three levels of rep-
resentation. With increasing abstraction, the robot is represented with
less DoF while the corresponding state cost computation accesses the
additional map features, as visualized in Figure 4.2 (bottom).

Cost Similarity

We define two repre–
sentations to be cost
similar if the same

robot actions induce
similar costs in both

representations.

All environment representations are used to generate state costs
for a given robot state which are used by the planner. Since all repre-
sentations are used simultaneously during planning, it is important
that the same robot actions induce similar costs in all representations.
Otherwise, the planner would prefer planning in some representa-
tions over others which is not desirable. Action costs are derived from
state costs. Hence, the same robot state should induce similar costs in
all representations. We call this property cost similarity.

In general, more abstract representations can be derived from more
detailed representations. This allows for the generation of the individ-
ual environment representations in the following manner: At first, the
Level 1 environment representation is generated for the whole map.
Subsequently, this is used to compute the Level 2 environment repre-
sentation for the whole map as well. Next, the Level 3 representation
is derived from the Level 2 representation. Finally, map patches of the
corresponding positions and sizes (see Figure 4.3) are cropped for
each level, forming the basis for subsequent state cost computation.
The individual details can be found in the following subsections.

4.2.1 Level 1 Representation

The Level 1 environment representation is similar to the environment
representation described in Section 3.2. A height map with a reso-
lution of 2.5 cm is generated from point clouds originated from laser
scanner range measurements. For the Level 1 maps, we crop a squared

4.2 environment and robot representation 73

Figure 4.5: Level 1 environment representation. a) Height map showing a cor-
ridor with a flight of stairs, an untraversable steep ramp and an
obstacle. b) Corresponding foot cost map (yellow = untraversable
by driving, olive = unknown).

by

bx

bθ

f0,x,rel

f1,x,rel

f2,x,rel

f3,x,rel

Figure 4.6: Level 1 robot representation with seven DoF.

map patch with a size of 3× 3 m around the current robot position.
This is sufficiently large to plan the next robot maneuvers in high
detail, but still small enough to avoid high-dimensional planning in
large areas. Please note that the map patch is cropped around the cur-
rent robot position, but its orientation is independent from the robot
orientation.

The Level 1 robot representation describes 7-DoF robot states
#»r1 = (bx, by, bθ , f

0,x,rel, f
1,x,rel, f

2,x,rel, f
3,x,rel) consisting of the robot base

center position bx, by and orientation bθ , and the individual, relative,
longitudinal foot positions f

0,x,rel, ..., f
3,x,rel. At each position the robot

can have 64 different discrete orientations.
For state cost computation, foot costs CF(

#»

fi) and base costs CB(~r)
are combined. Foot costs describe the cost to position an individual
robot foot in the environment and include information about the ter-
rain surface and obstacles in the surrounding. They are based on local
unsigned height differences derived from the height map. Base costs
describe the costs to place the robot base in a given state on the map.
They include information about obstacles under the robot base and
the terrain slope under the robot. Finally, foot costs for the four in-
dividual foot positions and base costs are combined to state costs.
More details can be found in Section 3.2. Figure 4.5 depicts a Level 1
height map and foot cost map, Figure 4.6 visualizes the Level 1 robot
representation.

74 planning locomotion on multiple levels of abstraction

4.2.2 Level 2 Representation

Input to the Level 2 environment representation is the Level 1 height
map with a resolution of 2.5 cm covering the whole map size. To
generate the Level 2 height map and height difference map with a
resolution of 5 cm, subsampling is performed. This is designed with
respect to the Nyquist-Shannon sampling theorem which implies that
subsampling has to come along with smoothing (Shannon, 1998). We
subsample the Level 1 height map as shown in Figure 4.7. Each Level 2
height value is computed from the normalized, weighted sum of a
4×4-region of Level 1 height values. A binomial distribution is em-
ployed for weighing. The Level 2 height difference map is generated
in the same manner: local unsigned height differences are computed
from the Level 1 height map. Again, a 4×4-region is used to subsam-
ple each Level 2 height difference map cell using the same subsam-
pling scheme. For the Level 2 maps, we crop a squared map patch
with a size of 9 × 9 m around the current robot position such that
Level 2 path segments are approximately twice as long as Level 1 path
segments. Figure 4.8 (a) and (b) visualize patches of Level 2 height
and height difference maps.

In order to obtain a robot representation with less DoF, individual
foot positions are accumulated to foot pairs with a single longitudinal
position. This is intuitive, since we observed a tendency to pairwise
foot maneuvers in Level 1 paths. While one can think of many situa-
tions in which an identical longitudinal coordinate for the two front
or two rear feet is not feasible, we use foot position areas instead of

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

1
64 x

a) b)

Figure 4.7: Subsampling method. a) For a Level 2 cell (red square) a 4×4-
region (blue square) of Level 1 cells is considered. b) Normalized
binomial distribution to weigh heights and height differences.

a) b) c)

Figure 4.8: Level 2 environment representation. a) Height map. b) Height dif-
ference map. c) Foot pair cost map for the orientation indicated
by the red arrow.

4.2 environment and robot representation 75

by

bx
bθ

fr,x,rel

ff,x,rel

Figure 4.9: Level 2 robot representation with five DoF.

foot positions to provide the approach the required flexibility. For a
foot position area, it is known that the corresponding foot is posi-
tioned somewhere in the respective area while knowledge about the
exact foot position is not required and not available. This supports the
general assumption that the Level 2 representation is employed in a
certain distance to the current robot positions and, hence, the knowl-
edge about these areas might be affected by some time-related and
measurement-related imprecision. Therefore, a precise representation
of the individual foot positions is not valuable. A Level 2 robot state
#»r2 = (bx, by, bθ , ff,x,rel, fr,x,rel) is consequently represented through the
base state and the relative longitudinal front foot pair and rear foot
pair coordinates ff,x,rel and fr,x,rel. At each position, the robot can have
32 different discrete orientations. The resulting robot representation
is visualized in Figure 4.9.

For state cost computation, body costs are combined with foot pair
costs. Computation of the body costs CB,2(

#»r2) is similar to Level 1 and
only relies on height information. The foot pair costs

CFP,2(
»

f pi) = 1 + kCFP,1 · 4hFP,avg(
»

f pi) (4.1)

are induced when a foot pair with the state
»

f pi = (f pi,x, f pi,y, f pi,θ)

is placed on the map. 4hFP,avg(
»

f pi) describes the average height dif-
ference of the covered area. We define a set of small planning tasks
in different environments for which the average path costs difference
between the Level 1 and Level 2 solution is minimized. This results in
kCFP,1 = 107. Figure 4.8 (c) visualizes a foot pair cost map. Finally, the
Level 2 state costs are computed with

C2(
#»r2) = kC2,1 · CB,2(

#»r2) + kC2,2 ·
(

CFP,2(
»

f pf) + CFP,2(
»

f pr)
)

, (4.2)

where kC2,1 = 0.5 and kC2,2 = 0.25.

4.2.3 Level 3 Representation

We apply the subsampling method which is described in the previous
subsection to generate Level 3 height and height difference maps with
a resolution of 10 cm from their Level 2 counterparts. To increase the
semantics, we categorize each of the Level 2 map cells into one of the
following terrain classes:

76 planning locomotion on multiple levels of abstraction

• flat: easily traversable by driving,

• rough: traversable by driving with high effort,

• step: includes height differences which are too large to be tra-
versed by driving but can be traversed by stepping,

• wall: occurring height differences are too large to be traversed
by stepping, and

• unknown: cell cannot be classified.

First, all step cells are identified. This is done by searching for cell
pairs (ci, cj) meeting the following criteria:

• 4hlvl2(ci) < 4hmax,drive: ci is on a drivable surface,

• 4hlvl2(cj) < 4hmax,drive: cj is on a drivable surface,

•
∥∥ci − cj

∥∥ < lstep,max: the distance between ci and cj is within a
maximum step length, and

• for the set T of cells ck on the straight line between ci and cj,
CF(ck) = ∞ counts for all cells ck ∈ T: a direct foot motion from
ci to cj requires a step.

lstep,max is tuned to 0.5 m. For all cell pairs (ci, cj) which meet the
above-listed criteria, each cell cs ∈ ci ∪ cj ∪ T is assigned the terrain
class step. Moreover, we compute the angle αs between # »cicj and the
horizontal axis and save it for each cell cs. However, most step cells
are detected several times with different angles αs. Hence, we save
all these angles for each cell and finally compute the mean of circular
quantities (αavg,s). αavg,s describes the estimated step orientation of a
step cell.

Second, the remaining map cells are classified according to their
Level 2 height difference value. Please note that these height difference
values are subsampled and smoothed from the original Level 1 height
differences and cannot be directly connected to occurring height dif-
ferences in the terrain:

• flat if 4hlvl2(ci) ∈ [0 m, 2 · 10−4 m),

• rough if 4hlvl2(ci) ∈ [2 · 10−4 m, 0.05 m),

• wall if 4hlvl2(ci) ∈ [0.05 m, ∞), and

• unknown if 4hlvl2(ci) is unknown.

The stated height difference intervals have been tuned manually
with respect to a maximum terrain height difference of 4 cm which
can be overcome by driving and a maximum terrain height difference
of 30 cm which can be overcome by stepping. The terrain class of a
Level 3 map cell is generated from the respective four Level 2 cells by
either choosing the terrain class with most members or, if this cannot
be identified, the least difficult occurring terrain class. Figure 4.10 (a)
and (b) give examples for a Level 3 height map and terrain class map.

4.2 environment and robot representation 77

a) b) c)

Figure 4.10: Level 3 environment representation. a) Height map. b) Terrain
class class map (white = flat, blue = stepping, pink = wall, black
lines = step orientations). c) Robot area cost map for the orien-
tation indicated by the red arrow.

by

bx
bθ

Figure 4.11: Level 3 robot representation with three DoF.

The Level 3 robot representation #»r3 = (bx, by, bθ) only contains in-
formation about the 3-DoF robot base state (see Figure 4.11). Instead
of considering individual foot or foot pair positions, we assume that
the robot feet are somewhere in a ground contact area ar around and
under the robot. Hence, this representation hinders the consideration
of individual robot limb motions. The robot together with its ground
contact area are rather moved over the terrain while traversing differ-
ent terrain classes inducing corresponding costs. In Level 3 the robot
may have one of 16 different orientations at each position.

The Level 3 state cost computation differs from the methods pre-
sented for the previous levels. Instead of distinguishing between base
costs and costs induced by ground contacts with feet, the Level 3 state
cost computation is more abstract and only relies on terrain classes
under ar. Each cell ci is assigned a cell costs value Cc(ci) depending
on its terrain class:

• flat: Cc(ci) = 1.0,

• rough: Cc(ci) = 1.4,

• step: Cc(ci) = 76.0 + 2.95 · 4hlvl3(ci),

• wall: Cc(ci) = ∞, and

• unknown: Cc(ci) = nan.

The described terrain class specific cell costs are manually tuned:
again, the set of small planning tasks is used to compare the Level 1

78 planning locomotion on multiple levels of abstraction

and Level 3 path costs and minimize the cost difference. While con-
stant terrain class cell costs are sufficient for flat and rough cells, costs
for stepping maneuvers heavily depend on the height difference to
overcome. This dependency is incorporated in the cell cost computa-
tion. The presented method obtains a cost difference of < 5% for the
considered planning task set. The patch of a resulting robot area cost
map can be seen in Figure 4.10 (c).

4.3 action set, and cost function

The employed A*-based algorithm requires a set of discrete actions to
generate neighbor states and perform graph search. In our approach,
only required neighbor states are generated online during state ex-
pansion since the precomputation of the whole state space is too ex-
pensive. An individual action set is required for each level, since the
robot representation varies.

Actions are accompanied by a corresponding cost function which
is individually described for each level in this section as well. Since
the planner utilizes all representations during a single planning run,
cost functions of the different levels need to be cost similar preventing
the planner from preferring planning in some representation levels
over others.

Section 4.3.1 - Section 4.3.3 describe the action sets and cost func-
tions for the individual representation levels. In addition, Section 4.3.4
describes the level transition.

4.3.1 Level 1

The Level 1 action set is identical to the actions described in Sec-
tion 3.3.3. Neighbor states can be either reached through omnidi-
rectional driving or through stepping maneuvers. Feasible driving
actions can be found within a 20-position neighborhood with fixed
orientation, or by turning to the next discrete orientation with fixed
position, as visualized in Figure 4.12 (a) and (b). Similar to the map
resolution, the action resolution is chosen to be 2.5 cm. Orientations
are discretized to 64 orientation steps.

Stepping-related maneuvers are only considered in the vicinity of
obstacles where driving might be infeasible. Those can be an abstract
step, a longitudinal base shift, driving individual front feet forward,
or driving individual feet towards their neutral configuration, as vi-
sualized in Figure 4.12 (c - f). During path search, steps are described
as abstract steps which are defined to be the direct transition from
a pre-step to a post-step state. The robot stability as well as the de-
tailed motion sequence to perform the step are not considered during
path planning. Subsequently, only the states in the resulting path are
expanded, as described in Section 3.4. Since the Level 1 representa-

4.3 action set, and cost function 79

a) b)

c) d) e) f)

Figure 4.12: Level 1 action set. Driving actions include a) omnidirectional
driving within a 20-position neighborhood with fixed orienta-
tion or b) turning to the next discrete orientation with fixed
position. Stepping-related actions include c) abstract steps with
individual feet, d) longitudinal base shifts, e) driving an individ-
ual front foot forward, or f) driving an individual foot towards
its neutral configuration.

tion is identical to the representation in the previous chapter, path
expansion of Level 1 path segments does not require modification.

The costs for the described actions are generated from the foot and
base costs the individual robot elements induce during the respective
maneuver. Stepping costs are more sophisticated and include infor-
mation about the step length and step height. More details can be
found in Section 3.3.3.

As an extension of the previous work, we want the robot to align its
orientation with the orientation of stairs, when climbing those. This
is desirable since Momaro’s kinematic and the chosen robot repre-
sentation only allow for foot motions in the sagittal plane (see Sec-
tion 3.3.1). Moreover, alignment with the stair orientation can be ob-
served, when humans climb staircases by themselves or teleoperate
robots to do so. If, after a stepping maneuver, the two front/rear feet
have the same longitudinal position but stand on different heights,
this indicates that the robot is not aligned with the stairs it climbs. By
punishing such configurations by an additional cost term, we achieve
the desired behavior.

4.3.2 Level 2

The Level 2 action set and cost function are designed with respect to
the corresponding robot representation which unifies both front/rear
feet to foot pairs. Similar to Level 1, driving actions include omnidi-
rectional driving with fixed orientation to a neighbor state within a

80 planning locomotion on multiple levels of abstraction

a) b)

c) d) e) f)

Figure 4.13: Level 2 action set. Driving actions include a) omnidirectional
driving within a 20-position neighborhood with fixed orienta-
tion or b) turning to the next discrete orientation with fixed po-
sition. Stepping-related actions include c) steps with a foot pair,
d) longitudinal base shifts, e) driving the front foot pair forward,
or f) driving a foot pair towards its neutral configuration.

20-position neighborhood and turning to the next discrete orientation
with fixed position (see Figure 4.13 a, b). In comparison to Level 1 and
similar to the map resolution, the action resolution halves to 5 cm and
32 discrete orientation steps.

Stepping-related maneuvers differ from Level 1 since the robot rep-
resentation only allows for foot pair motions instead of moving in-
dividual feet. Again, those maneuvers are only considered in the
vicinity of obstacles. In this representation, stepping maneuvers are
performed with the whole foot pair. To motivate stepping maneu-
vers, we define a maximum height difference 4hmax,drive for the foot
area center coordinate which can be overcome by driving. Larger
height differences only can be traversed by stepping. In addition,
the robot may perform a longitudinal base shift, move the front foot
pair forward, or move any foot pair towards it neutral configuration
(see Figure 4.13 c - f). Please note that resulting path segments repre-
sented in Level 2 cannot be directly expanded by the Path Expander
without refining them to Level 1.

The costs for driving actions are computed from the state costs of
the corresponding states. Costs for foot pair maneuvers are the con-
catenated costs of the individual foot actions as described for Level 1.
If, for example, the robot steps with its front foot pair, the costs for
this maneuver are the sum of the costs for a step with the front left
and a step with the front right foot. To obtain cost similarity between
Level 2 actions and corresponding Level 1 actions, Level 2 foot pair
costs are tuned. This is done by comparing costs for a set of basic plan-
ning tasks (e.g., drive/turn on a patch of flat/rough underground,
step up different height differences, do a base shift,...) in both repre-

4.3 action set, and cost function 81

sentations and manually tuning of the Level 2 cost parameters until
the cost difference for all those maneuvers is < 5%. Again, a pun-
ishing cost term is introduced for post-stepping states with different
average heights under the individual foot areas of the stepping foot
pair.

4.3.3 Level 3

The Level 3 action set only consists of actions which move the whole
robot over the terrain while it is explicitly not distinguished between
locomotion modes. Similar to omnidirectional driving, the robot may
move towards a state within a 20-position neighborhood with fixed
orientation or may turn to the next discrete orientation with fixed
position, as visualized in Figure 4.14. In this case, the action resolution
is 10 cm and the robot can have one of 16 discrete orientations. Similar
to Level 2, path segments which are represented in Level 3 cannot be
directly expanded to detailed motion sequences by the Path Expander.
Instead, an intermediate refinement to Level 1 is required.

When moving over step cells, a robot state is only feasible if the dif-
ference between the robot orientation and the step orientation of all
step cells covered by the robot area is less than one discrete orientation
step. Moreover, the robot is only allowed to move parallel and orthog-
onal to step orientations. These constraints enforce a behavior, which
is induced by the robot kinematic in lower representation levels but
would be not represented in Level 3, otherwise.

Action costs are derived from the state costs of the corresponding
states. As described in Section 4.2.3, a set of basic planning tasks is
used to tune state costs and obtain cost similarity between Level 3 and
Level 1.

4.3.4 Level Transition

Since all three representation levels are combined in a single planner,
it frequently occurs during path search that the planner reaches the
border of a representation and needs to continue its search in the
next, more abstract representation. To limit the state space size, the

a) b)

Figure 4.14: Level 3 action set. The robot is moved above the surface either
a) by moving to a neighbor position with fixed orientation or b)
by turning to the next discrete orientation with fixed position.

82 planning locomotion on multiple levels of abstraction

Level 1 representation is only available in the vicinity of the robot
while Level 2 is also robot-centered and medium sized. Level 3 covers
the whole map. The planner checks for each action (e.g., drive to a
neighbor position, perform an abstract step, ...) if the most detailed
available representation level is identical for the start and goal state
of this action. If this is the case, the action is applied. If the most
detailed available representation level of the action goal state is more
abstract than for the action start state, the start state is transformed
into the goal state’s representation level. Subsequently, the action is
considered in this more abstract representation if it is still available
in the corresponding action set.

However, the transformation from the action start state to the more
abstract representation might induce additional costs. Due to differ-
ent map resolutions, the robot might be horizontally shifted and
turned to fit the coarser resolution of the more abstract representa-
tion. Foot configuration constraints might require additional foot mo-
tions to fit the next level representation (e.g., individual feet have to
align within foot pair areas to enable a transformation from Level 1
to Level 2). Each transformation is checked for feasibility and corre-
sponding costs are included in the respective action costs.

4.4 abstract representation-based heuristic

In Chapter 3, we presented a heuristic for the planner which com-
bined the Euclidean distance with an orientation difference (geometric
heuristic). However, this heuristic has no knowledge about the envi-
ronment although the occurring environment has large influence on
the resulting path. Incorporating environment information is promis-
ing in the considered planning domains to reduce the number of
visited states before reaching the goal state. We developed an in-
formed heuristic which is based on the Level 3 representation and,
hence, includes environment information. We call this the abstract
representation-based heuristic.

After the goal state # »rg,i is set, it is transformed to Level 3 (# »rg,3). A
one-to-any Dijkstra search is performed in Level 3 starting from # »rg,3

and covering the whole map. Since the Level 3 representation only has
three DoF and a coarse resolution, this search is quick. Subsequently,
a Level 3 cost estimation to reach the goal state is available for each
Level 3 state in the map. While this search searches from the goal
to any state, the heuristic requires an estimation from any state to
the goal state. We employ an action set which consist of the Level 3
action set but each action is reverted to obtain feasible results. During
path planning, a cost estimation to reach the goal state can be get
for an arbitrary state by transforming it to Level 3 and reading the
precomputed cost estimation. This is visualized in Figure 4.15.

4.5 continuous path refinement 83

Planning map

Heuristic map

a)

Planning map

Heuristic map

b)

Planning map

Heuristic map

c)

Planning map

Heuristic map

d)

Planning map

Heuristic map

e)

Planning map

Heuristic map

f)

Figure 4.15: Computation of the abstract representation-based heuristic. a) For
a given planning problem from a start state (red dot) to a goal
state (green dot), b) the goal state is transformed to the Level 3
heuristic map. c) A one-to-any Dijkstra search is performed in
the heuristic map, starting from the goal state until d) all states
have been visited. e) Subsequently, a cost estimation to reach
the goal is available for each Level 3 state and f) can be accessed
as an informed heuristic during planning.

The quality of this heuristic strongly depends on the Level 3’s de-
gree of cost similarity. In other words: how close does the Level 3 cost
function assess costs for maneuvers in comparison to the computed
costs of the same maneuvers in other representation levels. Further-
more, we cannot prove that this heuristic always underestimates costs,
which would be necessary to prove admissibility for the generation
of optimal paths. Nevertheless, since we also employ the bounded
sub-optimal A*-based algorithm with weighted heuristic terms, we
do not aim at generating optimal solutions for a given problem. We
rather focus on generating paths of sufficient quality in feasible time.
The performance of this heuristic regarding path quality and compu-
tation time is evaluated in Section 4.6.2.

4.5 continuous path refinement

After an initial path has been found and execution started, the robot
moves along this path. Since only Level 1 path segments can be ex-
panded and subsequently executed by the Controller and since the
initial path is only represented in Level 1 in the vicinity of the robot,
execution of the initial path is limited to a short segment. To enable

84 planning locomotion on multiple levels of abstraction

Figure 4.16: Continuous refinement method. As the robot moves along the
path, the Level 1 and Level 2 representations move with it. Conse-
quently, those path segments which are represented in a higher
level and for which a more detailed representation becomes
available, can be refined to this more detailed representation.

the robot to reach the goal, one could either trigger frequent replan-
ning of the whole path or refine respective path segments to more
detailed representations. The latter is promising since it considerably
reduces the computational effort. While the robot moves, its sensors
provide new measurements and environment representations are up-
dated according to these new measurements and the current robot po-
sition. Those updates are included in the path by continuously refin-
ing those path segments for which a more detailed environment rep-
resentation becomes available, as visualized in Figure 4.16. If a cost
difference > 25% between the original and the refined path segments
indicates that the higher-level assessment for a situation is wrong, we
trigger a completely new planning run. This ensures that path seg-
ments in the vicinity of the robot are always represented in Level 1
and thus, can be expanded and executed by the Controller. The corre-
sponding refinement methods are described in the following.

Level 2 path segments can be refined to Level 1 in the following
manner: For a path segment between two successive Level 2 states # »ri,2

and # »ri+1,2, both states are transformed to the Level 1 states # »ri,1 and # »ri+1,1.
By interpolating between the 3-DoF robot base states (bx, by, bθ) of
these two Level 1 states, a set of feasible base states S is generated. S is
subsequently inflated by two position steps and one orientation step,
as visualized in Figure 4.17. Finally, the planner, which is restricted
to S, searches for a Level 1 path between # »ri,1 and # »ri+1,1. If

• either one of the two states becomes infeasible when transformed
to Level 1 because Level 2 assessed the given situation wrongly
or

• the costs for the refined Level 1 path differs by > 25% from the
original costs for the path segment,

the respective path segment is defined to be not refinable and replan-
ning is triggered.

The refinement of a Level 3 path segment to Level 2 differs in some
aspects. Again, a set of feasible robot base states S is generated. In con-
trast to the previously described method for Level 2 refinement, not

4.6 evaluation 85

a) b)

Figure 4.17: Generation of a set of feasible robot base states for path refine-
ment. a) For the given start (red arrow) and goal (green arrow)
robot base states of a path segment, we generate a set of feasible
robot base states (black lines) by interpolating between the two.
b) Inflation by two position steps and one orientation step.

only the path between two successive states but the whole Level 3 path
segment # »ri,3, # »ri+1,3, ..., # »rj,3 is refined at once. The first and last robot
state of this path segment are transformed to the Level 2 states # »ri,2

and # »rj,2. Subsequently, the planner searches for a path between # »ri,2

and # »rj,2 while being restricted to S. To refine a Level 3 path to Level 1,
an intermediate refinement to Level 2 is required.

4.6 evaluation

We evaluated the developed method in three experiments on artifi-
cially generated height maps. In a first experiment, the performance
of the planner on all three representation levels was evaluated and
compared (Section 4.6.1). A second experiment was designed to eval-
uate the developed abstract representation-based heuristic (Section 4.6.2).
Finally, the evaluation of the influence of the robot start state is de-
scribed in Section 4.6.3.

The employed hardware was one core of a 2.6 GHz Intel i7-6700HQ
processor with 16 GB RAM to provide a realistic performance assess-
ment for real robot applications, in which energy efficient processing
units are often used and other computations have to be done in paral-
lel. A video explaining the approach and showing the experiments is
available online1. It also contains an experiment in the Gazebo simula-
tion environment demonstrating the continuous refinement strategy.

4.6.1 Representation Level Performance

To assess the quality of the different representation levels, the scenario
depicted in Figure 4.18 was designed. It describes an indoor scene in-
cluding obstacles of different sizes—of which some can be traversed
by stepping while others are too high—, different rooms, door open-
ings, and a step. To evaluate the performance of each representation
individually, the whole map was represented in the respective repre-

1https://doi.org/10.5281/zenodo.3628732

https://doi.org/10.5281/zenodo.3628732
https://doi.org/10.5281/zenodo.3628732

86 planning locomotion on multiple levels of abstraction

sentation and the planner was restricted to plan on this representa-
tion. In addition, planning on a combination of all three levels, which
is one of the main contributions of this method, was evaluated. For
this planner run, a Level 1 size of 3× 3 m and a Level 2 size of 9× 9 m
were chosen while Level 3 covered the whole map. The representation
level positions followed Figure 4.3 such that Level 1 and Level 2 were
centered to the robot start state. The planner used the geometric heuris-
tic (see Section 4.4). Since this was also used in the experiments in
Section 3.6, a comparison of the results is feasible.

While we used the ARA* algorithm in experiments of the previous
section, we discovered that within a given planning time the planner
usually outputs a solution with a constant heuristic weight. However,
when directly planning with this heuristic weight, previous planner
runs with higher heuristic weights can be omitted. Hence, we em-
ployed a weighted A* algorithm for these experiments, while compar-
ing the results for different heuristic weights. The quantitative results
can be seen in Figure 4.19 while a resulting path for planning with
all three representation levels combined is depicted in Figure 4.18.

When planning with abstract representation levels > 1, those path
segments cannot be directly executed by the controller but need to
be refined to Level 1. Hence, the costs of Level 2 and Level 3 path
segments can be seen as cost estimates for the corresponding Level 1
path segments. To evaluate the quality of these cost estimates, we
refined all Level 2 and Level 3 path segments to Level 1 and compared
the costs, as shown in Figure 4.19.

The results indicate that planning on representation levels > 1 and
with combined levels is faster by at least one order of magnitude
compared to pure Level 1 planning. Due to memory limitations, the
Level 1 path for W = 1.0 could not be generated. A comparison be-
tween the estimated costs by the planner and the corresponding costs
when refined to Level 1 gives an assessment of the cost estimation in
each level. Comparing these refined costs to the costs of pure Level 1
planning gives an assessment of the resulting path quality. It can be
seen that the estimated costs always underestimate the corresponding
refined Level 1 costs. This is an important observation for employing
an abstract representation as a heuristic which needs to underesti-
mate costs to guarantee optimality. Especially for W ≤ 1.5 the cost
estimation of all levels is close to the real costs with a difference of
≤ 7.7%. Furthermore, for the Level 2, Level 3, and combined results, the
corresponding refined Level 1 costs forW ≤ 1.5 differ to the original
Level 1 path costs by ≤ 15%.

4.6.2 Heuristic Comparison

In a second experiment, we compared the developed abstract represen-
tation-based heuristic to the geometric heuristic (see Section 4.4 for de-

4.6 evaluation 87

Level 1 Level 2 Level 3

a
a

a

b

c

Figure 4.18: Height map of the first experiment scenario containing obsta-
cles which are too high to be traversed (a), obstacles which can
be traversed by stepping (b), and a step and door opening (c).
From its start state (red arrow), the robot needs to navigate be-
tween these obstacles, climb a bar obstacle, navigate to the step,
climb the step, and pass the door opening to finally reach the
goal state (green arrow) in another room. The resulting path for
W = 1.125 and combined levels of representation is depicted.
Level 1 path segment = red, Level 2 segment = blue, Level 3 seg-
ments = green. Arrows visualize the robot orientation. The path
visualizes the robot base center. As soon as a part of the robot
leaves a representation, the planner employs the next higher
representation level which is the reason why, e.g., the Level 2
path segment already starts within the Level 1 borders.

0.01

0.1

1

10

100

1000

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

Heuristic weights

Heuristic weights

P
la

nn
in

g
tim

e
[s

]
P

at
h

co
st

s
[-

]

Lvl. 1 Lvl. 2 Lvl. 3 combined

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

0

5

10

15

20

Figure 4.19: Planning performance for the first experiment for the three
levels of representation isolated and combined. The geometric
heuristic is employed. The influence of the heuristic weight W
is evaluated. Estimated costs by the planner = yellow, costs of
the solutions when refined to Level 1 = blue.

88 planning locomotion on multiple levels of abstraction

tails). A second scenario was designed which is larger and more chal-
lenging compared to the scenario of the first experiment (see Fig-
ure 4.20). It consists of two corridors of up to 10 m length which are
connected through a door opening. The first corridor contains a bar
obstacle and a field of rough terrain. The second corridor contains a
flight of four stairs and two obstacles hindering stair climbing.

Planning is performed with all three levels combined, as described
in Section 4.6.1. A resulting path is depicted in Figure 4.21. Quanti-
tative planning time and path costs results are given in Figure 4.22.
Preprocessing of the abstract representation-based heuristic took 0.52 s
and is already included in the stated planning times.

It can be seen that the abstract representation-based heuristic signifi-
cantly accelerates planning compared to the geometric heuristic. Since
the abstract representation-based heuristic incorporates information of
the terrain, the initial heuristic value is considerably closer to the
resulting costs while still underestimating. A comparison of the re-
sulting path costs gives an assessment of the heuristic quality. While
the geometric heuristic guarantees feasibility, this guarantee cannot be
given for the abstract representation-based heuristic. Nevertheless, it can
be seen that path costs are comparable, especially for W ≤ 1.5. As
an example, for W = 1.25, planning is accelerated by more than two
orders of magnitude while the refined path costs only differ by 3.3%.
Moreover, the resulting path illustrates how the robot aligns with the
stairs and only moves parallel and orthogonal to them.

Figure 4.20: Height map of the second experiment containing a bar obstacle
(I), a field of rough terrain (II), a door opening (III), a flight of
stairs (VI), and two obstacles (V). a - d are start states, e is the
goal state. Start state a is used for heuristic comparison.

4.6 evaluation 89

Level 1 Level 2 Level 3

Figure 4.21: Resulting path for planning with the abstract representation-based
heuristic and combined levels withW = 1.25.

0.1

1

10

100

1000

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

Geometric
heuristic

Abstr. rep.
heuristic

Geometric
heuristic

Abstr. rep.
heuristic

Heuristic weights (W)

P
la

nn
in

g
tim

e
[s

]

P
at

h
co

st
s

[-
]

0

10

20

30

Figure 4.22: Planning performance for combined levels of representation to
compare the geometric heuristic with the abstract representation-
based heuristic. Red lines indicate the initial cost estimate of the
heuristic.

4.6.3 Start State Influence

In a third experiment, we evaluated the influence of the start state
on the planner performance. We employed the scenario described in
Figure 4.20. The planner planed on all three representation levels com-
bined and used the abstract representation-based heuristic. Quantitative
results of the planning times are given in Figure 4.23. Since resulting

90 planning locomotion on multiple levels of abstraction

0.1

1

10

100

1000

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

P
la

nn
in

g
tim

e
[s

]

Heuristic weights (W)

a b c d

Figure 4.23: Planning times for different start states (see Figure 4.20) and
differentW , using the abstract representation-based heuristic.

path costs differ between different start states, a comparison of those
has no value.

The results indicate that an important factor for the planning per-
formance is not only the distance between the start and goal state but
also the complexity within the Level 1 representation. This can be ex-
plained by the fact that complex scenarios represented in Level 1 lead
to large state spaces which have to be searched. Nevertheless, higher
heuristic weights lead to feasible planner performances in any case.

4.7 conclusion

In this chapter, an extension to the search-based hybrid driving-step-
ping locomotion planning approach of Chapter 3 to plan on three lev-
els of representation was presented. With increasing distance to the
robot position, the robot and environment representations get coarser
and the robot is represented with less degrees of freedom. Hence,
planning problems can be represented with smaller state space sizes
accelerating search. To compensate this loss of information which
comes along with the coarser and lower-dimensional representations,
the corresponding representation semantics increase resulting in more
abstract representations. The planner uses all representations in a sin-
gle planning run avoiding the information loss of hierarchical coarse-
to-fine approaches.

Experimental results indicated that this method provides resulting
paths for challenging environments, which are qualitatively compara-
ble to the detailed planning of Chapter 3, but for which the generation
is faster by multiple orders of magnitude. Hence, significantly larger
planning problems can be solved in feasible time which increases the
real-world applicability of the approach.

Moreover, a method to continuously refine path segments from ab-
stract representations to more detailed representations was presented.
This could be used during path execution to reduce the number of re-
quired replanning procedures.

4.7 conclusion 91

Finally, a powerful, informed heuristic was presented, which incor-
porates knowledge of the environment and the robot capabilities and
which is based on the most abstract representation. While a quick
preprocessing is required, the path search is guided by this heuristic
causing further acceleration with comparable result quality.

5
T O WA R D S L E A R N I N G A B S T R A C T
R E P R E S E N TAT I O N S F O R L O C O M O T I O N
P L A N N I N G I N H I G H - D I M E N S I O N A L S TAT E
S PA C E S

In Chapter 4, we presented an extension to the search-based hybrid
driving-stepping locomotion planner of Chapter 3. Instead of using
a uniform representation for the whole planning problem, multiple
representations with different levels of abstraction were developed.
An abstract representation uses a coarser environment and action res-
olution while the robot is represented with less DoF. An increasing
number of features compensates this information loss by adding addi-
tional semantics to the representation. Especially the employment of
an informed heuristic based on the most abstract representation led
to considerable planning acceleration with comparable result quality.

However, the generation of such abstract representations is chal-
lenging. Since the heuristic’s task is the efficient cost estimation for
shortest paths between states, its performance depends on the cost
estimation quality of the abstract representation. In other words, the
abstract representation needs to be cost similar with the detailed repre-
sentation, i.e. the cost difference for the same planning task between
the detailed and abstract representation should be minimized.

In the previous chapter, the abstract representations were manu-
ally designed. While a robot representation and corresponding action
set could easily be defined, the definition of a suitable environment
representation with suitable features was challenging. Moreover, a
significant manual tuning effort was required for the cost function
which incorporated these features. To obtain cost similarity, a set of
local planning tasks was defined, and the abstract representation was
manually tuned to minimize the path costs difference to the detailed
representation on this task set. However, the corresponding tuning
strongly depends on the chosen task set. Furthermore, manual tun-
ing needs to be repeated after each modification either of the detailed
or of the abstract representation, which is exhausting.

A domain where abstraction is well-established are CNNs. Con-
volutions decrease the input resolution while computing additional
features. Moreover, abstraction through CNNs can be learned given
sufficient training data. In this chapter, an approach is presented to
support the implementation of an abstract representations by a CNN
representing the abstract cost function. Since training is realized on
generated artificial data, manual design and tuning efforts are mini-
mized and dependencies on the task set are eliminated.

94 towards learning abstract planning representations

5.1 system overview

In general, the approach consists of a detailed and an abstract plan-
ning representation. The detailed representation has a sufficient envi-
ronment and action resolution and describes the robot with sufficient
DoF to make use of all required robot capabilities, to be applicable
to the considered planning domain, and to generate paths which can
be executed by a successive controller. However, in challenging envi-
ronments and with sophisticated robot kinematics, this detailed rep-
resentation usually results in large state spaces posing challenges for
efficient path generation.

A second abstract representation describes the same planning prob-
lem with a smaller state space allowing for efficient planning. A
smaller state space can be obtained through, e.g., a coarser resolution,
a lower-dimensional robot representation, or a combination of both.
The abstract representation does neither need to represent all kine-
matic robot capabilities nor to output paths which can be executed
by the controller. It rather needs to provide feasible cost estimates to
guide the planning in the detailed representation. Hence, the abstract
representation needs to be cost similar with the detailed representa-
tion. The implementation of the abstract representation is supported
by a CNN that maps spatially small planning tasks to correspond-
ing cost estimates for the shortest path. These small planning tasks
form a coarse, low-dimensional set of actions. The CNN represents
a corresponding cost similar cost function. Subsequently, this abstract
representation can be used to efficiently precompute heuristic values
for the whole map accelerating path search in the detailed represen-
tation. A more precise problem statement is given in Section 5.2.

The approach is applied to the problem of hybrid driving-stepping
locomotion planning, but it can be easily transferred to other do-
mains, e.g., walking locomotion. The method architecture is visual-
ized in Figure 6.1.

We choose the detailed representation to be the representation de-
scribed in Chapter 3. It describes the environment as height maps
with a resolution of 2.5 cm. 7-DoF states describe the robot while a
corresponding action set contains omnidirectional driving and step-
ping related maneuvers.

The implementation of the abstract representation is motivated by
the Level 3 representation in Chapter 4. The robot is represented by
3-DoF base states with a resolution of 10 cm while individual foot
positions are neglected. A corresponding action set describes robot
motions to neighbor states. In the approach presented in this chapter,
there is no explicit abstract environment representation, but the CNN
directly maps abstract actions and the corresponding map patch of
the underlying detailed height map to cost estimates. More details on
the representations are given in Section 5.3. We developed a method

5.1 system overview 95

Planning problem Detailed representation CNN

Abstract representation

H
eu

ris
tic

Planner

(e.g., A*, RRT, PRM)

Path

Figure 5.1: Method overview. For a complex planning problem, a detailed
representation is generated representing all required environ-
ment information and robot capabilities. This representation
is employed by a planning algorithm to generate paths. The
pipeline is supported by an additional abstract representation.
A CNN represents the abstract cost function and maps spatially
small planning tasks to cost estimates. The abstract representa-
tion used to generate an informed heuristic which supports plan-
ning in the detailed representation.

to generate artificial data sets which are used for network training.
During planning, the abstract representation is used to generate an in-
formed powerful heuristic. A coarse-to-fine planning approach would
also be feasible with these two representations. However, to avoid
cases in which wrong situation assessments of the abstract representa-
tion lead to wrong paths that are subsequently refined to the detailed
representation, we prefer to directly plan in the detailed representa-
tion while the abstract representation-based heuristic provides additional
information and guides the search towards the goal. To generate the
heuristic, a search in the abstract representation is carried out from
the goal state to all states in the map. The result provides cost esti-
mates for the shortest path from an arbitrary state to the goal state.
The CNN and the heuristic are described in Section 5.4.

Experimental results are presented in Section 5.5. Our method gen-
eralizes well to real-world scenes although it is trained on generated
artificial data. The results further show that the proposed method
outperforms our manually tuned approach from Chapter 4 in terms
of abstraction quality, while eliminating tuning efforts. Moreover, the
proposed heuristic accelerates path planning by multiple orders of
magnitude, compared to popular heuristics.

96 towards learning abstract planning representations

5.2 problem statement

Given is a planner which uses an environment representation Ed, a
robot representation Rd, a corresponding action set Ad, and a cost
function Cd. Ed is a map with an arbitrary number of features describ-
ing each cell. Rd represents all required DoF of the robot kinematic
which are necessary to address the planning problem. Ad contains all
actions which can be executed by the robot such that # »rd,i +

»ad,j =
»rd,i+1

,
an action # »ad,j ∈ Ad connects two successive robot states # »rd,i,

»rd,i+1
∈ Rd

while inducing the costs Cd(
»rd,i,

»ad,j).
A second representation is the abstract representation consisting

of Ea, Ra, Aa, and Ca. It can be used to support the planning. Ra

describes the robot state in a low-dimensional state space although
this might not suffice to describe the robot state in enough detail
for execution. The correspondence between an abstract robot state
»ra,i ∈ Ra and a detailed robot state # »rd,i ∈ Rd is given through the
transformation

»ra,i = Td 7→ a(
»rd,i) (5.1)

and vice versa with

»rd,i = Ta 7→ d(
»ra,i). (5.2)

Aa describes actions # »aa,j to move an abstract robot state # »ra,i ∈ Ra to a
successive state # »ra,i+1 ∈ Ra. The resolution of Aa is coarser compared
to Ad, such that an action sequence

Ta 7→ d(
»ra,i) +

»ad,j +
»ad,j+1

+ ... + # »ad,j+k = Ta 7→ d(
»ra,i+1) (5.3)

is necessary in the detailed representation to perform the least cost
transition between two successive robot states in the abstract repre-
sentation, while the difference between the abstract costs Ca(

»ra,i,
»aa,j)

and the detailed costs Cd(Ta 7→ d(
»ra,i),

»ad,j, ..., # »ad,j+k) should be mini-
mized to obtain cost similarity.

While Ra and Aa can be easily defined, Ea and Ca needed extensive
manual tuning in Chapter 4 to obtain cost similarity. Ea was derived
from Ed. Ca subsequently employed Ea to generate costs. In this chap-
ter, we present a CNN which directly maps from Ed to Ca. The design
of an additional abstract environment representation is not required
and tuning efforts are minimized.

5.3 planning representations

The approach is applied to the problem of hybrid driving-stepping
locomotion planning for the robot platforms Momaro and Centauro
(see Figure 5.2). The corresponding detailed planning representation
is described in Section 5.3.1. Details on the abstract representation are
given in Section 5.3.2.

5.3 planning representations 97

Figure 5.2: Hybrid driving-stepping locomotion robots addressed by the
presented planning method. Left: Momaro. Right: Centauro

a) b) c)

Figure 5.3: Detailed planning representation. a) Height map. b) Foot cost
map (yellow = untraversable by driving, olive = unknown). c)
Robot representation.

5.3.1 Detailed Representation

As the detailed planning representation, the representation developed
in Chapter 3 is employed. The environment representation Ed is a
height map with a resolution of 2.5 cm. Foot costs and base costs are
derived from this height map. They describe the costs to place an in-
dividual robot foot/the robot base at a given state in the map and are
combined into whole robot state costs. A height map and foot cost
map example is depicted in Figure 5.3 (a) and (b).

The robot representation Rd is implemented as 7-DoF states
~rd = (bx, by, bθ , f

0,x,rel, f
1,x,rel, f

2,x,rel, f
3,x,rel) with (bx, by, bθ) describing

the robot base state and f
0,x,rel, ..., f

3,x,rel describing the relative lon-
gitudinal position of each foot, as shown in Figure 5.3 (c). Lateral
foot positions are fixed, as explained in Section 3.3.1. Foot heights are
computed only for those states which are contained in the resulting
path. Positions have a resolution of 2.5 cm while there are 64 discrete
orientations for the robot base.

The corresponding action set Ad includes the following actions
which are also depicted in Figure 5.4:

• omnidirectional driving within a 20-neighborhood with fixed
orientation,

• turning to the next discrete orientation with fixed position,

98 towards learning abstract planning representations

a)

b) c) d) e)

Figure 5.4: Action set of the detailed representation (Ad): a) Omnidirectional
driving with fixed orientation. b) Turning to the next discrete ori-
entation with fixed position. c) Step. d) Longitudinal base shift.
e) Driving a foot relative to the base while keeping ground con-
tact. Grid and orientation resolution are enlarged for illustrative
purposes.

• performing a step with a single foot,

• moving the base longitudinal relative to the feet, and

• driving an individual foot relative to the robot base while keep-
ing ground contact.

Steps are represented as the direct transition from a pre-step state to
a post-step state. Only those steps in the resulting path are refined to
detailed motion sequences considering robot stability, detailed step-
ping motions, and foot heights.

The detailed cost function Cd calculates costs for each action and
is based on the foot and body costs the robot experiences when per-
forming the action. Costs are subsequently weighted to, e.g., prefer
driving over stepping, or to give the planner a preference of moving
with a forward orientation. More details can be found in Section 3.3.3.

5.3.2 Abstract Representation

The abstract representation is inspired by the Level 3 representation of
the previous chapter (see Section 4.3.3). The robot is represented with
3-DoF states #»ra = (bx, by, bθ) which describe the robot base state with
a resolution of 10 cm and 16 discrete orientation steps. Individual foot
positions are neglected.

The corresponding abstract action set Aa contains the following
actions to move the robot over the terrain while it is not distinguished
between driving and stepping locomotion:

• move the robot within a 20-neighborhood with fixed orientation
(see Figure 5.4 a) and

• turn to the next discrete orientation with fixed position (see Fig-
ure 5.4 b).

5.4 abstract cost network 99

An explicit environment representation which is the basis for cost
computation is not required. Instead, a CNN directly maps local plan-
ning tasks with the detailed environment representation to cost esti-
mates. Details on the network are given in Section 5.4.

The transformation from detailed robot states to abstract robot
states (Td 7→ a) is realized by neglecting the foot positions and match-
ing the position and orientation to the coarse resolution of the abstract
state space.

The transformation from an abstract robot state to the correspond-
ing detailed state (Ta 7→ d) is more complicated. For all detailed robot
base states that match the abstract state, the one with the least cost
foot configuration is searched. To obtain a behavior that matches the
resulting paths in the detailed representation, a cost term is added to
prefer foot positions which are close to the neutral configuration (see
Figure 5.4 a). The detailed robot state with the minimum state costs
is the result of the transformation.

5.4 abstract cost network

The cost function of the abstract representation is represented by a
CNN which is trained with planning results of the detailed repre-
sentation to obtain cost similarity. Input to the network are a local
planning task consisting of a map patch of the detailed environment
representation and the goal state for a local planning task which is
completely in the map patch. Since the map patch is always robot
centered, it is not required to explicitly input the start state of the
local planning task. These local planning tasks represent Aa. The net-
work maps those inputs to a cost estimate for this local planning task.
Section 5.4.1 gives details on the developed CNN architecture while
Section 5.4.2 explains the network training. Section 5.4.3 describes
the generation and usage of a heuristic which is based on the abstract
representation.

5.4.1 Network Architecture

The developed CNN follows a regular feed-forward architecture con-
sisting of convolutional layers and successive fully connected layers.
Figure 5.5 depicts the network architecture. The input height map
patches have a size of 72× 72 pixels. For a given resolution of 2.5 cm,
this size ensures that for every combination of abstract start and goal
states # »ra,g = # »ra,s +

»aa,j ∈ Aa, the corresponding detailed goal states
»rd,s = Ta 7→ d(

»ra,s) and # »rd,g = Ta 7→ d(
»ra,g) with any feasible leg con-

figuration are completely inside this map patch. The height map is
normalized such that the lowest contained value is zero.

The start state # »ra,s is defined to be always in the map patch center
with a fixed orientation pointing to the right of the image. Hence, it

100 towards learning abstract planning representations

xgoal
ygoal
θgoal

1@
72×72

3@
72×72

5@
72×72 28@

59×59

31@
28×28

34@
13×13

36@
11×11

38@
9×9

40@
7×7

1960 + 3

500

150

50

20

costs

feasibility

Conv. 1
3×3

Padding=1

Conv. 2
7×7

Padding=3

Conv. 3
14×14

Conv. 4
4×4

+ max
pooling

Conv. 5
3×3

+ max
pooling

C
on

v.
6

3×
3

C
on

v.
7

3×
3

C
on

v.
8

3×
3

Figure 5.5: Architecture of the developed CNN. Input are a height map
patch and the goal state. Although it is not fed into the network,
the start state is depicted as a red arrow for better understanding.
Outputs are the feasibility and costs values. Convolutional layers
are visualized as red cuboids; blue lines show fully connected
layers. If not stated different, convolutions have a padding of 0
and a stride of 1. Notation for maps of size x× x with y feature
channels: y @ x× x.

is not fed into the network. The 3-DoF goal state # »ra,g is described in
resolution steps relative to # »ra,s (e.g., to move 20 cm in x-direction and
−10 cm in y-direction with constant orientation, # »ra,g = (2,−1, 0)).

The network outputs cost estimates for planning tasks. In general,
costs are assigned infinite, if no path can be found. However, infinite
values come along with undesired effects during backpropagation.
Instead, we split the outputs between feasibility and costs. The Boolean
feasibility value describes, if a path between # »ra,s and # »ra,g exists. Only if
this is the case, the costs value describes the corresponding costs. For
a false feasibility, the costs loss is not backpropagated.

We discovered that key to a good abstraction performance are some
convolutions with large kernel sizes. This might be explained as fol-
lows: a first convolution with a small kernel size (3× 3) extracts de-
scriptive map features from the input height map patch. Next, a sec-
ond convolution possesses a kernel size (7× 7) which is similar to the
size of a robot foot and, thus, detects feasible footholds. The kernel
size of the third convolution (14× 14) is chosen such that it covers
the maximum action length of an individual foot. Hence, it is capa-
ble of finding feasible connections between footholds which is, e.g.,
valuable for stepping actions. The subsequent convolutions and max
pooling operations with small kernels (3 × 3 and 4 × 4) do further
processing on the actions and are followed by six fully connected lay-
ers.

The last fully connected layer is split to obtain the desired outputs.
While costs are output directly, the feasibility output is processed by a
sigmoid function since it is Boolean.

5.4 abstract cost network 101

5.4.2 Training

The network is trained on generated artificial data. On the one hand,
this has the advantage that large amounts of data can be generated
without considerable effort. On the other hand, the generation of such
data is challenging since it has to imitate real-world data in sufficient
quality such that the network generalizes well when inferred on real-
world data. We developed the following method for data generation.
A map generator produces height maps of the desired network input
size. The following objects are placed at a random position with a
random yaw orientation in those height maps:

• cuboid shaped obstacles of random size
(lx, ly ∈ [0.2 m, 2 m], lz ∈ [0.02 m, 0.4 m]),

• walls of random length and height
(lx ∈ [0.4 m, 3.0 m], ly ∈ [0.05 m, 0.35 m], lz ∈ [0.7 m, 2.0 m]), and

• staircases of random width (sy ∈ [0.9 m, 2.0 m]) with a random
number of steps (s# ∈ [2, 4]) with random height
(sz ∈ [0.15 m, 0.3 m]) and length (sx ∈ [0.25 m, 0.35 m]).

As a training data set, we generate 2000 height maps of each of the
following categories:

• one cuboid obstacle,

• two cuboid obstacles,

• three cuboid obstacles,

• one wall,

• two walls,

• one cuboid obstacle and one wall,

• one staircase,

• one staircase and one wall, and

• one staircase whose orientation is in the interval
[
− π

16 , π
16

]
around the robot orientation. Those maps are used to set a learn-
ing focus on stair climbing whose cost function is significantly
more complex than driving locomotion.

Based on Aa, we define 22 abstract goal states # »ra,gi for each map.
The start state # »ra,s is always in the map center with a fixed orientation
heading to the right. Hence, 22 planning tasks are available for each
map. Subsequently, # »ra,s and # »ra,gi are transformed to Rd using Ta 7→ d.
If the transformation cannot find a corresponding detailed start state
»rd,s, those maps are deleted from the data set. This results in a total of
11, 327 maps with 249, 194 tasks. For each planning task from # »rd,s to
»rd,gi , we search for the shortest path using the detailed A* planner (see
Chapter 3 for details). We store the feasibility flag for each result which

102 towards learning abstract planning representations

20 40 60 80 100
0

20

40

60

80

100

Epochs

Fe
as

ib
ili

ty
co

rr
ec

t[
%

]

0

0.2

0.4

0.6

0.8

C
os

ts
[-

]

Learned feasibility
Cd

Std. dev.(Cd)
Ca, learned

Error(Ca, learned)

Figure 5.6: CNN training performance on the validation set after each train-
ing epoch. The detailed cost function Cd is shown as ground
truth. The stated error describes the cost difference between the
detailed and the abstract cost functions.

describes if a path could be found. Costs are saved for all feasible tasks.
These two values form the desired outputs for the network training
while the height map and the goal state form the input.

We use the Stochastic Gradient Descent (SGD) optimizer for net-
work training. The learning rate is set to 0.0001 and a momentum of
0.9 is chosen. We use a Binary Cross Entropy (BCE) loss function for
the feasibility and a Least Absolute Deviations (L1) loss function for
the costs. The costs loss is only considered during backpropagation
for true feasibility flags. Losses are weighted withWfeasible andWcosts,
both starting at 1.0. A dynamic loss weight adaptation procedure is
applied to both losses individually: if no improvement by means of a
decreasing loss is achieved in three consecutive training epochs, the
corresponding loss weight is divided by 5.0.

To transform the network’s feasibility output to Boolean during eval-
uation, a threshold of 0.5 is used. The training performance is evalu-
ated on a separate validation set which is obtained by repeating the
above-explained map generation procedure with 100 maps of each
category. This results in a validation set with 567 maps with 12, 474
planning tasks. The training performance is depicted in Figure 5.6.
We initialized the CNN with random seed, trained for 100 epochs
and chose the network state for the experiments which obtained the
best results on the validation set.

5.4.3 Abstract Representation-based Heuristic

The abstract representation is used to generate an informed heuristic
for planning in the detailed representation. For a given goal state # »rd,g,
this is transformed to the abstract representation using
»ra,g = Td 7→ a

(
»rd,g
)
. Next, a one-to-any 3D Dijkstra search is started

from # »ra,g and explores the whole map in the abstract representation.

5.5 evaluation 103

During this search, neighbor states # »ra,ni for a state # »ra,m are generated
through abstract actions # »aa,i such that # »ra, ni +

»aa,i = # »ra, m. The corre-
sponding action costs are retrieved from the CNN. Since the search is
running backwards, from the goal state to arbitrary states, start and
goal of each action are exchanged. Height map patches are cropped
such that the action start state is in the center. In addition, they are
rotated such that the action start state is heading to the right. Finally,
the height map patch and the goal state are fed into the CNN. Those
actions for which the CNN outputs a false feasibility are discarded.
Feasible actions are assigned the corresponding costs estimate.

The computation of action costs between neighbor states only needs
to be done once per map. The 3D Dijkstra search needs to be executed
once per goal state. However, due to the low dimensionality and low
resolution of the abstract representation, this search is fast.

During path planning in the detailed representation, this heuristic
is employed as follows: To obtain a heuristic value from an arbitrary
detailed state # »rd,i to the goal state, the precomputed heuristic value
for # »ra,i = Td 7→ a(

»rd,i) is read describing a cost estimate from this state
to the goal state. The method is similar to the method described in
Section 4.4 and is visualized in Figure 4.15.

In theory, a heuristic is only admissible for the generation of opti-
mal paths if it is proven to always underestimate costs. It is important
to understand that we cannot prove this admissibility. We rather focus
on the generation of paths with a satisfying quality in feasible time
and thus, accept sub-optimality to speedup planning. However, the
training performance in Figure 5.6 already indicates that the learned
cost function tends to underestimate costs which is desirable.

5.5 evaluation

We used Python 2.7 and PyTorch 0.4.1 to implement the CNN. Map
generation and the planner were implemented in C++. Communica-
tion between these modules was realized via ROS. An online reposi-
tory1 contains code for the training data generator, the CNN, and the
generation and usage of the corresponding heuristic.

The approach was evaluated in two experiments. A first experi-
ment (see Section 5.5.1) evaluated the abstraction quality and enables
a comparison to the previously presented manually designed and
tuned abstraction method in Chapter 4. A second experiment evalu-
ated the heuristic when planning hybrid driving-stepping locomotion
paths in challenging environments and enables comparison to the per-
formance of traditionally used heuristics. A video which explains the
approach and gives additional footage of the experiments is available
online2.

1https://doi.org/10.5281/zenodo.3628727
2https://doi.org/10.5281/zenodo.3628732

https://doi.org/10.5281/zenodo.3628727
https://doi.org/10.5281/zenodo.3628727
https://doi.org/10.5281/zenodo.3628732
https://doi.org/10.5281/zenodo.3628732

104 towards learning abstract planning representations

5.5.1 Abstraction Quality

The abstraction quality was evaluated on three data sets:

• random: we generated 200 random maps of each category (see
Section 5.4.2) resulting in a set of 1, 124 maps with 24, 728 tasks.

• simulated: height map patches of the desired size were cut out
from height maps of simulated generated planning environ-
ments. This set includes 77 maps with 1, 694 tasks.

• real: height map patches of the desired size were cut out from
height maps that were generated from laser scanner measure-
ments during real-world experiments. This set includes 109 maps
with 2, 398 tasks.

Figure 5.7 shows example tasks of the different data sets. The ab-
straction performance of the developed CNN is shown in Table 5.1.
We evaluate the feasibility and costs outputs. A correct feasibility assess-
ment means that the abstract representation outputs the same feasibil-
ity value as the detailed representation. Only if both representations
assess a situation as feasible, costs are considered and give an eval-
uation of the cost similarity of the two representations. Costs for the
tasks in the detailed representation Cd are stated as ground truth. We
compared the performance to the manually tuned Level 3 abstraction
method, described in Chapter 4.

The results indicate that the CNN feasibility output is significantly
better compared to the manually tuned abstraction method. While
the latter has problems in simulated and real-world robot environ-
ments, the CNN assesses a correct feasibility for > 92% of the tasks
throughout all test sets.

Regarding the costs estimates, the average costs error of the CNN
is smaller compared to the manually tuned abstraction on all test
sets. The error is particular small, when seen in relation to the large
standard deviation of the ground truth costs of the detailed represen-
tation. While the error of the proposed CNN is < 5.7% of the absolute
costs on the random and simulated test sets, it is 15.9% on the real test

a) b) c)

Figure 5.7: Example tasks of the test data sets. a) random test set. b) simulated
test set. c) real test set. Images show the input height maps. Red
arrows show start states (not fed into the CNN), green arrows
show goal states.

5.5 evaluation 105

Table 5.1: Abstraction quality on the three data sets. The costs in the de-
tailed representation (Cd) state the ground truth. Ca,CNN describes
the learned abstract cost function of this presented method while
Ca,man.tuned describes the manually designed and tuned abstract
Level 3 cost function from Chapter 4.

random simulated real

Cd 0.476 0.466 0.509

Std. dev.(Cd) 0.222 0.202 0.236

feasibility correct, CNN 95.04% 96.69% 92.62%

Ca,CNN 0.453 0.469 0.446

Error(Ca,CNN) 0.027 0.013 0.081

feasibility correct, man.tuned 79.27% 65.35% 69.77%

Ca,man.tuned 0.435 0.402 0.429

Error(Ca,man.tuned) 0.057 0.021 0.103

set. This might be explained by noisier sensor measurements in real-
world experiments resulting in noisier height maps which can also be
observed in Figure 5.7.

5.5.2 Application to Planning

We designed a 10× 10 m arena in the Gazebo simulation which in-
cludes typical locomotion tasks for Centauro in search and rescue
missions (Figure 5.8). The used system is equipped with an Intel Core
i7-8700K processor at 3.70 GHz, 64 GB RAM and an NVidia GeForce
GTX 1080Ti with 11 GB memory.

For all abstract states of the whole map, map patches were ex-
tracted and neighbor states with corresponding action costs were
precomputed by the CNN. This took 239 s. However, this precom-
putation is only required once per map and can be incrementally
updated if parts of the map change. The one-to-any Dijkstra search
starting from the defined goal state and generating the heuristic took
0.049 s, averaged over all goal states. We used the weighted-A* plan-
ner to plan paths to all goals. It planned in the detailed representation
while utilizing the abstract representation-based heuristic. The planning
performance was compared to planning with the geometric heuristic
which combines Euclidean distances with rotational differences and
is admissible (more details in Section 3.3.4). Hence, when used with
a heuristic weight W = 1, results are optimal. Both heuristics were
evaluated with multiple W ≥ 1 to also obtain fast, sub-optimal solu-
tions.

Figure 5.9 shows the planner performance for both heuristics and
differentW . Table 5.2 summarizes the resulting speedup and cost in-
crease compared to the optimal solution. The results indicate that the

106 towards learning abstract planning representations

I) II)

III)

IV)

V)VI)

VII)

Figure 5.8: Locomotion planning experiment. Top) Gazebo arena with Cen-
tauro. Bottom) Height map with start state (blue/red) and goals
(green arrows): I) Behind a narrow door opening. II) Next to
stairs. III) On top of stairs. IV) Behind some debris. V) On
a platform. VI) Inside a labyrinth. VII) Behind the robot. The
red path is the resulting path to VI with the developed abstract
representation-based heuristic andW = 1.25.

presented abstract representation-based heuristic accelerates planning by
multiple orders of magnitude compared to the geometric heuristic while,
in particular forW = 1.25, path costs stay comparable. Especially for
challenging tasks such as the stairs (III) and the labyrinth (VI), our
heuristic was mandatory to obtain a solution in feasible time. This
can be explained by the fact that the geometric heuristic has no in-
formation about the environment and thus the planner visits many
states before considering expensive actions. In contrast, the presented
abstract representation-based heuristic uses its cost estimates to guide the
planner towards the goal while including knowledge about the envi-
ronment.

5.5 evaluation 107

I II III IV V VI VII
10−2

10−1

100

101

102

103

104
P

la
nn

in
g

tim
e

[s
]

Geom. heuristicW = 1 Abstr. rep. heuristicW = 1

Geom. heuristicW = 1.25 Abstr. rep. heuristicW = 1.25

Geom. heuristicW = 2 Abstr. rep. heuristicW = 2

I II III IV V VI VII
0

5

10

15

Goal

P
at

h
co

st
s

[-
]

Figure 5.9: Planning times (including 3D Dijkstra search for heuristic gener-
ation) and path costs for all goal states and for both the abstract
representation-based heuristic and the geometric heuristic.

Table 5.2: Planner performance for the abstract representation-based heuristic
and the geometric heuristic averaged over planning queries to all
seven goal states.

Abstract representation Geometric

W 1.0 1.25 2.0 1.0 1.25 2.0

speedup factor 27.80 708.5 10, 860 1.0 12.00 27.88

costs increase +4.77% +10.5% +33.1% optimal +6.07% +33.9%

108 towards learning abstract planning representations

5.6 conclusion

In this chapter, it is presented how a Convolutional Neural Network
(CNN) can be employed to represent the cost function of an abstract
planning representation. The CNN maps a local planning task, con-
sisting of a map patch and local start and goal states on this map
patch, to a costs estimate for the corresponding shortest path. This
can be used to precompute a heuristic map of the whole environ-
ment whose values can be efficiently accessed during planning in a
detailed representation.

In comparison to the previously presented approach with a man-
ually designed and manually tuned abstract representation (Chap-
ter 4), the utilization of a CNN minimizes those design and tuning
efforts. Experiments showed that the learned cost function further-
more outperformed the manually designed version in all measures.
While it was trained on generated artificial data, it generalized well
to real-world data.

Moreover, the method was applied to the high-dimensional prob-
lem of hybrid driving-stepping locomotion planning. Planning in
the detailed representation—when being guided by the presented in-
formed heuristic—was faster by multiple orders of magnitude with
comparable result quality compared to a previously used geometry-
based heuristic. The presented heuristic was superior since it incor-
porates information about the environment, which has a significant
influence on the planning outcomes in the considered domain.

6
VA L U E I T E R AT I O N N E T W O R K S O N M U LT I P L E
L E V E L S O F A B S T R A C T I O N

Chapter 5 demonstrated how a learning-based method can be benefi-
cial to support a traditional planning approach through an increased
environment “understanding” in terms of an informed heuristic. Sub-
sequently, it is an interesting idea to investigate how an even higher
level of problem “understanding” affects the planning. This can be
realized by solving the whole planning problem through a learning-
based approach. In contrast to traditional planning approaches, this
is promising since corresponding methods enable planning without
extensive, iterative searches and can be parallelized efficiently on, e.g.,
GPUs.

An overview of the state of the art of motion planning with learning-
based methods is given in Section 2.2.4. A promising work are Value
Iteration Networks (VINs, Tamar et al. (2016)), which approximate
the Value Iteration algorithm by rewriting it as a CNN. This enables
trainability through backpropagation and massive parallelization on
GPUs. In contrast to standard feed-forward CNN architectures, VINs
show good planning performance in terms of goal-directed behav-
ior and the generalization to unseen domains. However, similar to
all learning-based planners, VINs can only handle small and low-
dimensional planning problems with small state spaces which lim-
its their applicability to real-world motion planning problems. Inter-
nally, VINs represent each state as one cell of a multi-dimensional
grid and compute a reward and state-value for each of these grid
cells. For large and high-dimensional grids, this leads to large com-
putation graphs for the gradients during backpropagation, resulting
in large amounts of required training data, long training times, and
high memory consumption. Thus, VINs were so far only evaluated on
2D grid worlds up to a size of 28× 28 cells. Since the number of man-
ageable states is limited, one has to modify what each state represents
to apply the method to larger planning problems. Extensions propose
hierarchical architectures (HVINs, see Section 2.3) which can be sum-
marized as a multiresolution, coarse-to-fine planning approach. This
makes VINs applicable to larger state spaces, but comes at the cost
of data loss through subsampling, which restricts the application to
planning environments of limited complexity.

Inspired by the results of Chapter 4 and Chapter 5, we developed
an extension of Value Iteration Networks on multiple levels of ab-
straction (AVINs) (see Figure 6.1). In other domains, especially in per-
ceptual contexts, hierarchical convolutional neural networks (CNNs)

110 value iteration networks on multiple levels of abstraction

Level 3Level 2Level 1

Value Iteration
Networks

Plan

Figure 6.1: The general idea of Value Iteration Networks on multiple levels
of abstraction (AVINs).

are highly successful, because they learn increasingly abstract repre-
sentations of their input by decreasing the resolution and increasing
the number of feature maps. This idea is applied to VINs. While the
vicinity of the robot is represented in sufficient detail, the represen-
tation gets spatially coarser with increasing distance from the robot.
The information loss caused by the decreasing resolution is compen-
sated by increasing the number of features representing a cell. Those
additional representation levels are integrated in the network archi-
tecture. Since they are fully differentiable, the whole network can be
trained using backpropagation. Hence, a manual representation de-
sign is not required any more, but representations are learned by the
network.

Section 6.1 gives a system overview while Section 6.2 describes the
method in detail. In Section 6.3, the method is evaluated against orig-
inal VINs and HVINs. In addition, it is applied to plan 3D omnidirec-
tional driving with footprint consideration in cluttered environments
for the Centauro robot. Finally, Section 6.4 draws a conclusion.

6.1 system overview

Input to the network is an occupancy map of the environment and
a goal map of equal size. Both maps are always egocentric, which
removes the need for explicit information about the start state—a
difference to original VINs. Since the resolution of a representation
level is halved to obtain the next more abstract level, the maps need
to have a suitable number of cells. For two abstraction levels, the
edge length of the input maps needs to be a multiple of two, for
three levels, a multiple of four, for four levels, a multiple of eight, ...
If no information is available for some regions of the input environ-
ment map since those regions are, e.g., not included in the original

6.2 method 111

Goal map

Environment map
(robot centered) AVIN Next action

Figure 6.2: Input and output specification for AVINs.

planning environment, the corresponding cells of the input environ-
ment map can be marked as occupied to avoid the planner from
considering those regions for planning. The goal map represents the
same area as the environment map and is realized as a one-hot-map
containing only zeros except for the goal cell.

The network outputs action probabilities for the whole action set.
The action with the highest probability is chosen to be the next action.
To obtain a path for solving a planning problem, we iteratively let the
network predict the next action and shift the input maps according
to the new robot position. Consequently, the network performance
is evaluated in two measures. The accuracy describes if the network
outputs the correct next action, while the success describes if the pre-
sented planner was able to find a feasible path from the start to the
goal state. The input and output are visualized in Figure 6.2.

6.2 method

The method combines multiple representations with increasing level
of abstraction with VINs to obtain a learning-based planner that is
capable of handling large and complex state spaces. With increasing
distance from the robot, the level of abstraction increases. A more
abstract representation has a spatially coarser resolution while the
number of cells is constant for all levels. This results in larger covered
areas for more abstract representations. Moreover, an increasing level
of abstraction comes along with an increasing number of descriptive
features for each cell.

As an example, we define three levels of abstraction. Level 1 has
the original input resolution but only covers the vicinity of the robot.
For Level 2, the resolution is halved resulting in a covered area that
is four times larger. This is repeated to obtain the Level 3 representa-

112 value iteration networks on multiple levels of abstraction

tion. Thus, the corresponding covered area is 16 times larger than the
Level 1 area.

Additional features are introduced for each abstract cell to compen-
sate the information loss caused by the coarsening operation. Those
features are learned by the network during training. Experiments
showed that one, two, and six features for Level 1, Level 2, and Level 3,
respectively, achieved best results.

In this section, the general network architecture (see Section 6.2.1),
the application to different planning problems (see Section 6.2.2), and
the corresponding training procedures (see Section 6.2.3) are described.

6.2.1 Network Architecture

Input to the network is an occupancy map of the environment and an
equally sized goal map. Both maps possess a fine resolution which
is equal to the Level 1 resolution. Each cell is described by a single
feature. To facilitate understanding, the network architecture is de-
scribed for three abstraction levels and 2D planning problems. Mod-
ifications to extend the number of abstraction levels or cope with
planning problems of higher dimensions are described in later sec-
tions. An overview of the network architecture is given in Figure 6.3.

In a first step, the Abstraction Module processes the input maps
to representations in the three abstraction levels. This module is not

32 × 32

Occupancy
map

32 × 32

Goal map

Abstraction
Module

6@8×8
2@8×8

1@8×8

Abstract environ-
ment maps

1@8×8
1@8×8

1@8×8

Multilevel goal maps

Reward
Module

6@8×8
2@8×8

1@8×8

Multilevel
reward maps

Value
Iteration
Module

1@8×8
1@8×8

1@8×8

Multilevel state
value maps

Reactive
Policy

Action
probabilities

Figure 6.3: Network architecture. Depicted map sizes correspond to 32× 32
input maps and 2D planning. Notation for maps of size x × x
with y feature channels: y @ x× x.

6.2 method 113

Level 3 map
6 @ 8×8

Level 2 map
2 @ 8×8

2 @ 16×16

Occupancy map

Level 1 map
1 @ 8×8

1 @ 32×32

conv.

+ Max
pool

conv.

+ Max
pool

6 @ 8×8

Figure 6.4: Abstraction Module. Both convolutions use kernels of size 3× 3
followed by a 2× 2 max pooling operation. The goal map is pro-
cessed using the same max pooling operations without prior con-
volutions. Depicted map sizes correspond to 32× 32 input maps.

present in the original VIN implementation. The detailed process is
depicted in Figure 6.4. Regarding the environment maps, the Level 1
map is extracted as a patch around the map center. The Level 2 rep-
resentation with halved resolution and two features per cell is gen-
erated from the input map through a convolution and subsequent
max pooling operation. The Level 2 map is again extracted from the
map center, while the whole Level 2 representation is processed with
another convolution and max pooling operation to obtain the Level 3
map. The goal map is processed similarly using max pooling opera-
tions without convolutions. Outputs of the Abstraction Module are
three equally sized environment and goal maps representing the dif-
ferent levels of abstraction.

Subsequently, the abstract environment maps and goal maps are
fed into the Reward Module. It generates rewards for each state. The
architecture is shown in Figure 6.5. Similar to the original VIN imple-
mentation, the environment and goal maps are stacked, a convolution
extracts 150 features and a second convolution generates the reward
map. Padding keeps the map size constant and ensures that the rela-
tion between cell position and environment location stays fixed. More-
over, similar to the environment maps, the reward maps of higher
abstraction levels require multiple features to compensate informa-
tion loss due to coarser resolutions. For example, it might be possible
that an abstract map cell can be entered from one direction but not
from another, which might be encoded in the features. However, the
information encoded in the real features is not manually defined but
learned by the network.

Furthermore, we enable information flow from detailed levels to
more abstract levels. This is desirable since, e.g., when computing re-
wards for Level 2, there is more precise information available for the
center area of this maps, encoded in the Level 1 map. At this point, it

114 value iteration networks on multiple levels of abstraction

(1+1) @ 8×8

conv.
Kernel:

3×3

150 @ 8×8

conv., Kernel: 1×1

conv. +
Max pool

Kernels:
3×3, 2×2

150 @ 4×4
pad

(zeros)

150 @ 8×8

(2+1) @ 8×8

conv.
Kernel:

3×3

150 @ 8×8

stack

300 @ 8×8

conv.
Kernel:

1×1

150 @ 8×8

conv., Kernel:
1×1

conv. +
Max pool
Kernels:

3×3, 2×2

150 @ 4×4
pad

(zeros)

150 @ 8×8

(6+1) @ 8×8

conv.
Kernel:

3×3

150 @ 8×8

stack

300 @ 8×8

conv.
Kernel:

1×1

150 @ 8×8

conv.
Kernel:

1×1

Environment &
goal maps

6
@

8×
8

2
@

8×
8

1
@

8×
8

Multilevel
reward map

Figure 6.5: Reward Module. Level 1 maps are shown in black, red parts be-
long to Level 2, and blue parts to Level 3. Depicted map sizes cor-
respond to 32× 32 input maps and 2D planning.

is important to understand that information encoded at the same cell
position of different levels refers to different locations in the environ-
ment. We support the network in “understanding” this relation with
the following method: The resolution of the 150 extracted Level 1 fea-
ture maps is halved to match the Level 2 resolution through a convo-
lution and subsequent max pooling operation. The result is padded
with zeros to match the size of the Level 2 map. This procedure en-
sures that, when the Level 1 feature maps are stacked with the Level 2
feature maps, the relation between cell position and environment lo-
cation is constant throughout all maps. Finally, a convolution is used
to merge the stacked Level 1 and Level 2 features. This procedure is
repeated to enable information flow from Level 2 to Level 3.

Outputs of the Reward Module are multilevel reward maps of
equal size possessing the same numbers of features as the environ-
ment maps.

Reward maps are input to the Value Iteration Module where they
are processed to state-value maps. The module for one level is de-
picted in Figure 6.6. State values are iteratively propagated through
the map, similar to the original VI algorithm. Each iteration of the
rewritten Bellman equation, which we call Bellman update, is real-

6.2 method 115

Level l
state-value

mapK recurrence

conv.

Kernel:
3×3

Max
pool

Level l
reward map

Old state-value
map (Level l)

pad

Figure 6.6: Value Iteration Module. The depicted operation is performed for
each level individually. The padding operation (see Figure 6.7)
enables information flow between levels.

1
2
3
4
5
6

1
2

3

4

5
6

2

3
4

5

Figure 6.7: Padding the map of abstraction level l (left) to allow information
flow from the map of level l + 1 (right) to level l. The numbers
indicate which values are copied where.

ized by a convolution and subsequent max pooling operation. The
kernel size is chosen such that it covers the set of possible actions.
Unlike the reward maps, state-value maps encode the expected long-
term reward of a state, which can be encoded in a single feature.

In order to make correct long-term decisions considering the struc-
ture of the whole environment, information flow from higher to lower
abstraction levels is required. We realize this information flow through
the following padding method: Within each iteration, the reward
maps and old state-value maps are padded with values of the neigh-
boring cells of the next higher level, as visualized in Figure 6.7. Since
the reward maps vary in their number of features, a mapping from
the higher-level features of an abstract cell to the lower-level features
of the corresponding less abstract cell is required. We found that the
best result quality was achieved by using the average over all features
of one higher level-cell as the padding value for all corresponding
lower level-cells. Interestingly, learning a mapping from higher-level
to lower-level features with fully connected layers performed worse.
The number of recurrence iterations K for level maps of a given size is
defined to be 1.5 larger than the K value proposed in the VIN imple-
mentation for the identical map size. The additional iterations enable
information flow steps between levels. Nevertheless, due to the mul-
tiresolution characteristics, significantly less iterations are needed for
the presented method compared to VINs, as can be seen in Table 6.1.

116 value iteration networks on multiple levels of abstraction

Table 6.1: Number of iterations depending on the input map size. E.g., for
an input map size of 64× 64, all three AVINs levels possess a map
size of 16× 16. Hence, the number of iterations is 1.5 times as high
as for VINs with this map size.

Input map size

16× 16 32× 32 64× 64 128× 128

VINs 20 40 80 160

AVINs (3 Level) 7 15 30 60

AVINs (4 Level) - - - 30

Finally, for all neighbors of the start state, their state-values are
mapped to probabilities over actions through a Reactive Policy, which
simply is a fully connected layer.

6.2.2 Application

The presented method is applied to two different planning problems.
Path planning in 2D grid worlds is valuable to compare the planning
performance against VINs and HVINs which were designed and eval-
uated in this task. However, real-world planning problems usually
possess more complex planning representations. Hence, we addition-
ally apply AVINs to plan omnidirectional driving locomotion of a
robot while considering its footprint, which is significantly more com-
plex than 2D grid worlds. We intended to apply the method to even
more complex problems, but, as can be seen in the experiment section,
the method reached its limitations on currently available hardware.

The network is implemented using Python 2.7 and PyTorch 0.4.1.
Corresponding source code is available online1. The following subsec-
tions describe modifications and the application of AVINs to the two
planning domains.

6.2.2.1 2D Grid Worlds

The planner is given queries for a point-like agent in 2D grid worlds.
As actions, the agent can move to one of the eight adjacent neigh-
bor cells, which is depicted in Figure 6.8 (a). The agent’s orientation
is not considered. For this domain, the network architecture, as de-
scribed in Section 6.2.1, can be used without modification. However,
for large maps, we introduce a fourth abstraction level to the network.
Its integration follows the already described principles while Level 4
employs ten features to describe the environment and reward maps.

1https://doi.org/10.5281/zenodo.3628729

https://doi.org/10.5281/zenodo.3628729
https://doi.org/10.5281/zenodo.3628729

6.2 method 117

a) b) c)

Figure 6.8: Possible actions for both planning domains. a) Move to an adja-
cent neighbor cell in 2D grid worlds. b) Omnidirectionally drive
to an adjacent neighbor state with fixed orientation in 3D robot
locomotion planning. c) Turn to the next discrete orientation with
fixed position in 3D robot locomotion planning.

6.2.2.2 3D Robot Locomotion

Given is a robot that can perform omnidirectional driving and has a
fixed footprint which shall be considered by the planner. This plan-
ning problem requires multiple modifications to the network archi-
tecture. The orientation introduces an additional DoF to the two-
dimensional position state space. Furthermore, the robot footprint
needs to be taught to the planner such that only the ground contact
areas of the individual feet are considered. This enables the robot to,
e.g., take obstacles between its legs. At this point, the robot footprint
is fixed. Therefore, possible actions are:

• move the robot center to one of the eight adjacent neighbor
states with fixed orientation and

• turn the robot to the next discrete orientation with fixed
position.

The actions are also visualized in Figure 6.8 (b) and (c).
To enable the network to handle 3D state spaces, reward and value

maps are extended by an additional dimension for the orientation.
The environment maps stay two-dimensional. In preliminary exper-
iments, we tried architectures which also possessed individual envi-
ronment maps for each robot orientation but those performed worse.
Similar to the spatial resolution, the orientation resolution decreases
for higher levels of abstraction. We represent the robot orientation for
Level 1 in 16, for Level 2 in eight, and for Level 3 in four discrete orien-
tations of equal angular distance. Due to the increased complexity of
the states, we increase the number of features for Level 2 to five and
for Level 3 to ten.

In the Reward Module, we increase the number of convolutions to
extract the descriptive features from the environment maps. Two ad-
ditional convolutions are used for the Level 1 map and one additional
convolution is used for the Level 2 map. The reward computation is
done on two-dimensional maps representing rewards to position indi-
vidual robot feet in the environment. In order to introduce the robot
footprint, reward maps are transformed correspondingly: For each
robot base position, we sum over the four cells of the corresponding

118 value iteration networks on multiple levels of abstraction

foot positions and assign the result to the robot base center cell, as
visualized in Figure 6.9. This operation is repeated for each robot ori-
entation resulting in 16 Level 1 reward maps with one feature per cell,
eight Level 2 reward maps with five features per cell, and four Level 3
reward maps with ten features per cell.

Further adaptation is required in the Value Iteration Module. It
needs to process the input reward maps of the described new size
and to consider all actions of the three-dimensional action set. The
latter is realized through a 3D convolution kernel, as can be seen
in Figure 6.10. Since the neighborhood relation of the orientation is
cyclic, we pad the reward maps and state-value maps on each end
of the orientation channel with the values of the opposite end, as
visualized in Figure 6.11.

In contrast to 2D planning, the planner needs information not only
about the start and goal position but also about their orientation. The
start state orientation is fed into the system as an additional parame-
ter. It is only required within the Reactive Policy to select those state-

Figure 6.9: Robot footprint computation. Left: Two-dimensional reward map
for individual foot positions and one example footprint (four
red cells). Right: Rewards of four associated foot positioned are
added together. The result is assigned to the robot base center
cell (red cell for example footprint). The shown map displays the
rewards for the depicted footprint orientation. This operation is
repeated for each robot orientation.

Level l
state-value

mapK recurrence

conv.

Kernel:
3×3×3

Max
pool

Level l
reward map

Old state-value
map (Level l)

pad

Figure 6.10: Value Iteration Module for 3D robot locomotion planning. The
depicted operation is performed for each level individually. In-
formation flow between levels is realized through padding oper-
ations at the map borders (see Figure 6.7) and at the orientation
channel (see Figure 6.11).

6.2 method 119

values that belong to neighbor states of the start state. The goal state
orientation is encoded in the goal map: The goal cell is assigned with
the goal state’s orientation index (1-16) while all other cell entries are
zero.

An overview of the resulting network architecture including all de-
scribed modifications is given in Figure 6.12.

θ = 0
θ = 15

θ = 14

θ = 1
θ = 0

θ = 15

. . .

Figure 6.11: Orientation padding during 3D Value Iterations to emphasize
that the orientations θ = 15 and θ = 0 are neighbors. The num-
ber of orientations refers to Level 1.

32 × 32

Occupancy
map

32 × 32

Goal map

Abstraction
Module

10@8×8
5@8×8

1@8×8

Abstract environ-
ment maps

1@8×8
1@8×8

1@8×8

Multilevel goal maps

Reward
Module

10
@

8×
8×

4

5@
8×

8×
8

1@
8×

8×
16

Multilevel
reward maps

Value
Iteration
Module

1@8×8×4
1@8×8×8
1@8×8×16

Multilevel state
value maps

Reactive
Policy

Action
probabilities

Start
orientation

Figure 6.12: Network architecture for 3D robot locomotion planning. The
depicted map sizes correspond to 32× 32 input maps.

120 value iteration networks on multiple levels of abstraction

6.2.3 Training

The network is trained on generated artificial data. For 2D obstacle
grid worlds, obstacles of random number and size are placed in oc-
cupancy grid maps of the desired size. We generated 5, 000 of these
maps. In addition, seven feasible goal states are placed randomly in
each of these maps resulting in a training set with 35, 000 tasks. Since
similar data sets are used by Tamar et al. (2016), they offer a high
comparability to the original VIN implementation. The same method
is used to generate a training set with 35, 0000 tasks for 3D robot
locomotion planning which also requires 2D environment maps as
an input. To obtain a more challenging planning task, 2D maze grid
worlds are generated. Again, 5, 000 mazes are generated randomly,
and seven feasible goal states are placed in each map. For all maps,
the start state is defined to be in the map center. For 3D planning
tasks, the start orientation is chosen randomly. Subsequently, we use
an A* planner (see Section 2.2.1) as an expert to generate optimal
paths. To increase data efficiency during training, we do not only
use the whole expert paths but also sub-paths. During each training
epoch, we randomly place the start and goal at some position on the
expert path and only train for this sub-path.

We discovered that in the training data set, some actions were cho-
sen more often than other actions. However, to support the training
of all possible actions, we weighted the losses for the different actions
by their inverse action frequencies.

Validation and test data sets for all domains are obtained from 715
additionally generated maps with seven planning tasks each, result-
ing in 5, 005 different tasks in each data set.

In order to provide comparability to the original VIN publication,
all networks are trained using the RMSprop optimizer, as proposed
by Hinton et al. (2012). However, when using RMSprop without any
further learning rate scheduling, the network occasionally converged
to sub-optimal local minima and sometimes showed unstable training
behavior. This effect was also reported by Lee et al. (2018). Therefore,
we tried additional training procedures with the cyclic learning rate
scheduler proposed by Loshchilov and Hutter (2016): During train-
ing, the learning rate decreases following a cosine annealing scheme.
After several training epochs, the learning rate is reset following a
slower decay schedule (see Figure 6.13 top right). We call the time
between learning rate resets a learning rate cycle. Initially, the length
of a learning rate cycle is set to 48 epochs and the learning rate is
0.001. After each cycle, the cycle length increases to 150% while the
initial learning rate decreases to 95% of the previous one. Employ-
ing the cyclic learning rate scheduler results in a stabilized training
performance.

6.2 method 121

HVIN HVIN (4 Levels)
AVIN AVIN (4 Levels)
VIN Learning Rate

0 250 500 750 1,000
0

0.2

0.4

0.6

0.8

1

·10−3

Le
ar

ni
ng

ra
te

Fixed learning rate

0 250 500 750 1,000
0

0.2

0.4

0.6

0.8

1

·10−3

Cyclic learning rate

0 250 500 750 1,000
0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

32× 32 grid worlds

0 250 500 750 1,000
0

0.2

0.4

0.6

0.8

1

32× 32 grid worlds

0 250 500 750 1,000
0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

64× 64 grid worlds

0 250 500 750 1,000
0

0.2

0.4

0.6

0.8

1

64× 64 grid worlds

0 250 500 750 1,000
0

0.2

0.4

0.6

0.8

1

Epoch

S
uc

ce
ss

128× 128 grid worlds

0 250 500 750 1,000
0

0.2

0.4

0.6

0.8

1

Epoch

128× 128 grid worlds

Figure 6.13: Training performance of VINs, HVINs, and AVINs on random
obstacle grid worlds on validation sets. Left: Fixed learning rate.
Right: Cyclic learning rate scheduling. While the fixed learning
rate training was evaluated every 30 epochs, the training with
cyclic learning rate scheduling was only evaluated at the end of
each learning rate cycle.

122 value iteration networks on multiple levels of abstraction

The same figure also states the training performance on the 2D
obstacle grid domain for VINs, HVINs, and AVINs. It can be seen
that our method achieves slightly better results on the validation set
with the cyclic learning rate scheduler. It can be further seen that,
especially with a fixed learning rate, VINs show unstable training be-
havior for larger map sizes. The training on 128× 128 maps indicates
that HVINs and AVINs partially benefit from the introduction of a
fourth level. A systematic evaluation and comparison is given in the
following section.

6.3 evaluation

We evaluated our method in three experiments. In Section 6.3.1, we
describe the application to 2D random obstacle grid world planning.
Since this domain is similar to the experiments in the original publi-
cation of VINs and HVINs, a high comparability is obtained. A more
challenging planning problem is presented through planning in 2D
maze grid worlds, which is described in Section 6.3.2. Finally, we ap-
plied AVINs to plan 3D omnidirectional driving in cluttered terrain
for the Centauro robot (see Section 6.3.3). All experiments were done
on a system equipped with an Intel Core i7-8700K@3.70 GHz, 64 GB
RAM, and an NVidia GeForce GTX 1080Ti with 11 GB memory. A
video with additional experimental footage is available online2.

We evaluated the network output quality in three measures. The
accuracy describes whether the network output for the next action is
identical to the next action computed by the expert A* planner. Re-
garding path planning, the success rate describes, if the network was
able to find a collision-free path from the start state to the goal state.
Furthermore, we assess the output path quality by computing the
length difference relative to the optimal path length. We furthermore
evaluated the hardware requirements of the networks. Besides the re-
quired GPU memory, we state training times for one training epoch
providing an assessment of the network complexity. Stated planning
times and memory consumption of our approach include input maps
shifting on the CPU after each network inference to concatenate the
next action network outputs to paths.

Regarding the accuracy measure, please note that in many cases
there is more than one optimal next action. However, as in original
VINs, the network is trained to output one next action which is com-
pared to the output of the expert planner. Hence, there occur cases
in which the output of the network is different from the output of
the A* planner but the network still unrolls an optimal path although
the accuracy measures a mistake. We also tested a version of AVINs
which learns to output all optimal actions. However, this performed
worse compared to the version presented here.

2https://doi.org/10.5281/zenodo.3628732

https://doi.org/10.5281/zenodo.3628732
https://doi.org/10.5281/zenodo.3628732

6.3 evaluation 123

6.3.1 Path Planning in 2D Random Obstacle Grid Worlds

In a first experiment, AVINs were compared to VINs and HVINs on
random obstacle grid worlds. We used a version with three levels for
HVINs and AVINs, each level halving the resolution of the previous
one. For HVINs, the coarsest level used the same number of Bellman
updates K as proposed for VINs. This state-value initialization was
then refined by two Bellman updates on the medium resolution map
and two consecutive Bellman updates on the fine resolution map.

In the original publication, grid world sizes from 8× 8 to 28× 28
were considered. We performed tests on slightly larger maps with
32 × 32, and significantly larger maps with 64 × 64 and 128 × 128
cells. For the largest map size, we tested an additional version of
HVINs and AVINs using four levels. Table 6.2 states the results for
training with the fixed learning rate while results for training with
cyclic learning rate scheduling are given in Table 6.3. Figure 6.14 de-
picts resulting paths on a 128× 128 map.

Table 6.2: Results for 2D random obstacle grid worlds with fixed learning
rate training. All stated numbers are averaged over five network
instances with different random seed initializations.

32× 32 VIN HVIN AVIN

Accuracy 80.38% 80.08% 84.52%

Success 91.72% 93.84% 97.18%

Path difference 2.48% 2.23% 1.63%

GPU memory (training) 761 MB 739 MB 685 MB

Training time per epoch 12.08 s 5.20 s 14.43 s

64× 64 VIN HVIN AVIN

Accuracy 70.08% 77.42% 81.60%

Success 71.98% 86.82% 94.02%

Path difference 2.94% 2.55% 1.34%

GPU memory (training) 1815 MB 1399 MB 969 MB

Training time per epoch 55.49 s 11.31 s 26.92 s

128× 128 VIN HVIN-3 HVIN-4 AVIN-3 AVIN-4

Accuracy 55.96% 76.50% 78.04% 77.70% 83.54%

Success 31.56% 83.24% 84.00% 78.52% 88.72%

Path difference 8.46% 2.09% 2.80% 3.60% 1.84%

GPU memory (training) 8247 MB 4085 MB 4049 MB 2189 MB 1167 MB

Training time per epoch 339.88 s 41.22 s 37.27 s 97.01 s 38.77 s

124 value iteration networks on multiple levels of abstraction

Figure 6.14: Resulting paths for fixed learning rate training on a 128× 128
2D random obstacle grid map. The figure only depicts the cor-
responding map section. The start is marked with a red circle
and the goal with a green square. An optimal path from the A*
planner is depicted in black. VINs (red) fail to find a collision
free path. HVINs (orange) and AVINs (blue) were able to find
a path while the AVIN solution is closer to the optimal one.

Table 6.3: Results for 2D random obstacle grid worlds with cyclic learning
rate training.

32× 32 VIN HVIN AVIN

Accuracy 84.92% 81.36% 85.00%

Success 95.26% 88.27% 97.56%

Path difference 1.01% 1.01% 1.56%

GPU memory (training) 761 MB 739 MB 685 MB

Training time per epoch 12.08 s 5.20 s 14.43 s

64× 64 VIN HVIN AVIN

Accuracy 78.88% 80.46% 83.75%

Success 89.17% 88.33% 94.99%

Path difference 1.02% 1.02% 1.28%

GPU memory (training) 1815 MB 1399 MB 969 MB

Training time per epoch 55.49 s 11.31 s 26.92 s

128× 128 VIN HVIN-3 HVIN-4 AVIN-3 AVIN-4

Accuracy 66.41% 77.46% 79.34% 84.28% 85.01%

Success 34.89% 77.40% 83.56% 86.85% 91.59%

Path diff. 1.02% 1.02% 1.02% 0.80% 1.31%

GPU memory (training) 8247 MB 4085 MB 4049 MB 2189 MB 1167 MB

Training time per epoch 339.88 s 41.22 s 37.27 s 97.01 s 38.77 s

6.3 evaluation 125

The results indicate that our AVINs outperform VINs and HVINs
on all map sizes with both learning rate behaviors in terms of accuracy,
success, and memory consumption. While VINs and AVINs show a
consistently better performance with the cyclic learning rate schedul-
ing, HVINs perform better with the constant learning rate. However,
the cyclic learning rate leads to shorter path differences, and, hence,
a better path quality, in all cases. As also shown in Figure 6.14, we
observed that AVINs showed a better long-distance “understanding”
in comparison to HVINs which often reacted to obstacles directly be-
fore collisions. It can be furthermore seen that on the 128× 128 maps,
both HVINs and AVINs benefit from a fourth representation level in
all measures.

6.3.2 Path Planning in 2D Maze Grid Worlds

In a second experiment, we aimed at investigating the limitations of
our proposed method and the quality of its abstraction by evaluating
the planning performance on 2D maze grid worlds. Mazes possess
a larger information density in comparison to the random obstacle
grid worlds since the occupancy of nearly every single grid cell is
important. Hence, when generating coarser representations, the effect
of information loss is large. This puts the focus on the quality of the
abstraction which should learn to encode all required information
in the additional features. Table 6.4 states the performance of VINs,
HVINs, and AVINs on map size of 16 × 16, 32 × 32, and 64 × 64.
Training was performed with fixed learning rate. An example maze
and generated paths are depicted in Figure 6.15.

Since original VINs perform no abstraction procedure, it was to
expect that they obtain the best accuracy and success rates in this chal-
lenging domain. However, while the performance difference between

Figure 6.15: Resulting path for a 32 × 32 maze grid map. The figure only
depicts the corresponding map sections. HVINs (orange) are
not able to find a path. VINs (red), our AVINs (blue), and the
A* planner (black) provide the same optimal solution.

126 value iteration networks on multiple levels of abstraction

Table 6.4: Results for 2D maze grid worlds with fixed learning rate training.

16× 16 VIN HVIN AVIN

Accuracy 94.42% 87.20% 85.59%

Success 94.48% 87.42% 86.88%

Path difference 0.51% 2.02% 1.96%

GPU memory (training) 569 MB 575 MB 635 MB

Training time per epoch 4.68 s 3.91 s 8.70 s

32× 32 VIN HVIN AVIN

Accuracy 85.60% 69.94% 82.17%

Success 82.10% 48.54% 71.50%

Path difference 0.88% 2.02% 1.09%

GPU memory (training) 761 MB 739 MB 685 MB

Training time per epoch 12.08 s 5.20 s 14.43 s

64× 64 VIN HVIN AVIN

Accuracy 84.58% 58.82% 81.57%

Success 78.02% 14.22% 59.39%

Path difference 1.49% 1.99% 0.68%

GPU memory (training) 1815 MB 1399 MB 969 MB

Training time per epoch 55.49 s 11.31 s 26.92 s

HVINs and VINs was rather small in the random obstacle domain,
this difference increases considerably for large maze worlds. For a
map size of 64 × 64 cells, HVINs were only able to find a valid
path in about 14% of the tasks. This can be explained by the fact
that only information is discarded but no abstraction—in terms of in-
creasing scene “understanding” while coarsening the resolution—is
performed and the represented information in higher levels does not
contain all required information. For the 16× 16 maps, our approach
performs worse than HVINs. An explanation for this might be that,
for this input map size, Level 1 only has a size of 4× 4 which might
be insufficient to plan next actions in the vicinity of the robot in this
detailed representation. Nevertheless, our method significantly out-
performs HVINs on larger maps indicating the advantage of our ab-
straction method—which introduces additional features to compen-
sate information loss—compared to HVINs. Interestingly, while the
path difference increases with increasing map size for VINs, paths
become better with increasing map size for AVINs.

Regarding the computational performance, Figure 6.16 visualizes
the GPU memory consumption during training and training times for

6.3 evaluation 127

HVIN HVIN (4 Levels)
AVIN AVIN (4 Levels)
VIN

16 32 64 128
0

2,000

4,000

6,000

8,000

Map size

G
P

U
M

em
or

y
[M

B
]

16 32 64 128
0

100

200

300

Map size

Ti
m

e
pe

rE
po

ch
[s

ec
]

Figure 6.16: Computational performance of all three methods depending on
the map size.

all map sizes. It can be seen that AVINs mostly have the lowest mem-
ory requirements which even considerably decreases for 128 × 128
maps, when employing a fourth level. It was to expect that VINs
require the most memory since they discard no information at all.
Regarding the required training time per epoch, which is an indi-
cation for the network complexity, VINs perform the worst as well,
since they have to perform their value iteration in state-value maps
of the original input size. HVINs and AVINs decrease the state space
size result in faster computation. Since HVINs perform no abstrac-
tion procedure and do not consider additional features for each cell,
they are generally faster than AVINs. However, as can be seen for the
128× 128 map size, HVINs do nearly not benefit from a fourth level
while AVINs even outperform them on this map size.

6.3.3 Planning Omnidirectional Robot Driving Locomotion with Footprint
Consideration

Since in the previous experiments AVINs demonstrated to be appli-
cable to larger state spaces, we evaluated their performance to plan
omnidirectional robot driving locomotion while considering the robot
footprint. An example platform is the quadrupedal disaster response
robot Centauro whose legs end in 360° steerable, active wheels, as can
be seen in Figure 6.17. We applied the 3D version of AVINs and chose
a fixed quadratic footprint with 0.8 m longitudinal and lateral dis-
tance between wheels. Environment maps had a resolution of 0.2 m.

At first, we employed our method to plan paths for the described
footprint on 32× 32 maps of the random obstacle grid domain. Aver-
aged over five training runs, we achieved a success rate of 74.20% for
the 5, 005 tasks in the test set while our paths were 1.86% longer than
the optimal solution. The method required 865 MB of GPU memory.

128 value iteration networks on multiple levels of abstraction

Figure 6.17: The Centauro robot.

In addition, we let the A* planner solve the same tasks as well as
the 2D random obstacle tasks on 32× 32 maps. A comparison of the
corresponding planning times is given in Table 6.5.

It can be seen that the A* planner is in average about 23 times
faster than AVINs on the 2D planning task. However, this advantage
disappears for the more complex 3D planning tasks for which both
planners achieved similar planning times. This observation supports
our initial assumption that learning-based planners are beneficial for
complex planning tasks since they do not perform extensive, iterative
searches, as traditional planners do.

Finally, the developed 3D AVINs method was integrated into the
locomotion planning pipeline of Centauro. The detailed pipeline de-
scription is given in Chapter 3, while stepping motions were not con-
sidered in this context. To match the desired input type, we com-
puted occupancy grids with a resolution of 0.2 m from the height
maps which were used as environment representation in the previ-
ous chapters. Robot perception and control was implemented in C++.
Communication with AVINs was realized using ROS. The experiment
was performed in the Gazebo simulation environment. The world
contained challenging obstacles of different shape and size, as shown
in Figure 6.18. We placed nine different goal states in the map, as
shown in Figure 6.19. Table 6.6 states the planner performance and
compares the results to the performance of the A* planner. An exam-
ple resulting path of AVINs is depicted in Figure 6.19.

Table 6.5: Planning time comparison for the A* planner and AVINs.

32× 32 A* planner AVINs

2D random obstacle grid worlds 0.004 s 0.093 s

3D robot locomotion with footprint 0.263 s 0.283 s

6.3 evaluation 129

Figure 6.18: Gazebo arena of the 3D locomotion planning experiment. Obsta-
cle heights were chosen to be rather small to prevent the laser
scanner from coping with occlusions.

Figure 6.19: Occupancy map of the 3D locomotion planning experiment
with the nine chosen goal states and one example resulting path
computed by AVINs.

130 value iteration networks on multiple levels of abstraction

Table 6.6: Results of our approach and the A* planner for the tasks depicted
in Figure 6.19.

AVIN A* planner

Goal Path length Planning time Path length Planning time

I) 24.59 0.431 s 23.41 0.169 s

II) Not found 24.14 0.980 s

III) 18.49 0.342 s 17.90 0.102 s

IV) 18.80 0.363 s 18.80 0.341 s

V) Not found 27.76 2.117 s

VI) 18.65 0.321 s 17.01 0.172 s

VII) 15.55 0.321 s 15.55 0.051 s

VIII) 24.67 0.449 s 22.92 0.223 s

IX) 21.13 0.405 s 21.13 0.705 s

The results indicate that the AVIN planner provided optimal or
close-to-optimal paths in most cases. Even challenging tasks, which,
e.g., required the robot to take obstacles between its legs (III and VIII)
could be solved. However, for goal states II and VIII, the presented
planner could not find a solution but ended in oscillations between
two adjacent states. In both cases, turning actions in narrow passages
were required. The AVIN planner might have a problem with such sit-
uations. Moreover, AVIN planning times had a considerably smaller
distribution than the A* planner. Although AVINs planning times do
not show a considerable advantage over A*, this experiment demon-
strates the application of AVINs to significantly more challenging
tasks compared to the original VIN applications.

6.4 conclusion

In this chapter, AVINs, an extension to Value Iteration Networks
(VINs) to employ multiple levels of abstraction is presented. With
increasing distance from the robot, the level of abstraction increases.
With increasing abstraction, the spatial resolution gets coarser while
the accompanying information loss is compensated through addi-
tional features increasing the situation “understanding”. The method
is fully differentiable and can be learned using standard backpropa-
gation.

Experiments showed that our approach outperformed VINs in 2D
grid worlds with random obstacles, as presented in their original pub-
lication. While the success rate of AVINs was considerably better, they
were capable of planning for environments which were up to 16 times
larger while only requiring a fraction of the GPU memory. In compar-

6.4 conclusion 131

ison to Hierarchical VINs (HVINs), which employ multiresolution
representations in coarse-to-fine planning without the introduction of
additional features, AVINs obtain a better result quality with lower
memory requirements. In particular, it was shown that AVINs learn
to encode useful information in their abstract representations since
the performance in challenging environments, such as mazes, was
considerably better in comparison to HVINs. As a demonstration
of the applicability to challenging real-world problems, AVINs were
applied to plan omnidirectional driving locomotion for the search-
and-rescue robot Centauro while considering its footprint for pre-
cise collision checking. In summary, it was demonstrated how ab-
straction enables learning-based planners to handle more complex
state spaces—increasing their applicability towards real-world mo-
tion planning problems.

Comparing the obtained planning times to those of an A* plan-
ner supported the initial assumption that learning-based planners
are promising to outperform traditional planners in complex tasks,
since learning-based planners do not need to perform extensive, it-
erative searches or sampling but develop an “understanding” of the
planning problem. However, decreasing success rates for the more
complex 3D locomotion planning task indicated the limitations of the
presented method. To enable planning for considerably more chal-
lenging planning problems, such as hybrid driving-stepping locomo-
tion planning, more complex network architectures and correspond-
ingly large amounts of training data would be needed introducing
challenges to future hardware development.

7
D I S C U S S I O N

In this thesis, a planning method for hybrid driving-stepping locomo-
tion of quadrupedal ground robots in challenging environments was
presented. The approach is based on a graph search algorithm. Ex-
tensions to plan on multiple representations with increasing level of
abstraction and to employ machine learning methods were developed
to increase the planning performance.

The presented planner operates on costs for the individual robot
feet and its base. In combination with a fine planning resolution,
precise planning in challenging environments is achieved. It was de-
scribed how the robot representation, action set, and corresponding
cost function were derived from the considered robot platforms and
environments. Moreover, different underlying planning algorithms
were discussed with respect to their applicability to the described
problem, and a search-based approach was chosen. Since the fine
planning resolution and the high-dimensional robot representation
result in large state spaces, focus was put on planning efficiency. A hi-
erarchical representation of stepping maneuvers and the application
of anytime characteristics were described besides several additional
optimizations. It was shown in simulated and real-world experiments
that this method is capable of generating bounded sub-optimal paths
in feasible time. This even applies to environments as complex as
staircases with obstacles on them. To the best of our knowledge, this
is the first approach that describes hybrid driving-stepping locomo-
tion planning for scenarios as challenging as staircases. However, it
was further shown that this method is limited to relatively small en-
vironments since the corresponding state spaces become too large,
otherwise.

It was subsequently presented how an extension to plan on multi-
ple representations with different levels of abstraction empowers the
planner to overcome this limitation to small environments. While the
planning problem is described in high detail in the robot vicinity, the
planning representation gets coarser with increasing distance from
the robot. The loss of information that comes along with such coarsen-
ing operations is compensated through additional semantic features.
In this manner, the scene “understanding” and, hence, the applicabil-
ity to challenging environments with a high density of important in-
formation are increased. An in-depth analysis about how the different
representations were manually designed and how their cost functions
were parametrized to give similar situation assessments was carried
out. In addition, it was described how the most abstract representa-

134 discussion

tion can be used to generate an informed heuristic. The experiments
indicated that this method accelerates planning by multiple orders of
magnitude while the result quality stays comparable.

In order to minimize extensive manual tuning efforts when de-
signing abstract representations, it was presented how the tuning-
intensive abstract cost function can be replaced by a CNN. This can
be trained on generated artificial data such that manual labeling of
training data is not required. Experiments indicated that the CNN is
capable of transferring its knowledge to real-world data and that the
abstraction quality outperforms the manually designed abstract rep-
resentations. The method was applied to the hybrid locomotion plan-
ning problem as the basis for the above-described informed heuristic.
The resulting pipeline requires preprocessing that can be carried out
in justifiable time and achieves similar planning performances to the
manually tuned representations without the need for extensive tun-
ing efforts.

It was finally presented in this thesis, how the idea of planning
on multiple representations with different levels of abstraction was
applied to the learning-based planning approach Value Iteration Net-
works (VINs). The presented method is fully differentiable and is
integrated in the network architecture. Experiments prove that this
method enables VINs to solve significantly larger 2D grid world tasks
and that the abstract representations possess an increased scene “un-
derstanding”. When applied to plan omnidirectional driving in chal-
lenging environments, the method demonstrated its capability to solve
significantly more complex planning tasks compared to 2D grid worlds
which, hence, increases its real-world applicability. Nevertheless, ex-
periments also revealed limitations of the method with this task and,
thus, the additional integration of stepping motions would probably
not achieve satisfying results.

The presented research in this thesis supports a current trend in the
planning community: traditional planning methods are not capable
of solving complex, high-dimensional planning problems with large
state spaces in feasible time. Novel, learning-based planning methods
are limited to even smaller state spaces. However, the combination of
the complementary strengths of these different planning approaches
achieves good results. Traditional planners are well-suited to consider
complex kinematic capabilities, to perform reliable obstacle avoid-
ance, and show a good goal-directed behavior and high success rates.
In contrast, learning-based planners are advantageous to efficiently
draw planning decisions in complex situations by leveraging their
scene “understanding”, and thus they do not require extensive, itera-
tive searches or sampling.

Regarding the generalizability of the presented methods, planning
on multiple representations with different levels of abstraction is ap-
plicable to a wide range of high-dimensional planning problems and

discussion 135

is promising to considerably accelerate planning. This applies to both
versions, either with manually tuned or learned cost functions which
are both flexible with respect to the provided planning representa-
tion. Moreover, the presented extension of VINs that employs multi-
ple levels of abstraction is flexible to the nature of the planning prob-
lem. If the manageable state space size suffices to describe the plan-
ning problem, this is an interesting alternative to traditional planning
approaches. In addition, the idea to extend learning-based planners
to employ multiple levels of abstraction can be transferred to other
learning-based planning approaches, e.g., QMDP-Nets by Karkus et
al. (2017), and is promising to increase their real-world applicability.

outlook and future work

The methods presented in this thesis open several directions for fu-
ture work with the main motivation of increasing the performance,
the generalizability, and the real-world applicability.

Dynamic locomotion: The locomotion speed, especially of stepping mo-
tions, of the presented controller was set such that static stabil-
ity computation can be applied. To increase the method’s real-
world applicability, faster execution is desirable. This inevitably
comes along with the need to consider robot dynamics, and
thus, a different system stability computation. Moreover, accel-
eration needs to be explicitly handled by the planner in order to
achieve dynamic maneuvers. Medeiros et al. (2019), de Viragh et
al. (2019), and Bellegarda and Byl (2019) propose in their recent
works dynamic approaches to the control of wheeled-legged
robots. A combination with the planning methods presented
in this thesis is promising to yield interesting results.

Dynamic environments: While disaster response environments mostly
possess static obstacles, other potential application domains of
hybrid driving-stepping locomotion, such as urban delivery ser-
vices, exhibit more dynamic characteristics. In order to increase
the method’s applicability to those domains, dynamic environ-
ments need to be considered. This would require the introduc-
tion of time to the planning problem. Moreover, the integration
with behavior prediction methods for dynamic environment
parts would pose an interesting research problem.

Learning abstract representations: This thesis presented how abstract
representations can considerably support traditional planning
and how machine learning methods can be used to represent
the tuning intensive parts of those representations. Neverthe-
less, the representation still needs to be manually designed lim-
iting the generalizability to other planning domains. In contrast,

136 discussion

abstract representations for planning problems of limited com-
plexity were fully represented as a CNN in the presented VIN
extension. It is a challenging and fascinating idea to investigate
if machine learning methods are capable of representing entire
abstract representations for more complex planning problems
such as hybrid driving-stepping locomotion.

Further integration of traditional planners and machine learning: The re-
sults in this thesis indicated that the combination of traditional
planners and machine learning outperforms isolated planning
approaches. Hence, it is a promising idea to conduct further
research in this direction and to investigate how machine learn-
ing methods can support traditional planners and mitigate their
weaknesses. Regarding search-based planning, a learning-based
method might support the planner in its decision about the next
node to expand by using scene “understanding” of the envi-
ronment. Corresponding basic principles are, e.g., presented in
Frontzek et al. (2001). Regarding sampling-based planning, a
learning-based method might guide the planner’s sampling to
regions of special interest.

Exploit massive parallelization on GPUs: One of the reasons for the pop-
ularity of machine learning methods in recent years is consider-
able hardware improvements for GPUs and other parallel pro-
cessing units. While there exist multiple frameworks for ma-
chine learning methods that exploit this massive parallelization,
this is not true for traditional planners. Sampling-based algo-
rithms with massive parallel state sampling or search-based al-
gorithms with massive parallel node expansion might be an
exciting research field. Recently, e.g., Battaglia et al. (2018) pro-
posed a framework to represent graphs as neural networks
which is a promising foundation in this direction.

L I S T O F F I G U R E S

Figure 1.1 Overview of the thesis structure. 7

Figure 2.1 Examples of hybrid driving-stepping robot plat-
forms. 10

Figure 2.2 Value Iteration Networks (VINs) architecture. . 17

Figure 2.3 Hierarchical Value Iteration Networks (HVINs) 20

Figure 3.1 Hybrid driving-stepping robots employed with
the described approach. 25

Figure 3.2 Overview of the system architecture. 27

Figure 3.3 Driving cost computation example. 30

Figure 3.4 Approximation of the base shape. 31

Figure 3.5 Enriching height map-based foot cost map gen-
eration with terrain class information. 32

Figure 3.6 Kinematic leg structures of Momaro and Cen-
tauro. 34

Figure 3.7 Different possible knee configurations. 35

Figure 3.8 Foot reachability maps for Momaro and Cen-
tauro. 36

Figure 3.9 Robot representation for locomotion planning. 37

Figure 3.10 State interpolation used in sampling-based plan-
ning methods. 41

Figure 3.11 Omnidirectional driving action set. 43

Figure 3.12 Step criteria to be considered by the planner. . 45

Figure 3.13 Stepping related planning maneuvers. 46

Figure 3.14 Driving vs. stepping cost weighting. 47

Figure 3.15 Orientation difference cost factor. 48

Figure 3.16 Obtaining a stable stepping configuration. . . . 52

Figure 3.17 Base roll computation. 54

Figure 3.18 Gazebo scenario for planner evaluation. 56

Figure 3.19 Planner performance for different maximum
orientation cost factors. 57

Figure 3.20 Resulting paths on foot cost maps. 57

Figure 3.21 ARA* performance for different employed heuris-
tic weights. 58

Figure 3.22 Challenging Gazebo scenario to demonstrate
the planner capabilities. 60

Figure 3.23 Generated path for the staircase scenario. . . . 60

Figure 3.24 Momaro climbing the staircase. 61

Figure 3.25 Scenario for the real robot experiment with Mo-
maro. 62

Figure 3.26 Momaro stepping up an elevated platform. . . 62

138 list of figures

Figure 3.27 Scenario for real robot experiment with Cen-
tauro. 63

Figure 3.28 Centauro executing the real-world task. 64

Figure 4.1 Example of a human efficiently planning a path. 68

Figure 4.2 Representation level overview. 70

Figure 4.3 Size and position of the different levels of rep-
resentation. 70

Figure 4.4 Extending the planning pipeline to employ mul-
tiple levels of representation. 71

Figure 4.5 Level 1 environment representation. 73

Figure 4.6 Level 1 robot representation. 73

Figure 4.7 Subsampling method. 74

Figure 4.8 Level 2 environment representation. 74

Figure 4.9 Level 2 robot representation. 75

Figure 4.10 Level 3 environment representation. 77

Figure 4.11 Level 3 robot representation. 77

Figure 4.12 Level 1 action set. 79

Figure 4.13 Level 2 action set. 80

Figure 4.14 Level 3 action set. 81

Figure 4.15 Computation of the abstract representation-based
heuristic. 83

Figure 4.16 Continuous refinement method. 84

Figure 4.17 Generation of a set of feasible robot base states
for path refinement. 85

Figure 4.18 Height map of the first experiment scenario. . 87

Figure 4.19 Planning performance for the first experiment. 87

Figure 4.20 Height map of the second experiment. 88

Figure 4.21 Resulting path for planning with the abstract
representation-based heuristic and combined lev-
els withW = 1.25. 89

Figure 4.22 Planning performance comparison for differ-
ent heuristics. 89

Figure 4.23 Planning times for different start states. 90

Figure 5.1 Method overview. 95

Figure 5.2 Hybrid driving-stepping locomotion robots ad-
dressed by the presented planning method. . . 97

Figure 5.3 Detailed planning representation. 97

Figure 5.4 Action set of the detailed representation. . . . 98

Figure 5.5 Architecture of the developed CNN. 100

Figure 5.6 CNN training performance. 102

Figure 5.7 Example tasks of the test data sets. 104

Figure 5.8 Locomotion planning experiment. 106

Figure 5.9 Planning times and path costs for all goal states
and both heuristics. 107

Figure 6.1 General idea of Value Iteration Networks on
multiple levels of abstraction (AVINs). 110

list of figures 139

Figure 6.2 Input and output specification for AVINs. . . . 111

Figure 6.3 Network architecture. 112

Figure 6.4 Abstraction Module. 113

Figure 6.5 Reward Module. 114

Figure 6.6 Value Iteration Module. 115

Figure 6.7 Information flow between levels through map
padding. 115

Figure 6.8 Possible actions for both planning domains. . . 117

Figure 6.9 Robot footprint computation. 118

Figure 6.10 Value Iteration Module for 3D robot locomo-
tion planning. 118

Figure 6.11 Orientation padding during 3D Value Iterations. 119

Figure 6.12 Network architecture for 3D robot locomotion
planning. 119

Figure 6.13 Training performance on validation sets. 121

Figure 6.14 Resulting paths for fixed learning rate training
on a 128× 128 2D random obstacle grid map. 124

Figure 6.15 Resulting path for a 32× 32 maze grid map. . 125

Figure 6.16 Computational performance depending on the
map size. 127

Figure 6.17 The Centauro robot. 128

Figure 6.18 Gazebo arena of the 3D locomotion planning
experiment. 129

Figure 6.19 Occupancy map of the 3D locomotion plan-
ning experiment 129

L I S T O F TA B L E S

Table 3.1 Complexity comparison of priority queue im-
plementations. 50

Table 5.1 Abstraction quality on the three data sets. . . . 105

Table 5.2 Planner performance for both heuristics. 107

Table 6.1 Number of iterations depending on the input
map size. 116

Table 6.2 Results for 2D random obstacle grid worlds
with fixed learning rate training. 123

Table 6.3 Results for 2D random obstacle grid worlds
with cyclic learning rate training. 124

Table 6.4 Results for 2D maze grid worlds with fixed
learning rate training. 126

Table 6.5 Planning time comparison for the A* planner
and AVINs. 128

Table 6.6 Results of our approach and the A* planner. . 130

A C R O N Y M S

ARA* Anytime Repairing A*

AVINs Value Iteration Networks on multiple levels of abstraction

BCE Binary Cross Entropy

CHOMP Covariant Hamiltoian Optimization for Motion Planning

CNN Convolutional Neural Network

CoM center of mass

DoF degrees of freedom

DRC DARPA Robotics Challenge

FMT* Fast Marching Tree

GPU graphics processing unit

HVINs Hierarchical Value Iteration Networks

IMU inertial measurement unit

IK inverse kinematics

L1 Least Absolute Deviations

MDP Markov Decision Process

PRM Probabilistic Roadmap

RL reinforcement learning

ROS Robot Operating System

RRT Rapidly-exploring Random Tree

SLAM Simultaneous Localization and Mapping

SGD Stochastic Gradient Descent

STC support triangle centroid

STOMP Stochastic Trajectory Optimization for Motion Planning

UPNs Universal Planning Networks

VI Value Iteration

VINs Value Iteration Networks

B I B L I O G R A P H Y

Aine, S., S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev
(2016). “Multi-heuristic A*.” In: The International Journal of Robotics
Research (IJRR) 35.1-3, pp. 224–243.

Battaglia, P. W., J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R.
Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl,
A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D.
Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu
(2018). “Relational inductive biases, deep learning, and graph net-
works.” In: arXiv preprint: 1806.01261.

Behnke, S. (2003). “Local multiresolution path planning.” In: RoboCup
2003: Robot Soccer World Cup VII. Springer, pp. 332–343.

Bellegarda, G. and K. Byl (2019). “Trajectory optimization for a wheel-
legged system for dynamic maneuvers that allow for wheel slip.”
In: IEEE International Conference on Decision and Control (CDC).

Bellman, R. (1957). “A Markovian decision process.” In: Journal of
Mathematics and Mechanics 6.5, pp. 679–684.

Bellman, R. (2013 [1957]). Dynamic programming. Courier Corporation.
Biber, P., U. Weiss, M. Dorna, and A. Albert (2012). “Navigation sys-

tem of the autonomous agricultural robot BoniRob.” In: Work-
shop on Agricultural Robotics: Enabling Safe, Efficient, and Affordable
Robots for Food Production.

Bjelonic, M., C. D. Bellicoso, Y. de Viragh, D. Sako, F. D. Tresoldi, F.
Jenelten, and M. Hutter (2019). “Keep rollin’-Whole-body motion
control and planning for wheeled quadrupedal robots.” In: IEEE
Robotics and Automation Letters (RA-L).

Bohlin, R. (2001). “Path planning in practice; Lazy evaluation on a
multi-resolution grid.” In: IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS).

Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P.
Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
and J. Zhao (2016). “End to end learning for self-driving cars.” In:
arXiv preprint:1604.07316.

Boston Dynamics (2019). Handle. https://www.bostondynamics.com/
handle. [Online; accessed 22-June-2019].

Botea, A., M. Müller, and J. Schaeffer (2004). “Near optimal hierarchi-
cal path-finding.” In: Journal of Game Development 1.1, pp. 7–28.

Brock, O. and O. Khatib (2002). “Elastic strips: A framework for mo-
tion generation in human environments.” In: The International
Journal of Robotics Research (IJRR) 21.12, pp. 1031–1052.

https://www.bostondynamics.com/handle
https://www.bostondynamics.com/handle
https://www.bostondynamics.com/handle
https://www.bostondynamics.com/handle

146 bibliography

Brunner, M., B. Brüggemann, and D. Schulz (2012). “Motion planning
for actively reconfigurable mobile robots in search and rescue
scenarios.” In: IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR).

Burget, F., M. Bennewitz, and W. Burgard (2016). “BI2RRT: An ef-
ficient sampling-based path planning framework for task con-
strained mobile manipulation.” In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS).

Chen, X., A. Ghadirzadeh, J. Folkesson, M. Björkman, and P. Jens-
felt (2018). “Deep reinforcement learning to acquire navigation
skills for wheel-legged robots in complex environments.” In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

Colas, F., S. Mahesh, F. Pomerleau, M. Liu, and R. Siegwart (2013).
“3D path planning and execution for search and rescue ground
robots.” In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).

Cordes, F., C. Oekermann, A. Babu, D. Kuehn, T. Stark, F. Kirchner,
and DFKI Bremen Robotics Innovation Center (2014). “An active
suspension system for a planetary rover.” In: International Sym-
posium on Artificial Intelligence, Robotics and Automation in Space
(SAIRAS).

Corman, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (1990). Intro-
duction to algorithms. MIT press.

Dijkstra, E. W. (1959). “A note on two problems in connexion with
graphs.” In: Numerische Mathematik 1.1, pp. 269–271.

Dornbush, A., K. Vijayakumar, S. Bardapurkar, F. Islam, M. Ito, and
M. Likhachev (2018). “A single-planner approach to multi-modal
humanoid mobility.” In: IEEE International Conference on Robotics
and Automation (ICRA).

Droeschel, D., M. Schwarz, and S. Behnke (2017). “Continuous map-
ping and localization for autonomous navigation in rough terrain
using a 3D laser scanner.” In: Robotics and Autonomous Systems 88,
pp. 104–115.

Faust, A., K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser, and J.
Davidson (2018). “PRM-RL: Long-range robotic navigation tasks
by combining reinforcement learning and sampling-based plan-
ning.” In: IEEE International Conference on Robotics and Automation
(ICRA).

Fleckenstein, F., C. Dornhege, and W. Burgard (2017). “Efficient path
planning for mobile robots with adjustable wheel positions.” In:
IEEE International Conference on Robotics and Automation (ICRA).

Fontaine, T. (2016). CMU robotics center rebuilding staff after ’Uber crisis’.
https://triblive.com/news/adminpage/10101108-74/million-

research-nrec. [Online; accessed 22-June-2019].

https://triblive.com/news/adminpage/10101108-74/million-research-nrec
https://triblive.com/news/adminpage/10101108-74/million-research-nrec
https://triblive.com/news/adminpage/10101108-74/million-research-nrec
https://triblive.com/news/adminpage/10101108-74/million-research-nrec

bibliography 147

Frontzek, T., T. N. Lal, and R. Eckmiller (2001). “Towards learning
path planning for solving complex robot tasks.” In: International
Conference on Artificial Neural Networks (ICANN).

Gammell, J. D., S. S. Srinivasa, and T. D. Barfoot (2014). “Informed
RRT: Optimal sampling-based path planning focused via direct
sampling of an admissible ellipsoidal heuristic.” In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS).

Geraerts, R. and M. H. Overmars (2004). “A comparative study of
probabilistic roadmap planners.” In: Algorithmic Foundations of
Robotics V. Springer, pp. 43–57.

Gerkey, B. P. and K. Konolige (2008). “Planning and control in un-
structured terrain.” In: ICRA Workshop on Path Planning on Costmaps.

Gochev, K., B. Cohen, J. Butzke, A. Safonova, and M. Likhachev (2011).
“Path planning with adaptive dimensionality.” In: Fourth Annual
Symposium on Combinatorial Search.

González-Sieira, A., M. Mucientes, and A. Bugarín (2016). “An adap-
tive multi-resolution state lattice approach for motion planning
with uncertainty.” In: Robot 2015: Second Iberian Robotics Confer-
ence. Springer, pp. 257–268.

Halme, A., I. Leppnen, M. Montonen, and S. Ylnen (2001). “Robot
motion by simultaneously wheel and leg propulsion.” In: Interna-
tional Conference on Climbing and Walking Robots and Support Tech-
nologies for Mobile Machines (CLAWAR).

Halme, A., I. Leppänen, J. Suomela, S. Ylönen, and I. Kettunen (2003).
“WorkPartner: Interactive human-like service robot for outdoor
applications.” In: The International Journal of Robotics Research (IJRR)
22.7-8, pp. 627–640.

Hart, P. E., N. J. Nilsson, and B. Raphael (1968). “A formal basis for
the heuristic determination of minimum cost paths.” In: IEEE
Transactions on Systems Science and Cybernetics 4.2, pp. 100–107.

Hashimoto, K., T. Hosobata, Y. Sugahara, Y. Mikuriya, H. Sunazuka,
M. Kawase, H. Lim, and A. Takanishi (2005). “Realization by
biped leg-wheeled robot of biped walking and wheel-driven loco-
motion.” In: IEEE International Conference on Robotics and Automa-
tion (ICRA).

Hebert, P., M. Bajracharya, J. Ma, N. Hudson, A. Aydemir, J. Reid, C.
Bergh, J. Borders, M. Frost, M. Hagman, J. Leichty, P. Backes, and
B. Kennedy (2015). “Mobile manipulation and mobility as ma-
nipulation—Design and algorithms of RoboSimian.” In: Journal
of Field Robotics (JFR) 32.2, pp. 255–274.

Hinton, G., N. Srivastava, and K. Swersky (2012). Neural Networks for
Machine Learning - Lecture 6e - rmsprop: Divide the gradient by a
running average of its recent magnitude.

Holden, D., T. Komura, and J. Saito (2017). “Phase-functioned neural
networks for character control.” In: ACM Transactions on Graphics
(TOG) 36.4, p. 42.

148 bibliography

Holte, R. C., M. B. Perez, R. M. Zimmer, and A. J. MacDonald (1995).
“Hierarchical A*: Searching abstraction hierarchies efficiently.” In:
Symposium on Abstraction, Reformulation, and Approximation.

Hornung, A., K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard (2013). “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees.” In: Autonomous Robots 34.3, pp. 189–
206.

Hsu, D., T. Jiang, J. Reif, and Z. Sun (2003). “The bridge test for sam-
pling narrow passages with probabilistic roadmap planners.” In:
IEEE International Conference on Robotics and Automation (ICRA).

Janson, L., E. Schmerling, A. Clark, and M. Pavone (2015). “Fast march-
ing tree: A fast marching sampling-based method for optimal mo-
tion planning in many dimensions.” In: The International Journal
of Robotics Research (IJRR) 34.7, pp. 883–921.

Kalakrishnan, M., J. Buchli, P. Pastor, M. Mistry, and S. Schaal (2011a).
“Learning, planning, and control for quadruped locomotion over
challenging terrain.” In: The International Journal of Robotics Re-
search 30.2, pp. 236–258.

Kalakrishnan, M., S. Chitta, E. Theodorou, P. Pastor, and S. Schaal
(2011b). “STOMP: Stochastic trajectory optimization for motion
planning.” In: IEEE International Conference on Robotics and Au-
tomation (ICRA).

Kamedula, M., N. Kashiri, and N. G. Tsagarakis (2018). “On the kine-
matics of wheeled motion control of a hybrid wheeled-legged
centauro robot.” In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

Karaman, S. and E. Frazzoli (2011). “Sampling-based algorithms for
optimal motion planning.” In: International Journal of Robotics Re-
search (IJRR) 30.7, pp. 846–894.

Karkowski, P. and M. Bennewitz (2016). “Real-time footstep planning
using a geometric approach.” In: IEEE International Conference on
Robotics and Automation (ICRA).

Karkus, P., D. Hsu, and W. S. Lee (2017). “QMDP-Net: Deep learning
for planning under partial observability.” In: Advances in Neural
Information Processing Systems (NIPS).

Kashiri, N., A. Ajoudani, D. G. Caldwell, and N. G. Tsagarakis (2016).
“Evaluation of hip kinematics influence on the performance of a
quadrupedal robot leg.” In: International Conference on Informatics
in Control, Automation and Robotics (ICINCO).

Kavraki, L. E., P. Svestka, J.-C. Latombe, and M. H. Overmars (1996).
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces.” In: IEEE Transactions on Robotics and Au-
tomation (T-RA) 12.4, pp. 566–580.

Khatib, O. (1986). “Real-time obstacle avoidance for manipulators and
mobile robots.” In: Autonomous Robot Vehicles. Springer, pp. 396–
404.

bibliography 149

Klamt, T., D. Rodriguez, L. Baccelliere, X. Chen, D. Chiaradia, T. Ci-
chon, M. Gabardi, P. Guria, K. Holmquist, M. Kamedula, H. Karao-
guz, N. Kashiri, A. Laurenzi, C. Lenz, D. Leonardis, E. Mingo
Hoffman, L. Muratore, D. Pavlichenko, F. Porcini, Z. Ren, F. Schil-
ling, M. Schwarz, M. Solazzi, M. Felsberg, A. Frisoli, M. Gust-
mann, P. Jensfelt, K. Nordberg, J. Roßmann, U. Süss, N. G. Tsaga-
rakis, and S. Behnke (2019a). “Flexible disaster response of to-
morrow – Final presentation and evaluation of the CENTAURO
system.” Version 26. In: IEEE Robotics and Automation Magazine
(RAM) (4), pp. 59–72.

Klamt, T., M. Schwarz, C. Lenz, L. Baccelliere, D. Buongiorno, T. Ci-
chon, A. Di Guardo, D. Droeschel, M. Gabardi, M. Kamedula, N.
Kashiri, A. Laurenzi, D. Leonardis, L. Muratore, D. Pavlichenko,
A. S. Periyasamy, D. Rodriguez, M. Solazzi, A. Frisoli, M. Gust-
mann, J. Roßmann, U. Süss, N. G. Tsagarakis, and S. Behnke
(2019b). “Remote mobile manipulation with the Centauro robot:
Full-body telepresence and autonomous operator assistance.” In:
Journal of Field Robotics (JFR).

Klein, R. (2005). “Geometrische datenstrukturen.” In: Algorithmische
Geometrie: Grundlagen, Methoden, Anwendungen, pp. 107–154.

Koenig, N. and A. Howard (2004). “Design and use paradigms for
Gazebo, an open-source multi-robot simulator.” In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS).

Kohrt, C., A. G. Pipe, J. Kiely, R. Stamp, and G. Schiedermeier (2012).
“A cell based Voronoi roadmap for motion planning of articu-
lated robots using movement primitives.” In: IEEE International
Conference on Robotics and Biomimetics (ROBIO).

Kolter, J. Z., M. P. Rodgers, and A. Y. Ng (2008). “A control archi-
tecture for quadruped locomotion over rough terrain.” In: IEEE
International Conference on Robotics and Automation (ICRA).

Kurutach, T., A. Tamar, G. Yang, S. J. Russell, and P. Abbeel (2018).
“Learning plannable representations with Causal InfoGAN.” In:
Advances in Neural Information Processing Systems (NIPS).

Lavalle, S. M. (1998). “Rapidly-exploring random trees: A new tool
for path planning.” In: Computer Science Deptartment, Iowa State
University Technical Report 98.11.

Lee, L., E. Parisotto, D. S. Chaplot, E. Xing, and R. Salakhutdinov
(2018). “Gated path planning networks.” In: 35th International Con-
ference on Machine Learning (ICML).

Levine, S., C. Finn, T. Darrell, and P. Abbeel (2016). “End-to-end train-
ing of deep visuomotor policies.” In: The Journal of Machine Learn-
ing Research 17.1, pp. 1334–1373.

Li, L., T. J. Walsh, and M. L. Littman (2006). “Towards a unified the-
ory of state abstraction for MDPs.” In: International Symposium on
Artificial Intelligence and Mathematics (ISAIM).

150 bibliography

Likhachev, M., G. J. Gordon, and S. Thrun (2004). “ARA∗: Anytime A∗

with provable bounds on sub-optimality.” In: Advances in Neural
Information Processing Systems (NIPS).

Loshchilov, I. and F. Hutter (2016). “SGDR: Stochastic gradient de-
scent with warm restarts.” In: arXiv preprint:1608.03983.

Medeiros, V. S., M. Bjelonic, E. Jelavic, R. Siegwart, M. A. Meggio-
laro, and M. Hutter (2019). “Trajectory optimization for wheeled
quadrupedal robots driving in challenging terrain.” In: 9th Inter-
national Symposium on Adaptive Motion of Animals and Machines.

Menna, M., M. Gianni, F. Ferri, and F. Pirri (2014). “Real-time au-
tonomous 3D navigation for tracked vehicles in rescue environ-
ments.” In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).

Motiv Robotics (2019). RoboMantis. http://www.motivrobotics.com/
products/#/products/robots/. [Online; accessed 22-June-2019].

Murphy, M. P., A. Saunders, C. Moreira, A. A. Rizzi, and M. Raib-
ert (2011). “The LittleDog robot.” In: The International Journal of
Robotics Research (IJRR) 30.2, pp. 145–149.

Nannicini, G., D. Delling, L. Liberti, and D. Schultes (2008). “Bidirec-
tional A∗ search for time-dependent fast paths.” In: International
Workshop on Experimental and Efficient Algorithms. Springer.

Niu, S., S. Chen, H. Guo, C. Targonski, M. C. Smith, and J. Kovačević
(2018). “Generalized Value Iteration Networks: Life beyond lat-
tices.” In: Thirty-Second AAAI Conference on Artificial Intelligence.

Pavlichenko, D. and S. Behnke (2017). “Efficient stochastic multicrite-
ria arm trajectory optimization.” In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS).

Peng, X. B., G. Berseth, K. Yin, and M. Van De Panne (2017). “DeepLoco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning.” In: ACM Transactions on Graphics (TOG) 36.4, p. 41.

Perrin, N., C. Ott, J. Englsberger, O. Stasse, F. Lamiraux, and D. Cald-
well (2016). “Continuous legged locomotion planning.” In: IEEE
Transactions on Robotics 33.1, pp. 234–239.

Petereit, J., T. Emter, and C. W. Frey (2013). “Mobile robot motion
planning in multi-resolution lattices with hybrid dimensionality.”
In: IFAC Intelligent Autonomous Vehicles Symposium 46.10, pp. 158–
163.

Pivtoraiko, M. and A. Kelly (2008). “Differentially constrained mo-
tion replanning using state lattices with graduated fidelity.” In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

Prautzsch, H., W. Boehm, and M. Paluszny (2013). Bézier and B-spline
techniques. Springer.

Quigley, M., K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng (2009). “ROS: An open-source Robot Operating Sys-
tem.” In: ICRA workshop on open source software.

http://www.motivrobotics.com/products/#/products/robots/
http://www.motivrobotics.com/products/#/products/robots/
http://www.motivrobotics.com/products/#/products/robots/
http://www.motivrobotics.com/products/#/products/robots/

bibliography 151

Quinlan, S. and O. Khatib (1993). “Elastic bands: Connecting path
planning and control.” In: IEEE International Conference on Robotics
and Automation (ICRA).

Ratliff, N., M. Zucker, J. A. Bagnell, and S. Srinivasa (2009). “CHOMP:
Gradient optimization techniques for efficient motion planning.”
In: IEEE International Conference on Robotics and Automation (ICRA).

Reid, W., A. H. Goktogan, and S. Sukkarieh (2014). “Moving MAM-
MOTH: Stable motion for a reconfigurable wheel-on-leg rover.”
In: Australasian Conference on Robotics and Automation (ACRA).

Reid, W., F. J. Pérez-Grau, A. H. Göktoğan, and S. Sukkarieh (2016a).
“Actively articulated suspension for a wheel-on-leg rover operat-
ing on a Martian analog surface.” In: IEEE International Conference
on Robotics and Automation (ICRA).

Reid, W., R. Fitch, A. H. Göktogan, and S. Sukkarieh (2016b). “Mo-
tion planning for reconfigurable mobile robots using hierarchical
fast marching trees.” In: Workshop on the Algorithmic Foundations
of Robotics.

Ruckelshausen, A., P. Biber, M. Dorna, H. Gremmes, R. Klose, A.
Linz, R. Rahe, R. Resch, M. Thiel, D. Trautz, and U. Weiss (2009).
“BoniRob: An autonomous field robot platform for individual
plant phenotyping.” In: Precision Agriculture 9.841, p. 1.

Satzinger, B. W., C. Lau, M. Byl, and K. Byl (2016). “Experimental
results for dexterous quadruped locomotion planning with Ro-
boSimian.” In: Experimental Robotics. Springer, pp. 33–46.

Schilling, F., X. Chen, J. Folkesson, and P. Jensfelt (2017). “Geometric
and visual terrain classification for autonomous mobile naviga-
tion.” In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

Schwarz, M., T. Rodehutskors, D. Droeschel, M. Beul, M. Schreiber, N.
Araslanov, I. Ivanov, C. Lenz, J. Razlaw, S. Schüller, D. Schwarz,
A. Topalidou-Kyniazopoulou, and S. Behnke (2017). “NimbRo
rescue: Solving disaster-response tasks with the mobile manip-
ulation robot Momaro.” In: Journal of Field Robotics (JFR) 34.2,
pp. 400–425.

Shannon, C. E. (1998). “Communication in the presence of noise.” In:
Proceedings of the IEEE 86.2, pp. 447–457.

Siegwart, R., P. Lamon, T. Estier, M. Lauria, and R. Piguet (2002).
“Innovative design for wheeled locomotion in rough terrain.” In:
Robotics and Autonomous Systems 40.2-3, pp. 151–162.

Srinivas, A., A. Jabri, P. Abbeel, S. Levine, and C. Finn (2018). “Univer-
sal Planning Networks: Learning generalizable representations
for visuomotor control.” In: International Conference on Machine
Learning (ICML).

Stentz, A. (1995). “The focussed D∗ algorithm for real-time replan-
ning.” In: International Joint Conferences on Artificial Intelligence (IJ-
CAI).

152 bibliography

Stentz, A., H. Herman, A. Kelly, E. Meyhofer, G. C. Haynes, D. Stager,
B. Zajac, J. A. Bagnell, J. Brindza, C. Dellin, M. George, Gonzales-
Mora J., S. Hyde, M. Jones, M. Laverne, M. Likhachev, L. Lister,
M. Powers, O. Ramos, J. Ray, D. Rice, J. Scheifflee, R. Sidki, S.
Srinivasa, K. Strabala, J.-P. Tardif, J.-S. Valois, J. M. Vandeweghe,
M. Wagner, and C. Wellington (2015). “CHIMP, the CMU highly
intelligent mobile platform.” In: Journal of Field Robotics (JFR) 32.2,
pp. 209–228.

Şucan, I. A. and L. E. Kavraki (2009). “Kinodynamic motion planning
by interior-exterior cell exploration.” In: Algorithmic Foundation of
Robotics VIII. Springer, pp. 449–464.

Takahashi, M., K. Yoneda, and S. Hirose (2006). “Rough terrain loco-
motion of a leg-wheel hybrid quadruped robot.” In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA).

Tamar, A., Y. Wu, G. Thomas, S. Levine, and P. Abbeel (2016). “Value
Iteration Networks.” In: Advances in Neural Information Processing
Systems (NIPS).

The Wheel Network (2019). Hyundai Cradle Walking Car Concept –
Robot Demo CES 2019. https://youtu.be/hQ5Xib6sFp4. [Online;
accessed 22-June-2019].

Wermelinger, M., P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart,
and M. Hutter (2016). “Navigation planning for legged robots
in challenging terrain.” In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Wilcox, B. H., T. Litwin, J. Biesiadecki, J. Matthews, M. Heverly, J. Mor-
rison, J. Townsend, N. Ahmad, A. Sirota, and B. Cooper (2007).
“ATHLETE: A cargo handling and manipulation robot for the
moon.” In: Journal of Field Robotics 24.5, pp. 421–434.

Zhang, H., J. Butzke, and M. Likhachev (2012). “Combining global
and local planning with guarantees on completeness.” In: IEEE
International Conference on Robotics and Automation (ICRA).

Zhang, L. and D. Manocha (2008). “An efficient retraction-based RRT
planner.” In: IEEE International Conference on Robotics and Automa-
tion (ICRA).

Zhou, Y. and J. Zeng (2015). “Massively parallel A∗ Search on a GPU.”
In: AAAI Conference on Artificial Intelligence.

Ziaei, Z., R. Oftadeh, and J. Mattila (2014). “Global path planning
with obstacle avoidance for omnidirectional mobile robot using
overhead camera.” In: IEEE International Conference on Mechatron-
ics and Automation (ICMA).

Zucker, M., S. Joo, M. X. Grey, C. Rasmussen, E. Huang, M. Stilman,
and A. Bobick (2015). “A General-purpose system for teleoper-
ation of the DRC-HUBO humanoid robot.” In: Journal of Field
Robotics (JFR) 32.3, pp. 336–351.

de Viragh, Y., M. Bjelonic, C. D. Bellicoso, F. Jenelten, and M. Hutter
(2019). “Trajectory optimization for wheeled-legged quadrupedal

https://youtu.be/hQ5Xib6sFp4
https://youtu.be/hQ5Xib6sFp4

bibliography 153

robots using linearized ZMP constraints.” In: IEEE Robotics and
Automation Letters (RA-L) 4.2, pp. 1633–1640.

	Abstract
	Zusammenfassung
	Acknowledgments
	Dedication
	Contents
	1 Introduction
	1.1 List of Contributions
	1.2 Publications
	1.3 Outline

	2 Related Work
	2.1 Hybrid Driving-Stepping Locomotion Robots
	2.2 Robot Motion Planning Method Overview
	2.2.1 Search-based Planning
	2.2.2 Sampling-based Planning
	2.2.3 Optimization- and Potential Field-based Planning
	2.2.4 Learning-based Planning

	2.3 Planning on Multiple Representation
	2.4 Robot Locomotion Planning Approaches

	3 A Search-based Approach to Hybrid Driving-Stepping Locomotion Planning
	3.1 System Overview
	3.2 Map Generator
	3.3 Path Planner
	3.3.1 Robot Representation
	3.3.2 Planning Method
	3.3.3 Action Set and Cost Function
	3.3.4 Heuristic
	3.3.5 Implementation

	3.4 Path Expander
	3.4.1 Step Expansion
	3.4.2 Vertical Foot Positions

	3.5 Controller
	3.6 Evaluation
	3.6.1 Robot Orientation Cost Factor
	3.6.2 Heuristic Weight Comparison
	3.6.3 Cluttered Staircase Scenario
	3.6.4 Real Robot Application

	3.7 Conclusion

	4 Planning Hybrid Driving-Stepping Locomotion on Multiple Levels of Abstraction
	4.1 System Overview
	4.2 Environment and Robot Representation
	4.2.1 Level 1 Representation
	4.2.2 Level 2 Representation
	4.2.3 Level 3 Representation

	4.3 Action Set, and Cost Function
	4.3.1 Level 1
	4.3.2 Level 2
	4.3.3 Level 3
	4.3.4 Level Transition

	4.4 Abstract Representation-based Heuristic
	4.5 Continuous Path Refinement
	4.6 Evaluation
	4.6.1 Representation Level Performance
	4.6.2 Heuristic Comparison
	4.6.3 Start State Influence

	4.7 Conclusion

	5 Towards Learning Abstract Representations for Locomotion Planning in High-dimensional State Spaces
	5.1 System Overview
	5.2 Problem Statement
	5.3 Planning Representations
	5.3.1 Detailed Representation
	5.3.2 Abstract Representation

	5.4 Abstract Cost Network
	5.4.1 Network Architecture
	5.4.2 Training
	5.4.3 Abstract Representation-based Heuristic

	5.5 Evaluation
	5.5.1 Abstraction Quality
	5.5.2 Application to Planning

	5.6 Conclusion

	6 Value Iteration Networks on Multiple Levels of Abstraction
	6.1 System Overview
	6.2 Method
	6.2.1 Network Architecture
	6.2.2 Application
	6.2.3 Training

	6.3 Evaluation
	6.3.1 Path Planning in 2D Random Obstacle Grid Worlds
	6.3.2 Path Planning in 2D Maze Grid Worlds
	6.3.3 Planning Omnidirectional Robot Driving Locomotion with Footprint Consideration

	6.4 Conclusion

	7 Discussion
	 Lists of Figures, Tables, and Acronyms
	List of Figures
	List of Tables
	Acronyms

	 Bibliography

