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Abstract

Historically, experimental searches for flavor violating processes have been essential for the theoretical
developments in Particle Physics. After the detection of neutrino oscillations, the most clear experimental
evidence for new physics at present comes from lepton flavor violation (LFV) in the neutrino sector.
Whereas a new window to physics beyond the Standard Model (SM) and even beyond neutrino masses
can be opened if a positive signal from LFV processes in the charge sector is observed by ongoing or
future facilities. The upper limits on these kind of processes serve as a very powerful probe to test new
models of neutrino masses. In this thesis we analyze the LFV phenomenology generated by two models
that induce neutrino masses through different mechanisms. In the first case, we investigate LFV in the
the singlet-triplet scotogenic model in which neutrinos acquire non-zero masses at the 1-loop level. In
contrast to the most popular variant of this setup, the singlet scotogenic model, this version includes a
triplet fermion as well as a triplet scalar, leading to a scenario with a richer dark matter phenomenology.
Taking into account results from neutrino oscillation experiments, we explore some aspects of the LFV
phenomenology of the model. In particular, we study the relative weight of the dipole operators with
respect to other contributions to the LFV amplitudes and determine the most constraining observables.
We show that in large portions of the parameter space, the most promising experimental perspectives are
found for LFV 3-body decays and for coherent µ − e conversion in nuclei.
Given that in recent years several observables associated to semileptonic b → s processes have been
found to depart from their predicted values in the SM, including a few tantalizing hints of lepton flavor
universality violation. In the second work we consider an existing model with a massive Z′ boson that
addresses the anomalies in b → s transitions and extend it with a non-trivial embedding of neutrino
masses. We analyze LFV effects induced by the non-universal interaction associated to the b → s
anomalies and by the new physics associated to the neutrino mass generation, and determine the expected
ranges for the most relevant observables.
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CHAPTER 1

Introduction

From predicting the existence of the massive gauge bosons W and Z, and CP-violation in mesons, to
the existence of the Higgs particle, the Standard Model (SM) has successfully explained countless
experimental facts [1], some of them at a very precise level [2]. The SM is built as a renormalizable
gauge theory [3–5] based on the symmetry group SU(3)C × SU(2)L × U(1)Y . This structure provides
accidental global U(1) symmetries that are not fundamental to the theory. Such is the case of the
lepton flavor rotations U(1)e × U(1)µ × U(1)τ , which implies that electron number, muon number and
tau number are expected to be conserved. Naturally, the total lepton number associated to U(1)L, the
“diagonal” subgroup of U(1)e ×U(1)µ ×U(1)τ, is a strictly conserved quantity [6]. Acording to numerous
experiments, nature seems to obey lepton flavor symmetries in the charged sector. However, in the
neutrino sector, the evidence for flavor violation is now established beyond any doubt due to the detection
of neutrino oscillations [7–12]. Neutrino flavor transitions can only occur if there is a non-diagonal
leptonic mixing matrix and neutrinos have non-zero masses, which is a feature for which the SM does not
account in its construction. The incapability of the SM to explain neutrino oscillations is evidence of the
existence of new physics (NP). The presence of dark matter (DM) in the universe [13] constitutes another
experimental observation that the SM fails to address, as well as the right amount of baryon asymmetry
observed in the universe [14].
The established existence of neutrino flavor violation in neutrino oscillations does not necessarily imply
that total lepton number is violated. If neutrinos behave like Dirac fermions, the global symmetry U(1)L
may still remain as a good symmetry of the NP Lagrangian. On the other hand, if neutrinos are of
Majorana nature, total lepton number must be broken. One expects to distinguish between Dirac and
Majorana neutrinos through the detection of processes such as neutrinoless double beta decay [15, 16].
Although an impressive number of experiments have searched for this decay using different isotopes,
none of them have provided conclusive results on the nature of neutrinos. The validity of lepton number
conservation can help us discriminate between NP models that consider Dirac fermions from those that
use Majorana particles for the generation of neutrino masses.
Concerning lepton flavor violation (LFV) in the charged sector, searches for LFV in µ and τ decays at
low energy experiments have been analyzed for decades [17], resulting in ever more stringent limits on
various LFV observables of the aforementioned particles. The rates of LFV processes cannot be estimated
model-independently, however, precision high-intensity experiments are sensitive to the existence of NP
at very high energies, which makes flavor physics a powerful discovery tool, as demonstrated by its central
role in the making of the SM. Very promising experimental projects in the search for LFV will begin
their operation in the near future. In addition to the planned upgrade for the MEG experiment, which
will improve its sensitivity to µ→ eγ branching ratios as low as 6 · 10−14 [18], other new experiments
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Chapter 1 Introduction

will also join the effort. Among them, one can highlight the Mu3e experiment [19], which will look
for the 3-body decay µ → 3 e, as well as a plethora of experiments looking for µ − e conversion in
nuclei, like Mu2e [20–24], DeeMe[25, 26], COMET [27–29] and PRISM/PRIME [30], in all cases with
spectacular sensitivity improvements compared to previous experiments. This remarkable multi-channel
experimental effort in the search for LFV encourages detailed LFV studies in specific neutrino mass
models.
Rare decays are another powerful test of the SM. In recent years, several observables associated to
semileptonic b→ s processes have been found to depart from their predicted values in the SM, including
a few tantalizing hints of lepton flavor universality violation. It has been pointed out that the violation of
lepton flavor universality generically implies the violation of lepton flavor [31]. Although there are several
explicit counterexamples to this rule [32, 33], this connection does indeed exist in most of the models
introduced to explain the b→ s anomalies. In fact, this connection may be used to learn about neutrino
oscillation parameters [34]. However, since many of these models do not account for the observed
neutrino masses and mixings, one may question whether the most relevant LFV effects are generally
induced by the non-universal interactions associated to the b→ s anomalies or by the NP associated to
the generation of neutrino masses. Furthermore, even if the explanation to the b → s anomalies also
involves LFV, the resulting rates could perhaps be too low to be observed by the experiments taking place
in the near future.

In this thesis we present the LFV phenomenological analysis of two SM extensions that generate
neutrino masses through different mechanisms. In the first model neutrino masses are induced at 1-loop
level, whereas, in the second, neutrinos acquire masses at the tree-level in a non-trivial way. Apart from
explaining neutrino masses, both models possess a DM candidate. The first scenario that we studied is
the singlet-triplet scotogenic model [35]. What stands this model out from the simple singlet and triplet
versions is the interplay between the two singlet and triplet fermions that provides a richer phenomeno-
logy. The second model under consideration was presented in [36]. This scenario considers a U(1) gauge
extension of the SM that leads to the existence of a new massive gauge boson. The resulting Z′ boson
induces a new neutral current contribution in b→ s transitions and can also mediate the DM production in
the early universe. In both cases we determine the expected ranges for the most relevant LFV observables.

The content of this manuscript is organized as follows. Chapter 2 gives an overview of the composition
of the electroweak Lagrangian of the SM, as well as a description of the relevant SM parameters. A
review of neutrino physics is presented in Chapter 3, which contains theoretical considerations, and
the determination of neutrino parameters in current experiments. In Chapter 4 we introduce the most
relevant searches of LFV in the charged sector. This chapter also contains important elements for a
model-independent treatment of LFV phenomena using an effective approach to the SM. Computational
tools that facilitate the analysis of the phenomenological consequences of NP scenarios are reviewed
at the end of the chapter. Chapters 5 and 6 contain the research we developed. Chapter 5 focuses on
the LFV phenomenology of the singlet-triplet scotogenic model, while Chapter 6 deals with the LFV
phenomenology of a Z′ model for the b → s anomalies. Finally, general conclusions about the work
carried out along this thesis are stressed in Chapter 7.

1.1 List of publications

Parts of this thesis have been published in the following articles:

i. [37] P. Rocha-Moran, A. Vicente, Lepton Flavor Violation in the singlet-triplet scotogenic model,
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JHEP 07 (2016) 078, [1605.01915].

ii. [38] P. Rocha-Moran, A. Vicente, Lepton Flavor Violation in a Z′ model for the b→ s anomalies,
Phys. Rev. D99 (2019) 035016, [1810.02135].
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CHAPTER 2

The Electroweak Theory

The SM is a gauge theory of the strong, weak and electromagnetic interactions described by the local
symmetry group SU(3)C ×SU(2)L × U(1)Y , where the subscripts C, L and Y denote color, left-handed
chirality and weak hypercharge, respectively. Each of these gauge groups have their corresponding coup-
ling constant, bosons and generators as listed in Table 2.1. The electromagnetic and weak interactions
unify at energies above 100 GeV into the electroweak (EW) theory [3–5].
Strong interactions can be studied independently from the EW interactions since the symmetry under
SU(3)C is unbroken and does not mix with the SU(2)L × U(1)Y sector. The color group SU(3)C consti-
tutes the theory of the strong interactions between quarks and gluons, which is referred to Quantum
Chromodynamics (QCD). 1 In the EW theory, left-handed (LH) chiral components of the quarks and
leptons are grouped into weak isospin doublets, and those of right-handed (RH) chirality as singlets.
Table 2.2 summarizes the gauge charge assignment and the fermion representation, which comes in three
copies as we will see later.

In order to have local gauge invariance, one must introduce three SU(2) vector gauge bosons W i
µ, i =

1, 2, 3 and one U(1) vector gauge boson Bµ. These vector bosons are massless, however, they can acquire
mass after the spontaneous symmetry breaking (SSB) of the EW theory. The SSB is caused by the Higgs
mechanism [39–41], in which a new scalar field is required. The Higgs scalar is a doublet field H with
hypercharge 1/2 and a Higgs potential given by

V(H) = µ2H†H + λ(H†H)2. (2.1)

For µ2 negative, H develops a vacuum expectation value (VEV) of v = 246 GeV, known as the Higgs
VEV. The non-zero VEV induces a SSB with the following pattern

SU(2)L × U(1)Y → U(1)Q=T3+Y , (2.2)

where Q is the electric charge and T3 is the third component of the weak isospin. After the EW symmetry
is broken, the theory remains invariant under gauge transformations that belong to the group U(1)Q.
This invariance guarantees the existence of a massless gauge boson associated with the electromagnetic
interaction identified as the photon. The fermion masses are also generated by the Higgs mechanism
through the presence of Yukawa couplings of the fermion fields with the scalar Higgs doublet. These
interactions are incorporated in the EW Lagrangian LEW described in the following section.

1Quarks are color charged fields represented as triplets of SU(3)C , while gluons are octets in the adjoint representation.
Given that this work focuses in EW effects, we restrain from providing any information about QCD.
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Chapter 2 The Electroweak Theory

Group Gauge coupling Gauge bosons Generators
SU(3)C gs Ga

µ a = 1, ...8, gluons
SU(2)L g Wa

µ a = 1, 2, 3, W bosons
U(1)Y g′ Bµ B boson

Table 2.1: SM gauge groups, couplings, bosons and generators

Fermionic field SU(2) representation I3 Y Q

LH lepton doublet lL =

(
νe
e

)
L

1/2
−1/2

−1/2
0
−1

LH quark doublet qL =

(
u
d

)
L

1/2
−1/2

1/6
2/3
−1/3

RH lepton singlet eR 0 −1 −1

RH quark singlets
uR
dR

0
2/3
−1/3

2/3
−1/3

Table 2.2: Assignment of third component of the weak isospin I3, hypercharge Y and charge Q for the first fermion
family.

2.1 Electroweak interactions

LEW is the most general renormalizable Lagrangian invariant under the local symmetry group SU(2)L ×

U(1)Y . It can be divided into four parts,

LEW = Lgauge +LH +Lkinetic +LYukawa. (2.3)

The Lgauge term is the pure gauge Lagrangian

Lgauge = −
1
4

W i
µνW

µνi
−

1
4

BµνB
µν. (2.4)

With the field strength tensors W i
µν and Bµν defined as

W i
µν = ∂µW i

ν − ∂νW
i
µ + gεi jkW j

µWk
ν ,

Bµν = ∂µBν − ∂νBµ, (2.5)

where εi jk is the structure constant. 2
LH includes the kinetic term for the scalar H as well as the Higgs

scalar potential introduced in Eq. (2.1),

LH =
(
DµH

)† DµH − V(H). (2.6)

The expanded covariant derivative contains the vector bosons and their corresponding coupling constant

DµH =

(
∂µ − ig~σ~Wµ − i

g′

2
Bµ

)
H, (2.7)

2In the SU(2) special unitary group, the generators satisfy the algebra [σi, σ j] = iε i jkσk, with ε i jk corresponding to the
Levi-Civita tensor.
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2.1 Electroweak interactions

where the elements of ~σ = (σ1, σ2, σ3) are the Pauli matrices. From the trilinear and quadratic terms in(
DµH

)† DµH, one gets all the different interactions between the gauge bosons and the Higgs field. The
potential V(H) defines the scalar self interactions and the Higgs mass which depends on its VEV v, and
the value of the coupling λ. One can obtain the masses of the physical gauge bosons from the product of
the covariant derivatives, by omitting the kinetic scalar term and defining the charged and neutral bosons
as linear combinations of the fields Wµ1-W2

µ and W3
µ-Bµ respectively

W±µ =
1
√

2

(
W1
µ ± iW2

µ

)
,

Zµ = − sin θW Bµ + cos θWW3
µ ,

Aµ = cos θW Bµ + sin θWW3
µ , (2.8)

where θW is the weak mixing angle. This angle relates the SU(2) and U(1) couplings as tan θW = g′/g.
After EW symmetry breaking, the gauge boson Aµ remains massless, thus it can be identified as the
photon. On the other hand, the Z and W bosons get the following masses3

m2
W =

v2g2

4
, m2

Z =
v2

4

(
g2

+ g′2
)
. (2.9)

The following term in LEW is the kinetic Lagrangian, which describes the interactions between the gauge
bosons and the fermions. For the first generation of leptons and quarks we have

Lkinetic = ilLγ
µDµlL + iqLγ

µDµqL +
∑

f =e,u,d

i fRγ
µDµ fR. (2.10)

Ignoring the dynamic terms when the covariant derivative is expanded, the relevant terms are

Lkinetic ⊃ l̄L

(
g~σ~Wµ −

g′

2
Bµ

)
γµlL + q̄L

(
g~σ~Wµ +

g′

6
Bµ

)
γµqL

−ēRg
′Bµγ

µeR + ūR
2
3
g′Bµγ

µuR − d̄R
1
3
g′Bµγ

µdR. (2.11)

Substituting the gauge bosons for the definitions in Eq. (2.8), one obtains the expressions for the charged
currents mediated by the massive W boson, and the neutral currents mediated by the photon and the Z
boson.

LCC =
g
√

2

(
J+
µW+

µ + H.c.
)
, (2.12)

LNC = g sin θW Jem
µ Aµ +

g

cos θW

(
J3
µ − sin2 θW Jem

µ

)
Zµ. (2.13)

3With experimental values: mW = 80.379 ± 0.012 GeV, mZ = 91.1876 ± 0.0021 GeV [43].
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Chapter 2 The Electroweak Theory

From the neutral vector current Jem
µ interacting with the photon, the fundamental electric charge e is

identified as e = g sin θW . The vector currentes J+
µ , J3

µ and Jem
µ are defined to be

J+
µ =

1
2

[
ν̄γµ(1 − γ5)e + ūγµ(1 − γ5)d

]
, (2.14)

J3
µ =

1
2

[
ν̄LγµνL − ēLγµeL + ūLγµuL − d̄LγµdL

]
, (2.15)

Jem
µ =

∑
f =e,u,d

q f f̄γµ f , with q f = fermion charge. (2.16)

So far, none of these Lagrangian terms make mention of the fermion mass generation. And given that
Dirac mass terms are forbidden due to gauge symmetry, the only interactions allowed by the EW theory
that achieve massive fermions are those involving couplings between the Higgs scalar and the fermions.
These interacions are present in the Yukawa Lagrangian. For the first generation of fermions the Yukawa
interactions are

LYukawa = −ye

(
lLHeR + eRH†lL

)
− yd

(
qLHdR + dRH†qL

)
− yu

(
qLH̃uR + dRH̃†qL

)
+ H.c.. (2.17)

After the neutral Higgs field acquires a VEV, the fermionic mass terms arise

L
f
mass =

v
√

2
yeeLeR +

v
√

2
yddLdR +

v
√

2
yuuLuR + H.c.. (2.18)

The assigned Dirac mass for each fermion f = e, d, u is proportional to the product of the VEV v and the
corresponding Yukawa coupling y f .

m f
D =

v
√

2
y f . (2.19)

It is important to note that neutrinos remain massless after EW symmetry breaking. However, this is
due to the absence of RH neutrinos in the construction of the theory. A more in-depth discussion of
neutrinos is presented in Chapter 3. In the following section we focus on the mass and flavor of the three
generations of quarks and charged leptons.

2.2 Mass and flavor mixing of fermions

Experimentally, we have observed three different charged leptons e, µ, τ and their corresponding neutrinos
νe, νµ, ντ, and six different quark flavors u, d, s, c, b, t. All of these elementary particles can be organized
into three families4 (or generations), as indicated in Table 2.3. Thus, we have three nearly identical
copies of the same SU(2)L × U(1)Y structure. As previously pointed out, the masses of the fermions are
generated after SSB due to the Yukawa interactions (Eq. (2.17)). The complete fermion mass Lagrangian
is then

L
f
mass = `Li M`

i j `R j + dLi Md
i j dR j + uLi Mu

i j uR j + H.c., (2.20)

4The exact number of families of fermions remains a mystery. Theoretically, the EW theory could accomodate any number
of families of the same type. However, EW precision measurements disfavor the possibility of a fourth family [42].
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2.2 Mass and flavor mixing of fermions

1st generation 2nd generation 3ed generation

LH lepton doublets
(
νe
e−

)
L

(
νµ
µ−

)
L

(
ντ
τ−

)
L

RH lepton singlets eR µR τR

LH quark doublets
(

u
d

)
L

(
c
s

)
L

(
t
b

)
L

RH quark singlets dR, uR sR, cR bR, tR

Table 2.3: Fermion generations in the SM.

where the subindices i, j = 1, 2, 3, denote the family elements: `i = (e, µ, τ), di = (d, s, b) and ui = (u, c, t).
M`,d,u

i j is a 3 × 3 mass matrix defined by the Yukawa matrices y`,d,ui j as

M`
i j =

v
√

2
y`i j, Md

i j =
v
√

2
yd

i j, Mu
i j =

v
√

2
yu

i j. (2.21)

Given that the EW theory is unable to predict the fermion masses, the three charged lepton masses and
the six quark masses are free parameters of the SM, which are determined through experiments [43]. In
the case of charged leptons, their physical mass is just the pole of its propagator and can be measured
directly

me = 0.5109989461 ± 0.0000000031 MeV,

mµ = 105.6583745 ± 0.0000024 MeV,

mτ = 1776.86 ± 0.12 MeV. (2.22)

Since quarks are confined inside hadrons, the extraction of their mass value from experiments is not
straightforward. For light quarks u, d, s, masses are estimates of so called "current-quark masses", in a
mass independent substraction scheme such as MS 5 at a scale µ ≈ 2 GeV.

mu = 2.2+0.5
−0.4 MeV,

md = 4.7+0.5
−0.3 MeV,

ms = 95+9
−3 MeV. (2.23)

(2.24)

On the other hand, the identification of heavy quark masses is not particularly hard. One evaluates it at
the location of some of its bound states. Their masses are the "running" masses in the MS scheme.

mc = 1.275+0.025
−0.035 GeV,

mb = 4.18+0.04
−0.03 GeV,

mt = 173.0 ± 0.4 GeV. (2.25)

It is noteworthy that the fermionic mass spectrum follows a hierarchical pattern along families: masses
increase as one goes from the first to third generation. The mass spectrum of the charged leptons is
dominated almost entirely by the tau-lepton mass. Likewise, quarks of the first family are exceedingly

5Modified minimal substraction or MS-bar renormalization scheme [44].

9



Chapter 2 The Electroweak Theory

Figure 2.1: Mass spectrum of leptons (blue), quarks (red) and gauge bosons (green).

light in comparison to the third generation quarks. Furthermore, if one includes massive neutrinos, for a
given generation the mass of the neutrino is much less than that of the charged lepton, which is, in turn,
less than that of the quarks of the associated family. This is illustrated in Figure 2.1, where masses of
gauge bosons W and Z are also depicted to serve as reference to the top mass. The line corresponding to
neutrino masses indicates an upper bound, since absolute masses are not known yet (see Sec. 3.3.4).

The physical masses measured by experiments are those created by the interactions of the mass
eigenstates with the Higgs boson. On the other hand, the weak eigenstates are the members of the SU(2)L
doublets that transform into each other through interaction with W± bosons (Eq. (2.12)). Thus, the mass
eigenstates are not identical to the weak eigenstates. Nevertheless, the two descriptions can be related.
The mass eigenstates ` j, d j and u j are determined by the diagonalization of the mass matrices in Eq. (2.21),
by means of bi-unitary transformations

M
f

= U
†

f M f
V f , for f = `, d, u . (2.26)

Where U and V are unitary matrices (U†U = UU
†

= I, V†V = VV
†

= I), that connect the weak
interaction basis to the mass basis

f ′Li = U f fLi, f ′Ri = V f fRi. (2.27)

Let us write the charge current interaction defined in Eq. (2.12) in the mass basis

Lcc =
g

2
√

2

[(
u′Liγ

µ(1 − γ5)d′L j + ν′Liγ
µ(1 − γ5)`′L j

)
W+
µ + H.c.

]
(2.28)

=
g

2
√

2

[(
uLiγ

µ(1 − γ5) Vij dL j + νLiγ
µ(1 − γ5)`L j

)
W+
µ + H.c.

]
. (2.29)

The purely leptonic charged current of the weak interactions is unaffected by transformations among
the charged LH fields, because the transformation matrixU` can be absorbed by the massless neutrinos.
Hence, lepton flavor is conserved in the SM. Whereas, a mixing matrix V appears in the quark charge-
current sector

V = U
†
uUd. (2.30)
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2.2 Mass and flavor mixing of fermions

This unitary 3 × 3 matrix contains all possible flavor-transitions and CP-violation. V is called the quark
flavor mixing matrix, most commonly known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [45,46].
In order to determine the number of physical parameters of V, we take the case of a general n × n unitary
matrix, which is characterized by n2 real parameters: n(n − 1)/2 rotation angles and n(n + 1)/2 phases.
In the case of V not all phases are physical, since one can rephase the quark fields

ui → eiθiui, d j → eiθ ju j ⇒ V → Vei(θ j−θi). (2.31)

Thus, the number of physical phases is reduced to (n − 1)(n − 2)/2. The total physical free parameters in
the quark-mixing is then (n − 1)2. For three quark generations, the CKM matrix is described by three
rotation angles and one phase. The “standard” CKM parametrization [47] is

V =

 1 0 0
0 c23 s23
0 −s23 c23




c13 0 s13eiδ

0 1 0
−s13eiδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1


=


c12c13 s12c13 s13eiδ

−s12c23 − c12s23s13e−iδ c12c23 − s12s23s13e−iδ s23c13
s12s23 − c12c23s13e−iδ

−c12s23 − s12c23s13e−iδ c23c13

 . (2.32)

Where ci j = cos θi j and si j = sin θi j for i, j = 1, 2, 3, and δ is the phase responsible for all the CP-
violating phenomena 6 observed in K and B meson decays [50, 51] and just recently discovered in D
mesons [52], constituting the first evidence of CP-violation in states containing only up-type quarks.
The precise determination of the CKM matrix elements is of great importance. Several measurements
severely constrain the magnitudes and phases of possible NP contributions to flavor-changing interactions.

Up to date, the predictions of the EW theory have been consistent with experimental data, the discovery
of the Higgs particle being one of the most remarkable achievements of the model so far. Nevertheless,
this framework fails to determine the number of fermion generations, their masses and their hierarchy. In
total the SM contains 18 free paremeters, most of which have been pointed out in this chapter. The fermion
sector depends on: six quark masses, three charged lepton masses, three quark mixing angles and one
phase. In addition three coupling constants (the strong coupling from QCD included). Two parameters
coming from the scalar Higgs sector, the Higgs VEV and a quartic coupling constant. Considering that
neutrinos are massive particles the number of independent parameters adds up to 25. The values of all
these parameters must be determined from experimental measurements. These theoretical shortcomings
are unsatisfactory aspects that compel us to go beyond the SM.

6Reviews on CP violation can be found in [48, 49].
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CHAPTER 3

Neutrino Physics

At the time the SM was constructed, parity violating experiments [53] showed results where nearly all
produced and observed neutrinos had LH helicities, meaning that RH neutrino interactions are absent. Led
by these observations, the electroweak theory omitted the introduction of RH components of neutrinos.
This is a unique property that only neutrinos possess, since the rest of the SM fermions do have RH
components, that allow to construct a mass term (see Eq. (2.18)). The lack of RH neutrinos combined
with the renormalizability of the electroweak Lagrangian unables the appearance of a neutrino mass in
the SM. In the decade of 1990, the paradigm on neutrino masses changed when anomalies in the solar
and atmospheric neutrinos were observed by solar neutrino experiments [8, 54–56], and the neutrino
observatories KamLAND [10] and SuperKamiokande (SuperK) [7], providing an indirect but strong
evidence that neutrinos are massive and lepton flavors are mixed. Moreover, analysis of the cosmic
microwave background anisotropy [13] in combination with other astrophysical data, set constraints on
the sum of neutrino masses to be lower than 1 eV [57], indicating that neutrino masses must be very
small.
In this chapter we will discuss the possible nature of the small neutrino mass term. The mixing between
neutrino eigenstates and how this mixing leads to oscillations. We review the oscillation parameters and
the experiments that measure them. Lastly, neutrino mass models and a phenomenological application to
test neutrino models are explained.

3.1 Dirac and Majorana masses

The SM can be extended to provide a Dirac mass for the neutrinos in the same fashion the Higgs
mechanism generates the masses to the known fermions. To this end, the RH component NR of the
neutrino field needs to be introduced. This field does not take part in electroweak interactions, therefore
it must be a singlet under SU(2) and possesses hypercharge equal to zero. This implementation is
sometimes called the “minimally extended SM”. The extra Yukawa interaction for the case of one
neutrino generation coupled to the Higgs is

L
ν
Yukawa = −yνlLH̃NR + H.c.. (3.1)

After electroweak symmetry breaking a Dirac neutrino mass is obtained

L
ν
mD

= −
vyν
√

2

(
νLNR + NRνL

)
= −mDNRνL + H.c., (3.2)
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Chapter 3 Neutrino Physics

Figure 3.1: Representation of the Weinberg operator.

where mD =
vyν√

2
, which is the same relation that Dirac masses of charged leptons follow. However, unlike

charged leptons, neutrinos are experimentally constrained to have masses below eV (see Sec. 3.3.4). The
Yukawa couplings would need to be of the order of yν ∼ 10−13 to achieve the appropriate values for
neutrino masses.
There is another possibility to accomplish the neutrino mass term. Given that neutrinos are electrically
neutral, a LH chiral neutrino can be transformed into a RH one under charge conjugation. To illustrate
this, we take the Dirac equations for the two chiral fermionic fields ΨL,R

iγµ∂µΨL = mΨR, iγµ∂µΨR = mΨL. (3.3)

When charge conjugating the equation on the right

C
(
iγµ∂µΨR = mΨL

)
→ iγµ∂µΨ

c
R = mΨ

c
L , (3.4)

it turns out to be identical to the equation on the left if

Ψ
c
L = CΨ̄

T
L ≡ ΨR, (3.5)

where the C symbol stands for the Lorentz charge conjugation matrix C = iσ2. The relation above is
called the Majorana condition, which can only be satisfied by electrically uncharged particles. Assuming
that neutrinos follow the Majorana condition in Eq. (3.5), a Majorana mass term for the neutrino is
allowed by Lorentz symmetry. It can be derived from Eq. (3.2) by replacing NR for νc

L,

L
ν
mM

= −
1
2

mMν
c
LνL + H.c. (3.6)

The factor of 1/2 is introduced to avoid double counting given that a Majorana fermion is in fact its own
antiparticle. This implies that a Majorana mass term for neutrinos breaks any global U(1) symmetry
under which νL is charged. In particular, it violates lepton number by two units.

3.1.1 The Weinberg operator

The Majorana mass term presented in Eq. (3.6) carries hypercharge equal to −1. Thus, it is not gauge
invariant, and cannot be introduced directly in the SM Lagrangian. Nevertheless, there is a possibility to
generate an invariant mass term while using SM fields. This is realized through the non-renormalizable
5-dimensional Weinberg operator [58], which is the lowest order operator that generates Majorana
neutrino masses. The effective Weinberg operator can be written as follows
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3.2 Neutrino oscillations

L5 =
C

(5)

Λ

(
lcLH̃∗

) (
H̃†lL

)
+ H.c., (3.7)

where C(5) is a coupling constant, and Λ is a parameter with dimensions of mass, which can be interpreted
as the NP energy scale at which this operator is induced. After electroweak symmetry breaking, the
Majorana mass term comes to be

Leff =
1
2
C

(5) v
2

Λ
νc

LνL + H.c., (3.8)

where the Majorana mass is identified as

mM = C
(5) v

2

Λ
. (3.9)

In order to accomodate mν < 1 eV neutrino masses, if C(5)
∼ 1, Λ must come from a NP scale of the order

of 1014 GeV, which is close to the unification scale of electroweak and strong interactions. Although the
Majorana mass term for neutrinos generated through the Weinberg operator conserves electric charge, it
still breaks the total lepton number conservation. This might be interpreted as a consequence of the SM
being an effective low-energy theory of a much more general theory at higher energies [59–61].
The Majorana and Dirac descriptions have different phenomenological consequences, making a Majorana
neutrino distinguishable from a Dirac one. Most of the theories beyond the SM have considered
neutrinos as Majorana particles, but so far no experimental proof supports this assumption. The most
promising way to find the nature of the neutrino is from the search of neutrinoless double beta decay
detection [15, 16, 62, 63].

3.2 Neutrino oscillations

Neutrino flavor oscillations are a consequence of the existence of nonzero neutrino masses and lepton
flavor mixing. Speculations of neutrino mixing date from 1957 when B. Pontecorvo [64] motivated
by Gell-Mann and Pais theory of K0

− K̄0 mixing and oscillations [65], considered a transition of a
mesonium bound system (µ+e−) into antimesonium (µ−e+) intermediated by neutrino-antineutrino mixed
states. Hints on additional global lepton charge sparked from Davis radiochemical experiment [66]. Thus,
Pontecorvo suggested a more realistic case of oscillations between two different types of neutrinos [67].
A couple of years later, in 1959 Pontecorvo proposed that the two types of neutrinos are associated to
different reactions [68]. Considering the muon decay as example

µ− → e− + ν̄e + νµ, (3.10)

it was required for the resulting neutrinos to not be identical. One of them was asociated to the electron
(νe) and the other to the muon (νµ). A direct proof of the existence of the muon neutrino was obtained in
the first experiment with accelerator neutrinos in 1962 in the Brookhaven experiment [69]. With this
discovery the concept of lepton flavor number appeared, with Le = 1 for e− and νe, and Lµ = 1 for µ−

and νµ. The first intuitive understanding of two-flavored neutrino mixing and oscillations was presented
by Z. Maki, M. Nakagawa, S. Sakata [70] in 1962 and Pontecorvo [71] in 1967.
To understand how neutrinos oscillate, it is convenient to start with the simplest scenario, the two-neutrino
mixing. Suppose a neutrino να produced in a certain source travels a path with length L until it reaches a
detector, the neutrino reacts with the detector and produces a charged lepton `β. Thus, the final state of
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Chapter 3 Neutrino Physics

the neutrino is νβ (Fig. 3.2). If α , β, the neutrino has suffered a flavor change in its journey να → νβ,
and one can find out the probability of this transition. To this end, let us describe the neutrino να as a
superposition of the mass eigenstates νi

|να〉 =
∑

i

Uαi|νi〉, (3.11)

where U is a unitary 2 × 2 mixing matrix

U =

(
cos θ sin θ
− sin θ cos θ

)
. (3.12)

After a time t the initial state evolves as described by the plane wave solution

|να(t)〉 =
∑

i

Uαie
−iEit|νi(0)〉 (3.13)

= e−iE1t cos θ|ν1〉 + e−iE2t sin θ|ν2〉. (3.14)

Then, the probability of να oscillating into νβ after a time t has elapsed is,

Pνα→νβ(t) = |〈νβ|να(t)〉|2 (3.15)

= sin2(2θ) sin2
(

E2 − E1

2
t
)
. (3.16)

Here Ei is the energy of νi in the detector frame. Assuming all mass eigenstates have the same momentum,
in the ultrarelativistic limit p � mi, Ei is given by the relativistic energy-momentum relation

Ei =

√
p2

+ m2
i = p +

m2
i

2p
≈ E +

m2
i

2E
. (3.17)

Since in this limit t ∼ L, and E2 − E1 = ∆m2/2E, where (m2
2 − m2

1) ≡ ∆m2, the oscillation probability is
rewritten as

Pνα→νβ(t) = sin2(2θ) sin2
∆m2L

4E

 (3.18)

= sin2(2θ) sin2

1.27
∆m2

[
eV2

]
L [Km]

4E [GeV]

 , (3.19)

where the former equation has been expressed in natural units, whereas the latter in SI units. From
this probability equation we note that neutrino oscillation is dictated by the angle θ, the mass squared
difference ∆m2, the neutrino energy E and the distance between the neutrino source and the detector.
The angle θ defines how mixed the flavor states are in the mass states. If θ = 0, no mixing occurs,
thus neutrinos cannot oscillate. Moreover, at least one of the neutrinos must have mass in order to
generate oscillations. For neutrino oscillation experiments, knowledge of the flux of each neutrino and
antineutrino flavor at production is needed for planning and designing the experiment, analyzing the data,
and estimating systematic errors. The ratio L/E can be controlled in experiments with terrestrial neutrino
sources, such as accelerators and nuclear reactors, with L/E fixed one can deduce how sensitive an
experiment will be to the neutrino mass squared difference, min(∆m2) ∼ 2E/L. If neutrinos are naturally
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3.2 Neutrino oscillations

Figure 3.2: Neutrino transition να → νβ from source to detector.

produced as is the case of solar and atmospheric neutrinos, their fluxes as well as the distance between
the neutrino source and the detector cannot be controlled artificially. The three flavor eigenstates νe, νµ
and ντ can be distinguished since they are produced by different reactions. However, absolute values of
the neutrino masses at present are unknown, although bounds on the sum of all masses can be obtained
from the observation of anisotropies in the cosmic microwave background.
When neutrinos propagate through matter the transition probabilities are changed, due to the charged

current interactions between the electron neutrinos(antineutrinos) and electrons in matter. This may lead
to a resonant transition that enhances the oscillation probability under certain conditions. Such effect
is usually called the Mikheyev, Smirnov, Wolfenstein (MSW) effect [72, 73]. Following the 2-neutrino
picture, the effect on oscillation probabilities in matter is quantified to be proportional to the number
density of electrons in matter Ne. The mixing angle θ and the mass squared difference ∆m2 in Eq. (3.18)
are replaced for their analog in matter θm and ∆m2

m

Pνα→νβ(t) = sin2(2θm) sin2
∆m2

mL
4E

 . (3.20)

The expressions for the effective mixing parameters in matter are

sin(2θm) =
sin(2θ)

C
, (3.21)

∆m2
m = C∆m2, (3.22)

with

C =

√
(cos(2θ) − A)2

+ sin2(2θ) , and A = ±
2
√

2GF Ne E

∆m2 , (3.23)

where GF is the Fermi constant. The positive sign in A applies to electron-neutrino transitions, whereas
the negative sign to the electron-antineutrino ones. In three-flavor neutrino oscillations, the transition
probabilities are dependent of the δ CP-phase. 7 The probabilities of να → νβ and the antineutrino pair
ν̄α → ν̄β are related as [74]

Pν̄α→ν̄β = Pνα→νβ (δ→ −δ, A→ −A) . (3.24)

7δ is a parameter of the 3 × 3 leptonic mixing matrix U that we will derive in Sec. 3.2.1.
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Chapter 3 Neutrino Physics

The effect on neutrino and antineutrino oscillations caused by matter can be significant in long-baseline
experiments with sufficiently high energies, making them sensitive to the neutrino mass ordering.
A more detailed description of neutrino experiments, oscillation parameters and neutrino mass ordering
is exhibited in Sec. 3.3. First, we dedicate the next section to the construction of the unitary matrix that
mixes the neutrino flavor eigenstates into the three physical neutrino mass states.

3.2.1 Leptonic mixing matrix

To derive a more general leptonic mixing matrix U, a parameter counting analogous to the quark mixing
in Sec. 2.2 is performed. In the case of n neutrino flavors and n massive neutrinos, the n × n unitary
mixing matrix U can be parameterized by n(n−1)/2 rotation angles and n(n + 1)/2 phases. If the massive
neutrinos νi are Dirac particles, only (n − 1)(n − 2)/2 phases are physical and can be responsible for CP
violation (CPV) in the lepton sector. For n = 3 there is just one CPV phase in U, which is usually called
the “Dirac CP violating phase”. If, however, the massive neutrinos are Majorana fermions, the mixing
matrix U contains n(n − 1)/2 CPV phases [75, 76]. In contrast to Dirac fields, the massive Majorana
neutrino fields cannot absorb phases. In this case U can be cast in the form [75]

U = V P, (3.25)

where the matrix V contains (n − 1)(n − 2)/2 Dirac CPV phases, while P is a diagonal matrix with the
additional (n − 1) Majorana CPV phases

P = diag(1, ei
α21

2 , ei
α31

2 , ..., ei
αn1

2 ) (3.26)

In the case of n = 3 there are altogether 3 CPV phases: one Dirac and two Majorana. The 3 neutrino
mixing matrix U can be constructed by considering rotations between the mass eigenstates ν1−ν2, ν2−ν3
and ν1 − ν3 by the angles θ12, θ23 and θ13 respectively

U =


c12c13 s12c13 s13eiδ

−s12c23 − c12s23s13e−iδ c12c23 − s12s23s13e−iδ s23c13
s12s23 − c12c23s13e−iδ

−c12s23 − s12c23s13e−iδ c23c13




1 0 0
0 eiα 0
0 0 eiβ

 . (3.27)

Here the Dirac CPV phase is labeled as δ, and the Majorana phases as α and β. We denote ci j = cos θi j
and si j = sin θi j for i, j = 1, 2, 3.
The U matrix in Eq. (3.27) is the standard leptonic mixing matrix 8, which contains all the existing data
on neutrino oscillations, and diagonalizes the neutrino mass matrix mν as

UT mν U = m̂ν ≡

 m1 0 0
0 m2 0
0 0 m3

 . (3.28)

3.3 Neutrino parameters and experiments

Different experiments aim to determine different neutrino properties. Measurements of the mixing
angles θ12, θ23, θ13, the mass parameters ∆m2

21, |∆m2
31|,

9 and the Dirac phase δ are accessible to neutrino

8This parametrization of U is commonly known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
9Experiments show that ∆m2

21 � ∆m2
32 so that the third square mass difference is ∆m2

32 ≈ ∆m2
31 [77].

18



3.3 Neutrino parameters and experiments

oscillation experiments. The absolute scale of neutrino masses is searched in beta decay experiments and
in cosmological observations. Neutrinoless double beta decay experiments, sensitive to lepton number
violation, can yield information about the Majorana phases α and β in the case of Majorana neutrinos, as
well as determination of the lightest neutrino mass state. Experiments in astrophysics and cosmology
have the potential to unveil more neutrino properties. Table 3.1 summarizes the most relevant neutrino
experiments currently, and the parameters they can measure.

Parameters Experiments

∆m2
21, θ12

Solar: SAGE [78], SuperK [79–82], SNO [83, 84], GALLEX [85], Borexino [86]
Earth: KamLAND [87]

∆m2
31, θ23

Atmos.: SuperK [88], ANTARES [89],
IceCube-DeepCore [90]

Acce.: K2K [91], MINOS [92], OPERA [93], T2K [12], NOνA [94]

∆m2
31, θ13

Reactors: Daya Bay [95], Double CHOOZ [96], RENO [97]
T2K [98], NOνA

δ NOνA [99], T2K, SuperKamiokande
sign

(
∆m2

31

)
NOνA, T2K, SuperKamiokande

mi, ( absolute
nuetrino masses)

0νββ : HM [100], GERDA [101], CUORE [102], KamLAND-Zen [103],
EXO-200 [104], MAJORANA [105]

β decay: MAINZ [106], TROITSK [107], KATRIN [108, 109]
Cosmology: Planck [13]

Nν, (# of active
and light neutrinos)

LEP [42]

ns, (# of neutrinos) LSND [110], MiniBooNE [111], Cosmology

Table 3.1: List of current experiments for the detection of neutrino properties.

3.3.1 Measurement of ∆m2
21 and θ12

Nuclear reactions in the interior of the sun produce neutrinos continuously. These solar neutrinos are
electron neutrinos characterized by different energy spectra depending on the reaction they are being
produced by. The p + p → d + e+

+ νe reaction generates the largest contribution of νe neutrinos, but
with quite a small energy, E < 0.42 MeV. The reaction with the largest energy spectrum, extending
up to more than 10 MeV, is the boron-8 beta-decay into beryllium-8, 8B →8 Be∗ + e+

+ νe. However,
this is the reaction with the smallest flux. The SuperK and Sudbury Neutrino Observation (SNO) are
the only neutrino experiments that detect the B solar neutrinos, based on the reactions of electrons in
water. Historically, the chlorine based radiochemical detector in the mine of Homestake [56] was the first
experiment to notice the neutrino deficit in the solar neutrino flux, which contradicted the predictions
made by the standard solar model [112], and consequently led to consider the oscillation of neutrinos.
Nowadays, it is mainly through SuperK [79–82] and SNO [83, 84], together with Borexino [86] and
KamLAND [87] liquid scintillation detectors, that ∆m2

21 and θ12 are experimentally determined. Though,
KamLAND uses terrestrial antineutrinos (ν̄e) emitted by nuclear reactors.
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Chapter 3 Neutrino Physics

3.3.2 Measurement of |∆m2
31(32)| and θ23

The collision of cosmic rays with nuclei in the upper atmosphere produces charged pions π±, which chain
decay into neutrinos

π± → µ± + νµ(ν̄µ) (3.29)

→ e± + νe(ν̄e) + ν̄µ(νµ) + νµ(ν̄µ). (3.30)

Charged pion decays are the main production channel of atmospheric neutrinos. Almost all atmospheric
neutrino experiments are placed deep underground to shield from cosmic ray muons. In the case of
accelerator neutrino beams, the pulsed nature of the beam provides additional background suppression. 10

If neutrinos are not distinguished from antineutrinos, two νµ are expected for each νe in first approximation,

Reµ ≡
N(νµ)
N(νe) ' 2. In 1998, SuperK provided a measurement of the ratio Reµ being about 0.6 times the

theoretical expectation, indicating that the νµ deficit was a consequence of νµ transitioning into ντ. This
result became the first compelling evidence of neutrino oscillation. The experimental values of |∆m2

31(32)|

and θ23 obtained in the atmospheric oscillations discovery needed a confirmation by accelerator neutrino
experiments in which the neutrino beam is tunable and has high purity. Independent confirmation came
from K2K [91] (KEK to Kamioka), MINOS [92] (Main Injector Neutrino Oscillations), and T2K [12]
(Tokai to Kamioka). The most recent confirmation comes from the NOνA [94] (NuMI Off-Axis νe
Appearance) collaboration results. The most precise measurements of |∆m2

31| and θ23 are currently
obtained by T2K [98].

3.3.3 Measurement of θ13

After the discoveries of solar and atmospheric neutrino oscillations, the determination of θ13 seemed a
natural step towards the completion of the 3-ν mixing picture. Above that, a not too small θ13, enhances
the opportunity to measure the unknown Dirac CPV phase δ. First hints for θ13 came from solar experi-
ments. However, they were confirmed until recently by reactors. In 2012, the reactor neutrino oscillation
experiments Daya Bay [95], Double CHOOZ [96] and RENO [97], obtained θ13 from the measurements
of reactor ν̄e disappearance.

The results of the global fit on neutrino oscillation parameters reported in [77], are displayed in Tables
3.2 and 3.3. This analysis fits data of the solar, atmospheric, reactors and long-baseline of most of the
experiments mentioned in Table 3.1.

Parameter Best fit ±1σ 2σ 3σ

∆m2
21[10−5eV2] 7.55+0.20

−0.16 7.20 − 7.94 7.05 − 8.14
∆m2

31[10−3eV2] (NO) 2.50 ± 0.03 2.44 − 2.57 2.41 − 2.60
∆m2

31[10−3eV2] (IO) 2.42+0.03
−0.04 2.34 − 2.47 2.31 − 2.51

Table 3.2: Neutrino mass square differences from global data [77].

10Telescopes for high-energy neutrinos (TeV∼PeV) such as ANTARES [89] and IceCube-DeepCore [90] have a depth of
2500 m and 1450-2450 m respectively.
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Parameter Best fit ±1σ 2σ 3σ

sin2θ12 0.320+0.020
−0.016 0.289 − 0.359 0.273 − 0.379

sin2θ23 (NO) 0.547+0.020
−0.030 0.467 − 0.583 0.445 − 0.599

sin2θ23 (IO) 0.551+0.018
−0.030 0.491 − 0.584 0.453 − 0.598

sin2θ13 (NO) 0.0216+0.00083
−0.00069 0.0203 − 0.0234 0.0196 − 0.0241

sin2θ13 (IO) 0.0222+0.00074
−0.00076 0.0207 − 0.0236 0.0199 − 0.0244

δ/π (NO) 1.32+0.21
−0.15 1.01 − 1.75 0.87 − 1.94

δ/π (IO) 1.56+0.13
−0.15 1.27 − 1.82 1.12 − 1.94

Table 3.3: Leptonic mixing parameters from global data [77].

3.3.4 The absolute mass scale

Neutrino oscillation phenomena do not depend on the absolute values of neutrino masses but on their
squared mass differences. The two independent mass squared differences between the neutrino mass
eigenstates can be found from solar (∆m2

21) and atmospheric (∆m2
31) neutrino observations (Table 3.2).

Since the mass spectrum of charged leptons exhibit the hierarchy me1
< me2

< me3
, which is followed in

a similar way in the quark sector (Fig 2.1), this arrangement is considered to be “normal”. In the neutrino
sector, by definition, we call ν1 and ν2 the two neutrinos whose masses are closer in value, with m1 < m2.
The third mass eigenstate has a larger separation in mass from ν1,2. In view of the lack of information
about the absolute values of the mass states, two mass orderings are possible, ν3 can be either heavier or
lighter than ν1,2:

• m2
1 < m2

2 < m2
3 Normal ordering (NO).

• m2
3 < m2

1 < m2
2 Inverse ordering (IO).

There are several methods for the determination of neutrino mass ordering. In the following we summarize
each of them and present their current bounds on the neutrino mass scale.

i) Endpoint of beta spectrum

Beta decay experiments are based on the idea that non-vanishing neutrino masses cause kinematic effects
that are reflected in the electron spectrum, more specifically in its endpoint. Tritium

(
3H

)
is often used as

decaying nucleus in beta decay experiments

3H →3 He + e− + ν̄e. (3.31)

The decay spectrum depends in general on the mass of the effective eletron neutrino νe which is composed
of the three mass eigenstates and their masses

m2
νe

=

3∑
i=1

|Uei|
2m2

i = c2
13

(
m2

1c2
12 + m2

2s2
12

)
+ m2

3s2
13. (3.32)

The present bounds for the effective electron neutrino mass comes from the Mainz [106] and Troitsk [107]
experiments

mνe
<

{
2.30 eV (95% C.L.) MAINZ
2.05 eV (95% C.L.) TROITSK

(3.33)

The KATRIN experiment [109] expects to obtain a sensitivity of 0.2 eV at 90% confidence level.
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Chapter 3 Neutrino Physics

Figure 3.3: Effective Majorana neutrino mass mββ as function of the mass of mlight for the two mass ordering
schemes in contrast with the most competitive upper bounds [114].

ii) 0ν2β experiments

Neutrinoless double beta decays are only possible if neutrinos are Majorana particles. These decays are
lepton number violating processes of the type

(A,Z)→ (A,Z + 2) + 2e−, (3.34)

with no neutrinos emitted. This signal would allow to measure the combination

mββ =

3∑
i=1

U2
eimi = c2

13

(
m1c2

12 + m2s2
12e2iα

)
+ m3s2

13e2i(β−δ), (3.35)

where mββ is the first element of the light neutrino mass matrix in the flavor basis. These experiments
are particularly challenging. Furthermore, the extraction of mββ from a positive signal would have
large theoretical errors due to uncertaties in the computation of the nuclear matrix elements [113]. The
experiments with the most stringent bounds are currently GERDA [101], CUORE [102] and KamLAND-
Zen [103], using the isotopes 76Ge, 130Te and 136Xe, respectively.

mββ <


0.12 − 0.26 eV (90% C.L.) GERDA
0.11 − 0.52 eV (90% C.L.) CUORE

0.061 − 0.165 eV (90% C.L.) KamLAND-Zen
(3.36)

The ranges account for different theoretical calculations of the nuclear matrix elements. Figure 3.3 shows
the effective Majorana neutrino mass mββ as function of the mass of the lightest neutrino mlight. Taking
into account the current uncertainties on the neutrino mixing angles and phases for three neutrinos, the
red(blue) region corresponds to normal(inverted) ordering. The horizontal lines indicate the upper bounds
from the experiments in (3.36), where the disfavored value for the nuclear matrix element of each process
is assumed.

iii) Cosmology

Cosmological effects of massive neutrinos are present in the Cosmic Microwave Background (CMB)
and in the formation of Large Scale Structures (LSS) in the universe. Neutrinos that turn non-relativistic
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3.3 Neutrino parameters and experiments

Figure 3.4: Values of
∑

mν as function of the lightes neutrino mass for the two possible ordering schemes and the
two representative bounds on the sum of the neutrino masses from cosmology [114].

around the decoupling period contribute to the mass density of the universe. With their energy density
given by ρν ' nν

∑
mν, where nν is the neutrino number density and

∑
mν the sum of non-relativistic

neutrino masses, the total neutrino density today can be computed using measurements of the CMB
temperature [115]. Thus, one can obtain an upper bound for the sum of neutrino masses. Some
additional constraints to take into account are data from CMB lensing, Baryon Acoustic Oscillations,
Supernovae Ia luminosity distance and also direct measurements of the Hubble constant. Stronger
bounds are set by combining the available data on CMB and the LSS cosmological model. For different
scenarios [57, 116–121] the upper limits on the sum of neutrino masses range as∑

mν . 0.12 − 0.15 eV (95% C.L.). (3.37)

Figure 3.4 shows the sum of neutrino masses
∑

mν as a function of mlight, with m1 = mlight for normal
ordering represented in red and m3 = mlight for inverted ordering in blue. The (indistiguishable) width
of the lines correspond to the 3σ values of ∆m2

i j from table 3.2. The horizontal bands illustrate the two
upper limits given in Eq. (3.37). With stronger cosmological measurements

(∑
mν . 0.1 eV

)
the inverted

ordering can be ruled out.

iv) Neutrino oscillation facilities

Global fits to neutrino oscillation data from long-baseline and atmospheric neutrino experiments are
sensible to the neutrino mass ordering, since it is highly correlated to the true value of the δ CP phase. A
3.4σ preference in favor of NO is obtained by the global fit in [77]. Combining more precise data from
NOνA, T2K and SuperK experiments can lead to even higher sensitivities.

For a more in depth discussion on future prospects for the determination of neutrino mass ordering and
the absolute mass scale we suggest the review [114].
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3.4 Models for neutrino mass generation at tree-level

As we have pointed out in Sec. 3.1.1, the Weinberg operator is the lowest order operator that generates
Majorana neutrino masses. Throughout Sec. 3.3 we presented the up to date experimental data of neutrino
squared mass differences and mixing angles, and how several methods constrain the absolute neutrino
masses to be very small. In this section we will show a scheme that generates small neutrino masses
through the Weinberg operator described in Eq. (3.7) at tree level with renormalizable interactions. It
consists in adding a new heavy state to the SM, which acts as a messenger between the leptons and Higgs.
The heaviness of the new state is what enables neutrinos to get light masses. Such a mechanism receives
the name of seesaw [76, 122–126].
The idea around the seesaw mechanism is illustrated in the following. Assuming right-handed neutrinos
NR, the most general neutrino mass term involves the mass of Dirac mD defined in Eq. (3.2) and the
Majorana mass MR of the RH neutrinos NR. In the basis nT

L = (νL,N
c
R) the total mass term is expressed as

LmD+M
= −

1
2

nT
L CMn nL + H.c. (3.38)

= −
1
2

(
νL Nc

R
) (

0 mD
mT

D MR

) (
νc

L
NR

)
+ H.c.. (3.39)

Assuming mD � MR, the neutrino mass matrixMn can be block-diagonalized to obtain

WT
MnW '

(
mlight 0

0 mheavy

)
, (3.40)

with

W '
(

1 − 1
2 m†D(MRM†R)−1mD (M−1

R mD)†

−M−1
R mD 1 − 1

2 M−1
R mDm†D(M†R)−1

)
. (3.41)

Substituing the expression above in the Eq. (3.40) one finds mlight and mheavy in terms of mD and MR

mlight ≈ −mT
DM−1

R mD ≈
v2

2
yT
ν m−1

N yν, (3.42)

mheavy ≈ MR. (3.43)

The heavy masses are given by the eigenvalues of MR, whereas the masses of the light neutrinos are
given by the eigenvalues of the 3 × 3 matrix mlight , whose elements are suppressed by M−1

R . The order of
magnitude of the mass mD cannot surpass the electroweak scale 102 GeV, whereas the size of the mass
MR is not subject to any SM symmetry because NR is a singlet. Hence, MR can be much higher than mD
producing light neutrinos. The name seesaw, serves as a metaphore to visualize what happens in this
mechanism: while one mass goes up, another goes down.
The seesaw mechanism is classified in three types, depending on the kind of heavy state that induces the
effective vertex:

• Type-I seesaw: NR fermion singlet with Y=0.

• Type-II seesaw: ∆ scalar triplet with Y=1.

• Type-III seesaw: Σ fermion triplet with Y=0.

The type-I seesaw is essentially what we have explained. The other two types are detailed next.
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3.4 Models for neutrino mass generation at tree-level

Figure 3.5: Representation of tree level type-I, type-II and type-III seesaws.

Type-II seesaw

In the seesaw type II [124], a new SU(2) scalar triplet ∆ couples to the SM leptons as described by the
new Yukawa term

L∆ = −Y∆lcL∆lL + H.c. (3.44)

where Y∆ is a symmetric matrix. The SU(2) triplet ∆ can be represented in a 2 × 2 matrix by mapping
~∆ =

(
∆1,∆2,∆3

)
to the Pauli matrix basis ~σ = (σ1, σ2, σ3)

∆ =
1
√

2
~σ~∆ =

 ∆
+

√
2

∆
++

∆
0
− ∆

+

√
2

 . (3.45)

The elements ∆
++, ∆

+ and ∆
0 are defined as

∆
++

=
1
√

2
(∆1 − i∆2), ∆

+
= ∆3, ∆

0
=

1
√

2
(∆1 + i∆2), (3.46)

being their third component of isospin I3 = 1, 0 − 1 respectively. The new terms of the scalar potential
involving ∆ interactions are

V (H,∆) ⊃ m2
∆Tr

(
∆∆
†
)

+
(
µ∆H̃†∆†H + H.c.

)
. (3.47)

The parameter µ∆ breaks lepton number explicitly if ∆
0 acquires a VEV when EWSB takes place. In the

limit v � m∆, the VEV of ∆
0 is determined to be

〈∆
0
〉 ≡ v∆ ' −

µ∆v
2

2m2
∆

. (3.48)

Therefore, the neutrino mass is

mν = −2Y∆v∆ = Y∆

v2µ∆

m2
∆

. (3.49)

Comparing this result to the one obtained in Eq. (3.9) through the Weinberg operator, taking Λ = m∆,

one identifies
C

(5)
= Y∆

µ∆

m∆

. (3.50)
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Figure 3.6: Representation of tree-level inverse seesaw.

Given that the triplet scalar VEV contributes to the ρ parameter, 11 the v∆ is very well constrained by
electroweak precision tests to not be larger than ∼ 3 GeV [127].

Type-III seesaw

The type III seesaw [128] can be seen as an extension of type I, where a fermion triplet with zero
hypercharge is used instead of a singlet. The fermion triplet Σ is represented in matrix form as:

Σ =
1
√

2
−→σ ·
−→
Σ =

 Σ0√
2

Σ
+

Σ
−
−

Σ0√
2

 , (3.51)

where
Σ
±

=
1
√

2
(Σ1 ∓ iΣ2), Σ

0
= Σ3. (3.52)

The relevant renormalizable Lagrangian for the triplet Σ involves the Yukawa interaction with the leptons
and Higgs scalar as well as Σ mass term

LΣ = −YΣlLΣH̃ −
1
2

MΣΣ
c
Σ + H.c.. (3.53)

After EWSB, a neutrino mass relation similar to the one in type-I seesaw is found

mν ≈
Y2

Σv
2

MΣ

. (3.54)

The charged components of Σ
± are combined into a Dirac field E± with mass MΣ. Charged leptons mix

with E± giving rise to tree-level FCNC, making type-III seesaw more restricted than type-I.

Inverse seesaw

Contrary to the large mass scale needed in the standard seesaw mechanism to suppress neutrino masses,
in the inverse seesaw (ISS) [129–131] the energy scale of the NP is reduced, due to the suppresion
produced by a new parameter. For this scheme besides of the right-handed neutrinos NR included by
the standard seesaw, three SU(2) singlets S i are introduced. The mass terms of the neutral fields are
described in the following Lagangian

Lmn
= −νLmDNR − S LMRNR −

1
2

S LµS S c
L + H.c. (3.55)

11The electroweak ρ parameter is define as ρ ≡ m2
W/(m

2
Z cos2 θW ). In a model containing a new scalar with Y = 1, the

VEV of such field contributes to the mass of the W boson, affecting ρ. However, ρ is experimentally well measured to be
approximately 1, constraining the value of the new VEV.
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with mD being the Dirac mass term given in (3.2). In the basis nL ≡ (νL,N
c
R, S L)T , the neutrino mass

term reads
Lmn

= −
1
2

nT
LCMnnL + H.c., (3.56)

whereMn is a 9 × 9 mass matrix. Mn is represented in a 3 × 3 matrix form as

Mn =


0 mT

D 0
mD 0 MR
0 MT

R µS

 . (3.57)

The three lightest eigenstates ofMn correspond to the physical neutrinos. When the condition µS �

mD � MR is ensured, the diagonalization ofMn can be carried out through perturbative methods, leading
to the neutrino mass matrix approximated expression

mν ≈ mT
D

(
MT

R

)−1
µS M−1

R mD ≈
v2

2
yT
ν

(
MT

R

)−1
µS M−1

R yν . (3.58)

MR is still a large Dirac mass scale suppressing light neutrino masses. However, the energy scale is not
as large as in the seesaw case. This is due to the extra suppression coming from the Majorana parameter
µS . When µS → 0 the neutrino masses are zero and lepton number is restored. Thus, it is technically
natural to set µS to be very small [132], allowing to have yν ≈ O(1).

The seesaw was the first mechanism proposed to explain the tiny masses of neutrinos, and is still the
most popular. We have reviewed some of the most minimalist versions of seesaw at tree-level, however
one can go to higher orders for the realization of the Weinberg operator. For instance, at 1-loop level
one finds schemes such as the Zee model [133], in which neutrino masses have some extra suppresion.
This is due to the (natural) small coupling constant C(5) which is affected by a factor of 1/(4π)2 thanks to
the loop. Thus, one can achieve masses in agreement with neutrino data with the introduction of not so
heavy fields with masses of the order of TeV.
Overall, the Weinberg operator parameterizes a large class of models in which the common denominator
is the violation of lepton number by two units. Therefore, it can only generate Majorana neutrinos. A
way to test Majorana neutrino mass models is through their effects on charged lepton flavor violating
observables. This kind of analysis does not seem straightforward, though it can be facilitated by the
Casas-Ibarra parametrization which is described in the upcoming section.

3.5 Casas-Ibarra parametrization

Many model that induces Majorana neutrino masses generates a mass matrix for the light neutrinos that
is proportional to the Yukawa coupling product yT

ν yν. Furthermore, these models induce effects in the
charge lepton sector such as `α → `βγ decays 12 whose branching depends on the yν matrix. In order
to make predictions for these branching ratios, it is necessary to determine the most general form of yν,
compatible with neutrino oscillation data. A description for yν in terms of the neutrino mixing matrix U,
presented in Eq. (3.27), and the diagonal mass matrices of light mν and heavy MR Majorana neutrinos is
feasible in the type-I seesaw realization. This is displayed in the Casas-Ibarra parametrization [134, 135].
Without loss of generality, one usually chooses the basis with the leptonic Yukawa couplings y` and the

12Lepton Flavor Violating observables including `α → `βγ decays are discussed in Chap. 4.
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heavy neutrino mass matrix MR being diagonal, real and positive

M` = Diag(me,mµ,mτ), MR = Λ
−1
≡ Diag(M1,M2,M3). (3.59)

In this basis, Casas and Ibarra proposed an interesting parametrization of yν

yν = U∗
√

m̂ν R
√

Λ
−1. (3.60)

Here R is any complex orthogonal 3 × 3 matrix RT R = I3, where I3 is the 3 × 3 unit matrix, and m̂ν is
determined using U as in Eq. (3.28). It is straight forward to obtain

y†νyν =
√

Λ
−1 R† m̂νR

√
Λ
−1. (3.61)

Eq. (3.60) has the freedom to accommodate both neutrino spectra, the ordering NO or IO, and the form
of the complex R is the only parameter that depends on the mass ordering choice [135].
In Chap. 5 we will make use of an adapted parametrization 13 for the Yukawa couplings of a model that
generates neutrino masses at 1-loop, to fix the neutrino data parameters and explore the lepton flavor
violating phenomenology.

13The Casas-Ibarra parametrization can be generalized to be applied not only into seesaw type-I models, but to any Majorana
neutrino mass model by means of the Master parametrization [136].
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CHAPTER 4

Charged Lepton Flavor Violation

The imposition of individual lepton flavors being conserved in the neutral and charged sectors have
been proven violated, at least in the neutral sector, after the detection of neutrino oscillations. This has
established a clear need to construct physics beyond the SM, in which the lepton flavor symmetry is
broken, permitting not only neutrino flavor transitions, but also processes with charged lepton flavor
violation (cLFV). Processes with cLFV include `α → `βγ, `α → `β`γ ¯̀

σ, `α + X → `β + X and X → `α ¯̀
β,

where α, β, . . . ∈ {e, µ, τ} and X are states that carry no lepton flavor number.
Different models may lead to different rates for a given cLFV observable. For instance in the minimally
extended SM where a right-handed neutrino for each flavor is introduced, the process µ→ eγ takes place
as illustrated in Figure 4.3. The predicted branching ratio for this decay is [137–142]

Br(µ→ eγ) =
3α
32π

∣∣∣∣∣∣∣∣
∑

k=2,3

U∗µkUek
∆m2

k1

M2
W

∣∣∣∣∣∣∣∣
2

. 10−54, (4.1)

where Uαk are elements of the leptonic mixing matrix, ∆m2
k1 are the neutrino mass squared differences, α

is the fine structure constant, and MW is the mass of the W boson. In this example the rate is extremely
suppressed due to the small masses of neutrinos, making it totally inaccesible to any experiment.
Even though the rate of cLFV processes cannot be estimated model-independently, the adoption of an
effective field theory applied to (charged and neutral) LFV transitions, permits a model independent study
of NP interactions. This approach is discussed in Section 4.2.
Experimentally, numerous high-intensity facilities are dedicated to look for low-energy NP signals. For
many years the searches for cLFV have focused on the radiative process `α → `βγ. For radiative muon
decays, µ+

→ e+γ, searches date back to the 1940’s, when muons were considered to be mesons. The

Figure 4.1: CLFV process `α → `βγ in the minimal SM.
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Figure 4.2: The history of cLFV searches in muons [17].

Fermi theory predicted a branching ratio of BR
(
µ+
→ e+γ

)
∼ 10−4 [143]. However, this decay had been

searched in 1954 resulting in an upper limit of 2 × 10−5 [144], and improved to 7 × 10−7 by 1959 [145].
Accelerator experiments increased the evidence of muons not behaving like mesons. Given that muons
can decay into a neutrino-antineutrino pair, it was proposed that the neutrino associated with the muon
decay µ→ eνν̄, was a different particle than the neutrino associated with beta decay [146], in order to
overcome the non-observation of the radiative muon decay. This led to the conception of lepton flavor
number [68]. Research on µ → eγ continue up to date. Along with two other rare muon processes,
µ→ 3e decays and µ→ e conversion in nuclei, their experimental searches provide the most stringent
current bounds on cLFV, as well as the most promising future experimental sensitivities. Figure 4.2
shows the history of the branching ratios improvement for the three rare muon decays. The current status
of cLFV searches and future sensitivities are exhibit next.

4.1 Current experimental status and future projects

No observation of a flavor violating process involving charged leptons has ever been made. This has
been used by many experiments to set strong limits on the most relevant cLFV observables, usually
translated into stringent bounds on the parameter space of many new physics models. In what concerns
the radiative decay `α → `βγ, the experimental search is led by the MEG collaboration. This experiment
searches for the process µ → eγ and recently announced the limit BR(µ → eγ) < 4.2 × 10−13 [147].
The 3-body LFV decay µ → 3 e was also searched for long ago by the SINDRUM experiment [148],
which obtained the limit BR(µ→ 3 e) < 1.0 × 10−12, still not improved by any experiment after almost
30 years. Another µ − e LFV process of interest due to the existing bounds is µ − e conversion in nuclei.
Among the experiments involved in this search we may mention SINDRUM II, which searched for µ − e
conversion in muonic gold and obtained the impressive limit CR(µ − e,Au) < 7 × 10−13 [149]. Finally,
the current experimental limits for τ lepton observables are less stringent, with branching ratios bounded
to be below ∼ 10−8.
In addition to the active cLFV searches, some of them with planned upgrades, several promising upcoming
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LFV Process Present Bound Future Sensitivity

µ→ eγ 4.2 × 10−13 [147] 6 × 10−14 [18]
τ→ eγ 3.3 × 10−8 [160] ∼ 3 × 10−9 [155]
τ→ µγ 4.4 × 10−8 [160] ∼ 3 × 10−9 [155]
µ→ eee 1.0 × 10−12 [148] ∼ 10−16 [19]
τ→ µµµ 2.1 × 10−8 [161] ∼ 10−9 [155]

τ− → e−µ+µ− 2.7 × 10−8 [161] ∼ 10−9 [155]
τ− → µ−e+e− 1.8 × 10−8 [161] ∼ 10−9 [155]
τ→ eee 2.7 × 10−8 [161] ∼ 10−9 [155]

µ−,Ti→ e−,Ti 4.3 × 10−12 [162] ∼ 10−18 [163]
µ−,Au→ e−,Au 7 × 10−13 [149]
µ−,Al→ e−,Al 10−15

− 10−18

µ−,SiC→ e−,SiC 10−14 [26]

Table 4.1: Current experimental bounds and future sensitivities for the most important LFV observables.

experiments will join the effort in the next few years. 14 Although, the MEG experiment completed
data-taking in 2013, upgrades on the components of this experiment together with new components
give place to the MEG II detector, which will allow to reach a sensitivity to branching ratios as low as
6 × 10−14 [18]. Despite significant improvements are also expected for τ observables from searches in
B factories [155–158], the expected sensitivities are still less spectacular than those for µ observables.
Regarding the new projects, the most promising ones are expected in searches for µ → 3 e and µ − e
conversion in nuclei. The Mu3e experiment, which plans to start data taking soon, announces a sensitivity
for µ→ 3 e branching ratios of the order of ∼ 10−16 [19]. In case no discovery is made, this would imply
an impressive improvement of the current bound by 4 orders of magnitude. Regarding µ − e conversion
in nuclei, the competition will be shared by several experiments, with expected sensitivities for the
conversion rate ranging from 10−14 to an impressive 10−18. These include Mu2e [20–24], DeeMe[25,26],
COMET [27–29] and, in the long term, the future PRISM/PRIME [30].
Colliders can also play a relevant role in the search for cLFV. Data from LEP and LHC has allowed
to constrain cLFV decays of SM neutral bosons Z → `α`β and Higgs h → `α`β [159]. For reference,
in Tab. 4.1 we collect present bounds and expected sensitivities for the most popular low-energy LFV
observables.

4.2 Standard model effective field theory

Experimental bounds on cLFV transitions can be used to constrain NP constributions in a model-
independent way, by means of the effective approach [164, 165]. The SM is commonly assumed to be
merely an effective theory valid up to some scale Λ. NP enters in the energy scale above Λ and additional
dynamic degrees of freedom become relevant. The effective SM Lagrangian consists of a systematic
dimensional expansion in 1/Λ that respects the SM gauge symmetries and all operators are constructed
from SM fields. Besides, this effective Lagrangian must be reduced to the SM at low energies. The
reduction to the SM occurs via decoupling of the heavy particles with masses MZ � Λ in most of
beyond SM theories. Such decoupling at the perturbative level is allowed by the Appelquist-Carazzone

14See [17, 150–154] for recent reviews.
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Figure 4.3: CLFV processes generated from 6-dimensional operators.

theorem [166]. Higher-dimensional operators suppressed by powers of Λ appear as new contributions in
the effective SM Lagrangian

Leff = L
(4)
SM +

1
Λ

∑
k

C(5)
k O

(5)
k +

1

Λ
2

∑
k

C(6)
k O

(6)
k +

∑
n≥7

1

Λ
n−4 C(n)

k O
(n)
k . (4.2)

Here L(4)
SM is the usual renormalizable part of the SM Lagrangian containing operators up to dimension-4.

The unique Weinberg operator described in Sec. 3.1.1 makes its appearence inO(5)
k , dimension-6 operators

are denoted by O(6)
k , and C(n)

k stand for the corresponding dimensionless coupling constants, i.e. the
Wilson coefficients. It is possible to parameterize the NP effects at the electroweak scale in terms of
these operators and the associated Wilson coefficients. One can find the effective higher dimensional
operators in a model independent way. When choosing a specific model, the Wilson coefficients can
be calculated as a function of model parameters by matching the NP model under consideration on the
effective SM [167]. 15

As we know, the dimension-5 Weinberg operator provides neutrino mass terms and LFV in the neutrino
sector in the minimal SM. Beyond tree level, it can also cause cLFV (Fig. 4.3). However, the amount
of cLFV provided by the Weinberg operator is far below any foreseeable experimental capability (see
Eq. (4.1)). Hence, we turn to dimension-6 operators [168–171] looking for possible cLFV signals. The
low energy cLFV observables with the most stringent experimental current bounds on cLFV, as well as
the most near-future sensitivity (Table 4.1), are those listed below

• Neutrinoless radiative decay , i.e. `α → `βγ.

• Neutrinoless three-body decay, i.e. `α → 3`β.

• µ − e conversion in nuclei.

The aforementioned cLFV observables are generated via dimension-6 operators of the following type:

O
(6)
2`γ ∼

(
l̄ασ

µνeβ
)

H Bµν, (4.3)

O
(6)
4` ∼

(
l̄αΓS,V,T PL,Rlβ

) (
l̄γΓS,V,T PL,Rlδ

)
, (4.4)

O
(6)
2`2d,u ∼

(
l̄αΓS,V,T PL,Rlβ

) (
d̄γΓS,V,T PL,R dδ

)
,

(
l̄αΓS,V,T PL,Rlβ

) (
ūγΓS,V,T PL,R uδ

)
. (4.5)

Where PL,R = 1
2 (1 ∓ γ5) are the usual chirality projectors, and we have defined ΓS = 1, ΓV = γµ and

ΓT = σµν. Figure 4.3 depicts the realization of these operators for the case of muon decays. At low

15In analogy to the electroweak theory matching with the intermediate vector boson theory at low energies, Λ � MW .
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energies one can better use an effective Lagrangian which is not gauge invariant. Such a Lagrangian is
presented in Appendix A, and it gives rise to each of the aforementioned operators above. The description
of their branching ratios can be found in Appendix B.

4.3 Computational tools

Theoretical efforts for the study of processes with flavor transitions conglomerate numerous models,
with all kinds of symmetries and particle content. Given the current accuracy level delivered by the
experiments, it is necessary to analize the phenomenology of these models, in order to shed light to the
undelying structure of NP. The systematics study of NP scenarios can be very challenging. Nevertheless,
many of the required tasks can nowadays be automatized by computer tools such as SARAH, SPheno
or FlavorKit, making it possible to run precise calculations of flavor observables, and thus test our
theoretical expectations.

4.3.1 SARAH

A very useful computational tool for analyzing particle physics models is the Mathematica package
SARAH [172–176]. Despite the original concept of SARAH to tackle supersymmetric models only, im-
plementations of non-supersymmetric ones have been allowed after version 3. SARAH derives a lot
of analytical information about the given model. 16 It calculates all vertices, mass matrices, tadpoles
equations, 1-loop corrections for tadpoles and self-energies, and 2-loop renormalization group equations
(RGEs). Furthermore, SARAH can export these analytical expressions into LATEX files. Concerning nu-
merical calculations, SARAH can be use to generate the required input files for other high-energy physics
tools, of which the most popular are:

• SPheno: To compute the mass spectrum, decay rates and flavor observables [179, 180].

• MicrOmegas: To compute the dark matter relic density and other related observables [181–183].

• MadGraph: To run Monte Carlo simulations for collider studies [184].

4.3.2 SPheno

SPheno [179, 180] is a spectrum calculator written in Fortran. Similar to the origins of SARAH, the
SPheno code was created for the study of supersymmetric phenomenology. The development of SARAH
3made it possible to implement new supersymmetric and non-supersymmetric models in SPheno without
the need to write any Fortran code by hand. The modules created by SARAH for SPheno calculate the
full 1-loop and partially 2-loop corrected mass spectrum, branching ratios and decays widths of all states,
and many flavor and precision observables. The user only needs to define input values for the parameters
of the model of interest either at some high-energy scale (‘GUT’ version) or at the electroweak scale (low
scale version). 17

4.3.3 FlavorKit

The FlavorKit [185] functionality is an extension of SARAH for the study of flavor observables in models
beyond the SM. FlavorKit provides routines for the calculation of a large number of lepton and quark

16For a pedagogical overview about model implementation we recommend [177, 178].
17For instructions about how to create the GUT and low energy versions we refer to [177] and [178] respectively.
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flavor observables. These files can be easily edited/extended by the user to define his own operators and/or
observables. Generic expresions of the Wilson coefficients associated to 5- and 6-dimensional operators
are derived from all the contributing Feynman diagrams, making use of FeynArts/FormCalc [186–191].
Numerous tree and 1-loop topologies for processes of 2-fermions-1-boson and 4-fermions are considered
in the routines. For each topology the amplitudes with all possible generic insertions are included. In the
case of 1-loop diagrams, not only all possible particles in the loop are considered, but also all different
propagators for penguin diagrams are taken into account. Meaning that, besides the photonic penguins
(which are often considered to be dominant in many processes), also all Higgs, Z and -if existing- Z′

penguins are generated. In the same way, all possible combinations of box diagrams are also calculated.
An output with all the generic formulas for the Wilson coefficients is passed to SARAH, which generates
the Fortran code that allows to calculate numerically the values of these Wilson coefficients with
SPheno, and are then combined to calculate the observables.
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CHAPTER 5

Lepton Flavor Violation in the singlet-triplet
scotogenic model

Although the SM of particle physics is supported by a vast amount of experimental evidence, it is also
known to be incomplete due to its lack of solution for two central problems of modern physics: neutrino
masses and the DM of the universe. Several SM extensions aiming at a common explanation for these
two issues have been put forward in recent years. The scotogenic model, proposed by Ernest Ma in [192],
constitutes one of the most attractive proposals. In this model, the SM particle content is enlarged with
the introduction of a second scalar doublet and NN (with NN ≥ 2) singlet fermions, all charged under a
Z2 parity. This discrete symmetry forbids the usual tree-level contribution to neutrino masses, which are
induced at the 1-loop level, and gives rise to a stable state, a weakly-interacting dark matter candidate.
The phenomenology of this model has been studied in great detail, see [193–214], and several theoretical
aspects have been discussed in recent literature, such as renormalization group running effects [215–217]
as well as new model building directions [218–223].
In this work we will concentrate on a simple extension 18 of the minimal setup introduced in [192]: the
singlet-triplet scotogenic model [35]. In this variant of the scotogenic model, the fermion sector includes
the SU(2)L triplet Σ, which can mix with the singlet fermions via the VEV of a real scalar, Ω, also triplet
under SU(2)L. The most relevant features of the minimal model, radiative neutrino masses and a stable
dark matter candidate, are kept in this variant, while the singlet-triplet mixing allows one to interpolate
between pure singlet DM [192] and pure triplet DM [225], when the dark matter candidate is fermionic.
This leads to a richer phenomenology, in particular to better prospects in direct DM detection experiments
[35].

We study LFV in the singlet-triplet scotogenic model [37], in the spirit of previous works for the singlet
[206] and triplet [226] models. 19 We will show that the model contains large regions of parameter space
with observable LFV rates and hence will be probed in the near round of LFV experiments. Furthermore,
we will explore some aspects of the LFV phenomenology of the model, such as the relative weight of the
dipole operators with respect to other contributions to the LFV amplitudes, and determine that the most
promising experimental perspectives are found for the LFV 3-body decays µ → 3 e and for coherent
µ − e conversion in nuclei.

This chapter is organized as follows: in Sec. 5.1 we introduce the model whereas in Sec. 5.2 we obtain
approximate expressions for the observables of interest. Sec. 5.3 contains our phenomenological analysis

18See [224] for a general classification of scotogenic models leading to radiative neutrino masses and viable dark matter
candidates.

19See also [214] for a general study of LFV in scotogenic models with higher SU(2)L representations.
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generations SU(2)L U(1)Y Z2

H 1 2 1/2 +

η 1 2 1/2 -
Ω 1 3 0 +

lL 3 2 −1/2 +

`R 3 1 −1 +

N 1 1 0 -
Σ 1 3 0 -

Table 5.1: Matter content and charge assignment of the singlet-triplet scotogenic model.

of the model. Finally, we summarize our results and draw our conclusions in Sec. 5.4.

5.1 The singlet-triplet scotogenic model

We consider the model introduced in [35]. The matter content of the model, as well as the charge
assignment under SU(2)L, U(1)Y and Z2, is shown in Table 5.1. The quark sector, not included in this
table, is SM-like and has Z2 = +1. The new fields beyond the SM particle content include two fermions:
the singlet N and the triplet Σ, both with vanishing hypercharge and odd under the discrete Z2. Regarding
the new scalars, these are the doublet η, also odd under Z2, and the real triplet Ω. The SU(2)L doublets H
and η can be decomposed as

H =

(
H+

H0

)
, η =

(
η+

η0

)
, (5.1)

and can be identified with the usual SM Higgs doublet and a new inert doublet. Regarding the SU(2)L
triplets, Σ and Ω, they are decomposed using the standard 2 × 2 matrix notation as

Σ =

 Σ
0
√

2
Σ

+

Σ
−
− Σ

0
√

2

 , Ω =

 Ω
0
√

2
Ω

+

Ω
−
− Ω

0
√

2

 . (5.2)

With the charge assignment in Table 5.1, the most general SU(3)c × SU(2)L × U(1)Y, Lorentz and Z2
invariant Yukawa Lagrangian is given by

− LY = yαβe lα H `β + yαN lα η̃N + yαΣ lα η̃Σ + yΩ Σ Ω N + H.c. . (5.3)

Here we indicate the flavor indices α, β = 1, 2, 3 explicitly and denote η̃ = iσ2η
∗, as usual. Gauge

contractions are omitted for the sake of clarity. The Σ and N fermions have Majorana mass terms,

− LM =
1
2

MΣ Σ
c
Σ +

1
2

MN NcN + H.c. . (5.4)
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Finally, the scalar potential can be written as 20

V = −m2
HH†H + m2

ηη
†η +

λ1

2

(
H†H

)2
+
λ2

2

(
η†η

)2
+ λ3

(
H†H

) (
η†η

)
+ λ4

(
H†η

) (
η†H

)
+
λ5

2

[(
H†η

)2
+ H.c.

]
−

m2
Ω

2
Ω
†
Ω

+
λΩ

1

2

(
H†H

) (
Ω
†
Ω
)

+
λΩ

2

4
(Ω†Ω)2

+
λη

2

(
η†η

) (
Ω
†
Ω
)

+ µ1 H†Ω H + µ2 η
†

Ω η . (5.5)

5.1.1 Symmetry breaking and scalar sector

We will assume that the scalar potential in Eq. (5.5) is such that

〈H0
〉 =

v
√

2
, 〈Ω

0
〉 = vΩ , 〈η0

〉 = 0 , (5.6)

with v, vΩ , 0. These VEVs are determined by means of the minimization conditions

tH = −m2
H v +

1
2
λ1v

3
+

1
2
λΩ

1 vv
2
Ω −

1
√

2
vvΩ µ1 = 0 , (5.7)

tΩ = −m2
Ω vΩ + λΩ

2 v
3
Ω +

1
2
λΩ

1 v
2vΩ −

1

2
√

2
v2 µ1 = 0 , (5.8)

where ti ≡
∂V
∂vi

is the tadpole of vi. The VEVs v and vΩ break the electroweak symmetry and induce
masses for the gauge bosons,

m2
W =

1
4
g2

(
v2

+ 4 v2
Ω

)
, (5.9)

m2
Z =

1
4

(
g2

+ g′2
)
v2 . (5.10)

We note that the triplet VEV vΩ contributes to the W boson mass, thus receiving constraints from
electroweak precision tests. We estimate that this VEV cannot be larger than about 4.5 GeV (at 3σ).

The scalar spectrum of the model contains the Z2-even scalars H0, Ω
0, H± and Ω

±, and the Z2-odd
scalars η0 and η±. In the basis S = Re

(
H0 , Ω

0
)
, the mass matrix for the Z2-even neutral scalars is given

by

M
2
S =

 −m2
H + 3

2λ1v
2

+ 1
2λ

Ω
1 v

2
Ω −

1√
2
vΩ µ1 λΩ

1 vvΩ −
1√
2
v µ1

λΩ
1 vvΩ −

1√
2
v µ1 −m2

Ω + 1
2λ

Ω
1 v

2
+ 3λΩ

2 v
2
Ω

 . (5.11)

The lightest of the S mass eigenstates, S 1, can be identified with the SM Higgs boson with a mass
mS 1

= mHiggs ' 126 GeV, whereas the heaviest mass eigenstate, S 2, is a new heavy Higgs boson not

present in the SM. Regarding the Z2-even charged scalars, their mass matrix in the basis H± =
(
H± , Ω

±
)

20The Lagrangian in Eqs. (5.3), (5.4) and (5.5) differs from the one in Ref. [35] in two details: (i) some redundant terms in
the scalar potential have been removed and the remaining ones have been renamed, and (ii) some couplings and mass terms
have been normalized differently. The SU(2)L triplets Σ and Ω also have a different normalization, see Eq. (5.2).
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takes the form

M
2
H
± =

 −m2
H + 1

2λ1v
2

+ 1
2λ

Ω
1 v

2
Ω + 1√

2
vΩ µ1 + 1

4g
2v2ξW±

1√
2
v µ1 −

1
2g

2vvΩξW±

1√
2
v µ1 −

1
2g

2vvΩξW± −m2
Ω + 1

2λ
Ω
1 v

2
+ λΩ

2 v
2
Ω + g2v2

ΩξW±

 .
(5.12)

One of the H± mass eigenstates is the Goldstone boson that becomes the longitudinal component of the
W boson, whereas the other is a physical charged scalar. In what concerns the Z2-odd scalars η0,±, we
first express the neutral η0 field in terms of its CP-even and CP-odd components as

η0
=

1
√

2

(
ηR

+ i ηI
)
. (5.13)

The conservation of the Z2 symmetry implies that the ηR,I,± fields do not mix with the rest of scalars.
Their masses are given by 21

m2
ηR = m2

η +
1
2

(
λ3 + λ4 + λ5

)
v2

+
1
2
ληv2

Ω −
1
√

2
vΩ µ2, (5.14)

m2
ηI = m2

η +
1
2

(
λ3 + λ4 − λ5

)
v2

+
1
2
ληv2

Ω −
1
√

2
vΩ µ2, (5.15)

m2
η±

= m2
η +

1
2
λ3v

2
+

1
2
ληv2

Ω +
1
√

2
vΩ µ2 . (5.16)

We point out that the mass difference between the neutral η scalars is controlled by the λ5 coupling,
m2
ηR −m2

ηI = λ5 v
2, and thus vanishes if λ5 = 0. This will be relevant for the generation of neutrino masses,

as shown in Sec. 5.1.2.
Finally, we emphasize that the vacuum in Eq. (5.6) breaks SU(2)L × U(1)Y → U(1)Q but preserves

the Z2 discrete symmetry. As we will discuss below, this gives rise to the existence of a stable neutral
particle which may play the role of the dark matter of the universe.

5.1.2 Neutrino masses

Before discussing neutrino masses we must comment on the Z2-odd neutral fermions. The Z2-odd fields
Σ

0 and N get mixed by the Yukawa coupling YΩ and the non-zero VEV vΩ. In the basis
(
Σ

0,N
)
, their

Majorana mass matrix takes the form

Mχ =

(
MΣ yΩvΩ
yΩvΩ MN

)
. (5.17)

The mass eigenstates χ1,2 are determined by the 2 × 2 orthogonal matrix V(α),(
χ1
χ2

)
=

(
cosα sinα
− sinα cosα

) (
Σ

0

N

)
= V(α)

(
Σ

0

N

)
, (5.18)

such that
tan(2α) =

2 yΩvΩ
MΣ − MN

. (5.19)

21Although we provide analytical expressions for the masses in full generality, our analysis will assume CP conservation in
the scalar sector, allowing us to consider that ηR and ηI do not mix.
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νL νL

H0 H0

η0 η0

χ χc

λ5

Figure 5.1: 1-loop neutrino masses in the singlet-triplet scotogenic model. Here η0
≡

(
ηR, ηI

)
and χ ≡

(
χ1, χ2

)
.

The singlet-triplet scotogenic model generates Majorana neutrino masses at the 1-loop level. This is
shown in Fig. 5.1, which actually includes four loop diagrams, since η0

≡
(
ηR, ηI

)
and χ ≡

(
χ1, χ2

)
. The

resulting neutrino mass matrix can be written as 22

(mν)αβ =

2∑
σ=1

(
ihασ
√

2

) (
−ihβσ
√

2

) [
I(M2

χσ
,m2

ηR) − I(M2
χσ
,m2

ηI )
]

=

2∑
σ=1

hασ hβσ Mχσ

2 (4π)2


m2
ηR ln

(
M2
χσ

m2
ηR

)
M2
χσ
− m2

ηR

−

m2
ηI ln

(
M2
χσ

m2
ηI

)
M2
χσ
− m2

ηI

 , (5.20)

where h is a 3 × 2 matrix defined as

h =


y1

Σ√
2

y1
N

y2
Σ√
2

y2
N

y3
Σ√
2

y3
N

 · V
T (α) , (5.21)

and I(m2
1,m

2
2) is a Passarino-Veltman function evaluated in the limit of zero external momentum. We

note that m2
ηR = m2

ηI leads to vanishing neutrino masses due to an exact cancellation between the ηR and

ηI loops. This was indeed expected, since m2
ηR = m2

ηI implies λ5 = 0 and a definition of a conserved
lepton number would be possible in this case. Furthermore, this justifies the choice λ5 � 1, which is
natural in the sense of ’t Hooft [132], given that the limit λ5 → 0 increases the symmetry of the model.
It proves convenient to write the neutrino mass matrix in Eq. (5.20) as

mν = h Λ hT , (5.22)

22We correct this expression by including a factor of 1/2 missing in [35].
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where

Λ =

(
Λ1 0
0 Λ2

)
, Λσ =

Mχσ

2 (4π)2


m2
ηR ln

(
M2
χσ

m2
ηR

)
M2
χσ
− m2

ηR

−

m2
ηI ln

(
M2
χσ

m2
ηI

)
M2
χσ
− m2

ηI

 . (5.23)

A neutrino mass matrix as the one in Eq. (5.22) formally resembles that obtained in the standard type-I
seesaw with two generations of right-handed neutrinos. In this case we can make use of an adapted
Casas-Ibarra parameterization explained in Sec. 3.5, to obtain an expression for the Yukawa matrix h,

h = U∗
√

m̂ν R
√

Λ
−1 . (5.24)

Here R is a 3 × 2 complex matrix such that RRT
= I3, and the neutrino mass matrix is diagonalized as

Eq. (3.28), where U is the standard leptonic mixing matrix defined in Eq. (3.27). Similarly to the type-I
seesaw with two right-handed neutrinos, the singlet-triplet scotogenic model predicts a vanishing mass
for the lightest neutrino. The ordering NO or IO depends on the choice of R

R =

 0 0
cos γ sin γ
− sin γ cos γ

 for NO (m1 = 0) , (5.25)

R =

 cos γ sin γ
− sin γ cos γ

0 0

 for IO (m3 = 0) . (5.26)

We can finally make use of the previous expressions and write the Yukawa couplings h in terms of the
leptonic mixing matrix matrix U, the eigenvalues mi and the complex angle γ. In case of NO, one obtains

hα1 =
1√
Λ1

(
cos γ

√
m2 U∗α2 − sin γ

√
m3 U∗α3

)
, (5.27)

hα2 =
1√
Λ2

(
sin γ

√
m2 U∗α2 + cos γ

√
m3 U∗α3

)
, (5.28)

whereas for IO one finds

hα1 =
1√
Λ1

(
cos γ

√
m1 U∗α1 − sin γ

√
m2 U∗α2

)
, (5.29)

hα2 =
1√
Λ2

(
sin γ

√
m1 U∗α1 + cos γ

√
m2 U∗α2

)
. (5.30)

5.1.3 Dark matter in the model

The lightest state charged under the conserved Z2 parity is stable and hence, if electrically neutral, it
constitutes a standard weakly-interacting dark matter candidate. Therefore, in what concerns dark matter,
the singlet-triplet scotogenic model contains two distinct scenarios: (i) scalar dark matter, when the
candidate is the lightest neutral η state, ηR or ηI , and (ii) fermion dark matter, when the candidate is χ1,
the lightest χ state. Even though we will not be concerned about dark matter in this thesis, we find it
worth summarizing the main features of these two scenarios:
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ℓi

γ

ℓj

η+

χ ≡ V (α)
(
Σ0, N

)
ℓi

γ

ℓj

η0

χ− ≡ Σ−

Figure 5.2: Photon penguin diagrams leading to the dominant Wilson coefficients KL
1 and KR

2 .

• Scalar dark matter: In this case the dark matter phenomenology resembles that of the inert
doublet model [227] (see also [228–230] for some recent works on dark matter in the inert doublet
model). Since in this scenario dark matter production in the early universe is driven by gauge
interactions, there is no direct relation with LFV (driven by Yukawa interactions).

• Fermion dark matter: This scenario presents some of the most interesting features of the singlet-
triplet scotogenic model [35]. The phenomenology dramatically depends on the nature of the
dark matter candidate. In the two extreme cases this can be a pure SU(2)L singlet (when χ1 ≡ N)
or a pure SU(2)L triplet (when χ1 ≡ Σ), while in general it will be an admixture of these two
gauge eigenstates. When χ1 is mostly singlet, the dark matter phenomenology is determined
by Yukawa interactions and one expects a direct link between dark matter and LFV, as in the
minimal scotogenic model [211]. In contrast, the DM phenomenology of a mostly triplet dark
matter candidate is driven by the known gauge interactions. This case has little impact on LFV
and predicts a dark matter candidate with a mass of about ∼ 2.7 TeV in order to reproduce
the observed dark matter relic density. The parameter YΩ, which determines the N − Σ mixing,
interpolates between these two cases, in a way completely analogous to DM in R-parity conserving
supersymmetry.

5.2 LFV observables

5.2.1 Approximate expressions for the observables

We use the FlavorKit [185] functionality of SARAH [172–176] (see sec. 4.3) for the analytical computa-
tion of the LFV Wilson coefficients and observables. This allows us to automatically obtain complete
analytical results for the LFV observables as well as robust numerical routines to be combined with
SPheno [179,180]. For the conventions used in this analysis, the definition of the relevant LFV operators
and the generic expressions for the LFV observables we refer to Appendices A and B. Even though we
will make use of the complete analytical results for the numerical exploration of the phenomenology
of the model, we find it convenient to present simple approximate expressions for the observables of
interest.

Our numerical analysis reveals that the LFV phenomenology is mainly driven by two Wilson coeffi-
cients, both generated by photon penguin diagrams: the monopole KL

1 and the dipole KR
2 . Box diagrams

also lead to sizable contributions, mainly to the Wilson coefficients AV
LL, BV

LL and CV
LL, but we have found

41



Chapter 5 Lepton Flavor Violation in the singlet-triplet scotogenic model

them to be always subdominant compared to the photonic monopole and dipole contributions. Therefore,
we can obtain simple approximate expressions for the LFV observables in terms of only KL

1 and KR
2 .

The most relevant photon penguin diagrams in the singlet-triplet scotogenic model are shown in Fig.
5.2. The diagram with the neutral fermions χ ≡

(
χ1, χ2

)
running in the loop is common to the scotogenic

model [206], whereas the diagram with the charged Σ
− state is only present in the singlet-triplet variant.

This difference has an impact on the phenomenology, as we will see below. Let us first consider the
dipole coefficient KR

2 , which induces the radiative LFV decay `α → `βγ. It can be written as

KR
2 =

1

16π2

(
D0

+ D−
)
, (5.31)

where the contributions from the two diagrams in Fig. 5.2 are approximately given by
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Similarly, the monopole coefficient KL
1 can be split as

KL
1 =

1

16π2

(
M0

+ M−
)
, (5.34)

and the two contributions from the penguin diagrams in Fig. 5.2 are given by
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Here we have defined

ξi =
m2
χi

m2
η+

, ρ =
m2
χ−

m2
η0

, (5.37)
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and used m2
ηR ' m2

ηI ≡ m2
η0 . Finally, the loop functions appearing in these expressions are given by

F1(x) =
2 − 9x + 18x2

− 11x3
+ 6x3 log x

6(1 − x)4 , (5.38)

G1(x) =
−16 + 45x − 36x2

+ 7x3
+ 6(3x − 2) log x

6(1 − x)4 , (5.39)

F2(x) =
1 − 6x + 3x2

+ 2x3
− 6x2 log x

6(1 − x)4 , (5.40)

G2(x) =
2 + 3x − 6x2

+ x3
+ 6x log x

6(1 − x)4 . (5.41)

We find that in the limit MΣ → ∞ our analytical results are in good agreement with those obtained in the
scotogenic model [206]. 23 Finally, we emphasize that the numerical results discussed in the next section
are based on the full 1-loop evaluation of the LFV observables and not on these approximate expressions,
only presented to gain insight.

5.3 Phenomenological analysis

Our phenomenological analysis uses a SARAH-generated SPheno [179, 180] module for the numerical
evaluation of the LFV observables. We solve the tadpole equations for the squared mass terms m2

H
and m2

Ω and use an adapted Casas-Ibarra parameterization for neutrino masses to compute the Yukawa
couplings yN and yΣ. For this purpose, the results of the global fit to neutrino oscillation data [231]
will be used. Furthermore, given the little impact on the LFV phenomenology, we fix the following
parameters in the scalar potential,

λ2,3,4 = λΩ
1,2 = λη = 0.1 , λ5 = 10−8 , (5.42)

µ1 = 50 GeV , µ2 = 1 TeV . (5.43)

We have explicitly checked that these parameters only affect the LFV observables indirectly, due to
their influence on the scalar spectrum. The parameter λ5 does indeed have a strong impact on the LFV
observables, but only due to the scaling of the Yukawa couplings, yN and yΣ, induced via the neutrino
mass relation in Eq. (5.20). All our numerical results have been obtained with λ5 = 10−8, except those
for the τ lepton observables, obtained with λ5 = 10−10. The large value chosen for the trilinear coupling
µ2 ensures the conservation of the Z2 symmetry up to high energy scales [232]. We also fix vΩ = 1 GeV.
This choice leads to a negligible deviation from ρ = 1, thus respecting limits from electroweak precision
data. Finally, the doublet VEV v is fixed so that mW is correctly obtained, see Eq. (5.9), and the quartic
coupling λ1 so that the lightest CP-even state in the model has a mass compatible with that of the recently
discovered Higgs boson. This leaves us with four free model parameters,

yΩ , m2
η , MN , MΣ ,

as well as the usual free choices in the implementation of the Casas-Ibarra parametrization: the R matrix
angle γ, the Dirac CP-violating phase δ and Normal/Inverted Ordering for the light neutrino spectrum.

23Notice that the loop functions have been renamed with respect to [206].
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Figure 5.3: Contours of BR(µ→ eγ), BR(µ→ 3 e) and CR(µ − e,Al) in the mη-MN plane. Figures obtained with
fixed yΩ = 0.1 and MΣ = 500 GeV, see text for more details.

General predictions of the model

We will now explore some aspects of the LFV phenomenology of the singlet-triplet scotogenic model.
First of all, Fig. 5.3 shows contours of BR(µ→ eγ) (upper left panel), BR(µ→ 3 e) (upper right panel)
and CR(µ − e,Al) (lower panel) in the mη-MN plane, obtained with the setup introduced above and the
choices yΩ = 0.1, MΣ = 500 GeV, γ = δ = 0, normal ordering for the light neutrino spectrum and taking
best-fit values for the neutrino oscillation parameters. The first conclusion one can draw from this figure
is that the singlet-triplet scotogenic model will be probed in the next round of LFV experiments: one
easily finds parameter points where the three observables, BR(µ→ eγ), BR(µ→ 3 e) and CR(µ − e,Al),
are within the reach of the MEG and Mu3e experiments, respectively. In fact, the particular choice of
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Point 1 Point 2
yΩ 0.1 0.1

m2
η [GeV2] 2.5 · 105 2.5 · 105

MN [GeV] 500 500
MΣ [GeV] 800 300

BR(µ→ eγ) 4.7 · 10−13 1.3 · 10−15

BR(µ→ 3 e) 3.2 · 10−15 6.1 · 10−15

CR(µ − e, Al) 1.1 · 10−15 5.4 · 10−14

Table 5.2: Benchmark points, parameter values and LFV observables. In addition to the four input values in this
table, we take the parameter choices in Eqs. (5.42) and (5.43), use γ = 0, best-fit values for the neutrino oscillation
parameters, as obtained in [231], normal ordering for the light neutrino spectrum and δ = 0.

parameters made in this figure rules out low MN values (. 400 GeV) as they would imply a too large
µ → eγ rate, in conflict with the current bound set by the MEG experiment [233]. 24 In the case of
µ→ 3 e, the spectacular Mu3e sensitivity to branching ratios as low as ∼ 10−16 would allow one to probe
the complete mη-MN plane explored in Fig. 5.3, with mass values up to the TeV scale and even higher in
some cases. This also happens for µ − e conversion in Aluminum. In this observable, however, a strong
cancellation takes place for a narrow band of the mη-MN plane, where the resulting negligible conversion
rates cannot be probed in the near future. Qualitatively similar results are found for µ − e conversion
rates in other nuclei, where analogous cancellations take place as well.

Figure 5.3 also shows that in the long term the processes µ→ 3 e and µ − e conversion in nuclei will
be more stringent than µ → eγ. Currently, only the MEG experiment sets relevant constraints in the
explored mη-MN , ruling out a small portion with low MN values, while the current bounds for µ→ 3 e
and µ − e conversion in nuclei do not imply any relevant restrictions. Given the expected experimental
sensitivities in the search for these two observables, this fact will certainly change in the future. We find
that the reach of experiments such as Mu3e (in case of µ→ 3 e) and Mu2e or COMET (in case of µ − e
conversion in nuclei), clearly supersedes that of MEG, even after the planned upgrade.

Before moving to the discussion of the BR(µ→ eγ)/BR(µ→ 3 e) ratio, we would like to make some
additional comments about Figure 5.3. We have explicitly checked that our numerical results reproduce
the expected decoupling behavior, namely that all LFV observables go to zero when mη and MN,Σ, the
masses of the particles involved in their generation, go to infinity. However, this is not completely
apparent when looking at Figure 5.3. There are two reasons for this: (i) some regions of the parameter
space lead to cancellations among diagrams that strongly reduce some of the Wilson coefficients (see
below for details), and (ii) the fit to neutrino oscillation data that leads to an increase in the Yukawa
couplings when mη or MN,Σ increase.

The BR(µ → 3 e)/BR(µ → eγ) ratio

We also observe in Fig. 5.3 that for most points in the selected mη-MN plane, one obtains BR(µ→ eγ)�
BR(µ→ 3 e). However, this is not a general prediction of the model, as we proceed to discuss now. Let
us consider the benchmark points in Table 5.2. The results for the LFV observables have been obtained
making the same choices as for Fig. 5.3, but using specific values for m2

η, MN and MΣ. First, we observe

24The limit of MEG available at the time this analysis took place was 5.7 × 10−13, which is a little bit higher than the actual
value presented in Table 4.1.
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Figure 5.4: BR(µ→ eγ) as a function of MN for fixed values yΩ = 0.1, m2
η = 2.5 · 105 GeV2 and MΣ = 500 GeV.

The purple dots display the total branching ratio, whereas the pink and blue dots show partial results obtained with
only the D0 and D− contributions, respectively.

that the ratio
Rµe =

BR(µ→ 3 e)
BR(µ→ eγ)

, (5.44)

can vary by orders of magnitude between different benchmark points just by changing a single parameter,
MΣ. In fact, while point 1 predicts LFV rates within the reach of future experiments searching for
µ→ eγ, µ→ 3 e and µ− e conversion in nuclei, point 2 leads to a BR(µ→ eγ) below the foreseen MEG
sensitivity and can only be probed by µ→ 3 e and µ − e conversion in nuclei experiments. Moreover, we
note that only BR(µ→ eγ) varies substantially between point 1 and point 2, with a decrease of more than
two orders of magnitude, while the other µ − e flavor violating observables are slightly larger in point 2.

The strong dependence of the µ→ eγ rate on MΣ can be understood as follows. When MΣ < MN , as
in point 2, one expects the dominant LFV Feynman diagrams to be those with triplet fermions, Σ

0 and
Σ
−, running in the loop. Furthermore, when the mixing between singlet and triplet fermions is small

(α ' 0) one of the neutral χ states is mainly composed of Σ
0 and is mass degenerate with the charged

χ− ≡ Σ
−. In this case, a cancellation between the D0 and D− contributions in Eqs. (5.32) and (5.33) takes

place. Using these equations, it is straightforward to show that for α ' 0, the fermion triplet loops lead
to KR

2 ∝ F2
(
ξ1

)
− 2 G2 (ρ), both loop functions being positive. Therefore, one naturally expects to find

parameter points where this cancellation in the dipole coefficient is effective, leading to a reduction in the
µ→ eγ rate.

This is explicitly shown in Fig. 5.4, where we plot our numerical results for BR(µ→ eγ) as a function
of MN for the fixed values yΩ = 0.1, m2

η = 2.5 · 105 GeV2 and MΣ = 500 GeV. The purple dots display
the total branching ratio, whereas the pink and blue dots show partial results obtained with only the D0

and D− contributions, respectively. This figure has been obtained by allowing the neutrino oscillation
parameters to vary randomly within the preferred 3σ ranges found by the global fit of [231], which
explains the spread of the points. We observe that the D0 and D− contributions approach a common
value for large MN values, whereas the total branching ratio drops. This is due to the abovementioned
cancellation in the Σ

0-Σ− loops. For low MN values the singlet contributions to D0 dominate and the
cancellation in the triplet contributions is not relevant. However, as MN increases and the N contribution
to D0 gets smaller, the cancellation in the triplet contributions becomes visible. We point out that a
similar cancellation in the monopole coefficient takes place, again due to the relative sign between M0
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Figure 5.5: BR(`α → `βγ) as a function of the R matrix angle γ for MΣ = 300 GeV (left) and MΣ = 800 GeV
(right). The color code is as follows: (α, β) = (2, 1) in blue, (α, β) = (3, 1) in red and (α, β) = (3, 2) in black. See
text for more details.

and M−, see Eqs. (5.35) and (5.36). However, typically this cancellation has little impact on the LFV
observables which receive contributions from the monopole operator due to the interplay with the other
contributions (e.g. dipole).

LFV τ decays

So far we have concentrated on µ − e violating processes. Now we turn our attention towards LFV
processes involving the τ lepton. Given the worse experimental limits, these can only be phenomen-
ologically relevant when they have rates much larger than those for the µ lepton. For example, in the
benchmark points 1 and 2 presented above one finds branching ratios for the radiative decays τ→ `αγ,
with `α = e, µ, in the ∼ 10−13

− 10−12 ballpark, clearly below the expected experimental sensitivity in the
near future.

The results shown in Tab. 5.2 for points 1 and 2 were obtained with a vanishing R matrix angle γ. This
parameter has a direct impact on the Yukawa couplings yN and yΣ, see Eqs. (5.27) - (5.30), and can lead
to cancellations in the amplitudes of specific flavor violating transitions. This is illustrated in Fig. 5.5,
where we show our numerical results for BR(`α → `βγ) as a function of the R matrix angle γ (assumed
to be real for simplicity) for MΣ = 300 GeV (on the left) and MΣ = 800 GeV (on the right). The rest
of the parameters are fixed to the same values as in points 1 and 2, with the exception of a smaller λ5
coupling (λ5 = 10−10) in order to increase the resulting Yukawa couplings and get larger LFV rates. We
see in these figures that even though most points are experimentally excluded due to a µ→ eγ rate above
the MEG bound, for certain γ values a strong cancellation takes place, leading to a tiny BR(µ→ eγ) and
BR(τ→ eγ) ∼ 10−9

− 10−8 within reach of B factories.
Therefore, we conclude that the singlet-triplet scotogenic model can also be probed via τ observables.

However, the scenarios that would be experimentally explored in this way are not generic and require a
certain level of tuning in the Yukawa parameters in order to suppress the µ→ e rates.

5.4 Summary and conclusions

We have investigated the lepton flavor violating phenomenology of the singlet-triplet scotogenic model, a
well-motivated scotogenic neutrino mass model in which neutrinos acquire their masses at the 1-loop
level. The same symmetry that forbids the tree-level generation of neutrino masses stabilizes a weakly-
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interacting dark matter candidate, thus providing a natural solution for another fundamental problem of
current physics.

Our main findings can be summarized as follows:

• The model will be probed in the next generation of LFV experiments. In fact, we have found that
parts of the parameter space are already ruled out by µ→ eγ searches. This of course depends on
the value of the λ5 parameter, which sets the global size of the Yukawa parameters and is expected
to be naturally small due to its crucial role in the violation of lepton number.

• Currently, the most stringent LFV bound on the model is the one set by the MEG experiment
on BR(µ → eγ). However, this will soon change due to the impressive expected sensitivity in
the forthcoming experiments. Experiments such as Mu3e (searching for µ → 3 e) and Mu2e or
COMET (searching for µ− e conversion in nuclei) will soon probe larger portions of the parameter
space of the model.

• The operators with the largest contributions to the LFV amplitudes are the monopole and dipole
ones. These are induced by photon penguin diagrams with scotogenic states running in the loop.
Box diagrams have a subdominant role.

• One naturally finds points of the parameter space with BR(µ → 3 e), CR(µ − e, Nucleus) �
BR(µ→ eγ). This is caused by cancellations in the dipole coefficient which take place when the
dominant contributions are generated by Σ

0-Σ− loops. When this happens, MEG is usually unable
to constrain the model.

• The singlet-triplet scotogenic model can also be probed via τ observables, but the scenarios where
these have values close to the current or near future sensitivities require a certain tuning of the
Yukawa parameters. Nevertheless, this can be achieved by properly choosing the γ angle of the
Casas-Ibarra matrix R.

Finally, there are other ways to probe the parameter space of the singlet-triplet scotogenic model.
As already explained, scotogenic models have a potential interplay between DM physics and LFV in
scenarios with fermionic DM. In this case, the application of LFV bounds combined with the Planck
result for the DM relic density and constraints from direct DM detection experiments (an attractive
feature of the singlet-triplet scotogenic model), would help obtain very stringent constraints on the model
and, eventually, rule out large fractions of the parameter space. Regarding collider phenomenology, the Σ

and Ω triplets can be pair-produced in Drell-Yan processes at the LHC. In case of the Σ fermions, their
subsequent decays lead to final states including DM particles, hence to signatures with missing energy, in
a way analogous to the standard R-parity conserving supersymmetric signals [234].
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CHAPTER 6

Lepton Flavor Violation in a Z′ model for the b
→ s anomalies

In Section 4 LFV is pointed out as one of the most promising probes for NP searches. As observations of
neutrino oscillations confirm LFV in the neutral lepton sector, motivations to search for LFV obsevables in
the charged lepton sector emerge. Moreover, the deviation between the SM predictions and experimental
measurements of observables associated to semileptonic b → s processes give hints of Lepton Flavor
Universality violation. However, most of the models in the literature which account for such effects do
not explain the observed neutrino masses and mixings. It is the aim of this chapter to explore the LFV
phenomenology of a model that includes a non-universal interaction associated to the b→ s anomalies
and NP associated to the neutrino mass generation. An analysis of which of the aforementioned sources
of LFV possesses the most relevant effects is performed. The model under consideration is introduced
in [36]. This model includes a massive Z′ boson whose interactions with SM particles result in new
contributions that explain the anomalies in b → s transitions. For our purposes, we extend the model
with a non-trival embedding of neutrino masses [38].
The chapter is organized as follows. In Sec. 6.1 we briefly review Lepton Flavor Universality and the
current status of the b → s anomalies. In Sec. 6.2 we explain Z′ model building. In Sec. 6.3 we
introduce the model and discuss its most relevant features. Our setup for the phenomenological analysis
as well as our results are described in detail in Sec. 6.4. Finally, a summary of the results and conclusions
is drawn in Sec. 6.5.

6.1 Lepton Flavor Universality and the B-anomalies

In the SM, gauge bosons couple with the same strength to all three lepton families. As a consequence,
one expects the branching ratio of a weak process mediated by a SM gauge boson and leptons as final
states to be more or less the same no matter the lepton family. Deviations from this rule are only expected
for the tau lepton due to non-negligible mass effects.
In 2013 the LHCb collaboration reported several observables associated to semileptonic decays involving
b → s quark flavor transition. The measurements showed a decrease in many branching ratios of B
mesons decays with respect to the SM predictions [235], as well as anomalies in angular observables,
most notoriously in P′5 [236]. These anomalies persisted in the analysis of 2015 using the full LHC
dataset collected in run I [237]. LHCb improved the measurement of the branching ratio for B→ Kµµ at
the beginning of 2014. After a couple of months, hints of LFU violation sparked when RK , measured in
the dilepton mass range q2 from 1 to 6 GeV2, appeared to have a value lower than 1 [238]. RK represents
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Figure 6.1: SM contribution to flavor changing neutral currents of semileptonic decays of B mesons at loop level.

the ratio between B→ Kµ+µ− and B→ Ke+e− decays

RK(∗) =

∫ q2
max

q2
min

dΓ(B→K(∗)µ+µ−)
dq2 dq2

∫ q2
max

q2
min

dΓ(B→K(∗)e+e−)
dq2 dq2

. (6.1)

The SM predicts RK ≈ 1 to a very good accuracy; hence, the measurement of RK made by LHCb
represents a deviation of 2.6σ away from the SM [239].
Another test of LFU in B→ K∗`+`− decays was carried out by the Belle collaboration in 2016 [240,241].
The results of the analysis on the measurement of angular observables showed a discrepancy from the
SM prediction for P′5 in the muon modes with a local significance of 2.6σ, corroborating previews LHCb
results. 25 More indications of universality violation were reported by LHCb in 2017 [243], this time,
coming from B decays to K∗. The ratio RK∗ (6.1) was measured in two regions of the dilepton invariant
mass squared q2. The following expressions summarize the experimental hints in favor of the violation
of LFU

RK = 0.745+0.090
−0.074 ± 0.036 , q2

∈ [1, 6] GeV2 ,

RK∗ = 0.660+0.110
−0.070 ± 0.024 , q2

∈ [0.045, 1.1] GeV2 ,

RK∗ = 0.685+0.113
−0.069 ± 0.047 , q2

∈ [1.1, 6.0] GeV2 . (6.2)

It is worth mentioning that there are also anomalies in the case of b→ c quark transitions which were
first reported by BaBar in 2012 [244], and seen later by LHCb and Belle collaborations. However, for
this work we are only focusing in the anomalies coming from b → s transitions. Fig. 6.1 shows an
example to a SM contribution to quark flavor transitions for the case of neutral currents.

In order to interpret the available data on b→ s transitions it proves convenient to adopt an effective

25In March of 2019, an updated measured on the ratio RK was presented by the LHCb collaboration with a value of
RK = 0.846+0.060+0.016

−0.054−0.014 in the dilepton mass-squared region 1.1 < q2 < 6.0 GeV2/c4. This ratio is in agreement with the SM
prediction at the 2.5σ [242].
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field theory language. The effective Hamiltonian for b→ s transitions is

Heff = −
4GF
√

2
VtbV∗ts

e2

16π2

∑
k

(
Ck Ok + C′k O

′
k

)
+ H.c. . (6.3)

Here GF is the Fermi constant, e the electric charge and V the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. Ok and O′k are the effective operators that contribute to b → s transitions, and Ck and C′k their
Wilson coefficients. It is usually convenient to split the Wilson coefficients into the SM and the NP
contributions, Ck = CSM

k + CNP
k . In the following we will indicate their leptonic flavor indices explicitly.

The operators that will be relevant for our discussion are

O
`i` j

9 =
(
s̄γµPLb

) (
¯̀
iγ
µ` j

)
, O

`i` j

10 =
(
s̄γµPLb

) (
¯̀
iγ
µγ5` j

)
. (6.4)

Primed operators are obtained by replacing PL by PR in the quark current and `i, j = e, µ, τ are the three
lepton flavors. Several independent global fits have used data on b→ s transitions to constrain the Wilson
coefficients of these operators, following the model independent approach [245–253]. From these fits, a
wide range of NP scenarios emerge with significances higher rather than the SM. It is noticeable how
the favoured LFU-violating NP predominantly affects b → sµµ more than b → see. Moreover, it is
found that the semileptonic operator O9µ encloses the dominant NP contribution. This observation leads
to the associated Wilson coefficient C9µµ = CSM

9µµ + CNP
9µµ to play a central role in the explanation of the

b→ s anomalies. In order to improve the fits, a large negative contribution coming from CNP
9µµ is required,

typically of the order of 25% with respect to the SM value. The NP scenarios that properly accommodate
the experimental data with a single parameter are found to be

1.
(
CNP

9µµ = −C′9µµ,C
NP
10µµ = C′10µµ

)
,

2.
(
CNP

9µµ = −C′9µµ,C
NP
10µµ = −C′10µµ

)
,

3.
(
CNP

9µµ = −CNP
10µµ,C

′
9µµ = C′10µµ

)
,

4.
(
CNP

9µµ = −CNP
10µµ,C

′
9µµ = −C′10µµ

)
.

Such scenarios can be achieved for instance, in models with leptoquarks or in Z′ models with vector-like
fermions. For the purposes of this chapter we will focus on the third scenario which involves the pattern
CNP

9µµ = −CNP
10µµ. For this case, the global fit [246] estimates a value of

CNP
9µµ → [−0.88,−0.37] at 2σ. (6.5)

Furthermore, one may wonder about the implications of the NP in other FCNC processes that involve
mainly leptons. It has been pointed out that the violation of LFU generically implies LFV [31]. Although
there are several explicit counterexamples to this rule [32, 33], this connection does indeed exist in
most of the models introduced to explain the b → s anomalies. In fact, this connection may be used
to learn about neutrino oscillation parameters [34]. However, since many of these models do not
account for the observed neutrino masses and mixings, one may question whether the most relevant LFV
effects are generally induced by the non-universal interactions associated to the b → s anomalies or
by the NP associated to the generation of neutrino masses. Furthermore, even if the explanation to the
b→ s anomalies also involves LFV, the resulting rates could perhaps be too low to be observed by the
experiments taking place in the near future. It is the goal of this chapter to address these questions in a
particular model that involves couplings to a new gauge boson Z′.
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6.2 Z′ generalities

Several approaches have been considered in order to explain the b → s anomalies. One of the simple
ways to reconcile theory predictions with experimental data involves additional U(1)′ gauge symmetries
and associated Z′ gauge bosons.
The NP contribution coming from the effective operator O9 can be realized thanks to a massive Z′ boson.
The Z′ boson must have flavor violating couplings to quarks and also must couple differently to electrons
and muons. These features are embedded in the Lagrangian parametrized as [254, 255]

L ⊃ f̄iγ
µ
(
∆

fi f j
L PL + ∆

fi f j
R PR

)
f jZ
′
µ . (6.6)

In our setup, a left handed scenario with ∆
bs
L , 0, ∆

µµ
L , 0 and ∆

µµ
R = 0 will be considered, thus the rest

of the Z′ boson couplings to SM fermions will be set to zero.

6.2.1 Z′ and dark matter

Besides the flavor physics implications that models with Z′ bosons have, they can also prompt implications
for cosmology, since in many models they serve as mediators between the dark and visible sectors to
account for the dark matter of the Universe [36, 256–275]. The model introduced in [36] was the first NP
model addressing the b→ s anomalies with a dark sector. This is accomplished by adding the complex
scalar χ, with charges (1, 1, 0,−1) under SU(3)c × SU(2)L × U(1)Y × U(1)′. Assuming that this scalar
does not get a VEV, the breaking of the U(1)′ gauge symmetry leaves a remnant Z2 parity, under which χ
is odd. This mechanism [276–278] automatically stabilizes χ and makes it a valid dark matter candidate.
Furthermore, the heavy Z′ boson, crucial for the explanation of the b→ s anomalies, serves as a portal
between the SM and dark sectors. This establishes a non-trivial link between these two phenomenological
directions in the model. We refer to [36] for a detailed discussion of the dark matter phenomenology of
the model and to [279] for a recent review on the possible connection between the b→ s anomalies and
the dark matter of the Universe.

6.3 The model

We consider an extended version of the model introduced in [36] that also accounts for the existence of
non-zero neutrino masses. A sketch of this version of the model was presented in Sec. III.B of [36].

The gauge group of the model is SU(3)c × SU(2)L × U(1)Y × U(1)X, hence extending the SM gauge
symmetry with an additional U(1)X factor. The gauge coupling associated to this symmetry will be
denoted by gX and the gauge boson by Z′. Besides the usual SM fields, neutral under U(1)X, the
matter content of the model is composed by one generation of vector-like (VL) quark doublets and two
generations of vector-like lepton doublets

LL,R =

(
N
E

)
L,R

, QL,R =

(
U
D

)
L,R

. (6.7)

The model also includes the electroweak singlets φ and S and two generations of vector-like singlet
fermions F. All new fields are charged under U(1)X. The complete scalar and fermion particle content of
the model is given in Table 6.1. The number of new fermion generations has been chosen following the
principle of minimality. More generations are possible, but they are not required to accommodate the
solar and atmospheric neutrino mass scales at tree-level.
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generations SU(3)c SU(2)L U(1)Y U(1)X

H 1 1 2 1/2 0
φ 1 1 1 0 2
S 1 1 1 0 −4
qL 3 3 2 1/6 0
uR 3 3 1 2/3 0
dR 3 3 1 −1/3 0
lL 3 1 2 −1/2 0
eR 3 1 1 −1 0

QL,R 1 3 2 1/6 2
LL,R 2 1 2 −1/2 2
FL,R 2 1 1 0 2

Table 6.1: Scalar and fermion particle content of the model.

The new Yukawa terms in the model are

− LY = λQ QR φ qL + λL LR φ `L + y LL H FR + ỹ LR H FL + h S Fc
L FL + h̃ S Fc

R FR + H.c. , (6.8)

where λL is a 2×3 matrix, y and ỹ are 2×2 matrices and h and h̃ are 2×2 symmetric matrices. The λQ and
λL couplings are the only ones involving the SM fermions, and thus play a crucial role in the resolution
of the b→ s anomalies. Furthermore, the vector-like fermions Q, L and F have gauge invariant Dirac
mass terms

− Lm = mQ QLQR + mL LLLR + mF FLFR + H.c. . (6.9)

Both mL and mF are 2 × 2 matrices. The scalar potential of the model can be split as

V = VSM + ∆V . (6.10)

Here VSM = m2
H |H|

2
+
λ

2
|H|4 is the usual SM scalar potential. The new terms involving the U(1)X

charged scalars are

−∆V = m2
φ |φ|

2
+ m2

S |S |
2

+
λφ

2
|φ|4 +

λS

2
|S |4

+ λHφ |H|
2
|φ|2 + λHS |H|

2
|S |2 + λφS |φ|

2
|S |2 +

(
µ′ φ2S + H.c.

)
. (6.11)

We will assume that the minimization of the potential leads to non-zero VEVs for all scalars,

〈H0
〉 =

v
√

2
, 〈φ〉 =

vφ
√

2
, 〈S 〉 =

vS
√

2
. (6.12)

Here H0 is the neutral component of the SM Higgs doublet H. The φ and S fields will be responsible for
the spontaneous breaking of U(1)X, giving a mass to the Z′,

m2
Z′ = 4g2

X

(
v2
φ + 4v2

S

)
. (6.13)

In addition, vφ will induce mixings between the vector-like fermions and their SM counterparts thanks to
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φ HSH φ

ℓL LR FL FL LR ℓL

λT
L

y h yT λL

Figure 6.2: Neutrino mass generation. We note that the model under discussion provides a specific ultraviolet

completion to the dimension-8 operator Oν =
1

Λ
5
ν

``HHφφS pointed out in [36].

the λQ and λL Yukawa interactions in Eq. (6.8). As we will show below, this mixing plays a crucial role
in the phenomenology of the model.

6.3.1 Neutrino masses

The definition of a conserved lepton number is not possible if S gets a non-zero VEV. Indeed, 〈S 〉 =
vS
√

2
, 0 breaks lepton number, leading to Majorana neutrino masses. Note, however, that lepton number

conservation was actually enforced by the U(1)X gauge symmetry. For instance, Majorana mass terms
like Fc

LFL were forbidden. For this reason, the spontaneous breaking of lepton number does not lead to
the existence of a physical Goldstone boson, which is instead absorbed by the Z′ boson. In order to find
an expression for the light neutrino masses, one must diagonalize the complete 11 × 11 neutral fermion
mass matrix (Eq. (C.1)). In the basis N = {νL,N

c
R,NL, F

c
R, FL}, this matrix takes the form

MN =



0 − 1√
2
vφλ

T
L 0 0 0

− 1√
2
vφλL 0 mT

L 0 1√
2
v ỹ

0 mL 0 − 1√
2
v y 0

0 0 − 1√
2
v yT √

2 vS h̃ mT
F

0 1√
2
v ỹT 0 mF

√
2 vS h


. (6.14)

The diagonalization of this matrix can be performed in seesaw approximation by assuming vS h, vS h̃ �
v y, v ỹ, vφ λL � mL,F . 26 Importantly, we note that in the absence of the Yukawa couplings y and h, ỹ and
h̃ would not contribute to the generation of neutrino masses at leading order, participating only at higher
orders in perturbation theory. For this reason, we will take the simplifying assumption ỹ = h̃ = 0 in the
following. The resulting 3 × 3 mass matrix for the light neutrinos is found to be

mν '
v2v2

φvS

2
√

2
λT

L m−1
L ym−1

F h
(
m−1

F

)T
yT

(
m−1

L

)T
λL , (6.15)

where higher order terms in h � 1 have been neglected. A diagrammatic representation of the mechanism
for neutrino mass generation in this model is shown in Fig. 6.2.

A neutrino mass matrix as the one in Eq. (6.15) formally resembles that obtained in the inverse seesaw
[129]. Indeed, neutrino masses get suppresed due to the smallness of the hvS term, which allows for a

26The explicit diagonalization ofMN can be found in appendix C.
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Z ′

〈φ〉

〈φ〉〈φ〉

〈φ〉

bL

sL

µL

µL

Q L

Figure 6.3: Generation of O9 and O10. The mixing between the SM fermions and the VL ones induce semileptonic
four-fermion interactions.

low mass scale for the states that participate in the generation of neutrino masses. This justifies the choice
h � 1, which is natural in the sense of ’t Hooft [280], since the limit h→ 0 increases the symmetry of
the model protecting this choice against quantum corrections. 27

Given a specific texture for the λL Yukawa matrices, one can always find a matrix h that reproduces the
observed neutrino masses and mixing angles. This matrix can be easily derived by inverting Eq. (6.15),

h = v̄−5 mF y
−1 mL λ̄

T
L mν λ̄L mT

L

(
y−1

)T
mT

F , (6.16)

where λ̄L is a 3 × 2 matrix such that λLλ̄L = I2, I2 being the 2 × 2 unit matrix, and we have defined

v̄5
=
v2v2

φvS

2
√

2
. The neutrino mass matrix is diagonalized as Eq. (3.28) where U is the standard leptonic

mixing matrix (Eq. (3.27)).
We note that the similarity to the usual inverse seesaw mass matrix would also allow one to use an adapted
Casas-Ibarra parameterization [134], as previously done in [282–284]. In this case, one solves Eq. (6.15)
for the λL matrix, obtaining the general expression

λL = v̄−5/2 V†X D√X R D√mν
U†, (6.17)

where D√mν
= diag( √mνi

), D√X = diag
(√

X̂i

)
, with X̂i the eigenvalues of X = mT

L

(
y−1

)T
mT

F h−1 mF y
−1 mL,

and VX is the matrix that diagonalizes X as VXXVT
X = X̂. R is a 2 × 3 complex matrix such that RRT

= I2.

6.3.2 Solving the b→ s anomalies

The solution to the b→ s anomalies follows the same lines as in [36]. The spontaneous breaking of the
U(1)X gauge symmetry by the φ VEV induces mixings between the SM and VL fermions due to the λQ
and λL Yukawa couplings. Defining the basesDL,R = {d,D}L,R and EL,R = {`, E}L,R, the Lagrangian after
symmetry breaking includes the terms

− L ⊃ DLMDDR + ELMEER + H.c. . (6.18)

27We refer to [281] for a comprehensive exploration of possible inverse seesaw realizations.
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The 4 × 4 down-quark mass matrix is given by

MD =

 1√
2
vYd

1√
2
vφλ

T
Q

0 −mQ

 , (6.19)

whereas the 5 × 5 charged lepton mass matrix is

ME =

 1√
2
vYe

1√
2
vφλ

T
L

0 −mL

 , (6.20)

with the SM Yukawa couplings defined as Yd H qL dR and Ye H `L `R. These two fermion mass matrices
can be diagonalized by means of the following biunitary transformations

DL = Vd D̂L , DR = Ud D̂R , (6.21)

EL = Ve ÊL , ER = Ue ÊR , (6.22)

where Vd,e and Ud,e are unitary matrices and D̂L,R and ÊL,R denote the physical mass eigenstates. With
these definitions, the diagonal mass matrices M̂D and M̂E are obtained as M̂D = V†d MDUd and
M̂E = V†e MEUe, respectively.

The SM-VL mixing leads to the generation of Z′ effective couplings to the SM fermions. If these are
parametrized as Eq. (6.6), the Z′ − b − s and Z′ − µ − µ couplings, relevant for the explanation of the
b→ s anomalies, are given by

∆
bs
L = −2 gX

(
Vd

)∗
42

(
Vd

)
43 , (6.23)

∆
µµ
L = −2 gX

∑
k=4,5

(
Ve

)∗
k2

(
Ve

)
k2 . (6.24)

These couplings lead to a tree-level contribution to the four-fermion operators O9 and O10, as shown in
Fig. 6.3. In fact, since the SM fermions participating in the effective vertices are purely left-handed, the
operators O9 and O10 are generated simultaneously, with their Wilson coefficients fulfilling [255]

CNP
9µµ = −CNP

10µµ = −
∆

bs
L ∆

µµ
L

VtbV∗ts

(
Λv

mZ′

)2

, (6.25)

where we have defined

Λv =

 π
√

2GFα

1/2

' 4.94 TeV , (6.26)

with α = e2

4π the electromagnetic fine structure constant. With these ingredients at hand, it is straightfor-
ward to check that the model under discussion can reproduce the required value for CNP

9µµ found by the
global fits to b → s data. In our numerical analysis we will always consider parameter values that do
so. Furthermore, analogous operators with violation of lepton flavor are also induced. Generalizing Eq.
(6.24) to

∆
`i` j
L = −2 gX

∑
k=4,5

(
Ve

)∗
ki

(
Ve

)
k j , (6.27)
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one also has

CNP
9`i` j

= −
∆

bs
L ∆

`i` j
L

VtbV∗ts

(
Λv

mZ′

)2

. (6.28)

The CNP
9`i` j

LFV Wilson coefficients are the source of the B-meson LFV decays discussed in this work.

6.4 Phenomenological analysis

Just as in Sec. 5.2.1, our phenomenological analysis uses the FlavorKit functionality of SARAH in
combination with SPheno for the analytical and numerical computation of the purely leptonic LFV
observables. For the calculation of the B-meson LFV branching ratios we follow [285].

Let us now explain our parameter choices. Without loss of generality, the matrices mL and mF will be
taken to be diagonal. We will also further assume a diagonal form for the y matrix. Regarding the fit
to neutrino oscillation data, we will consider a specific structure for the λL matrix with

(
λL

)
i1 = 0, thus

forcing the matrix h to contain flavor-violating entries. The matrix h will be obtained by using Eq. (6.16).
One could also consider an alternative scenario with h = h̄ I3, so that the only source of flavor violation
is the matrix λL. However, such a general λL matrix would potentially lead to CNP

9ee and non-zero µ − e
flavor violating amplitudes, making this scenario a very constrained one. We found that in order to avoid
the stringent limits derived from flavor and, simultaneously, be compatible with neutrino oscillation data,
a strong fine-tuning would be required. For this reason, we have not explored this scenario any further.
Finally, we make the choice

(
λQ

)
1

= 0 in order to suppress the Z′ couplings to 1st generation quarks.
In what concerns the parameter ranges explored in the following analysis, we must take into account

constraints derived from direct searches at the LHC. These include searches for the vector-like fermions in
the model, as well as for the heavy Z′ boson that mediates the NP contributions to the flavor observables.
Regarding the Z′ boson, one may naively think that its production cross-section would be too low to
be observable at the LHC due to our choice

(
λQ

)
1

= 0. However, the Z′ can indeed be produced in pp
collisions due to the non-vanishing heavy quark content in the protons. Due to the large couplings to
muons required to explain the b→ s anomalies, it is expected to decay mainly into µ+µ− (and, optionally,
τ+τ− if the

(
λL

)
i3 couplings take large values). ATLAS [286] and CMS [287] have searched for a Z′

boson in the dimuon channel but the resulting limits are not very stringent, allowing for Z′ masses as
low as ∼ 100 GeV, see [288] for a recent analysis. The Z′ boson has also been searched for in the ditau
channel. When the Z′ boson belongs to a NP sector responsible for solving additional flavor anomalies
in b → c transitions, a requirement that we do not have in our setup, these searches imply mZ′ & 1
TeV unless the Z′ has a very large decay width [289]. Our setup does not correspond to any of these
specific scenarios and a dedicated study would be required in order to determine the actual limits on
the Z′ boson mass. Since this is beyond the scope of this thesis, we will adopt the conservative choice
mZ′ & 1 TeV in the following. The LHC collaborations have also searched for the vector-like fermions in
the model, which provide complementary collider bounds. The vector-like quarks are colored particles
and thus efficiently produced via QCD interactions at the LHC. This implies lower bounds on their mass
slightly above the TeV scale [290]. Since our setup works with vector-like quark masses above this scale,
the existing bounds can be easily satisfied. Finally, the vector-like leptons can also be searched for in
multilepton final states. The current limits are weaker than those for vector-like quarks and allow for
masses below the TeV [288]. These constraints will be taken into account in the numerical analysis that
follows.

We now proceed to present the main numerical results of our analysis.
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6.4.1 BR(B → Kτµ) vs BR(τ → 3 µ)

We first discuss the correlation between BR(B → Kτµ) and BR(τ → 3 µ) and how it can be used to
estimate an upper bound for BR(B→ Kτµ). 28 Assuming that the dominant contributions are induced by
the tree-level exchange of the Z′ boson (see below for a discussion on this point), the branching ratios for
the B→ Kτµ and τ→ 3 µ decays can be written as [285]

BR(B→ Kτµ) = BR(B→ Kτ−µ+) + BR(B→ Kτ+µ−) =

= 2 · 10−9 AKτµ

∣∣∣∣∣∣∣∆
bs
L ∆

τµ
L

VtbV∗ts

∣∣∣∣∣∣∣
2 (

Λv

mZ′

)4

, (6.29)

BR(τ→ 3 µ) =
m5
τ

768π3
Γτm

4
Z′

∣∣∣∆µµ
L ∆

τµ
L

∣∣∣2 , (6.30)

where mτ and Γτ are the tau lepton mass and decay width, respectively, and AKτµ = 19.6 ± 1.7. This
parameter has been obtained by combining the coefficients aKτµ + bKτµ, see [285], and adding the aKτµ
and bKτµ errors in quadrature. We note that although Ref. [292] provides slightly different numerical
values for these coefficients, they are perfectly compatible, in particular given the level of precision
required for our analysis. One can now combine these expressions with Eq. (6.25) to obtain

BR(B→ Kτµ)
BR(τ→ 3 µ)

= 1.7 · 107 TeV4


∣∣∣∣∆bs

L

∣∣∣∣
mZ′


4

1∣∣∣∣CNP
9µµ

∣∣∣∣2 . (6.31)

The ratio
∣∣∣∣∆bs

L

∣∣∣∣ /mZ′ is strongly constrained by Bs − Bs mixing, which in this model would be induced via

Z′ tree-level exchange. Allowing for a 10% deviation in the mixing amplitude, one finds [255] 29

mZ′∣∣∣∣∆bs
L

∣∣∣∣ & 244 TeV ⇒

∣∣∣∣∆bs
L

∣∣∣∣
mZ′

. 4 · 10−3 TeV−1 . (6.32)

Furthermore, the current experimental upper bound on BR(τ→ 3 µ) has been set by the Belle collabora-
tion, which obtained BR(τ→ 3 µ)max = 2.1 × 10−8 [161], whereas the preferred 2σ range obtained for
CNP

9µµ in the global fit [246] is [−0.88,−0.37]. With these ingredients at hand one can easily obtain the
largest branching ratio for the B→ Kτµ decay in this model, finding

BR(B→ Kτµ)max . 8 · 10−10 . (6.33)

This result is clearly below the current experimental limit, BR(B→ Kτµ) < 4.8 · 10−5 [294]. The main
reason behind this result is the stringent constraint from Bs − Bs mixing. However, we would like to
emphasize two points: (1) this is the largest BR(B→ Kτµ) that one expects when the Z′ boson has purely
left-handed couplings, as in the model under consideration, and (2) while in models with additional Z′

right-handed couplings cancellations in the Bs − Bs mixing amplitude are possible [285], increasing
BR(B → Kτµ)max beyond the value given in Eq. (6.33) would require a significant fine-tuning of the
parameters.

28See [291] for a scenario leading to correlations between BR(B→ Kτµ) and BR(τ→ 3 µ) and RK .
29The impact of stronger Bs − Bs mixing bounds has been recently explored in [293].
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Figure 6.4: Correlation between BR(τ→ 3µ) and BR(B→ Kτµ) for three different sets of parameters. This figure
has been obtained varying

(
λL

)
13 =

(
λL

)
22. The vertical dashed line corresponds to the Belle experimental bound

BR(τ→ 3 µ)max = 2.1 · 10−8 [161].

Figure 6.4 shows the correlation between BR(B→ Kτµ) and BR(τ→ 3 µ) for three specific parameter
choices. This figure has been obtained varying

(
λL

)
13 =

(
λL

)
22. The values of the model parameters in

the three different scenarios are:

• Green: gX = 0.155, vS = 10.6 GeV, mZ′ = 1592 GeV,
(
mL

)
11 =

(
mL

)
22 = 1904 GeV and(

λQ

)
2

=
(
λQ

)
3

= 0.0407.

• Blue: gX = 0.2, vS = 200 GeV, mZ′ = 1010 GeV,
(
mL

)
11 =

(
mL

)
22 = 1600 GeV,

(
λQ

)
2

=
(
λQ

)
3

=

0.055.

• Purple: gX = 0.4, vS = 34 GeV, mZ′ = 2330 GeV,
(
mL

)
11 =

(
mL

)
22 = 1007 GeV,

(
λQ

)
2

=
(
λQ

)
3

=

0.052.

We note that higher values of
(
λQ

)
2

=
(
λQ

)
3

would be excluded due to Bs − Bs mixing constraints.

The green band in Fig. 6.4 reaches BR(B→ Kτµ) ∼ 6 · 10−10, close to the upper bound estimated in Eq.
(6.33). As we will show next, the strong correlations found in our analysis can be broken by loop effects,
hence affecting the general conclusions derived from our phenomenological exploration. For instance,
in regions of parameter space where loop corrections cancel the tree-level results for BR(τ → 3 µ),
Eq. (6.31) would no longer hold and a larger BR(B → Kτµ) would be allowed. This would require a
fine-tuning of the masses and mixings in the charged lepton sector.

6.4.2 On the relevance of loop effects in BR(τ → 3 µ)

So far we have discussed tree-level predictions of the model. However, one may wonder whether loop
corrections might alter the results presented above. We have addressed this issue in Fig. 6.5, where we
show the ratio between the tree-level expression for BR(τ→ 3 µ) given in Eq. (6.30) and the complete
numerical result including 1-loop contributions as returned by SPheno,

Rτ3µ =
BR(τ→ 3 µ)tree-level

BR(τ→ 3 µ)1-loop
. (6.34)

59



Chapter 6 Lepton Flavor Violation in a Z′ model for the b→ s anomalies
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Figure 6.5: Behavior of the ratio Rτ3µ as a function of the gauge coupling gX . Several model parameters have been
randomly scanned over a wide range of numerical values, see text for details. The tree-level expression in Eq.
(6.30) and the complete numerical result including 1-loop corrections can be very different for gX & 0.4.

This plot has been obtained by randomly scanning in the following ranges:

0.05 < gX < 1.0

10 GeV < vS < 500 GeV

0.01 <
(
λQ

)
2

=
(
λQ

)
3
< 0.1

0.8 TeV <
(
mL

)
11 =

(
mL

)
22 < 2 TeV

1 TeV < mZ′ < 3 TeV

One can clearly see in Fig. 6.5 that while the tree-level expression in Eq. (6.30) and the complete
numerical result including 1-loop corrections are actually very similar for low values of gX , they can be
very different for gX > 0.4.

The impact of the loop corrections in τ→ 3 µ can be easily understood with the following considera-
tions. In fact, it is not surprising that loop effects can be as large as the tree-level ones in τ→ 3 µ. Fig.
6.6 shows two Feynman diagrams relevant for the calculation of the τ→ 3 µ amplitude. The diagram on
the left constitutes the dominant tree-level contribution, whereas the diagram on the right is one of the
dominant 1-loop contributions. Their contribution to the amplitude for external left-handed leptons can
be generically written as

Atree =
g2

X

m2
Z′

Ftree
(
Ve

)
, (6.35)

Aloop =
1

16π2

g2
X gZ``

m2
Z

FgX
loop

(
mE,Ve

)
, (6.36)

where gZ`` is the SM Z boson coupling to a pair of left-handed charged leptons and Ftree and FgX
loop are

two functions of the charged leptons (the five eigenstates) masses and mixings. Ftree only depends on
the mixings in Ve due the Z′ couplings to τµ and µµ, given in Eq. (6.27). In contrast, FgX

loop also depends
on the five charged lepton masses, mE, due to the corresponding loop function. We first note that for
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Figure 6.6: Feynman diagrams relevant for the calculation of the τ → 3 µ amplitude. On the left, the dominant
tree-level contribution is shown, whereas the diagram on the right is one of the dominant 1-loop contributions. We
note that the 1-loop diagram on the right should be accompanied by two diagrams with the Z boson line attached to
one of the external lepton legs.

Ftree ' FgX
loop, both contributions have comparable sizes, since

1

16π2

1

m2
Z

∼
1

m2
Z′

, for mZ′ ∼ TeV . (6.37)

Therefore, one would naively expect that loop effects in τ → 3 µ will be generically of a size that is
comparable to the tree-level ones. This is indeed what we find for large values of gX . Moreover, we note
that the 1-loop contributions may have a relative sign with respect to the tree-level ones, thus leading to
cancellations in the final amplitudes, as shown in Fig. 6.5. In contrast, this is not the case for low values
of gX (gX . 0.4). In this region of the parameter space we find that FgX

loop is strongly reduced, hence
suppressing loop contributions. This is due to the fact that, although FgX

loop does not depend explicitly on
gX , there is an indirect dependence on this gauge coupling. In order to keep mZ′ in the TeV ballpark for
low values of gX , one must introduce a large vφ VEV, see Eq. (6.13), and this in turn affects the charged
lepton masses and mixings as shown in Eq. (6.20). We have checked in detail that this is the reason
behind the negligible loop effects for gX . 0.4. However, we would like to point out that this behavior
is not to be generally expected and emphasize the relevance of loop effects for a proper evaluation of
BR(τ→ 3 µ) in Z′ models for the b→ s anomalies.

6.5 Summary and conclusions

The hints reported by the LHCb collaboration may be the first indications of a completely unexpected
New Physics sector with interactions that violate lepton flavor universality. In this chapter we have
explored an extension of the Z′ model of [36] with a non-trivial embedding of neutrino masses and
mixings. Our focus has been on the lepton flavor violating phenomenology of the resulting model,
motivated by theoretical arguments that link it to the breaking of lepton flavor universality [31].

The main conclusions of our phenomenological exploration can be summarized as follows:

• The additional degrees of freedom introduced to accommodate neutrino masses and mixings play
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a sub-dominant role in the lepton flavor violating predictions of the model, which are dominated
by the New Physics effects induced by the states responsible for the explanation of the b → s
anomalies.

• In most parts of the parameter space the rates for B→ Kτµ and τ→ 3 µ are strongly correlated.
This is simply due to the fact that both are dominated by tree-level Z′ boson exchange. In this case,
we have derived the upper limit BR(B → Kτµ)max . 8 · 10−10. This limit applies to all models
with purely left-handed Z′ couplings and can only be evaded by fine-tuning the contributions to
Bs − Bs mixing in models with both left- and right-handed Z′ couplings [285].

• Loop effects in τ → 3 µ may be comparable to the tree-level ones. This is due to the strong
suppression induced by the tree-level exchange of a TeV-scale Z′ boson, which is absent in many
1-loop contributions. In fact, this feature is expected in generic Z′ models for the b→ s anomalies,
although some regions of the parameter space of these models might deviate from this general
expectation.

Flavor processes are clearly the most direct test of the model under discussion and crucial contributions
from the Belle II experiment are expected in the long term [295]. However, the model can also be probed
in several complementary ways. Direct searches at the LHC can also provide an additional handle on the
model. One can have observable production rates for the vector-like lepton in the model, see [288] for
a recent work in this direction, or search for the mediator of the New Physics contributions, the heavy
Z′ boson, see for instance [289]. If the b → s anomalies and the violation of flavor universality are
finally confirmed, all these experimental approaches will be necessary to have a global picture of the new
dynamics that lies beyond the Standard Model.
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CHAPTER 7

Summary

In this thesis we have explored the lepton flavor violating phenomenology of two different SM extensions,
employing both analytical and numerical tools. The models we have studied address the generation of
small neutrino masses through different mechanisms. In Chapter 5 we presented the analysis for the
singlet-triplet scotogenic model. In this setup, neutrinos acquire non-zero Majorana masses at the 1-loop
level with scotogenic states running in the loop. Taking into account the data from neutrino oscillation
experiments, we found that the largest contributions to the LFV amplitudes come from the monopole
and dipole operators. For a certain setup, we scanned the parameter space of the LFV observables with
the most stringent experimental bounds: BR(µ → eγ), BR(µ → 3 e) and CR(µ − e,Al). Large part of
the parameter space of BR(µ→ eγ) is already ruled out by the MEG experiment. This outcome can be
changed when choosing a smaller value of the λ5 parameter, which is expected to be naturally small due
to its crucial role in the violation of lepton number.
For the model in Chapter 6 we tackle the b→ s transition anomalies. The addition of a U(1)X symmetry
implies the existence of an extra neutral gauge boson identified as the Z′ boson. Including vector-like
leptons and quarks we obtain effective interactions between the SM particles and the Z′ boson, resulting
in new contributions that explain the anomalies in b → s transitions and generate neutrino masses at
tree-level. Given a specific texture for the λL Yukawa matrices that allows for flavor-violating entries, we
found a matrix h that reproduces the observed neutrino masses and mixing angles. However, the values
of the entries of h play a sub-dominant role in the LFV predictions of the model. The most stringent
constraint comes from Bs − Bs mixing, which strongly affects the values of the Wilson coeficients that
explain the b→ s anomalies. The tree-level Z′ boson exchange is the dominant contribution to B→ Kτµ
and τ→ 3 µ. Such strong correlation allowed us to derived the upper limit BR(B→ Kτµ)max . 8 · 10−10.
This limit applies to all models with purely left-handed Z′ couplings.

Before a significant breakthrough takes place on the theoretical side, the phenomenological approaches
will keep playing a crucial role in interpreting new experimental data on quark mixing, CP violation, and
neutrino oscillations. They are expected to provide useful hints towards discovering the full dynamics
that lies beyond the Standard Model.
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APPENDIX A

General LFV Lagrangian

The general LFV Lagrangian can be split into different pieces as 30

LLFV = L``γ +L4` +L2`2q . (A.1)

The first term is the ` − ` − γ interaction Lagrangian, which generally leads to the following amplitude

T``γ = uβ
[
q2γµ

(
KL

1 PL + KR
1 PR

)
+ im`α

σµνqν
(
KL

2 PL + KR
2 PR

)]
uα. (A.2)

Here e is the electric charge, q is the photon momentum, PL,R = 1
2 (1∓γ5) are the usual chirality projectors

and the charged lepton spinors are denoted by uα,β. We omit flavor indices in the Wilson coefficients
for the sake of clarity. The first and second terms in Eq. (A.2) are usually called monopole and dipole
contributions, respectively. Notice that we have singled out the photonic contributions, not included in
other vector operators. On the contrary, Z- and Higgs boson contributions have been included whenever
possible.

The most general 4-lepton interaction Lagrangian compatible with Lorentz invariance can be written
as

L4` =
∑

I=S ,V,T
X,Y=L,R

AI
XY

¯̀
βΓIPX`α ¯̀

δΓIPY`γ + H.c. , (A.3)

where we have defined ΓS = 1, ΓV = γµ and ΓT = σµν and `α,β,γ,δ denote the lepton flavors. Finally, the
last piece of Eq. (A.1) is the general 2`2q 4-fermion interaction Lagrangian, given by

L2`2q = L2`2d +L2`2u (A.4)

where

L2`2d =
∑

I=S ,V,T
X,Y=L,R

BI
XY

¯̀
βΓIPX`αd̄γΓIPYdγ + H.c. (A.5)

L2`2u = L2`2d

∣∣∣
d→u, B→C , (A.6)

and we have used dγ to denote the d-quark flavor.

30We closely follow the notation and conventions used in FlavorKit, see [185].
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APPENDIX B

Generic expressions for the LFV observables

B.1 `α → `βγ

The radiative decays `α → `βγ only receive contributions from the dipole operators. The decay width is
given by [296]

Γ
(
`α → `βγ

)
=
αm5

`α

4

(
|KL

2 |
2

+ |KR
2 |

2
)
, (B.1)

where α is the electromagnetic fine structure constant.

B.2 `α → 3 `β

In this case, in addition to the standard dipole contributions, the decay width receives contributions from
the monopole operators in Eq. (A.2) and from the 4-lepton operators in Eq. (A.3). The resulting decay
width can be written as [185]

Γ
(
`α → 3`β

)
=

m5
`α

512π3

e4
(∣∣∣KL

2

∣∣∣2 +
∣∣∣KR

2

∣∣∣2) 16
3

log
m`α

m`β

−
22
3

 (B.2)

+
1
24

(∣∣∣AS
LL

∣∣∣2 +
∣∣∣AS

RR

∣∣∣2) +
1
12

(∣∣∣AS
LR

∣∣∣2 +
∣∣∣AS

RL

∣∣∣2)
+

2
3

(∣∣∣ÂV
LL

∣∣∣2 +
∣∣∣ÂV

RR

∣∣∣2) +
1
3

(∣∣∣ÂV
LR

∣∣∣2 +
∣∣∣ÂV

RL

∣∣∣2) + 6
(∣∣∣AT

LL

∣∣∣2 +
∣∣∣AT

RT

∣∣∣2)
+

e2

3

(
KL

2 AS ∗
RL + KR

2 AS ∗
LR + c.c.

)
−

2e2

3

(
KL

2 ÂV∗
RL + KR

2 ÂV∗
LR + c.c.

)
−

4e2

3

(
KL

2 ÂV∗
RR + KR

2 ÂV∗
LL + c.c.

)
−

1
2

(
AS

LLAT∗
LL + AS

RRAT∗
RR + c.c.

)
−

1
6

(
AS

LRÂV∗
LR + AS

RLÂV∗
RL + c.c.

)]
.

This expression combines the contributions from monopole operators with those of 4-lepton operators of
vectorial type,

ÂV
XY = AV

XY + e2KX
1 (X,Y = L,R) , (B.3)
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and neglects the mass of the leptons in the final state, with the exception of the dipole contributions KL,R
2 ,

where an infrared divergence would otherwise occur due to the presence of a massless photon propagator.

B.3 µ − e conversion in nuclei

In coherent µ − e conversion in nuclei, only the scalar and vector operators in Eqs. (A.2), (A.5) and
(A.6) contribute. This includes photonic monopole and dipole operators, supplemented with the standard
photon vertices with the up- and down quarks, as well as 2`2q 4-fermion operators. They induce the
effective µeqq couplings

gLV(q) =

√
2

GF

[
e2Qq

(
KL

1 − KR
2

)
−

1
2

(
CVLL
``qq + CVLR

``qq

)]
, (B.4)

gRV(q) = gLV(q)

∣∣∣
L→R

, (B.5)

gLS (q) = −

√
2

GF

1
2

(
CS LL
``qq + CS LR

``qq

)
, (B.6)

gRS (q) = gLS (q)

∣∣∣
L→R

, (B.7)

where Qq is the quark electric charge (Qd = −1/3, Qu = 2/3) and CIXK
``qq = BK

XY

(
CK

XY

)
for d-quarks

(u-quarks), with X = L,R and K = S ,V . These couplings at the quark level must be dressed to obtain the
effective couplings at the nucleon level. One finds

g(0)
XK =

1
2

∑
q=u,d,s

(
gXK(q)G

(q,p)
K + gXK(q)G

(q,n)
K

)
, (B.8)

g(1)
XK =

1
2

∑
q=u,d,s

(
gXK(q)G

(q,p)
K − gXK(q)G

(q,n)
K

)
, (B.9)

where the G(q,p)
K and G(q,n)

K numerical coefficients were computed in [297] and given in [185]. For an
improved calculation of the scalar coefficients we refer to [298]. Finally, the conversion rate, normalized
to the standard muon capture rate Γcapt, is given by [165]

CR(µ − e,Nucleus) =
pe Ee m3

µ G2
F α

3 Z4
eff F2

p

8 π2 Z Γcapt

×

{∣∣∣∣(Z + N)
(
g(0)

LV + g(0)
LS

)
+ (Z − N)

(
g(1)

LV + g(1)
LS

)∣∣∣∣2 +∣∣∣∣(Z + N)
(
g(0)

RV + g(0)
RS

)
+ (Z − N)

(
g(1)

RV + g(1)
RS

)∣∣∣∣2} . (B.10)

Z and N are the number of protons and neutrons in the nucleus under consideration and Zeff is its effective
atomic charge [299]. Furthermore, GF is the Fermi constant, Fp is the nuclear matrix element and pe and
Ee ( ' mµ) are the momentum and energy of the electron.
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APPENDIX C

Diagonalization of 11 × 11 neutrino mass matrix

In Sec. 6.3.1 we introduced the 11 × 11 mass matrixMN of the neutral leptons of a model to address the
b→ s anomalies. In this Appendix we explain the procedure we took to find the leading order expression
for the mass matrix of the three light neutrinos which are identified as the three lightest eigenvalues of
MN . In Eq. (6.14)MN was expressed in a simplified form where λL represents a 2 × 3 matrix, y, mL,
mF and h are 2 × 2 matrices. Hence, the explicit expression for the 11 × 11 matrix is 31



0 0 0 −
vφλL11√

2
−
vφλL21√

2
0 0 0 0 0 0

0 0 0 −
vφλL12√

2
−
vφλL22√

2
0 0 0 0 0 0

0 0 0 −
vφλL13√

2
−
vφλL23√

2
0 0 0 0 0 0

−
vφλL11√

2
−
vφλL12√

2
−
vφλL13√

2
0 0 mL11

mL21
0 0 0 0

−
vφλL21√

2
−
vφλL22√

2
−
vφλL23√

2
0 0 mL12

mL22
0 0 0 0

0 0 0 mL11
mL12

0 0 −
vy11√

2
−
vy12√

2
0 0

0 0 0 mL21
mL22

0 0 −
vy21√

2
−
vy22√

2
0 0

0 0 0 0 0 −
vy11√

2
−
vy21√

2
0 0 mF11

mF21

0 0 0 0 0 −
vy12√

2
−
vy22√

2
0 0 mF12

mF22

0 0 0 0 0 0 0 mF11
mF12

√
2 vS h11 −

vS (h12+h21)
√

2

0 0 0 0 0 0 0 mF21
mF22

−
vS (h12+h21)
√

2

√
2 vS h11


= MN . (C.1)

MN is a symmetric matrix that can be diagonalized via UT
MNU = diag(m1, ...,m11), where U is a

unitary matrix. Using the Hermitian combinationM†
N
MN

diag
(
m2

1, ...,m
2
11

)
=

(
UT
MNU

)† (
UT
MNU

)
= U†M†

N
MN U, (C.2)

U is the same matrix that diagonalizes both cases. Finding a complete analytical expression for the
11×11 matrix U using the eigenvalue equation UT

MNU is highly non trivial. However, one can compute
a matrix U that diagonalizesM†

N
MN allowing the use of perturbation theory with an inverse seesaw

31With ỹ and h̃ set to zero.
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approximation [281]. In the followingM†
N
MN is taken in its 5 × 5 form. Assuming the ISS condition

vS h � v y, vφ λL � mL,F ,MN =M0 + ∆M is split, whereM0 is the zeroth order matrix and ∆M is the
perturbation 32

MN =


0 −vφλ

T
L/
√

2 0 0 0
−vφλL/

√
2 0 mT

L 0 0
0 mL 0 −vy/

√
2 0

0 0 −vyT/
√

2 0 mT
F

0 0 0 mF 0

︸                                                                      ︷︷                                                                      ︸
M0

+


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0

√
2vsh

︸                           ︷︷                           ︸
∆M

.

(C.3)
The squared mass matrix can be written as

M
†

N
MN =M

†

0M0︸  ︷︷  ︸
M2

0

+ ∆M
†
M0 +M

†

0∆M︸                   ︷︷                   ︸
M2

I

+ ∆M
†
∆M︸     ︷︷     ︸

M2
II

. (C.4)

Expanding the eigenvalue equation (C.2) in series of powers(
M2

0 + M2
I + M2

II

) (
U(0)

+ U(1)
+ U(2)

+ ...
)

= diag
(
m2
ν, ...,m

2
5

) (
U(0)

+ U(1)
+ U(2)

+ ...
)
. (C.5)

The zeroth order components for eigenvector X(0)
i and eigenvalues ω(0)

i with i = 1, ...5 are the ones of
the squared zeroth order mass matrix M2

0 . The first order correction to the eigenvalues ω(1)
i comes from

the diagonalization of M2
I using the unperturbed basis formed by X(0)

i . One obtains the second order
contribution ω(2)

i diagonalizing M2
II with the zeroth order eigenvectors plus a term that involves the first

order eigenvectors X(1)
i ,

ω(0)
i = X†(0)

i M2
0 X(0)

i ,

ω(1)
i = X†(0)

i M2
I X(0)

i ,

ω(2)
i = X†(0)

i M2
I X(1)

i + X†(0)
i M2

II X(0)
i , for i = 1, ..., 5 . (C.6)

The zeroth order eigenvalues ω(0)
i are calculated

ω(0)
1 = 0, (C.7)

ω(0)
2,3 =

1
2

m2
F + m2

L +
v2

2
y2

+
v2
φ

2
λ2

L −

√√√m2
F + m2

L + y2
+
v2
φ

2
λ2

L


2

− 4

m2
Fm2

L +
v2
φ

2
m2

F λ
2
L +

v2 v2
φ

4
λ2

Ly
2


 ,

ω(0)
4,5 =

1
2

m2
F + m2

L +
v2

2
y2

+
v2
φ

2
λ2

L +

√√√m2
F + m2

L + y2
+
v2
φ

2
λ2

L


2

− 4

m2
Fm2

L +
v2
φ

2
m2

F λ
2
L +

v2 v2
φ

4
λ2

Ly
2


 ,

where the first eigenvalue ω(0)
1 corresponds to a 3 × 3 matrix with all its elements equal to zero. This

matrix is identified as the zeroth order perturbative contribution to the light neutrino masses, thus we are

32The perturbative term violates lepton number.
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only interested on finding the non-zero contributions up to second order of the lightest eigenvalues

m2
ν ' ω

(0)
1 + ω(1)

1 + ω(2)
1 . (C.8)

Given the degeneracy between ω(0)
2,3 and ω(0)

4,5 the eigenvectors X′(0)
2,3 and X′(0)

4,5 are not independent, these

eigenvectors form a basis U′(0) under which M2
I is not diagonalized. Substituting X(0)

i =
3∑

j=2
ai j X′(0)

j for

i = 2, 3 and X(0)
i =

5∑
j=4

ai j X′(0)
j for i = 4, 5 the system of equations to find the new basis U(0) is solved

X†(0)
i M2

I X(0)
j = 0, X†(0)

i X(0)
j = 1 i , j. (C.9)

Under the new basis formed by X(0)
i the degeneracy between the eigenvalues is lifted. Using the rotated

U(0), we find the first order eigenvalue ω(1)
1 to be zero

ω(1)
1 = X†(0)

1 M2
I X(0)

1 = 0. (C.10)

To obtain the second order contribution term ω(2)
1 according to Eq. (C.6) the first order correction to the

eigenvector X(1)
1 is needed. X(1)

1 is given by:

X(1)
1 =

5∑
i=2

X†(0)
i M2

I X(0)
1

ω(0)
1 − ω

(0)
i

X(0)
i =



0

−

vsv
2vφ
2 h mF mLy

2λL v2 v2φ4 y2λ2
L+m2

F

m2
L+

v2φ
2 λ

2
L

3/2

0

−

vsvvφ
√

2
h mFyλL

m2
L+

v2φ
2 λ

2
L

 v2 v2φ4 y2λ2
L+m2

F

m2
L+

v2φ
2 λ

2
L

3/2

0



. (C.11)

We calculate the second order contribution to be

ω(2)
1 =

v2
S v

4

2 h2y4λ4
L(

v2

2 y
2λ2

L + m2
F

(
2m2

L

v2
φ

+ λ2
L

))2 . (C.12)

Since ω(0)
1 = ω(1)

1 = 0, mν =

√
ω(2)

1 would be the approximate value for the lightest eigenvalue of the
5 × 5 matrixMN ,

mν '

vS v
2

√
2

h y2λ2
L

v2

2 y
2λ2

L + m2
F

(
2m2

L

v2
φ

+ λ2
L

) . (C.13)
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However, in the general 11 × 11 matrix the parameters λL, y, mL, mF and h are matrices with specific
flavor indices. To translate mν into the correct matrix notation we rewrite it in terms of matrices

mν ' v̄
5 h y y λL λL m−1

F m−1
F m−1

L m−1
L , (C.14)

where the global factor v̄5 represents the product between of VEV’s. To have the proper product of
matrices we identified the flavor indices of the parameters:

λL : {LR, `L} ,

y : {FR, LL} ,

mL : {LL, LR} ,

mF : {FR, FL} ,

h : {Fc
L, FL} . (C.15)

Rearranging the matrices in order to have the indices of mν which are {`L, `L}, we get the form

mν ' v̄
5 λT

L m−1
L ym−1

F h
(
m−1

F

)T
yT

(
m−1

L

)T
λL . (C.16)

Substituting the global factor v̄5
=

v2v2
φvS

2
√

2
in to Eq. (C.16) gives us the final expression

mν '
v2v2

φvS

2
√

2
λT

L m−1
L ym−1

F h
(
m−1

F

)T
yT

(
m−1

L

)T
λL . (C.17)

We have explicitly checked that the numerical values for the light neutrinos given by SPheno, are
reproduced in a very good approximation by the neutrino mass expression obtained in this Appendix
when the relation vS h � v y, vφ λL � mL,F is fulfilled.
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APPENDIX D

Model implementation in SARAH

D.1 TTTDM

TTTDM.m
1 Off[General::spell]
2
3 Model‘Name = "TTTDM";
4 Model‘NameLaTeX = "Tres Tristes Tripletes DM model";
5 Model‘Authors = "D. Restrepo, J. Palacio, R. Lineros, M. Hirsch, A. Vicente... etc";
6 Model‘Date = "2014-11-24";
7
8
9 (* 24-11-2014 : Several changes *)

10 (* 04-06-2015 : Improvements in mixings *)
11 (* 16-09-2015 : Fixed convention for non-SUSY models *)
12 (* 13-10-2015 : Fixed details - full update *)
13 (* 26-10-2015 : Fixed sign in fermion Lagrangian terms *)
14 (* 27-10-2015 : Normalized triplets properly and changed numerical factors in some of their couplings *)
15
16 (*------------Particle Content---------------*)
17
18 (* Global Symmetries *)
19 Global[[1]] = {Z[2], Z2};
20
21 (*--------------Gauge Groups-----------------*)
22 Gauge[[1]]={B, U[1], hypercharge , g1, False, 1};
23 Gauge[[2]]={WB, SU[2], left, g2, True , 1};
24 Gauge[[3]]={G, SU[3], color, g3, False, 1};
25
26 (*--------------Matter Fields----------------*)
27 FermionFields[[1]] = {q , 3, {uL, dL}, 1/6, 2, 3, 1};
28 FermionFields[[2]] = {l , 3, {vL, eL}, -1/2, 2, 1, 1};
29 FermionFields[[3]] = {d , 3, conj[dR], 1/3, 1, -3, 1};
30 FermionFields[[4]] = {u , 3, conj[uR], -2/3, 1, -3, 1};
31 FermionFields[[5]] = {e , 3, conj[eR], 1, 1, 1, 1};
32 FermionFields[[6]] = {n , 1, conj[nR], 0, 1, 1,-1};
33 FermionFields[[7]] = {Tf, 1, {{Tf0/Sqrt[2], Tfp},{ Tfm, -Tf0/Sqrt[2] }}, 0, 3, 1,-1};
34
35 ScalarFields[[1]] = {H, 1, {Hp, H0}, 1/2, 2, 1, 1};
36 ScalarFields[[2]] = {Ts, 1, {{Ts0/Sqrt[2], Tsp},{ Tsm, -Ts0/Sqrt[2] }}, 0, 3, 1, 1};
37 ScalarFields[[3]] = {Et, 1, {etp,et0}, 1/2, 2, 1, -1};
38
39 RealScalars={Ts};
40 Tsm = conj[Tsp];
41
42 (*---------------DEFINITION ------------------*)
43
44 NameOfStates={GaugeES, EWSB};
45
46 (* ----- Before EWSB ----- *)
47
48 DEFINITION[GaugeES][LagrangianInput]=
49 {
50 {LagFer , {AddHC->True}},
51 {LagNV , {AddHC->True}},
52 {LagH , {AddHC->False}},
53 {LagEt , {AddHC->False}},
54 {LagHEt , {AddHC->False}},
55 {LagHEtHC , {AddHC->True}},
56 {LagT , {AddHC->False}},
57 {LagMu , {AddHC->True}},
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58 {LagHT , {AddHC->False}},
59 {LagTEt , {AddHC->False}}
60 };
61
62
63 LagFer = -(Yd conj[H].d.q + Ye conj[H].e.l + Yu H.u.q + Yn Et.n.l + Yt Et.Tf.l + Ymix Ts.Tf.n); (* Fermions ↪→

lagrangian *)
64 LagNV = -(Mn/2 n.n + Mv/2 Tf.Tf);
65 (* *)
66 LagH = -(- mH2 conj[H].H + 1/2 lambda1 conj[H].H.conj[H].H ); (* Higgs lagrangian *)
67 LagEt = -(+ mEt2 conj[Et].Et + 1/2 lambda2 conj[Et].Et.conj[Et].Et ); (* Eta lagrangian *)
68 LagHEt = -(+ lambda3 conj[H].H.conj[Et].Et + lambda4 conj[H].Et.conj[Et].H );
69 LagHEtHC = -(+ 1/2 lambda5 conj[H].Et.conj[H].Et );
70 (* *)
71 LagT = -(- 1/2 mT2 Ts.Ts + 1/4 lambdaT2 Ts.Ts.Ts.Ts ); (* Triplet lagrangian and ↪→

interactions *)
72 LagMu = -(+ mu1 conj[H].Ts.H + mu2 conj[Et].Ts.Et );
73 LagHT = -(+ 1/2 lambdaT1 conj[H].H.Ts.Ts );
74 LagTEt = -(+ 1/2 lambdaTet conj[Et].Et.Ts.Ts );
75
76 (* Gauge Sector *)
77
78 DEFINITION[EWSB][GaugeSector] =
79 {
80 {{VB,VWB[3]},{VP,VZ},ZZ},
81 {{VWB[1],VWB[2]},{VWp,conj[VWp]},ZW}
82 };
83
84 (* ----- VEVs ---- *)
85
86 DEFINITION[EWSB][VEVs]=
87 {
88 {H0, {v, 1/Sqrt[2]}, {Ah, \[ImaginaryI]/Sqrt[2]}, {phiH, 1/Sqrt[2]}},
89 {Ts0, {v3, 1}, {TsI, 0}, {TsR, 1}},
90 {et0, {0, 0}, {etI, \[ImaginaryI]/Sqrt[2]}, {etR, 1/Sqrt[2]}}
91 };
92
93 DEFINITION[EWSB][MatterSector]=
94 {
95 {{phiH, TsR}, {hh, ZH}},
96 {{conj[Hp], conj[Tsp]}, {Hpm, ZP}},
97 {{Tf0, conj[nR]},{X0, ZX}},
98 {{vL}, {VL, Vv}},
99 {{{dL}, {conj[dR]}}, {{DL,Vd}, {DR,Ud}}},

100 {{{uL}, {conj[uR]}}, {{UL,Vu}, {UR,Uu}}},
101 {{{eL}, {conj[eR]}}, {{EL,Ve}, {ER,Ue}}}
102 };
103
104 (*------------------------------------------------------*)
105 (* Dirac-Spinors *)
106 (*------------------------------------------------------*)
107
108 DEFINITION[EWSB][DiracSpinors]=
109 {
110 Fd -> { DL, conj[DR]},
111 Fe -> { EL, conj[ER]},
112 Fu -> { UL, conj[UR]},
113 Fv -> { VL, conj[VL]},
114 Chi -> { X0, conj[X0] },
115 Cha -> { Tfm, conj[Tfp] }
116 };
117
118 DEFINITION[EWSB][GaugeES]=
119 {
120 Fd1 ->{ FdL, 0},
121 Fd2 ->{ 0, FdR},
122 Fu1 ->{ Fu1, 0},
123 Fu2 ->{ 0, Fu2},
124 Fe1 ->{ Fe1, 0},
125 Fe2 ->{ 0, Fe2}
126 };

particles.m
1 (* ::Package:: *)
2 ParticleDefinitions[GaugeES] = {
3
4 {H0, { PDG -> 0,
5 Width -> 0,
6 Mass -> Automatic ,
7 LaTeX -> "H^0",
8 OutputName -> "H0" }},
9

10 {Hp, { PDG -> 0,
11 Width -> 0,
12 Mass -> Automatic ,
13 LaTeX -> "H^+",
14 OutputName -> "Hp" }},
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15
16 {Ts0, { PDG -> 0,
17 Width -> 0,
18 Mass -> Automatic ,
19 LaTeX -> "\\Omega^0",
20 OutputName -> "Ts0" }},
21
22 {Tsp, { LaTeX -> "\\Omega^+",
23 OutputName -> "Tsp" }},
24
25 {Tsm, { LaTeX -> "\\Omega^-",
26 OutputName -> "Tsm" }},
27
28 {Tf0, { PDG -> 0,
29 Width -> 0,
30 Mass -> Automatic ,
31 LaTeX -> "\\Sigma^0",
32 OutputName -> "Tf0" }},
33
34 {Tfp, { PDG -> 0,
35 Width -> 0,
36 Mass -> Automatic ,
37 LaTeX -> "\\Sigma^+",
38 OutputName -> "Tfp" }},
39
40 {Tfm, { PDG -> 0,
41 Width -> 0,
42 Mass -> Automatic ,
43 LaTeX -> "\\Sigma^-",
44 OutputName -> "Tfm" }},
45
46 {et0, { PDG -> 0,
47 Width -> 0,
48 Mass -> Automatic ,
49 LaTeX -> "\\eta^0",
50 OutputName -> "et0" }},
51
52 {etp, { PDG -> 0,
53 Width -> 0,
54 Mass -> Automatic ,
55 LaTeX -> "\\eta^+",
56 OutputName -> "etp" }},
57
58 {VB, { Description -> "B-Boson"}},
59 {VG, { Description -> "Gluon"}},
60 {VWB, { Description -> "W-Bosons"}},
61 {gB, { Description -> "B-Boson Ghost"}},
62 {gG, { Description -> "Gluon Ghost" }},
63 {gWB, { Description -> "W-Boson Ghost"}}
64
65 };
66
67
68
69 ParticleDefinitions[EWSB] = {
70
71 {hh, { Description -> "Higgs",
72 PDG -> {25,35},
73 PDG.IX -> {101000001,101000002},
74 Mass -> Automatic }},
75 {Ah, { Description -> "Pseudo-Scalar Higgs",
76 PDG -> {0},
77 PDG.IX ->{0},
78 Mass -> {0},
79 Width -> {0} }},
80 {Hpm, { Description -> "Charged Higgs",
81 PDG -> {0,2001},
82 PDG.IX -> {0,101000004} }},
83
84 {etR, { Description -> "CP-even eta scalar",
85 PDG -> {1001},
86 Mass -> Automatic ,
87 ElectricCharge -> 0,
88 LaTeX -> "\\eta_R",
89 OutputName -> "etR" }},
90 {etI, { Description -> "CP-odd eta scalar",
91 PDG -> {1002},
92 Mass -> Automatic ,
93 ElectricCharge -> 0,
94 LaTeX -> "\\eta_I",
95 OutputName -> "etI" }},
96 {etp, { Description -> "Charged eta scalar",
97 PDG -> {1003},
98 Mass -> Automatic ,
99 ElectricCharge -> 1,

100 LaTeX -> "\\eta^+",
101 OutputName -> "etp" }},
102
103 {VP, { Description -> "Photon"}},
104 {VZ, { Description -> "Z-Boson", Goldstone -> Ah }},
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105 {VWp, { Description -> "W+ - Boson", Goldstone -> Hpm[{1}]}},
106 {VG, { Description -> "Gluon" }},
107
108 {gP, { Description -> "Photon Ghost"}},
109 {gWp, { Description -> "Positive W+ - Boson Ghost"}},
110 {gWpC, { Description -> "Negative W+ - Boson Ghost" }},
111 {gZ, { Description -> "Z-Boson Ghost" }},
112 {gG, { Description -> "Gluon Ghost" }},
113
114 {Fd, { Description -> "Down-Quarks"}},
115 {Fu, { Description -> "Up-Quarks"}},
116 {Fe, { Description -> "Leptons" }},
117 {Fv, { Description -> "Neutrinos" }},
118 {Chi, { Description -> "Singlet Fermions",
119 PDG -> {1012,1014},
120 PDG.IX ->{-110000004,-110000005},
121 FeynArtsNr -> 11,
122 ElectricCharge -> 0,
123 LaTeX -> "\\chi^0",
124 OutputName -> "Chi" }},
125 {Cha, { Description -> "Charged Fermions",
126 PDG -> {-1013},
127 PDG.IX ->{-110000006},
128 Mass -> Automatic ,
129 FeynArtsNr -> 12,
130 ElectricCharge -> -1,
131 LaTeX -> "\\chi^-",
132 OutputName -> "Cha" }},
133 {TsI, { Description -> "Pseudo-Scalar Ts",
134 PDG -> {0},
135 PDG.IX ->{0},
136 Mass -> {0},
137 Width -> {0},
138 OutputName -> "TsI" }}
139
140 };
141
142 WeylFermionAndIndermediate =
143 {
144 {H, {LaTeX -> "H"}},
145 {Ts, {LaTeX -> "\\Omega"}},
146 {Tf, {LaTeX -> "\\Sigma"}},
147 {Et, {LaTeX -> "\\eta"}},
148 {dR, {LaTeX -> "d_R" }},
149 {eR, {LaTeX -> "e_R" }},
150 {lep, {LaTeX -> "l" }},
151 {uR, {LaTeX -> "u_R" }},
152 {q, {LaTeX -> "q" }},
153 {eL, {LaTeX -> "e_L" }},
154 {dL, {LaTeX -> "d_L" }},
155 {uL, {LaTeX -> "u_L" }},
156 {vL, {LaTeX -> "\\nu_L" }},
157 {DR, {LaTeX -> "D_R" }},
158 {ER, {LaTeX -> "E_R" }},
159 {UR, {LaTeX -> "U_R" }},
160 {EL, {LaTeX -> "E_L" }},
161 {DL, {LaTeX -> "D_L" }},
162 {UL, {LaTeX -> "U_L" }},
163 {X0, {LaTeX -> "X^0"}},
164 {Xm, {LaTeX -> "X^-"}},
165 {Xp, {LaTeX -> "X^+"}},
166 {VL, {LaTeX -> "V_L" }},
167 {phiH, {LaTeX -> "\\phi_H" }},
168 {Tsp, { LaTeX -> "\\Omega^+",
169 OutputName -> "Tsp" }},
170 {Tsm, { LaTeX -> "\\Omega^-",
171 OutputName -> "Tsm" }},
172 {TsR, {LaTeX -> "\\phi_\\Omega" }},
173 {TsI, {LaTeX -> "\\sigma_\\Omega" }},
174 {etR, {LaTeX -> "\\phi_\\eta" }},
175 {etI, {LaTeX -> "\\sigma_\\eta" }},
176 {n, {LaTeX -> "N" }},
177 {nR, {LaTeX -> "\\nu_R" }}
178 };

parameters.m
1 (* ::Package:: *)
2
3 ParameterDefinitions = {
4
5 {g1, { Description -> "Hypercharge -Coupling"}},
6 {g2, { Description -> "Left-Coupling"}},
7 {g3, { Description -> "Strong-Coupling"}},
8 {AlphaS, {Description -> "Alpha Strong"}},
9 {e, { Description -> "electric charge"}},

10
11 {Gf, { Description -> "Fermi’s constant"}},
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12 {aEWinv, { Description -> "inverse weak coupling constant at mZ"}},
13
14 {Yu, { Description -> "Up-Yukawa-Coupling",
15 DependenceNum -> Sqrt[2]/v* { {Mass[Fu,1],0,0},
16 {0,Mass[Fu,2],0},
17 {0,0,Mass[Fu,3]}}
18 }
19 },
20 {Yd, { Description -> "Down-Yukawa-Coupling",
21 DependenceNum -> Sqrt[2]/v* {{Mass[Fd,1],0,0},
22 {0, Mass[Fd,2],0},
23 {0, 0, Mass[Fd,3]}}}},
24
25 {Ye, { Description -> "Lepton-Yukawa-Coupling",
26 DependenceNum -> Sqrt[2]/v* {{Mass[Fe,1],0,0},
27 {0, Mass[Fe,2],0},
28 {0, 0, Mass[Fe,3]}}}},
29
30
31 {ThetaW, { Description -> "Weinberg-Angle",
32 DependenceNum -> ArcSin[Sqrt[1 - Mass[VWp]^2/Mass[VZ]^2]]}},
33
34 {ZZ, {Description -> "Photon-Z Mixing Matrix"}},
35 {ZW, {Description -> "W Mixing Matrix", Dependence -> 1/Sqrt[2] {{1, 1},{I,-I}} } },
36
37 {Vu, {Description ->"Left-Up-Mixing-Matrix"}},
38 {Vd, {Description ->"Left-Down-Mixing-Matrix"}},
39 {Uu, {Description ->"Right-Up-Mixing-Matrix"}},
40 {Ud, {Description ->"Right-Down-Mixing-Matrix"}},
41 {Ve, {Description ->"Left-Lepton-Mixing-Matrix"}},
42 {Ue, {Description ->"Right-Lepton-Mixing-Matrix"}},
43
44 (* Scalar sector *)
45
46 {v, { Description -> "EW-VEV",
47 DependenceNum -> Sqrt[4*Mass[VWp]^2/(g2^2)],
48 DependenceSPheno -> None }},
49
50 {\[Beta], { Description -> "Pseudo Scalar mixing angle" }},
51 {\[Alpha], { Description -> "Scalar mixing angle" }},
52
53 {mH2, { Description -> "SM Higgs Mass Parameter",
54 LaTeX -> "m_\\phi^2" }},
55
56 {v3, {LaTeX -> "v_3",
57 LesHouches -> {HDM,1},
58 OutputName -> v3 }},
59
60 {mEt2, {LaTeX -> "m_\\eta^2",
61 LesHouches -> {HDM,2},
62 OutputName -> mEt2 }},
63
64 {mT2, {LaTeX -> "m_\\Omega^2",
65 LesHouches -> {HDM,3},
66 OutputName -> mT2 }},
67
68 {mu1, {LaTeX -> "\\mu_1",
69 LesHouches -> {HDM,4},
70 OutputName -> mu1 }},
71
72 {mu2, {LaTeX -> "\\mu_2",
73 LesHouches -> {HDM,5},
74 OutputName -> mu2 }},
75
76 {lambda1, {LaTeX -> "\\lambda_1",
77 LesHouches -> {HDM,6},
78 OutputName -> lam1 }},
79
80 {lambda2, {LaTeX -> "\\lambda_2",
81 LesHouches -> {HDM,7},
82 OutputName -> lam2 }},
83
84 {lambda3, {LaTeX -> "\\lambda_3",
85 LesHouches -> {HDM,8},
86 OutputName -> lam3 }},
87
88 {lambda4, {LaTeX -> "\\lambda_4",
89 LesHouches -> {HDM,9},
90 OutputName -> lam4 }},
91
92 {lambda5, {Real -> True,
93 LaTeX -> "\\lambda_5",
94 LesHouches -> {HDM,10},
95 OutputName -> lam5 }},
96
97 {lambdaT1, {LaTeX -> "\\lambda^\\Omega_1",
98 LesHouches -> {HDM,11},
99 OutputName -> lT1 }},

100
101 {lambdaT2, {LaTeX -> "\\lambda^\\Omega_2",

77



Appendix D Model implementation in SARAH

102 LesHouches -> {HDM,12},
103 OutputName -> lT2 }},
104
105 {lambdaTet , {LaTeX -> "\\lambda^\\eta",
106 LesHouches -> {HDM,13},
107 OutputName -> lTet }},
108
109 {ZH, { Description ->"Scalar-Mixing-Matrix"}},
110 {ZP, { Description ->"Charged-Mixing-Matrix"}},
111
112 (* Yukawa sector *)
113
114 {Yn, {LaTeX -> "Y_N",
115 LesHouches -> YN,
116 OutputName ->Yn }},
117
118 {Yt, {LaTeX -> "Y_\\Sigma",
119 LesHouches -> YT,
120 OutputName ->Yt }},
121
122 {Ymix, {LaTeX -> "Y_\\Omega",
123 LesHouches -> {HDM,14},
124 OutputName ->Ymix }},
125
126 {Mn, {LaTeX -> "M_N",
127 LesHouches -> {HDM,15},
128 OutputName ->Mn }},
129
130 {Mv, {LaTeX -> "M_\\Sigma",
131 LesHouches -> {HDM,16},
132 OutputName ->Mv }},
133
134 {ZX, {Description -> "Singlet fermion Mixing Matrix",
135 LaTeX -> "Z^{\\chi^0}",
136 LesHouches -> ZXMIX,
137 OutputName -> ZX }},
138
139 {Vv, {Description ->"Neutrino-Mixing-Matrix"}}
140
141 };

SPheno.m
1 OnlyLowEnergySPheno = True;
2
3 MINPAR={
4 {1,lambda1Input},
5 {2,lambda2Input},
6 {3,lambda3Input},
7 {4,lambda4Input},
8 {5,lambda5Input},
9 {6,lambdaT1Input},

10 {7,lambdaT2Input},
11 {8,lambdaTetInput},
12 {9,mEt2Input},
13 {10,mu1Input},
14 {11,mu2Input},
15 {12,v3Input},
16 {13,YmixInput},
17 {14,MnInput},
18 {15,MvInput}
19 };
20
21 ParametersToSolveTadpoles = {mH2,mT2};
22 (* Tad1Loop[a_]=0; *)
23
24 BoundaryLowScaleInput={
25 {v, vSM},
26 {Ye, YeSM},
27 {Yd, YdSM},
28 {Yu, YuSM},
29 {g1, g1SM},
30 {g2, g2SM},
31 {g3, g3SM},
32 {lambda1,lambda1Input},
33 {lambda2,lambda2Input},
34 {lambda3,lambda3Input},
35 {lambda4,lambda4Input},
36 {lambda5,lambda5Input},
37 {lambdaT1,lambdaT1Input},
38 {lambdaT2,lambdaT2Input},
39 {lambdaTet ,lambdaTetInput},
40 {mEt2,mEt2Input},
41 {mu1,mu1Input},
42 {mu2,mu2Input},
43 {v3,v3Input},
44 {Ymix, YmixInput},
45 {Mn, MnInput},
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46 {Mv, MvInput},
47 {Yn, LHInput[Yn]},
48 {Yt, LHInput[Yt]}
49 };
50
51
52 ListDecayParticles = {Fu,Fe,Fd,Fv,VZ,VWp,hh,Hpm,etR,etI,etp,Chi,Cha};
53 ListDecayParticles3B = {{Fu,"Fu.f90"},{Fe,"Fe.f90"},{Fd,"Fd.f90"}};

D.2 DarkBSNu

DarkBSNu.m
1 Off[General::spell]
2
3 Model‘Name = "DarkBSNu";
4 Model‘NameLaTeX ="DarkBS model with neutrino masses";
5 Model‘Authors = "D. Sierra, F. Staub, A. Vicente, P. Rocha-Moran";
6 Model‘Date = "2016-06-12";
7
8
9 (* Extension with neutrino masses = Paulina 2016-06-12 *)

10 (* Added 2nd F generation and renamed Yukawa couplings = Avelino 2016-16-12 *)
11
12
13 (*-------------------------------------------*)
14 (* Particle Content*)
15 (*-------------------------------------------*)
16
17 (* Global Symmetries *)
18 Global[[1]] = {Z[2], Z2};
19
20 (* Gauge Groups *)
21
22 Gauge[[1]]={B, U[1], hypercharge , g1,False ,1};
23 Gauge[[2]]={WB, SU[2], left, g2,True ,1};
24 Gauge[[3]]={G, SU[3], color, g3,False ,1};
25 Gauge[[4]]={Bp, U[1], Uchi, gX,False ,1};
26
27
28 (* Matter Fields *)
29
30 FermionFields[[1]] = {q, 3, {uL, dL}, 1/6, 2, 3, 0, 1};
31 FermionFields[[2]] = {l, 3, {vL, eL}, -1/2, 2, 1, 0, 1};
32 FermionFields[[3]] = {d, 3, conj[dR], 1/3, 1, -3, 0, 1};
33 FermionFields[[4]] = {u, 3, conj[uR], -2/3, 1, -3, 0, 1};
34 FermionFields[[5]] = {e, 3, conj[eR], 1, 1, 1, 0, 1};
35
36 FermionFields[[6]] = {lL, 2, {v4, e4}, -1/2, 2, 1, 2, 1};
37 FermionFields[[7]] = {lR, 2, {e5, v5}, 1/2, 2, 1, -2, 1};
38 FermionFields[[8]] = {qL, 1, {u4, d4}, 1/6, 2, 3, 2, 1};
39 FermionFields[[9]] = {qR, 1, {d5, u5}, -1/6, 2, -3, -2, 1};
40
41 FermionFields[[10]] = {FeL, 2, feL, 0, 1, 1, 2, 1};
42 FermionFields[[11]] = {FeR, 2, conj[feR], 0, 1, 1, -2, 1};
43
44
45 ScalarFields[[1]] = {H, 1, {Hp, H0}, 1/2, 2, 1, 0, 1};
46 ScalarFields[[2]] = {Phi, 1, phi, 0, 1, 1, 2, 1};
47 ScalarFields[[3]] = {Chi, 1, chi, 0, 1, 1, -1, -1};
48
49 ScalarFields[[4]] = {S, 1, s, 0, 1, 1, -4, 1};
50
51
52 (*----------------------------------------------*)
53 (* DEFINITION *)
54 (*----------------------------------------------*)
55
56 NameOfStates={GaugeES, EWSB};
57
58 (* ----- Before EWSB ----- *)
59
60 DEFINITION[GaugeES][LagrangianInput]= {
61 {LagHC, {AddHC->True}},
62 {LagNoHC ,{AddHC->False}},
63 {LagNmass, {AddHC->True}},
64 {LagFmass, {AddHC->True}},
65 {SPotNoHC, {AddHC->False}},
66 {SPotHC, {AddHC->True}}
67 };
68
69 LagNoHC = -mH2 conj[H].H - mPhi2 Phi.conj[Phi] - mChi2 Chi.conj[Chi] - 1/2 \[Lambda] conj[H].H.conj[H].H \
70 -1/2 LamP Phi.conj[Phi].Phi.conj[Phi] -1/2 LamC Chi.conj[Chi].Chi.conj[Chi] \

79



Appendix D Model implementation in SARAH

71 - LamCP conj[Phi].Phi.conj[Chi].Chi - LamHP conj[H].H.conj[Phi].Phi - LamHC conj[H].H.conj[Chi].Chi;
72 LagHC = -(Yd conj[H].d.q + Ye conj[H].e.l + Yu H.u.q + mQ qL.qR + mL lL.lR + lamQ Phi.qR.q + Mu Phi.Chi.Chi);
73
74 (* Terms contributing to neutrino mass *)
75 LagNmass = -(lamL Phi.lR.l + YL H.lL.FeR + YLt conj[H].lR.FeL + hYuk S.FeL.FeL + hYukt conj[S].FeR.FeR ) ;
76 LagFmass = -(mF FeL.FeR);
77
78 (* S potential *)
79 SPotNoHC = - mS2 conj[S].S - 1/2 LamS conj[S].S.conj[S].S - LamHS conj[H].H.conj[S].S \
80 - LamPS conj[Phi].Phi.conj[S].S - LamCS conj[Chi].Chi.conj[S].S;
81 SPotHC = - Mup Phi.Phi.S;
82
83 (* Gauge Sector *)
84
85 DEFINITION[EWSB][GaugeSector] =
86 {
87 {{VB,VWB[3],VBp},{VP,VZ,VZp},ZZ},
88 {{VWB[1],VWB[2]},{VWp,conj[VWp]},ZW}
89 };
90
91
92 (* ----- VEVs ---- *)
93
94 DEFINITION[EWSB][VEVs]=
95 { {H0, {v, 1/Sqrt[2]}, {sigmaH, \[ImaginaryI]/Sqrt[2]},{phiH, 1/Sqrt[2]}},
96 {phi, {vP, 1/Sqrt[2]}, {sigmaP, \[ImaginaryI]/Sqrt[2]},{phiP, 1/Sqrt[2]}},
97 {chi, {0,0}, {sigmaC, \[ImaginaryI]/Sqrt[2]},{phiC, 1/Sqrt[2]}},
98 {s, {vS, 1/Sqrt[2]}, {sigmaS, \[ImaginaryI]/Sqrt[2]},{phiS, 1/Sqrt[2]}}
99 };

100
101
102 DEFINITION[EWSB][MatterSector]= {
103 {{phiH,phiP,phiS},{hh,ZH}},
104 {{sigmaH,sigmaP,sigmaS},{Ah,ZA}},
105 {{{dL,d4}, {conj[dR],d5}}, {{DL,Vd}, {DR,Ud}}},
106 {{{uL,u4}, {conj[uR],u5}}, {{UL,Vu}, {UR,Uu}}},
107 {{{eL,e4}, {conj[eR],e5}}, {{EL,Ve}, {ER,Ue}}},
108 {{vL,v5,v4,conj[feR],feL}, {VL,UV}}
109 };
110
111
112 (*------------------------------------------------------*)
113 (* Dirac-Spinors *)
114 (*------------------------------------------------------*)
115
116 DEFINITION[EWSB][DiracSpinors]={
117 Fd ->{ DL, conj[DR]},
118 Fe ->{ EL, conj[ER]},
119 Fu ->{ UL, conj[UR]},
120 Fv ->{ VL, conj[VL]}};
121
122 DEFINITION[EWSB][GaugeES]={
123 Fd1 ->{ FdL, 0},
124 Fd2 ->{ 0, FdR},
125 Fu1 ->{ Fu1, 0},
126 Fu2 ->{ 0, Fu2},
127 Fe1 ->{ Fe1, 0},
128 Fe2 ->{ 0, Fe2}};

particles.m
1 ParticleDefinitions[GaugeES] = {
2 {H0, { PDG -> {0},
3 Width -> 0,
4 Mass -> Automatic ,
5 FeynArtsNr -> 1,
6 LaTeX -> "H^0",
7 OutputName -> "H0" }},
8
9

10 {Hp, { PDG -> {0},
11 Width -> 0,
12 Mass -> Automatic ,
13 FeynArtsNr -> 2,
14 LaTeX -> "H^+",
15 OutputName -> "Hp" }},
16
17 {s, { PDG -> {0},
18 Width -> 0,
19 Mass -> Automatic ,
20 FeynArtsNr -> 3,
21 LaTeX -> "s^0",
22 OutputName -> "s" }},
23
24
25 {VB, { Description -> "B-Boson"}},
26 {VG, { Description -> "Gluon"}},
27 {VWB, { Description -> "W-Bosons"}},

80



D.2 DarkBSNu

28 {gB, { Description -> "B-Boson Ghost"}},
29 {gG, { Description -> "Gluon Ghost" }},
30 {gWB, { Description -> "W-Boson Ghost"}}
31
32 };
33
34 ParticleDefinitions[EWSB] = {
35
36
37 {hh , { Description -> "Higgs",
38 PDG -> {25,35,45},
39 PDG.IX -> {101000001,101000002,101000003} }},
40
41 {Ah , { Description -> "Pseudo-Scalar Higgs",
42 PDG -> {0,0,36},
43 PDG.IX ->{0,0,101000004},
44 Width ->{0,0,External}
45 Mass ->{0,0,LesHouches} }},
46
47
48 {Hp, { Description -> "Charged Higgs",
49 PDG -> {0},
50 PDG.IX ->{0},
51 Width -> {0},
52 Mass -> {0},
53 LaTeX -> {"H^+","H^-"},
54 OutputName -> {"Hp","Hm"} }},
55
56 {VP, { Description -> "Photon"}},
57 {VZ, { Description -> "Z-Boson",
58 Goldstone -> Ah[{1}] }},
59 {VZp, { Description -> "Z’-Boson",
60 Goldstone -> Ah[{2}] }},
61 {VG, { Description -> "Gluon" }},
62 {VWp, { Description -> "W+ - Boson",
63 Goldstone -> Hp }},
64 {gP, { Description -> "Photon Ghost"}},
65 {gWp, { Description -> "Positive W+ - Boson Ghost"}},
66 {gWpC, { Description -> "Negative W+ - Boson Ghost" }},
67 {gZ, { Description -> "Z-Boson Ghost" }},
68 {gZp, { Description -> "Z’-Ghost" }},
69 {gG, { Description -> "Gluon Ghost" }},
70
71 {phiC, { Description -> "CP-even Chi scalar",
72 PDG -> {1001},
73 Mass -> LesHouches ,
74 ElectricCharge -> 0,
75 LaTeX -> "\\chi_R",
76 OutputName -> "chiR" }},
77 {sigmaC, { Description -> "CP-odd Chi scalar",
78 PDG -> {1002},
79 Mass -> LesHouches ,
80 ElectricCharge -> 0,
81 LaTeX -> "\\chi_I",
82 OutputName -> "chiI" }},
83
84 {Fd, { Description -> "Down-Quarks",
85 PDG -> {1,3,5,7},
86 PDG.IX->{-110890201,-110890202,-110890203,-110890204} }},
87 {Fu, { Description -> "Up-Quarks",
88 PDG -> {2,4,6,8},
89 PDG.IX->{110100401,110100402,110100403,110100404} }},
90 {Fe, { Description -> "Leptons",
91 PDG -> {11,13,15,17,19},
92 PDG.IX -> {-110000601,-110000602,-110000603,-110000604,-110000605} }},
93 {Fv, { Description -> "Neutrinos",
94 PDG -> {12,14,16,1018,1020,2018,2020,3018,3020,4018,4020},
95 PDG.IX ->{-110000001,-110000002,-110000003,-110000004,-110000005,-110000006,-110000007,
96 -110000008,-110000009,-110000010,-110000011} }}
97
98 };
99

100
101 WeylFermionAndIndermediate = {
102
103 {H, { PDG -> {0},
104 Width -> 0,
105 Mass -> Automatic ,
106 LaTeX -> "H",
107 OutputName -> "" }},
108
109 {dR, {LaTeX -> "d_R" }},
110 {eR, {LaTeX -> "e_R" }},
111 {lep, {LaTeX -> "l" }},
112 {uR, {LaTeX -> "u_R" }},
113 {q, {LaTeX -> "q" }},
114 {eL, {LaTeX -> "e_L" }},
115 {dL, {LaTeX -> "d_L" }},
116 {uL, {LaTeX -> "u_L" }},
117 {vL, {LaTeX -> "\\nu_L" }},
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118
119 {DR, {LaTeX -> "D_R" }},
120 {ER, {LaTeX -> "E_R" }},
121 {UR, {LaTeX -> "U_R" }},
122 {EL, {LaTeX -> "E_L" }},
123 {DL, {LaTeX -> "D_L" }},
124 {UL, {LaTeX -> "U_L" }}
125 };

parameters.m
1 ParameterDefinitions = {
2
3 {g1, { Description -> "Hypercharge -Coupling"}},
4 {g2, { Description -> "Left-Coupling"}},
5 {g3, { Description -> "Strong-Coupling"}},
6
7
8 {gX, {LaTeX -> "g_X",
9 LesHouches -> {GAUGE,4},

10 OutputName -> gX}},
11
12 {g1X, {LaTeX -> "\\tilde{g}",
13 LesHouches -> {GAUGE ,10},
14 OutputName -> g1X}},
15 {gX1, {LaTeX -> "\\bar{g}",
16 LesHouches -> {GAUGE ,11},
17 OutputName -> gX1}},
18
19
20 {AlphaS, {Description -> "Alpha Strong"}},
21 {e, { Description -> "electric charge"}},
22
23 {Gf, { Description -> "Fermi’s constant"}},
24 {aEWinv, { Description -> "inverse weak coupling constant at mZ"}},
25
26 {Yu, { Description -> "Up-Yukawa-Coupling",
27 DependenceNum -> Sqrt[2]/v* {{Mass[Fu,1],0,0},
28 {0, Mass[Fu,2],0},
29 {0, 0, Mass[Fu,3]}}}},
30
31 {Yd, { Description -> "Down-Yukawa-Coupling",
32 DependenceNum -> Sqrt[2]/v* {{Mass[Fd,1],0,0},
33 {0, Mass[Fd,2],0},
34 {0, 0, Mass[Fd,3]}}}},
35
36 {Ye, { Description -> "Lepton-Yukawa-Coupling",
37 DependenceNum -> Sqrt[2]/v* {{Mass[Fe,1],0,0},
38 {0, Mass[Fe,2],0},
39 {0, 0, Mass[Fe,3]}}}},
40
41
42 {\[Lambda], { Description -> "SM Higgs Selfcouplings",
43 DependenceNum -> Mass[hh]^2/(2 v^2)}},
44 {v, { Description -> "EW-VEV",
45 DependenceNum -> Sqrt[4*Mass[VWp]^2/(g2^2)],
46 DependenceSPheno -> None }},
47
48 {vP, {LaTeX ->"v_\\phi",
49 OutputName -> vP,
50 LesHouches -> {DBS,20}}},
51
52 {mPhi2, {LaTeX -> "m_{\\phi}^2",
53 OutputName ->mPhi2,
54 LesHouches -> {DBS,1}}},
55
56 {mChi2, {LaTeX -> "m_{\\chi}^2",
57 OutputName ->mX2,
58 LesHouches -> {DBS,2}}},
59
60 {mQ, {LaTeX -> "m_Q",
61 OutputName ->mQ,
62 LesHouches -> {DBS,3}}},
63
64 {mL, {LaTeX -> "m_L",
65 OutputName ->mL,
66 LesHouches -> ML }},
67
68 {LamP, {LaTeX -> "\\lambda_{\\phi}",
69 OutputName ->LamP,
70 LesHouches -> {DBS,10}}},
71
72 {LamC, {LaTeX -> "\\lambda_{\\chi}",
73 OutputName ->LamC,
74 LesHouches -> {DBS,11}}},
75
76 {LamCP, {LaTeX -> "\\lambda_{\\phi\\chi}",
77 OutputName ->LamCP,
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78 LesHouches -> {DBS,12}}},
79
80 {LamHP, {LaTeX -> "\\lambda_{H\\phi}",
81 OutputName ->LamHP,
82 LesHouches -> {DBS,13}}},
83
84 {LamHC, {LaTeX -> "\\lambda_{H\\chi}",
85 OutputName ->LamHC,
86 LesHouches -> {DBS,14}}},
87
88 {lamQ, {LaTeX -> "\\lambda_Q",
89 OutputName ->lamQ,
90 LesHouches -> LAMQ}},
91
92 {lamL, {LaTeX -> "\\lambda_L",
93 OutputName ->lamL,
94 LesHouches -> LAML}},
95
96 {Mu, {LaTeX -> "\\mu",
97 Real -> True,
98 OutputName ->Mu,
99 LesHouches -> {DBS,7}}},

100
101
102 {mH2, { Description -> "SM Higgs Mass Parameter"}},
103
104 {ThetaW, { Description -> "Weinberg-Angle",
105 DependenceNum -> ArcSin[Sqrt[1 - Mass[VWp]^2/Mass[VZ]^2]] }},
106
107 {ThetaWp, { LaTeX -> "{\\Theta’}_W",
108 Real ->True,
109 DependenceSPheno -> ArcCos[Abs[ZZ[3,3]]],
110 OutputName -> TWp,
111 LesHouches -> {ANGLES ,10} }},
112
113 {ZH, { Description ->"Scalar-Mixing-Matrix",
114 LaTeX -> "Z^H",
115 DependenceOptional -> None,
116 Real -> True,
117 Value -> None,
118 LesHouches -> SCALARMIX ,
119 OutputName -> ZH }},
120
121 {ZA, { Description ->"Pseudo-Scalar-Mixing-Matrix",
122 LaTeX -> "Z^A",
123 DependenceOptional -> None,
124 Real -> True,
125 Value -> None,
126 LesHouches -> PSEUDOSCALARMIX ,
127 OutputName -> ZA }},
128
129 {UV, { Description -> "Neutrino-Mixing-Matrix",
130 LaTeX -> "U^V",
131 Dependence -> None,
132 DependenceOptional -> None,
133 Value -> None,
134 LesHouches -> UVMIX,
135 OutputName -> UV }},
136
137 {ZZ, {Description -> "Photon-Z Mixing Matrix",
138 Dependence -> {{Cos[ThetaW],-Sin[ThetaW] Cos[ThetaWp], Sin[ThetaW] Sin[ThetaWp] },
139 {Sin[ThetaW],Cos[ThetaW] Cos[ThetaWp],-Cos[ThetaW] Sin[ThetaWp]},
140 {0, Sin[ThetaWp], Cos[ThetaWp]}} }},
141
142 {ZW, {Description -> "W Mixing Matrix",
143 Dependence -> 1/Sqrt[2] {{1, 1},
144 {\[ImaginaryI],-\[ImaginaryI]}} }},
145
146
147 {Vu, {Description ->"Left-Up-Mixing-Matrix"}},
148 {Vd, {Description ->"Left-Down-Mixing-Matrix"}},
149 {Uu, {Description ->"Right-Up-Mixing-Matrix"}},
150 {Ud, {Description ->"Right-Down-Mixing-Matrix"}},
151 {Ve, {Description ->"Left-Lepton-Mixing-Matrix"}},
152 {Ue, {Description ->"Right-Lepton-Mixing-Matrix"}},
153
154 (* New parameters in the neutrino extended model *)
155
156 {YL, {LaTeX -> "Y_L",
157 OutputName ->YL,
158 LesHouches -> YL }},
159
160 {YLt, {LaTeX -> "\\widetilde Y_L",
161 OutputName ->YLt,
162 LesHouches -> YLT }},
163
164 {hYuk, {LaTeX -> "h",
165 OutputName ->hYuk,
166 LesHouches -> HYUK }},
167
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168 {hYukt, {LaTeX -> "\\widetilde h",
169 OutputName ->hYukt,
170 LesHouches -> HYUKT }},
171
172 {mF, {LaTeX -> "m_F",
173 OutputName ->mF,
174 LesHouches -> MF }},
175
176 {mS2, {LaTeX -> "m_S^2",
177 OutputName ->mS2,
178 LesHouches -> {DBS,30} }},
179
180 {LamS, {LaTeX -> "\\lambda_S",
181 OutputName ->LamS,
182 LesHouches -> {DBS,31} }},
183
184 {LamHS, {LaTeX -> "\\lambda_{HS}",
185 OutputName ->LamHS,
186 LesHouches -> {DBS,32} }},
187
188 {LamPS, {LaTeX -> "\\lambda_{\\phi S}",
189 OutputName ->LamPS,
190 LesHouches -> {DBS,33} }},
191
192 {LamCS, {LaTeX -> "\\lambda_{\\chi S}",
193 OutputName ->LamCS,
194 LesHouches -> {DBS,34} }},
195
196 {Mup, {LaTeX -> "\\mu^\\prime",
197 Real -> True,
198 OutputName ->Mup,
199 LesHouches -> {DBS,35}}},
200
201 {vS, {LaTeX ->"v_S",
202 OutputName -> vS,
203 LesHouches -> {DBS,36}}}
204
205 };

SPheno.m
1 OnlyLowEnergySPheno = True;
2
3 MINPAR={
4 {1, LambdaInput},
5 {2, LPInput},
6 {3, LCInput},
7 {4, LCPInput},
8 {5, LHPInput},
9 {6, LHCInput},

10 {7, MuInput},
11 {10, mChi2Input},
12 {11, mQInput},
13 {20, gXInput},
14 {21, MZpMass},
15 {30, LSInput},
16 {31, LHSInput},
17 {32, LPSInput},
18 {33, LCSInput},
19 {34, MupInput},
20 {35, vSInput}
21 };
22
23 ParametersToSolveTadpoles = {mH2, mPhi2, mS2};
24
25 QuadruplePrecision = {Fv};
26
27 DEFINITION[MatchingConditions]=Default[OHDM];
28
29 BoundaryLowScaleInput={
30 {lamQ, LHInput[lamQ]},
31 {lamL, LHInput[lamL]},
32 {\[Lambda], LambdaInput},
33 {LamP, LPInput},
34 {LamC, LCInput},
35 {LamCP, LCPInput},
36 {LamHP, LHPInput},
37 {LamHC, LHCInput},
38 {Mu, MuInput},
39 {mChi2, mChi2Input},
40 {mQ, mQInput},
41 {mL, LHInput[mL]},
42 {gX, gXInput},
43 {g1X, 0},
44 {gX1, 0},
45 {vP, Sqrt[MZpMass^2 - 16*gXInput^2*vSInput^2]/(2*gX)},
46 {LamS, LSInput},
47 {LamHS, LHSInput},
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48 {LamPS, LPSInput},
49 {LamCS, LCSInput},
50 {Mup, MupInput},
51 {vS, vSInput},
52 {YL, LHInput[YL]},
53 {YLt, LHInput[YLt]},
54 {hYuk, LHInput[hYuk]},
55 {hYukt, LHInput[hYukt]},
56 {mF, LHInput[mF]}
57 };
58
59
60 ListDecayParticles = {Fu, Fe, Fd, Fv, hh, Ah, VZp};
61 ListDecayParticles3B = {{Fu,"Fu.f90"},{Fe,"Fe.f90"},{Fd,"Fd.f90"},{Fv,"Fv.f90"}};
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